c++: Implement modules ABI for vtable emissions
[official-gcc.git] / gcc / expr.cc
blobd4414e242cb92838fde8bd645443ecec451457b7
1 /* Convert tree expression to rtl instructions, for GNU compiler.
2 Copyright (C) 1988-2024 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 #include "config.h"
21 #include "system.h"
22 #include "coretypes.h"
23 #include "backend.h"
24 #include "target.h"
25 #include "rtl.h"
26 #include "tree.h"
27 #include "gimple.h"
28 #include "predict.h"
29 #include "memmodel.h"
30 #include "tm_p.h"
31 #include "ssa.h"
32 #include "optabs.h"
33 #include "expmed.h"
34 #include "regs.h"
35 #include "emit-rtl.h"
36 #include "recog.h"
37 #include "cgraph.h"
38 #include "diagnostic.h"
39 #include "alias.h"
40 #include "fold-const.h"
41 #include "stor-layout.h"
42 #include "attribs.h"
43 #include "varasm.h"
44 #include "except.h"
45 #include "insn-attr.h"
46 #include "dojump.h"
47 #include "explow.h"
48 #include "calls.h"
49 #include "stmt.h"
50 /* Include expr.h after insn-config.h so we get HAVE_conditional_move. */
51 #include "expr.h"
52 #include "optabs-tree.h"
53 #include "libfuncs.h"
54 #include "reload.h"
55 #include "langhooks.h"
56 #include "common/common-target.h"
57 #include "tree-dfa.h"
58 #include "tree-ssa-live.h"
59 #include "tree-outof-ssa.h"
60 #include "tree-ssa-address.h"
61 #include "builtins.h"
62 #include "ccmp.h"
63 #include "gimple-iterator.h"
64 #include "gimple-fold.h"
65 #include "rtx-vector-builder.h"
66 #include "tree-pretty-print.h"
67 #include "flags.h"
70 /* If this is nonzero, we do not bother generating VOLATILE
71 around volatile memory references, and we are willing to
72 output indirect addresses. If cse is to follow, we reject
73 indirect addresses so a useful potential cse is generated;
74 if it is used only once, instruction combination will produce
75 the same indirect address eventually. */
76 int cse_not_expected;
78 static bool block_move_libcall_safe_for_call_parm (void);
79 static bool emit_block_move_via_pattern (rtx, rtx, rtx, unsigned, unsigned,
80 HOST_WIDE_INT, unsigned HOST_WIDE_INT,
81 unsigned HOST_WIDE_INT,
82 unsigned HOST_WIDE_INT, bool);
83 static void emit_block_move_via_loop (rtx, rtx, rtx, unsigned, int);
84 static void emit_block_move_via_sized_loop (rtx, rtx, rtx, unsigned, unsigned);
85 static void emit_block_move_via_oriented_loop (rtx, rtx, rtx, unsigned, unsigned);
86 static rtx emit_block_cmp_via_loop (rtx, rtx, rtx, tree, rtx, bool,
87 unsigned, unsigned);
88 static void clear_by_pieces (rtx, unsigned HOST_WIDE_INT, unsigned int);
89 static rtx_insn *compress_float_constant (rtx, rtx);
90 static rtx get_subtarget (rtx);
91 static rtx store_field (rtx, poly_int64, poly_int64, poly_uint64, poly_uint64,
92 machine_mode, tree, alias_set_type, bool, bool);
94 static unsigned HOST_WIDE_INT highest_pow2_factor_for_target (const_tree, const_tree);
96 static bool is_aligning_offset (const_tree, const_tree);
97 static rtx reduce_to_bit_field_precision (rtx, rtx, tree);
98 static rtx do_store_flag (sepops, rtx, machine_mode);
99 #ifdef PUSH_ROUNDING
100 static void emit_single_push_insn (machine_mode, rtx, tree);
101 #endif
102 static void do_tablejump (rtx, machine_mode, rtx, rtx, rtx,
103 profile_probability);
104 static rtx const_vector_from_tree (tree);
105 static tree tree_expr_size (const_tree);
106 static void convert_mode_scalar (rtx, rtx, int);
109 /* This is run to set up which modes can be used
110 directly in memory and to initialize the block move optab. It is run
111 at the beginning of compilation and when the target is reinitialized. */
113 void
114 init_expr_target (void)
116 rtx pat;
117 int num_clobbers;
118 rtx mem, mem1;
119 rtx reg;
121 /* Try indexing by frame ptr and try by stack ptr.
122 It is known that on the Convex the stack ptr isn't a valid index.
123 With luck, one or the other is valid on any machine. */
124 mem = gen_rtx_MEM (word_mode, stack_pointer_rtx);
125 mem1 = gen_rtx_MEM (word_mode, frame_pointer_rtx);
127 /* A scratch register we can modify in-place below to avoid
128 useless RTL allocations. */
129 reg = gen_rtx_REG (word_mode, LAST_VIRTUAL_REGISTER + 1);
131 rtx_insn *insn = as_a<rtx_insn *> (rtx_alloc (INSN));
132 pat = gen_rtx_SET (NULL_RTX, NULL_RTX);
133 PATTERN (insn) = pat;
135 for (machine_mode mode = VOIDmode; (int) mode < NUM_MACHINE_MODES;
136 mode = (machine_mode) ((int) mode + 1))
138 int regno;
140 direct_load[(int) mode] = direct_store[(int) mode] = 0;
141 PUT_MODE (mem, mode);
142 PUT_MODE (mem1, mode);
144 /* See if there is some register that can be used in this mode and
145 directly loaded or stored from memory. */
147 if (mode != VOIDmode && mode != BLKmode)
148 for (regno = 0; regno < FIRST_PSEUDO_REGISTER
149 && (direct_load[(int) mode] == 0 || direct_store[(int) mode] == 0);
150 regno++)
152 if (!targetm.hard_regno_mode_ok (regno, mode))
153 continue;
155 set_mode_and_regno (reg, mode, regno);
157 SET_SRC (pat) = mem;
158 SET_DEST (pat) = reg;
159 if (recog (pat, insn, &num_clobbers) >= 0)
160 direct_load[(int) mode] = 1;
162 SET_SRC (pat) = mem1;
163 SET_DEST (pat) = reg;
164 if (recog (pat, insn, &num_clobbers) >= 0)
165 direct_load[(int) mode] = 1;
167 SET_SRC (pat) = reg;
168 SET_DEST (pat) = mem;
169 if (recog (pat, insn, &num_clobbers) >= 0)
170 direct_store[(int) mode] = 1;
172 SET_SRC (pat) = reg;
173 SET_DEST (pat) = mem1;
174 if (recog (pat, insn, &num_clobbers) >= 0)
175 direct_store[(int) mode] = 1;
179 mem = gen_rtx_MEM (VOIDmode, gen_raw_REG (Pmode, LAST_VIRTUAL_REGISTER + 1));
181 opt_scalar_float_mode mode_iter;
182 FOR_EACH_MODE_IN_CLASS (mode_iter, MODE_FLOAT)
184 scalar_float_mode mode = mode_iter.require ();
185 scalar_float_mode srcmode;
186 FOR_EACH_MODE_UNTIL (srcmode, mode)
188 enum insn_code ic;
190 ic = can_extend_p (mode, srcmode, 0);
191 if (ic == CODE_FOR_nothing)
192 continue;
194 PUT_MODE (mem, srcmode);
196 if (insn_operand_matches (ic, 1, mem))
197 float_extend_from_mem[mode][srcmode] = true;
202 /* This is run at the start of compiling a function. */
204 void
205 init_expr (void)
207 memset (&crtl->expr, 0, sizeof (crtl->expr));
210 /* Copy data from FROM to TO, where the machine modes are not the same.
211 Both modes may be integer, or both may be floating, or both may be
212 fixed-point.
213 UNSIGNEDP should be nonzero if FROM is an unsigned type.
214 This causes zero-extension instead of sign-extension. */
216 void
217 convert_move (rtx to, rtx from, int unsignedp)
219 machine_mode to_mode = GET_MODE (to);
220 machine_mode from_mode = GET_MODE (from);
222 gcc_assert (to_mode != BLKmode);
223 gcc_assert (from_mode != BLKmode);
225 /* If the source and destination are already the same, then there's
226 nothing to do. */
227 if (to == from)
228 return;
230 /* If FROM is a SUBREG that indicates that we have already done at least
231 the required extension, strip it. We don't handle such SUBREGs as
232 TO here. */
234 scalar_int_mode to_int_mode;
235 if (GET_CODE (from) == SUBREG
236 && SUBREG_PROMOTED_VAR_P (from)
237 && is_a <scalar_int_mode> (to_mode, &to_int_mode)
238 && (GET_MODE_PRECISION (subreg_promoted_mode (from))
239 >= GET_MODE_PRECISION (to_int_mode))
240 && SUBREG_CHECK_PROMOTED_SIGN (from, unsignedp))
242 scalar_int_mode int_orig_mode;
243 scalar_int_mode int_inner_mode;
244 machine_mode orig_mode = GET_MODE (from);
246 from = gen_lowpart (to_int_mode, SUBREG_REG (from));
247 from_mode = to_int_mode;
249 /* Preserve SUBREG_PROMOTED_VAR_P if the new mode is wider than
250 the original mode, but narrower than the inner mode. */
251 if (GET_CODE (from) == SUBREG
252 && is_a <scalar_int_mode> (orig_mode, &int_orig_mode)
253 && GET_MODE_PRECISION (to_int_mode)
254 > GET_MODE_PRECISION (int_orig_mode)
255 && is_a <scalar_int_mode> (GET_MODE (SUBREG_REG (from)),
256 &int_inner_mode)
257 && GET_MODE_PRECISION (int_inner_mode)
258 > GET_MODE_PRECISION (to_int_mode))
260 SUBREG_PROMOTED_VAR_P (from) = 1;
261 SUBREG_PROMOTED_SET (from, unsignedp);
265 gcc_assert (GET_CODE (to) != SUBREG || !SUBREG_PROMOTED_VAR_P (to));
267 if (to_mode == from_mode
268 || (from_mode == VOIDmode && CONSTANT_P (from)))
270 emit_move_insn (to, from);
271 return;
274 if (VECTOR_MODE_P (to_mode) || VECTOR_MODE_P (from_mode))
276 if (GET_MODE_UNIT_PRECISION (to_mode)
277 > GET_MODE_UNIT_PRECISION (from_mode))
279 optab op = unsignedp ? zext_optab : sext_optab;
280 insn_code icode = convert_optab_handler (op, to_mode, from_mode);
281 if (icode != CODE_FOR_nothing)
283 emit_unop_insn (icode, to, from,
284 unsignedp ? ZERO_EXTEND : SIGN_EXTEND);
285 return;
289 if (GET_MODE_UNIT_PRECISION (to_mode)
290 < GET_MODE_UNIT_PRECISION (from_mode))
292 insn_code icode = convert_optab_handler (trunc_optab,
293 to_mode, from_mode);
294 if (icode != CODE_FOR_nothing)
296 emit_unop_insn (icode, to, from, TRUNCATE);
297 return;
301 gcc_assert (known_eq (GET_MODE_BITSIZE (from_mode),
302 GET_MODE_BITSIZE (to_mode)));
304 if (VECTOR_MODE_P (to_mode))
305 from = simplify_gen_subreg (to_mode, from, GET_MODE (from), 0);
306 else
307 to = simplify_gen_subreg (from_mode, to, GET_MODE (to), 0);
309 emit_move_insn (to, from);
310 return;
313 if (GET_CODE (to) == CONCAT && GET_CODE (from) == CONCAT)
315 convert_move (XEXP (to, 0), XEXP (from, 0), unsignedp);
316 convert_move (XEXP (to, 1), XEXP (from, 1), unsignedp);
317 return;
320 convert_mode_scalar (to, from, unsignedp);
323 /* Like convert_move, but deals only with scalar modes. */
325 static void
326 convert_mode_scalar (rtx to, rtx from, int unsignedp)
328 /* Both modes should be scalar types. */
329 scalar_mode from_mode = as_a <scalar_mode> (GET_MODE (from));
330 scalar_mode to_mode = as_a <scalar_mode> (GET_MODE (to));
331 bool to_real = SCALAR_FLOAT_MODE_P (to_mode);
332 bool from_real = SCALAR_FLOAT_MODE_P (from_mode);
333 enum insn_code code;
334 rtx libcall;
336 gcc_assert (to_real == from_real);
338 /* rtx code for making an equivalent value. */
339 enum rtx_code equiv_code = (unsignedp < 0 ? UNKNOWN
340 : (unsignedp ? ZERO_EXTEND : SIGN_EXTEND));
342 if (to_real)
344 rtx value;
345 rtx_insn *insns;
346 convert_optab tab;
348 gcc_assert ((GET_MODE_PRECISION (from_mode)
349 != GET_MODE_PRECISION (to_mode))
350 || (DECIMAL_FLOAT_MODE_P (from_mode)
351 != DECIMAL_FLOAT_MODE_P (to_mode))
352 || (REAL_MODE_FORMAT (from_mode) == &arm_bfloat_half_format
353 && REAL_MODE_FORMAT (to_mode) == &ieee_half_format)
354 || (REAL_MODE_FORMAT (to_mode) == &arm_bfloat_half_format
355 && REAL_MODE_FORMAT (from_mode) == &ieee_half_format));
357 if (GET_MODE_PRECISION (from_mode) == GET_MODE_PRECISION (to_mode))
358 /* Conversion between decimal float and binary float, same size. */
359 tab = DECIMAL_FLOAT_MODE_P (from_mode) ? trunc_optab : sext_optab;
360 else if (GET_MODE_PRECISION (from_mode) < GET_MODE_PRECISION (to_mode))
361 tab = sext_optab;
362 else
363 tab = trunc_optab;
365 /* Try converting directly if the insn is supported. */
367 code = convert_optab_handler (tab, to_mode, from_mode);
368 if (code != CODE_FOR_nothing)
370 emit_unop_insn (code, to, from,
371 tab == sext_optab ? FLOAT_EXTEND : FLOAT_TRUNCATE);
372 return;
375 #ifdef HAVE_SFmode
376 if (REAL_MODE_FORMAT (from_mode) == &arm_bfloat_half_format
377 && REAL_MODE_FORMAT (SFmode) == &ieee_single_format)
379 if (GET_MODE_PRECISION (to_mode) > GET_MODE_PRECISION (SFmode))
381 /* To cut down on libgcc size, implement
382 BFmode -> {DF,XF,TF}mode conversions by
383 BFmode -> SFmode -> {DF,XF,TF}mode conversions. */
384 rtx temp = gen_reg_rtx (SFmode);
385 convert_mode_scalar (temp, from, unsignedp);
386 convert_mode_scalar (to, temp, unsignedp);
387 return;
389 if (REAL_MODE_FORMAT (to_mode) == &ieee_half_format)
391 /* Similarly, implement BFmode -> HFmode as
392 BFmode -> SFmode -> HFmode conversion where SFmode
393 has superset of BFmode values. We don't need
394 to handle sNaNs by raising exception and turning
395 it into qNaN though, as that can be done in the
396 SFmode -> HFmode conversion too. */
397 rtx temp = gen_reg_rtx (SFmode);
398 int save_flag_finite_math_only = flag_finite_math_only;
399 flag_finite_math_only = true;
400 convert_mode_scalar (temp, from, unsignedp);
401 flag_finite_math_only = save_flag_finite_math_only;
402 convert_mode_scalar (to, temp, unsignedp);
403 return;
405 if (to_mode == SFmode
406 && !HONOR_NANS (from_mode)
407 && !HONOR_NANS (to_mode)
408 && optimize_insn_for_speed_p ())
410 /* If we don't expect sNaNs, for BFmode -> SFmode we can just
411 shift the bits up. */
412 machine_mode fromi_mode, toi_mode;
413 if (int_mode_for_size (GET_MODE_BITSIZE (from_mode),
414 0).exists (&fromi_mode)
415 && int_mode_for_size (GET_MODE_BITSIZE (to_mode),
416 0).exists (&toi_mode))
418 start_sequence ();
419 rtx fromi = lowpart_subreg (fromi_mode, from, from_mode);
420 rtx tof = NULL_RTX;
421 if (fromi)
423 rtx toi;
424 if (GET_MODE (fromi) == VOIDmode)
425 toi = simplify_unary_operation (ZERO_EXTEND, toi_mode,
426 fromi, fromi_mode);
427 else
429 toi = gen_reg_rtx (toi_mode);
430 convert_mode_scalar (toi, fromi, 1);
433 = maybe_expand_shift (LSHIFT_EXPR, toi_mode, toi,
434 GET_MODE_PRECISION (to_mode)
435 - GET_MODE_PRECISION (from_mode),
436 NULL_RTX, 1);
437 if (toi)
439 tof = lowpart_subreg (to_mode, toi, toi_mode);
440 if (tof)
441 emit_move_insn (to, tof);
444 insns = get_insns ();
445 end_sequence ();
446 if (tof)
448 emit_insn (insns);
449 return;
454 if (REAL_MODE_FORMAT (from_mode) == &ieee_single_format
455 && REAL_MODE_FORMAT (to_mode) == &arm_bfloat_half_format
456 && !HONOR_NANS (from_mode)
457 && !HONOR_NANS (to_mode)
458 && !flag_rounding_math
459 && optimize_insn_for_speed_p ())
461 /* If we don't expect qNaNs nor sNaNs and can assume rounding
462 to nearest, we can expand the conversion inline as
463 (fromi + 0x7fff + ((fromi >> 16) & 1)) >> 16. */
464 machine_mode fromi_mode, toi_mode;
465 if (int_mode_for_size (GET_MODE_BITSIZE (from_mode),
466 0).exists (&fromi_mode)
467 && int_mode_for_size (GET_MODE_BITSIZE (to_mode),
468 0).exists (&toi_mode))
470 start_sequence ();
471 rtx fromi = lowpart_subreg (fromi_mode, from, from_mode);
472 rtx tof = NULL_RTX;
475 if (!fromi)
476 break;
477 int shift = (GET_MODE_PRECISION (from_mode)
478 - GET_MODE_PRECISION (to_mode));
479 rtx temp1
480 = maybe_expand_shift (RSHIFT_EXPR, fromi_mode, fromi,
481 shift, NULL_RTX, 1);
482 if (!temp1)
483 break;
484 rtx temp2
485 = expand_binop (fromi_mode, and_optab, temp1, const1_rtx,
486 NULL_RTX, 1, OPTAB_DIRECT);
487 if (!temp2)
488 break;
489 rtx temp3
490 = expand_binop (fromi_mode, add_optab, fromi,
491 gen_int_mode ((HOST_WIDE_INT_1U
492 << (shift - 1)) - 1,
493 fromi_mode), NULL_RTX,
494 1, OPTAB_DIRECT);
495 if (!temp3)
496 break;
497 rtx temp4
498 = expand_binop (fromi_mode, add_optab, temp3, temp2,
499 NULL_RTX, 1, OPTAB_DIRECT);
500 if (!temp4)
501 break;
502 rtx temp5 = maybe_expand_shift (RSHIFT_EXPR, fromi_mode,
503 temp4, shift, NULL_RTX, 1);
504 if (!temp5)
505 break;
506 rtx temp6 = lowpart_subreg (toi_mode, temp5, fromi_mode);
507 if (!temp6)
508 break;
509 tof = lowpart_subreg (to_mode, force_reg (toi_mode, temp6),
510 toi_mode);
511 if (tof)
512 emit_move_insn (to, tof);
514 while (0);
515 insns = get_insns ();
516 end_sequence ();
517 if (tof)
519 emit_insn (insns);
520 return;
524 #endif
526 /* Otherwise use a libcall. */
527 libcall = convert_optab_libfunc (tab, to_mode, from_mode);
529 /* Is this conversion implemented yet? */
530 gcc_assert (libcall);
532 start_sequence ();
533 value = emit_library_call_value (libcall, NULL_RTX, LCT_CONST, to_mode,
534 from, from_mode);
535 insns = get_insns ();
536 end_sequence ();
537 emit_libcall_block (insns, to, value,
538 tab == trunc_optab ? gen_rtx_FLOAT_TRUNCATE (to_mode,
539 from)
540 : gen_rtx_FLOAT_EXTEND (to_mode, from));
541 return;
544 /* Handle pointer conversion. */ /* SPEE 900220. */
545 /* If the target has a converter from FROM_MODE to TO_MODE, use it. */
547 convert_optab ctab;
549 if (GET_MODE_PRECISION (from_mode) > GET_MODE_PRECISION (to_mode))
550 ctab = trunc_optab;
551 else if (unsignedp)
552 ctab = zext_optab;
553 else
554 ctab = sext_optab;
556 if (convert_optab_handler (ctab, to_mode, from_mode)
557 != CODE_FOR_nothing)
559 emit_unop_insn (convert_optab_handler (ctab, to_mode, from_mode),
560 to, from, UNKNOWN);
561 return;
565 /* Targets are expected to provide conversion insns between PxImode and
566 xImode for all MODE_PARTIAL_INT modes they use, but no others. */
567 if (GET_MODE_CLASS (to_mode) == MODE_PARTIAL_INT)
569 scalar_int_mode full_mode
570 = smallest_int_mode_for_size (GET_MODE_BITSIZE (to_mode));
572 gcc_assert (convert_optab_handler (trunc_optab, to_mode, full_mode)
573 != CODE_FOR_nothing);
575 if (full_mode != from_mode)
576 from = convert_to_mode (full_mode, from, unsignedp);
577 emit_unop_insn (convert_optab_handler (trunc_optab, to_mode, full_mode),
578 to, from, UNKNOWN);
579 return;
581 if (GET_MODE_CLASS (from_mode) == MODE_PARTIAL_INT)
583 rtx new_from;
584 scalar_int_mode full_mode
585 = smallest_int_mode_for_size (GET_MODE_BITSIZE (from_mode));
586 convert_optab ctab = unsignedp ? zext_optab : sext_optab;
587 enum insn_code icode;
589 icode = convert_optab_handler (ctab, full_mode, from_mode);
590 gcc_assert (icode != CODE_FOR_nothing);
592 if (to_mode == full_mode)
594 emit_unop_insn (icode, to, from, UNKNOWN);
595 return;
598 new_from = gen_reg_rtx (full_mode);
599 emit_unop_insn (icode, new_from, from, UNKNOWN);
601 /* else proceed to integer conversions below. */
602 from_mode = full_mode;
603 from = new_from;
606 /* Make sure both are fixed-point modes or both are not. */
607 gcc_assert (ALL_SCALAR_FIXED_POINT_MODE_P (from_mode) ==
608 ALL_SCALAR_FIXED_POINT_MODE_P (to_mode));
609 if (ALL_SCALAR_FIXED_POINT_MODE_P (from_mode))
611 /* If we widen from_mode to to_mode and they are in the same class,
612 we won't saturate the result.
613 Otherwise, always saturate the result to play safe. */
614 if (GET_MODE_CLASS (from_mode) == GET_MODE_CLASS (to_mode)
615 && GET_MODE_SIZE (from_mode) < GET_MODE_SIZE (to_mode))
616 expand_fixed_convert (to, from, 0, 0);
617 else
618 expand_fixed_convert (to, from, 0, 1);
619 return;
622 /* Now both modes are integers. */
624 /* Handle expanding beyond a word. */
625 if (GET_MODE_PRECISION (from_mode) < GET_MODE_PRECISION (to_mode)
626 && GET_MODE_PRECISION (to_mode) > BITS_PER_WORD)
628 rtx_insn *insns;
629 rtx lowpart;
630 rtx fill_value;
631 rtx lowfrom;
632 int i;
633 scalar_mode lowpart_mode;
634 int nwords = CEIL (GET_MODE_SIZE (to_mode), UNITS_PER_WORD);
636 /* Try converting directly if the insn is supported. */
637 if ((code = can_extend_p (to_mode, from_mode, unsignedp))
638 != CODE_FOR_nothing)
640 /* If FROM is a SUBREG, put it into a register. Do this
641 so that we always generate the same set of insns for
642 better cse'ing; if an intermediate assignment occurred,
643 we won't be doing the operation directly on the SUBREG. */
644 if (optimize > 0 && GET_CODE (from) == SUBREG)
645 from = force_reg (from_mode, from);
646 emit_unop_insn (code, to, from, equiv_code);
647 return;
649 /* Next, try converting via full word. */
650 else if (GET_MODE_PRECISION (from_mode) < BITS_PER_WORD
651 && ((code = can_extend_p (to_mode, word_mode, unsignedp))
652 != CODE_FOR_nothing))
654 rtx word_to = gen_reg_rtx (word_mode);
655 if (REG_P (to))
657 if (reg_overlap_mentioned_p (to, from))
658 from = force_reg (from_mode, from);
659 emit_clobber (to);
661 convert_move (word_to, from, unsignedp);
662 emit_unop_insn (code, to, word_to, equiv_code);
663 return;
666 /* No special multiword conversion insn; do it by hand. */
667 start_sequence ();
669 /* Since we will turn this into a no conflict block, we must ensure
670 the source does not overlap the target so force it into an isolated
671 register when maybe so. Likewise for any MEM input, since the
672 conversion sequence might require several references to it and we
673 must ensure we're getting the same value every time. */
675 if (MEM_P (from) || reg_overlap_mentioned_p (to, from))
676 from = force_reg (from_mode, from);
678 /* Get a copy of FROM widened to a word, if necessary. */
679 if (GET_MODE_PRECISION (from_mode) < BITS_PER_WORD)
680 lowpart_mode = word_mode;
681 else
682 lowpart_mode = from_mode;
684 lowfrom = convert_to_mode (lowpart_mode, from, unsignedp);
686 lowpart = gen_lowpart (lowpart_mode, to);
687 emit_move_insn (lowpart, lowfrom);
689 /* Compute the value to put in each remaining word. */
690 if (unsignedp)
691 fill_value = const0_rtx;
692 else
693 fill_value = emit_store_flag_force (gen_reg_rtx (word_mode),
694 LT, lowfrom, const0_rtx,
695 lowpart_mode, 0, -1);
697 /* Fill the remaining words. */
698 for (i = GET_MODE_SIZE (lowpart_mode) / UNITS_PER_WORD; i < nwords; i++)
700 int index = (WORDS_BIG_ENDIAN ? nwords - i - 1 : i);
701 rtx subword = operand_subword (to, index, 1, to_mode);
703 gcc_assert (subword);
705 if (fill_value != subword)
706 emit_move_insn (subword, fill_value);
709 insns = get_insns ();
710 end_sequence ();
712 emit_insn (insns);
713 return;
716 /* Truncating multi-word to a word or less. */
717 if (GET_MODE_PRECISION (from_mode) > BITS_PER_WORD
718 && GET_MODE_PRECISION (to_mode) <= BITS_PER_WORD)
720 if (!((MEM_P (from)
721 && ! MEM_VOLATILE_P (from)
722 && direct_load[(int) to_mode]
723 && ! mode_dependent_address_p (XEXP (from, 0),
724 MEM_ADDR_SPACE (from)))
725 || REG_P (from)
726 || GET_CODE (from) == SUBREG))
727 from = force_reg (from_mode, from);
728 convert_move (to, gen_lowpart (word_mode, from), 0);
729 return;
732 /* Now follow all the conversions between integers
733 no more than a word long. */
735 /* For truncation, usually we can just refer to FROM in a narrower mode. */
736 if (GET_MODE_BITSIZE (to_mode) < GET_MODE_BITSIZE (from_mode)
737 && TRULY_NOOP_TRUNCATION_MODES_P (to_mode, from_mode))
739 if (!((MEM_P (from)
740 && ! MEM_VOLATILE_P (from)
741 && direct_load[(int) to_mode]
742 && ! mode_dependent_address_p (XEXP (from, 0),
743 MEM_ADDR_SPACE (from)))
744 || REG_P (from)
745 || GET_CODE (from) == SUBREG))
746 from = force_reg (from_mode, from);
747 if (REG_P (from) && REGNO (from) < FIRST_PSEUDO_REGISTER
748 && !targetm.hard_regno_mode_ok (REGNO (from), to_mode))
749 from = copy_to_reg (from);
750 emit_move_insn (to, gen_lowpart (to_mode, from));
751 return;
754 /* Handle extension. */
755 if (GET_MODE_PRECISION (to_mode) > GET_MODE_PRECISION (from_mode))
757 /* Convert directly if that works. */
758 if ((code = can_extend_p (to_mode, from_mode, unsignedp))
759 != CODE_FOR_nothing)
761 emit_unop_insn (code, to, from, equiv_code);
762 return;
764 else
766 rtx tmp;
767 int shift_amount;
769 /* Search for a mode to convert via. */
770 opt_scalar_mode intermediate_iter;
771 FOR_EACH_MODE_FROM (intermediate_iter, from_mode)
773 scalar_mode intermediate = intermediate_iter.require ();
774 if (((can_extend_p (to_mode, intermediate, unsignedp)
775 != CODE_FOR_nothing)
776 || (GET_MODE_SIZE (to_mode) < GET_MODE_SIZE (intermediate)
777 && TRULY_NOOP_TRUNCATION_MODES_P (to_mode,
778 intermediate)))
779 && (can_extend_p (intermediate, from_mode, unsignedp)
780 != CODE_FOR_nothing))
782 convert_move (to, convert_to_mode (intermediate, from,
783 unsignedp), unsignedp);
784 return;
788 /* No suitable intermediate mode.
789 Generate what we need with shifts. */
790 shift_amount = (GET_MODE_PRECISION (to_mode)
791 - GET_MODE_PRECISION (from_mode));
792 from = gen_lowpart (to_mode, force_reg (from_mode, from));
793 tmp = expand_shift (LSHIFT_EXPR, to_mode, from, shift_amount,
794 to, unsignedp);
795 tmp = expand_shift (RSHIFT_EXPR, to_mode, tmp, shift_amount,
796 to, unsignedp);
797 if (tmp != to)
798 emit_move_insn (to, tmp);
799 return;
803 /* Support special truncate insns for certain modes. */
804 if (convert_optab_handler (trunc_optab, to_mode,
805 from_mode) != CODE_FOR_nothing)
807 emit_unop_insn (convert_optab_handler (trunc_optab, to_mode, from_mode),
808 to, from, UNKNOWN);
809 return;
812 /* Handle truncation of volatile memrefs, and so on;
813 the things that couldn't be truncated directly,
814 and for which there was no special instruction.
816 ??? Code above formerly short-circuited this, for most integer
817 mode pairs, with a force_reg in from_mode followed by a recursive
818 call to this routine. Appears always to have been wrong. */
819 if (GET_MODE_PRECISION (to_mode) < GET_MODE_PRECISION (from_mode))
821 rtx temp = force_reg (to_mode, gen_lowpart (to_mode, from));
822 emit_move_insn (to, temp);
823 return;
826 /* Mode combination is not recognized. */
827 gcc_unreachable ();
830 /* Return an rtx for a value that would result
831 from converting X to mode MODE.
832 Both X and MODE may be floating, or both integer.
833 UNSIGNEDP is nonzero if X is an unsigned value.
834 This can be done by referring to a part of X in place
835 or by copying to a new temporary with conversion. */
838 convert_to_mode (machine_mode mode, rtx x, int unsignedp)
840 return convert_modes (mode, VOIDmode, x, unsignedp);
843 /* Return an rtx for a value that would result
844 from converting X from mode OLDMODE to mode MODE.
845 Both modes may be floating, or both integer.
846 UNSIGNEDP is nonzero if X is an unsigned value.
848 This can be done by referring to a part of X in place
849 or by copying to a new temporary with conversion.
851 You can give VOIDmode for OLDMODE, if you are sure X has a nonvoid mode. */
854 convert_modes (machine_mode mode, machine_mode oldmode, rtx x, int unsignedp)
856 rtx temp;
857 scalar_int_mode int_mode;
859 /* If FROM is a SUBREG that indicates that we have already done at least
860 the required extension, strip it. */
862 if (GET_CODE (x) == SUBREG
863 && SUBREG_PROMOTED_VAR_P (x)
864 && is_a <scalar_int_mode> (mode, &int_mode)
865 && (GET_MODE_PRECISION (subreg_promoted_mode (x))
866 >= GET_MODE_PRECISION (int_mode))
867 && SUBREG_CHECK_PROMOTED_SIGN (x, unsignedp))
869 scalar_int_mode int_orig_mode;
870 scalar_int_mode int_inner_mode;
871 machine_mode orig_mode = GET_MODE (x);
872 x = gen_lowpart (int_mode, SUBREG_REG (x));
874 /* Preserve SUBREG_PROMOTED_VAR_P if the new mode is wider than
875 the original mode, but narrower than the inner mode. */
876 if (GET_CODE (x) == SUBREG
877 && is_a <scalar_int_mode> (orig_mode, &int_orig_mode)
878 && GET_MODE_PRECISION (int_mode)
879 > GET_MODE_PRECISION (int_orig_mode)
880 && is_a <scalar_int_mode> (GET_MODE (SUBREG_REG (x)),
881 &int_inner_mode)
882 && GET_MODE_PRECISION (int_inner_mode)
883 > GET_MODE_PRECISION (int_mode))
885 SUBREG_PROMOTED_VAR_P (x) = 1;
886 SUBREG_PROMOTED_SET (x, unsignedp);
890 if (GET_MODE (x) != VOIDmode)
891 oldmode = GET_MODE (x);
893 if (mode == oldmode)
894 return x;
896 if (CONST_SCALAR_INT_P (x)
897 && is_a <scalar_int_mode> (mode, &int_mode))
899 /* If the caller did not tell us the old mode, then there is not
900 much to do with respect to canonicalization. We have to
901 assume that all the bits are significant. */
902 if (!is_a <scalar_int_mode> (oldmode))
903 oldmode = MAX_MODE_INT;
904 wide_int w = wide_int::from (rtx_mode_t (x, oldmode),
905 GET_MODE_PRECISION (int_mode),
906 unsignedp ? UNSIGNED : SIGNED);
907 return immed_wide_int_const (w, int_mode);
910 /* We can do this with a gen_lowpart if both desired and current modes
911 are integer, and this is either a constant integer, a register, or a
912 non-volatile MEM. */
913 scalar_int_mode int_oldmode;
914 if (is_int_mode (mode, &int_mode)
915 && is_int_mode (oldmode, &int_oldmode)
916 && GET_MODE_PRECISION (int_mode) <= GET_MODE_PRECISION (int_oldmode)
917 && ((MEM_P (x) && !MEM_VOLATILE_P (x) && direct_load[(int) int_mode])
918 || CONST_POLY_INT_P (x)
919 || (REG_P (x)
920 && (!HARD_REGISTER_P (x)
921 || targetm.hard_regno_mode_ok (REGNO (x), int_mode))
922 && TRULY_NOOP_TRUNCATION_MODES_P (int_mode, GET_MODE (x)))))
923 return gen_lowpart (int_mode, x);
925 /* Converting from integer constant into mode is always equivalent to an
926 subreg operation. */
927 if (VECTOR_MODE_P (mode) && GET_MODE (x) == VOIDmode)
929 gcc_assert (known_eq (GET_MODE_BITSIZE (mode),
930 GET_MODE_BITSIZE (oldmode)));
931 return simplify_gen_subreg (mode, x, oldmode, 0);
934 temp = gen_reg_rtx (mode);
935 convert_move (temp, x, unsignedp);
936 return temp;
939 /* Variant of convert_modes for ABI parameter passing/return.
940 Return an rtx for a value that would result from converting X from
941 a floating point mode FMODE to wider integer mode MODE. */
944 convert_float_to_wider_int (machine_mode mode, machine_mode fmode, rtx x)
946 gcc_assert (SCALAR_INT_MODE_P (mode) && SCALAR_FLOAT_MODE_P (fmode));
947 scalar_int_mode tmp_mode = int_mode_for_mode (fmode).require ();
948 rtx tmp = force_reg (tmp_mode, gen_lowpart (tmp_mode, x));
949 return convert_modes (mode, tmp_mode, tmp, 1);
952 /* Variant of convert_modes for ABI parameter passing/return.
953 Return an rtx for a value that would result from converting X from
954 an integer mode IMODE to a narrower floating point mode MODE. */
957 convert_wider_int_to_float (machine_mode mode, machine_mode imode, rtx x)
959 gcc_assert (SCALAR_FLOAT_MODE_P (mode) && SCALAR_INT_MODE_P (imode));
960 scalar_int_mode tmp_mode = int_mode_for_mode (mode).require ();
961 rtx tmp = force_reg (tmp_mode, gen_lowpart (tmp_mode, x));
962 return gen_lowpart_SUBREG (mode, tmp);
965 /* Return the largest alignment we can use for doing a move (or store)
966 of MAX_PIECES. ALIGN is the largest alignment we could use. */
968 static unsigned int
969 alignment_for_piecewise_move (unsigned int max_pieces, unsigned int align)
971 scalar_int_mode tmode
972 = int_mode_for_size (max_pieces * BITS_PER_UNIT, 0).require ();
974 if (align >= GET_MODE_ALIGNMENT (tmode))
975 align = GET_MODE_ALIGNMENT (tmode);
976 else
978 scalar_int_mode xmode = NARROWEST_INT_MODE;
979 opt_scalar_int_mode mode_iter;
980 FOR_EACH_MODE_IN_CLASS (mode_iter, MODE_INT)
982 tmode = mode_iter.require ();
983 if (GET_MODE_SIZE (tmode) > max_pieces
984 || targetm.slow_unaligned_access (tmode, align))
985 break;
986 xmode = tmode;
989 align = MAX (align, GET_MODE_ALIGNMENT (xmode));
992 return align;
995 /* Return true if we know how to implement OP using vectors of bytes. */
996 static bool
997 can_use_qi_vectors (by_pieces_operation op)
999 return (op == COMPARE_BY_PIECES
1000 || op == SET_BY_PIECES
1001 || op == CLEAR_BY_PIECES);
1004 /* Return true if optabs exists for the mode and certain by pieces
1005 operations. */
1006 static bool
1007 by_pieces_mode_supported_p (fixed_size_mode mode, by_pieces_operation op)
1009 if (optab_handler (mov_optab, mode) == CODE_FOR_nothing)
1010 return false;
1012 if ((op == SET_BY_PIECES || op == CLEAR_BY_PIECES)
1013 && VECTOR_MODE_P (mode)
1014 && optab_handler (vec_duplicate_optab, mode) == CODE_FOR_nothing)
1015 return false;
1017 if (op == COMPARE_BY_PIECES
1018 && !can_compare_p (EQ, mode, ccp_jump))
1019 return false;
1021 return true;
1024 /* Return the widest mode that can be used to perform part of an
1025 operation OP on SIZE bytes. Try to use QI vector modes where
1026 possible. */
1027 static fixed_size_mode
1028 widest_fixed_size_mode_for_size (unsigned int size, by_pieces_operation op)
1030 fixed_size_mode result = NARROWEST_INT_MODE;
1032 gcc_checking_assert (size > 1);
1034 /* Use QI vector only if size is wider than a WORD. */
1035 if (can_use_qi_vectors (op) && size > UNITS_PER_WORD)
1037 machine_mode mode;
1038 fixed_size_mode candidate;
1039 FOR_EACH_MODE_IN_CLASS (mode, MODE_VECTOR_INT)
1040 if (is_a<fixed_size_mode> (mode, &candidate)
1041 && GET_MODE_INNER (candidate) == QImode)
1043 if (GET_MODE_SIZE (candidate) >= size)
1044 break;
1045 if (by_pieces_mode_supported_p (candidate, op))
1046 result = candidate;
1049 if (result != NARROWEST_INT_MODE)
1050 return result;
1053 opt_scalar_int_mode tmode;
1054 scalar_int_mode mode;
1055 FOR_EACH_MODE_IN_CLASS (tmode, MODE_INT)
1057 mode = tmode.require ();
1058 if (GET_MODE_SIZE (mode) < size
1059 && by_pieces_mode_supported_p (mode, op))
1060 result = mode;
1063 return result;
1066 /* Determine whether an operation OP on LEN bytes with alignment ALIGN can
1067 and should be performed piecewise. */
1069 static bool
1070 can_do_by_pieces (unsigned HOST_WIDE_INT len, unsigned int align,
1071 enum by_pieces_operation op)
1073 return targetm.use_by_pieces_infrastructure_p (len, align, op,
1074 optimize_insn_for_speed_p ());
1077 /* Determine whether the LEN bytes can be moved by using several move
1078 instructions. Return nonzero if a call to move_by_pieces should
1079 succeed. */
1081 bool
1082 can_move_by_pieces (unsigned HOST_WIDE_INT len, unsigned int align)
1084 return can_do_by_pieces (len, align, MOVE_BY_PIECES);
1087 /* Return number of insns required to perform operation OP by pieces
1088 for L bytes. ALIGN (in bits) is maximum alignment we can assume. */
1090 unsigned HOST_WIDE_INT
1091 by_pieces_ninsns (unsigned HOST_WIDE_INT l, unsigned int align,
1092 unsigned int max_size, by_pieces_operation op)
1094 unsigned HOST_WIDE_INT n_insns = 0;
1095 fixed_size_mode mode;
1097 if (targetm.overlap_op_by_pieces_p ())
1099 /* NB: Round up L and ALIGN to the widest integer mode for
1100 MAX_SIZE. */
1101 mode = widest_fixed_size_mode_for_size (max_size, op);
1102 gcc_assert (optab_handler (mov_optab, mode) != CODE_FOR_nothing);
1103 unsigned HOST_WIDE_INT up = ROUND_UP (l, GET_MODE_SIZE (mode));
1104 if (up > l)
1105 l = up;
1106 align = GET_MODE_ALIGNMENT (mode);
1109 align = alignment_for_piecewise_move (MOVE_MAX_PIECES, align);
1111 while (max_size > 1 && l > 0)
1113 mode = widest_fixed_size_mode_for_size (max_size, op);
1114 gcc_assert (optab_handler (mov_optab, mode) != CODE_FOR_nothing);
1116 unsigned int modesize = GET_MODE_SIZE (mode);
1118 if (align >= GET_MODE_ALIGNMENT (mode))
1120 unsigned HOST_WIDE_INT n_pieces = l / modesize;
1121 l %= modesize;
1122 switch (op)
1124 default:
1125 n_insns += n_pieces;
1126 break;
1128 case COMPARE_BY_PIECES:
1129 int batch = targetm.compare_by_pieces_branch_ratio (mode);
1130 int batch_ops = 4 * batch - 1;
1131 unsigned HOST_WIDE_INT full = n_pieces / batch;
1132 n_insns += full * batch_ops;
1133 if (n_pieces % batch != 0)
1134 n_insns++;
1135 break;
1139 max_size = modesize;
1142 gcc_assert (!l);
1143 return n_insns;
1146 /* Used when performing piecewise block operations, holds information
1147 about one of the memory objects involved. The member functions
1148 can be used to generate code for loading from the object and
1149 updating the address when iterating. */
1151 class pieces_addr
1153 /* The object being referenced, a MEM. Can be NULL_RTX to indicate
1154 stack pushes. */
1155 rtx m_obj;
1156 /* The address of the object. Can differ from that seen in the
1157 MEM rtx if we copied the address to a register. */
1158 rtx m_addr;
1159 /* Nonzero if the address on the object has an autoincrement already,
1160 signifies whether that was an increment or decrement. */
1161 signed char m_addr_inc;
1162 /* Nonzero if we intend to use autoinc without the address already
1163 having autoinc form. We will insert add insns around each memory
1164 reference, expecting later passes to form autoinc addressing modes.
