Add IFN_COND_{MUL,DIV,MOD,RDIV}
[official-gcc.git] / gcc / testsuite / lib / target-supports.exp
blob3c2c62a58004677411ca380259043d5a9d484469
1 # Copyright (C) 1999-2018 Free Software Foundation, Inc.
3 # This program is free software; you can redistribute it and/or modify
4 # it under the terms of the GNU General Public License as published by
5 # the Free Software Foundation; either version 3 of the License, or
6 # (at your option) any later version.
8 # This program is distributed in the hope that it will be useful,
9 # but WITHOUT ANY WARRANTY; without even the implied warranty of
10 # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
11 # GNU General Public License for more details.
13 # You should have received a copy of the GNU General Public License
14 # along with GCC; see the file COPYING3. If not see
15 # <http://www.gnu.org/licenses/>.
17 # Please email any bugs, comments, and/or additions to this file to:
18 # gcc-patches@gcc.gnu.org
20 # This file defines procs for determining features supported by the target.
22 # Try to compile the code given by CONTENTS into an output file of
23 # type TYPE, where TYPE is as for target_compile. Return a list
24 # whose first element contains the compiler messages and whose
25 # second element is the name of the output file.
27 # BASENAME is a prefix to use for source and output files.
28 # If ARGS is not empty, its first element is a string that
29 # should be added to the command line.
31 # Assume by default that CONTENTS is C code.
32 # Otherwise, code should contain:
33 # "// C++" for c++,
34 # "! Fortran" for Fortran code,
35 # "/* ObjC", for ObjC
36 # "// ObjC++" for ObjC++
37 # and "// Go" for Go
38 # If the tool is ObjC/ObjC++ then we overide the extension to .m/.mm to
39 # allow for ObjC/ObjC++ specific flags.
40 proc check_compile {basename type contents args} {
41 global tool
42 verbose "check_compile tool: $tool for $basename"
44 # Save additional_sources to avoid compiling testsuite's sources
45 # against check_compile's source.
46 global additional_sources
47 if [info exists additional_sources] {
48 set tmp_additional_sources "$additional_sources"
49 set additional_sources ""
52 if { [llength $args] > 0 } {
53 set options [list "additional_flags=[lindex $args 0]"]
54 } else {
55 set options ""
57 switch -glob -- $contents {
58 "*! Fortran*" { set src ${basename}[pid].f90 }
59 "*// C++*" { set src ${basename}[pid].cc }
60 "*// ObjC++*" { set src ${basename}[pid].mm }
61 "*/* ObjC*" { set src ${basename}[pid].m }
62 "*// Go*" { set src ${basename}[pid].go }
63 default {
64 switch -- $tool {
65 "objc" { set src ${basename}[pid].m }
66 "obj-c++" { set src ${basename}[pid].mm }
67 default { set src ${basename}[pid].c }
72 set compile_type $type
73 switch -glob $type {
74 assembly { set output ${basename}[pid].s }
75 object { set output ${basename}[pid].o }
76 executable { set output ${basename}[pid].exe }
77 "rtl-*" {
78 set output ${basename}[pid].s
79 lappend options "additional_flags=-fdump-$type"
80 set compile_type assembly
83 set f [open $src "w"]
84 puts $f $contents
85 close $f
86 set lines [${tool}_target_compile $src $output $compile_type "$options"]
87 file delete $src
89 set scan_output $output
90 # Don't try folding this into the switch above; calling "glob" before the
91 # file is created won't work.
92 if [regexp "rtl-(.*)" $type dummy rtl_type] {
93 set scan_output "[glob $src.\[0-9\]\[0-9\]\[0-9\]r.$rtl_type]"
94 file delete $output
97 # Restore additional_sources.
98 if [info exists additional_sources] {
99 set additional_sources "$tmp_additional_sources"
102 return [list $lines $scan_output]
105 proc current_target_name { } {
106 global target_info
107 if [info exists target_info(target,name)] {
108 set answer $target_info(target,name)
109 } else {
110 set answer ""
112 return $answer
115 # Implement an effective-target check for property PROP by invoking
116 # the Tcl command ARGS and seeing if it returns true.
118 proc check_cached_effective_target { prop args } {
119 global et_cache
120 global et_prop_list
122 set target [current_target_name]
123 if {![info exists et_cache($prop,target)]
124 || $et_cache($prop,target) != $target} {
125 verbose "check_cached_effective_target $prop: checking $target" 2
126 set et_cache($prop,target) $target
127 set et_cache($prop,value) [uplevel eval $args]
128 if {![info exists et_prop_list]
129 || [lsearch $et_prop_list $prop] < 0} {
130 lappend et_prop_list $prop
132 verbose "check_cached_effective_target cached list is now: $et_prop_list" 2
134 set value $et_cache($prop,value)
135 verbose "check_cached_effective_target $prop: returning $value for $target" 2
136 return $value
139 # Clear effective-target cache. This is useful after testing
140 # effective-target features and overriding TEST_ALWAYS_FLAGS and/or
141 # ALWAYS_CXXFLAGS.
142 # If one changes ALWAYS_CXXFLAGS or TEST_ALWAYS_FLAGS then they should
143 # do a clear_effective_target_cache at the end as the target cache can
144 # make decisions based upon the flags, and those decisions need to be
145 # redone when the flags change. An example of this is the
146 # asan_init/asan_finish pair.
148 proc clear_effective_target_cache { } {
149 global et_cache
150 global et_prop_list
152 if {[info exists et_prop_list]} {
153 verbose "clear_effective_target_cache: $et_prop_list" 2
154 foreach prop $et_prop_list {
155 unset et_cache($prop,value)
156 unset et_cache($prop,target)
158 unset et_prop_list
162 # Like check_compile, but delete the output file and return true if the
163 # compiler printed no messages.
164 proc check_no_compiler_messages_nocache {args} {
165 set result [eval check_compile $args]
166 set lines [lindex $result 0]
167 set output [lindex $result 1]
168 remote_file build delete $output
169 return [string match "" $lines]
172 # Like check_no_compiler_messages_nocache, but cache the result.
173 # PROP is the property we're checking, and doubles as a prefix for
174 # temporary filenames.
175 proc check_no_compiler_messages {prop args} {
176 return [check_cached_effective_target $prop {
177 eval [list check_no_compiler_messages_nocache $prop] $args
181 # Like check_compile, but return true if the compiler printed no
182 # messages and if the contents of the output file satisfy PATTERN.
183 # If PATTERN has the form "!REGEXP", the contents satisfy it if they
184 # don't match regular expression REGEXP, otherwise they satisfy it
185 # if they do match regular expression PATTERN. (PATTERN can start
186 # with something like "[!]" if the regular expression needs to match
187 # "!" as the first character.)
189 # Delete the output file before returning. The other arguments are
190 # as for check_compile.
191 proc check_no_messages_and_pattern_nocache {basename pattern args} {
192 global tool
194 set result [eval [list check_compile $basename] $args]
195 set lines [lindex $result 0]
196 set output [lindex $result 1]
198 set ok 0
199 if { [string match "" $lines] } {
200 set chan [open "$output"]
201 set invert [regexp {^!(.*)} $pattern dummy pattern]
202 set ok [expr { [regexp $pattern [read $chan]] != $invert }]
203 close $chan
206 remote_file build delete $output
207 return $ok
210 # Like check_no_messages_and_pattern_nocache, but cache the result.
211 # PROP is the property we're checking, and doubles as a prefix for
212 # temporary filenames.
213 proc check_no_messages_and_pattern {prop pattern args} {
214 return [check_cached_effective_target $prop {
215 eval [list check_no_messages_and_pattern_nocache $prop $pattern] $args
219 # Try to compile and run an executable from code CONTENTS. Return true
220 # if the compiler reports no messages and if execution "passes" in the
221 # usual DejaGNU sense. The arguments are as for check_compile, with
222 # TYPE implicitly being "executable".
223 proc check_runtime_nocache {basename contents args} {
224 global tool
226 set result [eval [list check_compile $basename executable $contents] $args]
227 set lines [lindex $result 0]
228 set output [lindex $result 1]
230 set ok 0
231 if { [string match "" $lines] } {
232 # No error messages, everything is OK.
233 set result [remote_load target "./$output" "" ""]
234 set status [lindex $result 0]
235 verbose "check_runtime_nocache $basename: status is <$status>" 2
236 if { $status == "pass" } {
237 set ok 1
240 remote_file build delete $output
241 return $ok
244 # Like check_runtime_nocache, but cache the result. PROP is the
245 # property we're checking, and doubles as a prefix for temporary
246 # filenames.
247 proc check_runtime {prop args} {
248 global tool
250 return [check_cached_effective_target $prop {
251 eval [list check_runtime_nocache $prop] $args
255 # Return 1 if GCC was configured with $pattern.
256 proc check_configured_with { pattern } {
257 global tool
259 set gcc_output [${tool}_target_compile "-v" "" "none" ""]
260 if { [ regexp "Configured with: \[^\n\]*$pattern" $gcc_output ] } {
261 verbose "Matched: $pattern" 2
262 return 1
265 verbose "Failed to match: $pattern" 2
266 return 0
269 ###############################
270 # proc check_weak_available { }
271 ###############################
273 # weak symbols are only supported in some configs/object formats
274 # this proc returns 1 if they're supported, 0 if they're not, or -1 if unsure
276 proc check_weak_available { } {
277 global target_cpu
279 # All mips targets should support it
281 if { [ string first "mips" $target_cpu ] >= 0 } {
282 return 1
285 # All AIX targets should support it
287 if { [istarget *-*-aix*] } {
288 return 1
291 # All solaris2 targets should support it
293 if { [istarget *-*-solaris2*] } {
294 return 1
297 # Windows targets Cygwin and MingW32 support it
299 if { [istarget *-*-cygwin*] || [istarget *-*-mingw*] } {
300 return 1
303 # HP-UX 10.X doesn't support it
305 if { [istarget hppa*-*-hpux10*] } {
306 return 0
309 # nvptx (nearly) supports it
311 if { [istarget nvptx-*-*] } {
312 return 1
315 # ELF and ECOFF support it. a.out does with gas/gld but may also with
316 # other linkers, so we should try it
318 set objformat [gcc_target_object_format]
320 switch $objformat {
321 elf { return 1 }
322 ecoff { return 1 }
323 a.out { return 1 }
324 mach-o { return 1 }
325 som { return 1 }
326 unknown { return -1 }
327 default { return 0 }
331 # return 1 if weak undefined symbols are supported.
333 proc check_effective_target_weak_undefined { } {
334 return [check_runtime weak_undefined {
335 extern void foo () __attribute__((weak));
336 int main (void) { if (foo) return 1; return 0; }
337 } ""]
340 ###############################
341 # proc check_weak_override_available { }
342 ###############################
344 # Like check_weak_available, but return 0 if weak symbol definitions
345 # cannot be overridden.
347 proc check_weak_override_available { } {
348 if { [istarget *-*-mingw*] } {
349 return 0
351 return [check_weak_available]
354 ###############################
355 # proc check_visibility_available { what_kind }
356 ###############################
358 # The visibility attribute is only support in some object formats
359 # This proc returns 1 if it is supported, 0 if not.
360 # The argument is the kind of visibility, default/protected/hidden/internal.
362 proc check_visibility_available { what_kind } {
363 if [string match "" $what_kind] { set what_kind "hidden" }
365 return [check_no_compiler_messages visibility_available_$what_kind object "
366 void f() __attribute__((visibility(\"$what_kind\")));
367 void f() {}
371 ###############################
372 # proc check_alias_available { }
373 ###############################
375 # Determine if the target toolchain supports the alias attribute.
377 # Returns 2 if the target supports aliases. Returns 1 if the target
378 # only supports weak aliased. Returns 0 if the target does not
379 # support aliases at all. Returns -1 if support for aliases could not
380 # be determined.
382 proc check_alias_available { } {
383 global alias_available_saved
384 global tool
386 if [info exists alias_available_saved] {
387 verbose "check_alias_available returning saved $alias_available_saved" 2
388 } else {
389 set src alias[pid].c
390 set obj alias[pid].o
391 verbose "check_alias_available compiling testfile $src" 2
392 set f [open $src "w"]
393 # Compile a small test program. The definition of "g" is
394 # necessary to keep the Solaris assembler from complaining
395 # about the program.
396 puts $f "#ifdef __cplusplus\nextern \"C\"\n#endif\n"
397 puts $f "void g() {} void f() __attribute__((alias(\"g\")));"
398 close $f
399 set lines [${tool}_target_compile $src $obj object ""]
400 file delete $src
401 remote_file build delete $obj
403 if [string match "" $lines] then {
404 # No error messages, everything is OK.
405 set alias_available_saved 2
406 } else {
407 if [regexp "alias definitions not supported" $lines] {
408 verbose "check_alias_available target does not support aliases" 2
410 set objformat [gcc_target_object_format]
412 if { $objformat == "elf" } {
413 verbose "check_alias_available but target uses ELF format, so it ought to" 2
414 set alias_available_saved -1
415 } else {
416 set alias_available_saved 0
418 } else {
419 if [regexp "only weak aliases are supported" $lines] {
420 verbose "check_alias_available target supports only weak aliases" 2
421 set alias_available_saved 1
422 } else {
423 set alias_available_saved -1
428 verbose "check_alias_available returning $alias_available_saved" 2
431 return $alias_available_saved
434 # Returns 1 if the target toolchain supports strong aliases, 0 otherwise.
436 proc check_effective_target_alias { } {
437 if { [check_alias_available] < 2 } {
438 return 0
439 } else {
440 return 1
444 # Returns 1 if the target toolchain supports ifunc, 0 otherwise.
446 proc check_ifunc_available { } {
447 return [check_no_compiler_messages ifunc_available object {
448 #ifdef __cplusplus
449 extern "C" {
450 #endif
451 extern void f_ ();
452 typedef void F (void);
453 F* g (void) { return &f_; }
454 void f () __attribute__ ((ifunc ("g")));
455 #ifdef __cplusplus
457 #endif
461 # Returns true if --gc-sections is supported on the target.
463 proc check_gc_sections_available { } {
464 global gc_sections_available_saved
465 global tool
467 if {![info exists gc_sections_available_saved]} {
468 # Some targets don't support gc-sections despite whatever's
469 # advertised by ld's options.
470 if { [istarget alpha*-*-*]
471 || [istarget ia64-*-*] } {
472 set gc_sections_available_saved 0
473 return 0
476 # elf2flt uses -q (--emit-relocs), which is incompatible with
477 # --gc-sections.
478 if { [board_info target exists ldflags]
479 && [regexp " -elf2flt\[ =\]" " [board_info target ldflags] "] } {
480 set gc_sections_available_saved 0
481 return 0
484 # VxWorks kernel modules are relocatable objects linked with -r,
485 # while RTP executables are linked with -q (--emit-relocs).
486 # Both of these options are incompatible with --gc-sections.
487 if { [istarget *-*-vxworks*] } {
488 set gc_sections_available_saved 0
489 return 0
492 # Check if the ld used by gcc supports --gc-sections.
493 set gcc_ld [lindex [${tool}_target_compile "-print-prog-name=ld" "" "none" ""] 0]
494 set ld_output [remote_exec host "$gcc_ld" "--help"]
495 if { [ string first "--gc-sections" $ld_output ] >= 0 } {
496 set gc_sections_available_saved 1
497 } else {
498 set gc_sections_available_saved 0
501 return $gc_sections_available_saved
504 # Return 1 if according to target_info struct and explicit target list
505 # target is supposed to support trampolines.
507 proc check_effective_target_trampolines { } {
508 if [target_info exists gcc,no_trampolines] {
509 return 0
511 if { [istarget avr-*-*]
512 || [istarget msp430-*-*]
513 || [istarget nvptx-*-*]
514 || [istarget hppa2.0w-hp-hpux11.23]
515 || [istarget hppa64-hp-hpux11.23] } {
516 return 0;
518 return 1
521 # Return 1 if target has limited stack size.
523 proc check_effective_target_stack_size { } {
524 if [target_info exists gcc,stack_size] {
525 return 1
527 return 0
530 # Return the value attribute of an effective target, otherwise return 0.
532 proc dg-effective-target-value { effective_target } {
533 if { "$effective_target" == "stack_size" } {
534 if [check_effective_target_stack_size] {
535 return [target_info gcc,stack_size]
539 return 0
542 # Return 1 if signal.h is supported.
544 proc check_effective_target_signal { } {
545 if [target_info exists gcc,signal_suppress] {
546 return 0
548 return 1
551 # Return 1 if according to target_info struct and explicit target list
552 # target disables -fdelete-null-pointer-checks. Targets should return 0
553 # if they simply default to -fno-delete-null-pointer-checks but obey
554 # -fdelete-null-pointer-checks when passed explicitly (and tests that
555 # depend on this option should do that).
557 proc check_effective_target_keeps_null_pointer_checks { } {
558 if [target_info exists keeps_null_pointer_checks] {
559 return 1
561 if { [istarget msp430-*-*] } {
562 return 1;
564 return 0
567 # Return the autofdo profile wrapper
569 # Linux by default allows 516KB of perf event buffers
570 # in /proc/sys/kernel/perf_event_mlock_kb
571 # Each individual perf tries to grab it
572 # This causes problems with parallel test suite runs. Instead
573 # limit us to 8 pages (32K), which should be good enough
574 # for the small test programs. With the default settings
575 # this allows parallelism of 16 and higher of parallel gcc-auto-profile
576 proc profopt-perf-wrapper { } {
577 global srcdir
578 return "$srcdir/../config/i386/gcc-auto-profile -o perf.data -m8 "
581 # Return true if profiling is supported on the target.
583 proc check_profiling_available { test_what } {
584 global profiling_available_saved
586 verbose "Profiling argument is <$test_what>" 1
588 # These conditions depend on the argument so examine them before
589 # looking at the cache variable.
591 # Tree profiling requires TLS runtime support.
592 if { $test_what == "-fprofile-generate" } {
593 if { ![check_effective_target_tls_runtime] } {
594 return 0
598 if { $test_what == "-fauto-profile" } {
599 if { !([istarget i?86-*-linux*] || [istarget x86_64-*-linux*]) } {
600 verbose "autofdo only supported on linux"
601 return 0
603 # not cross compiling?
604 if { ![isnative] } {
605 verbose "autofdo not supported for non native builds"
606 return 0
608 set event [profopt-perf-wrapper]
609 if {$event == "" } {
610 verbose "autofdo not supported"
611 return 0
613 global srcdir
614 set status [remote_exec host "$srcdir/../config/i386/gcc-auto-profile" "true -v >/dev/null"]
615 if { [lindex $status 0] != 0 } {
616 verbose "autofdo not supported because perf does not work"
617 return 0
620 # no good way to check this in advance -- check later instead.
621 #set status [remote_exec host "create_gcov" "2>/dev/null"]
622 #if { [lindex $status 0] != 255 } {
623 # verbose "autofdo not supported due to missing create_gcov"
624 # return 0
628 # Support for -p on solaris2 relies on mcrt1.o which comes with the
629 # vendor compiler. We cannot reliably predict the directory where the
630 # vendor compiler (and thus mcrt1.o) is installed so we can't
631 # necessarily find mcrt1.o even if we have it.
632 if { [istarget *-*-solaris2*] && $test_what == "-p" } {
633 return 0
636 # We don't yet support profiling for MIPS16.
637 if { [istarget mips*-*-*]
638 && ![check_effective_target_nomips16]
639 && ($test_what == "-p" || $test_what == "-pg") } {
640 return 0
643 # MinGW does not support -p.
644 if { [istarget *-*-mingw*] && $test_what == "-p" } {
645 return 0
648 # cygwin does not support -p.
649 if { [istarget *-*-cygwin*] && $test_what == "-p" } {
650 return 0
653 # uClibc does not have gcrt1.o.
654 if { [check_effective_target_uclibc]
655 && ($test_what == "-p" || $test_what == "-pg") } {
656 return 0
659 # Now examine the cache variable.
660 if {![info exists profiling_available_saved]} {
661 # Some targets don't have any implementation of __bb_init_func or are
662 # missing other needed machinery.
663 if {[istarget aarch64*-*-elf]
664 || [istarget am3*-*-linux*]
665 || [istarget arm*-*-eabi*]
666 || [istarget arm*-*-elf]
667 || [istarget arm*-*-symbianelf*]
668 || [istarget avr-*-*]
669 || [istarget bfin-*-*]
670 || [istarget cris-*-*]
671 || [istarget crisv32-*-*]
672 || [istarget fido-*-elf]
673 || [istarget h8300-*-*]
674 || [istarget lm32-*-*]
675 || [istarget m32c-*-elf]
676 || [istarget m68k-*-elf]
677 || [istarget m68k-*-uclinux*]
678 || [istarget mips*-*-elf*]
679 || [istarget mmix-*-*]
680 || [istarget mn10300-*-elf*]
681 || [istarget moxie-*-elf*]
682 || [istarget msp430-*-*]
683 || [istarget nds32*-*-elf]
684 || [istarget nios2-*-elf]
685 || [istarget nvptx-*-*]
686 || [istarget powerpc-*-eabi*]
687 || [istarget powerpc-*-elf]
688 || [istarget rx-*-*]
689 || [istarget tic6x-*-elf]
690 || [istarget visium-*-*]
691 || [istarget xstormy16-*]
692 || [istarget xtensa*-*-elf]
693 || [istarget *-*-rtems*]
694 || [istarget *-*-vxworks*] } {
695 set profiling_available_saved 0
696 } else {
697 set profiling_available_saved 1
701 # -pg link test result can't be cached since it may change between
702 # runs.
703 set profiling_working $profiling_available_saved
704 if { $profiling_available_saved == 1
705 && ![check_no_compiler_messages_nocache profiling executable {
706 int main() { return 0; } } "-pg"] } {
707 set profiling_working 0
710 return $profiling_working
713 # Check to see if a target is "freestanding". This is as per the definition
714 # in Section 4 of C99 standard. Effectively, it is a target which supports no
715 # extra headers or libraries other than what is considered essential.
716 proc check_effective_target_freestanding { } {
717 if { [istarget nvptx-*-*] } {
718 return 1
720 return 0
723 # Return 1 if target has packed layout of structure members by
724 # default, 0 otherwise. Note that this is slightly different than
725 # whether the target has "natural alignment": both attributes may be
726 # false.
728 proc check_effective_target_default_packed { } {
729 return [check_no_compiler_messages default_packed assembly {
730 struct x { char a; long b; } c;
731 int s[sizeof (c) == sizeof (char) + sizeof (long) ? 1 : -1];
735 # Return 1 if target has PCC_BITFIELD_TYPE_MATTERS defined. See
736 # documentation, where the test also comes from.
738 proc check_effective_target_pcc_bitfield_type_matters { } {
739 # PCC_BITFIELD_TYPE_MATTERS isn't just about unnamed or empty
740 # bitfields, but let's stick to the example code from the docs.
741 return [check_no_compiler_messages pcc_bitfield_type_matters assembly {
742 struct foo1 { char x; char :0; char y; };
743 struct foo2 { char x; int :0; char y; };
744 int s[sizeof (struct foo1) != sizeof (struct foo2) ? 1 : -1];
748 # Add to FLAGS all the target-specific flags needed to use thread-local storage.
750 proc add_options_for_tls { flags } {
751 # On Solaris 9, __tls_get_addr/___tls_get_addr only lives in
752 # libthread, so always pass -pthread for native TLS. Same for AIX.
753 # Need to duplicate native TLS check from
754 # check_effective_target_tls_native to avoid recursion.
755 if { ([istarget powerpc-ibm-aix*]) &&
756 [check_no_messages_and_pattern tls_native "!emutls" assembly {
757 __thread int i;
758 int f (void) { return i; }
759 void g (int j) { i = j; }
760 }] } {
761 return "-pthread [g++_link_flags [get_multilibs "-pthread"] ] $flags "
763 return $flags
766 # Return 1 if indirect jumps are supported, 0 otherwise.
768 proc check_effective_target_indirect_jumps {} {
769 if { [istarget nvptx-*-*] } {
770 return 0
772 return 1
775 # Return 1 if nonlocal goto is supported, 0 otherwise.
777 proc check_effective_target_nonlocal_goto {} {
778 if { [istarget nvptx-*-*] } {
779 return 0
781 return 1
784 # Return 1 if global constructors are supported, 0 otherwise.
786 proc check_effective_target_global_constructor {} {
787 if { [istarget nvptx-*-*] } {
788 return 0
790 return 1
793 # Return 1 if taking label values is supported, 0 otherwise.
795 proc check_effective_target_label_values {} {
796 if { [istarget nvptx-*-*] || [target_info exists gcc,no_label_values] } {
797 return 0
800 return 1
803 # Return 1 if builtin_return_address and builtin_frame_address are
804 # supported, 0 otherwise.
806 proc check_effective_target_return_address {} {
807 if { [istarget nvptx-*-*] } {
808 return 0
810 return 1
813 # Return 1 if the assembler does not verify function types against
814 # calls, 0 otherwise. Such verification will typically show up problems
815 # with K&R C function declarations.
817 proc check_effective_target_untyped_assembly {} {
818 if { [istarget nvptx-*-*] } {
819 return 0
821 return 1
824 # Return 1 if alloca is supported, 0 otherwise.
826 proc check_effective_target_alloca {} {
827 if { [istarget nvptx-*-*] } {
828 return [check_no_compiler_messages alloca assembly {
829 void f (void*);
830 void g (int n) { f (__builtin_alloca (n)); }
833 return 1
836 # Return 1 if thread local storage (TLS) is supported, 0 otherwise.
838 proc check_effective_target_tls {} {
839 return [check_no_compiler_messages tls assembly {
840 __thread int i;
841 int f (void) { return i; }
842 void g (int j) { i = j; }
846 # Return 1 if *native* thread local storage (TLS) is supported, 0 otherwise.
848 proc check_effective_target_tls_native {} {
849 # VxWorks uses emulated TLS machinery, but with non-standard helper
850 # functions, so we fail to automatically detect it.
851 if { [istarget *-*-vxworks*] } {
852 return 0
855 return [check_no_messages_and_pattern tls_native "!emutls" assembly {
856 __thread int i;
857 int f (void) { return i; }
858 void g (int j) { i = j; }
862 # Return 1 if *emulated* thread local storage (TLS) is supported, 0 otherwise.
864 proc check_effective_target_tls_emulated {} {
865 # VxWorks uses emulated TLS machinery, but with non-standard helper
866 # functions, so we fail to automatically detect it.
867 if { [istarget *-*-vxworks*] } {
868 return 1
871 return [check_no_messages_and_pattern tls_emulated "emutls" assembly {
872 __thread int i;
873 int f (void) { return i; }
874 void g (int j) { i = j; }
878 # Return 1 if TLS executables can run correctly, 0 otherwise.
880 proc check_effective_target_tls_runtime {} {
881 # The runtime does not have TLS support, but just
882 # running the test below is insufficient to show this.
883 if { [istarget msp430-*-*] || [istarget visium-*-*] } {
884 return 0
886 return [check_runtime tls_runtime {
887 __thread int thr = 0;
888 int main (void) { return thr; }
889 } [add_options_for_tls ""]]
892 # Return 1 if atomic compare-and-swap is supported on 'int'
894 proc check_effective_target_cas_char {} {
895 return [check_no_compiler_messages cas_char assembly {
896 #ifndef __GCC_HAVE_SYNC_COMPARE_AND_SWAP_1
897 #error unsupported
898 #endif
899 } ""]
902 proc check_effective_target_cas_int {} {
903 return [check_no_compiler_messages cas_int assembly {
904 #if __INT_MAX__ == 0x7fff && __GCC_HAVE_SYNC_COMPARE_AND_SWAP_2
905 /* ok */
906 #elif __INT_MAX__ == 0x7fffffff && __GCC_HAVE_SYNC_COMPARE_AND_SWAP_4
907 /* ok */
908 #else
909 #error unsupported
910 #endif
911 } ""]
914 # Return 1 if -ffunction-sections is supported, 0 otherwise.
916 proc check_effective_target_function_sections {} {
917 # Darwin has its own scheme and silently accepts -ffunction-sections.
918 if { [istarget *-*-darwin*] } {
919 return 0
922 return [check_no_compiler_messages functionsections assembly {
923 void foo (void) { }
924 } "-ffunction-sections"]
927 # Return 1 if instruction scheduling is available, 0 otherwise.
929 proc check_effective_target_scheduling {} {
930 return [check_no_compiler_messages scheduling object {
931 void foo (void) { }
932 } "-fschedule-insns"]
935 # Return 1 if trapping arithmetic is available, 0 otherwise.
937 proc check_effective_target_trapping {} {
938 return [check_no_compiler_messages trapping object {
939 int add (int a, int b) { return a + b; }
940 } "-ftrapv"]
943 # Return 1 if compilation with -fgraphite is error-free for trivial
944 # code, 0 otherwise.
946 proc check_effective_target_fgraphite {} {
947 return [check_no_compiler_messages fgraphite object {
948 void foo (void) { }
949 } "-O1 -fgraphite"]
952 # Return 1 if compilation with -fopenacc is error-free for trivial
953 # code, 0 otherwise.
955 proc check_effective_target_fopenacc {} {
956 # nvptx can be built with the device-side bits of openacc, but it
957 # does not make sense to test it as an openacc host.
958 if [istarget nvptx-*-*] { return 0 }
960 return [check_no_compiler_messages fopenacc object {
961 void foo (void) { }
962 } "-fopenacc"]
965 # Return 1 if compilation with -fopenmp is error-free for trivial
966 # code, 0 otherwise.
968 proc check_effective_target_fopenmp {} {
969 # nvptx can be built with the device-side bits of libgomp, but it
970 # does not make sense to test it as an openmp host.
971 if [istarget nvptx-*-*] { return 0 }
973 return [check_no_compiler_messages fopenmp object {
974 void foo (void) { }
975 } "-fopenmp"]
978 # Return 1 if compilation with -fgnu-tm is error-free for trivial
979 # code, 0 otherwise.
981 proc check_effective_target_fgnu_tm {} {
982 return [check_no_compiler_messages fgnu_tm object {
983 void foo (void) { }
984 } "-fgnu-tm"]
987 # Return 1 if the target supports mmap, 0 otherwise.
989 proc check_effective_target_mmap {} {
990 return [check_function_available "mmap"]
993 # Return 1 if the target supports dlopen, 0 otherwise.
994 proc check_effective_target_dlopen {} {
995 return [check_no_compiler_messages dlopen executable {
996 #include <dlfcn.h>
997 int main(void) { dlopen ("dummy.so", RTLD_NOW); }
998 } [add_options_for_dlopen ""]]
1001 proc add_options_for_dlopen { flags } {
1002 return "$flags -ldl"
1005 # Return 1 if the target supports clone, 0 otherwise.
1006 proc check_effective_target_clone {} {
1007 return [check_function_available "clone"]
1010 # Return 1 if the target supports setrlimit, 0 otherwise.
1011 proc check_effective_target_setrlimit {} {
1012 # Darwin has non-posix compliant RLIMIT_AS
1013 if { [istarget *-*-darwin*] } {
1014 return 0
1016 return [check_function_available "setrlimit"]
1019 # Return 1 if the target supports gettimeofday, 0 otherwise.
1020 proc check_effective_target_gettimeofday {} {
1021 return [check_function_available "gettimeofday"]
1024 # Return 1 if the target supports swapcontext, 0 otherwise.
1025 proc check_effective_target_swapcontext {} {
1026 return [check_no_compiler_messages swapcontext executable {
1027 #include <ucontext.h>
1028 int main (void)
1030 ucontext_t orig_context,child_context;
1031 if (swapcontext(&child_context, &orig_context) < 0) { }
1036 # Return 1 if compilation with -pthread is error-free for trivial
1037 # code, 0 otherwise.
1039 proc check_effective_target_pthread {} {
1040 return [check_no_compiler_messages pthread object {
1041 void foo (void) { }
1042 } "-pthread"]
1045 # Return 1 if compilation with -gstabs is error-free for trivial
1046 # code, 0 otherwise.
1048 proc check_effective_target_stabs {} {
1049 return [check_no_compiler_messages stabs object {
1050 void foo (void) { }
1051 } "-gstabs"]
1054 # Return 1 if compilation with -mpe-aligned-commons is error-free
1055 # for trivial code, 0 otherwise.
1057 proc check_effective_target_pe_aligned_commons {} {
1058 if { [istarget *-*-cygwin*] || [istarget *-*-mingw*] } {
1059 return [check_no_compiler_messages pe_aligned_commons object {
1060 int foo;
1061 } "-mpe-aligned-commons"]
1063 return 0
1066 # Return 1 if the target supports -static
1067 proc check_effective_target_static {} {
1068 return [check_no_compiler_messages static executable {
1069 int main (void) { return 0; }
1070 } "-static"]
1073 # Return 1 if the target supports -fstack-protector
1074 proc check_effective_target_fstack_protector {} {
1075 return [check_runtime fstack_protector {
1076 #include <string.h>
1077 int main (int argc, char *argv[]) {
1078 char buf[64];
1079 return !strcpy (buf, strrchr (argv[0], '/'));
1081 } "-fstack-protector"]
1084 # Return 1 if the target supports -fstack-check or -fstack-check=$stack_kind
1085 proc check_stack_check_available { stack_kind } {
1086 if [string match "" $stack_kind] then {
1087 set stack_opt "-fstack-check"
1088 } else { set stack_opt "-fstack-check=$stack_kind" }
1090 return [check_no_compiler_messages stack_check_$stack_kind executable {
1091 int main (void) { return 0; }
1092 } "$stack_opt"]
1095 # Return 1 if compilation with -freorder-blocks-and-partition is error-free
1096 # for trivial code, 0 otherwise. As some targets (ARM for example) only
1097 # warn when -fprofile-use is also supplied we test that combination too.
1099 proc check_effective_target_freorder {} {
1100 if { [check_no_compiler_messages freorder object {
1101 void foo (void) { }
1102 } "-freorder-blocks-and-partition"]
1103 && [check_no_compiler_messages fprofile_use_freorder object {
1104 void foo (void) { }
1105 } "-fprofile-use -freorder-blocks-and-partition"] } {
1106 return 1
1108 return 0
1111 # Return 1 if -fpic and -fPIC are supported, as in no warnings or errors
1112 # emitted, 0 otherwise. Whether a shared library can actually be built is
1113 # out of scope for this test.
1115 proc check_effective_target_fpic { } {
1116 # Note that M68K has a multilib that supports -fpic but not
1117 # -fPIC, so we need to check both. We test with a program that
1118 # requires GOT references.
1119 foreach arg {fpic fPIC} {
1120 if [check_no_compiler_messages $arg object {
1121 extern int foo (void); extern int bar;
1122 int baz (void) { return foo () + bar; }
1123 } "-$arg"] {
1124 return 1
1127 return 0
1130 # On AArch64, if -fpic is not supported, then we will fall back to -fPIC
1131 # silently. So, we can't rely on above "check_effective_target_fpic" as it
1132 # assumes compiler will give warning if -fpic not supported. Here we check
1133 # whether binutils supports those new -fpic relocation modifiers, and assume
1134 # -fpic is supported if there is binutils support. GCC configuration will
1135 # enable -fpic for AArch64 in this case.
1137 # "check_effective_target_aarch64_small_fpic" is dedicated for checking small
1138 # memory model -fpic relocation types.
1140 proc check_effective_target_aarch64_small_fpic { } {
1141 if { [istarget aarch64*-*-*] } {
1142 return [check_no_compiler_messages aarch64_small_fpic object {
1143 void foo (void) { asm ("ldr x0, [x2, #:gotpage_lo15:globalsym]"); }
1145 } else {
1146 return 0
1150 # On AArch64, instruction sequence for TLS LE under -mtls-size=32 will utilize
1151 # the relocation modifier "tprel_g0_nc" together with MOVK, it's only supported
1152 # in binutils since 2015-03-04 as PR gas/17843.
1154 # This test directive make sure binutils support all features needed by TLS LE
1155 # under -mtls-size=32 on AArch64.
1157 proc check_effective_target_aarch64_tlsle32 { } {
1158 if { [istarget aarch64*-*-*] } {
1159 return [check_no_compiler_messages aarch64_tlsle32 object {
1160 void foo (void) { asm ("movk x1,#:tprel_g0_nc:t1"); }
1162 } else {
1163 return 0
1167 # Return 1 if -shared is supported, as in no warnings or errors
1168 # emitted, 0 otherwise.
1170 proc check_effective_target_shared { } {
1171 # Note that M68K has a multilib that supports -fpic but not
1172 # -fPIC, so we need to check both. We test with a program that
1173 # requires GOT references.
1174 return [check_no_compiler_messages shared executable {
1175 extern int foo (void); extern int bar;
1176 int baz (void) { return foo () + bar; }
1177 } "-shared -fpic"]
1180 # Return 1 if -pie, -fpie and -fPIE are supported, 0 otherwise.
1182 proc check_effective_target_pie { } {
1183 if { [istarget *-*-darwin\[912\]*]
1184 || [istarget *-*-dragonfly*]
1185 || [istarget *-*-freebsd*]
1186 || [istarget *-*-linux*]
1187 || [istarget *-*-gnu*] } {
1188 return 1;
1190 if { [istarget *-*-solaris2.1\[1-9\]*] } {
1191 # Full PIE support was added in Solaris 11.3, but gcc errors out
1192 # if missing, so check for that.
1193 return [check_no_compiler_messages pie executable {
1194 int main (void) { return 0; }
1195 } "-pie -fpie"]
1197 return 0
1200 # Return true if the target supports -mpaired-single (as used on MIPS).
1202 proc check_effective_target_mpaired_single { } {
1203 return [check_no_compiler_messages mpaired_single object {
1204 void foo (void) { }
1205 } "-mpaired-single"]
1208 # Return true if the target has access to FPU instructions.
1210 proc check_effective_target_hard_float { } {
1211 if { [istarget mips*-*-*] } {
1212 return [check_no_compiler_messages hard_float assembly {
1213 #if (defined __mips_soft_float || defined __mips16)
1214 #error __mips_soft_float || __mips16
1215 #endif
1219 # This proc is actually checking the availabilty of FPU
1220 # support for doubles, so on the RX we must fail if the
1221 # 64-bit double multilib has been selected.
1222 if { [istarget rx-*-*] } {
1223 return 0
1224 # return [check_no_compiler_messages hard_float assembly {
1225 #if defined __RX_64_BIT_DOUBLES__
1226 #error __RX_64_BIT_DOUBLES__
1227 #endif
1228 # }]
1231 # The generic test equates hard_float with "no call for adding doubles".
1232 return [check_no_messages_and_pattern hard_float "!\\(call" rtl-expand {
1233 double a (double b, double c) { return b + c; }
1237 # Return true if the target is a 64-bit MIPS target.
1239 proc check_effective_target_mips64 { } {
1240 return [check_no_compiler_messages mips64 assembly {
1241 #ifndef __mips64
1242 #error !__mips64
1243 #endif
1247 # Return true if the target is a MIPS target that does not produce
1248 # MIPS16 code.
1250 proc check_effective_target_nomips16 { } {
1251 return [check_no_compiler_messages nomips16 object {
1252 #ifndef __mips
1253 #error !__mips
1254 #else
1255 /* A cheap way of testing for -mflip-mips16. */
1256 void foo (void) { asm ("addiu $20,$20,1"); }
1257 void bar (void) { asm ("addiu $20,$20,1"); }
1258 #endif
1262 # Add the options needed for MIPS16 function attributes. At the moment,
1263 # we don't support MIPS16 PIC.
1265 proc add_options_for_mips16_attribute { flags } {
1266 return "$flags -mno-abicalls -fno-pic -DMIPS16=__attribute__((mips16))"
1269 # Return true if we can force a mode that allows MIPS16 code generation.
1270 # We don't support MIPS16 PIC, and only support MIPS16 -mhard-float
1271 # for o32 and o64.
