Update baseline symbols for hppa-linux.
[official-gcc.git] / gcc / expr.cc
blob308ddc09e631aea14b65274b3b8a9aac11c4cb94
1 /* Convert tree expression to rtl instructions, for GNU compiler.
2 Copyright (C) 1988-2023 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 #include "config.h"
21 #include "system.h"
22 #include "coretypes.h"
23 #include "backend.h"
24 #include "target.h"
25 #include "rtl.h"
26 #include "tree.h"
27 #include "gimple.h"
28 #include "predict.h"
29 #include "memmodel.h"
30 #include "tm_p.h"
31 #include "ssa.h"
32 #include "optabs.h"
33 #include "expmed.h"
34 #include "regs.h"
35 #include "emit-rtl.h"
36 #include "recog.h"
37 #include "cgraph.h"
38 #include "diagnostic.h"
39 #include "alias.h"
40 #include "fold-const.h"
41 #include "stor-layout.h"
42 #include "attribs.h"
43 #include "varasm.h"
44 #include "except.h"
45 #include "insn-attr.h"
46 #include "dojump.h"
47 #include "explow.h"
48 #include "calls.h"
49 #include "stmt.h"
50 /* Include expr.h after insn-config.h so we get HAVE_conditional_move. */
51 #include "expr.h"
52 #include "optabs-tree.h"
53 #include "libfuncs.h"
54 #include "reload.h"
55 #include "langhooks.h"
56 #include "common/common-target.h"
57 #include "tree-dfa.h"
58 #include "tree-ssa-live.h"
59 #include "tree-outof-ssa.h"
60 #include "tree-ssa-address.h"
61 #include "builtins.h"
62 #include "ccmp.h"
63 #include "gimple-iterator.h"
64 #include "gimple-fold.h"
65 #include "rtx-vector-builder.h"
66 #include "tree-pretty-print.h"
67 #include "flags.h"
70 /* If this is nonzero, we do not bother generating VOLATILE
71 around volatile memory references, and we are willing to
72 output indirect addresses. If cse is to follow, we reject
73 indirect addresses so a useful potential cse is generated;
74 if it is used only once, instruction combination will produce
75 the same indirect address eventually. */
76 int cse_not_expected;
78 static bool block_move_libcall_safe_for_call_parm (void);
79 static bool emit_block_move_via_pattern (rtx, rtx, rtx, unsigned, unsigned,
80 HOST_WIDE_INT, unsigned HOST_WIDE_INT,
81 unsigned HOST_WIDE_INT,
82 unsigned HOST_WIDE_INT, bool);
83 static void emit_block_move_via_loop (rtx, rtx, rtx, unsigned);
84 static void clear_by_pieces (rtx, unsigned HOST_WIDE_INT, unsigned int);
85 static rtx_insn *compress_float_constant (rtx, rtx);
86 static rtx get_subtarget (rtx);
87 static rtx store_field (rtx, poly_int64, poly_int64, poly_uint64, poly_uint64,
88 machine_mode, tree, alias_set_type, bool, bool);
90 static unsigned HOST_WIDE_INT highest_pow2_factor_for_target (const_tree, const_tree);
92 static bool is_aligning_offset (const_tree, const_tree);
93 static rtx reduce_to_bit_field_precision (rtx, rtx, tree);
94 static rtx do_store_flag (sepops, rtx, machine_mode);
95 #ifdef PUSH_ROUNDING
96 static void emit_single_push_insn (machine_mode, rtx, tree);
97 #endif
98 static void do_tablejump (rtx, machine_mode, rtx, rtx, rtx,
99 profile_probability);
100 static rtx const_vector_from_tree (tree);
101 static tree tree_expr_size (const_tree);
102 static void convert_mode_scalar (rtx, rtx, int);
105 /* This is run to set up which modes can be used
106 directly in memory and to initialize the block move optab. It is run
107 at the beginning of compilation and when the target is reinitialized. */
109 void
110 init_expr_target (void)
112 rtx pat;
113 int num_clobbers;
114 rtx mem, mem1;
115 rtx reg;
117 /* Try indexing by frame ptr and try by stack ptr.
118 It is known that on the Convex the stack ptr isn't a valid index.
119 With luck, one or the other is valid on any machine. */
120 mem = gen_rtx_MEM (word_mode, stack_pointer_rtx);
121 mem1 = gen_rtx_MEM (word_mode, frame_pointer_rtx);
123 /* A scratch register we can modify in-place below to avoid
124 useless RTL allocations. */
125 reg = gen_rtx_REG (word_mode, LAST_VIRTUAL_REGISTER + 1);
127 rtx_insn *insn = as_a<rtx_insn *> (rtx_alloc (INSN));
128 pat = gen_rtx_SET (NULL_RTX, NULL_RTX);
129 PATTERN (insn) = pat;
131 for (machine_mode mode = VOIDmode; (int) mode < NUM_MACHINE_MODES;
132 mode = (machine_mode) ((int) mode + 1))
134 int regno;
136 direct_load[(int) mode] = direct_store[(int) mode] = 0;
137 PUT_MODE (mem, mode);
138 PUT_MODE (mem1, mode);
140 /* See if there is some register that can be used in this mode and
141 directly loaded or stored from memory. */
143 if (mode != VOIDmode && mode != BLKmode)
144 for (regno = 0; regno < FIRST_PSEUDO_REGISTER
145 && (direct_load[(int) mode] == 0 || direct_store[(int) mode] == 0);
146 regno++)
148 if (!targetm.hard_regno_mode_ok (regno, mode))
149 continue;
151 set_mode_and_regno (reg, mode, regno);
153 SET_SRC (pat) = mem;
154 SET_DEST (pat) = reg;
155 if (recog (pat, insn, &num_clobbers) >= 0)
156 direct_load[(int) mode] = 1;
158 SET_SRC (pat) = mem1;
159 SET_DEST (pat) = reg;
160 if (recog (pat, insn, &num_clobbers) >= 0)
161 direct_load[(int) mode] = 1;
163 SET_SRC (pat) = reg;
164 SET_DEST (pat) = mem;
165 if (recog (pat, insn, &num_clobbers) >= 0)
166 direct_store[(int) mode] = 1;
168 SET_SRC (pat) = reg;
169 SET_DEST (pat) = mem1;
170 if (recog (pat, insn, &num_clobbers) >= 0)
171 direct_store[(int) mode] = 1;
175 mem = gen_rtx_MEM (VOIDmode, gen_raw_REG (Pmode, LAST_VIRTUAL_REGISTER + 1));
177 opt_scalar_float_mode mode_iter;
178 FOR_EACH_MODE_IN_CLASS (mode_iter, MODE_FLOAT)
180 scalar_float_mode mode = mode_iter.require ();
181 scalar_float_mode srcmode;
182 FOR_EACH_MODE_UNTIL (srcmode, mode)
184 enum insn_code ic;
186 ic = can_extend_p (mode, srcmode, 0);
187 if (ic == CODE_FOR_nothing)
188 continue;
190 PUT_MODE (mem, srcmode);
192 if (insn_operand_matches (ic, 1, mem))
193 float_extend_from_mem[mode][srcmode] = true;
198 /* This is run at the start of compiling a function. */
200 void
201 init_expr (void)
203 memset (&crtl->expr, 0, sizeof (crtl->expr));
206 /* Copy data from FROM to TO, where the machine modes are not the same.
207 Both modes may be integer, or both may be floating, or both may be
208 fixed-point.
209 UNSIGNEDP should be nonzero if FROM is an unsigned type.
210 This causes zero-extension instead of sign-extension. */
212 void
213 convert_move (rtx to, rtx from, int unsignedp)
215 machine_mode to_mode = GET_MODE (to);
216 machine_mode from_mode = GET_MODE (from);
218 gcc_assert (to_mode != BLKmode);
219 gcc_assert (from_mode != BLKmode);
221 /* If the source and destination are already the same, then there's
222 nothing to do. */
223 if (to == from)
224 return;
226 /* If FROM is a SUBREG that indicates that we have already done at least
227 the required extension, strip it. We don't handle such SUBREGs as
228 TO here. */
230 scalar_int_mode to_int_mode;
231 if (GET_CODE (from) == SUBREG
232 && SUBREG_PROMOTED_VAR_P (from)
233 && is_a <scalar_int_mode> (to_mode, &to_int_mode)
234 && (GET_MODE_PRECISION (subreg_promoted_mode (from))
235 >= GET_MODE_PRECISION (to_int_mode))
236 && SUBREG_CHECK_PROMOTED_SIGN (from, unsignedp))
238 scalar_int_mode int_orig_mode;
239 scalar_int_mode int_inner_mode;
240 machine_mode orig_mode = GET_MODE (from);
242 from = gen_lowpart (to_int_mode, SUBREG_REG (from));
243 from_mode = to_int_mode;
245 /* Preserve SUBREG_PROMOTED_VAR_P if the new mode is wider than
246 the original mode, but narrower than the inner mode. */
247 if (GET_CODE (from) == SUBREG
248 && is_a <scalar_int_mode> (orig_mode, &int_orig_mode)
249 && GET_MODE_PRECISION (to_int_mode)
250 > GET_MODE_PRECISION (int_orig_mode)
251 && is_a <scalar_int_mode> (GET_MODE (SUBREG_REG (from)),
252 &int_inner_mode)
253 && GET_MODE_PRECISION (int_inner_mode)
254 > GET_MODE_PRECISION (to_int_mode))
256 SUBREG_PROMOTED_VAR_P (from) = 1;
257 SUBREG_PROMOTED_SET (from, unsignedp);
261 gcc_assert (GET_CODE (to) != SUBREG || !SUBREG_PROMOTED_VAR_P (to));
263 if (to_mode == from_mode
264 || (from_mode == VOIDmode && CONSTANT_P (from)))
266 emit_move_insn (to, from);
267 return;
270 if (VECTOR_MODE_P (to_mode) || VECTOR_MODE_P (from_mode))
272 if (GET_MODE_UNIT_PRECISION (to_mode)
273 > GET_MODE_UNIT_PRECISION (from_mode))
275 optab op = unsignedp ? zext_optab : sext_optab;
276 insn_code icode = convert_optab_handler (op, to_mode, from_mode);
277 if (icode != CODE_FOR_nothing)
279 emit_unop_insn (icode, to, from,
280 unsignedp ? ZERO_EXTEND : SIGN_EXTEND);
281 return;
285 if (GET_MODE_UNIT_PRECISION (to_mode)
286 < GET_MODE_UNIT_PRECISION (from_mode))
288 insn_code icode = convert_optab_handler (trunc_optab,
289 to_mode, from_mode);
290 if (icode != CODE_FOR_nothing)
292 emit_unop_insn (icode, to, from, TRUNCATE);
293 return;
297 gcc_assert (known_eq (GET_MODE_BITSIZE (from_mode),
298 GET_MODE_BITSIZE (to_mode)));
300 if (VECTOR_MODE_P (to_mode))
301 from = simplify_gen_subreg (to_mode, from, GET_MODE (from), 0);
302 else
303 to = simplify_gen_subreg (from_mode, to, GET_MODE (to), 0);
305 emit_move_insn (to, from);
306 return;
309 if (GET_CODE (to) == CONCAT && GET_CODE (from) == CONCAT)
311 convert_move (XEXP (to, 0), XEXP (from, 0), unsignedp);
312 convert_move (XEXP (to, 1), XEXP (from, 1), unsignedp);
313 return;
316 convert_mode_scalar (to, from, unsignedp);
319 /* Like convert_move, but deals only with scalar modes. */
321 static void
322 convert_mode_scalar (rtx to, rtx from, int unsignedp)
324 /* Both modes should be scalar types. */
325 scalar_mode from_mode = as_a <scalar_mode> (GET_MODE (from));
326 scalar_mode to_mode = as_a <scalar_mode> (GET_MODE (to));
327 bool to_real = SCALAR_FLOAT_MODE_P (to_mode);
328 bool from_real = SCALAR_FLOAT_MODE_P (from_mode);
329 enum insn_code code;
330 rtx libcall;
332 gcc_assert (to_real == from_real);
334 /* rtx code for making an equivalent value. */
335 enum rtx_code equiv_code = (unsignedp < 0 ? UNKNOWN
336 : (unsignedp ? ZERO_EXTEND : SIGN_EXTEND));
338 if (to_real)
340 rtx value;
341 rtx_insn *insns;
342 convert_optab tab;
344 gcc_assert ((GET_MODE_PRECISION (from_mode)
345 != GET_MODE_PRECISION (to_mode))
346 || (DECIMAL_FLOAT_MODE_P (from_mode)
347 != DECIMAL_FLOAT_MODE_P (to_mode))
348 || (REAL_MODE_FORMAT (from_mode) == &arm_bfloat_half_format
349 && REAL_MODE_FORMAT (to_mode) == &ieee_half_format)
350 || (REAL_MODE_FORMAT (to_mode) == &arm_bfloat_half_format
351 && REAL_MODE_FORMAT (from_mode) == &ieee_half_format));
353 if (GET_MODE_PRECISION (from_mode) == GET_MODE_PRECISION (to_mode))
354 /* Conversion between decimal float and binary float, same size. */
355 tab = DECIMAL_FLOAT_MODE_P (from_mode) ? trunc_optab : sext_optab;
356 else if (GET_MODE_PRECISION (from_mode) < GET_MODE_PRECISION (to_mode))
357 tab = sext_optab;
358 else
359 tab = trunc_optab;
361 /* Try converting directly if the insn is supported. */
363 code = convert_optab_handler (tab, to_mode, from_mode);
364 if (code != CODE_FOR_nothing)
366 emit_unop_insn (code, to, from,
367 tab == sext_optab ? FLOAT_EXTEND : FLOAT_TRUNCATE);
368 return;
371 #ifdef HAVE_SFmode
372 if (REAL_MODE_FORMAT (from_mode) == &arm_bfloat_half_format
373 && REAL_MODE_FORMAT (SFmode) == &ieee_single_format)
375 if (GET_MODE_PRECISION (to_mode) > GET_MODE_PRECISION (SFmode))
377 /* To cut down on libgcc size, implement
378 BFmode -> {DF,XF,TF}mode conversions by
379 BFmode -> SFmode -> {DF,XF,TF}mode conversions. */
380 rtx temp = gen_reg_rtx (SFmode);
381 convert_mode_scalar (temp, from, unsignedp);
382 convert_mode_scalar (to, temp, unsignedp);
383 return;
385 if (REAL_MODE_FORMAT (to_mode) == &ieee_half_format)
387 /* Similarly, implement BFmode -> HFmode as
388 BFmode -> SFmode -> HFmode conversion where SFmode
389 has superset of BFmode values. We don't need
390 to handle sNaNs by raising exception and turning
391 into into qNaN though, as that can be done in the
392 SFmode -> HFmode conversion too. */
393 rtx temp = gen_reg_rtx (SFmode);
394 int save_flag_finite_math_only = flag_finite_math_only;
395 flag_finite_math_only = true;
396 convert_mode_scalar (temp, from, unsignedp);
397 flag_finite_math_only = save_flag_finite_math_only;
398 convert_mode_scalar (to, temp, unsignedp);
399 return;
401 if (to_mode == SFmode
402 && !HONOR_NANS (from_mode)
403 && !HONOR_NANS (to_mode)
404 && optimize_insn_for_speed_p ())
406 /* If we don't expect sNaNs, for BFmode -> SFmode we can just
407 shift the bits up. */
408 machine_mode fromi_mode, toi_mode;
409 if (int_mode_for_size (GET_MODE_BITSIZE (from_mode),
410 0).exists (&fromi_mode)
411 && int_mode_for_size (GET_MODE_BITSIZE (to_mode),
412 0).exists (&toi_mode))
414 start_sequence ();
415 rtx fromi = lowpart_subreg (fromi_mode, from, from_mode);
416 rtx tof = NULL_RTX;
417 if (fromi)
419 rtx toi;
420 if (GET_MODE (fromi) == VOIDmode)
421 toi = simplify_unary_operation (ZERO_EXTEND, toi_mode,
422 fromi, fromi_mode);
423 else
425 toi = gen_reg_rtx (toi_mode);
426 convert_mode_scalar (toi, fromi, 1);
429 = maybe_expand_shift (LSHIFT_EXPR, toi_mode, toi,
430 GET_MODE_PRECISION (to_mode)
431 - GET_MODE_PRECISION (from_mode),
432 NULL_RTX, 1);
433 if (toi)
435 tof = lowpart_subreg (to_mode, toi, toi_mode);
436 if (tof)
437 emit_move_insn (to, tof);
440 insns = get_insns ();
441 end_sequence ();
442 if (tof)
444 emit_insn (insns);
445 return;
450 if (REAL_MODE_FORMAT (from_mode) == &ieee_single_format
451 && REAL_MODE_FORMAT (to_mode) == &arm_bfloat_half_format
452 && !HONOR_NANS (from_mode)
453 && !HONOR_NANS (to_mode)
454 && !flag_rounding_math
455 && optimize_insn_for_speed_p ())
457 /* If we don't expect qNaNs nor sNaNs and can assume rounding
458 to nearest, we can expand the conversion inline as
459 (fromi + 0x7fff + ((fromi >> 16) & 1)) >> 16. */
460 machine_mode fromi_mode, toi_mode;
461 if (int_mode_for_size (GET_MODE_BITSIZE (from_mode),
462 0).exists (&fromi_mode)
463 && int_mode_for_size (GET_MODE_BITSIZE (to_mode),
464 0).exists (&toi_mode))
466 start_sequence ();
467 rtx fromi = lowpart_subreg (fromi_mode, from, from_mode);
468 rtx tof = NULL_RTX;
471 if (!fromi)
472 break;
473 int shift = (GET_MODE_PRECISION (from_mode)
474 - GET_MODE_PRECISION (to_mode));
475 rtx temp1
476 = maybe_expand_shift (RSHIFT_EXPR, fromi_mode, fromi,
477 shift, NULL_RTX, 1);
478 if (!temp1)
479 break;
480 rtx temp2
481 = expand_binop (fromi_mode, and_optab, temp1, const1_rtx,
482 NULL_RTX, 1, OPTAB_DIRECT);
483 if (!temp2)
484 break;
485 rtx temp3
486 = expand_binop (fromi_mode, add_optab, fromi,
487 gen_int_mode ((HOST_WIDE_INT_1U
488 << (shift - 1)) - 1,
489 fromi_mode), NULL_RTX,
490 1, OPTAB_DIRECT);
491 if (!temp3)
492 break;
493 rtx temp4
494 = expand_binop (fromi_mode, add_optab, temp3, temp2,
495 NULL_RTX, 1, OPTAB_DIRECT);
496 if (!temp4)
497 break;
498 rtx temp5 = maybe_expand_shift (RSHIFT_EXPR, fromi_mode,
499 temp4, shift, NULL_RTX, 1);
500 if (!temp5)
501 break;
502 rtx temp6 = lowpart_subreg (toi_mode, temp5, fromi_mode);
503 if (!temp6)
504 break;
505 tof = lowpart_subreg (to_mode, force_reg (toi_mode, temp6),
506 toi_mode);
507 if (tof)
508 emit_move_insn (to, tof);
510 while (0);
511 insns = get_insns ();
512 end_sequence ();
513 if (tof)
515 emit_insn (insns);
516 return;
520 #endif
522 /* Otherwise use a libcall. */
523 libcall = convert_optab_libfunc (tab, to_mode, from_mode);
525 /* Is this conversion implemented yet? */
526 gcc_assert (libcall);
528 start_sequence ();
529 value = emit_library_call_value (libcall, NULL_RTX, LCT_CONST, to_mode,
530 from, from_mode);
531 insns = get_insns ();
532 end_sequence ();
533 emit_libcall_block (insns, to, value,
534 tab == trunc_optab ? gen_rtx_FLOAT_TRUNCATE (to_mode,
535 from)
536 : gen_rtx_FLOAT_EXTEND (to_mode, from));
537 return;
540 /* Handle pointer conversion. */ /* SPEE 900220. */
541 /* If the target has a converter from FROM_MODE to TO_MODE, use it. */
543 convert_optab ctab;
545 if (GET_MODE_PRECISION (from_mode) > GET_MODE_PRECISION (to_mode))
546 ctab = trunc_optab;
547 else if (unsignedp)
548 ctab = zext_optab;
549 else
550 ctab = sext_optab;
552 if (convert_optab_handler (ctab, to_mode, from_mode)
553 != CODE_FOR_nothing)
555 emit_unop_insn (convert_optab_handler (ctab, to_mode, from_mode),
556 to, from, UNKNOWN);
557 return;
561 /* Targets are expected to provide conversion insns between PxImode and
562 xImode for all MODE_PARTIAL_INT modes they use, but no others. */
563 if (GET_MODE_CLASS (to_mode) == MODE_PARTIAL_INT)
565 scalar_int_mode full_mode
566 = smallest_int_mode_for_size (GET_MODE_BITSIZE (to_mode));
568 gcc_assert (convert_optab_handler (trunc_optab, to_mode, full_mode)
569 != CODE_FOR_nothing);
571 if (full_mode != from_mode)
572 from = convert_to_mode (full_mode, from, unsignedp);
573 emit_unop_insn (convert_optab_handler (trunc_optab, to_mode, full_mode),
574 to, from, UNKNOWN);
575 return;
577 if (GET_MODE_CLASS (from_mode) == MODE_PARTIAL_INT)
579 rtx new_from;
580 scalar_int_mode full_mode
581 = smallest_int_mode_for_size (GET_MODE_BITSIZE (from_mode));
582 convert_optab ctab = unsignedp ? zext_optab : sext_optab;
583 enum insn_code icode;
585 icode = convert_optab_handler (ctab, full_mode, from_mode);
586 gcc_assert (icode != CODE_FOR_nothing);
588 if (to_mode == full_mode)
590 emit_unop_insn (icode, to, from, UNKNOWN);
591 return;
594 new_from = gen_reg_rtx (full_mode);
595 emit_unop_insn (icode, new_from, from, UNKNOWN);
597 /* else proceed to integer conversions below. */
598 from_mode = full_mode;
599 from = new_from;
602 /* Make sure both are fixed-point modes or both are not. */
603 gcc_assert (ALL_SCALAR_FIXED_POINT_MODE_P (from_mode) ==
604 ALL_SCALAR_FIXED_POINT_MODE_P (to_mode));
605 if (ALL_SCALAR_FIXED_POINT_MODE_P (from_mode))
607 /* If we widen from_mode to to_mode and they are in the same class,
608 we won't saturate the result.
609 Otherwise, always saturate the result to play safe. */
610 if (GET_MODE_CLASS (from_mode) == GET_MODE_CLASS (to_mode)
611 && GET_MODE_SIZE (from_mode) < GET_MODE_SIZE (to_mode))
612 expand_fixed_convert (to, from, 0, 0);
613 else
614 expand_fixed_convert (to, from, 0, 1);
615 return;
618 /* Now both modes are integers. */
620 /* Handle expanding beyond a word. */
621 if (GET_MODE_PRECISION (from_mode) < GET_MODE_PRECISION (to_mode)
622 && GET_MODE_PRECISION (to_mode) > BITS_PER_WORD)
624 rtx_insn *insns;
625 rtx lowpart;
626 rtx fill_value;
627 rtx lowfrom;
628 int i;
629 scalar_mode lowpart_mode;
630 int nwords = CEIL (GET_MODE_SIZE (to_mode), UNITS_PER_WORD);
632 /* Try converting directly if the insn is supported. */
633 if ((code = can_extend_p (to_mode, from_mode, unsignedp))
634 != CODE_FOR_nothing)
636 /* If FROM is a SUBREG, put it into a register. Do this
637 so that we always generate the same set of insns for
638 better cse'ing; if an intermediate assignment occurred,
639 we won't be doing the operation directly on the SUBREG. */
640 if (optimize > 0 && GET_CODE (from) == SUBREG)
641 from = force_reg (from_mode, from);
642 emit_unop_insn (code, to, from, equiv_code);
643 return;
645 /* Next, try converting via full word. */
646 else if (GET_MODE_PRECISION (from_mode) < BITS_PER_WORD
647 && ((code = can_extend_p (to_mode, word_mode, unsignedp))
648 != CODE_FOR_nothing))
650 rtx word_to = gen_reg_rtx (word_mode);
651 if (REG_P (to))
653 if (reg_overlap_mentioned_p (to, from))
654 from = force_reg (from_mode, from);
655 emit_clobber (to);
657 convert_move (word_to, from, unsignedp);
658 emit_unop_insn (code, to, word_to, equiv_code);
659 return;
662 /* No special multiword conversion insn; do it by hand. */
663 start_sequence ();
665 /* Since we will turn this into a no conflict block, we must ensure
666 the source does not overlap the target so force it into an isolated
667 register when maybe so. Likewise for any MEM input, since the
668 conversion sequence might require several references to it and we
669 must ensure we're getting the same value every time. */
671 if (MEM_P (from) || reg_overlap_mentioned_p (to, from))
672 from = force_reg (from_mode, from);
674 /* Get a copy of FROM widened to a word, if necessary. */
675 if (GET_MODE_PRECISION (from_mode) < BITS_PER_WORD)
676 lowpart_mode = word_mode;
677 else
678 lowpart_mode = from_mode;
680 lowfrom = convert_to_mode (lowpart_mode, from, unsignedp);
682 lowpart = gen_lowpart (lowpart_mode, to);
683 emit_move_insn (lowpart, lowfrom);
685 /* Compute the value to put in each remaining word. */
686 if (unsignedp)
687 fill_value = const0_rtx;
688 else
689 fill_value = emit_store_flag_force (gen_reg_rtx (word_mode),
690 LT, lowfrom, const0_rtx,
691 lowpart_mode, 0, -1);
693 /* Fill the remaining words. */
694 for (i = GET_MODE_SIZE (lowpart_mode) / UNITS_PER_WORD; i < nwords; i++)
696 int index = (WORDS_BIG_ENDIAN ? nwords - i - 1 : i);
697 rtx subword = operand_subword (to, index, 1, to_mode);
699 gcc_assert (subword);
701 if (fill_value != subword)
702 emit_move_insn (subword, fill_value);
705 insns = get_insns ();
706 end_sequence ();
708 emit_insn (insns);
709 return;
712 /* Truncating multi-word to a word or less. */
713 if (GET_MODE_PRECISION (from_mode) > BITS_PER_WORD
714 && GET_MODE_PRECISION (to_mode) <= BITS_PER_WORD)
716 if (!((MEM_P (from)
717 && ! MEM_VOLATILE_P (from)
718 && direct_load[(int) to_mode]
719 && ! mode_dependent_address_p (XEXP (from, 0),
720 MEM_ADDR_SPACE (from)))
721 || REG_P (from)
722 || GET_CODE (from) == SUBREG))
723 from = force_reg (from_mode, from);
724 convert_move (to, gen_lowpart (word_mode, from), 0);
725 return;
728 /* Now follow all the conversions between integers
729 no more than a word long. */
731 /* For truncation, usually we can just refer to FROM in a narrower mode. */
732 if (GET_MODE_BITSIZE (to_mode) < GET_MODE_BITSIZE (from_mode)
733 && TRULY_NOOP_TRUNCATION_MODES_P (to_mode, from_mode))
735 if (!((MEM_P (from)
736 && ! MEM_VOLATILE_P (from)
737 && direct_load[(int) to_mode]
738 && ! mode_dependent_address_p (XEXP (from, 0),
739 MEM_ADDR_SPACE (from)))
740 || REG_P (from)
741 || GET_CODE (from) == SUBREG))
742 from = force_reg (from_mode, from);
743 if (REG_P (from) && REGNO (from) < FIRST_PSEUDO_REGISTER
744 && !targetm.hard_regno_mode_ok (REGNO (from), to_mode))
745 from = copy_to_reg (from);
746 emit_move_insn (to, gen_lowpart (to_mode, from));
747 return;
750 /* Handle extension. */
751 if (GET_MODE_PRECISION (to_mode) > GET_MODE_PRECISION (from_mode))
753 /* Convert directly if that works. */
754 if ((code = can_extend_p (to_mode, from_mode, unsignedp))
755 != CODE_FOR_nothing)
757 emit_unop_insn (code, to, from, equiv_code);
758 return;
760 else
762 rtx tmp;
763 int shift_amount;
765 /* Search for a mode to convert via. */
766 opt_scalar_mode intermediate_iter;
767 FOR_EACH_MODE_FROM (intermediate_iter, from_mode)
769 scalar_mode intermediate = intermediate_iter.require ();
770 if (((can_extend_p (to_mode, intermediate, unsignedp)
771 != CODE_FOR_nothing)
772 || (GET_MODE_SIZE (to_mode) < GET_MODE_SIZE (intermediate)
773 && TRULY_NOOP_TRUNCATION_MODES_P (to_mode,
774 intermediate)))
775 && (can_extend_p (intermediate, from_mode, unsignedp)
776 != CODE_FOR_nothing))
778 convert_move (to, convert_to_mode (intermediate, from,
779 unsignedp), unsignedp);
780 return;
784 /* No suitable intermediate mode.
785 Generate what we need with shifts. */
786 shift_amount = (GET_MODE_PRECISION (to_mode)
787 - GET_MODE_PRECISION (from_mode));
788 from = gen_lowpart (to_mode, force_reg (from_mode, from));
789 tmp = expand_shift (LSHIFT_EXPR, to_mode, from, shift_amount,
790 to, unsignedp);
791 tmp = expand_shift (RSHIFT_EXPR, to_mode, tmp, shift_amount,
792 to, unsignedp);
793 if (tmp != to)
794 emit_move_insn (to, tmp);
795 return;
799 /* Support special truncate insns for certain modes. */
800 if (convert_optab_handler (trunc_optab, to_mode,
801 from_mode) != CODE_FOR_nothing)
803 emit_unop_insn (convert_optab_handler (trunc_optab, to_mode, from_mode),
804 to, from, UNKNOWN);
805 return;
808 /* Handle truncation of volatile memrefs, and so on;
809 the things that couldn't be truncated directly,
810 and for which there was no special instruction.
812 ??? Code above formerly short-circuited this, for most integer
813 mode pairs, with a force_reg in from_mode followed by a recursive
814 call to this routine. Appears always to have been wrong. */
815 if (GET_MODE_PRECISION (to_mode) < GET_MODE_PRECISION (from_mode))
817 rtx temp = force_reg (to_mode, gen_lowpart (to_mode, from));
818 emit_move_insn (to, temp);
819 return;
822 /* Mode combination is not recognized. */
823 gcc_unreachable ();
826 /* Return an rtx for a value that would result
827 from converting X to mode MODE.
828 Both X and MODE may be floating, or both integer.
829 UNSIGNEDP is nonzero if X is an unsigned value.
830 This can be done by referring to a part of X in place
831 or by copying to a new temporary with conversion. */
834 convert_to_mode (machine_mode mode, rtx x, int unsignedp)
836 return convert_modes (mode, VOIDmode, x, unsignedp);
839 /* Return an rtx for a value that would result
840 from converting X from mode OLDMODE to mode MODE.
841 Both modes may be floating, or both integer.
842 UNSIGNEDP is nonzero if X is an unsigned value.
844 This can be done by referring to a part of X in place
845 or by copying to a new temporary with conversion.
847 You can give VOIDmode for OLDMODE, if you are sure X has a nonvoid mode. */
850 convert_modes (machine_mode mode, machine_mode oldmode, rtx x, int unsignedp)
852 rtx temp;
853 scalar_int_mode int_mode;
855 /* If FROM is a SUBREG that indicates that we have already done at least
856 the required extension, strip it. */
858 if (GET_CODE (x) == SUBREG
859 && SUBREG_PROMOTED_VAR_P (x)
860 && is_a <scalar_int_mode> (mode, &int_mode)
861 && (GET_MODE_PRECISION (subreg_promoted_mode (x))
862 >= GET_MODE_PRECISION (int_mode))
863 && SUBREG_CHECK_PROMOTED_SIGN (x, unsignedp))
865 scalar_int_mode int_orig_mode;
866 scalar_int_mode int_inner_mode;
867 machine_mode orig_mode = GET_MODE (x);
868 x = gen_lowpart (int_mode, SUBREG_REG (x));
870 /* Preserve SUBREG_PROMOTED_VAR_P if the new mode is wider than
871 the original mode, but narrower than the inner mode. */
872 if (GET_CODE (x) == SUBREG
873 && is_a <scalar_int_mode> (orig_mode, &int_orig_mode)
874 && GET_MODE_PRECISION (int_mode)
875 > GET_MODE_PRECISION (int_orig_mode)
876 && is_a <scalar_int_mode> (GET_MODE (SUBREG_REG (x)),
877 &int_inner_mode)
878 && GET_MODE_PRECISION (int_inner_mode)
879 > GET_MODE_PRECISION (int_mode))
881 SUBREG_PROMOTED_VAR_P (x) = 1;
882 SUBREG_PROMOTED_SET (x, unsignedp);
886 if (GET_MODE (x) != VOIDmode)
887 oldmode = GET_MODE (x);
889 if (mode == oldmode)
890 return x;
892 if (CONST_SCALAR_INT_P (x)
893 && is_a <scalar_int_mode> (mode, &int_mode))
895 /* If the caller did not tell us the old mode, then there is not
896 much to do with respect to canonicalization. We have to
897 assume that all the bits are significant. */
898 if (!is_a <scalar_int_mode> (oldmode))
899 oldmode = MAX_MODE_INT;
900 wide_int w = wide_int::from (rtx_mode_t (x, oldmode),
901 GET_MODE_PRECISION (int_mode),
902 unsignedp ? UNSIGNED : SIGNED);
903 return immed_wide_int_const (w, int_mode);
906 /* We can do this with a gen_lowpart if both desired and current modes
907 are integer, and this is either a constant integer, a register, or a
908 non-volatile MEM. */
909 scalar_int_mode int_oldmode;
910 if (is_int_mode (mode, &int_mode)
911 && is_int_mode (oldmode, &int_oldmode)
912 && GET_MODE_PRECISION (int_mode) <= GET_MODE_PRECISION (int_oldmode)
913 && ((MEM_P (x) && !MEM_VOLATILE_P (x) && direct_load[(int) int_mode])
914 || CONST_POLY_INT_P (x)
915 || (REG_P (x)
916 && (!HARD_REGISTER_P (x)
917 || targetm.hard_regno_mode_ok (REGNO (x), int_mode))
918 && TRULY_NOOP_TRUNCATION_MODES_P (int_mode, GET_MODE (x)))))
919 return gen_lowpart (int_mode, x);
921 /* Converting from integer constant into mode is always equivalent to an
922 subreg operation. */
923 if (VECTOR_MODE_P (mode) && GET_MODE (x) == VOIDmode)
925 gcc_assert (known_eq (GET_MODE_BITSIZE (mode),
926 GET_MODE_BITSIZE (oldmode)));
927 return simplify_gen_subreg (mode, x, oldmode, 0);
930 temp = gen_reg_rtx (mode);
931 convert_move (temp, x, unsignedp);
932 return temp;
935 /* Variant of convert_modes for ABI parameter passing/return.
936 Return an rtx for a value that would result from converting X from
937 a floating point mode FMODE to wider integer mode MODE. */
940 convert_float_to_wider_int (machine_mode mode, machine_mode fmode, rtx x)
942 gcc_assert (SCALAR_INT_MODE_P (mode) && SCALAR_FLOAT_MODE_P (fmode));
943 scalar_int_mode tmp_mode = int_mode_for_mode (fmode).require ();
944 rtx tmp = force_reg (tmp_mode, gen_lowpart (tmp_mode, x));
945 return convert_modes (mode, tmp_mode, tmp, 1);
948 /* Variant of convert_modes for ABI parameter passing/return.
949 Return an rtx for a value that would result from converting X from
950 an integer mode IMODE to a narrower floating point mode MODE. */
953 convert_wider_int_to_float (machine_mode mode, machine_mode imode, rtx x)
955 gcc_assert (SCALAR_FLOAT_MODE_P (mode) && SCALAR_INT_MODE_P (imode));
956 scalar_int_mode tmp_mode = int_mode_for_mode (mode).require ();
957 rtx tmp = force_reg (tmp_mode, gen_lowpart (tmp_mode, x));
958 return gen_lowpart_SUBREG (mode, tmp);
961 /* Return the largest alignment we can use for doing a move (or store)
962 of MAX_PIECES. ALIGN is the largest alignment we could use. */
964 static unsigned int
965 alignment_for_piecewise_move (unsigned int max_pieces, unsigned int align)
967 scalar_int_mode tmode
968 = int_mode_for_size (max_pieces * BITS_PER_UNIT, 0).require ();
970 if (align >= GET_MODE_ALIGNMENT (tmode))
971 align = GET_MODE_ALIGNMENT (tmode);
972 else
974 scalar_int_mode xmode = NARROWEST_INT_MODE;
975 opt_scalar_int_mode mode_iter;
976 FOR_EACH_MODE_IN_CLASS (mode_iter, MODE_INT)
978 tmode = mode_iter.require ();
979 if (GET_MODE_SIZE (tmode) > max_pieces
980 || targetm.slow_unaligned_access (tmode, align))
981 break;
982 xmode = tmode;
985 align = MAX (align, GET_MODE_ALIGNMENT (xmode));
988 return align;
991 /* Return the widest QI vector, if QI_MODE is true, or integer mode
992 that is narrower than SIZE bytes. */
994 static fixed_size_mode
995 widest_fixed_size_mode_for_size (unsigned int size, bool qi_vector)
997 fixed_size_mode result = NARROWEST_INT_MODE;
999 gcc_checking_assert (size > 1);
1001 /* Use QI vector only if size is wider than a WORD. */
1002 if (qi_vector && size > UNITS_PER_WORD)
1004 machine_mode mode;
1005 fixed_size_mode candidate;
1006 FOR_EACH_MODE_IN_CLASS (mode, MODE_VECTOR_INT)
1007 if (is_a<fixed_size_mode> (mode, &candidate)
1008 && GET_MODE_INNER (candidate) == QImode)
1010 if (GET_MODE_SIZE (candidate) >= size)
1011 break;
1012 if (optab_handler (vec_duplicate_optab, candidate)
1013 != CODE_FOR_nothing)
1014 result = candidate;
1017 if (result != NARROWEST_INT_MODE)
1018 return result;
1021 opt_scalar_int_mode tmode;
1022 FOR_EACH_MODE_IN_CLASS (tmode, MODE_INT)
1023 if (GET_MODE_SIZE (tmode.require ()) < size)
1024 result = tmode.require ();
1026 return result;
1029 /* Determine whether an operation OP on LEN bytes with alignment ALIGN can
1030 and should be performed piecewise. */
1032 static bool
1033 can_do_by_pieces (unsigned HOST_WIDE_INT len, unsigned int align,
1034 enum by_pieces_operation op)
1036 return targetm.use_by_pieces_infrastructure_p (len, align, op,
1037 optimize_insn_for_speed_p ());
1040 /* Determine whether the LEN bytes can be moved by using several move
1041 instructions. Return nonzero if a call to move_by_pieces should
1042 succeed. */
1044 bool
1045 can_move_by_pieces (unsigned HOST_WIDE_INT len, unsigned int align)
1047 return can_do_by_pieces (len, align, MOVE_BY_PIECES);
1050 /* Return number of insns required to perform operation OP by pieces
1051 for L bytes. ALIGN (in bits) is maximum alignment we can assume. */
1053 unsigned HOST_WIDE_INT
1054 by_pieces_ninsns (unsigned HOST_WIDE_INT l, unsigned int align,
1055 unsigned int max_size, by_pieces_operation op)
1057 unsigned HOST_WIDE_INT n_insns = 0;
1058 fixed_size_mode mode;
1060 if (targetm.overlap_op_by_pieces_p () && op != COMPARE_BY_PIECES)
1062 /* NB: Round up L and ALIGN to the widest integer mode for
1063 MAX_SIZE. */
1064 mode = widest_fixed_size_mode_for_size (max_size,
1065 op == SET_BY_PIECES);
1066 if (optab_handler (mov_optab, mode) != CODE_FOR_nothing)
1068 unsigned HOST_WIDE_INT up = ROUND_UP (l, GET_MODE_SIZE (mode));
1069 if (up > l)
1070 l = up;
1071 align = GET_MODE_ALIGNMENT (mode);
1075 align = alignment_for_piecewise_move (MOVE_MAX_PIECES, align);
1077 while (max_size > 1 && l > 0)
1079 mode = widest_fixed_size_mode_for_size (max_size,
1080 op == SET_BY_PIECES);
1081 enum insn_code icode;
1083 unsigned int modesize = GET_MODE_SIZE (mode);
1085 icode = optab_handler (mov_optab, mode);
1086 if (icode != CODE_FOR_nothing && align >= GET_MODE_ALIGNMENT (mode))
1088 unsigned HOST_WIDE_INT n_pieces = l / modesize;
1089 l %= modesize;
1090 switch (op)
1092 default:
1093 n_insns += n_pieces;
1094 break;
1096 case COMPARE_BY_PIECES:
1097 int batch = targetm.compare_by_pieces_branch_ratio (mode);
1098 int batch_ops = 4 * batch - 1;
1099 unsigned HOST_WIDE_INT full = n_pieces / batch;
1100 n_insns += full * batch_ops;
1101 if (n_pieces % batch != 0)
1102 n_insns++;
1103 break;
1107 max_size = modesize;
1110 gcc_assert (!l);
1111 return n_insns;
1114 /* Used when performing piecewise block operations, holds information
1115 about one of the memory objects involved. The member functions
1116 can be used to generate code for loading from the object and
1117 updating the address when iterating. */
1119 class pieces_addr
1121 /* The object being referenced, a MEM. Can be NULL_RTX to indicate
1122 stack pushes. */
1123 rtx m_obj;
1124 /* The address of the object. Can differ from that seen in the
1125 MEM rtx if we copied the address to a register. */
1126 rtx m_addr;
1127 /* Nonzero if the address on the object has an autoincrement already,
1128 signifies whether that was an increment or decrement. */
1129 signed char m_addr_inc;
1130 /* Nonzero if we intend to use autoinc without the address already
1131 having autoinc form. We will insert add insns around each memory
1132 reference, expecting later passes to form autoinc addressing modes.
1133 The only supported options are predecrement and postincrement. */
1134 signed char m_explicit_inc;
1135 /* True if we have either of the two possible cases of using
1136 autoincrement. */
1137 bool m_auto;
1138 /* True if this is an address to be used for load operations rather
1139 than stores. */
1140 bool m_is_load;
1142 /* Optionally, a function to obtain constants for any given offset into
1143 the objects, and data associated with it. */
1144 by_pieces_constfn m_constfn;
1145 void *m_cfndata;
1146 public:
1147 pieces_addr (rtx, bool, by_pieces_constfn, void *);
1148 rtx adjust (fixed_size_mode, HOST_WIDE_INT, by_pieces_prev * = nullptr);
1149 void increment_address (HOST_WIDE_INT);
1150 void maybe_predec (HOST_WIDE_INT);
1151 void maybe_postinc (HOST_WIDE_INT);
1152 void decide_autoinc (machine_mode, bool, HOST_WIDE_INT);
1153 int get_addr_inc ()
1155 return m_addr_inc;
1159 /* Initialize a pieces_addr structure from an object OBJ. IS_LOAD is
1160 true if the operation to be performed on this object is a load
1161 rather than a store. For stores, OBJ can be NULL, in which case we
1162 assume the operation is a stack push. For loads, the optional
1163 CONSTFN and its associated CFNDATA can be used in place of the
1164 memory load. */
1166 pieces_addr::pieces_addr (rtx obj, bool is_load, by_pieces_constfn constfn,
1167 void *cfndata)
1168 : m_obj (obj), m_is_load (is_load), m_constfn (constfn), m_cfndata (cfndata)
1170 m_addr_inc = 0;
1171 m_auto = false;
1172 if (obj)
1174 rtx addr = XEXP (obj, 0);
1175 rtx_code code = GET_CODE (addr);
1176 m_addr = addr;
1177 bool dec = code == PRE_DEC || code == POST_DEC;
1178 bool inc = code == PRE_INC || code == POST_INC;
1179 m_auto = inc || dec;
1180 if (m_auto)
1181 m_addr_inc = dec ? -1 : 1;
1183 /* While we have always looked for these codes here, the code
1184 implementing the memory operation has never handled them.
1185 Support could be added later if necessary or beneficial. */
1186 gcc_assert (code != PRE_INC && code != POST_DEC);
1188 else
1190 m_addr = NULL_RTX;
1191 if (!is_load)
1193 m_auto = true;
1194 if (STACK_GROWS_DOWNWARD)
1195 m_addr_inc = -1;
1196 else
1197 m_addr_inc = 1;
1199 else
1200 gcc_assert (constfn != NULL);
1202 m_explicit_inc = 0;
1203 if (constfn)
1204 gcc_assert (is_load);
1207 /* Decide whether to use autoinc for an address involved in a memory op.
1208 MODE is the mode of the accesses, REVERSE is true if we've decided to
1209 perform the operation starting from the end, and LEN is the length of
1210 the operation. Don't override an earlier decision to set m_auto. */
1212 void
1213 pieces_addr::decide_autoinc (machine_mode ARG_UNUSED (mode), bool reverse,
1214 HOST_WIDE_INT len)
1216 if (m_auto || m_obj == NULL_RTX)
1217 return;
1219 bool use_predec = (m_is_load
1220 ? USE_LOAD_PRE_DECREMENT (mode)
1221 : USE_STORE_PRE_DECREMENT (mode));
1222 bool use_postinc = (m_is_load
1223 ? USE_LOAD_POST_INCREMENT (mode)
1224 : USE_STORE_POST_INCREMENT (mode));
1225 machine_mode addr_mode = get_address_mode (m_obj);
1227 if (use_predec && reverse)
1229 m_addr = copy_to_mode_reg (addr_mode,
1230 plus_constant (addr_mode,
1231 m_addr, len));
1232 m_auto = true;
1233 m_explicit_inc = -1;
1235 else if (use_postinc && !reverse)
1237 m_addr = copy_to_mode_reg (addr_mode, m_addr);
1238 m_auto = true;
1239 m_explicit_inc = 1;
1241 else if (CONSTANT_P (m_addr))
1242 m_addr = copy_to_mode_reg (addr_mode, m_addr);
1245 /* Adjust the address to refer to the data at OFFSET in MODE. If we
1246 are using autoincrement for this address, we don't add the offset,
1247 but we still modify the MEM's properties. */
1250 pieces_addr::adjust (fixed_size_mode mode, HOST_WIDE_INT offset,
1251 by_pieces_prev *prev)
1253 if (m_constfn)
1254 /* Pass the previous data to m_constfn. */
1255 return m_constfn (m_cfndata, prev, offset, mode);
1256 if (m_obj == NULL_RTX)
1257 return NULL_RTX;
1258 if (m_auto)
1259 return adjust_automodify_address (m_obj, mode, m_addr, offset);
1260 else
1261 return adjust_address (m_obj, mode, offset);
1264 /* Emit an add instruction to increment the address by SIZE. */
1266 void
1267 pieces_addr::increment_address (HOST_WIDE_INT size)
1269 rtx amount = gen_int_mode (size, GET_MODE (m_addr));
1270 emit_insn (gen_add2_insn (m_addr, amount));
1273 /* If we are supposed to decrement the address after each access, emit code
1274 to do so now. Increment by SIZE (which has should have the correct sign
1275 already). */
1277 void
1278 pieces_addr::maybe_predec (HOST_WIDE_INT size)
1280 if (m_explicit_inc >= 0)
1281 return;
1282 gcc_assert (HAVE_PRE_DECREMENT);
1283 increment_address (size);
1286 /* If we are supposed to decrement the address after each access, emit code
1287 to do so now. Increment by SIZE. */
1289 void
1290 pieces_addr::maybe_postinc (HOST_WIDE_INT size)
1292 if (m_explicit_inc <= 0)
1293 return;
1294 gcc_assert (HAVE_POST_INCREMENT);
1295 increment_address (size);
1298 /* This structure is used by do_op_by_pieces to describe the operation
1299 to be performed. */
1301 class op_by_pieces_d
1303 private:
1304 fixed_size_mode get_usable_mode (fixed_size_mode, unsigned int);
1305 fixed_size_mode smallest_fixed_size_mode_for_size (unsigned int);
1307 protected:
1308 pieces_addr m_to, m_from;
1309 /* Make m_len read-only so that smallest_fixed_size_mode_for_size can
1310 use it to check the valid mode size. */
1311 const unsigned HOST_WIDE_INT m_len;
1312 HOST_WIDE_INT m_offset;
1313 unsigned int m_align;
1314 unsigned int m_max_size;
1315 bool m_reverse;
1316 /* True if this is a stack push. */
1317 bool m_push;
1318 /* True if targetm.overlap_op_by_pieces_p () returns true. */
1319 bool m_overlap_op_by_pieces;
1320 /* True if QI vector mode can be used. */
1321 bool m_qi_vector_mode;
1323 /* Virtual functions, overriden by derived classes for the specific
1324 operation. */
1325 virtual void generate (rtx, rtx, machine_mode) = 0;
1326 virtual bool prepare_mode (machine_mode, unsigned int) = 0;
1327 virtual void finish_mode (machine_mode)
1331 public:
1332 op_by_pieces_d (unsigned int, rtx, bool, rtx, bool, by_pieces_constfn,
1333 void *, unsigned HOST_WIDE_INT, unsigned int, bool,
1334 bool = false);
1335 void run ();
1338 /* The constructor for an op_by_pieces_d structure. We require two
1339 objects named TO and FROM, which are identified as loads or stores
1340 by TO_LOAD and FROM_LOAD. If FROM is a load, the optional FROM_CFN
1341 and its associated FROM_CFN_DATA can be used to replace loads with
1342 constant values. MAX_PIECES describes the maximum number of bytes
1343 at a time which can be moved efficiently. LEN describes the length
1344 of the operation. */
1346 op_by_pieces_d::op_by_pieces_d (unsigned int max_pieces, rtx to,
1347 bool to_load, rtx from, bool from_load,
1348 by_pieces_constfn from_cfn,
1349 void *from_cfn_data,
1350 unsigned HOST_WIDE_INT len,
1351 unsigned int align, bool push,
1352 bool qi_vector_mode)
1353 : m_to (to, to_load, NULL, NULL),
1354 m_from (from, from_load, from_cfn, from_cfn_data),
1355 m_len (len), m_max_size (max_pieces + 1),
1356 m_push (push), m_qi_vector_mode (qi_vector_mode)
1358 int toi = m_to.get_addr_inc ();
1359 int fromi = m_from.get_addr_inc ();
1360 if (toi >= 0 && fromi >= 0)
1361 m_reverse = false;
1362 else if (toi <= 0 && fromi <= 0)
1363 m_reverse = true;
1364 else
1365 gcc_unreachable ();
1367 m_offset = m_reverse ? len : 0;
1368 align = MIN (to ? MEM_ALIGN (to) : align,
1369 from ? MEM_ALIGN (from) : align);
1371 /* If copying requires more than two move insns,
1372 copy addresses to registers (to make displacements shorter)
1373 and use post-increment if available. */
1374 if (by_pieces_ninsns (len, align, m_max_size, MOVE_BY_PIECES) > 2)
1376 /* Find the mode of the largest comparison. */
1377 fixed_size_mode mode
1378 = widest_fixed_size_mode_for_size (m_max_size,
1379 m_qi_vector_mode);
1381 m_from.decide_autoinc (mode, m_reverse, len);
1382 m_to.decide_autoinc (mode, m_reverse, len);
1385 align = alignment_for_piecewise_move (MOVE_MAX_PIECES, align);
1386 m_align = align;
1388 m_overlap_op_by_pieces = targetm.overlap_op_by_pieces_p ();
1391 /* This function returns the largest usable integer mode for LEN bytes
1392 whose size is no bigger than size of MODE. */
1394 fixed_size_mode
1395 op_by_pieces_d::get_usable_mode (fixed_size_mode mode, unsigned int len)
1397 unsigned int size;
1400 size = GET_MODE_SIZE (mode);
1401 if (len >= size && prepare_mode (mode, m_align))
1402 break;
1403 /* widest_fixed_size_mode_for_size checks SIZE > 1. */
1404 mode = widest_fixed_size_mode_for_size (size, m_qi_vector_mode);
1406 while (1);
1407 return mode;
1410 /* Return the smallest integer or QI vector mode that is not narrower
1411 than SIZE bytes. */
1413 fixed_size_mode
1414 op_by_pieces_d::smallest_fixed_size_mode_for_size (unsigned int size)
1416 /* Use QI vector only for > size of WORD. */
1417 if (m_qi_vector_mode && size > UNITS_PER_WORD)
1419 machine_mode mode;
1420 fixed_size_mode candidate;
1421 FOR_EACH_MODE_IN_CLASS (mode, MODE_VECTOR_INT)
1422 if (is_a<fixed_size_mode> (mode, &candidate)
1423 && GET_MODE_INNER (candidate) == QImode)
1425 /* Don't return a mode wider than M_LEN. */
1426 if (GET_MODE_SIZE (candidate) > m_len)
1427 break;
1429 if (GET_MODE_SIZE (candidate) >= size
1430 && (optab_handler (vec_duplicate_optab, candidate)
1431 != CODE_FOR_nothing))
1432 return candidate;
1436 return smallest_int_mode_for_size (size * BITS_PER_UNIT);
1439 /* This function contains the main loop used for expanding a block
1440 operation. First move what we can in the largest integer mode,
1441 then go to successively smaller modes. For every access, call
1442 GENFUN with the two operands and the EXTRA_DATA. */
1444 void
1445 op_by_pieces_d::run ()
1447 if (m_len == 0)
1448 return;
1450 unsigned HOST_WIDE_INT length = m_len;
1452 /* widest_fixed_size_mode_for_size checks M_MAX_SIZE > 1. */
1453 fixed_size_mode mode
1454 = widest_fixed_size_mode_for_size (m_max_size, m_qi_vector_mode);
1455 mode = get_usable_mode (mode, length);
1457 by_pieces_prev to_prev = { nullptr, mode };
1458 by_pieces_prev from_prev = { nullptr, mode };
1462 unsigned int size = GET_MODE_SIZE (mode);
1463 rtx to1 = NULL_RTX, from1;
1465 while (length >= size)
1467 if (m_reverse)
1468 m_offset -= size;
1470 to1 = m_to.adjust (mode, m_offset, &to_prev);
1471 to_prev.data = to1;
1472 to_prev.mode = mode;
1473 from1 = m_from.adjust (mode, m_offset, &from_prev);
1474 from_prev.data = from1;
1475 from_prev.mode = mode;
1477 m_to.maybe_predec (-(HOST_WIDE_INT)size);
1478 m_from.maybe_predec (-(HOST_WIDE_INT)size);
1480 generate (to1, from1, mode);
1482 m_to.maybe_postinc (size);
1483 m_from.maybe_postinc (size);
1485 if (!m_reverse)
1486 m_offset += size;
1488 length -= size;
1491 finish_mode (mode);
1493 if (length == 0)
1494 return;
1496 if (!m_push && m_overlap_op_by_pieces)
1498 /* NB: Generate overlapping operations if it is not a stack
1499 push since stack push must not overlap. Get the smallest
1500 fixed size mode for M_LEN bytes. */
1501 mode = smallest_fixed_size_mode_for_size (length);
1502 mode = get_usable_mode (mode, GET_MODE_SIZE (mode));
1503 int gap = GET_MODE_SIZE (mode) - length;
1504 if (gap > 0)
1506 /* If size of MODE > M_LEN, generate the last operation
1507 in MODE for the remaining bytes with ovelapping memory
1508 from the previois operation. */
1509 if (m_reverse)
1510 m_offset += gap;
1511 else
1512 m_offset -= gap;
1513 length += gap;
1516 else
1518 /* widest_fixed_size_mode_for_size checks SIZE > 1. */
1519 mode = widest_fixed_size_mode_for_size (size,
1520 m_qi_vector_mode);
1521 mode = get_usable_mode (mode, length);
1524 while (1);
1527 /* Derived class from op_by_pieces_d, providing support for block move
1528 operations. */
1530 #ifdef PUSH_ROUNDING
1531 #define PUSHG_P(to) ((to) == nullptr)
1532 #else
1533 #define PUSHG_P(to) false
1534 #endif
1536 class move_by_pieces_d : public op_by_pieces_d
1538 insn_gen_fn m_gen_fun;
1539 void generate (rtx, rtx, machine_mode) final override;
1540 bool prepare_mode (machine_mode, unsigned int) final override;
1542 public:
1543 move_by_pieces_d (rtx to, rtx from, unsigned HOST_WIDE_INT len,
1544 unsigned int align)
1545 : op_by_pieces_d (MOVE_MAX_PIECES, to, false, from, true, NULL,
1546 NULL, len, align, PUSHG_P (to))
1549 rtx finish_retmode (memop_ret);
1552 /* Return true if MODE can be used for a set of copies, given an
1553 alignment ALIGN. Prepare whatever data is necessary for later
1554 calls to generate. */
1556 bool
1557 move_by_pieces_d::prepare_mode (machine_mode mode, unsigned int align)
1559 insn_code icode = optab_handler (mov_optab, mode);
1560 m_gen_fun = GEN_FCN (icode);
1561 return icode != CODE_FOR_nothing && align >= GET_MODE_ALIGNMENT (mode);
1564 /* A callback used when iterating for a compare_by_pieces_operation.
1565 OP0 and OP1 are the values that have been loaded and should be
1566 compared in MODE. If OP0 is NULL, this means we should generate a
1567 push; otherwise EXTRA_DATA holds a pointer to a pointer to the insn
1568 gen function that should be used to generate the mode. */
1570 void
1571 move_by_pieces_d::generate (rtx op0, rtx op1,
1572 machine_mode mode ATTRIBUTE_UNUSED)
1574 #ifdef PUSH_ROUNDING
1575 if (op0 == NULL_RTX)
1577 emit_single_push_insn (mode, op1, NULL);
1578 return;
1580 #endif
1581 emit_insn (m_gen_fun (op0, op1));
1584 /* Perform the final adjustment at the end of a string to obtain the
1585 correct return value for the block operation.
1586 Return value is based on RETMODE argument. */
1589 move_by_pieces_d::finish_retmode (memop_ret retmode)
1591 gcc_assert (!m_reverse);
1592 if (retmode == RETURN_END_MINUS_ONE)
1594 m_to.maybe_postinc (-1);
1595 --m_offset;
1597 return m_to.adjust (QImode, m_offset);
1600 /* Generate several move instructions to copy LEN bytes from block FROM to
1601 block TO. (These are MEM rtx's with BLKmode).
1603 If PUSH_ROUNDING is defined and TO is NULL, emit_single_push_insn is
1604 used to push FROM to the stack.
1606 ALIGN is maximum stack alignment we can assume.
1608 Return value is based on RETMODE argument. */
1611 move_by_pieces (rtx to, rtx from, unsigned HOST_WIDE_INT len,
1612 unsigned int align, memop_ret retmode)
1614 #ifndef PUSH_ROUNDING
1615 if (to == NULL)
1616 gcc_unreachable ();
1617 #endif
1619 move_by_pieces_d data (to, from, len, align);
1621 data.run ();
1623 if (retmode != RETURN_BEGIN)
1624 return data.finish_retmode (retmode);
1625 else
1626 return to;
1629 /* Derived class from op_by_pieces_d, providing support for block move
1630 operations. */
1632 class store_by_pieces_d : public op_by_pieces_d
1634 insn_gen_fn m_gen_fun;
1635 void generate (rtx, rtx, machine_mode) final override;
1636 bool prepare_mode (machine_mode, unsigned int) final override;
1638 public:
1639 store_by_pieces_d (rtx to, by_pieces_constfn cfn, void *cfn_data,
1640 unsigned HOST_WIDE_INT len, unsigned int align,
1641 bool qi_vector_mode)
1642 : op_by_pieces_d (STORE_MAX_PIECES, to, false, NULL_RTX, true, cfn,
1643 cfn_data, len, align, false, qi_vector_mode)
1646 rtx finish_retmode (memop_ret);
1649 /* Return true if MODE can be used for a set of stores, given an
1650 alignment ALIGN. Prepare whatever data is necessary for later
1651 calls to generate. */
1653 bool
1654 store_by_pieces_d::prepare_mode (machine_mode mode, unsigned int align)
1656 insn_code icode = optab_handler (mov_optab, mode);
1657 m_gen_fun = GEN_FCN (icode);
1658 return icode != CODE_FOR_nothing && align >= GET_MODE_ALIGNMENT (mode);
1661 /* A callback used when iterating for a store_by_pieces_operation.
1662 OP0 and OP1 are the values that have been loaded and should be
1663 compared in MODE. If OP0 is NULL, this means we should generate a
1664 push; otherwise EXTRA_DATA holds a pointer to a pointer to the insn
1665 gen function that should be used to generate the mode. */
1667 void
1668 store_by_pieces_d::generate (rtx op0, rtx op1, machine_mode)
1670 emit_insn (m_gen_fun (op0, op1));
1673 /* Perform the final adjustment at the end of a string to obtain the
1674 correct return value for the block operation.
1675 Return value is based on RETMODE argument. */
1678 store_by_pieces_d::finish_retmode (memop_ret retmode)
1680 gcc_assert (!m_reverse);
1681 if (retmode == RETURN_END_MINUS_ONE)
1683 m_to.maybe_postinc (-1);
1684 --m_offset;
1686 return m_to.adjust (QImode, m_offset);
1689 /* Determine whether the LEN bytes generated by CONSTFUN can be
1690 stored to memory using several move instructions. CONSTFUNDATA is
1691 a pointer which will be passed as argument in every CONSTFUN call.
1692 ALIGN is maximum alignment we can assume. MEMSETP is true if this is
1693 a memset operation and false if it's a copy of a constant string.
1694 Return true if a call to store_by_pieces should succeed. */
1696 bool
1697 can_store_by_pieces (unsigned HOST_WIDE_INT len,
1698 by_pieces_constfn constfun,
1699 void *constfundata, unsigned int align, bool memsetp)
1701 unsigned HOST_WIDE_INT l;
1702 unsigned int max_size;
1703 HOST_WIDE_INT offset = 0;
1704 enum insn_code icode;
1705 int reverse;
1706 /* cst is set but not used if LEGITIMATE_CONSTANT doesn't use it. */
1707 rtx cst ATTRIBUTE_UNUSED;
1709 if (len == 0)
1710 return true;
1712 if (!targetm.use_by_pieces_infrastructure_p (len, align,
1713 memsetp
1714 ? SET_BY_PIECES
1715 : STORE_BY_PIECES,
1716 optimize_insn_for_speed_p ()))
1717 return false;
1719 align = alignment_for_piecewise_move (STORE_MAX_PIECES, align);
1721 /* We would first store what we can in the largest integer mode, then go to
1722 successively smaller modes. */
1724 for (reverse = 0;
1725 reverse <= (HAVE_PRE_DECREMENT || HAVE_POST_DECREMENT);
1726 reverse++)
1728 l = len;
1729 max_size = STORE_MAX_PIECES + 1;
1730 while (max_size > 1 && l > 0)
1732 fixed_size_mode mode
1733 = widest_fixed_size_mode_for_size (max_size, memsetp);
1735 icode = optab_handler (mov_optab, mode);
1736 if (icode != CODE_FOR_nothing
1737 && align >= GET_MODE_ALIGNMENT (mode))
1739 unsigned int size = GET_MODE_SIZE (mode);
1741 while (l >= size)
1743 if (reverse)
1744 offset -= size;
1746 cst = (*constfun) (constfundata, nullptr, offset, mode);
1747 /* All CONST_VECTORs can be loaded for memset since
1748 vec_duplicate_optab is a precondition to pick a
1749 vector mode for the memset expander. */
1750 if (!((memsetp && VECTOR_MODE_P (mode))
1751 || targetm.legitimate_constant_p (mode, cst)))
1752 return false;
1754 if (!reverse)
1755 offset += size;
1757 l -= size;
1761 max_size = GET_MODE_SIZE (mode);
1764 /* The code above should have handled everything. */
1765 gcc_assert (!l);
1768 return true;
1771 /* Generate several move instructions to store LEN bytes generated by
1772 CONSTFUN to block TO. (A MEM rtx with BLKmode). CONSTFUNDATA is a
1773 pointer which will be passed as argument in every CONSTFUN call.
1774 ALIGN is maximum alignment we can assume. MEMSETP is true if this is
1775 a memset operation and false if it's a copy of a constant string.
1776 Return value is based on RETMODE argument. */
1779 store_by_pieces (rtx to, unsigned HOST_WIDE_INT len,
1780 by_pieces_constfn constfun,
1781 void *constfundata, unsigned int align, bool memsetp,
1782 memop_ret retmode)
1784 if (len == 0)
1786 gcc_assert (retmode != RETURN_END_MINUS_ONE);
1787 return to;
1790 gcc_assert (targetm.use_by_pieces_infrastructure_p
1791 (len, align,
1792 memsetp ? SET_BY_PIECES : STORE_BY_PIECES,
1793 optimize_insn_for_speed_p ()));
1795 store_by_pieces_d data (to, constfun, constfundata, len, align,
1796 memsetp);
1797 data.run ();
1799 if (retmode != RETURN_BEGIN)
1800 return data.finish_retmode (retmode);
1801 else
1802 return to;
1805 /* Generate several move instructions to clear LEN bytes of block TO. (A MEM
1806 rtx with BLKmode). ALIGN is maximum alignment we can assume. */
1808 static void
1809 clear_by_pieces (rtx to, unsigned HOST_WIDE_INT len, unsigned int align)
1811 if (len == 0)
1812 return;
1814 /* Use builtin_memset_read_str to support vector mode broadcast. */
1815 char c = 0;
1816 store_by_pieces_d data (to, builtin_memset_read_str, &c, len, align,
1817 true);
1818 data.run ();
1821 /* Context used by compare_by_pieces_genfn. It stores the fail label
1822 to jump to in case of miscomparison, and for branch ratios greater than 1,
1823 it stores an accumulator and the current and maximum counts before
1824 emitting another branch. */
1826 class compare_by_pieces_d : public op_by_pieces_d
1828 rtx_code_label *m_fail_label;
1829 rtx m_accumulator;
1830 int m_count, m_batch;
1832 void generate (rtx, rtx, machine_mode) final override;
1833 bool prepare_mode (machine_mode, unsigned int) final override;
1834 void finish_mode (machine_mode) final override;
1835 public:
1836 compare_by_pieces_d (rtx op0, rtx op1, by_pieces_constfn op1_cfn,
1837 void *op1_cfn_data, HOST_WIDE_INT len, int align,
1838 rtx_code_label *fail_label)
1839 : op_by_pieces_d (COMPARE_MAX_PIECES, op0, true, op1, true, op1_cfn,
1840 op1_cfn_data, len, align, false)
1842 m_fail_label = fail_label;
1846 /* A callback used when iterating for a compare_by_pieces_operation.