1165 The only supported options are predecrement and postincrement. */
1166 signed char m_explicit_inc;
1167 /* True if we have either of the two possible cases of using
1168 autoincrement. */
1169 bool m_auto;
1170 /* True if this is an address to be used for load operations rather
1171 than stores. */
1172 bool m_is_load;
1174 /* Optionally, a function to obtain constants for any given offset into
1175 the objects, and data associated with it. */
1176 by_pieces_constfn m_constfn;
1177 void *m_cfndata;
1178 public:
1179 pieces_addr (rtx, bool, by_pieces_constfn, void *);
1180 rtx adjust (fixed_size_mode, HOST_WIDE_INT, by_pieces_prev * = nullptr);
1181 void increment_address (HOST_WIDE_INT);
1182 void maybe_predec (HOST_WIDE_INT);
1183 void maybe_postinc (HOST_WIDE_INT);
1184 void decide_autoinc (machine_mode, bool, HOST_WIDE_INT);
1185 int get_addr_inc ()
1187 return m_addr_inc;
1191 /* Initialize a pieces_addr structure from an object OBJ. IS_LOAD is
1192 true if the operation to be performed on this object is a load
1193 rather than a store. For stores, OBJ can be NULL, in which case we
1194 assume the operation is a stack push. For loads, the optional
1195 CONSTFN and its associated CFNDATA can be used in place of the
1196 memory load. */
1198 pieces_addr::pieces_addr (rtx obj, bool is_load, by_pieces_constfn constfn,
1199 void *cfndata)
1200 : m_obj (obj), m_is_load (is_load), m_constfn (constfn), m_cfndata (cfndata)
1202 m_addr_inc = 0;
1203 m_auto = false;
1204 if (obj)
1206 rtx addr = XEXP (obj, 0);
1207 rtx_code code = GET_CODE (addr);
1208 m_addr = addr;
1209 bool dec = code == PRE_DEC || code == POST_DEC;
1210 bool inc = code == PRE_INC || code == POST_INC;
1211 m_auto = inc || dec;
1212 if (m_auto)
1213 m_addr_inc = dec ? -1 : 1;
1215 /* While we have always looked for these codes here, the code
1216 implementing the memory operation has never handled them.
1217 Support could be added later if necessary or beneficial. */
1218 gcc_assert (code != PRE_INC && code != POST_DEC);
1220 else
1222 m_addr = NULL_RTX;
1223 if (!is_load)
1225 m_auto = true;
1226 if (STACK_GROWS_DOWNWARD)
1227 m_addr_inc = -1;
1228 else
1229 m_addr_inc = 1;
1231 else
1232 gcc_assert (constfn != NULL);
1234 m_explicit_inc = 0;
1235 if (constfn)
1236 gcc_assert (is_load);
1239 /* Decide whether to use autoinc for an address involved in a memory op.
1240 MODE is the mode of the accesses, REVERSE is true if we've decided to
1241 perform the operation starting from the end, and LEN is the length of
1242 the operation. Don't override an earlier decision to set m_auto. */
1244 void
1245 pieces_addr::decide_autoinc (machine_mode ARG_UNUSED (mode), bool reverse,
1246 HOST_WIDE_INT len)
1248 if (m_auto || m_obj == NULL_RTX)
1249 return;
1251 bool use_predec = (m_is_load
1252 ? USE_LOAD_PRE_DECREMENT (mode)
1253 : USE_STORE_PRE_DECREMENT (mode));
1254 bool use_postinc = (m_is_load
1255 ? USE_LOAD_POST_INCREMENT (mode)
1256 : USE_STORE_POST_INCREMENT (mode));
1257 machine_mode addr_mode = get_address_mode (m_obj);
1259 if (use_predec && reverse)
1261 m_addr = copy_to_mode_reg (addr_mode,
1262 plus_constant (addr_mode,
1263 m_addr, len));
1264 m_auto = true;
1265 m_explicit_inc = -1;
1267 else if (use_postinc && !reverse)
1269 m_addr = copy_to_mode_reg (addr_mode, m_addr);
1270 m_auto = true;
1271 m_explicit_inc = 1;
1273 else if (CONSTANT_P (m_addr))
1274 m_addr = copy_to_mode_reg (addr_mode, m_addr);
1277 /* Adjust the address to refer to the data at OFFSET in MODE. If we
1278 are using autoincrement for this address, we don't add the offset,
1279 but we still modify the MEM's properties. */
1282 pieces_addr::adjust (fixed_size_mode mode, HOST_WIDE_INT offset,
1283 by_pieces_prev *prev)
1285 if (m_constfn)
1286 /* Pass the previous data to m_constfn. */
1287 return m_constfn (m_cfndata, prev, offset, mode);
1288 if (m_obj == NULL_RTX)
1289 return NULL_RTX;
1290 if (m_auto)
1291 return adjust_automodify_address (m_obj, mode, m_addr, offset);
1292 else
1293 return adjust_address (m_obj, mode, offset);
1296 /* Emit an add instruction to increment the address by SIZE. */
1298 void
1299 pieces_addr::increment_address (HOST_WIDE_INT size)
1301 rtx amount = gen_int_mode (size, GET_MODE (m_addr));
1302 emit_insn (gen_add2_insn (m_addr, amount));
1305 /* If we are supposed to decrement the address after each access, emit code
1306 to do so now. Increment by SIZE (which has should have the correct sign
1307 already). */
1309 void
1310 pieces_addr::maybe_predec (HOST_WIDE_INT size)
1312 if (m_explicit_inc >= 0)
1313 return;
1314 gcc_assert (HAVE_PRE_DECREMENT);
1315 increment_address (size);
1318 /* If we are supposed to decrement the address after each access, emit code
1319 to do so now. Increment by SIZE. */
1321 void
1322 pieces_addr::maybe_postinc (HOST_WIDE_INT size)
1324 if (m_explicit_inc <= 0)
1325 return;
1326 gcc_assert (HAVE_POST_INCREMENT);
1327 increment_address (size);
1330 /* This structure is used by do_op_by_pieces to describe the operation
1331 to be performed. */
1333 class op_by_pieces_d
1335 private:
1336 fixed_size_mode get_usable_mode (fixed_size_mode, unsigned int);
1337 fixed_size_mode smallest_fixed_size_mode_for_size (unsigned int);
1339 protected:
1340 pieces_addr m_to, m_from;
1341 /* Make m_len read-only so that smallest_fixed_size_mode_for_size can
1342 use it to check the valid mode size. */
1343 const unsigned HOST_WIDE_INT m_len;
1344 HOST_WIDE_INT m_offset;
1345 unsigned int m_align;
1346 unsigned int m_max_size;
1347 bool m_reverse;
1348 /* True if this is a stack push. */
1349 bool m_push;
1350 /* True if targetm.overlap_op_by_pieces_p () returns true. */
1351 bool m_overlap_op_by_pieces;
1352 /* The type of operation that we're performing. */
1353 by_pieces_operation m_op;
1355 /* Virtual functions, overriden by derived classes for the specific
1356 operation. */
1357 virtual void generate (rtx, rtx, machine_mode) = 0;
1358 virtual bool prepare_mode (machine_mode, unsigned int) = 0;
1359 virtual void finish_mode (machine_mode)
1363 public:
1364 op_by_pieces_d (unsigned int, rtx, bool, rtx, bool, by_pieces_constfn,
1365 void *, unsigned HOST_WIDE_INT, unsigned int, bool,
1366 by_pieces_operation);
1367 void run ();
1370 /* The constructor for an op_by_pieces_d structure. We require two
1371 objects named TO and FROM, which are identified as loads or stores
1372 by TO_LOAD and FROM_LOAD. If FROM is a load, the optional FROM_CFN
1373 and its associated FROM_CFN_DATA can be used to replace loads with
1374 constant values. MAX_PIECES describes the maximum number of bytes
1375 at a time which can be moved efficiently. LEN describes the length
1376 of the operation. */
1378 op_by_pieces_d::op_by_pieces_d (unsigned int max_pieces, rtx to,
1379 bool to_load, rtx from, bool from_load,
1380 by_pieces_constfn from_cfn,
1381 void *from_cfn_data,
1382 unsigned HOST_WIDE_INT len,
1383 unsigned int align, bool push,
1384 by_pieces_operation op)
1385 : m_to (to, to_load, NULL, NULL),
1386 m_from (from, from_load, from_cfn, from_cfn_data),
1387 m_len (len), m_max_size (max_pieces + 1),
1388 m_push (push), m_op (op)
1390 int toi = m_to.get_addr_inc ();
1391 int fromi = m_from.get_addr_inc ();
1392 if (toi >= 0 && fromi >= 0)
1393 m_reverse = false;
1394 else if (toi <= 0 && fromi <= 0)
1395 m_reverse = true;
1396 else
1397 gcc_unreachable ();
1399 m_offset = m_reverse ? len : 0;
1400 align = MIN (to ? MEM_ALIGN (to) : align,
1401 from ? MEM_ALIGN (from) : align);
1403 /* If copying requires more than two move insns,
1404 copy addresses to registers (to make displacements shorter)
1405 and use post-increment if available. */
1406 if (by_pieces_ninsns (len, align, m_max_size, MOVE_BY_PIECES) > 2)
1408 /* Find the mode of the largest comparison. */
1409 fixed_size_mode mode
1410 = widest_fixed_size_mode_for_size (m_max_size, m_op);
1412 m_from.decide_autoinc (mode, m_reverse, len);
1413 m_to.decide_autoinc (mode, m_reverse, len);
1416 align = alignment_for_piecewise_move (MOVE_MAX_PIECES, align);
1417 m_align = align;
1419 m_overlap_op_by_pieces = targetm.overlap_op_by_pieces_p ();
1422 /* This function returns the largest usable integer mode for LEN bytes
1423 whose size is no bigger than size of MODE. */
1425 fixed_size_mode
1426 op_by_pieces_d::get_usable_mode (fixed_size_mode mode, unsigned int len)
1428 unsigned int size;
1431 size = GET_MODE_SIZE (mode);
1432 if (len >= size && prepare_mode (mode, m_align))
1433 break;
1434 /* widest_fixed_size_mode_for_size checks SIZE > 1. */
1435 mode = widest_fixed_size_mode_for_size (size, m_op);
1437 while (1);
1438 return mode;
1441 /* Return the smallest integer or QI vector mode that is not narrower
1442 than SIZE bytes. */
1444 fixed_size_mode
1445 op_by_pieces_d::smallest_fixed_size_mode_for_size (unsigned int size)
1447 /* Use QI vector only for > size of WORD. */
1448 if (can_use_qi_vectors (m_op) && size > UNITS_PER_WORD)
1450 machine_mode mode;
1451 fixed_size_mode candidate;
1452 FOR_EACH_MODE_IN_CLASS (mode, MODE_VECTOR_INT)
1453 if (is_a<fixed_size_mode> (mode, &candidate)
1454 && GET_MODE_INNER (candidate) == QImode)
1456 /* Don't return a mode wider than M_LEN. */
1457 if (GET_MODE_SIZE (candidate) > m_len)
1458 break;
1460 if (GET_MODE_SIZE (candidate) >= size
1461 && by_pieces_mode_supported_p (candidate, m_op))
1462 return candidate;
1466 return smallest_int_mode_for_size (size * BITS_PER_UNIT);
1469 /* This function contains the main loop used for expanding a block
1470 operation. First move what we can in the largest integer mode,
1471 then go to successively smaller modes. For every access, call
1472 GENFUN with the two operands and the EXTRA_DATA. */
1474 void
1475 op_by_pieces_d::run ()
1477 if (m_len == 0)
1478 return;
1480 unsigned HOST_WIDE_INT length = m_len;
1482 /* widest_fixed_size_mode_for_size checks M_MAX_SIZE > 1. */
1483 fixed_size_mode mode
1484 = widest_fixed_size_mode_for_size (m_max_size, m_op);
1485 mode = get_usable_mode (mode, length);
1487 by_pieces_prev to_prev = { nullptr, mode };
1488 by_pieces_prev from_prev = { nullptr, mode };
1492 unsigned int size = GET_MODE_SIZE (mode);
1493 rtx to1 = NULL_RTX, from1;
1495 while (length >= size)
1497 if (m_reverse)
1498 m_offset -= size;
1500 to1 = m_to.adjust (mode, m_offset, &to_prev);
1501 to_prev.data = to1;
1502 to_prev.mode = mode;
1503 from1 = m_from.adjust (mode, m_offset, &from_prev);
1504 from_prev.data = from1;
1505 from_prev.mode = mode;
1507 m_to.maybe_predec (-(HOST_WIDE_INT)size);
1508 m_from.maybe_predec (-(HOST_WIDE_INT)size);
1510 generate (to1, from1, mode);
1512 m_to.maybe_postinc (size);
1513 m_from.maybe_postinc (size);
1515 if (!m_reverse)
1516 m_offset += size;
1518 length -= size;
1521 finish_mode (mode);
1523 if (length == 0)
1524 return;
1526 if (!m_push && m_overlap_op_by_pieces)
1528 /* NB: Generate overlapping operations if it is not a stack
1529 push since stack push must not overlap. Get the smallest
1530 fixed size mode for M_LEN bytes. */
1531 mode = smallest_fixed_size_mode_for_size (length);
1532 mode = get_usable_mode (mode, GET_MODE_SIZE (mode));
1533 int gap = GET_MODE_SIZE (mode) - length;
1534 if (gap > 0)
1536 /* If size of MODE > M_LEN, generate the last operation
1537 in MODE for the remaining bytes with ovelapping memory
1538 from the previois operation. */
1539 if (m_reverse)
1540 m_offset += gap;
1541 else
1542 m_offset -= gap;
1543 length += gap;
1546 else
1548 /* widest_fixed_size_mode_for_size checks SIZE > 1. */
1549 mode = widest_fixed_size_mode_for_size (size, m_op);
1550 mode = get_usable_mode (mode, length);
1553 while (1);
1556 /* Derived class from op_by_pieces_d, providing support for block move
1557 operations. */
1559 #ifdef PUSH_ROUNDING
1560 #define PUSHG_P(to) ((to) == nullptr)
1561 #else
1562 #define PUSHG_P(to) false
1563 #endif
1565 class move_by_pieces_d : public op_by_pieces_d
1567 insn_gen_fn m_gen_fun;
1568 void generate (rtx, rtx, machine_mode) final override;
1569 bool prepare_mode (machine_mode, unsigned int) final override;
1571 public:
1572 move_by_pieces_d (rtx to, rtx from, unsigned HOST_WIDE_INT len,
1573 unsigned int align)
1574 : op_by_pieces_d (MOVE_MAX_PIECES, to, false, from, true, NULL,
1575 NULL, len, align, PUSHG_P (to), MOVE_BY_PIECES)
1578 rtx finish_retmode (memop_ret);
1581 /* Return true if MODE can be used for a set of copies, given an
1582 alignment ALIGN. Prepare whatever data is necessary for later
1583 calls to generate. */
1585 bool
1586 move_by_pieces_d::prepare_mode (machine_mode mode, unsigned int align)
1588 insn_code icode = optab_handler (mov_optab, mode);
1589 m_gen_fun = GEN_FCN (icode);
1590 return icode != CODE_FOR_nothing && align >= GET_MODE_ALIGNMENT (mode);
1593 /* A callback used when iterating for a compare_by_pieces_operation.
1594 OP0 and OP1 are the values that have been loaded and should be
1595 compared in MODE. If OP0 is NULL, this means we should generate a
1596 push; otherwise EXTRA_DATA holds a pointer to a pointer to the insn
1597 gen function that should be used to generate the mode. */
1599 void
1600 move_by_pieces_d::generate (rtx op0, rtx op1,
1601 machine_mode mode ATTRIBUTE_UNUSED)
1603 #ifdef PUSH_ROUNDING
1604 if (op0 == NULL_RTX)
1606 emit_single_push_insn (mode, op1, NULL);
1607 return;
1609 #endif
1610 emit_insn (m_gen_fun (op0, op1));
1613 /* Perform the final adjustment at the end of a string to obtain the
1614 correct return value for the block operation.
1615 Return value is based on RETMODE argument. */
1618 move_by_pieces_d::finish_retmode (memop_ret retmode)
1620 gcc_assert (!m_reverse);
1621 if (retmode == RETURN_END_MINUS_ONE)
1623 m_to.maybe_postinc (-1);
1624 --m_offset;
1626 return m_to.adjust (QImode, m_offset);
1629 /* Generate several move instructions to copy LEN bytes from block FROM to
1630 block TO. (These are MEM rtx's with BLKmode).
1632 If PUSH_ROUNDING is defined and TO is NULL, emit_single_push_insn is
1633 used to push FROM to the stack.
1635 ALIGN is maximum stack alignment we can assume.
1637 Return value is based on RETMODE argument. */
1640 move_by_pieces (rtx to, rtx from, unsigned HOST_WIDE_INT len,
1641 unsigned int align, memop_ret retmode)
1643 #ifndef PUSH_ROUNDING
1644 if (to == NULL)
1645 gcc_unreachable ();
1646 #endif
1648 move_by_pieces_d data (to, from, len, align);
1650 data.run ();
1652 if (retmode != RETURN_BEGIN)
1653 return data.finish_retmode (retmode);
1654 else
1655 return to;
1658 /* Derived class from op_by_pieces_d, providing support for block move
1659 operations. */
1661 class store_by_pieces_d : public op_by_pieces_d
1663 insn_gen_fn m_gen_fun;
1665 void generate (rtx, rtx, machine_mode) final override;
1666 bool prepare_mode (machine_mode, unsigned int) final override;
1668 public:
1669 store_by_pieces_d (rtx to, by_pieces_constfn cfn, void *cfn_data,
1670 unsigned HOST_WIDE_INT len, unsigned int align,
1671 by_pieces_operation op)
1672 : op_by_pieces_d (STORE_MAX_PIECES, to, false, NULL_RTX, true, cfn,
1673 cfn_data, len, align, false, op)
1676 rtx finish_retmode (memop_ret);
1679 /* Return true if MODE can be used for a set of stores, given an
1680 alignment ALIGN. Prepare whatever data is necessary for later
1681 calls to generate. */
1683 bool
1684 store_by_pieces_d::prepare_mode (machine_mode mode, unsigned int align)
1686 insn_code icode = optab_handler (mov_optab, mode);
1687 m_gen_fun = GEN_FCN (icode);
1688 return icode != CODE_FOR_nothing && align >= GET_MODE_ALIGNMENT (mode);
1691 /* A callback used when iterating for a store_by_pieces_operation.
1692 OP0 and OP1 are the values that have been loaded and should be
1693 compared in MODE. If OP0 is NULL, this means we should generate a
1694 push; otherwise EXTRA_DATA holds a pointer to a pointer to the insn
1695 gen function that should be used to generate the mode. */
1697 void
1698 store_by_pieces_d::generate (rtx op0, rtx op1, machine_mode)
1700 emit_insn (m_gen_fun (op0, op1));
1703 /* Perform the final adjustment at the end of a string to obtain the
1704 correct return value for the block operation.
1705 Return value is based on RETMODE argument. */
1708 store_by_pieces_d::finish_retmode (memop_ret retmode)
1710 gcc_assert (!m_reverse);
1711 if (retmode == RETURN_END_MINUS_ONE)
1713 m_to.maybe_postinc (-1);
1714 --m_offset;
1716 return m_to.adjust (QImode, m_offset);
1719 /* Determine whether the LEN bytes generated by CONSTFUN can be
1720 stored to memory using several move instructions. CONSTFUNDATA is
1721 a pointer which will be passed as argument in every CONSTFUN call.
1722 ALIGN is maximum alignment we can assume. MEMSETP is true if this is
1723 a memset operation and false if it's a copy of a constant string.
1724 Return true if a call to store_by_pieces should succeed. */
1726 bool
1727 can_store_by_pieces (unsigned HOST_WIDE_INT len,
1728 by_pieces_constfn constfun,
1729 void *constfundata, unsigned int align, bool memsetp)
1731 unsigned HOST_WIDE_INT l;
1732 unsigned int max_size;
1733 HOST_WIDE_INT offset = 0;
1734 enum insn_code icode;
1735 int reverse;
1736 /* cst is set but not used if LEGITIMATE_CONSTANT doesn't use it. */
1737 rtx cst ATTRIBUTE_UNUSED;
1739 if (len == 0)
1740 return true;
1742 if (!targetm.use_by_pieces_infrastructure_p (len, align,
1743 memsetp
1744 ? SET_BY_PIECES
1745 : STORE_BY_PIECES,
1746 optimize_insn_for_speed_p ()))
1747 return false;
1749 align = alignment_for_piecewise_move (STORE_MAX_PIECES, align);
1751 /* We would first store what we can in the largest integer mode, then go to
1752 successively smaller modes. */
1754 for (reverse = 0;
1755 reverse <= (HAVE_PRE_DECREMENT || HAVE_POST_DECREMENT);
1756 reverse++)
1758 l = len;
1759 max_size = STORE_MAX_PIECES + 1;
1760 while (max_size > 1 && l > 0)
1762 auto op = memsetp ? SET_BY_PIECES : STORE_BY_PIECES;
1763 auto mode = widest_fixed_size_mode_for_size (max_size, op);
1765 icode = optab_handler (mov_optab, mode);
1766 if (icode != CODE_FOR_nothing
1767 && align >= GET_MODE_ALIGNMENT (mode))
1769 unsigned int size = GET_MODE_SIZE (mode);
1771 while (l >= size)
1773 if (reverse)
1774 offset -= size;
1776 cst = (*constfun) (constfundata, nullptr, offset, mode);
1777 /* All CONST_VECTORs can be loaded for memset since
1778 vec_duplicate_optab is a precondition to pick a
1779 vector mode for the memset expander. */
1780 if (!((memsetp && VECTOR_MODE_P (mode))
1781 || targetm.legitimate_constant_p (mode, cst)))
1782 return false;
1784 if (!reverse)
1785 offset += size;
1787 l -= size;
1791 max_size = GET_MODE_SIZE (mode);
1794 /* The code above should have handled everything. */
1795 gcc_assert (!l);
1798 return true;
1801 /* Generate several move instructions to store LEN bytes generated by
1802 CONSTFUN to block TO. (A MEM rtx with BLKmode). CONSTFUNDATA is a
1803 pointer which will be passed as argument in every CONSTFUN call.
1804 ALIGN is maximum alignment we can assume. MEMSETP is true if this is
1805 a memset operation and false if it's a copy of a constant string.
1806 Return value is based on RETMODE argument. */
1809 store_by_pieces (rtx to, unsigned HOST_WIDE_INT len,
1810 by_pieces_constfn constfun,
1811 void *constfundata, unsigned int align, bool memsetp,
1812 memop_ret retmode)
1814 if (len == 0)
1816 gcc_assert (retmode != RETURN_END_MINUS_ONE);
1817 return to;
1820 gcc_assert (targetm.use_by_pieces_infrastructure_p
1821 (len, align,
1822 memsetp ? SET_BY_PIECES : STORE_BY_PIECES,
1823 optimize_insn_for_speed_p ()));
1825 store_by_pieces_d data (to, constfun, constfundata, len, align,
1826 memsetp ? SET_BY_PIECES : STORE_BY_PIECES);
1827 data.run ();
1829 if (retmode != RETURN_BEGIN)
1830 return data.finish_retmode (retmode);
1831 else
1832 return to;
1835 /* Generate several move instructions to clear LEN bytes of block TO. (A MEM
1836 rtx with BLKmode). ALIGN is maximum alignment we can assume. */
1838 static void
1839 clear_by_pieces (rtx to, unsigned HOST_WIDE_INT len, unsigned int align)
1841 if (len == 0)
1842 return;
1844 /* Use builtin_memset_read_str to support vector mode broadcast. */
1845 char c = 0;
1846 store_by_pieces_d data (to, builtin_memset_read_str, &c, len, align,
1847 CLEAR_BY_PIECES);
1848 data.run ();
1851 /* Context used by compare_by_pieces_genfn. It stores the fail label
1852 to jump to in case of miscomparison, and for branch ratios greater than 1,
1853 it stores an accumulator and the current and maximum counts before
1854 emitting another branch. */
1856 class compare_by_pieces_d : public op_by_pieces_d
1858 rtx_code_label *m_fail_label;
1859 rtx m_accumulator;
1860 int m_count, m_batch;
1862 void generate (rtx, rtx, machine_mode) final override;
1863 bool prepare_mode (machine_mode, unsigned int) final override;
1864 void finish_mode (machine_mode) final override;
1866 public:
1867 compare_by_pieces_d (rtx op0, rtx op1, by_pieces_constfn op1_cfn,
1868 void *op1_cfn_data, HOST_WIDE_INT len, int align,
1869 rtx_code_label *fail_label)
1870 : op_by_pieces_d (COMPARE_MAX_PIECES, op0, true, op1, true, op1_cfn,
1871 op1_cfn_data, len, align, false, COMPARE_BY_PIECES)
1873 m_fail_label = fail_label;
1877 /* A callback used when iterating for a compare_by_pieces_operation.
1878 OP0 and OP1 are the values that have been loaded and should be
1879 compared in MODE. DATA holds a pointer to the compare_by_pieces_data
1880 context structure. */
1882 void
1883 compare_by_pieces_d::generate (rtx op0, rtx op1, machine_mode mode)
1885 if (m_batch > 1)
1887 rtx temp = expand_binop (mode, sub_optab, op0, op1, NULL_RTX,
1888 true, OPTAB_LIB_WIDEN);
1889 if (m_count != 0)
1890 temp = expand_binop (mode, ior_optab, m_accumulator, temp, temp,
1891 true, OPTAB_LIB_WIDEN);
1892 m_accumulator = temp;
1894 if (++m_count < m_batch)
1895 return;
1897 m_count = 0;
1898 op0 = m_accumulator;
1899 op1 = const0_rtx;
1900 m_accumulator = NULL_RTX;
1902 do_compare_rtx_and_jump (op0, op1, NE, true, mode, NULL_RTX, NULL,
1903 m_fail_label, profile_probability::uninitialized ());
1906 /* Return true if MODE can be used for a set of moves and comparisons,
1907 given an alignment ALIGN. Prepare whatever data is necessary for
1908 later calls to generate. */
1910 bool
1911 compare_by_pieces_d::prepare_mode (machine_mode mode, unsigned int align)
1913 insn_code icode = optab_handler (mov_optab, mode);
1914 if (icode == CODE_FOR_nothing
1915 || align < GET_MODE_ALIGNMENT (mode)
1916 || !can_compare_p (EQ, mode, ccp_jump))
1917 return false;
1918 m_batch = targetm.compare_by_pieces_branch_ratio (mode);
1919 if (m_batch < 0)
1920 return false;
1921 m_accumulator = NULL_RTX;
1922 m_count = 0;
1923 return true;
1926 /* Called after expanding a series of comparisons in MODE. If we have
1927 accumulated results for which we haven't emitted a branch yet, do
1928 so now. */
1930 void
1931 compare_by_pieces_d::finish_mode (machine_mode mode)
1933 if (m_accumulator != NULL_RTX)
1934 do_compare_rtx_and_jump (m_accumulator, const0_rtx, NE, true, mode,
1935 NULL_RTX, NULL, m_fail_label,
1936 profile_probability::uninitialized ());
1939 /* Generate several move instructions to compare LEN bytes from blocks
1940 ARG0 and ARG1. (These are MEM rtx's with BLKmode).
1942 If PUSH_ROUNDING is defined and TO is NULL, emit_single_push_insn is
1943 used to push FROM to the stack.
1945 ALIGN is maximum stack alignment we can assume.
1947 Optionally, the caller can pass a constfn and associated data in A1_CFN
1948 and A1_CFN_DATA. describing that the second operand being compared is a
1949 known constant and how to obtain its data. */
1951 static rtx
1952 compare_by_pieces (rtx arg0, rtx arg1, unsigned HOST_WIDE_INT len,
1953 rtx target, unsigned int align,
1954 by_pieces_constfn a1_cfn, void *a1_cfn_data)
1956 rtx_code_label *fail_label = gen_label_rtx ();
1957 rtx_code_label *end_label = gen_label_rtx ();
1959 if (target == NULL_RTX
1960 || !REG_P (target) || REGNO (target) < FIRST_PSEUDO_REGISTER)
1961 target = gen_reg_rtx (TYPE_MODE (integer_type_node));
1963 compare_by_pieces_d data (arg0, arg1, a1_cfn, a1_cfn_data, len, align,
1964 fail_label);
1966 data.run ();
1968 emit_move_insn (target, const0_rtx);
1969 emit_jump (end_label);
1970 emit_barrier ();
1971 emit_label (fail_label);
1972 emit_move_insn (target, const1_rtx);
1973 emit_label (end_label);
1975 return target;
1978 /* Emit code to move a block Y to a block X. This may be done with
1979 string-move instructions, with multiple scalar move instructions,
1980 or with a library call.
1982 Both X and Y must be MEM rtx's (perhaps inside VOLATILE) with mode BLKmode.
1983 SIZE is an rtx that says how long they are.
1984 ALIGN is the maximum alignment we can assume they have.
1985 METHOD describes what kind of copy this is, and what mechanisms may be used.
1986 MIN_SIZE is the minimal size of block to move
1987 MAX_SIZE is the maximal size of block to move, if it cannot be represented
1988 in unsigned HOST_WIDE_INT, than it is mask of all ones.
1989 CTZ_SIZE is the trailing-zeros count of SIZE; even a nonconstant SIZE is
1990 known to be a multiple of 1<<CTZ_SIZE.
1992 Return the address of the new block, if memcpy is called and returns it,
1993 0 otherwise. */
1996 emit_block_move_hints (rtx x, rtx y, rtx size, enum block_op_methods method,
1997 unsigned int expected_align, HOST_WIDE_INT expected_size,
1998 unsigned HOST_WIDE_INT min_size,
1999 unsigned HOST_WIDE_INT max_size,
2000 unsigned HOST_WIDE_INT probable_max_size,
2001 bool bail_out_libcall, bool *is_move_done,
2002 bool might_overlap, unsigned ctz_size)
2004 int may_use_call;
2005 rtx retval = 0;
2006 unsigned int align;
2008 if (is_move_done)
2009 *is_move_done = true;
2011 gcc_assert (size);
2012 if (CONST_INT_P (size) && INTVAL (size) == 0)
2013 return 0;
2015 switch (method)
2017 case BLOCK_OP_NORMAL:
2018 case BLOCK_OP_TAILCALL:
2019 may_use_call = 1;
2020 break;
2022 case BLOCK_OP_CALL_PARM:
2023 may_use_call = block_move_libcall_safe_for_call_parm ();
2025 /* Make inhibit_defer_pop nonzero around the library call
2026 to force it to pop the arguments right away. */
2027 NO_DEFER_POP;
2028 break;
2030 case BLOCK_OP_NO_LIBCALL:
2031 may_use_call = 0;
2032 break;
2034 case BLOCK_OP_NO_LIBCALL_RET:
2035 may_use_call = -1;
2036 break;
2038 default:
2039 gcc_unreachable ();
2042 gcc_assert (MEM_P (x) && MEM_P (y));
2043 align = MIN (MEM_ALIGN (x), MEM_ALIGN (y));
2044 gcc_assert (align >= BITS_PER_UNIT);
2046 /* Make sure we've got BLKmode addresses; store_one_arg can decide that
2047 block copy is more efficient for other large modes, e.g. DCmode. */
2048 x = adjust_address (x, BLKmode, 0);
2049 y = adjust_address (y, BLKmode, 0);
2051 /* If source and destination are the same, no need to copy anything. */
2052 if (rtx_equal_p (x, y)
2053 && !MEM_VOLATILE_P (x)
2054 && !MEM_VOLATILE_P (y))
2055 return 0;
2057 /* Set MEM_SIZE as appropriate for this block copy. The main place this
2058 can be incorrect is coming from __builtin_memcpy. */
2059 poly_int64 const_size;
2060 if (poly_int_rtx_p (size, &const_size))
2062 x = shallow_copy_rtx (x);
2063 y = shallow_copy_rtx (y);
2064 set_mem_size (x, const_size);
2065 set_mem_size (y, const_size);
2068 bool pieces_ok = CONST_INT_P (size)
2069 && can_move_by_pieces (INTVAL (size), align);
2070 bool pattern_ok = false;
2072 if (!pieces_ok || might_overlap)
2074 pattern_ok
2075 = emit_block_move_via_pattern (x, y, size, align,
2076 expected_align, expected_size,
2077 min_size, max_size, probable_max_size,
2078 might_overlap);
2079 if (!pattern_ok && might_overlap)
2081 /* Do not try any of the other methods below as they are not safe
2082 for overlapping moves. */
2083 *is_move_done = false;
2084 return retval;
2088 bool dynamic_direction = false;
2089 if (!pattern_ok && !pieces_ok && may_use_call
2090 && (flag_inline_stringops & (might_overlap ? ILSOP_MEMMOVE : ILSOP_MEMCPY)))
2092 may_use_call = 0;
2093 dynamic_direction = might_overlap;
2096 if (pattern_ok)
2098 else if (pieces_ok)
2099 move_by_pieces (x, y, INTVAL (size), align, RETURN_BEGIN);
2100 else if (may_use_call && !might_overlap
2101 && ADDR_SPACE_GENERIC_P (MEM_ADDR_SPACE (x))
2102 && ADDR_SPACE_GENERIC_P (MEM_ADDR_SPACE (y)))
2104 if (bail_out_libcall)
2106 if (is_move_done)
2107 *is_move_done = false;
2108 return retval;
2111 if (may_use_call < 0)
2112 return pc_rtx;
2114 retval = emit_block_copy_via_libcall (x, y, size,
2115 method == BLOCK_OP_TAILCALL);
2117 else if (dynamic_direction)
2118 emit_block_move_via_oriented_loop (x, y, size, align, ctz_size);
2119 else if (might_overlap)
2120 *is_move_done = false;
2121 else
2122 emit_block_move_via_sized_loop (x, y, size, align, ctz_size);
2124 if (method == BLOCK_OP_CALL_PARM)
2125 OK_DEFER_POP;
2127 return retval;
2131 emit_block_move (rtx x, rtx y, rtx size, enum block_op_methods method,
2132 unsigned int ctz_size)
2134 unsigned HOST_WIDE_INT max, min = 0;
2135 if (GET_CODE (size) == CONST_INT)
2136 min = max = UINTVAL (size);
2137 else
2138 max = GET_MODE_MASK (GET_MODE (size));
2139 return emit_block_move_hints (x, y, size, method, 0, -1,
2140 min, max, max,
2141 false, NULL, false, ctz_size);
2144 /* A subroutine of emit_block_move. Returns true if calling the
2145 block move libcall will not clobber any parameters which may have
2146 already been placed on the stack. */
2148 static bool
2149 block_move_libcall_safe_for_call_parm (void)
2151 tree fn;
2153 /* If arguments are pushed on the stack, then they're safe. */
2154 if (targetm.calls.push_argument (0))
2155 return true;
2157 /* If registers go on the stack anyway, any argument is sure to clobber
2158 an outgoing argument. */
2159 #if defined (REG_PARM_STACK_SPACE)
2160 fn = builtin_decl_implicit (BUILT_IN_MEMCPY);
2161 /* Avoid set but not used warning if *REG_PARM_STACK_SPACE doesn't
2162 depend on its argument. */
2163 (void) fn;
2164 if (OUTGOING_REG_PARM_STACK_SPACE ((!fn ? NULL_TREE : TREE_TYPE (fn)))
2165 && REG_PARM_STACK_SPACE (fn) != 0)
2166 return false;
2167 #endif
2169 /* If any argument goes in memory, then it might clobber an outgoing
2170 argument. */
2172 CUMULATIVE_ARGS args_so_far_v;
2173 cumulative_args_t args_so_far;
2174 tree arg;
2176 fn = builtin_decl_implicit (BUILT_IN_MEMCPY);
2177 INIT_CUMULATIVE_ARGS (args_so_far_v, TREE_TYPE (fn), NULL_RTX, 0, 3);
2178 args_so_far = pack_cumulative_args (&args_so_far_v);
2180 arg = TYPE_ARG_TYPES (TREE_TYPE (fn));
2181 for ( ; arg != void_list_node ; arg = TREE_CHAIN (arg))
2183 machine_mode mode = TYPE_MODE (TREE_VALUE (arg));
2184 function_arg_info arg_info (mode, /*named=*/true);
2185 rtx tmp = targetm.calls.function_arg (args_so_far, arg_info);
2186 if (!tmp || !REG_P (tmp))
2187 return false;
2188 if (targetm.calls.arg_partial_bytes (args_so_far, arg_info))
2189 return false;
2190 targetm.calls.function_arg_advance (args_so_far, arg_info);
2193 return true;
2196 /* A subroutine of emit_block_move. Expand a cpymem or movmem pattern;
2197 return true if successful.
2199 X is the destination of the copy or move.
2200 Y is the source of the copy or move.
2201 SIZE is the size of the block to be moved.
2203 MIGHT_OVERLAP indicates this originated with expansion of a
2204 builtin_memmove() and the source and destination blocks may
2205 overlap.
2208 static bool
2209 emit_block_move_via_pattern (rtx x, rtx y, rtx size, unsigned int align,
2210 unsigned int expected_align,
2211 HOST_WIDE_INT expected_size,
2212 unsigned HOST_WIDE_INT min_size,
2213 unsigned HOST_WIDE_INT max_size,
2214 unsigned HOST_WIDE_INT probable_max_size,
2215 bool might_overlap)
2217 if (expected_align < align)
2218 expected_align = align;
2219 if (expected_size != -1)
2221 if ((unsigned HOST_WIDE_INT)expected_size > probable_max_size)
2222 expected_size = probable_max_size;
2223 if ((unsigned HOST_WIDE_INT)expected_size < min_size)
2224 expected_size = min_size;
2227 /* Since this is a move insn, we don't care about volatility. */
2228 temporary_volatile_ok v (true);
2230 /* Try the most limited insn first, because there's no point
2231 including more than one in the machine description unless
2232 the more limited one has some advantage. */
2234 opt_scalar_int_mode mode_iter;
2235 FOR_EACH_MODE_IN_CLASS (mode_iter, MODE_INT)
2237 scalar_int_mode mode = mode_iter.require ();
2238 enum insn_code code;
2239 if (might_overlap)
2240 code = direct_optab_handler (movmem_optab, mode);
2241 else
2242 code = direct_optab_handler (cpymem_optab, mode);
2244 if (code != CODE_FOR_nothing
2245 /* We don't need MODE to be narrower than BITS_PER_HOST_WIDE_INT
2246 here because if SIZE is less than the mode mask, as it is
2247 returned by the macro, it will definitely be less than the
2248 actual mode mask. Since SIZE is within the Pmode address
2249 space, we limit MODE to Pmode. */
2250 && ((CONST_INT_P (size)
2251 && ((unsigned HOST_WIDE_INT) INTVAL (size)
2252 <= (GET_MODE_MASK (mode) >> 1)))
2253 || max_size <= (GET_MODE_MASK (mode) >> 1)
2254 || GET_MODE_BITSIZE (mode) >= GET_MODE_BITSIZE (Pmode)))
2256 class expand_operand ops[9];
2257 unsigned int nops;
2259 /* ??? When called via emit_block_move_for_call, it'd be
2260 nice if there were some way to inform the backend, so
2261 that it doesn't fail the expansion because it thinks
2262 emitting the libcall would be more efficient. */
2263 nops = insn_data[(int) code].n_generator_args;
2264 gcc_assert (nops == 4 || nops == 6 || nops == 8 || nops == 9);
2266 create_fixed_operand (&ops[0], x);
2267 create_fixed_operand (&ops[1], y);
2268 /* The check above guarantees that this size conversion is valid. */
2269 create_convert_operand_to (&ops[2], size, mode, true);
2270 create_integer_operand (&ops[3], align / BITS_PER_UNIT);
2271 if (nops >= 6)
2273 create_integer_operand (&ops[4], expected_align / BITS_PER_UNIT);
2274 create_integer_operand (&ops[5], expected_size);
2276 if (nops >= 8)
2278 create_integer_operand (&ops[6], min_size);
2279 /* If we cannot represent the maximal size,
2280 make parameter NULL. */
2281 if ((HOST_WIDE_INT) max_size != -1)
2282 create_integer_operand (&ops[7], max_size);
2283 else
2284 create_fixed_operand (&ops[7], NULL);
2286 if (nops == 9)
2288 /* If we cannot represent the maximal size,
2289 make parameter NULL. */
2290 if ((HOST_WIDE_INT) probable_max_size != -1)
2291 create_integer_operand (&ops[8], probable_max_size);
2292 else
2293 create_fixed_operand (&ops[8], NULL);
2295 if (maybe_expand_insn (code, nops, ops))
2296 return true;
2300 return false;
2303 /* Like emit_block_move_via_loop, but choose a suitable INCR based on
2304 ALIGN and CTZ_SIZE. */
2306 static void
2307 emit_block_move_via_sized_loop (rtx x, rtx y, rtx size,
2308 unsigned int align,
2309 unsigned int ctz_size)
2311 int incr = align / BITS_PER_UNIT;
2313 if (CONST_INT_P (size))
2314 ctz_size = MAX (ctz_size, (unsigned) wi::ctz (UINTVAL (size)));
2316 if (HOST_WIDE_INT_1U << ctz_size < (unsigned HOST_WIDE_INT) incr)
2317 incr = HOST_WIDE_INT_1U << ctz_size;
2319 while (incr > 1 && !can_move_by_pieces (incr, align))
2320 incr >>= 1;
2322 gcc_checking_assert (incr);
2324 return emit_block_move_via_loop (x, y, size, align, incr);
2327 /* Like emit_block_move_via_sized_loop, but besides choosing INCR so
2328 as to ensure safe moves even in case of overlap, output dynamic
2329 tests to choose between two loops, one moving downwards, another
2330 moving upwards. */
2332 static void
2333 emit_block_move_via_oriented_loop (rtx x, rtx y, rtx size,
2334 unsigned int align,
2335 unsigned int ctz_size)
2337 int incr = align / BITS_PER_UNIT;
2339 if (CONST_INT_P (size))
2340 ctz_size = MAX (ctz_size, (unsigned) wi::ctz (UINTVAL (size)));
2342 if (HOST_WIDE_INT_1U << ctz_size < (unsigned HOST_WIDE_INT) incr)
2343 incr = HOST_WIDE_INT_1U << ctz_size;
2345 while (incr > 1 && !int_mode_for_size (incr, 0).exists ())
2346 incr >>= 1;
2348 gcc_checking_assert (incr);
2350 rtx_code_label *upw_label, *end_label;
2351 upw_label = gen_label_rtx ();
2352 end_label = gen_label_rtx ();
2354 rtx x_addr = force_operand (XEXP (x, 0), NULL_RTX);
2355 rtx y_addr = force_operand (XEXP (y, 0), NULL_RTX);
2356 do_pending_stack_adjust ();
2358 machine_mode mode = GET_MODE (x_addr);
2359 if (mode != GET_MODE (y_addr))
2361 scalar_int_mode xmode
2362 = smallest_int_mode_for_size (GET_MODE_BITSIZE (mode));
2363 scalar_int_mode ymode
2364 = smallest_int_mode_for_size (GET_MODE_BITSIZE
2365 (GET_MODE (y_addr)));
2366 if (GET_MODE_BITSIZE (xmode) < GET_MODE_BITSIZE (ymode))
2367 mode = ymode;
2368 else
2369 mode = xmode;
2371 #ifndef POINTERS_EXTEND_UNSIGNED
2372 const int POINTERS_EXTEND_UNSIGNED = 1;
2373 #endif
2374 x_addr = convert_modes (mode, GET_MODE (x_addr), x_addr,
2375 POINTERS_EXTEND_UNSIGNED);
2376 y_addr = convert_modes (mode, GET_MODE (y_addr), y_addr,
2377 POINTERS_EXTEND_UNSIGNED);
2380 /* Test for overlap: if (x >= y || x + size <= y) goto upw_label. */
2381 emit_cmp_and_jump_insns (x_addr, y_addr, GEU, NULL_RTX, mode,
2382 true, upw_label,
2383 profile_probability::guessed_always ()
2384 .apply_scale (5, 10));
2385 rtx tmp = convert_modes (GET_MODE (x_addr), GET_MODE (size), size, true);
2386 tmp = simplify_gen_binary (PLUS, GET_MODE (x_addr), x_addr, tmp);
2388 emit_cmp_and_jump_insns (tmp, y_addr, LEU, NULL_RTX, mode,
2389 true, upw_label,
2390 profile_probability::guessed_always ()
2391 .apply_scale (8, 10));
2393 emit_block_move_via_loop (x, y, size, align, -incr);
2395 emit_jump (end_label);
2396 emit_label (upw_label);
2398 emit_block_move_via_loop (x, y, size, align, incr);
2400 emit_label (end_label);
2403 /* A subroutine of emit_block_move. Copy the data via an explicit
2404 loop. This is used only when libcalls are forbidden, or when
2405 inlining is required. INCR is the block size to be copied in each
2406 loop iteration. If it is negative, the absolute value is used, and
2407 the block is copied backwards. INCR must be a power of two, an
2408 exact divisor for SIZE and ALIGN, and imply a mode that can be
2409 safely copied per iteration assuming no overlap. */
2411 static void
2412 emit_block_move_via_loop (rtx x, rtx y, rtx size,
2413 unsigned int align, int incr)
2415 rtx_code_label *cmp_label, *top_label;
2416 rtx iter, x_addr, y_addr, tmp;
2417 machine_mode x_addr_mode = get_address_mode (x);
2418 machine_mode y_addr_mode = get_address_mode (y);
2419 machine_mode iter_mode;
2421 iter_mode = GET_MODE (size);
2422 if (iter_mode == VOIDmode)
2423 iter_mode = word_mode;
2425 top_label = gen_label_rtx ();
2426 cmp_label = gen_label_rtx ();
2427 iter = gen_reg_rtx (iter_mode);
2429 bool downwards = incr < 0;
2430 rtx iter_init;
2431 rtx_code iter_cond;
2432 rtx iter_limit;
2433 rtx iter_incr;
2434 machine_mode move_mode;
2435 if (downwards)
2437 incr = -incr;
2438 iter_init = size;
2439 iter_cond = GEU;
2440 iter_limit = const0_rtx;
2441 iter_incr = GEN_INT (incr);
2443 else
2445 iter_init = const0_rtx;
2446 iter_cond = LTU;
2447 iter_limit = size;
2448 iter_incr = GEN_INT (incr);
2450 emit_move_insn (iter, iter_init);
2452 opt_scalar_int_mode int_move_mode
2453 = int_mode_for_size (incr * BITS_PER_UNIT, 1);
2454 if (!int_move_mode.exists (&move_mode)
2455 || GET_MODE_BITSIZE (int_move_mode.require ()) != incr * BITS_PER_UNIT)
2457 move_mode = BLKmode;
2458 gcc_checking_assert (can_move_by_pieces (incr, align));
2461 x_addr = force_operand (XEXP (x, 0), NULL_RTX);
2462 y_addr = force_operand (XEXP (y, 0), NULL_RTX);
2463 do_pending_stack_adjust ();
2465 emit_jump (cmp_label);
2466 emit_label (top_label);
2468 tmp = convert_modes (x_addr_mode, iter_mode, iter, true);
2469 x_addr = simplify_gen_binary (PLUS, x_addr_mode, x_addr, tmp);
2471 if (x_addr_mode != y_addr_mode)
2472 tmp = convert_modes (y_addr_mode, iter_mode, iter, true);
2473 y_addr = simplify_gen_binary (PLUS, y_addr_mode, y_addr, tmp);
2475 x = change_address (x, move_mode, x_addr);
2476 y = change_address (y, move_mode, y_addr);
2478 if (move_mode == BLKmode)
2480 bool done;
2481 emit_block_move_hints (x, y, iter_incr, BLOCK_OP_NO_LIBCALL,
2482 align, incr, incr, incr, incr,
2483 false, &done, false);
2484 gcc_checking_assert (done);
2486 else
2487 emit_move_insn (x, y);
2489 if (downwards)
2490 emit_label (cmp_label);
2492 tmp = expand_simple_binop (iter_mode, PLUS, iter, iter_incr, iter,
2493 true, OPTAB_LIB_WIDEN);
2494 if (tmp != iter)
2495 emit_move_insn (iter, tmp);
2497 if (!downwards)
2498 emit_label (cmp_label);
2500 emit_cmp_and_jump_insns (iter, iter_limit, iter_cond, NULL_RTX, iter_mode,
2501 true, top_label,
2502 profile_probability::guessed_always ()
2503 .apply_scale (9, 10));
2506 /* Expand a call to memcpy or memmove or memcmp, and return the result.
