Merge tag 'qemu-macppc-20230206' of https://github.com/mcayland/qemu into staging
[qemu.git] / block / qcow2-cluster.c
blob870be106b6cd63bf1b4d689b9256527082fe4bde
1 /*
2 * Block driver for the QCOW version 2 format
4 * Copyright (c) 2004-2006 Fabrice Bellard
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
25 #include "qemu/osdep.h"
26 #include <zlib.h>
28 #include "block/block-io.h"
29 #include "qapi/error.h"
30 #include "qcow2.h"
31 #include "qemu/bswap.h"
32 #include "qemu/memalign.h"
33 #include "trace.h"
35 int coroutine_fn qcow2_shrink_l1_table(BlockDriverState *bs,
36 uint64_t exact_size)
38 BDRVQcow2State *s = bs->opaque;
39 int new_l1_size, i, ret;
41 if (exact_size >= s->l1_size) {
42 return 0;
45 new_l1_size = exact_size;
47 #ifdef DEBUG_ALLOC2
48 fprintf(stderr, "shrink l1_table from %d to %d\n", s->l1_size, new_l1_size);
49 #endif
51 BLKDBG_EVENT(bs->file, BLKDBG_L1_SHRINK_WRITE_TABLE);
52 ret = bdrv_co_pwrite_zeroes(bs->file,
53 s->l1_table_offset + new_l1_size * L1E_SIZE,
54 (s->l1_size - new_l1_size) * L1E_SIZE, 0);
55 if (ret < 0) {
56 goto fail;
59 ret = bdrv_co_flush(bs->file->bs);
60 if (ret < 0) {
61 goto fail;
64 BLKDBG_EVENT(bs->file, BLKDBG_L1_SHRINK_FREE_L2_CLUSTERS);
65 for (i = s->l1_size - 1; i > new_l1_size - 1; i--) {
66 if ((s->l1_table[i] & L1E_OFFSET_MASK) == 0) {
67 continue;
69 qcow2_free_clusters(bs, s->l1_table[i] & L1E_OFFSET_MASK,
70 s->cluster_size, QCOW2_DISCARD_ALWAYS);
71 s->l1_table[i] = 0;
73 return 0;
75 fail:
77 * If the write in the l1_table failed the image may contain a partially
78 * overwritten l1_table. In this case it would be better to clear the
79 * l1_table in memory to avoid possible image corruption.
81 memset(s->l1_table + new_l1_size, 0,
82 (s->l1_size - new_l1_size) * L1E_SIZE);
83 return ret;
86 int qcow2_grow_l1_table(BlockDriverState *bs, uint64_t min_size,
87 bool exact_size)
89 BDRVQcow2State *s = bs->opaque;
90 int new_l1_size2, ret, i;
91 uint64_t *new_l1_table;
92 int64_t old_l1_table_offset, old_l1_size;
93 int64_t new_l1_table_offset, new_l1_size;
94 uint8_t data[12];
96 if (min_size <= s->l1_size)
97 return 0;
99 /* Do a sanity check on min_size before trying to calculate new_l1_size
100 * (this prevents overflows during the while loop for the calculation of
101 * new_l1_size) */
102 if (min_size > INT_MAX / L1E_SIZE) {
103 return -EFBIG;
106 if (exact_size) {
107 new_l1_size = min_size;
108 } else {
109 /* Bump size up to reduce the number of times we have to grow */
110 new_l1_size = s->l1_size;
111 if (new_l1_size == 0) {
112 new_l1_size = 1;
114 while (min_size > new_l1_size) {
115 new_l1_size = DIV_ROUND_UP(new_l1_size * 3, 2);
119 QEMU_BUILD_BUG_ON(QCOW_MAX_L1_SIZE > INT_MAX);
120 if (new_l1_size > QCOW_MAX_L1_SIZE / L1E_SIZE) {
121 return -EFBIG;
124 #ifdef DEBUG_ALLOC2
125 fprintf(stderr, "grow l1_table from %d to %" PRId64 "\n",
126 s->l1_size, new_l1_size);
127 #endif
129 new_l1_size2 = L1E_SIZE * new_l1_size;
130 new_l1_table = qemu_try_blockalign(bs->file->bs, new_l1_size2);
131 if (new_l1_table == NULL) {
132 return -ENOMEM;
134 memset(new_l1_table, 0, new_l1_size2);
136 if (s->l1_size) {
137 memcpy(new_l1_table, s->l1_table, s->l1_size * L1E_SIZE);
140 /* write new table (align to cluster) */
141 BLKDBG_EVENT(bs->file, BLKDBG_L1_GROW_ALLOC_TABLE);
142 new_l1_table_offset = qcow2_alloc_clusters(bs, new_l1_size2);
143 if (new_l1_table_offset < 0) {
144 qemu_vfree(new_l1_table);
145 return new_l1_table_offset;
148 ret = qcow2_cache_flush(bs, s->refcount_block_cache);
149 if (ret < 0) {
150 goto fail;
153 /* the L1 position has not yet been updated, so these clusters must
154 * indeed be completely free */
155 ret = qcow2_pre_write_overlap_check(bs, 0, new_l1_table_offset,
156 new_l1_size2, false);
157 if (ret < 0) {
158 goto fail;
161 BLKDBG_EVENT(bs->file, BLKDBG_L1_GROW_WRITE_TABLE);
162 for(i = 0; i < s->l1_size; i++)
163 new_l1_table[i] = cpu_to_be64(new_l1_table[i]);
164 ret = bdrv_pwrite_sync(bs->file, new_l1_table_offset, new_l1_size2,
165 new_l1_table, 0);
166 if (ret < 0)
167 goto fail;
168 for(i = 0; i < s->l1_size; i++)
169 new_l1_table[i] = be64_to_cpu(new_l1_table[i]);
171 /* set new table */
172 BLKDBG_EVENT(bs->file, BLKDBG_L1_GROW_ACTIVATE_TABLE);
173 stl_be_p(data, new_l1_size);
174 stq_be_p(data + 4, new_l1_table_offset);
175 ret = bdrv_pwrite_sync(bs->file, offsetof(QCowHeader, l1_size),
176 sizeof(data), data, 0);
177 if (ret < 0) {
178 goto fail;
180 qemu_vfree(s->l1_table);
181 old_l1_table_offset = s->l1_table_offset;
182 s->l1_table_offset = new_l1_table_offset;
183 s->l1_table = new_l1_table;
184 old_l1_size = s->l1_size;
185 s->l1_size = new_l1_size;
186 qcow2_free_clusters(bs, old_l1_table_offset, old_l1_size * L1E_SIZE,
187 QCOW2_DISCARD_OTHER);
188 return 0;
189 fail:
190 qemu_vfree(new_l1_table);
191 qcow2_free_clusters(bs, new_l1_table_offset, new_l1_size2,
192 QCOW2_DISCARD_OTHER);
193 return ret;
197 * l2_load
199 * @bs: The BlockDriverState
200 * @offset: A guest offset, used to calculate what slice of the L2
201 * table to load.
202 * @l2_offset: Offset to the L2 table in the image file.
203 * @l2_slice: Location to store the pointer to the L2 slice.
205 * Loads a L2 slice into memory (L2 slices are the parts of L2 tables
206 * that are loaded by the qcow2 cache). If the slice is in the cache,
207 * the cache is used; otherwise the L2 slice is loaded from the image
208 * file.
210 static int l2_load(BlockDriverState *bs, uint64_t offset,
211 uint64_t l2_offset, uint64_t **l2_slice)
213 BDRVQcow2State *s = bs->opaque;
214 int start_of_slice = l2_entry_size(s) *
215 (offset_to_l2_index(s, offset) - offset_to_l2_slice_index(s, offset));
217 return qcow2_cache_get(bs, s->l2_table_cache, l2_offset + start_of_slice,
218 (void **)l2_slice);
222 * Writes an L1 entry to disk (note that depending on the alignment
223 * requirements this function may write more that just one entry in
224 * order to prevent bdrv_pwrite from performing a read-modify-write)
226 int qcow2_write_l1_entry(BlockDriverState *bs, int l1_index)
228 BDRVQcow2State *s = bs->opaque;
229 int l1_start_index;
230 int i, ret;
231 int bufsize = MAX(L1E_SIZE,
232 MIN(bs->file->bs->bl.request_alignment, s->cluster_size));
233 int nentries = bufsize / L1E_SIZE;
234 g_autofree uint64_t *buf = g_try_new0(uint64_t, nentries);
236 if (buf == NULL) {
237 return -ENOMEM;
240 l1_start_index = QEMU_ALIGN_DOWN(l1_index, nentries);
241 for (i = 0; i < MIN(nentries, s->l1_size - l1_start_index); i++) {
242 buf[i] = cpu_to_be64(s->l1_table[l1_start_index + i]);
245 ret = qcow2_pre_write_overlap_check(bs, QCOW2_OL_ACTIVE_L1,
246 s->l1_table_offset + L1E_SIZE * l1_start_index, bufsize, false);
247 if (ret < 0) {
248 return ret;
251 BLKDBG_EVENT(bs->file, BLKDBG_L1_UPDATE);
252 ret = bdrv_pwrite_sync(bs->file,
253 s->l1_table_offset + L1E_SIZE * l1_start_index,
254 bufsize, buf, 0);
255 if (ret < 0) {
256 return ret;
259 return 0;
263 * l2_allocate
265 * Allocate a new l2 entry in the file. If l1_index points to an already
266 * used entry in the L2 table (i.e. we are doing a copy on write for the L2
267 * table) copy the contents of the old L2 table into the newly allocated one.
268 * Otherwise the new table is initialized with zeros.
272 static int l2_allocate(BlockDriverState *bs, int l1_index)
274 BDRVQcow2State *s = bs->opaque;
275 uint64_t old_l2_offset;
276 uint64_t *l2_slice = NULL;
277 unsigned slice, slice_size2, n_slices;
278 int64_t l2_offset;
279 int ret;
281 old_l2_offset = s->l1_table[l1_index];
283 trace_qcow2_l2_allocate(bs, l1_index);
285 /* allocate a new l2 entry */
287 l2_offset = qcow2_alloc_clusters(bs, s->l2_size * l2_entry_size(s));
288 if (l2_offset < 0) {
289 ret = l2_offset;
290 goto fail;
293 /* The offset must fit in the offset field of the L1 table entry */
294 assert((l2_offset & L1E_OFFSET_MASK) == l2_offset);
296 /* If we're allocating the table at offset 0 then something is wrong */
297 if (l2_offset == 0) {
298 qcow2_signal_corruption(bs, true, -1, -1, "Preventing invalid "
299 "allocation of L2 table at offset 0");
300 ret = -EIO;
301 goto fail;
304 ret = qcow2_cache_flush(bs, s->refcount_block_cache);
305 if (ret < 0) {
306 goto fail;
309 /* allocate a new entry in the l2 cache */
311 slice_size2 = s->l2_slice_size * l2_entry_size(s);
312 n_slices = s->cluster_size / slice_size2;
314 trace_qcow2_l2_allocate_get_empty(bs, l1_index);
315 for (slice = 0; slice < n_slices; slice++) {
316 ret = qcow2_cache_get_empty(bs, s->l2_table_cache,
317 l2_offset + slice * slice_size2,
318 (void **) &l2_slice);
319 if (ret < 0) {
320 goto fail;
323 if ((old_l2_offset & L1E_OFFSET_MASK) == 0) {
324 /* if there was no old l2 table, clear the new slice */
325 memset(l2_slice, 0, slice_size2);
326 } else {
327 uint64_t *old_slice;
328 uint64_t old_l2_slice_offset =
329 (old_l2_offset & L1E_OFFSET_MASK) + slice * slice_size2;
331 /* if there was an old l2 table, read a slice from the disk */
332 BLKDBG_EVENT(bs->file, BLKDBG_L2_ALLOC_COW_READ);
333 ret = qcow2_cache_get(bs, s->l2_table_cache, old_l2_slice_offset,
334 (void **) &old_slice);
335 if (ret < 0) {
336 goto fail;
339 memcpy(l2_slice, old_slice, slice_size2);
341 qcow2_cache_put(s->l2_table_cache, (void **) &old_slice);
344 /* write the l2 slice to the file */
345 BLKDBG_EVENT(bs->file, BLKDBG_L2_ALLOC_WRITE);
347 trace_qcow2_l2_allocate_write_l2(bs, l1_index);
348 qcow2_cache_entry_mark_dirty(s->l2_table_cache, l2_slice);
349 qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice);
352 ret = qcow2_cache_flush(bs, s->l2_table_cache);
353 if (ret < 0) {
354 goto fail;
357 /* update the L1 entry */
358 trace_qcow2_l2_allocate_write_l1(bs, l1_index);
359 s->l1_table[l1_index] = l2_offset | QCOW_OFLAG_COPIED;
360 ret = qcow2_write_l1_entry(bs, l1_index);
361 if (ret < 0) {
362 goto fail;
365 trace_qcow2_l2_allocate_done(bs, l1_index, 0);
366 return 0;
368 fail:
369 trace_qcow2_l2_allocate_done(bs, l1_index, ret);
370 if (l2_slice != NULL) {
371 qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice);
373 s->l1_table[l1_index] = old_l2_offset;
374 if (l2_offset > 0) {
375 qcow2_free_clusters(bs, l2_offset, s->l2_size * l2_entry_size(s),
376 QCOW2_DISCARD_ALWAYS);
378 return ret;
382 * For a given L2 entry, count the number of contiguous subclusters of
383 * the same type starting from @sc_from. Compressed clusters are
384 * treated as if they were divided into subclusters of size
385 * s->subcluster_size.
