hppa: Revise REG+D address support to allow long displacements before reload
[official-gcc.git] / gcc / config / pa / pa.h
blobaba2cec73579baf239c520d280985d5abef04347
1 /* Definitions of target machine for GNU compiler, for the HP Spectrum.
2 Copyright (C) 1992-2023 Free Software Foundation, Inc.
3 Contributed by Michael Tiemann (tiemann@cygnus.com) of Cygnus Support
4 and Tim Moore (moore@defmacro.cs.utah.edu) of the Center for
5 Software Science at the University of Utah.
7 This file is part of GCC.
9 GCC is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3, or (at your option)
12 any later version.
14 GCC is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
19 You should have received a copy of the GNU General Public License
20 along with GCC; see the file COPYING3. If not see
21 <http://www.gnu.org/licenses/>. */
23 /* For long call handling. */
24 extern unsigned long total_code_bytes;
26 #define pa_cpu_attr ((enum attr_cpu)pa_cpu)
28 #define TARGET_PA_10 (!TARGET_PA_11 && !TARGET_PA_20)
30 /* Generate code for the HPPA 2.0 architecture in 64bit mode. */
31 #ifndef TARGET_64BIT
32 #define TARGET_64BIT 0
33 #endif
35 /* Generate code for ELF32 ABI. */
36 #ifndef TARGET_ELF32
37 #define TARGET_ELF32 0
38 #endif
40 /* Generate code for ELF64 ABI. */
41 #ifndef TARGET_ELF64
42 #define TARGET_ELF64 0
43 #endif
45 /* Generate code for SOM 32bit ABI. */
46 #ifndef TARGET_SOM
47 #define TARGET_SOM 0
48 #endif
50 /* HP-UX UNIX features. */
51 #ifndef TARGET_HPUX
52 #define TARGET_HPUX 0
53 #endif
55 /* HP-UX 10.10 UNIX 95 features. */
56 #ifndef TARGET_HPUX_10_10
57 #define TARGET_HPUX_10_10 0
58 #endif
60 /* HP-UX 11.* features (11.00, 11.11, 11.23, etc.) */
61 #ifndef TARGET_HPUX_11
62 #define TARGET_HPUX_11 0
63 #endif
65 /* HP-UX 11i multibyte and UNIX 98 extensions. */
66 #ifndef TARGET_HPUX_11_11
67 #define TARGET_HPUX_11_11 0
68 #endif
70 /* HP-UX 11i multibyte and UNIX 2003 extensions. */
71 #ifndef TARGET_HPUX_11_31
72 #define TARGET_HPUX_11_31 0
73 #endif
75 /* HP-UX long double library. */
76 #ifndef HPUX_LONG_DOUBLE_LIBRARY
77 #define HPUX_LONG_DOUBLE_LIBRARY 0
78 #endif
80 /* Sync libcall support. */
81 #define TARGET_SYNC_LIBCALLS (flag_sync_libcalls)
83 /* The maximum size of the sync library functions supported. DImode
84 is supported on 32-bit targets using floating point loads and stores. */
85 #define MAX_SYNC_LIBFUNC_SIZE 8
87 /* The following three defines are potential target switches. The current
88 defines are optimal given the current capabilities of GAS and GNU ld. */
90 /* Define to a C expression evaluating to true to use long absolute calls.
91 Currently, only the HP assembler and SOM linker support long absolute
92 calls. They are used only in non-pic code. */
93 #define TARGET_LONG_ABS_CALL (TARGET_SOM && !TARGET_GAS)
95 /* Define to a C expression evaluating to true to use long PIC symbol
96 difference calls. Long PIC symbol difference calls are only used with
97 the HP assembler and linker. The HP assembler detects this instruction
98 sequence and treats it as long pc-relative call. Currently, GAS only
99 allows a difference of two symbols in the same subspace, and it doesn't
100 detect the sequence as a pc-relative call. */
101 #define TARGET_LONG_PIC_SDIFF_CALL (!TARGET_GAS && TARGET_HPUX)
103 /* Define to a C expression evaluating to true to use SOM secondary
104 definition symbols for weak support. Linker support for secondary
105 definition symbols is buggy prior to HP-UX 11.X. */
106 #define TARGET_SOM_SDEF 0
108 /* Define to a C expression evaluating to true to save the entry value
109 of SP in the current frame marker. This is normally unnecessary.
110 However, the HP-UX unwind library looks at the SAVE_SP callinfo flag.
111 HP compilers don't use this flag but it is supported by the assembler.
112 We set this flag to indicate that register %r3 has been saved at the
113 start of the frame. Thus, when the HP unwind library is used, we
114 need to generate additional code to save SP into the frame marker. */
115 #define TARGET_HPUX_UNWIND_LIBRARY 0
117 #ifndef TARGET_DEFAULT
118 #define TARGET_DEFAULT MASK_GAS
119 #endif
121 #ifndef TARGET_CPU_DEFAULT
122 #define TARGET_CPU_DEFAULT 0
123 #endif
125 #ifndef TARGET_SCHED_DEFAULT
126 #define TARGET_SCHED_DEFAULT PROCESSOR_8000
127 #endif
129 /* Support for a compile-time default CPU, et cetera. The rules are:
130 --with-schedule is ignored if -mschedule is specified.
131 --with-arch is ignored if -march is specified. */
132 #define OPTION_DEFAULT_SPECS \
133 {"arch", "%{!march=*:-march=%(VALUE)}" }, \
134 {"schedule", "%{!mschedule=*:-mschedule=%(VALUE)}" }
136 /* Specify the dialect of assembler to use. New mnemonics is dialect one
137 and the old mnemonics are dialect zero. */
138 #define ASSEMBLER_DIALECT (TARGET_PA_20 ? 1 : 0)
140 /* We do not have to be compatible with dbx, so we enable gdb extensions
141 by default. */
142 #define DEFAULT_GDB_EXTENSIONS 1
144 /* Select dwarf2 as the preferred debug format. */
145 #define PREFERRED_DEBUGGING_TYPE DWARF2_DEBUG
147 /* GDB always assumes the current function's frame begins at the value
148 of the stack pointer upon entry to the current function. Accessing
149 local variables and parameters passed on the stack is done using the
150 base of the frame + an offset provided by GCC.
152 For functions which have frame pointers this method works fine;
153 the (frame pointer) == (stack pointer at function entry) and GCC provides
154 an offset relative to the frame pointer.
