2 * Block driver for the QCOW version 2 format
4 * Copyright (c) 2004-2006 Fabrice Bellard
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
27 #include "qemu-common.h"
28 #include "block/block_int.h"
29 #include "block/qcow2.h"
32 int qcow2_grow_l1_table(BlockDriverState
*bs
, uint64_t min_size
,
35 BDRVQcowState
*s
= bs
->opaque
;
36 int new_l1_size2
, ret
, i
;
37 uint64_t *new_l1_table
;
38 int64_t old_l1_table_offset
, old_l1_size
;
39 int64_t new_l1_table_offset
, new_l1_size
;
42 if (min_size
<= s
->l1_size
)
46 new_l1_size
= min_size
;
48 /* Bump size up to reduce the number of times we have to grow */
49 new_l1_size
= s
->l1_size
;
50 if (new_l1_size
== 0) {
53 while (min_size
> new_l1_size
) {
54 new_l1_size
= (new_l1_size
* 3 + 1) / 2;
58 if (new_l1_size
> INT_MAX
) {
63 fprintf(stderr
, "grow l1_table from %d to %" PRId64
"\n",
64 s
->l1_size
, new_l1_size
);
67 new_l1_size2
= sizeof(uint64_t) * new_l1_size
;
68 new_l1_table
= g_malloc0(align_offset(new_l1_size2
, 512));
69 memcpy(new_l1_table
, s
->l1_table
, s
->l1_size
* sizeof(uint64_t));
71 /* write new table (align to cluster) */
72 BLKDBG_EVENT(bs
->file
, BLKDBG_L1_GROW_ALLOC_TABLE
);
73 new_l1_table_offset
= qcow2_alloc_clusters(bs
, new_l1_size2
);
74 if (new_l1_table_offset
< 0) {
76 return new_l1_table_offset
;
79 ret
= qcow2_cache_flush(bs
, s
->refcount_block_cache
);
84 /* the L1 position has not yet been updated, so these clusters must
85 * indeed be completely free */
86 ret
= qcow2_pre_write_overlap_check(bs
, 0, new_l1_table_offset
,
92 BLKDBG_EVENT(bs
->file
, BLKDBG_L1_GROW_WRITE_TABLE
);
93 for(i
= 0; i
< s
->l1_size
; i
++)
94 new_l1_table
[i
] = cpu_to_be64(new_l1_table
[i
]);
95 ret
= bdrv_pwrite_sync(bs
->file
, new_l1_table_offset
, new_l1_table
, new_l1_size2
);
98 for(i
= 0; i
< s
->l1_size
; i
++)
99 new_l1_table
[i
] = be64_to_cpu(new_l1_table
[i
]);
102 BLKDBG_EVENT(bs
->file
, BLKDBG_L1_GROW_ACTIVATE_TABLE
);
103 cpu_to_be32w((uint32_t*)data
, new_l1_size
);
104 stq_be_p(data
+ 4, new_l1_table_offset
);
105 ret
= bdrv_pwrite_sync(bs
->file
, offsetof(QCowHeader
, l1_size
), data
,sizeof(data
));
110 old_l1_table_offset
= s
->l1_table_offset
;
111 s
->l1_table_offset
= new_l1_table_offset
;
112 s
->l1_table
= new_l1_table
;
113 old_l1_size
= s
->l1_size
;
114 s
->l1_size
= new_l1_size
;
115 qcow2_free_clusters(bs
, old_l1_table_offset
, old_l1_size
* sizeof(uint64_t),
116 QCOW2_DISCARD_OTHER
);
119 g_free(new_l1_table
);
120 qcow2_free_clusters(bs
, new_l1_table_offset
, new_l1_size2
,
121 QCOW2_DISCARD_OTHER
);
128 * Loads a L2 table into memory. If the table is in the cache, the cache
129 * is used; otherwise the L2 table is loaded from the image file.
131 * Returns a pointer to the L2 table on success, or NULL if the read from
132 * the image file failed.
135 static int l2_load(BlockDriverState
*bs
, uint64_t l2_offset
,
138 BDRVQcowState
*s
= bs
->opaque
;
141 ret
= qcow2_cache_get(bs
, s
->l2_table_cache
, l2_offset
, (void**) l2_table
);
147 * Writes one sector of the L1 table to the disk (can't update single entries
148 * and we really don't want bdrv_pread to perform a read-modify-write)
150 #define L1_ENTRIES_PER_SECTOR (512 / 8)
151 int qcow2_write_l1_entry(BlockDriverState
*bs
, int l1_index
)
153 BDRVQcowState
*s
= bs
->opaque
;
154 uint64_t buf
[L1_ENTRIES_PER_SECTOR
];
158 l1_start_index
= l1_index
& ~(L1_ENTRIES_PER_SECTOR
- 1);
159 for (i
= 0; i
< L1_ENTRIES_PER_SECTOR
; i
++) {
160 buf
[i
] = cpu_to_be64(s
->l1_table
[l1_start_index
+ i
]);
163 ret
= qcow2_pre_write_overlap_check(bs
, QCOW2_OL_ACTIVE_L1
,
164 s
->l1_table_offset
+ 8 * l1_start_index
, sizeof(buf
));
169 BLKDBG_EVENT(bs
->file
, BLKDBG_L1_UPDATE
);
170 ret
= bdrv_pwrite_sync(bs
->file
, s
->l1_table_offset
+ 8 * l1_start_index
,
182 * Allocate a new l2 entry in the file. If l1_index points to an already
183 * used entry in the L2 table (i.e. we are doing a copy on write for the L2
184 * table) copy the contents of the old L2 table into the newly allocated one.
185 * Otherwise the new table is initialized with zeros.