1273 proc check_effective_target_mips16_attribute { } {
1274 return [check_no_compiler_messages mips16_attribute assembly {
1275 #ifdef PIC
1276 #error PIC
1277 #endif
1278 #if defined __mips_hard_float \
1279 && (!defined _ABIO32 || _MIPS_SIM != _ABIO32) \
1280 && (!defined _ABIO64 || _MIPS_SIM != _ABIO64)
1281 #error __mips_hard_float && (!_ABIO32 || !_ABIO64)
1282 #endif
1283 } [add_options_for_mips16_attribute ""]]
1286 # Return 1 if the target supports long double larger than double when
1287 # using the new ABI, 0 otherwise.
1289 proc check_effective_target_mips_newabi_large_long_double { } {
1290 return [check_no_compiler_messages mips_newabi_large_long_double object {
1291 int dummy[sizeof(long double) > sizeof(double) ? 1 : -1];
1292 } "-mabi=64"]
1295 # Return true if the target is a MIPS target that has access
1296 # to the LL and SC instructions.
1298 proc check_effective_target_mips_llsc { } {
1299 if { ![istarget mips*-*-*] } {
1300 return 0
1302 # Assume that these instructions are always implemented for
1303 # non-elf* targets, via emulation if necessary.
1304 if { ![istarget *-*-elf*] } {
1305 return 1
1307 # Otherwise assume LL/SC support for everything but MIPS I.
1308 return [check_no_compiler_messages mips_llsc assembly {
1309 #if __mips == 1
1310 #error __mips == 1
1311 #endif
1315 # Return true if the target is a MIPS target that uses in-place relocations.
1317 proc check_effective_target_mips_rel { } {
1318 if { ![istarget mips*-*-*] } {
1319 return 0
1321 return [check_no_compiler_messages mips_rel object {
1322 #if (defined _ABIN32 && _MIPS_SIM == _ABIN32) \
1323 || (defined _ABI64 && _MIPS_SIM == _ABI64)
1324 #error _ABIN32 && (_ABIN32 || _ABI64)
1325 #endif
1329 # Return true if the target is a MIPS target that uses the EABI.
1331 proc check_effective_target_mips_eabi { } {
1332 if { ![istarget mips*-*-*] } {
1333 return 0
1335 return [check_no_compiler_messages mips_eabi object {
1336 #ifndef __mips_eabi
1337 #error !__mips_eabi
1338 #endif
1342 # Return 1 if the current multilib does not generate PIC by default.
1344 proc check_effective_target_nonpic { } {
1345 return [check_no_compiler_messages nonpic assembly {
1346 #if __PIC__
1347 #error __PIC__
1348 #endif
1352 # Return 1 if the current multilib generates PIE by default.
1354 proc check_effective_target_pie_enabled { } {
1355 return [check_no_compiler_messages pie_enabled assembly {
1356 #ifndef __PIE__
1357 #error unsupported
1358 #endif
1362 # Return 1 if the target generates -fstack-protector by default.
1364 proc check_effective_target_fstack_protector_enabled {} {
1365 return [ check_no_compiler_messages fstack_protector_enabled assembly {
1366 #if !defined(__SSP__) && !defined(__SSP_ALL__) && \
1367 !defined(__SSP_STRONG__) && !defined(__SSP_EXPICIT__)
1368 #error unsupported
1369 #endif
1373 # Return 1 if the target does not use a status wrapper.
1375 proc check_effective_target_unwrapped { } {
1376 if { [target_info needs_status_wrapper] != "" \
1377 && [target_info needs_status_wrapper] != "0" } {
1378 return 0
1380 return 1
1383 # Return true if iconv is supported on the target. In particular IBM1047.
1385 proc check_iconv_available { test_what } {
1386 global libiconv
1388 # If the tool configuration file has not set libiconv, try "-liconv"
1389 if { ![info exists libiconv] } {
1390 set libiconv "-liconv"
1392 set test_what [lindex $test_what 1]
1393 return [check_runtime_nocache $test_what [subst {
1394 #include <iconv.h>
1395 int main (void)
1397 iconv_t cd;
1399 cd = iconv_open ("$test_what", "UTF-8");
1400 if (cd == (iconv_t) -1)
1401 return 1;
1402 return 0;
1404 }] $libiconv]
1407 # Return true if the atomic library is supported on the target.
1408 proc check_effective_target_libatomic_available { } {
1409 return [check_no_compiler_messages libatomic_available executable {
1410 int main (void) { return 0; }
1411 } "-latomic"]
1414 # Return 1 if an ASCII locale is supported on this host, 0 otherwise.
1416 proc check_ascii_locale_available { } {
1417 return 1
1420 # Return true if named sections are supported on this target.
1422 proc check_named_sections_available { } {
1423 return [check_no_compiler_messages named_sections assembly {
1424 int __attribute__ ((section("whatever"))) foo;
1428 # Return true if the "naked" function attribute is supported on this target.
1430 proc check_effective_target_naked_functions { } {
1431 return [check_no_compiler_messages naked_functions assembly {
1432 void f() __attribute__((naked));
1436 # Return 1 if the target supports Fortran real kinds larger than real(8),
1437 # 0 otherwise.
1439 # When the target name changes, replace the cached result.
1441 proc check_effective_target_fortran_large_real { } {
1442 return [check_no_compiler_messages fortran_large_real executable {
1443 ! Fortran
1444 integer,parameter :: k = selected_real_kind (precision (0.0_8) + 1)
1445 real(kind=k) :: x
1446 x = cos (x)
1451 # Return 1 if the target supports Fortran real kind real(16),
1452 # 0 otherwise. Contrary to check_effective_target_fortran_large_real
1453 # this checks for Real(16) only; the other returned real(10) if
1454 # both real(10) and real(16) are available.
1456 # When the target name changes, replace the cached result.
1458 proc check_effective_target_fortran_real_16 { } {
1459 return [check_no_compiler_messages fortran_real_16 executable {
1460 ! Fortran
1461 real(kind=16) :: x
1462 x = cos (x)
1467 # Return 1 if the target supports Fortran real kind 10,
1468 # 0 otherwise. Contrary to check_effective_target_fortran_large_real
1469 # this checks for real(10) only.
1471 # When the target name changes, replace the cached result.
1473 proc check_effective_target_fortran_real_10 { } {
1474 return [check_no_compiler_messages fortran_real_10 executable {
1475 ! Fortran
1476 real(kind=10) :: x
1477 x = cos (x)
1482 # Return 1 if the target supports Fortran's IEEE modules,
1483 # 0 otherwise.
1485 # When the target name changes, replace the cached result.
1487 proc check_effective_target_fortran_ieee { flags } {
1488 return [check_no_compiler_messages fortran_ieee executable {
1489 ! Fortran
1490 use, intrinsic :: ieee_features
1492 } $flags ]
1496 # Return 1 if the target supports SQRT for the largest floating-point
1497 # type. (Some targets lack the libm support for this FP type.)
1498 # On most targets, this check effectively checks either whether sqrtl is
1499 # available or on __float128 systems whether libquadmath is installed,
1500 # which provides sqrtq.
1502 # When the target name changes, replace the cached result.
1504 proc check_effective_target_fortran_largest_fp_has_sqrt { } {
1505 return [check_no_compiler_messages fortran_largest_fp_has_sqrt executable {
1506 ! Fortran
1507 use iso_fortran_env, only: real_kinds
1508 integer,parameter:: maxFP = real_kinds(ubound(real_kinds,dim=1))
1509 real(kind=maxFP), volatile :: x
1510 x = 2.0_maxFP
1511 x = sqrt (x)
1517 # Return 1 if the target supports Fortran integer kinds larger than
1518 # integer(8), 0 otherwise.
1520 # When the target name changes, replace the cached result.
1522 proc check_effective_target_fortran_large_int { } {
1523 return [check_no_compiler_messages fortran_large_int executable {
1524 ! Fortran
1525 integer,parameter :: k = selected_int_kind (range (0_8) + 1)
1526 integer(kind=k) :: i
1531 # Return 1 if the target supports Fortran integer(16), 0 otherwise.
1533 # When the target name changes, replace the cached result.
1535 proc check_effective_target_fortran_integer_16 { } {
1536 return [check_no_compiler_messages fortran_integer_16 executable {
1537 ! Fortran
1538 integer(16) :: i
1543 # Return 1 if we can statically link libgfortran, 0 otherwise.
1545 # When the target name changes, replace the cached result.
1547 proc check_effective_target_static_libgfortran { } {
1548 return [check_no_compiler_messages static_libgfortran executable {
1549 ! Fortran
1550 print *, 'test'
1552 } "-static"]
1555 # Return 1 if we can use the -rdynamic option, 0 otherwise.
1557 proc check_effective_target_rdynamic { } {
1558 return [check_no_compiler_messages rdynamic executable {
1559 int main() { return 0; }
1560 } "-rdynamic"]
1563 proc check_linker_plugin_available { } {
1564 return [check_no_compiler_messages_nocache linker_plugin executable {
1565 int main() { return 0; }
1566 } "-flto -fuse-linker-plugin"]
1569 # Return 1 if the target OS supports running SSE executables, 0
1570 # otherwise. Cache the result.
1572 proc check_sse_os_support_available { } {
1573 return [check_cached_effective_target sse_os_support_available {
1574 # If this is not the right target then we can skip the test.
1575 if { !([istarget i?86-*-*] || [istarget x86_64-*-*]) } {
1576 expr 0
1577 } elseif { [istarget i?86-*-solaris2*] } {
1578 # The Solaris 2 kernel doesn't save and restore SSE registers
1579 # before Solaris 9 4/04. Before that, executables die with SIGILL.
1580 check_runtime_nocache sse_os_support_available {
1581 int main ()
1583 asm volatile ("movaps %xmm0,%xmm0");
1584 return 0;
1586 } "-msse"
1587 } else {
1588 expr 1
1593 # Return 1 if the target OS supports running AVX executables, 0
1594 # otherwise. Cache the result.
1596 proc check_avx_os_support_available { } {
1597 return [check_cached_effective_target avx_os_support_available {
1598 # If this is not the right target then we can skip the test.
1599 if { !([istarget i?86-*-*] || [istarget x86_64-*-*]) } {
1600 expr 0
1601 } else {
1602 # Check that OS has AVX and SSE saving enabled.
1603 check_runtime_nocache avx_os_support_available {
1604 int main ()
1606 unsigned int eax, edx;
1608 asm ("xgetbv" : "=a" (eax), "=d" (edx) : "c" (0));
1609 return (eax & 0x06) != 0x06;
1611 } ""
1616 # Return 1 if the target OS supports running AVX executables, 0
1617 # otherwise. Cache the result.
1619 proc check_avx512_os_support_available { } {
1620 return [check_cached_effective_target avx512_os_support_available {
1621 # If this is not the right target then we can skip the test.
1622 if { !([istarget i?86-*-*] || [istarget x86_64-*-*]) } {
1623 expr 0
1624 } else {
1625 # Check that OS has AVX512, AVX and SSE saving enabled.
1626 check_runtime_nocache avx512_os_support_available {
1627 int main ()
1629 unsigned int eax, edx;
1631 asm ("xgetbv" : "=a" (eax), "=d" (edx) : "c" (0));
1632 return (eax & 0xe6) != 0xe6;
1634 } ""
1639 # Return 1 if the target supports executing SSE instructions, 0
1640 # otherwise. Cache the result.
1642 proc check_sse_hw_available { } {
1643 return [check_cached_effective_target sse_hw_available {
1644 # If this is not the right target then we can skip the test.
1645 if { !([istarget i?86-*-*] || [istarget x86_64-*-*]) } {
1646 expr 0
1647 } else {
1648 check_runtime_nocache sse_hw_available {
1649 #include "cpuid.h"
1650 int main ()
1652 unsigned int eax, ebx, ecx, edx;
1653 if (!__get_cpuid (1, &eax, &ebx, &ecx, &edx))
1654 return 1;
1656 return !(edx & bit_SSE);
1658 } ""
1663 # Return 1 if the target supports executing SSE2 instructions, 0
1664 # otherwise. Cache the result.
1666 proc check_sse2_hw_available { } {
1667 return [check_cached_effective_target sse2_hw_available {
1668 # If this is not the right target then we can skip the test.
1669 if { !([istarget i?86-*-*] || [istarget x86_64-*-*]) } {
1670 expr 0
1671 } else {
1672 check_runtime_nocache sse2_hw_available {
1673 #include "cpuid.h"
1674 int main ()
1676 unsigned int eax, ebx, ecx, edx;
1677 if (!__get_cpuid (1, &eax, &ebx, &ecx, &edx))
1678 return 1;
1680 return !(edx & bit_SSE2);
1682 } ""
1687 # Return 1 if the target supports executing SSE4 instructions, 0
1688 # otherwise. Cache the result.
1690 proc check_sse4_hw_available { } {
1691 return [check_cached_effective_target sse4_hw_available {
1692 # If this is not the right target then we can skip the test.
1693 if { !([istarget i?86-*-*] || [istarget x86_64-*-*]) } {
1694 expr 0
1695 } else {
1696 check_runtime_nocache sse4_hw_available {
1697 #include "cpuid.h"
1698 int main ()
1700 unsigned int eax, ebx, ecx, edx;
1701 if (!__get_cpuid (1, &eax, &ebx, &ecx, &edx))
1702 return 1;
1704 return !(ecx & bit_SSE4_2);
1706 } ""
1711 # Return 1 if the target supports executing AVX instructions, 0
1712 # otherwise. Cache the result.
1714 proc check_avx_hw_available { } {
1715 return [check_cached_effective_target avx_hw_available {
1716 # If this is not the right target then we can skip the test.
1717 if { !([istarget i?86-*-*] || [istarget x86_64-*-*]) } {
1718 expr 0
1719 } else {
1720 check_runtime_nocache avx_hw_available {
1721 #include "cpuid.h"
1722 int main ()
1724 unsigned int eax, ebx, ecx, edx;
1725 if (!__get_cpuid (1, &eax, &ebx, &ecx, &edx))
1726 return 1;
1728 return ((ecx & (bit_AVX | bit_OSXSAVE))
1729 != (bit_AVX | bit_OSXSAVE));
1731 } ""
1736 # Return 1 if the target supports executing AVX2 instructions, 0
1737 # otherwise. Cache the result.
1739 proc check_avx2_hw_available { } {
1740 return [check_cached_effective_target avx2_hw_available {
1741 # If this is not the right target then we can skip the test.
1742 if { !([istarget x86_64-*-*] || [istarget i?86-*-*]) } {
1743 expr 0
1744 } else {
1745 check_runtime_nocache avx2_hw_available {
1746 #include <stddef.h>
1747 #include "cpuid.h"
1748 int main ()
1750 unsigned int eax, ebx, ecx, edx;
1752 if (__get_cpuid_max (0, NULL) < 7)
1753 return 1;
1755 __cpuid (1, eax, ebx, ecx, edx);
1757 if (!(ecx & bit_OSXSAVE))
1758 return 1;
1760 __cpuid_count (7, 0, eax, ebx, ecx, edx);
1762 return !(ebx & bit_AVX2);
1764 } ""
1769 # Return 1 if the target supports executing AVX512 foundation instructions, 0
1770 # otherwise. Cache the result.
1772 proc check_avx512f_hw_available { } {
1773 return [check_cached_effective_target avx512f_hw_available {
1774 # If this is not the right target then we can skip the test.
1775 if { !([istarget x86_64-*-*] || [istarget i?86-*-*]) } {
1776 expr 0
1777 } else {
1778 check_runtime_nocache avx512f_hw_available {
1779 #include <stddef.h>
1780 #include "cpuid.h"
1781 int main ()
1783 unsigned int eax, ebx, ecx, edx;
1785 if (__get_cpuid_max (0, NULL) < 7)
1786 return 1;
1788 __cpuid (1, eax, ebx, ecx, edx);
1790 if (!(ecx & bit_OSXSAVE))
1791 return 1;
1793 __cpuid_count (7, 0, eax, ebx, ecx, edx);
1795 return !(ebx & bit_AVX512F);
1797 } ""
1802 # Return 1 if the target supports running SSE executables, 0 otherwise.
1804 proc check_effective_target_sse_runtime { } {
1805 if { [check_effective_target_sse]
1806 && [check_sse_hw_available]
1807 && [check_sse_os_support_available] } {
1808 return 1
1810 return 0
1813 # Return 1 if the target supports running SSE2 executables, 0 otherwise.
1815 proc check_effective_target_sse2_runtime { } {
1816 if { [check_effective_target_sse2]
1817 && [check_sse2_hw_available]
1818 && [check_sse_os_support_available] } {
1819 return 1
1821 return 0
1824 # Return 1 if the target supports running SSE4 executables, 0 otherwise.
1826 proc check_effective_target_sse4_runtime { } {
1827 if { [check_effective_target_sse4]
1828 && [check_sse4_hw_available]
1829 && [check_sse_os_support_available] } {
1830 return 1
1832 return 0
1835 # Return 1 if the target supports running AVX executables, 0 otherwise.
1837 proc check_effective_target_avx_runtime { } {
1838 if { [check_effective_target_avx]
1839 && [check_avx_hw_available]
1840 && [check_avx_os_support_available] } {
1841 return 1
1843 return 0
1846 # Return 1 if the target supports running AVX2 executables, 0 otherwise.
1848 proc check_effective_target_avx2_runtime { } {
1849 if { [check_effective_target_avx2]
1850 && [check_avx2_hw_available]
1851 && [check_avx_os_support_available] } {
1852 return 1
1854 return 0
1857 # Return 1 if the target supports running AVX512f executables, 0 otherwise.
1859 proc check_effective_target_avx512f_runtime { } {
1860 if { [check_effective_target_avx512f]
1861 && [check_avx512f_hw_available]
1862 && [check_avx512_os_support_available] } {
1863 return 1
1865 return 0
1868 # Return 1 if bmi2 instructions can be compiled.
1869 proc check_effective_target_bmi2 { } {
1870 if { !([istarget i?86-*-*] || [istarget x86_64-*-*]) } {
1871 return 0
1873 return [check_no_compiler_messages bmi2 object {
1874 unsigned int
1875 _bzhi_u32 (unsigned int __X, unsigned int __Y)
1877 return __builtin_ia32_bzhi_si (__X, __Y);
1879 } "-mbmi2" ]
1882 # Return 1 if the target supports executing MIPS Paired-Single instructions,
1883 # 0 otherwise. Cache the result.
1885 proc check_mpaired_single_hw_available { } {
1886 return [check_cached_effective_target mpaired_single_hw_available {
1887 # If this is not the right target then we can skip the test.
1888 if { !([istarget mips*-*-*]) } {
1889 expr 0
1890 } else {
1891 check_runtime_nocache mpaired_single_hw_available {
1892 int main()
1894 asm volatile ("pll.ps $f2,$f4,$f6");
1895 return 0;
1897 } ""
1902 # Return 1 if the target supports executing Loongson vector instructions,
1903 # 0 otherwise. Cache the result.
1905 proc check_mips_loongson_hw_available { } {
1906 return [check_cached_effective_target mips_loongson_hw_available {
1907 # If this is not the right target then we can skip the test.
1908 if { !([istarget mips*-*-*]) } {
1909 expr 0
1910 } else {
1911 check_runtime_nocache mips_loongson_hw_available {
1912 #include <loongson.h>
1913 int main()
1915 asm volatile ("paddw $f2,$f4,$f6");
1916 return 0;
1918 } ""
1923 # Return 1 if the target supports executing MIPS MSA instructions, 0
1924 # otherwise. Cache the result.
1926 proc check_mips_msa_hw_available { } {
1927 return [check_cached_effective_target mips_msa_hw_available {
1928 # If this is not the right target then we can skip the test.
1929 if { !([istarget mips*-*-*]) } {
1930 expr 0
1931 } else {
1932 check_runtime_nocache mips_msa_hw_available {
1933 #if !defined(__mips_msa)
1934 #error "MSA NOT AVAIL"
1935 #else
1936 #if !(((__mips == 64) || (__mips == 32)) && (__mips_isa_rev >= 2))
1937 #error "MSA NOT AVAIL FOR ISA REV < 2"
1938 #endif
1939 #if !defined(__mips_hard_float)
1940 #error "MSA HARD_FLOAT REQUIRED"
1941 #endif
1942 #if __mips_fpr != 64
1943 #error "MSA 64-bit FPR REQUIRED"
1944 #endif
1945 #include <msa.h>
1947 int main()
1949 v8i16 v = __builtin_msa_ldi_h (0);
1950 v[0] = 0;
1951 return v[0];
1953 #endif
1954 } "-mmsa"
1959 # Return 1 if the target supports running MIPS Paired-Single
1960 # executables, 0 otherwise.
1962 proc check_effective_target_mpaired_single_runtime { } {
1963 if { [check_effective_target_mpaired_single]
1964 && [check_mpaired_single_hw_available] } {
1965 return 1
1967 return 0
1970 # Return 1 if the target supports running Loongson executables, 0 otherwise.
1972 proc check_effective_target_mips_loongson_runtime { } {
1973 if { [check_effective_target_mips_loongson]
1974 && [check_mips_loongson_hw_available] } {
1975 return 1
1977 return 0
1980 # Return 1 if the target supports running MIPS MSA executables, 0 otherwise.
1982 proc check_effective_target_mips_msa_runtime { } {
1983 if { [check_effective_target_mips_msa]
1984 && [check_mips_msa_hw_available] } {
1985 return 1
1987 return 0
1990 # Return 1 if we are compiling for 64-bit PowerPC but we do not use direct
1991 # move instructions for moves from GPR to FPR.
1993 proc check_effective_target_powerpc64_no_dm { } {
1994 # The "mulld" checks if we are generating PowerPC64 code. The "lfd"
1995 # checks if we do not use direct moves, but use the old-fashioned
1996 # slower move-via-the-stack.
1997 return [check_no_messages_and_pattern powerpc64_no_dm \
1998 {\mmulld\M.*\mlfd} assembly {
1999 double f(long long x) { return x*x; }
2000 } {-O2}]
2003 # Return 1 if the target supports the __builtin_cpu_supports built-in,
2004 # including having a new enough library to support the test. Cache the result.
2005 # Require at least a power7 to run on.
2007 proc check_ppc_cpu_supports_hw_available { } {
2008 return [check_cached_effective_target ppc_cpu_supports_hw_available {
2009 # Some simulators are known to not support VSX/power8 instructions.
2010 # For now, disable on Darwin
2011 if { [istarget powerpc-*-eabi]
2012 || [istarget powerpc*-*-eabispe]
2013 || [istarget *-*-darwin*]} {
2014 expr 0
2015 } else {
2016 set options "-mvsx"
2017 check_runtime_nocache ppc_cpu_supports_hw_available {
2018 int main()
2020 #ifdef __MACH__
2021 asm volatile ("xxlor vs0,vs0,vs0");
2022 #else
2023 asm volatile ("xxlor 0,0,0");
2024 #endif
2025 if (!__builtin_cpu_supports ("vsx"))
2026 return 1;
2027 return 0;
2029 } $options
2034 # Return 1 if the target supports executing 750CL paired-single instructions, 0
2035 # otherwise. Cache the result.
2037 proc check_750cl_hw_available { } {
2038 return [check_cached_effective_target 750cl_hw_available {
2039 # If this is not the right target then we can skip the test.
2040 if { ![istarget powerpc-*paired*] } {
2041 expr 0
2042 } else {
2043 check_runtime_nocache 750cl_hw_available {
2044 int main()
2046 #ifdef __MACH__
2047 asm volatile ("ps_mul v0,v0,v0");
2048 #else
2049 asm volatile ("ps_mul 0,0,0");
2050 #endif
2051 return 0;
2053 } "-mpaired"
2058 # Return 1 if the target supports executing power8 vector instructions, 0
2059 # otherwise. Cache the result.
2061 proc check_p8vector_hw_available { } {
2062 return [check_cached_effective_target p8vector_hw_available {
2063 # Some simulators are known to not support VSX/power8 instructions.
2064 # For now, disable on Darwin
2065 if { [istarget powerpc-*-eabi]
2066 || [istarget powerpc*-*-eabispe]
2067 || [istarget *-*-darwin*]} {
2068 expr 0
2069 } else {
2070 set options "-mpower8-vector"
2071 check_runtime_nocache p8vector_hw_available {
2072 int main()
2074 #ifdef __MACH__
2075 asm volatile ("xxlorc vs0,vs0,vs0");
2076 #else
2077 asm volatile ("xxlorc 0,0,0");
2078 #endif
2079 return 0;
2081 } $options
2086 # Return 1 if the target supports executing power9 vector instructions, 0
2087 # otherwise. Cache the result.
2089 proc check_p9vector_hw_available { } {
2090 return [check_cached_effective_target p9vector_hw_available {
2091 # Some simulators are known to not support VSX/power8/power9
2092 # instructions. For now, disable on Darwin.
2093 if { [istarget powerpc-*-eabi]
2094 || [istarget powerpc*-*-eabispe]
2095 || [istarget *-*-darwin*]} {
2096 expr 0
2097 } else {
2098 set options "-mpower9-vector"
2099 check_runtime_nocache p9vector_hw_available {
2100 int main()
2102 long e = -1;
2103 vector double v = (vector double) { 0.0, 0.0 };
2104 asm ("xsxexpdp %0,%1" : "+r" (e) : "wa" (v));
2105 return e;
2107 } $options
2112 # Return 1 if the target supports executing power9 modulo instructions, 0
2113 # otherwise. Cache the result.
2115 proc check_p9modulo_hw_available { } {
2116 return [check_cached_effective_target p9modulo_hw_available {
2117 # Some simulators are known to not support VSX/power8/power9
2118 # instructions. For now, disable on Darwin.
2119 if { [istarget powerpc-*-eabi]
2120 || [istarget powerpc*-*-eabispe]
2121 || [istarget *-*-darwin*]} {
2122 expr 0
2123 } else {
2124 set options "-mmodulo"
2125 check_runtime_nocache p9modulo_hw_available {
2126 int main()
2128 int i = 5, j = 3, r = -1;
2129 asm ("modsw %0,%1,%2" : "+r" (r) : "r" (i), "r" (j));
2130 return (r == 2);
2132 } $options
2137 # Return 1 if the target supports executing __float128 on PowerPC via software
2138 # emulation, 0 otherwise. Cache the result.
2140 proc check_ppc_float128_sw_available { } {
2141 return [check_cached_effective_target ppc_float128_sw_available {
2142 # Some simulators are known to not support VSX/power8/power9
2143 # instructions. For now, disable on Darwin.
2144 if { [istarget powerpc-*-eabi]
2145 || [istarget powerpc*-*-eabispe]
2146 || [istarget *-*-darwin*]} {
2147 expr 0
2148 } else {
2149 set options "-mfloat128 -mvsx"
2150 check_runtime_nocache ppc_float128_sw_available {
2151 volatile __float128 x = 1.0q;
2152 volatile __float128 y = 2.0q;
2153 int main()
2155 __float128 z = x + y;
2156 return (z != 3.0q);
2158 } $options
2163 # Return 1 if the target supports executing __float128 on PowerPC via power9
2164 # hardware instructions, 0 otherwise. Cache the result.
2166 proc check_ppc_float128_hw_available { } {
2167 return [check_cached_effective_target ppc_float128_hw_available {
2168 # Some simulators are known to not support VSX/power8/power9
2169 # instructions. For now, disable on Darwin.
2170 if { [istarget powerpc-*-eabi]
2171 || [istarget powerpc*-*-eabispe]
2172 || [istarget *-*-darwin*]} {
2173 expr 0
2174 } else {
2175 set options "-mfloat128 -mvsx -mfloat128-hardware -mpower9-vector"
2176 check_runtime_nocache ppc_float128_hw_available {
2177 volatile __float128 x = 1.0q;
2178 volatile __float128 y = 2.0q;
2179 int main()
2181 __float128 z = x + y;
2182 __float128 w = -1.0q;
2184 __asm__ ("xsaddqp %0,%1,%2" : "+v" (w) : "v" (x), "v" (y));
2185 return ((z != 3.0q) || (z != w);
2187 } $options
2192 # Return 1 if the target supports executing VSX instructions, 0
2193 # otherwise. Cache the result.
2195 proc check_vsx_hw_available { } {
2196 return [check_cached_effective_target vsx_hw_available {
2197 # Some simulators are known to not support VSX instructions.
2198 # For now, disable on Darwin
2199 if { [istarget powerpc-*-eabi]
2200 || [istarget powerpc*-*-eabispe]
2201 || [istarget *-*-darwin*]} {
2202 expr 0
2203 } else {
2204 set options "-mvsx"
2205 check_runtime_nocache vsx_hw_available {
2206 int main()
2208 #ifdef __MACH__
2209 asm volatile ("xxlor vs0,vs0,vs0");
2210 #else
2211 asm volatile ("xxlor 0,0,0");
2212 #endif
2213 return 0;
2215 } $options
2220 # Return 1 if the target supports executing AltiVec instructions, 0
2221 # otherwise. Cache the result.
2223 proc check_vmx_hw_available { } {
2224 return [check_cached_effective_target vmx_hw_available {
2225 # Some simulators are known to not support VMX instructions.
2226 if { [istarget powerpc-*-eabi] || [istarget powerpc*-*-eabispe] } {
2227 expr 0
2228 } else {
2229 # Most targets don't require special flags for this test case, but
2230 # Darwin does. Just to be sure, make sure VSX is not enabled for
2231 # the altivec tests.
2232 if { [istarget *-*-darwin*]
2233 || [istarget *-*-aix*] } {
2234 set options "-maltivec -mno-vsx"
2235 } else {
2236 set options "-mno-vsx"
2238 check_runtime_nocache vmx_hw_available {
2239 int main()
2241 #ifdef __MACH__
2242 asm volatile ("vor v0,v0,v0");
2243 #else
2244 asm volatile ("vor 0,0,0");
2245 #endif
2246 return 0;
2248 } $options
2253 proc check_ppc_recip_hw_available { } {
2254 return [check_cached_effective_target ppc_recip_hw_available {
2255 # Some simulators may not support FRE/FRES/FRSQRTE/FRSQRTES
2256 # For now, disable on Darwin
2257 if { [istarget powerpc-*-eabi] || [istarget powerpc*-*-eabispe] || [istarget *-*-darwin*]} {
2258 expr 0
2259 } else {
2260 set options "-mpowerpc-gfxopt -mpowerpc-gpopt -mpopcntb"
2261 check_runtime_nocache ppc_recip_hw_available {
2262 volatile double d_recip, d_rsqrt, d_four = 4.0;
2263 volatile float f_recip, f_rsqrt, f_four = 4.0f;
2264 int main()
2266 asm volatile ("fres %0,%1" : "=f" (f_recip) : "f" (f_four));
2267 asm volatile ("fre %0,%1" : "=d" (d_recip) : "d" (d_four));
2268 asm volatile ("frsqrtes %0,%1" : "=f" (f_rsqrt) : "f" (f_four));
2269 asm volatile ("frsqrte %0,%1" : "=f" (d_rsqrt) : "d" (d_four));
2270 return 0;
2272 } $options
2277 # Return 1 if the target supports executing AltiVec and Cell PPU
2278 # instructions, 0 otherwise. Cache the result.
2280 proc check_effective_target_cell_hw { } {
2281 return [check_cached_effective_target cell_hw_available {
2282 # Some simulators are known to not support VMX and PPU instructions.
2283 if { [istarget powerpc-*-eabi*] } {
2284 expr 0
2285 } else {
2286 # Most targets don't require special flags for this test
2287 # case, but Darwin and AIX do.
2288 if { [istarget *-*-darwin*]
2289 || [istarget *-*-aix*] } {
2290 set options "-maltivec -mcpu=cell"
2291 } else {
2292 set options "-mcpu=cell"
2294 check_runtime_nocache cell_hw_available {
2295 int main()
2297 #ifdef __MACH__
2298 asm volatile ("vor v0,v0,v0");
2299 asm volatile ("lvlx v0,r0,r0");
2300 #else
2301 asm volatile ("vor 0,0,0");
2302 asm volatile ("lvlx 0,0,0");
2303 #endif
2304 return 0;
2306 } $options
2311 # Return 1 if the target supports executing 64-bit instructions, 0
2312 # otherwise. Cache the result.
2314 proc check_effective_target_powerpc64 { } {
2315 global powerpc64_available_saved
2316 global tool
2318 if [info exists powerpc64_available_saved] {
2319 verbose "check_effective_target_powerpc64 returning saved $powerpc64_available_saved" 2
2320 } else {
2321 set powerpc64_available_saved 0
2323 # Some simulators are known to not support powerpc64 instructions.
2324 if { [istarget powerpc-*-eabi*] || [istarget powerpc-ibm-aix*] } {
2325 verbose "check_effective_target_powerpc64 returning 0" 2
2326 return $powerpc64_available_saved
2329 # Set up, compile, and execute a test program containing a 64-bit
2330 # instruction. Include the current process ID in the file
2331 # names to prevent conflicts with invocations for multiple
2332 # testsuites.
2333 set src ppc[pid].c
2334 set exe ppc[pid].x
2336 set f [open $src "w"]
2337 puts $f "int main() {"
2338 puts $f "#ifdef __MACH__"
2339 puts $f " asm volatile (\"extsw r0,r0\");"
2340 puts $f "#else"
2341 puts $f " asm volatile (\"extsw 0,0\");"
2342 puts $f "#endif"
2343 puts $f " return 0; }"
2344 close $f
2346 set opts "additional_flags=-mcpu=G5"
2348 verbose "check_effective_target_powerpc64 compiling testfile $src" 2
2349 set lines [${tool}_target_compile $src $exe executable "$opts"]
2350 file delete $src
2352 if [string match "" $lines] then {
2353 # No error message, compilation succeeded.
2354 set result [${tool}_load "./$exe" "" ""]
2355 set status [lindex $result 0]
2356 remote_file build delete $exe
2357 verbose "check_effective_target_powerpc64 testfile status is <$status>" 2
2359 if { $status == "pass" } then {
2360 set powerpc64_available_saved 1
2362 } else {
2363 verbose "check_effective_target_powerpc64 testfile compilation failed" 2
2367 return $powerpc64_available_saved
2370 # GCC 3.4.0 for powerpc64-*-linux* included an ABI fix for passing
2371 # complex float arguments. This affects gfortran tests that call cabsf
2372 # in libm built by an earlier compiler. Return 0 if libm uses the same
2373 # argument passing as the compiler under test, 1 otherwise.
2375 proc check_effective_target_broken_cplxf_arg { } {
2376 # Skip the work for targets known not to be affected.
2377 if { ![istarget powerpc*-*-linux*] || ![is-effective-target lp64] } {
2378 return 0
2381 return [check_cached_effective_target broken_cplxf_arg {
2382 check_runtime_nocache broken_cplxf_arg {
2383 #include <complex.h>
2384 extern void abort (void);
2385 float fabsf (float);
2386 float cabsf (_Complex float);
2387 int main ()
2389 _Complex float cf;
2390 float f;
2391 cf = 3 + 4.0fi;
2392 f = cabsf (cf);
2393 if (fabsf (f - 5.0) > 0.0001)
2394 /* Yes, it's broken. */
2395 return 0;
2396 /* All fine, not broken. */
2397 return 1;
2399 } "-lm"
2403 # Return 1 is this is a TI C6X target supporting C67X instructions
2404 proc check_effective_target_ti_c67x { } {
2405 return [check_no_compiler_messages ti_c67x assembly {
2406 #if !defined(_TMS320C6700)
2407 #error !_TMS320C6700
2408 #endif
2412 # Return 1 is this is a TI C6X target supporting C64X+ instructions
2413 proc check_effective_target_ti_c64xp { } {
2414 return [check_no_compiler_messages ti_c64xp assembly {
2415 #if !defined(_TMS320C6400_PLUS)
2416 #error !_TMS320C6400_PLUS
2417 #endif
2422 proc check_alpha_max_hw_available { } {
2423 return [check_runtime alpha_max_hw_available {
2424 int main() { return __builtin_alpha_amask(1<<8) != 0; }
2428 # Returns true iff the FUNCTION is available on the target system.
2429 # (This is essentially a Tcl implementation of Autoconf's
2430 # AC_CHECK_FUNC.)
2432 proc check_function_available { function } {
2433 return [check_no_compiler_messages ${function}_available \
2434 executable [subst {
2435 #ifdef __cplusplus
2436 extern "C"
2437 #endif
2438 char $function ();
2439 int main () { $function (); }
2440 }] "-fno-builtin" ]
2443 # Returns true iff "fork" is available on the target system.
2445 proc check_fork_available {} {
2446 return [check_function_available "fork"]
2449 # Returns true iff "mkfifo" is available on the target system.
2451 proc check_mkfifo_available {} {
2452 if { [istarget *-*-cygwin*] } {
2453 # Cygwin has mkfifo, but support is incomplete.
2454 return 0
2457 return [check_function_available "mkfifo"]
2460 # Returns true iff "__cxa_atexit" is used on the target system.
2462 proc check_cxa_atexit_available { } {
2463 return [check_cached_effective_target cxa_atexit_available {
2464 if { [istarget hppa*-*-hpux10*] } {
2465 # HP-UX 10 doesn't have __cxa_atexit but subsequent test passes.
2466 expr 0
2467 } elseif { [istarget *-*-vxworks] } {
2468 # vxworks doesn't have __cxa_atexit but subsequent test passes.
2469 expr 0
2470 } else {
2471 check_runtime_nocache cxa_atexit_available {
2472 // C++
2473 #include <stdlib.h>
2474 static unsigned int count;
2475 struct X
2477 X() { count = 1; }
2478 ~X()
2480 if (count != 3)
2481 exit(1);
2482 count = 4;
2485 void f()
2487 static X x;
2489 struct Y
2491 Y() { f(); count = 2; }
2492 ~Y()
2494 if (count != 2)
2495 exit(1);
2496 count = 3;
2499 Y y;
2500 int main() { return 0; }
2506 proc check_effective_target_objc2 { } {
2507 return [check_no_compiler_messages objc2 object {
2508 #ifdef __OBJC2__
2509 int dummy[1];
2510 #else
2511 #error !__OBJC2__
2512 #endif
2516 proc check_effective_target_next_runtime { } {
2517 return [check_no_compiler_messages objc2 object {
2518 #ifdef __NEXT_RUNTIME__
2519 int dummy[1];
2520 #else
2521 #error !__NEXT_RUNTIME__
2522 #endif
2526 # Return 1 if we're generating code for big-endian memory order.
2528 proc check_effective_target_be { } {
2529 return [check_no_compiler_messages be object {
2530 int dummy[__BYTE_ORDER__ == __ORDER_BIG_ENDIAN__ ? 1 : -1];
2534 # Return 1 if we're generating code for little-endian memory order.
2536 proc check_effective_target_le { } {
2537 return [check_no_compiler_messages le object {
2538 int dummy[__BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__ ? 1 : -1];
2542 # Return 1 if we're generating 32-bit code using default options, 0
2543 # otherwise.
2545 proc check_effective_target_ilp32 { } {
2546 return [check_no_compiler_messages ilp32 object {
2547 int dummy[sizeof (int) == 4
2548 && sizeof (void *) == 4
2549 && sizeof (long) == 4 ? 1 : -1];
2553 # Return 1 if we're generating ia32 code using default options, 0
2554 # otherwise.
2556 proc check_effective_target_ia32 { } {
2557 return [check_no_compiler_messages ia32 object {
2558 int dummy[sizeof (int) == 4
2559 && sizeof (void *) == 4
2560 && sizeof (long) == 4 ? 1 : -1] = { __i386__ };
2564 # Return 1 if we're generating x32 code using default options, 0
2565 # otherwise.
2567 proc check_effective_target_x32 { } {
2568 return [check_no_compiler_messages x32 object {
2569 int dummy[sizeof (int) == 4
2570 && sizeof (void *) == 4
2571 && sizeof (long) == 4 ? 1 : -1] = { __x86_64__ };
2575 # Return 1 if we're generating 32-bit integers using default
2576 # options, 0 otherwise.