387 * Return the number of contiguous subclusters and set @type to the
388 * subcluster type.
390 * If the L2 entry is invalid return -errno and set @type to
391 * QCOW2_SUBCLUSTER_INVALID.
393 static int qcow2_get_subcluster_range_type(BlockDriverState *bs,
394 uint64_t l2_entry,
395 uint64_t l2_bitmap,
396 unsigned sc_from,
397 QCow2SubclusterType *type)
399 BDRVQcow2State *s = bs->opaque;
400 uint32_t val;
402 *type = qcow2_get_subcluster_type(bs, l2_entry, l2_bitmap, sc_from);
404 if (*type == QCOW2_SUBCLUSTER_INVALID) {
405 return -EINVAL;
406 } else if (!has_subclusters(s) || *type == QCOW2_SUBCLUSTER_COMPRESSED) {
407 return s->subclusters_per_cluster - sc_from;
410 switch (*type) {
411 case QCOW2_SUBCLUSTER_NORMAL:
412 val = l2_bitmap | QCOW_OFLAG_SUB_ALLOC_RANGE(0, sc_from);
413 return cto32(val) - sc_from;
415 case QCOW2_SUBCLUSTER_ZERO_PLAIN:
416 case QCOW2_SUBCLUSTER_ZERO_ALLOC:
417 val = (l2_bitmap | QCOW_OFLAG_SUB_ZERO_RANGE(0, sc_from)) >> 32;
418 return cto32(val) - sc_from;
420 case QCOW2_SUBCLUSTER_UNALLOCATED_PLAIN:
421 case QCOW2_SUBCLUSTER_UNALLOCATED_ALLOC:
422 val = ((l2_bitmap >> 32) | l2_bitmap)
423 & ~QCOW_OFLAG_SUB_ALLOC_RANGE(0, sc_from);
424 return ctz32(val) - sc_from;
426 default:
427 g_assert_not_reached();
432 * Return the number of contiguous subclusters of the exact same type
433 * in a given L2 slice, starting from cluster @l2_index, subcluster
434 * @sc_index. Allocated subclusters are required to be contiguous in
435 * the image file.
436 * At most @nb_clusters are checked (note that this means clusters,
437 * not subclusters).
438 * Compressed clusters are always processed one by one but for the
439 * purpose of this count they are treated as if they were divided into
440 * subclusters of size s->subcluster_size.
441 * On failure return -errno and update @l2_index to point to the
442 * invalid entry.
444 static int count_contiguous_subclusters(BlockDriverState *bs, int nb_clusters,
445 unsigned sc_index, uint64_t *l2_slice,
446 unsigned *l2_index)
448 BDRVQcow2State *s = bs->opaque;
449 int i, count = 0;
450 bool check_offset = false;
451 uint64_t expected_offset = 0;
452 QCow2SubclusterType expected_type = QCOW2_SUBCLUSTER_NORMAL, type;
454 assert(*l2_index + nb_clusters <= s->l2_slice_size);
456 for (i = 0; i < nb_clusters; i++) {
457 unsigned first_sc = (i == 0) ? sc_index : 0;
458 uint64_t l2_entry = get_l2_entry(s, l2_slice, *l2_index + i);
459 uint64_t l2_bitmap = get_l2_bitmap(s, l2_slice, *l2_index + i);
460 int ret = qcow2_get_subcluster_range_type(bs, l2_entry, l2_bitmap,
461 first_sc, &type);
462 if (ret < 0) {
463 *l2_index += i; /* Point to the invalid entry */
464 return -EIO;
466 if (i == 0) {
467 if (type == QCOW2_SUBCLUSTER_COMPRESSED) {
468 /* Compressed clusters are always processed one by one */
469 return ret;
471 expected_type = type;
472 expected_offset = l2_entry & L2E_OFFSET_MASK;
473 check_offset = (type == QCOW2_SUBCLUSTER_NORMAL ||
474 type == QCOW2_SUBCLUSTER_ZERO_ALLOC ||
475 type == QCOW2_SUBCLUSTER_UNALLOCATED_ALLOC);
476 } else if (type != expected_type) {
477 break;
478 } else if (check_offset) {
479 expected_offset += s->cluster_size;
480 if (expected_offset != (l2_entry & L2E_OFFSET_MASK)) {
481 break;
484 count += ret;
485 /* Stop if there are type changes before the end of the cluster */
486 if (first_sc + ret < s->subclusters_per_cluster) {
487 break;
491 return count;
494 static int coroutine_fn do_perform_cow_read(BlockDriverState *bs,
495 uint64_t src_cluster_offset,
496 unsigned offset_in_cluster,
497 QEMUIOVector *qiov)
499 int ret;
501 if (qiov->size == 0) {
502 return 0;
505 BLKDBG_EVENT(bs->file, BLKDBG_COW_READ);
507 if (!bs->drv) {
508 return -ENOMEDIUM;
512 * We never deal with requests that don't satisfy
513 * bdrv_check_qiov_request(), and aligning requests to clusters never
514 * breaks this condition. So, do some assertions before calling
515 * bs->drv->bdrv_co_preadv_part() which has int64_t arguments.
517 assert(src_cluster_offset <= INT64_MAX);
518 assert(src_cluster_offset + offset_in_cluster <= INT64_MAX);
519 /* Cast qiov->size to uint64_t to silence a compiler warning on -m32 */
520 assert((uint64_t)qiov->size <= INT64_MAX);
521 bdrv_check_qiov_request(src_cluster_offset + offset_in_cluster, qiov->size,
522 qiov, 0, &error_abort);
524 * Call .bdrv_co_readv() directly instead of using the public block-layer
525 * interface. This avoids double I/O throttling and request tracking,
526 * which can lead to deadlock when block layer copy-on-read is enabled.
528 ret = bs->drv->bdrv_co_preadv_part(bs,
529 src_cluster_offset + offset_in_cluster,
530 qiov->size, qiov, 0, 0);
531 if (ret < 0) {
532 return ret;
535 return 0;
538 static int coroutine_fn do_perform_cow_write(BlockDriverState *bs,
539 uint64_t cluster_offset,
540 unsigned offset_in_cluster,
541 QEMUIOVector *qiov)
543 BDRVQcow2State *s = bs->opaque;
544 int ret;
546 if (qiov->size == 0) {
547 return 0;
550 ret = qcow2_pre_write_overlap_check(bs, 0,
551 cluster_offset + offset_in_cluster, qiov->size, true);
552 if (ret < 0) {
553 return ret;
556 BLKDBG_EVENT(bs->file, BLKDBG_COW_WRITE);
557 ret = bdrv_co_pwritev(s->data_file, cluster_offset + offset_in_cluster,
558 qiov->size, qiov, 0);
559 if (ret < 0) {
560 return ret;
563 return 0;
568 * get_host_offset
570 * For a given offset of the virtual disk find the equivalent host
571 * offset in the qcow2 file and store it in *host_offset. Neither
572 * offset needs to be aligned to a cluster boundary.
574 * If the cluster is unallocated then *host_offset will be 0.
575 * If the cluster is compressed then *host_offset will contain the l2 entry.
577 * On entry, *bytes is the maximum number of contiguous bytes starting at
578 * offset that we are interested in.
580 * On exit, *bytes is the number of bytes starting at offset that have the same
581 * subcluster type and (if applicable) are stored contiguously in the image
582 * file. The subcluster type is stored in *subcluster_type.
583 * Compressed clusters are always processed one by one.
585 * Returns 0 on success, -errno in error cases.