2507 TAILCALL is true if this is a tail call. */
2510 emit_block_op_via_libcall (enum built_in_function fncode, rtx dst, rtx src,
2511 rtx size, bool tailcall)
2513 rtx dst_addr, src_addr;
2514 tree call_expr, dst_tree, src_tree, size_tree;
2515 machine_mode size_mode;
2517 /* Since dst and src are passed to a libcall, mark the corresponding
2518 tree EXPR as addressable. */
2519 tree dst_expr = MEM_EXPR (dst);
2520 tree src_expr = MEM_EXPR (src);
2521 if (dst_expr)
2522 mark_addressable (dst_expr);
2523 if (src_expr)
2524 mark_addressable (src_expr);
2526 dst_addr = copy_addr_to_reg (XEXP (dst, 0));
2527 dst_addr = convert_memory_address (ptr_mode, dst_addr);
2528 dst_tree = make_tree (ptr_type_node, dst_addr);
2530 src_addr = copy_addr_to_reg (XEXP (src, 0));
2531 src_addr = convert_memory_address (ptr_mode, src_addr);
2532 src_tree = make_tree (ptr_type_node, src_addr);
2534 size_mode = TYPE_MODE (sizetype);
2535 size = convert_to_mode (size_mode, size, 1);
2536 size = copy_to_mode_reg (size_mode, size);
2537 size_tree = make_tree (sizetype, size);
2539 /* It is incorrect to use the libcall calling conventions for calls to
2540 memcpy/memmove/memcmp because they can be provided by the user. */
2541 tree fn = builtin_decl_implicit (fncode);
2542 call_expr = build_call_expr (fn, 3, dst_tree, src_tree, size_tree);
2543 CALL_EXPR_TAILCALL (call_expr) = tailcall;
2545 return expand_call (call_expr, NULL_RTX, false);
2548 /* Try to expand cmpstrn or cmpmem operation ICODE with the given operands.
2549 ARG3_TYPE is the type of ARG3_RTX. Return the result rtx on success,
2550 otherwise return null. */
2553 expand_cmpstrn_or_cmpmem (insn_code icode, rtx target, rtx arg1_rtx,
2554 rtx arg2_rtx, tree arg3_type, rtx arg3_rtx,
2555 HOST_WIDE_INT align)
2557 machine_mode insn_mode = insn_data[icode].operand[0].mode;
2559 if (target && (!REG_P (target) || HARD_REGISTER_P (target)))
2560 target = NULL_RTX;
2562 class expand_operand ops[5];
2563 create_output_operand (&ops[0], target, insn_mode);
2564 create_fixed_operand (&ops[1], arg1_rtx);
2565 create_fixed_operand (&ops[2], arg2_rtx);
2566 create_convert_operand_from (&ops[3], arg3_rtx, TYPE_MODE (arg3_type),
2567 TYPE_UNSIGNED (arg3_type));
2568 create_integer_operand (&ops[4], align);
2569 if (maybe_expand_insn (icode, 5, ops))
2570 return ops[0].value;
2571 return NULL_RTX;
2574 /* Expand a block compare between X and Y with length LEN using the
2575 cmpmem optab, placing the result in TARGET. LEN_TYPE is the type
2576 of the expression that was used to calculate the length. ALIGN
2577 gives the known minimum common alignment. */
2579 static rtx
2580 emit_block_cmp_via_cmpmem (rtx x, rtx y, rtx len, tree len_type, rtx target,
2581 unsigned align)
2583 /* Note: The cmpstrnsi pattern, if it exists, is not suitable for
2584 implementing memcmp because it will stop if it encounters two
2585 zero bytes. */
2586 insn_code icode = direct_optab_handler (cmpmem_optab, SImode);
2588 if (icode == CODE_FOR_nothing)
2589 return NULL_RTX;
2591 return expand_cmpstrn_or_cmpmem (icode, target, x, y, len_type, len, align);
2594 /* Emit code to compare a block Y to a block X. This may be done with
2595 string-compare instructions, with multiple scalar instructions,
2596 or with a library call.
2598 Both X and Y must be MEM rtx's. LEN is an rtx that says how long
2599 they are. LEN_TYPE is the type of the expression that was used to
2600 calculate it, and CTZ_LEN is the known trailing-zeros count of LEN,
2601 so LEN must be a multiple of 1<<CTZ_LEN even if it's not constant.
2603 If EQUALITY_ONLY is true, it means we don't have to return the tri-state
2604 value of a normal memcmp call, instead we can just compare for equality.
2605 If FORCE_LIBCALL is true, we should emit a call to memcmp rather than
2606 returning NULL_RTX.
2608 Optionally, the caller can pass a constfn and associated data in Y_CFN
2609 and Y_CFN_DATA. describing that the second operand being compared is a
2610 known constant and how to obtain its data.
2611 Return the result of the comparison, or NULL_RTX if we failed to
2612 perform the operation. */
2615 emit_block_cmp_hints (rtx x, rtx y, rtx len, tree len_type, rtx target,
2616 bool equality_only, by_pieces_constfn y_cfn,
2617 void *y_cfndata, unsigned ctz_len)
2619 rtx result = 0;
2621 if (CONST_INT_P (len) && INTVAL (len) == 0)
2622 return const0_rtx;
2624 gcc_assert (MEM_P (x) && MEM_P (y));
2625 unsigned int align = MIN (MEM_ALIGN (x), MEM_ALIGN (y));
2626 gcc_assert (align >= BITS_PER_UNIT);
2628 x = adjust_address (x, BLKmode, 0);
2629 y = adjust_address (y, BLKmode, 0);
2631 if (equality_only
2632 && CONST_INT_P (len)
2633 && can_do_by_pieces (INTVAL (len), align, COMPARE_BY_PIECES))
2634 result = compare_by_pieces (x, y, INTVAL (len), target, align,
2635 y_cfn, y_cfndata);
2636 else
2637 result = emit_block_cmp_via_cmpmem (x, y, len, len_type, target, align);
2639 if (!result && (flag_inline_stringops & ILSOP_MEMCMP))
2640 result = emit_block_cmp_via_loop (x, y, len, len_type,
2641 target, equality_only,
2642 align, ctz_len);
2644 return result;
2647 /* Like emit_block_cmp_hints, but with known alignment and no support
2648 for constats. Always expand to a loop with iterations that compare
2649 blocks of the largest compare-by-pieces size that divides both len
2650 and align, and then, if !EQUALITY_ONLY, identify the word and then
2651 the unit that first differs to return the result. */
2654 emit_block_cmp_via_loop (rtx x, rtx y, rtx len, tree len_type, rtx target,
2655 bool equality_only, unsigned align, unsigned ctz_len)
2657 unsigned incr = align / BITS_PER_UNIT;
2659 if (CONST_INT_P (len))
2660 ctz_len = MAX (ctz_len, (unsigned) wi::ctz (UINTVAL (len)));
2662 if (HOST_WIDE_INT_1U << ctz_len < (unsigned HOST_WIDE_INT) incr)
2663 incr = HOST_WIDE_INT_1U << ctz_len;
2665 while (incr > 1
2666 && !can_do_by_pieces (incr, align, COMPARE_BY_PIECES))
2667 incr >>= 1;
2669 rtx_code_label *cmp_label, *top_label, *ne_label, *res_label;
2670 rtx iter, x_addr, y_addr, tmp;
2671 machine_mode x_addr_mode = get_address_mode (x);
2672 machine_mode y_addr_mode = get_address_mode (y);
2673 machine_mode iter_mode;
2675 iter_mode = GET_MODE (len);
2676 if (iter_mode == VOIDmode)
2677 iter_mode = word_mode;
2679 rtx iter_init = const0_rtx;
2680 rtx_code iter_cond = LTU;
2681 rtx_code entry_cond = GEU;
2682 rtx iter_limit = len;
2683 rtx iter_incr = GEN_INT (incr);
2684 machine_mode cmp_mode;
2686 /* We can drop the loop back edge if we know there's exactly one
2687 iteration. */
2688 top_label = (!rtx_equal_p (len, iter_incr)
2689 ? gen_label_rtx ()
2690 : NULL);
2691 /* We need not test before entering the loop if len is known
2692 nonzero. ??? This could be even stricter, testing whether a
2693 nonconstant LEN could possibly be zero. */
2694 cmp_label = (!CONSTANT_P (len) || rtx_equal_p (len, iter_init)
2695 ? gen_label_rtx ()
2696 : NULL);
2697 ne_label = gen_label_rtx ();
2698 res_label = gen_label_rtx ();
2700 iter = gen_reg_rtx (iter_mode);
2701 emit_move_insn (iter, iter_init);
2703 opt_scalar_int_mode int_cmp_mode
2704 = int_mode_for_size (incr * BITS_PER_UNIT, 1);
2705 if (!int_cmp_mode.exists (&cmp_mode)
2706 || GET_MODE_BITSIZE (int_cmp_mode.require ()) != incr * BITS_PER_UNIT
2707 || !can_compare_p (NE, cmp_mode, ccp_jump))
2709 cmp_mode = BLKmode;
2710 gcc_checking_assert (incr != 1);
2713 /* Save the base addresses. */
2714 x_addr = force_operand (XEXP (x, 0), NULL_RTX);
2715 y_addr = force_operand (XEXP (y, 0), NULL_RTX);
2716 do_pending_stack_adjust ();
2718 if (cmp_label)
2720 if (top_label)
2721 emit_jump (cmp_label);
2722 else
2723 emit_cmp_and_jump_insns (iter, iter_limit, entry_cond,
2724 NULL_RTX, iter_mode,
2725 true, cmp_label,
2726 profile_probability::guessed_always ()
2727 .apply_scale (1, 10));
2729 if (top_label)
2730 emit_label (top_label);
2732 /* Offset the base addresses by ITER. */
2733 tmp = convert_modes (x_addr_mode, iter_mode, iter, true);
2734 x_addr = simplify_gen_binary (PLUS, x_addr_mode, x_addr, tmp);
2736 if (x_addr_mode != y_addr_mode)
2737 tmp = convert_modes (y_addr_mode, iter_mode, iter, true);
2738 y_addr = simplify_gen_binary (PLUS, y_addr_mode, y_addr, tmp);
2740 x = change_address (x, cmp_mode, x_addr);
2741 y = change_address (y, cmp_mode, y_addr);
2743 /* Compare one block. */
2744 rtx part_res;
2745 if (cmp_mode == BLKmode)
2746 part_res = compare_by_pieces (x, y, incr, target, align, 0, 0);
2747 else
2748 part_res = expand_binop (cmp_mode, sub_optab, x, y, NULL_RTX,
2749 true, OPTAB_LIB_WIDEN);
2751 /* Stop if we found a difference. */
2752 emit_cmp_and_jump_insns (part_res, GEN_INT (0), NE, NULL_RTX,
2753 GET_MODE (part_res), true, ne_label,
2754 profile_probability::guessed_always ()
2755 .apply_scale (1, 10));
2757 /* Increment ITER. */
2758 tmp = expand_simple_binop (iter_mode, PLUS, iter, iter_incr, iter,
2759 true, OPTAB_LIB_WIDEN);
2760 if (tmp != iter)
2761 emit_move_insn (iter, tmp);
2763 if (cmp_label)
2764 emit_label (cmp_label);
2765 /* Loop until we reach the limit. */
2767 if (top_label)
2768 emit_cmp_and_jump_insns (iter, iter_limit, iter_cond, NULL_RTX, iter_mode,
2769 true, top_label,
2770 profile_probability::guessed_always ()
2771 .apply_scale (9, 10));
2773 /* We got to the end without differences, so the result is zero. */
2774 if (target == NULL_RTX
2775 || !REG_P (target) || REGNO (target) < FIRST_PSEUDO_REGISTER)
2776 target = gen_reg_rtx (TYPE_MODE (integer_type_node));
2778 emit_move_insn (target, const0_rtx);
2779 emit_jump (res_label);
2781 emit_label (ne_label);
2783 /* Return nonzero, or pinpoint the difference to return the expected
2784 result for non-equality tests. */
2785 if (equality_only)
2786 emit_move_insn (target, const1_rtx);
2787 else
2789 if (incr > UNITS_PER_WORD)
2790 /* ??? Re-compare the block found to be different one word at a
2791 time. */
2792 part_res = emit_block_cmp_via_loop (x, y, GEN_INT (incr), len_type,
2793 target, equality_only,
2794 BITS_PER_WORD, 0);
2795 else if (incr > 1)
2796 /* ??? Re-compare the block found to be different one byte at a
2797 time. We could do better using part_res, and being careful
2798 about endianness. */
2799 part_res = emit_block_cmp_via_loop (x, y, GEN_INT (incr), len_type,
2800 target, equality_only,
2801 BITS_PER_UNIT, 0);
2802 else if (known_gt (GET_MODE_BITSIZE (GET_MODE (target)),
2803 GET_MODE_BITSIZE (cmp_mode)))
2804 part_res = expand_binop (GET_MODE (target), sub_optab, x, y, target,
2805 true, OPTAB_LIB_WIDEN);
2806 else
2808 /* In the odd chance target is QImode, we can't count on
2809 widening subtract to capture the result of the unsigned
2810 compares. */
2811 rtx_code_label *ltu_label;
2812 ltu_label = gen_label_rtx ();
2813 emit_cmp_and_jump_insns (x, y, LTU, NULL_RTX,
2814 cmp_mode, true, ltu_label,
2815 profile_probability::guessed_always ()
2816 .apply_scale (5, 10));
2818 emit_move_insn (target, const1_rtx);
2819 emit_jump (res_label);
2821 emit_label (ltu_label);
2822 emit_move_insn (target, constm1_rtx);
2823 part_res = target;
2826 if (target != part_res)
2827 convert_move (target, part_res, false);
2830 emit_label (res_label);
2832 return target;
2836 /* Copy all or part of a value X into registers starting at REGNO.
2837 The number of registers to be filled is NREGS. */
2839 void
2840 move_block_to_reg (int regno, rtx x, int nregs, machine_mode mode)
2842 if (nregs == 0)
2843 return;
2845 if (CONSTANT_P (x) && !targetm.legitimate_constant_p (mode, x))
2846 x = validize_mem (force_const_mem (mode, x));
2848 /* See if the machine can do this with a load multiple insn. */
2849 if (targetm.have_load_multiple ())
2851 rtx_insn *last = get_last_insn ();
2852 rtx first = gen_rtx_REG (word_mode, regno);
2853 if (rtx_insn *pat = targetm.gen_load_multiple (first, x,
2854 GEN_INT (nregs)))
2856 emit_insn (pat);
2857 return;
2859 else
2860 delete_insns_since (last);
2863 for (int i = 0; i < nregs; i++)
2864 emit_move_insn (gen_rtx_REG (word_mode, regno + i),
2865 operand_subword_force (x, i, mode));
2868 /* Copy all or part of a BLKmode value X out of registers starting at REGNO.
2869 The number of registers to be filled is NREGS. */
2871 void
2872 move_block_from_reg (int regno, rtx x, int nregs)
2874 if (nregs == 0)
2875 return;
2877 /* See if the machine can do this with a store multiple insn. */
2878 if (targetm.have_store_multiple ())
2880 rtx_insn *last = get_last_insn ();
2881 rtx first = gen_rtx_REG (word_mode, regno);
2882 if (rtx_insn *pat = targetm.gen_store_multiple (x, first,
2883 GEN_INT (nregs)))
2885 emit_insn (pat);
2886 return;
2888 else
2889 delete_insns_since (last);
2892 for (int i = 0; i < nregs; i++)
2894 rtx tem = operand_subword (x, i, 1, BLKmode);
2896 gcc_assert (tem);
2898 emit_move_insn (tem, gen_rtx_REG (word_mode, regno + i));
2902 /* Generate a PARALLEL rtx for a new non-consecutive group of registers from
2903 ORIG, where ORIG is a non-consecutive group of registers represented by
2904 a PARALLEL. The clone is identical to the original except in that the
2905 original set of registers is replaced by a new set of pseudo registers.
2906 The new set has the same modes as the original set. */
2909 gen_group_rtx (rtx orig)
2911 int i, length;
2912 rtx *tmps;
2914 gcc_assert (GET_CODE (orig) == PARALLEL);
2916 length = XVECLEN (orig, 0);
2917 tmps = XALLOCAVEC (rtx, length);
2919 /* Skip a NULL entry in first slot. */
2920 i = XEXP (XVECEXP (orig, 0, 0), 0) ? 0 : 1;
2922 if (i)
2923 tmps[0] = 0;
2925 for (; i < length; i++)
2927 machine_mode mode = GET_MODE (XEXP (XVECEXP (orig, 0, i), 0));
2928 rtx offset = XEXP (XVECEXP (orig, 0, i), 1);
2930 tmps[i] = gen_rtx_EXPR_LIST (VOIDmode, gen_reg_rtx (mode), offset);
2933 return gen_rtx_PARALLEL (GET_MODE (orig), gen_rtvec_v (length, tmps));
2936 /* A subroutine of emit_group_load. Arguments as for emit_group_load,
2937 except that values are placed in TMPS[i], and must later be moved
2938 into corresponding XEXP (XVECEXP (DST, 0, i), 0) element. */
2940 static void
2941 emit_group_load_1 (rtx *tmps, rtx dst, rtx orig_src, tree type,
2942 poly_int64 ssize)
2944 rtx src;
2945 int start, i;
2946 machine_mode m = GET_MODE (orig_src);
2948 gcc_assert (GET_CODE (dst) == PARALLEL);
2950 if (m != VOIDmode
2951 && !SCALAR_INT_MODE_P (m)
2952 && !MEM_P (orig_src)
2953 && GET_CODE (orig_src) != CONCAT)
2955 scalar_int_mode imode;
2956 if (int_mode_for_mode (GET_MODE (orig_src)).exists (&imode))
2958 src = gen_reg_rtx (imode);
2959 emit_move_insn (gen_lowpart (GET_MODE (orig_src), src), orig_src);
2961 else
2963 src = assign_stack_temp (GET_MODE (orig_src), ssize);
2964 emit_move_insn (src, orig_src);
2966 emit_group_load_1 (tmps, dst, src, type, ssize);
2967 return;
2970 /* Check for a NULL entry, used to indicate that the parameter goes
2971 both on the stack and in registers. */
2972 if (XEXP (XVECEXP (dst, 0, 0), 0))
2973 start = 0;
2974 else
2975 start = 1;
2977 /* Process the pieces. */
2978 for (i = start; i < XVECLEN (dst, 0); i++)
2980 machine_mode mode = GET_MODE (XEXP (XVECEXP (dst, 0, i), 0));
2981 poly_int64 bytepos = rtx_to_poly_int64 (XEXP (XVECEXP (dst, 0, i), 1));
2982 poly_int64 bytelen = GET_MODE_SIZE (mode);
2983 poly_int64 shift = 0;
2985 /* Handle trailing fragments that run over the size of the struct.
2986 It's the target's responsibility to make sure that the fragment
2987 cannot be strictly smaller in some cases and strictly larger
2988 in others. */
2989 gcc_checking_assert (ordered_p (bytepos + bytelen, ssize));
2990 if (known_size_p (ssize) && maybe_gt (bytepos + bytelen, ssize))
2992 /* Arrange to shift the fragment to where it belongs.
2993 extract_bit_field loads to the lsb of the reg. */
2994 if (
2995 #ifdef BLOCK_REG_PADDING
2996 BLOCK_REG_PADDING (GET_MODE (orig_src), type, i == start)
2997 == (BYTES_BIG_ENDIAN ? PAD_UPWARD : PAD_DOWNWARD)
2998 #else
2999 BYTES_BIG_ENDIAN
3000 #endif
3002 shift = (bytelen - (ssize - bytepos)) * BITS_PER_UNIT;
3003 bytelen = ssize - bytepos;
3004 gcc_assert (maybe_gt (bytelen, 0));
3007 /* If we won't be loading directly from memory, protect the real source
3008 from strange tricks we might play; but make sure that the source can
3009 be loaded directly into the destination. */
3010 src = orig_src;
3011 if (!MEM_P (orig_src)
3012 && (!REG_P (orig_src) || HARD_REGISTER_P (orig_src))
3013 && !CONSTANT_P (orig_src))
3015 gcc_assert (GET_MODE (orig_src) != VOIDmode);
3016 src = force_reg (GET_MODE (orig_src), orig_src);
3019 /* Optimize the access just a bit. */
3020 if (MEM_P (src)
3021 && (! targetm.slow_unaligned_access (mode, MEM_ALIGN (src))
3022 || MEM_ALIGN (src) >= GET_MODE_ALIGNMENT (mode))
3023 && multiple_p (bytepos * BITS_PER_UNIT, GET_MODE_ALIGNMENT (mode))
3024 && known_eq (bytelen, GET_MODE_SIZE (mode)))
3026 tmps[i] = gen_reg_rtx (mode);
3027 emit_move_insn (tmps[i], adjust_address (src, mode, bytepos));
3029 else if (COMPLEX_MODE_P (mode)
3030 && GET_MODE (src) == mode
3031 && known_eq (bytelen, GET_MODE_SIZE (mode)))
3032 /* Let emit_move_complex do the bulk of the work. */
3033 tmps[i] = src;
3034 else if (GET_CODE (src) == CONCAT)
3036 poly_int64 slen = GET_MODE_SIZE (GET_MODE (src));
3037 poly_int64 slen0 = GET_MODE_SIZE (GET_MODE (XEXP (src, 0)));
3038 unsigned int elt;
3039 poly_int64 subpos;
3041 if (can_div_trunc_p (bytepos, slen0, &elt, &subpos)
3042 && known_le (subpos + bytelen, slen0))
3044 /* The following assumes that the concatenated objects all
3045 have the same size. In this case, a simple calculation
3046 can be used to determine the object and the bit field
3047 to be extracted. */
3048 tmps[i] = XEXP (src, elt);
3049 if (maybe_ne (subpos, 0)
3050 || maybe_ne (subpos + bytelen, slen0)
3051 || (!CONSTANT_P (tmps[i])
3052 && (!REG_P (tmps[i]) || GET_MODE (tmps[i]) != mode)))
3053 tmps[i] = extract_bit_field (tmps[i], bytelen * BITS_PER_UNIT,
3054 subpos * BITS_PER_UNIT,
3055 1, NULL_RTX, mode, mode, false,
3056 NULL);
3058 else
3060 rtx mem;
3062 gcc_assert (known_eq (bytepos, 0));
3063 mem = assign_stack_temp (GET_MODE (src), slen);
3064 emit_move_insn (mem, src);
3065 tmps[i] = extract_bit_field (mem, bytelen * BITS_PER_UNIT,
3066 0, 1, NULL_RTX, mode, mode, false,
3067 NULL);
3070 else if (CONSTANT_P (src) && GET_MODE (dst) != BLKmode
3071 && XVECLEN (dst, 0) > 1)
3072 tmps[i] = simplify_gen_subreg (mode, src, GET_MODE (dst), bytepos);
3073 else if (CONSTANT_P (src))
3075 if (known_eq (bytelen, ssize))
3076 tmps[i] = src;
3077 else
3079 rtx first, second;
3081 /* TODO: const_wide_int can have sizes other than this... */
3082 gcc_assert (known_eq (2 * bytelen, ssize));
3083 split_double (src, &first, &second);
3084 if (i)
3085 tmps[i] = second;
3086 else
3087 tmps[i] = first;
3090 else if (REG_P (src) && GET_MODE (src) == mode)
3091 tmps[i] = src;
3092 else
3093 tmps[i] = extract_bit_field (src, bytelen * BITS_PER_UNIT,
3094 bytepos * BITS_PER_UNIT, 1, NULL_RTX,
3095 mode, mode, false, NULL);
3097 if (maybe_ne (shift, 0))
3098 tmps[i] = expand_shift (LSHIFT_EXPR, mode, tmps[i],
3099 shift, tmps[i], 0);
3103 /* Emit code to move a block SRC of type TYPE to a block DST,
3104 where DST is non-consecutive registers represented by a PARALLEL.
3105 SSIZE represents the total size of block ORIG_SRC in bytes, or -1
3106 if not known. */
3108 void
3109 emit_group_load (rtx dst, rtx src, tree type, poly_int64 ssize)
3111 rtx *tmps;
3112 int i;
3114 tmps = XALLOCAVEC (rtx, XVECLEN (dst, 0));
3115 emit_group_load_1 (tmps, dst, src, type, ssize);
3117 /* Copy the extracted pieces into the proper (probable) hard regs. */
3118 for (i = 0; i < XVECLEN (dst, 0); i++)
3120 rtx d = XEXP (XVECEXP (dst, 0, i), 0);
3121 if (d == NULL)
3122 continue;
3123 emit_move_insn (d, tmps[i]);
3127 /* Similar, but load SRC into new pseudos in a format that looks like
3128 PARALLEL. This can later be fed to emit_group_move to get things
3129 in the right place. */
3132 emit_group_load_into_temps (rtx parallel, rtx src, tree type, poly_int64 ssize)
3134 rtvec vec;
3135 int i;
3137 vec = rtvec_alloc (XVECLEN (parallel, 0));
3138 emit_group_load_1 (&RTVEC_ELT (vec, 0), parallel, src, type, ssize);
3140 /* Convert the vector to look just like the original PARALLEL, except
3141 with the computed values. */
3142 for (i = 0; i < XVECLEN (parallel, 0); i++)
3144 rtx e = XVECEXP (parallel, 0, i);
3145 rtx d = XEXP (e, 0);
3147 if (d)
3149 d = force_reg (GET_MODE (d), RTVEC_ELT (vec, i));
3150 e = alloc_EXPR_LIST (REG_NOTE_KIND (e), d, XEXP (e, 1));
3152 RTVEC_ELT (vec, i) = e;
3155 return gen_rtx_PARALLEL (GET_MODE (parallel), vec);
3158 /* Emit code to move a block SRC to block DST, where SRC and DST are
3159 non-consecutive groups of registers, each represented by a PARALLEL. */
3161 void
3162 emit_group_move (rtx dst, rtx src)
3164 int i;
3166 gcc_assert (GET_CODE (src) == PARALLEL
3167 && GET_CODE (dst) == PARALLEL
3168 && XVECLEN (src, 0) == XVECLEN (dst, 0));
3170 /* Skip first entry if NULL. */
3171 for (i = XEXP (XVECEXP (src, 0, 0), 0) ? 0 : 1; i < XVECLEN (src, 0); i++)
3172 emit_move_insn (XEXP (XVECEXP (dst, 0, i), 0),
3173 XEXP (XVECEXP (src, 0, i), 0));
3176 /* Move a group of registers represented by a PARALLEL into pseudos. */
3179 emit_group_move_into_temps (rtx src)
3181 rtvec vec = rtvec_alloc (XVECLEN (src, 0));
3182 int i;
3184 for (i = 0; i < XVECLEN (src, 0); i++)
3186 rtx e = XVECEXP (src, 0, i);
3187 rtx d = XEXP (e, 0);
3189 if (d)
3190 e = alloc_EXPR_LIST (REG_NOTE_KIND (e), copy_to_reg (d), XEXP (e, 1));
3191 RTVEC_ELT (vec, i) = e;
3194 return gen_rtx_PARALLEL (GET_MODE (src), vec);
3197 /* Emit code to move a block SRC to a block ORIG_DST of type TYPE,
3198 where SRC is non-consecutive registers represented by a PARALLEL.
3199 SSIZE represents the total size of block ORIG_DST, or -1 if not
3200 known. */
3202 void
3203 emit_group_store (rtx orig_dst, rtx src, tree type ATTRIBUTE_UNUSED,
3204 poly_int64 ssize)
3206 rtx *tmps, dst;
3207 int start, finish, i;
3208 machine_mode m = GET_MODE (orig_dst);
3210 gcc_assert (GET_CODE (src) == PARALLEL);
3212 if (!SCALAR_INT_MODE_P (m)
3213 && !MEM_P (orig_dst) && GET_CODE (orig_dst) != CONCAT)
3215 scalar_int_mode imode;
3216 if (int_mode_for_mode (GET_MODE (orig_dst)).exists (&imode))
3218 dst = gen_reg_rtx (imode);
3219 emit_group_store (dst, src, type, ssize);
3220 dst = gen_lowpart (GET_MODE (orig_dst), dst);
3222 else
3224 dst = assign_stack_temp (GET_MODE (orig_dst), ssize);
3225 emit_group_store (dst, src, type, ssize);
3227 emit_move_insn (orig_dst, dst);
3228 return;
3231 /* Check for a NULL entry, used to indicate that the parameter goes
3232 both on the stack and in registers. */
3233 if (XEXP (XVECEXP (src, 0, 0), 0))
3234 start = 0;
3235 else
3236 start = 1;
3237 finish = XVECLEN (src, 0);
3239 tmps = XALLOCAVEC (rtx, finish);
3241 /* Copy the (probable) hard regs into pseudos. */
3242 for (i = start; i < finish; i++)
3244 rtx reg = XEXP (XVECEXP (src, 0, i), 0);
3245 if (!REG_P (reg) || REGNO (reg) < FIRST_PSEUDO_REGISTER)
3247 tmps[i] = gen_reg_rtx (GET_MODE (reg));
3248 emit_move_insn (tmps[i], reg);
3250 else
3251 tmps[i] = reg;
3254 /* If we won't be storing directly into memory, protect the real destination
3255 from strange tricks we might play. */
3256 dst = orig_dst;
3257 if (GET_CODE (dst) == PARALLEL)
3259 rtx temp;
3261 /* We can get a PARALLEL dst if there is a conditional expression in
3262 a return statement. In that case, the dst and src are the same,
3263 so no action is necessary. */
3264 if (rtx_equal_p (dst, src))
3265 return;
3267 /* It is unclear if we can ever reach here, but we may as well handle
3268 it. Allocate a temporary, and split this into a store/load to/from
3269 the temporary. */
3270 temp = assign_stack_temp (GET_MODE (dst), ssize);
3271 emit_group_store (temp, src, type, ssize);
3272 emit_group_load (dst, temp, type, ssize);
3273 return;
3275 else if (!MEM_P (dst) && GET_CODE (dst) != CONCAT)
3277 machine_mode outer = GET_MODE (dst);
3278 machine_mode inner;
3279 poly_int64 bytepos;
3280 bool done = false;
3281 rtx temp;
3283 if (!REG_P (dst) || REGNO (dst) < FIRST_PSEUDO_REGISTER)
3284 dst = gen_reg_rtx (outer);
3286 /* Make life a bit easier for combine: if the first element of the
3287 vector is the low part of the destination mode, use a paradoxical
3288 subreg to initialize the destination. */
3289 if (start < finish)
3291 inner = GET_MODE (tmps[start]);
3292 bytepos = subreg_lowpart_offset (inner, outer);
3293 if (known_eq (rtx_to_poly_int64 (XEXP (XVECEXP (src, 0, start), 1)),
3294 bytepos))
3296 temp = simplify_gen_subreg (outer, tmps[start], inner, 0);
3297 if (temp)
3299 emit_move_insn (dst, temp);
3300 done = true;
3301 start++;
3306 /* If the first element wasn't the low part, try the last. */
3307 if (!done
3308 && start < finish - 1)
3310 inner = GET_MODE (tmps[finish - 1]);
3311 bytepos = subreg_lowpart_offset (inner, outer);
3312 if (known_eq (rtx_to_poly_int64 (XEXP (XVECEXP (src, 0,
3313 finish - 1), 1)),
3314 bytepos))
3316 temp = simplify_gen_subreg (outer, tmps[finish - 1], inner, 0);
3317 if (temp)
3319 emit_move_insn (dst, temp);
3320 done = true;
3321 finish--;
3326 /* Otherwise, simply initialize the result to zero. */
3327 if (!done)
3328 emit_move_insn (dst, CONST0_RTX (outer));
3331 /* Process the pieces. */
3332 for (i = start; i < finish; i++)
3334 poly_int64 bytepos = rtx_to_poly_int64 (XEXP (XVECEXP (src, 0, i), 1));
3335 machine_mode mode = GET_MODE (tmps[i]);
3336 poly_int64 bytelen = GET_MODE_SIZE (mode);
3337 poly_uint64 adj_bytelen;
3338 rtx dest = dst;
3340 /* Handle trailing fragments that run over the size of the struct.
3341 It's the target's responsibility to make sure that the fragment
3342 cannot be strictly smaller in some cases and strictly larger
3343 in others. */
3344 gcc_checking_assert (ordered_p (bytepos + bytelen, ssize));
3345 if (known_size_p (ssize) && maybe_gt (bytepos + bytelen, ssize))
3346 adj_bytelen = ssize - bytepos;
3347 else
3348 adj_bytelen = bytelen;
3350 /* Deal with destination CONCATs by either storing into one of the parts
3351 or doing a copy after storing into a register or stack temporary. */
3352 if (GET_CODE (dst) == CONCAT)
3354 if (known_le (bytepos + adj_bytelen,
3355 GET_MODE_SIZE (GET_MODE (XEXP (dst, 0)))))
3356 dest = XEXP (dst, 0);
3358 else if (known_ge (bytepos, GET_MODE_SIZE (GET_MODE (XEXP (dst, 0)))))
3360 bytepos -= GET_MODE_SIZE (GET_MODE (XEXP (dst, 0)));
3361 dest = XEXP (dst, 1);
3364 else
3366 machine_mode dest_mode = GET_MODE (dest);
3367 machine_mode tmp_mode = GET_MODE (tmps[i]);
3368 scalar_int_mode dest_imode;
3370 gcc_assert (known_eq (bytepos, 0) && XVECLEN (src, 0));
3372 /* If the source is a single scalar integer register, and the
3373 destination has a complex mode for which a same-sized integer
3374 mode exists, then we can take the left-justified part of the
3375 source in the complex mode. */
3376 if (finish == start + 1
3377 && REG_P (tmps[i])
3378 && SCALAR_INT_MODE_P (tmp_mode)
3379 && COMPLEX_MODE_P (dest_mode)
3380 && int_mode_for_mode (dest_mode).exists (&dest_imode))
3382 const scalar_int_mode tmp_imode
3383 = as_a <scalar_int_mode> (tmp_mode);
3385 if (GET_MODE_BITSIZE (dest_imode)
3386 < GET_MODE_BITSIZE (tmp_imode))
3388 dest = gen_reg_rtx (dest_imode);
3389 if (BYTES_BIG_ENDIAN)
3390 tmps[i] = expand_shift (RSHIFT_EXPR, tmp_mode, tmps[i],
3391 GET_MODE_BITSIZE (tmp_imode)
3392 - GET_MODE_BITSIZE (dest_imode),
3393 NULL_RTX, 1);
3394 emit_move_insn (dest, gen_lowpart (dest_imode, tmps[i]));
3395 dst = gen_lowpart (dest_mode, dest);
3397 else
3398 dst = gen_lowpart (dest_mode, tmps[i]);
3401 /* Otherwise spill the source onto the stack using the more
3402 aligned of the two modes. */
3403 else if (GET_MODE_ALIGNMENT (dest_mode)
3404 >= GET_MODE_ALIGNMENT (tmp_mode))
3406 dest = assign_stack_temp (dest_mode,
3407 GET_MODE_SIZE (dest_mode));
3408 emit_move_insn (adjust_address (dest, tmp_mode, bytepos),
3409 tmps[i]);
3410 dst = dest;
3413 else
3415 dest = assign_stack_temp (tmp_mode,
3416 GET_MODE_SIZE (tmp_mode));
3417 emit_move_insn (dest, tmps[i]);
3418 dst = adjust_address (dest, dest_mode, bytepos);
3421 break;
3425 /* Handle trailing fragments that run over the size of the struct. */
3426 if (known_size_p (ssize) && maybe_gt (bytepos + bytelen, ssize))
3428 /* store_bit_field always takes its value from the lsb.
3429 Move the fragment to the lsb if it's not already there. */
3430 if (
3431 #ifdef BLOCK_REG_PADDING
3432 BLOCK_REG_PADDING (GET_MODE (orig_dst), type, i == start)
3433 == (BYTES_BIG_ENDIAN ? PAD_UPWARD : PAD_DOWNWARD)
3434 #else
3435 BYTES_BIG_ENDIAN
3436 #endif
3439 poly_int64 shift = (bytelen - (ssize - bytepos)) * BITS_PER_UNIT;
3440 tmps[i] = expand_shift (RSHIFT_EXPR, mode, tmps[i],
3441 shift, tmps[i], 0);
3444 /* Make sure not to write past the end of the struct. */
3445 store_bit_field (dest,
3446 adj_bytelen * BITS_PER_UNIT, bytepos * BITS_PER_UNIT,
3447 bytepos * BITS_PER_UNIT, ssize * BITS_PER_UNIT - 1,
3448 VOIDmode, tmps[i], false, false);
3451 /* Optimize the access just a bit. */
3452 else if (MEM_P (dest)
3453 && (!targetm.slow_unaligned_access (mode, MEM_ALIGN (dest))
3454 || MEM_ALIGN (dest) >= GET_MODE_ALIGNMENT (mode))
3455 && multiple_p (bytepos * BITS_PER_UNIT,
3456 GET_MODE_ALIGNMENT (mode))
3457 && known_eq (bytelen, GET_MODE_SIZE (mode)))
3458 emit_move_insn (adjust_address (dest, mode, bytepos), tmps[i]);
3460 else
3461 store_bit_field (dest, bytelen * BITS_PER_UNIT, bytepos * BITS_PER_UNIT,
3462 0, 0, mode, tmps[i], false, false);
3465 /* Copy from the pseudo into the (probable) hard reg. */
3466 if (orig_dst != dst)
3467 emit_move_insn (orig_dst, dst);
3470 /* Return a form of X that does not use a PARALLEL. TYPE is the type
3471 of the value stored in X. */
3474 maybe_emit_group_store (rtx x, tree type)
3476 machine_mode mode = TYPE_MODE (type);
3477 gcc_checking_assert (GET_MODE (x) == VOIDmode || GET_MODE (x) == mode);
3478 if (GET_CODE (x) == PARALLEL)
3480 rtx result = gen_reg_rtx (mode);
3481 emit_group_store (result, x, type, int_size_in_bytes (type));
3482 return result;
3484 return x;
3487 /* Copy a BLKmode object of TYPE out of a register SRCREG into TARGET.
3489 This is used on targets that return BLKmode values in registers. */
3491 static void
3492 copy_blkmode_from_reg (rtx target, rtx srcreg, tree type)
3494 unsigned HOST_WIDE_INT bytes = int_size_in_bytes (type);
3495 rtx src = NULL, dst = NULL;
3496 unsigned HOST_WIDE_INT bitsize = MIN (TYPE_ALIGN (type), BITS_PER_WORD);
3497 unsigned HOST_WIDE_INT bitpos, xbitpos, padding_correction = 0;
3498 /* No current ABI uses variable-sized modes to pass a BLKmnode type. */
3499 fixed_size_mode mode = as_a <fixed_size_mode> (GET_MODE (srcreg));
3500 fixed_size_mode tmode = as_a <fixed_size_mode> (GET_MODE (target));
3501 fixed_size_mode copy_mode;
3503 /* BLKmode registers created in the back-end shouldn't have survived. */
3504 gcc_assert (mode != BLKmode);
3506 /* If the structure doesn't take up a whole number of words, see whether
3507 SRCREG is padded on the left or on the right. If it's on the left,
3508 set PADDING_CORRECTION to the number of bits to skip.
3510 In most ABIs, the structure will be returned at the least end of
3511 the register, which translates to right padding on little-endian
3512 targets and left padding on big-endian targets. The opposite
3513 holds if the structure is returned at the most significant
3514 end of the register. */
3515 if (bytes % UNITS_PER_WORD != 0
3516 && (targetm.calls.return_in_msb (type)
3517 ? !BYTES_BIG_ENDIAN
3518 : BYTES_BIG_ENDIAN))
3519 padding_correction
3520 = (BITS_PER_WORD - ((bytes % UNITS_PER_WORD) * BITS_PER_UNIT));
3522 /* We can use a single move if we have an exact mode for the size. */
3523 else if (MEM_P (target)
3524 && (!targetm.slow_unaligned_access (mode, MEM_ALIGN (target))
3525 || MEM_ALIGN (target) >= GET_MODE_ALIGNMENT (mode))
3526 && bytes == GET_MODE_SIZE (mode))
3528 emit_move_insn (adjust_address (target, mode, 0), srcreg);
3529 return;
3532 /* And if we additionally have the same mode for a register. */
3533 else if (REG_P (target)
3534 && GET_MODE (target) == mode
3535 && bytes == GET_MODE_SIZE (mode))
3537 emit_move_insn (target, srcreg);
3538 return;
3541 /* This code assumes srcreg is at least a full word. If it isn't, copy it
3542 into a new pseudo which is a full word. */
3543 if (GET_MODE_SIZE (mode) < UNITS_PER_WORD)
3545 srcreg = convert_to_mode (word_mode, srcreg, TYPE_UNSIGNED (type));
3546 mode = word_mode;
3549 /* Copy the structure BITSIZE bits at a time. If the target lives in
3550 memory, take care of not reading/writing past its end by selecting
3551 a copy mode suited to BITSIZE. This should always be possible given
3552 how it is computed.