2578 proc check_effective_target_int32 { } {
2579 return [check_no_compiler_messages int32 object {
2580 int dummy[sizeof (int) == 4 ? 1 : -1];
2584 # Return 1 if we're generating 32-bit or larger integers using default
2585 # options, 0 otherwise.
2587 proc check_effective_target_int32plus { } {
2588 return [check_no_compiler_messages int32plus object {
2589 int dummy[sizeof (int) >= 4 ? 1 : -1];
2593 # Return 1 if we're generating 32-bit or larger pointers using default
2594 # options, 0 otherwise.
2596 proc check_effective_target_ptr32plus { } {
2597 # The msp430 has 16-bit or 20-bit pointers. The 20-bit pointer is stored
2598 # in a 32-bit slot when in memory, so sizeof(void *) returns 4, but it
2599 # cannot really hold a 32-bit address, so we always return false here.
2600 if { [istarget msp430-*-*] } {
2601 return 0
2604 return [check_no_compiler_messages ptr32plus object {
2605 int dummy[sizeof (void *) >= 4 ? 1 : -1];
2609 # Return 1 if we support 32-bit or larger array and structure sizes
2610 # using default options, 0 otherwise. Avoid false positive on
2611 # targets with 20 or 24 bit address spaces.
2613 proc check_effective_target_size32plus { } {
2614 return [check_no_compiler_messages size32plus object {
2615 char dummy[16777217L];
2619 # Returns 1 if we're generating 16-bit or smaller integers with the
2620 # default options, 0 otherwise.
2622 proc check_effective_target_int16 { } {
2623 return [check_no_compiler_messages int16 object {
2624 int dummy[sizeof (int) < 4 ? 1 : -1];
2628 # Return 1 if we're generating 64-bit code using default options, 0
2629 # otherwise.
2631 proc check_effective_target_lp64 { } {
2632 return [check_no_compiler_messages lp64 object {
2633 int dummy[sizeof (int) == 4
2634 && sizeof (void *) == 8
2635 && sizeof (long) == 8 ? 1 : -1];
2639 # Return 1 if we're generating 64-bit code using default llp64 options,
2640 # 0 otherwise.
2642 proc check_effective_target_llp64 { } {
2643 return [check_no_compiler_messages llp64 object {
2644 int dummy[sizeof (int) == 4
2645 && sizeof (void *) == 8
2646 && sizeof (long long) == 8
2647 && sizeof (long) == 4 ? 1 : -1];
2651 # Return 1 if long and int have different sizes,
2652 # 0 otherwise.
2654 proc check_effective_target_long_neq_int { } {
2655 return [check_no_compiler_messages long_ne_int object {
2656 int dummy[sizeof (int) != sizeof (long) ? 1 : -1];
2660 # Return 1 if the target supports long double larger than double,
2661 # 0 otherwise.
2663 proc check_effective_target_large_long_double { } {
2664 return [check_no_compiler_messages large_long_double object {
2665 int dummy[sizeof(long double) > sizeof(double) ? 1 : -1];
2669 # Return 1 if the target supports double larger than float,
2670 # 0 otherwise.
2672 proc check_effective_target_large_double { } {
2673 return [check_no_compiler_messages large_double object {
2674 int dummy[sizeof(double) > sizeof(float) ? 1 : -1];
2678 # Return 1 if the target supports long double of 128 bits,
2679 # 0 otherwise.
2681 proc check_effective_target_longdouble128 { } {
2682 return [check_no_compiler_messages longdouble128 object {
2683 int dummy[sizeof(long double) == 16 ? 1 : -1];
2687 # Return 1 if the target supports double of 64 bits,
2688 # 0 otherwise.
2690 proc check_effective_target_double64 { } {
2691 return [check_no_compiler_messages double64 object {
2692 int dummy[sizeof(double) == 8 ? 1 : -1];
2696 # Return 1 if the target supports double of at least 64 bits,
2697 # 0 otherwise.
2699 proc check_effective_target_double64plus { } {
2700 return [check_no_compiler_messages double64plus object {
2701 int dummy[sizeof(double) >= 8 ? 1 : -1];
2705 # Return 1 if the target supports 'w' suffix on floating constant
2706 # 0 otherwise.
2708 proc check_effective_target_has_w_floating_suffix { } {
2709 set opts ""
2710 if [check_effective_target_c++] {
2711 append opts "-std=gnu++03"
2713 return [check_no_compiler_messages w_fp_suffix object {
2714 float dummy = 1.0w;
2715 } "$opts"]
2718 # Return 1 if the target supports 'q' suffix on floating constant
2719 # 0 otherwise.
2721 proc check_effective_target_has_q_floating_suffix { } {
2722 set opts ""
2723 if [check_effective_target_c++] {
2724 append opts "-std=gnu++03"
2726 return [check_no_compiler_messages q_fp_suffix object {
2727 float dummy = 1.0q;
2728 } "$opts"]
2731 # Return 1 if the target supports the _FloatN / _FloatNx type
2732 # indicated in the function name, 0 otherwise.
2734 proc check_effective_target_float16 {} {
2735 return [check_no_compiler_messages_nocache float16 object {
2736 _Float16 x;
2737 } [add_options_for_float16 ""]]
2740 proc check_effective_target_float32 {} {
2741 return [check_no_compiler_messages_nocache float32 object {
2742 _Float32 x;
2743 } [add_options_for_float32 ""]]
2746 proc check_effective_target_float64 {} {
2747 return [check_no_compiler_messages_nocache float64 object {
2748 _Float64 x;
2749 } [add_options_for_float64 ""]]
2752 proc check_effective_target_float128 {} {
2753 return [check_no_compiler_messages_nocache float128 object {
2754 _Float128 x;
2755 } [add_options_for_float128 ""]]
2758 proc check_effective_target_float32x {} {
2759 return [check_no_compiler_messages_nocache float32x object {
2760 _Float32x x;
2761 } [add_options_for_float32x ""]]
2764 proc check_effective_target_float64x {} {
2765 return [check_no_compiler_messages_nocache float64x object {
2766 _Float64x x;
2767 } [add_options_for_float64x ""]]
2770 proc check_effective_target_float128x {} {
2771 return [check_no_compiler_messages_nocache float128x object {
2772 _Float128x x;
2773 } [add_options_for_float128x ""]]
2776 # Likewise, but runtime support for any special options used as well
2777 # as compile-time support is required.
2779 proc check_effective_target_float16_runtime {} {
2780 return [check_effective_target_float16]
2783 proc check_effective_target_float32_runtime {} {
2784 return [check_effective_target_float32]
2787 proc check_effective_target_float64_runtime {} {
2788 return [check_effective_target_float64]
2791 proc check_effective_target_float128_runtime {} {
2792 if { ![check_effective_target_float128] } {
2793 return 0
2795 if { [istarget powerpc*-*-*] } {
2796 return [check_effective_target_base_quadfloat_support]
2798 return 1
2801 proc check_effective_target_float32x_runtime {} {
2802 return [check_effective_target_float32x]
2805 proc check_effective_target_float64x_runtime {} {
2806 if { ![check_effective_target_float64x] } {
2807 return 0
2809 if { [istarget powerpc*-*-*] } {
2810 return [check_effective_target_base_quadfloat_support]
2812 return 1
2815 proc check_effective_target_float128x_runtime {} {
2816 return [check_effective_target_float128x]
2819 # Return 1 if the target hardware supports any options added for
2820 # _FloatN and _FloatNx types, 0 otherwise.
2822 proc check_effective_target_floatn_nx_runtime {} {
2823 if { [istarget powerpc*-*-aix*] } {
2824 return 0
2826 if { [istarget powerpc*-*-*] } {
2827 return [check_effective_target_base_quadfloat_support]
2829 return 1
2832 # Add options needed to use the _FloatN / _FloatNx type indicated in
2833 # the function name.
2835 proc add_options_for_float16 { flags } {
2836 if { [istarget arm*-*-*] } {
2837 return "$flags -mfp16-format=ieee"
2839 return "$flags"
2842 proc add_options_for_float32 { flags } {
2843 return "$flags"
2846 proc add_options_for_float64 { flags } {
2847 return "$flags"
2850 proc add_options_for_float128 { flags } {
2851 return [add_options_for___float128 "$flags"]
2854 proc add_options_for_float32x { flags } {
2855 return "$flags"
2858 proc add_options_for_float64x { flags } {
2859 return [add_options_for___float128 "$flags"]
2862 proc add_options_for_float128x { flags } {
2863 return "$flags"
2866 # Return 1 if the target supports __float128,
2867 # 0 otherwise.
2869 proc check_effective_target___float128 { } {
2870 if { [istarget powerpc*-*-*] } {
2871 return [check_ppc_float128_sw_available]
2873 if { [istarget ia64-*-*]
2874 || [istarget i?86-*-*] || [istarget x86_64-*-*] } {
2875 return 1
2877 return 0
2880 proc add_options_for___float128 { flags } {
2881 if { [istarget powerpc*-*-*] } {
2882 return "$flags -mfloat128 -mvsx"
2884 return "$flags"
2887 # Return 1 if the target supports any special run-time requirements
2888 # for __float128 or _Float128,
2889 # 0 otherwise.
2891 proc check_effective_target_base_quadfloat_support { } {
2892 if { [istarget powerpc*-*-*] } {
2893 return [check_vsx_hw_available]
2895 return 1
2898 # Return 1 if the target supports all four forms of fused multiply-add
2899 # (fma, fms, fnma, and fnms) for both float and double.
2901 proc check_effective_target_scalar_all_fma { } {
2902 return [istarget aarch64*-*-*]
2905 # Return 1 if the target supports compiling fixed-point,
2906 # 0 otherwise.
2908 proc check_effective_target_fixed_point { } {
2909 return [check_no_compiler_messages fixed_point object {
2910 _Sat _Fract x; _Sat _Accum y;
2914 # Return 1 if the target supports compiling decimal floating point,
2915 # 0 otherwise.
2917 proc check_effective_target_dfp_nocache { } {
2918 verbose "check_effective_target_dfp_nocache: compiling source" 2
2919 set ret [check_no_compiler_messages_nocache dfp object {
2920 float x __attribute__((mode(DD)));
2922 verbose "check_effective_target_dfp_nocache: returning $ret" 2
2923 return $ret
2926 proc check_effective_target_dfprt_nocache { } {
2927 return [check_runtime_nocache dfprt {
2928 typedef float d64 __attribute__((mode(DD)));
2929 d64 x = 1.2df, y = 2.3dd, z;
2930 int main () { z = x + y; return 0; }
2934 # Return 1 if the target supports compiling Decimal Floating Point,
2935 # 0 otherwise.
2937 # This won't change for different subtargets so cache the result.
2939 proc check_effective_target_dfp { } {
2940 return [check_cached_effective_target dfp {
2941 check_effective_target_dfp_nocache
2945 # Return 1 if the target supports linking and executing Decimal Floating
2946 # Point, 0 otherwise.
2948 # This won't change for different subtargets so cache the result.
2950 proc check_effective_target_dfprt { } {
2951 return [check_cached_effective_target dfprt {
2952 check_effective_target_dfprt_nocache
2956 proc check_effective_target_powerpc_popcntb_ok { } {
2957 return [check_cached_effective_target powerpc_popcntb_ok {
2959 # Disable on Darwin.
2960 if { [istarget powerpc-*-eabi] || [istarget powerpc*-*-eabispe] || [istarget *-*-darwin*]} {
2961 expr 0
2962 } else {
2963 check_runtime_nocache powerpc_popcntb_ok {
2964 volatile int r;
2965 volatile int a = 0x12345678;
2966 int main()
2968 asm volatile ("popcntb %0,%1" : "=r" (r) : "r" (a));
2969 return 0;
2971 } "-mcpu=power5"
2976 # Return 1 if the target supports executing DFP hardware instructions,
2977 # 0 otherwise. Cache the result.
2979 proc check_dfp_hw_available { } {
2980 return [check_cached_effective_target dfp_hw_available {
2981 # For now, disable on Darwin
2982 if { [istarget powerpc-*-eabi] || [istarget powerpc*-*-eabispe] || [istarget *-*-darwin*]} {
2983 expr 0
2984 } else {
2985 check_runtime_nocache dfp_hw_available {
2986 volatile _Decimal64 r;
2987 volatile _Decimal64 a = 4.0DD;
2988 volatile _Decimal64 b = 2.0DD;
2989 int main()
2991 asm volatile ("dadd %0,%1,%2" : "=d" (r) : "d" (a), "d" (b));
2992 asm volatile ("dsub %0,%1,%2" : "=d" (r) : "d" (a), "d" (b));
2993 asm volatile ("dmul %0,%1,%2" : "=d" (r) : "d" (a), "d" (b));
2994 asm volatile ("ddiv %0,%1,%2" : "=d" (r) : "d" (a), "d" (b));
2995 return 0;
2997 } "-mcpu=power6 -mhard-float"
3002 # Return 1 if the target supports compiling and assembling UCN, 0 otherwise.
3004 proc check_effective_target_ucn_nocache { } {
3005 # -std=c99 is only valid for C
3006 if [check_effective_target_c] {
3007 set ucnopts "-std=c99"
3008 } else {
3009 set ucnopts ""
3011 verbose "check_effective_target_ucn_nocache: compiling source" 2
3012 set ret [check_no_compiler_messages_nocache ucn object {
3013 int \u00C0;
3014 } $ucnopts]
3015 verbose "check_effective_target_ucn_nocache: returning $ret" 2
3016 return $ret
3019 # Return 1 if the target supports compiling and assembling UCN, 0 otherwise.
3021 # This won't change for different subtargets, so cache the result.
3023 proc check_effective_target_ucn { } {
3024 return [check_cached_effective_target ucn {
3025 check_effective_target_ucn_nocache
3029 # Return 1 if the target needs a command line argument to enable a SIMD
3030 # instruction set.
3032 proc check_effective_target_vect_cmdline_needed { } {
3033 global et_vect_cmdline_needed_saved
3034 global et_vect_cmdline_needed_target_name
3036 if { ![info exists et_vect_cmdline_needed_target_name] } {
3037 set et_vect_cmdline_needed_target_name ""
3040 # If the target has changed since we set the cached value, clear it.
3041 set current_target [current_target_name]
3042 if { $current_target != $et_vect_cmdline_needed_target_name } {
3043 verbose "check_effective_target_vect_cmdline_needed: `$et_vect_cmdline_needed_target_name' `$current_target'" 2
3044 set et_vect_cmdline_needed_target_name $current_target
3045 if { [info exists et_vect_cmdline_needed_saved] } {
3046 verbose "check_effective_target_vect_cmdline_needed: removing cached result" 2
3047 unset et_vect_cmdline_needed_saved
3051 if [info exists et_vect_cmdline_needed_saved] {
3052 verbose "check_effective_target_vect_cmdline_needed: using cached result" 2
3053 } else {
3054 set et_vect_cmdline_needed_saved 1
3055 if { [istarget alpha*-*-*]
3056 || [istarget ia64-*-*]
3057 || (([istarget i?86-*-*] || [istarget x86_64-*-*])
3058 && ![is-effective-target ia32])
3059 || ([istarget powerpc*-*-*]
3060 && ([check_effective_target_powerpc_spe]
3061 || [check_effective_target_powerpc_altivec]))
3062 || ([istarget sparc*-*-*] && [check_effective_target_sparc_vis])
3063 || [istarget spu-*-*]
3064 || ([istarget arm*-*-*] && [check_effective_target_arm_neon])
3065 || [istarget aarch64*-*-*] } {
3066 set et_vect_cmdline_needed_saved 0
3070 verbose "check_effective_target_vect_cmdline_needed: returning $et_vect_cmdline_needed_saved" 2
3071 return $et_vect_cmdline_needed_saved
3074 # Return 1 if the target supports hardware vectors of int, 0 otherwise.
3076 # This won't change for different subtargets so cache the result.
3078 proc check_effective_target_vect_int { } {
3079 global et_vect_int_saved
3080 global et_index
3082 if [info exists et_vect_int_saved($et_index)] {
3083 verbose "check_effective_target_vect_int: using cached result" 2
3084 } else {
3085 set et_vect_int_saved($et_index) 0
3086 if { [istarget i?86-*-*] || [istarget x86_64-*-*]
3087 || ([istarget powerpc*-*-*]
3088 && ![istarget powerpc-*-linux*paired*])
3089 || [istarget spu-*-*]
3090 || [istarget sparc*-*-*]
3091 || [istarget alpha*-*-*]
3092 || [istarget ia64-*-*]
3093 || [istarget aarch64*-*-*]
3094 || [is-effective-target arm_neon]
3095 || ([istarget mips*-*-*]
3096 && ([et-is-effective-target mips_loongson]
3097 || [et-is-effective-target mips_msa]))
3098 || ([istarget s390*-*-*]
3099 && [check_effective_target_s390_vx]) } {
3100 set et_vect_int_saved($et_index) 1
3104 verbose "check_effective_target_vect_int:\
3105 returning $et_vect_int_saved($et_index)" 2
3106 return $et_vect_int_saved($et_index)
3109 # Return 1 if the target supports signed int->float conversion
3112 proc check_effective_target_vect_intfloat_cvt { } {
3113 global et_vect_intfloat_cvt_saved
3114 global et_index
3116 if [info exists et_vect_intfloat_cvt_saved($et_index)] {
3117 verbose "check_effective_target_vect_intfloat_cvt:\
3118 using cached result" 2
3119 } else {
3120 set et_vect_intfloat_cvt_saved($et_index) 0
3121 if { [istarget i?86-*-*] || [istarget x86_64-*-*]
3122 || ([istarget powerpc*-*-*]
3123 && ![istarget powerpc-*-linux*paired*])
3124 || [is-effective-target arm_neon]
3125 || ([istarget mips*-*-*]
3126 && [et-is-effective-target mips_msa]) } {
3127 set et_vect_intfloat_cvt_saved($et_index) 1
3131 verbose "check_effective_target_vect_intfloat_cvt:\
3132 returning $et_vect_intfloat_cvt_saved($et_index)" 2
3133 return $et_vect_intfloat_cvt_saved($et_index)
3136 # Return 1 if the target supports signed double->int conversion
3139 proc check_effective_target_vect_doubleint_cvt { } {
3140 global et_vect_doubleint_cvt_saved
3141 global et_index
3143 if [info exists et_vect_doubleint_cvt_saved($et_index)] {
3144 verbose "check_effective_target_vect_doubleint_cvt: using cached result" 2
3145 } else {
3146 set et_vect_doubleint_cvt_saved($et_index) 0
3147 if { (([istarget i?86-*-*] || [istarget x86_64-*-*])
3148 && [check_no_compiler_messages vect_doubleint_cvt assembly {
3149 #ifdef __tune_atom__
3150 # error No double vectorizer support.
3151 #endif
3153 || [istarget aarch64*-*-*]
3154 || [istarget spu-*-*]
3155 || ([istarget powerpc*-*-*] && [check_vsx_hw_available])
3156 || ([istarget mips*-*-*]
3157 && [et-is-effective-target mips_msa]) } {
3158 set et_vect_doubleint_cvt_saved($et_index) 1
3162 verbose "check_effective_target_vect_doubleint_cvt:\
3163 returning $et_vect_doubleint_cvt_saved($et_index)" 2
3164 return $et_vect_doubleint_cvt_saved($et_index)
3167 # Return 1 if the target supports signed int->double conversion
3170 proc check_effective_target_vect_intdouble_cvt { } {
3171 global et_vect_intdouble_cvt_saved
3172 global et_index
3174 if [info exists et_vect_intdouble_cvt_saved($et_index)] {
3175 verbose "check_effective_target_vect_intdouble_cvt: using cached result" 2
3176 } else {
3177 set et_vect_intdouble_cvt_saved($et_index) 0
3178 if { (([istarget i?86-*-*] || [istarget x86_64-*-*])
3179 && [check_no_compiler_messages vect_intdouble_cvt assembly {
3180 #ifdef __tune_atom__
3181 # error No double vectorizer support.
3182 #endif
3184 || [istarget aarch64*-*-*]
3185 || [istarget spu-*-*]
3186 || ([istarget powerpc*-*-*] && [check_vsx_hw_available])
3187 || ([istarget mips*-*-*]
3188 && [et-is-effective-target mips_msa]) } {
3189 set et_vect_intdouble_cvt_saved($et_index) 1
3193 verbose "check_effective_target_vect_intdouble_cvt:\
3194 returning $et_vect_intdouble_cvt_saved($et_index)" 2
3195 return $et_vect_intdouble_cvt_saved($et_index)
3198 #Return 1 if we're supporting __int128 for target, 0 otherwise.
3200 proc check_effective_target_int128 { } {
3201 return [check_no_compiler_messages int128 object {
3202 int dummy[
3203 #ifndef __SIZEOF_INT128__
3205 #else
3207 #endif
3212 # Return 1 if the target supports unsigned int->float conversion
3215 proc check_effective_target_vect_uintfloat_cvt { } {
3216 global et_vect_uintfloat_cvt_saved
3217 global et_index
3219 if [info exists et_vect_uintfloat_cvt_saved($et_index)] {
3220 verbose "check_effective_target_vect_uintfloat_cvt:\
3221 using cached result" 2
3222 } else {
3223 set et_vect_uintfloat_cvt_saved($et_index) 0
3224 if { [istarget i?86-*-*] || [istarget x86_64-*-*]
3225 || ([istarget powerpc*-*-*]
3226 && ![istarget powerpc-*-linux*paired*])
3227 || [istarget aarch64*-*-*]
3228 || [is-effective-target arm_neon]
3229 || ([istarget mips*-*-*]
3230 && [et-is-effective-target mips_msa]) } {
3231 set et_vect_uintfloat_cvt_saved($et_index) 1
3235 verbose "check_effective_target_vect_uintfloat_cvt:\
3236 returning $et_vect_uintfloat_cvt_saved($et_index)" 2
3237 return $et_vect_uintfloat_cvt_saved($et_index)
3241 # Return 1 if the target supports signed float->int conversion
3244 proc check_effective_target_vect_floatint_cvt { } {
3245 global et_vect_floatint_cvt_saved
3246 global et_index
3248 if [info exists et_vect_floatint_cvt_saved($et_index)] {
3249 verbose "check_effective_target_vect_floatint_cvt:\
3250 using cached result" 2
3251 } else {
3252 set et_vect_floatint_cvt_saved($et_index) 0
3253 if { [istarget i?86-*-*] || [istarget x86_64-*-*]
3254 || ([istarget powerpc*-*-*]
3255 && ![istarget powerpc-*-linux*paired*])
3256 || [is-effective-target arm_neon]
3257 || ([istarget mips*-*-*]
3258 && [et-is-effective-target mips_msa]) } {
3259 set et_vect_floatint_cvt_saved($et_index) 1
3263 verbose "check_effective_target_vect_floatint_cvt:\
3264 returning $et_vect_floatint_cvt_saved($et_index)" 2
3265 return $et_vect_floatint_cvt_saved($et_index)
3268 # Return 1 if the target supports unsigned float->int conversion
3271 proc check_effective_target_vect_floatuint_cvt { } {
3272 global et_vect_floatuint_cvt_saved
3273 global et_index
3275 if [info exists et_vect_floatuint_cvt_saved($et_index)] {
3276 verbose "check_effective_target_vect_floatuint_cvt:\
3277 using cached result" 2
3278 } else {
3279 set et_vect_floatuint_cvt_saved($et_index) 0
3280 if { ([istarget powerpc*-*-*]
3281 && ![istarget powerpc-*-linux*paired*])
3282 || [is-effective-target arm_neon]
3283 || ([istarget mips*-*-*]
3284 && [et-is-effective-target mips_msa]) } {
3285 set et_vect_floatuint_cvt_saved($et_index) 1
3289 verbose "check_effective_target_vect_floatuint_cvt:\
3290 returning $et_vect_floatuint_cvt_saved($et_index)" 2
3291 return $et_vect_floatuint_cvt_saved($et_index)
3294 # Return 1 if peeling for alignment might be profitable on the target
3297 proc check_effective_target_vect_peeling_profitable { } {
3298 global et_vect_peeling_profitable_saved
3299 global et_index
3301 if [info exists et_vect_peeling_profitable_saved($et_index)] {
3302 verbose "check_effective_target_vect_peeling_profitable: using cached result" 2
3303 } else {
3304 set et_vect_peeling_profitable_saved($et_index) 1
3305 if { ([istarget s390*-*-*]
3306 && [check_effective_target_s390_vx])
3307 || [check_effective_target_vect_element_align_preferred] } {
3308 set et_vect_peeling_profitable_saved($et_index) 0
3312 verbose "check_effective_target_vect_peeling_profitable:\
3313 returning $et_vect_peeling_profitable_saved($et_index)" 2
3314 return $et_vect_peeling_profitable_saved($et_index)
3317 # Return 1 if the target supports #pragma omp declare simd, 0 otherwise.
3319 # This won't change for different subtargets so cache the result.
3321 proc check_effective_target_vect_simd_clones { } {
3322 global et_vect_simd_clones_saved
3323 global et_index
3325 if [info exists et_vect_simd_clones_saved($et_index)] {
3326 verbose "check_effective_target_vect_simd_clones: using cached result" 2
3327 } else {
3328 set et_vect_simd_clones_saved($et_index) 0
3329 # On i?86/x86_64 #pragma omp declare simd builds a sse2, avx,
3330 # avx2 and avx512f clone. Only the right clone for the
3331 # specified arch will be chosen, but still we need to at least
3332 # be able to assemble avx512f.
3333 if { (([istarget i?86-*-*] || [istarget x86_64-*-*])
3334 && [check_effective_target_avx512f]) } {
3335 set et_vect_simd_clones_saved($et_index) 1
3339 verbose "check_effective_target_vect_simd_clones:\
3340 returning $et_vect_simd_clones_saved($et_index)" 2
3341 return $et_vect_simd_clones_saved($et_index)
3344 # Return 1 if this is a AArch64 target supporting big endian
3345 proc check_effective_target_aarch64_big_endian { } {
3346 return [check_no_compiler_messages aarch64_big_endian assembly {
3347 #if !defined(__aarch64__) || !defined(__AARCH64EB__)
3348 #error !__aarch64__ || !__AARCH64EB__
3349 #endif
3353 # Return 1 if this is a AArch64 target supporting little endian
3354 proc check_effective_target_aarch64_little_endian { } {
3355 if { ![istarget aarch64*-*-*] } {
3356 return 0
3359 return [check_no_compiler_messages aarch64_little_endian assembly {
3360 #if !defined(__aarch64__) || defined(__AARCH64EB__)
3361 #error FOO
3362 #endif
3366 # Return 1 if this is an AArch64 target supporting SVE.
3367 proc check_effective_target_aarch64_sve { } {
3368 if { ![istarget aarch64*-*-*] } {
3369 return 0
3371 return [check_no_compiler_messages aarch64_sve assembly {
3372 #if !defined (__ARM_FEATURE_SVE)
3373 #error FOO
3374 #endif
3378 # Return the size in bits of an SVE vector, or 0 if the size is variable.
3379 proc aarch64_sve_bits { } {
3380 return [check_cached_effective_target aarch64_sve_bits {
3381 global tool
3383 set src dummy[pid].c
3384 set f [open $src "w"]
3385 puts $f "int bits = __ARM_FEATURE_SVE_BITS;"
3386 close $f
3387 set output [${tool}_target_compile $src "" preprocess ""]
3388 file delete $src
3390 regsub {.*bits = ([^;]*);.*} $output {\1} bits
3391 expr { $bits }
3395 # Return 1 if this is a compiler supporting ARC atomic operations
3396 proc check_effective_target_arc_atomic { } {
3397 return [check_no_compiler_messages arc_atomic assembly {
3398 #if !defined(__ARC_ATOMIC__)
3399 #error FOO
3400 #endif
3404 # Return 1 if this is an arm target using 32-bit instructions
3405 proc check_effective_target_arm32 { } {
3406 if { ![istarget arm*-*-*] } {
3407 return 0
3410 return [check_no_compiler_messages arm32 assembly {
3411 #if !defined(__arm__) || (defined(__thumb__) && !defined(__thumb2__))
3412 #error !__arm || __thumb__ && !__thumb2__
3413 #endif
3417 # Return 1 if this is an arm target not using Thumb
3418 proc check_effective_target_arm_nothumb { } {
3419 if { ![istarget arm*-*-*] } {
3420 return 0
3423 return [check_no_compiler_messages arm_nothumb assembly {
3424 #if !defined(__arm__) || (defined(__thumb__) || defined(__thumb2__))
3425 #error !__arm__ || __thumb || __thumb2__
3426 #endif
3430 # Return 1 if this is a little-endian ARM target
3431 proc check_effective_target_arm_little_endian { } {
3432 if { ![istarget arm*-*-*] } {
3433 return 0
3436 return [check_no_compiler_messages arm_little_endian assembly {
3437 #if !defined(__arm__) || !defined(__ARMEL__)
3438 #error !__arm__ || !__ARMEL__
3439 #endif
3443 # Return 1 if this is an ARM target that only supports aligned vector accesses
3444 proc check_effective_target_arm_vect_no_misalign { } {
3445 if { ![istarget arm*-*-*] } {
3446 return 0
3449 return [check_no_compiler_messages arm_vect_no_misalign assembly {
3450 #if !defined(__arm__) \
3451 || (defined(__ARM_FEATURE_UNALIGNED) \
3452 && defined(__ARMEL__))
3453 #error !__arm__ || (__ARMEL__ && __ARM_FEATURE_UNALIGNED)
3454 #endif
3459 # Return 1 if this is an ARM target supporting -mfloat-abi=soft. Some
3460 # multilibs may be incompatible with this option.
3462 proc check_effective_target_arm_soft_ok { } {
3463 if { [check_effective_target_arm32] } {
3464 return [check_no_compiler_messages arm_soft_ok executable {
3465 int main() { return 0;}
3466 } "-mfloat-abi=soft"]
3467 } else {
3468 return 0
3472 # Return 1 if this is an ARM target supporting -mfpu=vfp
3473 # -mfloat-abi=softfp. Some multilibs may be incompatible with these
3474 # options.
3476 proc check_effective_target_arm_vfp_ok { } {
3477 if { [check_effective_target_arm32] } {
3478 return [check_no_compiler_messages arm_vfp_ok object {
3479 int dummy;
3480 } "-mfpu=vfp -mfloat-abi=softfp"]
3481 } else {
3482 return 0
3486 # Return 1 if this is an ARM target supporting -mfpu=vfp3
3487 # -mfloat-abi=softfp.
3489 proc check_effective_target_arm_vfp3_ok { } {
3490 if { [check_effective_target_arm32] } {
3491 return [check_no_compiler_messages arm_vfp3_ok object {
3492 int dummy;
3493 } "-mfpu=vfp3 -mfloat-abi=softfp"]
3494 } else {
3495 return 0
3499 # Return 1 if this is an ARM target supporting -mfpu=fp-armv8
3500 # -mfloat-abi=softfp.
3501 proc check_effective_target_arm_v8_vfp_ok {} {
3502 if { [check_effective_target_arm32] } {
3503 return [check_no_compiler_messages arm_v8_vfp_ok object {
3504 int foo (void)
3506 __asm__ volatile ("vrinta.f32.f32 s0, s0");
3507 return 0;
3509 } "-mfpu=fp-armv8 -mfloat-abi=softfp"]
3510 } else {
3511 return 0
3515 # Return 1 if this is an ARM target supporting -mfpu=vfp
3516 # -mfloat-abi=hard. Some multilibs may be incompatible with these
3517 # options.
3519 proc check_effective_target_arm_hard_vfp_ok { } {
3520 if { [check_effective_target_arm32]
3521 && ! [check-flags [list "" { *-*-* } { "-mfloat-abi=*" } { "-mfloat-abi=hard" }]] } {
3522 return [check_no_compiler_messages arm_hard_vfp_ok executable {
3523 int main() { return 0;}
3524 } "-mfpu=vfp -mfloat-abi=hard"]
3525 } else {
3526 return 0
3530 # Return 1 if this is an ARM target defining __ARM_FP. We may need
3531 # -mfloat-abi=softfp or equivalent options. Some multilibs may be
3532 # incompatible with these options. Also set et_arm_fp_flags to the
3533 # best options to add.
3535 proc check_effective_target_arm_fp_ok_nocache { } {
3536 global et_arm_fp_flags
3537 set et_arm_fp_flags ""
3538 if { [check_effective_target_arm32] } {
3539 foreach flags {"" "-mfloat-abi=softfp" "-mfloat-abi=hard"} {
3540 if { [check_no_compiler_messages_nocache arm_fp_ok object {
3541 #ifndef __ARM_FP
3542 #error __ARM_FP not defined
3543 #endif
3544 } "$flags"] } {
3545 set et_arm_fp_flags $flags
3546 return 1
3551 return 0
3554 proc check_effective_target_arm_fp_ok { } {
3555 return [check_cached_effective_target arm_fp_ok \
3556 check_effective_target_arm_fp_ok_nocache]
3559 # Add the options needed to define __ARM_FP. We need either
3560 # -mfloat-abi=softfp or -mfloat-abi=hard, but if one is already
3561 # specified by the multilib, use it.
3563 proc add_options_for_arm_fp { flags } {
3564 if { ! [check_effective_target_arm_fp_ok] } {
3565 return "$flags"
3567 global et_arm_fp_flags
3568 return "$flags $et_arm_fp_flags"
3571 # Return 1 if this is an ARM target that supports DSP multiply with
3572 # current multilib flags.
3574 proc check_effective_target_arm_dsp { } {
3575 return [check_no_compiler_messages arm_dsp assembly {
3576 #ifndef __ARM_FEATURE_DSP
3577 #error not DSP
3578 #endif
3579 int i;
3583 # Return 1 if this is an ARM target that supports unaligned word/halfword
3584 # load/store instructions.
3586 proc check_effective_target_arm_unaligned { } {
3587 return [check_no_compiler_messages arm_unaligned assembly {
3588 #ifndef __ARM_FEATURE_UNALIGNED
3589 #error no unaligned support
3590 #endif
3591 int i;
3595 # Return 1 if this is an ARM target supporting -mfpu=crypto-neon-fp-armv8
3596 # -mfloat-abi=softfp or equivalent options. Some multilibs may be
3597 # incompatible with these options. Also set et_arm_crypto_flags to the
3598 # best options to add.
3600 proc check_effective_target_arm_crypto_ok_nocache { } {
3601 global et_arm_crypto_flags
3602 set et_arm_crypto_flags ""
3603 if { [check_effective_target_arm_v8_neon_ok] } {
3604 foreach flags {"" "-mfloat-abi=softfp" "-mfpu=crypto-neon-fp-armv8" "-mfpu=crypto-neon-fp-armv8 -mfloat-abi=softfp"} {
3605 if { [check_no_compiler_messages_nocache arm_crypto_ok object {
3606 #include "arm_neon.h"
3607 uint8x16_t
3608 foo (uint8x16_t a, uint8x16_t b)
3610 return vaeseq_u8 (a, b);
3612 } "$flags"] } {
3613 set et_arm_crypto_flags $flags
3614 return 1
3619 return 0
3622 # Return 1 if this is an ARM target supporting -mfpu=crypto-neon-fp-armv8
3624 proc check_effective_target_arm_crypto_ok { } {
3625 return [check_cached_effective_target arm_crypto_ok \
3626 check_effective_target_arm_crypto_ok_nocache]
3629 # Add options for crypto extensions.
3630 proc add_options_for_arm_crypto { flags } {
3631 if { ! [check_effective_target_arm_crypto_ok] } {
3632 return "$flags"
3634 global et_arm_crypto_flags
3635 return "$flags $et_arm_crypto_flags"
3638 # Add the options needed for NEON. We need either -mfloat-abi=softfp
3639 # or -mfloat-abi=hard, but if one is already specified by the
3640 # multilib, use it. Similarly, if a -mfpu option already enables
3641 # NEON, do not add -mfpu=neon.
3643 proc add_options_for_arm_neon { flags } {
3644 if { ! [check_effective_target_arm_neon_ok] } {
3645 return "$flags"
3647 global et_arm_neon_flags
3648 return "$flags $et_arm_neon_flags"
3651 proc add_options_for_arm_v8_vfp { flags } {
3652 if { ! [check_effective_target_arm_v8_vfp_ok] } {
3653 return "$flags"
3655 return "$flags -mfpu=fp-armv8 -mfloat-abi=softfp"
3658 proc add_options_for_arm_v8_neon { flags } {
3659 if { ! [check_effective_target_arm_v8_neon_ok] } {
3660 return "$flags"
3662 global et_arm_v8_neon_flags
3663 return "$flags $et_arm_v8_neon_flags -march=armv8-a"
3666 # Add the options needed for ARMv8.1 Adv.SIMD. Also adds the ARMv8 NEON
3667 # options for AArch64 and for ARM.
3669 proc add_options_for_arm_v8_1a_neon { flags } {
3670 if { ! [check_effective_target_arm_v8_1a_neon_ok] } {
3671 return "$flags"
3673 global et_arm_v8_1a_neon_flags
3674 return "$flags $et_arm_v8_1a_neon_flags"
3677 # Add the options needed for ARMv8.2 with the scalar FP16 extension.
3678 # Also adds the ARMv8 FP options for ARM and for AArch64.
3680 proc add_options_for_arm_v8_2a_fp16_scalar { flags } {
3681 if { ! [check_effective_target_arm_v8_2a_fp16_scalar_ok] } {
3682 return "$flags"
3684 global et_arm_v8_2a_fp16_scalar_flags
3685 return "$flags $et_arm_v8_2a_fp16_scalar_flags"
3688 # Add the options needed for ARMv8.2 with the FP16 extension. Also adds
3689 # the ARMv8 NEON options for ARM and for AArch64.
3691 proc add_options_for_arm_v8_2a_fp16_neon { flags } {
3692 if { ! [check_effective_target_arm_v8_2a_fp16_neon_ok] } {
3693 return "$flags"
3695 global et_arm_v8_2a_fp16_neon_flags
3696 return "$flags $et_arm_v8_2a_fp16_neon_flags"
3699 proc add_options_for_arm_crc { flags } {
3700 if { ! [check_effective_target_arm_crc_ok] } {
3701 return "$flags"
3703 global et_arm_crc_flags
3704 return "$flags $et_arm_crc_flags"
3707 # Add the options needed for NEON. We need either -mfloat-abi=softfp
3708 # or -mfloat-abi=hard, but if one is already specified by the
3709 # multilib, use it. Similarly, if a -mfpu option already enables
3710 # NEON, do not add -mfpu=neon.
3712 proc add_options_for_arm_neonv2 { flags } {
3713 if { ! [check_effective_target_arm_neonv2_ok] } {
3714 return "$flags"
3716 global et_arm_neonv2_flags
3717 return "$flags $et_arm_neonv2_flags"
3720 # Add the options needed for vfp3.
3721 proc add_options_for_arm_vfp3 { flags } {
3722 if { ! [check_effective_target_arm_vfp3_ok] } {
3723 return "$flags"
3725 return "$flags -mfpu=vfp3 -mfloat-abi=softfp"
3728 # Return 1 if this is an ARM target supporting -mfpu=neon
3729 # -mfloat-abi=softfp or equivalent options. Some multilibs may be
3730 # incompatible with these options. Also set et_arm_neon_flags to the
3731 # best options to add.