1847 OP0 and OP1 are the values that have been loaded and should be
1848 compared in MODE. DATA holds a pointer to the compare_by_pieces_data
1849 context structure. */
1851 void
1852 compare_by_pieces_d::generate (rtx op0, rtx op1, machine_mode mode)
1854 if (m_batch > 1)
1856 rtx temp = expand_binop (mode, sub_optab, op0, op1, NULL_RTX,
1857 true, OPTAB_LIB_WIDEN);
1858 if (m_count != 0)
1859 temp = expand_binop (mode, ior_optab, m_accumulator, temp, temp,
1860 true, OPTAB_LIB_WIDEN);
1861 m_accumulator = temp;
1863 if (++m_count < m_batch)
1864 return;
1866 m_count = 0;
1867 op0 = m_accumulator;
1868 op1 = const0_rtx;
1869 m_accumulator = NULL_RTX;
1871 do_compare_rtx_and_jump (op0, op1, NE, true, mode, NULL_RTX, NULL,
1872 m_fail_label, profile_probability::uninitialized ());
1875 /* Return true if MODE can be used for a set of moves and comparisons,
1876 given an alignment ALIGN. Prepare whatever data is necessary for
1877 later calls to generate. */
1879 bool
1880 compare_by_pieces_d::prepare_mode (machine_mode mode, unsigned int align)
1882 insn_code icode = optab_handler (mov_optab, mode);
1883 if (icode == CODE_FOR_nothing
1884 || align < GET_MODE_ALIGNMENT (mode)
1885 || !can_compare_p (EQ, mode, ccp_jump))
1886 return false;
1887 m_batch = targetm.compare_by_pieces_branch_ratio (mode);
1888 if (m_batch < 0)
1889 return false;
1890 m_accumulator = NULL_RTX;
1891 m_count = 0;
1892 return true;
1895 /* Called after expanding a series of comparisons in MODE. If we have
1896 accumulated results for which we haven't emitted a branch yet, do
1897 so now. */
1899 void
1900 compare_by_pieces_d::finish_mode (machine_mode mode)
1902 if (m_accumulator != NULL_RTX)
1903 do_compare_rtx_and_jump (m_accumulator, const0_rtx, NE, true, mode,
1904 NULL_RTX, NULL, m_fail_label,
1905 profile_probability::uninitialized ());
1908 /* Generate several move instructions to compare LEN bytes from blocks
1909 ARG0 and ARG1. (These are MEM rtx's with BLKmode).
1911 If PUSH_ROUNDING is defined and TO is NULL, emit_single_push_insn is
1912 used to push FROM to the stack.
1914 ALIGN is maximum stack alignment we can assume.
1916 Optionally, the caller can pass a constfn and associated data in A1_CFN
1917 and A1_CFN_DATA. describing that the second operand being compared is a
1918 known constant and how to obtain its data. */
1920 static rtx
1921 compare_by_pieces (rtx arg0, rtx arg1, unsigned HOST_WIDE_INT len,
1922 rtx target, unsigned int align,
1923 by_pieces_constfn a1_cfn, void *a1_cfn_data)
1925 rtx_code_label *fail_label = gen_label_rtx ();
1926 rtx_code_label *end_label = gen_label_rtx ();
1928 if (target == NULL_RTX
1929 || !REG_P (target) || REGNO (target) < FIRST_PSEUDO_REGISTER)
1930 target = gen_reg_rtx (TYPE_MODE (integer_type_node));
1932 compare_by_pieces_d data (arg0, arg1, a1_cfn, a1_cfn_data, len, align,
1933 fail_label);
1935 data.run ();
1937 emit_move_insn (target, const0_rtx);
1938 emit_jump (end_label);
1939 emit_barrier ();
1940 emit_label (fail_label);
1941 emit_move_insn (target, const1_rtx);
1942 emit_label (end_label);
1944 return target;
1947 /* Emit code to move a block Y to a block X. This may be done with
1948 string-move instructions, with multiple scalar move instructions,
1949 or with a library call.
1951 Both X and Y must be MEM rtx's (perhaps inside VOLATILE) with mode BLKmode.
1952 SIZE is an rtx that says how long they are.
1953 ALIGN is the maximum alignment we can assume they have.
1954 METHOD describes what kind of copy this is, and what mechanisms may be used.
1955 MIN_SIZE is the minimal size of block to move
1956 MAX_SIZE is the maximal size of block to move, if it cannot be represented
1957 in unsigned HOST_WIDE_INT, than it is mask of all ones.
1959 Return the address of the new block, if memcpy is called and returns it,
1960 0 otherwise. */
1963 emit_block_move_hints (rtx x, rtx y, rtx size, enum block_op_methods method,
1964 unsigned int expected_align, HOST_WIDE_INT expected_size,
1965 unsigned HOST_WIDE_INT min_size,
1966 unsigned HOST_WIDE_INT max_size,
1967 unsigned HOST_WIDE_INT probable_max_size,
1968 bool bail_out_libcall, bool *is_move_done,
1969 bool might_overlap)
1971 int may_use_call;
1972 rtx retval = 0;
1973 unsigned int align;
1975 if (is_move_done)
1976 *is_move_done = true;
1978 gcc_assert (size);
1979 if (CONST_INT_P (size) && INTVAL (size) == 0)
1980 return 0;
1982 switch (method)
1984 case BLOCK_OP_NORMAL:
1985 case BLOCK_OP_TAILCALL:
1986 may_use_call = 1;
1987 break;
1989 case BLOCK_OP_CALL_PARM:
1990 may_use_call = block_move_libcall_safe_for_call_parm ();
1992 /* Make inhibit_defer_pop nonzero around the library call
1993 to force it to pop the arguments right away. */
1994 NO_DEFER_POP;
1995 break;
1997 case BLOCK_OP_NO_LIBCALL:
1998 may_use_call = 0;
1999 break;
2001 case BLOCK_OP_NO_LIBCALL_RET:
2002 may_use_call = -1;
2003 break;
2005 default:
2006 gcc_unreachable ();
2009 gcc_assert (MEM_P (x) && MEM_P (y));
2010 align = MIN (MEM_ALIGN (x), MEM_ALIGN (y));
2011 gcc_assert (align >= BITS_PER_UNIT);
2013 /* Make sure we've got BLKmode addresses; store_one_arg can decide that
2014 block copy is more efficient for other large modes, e.g. DCmode. */
2015 x = adjust_address (x, BLKmode, 0);
2016 y = adjust_address (y, BLKmode, 0);
2018 /* If source and destination are the same, no need to copy anything. */
2019 if (rtx_equal_p (x, y)
2020 && !MEM_VOLATILE_P (x)
2021 && !MEM_VOLATILE_P (y))
2022 return 0;
2024 /* Set MEM_SIZE as appropriate for this block copy. The main place this
2025 can be incorrect is coming from __builtin_memcpy. */
2026 poly_int64 const_size;
2027 if (poly_int_rtx_p (size, &const_size))
2029 x = shallow_copy_rtx (x);
2030 y = shallow_copy_rtx (y);
2031 set_mem_size (x, const_size);
2032 set_mem_size (y, const_size);
2035 bool pieces_ok = CONST_INT_P (size)
2036 && can_move_by_pieces (INTVAL (size), align);
2037 bool pattern_ok = false;
2039 if (!pieces_ok || might_overlap)
2041 pattern_ok
2042 = emit_block_move_via_pattern (x, y, size, align,
2043 expected_align, expected_size,
2044 min_size, max_size, probable_max_size,
2045 might_overlap);
2046 if (!pattern_ok && might_overlap)
2048 /* Do not try any of the other methods below as they are not safe
2049 for overlapping moves. */
2050 *is_move_done = false;
2051 return retval;
2055 if (pattern_ok)
2057 else if (pieces_ok)
2058 move_by_pieces (x, y, INTVAL (size), align, RETURN_BEGIN);
2059 else if (may_use_call && !might_overlap
2060 && ADDR_SPACE_GENERIC_P (MEM_ADDR_SPACE (x))
2061 && ADDR_SPACE_GENERIC_P (MEM_ADDR_SPACE (y)))
2063 if (bail_out_libcall)
2065 if (is_move_done)
2066 *is_move_done = false;
2067 return retval;
2070 if (may_use_call < 0)
2071 return pc_rtx;
2073 retval = emit_block_copy_via_libcall (x, y, size,
2074 method == BLOCK_OP_TAILCALL);
2076 else if (might_overlap)
2077 *is_move_done = false;
2078 else
2079 emit_block_move_via_loop (x, y, size, align);
2081 if (method == BLOCK_OP_CALL_PARM)
2082 OK_DEFER_POP;
2084 return retval;
2088 emit_block_move (rtx x, rtx y, rtx size, enum block_op_methods method)
2090 unsigned HOST_WIDE_INT max, min = 0;
2091 if (GET_CODE (size) == CONST_INT)
2092 min = max = UINTVAL (size);
2093 else
2094 max = GET_MODE_MASK (GET_MODE (size));
2095 return emit_block_move_hints (x, y, size, method, 0, -1,
2096 min, max, max);
2099 /* A subroutine of emit_block_move. Returns true if calling the
2100 block move libcall will not clobber any parameters which may have
2101 already been placed on the stack. */
2103 static bool
2104 block_move_libcall_safe_for_call_parm (void)
2106 tree fn;
2108 /* If arguments are pushed on the stack, then they're safe. */
2109 if (targetm.calls.push_argument (0))
2110 return true;
2112 /* If registers go on the stack anyway, any argument is sure to clobber
2113 an outgoing argument. */
2114 #if defined (REG_PARM_STACK_SPACE)
2115 fn = builtin_decl_implicit (BUILT_IN_MEMCPY);
2116 /* Avoid set but not used warning if *REG_PARM_STACK_SPACE doesn't
2117 depend on its argument. */
2118 (void) fn;
2119 if (OUTGOING_REG_PARM_STACK_SPACE ((!fn ? NULL_TREE : TREE_TYPE (fn)))
2120 && REG_PARM_STACK_SPACE (fn) != 0)
2121 return false;
2122 #endif
2124 /* If any argument goes in memory, then it might clobber an outgoing
2125 argument. */
2127 CUMULATIVE_ARGS args_so_far_v;
2128 cumulative_args_t args_so_far;
2129 tree arg;
2131 fn = builtin_decl_implicit (BUILT_IN_MEMCPY);
2132 INIT_CUMULATIVE_ARGS (args_so_far_v, TREE_TYPE (fn), NULL_RTX, 0, 3);
2133 args_so_far = pack_cumulative_args (&args_so_far_v);
2135 arg = TYPE_ARG_TYPES (TREE_TYPE (fn));
2136 for ( ; arg != void_list_node ; arg = TREE_CHAIN (arg))
2138 machine_mode mode = TYPE_MODE (TREE_VALUE (arg));
2139 function_arg_info arg_info (mode, /*named=*/true);
2140 rtx tmp = targetm.calls.function_arg (args_so_far, arg_info);
2141 if (!tmp || !REG_P (tmp))
2142 return false;
2143 if (targetm.calls.arg_partial_bytes (args_so_far, arg_info))
2144 return false;
2145 targetm.calls.function_arg_advance (args_so_far, arg_info);
2148 return true;
2151 /* A subroutine of emit_block_move. Expand a cpymem or movmem pattern;
2152 return true if successful.
2154 X is the destination of the copy or move.
2155 Y is the source of the copy or move.
2156 SIZE is the size of the block to be moved.
2158 MIGHT_OVERLAP indicates this originated with expansion of a
2159 builtin_memmove() and the source and destination blocks may
2160 overlap.
2163 static bool
2164 emit_block_move_via_pattern (rtx x, rtx y, rtx size, unsigned int align,
2165 unsigned int expected_align,
2166 HOST_WIDE_INT expected_size,
2167 unsigned HOST_WIDE_INT min_size,
2168 unsigned HOST_WIDE_INT max_size,
2169 unsigned HOST_WIDE_INT probable_max_size,
2170 bool might_overlap)
2172 if (expected_align < align)
2173 expected_align = align;
2174 if (expected_size != -1)
2176 if ((unsigned HOST_WIDE_INT)expected_size > probable_max_size)
2177 expected_size = probable_max_size;
2178 if ((unsigned HOST_WIDE_INT)expected_size < min_size)
2179 expected_size = min_size;
2182 /* Since this is a move insn, we don't care about volatility. */
2183 temporary_volatile_ok v (true);
2185 /* Try the most limited insn first, because there's no point
2186 including more than one in the machine description unless
2187 the more limited one has some advantage. */
2189 opt_scalar_int_mode mode_iter;
2190 FOR_EACH_MODE_IN_CLASS (mode_iter, MODE_INT)
2192 scalar_int_mode mode = mode_iter.require ();
2193 enum insn_code code;
2194 if (might_overlap)
2195 code = direct_optab_handler (movmem_optab, mode);
2196 else
2197 code = direct_optab_handler (cpymem_optab, mode);
2199 if (code != CODE_FOR_nothing
2200 /* We don't need MODE to be narrower than BITS_PER_HOST_WIDE_INT
2201 here because if SIZE is less than the mode mask, as it is
2202 returned by the macro, it will definitely be less than the
2203 actual mode mask. Since SIZE is within the Pmode address
2204 space, we limit MODE to Pmode. */
2205 && ((CONST_INT_P (size)
2206 && ((unsigned HOST_WIDE_INT) INTVAL (size)
2207 <= (GET_MODE_MASK (mode) >> 1)))
2208 || max_size <= (GET_MODE_MASK (mode) >> 1)
2209 || GET_MODE_BITSIZE (mode) >= GET_MODE_BITSIZE (Pmode)))
2211 class expand_operand ops[9];
2212 unsigned int nops;
2214 /* ??? When called via emit_block_move_for_call, it'd be
2215 nice if there were some way to inform the backend, so
2216 that it doesn't fail the expansion because it thinks
2217 emitting the libcall would be more efficient. */
2218 nops = insn_data[(int) code].n_generator_args;
2219 gcc_assert (nops == 4 || nops == 6 || nops == 8 || nops == 9);
2221 create_fixed_operand (&ops[0], x);
2222 create_fixed_operand (&ops[1], y);
2223 /* The check above guarantees that this size conversion is valid. */
2224 create_convert_operand_to (&ops[2], size, mode, true);
2225 create_integer_operand (&ops[3], align / BITS_PER_UNIT);
2226 if (nops >= 6)
2228 create_integer_operand (&ops[4], expected_align / BITS_PER_UNIT);
2229 create_integer_operand (&ops[5], expected_size);
2231 if (nops >= 8)
2233 create_integer_operand (&ops[6], min_size);
2234 /* If we cannot represent the maximal size,
2235 make parameter NULL. */
2236 if ((HOST_WIDE_INT) max_size != -1)
2237 create_integer_operand (&ops[7], max_size);
2238 else
2239 create_fixed_operand (&ops[7], NULL);
2241 if (nops == 9)
2243 /* If we cannot represent the maximal size,
2244 make parameter NULL. */
2245 if ((HOST_WIDE_INT) probable_max_size != -1)
2246 create_integer_operand (&ops[8], probable_max_size);
2247 else
2248 create_fixed_operand (&ops[8], NULL);
2250 if (maybe_expand_insn (code, nops, ops))
2251 return true;
2255 return false;
2258 /* A subroutine of emit_block_move. Copy the data via an explicit
2259 loop. This is used only when libcalls are forbidden. */
2260 /* ??? It'd be nice to copy in hunks larger than QImode. */
2262 static void
2263 emit_block_move_via_loop (rtx x, rtx y, rtx size,
2264 unsigned int align ATTRIBUTE_UNUSED)
2266 rtx_code_label *cmp_label, *top_label;
2267 rtx iter, x_addr, y_addr, tmp;
2268 machine_mode x_addr_mode = get_address_mode (x);
2269 machine_mode y_addr_mode = get_address_mode (y);
2270 machine_mode iter_mode;
2272 iter_mode = GET_MODE (size);
2273 if (iter_mode == VOIDmode)
2274 iter_mode = word_mode;
2276 top_label = gen_label_rtx ();
2277 cmp_label = gen_label_rtx ();
2278 iter = gen_reg_rtx (iter_mode);
2280 emit_move_insn (iter, const0_rtx);
2282 x_addr = force_operand (XEXP (x, 0), NULL_RTX);
2283 y_addr = force_operand (XEXP (y, 0), NULL_RTX);
2284 do_pending_stack_adjust ();
2286 emit_jump (cmp_label);
2287 emit_label (top_label);
2289 tmp = convert_modes (x_addr_mode, iter_mode, iter, true);
2290 x_addr = simplify_gen_binary (PLUS, x_addr_mode, x_addr, tmp);
2292 if (x_addr_mode != y_addr_mode)
2293 tmp = convert_modes (y_addr_mode, iter_mode, iter, true);
2294 y_addr = simplify_gen_binary (PLUS, y_addr_mode, y_addr, tmp);
2296 x = change_address (x, QImode, x_addr);
2297 y = change_address (y, QImode, y_addr);
2299 emit_move_insn (x, y);
2301 tmp = expand_simple_binop (iter_mode, PLUS, iter, const1_rtx, iter,
2302 true, OPTAB_LIB_WIDEN);
2303 if (tmp != iter)
2304 emit_move_insn (iter, tmp);
2306 emit_label (cmp_label);
2308 emit_cmp_and_jump_insns (iter, size, LT, NULL_RTX, iter_mode,
2309 true, top_label,
2310 profile_probability::guessed_always ()
2311 .apply_scale (9, 10));
2314 /* Expand a call to memcpy or memmove or memcmp, and return the result.
2315 TAILCALL is true if this is a tail call. */
2318 emit_block_op_via_libcall (enum built_in_function fncode, rtx dst, rtx src,
2319 rtx size, bool tailcall)
2321 rtx dst_addr, src_addr;
2322 tree call_expr, dst_tree, src_tree, size_tree;
2323 machine_mode size_mode;
2325 /* Since dst and src are passed to a libcall, mark the corresponding
2326 tree EXPR as addressable. */
2327 tree dst_expr = MEM_EXPR (dst);
2328 tree src_expr = MEM_EXPR (src);
2329 if (dst_expr)
2330 mark_addressable (dst_expr);
2331 if (src_expr)
2332 mark_addressable (src_expr);
2334 dst_addr = copy_addr_to_reg (XEXP (dst, 0));
2335 dst_addr = convert_memory_address (ptr_mode, dst_addr);
2336 dst_tree = make_tree (ptr_type_node, dst_addr);
2338 src_addr = copy_addr_to_reg (XEXP (src, 0));
2339 src_addr = convert_memory_address (ptr_mode, src_addr);
2340 src_tree = make_tree (ptr_type_node, src_addr);
2342 size_mode = TYPE_MODE (sizetype);
2343 size = convert_to_mode (size_mode, size, 1);
2344 size = copy_to_mode_reg (size_mode, size);
2345 size_tree = make_tree (sizetype, size);
2347 /* It is incorrect to use the libcall calling conventions for calls to
2348 memcpy/memmove/memcmp because they can be provided by the user. */
2349 tree fn = builtin_decl_implicit (fncode);
2350 call_expr = build_call_expr (fn, 3, dst_tree, src_tree, size_tree);
2351 CALL_EXPR_TAILCALL (call_expr) = tailcall;
2353 return expand_call (call_expr, NULL_RTX, false);
2356 /* Try to expand cmpstrn or cmpmem operation ICODE with the given operands.
2357 ARG3_TYPE is the type of ARG3_RTX. Return the result rtx on success,
2358 otherwise return null. */
2361 expand_cmpstrn_or_cmpmem (insn_code icode, rtx target, rtx arg1_rtx,
2362 rtx arg2_rtx, tree arg3_type, rtx arg3_rtx,
2363 HOST_WIDE_INT align)
2365 machine_mode insn_mode = insn_data[icode].operand[0].mode;
2367 if (target && (!REG_P (target) || HARD_REGISTER_P (target)))
2368 target = NULL_RTX;
2370 class expand_operand ops[5];
2371 create_output_operand (&ops[0], target, insn_mode);
2372 create_fixed_operand (&ops[1], arg1_rtx);
2373 create_fixed_operand (&ops[2], arg2_rtx);
2374 create_convert_operand_from (&ops[3], arg3_rtx, TYPE_MODE (arg3_type),
2375 TYPE_UNSIGNED (arg3_type));
2376 create_integer_operand (&ops[4], align);
2377 if (maybe_expand_insn (icode, 5, ops))
2378 return ops[0].value;
2379 return NULL_RTX;
2382 /* Expand a block compare between X and Y with length LEN using the
2383 cmpmem optab, placing the result in TARGET. LEN_TYPE is the type
2384 of the expression that was used to calculate the length. ALIGN
2385 gives the known minimum common alignment. */
2387 static rtx
2388 emit_block_cmp_via_cmpmem (rtx x, rtx y, rtx len, tree len_type, rtx target,
2389 unsigned align)
2391 /* Note: The cmpstrnsi pattern, if it exists, is not suitable for
2392 implementing memcmp because it will stop if it encounters two
2393 zero bytes. */
2394 insn_code icode = direct_optab_handler (cmpmem_optab, SImode);
2396 if (icode == CODE_FOR_nothing)
2397 return NULL_RTX;
2399 return expand_cmpstrn_or_cmpmem (icode, target, x, y, len_type, len, align);
2402 /* Emit code to compare a block Y to a block X. This may be done with
2403 string-compare instructions, with multiple scalar instructions,
2404 or with a library call.
2406 Both X and Y must be MEM rtx's. LEN is an rtx that says how long
2407 they are. LEN_TYPE is the type of the expression that was used to
2408 calculate it.
2410 If EQUALITY_ONLY is true, it means we don't have to return the tri-state
2411 value of a normal memcmp call, instead we can just compare for equality.
2412 If FORCE_LIBCALL is true, we should emit a call to memcmp rather than
2413 returning NULL_RTX.
2415 Optionally, the caller can pass a constfn and associated data in Y_CFN
2416 and Y_CFN_DATA. describing that the second operand being compared is a
2417 known constant and how to obtain its data.
2418 Return the result of the comparison, or NULL_RTX if we failed to
2419 perform the operation. */
2422 emit_block_cmp_hints (rtx x, rtx y, rtx len, tree len_type, rtx target,
2423 bool equality_only, by_pieces_constfn y_cfn,
2424 void *y_cfndata)
2426 rtx result = 0;
2428 if (CONST_INT_P (len) && INTVAL (len) == 0)
2429 return const0_rtx;
2431 gcc_assert (MEM_P (x) && MEM_P (y));
2432 unsigned int align = MIN (MEM_ALIGN (x), MEM_ALIGN (y));
2433 gcc_assert (align >= BITS_PER_UNIT);
2435 x = adjust_address (x, BLKmode, 0);
2436 y = adjust_address (y, BLKmode, 0);
2438 if (equality_only
2439 && CONST_INT_P (len)
2440 && can_do_by_pieces (INTVAL (len), align, COMPARE_BY_PIECES))
2441 result = compare_by_pieces (x, y, INTVAL (len), target, align,
2442 y_cfn, y_cfndata);
2443 else
2444 result = emit_block_cmp_via_cmpmem (x, y, len, len_type, target, align);
2446 return result;
2449 /* Copy all or part of a value X into registers starting at REGNO.
2450 The number of registers to be filled is NREGS. */
2452 void
2453 move_block_to_reg (int regno, rtx x, int nregs, machine_mode mode)
2455 if (nregs == 0)
2456 return;
2458 if (CONSTANT_P (x) && !targetm.legitimate_constant_p (mode, x))
2459 x = validize_mem (force_const_mem (mode, x));
2461 /* See if the machine can do this with a load multiple insn. */
2462 if (targetm.have_load_multiple ())
2464 rtx_insn *last = get_last_insn ();
2465 rtx first = gen_rtx_REG (word_mode, regno);
2466 if (rtx_insn *pat = targetm.gen_load_multiple (first, x,
2467 GEN_INT (nregs)))
2469 emit_insn (pat);
2470 return;
2472 else
2473 delete_insns_since (last);
2476 for (int i = 0; i < nregs; i++)
2477 emit_move_insn (gen_rtx_REG (word_mode, regno + i),
2478 operand_subword_force (x, i, mode));
2481 /* Copy all or part of a BLKmode value X out of registers starting at REGNO.
2482 The number of registers to be filled is NREGS. */
2484 void
2485 move_block_from_reg (int regno, rtx x, int nregs)
2487 if (nregs == 0)
2488 return;
2490 /* See if the machine can do this with a store multiple insn. */
2491 if (targetm.have_store_multiple ())
2493 rtx_insn *last = get_last_insn ();
2494 rtx first = gen_rtx_REG (word_mode, regno);
2495 if (rtx_insn *pat = targetm.gen_store_multiple (x, first,
2496 GEN_INT (nregs)))
2498 emit_insn (pat);
2499 return;
2501 else
2502 delete_insns_since (last);
2505 for (int i = 0; i < nregs; i++)
2507 rtx tem = operand_subword (x, i, 1, BLKmode);
2509 gcc_assert (tem);
2511 emit_move_insn (tem, gen_rtx_REG (word_mode, regno + i));
2515 /* Generate a PARALLEL rtx for a new non-consecutive group of registers from
2516 ORIG, where ORIG is a non-consecutive group of registers represented by
2517 a PARALLEL. The clone is identical to the original except in that the
2518 original set of registers is replaced by a new set of pseudo registers.
2519 The new set has the same modes as the original set. */
2522 gen_group_rtx (rtx orig)
2524 int i, length;
2525 rtx *tmps;
2527 gcc_assert (GET_CODE (orig) == PARALLEL);
2529 length = XVECLEN (orig, 0);
2530 tmps = XALLOCAVEC (rtx, length);
2532 /* Skip a NULL entry in first slot. */
2533 i = XEXP (XVECEXP (orig, 0, 0), 0) ? 0 : 1;
2535 if (i)
2536 tmps[0] = 0;
2538 for (; i < length; i++)
2540 machine_mode mode = GET_MODE (XEXP (XVECEXP (orig, 0, i), 0));
2541 rtx offset = XEXP (XVECEXP (orig, 0, i), 1);
2543 tmps[i] = gen_rtx_EXPR_LIST (VOIDmode, gen_reg_rtx (mode), offset);
2546 return gen_rtx_PARALLEL (GET_MODE (orig), gen_rtvec_v (length, tmps));
2549 /* A subroutine of emit_group_load. Arguments as for emit_group_load,
2550 except that values are placed in TMPS[i], and must later be moved
2551 into corresponding XEXP (XVECEXP (DST, 0, i), 0) element. */
2553 static void
2554 emit_group_load_1 (rtx *tmps, rtx dst, rtx orig_src, tree type,
2555 poly_int64 ssize)
2557 rtx src;
2558 int start, i;
2559 machine_mode m = GET_MODE (orig_src);
2561 gcc_assert (GET_CODE (dst) == PARALLEL);
2563 if (m != VOIDmode
2564 && !SCALAR_INT_MODE_P (m)
2565 && !MEM_P (orig_src)
2566 && GET_CODE (orig_src) != CONCAT)
2568 scalar_int_mode imode;
2569 if (int_mode_for_mode (GET_MODE (orig_src)).exists (&imode))
2571 src = gen_reg_rtx (imode);
2572 emit_move_insn (gen_lowpart (GET_MODE (orig_src), src), orig_src);
2574 else
2576 src = assign_stack_temp (GET_MODE (orig_src), ssize);
2577 emit_move_insn (src, orig_src);
2579 emit_group_load_1 (tmps, dst, src, type, ssize);
2580 return;
2583 /* Check for a NULL entry, used to indicate that the parameter goes
2584 both on the stack and in registers. */
2585 if (XEXP (XVECEXP (dst, 0, 0), 0))
2586 start = 0;
2587 else
2588 start = 1;
2590 /* Process the pieces. */
2591 for (i = start; i < XVECLEN (dst, 0); i++)
2593 machine_mode mode = GET_MODE (XEXP (XVECEXP (dst, 0, i), 0));
2594 poly_int64 bytepos = rtx_to_poly_int64 (XEXP (XVECEXP (dst, 0, i), 1));
2595 poly_int64 bytelen = GET_MODE_SIZE (mode);
2596 poly_int64 shift = 0;
2598 /* Handle trailing fragments that run over the size of the struct.
2599 It's the target's responsibility to make sure that the fragment
2600 cannot be strictly smaller in some cases and strictly larger
2601 in others. */
2602 gcc_checking_assert (ordered_p (bytepos + bytelen, ssize));
2603 if (known_size_p (ssize) && maybe_gt (bytepos + bytelen, ssize))
2605 /* Arrange to shift the fragment to where it belongs.
2606 extract_bit_field loads to the lsb of the reg. */
2607 if (
2608 #ifdef BLOCK_REG_PADDING
2609 BLOCK_REG_PADDING (GET_MODE (orig_src), type, i == start)
2610 == (BYTES_BIG_ENDIAN ? PAD_UPWARD : PAD_DOWNWARD)
2611 #else
2612 BYTES_BIG_ENDIAN
2613 #endif
2615 shift = (bytelen - (ssize - bytepos)) * BITS_PER_UNIT;
2616 bytelen = ssize - bytepos;
2617 gcc_assert (maybe_gt (bytelen, 0));
2620 /* If we won't be loading directly from memory, protect the real source
2621 from strange tricks we might play; but make sure that the source can
2622 be loaded directly into the destination. */
2623 src = orig_src;
2624 if (!MEM_P (orig_src)
2625 && (!REG_P (orig_src) || HARD_REGISTER_P (orig_src))
2626 && !CONSTANT_P (orig_src))
2628 gcc_assert (GET_MODE (orig_src) != VOIDmode);
2629 src = force_reg (GET_MODE (orig_src), orig_src);
2632 /* Optimize the access just a bit. */
2633 if (MEM_P (src)
2634 && (! targetm.slow_unaligned_access (mode, MEM_ALIGN (src))
2635 || MEM_ALIGN (src) >= GET_MODE_ALIGNMENT (mode))
2636 && multiple_p (bytepos * BITS_PER_UNIT, GET_MODE_ALIGNMENT (mode))
2637 && known_eq (bytelen, GET_MODE_SIZE (mode)))
2639 tmps[i] = gen_reg_rtx (mode);
2640 emit_move_insn (tmps[i], adjust_address (src, mode, bytepos));
2642 else if (COMPLEX_MODE_P (mode)
2643 && GET_MODE (src) == mode
2644 && known_eq (bytelen, GET_MODE_SIZE (mode)))
2645 /* Let emit_move_complex do the bulk of the work. */
2646 tmps[i] = src;
2647 else if (GET_CODE (src) == CONCAT)
2649 poly_int64 slen = GET_MODE_SIZE (GET_MODE (src));
2650 poly_int64 slen0 = GET_MODE_SIZE (GET_MODE (XEXP (src, 0)));
2651 unsigned int elt;
2652 poly_int64 subpos;
2654 if (can_div_trunc_p (bytepos, slen0, &elt, &subpos)
2655 && known_le (subpos + bytelen, slen0))
2657 /* The following assumes that the concatenated objects all
2658 have the same size. In this case, a simple calculation
2659 can be used to determine the object and the bit field
2660 to be extracted. */
2661 tmps[i] = XEXP (src, elt);
2662 if (maybe_ne (subpos, 0)
2663 || maybe_ne (subpos + bytelen, slen0)
2664 || (!CONSTANT_P (tmps[i])
2665 && (!REG_P (tmps[i]) || GET_MODE (tmps[i]) != mode)))
2666 tmps[i] = extract_bit_field (tmps[i], bytelen * BITS_PER_UNIT,
2667 subpos * BITS_PER_UNIT,
2668 1, NULL_RTX, mode, mode, false,
2669 NULL);
2671 else
2673 rtx mem;
2675 gcc_assert (known_eq (bytepos, 0));
2676 mem = assign_stack_temp (GET_MODE (src), slen);
2677 emit_move_insn (mem, src);
2678 tmps[i] = extract_bit_field (mem, bytelen * BITS_PER_UNIT,
2679 0, 1, NULL_RTX, mode, mode, false,
2680 NULL);
2683 else if (CONSTANT_P (src) && GET_MODE (dst) != BLKmode
2684 && XVECLEN (dst, 0) > 1)
2685 tmps[i] = simplify_gen_subreg (mode, src, GET_MODE (dst), bytepos);
2686 else if (CONSTANT_P (src))
2688 if (known_eq (bytelen, ssize))
2689 tmps[i] = src;
2690 else
2692 rtx first, second;
2694 /* TODO: const_wide_int can have sizes other than this... */
2695 gcc_assert (known_eq (2 * bytelen, ssize));
2696 split_double (src, &first, &second);
2697 if (i)
2698 tmps[i] = second;
2699 else
2700 tmps[i] = first;
2703 else if (REG_P (src) && GET_MODE (src) == mode)
2704 tmps[i] = src;
2705 else
2706 tmps[i] = extract_bit_field (src, bytelen * BITS_PER_UNIT,
2707 bytepos * BITS_PER_UNIT, 1, NULL_RTX,
2708 mode, mode, false, NULL);
2710 if (maybe_ne (shift, 0))
2711 tmps[i] = expand_shift (LSHIFT_EXPR, mode, tmps[i],
2712 shift, tmps[i], 0);
2716 /* Emit code to move a block SRC of type TYPE to a block DST,
2717 where DST is non-consecutive registers represented by a PARALLEL.
2718 SSIZE represents the total size of block ORIG_SRC in bytes, or -1
2719 if not known. */
2721 void
2722 emit_group_load (rtx dst, rtx src, tree type, poly_int64 ssize)
2724 rtx *tmps;
2725 int i;
2727 tmps = XALLOCAVEC (rtx, XVECLEN (dst, 0));
2728 emit_group_load_1 (tmps, dst, src, type, ssize);
2730 /* Copy the extracted pieces into the proper (probable) hard regs. */
2731 for (i = 0; i < XVECLEN (dst, 0); i++)
2733 rtx d = XEXP (XVECEXP (dst, 0, i), 0);
2734 if (d == NULL)
2735 continue;
2736 emit_move_insn (d, tmps[i]);
2740 /* Similar, but load SRC into new pseudos in a format that looks like
2741 PARALLEL. This can later be fed to emit_group_move to get things
2742 in the right place. */
2745 emit_group_load_into_temps (rtx parallel, rtx src, tree type, poly_int64 ssize)
2747 rtvec vec;
2748 int i;
2750 vec = rtvec_alloc (XVECLEN (parallel, 0));
2751 emit_group_load_1 (&RTVEC_ELT (vec, 0), parallel, src, type, ssize);
2753 /* Convert the vector to look just like the original PARALLEL, except
2754 with the computed values. */
2755 for (i = 0; i < XVECLEN (parallel, 0); i++)
2757 rtx e = XVECEXP (parallel, 0, i);
2758 rtx d = XEXP (e, 0);
2760 if (d)
2762 d = force_reg (GET_MODE (d), RTVEC_ELT (vec, i));
2763 e = alloc_EXPR_LIST (REG_NOTE_KIND (e), d, XEXP (e, 1));
2765 RTVEC_ELT (vec, i) = e;
2768 return gen_rtx_PARALLEL (GET_MODE (parallel), vec);
2771 /* Emit code to move a block SRC to block DST, where SRC and DST are
2772 non-consecutive groups of registers, each represented by a PARALLEL. */
2774 void
2775 emit_group_move (rtx dst, rtx src)
2777 int i;
2779 gcc_assert (GET_CODE (src) == PARALLEL
2780 && GET_CODE (dst) == PARALLEL
2781 && XVECLEN (src, 0) == XVECLEN (dst, 0));
2783 /* Skip first entry if NULL. */
2784 for (i = XEXP (XVECEXP (src, 0, 0), 0) ? 0 : 1; i < XVECLEN (src, 0); i++)
2785 emit_move_insn (XEXP (XVECEXP (dst, 0, i), 0),
2786 XEXP (XVECEXP (src, 0, i), 0));
2789 /* Move a group of registers represented by a PARALLEL into pseudos. */
2792 emit_group_move_into_temps (rtx src)
2794 rtvec vec = rtvec_alloc (XVECLEN (src, 0));
2795 int i;
2797 for (i = 0; i < XVECLEN (src, 0); i++)
2799 rtx e = XVECEXP (src, 0, i);
2800 rtx d = XEXP (e, 0);
2802 if (d)
2803 e = alloc_EXPR_LIST (REG_NOTE_KIND (e), copy_to_reg (d), XEXP (e, 1));
2804 RTVEC_ELT (vec, i) = e;
2807 return gen_rtx_PARALLEL (GET_MODE (src), vec);
2810 /* Emit code to move a block SRC to a block ORIG_DST of type TYPE,
2811 where SRC is non-consecutive registers represented by a PARALLEL.
2812 SSIZE represents the total size of block ORIG_DST, or -1 if not
2813 known. */
2815 void
2816 emit_group_store (rtx orig_dst, rtx src, tree type ATTRIBUTE_UNUSED,
2817 poly_int64 ssize)
2819 rtx *tmps, dst;
2820 int start, finish, i;
2821 machine_mode m = GET_MODE (orig_dst);
2823 gcc_assert (GET_CODE (src) == PARALLEL);
2825 if (!SCALAR_INT_MODE_P (m)
2826 && !MEM_P (orig_dst) && GET_CODE (orig_dst) != CONCAT)
2828 scalar_int_mode imode;
2829 if (int_mode_for_mode (GET_MODE (orig_dst)).exists (&imode))
2831 dst = gen_reg_rtx (imode);
2832 emit_group_store (dst, src, type, ssize);
2833 dst = gen_lowpart (GET_MODE (orig_dst), dst);
2835 else
2837 dst = assign_stack_temp (GET_MODE (orig_dst), ssize);
2838 emit_group_store (dst, src, type, ssize);
2840 emit_move_insn (orig_dst, dst);
2841 return;
2844 /* Check for a NULL entry, used to indicate that the parameter goes
2845 both on the stack and in registers. */
2846 if (XEXP (XVECEXP (src, 0, 0), 0))
2847 start = 0;
2848 else
2849 start = 1;
2850 finish = XVECLEN (src, 0);
2852 tmps = XALLOCAVEC (rtx, finish);
2854 /* Copy the (probable) hard regs into pseudos. */
2855 for (i = start; i < finish; i++)
2857 rtx reg = XEXP (XVECEXP (src, 0, i), 0);
2858 if (!REG_P (reg) || REGNO (reg) < FIRST_PSEUDO_REGISTER)
2860 tmps[i] = gen_reg_rtx (GET_MODE (reg));
2861 emit_move_insn (tmps[i], reg);
2863 else
2864 tmps[i] = reg;
2867 /* If we won't be storing directly into memory, protect the real destination
2868 from strange tricks we might play. */
2869 dst = orig_dst;
2870 if (GET_CODE (dst) == PARALLEL)
2872 rtx temp;
2874 /* We can get a PARALLEL dst if there is a conditional expression in
2875 a return statement. In that case, the dst and src are the same,
2876 so no action is necessary. */
2877 if (rtx_equal_p (dst, src))
2878 return;
2880 /* It is unclear if we can ever reach here, but we may as well handle
2881 it. Allocate a temporary, and split this into a store/load to/from
2882 the temporary. */
2883 temp = assign_stack_temp (GET_MODE (dst), ssize);
2884 emit_group_store (temp, src, type, ssize);
2885 emit_group_load (dst, temp, type, ssize);
2886 return;
2888 else if (!MEM_P (dst) && GET_CODE (dst) != CONCAT)
2890 machine_mode outer = GET_MODE (dst);
2891 machine_mode inner;
2892 poly_int64 bytepos;
2893 bool done = false;
2894 rtx temp;
2896 if (!REG_P (dst) || REGNO (dst) < FIRST_PSEUDO_REGISTER)
2897 dst = gen_reg_rtx (outer);
2899 /* Make life a bit easier for combine: if the first element of the
2900 vector is the low part of the destination mode, use a paradoxical
2901 subreg to initialize the destination. */
2902 if (start < finish)
2904 inner = GET_MODE (tmps[start]);
2905 bytepos = subreg_lowpart_offset (inner, outer);
2906 if (known_eq (rtx_to_poly_int64 (XEXP (XVECEXP (src, 0, start), 1)),
2907 bytepos))
2909 temp = simplify_gen_subreg (outer, tmps[start], inner, 0);
2910 if (temp)
2912 emit_move_insn (dst, temp);
2913 done = true;
2914 start++;
2919 /* If the first element wasn't the low part, try the last. */
2920 if (!done
2921 && start < finish - 1)
2923 inner = GET_MODE (tmps[finish - 1]);
2924 bytepos = subreg_lowpart_offset (inner, outer);
2925 if (known_eq (rtx_to_poly_int64 (XEXP (XVECEXP (src, 0,
2926 finish - 1), 1)),
2927 bytepos))
2929 temp = simplify_gen_subreg (outer, tmps[finish - 1], inner, 0);
2930 if (temp)
2932 emit_move_insn (dst, temp);
2933 done = true;
2934 finish--;
2939 /* Otherwise, simply initialize the result to zero. */
2940 if (!done)
2941 emit_move_insn (dst, CONST0_RTX (outer));
2944 /* Process the pieces. */
2945 for (i = start; i < finish; i++)
2947 poly_int64 bytepos = rtx_to_poly_int64 (XEXP (XVECEXP (src, 0, i), 1));
2948 machine_mode mode = GET_MODE (tmps[i]);
2949 poly_int64 bytelen = GET_MODE_SIZE (mode);
2950 poly_uint64 adj_bytelen;
2951 rtx dest = dst;
2953 /* Handle trailing fragments that run over the size of the struct.
2954 It's the target's responsibility to make sure that the fragment
2955 cannot be strictly smaller in some cases and strictly larger
2956 in others. */
2957 gcc_checking_assert (ordered_p (bytepos + bytelen, ssize));
2958 if (known_size_p (ssize) && maybe_gt (bytepos + bytelen, ssize))
2959 adj_bytelen = ssize - bytepos;
2960 else
2961 adj_bytelen = bytelen;
2963 /* Deal with destination CONCATs by either storing into one of the parts
2964 or doing a copy after storing into a register or stack temporary. */
2965 if (GET_CODE (dst) == CONCAT)
2967 if (known_le (bytepos + adj_bytelen,
2968 GET_MODE_SIZE (GET_MODE (XEXP (dst, 0)))))
2969 dest = XEXP (dst, 0);
2971 else if (known_ge (bytepos, GET_MODE_SIZE (GET_MODE (XEXP (dst, 0)))))
2973 bytepos -= GET_MODE_SIZE (GET_MODE (XEXP (dst, 0)));
2974 dest = XEXP (dst, 1);
2977 else
2979 machine_mode dest_mode = GET_MODE (dest);
2980 machine_mode tmp_mode = GET_MODE (tmps[i]);
2981 scalar_int_mode dest_imode;
2983 gcc_assert (known_eq (bytepos, 0) && XVECLEN (src, 0));
2985 /* If the source is a single scalar integer register, and the
2986 destination has a complex mode for which a same-sized integer
2987 mode exists, then we can take the left-justified part of the
2988 source in the complex mode. */
2989 if (finish == start + 1
2990 && REG_P (tmps[i])
2991 && SCALAR_INT_MODE_P (tmp_mode)
2992 && COMPLEX_MODE_P (dest_mode)
2993 && int_mode_for_mode (dest_mode).exists (&dest_imode))
2995 const scalar_int_mode tmp_imode
2996 = as_a <scalar_int_mode> (tmp_mode);
2998 if (GET_MODE_BITSIZE (dest_imode)
2999 < GET_MODE_BITSIZE (tmp_imode))
3001 dest = gen_reg_rtx (dest_imode);
3002 if (BYTES_BIG_ENDIAN)
3003 tmps[i] = expand_shift (RSHIFT_EXPR, tmp_mode, tmps[i],
3004 GET_MODE_BITSIZE (tmp_imode)
3005 - GET_MODE_BITSIZE (dest_imode),
3006 NULL_RTX, 1);
3007 emit_move_insn (dest, gen_lowpart (dest_imode, tmps[i]));
3008 dst = gen_lowpart (dest_mode, dest);
3010 else
3011 dst = gen_lowpart (dest_mode, tmps[i]);
3014 /* Otherwise spill the source onto the stack using the more
3015 aligned of the two modes. */
3016 else if (GET_MODE_ALIGNMENT (dest_mode)
3017 >= GET_MODE_ALIGNMENT (tmp_mode))
3019 dest = assign_stack_temp (dest_mode,
3020 GET_MODE_SIZE (dest_mode));
3021 emit_move_insn (adjust_address (dest, tmp_mode, bytepos),
3022 tmps[i]);
3023 dst = dest;
3026 else
3028 dest = assign_stack_temp (tmp_mode,
3029 GET_MODE_SIZE (tmp_mode));
3030 emit_move_insn (dest, tmps[i]);
3031 dst = adjust_address (dest, dest_mode, bytepos);
3034 break;
3038 /* Handle trailing fragments that run over the size of the struct. */
3039 if (known_size_p (ssize) && maybe_gt (bytepos + bytelen, ssize))
3041 /* store_bit_field always takes its value from the lsb.
3042 Move the fragment to the lsb if it's not already there. */
3043 if (
3044 #ifdef BLOCK_REG_PADDING
3045 BLOCK_REG_PADDING (GET_MODE (orig_dst), type, i == start)
3046 == (BYTES_BIG_ENDIAN ? PAD_UPWARD : PAD_DOWNWARD)
3047 #else
3048 BYTES_BIG_ENDIAN
3049 #endif
3052 poly_int64 shift = (bytelen - (ssize - bytepos)) * BITS_PER_UNIT;
3053 tmps[i] = expand_shift (RSHIFT_EXPR, mode, tmps[i],
3054 shift, tmps[i], 0);
3057 /* Make sure not to write past the end of the struct. */
3058 store_bit_field (dest,
3059 adj_bytelen * BITS_PER_UNIT, bytepos * BITS_PER_UNIT,
3060 bytepos * BITS_PER_UNIT, ssize * BITS_PER_UNIT - 1,
3061 VOIDmode, tmps[i], false, false);
3064 /* Optimize the access just a bit. */
3065 else if (MEM_P (dest)
3066 && (!targetm.slow_unaligned_access (mode, MEM_ALIGN (dest))
3067 || MEM_ALIGN (dest) >= GET_MODE_ALIGNMENT (mode))
3068 && multiple_p (bytepos * BITS_PER_UNIT,
3069 GET_MODE_ALIGNMENT (mode))
3070 && known_eq (bytelen, GET_MODE_SIZE (mode)))
3071 emit_move_insn (adjust_address (dest, mode, bytepos), tmps[i]);
3073 else
3074 store_bit_field (dest, bytelen * BITS_PER_UNIT, bytepos * BITS_PER_UNIT,
3075 0, 0, mode, tmps[i], false, false);
3078 /* Copy from the pseudo into the (probable) hard reg. */
3079 if (orig_dst != dst)
3080 emit_move_insn (orig_dst, dst);
3083 /* Return a form of X that does not use a PARALLEL. TYPE is the type
3084 of the value stored in X. */
3087 maybe_emit_group_store (rtx x, tree type)
3089 machine_mode mode = TYPE_MODE (type);
3090 gcc_checking_assert (GET_MODE (x) == VOIDmode || GET_MODE (x) == mode);
3091 if (GET_CODE (x) == PARALLEL)
3093 rtx result = gen_reg_rtx (mode);
3094 emit_group_store (result, x, type, int_size_in_bytes (type));
3095 return result;
3097 return x;
3100 /* Copy a BLKmode object of TYPE out of a register SRCREG into TARGET.
3102 This is used on targets that return BLKmode values in registers. */
3104 static void
3105 copy_blkmode_from_reg (rtx target, rtx srcreg, tree type)
3107 unsigned HOST_WIDE_INT bytes = int_size_in_bytes (type);
3108 rtx src = NULL, dst = NULL;
3109 unsigned HOST_WIDE_INT bitsize = MIN (TYPE_ALIGN (type), BITS_PER_WORD);
3110 unsigned HOST_WIDE_INT bitpos, xbitpos, padding_correction = 0;
3111 /* No current ABI uses variable-sized modes to pass a BLKmnode type. */
3112 fixed_size_mode mode = as_a <fixed_size_mode> (GET_MODE (srcreg));
3113 fixed_size_mode tmode = as_a <fixed_size_mode> (GET_MODE (target));
3114 fixed_size_mode copy_mode;
3116 /* BLKmode registers created in the back-end shouldn't have survived. */
3117 gcc_assert (mode != BLKmode);
3119 /* If the structure doesn't take up a whole number of words, see whether
3120 SRCREG is padded on the left or on the right. If it's on the left,
3121 set PADDING_CORRECTION to the number of bits to skip.
3123 In most ABIs, the structure will be returned at the least end of
3124 the register, which translates to right padding on little-endian
3125 targets and left padding on big-endian targets. The opposite
3126 holds if the structure is returned at the most significant
3127 end of the register. */
3128 if (bytes % UNITS_PER_WORD != 0
3129 && (targetm.calls.return_in_msb (type)
3130 ? !BYTES_BIG_ENDIAN
3131 : BYTES_BIG_ENDIAN))
3132 padding_correction
3133 = (BITS_PER_WORD - ((bytes % UNITS_PER_WORD) * BITS_PER_UNIT));
3135 /* We can use a single move if we have an exact mode for the size. */
3136 else if (MEM_P (target)
3137 && (!targetm.slow_unaligned_access (mode, MEM_ALIGN (target))
3138 || MEM_ALIGN (target) >= GET_MODE_ALIGNMENT (mode))
3139 && bytes == GET_MODE_SIZE (mode))
3141 emit_move_insn (adjust_address (target, mode, 0), srcreg);
3142 return;
3145 /* And if we additionally have the same mode for a register. */
3146 else if (REG_P (target)
3147 && GET_MODE (target) == mode
3148 && bytes == GET_MODE_SIZE (mode))
3150 emit_move_insn (target, srcreg);
3151 return;
3154 /* This code assumes srcreg is at least a full word. If it isn't, copy it
3155 into a new pseudo which is a full word. */
3156 if (GET_MODE_SIZE (mode) < UNITS_PER_WORD)
3158 srcreg = convert_to_mode (word_mode, srcreg, TYPE_UNSIGNED (type));
3159 mode = word_mode;
3162 /* Copy the structure BITSIZE bits at a time. If the target lives in
3163 memory, take care of not reading/writing past its end by selecting
3164 a copy mode suited to BITSIZE. This should always be possible given
3165 how it is computed.
3167 If the target lives in register, make sure not to select a copy mode
3168 larger than the mode of the register.
3170 We could probably emit more efficient code for machines which do not use
3171 strict alignment, but it doesn't seem worth the effort at the current
3172 time. */
3174 copy_mode = word_mode;
3175 if (MEM_P (target))
3177 opt_scalar_int_mode mem_mode = int_mode_for_size (bitsize, 1);
3178 if (mem_mode.exists ())
3179 copy_mode = mem_mode.require ();
3181 else if (REG_P (target) && GET_MODE_BITSIZE (tmode) < BITS_PER_WORD)
3182 copy_mode = tmode;
3184 for (bitpos = 0, xbitpos = padding_correction;
3185 bitpos < bytes * BITS_PER_UNIT;
3186 bitpos += bitsize, xbitpos += bitsize)
3188 /* We need a new source operand each time xbitpos is on a
3189 word boundary and when xbitpos == padding_correction
3190 (the first time through). */
3191 if (xbitpos % BITS_PER_WORD == 0 || xbitpos == padding_correction)
3192 src = operand_subword_force (srcreg, xbitpos / BITS_PER_WORD, mode);
3194 /* We need a new destination operand each time bitpos is on
3195 a word boundary. */
3196 if (REG_P (target) && GET_MODE_BITSIZE (tmode) < BITS_PER_WORD)
3197 dst = target;
3198 else if (bitpos % BITS_PER_WORD == 0)
3199 dst = operand_subword (target, bitpos / BITS_PER_WORD, 1, tmode);
3201 /* Use xbitpos for the source extraction (right justified) and
3202 bitpos for the destination store (left justified). */
3203 store_bit_field (dst, bitsize, bitpos % BITS_PER_WORD, 0, 0, copy_mode,
3204 extract_bit_field (src, bitsize,
3205 xbitpos % BITS_PER_WORD, 1,
3206 NULL_RTX, copy_mode, copy_mode,
3207 false, NULL),
3208 false, false);
3212 /* Copy BLKmode value SRC into a register of mode MODE_IN. Return the
3213 register if it contains any data, otherwise return null.
3215 This is used on targets that return BLKmode values in registers. */
3218 copy_blkmode_to_reg (machine_mode mode_in, tree src)
3220 int i, n_regs;
3221 unsigned HOST_WIDE_INT bitpos, xbitpos, padding_correction = 0, bytes;
3222 unsigned int bitsize;
3223 rtx *dst_words, dst, x, src_word = NULL_RTX, dst_word = NULL_RTX;
3224 /* No current ABI uses variable-sized modes to pass a BLKmnode type. */
3225 fixed_size_mode mode = as_a <fixed_size_mode> (mode_in);
3226 fixed_size_mode dst_mode;
3227 scalar_int_mode min_mode;
3229 gcc_assert (TYPE_MODE (TREE_TYPE (src)) == BLKmode);
3231 x = expand_normal (src);
3233 bytes = arg_int_size_in_bytes (TREE_TYPE (src));
3234 if (bytes == 0)
3235 return NULL_RTX;
3237 /* If the structure doesn't take up a whole number of words, see
3238 whether the register value should be padded on the left or on
3239 the right. Set PADDING_CORRECTION to the number of padding
3240 bits needed on the left side.
3242 In most ABIs, the structure will be returned at the least end of
3243 the register, which translates to right padding on little-endian
3244 targets and left padding on big-endian targets. The opposite
3245 holds if the structure is returned at the most significant
3246 end of the register. */
3247 if (bytes % UNITS_PER_WORD != 0
3248 && (targetm.calls.return_in_msb (TREE_TYPE (src))
3249 ? !BYTES_BIG_ENDIAN
3250 : BYTES_BIG_ENDIAN))
3251 padding_correction = (BITS_PER_WORD - ((bytes % UNITS_PER_WORD)
3252 * BITS_PER_UNIT));
3254 n_regs = (bytes + UNITS_PER_WORD - 1) / UNITS_PER_WORD;
3255 dst_words = XALLOCAVEC (rtx, n_regs);
3256 bitsize = MIN (TYPE_ALIGN (TREE_TYPE (src)), BITS_PER_WORD);
3257 min_mode = smallest_int_mode_for_size (bitsize);
3259 /* Copy the structure BITSIZE bits at a time. */
3260 for (bitpos = 0, xbitpos = padding_correction;
3261 bitpos < bytes * BITS_PER_UNIT;
3262 bitpos += bitsize, xbitpos += bitsize)
3264 /* We need a new destination pseudo each time xbitpos is
3265 on a word boundary and when xbitpos == padding_correction
3266 (the first time through). */
3267 if (xbitpos % BITS_PER_WORD == 0
3268 || xbitpos == padding_correction)
3270 /* Generate an appropriate register. */
3271 dst_word = gen_reg_rtx (word_mode);
3272 dst_words[xbitpos / BITS_PER_WORD] = dst_word;
3274 /* Clear the destination before we move anything into it. */
3275 emit_move_insn (dst_word, CONST0_RTX (word_mode));
3278 /* Find the largest integer mode that can be used to copy all or as
3279 many bits as possible of the structure if the target supports larger
3280 copies. There are too many corner cases here w.r.t to alignments on
3281 the read/writes. So if there is any padding just use single byte
3282 operations. */
3283 opt_scalar_int_mode mode_iter;
3284 if (padding_correction == 0 && !STRICT_ALIGNMENT)
3286 FOR_EACH_MODE_FROM (mode_iter, min_mode)
3288 unsigned int msize = GET_MODE_BITSIZE (mode_iter.require ());
3289 if (msize <= ((bytes * BITS_PER_UNIT) - bitpos)
3290 && msize <= BITS_PER_WORD)
3291 bitsize = msize;
3292 else
3293 break;
3297 /* We need a new source operand each time bitpos is on a word
3298 boundary. */
3299 if (bitpos % BITS_PER_WORD == 0)
3300 src_word = operand_subword_force (x, bitpos / BITS_PER_WORD, BLKmode);
3302 /* Use bitpos for the source extraction (left justified) and
3303 xbitpos for the destination store (right justified). */
3304 store_bit_field (dst_word, bitsize, xbitpos % BITS_PER_WORD,
3305 0, 0, word_mode,
3306 extract_bit_field (src_word, bitsize,
3307 bitpos % BITS_PER_WORD, 1,
3308 NULL_RTX, word_mode, word_mode,
3309 false, NULL),
3310 false, false);
3313 if (mode == BLKmode)
3315 /* Find the smallest integer mode large enough to hold the
3316 entire structure. */
3317 opt_scalar_int_mode mode_iter;
3318 FOR_EACH_MODE_IN_CLASS (mode_iter, MODE_INT)
3319 if (GET_MODE_SIZE (mode_iter.require ()) >= bytes)
3320 break;
3322 /* A suitable mode should have been found. */
3323 mode = mode_iter.require ();
3326 if (GET_MODE_SIZE (mode) < GET_MODE_SIZE (word_mode))
3327 dst_mode = word_mode;
3328 else
3329 dst_mode = mode;
3330 dst = gen_reg_rtx (dst_mode);
3332 for (i = 0; i < n_regs; i++)
3333 emit_move_insn (operand_subword (dst, i, 0, dst_mode), dst_words[i]);
3335 if (mode != dst_mode)
3336 dst = gen_lowpart (mode, dst);
3338 return dst;
3341 /* Add a USE expression for REG to the (possibly empty) list pointed
3342 to by CALL_FUSAGE. REG must denote a hard register. */
3344 void
3345 use_reg_mode (rtx *call_fusage, rtx reg, machine_mode mode)
3347 gcc_assert (REG_P (reg));
3349 if (!HARD_REGISTER_P (reg))
3350 return;
3352 *call_fusage
3353 = gen_rtx_EXPR_LIST (mode, gen_rtx_USE (VOIDmode, reg), *call_fusage);
3356 /* Add a CLOBBER expression for REG to the (possibly empty) list pointed
3357 to by CALL_FUSAGE. REG must denote a hard register. */
3359 void
3360 clobber_reg_mode (rtx *call_fusage, rtx reg, machine_mode mode)
3362 gcc_assert (REG_P (reg) && REGNO (reg) < FIRST_PSEUDO_REGISTER);
3364 *call_fusage
3365 = gen_rtx_EXPR_LIST (mode, gen_rtx_CLOBBER (VOIDmode, reg), *call_fusage);
3368 /* Add USE expressions to *CALL_FUSAGE for each of NREGS consecutive regs,
3369 starting at REGNO. All of these registers must be hard registers. */
3371 void
3372 use_regs (rtx *call_fusage, int regno, int nregs)
3374 int i;
3376 gcc_assert (regno + nregs <= FIRST_PSEUDO_REGISTER);
3378 for (i = 0; i < nregs; i++)
3379 use_reg (call_fusage, regno_reg_rtx[regno + i]);
3382 /* Add USE expressions to *CALL_FUSAGE for each REG contained in the
3383 PARALLEL REGS. This is for calls that pass values in multiple
3384 non-contiguous locations. The Irix 6 ABI has examples of this. */
3386 void
3387 use_group_regs (rtx *call_fusage, rtx regs)
3389 int i;
3391 for (i = 0; i < XVECLEN (regs, 0); i++)
3393 rtx reg = XEXP (XVECEXP (regs, 0, i), 0);
3395 /* A NULL entry means the parameter goes both on the stack and in
3396 registers. This can also be a MEM for targets that pass values
3397 partially on the stack and partially in registers. */
3398 if (reg != 0 && REG_P (reg))
3399 use_reg (call_fusage, reg);
3403 /* Return the defining gimple statement for SSA_NAME NAME if it is an
3404 assigment and the code of the expresion on the RHS is CODE. Return
3405 NULL otherwise. */
3407 static gimple *
3408 get_def_for_expr (tree name, enum tree_code code)
3410 gimple *def_stmt;
3412 if (TREE_CODE (name) != SSA_NAME)
3413 return NULL;
3415 def_stmt = get_gimple_for_ssa_name (name);
3416 if (!def_stmt
3417 || gimple_assign_rhs_code (def_stmt) != code)
3418 return NULL;
3420 return def_stmt;
3423 /* Return the defining gimple statement for SSA_NAME NAME if it is an
3424 assigment and the class of the expresion on the RHS is CLASS. Return
3425 NULL otherwise. */
3427 static gimple *
3428 get_def_for_expr_class (tree name, enum tree_code_class tclass)
3430 gimple *def_stmt;
3432 if (TREE_CODE (name) != SSA_NAME)
3433 return NULL;
3435 def_stmt = get_gimple_for_ssa_name (name);
3436 if (!def_stmt
3437 || TREE_CODE_CLASS (gimple_assign_rhs_code (def_stmt)) != tclass)
3438 return NULL;
3440 return def_stmt;
3443 /* Write zeros through the storage of OBJECT. If OBJECT has BLKmode, SIZE is
3444 its length in bytes. */
3447 clear_storage_hints (rtx object, rtx size, enum block_op_methods method,
3448 unsigned int expected_align, HOST_WIDE_INT expected_size,
3449 unsigned HOST_WIDE_INT min_size,
3450 unsigned HOST_WIDE_INT max_size,
3451 unsigned HOST_WIDE_INT probable_max_size,
3452 unsigned ctz_size)
3454 machine_mode mode = GET_MODE (object);
3455 unsigned int align;
3457 gcc_assert (method == BLOCK_OP_NORMAL || method == BLOCK_OP_TAILCALL);
3459 /* If OBJECT is not BLKmode and SIZE is the same size as its mode,
3460 just move a zero. Otherwise, do this a piece at a time. */
3461 poly_int64 size_val;
3462 if (mode != BLKmode
3463 && poly_int_rtx_p (size, &size_val)
3464 && known_eq (size_val, GET_MODE_SIZE (mode)))
3466 rtx zero = CONST0_RTX (mode);
3467 if (zero != NULL)
3469 emit_move_insn (object, zero);
3470 return NULL;
3473 if (COMPLEX_MODE_P (mode))
3475 zero = CONST0_RTX (GET_MODE_INNER (mode));
3476 if (zero != NULL)
3478 write_complex_part (object, zero, 0, true);
3479 write_complex_part (object, zero, 1, false);
3480 return NULL;
3485 if (size == const0_rtx)
3486 return NULL;
3488 align = MEM_ALIGN (object);
3490 if (CONST_INT_P (size)
3491 && targetm.use_by_pieces_infrastructure_p (INTVAL (size), align,
3492 CLEAR_BY_PIECES,
3493 optimize_insn_for_speed_p ()))
3494 clear_by_pieces (object, INTVAL (size), align);
3495 else if (set_storage_via_setmem (object, size, const0_rtx, align,
3496 expected_align, expected_size,
3497 min_size, max_size, probable_max_size))
3499 else if (try_store_by_multiple_pieces (object, size, ctz_size,
3500 min_size, max_size,
3501 NULL_RTX, 0, align))
3503 else if (ADDR_SPACE_GENERIC_P (MEM_ADDR_SPACE (object)))
3504 return set_storage_via_libcall (object, size, const0_rtx,
3505 method == BLOCK_OP_TAILCALL);
3506 else
3507 gcc_unreachable ();
3509 return NULL;
3513 clear_storage (rtx object, rtx size, enum block_op_methods method)
3515 unsigned HOST_WIDE_INT max, min = 0;
3516 if (GET_CODE (size) == CONST_INT)
3517 min = max = UINTVAL (size);
3518 else
3519 max = GET_MODE_MASK (GET_MODE (size));
3520 return clear_storage_hints (object, size, method, 0, -1, min, max, max, 0);
3524 /* A subroutine of clear_storage. Expand a call to memset.