156 This loses for functions without a frame pointer; GCC provides an offset
157 which is relative to the stack pointer after adjusting for the function's
158 frame size. GDB would prefer the offset to be relative to the value of
159 the stack pointer at the function's entry. Yuk! */
160 #define DEBUGGER_AUTO_OFFSET(X) \
161 ((GET_CODE (X) == PLUS ? INTVAL (XEXP (X, 1)) : 0) \
162 + (frame_pointer_needed ? 0 : pa_compute_frame_size (get_frame_size (), 0)))
164 #define DEBUGGER_ARG_OFFSET(OFFSET, X) \
165 ((GET_CODE (X) == PLUS ? OFFSET : 0) \
166 + (frame_pointer_needed ? 0 : pa_compute_frame_size (get_frame_size (), 0)))
168 #define TARGET_CPU_CPP_BUILTINS() \
169 do { \
170 builtin_assert("cpu=hppa"); \
171 builtin_assert("machine=hppa"); \
172 builtin_define("__hppa"); \
173 builtin_define("__hppa__"); \
174 builtin_define("__BIG_ENDIAN__"); \
175 if (TARGET_PA_20) \
176 builtin_define("_PA_RISC2_0"); \
177 else if (TARGET_PA_11) \
178 builtin_define("_PA_RISC1_1"); \
179 else \
180 builtin_define("_PA_RISC1_0"); \
181 if (HPUX_LONG_DOUBLE_LIBRARY) \
182 builtin_define("__SIZEOF_FLOAT128__=16"); \
183 if (TARGET_SOFT_FLOAT) \
184 builtin_define("__SOFTFP__"); \
185 } while (0)
187 /* An old set of OS defines for various BSD-like systems. */
188 #define TARGET_OS_CPP_BUILTINS() \
189 do \
191 builtin_define_std ("REVARGV"); \
192 builtin_define_std ("hp800"); \
193 builtin_define_std ("hp9000"); \
194 builtin_define_std ("hp9k8"); \
195 if (!c_dialect_cxx () && !flag_iso) \
196 builtin_define ("hppa"); \
197 builtin_define_std ("spectrum"); \
198 builtin_define_std ("unix"); \
199 builtin_assert ("system=bsd"); \
200 builtin_assert ("system=unix"); \
202 while (0)
204 #define CC1_SPEC "%{pg:} %{p:}"
206 #define LINK_SPEC "%{mlinker-opt:-O} %{!shared:-u main} %{shared:-b}"
208 /* We don't want -lg. */
209 #ifndef LIB_SPEC
210 #define LIB_SPEC "%{!p:%{!pg:-lc}}%{p:-lc_p}%{pg:-lc_p}"
211 #endif
213 /* Make gcc agree with <machine/ansi.h> */
215 #define SIZE_TYPE "unsigned int"
216 #define PTRDIFF_TYPE "int"
217 #define WCHAR_TYPE "unsigned int"
218 #define WCHAR_TYPE_SIZE 32
220 /* target machine storage layout */
221 typedef struct GTY(()) machine_function
223 /* Flag indicating that a .NSUBSPA directive has been output for
224 this function. */
225 int in_nsubspa;
226 } machine_function;
228 /* Define this macro if it is advisable to hold scalars in registers
229 in a wider mode than that declared by the program. In such cases,
230 the value is constrained to be within the bounds of the declared
231 type, but kept valid in the wider mode. The signedness of the
232 extension may differ from that of the type. */
234 #define PROMOTE_MODE(MODE,UNSIGNEDP,TYPE) \
235 if (GET_MODE_CLASS (MODE) == MODE_INT \
236 && GET_MODE_SIZE (MODE) < UNITS_PER_WORD) \
237 (MODE) = word_mode;
239 /* Define this if most significant bit is lowest numbered
240 in instructions that operate on numbered bit-fields. */
241 #define BITS_BIG_ENDIAN 1
243 /* Define this if most significant byte of a word is the lowest numbered. */
244 /* That is true on the HP-PA. */
245 #define BYTES_BIG_ENDIAN 1
247 /* Define this if most significant word of a multiword number is lowest
248 numbered. */
249 #define WORDS_BIG_ENDIAN 1
251 #define MAX_BITS_PER_WORD 64
253 /* Width of a word, in units (bytes). */
254 #define UNITS_PER_WORD (TARGET_64BIT ? 8 : 4)
256 /* Minimum number of units in a word. If this is undefined, the default
257 is UNITS_PER_WORD. Otherwise, it is the constant value that is the
258 smallest value that UNITS_PER_WORD can have at run-time.
260 This needs to be 8 when TARGET_64BIT is true to allow building various
261 TImode routines in libgcc. However, we also need the DImode DIVMOD
262 routines because they are not currently implemented in pa.md.
264 The HP runtime specification doesn't provide the alignment requirements
265 and calling conventions for TImode variables. */
266 #ifdef IN_LIBGCC2
267 #define MIN_UNITS_PER_WORD UNITS_PER_WORD
268 #else
269 #define MIN_UNITS_PER_WORD 4
270 #endif
272 /* The widest floating point format supported by the hardware. Note that
273 setting this influences some Ada floating point type sizes, currently
274 required for GNAT to operate properly. */
275 #define WIDEST_HARDWARE_FP_SIZE 64
277 /* Allocation boundary (in *bits*) for storing arguments in argument list. */
278 #define PARM_BOUNDARY BITS_PER_WORD
280 /* Largest alignment required for any stack parameter, in bits.
281 Don't define this if it is equal to PARM_BOUNDARY */
282 #define MAX_PARM_BOUNDARY BIGGEST_ALIGNMENT
284 /* Boundary (in *bits*) on which stack pointer is always aligned;
285 certain optimizations in combine depend on this.
287 The HP-UX runtime documents mandate 64-byte and 16-byte alignment for
288 the stack on the 32 and 64-bit ports, respectively. However, we
289 are only guaranteed that the stack is aligned to BIGGEST_ALIGNMENT
290 in main. Thus, we treat the former as the preferred alignment. */
291 #define STACK_BOUNDARY BIGGEST_ALIGNMENT
292 #define PREFERRED_STACK_BOUNDARY (TARGET_64BIT ? 128 : 512)
294 /* Allocation boundary (in *bits*) for the code of a function. */
295 #define FUNCTION_BOUNDARY BITS_PER_WORD
297 /* Alignment of field after `int : 0' in a structure. */
298 #define EMPTY_FIELD_BOUNDARY 32
300 /* Every structure's size must be a multiple of this. */
301 #define STRUCTURE_SIZE_BOUNDARY 8
303 /* A bit-field declared as `int' forces `int' alignment for the struct. */
304 #define PCC_BITFIELD_TYPE_MATTERS 1
306 /* No data type wants to be aligned rounder than this. The long double
307 type has 16-byte alignment on the 64-bit target even though it was never
308 implemented in hardware. The software implementation only needs 8-byte
309 alignment. This matches the biggest alignment of the HP compilers. */
310 #define BIGGEST_ALIGNMENT (2 * BITS_PER_WORD)
312 /* Alignment, in bits, a C conformant malloc implementation has to provide.
313 The HP-UX malloc implementation provides a default alignment of 8 bytes.
314 It should be 16 bytes on the 64-bit target since long double has 16-byte
315 alignment. It can be increased with mallopt but it's non critical since
316 long double was never implemented in hardware. The glibc implementation
317 currently provides 8-byte alignment. It should be 16 bytes since various
318 POSIX types such as pthread_mutex_t require 16-byte alignment. Again,
319 this is non critical since 16-byte alignment is no longer needed for
320 atomic operations. */
321 #define MALLOC_ABI_ALIGNMENT (TARGET_64BIT ? 128 : 64)
323 /* Make arrays of chars word-aligned for the same reasons. */
324 #define DATA_ALIGNMENT(TYPE, ALIGN) \
325 (TREE_CODE (TYPE) == ARRAY_TYPE \
326 && TYPE_MODE (TREE_TYPE (TYPE)) == QImode \
327 && (ALIGN) < BITS_PER_WORD ? BITS_PER_WORD : (ALIGN))
329 /* Set this nonzero if move instructions will actually fail to work
330 when given unaligned data. */
331 #define STRICT_ALIGNMENT 1
333 /* Specify the registers used for certain standard purposes.