189 static int l2_allocate(BlockDriverState
*bs
, int l1_index
, uint64_t **table
)
191 BDRVQcowState
*s
= bs
->opaque
;
192 uint64_t old_l2_offset
;
193 uint64_t *l2_table
= NULL
;
197 old_l2_offset
= s
->l1_table
[l1_index
];
199 trace_qcow2_l2_allocate(bs
, l1_index
);
201 /* allocate a new l2 entry */
203 l2_offset
= qcow2_alloc_clusters(bs
, s
->l2_size
* sizeof(uint64_t));
209 ret
= qcow2_cache_flush(bs
, s
->refcount_block_cache
);
214 /* allocate a new entry in the l2 cache */
216 trace_qcow2_l2_allocate_get_empty(bs
, l1_index
);
217 ret
= qcow2_cache_get_empty(bs
, s
->l2_table_cache
, l2_offset
, (void**) table
);
224 if ((old_l2_offset
& L1E_OFFSET_MASK
) == 0) {
225 /* if there was no old l2 table, clear the new table */
226 memset(l2_table
, 0, s
->l2_size
* sizeof(uint64_t));
230 /* if there was an old l2 table, read it from the disk */
231 BLKDBG_EVENT(bs
->file
, BLKDBG_L2_ALLOC_COW_READ
);
232 ret
= qcow2_cache_get(bs
, s
->l2_table_cache
,
233 old_l2_offset
& L1E_OFFSET_MASK
,
234 (void**) &old_table
);
239 memcpy(l2_table
, old_table
, s
->cluster_size
);
241 ret
= qcow2_cache_put(bs
, s
->l2_table_cache
, (void**) &old_table
);
247 /* write the l2 table to the file */
248 BLKDBG_EVENT(bs
->file
, BLKDBG_L2_ALLOC_WRITE
);
250 trace_qcow2_l2_allocate_write_l2(bs
, l1_index
);
251 qcow2_cache_entry_mark_dirty(s
->l2_table_cache
, l2_table
);
252 ret
= qcow2_cache_flush(bs
, s
->l2_table_cache
);
257 /* update the L1 entry */
258 trace_qcow2_l2_allocate_write_l1(bs
, l1_index
);
259 s
->l1_table
[l1_index
] = l2_offset
| QCOW_OFLAG_COPIED
;
260 ret
= qcow2_write_l1_entry(bs
, l1_index
);
266 trace_qcow2_l2_allocate_done(bs
, l1_index
, 0);
270 trace_qcow2_l2_allocate_done(bs
, l1_index
, ret
);
271 if (l2_table
!= NULL
) {
272 qcow2_cache_put(bs
, s
->l2_table_cache
, (void**) table
);
274 s
->l1_table
[l1_index
] = old_l2_offset
;
276 qcow2_free_clusters(bs
, l2_offset
, s
->l2_size
* sizeof(uint64_t),
277 QCOW2_DISCARD_ALWAYS
);
283 * Checks how many clusters in a given L2 table are contiguous in the image
284 * file. As soon as one of the flags in the bitmask stop_flags changes compared
285 * to the first cluster, the search is stopped and the cluster is not counted
286 * as contiguous. (This allows it, for example, to stop at the first compressed
287 * cluster which may require a different handling)
289 static int count_contiguous_clusters(uint64_t nb_clusters
, int cluster_size
,
290 uint64_t *l2_table
, uint64_t stop_flags
)
293 uint64_t mask
= stop_flags
| L2E_OFFSET_MASK
| QCOW_OFLAG_COMPRESSED
;
294 uint64_t first_entry
= be64_to_cpu(l2_table
[0]);
295 uint64_t offset
= first_entry
& mask
;
300 assert(qcow2_get_cluster_type(first_entry
) != QCOW2_CLUSTER_COMPRESSED
);
302 for (i
= 0; i
< nb_clusters
; i
++) {
303 uint64_t l2_entry
= be64_to_cpu(l2_table
[i
]) & mask
;
304 if (offset
+ (uint64_t) i
* cluster_size
!= l2_entry
) {
312 static int count_contiguous_free_clusters(uint64_t nb_clusters
, uint64_t *l2_table
)
316 for (i
= 0; i
< nb_clusters
; i
++) {
317 int type
= qcow2_get_cluster_type(be64_to_cpu(l2_table
[i
]));
319 if (type
!= QCOW2_CLUSTER_UNALLOCATED
) {
327 /* The crypt function is compatible with the linux cryptoloop
328 algorithm for < 4 GB images. NOTE: out_buf == in_buf is
330 void qcow2_encrypt_sectors(BDRVQcowState
*s
, int64_t sector_num
,
331 uint8_t *out_buf
, const uint8_t *in_buf
,
332 int nb_sectors
, int enc
,
341 for(i
= 0; i
< nb_sectors
; i
++) {
342 ivec
.ll
[0] = cpu_to_le64(sector_num
);
344 AES_cbc_encrypt(in_buf
, out_buf
, 512, key
,
352 static int coroutine_fn
copy_sectors(BlockDriverState
*bs
,
354 uint64_t cluster_offset
,
355 int n_start
, int n_end
)
357 BDRVQcowState
*s
= bs
->opaque
;
363 * If this is the last cluster and it is only partially used, we must only
364 * copy until the end of the image, or bdrv_check_request will fail for the
365 * bdrv_read/write calls below.
367 if (start_sect
+ n_end
> bs
->total_sectors
) {
368 n_end
= bs
->total_sectors
- start_sect
;
376 iov
.iov_len
= n
* BDRV_SECTOR_SIZE
;
377 iov
.iov_base
= qemu_blockalign(bs
, iov
.iov_len
);
379 qemu_iovec_init_external(&qiov
, &iov
, 1);
381 BLKDBG_EVENT(bs
->file
, BLKDBG_COW_READ
);
383 /* Call .bdrv_co_readv() directly instead of using the public block-layer
384 * interface. This avoids double I/O throttling and request tracking,
385 * which can lead to deadlock when block layer copy-on-read is enabled.
387 ret
= bs
->drv
->bdrv_co_readv(bs
, start_sect
+ n_start
, n
, &qiov
);
392 if (s
->crypt_method
) {
393 qcow2_encrypt_sectors(s
, start_sect
+ n_start
,
394 iov
.iov_base
, iov
.iov_base
, n
, 1,
395 &s
->aes_encrypt_key
);
398 ret
= qcow2_pre_write_overlap_check(bs
, 0,
399 cluster_offset
+ n_start
* BDRV_SECTOR_SIZE
, n
* BDRV_SECTOR_SIZE
);
404 BLKDBG_EVENT(bs
->file
, BLKDBG_COW_WRITE
);
405 ret
= bdrv_co_writev(bs
->file
, (cluster_offset
>> 9) + n_start
, n
, &qiov
);
412 qemu_vfree(iov
.iov_base
);
420 * For a given offset of the disk image, find the cluster offset in
421 * qcow2 file. The offset is stored in *cluster_offset.
423 * on entry, *num is the number of contiguous sectors we'd like to
424 * access following offset.
426 * on exit, *num is the number of contiguous sectors we can read.