587 int qcow2_get_host_offset(BlockDriverState *bs, uint64_t offset,
588 unsigned int *bytes, uint64_t *host_offset,
589 QCow2SubclusterType *subcluster_type)
591 BDRVQcow2State *s = bs->opaque;
592 unsigned int l2_index, sc_index;
593 uint64_t l1_index, l2_offset, *l2_slice, l2_entry, l2_bitmap;
594 int sc;
595 unsigned int offset_in_cluster;
596 uint64_t bytes_available, bytes_needed, nb_clusters;
597 QCow2SubclusterType type;
598 int ret;
600 offset_in_cluster = offset_into_cluster(s, offset);
601 bytes_needed = (uint64_t) *bytes + offset_in_cluster;
603 /* compute how many bytes there are between the start of the cluster
604 * containing offset and the end of the l2 slice that contains
605 * the entry pointing to it */
606 bytes_available =
607 ((uint64_t) (s->l2_slice_size - offset_to_l2_slice_index(s, offset)))
608 << s->cluster_bits;
610 if (bytes_needed > bytes_available) {
611 bytes_needed = bytes_available;
614 *host_offset = 0;
616 /* seek to the l2 offset in the l1 table */
618 l1_index = offset_to_l1_index(s, offset);
619 if (l1_index >= s->l1_size) {
620 type = QCOW2_SUBCLUSTER_UNALLOCATED_PLAIN;
621 goto out;
624 l2_offset = s->l1_table[l1_index] & L1E_OFFSET_MASK;
625 if (!l2_offset) {
626 type = QCOW2_SUBCLUSTER_UNALLOCATED_PLAIN;
627 goto out;
630 if (offset_into_cluster(s, l2_offset)) {
631 qcow2_signal_corruption(bs, true, -1, -1, "L2 table offset %#" PRIx64
632 " unaligned (L1 index: %#" PRIx64 ")",
633 l2_offset, l1_index);
634 return -EIO;
637 /* load the l2 slice in memory */
639 ret = l2_load(bs, offset, l2_offset, &l2_slice);
640 if (ret < 0) {
641 return ret;
644 /* find the cluster offset for the given disk offset */
646 l2_index = offset_to_l2_slice_index(s, offset);
647 sc_index = offset_to_sc_index(s, offset);
648 l2_entry = get_l2_entry(s, l2_slice, l2_index);
649 l2_bitmap = get_l2_bitmap(s, l2_slice, l2_index);
651 nb_clusters = size_to_clusters(s, bytes_needed);
652 /* bytes_needed <= *bytes + offset_in_cluster, both of which are unsigned
653 * integers; the minimum cluster size is 512, so this assertion is always
654 * true */
655 assert(nb_clusters <= INT_MAX);
657 type = qcow2_get_subcluster_type(bs, l2_entry, l2_bitmap, sc_index);
658 if (s->qcow_version < 3 && (type == QCOW2_SUBCLUSTER_ZERO_PLAIN ||
659 type == QCOW2_SUBCLUSTER_ZERO_ALLOC)) {
660 qcow2_signal_corruption(bs, true, -1, -1, "Zero cluster entry found"
661 " in pre-v3 image (L2 offset: %#" PRIx64
662 ", L2 index: %#x)", l2_offset, l2_index);
663 ret = -EIO;
664 goto fail;
666 switch (type) {
667 case QCOW2_SUBCLUSTER_INVALID:
668 break; /* This is handled by count_contiguous_subclusters() below */
669 case QCOW2_SUBCLUSTER_COMPRESSED:
670 if (has_data_file(bs)) {
671 qcow2_signal_corruption(bs, true, -1, -1, "Compressed cluster "
672 "entry found in image with external data "
673 "file (L2 offset: %#" PRIx64 ", L2 index: "
674 "%#x)", l2_offset, l2_index);
675 ret = -EIO;
676 goto fail;
678 *host_offset = l2_entry;
679 break;
680 case QCOW2_SUBCLUSTER_ZERO_PLAIN:
681 case QCOW2_SUBCLUSTER_UNALLOCATED_PLAIN:
682 break;
683 case QCOW2_SUBCLUSTER_ZERO_ALLOC:
684 case QCOW2_SUBCLUSTER_NORMAL:
685 case QCOW2_SUBCLUSTER_UNALLOCATED_ALLOC: {
686 uint64_t host_cluster_offset = l2_entry & L2E_OFFSET_MASK;
687 *host_offset = host_cluster_offset + offset_in_cluster;
688 if (offset_into_cluster(s, host_cluster_offset)) {
689 qcow2_signal_corruption(bs, true, -1, -1,
690 "Cluster allocation offset %#"
691 PRIx64 " unaligned (L2 offset: %#" PRIx64
692 ", L2 index: %#x)", host_cluster_offset,
693 l2_offset, l2_index);
694 ret = -EIO;
695 goto fail;
697 if (has_data_file(bs) && *host_offset != offset) {
698 qcow2_signal_corruption(bs, true, -1, -1,
699 "External data file host cluster offset %#"
700 PRIx64 " does not match guest cluster "
701 "offset: %#" PRIx64
702 ", L2 index: %#x)", host_cluster_offset,
703 offset - offset_in_cluster, l2_index);
704 ret = -EIO;
705 goto fail;
707 break;
709 default:
710 abort();
713 sc = count_contiguous_subclusters(bs, nb_clusters, sc_index,
714 l2_slice, &l2_index);
715 if (sc < 0) {
716 qcow2_signal_corruption(bs, true, -1, -1, "Invalid cluster entry found "
717 " (L2 offset: %#" PRIx64 ", L2 index: %#x)",
718 l2_offset, l2_index);
719 ret = -EIO;
720 goto fail;
722 qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice);
724 bytes_available = ((int64_t)sc + sc_index) << s->subcluster_bits;
726 out:
727 if (bytes_available > bytes_needed) {
728 bytes_available = bytes_needed;
731 /* bytes_available <= bytes_needed <= *bytes + offset_in_cluster;
732 * subtracting offset_in_cluster will therefore definitely yield something
733 * not exceeding UINT_MAX */
734 assert(bytes_available - offset_in_cluster <= UINT_MAX);
735 *bytes = bytes_available - offset_in_cluster;
737 *subcluster_type = type;
739 return 0;
741 fail:
742 qcow2_cache_put(s->l2_table_cache, (void **)&l2_slice);
743 return ret;
747 * get_cluster_table
749 * for a given disk offset, load (and allocate if needed)
750 * the appropriate slice of its l2 table.
752 * the cluster index in the l2 slice is given to the caller.
754 * Returns 0 on success, -errno in failure case
756 static int get_cluster_table(BlockDriverState *bs, uint64_t offset,
757 uint64_t **new_l2_slice,
758 int *new_l2_index)
760 BDRVQcow2State *s = bs->opaque;
761 unsigned int l2_index;
762 uint64_t l1_index, l2_offset;
763 uint64_t *l2_slice = NULL;
764 int ret;
766 /* seek to the l2 offset in the l1 table */
768 l1_index = offset_to_l1_index(s, offset);
769 if (l1_index >= s->l1_size) {
770 ret = qcow2_grow_l1_table(bs, l1_index + 1, false);
771 if (ret < 0) {
772 return ret;
776 assert(l1_index < s->l1_size);
777 l2_offset = s->l1_table[l1_index] & L1E_OFFSET_MASK;
778 if (offset_into_cluster(s, l2_offset)) {
779 qcow2_signal_corruption(bs, true, -1, -1, "L2 table offset %#" PRIx64
780 " unaligned (L1 index: %#" PRIx64 ")",
781 l2_offset, l1_index);
782 return -EIO;
785 if (!(s->l1_table[l1_index] & QCOW_OFLAG_COPIED)) {
786 /* First allocate a new L2 table (and do COW if needed) */
787 ret = l2_allocate(bs, l1_index);
788 if (ret < 0) {
789 return ret;
792 /* Then decrease the refcount of the old table */
793 if (l2_offset) {
794 qcow2_free_clusters(bs, l2_offset, s->l2_size * l2_entry_size(s),
795 QCOW2_DISCARD_OTHER);
798 /* Get the offset of the newly-allocated l2 table */
799 l2_offset = s->l1_table[l1_index] & L1E_OFFSET_MASK;
800 assert(offset_into_cluster(s, l2_offset) == 0);
803 /* load the l2 slice in memory */
804 ret = l2_load(bs, offset, l2_offset, &l2_slice);
805 if (ret < 0) {
806 return ret;
809 /* find the cluster offset for the given disk offset */
811 l2_index = offset_to_l2_slice_index(s, offset);
813 *new_l2_slice = l2_slice;
814 *new_l2_index = l2_index;
816 return 0;
820 * alloc_compressed_cluster_offset
822 * For a given offset on the virtual disk, allocate a new compressed cluster
823 * and put the host offset of the cluster into *host_offset. If a cluster is
824 * already allocated at the offset, return an error.
826 * Return 0 on success and -errno in error cases
828 int coroutine_fn qcow2_alloc_compressed_cluster_offset(BlockDriverState *bs,
829 uint64_t offset,
830 int compressed_size,
831 uint64_t *host_offset)
833 BDRVQcow2State *s = bs->opaque;
834 int l2_index, ret;
835 uint64_t *l2_slice;
836 int64_t cluster_offset;
837 int nb_csectors;
839 if (has_data_file(bs)) {
840 return 0;
843 ret = get_cluster_table(bs, offset, &l2_slice, &l2_index);
844 if (ret < 0) {
845 return ret;
848 /* Compression can't overwrite anything. Fail if the cluster was already
849 * allocated. */
850 cluster_offset = get_l2_entry(s, l2_slice, l2_index);
851 if (cluster_offset & L2E_OFFSET_MASK) {
852 qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice);
853 return -EIO;
856 cluster_offset = qcow2_alloc_bytes(bs, compressed_size);
857 if (cluster_offset < 0) {
858 qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice);
859 return cluster_offset;
862 nb_csectors =
863 (cluster_offset + compressed_size - 1) / QCOW2_COMPRESSED_SECTOR_SIZE -
864 (cluster_offset / QCOW2_COMPRESSED_SECTOR_SIZE);
866 /* The offset and size must fit in their fields of the L2 table entry */
867 assert((cluster_offset & s->cluster_offset_mask) == cluster_offset);
868 assert((nb_csectors & s->csize_mask) == nb_csectors);
870 cluster_offset |= QCOW_OFLAG_COMPRESSED |
871 ((uint64_t)nb_csectors << s->csize_shift);
873 /* update L2 table */
875 /* compressed clusters never have the copied flag */
877 BLKDBG_EVENT(bs->file, BLKDBG_L2_UPDATE_COMPRESSED);
878 qcow2_cache_entry_mark_dirty(s->l2_table_cache, l2_slice);
879 set_l2_entry(s, l2_slice, l2_index, cluster_offset);
880 if (has_subclusters(s)) {
881 set_l2_bitmap(s, l2_slice, l2_index, 0);
883 qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice);
885 *host_offset = cluster_offset & s->cluster_offset_mask;
886 return 0;
889 static int coroutine_fn perform_cow(BlockDriverState *bs, QCowL2Meta *m)
891 BDRVQcow2State *s = bs->opaque;
892 Qcow2COWRegion *start = &m->cow_start;
893 Qcow2COWRegion *end = &m->cow_end;
894 unsigned buffer_size;
895 unsigned data_bytes = end->offset - (start->offset + start->nb_bytes);
896 bool merge_reads;
897 uint8_t *start_buffer, *end_buffer;
898 QEMUIOVector qiov;
899 int ret;
901 assert(start->nb_bytes <= UINT_MAX - end->nb_bytes);
902 assert(start->nb_bytes + end->nb_bytes <= UINT_MAX - data_bytes);
903 assert(start->offset + start->nb_bytes <= end->offset);
905 if ((start->nb_bytes == 0 && end->nb_bytes == 0) || m->skip_cow) {
906 return 0;
909 /* If we have to read both the start and end COW regions and the
910 * middle region is not too large then perform just one read
911 * operation */
912 merge_reads = start->nb_bytes && end->nb_bytes && data_bytes <= 16384;
913 if (merge_reads) {
914 buffer_size = start->nb_bytes + data_bytes + end->nb_bytes;
915 } else {
916 /* If we have to do two reads, add some padding in the middle
917 * if necessary to make sure that the end region is optimally
918 * aligned. */
919 size_t align = bdrv_opt_mem_align(bs);
920 assert(align > 0 && align <= UINT_MAX);
921 assert(QEMU_ALIGN_UP(start->nb_bytes, align) <=
922 UINT_MAX - end->nb_bytes);
923 buffer_size = QEMU_ALIGN_UP(start->nb_bytes, align) + end->nb_bytes;
926 /* Reserve a buffer large enough to store all the data that we're
927 * going to read */
928 start_buffer = qemu_try_blockalign(bs, buffer_size);
929 if (start_buffer == NULL) {
930 return -ENOMEM;
932 /* The part of the buffer where the end region is located */
933 end_buffer = start_buffer + buffer_size - end->nb_bytes;
935 qemu_iovec_init(&qiov, 2 + (m->data_qiov ?