3525 Return the return value of memset, 0 otherwise. */
3528 set_storage_via_libcall (rtx object, rtx size, rtx val, bool tailcall)
3530 tree call_expr, fn, object_tree, size_tree, val_tree;
3531 machine_mode size_mode;
3533 object = copy_addr_to_reg (XEXP (object, 0));
3534 object_tree = make_tree (ptr_type_node, object);
3536 if (!CONST_INT_P (val))
3537 val = convert_to_mode (TYPE_MODE (integer_type_node), val, 1);
3538 val_tree = make_tree (integer_type_node, val);
3540 size_mode = TYPE_MODE (sizetype);
3541 size = convert_to_mode (size_mode, size, 1);
3542 size = copy_to_mode_reg (size_mode, size);
3543 size_tree = make_tree (sizetype, size);
3545 /* It is incorrect to use the libcall calling conventions for calls to
3546 memset because it can be provided by the user. */
3547 fn = builtin_decl_implicit (BUILT_IN_MEMSET);
3548 call_expr = build_call_expr (fn, 3, object_tree, val_tree, size_tree);
3549 CALL_EXPR_TAILCALL (call_expr) = tailcall;
3551 return expand_call (call_expr, NULL_RTX, false);
3554 /* Expand a setmem pattern; return true if successful. */
3556 bool
3557 set_storage_via_setmem (rtx object, rtx size, rtx val, unsigned int align,
3558 unsigned int expected_align, HOST_WIDE_INT expected_size,
3559 unsigned HOST_WIDE_INT min_size,
3560 unsigned HOST_WIDE_INT max_size,
3561 unsigned HOST_WIDE_INT probable_max_size)
3563 /* Try the most limited insn first, because there's no point
3564 including more than one in the machine description unless
3565 the more limited one has some advantage. */
3567 if (expected_align < align)
3568 expected_align = align;
3569 if (expected_size != -1)
3571 if ((unsigned HOST_WIDE_INT)expected_size > max_size)
3572 expected_size = max_size;
3573 if ((unsigned HOST_WIDE_INT)expected_size < min_size)
3574 expected_size = min_size;
3577 opt_scalar_int_mode mode_iter;
3578 FOR_EACH_MODE_IN_CLASS (mode_iter, MODE_INT)
3580 scalar_int_mode mode = mode_iter.require ();
3581 enum insn_code code = direct_optab_handler (setmem_optab, mode);
3583 if (code != CODE_FOR_nothing
3584 /* We don't need MODE to be narrower than BITS_PER_HOST_WIDE_INT
3585 here because if SIZE is less than the mode mask, as it is
3586 returned by the macro, it will definitely be less than the
3587 actual mode mask. Since SIZE is within the Pmode address
3588 space, we limit MODE to Pmode. */
3589 && ((CONST_INT_P (size)
3590 && ((unsigned HOST_WIDE_INT) INTVAL (size)
3591 <= (GET_MODE_MASK (mode) >> 1)))
3592 || max_size <= (GET_MODE_MASK (mode) >> 1)
3593 || GET_MODE_BITSIZE (mode) >= GET_MODE_BITSIZE (Pmode)))
3595 class expand_operand ops[9];
3596 unsigned int nops;
3598 nops = insn_data[(int) code].n_generator_args;
3599 gcc_assert (nops == 4 || nops == 6 || nops == 8 || nops == 9);
3601 create_fixed_operand (&ops[0], object);
3602 /* The check above guarantees that this size conversion is valid. */
3603 create_convert_operand_to (&ops[1], size, mode, true);
3604 create_convert_operand_from (&ops[2], val, byte_mode, true);
3605 create_integer_operand (&ops[3], align / BITS_PER_UNIT);
3606 if (nops >= 6)
3608 create_integer_operand (&ops[4], expected_align / BITS_PER_UNIT);
3609 create_integer_operand (&ops[5], expected_size);
3611 if (nops >= 8)
3613 create_integer_operand (&ops[6], min_size);
3614 /* If we cannot represent the maximal size,
3615 make parameter NULL. */
3616 if ((HOST_WIDE_INT) max_size != -1)
3617 create_integer_operand (&ops[7], max_size);
3618 else
3619 create_fixed_operand (&ops[7], NULL);
3621 if (nops == 9)
3623 /* If we cannot represent the maximal size,
3624 make parameter NULL. */
3625 if ((HOST_WIDE_INT) probable_max_size != -1)
3626 create_integer_operand (&ops[8], probable_max_size);
3627 else
3628 create_fixed_operand (&ops[8], NULL);
3630 if (maybe_expand_insn (code, nops, ops))
3631 return true;
3635 return false;
3639 /* Write to one of the components of the complex value CPLX. Write VAL to
3640 the real part if IMAG_P is false, and the imaginary part if its true.
3641 If UNDEFINED_P then the value in CPLX is currently undefined. */
3643 void
3644 write_complex_part (rtx cplx, rtx val, bool imag_p, bool undefined_p)
3646 machine_mode cmode;
3647 scalar_mode imode;
3648 unsigned ibitsize;
3650 if (GET_CODE (cplx) == CONCAT)
3652 emit_move_insn (XEXP (cplx, imag_p), val);
3653 return;
3656 cmode = GET_MODE (cplx);
3657 imode = GET_MODE_INNER (cmode);
3658 ibitsize = GET_MODE_BITSIZE (imode);
3660 /* For MEMs simplify_gen_subreg may generate an invalid new address
3661 because, e.g., the original address is considered mode-dependent
3662 by the target, which restricts simplify_subreg from invoking
3663 adjust_address_nv. Instead of preparing fallback support for an
3664 invalid address, we call adjust_address_nv directly. */
3665 if (MEM_P (cplx))
3667 emit_move_insn (adjust_address_nv (cplx, imode,
3668 imag_p ? GET_MODE_SIZE (imode) : 0),
3669 val);
3670 return;
3673 /* If the sub-object is at least word sized, then we know that subregging
3674 will work. This special case is important, since store_bit_field
3675 wants to operate on integer modes, and there's rarely an OImode to
3676 correspond to TCmode. */
3677 if (ibitsize >= BITS_PER_WORD
3678 /* For hard regs we have exact predicates. Assume we can split
3679 the original object if it spans an even number of hard regs.
3680 This special case is important for SCmode on 64-bit platforms
3681 where the natural size of floating-point regs is 32-bit. */
3682 || (REG_P (cplx)
3683 && REGNO (cplx) < FIRST_PSEUDO_REGISTER
3684 && REG_NREGS (cplx) % 2 == 0))
3686 rtx part = simplify_gen_subreg (imode, cplx, cmode,
3687 imag_p ? GET_MODE_SIZE (imode) : 0);
3688 if (part)
3690 emit_move_insn (part, val);
3691 return;
3693 else
3694 /* simplify_gen_subreg may fail for sub-word MEMs. */
3695 gcc_assert (MEM_P (cplx) && ibitsize < BITS_PER_WORD);
3698 store_bit_field (cplx, ibitsize, imag_p ? ibitsize : 0, 0, 0, imode, val,
3699 false, undefined_p);
3702 /* Extract one of the components of the complex value CPLX. Extract the
3703 real part if IMAG_P is false, and the imaginary part if it's true. */
3706 read_complex_part (rtx cplx, bool imag_p)
3708 machine_mode cmode;
3709 scalar_mode imode;
3710 unsigned ibitsize;
3712 if (GET_CODE (cplx) == CONCAT)
3713 return XEXP (cplx, imag_p);
3715 cmode = GET_MODE (cplx);
3716 imode = GET_MODE_INNER (cmode);
3717 ibitsize = GET_MODE_BITSIZE (imode);
3719 /* Special case reads from complex constants that got spilled to memory. */
3720 if (MEM_P (cplx) && GET_CODE (XEXP (cplx, 0)) == SYMBOL_REF)
3722 tree decl = SYMBOL_REF_DECL (XEXP (cplx, 0));
3723 if (decl && TREE_CODE (decl) == COMPLEX_CST)
3725 tree part = imag_p ? TREE_IMAGPART (decl) : TREE_REALPART (decl);
3726 if (CONSTANT_CLASS_P (part))
3727 return expand_expr (part, NULL_RTX, imode, EXPAND_NORMAL);
3731 /* For MEMs simplify_gen_subreg may generate an invalid new address
3732 because, e.g., the original address is considered mode-dependent
3733 by the target, which restricts simplify_subreg from invoking
3734 adjust_address_nv. Instead of preparing fallback support for an
3735 invalid address, we call adjust_address_nv directly. */
3736 if (MEM_P (cplx))
3737 return adjust_address_nv (cplx, imode,
3738 imag_p ? GET_MODE_SIZE (imode) : 0);
3740 /* If the sub-object is at least word sized, then we know that subregging
3741 will work. This special case is important, since extract_bit_field
3742 wants to operate on integer modes, and there's rarely an OImode to
3743 correspond to TCmode. */
3744 if (ibitsize >= BITS_PER_WORD
3745 /* For hard regs we have exact predicates. Assume we can split
3746 the original object if it spans an even number of hard regs.
3747 This special case is important for SCmode on 64-bit platforms
3748 where the natural size of floating-point regs is 32-bit. */
3749 || (REG_P (cplx)
3750 && REGNO (cplx) < FIRST_PSEUDO_REGISTER
3751 && REG_NREGS (cplx) % 2 == 0))
3753 rtx ret = simplify_gen_subreg (imode, cplx, cmode,
3754 imag_p ? GET_MODE_SIZE (imode) : 0);
3755 if (ret)
3756 return ret;
3757 else
3758 /* simplify_gen_subreg may fail for sub-word MEMs. */
3759 gcc_assert (MEM_P (cplx) && ibitsize < BITS_PER_WORD);
3762 return extract_bit_field (cplx, ibitsize, imag_p ? ibitsize : 0,
3763 true, NULL_RTX, imode, imode, false, NULL);
3766 /* A subroutine of emit_move_insn_1. Yet another lowpart generator.
3767 NEW_MODE and OLD_MODE are the same size. Return NULL if X cannot be
3768 represented in NEW_MODE. If FORCE is true, this will never happen, as
3769 we'll force-create a SUBREG if needed. */
3771 static rtx
3772 emit_move_change_mode (machine_mode new_mode,
3773 machine_mode old_mode, rtx x, bool force)
3775 rtx ret;
3777 if (push_operand (x, GET_MODE (x)))
3779 ret = gen_rtx_MEM (new_mode, XEXP (x, 0));
3780 MEM_COPY_ATTRIBUTES (ret, x);
3782 else if (MEM_P (x))
3784 /* We don't have to worry about changing the address since the
3785 size in bytes is supposed to be the same. */
3786 if (reload_in_progress)
3788 /* Copy the MEM to change the mode and move any
3789 substitutions from the old MEM to the new one. */
3790 ret = adjust_address_nv (x, new_mode, 0);
3791 copy_replacements (x, ret);
3793 else
3794 ret = adjust_address (x, new_mode, 0);
3796 else
3798 /* Note that we do want simplify_subreg's behavior of validating
3799 that the new mode is ok for a hard register. If we were to use
3800 simplify_gen_subreg, we would create the subreg, but would
3801 probably run into the target not being able to implement it. */
3802 /* Except, of course, when FORCE is true, when this is exactly what
3803 we want. Which is needed for CCmodes on some targets. */
3804 if (force)
3805 ret = simplify_gen_subreg (new_mode, x, old_mode, 0);
3806 else
3807 ret = simplify_subreg (new_mode, x, old_mode, 0);
3810 return ret;
3813 /* A subroutine of emit_move_insn_1. Generate a move from Y into X using
3814 an integer mode of the same size as MODE. Returns the instruction
3815 emitted, or NULL if such a move could not be generated. */
3817 static rtx_insn *
3818 emit_move_via_integer (machine_mode mode, rtx x, rtx y, bool force)
3820 scalar_int_mode imode;
3821 enum insn_code code;
3823 /* There must exist a mode of the exact size we require. */
3824 if (!int_mode_for_mode (mode).exists (&imode))
3825 return NULL;
3827 /* The target must support moves in this mode. */
3828 code = optab_handler (mov_optab, imode);
3829 if (code == CODE_FOR_nothing)
3830 return NULL;
3832 x = emit_move_change_mode (imode, mode, x, force);
3833 if (x == NULL_RTX)
3834 return NULL;
3835 y = emit_move_change_mode (imode, mode, y, force);
3836 if (y == NULL_RTX)
3837 return NULL;
3838 return emit_insn (GEN_FCN (code) (x, y));
3841 /* A subroutine of emit_move_insn_1. X is a push_operand in MODE.
3842 Return an equivalent MEM that does not use an auto-increment. */
3845 emit_move_resolve_push (machine_mode mode, rtx x)
3847 enum rtx_code code = GET_CODE (XEXP (x, 0));
3848 rtx temp;
3850 poly_int64 adjust = GET_MODE_SIZE (mode);
3851 #ifdef PUSH_ROUNDING
3852 adjust = PUSH_ROUNDING (adjust);
3853 #endif
3854 if (code == PRE_DEC || code == POST_DEC)
3855 adjust = -adjust;
3856 else if (code == PRE_MODIFY || code == POST_MODIFY)
3858 rtx expr = XEXP (XEXP (x, 0), 1);
3860 gcc_assert (GET_CODE (expr) == PLUS || GET_CODE (expr) == MINUS);
3861 poly_int64 val = rtx_to_poly_int64 (XEXP (expr, 1));
3862 if (GET_CODE (expr) == MINUS)
3863 val = -val;
3864 gcc_assert (known_eq (adjust, val) || known_eq (adjust, -val));
3865 adjust = val;
3868 /* Do not use anti_adjust_stack, since we don't want to update
3869 stack_pointer_delta. */
3870 temp = expand_simple_binop (Pmode, PLUS, stack_pointer_rtx,
3871 gen_int_mode (adjust, Pmode), stack_pointer_rtx,
3872 0, OPTAB_LIB_WIDEN);
3873 if (temp != stack_pointer_rtx)
3874 emit_move_insn (stack_pointer_rtx, temp);
3876 switch (code)
3878 case PRE_INC:
3879 case PRE_DEC:
3880 case PRE_MODIFY:
3881 temp = stack_pointer_rtx;
3882 break;
3883 case POST_INC:
3884 case POST_DEC:
3885 case POST_MODIFY:
3886 temp = plus_constant (Pmode, stack_pointer_rtx, -adjust);
3887 break;
3888 default:
3889 gcc_unreachable ();
3892 return replace_equiv_address (x, temp);
3895 /* A subroutine of emit_move_complex. Generate a move from Y into X.
3896 X is known to satisfy push_operand, and MODE is known to be complex.
3897 Returns the last instruction emitted. */
3899 rtx_insn *
3900 emit_move_complex_push (machine_mode mode, rtx x, rtx y)
3902 scalar_mode submode = GET_MODE_INNER (mode);
3903 bool imag_first;
3905 #ifdef PUSH_ROUNDING
3906 poly_int64 submodesize = GET_MODE_SIZE (submode);
3908 /* In case we output to the stack, but the size is smaller than the
3909 machine can push exactly, we need to use move instructions. */
3910 if (maybe_ne (PUSH_ROUNDING (submodesize), submodesize))
3912 x = emit_move_resolve_push (mode, x);
3913 return emit_move_insn (x, y);
3915 #endif
3917 /* Note that the real part always precedes the imag part in memory
3918 regardless of machine's endianness. */
3919 switch (GET_CODE (XEXP (x, 0)))
3921 case PRE_DEC:
3922 case POST_DEC:
3923 imag_first = true;
3924 break;
3925 case PRE_INC:
3926 case POST_INC:
3927 imag_first = false;
3928 break;
3929 default:
3930 gcc_unreachable ();
3933 emit_move_insn (gen_rtx_MEM (submode, XEXP (x, 0)),
3934 read_complex_part (y, imag_first));
3935 return emit_move_insn (gen_rtx_MEM (submode, XEXP (x, 0)),
3936 read_complex_part (y, !imag_first));
3939 /* A subroutine of emit_move_complex. Perform the move from Y to X
3940 via two moves of the parts. Returns the last instruction emitted. */
3942 rtx_insn *
3943 emit_move_complex_parts (rtx x, rtx y)
3945 /* Show the output dies here. This is necessary for SUBREGs
3946 of pseudos since we cannot track their lifetimes correctly;
3947 hard regs shouldn't appear here except as return values. */
3948 if (!reload_completed && !reload_in_progress
3949 && REG_P (x) && !reg_overlap_mentioned_p (x, y))
3950 emit_clobber (x);
3952 write_complex_part (x, read_complex_part (y, false), false, true);
3953 write_complex_part (x, read_complex_part (y, true), true, false);
3955 return get_last_insn ();
3958 /* A subroutine of emit_move_insn_1. Generate a move from Y into X.
3959 MODE is known to be complex. Returns the last instruction emitted. */
3961 static rtx_insn *
3962 emit_move_complex (machine_mode mode, rtx x, rtx y)
3964 bool try_int;
3966 /* Need to take special care for pushes, to maintain proper ordering
3967 of the data, and possibly extra padding. */
3968 if (push_operand (x, mode))
3969 return emit_move_complex_push (mode, x, y);
3971 /* See if we can coerce the target into moving both values at once, except
3972 for floating point where we favor moving as parts if this is easy. */
3973 if (GET_MODE_CLASS (mode) == MODE_COMPLEX_FLOAT
3974 && optab_handler (mov_optab, GET_MODE_INNER (mode)) != CODE_FOR_nothing
3975 && !(REG_P (x)
3976 && HARD_REGISTER_P (x)
3977 && REG_NREGS (x) == 1)
3978 && !(REG_P (y)
3979 && HARD_REGISTER_P (y)
3980 && REG_NREGS (y) == 1))
3981 try_int = false;
3982 /* Not possible if the values are inherently not adjacent. */
3983 else if (GET_CODE (x) == CONCAT || GET_CODE (y) == CONCAT)
3984 try_int = false;
3985 /* Is possible if both are registers (or subregs of registers). */
3986 else if (register_operand (x, mode) && register_operand (y, mode))
3987 try_int = true;
3988 /* If one of the operands is a memory, and alignment constraints
3989 are friendly enough, we may be able to do combined memory operations.
3990 We do not attempt this if Y is a constant because that combination is
3991 usually better with the by-parts thing below. */
3992 else if ((MEM_P (x) ? !CONSTANT_P (y) : MEM_P (y))
3993 && (!STRICT_ALIGNMENT
3994 || get_mode_alignment (mode) == BIGGEST_ALIGNMENT))
3995 try_int = true;
3996 else
3997 try_int = false;
3999 if (try_int)
4001 rtx_insn *ret;
4003 /* For memory to memory moves, optimal behavior can be had with the
4004 existing block move logic. But use normal expansion if optimizing
4005 for size. */
4006 if (MEM_P (x) && MEM_P (y))
4008 emit_block_move (x, y, gen_int_mode (GET_MODE_SIZE (mode), Pmode),
4009 (optimize_insn_for_speed_p()
4010 ? BLOCK_OP_NO_LIBCALL : BLOCK_OP_NORMAL));
4011 return get_last_insn ();
4014 ret = emit_move_via_integer (mode, x, y, true);
4015 if (ret)
4016 return ret;
4019 return emit_move_complex_parts (x, y);
4022 /* A subroutine of emit_move_insn_1. Generate a move from Y into X.
4023 MODE is known to be MODE_CC. Returns the last instruction emitted. */
4025 static rtx_insn *
4026 emit_move_ccmode (machine_mode mode, rtx x, rtx y)
4028 rtx_insn *ret;
4030 /* Assume all MODE_CC modes are equivalent; if we have movcc, use it. */
4031 if (mode != CCmode)
4033 enum insn_code code = optab_handler (mov_optab, CCmode);
4034 if (code != CODE_FOR_nothing)
4036 x = emit_move_change_mode (CCmode, mode, x, true);
4037 y = emit_move_change_mode (CCmode, mode, y, true);
4038 return emit_insn (GEN_FCN (code) (x, y));
4042 /* Otherwise, find the MODE_INT mode of the same width. */
4043 ret = emit_move_via_integer (mode, x, y, false);
4044 gcc_assert (ret != NULL);
4045 return ret;
4048 /* Return true if word I of OP lies entirely in the
4049 undefined bits of a paradoxical subreg. */
4051 static bool
4052 undefined_operand_subword_p (const_rtx op, int i)
4054 if (GET_CODE (op) != SUBREG)
4055 return false;
4056 machine_mode innermostmode = GET_MODE (SUBREG_REG (op));
4057 poly_int64 offset = i * UNITS_PER_WORD + subreg_memory_offset (op);
4058 return (known_ge (offset, GET_MODE_SIZE (innermostmode))
4059 || known_le (offset, -UNITS_PER_WORD));
4062 /* A subroutine of emit_move_insn_1. Generate a move from Y into X.
4063 MODE is any multi-word or full-word mode that lacks a move_insn
4064 pattern. Note that you will get better code if you define such
4065 patterns, even if they must turn into multiple assembler instructions. */
4067 static rtx_insn *
4068 emit_move_multi_word (machine_mode mode, rtx x, rtx y)
4070 rtx_insn *last_insn = 0;
4071 rtx_insn *seq;
4072 rtx inner;
4073 bool need_clobber;
4074 int i, mode_size;
4076 /* This function can only handle cases where the number of words is
4077 known at compile time. */
4078 mode_size = GET_MODE_SIZE (mode).to_constant ();
4079 gcc_assert (mode_size >= UNITS_PER_WORD);
4081 /* If X is a push on the stack, do the push now and replace
4082 X with a reference to the stack pointer. */
4083 if (push_operand (x, mode))
4084 x = emit_move_resolve_push (mode, x);
4086 /* If we are in reload, see if either operand is a MEM whose address
4087 is scheduled for replacement. */
4088 if (reload_in_progress && MEM_P (x)
4089 && (inner = find_replacement (&XEXP (x, 0))) != XEXP (x, 0))
4090 x = replace_equiv_address_nv (x, inner);
4091 if (reload_in_progress && MEM_P (y)
4092 && (inner = find_replacement (&XEXP (y, 0))) != XEXP (y, 0))
4093 y = replace_equiv_address_nv (y, inner);
4095 start_sequence ();
4097 need_clobber = false;
4098 for (i = 0; i < CEIL (mode_size, UNITS_PER_WORD); i++)
4100 /* Do not generate code for a move if it would go entirely
4101 to the non-existing bits of a paradoxical subreg. */
4102 if (undefined_operand_subword_p (x, i))
4103 continue;
4105 rtx xpart = operand_subword (x, i, 1, mode);
4106 rtx ypart;
4108 /* Do not generate code for a move if it would come entirely
4109 from the undefined bits of a paradoxical subreg. */
4110 if (undefined_operand_subword_p (y, i))
4111 continue;
4113 ypart = operand_subword (y, i, 1, mode);
4115 /* If we can't get a part of Y, put Y into memory if it is a
4116 constant. Otherwise, force it into a register. Then we must
4117 be able to get a part of Y. */
4118 if (ypart == 0 && CONSTANT_P (y))
4120 y = use_anchored_address (force_const_mem (mode, y));
4121 ypart = operand_subword (y, i, 1, mode);
4123 else if (ypart == 0)
4124 ypart = operand_subword_force (y, i, mode);
4126 gcc_assert (xpart && ypart);
4128 need_clobber |= (GET_CODE (xpart) == SUBREG);
4130 last_insn = emit_move_insn (xpart, ypart);
4133 seq = get_insns ();
4134 end_sequence ();
4136 /* Show the output dies here. This is necessary for SUBREGs
4137 of pseudos since we cannot track their lifetimes correctly;
4138 hard regs shouldn't appear here except as return values.
4139 We never want to emit such a clobber after reload. */
4140 if (x != y
4141 && ! (reload_in_progress || reload_completed)
4142 && need_clobber != 0)
4143 emit_clobber (x);
4145 emit_insn (seq);
4147 return last_insn;
4150 /* Low level part of emit_move_insn.
4151 Called just like emit_move_insn, but assumes X and Y
4152 are basically valid. */
4154 rtx_insn *
4155 emit_move_insn_1 (rtx x, rtx y)
4157 machine_mode mode = GET_MODE (x);
4158 enum insn_code code;
4160 gcc_assert ((unsigned int) mode < (unsigned int) MAX_MACHINE_MODE);
4162 code = optab_handler (mov_optab, mode);
4163 if (code != CODE_FOR_nothing)
4164 return emit_insn (GEN_FCN (code) (x, y));
4166 /* Expand complex moves by moving real part and imag part. */
4167 if (COMPLEX_MODE_P (mode))
4168 return emit_move_complex (mode, x, y);
4170 if (GET_MODE_CLASS (mode) == MODE_DECIMAL_FLOAT
4171 || ALL_FIXED_POINT_MODE_P (mode))
4173 rtx_insn *result = emit_move_via_integer (mode, x, y, true);
4175 /* If we can't find an integer mode, use multi words. */
4176 if (result)
4177 return result;
4178 else
4179 return emit_move_multi_word (mode, x, y);
4182 if (GET_MODE_CLASS (mode) == MODE_CC)
4183 return emit_move_ccmode (mode, x, y);
4185 /* Try using a move pattern for the corresponding integer mode. This is
4186 only safe when simplify_subreg can convert MODE constants into integer
4187 constants. At present, it can only do this reliably if the value
4188 fits within a HOST_WIDE_INT. */
4189 if (!CONSTANT_P (y)
4190 || known_le (GET_MODE_BITSIZE (mode), HOST_BITS_PER_WIDE_INT))
4192 rtx_insn *ret = emit_move_via_integer (mode, x, y, lra_in_progress);
4194 if (ret)
4196 if (! lra_in_progress || recog (PATTERN (ret), ret, 0) >= 0)
4197 return ret;
4201 return emit_move_multi_word (mode, x, y);
4204 /* Generate code to copy Y into X.
4205 Both Y and X must have the same mode, except that
4206 Y can be a constant with VOIDmode.
4207 This mode cannot be BLKmode; use emit_block_move for that.
4209 Return the last instruction emitted. */
4211 rtx_insn *
4212 emit_move_insn (rtx x, rtx y)
4214 machine_mode mode = GET_MODE (x);
4215 rtx y_cst = NULL_RTX;
4216 rtx_insn *last_insn;
4217 rtx set;
4219 gcc_assert (mode != BLKmode
4220 && (GET_MODE (y) == mode || GET_MODE (y) == VOIDmode));
4222 /* If we have a copy that looks like one of the following patterns:
4223 (set (subreg:M1 (reg:M2 ...)) (subreg:M1 (reg:M2 ...)))
4224 (set (subreg:M1 (reg:M2 ...)) (mem:M1 ADDR))
4225 (set (mem:M1 ADDR) (subreg:M1 (reg:M2 ...)))
4226 (set (subreg:M1 (reg:M2 ...)) (constant C))
4227 where mode M1 is equal in size to M2, try to detect whether the
4228 mode change involves an implicit round trip through memory.
4229 If so, see if we can avoid that by removing the subregs and
4230 doing the move in mode M2 instead. */
4232 rtx x_inner = NULL_RTX;
4233 rtx y_inner = NULL_RTX;
4235 auto candidate_subreg_p = [&](rtx subreg) {
4236 return (REG_P (SUBREG_REG (subreg))
4237 && known_eq (GET_MODE_SIZE (GET_MODE (SUBREG_REG (subreg))),
4238 GET_MODE_SIZE (GET_MODE (subreg)))
4239 && optab_handler (mov_optab, GET_MODE (SUBREG_REG (subreg)))
4240 != CODE_FOR_nothing);
4243 auto candidate_mem_p = [&](machine_mode innermode, rtx mem) {
4244 return (!targetm.can_change_mode_class (innermode, GET_MODE (mem), ALL_REGS)
4245 && !push_operand (mem, GET_MODE (mem))
4246 /* Not a candiate if innermode requires too much alignment. */
4247 && (MEM_ALIGN (mem) >= GET_MODE_ALIGNMENT (innermode)
4248 || targetm.slow_unaligned_access (GET_MODE (mem),
4249 MEM_ALIGN (mem))
4250 || !targetm.slow_unaligned_access (innermode,
4251 MEM_ALIGN (mem))));
4254 if (SUBREG_P (x) && candidate_subreg_p (x))
4255 x_inner = SUBREG_REG (x);
4257 if (SUBREG_P (y) && candidate_subreg_p (y))
4258 y_inner = SUBREG_REG (y);
4260 if (x_inner != NULL_RTX
4261 && y_inner != NULL_RTX
4262 && GET_MODE (x_inner) == GET_MODE (y_inner)
4263 && !targetm.can_change_mode_class (GET_MODE (x_inner), mode, ALL_REGS))
4265 x = x_inner;
4266 y = y_inner;
4267 mode = GET_MODE (x_inner);
4269 else if (x_inner != NULL_RTX
4270 && MEM_P (y)
4271 && candidate_mem_p (GET_MODE (x_inner), y))
4273 x = x_inner;
4274 y = adjust_address (y, GET_MODE (x_inner), 0);
4275 mode = GET_MODE (x_inner);
4277 else if (y_inner != NULL_RTX
4278 && MEM_P (x)
4279 && candidate_mem_p (GET_MODE (y_inner), x))
4281 x = adjust_address (x, GET_MODE (y_inner), 0);
4282 y = y_inner;
4283 mode = GET_MODE (y_inner);
4285 else if (x_inner != NULL_RTX
4286 && CONSTANT_P (y)
4287 && !targetm.can_change_mode_class (GET_MODE (x_inner),
4288 mode, ALL_REGS)
4289 && (y_inner = simplify_subreg (GET_MODE (x_inner), y, mode, 0)))
4291 x = x_inner;
4292 y = y_inner;
4293 mode = GET_MODE (x_inner);
4296 if (CONSTANT_P (y))
4298 if (optimize
4299 && SCALAR_FLOAT_MODE_P (GET_MODE (x))
4300 && (last_insn = compress_float_constant (x, y)))
4301 return last_insn;
4303 y_cst = y;
4305 if (!targetm.legitimate_constant_p (mode, y))
4307 y = force_const_mem (mode, y);
4309 /* If the target's cannot_force_const_mem prevented the spill,
4310 assume that the target's move expanders will also take care
4311 of the non-legitimate constant. */
4312 if (!y)
4313 y = y_cst;
4314 else
4315 y = use_anchored_address (y);
4319 /* If X or Y are memory references, verify that their addresses are valid
4320 for the machine. */
4321 if (MEM_P (x)
4322 && (! memory_address_addr_space_p (GET_MODE (x), XEXP (x, 0),
4323 MEM_ADDR_SPACE (x))
4324 && ! push_operand (x, GET_MODE (x))))
4325 x = validize_mem (x);
4327 if (MEM_P (y)
4328 && ! memory_address_addr_space_p (GET_MODE (y), XEXP (y, 0),
4329 MEM_ADDR_SPACE (y)))
4330 y = validize_mem (y);
4332 gcc_assert (mode != BLKmode);
4334 last_insn = emit_move_insn_1 (x, y);
4336 if (y_cst && REG_P (x)
4337 && (set = single_set (last_insn)) != NULL_RTX
4338 && SET_DEST (set) == x
4339 && ! rtx_equal_p (y_cst, SET_SRC (set)))
4340 set_unique_reg_note (last_insn, REG_EQUAL, copy_rtx (y_cst));
4342 return last_insn;
4345 /* Generate the body of an instruction to copy Y into X.
4346 It may be a list of insns, if one insn isn't enough. */
4348 rtx_insn *
4349 gen_move_insn (rtx x, rtx y)
4351 rtx_insn *seq;
4353 start_sequence ();
4354 emit_move_insn_1 (x, y);
4355 seq = get_insns ();
4356 end_sequence ();
4357 return seq;
4360 /* If Y is representable exactly in a narrower mode, and the target can
4361 perform the extension directly from constant or memory, then emit the
4362 move as an extension. */
4364 static rtx_insn *
4365 compress_float_constant (rtx x, rtx y)
4367 machine_mode dstmode = GET_MODE (x);
4368 machine_mode orig_srcmode = GET_MODE (y);
4369 machine_mode srcmode;
4370 const REAL_VALUE_TYPE *r;
4371 int oldcost, newcost;
4372 bool speed = optimize_insn_for_speed_p ();
4374 r = CONST_DOUBLE_REAL_VALUE (y);
4376 if (targetm.legitimate_constant_p (dstmode, y))
4377 oldcost = set_src_cost (y, orig_srcmode, speed);
4378 else
4379 oldcost = set_src_cost (force_const_mem (dstmode, y), dstmode, speed);
4381 FOR_EACH_MODE_UNTIL (srcmode, orig_srcmode)
4383 enum insn_code ic;
4384 rtx trunc_y;
4385 rtx_insn *last_insn;
4387 /* Skip if the target can't extend this way. */
4388 ic = can_extend_p (dstmode, srcmode, 0);
4389 if (ic == CODE_FOR_nothing)
4390 continue;
4392 /* Skip if the narrowed value isn't exact. */
4393 if (! exact_real_truncate (srcmode, r))
4394 continue;
4396 trunc_y = const_double_from_real_value (*r, srcmode);
4398 if (targetm.legitimate_constant_p (srcmode, trunc_y))
4400 /* Skip if the target needs extra instructions to perform
4401 the extension. */
4402 if (!insn_operand_matches (ic, 1, trunc_y))
4403 continue;
4404 /* This is valid, but may not be cheaper than the original. */
4405 newcost = set_src_cost (gen_rtx_FLOAT_EXTEND (dstmode, trunc_y),
4406 dstmode, speed);
4407 if (oldcost < newcost)
4408 continue;
4410 else if (float_extend_from_mem[dstmode][srcmode])
4412 trunc_y = force_const_mem (srcmode, trunc_y);
4413 /* This is valid, but may not be cheaper than the original. */
4414 newcost = set_src_cost (gen_rtx_FLOAT_EXTEND (dstmode, trunc_y),
4415 dstmode, speed);
4416 if (oldcost < newcost)
4417 continue;
4418 trunc_y = validize_mem (trunc_y);
4420 else
4421 continue;
4423 /* For CSE's benefit, force the compressed constant pool entry
4424 into a new pseudo. This constant may be used in different modes,
4425 and if not, combine will put things back together for us. */
4426 trunc_y = force_reg (srcmode, trunc_y);
4428 /* If x is a hard register, perform the extension into a pseudo,
4429 so that e.g. stack realignment code is aware of it. */
4430 rtx target = x;
4431 if (REG_P (x) && HARD_REGISTER_P (x))
4432 target = gen_reg_rtx (dstmode);
4434 emit_unop_insn (ic, target, trunc_y, UNKNOWN);
4435 last_insn = get_last_insn ();
4437 if (REG_P (target))
4438 set_unique_reg_note (last_insn, REG_EQUAL, y);
4440 if (target != x)
4441 return emit_move_insn (x, target);
4442 return last_insn;
4445 return NULL;
4448 /* Pushing data onto the stack. */
4450 /* Push a block of length SIZE (perhaps variable)
4451 and return an rtx to address the beginning of the block.
4452 The value may be virtual_outgoing_args_rtx.
4454 EXTRA is the number of bytes of padding to push in addition to SIZE.
4455 BELOW nonzero means this padding comes at low addresses;
4456 otherwise, the padding comes at high addresses. */
4459 push_block (rtx size, poly_int64 extra, int below)
4461 rtx temp;
4463 size = convert_modes (Pmode, ptr_mode, size, 1);
4464 if (CONSTANT_P (size))
4465 anti_adjust_stack (plus_constant (Pmode, size, extra));
4466 else if (REG_P (size) && known_eq (extra, 0))
4467 anti_adjust_stack (size);
4468 else
4470 temp = copy_to_mode_reg (Pmode, size);
4471 if (maybe_ne (extra, 0))
4472 temp = expand_binop (Pmode, add_optab, temp,
4473 gen_int_mode (extra, Pmode),
4474 temp, 0, OPTAB_LIB_WIDEN);
4475 anti_adjust_stack (temp);
4478 if (STACK_GROWS_DOWNWARD)
4480 temp = virtual_outgoing_args_rtx;
4481 if (maybe_ne (extra, 0) && below)
4482 temp = plus_constant (Pmode, temp, extra);
4484 else
4486 poly_int64 csize;
4487 if (poly_int_rtx_p (size, &csize))
4488 temp = plus_constant (Pmode, virtual_outgoing_args_rtx,
4489 -csize - (below ? 0 : extra));
4490 else if (maybe_ne (extra, 0) && !below)
4491 temp = gen_rtx_PLUS (Pmode, virtual_outgoing_args_rtx,
4492 negate_rtx (Pmode, plus_constant (Pmode, size,
4493 extra)));
4494 else
4495 temp = gen_rtx_PLUS (Pmode, virtual_outgoing_args_rtx,
4496 negate_rtx (Pmode, size));
4499 return memory_address (NARROWEST_INT_MODE, temp);
4502 /* A utility routine that returns the base of an auto-inc memory, or NULL. */
4504 static rtx
4505 mem_autoinc_base (rtx mem)
4507 if (MEM_P (mem))
4509 rtx addr = XEXP (mem, 0);
4510 if (GET_RTX_CLASS (GET_CODE (addr)) == RTX_AUTOINC)
4511 return XEXP (addr, 0);
4513 return NULL;
4516 /* A utility routine used here, in reload, and in try_split. The insns
4517 after PREV up to and including LAST are known to adjust the stack,
4518 with a final value of END_ARGS_SIZE. Iterate backward from LAST
4519 placing notes as appropriate. PREV may be NULL, indicating the
4520 entire insn sequence prior to LAST should be scanned.
4522 The set of allowed stack pointer modifications is small:
4523 (1) One or more auto-inc style memory references (aka pushes),
4524 (2) One or more addition/subtraction with the SP as destination,
4525 (3) A single move insn with the SP as destination,
4526 (4) A call_pop insn,
4527 (5) Noreturn call insns if !ACCUMULATE_OUTGOING_ARGS.
4529 Insns in the sequence that do not modify the SP are ignored,
4530 except for noreturn calls.
4532 The return value is the amount of adjustment that can be trivially
4533 verified, via immediate operand or auto-inc. If the adjustment
4534 cannot be trivially extracted, the return value is HOST_WIDE_INT_MIN. */
4536 poly_int64
4537 find_args_size_adjust (rtx_insn *insn)
4539 rtx dest, set, pat;
4540 int i;
4542 pat = PATTERN (insn);
4543 set = NULL;
4545 /* Look for a call_pop pattern. */
4546 if (CALL_P (insn))
4548 /* We have to allow non-call_pop patterns for the case
4549 of emit_single_push_insn of a TLS address. */
4550 if (GET_CODE (pat) != PARALLEL)
4551 return 0;
4553 /* All call_pop have a stack pointer adjust in the parallel.
4554 The call itself is always first, and the stack adjust is
4555 usually last, so search from the end. */
4556 for (i = XVECLEN (pat, 0) - 1; i > 0; --i)
4558 set = XVECEXP (pat, 0, i);
4559 if (GET_CODE (set) != SET)
4560 continue;
4561 dest = SET_DEST (set);
4562 if (dest == stack_pointer_rtx)
4563 break;
4565 /* We'd better have found the stack pointer adjust. */
4566 if (i == 0)
4567 return 0;
4568 /* Fall through to process the extracted SET and DEST
4569 as if it was a standalone insn. */
4571 else if (GET_CODE (pat) == SET)
4572 set = pat;
4573 else if ((set = single_set (insn)) != NULL)
4575 else if (GET_CODE (pat) == PARALLEL)
4577 /* ??? Some older ports use a parallel with a stack adjust
4578 and a store for a PUSH_ROUNDING pattern, rather than a
4579 PRE/POST_MODIFY rtx. Don't force them to update yet... */
4580 /* ??? See h8300 and m68k, pushqi1. */
4581 for (i = XVECLEN (pat, 0) - 1; i >= 0; --i)
4583 set = XVECEXP (pat, 0, i);
4584 if (GET_CODE (set) != SET)
4585 continue;
4586 dest = SET_DEST (set);
4587 if (dest == stack_pointer_rtx)
4588 break;
4590 /* We do not expect an auto-inc of the sp in the parallel. */
4591 gcc_checking_assert (mem_autoinc_base (dest) != stack_pointer_rtx);
4592 gcc_checking_assert (mem_autoinc_base (SET_SRC (set))
4593 != stack_pointer_rtx);
4595 if (i < 0)
4596 return 0;
4598 else
4599 return 0;
4601 dest = SET_DEST (set);
4603 /* Look for direct modifications of the stack pointer. */
4604 if (REG_P (dest) && REGNO (dest) == STACK_POINTER_REGNUM)
4606 /* Look for a trivial adjustment, otherwise assume nothing. */
4607 /* Note that the SPU restore_stack_block pattern refers to
4608 the stack pointer in V4SImode. Consider that non-trivial. */
4609 poly_int64 offset;
4610 if (SCALAR_INT_MODE_P (GET_MODE (dest))
4611 && strip_offset (SET_SRC (set), &offset) == stack_pointer_rtx)
4612 return offset;
4613 /* ??? Reload can generate no-op moves, which will be cleaned
4614 up later. Recognize it and continue searching. */
4615 else if (rtx_equal_p (dest, SET_SRC (set)))
4616 return 0;
4617 else
4618 return HOST_WIDE_INT_MIN;
4620 else
4622 rtx mem, addr;
4624 /* Otherwise only think about autoinc patterns. */
4625 if (mem_autoinc_base (dest) == stack_pointer_rtx)
4627 mem = dest;
4628 gcc_checking_assert (mem_autoinc_base (SET_SRC (set))
4629 != stack_pointer_rtx);
4631 else if (mem_autoinc_base (SET_SRC (set)) == stack_pointer_rtx)
4632 mem = SET_SRC (set);
4633 else
4634 return 0;
4636 addr = XEXP (mem, 0);
4637 switch (GET_CODE (addr))
4639 case PRE_INC:
4640 case POST_INC:
4641 return GET_MODE_SIZE (GET_MODE (mem));
4642 case PRE_DEC:
4643 case POST_DEC:
4644 return -GET_MODE_SIZE (GET_MODE (mem));
4645 case PRE_MODIFY:
4646 case POST_MODIFY:
4647 addr = XEXP (addr, 1);
4648 gcc_assert (GET_CODE (addr) == PLUS);
4649 gcc_assert (XEXP (addr, 0) == stack_pointer_rtx);
4650 return rtx_to_poly_int64 (XEXP (addr, 1));
4651 default:
4652 gcc_unreachable ();
4657 poly_int64
4658 fixup_args_size_notes (rtx_insn *prev, rtx_insn *last,
4659 poly_int64 end_args_size)
4661 poly_int64 args_size = end_args_size;
4662 bool saw_unknown = false;
4663 rtx_insn *insn;
4665 for (insn = last; insn != prev; insn = PREV_INSN (insn))
4667 if (!NONDEBUG_INSN_P (insn))
4668 continue;
4670 /* We might have existing REG_ARGS_SIZE notes, e.g. when pushing
4671 a call argument containing a TLS address that itself requires
4672 a call to __tls_get_addr. The handling of stack_pointer_delta
4673 in emit_single_push_insn is supposed to ensure that any such
4674 notes are already correct. */
4675 rtx note = find_reg_note (insn, REG_ARGS_SIZE, NULL_RTX);
4676 gcc_assert (!note || known_eq (args_size, get_args_size (note)));
4678 poly_int64 this_delta = find_args_size_adjust (insn);
4679 if (known_eq (this_delta, 0))
4681 if (!CALL_P (insn)
4682 || ACCUMULATE_OUTGOING_ARGS
4683 || find_reg_note (insn, REG_NORETURN, NULL_RTX) == NULL_RTX)
4684 continue;
4687 gcc_assert (!saw_unknown);
4688 if (known_eq (this_delta, HOST_WIDE_INT_MIN))
4689 saw_unknown = true;
4691 if (!note)
4692 add_args_size_note (insn, args_size);
4693 if (STACK_GROWS_DOWNWARD)
4694 this_delta = -poly_uint64 (this_delta);
4696 if (saw_unknown)
4697 args_size = HOST_WIDE_INT_MIN;
4698 else
4699 args_size -= this_delta;
4702 return args_size;
4705 #ifdef PUSH_ROUNDING
4706 /* Emit single push insn. */
4708 static void
4709 emit_single_push_insn_1 (machine_mode mode, rtx x, tree type)
4711 rtx dest_addr;
4712 poly_int64 rounded_size = PUSH_ROUNDING (GET_MODE_SIZE (mode));
4713 rtx dest;
4714 enum insn_code icode;
4716 /* If there is push pattern, use it. Otherwise try old way of throwing
4717 MEM representing push operation to move expander. */
4718 icode = optab_handler (push_optab, mode);
4719 if (icode != CODE_FOR_nothing)
4721 class expand_operand ops[1];
4723 create_input_operand (&ops[0], x, mode);
4724 if (maybe_expand_insn (icode, 1, ops))
4725 return;
4727 if (known_eq (GET_MODE_SIZE (mode), rounded_size))
4728 dest_addr = gen_rtx_fmt_e (STACK_PUSH_CODE, Pmode, stack_pointer_rtx);
4729 /* If we are to pad downward, adjust the stack pointer first and
4730 then store X into the stack location using an offset. This is
4731 because emit_move_insn does not know how to pad; it does not have
4732 access to type. */
4733 else if (targetm.calls.function_arg_padding (mode, type) == PAD_DOWNWARD)
4735 emit_move_insn (stack_pointer_rtx,
4736 expand_binop (Pmode,
4737 STACK_GROWS_DOWNWARD ? sub_optab
4738 : add_optab,
4739 stack_pointer_rtx,
4740 gen_int_mode (rounded_size, Pmode),
4741 NULL_RTX, 0, OPTAB_LIB_WIDEN));
4743 poly_int64 offset = rounded_size - GET_MODE_SIZE (mode);
4744 if (STACK_GROWS_DOWNWARD && STACK_PUSH_CODE == POST_DEC)
4745 /* We have already decremented the stack pointer, so get the
4746 previous value. */
4747 offset += rounded_size;
4749 if (!STACK_GROWS_DOWNWARD && STACK_PUSH_CODE == POST_INC)
4750 /* We have already incremented the stack pointer, so get the
4751 previous value. */
4752 offset -= rounded_size;
4754 dest_addr = plus_constant (Pmode, stack_pointer_rtx, offset);
4756 else
4758 if (STACK_GROWS_DOWNWARD)
4759 /* ??? This seems wrong if STACK_PUSH_CODE == POST_DEC. */
4760 dest_addr = plus_constant (Pmode, stack_pointer_rtx, -rounded_size);
4761 else
4762 /* ??? This seems wrong if STACK_PUSH_CODE == POST_INC. */
4763 dest_addr = plus_constant (Pmode, stack_pointer_rtx, rounded_size);
4765 dest_addr = gen_rtx_PRE_MODIFY (Pmode, stack_pointer_rtx, dest_addr);
4768 dest = gen_rtx_MEM (mode, dest_addr);
4770 if (type != 0)
4772 set_mem_attributes (dest, type, 1);
4774 if (cfun->tail_call_marked)
4775 /* Function incoming arguments may overlap with sibling call
4776 outgoing arguments and we cannot allow reordering of reads
4777 from function arguments with stores to outgoing arguments
4778 of sibling calls. */
4779 set_mem_alias_set (dest, 0);
4781 emit_move_insn (dest, x);
4784 /* Emit and annotate a single push insn. */
4786 static void
4787 emit_single_push_insn (machine_mode mode, rtx x, tree type)
4789 poly_int64 delta, old_delta = stack_pointer_delta;
4790 rtx_insn *prev = get_last_insn ();
4791 rtx_insn *last;
4793 emit_single_push_insn_1 (mode, x, type);
4795 /* Adjust stack_pointer_delta to describe the situation after the push
4796 we just performed. Note that we must do this after the push rather
4797 than before the push in case calculating X needs pushes and pops of
4798 its own (e.g. if calling __tls_get_addr). The REG_ARGS_SIZE notes
4799 for such pushes and pops must not include the effect of the future
4800 push of X. */
4801 stack_pointer_delta += PUSH_ROUNDING (GET_MODE_SIZE (mode));
4803 last = get_last_insn ();
4805 /* Notice the common case where we emitted exactly one insn. */
4806 if (PREV_INSN (last) == prev)
4808 add_args_size_note (last, stack_pointer_delta);
4809 return;
4812 delta = fixup_args_size_notes (prev, last, stack_pointer_delta);
4813 gcc_assert (known_eq (delta, HOST_WIDE_INT_MIN)
4814 || known_eq (delta, old_delta));
4816 #endif
4818 /* If reading SIZE bytes from X will end up reading from
4819 Y return the number of bytes that overlap. Return -1
4820 if there is no overlap or -2 if we can't determine
4821 (for example when X and Y have different base registers). */
4823 static int
4824 memory_load_overlap (rtx x, rtx y, HOST_WIDE_INT size)
4826 rtx tmp = plus_constant (Pmode, x, size);
4827 rtx sub = simplify_gen_binary (MINUS, Pmode, tmp, y);
4829 if (!CONST_INT_P (sub))
4830 return -2;
4832 HOST_WIDE_INT val = INTVAL (sub);
4834 return IN_RANGE (val, 1, size) ? val : -1;
4837 /* Generate code to push X onto the stack, assuming it has mode MODE and
4838 type TYPE.
4839 MODE is redundant except when X is a CONST_INT (since they don't
4840 carry mode info).
4841 SIZE is an rtx for the size of data to be copied (in bytes),
4842 needed only if X is BLKmode.
4843 Return true if successful. May return false if asked to push a
4844 partial argument during a sibcall optimization (as specified by
4845 SIBCALL_P) and the incoming and outgoing pointers cannot be shown
4846 to not overlap.
4848 ALIGN (in bits) is maximum alignment we can assume.
4850 If PARTIAL and REG are both nonzero, then copy that many of the first
4851 bytes of X into registers starting with REG, and push the rest of X.
4852 The amount of space pushed is decreased by PARTIAL bytes.
4853 REG must be a hard register in this case.
4854 If REG is zero but PARTIAL is not, take any all others actions for an
4855 argument partially in registers, but do not actually load any
4856 registers.
4858 EXTRA is the amount in bytes of extra space to leave next to this arg.
4859 This is ignored if an argument block has already been allocated.
4861 On a machine that lacks real push insns, ARGS_ADDR is the address of
4862 the bottom of the argument block for this call. We use indexing off there
4863 to store the arg. On machines with push insns, ARGS_ADDR is 0 when a
4864 argument block has not been preallocated.
4866 ARGS_SO_FAR is the size of args previously pushed for this call.
4868 REG_PARM_STACK_SPACE is nonzero if functions require stack space
4869 for arguments passed in registers. If nonzero, it will be the number
4870 of bytes required. */
4872 bool
4873 emit_push_insn (rtx x, machine_mode mode, tree type, rtx size,
4874 unsigned int align, int partial, rtx reg, poly_int64 extra,
4875 rtx args_addr, rtx args_so_far, int reg_parm_stack_space,
4876 rtx alignment_pad, bool sibcall_p)
4878 rtx xinner;
4879 pad_direction stack_direction
4880 = STACK_GROWS_DOWNWARD ? PAD_DOWNWARD : PAD_UPWARD;
4882 /* Decide where to pad the argument: PAD_DOWNWARD for below,
4883 PAD_UPWARD for above, or PAD_NONE for don't pad it.
4884 Default is below for small data on big-endian machines; else above. */
4885 pad_direction where_pad = targetm.calls.function_arg_padding (mode, type);
4887 /* Invert direction if stack is post-decrement.
4888 FIXME: why? */
4889 if (STACK_PUSH_CODE == POST_DEC)
4890 if (where_pad != PAD_NONE)
4891 where_pad = (where_pad == PAD_DOWNWARD ? PAD_UPWARD : PAD_DOWNWARD);
4893 xinner = x;
4895 int nregs = partial / UNITS_PER_WORD;
4896 rtx *tmp_regs = NULL;
4897 int overlapping = 0;
4899 if (mode == BLKmode
4900 || (STRICT_ALIGNMENT && align < GET_MODE_ALIGNMENT (mode)))
4902 /* Copy a block into the stack, entirely or partially. */
4904 rtx temp;
4905 int used;
4906 int offset;
4907 int skip;
4909 offset = partial % (PARM_BOUNDARY / BITS_PER_UNIT);
4910 used = partial - offset;
4912 if (mode != BLKmode)
4914 /* A value is to be stored in an insufficiently aligned
4915 stack slot; copy via a suitably aligned slot if
4916 necessary. */
4917 size = gen_int_mode (GET_MODE_SIZE (mode), Pmode);
4918 if (!MEM_P (xinner))
4920 temp = assign_temp (type, 1, 1);
4921 emit_move_insn (temp, xinner);
4922 xinner = temp;
4926 gcc_assert (size);
4928 /* USED is now the # of bytes we need not copy to the stack
4929 because registers will take care of them. */
4931 if (partial != 0)
4932 xinner = adjust_address (xinner, BLKmode, used);
4934 /* If the partial register-part of the arg counts in its stack size,
4935 skip the part of stack space corresponding to the registers.
4936 Otherwise, start copying to the beginning of the stack space,
4937 by setting SKIP to 0. */
4938 skip = (reg_parm_stack_space == 0) ? 0 : used;
4940 #ifdef PUSH_ROUNDING
4941 /* NB: Let the backend known the number of bytes to push and
4942 decide if push insns should be generated. */
4943 unsigned int push_size;
4944 if (CONST_INT_P (size))
4945 push_size = INTVAL (size);
4946 else
4947 push_size = 0;
4949 /* Do it with several push insns if that doesn't take lots of insns
4950 and if there is no difficulty with push insns that skip bytes
4951 on the stack for alignment purposes. */
4952 if (args_addr == 0
4953 && targetm.calls.push_argument (push_size)
4954 && CONST_INT_P (size)
4955 && skip == 0
4956 && MEM_ALIGN (xinner) >= align
4957 && can_move_by_pieces ((unsigned) INTVAL (size) - used, align)
4958 /* Here we avoid the case of a structure whose weak alignment
4959 forces many pushes of a small amount of data,
4960 and such small pushes do rounding that causes trouble. */
4961 && ((!targetm.slow_unaligned_access (word_mode, align))
4962 || align >= BIGGEST_ALIGNMENT
4963 || known_eq (PUSH_ROUNDING (align / BITS_PER_UNIT),
4964 align / BITS_PER_UNIT))
4965 && known_eq (PUSH_ROUNDING (INTVAL (size)), INTVAL (size)))
4967 /* Push padding now if padding above and stack grows down,
4968 or if padding below and stack grows up.
4969 But if space already allocated, this has already been done. */
4970 if (maybe_ne (extra, 0)
4971 && args_addr == 0
4972 && where_pad != PAD_NONE
4973 && where_pad != stack_direction)
4974 anti_adjust_stack (gen_int_mode (extra, Pmode));
4976 move_by_pieces (NULL, xinner, INTVAL (size) - used, align,
4977 RETURN_BEGIN);
4979 else
4980 #endif /* PUSH_ROUNDING */
4982 rtx target;
4984 /* Otherwise make space on the stack and copy the data
4985 to the address of that space. */
4987 /* Deduct words put into registers from the size we must copy. */
4988 if (partial != 0)
4990 if (CONST_INT_P (size))
4991 size = GEN_INT (INTVAL (size) - used);
4992 else
4993 size = expand_binop (GET_MODE (size), sub_optab, size,
4994 gen_int_mode (used, GET_MODE (size)),
4995 NULL_RTX, 0, OPTAB_LIB_WIDEN);
4998 /* Get the address of the stack space.
4999 In this case, we do not deal with EXTRA separately.
5000 A single stack adjust will do. */
5001 poly_int64 const_args_so_far;
5002 if (! args_addr)
5004 temp = push_block (size, extra, where_pad == PAD_DOWNWARD);
5005 extra = 0;
5007 else if (poly_int_rtx_p (args_so_far, &const_args_so_far))
5008 temp = memory_address (BLKmode,
5009 plus_constant (Pmode, args_addr,
5010 skip + const_args_so_far));
5011 else
5012 temp = memory_address (BLKmode,
5013 plus_constant (Pmode,
5014 gen_rtx_PLUS (Pmode,
5015 args_addr,
5016 args_so_far),
5017 skip));
5019 if (!ACCUMULATE_OUTGOING_ARGS)
5021 /* If the source is referenced relative to the stack pointer,
5022 copy it to another register to stabilize it. We do not need
5023 to do this if we know that we won't be changing sp. */
5025 if (reg_mentioned_p (virtual_stack_dynamic_rtx, temp)
5026 || reg_mentioned_p (virtual_outgoing_args_rtx, temp))
5027 temp = copy_to_reg (temp);
5030 target = gen_rtx_MEM (BLKmode, temp);
5032 /* We do *not* set_mem_attributes here, because incoming arguments
5033 may overlap with sibling call outgoing arguments and we cannot
5034 allow reordering of reads from function arguments with stores
5035 to outgoing arguments of sibling calls. We do, however, want
5036 to record the alignment of the stack slot. */
5037 /* ALIGN may well be better aligned than TYPE, e.g. due to
5038 PARM_BOUNDARY. Assume the caller isn't lying. */
5039 set_mem_align (target, align);
5041 /* If part should go in registers and pushing to that part would
5042 overwrite some of the values that need to go into regs, load the
5043 overlapping values into temporary pseudos to be moved into the hard
5044 regs at the end after the stack pushing has completed.
5045 We cannot load them directly into the hard regs here because
5046 they can be clobbered by the block move expansions.
5047 See PR 65358. */
5049 if (partial > 0 && reg != 0 && mode == BLKmode
5050 && GET_CODE (reg) != PARALLEL)
5052 overlapping = memory_load_overlap (XEXP (x, 0), temp, partial);
5053 if (overlapping > 0)
5055 gcc_assert (overlapping % UNITS_PER_WORD == 0);
5056 overlapping /= UNITS_PER_WORD;
5058 tmp_regs = XALLOCAVEC (rtx, overlapping);
5060 for (int i = 0; i < overlapping; i++)
5061 tmp_regs[i] = gen_reg_rtx (word_mode);
5063 for (int i = 0; i < overlapping; i++)
5064 emit_move_insn (tmp_regs[i],
5065 operand_subword_force (target, i, mode));
5067 else if (overlapping == -1)
5068 overlapping = 0;
5069 /* Could not determine whether there is overlap.
5070 Fail the sibcall. */
5071 else
5073 overlapping = 0;
5074 if (sibcall_p)
5075 return false;
5079 /* If source is a constant VAR_DECL with a simple constructor,
5080 store the constructor to the stack instead of moving it. */
5081 const_tree decl;
5082 if (partial == 0
5083 && MEM_P (xinner)
5084 && SYMBOL_REF_P (XEXP (xinner, 0))
5085 && (decl = SYMBOL_REF_DECL (XEXP (xinner, 0))) != NULL_TREE
5086 && VAR_P (decl)
5087 && TREE_READONLY (decl)
5088 && !TREE_SIDE_EFFECTS (decl)
5089 && immediate_const_ctor_p (DECL_INITIAL (decl), 2))
5090 store_constructor (DECL_INITIAL (decl), target, 0,
5091 int_expr_size (DECL_INITIAL (decl)), false);
5092 else
5093 emit_block_move (target, xinner, size, BLOCK_OP_CALL_PARM);
5096 else if (partial > 0)
5098 /* Scalar partly in registers. This case is only supported
5099 for fixed-wdth modes. */
5100 int num_words = GET_MODE_SIZE (mode).to_constant ();
5101 num_words /= UNITS_PER_WORD;
5102 int i;
5103 int not_stack;
5104 /* # bytes of start of argument
5105 that we must make space for but need not store. */
5106 int offset = partial % (PARM_BOUNDARY / BITS_PER_UNIT);
5107 int args_offset = INTVAL (args_so_far);
5108 int skip;
5110 /* Push padding now if padding above and stack grows down,
5111 or if padding below and stack grows up.
5112 But if space already allocated, this has already been done. */
5113 if (maybe_ne (extra, 0)
5114 && args_addr == 0
5115 && where_pad != PAD_NONE
5116 && where_pad != stack_direction)
5117 anti_adjust_stack (gen_int_mode (extra, Pmode));
5119 /* If we make space by pushing it, we might as well push
5120 the real data. Otherwise, we can leave OFFSET nonzero
5121 and leave the space uninitialized. */
5122 if (args_addr == 0)
5123 offset = 0;
5125 /* Now NOT_STACK gets the number of words that we don't need to
5126 allocate on the stack. Convert OFFSET to words too. */
5127 not_stack = (partial - offset) / UNITS_PER_WORD;
5128 offset /= UNITS_PER_WORD;
5130 /* If the partial register-part of the arg counts in its stack size,
5131 skip the part of stack space corresponding to the registers.
5132 Otherwise, start copying to the beginning of the stack space,
5133 by setting SKIP to 0. */
5134 skip = (reg_parm_stack_space == 0) ? 0 : not_stack;
5136 if (CONSTANT_P (x) && !targetm.legitimate_constant_p (mode, x))
5137 x = validize_mem (force_const_mem (mode, x));
5139 /* If X is a hard register in a non-integer mode, copy it into a pseudo;
5140 SUBREGs of such registers are not allowed. */
5141 if ((REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER
5142 && GET_MODE_CLASS (GET_MODE (x)) != MODE_INT))
5143 x = copy_to_reg (x);
5145 /* Loop over all the words allocated on the stack for this arg. */
5146 /* We can do it by words, because any scalar bigger than a word
5147 has a size a multiple of a word. */
5148 for (i = num_words - 1; i >= not_stack; i--)
5149 if (i >= not_stack + offset)
5150 if (!emit_push_insn (operand_subword_force (x, i, mode),
5151 word_mode, NULL_TREE, NULL_RTX, align, 0, NULL_RTX,
5152 0, args_addr,
5153 GEN_INT (args_offset + ((i - not_stack + skip)
5154 * UNITS_PER_WORD)),
5155 reg_parm_stack_space, alignment_pad, sibcall_p))
5156 return false;
5158 else
5160 rtx addr;
5161 rtx dest;
5163 /* Push padding now if padding above and stack grows down,
5164 or if padding below and stack grows up.
5165 But if space already allocated, this has already been done. */
5166 if (maybe_ne (extra, 0)
5167 && args_addr == 0
5168 && where_pad != PAD_NONE
5169 && where_pad != stack_direction)
5170 anti_adjust_stack (gen_int_mode (extra, Pmode));
5172 #ifdef PUSH_ROUNDING
5173 if (args_addr == 0 && targetm.calls.push_argument (0))
5174 emit_single_push_insn (mode, x, type);
5175 else
5176 #endif
5178 addr = simplify_gen_binary (PLUS, Pmode, args_addr, args_so_far);
5179 dest = gen_rtx_MEM (mode, memory_address (mode, addr));
5181 /* We do *not* set_mem_attributes here, because incoming arguments
5182 may overlap with sibling call outgoing arguments and we cannot
5183 allow reordering of reads from function arguments with stores
5184 to outgoing arguments of sibling calls. We do, however, want
5185 to record the alignment of the stack slot. */
5186 /* ALIGN may well be better aligned than TYPE, e.g. due to
5187 PARM_BOUNDARY. Assume the caller isn't lying. */
5188 set_mem_align (dest, align);
5190 emit_move_insn (dest, x);
5194 /* Move the partial arguments into the registers and any overlapping
5195 values that we moved into the pseudos in tmp_regs. */
5196 if (partial > 0 && reg != 0)
5198 /* Handle calls that pass values in multiple non-contiguous locations.
5199 The Irix 6 ABI has examples of this. */
5200 if (GET_CODE (reg) == PARALLEL)
5201 emit_group_load (reg, x, type, -1);
5202 else
5204 gcc_assert (partial % UNITS_PER_WORD == 0);
5205 move_block_to_reg (REGNO (reg), x, nregs - overlapping, mode);
5207 for (int i = 0; i < overlapping; i++)
5208 emit_move_insn (gen_rtx_REG (word_mode, REGNO (reg)
5209 + nregs - overlapping + i),
5210 tmp_regs[i]);
5215 if (maybe_ne (extra, 0) && args_addr == 0 && where_pad == stack_direction)
5216 anti_adjust_stack (gen_int_mode (extra, Pmode));
5218 if (alignment_pad && args_addr == 0)
5219 anti_adjust_stack (alignment_pad);
5221 return true;
5224 /* Return X if X can be used as a subtarget in a sequence of arithmetic
5225 operations. */
5227 static rtx
5228 get_subtarget (rtx x)
5230 return (optimize
5231 || x == 0
5232 /* Only registers can be subtargets. */
5233 || !REG_P (x)
5234 /* Don't use hard regs to avoid extending their life. */
5235 || REGNO (x) < FIRST_PSEUDO_REGISTER
5236 ? 0 : x);
5239 /* A subroutine of expand_assignment. Optimize FIELD op= VAL, where
5240 FIELD is a bitfield. Returns true if the optimization was successful,
5241 and there's nothing else to do. */
5243 static bool
5244 optimize_bitfield_assignment_op (poly_uint64 pbitsize,
5245 poly_uint64 pbitpos,
5246 poly_uint64 pbitregion_start,
5247 poly_uint64 pbitregion_end,
5248 machine_mode mode1, rtx str_rtx,
5249 tree to, tree src, bool reverse)
5251 /* str_mode is not guaranteed to be a scalar type. */
5252 machine_mode str_mode = GET_MODE (str_rtx);
5253 unsigned int str_bitsize;
5254 tree op0, op1;
5255 rtx value, result;
5256 optab binop;
5257 gimple *srcstmt;
5258 enum tree_code code;
5260 unsigned HOST_WIDE_INT bitsize, bitpos, bitregion_start, bitregion_end;
5261 if (mode1 != VOIDmode
5262 || !pbitsize.is_constant (&bitsize)
5263 || !pbitpos.is_constant (&bitpos)
5264 || !pbitregion_start.is_constant (&bitregion_start)
5265 || !pbitregion_end.is_constant (&bitregion_end)
5266 || bitsize >= BITS_PER_WORD
5267 || !GET_MODE_BITSIZE (str_mode).is_constant (&str_bitsize)
5268 || str_bitsize > BITS_PER_WORD
5269 || TREE_SIDE_EFFECTS (to)
5270 || TREE_THIS_VOLATILE (to))
5271 return false;
5273 STRIP_NOPS (src);
5274 if (TREE_CODE (src) != SSA_NAME)
5275 return false;
5276 if (TREE_CODE (TREE_TYPE (src)) != INTEGER_TYPE)
5277 return false;
5279 srcstmt = get_gimple_for_ssa_name (src);
5280 if (!srcstmt
5281 || TREE_CODE_CLASS (gimple_assign_rhs_code (srcstmt)) != tcc_binary)
5282 return false;
5284 code = gimple_assign_rhs_code (srcstmt);
5286 op0 = gimple_assign_rhs1 (srcstmt);
5288 /* If OP0 is an SSA_NAME, then we want to walk the use-def chain
5289 to find its initialization. Hopefully the initialization will
5290 be from a bitfield load. */
5291 if (TREE_CODE (op0) == SSA_NAME)
5293 gimple *op0stmt = get_gimple_for_ssa_name (op0);
5295 /* We want to eventually have OP0 be the same as TO, which
5296 should be a bitfield. */
5297 if (!op0stmt
5298 || !is_gimple_assign (op0stmt)
5299 || gimple_assign_rhs_code (op0stmt) != TREE_CODE (to))
5300 return false;
5301 op0 = gimple_assign_rhs1 (op0stmt);
5304 op1 = gimple_assign_rhs2 (srcstmt);
5306 if (!operand_equal_p (to, op0, 0))
5307 return false;
5309 if (MEM_P (str_rtx))
5311 unsigned HOST_WIDE_INT offset1;
5313 if (str_bitsize == 0 || str_bitsize > BITS_PER_WORD)
5314 str_bitsize = BITS_PER_WORD;
5316 scalar_int_mode best_mode;
5317 if (!get_best_mode (bitsize, bitpos, bitregion_start, bitregion_end,
5318 MEM_ALIGN (str_rtx), str_bitsize, false, &best_mode))
5319 return false;
5320 str_mode = best_mode;
5321 str_bitsize = GET_MODE_BITSIZE (best_mode);
5323 offset1 = bitpos;
5324 bitpos %= str_bitsize;
5325 offset1 = (offset1 - bitpos) / BITS_PER_UNIT;
5326 str_rtx = adjust_address (str_rtx, str_mode, offset1);
5328 else if (!REG_P (str_rtx) && GET_CODE (str_rtx) != SUBREG)
5329 return false;
5331 /* If the bit field covers the whole REG/MEM, store_field
5332 will likely generate better code. */
5333 if (bitsize >= str_bitsize)
5334 return false;
5336 /* We can't handle fields split across multiple entities. */
5337 if (bitpos + bitsize > str_bitsize)
5338 return false;
5340 if (reverse ? !BYTES_BIG_ENDIAN : BYTES_BIG_ENDIAN)
5341 bitpos = str_bitsize - bitpos - bitsize;
5343 switch (code)
5345 case PLUS_EXPR:
5346 case MINUS_EXPR:
5347 /* For now, just optimize the case of the topmost bitfield
5348 where we don't need to do any masking and also
5349 1 bit bitfields where xor can be used.