428 * Returns the cluster type (QCOW2_CLUSTER_*) on success, -errno in error
431 int qcow2_get_cluster_offset(BlockDriverState
*bs
, uint64_t offset
,
432 int *num
, uint64_t *cluster_offset
)
434 BDRVQcowState
*s
= bs
->opaque
;
435 unsigned int l2_index
;
436 uint64_t l1_index
, l2_offset
, *l2_table
;
438 unsigned int index_in_cluster
, nb_clusters
;
439 uint64_t nb_available
, nb_needed
;
442 index_in_cluster
= (offset
>> 9) & (s
->cluster_sectors
- 1);
443 nb_needed
= *num
+ index_in_cluster
;
445 l1_bits
= s
->l2_bits
+ s
->cluster_bits
;
447 /* compute how many bytes there are between the offset and
448 * the end of the l1 entry
451 nb_available
= (1ULL << l1_bits
) - (offset
& ((1ULL << l1_bits
) - 1));
453 /* compute the number of available sectors */
455 nb_available
= (nb_available
>> 9) + index_in_cluster
;
457 if (nb_needed
> nb_available
) {
458 nb_needed
= nb_available
;
463 /* seek the the l2 offset in the l1 table */
465 l1_index
= offset
>> l1_bits
;
466 if (l1_index
>= s
->l1_size
) {
467 ret
= QCOW2_CLUSTER_UNALLOCATED
;
471 l2_offset
= s
->l1_table
[l1_index
] & L1E_OFFSET_MASK
;
473 ret
= QCOW2_CLUSTER_UNALLOCATED
;
477 /* load the l2 table in memory */
479 ret
= l2_load(bs
, l2_offset
, &l2_table
);
484 /* find the cluster offset for the given disk offset */
486 l2_index
= (offset
>> s
->cluster_bits
) & (s
->l2_size
- 1);
487 *cluster_offset
= be64_to_cpu(l2_table
[l2_index
]);
488 nb_clusters
= size_to_clusters(s
, nb_needed
<< 9);
490 ret
= qcow2_get_cluster_type(*cluster_offset
);
492 case QCOW2_CLUSTER_COMPRESSED
:
493 /* Compressed clusters can only be processed one by one */
495 *cluster_offset
&= L2E_COMPRESSED_OFFSET_SIZE_MASK
;
497 case QCOW2_CLUSTER_ZERO
:
498 if (s
->qcow_version
< 3) {
501 c
= count_contiguous_clusters(nb_clusters
, s
->cluster_size
,
502 &l2_table
[l2_index
], QCOW_OFLAG_ZERO
);
505 case QCOW2_CLUSTER_UNALLOCATED
:
506 /* how many empty clusters ? */
507 c
= count_contiguous_free_clusters(nb_clusters
, &l2_table
[l2_index
]);
510 case QCOW2_CLUSTER_NORMAL
:
511 /* how many allocated clusters ? */
512 c
= count_contiguous_clusters(nb_clusters
, s
->cluster_size
,
513 &l2_table
[l2_index
], QCOW_OFLAG_ZERO
);
514 *cluster_offset
&= L2E_OFFSET_MASK
;
520 qcow2_cache_put(bs
, s
->l2_table_cache
, (void**) &l2_table
);
522 nb_available
= (c
* s
->cluster_sectors
);
525 if (nb_available
> nb_needed
)
526 nb_available
= nb_needed
;
528 *num
= nb_available
- index_in_cluster
;
536 * for a given disk offset, load (and allocate if needed)
539 * the l2 table offset in the qcow2 file and the cluster index
540 * in the l2 table are given to the caller.
542 * Returns 0 on success, -errno in failure case
544 static int get_cluster_table(BlockDriverState
*bs
, uint64_t offset
,
545 uint64_t **new_l2_table
,
548 BDRVQcowState
*s
= bs
->opaque
;
549 unsigned int l2_index
;
550 uint64_t l1_index
, l2_offset
;
551 uint64_t *l2_table
= NULL
;
554 /* seek the the l2 offset in the l1 table */
556 l1_index
= offset
>> (s
->l2_bits
+ s
->cluster_bits
);
557 if (l1_index
>= s
->l1_size
) {
558 ret
= qcow2_grow_l1_table(bs
, l1_index
+ 1, false);
564 assert(l1_index
< s
->l1_size
);
565 l2_offset
= s
->l1_table
[l1_index
] & L1E_OFFSET_MASK
;
567 /* seek the l2 table of the given l2 offset */
569 if (s
->l1_table
[l1_index
] & QCOW_OFLAG_COPIED
) {
570 /* load the l2 table in memory */
571 ret
= l2_load(bs
, l2_offset
, &l2_table
);
576 /* First allocate a new L2 table (and do COW if needed) */
577 ret
= l2_allocate(bs
, l1_index
, &l2_table
);
582 /* Then decrease the refcount of the old table */
584 qcow2_free_clusters(bs
, l2_offset
, s
->l2_size
* sizeof(uint64_t),
585 QCOW2_DISCARD_OTHER
);
589 /* find the cluster offset for the given disk offset */
591 l2_index
= (offset
>> s
->cluster_bits
) & (s
->l2_size
- 1);
593 *new_l2_table
= l2_table
;
594 *new_l2_index
= l2_index
;
600 * alloc_compressed_cluster_offset
602 * For a given offset of the disk image, return cluster offset in
605 * If the offset is not found, allocate a new compressed cluster.
607 * Return the cluster offset if successful,
608 * Return 0, otherwise.
612 uint64_t qcow2_alloc_compressed_cluster_offset(BlockDriverState
*bs
,
616 BDRVQcowState
*s
= bs
->opaque
;
619 int64_t cluster_offset
;
622 ret
= get_cluster_table(bs
, offset
, &l2_table
, &l2_index
);
627 /* Compression can't overwrite anything. Fail if the cluster was already
629 cluster_offset
= be64_to_cpu(l2_table
[l2_index
]);
630 if (cluster_offset
& L2E_OFFSET_MASK
) {
631 qcow2_cache_put(bs
, s
->l2_table_cache
, (void**) &l2_table
);
635 cluster_offset
= qcow2_alloc_bytes(bs
, compressed_size
);
636 if (cluster_offset
< 0) {
637 qcow2_cache_put(bs
, s
->l2_table_cache
, (void**) &l2_table
);
641 nb_csectors
= ((cluster_offset
+ compressed_size
- 1) >> 9) -
642 (cluster_offset
>> 9);
644 cluster_offset
|= QCOW_OFLAG_COMPRESSED
|
645 ((uint64_t)nb_csectors
<< s
->csize_shift
);
647 /* update L2 table */
649 /* compressed clusters never have the copied flag */
651 BLKDBG_EVENT(bs
->file
, BLKDBG_L2_UPDATE_COMPRESSED
);
652 qcow2_cache_entry_mark_dirty(s
->l2_table_cache
, l2_table
);
653 l2_table
[l2_index
] = cpu_to_be64(cluster_offset
);
654 ret
= qcow2_cache_put(bs
, s
->l2_table_cache
, (void**) &l2_table
);
659 return cluster_offset
;
662 static int perform_cow(BlockDriverState
*bs
, QCowL2Meta
*m
, Qcow2COWRegion
*r
)
664 BDRVQcowState
*s
= bs
->opaque
;
667 if (r
->nb_sectors
== 0) {
671 qemu_co_mutex_unlock(&s
->lock
);
672 ret
= copy_sectors(bs
, m
->offset
/ BDRV_SECTOR_SIZE
, m
->alloc_offset
,
673 r
->offset
/ BDRV_SECTOR_SIZE
,
674 r
->offset
/ BDRV_SECTOR_SIZE
+ r
->nb_sectors
);
675 qemu_co_mutex_lock(&s
->lock
);
682 * Before we update the L2 table to actually point to the new cluster, we
683 * need to be sure that the refcounts have been increased and COW was
686 qcow2_cache_depends_on_flush(s
->l2_table_cache
);
691 int qcow2_alloc_cluster_link_l2(BlockDriverState
*bs
, QCowL2Meta
*m
)
693 BDRVQcowState
*s
= bs
->opaque
;
694 int i
, j
= 0, l2_index
, ret
;
695 uint64_t *old_cluster
, *l2_table
;
696 uint64_t cluster_offset
= m
->alloc_offset
;
698 trace_qcow2_cluster_link_l2(qemu_coroutine_self(), m
->nb_clusters
);
699 assert(m
->nb_clusters
> 0);
701 old_cluster
= g_malloc(m
->nb_clusters
* sizeof(uint64_t));
703 /* copy content of unmodified sectors */
704 ret
= perform_cow(bs
, m
, &m
->cow_start
);
709 ret
= perform_cow(bs
, m
, &m
->cow_end
);
714 /* Update L2 table. */
715 if (s
->use_lazy_refcounts
) {
716 qcow2_mark_dirty(bs
);
718 if (qcow2_need_accurate_refcounts(s
)) {
719 qcow2_cache_set_dependency(bs
, s
->l2_table_cache
,
720 s
->refcount_block_cache
);
723 ret
= get_cluster_table(bs
, m
->offset
, &l2_table
, &l2_index
);
727 qcow2_cache_entry_mark_dirty(s
->l2_table_cache
, l2_table
);
729 assert(l2_index
+ m
->nb_clusters
<= s
->l2_size
);
730 for (i
= 0; i
< m
->nb_clusters
; i
++) {
731 /* if two concurrent writes happen to the same unallocated cluster
732 * each write allocates separate cluster and writes data concurrently.