936 qemu_iovec_subvec_niov(m->data_qiov,
937 m->data_qiov_offset,
938 data_bytes)
939 : 0));
941 qemu_co_mutex_unlock(&s->lock);
942 /* First we read the existing data from both COW regions. We
943 * either read the whole region in one go, or the start and end
944 * regions separately. */
945 if (merge_reads) {
946 qemu_iovec_add(&qiov, start_buffer, buffer_size);
947 ret = do_perform_cow_read(bs, m->offset, start->offset, &qiov);
948 } else {
949 qemu_iovec_add(&qiov, start_buffer, start->nb_bytes);
950 ret = do_perform_cow_read(bs, m->offset, start->offset, &qiov);
951 if (ret < 0) {
952 goto fail;
955 qemu_iovec_reset(&qiov);
956 qemu_iovec_add(&qiov, end_buffer, end->nb_bytes);
957 ret = do_perform_cow_read(bs, m->offset, end->offset, &qiov);
959 if (ret < 0) {
960 goto fail;
963 /* Encrypt the data if necessary before writing it */
964 if (bs->encrypted) {
965 ret = qcow2_co_encrypt(bs,
966 m->alloc_offset + start->offset,
967 m->offset + start->offset,
968 start_buffer, start->nb_bytes);
969 if (ret < 0) {
970 goto fail;
973 ret = qcow2_co_encrypt(bs,
974 m->alloc_offset + end->offset,
975 m->offset + end->offset,
976 end_buffer, end->nb_bytes);
977 if (ret < 0) {
978 goto fail;
982 /* And now we can write everything. If we have the guest data we
983 * can write everything in one single operation */
984 if (m->data_qiov) {
985 qemu_iovec_reset(&qiov);
986 if (start->nb_bytes) {
987 qemu_iovec_add(&qiov, start_buffer, start->nb_bytes);
989 qemu_iovec_concat(&qiov, m->data_qiov, m->data_qiov_offset, data_bytes);
990 if (end->nb_bytes) {
991 qemu_iovec_add(&qiov, end_buffer, end->nb_bytes);
993 /* NOTE: we have a write_aio blkdebug event here followed by
994 * a cow_write one in do_perform_cow_write(), but there's only
995 * one single I/O operation */
996 BLKDBG_EVENT(bs->file, BLKDBG_WRITE_AIO);
997 ret = do_perform_cow_write(bs, m->alloc_offset, start->offset, &qiov);
998 } else {
999 /* If there's no guest data then write both COW regions separately */
1000 qemu_iovec_reset(&qiov);
1001 qemu_iovec_add(&qiov, start_buffer, start->nb_bytes);
1002 ret = do_perform_cow_write(bs, m->alloc_offset, start->offset, &qiov);
1003 if (ret < 0) {
1004 goto fail;
1007 qemu_iovec_reset(&qiov);
1008 qemu_iovec_add(&qiov, end_buffer, end->nb_bytes);
1009 ret = do_perform_cow_write(bs, m->alloc_offset, end->offset, &qiov);
1012 fail:
1013 qemu_co_mutex_lock(&s->lock);
1016 * Before we update the L2 table to actually point to the new cluster, we
1017 * need to be sure that the refcounts have been increased and COW was
1018 * handled.
1020 if (ret == 0) {
1021 qcow2_cache_depends_on_flush(s->l2_table_cache);
1024 qemu_vfree(start_buffer);
1025 qemu_iovec_destroy(&qiov);
1026 return ret;
1029 int coroutine_fn qcow2_alloc_cluster_link_l2(BlockDriverState *bs,
1030 QCowL2Meta *m)
1032 BDRVQcow2State *s = bs->opaque;
1033 int i, j = 0, l2_index, ret;
1034 uint64_t *old_cluster, *l2_slice;
1035 uint64_t cluster_offset = m->alloc_offset;
1037 trace_qcow2_cluster_link_l2(qemu_coroutine_self(), m->nb_clusters);
1038 assert(m->nb_clusters > 0);
1040 old_cluster = g_try_new(uint64_t, m->nb_clusters);
1041 if (old_cluster == NULL) {
1042 ret = -ENOMEM;
1043 goto err;
1046 /* copy content of unmodified sectors */
1047 ret = perform_cow(bs, m);
1048 if (ret < 0) {
1049 goto err;
1052 /* Update L2 table. */
1053 if (s->use_lazy_refcounts) {
1054 qcow2_mark_dirty(bs);
1056 if (qcow2_need_accurate_refcounts(s)) {
1057 qcow2_cache_set_dependency(bs, s->l2_table_cache,
1058 s->refcount_block_cache);
1061 ret = get_cluster_table(bs, m->offset, &l2_slice, &l2_index);
1062 if (ret < 0) {
1063 goto err;
1065 qcow2_cache_entry_mark_dirty(s->l2_table_cache, l2_slice);
1067 assert(l2_index + m->nb_clusters <= s->l2_slice_size);
1068 assert(m->cow_end.offset + m->cow_end.nb_bytes <=
1069 m->nb_clusters << s->cluster_bits);
1070 for (i = 0; i < m->nb_clusters; i++) {
1071 uint64_t offset = cluster_offset + ((uint64_t)i << s->cluster_bits);
1072 /* if two concurrent writes happen to the same unallocated cluster
1073 * each write allocates separate cluster and writes data concurrently.
1074 * The first one to complete updates l2 table with pointer to its
1075 * cluster the second one has to do RMW (which is done above by
1076 * perform_cow()), update l2 table with its cluster pointer and free
1077 * old cluster. This is what this loop does */
1078 if (get_l2_entry(s, l2_slice, l2_index + i) != 0) {
1079 old_cluster[j++] = get_l2_entry(s, l2_slice, l2_index + i);
1082 /* The offset must fit in the offset field of the L2 table entry */
1083 assert((offset & L2E_OFFSET_MASK) == offset);
1085 set_l2_entry(s, l2_slice, l2_index + i, offset | QCOW_OFLAG_COPIED);
1087 /* Update bitmap with the subclusters that were just written */
1088 if (has_subclusters(s) && !m->prealloc) {
1089 uint64_t l2_bitmap = get_l2_bitmap(s, l2_slice, l2_index + i);
1090 unsigned written_from = m->cow_start.offset;
1091 unsigned written_to = m->cow_end.offset + m->cow_end.nb_bytes;
1092 int first_sc, last_sc;
1093 /* Narrow written_from and written_to down to the current cluster */
1094 written_from = MAX(written_from, i << s->cluster_bits);
1095 written_to = MIN(written_to, (i + 1) << s->cluster_bits);
1096 assert(written_from < written_to);
1097 first_sc = offset_to_sc_index(s, written_from);
1098 last_sc = offset_to_sc_index(s, written_to - 1);
1099 l2_bitmap |= QCOW_OFLAG_SUB_ALLOC_RANGE(first_sc, last_sc + 1);
1100 l2_bitmap &= ~QCOW_OFLAG_SUB_ZERO_RANGE(first_sc, last_sc + 1);
1101 set_l2_bitmap(s, l2_slice, l2_index + i, l2_bitmap);
1106 qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice);
1109 * If this was a COW, we need to decrease the refcount of the old cluster.
1111 * Don't discard clusters that reach a refcount of 0 (e.g. compressed
1112 * clusters), the next write will reuse them anyway.
1114 if (!m->keep_old_clusters && j != 0) {
1115 for (i = 0; i < j; i++) {
1116 qcow2_free_any_cluster(bs, old_cluster[i], QCOW2_DISCARD_NEVER);
1120 ret = 0;
1121 err:
1122 g_free(old_cluster);
1123 return ret;
1127 * Frees the allocated clusters because the request failed and they won't
1128 * actually be linked.
1130 void qcow2_alloc_cluster_abort(BlockDriverState *bs, QCowL2Meta *m)
1132 BDRVQcow2State *s = bs->opaque;
1133 if (!has_data_file(bs) && !m->keep_old_clusters) {
1134 qcow2_free_clusters(bs, m->alloc_offset,
1135 m->nb_clusters << s->cluster_bits,
1136 QCOW2_DISCARD_NEVER);
1141 * For a given write request, create a new QCowL2Meta structure, add
1142 * it to @m and the BDRVQcow2State.cluster_allocs list. If the write
1143 * request does not need copy-on-write or changes to the L2 metadata
1144 * then this function does nothing.
1146 * @host_cluster_offset points to the beginning of the first cluster.
1148 * @guest_offset and @bytes indicate the offset and length of the
1149 * request.
1151 * @l2_slice contains the L2 entries of all clusters involved in this
1152 * write request.
1154 * If @keep_old is true it means that the clusters were already
1155 * allocated and will be overwritten. If false then the clusters are
1156 * new and we have to decrease the reference count of the old ones.
1158 * Returns 0 on success, -errno on failure.
1160 static int calculate_l2_meta(BlockDriverState *bs, uint64_t host_cluster_offset,
1161 uint64_t guest_offset, unsigned bytes,
1162 uint64_t *l2_slice, QCowL2Meta **m, bool keep_old)
1164 BDRVQcow2State *s = bs->opaque;
1165 int sc_index, l2_index = offset_to_l2_slice_index(s, guest_offset);
1166 uint64_t l2_entry, l2_bitmap;
1167 unsigned cow_start_from, cow_end_to;
1168 unsigned cow_start_to = offset_into_cluster(s, guest_offset);
1169 unsigned cow_end_from = cow_start_to + bytes;
1170 unsigned nb_clusters = size_to_clusters(s, cow_end_from);
1171 QCowL2Meta *old_m = *m;
1172 QCow2SubclusterType type;
1173 int i;
1174 bool skip_cow = keep_old;
1176 assert(nb_clusters <= s->l2_slice_size - l2_index);
1178 /* Check the type of all affected subclusters */
1179 for (i = 0; i < nb_clusters; i++) {
1180 l2_entry = get_l2_entry(s, l2_slice, l2_index + i);
1181 l2_bitmap = get_l2_bitmap(s, l2_slice, l2_index + i);
1182 if (skip_cow) {
1183 unsigned write_from = MAX(cow_start_to, i << s->cluster_bits);
1184 unsigned write_to = MIN(cow_end_from, (i + 1) << s->cluster_bits);
1185 int first_sc = offset_to_sc_index(s, write_from);
1186 int last_sc = offset_to_sc_index(s, write_to - 1);
1187 int cnt = qcow2_get_subcluster_range_type(bs, l2_entry, l2_bitmap,
1188 first_sc, &type);
1189 /* Is any of the subclusters of type != QCOW2_SUBCLUSTER_NORMAL ? */
1190 if (type != QCOW2_SUBCLUSTER_NORMAL || first_sc + cnt <= last_sc) {
1191 skip_cow = false;
1193 } else {
1194 /* If we can't skip the cow we can still look for invalid entries */
1195 type = qcow2_get_subcluster_type(bs, l2_entry, l2_bitmap, 0);
1197 if (type == QCOW2_SUBCLUSTER_INVALID) {
1198 int l1_index = offset_to_l1_index(s, guest_offset);
1199 uint64_t l2_offset = s->l1_table[l1_index] & L1E_OFFSET_MASK;
1200 qcow2_signal_corruption(bs, true, -1, -1, "Invalid cluster "
1201 "entry found (L2 offset: %#" PRIx64
1202 ", L2 index: %#x)",
1203 l2_offset, l2_index + i);
1204 return -EIO;
1208 if (skip_cow) {
1209 return 0;
1212 /* Get the L2 entry of the first cluster */
1213 l2_entry = get_l2_entry(s, l2_slice, l2_index);
1214 l2_bitmap = get_l2_bitmap(s, l2_slice, l2_index);
1215 sc_index = offset_to_sc_index(s, guest_offset);
1216 type = qcow2_get_subcluster_type(bs, l2_entry, l2_bitmap, sc_index);
1218 if (!keep_old) {
1219 switch (type) {
1220 case QCOW2_SUBCLUSTER_COMPRESSED:
1221 cow_start_from = 0;
1222 break;
1223 case QCOW2_SUBCLUSTER_NORMAL:
1224 case QCOW2_SUBCLUSTER_ZERO_ALLOC:
1225 case QCOW2_SUBCLUSTER_UNALLOCATED_ALLOC:
1226 if (has_subclusters(s)) {
1227 /* Skip all leading zero and unallocated subclusters */
1228 uint32_t alloc_bitmap = l2_bitmap & QCOW_L2_BITMAP_ALL_ALLOC;
1229 cow_start_from =
1230 MIN(sc_index, ctz32(alloc_bitmap)) << s->subcluster_bits;
1231 } else {
1232 cow_start_from = 0;
1234 break;
1235 case QCOW2_SUBCLUSTER_ZERO_PLAIN:
1236 case QCOW2_SUBCLUSTER_UNALLOCATED_PLAIN:
1237 cow_start_from = sc_index << s->subcluster_bits;
1238 break;
1239 default:
1240 g_assert_not_reached();
1242 } else {
1243 switch (type) {
1244 case QCOW2_SUBCLUSTER_NORMAL:
1245 cow_start_from = cow_start_to;
1246 break;
1247 case QCOW2_SUBCLUSTER_ZERO_ALLOC:
1248 case QCOW2_SUBCLUSTER_UNALLOCATED_ALLOC:
1249 cow_start_from = sc_index << s->subcluster_bits;
1250 break;
1251 default:
1252 g_assert_not_reached();
1256 /* Get the L2 entry of the last cluster */
1257 l2_index += nb_clusters - 1;
1258 l2_entry = get_l2_entry(s, l2_slice, l2_index);
1259 l2_bitmap = get_l2_bitmap(s, l2_slice, l2_index);
1260 sc_index = offset_to_sc_index(s, guest_offset + bytes - 1);
1261 type = qcow2_get_subcluster_type(bs, l2_entry, l2_bitmap, sc_index);
1263 if (!keep_old) {
1264 switch (type) {
1265 case QCOW2_SUBCLUSTER_COMPRESSED:
1266 cow_end_to = ROUND_UP(cow_end_from, s->cluster_size);
1267 break;
1268 case QCOW2_SUBCLUSTER_NORMAL:
1269 case QCOW2_SUBCLUSTER_ZERO_ALLOC:
1270 case QCOW2_SUBCLUSTER_UNALLOCATED_ALLOC:
1271 cow_end_to = ROUND_UP(cow_end_from, s->cluster_size);
1272 if (has_subclusters(s)) {
1273 /* Skip all trailing zero and unallocated subclusters */
1274 uint32_t alloc_bitmap = l2_bitmap & QCOW_L2_BITMAP_ALL_ALLOC;
1275 cow_end_to -=
1276 MIN(s->subclusters_per_cluster - sc_index - 1,
1277 clz32(alloc_bitmap)) << s->subcluster_bits;
1279 break;
1280 case QCOW2_SUBCLUSTER_ZERO_PLAIN:
1281 case QCOW2_SUBCLUSTER_UNALLOCATED_PLAIN:
1282 cow_end_to = ROUND_UP(cow_end_from, s->subcluster_size);
1283 break;
1284 default:
1285 g_assert_not_reached();
1287 } else {
1288 switch (type) {
1289 case QCOW2_SUBCLUSTER_NORMAL:
1290 cow_end_to = cow_end_from;
1291 break;
1292 case QCOW2_SUBCLUSTER_ZERO_ALLOC:
1293 case QCOW2_SUBCLUSTER_UNALLOCATED_ALLOC:
1294 cow_end_to = ROUND_UP(cow_end_from, s->subcluster_size);
1295 break;
1296 default:
1297 g_assert_not_reached();
1301 *m = g_malloc0(sizeof(**m));
1302 **m = (QCowL2Meta) {
1303 .next = old_m,
1305 .alloc_offset = host_cluster_offset,
1306 .offset = start_of_cluster(s, guest_offset),
1307 .nb_clusters = nb_clusters,
1309 .keep_old_clusters = keep_old,
1311 .cow_start = {
1312 .offset = cow_start_from,
1313 .nb_bytes = cow_start_to - cow_start_from,
1315 .cow_end = {
1316 .offset = cow_end_from,
1317 .nb_bytes = cow_end_to - cow_end_from,
1321 qemu_co_queue_init(&(*m)->dependent_requests);
1322 QLIST_INSERT_HEAD(&s->cluster_allocs, *m, next_in_flight);
1324 return 0;
1328 * Returns true if writing to the cluster pointed to by @l2_entry
1329 * requires a new allocation (that is, if the cluster is unallocated
1330 * or has refcount > 1 and therefore cannot be written in-place).
1332 static bool cluster_needs_new_alloc(BlockDriverState *bs, uint64_t l2_entry)
1334 switch (qcow2_get_cluster_type(bs, l2_entry)) {
1335 case QCOW2_CLUSTER_NORMAL:
1336 case QCOW2_CLUSTER_ZERO_ALLOC:
1337 if (l2_entry & QCOW_OFLAG_COPIED) {
1338 return false;
1340 /* fallthrough */
1341 case QCOW2_CLUSTER_UNALLOCATED:
1342 case QCOW2_CLUSTER_COMPRESSED:
1343 case QCOW2_CLUSTER_ZERO_PLAIN:
1344 return true;
1345 default:
1346 abort();
1351 * Returns the number of contiguous clusters that can be written to
1352 * using one single write request, starting from @l2_index.
1353 * At most @nb_clusters are checked.
1355 * If @new_alloc is true this counts clusters that are either
1356 * unallocated, or allocated but with refcount > 1 (so they need to be
1357 * newly allocated and COWed).
1359 * If @new_alloc is false this counts clusters that are already
1360 * allocated and can be overwritten in-place (this includes clusters
1361 * of type QCOW2_CLUSTER_ZERO_ALLOC).
1363 static int count_single_write_clusters(BlockDriverState *bs, int nb_clusters,
1364 uint64_t *l2_slice, int l2_index,
1365 bool new_alloc)
1367 BDRVQcow2State *s = bs->opaque;
1368 uint64_t l2_entry = get_l2_entry(s, l2_slice, l2_index);
1369 uint64_t expected_offset = l2_entry & L2E_OFFSET_MASK;
1370 int i;
1372 for (i = 0; i < nb_clusters; i++) {
1373 l2_entry = get_l2_entry(s, l2_slice, l2_index + i);
1374 if (cluster_needs_new_alloc(bs, l2_entry) != new_alloc) {
1375 break;
1377 if (!new_alloc) {
1378 if (expected_offset != (l2_entry & L2E_OFFSET_MASK)) {
1379 break;
1381 expected_offset += s->cluster_size;
1385 assert(i <= nb_clusters);
1386 return i;
1390 * Check if there already is an AIO write request in flight which allocates
1391 * the same cluster. In this case we need to wait until the previous
1392 * request has completed and updated the L2 table accordingly.
1394 * Returns:
1395 * 0 if there was no dependency. *cur_bytes indicates the number of
1396 * bytes from guest_offset that can be read before the next
1397 * dependency must be processed (or the request is complete)
1399 * -EAGAIN if we had to wait for another request, previously gathered
1400 * information on cluster allocation may be invalid now. The caller
1401 * must start over anyway, so consider *cur_bytes undefined.
1403 static int coroutine_fn handle_dependencies(BlockDriverState *bs,
1404 uint64_t guest_offset,
1405 uint64_t *cur_bytes, QCowL2Meta **m)
1407 BDRVQcow2State *s = bs->opaque;
1408 QCowL2Meta *old_alloc;
1409 uint64_t bytes = *cur_bytes;
1411 QLIST_FOREACH(old_alloc, &s->cluster_allocs, next_in_flight) {
1413 uint64_t start = guest_offset;
1414 uint64_t end = start + bytes;
1415 uint64_t old_start = start_of_cluster(s, l2meta_cow_start(old_alloc));
1416 uint64_t old_end = ROUND_UP(l2meta_cow_end(old_alloc), s->cluster_size);
1418 if (end <= old_start || start >= old_end) {
1419 /* No intersection */
1420 continue;
1423 if (old_alloc->keep_old_clusters &&
1424 (end <= l2meta_cow_start(old_alloc) ||
1425 start >= l2meta_cow_end(old_alloc)))
1428 * Clusters intersect but COW areas don't. And cluster itself is
1429 * already allocated. So, there is no actual conflict.
1431 continue;
1434 /* Conflict */
1436 if (start < old_start) {
1437 /* Stop at the start of a running allocation */
1438 bytes = old_start - start;
1439 } else {
1440 bytes = 0;
1444 * Stop if an l2meta already exists. After yielding, it wouldn't
1445 * be valid any more, so we'd have to clean up the old L2Metas
1446 * and deal with requests depending on them before starting to
1447 * gather new ones. Not worth the trouble.
1449 if (bytes == 0 && *m) {
1450 *cur_bytes = 0;
1451 return 0;
1454 if (bytes == 0) {
1456 * Wait for the dependency to complete. We need to recheck
1457 * the free/allocated clusters when we continue.
1459 qemu_co_queue_wait(&old_alloc->dependent_requests, &s->lock);
1460 return -EAGAIN;
1464 /* Make sure that existing clusters and new allocations are only used up to
1465 * the next dependency if we shortened the request above */
1466 *cur_bytes = bytes;
1468 return 0;
1472 * Checks how many already allocated clusters that don't require a new
1473 * allocation there are at the given guest_offset (up to *bytes).
1474 * If *host_offset is not INV_OFFSET, only physically contiguous clusters
1475 * beginning at this host offset are counted.
1477 * Note that guest_offset may not be cluster aligned. In this case, the
1478 * returned *host_offset points to exact byte referenced by guest_offset and
1479 * therefore isn't cluster aligned as well.
1481 * Returns:
1482 * 0: if no allocated clusters are available at the given offset.
1483 * *bytes is normally unchanged. It is set to 0 if the cluster
1484 * is allocated and can be overwritten in-place but doesn't have
1485 * the right physical offset.
1487 * 1: if allocated clusters that can be overwritten in place are
1488 * available at the requested offset. *bytes may have decreased
1489 * and describes the length of the area that can be written to.
1491 * -errno: in error cases
1493 static int coroutine_fn handle_copied(BlockDriverState *bs,
1494 uint64_t guest_offset, uint64_t *host_offset, uint64_t *bytes,
1495 QCowL2Meta **m)
1497 BDRVQcow2State *s = bs->opaque;
1498 int l2_index;
1499 uint64_t l2_entry, cluster_offset;
1500 uint64_t *l2_slice;
1501 uint64_t nb_clusters;
1502 unsigned int keep_clusters;
1503 int ret;
1505 trace_qcow2_handle_copied(qemu_coroutine_self(), guest_offset, *host_offset,
1506 *bytes);
1508 assert(*host_offset == INV_OFFSET || offset_into_cluster(s, guest_offset)
1509 == offset_into_cluster(s, *host_offset));
1512 * Calculate the number of clusters to look for. We stop at L2 slice
1513 * boundaries to keep things simple.
1515 nb_clusters =
1516 size_to_clusters(s, offset_into_cluster(s, guest_offset) + *bytes);
1518 l2_index = offset_to_l2_slice_index(s, guest_offset);
1519 nb_clusters = MIN(nb_clusters, s->l2_slice_size - l2_index);
1520 /* Limit total byte count to BDRV_REQUEST_MAX_BYTES */
1521 nb_clusters = MIN(nb_clusters, BDRV_REQUEST_MAX_BYTES >> s->cluster_bits);
1523 /* Find L2 entry for the first involved cluster */
1524 ret = get_cluster_table(bs, guest_offset, &l2_slice, &l2_index);
1525 if (ret < 0) {
1526 return ret;
1529 l2_entry = get_l2_entry(s, l2_slice, l2_index);
1530 cluster_offset = l2_entry & L2E_OFFSET_MASK;
1532 if (!cluster_needs_new_alloc(bs, l2_entry)) {
1533 if (offset_into_cluster(s, cluster_offset)) {
1534 qcow2_signal_corruption(bs, true, -1, -1, "%s cluster offset "
1535 "%#" PRIx64 " unaligned (guest offset: %#"
1536 PRIx64 ")", l2_entry & QCOW_OFLAG_ZERO ?
1537 "Preallocated zero" : "Data",
1538 cluster_offset, guest_offset);
1539 ret = -EIO;
1540 goto out;
1543 /* If a specific host_offset is required, check it */
1544 if (*host_offset != INV_OFFSET && cluster_offset != *host_offset) {
1545 *bytes = 0;
1546 ret = 0;
1547 goto out;
1550 /* We keep all QCOW_OFLAG_COPIED clusters */
1551 keep_clusters = count_single_write_clusters(bs, nb_clusters, l2_slice,
1552 l2_index, false);
1553 assert(keep_clusters <= nb_clusters);
1555 *bytes = MIN(*bytes,
1556 keep_clusters * s->cluster_size
1557 - offset_into_cluster(s, guest_offset));
1558 assert(*bytes != 0);
1560 ret = calculate_l2_meta(bs, cluster_offset, guest_offset,
1561 *bytes, l2_slice, m, true);
1562 if (ret < 0) {
1563 goto out;
1566 ret = 1;
1567 } else {
1568 ret = 0;
1571 /* Cleanup */
1572 out:
1573 qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice);
1575 /* Only return a host offset if we actually made progress. Otherwise we
1576 * would make requirements for handle_alloc() that it can't fulfill */
1577 if (ret > 0) {
1578 *host_offset = cluster_offset + offset_into_cluster(s, guest_offset);
1581 return ret;
1585 * Allocates new clusters for the given guest_offset.