5350 We might win by one instruction for the other bitfields
5351 too if insv/extv instructions aren't used, so that
5352 can be added later. */
5353 if ((reverse || bitpos + bitsize != str_bitsize)
5354 && (bitsize != 1 || TREE_CODE (op1) != INTEGER_CST))
5355 break;
5357 value = expand_expr (op1, NULL_RTX, str_mode, EXPAND_NORMAL);
5358 value = convert_modes (str_mode,
5359 TYPE_MODE (TREE_TYPE (op1)), value,
5360 TYPE_UNSIGNED (TREE_TYPE (op1)));
5362 /* We may be accessing data outside the field, which means
5363 we can alias adjacent data. */
5364 if (MEM_P (str_rtx))
5366 str_rtx = shallow_copy_rtx (str_rtx);
5367 set_mem_alias_set (str_rtx, 0);
5368 set_mem_expr (str_rtx, 0);
5371 if (bitsize == 1 && (reverse || bitpos + bitsize != str_bitsize))
5373 value = expand_and (str_mode, value, const1_rtx, NULL);
5374 binop = xor_optab;
5376 else
5377 binop = code == PLUS_EXPR ? add_optab : sub_optab;
5379 value = expand_shift (LSHIFT_EXPR, str_mode, value, bitpos, NULL_RTX, 1);
5380 if (reverse)
5381 value = flip_storage_order (str_mode, value);
5382 result = expand_binop (str_mode, binop, str_rtx,
5383 value, str_rtx, 1, OPTAB_WIDEN);
5384 if (result != str_rtx)
5385 emit_move_insn (str_rtx, result);
5386 return true;
5388 case BIT_IOR_EXPR:
5389 case BIT_XOR_EXPR:
5390 if (TREE_CODE (op1) != INTEGER_CST)
5391 break;
5392 value = expand_expr (op1, NULL_RTX, str_mode, EXPAND_NORMAL);
5393 value = convert_modes (str_mode,
5394 TYPE_MODE (TREE_TYPE (op1)), value,
5395 TYPE_UNSIGNED (TREE_TYPE (op1)));
5397 /* We may be accessing data outside the field, which means
5398 we can alias adjacent data. */
5399 if (MEM_P (str_rtx))
5401 str_rtx = shallow_copy_rtx (str_rtx);
5402 set_mem_alias_set (str_rtx, 0);
5403 set_mem_expr (str_rtx, 0);
5406 binop = code == BIT_IOR_EXPR ? ior_optab : xor_optab;
5407 if (bitpos + bitsize != str_bitsize)
5409 rtx mask = gen_int_mode ((HOST_WIDE_INT_1U << bitsize) - 1,
5410 str_mode);
5411 value = expand_and (str_mode, value, mask, NULL_RTX);
5413 value = expand_shift (LSHIFT_EXPR, str_mode, value, bitpos, NULL_RTX, 1);
5414 if (reverse)
5415 value = flip_storage_order (str_mode, value);
5416 result = expand_binop (str_mode, binop, str_rtx,
5417 value, str_rtx, 1, OPTAB_WIDEN);
5418 if (result != str_rtx)
5419 emit_move_insn (str_rtx, result);
5420 return true;
5422 default:
5423 break;
5426 return false;
5429 /* In the C++ memory model, consecutive bit fields in a structure are
5430 considered one memory location.
5432 Given a COMPONENT_REF EXP at position (BITPOS, OFFSET), this function
5433 returns the bit range of consecutive bits in which this COMPONENT_REF
5434 belongs. The values are returned in *BITSTART and *BITEND. *BITPOS
5435 and *OFFSET may be adjusted in the process.
5437 If the access does not need to be restricted, 0 is returned in both
5438 *BITSTART and *BITEND. */
5440 void
5441 get_bit_range (poly_uint64_pod *bitstart, poly_uint64_pod *bitend, tree exp,
5442 poly_int64_pod *bitpos, tree *offset)
5444 poly_int64 bitoffset;
5445 tree field, repr;
5447 gcc_assert (TREE_CODE (exp) == COMPONENT_REF);
5449 field = TREE_OPERAND (exp, 1);
5450 repr = DECL_BIT_FIELD_REPRESENTATIVE (field);
5451 /* If we do not have a DECL_BIT_FIELD_REPRESENTATIVE there is no
5452 need to limit the range we can access. */
5453 if (!repr)
5455 *bitstart = *bitend = 0;
5456 return;
5459 /* If we have a DECL_BIT_FIELD_REPRESENTATIVE but the enclosing record is
5460 part of a larger bit field, then the representative does not serve any
5461 useful purpose. This can occur in Ada. */
5462 if (handled_component_p (TREE_OPERAND (exp, 0)))
5464 machine_mode rmode;
5465 poly_int64 rbitsize, rbitpos;
5466 tree roffset;
5467 int unsignedp, reversep, volatilep = 0;
5468 get_inner_reference (TREE_OPERAND (exp, 0), &rbitsize, &rbitpos,
5469 &roffset, &rmode, &unsignedp, &reversep,
5470 &volatilep);
5471 if (!multiple_p (rbitpos, BITS_PER_UNIT))
5473 *bitstart = *bitend = 0;
5474 return;
5478 /* Compute the adjustment to bitpos from the offset of the field
5479 relative to the representative. DECL_FIELD_OFFSET of field and
5480 repr are the same by construction if they are not constants,
5481 see finish_bitfield_layout. */
5482 poly_uint64 field_offset, repr_offset;
5483 if (poly_int_tree_p (DECL_FIELD_OFFSET (field), &field_offset)
5484 && poly_int_tree_p (DECL_FIELD_OFFSET (repr), &repr_offset))
5485 bitoffset = (field_offset - repr_offset) * BITS_PER_UNIT;
5486 else
5487 bitoffset = 0;
5488 bitoffset += (tree_to_uhwi (DECL_FIELD_BIT_OFFSET (field))
5489 - tree_to_uhwi (DECL_FIELD_BIT_OFFSET (repr)));
5491 /* If the adjustment is larger than bitpos, we would have a negative bit
5492 position for the lower bound and this may wreak havoc later. Adjust
5493 offset and bitpos to make the lower bound non-negative in that case. */
5494 if (maybe_gt (bitoffset, *bitpos))
5496 poly_int64 adjust_bits = upper_bound (bitoffset, *bitpos) - *bitpos;
5497 poly_int64 adjust_bytes = exact_div (adjust_bits, BITS_PER_UNIT);
5499 *bitpos += adjust_bits;
5500 if (*offset == NULL_TREE)
5501 *offset = size_int (-adjust_bytes);
5502 else
5503 *offset = size_binop (MINUS_EXPR, *offset, size_int (adjust_bytes));
5504 *bitstart = 0;
5506 else
5507 *bitstart = *bitpos - bitoffset;
5509 *bitend = *bitstart + tree_to_poly_uint64 (DECL_SIZE (repr)) - 1;
5512 /* Returns true if BASE is a DECL that does not reside in memory and
5513 has non-BLKmode. DECL_RTL must not be a MEM; if
5514 DECL_RTL was not set yet, return false. */
5516 bool
5517 non_mem_decl_p (tree base)
5519 if (!DECL_P (base)
5520 || TREE_ADDRESSABLE (base)
5521 || DECL_MODE (base) == BLKmode)
5522 return false;
5524 if (!DECL_RTL_SET_P (base))
5525 return false;
5527 return (!MEM_P (DECL_RTL (base)));
5530 /* Returns true if REF refers to an object that does not
5531 reside in memory and has non-BLKmode. */
5533 bool
5534 mem_ref_refers_to_non_mem_p (tree ref)
5536 tree base;
5538 if (TREE_CODE (ref) == MEM_REF
5539 || TREE_CODE (ref) == TARGET_MEM_REF)
5541 tree addr = TREE_OPERAND (ref, 0);
5543 if (TREE_CODE (addr) != ADDR_EXPR)
5544 return false;
5546 base = TREE_OPERAND (addr, 0);
5548 else
5549 base = ref;
5551 return non_mem_decl_p (base);
5554 /* Expand an assignment that stores the value of FROM into TO. If NONTEMPORAL
5555 is true, try generating a nontemporal store. */
5557 void
5558 expand_assignment (tree to, tree from, bool nontemporal)
5560 rtx to_rtx = 0;
5561 rtx result;
5562 machine_mode mode;
5563 unsigned int align;
5564 enum insn_code icode;
5566 /* Don't crash if the lhs of the assignment was erroneous. */
5567 if (TREE_CODE (to) == ERROR_MARK)
5569 expand_normal (from);
5570 return;
5573 /* Optimize away no-op moves without side-effects. */
5574 if (operand_equal_p (to, from, 0))
5575 return;
5577 /* Handle misaligned stores. */
5578 mode = TYPE_MODE (TREE_TYPE (to));
5579 if ((TREE_CODE (to) == MEM_REF
5580 || TREE_CODE (to) == TARGET_MEM_REF
5581 || DECL_P (to))
5582 && mode != BLKmode
5583 && !mem_ref_refers_to_non_mem_p (to)
5584 && ((align = get_object_alignment (to))
5585 < GET_MODE_ALIGNMENT (mode))
5586 && (((icode = optab_handler (movmisalign_optab, mode))
5587 != CODE_FOR_nothing)
5588 || targetm.slow_unaligned_access (mode, align)))
5590 rtx reg, mem;
5592 reg = expand_expr (from, NULL_RTX, VOIDmode, EXPAND_NORMAL);
5593 /* Handle PARALLEL. */
5594 reg = maybe_emit_group_store (reg, TREE_TYPE (from));
5595 reg = force_not_mem (reg);
5596 mem = expand_expr (to, NULL_RTX, VOIDmode, EXPAND_WRITE);
5597 if (TREE_CODE (to) == MEM_REF && REF_REVERSE_STORAGE_ORDER (to))
5598 reg = flip_storage_order (mode, reg);
5600 if (icode != CODE_FOR_nothing)
5602 class expand_operand ops[2];
5604 create_fixed_operand (&ops[0], mem);
5605 create_input_operand (&ops[1], reg, mode);
5606 /* The movmisalign<mode> pattern cannot fail, else the assignment
5607 would silently be omitted. */
5608 expand_insn (icode, 2, ops);
5610 else
5611 store_bit_field (mem, GET_MODE_BITSIZE (mode), 0, 0, 0, mode, reg,
5612 false, false);
5613 return;
5616 /* Assignment of a structure component needs special treatment
5617 if the structure component's rtx is not simply a MEM.
5618 Assignment of an array element at a constant index, and assignment of
5619 an array element in an unaligned packed structure field, has the same
5620 problem. Same for (partially) storing into a non-memory object. */
5621 if (handled_component_p (to)
5622 || (TREE_CODE (to) == MEM_REF
5623 && (REF_REVERSE_STORAGE_ORDER (to)
5624 || mem_ref_refers_to_non_mem_p (to)))
5625 || TREE_CODE (TREE_TYPE (to)) == ARRAY_TYPE)
5627 machine_mode mode1;
5628 poly_int64 bitsize, bitpos;
5629 poly_uint64 bitregion_start = 0;
5630 poly_uint64 bitregion_end = 0;
5631 tree offset;
5632 int unsignedp, reversep, volatilep = 0;
5633 tree tem;
5635 push_temp_slots ();
5636 tem = get_inner_reference (to, &bitsize, &bitpos, &offset, &mode1,
5637 &unsignedp, &reversep, &volatilep);
5639 /* Make sure bitpos is not negative, it can wreak havoc later. */
5640 if (maybe_lt (bitpos, 0))
5642 gcc_assert (offset == NULL_TREE);
5643 offset = size_int (bits_to_bytes_round_down (bitpos));
5644 bitpos = num_trailing_bits (bitpos);
5647 if (TREE_CODE (to) == COMPONENT_REF
5648 && DECL_BIT_FIELD_TYPE (TREE_OPERAND (to, 1)))
5649 get_bit_range (&bitregion_start, &bitregion_end, to, &bitpos, &offset);
5650 /* The C++ memory model naturally applies to byte-aligned fields.
5651 However, if we do not have a DECL_BIT_FIELD_TYPE but BITPOS or
5652 BITSIZE are not byte-aligned, there is no need to limit the range
5653 we can access. This can occur with packed structures in Ada. */
5654 else if (maybe_gt (bitsize, 0)
5655 && multiple_p (bitsize, BITS_PER_UNIT)
5656 && multiple_p (bitpos, BITS_PER_UNIT))
5658 bitregion_start = bitpos;
5659 bitregion_end = bitpos + bitsize - 1;
5662 to_rtx = expand_expr (tem, NULL_RTX, VOIDmode, EXPAND_WRITE);
5664 /* If the field has a mode, we want to access it in the
5665 field's mode, not the computed mode.
5666 If a MEM has VOIDmode (external with incomplete type),
5667 use BLKmode for it instead. */
5668 if (MEM_P (to_rtx))
5670 if (mode1 != VOIDmode)
5671 to_rtx = adjust_address (to_rtx, mode1, 0);
5672 else if (GET_MODE (to_rtx) == VOIDmode)
5673 to_rtx = adjust_address (to_rtx, BLKmode, 0);
5676 if (offset != 0)
5678 machine_mode address_mode;
5679 rtx offset_rtx;
5681 if (!MEM_P (to_rtx))
5683 /* We can get constant negative offsets into arrays with broken
5684 user code. Translate this to a trap instead of ICEing. */
5685 gcc_assert (TREE_CODE (offset) == INTEGER_CST);
5686 expand_builtin_trap ();
5687 to_rtx = gen_rtx_MEM (BLKmode, const0_rtx);
5690 offset_rtx = expand_expr (offset, NULL_RTX, VOIDmode, EXPAND_SUM);
5691 address_mode = get_address_mode (to_rtx);
5692 if (GET_MODE (offset_rtx) != address_mode)
5694 /* We cannot be sure that the RTL in offset_rtx is valid outside
5695 of a memory address context, so force it into a register
5696 before attempting to convert it to the desired mode. */
5697 offset_rtx = force_operand (offset_rtx, NULL_RTX);
5698 offset_rtx = convert_to_mode (address_mode, offset_rtx, 0);
5701 /* If we have an expression in OFFSET_RTX and a non-zero
5702 byte offset in BITPOS, adding the byte offset before the
5703 OFFSET_RTX results in better intermediate code, which makes
5704 later rtl optimization passes perform better.
5706 We prefer intermediate code like this:
5708 r124:DI=r123:DI+0x18
5709 [r124:DI]=r121:DI
5711 ... instead of ...
5713 r124:DI=r123:DI+0x10
5714 [r124:DI+0x8]=r121:DI
5716 This is only done for aligned data values, as these can
5717 be expected to result in single move instructions. */
5718 poly_int64 bytepos;
5719 if (mode1 != VOIDmode
5720 && maybe_ne (bitpos, 0)
5721 && maybe_gt (bitsize, 0)
5722 && multiple_p (bitpos, BITS_PER_UNIT, &bytepos)
5723 && multiple_p (bitpos, bitsize)
5724 && multiple_p (bitsize, GET_MODE_ALIGNMENT (mode1))
5725 && MEM_ALIGN (to_rtx) >= GET_MODE_ALIGNMENT (mode1))
5727 to_rtx = adjust_address (to_rtx, mode1, bytepos);
5728 bitregion_start = 0;
5729 if (known_ge (bitregion_end, poly_uint64 (bitpos)))
5730 bitregion_end -= bitpos;
5731 bitpos = 0;
5734 to_rtx = offset_address (to_rtx, offset_rtx,
5735 highest_pow2_factor_for_target (to,
5736 offset));
5739 /* No action is needed if the target is not a memory and the field
5740 lies completely outside that target. This can occur if the source
5741 code contains an out-of-bounds access to a small array. */
5742 if (!MEM_P (to_rtx)
5743 && GET_MODE (to_rtx) != BLKmode
5744 && known_ge (bitpos, GET_MODE_PRECISION (GET_MODE (to_rtx))))
5746 expand_normal (from);
5747 result = NULL;
5749 /* Handle expand_expr of a complex value returning a CONCAT. */
5750 else if (GET_CODE (to_rtx) == CONCAT)
5752 machine_mode to_mode = GET_MODE (to_rtx);
5753 gcc_checking_assert (COMPLEX_MODE_P (to_mode));
5754 poly_int64 mode_bitsize = GET_MODE_BITSIZE (to_mode);
5755 unsigned short inner_bitsize = GET_MODE_UNIT_BITSIZE (to_mode);
5756 if (TYPE_MODE (TREE_TYPE (from)) == to_mode
5757 && known_eq (bitpos, 0)
5758 && known_eq (bitsize, mode_bitsize))
5759 result = store_expr (from, to_rtx, false, nontemporal, reversep);
5760 else if (TYPE_MODE (TREE_TYPE (from)) == GET_MODE_INNER (to_mode)
5761 && known_eq (bitsize, inner_bitsize)
5762 && (known_eq (bitpos, 0)
5763 || known_eq (bitpos, inner_bitsize)))
5764 result = store_expr (from, XEXP (to_rtx, maybe_ne (bitpos, 0)),
5765 false, nontemporal, reversep);
5766 else if (known_le (bitpos + bitsize, inner_bitsize))
5767 result = store_field (XEXP (to_rtx, 0), bitsize, bitpos,
5768 bitregion_start, bitregion_end,
5769 mode1, from, get_alias_set (to),
5770 nontemporal, reversep);
5771 else if (known_ge (bitpos, inner_bitsize))
5772 result = store_field (XEXP (to_rtx, 1), bitsize,
5773 bitpos - inner_bitsize,
5774 bitregion_start, bitregion_end,
5775 mode1, from, get_alias_set (to),
5776 nontemporal, reversep);
5777 else if (known_eq (bitpos, 0) && known_eq (bitsize, mode_bitsize))
5779 result = expand_normal (from);
5780 if (GET_CODE (result) == CONCAT)
5782 to_mode = GET_MODE_INNER (to_mode);
5783 machine_mode from_mode = GET_MODE_INNER (GET_MODE (result));
5784 rtx from_real
5785 = simplify_gen_subreg (to_mode, XEXP (result, 0),
5786 from_mode, 0);
5787 rtx from_imag
5788 = simplify_gen_subreg (to_mode, XEXP (result, 1),
5789 from_mode, 0);
5790 if (!from_real || !from_imag)
5791 goto concat_store_slow;
5792 emit_move_insn (XEXP (to_rtx, 0), from_real);
5793 emit_move_insn (XEXP (to_rtx, 1), from_imag);
5795 else
5797 machine_mode from_mode
5798 = GET_MODE (result) == VOIDmode
5799 ? TYPE_MODE (TREE_TYPE (from))
5800 : GET_MODE (result);
5801 rtx from_rtx;
5802 if (MEM_P (result))
5803 from_rtx = change_address (result, to_mode, NULL_RTX);
5804 else
5805 from_rtx
5806 = simplify_gen_subreg (to_mode, result, from_mode, 0);
5807 if (from_rtx)
5809 emit_move_insn (XEXP (to_rtx, 0),
5810 read_complex_part (from_rtx, false));
5811 emit_move_insn (XEXP (to_rtx, 1),
5812 read_complex_part (from_rtx, true));
5814 else
5816 to_mode = GET_MODE_INNER (to_mode);
5817 rtx from_real
5818 = simplify_gen_subreg (to_mode, result, from_mode, 0);
5819 rtx from_imag
5820 = simplify_gen_subreg (to_mode, result, from_mode,
5821 GET_MODE_SIZE (to_mode));
5822 if (!from_real || !from_imag)
5823 goto concat_store_slow;
5824 emit_move_insn (XEXP (to_rtx, 0), from_real);
5825 emit_move_insn (XEXP (to_rtx, 1), from_imag);
5829 else
5831 concat_store_slow:;
5832 rtx temp = assign_stack_temp (GET_MODE (to_rtx),
5833 GET_MODE_SIZE (GET_MODE (to_rtx)));
5834 write_complex_part (temp, XEXP (to_rtx, 0), false, true);
5835 write_complex_part (temp, XEXP (to_rtx, 1), true, false);
5836 result = store_field (temp, bitsize, bitpos,
5837 bitregion_start, bitregion_end,
5838 mode1, from, get_alias_set (to),
5839 nontemporal, reversep);
5840 emit_move_insn (XEXP (to_rtx, 0), read_complex_part (temp, false));
5841 emit_move_insn (XEXP (to_rtx, 1), read_complex_part (temp, true));
5844 /* For calls to functions returning variable length structures, if TO_RTX
5845 is not a MEM, go through a MEM because we must not create temporaries
5846 of the VLA type. */
5847 else if (!MEM_P (to_rtx)
5848 && TREE_CODE (from) == CALL_EXPR
5849 && COMPLETE_TYPE_P (TREE_TYPE (from))
5850 && TREE_CODE (TYPE_SIZE (TREE_TYPE (from))) != INTEGER_CST)
5852 rtx temp = assign_stack_temp (GET_MODE (to_rtx),
5853 GET_MODE_SIZE (GET_MODE (to_rtx)));
5854 result = store_field (temp, bitsize, bitpos, bitregion_start,
5855 bitregion_end, mode1, from, get_alias_set (to),
5856 nontemporal, reversep);
5857 emit_move_insn (to_rtx, temp);
5859 else
5861 if (MEM_P (to_rtx))
5863 /* If the field is at offset zero, we could have been given the
5864 DECL_RTX of the parent struct. Don't munge it. */
5865 to_rtx = shallow_copy_rtx (to_rtx);
5866 set_mem_attributes_minus_bitpos (to_rtx, to, 0, bitpos);
5867 if (volatilep)
5868 MEM_VOLATILE_P (to_rtx) = 1;
5871 gcc_checking_assert (known_ge (bitpos, 0));
5872 if (optimize_bitfield_assignment_op (bitsize, bitpos,
5873 bitregion_start, bitregion_end,
5874 mode1, to_rtx, to, from,
5875 reversep))
5876 result = NULL;
5877 else if (SUBREG_P (to_rtx)
5878 && SUBREG_PROMOTED_VAR_P (to_rtx))
5880 /* If to_rtx is a promoted subreg, we need to zero or sign
5881 extend the value afterwards. */
5882 if (TREE_CODE (to) == MEM_REF
5883 && TYPE_MODE (TREE_TYPE (from)) != BLKmode
5884 && !REF_REVERSE_STORAGE_ORDER (to)
5885 && known_eq (bitpos, 0)
5886 && known_eq (bitsize, GET_MODE_BITSIZE (GET_MODE (to_rtx))))
5887 result = store_expr (from, to_rtx, 0, nontemporal, false);
5888 else
5890 rtx to_rtx1
5891 = lowpart_subreg (subreg_unpromoted_mode (to_rtx),
5892 SUBREG_REG (to_rtx),
5893 subreg_promoted_mode (to_rtx));
5894 result = store_field (to_rtx1, bitsize, bitpos,
5895 bitregion_start, bitregion_end,
5896 mode1, from, get_alias_set (to),
5897 nontemporal, reversep);
5898 convert_move (SUBREG_REG (to_rtx), to_rtx1,
5899 SUBREG_PROMOTED_SIGN (to_rtx));
5902 else
5903 result = store_field (to_rtx, bitsize, bitpos,
5904 bitregion_start, bitregion_end,
5905 mode1, from, get_alias_set (to),
5906 nontemporal, reversep);
5909 if (result)
5910 preserve_temp_slots (result);
5911 pop_temp_slots ();
5912 return;
5915 /* If the rhs is a function call and its value is not an aggregate,
5916 call the function before we start to compute the lhs.
5917 This is needed for correct code for cases such as
5918 val = setjmp (buf) on machines where reference to val
5919 requires loading up part of an address in a separate insn.
5921 Don't do this if TO is a VAR_DECL or PARM_DECL whose DECL_RTL is REG
5922 since it might be a promoted variable where the zero- or sign- extension
5923 needs to be done. Handling this in the normal way is safe because no
5924 computation is done before the call. The same is true for SSA names. */
5925 if (TREE_CODE (from) == CALL_EXPR && ! aggregate_value_p (from, from)
5926 && COMPLETE_TYPE_P (TREE_TYPE (from))
5927 && TREE_CODE (TYPE_SIZE (TREE_TYPE (from))) == INTEGER_CST
5928 && ! (((VAR_P (to)
5929 || TREE_CODE (to) == PARM_DECL
5930 || TREE_CODE (to) == RESULT_DECL)
5931 && REG_P (DECL_RTL (to)))
5932 || TREE_CODE (to) == SSA_NAME))
5934 rtx value;
5936 push_temp_slots ();
5937 value = expand_normal (from);
5939 if (to_rtx == 0)
5940 to_rtx = expand_expr (to, NULL_RTX, VOIDmode, EXPAND_WRITE);
5942 /* Handle calls that return values in multiple non-contiguous locations.
5943 The Irix 6 ABI has examples of this. */
5944 if (GET_CODE (to_rtx) == PARALLEL)
5946 if (GET_CODE (value) == PARALLEL)
5947 emit_group_move (to_rtx, value);
5948 else
5949 emit_group_load (to_rtx, value, TREE_TYPE (from),
5950 int_size_in_bytes (TREE_TYPE (from)));
5952 else if (GET_CODE (value) == PARALLEL)
5953 emit_group_store (to_rtx, value, TREE_TYPE (from),
5954 int_size_in_bytes (TREE_TYPE (from)));
5955 else if (GET_MODE (to_rtx) == BLKmode)
5957 /* Handle calls that return BLKmode values in registers. */
5958 if (REG_P (value))
5959 copy_blkmode_from_reg (to_rtx, value, TREE_TYPE (from));
5960 else
5961 emit_block_move (to_rtx, value, expr_size (from), BLOCK_OP_NORMAL);
5963 else
5965 if (POINTER_TYPE_P (TREE_TYPE (to)))
5966 value = convert_memory_address_addr_space
5967 (as_a <scalar_int_mode> (GET_MODE (to_rtx)), value,
5968 TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (to))));
5970 emit_move_insn (to_rtx, value);
5973 preserve_temp_slots (to_rtx);
5974 pop_temp_slots ();
5975 return;
5978 /* Ordinary treatment. Expand TO to get a REG or MEM rtx. */
5979 to_rtx = expand_expr (to, NULL_RTX, VOIDmode, EXPAND_WRITE);
5981 /* Don't move directly into a return register. */
5982 if (TREE_CODE (to) == RESULT_DECL
5983 && (REG_P (to_rtx) || GET_CODE (to_rtx) == PARALLEL))
5985 rtx temp;
5987 push_temp_slots ();
5989 /* If the source is itself a return value, it still is in a pseudo at
5990 this point so we can move it back to the return register directly. */
5991 if (REG_P (to_rtx)
5992 && TYPE_MODE (TREE_TYPE (from)) == BLKmode
5993 && TREE_CODE (from) != CALL_EXPR)
5994 temp = copy_blkmode_to_reg (GET_MODE (to_rtx), from);
5995 else
5996 temp = expand_expr (from, NULL_RTX, GET_MODE (to_rtx), EXPAND_NORMAL);
5998 /* Handle calls that return values in multiple non-contiguous locations.
5999 The Irix 6 ABI has examples of this. */
6000 if (GET_CODE (to_rtx) == PARALLEL)
6002 if (GET_CODE (temp) == PARALLEL)
6003 emit_group_move (to_rtx, temp);
6004 else
6005 emit_group_load (to_rtx, temp, TREE_TYPE (from),
6006 int_size_in_bytes (TREE_TYPE (from)));
6008 else if (temp)
6009 emit_move_insn (to_rtx, temp);
6011 preserve_temp_slots (to_rtx);
6012 pop_temp_slots ();
6013 return;
6016 /* In case we are returning the contents of an object which overlaps
6017 the place the value is being stored, use a safe function when copying
6018 a value through a pointer into a structure value return block. */
6019 if (TREE_CODE (to) == RESULT_DECL
6020 && TREE_CODE (from) == INDIRECT_REF
6021 && ADDR_SPACE_GENERIC_P
6022 (TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (TREE_OPERAND (from, 0)))))
6023 && refs_may_alias_p (to, from)
6024 && cfun->returns_struct
6025 && !cfun->returns_pcc_struct)
6027 rtx from_rtx, size;
6029 push_temp_slots ();
6030 size = expr_size (from);
6031 from_rtx = expand_normal (from);
6033 emit_block_move_via_libcall (XEXP (to_rtx, 0), XEXP (from_rtx, 0), size);
6035 preserve_temp_slots (to_rtx);
6036 pop_temp_slots ();
6037 return;
6040 /* Compute FROM and store the value in the rtx we got. */
6042 push_temp_slots ();
6043 result = store_expr (from, to_rtx, 0, nontemporal, false);
6044 preserve_temp_slots (result);
6045 pop_temp_slots ();
6046 return;
6049 /* Emits nontemporal store insn that moves FROM to TO. Returns true if this
6050 succeeded, false otherwise. */
6052 bool
6053 emit_storent_insn (rtx to, rtx from)
6055 class expand_operand ops[2];
6056 machine_mode mode = GET_MODE (to);
6057 enum insn_code code = optab_handler (storent_optab, mode);
6059 if (code == CODE_FOR_nothing)
6060 return false;
6062 create_fixed_operand (&ops[0], to);
6063 create_input_operand (&ops[1], from, mode);
6064 return maybe_expand_insn (code, 2, ops);
6067 /* Helper function for store_expr storing of STRING_CST. */
6069 static rtx
6070 string_cst_read_str (void *data, void *, HOST_WIDE_INT offset,
6071 fixed_size_mode mode)
6073 tree str = (tree) data;
6075 gcc_assert (offset >= 0);
6076 if (offset >= TREE_STRING_LENGTH (str))
6077 return const0_rtx;
6079 if ((unsigned HOST_WIDE_INT) offset + GET_MODE_SIZE (mode)
6080 > (unsigned HOST_WIDE_INT) TREE_STRING_LENGTH (str))
6082 char *p = XALLOCAVEC (char, GET_MODE_SIZE (mode));
6083 size_t l = TREE_STRING_LENGTH (str) - offset;
6084 memcpy (p, TREE_STRING_POINTER (str) + offset, l);
6085 memset (p + l, '\0', GET_MODE_SIZE (mode) - l);
6086 return c_readstr (p, as_a <scalar_int_mode> (mode), false);
6089 /* The by-pieces infrastructure does not try to pick a vector mode
6090 for storing STRING_CST. */
6091 return c_readstr (TREE_STRING_POINTER (str) + offset,
6092 as_a <scalar_int_mode> (mode), false);
6095 /* Generate code for computing expression EXP,
6096 and storing the value into TARGET.
6098 If the mode is BLKmode then we may return TARGET itself.
6099 It turns out that in BLKmode it doesn't cause a problem.
6100 because C has no operators that could combine two different
6101 assignments into the same BLKmode object with different values
6102 with no sequence point. Will other languages need this to
6103 be more thorough?
6105 If CALL_PARAM_P is nonzero, this is a store into a call param on the
6106 stack, and block moves may need to be treated specially.
6108 If NONTEMPORAL is true, try using a nontemporal store instruction.
6110 If REVERSE is true, the store is to be done in reverse order. */
6113 store_expr (tree exp, rtx target, int call_param_p,
6114 bool nontemporal, bool reverse)
6116 rtx temp;
6117 rtx alt_rtl = NULL_RTX;
6118 location_t loc = curr_insn_location ();
6119 bool shortened_string_cst = false;
6121 if (VOID_TYPE_P (TREE_TYPE (exp)))
6123 /* C++ can generate ?: expressions with a throw expression in one
6124 branch and an rvalue in the other. Here, we resolve attempts to
6125 store the throw expression's nonexistent result. */
6126 gcc_assert (!call_param_p);
6127 expand_expr (exp, const0_rtx, VOIDmode, EXPAND_NORMAL);
6128 return NULL_RTX;
6130 if (TREE_CODE (exp) == COMPOUND_EXPR)
6132 /* Perform first part of compound expression, then assign from second
6133 part. */
6134 expand_expr (TREE_OPERAND (exp, 0), const0_rtx, VOIDmode,
6135 call_param_p ? EXPAND_STACK_PARM : EXPAND_NORMAL);
6136 return store_expr (TREE_OPERAND (exp, 1), target,
6137 call_param_p, nontemporal, reverse);
6139 else if (TREE_CODE (exp) == COND_EXPR && GET_MODE (target) == BLKmode)
6141 /* For conditional expression, get safe form of the target. Then
6142 test the condition, doing the appropriate assignment on either
6143 side. This avoids the creation of unnecessary temporaries.
6144 For non-BLKmode, it is more efficient not to do this. */
6146 rtx_code_label *lab1 = gen_label_rtx (), *lab2 = gen_label_rtx ();
6148 do_pending_stack_adjust ();
6149 NO_DEFER_POP;
6150 jumpifnot (TREE_OPERAND (exp, 0), lab1,
6151 profile_probability::uninitialized ());
6152 store_expr (TREE_OPERAND (exp, 1), target, call_param_p,
6153 nontemporal, reverse);
6154 emit_jump_insn (targetm.gen_jump (lab2));
6155 emit_barrier ();
6156 emit_label (lab1);
6157 store_expr (TREE_OPERAND (exp, 2), target, call_param_p,
6158 nontemporal, reverse);
6159 emit_label (lab2);
6160 OK_DEFER_POP;
6162 return NULL_RTX;
6164 else if (GET_CODE (target) == SUBREG && SUBREG_PROMOTED_VAR_P (target))
6165 /* If this is a scalar in a register that is stored in a wider mode
6166 than the declared mode, compute the result into its declared mode
6167 and then convert to the wider mode. Our value is the computed
6168 expression. */
6170 rtx inner_target = 0;
6171 scalar_int_mode outer_mode = subreg_unpromoted_mode (target);
6172 scalar_int_mode inner_mode = subreg_promoted_mode (target);
6174 /* We can do the conversion inside EXP, which will often result
6175 in some optimizations. Do the conversion in two steps: first
6176 change the signedness, if needed, then the extend. But don't
6177 do this if the type of EXP is a subtype of something else
6178 since then the conversion might involve more than just
6179 converting modes. */
6180 if (INTEGRAL_TYPE_P (TREE_TYPE (exp))
6181 && TREE_TYPE (TREE_TYPE (exp)) == 0
6182 && GET_MODE_PRECISION (outer_mode)
6183 == TYPE_PRECISION (TREE_TYPE (exp)))
6185 if (!SUBREG_CHECK_PROMOTED_SIGN (target,
6186 TYPE_UNSIGNED (TREE_TYPE (exp))))
6188 /* Some types, e.g. Fortran's logical*4, won't have a signed
6189 version, so use the mode instead. */
6190 tree ntype
6191 = (signed_or_unsigned_type_for
6192 (SUBREG_PROMOTED_SIGN (target), TREE_TYPE (exp)));
6193 if (ntype == NULL)
6194 ntype = lang_hooks.types.type_for_mode
6195 (TYPE_MODE (TREE_TYPE (exp)),
6196 SUBREG_PROMOTED_SIGN (target));
6198 exp = fold_convert_loc (loc, ntype, exp);
6201 exp = fold_convert_loc (loc, lang_hooks.types.type_for_mode
6202 (inner_mode, SUBREG_PROMOTED_SIGN (target)),
6203 exp);
6205 inner_target = SUBREG_REG (target);
6208 temp = expand_expr (exp, inner_target, VOIDmode,
6209 call_param_p ? EXPAND_STACK_PARM : EXPAND_NORMAL);
6212 /* If TEMP is a VOIDmode constant, use convert_modes to make
6213 sure that we properly convert it. */
6214 if (CONSTANT_P (temp) && GET_MODE (temp) == VOIDmode)
6216 temp = convert_modes (outer_mode, TYPE_MODE (TREE_TYPE (exp)),
6217 temp, SUBREG_PROMOTED_SIGN (target));
6218 temp = convert_modes (inner_mode, outer_mode, temp,
6219 SUBREG_PROMOTED_SIGN (target));
6221 else if (!SCALAR_INT_MODE_P (GET_MODE (temp)))
6222 temp = convert_modes (outer_mode, TYPE_MODE (TREE_TYPE (exp)),
6223 temp, SUBREG_PROMOTED_SIGN (target));
6225 convert_move (SUBREG_REG (target), temp,
6226 SUBREG_PROMOTED_SIGN (target));
6228 return NULL_RTX;
6230 else if ((TREE_CODE (exp) == STRING_CST
6231 || (TREE_CODE (exp) == MEM_REF
6232 && TREE_CODE (TREE_OPERAND (exp, 0)) == ADDR_EXPR
6233 && TREE_CODE (TREE_OPERAND (TREE_OPERAND (exp, 0), 0))
6234 == STRING_CST
6235 && integer_zerop (TREE_OPERAND (exp, 1))))
6236 && !nontemporal && !call_param_p
6237 && MEM_P (target))
6239 /* Optimize initialization of an array with a STRING_CST. */
6240 HOST_WIDE_INT exp_len, str_copy_len;
6241 rtx dest_mem;
6242 tree str = TREE_CODE (exp) == STRING_CST
6243 ? exp : TREE_OPERAND (TREE_OPERAND (exp, 0), 0);
6245 exp_len = int_expr_size (exp);
6246 if (exp_len <= 0)
6247 goto normal_expr;
6249 if (TREE_STRING_LENGTH (str) <= 0)
6250 goto normal_expr;
6252 if (can_store_by_pieces (exp_len, string_cst_read_str, (void *) str,
6253 MEM_ALIGN (target), false))
6255 store_by_pieces (target, exp_len, string_cst_read_str, (void *) str,
6256 MEM_ALIGN (target), false, RETURN_BEGIN);
6257 return NULL_RTX;
6260 str_copy_len = TREE_STRING_LENGTH (str);
6262 /* Trailing NUL bytes in EXP will be handled by the call to
6263 clear_storage, which is more efficient than copying them from
6264 the STRING_CST, so trim those from STR_COPY_LEN. */
6265 while (str_copy_len)
6267 if (TREE_STRING_POINTER (str)[str_copy_len - 1])
6268 break;
6269 str_copy_len--;
6272 if ((STORE_MAX_PIECES & (STORE_MAX_PIECES - 1)) == 0)
6274 str_copy_len += STORE_MAX_PIECES - 1;
6275 str_copy_len &= ~(STORE_MAX_PIECES - 1);
6277 if (str_copy_len >= exp_len)
6278 goto normal_expr;
6280 if (!can_store_by_pieces (str_copy_len, string_cst_read_str,
6281 (void *) str, MEM_ALIGN (target), false))
6282 goto normal_expr;
6284 dest_mem = store_by_pieces (target, str_copy_len, string_cst_read_str,
6285 (void *) str, MEM_ALIGN (target), false,
6286 RETURN_END);
6287 clear_storage (adjust_address_1 (dest_mem, BLKmode, 0, 1, 1, 0,
6288 exp_len - str_copy_len),
6289 GEN_INT (exp_len - str_copy_len), BLOCK_OP_NORMAL);
6290 return NULL_RTX;
6292 else
6294 rtx tmp_target;
6296 normal_expr:
6297 /* If we want to use a nontemporal or a reverse order store, force the
6298 value into a register first. */
6299 tmp_target = nontemporal || reverse ? NULL_RTX : target;
6300 tree rexp = exp;
6301 if (TREE_CODE (exp) == STRING_CST
6302 && tmp_target == target
6303 && GET_MODE (target) == BLKmode
6304 && TYPE_MODE (TREE_TYPE (exp)) == BLKmode)
6306 rtx size = expr_size (exp);
6307 if (CONST_INT_P (size)
6308 && size != const0_rtx
6309 && (UINTVAL (size)
6310 > ((unsigned HOST_WIDE_INT) TREE_STRING_LENGTH (exp) + 32)))
6312 /* If the STRING_CST has much larger array type than
6313 TREE_STRING_LENGTH, only emit the TREE_STRING_LENGTH part of
6314 it into the rodata section as the code later on will use
6315 memset zero for the remainder anyway. See PR95052. */
6316 tmp_target = NULL_RTX;
6317 rexp = copy_node (exp);
6318 tree index
6319 = build_index_type (size_int (TREE_STRING_LENGTH (exp) - 1));
6320 TREE_TYPE (rexp) = build_array_type (TREE_TYPE (TREE_TYPE (exp)),
6321 index);
6322 shortened_string_cst = true;
6325 temp = expand_expr_real (rexp, tmp_target, GET_MODE (target),
6326 (call_param_p
6327 ? EXPAND_STACK_PARM : EXPAND_NORMAL),
6328 &alt_rtl, false);
6329 if (shortened_string_cst)
6331 gcc_assert (MEM_P (temp));
6332 temp = change_address (temp, BLKmode, NULL_RTX);
6336 /* If TEMP is a VOIDmode constant and the mode of the type of EXP is not
6337 the same as that of TARGET, adjust the constant. This is needed, for
6338 example, in case it is a CONST_DOUBLE or CONST_WIDE_INT and we want
6339 only a word-sized value. */
6340 if (CONSTANT_P (temp) && GET_MODE (temp) == VOIDmode
6341 && TREE_CODE (exp) != ERROR_MARK
6342 && GET_MODE (target) != TYPE_MODE (TREE_TYPE (exp)))
6344 gcc_assert (!shortened_string_cst);
6345 if (GET_MODE_CLASS (GET_MODE (target))
6346 != GET_MODE_CLASS (TYPE_MODE (TREE_TYPE (exp)))
6347 && known_eq (GET_MODE_BITSIZE (GET_MODE (target)),
6348 GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (exp)))))
6350 rtx t = simplify_gen_subreg (GET_MODE (target), temp,
6351 TYPE_MODE (TREE_TYPE (exp)), 0);
6352 if (t)
6353 temp = t;
6355 if (GET_MODE (temp) == VOIDmode)
6356 temp = convert_modes (GET_MODE (target), TYPE_MODE (TREE_TYPE (exp)),
6357 temp, TYPE_UNSIGNED (TREE_TYPE (exp)));
6360 /* If value was not generated in the target, store it there.
6361 Convert the value to TARGET's type first if necessary and emit the
6362 pending incrementations that have been queued when expanding EXP.
6363 Note that we cannot emit the whole queue blindly because this will
6364 effectively disable the POST_INC optimization later.
6366 If TEMP and TARGET compare equal according to rtx_equal_p, but
6367 one or both of them are volatile memory refs, we have to distinguish
6368 two cases:
6369 - expand_expr has used TARGET. In this case, we must not generate
6370 another copy. This can be detected by TARGET being equal according
6371 to == .
6372 - expand_expr has not used TARGET - that means that the source just
6373 happens to have the same RTX form. Since temp will have been created
6374 by expand_expr, it will compare unequal according to == .
6375 We must generate a copy in this case, to reach the correct number
6376 of volatile memory references. */
6378 if ((! rtx_equal_p (temp, target)
6379 || (temp != target && (side_effects_p (temp)
6380 || side_effects_p (target)
6381 || (MEM_P (temp)
6382 && !mems_same_for_tbaa_p (temp, target)))))
6383 && TREE_CODE (exp) != ERROR_MARK
6384 /* If store_expr stores a DECL whose DECL_RTL(exp) == TARGET,
6385 but TARGET is not valid memory reference, TEMP will differ
6386 from TARGET although it is really the same location. */
6387 && !(alt_rtl
6388 && rtx_equal_p (alt_rtl, target)
6389 && !side_effects_p (alt_rtl)
6390 && !side_effects_p (target))
6391 /* If there's nothing to copy, don't bother. Don't call
6392 expr_size unless necessary, because some front-ends (C++)
6393 expr_size-hook must not be given objects that are not
6394 supposed to be bit-copied or bit-initialized. */
6395 && expr_size (exp) != const0_rtx)
6397 if (GET_MODE (temp) != GET_MODE (target) && GET_MODE (temp) != VOIDmode)
6399 gcc_assert (!shortened_string_cst);
6400 if (GET_MODE (target) == BLKmode)
6402 /* Handle calls that return BLKmode values in registers. */
6403 if (REG_P (temp) && TREE_CODE (exp) == CALL_EXPR)
6404 copy_blkmode_from_reg (target, temp, TREE_TYPE (exp));
6405 else
6406 store_bit_field (target,
6407 rtx_to_poly_int64 (expr_size (exp))
6408 * BITS_PER_UNIT,
6409 0, 0, 0, GET_MODE (temp), temp, reverse,
6410 false);
6412 else
6413 convert_move (target, temp, TYPE_UNSIGNED (TREE_TYPE (exp)));
6416 else if (GET_MODE (temp) == BLKmode && TREE_CODE (exp) == STRING_CST)
6418 /* Handle copying a string constant into an array. The string
6419 constant may be shorter than the array. So copy just the string's
6420 actual length, and clear the rest. First get the size of the data
6421 type of the string, which is actually the size of the target. */
6422 rtx size = expr_size (exp);
6424 if (CONST_INT_P (size)
6425 && INTVAL (size) < TREE_STRING_LENGTH (exp))
6426 emit_block_move (target, temp, size,
6427 (call_param_p
6428 ? BLOCK_OP_CALL_PARM : BLOCK_OP_NORMAL));
6429 else
6431 machine_mode pointer_mode
6432 = targetm.addr_space.pointer_mode (MEM_ADDR_SPACE (target));
6433 machine_mode address_mode = get_address_mode (target);
6435 /* Compute the size of the data to copy from the string. */
6436 tree copy_size
6437 = size_binop_loc (loc, MIN_EXPR,
6438 make_tree (sizetype, size),
6439 size_int (TREE_STRING_LENGTH (exp)));
6440 rtx copy_size_rtx
6441 = expand_expr (copy_size, NULL_RTX, VOIDmode,
6442 (call_param_p
6443 ? EXPAND_STACK_PARM : EXPAND_NORMAL));
6444 rtx_code_label *label = 0;
6446 /* Copy that much. */
6447 copy_size_rtx = convert_to_mode (pointer_mode, copy_size_rtx,
6448 TYPE_UNSIGNED (sizetype));
6449 emit_block_move (target, temp, copy_size_rtx,
6450 (call_param_p
6451 ? BLOCK_OP_CALL_PARM : BLOCK_OP_NORMAL));
6453 /* Figure out how much is left in TARGET that we have to clear.
6454 Do all calculations in pointer_mode. */
6455 poly_int64 const_copy_size;
6456 if (poly_int_rtx_p (copy_size_rtx, &const_copy_size))
6458 size = plus_constant (address_mode, size, -const_copy_size);
6459 target = adjust_address (target, BLKmode, const_copy_size);
6461 else
6463 size = expand_binop (TYPE_MODE (sizetype), sub_optab, size,
6464 copy_size_rtx, NULL_RTX, 0,
6465 OPTAB_LIB_WIDEN);
6467 if (GET_MODE (copy_size_rtx) != address_mode)
6468 copy_size_rtx = convert_to_mode (address_mode,
6469 copy_size_rtx,
6470 TYPE_UNSIGNED (sizetype));
6472 target = offset_address (target, copy_size_rtx,
6473 highest_pow2_factor (copy_size));
6474 label = gen_label_rtx ();
6475 emit_cmp_and_jump_insns (size, const0_rtx, LT, NULL_RTX,
6476 GET_MODE (size), 0, label);
6479 if (size != const0_rtx)
6480 clear_storage (target, size, BLOCK_OP_NORMAL);
6482 if (label)
6483 emit_label (label);
6486 else if (shortened_string_cst)
6487 gcc_unreachable ();
6488 /* Handle calls that return values in multiple non-contiguous locations.
6489 The Irix 6 ABI has examples of this. */
6490 else if (GET_CODE (target) == PARALLEL)
6492 if (GET_CODE (temp) == PARALLEL)
6493 emit_group_move (target, temp);
6494 else
6495 emit_group_load (target, temp, TREE_TYPE (exp),
6496 int_size_in_bytes (TREE_TYPE (exp)));
6498 else if (GET_CODE (temp) == PARALLEL)
6499 emit_group_store (target, temp, TREE_TYPE (exp),
6500 int_size_in_bytes (TREE_TYPE (exp)));
6501 else if (GET_MODE (temp) == BLKmode)
6502 emit_block_move (target, temp, expr_size (exp),
6503 (call_param_p
6504 ? BLOCK_OP_CALL_PARM : BLOCK_OP_NORMAL));
6505 /* If we emit a nontemporal store, there is nothing else to do. */
6506 else if (nontemporal && emit_storent_insn (target, temp))
6508 else
6510 if (reverse)
6511 temp = flip_storage_order (GET_MODE (target), temp);
6512 temp = force_operand (temp, target);
6513 if (temp != target)
6514 emit_move_insn (target, temp);
6517 else
6518 gcc_assert (!shortened_string_cst);
6520 return NULL_RTX;
6523 /* Return true if field F of structure TYPE is a flexible array. */
6525 static bool
6526 flexible_array_member_p (const_tree f, const_tree type)
6528 const_tree tf;
6530 tf = TREE_TYPE (f);
6531 return (DECL_CHAIN (f) == NULL
6532 && TREE_CODE (tf) == ARRAY_TYPE
6533 && TYPE_DOMAIN (tf)
6534 && TYPE_MIN_VALUE (TYPE_DOMAIN (tf))
6535 && integer_zerop (TYPE_MIN_VALUE (TYPE_DOMAIN (tf)))
6536 && !TYPE_MAX_VALUE (TYPE_DOMAIN (tf))
6537 && int_size_in_bytes (type) >= 0);
6540 /* If FOR_CTOR_P, return the number of top-level elements that a constructor
6541 must have in order for it to completely initialize a value of type TYPE.
6542 Return -1 if the number isn't known.
6544 If !FOR_CTOR_P, return an estimate of the number of scalars in TYPE. */
6546 static HOST_WIDE_INT
6547 count_type_elements (const_tree type, bool for_ctor_p)
6549 switch (TREE_CODE (type))
6551 case ARRAY_TYPE:
6553 tree nelts;
6555 nelts = array_type_nelts (type);
6556 if (nelts && tree_fits_uhwi_p (nelts))
6558 unsigned HOST_WIDE_INT n;
6560 n = tree_to_uhwi (nelts) + 1;
6561 if (n == 0 || for_ctor_p)
6562 return n;
6563 else
6564 return n * count_type_elements (TREE_TYPE (type), false);
6566 return for_ctor_p ? -1 : 1;
6569 case RECORD_TYPE:
6571 unsigned HOST_WIDE_INT n;
6572 tree f;
6574 n = 0;
6575 for (f = TYPE_FIELDS (type); f ; f = DECL_CHAIN (f))
6576 if (TREE_CODE (f) == FIELD_DECL)
6578 if (!for_ctor_p)
6579 n += count_type_elements (TREE_TYPE (f), false);
6580 else if (!flexible_array_member_p (f, type))
6581 /* Don't count flexible arrays, which are not supposed
6582 to be initialized. */
6583 n += 1;
6586 return n;
6589 case UNION_TYPE:
6590 case QUAL_UNION_TYPE:
6592 tree f;
6593 HOST_WIDE_INT n, m;
6595 gcc_assert (!for_ctor_p);
6596 /* Estimate the number of scalars in each field and pick the
6597 maximum. Other estimates would do instead; the idea is simply
6598 to make sure that the estimate is not sensitive to the ordering
6599 of the fields. */
6600 n = 1;
6601 for (f = TYPE_FIELDS (type); f ; f = DECL_CHAIN (f))
6602 if (TREE_CODE (f) == FIELD_DECL)
6604 m = count_type_elements (TREE_TYPE (f), false);
6605 /* If the field doesn't span the whole union, add an extra
6606 scalar for the rest. */
6607 if (simple_cst_equal (TYPE_SIZE (TREE_TYPE (f)),
6608 TYPE_SIZE (type)) != 1)
6609 m++;
6610 if (n < m)
6611 n = m;
6613 return n;
6616 case COMPLEX_TYPE:
6617 return 2;
6619 case VECTOR_TYPE:
6621 unsigned HOST_WIDE_INT nelts;
6622 if (TYPE_VECTOR_SUBPARTS (type).is_constant (&nelts))
6623 return nelts;
6624 else
6625 return -1;
6628 case INTEGER_TYPE:
6629 case REAL_TYPE:
6630 case FIXED_POINT_TYPE:
6631 case ENUMERAL_TYPE:
6632 case BOOLEAN_TYPE:
6633 case POINTER_TYPE:
6634 case OFFSET_TYPE:
6635 case REFERENCE_TYPE:
6636 case NULLPTR_TYPE:
6637 case OPAQUE_TYPE:
6638 return 1;
6640 case ERROR_MARK:
6641 return 0;
6643 case VOID_TYPE:
6644 case METHOD_TYPE:
6645 case FUNCTION_TYPE:
6646 case LANG_TYPE:
6647 default:
6648 gcc_unreachable ();
6652 /* Helper for categorize_ctor_elements. Identical interface. */
6654 static bool
6655 categorize_ctor_elements_1 (const_tree ctor, HOST_WIDE_INT *p_nz_elts,
6656 HOST_WIDE_INT *p_unique_nz_elts,
6657 HOST_WIDE_INT *p_init_elts, bool *p_complete)
6659 unsigned HOST_WIDE_INT idx;
6660 HOST_WIDE_INT nz_elts, unique_nz_elts, init_elts, num_fields;
6661 tree value, purpose, elt_type;
6663 /* Whether CTOR is a valid constant initializer, in accordance with what
6664 initializer_constant_valid_p does. If inferred from the constructor
6665 elements, true until proven otherwise. */
6666 bool const_from_elts_p = constructor_static_from_elts_p (ctor);
6667 bool const_p = const_from_elts_p ? true : TREE_STATIC (ctor);
6669 nz_elts = 0;
6670 unique_nz_elts = 0;
6671 init_elts = 0;
6672 num_fields = 0;
6673 elt_type = NULL_TREE;
6675 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (ctor), idx, purpose, value)
6677 HOST_WIDE_INT mult = 1;
6679 if (purpose && TREE_CODE (purpose) == RANGE_EXPR)
6681 tree lo_index = TREE_OPERAND (purpose, 0);
6682 tree hi_index = TREE_OPERAND (purpose, 1);
6684 if (tree_fits_uhwi_p (lo_index) && tree_fits_uhwi_p (hi_index))
6685 mult = (tree_to_uhwi (hi_index)
6686 - tree_to_uhwi (lo_index) + 1);
6688 num_fields += mult;
6689 elt_type = TREE_TYPE (value);
6691 switch (TREE_CODE (value))
6693 case CONSTRUCTOR:
6695 HOST_WIDE_INT nz = 0, unz = 0, ic = 0;
6697 bool const_elt_p = categorize_ctor_elements_1 (value, &nz, &unz,
6698 &ic, p_complete);
6700 nz_elts += mult * nz;
6701 unique_nz_elts += unz;
6702 init_elts += mult * ic;
6704 if (const_from_elts_p && const_p)
6705 const_p = const_elt_p;
6707 break;
6709 case INTEGER_CST:
6710 case REAL_CST:
6711 case FIXED_CST:
6712 if (!initializer_zerop (value))
6714 nz_elts += mult;
6715 unique_nz_elts++;
6717 init_elts += mult;
6718 break;
6720 case STRING_CST:
6721 nz_elts += mult * TREE_STRING_LENGTH (value);
6722 unique_nz_elts += TREE_STRING_LENGTH (value);
6723 init_elts += mult * TREE_STRING_LENGTH (value);
6724 break;
6726 case COMPLEX_CST:
6727 if (!initializer_zerop (TREE_REALPART (value)))
6729 nz_elts += mult;
6730 unique_nz_elts++;
6732 if (!initializer_zerop (TREE_IMAGPART (value)))
6734 nz_elts += mult;
6735 unique_nz_elts++;
6737 init_elts += 2 * mult;
6738 break;
6740 case VECTOR_CST:
6742 /* We can only construct constant-length vectors using
6743 CONSTRUCTOR. */
6744 unsigned int nunits = VECTOR_CST_NELTS (value).to_constant ();
6745 for (unsigned int i = 0; i < nunits; ++i)
6747 tree v = VECTOR_CST_ELT (value, i);
6748 if (!initializer_zerop (v))
6750 nz_elts += mult;
6751 unique_nz_elts++;
6753 init_elts += mult;
6756 break;
6758 default:
6760 HOST_WIDE_INT tc = count_type_elements (elt_type, false);
6761 nz_elts += mult * tc;
6762 unique_nz_elts += tc;
6763 init_elts += mult * tc;
6765 if (const_from_elts_p && const_p)
6766 const_p
6767 = initializer_constant_valid_p (value,
6768 elt_type,
6769 TYPE_REVERSE_STORAGE_ORDER
6770 (TREE_TYPE (ctor)))
6771 != NULL_TREE;
6773 break;
6777 if (*p_complete && !complete_ctor_at_level_p (TREE_TYPE (ctor),
6778 num_fields, elt_type))
6779 *p_complete = false;
6781 *p_nz_elts += nz_elts;
6782 *p_unique_nz_elts += unique_nz_elts;
6783 *p_init_elts += init_elts;
6785 return const_p;
6788 /* Examine CTOR to discover:
6789 * how many scalar fields are set to nonzero values,
6790 and place it in *P_NZ_ELTS;
6791 * the same, but counting RANGE_EXPRs as multiplier of 1 instead of
6792 high - low + 1 (this can be useful for callers to determine ctors
6793 that could be cheaply initialized with - perhaps nested - loops
6794 compared to copied from huge read-only data),
6795 and place it in *P_UNIQUE_NZ_ELTS;
6796 * how many scalar fields in total are in CTOR,
6797 and place it in *P_ELT_COUNT.
6798 * whether the constructor is complete -- in the sense that every
6799 meaningful byte is explicitly given a value --
6800 and place it in *P_COMPLETE.
6802 Return whether or not CTOR is a valid static constant initializer, the same
6803 as "initializer_constant_valid_p (CTOR, TREE_TYPE (CTOR)) != 0". */
6805 bool
6806 categorize_ctor_elements (const_tree ctor, HOST_WIDE_INT *p_nz_elts,
6807 HOST_WIDE_INT *p_unique_nz_elts,
6808 HOST_WIDE_INT *p_init_elts, bool *p_complete)
6810 *p_nz_elts = 0;
6811 *p_unique_nz_elts = 0;
6812 *p_init_elts = 0;
6813 *p_complete = true;
6815 return categorize_ctor_elements_1 (ctor, p_nz_elts, p_unique_nz_elts,
6816 p_init_elts, p_complete);
6819 /* Return true if constructor CTOR is simple enough to be materialized
6820 in an integer mode register. Limit the size to WORDS words, which
6821 is 1 by default. */
6823 bool
6824 immediate_const_ctor_p (const_tree ctor, unsigned int words)
6826 /* Allow function to be called with a VAR_DECL's DECL_INITIAL. */
6827 if (!ctor || TREE_CODE (ctor) != CONSTRUCTOR)
6828 return false;
6830 return TREE_CONSTANT (ctor)
6831 && !TREE_ADDRESSABLE (ctor)
6832 && CONSTRUCTOR_NELTS (ctor)
6833 && TREE_CODE (TREE_TYPE (ctor)) != ARRAY_TYPE
6834 && int_expr_size (ctor) <= words * UNITS_PER_WORD
6835 && initializer_constant_valid_for_bitfield_p (ctor);
6838 /* TYPE is initialized by a constructor with NUM_ELTS elements, the last
6839 of which had type LAST_TYPE. Each element was itself a complete
6840 initializer, in the sense that every meaningful byte was explicitly
6841 given a value. Return true if the same is true for the constructor
6842 as a whole. */
6844 bool
6845 complete_ctor_at_level_p (const_tree type, HOST_WIDE_INT num_elts,
6846 const_tree last_type)
6848 if (TREE_CODE (type) == UNION_TYPE
6849 || TREE_CODE (type) == QUAL_UNION_TYPE)
6851 if (num_elts == 0)
6852 return false;
6854 gcc_assert (num_elts == 1 && last_type);
6856 /* ??? We could look at each element of the union, and find the
6857 largest element. Which would avoid comparing the size of the
6858 initialized element against any tail padding in the union.
6859 Doesn't seem worth the effort... */
6860 return simple_cst_equal (TYPE_SIZE (type), TYPE_SIZE (last_type)) == 1;
6863 return count_type_elements (type, true) == num_elts;
6866 /* Return true if EXP contains mostly (3/4) zeros. */
6868 static bool
6869 mostly_zeros_p (const_tree exp)
6871 if (TREE_CODE (exp) == CONSTRUCTOR)
6873 HOST_WIDE_INT nz_elts, unz_elts, init_elts;
6874 bool complete_p;
6876 categorize_ctor_elements (exp, &nz_elts, &unz_elts, &init_elts,
6877 &complete_p);
6878 return !complete_p || nz_elts < init_elts / 4;
6881 return initializer_zerop (exp);
6884 /* Return true if EXP contains all zeros. */
6886 static bool
6887 all_zeros_p (const_tree exp)
6889 if (TREE_CODE (exp) == CONSTRUCTOR)
6891 HOST_WIDE_INT nz_elts, unz_elts, init_elts;
6892 bool complete_p;
6894 categorize_ctor_elements (exp, &nz_elts, &unz_elts, &init_elts,
6895 &complete_p);
6896 return nz_elts == 0;
6899 return initializer_zerop (exp);
6902 /* Helper function for store_constructor.
6903 TARGET, BITSIZE, BITPOS, MODE, EXP are as for store_field.
6904 CLEARED is as for store_constructor.
6905 ALIAS_SET is the alias set to use for any stores.
6906 If REVERSE is true, the store is to be done in reverse order.
6908 This provides a recursive shortcut back to store_constructor when it isn't
6909 necessary to go through store_field. This is so that we can pass through
6910 the cleared field to let store_constructor know that we may not have to
6911 clear a substructure if the outer structure has already been cleared. */
6913 static void
6914 store_constructor_field (rtx target, poly_uint64 bitsize, poly_int64 bitpos,
6915 poly_uint64 bitregion_start,
6916 poly_uint64 bitregion_end,
6917 machine_mode mode,
6918 tree exp, int cleared,
6919 alias_set_type alias_set, bool reverse)
6921 poly_int64 bytepos;
6922 poly_uint64 bytesize;
6923 if (TREE_CODE (exp) == CONSTRUCTOR
6924 /* We can only call store_constructor recursively if the size and
6925 bit position are on a byte boundary. */
6926 && multiple_p (bitpos, BITS_PER_UNIT, &bytepos)
6927 && maybe_ne (bitsize, 0U)
6928 && multiple_p (bitsize, BITS_PER_UNIT, &bytesize)
6929 /* If we have a nonzero bitpos for a register target, then we just
6930 let store_field do the bitfield handling. This is unlikely to
6931 generate unnecessary clear instructions anyways. */
6932 && (known_eq (bitpos, 0) || MEM_P (target)))
6934 if (MEM_P (target))
6936 machine_mode target_mode = GET_MODE (target);
6937 if (target_mode != BLKmode
6938 && !multiple_p (bitpos, GET_MODE_ALIGNMENT (target_mode)))
6939 target_mode = BLKmode;
6940 target = adjust_address (target, target_mode, bytepos);
6944 /* Update the alias set, if required. */
6945 if (MEM_P (target) && ! MEM_KEEP_ALIAS_SET_P (target)
6946 && MEM_ALIAS_SET (target) != 0)
6948 target = copy_rtx (target);
6949 set_mem_alias_set (target, alias_set);
6952 store_constructor (exp, target, cleared, bytesize, reverse);
6954 else
6955 store_field (target, bitsize, bitpos, bitregion_start, bitregion_end, mode,
6956 exp, alias_set, false, reverse);
6960 /* Returns the number of FIELD_DECLs in TYPE. */
6962 static int
6963 fields_length (const_tree type)
6965 tree t = TYPE_FIELDS (type);
6966 int count = 0;
6968 for (; t; t = DECL_CHAIN (t))
6969 if (TREE_CODE (t) == FIELD_DECL)
6970 ++count;
6972 return count;
6976 /* Store the value of constructor EXP into the rtx TARGET.
6977 TARGET is either a REG or a MEM; we know it cannot conflict, since
6978 safe_from_p has been called.
6979 CLEARED is true if TARGET is known to have been zero'd.
6980 SIZE is the number of bytes of TARGET we are allowed to modify: this
6981 may not be the same as the size of EXP if we are assigning to a field
6982 which has been packed to exclude padding bits.