733 * The first one to complete updates l2 table with pointer to its
734 * cluster the second one has to do RMW (which is done above by
735 * copy_sectors()), update l2 table with its cluster pointer and free
736 * old cluster. This is what this loop does */
737 if(l2_table
[l2_index
+ i
] != 0)
738 old_cluster
[j
++] = l2_table
[l2_index
+ i
];
740 l2_table
[l2_index
+ i
] = cpu_to_be64((cluster_offset
+
741 (i
<< s
->cluster_bits
)) | QCOW_OFLAG_COPIED
);
745 ret
= qcow2_cache_put(bs
, s
->l2_table_cache
, (void**) &l2_table
);
751 * If this was a COW, we need to decrease the refcount of the old cluster.
752 * Also flush bs->file to get the right order for L2 and refcount update.
754 * Don't discard clusters that reach a refcount of 0 (e.g. compressed
755 * clusters), the next write will reuse them anyway.
758 for (i
= 0; i
< j
; i
++) {
759 qcow2_free_any_clusters(bs
, be64_to_cpu(old_cluster
[i
]), 1,
760 QCOW2_DISCARD_NEVER
);
771 * Returns the number of contiguous clusters that can be used for an allocating
772 * write, but require COW to be performed (this includes yet unallocated space,
773 * which must copy from the backing file)
775 static int count_cow_clusters(BDRVQcowState
*s
, int nb_clusters
,
776 uint64_t *l2_table
, int l2_index
)
780 for (i
= 0; i
< nb_clusters
; i
++) {
781 uint64_t l2_entry
= be64_to_cpu(l2_table
[l2_index
+ i
]);
782 int cluster_type
= qcow2_get_cluster_type(l2_entry
);
784 switch(cluster_type
) {
785 case QCOW2_CLUSTER_NORMAL
:
786 if (l2_entry
& QCOW_OFLAG_COPIED
) {
790 case QCOW2_CLUSTER_UNALLOCATED
:
791 case QCOW2_CLUSTER_COMPRESSED
:
792 case QCOW2_CLUSTER_ZERO
:
800 assert(i
<= nb_clusters
);
805 * Check if there already is an AIO write request in flight which allocates
806 * the same cluster. In this case we need to wait until the previous
807 * request has completed and updated the L2 table accordingly.
810 * 0 if there was no dependency. *cur_bytes indicates the number of
811 * bytes from guest_offset that can be read before the next
812 * dependency must be processed (or the request is complete)
814 * -EAGAIN if we had to wait for another request, previously gathered
815 * information on cluster allocation may be invalid now. The caller
816 * must start over anyway, so consider *cur_bytes undefined.
818 static int handle_dependencies(BlockDriverState
*bs
, uint64_t guest_offset
,
819 uint64_t *cur_bytes
, QCowL2Meta
**m
)
821 BDRVQcowState
*s
= bs
->opaque
;
822 QCowL2Meta
*old_alloc
;
823 uint64_t bytes
= *cur_bytes
;
825 QLIST_FOREACH(old_alloc
, &s
->cluster_allocs
, next_in_flight
) {
827 uint64_t start
= guest_offset
;
828 uint64_t end
= start
+ bytes
;
829 uint64_t old_start
= l2meta_cow_start(old_alloc
);
830 uint64_t old_end
= l2meta_cow_end(old_alloc
);
832 if (end
<= old_start
|| start
>= old_end
) {
833 /* No intersection */
835 if (start
< old_start
) {
836 /* Stop at the start of a running allocation */
837 bytes
= old_start
- start
;
842 /* Stop if already an l2meta exists. After yielding, it wouldn't
843 * be valid any more, so we'd have to clean up the old L2Metas
844 * and deal with requests depending on them before starting to
845 * gather new ones. Not worth the trouble. */
846 if (bytes
== 0 && *m
) {
852 /* Wait for the dependency to complete. We need to recheck
853 * the free/allocated clusters when we continue. */
854 qemu_co_mutex_unlock(&s
->lock
);
855 qemu_co_queue_wait(&old_alloc
->dependent_requests
);
856 qemu_co_mutex_lock(&s
->lock
);
862 /* Make sure that existing clusters and new allocations are only used up to
863 * the next dependency if we shortened the request above */
870 * Checks how many already allocated clusters that don't require a copy on
871 * write there are at the given guest_offset (up to *bytes). If
872 * *host_offset is not zero, only physically contiguous clusters beginning at
873 * this host offset are counted.
875 * Note that guest_offset may not be cluster aligned. In this case, the
876 * returned *host_offset points to exact byte referenced by guest_offset and
877 * therefore isn't cluster aligned as well.
880 * 0: if no allocated clusters are available at the given offset.
881 * *bytes is normally unchanged. It is set to 0 if the cluster
882 * is allocated and doesn't need COW, but doesn't have the right
885 * 1: if allocated clusters that don't require a COW are available at
886 * the requested offset. *bytes may have decreased and describes
887 * the length of the area that can be written to.