1587 * At most *nb_clusters are allocated, and on return *nb_clusters is updated to
1588 * contain the number of clusters that have been allocated and are contiguous
1589 * in the image file.
1591 * If *host_offset is not INV_OFFSET, it specifies the offset in the image file
1592 * at which the new clusters must start. *nb_clusters can be 0 on return in
1593 * this case if the cluster at host_offset is already in use. If *host_offset
1594 * is INV_OFFSET, the clusters can be allocated anywhere in the image file.
1596 * *host_offset is updated to contain the offset into the image file at which
1597 * the first allocated cluster starts.
1599 * Return 0 on success and -errno in error cases. -EAGAIN means that the
1600 * function has been waiting for another request and the allocation must be
1601 * restarted, but the whole request should not be failed.
1603 static int do_alloc_cluster_offset(BlockDriverState *bs, uint64_t guest_offset,
1604 uint64_t *host_offset, uint64_t *nb_clusters)
1606 BDRVQcow2State *s = bs->opaque;
1608 trace_qcow2_do_alloc_clusters_offset(qemu_coroutine_self(), guest_offset,
1609 *host_offset, *nb_clusters);
1611 if (has_data_file(bs)) {
1612 assert(*host_offset == INV_OFFSET ||
1613 *host_offset == start_of_cluster(s, guest_offset));
1614 *host_offset = start_of_cluster(s, guest_offset);
1615 return 0;
1618 /* Allocate new clusters */
1619 trace_qcow2_cluster_alloc_phys(qemu_coroutine_self());
1620 if (*host_offset == INV_OFFSET) {
1621 int64_t cluster_offset =
1622 qcow2_alloc_clusters(bs, *nb_clusters * s->cluster_size);
1623 if (cluster_offset < 0) {
1624 return cluster_offset;
1626 *host_offset = cluster_offset;
1627 return 0;
1628 } else {
1629 int64_t ret = qcow2_alloc_clusters_at(bs, *host_offset, *nb_clusters);
1630 if (ret < 0) {
1631 return ret;
1633 *nb_clusters = ret;
1634 return 0;
1639 * Allocates new clusters for an area that is either still unallocated or
1640 * cannot be overwritten in-place. If *host_offset is not INV_OFFSET,
1641 * clusters are only allocated if the new allocation can match the specified
1642 * host offset.
1644 * Note that guest_offset may not be cluster aligned. In this case, the
1645 * returned *host_offset points to exact byte referenced by guest_offset and
1646 * therefore isn't cluster aligned as well.
1648 * Returns:
1649 * 0: if no clusters could be allocated. *bytes is set to 0,
1650 * *host_offset is left unchanged.
1652 * 1: if new clusters were allocated. *bytes may be decreased if the
1653 * new allocation doesn't cover all of the requested area.
1654 * *host_offset is updated to contain the host offset of the first
1655 * newly allocated cluster.
1657 * -errno: in error cases
1659 static int coroutine_fn handle_alloc(BlockDriverState *bs,
1660 uint64_t guest_offset, uint64_t *host_offset, uint64_t *bytes,
1661 QCowL2Meta **m)
1663 BDRVQcow2State *s = bs->opaque;
1664 int l2_index;
1665 uint64_t *l2_slice;
1666 uint64_t nb_clusters;
1667 int ret;
1669 uint64_t alloc_cluster_offset;
1671 trace_qcow2_handle_alloc(qemu_coroutine_self(), guest_offset, *host_offset,
1672 *bytes);
1673 assert(*bytes > 0);
1676 * Calculate the number of clusters to look for. We stop at L2 slice
1677 * boundaries to keep things simple.
1679 nb_clusters =
1680 size_to_clusters(s, offset_into_cluster(s, guest_offset) + *bytes);
1682 l2_index = offset_to_l2_slice_index(s, guest_offset);
1683 nb_clusters = MIN(nb_clusters, s->l2_slice_size - l2_index);
1684 /* Limit total allocation byte count to BDRV_REQUEST_MAX_BYTES */
1685 nb_clusters = MIN(nb_clusters, BDRV_REQUEST_MAX_BYTES >> s->cluster_bits);
1687 /* Find L2 entry for the first involved cluster */
1688 ret = get_cluster_table(bs, guest_offset, &l2_slice, &l2_index);
1689 if (ret < 0) {
1690 return ret;
1693 nb_clusters = count_single_write_clusters(bs, nb_clusters,
1694 l2_slice, l2_index, true);
1696 /* This function is only called when there were no non-COW clusters, so if
1697 * we can't find any unallocated or COW clusters either, something is
1698 * wrong with our code. */
1699 assert(nb_clusters > 0);
1701 /* Allocate at a given offset in the image file */
1702 alloc_cluster_offset = *host_offset == INV_OFFSET ? INV_OFFSET :
1703 start_of_cluster(s, *host_offset);
1704 ret = do_alloc_cluster_offset(bs, guest_offset, &alloc_cluster_offset,
1705 &nb_clusters);
1706 if (ret < 0) {
1707 goto out;
1710 /* Can't extend contiguous allocation */
1711 if (nb_clusters == 0) {
1712 *bytes = 0;
1713 ret = 0;
1714 goto out;
1717 assert(alloc_cluster_offset != INV_OFFSET);
1720 * Save info needed for meta data update.
1722 * requested_bytes: Number of bytes from the start of the first
1723 * newly allocated cluster to the end of the (possibly shortened
1724 * before) write request.
1726 * avail_bytes: Number of bytes from the start of the first
1727 * newly allocated to the end of the last newly allocated cluster.
1729 * nb_bytes: The number of bytes from the start of the first
1730 * newly allocated cluster to the end of the area that the write
1731 * request actually writes to (excluding COW at the end)
1733 uint64_t requested_bytes = *bytes + offset_into_cluster(s, guest_offset);
1734 int avail_bytes = nb_clusters << s->cluster_bits;
1735 int nb_bytes = MIN(requested_bytes, avail_bytes);
1737 *host_offset = alloc_cluster_offset + offset_into_cluster(s, guest_offset);
1738 *bytes = MIN(*bytes, nb_bytes - offset_into_cluster(s, guest_offset));
1739 assert(*bytes != 0);
1741 ret = calculate_l2_meta(bs, alloc_cluster_offset, guest_offset, *bytes,
1742 l2_slice, m, false);
1743 if (ret < 0) {
1744 goto out;
1747 ret = 1;
1749 out:
1750 qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice);
1751 return ret;
1755 * For a given area on the virtual disk defined by @offset and @bytes,
1756 * find the corresponding area on the qcow2 image, allocating new
1757 * clusters (or subclusters) if necessary. The result can span a
1758 * combination of allocated and previously unallocated clusters.
1760 * Note that offset may not be cluster aligned. In this case, the returned
1761 * *host_offset points to exact byte referenced by offset and therefore
1762 * isn't cluster aligned as well.
1764 * On return, @host_offset is set to the beginning of the requested
1765 * area. This area is guaranteed to be contiguous on the qcow2 file
1766 * but it can be smaller than initially requested. In this case @bytes
1767 * is updated with the actual size.
1769 * If any clusters or subclusters were allocated then @m contains a
1770 * list with the information of all the affected regions. Note that
1771 * this can happen regardless of whether this function succeeds or
1772 * not. The caller is responsible for updating the L2 metadata of the
1773 * allocated clusters (on success) or freeing them (on failure), and
1774 * for clearing the contents of @m afterwards in both cases.
1776 * If the request conflicts with another write request in flight, the coroutine
1777 * is queued and will be reentered when the dependency has completed.
1779 * Return 0 on success and -errno in error cases
1781 int coroutine_fn qcow2_alloc_host_offset(BlockDriverState *bs, uint64_t offset,
1782 unsigned int *bytes,
1783 uint64_t *host_offset,
1784 QCowL2Meta **m)
1786 BDRVQcow2State *s = bs->opaque;
1787 uint64_t start, remaining;
1788 uint64_t cluster_offset;
1789 uint64_t cur_bytes;
1790 int ret;
1792 trace_qcow2_alloc_clusters_offset(qemu_coroutine_self(), offset, *bytes);
1794 again:
1795 start = offset;
1796 remaining = *bytes;
1797 cluster_offset = INV_OFFSET;
1798 *host_offset = INV_OFFSET;
1799 cur_bytes = 0;
1800 *m = NULL;
1802 while (true) {
1804 if (*host_offset == INV_OFFSET && cluster_offset != INV_OFFSET) {
1805 *host_offset = cluster_offset;
1808 assert(remaining >= cur_bytes);
1810 start += cur_bytes;
1811 remaining -= cur_bytes;
1813 if (cluster_offset != INV_OFFSET) {
1814 cluster_offset += cur_bytes;
1817 if (remaining == 0) {
1818 break;
1821 cur_bytes = remaining;
1824 * Now start gathering as many contiguous clusters as possible:
1826 * 1. Check for overlaps with in-flight allocations
1828 * a) Overlap not in the first cluster -> shorten this request and
1829 * let the caller handle the rest in its next loop iteration.
1831 * b) Real overlaps of two requests. Yield and restart the search
1832 * for contiguous clusters (the situation could have changed
1833 * while we were sleeping)
1835 * c) TODO: Request starts in the same cluster as the in-flight
1836 * allocation ends. Shorten the COW of the in-fight allocation,
1837 * set cluster_offset to write to the same cluster and set up
1838 * the right synchronisation between the in-flight request and
1839 * the new one.
1841 ret = handle_dependencies(bs, start, &cur_bytes, m);
1842 if (ret == -EAGAIN) {
1843 /* Currently handle_dependencies() doesn't yield if we already had
1844 * an allocation. If it did, we would have to clean up the L2Meta
1845 * structs before starting over. */
1846 assert(*m == NULL);
1847 goto again;
1848 } else if (ret < 0) {
1849 return ret;
1850 } else if (cur_bytes == 0) {
1851 break;
1852 } else {
1853 /* handle_dependencies() may have decreased cur_bytes (shortened
1854 * the allocations below) so that the next dependency is processed
1855 * correctly during the next loop iteration. */
1859 * 2. Count contiguous COPIED clusters.
1861 ret = handle_copied(bs, start, &cluster_offset, &cur_bytes, m);
1862 if (ret < 0) {
1863 return ret;
1864 } else if (ret) {
1865 continue;
1866 } else if (cur_bytes == 0) {
1867 break;
1871 * 3. If the request still hasn't completed, allocate new clusters,
1872 * considering any cluster_offset of steps 1c or 2.