3554 If the target lives in register, make sure not to select a copy mode
3555 larger than the mode of the register.
3557 We could probably emit more efficient code for machines which do not use
3558 strict alignment, but it doesn't seem worth the effort at the current
3559 time. */
3561 copy_mode = word_mode;
3562 if (MEM_P (target))
3564 opt_scalar_int_mode mem_mode = int_mode_for_size (bitsize, 1);
3565 if (mem_mode.exists ())
3566 copy_mode = mem_mode.require ();
3568 else if (REG_P (target) && GET_MODE_BITSIZE (tmode) < BITS_PER_WORD)
3569 copy_mode = tmode;
3571 for (bitpos = 0, xbitpos = padding_correction;
3572 bitpos < bytes * BITS_PER_UNIT;
3573 bitpos += bitsize, xbitpos += bitsize)
3575 /* We need a new source operand each time xbitpos is on a
3576 word boundary and when xbitpos == padding_correction
3577 (the first time through). */
3578 if (xbitpos % BITS_PER_WORD == 0 || xbitpos == padding_correction)
3579 src = operand_subword_force (srcreg, xbitpos / BITS_PER_WORD, mode);
3581 /* We need a new destination operand each time bitpos is on
3582 a word boundary. */
3583 if (REG_P (target) && GET_MODE_BITSIZE (tmode) < BITS_PER_WORD)
3584 dst = target;
3585 else if (bitpos % BITS_PER_WORD == 0)
3586 dst = operand_subword (target, bitpos / BITS_PER_WORD, 1, tmode);
3588 /* Use xbitpos for the source extraction (right justified) and
3589 bitpos for the destination store (left justified). */
3590 store_bit_field (dst, bitsize, bitpos % BITS_PER_WORD, 0, 0, copy_mode,
3591 extract_bit_field (src, bitsize,
3592 xbitpos % BITS_PER_WORD, 1,
3593 NULL_RTX, copy_mode, copy_mode,
3594 false, NULL),
3595 false, false);
3599 /* Copy BLKmode value SRC into a register of mode MODE_IN. Return the
3600 register if it contains any data, otherwise return null.
3602 This is used on targets that return BLKmode values in registers. */
3605 copy_blkmode_to_reg (machine_mode mode_in, tree src)
3607 int i, n_regs;
3608 unsigned HOST_WIDE_INT bitpos, xbitpos, padding_correction = 0, bytes;
3609 unsigned int bitsize;
3610 rtx *dst_words, dst, x, src_word = NULL_RTX, dst_word = NULL_RTX;
3611 /* No current ABI uses variable-sized modes to pass a BLKmnode type. */
3612 fixed_size_mode mode = as_a <fixed_size_mode> (mode_in);
3613 fixed_size_mode dst_mode;
3614 scalar_int_mode min_mode;
3616 gcc_assert (TYPE_MODE (TREE_TYPE (src)) == BLKmode);
3618 x = expand_normal (src);
3620 bytes = arg_int_size_in_bytes (TREE_TYPE (src));
3621 if (bytes == 0)
3622 return NULL_RTX;
3624 /* If the structure doesn't take up a whole number of words, see
3625 whether the register value should be padded on the left or on
3626 the right. Set PADDING_CORRECTION to the number of padding
3627 bits needed on the left side.
3629 In most ABIs, the structure will be returned at the least end of
3630 the register, which translates to right padding on little-endian
3631 targets and left padding on big-endian targets. The opposite
3632 holds if the structure is returned at the most significant
3633 end of the register. */
3634 if (bytes % UNITS_PER_WORD != 0
3635 && (targetm.calls.return_in_msb (TREE_TYPE (src))
3636 ? !BYTES_BIG_ENDIAN
3637 : BYTES_BIG_ENDIAN))
3638 padding_correction = (BITS_PER_WORD - ((bytes % UNITS_PER_WORD)
3639 * BITS_PER_UNIT));
3641 n_regs = (bytes + UNITS_PER_WORD - 1) / UNITS_PER_WORD;
3642 dst_words = XALLOCAVEC (rtx, n_regs);
3643 bitsize = MIN (TYPE_ALIGN (TREE_TYPE (src)), BITS_PER_WORD);
3644 min_mode = smallest_int_mode_for_size (bitsize);
3646 /* Copy the structure BITSIZE bits at a time. */
3647 for (bitpos = 0, xbitpos = padding_correction;
3648 bitpos < bytes * BITS_PER_UNIT;
3649 bitpos += bitsize, xbitpos += bitsize)
3651 /* We need a new destination pseudo each time xbitpos is
3652 on a word boundary and when xbitpos == padding_correction
3653 (the first time through). */
3654 if (xbitpos % BITS_PER_WORD == 0
3655 || xbitpos == padding_correction)
3657 /* Generate an appropriate register. */
3658 dst_word = gen_reg_rtx (word_mode);
3659 dst_words[xbitpos / BITS_PER_WORD] = dst_word;
3661 /* Clear the destination before we move anything into it. */
3662 emit_move_insn (dst_word, CONST0_RTX (word_mode));
3665 /* Find the largest integer mode that can be used to copy all or as
3666 many bits as possible of the structure if the target supports larger
3667 copies. There are too many corner cases here w.r.t to alignments on
3668 the read/writes. So if there is any padding just use single byte
3669 operations. */
3670 opt_scalar_int_mode mode_iter;
3671 if (padding_correction == 0 && !STRICT_ALIGNMENT)
3673 FOR_EACH_MODE_FROM (mode_iter, min_mode)
3675 unsigned int msize = GET_MODE_BITSIZE (mode_iter.require ());
3676 if (msize <= ((bytes * BITS_PER_UNIT) - bitpos)
3677 && msize <= BITS_PER_WORD)
3678 bitsize = msize;
3679 else
3680 break;
3684 /* We need a new source operand each time bitpos is on a word
3685 boundary. */
3686 if (bitpos % BITS_PER_WORD == 0)
3687 src_word = operand_subword_force (x, bitpos / BITS_PER_WORD, BLKmode);
3689 /* Use bitpos for the source extraction (left justified) and
3690 xbitpos for the destination store (right justified). */
3691 store_bit_field (dst_word, bitsize, xbitpos % BITS_PER_WORD,
3692 0, 0, word_mode,
3693 extract_bit_field (src_word, bitsize,
3694 bitpos % BITS_PER_WORD, 1,
3695 NULL_RTX, word_mode, word_mode,
3696 false, NULL),
3697 false, false);
3700 if (mode == BLKmode)
3702 /* Find the smallest integer mode large enough to hold the
3703 entire structure. */
3704 opt_scalar_int_mode mode_iter;
3705 FOR_EACH_MODE_IN_CLASS (mode_iter, MODE_INT)
3706 if (GET_MODE_SIZE (mode_iter.require ()) >= bytes)
3707 break;
3709 /* A suitable mode should have been found. */
3710 mode = mode_iter.require ();
3713 if (GET_MODE_SIZE (mode) < GET_MODE_SIZE (word_mode))
3714 dst_mode = word_mode;
3715 else
3716 dst_mode = mode;
3717 dst = gen_reg_rtx (dst_mode);
3719 for (i = 0; i < n_regs; i++)
3720 emit_move_insn (operand_subword (dst, i, 0, dst_mode), dst_words[i]);
3722 if (mode != dst_mode)
3723 dst = gen_lowpart (mode, dst);
3725 return dst;
3728 /* Add a USE expression for REG to the (possibly empty) list pointed
3729 to by CALL_FUSAGE. REG must denote a hard register. */
3731 void
3732 use_reg_mode (rtx *call_fusage, rtx reg, machine_mode mode)
3734 gcc_assert (REG_P (reg));
3736 if (!HARD_REGISTER_P (reg))
3737 return;
3739 *call_fusage
3740 = gen_rtx_EXPR_LIST (mode, gen_rtx_USE (VOIDmode, reg), *call_fusage);
3743 /* Add a CLOBBER expression for REG to the (possibly empty) list pointed
3744 to by CALL_FUSAGE. REG must denote a hard register. */
3746 void
3747 clobber_reg_mode (rtx *call_fusage, rtx reg, machine_mode mode)
3749 gcc_assert (REG_P (reg) && REGNO (reg) < FIRST_PSEUDO_REGISTER);
3751 *call_fusage
3752 = gen_rtx_EXPR_LIST (mode, gen_rtx_CLOBBER (VOIDmode, reg), *call_fusage);
3755 /* Add USE expressions to *CALL_FUSAGE for each of NREGS consecutive regs,
3756 starting at REGNO. All of these registers must be hard registers. */
3758 void
3759 use_regs (rtx *call_fusage, int regno, int nregs)
3761 int i;
3763 gcc_assert (regno + nregs <= FIRST_PSEUDO_REGISTER);
3765 for (i = 0; i < nregs; i++)
3766 use_reg (call_fusage, regno_reg_rtx[regno + i]);
3769 /* Add USE expressions to *CALL_FUSAGE for each REG contained in the
3770 PARALLEL REGS. This is for calls that pass values in multiple
3771 non-contiguous locations. The Irix 6 ABI has examples of this. */
3773 void
3774 use_group_regs (rtx *call_fusage, rtx regs)
3776 int i;
3778 for (i = 0; i < XVECLEN (regs, 0); i++)
3780 rtx reg = XEXP (XVECEXP (regs, 0, i), 0);
3782 /* A NULL entry means the parameter goes both on the stack and in
3783 registers. This can also be a MEM for targets that pass values
3784 partially on the stack and partially in registers. */
3785 if (reg != 0 && REG_P (reg))
3786 use_reg (call_fusage, reg);
3790 /* Return the defining gimple statement for SSA_NAME NAME if it is an
3791 assigment and the code of the expresion on the RHS is CODE. Return
3792 NULL otherwise. */
3794 static gimple *
3795 get_def_for_expr (tree name, enum tree_code code)
3797 gimple *def_stmt;
3799 if (TREE_CODE (name) != SSA_NAME)
3800 return NULL;
3802 def_stmt = get_gimple_for_ssa_name (name);
3803 if (!def_stmt
3804 || gimple_assign_rhs_code (def_stmt) != code)
3805 return NULL;
3807 return def_stmt;
3810 /* Return the defining gimple statement for SSA_NAME NAME if it is an
3811 assigment and the class of the expresion on the RHS is CLASS. Return
3812 NULL otherwise. */
3814 static gimple *
3815 get_def_for_expr_class (tree name, enum tree_code_class tclass)
3817 gimple *def_stmt;
3819 if (TREE_CODE (name) != SSA_NAME)
3820 return NULL;
3822 def_stmt = get_gimple_for_ssa_name (name);
3823 if (!def_stmt
3824 || TREE_CODE_CLASS (gimple_assign_rhs_code (def_stmt)) != tclass)
3825 return NULL;
3827 return def_stmt;
3830 /* Write zeros through the storage of OBJECT. If OBJECT has BLKmode, SIZE is
3831 its length in bytes. */
3834 clear_storage_hints (rtx object, rtx size, enum block_op_methods method,
3835 unsigned int expected_align, HOST_WIDE_INT expected_size,
3836 unsigned HOST_WIDE_INT min_size,
3837 unsigned HOST_WIDE_INT max_size,
3838 unsigned HOST_WIDE_INT probable_max_size,
3839 unsigned ctz_size)
3841 machine_mode mode = GET_MODE (object);
3842 unsigned int align;
3844 gcc_assert (method == BLOCK_OP_NORMAL || method == BLOCK_OP_TAILCALL);
3846 /* If OBJECT is not BLKmode and SIZE is the same size as its mode,
3847 just move a zero. Otherwise, do this a piece at a time. */
3848 poly_int64 size_val;
3849 if (mode != BLKmode
3850 && poly_int_rtx_p (size, &size_val)
3851 && known_eq (size_val, GET_MODE_SIZE (mode)))
3853 rtx zero = CONST0_RTX (mode);
3854 if (zero != NULL)
3856 emit_move_insn (object, zero);
3857 return NULL;
3860 if (COMPLEX_MODE_P (mode))
3862 zero = CONST0_RTX (GET_MODE_INNER (mode));
3863 if (zero != NULL)
3865 write_complex_part (object, zero, 0, true);
3866 write_complex_part (object, zero, 1, false);
3867 return NULL;
3872 if (size == const0_rtx)
3873 return NULL;
3875 align = MEM_ALIGN (object);
3877 if (CONST_INT_P (size)
3878 && targetm.use_by_pieces_infrastructure_p (INTVAL (size), align,
3879 CLEAR_BY_PIECES,
3880 optimize_insn_for_speed_p ()))
3881 clear_by_pieces (object, INTVAL (size), align);
3882 else if (set_storage_via_setmem (object, size, const0_rtx, align,
3883 expected_align, expected_size,
3884 min_size, max_size, probable_max_size))
3886 else if (try_store_by_multiple_pieces (object, size, ctz_size,
3887 min_size, max_size,
3888 NULL_RTX, 0, align))
3890 else if (ADDR_SPACE_GENERIC_P (MEM_ADDR_SPACE (object)))
3891 return set_storage_via_libcall (object, size, const0_rtx,
3892 method == BLOCK_OP_TAILCALL);
3893 else
3894 gcc_unreachable ();
3896 return NULL;
3900 clear_storage (rtx object, rtx size, enum block_op_methods method)
3902 unsigned HOST_WIDE_INT max, min = 0;
3903 if (GET_CODE (size) == CONST_INT)
3904 min = max = UINTVAL (size);
3905 else
3906 max = GET_MODE_MASK (GET_MODE (size));
3907 return clear_storage_hints (object, size, method, 0, -1, min, max, max, 0);
3911 /* A subroutine of clear_storage. Expand a call to memset.
3912 Return the return value of memset, 0 otherwise. */
3915 set_storage_via_libcall (rtx object, rtx size, rtx val, bool tailcall)
3917 tree call_expr, fn, object_tree, size_tree, val_tree;
3918 machine_mode size_mode;
3920 object = copy_addr_to_reg (XEXP (object, 0));
3921 object_tree = make_tree (ptr_type_node, object);
3923 if (!CONST_INT_P (val))
3924 val = convert_to_mode (TYPE_MODE (integer_type_node), val, 1);
3925 val_tree = make_tree (integer_type_node, val);
3927 size_mode = TYPE_MODE (sizetype);
3928 size = convert_to_mode (size_mode, size, 1);
3929 size = copy_to_mode_reg (size_mode, size);
3930 size_tree = make_tree (sizetype, size);
3932 /* It is incorrect to use the libcall calling conventions for calls to
3933 memset because it can be provided by the user. */
3934 fn = builtin_decl_implicit (BUILT_IN_MEMSET);
3935 call_expr = build_call_expr (fn, 3, object_tree, val_tree, size_tree);
3936 CALL_EXPR_TAILCALL (call_expr) = tailcall;
3938 return expand_call (call_expr, NULL_RTX, false);
3941 /* Expand a setmem pattern; return true if successful. */
3943 bool
3944 set_storage_via_setmem (rtx object, rtx size, rtx val, unsigned int align,
3945 unsigned int expected_align, HOST_WIDE_INT expected_size,
3946 unsigned HOST_WIDE_INT min_size,
3947 unsigned HOST_WIDE_INT max_size,
3948 unsigned HOST_WIDE_INT probable_max_size)
3950 /* Try the most limited insn first, because there's no point
3951 including more than one in the machine description unless
3952 the more limited one has some advantage. */
3954 if (expected_align < align)
3955 expected_align = align;
3956 if (expected_size != -1)
3958 if ((unsigned HOST_WIDE_INT)expected_size > max_size)
3959 expected_size = max_size;
3960 if ((unsigned HOST_WIDE_INT)expected_size < min_size)
3961 expected_size = min_size;
3964 opt_scalar_int_mode mode_iter;
3965 FOR_EACH_MODE_IN_CLASS (mode_iter, MODE_INT)
3967 scalar_int_mode mode = mode_iter.require ();
3968 enum insn_code code = direct_optab_handler (setmem_optab, mode);
3970 if (code != CODE_FOR_nothing
3971 /* We don't need MODE to be narrower than BITS_PER_HOST_WIDE_INT
3972 here because if SIZE is less than the mode mask, as it is
3973 returned by the macro, it will definitely be less than the
3974 actual mode mask. Since SIZE is within the Pmode address
3975 space, we limit MODE to Pmode. */
3976 && ((CONST_INT_P (size)
3977 && ((unsigned HOST_WIDE_INT) INTVAL (size)
3978 <= (GET_MODE_MASK (mode) >> 1)))
3979 || max_size <= (GET_MODE_MASK (mode) >> 1)
3980 || GET_MODE_BITSIZE (mode) >= GET_MODE_BITSIZE (Pmode)))
3982 class expand_operand ops[9];
3983 unsigned int nops;
3985 nops = insn_data[(int) code].n_generator_args;
3986 gcc_assert (nops == 4 || nops == 6 || nops == 8 || nops == 9);
3988 create_fixed_operand (&ops[0], object);
3989 /* The check above guarantees that this size conversion is valid. */
3990 create_convert_operand_to (&ops[1], size, mode, true);
3991 create_convert_operand_from (&ops[2], val, byte_mode, true);
3992 create_integer_operand (&ops[3], align / BITS_PER_UNIT);
3993 if (nops >= 6)
3995 create_integer_operand (&ops[4], expected_align / BITS_PER_UNIT);
3996 create_integer_operand (&ops[5], expected_size);
3998 if (nops >= 8)
4000 create_integer_operand (&ops[6], min_size);
4001 /* If we cannot represent the maximal size,
4002 make parameter NULL. */
4003 if ((HOST_WIDE_INT) max_size != -1)
4004 create_integer_operand (&ops[7], max_size);
4005 else
4006 create_fixed_operand (&ops[7], NULL);
4008 if (nops == 9)
4010 /* If we cannot represent the maximal size,
4011 make parameter NULL. */
4012 if ((HOST_WIDE_INT) probable_max_size != -1)
4013 create_integer_operand (&ops[8], probable_max_size);
4014 else
4015 create_fixed_operand (&ops[8], NULL);
4017 if (maybe_expand_insn (code, nops, ops))
4018 return true;
4022 return false;
4026 /* Write to one of the components of the complex value CPLX. Write VAL to
4027 the real part if IMAG_P is false, and the imaginary part if its true.
4028 If UNDEFINED_P then the value in CPLX is currently undefined. */
4030 void
4031 write_complex_part (rtx cplx, rtx val, bool imag_p, bool undefined_p)
4033 machine_mode cmode;
4034 scalar_mode imode;
4035 unsigned ibitsize;
4037 if (GET_CODE (cplx) == CONCAT)
4039 emit_move_insn (XEXP (cplx, imag_p), val);
4040 return;
4043 cmode = GET_MODE (cplx);
4044 imode = GET_MODE_INNER (cmode);
4045 ibitsize = GET_MODE_BITSIZE (imode);
4047 /* For MEMs simplify_gen_subreg may generate an invalid new address
4048 because, e.g., the original address is considered mode-dependent
4049 by the target, which restricts simplify_subreg from invoking
4050 adjust_address_nv. Instead of preparing fallback support for an
4051 invalid address, we call adjust_address_nv directly. */
4052 if (MEM_P (cplx))
4054 emit_move_insn (adjust_address_nv (cplx, imode,
4055 imag_p ? GET_MODE_SIZE (imode) : 0),
4056 val);
4057 return;
4060 /* If the sub-object is at least word sized, then we know that subregging
4061 will work. This special case is important, since store_bit_field
4062 wants to operate on integer modes, and there's rarely an OImode to
4063 correspond to TCmode. */
4064 if (ibitsize >= BITS_PER_WORD
4065 /* For hard regs we have exact predicates. Assume we can split
4066 the original object if it spans an even number of hard regs.
4067 This special case is important for SCmode on 64-bit platforms
4068 where the natural size of floating-point regs is 32-bit. */
4069 || (REG_P (cplx)
4070 && REGNO (cplx) < FIRST_PSEUDO_REGISTER
4071 && REG_NREGS (cplx) % 2 == 0))
4073 rtx part = simplify_gen_subreg (imode, cplx, cmode,
4074 imag_p ? GET_MODE_SIZE (imode) : 0);
4075 if (part)
4077 emit_move_insn (part, val);
4078 return;
4080 else
4081 /* simplify_gen_subreg may fail for sub-word MEMs. */
4082 gcc_assert (MEM_P (cplx) && ibitsize < BITS_PER_WORD);
4085 store_bit_field (cplx, ibitsize, imag_p ? ibitsize : 0, 0, 0, imode, val,
4086 false, undefined_p);
4089 /* Extract one of the components of the complex value CPLX. Extract the
4090 real part if IMAG_P is false, and the imaginary part if it's true. */
4093 read_complex_part (rtx cplx, bool imag_p)
4095 machine_mode cmode;
4096 scalar_mode imode;
4097 unsigned ibitsize;
4099 if (GET_CODE (cplx) == CONCAT)
4100 return XEXP (cplx, imag_p);
4102 cmode = GET_MODE (cplx);
4103 imode = GET_MODE_INNER (cmode);
4104 ibitsize = GET_MODE_BITSIZE (imode);
4106 /* Special case reads from complex constants that got spilled to memory. */
4107 if (MEM_P (cplx) && GET_CODE (XEXP (cplx, 0)) == SYMBOL_REF)
4109 tree decl = SYMBOL_REF_DECL (XEXP (cplx, 0));
4110 if (decl && TREE_CODE (decl) == COMPLEX_CST)
4112 tree part = imag_p ? TREE_IMAGPART (decl) : TREE_REALPART (decl);
4113 if (CONSTANT_CLASS_P (part))
4114 return expand_expr (part, NULL_RTX, imode, EXPAND_NORMAL);
4118 /* For MEMs simplify_gen_subreg may generate an invalid new address
4119 because, e.g., the original address is considered mode-dependent
4120 by the target, which restricts simplify_subreg from invoking
4121 adjust_address_nv. Instead of preparing fallback support for an
4122 invalid address, we call adjust_address_nv directly. */
4123 if (MEM_P (cplx))
4124 return adjust_address_nv (cplx, imode,
4125 imag_p ? GET_MODE_SIZE (imode) : 0);
4127 /* If the sub-object is at least word sized, then we know that subregging
4128 will work. This special case is important, since extract_bit_field
4129 wants to operate on integer modes, and there's rarely an OImode to
4130 correspond to TCmode. */
4131 if (ibitsize >= BITS_PER_WORD
4132 /* For hard regs we have exact predicates. Assume we can split
4133 the original object if it spans an even number of hard regs.
4134 This special case is important for SCmode on 64-bit platforms
4135 where the natural size of floating-point regs is 32-bit. */
4136 || (REG_P (cplx)
4137 && REGNO (cplx) < FIRST_PSEUDO_REGISTER
4138 && REG_NREGS (cplx) % 2 == 0))
4140 rtx ret = simplify_gen_subreg (imode, cplx, cmode,
4141 imag_p ? GET_MODE_SIZE (imode) : 0);
4142 if (ret)
4143 return ret;
4144 else
4145 /* simplify_gen_subreg may fail for sub-word MEMs. */
4146 gcc_assert (MEM_P (cplx) && ibitsize < BITS_PER_WORD);
4149 return extract_bit_field (cplx, ibitsize, imag_p ? ibitsize : 0,
4150 true, NULL_RTX, imode, imode, false, NULL);
4153 /* A subroutine of emit_move_insn_1. Yet another lowpart generator.
4154 NEW_MODE and OLD_MODE are the same size. Return NULL if X cannot be
4155 represented in NEW_MODE. If FORCE is true, this will never happen, as
4156 we'll force-create a SUBREG if needed. */
4158 static rtx
4159 emit_move_change_mode (machine_mode new_mode,
4160 machine_mode old_mode, rtx x, bool force)
4162 rtx ret;
4164 if (push_operand (x, GET_MODE (x)))
4166 ret = gen_rtx_MEM (new_mode, XEXP (x, 0));
4167 MEM_COPY_ATTRIBUTES (ret, x);
4169 else if (MEM_P (x))
4171 /* We don't have to worry about changing the address since the
4172 size in bytes is supposed to be the same. */
4173 if (reload_in_progress)
4175 /* Copy the MEM to change the mode and move any
4176 substitutions from the old MEM to the new one. */
4177 ret = adjust_address_nv (x, new_mode, 0);
4178 copy_replacements (x, ret);
4180 else
4181 ret = adjust_address (x, new_mode, 0);
4183 else
4185 /* Note that we do want simplify_subreg's behavior of validating
4186 that the new mode is ok for a hard register. If we were to use
4187 simplify_gen_subreg, we would create the subreg, but would
4188 probably run into the target not being able to implement it. */
4189 /* Except, of course, when FORCE is true, when this is exactly what
4190 we want. Which is needed for CCmodes on some targets. */
4191 if (force)
4192 ret = simplify_gen_subreg (new_mode, x, old_mode, 0);
4193 else
4194 ret = simplify_subreg (new_mode, x, old_mode, 0);
4197 return ret;
4200 /* A subroutine of emit_move_insn_1. Generate a move from Y into X using
4201 an integer mode of the same size as MODE. Returns the instruction
4202 emitted, or NULL if such a move could not be generated. */
4204 static rtx_insn *
4205 emit_move_via_integer (machine_mode mode, rtx x, rtx y, bool force)
4207 scalar_int_mode imode;
4208 enum insn_code code;
4210 /* There must exist a mode of the exact size we require. */
4211 if (!int_mode_for_mode (mode).exists (&imode))
4212 return NULL;
4214 /* The target must support moves in this mode. */
4215 code = optab_handler (mov_optab, imode);
4216 if (code == CODE_FOR_nothing)
4217 return NULL;
4219 x = emit_move_change_mode (imode, mode, x, force);
4220 if (x == NULL_RTX)
4221 return NULL;
4222 y = emit_move_change_mode (imode, mode, y, force);
4223 if (y == NULL_RTX)
4224 return NULL;
4225 return emit_insn (GEN_FCN (code) (x, y));
4228 /* A subroutine of emit_move_insn_1. X is a push_operand in MODE.
4229 Return an equivalent MEM that does not use an auto-increment. */
4232 emit_move_resolve_push (machine_mode mode, rtx x)
4234 enum rtx_code code = GET_CODE (XEXP (x, 0));
4235 rtx temp;
4237 poly_int64 adjust = GET_MODE_SIZE (mode);
4238 #ifdef PUSH_ROUNDING
4239 adjust = PUSH_ROUNDING (adjust);
4240 #endif
4241 if (code == PRE_DEC || code == POST_DEC)
4242 adjust = -adjust;
4243 else if (code == PRE_MODIFY || code == POST_MODIFY)
4245 rtx expr = XEXP (XEXP (x, 0), 1);
4247 gcc_assert (GET_CODE (expr) == PLUS || GET_CODE (expr) == MINUS);
4248 poly_int64 val = rtx_to_poly_int64 (XEXP (expr, 1));
4249 if (GET_CODE (expr) == MINUS)
4250 val = -val;
4251 gcc_assert (known_eq (adjust, val) || known_eq (adjust, -val));
4252 adjust = val;
4255 /* Do not use anti_adjust_stack, since we don't want to update
4256 stack_pointer_delta. */
4257 temp = expand_simple_binop (Pmode, PLUS, stack_pointer_rtx,
4258 gen_int_mode (adjust, Pmode), stack_pointer_rtx,
4259 0, OPTAB_LIB_WIDEN);
4260 if (temp != stack_pointer_rtx)
4261 emit_move_insn (stack_pointer_rtx, temp);
4263 switch (code)
4265 case PRE_INC:
4266 case PRE_DEC:
4267 case PRE_MODIFY:
4268 temp = stack_pointer_rtx;
4269 break;
4270 case POST_INC:
4271 case POST_DEC:
4272 case POST_MODIFY:
4273 temp = plus_constant (Pmode, stack_pointer_rtx, -adjust);
4274 break;
4275 default:
4276 gcc_unreachable ();
4279 return replace_equiv_address (x, temp);
4282 /* A subroutine of emit_move_complex. Generate a move from Y into X.
4283 X is known to satisfy push_operand, and MODE is known to be complex.
4284 Returns the last instruction emitted. */
4286 rtx_insn *
4287 emit_move_complex_push (machine_mode mode, rtx x, rtx y)
4289 scalar_mode submode = GET_MODE_INNER (mode);
4290 bool imag_first;
4292 #ifdef PUSH_ROUNDING
4293 poly_int64 submodesize = GET_MODE_SIZE (submode);
4295 /* In case we output to the stack, but the size is smaller than the
4296 machine can push exactly, we need to use move instructions. */
4297 if (maybe_ne (PUSH_ROUNDING (submodesize), submodesize))
4299 x = emit_move_resolve_push (mode, x);
4300 return emit_move_insn (x, y);
4302 #endif
4304 /* Note that the real part always precedes the imag part in memory
4305 regardless of machine's endianness. */
4306 switch (GET_CODE (XEXP (x, 0)))
4308 case PRE_DEC:
4309 case POST_DEC:
4310 imag_first = true;
4311 break;
4312 case PRE_INC:
4313 case POST_INC:
4314 imag_first = false;
4315 break;
4316 default:
4317 gcc_unreachable ();
4320 emit_move_insn (gen_rtx_MEM (submode, XEXP (x, 0)),
4321 read_complex_part (y, imag_first));
4322 return emit_move_insn (gen_rtx_MEM (submode, XEXP (x, 0)),
4323 read_complex_part (y, !imag_first));
4326 /* A subroutine of emit_move_complex. Perform the move from Y to X
4327 via two moves of the parts. Returns the last instruction emitted. */
4329 rtx_insn *
4330 emit_move_complex_parts (rtx x, rtx y)
4332 /* Show the output dies here. This is necessary for SUBREGs
4333 of pseudos since we cannot track their lifetimes correctly;
4334 hard regs shouldn't appear here except as return values. */
4335 if (!reload_completed && !reload_in_progress
4336 && REG_P (x) && !reg_overlap_mentioned_p (x, y))
4337 emit_clobber (x);
4339 write_complex_part (x, read_complex_part (y, false), false, true);
4340 write_complex_part (x, read_complex_part (y, true), true, false);
4342 return get_last_insn ();
4345 /* A subroutine of emit_move_insn_1. Generate a move from Y into X.
4346 MODE is known to be complex. Returns the last instruction emitted. */
4348 static rtx_insn *
4349 emit_move_complex (machine_mode mode, rtx x, rtx y)
4351 bool try_int;
4353 /* Need to take special care for pushes, to maintain proper ordering
4354 of the data, and possibly extra padding. */
4355 if (push_operand (x, mode))
4356 return emit_move_complex_push (mode, x, y);
4358 /* See if we can coerce the target into moving both values at once, except
4359 for floating point where we favor moving as parts if this is easy. */
4360 if (GET_MODE_CLASS (mode) == MODE_COMPLEX_FLOAT
4361 && optab_handler (mov_optab, GET_MODE_INNER (mode)) != CODE_FOR_nothing
4362 && !(REG_P (x)
4363 && HARD_REGISTER_P (x)
4364 && REG_NREGS (x) == 1)
4365 && !(REG_P (y)
4366 && HARD_REGISTER_P (y)
4367 && REG_NREGS (y) == 1))
4368 try_int = false;
4369 /* Not possible if the values are inherently not adjacent. */
4370 else if (GET_CODE (x) == CONCAT || GET_CODE (y) == CONCAT)
4371 try_int = false;
4372 /* Is possible if both are registers (or subregs of registers). */
4373 else if (register_operand (x, mode) && register_operand (y, mode))
4374 try_int = true;
4375 /* If one of the operands is a memory, and alignment constraints
4376 are friendly enough, we may be able to do combined memory operations.
4377 We do not attempt this if Y is a constant because that combination is
4378 usually better with the by-parts thing below. */
4379 else if ((MEM_P (x) ? !CONSTANT_P (y) : MEM_P (y))
4380 && (!STRICT_ALIGNMENT
4381 || get_mode_alignment (mode) == BIGGEST_ALIGNMENT))
4382 try_int = true;
4383 else
4384 try_int = false;
4386 if (try_int)
4388 rtx_insn *ret;
4390 /* For memory to memory moves, optimal behavior can be had with the
4391 existing block move logic. But use normal expansion if optimizing
4392 for size. */
4393 if (MEM_P (x) && MEM_P (y))
4395 emit_block_move (x, y, gen_int_mode (GET_MODE_SIZE (mode), Pmode),
4396 (optimize_insn_for_speed_p()
4397 ? BLOCK_OP_NO_LIBCALL : BLOCK_OP_NORMAL));
4398 return get_last_insn ();
4401 ret = emit_move_via_integer (mode, x, y, true);
4402 if (ret)
4403 return ret;
4406 return emit_move_complex_parts (x, y);
4409 /* A subroutine of emit_move_insn_1. Generate a move from Y into X.
4410 MODE is known to be MODE_CC. Returns the last instruction emitted. */
4412 static rtx_insn *
4413 emit_move_ccmode (machine_mode mode, rtx x, rtx y)
4415 rtx_insn *ret;
4417 /* Assume all MODE_CC modes are equivalent; if we have movcc, use it. */
4418 if (mode != CCmode)
4420 enum insn_code code = optab_handler (mov_optab, CCmode);
4421 if (code != CODE_FOR_nothing)
4423 x = emit_move_change_mode (CCmode, mode, x, true);
4424 y = emit_move_change_mode (CCmode, mode, y, true);
4425 return emit_insn (GEN_FCN (code) (x, y));
4429 /* Otherwise, find the MODE_INT mode of the same width. */
4430 ret = emit_move_via_integer (mode, x, y, false);
4431 gcc_assert (ret != NULL);
4432 return ret;
4435 /* Return true if word I of OP lies entirely in the
4436 undefined bits of a paradoxical subreg. */
4438 static bool
4439 undefined_operand_subword_p (const_rtx op, int i)
4441 if (GET_CODE (op) != SUBREG)
4442 return false;
4443 machine_mode innermostmode = GET_MODE (SUBREG_REG (op));
4444 poly_int64 offset = i * UNITS_PER_WORD + subreg_memory_offset (op);
4445 return (known_ge (offset, GET_MODE_SIZE (innermostmode))
4446 || known_le (offset, -UNITS_PER_WORD));
4449 /* A subroutine of emit_move_insn_1. Generate a move from Y into X.
4450 MODE is any multi-word or full-word mode that lacks a move_insn
4451 pattern. Note that you will get better code if you define such
4452 patterns, even if they must turn into multiple assembler instructions. */
4454 static rtx_insn *
4455 emit_move_multi_word (machine_mode mode, rtx x, rtx y)
4457 rtx_insn *last_insn = 0;
4458 rtx_insn *seq;
4459 rtx inner;
4460 bool need_clobber;
4461 int i, mode_size;
4463 /* This function can only handle cases where the number of words is
4464 known at compile time. */
4465 mode_size = GET_MODE_SIZE (mode).to_constant ();
4466 gcc_assert (mode_size >= UNITS_PER_WORD);
4468 /* If X is a push on the stack, do the push now and replace
4469 X with a reference to the stack pointer. */
4470 if (push_operand (x, mode))
4471 x = emit_move_resolve_push (mode, x);
4473 /* If we are in reload, see if either operand is a MEM whose address
4474 is scheduled for replacement. */
4475 if (reload_in_progress && MEM_P (x)
4476 && (inner = find_replacement (&XEXP (x, 0))) != XEXP (x, 0))
4477 x = replace_equiv_address_nv (x, inner);
4478 if (reload_in_progress && MEM_P (y)
4479 && (inner = find_replacement (&XEXP (y, 0))) != XEXP (y, 0))
4480 y = replace_equiv_address_nv (y, inner);
4482 start_sequence ();
4484 need_clobber = false;
4485 for (i = 0; i < CEIL (mode_size, UNITS_PER_WORD); i++)
4487 /* Do not generate code for a move if it would go entirely
4488 to the non-existing bits of a paradoxical subreg. */
4489 if (undefined_operand_subword_p (x, i))
4490 continue;
4492 rtx xpart = operand_subword (x, i, 1, mode);
4493 rtx ypart;
4495 /* Do not generate code for a move if it would come entirely
4496 from the undefined bits of a paradoxical subreg. */
4497 if (undefined_operand_subword_p (y, i))
4498 continue;
4500 ypart = operand_subword (y, i, 1, mode);
4502 /* If we can't get a part of Y, put Y into memory if it is a
4503 constant. Otherwise, force it into a register. Then we must
4504 be able to get a part of Y. */
4505 if (ypart == 0 && CONSTANT_P (y))
4507 y = use_anchored_address (force_const_mem (mode, y));
4508 ypart = operand_subword (y, i, 1, mode);
4510 else if (ypart == 0)
4511 ypart = operand_subword_force (y, i, mode);
4513 gcc_assert (xpart && ypart);
4515 need_clobber |= (GET_CODE (xpart) == SUBREG);
4517 last_insn = emit_move_insn (xpart, ypart);
4520 seq = get_insns ();
4521 end_sequence ();
4523 /* Show the output dies here. This is necessary for SUBREGs
4524 of pseudos since we cannot track their lifetimes correctly;
4525 hard regs shouldn't appear here except as return values.
4526 We never want to emit such a clobber after reload. */
4527 if (x != y
4528 && ! (reload_in_progress || reload_completed)
4529 && need_clobber != 0)
4530 emit_clobber (x);
4532 emit_insn (seq);
4534 return last_insn;
4537 /* Low level part of emit_move_insn.
4538 Called just like emit_move_insn, but assumes X and Y
4539 are basically valid. */
4541 rtx_insn *
4542 emit_move_insn_1 (rtx x, rtx y)
4544 machine_mode mode = GET_MODE (x);
4545 enum insn_code code;
4547 gcc_assert ((unsigned int) mode < (unsigned int) MAX_MACHINE_MODE);
4549 code = optab_handler (mov_optab, mode);
4550 if (code != CODE_FOR_nothing)
4551 return emit_insn (GEN_FCN (code) (x, y));
4553 /* Expand complex moves by moving real part and imag part. */
4554 if (COMPLEX_MODE_P (mode))
4555 return emit_move_complex (mode, x, y);
4557 if (GET_MODE_CLASS (mode) == MODE_DECIMAL_FLOAT
4558 || ALL_FIXED_POINT_MODE_P (mode))
4560 rtx_insn *result = emit_move_via_integer (mode, x, y, true);
4562 /* If we can't find an integer mode, use multi words. */
4563 if (result)
4564 return result;
4565 else
4566 return emit_move_multi_word (mode, x, y);
4569 if (GET_MODE_CLASS (mode) == MODE_CC)
4570 return emit_move_ccmode (mode, x, y);
4572 /* Try using a move pattern for the corresponding integer mode. This is
4573 only safe when simplify_subreg can convert MODE constants into integer
4574 constants. At present, it can only do this reliably if the value
4575 fits within a HOST_WIDE_INT. */
4576 if (!CONSTANT_P (y)
4577 || known_le (GET_MODE_BITSIZE (mode), HOST_BITS_PER_WIDE_INT))
4579 rtx_insn *ret = emit_move_via_integer (mode, x, y, lra_in_progress);
4581 if (ret)
4583 if (! lra_in_progress || recog (PATTERN (ret), ret, 0) >= 0)
4584 return ret;
4588 return emit_move_multi_word (mode, x, y);
4591 /* Generate code to copy Y into X.
4592 Both Y and X must have the same mode, except that
4593 Y can be a constant with VOIDmode.
4594 This mode cannot be BLKmode; use emit_block_move for that.
4596 Return the last instruction emitted. */
4598 rtx_insn *
4599 emit_move_insn (rtx x, rtx y)
4601 machine_mode mode = GET_MODE (x);
4602 rtx y_cst = NULL_RTX;
4603 rtx_insn *last_insn;
4604 rtx set;
4606 gcc_assert (mode != BLKmode
4607 && (GET_MODE (y) == mode || GET_MODE (y) == VOIDmode));
4609 /* If we have a copy that looks like one of the following patterns:
4610 (set (subreg:M1 (reg:M2 ...)) (subreg:M1 (reg:M2 ...)))
4611 (set (subreg:M1 (reg:M2 ...)) (mem:M1 ADDR))
4612 (set (mem:M1 ADDR) (subreg:M1 (reg:M2 ...)))
4613 (set (subreg:M1 (reg:M2 ...)) (constant C))
4614 where mode M1 is equal in size to M2, try to detect whether the
4615 mode change involves an implicit round trip through memory.
4616 If so, see if we can avoid that by removing the subregs and
4617 doing the move in mode M2 instead. */
4619 rtx x_inner = NULL_RTX;
4620 rtx y_inner = NULL_RTX;
4622 auto candidate_subreg_p = [&](rtx subreg) {
4623 return (REG_P (SUBREG_REG (subreg))
4624 && known_eq (GET_MODE_SIZE (GET_MODE (SUBREG_REG (subreg))),
4625 GET_MODE_SIZE (GET_MODE (subreg)))
4626 && optab_handler (mov_optab, GET_MODE (SUBREG_REG (subreg)))
4627 != CODE_FOR_nothing);
4630 auto candidate_mem_p = [&](machine_mode innermode, rtx mem) {
4631 return (!targetm.can_change_mode_class (innermode, GET_MODE (mem), ALL_REGS)
4632 && !push_operand (mem, GET_MODE (mem))
4633 /* Not a candiate if innermode requires too much alignment. */
4634 && (MEM_ALIGN (mem) >= GET_MODE_ALIGNMENT (innermode)
4635 || targetm.slow_unaligned_access (GET_MODE (mem),
4636 MEM_ALIGN (mem))
4637 || !targetm.slow_unaligned_access (innermode,
4638 MEM_ALIGN (mem))));
4641 if (SUBREG_P (x) && candidate_subreg_p (x))
4642 x_inner = SUBREG_REG (x);
4644 if (SUBREG_P (y) && candidate_subreg_p (y))
4645 y_inner = SUBREG_REG (y);
4647 if (x_inner != NULL_RTX
4648 && y_inner != NULL_RTX
4649 && GET_MODE (x_inner) == GET_MODE (y_inner)
4650 && !targetm.can_change_mode_class (GET_MODE (x_inner), mode, ALL_REGS))
4652 x = x_inner;
4653 y = y_inner;
4654 mode = GET_MODE (x_inner);
4656 else if (x_inner != NULL_RTX
4657 && MEM_P (y)
4658 && candidate_mem_p (GET_MODE (x_inner), y))
4660 x = x_inner;
4661 y = adjust_address (y, GET_MODE (x_inner), 0);
4662 mode = GET_MODE (x_inner);
4664 else if (y_inner != NULL_RTX
4665 && MEM_P (x)
4666 && candidate_mem_p (GET_MODE (y_inner), x))
4668 x = adjust_address (x, GET_MODE (y_inner), 0);
4669 y = y_inner;
4670 mode = GET_MODE (y_inner);
4672 else if (x_inner != NULL_RTX
4673 && CONSTANT_P (y)
4674 && !targetm.can_change_mode_class (GET_MODE (x_inner),
4675 mode, ALL_REGS)
4676 && (y_inner = simplify_subreg (GET_MODE (x_inner), y, mode, 0)))
4678 x = x_inner;
4679 y = y_inner;
4680 mode = GET_MODE (x_inner);
4683 if (CONSTANT_P (y))
4685 if (optimize
4686 && SCALAR_FLOAT_MODE_P (GET_MODE (x))
4687 && (last_insn = compress_float_constant (x, y)))
4688 return last_insn;
4690 y_cst = y;
4692 if (!targetm.legitimate_constant_p (mode, y))
4694 y = force_const_mem (mode, y);
4696 /* If the target's cannot_force_const_mem prevented the spill,
4697 assume that the target's move expanders will also take care
4698 of the non-legitimate constant. */
4699 if (!y)
4700 y = y_cst;
4701 else
4702 y = use_anchored_address (y);
4706 /* If X or Y are memory references, verify that their addresses are valid
4707 for the machine. */
4708 if (MEM_P (x)
4709 && (! memory_address_addr_space_p (GET_MODE (x), XEXP (x, 0),
4710 MEM_ADDR_SPACE (x))
4711 && ! push_operand (x, GET_MODE (x))))
4712 x = validize_mem (x);
4714 if (MEM_P (y)
4715 && ! memory_address_addr_space_p (GET_MODE (y), XEXP (y, 0),
4716 MEM_ADDR_SPACE (y)))
4717 y = validize_mem (y);
4719 gcc_assert (mode != BLKmode);
4721 last_insn = emit_move_insn_1 (x, y);
4723 if (y_cst && REG_P (x)
4724 && (set = single_set (last_insn)) != NULL_RTX
4725 && SET_DEST (set) == x
4726 && ! rtx_equal_p (y_cst, SET_SRC (set)))
4727 set_unique_reg_note (last_insn, REG_EQUAL, copy_rtx (y_cst));
4729 return last_insn;
4732 /* Generate the body of an instruction to copy Y into X.