889 * -errno: in error cases
891 static int handle_copied(BlockDriverState
*bs
, uint64_t guest_offset
,
892 uint64_t *host_offset
, uint64_t *bytes
, QCowL2Meta
**m
)
894 BDRVQcowState
*s
= bs
->opaque
;
896 uint64_t cluster_offset
;
898 unsigned int nb_clusters
;
899 unsigned int keep_clusters
;
902 trace_qcow2_handle_copied(qemu_coroutine_self(), guest_offset
, *host_offset
,
905 assert(*host_offset
== 0 || offset_into_cluster(s
, guest_offset
)
906 == offset_into_cluster(s
, *host_offset
));
909 * Calculate the number of clusters to look for. We stop at L2 table
910 * boundaries to keep things simple.
913 size_to_clusters(s
, offset_into_cluster(s
, guest_offset
) + *bytes
);
915 l2_index
= offset_to_l2_index(s
, guest_offset
);
916 nb_clusters
= MIN(nb_clusters
, s
->l2_size
- l2_index
);
918 /* Find L2 entry for the first involved cluster */
919 ret
= get_cluster_table(bs
, guest_offset
, &l2_table
, &l2_index
);
924 cluster_offset
= be64_to_cpu(l2_table
[l2_index
]);
926 /* Check how many clusters are already allocated and don't need COW */
927 if (qcow2_get_cluster_type(cluster_offset
) == QCOW2_CLUSTER_NORMAL
928 && (cluster_offset
& QCOW_OFLAG_COPIED
))
930 /* If a specific host_offset is required, check it */
931 bool offset_matches
=
932 (cluster_offset
& L2E_OFFSET_MASK
) == *host_offset
;
934 if (*host_offset
!= 0 && !offset_matches
) {
940 /* We keep all QCOW_OFLAG_COPIED clusters */
942 count_contiguous_clusters(nb_clusters
, s
->cluster_size
,
944 QCOW_OFLAG_COPIED
| QCOW_OFLAG_ZERO
);
945 assert(keep_clusters
<= nb_clusters
);
948 keep_clusters
* s
->cluster_size
949 - offset_into_cluster(s
, guest_offset
));
958 pret
= qcow2_cache_put(bs
, s
->l2_table_cache
, (void**) &l2_table
);
963 /* Only return a host offset if we actually made progress. Otherwise we
964 * would make requirements for handle_alloc() that it can't fulfill */
966 *host_offset
= (cluster_offset
& L2E_OFFSET_MASK
)
967 + offset_into_cluster(s
, guest_offset
);
974 * Allocates new clusters for the given guest_offset.
976 * At most *nb_clusters are allocated, and on return *nb_clusters is updated to
977 * contain the number of clusters that have been allocated and are contiguous
980 * If *host_offset is non-zero, it specifies the offset in the image file at
981 * which the new clusters must start. *nb_clusters can be 0 on return in this
982 * case if the cluster at host_offset is already in use. If *host_offset is
983 * zero, the clusters can be allocated anywhere in the image file.
985 * *host_offset is updated to contain the offset into the image file at which
986 * the first allocated cluster starts.
988 * Return 0 on success and -errno in error cases. -EAGAIN means that the
989 * function has been waiting for another request and the allocation must be
990 * restarted, but the whole request should not be failed.
992 static int do_alloc_cluster_offset(BlockDriverState
*bs
, uint64_t guest_offset
,
993 uint64_t *host_offset
, unsigned int *nb_clusters
)
995 BDRVQcowState
*s
= bs
->opaque
;
997 trace_qcow2_do_alloc_clusters_offset(qemu_coroutine_self(), guest_offset
,
998 *host_offset
, *nb_clusters
);
1000 /* Allocate new clusters */
1001 trace_qcow2_cluster_alloc_phys(qemu_coroutine_self());
1002 if (*host_offset
== 0) {
1003 int64_t cluster_offset
=
1004 qcow2_alloc_clusters(bs
, *nb_clusters
* s
->cluster_size
);
1005 if (cluster_offset
< 0) {
1006 return cluster_offset
;
1008 *host_offset
= cluster_offset
;
1011 int ret
= qcow2_alloc_clusters_at(bs
, *host_offset
, *nb_clusters
);
1021 * Allocates new clusters for an area that either is yet unallocated or needs a
1022 * copy on write. If *host_offset is non-zero, clusters are only allocated if
1023 * the new allocation can match the specified host offset.
1025 * Note that guest_offset may not be cluster aligned. In this case, the
1026 * returned *host_offset points to exact byte referenced by guest_offset and
1027 * therefore isn't cluster aligned as well.
1030 * 0: if no clusters could be allocated. *bytes is set to 0,
1031 * *host_offset is left unchanged.
1033 * 1: if new clusters were allocated. *bytes may be decreased if the
1034 * new allocation doesn't cover all of the requested area.
1035 * *host_offset is updated to contain the host offset of the first
1036 * newly allocated cluster.
1038 * -errno: in error cases
1040 static int handle_alloc(BlockDriverState
*bs
, uint64_t guest_offset
,
1041 uint64_t *host_offset
, uint64_t *bytes
, QCowL2Meta
**m
)
1043 BDRVQcowState
*s
= bs
->opaque
;
1047 unsigned int nb_clusters
;
1050 uint64_t alloc_cluster_offset
;
1052 trace_qcow2_handle_alloc(qemu_coroutine_self(), guest_offset
, *host_offset
,
1057 * Calculate the number of clusters to look for. We stop at L2 table
1058 * boundaries to keep things simple.
1061 size_to_clusters(s
, offset_into_cluster(s
, guest_offset
) + *bytes
);
1063 l2_index
= offset_to_l2_index(s
, guest_offset
);
1064 nb_clusters
= MIN(nb_clusters
, s
->l2_size
- l2_index
);
1066 /* Find L2 entry for the first involved cluster */
1067 ret
= get_cluster_table(bs
, guest_offset
, &l2_table
, &l2_index
);
1072 entry
= be64_to_cpu(l2_table
[l2_index
]);
1074 /* For the moment, overwrite compressed clusters one by one */
1075 if (entry
& QCOW_OFLAG_COMPRESSED
) {
1078 nb_clusters
= count_cow_clusters(s
, nb_clusters
, l2_table
, l2_index
);
1081 /* This function is only called when there were no non-COW clusters, so if
1082 * we can't find any unallocated or COW clusters either, something is
1083 * wrong with our code. */
1084 assert(nb_clusters
> 0);
1086 ret
= qcow2_cache_put(bs
, s
->l2_table_cache
, (void**) &l2_table
);
1091 /* Allocate, if necessary at a given offset in the image file */
1092 alloc_cluster_offset
= start_of_cluster(s
, *host_offset
);
1093 ret
= do_alloc_cluster_offset(bs
, guest_offset
, &alloc_cluster_offset
,
1099 /* Can't extend contiguous allocation */
1100 if (nb_clusters
== 0) {
1106 * Save info needed for meta data update.
1108 * requested_sectors: Number of sectors from the start of the first
1109 * newly allocated cluster to the end of the (possibly shortened
1110 * before) write request.
1112 * avail_sectors: Number of sectors from the start of the first
1113 * newly allocated to the end of the last newly allocated cluster.