1874 ret = handle_alloc(bs, start, &cluster_offset, &cur_bytes, m);
1875 if (ret < 0) {
1876 return ret;
1877 } else if (ret) {
1878 continue;
1879 } else {
1880 assert(cur_bytes == 0);
1881 break;
1885 *bytes -= remaining;
1886 assert(*bytes > 0);
1887 assert(*host_offset != INV_OFFSET);
1888 assert(offset_into_cluster(s, *host_offset) ==
1889 offset_into_cluster(s, offset));
1891 return 0;
1895 * This discards as many clusters of nb_clusters as possible at once (i.e.
1896 * all clusters in the same L2 slice) and returns the number of discarded
1897 * clusters.
1899 static int discard_in_l2_slice(BlockDriverState *bs, uint64_t offset,
1900 uint64_t nb_clusters,
1901 enum qcow2_discard_type type, bool full_discard)
1903 BDRVQcow2State *s = bs->opaque;
1904 uint64_t *l2_slice;
1905 int l2_index;
1906 int ret;
1907 int i;
1909 ret = get_cluster_table(bs, offset, &l2_slice, &l2_index);
1910 if (ret < 0) {
1911 return ret;
1914 /* Limit nb_clusters to one L2 slice */
1915 nb_clusters = MIN(nb_clusters, s->l2_slice_size - l2_index);
1916 assert(nb_clusters <= INT_MAX);
1918 for (i = 0; i < nb_clusters; i++) {
1919 uint64_t old_l2_entry = get_l2_entry(s, l2_slice, l2_index + i);
1920 uint64_t old_l2_bitmap = get_l2_bitmap(s, l2_slice, l2_index + i);
1921 uint64_t new_l2_entry = old_l2_entry;
1922 uint64_t new_l2_bitmap = old_l2_bitmap;
1923 QCow2ClusterType cluster_type =
1924 qcow2_get_cluster_type(bs, old_l2_entry);
1927 * If full_discard is true, the cluster should not read back as zeroes,
1928 * but rather fall through to the backing file.
1930 * If full_discard is false, make sure that a discarded area reads back
1931 * as zeroes for v3 images (we cannot do it for v2 without actually
1932 * writing a zero-filled buffer). We can skip the operation if the
1933 * cluster is already marked as zero, or if it's unallocated and we
1934 * don't have a backing file.
1936 * TODO We might want to use bdrv_block_status(bs) here, but we're
1937 * holding s->lock, so that doesn't work today.
1939 if (full_discard) {
1940 new_l2_entry = new_l2_bitmap = 0;
1941 } else if (bs->backing || qcow2_cluster_is_allocated(cluster_type)) {
1942 if (has_subclusters(s)) {
1943 new_l2_entry = 0;
1944 new_l2_bitmap = QCOW_L2_BITMAP_ALL_ZEROES;
1945 } else {
1946 new_l2_entry = s->qcow_version >= 3 ? QCOW_OFLAG_ZERO : 0;
1950 if (old_l2_entry == new_l2_entry && old_l2_bitmap == new_l2_bitmap) {
1951 continue;
1954 /* First remove L2 entries */
1955 qcow2_cache_entry_mark_dirty(s->l2_table_cache, l2_slice);
1956 set_l2_entry(s, l2_slice, l2_index + i, new_l2_entry);
1957 if (has_subclusters(s)) {
1958 set_l2_bitmap(s, l2_slice, l2_index + i, new_l2_bitmap);
1960 /* Then decrease the refcount */
1961 qcow2_free_any_cluster(bs, old_l2_entry, type);
1964 qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice);
1966 return nb_clusters;
1969 int qcow2_cluster_discard(BlockDriverState *bs, uint64_t offset,
1970 uint64_t bytes, enum qcow2_discard_type type,
1971 bool full_discard)
1973 BDRVQcow2State *s = bs->opaque;
1974 uint64_t end_offset = offset + bytes;
1975 uint64_t nb_clusters;
1976 int64_t cleared;
1977 int ret;
1979 /* Caller must pass aligned values, except at image end */
1980 assert(QEMU_IS_ALIGNED(offset, s->cluster_size));
1981 assert(QEMU_IS_ALIGNED(end_offset, s->cluster_size) ||
1982 end_offset == bs->total_sectors << BDRV_SECTOR_BITS);
1984 nb_clusters = size_to_clusters(s, bytes);
1986 s->cache_discards = true;
1988 /* Each L2 slice is handled by its own loop iteration */
1989 while (nb_clusters > 0) {
1990 cleared = discard_in_l2_slice(bs, offset, nb_clusters, type,
1991 full_discard);
1992 if (cleared < 0) {
1993 ret = cleared;
1994 goto fail;
1997 nb_clusters -= cleared;
1998 offset += (cleared * s->cluster_size);
2001 ret = 0;
2002 fail:
2003 s->cache_discards = false;
2004 qcow2_process_discards(bs, ret);
2006 return ret;
2010 * This zeroes as many clusters of nb_clusters as possible at once (i.e.
2011 * all clusters in the same L2 slice) and returns the number of zeroed
2012 * clusters.
2014 static int zero_in_l2_slice(BlockDriverState *bs, uint64_t offset,
2015 uint64_t nb_clusters, int flags)
2017 BDRVQcow2State *s = bs->opaque;
2018 uint64_t *l2_slice;
2019 int l2_index;
2020 int ret;
2021 int i;
2023 ret = get_cluster_table(bs, offset, &l2_slice, &l2_index);
2024 if (ret < 0) {
2025 return ret;
2028 /* Limit nb_clusters to one L2 slice */
2029 nb_clusters = MIN(nb_clusters, s->l2_slice_size - l2_index);
2030 assert(nb_clusters <= INT_MAX);
2032 for (i = 0; i < nb_clusters; i++) {
2033 uint64_t old_l2_entry = get_l2_entry(s, l2_slice, l2_index + i);
2034 uint64_t old_l2_bitmap = get_l2_bitmap(s, l2_slice, l2_index + i);
2035 QCow2ClusterType type = qcow2_get_cluster_type(bs, old_l2_entry);
2036 bool unmap = (type == QCOW2_CLUSTER_COMPRESSED) ||
2037 ((flags & BDRV_REQ_MAY_UNMAP) && qcow2_cluster_is_allocated(type));
2038 uint64_t new_l2_entry = unmap ? 0 : old_l2_entry;
2039 uint64_t new_l2_bitmap = old_l2_bitmap;
2041 if (has_subclusters(s)) {
2042 new_l2_bitmap = QCOW_L2_BITMAP_ALL_ZEROES;
2043 } else {
2044 new_l2_entry |= QCOW_OFLAG_ZERO;
2047 if (old_l2_entry == new_l2_entry && old_l2_bitmap == new_l2_bitmap) {
2048 continue;
2051 /* First update L2 entries */
2052 qcow2_cache_entry_mark_dirty(s->l2_table_cache, l2_slice);
2053 set_l2_entry(s, l2_slice, l2_index + i, new_l2_entry);
2054 if (has_subclusters(s)) {
2055 set_l2_bitmap(s, l2_slice, l2_index + i, new_l2_bitmap);
2058 /* Then decrease the refcount */
2059 if (unmap) {
2060 qcow2_free_any_cluster(bs, old_l2_entry, QCOW2_DISCARD_REQUEST);
2064 qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice);
2066 return nb_clusters;
2069 static int zero_l2_subclusters(BlockDriverState *bs, uint64_t offset,
2070 unsigned nb_subclusters)
2072 BDRVQcow2State *s = bs->opaque;
2073 uint64_t *l2_slice;
2074 uint64_t old_l2_bitmap, l2_bitmap;
2075 int l2_index, ret, sc = offset_to_sc_index(s, offset);
2077 /* For full clusters use zero_in_l2_slice() instead */
2078 assert(nb_subclusters > 0 && nb_subclusters < s->subclusters_per_cluster);
2079 assert(sc + nb_subclusters <= s->subclusters_per_cluster);
2080 assert(offset_into_subcluster(s, offset) == 0);
2082 ret = get_cluster_table(bs, offset, &l2_slice, &l2_index);
2083 if (ret < 0) {
2084 return ret;
2087 switch (qcow2_get_cluster_type(bs, get_l2_entry(s, l2_slice, l2_index))) {
2088 case QCOW2_CLUSTER_COMPRESSED:
2089 ret = -ENOTSUP; /* We cannot partially zeroize compressed clusters */
2090 goto out;
2091 case QCOW2_CLUSTER_NORMAL:
2092 case QCOW2_CLUSTER_UNALLOCATED:
2093 break;
2094 default:
2095 g_assert_not_reached();
2098 old_l2_bitmap = l2_bitmap = get_l2_bitmap(s, l2_slice, l2_index);
2100 l2_bitmap |= QCOW_OFLAG_SUB_ZERO_RANGE(sc, sc + nb_subclusters);
2101 l2_bitmap &= ~QCOW_OFLAG_SUB_ALLOC_RANGE(sc, sc + nb_subclusters);
2103 if (old_l2_bitmap != l2_bitmap) {
2104 set_l2_bitmap(s, l2_slice, l2_index, l2_bitmap);
2105 qcow2_cache_entry_mark_dirty(s->l2_table_cache, l2_slice);
2108 ret = 0;
2109 out:
2110 qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice);
2112 return ret;
2115 int coroutine_fn qcow2_subcluster_zeroize(BlockDriverState *bs, uint64_t offset,
2116 uint64_t bytes, int flags)
2118 BDRVQcow2State *s = bs->opaque;
2119 uint64_t end_offset = offset + bytes;
2120 uint64_t nb_clusters;
2121 unsigned head, tail;
2122 int64_t cleared;
2123 int ret;
2125 /* If we have to stay in sync with an external data file, zero out
2126 * s->data_file first. */
2127 if (data_file_is_raw(bs)) {
2128 assert(has_data_file(bs));
2129 ret = bdrv_co_pwrite_zeroes(s->data_file, offset, bytes, flags);
2130 if (ret < 0) {
2131 return ret;
2135 /* Caller must pass aligned values, except at image end */
2136 assert(offset_into_subcluster(s, offset) == 0);
2137 assert(offset_into_subcluster(s, end_offset) == 0 ||
2138 end_offset >= bs->total_sectors << BDRV_SECTOR_BITS);
2141 * The zero flag is only supported by version 3 and newer. However, if we
2142 * have no backing file, we can resort to discard in version 2.
2144 if (s->qcow_version < 3) {
2145 if (!bs->backing) {
2146 return qcow2_cluster_discard(bs, offset, bytes,
2147 QCOW2_DISCARD_REQUEST, false);
2149 return -ENOTSUP;
2152 head = MIN(end_offset, ROUND_UP(offset, s->cluster_size)) - offset;
2153 offset += head;
2155 tail = (end_offset >= bs->total_sectors << BDRV_SECTOR_BITS) ? 0 :
2156 end_offset - MAX(offset, start_of_cluster(s, end_offset));
2157 end_offset -= tail;
2159 s->cache_discards = true;
2161 if (head) {
2162 ret = zero_l2_subclusters(bs, offset - head,
2163 size_to_subclusters(s, head));
2164 if (ret < 0) {
2165 goto fail;
2169 /* Each L2 slice is handled by its own loop iteration */
2170 nb_clusters = size_to_clusters(s, end_offset - offset);
2172 while (nb_clusters > 0) {
2173 cleared = zero_in_l2_slice(bs, offset, nb_clusters, flags);
2174 if (cleared < 0) {
2175 ret = cleared;
2176 goto fail;
2179 nb_clusters -= cleared;
2180 offset += (cleared * s->cluster_size);
2183 if (tail) {
2184 ret = zero_l2_subclusters(bs, end_offset, size_to_subclusters(s, tail));
2185 if (ret < 0) {
2186 goto fail;
2190 ret = 0;
2191 fail:
2192 s->cache_discards = false;
2193 qcow2_process_discards(bs, ret);
2195 return ret;
2199 * Expands all zero clusters in a specific L1 table (or deallocates them, for
2200 * non-backed non-pre-allocated zero clusters).