4733 It may be a list of insns, if one insn isn't enough. */
4735 rtx_insn *
4736 gen_move_insn (rtx x, rtx y)
4738 rtx_insn *seq;
4740 start_sequence ();
4741 emit_move_insn_1 (x, y);
4742 seq = get_insns ();
4743 end_sequence ();
4744 return seq;
4747 /* If Y is representable exactly in a narrower mode, and the target can
4748 perform the extension directly from constant or memory, then emit the
4749 move as an extension. */
4751 static rtx_insn *
4752 compress_float_constant (rtx x, rtx y)
4754 machine_mode dstmode = GET_MODE (x);
4755 machine_mode orig_srcmode = GET_MODE (y);
4756 machine_mode srcmode;
4757 const REAL_VALUE_TYPE *r;
4758 int oldcost, newcost;
4759 bool speed = optimize_insn_for_speed_p ();
4761 r = CONST_DOUBLE_REAL_VALUE (y);
4763 if (targetm.legitimate_constant_p (dstmode, y))
4764 oldcost = set_src_cost (y, orig_srcmode, speed);
4765 else
4766 oldcost = set_src_cost (force_const_mem (dstmode, y), dstmode, speed);
4768 FOR_EACH_MODE_UNTIL (srcmode, orig_srcmode)
4770 enum insn_code ic;
4771 rtx trunc_y;
4772 rtx_insn *last_insn;
4774 /* Skip if the target can't extend this way. */
4775 ic = can_extend_p (dstmode, srcmode, 0);
4776 if (ic == CODE_FOR_nothing)
4777 continue;
4779 /* Skip if the narrowed value isn't exact. */
4780 if (! exact_real_truncate (srcmode, r))
4781 continue;
4783 trunc_y = const_double_from_real_value (*r, srcmode);
4785 if (targetm.legitimate_constant_p (srcmode, trunc_y))
4787 /* Skip if the target needs extra instructions to perform
4788 the extension. */
4789 if (!insn_operand_matches (ic, 1, trunc_y))
4790 continue;
4791 /* This is valid, but may not be cheaper than the original. */
4792 newcost = set_src_cost (gen_rtx_FLOAT_EXTEND (dstmode, trunc_y),
4793 dstmode, speed);
4794 if (oldcost < newcost)
4795 continue;
4797 else if (float_extend_from_mem[dstmode][srcmode])
4799 trunc_y = force_const_mem (srcmode, trunc_y);
4800 /* This is valid, but may not be cheaper than the original. */
4801 newcost = set_src_cost (gen_rtx_FLOAT_EXTEND (dstmode, trunc_y),
4802 dstmode, speed);
4803 if (oldcost < newcost)
4804 continue;
4805 trunc_y = validize_mem (trunc_y);
4807 else
4808 continue;
4810 /* For CSE's benefit, force the compressed constant pool entry
4811 into a new pseudo. This constant may be used in different modes,
4812 and if not, combine will put things back together for us. */
4813 trunc_y = force_reg (srcmode, trunc_y);
4815 /* If x is a hard register, perform the extension into a pseudo,
4816 so that e.g. stack realignment code is aware of it. */
4817 rtx target = x;
4818 if (REG_P (x) && HARD_REGISTER_P (x))
4819 target = gen_reg_rtx (dstmode);
4821 emit_unop_insn (ic, target, trunc_y, UNKNOWN);
4822 last_insn = get_last_insn ();
4824 if (REG_P (target))
4825 set_unique_reg_note (last_insn, REG_EQUAL, y);
4827 if (target != x)
4828 return emit_move_insn (x, target);
4829 return last_insn;
4832 return NULL;
4835 /* Pushing data onto the stack. */
4837 /* Push a block of length SIZE (perhaps variable)
4838 and return an rtx to address the beginning of the block.
4839 The value may be virtual_outgoing_args_rtx.
4841 EXTRA is the number of bytes of padding to push in addition to SIZE.
4842 BELOW nonzero means this padding comes at low addresses;
4843 otherwise, the padding comes at high addresses. */
4846 push_block (rtx size, poly_int64 extra, int below)
4848 rtx temp;
4850 size = convert_modes (Pmode, ptr_mode, size, 1);
4851 if (CONSTANT_P (size))
4852 anti_adjust_stack (plus_constant (Pmode, size, extra));
4853 else if (REG_P (size) && known_eq (extra, 0))
4854 anti_adjust_stack (size);
4855 else
4857 temp = copy_to_mode_reg (Pmode, size);
4858 if (maybe_ne (extra, 0))
4859 temp = expand_binop (Pmode, add_optab, temp,
4860 gen_int_mode (extra, Pmode),
4861 temp, 0, OPTAB_LIB_WIDEN);
4862 anti_adjust_stack (temp);
4865 if (STACK_GROWS_DOWNWARD)
4867 temp = virtual_outgoing_args_rtx;
4868 if (maybe_ne (extra, 0) && below)
4869 temp = plus_constant (Pmode, temp, extra);
4871 else
4873 poly_int64 csize;
4874 if (poly_int_rtx_p (size, &csize))
4875 temp = plus_constant (Pmode, virtual_outgoing_args_rtx,
4876 -csize - (below ? 0 : extra));
4877 else if (maybe_ne (extra, 0) && !below)
4878 temp = gen_rtx_PLUS (Pmode, virtual_outgoing_args_rtx,
4879 negate_rtx (Pmode, plus_constant (Pmode, size,
4880 extra)));
4881 else
4882 temp = gen_rtx_PLUS (Pmode, virtual_outgoing_args_rtx,
4883 negate_rtx (Pmode, size));
4886 return memory_address (NARROWEST_INT_MODE, temp);
4889 /* A utility routine that returns the base of an auto-inc memory, or NULL. */
4891 static rtx
4892 mem_autoinc_base (rtx mem)
4894 if (MEM_P (mem))
4896 rtx addr = XEXP (mem, 0);
4897 if (GET_RTX_CLASS (GET_CODE (addr)) == RTX_AUTOINC)
4898 return XEXP (addr, 0);
4900 return NULL;
4903 /* A utility routine used here, in reload, and in try_split. The insns
4904 after PREV up to and including LAST are known to adjust the stack,
4905 with a final value of END_ARGS_SIZE. Iterate backward from LAST
4906 placing notes as appropriate. PREV may be NULL, indicating the
4907 entire insn sequence prior to LAST should be scanned.
4909 The set of allowed stack pointer modifications is small:
4910 (1) One or more auto-inc style memory references (aka pushes),
4911 (2) One or more addition/subtraction with the SP as destination,
4912 (3) A single move insn with the SP as destination,
4913 (4) A call_pop insn,
4914 (5) Noreturn call insns if !ACCUMULATE_OUTGOING_ARGS.
4916 Insns in the sequence that do not modify the SP are ignored,
4917 except for noreturn calls.
4919 The return value is the amount of adjustment that can be trivially
4920 verified, via immediate operand or auto-inc. If the adjustment
4921 cannot be trivially extracted, the return value is HOST_WIDE_INT_MIN. */
4923 poly_int64
4924 find_args_size_adjust (rtx_insn *insn)
4926 rtx dest, set, pat;
4927 int i;
4929 pat = PATTERN (insn);
4930 set = NULL;
4932 /* Look for a call_pop pattern. */
4933 if (CALL_P (insn))
4935 /* We have to allow non-call_pop patterns for the case
4936 of emit_single_push_insn of a TLS address. */
4937 if (GET_CODE (pat) != PARALLEL)
4938 return 0;
4940 /* All call_pop have a stack pointer adjust in the parallel.
4941 The call itself is always first, and the stack adjust is
4942 usually last, so search from the end. */
4943 for (i = XVECLEN (pat, 0) - 1; i > 0; --i)
4945 set = XVECEXP (pat, 0, i);
4946 if (GET_CODE (set) != SET)
4947 continue;
4948 dest = SET_DEST (set);
4949 if (dest == stack_pointer_rtx)
4950 break;
4952 /* We'd better have found the stack pointer adjust. */
4953 if (i == 0)
4954 return 0;
4955 /* Fall through to process the extracted SET and DEST
4956 as if it was a standalone insn. */
4958 else if (GET_CODE (pat) == SET)
4959 set = pat;
4960 else if ((set = single_set (insn)) != NULL)
4962 else if (GET_CODE (pat) == PARALLEL)
4964 /* ??? Some older ports use a parallel with a stack adjust
4965 and a store for a PUSH_ROUNDING pattern, rather than a
4966 PRE/POST_MODIFY rtx. Don't force them to update yet... */
4967 /* ??? See h8300 and m68k, pushqi1. */
4968 for (i = XVECLEN (pat, 0) - 1; i >= 0; --i)
4970 set = XVECEXP (pat, 0, i);
4971 if (GET_CODE (set) != SET)
4972 continue;
4973 dest = SET_DEST (set);
4974 if (dest == stack_pointer_rtx)
4975 break;
4977 /* We do not expect an auto-inc of the sp in the parallel. */
4978 gcc_checking_assert (mem_autoinc_base (dest) != stack_pointer_rtx);
4979 gcc_checking_assert (mem_autoinc_base (SET_SRC (set))
4980 != stack_pointer_rtx);
4982 if (i < 0)
4983 return 0;
4985 else
4986 return 0;
4988 dest = SET_DEST (set);
4990 /* Look for direct modifications of the stack pointer. */
4991 if (REG_P (dest) && REGNO (dest) == STACK_POINTER_REGNUM)
4993 /* Look for a trivial adjustment, otherwise assume nothing. */
4994 /* Note that the SPU restore_stack_block pattern refers to
4995 the stack pointer in V4SImode. Consider that non-trivial. */
4996 poly_int64 offset;
4997 if (SCALAR_INT_MODE_P (GET_MODE (dest))
4998 && strip_offset (SET_SRC (set), &offset) == stack_pointer_rtx)
4999 return offset;
5000 /* ??? Reload can generate no-op moves, which will be cleaned
5001 up later. Recognize it and continue searching. */
5002 else if (rtx_equal_p (dest, SET_SRC (set)))
5003 return 0;
5004 else
5005 return HOST_WIDE_INT_MIN;
5007 else
5009 rtx mem, addr;
5011 /* Otherwise only think about autoinc patterns. */
5012 if (mem_autoinc_base (dest) == stack_pointer_rtx)
5014 mem = dest;
5015 gcc_checking_assert (mem_autoinc_base (SET_SRC (set))
5016 != stack_pointer_rtx);
5018 else if (mem_autoinc_base (SET_SRC (set)) == stack_pointer_rtx)
5019 mem = SET_SRC (set);
5020 else
5021 return 0;
5023 addr = XEXP (mem, 0);
5024 switch (GET_CODE (addr))
5026 case PRE_INC:
5027 case POST_INC:
5028 return GET_MODE_SIZE (GET_MODE (mem));
5029 case PRE_DEC:
5030 case POST_DEC:
5031 return -GET_MODE_SIZE (GET_MODE (mem));
5032 case PRE_MODIFY:
5033 case POST_MODIFY:
5034 addr = XEXP (addr, 1);
5035 gcc_assert (GET_CODE (addr) == PLUS);
5036 gcc_assert (XEXP (addr, 0) == stack_pointer_rtx);
5037 return rtx_to_poly_int64 (XEXP (addr, 1));
5038 default:
5039 gcc_unreachable ();
5044 poly_int64
5045 fixup_args_size_notes (rtx_insn *prev, rtx_insn *last,
5046 poly_int64 end_args_size)
5048 poly_int64 args_size = end_args_size;
5049 bool saw_unknown = false;
5050 rtx_insn *insn;
5052 for (insn = last; insn != prev; insn = PREV_INSN (insn))
5054 if (!NONDEBUG_INSN_P (insn))
5055 continue;
5057 /* We might have existing REG_ARGS_SIZE notes, e.g. when pushing
5058 a call argument containing a TLS address that itself requires
5059 a call to __tls_get_addr. The handling of stack_pointer_delta
5060 in emit_single_push_insn is supposed to ensure that any such
5061 notes are already correct. */
5062 rtx note = find_reg_note (insn, REG_ARGS_SIZE, NULL_RTX);
5063 gcc_assert (!note || known_eq (args_size, get_args_size (note)));
5065 poly_int64 this_delta = find_args_size_adjust (insn);
5066 if (known_eq (this_delta, 0))
5068 if (!CALL_P (insn)
5069 || ACCUMULATE_OUTGOING_ARGS
5070 || find_reg_note (insn, REG_NORETURN, NULL_RTX) == NULL_RTX)
5071 continue;
5074 gcc_assert (!saw_unknown);
5075 if (known_eq (this_delta, HOST_WIDE_INT_MIN))
5076 saw_unknown = true;
5078 if (!note)
5079 add_args_size_note (insn, args_size);
5080 if (STACK_GROWS_DOWNWARD)
5081 this_delta = -poly_uint64 (this_delta);
5083 if (saw_unknown)
5084 args_size = HOST_WIDE_INT_MIN;
5085 else
5086 args_size -= this_delta;
5089 return args_size;
5092 #ifdef PUSH_ROUNDING
5093 /* Emit single push insn. */
5095 static void
5096 emit_single_push_insn_1 (machine_mode mode, rtx x, tree type)
5098 rtx dest_addr;
5099 poly_int64 rounded_size = PUSH_ROUNDING (GET_MODE_SIZE (mode));
5100 rtx dest;
5101 enum insn_code icode;
5103 /* If there is push pattern, use it. Otherwise try old way of throwing
5104 MEM representing push operation to move expander. */
5105 icode = optab_handler (push_optab, mode);
5106 if (icode != CODE_FOR_nothing)
5108 class expand_operand ops[1];
5110 create_input_operand (&ops[0], x, mode);
5111 if (maybe_expand_insn (icode, 1, ops))
5112 return;
5114 if (known_eq (GET_MODE_SIZE (mode), rounded_size))
5115 dest_addr = gen_rtx_fmt_e (STACK_PUSH_CODE, Pmode, stack_pointer_rtx);
5116 /* If we are to pad downward, adjust the stack pointer first and
5117 then store X into the stack location using an offset. This is
5118 because emit_move_insn does not know how to pad; it does not have
5119 access to type. */
5120 else if (targetm.calls.function_arg_padding (mode, type) == PAD_DOWNWARD)
5122 emit_move_insn (stack_pointer_rtx,
5123 expand_binop (Pmode,
5124 STACK_GROWS_DOWNWARD ? sub_optab
5125 : add_optab,
5126 stack_pointer_rtx,
5127 gen_int_mode (rounded_size, Pmode),
5128 NULL_RTX, 0, OPTAB_LIB_WIDEN));
5130 poly_int64 offset = rounded_size - GET_MODE_SIZE (mode);
5131 if (STACK_GROWS_DOWNWARD && STACK_PUSH_CODE == POST_DEC)
5132 /* We have already decremented the stack pointer, so get the
5133 previous value. */
5134 offset += rounded_size;
5136 if (!STACK_GROWS_DOWNWARD && STACK_PUSH_CODE == POST_INC)
5137 /* We have already incremented the stack pointer, so get the
5138 previous value. */
5139 offset -= rounded_size;
5141 dest_addr = plus_constant (Pmode, stack_pointer_rtx, offset);
5143 else
5145 if (STACK_GROWS_DOWNWARD)
5146 /* ??? This seems wrong if STACK_PUSH_CODE == POST_DEC. */
5147 dest_addr = plus_constant (Pmode, stack_pointer_rtx, -rounded_size);
5148 else
5149 /* ??? This seems wrong if STACK_PUSH_CODE == POST_INC. */
5150 dest_addr = plus_constant (Pmode, stack_pointer_rtx, rounded_size);
5152 dest_addr = gen_rtx_PRE_MODIFY (Pmode, stack_pointer_rtx, dest_addr);
5155 dest = gen_rtx_MEM (mode, dest_addr);
5157 if (type != 0)
5159 set_mem_attributes (dest, type, 1);
5161 if (cfun->tail_call_marked)
5162 /* Function incoming arguments may overlap with sibling call
5163 outgoing arguments and we cannot allow reordering of reads
5164 from function arguments with stores to outgoing arguments
5165 of sibling calls. */
5166 set_mem_alias_set (dest, 0);
5168 emit_move_insn (dest, x);
5171 /* Emit and annotate a single push insn. */
5173 static void
5174 emit_single_push_insn (machine_mode mode, rtx x, tree type)
5176 poly_int64 delta, old_delta = stack_pointer_delta;
5177 rtx_insn *prev = get_last_insn ();
5178 rtx_insn *last;
5180 emit_single_push_insn_1 (mode, x, type);
5182 /* Adjust stack_pointer_delta to describe the situation after the push
5183 we just performed. Note that we must do this after the push rather
5184 than before the push in case calculating X needs pushes and pops of
5185 its own (e.g. if calling __tls_get_addr). The REG_ARGS_SIZE notes
5186 for such pushes and pops must not include the effect of the future
5187 push of X. */
5188 stack_pointer_delta += PUSH_ROUNDING (GET_MODE_SIZE (mode));
5190 last = get_last_insn ();
5192 /* Notice the common case where we emitted exactly one insn. */
5193 if (PREV_INSN (last) == prev)
5195 add_args_size_note (last, stack_pointer_delta);
5196 return;
5199 delta = fixup_args_size_notes (prev, last, stack_pointer_delta);
5200 gcc_assert (known_eq (delta, HOST_WIDE_INT_MIN)
5201 || known_eq (delta, old_delta));
5203 #endif
5205 /* If reading SIZE bytes from X will end up reading from
5206 Y return the number of bytes that overlap. Return -1
5207 if there is no overlap or -2 if we can't determine
5208 (for example when X and Y have different base registers). */
5210 static int
5211 memory_load_overlap (rtx x, rtx y, HOST_WIDE_INT size)
5213 rtx tmp = plus_constant (Pmode, x, size);
5214 rtx sub = simplify_gen_binary (MINUS, Pmode, tmp, y);
5216 if (!CONST_INT_P (sub))
5217 return -2;
5219 HOST_WIDE_INT val = INTVAL (sub);
5221 return IN_RANGE (val, 1, size) ? val : -1;
5224 /* Generate code to push X onto the stack, assuming it has mode MODE and
5225 type TYPE.
5226 MODE is redundant except when X is a CONST_INT (since they don't
5227 carry mode info).
5228 SIZE is an rtx for the size of data to be copied (in bytes),
5229 needed only if X is BLKmode.
5230 Return true if successful. May return false if asked to push a
5231 partial argument during a sibcall optimization (as specified by
5232 SIBCALL_P) and the incoming and outgoing pointers cannot be shown
5233 to not overlap.
5235 ALIGN (in bits) is maximum alignment we can assume.
5237 If PARTIAL and REG are both nonzero, then copy that many of the first
5238 bytes of X into registers starting with REG, and push the rest of X.
5239 The amount of space pushed is decreased by PARTIAL bytes.
5240 REG must be a hard register in this case.
5241 If REG is zero but PARTIAL is not, take any all others actions for an
5242 argument partially in registers, but do not actually load any
5243 registers.
5245 EXTRA is the amount in bytes of extra space to leave next to this arg.
5246 This is ignored if an argument block has already been allocated.
5248 On a machine that lacks real push insns, ARGS_ADDR is the address of
5249 the bottom of the argument block for this call. We use indexing off there
5250 to store the arg. On machines with push insns, ARGS_ADDR is 0 when a
5251 argument block has not been preallocated.
5253 ARGS_SO_FAR is the size of args previously pushed for this call.
5255 REG_PARM_STACK_SPACE is nonzero if functions require stack space
5256 for arguments passed in registers. If nonzero, it will be the number
5257 of bytes required. */
5259 bool
5260 emit_push_insn (rtx x, machine_mode mode, tree type, rtx size,
5261 unsigned int align, int partial, rtx reg, poly_int64 extra,
5262 rtx args_addr, rtx args_so_far, int reg_parm_stack_space,
5263 rtx alignment_pad, bool sibcall_p)
5265 rtx xinner;
5266 pad_direction stack_direction
5267 = STACK_GROWS_DOWNWARD ? PAD_DOWNWARD : PAD_UPWARD;
5269 /* Decide where to pad the argument: PAD_DOWNWARD for below,
5270 PAD_UPWARD for above, or PAD_NONE for don't pad it.
5271 Default is below for small data on big-endian machines; else above. */
5272 pad_direction where_pad = targetm.calls.function_arg_padding (mode, type);
5274 /* Invert direction if stack is post-decrement.
5275 FIXME: why? */
5276 if (STACK_PUSH_CODE == POST_DEC)
5277 if (where_pad != PAD_NONE)
5278 where_pad = (where_pad == PAD_DOWNWARD ? PAD_UPWARD : PAD_DOWNWARD);
5280 xinner = x;
5282 int nregs = partial / UNITS_PER_WORD;
5283 rtx *tmp_regs = NULL;
5284 int overlapping = 0;
5286 if (mode == BLKmode
5287 || (STRICT_ALIGNMENT && align < GET_MODE_ALIGNMENT (mode)))
5289 /* Copy a block into the stack, entirely or partially. */
5291 rtx temp;
5292 int used;
5293 int offset;
5294 int skip;
5296 offset = partial % (PARM_BOUNDARY / BITS_PER_UNIT);
5297 used = partial - offset;
5299 if (mode != BLKmode)
5301 /* A value is to be stored in an insufficiently aligned
5302 stack slot; copy via a suitably aligned slot if
5303 necessary. */
5304 size = gen_int_mode (GET_MODE_SIZE (mode), Pmode);
5305 if (!MEM_P (xinner))
5307 temp = assign_temp (type, 1, 1);
5308 emit_move_insn (temp, xinner);
5309 xinner = temp;
5313 gcc_assert (size);
5315 /* USED is now the # of bytes we need not copy to the stack
5316 because registers will take care of them. */
5318 if (partial != 0)
5319 xinner = adjust_address (xinner, BLKmode, used);
5321 /* If the partial register-part of the arg counts in its stack size,
5322 skip the part of stack space corresponding to the registers.
5323 Otherwise, start copying to the beginning of the stack space,
5324 by setting SKIP to 0. */
5325 skip = (reg_parm_stack_space == 0) ? 0 : used;
5327 #ifdef PUSH_ROUNDING
5328 /* NB: Let the backend known the number of bytes to push and
5329 decide if push insns should be generated. */
5330 unsigned int push_size;
5331 if (CONST_INT_P (size))
5332 push_size = INTVAL (size);
5333 else
5334 push_size = 0;
5336 /* Do it with several push insns if that doesn't take lots of insns
5337 and if there is no difficulty with push insns that skip bytes
5338 on the stack for alignment purposes. */
5339 if (args_addr == 0
5340 && targetm.calls.push_argument (push_size)
5341 && CONST_INT_P (size)
5342 && skip == 0
5343 && MEM_ALIGN (xinner) >= align
5344 && can_move_by_pieces ((unsigned) INTVAL (size) - used, align)
5345 /* Here we avoid the case of a structure whose weak alignment
5346 forces many pushes of a small amount of data,
5347 and such small pushes do rounding that causes trouble. */
5348 && ((!targetm.slow_unaligned_access (word_mode, align))
5349 || align >= BIGGEST_ALIGNMENT
5350 || known_eq (PUSH_ROUNDING (align / BITS_PER_UNIT),
5351 align / BITS_PER_UNIT))
5352 && known_eq (PUSH_ROUNDING (INTVAL (size)), INTVAL (size)))
5354 /* Push padding now if padding above and stack grows down,
5355 or if padding below and stack grows up.
5356 But if space already allocated, this has already been done. */
5357 if (maybe_ne (extra, 0)
5358 && args_addr == 0
5359 && where_pad != PAD_NONE
5360 && where_pad != stack_direction)
5361 anti_adjust_stack (gen_int_mode (extra, Pmode));
5363 move_by_pieces (NULL, xinner, INTVAL (size) - used, align,
5364 RETURN_BEGIN);
5366 else
5367 #endif /* PUSH_ROUNDING */
5369 rtx target;
5371 /* Otherwise make space on the stack and copy the data
5372 to the address of that space. */
5374 /* Deduct words put into registers from the size we must copy. */
5375 if (partial != 0)
5377 if (CONST_INT_P (size))
5378 size = GEN_INT (INTVAL (size) - used);
5379 else
5380 size = expand_binop (GET_MODE (size), sub_optab, size,
5381 gen_int_mode (used, GET_MODE (size)),
5382 NULL_RTX, 0, OPTAB_LIB_WIDEN);
5385 /* Get the address of the stack space.
5386 In this case, we do not deal with EXTRA separately.
5387 A single stack adjust will do. */
5388 poly_int64 const_args_so_far;
5389 if (! args_addr)
5391 temp = push_block (size, extra, where_pad == PAD_DOWNWARD);
5392 extra = 0;
5394 else if (poly_int_rtx_p (args_so_far, &const_args_so_far))
5395 temp = memory_address (BLKmode,
5396 plus_constant (Pmode, args_addr,
5397 skip + const_args_so_far));
5398 else
5399 temp = memory_address (BLKmode,
5400 plus_constant (Pmode,
5401 gen_rtx_PLUS (Pmode,
5402 args_addr,
5403 args_so_far),
5404 skip));
5406 if (!ACCUMULATE_OUTGOING_ARGS)
5408 /* If the source is referenced relative to the stack pointer,
5409 copy it to another register to stabilize it. We do not need
5410 to do this if we know that we won't be changing sp. */
5412 if (reg_mentioned_p (virtual_stack_dynamic_rtx, temp)
5413 || reg_mentioned_p (virtual_outgoing_args_rtx, temp))
5414 temp = copy_to_reg (temp);
5417 target = gen_rtx_MEM (BLKmode, temp);
5419 /* We do *not* set_mem_attributes here, because incoming arguments
5420 may overlap with sibling call outgoing arguments and we cannot
5421 allow reordering of reads from function arguments with stores
5422 to outgoing arguments of sibling calls. We do, however, want
5423 to record the alignment of the stack slot. */
5424 /* ALIGN may well be better aligned than TYPE, e.g. due to
5425 PARM_BOUNDARY. Assume the caller isn't lying. */
5426 set_mem_align (target, align);
5428 /* If part should go in registers and pushing to that part would
5429 overwrite some of the values that need to go into regs, load the
5430 overlapping values into temporary pseudos to be moved into the hard
5431 regs at the end after the stack pushing has completed.
5432 We cannot load them directly into the hard regs here because
5433 they can be clobbered by the block move expansions.
5434 See PR 65358. */
5436 if (partial > 0 && reg != 0 && mode == BLKmode
5437 && GET_CODE (reg) != PARALLEL)
5439 overlapping = memory_load_overlap (XEXP (x, 0), temp, partial);
5440 if (overlapping > 0)
5442 gcc_assert (overlapping % UNITS_PER_WORD == 0);
5443 overlapping /= UNITS_PER_WORD;
5445 tmp_regs = XALLOCAVEC (rtx, overlapping);
5447 for (int i = 0; i < overlapping; i++)
5448 tmp_regs[i] = gen_reg_rtx (word_mode);
5450 for (int i = 0; i < overlapping; i++)
5451 emit_move_insn (tmp_regs[i],
5452 operand_subword_force (target, i, mode));
5454 else if (overlapping == -1)
5455 overlapping = 0;
5456 /* Could not determine whether there is overlap.
5457 Fail the sibcall. */
5458 else
5460 overlapping = 0;
5461 if (sibcall_p)
5462 return false;
5466 /* If source is a constant VAR_DECL with a simple constructor,
5467 store the constructor to the stack instead of moving it. */
5468 const_tree decl;
5469 HOST_WIDE_INT sz;
5470 if (partial == 0
5471 && MEM_P (xinner)
5472 && SYMBOL_REF_P (XEXP (xinner, 0))
5473 && (decl = SYMBOL_REF_DECL (XEXP (xinner, 0))) != NULL_TREE
5474 && VAR_P (decl)
5475 && TREE_READONLY (decl)
5476 && !TREE_SIDE_EFFECTS (decl)
5477 && immediate_const_ctor_p (DECL_INITIAL (decl), 2)
5478 && (sz = int_expr_size (DECL_INITIAL (decl))) > 0
5479 && CONST_INT_P (size)
5480 && INTVAL (size) == sz)
5481 store_constructor (DECL_INITIAL (decl), target, 0, sz, false);
5482 else
5483 emit_block_move (target, xinner, size, BLOCK_OP_CALL_PARM);
5486 else if (partial > 0)
5488 /* Scalar partly in registers. This case is only supported
5489 for fixed-wdth modes. */
5490 int num_words = GET_MODE_SIZE (mode).to_constant ();
5491 num_words /= UNITS_PER_WORD;
5492 int i;
5493 int not_stack;
5494 /* # bytes of start of argument
5495 that we must make space for but need not store. */
5496 int offset = partial % (PARM_BOUNDARY / BITS_PER_UNIT);
5497 int args_offset = INTVAL (args_so_far);
5498 int skip;
5500 /* Push padding now if padding above and stack grows down,
5501 or if padding below and stack grows up.
5502 But if space already allocated, this has already been done. */
5503 if (maybe_ne (extra, 0)
5504 && args_addr == 0
5505 && where_pad != PAD_NONE
5506 && where_pad != stack_direction)
5507 anti_adjust_stack (gen_int_mode (extra, Pmode));
5509 /* If we make space by pushing it, we might as well push
5510 the real data. Otherwise, we can leave OFFSET nonzero
5511 and leave the space uninitialized. */
5512 if (args_addr == 0)
5513 offset = 0;
5515 /* Now NOT_STACK gets the number of words that we don't need to
5516 allocate on the stack. Convert OFFSET to words too. */
5517 not_stack = (partial - offset) / UNITS_PER_WORD;
5518 offset /= UNITS_PER_WORD;
5520 /* If the partial register-part of the arg counts in its stack size,
5521 skip the part of stack space corresponding to the registers.
5522 Otherwise, start copying to the beginning of the stack space,
5523 by setting SKIP to 0. */
5524 skip = (reg_parm_stack_space == 0) ? 0 : not_stack;
5526 if (CONSTANT_P (x) && !targetm.legitimate_constant_p (mode, x))
5527 x = validize_mem (force_const_mem (mode, x));
5529 /* If X is a hard register in a non-integer mode, copy it into a pseudo;
5530 SUBREGs of such registers are not allowed. */
5531 if ((REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER
5532 && GET_MODE_CLASS (GET_MODE (x)) != MODE_INT))
5533 x = copy_to_reg (x);
5535 /* Loop over all the words allocated on the stack for this arg. */
5536 /* We can do it by words, because any scalar bigger than a word
5537 has a size a multiple of a word. */
5538 tree word_mode_type = lang_hooks.types.type_for_mode (word_mode, 1);
5539 for (i = num_words - 1; i >= not_stack; i--)
5540 if (i >= not_stack + offset)
5541 if (!emit_push_insn (operand_subword_force (x, i, mode),
5542 word_mode, word_mode_type, NULL_RTX, align, 0,
5543 NULL_RTX, 0, args_addr,
5544 GEN_INT (args_offset + ((i - not_stack + skip)
5545 * UNITS_PER_WORD)),
5546 reg_parm_stack_space, alignment_pad, sibcall_p))
5547 return false;
5549 else
5551 rtx addr;
5552 rtx dest;
5554 /* Push padding now if padding above and stack grows down,
5555 or if padding below and stack grows up.
5556 But if space already allocated, this has already been done. */
5557 if (maybe_ne (extra, 0)
5558 && args_addr == 0
5559 && where_pad != PAD_NONE
5560 && where_pad != stack_direction)
5561 anti_adjust_stack (gen_int_mode (extra, Pmode));
5563 #ifdef PUSH_ROUNDING
5564 if (args_addr == 0 && targetm.calls.push_argument (0))
5565 emit_single_push_insn (mode, x, type);
5566 else
5567 #endif
5569 addr = simplify_gen_binary (PLUS, Pmode, args_addr, args_so_far);
5570 dest = gen_rtx_MEM (mode, memory_address (mode, addr));
5572 /* We do *not* set_mem_attributes here, because incoming arguments
5573 may overlap with sibling call outgoing arguments and we cannot
5574 allow reordering of reads from function arguments with stores
5575 to outgoing arguments of sibling calls. We do, however, want
5576 to record the alignment of the stack slot. */
5577 /* ALIGN may well be better aligned than TYPE, e.g. due to
5578 PARM_BOUNDARY. Assume the caller isn't lying. */
5579 set_mem_align (dest, align);
5581 emit_move_insn (dest, x);
5585 /* Move the partial arguments into the registers and any overlapping
5586 values that we moved into the pseudos in tmp_regs. */
5587 if (partial > 0 && reg != 0)
5589 /* Handle calls that pass values in multiple non-contiguous locations.
5590 The Irix 6 ABI has examples of this. */
5591 if (GET_CODE (reg) == PARALLEL)
5592 emit_group_load (reg, x, type, -1);
5593 else
5595 gcc_assert (partial % UNITS_PER_WORD == 0);
5596 move_block_to_reg (REGNO (reg), x, nregs - overlapping, mode);
5598 for (int i = 0; i < overlapping; i++)
5599 emit_move_insn (gen_rtx_REG (word_mode, REGNO (reg)
5600 + nregs - overlapping + i),
5601 tmp_regs[i]);
5606 if (maybe_ne (extra, 0) && args_addr == 0 && where_pad == stack_direction)
5607 anti_adjust_stack (gen_int_mode (extra, Pmode));
5609 if (alignment_pad && args_addr == 0)
5610 anti_adjust_stack (alignment_pad);
5612 return true;
5615 /* Return X if X can be used as a subtarget in a sequence of arithmetic
5616 operations. */
5618 static rtx
5619 get_subtarget (rtx x)
5621 return (optimize
5622 || x == 0
5623 /* Only registers can be subtargets. */
5624 || !REG_P (x)
5625 /* Don't use hard regs to avoid extending their life. */
5626 || REGNO (x) < FIRST_PSEUDO_REGISTER
5627 ? 0 : x);
5630 /* A subroutine of expand_assignment. Optimize FIELD op= VAL, where
5631 FIELD is a bitfield. Returns true if the optimization was successful,
5632 and there's nothing else to do. */
5634 static bool
5635 optimize_bitfield_assignment_op (poly_uint64 pbitsize,
5636 poly_uint64 pbitpos,
5637 poly_uint64 pbitregion_start,
5638 poly_uint64 pbitregion_end,
5639 machine_mode mode1, rtx str_rtx,
5640 tree to, tree src, bool reverse)
5642 /* str_mode is not guaranteed to be a scalar type. */
5643 machine_mode str_mode = GET_MODE (str_rtx);
5644 unsigned int str_bitsize;
5645 tree op0, op1;
5646 rtx value, result;
5647 optab binop;
5648 gimple *srcstmt;
5649 enum tree_code code;
5651 unsigned HOST_WIDE_INT bitsize, bitpos, bitregion_start, bitregion_end;
5652 if (mode1 != VOIDmode
5653 || !pbitsize.is_constant (&bitsize)
5654 || !pbitpos.is_constant (&bitpos)
5655 || !pbitregion_start.is_constant (&bitregion_start)
5656 || !pbitregion_end.is_constant (&bitregion_end)
5657 || bitsize >= BITS_PER_WORD
5658 || !GET_MODE_BITSIZE (str_mode).is_constant (&str_bitsize)
5659 || str_bitsize > BITS_PER_WORD
5660 || TREE_SIDE_EFFECTS (to)
5661 || TREE_THIS_VOLATILE (to))
5662 return false;
5664 STRIP_NOPS (src);
5665 if (TREE_CODE (src) != SSA_NAME)
5666 return false;
5667 if (TREE_CODE (TREE_TYPE (src)) != INTEGER_TYPE)
5668 return false;
5670 srcstmt = get_gimple_for_ssa_name (src);
5671 if (!srcstmt
5672 || TREE_CODE_CLASS (gimple_assign_rhs_code (srcstmt)) != tcc_binary)
5673 return false;
5675 code = gimple_assign_rhs_code (srcstmt);
5677 op0 = gimple_assign_rhs1 (srcstmt);
5679 /* If OP0 is an SSA_NAME, then we want to walk the use-def chain
5680 to find its initialization. Hopefully the initialization will
5681 be from a bitfield load. */
5682 if (TREE_CODE (op0) == SSA_NAME)
5684 gimple *op0stmt = get_gimple_for_ssa_name (op0);
5686 /* We want to eventually have OP0 be the same as TO, which
5687 should be a bitfield. */
5688 if (!op0stmt
5689 || !is_gimple_assign (op0stmt)
5690 || gimple_assign_rhs_code (op0stmt) != TREE_CODE (to))
5691 return false;
5692 op0 = gimple_assign_rhs1 (op0stmt);
5695 op1 = gimple_assign_rhs2 (srcstmt);
5697 if (!operand_equal_p (to, op0, 0))
5698 return false;
5700 if (MEM_P (str_rtx))
5702 unsigned HOST_WIDE_INT offset1;
5704 if (str_bitsize == 0 || str_bitsize > BITS_PER_WORD)
5705 str_bitsize = BITS_PER_WORD;
5707 scalar_int_mode best_mode;
5708 if (!get_best_mode (bitsize, bitpos, bitregion_start, bitregion_end,
5709 MEM_ALIGN (str_rtx), str_bitsize, false, &best_mode))
5710 return false;
5711 str_mode = best_mode;
5712 str_bitsize = GET_MODE_BITSIZE (best_mode);
5714 offset1 = bitpos;
5715 bitpos %= str_bitsize;
5716 offset1 = (offset1 - bitpos) / BITS_PER_UNIT;
5717 str_rtx = adjust_address (str_rtx, str_mode, offset1);
5719 else if (!REG_P (str_rtx) && GET_CODE (str_rtx) != SUBREG)
5720 return false;
5722 /* If the bit field covers the whole REG/MEM, store_field
5723 will likely generate better code. */
5724 if (bitsize >= str_bitsize)
5725 return false;
5727 /* We can't handle fields split across multiple entities. */
5728 if (bitpos + bitsize > str_bitsize)
5729 return false;
5731 if (reverse ? !BYTES_BIG_ENDIAN : BYTES_BIG_ENDIAN)
5732 bitpos = str_bitsize - bitpos - bitsize;
5734 switch (code)
5736 case PLUS_EXPR:
5737 case MINUS_EXPR:
5738 /* For now, just optimize the case of the topmost bitfield
5739 where we don't need to do any masking and also
5740 1 bit bitfields where xor can be used.
5741 We might win by one instruction for the other bitfields
5742 too if insv/extv instructions aren't used, so that
5743 can be added later. */
5744 if ((reverse || bitpos + bitsize != str_bitsize)
5745 && (bitsize != 1 || TREE_CODE (op1) != INTEGER_CST))
5746 break;
5748 value = expand_expr (op1, NULL_RTX, str_mode, EXPAND_NORMAL);
5749 value = convert_modes (str_mode,
5750 TYPE_MODE (TREE_TYPE (op1)), value,
5751 TYPE_UNSIGNED (TREE_TYPE (op1)));
5753 /* We may be accessing data outside the field, which means
5754 we can alias adjacent data. */
5755 if (MEM_P (str_rtx))
5757 str_rtx = shallow_copy_rtx (str_rtx);
5758 set_mem_alias_set (str_rtx, 0);
5759 set_mem_expr (str_rtx, 0);
5762 if (bitsize == 1 && (reverse || bitpos + bitsize != str_bitsize))
5764 value = expand_and (str_mode, value, const1_rtx, NULL);
5765 binop = xor_optab;
5767 else
5768 binop = code == PLUS_EXPR ? add_optab : sub_optab;
5770 value = expand_shift (LSHIFT_EXPR, str_mode, value, bitpos, NULL_RTX, 1);
5771 if (reverse)
5772 value = flip_storage_order (str_mode, value);
5773 result = expand_binop (str_mode, binop, str_rtx,
5774 value, str_rtx, 1, OPTAB_WIDEN);
5775 if (result != str_rtx)
5776 emit_move_insn (str_rtx, result);
5777 return true;
5779 case BIT_IOR_EXPR:
5780 case BIT_XOR_EXPR:
5781 if (TREE_CODE (op1) != INTEGER_CST)
5782 break;
5783 value = expand_expr (op1, NULL_RTX, str_mode, EXPAND_NORMAL);
5784 value = convert_modes (str_mode,
5785 TYPE_MODE (TREE_TYPE (op1)), value,
5786 TYPE_UNSIGNED (TREE_TYPE (op1)));
5788 /* We may be accessing data outside the field, which means
5789 we can alias adjacent data. */
5790 if (MEM_P (str_rtx))
5792 str_rtx = shallow_copy_rtx (str_rtx);
5793 set_mem_alias_set (str_rtx, 0);
5794 set_mem_expr (str_rtx, 0);
5797 binop = code == BIT_IOR_EXPR ? ior_optab : xor_optab;
5798 if (bitpos + bitsize != str_bitsize)
5800 rtx mask = gen_int_mode ((HOST_WIDE_INT_1U << bitsize) - 1,
5801 str_mode);
5802 value = expand_and (str_mode, value, mask, NULL_RTX);
5804 value = expand_shift (LSHIFT_EXPR, str_mode, value, bitpos, NULL_RTX, 1);
5805 if (reverse)
5806 value = flip_storage_order (str_mode, value);
5807 result = expand_binop (str_mode, binop, str_rtx,
5808 value, str_rtx, 1, OPTAB_WIDEN);
5809 if (result != str_rtx)
5810 emit_move_insn (str_rtx, result);
5811 return true;
5813 default:
5814 break;
5817 return false;
5820 /* In the C++ memory model, consecutive bit fields in a structure are
5821 considered one memory location.
5823 Given a COMPONENT_REF EXP at position (BITPOS, OFFSET), this function
5824 returns the bit range of consecutive bits in which this COMPONENT_REF
5825 belongs. The values are returned in *BITSTART and *BITEND. *BITPOS
5826 and *OFFSET may be adjusted in the process.