334 The values of these macros are register numbers. */
336 /* The HP-PA pc isn't overloaded on a register that the compiler knows about. */
337 /* #define PC_REGNUM */
339 /* Register to use for pushing function arguments. */
340 #define STACK_POINTER_REGNUM 30
342 /* Fixed register for local variable access. Always eliminated. */
343 #define FRAME_POINTER_REGNUM (TARGET_64BIT ? 61 : 89)
345 /* Base register for access to local variables of the function. */
346 #define HARD_FRAME_POINTER_REGNUM 3
348 /* Don't allow hard registers to be renamed into r2 unless r2
349 is already live or already being saved (due to eh). */
351 #define HARD_REGNO_RENAME_OK(OLD_REG, NEW_REG) \
352 ((NEW_REG) != 2 || df_regs_ever_live_p (2) || crtl->calls_eh_return)
354 /* Base register for access to arguments of the function. */
355 #define ARG_POINTER_REGNUM (TARGET_64BIT ? 29 : 3)
357 /* Register in which static-chain is passed to a function. */
358 #define STATIC_CHAIN_REGNUM (TARGET_64BIT ? 31 : 29)
360 /* Register used to address the offset table for position-independent
361 data references. */
362 #define PIC_OFFSET_TABLE_REGNUM \
363 (flag_pic ? (TARGET_64BIT ? 27 : 19) : INVALID_REGNUM)
365 #define PIC_OFFSET_TABLE_REG_CALL_CLOBBERED 1
367 /* Function to return the rtx used to save the pic offset table register
368 across function calls. */
369 extern rtx hppa_pic_save_rtx (void);
371 #define DEFAULT_PCC_STRUCT_RETURN 0
373 /* Register in which address to store a structure value
374 is passed to a function. */
375 #define PA_STRUCT_VALUE_REGNUM 28
377 /* Definitions for register eliminations.
379 We have two registers that can be eliminated. First, the frame pointer
380 register can often be eliminated in favor of the stack pointer register.
381 Secondly, the argument pointer register can always be eliminated in the
382 32-bit runtimes. */
384 /* This is an array of structures. Each structure initializes one pair
385 of eliminable registers. The "from" register number is given first,
386 followed by "to". Eliminations of the same "from" register are listed
387 in order of preference.
389 The argument pointer cannot be eliminated in the 64-bit runtime. It
390 is the same register as the hard frame pointer in the 32-bit runtime.
391 So, it does not need to be listed. */
392 #define ELIMINABLE_REGS \
393 {{ HARD_FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
394 { FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
395 { FRAME_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM} }
397 /* Define the offset between two registers, one to be eliminated,
398 and the other its replacement, at the start of a routine. */
399 #define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
400 ((OFFSET) = pa_initial_elimination_offset(FROM, TO))
402 /* Describe how we implement __builtin_eh_return. */
403 #define EH_RETURN_DATA_REGNO(N) \
404 ((N) < 3 ? (N) + 20 : (N) == 3 ? 31 : INVALID_REGNUM)
405 #define EH_RETURN_STACKADJ_RTX gen_rtx_REG (Pmode, 29)
406 #define EH_RETURN_HANDLER_RTX pa_eh_return_handler_rtx ()
408 /* Offset from the frame pointer register value to the top of stack. */
409 #define FRAME_POINTER_CFA_OFFSET(FNDECL) 0
411 /* The maximum number of hard registers that can be saved in the call
412 frame. The soft frame pointer is not included. */
413 #define DWARF_FRAME_REGISTERS (FIRST_PSEUDO_REGISTER - 1)
415 /* A C expression whose value is RTL representing the location of the
416 incoming return address at the beginning of any function, before the
417 prologue. You only need to define this macro if you want to support
418 call frame debugging information like that provided by DWARF 2. */
419 #define INCOMING_RETURN_ADDR_RTX (gen_rtx_REG (word_mode, 2))
420 #define DWARF_FRAME_RETURN_COLUMN (DWARF_FRAME_REGNUM (2))
422 /* A C expression whose value is an integer giving a DWARF 2 column
423 number that may be used as an alternate return column. This should
424 be defined only if DWARF_FRAME_RETURN_COLUMN is set to a general
425 register, but an alternate column needs to be used for signal frames.
427 Column 0 is not used but unfortunately its register size is set to
428 4 bytes (sizeof CCmode) so it can't be used on 64-bit targets. */
429 #define DWARF_ALT_FRAME_RETURN_COLUMN (FIRST_PSEUDO_REGISTER - 1)
431 /* This macro chooses the encoding of pointers embedded in the exception
432 handling sections. If at all possible, this should be defined such
433 that the exception handling section will not require dynamic relocations,
434 and so may be read-only.
436 Because the HP assembler auto aligns, it is necessary to use
437 DW_EH_PE_aligned. It's not possible to make the data read-only
438 on the HP-UX SOM port since the linker requires fixups for label
439 differences in different sections to be word aligned. However,
440 the SOM linker can do unaligned fixups for absolute pointers.
441 We also need aligned pointers for global and function pointers.
443 Although the HP-UX 64-bit ELF linker can handle unaligned pc-relative
444 fixups, the runtime doesn't have a consistent relationship between
445 text and data for dynamically loaded objects. Thus, it's not possible
446 to use pc-relative encoding for pointers on this target. It may be
447 possible to use segment relative encodings but GAS doesn't currently
448 have a mechanism to generate these encodings. For other targets, we
449 use pc-relative encoding for pointers. If the pointer might require
450 dynamic relocation, we make it indirect. */
451 #define ASM_PREFERRED_EH_DATA_FORMAT(CODE,GLOBAL) \
452 (TARGET_GAS && !TARGET_HPUX \
453 ? (DW_EH_PE_pcrel \
454 | ((GLOBAL) || (CODE) == 2 ? DW_EH_PE_indirect : 0) \
455 | (TARGET_64BIT ? DW_EH_PE_sdata8 : DW_EH_PE_sdata4)) \
456 : (!TARGET_GAS || (GLOBAL) || (CODE) == 2 \
457 ? DW_EH_PE_aligned : DW_EH_PE_absptr))
459 /* Handle special EH pointer encodings. Absolute, pc-relative, and
460 indirect are handled automatically. We output pc-relative, and
461 indirect pc-relative ourself since we need some special magic to
462 generate pc-relative relocations, and to handle indirect function
463 pointers. */
464 #define ASM_MAYBE_OUTPUT_ENCODED_ADDR_RTX(FILE, ENCODING, SIZE, ADDR, DONE) \
465 do { \
466 if (((ENCODING) & 0x70) == DW_EH_PE_pcrel) \
468 fputs (integer_asm_op (SIZE, FALSE), FILE); \
469 if ((ENCODING) & DW_EH_PE_indirect) \
470 output_addr_const (FILE, pa_get_deferred_plabel (ADDR)); \
471 else \
472 assemble_name (FILE, XSTR ((ADDR), 0)); \
473 fputs ("+8-$PIC_pcrel$0", FILE); \
474 goto DONE; \
476 } while (0)
479 /* The class value for index registers, and the one for base regs. */
480 #define INDEX_REG_CLASS GENERAL_REGS
481 #define BASE_REG_CLASS GENERAL_REGS
483 #define FP_REG_CLASS_P(CLASS) \
484 ((CLASS) == FP_REGS || (CLASS) == FPUPPER_REGS)
486 /* True if register is floating-point. */
487 #define FP_REGNO_P(N) ((N) >= FP_REG_FIRST && (N) <= FP_REG_LAST)
489 #define MAYBE_FP_REG_CLASS_P(CLASS) \
490 reg_classes_intersect_p ((CLASS), FP_REGS)
493 /* Stack layout; function entry, exit and calling. */
495 /* Define this if pushing a word on the stack
496 makes the stack pointer a smaller address. */
497 /* #define STACK_GROWS_DOWNWARD */
499 /* Believe it or not. */
500 #define ARGS_GROW_DOWNWARD 1
502 /* Define this to nonzero if the nominal address of the stack frame
503 is at the high-address end of the local variables;
504 that is, each additional local variable allocated
505 goes at a more negative offset in the frame. */
506 #define FRAME_GROWS_DOWNWARD 0
508 /* Define STACK_ALIGNMENT_NEEDED to zero to disable final alignment
509 of the stack. The default is to align it to STACK_BOUNDARY. */
510 #define STACK_ALIGNMENT_NEEDED 0
512 /* If we generate an insn to push BYTES bytes,
513 this says how many the stack pointer really advances by.