3733 proc check_effective_target_arm_neon_ok_nocache { } {
3734 global et_arm_neon_flags
3735 set et_arm_neon_flags ""
3736 if { [check_effective_target_arm32] } {
3737 foreach flags {"" "-mfloat-abi=softfp" "-mfpu=neon" "-mfpu=neon -mfloat-abi=softfp" "-mfpu=neon -mfloat-abi=softfp -march=armv7-a" "-mfloat-abi=hard" "-mfpu=neon -mfloat-abi=hard" "-mfpu=neon -mfloat-abi=hard -march=armv7-a"} {
3738 if { [check_no_compiler_messages_nocache arm_neon_ok object {
3739 #include <arm_neon.h>
3740 int dummy;
3741 #ifndef __ARM_NEON__
3742 #error not NEON
3743 #endif
3744 /* Avoid the case where a test adds -mfpu=neon, but the toolchain is
3745 configured for -mcpu=arm926ej-s, for example. */
3746 #if __ARM_ARCH < 7 || __ARM_ARCH_PROFILE == 'M'
3747 #error Architecture does not support NEON.
3748 #endif
3749 } "$flags"] } {
3750 set et_arm_neon_flags $flags
3751 return 1
3756 return 0
3759 proc check_effective_target_arm_neon_ok { } {
3760 return [check_cached_effective_target arm_neon_ok \
3761 check_effective_target_arm_neon_ok_nocache]
3764 # Return 1 if this is an ARM target supporting -mfpu=neon without any
3765 # -mfloat-abi= option. Useful in tests where add_options is not
3766 # supported (such as lto tests).
3768 proc check_effective_target_arm_neon_ok_no_float_abi_nocache { } {
3769 if { [check_effective_target_arm32] } {
3770 foreach flags {"-mfpu=neon"} {
3771 if { [check_no_compiler_messages_nocache arm_neon_ok_no_float_abi object {
3772 #include <arm_neon.h>
3773 int dummy;
3774 #ifndef __ARM_NEON__
3775 #error not NEON
3776 #endif
3777 /* Avoid the case where a test adds -mfpu=neon, but the toolchain is
3778 configured for -mcpu=arm926ej-s, for example. */
3779 #if __ARM_ARCH < 7 || __ARM_ARCH_PROFILE == 'M'
3780 #error Architecture does not support NEON.
3781 #endif
3782 } "$flags"] } {
3783 return 1
3788 return 0
3791 proc check_effective_target_arm_neon_ok_no_float_abi { } {
3792 return [check_cached_effective_target arm_neon_ok_no_float_abi \
3793 check_effective_target_arm_neon_ok_no_float_abi_nocache]
3796 proc check_effective_target_arm_crc_ok_nocache { } {
3797 global et_arm_crc_flags
3798 set et_arm_crc_flags "-march=armv8-a+crc"
3799 return [check_no_compiler_messages_nocache arm_crc_ok object {
3800 #if !defined (__ARM_FEATURE_CRC32)
3801 #error FOO
3802 #endif
3803 } "$et_arm_crc_flags"]
3806 proc check_effective_target_arm_crc_ok { } {
3807 return [check_cached_effective_target arm_crc_ok \
3808 check_effective_target_arm_crc_ok_nocache]
3811 # Return 1 if this is an ARM target supporting -mfpu=neon-fp16
3812 # -mfloat-abi=softfp or equivalent options. Some multilibs may be
3813 # incompatible with these options. Also set et_arm_neon_fp16_flags to
3814 # the best options to add.
3816 proc check_effective_target_arm_neon_fp16_ok_nocache { } {
3817 global et_arm_neon_fp16_flags
3818 global et_arm_neon_flags
3819 set et_arm_neon_fp16_flags ""
3820 if { [check_effective_target_arm32]
3821 && [check_effective_target_arm_neon_ok] } {
3822 foreach flags {"" "-mfloat-abi=softfp" "-mfpu=neon-fp16"
3823 "-mfpu=neon-fp16 -mfloat-abi=softfp"
3824 "-mfp16-format=ieee"
3825 "-mfloat-abi=softfp -mfp16-format=ieee"
3826 "-mfpu=neon-fp16 -mfp16-format=ieee"
3827 "-mfpu=neon-fp16 -mfloat-abi=softfp -mfp16-format=ieee"} {
3828 if { [check_no_compiler_messages_nocache arm_neon_fp16_ok object {
3829 #include "arm_neon.h"
3830 float16x4_t
3831 foo (float32x4_t arg)
3833 return vcvt_f16_f32 (arg);
3835 } "$et_arm_neon_flags $flags"] } {
3836 set et_arm_neon_fp16_flags [concat $et_arm_neon_flags $flags]
3837 return 1
3842 return 0
3845 proc check_effective_target_arm_neon_fp16_ok { } {
3846 return [check_cached_effective_target arm_neon_fp16_ok \
3847 check_effective_target_arm_neon_fp16_ok_nocache]
3850 proc check_effective_target_arm_neon_fp16_hw { } {
3851 if {! [check_effective_target_arm_neon_fp16_ok] } {
3852 return 0
3854 global et_arm_neon_fp16_flags
3855 check_runtime_nocache arm_neon_fp16_hw {
3857 main (int argc, char **argv)
3859 asm ("vcvt.f32.f16 q1, d0");
3860 return 0;
3862 } $et_arm_neon_fp16_flags
3865 proc add_options_for_arm_neon_fp16 { flags } {
3866 if { ! [check_effective_target_arm_neon_fp16_ok] } {
3867 return "$flags"
3869 global et_arm_neon_fp16_flags
3870 return "$flags $et_arm_neon_fp16_flags"
3873 # Return 1 if this is an ARM target supporting the FP16 alternative
3874 # format. Some multilibs may be incompatible with the options needed. Also
3875 # set et_arm_neon_fp16_flags to the best options to add.
3877 proc check_effective_target_arm_fp16_alternative_ok_nocache { } {
3878 global et_arm_neon_fp16_flags
3879 set et_arm_neon_fp16_flags ""
3880 if { [check_effective_target_arm32] } {
3881 foreach flags {"" "-mfloat-abi=softfp" "-mfpu=neon-fp16"
3882 "-mfpu=neon-fp16 -mfloat-abi=softfp"} {
3883 if { [check_no_compiler_messages_nocache \
3884 arm_fp16_alternative_ok object {
3885 #if !defined (__ARM_FP16_FORMAT_ALTERNATIVE)
3886 #error __ARM_FP16_FORMAT_ALTERNATIVE not defined
3887 #endif
3888 } "$flags -mfp16-format=alternative"] } {
3889 set et_arm_neon_fp16_flags "$flags -mfp16-format=alternative"
3890 return 1
3895 return 0
3898 proc check_effective_target_arm_fp16_alternative_ok { } {
3899 return [check_cached_effective_target arm_fp16_alternative_ok \
3900 check_effective_target_arm_fp16_alternative_ok_nocache]
3903 # Return 1 if this is an ARM target supports specifying the FP16 none
3904 # format. Some multilibs may be incompatible with the options needed.
3906 proc check_effective_target_arm_fp16_none_ok_nocache { } {
3907 if { [check_effective_target_arm32] } {
3908 foreach flags {"" "-mfloat-abi=softfp" "-mfpu=neon-fp16"
3909 "-mfpu=neon-fp16 -mfloat-abi=softfp"} {
3910 if { [check_no_compiler_messages_nocache \
3911 arm_fp16_none_ok object {
3912 #if defined (__ARM_FP16_FORMAT_ALTERNATIVE)
3913 #error __ARM_FP16_FORMAT_ALTERNATIVE defined
3914 #endif
3915 #if defined (__ARM_FP16_FORMAT_IEEE)
3916 #error __ARM_FP16_FORMAT_IEEE defined
3917 #endif
3918 } "$flags -mfp16-format=none"] } {
3919 return 1
3924 return 0
3927 proc check_effective_target_arm_fp16_none_ok { } {
3928 return [check_cached_effective_target arm_fp16_none_ok \
3929 check_effective_target_arm_fp16_none_ok_nocache]
3932 # Return 1 if this is an ARM target supporting -mfpu=neon-fp-armv8
3933 # -mfloat-abi=softfp or equivalent options. Some multilibs may be
3934 # incompatible with these options. Also set et_arm_v8_neon_flags to the
3935 # best options to add.
3937 proc check_effective_target_arm_v8_neon_ok_nocache { } {
3938 global et_arm_v8_neon_flags
3939 set et_arm_v8_neon_flags ""
3940 if { [check_effective_target_arm32] } {
3941 foreach flags {"" "-mfloat-abi=softfp" "-mfpu=neon-fp-armv8" "-mfpu=neon-fp-armv8 -mfloat-abi=softfp"} {
3942 if { [check_no_compiler_messages_nocache arm_v8_neon_ok object {
3943 #if __ARM_ARCH < 8
3944 #error not armv8 or later
3945 #endif
3946 #include "arm_neon.h"
3947 void
3948 foo ()
3950 __asm__ volatile ("vrintn.f32 q0, q0");
3952 } "$flags -march=armv8-a"] } {
3953 set et_arm_v8_neon_flags $flags
3954 return 1
3959 return 0
3962 proc check_effective_target_arm_v8_neon_ok { } {
3963 return [check_cached_effective_target arm_v8_neon_ok \
3964 check_effective_target_arm_v8_neon_ok_nocache]
3967 # Return 1 if this is an ARM target supporting -mfpu=neon-vfpv4
3968 # -mfloat-abi=softfp or equivalent options. Some multilibs may be
3969 # incompatible with these options. Also set et_arm_neonv2_flags to the
3970 # best options to add.
3972 proc check_effective_target_arm_neonv2_ok_nocache { } {
3973 global et_arm_neonv2_flags
3974 global et_arm_neon_flags
3975 set et_arm_neonv2_flags ""
3976 if { [check_effective_target_arm32]
3977 && [check_effective_target_arm_neon_ok] } {
3978 foreach flags {"" "-mfloat-abi=softfp" "-mfpu=neon-vfpv4" "-mfpu=neon-vfpv4 -mfloat-abi=softfp"} {
3979 if { [check_no_compiler_messages_nocache arm_neonv2_ok object {
3980 #include "arm_neon.h"
3981 float32x2_t
3982 foo (float32x2_t a, float32x2_t b, float32x2_t c)
3984 return vfma_f32 (a, b, c);
3986 } "$et_arm_neon_flags $flags"] } {
3987 set et_arm_neonv2_flags [concat $et_arm_neon_flags $flags]
3988 return 1
3993 return 0
3996 proc check_effective_target_arm_neonv2_ok { } {
3997 return [check_cached_effective_target arm_neonv2_ok \
3998 check_effective_target_arm_neonv2_ok_nocache]
4001 # Add the options needed for VFP FP16 support. We need either
4002 # -mfloat-abi=softfp or -mfloat-abi=hard. If one is already specified by
4003 # the multilib, use it.
4005 proc add_options_for_arm_fp16 { flags } {
4006 if { ! [check_effective_target_arm_fp16_ok] } {
4007 return "$flags"
4009 global et_arm_fp16_flags
4010 return "$flags $et_arm_fp16_flags"
4013 # Add the options needed to enable support for IEEE format
4014 # half-precision support. This is valid for ARM targets.
4016 proc add_options_for_arm_fp16_ieee { flags } {
4017 if { ! [check_effective_target_arm_fp16_ok] } {
4018 return "$flags"
4020 global et_arm_fp16_flags
4021 return "$flags $et_arm_fp16_flags -mfp16-format=ieee"
4024 # Add the options needed to enable support for ARM Alternative format
4025 # half-precision support. This is valid for ARM targets.
4027 proc add_options_for_arm_fp16_alternative { flags } {
4028 if { ! [check_effective_target_arm_fp16_ok] } {
4029 return "$flags"
4031 global et_arm_fp16_flags
4032 return "$flags $et_arm_fp16_flags -mfp16-format=alternative"
4035 # Return 1 if this is an ARM target that can support a VFP fp16 variant.
4036 # Skip multilibs that are incompatible with these options and set
4037 # et_arm_fp16_flags to the best options to add. This test is valid for
4038 # ARM only.
4040 proc check_effective_target_arm_fp16_ok_nocache { } {
4041 global et_arm_fp16_flags
4042 set et_arm_fp16_flags ""
4043 if { ! [check_effective_target_arm32] } {
4044 return 0;
4046 if [check-flags \
4047 [list "" { *-*-* } { "-mfpu=*" } \
4048 { "-mfpu=*fp16*" "-mfpu=*fpv[4-9]*" \
4049 "-mfpu=*fpv[1-9][0-9]*" "-mfpu=*fp-armv8*" } ]] {
4050 # Multilib flags would override -mfpu.
4051 return 0
4053 if [check-flags [list "" { *-*-* } { "-mfloat-abi=soft" } { "" } ]] {
4054 # Must generate floating-point instructions.
4055 return 0
4057 if [check_effective_target_arm_hf_eabi] {
4058 # Use existing float-abi and force an fpu which supports fp16
4059 set et_arm_fp16_flags "-mfpu=vfpv4"
4060 return 1;
4062 if [check-flags [list "" { *-*-* } { "-mfpu=*" } { "" } ]] {
4063 # The existing -mfpu value is OK; use it, but add softfp.
4064 set et_arm_fp16_flags "-mfloat-abi=softfp"
4065 return 1;
4067 # Add -mfpu for a VFP fp16 variant since there is no preprocessor
4068 # macro to check for this support.
4069 set flags "-mfpu=vfpv4 -mfloat-abi=softfp"
4070 if { [check_no_compiler_messages_nocache arm_fp16_ok assembly {
4071 int dummy;
4072 } "$flags"] } {
4073 set et_arm_fp16_flags "$flags"
4074 return 1
4077 return 0
4080 proc check_effective_target_arm_fp16_ok { } {
4081 return [check_cached_effective_target arm_fp16_ok \
4082 check_effective_target_arm_fp16_ok_nocache]
4085 # Return 1 if the target supports executing VFP FP16 instructions, 0
4086 # otherwise. This test is valid for ARM only.
4088 proc check_effective_target_arm_fp16_hw { } {
4089 if {! [check_effective_target_arm_fp16_ok] } {
4090 return 0
4092 global et_arm_fp16_flags
4093 check_runtime_nocache arm_fp16_hw {
4095 main (int argc, char **argv)
4097 __fp16 a = 1.0;
4098 float r;
4099 asm ("vcvtb.f32.f16 %0, %1"
4100 : "=w" (r) : "w" (a)
4101 : /* No clobbers. */);
4102 return (r == 1.0) ? 0 : 1;
4104 } "$et_arm_fp16_flags -mfp16-format=ieee"
4107 # Creates a series of routines that return 1 if the given architecture
4108 # can be selected and a routine to give the flags to select that architecture
4109 # Note: Extra flags may be added to disable options from newer compilers
4110 # (Thumb in particular - but others may be added in the future).
4111 # Warning: Do not use check_effective_target_arm_arch_*_ok for architecture
4112 # extension (eg. ARMv8.1-A) since there is no macro defined for them. See
4113 # how only __ARM_ARCH_8A__ is checked for ARMv8.1-A.
4114 # Usage: /* { dg-require-effective-target arm_arch_v5_ok } */
4115 # /* { dg-add-options arm_arch_v5t } */
4116 # /* { dg-require-effective-target arm_arch_v5t_multilib } */
4117 foreach { armfunc armflag armdefs } {
4118 v4 "-march=armv4 -marm" __ARM_ARCH_4__
4119 v4t "-march=armv4t" __ARM_ARCH_4T__
4120 v5t "-march=armv5t" __ARM_ARCH_5T__
4121 v5te "-march=armv5te" __ARM_ARCH_5TE__
4122 v6 "-march=armv6" __ARM_ARCH_6__
4123 v6k "-march=armv6k" __ARM_ARCH_6K__
4124 v6t2 "-march=armv6t2" __ARM_ARCH_6T2__
4125 v6z "-march=armv6z" __ARM_ARCH_6Z__
4126 v6m "-march=armv6-m -mthumb -mfloat-abi=soft" __ARM_ARCH_6M__
4127 v7a "-march=armv7-a" __ARM_ARCH_7A__
4128 v7r "-march=armv7-r" __ARM_ARCH_7R__
4129 v7m "-march=armv7-m -mthumb" __ARM_ARCH_7M__
4130 v7em "-march=armv7e-m -mthumb" __ARM_ARCH_7EM__
4131 v7ve "-march=armv7ve -marm"
4132 "__ARM_ARCH_7A__ && __ARM_FEATURE_IDIV"
4133 v8a "-march=armv8-a" __ARM_ARCH_8A__
4134 v8_1a "-march=armv8.1-a" __ARM_ARCH_8A__
4135 v8_2a "-march=armv8.2-a" __ARM_ARCH_8A__
4136 v8m_base "-march=armv8-m.base -mthumb -mfloat-abi=soft"
4137 __ARM_ARCH_8M_BASE__
4138 v8m_main "-march=armv8-m.main -mthumb" __ARM_ARCH_8M_MAIN__
4139 v8r "-march=armv8-r" __ARM_ARCH_8R__ } {
4140 eval [string map [list FUNC $armfunc FLAG $armflag DEFS $armdefs ] {
4141 proc check_effective_target_arm_arch_FUNC_ok { } {
4142 if { [ string match "*-marm*" "FLAG" ] &&
4143 ![check_effective_target_arm_arm_ok] } {
4144 return 0
4146 return [check_no_compiler_messages arm_arch_FUNC_ok assembly {
4147 #if !(DEFS)
4148 #error !(DEFS)
4149 #endif
4151 main (void)
4153 return 0;
4155 } "FLAG" ]
4158 proc add_options_for_arm_arch_FUNC { flags } {
4159 return "$flags FLAG"
4162 proc check_effective_target_arm_arch_FUNC_multilib { } {
4163 return [check_runtime arm_arch_FUNC_multilib {
4165 main (void)
4167 return 0;
4169 } [add_options_for_arm_arch_FUNC ""]]
4174 # Return 1 if GCC was configured with --with-mode=
4175 proc check_effective_target_default_mode { } {
4177 return [check_configured_with "with-mode="]
4180 # Return 1 if this is an ARM target where -marm causes ARM to be
4181 # used (not Thumb)
4183 proc check_effective_target_arm_arm_ok { } {
4184 return [check_no_compiler_messages arm_arm_ok assembly {
4185 #if !defined (__arm__) || defined (__thumb__) || defined (__thumb2__)
4186 #error !__arm__ || __thumb__ || __thumb2__
4187 #endif
4188 } "-marm"]
4192 # Return 1 is this is an ARM target where -mthumb causes Thumb-1 to be
4193 # used.
4195 proc check_effective_target_arm_thumb1_ok { } {
4196 return [check_no_compiler_messages arm_thumb1_ok assembly {
4197 #if !defined(__arm__) || !defined(__thumb__) || defined(__thumb2__)
4198 #error !__arm__ || !__thumb__ || __thumb2__
4199 #endif
4200 int foo (int i) { return i; }
4201 } "-mthumb"]
4204 # Return 1 is this is an ARM target where -mthumb causes Thumb-2 to be
4205 # used.
4207 proc check_effective_target_arm_thumb2_ok { } {
4208 return [check_no_compiler_messages arm_thumb2_ok assembly {
4209 #if !defined(__thumb2__)
4210 #error !__thumb2__
4211 #endif
4212 int foo (int i) { return i; }
4213 } "-mthumb"]
4216 # Return 1 if this is an ARM target where Thumb-1 is used without options
4217 # added by the test.
4219 proc check_effective_target_arm_thumb1 { } {
4220 return [check_no_compiler_messages arm_thumb1 assembly {
4221 #if !defined(__arm__) || !defined(__thumb__) || defined(__thumb2__)
4222 #error !__arm__ || !__thumb__ || __thumb2__
4223 #endif
4224 int i;
4225 } ""]
4228 # Return 1 if this is an ARM target where Thumb-2 is used without options
4229 # added by the test.
4231 proc check_effective_target_arm_thumb2 { } {
4232 return [check_no_compiler_messages arm_thumb2 assembly {
4233 #if !defined(__thumb2__)
4234 #error !__thumb2__
4235 #endif
4236 int i;
4237 } ""]
4240 # Return 1 if this is an ARM target where conditional execution is available.
4242 proc check_effective_target_arm_cond_exec { } {
4243 return [check_no_compiler_messages arm_cond_exec assembly {
4244 #if defined(__arm__) && defined(__thumb__) && !defined(__thumb2__)
4245 #error FOO
4246 #endif
4247 int i;
4248 } ""]
4251 # Return 1 if this is an ARM cortex-M profile cpu
4253 proc check_effective_target_arm_cortex_m { } {
4254 if { ![istarget arm*-*-*] } {
4255 return 0
4257 return [check_no_compiler_messages arm_cortex_m assembly {
4258 #if defined(__ARM_ARCH_ISA_ARM)
4259 #error __ARM_ARCH_ISA_ARM is defined
4260 #endif
4261 int i;
4262 } "-mthumb"]
4265 # Return 1 if this is an ARM target where -mthumb causes Thumb-1 to be
4266 # used and MOVT/MOVW instructions to be available.
4268 proc check_effective_target_arm_thumb1_movt_ok {} {
4269 if [check_effective_target_arm_thumb1_ok] {
4270 return [check_no_compiler_messages arm_movt object {
4272 foo (void)
4274 asm ("movt r0, #42");
4276 } "-mthumb"]
4277 } else {
4278 return 0
4282 # Return 1 if this is an ARM target where -mthumb causes Thumb-1 to be
4283 # used and CBZ and CBNZ instructions are available.
4285 proc check_effective_target_arm_thumb1_cbz_ok {} {
4286 if [check_effective_target_arm_thumb1_ok] {
4287 return [check_no_compiler_messages arm_movt object {
4289 foo (void)
4291 asm ("cbz r0, 2f\n2:");
4293 } "-mthumb"]
4294 } else {
4295 return 0
4299 # Return 1 if this is an ARM target where ARMv8-M Security Extensions is
4300 # available.
4302 proc check_effective_target_arm_cmse_ok {} {
4303 return [check_no_compiler_messages arm_cmse object {
4305 foo (void)
4307 asm ("bxns r0");
4309 } "-mcmse"];
4312 # Return 1 if this compilation turns on string_ops_prefer_neon on.
4314 proc check_effective_target_arm_tune_string_ops_prefer_neon { } {
4315 return [check_no_messages_and_pattern arm_tune_string_ops_prefer_neon "@string_ops_prefer_neon:\t1" assembly {
4316 int foo (void) { return 0; }
4317 } "-O2 -mprint-tune-info" ]
4320 # Return 1 if the target supports executing NEON instructions, 0
4321 # otherwise. Cache the result.
4323 proc check_effective_target_arm_neon_hw { } {
4324 return [check_runtime arm_neon_hw_available {
4326 main (void)
4328 long long a = 0, b = 1;
4329 asm ("vorr %P0, %P1, %P2"
4330 : "=w" (a)
4331 : "0" (a), "w" (b));
4332 return (a != 1);
4334 } [add_options_for_arm_neon ""]]
4337 # Return true if this is an AArch64 target that can run SVE code.
4339 proc check_effective_target_aarch64_sve_hw { } {
4340 if { ![istarget aarch64*-*-*] } {
4341 return 0
4343 return [check_runtime aarch64_sve_hw_available {
4345 main (void)
4347 asm volatile ("ptrue p0.b");
4348 return 0;
4353 # Return true if this is an AArch64 target that can run SVE code and
4354 # if its SVE vectors have exactly BITS bits.
4356 proc aarch64_sve_hw_bits { bits } {
4357 if { ![check_effective_target_aarch64_sve_hw] } {
4358 return 0
4360 return [check_runtime aarch64_sve${bits}_hw [subst {
4362 main (void)
4364 int res;
4365 asm volatile ("cntd %0" : "=r" (res));
4366 if (res * 64 != $bits)
4367 __builtin_abort ();
4368 return 0;
4373 # Return true if this is an AArch64 target that can run SVE code and
4374 # if its SVE vectors have exactly 256 bits.
4376 proc check_effective_target_aarch64_sve256_hw { } {
4377 return [aarch64_sve_hw_bits 256]
4380 proc check_effective_target_arm_neonv2_hw { } {
4381 return [check_runtime arm_neon_hwv2_available {
4382 #include "arm_neon.h"
4384 main (void)
4386 float32x2_t a, b, c;
4387 asm ("vfma.f32 %P0, %P1, %P2"
4388 : "=w" (a)
4389 : "w" (b), "w" (c));
4390 return 0;
4392 } [add_options_for_arm_neonv2 ""]]
4395 # Return 1 if the target supports the ARMv8.1 Adv.SIMD extension, 0
4396 # otherwise. The test is valid for AArch64 and ARM. Record the command
4397 # line options needed.
4399 proc check_effective_target_arm_v8_1a_neon_ok_nocache { } {
4400 global et_arm_v8_1a_neon_flags
4401 set et_arm_v8_1a_neon_flags ""
4403 if { ![istarget arm*-*-*] && ![istarget aarch64*-*-*] } {
4404 return 0;
4407 # Iterate through sets of options to find the compiler flags that
4408 # need to be added to the -march option. Start with the empty set
4409 # since AArch64 only needs the -march setting.
4410 foreach flags {"" "-mfpu=neon-fp-armv8" "-mfloat-abi=softfp" \
4411 "-mfpu=neon-fp-armv8 -mfloat-abi=softfp"} {
4412 foreach arches { "-march=armv8-a+rdma" "-march=armv8.1-a" } {
4413 if { [check_no_compiler_messages_nocache arm_v8_1a_neon_ok object {
4414 #if !defined (__ARM_FEATURE_QRDMX)
4415 #error "__ARM_FEATURE_QRDMX not defined"
4416 #endif
4417 } "$flags $arches"] } {
4418 set et_arm_v8_1a_neon_flags "$flags $arches"
4419 return 1
4424 return 0;
4427 proc check_effective_target_arm_v8_1a_neon_ok { } {
4428 return [check_cached_effective_target arm_v8_1a_neon_ok \
4429 check_effective_target_arm_v8_1a_neon_ok_nocache]
4432 # Return 1 if the target supports ARMv8.2 scalar FP16 arithmetic
4433 # instructions, 0 otherwise. The test is valid for ARM and for AArch64.
4434 # Record the command line options needed.
4436 proc check_effective_target_arm_v8_2a_fp16_scalar_ok_nocache { } {
4437 global et_arm_v8_2a_fp16_scalar_flags
4438 set et_arm_v8_2a_fp16_scalar_flags ""
4440 if { ![istarget arm*-*-*] && ![istarget aarch64*-*-*] } {
4441 return 0;
4444 # Iterate through sets of options to find the compiler flags that
4445 # need to be added to the -march option.
4446 foreach flags {"" "-mfpu=fp-armv8" "-mfloat-abi=softfp" \
4447 "-mfpu=fp-armv8 -mfloat-abi=softfp"} {
4448 if { [check_no_compiler_messages_nocache \
4449 arm_v8_2a_fp16_scalar_ok object {
4450 #if !defined (__ARM_FEATURE_FP16_SCALAR_ARITHMETIC)
4451 #error "__ARM_FEATURE_FP16_SCALAR_ARITHMETIC not defined"
4452 #endif
4453 } "$flags -march=armv8.2-a+fp16"] } {
4454 set et_arm_v8_2a_fp16_scalar_flags "$flags -march=armv8.2-a+fp16"
4455 return 1
4459 return 0;
4462 proc check_effective_target_arm_v8_2a_fp16_scalar_ok { } {
4463 return [check_cached_effective_target arm_v8_2a_fp16_scalar_ok \
4464 check_effective_target_arm_v8_2a_fp16_scalar_ok_nocache]
4467 # Return 1 if the target supports ARMv8.2 Adv.SIMD FP16 arithmetic
4468 # instructions, 0 otherwise. The test is valid for ARM and for AArch64.
4469 # Record the command line options needed.
4471 proc check_effective_target_arm_v8_2a_fp16_neon_ok_nocache { } {
4472 global et_arm_v8_2a_fp16_neon_flags
4473 set et_arm_v8_2a_fp16_neon_flags ""
4475 if { ![istarget arm*-*-*] && ![istarget aarch64*-*-*] } {
4476 return 0;
4479 # Iterate through sets of options to find the compiler flags that
4480 # need to be added to the -march option.
4481 foreach flags {"" "-mfpu=neon-fp-armv8" "-mfloat-abi=softfp" \
4482 "-mfpu=neon-fp-armv8 -mfloat-abi=softfp"} {
4483 if { [check_no_compiler_messages_nocache \
4484 arm_v8_2a_fp16_neon_ok object {
4485 #if !defined (__ARM_FEATURE_FP16_VECTOR_ARITHMETIC)
4486 #error "__ARM_FEATURE_FP16_VECTOR_ARITHMETIC not defined"
4487 #endif
4488 } "$flags -march=armv8.2-a+fp16"] } {
4489 set et_arm_v8_2a_fp16_neon_flags "$flags -march=armv8.2-a+fp16"
4490 return 1
4494 return 0;
4497 proc check_effective_target_arm_v8_2a_fp16_neon_ok { } {
4498 return [check_cached_effective_target arm_v8_2a_fp16_neon_ok \
4499 check_effective_target_arm_v8_2a_fp16_neon_ok_nocache]
4502 # Return 1 if the target supports ARMv8.2 Adv.SIMD Dot Product
4503 # instructions, 0 otherwise. The test is valid for ARM and for AArch64.
4504 # Record the command line options needed.
4506 proc check_effective_target_arm_v8_2a_dotprod_neon_ok_nocache { } {
4507 global et_arm_v8_2a_dotprod_neon_flags
4508 set et_arm_v8_2a_dotprod_neon_flags ""
4510 if { ![istarget arm*-*-*] && ![istarget aarch64*-*-*] } {
4511 return 0;
4514 # Iterate through sets of options to find the compiler flags that
4515 # need to be added to the -march option.
4516 foreach flags {"" "-mfloat-abi=softfp -mfpu=neon-fp-armv8" "-mfloat-abi=hard -mfpu=neon-fp-armv8"} {
4517 if { [check_no_compiler_messages_nocache \
4518 arm_v8_2a_dotprod_neon_ok object {
4519 #if !defined (__ARM_FEATURE_DOTPROD)
4520 #error "__ARM_FEATURE_DOTPROD not defined"
4521 #endif
4522 } "$flags -march=armv8.2-a+dotprod"] } {
4523 set et_arm_v8_2a_dotprod_neon_flags "$flags -march=armv8.2-a+dotprod"
4524 return 1
4528 return 0;
4531 proc check_effective_target_arm_v8_2a_dotprod_neon_ok { } {
4532 return [check_cached_effective_target arm_v8_2a_dotprod_neon_ok \
4533 check_effective_target_arm_v8_2a_dotprod_neon_ok_nocache]
4536 proc add_options_for_arm_v8_2a_dotprod_neon { flags } {
4537 if { ! [check_effective_target_arm_v8_2a_dotprod_neon_ok] } {
4538 return "$flags"
4540 global et_arm_v8_2a_dotprod_neon_flags
4541 return "$flags $et_arm_v8_2a_dotprod_neon_flags"
4544 # Return 1 if the target supports FP16 VFMAL and VFMSL
4545 # instructions, 0 otherwise.
4546 # Record the command line options needed.
4548 proc check_effective_target_arm_fp16fml_neon_ok_nocache { } {
4549 global et_arm_fp16fml_neon_flags
4550 set et_arm_fp16fml_neon_flags ""
4552 if { ![istarget arm*-*-*] } {
4553 return 0;
4556 # Iterate through sets of options to find the compiler flags that
4557 # need to be added to the -march option.
4558 foreach flags {"" "-mfloat-abi=softfp -mfpu=neon-fp-armv8" "-mfloat-abi=hard -mfpu=neon-fp-armv8"} {
4559 if { [check_no_compiler_messages_nocache \
4560 arm_fp16fml_neon_ok assembly {
4561 #include <arm_neon.h>
4562 float32x2_t
4563 foo (float32x2_t r, float16x4_t a, float16x4_t b)
4565 return vfmlal_high_u32 (r, a, b);
4567 } "$flags -march=armv8.2-a+fp16fml"] } {
4568 set et_arm_fp16fml_neon_flags "$flags -march=armv8.2-a+fp16fml"
4569 return 1
4573 return 0;
4576 proc check_effective_target_arm_fp16fml_neon_ok { } {
4577 return [check_cached_effective_target arm_fp16fml_neon_ok \
4578 check_effective_target_arm_fp16fml_neon_ok_nocache]
4581 proc add_options_for_arm_fp16fml_neon { flags } {
4582 if { ! [check_effective_target_arm_fp16fml_neon_ok] } {
4583 return "$flags"
4585 global et_arm_fp16fml_neon_flags
4586 return "$flags $et_arm_fp16fml_neon_flags"
4589 # Return 1 if the target supports executing ARMv8 NEON instructions, 0
4590 # otherwise.
4592 proc check_effective_target_arm_v8_neon_hw { } {
4593 return [check_runtime arm_v8_neon_hw_available {
4594 #include "arm_neon.h"
4596 main (void)
4598 float32x2_t a = { 1.0f, 2.0f };
4599 #ifdef __ARM_ARCH_ISA_A64
4600 asm ("frinta %0.2s, %1.2s"
4601 : "=w" (a)
4602 : "w" (a));
4603 #else
4604 asm ("vrinta.f32 %P0, %P1"
4605 : "=w" (a)
4606 : "0" (a));
4607 #endif
4608 return a[0] == 2.0f;
4610 } [add_options_for_arm_v8_neon ""]]
4613 # Return 1 if the target supports executing the ARMv8.1 Adv.SIMD extension, 0
4614 # otherwise. The test is valid for AArch64 and ARM.
4616 proc check_effective_target_arm_v8_1a_neon_hw { } {
4617 if { ![check_effective_target_arm_v8_1a_neon_ok] } {
4618 return 0;
4620 return [check_runtime arm_v8_1a_neon_hw_available {
4622 main (void)
4624 #ifdef __ARM_ARCH_ISA_A64
4625 __Int32x2_t a = {0, 1};
4626 __Int32x2_t b = {0, 2};
4627 __Int32x2_t result;
4629 asm ("sqrdmlah %0.2s, %1.2s, %2.2s"
4630 : "=w"(result)
4631 : "w"(a), "w"(b)
4632 : /* No clobbers. */);
4634 #else
4636 __simd64_int32_t a = {0, 1};
4637 __simd64_int32_t b = {0, 2};
4638 __simd64_int32_t result;
4640 asm ("vqrdmlah.s32 %P0, %P1, %P2"
4641 : "=w"(result)
4642 : "w"(a), "w"(b)
4643 : /* No clobbers. */);
4644 #endif
4646 return result[0];
4648 } [add_options_for_arm_v8_1a_neon ""]]
4651 # Return 1 if the target supports executing floating point instructions from
4652 # ARMv8.2 with the FP16 extension, 0 otherwise. The test is valid for ARM and
4653 # for AArch64.
4655 proc check_effective_target_arm_v8_2a_fp16_scalar_hw { } {
4656 if { ![check_effective_target_arm_v8_2a_fp16_scalar_ok] } {
4657 return 0;
4659 return [check_runtime arm_v8_2a_fp16_scalar_hw_available {
4661 main (void)
4663 __fp16 a = 1.0;
4664 __fp16 result;
4666 #ifdef __ARM_ARCH_ISA_A64
4668 asm ("fabs %h0, %h1"
4669 : "=w"(result)
4670 : "w"(a)
4671 : /* No clobbers. */);
4673 #else
4675 asm ("vabs.f16 %0, %1"
4676 : "=w"(result)
4677 : "w"(a)
4678 : /* No clobbers. */);
4680 #endif
4682 return (result == 1.0) ? 0 : 1;
4684 } [add_options_for_arm_v8_2a_fp16_scalar ""]]
4687 # Return 1 if the target supports executing Adv.SIMD instructions from ARMv8.2
4688 # with the FP16 extension, 0 otherwise. The test is valid for ARM and for
4689 # AArch64.
4691 proc check_effective_target_arm_v8_2a_fp16_neon_hw { } {
4692 if { ![check_effective_target_arm_v8_2a_fp16_neon_ok] } {
4693 return 0;
4695 return [check_runtime arm_v8_2a_fp16_neon_hw_available {
4697 main (void)
4699 #ifdef __ARM_ARCH_ISA_A64
4701 __Float16x4_t a = {1.0, -1.0, 1.0, -1.0};
4702 __Float16x4_t result;
4704 asm ("fabs %0.4h, %1.4h"
4705 : "=w"(result)
4706 : "w"(a)
4707 : /* No clobbers. */);
4709 #else
4711 __simd64_float16_t a = {1.0, -1.0, 1.0, -1.0};
4712 __simd64_float16_t result;
4714 asm ("vabs.f16 %P0, %P1"
4715 : "=w"(result)
4716 : "w"(a)
4717 : /* No clobbers. */);
4719 #endif
4721 return (result[0] == 1.0) ? 0 : 1;
4723 } [add_options_for_arm_v8_2a_fp16_neon ""]]
4726 # Return 1 if the target supports executing AdvSIMD instructions from ARMv8.2
4727 # with the Dot Product extension, 0 otherwise. The test is valid for ARM and for
4728 # AArch64.
4730 proc check_effective_target_arm_v8_2a_dotprod_neon_hw { } {
4731 if { ![check_effective_target_arm_v8_2a_dotprod_neon_ok] } {
4732 return 0;
4734 return [check_runtime arm_v8_2a_dotprod_neon_hw_available {
4735 #include "arm_neon.h"
4737 main (void)
4740 uint32x2_t results = {0,0};
4741 uint8x8_t a = {1,1,1,1,2,2,2,2};
4742 uint8x8_t b = {2,2,2,2,3,3,3,3};
4744 #ifdef __ARM_ARCH_ISA_A64
4745 asm ("udot %0.2s, %1.8b, %2.8b"
4746 : "=w"(results)
4747 : "w"(a), "w"(b)
4748 : /* No clobbers. */);
4750 #else
4751 asm ("vudot.u8 %P0, %P1, %P2"
4752 : "=w"(results)
4753 : "w"(a), "w"(b)
4754 : /* No clobbers. */);
4755 #endif
4757 return (results[0] == 8 && results[1] == 24) ? 1 : 0;
4759 } [add_options_for_arm_v8_2a_dotprod_neon ""]]
4762 # Return 1 if this is a ARM target with NEON enabled.
4764 proc check_effective_target_arm_neon { } {
4765 if { [check_effective_target_arm32] } {
4766 return [check_no_compiler_messages arm_neon object {
4767 #ifndef __ARM_NEON__
4768 #error not NEON
4769 #else
4770 int dummy;
4771 #endif
4773 } else {
4774 return 0
4778 proc check_effective_target_arm_neonv2 { } {
4779 if { [check_effective_target_arm32] } {
4780 return [check_no_compiler_messages arm_neon object {
4781 #ifndef __ARM_NEON__
4782 #error not NEON
4783 #else
4784 #ifndef __ARM_FEATURE_FMA
4785 #error not NEONv2
4786 #else
4787 int dummy;
4788 #endif
4789 #endif
4791 } else {
4792 return 0
4796 # Return 1 if this is an ARM target with load acquire and store release
4797 # instructions for 8-, 16- and 32-bit types.
4799 proc check_effective_target_arm_acq_rel { } {
4800 return [check_no_compiler_messages arm_acq_rel object {
4801 void
4802 load_acquire_store_release (void)
4804 asm ("lda r0, [r1]\n\t"
4805 "stl r0, [r1]\n\t"
4806 "ldah r0, [r1]\n\t"
4807 "stlh r0, [r1]\n\t"
4808 "ldab r0, [r1]\n\t"
4809 "stlb r0, [r1]"
4810 : : : "r0", "memory");
4815 # Add the options needed for MIPS Paired-Single.
4817 proc add_options_for_mpaired_single { flags } {
4818 if { ! [check_effective_target_mpaired_single] } {
4819 return "$flags"
4821 return "$flags -mpaired-single"
4824 # Add the options needed for MIPS SIMD Architecture.