6983 If REVERSE is true, the store is to be done in reverse order. */
6985 void
6986 store_constructor (tree exp, rtx target, int cleared, poly_int64 size,
6987 bool reverse)
6989 tree type = TREE_TYPE (exp);
6990 HOST_WIDE_INT exp_size = int_size_in_bytes (type);
6991 poly_int64 bitregion_end = known_gt (size, 0) ? size * BITS_PER_UNIT - 1 : 0;
6993 switch (TREE_CODE (type))
6995 case RECORD_TYPE:
6996 case UNION_TYPE:
6997 case QUAL_UNION_TYPE:
6999 unsigned HOST_WIDE_INT idx;
7000 tree field, value;
7002 /* The storage order is specified for every aggregate type. */
7003 reverse = TYPE_REVERSE_STORAGE_ORDER (type);
7005 /* If size is zero or the target is already cleared, do nothing. */
7006 if (known_eq (size, 0) || cleared)
7007 cleared = 1;
7008 /* We either clear the aggregate or indicate the value is dead. */
7009 else if ((TREE_CODE (type) == UNION_TYPE
7010 || TREE_CODE (type) == QUAL_UNION_TYPE)
7011 && ! CONSTRUCTOR_ELTS (exp))
7012 /* If the constructor is empty, clear the union. */
7014 clear_storage (target, expr_size (exp), BLOCK_OP_NORMAL);
7015 cleared = 1;
7018 /* If we are building a static constructor into a register,
7019 set the initial value as zero so we can fold the value into
7020 a constant. But if more than one register is involved,
7021 this probably loses. */
7022 else if (REG_P (target) && TREE_STATIC (exp)
7023 && known_le (GET_MODE_SIZE (GET_MODE (target)),
7024 REGMODE_NATURAL_SIZE (GET_MODE (target))))
7026 emit_move_insn (target, CONST0_RTX (GET_MODE (target)));
7027 cleared = 1;
7030 /* If the constructor has fewer fields than the structure or
7031 if we are initializing the structure to mostly zeros, clear
7032 the whole structure first. Don't do this if TARGET is a
7033 register whose mode size isn't equal to SIZE since
7034 clear_storage can't handle this case. */
7035 else if (known_size_p (size)
7036 && (((int) CONSTRUCTOR_NELTS (exp) != fields_length (type))
7037 || mostly_zeros_p (exp))
7038 && (!REG_P (target)
7039 || known_eq (GET_MODE_SIZE (GET_MODE (target)), size)))
7041 clear_storage (target, gen_int_mode (size, Pmode),
7042 BLOCK_OP_NORMAL);
7043 cleared = 1;
7046 if (REG_P (target) && !cleared)
7047 emit_clobber (target);
7049 /* Store each element of the constructor into the
7050 corresponding field of TARGET. */
7051 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (exp), idx, field, value)
7053 machine_mode mode;
7054 HOST_WIDE_INT bitsize;
7055 HOST_WIDE_INT bitpos = 0;
7056 tree offset;
7057 rtx to_rtx = target;
7059 /* Just ignore missing fields. We cleared the whole
7060 structure, above, if any fields are missing. */
7061 if (field == 0)
7062 continue;
7064 if (cleared && initializer_zerop (value))
7065 continue;
7067 if (tree_fits_uhwi_p (DECL_SIZE (field)))
7068 bitsize = tree_to_uhwi (DECL_SIZE (field));
7069 else
7070 gcc_unreachable ();
7072 mode = DECL_MODE (field);
7073 if (DECL_BIT_FIELD (field))
7074 mode = VOIDmode;
7076 offset = DECL_FIELD_OFFSET (field);
7077 if (tree_fits_shwi_p (offset)
7078 && tree_fits_shwi_p (bit_position (field)))
7080 bitpos = int_bit_position (field);
7081 offset = NULL_TREE;
7083 else
7084 gcc_unreachable ();
7086 /* If this initializes a field that is smaller than a
7087 word, at the start of a word, try to widen it to a full
7088 word. This special case allows us to output C++ member
7089 function initializations in a form that the optimizers
7090 can understand. */
7091 if (WORD_REGISTER_OPERATIONS
7092 && REG_P (target)
7093 && bitsize < BITS_PER_WORD
7094 && bitpos % BITS_PER_WORD == 0
7095 && GET_MODE_CLASS (mode) == MODE_INT
7096 && TREE_CODE (value) == INTEGER_CST
7097 && exp_size >= 0
7098 && bitpos + BITS_PER_WORD <= exp_size * BITS_PER_UNIT)
7100 type = TREE_TYPE (value);
7102 if (TYPE_PRECISION (type) < BITS_PER_WORD)
7104 type = lang_hooks.types.type_for_mode
7105 (word_mode, TYPE_UNSIGNED (type));
7106 value = fold_convert (type, value);
7107 /* Make sure the bits beyond the original bitsize are zero
7108 so that we can correctly avoid extra zeroing stores in
7109 later constructor elements. */
7110 tree bitsize_mask
7111 = wide_int_to_tree (type, wi::mask (bitsize, false,
7112 BITS_PER_WORD));
7113 value = fold_build2 (BIT_AND_EXPR, type, value, bitsize_mask);
7116 if (BYTES_BIG_ENDIAN)
7117 value
7118 = fold_build2 (LSHIFT_EXPR, type, value,
7119 build_int_cst (type,
7120 BITS_PER_WORD - bitsize));
7121 bitsize = BITS_PER_WORD;
7122 mode = word_mode;
7125 if (MEM_P (to_rtx) && !MEM_KEEP_ALIAS_SET_P (to_rtx)
7126 && DECL_NONADDRESSABLE_P (field))
7128 to_rtx = copy_rtx (to_rtx);
7129 MEM_KEEP_ALIAS_SET_P (to_rtx) = 1;
7132 store_constructor_field (to_rtx, bitsize, bitpos,
7133 0, bitregion_end, mode,
7134 value, cleared,
7135 get_alias_set (TREE_TYPE (field)),
7136 reverse);
7138 break;
7140 case ARRAY_TYPE:
7142 tree value, index;
7143 unsigned HOST_WIDE_INT i;
7144 bool need_to_clear;
7145 tree domain;
7146 tree elttype = TREE_TYPE (type);
7147 bool const_bounds_p;
7148 HOST_WIDE_INT minelt = 0;
7149 HOST_WIDE_INT maxelt = 0;
7151 /* The storage order is specified for every aggregate type. */
7152 reverse = TYPE_REVERSE_STORAGE_ORDER (type);
7154 domain = TYPE_DOMAIN (type);
7155 const_bounds_p = (TYPE_MIN_VALUE (domain)
7156 && TYPE_MAX_VALUE (domain)
7157 && tree_fits_shwi_p (TYPE_MIN_VALUE (domain))
7158 && tree_fits_shwi_p (TYPE_MAX_VALUE (domain)));
7160 /* If we have constant bounds for the range of the type, get them. */
7161 if (const_bounds_p)
7163 minelt = tree_to_shwi (TYPE_MIN_VALUE (domain));
7164 maxelt = tree_to_shwi (TYPE_MAX_VALUE (domain));
7167 /* If the constructor has fewer elements than the array, clear
7168 the whole array first. Similarly if this is static
7169 constructor of a non-BLKmode object. */
7170 if (cleared)
7171 need_to_clear = false;
7172 else if (REG_P (target) && TREE_STATIC (exp))
7173 need_to_clear = true;
7174 else
7176 unsigned HOST_WIDE_INT idx;
7177 HOST_WIDE_INT count = 0, zero_count = 0;
7178 need_to_clear = ! const_bounds_p;
7180 /* This loop is a more accurate version of the loop in
7181 mostly_zeros_p (it handles RANGE_EXPR in an index). It
7182 is also needed to check for missing elements. */
7183 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (exp), idx, index, value)
7185 HOST_WIDE_INT this_node_count;
7187 if (need_to_clear)
7188 break;
7190 if (index != NULL_TREE && TREE_CODE (index) == RANGE_EXPR)
7192 tree lo_index = TREE_OPERAND (index, 0);
7193 tree hi_index = TREE_OPERAND (index, 1);
7195 if (! tree_fits_uhwi_p (lo_index)
7196 || ! tree_fits_uhwi_p (hi_index))
7198 need_to_clear = true;
7199 break;
7202 this_node_count = (tree_to_uhwi (hi_index)
7203 - tree_to_uhwi (lo_index) + 1);
7205 else
7206 this_node_count = 1;
7208 count += this_node_count;
7209 if (mostly_zeros_p (value))
7210 zero_count += this_node_count;
7213 /* Clear the entire array first if there are any missing
7214 elements, or if the incidence of zero elements is >=
7215 75%. */
7216 if (! need_to_clear
7217 && (count < maxelt - minelt + 1
7218 || 4 * zero_count >= 3 * count))
7219 need_to_clear = true;
7222 if (need_to_clear && maybe_gt (size, 0))
7224 if (REG_P (target))
7225 emit_move_insn (target, CONST0_RTX (GET_MODE (target)));
7226 else
7227 clear_storage (target, gen_int_mode (size, Pmode),
7228 BLOCK_OP_NORMAL);
7229 cleared = 1;
7232 if (!cleared && REG_P (target))
7233 /* Inform later passes that the old value is dead. */
7234 emit_clobber (target);
7236 /* Store each element of the constructor into the
7237 corresponding element of TARGET, determined by counting the
7238 elements. */
7239 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (exp), i, index, value)
7241 machine_mode mode;
7242 poly_int64 bitsize;
7243 HOST_WIDE_INT bitpos;
7244 rtx xtarget = target;
7246 if (cleared && initializer_zerop (value))
7247 continue;
7249 mode = TYPE_MODE (elttype);
7250 if (mode != BLKmode)
7251 bitsize = GET_MODE_BITSIZE (mode);
7252 else if (!poly_int_tree_p (TYPE_SIZE (elttype), &bitsize))
7253 bitsize = -1;
7255 if (index != NULL_TREE && TREE_CODE (index) == RANGE_EXPR)
7257 tree lo_index = TREE_OPERAND (index, 0);
7258 tree hi_index = TREE_OPERAND (index, 1);
7259 rtx index_r, pos_rtx;
7260 HOST_WIDE_INT lo, hi, count;
7261 tree position;
7263 /* If the range is constant and "small", unroll the loop. */
7264 if (const_bounds_p
7265 && tree_fits_shwi_p (lo_index)
7266 && tree_fits_shwi_p (hi_index)
7267 && (lo = tree_to_shwi (lo_index),
7268 hi = tree_to_shwi (hi_index),
7269 count = hi - lo + 1,
7270 (!MEM_P (target)
7271 || count <= 2
7272 || (tree_fits_uhwi_p (TYPE_SIZE (elttype))
7273 && (tree_to_uhwi (TYPE_SIZE (elttype)) * count
7274 <= 40 * 8)))))
7276 lo -= minelt; hi -= minelt;
7277 for (; lo <= hi; lo++)
7279 bitpos = lo * tree_to_shwi (TYPE_SIZE (elttype));
7281 if (MEM_P (target)
7282 && !MEM_KEEP_ALIAS_SET_P (target)
7283 && TREE_CODE (type) == ARRAY_TYPE
7284 && TYPE_NONALIASED_COMPONENT (type))
7286 target = copy_rtx (target);
7287 MEM_KEEP_ALIAS_SET_P (target) = 1;
7290 store_constructor_field
7291 (target, bitsize, bitpos, 0, bitregion_end,
7292 mode, value, cleared,
7293 get_alias_set (elttype), reverse);
7296 else
7298 rtx_code_label *loop_start = gen_label_rtx ();
7299 rtx_code_label *loop_end = gen_label_rtx ();
7300 tree exit_cond;
7302 expand_normal (hi_index);
7304 index = build_decl (EXPR_LOCATION (exp),
7305 VAR_DECL, NULL_TREE, domain);
7306 index_r = gen_reg_rtx (promote_decl_mode (index, NULL));
7307 SET_DECL_RTL (index, index_r);
7308 store_expr (lo_index, index_r, 0, false, reverse);
7310 /* Build the head of the loop. */
7311 do_pending_stack_adjust ();
7312 emit_label (loop_start);
7314 /* Assign value to element index. */
7315 position =
7316 fold_convert (ssizetype,
7317 fold_build2 (MINUS_EXPR,
7318 TREE_TYPE (index),
7319 index,
7320 TYPE_MIN_VALUE (domain)));
7322 position =
7323 size_binop (MULT_EXPR, position,
7324 fold_convert (ssizetype,
7325 TYPE_SIZE_UNIT (elttype)));
7327 pos_rtx = expand_normal (position);
7328 xtarget = offset_address (target, pos_rtx,
7329 highest_pow2_factor (position));
7330 xtarget = adjust_address (xtarget, mode, 0);
7331 if (TREE_CODE (value) == CONSTRUCTOR)
7332 store_constructor (value, xtarget, cleared,
7333 exact_div (bitsize, BITS_PER_UNIT),
7334 reverse);
7335 else
7336 store_expr (value, xtarget, 0, false, reverse);
7338 /* Generate a conditional jump to exit the loop. */
7339 exit_cond = build2 (LT_EXPR, integer_type_node,
7340 index, hi_index);
7341 jumpif (exit_cond, loop_end,
7342 profile_probability::uninitialized ());
7344 /* Update the loop counter, and jump to the head of
7345 the loop. */
7346 expand_assignment (index,
7347 build2 (PLUS_EXPR, TREE_TYPE (index),
7348 index, integer_one_node),
7349 false);
7351 emit_jump (loop_start);
7353 /* Build the end of the loop. */
7354 emit_label (loop_end);
7357 else if ((index != 0 && ! tree_fits_shwi_p (index))
7358 || ! tree_fits_uhwi_p (TYPE_SIZE (elttype)))
7360 tree position;
7362 if (index == 0)
7363 index = ssize_int (1);
7365 if (minelt)
7366 index = fold_convert (ssizetype,
7367 fold_build2 (MINUS_EXPR,
7368 TREE_TYPE (index),
7369 index,
7370 TYPE_MIN_VALUE (domain)));
7372 position =
7373 size_binop (MULT_EXPR, index,
7374 fold_convert (ssizetype,
7375 TYPE_SIZE_UNIT (elttype)));
7376 xtarget = offset_address (target,
7377 expand_normal (position),
7378 highest_pow2_factor (position));
7379 xtarget = adjust_address (xtarget, mode, 0);
7380 store_expr (value, xtarget, 0, false, reverse);
7382 else
7384 if (index != 0)
7385 bitpos = ((tree_to_shwi (index) - minelt)
7386 * tree_to_uhwi (TYPE_SIZE (elttype)));
7387 else
7388 bitpos = (i * tree_to_uhwi (TYPE_SIZE (elttype)));
7390 if (MEM_P (target) && !MEM_KEEP_ALIAS_SET_P (target)
7391 && TREE_CODE (type) == ARRAY_TYPE
7392 && TYPE_NONALIASED_COMPONENT (type))
7394 target = copy_rtx (target);
7395 MEM_KEEP_ALIAS_SET_P (target) = 1;
7397 store_constructor_field (target, bitsize, bitpos, 0,
7398 bitregion_end, mode, value,
7399 cleared, get_alias_set (elttype),
7400 reverse);
7403 break;
7406 case VECTOR_TYPE:
7408 unsigned HOST_WIDE_INT idx;
7409 constructor_elt *ce;
7410 int i;
7411 bool need_to_clear;
7412 insn_code icode = CODE_FOR_nothing;
7413 tree elt;
7414 tree elttype = TREE_TYPE (type);
7415 int elt_size = vector_element_bits (type);
7416 machine_mode eltmode = TYPE_MODE (elttype);
7417 HOST_WIDE_INT bitsize;
7418 HOST_WIDE_INT bitpos;
7419 rtvec vector = NULL;
7420 poly_uint64 n_elts;
7421 unsigned HOST_WIDE_INT const_n_elts;
7422 alias_set_type alias;
7423 bool vec_vec_init_p = false;
7424 machine_mode mode = GET_MODE (target);
7426 gcc_assert (eltmode != BLKmode);
7428 /* Try using vec_duplicate_optab for uniform vectors. */
7429 if (!TREE_SIDE_EFFECTS (exp)
7430 && VECTOR_MODE_P (mode)
7431 && eltmode == GET_MODE_INNER (mode)
7432 && ((icode = optab_handler (vec_duplicate_optab, mode))
7433 != CODE_FOR_nothing)
7434 && (elt = uniform_vector_p (exp))
7435 && !VECTOR_TYPE_P (TREE_TYPE (elt)))
7437 class expand_operand ops[2];
7438 create_output_operand (&ops[0], target, mode);
7439 create_input_operand (&ops[1], expand_normal (elt), eltmode);
7440 expand_insn (icode, 2, ops);
7441 if (!rtx_equal_p (target, ops[0].value))
7442 emit_move_insn (target, ops[0].value);
7443 break;
7445 /* Use sign-extension for uniform boolean vectors with
7446 integer modes. */
7447 if (!TREE_SIDE_EFFECTS (exp)
7448 && VECTOR_BOOLEAN_TYPE_P (type)
7449 && SCALAR_INT_MODE_P (mode)
7450 && (elt = uniform_vector_p (exp))
7451 && !VECTOR_TYPE_P (TREE_TYPE (elt)))
7453 rtx op0 = force_reg (TYPE_MODE (TREE_TYPE (elt)),
7454 expand_normal (elt));
7455 convert_move (target, op0, 0);
7456 break;
7459 n_elts = TYPE_VECTOR_SUBPARTS (type);
7460 if (REG_P (target)
7461 && VECTOR_MODE_P (mode)
7462 && n_elts.is_constant (&const_n_elts))
7464 machine_mode emode = eltmode;
7465 bool vector_typed_elts_p = false;
7467 if (CONSTRUCTOR_NELTS (exp)
7468 && (TREE_CODE (TREE_TYPE (CONSTRUCTOR_ELT (exp, 0)->value))
7469 == VECTOR_TYPE))
7471 tree etype = TREE_TYPE (CONSTRUCTOR_ELT (exp, 0)->value);
7472 gcc_assert (known_eq (CONSTRUCTOR_NELTS (exp)
7473 * TYPE_VECTOR_SUBPARTS (etype),
7474 n_elts));
7475 emode = TYPE_MODE (etype);
7476 vector_typed_elts_p = true;
7478 icode = convert_optab_handler (vec_init_optab, mode, emode);
7479 if (icode != CODE_FOR_nothing)
7481 unsigned int n = const_n_elts;
7483 if (vector_typed_elts_p)
7485 n = CONSTRUCTOR_NELTS (exp);
7486 vec_vec_init_p = true;
7488 vector = rtvec_alloc (n);
7489 for (unsigned int k = 0; k < n; k++)
7490 RTVEC_ELT (vector, k) = CONST0_RTX (emode);
7494 /* Compute the size of the elements in the CTOR. It differs
7495 from the size of the vector type elements only when the
7496 CTOR elements are vectors themselves. */
7497 tree val_type = (CONSTRUCTOR_NELTS (exp) != 0
7498 ? TREE_TYPE (CONSTRUCTOR_ELT (exp, 0)->value)
7499 : elttype);
7500 if (VECTOR_TYPE_P (val_type))
7501 bitsize = tree_to_uhwi (TYPE_SIZE (val_type));
7502 else
7503 bitsize = elt_size;
7505 /* If the constructor has fewer elements than the vector,
7506 clear the whole array first. Similarly if this is static
7507 constructor of a non-BLKmode object. */
7508 if (cleared)
7509 need_to_clear = false;
7510 else if (REG_P (target) && TREE_STATIC (exp))
7511 need_to_clear = true;
7512 else
7514 unsigned HOST_WIDE_INT count = 0, zero_count = 0;
7515 tree value;
7517 FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (exp), idx, value)
7519 int n_elts_here = bitsize / elt_size;
7520 count += n_elts_here;
7521 if (mostly_zeros_p (value))
7522 zero_count += n_elts_here;
7525 /* Clear the entire vector first if there are any missing elements,
7526 or if the incidence of zero elements is >= 75%. */
7527 need_to_clear = (maybe_lt (count, n_elts)
7528 || 4 * zero_count >= 3 * count);
7531 if (need_to_clear && maybe_gt (size, 0) && !vector)
7533 if (REG_P (target))
7534 emit_move_insn (target, CONST0_RTX (mode));
7535 else
7536 clear_storage (target, gen_int_mode (size, Pmode),
7537 BLOCK_OP_NORMAL);
7538 cleared = 1;
7541 /* Inform later passes that the old value is dead. */
7542 if (!cleared && !vector && REG_P (target) && maybe_gt (n_elts, 1u))
7544 emit_move_insn (target, CONST0_RTX (mode));
7545 cleared = 1;
7548 if (MEM_P (target))
7549 alias = MEM_ALIAS_SET (target);
7550 else
7551 alias = get_alias_set (elttype);
7553 /* Store each element of the constructor into the corresponding
7554 element of TARGET, determined by counting the elements. */
7555 for (idx = 0, i = 0;
7556 vec_safe_iterate (CONSTRUCTOR_ELTS (exp), idx, &ce);
7557 idx++, i += bitsize / elt_size)
7559 HOST_WIDE_INT eltpos;
7560 tree value = ce->value;
7562 if (cleared && initializer_zerop (value))
7563 continue;
7565 if (ce->index)
7566 eltpos = tree_to_uhwi (ce->index);
7567 else
7568 eltpos = i;
7570 if (vector)
7572 if (vec_vec_init_p)
7574 gcc_assert (ce->index == NULL_TREE);
7575 gcc_assert (TREE_CODE (TREE_TYPE (value)) == VECTOR_TYPE);
7576 eltpos = idx;
7578 else
7579 gcc_assert (TREE_CODE (TREE_TYPE (value)) != VECTOR_TYPE);
7580 RTVEC_ELT (vector, eltpos) = expand_normal (value);
7582 else
7584 machine_mode value_mode
7585 = (TREE_CODE (TREE_TYPE (value)) == VECTOR_TYPE
7586 ? TYPE_MODE (TREE_TYPE (value)) : eltmode);
7587 bitpos = eltpos * elt_size;
7588 store_constructor_field (target, bitsize, bitpos, 0,
7589 bitregion_end, value_mode,
7590 value, cleared, alias, reverse);
7594 if (vector)
7595 emit_insn (GEN_FCN (icode) (target,
7596 gen_rtx_PARALLEL (mode, vector)));
7597 break;
7600 default:
7601 gcc_unreachable ();
7605 /* Store the value of EXP (an expression tree)
7606 into a subfield of TARGET which has mode MODE and occupies
7607 BITSIZE bits, starting BITPOS bits from the start of TARGET.
7608 If MODE is VOIDmode, it means that we are storing into a bit-field.
7610 BITREGION_START is bitpos of the first bitfield in this region.
7611 BITREGION_END is the bitpos of the ending bitfield in this region.
7612 These two fields are 0, if the C++ memory model does not apply,
7613 or we are not interested in keeping track of bitfield regions.
7615 Always return const0_rtx unless we have something particular to
7616 return.
7618 ALIAS_SET is the alias set for the destination. This value will
7619 (in general) be different from that for TARGET, since TARGET is a
7620 reference to the containing structure.
7622 If NONTEMPORAL is true, try generating a nontemporal store.
7624 If REVERSE is true, the store is to be done in reverse order. */
7626 static rtx
7627 store_field (rtx target, poly_int64 bitsize, poly_int64 bitpos,
7628 poly_uint64 bitregion_start, poly_uint64 bitregion_end,
7629 machine_mode mode, tree exp,
7630 alias_set_type alias_set, bool nontemporal, bool reverse)
7632 if (TREE_CODE (exp) == ERROR_MARK)
7633 return const0_rtx;
7635 /* If we have nothing to store, do nothing unless the expression has
7636 side-effects. Don't do that for zero sized addressable lhs of
7637 calls. */
7638 if (known_eq (bitsize, 0)
7639 && (!TREE_ADDRESSABLE (TREE_TYPE (exp))
7640 || TREE_CODE (exp) != CALL_EXPR))
7641 return expand_expr (exp, const0_rtx, VOIDmode, EXPAND_NORMAL);
7643 if (GET_CODE (target) == CONCAT)
7645 /* We're storing into a struct containing a single __complex. */
7647 gcc_assert (known_eq (bitpos, 0));
7648 return store_expr (exp, target, 0, nontemporal, reverse);
7651 /* If the structure is in a register or if the component
7652 is a bit field, we cannot use addressing to access it.
7653 Use bit-field techniques or SUBREG to store in it. */
7655 poly_int64 decl_bitsize;
7656 if (mode == VOIDmode
7657 || (mode != BLKmode && ! direct_store[(int) mode]
7658 && GET_MODE_CLASS (mode) != MODE_COMPLEX_INT
7659 && GET_MODE_CLASS (mode) != MODE_COMPLEX_FLOAT)
7660 || REG_P (target)
7661 || GET_CODE (target) == SUBREG
7662 /* If the field isn't aligned enough to store as an ordinary memref,
7663 store it as a bit field. */
7664 || (mode != BLKmode
7665 && ((((MEM_ALIGN (target) < GET_MODE_ALIGNMENT (mode))
7666 || !multiple_p (bitpos, GET_MODE_ALIGNMENT (mode)))
7667 && targetm.slow_unaligned_access (mode, MEM_ALIGN (target)))
7668 || !multiple_p (bitpos, BITS_PER_UNIT)))
7669 || (known_size_p (bitsize)
7670 && mode != BLKmode
7671 && maybe_gt (GET_MODE_BITSIZE (mode), bitsize))
7672 /* If the RHS and field are a constant size and the size of the
7673 RHS isn't the same size as the bitfield, we must use bitfield
7674 operations. */
7675 || (known_size_p (bitsize)
7676 && poly_int_tree_p (TYPE_SIZE (TREE_TYPE (exp)))
7677 && maybe_ne (wi::to_poly_offset (TYPE_SIZE (TREE_TYPE (exp))),
7678 bitsize)
7679 /* Except for initialization of full bytes from a CONSTRUCTOR, which
7680 we will handle specially below. */
7681 && !(TREE_CODE (exp) == CONSTRUCTOR
7682 && multiple_p (bitsize, BITS_PER_UNIT))
7683 /* And except for bitwise copying of TREE_ADDRESSABLE types,
7684 where the FIELD_DECL has the right bitsize, but TREE_TYPE (exp)
7685 includes some extra padding. store_expr / expand_expr will in
7686 that case call get_inner_reference that will have the bitsize
7687 we check here and thus the block move will not clobber the
7688 padding that shouldn't be clobbered. In the future we could
7689 replace the TREE_ADDRESSABLE check with a check that
7690 get_base_address needs to live in memory. */
7691 && (!TREE_ADDRESSABLE (TREE_TYPE (exp))
7692 || TREE_CODE (exp) != COMPONENT_REF
7693 || !multiple_p (bitsize, BITS_PER_UNIT)
7694 || !multiple_p (bitpos, BITS_PER_UNIT)
7695 || !poly_int_tree_p (DECL_SIZE (TREE_OPERAND (exp, 1)),
7696 &decl_bitsize)
7697 || maybe_ne (decl_bitsize, bitsize))
7698 /* A call with an addressable return type and return-slot
7699 optimization must not need bitfield operations but we must
7700 pass down the original target. */
7701 && (TREE_CODE (exp) != CALL_EXPR
7702 || !TREE_ADDRESSABLE (TREE_TYPE (exp))
7703 || !CALL_EXPR_RETURN_SLOT_OPT (exp)))
7704 /* If we are expanding a MEM_REF of a non-BLKmode non-addressable
7705 decl we must use bitfield operations. */
7706 || (known_size_p (bitsize)
7707 && TREE_CODE (exp) == MEM_REF
7708 && TREE_CODE (TREE_OPERAND (exp, 0)) == ADDR_EXPR
7709 && DECL_P (TREE_OPERAND (TREE_OPERAND (exp, 0), 0))
7710 && !TREE_ADDRESSABLE (TREE_OPERAND (TREE_OPERAND (exp, 0), 0))
7711 && DECL_MODE (TREE_OPERAND (TREE_OPERAND (exp, 0), 0)) != BLKmode))
7713 rtx temp;
7714 gimple *nop_def;
7716 /* If EXP is a NOP_EXPR of precision less than its mode, then that
7717 implies a mask operation. If the precision is the same size as
7718 the field we're storing into, that mask is redundant. This is
7719 particularly common with bit field assignments generated by the
7720 C front end. */
7721 nop_def = get_def_for_expr (exp, NOP_EXPR);
7722 if (nop_def)
7724 tree type = TREE_TYPE (exp);
7725 if (INTEGRAL_TYPE_P (type)
7726 && maybe_ne (TYPE_PRECISION (type),
7727 GET_MODE_BITSIZE (TYPE_MODE (type)))
7728 && known_eq (bitsize, TYPE_PRECISION (type)))
7730 tree op = gimple_assign_rhs1 (nop_def);
7731 type = TREE_TYPE (op);
7732 if (INTEGRAL_TYPE_P (type)
7733 && known_ge (TYPE_PRECISION (type), bitsize))
7734 exp = op;
7738 temp = expand_normal (exp);
7740 /* We don't support variable-sized BLKmode bitfields, since our
7741 handling of BLKmode is bound up with the ability to break
7742 things into words. */
7743 gcc_assert (mode != BLKmode || bitsize.is_constant ());
7745 /* Handle calls that return values in multiple non-contiguous locations.
7746 The Irix 6 ABI has examples of this. */
7747 if (GET_CODE (temp) == PARALLEL)
7749 HOST_WIDE_INT size = int_size_in_bytes (TREE_TYPE (exp));
7750 machine_mode temp_mode = GET_MODE (temp);
7751 if (temp_mode == BLKmode || temp_mode == VOIDmode)
7752 temp_mode = smallest_int_mode_for_size (size * BITS_PER_UNIT);
7753 rtx temp_target = gen_reg_rtx (temp_mode);
7754 emit_group_store (temp_target, temp, TREE_TYPE (exp), size);
7755 temp = temp_target;
7758 /* Handle calls that return BLKmode values in registers. */
7759 else if (mode == BLKmode && REG_P (temp) && TREE_CODE (exp) == CALL_EXPR)
7761 rtx temp_target = gen_reg_rtx (GET_MODE (temp));
7762 copy_blkmode_from_reg (temp_target, temp, TREE_TYPE (exp));
7763 temp = temp_target;
7766 /* If the value has aggregate type and an integral mode then, if BITSIZE
7767 is narrower than this mode and this is for big-endian data, we first
7768 need to put the value into the low-order bits for store_bit_field,
7769 except when MODE is BLKmode and BITSIZE larger than the word size
7770 (see the handling of fields larger than a word in store_bit_field).
7771 Moreover, the field may be not aligned on a byte boundary; in this
7772 case, if it has reverse storage order, it needs to be accessed as a
7773 scalar field with reverse storage order and we must first put the
7774 value into target order. */
7775 scalar_int_mode temp_mode;
7776 if (AGGREGATE_TYPE_P (TREE_TYPE (exp))
7777 && is_int_mode (GET_MODE (temp), &temp_mode))
7779 HOST_WIDE_INT size = GET_MODE_BITSIZE (temp_mode);
7781 reverse = TYPE_REVERSE_STORAGE_ORDER (TREE_TYPE (exp));
7783 if (reverse)
7784 temp = flip_storage_order (temp_mode, temp);
7786 gcc_checking_assert (known_le (bitsize, size));
7787 if (maybe_lt (bitsize, size)
7788 && reverse ? !BYTES_BIG_ENDIAN : BYTES_BIG_ENDIAN
7789 /* Use of to_constant for BLKmode was checked above. */
7790 && !(mode == BLKmode && bitsize.to_constant () > BITS_PER_WORD))
7791 temp = expand_shift (RSHIFT_EXPR, temp_mode, temp,
7792 size - bitsize, NULL_RTX, 1);
7795 /* Unless MODE is VOIDmode or BLKmode, convert TEMP to MODE. */
7796 if (mode != VOIDmode && mode != BLKmode
7797 && mode != TYPE_MODE (TREE_TYPE (exp)))
7798 temp = convert_modes (mode, TYPE_MODE (TREE_TYPE (exp)), temp, 1);
7800 /* If the mode of TEMP and TARGET is BLKmode, both must be in memory
7801 and BITPOS must be aligned on a byte boundary. If so, we simply do
7802 a block copy. Likewise for a BLKmode-like TARGET. */
7803 if (GET_MODE (temp) == BLKmode
7804 && (GET_MODE (target) == BLKmode
7805 || (MEM_P (target)
7806 && GET_MODE_CLASS (GET_MODE (target)) == MODE_INT
7807 && multiple_p (bitpos, BITS_PER_UNIT)
7808 && multiple_p (bitsize, BITS_PER_UNIT))))
7810 gcc_assert (MEM_P (target) && MEM_P (temp));
7811 poly_int64 bytepos = exact_div (bitpos, BITS_PER_UNIT);
7812 poly_int64 bytesize = bits_to_bytes_round_up (bitsize);
7814 target = adjust_address (target, VOIDmode, bytepos);
7815 emit_block_move (target, temp,
7816 gen_int_mode (bytesize, Pmode),
7817 BLOCK_OP_NORMAL);
7819 return const0_rtx;
7822 /* If the mode of TEMP is still BLKmode and BITSIZE not larger than the
7823 word size, we need to load the value (see again store_bit_field). */
7824 if (GET_MODE (temp) == BLKmode && known_le (bitsize, BITS_PER_WORD))
7826 temp_mode = smallest_int_mode_for_size (bitsize);
7827 temp = extract_bit_field (temp, bitsize, 0, 1, NULL_RTX, temp_mode,
7828 temp_mode, false, NULL);
7831 /* Store the value in the bitfield. */
7832 gcc_checking_assert (known_ge (bitpos, 0));
7833 store_bit_field (target, bitsize, bitpos,
7834 bitregion_start, bitregion_end,
7835 mode, temp, reverse, false);
7837 return const0_rtx;
7839 else
7841 /* Now build a reference to just the desired component. */
7842 rtx to_rtx = adjust_address (target, mode,
7843 exact_div (bitpos, BITS_PER_UNIT));
7845 if (to_rtx == target)
7846 to_rtx = copy_rtx (to_rtx);
7848 if (!MEM_KEEP_ALIAS_SET_P (to_rtx) && MEM_ALIAS_SET (to_rtx) != 0)
7849 set_mem_alias_set (to_rtx, alias_set);
7851 /* Above we avoided using bitfield operations for storing a CONSTRUCTOR
7852 into a target smaller than its type; handle that case now. */
7853 if (TREE_CODE (exp) == CONSTRUCTOR && known_size_p (bitsize))
7855 poly_int64 bytesize = exact_div (bitsize, BITS_PER_UNIT);
7856 store_constructor (exp, to_rtx, 0, bytesize, reverse);
7857 return to_rtx;
7860 return store_expr (exp, to_rtx, 0, nontemporal, reverse);
7864 /* Given an expression EXP that may be a COMPONENT_REF, a BIT_FIELD_REF,
7865 an ARRAY_REF, or an ARRAY_RANGE_REF, look for nested operations of these
7866 codes and find the ultimate containing object, which we return.
7868 We set *PBITSIZE to the size in bits that we want, *PBITPOS to the
7869 bit position, *PUNSIGNEDP to the signedness and *PREVERSEP to the
7870 storage order of the field.
7871 If the position of the field is variable, we store a tree
7872 giving the variable offset (in units) in *POFFSET.
7873 This offset is in addition to the bit position.
7874 If the position is not variable, we store 0 in *POFFSET.
7876 If any of the extraction expressions is volatile,
7877 we store 1 in *PVOLATILEP. Otherwise we don't change that.
7879 If the field is a non-BLKmode bit-field, *PMODE is set to VOIDmode.
7880 Otherwise, it is a mode that can be used to access the field.
7882 If the field describes a variable-sized object, *PMODE is set to
7883 BLKmode and *PBITSIZE is set to -1. An access cannot be made in
7884 this case, but the address of the object can be found. */
7886 tree
7887 get_inner_reference (tree exp, poly_int64_pod *pbitsize,
7888 poly_int64_pod *pbitpos, tree *poffset,
7889 machine_mode *pmode, int *punsignedp,
7890 int *preversep, int *pvolatilep)
7892 tree size_tree = 0;
7893 machine_mode mode = VOIDmode;
7894 bool blkmode_bitfield = false;
7895 tree offset = size_zero_node;
7896 poly_offset_int bit_offset = 0;
7898 /* First get the mode, signedness, storage order and size. We do this from
7899 just the outermost expression. */
7900 *pbitsize = -1;
7901 if (TREE_CODE (exp) == COMPONENT_REF)
7903 tree field = TREE_OPERAND (exp, 1);
7904 size_tree = DECL_SIZE (field);
7905 if (flag_strict_volatile_bitfields > 0
7906 && TREE_THIS_VOLATILE (exp)
7907 && DECL_BIT_FIELD_TYPE (field)
7908 && DECL_MODE (field) != BLKmode)
7909 /* Volatile bitfields should be accessed in the mode of the
7910 field's type, not the mode computed based on the bit
7911 size. */
7912 mode = TYPE_MODE (DECL_BIT_FIELD_TYPE (field));
7913 else if (!DECL_BIT_FIELD (field))
7915 mode = DECL_MODE (field);
7916 /* For vector fields re-check the target flags, as DECL_MODE
7917 could have been set with different target flags than
7918 the current function has. */
7919 if (VECTOR_TYPE_P (TREE_TYPE (field))
7920 && VECTOR_MODE_P (TYPE_MODE_RAW (TREE_TYPE (field))))
7921 mode = TYPE_MODE (TREE_TYPE (field));
7923 else if (DECL_MODE (field) == BLKmode)
7924 blkmode_bitfield = true;
7926 *punsignedp = DECL_UNSIGNED (field);
7928 else if (TREE_CODE (exp) == BIT_FIELD_REF)
7930 size_tree = TREE_OPERAND (exp, 1);
7931 *punsignedp = (! INTEGRAL_TYPE_P (TREE_TYPE (exp))
7932 || TYPE_UNSIGNED (TREE_TYPE (exp)));
7934 /* For vector element types with the correct size of access or for
7935 vector typed accesses use the mode of the access type. */
7936 if ((TREE_CODE (TREE_TYPE (TREE_OPERAND (exp, 0))) == VECTOR_TYPE
7937 && TREE_TYPE (exp) == TREE_TYPE (TREE_TYPE (TREE_OPERAND (exp, 0)))
7938 && tree_int_cst_equal (size_tree, TYPE_SIZE (TREE_TYPE (exp))))
7939 || VECTOR_TYPE_P (TREE_TYPE (exp)))
7940 mode = TYPE_MODE (TREE_TYPE (exp));
7942 else
7944 mode = TYPE_MODE (TREE_TYPE (exp));
7945 *punsignedp = TYPE_UNSIGNED (TREE_TYPE (exp));
7947 if (mode == BLKmode)
7948 size_tree = TYPE_SIZE (TREE_TYPE (exp));
7949 else
7950 *pbitsize = GET_MODE_BITSIZE (mode);
7953 if (size_tree != 0)
7955 if (! tree_fits_uhwi_p (size_tree))
7956 mode = BLKmode, *pbitsize = -1;
7957 else
7958 *pbitsize = tree_to_uhwi (size_tree);
7961 *preversep = reverse_storage_order_for_component_p (exp);
7963 /* Compute cumulative bit-offset for nested component-refs and array-refs,
7964 and find the ultimate containing object. */
7965 while (1)
7967 switch (TREE_CODE (exp))
7969 case BIT_FIELD_REF:
7970 bit_offset += wi::to_poly_offset (TREE_OPERAND (exp, 2));
7971 break;
7973 case COMPONENT_REF:
7975 tree field = TREE_OPERAND (exp, 1);
7976 tree this_offset = component_ref_field_offset (exp);
7978 /* If this field hasn't been filled in yet, don't go past it.
7979 This should only happen when folding expressions made during
7980 type construction. */
7981 if (this_offset == 0)
7982 break;
7984 offset = size_binop (PLUS_EXPR, offset, this_offset);
7985 bit_offset += wi::to_poly_offset (DECL_FIELD_BIT_OFFSET (field));
7987 /* ??? Right now we don't do anything with DECL_OFFSET_ALIGN. */
7989 break;
7991 case ARRAY_REF:
7992 case ARRAY_RANGE_REF:
7994 tree index = TREE_OPERAND (exp, 1);
7995 tree low_bound = array_ref_low_bound (exp);
7996 tree unit_size = array_ref_element_size (exp);
7998 /* We assume all arrays have sizes that are a multiple of a byte.
7999 First subtract the lower bound, if any, in the type of the
8000 index, then convert to sizetype and multiply by the size of
8001 the array element. */
8002 if (! integer_zerop (low_bound))
8003 index = fold_build2 (MINUS_EXPR, TREE_TYPE (index),
8004 index, low_bound);
8006 offset = size_binop (PLUS_EXPR, offset,
8007 size_binop (MULT_EXPR,
8008 fold_convert (sizetype, index),
8009 unit_size));
8011 break;
8013 case REALPART_EXPR:
8014 break;
8016 case IMAGPART_EXPR:
8017 bit_offset += *pbitsize;
8018 break;
8020 case VIEW_CONVERT_EXPR:
8021 break;
8023 case MEM_REF:
8024 /* Hand back the decl for MEM[&decl, off]. */
8025 if (TREE_CODE (TREE_OPERAND (exp, 0)) == ADDR_EXPR)
8027 tree off = TREE_OPERAND (exp, 1);
8028 if (!integer_zerop (off))
8030 poly_offset_int boff = mem_ref_offset (exp);
8031 boff <<= LOG2_BITS_PER_UNIT;
8032 bit_offset += boff;
8034 exp = TREE_OPERAND (TREE_OPERAND (exp, 0), 0);
8036 goto done;
8038 default:
8039 goto done;
8042 /* If any reference in the chain is volatile, the effect is volatile. */
8043 if (TREE_THIS_VOLATILE (exp))
8044 *pvolatilep = 1;
8046 exp = TREE_OPERAND (exp, 0);
8048 done:
8050 /* If OFFSET is constant, see if we can return the whole thing as a
8051 constant bit position. Make sure to handle overflow during
8052 this conversion. */
8053 if (poly_int_tree_p (offset))
8055 poly_offset_int tem = wi::sext (wi::to_poly_offset (offset),
8056 TYPE_PRECISION (sizetype));
8057 tem <<= LOG2_BITS_PER_UNIT;
8058 tem += bit_offset;
8059 if (tem.to_shwi (pbitpos))
8060 *poffset = offset = NULL_TREE;
8063 /* Otherwise, split it up. */
8064 if (offset)
8066 /* Avoid returning a negative bitpos as this may wreak havoc later. */
8067 if (!bit_offset.to_shwi (pbitpos) || maybe_lt (*pbitpos, 0))
8069 *pbitpos = num_trailing_bits (bit_offset.force_shwi ());
8070 poly_offset_int bytes = bits_to_bytes_round_down (bit_offset);
8071 offset = size_binop (PLUS_EXPR, offset,
8072 build_int_cst (sizetype, bytes.force_shwi ()));
8075 *poffset = offset;
8078 /* We can use BLKmode for a byte-aligned BLKmode bitfield. */
8079 if (mode == VOIDmode
8080 && blkmode_bitfield
8081 && multiple_p (*pbitpos, BITS_PER_UNIT)
8082 && multiple_p (*pbitsize, BITS_PER_UNIT))
8083 *pmode = BLKmode;
8084 else
8085 *pmode = mode;
8087 return exp;
8090 /* Alignment in bits the TARGET of an assignment may be assumed to have. */
8092 static unsigned HOST_WIDE_INT
8093 target_align (const_tree target)
8095 /* We might have a chain of nested references with intermediate misaligning
8096 bitfields components, so need to recurse to find out. */
8098 unsigned HOST_WIDE_INT this_align, outer_align;
8100 switch (TREE_CODE (target))
8102 case BIT_FIELD_REF:
8103 return 1;
8105 case COMPONENT_REF:
8106 this_align = DECL_ALIGN (TREE_OPERAND (target, 1));
8107 outer_align = target_align (TREE_OPERAND (target, 0));
8108 return MIN (this_align, outer_align);
8110 case ARRAY_REF:
8111 case ARRAY_RANGE_REF:
8112 this_align = TYPE_ALIGN (TREE_TYPE (target));
8113 outer_align = target_align (TREE_OPERAND (target, 0));
8114 return MIN (this_align, outer_align);
8116 CASE_CONVERT:
8117 case NON_LVALUE_EXPR:
8118 case VIEW_CONVERT_EXPR:
8119 this_align = TYPE_ALIGN (TREE_TYPE (target));
8120 outer_align = target_align (TREE_OPERAND (target, 0));
8121 return MAX (this_align, outer_align);
8123 default:
8124 return TYPE_ALIGN (TREE_TYPE (target));
8129 /* Given an rtx VALUE that may contain additions and multiplications, return
8130 an equivalent value that just refers to a register, memory, or constant.
8131 This is done by generating instructions to perform the arithmetic and
8132 returning a pseudo-register containing the value.
8134 The returned value may be a REG, SUBREG, MEM or constant. */
8137 force_operand (rtx value, rtx target)
8139 rtx op1, op2;
8140 /* Use subtarget as the target for operand 0 of a binary operation. */
8141 rtx subtarget = get_subtarget (target);
8142 enum rtx_code code = GET_CODE (value);
8144 /* Check for subreg applied to an expression produced by loop optimizer. */
8145 if (code == SUBREG
8146 && !REG_P (SUBREG_REG (value))
8147 && !MEM_P (SUBREG_REG (value)))
8149 value
8150 = simplify_gen_subreg (GET_MODE (value),
8151 force_reg (GET_MODE (SUBREG_REG (value)),
8152 force_operand (SUBREG_REG (value),
8153 NULL_RTX)),
8154 GET_MODE (SUBREG_REG (value)),
8155 SUBREG_BYTE (value));
8156 code = GET_CODE (value);
8159 /* Check for a PIC address load. */
8160 if ((code == PLUS || code == MINUS)
8161 && XEXP (value, 0) == pic_offset_table_rtx
8162 && (GET_CODE (XEXP (value, 1)) == SYMBOL_REF
8163 || GET_CODE (XEXP (value, 1)) == LABEL_REF
8164 || GET_CODE (XEXP (value, 1)) == CONST))
8166 if (!subtarget)
8167 subtarget = gen_reg_rtx (GET_MODE (value));
8168 emit_move_insn (subtarget, value);
8169 return subtarget;
8172 if (ARITHMETIC_P (value))
8174 op2 = XEXP (value, 1);
8175 if (!CONSTANT_P (op2) && !(REG_P (op2) && op2 != subtarget))
8176 subtarget = 0;
8177 if (code == MINUS && CONST_INT_P (op2))
8179 code = PLUS;
8180 op2 = negate_rtx (GET_MODE (value), op2);
8183 /* Check for an addition with OP2 a constant integer and our first
8184 operand a PLUS of a virtual register and something else. In that
8185 case, we want to emit the sum of the virtual register and the
8186 constant first and then add the other value. This allows virtual
8187 register instantiation to simply modify the constant rather than
8188 creating another one around this addition. */
8189 if (code == PLUS && CONST_INT_P (op2)
8190 && GET_CODE (XEXP (value, 0)) == PLUS
8191 && REG_P (XEXP (XEXP (value, 0), 0))
8192 && VIRTUAL_REGISTER_P (XEXP (XEXP (value, 0), 0)))
8194 rtx temp = expand_simple_binop (GET_MODE (value), code,
8195 XEXP (XEXP (value, 0), 0), op2,
8196 subtarget, 0, OPTAB_LIB_WIDEN);
8197 return expand_simple_binop (GET_MODE (value), code, temp,
8198 force_operand (XEXP (XEXP (value,
8199 0), 1), 0),
8200 target, 0, OPTAB_LIB_WIDEN);
8203 op1 = force_operand (XEXP (value, 0), subtarget);
8204 op2 = force_operand (op2, NULL_RTX);
8205 switch (code)
8207 case MULT:
8208 return expand_mult (GET_MODE (value), op1, op2, target, 1);
8209 case DIV:
8210 if (!INTEGRAL_MODE_P (GET_MODE (value)))
8211 return expand_simple_binop (GET_MODE (value), code, op1, op2,
8212 target, 1, OPTAB_LIB_WIDEN);
8213 else
8214 return expand_divmod (0,
8215 FLOAT_MODE_P (GET_MODE (value))
8216 ? RDIV_EXPR : TRUNC_DIV_EXPR,
8217 GET_MODE (value), op1, op2, target, 0);
8218 case MOD:
8219 return expand_divmod (1, TRUNC_MOD_EXPR, GET_MODE (value), op1, op2,
8220 target, 0);
8221 case UDIV:
8222 return expand_divmod (0, TRUNC_DIV_EXPR, GET_MODE (value), op1, op2,
8223 target, 1);
8224 case UMOD:
8225 return expand_divmod (1, TRUNC_MOD_EXPR, GET_MODE (value), op1, op2,
8226 target, 1);
8227 case ASHIFTRT:
8228 return expand_simple_binop (GET_MODE (value), code, op1, op2,
8229 target, 0, OPTAB_LIB_WIDEN);
8230 default:
8231 return expand_simple_binop (GET_MODE (value), code, op1, op2,
8232 target, 1, OPTAB_LIB_WIDEN);
8235 if (UNARY_P (value))
8237 if (!target)
8238 target = gen_reg_rtx (GET_MODE (value));
8239 op1 = force_operand (XEXP (value, 0), NULL_RTX);
8240 switch (code)
8242 case ZERO_EXTEND:
8243 case SIGN_EXTEND:
8244 case TRUNCATE:
8245 case FLOAT_EXTEND:
8246 case FLOAT_TRUNCATE:
8247 convert_move (target, op1, code == ZERO_EXTEND);
8248 return target;
8250 case FIX:
8251 case UNSIGNED_FIX:
8252 expand_fix (target, op1, code == UNSIGNED_FIX);
8253 return target;
8255 case FLOAT:
8256 case UNSIGNED_FLOAT:
8257 expand_float (target, op1, code == UNSIGNED_FLOAT);
8258 return target;
8260 default:
8261 return expand_simple_unop (GET_MODE (value), code, op1, target, 0);
8265 #ifdef INSN_SCHEDULING
8266 /* On machines that have insn scheduling, we want all memory reference to be
8267 explicit, so we need to deal with such paradoxical SUBREGs. */
8268 if (paradoxical_subreg_p (value) && MEM_P (SUBREG_REG (value)))
8269 value
8270 = simplify_gen_subreg (GET_MODE (value),
8271 force_reg (GET_MODE (SUBREG_REG (value)),
8272 force_operand (SUBREG_REG (value),
8273 NULL_RTX)),
8274 GET_MODE (SUBREG_REG (value)),
8275 SUBREG_BYTE (value));
8276 #endif
8278 return value;
8281 /* Subroutine of expand_expr: return true iff there is no way that
8282 EXP can reference X, which is being modified. TOP_P is nonzero if this
8283 call is going to be used to determine whether we need a temporary
8284 for EXP, as opposed to a recursive call to this function.
8286 It is always safe for this routine to return false since it merely
8287 searches for optimization opportunities. */
8289 bool
8290 safe_from_p (const_rtx x, tree exp, int top_p)
8292 rtx exp_rtl = 0;
8293 int i, nops;
8295 if (x == 0
8296 /* If EXP has varying size, we MUST use a target since we currently
8297 have no way of allocating temporaries of variable size
8298 (except for arrays that have TYPE_ARRAY_MAX_SIZE set).
8299 So we assume here that something at a higher level has prevented a
8300 clash. This is somewhat bogus, but the best we can do. Only
8301 do this when X is BLKmode and when we are at the top level. */
8302 || (top_p && TREE_TYPE (exp) != 0 && COMPLETE_TYPE_P (TREE_TYPE (exp))
8303 && TREE_CODE (TYPE_SIZE (TREE_TYPE (exp))) != INTEGER_CST
8304 && (TREE_CODE (TREE_TYPE (exp)) != ARRAY_TYPE
8305 || TYPE_ARRAY_MAX_SIZE (TREE_TYPE (exp)) == NULL_TREE
8306 || TREE_CODE (TYPE_ARRAY_MAX_SIZE (TREE_TYPE (exp)))
8307 != INTEGER_CST)
8308 && GET_MODE (x) == BLKmode)
8309 /* If X is in the outgoing argument area, it is always safe. */
8310 || (MEM_P (x)
8311 && (XEXP (x, 0) == virtual_outgoing_args_rtx
8312 || (GET_CODE (XEXP (x, 0)) == PLUS
8313 && XEXP (XEXP (x, 0), 0) == virtual_outgoing_args_rtx))))
8314 return true;
8316 /* If this is a subreg of a hard register, declare it unsafe, otherwise,
8317 find the underlying pseudo. */
8318 if (GET_CODE (x) == SUBREG)
8320 x = SUBREG_REG (x);
8321 if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER)
8322 return false;
8325 /* Now look at our tree code and possibly recurse. */
8326 switch (TREE_CODE_CLASS (TREE_CODE (exp)))
8328 case tcc_declaration:
8329 exp_rtl = DECL_RTL_IF_SET (exp);
8330 break;
8332 case tcc_constant:
8333 return true;
8335 case tcc_exceptional:
8336 if (TREE_CODE (exp) == TREE_LIST)
8338 while (1)
8340 if (TREE_VALUE (exp) && !safe_from_p (x, TREE_VALUE (exp), 0))
8341 return false;
8342 exp = TREE_CHAIN (exp);
8343 if (!exp)
8344 return true;
8345 if (TREE_CODE (exp) != TREE_LIST)
8346 return safe_from_p (x, exp, 0);
8349 else if (TREE_CODE (exp) == CONSTRUCTOR)
8351 constructor_elt *ce;
8352 unsigned HOST_WIDE_INT idx;
8354 FOR_EACH_VEC_SAFE_ELT (CONSTRUCTOR_ELTS (exp), idx, ce)
8355 if ((ce->index != NULL_TREE && !safe_from_p (x, ce->index, 0))
8356 || !safe_from_p (x, ce->value, 0))
8357 return false;
8358 return true;
8360 else if (TREE_CODE (exp) == ERROR_MARK)
8361 return true; /* An already-visited SAVE_EXPR? */
8362 else
8363 return false;
8365 case tcc_statement:
8366 /* The only case we look at here is the DECL_INITIAL inside a
8367 DECL_EXPR. */
8368 return (TREE_CODE (exp) != DECL_EXPR
8369 || TREE_CODE (DECL_EXPR_DECL (exp)) != VAR_DECL
8370 || !DECL_INITIAL (DECL_EXPR_DECL (exp))
8371 || safe_from_p (x, DECL_INITIAL (DECL_EXPR_DECL (exp)), 0));
8373 case tcc_binary:
8374 case tcc_comparison:
8375 if (!safe_from_p (x, TREE_OPERAND (exp, 1), 0))
8376 return false;
8377 /* Fall through. */
8379 case tcc_unary:
8380 return safe_from_p (x, TREE_OPERAND (exp, 0), 0);
8382 case tcc_expression:
8383 case tcc_reference:
8384 case tcc_vl_exp:
8385 /* Now do code-specific tests. EXP_RTL is set to any rtx we find in
8386 the expression. If it is set, we conflict iff we are that rtx or
8387 both are in memory. Otherwise, we check all operands of the
8388 expression recursively. */
8390 switch (TREE_CODE (exp))
8392 case ADDR_EXPR:
8393 /* If the operand is static or we are static, we can't conflict.
8394 Likewise if we don't conflict with the operand at all. */
8395 if (staticp (TREE_OPERAND (exp, 0))
8396 || TREE_STATIC (exp)
8397 || safe_from_p (x, TREE_OPERAND (exp, 0), 0))
8398 return true;
8400 /* Otherwise, the only way this can conflict is if we are taking
8401 the address of a DECL a that address if part of X, which is
8402 very rare. */
8403 exp = TREE_OPERAND (exp, 0);
8404 if (DECL_P (exp))
8406 if (!DECL_RTL_SET_P (exp)
8407 || !MEM_P (DECL_RTL (exp)))
8408 return false;
8409 else
8410 exp_rtl = XEXP (DECL_RTL (exp), 0);
8412 break;
8414 case MEM_REF:
8415 if (MEM_P (x)
8416 && alias_sets_conflict_p (MEM_ALIAS_SET (x),
8417 get_alias_set (exp)))
8418 return false;
8419 break;
8421 case CALL_EXPR:
8422 /* Assume that the call will clobber all hard registers and
8423 all of memory. */
8424 if ((REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER)
8425 || MEM_P (x))
8426 return false;
8427 break;
8429 case WITH_CLEANUP_EXPR:
8430 case CLEANUP_POINT_EXPR:
8431 /* Lowered by gimplify.cc. */
8432 gcc_unreachable ();
8434 case SAVE_EXPR:
8435 return safe_from_p (x, TREE_OPERAND (exp, 0), 0);
8437 default:
8438 break;
8441 /* If we have an rtx, we do not need to scan our operands. */
8442 if (exp_rtl)
8443 break;
8445 nops = TREE_OPERAND_LENGTH (exp);
8446 for (i = 0; i < nops; i++)
8447 if (TREE_OPERAND (exp, i) != 0
8448 && ! safe_from_p (x, TREE_OPERAND (exp, i), 0))
8449 return false;
8451 break;
8453 case tcc_type:
8454 /* Should never get a type here. */
8455 gcc_unreachable ();
8458 /* If we have an rtl, find any enclosed object. Then see if we conflict
8459 with it. */
8460 if (exp_rtl)
8462 if (GET_CODE (exp_rtl) == SUBREG)
8464 exp_rtl = SUBREG_REG (exp_rtl);
8465 if (REG_P (exp_rtl)
8466 && REGNO (exp_rtl) < FIRST_PSEUDO_REGISTER)
8467 return false;
8470 /* If the rtl is X, then it is not safe. Otherwise, it is unless both
8471 are memory and they conflict. */
8472 return ! (rtx_equal_p (x, exp_rtl)
8473 || (MEM_P (x) && MEM_P (exp_rtl)
8474 && true_dependence (exp_rtl, VOIDmode, x)));
8477 /* If we reach here, it is safe. */
8478 return true;
8482 /* Return the highest power of two that EXP is known to be a multiple of.
8483 This is used in updating alignment of MEMs in array references. */
8485 unsigned HOST_WIDE_INT
8486 highest_pow2_factor (const_tree exp)
8488 unsigned HOST_WIDE_INT ret;
8489 int trailing_zeros = tree_ctz (exp);
8490 if (trailing_zeros >= HOST_BITS_PER_WIDE_INT)
8491 return BIGGEST_ALIGNMENT;
8492 ret = HOST_WIDE_INT_1U << trailing_zeros;
8493 if (ret > BIGGEST_ALIGNMENT)
8494 return BIGGEST_ALIGNMENT;
8495 return ret;
8498 /* Similar, except that the alignment requirements of TARGET are
8499 taken into account. Assume it is at least as aligned as its
8500 type, unless it is a COMPONENT_REF in which case the layout of
8501 the structure gives the alignment. */
8503 static unsigned HOST_WIDE_INT
8504 highest_pow2_factor_for_target (const_tree target, const_tree exp)
8506 unsigned HOST_WIDE_INT talign = target_align (target) / BITS_PER_UNIT;
8507 unsigned HOST_WIDE_INT factor = highest_pow2_factor (exp);
8509 return MAX (factor, talign);
8512 /* Convert the tree comparison code TCODE to the rtl one where the
8513 signedness is UNSIGNEDP. */
8515 static enum rtx_code
8516 convert_tree_comp_to_rtx (enum tree_code tcode, int unsignedp)
8518 enum rtx_code code;
8519 switch (tcode)
8521 case EQ_EXPR:
8522 code = EQ;
8523 break;
8524 case NE_EXPR:
8525 code = NE;
8526 break;
8527 case LT_EXPR:
8528 code = unsignedp ? LTU : LT;
8529 break;
8530 case LE_EXPR:
8531 code = unsignedp ? LEU : LE;
8532 break;
8533 case GT_EXPR:
8534 code = unsignedp ? GTU : GT;
8535 break;
8536 case GE_EXPR:
8537 code = unsignedp ? GEU : GE;
8538 break;
8539 case UNORDERED_EXPR:
8540 code = UNORDERED;
8541 break;
8542 case ORDERED_EXPR:
8543 code = ORDERED;
8544 break;
8545 case UNLT_EXPR:
8546 code = UNLT;
8547 break;
8548 case UNLE_EXPR:
8549 code = UNLE;
8550 break;
8551 case UNGT_EXPR:
8552 code = UNGT;
8553 break;
8554 case UNGE_EXPR:
8555 code = UNGE;
8556 break;
8557 case UNEQ_EXPR:
8558 code = UNEQ;
8559 break;
8560 case LTGT_EXPR:
8561 code = LTGT;
8562 break;
8564 default:
8565 gcc_unreachable ();
8567 return code;
8570 /* Subroutine of expand_expr. Expand the two operands of a binary
8571 expression EXP0 and EXP1 placing the results in OP0 and OP1.
8572 The value may be stored in TARGET if TARGET is nonzero. The
8573 MODIFIER argument is as documented by expand_expr. */
8575 void
8576 expand_operands (tree exp0, tree exp1, rtx target, rtx *op0, rtx *op1,
8577 enum expand_modifier modifier)
8579 if (! safe_from_p (target, exp1, 1))
8580 target = 0;
8581 if (operand_equal_p (exp0, exp1, 0))
8583 *op0 = expand_expr (exp0, target, VOIDmode, modifier);
8584 *op1 = copy_rtx (*op0);
8586 else
8588 *op0 = expand_expr (exp0, target, VOIDmode, modifier);
8589 *op1 = expand_expr (exp1, NULL_RTX, VOIDmode, modifier);
8594 /* Return a MEM that contains constant EXP. DEFER is as for
8595 output_constant_def and MODIFIER is as for expand_expr. */
8597 static rtx
8598 expand_expr_constant (tree exp, int defer, enum expand_modifier modifier)
8600 rtx mem;
8602 mem = output_constant_def (exp, defer);
8603 if (modifier != EXPAND_INITIALIZER)
8604 mem = use_anchored_address (mem);
8605 return mem;
8608 /* A subroutine of expand_expr_addr_expr. Evaluate the address of EXP.
8609 The TARGET, TMODE and MODIFIER arguments are as for expand_expr. */
8611 static rtx
8612 expand_expr_addr_expr_1 (tree exp, rtx target, scalar_int_mode tmode,
8613 enum expand_modifier modifier, addr_space_t as)
8615 rtx result, subtarget;
8616 tree inner, offset;
8617 poly_int64 bitsize, bitpos;
8618 int unsignedp, reversep, volatilep = 0;
8619 machine_mode mode1;
8621 /* If we are taking the address of a constant and are at the top level,
8622 we have to use output_constant_def since we can't call force_const_mem
8623 at top level. */
8624 /* ??? This should be considered a front-end bug. We should not be
8625 generating ADDR_EXPR of something that isn't an LVALUE. The only
8626 exception here is STRING_CST. */
8627 if (CONSTANT_CLASS_P (exp))
8629 result = XEXP (expand_expr_constant (exp, 0, modifier), 0);
8630 if (modifier < EXPAND_SUM)
8631 result = force_operand (result, target);
8632 return result;
8635 /* Everything must be something allowed by is_gimple_addressable. */
8636 switch (TREE_CODE (exp))
8638 case INDIRECT_REF:
8639 /* This case will happen via recursion for &a->b. */
8640 return expand_expr (TREE_OPERAND (exp, 0), target, tmode, modifier);
8642 case MEM_REF:
8644 tree tem = TREE_OPERAND (exp, 0);
8645 if (!integer_zerop (TREE_OPERAND (exp, 1)))
8646 tem = fold_build_pointer_plus (tem, TREE_OPERAND (exp, 1));
8647 return expand_expr (tem, target, tmode, modifier);
8650 case TARGET_MEM_REF:
8651 return addr_for_mem_ref (exp, as, true);
8653 case CONST_DECL:
8654 /* Expand the initializer like constants above. */
8655 result = XEXP (expand_expr_constant (DECL_INITIAL (exp),
8656 0, modifier), 0);
8657 if (modifier < EXPAND_SUM)
8658 result = force_operand (result, target);
8659 return result;
8661 case REALPART_EXPR:
8662 /* The real part of the complex number is always first, therefore
8663 the address is the same as the address of the parent object. */
8664 offset = 0;
8665 bitpos = 0;
8666 inner = TREE_OPERAND (exp, 0);
8667 break;
8669 case IMAGPART_EXPR:
8670 /* The imaginary part of the complex number is always second.
8671 The expression is therefore always offset by the size of the
8672 scalar type. */
8673 offset = 0;
8674 bitpos = GET_MODE_BITSIZE (SCALAR_TYPE_MODE (TREE_TYPE (exp)));
8675 inner = TREE_OPERAND (exp, 0);
8676 break;
8678 case COMPOUND_LITERAL_EXPR:
8679 /* Allow COMPOUND_LITERAL_EXPR in initializers or coming from
8680 initializers, if e.g. rtl_for_decl_init is called on DECL_INITIAL
8681 with COMPOUND_LITERAL_EXPRs in it, or ARRAY_REF on a const static
8682 array with address of COMPOUND_LITERAL_EXPR in DECL_INITIAL;
8683 the initializers aren't gimplified. */
8684 if (COMPOUND_LITERAL_EXPR_DECL (exp)
8685 && is_global_var (COMPOUND_LITERAL_EXPR_DECL (exp)))
8686 return expand_expr_addr_expr_1 (COMPOUND_LITERAL_EXPR_DECL (exp),
8687 target, tmode, modifier, as);
8688 /* FALLTHRU */
8689 default:
8690 /* If the object is a DECL, then expand it for its rtl. Don't bypass
8691 expand_expr, as that can have various side effects; LABEL_DECLs for
8692 example, may not have their DECL_RTL set yet. Expand the rtl of
8693 CONSTRUCTORs too, which should yield a memory reference for the
8694 constructor's contents. Assume language specific tree nodes can
8695 be expanded in some interesting way. */
8696 gcc_assert (TREE_CODE (exp) < LAST_AND_UNUSED_TREE_CODE);
8697 if (DECL_P (exp)
8698 || TREE_CODE (exp) == CONSTRUCTOR
8699 || TREE_CODE (exp) == COMPOUND_LITERAL_EXPR)
8701 result = expand_expr (exp, target, tmode,
8702 modifier == EXPAND_INITIALIZER
8703 ? EXPAND_INITIALIZER : EXPAND_CONST_ADDRESS);
8705 /* If the DECL isn't in memory, then the DECL wasn't properly
8706 marked TREE_ADDRESSABLE, which will be either a front-end
8707 or a tree optimizer bug. */
8709 gcc_assert (MEM_P (result));
8710 result = XEXP (result, 0);
8712 /* ??? Is this needed anymore? */
8713 if (DECL_P (exp))
8714 TREE_USED (exp) = 1;
8716 if (modifier != EXPAND_INITIALIZER
8717 && modifier != EXPAND_CONST_ADDRESS
8718 && modifier != EXPAND_SUM)
8719 result = force_operand (result, target);
8720 return result;
8723 /* Pass FALSE as the last argument to get_inner_reference although
8724 we are expanding to RTL. The rationale is that we know how to
8725 handle "aligning nodes" here: we can just bypass them because
8726 they won't change the final object whose address will be returned
8727 (they actually exist only for that purpose). */
8728 inner = get_inner_reference (exp, &bitsize, &bitpos, &offset, &mode1,
8729 &unsignedp, &reversep, &volatilep);
8730 break;
8733 /* We must have made progress. */
8734 gcc_assert (inner != exp);
8736 subtarget = offset || maybe_ne (bitpos, 0) ? NULL_RTX : target;
8737 /* For VIEW_CONVERT_EXPR, where the outer alignment is bigger than
8738 inner alignment, force the inner to be sufficiently aligned. */
8739 if (CONSTANT_CLASS_P (inner)
8740 && TYPE_ALIGN (TREE_TYPE (inner)) < TYPE_ALIGN (TREE_TYPE (exp)))
8742 inner = copy_node (inner);
8743 TREE_TYPE (inner) = copy_node (TREE_TYPE (inner));
8744 SET_TYPE_ALIGN (TREE_TYPE (inner), TYPE_ALIGN (TREE_TYPE (exp)));
8745 TYPE_USER_ALIGN (TREE_TYPE (inner)) = 1;
8747 result = expand_expr_addr_expr_1 (inner, subtarget, tmode, modifier, as);
8749 if (offset)
8751 rtx tmp;
8753 if (modifier != EXPAND_NORMAL)
8754 result = force_operand (result, NULL);
8755 tmp = expand_expr (offset, NULL_RTX, tmode,
8756 modifier == EXPAND_INITIALIZER
8757 ? EXPAND_INITIALIZER : EXPAND_NORMAL);
8759 /* expand_expr is allowed to return an object in a mode other
8760 than TMODE. If it did, we need to convert. */
8761 if (GET_MODE (tmp) != VOIDmode && tmode != GET_MODE (tmp))
8762 tmp = convert_modes (tmode, GET_MODE (tmp),
8763 tmp, TYPE_UNSIGNED (TREE_TYPE (offset)));
8764 result = convert_memory_address_addr_space (tmode, result, as);
8765 tmp = convert_memory_address_addr_space (tmode, tmp, as);
8767 if (modifier == EXPAND_SUM || modifier == EXPAND_INITIALIZER)
8768 result = simplify_gen_binary (PLUS, tmode, result, tmp);
8769 else
8771 subtarget = maybe_ne (bitpos, 0) ? NULL_RTX : target;
8772 result = expand_simple_binop (tmode, PLUS, result, tmp, subtarget,
8773 1, OPTAB_LIB_WIDEN);
8777 if (maybe_ne (bitpos, 0))
8779 /* Someone beforehand should have rejected taking the address
8780 of an object that isn't byte-aligned. */
8781 poly_int64 bytepos = exact_div (bitpos, BITS_PER_UNIT);
8782 result = convert_memory_address_addr_space (tmode, result, as);
8783 result = plus_constant (tmode, result, bytepos);
8784 if (modifier < EXPAND_SUM)
8785 result = force_operand (result, target);
8788 return result;
8791 /* A subroutine of expand_expr. Evaluate EXP, which is an ADDR_EXPR.