514 On the HP-PA, don't define this because there are no push insns. */
515 /* #define PUSH_ROUNDING(BYTES) */
517 /* Offset of first parameter from the argument pointer register value.
518 This value will be negated because the arguments grow down.
519 Also note that on STACK_GROWS_UPWARD machines (such as this one)
520 this is the distance from the frame pointer to the end of the first
521 argument, not it's beginning. To get the real offset of the first
522 argument, the size of the argument must be added. */
524 #define FIRST_PARM_OFFSET(FNDECL) (TARGET_64BIT ? -64 : -32)
526 /* When a parameter is passed in a register, stack space is still
527 allocated for it. */
528 #define REG_PARM_STACK_SPACE(DECL) (TARGET_64BIT ? 64 : 16)
530 /* Define this if the above stack space is to be considered part of the
531 space allocated by the caller. */
532 #define OUTGOING_REG_PARM_STACK_SPACE(FNTYPE) 1
534 /* Keep the stack pointer constant throughout the function.
535 This is both an optimization and a necessity: longjmp
536 doesn't behave itself when the stack pointer moves within
537 the function! */
538 #define ACCUMULATE_OUTGOING_ARGS 1
540 /* The weird HPPA calling conventions require a minimum of 48 bytes on
541 the stack: 16 bytes for register saves, and 32 bytes for magic.
542 This is the difference between the logical top of stack and the
543 actual sp.
545 On the 64-bit port, the HP C compiler allocates a 48-byte frame
546 marker, although the runtime documentation only describes a 16
547 byte marker. For compatibility, we allocate 48 bytes. */
548 #define STACK_POINTER_OFFSET \
549 (TARGET_64BIT ? -(crtl->outgoing_args_size + 48) : poly_int64 (-32))
551 #define STACK_DYNAMIC_OFFSET(FNDECL) \
552 (TARGET_64BIT \
553 ? (STACK_POINTER_OFFSET) \
554 : ((STACK_POINTER_OFFSET) - crtl->outgoing_args_size))
557 /* Define a data type for recording info about an argument list
558 during the scan of that argument list. This data type should
559 hold all necessary information about the function itself
560 and about the args processed so far, enough to enable macros
561 such as FUNCTION_ARG to determine where the next arg should go.
563 On the HP-PA, the WORDS field holds the number of words
564 of arguments scanned so far (including the invisible argument,
565 if any, which holds the structure-value-address). Thus, 4 or
566 more means all following args should go on the stack.
568 The INCOMING field tracks whether this is an "incoming" or
569 "outgoing" argument.
571 The INDIRECT field indicates whether this is an indirect
572 call or not.
574 The NARGS_PROTOTYPE field indicates that an argument does not
575 have a prototype when it less than or equal to 0. */
577 struct hppa_args {int words, nargs_prototype, incoming, indirect; };
579 #define CUMULATIVE_ARGS struct hppa_args
581 /* Initialize a variable CUM of type CUMULATIVE_ARGS
582 for a call to a function whose data type is FNTYPE.
583 For a library call, FNTYPE is 0. */
585 #define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, FNDECL, N_NAMED_ARGS) \
586 (CUM).words = 0, \
587 (CUM).incoming = 0, \
588 (CUM).indirect = (FNTYPE) && !(FNDECL), \
589 (CUM).nargs_prototype = (FNTYPE && prototype_p (FNTYPE) \
590 ? (list_length (TYPE_ARG_TYPES (FNTYPE)) - 1 \
591 + (TYPE_MODE (TREE_TYPE (FNTYPE)) == BLKmode \
592 || pa_return_in_memory (TREE_TYPE (FNTYPE), 0))) \
593 : 0)
597 /* Similar, but when scanning the definition of a procedure. We always
598 set NARGS_PROTOTYPE large so we never return a PARALLEL. */
600 #define INIT_CUMULATIVE_INCOMING_ARGS(CUM,FNTYPE,IGNORE) \
601 (CUM).words = 0, \
602 (CUM).incoming = 1, \
603 (CUM).indirect = 0, \
604 (CUM).nargs_prototype = 1000
606 /* Determine where to put an argument to a function.
607 Value is zero to push the argument on the stack,
608 or a hard register in which to store the argument.
610 MODE is the argument's machine mode.
611 TYPE is the data type of the argument (as a tree).
612 This is null for libcalls where that information may
613 not be available.
614 CUM is a variable of type CUMULATIVE_ARGS which gives info about
615 the preceding args and about the function being called.
616 NAMED is nonzero if this argument is a named parameter
617 (otherwise it is an extra parameter matching an ellipsis).
619 On the HP-PA the first four words of args are normally in registers
620 and the rest are pushed. But any arg that won't entirely fit in regs
621 is pushed.
623 Arguments passed in registers are either 1 or 2 words long.
625 The caller must make a distinction between calls to explicitly named
626 functions and calls through pointers to functions -- the conventions
627 are different! Calls through pointers to functions only use general
628 registers for the first four argument words.
630 Of course all this is different for the portable runtime model
631 HP wants everyone to use for ELF. Ugh. Here's a quick description
632 of how it's supposed to work.
634 1) callee side remains unchanged. It expects integer args to be
635 in the integer registers, float args in the float registers and
636 unnamed args in integer registers.
638 2) caller side now depends on if the function being called has
639 a prototype in scope (rather than if it's being called indirectly).
641 2a) If there is a prototype in scope, then arguments are passed
642 according to their type (ints in integer registers, floats in float
643 registers, unnamed args in integer registers.
645 2b) If there is no prototype in scope, then floating point arguments
646 are passed in both integer and float registers. egad.
648 FYI: The portable parameter passing conventions are almost exactly like
649 the standard parameter passing conventions on the RS6000. That's why
650 you'll see lots of similar code in rs6000.h. */
652 /* Specify padding for the last element of a block move between registers
653 and memory.
655 The 64-bit runtime specifies that objects need to be left justified
656 (i.e., the normal justification for a big endian target). The 32-bit
657 runtime specifies right justification for objects smaller than 64 bits.
658 We use a DImode register in the parallel for 5 to 7 byte structures
659 so that there is only one element. This allows the object to be
660 correctly padded. */
661 #define BLOCK_REG_PADDING(MODE, TYPE, FIRST) \
662 targetm.calls.function_arg_padding ((MODE), (TYPE))
665 /* On HPPA, we emit profiling code as rtl via PROFILE_HOOK rather than
666 as assembly via FUNCTION_PROFILER. Just output a local label.