4826 proc add_options_for_mips_msa { flags } {
4827 if { ! [check_effective_target_mips_msa] } {
4828 return "$flags"
4830 return "$flags -mmsa"
4833 # Return 1 if this a Loongson-2E or -2F target using an ABI that supports
4834 # the Loongson vector modes.
4836 proc check_effective_target_mips_loongson { } {
4837 return [check_no_compiler_messages loongson assembly {
4838 #if !defined(__mips_loongson_vector_rev)
4839 #error !__mips_loongson_vector_rev
4840 #endif
4844 # Return 1 if this is a MIPS target that supports the legacy NAN.
4846 proc check_effective_target_mips_nanlegacy { } {
4847 return [check_no_compiler_messages nanlegacy assembly {
4848 #include <stdlib.h>
4849 int main () { return 0; }
4850 } "-mnan=legacy"]
4853 # Return 1 if an MSA program can be compiled to object
4855 proc check_effective_target_mips_msa { } {
4856 if ![check_effective_target_nomips16] {
4857 return 0
4859 return [check_no_compiler_messages msa object {
4860 #if !defined(__mips_msa)
4861 #error "MSA NOT AVAIL"
4862 #else
4863 #if !(((__mips == 64) || (__mips == 32)) && (__mips_isa_rev >= 2))
4864 #error "MSA NOT AVAIL FOR ISA REV < 2"
4865 #endif
4866 #if !defined(__mips_hard_float)
4867 #error "MSA HARD_FLOAT REQUIRED"
4868 #endif
4869 #if __mips_fpr != 64
4870 #error "MSA 64-bit FPR REQUIRED"
4871 #endif
4872 #include <msa.h>
4874 int main()
4876 v8i16 v = __builtin_msa_ldi_h (1);
4878 return v[0];
4880 #endif
4881 } "-mmsa" ]
4884 # Return 1 if this is an ARM target that adheres to the ABI for the ARM
4885 # Architecture.
4887 proc check_effective_target_arm_eabi { } {
4888 return [check_no_compiler_messages arm_eabi object {
4889 #ifndef __ARM_EABI__
4890 #error not EABI
4891 #else
4892 int dummy;
4893 #endif
4897 # Return 1 if this is an ARM target that adheres to the hard-float variant of
4898 # the ABI for the ARM Architecture (e.g. -mfloat-abi=hard).
4900 proc check_effective_target_arm_hf_eabi { } {
4901 return [check_no_compiler_messages arm_hf_eabi object {
4902 #if !defined(__ARM_EABI__) || !defined(__ARM_PCS_VFP)
4903 #error not hard-float EABI
4904 #else
4905 int dummy;
4906 #endif
4910 # Return 1 if this is an ARM target that uses the soft float ABI
4911 # with no floating-point instructions at all (e.g. -mfloat-abi=soft).
4913 proc check_effective_target_arm_softfloat { } {
4914 return [check_no_compiler_messages arm_softfloat object {
4915 #if !defined(__SOFTFP__)
4916 #error not soft-float EABI
4917 #else
4918 int dummy;
4919 #endif
4923 # Return 1 if this is an ARM target supporting -mcpu=iwmmxt.
4924 # Some multilibs may be incompatible with this option.
4926 proc check_effective_target_arm_iwmmxt_ok { } {
4927 if { [check_effective_target_arm32] } {
4928 return [check_no_compiler_messages arm_iwmmxt_ok object {
4929 int dummy;
4930 } "-mcpu=iwmmxt"]
4931 } else {
4932 return 0
4936 # Return true if LDRD/STRD instructions are prefered over LDM/STM instructions
4937 # for an ARM target.
4938 proc check_effective_target_arm_prefer_ldrd_strd { } {
4939 if { ![check_effective_target_arm32] } {
4940 return 0;
4943 return [check_no_messages_and_pattern arm_prefer_ldrd_strd "strd\tr" assembly {
4944 void foo (void) { __asm__ ("" ::: "r4", "r5"); }
4945 } "-O2 -mthumb" ]
4948 # Return 1 if this is a PowerPC target supporting -meabi.
4950 proc check_effective_target_powerpc_eabi_ok { } {
4951 if { [istarget powerpc*-*-*] } {
4952 return [check_no_compiler_messages powerpc_eabi_ok object {
4953 int dummy;
4954 } "-meabi"]
4955 } else {
4956 return 0
4960 # Return 1 if this is a PowerPC target with floating-point registers.
4962 proc check_effective_target_powerpc_fprs { } {
4963 if { [istarget powerpc*-*-*]
4964 || [istarget rs6000-*-*] } {
4965 return [check_no_compiler_messages powerpc_fprs object {
4966 #ifdef __NO_FPRS__
4967 #error no FPRs
4968 #else
4969 int dummy;
4970 #endif
4972 } else {
4973 return 0
4977 # Return 1 if this is a PowerPC target with hardware double-precision
4978 # floating point.
4980 proc check_effective_target_powerpc_hard_double { } {
4981 if { [istarget powerpc*-*-*]
4982 || [istarget rs6000-*-*] } {
4983 return [check_no_compiler_messages powerpc_hard_double object {
4984 #ifdef _SOFT_DOUBLE
4985 #error soft double
4986 #else
4987 int dummy;
4988 #endif
4990 } else {
4991 return 0
4995 # Return 1 if this is a PowerPC target supporting -maltivec.
4997 proc check_effective_target_powerpc_altivec_ok { } {
4998 if { ([istarget powerpc*-*-*]
4999 && ![istarget powerpc-*-linux*paired*])
5000 || [istarget rs6000-*-*] } {
5001 # AltiVec is not supported on AIX before 5.3.
5002 if { [istarget powerpc*-*-aix4*]
5003 || [istarget powerpc*-*-aix5.1*]
5004 || [istarget powerpc*-*-aix5.2*] } {
5005 return 0
5007 return [check_no_compiler_messages powerpc_altivec_ok object {
5008 int dummy;
5009 } "-maltivec"]
5010 } else {
5011 return 0
5015 # Return 1 if this is a PowerPC target supporting -mpower8-vector
5017 proc check_effective_target_powerpc_p8vector_ok { } {
5018 if { ([istarget powerpc*-*-*]
5019 && ![istarget powerpc-*-linux*paired*])
5020 || [istarget rs6000-*-*] } {
5021 # AltiVec is not supported on AIX before 5.3.
5022 if { [istarget powerpc*-*-aix4*]
5023 || [istarget powerpc*-*-aix5.1*]
5024 || [istarget powerpc*-*-aix5.2*] } {
5025 return 0
5027 return [check_no_compiler_messages powerpc_p8vector_ok object {
5028 int main (void) {
5029 #ifdef __MACH__
5030 asm volatile ("xxlorc vs0,vs0,vs0");
5031 #else
5032 asm volatile ("xxlorc 0,0,0");
5033 #endif
5034 return 0;
5036 } "-mpower8-vector"]
5037 } else {
5038 return 0
5042 # Return 1 if this is a PowerPC target supporting -mpower9-vector
5044 proc check_effective_target_powerpc_p9vector_ok { } {
5045 if { ([istarget powerpc*-*-*]
5046 && ![istarget powerpc-*-linux*paired*])
5047 || [istarget rs6000-*-*] } {
5048 # AltiVec is not supported on AIX before 5.3.
5049 if { [istarget powerpc*-*-aix4*]
5050 || [istarget powerpc*-*-aix5.1*]
5051 || [istarget powerpc*-*-aix5.2*] } {
5052 return 0
5054 return [check_no_compiler_messages powerpc_p9vector_ok object {
5055 int main (void) {
5056 long e = -1;
5057 vector double v = (vector double) { 0.0, 0.0 };
5058 asm ("xsxexpdp %0,%1" : "+r" (e) : "wa" (v));
5059 return e;
5061 } "-mpower9-vector"]
5062 } else {
5063 return 0
5067 # Return 1 if this is a PowerPC target supporting -mmodulo
5069 proc check_effective_target_powerpc_p9modulo_ok { } {
5070 if { ([istarget powerpc*-*-*]
5071 && ![istarget powerpc-*-linux*paired*])
5072 || [istarget rs6000-*-*] } {
5073 # AltiVec is not supported on AIX before 5.3.
5074 if { [istarget powerpc*-*-aix4*]
5075 || [istarget powerpc*-*-aix5.1*]
5076 || [istarget powerpc*-*-aix5.2*] } {
5077 return 0
5079 return [check_no_compiler_messages powerpc_p9modulo_ok object {
5080 int main (void) {
5081 int i = 5, j = 3, r = -1;
5082 asm ("modsw %0,%1,%2" : "+r" (r) : "r" (i), "r" (j));
5083 return (r == 2);
5085 } "-mmodulo"]
5086 } else {
5087 return 0
5091 # Return 1 if this is a PowerPC target supporting -mfloat128 via either
5092 # software emulation on power7/power8 systems or hardware support on power9.
5094 proc check_effective_target_powerpc_float128_sw_ok { } {
5095 if { ([istarget powerpc*-*-*]
5096 && ![istarget powerpc-*-linux*paired*])
5097 || [istarget rs6000-*-*] } {
5098 # AltiVec is not supported on AIX before 5.3.
5099 if { [istarget powerpc*-*-aix4*]
5100 || [istarget powerpc*-*-aix5.1*]
5101 || [istarget powerpc*-*-aix5.2*] } {
5102 return 0
5104 return [check_no_compiler_messages powerpc_float128_sw_ok object {
5105 volatile __float128 x = 1.0q;
5106 volatile __float128 y = 2.0q;
5107 int main() {
5108 __float128 z = x + y;
5109 return (z == 3.0q);
5111 } "-mfloat128 -mvsx"]
5112 } else {
5113 return 0
5117 # Return 1 if this is a PowerPC target supporting -mfloat128 via hardware
5118 # support on power9.
5120 proc check_effective_target_powerpc_float128_hw_ok { } {
5121 if { ([istarget powerpc*-*-*]
5122 && ![istarget powerpc-*-linux*paired*])
5123 || [istarget rs6000-*-*] } {
5124 # AltiVec is not supported on AIX before 5.3.
5125 if { [istarget powerpc*-*-aix4*]
5126 || [istarget powerpc*-*-aix5.1*]
5127 || [istarget powerpc*-*-aix5.2*] } {
5128 return 0
5130 return [check_no_compiler_messages powerpc_float128_hw_ok object {
5131 volatile __float128 x = 1.0q;
5132 volatile __float128 y = 2.0q;
5133 int main() {
5134 __float128 z;
5135 __asm__ ("xsaddqp %0,%1,%2" : "=v" (z) : "v" (x), "v" (y));
5136 return (z == 3.0q);
5138 } "-mfloat128-hardware"]
5139 } else {
5140 return 0
5144 # Return 1 if this is a PowerPC target supporting -mvsx
5146 proc check_effective_target_powerpc_vsx_ok { } {
5147 if { ([istarget powerpc*-*-*]
5148 && ![istarget powerpc-*-linux*paired*])
5149 || [istarget rs6000-*-*] } {
5150 # VSX is not supported on AIX before 7.1.
5151 if { [istarget powerpc*-*-aix4*]
5152 || [istarget powerpc*-*-aix5*]
5153 || [istarget powerpc*-*-aix6*] } {
5154 return 0
5156 return [check_no_compiler_messages powerpc_vsx_ok object {
5157 int main (void) {
5158 #ifdef __MACH__
5159 asm volatile ("xxlor vs0,vs0,vs0");
5160 #else
5161 asm volatile ("xxlor 0,0,0");
5162 #endif
5163 return 0;
5165 } "-mvsx"]
5166 } else {
5167 return 0
5171 # Return 1 if this is a PowerPC target supporting -mhtm
5173 proc check_effective_target_powerpc_htm_ok { } {
5174 if { ([istarget powerpc*-*-*]
5175 && ![istarget powerpc-*-linux*paired*])
5176 || [istarget rs6000-*-*] } {
5177 # HTM is not supported on AIX yet.
5178 if { [istarget powerpc*-*-aix*] } {
5179 return 0
5181 return [check_no_compiler_messages powerpc_htm_ok object {
5182 int main (void) {
5183 asm volatile ("tbegin. 0");
5184 return 0;
5186 } "-mhtm"]
5187 } else {
5188 return 0
5192 # Return 1 if the target supports executing HTM hardware instructions,
5193 # 0 otherwise. Cache the result.
5195 proc check_htm_hw_available { } {
5196 return [check_cached_effective_target htm_hw_available {
5197 # For now, disable on Darwin
5198 if { [istarget powerpc-*-eabi] || [istarget powerpc*-*-eabispe] || [istarget *-*-darwin*]} {
5199 expr 0
5200 } else {
5201 check_runtime_nocache htm_hw_available {
5202 int main()
5204 __builtin_ttest ();
5205 return 0;
5207 } "-mhtm"
5211 # Return 1 if this is a PowerPC target supporting -mcpu=cell.
5213 proc check_effective_target_powerpc_ppu_ok { } {
5214 if [check_effective_target_powerpc_altivec_ok] {
5215 return [check_no_compiler_messages cell_asm_available object {
5216 int main (void) {
5217 #ifdef __MACH__
5218 asm volatile ("lvlx v0,v0,v0");
5219 #else
5220 asm volatile ("lvlx 0,0,0");
5221 #endif
5222 return 0;
5225 } else {
5226 return 0
5230 # Return 1 if this is a PowerPC target that supports SPU.
5232 proc check_effective_target_powerpc_spu { } {
5233 if { [istarget powerpc*-*-linux*] } {
5234 return [check_effective_target_powerpc_altivec_ok]
5235 } else {
5236 return 0
5240 # Return 1 if this is a PowerPC SPE target. The check includes options
5241 # specified by dg-options for this test, so don't cache the result.
5243 proc check_effective_target_powerpc_spe_nocache { } {
5244 if { [istarget powerpc*-*-*] } {
5245 return [check_no_compiler_messages_nocache powerpc_spe object {
5246 #ifndef __SPE__
5247 #error not SPE
5248 #else
5249 int dummy;
5250 #endif
5251 } [current_compiler_flags]]
5252 } else {
5253 return 0
5257 # Return 1 if this is a PowerPC target with SPE enabled.
5259 proc check_effective_target_powerpc_spe { } {
5260 if { [istarget powerpc*-*-*] } {
5261 return [check_no_compiler_messages powerpc_spe object {
5262 #ifndef __SPE__
5263 #error not SPE
5264 #else
5265 int dummy;
5266 #endif
5268 } else {
5269 return 0
5273 # Return 1 if this is a PowerPC target with Altivec enabled.
5275 proc check_effective_target_powerpc_altivec { } {
5276 if { [istarget powerpc*-*-*] } {
5277 return [check_no_compiler_messages powerpc_altivec object {
5278 #ifndef __ALTIVEC__
5279 #error not Altivec
5280 #else
5281 int dummy;
5282 #endif
5284 } else {
5285 return 0
5289 # Return 1 if this is a PowerPC 405 target. The check includes options
5290 # specified by dg-options for this test, so don't cache the result.
5292 proc check_effective_target_powerpc_405_nocache { } {
5293 if { [istarget powerpc*-*-*] || [istarget rs6000-*-*] } {
5294 return [check_no_compiler_messages_nocache powerpc_405 object {
5295 #ifdef __PPC405__
5296 int dummy;
5297 #else
5298 #error not a PPC405
5299 #endif
5300 } [current_compiler_flags]]
5301 } else {
5302 return 0
5306 # Return 1 if this is a PowerPC target using the ELFv2 ABI.
5308 proc check_effective_target_powerpc_elfv2 { } {
5309 if { [istarget powerpc*-*-*] } {
5310 return [check_no_compiler_messages powerpc_elfv2 object {
5311 #if _CALL_ELF != 2
5312 #error not ELF v2 ABI
5313 #else
5314 int dummy;
5315 #endif
5317 } else {
5318 return 0
5322 # Return 1 if this is a SPU target with a toolchain that
5323 # supports automatic overlay generation.
5325 proc check_effective_target_spu_auto_overlay { } {
5326 if { [istarget spu*-*-elf*] } {
5327 return [check_no_compiler_messages spu_auto_overlay executable {
5328 int main (void) { }
5329 } "-Wl,--auto-overlay" ]
5330 } else {
5331 return 0
5335 # The VxWorks SPARC simulator accepts only EM_SPARC executables and
5336 # chokes on EM_SPARC32PLUS or EM_SPARCV9 executables. Return 1 if the
5337 # test environment appears to run executables on such a simulator.
5339 proc check_effective_target_ultrasparc_hw { } {
5340 return [check_runtime ultrasparc_hw {
5341 int main() { return 0; }
5342 } "-mcpu=ultrasparc"]
5345 # Return 1 if the test environment supports executing UltraSPARC VIS2
5346 # instructions. We check this by attempting: "bmask %g0, %g0, %g0"
5348 proc check_effective_target_ultrasparc_vis2_hw { } {
5349 return [check_runtime ultrasparc_vis2_hw {
5350 int main() { __asm__(".word 0x81b00320"); return 0; }
5351 } "-mcpu=ultrasparc3"]
5354 # Return 1 if the test environment supports executing UltraSPARC VIS3
5355 # instructions. We check this by attempting: "addxc %g0, %g0, %g0"
5357 proc check_effective_target_ultrasparc_vis3_hw { } {
5358 return [check_runtime ultrasparc_vis3_hw {
5359 int main() { __asm__(".word 0x81b00220"); return 0; }
5360 } "-mcpu=niagara3"]
5363 # Return 1 if this is a SPARC-V9 target.
5365 proc check_effective_target_sparc_v9 { } {
5366 if { [istarget sparc*-*-*] } {
5367 return [check_no_compiler_messages sparc_v9 object {
5368 int main (void) {
5369 asm volatile ("return %i7+8");
5370 return 0;
5373 } else {
5374 return 0
5378 # Return 1 if this is a SPARC target with VIS enabled.
5380 proc check_effective_target_sparc_vis { } {
5381 if { [istarget sparc*-*-*] } {
5382 return [check_no_compiler_messages sparc_vis object {
5383 #ifndef __VIS__
5384 #error not VIS
5385 #else
5386 int dummy;
5387 #endif
5389 } else {
5390 return 0
5394 # Return 1 if the target supports hardware vector shift operation.
5396 proc check_effective_target_vect_shift { } {
5397 global et_vect_shift_saved
5398 global et_index
5400 if [info exists et_vect_shift_saved($et_index)] {
5401 verbose "check_effective_target_vect_shift: using cached result" 2
5402 } else {
5403 set et_vect_shift_saved($et_index) 0
5404 if { ([istarget powerpc*-*-*]
5405 && ![istarget powerpc-*-linux*paired*])
5406 || [istarget ia64-*-*]
5407 || [istarget i?86-*-*] || [istarget x86_64-*-*]
5408 || [istarget aarch64*-*-*]
5409 || [is-effective-target arm_neon]
5410 || ([istarget mips*-*-*]
5411 && ([et-is-effective-target mips_msa]
5412 || [et-is-effective-target mips_loongson]))
5413 || ([istarget s390*-*-*]
5414 && [check_effective_target_s390_vx]) } {
5415 set et_vect_shift_saved($et_index) 1
5419 verbose "check_effective_target_vect_shift:\
5420 returning $et_vect_shift_saved($et_index)" 2
5421 return $et_vect_shift_saved($et_index)
5424 proc check_effective_target_whole_vector_shift { } {
5425 if { [istarget i?86-*-*] || [istarget x86_64-*-*]
5426 || [istarget ia64-*-*]
5427 || [istarget aarch64*-*-*]
5428 || [istarget powerpc64*-*-*]
5429 || ([is-effective-target arm_neon]
5430 && [check_effective_target_arm_little_endian])
5431 || ([istarget mips*-*-*]
5432 && [et-is-effective-target mips_loongson])
5433 || ([istarget s390*-*-*]
5434 && [check_effective_target_s390_vx]) } {
5435 set answer 1
5436 } else {
5437 set answer 0
5440 verbose "check_effective_target_vect_long: returning $answer" 2
5441 return $answer
5444 # Return 1 if the target supports vector bswap operations.
5446 proc check_effective_target_vect_bswap { } {
5447 global et_vect_bswap_saved
5448 global et_index
5450 if [info exists et_vect_bswap_saved($et_index)] {
5451 verbose "check_effective_target_vect_bswap: using cached result" 2
5452 } else {
5453 set et_vect_bswap_saved($et_index) 0
5454 if { [istarget aarch64*-*-*]
5455 || [is-effective-target arm_neon]
5457 set et_vect_bswap_saved($et_index) 1
5461 verbose "check_effective_target_vect_bswap:\
5462 returning $et_vect_bswap_saved($et_index)" 2
5463 return $et_vect_bswap_saved($et_index)
5466 # Return 1 if the target supports hardware vector shift operation for char.
5468 proc check_effective_target_vect_shift_char { } {
5469 global et_vect_shift_char_saved
5470 global et_index
5472 if [info exists et_vect_shift_char_saved($et_index)] {
5473 verbose "check_effective_target_vect_shift_char: using cached result" 2
5474 } else {
5475 set et_vect_shift_char_saved($et_index) 0
5476 if { ([istarget powerpc*-*-*]
5477 && ![istarget powerpc-*-linux*paired*])
5478 || [is-effective-target arm_neon]
5479 || ([istarget mips*-*-*]
5480 && [et-is-effective-target mips_msa])
5481 || ([istarget s390*-*-*]
5482 && [check_effective_target_s390_vx]) } {
5483 set et_vect_shift_char_saved($et_index) 1
5487 verbose "check_effective_target_vect_shift_char:\
5488 returning $et_vect_shift_char_saved($et_index)" 2
5489 return $et_vect_shift_char_saved($et_index)
5492 # Return 1 if the target supports hardware vectors of long, 0 otherwise.
5494 # This can change for different subtargets so do not cache the result.
5496 proc check_effective_target_vect_long { } {
5497 if { [istarget i?86-*-*] || [istarget x86_64-*-*]
5498 || (([istarget powerpc*-*-*]
5499 && ![istarget powerpc-*-linux*paired*])
5500 && [check_effective_target_ilp32])
5501 || [is-effective-target arm_neon]
5502 || ([istarget sparc*-*-*] && [check_effective_target_ilp32])
5503 || [istarget aarch64*-*-*]
5504 || ([istarget mips*-*-*]
5505 && [et-is-effective-target mips_msa])
5506 || ([istarget s390*-*-*]
5507 && [check_effective_target_s390_vx]) } {
5508 set answer 1
5509 } else {
5510 set answer 0
5513 verbose "check_effective_target_vect_long: returning $answer" 2
5514 return $answer
5517 # Return 1 if the target supports hardware vectors of float when
5518 # -funsafe-math-optimizations is enabled, 0 otherwise.
5520 # This won't change for different subtargets so cache the result.
5522 proc check_effective_target_vect_float { } {
5523 global et_vect_float_saved
5524 global et_index
5526 if [info exists et_vect_float_saved($et_index)] {
5527 verbose "check_effective_target_vect_float: using cached result" 2
5528 } else {
5529 set et_vect_float_saved($et_index) 0
5530 if { [istarget i?86-*-*] || [istarget x86_64-*-*]
5531 || [istarget powerpc*-*-*]
5532 || [istarget spu-*-*]
5533 || [istarget mips-sde-elf]
5534 || [istarget mipsisa64*-*-*]
5535 || [istarget ia64-*-*]
5536 || [istarget aarch64*-*-*]
5537 || ([istarget mips*-*-*]
5538 && [et-is-effective-target mips_msa])
5539 || [is-effective-target arm_neon]
5540 || ([istarget s390*-*-*]
5541 && [check_effective_target_s390_vxe]) } {
5542 set et_vect_float_saved($et_index) 1
5546 verbose "check_effective_target_vect_float:\
5547 returning $et_vect_float_saved($et_index)" 2
5548 return $et_vect_float_saved($et_index)
5551 # Return 1 if the target supports hardware vectors of float without
5552 # -funsafe-math-optimizations being enabled, 0 otherwise.
5554 proc check_effective_target_vect_float_strict { } {
5555 return [expr { [check_effective_target_vect_float]
5556 && ![istarget arm*-*-*] }]
5559 # Return 1 if the target supports hardware vectors of double, 0 otherwise.
5561 # This won't change for different subtargets so cache the result.
5563 proc check_effective_target_vect_double { } {
5564 global et_vect_double_saved
5565 global et_index
5567 if [info exists et_vect_double_saved($et_index)] {
5568 verbose "check_effective_target_vect_double: using cached result" 2
5569 } else {
5570 set et_vect_double_saved($et_index) 0
5571 if { (([istarget i?86-*-*] || [istarget x86_64-*-*])
5572 && [check_no_compiler_messages vect_double assembly {
5573 #ifdef __tune_atom__
5574 # error No double vectorizer support.
5575 #endif
5577 || [istarget aarch64*-*-*]
5578 || [istarget spu-*-*]
5579 || ([istarget powerpc*-*-*] && [check_vsx_hw_available])
5580 || ([istarget mips*-*-*]
5581 && [et-is-effective-target mips_msa])
5582 || ([istarget s390*-*-*]
5583 && [check_effective_target_s390_vx]) } {
5584 set et_vect_double_saved($et_index) 1
5588 verbose "check_effective_target_vect_double:\
5589 returning $et_vect_double_saved($et_index)" 2
5590 return $et_vect_double_saved($et_index)
5593 # Return 1 if the target supports conditional addition, subtraction,
5594 # multiplication, division, minimum and maximum on vectors of double,
5595 # via the cond_ optabs. Return 0 otherwise.
5597 proc check_effective_target_vect_double_cond_arith { } {
5598 return [check_effective_target_aarch64_sve]
5601 # Return 1 if the target supports hardware vectors of long long, 0 otherwise.
5603 # This won't change for different subtargets so cache the result.
5605 proc check_effective_target_vect_long_long { } {
5606 global et_vect_long_long_saved
5607 global et_index
5609 if [info exists et_vect_long_long_saved($et_index)] {
5610 verbose "check_effective_target_vect_long_long: using cached result" 2
5611 } else {
5612 set et_vect_long_long_saved($et_index) 0
5613 if { [istarget i?86-*-*] || [istarget x86_64-*-*]
5614 || ([istarget mips*-*-*]
5615 && [et-is-effective-target mips_msa])
5616 || ([istarget s390*-*-*]
5617 && [check_effective_target_s390_vx]) } {
5618 set et_vect_long_long_saved($et_index) 1
5622 verbose "check_effective_target_vect_long_long:\
5623 returning $et_vect_long_long_saved($et_index)" 2
5624 return $et_vect_long_long_saved($et_index)
5628 # Return 1 if the target plus current options does not support a vector
5629 # max instruction on "int", 0 otherwise.
5631 # This won't change for different subtargets so cache the result.
5633 proc check_effective_target_vect_no_int_min_max { } {
5634 global et_vect_no_int_min_max_saved
5635 global et_index
5637 if [info exists et_vect_no_int_min_max_saved($et_index)] {
5638 verbose "check_effective_target_vect_no_int_min_max:\
5639 using cached result" 2
5640 } else {
5641 set et_vect_no_int_min_max_saved($et_index) 0
5642 if { [istarget sparc*-*-*]
5643 || [istarget spu-*-*]
5644 || [istarget alpha*-*-*]
5645 || ([istarget mips*-*-*]
5646 && [et-is-effective-target mips_loongson]) } {
5647 set et_vect_no_int_min_max_saved($et_index) 1
5650 verbose "check_effective_target_vect_no_int_min_max:\
5651 returning $et_vect_no_int_min_max_saved($et_index)" 2
5652 return $et_vect_no_int_min_max_saved($et_index)
5655 # Return 1 if the target plus current options does not support a vector
5656 # add instruction on "int", 0 otherwise.
5658 # This won't change for different subtargets so cache the result.
5660 proc check_effective_target_vect_no_int_add { } {
5661 global et_vect_no_int_add_saved
5662 global et_index
5664 if [info exists et_vect_no_int_add_saved($et_index)] {
5665 verbose "check_effective_target_vect_no_int_add: using cached result" 2
5666 } else {
5667 set et_vect_no_int_add_saved($et_index) 0
5668 # Alpha only supports vector add on V8QI and V4HI.
5669 if { [istarget alpha*-*-*] } {
5670 set et_vect_no_int_add_saved($et_index) 1
5673 verbose "check_effective_target_vect_no_int_add:\
5674 returning $et_vect_no_int_add_saved($et_index)" 2
5675 return $et_vect_no_int_add_saved($et_index)
5678 # Return 1 if the target plus current options does not support vector
5679 # bitwise instructions, 0 otherwise.
5681 # This won't change for different subtargets so cache the result.
5683 proc check_effective_target_vect_no_bitwise { } {
5684 global et_vect_no_bitwise_saved
5685 global et_index
5687 if [info exists et_vect_no_bitwise_saved($et_index)] {
5688 verbose "check_effective_target_vect_no_bitwise: using cached result" 2
5689 } else {
5690 set et_vect_no_bitwise_saved($et_index) 0
5692 verbose "check_effective_target_vect_no_bitwise:\
5693 returning $et_vect_no_bitwise_saved($et_index)" 2
5694 return $et_vect_no_bitwise_saved($et_index)
5697 # Return 1 if the target plus current options supports vector permutation,
5698 # 0 otherwise.
5700 # This won't change for different subtargets so cache the result.
5702 proc check_effective_target_vect_perm { } {
5703 global et_vect_perm_saved
5704 global et_index
5706 if [info exists et_vect_perm_saved($et_index)] {
5707 verbose "check_effective_target_vect_perm: using cached result" 2
5708 } else {
5709 set et_vect_perm_saved($et_index) 0
5710 if { [is-effective-target arm_neon]
5711 || ([istarget aarch64*-*-*]
5712 && ![check_effective_target_vect_variable_length])
5713 || [istarget powerpc*-*-*]
5714 || [istarget spu-*-*]
5715 || [istarget i?86-*-*] || [istarget x86_64-*-*]
5716 || ([istarget mips*-*-*]
5717 && ([et-is-effective-target mpaired_single]
5718 || [et-is-effective-target mips_msa]))
5719 || ([istarget s390*-*-*]
5720 && [check_effective_target_s390_vx]) } {
5721 set et_vect_perm_saved($et_index) 1
5724 verbose "check_effective_target_vect_perm:\
5725 returning $et_vect_perm_saved($et_index)" 2
5726 return $et_vect_perm_saved($et_index)
5729 # Return 1 if, for some VF:
5731 # - the target's default vector size is VF * ELEMENT_BITS bits
5733 # - it is possible to implement the equivalent of:
5735 # int<ELEMENT_BITS>_t s1[COUNT][COUNT * VF], s2[COUNT * VF];
5736 # for (int i = 0; i < COUNT; ++i)
5737 # for (int j = 0; j < COUNT * VF; ++j)
5738 # s1[i][j] = s2[j - j % COUNT + i]
5740 # using only a single 2-vector permute for each vector in s1.
5742 # E.g. for COUNT == 3 and vector length 4, the two arrays would be:
5744 # s2 | a0 a1 a2 a3 | b0 b1 b2 b3 | c0 c1 c2 c3
5745 # ------+-------------+-------------+------------
5746 # s1[0] | a0 a0 a0 a3 | a3 a3 b2 b2 | b2 c1 c1 c1
5747 # s1[1] | a1 a1 a1 b0 | b0 b0 b3 b3 | b3 c2 c2 c2
5748 # s1[2] | a2 a2 a2 b1 | b1 b1 c0 c0 | c0 c3 c3 c3
5750 # Each s1 permute requires only two of a, b and c.
5752 # The distance between the start of vector n in s1[0] and the start
5753 # of vector n in s2 is:
5755 # A = (n * VF) % COUNT
5757 # The corresponding value for the end of vector n is:
5759 # B = (n * VF + VF - 1) % COUNT
5761 # Subtracting i from each value gives the corresponding difference
5762 # for s1[i]. The condition being tested by this function is false
5763 # iff A - i > 0 and B - i < 0 for some i and n, such that the first
5764 # element for s1[i] comes from vector n - 1 of s2 and the last element
5765 # comes from vector n + 1 of s2. The condition is therefore true iff
5766 # A <= B for all n. This is turn means the condition is true iff:
5768 # (n * VF) % COUNT + (VF - 1) % COUNT < COUNT
5770 # for all n. COUNT - (n * VF) % COUNT is bounded by gcd (VF, COUNT),
5771 # and will be that value for at least one n in [0, COUNT), so we want:
5773 # (VF - 1) % COUNT < gcd (VF, COUNT)
5775 proc vect_perm_supported { count element_bits } {
5776 set vector_bits [lindex [available_vector_sizes] 0]
5777 if { $vector_bits <= 0 } {
5778 return 0
5780 set vf [expr { $vector_bits / $element_bits }]
5782 # Compute gcd (VF, COUNT).
5783 set gcd $vf
5784 set temp1 $count
5785 while { $temp1 > 0 } {
5786 set temp2 [expr { $gcd % $temp1 }]
5787 set gcd $temp1
5788 set temp1 $temp2
5790 return [expr { ($vf - 1) % $count < $gcd }]
5793 # Return 1 if the target supports SLP permutation of 3 vectors when each
5794 # element has 32 bits.
5796 proc check_effective_target_vect_perm3_int { } {
5797 return [expr { [check_effective_target_vect_perm]
5798 && [vect_perm_supported 3 32] }]
5801 # Return 1 if the target plus current options supports vector permutation
5802 # on byte-sized elements, 0 otherwise.
5804 # This won't change for different subtargets so cache the result.
5806 proc check_effective_target_vect_perm_byte { } {
5807 global et_vect_perm_byte_saved
5808 global et_index
5810 if [info exists et_vect_perm_byte_saved($et_index)] {
5811 verbose "check_effective_target_vect_perm_byte: using cached result" 2
5812 } else {
5813 set et_vect_perm_byte_saved($et_index) 0
5814 if { ([is-effective-target arm_neon]
5815 && [is-effective-target arm_little_endian])
5816 || ([istarget aarch64*-*-*]
5817 && [is-effective-target aarch64_little_endian]
5818 && ![check_effective_target_vect_variable_length])
5819 || [istarget powerpc*-*-*]
5820 || [istarget spu-*-*]
5821 || ([istarget mips-*.*]
5822 && [et-is-effective-target mips_msa])
5823 || ([istarget s390*-*-*]
5824 && [check_effective_target_s390_vx]) } {
5825 set et_vect_perm_byte_saved($et_index) 1
5828 verbose "check_effective_target_vect_perm_byte:\
5829 returning $et_vect_perm_byte_saved($et_index)" 2
5830 return $et_vect_perm_byte_saved($et_index)
5833 # Return 1 if the target supports SLP permutation of 3 vectors when each
5834 # element has 8 bits.
5836 proc check_effective_target_vect_perm3_byte { } {
5837 return [expr { [check_effective_target_vect_perm_byte]
5838 && [vect_perm_supported 3 8] }]
5841 # Return 1 if the target plus current options supports vector permutation
5842 # on short-sized elements, 0 otherwise.
5844 # This won't change for different subtargets so cache the result.
5846 proc check_effective_target_vect_perm_short { } {
5847 global et_vect_perm_short_saved
5848 global et_index
5850 if [info exists et_vect_perm_short_saved($et_index)] {
5851 verbose "check_effective_target_vect_perm_short: using cached result" 2
5852 } else {
5853 set et_vect_perm_short_saved($et_index) 0
5854 if { ([is-effective-target arm_neon]
5855 && [is-effective-target arm_little_endian])
5856 || ([istarget aarch64*-*-*]
5857 && [is-effective-target aarch64_little_endian]
5858 && ![check_effective_target_vect_variable_length])
5859 || [istarget powerpc*-*-*]
5860 || [istarget spu-*-*]
5861 || (([istarget i?86-*-*] || [istarget x86_64-*-*])
5862 && [check_ssse3_available])
5863 || ([istarget mips*-*-*]
5864 && [et-is-effective-target mips_msa])
5865 || ([istarget s390*-*-*]
5866 && [check_effective_target_s390_vx]) } {
5867 set et_vect_perm_short_saved($et_index) 1
5870 verbose "check_effective_target_vect_perm_short:\
5871 returning $et_vect_perm_short_saved($et_index)" 2
5872 return $et_vect_perm_short_saved($et_index)
5875 # Return 1 if the target supports SLP permutation of 3 vectors when each
5876 # element has 16 bits.
5878 proc check_effective_target_vect_perm3_short { } {
5879 return [expr { [check_effective_target_vect_perm_short]
5880 && [vect_perm_supported 3 16] }]
5883 # Return 1 if the target plus current options supports folding of
5884 # copysign into XORSIGN.
5886 # This won't change for different subtargets so cache the result.
5888 proc check_effective_target_xorsign { } {
5889 global et_xorsign_saved
5890 global et_index
5892 if [info exists et_xorsign_saved($et_index)] {
5893 verbose "check_effective_target_xorsign: using cached result" 2
5894 } else {
5895 set et_xorsign_saved($et_index) 0
5896 if { [istarget aarch64*-*-*] || [istarget arm*-*-*] } {
5897 set et_xorsign_saved($et_index) 1
5900 verbose "check_effective_target_xorsign:\
5901 returning $et_xorsign_saved($et_index)" 2
5902 return $et_xorsign_saved($et_index)
5905 # Return 1 if the target plus current options supports a vector
5906 # widening summation of *short* args into *int* result, 0 otherwise.
5908 # This won't change for different subtargets so cache the result.
5910 proc check_effective_target_vect_widen_sum_hi_to_si_pattern { } {
5911 global et_vect_widen_sum_hi_to_si_pattern_saved
5912 global et_index
5914 if [info exists et_vect_widen_sum_hi_to_si_pattern_saved($et_index)] {
5915 verbose "check_effective_target_vect_widen_sum_hi_to_si_pattern:\
5916 using cached result" 2
5917 } else {
5918 set et_vect_widen_sum_hi_to_si_pattern_saved($et_index) 0
5919 if { [istarget powerpc*-*-*]
5920 || ([istarget aarch64*-*-*]
5921 && ![check_effective_target_aarch64_sve])
5922 || [is-effective-target arm_neon]
5923 || [istarget ia64-*-*] } {
5924 set et_vect_widen_sum_hi_to_si_pattern_saved($et_index) 1
5927 verbose "check_effective_target_vect_widen_sum_hi_to_si_pattern:\
5928 returning $et_vect_widen_sum_hi_to_si_pattern_saved($et_index)" 2
5929 return $et_vect_widen_sum_hi_to_si_pattern_saved($et_index)
5932 # Return 1 if the target plus current options supports a vector
5933 # widening summation of *short* args into *int* result, 0 otherwise.
5934 # A target can also support this widening summation if it can support
5935 # promotion (unpacking) from shorts to ints.
5937 # This won't change for different subtargets so cache the result.
5939 proc check_effective_target_vect_widen_sum_hi_to_si { } {
5940 global et_vect_widen_sum_hi_to_si_saved
5941 global et_index
5943 if [info exists et_vect_widen_sum_hi_to_si_saved($et_index)] {
5944 verbose "check_effective_target_vect_widen_sum_hi_to_si:\
5945 using cached result" 2
5946 } else {
5947 set et_vect_widen_sum_hi_to_si_saved($et_index) \
5948 [check_effective_target_vect_unpack]
5949 if { [istarget powerpc*-*-*]
5950 || [istarget ia64-*-*] } {
5951 set et_vect_widen_sum_hi_to_si_saved($et_index) 1
5954 verbose "check_effective_target_vect_widen_sum_hi_to_si:\
5955 returning $et_vect_widen_sum_hi_to_si_saved($et_index)" 2
5956 return $et_vect_widen_sum_hi_to_si_saved($et_index)
5959 # Return 1 if the target plus current options supports a vector
5960 # widening summation of *char* args into *short* result, 0 otherwise.
5961 # A target can also support this widening summation if it can support
5962 # promotion (unpacking) from chars to shorts.
5964 # This won't change for different subtargets so cache the result.