8792 The TARGET, TMODE and MODIFIER arguments are as for expand_expr. */
8794 static rtx
8795 expand_expr_addr_expr (tree exp, rtx target, machine_mode tmode,
8796 enum expand_modifier modifier)
8798 addr_space_t as = ADDR_SPACE_GENERIC;
8799 scalar_int_mode address_mode = Pmode;
8800 scalar_int_mode pointer_mode = ptr_mode;
8801 machine_mode rmode;
8802 rtx result;
8804 /* Target mode of VOIDmode says "whatever's natural". */
8805 if (tmode == VOIDmode)
8806 tmode = TYPE_MODE (TREE_TYPE (exp));
8808 if (POINTER_TYPE_P (TREE_TYPE (exp)))
8810 as = TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (exp)));
8811 address_mode = targetm.addr_space.address_mode (as);
8812 pointer_mode = targetm.addr_space.pointer_mode (as);
8815 /* We can get called with some Weird Things if the user does silliness
8816 like "(short) &a". In that case, convert_memory_address won't do
8817 the right thing, so ignore the given target mode. */
8818 scalar_int_mode new_tmode = (tmode == pointer_mode
8819 ? pointer_mode
8820 : address_mode);
8822 result = expand_expr_addr_expr_1 (TREE_OPERAND (exp, 0), target,
8823 new_tmode, modifier, as);
8825 /* Despite expand_expr claims concerning ignoring TMODE when not
8826 strictly convenient, stuff breaks if we don't honor it. Note
8827 that combined with the above, we only do this for pointer modes. */
8828 rmode = GET_MODE (result);
8829 if (rmode == VOIDmode)
8830 rmode = new_tmode;
8831 if (rmode != new_tmode)
8832 result = convert_memory_address_addr_space (new_tmode, result, as);
8834 return result;
8837 /* Generate code for computing CONSTRUCTOR EXP.
8838 An rtx for the computed value is returned. If AVOID_TEMP_MEM
8839 is TRUE, instead of creating a temporary variable in memory
8840 NULL is returned and the caller needs to handle it differently. */
8842 static rtx
8843 expand_constructor (tree exp, rtx target, enum expand_modifier modifier,
8844 bool avoid_temp_mem)
8846 tree type = TREE_TYPE (exp);
8847 machine_mode mode = TYPE_MODE (type);
8849 /* Try to avoid creating a temporary at all. This is possible
8850 if all of the initializer is zero.
8851 FIXME: try to handle all [0..255] initializers we can handle
8852 with memset. */
8853 if (TREE_STATIC (exp)
8854 && !TREE_ADDRESSABLE (exp)
8855 && target != 0 && mode == BLKmode
8856 && all_zeros_p (exp))
8858 clear_storage (target, expr_size (exp), BLOCK_OP_NORMAL);
8859 return target;
8862 /* All elts simple constants => refer to a constant in memory. But
8863 if this is a non-BLKmode mode, let it store a field at a time
8864 since that should make a CONST_INT, CONST_WIDE_INT or
8865 CONST_DOUBLE when we fold. Likewise, if we have a target we can
8866 use, it is best to store directly into the target unless the type
8867 is large enough that memcpy will be used. If we are making an
8868 initializer and all operands are constant, put it in memory as
8869 well.
8871 FIXME: Avoid trying to fill vector constructors piece-meal.
8872 Output them with output_constant_def below unless we're sure
8873 they're zeros. This should go away when vector initializers
8874 are treated like VECTOR_CST instead of arrays. */
8875 if ((TREE_STATIC (exp)
8876 && ((mode == BLKmode
8877 && ! (target != 0 && safe_from_p (target, exp, 1)))
8878 || TREE_ADDRESSABLE (exp)
8879 || (tree_fits_uhwi_p (TYPE_SIZE_UNIT (type))
8880 && (! can_move_by_pieces
8881 (tree_to_uhwi (TYPE_SIZE_UNIT (type)),
8882 TYPE_ALIGN (type)))
8883 && ! mostly_zeros_p (exp))))
8884 || ((modifier == EXPAND_INITIALIZER || modifier == EXPAND_CONST_ADDRESS)
8885 && TREE_CONSTANT (exp)))
8887 rtx constructor;
8889 if (avoid_temp_mem)
8890 return NULL_RTX;
8892 constructor = expand_expr_constant (exp, 1, modifier);
8894 if (modifier != EXPAND_CONST_ADDRESS
8895 && modifier != EXPAND_INITIALIZER
8896 && modifier != EXPAND_SUM)
8897 constructor = validize_mem (constructor);
8899 return constructor;
8902 /* If the CTOR is available in static storage and not mostly
8903 zeros and we can move it by pieces prefer to do so since
8904 that's usually more efficient than performing a series of
8905 stores from immediates. */
8906 if (avoid_temp_mem
8907 && TREE_STATIC (exp)
8908 && TREE_CONSTANT (exp)
8909 && tree_fits_uhwi_p (TYPE_SIZE_UNIT (type))
8910 && can_move_by_pieces (tree_to_uhwi (TYPE_SIZE_UNIT (type)),
8911 TYPE_ALIGN (type))
8912 && ! mostly_zeros_p (exp))
8913 return NULL_RTX;
8915 /* Handle calls that pass values in multiple non-contiguous
8916 locations. The Irix 6 ABI has examples of this. */
8917 if (target == 0 || ! safe_from_p (target, exp, 1)
8918 || GET_CODE (target) == PARALLEL || modifier == EXPAND_STACK_PARM
8919 /* Also make a temporary if the store is to volatile memory, to
8920 avoid individual accesses to aggregate members. */
8921 || (GET_CODE (target) == MEM
8922 && MEM_VOLATILE_P (target)
8923 && !TREE_ADDRESSABLE (TREE_TYPE (exp))))
8925 if (avoid_temp_mem)
8926 return NULL_RTX;
8928 target = assign_temp (type, TREE_ADDRESSABLE (exp), 1);
8931 store_constructor (exp, target, 0, int_expr_size (exp), false);
8932 return target;
8936 /* expand_expr: generate code for computing expression EXP.
8937 An rtx for the computed value is returned. The value is never null.
8938 In the case of a void EXP, const0_rtx is returned.
8940 The value may be stored in TARGET if TARGET is nonzero.
8941 TARGET is just a suggestion; callers must assume that
8942 the rtx returned may not be the same as TARGET.
8944 If TARGET is CONST0_RTX, it means that the value will be ignored.
8946 If TMODE is not VOIDmode, it suggests generating the
8947 result in mode TMODE. But this is done only when convenient.
8948 Otherwise, TMODE is ignored and the value generated in its natural mode.
8949 TMODE is just a suggestion; callers must assume that
8950 the rtx returned may not have mode TMODE.
8952 Note that TARGET may have neither TMODE nor MODE. In that case, it
8953 probably will not be used.
8955 If MODIFIER is EXPAND_SUM then when EXP is an addition
8956 we can return an rtx of the form (MULT (REG ...) (CONST_INT ...))
8957 or a nest of (PLUS ...) and (MINUS ...) where the terms are
8958 products as above, or REG or MEM, or constant.
8959 Ordinarily in such cases we would output mul or add instructions
8960 and then return a pseudo reg containing the sum.
8962 EXPAND_INITIALIZER is much like EXPAND_SUM except that
8963 it also marks a label as absolutely required (it can't be dead).
8964 It also makes a ZERO_EXTEND or SIGN_EXTEND instead of emitting extend insns.
8965 This is used for outputting expressions used in initializers.
8967 EXPAND_CONST_ADDRESS says that it is okay to return a MEM
8968 with a constant address even if that address is not normally legitimate.
8969 EXPAND_INITIALIZER and EXPAND_SUM also have this effect.
8971 EXPAND_STACK_PARM is used when expanding to a TARGET on the stack for
8972 a call parameter. Such targets require special care as we haven't yet
8973 marked TARGET so that it's safe from being trashed by libcalls. We
8974 don't want to use TARGET for anything but the final result;
8975 Intermediate values must go elsewhere. Additionally, calls to
8976 emit_block_move will be flagged with BLOCK_OP_CALL_PARM.
8978 If EXP is a VAR_DECL whose DECL_RTL was a MEM with an invalid
8979 address, and ALT_RTL is non-NULL, then *ALT_RTL is set to the
8980 DECL_RTL of the VAR_DECL. *ALT_RTL is also set if EXP is a
8981 COMPOUND_EXPR whose second argument is such a VAR_DECL, and so on
8982 recursively.
8983 If the result can be stored at TARGET, and ALT_RTL is non-NULL,
8984 then *ALT_RTL is set to TARGET (before legitimziation).
8986 If INNER_REFERENCE_P is true, we are expanding an inner reference.
8987 In this case, we don't adjust a returned MEM rtx that wouldn't be
8988 sufficiently aligned for its mode; instead, it's up to the caller
8989 to deal with it afterwards. This is used to make sure that unaligned
8990 base objects for which out-of-bounds accesses are supported, for
8991 example record types with trailing arrays, aren't realigned behind
8992 the back of the caller.
8993 The normal operating mode is to pass FALSE for this parameter. */
8996 expand_expr_real (tree exp, rtx target, machine_mode tmode,
8997 enum expand_modifier modifier, rtx *alt_rtl,
8998 bool inner_reference_p)
9000 rtx ret;
9002 /* Handle ERROR_MARK before anybody tries to access its type. */
9003 if (TREE_CODE (exp) == ERROR_MARK
9004 || (TREE_CODE (TREE_TYPE (exp)) == ERROR_MARK))
9006 ret = CONST0_RTX (tmode);
9007 return ret ? ret : const0_rtx;
9010 ret = expand_expr_real_1 (exp, target, tmode, modifier, alt_rtl,
9011 inner_reference_p);
9012 return ret;
9015 /* Try to expand the conditional expression which is represented by
9016 TREEOP0 ? TREEOP1 : TREEOP2 using conditonal moves. If it succeeds
9017 return the rtl reg which represents the result. Otherwise return
9018 NULL_RTX. */
9020 static rtx
9021 expand_cond_expr_using_cmove (tree treeop0 ATTRIBUTE_UNUSED,
9022 tree treeop1 ATTRIBUTE_UNUSED,
9023 tree treeop2 ATTRIBUTE_UNUSED)
9025 rtx insn;
9026 rtx op00, op01, op1, op2;
9027 enum rtx_code comparison_code;
9028 machine_mode comparison_mode;
9029 gimple *srcstmt;
9030 rtx temp;
9031 tree type = TREE_TYPE (treeop1);
9032 int unsignedp = TYPE_UNSIGNED (type);
9033 machine_mode mode = TYPE_MODE (type);
9034 machine_mode orig_mode = mode;
9035 static bool expanding_cond_expr_using_cmove = false;
9037 /* Conditional move expansion can end up TERing two operands which,
9038 when recursively hitting conditional expressions can result in
9039 exponential behavior if the cmove expansion ultimatively fails.
9040 It's hardly profitable to TER a cmove into a cmove so avoid doing
9041 that by failing early if we end up recursing. */
9042 if (expanding_cond_expr_using_cmove)
9043 return NULL_RTX;
9045 /* If we cannot do a conditional move on the mode, try doing it
9046 with the promoted mode. */
9047 if (!can_conditionally_move_p (mode))
9049 mode = promote_mode (type, mode, &unsignedp);
9050 if (!can_conditionally_move_p (mode))
9051 return NULL_RTX;
9052 temp = assign_temp (type, 0, 0); /* Use promoted mode for temp. */
9054 else
9055 temp = assign_temp (type, 0, 1);
9057 expanding_cond_expr_using_cmove = true;
9058 start_sequence ();
9059 expand_operands (treeop1, treeop2,
9060 mode == orig_mode ? temp : NULL_RTX, &op1, &op2,
9061 EXPAND_NORMAL);
9063 if (TREE_CODE (treeop0) == SSA_NAME
9064 && (srcstmt = get_def_for_expr_class (treeop0, tcc_comparison)))
9066 type = TREE_TYPE (gimple_assign_rhs1 (srcstmt));
9067 enum tree_code cmpcode = gimple_assign_rhs_code (srcstmt);
9068 op00 = expand_normal (gimple_assign_rhs1 (srcstmt));
9069 op01 = expand_normal (gimple_assign_rhs2 (srcstmt));
9070 comparison_mode = TYPE_MODE (type);
9071 unsignedp = TYPE_UNSIGNED (type);
9072 comparison_code = convert_tree_comp_to_rtx (cmpcode, unsignedp);
9074 else if (COMPARISON_CLASS_P (treeop0))
9076 type = TREE_TYPE (TREE_OPERAND (treeop0, 0));
9077 enum tree_code cmpcode = TREE_CODE (treeop0);
9078 op00 = expand_normal (TREE_OPERAND (treeop0, 0));
9079 op01 = expand_normal (TREE_OPERAND (treeop0, 1));
9080 unsignedp = TYPE_UNSIGNED (type);
9081 comparison_mode = TYPE_MODE (type);
9082 comparison_code = convert_tree_comp_to_rtx (cmpcode, unsignedp);
9084 else
9086 op00 = expand_normal (treeop0);
9087 op01 = const0_rtx;
9088 comparison_code = NE;
9089 comparison_mode = GET_MODE (op00);
9090 if (comparison_mode == VOIDmode)
9091 comparison_mode = TYPE_MODE (TREE_TYPE (treeop0));
9093 expanding_cond_expr_using_cmove = false;
9095 if (GET_MODE (op1) != mode)
9096 op1 = gen_lowpart (mode, op1);
9098 if (GET_MODE (op2) != mode)
9099 op2 = gen_lowpart (mode, op2);
9101 /* Try to emit the conditional move. */
9102 insn = emit_conditional_move (temp,
9103 { comparison_code, op00, op01,
9104 comparison_mode },
9105 op1, op2, mode,
9106 unsignedp);
9108 /* If we could do the conditional move, emit the sequence,
9109 and return. */
9110 if (insn)
9112 rtx_insn *seq = get_insns ();
9113 end_sequence ();
9114 emit_insn (seq);
9115 return convert_modes (orig_mode, mode, temp, 0);
9118 /* Otherwise discard the sequence and fall back to code with
9119 branches. */
9120 end_sequence ();
9121 return NULL_RTX;
9124 /* A helper function for expand_expr_real_2 to be used with a
9125 misaligned mem_ref TEMP. Assume an unsigned type if UNSIGNEDP
9126 is nonzero, with alignment ALIGN in bits.
9127 Store the value at TARGET if possible (if TARGET is nonzero).
9128 Regardless of TARGET, we return the rtx for where the value is placed.
9129 If the result can be stored at TARGET, and ALT_RTL is non-NULL,
9130 then *ALT_RTL is set to TARGET (before legitimziation). */
9132 static rtx
9133 expand_misaligned_mem_ref (rtx temp, machine_mode mode, int unsignedp,
9134 unsigned int align, rtx target, rtx *alt_rtl)
9136 enum insn_code icode;
9138 if ((icode = optab_handler (movmisalign_optab, mode))
9139 != CODE_FOR_nothing)
9141 class expand_operand ops[2];
9143 /* We've already validated the memory, and we're creating a
9144 new pseudo destination. The predicates really can't fail,
9145 nor can the generator. */
9146 create_output_operand (&ops[0], NULL_RTX, mode);
9147 create_fixed_operand (&ops[1], temp);
9148 expand_insn (icode, 2, ops);
9149 temp = ops[0].value;
9151 else if (targetm.slow_unaligned_access (mode, align))
9152 temp = extract_bit_field (temp, GET_MODE_BITSIZE (mode),
9153 0, unsignedp, target,
9154 mode, mode, false, alt_rtl);
9155 return temp;
9158 /* Helper function of expand_expr_2, expand a division or modulo.
9159 op0 and op1 should be already expanded treeop0 and treeop1, using
9160 expand_operands. */
9162 static rtx
9163 expand_expr_divmod (tree_code code, machine_mode mode, tree treeop0,
9164 tree treeop1, rtx op0, rtx op1, rtx target, int unsignedp)
9166 bool mod_p = (code == TRUNC_MOD_EXPR || code == FLOOR_MOD_EXPR
9167 || code == CEIL_MOD_EXPR || code == ROUND_MOD_EXPR);
9168 if (SCALAR_INT_MODE_P (mode)
9169 && optimize >= 2
9170 && get_range_pos_neg (treeop0) == 1
9171 && get_range_pos_neg (treeop1) == 1)
9173 /* If both arguments are known to be positive when interpreted
9174 as signed, we can expand it as both signed and unsigned
9175 division or modulo. Choose the cheaper sequence in that case. */
9176 bool speed_p = optimize_insn_for_speed_p ();
9177 do_pending_stack_adjust ();
9178 start_sequence ();
9179 rtx uns_ret = expand_divmod (mod_p, code, mode, op0, op1, target, 1);
9180 rtx_insn *uns_insns = get_insns ();
9181 end_sequence ();
9182 start_sequence ();
9183 rtx sgn_ret = expand_divmod (mod_p, code, mode, op0, op1, target, 0);
9184 rtx_insn *sgn_insns = get_insns ();
9185 end_sequence ();
9186 unsigned uns_cost = seq_cost (uns_insns, speed_p);
9187 unsigned sgn_cost = seq_cost (sgn_insns, speed_p);
9189 /* If costs are the same then use as tie breaker the other other
9190 factor. */
9191 if (uns_cost == sgn_cost)
9193 uns_cost = seq_cost (uns_insns, !speed_p);
9194 sgn_cost = seq_cost (sgn_insns, !speed_p);
9197 if (uns_cost < sgn_cost || (uns_cost == sgn_cost && unsignedp))
9199 emit_insn (uns_insns);
9200 return uns_ret;
9202 emit_insn (sgn_insns);
9203 return sgn_ret;
9205 return expand_divmod (mod_p, code, mode, op0, op1, target, unsignedp);
9209 expand_expr_real_2 (sepops ops, rtx target, machine_mode tmode,
9210 enum expand_modifier modifier)
9212 rtx op0, op1, op2, temp;
9213 rtx_code_label *lab;
9214 tree type;
9215 int unsignedp;
9216 machine_mode mode;
9217 scalar_int_mode int_mode;
9218 enum tree_code code = ops->code;
9219 optab this_optab;
9220 rtx subtarget, original_target;
9221 int ignore;
9222 bool reduce_bit_field;
9223 location_t loc = ops->location;
9224 tree treeop0, treeop1, treeop2;
9225 #define REDUCE_BIT_FIELD(expr) (reduce_bit_field \
9226 ? reduce_to_bit_field_precision ((expr), \
9227 target, \
9228 type) \
9229 : (expr))
9231 type = ops->type;
9232 mode = TYPE_MODE (type);
9233 unsignedp = TYPE_UNSIGNED (type);
9235 treeop0 = ops->op0;
9236 treeop1 = ops->op1;
9237 treeop2 = ops->op2;
9239 /* We should be called only on simple (binary or unary) expressions,
9240 exactly those that are valid in gimple expressions that aren't
9241 GIMPLE_SINGLE_RHS (or invalid). */
9242 gcc_assert (get_gimple_rhs_class (code) == GIMPLE_UNARY_RHS
9243 || get_gimple_rhs_class (code) == GIMPLE_BINARY_RHS
9244 || get_gimple_rhs_class (code) == GIMPLE_TERNARY_RHS);
9246 ignore = (target == const0_rtx
9247 || ((CONVERT_EXPR_CODE_P (code)
9248 || code == COND_EXPR || code == VIEW_CONVERT_EXPR)
9249 && TREE_CODE (type) == VOID_TYPE));
9251 /* We should be called only if we need the result. */
9252 gcc_assert (!ignore);
9254 /* An operation in what may be a bit-field type needs the
9255 result to be reduced to the precision of the bit-field type,
9256 which is narrower than that of the type's mode. */
9257 reduce_bit_field = (INTEGRAL_TYPE_P (type)
9258 && !type_has_mode_precision_p (type));
9260 if (reduce_bit_field
9261 && (modifier == EXPAND_STACK_PARM
9262 || (target && GET_MODE (target) != mode)))
9263 target = 0;
9265 /* Use subtarget as the target for operand 0 of a binary operation. */
9266 subtarget = get_subtarget (target);
9267 original_target = target;
9269 switch (code)
9271 case NON_LVALUE_EXPR:
9272 case PAREN_EXPR:
9273 CASE_CONVERT:
9274 if (treeop0 == error_mark_node)
9275 return const0_rtx;
9277 if (TREE_CODE (type) == UNION_TYPE)
9279 tree valtype = TREE_TYPE (treeop0);
9281 /* If both input and output are BLKmode, this conversion isn't doing
9282 anything except possibly changing memory attribute. */
9283 if (mode == BLKmode && TYPE_MODE (valtype) == BLKmode)
9285 rtx result = expand_expr (treeop0, target, tmode,
9286 modifier);
9288 result = copy_rtx (result);
9289 set_mem_attributes (result, type, 0);
9290 return result;
9293 if (target == 0)
9295 if (TYPE_MODE (type) != BLKmode)
9296 target = gen_reg_rtx (TYPE_MODE (type));
9297 else
9298 target = assign_temp (type, 1, 1);
9301 if (MEM_P (target))
9302 /* Store data into beginning of memory target. */
9303 store_expr (treeop0,
9304 adjust_address (target, TYPE_MODE (valtype), 0),
9305 modifier == EXPAND_STACK_PARM,
9306 false, TYPE_REVERSE_STORAGE_ORDER (type));
9308 else
9310 gcc_assert (REG_P (target)
9311 && !TYPE_REVERSE_STORAGE_ORDER (type));
9313 /* Store this field into a union of the proper type. */
9314 poly_uint64 op0_size
9315 = tree_to_poly_uint64 (TYPE_SIZE (TREE_TYPE (treeop0)));
9316 poly_uint64 union_size = GET_MODE_BITSIZE (mode);
9317 store_field (target,
9318 /* The conversion must be constructed so that
9319 we know at compile time how many bits
9320 to preserve. */
9321 ordered_min (op0_size, union_size),
9322 0, 0, 0, TYPE_MODE (valtype), treeop0, 0,
9323 false, false);
9326 /* Return the entire union. */
9327 return target;
9330 if (mode == TYPE_MODE (TREE_TYPE (treeop0)))
9332 op0 = expand_expr (treeop0, target, VOIDmode,
9333 modifier);
9335 /* If the signedness of the conversion differs and OP0 is
9336 a promoted SUBREG, clear that indication since we now
9337 have to do the proper extension. */
9338 if (TYPE_UNSIGNED (TREE_TYPE (treeop0)) != unsignedp
9339 && GET_CODE (op0) == SUBREG)
9340 SUBREG_PROMOTED_VAR_P (op0) = 0;
9342 return REDUCE_BIT_FIELD (op0);
9345 op0 = expand_expr (treeop0, NULL_RTX, mode,
9346 modifier == EXPAND_SUM ? EXPAND_NORMAL : modifier);
9347 if (GET_MODE (op0) == mode)
9350 /* If OP0 is a constant, just convert it into the proper mode. */
9351 else if (CONSTANT_P (op0))
9353 tree inner_type = TREE_TYPE (treeop0);
9354 machine_mode inner_mode = GET_MODE (op0);
9356 if (inner_mode == VOIDmode)
9357 inner_mode = TYPE_MODE (inner_type);
9359 if (modifier == EXPAND_INITIALIZER)
9360 op0 = lowpart_subreg (mode, op0, inner_mode);
9361 else
9362 op0= convert_modes (mode, inner_mode, op0,
9363 TYPE_UNSIGNED (inner_type));
9366 else if (modifier == EXPAND_INITIALIZER)
9367 op0 = gen_rtx_fmt_e (TYPE_UNSIGNED (TREE_TYPE (treeop0))
9368 ? ZERO_EXTEND : SIGN_EXTEND, mode, op0);
9370 else if (target == 0)
9371 op0 = convert_to_mode (mode, op0,
9372 TYPE_UNSIGNED (TREE_TYPE
9373 (treeop0)));
9374 else
9376 convert_move (target, op0,
9377 TYPE_UNSIGNED (TREE_TYPE (treeop0)));
9378 op0 = target;
9381 return REDUCE_BIT_FIELD (op0);
9383 case ADDR_SPACE_CONVERT_EXPR:
9385 tree treeop0_type = TREE_TYPE (treeop0);
9387 gcc_assert (POINTER_TYPE_P (type));
9388 gcc_assert (POINTER_TYPE_P (treeop0_type));
9390 addr_space_t as_to = TYPE_ADDR_SPACE (TREE_TYPE (type));
9391 addr_space_t as_from = TYPE_ADDR_SPACE (TREE_TYPE (treeop0_type));
9393 /* Conversions between pointers to the same address space should
9394 have been implemented via CONVERT_EXPR / NOP_EXPR. */
9395 gcc_assert (as_to != as_from);
9397 op0 = expand_expr (treeop0, NULL_RTX, VOIDmode, modifier);
9399 /* Ask target code to handle conversion between pointers
9400 to overlapping address spaces. */
9401 if (targetm.addr_space.subset_p (as_to, as_from)
9402 || targetm.addr_space.subset_p (as_from, as_to))
9404 op0 = targetm.addr_space.convert (op0, treeop0_type, type);
9406 else
9408 /* For disjoint address spaces, converting anything but a null
9409 pointer invokes undefined behavior. We truncate or extend the
9410 value as if we'd converted via integers, which handles 0 as
9411 required, and all others as the programmer likely expects. */
9412 #ifndef POINTERS_EXTEND_UNSIGNED
9413 const int POINTERS_EXTEND_UNSIGNED = 1;
9414 #endif
9415 op0 = convert_modes (mode, TYPE_MODE (treeop0_type),
9416 op0, POINTERS_EXTEND_UNSIGNED);
9418 gcc_assert (op0);
9419 return op0;
9422 case POINTER_PLUS_EXPR:
9423 /* Even though the sizetype mode and the pointer's mode can be different
9424 expand is able to handle this correctly and get the correct result out
9425 of the PLUS_EXPR code. */
9426 /* Make sure to sign-extend the sizetype offset in a POINTER_PLUS_EXPR
9427 if sizetype precision is smaller than pointer precision. */
9428 if (TYPE_PRECISION (sizetype) < TYPE_PRECISION (type))
9429 treeop1 = fold_convert_loc (loc, type,
9430 fold_convert_loc (loc, ssizetype,
9431 treeop1));
9432 /* If sizetype precision is larger than pointer precision, truncate the
9433 offset to have matching modes. */
9434 else if (TYPE_PRECISION (sizetype) > TYPE_PRECISION (type))
9435 treeop1 = fold_convert_loc (loc, type, treeop1);
9436 /* FALLTHRU */
9438 case PLUS_EXPR:
9439 /* If we are adding a constant, a VAR_DECL that is sp, fp, or ap, and
9440 something else, make sure we add the register to the constant and
9441 then to the other thing. This case can occur during strength
9442 reduction and doing it this way will produce better code if the
9443 frame pointer or argument pointer is eliminated.
9445 fold-const.cc will ensure that the constant is always in the inner
9446 PLUS_EXPR, so the only case we need to do anything about is if
9447 sp, ap, or fp is our second argument, in which case we must swap
9448 the innermost first argument and our second argument. */
9450 if (TREE_CODE (treeop0) == PLUS_EXPR
9451 && TREE_CODE (TREE_OPERAND (treeop0, 1)) == INTEGER_CST
9452 && VAR_P (treeop1)
9453 && (DECL_RTL (treeop1) == frame_pointer_rtx
9454 || DECL_RTL (treeop1) == stack_pointer_rtx
9455 || DECL_RTL (treeop1) == arg_pointer_rtx))
9457 gcc_unreachable ();
9460 /* If the result is to be ptr_mode and we are adding an integer to
9461 something, we might be forming a constant. So try to use
9462 plus_constant. If it produces a sum and we can't accept it,
9463 use force_operand. This allows P = &ARR[const] to generate
9464 efficient code on machines where a SYMBOL_REF is not a valid
9465 address.
9467 If this is an EXPAND_SUM call, always return the sum. */
9468 if (modifier == EXPAND_SUM || modifier == EXPAND_INITIALIZER
9469 || (mode == ptr_mode && (unsignedp || ! flag_trapv)))
9471 if (modifier == EXPAND_STACK_PARM)
9472 target = 0;
9473 if (TREE_CODE (treeop0) == INTEGER_CST
9474 && HWI_COMPUTABLE_MODE_P (mode)
9475 && TREE_CONSTANT (treeop1))
9477 rtx constant_part;
9478 HOST_WIDE_INT wc;
9479 machine_mode wmode = TYPE_MODE (TREE_TYPE (treeop1));
9481 op1 = expand_expr (treeop1, subtarget, VOIDmode,
9482 EXPAND_SUM);
9483 /* Use wi::shwi to ensure that the constant is
9484 truncated according to the mode of OP1, then sign extended
9485 to a HOST_WIDE_INT. Using the constant directly can result
9486 in non-canonical RTL in a 64x32 cross compile. */
9487 wc = TREE_INT_CST_LOW (treeop0);
9488 constant_part =
9489 immed_wide_int_const (wi::shwi (wc, wmode), wmode);
9490 op1 = plus_constant (mode, op1, INTVAL (constant_part));
9491 if (modifier != EXPAND_SUM && modifier != EXPAND_INITIALIZER)
9492 op1 = force_operand (op1, target);
9493 return REDUCE_BIT_FIELD (op1);
9496 else if (TREE_CODE (treeop1) == INTEGER_CST
9497 && HWI_COMPUTABLE_MODE_P (mode)
9498 && TREE_CONSTANT (treeop0))
9500 rtx constant_part;
9501 HOST_WIDE_INT wc;
9502 machine_mode wmode = TYPE_MODE (TREE_TYPE (treeop0));
9504 op0 = expand_expr (treeop0, subtarget, VOIDmode,
9505 (modifier == EXPAND_INITIALIZER
9506 ? EXPAND_INITIALIZER : EXPAND_SUM));
9507 if (! CONSTANT_P (op0))
9509 op1 = expand_expr (treeop1, NULL_RTX,
9510 VOIDmode, modifier);
9511 /* Return a PLUS if modifier says it's OK. */
9512 if (modifier == EXPAND_SUM
9513 || modifier == EXPAND_INITIALIZER)
9514 return simplify_gen_binary (PLUS, mode, op0, op1);
9515 goto binop2;
9517 /* Use wi::shwi to ensure that the constant is
9518 truncated according to the mode of OP1, then sign extended
9519 to a HOST_WIDE_INT. Using the constant directly can result
9520 in non-canonical RTL in a 64x32 cross compile. */
9521 wc = TREE_INT_CST_LOW (treeop1);
9522 constant_part
9523 = immed_wide_int_const (wi::shwi (wc, wmode), wmode);
9524 op0 = plus_constant (mode, op0, INTVAL (constant_part));
9525 if (modifier != EXPAND_SUM && modifier != EXPAND_INITIALIZER)
9526 op0 = force_operand (op0, target);
9527 return REDUCE_BIT_FIELD (op0);
9531 /* Use TER to expand pointer addition of a negated value
9532 as pointer subtraction. */
9533 if ((POINTER_TYPE_P (TREE_TYPE (treeop0))
9534 || (TREE_CODE (TREE_TYPE (treeop0)) == VECTOR_TYPE
9535 && POINTER_TYPE_P (TREE_TYPE (TREE_TYPE (treeop0)))))
9536 && TREE_CODE (treeop1) == SSA_NAME
9537 && TYPE_MODE (TREE_TYPE (treeop0))
9538 == TYPE_MODE (TREE_TYPE (treeop1)))
9540 gimple *def = get_def_for_expr (treeop1, NEGATE_EXPR);
9541 if (def)
9543 treeop1 = gimple_assign_rhs1 (def);
9544 code = MINUS_EXPR;
9545 goto do_minus;
9549 /* No sense saving up arithmetic to be done
9550 if it's all in the wrong mode to form part of an address.
9551 And force_operand won't know whether to sign-extend or
9552 zero-extend. */
9553 if (modifier != EXPAND_INITIALIZER
9554 && (modifier != EXPAND_SUM || mode != ptr_mode))
9556 expand_operands (treeop0, treeop1,
9557 subtarget, &op0, &op1, modifier);
9558 if (op0 == const0_rtx)
9559 return op1;
9560 if (op1 == const0_rtx)
9561 return op0;
9562 goto binop2;
9565 expand_operands (treeop0, treeop1,
9566 subtarget, &op0, &op1, modifier);
9567 return REDUCE_BIT_FIELD (simplify_gen_binary (PLUS, mode, op0, op1));
9569 case MINUS_EXPR:
9570 case POINTER_DIFF_EXPR:
9571 do_minus:
9572 /* For initializers, we are allowed to return a MINUS of two
9573 symbolic constants. Here we handle all cases when both operands
9574 are constant. */
9575 /* Handle difference of two symbolic constants,
9576 for the sake of an initializer. */
9577 if ((modifier == EXPAND_SUM || modifier == EXPAND_INITIALIZER)
9578 && really_constant_p (treeop0)
9579 && really_constant_p (treeop1))
9581 expand_operands (treeop0, treeop1,
9582 NULL_RTX, &op0, &op1, modifier);
9583 return simplify_gen_binary (MINUS, mode, op0, op1);
9586 /* No sense saving up arithmetic to be done
9587 if it's all in the wrong mode to form part of an address.
9588 And force_operand won't know whether to sign-extend or
9589 zero-extend. */
9590 if (modifier != EXPAND_INITIALIZER
9591 && (modifier != EXPAND_SUM || mode != ptr_mode))
9592 goto binop;
9594 expand_operands (treeop0, treeop1,
9595 subtarget, &op0, &op1, modifier);
9597 /* Convert A - const to A + (-const). */
9598 if (CONST_INT_P (op1))
9600 op1 = negate_rtx (mode, op1);
9601 return REDUCE_BIT_FIELD (simplify_gen_binary (PLUS, mode, op0, op1));
9604 goto binop2;
9606 case WIDEN_MULT_PLUS_EXPR:
9607 case WIDEN_MULT_MINUS_EXPR:
9608 expand_operands (treeop0, treeop1, NULL_RTX, &op0, &op1, EXPAND_NORMAL);
9609 op2 = expand_normal (treeop2);
9610 target = expand_widen_pattern_expr (ops, op0, op1, op2,
9611 target, unsignedp);
9612 return target;
9614 case WIDEN_MULT_EXPR:
9615 /* If first operand is constant, swap them.
9616 Thus the following special case checks need only
9617 check the second operand. */
9618 if (TREE_CODE (treeop0) == INTEGER_CST)
9619 std::swap (treeop0, treeop1);
9621 /* First, check if we have a multiplication of one signed and one
9622 unsigned operand. */
9623 if (TREE_CODE (treeop1) != INTEGER_CST
9624 && (TYPE_UNSIGNED (TREE_TYPE (treeop0))
9625 != TYPE_UNSIGNED (TREE_TYPE (treeop1))))
9627 machine_mode innermode = TYPE_MODE (TREE_TYPE (treeop0));
9628 this_optab = usmul_widen_optab;
9629 if (find_widening_optab_handler (this_optab, mode, innermode)
9630 != CODE_FOR_nothing)
9632 if (TYPE_UNSIGNED (TREE_TYPE (treeop0)))
9633 expand_operands (treeop0, treeop1, NULL_RTX, &op0, &op1,
9634 EXPAND_NORMAL);
9635 else
9636 expand_operands (treeop0, treeop1, NULL_RTX, &op1, &op0,
9637 EXPAND_NORMAL);
9638 /* op0 and op1 might still be constant, despite the above
9639 != INTEGER_CST check. Handle it. */
9640 if (GET_MODE (op0) == VOIDmode && GET_MODE (op1) == VOIDmode)
9642 op0 = convert_modes (mode, innermode, op0, true);
9643 op1 = convert_modes (mode, innermode, op1, false);
9644 return REDUCE_BIT_FIELD (expand_mult (mode, op0, op1,
9645 target, unsignedp));
9647 goto binop3;
9650 /* Check for a multiplication with matching signedness. */
9651 else if ((TREE_CODE (treeop1) == INTEGER_CST
9652 && int_fits_type_p (treeop1, TREE_TYPE (treeop0)))
9653 || (TYPE_UNSIGNED (TREE_TYPE (treeop1))
9654 == TYPE_UNSIGNED (TREE_TYPE (treeop0))))
9656 tree op0type = TREE_TYPE (treeop0);
9657 machine_mode innermode = TYPE_MODE (op0type);
9658 bool zextend_p = TYPE_UNSIGNED (op0type);
9659 optab other_optab = zextend_p ? smul_widen_optab : umul_widen_optab;
9660 this_optab = zextend_p ? umul_widen_optab : smul_widen_optab;
9662 if (TREE_CODE (treeop0) != INTEGER_CST)
9664 if (find_widening_optab_handler (this_optab, mode, innermode)
9665 != CODE_FOR_nothing)
9667 expand_operands (treeop0, treeop1, NULL_RTX, &op0, &op1,
9668 EXPAND_NORMAL);
9669 /* op0 and op1 might still be constant, despite the above
9670 != INTEGER_CST check. Handle it. */
9671 if (GET_MODE (op0) == VOIDmode && GET_MODE (op1) == VOIDmode)
9673 widen_mult_const:
9674 op0 = convert_modes (mode, innermode, op0, zextend_p);
9676 = convert_modes (mode, innermode, op1,
9677 TYPE_UNSIGNED (TREE_TYPE (treeop1)));
9678 return REDUCE_BIT_FIELD (expand_mult (mode, op0, op1,
9679 target,
9680 unsignedp));
9682 temp = expand_widening_mult (mode, op0, op1, target,
9683 unsignedp, this_optab);
9684 return REDUCE_BIT_FIELD (temp);
9686 if (find_widening_optab_handler (other_optab, mode, innermode)
9687 != CODE_FOR_nothing
9688 && innermode == word_mode)
9690 rtx htem, hipart;
9691 op0 = expand_normal (treeop0);
9692 op1 = expand_normal (treeop1);
9693 /* op0 and op1 might be constants, despite the above
9694 != INTEGER_CST check. Handle it. */
9695 if (GET_MODE (op0) == VOIDmode && GET_MODE (op1) == VOIDmode)
9696 goto widen_mult_const;
9697 temp = expand_binop (mode, other_optab, op0, op1, target,
9698 unsignedp, OPTAB_LIB_WIDEN);
9699 hipart = gen_highpart (word_mode, temp);
9700 htem = expand_mult_highpart_adjust (word_mode, hipart,
9701 op0, op1, hipart,
9702 zextend_p);
9703 if (htem != hipart)
9704 emit_move_insn (hipart, htem);
9705 return REDUCE_BIT_FIELD (temp);
9709 treeop0 = fold_build1 (CONVERT_EXPR, type, treeop0);
9710 treeop1 = fold_build1 (CONVERT_EXPR, type, treeop1);
9711 expand_operands (treeop0, treeop1, subtarget, &op0, &op1, EXPAND_NORMAL);
9712 return REDUCE_BIT_FIELD (expand_mult (mode, op0, op1, target, unsignedp));
9714 case MULT_EXPR:
9715 /* If this is a fixed-point operation, then we cannot use the code
9716 below because "expand_mult" doesn't support sat/no-sat fixed-point
9717 multiplications. */
9718 if (ALL_FIXED_POINT_MODE_P (mode))
9719 goto binop;
9721 /* If first operand is constant, swap them.
9722 Thus the following special case checks need only
9723 check the second operand. */
9724 if (TREE_CODE (treeop0) == INTEGER_CST)
9725 std::swap (treeop0, treeop1);
9727 /* Attempt to return something suitable for generating an
9728 indexed address, for machines that support that. */
9730 if (modifier == EXPAND_SUM && mode == ptr_mode
9731 && tree_fits_shwi_p (treeop1))
9733 tree exp1 = treeop1;
9735 op0 = expand_expr (treeop0, subtarget, VOIDmode,
9736 EXPAND_SUM);
9738 if (!REG_P (op0))
9739 op0 = force_operand (op0, NULL_RTX);
9740 if (!REG_P (op0))
9741 op0 = copy_to_mode_reg (mode, op0);
9743 op1 = gen_int_mode (tree_to_shwi (exp1),
9744 TYPE_MODE (TREE_TYPE (exp1)));
9745 return REDUCE_BIT_FIELD (gen_rtx_MULT (mode, op0, op1));
9748 if (modifier == EXPAND_STACK_PARM)
9749 target = 0;
9751 if (SCALAR_INT_MODE_P (mode) && optimize >= 2)
9753 gimple *def_stmt0 = get_def_for_expr (treeop0, TRUNC_DIV_EXPR);
9754 gimple *def_stmt1 = get_def_for_expr (treeop1, TRUNC_DIV_EXPR);
9755 if (def_stmt0
9756 && !operand_equal_p (treeop1, gimple_assign_rhs2 (def_stmt0), 0))
9757 def_stmt0 = NULL;
9758 if (def_stmt1
9759 && !operand_equal_p (treeop0, gimple_assign_rhs2 (def_stmt1), 0))
9760 def_stmt1 = NULL;
9762 if (def_stmt0 || def_stmt1)
9764 /* X / Y * Y can be expanded as X - X % Y too.
9765 Choose the cheaper sequence of those two. */
9766 if (def_stmt0)
9767 treeop0 = gimple_assign_rhs1 (def_stmt0);
9768 else
9770 treeop1 = treeop0;
9771 treeop0 = gimple_assign_rhs1 (def_stmt1);
9773 expand_operands (treeop0, treeop1, subtarget, &op0, &op1,
9774 EXPAND_NORMAL);
9775 bool speed_p = optimize_insn_for_speed_p ();
9776 do_pending_stack_adjust ();
9777 start_sequence ();
9778 rtx divmul_ret
9779 = expand_expr_divmod (TRUNC_DIV_EXPR, mode, treeop0, treeop1,
9780 op0, op1, NULL_RTX, unsignedp);
9781 divmul_ret = expand_mult (mode, divmul_ret, op1, target,
9782 unsignedp);
9783 rtx_insn *divmul_insns = get_insns ();
9784 end_sequence ();
9785 start_sequence ();
9786 rtx modsub_ret
9787 = expand_expr_divmod (TRUNC_MOD_EXPR, mode, treeop0, treeop1,
9788 op0, op1, NULL_RTX, unsignedp);
9789 this_optab = optab_for_tree_code (MINUS_EXPR, type,
9790 optab_default);
9791 modsub_ret = expand_binop (mode, this_optab, op0, modsub_ret,
9792 target, unsignedp, OPTAB_LIB_WIDEN);
9793 rtx_insn *modsub_insns = get_insns ();
9794 end_sequence ();
9795 unsigned divmul_cost = seq_cost (divmul_insns, speed_p);
9796 unsigned modsub_cost = seq_cost (modsub_insns, speed_p);
9797 /* If costs are the same then use as tie breaker the other other
9798 factor. */
9799 if (divmul_cost == modsub_cost)
9801 divmul_cost = seq_cost (divmul_insns, !speed_p);
9802 modsub_cost = seq_cost (modsub_insns, !speed_p);
9805 if (divmul_cost <= modsub_cost)
9807 emit_insn (divmul_insns);
9808 return REDUCE_BIT_FIELD (divmul_ret);
9810 emit_insn (modsub_insns);
9811 return REDUCE_BIT_FIELD (modsub_ret);
9815 expand_operands (treeop0, treeop1, subtarget, &op0, &op1, EXPAND_NORMAL);
9817 /* Expand X*Y as X&-Y when Y must be zero or one. */
9818 if (SCALAR_INT_MODE_P (mode))
9820 bool bit0_p = tree_nonzero_bits (treeop0) == 1;
9821 bool bit1_p = tree_nonzero_bits (treeop1) == 1;
9823 /* Expand X*Y as X&Y when both X and Y must be zero or one. */
9824 if (bit0_p && bit1_p)
9825 return REDUCE_BIT_FIELD (expand_and (mode, op0, op1, target));
9827 if (bit0_p || bit1_p)
9829 bool speed = optimize_insn_for_speed_p ();
9830 int cost = add_cost (speed, mode) + neg_cost (speed, mode);
9831 struct algorithm algorithm;
9832 enum mult_variant variant;
9833 if (CONST_INT_P (op1)
9834 ? !choose_mult_variant (mode, INTVAL (op1),
9835 &algorithm, &variant, cost)
9836 : cost < mul_cost (speed, mode))
9838 target = bit0_p ? expand_and (mode, negate_rtx (mode, op0),
9839 op1, target)
9840 : expand_and (mode, op0,
9841 negate_rtx (mode, op1),
9842 target);
9843 return REDUCE_BIT_FIELD (target);
9848 return REDUCE_BIT_FIELD (expand_mult (mode, op0, op1, target, unsignedp));
9850 case TRUNC_MOD_EXPR:
9851 case FLOOR_MOD_EXPR:
9852 case CEIL_MOD_EXPR:
9853 case ROUND_MOD_EXPR:
9855 case TRUNC_DIV_EXPR:
9856 case FLOOR_DIV_EXPR:
9857 case CEIL_DIV_EXPR:
9858 case ROUND_DIV_EXPR:
9859 case EXACT_DIV_EXPR:
9860 /* If this is a fixed-point operation, then we cannot use the code
9861 below because "expand_divmod" doesn't support sat/no-sat fixed-point
9862 divisions. */
9863 if (ALL_FIXED_POINT_MODE_P (mode))
9864 goto binop;
9866 if (modifier == EXPAND_STACK_PARM)
9867 target = 0;
9868 /* Possible optimization: compute the dividend with EXPAND_SUM
9869 then if the divisor is constant can optimize the case
9870 where some terms of the dividend have coeffs divisible by it. */
9871 expand_operands (treeop0, treeop1, subtarget, &op0, &op1, EXPAND_NORMAL);
9872 return expand_expr_divmod (code, mode, treeop0, treeop1, op0, op1,
9873 target, unsignedp);
9875 case RDIV_EXPR:
9876 goto binop;
9878 case MULT_HIGHPART_EXPR:
9879 expand_operands (treeop0, treeop1, subtarget, &op0, &op1, EXPAND_NORMAL);
9880 temp = expand_mult_highpart (mode, op0, op1, target, unsignedp);
9881 gcc_assert (temp);
9882 return temp;
9884 case FIXED_CONVERT_EXPR:
9885 op0 = expand_normal (treeop0);
9886 if (target == 0 || modifier == EXPAND_STACK_PARM)
9887 target = gen_reg_rtx (mode);
9889 if ((TREE_CODE (TREE_TYPE (treeop0)) == INTEGER_TYPE
9890 && TYPE_UNSIGNED (TREE_TYPE (treeop0)))
9891 || (TREE_CODE (type) == INTEGER_TYPE && TYPE_UNSIGNED (type)))
9892 expand_fixed_convert (target, op0, 1, TYPE_SATURATING (type));
9893 else
9894 expand_fixed_convert (target, op0, 0, TYPE_SATURATING (type));
9895 return target;
9897 case FIX_TRUNC_EXPR:
9898 op0 = expand_normal (treeop0);
9899 if (target == 0 || modifier == EXPAND_STACK_PARM)
9900 target = gen_reg_rtx (mode);
9901 expand_fix (target, op0, unsignedp);
9902 return target;
9904 case FLOAT_EXPR:
9905 op0 = expand_normal (treeop0);
9906 if (target == 0 || modifier == EXPAND_STACK_PARM)
9907 target = gen_reg_rtx (mode);
9908 /* expand_float can't figure out what to do if FROM has VOIDmode.
9909 So give it the correct mode. With -O, cse will optimize this. */
9910 if (GET_MODE (op0) == VOIDmode)
9911 op0 = copy_to_mode_reg (TYPE_MODE (TREE_TYPE (treeop0)),
9912 op0);
9913 expand_float (target, op0,
9914 TYPE_UNSIGNED (TREE_TYPE (treeop0)));
9915 return target;
9917 case NEGATE_EXPR:
9918 op0 = expand_expr (treeop0, subtarget,
9919 VOIDmode, EXPAND_NORMAL);
9920 if (modifier == EXPAND_STACK_PARM)
9921 target = 0;
9922 temp = expand_unop (mode,
9923 optab_for_tree_code (NEGATE_EXPR, type,
9924 optab_default),
9925 op0, target, 0);
9926 gcc_assert (temp);
9927 return REDUCE_BIT_FIELD (temp);
9929 case ABS_EXPR:
9930 case ABSU_EXPR:
9931 op0 = expand_expr (treeop0, subtarget,
9932 VOIDmode, EXPAND_NORMAL);
9933 if (modifier == EXPAND_STACK_PARM)
9934 target = 0;
9936 /* ABS_EXPR is not valid for complex arguments. */
9937 gcc_assert (GET_MODE_CLASS (mode) != MODE_COMPLEX_INT
9938 && GET_MODE_CLASS (mode) != MODE_COMPLEX_FLOAT);
9940 /* Unsigned abs is simply the operand. Testing here means we don't
9941 risk generating incorrect code below. */
9942 if (TYPE_UNSIGNED (TREE_TYPE (treeop0)))
9943 return op0;
9945 return expand_abs (mode, op0, target, unsignedp,
9946 safe_from_p (target, treeop0, 1));
9948 case MAX_EXPR:
9949 case MIN_EXPR:
9950 target = original_target;
9951 if (target == 0
9952 || modifier == EXPAND_STACK_PARM
9953 || (MEM_P (target) && MEM_VOLATILE_P (target))
9954 || GET_MODE (target) != mode
9955 || (REG_P (target)
9956 && REGNO (target) < FIRST_PSEUDO_REGISTER))
9957 target = gen_reg_rtx (mode);
9958 expand_operands (treeop0, treeop1,
9959 target, &op0, &op1, EXPAND_NORMAL);
9961 /* First try to do it with a special MIN or MAX instruction.
9962 If that does not win, use a conditional jump to select the proper
9963 value. */
9964 this_optab = optab_for_tree_code (code, type, optab_default);
9965 temp = expand_binop (mode, this_optab, op0, op1, target, unsignedp,
9966 OPTAB_WIDEN);
9967 if (temp != 0)
9968 return temp;
9970 if (VECTOR_TYPE_P (type))
9971 gcc_unreachable ();
9973 /* At this point, a MEM target is no longer useful; we will get better
9974 code without it. */
9976 if (! REG_P (target))
9977 target = gen_reg_rtx (mode);
9979 /* If op1 was placed in target, swap op0 and op1. */
9980 if (target != op0 && target == op1)
9981 std::swap (op0, op1);
9983 /* We generate better code and avoid problems with op1 mentioning
9984 target by forcing op1 into a pseudo if it isn't a constant. */
9985 if (! CONSTANT_P (op1))
9986 op1 = force_reg (mode, op1);
9989 enum rtx_code comparison_code;
9990 rtx cmpop1 = op1;
9992 if (code == MAX_EXPR)
9993 comparison_code = unsignedp ? GEU : GE;
9994 else
9995 comparison_code = unsignedp ? LEU : LE;
9997 /* Canonicalize to comparisons against 0. */
9998 if (op1 == const1_rtx)
10000 /* Converting (a >= 1 ? a : 1) into (a > 0 ? a : 1)
10001 or (a != 0 ? a : 1) for unsigned.
10002 For MIN we are safe converting (a <= 1 ? a : 1)
10003 into (a <= 0 ? a : 1) */
10004 cmpop1 = const0_rtx;
10005 if (code == MAX_EXPR)
10006 comparison_code = unsignedp ? NE : GT;
10008 if (op1 == constm1_rtx && !unsignedp)
10010 /* Converting (a >= -1 ? a : -1) into (a >= 0 ? a : -1)
10011 and (a <= -1 ? a : -1) into (a < 0 ? a : -1) */
10012 cmpop1 = const0_rtx;
10013 if (code == MIN_EXPR)
10014 comparison_code = LT;
10017 /* Use a conditional move if possible. */
10018 if (can_conditionally_move_p (mode))
10020 rtx insn;
10022 start_sequence ();
10024 /* Try to emit the conditional move. */
10025 insn = emit_conditional_move (target,
10026 { comparison_code,
10027 op0, cmpop1, mode },
10028 op0, op1, mode,
10029 unsignedp);
10031 /* If we could do the conditional move, emit the sequence,
10032 and return. */
10033 if (insn)
10035 rtx_insn *seq = get_insns ();
10036 end_sequence ();
10037 emit_insn (seq);
10038 return target;
10041 /* Otherwise discard the sequence and fall back to code with
10042 branches. */
10043 end_sequence ();
10046 if (target != op0)
10047 emit_move_insn (target, op0);
10049 lab = gen_label_rtx ();
10050 do_compare_rtx_and_jump (target, cmpop1, comparison_code,
10051 unsignedp, mode, NULL_RTX, NULL, lab,
10052 profile_probability::uninitialized ());
10054 emit_move_insn (target, op1);
10055 emit_label (lab);
10056 return target;
10058 case BIT_NOT_EXPR:
10059 op0 = expand_expr (treeop0, subtarget,
10060 VOIDmode, EXPAND_NORMAL);
10061 if (modifier == EXPAND_STACK_PARM)
10062 target = 0;
10063 /* In case we have to reduce the result to bitfield precision
10064 for unsigned bitfield expand this as XOR with a proper constant
10065 instead. */
10066 if (reduce_bit_field && TYPE_UNSIGNED (type))
10068 int_mode = SCALAR_INT_TYPE_MODE (type);
10069 wide_int mask = wi::mask (TYPE_PRECISION (type),
10070 false, GET_MODE_PRECISION (int_mode));
10072 temp = expand_binop (int_mode, xor_optab, op0,
10073 immed_wide_int_const (mask, int_mode),
10074 target, 1, OPTAB_LIB_WIDEN);
10076 else
10077 temp = expand_unop (mode, one_cmpl_optab, op0, target, 1);
10078 gcc_assert (temp);
10079 return temp;
10081 /* ??? Can optimize bitwise operations with one arg constant.
10082 Can optimize (a bitwise1 n) bitwise2 (a bitwise3 b)
10083 and (a bitwise1 b) bitwise2 b (etc)
10084 but that is probably not worth while. */
10086 case BIT_AND_EXPR:
10087 case BIT_IOR_EXPR:
10088 case BIT_XOR_EXPR:
10089 goto binop;
10091 case LROTATE_EXPR:
10092 case RROTATE_EXPR:
10093 gcc_assert (VECTOR_MODE_P (TYPE_MODE (type))
10094 || type_has_mode_precision_p (type));
10095 /* fall through */
10097 case LSHIFT_EXPR:
10098 case RSHIFT_EXPR:
10100 /* If this is a fixed-point operation, then we cannot use the code
10101 below because "expand_shift" doesn't support sat/no-sat fixed-point
10102 shifts. */
10103 if (ALL_FIXED_POINT_MODE_P (mode))
10104 goto binop;
10106 if (! safe_from_p (subtarget, treeop1, 1))
10107 subtarget = 0;
10108 if (modifier == EXPAND_STACK_PARM)
10109 target = 0;
10110 op0 = expand_expr (treeop0, subtarget,
10111 VOIDmode, EXPAND_NORMAL);
10113 /* Left shift optimization when shifting across word_size boundary.
10115 If mode == GET_MODE_WIDER_MODE (word_mode), then normally
10116 there isn't native instruction to support this wide mode
10117 left shift. Given below scenario:
10119 Type A = (Type) B << C
10121 |< T >|
10122 | dest_high | dest_low |
10124 | word_size |
10126 If the shift amount C caused we shift B to across the word
10127 size boundary, i.e part of B shifted into high half of
10128 destination register, and part of B remains in the low
10129 half, then GCC will use the following left shift expand
10130 logic:
10132 1. Initialize dest_low to B.
10133 2. Initialize every bit of dest_high to the sign bit of B.
10134 3. Logic left shift dest_low by C bit to finalize dest_low.
10135 The value of dest_low before this shift is kept in a temp D.
10136 4. Logic left shift dest_high by C.
10137 5. Logic right shift D by (word_size - C).
10138 6. Or the result of 4 and 5 to finalize dest_high.
10140 While, by checking gimple statements, if operand B is
10141 coming from signed extension, then we can simplify above
10142 expand logic into:
10144 1. dest_high = src_low >> (word_size - C).
10145 2. dest_low = src_low << C.
10147 We can use one arithmetic right shift to finish all the
10148 purpose of steps 2, 4, 5, 6, thus we reduce the steps
10149 needed from 6 into 2.
10151 The case is similar for zero extension, except that we
10152 initialize dest_high to zero rather than copies of the sign
10153 bit from B. Furthermore, we need to use a logical right shift
10154 in this case.