667 We can't use the function label because the GAS SOM target can't
668 handle the difference of a global symbol and a local symbol. */
670 #ifndef FUNC_BEGIN_PROLOG_LABEL
671 #define FUNC_BEGIN_PROLOG_LABEL "LFBP"
672 #endif
674 #define FUNCTION_PROFILER(FILE, LABEL) \
675 (*targetm.asm_out.internal_label) (FILE, FUNC_BEGIN_PROLOG_LABEL, LABEL)
677 #define PROFILE_HOOK(label_no) hppa_profile_hook (label_no)
679 /* The profile counter if emitted must come before the prologue. */
680 #define PROFILE_BEFORE_PROLOGUE 1
682 /* We never want final.cc to emit profile counters. When profile
683 counters are required, we have to defer emitting them to the end
684 of the current file. */
685 #define NO_PROFILE_COUNTERS 1
687 /* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
688 the stack pointer does not matter. The value is tested only in
689 functions that have frame pointers.
690 No definition is equivalent to always zero. */
692 extern int may_call_alloca;
694 #define EXIT_IGNORE_STACK \
695 (maybe_ne (get_frame_size (), 0) \
696 || cfun->calls_alloca || maybe_ne (crtl->outgoing_args_size, 0))
698 /* Length in units of the trampoline for entering a nested function. */
700 #define TRAMPOLINE_SIZE (TARGET_64BIT ? 72 : 64)
702 /* Alignment required by the trampoline. */
704 #define TRAMPOLINE_ALIGNMENT BITS_PER_WORD
706 /* Minimum length of a cache line. A length of 16 will work on all
707 PA-RISC processors. All PA 1.1 processors have a cache line of
708 32 bytes. Most but not all PA 2.0 processors have a cache line
709 of 64 bytes. As cache flushes are expensive and we don't support
710 PA 1.0, we use a minimum length of 32. */
712 #define MIN_CACHELINE_SIZE 32
715 /* Addressing modes, and classification of registers for them.
717 Using autoincrement addressing modes on PA8000 class machines is
718 not profitable. */
720 #define HAVE_POST_INCREMENT (pa_cpu < PROCESSOR_8000)
721 #define HAVE_POST_DECREMENT (pa_cpu < PROCESSOR_8000)
723 #define HAVE_PRE_DECREMENT (pa_cpu < PROCESSOR_8000)
724 #define HAVE_PRE_INCREMENT (pa_cpu < PROCESSOR_8000)
726 /* Macros to check register numbers against specific register classes. */
728 /* The following macros assume that X is a hard or pseudo reg number.
729 They give nonzero only if X is a hard reg of the suitable class
730 or a pseudo reg currently allocated to a suitable hard reg.
731 Since they use reg_renumber, they are safe only once reg_renumber
732 has been allocated, which happens in reginfo.cc during register
733 allocation. */
735 #define REGNO_OK_FOR_INDEX_P(X) \
736 ((X) && ((X) < 32 \
737 || ((X) == FRAME_POINTER_REGNUM) \
738 || ((X) >= FIRST_PSEUDO_REGISTER \
739 && reg_renumber \
740 && (unsigned) reg_renumber[X] < 32)))
741 #define REGNO_OK_FOR_BASE_P(X) \
742 ((X) && ((X) < 32 \
743 || ((X) == FRAME_POINTER_REGNUM) \
744 || ((X) >= FIRST_PSEUDO_REGISTER \
745 && reg_renumber \
746 && (unsigned) reg_renumber[X] < 32)))
747 #define REGNO_OK_FOR_FP_P(X) \
748 (FP_REGNO_P (X) \
749 || (X >= FIRST_PSEUDO_REGISTER \
750 && reg_renumber \
751 && FP_REGNO_P (reg_renumber[X])))
753 /* Now macros that check whether X is a register and also,
754 strictly, whether it is in a specified class.
756 These macros are specific to the HP-PA, and may be used only
757 in code for printing assembler insns and in conditions for
758 define_optimization. */
760 /* 1 if X is an fp register. */
762 #define FP_REG_P(X) (REG_P (X) && REGNO_OK_FOR_FP_P (REGNO (X)))
764 /* Maximum number of registers that can appear in a valid memory address. */
766 #define MAX_REGS_PER_ADDRESS 2
768 /* TLS symbolic reference. */
769 #define PA_SYMBOL_REF_TLS_P(X) \
770 (GET_CODE (X) == SYMBOL_REF && SYMBOL_REF_TLS_MODEL (X) != 0)
772 /* Recognize any constant value that is a valid address except
773 for symbolic addresses. We get better CSE by rejecting them
774 here and allowing hppa_legitimize_address to break them up. We
775 use most of the constants accepted by CONSTANT_P, except CONST_DOUBLE. */
777 #define CONSTANT_ADDRESS_P(X) \
778 ((GET_CODE (X) == LABEL_REF \
779 || (GET_CODE (X) == SYMBOL_REF && !SYMBOL_REF_TLS_MODEL (X)) \
780 || GET_CODE (X) == CONST_INT \
781 || (GET_CODE (X) == CONST && !tls_referenced_p (X)) \
782 || GET_CODE (X) == HIGH) \
783 && (reload_in_progress || reload_completed \
784 || ! pa_symbolic_expression_p (X)))
786 /* A C expression that is nonzero if we are using the new HP assembler. */
788 #ifndef NEW_HP_ASSEMBLER
789 #define NEW_HP_ASSEMBLER 0
790 #endif
792 /* The macros below define the immediate range for CONST_INTS on
793 the 64-bit port. Constants in this range can be loaded in three
794 instructions using a ldil/ldo/depdi sequence. Constants outside
795 this range are forced to the constant pool prior to reload. */
797 #define MAX_LEGIT_64BIT_CONST_INT ((HOST_WIDE_INT) 32 << 31)
798 #define MIN_LEGIT_64BIT_CONST_INT \
799 ((HOST_WIDE_INT)((unsigned HOST_WIDE_INT) -32 << 31))
800 #define LEGITIMATE_64BIT_CONST_INT_P(X) \
801 ((X) >= MIN_LEGIT_64BIT_CONST_INT && (X) < MAX_LEGIT_64BIT_CONST_INT)
803 /* Target flags set on a symbol_ref. */
805 /* Set by ASM_OUTPUT_SYMBOL_REF when a symbol_ref is output. */
806 #define SYMBOL_FLAG_REFERENCED (1 << SYMBOL_FLAG_MACH_DEP_SHIFT)
807 #define SYMBOL_REF_REFERENCED_P(RTX) \
808 ((SYMBOL_REF_FLAGS (RTX) & SYMBOL_FLAG_REFERENCED) != 0)
810 /* Defines for constraints.md. */
812 /* Return 1 iff OP is a scaled or unscaled index address. */
813 #define IS_INDEX_ADDR_P(OP) \
814 (GET_CODE (OP) == PLUS \
815 && GET_MODE (OP) == Pmode \
816 && (GET_CODE (XEXP (OP, 0)) == MULT \
817 || GET_CODE (XEXP (OP, 1)) == MULT \
818 || (REG_P (XEXP (OP, 0)) \
819 && REG_P (XEXP (OP, 1)))))
821 /* Return 1 iff OP is a LO_SUM DLT address. */
822 #define IS_LO_SUM_DLT_ADDR_P(OP) \
823 (GET_CODE (OP) == LO_SUM \
824 && GET_MODE (OP) == Pmode \
825 && REG_P (XEXP (OP, 0)) \
826 && REG_OK_FOR_BASE_P (XEXP (OP, 0)) \
827 && GET_CODE (XEXP (OP, 1)) == UNSPEC)
829 /* Nonzero if 14-bit offsets can be used for all loads and stores.