5966 proc check_effective_target_vect_widen_sum_qi_to_hi { } {
5967 global et_vect_widen_sum_qi_to_hi_saved
5968 global et_index
5970 if [info exists et_vect_widen_sum_qi_to_hi_saved($et_index)] {
5971 verbose "check_effective_target_vect_widen_sum_qi_to_hi:\
5972 using cached result" 2
5973 } else {
5974 set et_vect_widen_sum_qi_to_hi_saved($et_index) 0
5975 if { [check_effective_target_vect_unpack]
5976 || [is-effective-target arm_neon]
5977 || [istarget ia64-*-*] } {
5978 set et_vect_widen_sum_qi_to_hi_saved($et_index) 1
5981 verbose "check_effective_target_vect_widen_sum_qi_to_hi:\
5982 returning $et_vect_widen_sum_qi_to_hi_saved($et_index)" 2
5983 return $et_vect_widen_sum_qi_to_hi_saved($et_index)
5986 # Return 1 if the target plus current options supports a vector
5987 # widening summation of *char* args into *int* result, 0 otherwise.
5989 # This won't change for different subtargets so cache the result.
5991 proc check_effective_target_vect_widen_sum_qi_to_si { } {
5992 global et_vect_widen_sum_qi_to_si_saved
5993 global et_index
5995 if [info exists et_vect_widen_sum_qi_to_si_saved($et_index)] {
5996 verbose "check_effective_target_vect_widen_sum_qi_to_si:\
5997 using cached result" 2
5998 } else {
5999 set et_vect_widen_sum_qi_to_si_saved($et_index) 0
6000 if { [istarget powerpc*-*-*] } {
6001 set et_vect_widen_sum_qi_to_si_saved($et_index) 1
6004 verbose "check_effective_target_vect_widen_sum_qi_to_si:\
6005 returning $et_vect_widen_sum_qi_to_si_saved($et_index)" 2
6006 return $et_vect_widen_sum_qi_to_si_saved($et_index)
6009 # Return 1 if the target plus current options supports a vector
6010 # widening multiplication of *char* args into *short* result, 0 otherwise.
6011 # A target can also support this widening multplication if it can support
6012 # promotion (unpacking) from chars to shorts, and vect_short_mult (non-widening
6013 # multiplication of shorts).
6015 # This won't change for different subtargets so cache the result.
6018 proc check_effective_target_vect_widen_mult_qi_to_hi { } {
6019 global et_vect_widen_mult_qi_to_hi_saved
6020 global et_index
6022 if [info exists et_vect_widen_mult_qi_to_hi_saved($et_index)] {
6023 verbose "check_effective_target_vect_widen_mult_qi_to_hi:\
6024 using cached result" 2
6025 } else {
6026 if { [check_effective_target_vect_unpack]
6027 && [check_effective_target_vect_short_mult] } {
6028 set et_vect_widen_mult_qi_to_hi_saved($et_index) 1
6029 } else {
6030 set et_vect_widen_mult_qi_to_hi_saved($et_index) 0
6032 if { [istarget powerpc*-*-*]
6033 || ([istarget aarch64*-*-*]
6034 && ![check_effective_target_aarch64_sve])
6035 || [is-effective-target arm_neon]
6036 || ([istarget s390*-*-*]
6037 && [check_effective_target_s390_vx]) } {
6038 set et_vect_widen_mult_qi_to_hi_saved($et_index) 1
6041 verbose "check_effective_target_vect_widen_mult_qi_to_hi:\
6042 returning $et_vect_widen_mult_qi_to_hi_saved($et_index)" 2
6043 return $et_vect_widen_mult_qi_to_hi_saved($et_index)
6046 # Return 1 if the target plus current options supports a vector
6047 # widening multiplication of *short* args into *int* result, 0 otherwise.
6048 # A target can also support this widening multplication if it can support
6049 # promotion (unpacking) from shorts to ints, and vect_int_mult (non-widening
6050 # multiplication of ints).
6052 # This won't change for different subtargets so cache the result.
6055 proc check_effective_target_vect_widen_mult_hi_to_si { } {
6056 global et_vect_widen_mult_hi_to_si_saved
6057 global et_index
6059 if [info exists et_vect_widen_mult_hi_to_si_saved($et_index)] {
6060 verbose "check_effective_target_vect_widen_mult_hi_to_si:\
6061 using cached result" 2
6062 } else {
6063 if { [check_effective_target_vect_unpack]
6064 && [check_effective_target_vect_int_mult] } {
6065 set et_vect_widen_mult_hi_to_si_saved($et_index) 1
6066 } else {
6067 set et_vect_widen_mult_hi_to_si_saved($et_index) 0
6069 if { [istarget powerpc*-*-*]
6070 || [istarget spu-*-*]
6071 || [istarget ia64-*-*]
6072 || ([istarget aarch64*-*-*]
6073 && ![check_effective_target_aarch64_sve])
6074 || [istarget i?86-*-*] || [istarget x86_64-*-*]
6075 || [is-effective-target arm_neon]
6076 || ([istarget s390*-*-*]
6077 && [check_effective_target_s390_vx]) } {
6078 set et_vect_widen_mult_hi_to_si_saved($et_index) 1
6081 verbose "check_effective_target_vect_widen_mult_hi_to_si:\
6082 returning $et_vect_widen_mult_hi_to_si_saved($et_index)" 2
6083 return $et_vect_widen_mult_hi_to_si_saved($et_index)
6086 # Return 1 if the target plus current options supports a vector
6087 # widening multiplication of *char* args into *short* result, 0 otherwise.
6089 # This won't change for different subtargets so cache the result.
6091 proc check_effective_target_vect_widen_mult_qi_to_hi_pattern { } {
6092 global et_vect_widen_mult_qi_to_hi_pattern_saved
6093 global et_index
6095 if [info exists et_vect_widen_mult_qi_to_hi_pattern_saved($et_index)] {
6096 verbose "check_effective_target_vect_widen_mult_qi_to_hi_pattern:\
6097 using cached result" 2
6098 } else {
6099 set et_vect_widen_mult_qi_to_hi_pattern_saved($et_index) 0
6100 if { [istarget powerpc*-*-*]
6101 || ([is-effective-target arm_neon]
6102 && [check_effective_target_arm_little_endian])
6103 || ([istarget s390*-*-*]
6104 && [check_effective_target_s390_vx]) } {
6105 set et_vect_widen_mult_qi_to_hi_pattern_saved($et_index) 1
6108 verbose "check_effective_target_vect_widen_mult_qi_to_hi_pattern:\
6109 returning $et_vect_widen_mult_qi_to_hi_pattern_saved($et_index)" 2
6110 return $et_vect_widen_mult_qi_to_hi_pattern_saved($et_index)
6113 # Return 1 if the target plus current options supports a vector
6114 # widening multiplication of *short* args into *int* result, 0 otherwise.
6116 # This won't change for different subtargets so cache the result.
6118 proc check_effective_target_vect_widen_mult_hi_to_si_pattern { } {
6119 global et_vect_widen_mult_hi_to_si_pattern_saved
6120 global et_index
6122 if [info exists et_vect_widen_mult_hi_to_si_pattern_saved($et_index)] {
6123 verbose "check_effective_target_vect_widen_mult_hi_to_si_pattern:\
6124 using cached result" 2
6125 } else {
6126 set et_vect_widen_mult_hi_to_si_pattern_saved($et_index) 0
6127 if { [istarget powerpc*-*-*]
6128 || [istarget spu-*-*]
6129 || [istarget ia64-*-*]
6130 || [istarget i?86-*-*] || [istarget x86_64-*-*]
6131 || ([is-effective-target arm_neon]
6132 && [check_effective_target_arm_little_endian])
6133 || ([istarget s390*-*-*]
6134 && [check_effective_target_s390_vx]) } {
6135 set et_vect_widen_mult_hi_to_si_pattern_saved($et_index) 1
6138 verbose "check_effective_target_vect_widen_mult_hi_to_si_pattern:\
6139 returning $et_vect_widen_mult_hi_to_si_pattern_saved($et_index)" 2
6140 return $et_vect_widen_mult_hi_to_si_pattern_saved($et_index)
6143 # Return 1 if the target plus current options supports a vector
6144 # widening multiplication of *int* args into *long* result, 0 otherwise.
6146 # This won't change for different subtargets so cache the result.
6148 proc check_effective_target_vect_widen_mult_si_to_di_pattern { } {
6149 global et_vect_widen_mult_si_to_di_pattern_saved
6150 global et_index
6152 if [info exists et_vect_widen_mult_si_to_di_pattern_saved($et_index)] {
6153 verbose "check_effective_target_vect_widen_mult_si_to_di_pattern:\
6154 using cached result" 2
6155 } else {
6156 set et_vect_widen_mult_si_to_di_pattern_saved($et_index) 0
6157 if {[istarget ia64-*-*]
6158 || [istarget i?86-*-*] || [istarget x86_64-*-*]
6159 || ([istarget s390*-*-*]
6160 && [check_effective_target_s390_vx]) } {
6161 set et_vect_widen_mult_si_to_di_pattern_saved($et_index) 1
6164 verbose "check_effective_target_vect_widen_mult_si_to_di_pattern:\
6165 returning $et_vect_widen_mult_si_to_di_pattern_saved($et_index)" 2
6166 return $et_vect_widen_mult_si_to_di_pattern_saved($et_index)
6169 # Return 1 if the target plus current options supports a vector
6170 # widening shift, 0 otherwise.
6172 # This won't change for different subtargets so cache the result.
6174 proc check_effective_target_vect_widen_shift { } {
6175 global et_vect_widen_shift_saved
6176 global et_index
6178 if [info exists et_vect_shift_saved($et_index)] {
6179 verbose "check_effective_target_vect_widen_shift: using cached result" 2
6180 } else {
6181 set et_vect_widen_shift_saved($et_index) 0
6182 if { [is-effective-target arm_neon] } {
6183 set et_vect_widen_shift_saved($et_index) 1
6186 verbose "check_effective_target_vect_widen_shift:\
6187 returning $et_vect_widen_shift_saved($et_index)" 2
6188 return $et_vect_widen_shift_saved($et_index)
6191 # Return 1 if the target plus current options supports a vector
6192 # dot-product of signed chars, 0 otherwise.
6194 # This won't change for different subtargets so cache the result.
6196 proc check_effective_target_vect_sdot_qi { } {
6197 global et_vect_sdot_qi_saved
6198 global et_index
6200 if [info exists et_vect_sdot_qi_saved($et_index)] {
6201 verbose "check_effective_target_vect_sdot_qi: using cached result" 2
6202 } else {
6203 set et_vect_sdot_qi_saved($et_index) 0
6204 if { [istarget ia64-*-*]
6205 || [istarget aarch64*-*-*]
6206 || [istarget arm*-*-*]
6207 || ([istarget mips*-*-*]
6208 && [et-is-effective-target mips_msa]) } {
6209 set et_vect_udot_qi_saved 1
6212 verbose "check_effective_target_vect_sdot_qi:\
6213 returning $et_vect_sdot_qi_saved($et_index)" 2
6214 return $et_vect_sdot_qi_saved($et_index)
6217 # Return 1 if the target plus current options supports a vector
6218 # dot-product of unsigned chars, 0 otherwise.
6220 # This won't change for different subtargets so cache the result.
6222 proc check_effective_target_vect_udot_qi { } {
6223 global et_vect_udot_qi_saved
6224 global et_index
6226 if [info exists et_vect_udot_qi_saved($et_index)] {
6227 verbose "check_effective_target_vect_udot_qi: using cached result" 2
6228 } else {
6229 set et_vect_udot_qi_saved($et_index) 0
6230 if { [istarget powerpc*-*-*]
6231 || [istarget aarch64*-*-*]
6232 || [istarget arm*-*-*]
6233 || [istarget ia64-*-*]
6234 || ([istarget mips*-*-*]
6235 && [et-is-effective-target mips_msa]) } {
6236 set et_vect_udot_qi_saved($et_index) 1
6239 verbose "check_effective_target_vect_udot_qi:\
6240 returning $et_vect_udot_qi_saved($et_index)" 2
6241 return $et_vect_udot_qi_saved($et_index)
6244 # Return 1 if the target plus current options supports a vector
6245 # dot-product of signed shorts, 0 otherwise.
6247 # This won't change for different subtargets so cache the result.
6249 proc check_effective_target_vect_sdot_hi { } {
6250 global et_vect_sdot_hi_saved
6251 global et_index
6253 if [info exists et_vect_sdot_hi_saved($et_index)] {
6254 verbose "check_effective_target_vect_sdot_hi: using cached result" 2
6255 } else {
6256 set et_vect_sdot_hi_saved($et_index) 0
6257 if { ([istarget powerpc*-*-*] && ![istarget powerpc-*-linux*paired*])
6258 || [istarget ia64-*-*]
6259 || [istarget i?86-*-*] || [istarget x86_64-*-*]
6260 || ([istarget mips*-*-*]
6261 && [et-is-effective-target mips_msa]) } {
6262 set et_vect_sdot_hi_saved($et_index) 1
6265 verbose "check_effective_target_vect_sdot_hi:\
6266 returning $et_vect_sdot_hi_saved($et_index)" 2
6267 return $et_vect_sdot_hi_saved($et_index)
6270 # Return 1 if the target plus current options supports a vector
6271 # dot-product of unsigned shorts, 0 otherwise.
6273 # This won't change for different subtargets so cache the result.
6275 proc check_effective_target_vect_udot_hi { } {
6276 global et_vect_udot_hi_saved
6277 global et_index
6279 if [info exists et_vect_udot_hi_saved($et_index)] {
6280 verbose "check_effective_target_vect_udot_hi: using cached result" 2
6281 } else {
6282 set et_vect_udot_hi_saved($et_index) 0
6283 if { ([istarget powerpc*-*-*] && ![istarget powerpc-*-linux*paired*])
6284 || ([istarget mips*-*-*]
6285 && [et-is-effective-target mips_msa]) } {
6286 set et_vect_udot_hi_saved($et_index) 1
6289 verbose "check_effective_target_vect_udot_hi:\
6290 returning $et_vect_udot_hi_saved($et_index)" 2
6291 return $et_vect_udot_hi_saved($et_index)
6294 # Return 1 if the target plus current options supports a vector
6295 # sad operation of unsigned chars, 0 otherwise.
6297 # This won't change for different subtargets so cache the result.
6299 proc check_effective_target_vect_usad_char { } {
6300 global et_vect_usad_char_saved
6301 global et_index
6303 if [info exists et_vect_usad_char_saved($et_index)] {
6304 verbose "check_effective_target_vect_usad_char: using cached result" 2
6305 } else {
6306 set et_vect_usad_char_saved($et_index) 0
6307 if { [istarget i?86-*-*] || [istarget x86_64-*-*] } {
6308 set et_vect_usad_char_saved($et_index) 1
6311 verbose "check_effective_target_vect_usad_char:\
6312 returning $et_vect_usad_char_saved($et_index)" 2
6313 return $et_vect_usad_char_saved($et_index)
6316 # Return 1 if the target plus current options supports a vector
6317 # demotion (packing) of shorts (to chars) and ints (to shorts)
6318 # using modulo arithmetic, 0 otherwise.
6320 # This won't change for different subtargets so cache the result.
6322 proc check_effective_target_vect_pack_trunc { } {
6323 global et_vect_pack_trunc_saved
6324 global et_index
6326 if [info exists et_vect_pack_trunc_saved($et_index)] {
6327 verbose "check_effective_target_vect_pack_trunc: using cached result" 2
6328 } else {
6329 set et_vect_pack_trunc_saved($et_index) 0
6330 if { ([istarget powerpc*-*-*] && ![istarget powerpc-*-linux*paired*])
6331 || [istarget i?86-*-*] || [istarget x86_64-*-*]
6332 || [istarget aarch64*-*-*]
6333 || [istarget spu-*-*]
6334 || ([istarget arm*-*-*] && [check_effective_target_arm_neon_ok]
6335 && [check_effective_target_arm_little_endian])
6336 || ([istarget mips*-*-*]
6337 && [et-is-effective-target mips_msa])
6338 || ([istarget s390*-*-*]
6339 && [check_effective_target_s390_vx]) } {
6340 set et_vect_pack_trunc_saved($et_index) 1
6343 verbose "check_effective_target_vect_pack_trunc:\
6344 returning $et_vect_pack_trunc_saved($et_index)" 2
6345 return $et_vect_pack_trunc_saved($et_index)
6348 # Return 1 if the target plus current options supports a vector
6349 # promotion (unpacking) of chars (to shorts) and shorts (to ints), 0 otherwise.
6351 # This won't change for different subtargets so cache the result.
6353 proc check_effective_target_vect_unpack { } {
6354 global et_vect_unpack_saved
6355 global et_index
6357 if [info exists et_vect_unpack_saved($et_index)] {
6358 verbose "check_effective_target_vect_unpack: using cached result" 2
6359 } else {
6360 set et_vect_unpack_saved($et_index) 0
6361 if { ([istarget powerpc*-*-*] && ![istarget powerpc-*paired*])
6362 || [istarget i?86-*-*] || [istarget x86_64-*-*]
6363 || [istarget spu-*-*]
6364 || [istarget ia64-*-*]
6365 || [istarget aarch64*-*-*]
6366 || ([istarget mips*-*-*]
6367 && [et-is-effective-target mips_msa])
6368 || ([istarget arm*-*-*] && [check_effective_target_arm_neon_ok]
6369 && [check_effective_target_arm_little_endian])
6370 || ([istarget s390*-*-*]
6371 && [check_effective_target_s390_vx]) } {
6372 set et_vect_unpack_saved($et_index) 1
6375 verbose "check_effective_target_vect_unpack:\
6376 returning $et_vect_unpack_saved($et_index)" 2
6377 return $et_vect_unpack_saved($et_index)
6380 # Return 1 if the target plus current options does not guarantee
6381 # that its STACK_BOUNDARY is >= the reguired vector alignment.
6383 # This won't change for different subtargets so cache the result.
6385 proc check_effective_target_unaligned_stack { } {
6386 global et_unaligned_stack_saved
6388 if [info exists et_unaligned_stack_saved] {
6389 verbose "check_effective_target_unaligned_stack: using cached result" 2
6390 } else {
6391 set et_unaligned_stack_saved 0
6393 verbose "check_effective_target_unaligned_stack: returning $et_unaligned_stack_saved" 2
6394 return $et_unaligned_stack_saved
6397 # Return 1 if the target plus current options does not support a vector
6398 # alignment mechanism, 0 otherwise.
6400 # This won't change for different subtargets so cache the result.
6402 proc check_effective_target_vect_no_align { } {
6403 global et_vect_no_align_saved
6404 global et_index
6406 if [info exists et_vect_no_align_saved($et_index)] {
6407 verbose "check_effective_target_vect_no_align: using cached result" 2
6408 } else {
6409 set et_vect_no_align_saved($et_index) 0
6410 if { [istarget mipsisa64*-*-*]
6411 || [istarget mips-sde-elf]
6412 || [istarget sparc*-*-*]
6413 || [istarget ia64-*-*]
6414 || [check_effective_target_arm_vect_no_misalign]
6415 || ([istarget powerpc*-*-*] && [check_p8vector_hw_available])
6416 || ([istarget mips*-*-*]
6417 && [et-is-effective-target mips_loongson]) } {
6418 set et_vect_no_align_saved($et_index) 1
6421 verbose "check_effective_target_vect_no_align:\
6422 returning $et_vect_no_align_saved($et_index)" 2
6423 return $et_vect_no_align_saved($et_index)
6426 # Return 1 if the target supports a vector misalign access, 0 otherwise.
6428 # This won't change for different subtargets so cache the result.
6430 proc check_effective_target_vect_hw_misalign { } {
6431 global et_vect_hw_misalign_saved
6432 global et_index
6434 if [info exists et_vect_hw_misalign_saved($et_index)] {
6435 verbose "check_effective_target_vect_hw_misalign: using cached result" 2
6436 } else {
6437 set et_vect_hw_misalign_saved($et_index) 0
6438 if { [istarget i?86-*-*] || [istarget x86_64-*-*]
6439 || ([istarget powerpc*-*-*] && [check_p8vector_hw_available])
6440 || [istarget aarch64*-*-*]
6441 || ([istarget mips*-*-*] && [et-is-effective-target mips_msa])
6442 || ([istarget s390*-*-*]
6443 && [check_effective_target_s390_vx]) } {
6444 set et_vect_hw_misalign_saved($et_index) 1
6446 if { [istarget arm*-*-*] } {
6447 set et_vect_hw_misalign_saved($et_index) [expr ![check_effective_target_arm_vect_no_misalign]]
6450 verbose "check_effective_target_vect_hw_misalign:\
6451 returning $et_vect_hw_misalign_saved($et_index)" 2
6452 return $et_vect_hw_misalign_saved($et_index)
6456 # Return 1 if arrays are aligned to the vector alignment
6457 # boundary, 0 otherwise.
6459 proc check_effective_target_vect_aligned_arrays { } {
6460 set et_vect_aligned_arrays 0
6461 if { (([istarget i?86-*-*] || [istarget x86_64-*-*])
6462 && !([is-effective-target ia32]
6463 || ([check_avx_available] && ![check_prefer_avx128])))
6464 || [istarget spu-*-*] } {
6465 set et_vect_aligned_arrays 1
6468 verbose "check_effective_target_vect_aligned_arrays:\
6469 returning $et_vect_aligned_arrays" 2
6470 return $et_vect_aligned_arrays
6473 # Return 1 if types of size 32 bit or less are naturally aligned
6474 # (aligned to their type-size), 0 otherwise.
6476 # This won't change for different subtargets so cache the result.
6478 proc check_effective_target_natural_alignment_32 { } {
6479 global et_natural_alignment_32
6481 if [info exists et_natural_alignment_32_saved] {
6482 verbose "check_effective_target_natural_alignment_32: using cached result" 2
6483 } else {
6484 # FIXME: 32bit powerpc: guaranteed only if MASK_ALIGN_NATURAL/POWER.
6485 set et_natural_alignment_32_saved 1
6486 if { ([istarget *-*-darwin*] && [is-effective-target lp64])
6487 || [istarget avr-*-*] } {
6488 set et_natural_alignment_32_saved 0
6491 verbose "check_effective_target_natural_alignment_32: returning $et_natural_alignment_32_saved" 2
6492 return $et_natural_alignment_32_saved
6495 # Return 1 if types of size 64 bit or less are naturally aligned (aligned to their
6496 # type-size), 0 otherwise.
6498 # This won't change for different subtargets so cache the result.
6500 proc check_effective_target_natural_alignment_64 { } {
6501 global et_natural_alignment_64
6503 if [info exists et_natural_alignment_64_saved] {
6504 verbose "check_effective_target_natural_alignment_64: using cached result" 2
6505 } else {
6506 set et_natural_alignment_64_saved 0
6507 if { ([is-effective-target lp64] && ![istarget *-*-darwin*])
6508 || [istarget spu-*-*] } {
6509 set et_natural_alignment_64_saved 1
6512 verbose "check_effective_target_natural_alignment_64: returning $et_natural_alignment_64_saved" 2
6513 return $et_natural_alignment_64_saved
6516 # Return 1 if all vector types are naturally aligned (aligned to their
6517 # type-size), 0 otherwise.
6519 proc check_effective_target_vect_natural_alignment { } {
6520 set et_vect_natural_alignment 1
6521 if { [check_effective_target_arm_eabi]
6522 || [istarget nvptx-*-*]
6523 || [istarget s390*-*-*] } {
6524 set et_vect_natural_alignment 0
6526 verbose "check_effective_target_vect_natural_alignment:\
6527 returning $et_vect_natural_alignment" 2
6528 return $et_vect_natural_alignment
6531 # Return true if fully-masked loops are supported.
6533 proc check_effective_target_vect_fully_masked { } {
6534 return [check_effective_target_aarch64_sve]
6537 # Return 1 if the target doesn't prefer any alignment beyond element
6538 # alignment during vectorization.
6540 proc check_effective_target_vect_element_align_preferred { } {
6541 return [expr { [check_effective_target_aarch64_sve]
6542 && [check_effective_target_vect_variable_length] }]
6545 # Return 1 if we can align stack data to the preferred vector alignment.
6547 proc check_effective_target_vect_align_stack_vars { } {
6548 if { [check_effective_target_aarch64_sve] } {
6549 return [check_effective_target_vect_variable_length]
6551 return 1
6554 # Return 1 if vector alignment (for types of size 32 bit or less) is reachable, 0 otherwise.
6556 proc check_effective_target_vector_alignment_reachable { } {
6557 set et_vector_alignment_reachable 0
6558 if { [check_effective_target_vect_aligned_arrays]
6559 || [check_effective_target_natural_alignment_32] } {
6560 set et_vector_alignment_reachable 1
6562 verbose "check_effective_target_vector_alignment_reachable:\
6563 returning $et_vector_alignment_reachable" 2
6564 return $et_vector_alignment_reachable
6567 # Return 1 if vector alignment for 64 bit is reachable, 0 otherwise.
6569 proc check_effective_target_vector_alignment_reachable_for_64bit { } {
6570 set et_vector_alignment_reachable_for_64bit 0
6571 if { [check_effective_target_vect_aligned_arrays]
6572 || [check_effective_target_natural_alignment_64] } {
6573 set et_vector_alignment_reachable_for_64bit 1
6575 verbose "check_effective_target_vector_alignment_reachable_for_64bit:\
6576 returning $et_vector_alignment_reachable_for_64bit" 2
6577 return $et_vector_alignment_reachable_for_64bit
6580 # Return 1 if the target only requires element alignment for vector accesses
6582 proc check_effective_target_vect_element_align { } {
6583 global et_vect_element_align
6584 global et_index
6586 if [info exists et_vect_element_align($et_index)] {
6587 verbose "check_effective_target_vect_element_align:\
6588 using cached result" 2
6589 } else {
6590 set et_vect_element_align($et_index) 0
6591 if { ([istarget arm*-*-*]
6592 && ![check_effective_target_arm_vect_no_misalign])
6593 || [check_effective_target_vect_hw_misalign] } {
6594 set et_vect_element_align($et_index) 1
6598 verbose "check_effective_target_vect_element_align:\
6599 returning $et_vect_element_align($et_index)" 2
6600 return $et_vect_element_align($et_index)
6603 # Return 1 if we expect to see unaligned accesses in at least some
6604 # vector dumps.
6606 proc check_effective_target_vect_unaligned_possible { } {
6607 return [expr { ![check_effective_target_vect_element_align_preferred]
6608 && (![check_effective_target_vect_no_align]
6609 || [check_effective_target_vect_hw_misalign]) }]
6612 # Return 1 if the target supports vector LOAD_LANES operations, 0 otherwise.
6614 proc check_effective_target_vect_load_lanes { } {
6615 global et_vect_load_lanes
6617 if [info exists et_vect_load_lanes] {
6618 verbose "check_effective_target_vect_load_lanes: using cached result" 2
6619 } else {
6620 set et_vect_load_lanes 0
6621 # We don't support load_lanes correctly on big-endian arm.
6622 if { ([check_effective_target_arm_little_endian] && [check_effective_target_arm_neon_ok])
6623 || [istarget aarch64*-*-*] } {
6624 set et_vect_load_lanes 1
6628 verbose "check_effective_target_vect_load_lanes: returning $et_vect_load_lanes" 2
6629 return $et_vect_load_lanes
6632 # Return 1 if the target supports vector masked stores.
6634 proc check_effective_target_vect_masked_store { } {
6635 return [check_effective_target_aarch64_sve]
6638 # Return 1 if the target supports vector scatter stores.
6640 proc check_effective_target_vect_scatter_store { } {
6641 return [check_effective_target_aarch64_sve]
6644 # Return 1 if the target supports vector conditional operations, 0 otherwise.
6646 proc check_effective_target_vect_condition { } {
6647 global et_vect_cond_saved
6648 global et_index
6650 if [info exists et_vect_cond_saved($et_index)] {
6651 verbose "check_effective_target_vect_cond: using cached result" 2
6652 } else {
6653 set et_vect_cond_saved($et_index) 0
6654 if { [istarget aarch64*-*-*]
6655 || [istarget powerpc*-*-*]
6656 || [istarget ia64-*-*]
6657 || [istarget i?86-*-*] || [istarget x86_64-*-*]
6658 || [istarget spu-*-*]
6659 || ([istarget mips*-*-*]
6660 && [et-is-effective-target mips_msa])
6661 || ([istarget arm*-*-*]
6662 && [check_effective_target_arm_neon_ok])
6663 || ([istarget s390*-*-*]
6664 && [check_effective_target_s390_vx]) } {
6665 set et_vect_cond_saved($et_index) 1
6669 verbose "check_effective_target_vect_cond:\
6670 returning $et_vect_cond_saved($et_index)" 2
6671 return $et_vect_cond_saved($et_index)
6674 # Return 1 if the target supports vector conditional operations where
6675 # the comparison has different type from the lhs, 0 otherwise.
6677 proc check_effective_target_vect_cond_mixed { } {
6678 global et_vect_cond_mixed_saved
6679 global et_index
6681 if [info exists et_vect_cond_mixed_saved($et_index)] {
6682 verbose "check_effective_target_vect_cond_mixed: using cached result" 2
6683 } else {
6684 set et_vect_cond_mixed_saved($et_index) 0
6685 if { [istarget i?86-*-*] || [istarget x86_64-*-*]
6686 || [istarget aarch64*-*-*]
6687 || [istarget powerpc*-*-*]
6688 || ([istarget mips*-*-*]
6689 && [et-is-effective-target mips_msa])
6690 || ([istarget s390*-*-*]
6691 && [check_effective_target_s390_vx]) } {
6692 set et_vect_cond_mixed_saved($et_index) 1
6696 verbose "check_effective_target_vect_cond_mixed:\
6697 returning $et_vect_cond_mixed_saved($et_index)" 2
6698 return $et_vect_cond_mixed_saved($et_index)
6701 # Return 1 if the target supports vector char multiplication, 0 otherwise.
6703 proc check_effective_target_vect_char_mult { } {
6704 global et_vect_char_mult_saved
6705 global et_index
6707 if [info exists et_vect_char_mult_saved($et_index)] {
6708 verbose "check_effective_target_vect_char_mult: using cached result" 2
6709 } else {
6710 set et_vect_char_mult_saved($et_index) 0
6711 if { [istarget aarch64*-*-*]
6712 || [istarget ia64-*-*]
6713 || [istarget i?86-*-*] || [istarget x86_64-*-*]
6714 || [check_effective_target_arm32]
6715 || [check_effective_target_powerpc_altivec]
6716 || ([istarget mips*-*-*]
6717 && [et-is-effective-target mips_msa])
6718 || ([istarget s390*-*-*]
6719 && [check_effective_target_s390_vx]) } {
6720 set et_vect_char_mult_saved($et_index) 1
6724 verbose "check_effective_target_vect_char_mult:\
6725 returning $et_vect_char_mult_saved($et_index)" 2
6726 return $et_vect_char_mult_saved($et_index)
6729 # Return 1 if the target supports vector short multiplication, 0 otherwise.
6731 proc check_effective_target_vect_short_mult { } {
6732 global et_vect_short_mult_saved
6733 global et_index
6735 if [info exists et_vect_short_mult_saved($et_index)] {
6736 verbose "check_effective_target_vect_short_mult: using cached result" 2
6737 } else {
6738 set et_vect_short_mult_saved($et_index) 0
6739 if { [istarget ia64-*-*]
6740 || [istarget spu-*-*]
6741 || [istarget i?86-*-*] || [istarget x86_64-*-*]
6742 || [istarget powerpc*-*-*]
6743 || [istarget aarch64*-*-*]
6744 || [check_effective_target_arm32]
6745 || ([istarget mips*-*-*]
6746 && ([et-is-effective-target mips_msa]
6747 || [et-is-effective-target mips_loongson]))
6748 || ([istarget s390*-*-*]
6749 && [check_effective_target_s390_vx]) } {
6750 set et_vect_short_mult_saved($et_index) 1
6754 verbose "check_effective_target_vect_short_mult:\
6755 returning $et_vect_short_mult_saved($et_index)" 2
6756 return $et_vect_short_mult_saved($et_index)
6759 # Return 1 if the target supports vector int multiplication, 0 otherwise.
6761 proc check_effective_target_vect_int_mult { } {
6762 global et_vect_int_mult_saved
6763 global et_index
6765 if [info exists et_vect_int_mult_saved($et_index)] {
6766 verbose "check_effective_target_vect_int_mult: using cached result" 2
6767 } else {
6768 set et_vect_int_mult_saved($et_index) 0
6769 if { ([istarget powerpc*-*-*] && ![istarget powerpc-*-linux*paired*])
6770 || [istarget spu-*-*]
6771 || [istarget i?86-*-*] || [istarget x86_64-*-*]
6772 || [istarget ia64-*-*]
6773 || [istarget aarch64*-*-*]
6774 || ([istarget mips*-*-*]
6775 && [et-is-effective-target mips_msa])
6776 || [check_effective_target_arm32]
6777 || ([istarget s390*-*-*]
6778 && [check_effective_target_s390_vx]) } {
6779 set et_vect_int_mult_saved($et_index) 1
6783 verbose "check_effective_target_vect_int_mult:\
6784 returning $et_vect_int_mult_saved($et_index)" 2
6785 return $et_vect_int_mult_saved($et_index)
6788 # Return 1 if the target supports 64 bit hardware vector
6789 # multiplication of long operands with a long result, 0 otherwise.
6791 # This can change for different subtargets so do not cache the result.
6793 proc check_effective_target_vect_long_mult { } {
6794 if { [istarget i?86-*-*] || [istarget x86_64-*-*]
6795 || (([istarget powerpc*-*-*]
6796 && ![istarget powerpc-*-linux*paired*])
6797 && [check_effective_target_ilp32])
6798 || [is-effective-target arm_neon]
6799 || ([istarget sparc*-*-*] && [check_effective_target_ilp32])
6800 || [istarget aarch64*-*-*]
6801 || ([istarget mips*-*-*]
6802 && [et-is-effective-target mips_msa]) } {
6803 set answer 1
6804 } else {
6805 set answer 0
6808 verbose "check_effective_target_vect_long_mult: returning $answer" 2
6809 return $answer
6812 # Return 1 if the target supports vector even/odd elements extraction, 0 otherwise.
6814 proc check_effective_target_vect_extract_even_odd { } {
6815 global et_vect_extract_even_odd_saved
6816 global et_index
6818 if [info exists et_vect_extract_even_odd_saved($et_index)] {
6819 verbose "check_effective_target_vect_extract_even_odd:\
6820 using cached result" 2
6821 } else {
6822 set et_vect_extract_even_odd_saved($et_index) 0
6823 if { [istarget aarch64*-*-*]
6824 || [istarget powerpc*-*-*]
6825 || [is-effective-target arm_neon]
6826 || [istarget i?86-*-*] || [istarget x86_64-*-*]
6827 || [istarget ia64-*-*]
6828 || [istarget spu-*-*]
6829 || ([istarget mips*-*-*]
6830 && ([et-is-effective-target mips_msa]
6831 || [et-is-effective-target mpaired_single]))
6832 || ([istarget s390*-*-*]
6833 && [check_effective_target_s390_vx]) } {
6834 set et_vect_extract_even_odd_saved($et_index) 1
6838 verbose "check_effective_target_vect_extract_even_odd:\
6839 returning $et_vect_extract_even_odd_saved($et_index)" 2
6840 return $et_vect_extract_even_odd_saved($et_index)
6843 # Return 1 if the target supports vector interleaving, 0 otherwise.
6845 proc check_effective_target_vect_interleave { } {
6846 global et_vect_interleave_saved
6847 global et_index
6849 if [info exists et_vect_interleave_saved($et_index)] {
6850 verbose "check_effective_target_vect_interleave: using cached result" 2
6851 } else {
6852 set et_vect_interleave_saved($et_index) 0
6853 if { [istarget aarch64*-*-*]
6854 || [istarget powerpc*-*-*]
6855 || [is-effective-target arm_neon]
6856 || [istarget i?86-*-*] || [istarget x86_64-*-*]
6857 || [istarget ia64-*-*]
6858 || [istarget spu-*-*]
6859 || ([istarget mips*-*-*]
6860 && ([et-is-effective-target mpaired_single]
6861 || [et-is-effective-target mips_msa]))
6862 || ([istarget s390*-*-*]
6863 && [check_effective_target_s390_vx]) } {
6864 set et_vect_interleave_saved($et_index) 1
6868 verbose "check_effective_target_vect_interleave:\
6869 returning $et_vect_interleave_saved($et_index)" 2
6870 return $et_vect_interleave_saved($et_index)
6873 foreach N {2 3 4 8} {
6874 eval [string map [list N $N] {
6875 # Return 1 if the target supports 2-vector interleaving
6876 proc check_effective_target_vect_stridedN { } {
6877 global et_vect_stridedN_saved
6878 global et_index
6880 if [info exists et_vect_stridedN_saved($et_index)] {
6881 verbose "check_effective_target_vect_stridedN:\
6882 using cached result" 2
6883 } else {
6884 set et_vect_stridedN_saved($et_index) 0
6885 if { (N & -N) == N
6886 && [check_effective_target_vect_interleave]
6887 && [check_effective_target_vect_extract_even_odd] } {
6888 set et_vect_stridedN_saved($et_index) 1
6890 if { ([istarget arm*-*-*]
6891 || [istarget aarch64*-*-*]) && N >= 2 && N <= 4 } {
6892 set et_vect_stridedN_saved($et_index) 1
6896 verbose "check_effective_target_vect_stridedN:\
6897 returning $et_vect_stridedN_saved($et_index)" 2
6898 return $et_vect_stridedN_saved($et_index)
6903 # Return the list of vector sizes (in bits) that each target supports.
6904 # A vector length of "0" indicates variable-length vectors.
6906 proc available_vector_sizes { } {
6907 set result {}
6908 if { [istarget aarch64*-*-*] } {
6909 if { [check_effective_target_aarch64_sve] } {
6910 lappend result [aarch64_sve_bits]
6912 lappend result 128 64
6913 } elseif { [istarget arm*-*-*]
6914 && [check_effective_target_arm_neon_ok] } {
6915 lappend result 128 64
6916 } elseif { (([istarget i?86-*-*] || [istarget x86_64-*-*])
6917 && ([check_avx_available] && ![check_prefer_avx128])) } {
6918 lappend result 256 128
6919 } elseif { [istarget sparc*-*-*] } {
6920 lappend result 64
6921 } else {
6922 # The traditional default asumption.
6923 lappend result 128
6925 return $result
6928 # Return 1 if the target supports multiple vector sizes
6930 proc check_effective_target_vect_multiple_sizes { } {
6931 return [expr { [llength [available_vector_sizes]] > 1 }]
6934 # Return true if variable-length vectors are supported.
6936 proc check_effective_target_vect_variable_length { } {
6937 return [expr { [lindex [available_vector_sizes] 0] == 0 }]
6940 # Return 1 if the target supports vectors of 64 bits.
6942 proc check_effective_target_vect64 { } {
6943 return [expr { [lsearch -exact [available_vector_sizes] 64] >= 0 }]
6946 # Return 1 if the target supports vector copysignf calls.
6948 proc check_effective_target_vect_call_copysignf { } {
6949 global et_vect_call_copysignf_saved
6950 global et_index
6952 if [info exists et_vect_call_copysignf_saved($et_index)] {
6953 verbose "check_effective_target_vect_call_copysignf:\
6954 using cached result" 2
6955 } else {
6956 set et_vect_call_copysignf_saved($et_index) 0
6957 if { [istarget i?86-*-*] || [istarget x86_64-*-*]
6958 || [istarget powerpc*-*-*]
6959 || [istarget aarch64*-*-*] } {
6960 set et_vect_call_copysignf_saved($et_index) 1
6964 verbose "check_effective_target_vect_call_copysignf:\
6965 returning $et_vect_call_copysignf_saved($et_index)" 2
6966 return $et_vect_call_copysignf_saved($et_index)
6969 # Return 1 if the target supports hardware square root instructions.