10156 The choice of sign-extension versus zero-extension is
10157 determined entirely by whether or not B is signed and is
10158 independent of the current setting of unsignedp. */
10160 temp = NULL_RTX;
10161 if (code == LSHIFT_EXPR
10162 && target
10163 && REG_P (target)
10164 && GET_MODE_2XWIDER_MODE (word_mode).exists (&int_mode)
10165 && mode == int_mode
10166 && TREE_CONSTANT (treeop1)
10167 && TREE_CODE (treeop0) == SSA_NAME)
10169 gimple *def = SSA_NAME_DEF_STMT (treeop0);
10170 if (is_gimple_assign (def)
10171 && gimple_assign_rhs_code (def) == NOP_EXPR)
10173 scalar_int_mode rmode = SCALAR_INT_TYPE_MODE
10174 (TREE_TYPE (gimple_assign_rhs1 (def)));
10176 if (GET_MODE_SIZE (rmode) < GET_MODE_SIZE (int_mode)
10177 && TREE_INT_CST_LOW (treeop1) < GET_MODE_BITSIZE (word_mode)
10178 && ((TREE_INT_CST_LOW (treeop1) + GET_MODE_BITSIZE (rmode))
10179 >= GET_MODE_BITSIZE (word_mode)))
10181 rtx_insn *seq, *seq_old;
10182 poly_uint64 high_off = subreg_highpart_offset (word_mode,
10183 int_mode);
10184 bool extend_unsigned
10185 = TYPE_UNSIGNED (TREE_TYPE (gimple_assign_rhs1 (def)));
10186 rtx low = lowpart_subreg (word_mode, op0, int_mode);
10187 rtx dest_low = lowpart_subreg (word_mode, target, int_mode);
10188 rtx dest_high = simplify_gen_subreg (word_mode, target,
10189 int_mode, high_off);
10190 HOST_WIDE_INT ramount = (BITS_PER_WORD
10191 - TREE_INT_CST_LOW (treeop1));
10192 tree rshift = build_int_cst (TREE_TYPE (treeop1), ramount);
10194 start_sequence ();
10195 /* dest_high = src_low >> (word_size - C). */
10196 temp = expand_variable_shift (RSHIFT_EXPR, word_mode, low,
10197 rshift, dest_high,
10198 extend_unsigned);
10199 if (temp != dest_high)
10200 emit_move_insn (dest_high, temp);
10202 /* dest_low = src_low << C. */
10203 temp = expand_variable_shift (LSHIFT_EXPR, word_mode, low,
10204 treeop1, dest_low, unsignedp);
10205 if (temp != dest_low)
10206 emit_move_insn (dest_low, temp);
10208 seq = get_insns ();
10209 end_sequence ();
10210 temp = target ;
10212 if (have_insn_for (ASHIFT, int_mode))
10214 bool speed_p = optimize_insn_for_speed_p ();
10215 start_sequence ();
10216 rtx ret_old = expand_variable_shift (code, int_mode,
10217 op0, treeop1,
10218 target,
10219 unsignedp);
10221 seq_old = get_insns ();
10222 end_sequence ();
10223 if (seq_cost (seq, speed_p)
10224 >= seq_cost (seq_old, speed_p))
10226 seq = seq_old;
10227 temp = ret_old;
10230 emit_insn (seq);
10235 if (temp == NULL_RTX)
10236 temp = expand_variable_shift (code, mode, op0, treeop1, target,
10237 unsignedp);
10238 if (code == LSHIFT_EXPR)
10239 temp = REDUCE_BIT_FIELD (temp);
10240 return temp;
10243 /* Could determine the answer when only additive constants differ. Also,
10244 the addition of one can be handled by changing the condition. */
10245 case LT_EXPR:
10246 case LE_EXPR:
10247 case GT_EXPR:
10248 case GE_EXPR:
10249 case EQ_EXPR:
10250 case NE_EXPR:
10251 case UNORDERED_EXPR:
10252 case ORDERED_EXPR:
10253 case UNLT_EXPR:
10254 case UNLE_EXPR:
10255 case UNGT_EXPR:
10256 case UNGE_EXPR:
10257 case UNEQ_EXPR:
10258 case LTGT_EXPR:
10260 temp = do_store_flag (ops,
10261 modifier != EXPAND_STACK_PARM ? target : NULL_RTX,
10262 tmode != VOIDmode ? tmode : mode);
10263 if (temp)
10264 return temp;
10266 /* Use a compare and a jump for BLKmode comparisons, or for function
10267 type comparisons is have_canonicalize_funcptr_for_compare. */
10269 if ((target == 0
10270 || modifier == EXPAND_STACK_PARM
10271 || ! safe_from_p (target, treeop0, 1)
10272 || ! safe_from_p (target, treeop1, 1)
10273 /* Make sure we don't have a hard reg (such as function's return
10274 value) live across basic blocks, if not optimizing. */
10275 || (!optimize && REG_P (target)
10276 && REGNO (target) < FIRST_PSEUDO_REGISTER)))
10277 target = gen_reg_rtx (tmode != VOIDmode ? tmode : mode);
10279 emit_move_insn (target, const0_rtx);
10281 rtx_code_label *lab1 = gen_label_rtx ();
10282 jumpifnot_1 (code, treeop0, treeop1, lab1,
10283 profile_probability::uninitialized ());
10285 if (TYPE_PRECISION (type) == 1 && !TYPE_UNSIGNED (type))
10286 emit_move_insn (target, constm1_rtx);
10287 else
10288 emit_move_insn (target, const1_rtx);
10290 emit_label (lab1);
10291 return target;
10293 case COMPLEX_EXPR:
10294 /* Get the rtx code of the operands. */
10295 op0 = expand_normal (treeop0);
10296 op1 = expand_normal (treeop1);
10298 if (!target)
10299 target = gen_reg_rtx (TYPE_MODE (type));
10300 else
10301 /* If target overlaps with op1, then either we need to force
10302 op1 into a pseudo (if target also overlaps with op0),
10303 or write the complex parts in reverse order. */
10304 switch (GET_CODE (target))
10306 case CONCAT:
10307 if (reg_overlap_mentioned_p (XEXP (target, 0), op1))
10309 if (reg_overlap_mentioned_p (XEXP (target, 1), op0))
10311 complex_expr_force_op1:
10312 temp = gen_reg_rtx (GET_MODE_INNER (GET_MODE (target)));
10313 emit_move_insn (temp, op1);
10314 op1 = temp;
10315 break;
10317 complex_expr_swap_order:
10318 /* Move the imaginary (op1) and real (op0) parts to their
10319 location. */
10320 write_complex_part (target, op1, true, true);
10321 write_complex_part (target, op0, false, false);
10323 return target;
10325 break;
10326 case MEM:
10327 temp = adjust_address_nv (target,
10328 GET_MODE_INNER (GET_MODE (target)), 0);
10329 if (reg_overlap_mentioned_p (temp, op1))
10331 scalar_mode imode = GET_MODE_INNER (GET_MODE (target));
10332 temp = adjust_address_nv (target, imode,
10333 GET_MODE_SIZE (imode));
10334 if (reg_overlap_mentioned_p (temp, op0))
10335 goto complex_expr_force_op1;
10336 goto complex_expr_swap_order;
10338 break;
10339 default:
10340 if (reg_overlap_mentioned_p (target, op1))
10342 if (reg_overlap_mentioned_p (target, op0))
10343 goto complex_expr_force_op1;
10344 goto complex_expr_swap_order;
10346 break;
10349 /* Move the real (op0) and imaginary (op1) parts to their location. */
10350 write_complex_part (target, op0, false, true);
10351 write_complex_part (target, op1, true, false);
10353 return target;
10355 case WIDEN_SUM_EXPR:
10357 tree oprnd0 = treeop0;
10358 tree oprnd1 = treeop1;
10360 expand_operands (oprnd0, oprnd1, NULL_RTX, &op0, &op1, EXPAND_NORMAL);
10361 target = expand_widen_pattern_expr (ops, op0, NULL_RTX, op1,
10362 target, unsignedp);
10363 return target;
10366 case VEC_UNPACK_HI_EXPR:
10367 case VEC_UNPACK_LO_EXPR:
10368 case VEC_UNPACK_FIX_TRUNC_HI_EXPR:
10369 case VEC_UNPACK_FIX_TRUNC_LO_EXPR:
10371 op0 = expand_normal (treeop0);
10372 temp = expand_widen_pattern_expr (ops, op0, NULL_RTX, NULL_RTX,
10373 target, unsignedp);
10374 gcc_assert (temp);
10375 return temp;
10378 case VEC_UNPACK_FLOAT_HI_EXPR:
10379 case VEC_UNPACK_FLOAT_LO_EXPR:
10381 op0 = expand_normal (treeop0);
10382 /* The signedness is determined from input operand. */
10383 temp = expand_widen_pattern_expr
10384 (ops, op0, NULL_RTX, NULL_RTX,
10385 target, TYPE_UNSIGNED (TREE_TYPE (treeop0)));
10387 gcc_assert (temp);
10388 return temp;
10391 case VEC_WIDEN_MULT_HI_EXPR:
10392 case VEC_WIDEN_MULT_LO_EXPR:
10393 case VEC_WIDEN_MULT_EVEN_EXPR:
10394 case VEC_WIDEN_MULT_ODD_EXPR:
10395 case VEC_WIDEN_LSHIFT_HI_EXPR:
10396 case VEC_WIDEN_LSHIFT_LO_EXPR:
10397 expand_operands (treeop0, treeop1, NULL_RTX, &op0, &op1, EXPAND_NORMAL);
10398 target = expand_widen_pattern_expr (ops, op0, op1, NULL_RTX,
10399 target, unsignedp);
10400 gcc_assert (target);
10401 return target;
10403 case VEC_PACK_SAT_EXPR:
10404 case VEC_PACK_FIX_TRUNC_EXPR:
10405 mode = TYPE_MODE (TREE_TYPE (treeop0));
10406 subtarget = NULL_RTX;
10407 goto binop;
10409 case VEC_PACK_TRUNC_EXPR:
10410 if (VECTOR_BOOLEAN_TYPE_P (type)
10411 && VECTOR_BOOLEAN_TYPE_P (TREE_TYPE (treeop0))
10412 && mode == TYPE_MODE (TREE_TYPE (treeop0))
10413 && SCALAR_INT_MODE_P (mode))
10415 class expand_operand eops[4];
10416 machine_mode imode = TYPE_MODE (TREE_TYPE (treeop0));
10417 expand_operands (treeop0, treeop1,
10418 subtarget, &op0, &op1, EXPAND_NORMAL);
10419 this_optab = vec_pack_sbool_trunc_optab;
10420 enum insn_code icode = optab_handler (this_optab, imode);
10421 create_output_operand (&eops[0], target, mode);
10422 create_convert_operand_from (&eops[1], op0, imode, false);
10423 create_convert_operand_from (&eops[2], op1, imode, false);
10424 temp = GEN_INT (TYPE_VECTOR_SUBPARTS (type).to_constant ());
10425 create_input_operand (&eops[3], temp, imode);
10426 expand_insn (icode, 4, eops);
10427 return eops[0].value;
10429 mode = TYPE_MODE (TREE_TYPE (treeop0));
10430 subtarget = NULL_RTX;
10431 goto binop;
10433 case VEC_PACK_FLOAT_EXPR:
10434 mode = TYPE_MODE (TREE_TYPE (treeop0));
10435 expand_operands (treeop0, treeop1,
10436 subtarget, &op0, &op1, EXPAND_NORMAL);
10437 this_optab = optab_for_tree_code (code, TREE_TYPE (treeop0),
10438 optab_default);
10439 target = expand_binop (mode, this_optab, op0, op1, target,
10440 TYPE_UNSIGNED (TREE_TYPE (treeop0)),
10441 OPTAB_LIB_WIDEN);
10442 gcc_assert (target);
10443 return target;
10445 case VEC_PERM_EXPR:
10447 expand_operands (treeop0, treeop1, target, &op0, &op1, EXPAND_NORMAL);
10448 vec_perm_builder sel;
10449 if (TREE_CODE (treeop2) == VECTOR_CST
10450 && tree_to_vec_perm_builder (&sel, treeop2))
10452 machine_mode sel_mode = TYPE_MODE (TREE_TYPE (treeop2));
10453 temp = expand_vec_perm_const (mode, op0, op1, sel,
10454 sel_mode, target);
10456 else
10458 op2 = expand_normal (treeop2);
10459 temp = expand_vec_perm_var (mode, op0, op1, op2, target);
10461 gcc_assert (temp);
10462 return temp;
10465 case DOT_PROD_EXPR:
10467 tree oprnd0 = treeop0;
10468 tree oprnd1 = treeop1;
10469 tree oprnd2 = treeop2;
10471 expand_operands (oprnd0, oprnd1, NULL_RTX, &op0, &op1, EXPAND_NORMAL);
10472 op2 = expand_normal (oprnd2);
10473 target = expand_widen_pattern_expr (ops, op0, op1, op2,
10474 target, unsignedp);
10475 return target;
10478 case SAD_EXPR:
10480 tree oprnd0 = treeop0;
10481 tree oprnd1 = treeop1;
10482 tree oprnd2 = treeop2;
10484 expand_operands (oprnd0, oprnd1, NULL_RTX, &op0, &op1, EXPAND_NORMAL);
10485 op2 = expand_normal (oprnd2);
10486 target = expand_widen_pattern_expr (ops, op0, op1, op2,
10487 target, unsignedp);
10488 return target;
10491 case REALIGN_LOAD_EXPR:
10493 tree oprnd0 = treeop0;
10494 tree oprnd1 = treeop1;
10495 tree oprnd2 = treeop2;
10497 this_optab = optab_for_tree_code (code, type, optab_default);
10498 expand_operands (oprnd0, oprnd1, NULL_RTX, &op0, &op1, EXPAND_NORMAL);
10499 op2 = expand_normal (oprnd2);
10500 temp = expand_ternary_op (mode, this_optab, op0, op1, op2,
10501 target, unsignedp);
10502 gcc_assert (temp);
10503 return temp;
10506 case COND_EXPR:
10508 /* A COND_EXPR with its type being VOID_TYPE represents a
10509 conditional jump and is handled in
10510 expand_gimple_cond_expr. */
10511 gcc_assert (!VOID_TYPE_P (type));
10513 /* Note that COND_EXPRs whose type is a structure or union
10514 are required to be constructed to contain assignments of
10515 a temporary variable, so that we can evaluate them here
10516 for side effect only. If type is void, we must do likewise. */
10518 gcc_assert (!TREE_ADDRESSABLE (type)
10519 && !ignore
10520 && TREE_TYPE (treeop1) != void_type_node
10521 && TREE_TYPE (treeop2) != void_type_node);
10523 temp = expand_cond_expr_using_cmove (treeop0, treeop1, treeop2);
10524 if (temp)
10525 return temp;
10527 /* If we are not to produce a result, we have no target. Otherwise,
10528 if a target was specified use it; it will not be used as an
10529 intermediate target unless it is safe. If no target, use a
10530 temporary. */
10532 if (modifier != EXPAND_STACK_PARM
10533 && original_target
10534 && safe_from_p (original_target, treeop0, 1)
10535 && GET_MODE (original_target) == mode
10536 && !MEM_P (original_target))
10537 temp = original_target;
10538 else
10539 temp = assign_temp (type, 0, 1);
10541 do_pending_stack_adjust ();
10542 NO_DEFER_POP;
10543 rtx_code_label *lab0 = gen_label_rtx ();
10544 rtx_code_label *lab1 = gen_label_rtx ();
10545 jumpifnot (treeop0, lab0,
10546 profile_probability::uninitialized ());
10547 store_expr (treeop1, temp,
10548 modifier == EXPAND_STACK_PARM,
10549 false, false);
10551 emit_jump_insn (targetm.gen_jump (lab1));
10552 emit_barrier ();
10553 emit_label (lab0);
10554 store_expr (treeop2, temp,
10555 modifier == EXPAND_STACK_PARM,
10556 false, false);
10558 emit_label (lab1);
10559 OK_DEFER_POP;
10560 return temp;
10563 case VEC_DUPLICATE_EXPR:
10564 op0 = expand_expr (treeop0, NULL_RTX, VOIDmode, modifier);
10565 target = expand_vector_broadcast (mode, op0);
10566 gcc_assert (target);
10567 return target;
10569 case VEC_SERIES_EXPR:
10570 expand_operands (treeop0, treeop1, NULL_RTX, &op0, &op1, modifier);
10571 return expand_vec_series_expr (mode, op0, op1, target);
10573 case BIT_INSERT_EXPR:
10575 unsigned bitpos = tree_to_uhwi (treeop2);
10576 unsigned bitsize;
10577 if (INTEGRAL_TYPE_P (TREE_TYPE (treeop1)))
10578 bitsize = TYPE_PRECISION (TREE_TYPE (treeop1));
10579 else
10580 bitsize = tree_to_uhwi (TYPE_SIZE (TREE_TYPE (treeop1)));
10581 op0 = expand_normal (treeop0);
10582 op1 = expand_normal (treeop1);
10583 rtx dst = gen_reg_rtx (mode);
10584 emit_move_insn (dst, op0);
10585 store_bit_field (dst, bitsize, bitpos, 0, 0,
10586 TYPE_MODE (TREE_TYPE (treeop1)), op1, false, false);
10587 return dst;
10590 default:
10591 gcc_unreachable ();
10594 /* Here to do an ordinary binary operator. */
10595 binop:
10596 expand_operands (treeop0, treeop1,
10597 subtarget, &op0, &op1, EXPAND_NORMAL);
10598 binop2:
10599 this_optab = optab_for_tree_code (code, type, optab_default);
10600 binop3:
10601 if (modifier == EXPAND_STACK_PARM)
10602 target = 0;
10603 temp = expand_binop (mode, this_optab, op0, op1, target,
10604 unsignedp, OPTAB_LIB_WIDEN);
10605 gcc_assert (temp);
10606 /* Bitwise operations do not need bitfield reduction as we expect their
10607 operands being properly truncated. */
10608 if (code == BIT_XOR_EXPR
10609 || code == BIT_AND_EXPR
10610 || code == BIT_IOR_EXPR)
10611 return temp;
10612 return REDUCE_BIT_FIELD (temp);
10614 #undef REDUCE_BIT_FIELD
10617 /* Return TRUE if expression STMT is suitable for replacement.
10618 Never consider memory loads as replaceable, because those don't ever lead
10619 into constant expressions. */
10621 static bool
10622 stmt_is_replaceable_p (gimple *stmt)
10624 if (ssa_is_replaceable_p (stmt))
10626 /* Don't move around loads. */
10627 if (!gimple_assign_single_p (stmt)
10628 || is_gimple_val (gimple_assign_rhs1 (stmt)))
10629 return true;
10631 return false;
10635 expand_expr_real_1 (tree exp, rtx target, machine_mode tmode,
10636 enum expand_modifier modifier, rtx *alt_rtl,
10637 bool inner_reference_p)
10639 rtx op0, op1, temp, decl_rtl;
10640 tree type;
10641 int unsignedp;
10642 machine_mode mode, dmode;
10643 enum tree_code code = TREE_CODE (exp);
10644 rtx subtarget, original_target;
10645 int ignore;
10646 bool reduce_bit_field;
10647 location_t loc = EXPR_LOCATION (exp);
10648 struct separate_ops ops;
10649 tree treeop0, treeop1, treeop2;
10650 tree ssa_name = NULL_TREE;
10651 gimple *g;
10653 /* Some ABIs define padding bits in _BitInt uninitialized. Normally, RTL
10654 expansion sign/zero extends integral types with less than mode precision
10655 when reading from bit-fields and after arithmetic operations (see
10656 REDUCE_BIT_FIELD in expand_expr_real_2) and on subsequent loads relies
10657 on those extensions to have been already performed, but because of the
10658 above for _BitInt they need to be sign/zero extended when reading from
10659 locations that could be exposed to ABI boundaries (when loading from
10660 objects in memory, or function arguments, return value). Because we
10661 internally extend after arithmetic operations, we can avoid doing that
10662 when reading from SSA_NAMEs of vars. */
10663 #define EXTEND_BITINT(expr) \
10664 ((TREE_CODE (type) == BITINT_TYPE \
10665 && reduce_bit_field \
10666 && mode != BLKmode \
10667 && modifier != EXPAND_MEMORY \
10668 && modifier != EXPAND_WRITE \
10669 && modifier != EXPAND_CONST_ADDRESS) \
10670 ? reduce_to_bit_field_precision ((expr), NULL_RTX, type) : (expr))
10672 type = TREE_TYPE (exp);
10673 mode = TYPE_MODE (type);
10674 unsignedp = TYPE_UNSIGNED (type);
10676 treeop0 = treeop1 = treeop2 = NULL_TREE;
10677 if (!VL_EXP_CLASS_P (exp))
10678 switch (TREE_CODE_LENGTH (code))
10680 default:
10681 case 3: treeop2 = TREE_OPERAND (exp, 2); /* FALLTHRU */
10682 case 2: treeop1 = TREE_OPERAND (exp, 1); /* FALLTHRU */
10683 case 1: treeop0 = TREE_OPERAND (exp, 0); /* FALLTHRU */
10684 case 0: break;
10686 ops.code = code;
10687 ops.type = type;
10688 ops.op0 = treeop0;
10689 ops.op1 = treeop1;
10690 ops.op2 = treeop2;
10691 ops.location = loc;
10693 ignore = (target == const0_rtx
10694 || ((CONVERT_EXPR_CODE_P (code)
10695 || code == COND_EXPR || code == VIEW_CONVERT_EXPR)
10696 && TREE_CODE (type) == VOID_TYPE));
10698 /* An operation in what may be a bit-field type needs the
10699 result to be reduced to the precision of the bit-field type,
10700 which is narrower than that of the type's mode. */
10701 reduce_bit_field = (!ignore
10702 && INTEGRAL_TYPE_P (type)
10703 && !type_has_mode_precision_p (type));
10705 /* If we are going to ignore this result, we need only do something
10706 if there is a side-effect somewhere in the expression. If there
10707 is, short-circuit the most common cases here. Note that we must
10708 not call expand_expr with anything but const0_rtx in case this
10709 is an initial expansion of a size that contains a PLACEHOLDER_EXPR. */
10711 if (ignore)
10713 if (! TREE_SIDE_EFFECTS (exp))
10714 return const0_rtx;
10716 /* Ensure we reference a volatile object even if value is ignored, but
10717 don't do this if all we are doing is taking its address. */
10718 if (TREE_THIS_VOLATILE (exp)
10719 && TREE_CODE (exp) != FUNCTION_DECL
10720 && mode != VOIDmode && mode != BLKmode
10721 && modifier != EXPAND_CONST_ADDRESS)
10723 temp = expand_expr (exp, NULL_RTX, VOIDmode, modifier);
10724 if (MEM_P (temp))
10725 copy_to_reg (temp);
10726 return const0_rtx;
10729 if (TREE_CODE_CLASS (code) == tcc_unary
10730 || code == BIT_FIELD_REF
10731 || code == COMPONENT_REF
10732 || code == INDIRECT_REF)
10733 return expand_expr (treeop0, const0_rtx, VOIDmode,
10734 modifier);
10736 else if (TREE_CODE_CLASS (code) == tcc_binary
10737 || TREE_CODE_CLASS (code) == tcc_comparison
10738 || code == ARRAY_REF || code == ARRAY_RANGE_REF)
10740 expand_expr (treeop0, const0_rtx, VOIDmode, modifier);
10741 expand_expr (treeop1, const0_rtx, VOIDmode, modifier);
10742 return const0_rtx;
10745 target = 0;
10748 if (reduce_bit_field && modifier == EXPAND_STACK_PARM)
10749 target = 0;
10751 /* Use subtarget as the target for operand 0 of a binary operation. */
10752 subtarget = get_subtarget (target);
10753 original_target = target;
10755 switch (code)
10757 case LABEL_DECL:
10759 tree function = decl_function_context (exp);
10761 temp = label_rtx (exp);
10762 temp = gen_rtx_LABEL_REF (Pmode, temp);
10764 if (function != current_function_decl
10765 && function != 0)
10766 LABEL_REF_NONLOCAL_P (temp) = 1;
10768 temp = gen_rtx_MEM (FUNCTION_MODE, temp);
10769 return temp;
10772 case SSA_NAME:
10773 /* ??? ivopts calls expander, without any preparation from
10774 out-of-ssa. So fake instructions as if this was an access to the
10775 base variable. This unnecessarily allocates a pseudo, see how we can
10776 reuse it, if partition base vars have it set already. */
10777 if (!currently_expanding_to_rtl)
10779 tree var = SSA_NAME_VAR (exp);
10780 if (var && DECL_RTL_SET_P (var))
10781 return DECL_RTL (var);
10782 return gen_raw_REG (TYPE_MODE (TREE_TYPE (exp)),
10783 LAST_VIRTUAL_REGISTER + 1);
10786 g = get_gimple_for_ssa_name (exp);
10787 /* For EXPAND_INITIALIZER try harder to get something simpler. */
10788 if (g == NULL
10789 && modifier == EXPAND_INITIALIZER
10790 && !SSA_NAME_IS_DEFAULT_DEF (exp)
10791 && (optimize || !SSA_NAME_VAR (exp)
10792 || DECL_IGNORED_P (SSA_NAME_VAR (exp)))
10793 && stmt_is_replaceable_p (SSA_NAME_DEF_STMT (exp)))
10794 g = SSA_NAME_DEF_STMT (exp);
10795 if (g)
10797 rtx r;
10798 location_t saved_loc = curr_insn_location ();
10799 loc = gimple_location (g);
10800 if (loc != UNKNOWN_LOCATION)
10801 set_curr_insn_location (loc);
10802 ops.code = gimple_assign_rhs_code (g);
10803 switch (get_gimple_rhs_class (ops.code))
10805 case GIMPLE_TERNARY_RHS:
10806 ops.op2 = gimple_assign_rhs3 (g);
10807 /* Fallthru */
10808 case GIMPLE_BINARY_RHS:
10809 ops.op1 = gimple_assign_rhs2 (g);
10811 /* Try to expand conditonal compare. */
10812 if (targetm.gen_ccmp_first)
10814 gcc_checking_assert (targetm.gen_ccmp_next != NULL);
10815 r = expand_ccmp_expr (g, mode);
10816 if (r)
10817 break;
10819 /* Fallthru */
10820 case GIMPLE_UNARY_RHS:
10821 ops.op0 = gimple_assign_rhs1 (g);
10822 ops.type = TREE_TYPE (gimple_assign_lhs (g));
10823 ops.location = loc;
10824 r = expand_expr_real_2 (&ops, target, tmode, modifier);
10825 break;
10826 case GIMPLE_SINGLE_RHS:
10828 r = expand_expr_real (gimple_assign_rhs1 (g), target,
10829 tmode, modifier, alt_rtl,
10830 inner_reference_p);
10831 break;
10833 default:
10834 gcc_unreachable ();
10836 set_curr_insn_location (saved_loc);
10837 if (REG_P (r) && !REG_EXPR (r))
10838 set_reg_attrs_for_decl_rtl (SSA_NAME_VAR (exp), r);
10839 return r;
10842 ssa_name = exp;
10843 decl_rtl = get_rtx_for_ssa_name (ssa_name);
10844 exp = SSA_NAME_VAR (ssa_name);
10845 /* Optimize and avoid to EXTEND_BITINIT doing anything if it is an
10846 SSA_NAME computed within the current function. In such case the
10847 value have been already extended before. While if it is a function
10848 parameter, result or some memory location, we need to be prepared
10849 for some other compiler leaving the bits uninitialized. */
10850 if (!exp || VAR_P (exp))
10851 reduce_bit_field = false;
10852 goto expand_decl_rtl;
10854 case VAR_DECL:
10855 /* Allow accel compiler to handle variables that require special
10856 treatment, e.g. if they have been modified in some way earlier in
10857 compilation by the adjust_private_decl OpenACC hook. */
10858 if (flag_openacc && targetm.goacc.expand_var_decl)
10860 temp = targetm.goacc.expand_var_decl (exp);
10861 if (temp)
10862 return temp;
10864 /* Expand const VAR_DECLs with CONSTRUCTOR initializers that
10865 have scalar integer modes to a reg via store_constructor. */
10866 if (TREE_READONLY (exp)
10867 && !TREE_SIDE_EFFECTS (exp)
10868 && (modifier == EXPAND_NORMAL || modifier == EXPAND_STACK_PARM)
10869 && immediate_const_ctor_p (DECL_INITIAL (exp))
10870 && SCALAR_INT_MODE_P (TYPE_MODE (TREE_TYPE (exp)))
10871 && crtl->emit.regno_pointer_align_length
10872 && !target)
10874 target = gen_reg_rtx (TYPE_MODE (TREE_TYPE (exp)));
10875 store_constructor (DECL_INITIAL (exp), target, 0,
10876 int_expr_size (DECL_INITIAL (exp)), false);
10877 return target;
10879 /* ... fall through ... */
10881 case PARM_DECL:
10882 /* If a static var's type was incomplete when the decl was written,
10883 but the type is complete now, lay out the decl now. */
10884 if (DECL_SIZE (exp) == 0
10885 && COMPLETE_OR_UNBOUND_ARRAY_TYPE_P (TREE_TYPE (exp))
10886 && (TREE_STATIC (exp) || DECL_EXTERNAL (exp)))
10887 layout_decl (exp, 0);
10889 /* fall through */
10891 case FUNCTION_DECL:
10892 case RESULT_DECL:
10893 decl_rtl = DECL_RTL (exp);
10894 expand_decl_rtl:
10895 gcc_assert (decl_rtl);
10897 /* DECL_MODE might change when TYPE_MODE depends on attribute target
10898 settings for VECTOR_TYPE_P that might switch for the function. */
10899 if (currently_expanding_to_rtl
10900 && code == VAR_DECL && MEM_P (decl_rtl)
10901 && VECTOR_TYPE_P (type) && exp && DECL_MODE (exp) != mode)
10902 decl_rtl = change_address (decl_rtl, TYPE_MODE (type), 0);
10903 else
10904 decl_rtl = copy_rtx (decl_rtl);
10906 /* Record writes to register variables. */
10907 if (modifier == EXPAND_WRITE
10908 && REG_P (decl_rtl)
10909 && HARD_REGISTER_P (decl_rtl))
10910 add_to_hard_reg_set (&crtl->asm_clobbers,
10911 GET_MODE (decl_rtl), REGNO (decl_rtl));
10913 /* Ensure variable marked as used even if it doesn't go through
10914 a parser. If it hasn't be used yet, write out an external
10915 definition. */
10916 if (exp)
10917 TREE_USED (exp) = 1;
10919 /* Show we haven't gotten RTL for this yet. */
10920 temp = 0;
10922 /* Variables inherited from containing functions should have
10923 been lowered by this point. */
10924 if (exp)
10926 tree context = decl_function_context (exp);
10927 gcc_assert (SCOPE_FILE_SCOPE_P (context)
10928 || context == current_function_decl
10929 || TREE_STATIC (exp)
10930 || DECL_EXTERNAL (exp)
10931 /* ??? C++ creates functions that are not
10932 TREE_STATIC. */
10933 || TREE_CODE (exp) == FUNCTION_DECL);
10936 /* This is the case of an array whose size is to be determined
10937 from its initializer, while the initializer is still being parsed.
10938 ??? We aren't parsing while expanding anymore. */
10940 if (MEM_P (decl_rtl) && REG_P (XEXP (decl_rtl, 0)))
10941 temp = validize_mem (decl_rtl);
10943 /* If DECL_RTL is memory, we are in the normal case and the
10944 address is not valid, get the address into a register. */
10946 else if (MEM_P (decl_rtl) && modifier != EXPAND_INITIALIZER)
10948 if (alt_rtl)
10949 *alt_rtl = decl_rtl;
10950 decl_rtl = use_anchored_address (decl_rtl);
10951 if (modifier != EXPAND_CONST_ADDRESS
10952 && modifier != EXPAND_SUM
10953 && !memory_address_addr_space_p (exp ? DECL_MODE (exp)
10954 : GET_MODE (decl_rtl),
10955 XEXP (decl_rtl, 0),
10956 MEM_ADDR_SPACE (decl_rtl)))
10957 temp = replace_equiv_address (decl_rtl,
10958 copy_rtx (XEXP (decl_rtl, 0)));
10961 /* If we got something, return it. But first, set the alignment
10962 if the address is a register. */
10963 if (temp != 0)
10965 if (exp && MEM_P (temp) && REG_P (XEXP (temp, 0)))
10966 mark_reg_pointer (XEXP (temp, 0), DECL_ALIGN (exp));
10968 else if (MEM_P (decl_rtl))
10969 temp = decl_rtl;
10971 if (temp != 0)
10973 if (MEM_P (temp)
10974 && modifier != EXPAND_WRITE
10975 && modifier != EXPAND_MEMORY
10976 && modifier != EXPAND_INITIALIZER
10977 && modifier != EXPAND_CONST_ADDRESS
10978 && modifier != EXPAND_SUM
10979 && !inner_reference_p
10980 && mode != BLKmode
10981 && MEM_ALIGN (temp) < GET_MODE_ALIGNMENT (mode))
10982 temp = expand_misaligned_mem_ref (temp, mode, unsignedp,
10983 MEM_ALIGN (temp), NULL_RTX, NULL);
10985 return EXTEND_BITINT (temp);
10988 if (exp)
10989 dmode = DECL_MODE (exp);
10990 else
10991 dmode = TYPE_MODE (TREE_TYPE (ssa_name));
10993 /* If the mode of DECL_RTL does not match that of the decl,
10994 there are two cases: we are dealing with a BLKmode value
10995 that is returned in a register, or we are dealing with
10996 a promoted value. In the latter case, return a SUBREG
10997 of the wanted mode, but mark it so that we know that it
10998 was already extended. */
10999 if (REG_P (decl_rtl)
11000 && dmode != BLKmode
11001 && GET_MODE (decl_rtl) != dmode)
11003 machine_mode pmode;
11005 /* Get the signedness to be used for this variable. Ensure we get
11006 the same mode we got when the variable was declared. */
11007 if (code != SSA_NAME)
11008 pmode = promote_decl_mode (exp, &unsignedp);
11009 else if ((g = SSA_NAME_DEF_STMT (ssa_name))
11010 && gimple_code (g) == GIMPLE_CALL
11011 && !gimple_call_internal_p (g))
11012 pmode = promote_function_mode (type, mode, &unsignedp,
11013 gimple_call_fntype (g),
11015 else
11016 pmode = promote_ssa_mode (ssa_name, &unsignedp);
11017 gcc_assert (GET_MODE (decl_rtl) == pmode);
11019 /* Some ABIs require scalar floating point modes to be passed
11020 in a wider scalar integer mode. We need to explicitly
11021 truncate to an integer mode of the correct precision before
11022 using a SUBREG to reinterpret as a floating point value. */
11023 if (SCALAR_FLOAT_MODE_P (mode)
11024 && SCALAR_INT_MODE_P (pmode)
11025 && known_lt (GET_MODE_SIZE (mode), GET_MODE_SIZE (pmode)))
11026 return convert_wider_int_to_float (mode, pmode, decl_rtl);
11028 temp = gen_lowpart_SUBREG (mode, decl_rtl);
11029 SUBREG_PROMOTED_VAR_P (temp) = 1;
11030 SUBREG_PROMOTED_SET (temp, unsignedp);
11031 return EXTEND_BITINT (temp);
11034 return EXTEND_BITINT (decl_rtl);
11036 case INTEGER_CST:
11038 if (TREE_CODE (type) == BITINT_TYPE)
11040 unsigned int prec = TYPE_PRECISION (type);
11041 struct bitint_info info;
11042 bool ok = targetm.c.bitint_type_info (prec, &info);
11043 gcc_assert (ok);
11044 scalar_int_mode limb_mode
11045 = as_a <scalar_int_mode> (info.limb_mode);
11046 unsigned int limb_prec = GET_MODE_PRECISION (limb_mode);
11047 if (prec > limb_prec && prec > MAX_FIXED_MODE_SIZE)
11049 /* Emit large/huge _BitInt INTEGER_CSTs into memory. */
11050 exp = tree_output_constant_def (exp);
11051 return expand_expr (exp, target, VOIDmode, modifier);
11055 /* Given that TYPE_PRECISION (type) is not always equal to
11056 GET_MODE_PRECISION (TYPE_MODE (type)), we need to extend from
11057 the former to the latter according to the signedness of the
11058 type. */
11059 scalar_int_mode int_mode = SCALAR_INT_TYPE_MODE (type);
11060 temp = immed_wide_int_const
11061 (wi::to_wide (exp, GET_MODE_PRECISION (int_mode)), int_mode);
11062 return temp;
11065 case VECTOR_CST:
11067 tree tmp = NULL_TREE;
11068 if (VECTOR_MODE_P (mode))
11069 return const_vector_from_tree (exp);
11070 scalar_int_mode int_mode;
11071 if (is_int_mode (mode, &int_mode))
11073 tree type_for_mode = lang_hooks.types.type_for_mode (int_mode, 1);
11074 if (type_for_mode)
11075 tmp = fold_unary_loc (loc, VIEW_CONVERT_EXPR,
11076 type_for_mode, exp);
11078 if (!tmp)
11080 vec<constructor_elt, va_gc> *v;
11081 /* Constructors need to be fixed-length. FIXME. */
11082 unsigned int nunits = VECTOR_CST_NELTS (exp).to_constant ();
11083 vec_alloc (v, nunits);
11084 for (unsigned int i = 0; i < nunits; ++i)
11085 CONSTRUCTOR_APPEND_ELT (v, NULL_TREE, VECTOR_CST_ELT (exp, i));
11086 tmp = build_constructor (type, v);
11088 return expand_expr (tmp, ignore ? const0_rtx : target,
11089 tmode, modifier);
11092 case CONST_DECL:
11093 if (modifier == EXPAND_WRITE)
11095 /* Writing into CONST_DECL is always invalid, but handle it
11096 gracefully. */
11097 addr_space_t as = TYPE_ADDR_SPACE (TREE_TYPE (exp));
11098 scalar_int_mode address_mode = targetm.addr_space.address_mode (as);
11099 op0 = expand_expr_addr_expr_1 (exp, NULL_RTX, address_mode,
11100 EXPAND_NORMAL, as);
11101 op0 = memory_address_addr_space (mode, op0, as);
11102 temp = gen_rtx_MEM (mode, op0);
11103 set_mem_addr_space (temp, as);
11104 return temp;
11106 return expand_expr (DECL_INITIAL (exp), target, VOIDmode, modifier);
11108 case REAL_CST:
11109 /* If optimized, generate immediate CONST_DOUBLE
11110 which will be turned into memory by reload if necessary.
11112 We used to force a register so that loop.c could see it. But
11113 this does not allow gen_* patterns to perform optimizations with
11114 the constants. It also produces two insns in cases like "x = 1.0;".
11115 On most machines, floating-point constants are not permitted in
11116 many insns, so we'd end up copying it to a register in any case.
11118 Now, we do the copying in expand_binop, if appropriate. */
11119 return const_double_from_real_value (TREE_REAL_CST (exp),
11120 TYPE_MODE (TREE_TYPE (exp)));
11122 case FIXED_CST:
11123 return CONST_FIXED_FROM_FIXED_VALUE (TREE_FIXED_CST (exp),
11124 TYPE_MODE (TREE_TYPE (exp)));
11126 case COMPLEX_CST:
11127 /* Handle evaluating a complex constant in a CONCAT target. */
11128 if (original_target && GET_CODE (original_target) == CONCAT)
11130 rtx rtarg, itarg;
11132 mode = TYPE_MODE (TREE_TYPE (TREE_TYPE (exp)));
11133 rtarg = XEXP (original_target, 0);
11134 itarg = XEXP (original_target, 1);
11136 /* Move the real and imaginary parts separately. */
11137 op0 = expand_expr (TREE_REALPART (exp), rtarg, mode, EXPAND_NORMAL);
11138 op1 = expand_expr (TREE_IMAGPART (exp), itarg, mode, EXPAND_NORMAL);
11140 if (op0 != rtarg)
11141 emit_move_insn (rtarg, op0);
11142 if (op1 != itarg)
11143 emit_move_insn (itarg, op1);
11145 return original_target;
11148 /* fall through */
11150 case STRING_CST:
11151 temp = expand_expr_constant (exp, 1, modifier);
11153 /* temp contains a constant address.
11154 On RISC machines where a constant address isn't valid,
11155 make some insns to get that address into a register. */
11156 if (modifier != EXPAND_CONST_ADDRESS
11157 && modifier != EXPAND_INITIALIZER
11158 && modifier != EXPAND_SUM
11159 && ! memory_address_addr_space_p (mode, XEXP (temp, 0),
11160 MEM_ADDR_SPACE (temp)))
11161 return replace_equiv_address (temp,
11162 copy_rtx (XEXP (temp, 0)));
11163 return temp;
11165 case POLY_INT_CST:
11166 return immed_wide_int_const (poly_int_cst_value (exp), mode);
11168 case SAVE_EXPR:
11170 tree val = treeop0;
11171 rtx ret = expand_expr_real_1 (val, target, tmode, modifier, alt_rtl,
11172 inner_reference_p);
11174 if (!SAVE_EXPR_RESOLVED_P (exp))
11176 /* We can indeed still hit this case, typically via builtin
11177 expanders calling save_expr immediately before expanding
11178 something. Assume this means that we only have to deal
11179 with non-BLKmode values. */
11180 gcc_assert (GET_MODE (ret) != BLKmode);
11182 val = build_decl (curr_insn_location (),
11183 VAR_DECL, NULL, TREE_TYPE (exp));
11184 DECL_ARTIFICIAL (val) = 1;
11185 DECL_IGNORED_P (val) = 1;
11186 treeop0 = val;
11187 TREE_OPERAND (exp, 0) = treeop0;
11188 SAVE_EXPR_RESOLVED_P (exp) = 1;
11190 if (!CONSTANT_P (ret))
11191 ret = copy_to_reg (ret);
11192 SET_DECL_RTL (val, ret);
11195 return ret;
11199 case CONSTRUCTOR:
11200 /* If we don't need the result, just ensure we evaluate any
11201 subexpressions. */
11202 if (ignore)
11204 unsigned HOST_WIDE_INT idx;
11205 tree value;
11207 FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (exp), idx, value)
11208 expand_expr (value, const0_rtx, VOIDmode, EXPAND_NORMAL);
11210 return const0_rtx;
11213 return expand_constructor (exp, target, modifier, false);
11215 case TARGET_MEM_REF:
11217 addr_space_t as
11218 = TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (TREE_OPERAND (exp, 0))));
11219 unsigned int align;
11221 op0 = addr_for_mem_ref (exp, as, true);
11222 op0 = memory_address_addr_space (mode, op0, as);
11223 temp = gen_rtx_MEM (mode, op0);
11224 set_mem_attributes (temp, exp, 0);
11225 set_mem_addr_space (temp, as);
11226 align = get_object_alignment (exp);
11227 if (modifier != EXPAND_WRITE
11228 && modifier != EXPAND_MEMORY
11229 && mode != BLKmode
11230 && align < GET_MODE_ALIGNMENT (mode))
11231 temp = expand_misaligned_mem_ref (temp, mode, unsignedp,
11232 align, NULL_RTX, NULL);
11233 return EXTEND_BITINT (temp);
11236 case MEM_REF:
11238 const bool reverse = REF_REVERSE_STORAGE_ORDER (exp);
11239 addr_space_t as
11240 = TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (TREE_OPERAND (exp, 0))));
11241 machine_mode address_mode;
11242 tree base = TREE_OPERAND (exp, 0);
11243 gimple *def_stmt;
11244 unsigned align;
11245 /* Handle expansion of non-aliased memory with non-BLKmode. That
11246 might end up in a register. */
11247 if (mem_ref_refers_to_non_mem_p (exp))
11249 poly_int64 offset = mem_ref_offset (exp).force_shwi ();
11250 base = TREE_OPERAND (base, 0);
11251 poly_uint64 type_size;
11252 if (known_eq (offset, 0)
11253 && !reverse
11254 && poly_int_tree_p (TYPE_SIZE (type), &type_size)
11255 && known_eq (GET_MODE_BITSIZE (DECL_MODE (base)), type_size))
11256 return expand_expr (build1 (VIEW_CONVERT_EXPR, type, base),
11257 target, tmode, modifier);
11258 if (TYPE_MODE (type) == BLKmode)
11260 temp = assign_stack_temp (DECL_MODE (base),
11261 GET_MODE_SIZE (DECL_MODE (base)));
11262 store_expr (base, temp, 0, false, false);
11263 temp = adjust_address (temp, BLKmode, offset);
11264 set_mem_size (temp, int_size_in_bytes (type));
11265 return temp;
11267 exp = build3 (BIT_FIELD_REF, type, base, TYPE_SIZE (type),
11268 bitsize_int (offset * BITS_PER_UNIT));
11269 REF_REVERSE_STORAGE_ORDER (exp) = reverse;
11270 return expand_expr (exp, target, tmode, modifier);
11272 address_mode = targetm.addr_space.address_mode (as);
11273 if ((def_stmt = get_def_for_expr (base, BIT_AND_EXPR)))
11275 tree mask = gimple_assign_rhs2 (def_stmt);
11276 base = build2 (BIT_AND_EXPR, TREE_TYPE (base),
11277 gimple_assign_rhs1 (def_stmt), mask);
11278 TREE_OPERAND (exp, 0) = base;
11280 align = get_object_alignment (exp);
11281 op0 = expand_expr (base, NULL_RTX, VOIDmode, EXPAND_SUM);
11282 op0 = memory_address_addr_space (mode, op0, as);
11283 if (!integer_zerop (TREE_OPERAND (exp, 1)))
11285 rtx off = immed_wide_int_const (mem_ref_offset (exp), address_mode);
11286 op0 = simplify_gen_binary (PLUS, address_mode, op0, off);
11287 op0 = memory_address_addr_space (mode, op0, as);
11289 temp = gen_rtx_MEM (mode, op0);
11290 set_mem_attributes (temp, exp, 0);
11291 set_mem_addr_space (temp, as);
11292 if (TREE_THIS_VOLATILE (exp))
11293 MEM_VOLATILE_P (temp) = 1;
11294 if (modifier == EXPAND_WRITE || modifier == EXPAND_MEMORY)
11295 return temp;
11296 if (!inner_reference_p
11297 && mode != BLKmode
11298 && align < GET_MODE_ALIGNMENT (mode))
11299 temp = expand_misaligned_mem_ref (temp, mode, unsignedp, align,
11300 modifier == EXPAND_STACK_PARM
11301 ? NULL_RTX : target, alt_rtl);
11302 if (reverse)
11303 temp = flip_storage_order (mode, temp);
11304 return EXTEND_BITINT (temp);
11307 case ARRAY_REF:
11310 tree array = treeop0;
11311 tree index = treeop1;
11312 tree init;
11314 /* Fold an expression like: "foo"[2].
11315 This is not done in fold so it won't happen inside &.
11316 Don't fold if this is for wide characters since it's too
11317 difficult to do correctly and this is a very rare case. */
11319 if (modifier != EXPAND_CONST_ADDRESS
11320 && modifier != EXPAND_INITIALIZER
11321 && modifier != EXPAND_MEMORY)
11323 tree t = fold_read_from_constant_string (exp);
11325 if (t)
11326 return expand_expr (t, target, tmode, modifier);
11329 /* If this is a constant index into a constant array,
11330 just get the value from the array. Handle both the cases when
11331 we have an explicit constructor and when our operand is a variable
11332 that was declared const. */
11334 if (modifier != EXPAND_CONST_ADDRESS
11335 && modifier != EXPAND_INITIALIZER
11336 && modifier != EXPAND_MEMORY
11337 && TREE_CODE (array) == CONSTRUCTOR
11338 && ! TREE_SIDE_EFFECTS (array)
11339 && TREE_CODE (index) == INTEGER_CST)
11341 unsigned HOST_WIDE_INT ix;
11342 tree field, value;
11344 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (array), ix,
11345 field, value)
11346 if (tree_int_cst_equal (field, index))
11348 if (!TREE_SIDE_EFFECTS (value))
11349 return expand_expr (fold (value), target, tmode, modifier);
11350 break;
11354 else if (optimize >= 1
11355 && modifier != EXPAND_CONST_ADDRESS
11356 && modifier != EXPAND_INITIALIZER
11357 && modifier != EXPAND_MEMORY
11358 && TREE_READONLY (array) && ! TREE_SIDE_EFFECTS (array)
11359 && TREE_CODE (index) == INTEGER_CST
11360 && (VAR_P (array) || TREE_CODE (array) == CONST_DECL)
11361 && (init = ctor_for_folding (array)) != error_mark_node)
11363 if (init == NULL_TREE)
11365 tree value = build_zero_cst (type);
11366 if (TREE_CODE (value) == CONSTRUCTOR)
11368 /* If VALUE is a CONSTRUCTOR, this optimization is only
11369 useful if this doesn't store the CONSTRUCTOR into
11370 memory. If it does, it is more efficient to just
11371 load the data from the array directly. */
11372 rtx ret = expand_constructor (value, target,
11373 modifier, true);
11374 if (ret == NULL_RTX)
11375 value = NULL_TREE;
11378 if (value)
11379 return expand_expr (value, target, tmode, modifier);
11381 else if (TREE_CODE (init) == CONSTRUCTOR)
11383 unsigned HOST_WIDE_INT ix;
11384 tree field, value;
11386 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (init), ix,
11387 field, value)
11388 if (tree_int_cst_equal (field, index))
11390 if (TREE_SIDE_EFFECTS (value))
11391 break;
11393 if (TREE_CODE (value) == CONSTRUCTOR)
11395 /* If VALUE is a CONSTRUCTOR, this
11396 optimization is only useful if
11397 this doesn't store the CONSTRUCTOR
11398 into memory. If it does, it is more
11399 efficient to just load the data from
11400 the array directly. */
11401 rtx ret = expand_constructor (value, target,
11402 modifier, true);
11403 if (ret == NULL_RTX)
11404 break;
11407 return
11408 expand_expr (fold (value), target, tmode, modifier);
11411 else if (TREE_CODE (init) == STRING_CST)
11413 tree low_bound = array_ref_low_bound (exp);
11414 tree index1 = fold_convert_loc (loc, sizetype, treeop1);
11416 /* Optimize the special case of a zero lower bound.
11418 We convert the lower bound to sizetype to avoid problems
11419 with constant folding. E.g. suppose the lower bound is
11420 1 and its mode is QI. Without the conversion
11421 (ARRAY + (INDEX - (unsigned char)1))
11422 becomes
11423 (ARRAY + (-(unsigned char)1) + INDEX)
11424 which becomes
11425 (ARRAY + 255 + INDEX). Oops! */
11426 if (!integer_zerop (low_bound))
11427 index1 = size_diffop_loc (loc, index1,
11428 fold_convert_loc (loc, sizetype,
11429 low_bound));
11431 if (tree_fits_uhwi_p (index1)
11432 && compare_tree_int (index1, TREE_STRING_LENGTH (init)) < 0)
11434 tree char_type = TREE_TYPE (TREE_TYPE (init));
11435 scalar_int_mode char_mode;
11437 if (is_int_mode (TYPE_MODE (char_type), &char_mode)
11438 && GET_MODE_SIZE (char_mode) == 1)
11439 return gen_int_mode (TREE_STRING_POINTER (init)
11440 [TREE_INT_CST_LOW (index1)],
11441 char_mode);
11446 goto normal_inner_ref;
11448 case COMPONENT_REF:
11449 gcc_assert (TREE_CODE (treeop0) != CONSTRUCTOR);
11450 /* Fall through. */
11451 case BIT_FIELD_REF:
11452 case ARRAY_RANGE_REF:
11453 normal_inner_ref:
11455 machine_mode mode1, mode2;
11456 poly_int64 bitsize, bitpos, bytepos;
11457 tree offset;
11458 int reversep, volatilep = 0;
11459 tree tem
11460 = get_inner_reference (exp, &bitsize, &bitpos, &offset, &mode1,
11461 &unsignedp, &reversep, &volatilep);
11462 rtx orig_op0, memloc;
11463 bool clear_mem_expr = false;
11464 bool must_force_mem;
11466 /* If we got back the original object, something is wrong. Perhaps
11467 we are evaluating an expression too early. In any event, don't
11468 infinitely recurse. */
11469 gcc_assert (tem != exp);
11471 /* Make sure bitpos is not negative, this can wreak havoc later. */
11472 if (maybe_lt (bitpos, 0))
11474 gcc_checking_assert (offset == NULL_TREE);
11475 offset = size_int (bits_to_bytes_round_down (bitpos));
11476 bitpos = num_trailing_bits (bitpos);
11479 /* If we have either an offset, a BLKmode result, or a reference
11480 outside the underlying object, we must force it to memory.
11481 Such a case can occur in Ada if we have unchecked conversion
11482 of an expression from a scalar type to an aggregate type or
11483 for an ARRAY_RANGE_REF whose type is BLKmode, or if we were
11484 passed a partially uninitialized object or a view-conversion
11485 to a larger size. */
11486 must_force_mem = offset != NULL_TREE
11487 || mode1 == BLKmode
11488 || (mode == BLKmode
11489 && !int_mode_for_size (bitsize, 1).exists ());
11491 const enum expand_modifier tem_modifier
11492 = must_force_mem
11493 ? EXPAND_MEMORY
11494 : modifier == EXPAND_SUM ? EXPAND_NORMAL : modifier;
11496 /* If TEM's type is a union of variable size, pass TARGET to the inner
11497 computation, since it will need a temporary and TARGET is known
11498 to have to do. This occurs in unchecked conversion in Ada. */
11499 const rtx tem_target
11500 = TREE_CODE (TREE_TYPE (tem)) == UNION_TYPE
11501 && COMPLETE_TYPE_P (TREE_TYPE (tem))
11502 && TREE_CODE (TYPE_SIZE (TREE_TYPE (tem))) != INTEGER_CST
11503 && modifier != EXPAND_STACK_PARM
11504 ? target
11505 : NULL_RTX;
11507 orig_op0 = op0
11508 = expand_expr_real (tem, tem_target, VOIDmode, tem_modifier, NULL,
11509 true);
11511 /* If the field has a mode, we want to access it in the
11512 field's mode, not the computed mode.
11513 If a MEM has VOIDmode (external with incomplete type),
11514 use BLKmode for it instead. */
11515 if (MEM_P (op0))
11517 if (mode1 != VOIDmode)
11518 op0 = adjust_address (op0, mode1, 0);
11519 else if (GET_MODE (op0) == VOIDmode)
11520 op0 = adjust_address (op0, BLKmode, 0);
11523 mode2
11524 = CONSTANT_P (op0) ? TYPE_MODE (TREE_TYPE (tem)) : GET_MODE (op0);
11526 /* See above for the rationale. */
11527 if (maybe_gt (bitpos + bitsize, GET_MODE_BITSIZE (mode2)))
11528 must_force_mem = true;
11530 /* Handle CONCAT first. */
11531 if (GET_CODE (op0) == CONCAT && !must_force_mem)
11533 if (known_eq (bitpos, 0)
11534 && known_eq (bitsize, GET_MODE_BITSIZE (GET_MODE (op0)))
11535 && COMPLEX_MODE_P (mode1)
11536 && COMPLEX_MODE_P (GET_MODE (op0))
11537 && (GET_MODE_PRECISION (GET_MODE_INNER (mode1))
11538 == GET_MODE_PRECISION (GET_MODE_INNER (GET_MODE (op0)))))
11540 if (reversep)
11541 op0 = flip_storage_order (GET_MODE (op0), op0);
11542 if (mode1 != GET_MODE (op0))
11544 rtx parts[2];
11545 for (int i = 0; i < 2; i++)
11547 rtx op = read_complex_part (op0, i != 0);
11548 if (GET_CODE (op) == SUBREG)
11549 op = force_reg (GET_MODE (op), op);
11550 temp = gen_lowpart_common (GET_MODE_INNER (mode1), op);
11551 if (temp)
11552 op = temp;
11553 else
11555 if (!REG_P (op) && !MEM_P (op))
11556 op = force_reg (GET_MODE (op), op);
11557 op = gen_lowpart (GET_MODE_INNER (mode1), op);
11559 parts[i] = op;
11561 op0 = gen_rtx_CONCAT (mode1, parts[0], parts[1]);
11563 return op0;
11565 if (known_eq (bitpos, 0)
11566 && known_eq (bitsize,
11567 GET_MODE_BITSIZE (GET_MODE (XEXP (op0, 0))))
11568 && maybe_ne (bitsize, 0))
11570 op0 = XEXP (op0, 0);
11571 mode2 = GET_MODE (op0);
11573 else if (known_eq (bitpos,
11574 GET_MODE_BITSIZE (GET_MODE (XEXP (op0, 0))))
11575 && known_eq (bitsize,
11576 GET_MODE_BITSIZE (GET_MODE (XEXP (op0, 1))))
11577 && maybe_ne (bitpos, 0)
11578 && maybe_ne (bitsize, 0))
11580 op0 = XEXP (op0, 1);
11581 bitpos = 0;
11582 mode2 = GET_MODE (op0);
11584 else
11585 /* Otherwise force into memory. */
11586 must_force_mem = true;
11589 /* If this is a constant, put it in a register if it is a legitimate
11590 constant and we don't need a memory reference. */
11591 if (CONSTANT_P (op0)
11592 && mode2 != BLKmode
11593 && targetm.legitimate_constant_p (mode2, op0)
11594 && !must_force_mem)
11595 op0 = force_reg (mode2, op0);
11597 /* Otherwise, if this is a constant, try to force it to the constant
11598 pool. Note that back-ends, e.g. MIPS, may refuse to do so if it
11599 is a legitimate constant. */
11600 else if (CONSTANT_P (op0) && (memloc = force_const_mem (mode2, op0)))
11601 op0 = validize_mem (memloc);
11603 /* Otherwise, if this is a constant or the object is not in memory
11604 and need be, put it there. */
11605 else if (CONSTANT_P (op0) || (!MEM_P (op0) && must_force_mem))
11607 memloc = assign_temp (TREE_TYPE (tem), 1, 1);
11608 emit_move_insn (memloc, op0);
11609 op0 = memloc;
11610 clear_mem_expr = true;
11613 if (offset)
11615 machine_mode address_mode;
11616 rtx offset_rtx = expand_expr (offset, NULL_RTX, VOIDmode,
11617 EXPAND_SUM);
11619 gcc_assert (MEM_P (op0));
11621 address_mode = get_address_mode (op0);
11622 if (GET_MODE (offset_rtx) != address_mode)
11624 /* We cannot be sure that the RTL in offset_rtx is valid outside
11625 of a memory address context, so force it into a register
11626 before attempting to convert it to the desired mode. */
11627 offset_rtx = force_operand (offset_rtx, NULL_RTX);
11628 offset_rtx = convert_to_mode (address_mode, offset_rtx, 0);
11631 /* See the comment in expand_assignment for the rationale. */
11632 if (mode1 != VOIDmode
11633 && maybe_ne (bitpos, 0)
11634 && maybe_gt (bitsize, 0)
11635 && multiple_p (bitpos, BITS_PER_UNIT, &bytepos)
11636 && multiple_p (bitpos, bitsize)
11637 && multiple_p (bitsize, GET_MODE_ALIGNMENT (mode1))
11638 && MEM_ALIGN (op0) >= GET_MODE_ALIGNMENT (mode1))
11640 op0 = adjust_address (op0, mode1, bytepos);
11641 bitpos = 0;
11644 op0 = offset_address (op0, offset_rtx,
11645 highest_pow2_factor (offset));
11648 /* If OFFSET is making OP0 more aligned than BIGGEST_ALIGNMENT,
11649 record its alignment as BIGGEST_ALIGNMENT. */
11650 if (MEM_P (op0)
11651 && known_eq (bitpos, 0)
11652 && offset != 0
11653 && is_aligning_offset (offset, tem))
11654 set_mem_align (op0, BIGGEST_ALIGNMENT);
11656 /* Don't forget about volatility even if this is a bitfield. */
11657 if (MEM_P (op0) && volatilep && ! MEM_VOLATILE_P (op0))
11659 if (op0 == orig_op0)
11660 op0 = copy_rtx (op0);
11662 MEM_VOLATILE_P (op0) = 1;
11665 if (MEM_P (op0) && TREE_CODE (tem) == FUNCTION_DECL)
11667 if (op0 == orig_op0)
11668 op0 = copy_rtx (op0);
11670 set_mem_align (op0, BITS_PER_UNIT);
11673 /* In cases where an aligned union has an unaligned object
11674 as a field, we might be extracting a BLKmode value from
11675 an integer-mode (e.g., SImode) object. Handle this case
11676 by doing the extract into an object as wide as the field
11677 (which we know to be the width of a basic mode), then
11678 storing into memory, and changing the mode to BLKmode. */
11679 if (mode1 == VOIDmode
11680 || REG_P (op0) || GET_CODE (op0) == SUBREG
11681 || (mode1 != BLKmode && ! direct_load[(int) mode1]
11682 && GET_MODE_CLASS (mode) != MODE_COMPLEX_INT
11683 && GET_MODE_CLASS (mode) != MODE_COMPLEX_FLOAT
11684 && modifier != EXPAND_CONST_ADDRESS
11685 && modifier != EXPAND_INITIALIZER
11686 && modifier != EXPAND_MEMORY)
11687 /* If the bitfield is volatile and the bitsize
11688 is narrower than the access size of the bitfield,
11689 we need to extract bitfields from the access. */
11690 || (volatilep && TREE_CODE (exp) == COMPONENT_REF
11691 && DECL_BIT_FIELD_TYPE (TREE_OPERAND (exp, 1))
11692 && mode1 != BLKmode
11693 && maybe_lt (bitsize, GET_MODE_SIZE (mode1) * BITS_PER_UNIT))
11694 /* If the field isn't aligned enough to fetch as a memref,
11695 fetch it as a bit field. */
11696 || (mode1 != BLKmode
11697 && (((MEM_P (op0)
11698 ? MEM_ALIGN (op0) < GET_MODE_ALIGNMENT (mode1)
11699 || !multiple_p (bitpos, GET_MODE_ALIGNMENT (mode1))
11700 : TYPE_ALIGN (TREE_TYPE (tem)) < GET_MODE_ALIGNMENT (mode)
11701 || !multiple_p (bitpos, GET_MODE_ALIGNMENT (mode)))
11702 && modifier != EXPAND_MEMORY
11703 && ((modifier == EXPAND_CONST_ADDRESS
11704 || modifier == EXPAND_INITIALIZER)
11705 ? STRICT_ALIGNMENT
11706 : targetm.slow_unaligned_access (mode1,
11707 MEM_ALIGN (op0))))
11708 || !multiple_p (bitpos, BITS_PER_UNIT)))
11709 /* If the type and the field are a constant size and the
11710 size of the type isn't the same size as the bitfield,
11711 we must use bitfield operations. */
11712 || (known_size_p (bitsize)
11713 && TYPE_SIZE (TREE_TYPE (exp))
11714 && poly_int_tree_p (TYPE_SIZE (TREE_TYPE (exp)))
11715 && maybe_ne (wi::to_poly_offset (TYPE_SIZE (TREE_TYPE (exp))),
11716 bitsize)))
11718 machine_mode ext_mode = mode;
11720 if (ext_mode == BLKmode
11721 && ! (target != 0 && MEM_P (op0)
11722 && MEM_P (target)
11723 && multiple_p (bitpos, BITS_PER_UNIT)))
11724 ext_mode = int_mode_for_size (bitsize, 1).else_blk ();
11726 if (ext_mode == BLKmode)
11728 if (target == 0)
11729 target = assign_temp (type, 1, 1);
11731 /* ??? Unlike the similar test a few lines below, this one is
11732 very likely obsolete. */
11733 if (known_eq (bitsize, 0))
11734 return target;
11736 /* In this case, BITPOS must start at a byte boundary and
11737 TARGET, if specified, must be a MEM. */
11738 gcc_assert (MEM_P (op0)
11739 && (!target || MEM_P (target)));
11741 bytepos = exact_div (bitpos, BITS_PER_UNIT);
11742 poly_int64 bytesize = bits_to_bytes_round_up (bitsize);
11743 emit_block_move (target,
11744 adjust_address (op0, VOIDmode, bytepos),
11745 gen_int_mode (bytesize, Pmode),
11746 (modifier == EXPAND_STACK_PARM
11747 ? BLOCK_OP_CALL_PARM : BLOCK_OP_NORMAL));
11749 return target;
11752 /* If we have nothing to extract, the result will be 0 for targets
11753 with SHIFT_COUNT_TRUNCATED == 0 and garbage otherwise. Always
11754 return 0 for the sake of consistency, as reading a zero-sized
11755 bitfield is valid in Ada and the value is fully specified. */
11756 if (known_eq (bitsize, 0))
11757 return const0_rtx;
11759 op0 = validize_mem (op0);
11761 if (MEM_P (op0) && REG_P (XEXP (op0, 0)))
11762 mark_reg_pointer (XEXP (op0, 0), MEM_ALIGN (op0));
11764 /* If the result has aggregate type and the extraction is done in
11765 an integral mode, then the field may be not aligned on a byte
11766 boundary; in this case, if it has reverse storage order, it
11767 needs to be extracted as a scalar field with reverse storage
11768 order and put back into memory order afterwards. */
11769 if (AGGREGATE_TYPE_P (type)
11770 && GET_MODE_CLASS (ext_mode) == MODE_INT)
11771 reversep = TYPE_REVERSE_STORAGE_ORDER (type);
11773 gcc_checking_assert (known_ge (bitpos, 0));
11774 op0 = extract_bit_field (op0, bitsize, bitpos, unsignedp,
11775 (modifier == EXPAND_STACK_PARM
11776 ? NULL_RTX : target),
11777 ext_mode, ext_mode, reversep, alt_rtl);
11779 /* If the result has aggregate type and the mode of OP0 is an
11780 integral mode then, if BITSIZE is narrower than this mode
11781 and this is for big-endian data, we must put the field
11782 into the high-order bits. And we must also put it back
11783 into memory order if it has been previously reversed. */
11784 scalar_int_mode op0_mode;
11785 if (AGGREGATE_TYPE_P (type)
11786 && is_int_mode (GET_MODE (op0), &op0_mode))
11788 HOST_WIDE_INT size = GET_MODE_BITSIZE (op0_mode);
11790 gcc_checking_assert (known_le (bitsize, size));
11791 if (maybe_lt (bitsize, size)
11792 && reversep ? !BYTES_BIG_ENDIAN : BYTES_BIG_ENDIAN)
11793 op0 = expand_shift (LSHIFT_EXPR, op0_mode, op0,
11794 size - bitsize, op0, 1);
11796 if (reversep)
11797 op0 = flip_storage_order (op0_mode, op0);
11800 /* If the result type is BLKmode, store the data into a temporary
11801 of the appropriate type, but with the mode corresponding to the
11802 mode for the data we have (op0's mode). */
11803 if (mode == BLKmode)
11805 rtx new_rtx
11806 = assign_stack_temp_for_type (ext_mode,
11807 GET_MODE_BITSIZE (ext_mode),
11808 type);
11809 emit_move_insn (new_rtx, op0);
11810 op0 = copy_rtx (new_rtx);
11811 PUT_MODE (op0, BLKmode);
11814 return op0;
11817 /* If the result is BLKmode, use that to access the object
11818 now as well. */
11819 if (mode == BLKmode)
11820 mode1 = BLKmode;
11822 /* Get a reference to just this component. */
11823 bytepos = bits_to_bytes_round_down (bitpos);
11824 if (modifier == EXPAND_CONST_ADDRESS
11825 || modifier == EXPAND_SUM || modifier == EXPAND_INITIALIZER)
11826 op0 = adjust_address_nv (op0, mode1, bytepos);
11827 else
11828 op0 = adjust_address (op0, mode1, bytepos);
11830 if (op0 == orig_op0)
11831 op0 = copy_rtx (op0);
11833 /* Don't set memory attributes if the base expression is
11834 SSA_NAME that got expanded as a MEM or a CONSTANT. In that case,
11835 we should just honor its original memory attributes. */
11836 if (!(TREE_CODE (tem) == SSA_NAME
11837 && (MEM_P (orig_op0) || CONSTANT_P (orig_op0))))
11838 set_mem_attributes (op0, exp, 0);
11840 if (REG_P (XEXP (op0, 0)))
11841 mark_reg_pointer (XEXP (op0, 0), MEM_ALIGN (op0));
11843 /* If op0 is a temporary because the original expressions was forced
11844 to memory, clear MEM_EXPR so that the original expression cannot
11845 be marked as addressable through MEM_EXPR of the temporary. */
11846 if (clear_mem_expr)
11847 set_mem_expr (op0, NULL_TREE);
11849 MEM_VOLATILE_P (op0) |= volatilep;
11851 if (reversep
11852 && modifier != EXPAND_MEMORY
11853 && modifier != EXPAND_WRITE)
11854 op0 = flip_storage_order (mode1, op0);
11856 op0 = EXTEND_BITINT (op0);
11858 if (mode == mode1 || mode1 == BLKmode || mode1 == tmode
11859 || modifier == EXPAND_CONST_ADDRESS
11860 || modifier == EXPAND_INITIALIZER)
11861 return op0;
11863 if (target == 0)
11864 target = gen_reg_rtx (tmode != VOIDmode ? tmode : mode);
11866 convert_move (target, op0, unsignedp);
11867 return target;
11870 case OBJ_TYPE_REF:
11871 return expand_expr (OBJ_TYPE_REF_EXPR (exp), target, tmode, modifier);
11873 case CALL_EXPR:
11874 /* All valid uses of __builtin_va_arg_pack () are removed during
11875 inlining. */
11876 if (CALL_EXPR_VA_ARG_PACK (exp))
11877 error ("invalid use of %<__builtin_va_arg_pack ()%>");
11879 tree fndecl = get_callee_fndecl (exp), attr;
11881 if (fndecl
11882 /* Don't diagnose the error attribute in thunks, those are
11883 artificially created. */
11884 && !CALL_FROM_THUNK_P (exp)
11885 && (attr = lookup_attribute ("error",
11886 DECL_ATTRIBUTES (fndecl))) != NULL)
11888 const char *ident = lang_hooks.decl_printable_name (fndecl, 1);
11889 error ("call to %qs declared with attribute error: %s",
11890 identifier_to_locale (ident),
11891 TREE_STRING_POINTER (TREE_VALUE (TREE_VALUE (attr))));
11893 if (fndecl
11894 /* Don't diagnose the warning attribute in thunks, those are
11895 artificially created. */
11896 && !CALL_FROM_THUNK_P (exp)
11897 && (attr = lookup_attribute ("warning",
11898 DECL_ATTRIBUTES (fndecl))) != NULL)
11900 const char *ident = lang_hooks.decl_printable_name (fndecl, 1);
11901 warning_at (EXPR_LOCATION (exp),
11902 OPT_Wattribute_warning,
11903 "call to %qs declared with attribute warning: %s",
11904 identifier_to_locale (ident),
11905 TREE_STRING_POINTER (TREE_VALUE (TREE_VALUE (attr))));
11908 /* Check for a built-in function. */
11909 if (fndecl && fndecl_built_in_p (fndecl))
11911 gcc_assert (DECL_BUILT_IN_CLASS (fndecl) != BUILT_IN_FRONTEND);
11912 return expand_builtin (exp, target, subtarget, tmode, ignore);
11915 return expand_call (exp, target, ignore);
11917 case VIEW_CONVERT_EXPR:
11918 op0 = NULL_RTX;
11920 /* If we are converting to BLKmode, try to avoid an intermediate
11921 temporary by fetching an inner memory reference. */
11922 if (mode == BLKmode
11923 && poly_int_tree_p (TYPE_SIZE (type))
11924 && TYPE_MODE (TREE_TYPE (treeop0)) != BLKmode
11925 && handled_component_p (treeop0))
11927 machine_mode mode1;
11928 poly_int64 bitsize, bitpos, bytepos;
11929 tree offset;
11930 int reversep, volatilep = 0;
11931 tree tem
11932 = get_inner_reference (treeop0, &bitsize, &bitpos, &offset, &mode1,
11933 &unsignedp, &reversep, &volatilep);
11935 /* ??? We should work harder and deal with non-zero offsets. */
11936 if (!offset
11937 && multiple_p (bitpos, BITS_PER_UNIT, &bytepos)
11938 && !reversep
11939 && known_size_p (bitsize)
11940 && known_eq (wi::to_poly_offset (TYPE_SIZE (type)), bitsize))
11942 /* See the normal_inner_ref case for the rationale. */
11943 rtx orig_op0
11944 = expand_expr_real (tem,
11945 (TREE_CODE (TREE_TYPE (tem)) == UNION_TYPE
11946 && (TREE_CODE (TYPE_SIZE (TREE_TYPE (tem)))
11947 != INTEGER_CST)
11948 && modifier != EXPAND_STACK_PARM
11949 ? target : NULL_RTX),
11950 VOIDmode,
11951 modifier == EXPAND_SUM ? EXPAND_NORMAL : modifier,
11952 NULL, true);
11954 if (MEM_P (orig_op0))
11956 op0 = orig_op0;
11958 /* Get a reference to just this component. */
11959 if (modifier == EXPAND_CONST_ADDRESS
11960 || modifier == EXPAND_SUM
11961 || modifier == EXPAND_INITIALIZER)
11962 op0 = adjust_address_nv (op0, mode, bytepos);
11963 else
11964 op0 = adjust_address (op0, mode, bytepos);
11966 if (op0 == orig_op0)
11967 op0 = copy_rtx (op0);
11969 set_mem_attributes (op0, treeop0, 0);
11970 if (REG_P (XEXP (op0, 0)))
11971 mark_reg_pointer (XEXP (op0, 0), MEM_ALIGN (op0));
11973 MEM_VOLATILE_P (op0) |= volatilep;
11978 if (!op0)
11979 op0 = expand_expr_real (treeop0, NULL_RTX, VOIDmode, modifier,
11980 NULL, inner_reference_p);
11982 /* If the input and output modes are both the same, we are done. */
11983 if (mode == GET_MODE (op0))
11985 /* If neither mode is BLKmode, and both modes are the same size
11986 then we can use gen_lowpart. */
11987 else if (mode != BLKmode
11988 && GET_MODE (op0) != BLKmode
11989 && known_eq (GET_MODE_PRECISION (mode),
11990 GET_MODE_PRECISION (GET_MODE (op0)))
11991 && !COMPLEX_MODE_P (GET_MODE (op0)))
11993 if (GET_CODE (op0) == SUBREG)
11994 op0 = force_reg (GET_MODE (op0), op0);
11995 temp = gen_lowpart_common (mode, op0);
11996 if (temp)
11997 op0 = temp;
11998 else
12000 if (!REG_P (op0) && !MEM_P (op0))
12001 op0 = force_reg (GET_MODE (op0), op0);
12002 op0 = gen_lowpart (mode, op0);
12005 /* If both types are integral, convert from one mode to the other. */
12006 else if (INTEGRAL_TYPE_P (type) && INTEGRAL_TYPE_P (TREE_TYPE (treeop0)))
12007 op0 = convert_modes (mode, GET_MODE (op0), op0,
12008 TYPE_UNSIGNED (TREE_TYPE (treeop0)));
12009 /* If the output type is a bit-field type, do an extraction. */
12010 else if (reduce_bit_field)
12011 return extract_bit_field (op0, TYPE_PRECISION (type), 0,
12012 TYPE_UNSIGNED (type), NULL_RTX,
12013 mode, mode, false, NULL);
12014 /* As a last resort, spill op0 to memory, and reload it in a
12015 different mode. */
12016 else if (!MEM_P (op0))
12018 /* If the operand is not a MEM, force it into memory. Since we
12019 are going to be changing the mode of the MEM, don't call
12020 force_const_mem for constants because we don't allow pool
12021 constants to change mode. */
12022 tree inner_type = TREE_TYPE (treeop0);
12024 gcc_assert (!TREE_ADDRESSABLE (exp));
12026 if (target == 0 || GET_MODE (target) != TYPE_MODE (inner_type))
12027 target
12028 = assign_stack_temp_for_type
12029 (TYPE_MODE (inner_type),
12030 GET_MODE_SIZE (TYPE_MODE (inner_type)), inner_type);
12032 emit_move_insn (target, op0);
12033 op0 = target;
12036 /* If OP0 is (now) a MEM, we need to deal with alignment issues. If the
12037 output type is such that the operand is known to be aligned, indicate
12038 that it is. Otherwise, we need only be concerned about alignment for
12039 non-BLKmode results. */
12040 if (MEM_P (op0))
12042 enum insn_code icode;
12044 if (modifier != EXPAND_WRITE
12045 && modifier != EXPAND_MEMORY
12046 && !inner_reference_p
12047 && mode != BLKmode
12048 && MEM_ALIGN (op0) < GET_MODE_ALIGNMENT (mode))
12050 /* If the target does have special handling for unaligned
12051 loads of mode then use them. */
12052 if ((icode = optab_handler (movmisalign_optab, mode))
12053 != CODE_FOR_nothing)
12055 rtx reg;
12057 op0 = adjust_address (op0, mode, 0);
12058 /* We've already validated the memory, and we're creating a
12059 new pseudo destination. The predicates really can't
12060 fail. */
12061 reg = gen_reg_rtx (mode);
12063 /* Nor can the insn generator. */
12064 rtx_insn *insn = GEN_FCN (icode) (reg, op0);
12065 emit_insn (insn);
12066 return reg;
12068 else if (STRICT_ALIGNMENT)
12070 poly_uint64 mode_size = GET_MODE_SIZE (mode);
12071 poly_uint64 temp_size = mode_size;
12072 if (GET_MODE (op0) != BLKmode)
12073 temp_size = upper_bound (temp_size,
12074 GET_MODE_SIZE (GET_MODE (op0)));
12075 rtx new_rtx
12076 = assign_stack_temp_for_type (mode, temp_size, type);
12077 rtx new_with_op0_mode
12078 = adjust_address (new_rtx, GET_MODE (op0), 0);
12080 gcc_assert (!TREE_ADDRESSABLE (exp));
12082 if (GET_MODE (op0) == BLKmode)
12084 rtx size_rtx = gen_int_mode (mode_size, Pmode);
12085 emit_block_move (new_with_op0_mode, op0, size_rtx,
12086 (modifier == EXPAND_STACK_PARM
12087 ? BLOCK_OP_CALL_PARM
12088 : BLOCK_OP_NORMAL));
12090 else
12091 emit_move_insn (new_with_op0_mode, op0);
12093 op0 = new_rtx;
12097 op0 = adjust_address (op0, mode, 0);
12100 return op0;
12102 case MODIFY_EXPR:
12104 tree lhs = treeop0;
12105 tree rhs = treeop1;
12106 gcc_assert (ignore);
12108 /* Check for |= or &= of a bitfield of size one into another bitfield
12109 of size 1. In this case, (unless we need the result of the
12110 assignment) we can do this more efficiently with a
12111 test followed by an assignment, if necessary.