830 This is not possible when generating PA 1.x code as floating point
831 accesses only support 5-bit offsets. Note that we do not forbid
832 the use of 14-bit offsets prior to reload. Instead, we use secondary
833 reloads to fix REG+D memory addresses for floating-point accesses.
835 FIXME: the GNU ELF linker clobbers the LSB of the FP register number
836 in PA 2.0 floating-point insns with long displacements. This is
837 because R_PARISC_DPREL14WR and other relocations like it are not
838 yet supported by GNU ld. For now, we reject long displacements
839 on this target. */
841 #define INT14_OK_STRICT \
842 (TARGET_SOFT_FLOAT \
843 || (TARGET_PA_20 && !TARGET_ELF32 && !TARGET_ELF64))
845 /* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
846 and check its validity for a certain class.
847 We have two alternate definitions for each of them.
848 The usual definition accepts all pseudo regs; the other rejects
849 them unless they have been allocated suitable hard regs.
851 Most source files want to accept pseudo regs in the hope that
852 they will get allocated to the class that the insn wants them to be in.
853 Source files for reload pass need to be strict.
854 After reload, it makes no difference, since pseudo regs have
855 been eliminated by then. */
857 /* Nonzero if X is a hard reg that can be used as an index
858 or if it is a pseudo reg. */
859 #define REG_OK_FOR_INDEX_P(X) \
860 (REGNO (X) && (REGNO (X) < 32 \
861 || REGNO (X) == FRAME_POINTER_REGNUM \
862 || REGNO (X) >= FIRST_PSEUDO_REGISTER))
864 /* Nonzero if X is a hard reg that can be used as a base reg
865 or if it is a pseudo reg. */
866 #define REG_OK_FOR_BASE_P(X) \
867 (REGNO (X) && (REGNO (X) < 32 \
868 || REGNO (X) == FRAME_POINTER_REGNUM \
869 || REGNO (X) >= FIRST_PSEUDO_REGISTER))
871 /* Nonzero if X is a hard reg that can be used as an index. */
872 #define STRICT_REG_OK_FOR_INDEX_P(X) REGNO_OK_FOR_INDEX_P (REGNO (X))
874 /* Nonzero if X is a hard reg that can be used as a base reg. */
875 #define STRICT_REG_OK_FOR_BASE_P(X) REGNO_OK_FOR_BASE_P (REGNO (X))
877 #define VAL_5_BITS_P(X) ((unsigned HOST_WIDE_INT)(X) + 0x10 < 0x20)
878 #define INT_5_BITS(X) VAL_5_BITS_P (INTVAL (X))
880 #define VAL_U5_BITS_P(X) ((unsigned HOST_WIDE_INT)(X) < 0x20)
881 #define INT_U5_BITS(X) VAL_U5_BITS_P (INTVAL (X))
883 #define VAL_U6_BITS_P(X) ((unsigned HOST_WIDE_INT)(X) < 0x40)
884 #define INT_U6_BITS(X) VAL_U6_BITS_P (INTVAL (X))
886 #define VAL_11_BITS_P(X) ((unsigned HOST_WIDE_INT)(X) + 0x400 < 0x800)
887 #define INT_11_BITS(X) VAL_11_BITS_P (INTVAL (X))
889 #define VAL_14_BITS_P(X) ((unsigned HOST_WIDE_INT)(X) + 0x2000 < 0x4000)
890 #define INT_14_BITS(X) VAL_14_BITS_P (INTVAL (X))
892 #if HOST_BITS_PER_WIDE_INT > 32
893 #define VAL_32_BITS_P(X) \
894 ((unsigned HOST_WIDE_INT)(X) + ((unsigned HOST_WIDE_INT) 1 << 31) \
895 < (unsigned HOST_WIDE_INT) 2 << 31)
896 #else
897 #define VAL_32_BITS_P(X) 1
898 #endif
899 #define INT_32_BITS(X) VAL_32_BITS_P (INTVAL (X))
901 /* These are the modes that we allow for scaled indexing. */
902 #define MODE_OK_FOR_SCALED_INDEXING_P(MODE) \
903 ((TARGET_64BIT && (MODE) == DImode) \
904 || (MODE) == SImode \
905 || (MODE) == HImode \
906 || (MODE) == SFmode \
907 || (MODE) == DFmode)
909 /* These are the modes that we allow for unscaled indexing. */
910 #define MODE_OK_FOR_UNSCALED_INDEXING_P(MODE) \
911 ((TARGET_64BIT && (MODE) == DImode) \
912 || (MODE) == SImode \
913 || (MODE) == HImode \
914 || (MODE) == QImode \
915 || (MODE) == SFmode \
916 || (MODE) == DFmode)
918 /* Try a machine-dependent way of reloading an illegitimate address
919 operand. If we find one, push the reload and jump to WIN. This
920 macro is used in only one place: `find_reloads_address' in reload.cc. */
922 #define LEGITIMIZE_RELOAD_ADDRESS(AD, MODE, OPNUM, TYPE, IND_L, WIN) \
923 do { \
924 rtx new_ad = pa_legitimize_reload_address (AD, MODE, OPNUM, TYPE, IND_L); \
925 if (new_ad) \
927 AD = new_ad; \
928 goto WIN; \
930 } while (0)
933 #define TARGET_ASM_SELECT_SECTION pa_select_section
935 /* Return a nonzero value if DECL has a section attribute. */
936 #define IN_NAMED_SECTION_P(DECL) \
937 ((TREE_CODE (DECL) == FUNCTION_DECL || VAR_P (DECL)) \
938 && DECL_SECTION_NAME (DECL) != NULL)
940 /* Define this macro if references to a symbol must be treated
941 differently depending on something about the variable or
942 function named by the symbol (such as what section it is in).
944 The macro definition, if any, is executed immediately after the
945 rtl for DECL or other node is created.
946 The value of the rtl will be a `mem' whose address is a
947 `symbol_ref'.
949 The usual thing for this macro to do is to a flag in the
950 `symbol_ref' (such as `SYMBOL_REF_FLAG') or to store a modified
951 name string in the `symbol_ref' (if one bit is not enough
952 information).
954 On the HP-PA we use this to indicate if a symbol is in text or
955 data space. Also, function labels need special treatment. */
957 #define TEXT_SPACE_P(DECL)\
958 (TREE_CODE (DECL) == FUNCTION_DECL \
959 || (VAR_P (DECL) \
960 && TREE_READONLY (DECL) && ! TREE_SIDE_EFFECTS (DECL) \
961 && (! DECL_INITIAL (DECL) || ! pa_reloc_needed (DECL_INITIAL (DECL))) \
962 && !flag_pic) \
963 || CONSTANT_CLASS_P (DECL))
965 #define FUNCTION_NAME_P(NAME) (*(NAME) == '@')
967 /* Specify the machine mode that this machine uses for the index in the
968 tablejump instruction. We use a 32-bit absolute address for non-pic code,
969 and a 32-bit offset for 32 and 64-bit pic code. */
970 #define CASE_VECTOR_MODE SImode
972 /* Jump tables must be 32-bit aligned, no matter the size of the element. */
973 #define ADDR_VEC_ALIGN(ADDR_VEC) 2
975 /* Define this as 1 if `char' should by default be signed; else as 0. */
976 #define DEFAULT_SIGNED_CHAR 1
978 /* Max number of bytes we can move from memory to memory
979 in one reasonably fast instruction. */
980 #define MOVE_MAX 8
982 /* Higher than the default as we prefer to use simple move insns
983 (better scheduling and delay slot filling) and because our
984 built-in block move is really a 2X unrolled loop.