6971 proc check_effective_target_sqrt_insn { } {
6972 global et_sqrt_insn_saved
6974 if [info exists et_sqrt_insn_saved] {
6975 verbose "check_effective_target_hw_sqrt: using cached result" 2
6976 } else {
6977 set et_sqrt_insn_saved 0
6978 if { [istarget i?86-*-*] || [istarget x86_64-*-*]
6979 || [istarget powerpc*-*-*]
6980 || [istarget aarch64*-*-*]
6981 || ([istarget arm*-*-*] && [check_effective_target_arm_vfp_ok])
6982 || ([istarget s390*-*-*]
6983 && [check_effective_target_s390_vx]) } {
6984 set et_sqrt_insn_saved 1
6988 verbose "check_effective_target_hw_sqrt: returning et_sqrt_insn_saved" 2
6989 return $et_sqrt_insn_saved
6992 # Return 1 if the target supports vector sqrtf calls.
6994 proc check_effective_target_vect_call_sqrtf { } {
6995 global et_vect_call_sqrtf_saved
6996 global et_index
6998 if [info exists et_vect_call_sqrtf_saved($et_index)] {
6999 verbose "check_effective_target_vect_call_sqrtf: using cached result" 2
7000 } else {
7001 set et_vect_call_sqrtf_saved($et_index) 0
7002 if { [istarget aarch64*-*-*]
7003 || [istarget i?86-*-*] || [istarget x86_64-*-*]
7004 || ([istarget powerpc*-*-*] && [check_vsx_hw_available])
7005 || ([istarget s390*-*-*]
7006 && [check_effective_target_s390_vx]) } {
7007 set et_vect_call_sqrtf_saved($et_index) 1
7011 verbose "check_effective_target_vect_call_sqrtf:\
7012 returning $et_vect_call_sqrtf_saved($et_index)" 2
7013 return $et_vect_call_sqrtf_saved($et_index)
7016 # Return 1 if the target supports vector lrint calls.
7018 proc check_effective_target_vect_call_lrint { } {
7019 set et_vect_call_lrint 0
7020 if { (([istarget i?86-*-*] || [istarget x86_64-*-*])
7021 && [check_effective_target_ilp32]) } {
7022 set et_vect_call_lrint 1
7025 verbose "check_effective_target_vect_call_lrint: returning $et_vect_call_lrint" 2
7026 return $et_vect_call_lrint
7029 # Return 1 if the target supports vector btrunc calls.
7031 proc check_effective_target_vect_call_btrunc { } {
7032 global et_vect_call_btrunc_saved
7033 global et_index
7035 if [info exists et_vect_call_btrunc_saved($et_index)] {
7036 verbose "check_effective_target_vect_call_btrunc:\
7037 using cached result" 2
7038 } else {
7039 set et_vect_call_btrunc_saved($et_index) 0
7040 if { [istarget aarch64*-*-*] } {
7041 set et_vect_call_btrunc_saved($et_index) 1
7045 verbose "check_effective_target_vect_call_btrunc:\
7046 returning $et_vect_call_btrunc_saved($et_index)" 2
7047 return $et_vect_call_btrunc_saved($et_index)
7050 # Return 1 if the target supports vector btruncf calls.
7052 proc check_effective_target_vect_call_btruncf { } {
7053 global et_vect_call_btruncf_saved
7054 global et_index
7056 if [info exists et_vect_call_btruncf_saved($et_index)] {
7057 verbose "check_effective_target_vect_call_btruncf:\
7058 using cached result" 2
7059 } else {
7060 set et_vect_call_btruncf_saved($et_index) 0
7061 if { [istarget aarch64*-*-*] } {
7062 set et_vect_call_btruncf_saved($et_index) 1
7066 verbose "check_effective_target_vect_call_btruncf:\
7067 returning $et_vect_call_btruncf_saved($et_index)" 2
7068 return $et_vect_call_btruncf_saved($et_index)
7071 # Return 1 if the target supports vector ceil calls.
7073 proc check_effective_target_vect_call_ceil { } {
7074 global et_vect_call_ceil_saved
7075 global et_index
7077 if [info exists et_vect_call_ceil_saved($et_index)] {
7078 verbose "check_effective_target_vect_call_ceil: using cached result" 2
7079 } else {
7080 set et_vect_call_ceil_saved($et_index) 0
7081 if { [istarget aarch64*-*-*] } {
7082 set et_vect_call_ceil_saved($et_index) 1
7086 verbose "check_effective_target_vect_call_ceil:\
7087 returning $et_vect_call_ceil_saved($et_index)" 2
7088 return $et_vect_call_ceil_saved($et_index)
7091 # Return 1 if the target supports vector ceilf calls.
7093 proc check_effective_target_vect_call_ceilf { } {
7094 global et_vect_call_ceilf_saved
7095 global et_index
7097 if [info exists et_vect_call_ceilf_saved($et_index)] {
7098 verbose "check_effective_target_vect_call_ceilf: using cached result" 2
7099 } else {
7100 set et_vect_call_ceilf_saved($et_index) 0
7101 if { [istarget aarch64*-*-*] } {
7102 set et_vect_call_ceilf_saved($et_index) 1
7106 verbose "check_effective_target_vect_call_ceilf:\
7107 returning $et_vect_call_ceilf_saved($et_index)" 2
7108 return $et_vect_call_ceilf_saved($et_index)
7111 # Return 1 if the target supports vector floor calls.
7113 proc check_effective_target_vect_call_floor { } {
7114 global et_vect_call_floor_saved
7115 global et_index
7117 if [info exists et_vect_call_floor_saved($et_index)] {
7118 verbose "check_effective_target_vect_call_floor: using cached result" 2
7119 } else {
7120 set et_vect_call_floor_saved($et_index) 0
7121 if { [istarget aarch64*-*-*] } {
7122 set et_vect_call_floor_saved($et_index) 1
7126 verbose "check_effective_target_vect_call_floor:\
7127 returning $et_vect_call_floor_saved($et_index)" 2
7128 return $et_vect_call_floor_saved($et_index)
7131 # Return 1 if the target supports vector floorf calls.
7133 proc check_effective_target_vect_call_floorf { } {
7134 global et_vect_call_floorf_saved
7135 global et_index
7137 if [info exists et_vect_call_floorf_saved($et_index)] {
7138 verbose "check_effective_target_vect_call_floorf: using cached result" 2
7139 } else {
7140 set et_vect_call_floorf_saved($et_index) 0
7141 if { [istarget aarch64*-*-*] } {
7142 set et_vect_call_floorf_saved($et_index) 1
7146 verbose "check_effective_target_vect_call_floorf:\
7147 returning $et_vect_call_floorf_saved($et_index)" 2
7148 return $et_vect_call_floorf_saved($et_index)
7151 # Return 1 if the target supports vector lceil calls.
7153 proc check_effective_target_vect_call_lceil { } {
7154 global et_vect_call_lceil_saved
7155 global et_index
7157 if [info exists et_vect_call_lceil_saved($et_index)] {
7158 verbose "check_effective_target_vect_call_lceil: using cached result" 2
7159 } else {
7160 set et_vect_call_lceil_saved($et_index) 0
7161 if { [istarget aarch64*-*-*] } {
7162 set et_vect_call_lceil_saved($et_index) 1
7166 verbose "check_effective_target_vect_call_lceil:\
7167 returning $et_vect_call_lceil_saved($et_index)" 2
7168 return $et_vect_call_lceil_saved($et_index)
7171 # Return 1 if the target supports vector lfloor calls.
7173 proc check_effective_target_vect_call_lfloor { } {
7174 global et_vect_call_lfloor_saved
7175 global et_index
7177 if [info exists et_vect_call_lfloor_saved($et_index)] {
7178 verbose "check_effective_target_vect_call_lfloor: using cached result" 2
7179 } else {
7180 set et_vect_call_lfloor_saved($et_index) 0
7181 if { [istarget aarch64*-*-*] } {
7182 set et_vect_call_lfloor_saved($et_index) 1
7186 verbose "check_effective_target_vect_call_lfloor:\
7187 returning $et_vect_call_lfloor_saved($et_index)" 2
7188 return $et_vect_call_lfloor_saved($et_index)
7191 # Return 1 if the target supports vector nearbyint calls.
7193 proc check_effective_target_vect_call_nearbyint { } {
7194 global et_vect_call_nearbyint_saved
7195 global et_index
7197 if [info exists et_vect_call_nearbyint_saved($et_index)] {
7198 verbose "check_effective_target_vect_call_nearbyint: using cached result" 2
7199 } else {
7200 set et_vect_call_nearbyint_saved($et_index) 0
7201 if { [istarget aarch64*-*-*] } {
7202 set et_vect_call_nearbyint_saved($et_index) 1
7206 verbose "check_effective_target_vect_call_nearbyint:\
7207 returning $et_vect_call_nearbyint_saved($et_index)" 2
7208 return $et_vect_call_nearbyint_saved($et_index)
7211 # Return 1 if the target supports vector nearbyintf calls.
7213 proc check_effective_target_vect_call_nearbyintf { } {
7214 global et_vect_call_nearbyintf_saved
7215 global et_index
7217 if [info exists et_vect_call_nearbyintf_saved($et_index)] {
7218 verbose "check_effective_target_vect_call_nearbyintf:\
7219 using cached result" 2
7220 } else {
7221 set et_vect_call_nearbyintf_saved($et_index) 0
7222 if { [istarget aarch64*-*-*] } {
7223 set et_vect_call_nearbyintf_saved($et_index) 1
7227 verbose "check_effective_target_vect_call_nearbyintf:\
7228 returning $et_vect_call_nearbyintf_saved($et_index)" 2
7229 return $et_vect_call_nearbyintf_saved($et_index)
7232 # Return 1 if the target supports vector round calls.
7234 proc check_effective_target_vect_call_round { } {
7235 global et_vect_call_round_saved
7236 global et_index
7238 if [info exists et_vect_call_round_saved($et_index)] {
7239 verbose "check_effective_target_vect_call_round: using cached result" 2
7240 } else {
7241 set et_vect_call_round_saved($et_index) 0
7242 if { [istarget aarch64*-*-*] } {
7243 set et_vect_call_round_saved($et_index) 1
7247 verbose "check_effective_target_vect_call_round:\
7248 returning $et_vect_call_round_saved($et_index)" 2
7249 return $et_vect_call_round_saved($et_index)
7252 # Return 1 if the target supports vector roundf calls.
7254 proc check_effective_target_vect_call_roundf { } {
7255 global et_vect_call_roundf_saved
7256 global et_index
7258 if [info exists et_vect_call_roundf_saved($et_index)] {
7259 verbose "check_effective_target_vect_call_roundf: using cached result" 2
7260 } else {
7261 set et_vect_call_roundf_saved($et_index) 0
7262 if { [istarget aarch64*-*-*] } {
7263 set et_vect_call_roundf_saved($et_index) 1
7267 verbose "check_effective_target_vect_call_roundf:\
7268 returning $et_vect_call_roundf_saved($et_index)" 2
7269 return $et_vect_call_roundf_saved($et_index)
7272 # Return 1 if the target supports AND, OR and XOR reduction.
7274 proc check_effective_target_vect_logical_reduc { } {
7275 return [check_effective_target_aarch64_sve]
7278 # Return 1 if the target supports the fold_extract_last optab.
7280 proc check_effective_target_vect_fold_extract_last { } {
7281 return [check_effective_target_aarch64_sve]
7284 # Return 1 if the target supports section-anchors
7286 proc check_effective_target_section_anchors { } {
7287 global et_section_anchors_saved
7289 if [info exists et_section_anchors_saved] {
7290 verbose "check_effective_target_section_anchors: using cached result" 2
7291 } else {
7292 set et_section_anchors_saved 0
7293 if { [istarget powerpc*-*-*]
7294 || [istarget arm*-*-*]
7295 || [istarget aarch64*-*-*] } {
7296 set et_section_anchors_saved 1
7300 verbose "check_effective_target_section_anchors: returning $et_section_anchors_saved" 2
7301 return $et_section_anchors_saved
7304 # Return 1 if the target supports atomic operations on "int_128" values.
7306 proc check_effective_target_sync_int_128 { } {
7307 if { [istarget spu-*-*] } {
7308 return 1
7309 } else {
7310 return 0
7314 # Return 1 if the target supports atomic operations on "int_128" values
7315 # and can execute them.
7316 # This requires support for both compare-and-swap and true atomic loads.
7318 proc check_effective_target_sync_int_128_runtime { } {
7319 if { [istarget spu-*-*] } {
7320 return 1
7321 } else {
7322 return 0
7326 # Return 1 if the target supports atomic operations on "long long".
7328 # Note: 32bit x86 targets require -march=pentium in dg-options.
7329 # Note: 32bit s390 targets require -mzarch in dg-options.
7331 proc check_effective_target_sync_long_long { } {
7332 if { [istarget i?86-*-*] || [istarget x86_64-*-*])
7333 || [istarget aarch64*-*-*]
7334 || [istarget arm*-*-*]
7335 || [istarget alpha*-*-*]
7336 || ([istarget sparc*-*-*] && [check_effective_target_lp64])
7337 || [istarget s390*-*-*]
7338 || [istarget spu-*-*] } {
7339 return 1
7340 } else {
7341 return 0
7345 # Return 1 if the target supports atomic operations on "long long"
7346 # and can execute them.
7348 # Note: 32bit x86 targets require -march=pentium in dg-options.
7350 proc check_effective_target_sync_long_long_runtime { } {
7351 if { (([istarget x86_64-*-*] || [istarget i?86-*-*])
7352 && [check_cached_effective_target sync_long_long_available {
7353 check_runtime_nocache sync_long_long_available {
7354 #include "cpuid.h"
7355 int main ()
7357 unsigned int eax, ebx, ecx, edx;
7358 if (__get_cpuid (1, &eax, &ebx, &ecx, &edx))
7359 return !(edx & bit_CMPXCHG8B);
7360 return 1;
7362 } ""
7364 || [istarget aarch64*-*-*]
7365 || ([istarget arm*-*-linux-*]
7366 && [check_runtime sync_longlong_runtime {
7367 #include <stdlib.h>
7368 int main ()
7370 long long l1;
7372 if (sizeof (long long) != 8)
7373 exit (1);
7375 /* Just check for native;
7376 checking for kernel fallback is tricky. */
7377 asm volatile ("ldrexd r0,r1, [%0]"
7378 : : "r" (&l1) : "r0", "r1");
7379 exit (0);
7381 } "" ])
7382 || [istarget alpha*-*-*]
7383 || ([istarget sparc*-*-*]
7384 && [check_effective_target_lp64]
7385 && [check_effective_target_ultrasparc_hw])
7386 || [istarget spu-*-*]
7387 || ([istarget powerpc*-*-*] && [check_effective_target_lp64]) } {
7388 return 1
7389 } else {
7390 return 0
7394 # Return 1 if the target supports byte swap instructions.
7396 proc check_effective_target_bswap { } {
7397 global et_bswap_saved
7399 if [info exists et_bswap_saved] {
7400 verbose "check_effective_target_bswap: using cached result" 2
7401 } else {
7402 set et_bswap_saved 0
7403 if { [istarget aarch64*-*-*]
7404 || [istarget alpha*-*-*]
7405 || [istarget i?86-*-*] || [istarget x86_64-*-*]
7406 || [istarget m68k-*-*]
7407 || [istarget powerpc*-*-*]
7408 || [istarget rs6000-*-*]
7409 || [istarget s390*-*-*]
7410 || ([istarget arm*-*-*]
7411 && [check_no_compiler_messages_nocache arm_v6_or_later object {
7412 #if __ARM_ARCH < 6
7413 #error not armv6 or later
7414 #endif
7415 int i;
7416 } ""]) } {
7417 set et_bswap_saved 1
7421 verbose "check_effective_target_bswap: returning $et_bswap_saved" 2
7422 return $et_bswap_saved
7425 # Return 1 if the target supports atomic operations on "int" and "long".
7427 proc check_effective_target_sync_int_long { } {
7428 global et_sync_int_long_saved
7430 if [info exists et_sync_int_long_saved] {
7431 verbose "check_effective_target_sync_int_long: using cached result" 2
7432 } else {
7433 set et_sync_int_long_saved 0
7434 # This is intentionally powerpc but not rs6000, rs6000 doesn't have the
7435 # load-reserved/store-conditional instructions.
7436 if { [istarget ia64-*-*]
7437 || [istarget i?86-*-*] || [istarget x86_64-*-*]
7438 || [istarget aarch64*-*-*]
7439 || [istarget alpha*-*-*]
7440 || [istarget arm*-*-linux-*]
7441 || ([istarget arm*-*-*]
7442 && [check_effective_target_arm_acq_rel])
7443 || [istarget bfin*-*linux*]
7444 || [istarget hppa*-*linux*]
7445 || [istarget s390*-*-*]
7446 || [istarget powerpc*-*-*]
7447 || [istarget crisv32-*-*] || [istarget cris-*-*]
7448 || ([istarget sparc*-*-*] && [check_effective_target_sparc_v9])
7449 || [istarget spu-*-*]
7450 || ([istarget arc*-*-*] && [check_effective_target_arc_atomic])
7451 || [check_effective_target_mips_llsc] } {
7452 set et_sync_int_long_saved 1
7456 verbose "check_effective_target_sync_int_long: returning $et_sync_int_long_saved" 2
7457 return $et_sync_int_long_saved
7460 # Return 1 if the target supports atomic operations on "char" and "short".
7462 proc check_effective_target_sync_char_short { } {
7463 global et_sync_char_short_saved
7465 if [info exists et_sync_char_short_saved] {
7466 verbose "check_effective_target_sync_char_short: using cached result" 2
7467 } else {
7468 set et_sync_char_short_saved 0
7469 # This is intentionally powerpc but not rs6000, rs6000 doesn't have the
7470 # load-reserved/store-conditional instructions.
7471 if { [istarget aarch64*-*-*]
7472 || [istarget ia64-*-*]
7473 || [istarget i?86-*-*] || [istarget x86_64-*-*]
7474 || [istarget alpha*-*-*]
7475 || [istarget arm*-*-linux-*]
7476 || ([istarget arm*-*-*]
7477 && [check_effective_target_arm_acq_rel])
7478 || [istarget hppa*-*linux*]
7479 || [istarget s390*-*-*]
7480 || [istarget powerpc*-*-*]
7481 || [istarget crisv32-*-*] || [istarget cris-*-*]
7482 || ([istarget sparc*-*-*] && [check_effective_target_sparc_v9])
7483 || [istarget spu-*-*]
7484 || ([istarget arc*-*-*] && [check_effective_target_arc_atomic])
7485 || [check_effective_target_mips_llsc] } {
7486 set et_sync_char_short_saved 1
7490 verbose "check_effective_target_sync_char_short: returning $et_sync_char_short_saved" 2
7491 return $et_sync_char_short_saved
7494 # Return 1 if the target uses a ColdFire FPU.
7496 proc check_effective_target_coldfire_fpu { } {
7497 return [check_no_compiler_messages coldfire_fpu assembly {
7498 #ifndef __mcffpu__
7499 #error !__mcffpu__
7500 #endif
7504 # Return true if this is a uClibc target.
7506 proc check_effective_target_uclibc {} {
7507 return [check_no_compiler_messages uclibc object {
7508 #include <features.h>
7509 #if !defined (__UCLIBC__)
7510 #error !__UCLIBC__
7511 #endif
7515 # Return true if this is a uclibc target and if the uclibc feature
7516 # described by __$feature__ is not present.
7518 proc check_missing_uclibc_feature {feature} {
7519 return [check_no_compiler_messages $feature object "
7520 #include <features.h>
7521 #if !defined (__UCLIBC) || defined (__${feature}__)
7522 #error FOO
7523 #endif
7527 # Return true if this is a Newlib target.
7529 proc check_effective_target_newlib {} {
7530 return [check_no_compiler_messages newlib object {
7531 #include <newlib.h>
7535 # Some newlib versions don't provide a frexpl and instead depend
7536 # on frexp to implement long double conversions in their printf-like
7537 # functions. This leads to broken results. Detect such versions here.
7539 proc check_effective_target_newlib_broken_long_double_io {} {
7540 if { [is-effective-target newlib] && ![is-effective-target frexpl] } {
7541 return 1
7543 return 0
7546 # Return true if this is NOT a Bionic target.
7548 proc check_effective_target_non_bionic {} {
7549 return [check_no_compiler_messages non_bionic object {
7550 #include <ctype.h>
7551 #if defined (__BIONIC__)
7552 #error FOO
7553 #endif
7557 # Return true if this target has error.h header.
7559 proc check_effective_target_error_h {} {
7560 return [check_no_compiler_messages error_h object {
7561 #include <error.h>
7565 # Return true if this target has tgmath.h header.
7567 proc check_effective_target_tgmath_h {} {
7568 return [check_no_compiler_messages tgmath_h object {
7569 #include <tgmath.h>
7573 # Return true if target's libc supports complex functions.
7575 proc check_effective_target_libc_has_complex_functions {} {
7576 return [check_no_compiler_messages libc_has_complex_functions object {
7577 #include <complex.h>
7581 # Return 1 if
7582 # (a) an error of a few ULP is expected in string to floating-point
7583 # conversion functions; and
7584 # (b) overflow is not always detected correctly by those functions.
7586 proc check_effective_target_lax_strtofp {} {
7587 # By default, assume that all uClibc targets suffer from this.
7588 return [check_effective_target_uclibc]
7591 # Return 1 if this is a target for which wcsftime is a dummy
7592 # function that always returns 0.
7594 proc check_effective_target_dummy_wcsftime {} {
7595 # By default, assume that all uClibc targets suffer from this.
7596 return [check_effective_target_uclibc]
7599 # Return 1 if constructors with initialization priority arguments are
7600 # supposed on this target.
7602 proc check_effective_target_init_priority {} {
7603 return [check_no_compiler_messages init_priority assembly "
7604 void f() __attribute__((constructor (1000)));
7605 void f() \{\}
7609 # Return 1 if the target matches the effective target 'arg', 0 otherwise.
7610 # This can be used with any check_* proc that takes no argument and
7611 # returns only 1 or 0. It could be used with check_* procs that take
7612 # arguments with keywords that pass particular arguments.
7614 proc is-effective-target { arg } {
7615 global et_index
7616 set selected 0
7617 if { ![info exists et_index] } {
7618 # Initialize the effective target index that is used in some
7619 # check_effective_target_* procs.
7620 set et_index 0
7622 if { [info procs check_effective_target_${arg}] != [list] } {
7623 set selected [check_effective_target_${arg}]
7624 } else {
7625 switch $arg {
7626 "vmx_hw" { set selected [check_vmx_hw_available] }
7627 "vsx_hw" { set selected [check_vsx_hw_available] }
7628 "p8vector_hw" { set selected [check_p8vector_hw_available] }
7629 "p9vector_hw" { set selected [check_p9vector_hw_available] }
7630 "p9modulo_hw" { set selected [check_p9modulo_hw_available] }
7631 "ppc_float128_sw" { set selected [check_ppc_float128_sw_available] }
7632 "ppc_float128_hw" { set selected [check_ppc_float128_hw_available] }
7633 "ppc_recip_hw" { set selected [check_ppc_recip_hw_available] }
7634 "ppc_cpu_supports_hw" { set selected [check_ppc_cpu_supports_hw_available] }
7635 "dfp_hw" { set selected [check_dfp_hw_available] }
7636 "htm_hw" { set selected [check_htm_hw_available] }
7637 "named_sections" { set selected [check_named_sections_available] }
7638 "gc_sections" { set selected [check_gc_sections_available] }
7639 "cxa_atexit" { set selected [check_cxa_atexit_available] }
7640 default { error "unknown effective target keyword `$arg'" }
7643 verbose "is-effective-target: $arg $selected" 2
7644 return $selected
7647 # Return 1 if the argument is an effective-target keyword, 0 otherwise.
7649 proc is-effective-target-keyword { arg } {
7650 if { [info procs check_effective_target_${arg}] != [list] } {
7651 return 1
7652 } else {
7653 # These have different names for their check_* procs.
7654 switch $arg {
7655 "vmx_hw" { return 1 }
7656 "vsx_hw" { return 1 }
7657 "p8vector_hw" { return 1 }
7658 "p9vector_hw" { return 1 }
7659 "p9modulo_hw" { return 1 }
7660 "ppc_float128_sw" { return 1 }
7661 "ppc_float128_hw" { return 1 }
7662 "ppc_recip_hw" { return 1 }
7663 "dfp_hw" { return 1 }
7664 "htm_hw" { return 1 }
7665 "named_sections" { return 1 }
7666 "gc_sections" { return 1 }
7667 "cxa_atexit" { return 1 }
7668 default { return 0 }
7673 # Execute tests for all targets in EFFECTIVE_TARGETS list. Set et_index to
7674 # indicate what target is currently being processed. This is for
7675 # the vectorizer tests, e.g. vect_int, to keep track what target supports
7676 # a given feature.
7678 proc et-dg-runtest { runtest testcases flags default-extra-flags } {
7679 global dg-do-what-default
7680 global EFFECTIVE_TARGETS
7681 global et_index
7683 if { [llength $EFFECTIVE_TARGETS] > 0 } {
7684 foreach target $EFFECTIVE_TARGETS {
7685 set target_flags $flags
7686 set dg-do-what-default compile
7687 set et_index [lsearch -exact $EFFECTIVE_TARGETS $target]
7688 if { [info procs add_options_for_${target}] != [list] } {
7689 set target_flags [add_options_for_${target} "$flags"]
7691 if { [info procs check_effective_target_${target}_runtime]
7692 != [list] && [check_effective_target_${target}_runtime] } {
7693 set dg-do-what-default run
7695 $runtest $testcases $target_flags ${default-extra-flags}
7697 } else {
7698 set et_index 0
7699 $runtest $testcases $flags ${default-extra-flags}
7703 # Return 1 if a target matches the target in EFFECTIVE_TARGETS at index
7704 # et_index, 0 otherwise.
7706 proc et-is-effective-target { target } {
7707 global EFFECTIVE_TARGETS
7708 global et_index
7710 if { [llength $EFFECTIVE_TARGETS] > $et_index
7711 && [lindex $EFFECTIVE_TARGETS $et_index] == $target } {
7712 return 1
7714 return 0
7717 # Return 1 if target default to short enums
7719 proc check_effective_target_short_enums { } {
7720 return [check_no_compiler_messages short_enums assembly {
7721 enum foo { bar };
7722 int s[sizeof (enum foo) == 1 ? 1 : -1];
7726 # Return 1 if target supports merging string constants at link time.
7728 proc check_effective_target_string_merging { } {
7729 return [check_no_messages_and_pattern string_merging \
7730 "rodata\\.str" assembly {
7731 const char *var = "String";
7732 } {-O2}]
7735 # Return 1 if target has the basic signed and unsigned types in
7736 # <stdint.h>, 0 otherwise. This will be obsolete when GCC ensures a
7737 # working <stdint.h> for all targets.
7739 proc check_effective_target_stdint_types { } {
7740 return [check_no_compiler_messages stdint_types assembly {
7741 #include <stdint.h>
7742 int8_t a; int16_t b; int32_t c; int64_t d;
7743 uint8_t e; uint16_t f; uint32_t g; uint64_t h;
7747 # Return 1 if target has the basic signed and unsigned types in
7748 # <inttypes.h>, 0 otherwise. This is for tests that GCC's notions of
7749 # these types agree with those in the header, as some systems have
7750 # only <inttypes.h>.
7752 proc check_effective_target_inttypes_types { } {
7753 return [check_no_compiler_messages inttypes_types assembly {
7754 #include <inttypes.h>
7755 int8_t a; int16_t b; int32_t c; int64_t d;
7756 uint8_t e; uint16_t f; uint32_t g; uint64_t h;
7760 # Return 1 if programs are intended to be run on a simulator
7761 # (i.e. slowly) rather than hardware (i.e. fast).
7763 proc check_effective_target_simulator { } {
7765 # All "src/sim" simulators set this one.
7766 if [board_info target exists is_simulator] {
7767 return [board_info target is_simulator]
7770 # The "sid" simulators don't set that one, but at least they set
7771 # this one.
7772 if [board_info target exists slow_simulator] {
7773 return [board_info target slow_simulator]
7776 return 0
7779 # Return 1 if programs are intended to be run on hardware rather than
7780 # on a simulator
7782 proc check_effective_target_hw { } {
7784 # All "src/sim" simulators set this one.
7785 if [board_info target exists is_simulator] {
7786 if [board_info target is_simulator] {
7787 return 0
7788 } else {
7789 return 1
7793 # The "sid" simulators don't set that one, but at least they set
7794 # this one.
7795 if [board_info target exists slow_simulator] {
7796 if [board_info target slow_simulator] {
7797 return 0
7798 } else {
7799 return 1
7803 return 1
7806 # Return 1 if the target is a VxWorks kernel.
7808 proc check_effective_target_vxworks_kernel { } {
7809 return [check_no_compiler_messages vxworks_kernel assembly {
7810 #if !defined __vxworks || defined __RTP__
7811 #error NO
7812 #endif
7816 # Return 1 if the target is a VxWorks RTP.
7818 proc check_effective_target_vxworks_rtp { } {
7819 return [check_no_compiler_messages vxworks_rtp assembly {
7820 #if !defined __vxworks || !defined __RTP__
7821 #error NO
7822 #endif
7826 # Return 1 if the target is expected to provide wide character support.
7828 proc check_effective_target_wchar { } {
7829 if {[check_missing_uclibc_feature UCLIBC_HAS_WCHAR]} {
7830 return 0
7832 return [check_no_compiler_messages wchar assembly {
7833 #include <wchar.h>
7837 # Return 1 if the target has <pthread.h>.
7839 proc check_effective_target_pthread_h { } {
7840 return [check_no_compiler_messages pthread_h assembly {
7841 #include <pthread.h>
7845 # Return 1 if the target can truncate a file from a file-descriptor,
7846 # as used by libgfortran/io/unix.c:fd_truncate; i.e. ftruncate or
7847 # chsize. We test for a trivially functional truncation; no stubs.
7848 # As libgfortran uses _FILE_OFFSET_BITS 64, we do too; it'll cause a
7849 # different function to be used.
7851 proc check_effective_target_fd_truncate { } {
7852 set prog {
7853 #define _FILE_OFFSET_BITS 64
7854 #include <unistd.h>
7855 #include <stdio.h>
7856 #include <stdlib.h>
7857 #include <string.h>
7858 int main ()
7860 FILE *f = fopen ("tst.tmp", "wb");
7861 int fd;
7862 const char t[] = "test writing more than ten characters";
7863 char s[11];
7864 int status = 0;
7865 fd = fileno (f);
7866 write (fd, t, sizeof (t) - 1);
7867 lseek (fd, 0, 0);
7868 if (ftruncate (fd, 10) != 0)
7869 status = 1;
7870 close (fd);
7871 fclose (f);
7872 if (status)
7874 unlink ("tst.tmp");
7875 exit (status);
7877 f = fopen ("tst.tmp", "rb");
7878 if (fread (s, 1, sizeof (s), f) != 10 || strncmp (s, t, 10) != 0)
7879 status = 1;
7880 fclose (f);
7881 unlink ("tst.tmp");
7882 exit (status);
7886 if { [check_runtime ftruncate $prog] } {
7887 return 1;
7890 regsub "ftruncate" $prog "chsize" prog
7891 return [check_runtime chsize $prog]
7894 # Add to FLAGS all the target-specific flags needed to access the c99 runtime.
7896 proc add_options_for_c99_runtime { flags } {
7897 if { [istarget *-*-solaris2*] } {
7898 return "$flags -std=c99"
7900 if { [istarget powerpc-*-darwin*] } {
7901 return "$flags -mmacosx-version-min=10.3"
7903 return $flags
7906 # Add to FLAGS all the target-specific flags needed to enable
7907 # full IEEE compliance mode.
7909 proc add_options_for_ieee { flags } {
7910 if { [istarget alpha*-*-*]
7911 || [istarget sh*-*-*] } {
7912 return "$flags -mieee"
7914 if { [istarget rx-*-*] } {
7915 return "$flags -mnofpu"
7917 return $flags
7920 if {![info exists flags_to_postpone]} {
7921 set flags_to_postpone ""
7924 # Add to FLAGS the flags needed to enable functions to bind locally
7925 # when using pic/PIC passes in the testsuite.
7926 proc add_options_for_bind_pic_locally { flags } {
7927 global flags_to_postpone
7929 # Instead of returning 'flags' with the -fPIE or -fpie appended, we save it
7930 # in 'flags_to_postpone' and append it later in gcc_target_compile procedure in
7931 # order to make sure that the multilib_flags doesn't override this.
7933 if {[check_no_compiler_messages using_pic2 assembly {
7934 #if __PIC__ != 2
7935 #error __PIC__ != 2
7936 #endif
7937 }]} {
7938 set flags_to_postpone "-fPIE"
7939 return $flags
7941 if {[check_no_compiler_messages using_pic1 assembly {
7942 #if __PIC__ != 1
7943 #error __PIC__ != 1
7944 #endif
7945 }]} {
7946 set flags_to_postpone "-fpie"
7947 return $flags
7949 return $flags
7952 # Add to FLAGS the flags needed to enable 64-bit vectors.
7954 proc add_options_for_double_vectors { flags } {
7955 if [is-effective-target arm_neon_ok] {
7956 return "$flags -mvectorize-with-neon-double"
7959 return $flags
7962 # Add to FLAGS the flags needed to define the STACK_SIZE macro.
7964 proc add_options_for_stack_size { flags } {
7965 if [is-effective-target stack_size] {
7966 set stack_size [dg-effective-target-value stack_size]
7967 return "$flags -DSTACK_SIZE=$stack_size"
7970 return $flags
7973 # Return 1 if the target provides a full C99 runtime.
7975 proc check_effective_target_c99_runtime { } {
7976 return [check_cached_effective_target c99_runtime {
7977 global srcdir
7979 set file [open "$srcdir/gcc.dg/builtins-config.h"]
7980 set contents [read $file]
7981 close $file
7982 append contents {
7983 #ifndef HAVE_C99_RUNTIME
7984 #error !HAVE_C99_RUNTIME
7985 #endif
7987 check_no_compiler_messages_nocache c99_runtime assembly \
7988 $contents [add_options_for_c99_runtime ""]
7992 # Return 1 if target wchar_t is at least 4 bytes.
7994 proc check_effective_target_4byte_wchar_t { } {
7995 return [check_no_compiler_messages 4byte_wchar_t object {
7996 int dummy[sizeof (__WCHAR_TYPE__) >= 4 ? 1 : -1];
8000 # Return 1 if the target supports automatic stack alignment.
8002 proc check_effective_target_automatic_stack_alignment { } {
8003 # Ordinarily x86 supports automatic stack alignment ...
8004 if { [istarget i?86*-*-*] || [istarget x86_64-*-*] } then {
8005 if { [istarget *-*-mingw*] || [istarget *-*-cygwin*] } {
8006 # ... except Win64 SEH doesn't. Succeed for Win32 though.
8007 return [check_effective_target_ilp32];
8009 return 1;
8011 return 0;
8014 # Return true if we are compiling for AVX target.
8016 proc check_avx_available { } {
8017 if { [check_no_compiler_messages avx_available assembly {
8018 #ifndef __AVX__
8019 #error unsupported
8020 #endif
8021 } ""] } {
8022 return 1;
8024 return 0;
8027 # Return true if we are compiling for SSSE3 target.
8029 proc check_ssse3_available { } {
8030 if { [check_no_compiler_messages sse3a_available assembly {
8031 #ifndef __SSSE3__
8032 #error unsupported
8033 #endif
8034 } ""] } {
8035 return 1;
8037 return 0;
8040 # Return true if 32- and 16-bytes vectors are available.
8042 proc check_effective_target_vect_sizes_32B_16B { } {
8043 return [expr { [available_vector_sizes] == [list 256 128] }]
8046 # Return true if 16- and 8-bytes vectors are available.
8048 proc check_effective_target_vect_sizes_16B_8B { } {
8049 if { [check_avx_available]
8050 || [is-effective-target arm_neon]
8051 || [istarget aarch64*-*-*] } {
8052 return 1;
8053 } else {
8054 return 0;
8059 # Return true if 128-bits vectors are preferred even if 256-bits vectors
8060 # are available.
8062 proc check_prefer_avx128 { } {
8063 if ![check_avx_available] {
8064 return 0;
8066 return [check_no_messages_and_pattern avx_explicit "xmm" assembly {
8067 float a[1024],b[1024],c[1024];
8068 void foo (void) { int i; for (i = 0; i < 1024; i++) a[i]=b[i]+c[i];}
8069 } "-O2 -ftree-vectorize"]
8073 # Return 1 if avx512f instructions can be compiled.
8075 proc check_effective_target_avx512f { } {
8076 return [check_no_compiler_messages avx512f object {
8077 typedef double __m512d __attribute__ ((__vector_size__ (64)));
8078 typedef double __m128d __attribute__ ((__vector_size__ (16)));
8080 __m512d _mm512_add (__m512d a)
8082 return __builtin_ia32_addpd512_mask (a, a, a, 1, 4);
8085 __m128d _mm128_add (__m128d a)
8087 return __builtin_ia32_addsd_round (a, a, 8);
8090 __m128d _mm128_getmant (__m128d a)
8092 return __builtin_ia32_getmantsd_round (a, a, 0, 8);
8094 } "-O2 -mavx512f" ]
8097 # Return 1 if avx instructions can be compiled.
8099 proc check_effective_target_avx { } {
8100 if { !([istarget i?86-*-*] || [istarget x86_64-*-*]) } {
8101 return 0
8103 return [check_no_compiler_messages avx object {
8104 void _mm256_zeroall (void)
8106 __builtin_ia32_vzeroall ();
8108 } "-O2 -mavx" ]
8111 # Return 1 if avx2 instructions can be compiled.
8112 proc check_effective_target_avx2 { } {
8113 return [check_no_compiler_messages avx2 object {
8114 typedef long long __v4di __attribute__ ((__vector_size__ (32)));
8115 __v4di
8116 mm256_is32_andnotsi256 (__v4di __X, __v4di __Y)
8118 return __builtin_ia32_andnotsi256 (__X, __Y);
8120 } "-O0 -mavx2" ]
8123 # Return 1 if sse instructions can be compiled.
8124 proc check_effective_target_sse { } {
8125 return [check_no_compiler_messages sse object {
8126 int main ()
8128 __builtin_ia32_stmxcsr ();
8129 return 0;
8131 } "-O2 -msse" ]
8134 # Return 1 if sse2 instructions can be compiled.
8135 proc check_effective_target_sse2 { } {
8136 return [check_no_compiler_messages sse2 object {
8137 typedef long long __m128i __attribute__ ((__vector_size__ (16)));
8139 __m128i _mm_srli_si128 (__m128i __A, int __N)
8141 return (__m128i)__builtin_ia32_psrldqi128 (__A, 8);
8143 } "-O2 -msse2" ]
8146 # Return 1 if sse4.1 instructions can be compiled.
8147 proc check_effective_target_sse4 { } {
8148 return [check_no_compiler_messages sse4.1 object {
8149 typedef long long __m128i __attribute__ ((__vector_size__ (16)));
8150 typedef int __v4si __attribute__ ((__vector_size__ (16)));
8152 __m128i _mm_mullo_epi32 (__m128i __X, __m128i __Y)
8154 return (__m128i) __builtin_ia32_pmulld128 ((__v4si)__X,
8155 (__v4si)__Y);
8157 } "-O2 -msse4.1" ]
8160 # Return 1 if F16C instructions can be compiled.