12113 ??? At this point, we can't get a BIT_FIELD_REF here. But if
12114 things change so we do, this code should be enhanced to
12115 support it. */
12116 if (TREE_CODE (lhs) == COMPONENT_REF
12117 && (TREE_CODE (rhs) == BIT_IOR_EXPR
12118 || TREE_CODE (rhs) == BIT_AND_EXPR)
12119 && TREE_OPERAND (rhs, 0) == lhs
12120 && TREE_CODE (TREE_OPERAND (rhs, 1)) == COMPONENT_REF
12121 && integer_onep (DECL_SIZE (TREE_OPERAND (lhs, 1)))
12122 && integer_onep (DECL_SIZE (TREE_OPERAND (TREE_OPERAND (rhs, 1), 1))))
12124 rtx_code_label *label = gen_label_rtx ();
12125 int value = TREE_CODE (rhs) == BIT_IOR_EXPR;
12126 profile_probability prob = profile_probability::uninitialized ();
12127 if (value)
12128 jumpifnot (TREE_OPERAND (rhs, 1), label, prob);
12129 else
12130 jumpif (TREE_OPERAND (rhs, 1), label, prob);
12131 expand_assignment (lhs, build_int_cst (TREE_TYPE (rhs), value),
12132 false);
12133 do_pending_stack_adjust ();
12134 emit_label (label);
12135 return const0_rtx;
12138 expand_assignment (lhs, rhs, false);
12139 return const0_rtx;
12142 case ADDR_EXPR:
12143 return expand_expr_addr_expr (exp, target, tmode, modifier);
12145 case REALPART_EXPR:
12146 op0 = expand_normal (treeop0);
12147 return read_complex_part (op0, false);
12149 case IMAGPART_EXPR:
12150 op0 = expand_normal (treeop0);
12151 return read_complex_part (op0, true);
12153 case RETURN_EXPR:
12154 case LABEL_EXPR:
12155 case GOTO_EXPR:
12156 case SWITCH_EXPR:
12157 case ASM_EXPR:
12158 /* Expanded in cfgexpand.cc. */
12159 gcc_unreachable ();
12161 case TRY_CATCH_EXPR:
12162 case CATCH_EXPR:
12163 case EH_FILTER_EXPR:
12164 case TRY_FINALLY_EXPR:
12165 case EH_ELSE_EXPR:
12166 /* Lowered by tree-eh.cc. */
12167 gcc_unreachable ();
12169 case WITH_CLEANUP_EXPR:
12170 case CLEANUP_POINT_EXPR:
12171 case TARGET_EXPR:
12172 case CASE_LABEL_EXPR:
12173 case VA_ARG_EXPR:
12174 case BIND_EXPR:
12175 case INIT_EXPR:
12176 case CONJ_EXPR:
12177 case COMPOUND_EXPR:
12178 case PREINCREMENT_EXPR:
12179 case PREDECREMENT_EXPR:
12180 case POSTINCREMENT_EXPR:
12181 case POSTDECREMENT_EXPR:
12182 case LOOP_EXPR:
12183 case EXIT_EXPR:
12184 case COMPOUND_LITERAL_EXPR:
12185 /* Lowered by gimplify.cc. */
12186 gcc_unreachable ();
12188 case FDESC_EXPR:
12189 /* Function descriptors are not valid except for as
12190 initialization constants, and should not be expanded. */
12191 gcc_unreachable ();
12193 case WITH_SIZE_EXPR:
12194 /* WITH_SIZE_EXPR expands to its first argument. The caller should
12195 have pulled out the size to use in whatever context it needed. */
12196 return expand_expr_real (treeop0, original_target, tmode,
12197 modifier, alt_rtl, inner_reference_p);
12199 default:
12200 return expand_expr_real_2 (&ops, target, tmode, modifier);
12203 #undef EXTEND_BITINT
12205 /* Subroutine of above: reduce EXP to the precision of TYPE (in the
12206 signedness of TYPE), possibly returning the result in TARGET.
12207 TYPE is known to be a partial integer type. */
12208 static rtx
12209 reduce_to_bit_field_precision (rtx exp, rtx target, tree type)
12211 scalar_int_mode mode = SCALAR_INT_TYPE_MODE (type);
12212 HOST_WIDE_INT prec = TYPE_PRECISION (type);
12213 gcc_assert ((GET_MODE (exp) == VOIDmode || GET_MODE (exp) == mode)
12214 && (!target || GET_MODE (target) == mode));
12216 /* For constant values, reduce using wide_int_to_tree. */
12217 if (poly_int_rtx_p (exp))
12219 auto value = wi::to_poly_wide (exp, mode);
12220 tree t = wide_int_to_tree (type, value);
12221 return expand_expr (t, target, VOIDmode, EXPAND_NORMAL);
12223 else if (TYPE_UNSIGNED (type))
12225 rtx mask = immed_wide_int_const
12226 (wi::mask (prec, false, GET_MODE_PRECISION (mode)), mode);
12227 return expand_and (mode, exp, mask, target);
12229 else
12231 int count = GET_MODE_PRECISION (mode) - prec;
12232 exp = expand_shift (LSHIFT_EXPR, mode, exp, count, target, 0);
12233 return expand_shift (RSHIFT_EXPR, mode, exp, count, target, 0);
12237 /* Subroutine of above: returns true if OFFSET corresponds to an offset that
12238 when applied to the address of EXP produces an address known to be
12239 aligned more than BIGGEST_ALIGNMENT. */
12241 static bool
12242 is_aligning_offset (const_tree offset, const_tree exp)
12244 /* Strip off any conversions. */
12245 while (CONVERT_EXPR_P (offset))
12246 offset = TREE_OPERAND (offset, 0);
12248 /* We must now have a BIT_AND_EXPR with a constant that is one less than
12249 power of 2 and which is larger than BIGGEST_ALIGNMENT. */
12250 if (TREE_CODE (offset) != BIT_AND_EXPR
12251 || !tree_fits_uhwi_p (TREE_OPERAND (offset, 1))
12252 || compare_tree_int (TREE_OPERAND (offset, 1),
12253 BIGGEST_ALIGNMENT / BITS_PER_UNIT) <= 0
12254 || !pow2p_hwi (tree_to_uhwi (TREE_OPERAND (offset, 1)) + 1))
12255 return false;
12257 /* Look at the first operand of BIT_AND_EXPR and strip any conversion.
12258 It must be NEGATE_EXPR. Then strip any more conversions. */
12259 offset = TREE_OPERAND (offset, 0);
12260 while (CONVERT_EXPR_P (offset))
12261 offset = TREE_OPERAND (offset, 0);
12263 if (TREE_CODE (offset) != NEGATE_EXPR)
12264 return false;
12266 offset = TREE_OPERAND (offset, 0);
12267 while (CONVERT_EXPR_P (offset))
12268 offset = TREE_OPERAND (offset, 0);
12270 /* This must now be the address of EXP. */
12271 return TREE_CODE (offset) == ADDR_EXPR && TREE_OPERAND (offset, 0) == exp;
12274 /* Return a STRING_CST corresponding to ARG's constant initializer either
12275 if it's a string constant, or, when VALREP is set, any other constant,
12276 or null otherwise.
12277 On success, set *PTR_OFFSET to the (possibly non-constant) byte offset
12278 within the byte string that ARG is references. If nonnull set *MEM_SIZE
12279 to the size of the byte string. If nonnull, set *DECL to the constant
12280 declaration ARG refers to. */
12282 static tree
12283 constant_byte_string (tree arg, tree *ptr_offset, tree *mem_size, tree *decl,
12284 bool valrep = false)
12286 tree dummy = NULL_TREE;
12287 if (!mem_size)
12288 mem_size = &dummy;
12290 /* Store the type of the original expression before conversions
12291 via NOP_EXPR or POINTER_PLUS_EXPR to other types have been
12292 removed. */
12293 tree argtype = TREE_TYPE (arg);
12295 tree array;
12296 STRIP_NOPS (arg);
12298 /* Non-constant index into the character array in an ARRAY_REF
12299 expression or null. */
12300 tree varidx = NULL_TREE;
12302 poly_int64 base_off = 0;
12304 if (TREE_CODE (arg) == ADDR_EXPR)
12306 arg = TREE_OPERAND (arg, 0);
12307 tree ref = arg;
12308 if (TREE_CODE (arg) == ARRAY_REF)
12310 tree idx = TREE_OPERAND (arg, 1);
12311 if (TREE_CODE (idx) != INTEGER_CST)
12313 /* From a pointer (but not array) argument extract the variable
12314 index to prevent get_addr_base_and_unit_offset() from failing
12315 due to it. Use it later to compute the non-constant offset
12316 into the string and return it to the caller. */
12317 varidx = idx;
12318 ref = TREE_OPERAND (arg, 0);
12320 if (TREE_CODE (TREE_TYPE (arg)) == ARRAY_TYPE)
12321 return NULL_TREE;
12323 if (!integer_zerop (array_ref_low_bound (arg)))
12324 return NULL_TREE;
12326 if (!integer_onep (array_ref_element_size (arg)))
12327 return NULL_TREE;
12330 array = get_addr_base_and_unit_offset (ref, &base_off);
12331 if (!array
12332 || (TREE_CODE (array) != VAR_DECL
12333 && TREE_CODE (array) != CONST_DECL
12334 && TREE_CODE (array) != STRING_CST))
12335 return NULL_TREE;
12337 else if (TREE_CODE (arg) == PLUS_EXPR || TREE_CODE (arg) == POINTER_PLUS_EXPR)
12339 tree arg0 = TREE_OPERAND (arg, 0);
12340 tree arg1 = TREE_OPERAND (arg, 1);
12342 tree offset;
12343 tree str = string_constant (arg0, &offset, mem_size, decl);
12344 if (!str)
12346 str = string_constant (arg1, &offset, mem_size, decl);
12347 arg1 = arg0;
12350 if (str)
12352 /* Avoid pointers to arrays (see bug 86622). */
12353 if (POINTER_TYPE_P (TREE_TYPE (arg))
12354 && TREE_CODE (TREE_TYPE (TREE_TYPE (arg))) == ARRAY_TYPE
12355 && !(decl && !*decl)
12356 && !(decl && tree_fits_uhwi_p (DECL_SIZE_UNIT (*decl))
12357 && tree_fits_uhwi_p (*mem_size)
12358 && tree_int_cst_equal (*mem_size, DECL_SIZE_UNIT (*decl))))
12359 return NULL_TREE;
12361 tree type = TREE_TYPE (offset);
12362 arg1 = fold_convert (type, arg1);
12363 *ptr_offset = fold_build2 (PLUS_EXPR, type, offset, arg1);
12364 return str;
12366 return NULL_TREE;
12368 else if (TREE_CODE (arg) == SSA_NAME)
12370 gimple *stmt = SSA_NAME_DEF_STMT (arg);
12371 if (!is_gimple_assign (stmt))
12372 return NULL_TREE;
12374 tree rhs1 = gimple_assign_rhs1 (stmt);
12375 tree_code code = gimple_assign_rhs_code (stmt);
12376 if (code == ADDR_EXPR)
12377 return string_constant (rhs1, ptr_offset, mem_size, decl);
12378 else if (code != POINTER_PLUS_EXPR)
12379 return NULL_TREE;
12381 tree offset;
12382 if (tree str = string_constant (rhs1, &offset, mem_size, decl))
12384 /* Avoid pointers to arrays (see bug 86622). */
12385 if (POINTER_TYPE_P (TREE_TYPE (rhs1))
12386 && TREE_CODE (TREE_TYPE (TREE_TYPE (rhs1))) == ARRAY_TYPE
12387 && !(decl && !*decl)
12388 && !(decl && tree_fits_uhwi_p (DECL_SIZE_UNIT (*decl))
12389 && tree_fits_uhwi_p (*mem_size)
12390 && tree_int_cst_equal (*mem_size, DECL_SIZE_UNIT (*decl))))
12391 return NULL_TREE;
12393 tree rhs2 = gimple_assign_rhs2 (stmt);
12394 tree type = TREE_TYPE (offset);
12395 rhs2 = fold_convert (type, rhs2);
12396 *ptr_offset = fold_build2 (PLUS_EXPR, type, offset, rhs2);
12397 return str;
12399 return NULL_TREE;
12401 else if (DECL_P (arg))
12402 array = arg;
12403 else
12404 return NULL_TREE;
12406 tree offset = wide_int_to_tree (sizetype, base_off);
12407 if (varidx)
12409 if (TREE_CODE (TREE_TYPE (array)) != ARRAY_TYPE)
12410 return NULL_TREE;
12412 gcc_assert (TREE_CODE (arg) == ARRAY_REF);
12413 tree chartype = TREE_TYPE (TREE_TYPE (TREE_OPERAND (arg, 0)));
12414 if (TREE_CODE (chartype) != INTEGER_TYPE)
12415 return NULL;
12417 offset = fold_convert (sizetype, varidx);
12420 if (TREE_CODE (array) == STRING_CST)
12422 *ptr_offset = fold_convert (sizetype, offset);
12423 *mem_size = TYPE_SIZE_UNIT (TREE_TYPE (array));
12424 if (decl)
12425 *decl = NULL_TREE;
12426 gcc_checking_assert (tree_to_shwi (TYPE_SIZE_UNIT (TREE_TYPE (array)))
12427 >= TREE_STRING_LENGTH (array));
12428 return array;
12431 tree init = ctor_for_folding (array);
12432 if (!init || init == error_mark_node)
12433 return NULL_TREE;
12435 if (valrep)
12437 HOST_WIDE_INT cstoff;
12438 if (!base_off.is_constant (&cstoff))
12439 return NULL_TREE;
12441 /* Check that the host and target are sane. */
12442 if (CHAR_BIT != 8 || BITS_PER_UNIT != 8)
12443 return NULL_TREE;
12445 HOST_WIDE_INT typesz = int_size_in_bytes (TREE_TYPE (init));
12446 if (typesz <= 0 || (int) typesz != typesz)
12447 return NULL_TREE;
12449 HOST_WIDE_INT size = typesz;
12450 if (VAR_P (array)
12451 && DECL_SIZE_UNIT (array)
12452 && tree_fits_shwi_p (DECL_SIZE_UNIT (array)))
12454 size = tree_to_shwi (DECL_SIZE_UNIT (array));
12455 gcc_checking_assert (size >= typesz);
12458 /* If value representation was requested convert the initializer
12459 for the whole array or object into a string of bytes forming
12460 its value representation and return it. */
12461 unsigned char *bytes = XNEWVEC (unsigned char, size);
12462 int r = native_encode_initializer (init, bytes, size);
12463 if (r < typesz)
12465 XDELETEVEC (bytes);
12466 return NULL_TREE;
12469 if (r < size)
12470 memset (bytes + r, '\0', size - r);
12472 const char *p = reinterpret_cast<const char *>(bytes);
12473 init = build_string_literal (size, p, char_type_node);
12474 init = TREE_OPERAND (init, 0);
12475 init = TREE_OPERAND (init, 0);
12476 XDELETE (bytes);
12478 *mem_size = size_int (TREE_STRING_LENGTH (init));
12479 *ptr_offset = wide_int_to_tree (ssizetype, base_off);
12481 if (decl)
12482 *decl = array;
12484 return init;
12487 if (TREE_CODE (init) == CONSTRUCTOR)
12489 /* Convert the 64-bit constant offset to a wider type to avoid
12490 overflow and use it to obtain the initializer for the subobject
12491 it points into. */
12492 offset_int wioff;
12493 if (!base_off.is_constant (&wioff))
12494 return NULL_TREE;
12496 wioff *= BITS_PER_UNIT;
12497 if (!wi::fits_uhwi_p (wioff))
12498 return NULL_TREE;
12500 base_off = wioff.to_uhwi ();
12501 unsigned HOST_WIDE_INT fieldoff = 0;
12502 init = fold_ctor_reference (TREE_TYPE (arg), init, base_off, 0, array,
12503 &fieldoff);
12504 if (!init || init == error_mark_node)
12505 return NULL_TREE;
12507 HOST_WIDE_INT cstoff;
12508 if (!base_off.is_constant (&cstoff))
12509 return NULL_TREE;
12511 cstoff = (cstoff - fieldoff) / BITS_PER_UNIT;
12512 tree off = build_int_cst (sizetype, cstoff);
12513 if (varidx)
12514 offset = fold_build2 (PLUS_EXPR, TREE_TYPE (offset), offset, off);
12515 else
12516 offset = off;
12519 *ptr_offset = offset;
12521 tree inittype = TREE_TYPE (init);
12523 if (TREE_CODE (init) == INTEGER_CST
12524 && (TREE_CODE (TREE_TYPE (array)) == INTEGER_TYPE
12525 || TYPE_MAIN_VARIANT (inittype) == char_type_node))
12527 /* Check that the host and target are sane. */
12528 if (CHAR_BIT != 8 || BITS_PER_UNIT != 8)
12529 return NULL_TREE;
12531 /* For a reference to (address of) a single constant character,
12532 store the native representation of the character in CHARBUF.
12533 If the reference is to an element of an array or a member
12534 of a struct, only consider narrow characters until ctors
12535 for wide character arrays are transformed to STRING_CSTs
12536 like those for narrow arrays. */
12537 unsigned char charbuf[MAX_BITSIZE_MODE_ANY_MODE / BITS_PER_UNIT];
12538 int len = native_encode_expr (init, charbuf, sizeof charbuf, 0);
12539 if (len > 0)
12541 /* Construct a string literal with elements of INITTYPE and
12542 the representation above. Then strip
12543 the ADDR_EXPR (ARRAY_REF (...)) around the STRING_CST. */
12544 init = build_string_literal (len, (char *)charbuf, inittype);
12545 init = TREE_OPERAND (TREE_OPERAND (init, 0), 0);
12549 tree initsize = TYPE_SIZE_UNIT (inittype);
12551 if (TREE_CODE (init) == CONSTRUCTOR && initializer_zerop (init))
12553 /* Fold an empty/zero constructor for an implicitly initialized
12554 object or subobject into the empty string. */
12556 /* Determine the character type from that of the original
12557 expression. */
12558 tree chartype = argtype;
12559 if (POINTER_TYPE_P (chartype))
12560 chartype = TREE_TYPE (chartype);
12561 while (TREE_CODE (chartype) == ARRAY_TYPE)
12562 chartype = TREE_TYPE (chartype);
12564 if (INTEGRAL_TYPE_P (chartype)
12565 && TYPE_PRECISION (chartype) == TYPE_PRECISION (char_type_node))
12567 /* Convert a char array to an empty STRING_CST having an array
12568 of the expected type and size. */
12569 if (!initsize)
12570 initsize = integer_zero_node;
12572 unsigned HOST_WIDE_INT size = tree_to_uhwi (initsize);
12573 if (size > (unsigned HOST_WIDE_INT) INT_MAX)
12574 return NULL_TREE;
12576 init = build_string_literal (size, NULL, chartype, size);
12577 init = TREE_OPERAND (init, 0);
12578 init = TREE_OPERAND (init, 0);
12580 *ptr_offset = integer_zero_node;
12584 if (decl)
12585 *decl = array;
12587 if (TREE_CODE (init) != STRING_CST)
12588 return NULL_TREE;
12590 *mem_size = initsize;
12592 gcc_checking_assert (tree_to_shwi (initsize) >= TREE_STRING_LENGTH (init));
12594 return init;
12597 /* Return STRING_CST if an ARG corresponds to a string constant or zero
12598 if it doesn't. If we return nonzero, set *PTR_OFFSET to the (possibly
12599 non-constant) offset in bytes within the string that ARG is accessing.
12600 If MEM_SIZE is non-zero the storage size of the memory is returned.
12601 If DECL is non-zero the constant declaration is returned if available. */
12603 tree
12604 string_constant (tree arg, tree *ptr_offset, tree *mem_size, tree *decl)
12606 return constant_byte_string (arg, ptr_offset, mem_size, decl, false);
12609 /* Similar to string_constant, return a STRING_CST corresponding
12610 to the value representation of the first argument if it's
12611 a constant. */
12613 tree
12614 byte_representation (tree arg, tree *ptr_offset, tree *mem_size, tree *decl)
12616 return constant_byte_string (arg, ptr_offset, mem_size, decl, true);
12619 /* Optimize x % C1 == C2 for signed modulo if C1 is a power of two and C2
12620 is non-zero and C3 ((1<<(prec-1)) | (C1 - 1)):
12621 for C2 > 0 to x & C3 == C2
12622 for C2 < 0 to x & C3 == (C2 & C3). */
12623 enum tree_code
12624 maybe_optimize_pow2p_mod_cmp (enum tree_code code, tree *arg0, tree *arg1)
12626 gimple *stmt = get_def_for_expr (*arg0, TRUNC_MOD_EXPR);
12627 tree treeop0 = gimple_assign_rhs1 (stmt);
12628 tree treeop1 = gimple_assign_rhs2 (stmt);
12629 tree type = TREE_TYPE (*arg0);
12630 scalar_int_mode mode;
12631 if (!is_a <scalar_int_mode> (TYPE_MODE (type), &mode))
12632 return code;
12633 if (GET_MODE_BITSIZE (mode) != TYPE_PRECISION (type)
12634 || TYPE_PRECISION (type) <= 1
12635 || TYPE_UNSIGNED (type)
12636 /* Signed x % c == 0 should have been optimized into unsigned modulo
12637 earlier. */
12638 || integer_zerop (*arg1)
12639 /* If c is known to be non-negative, modulo will be expanded as unsigned
12640 modulo. */
12641 || get_range_pos_neg (treeop0) == 1)
12642 return code;
12644 /* x % c == d where d < 0 && d <= -c should be always false. */
12645 if (tree_int_cst_sgn (*arg1) == -1
12646 && -wi::to_widest (treeop1) >= wi::to_widest (*arg1))
12647 return code;
12649 int prec = TYPE_PRECISION (type);
12650 wide_int w = wi::to_wide (treeop1) - 1;
12651 w |= wi::shifted_mask (0, prec - 1, true, prec);
12652 tree c3 = wide_int_to_tree (type, w);
12653 tree c4 = *arg1;
12654 if (tree_int_cst_sgn (*arg1) == -1)
12655 c4 = wide_int_to_tree (type, w & wi::to_wide (*arg1));
12657 rtx op0 = expand_normal (treeop0);
12658 treeop0 = make_tree (TREE_TYPE (treeop0), op0);
12660 bool speed_p = optimize_insn_for_speed_p ();
12662 do_pending_stack_adjust ();
12664 location_t loc = gimple_location (stmt);
12665 struct separate_ops ops;
12666 ops.code = TRUNC_MOD_EXPR;
12667 ops.location = loc;
12668 ops.type = TREE_TYPE (treeop0);
12669 ops.op0 = treeop0;
12670 ops.op1 = treeop1;
12671 ops.op2 = NULL_TREE;
12672 start_sequence ();
12673 rtx mor = expand_expr_real_2 (&ops, NULL_RTX, TYPE_MODE (ops.type),
12674 EXPAND_NORMAL);
12675 rtx_insn *moinsns = get_insns ();
12676 end_sequence ();
12678 unsigned mocost = seq_cost (moinsns, speed_p);
12679 mocost += rtx_cost (mor, mode, EQ, 0, speed_p);
12680 mocost += rtx_cost (expand_normal (*arg1), mode, EQ, 1, speed_p);
12682 ops.code = BIT_AND_EXPR;
12683 ops.location = loc;
12684 ops.type = TREE_TYPE (treeop0);
12685 ops.op0 = treeop0;
12686 ops.op1 = c3;
12687 ops.op2 = NULL_TREE;
12688 start_sequence ();
12689 rtx mur = expand_expr_real_2 (&ops, NULL_RTX, TYPE_MODE (ops.type),
12690 EXPAND_NORMAL);
12691 rtx_insn *muinsns = get_insns ();
12692 end_sequence ();
12694 unsigned mucost = seq_cost (muinsns, speed_p);
12695 mucost += rtx_cost (mur, mode, EQ, 0, speed_p);
12696 mucost += rtx_cost (expand_normal (c4), mode, EQ, 1, speed_p);
12698 if (mocost <= mucost)
12700 emit_insn (moinsns);
12701 *arg0 = make_tree (TREE_TYPE (*arg0), mor);
12702 return code;
12705 emit_insn (muinsns);
12706 *arg0 = make_tree (TREE_TYPE (*arg0), mur);
12707 *arg1 = c4;
12708 return code;
12711 /* Attempt to optimize unsigned (X % C1) == C2 (or (X % C1) != C2).
12712 If C1 is odd to:
12713 (X - C2) * C3 <= C4 (or >), where
12714 C3 is modular multiplicative inverse of C1 and 1<<prec and
12715 C4 is ((1<<prec) - 1) / C1 or ((1<<prec) - 1) / C1 - 1 (the latter
12716 if C2 > ((1<<prec) - 1) % C1).
12717 If C1 is even, S = ctz (C1) and C2 is 0, use
12718 ((X * C3) r>> S) <= C4, where C3 is modular multiplicative
12719 inverse of C1>>S and 1<<prec and C4 is (((1<<prec) - 1) / (C1>>S)) >> S.
12721 For signed (X % C1) == 0 if C1 is odd to (all operations in it
12722 unsigned):
12723 (X * C3) + C4 <= 2 * C4, where
12724 C3 is modular multiplicative inverse of (unsigned) C1 and 1<<prec and
12725 C4 is ((1<<(prec - 1) - 1) / C1).
12726 If C1 is even, S = ctz(C1), use
12727 ((X * C3) + C4) r>> S <= (C4 >> (S - 1))
12728 where C3 is modular multiplicative inverse of (unsigned)(C1>>S) and 1<<prec
12729 and C4 is ((1<<(prec - 1) - 1) / (C1>>S)) & (-1<<S).
12731 See the Hacker's Delight book, section 10-17. */
12732 enum tree_code
12733 maybe_optimize_mod_cmp (enum tree_code code, tree *arg0, tree *arg1)
12735 gcc_checking_assert (code == EQ_EXPR || code == NE_EXPR);
12736 gcc_checking_assert (TREE_CODE (*arg1) == INTEGER_CST);
12738 if (optimize < 2)
12739 return code;
12741 gimple *stmt = get_def_for_expr (*arg0, TRUNC_MOD_EXPR);
12742 if (stmt == NULL)
12743 return code;
12745 tree treeop0 = gimple_assign_rhs1 (stmt);
12746 tree treeop1 = gimple_assign_rhs2 (stmt);
12747 if (TREE_CODE (treeop0) != SSA_NAME
12748 || TREE_CODE (treeop1) != INTEGER_CST
12749 /* Don't optimize the undefined behavior case x % 0;
12750 x % 1 should have been optimized into zero, punt if
12751 it makes it here for whatever reason;
12752 x % -c should have been optimized into x % c. */
12753 || compare_tree_int (treeop1, 2) <= 0
12754 /* Likewise x % c == d where d >= c should be always false. */
12755 || tree_int_cst_le (treeop1, *arg1))
12756 return code;
12758 /* Unsigned x % pow2 is handled right already, for signed
12759 modulo handle it in maybe_optimize_pow2p_mod_cmp. */
12760 if (integer_pow2p (treeop1))
12761 return maybe_optimize_pow2p_mod_cmp (code, arg0, arg1);
12763 tree type = TREE_TYPE (*arg0);
12764 scalar_int_mode mode;
12765 if (!is_a <scalar_int_mode> (TYPE_MODE (type), &mode))
12766 return code;
12767 if (GET_MODE_BITSIZE (mode) != TYPE_PRECISION (type)
12768 || TYPE_PRECISION (type) <= 1)
12769 return code;
12771 signop sgn = UNSIGNED;
12772 /* If both operands are known to have the sign bit clear, handle
12773 even the signed modulo case as unsigned. treeop1 is always
12774 positive >= 2, checked above. */
12775 if (!TYPE_UNSIGNED (type) && get_range_pos_neg (treeop0) != 1)
12776 sgn = SIGNED;
12778 if (!TYPE_UNSIGNED (type))
12780 if (tree_int_cst_sgn (*arg1) == -1)
12781 return code;
12782 type = unsigned_type_for (type);
12783 if (!type || TYPE_MODE (type) != TYPE_MODE (TREE_TYPE (*arg0)))
12784 return code;
12787 int prec = TYPE_PRECISION (type);
12788 wide_int w = wi::to_wide (treeop1);
12789 int shift = wi::ctz (w);
12790 /* Unsigned (X % C1) == C2 is equivalent to (X - C2) % C1 == 0 if
12791 C2 <= -1U % C1, because for any Z >= 0U - C2 in that case (Z % C1) != 0.
12792 If C1 is odd, we can handle all cases by subtracting
12793 C4 below. We could handle even the even C1 and C2 > -1U % C1 cases
12794 e.g. by testing for overflow on the subtraction, punt on that for now
12795 though. */
12796 if ((sgn == SIGNED || shift) && !integer_zerop (*arg1))
12798 if (sgn == SIGNED)
12799 return code;
12800 wide_int x = wi::umod_trunc (wi::mask (prec, false, prec), w);
12801 if (wi::gtu_p (wi::to_wide (*arg1), x))
12802 return code;
12805 imm_use_iterator imm_iter;
12806 use_operand_p use_p;
12807 FOR_EACH_IMM_USE_FAST (use_p, imm_iter, treeop0)
12809 gimple *use_stmt = USE_STMT (use_p);
12810 /* Punt if treeop0 is used in the same bb in a division
12811 or another modulo with the same divisor. We should expect
12812 the division and modulo combined together. */
12813 if (use_stmt == stmt
12814 || gimple_bb (use_stmt) != gimple_bb (stmt))
12815 continue;
12816 if (!is_gimple_assign (use_stmt)
12817 || (gimple_assign_rhs_code (use_stmt) != TRUNC_DIV_EXPR
12818 && gimple_assign_rhs_code (use_stmt) != TRUNC_MOD_EXPR))
12819 continue;
12820 if (gimple_assign_rhs1 (use_stmt) != treeop0
12821 || !operand_equal_p (gimple_assign_rhs2 (use_stmt), treeop1, 0))
12822 continue;
12823 return code;
12826 w = wi::lrshift (w, shift);
12827 wide_int a = wide_int::from (w, prec + 1, UNSIGNED);
12828 wide_int b = wi::shifted_mask (prec, 1, false, prec + 1);
12829 wide_int m = wide_int::from (wi::mod_inv (a, b), prec, UNSIGNED);
12830 tree c3 = wide_int_to_tree (type, m);
12831 tree c5 = NULL_TREE;
12832 wide_int d, e;
12833 if (sgn == UNSIGNED)
12835 d = wi::divmod_trunc (wi::mask (prec, false, prec), w, UNSIGNED, &e);
12836 /* Use <= floor ((1<<prec) - 1) / C1 only if C2 <= ((1<<prec) - 1) % C1,
12837 otherwise use < or subtract one from C4. E.g. for
12838 x % 3U == 0 we transform this into x * 0xaaaaaaab <= 0x55555555, but
12839 x % 3U == 1 already needs to be
12840 (x - 1) * 0xaaaaaaabU <= 0x55555554. */
12841 if (!shift && wi::gtu_p (wi::to_wide (*arg1), e))
12842 d -= 1;
12843 if (shift)
12844 d = wi::lrshift (d, shift);
12846 else
12848 e = wi::udiv_trunc (wi::mask (prec - 1, false, prec), w);
12849 if (!shift)
12850 d = wi::lshift (e, 1);
12851 else
12853 e = wi::bit_and (e, wi::mask (shift, true, prec));
12854 d = wi::lrshift (e, shift - 1);
12856 c5 = wide_int_to_tree (type, e);
12858 tree c4 = wide_int_to_tree (type, d);
12860 rtx op0 = expand_normal (treeop0);
12861 treeop0 = make_tree (TREE_TYPE (treeop0), op0);
12863 bool speed_p = optimize_insn_for_speed_p ();
12865 do_pending_stack_adjust ();
12867 location_t loc = gimple_location (stmt);
12868 struct separate_ops ops;
12869 ops.code = TRUNC_MOD_EXPR;
12870 ops.location = loc;
12871 ops.type = TREE_TYPE (treeop0);
12872 ops.op0 = treeop0;
12873 ops.op1 = treeop1;
12874 ops.op2 = NULL_TREE;
12875 start_sequence ();
12876 rtx mor = expand_expr_real_2 (&ops, NULL_RTX, TYPE_MODE (ops.type),
12877 EXPAND_NORMAL);
12878 rtx_insn *moinsns = get_insns ();
12879 end_sequence ();
12881 unsigned mocost = seq_cost (moinsns, speed_p);
12882 mocost += rtx_cost (mor, mode, EQ, 0, speed_p);
12883 mocost += rtx_cost (expand_normal (*arg1), mode, EQ, 1, speed_p);
12885 tree t = fold_convert_loc (loc, type, treeop0);
12886 if (!integer_zerop (*arg1))
12887 t = fold_build2_loc (loc, MINUS_EXPR, type, t, fold_convert (type, *arg1));
12888 t = fold_build2_loc (loc, MULT_EXPR, type, t, c3);
12889 if (sgn == SIGNED)
12890 t = fold_build2_loc (loc, PLUS_EXPR, type, t, c5);
12891 if (shift)
12893 tree s = build_int_cst (NULL_TREE, shift);
12894 t = fold_build2_loc (loc, RROTATE_EXPR, type, t, s);
12897 start_sequence ();
12898 rtx mur = expand_normal (t);
12899 rtx_insn *muinsns = get_insns ();
12900 end_sequence ();
12902 unsigned mucost = seq_cost (muinsns, speed_p);
12903 mucost += rtx_cost (mur, mode, LE, 0, speed_p);
12904 mucost += rtx_cost (expand_normal (c4), mode, LE, 1, speed_p);
12906 if (mocost <= mucost)
12908 emit_insn (moinsns);
12909 *arg0 = make_tree (TREE_TYPE (*arg0), mor);
12910 return code;
12913 emit_insn (muinsns);
12914 *arg0 = make_tree (type, mur);
12915 *arg1 = c4;
12916 return code == EQ_EXPR ? LE_EXPR : GT_EXPR;
12919 /* Optimize x - y < 0 into x < 0 if x - y has undefined overflow. */
12921 void
12922 maybe_optimize_sub_cmp_0 (enum tree_code code, tree *arg0, tree *arg1)
12924 gcc_checking_assert (code == GT_EXPR || code == GE_EXPR
12925 || code == LT_EXPR || code == LE_EXPR);
12926 gcc_checking_assert (integer_zerop (*arg1));
12928 if (!optimize)
12929 return;
12931 gimple *stmt = get_def_for_expr (*arg0, MINUS_EXPR);
12932 if (stmt == NULL)
12933 return;
12935 tree treeop0 = gimple_assign_rhs1 (stmt);
12936 tree treeop1 = gimple_assign_rhs2 (stmt);
12937 if (!TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (treeop0)))
12938 return;
12940 if (issue_strict_overflow_warning (WARN_STRICT_OVERFLOW_COMPARISON))
12941 warning_at (gimple_location (stmt), OPT_Wstrict_overflow,
12942 "assuming signed overflow does not occur when "
12943 "simplifying %<X - Y %s 0%> to %<X %s Y%>",
12944 op_symbol_code (code), op_symbol_code (code));
12946 *arg0 = treeop0;
12947 *arg1 = treeop1;
12951 /* Expand CODE with arguments INNER & (1<<BITNUM) and 0 that represents
12952 a single bit equality/inequality test, returns where the result is located. */
12954 static rtx
12955 expand_single_bit_test (location_t loc, enum tree_code code,
12956 tree inner, int bitnum,
12957 tree result_type, rtx target,
12958 machine_mode mode)
12960 gcc_assert (code == NE_EXPR || code == EQ_EXPR);
12962 tree type = TREE_TYPE (inner);
12963 scalar_int_mode operand_mode = SCALAR_INT_TYPE_MODE (type);
12964 int ops_unsigned;
12965 tree signed_type, unsigned_type, intermediate_type;
12966 gimple *inner_def;
12968 /* First, see if we can fold the single bit test into a sign-bit
12969 test. */
12970 if (bitnum == TYPE_PRECISION (type) - 1
12971 && type_has_mode_precision_p (type))
12973 tree stype = signed_type_for (type);
12974 tree tmp = fold_build2_loc (loc, code == EQ_EXPR ? GE_EXPR : LT_EXPR,
12975 result_type,
12976 fold_convert_loc (loc, stype, inner),
12977 build_int_cst (stype, 0));
12978 return expand_expr (tmp, target, VOIDmode, EXPAND_NORMAL);
12981 /* Otherwise we have (A & C) != 0 where C is a single bit,
12982 convert that into ((A >> C2) & 1). Where C2 = log2(C).
12983 Similarly for (A & C) == 0. */
12985 /* If INNER is a right shift of a constant and it plus BITNUM does
12986 not overflow, adjust BITNUM and INNER. */
12987 if ((inner_def = get_def_for_expr (inner, RSHIFT_EXPR))
12988 && TREE_CODE (gimple_assign_rhs2 (inner_def)) == INTEGER_CST
12989 && bitnum < TYPE_PRECISION (type)
12990 && wi::ltu_p (wi::to_wide (gimple_assign_rhs2 (inner_def)),
12991 TYPE_PRECISION (type) - bitnum))
12993 bitnum += tree_to_uhwi (gimple_assign_rhs2 (inner_def));
12994 inner = gimple_assign_rhs1 (inner_def);
12997 /* If we are going to be able to omit the AND below, we must do our
12998 operations as unsigned. If we must use the AND, we have a choice.
12999 Normally unsigned is faster, but for some machines signed is. */
13000 ops_unsigned = (load_extend_op (operand_mode) == SIGN_EXTEND
13001 && !flag_syntax_only) ? 0 : 1;
13003 signed_type = lang_hooks.types.type_for_mode (operand_mode, 0);
13004 unsigned_type = lang_hooks.types.type_for_mode (operand_mode, 1);
13005 intermediate_type = ops_unsigned ? unsigned_type : signed_type;
13006 inner = fold_convert_loc (loc, intermediate_type, inner);
13008 rtx inner0 = expand_expr (inner, NULL_RTX, VOIDmode, EXPAND_NORMAL);
13010 if (CONST_SCALAR_INT_P (inner0))
13012 wide_int t = rtx_mode_t (inner0, operand_mode);
13013 bool setp = (wi::lrshift (t, bitnum) & 1) != 0;
13014 return (setp ^ (code == EQ_EXPR)) ? const1_rtx : const0_rtx;
13016 int bitpos = bitnum;
13018 if (BYTES_BIG_ENDIAN)
13019 bitpos = GET_MODE_BITSIZE (operand_mode) - 1 - bitpos;
13021 inner0 = extract_bit_field (inner0, 1, bitpos, 1, target,
13022 operand_mode, mode, 0, NULL);
13024 if (code == EQ_EXPR)
13025 inner0 = expand_binop (GET_MODE (inner0), xor_optab, inner0, const1_rtx,
13026 NULL_RTX, 1, OPTAB_LIB_WIDEN);
13027 if (GET_MODE (inner0) != mode)
13029 rtx t = gen_reg_rtx (mode);
13030 convert_move (t, inner0, 0);
13031 return t;
13033 return inner0;
13036 /* Generate code to calculate OPS, and exploded expression
13037 using a store-flag instruction and return an rtx for the result.
13038 OPS reflects a comparison.
13040 If TARGET is nonzero, store the result there if convenient.
13042 Return zero if there is no suitable set-flag instruction
13043 available on this machine.
13045 Once expand_expr has been called on the arguments of the comparison,
13046 we are committed to doing the store flag, since it is not safe to
13047 re-evaluate the expression. We emit the store-flag insn by calling
13048 emit_store_flag, but only expand the arguments if we have a reason
13049 to believe that emit_store_flag will be successful. If we think that
13050 it will, but it isn't, we have to simulate the store-flag with a
13051 set/jump/set sequence. */
13053 static rtx
13054 do_store_flag (sepops ops, rtx target, machine_mode mode)
13056 enum rtx_code code;
13057 tree arg0, arg1, type;
13058 machine_mode operand_mode;
13059 int unsignedp;
13060 rtx op0, op1;
13061 rtx subtarget = target;
13062 location_t loc = ops->location;
13064 arg0 = ops->op0;
13065 arg1 = ops->op1;
13067 /* Don't crash if the comparison was erroneous. */
13068 if (arg0 == error_mark_node || arg1 == error_mark_node)
13069 return const0_rtx;
13071 type = TREE_TYPE (arg0);
13072 operand_mode = TYPE_MODE (type);
13073 unsignedp = TYPE_UNSIGNED (type);
13075 /* We won't bother with BLKmode store-flag operations because it would mean
13076 passing a lot of information to emit_store_flag. */
13077 if (operand_mode == BLKmode)
13078 return 0;
13080 /* We won't bother with store-flag operations involving function pointers
13081 when function pointers must be canonicalized before comparisons. */
13082 if (targetm.have_canonicalize_funcptr_for_compare ()
13083 && ((POINTER_TYPE_P (TREE_TYPE (arg0))
13084 && FUNC_OR_METHOD_TYPE_P (TREE_TYPE (TREE_TYPE (arg0))))
13085 || (POINTER_TYPE_P (TREE_TYPE (arg1))
13086 && FUNC_OR_METHOD_TYPE_P (TREE_TYPE (TREE_TYPE (arg1))))))
13087 return 0;
13089 STRIP_NOPS (arg0);
13090 STRIP_NOPS (arg1);
13092 /* For vector typed comparisons emit code to generate the desired
13093 all-ones or all-zeros mask. */
13094 if (VECTOR_TYPE_P (ops->type))
13096 tree ifexp = build2 (ops->code, ops->type, arg0, arg1);
13097 if (VECTOR_BOOLEAN_TYPE_P (ops->type)
13098 && expand_vec_cmp_expr_p (TREE_TYPE (arg0), ops->type, ops->code))
13099 return expand_vec_cmp_expr (ops->type, ifexp, target);
13100 else
13101 gcc_unreachable ();
13104 /* Optimize (x % C1) == C2 or (x % C1) != C2 if it is beneficial
13105 into (x - C2) * C3 < C4. */
13106 if ((ops->code == EQ_EXPR || ops->code == NE_EXPR)
13107 && TREE_CODE (arg0) == SSA_NAME
13108 && TREE_CODE (arg1) == INTEGER_CST)
13110 enum tree_code new_code = maybe_optimize_mod_cmp (ops->code,
13111 &arg0, &arg1);
13112 if (new_code != ops->code)
13114 struct separate_ops nops = *ops;
13115 nops.code = ops->code = new_code;
13116 nops.op0 = arg0;
13117 nops.op1 = arg1;
13118 nops.type = TREE_TYPE (arg0);
13119 return do_store_flag (&nops, target, mode);
13123 /* Optimize (x - y) < 0 into x < y if x - y has undefined overflow. */
13124 if (!unsignedp
13125 && (ops->code == LT_EXPR || ops->code == LE_EXPR
13126 || ops->code == GT_EXPR || ops->code == GE_EXPR)
13127 && integer_zerop (arg1)
13128 && TREE_CODE (arg0) == SSA_NAME)
13129 maybe_optimize_sub_cmp_0 (ops->code, &arg0, &arg1);
13131 /* Get the rtx comparison code to use. We know that EXP is a comparison
13132 operation of some type. Some comparisons against 1 and -1 can be
13133 converted to comparisons with zero. Do so here so that the tests
13134 below will be aware that we have a comparison with zero. These
13135 tests will not catch constants in the first operand, but constants
13136 are rarely passed as the first operand. */
13138 switch (ops->code)
13140 case EQ_EXPR:
13141 code = EQ;
13142 break;
13143 case NE_EXPR:
13144 code = NE;
13145 break;
13146 case LT_EXPR:
13147 if (integer_onep (arg1))
13148 arg1 = integer_zero_node, code = unsignedp ? LEU : LE;
13149 else
13150 code = unsignedp ? LTU : LT;
13151 break;
13152 case LE_EXPR:
13153 if (! unsignedp && integer_all_onesp (arg1))
13154 arg1 = integer_zero_node, code = LT;
13155 else
13156 code = unsignedp ? LEU : LE;
13157 break;
13158 case GT_EXPR:
13159 if (! unsignedp && integer_all_onesp (arg1))
13160 arg1 = integer_zero_node, code = GE;
13161 else
13162 code = unsignedp ? GTU : GT;
13163 break;
13164 case GE_EXPR:
13165 if (integer_onep (arg1))
13166 arg1 = integer_zero_node, code = unsignedp ? GTU : GT;
13167 else
13168 code = unsignedp ? GEU : GE;
13169 break;
13171 case UNORDERED_EXPR:
13172 code = UNORDERED;
13173 break;
13174 case ORDERED_EXPR:
13175 code = ORDERED;
13176 break;
13177 case UNLT_EXPR:
13178 code = UNLT;
13179 break;
13180 case UNLE_EXPR:
13181 code = UNLE;
13182 break;
13183 case UNGT_EXPR:
13184 code = UNGT;
13185 break;
13186 case UNGE_EXPR:
13187 code = UNGE;
13188 break;
13189 case UNEQ_EXPR:
13190 code = UNEQ;
13191 break;
13192 case LTGT_EXPR:
13193 code = LTGT;
13194 break;
13196 default:
13197 gcc_unreachable ();
13200 /* Put a constant second. */
13201 if (TREE_CODE (arg0) == REAL_CST || TREE_CODE (arg0) == INTEGER_CST
13202 || TREE_CODE (arg0) == FIXED_CST)
13204 std::swap (arg0, arg1);
13205 code = swap_condition (code);
13208 /* If this is an equality or inequality test of a single bit, we can
13209 do this by shifting the bit being tested to the low-order bit and
13210 masking the result with the constant 1. If the condition was EQ,
13211 we xor it with 1. This does not require an scc insn and is faster
13212 than an scc insn even if we have it. */
13214 if ((code == NE || code == EQ)
13215 && (integer_zerop (arg1)
13216 || integer_pow2p (arg1))
13217 && (TYPE_PRECISION (ops->type) != 1 || TYPE_UNSIGNED (ops->type)))
13219 wide_int nz = tree_nonzero_bits (arg0);
13220 gimple *srcstmt = get_def_for_expr (arg0, BIT_AND_EXPR);
13221 /* If the defining statement was (x & POW2), then use that instead of
13222 the non-zero bits. */
13223 if (srcstmt && integer_pow2p (gimple_assign_rhs2 (srcstmt)))
13225 nz = wi::to_wide (gimple_assign_rhs2 (srcstmt));
13226 arg0 = gimple_assign_rhs1 (srcstmt);
13229 if (wi::popcount (nz) == 1
13230 && (integer_zerop (arg1)
13231 || wi::to_wide (arg1) == nz))
13233 int bitnum = wi::exact_log2 (nz);
13234 enum tree_code tcode = EQ_EXPR;
13235 if ((code == NE) ^ !integer_zerop (arg1))
13236 tcode = NE_EXPR;
13238 type = lang_hooks.types.type_for_mode (mode, unsignedp);
13239 return expand_single_bit_test (loc, tcode,
13240 arg0,
13241 bitnum, type, target, mode);
13246 if (! get_subtarget (target)
13247 || GET_MODE (subtarget) != operand_mode)
13248 subtarget = 0;
13250 expand_operands (arg0, arg1, subtarget, &op0, &op1, EXPAND_NORMAL);
13252 if (target == 0)
13253 target = gen_reg_rtx (mode);
13255 /* Try a cstore if possible. */
13256 return emit_store_flag_force (target, code, op0, op1,
13257 operand_mode, unsignedp,
13258 (TYPE_PRECISION (ops->type) == 1
13259 && !TYPE_UNSIGNED (ops->type)) ? -1 : 1);
13262 /* Attempt to generate a casesi instruction. Returns true if successful,
13263 false otherwise (i.e. if there is no casesi instruction).
13265 DEFAULT_PROBABILITY is the probability of jumping to the default
13266 label. */
13267 bool
13268 try_casesi (tree index_type, tree index_expr, tree minval, tree range,
13269 rtx table_label, rtx default_label, rtx fallback_label,
13270 profile_probability default_probability)
13272 class expand_operand ops[5];
13273 scalar_int_mode index_mode = SImode;
13274 rtx op1, op2, index;
13276 if (! targetm.have_casesi ())
13277 return false;
13279 /* The index must be some form of integer. Convert it to SImode. */
13280 scalar_int_mode omode = SCALAR_INT_TYPE_MODE (index_type);
13281 if (GET_MODE_BITSIZE (omode) > GET_MODE_BITSIZE (index_mode))
13283 rtx rangertx = expand_normal (range);
13285 /* We must handle the endpoints in the original mode. */
13286 index_expr = build2 (MINUS_EXPR, index_type,
13287 index_expr, minval);
13288 minval = integer_zero_node;
13289 index = expand_normal (index_expr);
13290 if (default_label)
13291 emit_cmp_and_jump_insns (rangertx, index, LTU, NULL_RTX,
13292 omode, 1, default_label,
13293 default_probability);
13294 /* Now we can safely truncate. */
13295 index = convert_to_mode (index_mode, index, 0);
13297 else
13299 if (omode != index_mode)
13301 index_type = lang_hooks.types.type_for_mode (index_mode, 0);
13302 index_expr = fold_convert (index_type, index_expr);
13305 index = expand_normal (index_expr);
13308 do_pending_stack_adjust ();
13310 op1 = expand_normal (minval);
13311 op2 = expand_normal (range);
13313 create_input_operand (&ops[0], index, index_mode);
13314 create_convert_operand_from_type (&ops[1], op1, TREE_TYPE (minval));
13315 create_convert_operand_from_type (&ops[2], op2, TREE_TYPE (range));
13316 create_fixed_operand (&ops[3], table_label);
13317 create_fixed_operand (&ops[4], (default_label
13318 ? default_label
13319 : fallback_label));
13320 expand_jump_insn (targetm.code_for_casesi, 5, ops);
13321 return true;
13324 /* Attempt to generate a tablejump instruction; same concept. */
13325 /* Subroutine of the next function.
13327 INDEX is the value being switched on, with the lowest value
13328 in the table already subtracted.
13329 MODE is its expected mode (needed if INDEX is constant).
13330 RANGE is the length of the jump table.
13331 TABLE_LABEL is a CODE_LABEL rtx for the table itself.
13333 DEFAULT_LABEL is a CODE_LABEL rtx to jump to if the
13334 index value is out of range.
13335 DEFAULT_PROBABILITY is the probability of jumping to
13336 the default label. */
13338 static void
13339 do_tablejump (rtx index, machine_mode mode, rtx range, rtx table_label,
13340 rtx default_label, profile_probability default_probability)
13342 rtx temp, vector;
13344 if (INTVAL (range) > cfun->cfg->max_jumptable_ents)
13345 cfun->cfg->max_jumptable_ents = INTVAL (range);
13347 /* Do an unsigned comparison (in the proper mode) between the index
13348 expression and the value which represents the length of the range.
13349 Since we just finished subtracting the lower bound of the range
13350 from the index expression, this comparison allows us to simultaneously
13351 check that the original index expression value is both greater than
13352 or equal to the minimum value of the range and less than or equal to
13353 the maximum value of the range. */
13355 if (default_label)
13356 emit_cmp_and_jump_insns (index, range, GTU, NULL_RTX, mode, 1,
13357 default_label, default_probability);
13359 /* If index is in range, it must fit in Pmode.
13360 Convert to Pmode so we can index with it. */
13361 if (mode != Pmode)
13363 unsigned int width;
13365 /* We know the value of INDEX is between 0 and RANGE. If we have a
13366 sign-extended subreg, and RANGE does not have the sign bit set, then
13367 we have a value that is valid for both sign and zero extension. In
13368 this case, we get better code if we sign extend. */
13369 if (GET_CODE (index) == SUBREG
13370 && SUBREG_PROMOTED_VAR_P (index)
13371 && SUBREG_PROMOTED_SIGNED_P (index)
13372 && ((width = GET_MODE_PRECISION (as_a <scalar_int_mode> (mode)))
13373 <= HOST_BITS_PER_WIDE_INT)
13374 && ! (UINTVAL (range) & (HOST_WIDE_INT_1U << (width - 1))))
13375 index = convert_to_mode (Pmode, index, 0);
13376 else
13377 index = convert_to_mode (Pmode, index, 1);
13380 /* Don't let a MEM slip through, because then INDEX that comes
13381 out of PIC_CASE_VECTOR_ADDRESS won't be a valid address,
13382 and break_out_memory_refs will go to work on it and mess it up. */
13383 #ifdef PIC_CASE_VECTOR_ADDRESS
13384 if (flag_pic && !REG_P (index))
13385 index = copy_to_mode_reg (Pmode, index);
13386 #endif
13388 /* ??? The only correct use of CASE_VECTOR_MODE is the one inside the
13389 GET_MODE_SIZE, because this indicates how large insns are. The other
13390 uses should all be Pmode, because they are addresses. This code
13391 could fail if addresses and insns are not the same size. */
13392 index = simplify_gen_binary (MULT, Pmode, index,
13393 gen_int_mode (GET_MODE_SIZE (CASE_VECTOR_MODE),
13394 Pmode));
13395 index = simplify_gen_binary (PLUS, Pmode, index,
13396 gen_rtx_LABEL_REF (Pmode, table_label));
13398 #ifdef PIC_CASE_VECTOR_ADDRESS
13399 if (flag_pic)
13400 index = PIC_CASE_VECTOR_ADDRESS (index);
13401 else
13402 #endif
13403 index = memory_address (CASE_VECTOR_MODE, index);
13404 temp = gen_reg_rtx (CASE_VECTOR_MODE);
13405 vector = gen_const_mem (CASE_VECTOR_MODE, index);
13406 convert_move (temp, vector, 0);
13408 emit_jump_insn (targetm.gen_tablejump (temp, table_label));
13410 /* If we are generating PIC code or if the table is PC-relative, the
13411 table and JUMP_INSN must be adjacent, so don't output a BARRIER. */
13412 if (! CASE_VECTOR_PC_RELATIVE && ! flag_pic)
13413 emit_barrier ();
13416 bool
13417 try_tablejump (tree index_type, tree index_expr, tree minval, tree range,
13418 rtx table_label, rtx default_label,
13419 profile_probability default_probability)
13421 rtx index;
13423 if (! targetm.have_tablejump ())
13424 return false;
13426 index_expr = fold_build2 (MINUS_EXPR, index_type,
13427 fold_convert (index_type, index_expr),
13428 fold_convert (index_type, minval));
13429 index = expand_normal (index_expr);
13430 do_pending_stack_adjust ();
13432 do_tablejump (index, TYPE_MODE (index_type),
13433 convert_modes (TYPE_MODE (index_type),
13434 TYPE_MODE (TREE_TYPE (range)),
13435 expand_normal (range),
13436 TYPE_UNSIGNED (TREE_TYPE (range))),
13437 table_label, default_label, default_probability);
13438 return true;
13441 /* Return a CONST_VECTOR rtx representing vector mask for
13442 a VECTOR_CST of booleans. */
13443 static rtx
13444 const_vector_mask_from_tree (tree exp)
13446 machine_mode mode = TYPE_MODE (TREE_TYPE (exp));
13447 machine_mode inner = GET_MODE_INNER (mode);
13449 rtx_vector_builder builder (mode, VECTOR_CST_NPATTERNS (exp),
13450 VECTOR_CST_NELTS_PER_PATTERN (exp));
13451 unsigned int count = builder.encoded_nelts ();
13452 for (unsigned int i = 0; i < count; ++i)
13454 tree elt = VECTOR_CST_ELT (exp, i);
13455 gcc_assert (TREE_CODE (elt) == INTEGER_CST);
13456 if (integer_zerop (elt))
13457 builder.quick_push (CONST0_RTX (inner));
13458 else if (integer_onep (elt)
13459 || integer_minus_onep (elt))
13460 builder.quick_push (CONSTM1_RTX (inner));
13461 else
13462 gcc_unreachable ();
13464 return builder.build ();
13467 /* Return a CONST_VECTOR rtx for a VECTOR_CST tree. */
13468 static rtx
13469 const_vector_from_tree (tree exp)
13471 machine_mode mode = TYPE_MODE (TREE_TYPE (exp));
13473 if (initializer_zerop (exp))
13474 return CONST0_RTX (mode);
13476 if (VECTOR_BOOLEAN_TYPE_P (TREE_TYPE (exp)))
13477 return const_vector_mask_from_tree (exp);
13479 machine_mode inner = GET_MODE_INNER (mode);
13481 rtx_vector_builder builder (mode, VECTOR_CST_NPATTERNS (exp),
13482 VECTOR_CST_NELTS_PER_PATTERN (exp));
13483 unsigned int count = builder.encoded_nelts ();
13484 for (unsigned int i = 0; i < count; ++i)
13486 tree elt = VECTOR_CST_ELT (exp, i);
13487 if (TREE_CODE (elt) == REAL_CST)
13488 builder.quick_push (const_double_from_real_value (TREE_REAL_CST (elt),
13489 inner));
13490 else if (TREE_CODE (elt) == FIXED_CST)
13491 builder.quick_push (CONST_FIXED_FROM_FIXED_VALUE (TREE_FIXED_CST (elt),
13492 inner));
13493 else
13494 builder.quick_push (immed_wide_int_const (wi::to_poly_wide (elt),
13495 inner));
13497 return builder.build ();
13500 /* Build a decl for a personality function given a language prefix. */
13502 tree
13503 build_personality_function (const char *lang)
13505 const char *unwind_and_version;
13506 tree decl, type;
13507 char *name;
13509 switch (targetm_common.except_unwind_info (&global_options))
13511 case UI_NONE:
13512 return NULL;
13513 case UI_SJLJ:
13514 unwind_and_version = "_sj0";
13515 break;
13516 case UI_DWARF2:
13517 case UI_TARGET:
13518 unwind_and_version = "_v0";
13519 break;
13520 case UI_SEH:
13521 unwind_and_version = "_seh0";
13522 break;
13523 default:
13524 gcc_unreachable ();
13527 name = ACONCAT (("__", lang, "_personality", unwind_and_version, NULL));
13529 type = build_function_type_list (unsigned_type_node,
13530 integer_type_node, integer_type_node,
13531 long_long_unsigned_type_node,
13532 ptr_type_node, ptr_type_node, NULL_TREE);
13533 decl = build_decl (UNKNOWN_LOCATION, FUNCTION_DECL,
13534 get_identifier (name), type);
13535 DECL_ARTIFICIAL (decl) = 1;
13536 DECL_EXTERNAL (decl) = 1;
13537 TREE_PUBLIC (decl) = 1;
13539 /* Zap the nonsensical SYMBOL_REF_DECL for this. What we're left with
13540 are the flags assigned by targetm.encode_section_info. */
13541 SET_SYMBOL_REF_DECL (XEXP (DECL_RTL (decl), 0), NULL);
13543 return decl;
13546 /* Extracts the personality function of DECL and returns the corresponding
13547 libfunc. */
13550 get_personality_function (tree decl)
13552 tree personality = DECL_FUNCTION_PERSONALITY (decl);
13553 enum eh_personality_kind pk;
13555 pk = function_needs_eh_personality (DECL_STRUCT_FUNCTION (decl));
13556 if (pk == eh_personality_none)
13557 return NULL;
13559 if (!personality
13560 && pk == eh_personality_any)
13561 personality = lang_hooks.eh_personality ();
13563 if (pk == eh_personality_lang)
13564 gcc_assert (personality != NULL_TREE);
13566 return XEXP (DECL_RTL (personality), 0);
13569 /* Returns a tree for the size of EXP in bytes. */
13571 static tree
13572 tree_expr_size (const_tree exp)
13574 if (DECL_P (exp)
13575 && DECL_SIZE_UNIT (exp) != 0)
13576 return DECL_SIZE_UNIT (exp);
13577 else
13578 return size_in_bytes (TREE_TYPE (exp));
13581 /* Return an rtx for the size in bytes of the value of EXP. */
13584 expr_size (tree exp)
13586 tree size;
13588 if (TREE_CODE (exp) == WITH_SIZE_EXPR)
13589 size = TREE_OPERAND (exp, 1);
13590 else
13592 size = tree_expr_size (exp);
13593 gcc_assert (size);
13594 gcc_assert (size == SUBSTITUTE_PLACEHOLDER_IN_EXPR (size, exp));
13597 return expand_expr (size, NULL_RTX, TYPE_MODE (sizetype), EXPAND_NORMAL);
13600 /* Return a wide integer for the size in bytes of the value of EXP, or -1
13601 if the size can vary or is larger than an integer. */
13603 HOST_WIDE_INT
13604 int_expr_size (const_tree exp)
13606 tree size;
13608 if (TREE_CODE (exp) == WITH_SIZE_EXPR)
13609 size = TREE_OPERAND (exp, 1);
13610 else
13612 size = tree_expr_size (exp);
13613 gcc_assert (size);
13616 if (size == 0 || !tree_fits_shwi_p (size))
13617 return -1;
13619 return tree_to_shwi (size);