986 Believe it or not, this has to be big enough to allow for copying all
987 arguments passed in registers to avoid infinite recursion during argument
988 setup for a function call. Why? Consider how we copy the stack slots
989 reserved for parameters when they may be trashed by a call. */
990 #define MOVE_RATIO(speed) (TARGET_64BIT ? 8 : 4)
992 /* Define if operations between registers always perform the operation
993 on the full register even if a narrower mode is specified. */
994 #define WORD_REGISTER_OPERATIONS 1
996 /* Define if loading in MODE, an integral mode narrower than BITS_PER_WORD
997 will either zero-extend or sign-extend. The value of this macro should
998 be the code that says which one of the two operations is implicitly
999 done, UNKNOWN if none. */
1000 #define LOAD_EXTEND_OP(MODE) ZERO_EXTEND
1002 /* Nonzero if access to memory by bytes is slow and undesirable. */
1003 #define SLOW_BYTE_ACCESS 1
1005 /* Specify the machine mode that pointers have.
1006 After generation of rtl, the compiler makes no further distinction
1007 between pointers and any other objects of this machine mode. */
1008 #define Pmode word_mode
1010 /* Given a comparison code (EQ, NE, etc.) and the first operand of a COMPARE,
1011 return the mode to be used for the comparison. For floating-point, CCFPmode
1012 should be used. CC_NOOVmode should be used when the first operand is a
1013 PLUS, MINUS, or NEG. CCmode should be used when no special processing is
1014 needed. */
1015 #define SELECT_CC_MODE(OP,X,Y) \
1016 (GET_MODE_CLASS (GET_MODE (X)) == MODE_FLOAT ? CCFPmode : CCmode) \
1018 /* A function address in a call instruction
1019 is a byte address (for indexing purposes)
1020 so give the MEM rtx a byte's mode. */
1021 #define FUNCTION_MODE SImode
1023 /* Define this if addresses of constant functions
1024 shouldn't be put through pseudo regs where they can be cse'd.
1025 Desirable on machines where ordinary constants are expensive
1026 but a CALL with constant address is cheap. */
1027 #define NO_FUNCTION_CSE 1
1029 /* Define this to be nonzero if shift instructions ignore all but the low-order
1030 few bits. */
1031 #define SHIFT_COUNT_TRUNCATED 1
1033 /* Adjust the cost of branches. */
1034 #define BRANCH_COST(speed_p, predictable_p) (pa_cpu == PROCESSOR_8000 ? 2 : 1)
1036 /* Handling the special cases is going to get too complicated for a macro,
1037 just call `pa_adjust_insn_length' to do the real work. */
1038 #define ADJUST_INSN_LENGTH(INSN, LENGTH) \
1039 ((LENGTH) = pa_adjust_insn_length ((INSN), (LENGTH)))
1041 /* Millicode insns are actually function calls with some special
1042 constraints on arguments and register usage.
1044 Millicode calls always expect their arguments in the integer argument
1045 registers, and always return their result in %r29 (ret1). They
1046 are expected to clobber their arguments, %r1, %r29, and the return
1047 pointer which is %r31 on 32-bit and %r2 on 64-bit, and nothing else.
1049 This macro tells reorg that the references to arguments and
1050 millicode calls do not appear to happen until after the millicode call.
1051 This allows reorg to put insns which set the argument registers into the
1052 delay slot of the millicode call -- thus they act more like traditional
1053 CALL_INSNs.
1055 Note we cannot consider side effects of the insn to be delayed because
1056 the branch and link insn will clobber the return pointer. If we happened
1057 to use the return pointer in the delay slot of the call, then we lose.
1059 get_attr_type will try to recognize the given insn, so make sure to
1060 filter out things it will not accept -- SEQUENCE, USE and CLOBBER insns
1061 in particular. */
1062 #define INSN_REFERENCES_ARE_DELAYED(X) (pa_insn_refs_are_delayed (X))
1065 /* Control the assembler format that we output. */
1067 /* A C string constant describing how to begin a comment in the target
1068 assembler language. The compiler assumes that the comment will end at
1069 the end of the line. */
1071 #define ASM_COMMENT_START ";"
1073 /* Output to assembler file text saying following lines
1074 may contain character constants, extra white space, comments, etc. */
1076 #define ASM_APP_ON ""
1078 /* Output to assembler file text saying following lines
1079 no longer contain unusual constructs. */
1081 #define ASM_APP_OFF ""
1083 /* This is how to output the definition of a user-level label named NAME,
1084 such as the label on a static function or variable NAME. */
1086 #define ASM_OUTPUT_LABEL(FILE,NAME) \
1087 do { \
1088 assemble_name ((FILE), (NAME)); \
1089 if (TARGET_GAS) \
1090 fputs (":\n", (FILE)); \
1091 else \
1092 fputc ('\n', (FILE)); \
1093 } while (0)
1095 /* This is how to output a reference to a user-level label named NAME.
1096 `assemble_name' uses this. */
1098 #define ASM_OUTPUT_LABELREF(FILE,NAME) \
1099 do { \
1100 const char *xname = (NAME); \
1101 if (FUNCTION_NAME_P (NAME)) \
1102 xname += 1; \
1103 if (xname[0] == '*') \
1104 xname += 1; \
1105 else \
1106 fputs (user_label_prefix, FILE); \
1107 fputs (xname, FILE); \
1108 } while (0)
1110 /* This how we output the symbol_ref X. */
1112 #define ASM_OUTPUT_SYMBOL_REF(FILE,X) \
1113 do { \
1114 SYMBOL_REF_FLAGS (X) |= SYMBOL_FLAG_REFERENCED; \
1115 assemble_name (FILE, XSTR (X, 0)); \
1116 } while (0)
1118 /* This is how to store into the string LABEL
1119 the symbol_ref name of an internal numbered label where
1120 PREFIX is the class of label and NUM is the number within the class.
1121 This is suitable for output with `assemble_name'. */
1123 #define ASM_GENERATE_INTERNAL_LABEL(LABEL, PREFIX, NUM) \
1124 do \
1126 char *__p; \
1127 (LABEL)[0] = '*'; \
1128 (LABEL)[1] = (PREFIX)[0]; \
1129 (LABEL)[2] = '$'; \
1130 __p = stpcpy (&(LABEL)[3], &(PREFIX)[1]); \
1131 sprint_ul (__p, (unsigned long) (NUM)); \
1133 while (0)
1136 /* Output the definition of a compiler-generated label named NAME. */
1138 #define ASM_OUTPUT_INTERNAL_LABEL(FILE,NAME) \
1139 do { \
1140 assemble_name_raw ((FILE), (NAME)); \
1141 if (TARGET_GAS) \
1142 fputs (":\n", (FILE)); \
1143 else \
1144 fputc ('\n', (FILE)); \
1145 } while (0)
1147 #define TARGET_ASM_GLOBALIZE_LABEL pa_globalize_label
1149 #define ASM_OUTPUT_ASCII(FILE, P, SIZE) \
1150 pa_output_ascii ((FILE), (P), (SIZE))
1152 /* Jump tables are always placed in the text section. We have to do
1153 this for the HP-UX SOM target as we can't switch sections in the
1154 middle of a function.