1115 * nb_sectors: The number of sectors from the start of the first
1116 * newly allocated cluster to the end of the area that the write
1117 * request actually writes to (excluding COW at the end)
1119 int requested_sectors
=
1120 (*bytes
+ offset_into_cluster(s
, guest_offset
))
1121 >> BDRV_SECTOR_BITS
;
1122 int avail_sectors
= nb_clusters
1123 << (s
->cluster_bits
- BDRV_SECTOR_BITS
);
1124 int alloc_n_start
= offset_into_cluster(s
, guest_offset
)
1125 >> BDRV_SECTOR_BITS
;
1126 int nb_sectors
= MIN(requested_sectors
, avail_sectors
);
1127 QCowL2Meta
*old_m
= *m
;
1129 *m
= g_malloc0(sizeof(**m
));
1131 **m
= (QCowL2Meta
) {
1134 .alloc_offset
= alloc_cluster_offset
,
1135 .offset
= start_of_cluster(s
, guest_offset
),
1136 .nb_clusters
= nb_clusters
,
1137 .nb_available
= nb_sectors
,
1141 .nb_sectors
= alloc_n_start
,
1144 .offset
= nb_sectors
* BDRV_SECTOR_SIZE
,
1145 .nb_sectors
= avail_sectors
- nb_sectors
,
1148 qemu_co_queue_init(&(*m
)->dependent_requests
);
1149 QLIST_INSERT_HEAD(&s
->cluster_allocs
, *m
, next_in_flight
);
1151 *host_offset
= alloc_cluster_offset
+ offset_into_cluster(s
, guest_offset
);
1152 *bytes
= MIN(*bytes
, (nb_sectors
* BDRV_SECTOR_SIZE
)
1153 - offset_into_cluster(s
, guest_offset
));
1154 assert(*bytes
!= 0);
1159 if (*m
&& (*m
)->nb_clusters
> 0) {
1160 QLIST_REMOVE(*m
, next_in_flight
);
1166 * alloc_cluster_offset
1168 * For a given offset on the virtual disk, find the cluster offset in qcow2
1169 * file. If the offset is not found, allocate a new cluster.
1171 * If the cluster was already allocated, m->nb_clusters is set to 0 and
1172 * other fields in m are meaningless.
1174 * If the cluster is newly allocated, m->nb_clusters is set to the number of
1175 * contiguous clusters that have been allocated. In this case, the other
1176 * fields of m are valid and contain information about the first allocated
1179 * If the request conflicts with another write request in flight, the coroutine
1180 * is queued and will be reentered when the dependency has completed.
1182 * Return 0 on success and -errno in error cases
1184 int qcow2_alloc_cluster_offset(BlockDriverState
*bs
, uint64_t offset
,
1185 int n_start
, int n_end
, int *num
, uint64_t *host_offset
, QCowL2Meta
**m
)
1187 BDRVQcowState
*s
= bs
->opaque
;
1188 uint64_t start
, remaining
;
1189 uint64_t cluster_offset
;
1193 trace_qcow2_alloc_clusters_offset(qemu_coroutine_self(), offset
,
1196 assert(n_start
* BDRV_SECTOR_SIZE
== offset_into_cluster(s
, offset
));
1197 offset
= start_of_cluster(s
, offset
);
1200 start
= offset
+ (n_start
<< BDRV_SECTOR_BITS
);
1201 remaining
= (n_end
- n_start
) << BDRV_SECTOR_BITS
;
1209 if (!*host_offset
) {
1210 *host_offset
= start_of_cluster(s
, cluster_offset
);
1213 assert(remaining
>= cur_bytes
);
1216 remaining
-= cur_bytes
;
1217 cluster_offset
+= cur_bytes
;
1219 if (remaining
== 0) {
1223 cur_bytes
= remaining
;
1226 * Now start gathering as many contiguous clusters as possible:
1228 * 1. Check for overlaps with in-flight allocations
1230 * a) Overlap not in the first cluster -> shorten this request and
1231 * let the caller handle the rest in its next loop iteration.
1233 * b) Real overlaps of two requests. Yield and restart the search
1234 * for contiguous clusters (the situation could have changed
1235 * while we were sleeping)
1237 * c) TODO: Request starts in the same cluster as the in-flight
1238 * allocation ends. Shorten the COW of the in-fight allocation,
1239 * set cluster_offset to write to the same cluster and set up
1240 * the right synchronisation between the in-flight request and
1243 ret
= handle_dependencies(bs
, start
, &cur_bytes
, m
);
1244 if (ret
== -EAGAIN
) {
1245 /* Currently handle_dependencies() doesn't yield if we already had
1246 * an allocation. If it did, we would have to clean up the L2Meta
1247 * structs before starting over. */
1250 } else if (ret
< 0) {
1252 } else if (cur_bytes
== 0) {
1255 /* handle_dependencies() may have decreased cur_bytes (shortened
1256 * the allocations below) so that the next dependency is processed
1257 * correctly during the next loop iteration. */
1261 * 2. Count contiguous COPIED clusters.
1263 ret
= handle_copied(bs
, start
, &cluster_offset
, &cur_bytes
, m
);
1268 } else if (cur_bytes
== 0) {
1273 * 3. If the request still hasn't completed, allocate new clusters,
1274 * considering any cluster_offset of steps 1c or 2.
1276 ret
= handle_alloc(bs
, start
, &cluster_offset
, &cur_bytes
, m
);
1282 assert(cur_bytes
== 0);
1287 *num
= (n_end
- n_start
) - (remaining
>> BDRV_SECTOR_BITS
);
1289 assert(*host_offset
!= 0);
1294 static int decompress_buffer(uint8_t *out_buf
, int out_buf_size
,
1295 const uint8_t *buf
, int buf_size
)
1297 z_stream strm1
, *strm
= &strm1
;
1300 memset(strm
, 0, sizeof(*strm
));
1302 strm
->next_in
= (uint8_t *)buf
;
1303 strm
->avail_in
= buf_size
;
1304 strm
->next_out
= out_buf
;
1305 strm
->avail_out
= out_buf_size
;
1307 ret
= inflateInit2(strm
, -12);
1310 ret
= inflate(strm
, Z_FINISH
);
1311 out_len
= strm
->next_out
- out_buf
;
1312 if ((ret
!= Z_STREAM_END
&& ret
!= Z_BUF_ERROR
) ||
1313 out_len
!= out_buf_size
) {
1321 int qcow2_decompress_cluster(BlockDriverState
*bs
, uint64_t cluster_offset
)
1323 BDRVQcowState
*s
= bs
->opaque
;
1324 int ret
, csize
, nb_csectors
, sector_offset
;
1327 coffset
= cluster_offset
& s
->cluster_offset_mask
;
1328 if (s
->cluster_cache_offset
!= coffset
) {
1329 nb_csectors
= ((cluster_offset
>> s
->csize_shift
) & s
->csize_mask
) + 1;
1330 sector_offset
= coffset
& 511;
1331 csize
= nb_csectors
* 512 - sector_offset
;
1332 BLKDBG_EVENT(bs
->file
, BLKDBG_READ_COMPRESSED
);
1333 ret
= bdrv_read(bs
->file
, coffset
>> 9, s
->cluster_data
, nb_csectors
);
1337 if (decompress_buffer(s
->cluster_cache
, s
->cluster_size
,
1338 s
->cluster_data
+ sector_offset
, csize
) < 0) {
1341 s
->cluster_cache_offset
= coffset
;
1347 * This discards as many clusters of nb_clusters as possible at once (i.e.