8162 proc check_effective_target_f16c { } {
8163 return [check_no_compiler_messages f16c object {
8164 #include "immintrin.h"
8165 float
8166 foo (unsigned short val)
8168 return _cvtsh_ss (val);
8170 } "-O2 -mf16c" ]
8173 # Return 1 if C wchar_t type is compatible with char16_t.
8175 proc check_effective_target_wchar_t_char16_t_compatible { } {
8176 return [check_no_compiler_messages wchar_t_char16_t object {
8177 __WCHAR_TYPE__ wc;
8178 __CHAR16_TYPE__ *p16 = &wc;
8179 char t[(((__CHAR16_TYPE__) -1) < 0 == ((__WCHAR_TYPE__) -1) < 0) ? 1 : -1];
8183 # Return 1 if C wchar_t type is compatible with char32_t.
8185 proc check_effective_target_wchar_t_char32_t_compatible { } {
8186 return [check_no_compiler_messages wchar_t_char32_t object {
8187 __WCHAR_TYPE__ wc;
8188 __CHAR32_TYPE__ *p32 = &wc;
8189 char t[(((__CHAR32_TYPE__) -1) < 0 == ((__WCHAR_TYPE__) -1) < 0) ? 1 : -1];
8193 # Return 1 if pow10 function exists.
8195 proc check_effective_target_pow10 { } {
8196 return [check_runtime pow10 {
8197 #include <math.h>
8198 int main () {
8199 double x;
8200 x = pow10 (1);
8201 return 0;
8203 } "-lm" ]
8206 # Return 1 if frexpl function exists.
8208 proc check_effective_target_frexpl { } {
8209 return [check_runtime frexpl {
8210 #include <math.h>
8211 int main () {
8212 long double x;
8213 int y;
8214 x = frexpl (5.0, &y);
8215 return 0;
8217 } "-lm" ]
8221 # Return 1 if issignaling function exists.
8222 proc check_effective_target_issignaling {} {
8223 return [check_runtime issignaling {
8224 #define _GNU_SOURCE
8225 #include <math.h>
8226 int main ()
8228 return issignaling (0.0);
8230 } "-lm" ]
8233 # Return 1 if current options generate DFP instructions, 0 otherwise.
8234 proc check_effective_target_hard_dfp {} {
8235 return [check_no_messages_and_pattern hard_dfp "!adddd3" assembly {
8236 typedef float d64 __attribute__((mode(DD)));
8237 d64 x, y, z;
8238 void foo (void) { z = x + y; }
8242 # Return 1 if string.h and wchar.h headers provide C++ requires overloads
8243 # for strchr etc. functions.
8245 proc check_effective_target_correct_iso_cpp_string_wchar_protos { } {
8246 return [check_no_compiler_messages correct_iso_cpp_string_wchar_protos assembly {
8247 #include <string.h>
8248 #include <wchar.h>
8249 #if !defined(__cplusplus) \
8250 || !defined(__CORRECT_ISO_CPP_STRING_H_PROTO) \
8251 || !defined(__CORRECT_ISO_CPP_WCHAR_H_PROTO)
8252 ISO C++ correct string.h and wchar.h protos not supported.
8253 #else
8254 int i;
8255 #endif
8259 # Return 1 if GNU as is used.
8261 proc check_effective_target_gas { } {
8262 global use_gas_saved
8263 global tool
8265 if {![info exists use_gas_saved]} {
8266 # Check if the as used by gcc is GNU as.
8267 set gcc_as [lindex [${tool}_target_compile "-print-prog-name=as" "" "none" ""] 0]
8268 # Provide /dev/null as input, otherwise gas times out reading from
8269 # stdin.
8270 set status [remote_exec host "$gcc_as" "-v /dev/null"]
8271 set as_output [lindex $status 1]
8272 if { [ string first "GNU" $as_output ] >= 0 } {
8273 set use_gas_saved 1
8274 } else {
8275 set use_gas_saved 0
8278 return $use_gas_saved
8281 # Return 1 if GNU ld is used.
8283 proc check_effective_target_gld { } {
8284 global use_gld_saved
8285 global tool
8287 if {![info exists use_gld_saved]} {
8288 # Check if the ld used by gcc is GNU ld.
8289 set gcc_ld [lindex [${tool}_target_compile "-print-prog-name=ld" "" "none" ""] 0]
8290 set status [remote_exec host "$gcc_ld" "--version"]
8291 set ld_output [lindex $status 1]
8292 if { [ string first "GNU" $ld_output ] >= 0 } {
8293 set use_gld_saved 1
8294 } else {
8295 set use_gld_saved 0
8298 return $use_gld_saved
8301 # Return 1 if the compiler has been configure with link-time optimization
8302 # (LTO) support.
8304 proc check_effective_target_lto { } {
8305 if { [istarget nvptx-*-*] } {
8306 return 0;
8308 return [check_no_compiler_messages lto object {
8309 void foo (void) { }
8310 } "-flto"]
8313 # Return 1 if -mx32 -maddress-mode=short can compile, 0 otherwise.
8315 proc check_effective_target_maybe_x32 { } {
8316 return [check_no_compiler_messages maybe_x32 object {
8317 void foo (void) {}
8318 } "-mx32 -maddress-mode=short"]
8321 # Return 1 if this target supports the -fsplit-stack option, 0
8322 # otherwise.
8324 proc check_effective_target_split_stack {} {
8325 return [check_no_compiler_messages split_stack object {
8326 void foo (void) { }
8327 } "-fsplit-stack"]
8330 # Return 1 if this target supports the -masm=intel option, 0
8331 # otherwise
8333 proc check_effective_target_masm_intel {} {
8334 return [check_no_compiler_messages masm_intel object {
8335 extern void abort (void);
8336 } "-masm=intel"]
8339 # Return 1 if the language for the compiler under test is C.
8341 proc check_effective_target_c { } {
8342 global tool
8343 if [string match $tool "gcc"] {
8344 return 1
8346 return 0
8349 # Return 1 if the language for the compiler under test is C++.
8351 proc check_effective_target_c++ { } {
8352 global tool
8353 if { [string match $tool "g++"] || [string match $tool "libstdc++"] } {
8354 return 1
8356 return 0
8359 set cxx_default "c++14"
8360 # Check whether the current active language standard supports the features
8361 # of C++11/C++14 by checking for the presence of one of the -std flags.
8362 # This assumes that the default for the compiler is $cxx_default, and that
8363 # there will never be multiple -std= arguments on the command line.
8364 proc check_effective_target_c++11_only { } {
8365 global cxx_default
8366 if ![check_effective_target_c++] {
8367 return 0
8369 if [check-flags { { } { } { -std=c++0x -std=gnu++0x -std=c++11 -std=gnu++11 } }] {
8370 return 1
8372 if { $cxx_default == "c++11" && [check-flags { { } { } { } { -std=* } }] } {
8373 return 1
8375 return 0
8377 proc check_effective_target_c++11 { } {
8378 if [check_effective_target_c++11_only] {
8379 return 1
8381 return [check_effective_target_c++14]
8383 proc check_effective_target_c++11_down { } {
8384 if ![check_effective_target_c++] {
8385 return 0
8387 return [expr ![check_effective_target_c++14] ]
8390 proc check_effective_target_c++14_only { } {
8391 global cxx_default
8392 if ![check_effective_target_c++] {
8393 return 0
8395 if [check-flags { { } { } { -std=c++14 -std=gnu++14 -std=c++14 -std=gnu++14 } }] {
8396 return 1
8398 if { $cxx_default == "c++14" && [check-flags { { } { } { } { -std=* } }] } {
8399 return 1
8401 return 0
8404 proc check_effective_target_c++14 { } {
8405 if [check_effective_target_c++14_only] {
8406 return 1
8408 return [check_effective_target_c++17]
8410 proc check_effective_target_c++14_down { } {
8411 if ![check_effective_target_c++] {
8412 return 0
8414 return [expr ![check_effective_target_c++17] ]
8417 proc check_effective_target_c++98_only { } {
8418 global cxx_default
8419 if ![check_effective_target_c++] {
8420 return 0
8422 if [check-flags { { } { } { -std=c++98 -std=gnu++98 -std=c++03 -std=gnu++03 } }] {
8423 return 1
8425 if { $cxx_default == "c++98" && [check-flags { { } { } { } { -std=* } }] } {
8426 return 1
8428 return 0
8431 proc check_effective_target_c++17_only { } {
8432 global cxx_default
8433 if ![check_effective_target_c++] {
8434 return 0
8436 if [check-flags { { } { } { -std=c++17 -std=gnu++17 -std=c++1z -std=gnu++1z } }] {
8437 return 1
8439 if { $cxx_default == "c++17" && [check-flags { { } { } { } { -std=* } }] } {
8440 return 1
8442 return 0
8445 proc check_effective_target_c++17 { } {
8446 if [check_effective_target_c++17_only] {
8447 return 1
8449 return [check_effective_target_c++2a]
8451 proc check_effective_target_c++17_down { } {
8452 if ![check_effective_target_c++] {
8453 return 0
8455 return [expr ![check_effective_target_c++2a] ]
8458 proc check_effective_target_c++2a_only { } {
8459 global cxx_default
8460 if ![check_effective_target_c++] {
8461 return 0
8463 if [check-flags { { } { } { -std=c++2a -std=gnu++2a } }] {
8464 return 1
8466 if { $cxx_default == "c++20" && [check-flags { { } { } { } { -std=* } }] } {
8467 return 1
8469 return 0
8471 proc check_effective_target_c++2a { } {
8472 return [check_effective_target_c++2a_only]
8475 # Check for C++ Concepts TS support, i.e. -fconcepts flag.
8476 proc check_effective_target_concepts { } {
8477 return [check-flags { "" { } { -fconcepts } }]
8480 # Return 1 if expensive testcases should be run.
8482 proc check_effective_target_run_expensive_tests { } {
8483 if { [getenv GCC_TEST_RUN_EXPENSIVE] != "" } {
8484 return 1
8486 return 0
8489 # Returns 1 if "mempcpy" is available on the target system.
8491 proc check_effective_target_mempcpy {} {
8492 return [check_function_available "mempcpy"]
8495 # Returns 1 if "stpcpy" is available on the target system.
8497 proc check_effective_target_stpcpy {} {
8498 return [check_function_available "stpcpy"]
8501 # Check whether the vectorizer tests are supported by the target and
8502 # append additional target-dependent compile flags to DEFAULT_VECTCFLAGS.
8503 # If a port wants to execute the tests more than once it should append
8504 # the supported target to EFFECTIVE_TARGETS instead, and the compile flags
8505 # will be added by a call to add_options_for_<target>.
8506 # Set dg-do-what-default to either compile or run, depending on target
8507 # capabilities. Do not set this if the supported target is appended to
8508 # EFFECTIVE_TARGETS. Flags and this variable will be set by et-dg-runtest
8509 # automatically. Return the number of effective targets if vectorizer tests
8510 # are supported, 0 otherwise.
8512 proc check_vect_support_and_set_flags { } {
8513 global DEFAULT_VECTCFLAGS
8514 global dg-do-what-default
8515 global EFFECTIVE_TARGETS
8517 if [istarget powerpc-*paired*] {
8518 lappend DEFAULT_VECTCFLAGS "-mpaired"
8519 if [check_750cl_hw_available] {
8520 set dg-do-what-default run
8521 } else {
8522 set dg-do-what-default compile
8524 } elseif [istarget powerpc*-*-*] {
8525 # Skip targets not supporting -maltivec.
8526 if ![is-effective-target powerpc_altivec_ok] {
8527 return 0
8530 lappend DEFAULT_VECTCFLAGS "-maltivec"
8531 if [check_p9vector_hw_available] {
8532 lappend DEFAULT_VECTCFLAGS "-mpower9-vector"
8533 } elseif [check_p8vector_hw_available] {
8534 lappend DEFAULT_VECTCFLAGS "-mpower8-vector"
8535 } elseif [check_vsx_hw_available] {
8536 lappend DEFAULT_VECTCFLAGS "-mvsx" "-mno-allow-movmisalign"
8539 if [check_vmx_hw_available] {
8540 set dg-do-what-default run
8541 } else {
8542 if [is-effective-target ilp32] {
8543 # Specify a cpu that supports VMX for compile-only tests.
8544 lappend DEFAULT_VECTCFLAGS "-mcpu=970"
8546 set dg-do-what-default compile
8548 } elseif { [istarget spu-*-*] } {
8549 set dg-do-what-default run
8550 } elseif { [istarget i?86-*-*] || [istarget x86_64-*-*] } {
8551 lappend DEFAULT_VECTCFLAGS "-msse2"
8552 if { [check_effective_target_sse2_runtime] } {
8553 set dg-do-what-default run
8554 } else {
8555 set dg-do-what-default compile
8557 } elseif { [istarget mips*-*-*]
8558 && [check_effective_target_nomips16] } {
8559 if { [check_effective_target_mpaired_single] } {
8560 lappend EFFECTIVE_TARGETS mpaired_single
8562 if { [check_effective_target_mips_loongson] } {
8563 lappend EFFECTIVE_TARGETS mips_loongson
8565 if { [check_effective_target_mips_msa] } {
8566 lappend EFFECTIVE_TARGETS mips_msa
8568 return [llength $EFFECTIVE_TARGETS]
8569 } elseif [istarget sparc*-*-*] {
8570 lappend DEFAULT_VECTCFLAGS "-mcpu=ultrasparc" "-mvis"
8571 if [check_effective_target_ultrasparc_hw] {
8572 set dg-do-what-default run
8573 } else {
8574 set dg-do-what-default compile
8576 } elseif [istarget alpha*-*-*] {
8577 # Alpha's vectorization capabilities are extremely limited.
8578 # It's more effort than its worth disabling all of the tests
8579 # that it cannot pass. But if you actually want to see what
8580 # does work, command out the return.
8581 return 0
8583 lappend DEFAULT_VECTCFLAGS "-mmax"
8584 if [check_alpha_max_hw_available] {
8585 set dg-do-what-default run
8586 } else {
8587 set dg-do-what-default compile
8589 } elseif [istarget ia64-*-*] {
8590 set dg-do-what-default run
8591 } elseif [is-effective-target arm_neon_ok] {
8592 eval lappend DEFAULT_VECTCFLAGS [add_options_for_arm_neon ""]
8593 # NEON does not support denormals, so is not used for vectorization by
8594 # default to avoid loss of precision. We must pass -ffast-math to test
8595 # vectorization of float operations.
8596 lappend DEFAULT_VECTCFLAGS "-ffast-math"
8597 if [is-effective-target arm_neon_hw] {
8598 set dg-do-what-default run
8599 } else {
8600 set dg-do-what-default compile
8602 } elseif [istarget "aarch64*-*-*"] {
8603 set dg-do-what-default run
8604 } elseif [istarget s390*-*-*] {
8605 # The S/390 backend set a default of 2 for that value.
8606 # Override it to have the same situation as with other
8607 # targets.
8608 lappend DEFAULT_VECTCFLAGS "--param" "min-vect-loop-bound=1"
8609 lappend DEFAULT_VECTCFLAGS "--param" "max-unrolled-insns=200"
8610 lappend DEFAULT_VECTCFLAGS "--param" "max-unroll-times=8"
8611 lappend DEFAULT_VECTCFLAGS "--param" "max-completely-peeled-insns=200"
8612 lappend DEFAULT_VECTCFLAGS "--param" "max-completely-peel-times=16"
8613 if [check_effective_target_s390_vxe] {
8614 lappend DEFAULT_VECTCFLAGS "-march=z14" "-mzarch"
8615 set dg-do-what-default run
8616 } elseif [check_effective_target_s390_vx] {
8617 lappend DEFAULT_VECTCFLAGS "-march=z13" "-mzarch"
8618 set dg-do-what-default run
8619 } else {
8620 lappend DEFAULT_VECTCFLAGS "-march=z14" "-mzarch"
8621 set dg-do-what-default compile
8623 } else {
8624 return 0
8627 return 1
8630 # Return 1 if the target does *not* require strict alignment.
8632 proc check_effective_target_non_strict_align {} {
8634 # On ARM, the default is to use STRICT_ALIGNMENT, but there
8635 # are interfaces defined for misaligned access and thus
8636 # depending on the architecture levels unaligned access is
8637 # available.
8638 if [istarget "arm*-*-*"] {
8639 return [check_effective_target_arm_unaligned]
8642 return [check_no_compiler_messages non_strict_align assembly {
8643 char *y;
8644 typedef char __attribute__ ((__aligned__(__BIGGEST_ALIGNMENT__))) c;
8645 c *z;
8646 void foo(void) { z = (c *) y; }
8647 } "-Wcast-align"]
8650 # Return 1 if the target has <ucontext.h>.
8652 proc check_effective_target_ucontext_h { } {
8653 return [check_no_compiler_messages ucontext_h assembly {
8654 #include <ucontext.h>
8658 proc check_effective_target_aarch64_tiny { } {
8659 if { [istarget aarch64*-*-*] } {
8660 return [check_no_compiler_messages aarch64_tiny object {
8661 #ifdef __AARCH64_CMODEL_TINY__
8662 int dummy;
8663 #else
8664 #error target not AArch64 tiny code model
8665 #endif
8667 } else {
8668 return 0
8672 # Create functions to check that the AArch64 assembler supports the
8673 # various architecture extensions via the .arch_extension pseudo-op.
8675 foreach { aarch64_ext } { "fp" "simd" "crypto" "crc" "lse" "dotprod" "sve"} {
8676 eval [string map [list FUNC $aarch64_ext] {
8677 proc check_effective_target_aarch64_asm_FUNC_ok { } {
8678 if { [istarget aarch64*-*-*] } {
8679 return [check_no_compiler_messages aarch64_FUNC_assembler object {
8680 __asm__ (".arch_extension FUNC");
8681 } "-march=armv8-a+FUNC"]
8682 } else {
8683 return 0
8689 proc check_effective_target_aarch64_small { } {
8690 if { [istarget aarch64*-*-*] } {
8691 return [check_no_compiler_messages aarch64_small object {
8692 #ifdef __AARCH64_CMODEL_SMALL__
8693 int dummy;
8694 #else
8695 #error target not AArch64 small code model
8696 #endif
8698 } else {
8699 return 0
8703 proc check_effective_target_aarch64_large { } {
8704 if { [istarget aarch64*-*-*] } {
8705 return [check_no_compiler_messages aarch64_large object {
8706 #ifdef __AARCH64_CMODEL_LARGE__
8707 int dummy;
8708 #else
8709 #error target not AArch64 large code model
8710 #endif
8712 } else {
8713 return 0
8718 # Return 1 if this is a reduced AVR Tiny core. Such cores have different
8719 # register set, instruction set, addressing capabilities and ABI.
8721 proc check_effective_target_avr_tiny { } {
8722 if { [istarget avr*-*-*] } {
8723 return [check_no_compiler_messages avr_tiny object {
8724 #ifdef __AVR_TINY__
8725 int dummy;
8726 #else
8727 #error target not a reduced AVR Tiny core
8728 #endif
8730 } else {
8731 return 0
8735 # Return 1 if <fenv.h> is available with all the standard IEEE
8736 # exceptions and floating-point exceptions are raised by arithmetic
8737 # operations. (If the target requires special options for "inexact"
8738 # exceptions, those need to be specified in the testcases.)
8740 proc check_effective_target_fenv_exceptions {} {
8741 return [check_runtime fenv_exceptions {
8742 #include <fenv.h>
8743 #include <stdlib.h>
8744 #ifndef FE_DIVBYZERO
8745 # error Missing FE_DIVBYZERO
8746 #endif
8747 #ifndef FE_INEXACT
8748 # error Missing FE_INEXACT
8749 #endif
8750 #ifndef FE_INVALID
8751 # error Missing FE_INVALID
8752 #endif
8753 #ifndef FE_OVERFLOW
8754 # error Missing FE_OVERFLOW
8755 #endif
8756 #ifndef FE_UNDERFLOW
8757 # error Missing FE_UNDERFLOW
8758 #endif
8759 volatile float a = 0.0f, r;
8761 main (void)
8763 r = a / a;
8764 if (fetestexcept (FE_INVALID))
8765 exit (0);
8766 else
8767 abort ();
8769 } [add_options_for_ieee "-std=gnu99"]]
8772 proc check_effective_target_tiny {} {
8773 global et_target_tiny_saved
8775 if [info exists et_target_tiny_saved] {
8776 verbose "check_effective_target_tiny: using cached result" 2
8777 } else {
8778 set et_target_tiny_saved 0
8779 if { [istarget aarch64*-*-*]
8780 && [check_effective_target_aarch64_tiny] } {
8781 set et_target_tiny_saved 1
8783 if { [istarget avr-*-*]
8784 && [check_effective_target_avr_tiny] } {
8785 set et_target_tiny_saved 1
8789 return $et_target_tiny_saved
8792 # Return 1 if LOGICAL_OP_NON_SHORT_CIRCUIT is set to 0 for the current target.
8794 proc check_effective_target_logical_op_short_circuit {} {
8795 if { [istarget mips*-*-*]
8796 || [istarget arc*-*-*]
8797 || [istarget avr*-*-*]
8798 || [istarget crisv32-*-*] || [istarget cris-*-*]
8799 || [istarget mmix-*-*]
8800 || [istarget s390*-*-*]
8801 || [istarget powerpc*-*-*]
8802 || [istarget nios2*-*-*]
8803 || [istarget riscv*-*-*]
8804 || [istarget visium-*-*]
8805 || [check_effective_target_arm_cortex_m] } {
8806 return 1
8808 return 0
8811 # Return 1 if the target supports -mbranch-cost=N option.
8813 proc check_effective_target_branch_cost {} {
8814 if { [ istarget arm*-*-*]
8815 || [istarget avr*-*-*]
8816 || [istarget epiphany*-*-*]
8817 || [istarget frv*-*-*]
8818 || [istarget i?86-*-*] || [istarget x86_64-*-*]
8819 || [istarget mips*-*-*]
8820 || [istarget s390*-*-*]
8821 || [istarget riscv*-*-*]
8822 || [istarget sh*-*-*]
8823 || [istarget spu*-*-*] } {
8824 return 1
8826 return 0
8829 # Record that dg-final test TEST requires convential compilation.
8831 proc force_conventional_output_for { test } {
8832 if { [info proc $test] == "" } {
8833 perror "$test does not exist"
8834 exit 1
8836 proc ${test}_required_options {} {
8837 global gcc_force_conventional_output
8838 return $gcc_force_conventional_output
8842 # Record that dg-final test scan-ltrans-tree-dump* requires -flto-partition=one
8843 # in order to force a single partition, allowing scan-ltrans-tree-dump* to scan
8844 # a dump file *.exe.ltrans0.*.
8846 proc scan-ltrans-tree-dump_required_options {} {
8847 return "-flto-partition=one"
8849 proc scan-ltrans-tree-dump-times_required_options {} {
8850 return "-flto-partition=one"
8852 proc scan-ltrans-tree-dump-not_required_options {} {
8853 return "-flto-partition=one"
8855 proc scan-ltrans-tree-dump-dem_required_options {} {
8856 return "-flto-partition=one"
8858 proc scan-ltrans-tree-dump-dem-not_required_options {} {
8859 return "-flto-partition=one"
8862 # Return 1 if the x86-64 target supports PIE with copy reloc, 0
8863 # otherwise. Cache the result.
8865 proc check_effective_target_pie_copyreloc { } {
8866 global pie_copyreloc_available_saved
8867 global tool
8868 global GCC_UNDER_TEST
8870 if { !([istarget i?86-*-*] || [istarget x86_64-*-*]) } {
8871 return 0
8874 # Need auto-host.h to check linker support.
8875 if { ![file exists ../../auto-host.h ] } {
8876 return 0
8879 if [info exists pie_copyreloc_available_saved] {
8880 verbose "check_effective_target_pie_copyreloc returning saved $pie_copyreloc_available_saved" 2
8881 } else {
8882 # Set up and compile to see if linker supports PIE with copy
8883 # reloc. Include the current process ID in the file names to
8884 # prevent conflicts with invocations for multiple testsuites.
8886 set src pie[pid].c
8887 set obj pie[pid].o
8889 set f [open $src "w"]
8890 puts $f "#include \"../../auto-host.h\""
8891 puts $f "#if HAVE_LD_PIE_COPYRELOC == 0"
8892 puts $f "# error Linker does not support PIE with copy reloc."
8893 puts $f "#endif"
8894 close $f
8896 verbose "check_effective_target_pie_copyreloc compiling testfile $src" 2
8897 set lines [${tool}_target_compile $src $obj object ""]
8899 file delete $src
8900 file delete $obj
8902 if [string match "" $lines] then {
8903 verbose "check_effective_target_pie_copyreloc testfile compilation passed" 2
8904 set pie_copyreloc_available_saved 1
8905 } else {
8906 verbose "check_effective_target_pie_copyreloc testfile compilation failed" 2
8907 set pie_copyreloc_available_saved 0
8911 return $pie_copyreloc_available_saved
8914 # Return 1 if the x86 target supports R_386_GOT32X relocation, 0
8915 # otherwise. Cache the result.
8917 proc check_effective_target_got32x_reloc { } {
8918 global got32x_reloc_available_saved
8919 global tool
8920 global GCC_UNDER_TEST
8922 if { !([istarget i?86-*-*] || [istarget x86_64-*-*]) } {
8923 return 0
8926 # Need auto-host.h to check linker support.
8927 if { ![file exists ../../auto-host.h ] } {
8928 return 0
8931 if [info exists got32x_reloc_available_saved] {
8932 verbose "check_effective_target_got32x_reloc returning saved $got32x_reloc_available_saved" 2
8933 } else {
8934 # Include the current process ID in the file names to prevent
8935 # conflicts with invocations for multiple testsuites.
8937 set src got32x[pid].c
8938 set obj got32x[pid].o
8940 set f [open $src "w"]
8941 puts $f "#include \"../../auto-host.h\""
8942 puts $f "#if HAVE_AS_IX86_GOT32X == 0"
8943 puts $f "# error Assembler does not support R_386_GOT32X."
8944 puts $f "#endif"
8945 close $f
8947 verbose "check_effective_target_got32x_reloc compiling testfile $src" 2
8948 set lines [${tool}_target_compile $src $obj object ""]
8950 file delete $src
8951 file delete $obj
8953 if [string match "" $lines] then {
8954 verbose "check_effective_target_got32x_reloc testfile compilation passed" 2
8955 set got32x_reloc_available_saved 1
8956 } else {
8957 verbose "check_effective_target_got32x_reloc testfile compilation failed" 2
8958 set got32x_reloc_available_saved 0
8962 return $got32x_reloc_available_saved
8965 # Return 1 if the x86 target supports calling ___tls_get_addr via GOT,
8966 # 0 otherwise. Cache the result.
8968 proc check_effective_target_tls_get_addr_via_got { } {
8969 global tls_get_addr_via_got_available_saved
8970 global tool
8971 global GCC_UNDER_TEST
8973 if { !([istarget i?86-*-*] || [istarget x86_64-*-*]) } {
8974 return 0
8977 # Need auto-host.h to check linker support.
8978 if { ![file exists ../../auto-host.h ] } {
8979 return 0
8982 if [info exists tls_get_addr_via_got_available_saved] {
8983 verbose "check_effective_target_tls_get_addr_via_got returning saved $tls_get_addr_via_got_available_saved" 2
8984 } else {
8985 # Include the current process ID in the file names to prevent
8986 # conflicts with invocations for multiple testsuites.
8988 set src tls_get_addr_via_got[pid].c
8989 set obj tls_get_addr_via_got[pid].o
8991 set f [open $src "w"]
8992 puts $f "#include \"../../auto-host.h\""
8993 puts $f "#if HAVE_AS_IX86_TLS_GET_ADDR_GOT == 0"
8994 puts $f "# error Assembler/linker do not support calling ___tls_get_addr via GOT."
8995 puts $f "#endif"
8996 close $f
8998 verbose "check_effective_target_tls_get_addr_via_got compiling testfile $src" 2
8999 set lines [${tool}_target_compile $src $obj object ""]
9001 file delete $src
9002 file delete $obj
9004 if [string match "" $lines] then {
9005 verbose "check_effective_target_tls_get_addr_via_got testfile compilation passed" 2
9006 set tls_get_addr_via_got_available_saved 1
9007 } else {
9008 verbose "check_effective_target_tls_get_addr_via_got testfile compilation failed" 2
9009 set tls_get_addr_via_got_available_saved 0
9013 return $tls_get_addr_via_got_available_saved
9016 # Return 1 if the target uses comdat groups.
9018 proc check_effective_target_comdat_group {} {
9019 return [check_no_messages_and_pattern comdat_group "\.section\[^\n\r]*,comdat|\.group\[^\n\r]*,#comdat" assembly {
9020 // C++
9021 inline int foo () { return 1; }
9022 int (*fn) () = foo;
9026 # Return 1 if target supports __builtin_eh_return
9027 proc check_effective_target_builtin_eh_return { } {
9028 return [check_no_compiler_messages builtin_eh_return object {
9029 void test (long l, void *p)
9031 __builtin_eh_return (l, p);
9033 } "" ]
9036 # Return 1 if the target supports max reduction for vectors.
9038 proc check_effective_target_vect_max_reduc { } {
9039 if { [istarget aarch64*-*-*] || [is-effective-target arm_neon] } {
9040 return 1
9042 return 0
9045 # Return 1 if there is an nvptx offload compiler.
9047 proc check_effective_target_offload_nvptx { } {
9048 return [check_no_compiler_messages offload_nvptx object {
9049 int main () {return 0;}
9050 } "-foffload=nvptx-none" ]
9053 # Return 1 if the compiler has been configured with hsa offloading.
9055 proc check_effective_target_offload_hsa { } {
9056 return [check_no_compiler_messages offload_hsa assembly {
9057 int main () {return 0;}
9058 } "-foffload=hsa" ]
9061 # Return 1 if the target support -fprofile-update=atomic
9062 proc check_effective_target_profile_update_atomic {} {
9063 return [check_no_compiler_messages profile_update_atomic assembly {
9064 int main (void) { return 0; }
9065 } "-fprofile-update=atomic -fprofile-generate"]
9068 # Return 1 if vector (va - vector add) instructions are understood by
9069 # the assembler and can be executed. This also covers checking for
9070 # the VX kernel feature. A kernel without that feature does not
9071 # enable the vector facility and the following check will die with a
9072 # signal.
9073 proc check_effective_target_s390_vx { } {
9074 if ![istarget s390*-*-*] then {
9075 return 0;
9078 return [check_runtime s390_check_vx {
9079 int main (void)
9081 asm ("va %%v24, %%v26, %%v28, 3" : : : "v24", "v26", "v28");
9082 return 0;
9084 } "-march=z13 -mzarch" ]
9087 # Same as above but for the z14 vector enhancement facility. Test
9088 # is performed with the vector nand instruction.
9089 proc check_effective_target_s390_vxe { } {
9090 if ![istarget s390*-*-*] then {
9091 return 0;
9094 return [check_runtime s390_check_vxe {
9095 int main (void)
9097 asm ("vnn %%v24, %%v26, %%v28" : : : "v24", "v26", "v28");
9098 return 0;
9100 } "-march=z14 -mzarch" ]
9103 #For versions of ARM architectures that have hardware div insn,
9104 #disable the divmod transform
9106 proc check_effective_target_arm_divmod_simode { } {
9107 return [check_no_compiler_messages arm_divmod assembly {
9108 #ifdef __ARM_ARCH_EXT_IDIV__
9109 #error has div insn
9110 #endif
9111 int i;
9115 # Return 1 if target supports divmod hardware insn or divmod libcall.
9117 proc check_effective_target_divmod { } {
9118 #TODO: Add checks for all targets that have either hardware divmod insn
9119 # or define libfunc for divmod.
9120 if { [istarget arm*-*-*]
9121 || [istarget i?86-*-*] || [istarget x86_64-*-*] } {
9122 return 1
9124 return 0
9127 # Return 1 if target supports divmod for SImode. The reason for
9128 # separating this from check_effective_target_divmod is that
9129 # some versions of ARM architecture define div instruction
9130 # only for simode, and for these archs, we do not want to enable
9131 # divmod transform for simode.
9133 proc check_effective_target_divmod_simode { } {
9134 if { [istarget arm*-*-*] } {
9135 return [check_effective_target_arm_divmod_simode]
9138 return [check_effective_target_divmod]
9141 # Return 1 if store merging optimization is applicable for target.
9142 # Store merging is not profitable for targets like the avr which
9143 # can load/store only one byte at a time. Use int size as a proxy
9144 # for the number of bytes the target can write, and skip for targets
9145 # with a smallish (< 32) size.
9147 proc check_effective_target_store_merge { } {
9148 if { [is-effective-target non_strict_align ] && [is-effective-target int32plus] } {
9149 return 1
9152 return 0
9155 # Return 1 if we're able to assemble rdrand
9157 proc check_effective_target_rdrand { } {
9158 return [check_no_compiler_messages_nocache rdrand object {
9159 unsigned int
9160 __foo(void)
9162 unsigned int val;
9163 __builtin_ia32_rdrand32_step(&val);
9164 return val;
9166 } "-mrdrnd" ]
9169 # Return 1 if the target supports coprocessor instructions: cdp, ldc, ldcl,
9170 # stc, stcl, mcr and mrc.
9171 proc check_effective_target_arm_coproc1_ok_nocache { } {
9172 if { ![istarget arm*-*-*] } {
9173 return 0
9175 return [check_no_compiler_messages_nocache arm_coproc1_ok assembly {
9176 #if (__thumb__ && !__thumb2__) || __ARM_ARCH < 4
9177 #error FOO
9178 #endif
9182 proc check_effective_target_arm_coproc1_ok { } {
9183 return [check_cached_effective_target arm_coproc1_ok \
9184 check_effective_target_arm_coproc1_ok_nocache]
9187 # Return 1 if the target supports all coprocessor instructions checked by
9188 # check_effective_target_arm_coproc1_ok in addition to the following: cdp2,
9189 # ldc2, ldc2l, stc2, stc2l, mcr2 and mrc2.
9190 proc check_effective_target_arm_coproc2_ok_nocache { } {
9191 if { ![check_effective_target_arm_coproc1_ok] } {
9192 return 0
9194 return [check_no_compiler_messages_nocache arm_coproc2_ok assembly {
9195 #if (__thumb__ && !__thumb2__) || __ARM_ARCH < 5
9196 #error FOO
9197 #endif
9201 proc check_effective_target_arm_coproc2_ok { } {
9202 return [check_cached_effective_target arm_coproc2_ok \
9203 check_effective_target_arm_coproc2_ok_nocache]
9206 # Return 1 if the target supports all coprocessor instructions checked by
9207 # check_effective_target_arm_coproc2_ok in addition the following: mcrr and
9208 # mrrc.
9209 proc check_effective_target_arm_coproc3_ok_nocache { } {
9210 if { ![check_effective_target_arm_coproc2_ok] } {
9211 return 0
9213 return [check_no_compiler_messages_nocache arm_coproc3_ok assembly {
9214 #if (__thumb__ && !__thumb2__) \
9215 || (__ARM_ARCH < 6 && !defined (__ARM_ARCH_5TE__))
9216 #error FOO
9217 #endif
9221 proc check_effective_target_arm_coproc3_ok { } {
9222 return [check_cached_effective_target arm_coproc3_ok \
9223 check_effective_target_arm_coproc3_ok_nocache]
9226 # Return 1 if the target supports all coprocessor instructions checked by
9227 # check_effective_target_arm_coproc3_ok in addition the following: mcrr2 and
9228 # mrcc2.
9229 proc check_effective_target_arm_coproc4_ok_nocache { } {
9230 if { ![check_effective_target_arm_coproc3_ok] } {
9231 return 0
9233 return [check_no_compiler_messages_nocache arm_coproc4_ok assembly {
9234 #if (__thumb__ && !__thumb2__) || __ARM_ARCH < 6
9235 #error FOO
9236 #endif
9240 proc check_effective_target_arm_coproc4_ok { } {
9241 return [check_cached_effective_target arm_coproc4_ok \
9242 check_effective_target_arm_coproc4_ok_nocache]
9245 # Return 1 if the target supports the auto_inc_dec optimization pass.
9246 proc check_effective_target_autoincdec { } {
9247 if { ![check_no_compiler_messages auto_incdec assembly { void f () { }
9248 } "-O2 -fdump-rtl-auto_inc_dec" ] } {
9249 return 0
9252 set dumpfile [glob -nocomplain "auto_incdec[pid].c.\[0-9\]\[0-9\]\[0-9\]r.auto_inc_dec"]
9253 if { [file exists $dumpfile ] } {
9254 file delete $dumpfile
9255 return 1
9257 return 0
9260 # Return 1 if the target has support for stack probing designed
9261 # to avoid stack-clash style attacks.
9263 # This is used to restrict the stack-clash mitigation tests to
9264 # just those targets that have been explicitly supported.
9266 # In addition to the prologue work on those targets, each target's
9267 # properties should be described in the functions below so that
9268 # tests do not become a mess of unreadable target conditions.
9270 proc check_effective_target_supports_stack_clash_protection { } {
9272 # Temporary until the target bits are fully ACK'd.
9273 # if { [istarget aarch*-*-*] } {
9274 # return 1
9277 if { [istarget x86_64-*-*] || [istarget i?86-*-*]
9278 || [istarget powerpc*-*-*] || [istarget rs6000*-*-*]
9279 || [istarget s390*-*-*] } {
9280 return 1
9282 return 0
9285 # Return 1 if the target creates a frame pointer for non-leaf functions
9286 # Note we ignore cases where we apply tail call optimization here.
9287 proc check_effective_target_frame_pointer_for_non_leaf { } {
9288 if { [istarget aarch*-*-*] } {
9289 return 1
9292 # Solaris/x86 defaults to -fno-omit-frame-pointer.
9293 if { [istarget i?86-*-solaris*] || [istarget x86_64-*-solaris*] } {
9294 return 1
9297 return 0
9300 # Return 1 if the target's calling sequence or its ABI
9301 # create implicit stack probes at or prior to function entry.
9302 proc check_effective_target_caller_implicit_probes { } {
9304 # On x86/x86_64 the call instruction itself pushes the return
9305 # address onto the stack. That is an implicit probe of *sp.
9306 if { [istarget x86_64-*-*] || [istarget i?86-*-*] } {
9307 return 1
9310 # On PPC, the ABI mandates that the address of the outer
9311 # frame be stored at *sp. Thus each allocation of stack
9312 # space is itself an implicit probe of *sp.
9313 if { [istarget powerpc*-*-*] || [istarget rs6000*-*-*] } {
9314 return 1
9317 # s390's ABI has a register save area allocated by the
9318 # caller for use by the callee. The mere existence does
9319 # not constitute a probe by the caller, but when the slots
9320 # used by the callee those stores are implicit probes.
9321 if { [istarget s390*-*-*] } {
9322 return 1
9325 # Not strictly true on aarch64, but we have agreed that we will
9326 # consider any function that pushes SP more than 3kbytes into
9327 # the guard page as broken. This essentially means that we can
9328 # consider the aarch64 as having a caller implicit probe at
9329 # *(sp + 1k).
9330 if { [istarget aarch64*-*-*] } {
9331 return 1;
9334 return 0
9337 # Targets that potentially realign the stack pointer often cause residual
9338 # stack allocations and make it difficult to elimination loops or residual
9339 # allocations for dynamic stack allocations
9340 proc check_effective_target_callee_realigns_stack { } {
9341 if { [istarget x86_64-*-*] || [istarget i?86-*-*] } {
9342 return 1
9344 return 0
9347 # Return 1 if CET instructions can be compiled.
9348 proc check_effective_target_cet { } {
9349 if { !([istarget i?86-*-*] || [istarget x86_64-*-*]) } {
9350 return 0
9352 return [check_no_compiler_messages cet object {
9353 void foo (void)
9355 asm ("setssbsy");
9357 } "-O2" ]