2202 * l1_entries and *visited_l1_entries are used to keep track of progress for
2203 * status_cb(). l1_entries contains the total number of L1 entries and
2204 * *visited_l1_entries counts all visited L1 entries.
2206 static int expand_zero_clusters_in_l1(BlockDriverState *bs, uint64_t *l1_table,
2207 int l1_size, int64_t *visited_l1_entries,
2208 int64_t l1_entries,
2209 BlockDriverAmendStatusCB *status_cb,
2210 void *cb_opaque)
2212 BDRVQcow2State *s = bs->opaque;
2213 bool is_active_l1 = (l1_table == s->l1_table);
2214 uint64_t *l2_slice = NULL;
2215 unsigned slice, slice_size2, n_slices;
2216 int ret;
2217 int i, j;
2219 /* qcow2_downgrade() is not allowed in images with subclusters */
2220 assert(!has_subclusters(s));
2222 slice_size2 = s->l2_slice_size * l2_entry_size(s);
2223 n_slices = s->cluster_size / slice_size2;
2225 if (!is_active_l1) {
2226 /* inactive L2 tables require a buffer to be stored in when loading
2227 * them from disk */
2228 l2_slice = qemu_try_blockalign(bs->file->bs, slice_size2);
2229 if (l2_slice == NULL) {
2230 return -ENOMEM;
2234 for (i = 0; i < l1_size; i++) {
2235 uint64_t l2_offset = l1_table[i] & L1E_OFFSET_MASK;
2236 uint64_t l2_refcount;
2238 if (!l2_offset) {
2239 /* unallocated */
2240 (*visited_l1_entries)++;
2241 if (status_cb) {
2242 status_cb(bs, *visited_l1_entries, l1_entries, cb_opaque);
2244 continue;
2247 if (offset_into_cluster(s, l2_offset)) {
2248 qcow2_signal_corruption(bs, true, -1, -1, "L2 table offset %#"
2249 PRIx64 " unaligned (L1 index: %#x)",
2250 l2_offset, i);
2251 ret = -EIO;
2252 goto fail;
2255 ret = qcow2_get_refcount(bs, l2_offset >> s->cluster_bits,
2256 &l2_refcount);
2257 if (ret < 0) {
2258 goto fail;
2261 for (slice = 0; slice < n_slices; slice++) {
2262 uint64_t slice_offset = l2_offset + slice * slice_size2;
2263 bool l2_dirty = false;
2264 if (is_active_l1) {
2265 /* get active L2 tables from cache */
2266 ret = qcow2_cache_get(bs, s->l2_table_cache, slice_offset,
2267 (void **)&l2_slice);
2268 } else {
2269 /* load inactive L2 tables from disk */
2270 ret = bdrv_pread(bs->file, slice_offset, slice_size2,
2271 l2_slice, 0);
2273 if (ret < 0) {
2274 goto fail;
2277 for (j = 0; j < s->l2_slice_size; j++) {
2278 uint64_t l2_entry = get_l2_entry(s, l2_slice, j);
2279 int64_t offset = l2_entry & L2E_OFFSET_MASK;
2280 QCow2ClusterType cluster_type =
2281 qcow2_get_cluster_type(bs, l2_entry);
2283 if (cluster_type != QCOW2_CLUSTER_ZERO_PLAIN &&
2284 cluster_type != QCOW2_CLUSTER_ZERO_ALLOC) {
2285 continue;
2288 if (cluster_type == QCOW2_CLUSTER_ZERO_PLAIN) {
2289 if (!bs->backing) {
2291 * not backed; therefore we can simply deallocate the
2292 * cluster. No need to call set_l2_bitmap(), this
2293 * function doesn't support images with subclusters.
2295 set_l2_entry(s, l2_slice, j, 0);
2296 l2_dirty = true;
2297 continue;
2300 offset = qcow2_alloc_clusters(bs, s->cluster_size);
2301 if (offset < 0) {
2302 ret = offset;
2303 goto fail;
2306 /* The offset must fit in the offset field */
2307 assert((offset & L2E_OFFSET_MASK) == offset);
2309 if (l2_refcount > 1) {
2310 /* For shared L2 tables, set the refcount accordingly
2311 * (it is already 1 and needs to be l2_refcount) */
2312 ret = qcow2_update_cluster_refcount(
2313 bs, offset >> s->cluster_bits,
2314 refcount_diff(1, l2_refcount), false,
2315 QCOW2_DISCARD_OTHER);
2316 if (ret < 0) {
2317 qcow2_free_clusters(bs, offset, s->cluster_size,
2318 QCOW2_DISCARD_OTHER);
2319 goto fail;
2324 if (offset_into_cluster(s, offset)) {
2325 int l2_index = slice * s->l2_slice_size + j;
2326 qcow2_signal_corruption(
2327 bs, true, -1, -1,
2328 "Cluster allocation offset "
2329 "%#" PRIx64 " unaligned (L2 offset: %#"
2330 PRIx64 ", L2 index: %#x)", offset,
2331 l2_offset, l2_index);
2332 if (cluster_type == QCOW2_CLUSTER_ZERO_PLAIN) {
2333 qcow2_free_clusters(bs, offset, s->cluster_size,
2334 QCOW2_DISCARD_ALWAYS);
2336 ret = -EIO;
2337 goto fail;
2340 ret = qcow2_pre_write_overlap_check(bs, 0, offset,
2341 s->cluster_size, true);
2342 if (ret < 0) {
2343 if (cluster_type == QCOW2_CLUSTER_ZERO_PLAIN) {
2344 qcow2_free_clusters(bs, offset, s->cluster_size,
2345 QCOW2_DISCARD_ALWAYS);
2347 goto fail;
2350 ret = bdrv_pwrite_zeroes(s->data_file, offset,
2351 s->cluster_size, 0);
2352 if (ret < 0) {
2353 if (cluster_type == QCOW2_CLUSTER_ZERO_PLAIN) {
2354 qcow2_free_clusters(bs, offset, s->cluster_size,
2355 QCOW2_DISCARD_ALWAYS);
2357 goto fail;
2360 if (l2_refcount == 1) {
2361 set_l2_entry(s, l2_slice, j, offset | QCOW_OFLAG_COPIED);
2362 } else {
2363 set_l2_entry(s, l2_slice, j, offset);
2366 * No need to call set_l2_bitmap() after set_l2_entry() because
2367 * this function doesn't support images with subclusters.
2369 l2_dirty = true;
2372 if (is_active_l1) {
2373 if (l2_dirty) {
2374 qcow2_cache_entry_mark_dirty(s->l2_table_cache, l2_slice);
2375 qcow2_cache_depends_on_flush(s->l2_table_cache);
2377 qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice);
2378 } else {
2379 if (l2_dirty) {
2380 ret = qcow2_pre_write_overlap_check(
2381 bs, QCOW2_OL_INACTIVE_L2 | QCOW2_OL_ACTIVE_L2,
2382 slice_offset, slice_size2, false);
2383 if (ret < 0) {
2384 goto fail;
2387 ret = bdrv_pwrite(bs->file, slice_offset, slice_size2,
2388 l2_slice, 0);
2389 if (ret < 0) {
2390 goto fail;
2396 (*visited_l1_entries)++;
2397 if (status_cb) {
2398 status_cb(bs, *visited_l1_entries, l1_entries, cb_opaque);
2402 ret = 0;
2404 fail:
2405 if (l2_slice) {
2406 if (!is_active_l1) {
2407 qemu_vfree(l2_slice);
2408 } else {
2409 qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice);
2412 return ret;
2416 * For backed images, expands all zero clusters on the image. For non-backed
2417 * images, deallocates all non-pre-allocated zero clusters (and claims the
2418 * allocation for pre-allocated ones). This is important for downgrading to a
2419 * qcow2 version which doesn't yet support metadata zero clusters.
2421 int qcow2_expand_zero_clusters(BlockDriverState *bs,
2422 BlockDriverAmendStatusCB *status_cb,
2423 void *cb_opaque)
2425 BDRVQcow2State *s = bs->opaque;
2426 uint64_t *l1_table = NULL;
2427 int64_t l1_entries = 0, visited_l1_entries = 0;
2428 int ret;
2429 int i, j;
2431 if (status_cb) {
2432 l1_entries = s->l1_size;
2433 for (i = 0; i < s->nb_snapshots; i++) {
2434 l1_entries += s->snapshots[i].l1_size;
2438 ret = expand_zero_clusters_in_l1(bs, s->l1_table, s->l1_size,
2439 &visited_l1_entries, l1_entries,
2440 status_cb, cb_opaque);
2441 if (ret < 0) {
2442 goto fail;
2445 /* Inactive L1 tables may point to active L2 tables - therefore it is
2446 * necessary to flush the L2 table cache before trying to access the L2
2447 * tables pointed to by inactive L1 entries (else we might try to expand
2448 * zero clusters that have already been expanded); furthermore, it is also
2449 * necessary to empty the L2 table cache, since it may contain tables which
2450 * are now going to be modified directly on disk, bypassing the cache.
2451 * qcow2_cache_empty() does both for us. */
2452 ret = qcow2_cache_empty(bs, s->l2_table_cache);
2453 if (ret < 0) {
2454 goto fail;
2457 for (i = 0; i < s->nb_snapshots; i++) {
2458 int l1_size2;
2459 uint64_t *new_l1_table;
2460 Error *local_err = NULL;
2462 ret = qcow2_validate_table(bs, s->snapshots[i].l1_table_offset,
2463 s->snapshots[i].l1_size, L1E_SIZE,
2464 QCOW_MAX_L1_SIZE, "Snapshot L1 table",
2465 &local_err);
2466 if (ret < 0) {
2467 error_report_err(local_err);
2468 goto fail;
2471 l1_size2 = s->snapshots[i].l1_size * L1E_SIZE;
2472 new_l1_table = g_try_realloc(l1_table, l1_size2);
2474 if (!new_l1_table) {
2475 ret = -ENOMEM;
2476 goto fail;
2479 l1_table = new_l1_table;
2481 ret = bdrv_pread(bs->file, s->snapshots[i].l1_table_offset, l1_size2,
2482 l1_table, 0);
2483 if (ret < 0) {
2484 goto fail;
2487 for (j = 0; j < s->snapshots[i].l1_size; j++) {
2488 be64_to_cpus(&l1_table[j]);
2491 ret = expand_zero_clusters_in_l1(bs, l1_table, s->snapshots[i].l1_size,
2492 &visited_l1_entries, l1_entries,
2493 status_cb, cb_opaque);
2494 if (ret < 0) {
2495 goto fail;
2499 ret = 0;
2501 fail:
2502 g_free(l1_table);
2503 return ret;
2506 void qcow2_parse_compressed_l2_entry(BlockDriverState *bs, uint64_t l2_entry,
2507 uint64_t *coffset, int *csize)
2509 BDRVQcow2State *s = bs->opaque;
2510 int nb_csectors;
2512 assert(qcow2_get_cluster_type(bs, l2_entry) == QCOW2_CLUSTER_COMPRESSED);
2514 *coffset = l2_entry & s->cluster_offset_mask;
2516 nb_csectors = ((l2_entry >> s->csize_shift) & s->csize_mask) + 1;
2517 *csize = nb_csectors * QCOW2_COMPRESSED_SECTOR_SIZE -
2518 (*coffset & (QCOW2_COMPRESSED_SECTOR_SIZE - 1));