1348 * all clusters in the same L2 table) and returns the number of discarded
1351 static int discard_single_l2(BlockDriverState
*bs
, uint64_t offset
,
1352 unsigned int nb_clusters
, enum qcow2_discard_type type
)
1354 BDRVQcowState
*s
= bs
->opaque
;
1360 ret
= get_cluster_table(bs
, offset
, &l2_table
, &l2_index
);
1365 /* Limit nb_clusters to one L2 table */
1366 nb_clusters
= MIN(nb_clusters
, s
->l2_size
- l2_index
);
1368 for (i
= 0; i
< nb_clusters
; i
++) {
1369 uint64_t old_offset
;
1371 old_offset
= be64_to_cpu(l2_table
[l2_index
+ i
]);
1372 if ((old_offset
& L2E_OFFSET_MASK
) == 0) {
1376 /* First remove L2 entries */
1377 qcow2_cache_entry_mark_dirty(s
->l2_table_cache
, l2_table
);
1378 l2_table
[l2_index
+ i
] = cpu_to_be64(0);
1380 /* Then decrease the refcount */
1381 qcow2_free_any_clusters(bs
, old_offset
, 1, type
);
1384 ret
= qcow2_cache_put(bs
, s
->l2_table_cache
, (void**) &l2_table
);
1392 int qcow2_discard_clusters(BlockDriverState
*bs
, uint64_t offset
,
1393 int nb_sectors
, enum qcow2_discard_type type
)
1395 BDRVQcowState
*s
= bs
->opaque
;
1396 uint64_t end_offset
;
1397 unsigned int nb_clusters
;
1400 end_offset
= offset
+ (nb_sectors
<< BDRV_SECTOR_BITS
);
1402 /* Round start up and end down */
1403 offset
= align_offset(offset
, s
->cluster_size
);
1404 end_offset
= start_of_cluster(s
, end_offset
);
1406 if (offset
> end_offset
) {
1410 nb_clusters
= size_to_clusters(s
, end_offset
- offset
);
1412 s
->cache_discards
= true;
1414 /* Each L2 table is handled by its own loop iteration */
1415 while (nb_clusters
> 0) {
1416 ret
= discard_single_l2(bs
, offset
, nb_clusters
, type
);
1422 offset
+= (ret
* s
->cluster_size
);
1427 s
->cache_discards
= false;
1428 qcow2_process_discards(bs
, ret
);
1434 * This zeroes as many clusters of nb_clusters as possible at once (i.e.
1435 * all clusters in the same L2 table) and returns the number of zeroed
1438 static int zero_single_l2(BlockDriverState
*bs
, uint64_t offset
,
1439 unsigned int nb_clusters
)
1441 BDRVQcowState
*s
= bs
->opaque
;
1447 ret
= get_cluster_table(bs
, offset
, &l2_table
, &l2_index
);
1452 /* Limit nb_clusters to one L2 table */
1453 nb_clusters
= MIN(nb_clusters
, s
->l2_size
- l2_index
);
1455 for (i
= 0; i
< nb_clusters
; i
++) {
1456 uint64_t old_offset
;
1458 old_offset
= be64_to_cpu(l2_table
[l2_index
+ i
]);
1460 /* Update L2 entries */
1461 qcow2_cache_entry_mark_dirty(s
->l2_table_cache
, l2_table
);
1462 if (old_offset
& QCOW_OFLAG_COMPRESSED
) {
1463 l2_table
[l2_index
+ i
] = cpu_to_be64(QCOW_OFLAG_ZERO
);
1464 qcow2_free_any_clusters(bs
, old_offset
, 1, QCOW2_DISCARD_REQUEST
);
1466 l2_table
[l2_index
+ i
] |= cpu_to_be64(QCOW_OFLAG_ZERO
);
1470 ret
= qcow2_cache_put(bs
, s
->l2_table_cache
, (void**) &l2_table
);
1478 int qcow2_zero_clusters(BlockDriverState
*bs
, uint64_t offset
, int nb_sectors
)
1480 BDRVQcowState
*s
= bs
->opaque
;
1481 unsigned int nb_clusters
;
1484 /* The zero flag is only supported by version 3 and newer */
1485 if (s
->qcow_version
< 3) {
1489 /* Each L2 table is handled by its own loop iteration */
1490 nb_clusters
= size_to_clusters(s
, nb_sectors
<< BDRV_SECTOR_BITS
);
1492 s
->cache_discards
= true;
1494 while (nb_clusters
> 0) {
1495 ret
= zero_single_l2(bs
, offset
, nb_clusters
);
1501 offset
+= (ret
* s
->cluster_size
);
1506 s
->cache_discards
= false;
1507 qcow2_process_discards(bs
, ret
);
1513 * Expands all zero clusters in a specific L1 table (or deallocates them, for
1514 * non-backed non-pre-allocated zero clusters).
1516 * expanded_clusters is a bitmap where every bit corresponds to one cluster in
1517 * the image file; a bit gets set if the corresponding cluster has been used for
1518 * zero expansion (i.e., has been filled with zeroes and is referenced from an
1519 * L2 table). nb_clusters contains the total cluster count of the image file,
1520 * i.e., the number of bits in expanded_clusters.