5828 If the access does not need to be restricted, 0 is returned in both
5829 *BITSTART and *BITEND. */
5831 void
5832 get_bit_range (poly_uint64 *bitstart, poly_uint64 *bitend, tree exp,
5833 poly_int64 *bitpos, tree *offset)
5835 poly_int64 bitoffset;
5836 tree field, repr;
5838 gcc_assert (TREE_CODE (exp) == COMPONENT_REF);
5840 field = TREE_OPERAND (exp, 1);
5841 repr = DECL_BIT_FIELD_REPRESENTATIVE (field);
5842 /* If we do not have a DECL_BIT_FIELD_REPRESENTATIVE there is no
5843 need to limit the range we can access. */
5844 if (!repr)
5846 *bitstart = *bitend = 0;
5847 return;
5850 /* If we have a DECL_BIT_FIELD_REPRESENTATIVE but the enclosing record is
5851 part of a larger bit field, then the representative does not serve any
5852 useful purpose. This can occur in Ada. */
5853 if (handled_component_p (TREE_OPERAND (exp, 0)))
5855 machine_mode rmode;
5856 poly_int64 rbitsize, rbitpos;
5857 tree roffset;
5858 int unsignedp, reversep, volatilep = 0;
5859 get_inner_reference (TREE_OPERAND (exp, 0), &rbitsize, &rbitpos,
5860 &roffset, &rmode, &unsignedp, &reversep,
5861 &volatilep);
5862 if (!multiple_p (rbitpos, BITS_PER_UNIT))
5864 *bitstart = *bitend = 0;
5865 return;
5869 /* Compute the adjustment to bitpos from the offset of the field
5870 relative to the representative. DECL_FIELD_OFFSET of field and
5871 repr are the same by construction if they are not constants,
5872 see finish_bitfield_layout. */
5873 poly_uint64 field_offset, repr_offset;
5874 if (poly_int_tree_p (DECL_FIELD_OFFSET (field), &field_offset)
5875 && poly_int_tree_p (DECL_FIELD_OFFSET (repr), &repr_offset))
5876 bitoffset = (field_offset - repr_offset) * BITS_PER_UNIT;
5877 else
5878 bitoffset = 0;
5879 bitoffset += (tree_to_uhwi (DECL_FIELD_BIT_OFFSET (field))
5880 - tree_to_uhwi (DECL_FIELD_BIT_OFFSET (repr)));
5882 /* If the adjustment is larger than bitpos, we would have a negative bit
5883 position for the lower bound and this may wreak havoc later. Adjust
5884 offset and bitpos to make the lower bound non-negative in that case. */
5885 if (maybe_gt (bitoffset, *bitpos))
5887 poly_int64 adjust_bits = upper_bound (bitoffset, *bitpos) - *bitpos;
5888 poly_int64 adjust_bytes = exact_div (adjust_bits, BITS_PER_UNIT);
5890 *bitpos += adjust_bits;
5891 if (*offset == NULL_TREE)
5892 *offset = size_int (-adjust_bytes);
5893 else
5894 *offset = size_binop (MINUS_EXPR, *offset, size_int (adjust_bytes));
5895 *bitstart = 0;
5897 else
5898 *bitstart = *bitpos - bitoffset;
5900 *bitend = *bitstart + tree_to_poly_uint64 (DECL_SIZE (repr)) - 1;
5903 /* Returns true if BASE is a DECL that does not reside in memory and
5904 has non-BLKmode. DECL_RTL must not be a MEM; if
5905 DECL_RTL was not set yet, return false. */
5907 bool
5908 non_mem_decl_p (tree base)
5910 if (!DECL_P (base)
5911 || TREE_ADDRESSABLE (base)
5912 || DECL_MODE (base) == BLKmode)
5913 return false;
5915 if (!DECL_RTL_SET_P (base))
5916 return false;
5918 return (!MEM_P (DECL_RTL (base)));
5921 /* Returns true if REF refers to an object that does not
5922 reside in memory and has non-BLKmode. */
5924 bool
5925 mem_ref_refers_to_non_mem_p (tree ref)
5927 tree base;
5929 if (TREE_CODE (ref) == MEM_REF
5930 || TREE_CODE (ref) == TARGET_MEM_REF)
5932 tree addr = TREE_OPERAND (ref, 0);
5934 if (TREE_CODE (addr) != ADDR_EXPR)
5935 return false;
5937 base = TREE_OPERAND (addr, 0);
5939 else
5940 base = ref;
5942 return non_mem_decl_p (base);
5945 /* Expand an assignment that stores the value of FROM into TO. If NONTEMPORAL
5946 is true, try generating a nontemporal store. */
5948 void
5949 expand_assignment (tree to, tree from, bool nontemporal)
5951 rtx to_rtx = 0;
5952 rtx result;
5953 machine_mode mode;
5954 unsigned int align;
5955 enum insn_code icode;
5957 /* Don't crash if the lhs of the assignment was erroneous. */
5958 if (TREE_CODE (to) == ERROR_MARK)
5960 expand_normal (from);
5961 return;
5964 /* Optimize away no-op moves without side-effects. */
5965 if (operand_equal_p (to, from, 0))
5966 return;
5968 /* Handle misaligned stores. */
5969 mode = TYPE_MODE (TREE_TYPE (to));
5970 if ((TREE_CODE (to) == MEM_REF
5971 || TREE_CODE (to) == TARGET_MEM_REF
5972 || DECL_P (to))
5973 && mode != BLKmode
5974 && !mem_ref_refers_to_non_mem_p (to)
5975 && ((align = get_object_alignment (to))
5976 < GET_MODE_ALIGNMENT (mode))
5977 && (((icode = optab_handler (movmisalign_optab, mode))
5978 != CODE_FOR_nothing)
5979 || targetm.slow_unaligned_access (mode, align)))
5981 rtx reg, mem;
5983 reg = expand_expr (from, NULL_RTX, VOIDmode, EXPAND_NORMAL);
5984 /* Handle PARALLEL. */
5985 reg = maybe_emit_group_store (reg, TREE_TYPE (from));
5986 reg = force_not_mem (reg);
5987 mem = expand_expr (to, NULL_RTX, VOIDmode, EXPAND_WRITE);
5988 if (TREE_CODE (to) == MEM_REF && REF_REVERSE_STORAGE_ORDER (to))
5989 reg = flip_storage_order (mode, reg);
5991 if (icode != CODE_FOR_nothing)
5993 class expand_operand ops[2];
5995 create_fixed_operand (&ops[0], mem);
5996 create_input_operand (&ops[1], reg, mode);
5997 /* The movmisalign<mode> pattern cannot fail, else the assignment
5998 would silently be omitted. */
5999 expand_insn (icode, 2, ops);
6001 else
6002 store_bit_field (mem, GET_MODE_BITSIZE (mode), 0, 0, 0, mode, reg,
6003 false, false);
6004 return;
6007 /* Assignment of a structure component needs special treatment
6008 if the structure component's rtx is not simply a MEM.
6009 Assignment of an array element at a constant index, and assignment of
6010 an array element in an unaligned packed structure field, has the same
6011 problem. Same for (partially) storing into a non-memory object. */
6012 if (handled_component_p (to)
6013 || (TREE_CODE (to) == MEM_REF
6014 && (REF_REVERSE_STORAGE_ORDER (to)
6015 || mem_ref_refers_to_non_mem_p (to)))
6016 || TREE_CODE (TREE_TYPE (to)) == ARRAY_TYPE)
6018 machine_mode mode1;
6019 poly_int64 bitsize, bitpos;
6020 poly_uint64 bitregion_start = 0;
6021 poly_uint64 bitregion_end = 0;
6022 tree offset;
6023 int unsignedp, reversep, volatilep = 0;
6024 tree tem;
6026 push_temp_slots ();
6027 tem = get_inner_reference (to, &bitsize, &bitpos, &offset, &mode1,
6028 &unsignedp, &reversep, &volatilep);
6030 /* Make sure bitpos is not negative, it can wreak havoc later. */
6031 if (maybe_lt (bitpos, 0))
6033 gcc_assert (offset == NULL_TREE);
6034 offset = size_int (bits_to_bytes_round_down (bitpos));
6035 bitpos = num_trailing_bits (bitpos);
6038 if (TREE_CODE (to) == COMPONENT_REF
6039 && DECL_BIT_FIELD_TYPE (TREE_OPERAND (to, 1)))
6040 get_bit_range (&bitregion_start, &bitregion_end, to, &bitpos, &offset);
6041 /* The C++ memory model naturally applies to byte-aligned fields.
6042 However, if we do not have a DECL_BIT_FIELD_TYPE but BITPOS or
6043 BITSIZE are not byte-aligned, there is no need to limit the range
6044 we can access. This can occur with packed structures in Ada. */
6045 else if (maybe_gt (bitsize, 0)
6046 && multiple_p (bitsize, BITS_PER_UNIT)
6047 && multiple_p (bitpos, BITS_PER_UNIT))
6049 bitregion_start = bitpos;
6050 bitregion_end = bitpos + bitsize - 1;
6053 to_rtx = expand_expr (tem, NULL_RTX, VOIDmode, EXPAND_WRITE);
6055 /* If the field has a mode, we want to access it in the
6056 field's mode, not the computed mode.
6057 If a MEM has VOIDmode (external with incomplete type),
6058 use BLKmode for it instead. */
6059 if (MEM_P (to_rtx))
6061 if (mode1 != VOIDmode)
6062 to_rtx = adjust_address (to_rtx, mode1, 0);
6063 else if (GET_MODE (to_rtx) == VOIDmode)
6064 to_rtx = adjust_address (to_rtx, BLKmode, 0);
6067 rtx stemp = NULL_RTX, old_to_rtx = NULL_RTX;
6068 if (offset != 0)
6070 machine_mode address_mode;
6071 rtx offset_rtx;
6073 if (!MEM_P (to_rtx))
6075 /* We can get constant negative offsets into arrays with broken
6076 user code. Translate this to a trap instead of ICEing. */
6077 if (TREE_CODE (offset) == INTEGER_CST)
6079 expand_builtin_trap ();
6080 to_rtx = gen_rtx_MEM (BLKmode, const0_rtx);
6082 /* Else spill for variable offset to the destination. We expect
6083 to run into this only for hard registers. */
6084 else
6086 gcc_assert (VAR_P (tem) && DECL_HARD_REGISTER (tem));
6087 stemp = assign_stack_temp (GET_MODE (to_rtx),
6088 GET_MODE_SIZE (GET_MODE (to_rtx)));
6089 emit_move_insn (stemp, to_rtx);
6090 old_to_rtx = to_rtx;
6091 to_rtx = stemp;
6095 offset_rtx = expand_expr (offset, NULL_RTX, VOIDmode, EXPAND_SUM);
6096 address_mode = get_address_mode (to_rtx);
6097 if (GET_MODE (offset_rtx) != address_mode)
6099 /* We cannot be sure that the RTL in offset_rtx is valid outside
6100 of a memory address context, so force it into a register
6101 before attempting to convert it to the desired mode. */
6102 offset_rtx = force_operand (offset_rtx, NULL_RTX);
6103 offset_rtx = convert_to_mode (address_mode, offset_rtx, 0);
6106 /* If we have an expression in OFFSET_RTX and a non-zero
6107 byte offset in BITPOS, adding the byte offset before the
6108 OFFSET_RTX results in better intermediate code, which makes
6109 later rtl optimization passes perform better.
6111 We prefer intermediate code like this:
6113 r124:DI=r123:DI+0x18
6114 [r124:DI]=r121:DI
6116 ... instead of ...
6118 r124:DI=r123:DI+0x10
6119 [r124:DI+0x8]=r121:DI
6121 This is only done for aligned data values, as these can
6122 be expected to result in single move instructions. */
6123 poly_int64 bytepos;
6124 if (mode1 != VOIDmode
6125 && maybe_ne (bitpos, 0)
6126 && maybe_gt (bitsize, 0)
6127 && multiple_p (bitpos, BITS_PER_UNIT, &bytepos)
6128 && multiple_p (bitpos, bitsize)
6129 && multiple_p (bitsize, GET_MODE_ALIGNMENT (mode1))
6130 && MEM_ALIGN (to_rtx) >= GET_MODE_ALIGNMENT (mode1))
6132 to_rtx = adjust_address (to_rtx, mode1, bytepos);
6133 bitregion_start = 0;
6134 if (known_ge (bitregion_end, poly_uint64 (bitpos)))
6135 bitregion_end -= bitpos;
6136 bitpos = 0;
6139 to_rtx = offset_address (to_rtx, offset_rtx,
6140 highest_pow2_factor_for_target (to,
6141 offset));
6144 /* No action is needed if the target is not a memory and the field
6145 lies completely outside that target. This can occur if the source
6146 code contains an out-of-bounds access to a small array. */
6147 if (!MEM_P (to_rtx)
6148 && GET_MODE (to_rtx) != BLKmode
6149 && known_ge (bitpos, GET_MODE_PRECISION (GET_MODE (to_rtx))))
6151 expand_normal (from);
6152 result = NULL;
6154 /* Handle expand_expr of a complex value returning a CONCAT. */
6155 else if (GET_CODE (to_rtx) == CONCAT)
6157 machine_mode to_mode = GET_MODE (to_rtx);
6158 gcc_checking_assert (COMPLEX_MODE_P (to_mode));
6159 poly_int64 mode_bitsize = GET_MODE_BITSIZE (to_mode);
6160 unsigned short inner_bitsize = GET_MODE_UNIT_BITSIZE (to_mode);
6161 if (TYPE_MODE (TREE_TYPE (from)) == to_mode
6162 && known_eq (bitpos, 0)
6163 && known_eq (bitsize, mode_bitsize))
6164 result = store_expr (from, to_rtx, false, nontemporal, reversep);
6165 else if (TYPE_MODE (TREE_TYPE (from)) == GET_MODE_INNER (to_mode)
6166 && known_eq (bitsize, inner_bitsize)
6167 && (known_eq (bitpos, 0)
6168 || known_eq (bitpos, inner_bitsize)))
6169 result = store_expr (from, XEXP (to_rtx, maybe_ne (bitpos, 0)),
6170 false, nontemporal, reversep);
6171 else if (known_le (bitpos + bitsize, inner_bitsize))
6172 result = store_field (XEXP (to_rtx, 0), bitsize, bitpos,
6173 bitregion_start, bitregion_end,
6174 mode1, from, get_alias_set (to),
6175 nontemporal, reversep);
6176 else if (known_ge (bitpos, inner_bitsize))
6177 result = store_field (XEXP (to_rtx, 1), bitsize,
6178 bitpos - inner_bitsize,
6179 bitregion_start, bitregion_end,
6180 mode1, from, get_alias_set (to),
6181 nontemporal, reversep);
6182 else if (known_eq (bitpos, 0) && known_eq (bitsize, mode_bitsize))
6184 result = expand_normal (from);
6185 if (GET_CODE (result) == CONCAT)
6187 to_mode = GET_MODE_INNER (to_mode);
6188 machine_mode from_mode = GET_MODE_INNER (GET_MODE (result));
6189 rtx from_real
6190 = simplify_gen_subreg (to_mode, XEXP (result, 0),
6191 from_mode, 0);
6192 rtx from_imag
6193 = simplify_gen_subreg (to_mode, XEXP (result, 1),
6194 from_mode, 0);
6195 if (!from_real || !from_imag)
6196 goto concat_store_slow;
6197 emit_move_insn (XEXP (to_rtx, 0), from_real);
6198 emit_move_insn (XEXP (to_rtx, 1), from_imag);
6200 else
6202 machine_mode from_mode
6203 = GET_MODE (result) == VOIDmode
6204 ? TYPE_MODE (TREE_TYPE (from))
6205 : GET_MODE (result);
6206 rtx from_rtx;
6207 if (MEM_P (result))
6208 from_rtx = change_address (result, to_mode, NULL_RTX);
6209 else
6210 from_rtx
6211 = simplify_gen_subreg (to_mode, result, from_mode, 0);
6212 if (from_rtx)
6214 emit_move_insn (XEXP (to_rtx, 0),
6215 read_complex_part (from_rtx, false));
6216 emit_move_insn (XEXP (to_rtx, 1),
6217 read_complex_part (from_rtx, true));
6219 else
6221 to_mode = GET_MODE_INNER (to_mode);
6222 rtx from_real
6223 = simplify_gen_subreg (to_mode, result, from_mode, 0);
6224 rtx from_imag
6225 = simplify_gen_subreg (to_mode, result, from_mode,
6226 GET_MODE_SIZE (to_mode));
6227 if (!from_real || !from_imag)
6228 goto concat_store_slow;
6229 emit_move_insn (XEXP (to_rtx, 0), from_real);
6230 emit_move_insn (XEXP (to_rtx, 1), from_imag);
6234 else
6236 concat_store_slow:;
6237 rtx temp = assign_stack_temp (GET_MODE (to_rtx),
6238 GET_MODE_SIZE (GET_MODE (to_rtx)));
6239 write_complex_part (temp, XEXP (to_rtx, 0), false, true);
6240 write_complex_part (temp, XEXP (to_rtx, 1), true, false);
6241 result = store_field (temp, bitsize, bitpos,
6242 bitregion_start, bitregion_end,
6243 mode1, from, get_alias_set (to),
6244 nontemporal, reversep);
6245 emit_move_insn (XEXP (to_rtx, 0), read_complex_part (temp, false));
6246 emit_move_insn (XEXP (to_rtx, 1), read_complex_part (temp, true));
6249 /* For calls to functions returning variable length structures, if TO_RTX
6250 is not a MEM, go through a MEM because we must not create temporaries
6251 of the VLA type. */
6252 else if (!MEM_P (to_rtx)
6253 && TREE_CODE (from) == CALL_EXPR
6254 && COMPLETE_TYPE_P (TREE_TYPE (from))
6255 && TREE_CODE (TYPE_SIZE (TREE_TYPE (from))) != INTEGER_CST)
6257 rtx temp = assign_stack_temp (GET_MODE (to_rtx),
6258 GET_MODE_SIZE (GET_MODE (to_rtx)));
6259 result = store_field (temp, bitsize, bitpos, bitregion_start,
6260 bitregion_end, mode1, from, get_alias_set (to),
6261 nontemporal, reversep);
6262 emit_move_insn (to_rtx, temp);
6264 else
6266 if (MEM_P (to_rtx))
6268 /* If the field is at offset zero, we could have been given the
6269 DECL_RTX of the parent struct. Don't munge it. */
6270 to_rtx = shallow_copy_rtx (to_rtx);
6271 set_mem_attributes_minus_bitpos (to_rtx, to, 0, bitpos);
6272 if (volatilep)
6273 MEM_VOLATILE_P (to_rtx) = 1;
6276 gcc_checking_assert (known_ge (bitpos, 0));
6277 if (optimize_bitfield_assignment_op (bitsize, bitpos,
6278 bitregion_start, bitregion_end,
6279 mode1, to_rtx, to, from,
6280 reversep))
6281 result = NULL;
6282 else if (SUBREG_P (to_rtx)
6283 && SUBREG_PROMOTED_VAR_P (to_rtx))
6285 /* If to_rtx is a promoted subreg, we need to zero or sign
6286 extend the value afterwards. */
6287 if (TREE_CODE (to) == MEM_REF
6288 && TYPE_MODE (TREE_TYPE (from)) != BLKmode
6289 && !REF_REVERSE_STORAGE_ORDER (to)
6290 && known_eq (bitpos, 0)
6291 && known_eq (bitsize, GET_MODE_BITSIZE (GET_MODE (to_rtx))))
6292 result = store_expr (from, to_rtx, 0, nontemporal, false);
6293 /* Check if the field overlaps the MSB, requiring extension. */
6294 else if (maybe_eq (bitpos + bitsize,
6295 GET_MODE_BITSIZE (GET_MODE (to_rtx))))
6297 scalar_int_mode imode = subreg_unpromoted_mode (to_rtx);
6298 scalar_int_mode omode = subreg_promoted_mode (to_rtx);
6299 rtx to_rtx1 = lowpart_subreg (imode, SUBREG_REG (to_rtx),
6300 omode);
6301 result = store_field (to_rtx1, bitsize, bitpos,
6302 bitregion_start, bitregion_end,
6303 mode1, from, get_alias_set (to),
6304 nontemporal, reversep);
6305 /* If the target usually keeps IMODE appropriately
6306 extended in OMODE it's unsafe to refer to it using
6307 a SUBREG whilst this invariant doesn't hold. */
6308 if (targetm.mode_rep_extended (imode, omode) != UNKNOWN)
6309 to_rtx1 = simplify_gen_unary (TRUNCATE, imode,
6310 SUBREG_REG (to_rtx), omode);
6311 convert_move (SUBREG_REG (to_rtx), to_rtx1,
6312 SUBREG_PROMOTED_SIGN (to_rtx));
6314 else
6315 result = store_field (to_rtx, bitsize, bitpos,
6316 bitregion_start, bitregion_end,
6317 mode1, from, get_alias_set (to),
6318 nontemporal, reversep);
6320 else
6321 result = store_field (to_rtx, bitsize, bitpos,
6322 bitregion_start, bitregion_end,
6323 mode1, from, get_alias_set (to),
6324 nontemporal, reversep);
6325 /* Move the temporary storage back to the non-MEM_P. */
6326 if (stemp)
6327 emit_move_insn (old_to_rtx, stemp);
6330 if (result)
6331 preserve_temp_slots (result);
6332 pop_temp_slots ();
6333 return;
6336 /* If the rhs is a function call and its value is not an aggregate,
6337 call the function before we start to compute the lhs.
6338 This is needed for correct code for cases such as
6339 val = setjmp (buf) on machines where reference to val
6340 requires loading up part of an address in a separate insn.
6342 Don't do this if TO is a VAR_DECL or PARM_DECL whose DECL_RTL is REG
6343 since it might be a promoted variable where the zero- or sign- extension
6344 needs to be done. Handling this in the normal way is safe because no
6345 computation is done before the call. The same is true for SSA names. */
6346 if (TREE_CODE (from) == CALL_EXPR && ! aggregate_value_p (from, from)
6347 && COMPLETE_TYPE_P (TREE_TYPE (from))
6348 && TREE_CODE (TYPE_SIZE (TREE_TYPE (from))) == INTEGER_CST
6349 && ! (((VAR_P (to)
6350 || TREE_CODE (to) == PARM_DECL
6351 || TREE_CODE (to) == RESULT_DECL)
6352 && REG_P (DECL_RTL (to)))
6353 || TREE_CODE (to) == SSA_NAME))
6355 rtx value;
6357 push_temp_slots ();
6358 value = expand_normal (from);
6360 if (to_rtx == 0)
6361 to_rtx = expand_expr (to, NULL_RTX, VOIDmode, EXPAND_WRITE);
6363 /* Handle calls that return values in multiple non-contiguous locations.
6364 The Irix 6 ABI has examples of this. */
6365 if (GET_CODE (to_rtx) == PARALLEL)
6367 if (GET_CODE (value) == PARALLEL)
6368 emit_group_move (to_rtx, value);
6369 else
6370 emit_group_load (to_rtx, value, TREE_TYPE (from),
6371 int_size_in_bytes (TREE_TYPE (from)));
6373 else if (GET_CODE (value) == PARALLEL)
6374 emit_group_store (to_rtx, value, TREE_TYPE (from),
6375 int_size_in_bytes (TREE_TYPE (from)));
6376 else if (GET_MODE (to_rtx) == BLKmode)
6378 /* Handle calls that return BLKmode values in registers. */
6379 if (REG_P (value))
6380 copy_blkmode_from_reg (to_rtx, value, TREE_TYPE (from));
6381 else
6382 emit_block_move (to_rtx, value, expr_size (from), BLOCK_OP_NORMAL);
6384 else
6386 if (POINTER_TYPE_P (TREE_TYPE (to)))
6387 value = convert_memory_address_addr_space
6388 (as_a <scalar_int_mode> (GET_MODE (to_rtx)), value,
6389 TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (to))));
6391 emit_move_insn (to_rtx, value);
6394 preserve_temp_slots (to_rtx);
6395 pop_temp_slots ();
6396 return;
6399 /* Ordinary treatment. Expand TO to get a REG or MEM rtx. */
6400 to_rtx = expand_expr (to, NULL_RTX, VOIDmode, EXPAND_WRITE);
6402 /* Don't move directly into a return register. */
6403 if (TREE_CODE (to) == RESULT_DECL
6404 && (REG_P (to_rtx) || GET_CODE (to_rtx) == PARALLEL))
6406 rtx temp;
6408 push_temp_slots ();
6410 /* If the source is itself a return value, it still is in a pseudo at
6411 this point so we can move it back to the return register directly. */
6412 if (REG_P (to_rtx)
6413 && TYPE_MODE (TREE_TYPE (from)) == BLKmode
6414 && TREE_CODE (from) != CALL_EXPR)
6415 temp = copy_blkmode_to_reg (GET_MODE (to_rtx), from);
6416 else
6417 temp = expand_expr (from, NULL_RTX, GET_MODE (to_rtx), EXPAND_NORMAL);
6419 /* Handle calls that return values in multiple non-contiguous locations.
6420 The Irix 6 ABI has examples of this. */
6421 if (GET_CODE (to_rtx) == PARALLEL)
6423 if (GET_CODE (temp) == PARALLEL)
6424 emit_group_move (to_rtx, temp);
6425 else
6426 emit_group_load (to_rtx, temp, TREE_TYPE (from),
6427 int_size_in_bytes (TREE_TYPE (from)));
6429 else if (temp)
6430 emit_move_insn (to_rtx, temp);
6432 preserve_temp_slots (to_rtx);
6433 pop_temp_slots ();
6434 return;
6437 /* In case we are returning the contents of an object which overlaps
6438 the place the value is being stored, use a safe function when copying
6439 a value through a pointer into a structure value return block. */
6440 if (TREE_CODE (to) == RESULT_DECL
6441 && TREE_CODE (from) == INDIRECT_REF
6442 && ADDR_SPACE_GENERIC_P
6443 (TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (TREE_OPERAND (from, 0)))))
6444 && refs_may_alias_p (to, from)
6445 && cfun->returns_struct
6446 && !cfun->returns_pcc_struct)
6448 rtx from_rtx, size;
6450 push_temp_slots ();
6451 size = expr_size (from);
6452 from_rtx = expand_normal (from);
6454 emit_block_move_via_libcall (XEXP (to_rtx, 0), XEXP (from_rtx, 0), size);
6456 preserve_temp_slots (to_rtx);
6457 pop_temp_slots ();
6458 return;
6461 /* Compute FROM and store the value in the rtx we got. */
6463 push_temp_slots ();
6464 result = store_expr (from, to_rtx, 0, nontemporal, false);
6465 preserve_temp_slots (result);
6466 pop_temp_slots ();
6467 return;
6470 /* Emits nontemporal store insn that moves FROM to TO. Returns true if this
6471 succeeded, false otherwise. */
6473 bool
6474 emit_storent_insn (rtx to, rtx from)
6476 class expand_operand ops[2];
6477 machine_mode mode = GET_MODE (to);
6478 enum insn_code code = optab_handler (storent_optab, mode);
6480 if (code == CODE_FOR_nothing)
6481 return false;
6483 create_fixed_operand (&ops[0], to);
6484 create_input_operand (&ops[1], from, mode);
6485 return maybe_expand_insn (code, 2, ops);
6488 /* Helper function for store_expr storing of STRING_CST. */
6490 static rtx
6491 string_cst_read_str (void *data, void *, HOST_WIDE_INT offset,
6492 fixed_size_mode mode)
6494 tree str = (tree) data;
6496 gcc_assert (offset >= 0);
6497 if (offset >= TREE_STRING_LENGTH (str))
6498 return const0_rtx;
6500 if ((unsigned HOST_WIDE_INT) offset + GET_MODE_SIZE (mode)
6501 > (unsigned HOST_WIDE_INT) TREE_STRING_LENGTH (str))
6503 char *p = XALLOCAVEC (char, GET_MODE_SIZE (mode));
6504 size_t l = TREE_STRING_LENGTH (str) - offset;
6505 memcpy (p, TREE_STRING_POINTER (str) + offset, l);
6506 memset (p + l, '\0', GET_MODE_SIZE (mode) - l);
6507 return c_readstr (p, mode, false);
6510 return c_readstr (TREE_STRING_POINTER (str) + offset, mode, false);
6513 /* Generate code for computing expression EXP,
6514 and storing the value into TARGET.
6516 If the mode is BLKmode then we may return TARGET itself.
6517 It turns out that in BLKmode it doesn't cause a problem.
6518 because C has no operators that could combine two different
6519 assignments into the same BLKmode object with different values
6520 with no sequence point. Will other languages need this to
6521 be more thorough?
6523 If CALL_PARAM_P is nonzero, this is a store into a call param on the
6524 stack, and block moves may need to be treated specially.
6526 If NONTEMPORAL is true, try using a nontemporal store instruction.
6528 If REVERSE is true, the store is to be done in reverse order. */
6531 store_expr (tree exp, rtx target, int call_param_p,
6532 bool nontemporal, bool reverse)
6534 rtx temp;
6535 rtx alt_rtl = NULL_RTX;
6536 location_t loc = curr_insn_location ();
6537 bool shortened_string_cst = false;
6539 if (VOID_TYPE_P (TREE_TYPE (exp)))
6541 /* C++ can generate ?: expressions with a throw expression in one
6542 branch and an rvalue in the other. Here, we resolve attempts to
6543 store the throw expression's nonexistent result. */
6544 gcc_assert (!call_param_p);
6545 expand_expr (exp, const0_rtx, VOIDmode, EXPAND_NORMAL);
6546 return NULL_RTX;
6548 if (TREE_CODE (exp) == COMPOUND_EXPR)
6550 /* Perform first part of compound expression, then assign from second
6551 part. */
6552 expand_expr (TREE_OPERAND (exp, 0), const0_rtx, VOIDmode,
6553 call_param_p ? EXPAND_STACK_PARM : EXPAND_NORMAL);
6554 return store_expr (TREE_OPERAND (exp, 1), target,
6555 call_param_p, nontemporal, reverse);
6557 else if (TREE_CODE (exp) == COND_EXPR && GET_MODE (target) == BLKmode)
6559 /* For conditional expression, get safe form of the target. Then
6560 test the condition, doing the appropriate assignment on either
6561 side. This avoids the creation of unnecessary temporaries.
6562 For non-BLKmode, it is more efficient not to do this. */
6564 rtx_code_label *lab1 = gen_label_rtx (), *lab2 = gen_label_rtx ();
6566 do_pending_stack_adjust ();
6567 NO_DEFER_POP;
6568 jumpifnot (TREE_OPERAND (exp, 0), lab1,
6569 profile_probability::uninitialized ());
6570 store_expr (TREE_OPERAND (exp, 1), target, call_param_p,
6571 nontemporal, reverse);
6572 emit_jump_insn (targetm.gen_jump (lab2));
6573 emit_barrier ();
6574 emit_label (lab1);
6575 store_expr (TREE_OPERAND (exp, 2), target, call_param_p,
6576 nontemporal, reverse);
6577 emit_label (lab2);
6578 OK_DEFER_POP;
6580 return NULL_RTX;
6582 else if (GET_CODE (target) == SUBREG && SUBREG_PROMOTED_VAR_P (target))
6583 /* If this is a scalar in a register that is stored in a wider mode
6584 than the declared mode, compute the result into its declared mode
6585 and then convert to the wider mode. Our value is the computed
6586 expression. */
6588 rtx inner_target = 0;
6589 scalar_int_mode outer_mode = subreg_unpromoted_mode (target);
6590 scalar_int_mode inner_mode = subreg_promoted_mode (target);
6592 /* We can do the conversion inside EXP, which will often result
6593 in some optimizations. Do the conversion in two steps: first
6594 change the signedness, if needed, then the extend. But don't
6595 do this if the type of EXP is a subtype of something else
6596 since then the conversion might involve more than just
6597 converting modes. */
6598 if (INTEGRAL_TYPE_P (TREE_TYPE (exp))
6599 && TREE_TYPE (TREE_TYPE (exp)) == 0
6600 && GET_MODE_PRECISION (outer_mode)
6601 == TYPE_PRECISION (TREE_TYPE (exp)))
6603 if (!SUBREG_CHECK_PROMOTED_SIGN (target,
6604 TYPE_UNSIGNED (TREE_TYPE (exp))))
6606 /* Some types, e.g. Fortran's logical*4, won't have a signed
6607 version, so use the mode instead. */
6608 tree ntype
6609 = (signed_or_unsigned_type_for
6610 (SUBREG_PROMOTED_SIGN (target), TREE_TYPE (exp)));
6611 if (ntype == NULL)
6612 ntype = lang_hooks.types.type_for_mode
6613 (TYPE_MODE (TREE_TYPE (exp)),
6614 SUBREG_PROMOTED_SIGN (target));
6616 exp = fold_convert_loc (loc, ntype, exp);
6619 exp = fold_convert_loc (loc, lang_hooks.types.type_for_mode
6620 (inner_mode, SUBREG_PROMOTED_SIGN (target)),
6621 exp);
6623 inner_target = SUBREG_REG (target);
6626 temp = expand_expr (exp, inner_target, VOIDmode,
6627 call_param_p ? EXPAND_STACK_PARM : EXPAND_NORMAL);
6630 /* If TEMP is a VOIDmode constant, use convert_modes to make
6631 sure that we properly convert it. */
6632 if (CONSTANT_P (temp) && GET_MODE (temp) == VOIDmode)
6634 temp = convert_modes (outer_mode, TYPE_MODE (TREE_TYPE (exp)),
6635 temp, SUBREG_PROMOTED_SIGN (target));
6636 temp = convert_modes (inner_mode, outer_mode, temp,
6637 SUBREG_PROMOTED_SIGN (target));
6639 else if (!SCALAR_INT_MODE_P (GET_MODE (temp)))
6640 temp = convert_modes (outer_mode, TYPE_MODE (TREE_TYPE (exp)),
6641 temp, SUBREG_PROMOTED_SIGN (target));
6643 convert_move (SUBREG_REG (target), temp,
6644 SUBREG_PROMOTED_SIGN (target));
6646 return NULL_RTX;
6648 else if ((TREE_CODE (exp) == STRING_CST
6649 || (TREE_CODE (exp) == MEM_REF
6650 && TREE_CODE (TREE_OPERAND (exp, 0)) == ADDR_EXPR
6651 && TREE_CODE (TREE_OPERAND (TREE_OPERAND (exp, 0), 0))
6652 == STRING_CST
6653 && integer_zerop (TREE_OPERAND (exp, 1))))
6654 && !nontemporal && !call_param_p
6655 && MEM_P (target))
6657 /* Optimize initialization of an array with a STRING_CST. */
6658 HOST_WIDE_INT exp_len, str_copy_len;
6659 rtx dest_mem;
6660 tree str = TREE_CODE (exp) == STRING_CST
6661 ? exp : TREE_OPERAND (TREE_OPERAND (exp, 0), 0);
6663 exp_len = int_expr_size (exp);
6664 if (exp_len <= 0)
6665 goto normal_expr;
6667 if (TREE_STRING_LENGTH (str) <= 0)
6668 goto normal_expr;
6670 if (can_store_by_pieces (exp_len, string_cst_read_str, (void *) str,
6671 MEM_ALIGN (target), false))
6673 store_by_pieces (target, exp_len, string_cst_read_str, (void *) str,
6674 MEM_ALIGN (target), false, RETURN_BEGIN);
6675 return NULL_RTX;
6678 str_copy_len = TREE_STRING_LENGTH (str);
6680 /* Trailing NUL bytes in EXP will be handled by the call to
6681 clear_storage, which is more efficient than copying them from
6682 the STRING_CST, so trim those from STR_COPY_LEN. */
6683 while (str_copy_len)
6685 if (TREE_STRING_POINTER (str)[str_copy_len - 1])
6686 break;
6687 str_copy_len--;
6690 if ((STORE_MAX_PIECES & (STORE_MAX_PIECES - 1)) == 0)
6692 str_copy_len += STORE_MAX_PIECES - 1;
6693 str_copy_len &= ~(STORE_MAX_PIECES - 1);
6695 if (str_copy_len >= exp_len)
6696 goto normal_expr;
6698 if (!can_store_by_pieces (str_copy_len, string_cst_read_str,
6699 (void *) str, MEM_ALIGN (target), false))
6700 goto normal_expr;
6702 dest_mem = store_by_pieces (target, str_copy_len, string_cst_read_str,
6703 (void *) str, MEM_ALIGN (target), false,
6704 RETURN_END);
6705 clear_storage (adjust_address_1 (dest_mem, BLKmode, 0, 1, 1, 0,
6706 exp_len - str_copy_len),
6707 GEN_INT (exp_len - str_copy_len), BLOCK_OP_NORMAL);
6708 return NULL_RTX;
6710 else
6712 rtx tmp_target;
6714 normal_expr:
6715 /* If we want to use a nontemporal or a reverse order store, force the
6716 value into a register first. */
6717 tmp_target = nontemporal || reverse ? NULL_RTX : target;
6718 tree rexp = exp;
6719 if (TREE_CODE (exp) == STRING_CST
6720 && tmp_target == target
6721 && GET_MODE (target) == BLKmode
6722 && TYPE_MODE (TREE_TYPE (exp)) == BLKmode)
6724 rtx size = expr_size (exp);
6725 if (CONST_INT_P (size)
6726 && size != const0_rtx
6727 && (UINTVAL (size)
6728 > ((unsigned HOST_WIDE_INT) TREE_STRING_LENGTH (exp) + 32)))
6730 /* If the STRING_CST has much larger array type than
6731 TREE_STRING_LENGTH, only emit the TREE_STRING_LENGTH part of
6732 it into the rodata section as the code later on will use
6733 memset zero for the remainder anyway. See PR95052. */
6734 tmp_target = NULL_RTX;
6735 rexp = copy_node (exp);
6736 tree index
6737 = build_index_type (size_int (TREE_STRING_LENGTH (exp) - 1));
6738 TREE_TYPE (rexp) = build_array_type (TREE_TYPE (TREE_TYPE (exp)),
6739 index);
6740 shortened_string_cst = true;
6743 temp = expand_expr_real (rexp, tmp_target, GET_MODE (target),
6744 (call_param_p
6745 ? EXPAND_STACK_PARM : EXPAND_NORMAL),
6746 &alt_rtl, false);
6747 if (shortened_string_cst)
6749 gcc_assert (MEM_P (temp));
6750 temp = change_address (temp, BLKmode, NULL_RTX);
6754 /* If TEMP is a VOIDmode constant and the mode of the type of EXP is not
6755 the same as that of TARGET, adjust the constant. This is needed, for
6756 example, in case it is a CONST_DOUBLE or CONST_WIDE_INT and we want
6757 only a word-sized value. */
6758 if (CONSTANT_P (temp) && GET_MODE (temp) == VOIDmode
6759 && TREE_CODE (exp) != ERROR_MARK
6760 && GET_MODE (target) != TYPE_MODE (TREE_TYPE (exp)))
6762 gcc_assert (!shortened_string_cst);
6763 if (GET_MODE_CLASS (GET_MODE (target))
6764 != GET_MODE_CLASS (TYPE_MODE (TREE_TYPE (exp)))
6765 && known_eq (GET_MODE_BITSIZE (GET_MODE (target)),
6766 GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (exp)))))
6768 rtx t = simplify_gen_subreg (GET_MODE (target), temp,
6769 TYPE_MODE (TREE_TYPE (exp)), 0);
6770 if (t)
6771 temp = t;
6773 if (GET_MODE (temp) == VOIDmode)
6774 temp = convert_modes (GET_MODE (target), TYPE_MODE (TREE_TYPE (exp)),
6775 temp, TYPE_UNSIGNED (TREE_TYPE (exp)));
6778 /* If value was not generated in the target, store it there.
6779 Convert the value to TARGET's type first if necessary and emit the
6780 pending incrementations that have been queued when expanding EXP.
6781 Note that we cannot emit the whole queue blindly because this will
6782 effectively disable the POST_INC optimization later.
6784 If TEMP and TARGET compare equal according to rtx_equal_p, but
6785 one or both of them are volatile memory refs, we have to distinguish
6786 two cases:
6787 - expand_expr has used TARGET. In this case, we must not generate
6788 another copy. This can be detected by TARGET being equal according
6789 to == .
6790 - expand_expr has not used TARGET - that means that the source just
6791 happens to have the same RTX form. Since temp will have been created
6792 by expand_expr, it will compare unequal according to == .
6793 We must generate a copy in this case, to reach the correct number
6794 of volatile memory references. */
6796 if ((! rtx_equal_p (temp, target)
6797 || (temp != target && (side_effects_p (temp)
6798 || side_effects_p (target)
6799 || (MEM_P (temp)
6800 && !mems_same_for_tbaa_p (temp, target)))))
6801 && TREE_CODE (exp) != ERROR_MARK
6802 /* If store_expr stores a DECL whose DECL_RTL(exp) == TARGET,
6803 but TARGET is not valid memory reference, TEMP will differ
6804 from TARGET although it is really the same location. */
6805 && !(alt_rtl
6806 && rtx_equal_p (alt_rtl, target)
6807 && !side_effects_p (alt_rtl)
6808 && !side_effects_p (target))
6809 /* If there's nothing to copy, don't bother. Don't call
6810 expr_size unless necessary, because some front-ends (C++)
6811 expr_size-hook must not be given objects that are not
6812 supposed to be bit-copied or bit-initialized. */
6813 && expr_size (exp) != const0_rtx)
6815 if (GET_MODE (temp) != GET_MODE (target) && GET_MODE (temp) != VOIDmode)
6817 gcc_assert (!shortened_string_cst);
6818 if (GET_MODE (target) == BLKmode)
6820 /* Handle calls that return BLKmode values in registers. */
6821 if (REG_P (temp) && TREE_CODE (exp) == CALL_EXPR)
6822 copy_blkmode_from_reg (target, temp, TREE_TYPE (exp));
6823 else
6824 store_bit_field (target,
6825 rtx_to_poly_int64 (expr_size (exp))
6826 * BITS_PER_UNIT,
6827 0, 0, 0, GET_MODE (temp), temp, reverse,
6828 false);
6830 else
6831 convert_move (target, temp, TYPE_UNSIGNED (TREE_TYPE (exp)));
6834 else if (GET_MODE (temp) == BLKmode && TREE_CODE (exp) == STRING_CST)
6836 /* Handle copying a string constant into an array. The string
6837 constant may be shorter than the array. So copy just the string's
6838 actual length, and clear the rest. First get the size of the data
6839 type of the string, which is actually the size of the target. */
6840 rtx size = expr_size (exp);
6842 if (CONST_INT_P (size)
6843 && INTVAL (size) < TREE_STRING_LENGTH (exp))
6844 emit_block_move (target, temp, size,
6845 (call_param_p
6846 ? BLOCK_OP_CALL_PARM : BLOCK_OP_NORMAL));
6847 else
6849 machine_mode pointer_mode
6850 = targetm.addr_space.pointer_mode (MEM_ADDR_SPACE (target));
6851 machine_mode address_mode = get_address_mode (target);
6853 /* Compute the size of the data to copy from the string. */
6854 tree copy_size
6855 = size_binop_loc (loc, MIN_EXPR,
6856 make_tree (sizetype, size),
6857 size_int (TREE_STRING_LENGTH (exp)));
6858 rtx copy_size_rtx
6859 = expand_expr (copy_size, NULL_RTX, VOIDmode,
6860 (call_param_p
6861 ? EXPAND_STACK_PARM : EXPAND_NORMAL));
6862 rtx_code_label *label = 0;
6864 /* Copy that much. */
6865 copy_size_rtx = convert_to_mode (pointer_mode, copy_size_rtx,
6866 TYPE_UNSIGNED (sizetype));
6867 emit_block_move (target, temp, copy_size_rtx,
6868 (call_param_p
6869 ? BLOCK_OP_CALL_PARM : BLOCK_OP_NORMAL));
6871 /* Figure out how much is left in TARGET that we have to clear.
6872 Do all calculations in pointer_mode. */
6873 poly_int64 const_copy_size;
6874 if (poly_int_rtx_p (copy_size_rtx, &const_copy_size))
6876 size = plus_constant (address_mode, size, -const_copy_size);
6877 target = adjust_address (target, BLKmode, const_copy_size);
6879 else
6881 size = expand_binop (TYPE_MODE (sizetype), sub_optab, size,
6882 copy_size_rtx, NULL_RTX, 0,
6883 OPTAB_LIB_WIDEN);
6885 if (GET_MODE (copy_size_rtx) != address_mode)
6886 copy_size_rtx = convert_to_mode (address_mode,
6887 copy_size_rtx,
6888 TYPE_UNSIGNED (sizetype));
6890 target = offset_address (target, copy_size_rtx,
6891 highest_pow2_factor (copy_size));
6892 label = gen_label_rtx ();
6893 emit_cmp_and_jump_insns (size, const0_rtx, LT, NULL_RTX,
6894 GET_MODE (size), 0, label);
6897 if (size != const0_rtx)
6898 clear_storage (target, size, BLOCK_OP_NORMAL);
6900 if (label)
6901 emit_label (label);
6904 else if (shortened_string_cst)
6905 gcc_unreachable ();
6906 /* Handle calls that return values in multiple non-contiguous locations.
6907 The Irix 6 ABI has examples of this. */
6908 else if (GET_CODE (target) == PARALLEL)
6910 if (GET_CODE (temp) == PARALLEL)
6911 emit_group_move (target, temp);
6912 else
6913 emit_group_load (target, temp, TREE_TYPE (exp),
6914 int_size_in_bytes (TREE_TYPE (exp)));
6916 else if (GET_CODE (temp) == PARALLEL)
6917 emit_group_store (target, temp, TREE_TYPE (exp),
6918 int_size_in_bytes (TREE_TYPE (exp)));
6919 else if (GET_MODE (temp) == BLKmode)
6920 emit_block_move (target, temp, expr_size (exp),
6921 (call_param_p
6922 ? BLOCK_OP_CALL_PARM : BLOCK_OP_NORMAL));
6923 /* If we emit a nontemporal store, there is nothing else to do. */
6924 else if (nontemporal && emit_storent_insn (target, temp))
6926 else
6928 if (reverse)
6929 temp = flip_storage_order (GET_MODE (target), temp);
6930 temp = force_operand (temp, target);
6931 if (temp != target)
6932 emit_move_insn (target, temp);
6935 else
6936 gcc_assert (!shortened_string_cst);
6938 return NULL_RTX;
6941 /* Return true if field F of structure TYPE is a flexible array. */
6943 static bool
6944 flexible_array_member_p (const_tree f, const_tree type)
6946 const_tree tf;
6948 tf = TREE_TYPE (f);
6949 return (DECL_CHAIN (f) == NULL
6950 && TREE_CODE (tf) == ARRAY_TYPE
6951 && TYPE_DOMAIN (tf)
6952 && TYPE_MIN_VALUE (TYPE_DOMAIN (tf))
6953 && integer_zerop (TYPE_MIN_VALUE (TYPE_DOMAIN (tf)))
6954 && !TYPE_MAX_VALUE (TYPE_DOMAIN (tf))
6955 && int_size_in_bytes (type) >= 0);
6958 /* If FOR_CTOR_P, return the number of top-level elements that a constructor
6959 must have in order for it to completely initialize a value of type TYPE.