1156 On ELF targets, it is possible to put them in the readonly-data section.
1157 This would get the table out of .text and reduce branch lengths.
1159 A downside is that an additional insn (addil) is needed to access
1160 the table when generating PIC code. The address difference table
1161 also has to use 32-bit pc-relative relocations.
1163 The table entries need to look like "$L1+(.+8-$L0)-$PIC_pcrel$0"
1164 when using ELF GAS. A simple difference can be used when using
1165 the HP assembler.
1167 The final downside is GDB complains about the nesting of the label
1168 for the table. */
1170 #define JUMP_TABLES_IN_TEXT_SECTION 1
1172 /* This is how to output an element of a case-vector that is absolute. */
1174 #define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE) \
1175 fprintf (FILE, "\t.word L$%d\n", VALUE)
1177 /* This is how to output an element of a case-vector that is relative.
1178 Since we always place jump tables in the text section, the difference
1179 is absolute and requires no relocation. */
1181 #define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, BODY, VALUE, REL) \
1182 fprintf (FILE, "\t.word L$%d-L$%d\n", VALUE, REL)
1184 /* This is how to output an absolute case-vector. */
1186 #define ASM_OUTPUT_ADDR_VEC(LAB,BODY) \
1187 pa_output_addr_vec ((LAB),(BODY))
1189 /* This is how to output a relative case-vector. */
1191 #define ASM_OUTPUT_ADDR_DIFF_VEC(LAB,BODY) \
1192 pa_output_addr_diff_vec ((LAB),(BODY))
1194 /* This is how to output an assembler line that says to advance the
1195 location counter to a multiple of 2**LOG bytes. */
1197 #define ASM_OUTPUT_ALIGN(FILE,LOG) \
1198 fprintf (FILE, "\t.align %d\n", (1 << (LOG)))
1200 #define ASM_OUTPUT_SKIP(FILE,SIZE) \
1201 fprintf (FILE, "\t.blockz " HOST_WIDE_INT_PRINT_UNSIGNED"\n", \
1202 (unsigned HOST_WIDE_INT)(SIZE))
1204 /* This says how to output an assembler line to define an uninitialized
1205 global variable with size SIZE (in bytes) and alignment ALIGN (in bits).
1206 This macro exists to properly support languages like C++ which do not
1207 have common data. */
1209 #define ASM_OUTPUT_ALIGNED_BSS(FILE, DECL, NAME, SIZE, ALIGN) \
1210 pa_asm_output_aligned_bss (FILE, NAME, SIZE, ALIGN)
1212 /* This says how to output an assembler line to define a global common symbol
1213 with size SIZE (in bytes) and alignment ALIGN (in bits). */
1215 #define ASM_OUTPUT_ALIGNED_COMMON(FILE, NAME, SIZE, ALIGN) \
1216 pa_asm_output_aligned_common (FILE, NAME, SIZE, ALIGN)
1218 /* This says how to output an assembler line to define a local common symbol
1219 with size SIZE (in bytes) and alignment ALIGN (in bits). This macro
1220 controls how the assembler definitions of uninitialized static variables
1221 are output. */
1223 #define ASM_OUTPUT_ALIGNED_LOCAL(FILE, NAME, SIZE, ALIGN) \
1224 pa_asm_output_aligned_local (FILE, NAME, SIZE, ALIGN)
1226 /* All HP assemblers use "!" to separate logical lines. */
1227 #define IS_ASM_LOGICAL_LINE_SEPARATOR(C, STR) ((C) == '!')
1229 /* Print operand X (an rtx) in assembler syntax to file FILE.
1230 CODE is a letter or dot (`z' in `%z0') or 0 if no letter was specified.
1231 For `%' followed by punctuation, CODE is the punctuation and X is null.
1233 On the HP-PA, the CODE can be `r', meaning this is a register-only operand
1234 and an immediate zero should be represented as `r0'.
1236 Several % codes are defined:
1237 O an operation
1238 C compare conditions
1239 N extract conditions
1240 M modifier to handle preincrement addressing for memory refs.
1241 F modifier to handle preincrement addressing for fp memory refs */
1243 #define PRINT_OPERAND(FILE, X, CODE) pa_print_operand (FILE, X, CODE)
1246 /* Print a memory address as an operand to reference that memory location. */
1248 #define PRINT_OPERAND_ADDRESS(FILE, ADDR) \
1249 { rtx addr = ADDR; \
1250 switch (GET_CODE (addr)) \
1252 case REG: \
1253 fprintf (FILE, "0(%s)", reg_names [REGNO (addr)]); \
1254 break; \
1255 case PLUS: \
1256 gcc_assert (GET_CODE (XEXP (addr, 1)) == CONST_INT); \
1257 fprintf (FILE, "%d(%s)", (int)INTVAL (XEXP (addr, 1)), \
1258 reg_names [REGNO (XEXP (addr, 0))]); \
1259 break; \
1260 case LO_SUM: \
1261 if (!symbolic_operand (XEXP (addr, 1), VOIDmode)) \
1262 fputs ("R'", FILE); \
1263 else if (flag_pic == 0) \
1264 fputs ("RR'", FILE); \
1265 else \
1266 fputs ("RT'", FILE); \
1267 pa_output_global_address (FILE, XEXP (addr, 1), 0); \
1268 fputs ("(", FILE); \
1269 output_operand (XEXP (addr, 0), 0); \
1270 fputs (")", FILE); \
1271 break; \
1272 case CONST_INT: \
1273 fprintf (FILE, HOST_WIDE_INT_PRINT_DEC "(%%r0)", INTVAL (addr)); \
1274 break; \
1275 default: \
1276 output_addr_const (FILE, addr); \
1280 /* Find the return address associated with the frame given by
1281 FRAMEADDR. */
1282 #define RETURN_ADDR_RTX(COUNT, FRAMEADDR) \
1283 (pa_return_addr_rtx (COUNT, FRAMEADDR))
1285 /* Used to mask out junk bits from the return address, such as
1286 processor state, interrupt status, condition codes and the like. */
1287 #define MASK_RETURN_ADDR \
1288 /* The privilege level is in the two low order bits, mask em out \
1289 of the return address. */ \
1290 (GEN_INT (-4))
1292 /* We need a libcall to canonicalize function pointers on TARGET_ELF32. */
1293 #define CANONICALIZE_FUNCPTR_FOR_COMPARE_LIBCALL \
1294 "__canonicalize_funcptr_for_compare"
1296 #ifdef HAVE_AS_TLS
1297 #undef TARGET_HAVE_TLS
1298 #define TARGET_HAVE_TLS true
1299 #endif
1301 /* The maximum offset in bytes for a PA 1.X pc-relative call to the
1302 head of the preceding stub table. A long branch stub is two or three
1303 instructions for non-PIC and PIC, respectively. Import stubs are
1304 seven and five instructions for HP-UX and ELF targets, respectively.
1305 The default stub group size for ELF targets is 217856 bytes.
1306 FIXME: We need an option to set the maximum offset. */
1307 #define MAX_PCREL17F_OFFSET (TARGET_HPUX ? 198164 : 217856)
1309 #define NEED_INDICATE_EXEC_STACK 0
1311 /* Output default function prologue for hpux. */
1312 #define TARGET_ASM_FUNCTION_PROLOGUE pa_output_function_prologue