1522 static int expand_zero_clusters_in_l1(BlockDriverState
*bs
, uint64_t *l1_table
,
1523 int l1_size
, uint8_t **expanded_clusters
,
1524 uint64_t *nb_clusters
)
1526 BDRVQcowState
*s
= bs
->opaque
;
1527 bool is_active_l1
= (l1_table
== s
->l1_table
);
1528 uint64_t *l2_table
= NULL
;
1532 if (!is_active_l1
) {
1533 /* inactive L2 tables require a buffer to be stored in when loading
1535 l2_table
= qemu_blockalign(bs
, s
->cluster_size
);
1538 for (i
= 0; i
< l1_size
; i
++) {
1539 uint64_t l2_offset
= l1_table
[i
] & L1E_OFFSET_MASK
;
1540 bool l2_dirty
= false;
1548 /* get active L2 tables from cache */
1549 ret
= qcow2_cache_get(bs
, s
->l2_table_cache
, l2_offset
,
1550 (void **)&l2_table
);
1552 /* load inactive L2 tables from disk */
1553 ret
= bdrv_read(bs
->file
, l2_offset
/ BDRV_SECTOR_SIZE
,
1554 (void *)l2_table
, s
->cluster_sectors
);
1560 for (j
= 0; j
< s
->l2_size
; j
++) {
1561 uint64_t l2_entry
= be64_to_cpu(l2_table
[j
]);
1562 int64_t offset
= l2_entry
& L2E_OFFSET_MASK
, cluster_index
;
1563 int cluster_type
= qcow2_get_cluster_type(l2_entry
);
1564 bool preallocated
= offset
!= 0;
1566 if (cluster_type
== QCOW2_CLUSTER_NORMAL
) {
1567 cluster_index
= offset
>> s
->cluster_bits
;
1568 assert((cluster_index
>= 0) && (cluster_index
< *nb_clusters
));
1569 if ((*expanded_clusters
)[cluster_index
/ 8] &
1570 (1 << (cluster_index
% 8))) {
1571 /* Probably a shared L2 table; this cluster was a zero
1572 * cluster which has been expanded, its refcount
1573 * therefore most likely requires an update. */
1574 ret
= qcow2_update_cluster_refcount(bs
, cluster_index
, 1,
1575 QCOW2_DISCARD_NEVER
);
1579 /* Since we just increased the refcount, the COPIED flag may
1580 * no longer be set. */
1581 l2_table
[j
] = cpu_to_be64(l2_entry
& ~QCOW_OFLAG_COPIED
);
1586 else if (qcow2_get_cluster_type(l2_entry
) != QCOW2_CLUSTER_ZERO
) {
1590 if (!preallocated
) {
1591 if (!bs
->backing_hd
) {
1592 /* not backed; therefore we can simply deallocate the
1599 offset
= qcow2_alloc_clusters(bs
, s
->cluster_size
);
1606 ret
= qcow2_pre_write_overlap_check(bs
, 0, offset
, s
->cluster_size
);
1608 if (!preallocated
) {
1609 qcow2_free_clusters(bs
, offset
, s
->cluster_size
,
1610 QCOW2_DISCARD_ALWAYS
);
1615 ret
= bdrv_write_zeroes(bs
->file
, offset
/ BDRV_SECTOR_SIZE
,
1616 s
->cluster_sectors
, 0);
1618 if (!preallocated
) {
1619 qcow2_free_clusters(bs
, offset
, s
->cluster_size
,
1620 QCOW2_DISCARD_ALWAYS
);
1625 l2_table
[j
] = cpu_to_be64(offset
| QCOW_OFLAG_COPIED
);
1628 cluster_index
= offset
>> s
->cluster_bits
;
1630 if (cluster_index
>= *nb_clusters
) {
1631 uint64_t old_bitmap_size
= (*nb_clusters
+ 7) / 8;
1632 uint64_t new_bitmap_size
;
1633 /* The offset may lie beyond the old end of the underlying image
1634 * file for growable files only */
1635 assert(bs
->file
->growable
);
1636 *nb_clusters
= size_to_clusters(s
, bs
->file
->total_sectors
*
1638 new_bitmap_size
= (*nb_clusters
+ 7) / 8;
1639 *expanded_clusters
= g_realloc(*expanded_clusters
,
1641 /* clear the newly allocated space */
1642 memset(&(*expanded_clusters
)[old_bitmap_size
], 0,
1643 new_bitmap_size
- old_bitmap_size
);
1646 assert((cluster_index
>= 0) && (cluster_index
< *nb_clusters
));
1647 (*expanded_clusters
)[cluster_index
/ 8] |= 1 << (cluster_index
% 8);
1652 qcow2_cache_entry_mark_dirty(s
->l2_table_cache
, l2_table
);
1653 qcow2_cache_depends_on_flush(s
->l2_table_cache
);
1655 ret
= qcow2_cache_put(bs
, s
->l2_table_cache
, (void **)&l2_table
);
1662 ret
= qcow2_pre_write_overlap_check(bs
,
1663 QCOW2_OL_INACTIVE_L2
| QCOW2_OL_ACTIVE_L2
, l2_offset
,
1669 ret
= bdrv_write(bs
->file
, l2_offset
/ BDRV_SECTOR_SIZE
,
1670 (void *)l2_table
, s
->cluster_sectors
);
1682 if (!is_active_l1
) {
1683 qemu_vfree(l2_table
);
1686 qcow2_cache_put(bs
, s
->l2_table_cache
, (void **)&l2_table
);
1688 ret
= qcow2_cache_put(bs
, s
->l2_table_cache
,
1689 (void **)&l2_table
);
1697 * For backed images, expands all zero clusters on the image. For non-backed
1698 * images, deallocates all non-pre-allocated zero clusters (and claims the
1699 * allocation for pre-allocated ones). This is important for downgrading to a
1700 * qcow2 version which doesn't yet support metadata zero clusters.
1702 int qcow2_expand_zero_clusters(BlockDriverState
*bs
)
1704 BDRVQcowState
*s
= bs
->opaque
;
1705 uint64_t *l1_table
= NULL
;
1706 uint64_t nb_clusters
;
1707 uint8_t *expanded_clusters
;
1711 nb_clusters
= size_to_clusters(s
, bs
->file
->total_sectors
*
1713 expanded_clusters
= g_malloc0((nb_clusters
+ 7) / 8);
1715 ret
= expand_zero_clusters_in_l1(bs
, s
->l1_table
, s
->l1_size
,
1716 &expanded_clusters
, &nb_clusters
);
1721 /* Inactive L1 tables may point to active L2 tables - therefore it is
1722 * necessary to flush the L2 table cache before trying to access the L2
1723 * tables pointed to by inactive L1 entries (else we might try to expand
1724 * zero clusters that have already been expanded); furthermore, it is also
1725 * necessary to empty the L2 table cache, since it may contain tables which
1726 * are now going to be modified directly on disk, bypassing the cache.
1727 * qcow2_cache_empty() does both for us. */
1728 ret
= qcow2_cache_empty(bs
, s
->l2_table_cache
);
1733 for (i
= 0; i
< s
->nb_snapshots
; i
++) {
1734 int l1_sectors
= (s
->snapshots
[i
].l1_size
* sizeof(uint64_t) +
1735 BDRV_SECTOR_SIZE
- 1) / BDRV_SECTOR_SIZE
;
1737 l1_table
= g_realloc(l1_table
, l1_sectors
* BDRV_SECTOR_SIZE
);
1739 ret
= bdrv_read(bs
->file
, s
->snapshots
[i
].l1_table_offset
/
1740 BDRV_SECTOR_SIZE
, (void *)l1_table
, l1_sectors
);
1745 for (j
= 0; j
< s
->snapshots
[i
].l1_size
; j
++) {
1746 be64_to_cpus(&l1_table
[j
]);
1749 ret
= expand_zero_clusters_in_l1(bs
, l1_table
, s
->snapshots
[i
].l1_size
,
1750 &expanded_clusters
, &nb_clusters
);
1759 g_free(expanded_clusters
);