6960 Return -1 if the number isn't known.
6962 If !FOR_CTOR_P, return an estimate of the number of scalars in TYPE. */
6964 static HOST_WIDE_INT
6965 count_type_elements (const_tree type, bool for_ctor_p)
6967 switch (TREE_CODE (type))
6969 case ARRAY_TYPE:
6971 tree nelts;
6973 nelts = array_type_nelts (type);
6974 if (nelts && tree_fits_uhwi_p (nelts))
6976 unsigned HOST_WIDE_INT n;
6978 n = tree_to_uhwi (nelts) + 1;
6979 if (n == 0 || for_ctor_p)
6980 return n;
6981 else
6982 return n * count_type_elements (TREE_TYPE (type), false);
6984 return for_ctor_p ? -1 : 1;
6987 case RECORD_TYPE:
6989 unsigned HOST_WIDE_INT n;
6990 tree f;
6992 n = 0;
6993 for (f = TYPE_FIELDS (type); f ; f = DECL_CHAIN (f))
6994 if (TREE_CODE (f) == FIELD_DECL)
6996 if (!for_ctor_p)
6997 n += count_type_elements (TREE_TYPE (f), false);
6998 else if (!flexible_array_member_p (f, type))
6999 /* Don't count flexible arrays, which are not supposed
7000 to be initialized. */
7001 n += 1;
7004 return n;
7007 case UNION_TYPE:
7008 case QUAL_UNION_TYPE:
7010 tree f;
7011 HOST_WIDE_INT n, m;
7013 gcc_assert (!for_ctor_p);
7014 /* Estimate the number of scalars in each field and pick the
7015 maximum. Other estimates would do instead; the idea is simply
7016 to make sure that the estimate is not sensitive to the ordering
7017 of the fields. */
7018 n = 1;
7019 for (f = TYPE_FIELDS (type); f ; f = DECL_CHAIN (f))
7020 if (TREE_CODE (f) == FIELD_DECL)
7022 m = count_type_elements (TREE_TYPE (f), false);
7023 /* If the field doesn't span the whole union, add an extra
7024 scalar for the rest. */
7025 if (simple_cst_equal (TYPE_SIZE (TREE_TYPE (f)),
7026 TYPE_SIZE (type)) != 1)
7027 m++;
7028 if (n < m)
7029 n = m;
7031 return n;
7034 case COMPLEX_TYPE:
7035 return 2;
7037 case VECTOR_TYPE:
7039 unsigned HOST_WIDE_INT nelts;
7040 if (TYPE_VECTOR_SUBPARTS (type).is_constant (&nelts))
7041 return nelts;
7042 else
7043 return -1;
7046 case INTEGER_TYPE:
7047 case REAL_TYPE:
7048 case FIXED_POINT_TYPE:
7049 case ENUMERAL_TYPE:
7050 case BOOLEAN_TYPE:
7051 case POINTER_TYPE:
7052 case OFFSET_TYPE:
7053 case REFERENCE_TYPE:
7054 case NULLPTR_TYPE:
7055 case OPAQUE_TYPE:
7056 case BITINT_TYPE:
7057 return 1;
7059 case ERROR_MARK:
7060 return 0;
7062 case VOID_TYPE:
7063 case METHOD_TYPE:
7064 case FUNCTION_TYPE:
7065 case LANG_TYPE:
7066 default:
7067 gcc_unreachable ();
7071 /* Helper for categorize_ctor_elements. Identical interface. */
7073 static bool
7074 categorize_ctor_elements_1 (const_tree ctor, HOST_WIDE_INT *p_nz_elts,
7075 HOST_WIDE_INT *p_unique_nz_elts,
7076 HOST_WIDE_INT *p_init_elts, bool *p_complete)
7078 unsigned HOST_WIDE_INT idx;
7079 HOST_WIDE_INT nz_elts, unique_nz_elts, init_elts, num_fields;
7080 tree value, purpose, elt_type;
7082 /* Whether CTOR is a valid constant initializer, in accordance with what
7083 initializer_constant_valid_p does. If inferred from the constructor
7084 elements, true until proven otherwise. */
7085 bool const_from_elts_p = constructor_static_from_elts_p (ctor);
7086 bool const_p = const_from_elts_p ? true : TREE_STATIC (ctor);
7088 nz_elts = 0;
7089 unique_nz_elts = 0;
7090 init_elts = 0;
7091 num_fields = 0;
7092 elt_type = NULL_TREE;
7094 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (ctor), idx, purpose, value)
7096 HOST_WIDE_INT mult = 1;
7098 if (purpose && TREE_CODE (purpose) == RANGE_EXPR)
7100 tree lo_index = TREE_OPERAND (purpose, 0);
7101 tree hi_index = TREE_OPERAND (purpose, 1);
7103 if (tree_fits_uhwi_p (lo_index) && tree_fits_uhwi_p (hi_index))
7104 mult = (tree_to_uhwi (hi_index)
7105 - tree_to_uhwi (lo_index) + 1);
7107 num_fields += mult;
7108 elt_type = TREE_TYPE (value);
7110 switch (TREE_CODE (value))
7112 case CONSTRUCTOR:
7114 HOST_WIDE_INT nz = 0, unz = 0, ic = 0;
7116 bool const_elt_p = categorize_ctor_elements_1 (value, &nz, &unz,
7117 &ic, p_complete);
7119 nz_elts += mult * nz;
7120 unique_nz_elts += unz;
7121 init_elts += mult * ic;
7123 if (const_from_elts_p && const_p)
7124 const_p = const_elt_p;
7126 break;
7128 case INTEGER_CST:
7129 case REAL_CST:
7130 case FIXED_CST:
7131 if (!initializer_zerop (value))
7133 nz_elts += mult;
7134 unique_nz_elts++;
7136 init_elts += mult;
7137 break;
7139 case STRING_CST:
7140 nz_elts += mult * TREE_STRING_LENGTH (value);
7141 unique_nz_elts += TREE_STRING_LENGTH (value);
7142 init_elts += mult * TREE_STRING_LENGTH (value);
7143 break;
7145 case COMPLEX_CST:
7146 if (!initializer_zerop (TREE_REALPART (value)))
7148 nz_elts += mult;
7149 unique_nz_elts++;
7151 if (!initializer_zerop (TREE_IMAGPART (value)))
7153 nz_elts += mult;
7154 unique_nz_elts++;
7156 init_elts += 2 * mult;
7157 break;
7159 case VECTOR_CST:
7161 /* We can only construct constant-length vectors using
7162 CONSTRUCTOR. */
7163 unsigned int nunits = VECTOR_CST_NELTS (value).to_constant ();
7164 for (unsigned int i = 0; i < nunits; ++i)
7166 tree v = VECTOR_CST_ELT (value, i);
7167 if (!initializer_zerop (v))
7169 nz_elts += mult;
7170 unique_nz_elts++;
7172 init_elts += mult;
7175 break;
7177 default:
7179 HOST_WIDE_INT tc = count_type_elements (elt_type, false);
7180 nz_elts += mult * tc;
7181 unique_nz_elts += tc;
7182 init_elts += mult * tc;
7184 if (const_from_elts_p && const_p)
7185 const_p
7186 = initializer_constant_valid_p (value,
7187 elt_type,
7188 TYPE_REVERSE_STORAGE_ORDER
7189 (TREE_TYPE (ctor)))
7190 != NULL_TREE;
7192 break;
7196 if (*p_complete && !complete_ctor_at_level_p (TREE_TYPE (ctor),
7197 num_fields, elt_type))
7198 *p_complete = false;
7200 *p_nz_elts += nz_elts;
7201 *p_unique_nz_elts += unique_nz_elts;
7202 *p_init_elts += init_elts;
7204 return const_p;
7207 /* Examine CTOR to discover:
7208 * how many scalar fields are set to nonzero values,
7209 and place it in *P_NZ_ELTS;
7210 * the same, but counting RANGE_EXPRs as multiplier of 1 instead of
7211 high - low + 1 (this can be useful for callers to determine ctors
7212 that could be cheaply initialized with - perhaps nested - loops
7213 compared to copied from huge read-only data),
7214 and place it in *P_UNIQUE_NZ_ELTS;
7215 * how many scalar fields in total are in CTOR,
7216 and place it in *P_ELT_COUNT.
7217 * whether the constructor is complete -- in the sense that every
7218 meaningful byte is explicitly given a value --
7219 and place it in *P_COMPLETE.
7221 Return whether or not CTOR is a valid static constant initializer, the same
7222 as "initializer_constant_valid_p (CTOR, TREE_TYPE (CTOR)) != 0". */
7224 bool
7225 categorize_ctor_elements (const_tree ctor, HOST_WIDE_INT *p_nz_elts,
7226 HOST_WIDE_INT *p_unique_nz_elts,
7227 HOST_WIDE_INT *p_init_elts, bool *p_complete)
7229 *p_nz_elts = 0;
7230 *p_unique_nz_elts = 0;
7231 *p_init_elts = 0;
7232 *p_complete = true;
7234 return categorize_ctor_elements_1 (ctor, p_nz_elts, p_unique_nz_elts,
7235 p_init_elts, p_complete);
7238 /* Return true if constructor CTOR is simple enough to be materialized
7239 in an integer mode register. Limit the size to WORDS words, which
7240 is 1 by default. */
7242 bool
7243 immediate_const_ctor_p (const_tree ctor, unsigned int words)
7245 /* Allow function to be called with a VAR_DECL's DECL_INITIAL. */
7246 if (!ctor || TREE_CODE (ctor) != CONSTRUCTOR)
7247 return false;
7249 return TREE_CONSTANT (ctor)
7250 && !TREE_ADDRESSABLE (ctor)
7251 && CONSTRUCTOR_NELTS (ctor)
7252 && TREE_CODE (TREE_TYPE (ctor)) != ARRAY_TYPE
7253 && int_expr_size (ctor) <= words * UNITS_PER_WORD
7254 && initializer_constant_valid_for_bitfield_p (ctor);
7257 /* TYPE is initialized by a constructor with NUM_ELTS elements, the last
7258 of which had type LAST_TYPE. Each element was itself a complete
7259 initializer, in the sense that every meaningful byte was explicitly
7260 given a value. Return true if the same is true for the constructor
7261 as a whole. */
7263 bool
7264 complete_ctor_at_level_p (const_tree type, HOST_WIDE_INT num_elts,
7265 const_tree last_type)
7267 if (TREE_CODE (type) == UNION_TYPE
7268 || TREE_CODE (type) == QUAL_UNION_TYPE)
7270 if (num_elts == 0)
7271 return false;
7273 gcc_assert (num_elts == 1 && last_type);
7275 /* ??? We could look at each element of the union, and find the
7276 largest element. Which would avoid comparing the size of the
7277 initialized element against any tail padding in the union.
7278 Doesn't seem worth the effort... */
7279 return simple_cst_equal (TYPE_SIZE (type), TYPE_SIZE (last_type)) == 1;
7282 return count_type_elements (type, true) == num_elts;
7285 /* Return true if EXP contains mostly (3/4) zeros. */
7287 static bool
7288 mostly_zeros_p (const_tree exp)
7290 if (TREE_CODE (exp) == CONSTRUCTOR)
7292 HOST_WIDE_INT nz_elts, unz_elts, init_elts;
7293 bool complete_p;
7295 categorize_ctor_elements (exp, &nz_elts, &unz_elts, &init_elts,
7296 &complete_p);
7297 return !complete_p || nz_elts < init_elts / 4;
7300 return initializer_zerop (exp);
7303 /* Return true if EXP contains all zeros. */
7305 static bool
7306 all_zeros_p (const_tree exp)
7308 if (TREE_CODE (exp) == CONSTRUCTOR)
7310 HOST_WIDE_INT nz_elts, unz_elts, init_elts;
7311 bool complete_p;
7313 categorize_ctor_elements (exp, &nz_elts, &unz_elts, &init_elts,
7314 &complete_p);
7315 return nz_elts == 0;
7318 return initializer_zerop (exp);
7321 /* Helper function for store_constructor.
7322 TARGET, BITSIZE, BITPOS, MODE, EXP are as for store_field.
7323 CLEARED is as for store_constructor.
7324 ALIAS_SET is the alias set to use for any stores.
7325 If REVERSE is true, the store is to be done in reverse order.
7327 This provides a recursive shortcut back to store_constructor when it isn't
7328 necessary to go through store_field. This is so that we can pass through
7329 the cleared field to let store_constructor know that we may not have to
7330 clear a substructure if the outer structure has already been cleared. */
7332 static void
7333 store_constructor_field (rtx target, poly_uint64 bitsize, poly_int64 bitpos,
7334 poly_uint64 bitregion_start,
7335 poly_uint64 bitregion_end,
7336 machine_mode mode,
7337 tree exp, int cleared,
7338 alias_set_type alias_set, bool reverse)
7340 poly_int64 bytepos;
7341 poly_uint64 bytesize;
7342 if (TREE_CODE (exp) == CONSTRUCTOR
7343 /* We can only call store_constructor recursively if the size and
7344 bit position are on a byte boundary. */
7345 && multiple_p (bitpos, BITS_PER_UNIT, &bytepos)
7346 && maybe_ne (bitsize, 0U)
7347 && multiple_p (bitsize, BITS_PER_UNIT, &bytesize)
7348 /* If we have a nonzero bitpos for a register target, then we just
7349 let store_field do the bitfield handling. This is unlikely to
7350 generate unnecessary clear instructions anyways. */
7351 && (known_eq (bitpos, 0) || MEM_P (target)))
7353 if (MEM_P (target))
7355 machine_mode target_mode = GET_MODE (target);
7356 if (target_mode != BLKmode
7357 && !multiple_p (bitpos, GET_MODE_ALIGNMENT (target_mode)))
7358 target_mode = BLKmode;
7359 target = adjust_address (target, target_mode, bytepos);
7363 /* Update the alias set, if required. */
7364 if (MEM_P (target) && ! MEM_KEEP_ALIAS_SET_P (target)
7365 && MEM_ALIAS_SET (target) != 0)
7367 target = copy_rtx (target);
7368 set_mem_alias_set (target, alias_set);
7371 store_constructor (exp, target, cleared, bytesize, reverse);
7373 else
7374 store_field (target, bitsize, bitpos, bitregion_start, bitregion_end, mode,
7375 exp, alias_set, false, reverse);
7379 /* Returns the number of FIELD_DECLs in TYPE. */
7381 static int
7382 fields_length (const_tree type)
7384 tree t = TYPE_FIELDS (type);
7385 int count = 0;
7387 for (; t; t = DECL_CHAIN (t))
7388 if (TREE_CODE (t) == FIELD_DECL)
7389 ++count;
7391 return count;
7395 /* Store the value of constructor EXP into the rtx TARGET.
7396 TARGET is either a REG or a MEM; we know it cannot conflict, since
7397 safe_from_p has been called.
7398 CLEARED is true if TARGET is known to have been zero'd.
7399 SIZE is the number of bytes of TARGET we are allowed to modify: this
7400 may not be the same as the size of EXP if we are assigning to a field
7401 which has been packed to exclude padding bits.
7402 If REVERSE is true, the store is to be done in reverse order. */
7404 void
7405 store_constructor (tree exp, rtx target, int cleared, poly_int64 size,
7406 bool reverse)
7408 tree type = TREE_TYPE (exp);
7409 HOST_WIDE_INT exp_size = int_size_in_bytes (type);
7410 poly_int64 bitregion_end = known_gt (size, 0) ? size * BITS_PER_UNIT - 1 : 0;
7412 switch (TREE_CODE (type))
7414 case RECORD_TYPE:
7415 case UNION_TYPE:
7416 case QUAL_UNION_TYPE:
7418 unsigned HOST_WIDE_INT idx;
7419 tree field, value;
7421 /* The storage order is specified for every aggregate type. */
7422 reverse = TYPE_REVERSE_STORAGE_ORDER (type);
7424 /* If size is zero or the target is already cleared, do nothing. */
7425 if (known_eq (size, 0) || cleared)
7426 cleared = 1;
7427 /* We either clear the aggregate or indicate the value is dead. */
7428 else if ((TREE_CODE (type) == UNION_TYPE
7429 || TREE_CODE (type) == QUAL_UNION_TYPE)
7430 && ! CONSTRUCTOR_ELTS (exp))
7431 /* If the constructor is empty, clear the union. */
7433 clear_storage (target, expr_size (exp), BLOCK_OP_NORMAL);
7434 cleared = 1;
7437 /* If we are building a static constructor into a register,
7438 set the initial value as zero so we can fold the value into
7439 a constant. But if more than one register is involved,
7440 this probably loses. */
7441 else if (REG_P (target) && TREE_STATIC (exp)
7442 && known_le (GET_MODE_SIZE (GET_MODE (target)),
7443 REGMODE_NATURAL_SIZE (GET_MODE (target))))
7445 emit_move_insn (target, CONST0_RTX (GET_MODE (target)));
7446 cleared = 1;
7449 /* If the constructor has fewer fields than the structure or
7450 if we are initializing the structure to mostly zeros, clear
7451 the whole structure first. Don't do this if TARGET is a
7452 register whose mode size isn't equal to SIZE since
7453 clear_storage can't handle this case. */
7454 else if (known_size_p (size)
7455 && (((int) CONSTRUCTOR_NELTS (exp) != fields_length (type))
7456 || mostly_zeros_p (exp))
7457 && (!REG_P (target)
7458 || known_eq (GET_MODE_SIZE (GET_MODE (target)), size)))
7460 clear_storage (target, gen_int_mode (size, Pmode),
7461 BLOCK_OP_NORMAL);
7462 cleared = 1;
7465 if (REG_P (target) && !cleared)
7466 emit_clobber (target);
7468 /* Store each element of the constructor into the
7469 corresponding field of TARGET. */
7470 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (exp), idx, field, value)
7472 machine_mode mode;
7473 HOST_WIDE_INT bitsize;
7474 HOST_WIDE_INT bitpos = 0;
7475 tree offset;
7476 rtx to_rtx = target;
7478 /* Just ignore missing fields. We cleared the whole
7479 structure, above, if any fields are missing. */
7480 if (field == 0)
7481 continue;
7483 if (cleared && initializer_zerop (value))
7484 continue;
7486 if (tree_fits_uhwi_p (DECL_SIZE (field)))
7487 bitsize = tree_to_uhwi (DECL_SIZE (field));
7488 else
7489 gcc_unreachable ();
7491 mode = DECL_MODE (field);
7492 if (DECL_BIT_FIELD (field))
7493 mode = VOIDmode;
7495 offset = DECL_FIELD_OFFSET (field);
7496 if (tree_fits_shwi_p (offset)
7497 && tree_fits_shwi_p (bit_position (field)))
7499 bitpos = int_bit_position (field);
7500 offset = NULL_TREE;
7502 else
7503 gcc_unreachable ();
7505 /* If this initializes a field that is smaller than a
7506 word, at the start of a word, try to widen it to a full
7507 word. This special case allows us to output C++ member
7508 function initializations in a form that the optimizers
7509 can understand. */
7510 if (WORD_REGISTER_OPERATIONS
7511 && REG_P (target)
7512 && bitsize < BITS_PER_WORD
7513 && bitpos % BITS_PER_WORD == 0
7514 && GET_MODE_CLASS (mode) == MODE_INT
7515 && TREE_CODE (value) == INTEGER_CST
7516 && exp_size >= 0
7517 && bitpos + BITS_PER_WORD <= exp_size * BITS_PER_UNIT)
7519 type = TREE_TYPE (value);
7521 if (TYPE_PRECISION (type) < BITS_PER_WORD)
7523 type = lang_hooks.types.type_for_mode
7524 (word_mode, TYPE_UNSIGNED (type));
7525 value = fold_convert (type, value);
7526 /* Make sure the bits beyond the original bitsize are zero
7527 so that we can correctly avoid extra zeroing stores in
7528 later constructor elements. */
7529 tree bitsize_mask
7530 = wide_int_to_tree (type, wi::mask (bitsize, false,
7531 BITS_PER_WORD));
7532 value = fold_build2 (BIT_AND_EXPR, type, value, bitsize_mask);
7535 if (BYTES_BIG_ENDIAN)
7536 value
7537 = fold_build2 (LSHIFT_EXPR, type, value,
7538 build_int_cst (type,
7539 BITS_PER_WORD - bitsize));
7540 bitsize = BITS_PER_WORD;
7541 mode = word_mode;
7544 if (MEM_P (to_rtx) && !MEM_KEEP_ALIAS_SET_P (to_rtx)
7545 && DECL_NONADDRESSABLE_P (field))
7547 to_rtx = copy_rtx (to_rtx);
7548 MEM_KEEP_ALIAS_SET_P (to_rtx) = 1;
7551 store_constructor_field (to_rtx, bitsize, bitpos,
7552 0, bitregion_end, mode,
7553 value, cleared,
7554 get_alias_set (TREE_TYPE (field)),
7555 reverse);
7557 break;
7559 case ARRAY_TYPE:
7561 tree value, index;
7562 unsigned HOST_WIDE_INT i;
7563 bool need_to_clear;
7564 tree domain;
7565 tree elttype = TREE_TYPE (type);
7566 bool const_bounds_p;
7567 HOST_WIDE_INT minelt = 0;
7568 HOST_WIDE_INT maxelt = 0;
7570 /* The storage order is specified for every aggregate type. */
7571 reverse = TYPE_REVERSE_STORAGE_ORDER (type);
7573 domain = TYPE_DOMAIN (type);
7574 const_bounds_p = (TYPE_MIN_VALUE (domain)
7575 && TYPE_MAX_VALUE (domain)
7576 && tree_fits_shwi_p (TYPE_MIN_VALUE (domain))
7577 && tree_fits_shwi_p (TYPE_MAX_VALUE (domain)));
7579 /* If we have constant bounds for the range of the type, get them. */
7580 if (const_bounds_p)
7582 minelt = tree_to_shwi (TYPE_MIN_VALUE (domain));
7583 maxelt = tree_to_shwi (TYPE_MAX_VALUE (domain));
7586 /* If the constructor has fewer elements than the array, clear
7587 the whole array first. Similarly if this is static
7588 constructor of a non-BLKmode object. */
7589 if (cleared)
7590 need_to_clear = false;
7591 else if (REG_P (target) && TREE_STATIC (exp))
7592 need_to_clear = true;
7593 else
7595 unsigned HOST_WIDE_INT idx;
7596 HOST_WIDE_INT count = 0, zero_count = 0;
7597 need_to_clear = ! const_bounds_p;
7599 /* This loop is a more accurate version of the loop in
7600 mostly_zeros_p (it handles RANGE_EXPR in an index). It
7601 is also needed to check for missing elements. */
7602 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (exp), idx, index, value)
7604 HOST_WIDE_INT this_node_count;
7606 if (need_to_clear)
7607 break;
7609 if (index != NULL_TREE && TREE_CODE (index) == RANGE_EXPR)
7611 tree lo_index = TREE_OPERAND (index, 0);
7612 tree hi_index = TREE_OPERAND (index, 1);
7614 if (! tree_fits_uhwi_p (lo_index)
7615 || ! tree_fits_uhwi_p (hi_index))
7617 need_to_clear = true;
7618 break;
7621 this_node_count = (tree_to_uhwi (hi_index)
7622 - tree_to_uhwi (lo_index) + 1);
7624 else
7625 this_node_count = 1;
7627 count += this_node_count;
7628 if (mostly_zeros_p (value))
7629 zero_count += this_node_count;
7632 /* Clear the entire array first if there are any missing
7633 elements, or if the incidence of zero elements is >=
7634 75%. */
7635 if (! need_to_clear
7636 && (count < maxelt - minelt + 1
7637 || 4 * zero_count >= 3 * count))
7638 need_to_clear = true;
7641 if (need_to_clear && maybe_gt (size, 0))
7643 if (REG_P (target))
7644 emit_move_insn (target, CONST0_RTX (GET_MODE (target)));
7645 else
7646 clear_storage (target, gen_int_mode (size, Pmode),
7647 BLOCK_OP_NORMAL);
7648 cleared = 1;
7651 if (!cleared && REG_P (target))
7652 /* Inform later passes that the old value is dead. */
7653 emit_clobber (target);
7655 /* Store each element of the constructor into the
7656 corresponding element of TARGET, determined by counting the
7657 elements. */
7658 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (exp), i, index, value)
7660 machine_mode mode;
7661 poly_int64 bitsize;
7662 HOST_WIDE_INT bitpos;
7663 rtx xtarget = target;
7665 if (cleared && initializer_zerop (value))
7666 continue;
7668 mode = TYPE_MODE (elttype);
7669 if (mode != BLKmode)
7670 bitsize = GET_MODE_BITSIZE (mode);
7671 else if (!poly_int_tree_p (TYPE_SIZE (elttype), &bitsize))
7672 bitsize = -1;
7674 if (index != NULL_TREE && TREE_CODE (index) == RANGE_EXPR)
7676 tree lo_index = TREE_OPERAND (index, 0);
7677 tree hi_index = TREE_OPERAND (index, 1);
7678 rtx index_r, pos_rtx;
7679 HOST_WIDE_INT lo, hi, count;
7680 tree position;
7682 /* If the range is constant and "small", unroll the loop. */
7683 if (const_bounds_p
7684 && tree_fits_shwi_p (lo_index)
7685 && tree_fits_shwi_p (hi_index)
7686 && (lo = tree_to_shwi (lo_index),
7687 hi = tree_to_shwi (hi_index),
7688 count = hi - lo + 1,
7689 (!MEM_P (target)
7690 || count <= 2
7691 || (tree_fits_uhwi_p (TYPE_SIZE (elttype))
7692 && (tree_to_uhwi (TYPE_SIZE (elttype)) * count
7693 <= 40 * 8)))))
7695 lo -= minelt; hi -= minelt;
7696 for (; lo <= hi; lo++)
7698 bitpos = lo * tree_to_shwi (TYPE_SIZE (elttype));
7700 if (MEM_P (target)
7701 && !MEM_KEEP_ALIAS_SET_P (target)
7702 && TREE_CODE (type) == ARRAY_TYPE
7703 && TYPE_NONALIASED_COMPONENT (type))
7705 target = copy_rtx (target);
7706 MEM_KEEP_ALIAS_SET_P (target) = 1;
7709 store_constructor_field
7710 (target, bitsize, bitpos, 0, bitregion_end,
7711 mode, value, cleared,
7712 get_alias_set (elttype), reverse);
7715 else
7717 rtx_code_label *loop_start = gen_label_rtx ();
7718 rtx_code_label *loop_end = gen_label_rtx ();
7719 tree exit_cond;
7721 expand_normal (hi_index);
7723 index = build_decl (EXPR_LOCATION (exp),
7724 VAR_DECL, NULL_TREE, domain);
7725 index_r = gen_reg_rtx (promote_decl_mode (index, NULL));
7726 SET_DECL_RTL (index, index_r);
7727 store_expr (lo_index, index_r, 0, false, reverse);
7729 /* Build the head of the loop. */
7730 do_pending_stack_adjust ();
7731 emit_label (loop_start);
7733 /* Assign value to element index. */
7734 position =
7735 fold_convert (ssizetype,
7736 fold_build2 (MINUS_EXPR,
7737 TREE_TYPE (index),
7738 index,
7739 TYPE_MIN_VALUE (domain)));
7741 position =
7742 size_binop (MULT_EXPR, position,
7743 fold_convert (ssizetype,
7744 TYPE_SIZE_UNIT (elttype)));
7746 pos_rtx = expand_normal (position);
7747 xtarget = offset_address (target, pos_rtx,
7748 highest_pow2_factor (position));
7749 xtarget = adjust_address (xtarget, mode, 0);
7750 if (TREE_CODE (value) == CONSTRUCTOR)
7751 store_constructor (value, xtarget, cleared,
7752 exact_div (bitsize, BITS_PER_UNIT),
7753 reverse);
7754 else
7755 store_expr (value, xtarget, 0, false, reverse);
7757 /* Generate a conditional jump to exit the loop. */
7758 exit_cond = build2 (LT_EXPR, integer_type_node,
7759 index, hi_index);
7760 jumpif (exit_cond, loop_end,
7761 profile_probability::uninitialized ());
7763 /* Update the loop counter, and jump to the head of
7764 the loop. */
7765 expand_assignment (index,
7766 build2 (PLUS_EXPR, TREE_TYPE (index),
7767 index, integer_one_node),
7768 false);
7770 emit_jump (loop_start);
7772 /* Build the end of the loop. */
7773 emit_label (loop_end);
7776 else if ((index != 0 && ! tree_fits_shwi_p (index))
7777 || ! tree_fits_uhwi_p (TYPE_SIZE (elttype)))
7779 tree position;
7781 if (index == 0)
7782 index = ssize_int (1);
7784 if (minelt)
7785 index = fold_convert (ssizetype,
7786 fold_build2 (MINUS_EXPR,
7787 TREE_TYPE (index),
7788 index,
7789 TYPE_MIN_VALUE (domain)));
7791 position =
7792 size_binop (MULT_EXPR, index,
7793 fold_convert (ssizetype,
7794 TYPE_SIZE_UNIT (elttype)));
7795 xtarget = offset_address (target,
7796 expand_normal (position),
7797 highest_pow2_factor (position));
7798 xtarget = adjust_address (xtarget, mode, 0);
7799 store_expr (value, xtarget, 0, false, reverse);
7801 else
7803 if (index != 0)
7804 bitpos = ((tree_to_shwi (index) - minelt)
7805 * tree_to_uhwi (TYPE_SIZE (elttype)));
7806 else
7807 bitpos = (i * tree_to_uhwi (TYPE_SIZE (elttype)));
7809 if (MEM_P (target) && !MEM_KEEP_ALIAS_SET_P (target)
7810 && TREE_CODE (type) == ARRAY_TYPE
7811 && TYPE_NONALIASED_COMPONENT (type))
7813 target = copy_rtx (target);
7814 MEM_KEEP_ALIAS_SET_P (target) = 1;
7816 store_constructor_field (target, bitsize, bitpos, 0,
7817 bitregion_end, mode, value,
7818 cleared, get_alias_set (elttype),
7819 reverse);
7822 break;
7825 case VECTOR_TYPE:
7827 unsigned HOST_WIDE_INT idx;
7828 constructor_elt *ce;
7829 int i;
7830 bool need_to_clear;
7831 insn_code icode = CODE_FOR_nothing;
7832 tree elt;
7833 tree elttype = TREE_TYPE (type);
7834 int elt_size = vector_element_bits (type);
7835 machine_mode eltmode = TYPE_MODE (elttype);
7836 HOST_WIDE_INT bitsize;
7837 HOST_WIDE_INT bitpos;
7838 rtvec vector = NULL;
7839 poly_uint64 n_elts;
7840 unsigned HOST_WIDE_INT const_n_elts;
7841 alias_set_type alias;
7842 bool vec_vec_init_p = false;
7843 machine_mode mode = GET_MODE (target);
7845 gcc_assert (eltmode != BLKmode);
7847 /* Try using vec_duplicate_optab for uniform vectors. */
7848 if (!TREE_SIDE_EFFECTS (exp)
7849 && VECTOR_MODE_P (mode)
7850 && eltmode == GET_MODE_INNER (mode)
7851 && ((icode = optab_handler (vec_duplicate_optab, mode))
7852 != CODE_FOR_nothing)
7853 && (elt = uniform_vector_p (exp))
7854 && !VECTOR_TYPE_P (TREE_TYPE (elt)))
7856 class expand_operand ops[2];
7857 create_output_operand (&ops[0], target, mode);
7858 create_input_operand (&ops[1], expand_normal (elt), eltmode);
7859 expand_insn (icode, 2, ops);
7860 if (!rtx_equal_p (target, ops[0].value))
7861 emit_move_insn (target, ops[0].value);
7862 break;
7864 /* Use sign-extension for uniform boolean vectors with
7865 integer modes and single-bit mask entries.
7866 Effectively "vec_duplicate" for bitmasks. */
7867 if (elt_size == 1
7868 && !TREE_SIDE_EFFECTS (exp)
7869 && VECTOR_BOOLEAN_TYPE_P (type)
7870 && SCALAR_INT_MODE_P (TYPE_MODE (type))
7871 && (elt = uniform_vector_p (exp))
7872 && !VECTOR_TYPE_P (TREE_TYPE (elt)))
7874 rtx op0 = force_reg (TYPE_MODE (TREE_TYPE (elt)),
7875 expand_normal (elt));
7876 rtx tmp = gen_reg_rtx (mode);
7877 convert_move (tmp, op0, 0);
7879 /* Ensure no excess bits are set.
7880 GCN needs this for nunits < 64.
7881 x86 needs this for nunits < 8. */
7882 auto nunits = TYPE_VECTOR_SUBPARTS (type).to_constant ();
7883 if (maybe_ne (GET_MODE_PRECISION (mode), nunits))
7884 tmp = expand_binop (mode, and_optab, tmp,
7885 GEN_INT ((HOST_WIDE_INT_1U << nunits) - 1),
7886 target, true, OPTAB_WIDEN);
7887 if (tmp != target)
7888 emit_move_insn (target, tmp);
7889 break;
7892 n_elts = TYPE_VECTOR_SUBPARTS (type);
7893 if (REG_P (target)
7894 && VECTOR_MODE_P (mode)
7895 && n_elts.is_constant (&const_n_elts))
7897 machine_mode emode = eltmode;
7898 bool vector_typed_elts_p = false;
7900 if (CONSTRUCTOR_NELTS (exp)
7901 && (TREE_CODE (TREE_TYPE (CONSTRUCTOR_ELT (exp, 0)->value))
7902 == VECTOR_TYPE))
7904 tree etype = TREE_TYPE (CONSTRUCTOR_ELT (exp, 0)->value);
7905 gcc_assert (known_eq (CONSTRUCTOR_NELTS (exp)
7906 * TYPE_VECTOR_SUBPARTS (etype),
7907 n_elts));
7908 emode = TYPE_MODE (etype);
7909 vector_typed_elts_p = true;
7911 icode = convert_optab_handler (vec_init_optab, mode, emode);
7912 if (icode != CODE_FOR_nothing)
7914 unsigned int n = const_n_elts;
7916 if (vector_typed_elts_p)
7918 n = CONSTRUCTOR_NELTS (exp);
7919 vec_vec_init_p = true;
7921 vector = rtvec_alloc (n);
7922 for (unsigned int k = 0; k < n; k++)
7923 RTVEC_ELT (vector, k) = CONST0_RTX (emode);
7927 /* Compute the size of the elements in the CTOR. It differs
7928 from the size of the vector type elements only when the
7929 CTOR elements are vectors themselves. */
7930 tree val_type = (CONSTRUCTOR_NELTS (exp) != 0
7931 ? TREE_TYPE (CONSTRUCTOR_ELT (exp, 0)->value)
7932 : elttype);
7933 if (VECTOR_TYPE_P (val_type))
7934 bitsize = tree_to_uhwi (TYPE_SIZE (val_type));
7935 else
7936 bitsize = elt_size;
7938 /* If the constructor has fewer elements than the vector,
7939 clear the whole array first. Similarly if this is static
7940 constructor of a non-BLKmode object. */
7941 if (cleared)
7942 need_to_clear = false;
7943 else if (REG_P (target) && TREE_STATIC (exp))
7944 need_to_clear = true;
7945 else
7947 unsigned HOST_WIDE_INT count = 0, zero_count = 0;
7948 tree value;
7950 FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (exp), idx, value)
7952 int n_elts_here = bitsize / elt_size;
7953 count += n_elts_here;
7954 if (mostly_zeros_p (value))
7955 zero_count += n_elts_here;
7958 /* Clear the entire vector first if there are any missing elements,
7959 or if the incidence of zero elements is >= 75%. */
7960 need_to_clear = (maybe_lt (count, n_elts)
7961 || 4 * zero_count >= 3 * count);
7964 if (need_to_clear && maybe_gt (size, 0) && !vector)
7966 if (REG_P (target))
7967 emit_move_insn (target, CONST0_RTX (mode));
7968 else
7969 clear_storage (target, gen_int_mode (size, Pmode),
7970 BLOCK_OP_NORMAL);
7971 cleared = 1;
7974 /* Inform later passes that the old value is dead. */
7975 if (!cleared && !vector && REG_P (target) && maybe_gt (n_elts, 1u))
7977 emit_move_insn (target, CONST0_RTX (mode));
7978 cleared = 1;
7981 if (MEM_P (target))
7982 alias = MEM_ALIAS_SET (target);
7983 else
7984 alias = get_alias_set (elttype);
7986 /* Store each element of the constructor into the corresponding
7987 element of TARGET, determined by counting the elements. */
7988 for (idx = 0, i = 0;
7989 vec_safe_iterate (CONSTRUCTOR_ELTS (exp), idx, &ce);
7990 idx++, i += bitsize / elt_size)
7992 HOST_WIDE_INT eltpos;
7993 tree value = ce->value;
7995 if (cleared && initializer_zerop (value))
7996 continue;
7998 if (ce->index)
7999 eltpos = tree_to_uhwi (ce->index);
8000 else
8001 eltpos = i;
8003 if (vector)
8005 if (vec_vec_init_p)
8007 gcc_assert (ce->index == NULL_TREE);
8008 gcc_assert (TREE_CODE (TREE_TYPE (value)) == VECTOR_TYPE);
8009 eltpos = idx;
8011 else
8012 gcc_assert (TREE_CODE (TREE_TYPE (value)) != VECTOR_TYPE);
8013 RTVEC_ELT (vector, eltpos) = expand_normal (value);
8015 else
8017 machine_mode value_mode
8018 = (TREE_CODE (TREE_TYPE (value)) == VECTOR_TYPE
8019 ? TYPE_MODE (TREE_TYPE (value)) : eltmode);
8020 bitpos = eltpos * elt_size;
8021 store_constructor_field (target, bitsize, bitpos, 0,
8022 bitregion_end, value_mode,
8023 value, cleared, alias, reverse);
8027 if (vector)
8028 emit_insn (GEN_FCN (icode) (target,
8029 gen_rtx_PARALLEL (mode, vector)));
8030 break;
8033 default:
8034 gcc_unreachable ();
8038 /* Store the value of EXP (an expression tree)
8039 into a subfield of TARGET which has mode MODE and occupies
8040 BITSIZE bits, starting BITPOS bits from the start of TARGET.
8041 If MODE is VOIDmode, it means that we are storing into a bit-field.
8043 BITREGION_START is bitpos of the first bitfield in this region.
8044 BITREGION_END is the bitpos of the ending bitfield in this region.
8045 These two fields are 0, if the C++ memory model does not apply,
8046 or we are not interested in keeping track of bitfield regions.
8048 Always return const0_rtx unless we have something particular to
8049 return.
8051 ALIAS_SET is the alias set for the destination. This value will
8052 (in general) be different from that for TARGET, since TARGET is a
8053 reference to the containing structure.
8055 If NONTEMPORAL is true, try generating a nontemporal store.
8057 If REVERSE is true, the store is to be done in reverse order. */
8059 static rtx
8060 store_field (rtx target, poly_int64 bitsize, poly_int64 bitpos,
8061 poly_uint64 bitregion_start, poly_uint64 bitregion_end,
8062 machine_mode mode, tree exp,
8063 alias_set_type alias_set, bool nontemporal, bool reverse)
8065 if (TREE_CODE (exp) == ERROR_MARK)
8066 return const0_rtx;
8068 /* If we have nothing to store, do nothing unless the expression has
8069 side-effects. Don't do that for zero sized addressable lhs of
8070 calls. */
8071 if (known_eq (bitsize, 0)
8072 && (!TREE_ADDRESSABLE (TREE_TYPE (exp))
8073 || TREE_CODE (exp) != CALL_EXPR))
8074 return expand_expr (exp, const0_rtx, VOIDmode, EXPAND_NORMAL);
8076 if (GET_CODE (target) == CONCAT)
8078 /* We're storing into a struct containing a single __complex. */
8080 gcc_assert (known_eq (bitpos, 0));
8081 return store_expr (exp, target, 0, nontemporal, reverse);
8084 /* If the structure is in a register or if the component
8085 is a bit field, we cannot use addressing to access it.
8086 Use bit-field techniques or SUBREG to store in it. */
8088 poly_int64 decl_bitsize;
8089 if (mode == VOIDmode
8090 || (mode != BLKmode && ! direct_store[(int) mode]
8091 && GET_MODE_CLASS (mode) != MODE_COMPLEX_INT
8092 && GET_MODE_CLASS (mode) != MODE_COMPLEX_FLOAT)
8093 || REG_P (target)
8094 || GET_CODE (target) == SUBREG
8095 /* If the field isn't aligned enough to store as an ordinary memref,
8096 store it as a bit field. */
8097 || (mode != BLKmode
8098 && ((((MEM_ALIGN (target) < GET_MODE_ALIGNMENT (mode))
8099 || !multiple_p (bitpos, GET_MODE_ALIGNMENT (mode)))
8100 && targetm.slow_unaligned_access (mode, MEM_ALIGN (target)))
8101 || !multiple_p (bitpos, BITS_PER_UNIT)))
8102 || (known_size_p (bitsize)
8103 && mode != BLKmode
8104 && maybe_gt (GET_MODE_BITSIZE (mode), bitsize))
8105 /* If the RHS and field are a constant size and the size of the
8106 RHS isn't the same size as the bitfield, we must use bitfield
8107 operations. */
8108 || (known_size_p (bitsize)
8109 && poly_int_tree_p (TYPE_SIZE (TREE_TYPE (exp)))
8110 && maybe_ne (wi::to_poly_offset (TYPE_SIZE (TREE_TYPE (exp))),
8111 bitsize)
8112 /* Except for initialization of full bytes from a CONSTRUCTOR, which
8113 we will handle specially below. */
8114 && !(TREE_CODE (exp) == CONSTRUCTOR
8115 && multiple_p (bitsize, BITS_PER_UNIT))
8116 /* And except for bitwise copying of TREE_ADDRESSABLE types,
8117 where the FIELD_DECL has the right bitsize, but TREE_TYPE (exp)
8118 includes some extra padding. store_expr / expand_expr will in
8119 that case call get_inner_reference that will have the bitsize
8120 we check here and thus the block move will not clobber the
8121 padding that shouldn't be clobbered. In the future we could
8122 replace the TREE_ADDRESSABLE check with a check that
8123 get_base_address needs to live in memory. */
8124 && (!TREE_ADDRESSABLE (TREE_TYPE (exp))
8125 || TREE_CODE (exp) != COMPONENT_REF
8126 || !multiple_p (bitsize, BITS_PER_UNIT)
8127 || !multiple_p (bitpos, BITS_PER_UNIT)
8128 || !poly_int_tree_p (DECL_SIZE (TREE_OPERAND (exp, 1)),
8129 &decl_bitsize)
8130 || maybe_ne (decl_bitsize, bitsize))
8131 /* A call with an addressable return type and return-slot
8132 optimization must not need bitfield operations but we must
8133 pass down the original target. */
8134 && (TREE_CODE (exp) != CALL_EXPR
8135 || !TREE_ADDRESSABLE (TREE_TYPE (exp))
8136 || !CALL_EXPR_RETURN_SLOT_OPT (exp)))
8137 /* If we are expanding a MEM_REF of a non-BLKmode non-addressable
8138 decl we must use bitfield operations. */
8139 || (known_size_p (bitsize)
8140 && TREE_CODE (exp) == MEM_REF
8141 && TREE_CODE (TREE_OPERAND (exp, 0)) == ADDR_EXPR
8142 && DECL_P (TREE_OPERAND (TREE_OPERAND (exp, 0), 0))
8143 && !TREE_ADDRESSABLE (TREE_OPERAND (TREE_OPERAND (exp, 0), 0))
8144 && DECL_MODE (TREE_OPERAND (TREE_OPERAND (exp, 0), 0)) != BLKmode))
8146 rtx temp;
8147 gimple *nop_def;
8149 /* If EXP is a NOP_EXPR of precision less than its mode, then that
8150 implies a mask operation. If the precision is the same size as
8151 the field we're storing into, that mask is redundant. This is
8152 particularly common with bit field assignments generated by the
8153 C front end. */
8154 nop_def = get_def_for_expr (exp, NOP_EXPR);
8155 if (nop_def)
8157 tree type = TREE_TYPE (exp);
8158 if (INTEGRAL_TYPE_P (type)
8159 && maybe_ne (TYPE_PRECISION (type),
8160 GET_MODE_BITSIZE (TYPE_MODE (type)))
8161 && known_eq (bitsize, TYPE_PRECISION (type)))
8163 tree op = gimple_assign_rhs1 (nop_def);
8164 type = TREE_TYPE (op);
8165 if (INTEGRAL_TYPE_P (type)
8166 && known_ge (TYPE_PRECISION (type), bitsize))
8167 exp = op;
8171 temp = expand_normal (exp);
8173 /* We don't support variable-sized BLKmode bitfields, since our
8174 handling of BLKmode is bound up with the ability to break
8175 things into words. */
8176 gcc_assert (mode != BLKmode || bitsize.is_constant ());
8178 /* Handle calls that return values in multiple non-contiguous locations.
8179 The Irix 6 ABI has examples of this. */
8180 if (GET_CODE (temp) == PARALLEL)
8182 HOST_WIDE_INT size = int_size_in_bytes (TREE_TYPE (exp));
8183 machine_mode temp_mode = GET_MODE (temp);
8184 if (temp_mode == BLKmode || temp_mode == VOIDmode)
8185 temp_mode = smallest_int_mode_for_size (size * BITS_PER_UNIT);
8186 rtx temp_target = gen_reg_rtx (temp_mode);
8187 emit_group_store (temp_target, temp, TREE_TYPE (exp), size);
8188 temp = temp_target;
8191 /* Handle calls that return BLKmode values in registers. */
8192 else if (mode == BLKmode && REG_P (temp) && TREE_CODE (exp) == CALL_EXPR)
8194 rtx temp_target = gen_reg_rtx (GET_MODE (temp));
8195 copy_blkmode_from_reg (temp_target, temp, TREE_TYPE (exp));
8196 temp = temp_target;
8199 /* If the value has aggregate type and an integral mode then, if BITSIZE
8200 is narrower than this mode and this is for big-endian data, we first
8201 need to put the value into the low-order bits for store_bit_field,
8202 except when MODE is BLKmode and BITSIZE larger than the word size
8203 (see the handling of fields larger than a word in store_bit_field).
8204 Moreover, the field may be not aligned on a byte boundary; in this
8205 case, if it has reverse storage order, it needs to be accessed as a
8206 scalar field with reverse storage order and we must first put the
8207 value into target order. */
8208 scalar_int_mode temp_mode;
8209 if (AGGREGATE_TYPE_P (TREE_TYPE (exp))
8210 && is_int_mode (GET_MODE (temp), &temp_mode))
8212 HOST_WIDE_INT size = GET_MODE_BITSIZE (temp_mode);
8214 reverse = TYPE_REVERSE_STORAGE_ORDER (TREE_TYPE (exp));
8216 if (reverse)
8217 temp = flip_storage_order (temp_mode, temp);
8219 gcc_checking_assert (known_le (bitsize, size));
8220 if (maybe_lt (bitsize, size)
8221 && reverse ? !BYTES_BIG_ENDIAN : BYTES_BIG_ENDIAN
8222 /* Use of to_constant for BLKmode was checked above. */
8223 && !(mode == BLKmode && bitsize.to_constant () > BITS_PER_WORD))
8224 temp = expand_shift (RSHIFT_EXPR, temp_mode, temp,
8225 size - bitsize, NULL_RTX, 1);
8228 /* Unless MODE is VOIDmode or BLKmode, convert TEMP to MODE. */
8229 if (mode != VOIDmode && mode != BLKmode
8230 && mode != TYPE_MODE (TREE_TYPE (exp)))
8231 temp = convert_modes (mode, TYPE_MODE (TREE_TYPE (exp)), temp, 1);
8233 /* If the mode of TEMP and TARGET is BLKmode, both must be in memory
8234 and BITPOS must be aligned on a byte boundary. If so, we simply do
8235 a block copy. Likewise for a BLKmode-like TARGET. */
8236 if (GET_MODE (temp) == BLKmode
8237 && (GET_MODE (target) == BLKmode
8238 || (MEM_P (target)
8239 && GET_MODE_CLASS (GET_MODE (target)) == MODE_INT
8240 && multiple_p (bitpos, BITS_PER_UNIT)
8241 && multiple_p (bitsize, BITS_PER_UNIT))))
8243 gcc_assert (MEM_P (target) && MEM_P (temp));
8244 poly_int64 bytepos = exact_div (bitpos, BITS_PER_UNIT);
8245 poly_int64 bytesize = bits_to_bytes_round_up (bitsize);
8247 target = adjust_address (target, VOIDmode, bytepos);
8248 emit_block_move (target, temp,
8249 gen_int_mode (bytesize, Pmode),
8250 BLOCK_OP_NORMAL);
8252 return const0_rtx;
8255 /* If the mode of TEMP is still BLKmode and BITSIZE not larger than the
8256 word size, we need to load the value (see again store_bit_field). */
8257 if (GET_MODE (temp) == BLKmode && known_le (bitsize, BITS_PER_WORD))
8259 temp_mode = smallest_int_mode_for_size (bitsize);
8260 temp = extract_bit_field (temp, bitsize, 0, 1, NULL_RTX, temp_mode,
8261 temp_mode, false, NULL);
8264 /* Store the value in the bitfield. */
8265 gcc_checking_assert (known_ge (bitpos, 0));
8266 store_bit_field (target, bitsize, bitpos,
8267 bitregion_start, bitregion_end,
8268 mode, temp, reverse, false);
8270 return const0_rtx;
8272 else
8274 /* Now build a reference to just the desired component. */
8275 rtx to_rtx = adjust_address (target, mode,
8276 exact_div (bitpos, BITS_PER_UNIT));
8278 if (to_rtx == target)
8279 to_rtx = copy_rtx (to_rtx);
8281 if (!MEM_KEEP_ALIAS_SET_P (to_rtx) && MEM_ALIAS_SET (to_rtx) != 0)
8282 set_mem_alias_set (to_rtx, alias_set);
8284 /* Above we avoided using bitfield operations for storing a CONSTRUCTOR
8285 into a target smaller than its type; handle that case now. */
8286 if (TREE_CODE (exp) == CONSTRUCTOR && known_size_p (bitsize))
8288 poly_int64 bytesize = exact_div (bitsize, BITS_PER_UNIT);
8289 store_constructor (exp, to_rtx, 0, bytesize, reverse);
8290 return to_rtx;
8293 return store_expr (exp, to_rtx, 0, nontemporal, reverse);
8297 /* Given an expression EXP that may be a COMPONENT_REF, a BIT_FIELD_REF,
8298 an ARRAY_REF, or an ARRAY_RANGE_REF, look for nested operations of these
8299 codes and find the ultimate containing object, which we return.
8301 We set *PBITSIZE to the size in bits that we want, *PBITPOS to the
8302 bit position, *PUNSIGNEDP to the signedness and *PREVERSEP to the
8303 storage order of the field.
8304 If the position of the field is variable, we store a tree
8305 giving the variable offset (in units) in *POFFSET.
8306 This offset is in addition to the bit position.
8307 If the position is not variable, we store 0 in *POFFSET.
8309 If any of the extraction expressions is volatile,
8310 we store 1 in *PVOLATILEP. Otherwise we don't change that.
8312 If the field is a non-BLKmode bit-field, *PMODE is set to VOIDmode.
8313 Otherwise, it is a mode that can be used to access the field.
8315 If the field describes a variable-sized object, *PMODE is set to
8316 BLKmode and *PBITSIZE is set to -1. An access cannot be made in
8317 this case, but the address of the object can be found. */
8319 tree
8320 get_inner_reference (tree exp, poly_int64 *pbitsize,
8321 poly_int64 *pbitpos, tree *poffset,
8322 machine_mode *pmode, int *punsignedp,
8323 int *preversep, int *pvolatilep)
8325 tree size_tree = 0;
8326 machine_mode mode = VOIDmode;
8327 bool blkmode_bitfield = false;
8328 tree offset = size_zero_node;
8329 poly_offset_int bit_offset = 0;
8331 /* First get the mode, signedness, storage order and size. We do this from
8332 just the outermost expression. */
8333 *pbitsize = -1;
8334 if (TREE_CODE (exp) == COMPONENT_REF)
8336 tree field = TREE_OPERAND (exp, 1);
8337 size_tree = DECL_SIZE (field);
8338 if (flag_strict_volatile_bitfields > 0
8339 && TREE_THIS_VOLATILE (exp)
8340 && DECL_BIT_FIELD_TYPE (field)
8341 && DECL_MODE (field) != BLKmode)
8342 /* Volatile bitfields should be accessed in the mode of the
8343 field's type, not the mode computed based on the bit
8344 size. */
8345 mode = TYPE_MODE (DECL_BIT_FIELD_TYPE (field));
8346 else if (!DECL_BIT_FIELD (field))
8348 mode = DECL_MODE (field);
8349 /* For vector fields re-check the target flags, as DECL_MODE
8350 could have been set with different target flags than
8351 the current function has. */
8352 if (VECTOR_TYPE_P (TREE_TYPE (field))
8353 && VECTOR_MODE_P (TYPE_MODE_RAW (TREE_TYPE (field))))
8354 mode = TYPE_MODE (TREE_TYPE (field));
8356 else if (DECL_MODE (field) == BLKmode)
8357 blkmode_bitfield = true;
8359 *punsignedp = DECL_UNSIGNED (field);
8361 else if (TREE_CODE (exp) == BIT_FIELD_REF)
8363 size_tree = TREE_OPERAND (exp, 1);
8364 *punsignedp = (! INTEGRAL_TYPE_P (TREE_TYPE (exp))
8365 || TYPE_UNSIGNED (TREE_TYPE (exp)));
8367 /* For vector element types with the correct size of access or for
8368 vector typed accesses use the mode of the access type. */
8369 if ((TREE_CODE (TREE_TYPE (TREE_OPERAND (exp, 0))) == VECTOR_TYPE
8370 && TREE_TYPE (exp) == TREE_TYPE (TREE_TYPE (TREE_OPERAND (exp, 0)))
8371 && tree_int_cst_equal (size_tree, TYPE_SIZE (TREE_TYPE (exp))))
8372 || VECTOR_TYPE_P (TREE_TYPE (exp)))
8373 mode = TYPE_MODE (TREE_TYPE (exp));
8375 else
8377 mode = TYPE_MODE (TREE_TYPE (exp));
8378 *punsignedp = TYPE_UNSIGNED (TREE_TYPE (exp));
8380 if (mode == BLKmode)
8381 size_tree = TYPE_SIZE (TREE_TYPE (exp));
8382 else
8383 *pbitsize = GET_MODE_BITSIZE (mode);
8386 if (size_tree != 0)
8388 if (! tree_fits_uhwi_p (size_tree))
8389 mode = BLKmode, *pbitsize = -1;
8390 else
8391 *pbitsize = tree_to_uhwi (size_tree);
8394 *preversep = reverse_storage_order_for_component_p (exp);
8396 /* Compute cumulative bit-offset for nested component-refs and array-refs,
8397 and find the ultimate containing object. */
8398 while (1)
8400 switch (TREE_CODE (exp))
8402 case BIT_FIELD_REF:
8403 bit_offset += wi::to_poly_offset (TREE_OPERAND (exp, 2));
8404 break;
8406 case COMPONENT_REF:
8408 tree field = TREE_OPERAND (exp, 1);
8409 tree this_offset = component_ref_field_offset (exp);
8411 /* If this field hasn't been filled in yet, don't go past it.
8412 This should only happen when folding expressions made during
8413 type construction. */
8414 if (this_offset == 0)
8415 break;
8417 offset = size_binop (PLUS_EXPR, offset, this_offset);
8418 bit_offset += wi::to_poly_offset (DECL_FIELD_BIT_OFFSET (field));
8420 /* ??? Right now we don't do anything with DECL_OFFSET_ALIGN. */
8422 break;
8424 case ARRAY_REF:
8425 case ARRAY_RANGE_REF:
8427 tree index = TREE_OPERAND (exp, 1);
8428 tree low_bound = array_ref_low_bound (exp);
8429 tree unit_size = array_ref_element_size (exp);
8431 /* We assume all arrays have sizes that are a multiple of a byte.
8432 First subtract the lower bound, if any, in the type of the
8433 index, then convert to sizetype and multiply by the size of
8434 the array element. */
8435 if (! integer_zerop (low_bound))
8436 index = fold_build2 (MINUS_EXPR, TREE_TYPE (index),
8437 index, low_bound);
8439 offset = size_binop (PLUS_EXPR, offset,
8440 size_binop (MULT_EXPR,
8441 fold_convert (sizetype, index),
8442 unit_size));
8444 break;
8446 case REALPART_EXPR:
8447 break;
8449 case IMAGPART_EXPR:
8450 bit_offset += *pbitsize;
8451 break;
8453 case VIEW_CONVERT_EXPR:
8454 break;
8456 case MEM_REF:
8457 /* Hand back the decl for MEM[&decl, off]. */
8458 if (TREE_CODE (TREE_OPERAND (exp, 0)) == ADDR_EXPR)
8460 tree off = TREE_OPERAND (exp, 1);
8461 if (!integer_zerop (off))
8463 poly_offset_int boff = mem_ref_offset (exp);
8464 boff <<= LOG2_BITS_PER_UNIT;
8465 bit_offset += boff;
8467 exp = TREE_OPERAND (TREE_OPERAND (exp, 0), 0);
8469 goto done;
8471 default:
8472 goto done;
8475 /* If any reference in the chain is volatile, the effect is volatile. */
8476 if (TREE_THIS_VOLATILE (exp))
8477 *pvolatilep = 1;
8479 exp = TREE_OPERAND (exp, 0);
8481 done:
8483 /* If OFFSET is constant, see if we can return the whole thing as a
8484 constant bit position. Make sure to handle overflow during
8485 this conversion. */
8486 if (poly_int_tree_p (offset))
8488 poly_offset_int tem = wi::sext (wi::to_poly_offset (offset),
8489 TYPE_PRECISION (sizetype));
8490 tem <<= LOG2_BITS_PER_UNIT;
8491 tem += bit_offset;
8492 if (tem.to_shwi (pbitpos))
8493 *poffset = offset = NULL_TREE;
8496 /* Otherwise, split it up. */
8497 if (offset)
8499 /* Avoid returning a negative bitpos as this may wreak havoc later. */
8500 if (!bit_offset.to_shwi (pbitpos) || maybe_lt (*pbitpos, 0))
8502 *pbitpos = num_trailing_bits (bit_offset.force_shwi ());
8503 poly_offset_int bytes = bits_to_bytes_round_down (bit_offset);
8504 offset = size_binop (PLUS_EXPR, offset,
8505 build_int_cst (sizetype, bytes.force_shwi ()));
8508 *poffset = offset;
8511 /* We can use BLKmode for a byte-aligned BLKmode bitfield. */
8512 if (mode == VOIDmode
8513 && blkmode_bitfield
8514 && multiple_p (*pbitpos, BITS_PER_UNIT)
8515 && multiple_p (*pbitsize, BITS_PER_UNIT))
8516 *pmode = BLKmode;
8517 else
8518 *pmode = mode;
8520 return exp;
8523 /* Alignment in bits the TARGET of an assignment may be assumed to have. */
8525 static unsigned HOST_WIDE_INT
8526 target_align (const_tree target)
8528 /* We might have a chain of nested references with intermediate misaligning
8529 bitfields components, so need to recurse to find out. */
8531 unsigned HOST_WIDE_INT this_align, outer_align;
8533 switch (TREE_CODE (target))
8535 case BIT_FIELD_REF:
8536 return 1;
8538 case COMPONENT_REF:
8539 this_align = DECL_ALIGN (TREE_OPERAND (target, 1));
8540 outer_align = target_align (TREE_OPERAND (target, 0));
8541 return MIN (this_align, outer_align);
8543 case ARRAY_REF:
8544 case ARRAY_RANGE_REF:
8545 this_align = TYPE_ALIGN (TREE_TYPE (target));
8546 outer_align = target_align (TREE_OPERAND (target, 0));
8547 return MIN (this_align, outer_align);
8549 CASE_CONVERT:
8550 case NON_LVALUE_EXPR:
8551 case VIEW_CONVERT_EXPR:
8552 this_align = TYPE_ALIGN (TREE_TYPE (target));
8553 outer_align = target_align (TREE_OPERAND (target, 0));
8554 return MAX (this_align, outer_align);
8556 default:
8557 return TYPE_ALIGN (TREE_TYPE (target));
8562 /* Given an rtx VALUE that may contain additions and multiplications, return
8563 an equivalent value that just refers to a register, memory, or constant.
8564 This is done by generating instructions to perform the arithmetic and
8565 returning a pseudo-register containing the value.
8567 The returned value may be a REG, SUBREG, MEM or constant. */
8570 force_operand (rtx value, rtx target)
8572 rtx op1, op2;
8573 /* Use subtarget as the target for operand 0 of a binary operation. */
8574 rtx subtarget = get_subtarget (target);
8575 enum rtx_code code = GET_CODE (value);
8577 /* Check for subreg applied to an expression produced by loop optimizer. */
8578 if (code == SUBREG
8579 && !REG_P (SUBREG_REG (value))
8580 && !MEM_P (SUBREG_REG (value)))
8582 value
8583 = simplify_gen_subreg (GET_MODE (value),
8584 force_reg (GET_MODE (SUBREG_REG (value)),
8585 force_operand (SUBREG_REG (value),
8586 NULL_RTX)),
8587 GET_MODE (SUBREG_REG (value)),
8588 SUBREG_BYTE (value));
8589 code = GET_CODE (value);
8592 /* Check for a PIC address load. */
8593 if ((code == PLUS || code == MINUS)
8594 && XEXP (value, 0) == pic_offset_table_rtx
8595 && (GET_CODE (XEXP (value, 1)) == SYMBOL_REF
8596 || GET_CODE (XEXP (value, 1)) == LABEL_REF
8597 || GET_CODE (XEXP (value, 1)) == CONST))
8599 if (!subtarget)
8600 subtarget = gen_reg_rtx (GET_MODE (value));
8601 emit_move_insn (subtarget, value);
8602 return subtarget;
8605 if (ARITHMETIC_P (value))
8607 op2 = XEXP (value, 1);
8608 if (!CONSTANT_P (op2) && !(REG_P (op2) && op2 != subtarget))
8609 subtarget = 0;
8610 if (code == MINUS && CONST_INT_P (op2))
8612 code = PLUS;
8613 op2 = negate_rtx (GET_MODE (value), op2);
8616 /* Check for an addition with OP2 a constant integer and our first
8617 operand a PLUS of a virtual register and something else. In that
8618 case, we want to emit the sum of the virtual register and the
8619 constant first and then add the other value. This allows virtual
8620 register instantiation to simply modify the constant rather than
8621 creating another one around this addition. */
8622 if (code == PLUS && CONST_INT_P (op2)
8623 && GET_CODE (XEXP (value, 0)) == PLUS
8624 && REG_P (XEXP (XEXP (value, 0), 0))
8625 && VIRTUAL_REGISTER_P (XEXP (XEXP (value, 0), 0)))
8627 rtx temp = expand_simple_binop (GET_MODE (value), code,
8628 XEXP (XEXP (value, 0), 0), op2,
8629 subtarget, 0, OPTAB_LIB_WIDEN);
8630 return expand_simple_binop (GET_MODE (value), code, temp,
8631 force_operand (XEXP (XEXP (value,
8632 0), 1), 0),
8633 target, 0, OPTAB_LIB_WIDEN);
8636 op1 = force_operand (XEXP (value, 0), subtarget);
8637 op2 = force_operand (op2, NULL_RTX);
8638 switch (code)
8640 case MULT:
8641 return expand_mult (GET_MODE (value), op1, op2, target, 1);
8642 case DIV:
8643 if (!INTEGRAL_MODE_P (GET_MODE (value)))
8644 return expand_simple_binop (GET_MODE (value), code, op1, op2,
8645 target, 1, OPTAB_LIB_WIDEN);
8646 else
8647 return expand_divmod (0,
8648 FLOAT_MODE_P (GET_MODE (value))
8649 ? RDIV_EXPR : TRUNC_DIV_EXPR,
8650 GET_MODE (value), op1, op2, target, 0);
8651 case MOD:
8652 return expand_divmod (1, TRUNC_MOD_EXPR, GET_MODE (value), op1, op2,
8653 target, 0);
8654 case UDIV:
8655 return expand_divmod (0, TRUNC_DIV_EXPR, GET_MODE (value), op1, op2,
8656 target, 1);
8657 case UMOD:
8658 return expand_divmod (1, TRUNC_MOD_EXPR, GET_MODE (value), op1, op2,
8659 target, 1);
8660 case ASHIFTRT:
8661 return expand_simple_binop (GET_MODE (value), code, op1, op2,
8662 target, 0, OPTAB_LIB_WIDEN);
8663 default:
8664 return expand_simple_binop (GET_MODE (value), code, op1, op2,
8665 target, 1, OPTAB_LIB_WIDEN);
8668 if (UNARY_P (value))
8670 if (!target)
8671 target = gen_reg_rtx (GET_MODE (value));
8672 op1 = force_operand (XEXP (value, 0), NULL_RTX);
8673 switch (code)
8675 case ZERO_EXTEND:
8676 case SIGN_EXTEND:
8677 case TRUNCATE:
8678 case FLOAT_EXTEND:
8679 case FLOAT_TRUNCATE:
8680 convert_move (target, op1, code == ZERO_EXTEND);
8681 return target;
8683 case FIX:
8684 case UNSIGNED_FIX:
8685 expand_fix (target, op1, code == UNSIGNED_FIX);
8686 return target;
8688 case FLOAT:
8689 case UNSIGNED_FLOAT:
8690 expand_float (target, op1, code == UNSIGNED_FLOAT);
8691 return target;
8693 default:
8694 return expand_simple_unop (GET_MODE (value), code, op1, target, 0);
8698 #ifdef INSN_SCHEDULING
8699 /* On machines that have insn scheduling, we want all memory reference to be
8700 explicit, so we need to deal with such paradoxical SUBREGs. */
8701 if (paradoxical_subreg_p (value) && MEM_P (SUBREG_REG (value)))
8702 value
8703 = simplify_gen_subreg (GET_MODE (value),
8704 force_reg (GET_MODE (SUBREG_REG (value)),
8705 force_operand (SUBREG_REG (value),
8706 NULL_RTX)),
8707 GET_MODE (SUBREG_REG (value)),
8708 SUBREG_BYTE (value));
8709 #endif
8711 return value;
8714 /* Subroutine of expand_expr: return true iff there is no way that
8715 EXP can reference X, which is being modified. TOP_P is nonzero if this
8716 call is going to be used to determine whether we need a temporary
8717 for EXP, as opposed to a recursive call to this function.
8719 It is always safe for this routine to return false since it merely
8720 searches for optimization opportunities. */
8722 bool
8723 safe_from_p (const_rtx x, tree exp, int top_p)
8725 rtx exp_rtl = 0;
8726 int i, nops;
8728 if (x == 0
8729 /* If EXP has varying size, we MUST use a target since we currently
8730 have no way of allocating temporaries of variable size
8731 (except for arrays that have TYPE_ARRAY_MAX_SIZE set).
8732 So we assume here that something at a higher level has prevented a
8733 clash. This is somewhat bogus, but the best we can do. Only
8734 do this when X is BLKmode and when we are at the top level. */
8735 || (top_p && TREE_TYPE (exp) != 0 && COMPLETE_TYPE_P (TREE_TYPE (exp))
8736 && TREE_CODE (TYPE_SIZE (TREE_TYPE (exp))) != INTEGER_CST
8737 && (TREE_CODE (TREE_TYPE (exp)) != ARRAY_TYPE
8738 || TYPE_ARRAY_MAX_SIZE (TREE_TYPE (exp)) == NULL_TREE
8739 || TREE_CODE (TYPE_ARRAY_MAX_SIZE (TREE_TYPE (exp)))
8740 != INTEGER_CST)
8741 && GET_MODE (x) == BLKmode)
8742 /* If X is in the outgoing argument area, it is always safe. */
8743 || (MEM_P (x)
8744 && (XEXP (x, 0) == virtual_outgoing_args_rtx
8745 || (GET_CODE (XEXP (x, 0)) == PLUS
8746 && XEXP (XEXP (x, 0), 0) == virtual_outgoing_args_rtx))))
8747 return true;
8749 /* If this is a subreg of a hard register, declare it unsafe, otherwise,
8750 find the underlying pseudo. */
8751 if (GET_CODE (x) == SUBREG)
8753 x = SUBREG_REG (x);
8754 if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER)
8755 return false;
8758 /* Now look at our tree code and possibly recurse. */
8759 switch (TREE_CODE_CLASS (TREE_CODE (exp)))
8761 case tcc_declaration:
8762 exp_rtl = DECL_RTL_IF_SET (exp);
8763 break;
8765 case tcc_constant:
8766 return true;
8768 case tcc_exceptional:
8769 if (TREE_CODE (exp) == TREE_LIST)
8771 while (1)
8773 if (TREE_VALUE (exp) && !safe_from_p (x, TREE_VALUE (exp), 0))
8774 return false;
8775 exp = TREE_CHAIN (exp);
8776 if (!exp)
8777 return true;
8778 if (TREE_CODE (exp) != TREE_LIST)
8779 return safe_from_p (x, exp, 0);
8782 else if (TREE_CODE (exp) == CONSTRUCTOR)
8784 constructor_elt *ce;
8785 unsigned HOST_WIDE_INT idx;
8787 FOR_EACH_VEC_SAFE_ELT (CONSTRUCTOR_ELTS (exp), idx, ce)
8788 if ((ce->index != NULL_TREE && !safe_from_p (x, ce->index, 0))
8789 || !safe_from_p (x, ce->value, 0))
8790 return false;
8791 return true;
8793 else if (TREE_CODE (exp) == ERROR_MARK)
8794 return true; /* An already-visited SAVE_EXPR? */
8795 else
8796 return false;
8798 case tcc_statement:
8799 /* The only case we look at here is the DECL_INITIAL inside a
8800 DECL_EXPR. */
8801 return (TREE_CODE (exp) != DECL_EXPR
8802 || TREE_CODE (DECL_EXPR_DECL (exp)) != VAR_DECL
8803 || !DECL_INITIAL (DECL_EXPR_DECL (exp))
8804 || safe_from_p (x, DECL_INITIAL (DECL_EXPR_DECL (exp)), 0));
8806 case tcc_binary:
8807 case tcc_comparison:
8808 if (!safe_from_p (x, TREE_OPERAND (exp, 1), 0))
8809 return false;
8810 /* Fall through. */
8812 case tcc_unary:
8813 return safe_from_p (x, TREE_OPERAND (exp, 0), 0);
8815 case tcc_expression:
8816 case tcc_reference:
8817 case tcc_vl_exp:
8818 /* Now do code-specific tests. EXP_RTL is set to any rtx we find in
8819 the expression. If it is set, we conflict iff we are that rtx or
8820 both are in memory. Otherwise, we check all operands of the
8821 expression recursively. */
8823 switch (TREE_CODE (exp))
8825 case ADDR_EXPR:
8826 /* If the operand is static or we are static, we can't conflict.
8827 Likewise if we don't conflict with the operand at all. */
8828 if (staticp (TREE_OPERAND (exp, 0))
8829 || TREE_STATIC (exp)
8830 || safe_from_p (x, TREE_OPERAND (exp, 0), 0))
8831 return true;
8833 /* Otherwise, the only way this can conflict is if we are taking
8834 the address of a DECL a that address if part of X, which is
8835 very rare. */
8836 exp = TREE_OPERAND (exp, 0);
8837 if (DECL_P (exp))
8839 if (!DECL_RTL_SET_P (exp)
8840 || !MEM_P (DECL_RTL (exp)))
8841 return false;
8842 else
8843 exp_rtl = XEXP (DECL_RTL (exp), 0);
8845 break;
8847 case MEM_REF:
8848 if (MEM_P (x)
8849 && alias_sets_conflict_p (MEM_ALIAS_SET (x),
8850 get_alias_set (exp)))
8851 return false;
8852 break;
8854 case CALL_EXPR:
8855 /* Assume that the call will clobber all hard registers and
8856 all of memory. */
8857 if ((REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER)
8858 || MEM_P (x))
8859 return false;
8860 break;
8862 case WITH_CLEANUP_EXPR:
8863 case CLEANUP_POINT_EXPR:
8864 /* Lowered by gimplify.cc. */
8865 gcc_unreachable ();
8867 case SAVE_EXPR:
8868 return safe_from_p (x, TREE_OPERAND (exp, 0), 0);
8870 default:
8871 break;
8874 /* If we have an rtx, we do not need to scan our operands. */
8875 if (exp_rtl)
8876 break;
8878 nops = TREE_OPERAND_LENGTH (exp);
8879 for (i = 0; i < nops; i++)
8880 if (TREE_OPERAND (exp, i) != 0
8881 && ! safe_from_p (x, TREE_OPERAND (exp, i), 0))
8882 return false;
8884 break;
8886 case tcc_type:
8887 /* Should never get a type here. */
8888 gcc_unreachable ();
8891 /* If we have an rtl, find any enclosed object. Then see if we conflict
8892 with it. */
8893 if (exp_rtl)
8895 if (GET_CODE (exp_rtl) == SUBREG)
8897 exp_rtl = SUBREG_REG (exp_rtl);
8898 if (REG_P (exp_rtl)
8899 && REGNO (exp_rtl) < FIRST_PSEUDO_REGISTER)
8900 return false;
8903 /* If the rtl is X, then it is not safe. Otherwise, it is unless both
8904 are memory and they conflict. */
8905 return ! (rtx_equal_p (x, exp_rtl)
8906 || (MEM_P (x) && MEM_P (exp_rtl)
8907 && true_dependence (exp_rtl, VOIDmode, x)));
8910 /* If we reach here, it is safe. */
8911 return true;
8915 /* Return the highest power of two that EXP is known to be a multiple of.
8916 This is used in updating alignment of MEMs in array references. */
8918 unsigned HOST_WIDE_INT
8919 highest_pow2_factor (const_tree exp)
8921 unsigned HOST_WIDE_INT ret;
8922 int trailing_zeros = tree_ctz (exp);
8923 if (trailing_zeros >= HOST_BITS_PER_WIDE_INT)
8924 return BIGGEST_ALIGNMENT;
8925 ret = HOST_WIDE_INT_1U << trailing_zeros;
8926 if (ret > BIGGEST_ALIGNMENT)
8927 return BIGGEST_ALIGNMENT;
8928 return ret;
8931 /* Similar, except that the alignment requirements of TARGET are
8932 taken into account. Assume it is at least as aligned as its
8933 type, unless it is a COMPONENT_REF in which case the layout of
8934 the structure gives the alignment. */
8936 static unsigned HOST_WIDE_INT
8937 highest_pow2_factor_for_target (const_tree target, const_tree exp)
8939 unsigned HOST_WIDE_INT talign = target_align (target) / BITS_PER_UNIT;
8940 unsigned HOST_WIDE_INT factor = highest_pow2_factor (exp);
8942 return MAX (factor, talign);
8945 /* Convert the tree comparison code TCODE to the rtl one where the
8946 signedness is UNSIGNEDP. */
8948 static enum rtx_code
8949 convert_tree_comp_to_rtx (enum tree_code tcode, int unsignedp)
8951 enum rtx_code code;
8952 switch (tcode)
8954 case EQ_EXPR:
8955 code = EQ;
8956 break;
8957 case NE_EXPR:
8958 code = NE;
8959 break;
8960 case LT_EXPR:
8961 code = unsignedp ? LTU : LT;
8962 break;
8963 case LE_EXPR:
8964 code = unsignedp ? LEU : LE;
8965 break;
8966 case GT_EXPR:
8967 code = unsignedp ? GTU : GT;
8968 break;
8969 case GE_EXPR:
8970 code = unsignedp ? GEU : GE;
8971 break;
8972 case UNORDERED_EXPR:
8973 code = UNORDERED;
8974 break;
8975 case ORDERED_EXPR:
8976 code = ORDERED;
8977 break;
8978 case UNLT_EXPR:
8979 code = UNLT;
8980 break;
8981 case UNLE_EXPR:
8982 code = UNLE;
8983 break;
8984 case UNGT_EXPR:
8985 code = UNGT;
8986 break;
8987 case UNGE_EXPR:
8988 code = UNGE;
8989 break;
8990 case UNEQ_EXPR:
8991 code = UNEQ;
8992 break;
8993 case LTGT_EXPR:
8994 code = LTGT;
8995 break;
8997 default:
8998 gcc_unreachable ();
9000 return code;
9003 /* Subroutine of expand_expr. Expand the two operands of a binary
9004 expression EXP0 and EXP1 placing the results in OP0 and OP1.
9005 The value may be stored in TARGET if TARGET is nonzero. The
9006 MODIFIER argument is as documented by expand_expr. */
9008 void
9009 expand_operands (tree exp0, tree exp1, rtx target, rtx *op0, rtx *op1,
9010 enum expand_modifier modifier)
9012 if (! safe_from_p (target, exp1, 1))
9013 target = 0;
9014 if (operand_equal_p (exp0, exp1, 0))
9016 *op0 = expand_expr (exp0, target, VOIDmode, modifier);
9017 *op1 = copy_rtx (*op0);
9019 else
9021 *op0 = expand_expr (exp0, target, VOIDmode, modifier);
9022 *op1 = expand_expr (exp1, NULL_RTX, VOIDmode, modifier);
9027 /* Return a MEM that contains constant EXP. DEFER is as for
9028 output_constant_def and MODIFIER is as for expand_expr. */
9030 static rtx
9031 expand_expr_constant (tree exp, int defer, enum expand_modifier modifier)
9033 rtx mem;
9035 mem = output_constant_def (exp, defer);
9036 if (modifier != EXPAND_INITIALIZER)
9037 mem = use_anchored_address (mem);
9038 return mem;
9041 /* A subroutine of expand_expr_addr_expr. Evaluate the address of EXP.
9042 The TARGET, TMODE and MODIFIER arguments are as for expand_expr. */
9044 static rtx
9045 expand_expr_addr_expr_1 (tree exp, rtx target, scalar_int_mode tmode,
9046 enum expand_modifier modifier, addr_space_t as)
9048 rtx result, subtarget;
9049 tree inner, offset;
9050 poly_int64 bitsize, bitpos;
9051 int unsignedp, reversep, volatilep = 0;
9052 machine_mode mode1;
9054 /* If we are taking the address of a constant and are at the top level,
9055 we have to use output_constant_def since we can't call force_const_mem
9056 at top level. */
9057 /* ??? This should be considered a front-end bug. We should not be
9058 generating ADDR_EXPR of something that isn't an LVALUE. The only
9059 exception here is STRING_CST. */
9060 if (CONSTANT_CLASS_P (exp))
9062 result = XEXP (expand_expr_constant (exp, 0, modifier), 0);
9063 if (modifier < EXPAND_SUM)
9064 result = force_operand (result, target);
9065 return result;
9068 /* Everything must be something allowed by is_gimple_addressable. */
9069 switch (TREE_CODE (exp))
9071 case INDIRECT_REF:
9072 /* This case will happen via recursion for &a->b. */
9073 return expand_expr (TREE_OPERAND (exp, 0), target, tmode, modifier);
9075 case MEM_REF:
9077 tree tem = TREE_OPERAND (exp, 0);
9078 if (!integer_zerop (TREE_OPERAND (exp, 1)))
9079 tem = fold_build_pointer_plus (tem, TREE_OPERAND (exp, 1));
9080 return expand_expr (tem, target, tmode, modifier);
9083 case TARGET_MEM_REF:
9084 return addr_for_mem_ref (exp, as, true);
9086 case CONST_DECL:
9087 /* Expand the initializer like constants above. */
9088 result = XEXP (expand_expr_constant (DECL_INITIAL (exp),
9089 0, modifier), 0);
9090 if (modifier < EXPAND_SUM)
9091 result = force_operand (result, target);
9092 return result;
9094 case REALPART_EXPR:
9095 /* The real part of the complex number is always first, therefore
9096 the address is the same as the address of the parent object. */
9097 offset = 0;
9098 bitpos = 0;
9099 inner = TREE_OPERAND (exp, 0);
9100 break;
9102 case IMAGPART_EXPR:
9103 /* The imaginary part of the complex number is always second.
9104 The expression is therefore always offset by the size of the
9105 scalar type. */
9106 offset = 0;
9107 bitpos = GET_MODE_BITSIZE (SCALAR_TYPE_MODE (TREE_TYPE (exp)));
9108 inner = TREE_OPERAND (exp, 0);
9109 break;
9111 case COMPOUND_LITERAL_EXPR:
9112 /* Allow COMPOUND_LITERAL_EXPR in initializers or coming from
9113 initializers, if e.g. rtl_for_decl_init is called on DECL_INITIAL
9114 with COMPOUND_LITERAL_EXPRs in it, or ARRAY_REF on a const static
9115 array with address of COMPOUND_LITERAL_EXPR in DECL_INITIAL;
9116 the initializers aren't gimplified. */
9117 if (COMPOUND_LITERAL_EXPR_DECL (exp)
9118 && is_global_var (COMPOUND_LITERAL_EXPR_DECL (exp)))
9119 return expand_expr_addr_expr_1 (COMPOUND_LITERAL_EXPR_DECL (exp),
9120 target, tmode, modifier, as);
9121 /* FALLTHRU */
9122 default:
9123 /* If the object is a DECL, then expand it for its rtl. Don't bypass
9124 expand_expr, as that can have various side effects; LABEL_DECLs for
9125 example, may not have their DECL_RTL set yet. Expand the rtl of
9126 CONSTRUCTORs too, which should yield a memory reference for the
9127 constructor's contents. Assume language specific tree nodes can
9128 be expanded in some interesting way. */
9129 gcc_assert (TREE_CODE (exp) < LAST_AND_UNUSED_TREE_CODE);
9130 if (DECL_P (exp)
9131 || TREE_CODE (exp) == CONSTRUCTOR
9132 || TREE_CODE (exp) == COMPOUND_LITERAL_EXPR)
9134 result = expand_expr (exp, target, tmode,
9135 modifier == EXPAND_INITIALIZER
9136 ? EXPAND_INITIALIZER : EXPAND_CONST_ADDRESS);
9138 /* If the DECL isn't in memory, then the DECL wasn't properly
9139 marked TREE_ADDRESSABLE, which will be either a front-end
9140 or a tree optimizer bug. */
9142 gcc_assert (MEM_P (result));
9143 result = XEXP (result, 0);
9145 /* ??? Is this needed anymore? */
9146 if (DECL_P (exp))
9147 TREE_USED (exp) = 1;
9149 if (modifier != EXPAND_INITIALIZER
9150 && modifier != EXPAND_CONST_ADDRESS
9151 && modifier != EXPAND_SUM)
9152 result = force_operand (result, target);
9153 return result;
9156 /* Pass FALSE as the last argument to get_inner_reference although
9157 we are expanding to RTL. The rationale is that we know how to
9158 handle "aligning nodes" here: we can just bypass them because
9159 they won't change the final object whose address will be returned
9160 (they actually exist only for that purpose). */
9161 inner = get_inner_reference (exp, &bitsize, &bitpos, &offset, &mode1,
9162 &unsignedp, &reversep, &volatilep);
9163 break;
9166 /* We must have made progress. */
9167 gcc_assert (inner != exp);
9169 subtarget = offset || maybe_ne (bitpos, 0) ? NULL_RTX : target;
9170 /* For VIEW_CONVERT_EXPR, where the outer alignment is bigger than
9171 inner alignment, force the inner to be sufficiently aligned. */
9172 if (CONSTANT_CLASS_P (inner)
9173 && TYPE_ALIGN (TREE_TYPE (inner)) < TYPE_ALIGN (TREE_TYPE (exp)))
9175 inner = copy_node (inner);
9176 TREE_TYPE (inner) = copy_node (TREE_TYPE (inner));
9177 SET_TYPE_ALIGN (TREE_TYPE (inner), TYPE_ALIGN (TREE_TYPE (exp)));
9178 TYPE_USER_ALIGN (TREE_TYPE (inner)) = 1;
9180 result = expand_expr_addr_expr_1 (inner, subtarget, tmode, modifier, as);
9182 if (offset)
9184 rtx tmp;
9186 if (modifier != EXPAND_NORMAL)
9187 result = force_operand (result, NULL);
9188 tmp = expand_expr (offset, NULL_RTX, tmode,
9189 modifier == EXPAND_INITIALIZER
9190 ? EXPAND_INITIALIZER : EXPAND_NORMAL);
9192 /* expand_expr is allowed to return an object in a mode other
9193 than TMODE. If it did, we need to convert. */
9194 if (GET_MODE (tmp) != VOIDmode && tmode != GET_MODE (tmp))
9195 tmp = convert_modes (tmode, GET_MODE (tmp),
9196 tmp, TYPE_UNSIGNED (TREE_TYPE (offset)));
9197 result = convert_memory_address_addr_space (tmode, result, as);
9198 tmp = convert_memory_address_addr_space (tmode, tmp, as);
9200 if (modifier == EXPAND_SUM || modifier == EXPAND_INITIALIZER)
9201 result = simplify_gen_binary (PLUS, tmode, result, tmp);
9202 else
9204 subtarget = maybe_ne (bitpos, 0) ? NULL_RTX : target;
9205 result = expand_simple_binop (tmode, PLUS, result, tmp, subtarget,
9206 1, OPTAB_LIB_WIDEN);
9210 if (maybe_ne (bitpos, 0))
9212 /* Someone beforehand should have rejected taking the address
9213 of an object that isn't byte-aligned. */
9214 poly_int64 bytepos = exact_div (bitpos, BITS_PER_UNIT);
9215 result = convert_memory_address_addr_space (tmode, result, as);
9216 result = plus_constant (tmode, result, bytepos);
9217 if (modifier < EXPAND_SUM)
9218 result = force_operand (result, target);
9221 return result;
9224 /* A subroutine of expand_expr. Evaluate EXP, which is an ADDR_EXPR.
9225 The TARGET, TMODE and MODIFIER arguments are as for expand_expr. */
9227 static rtx
9228 expand_expr_addr_expr (tree exp, rtx target, machine_mode tmode,
9229 enum expand_modifier modifier)
9231 addr_space_t as = ADDR_SPACE_GENERIC;
9232 scalar_int_mode address_mode = Pmode;
9233 scalar_int_mode pointer_mode = ptr_mode;
9234 machine_mode rmode;
9235 rtx result;
9237 /* Target mode of VOIDmode says "whatever's natural". */
9238 if (tmode == VOIDmode)
9239 tmode = TYPE_MODE (TREE_TYPE (exp));
9241 if (POINTER_TYPE_P (TREE_TYPE (exp)))
9243 as = TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (exp)));
9244 address_mode = targetm.addr_space.address_mode (as);
9245 pointer_mode = targetm.addr_space.pointer_mode (as);
9248 /* We can get called with some Weird Things if the user does silliness
9249 like "(short) &a". In that case, convert_memory_address won't do
9250 the right thing, so ignore the given target mode. */
9251 scalar_int_mode new_tmode = (tmode == pointer_mode
9252 ? pointer_mode
9253 : address_mode);
9255 result = expand_expr_addr_expr_1 (TREE_OPERAND (exp, 0), target,
9256 new_tmode, modifier, as);
9258 /* Despite expand_expr claims concerning ignoring TMODE when not
9259 strictly convenient, stuff breaks if we don't honor it. Note
9260 that combined with the above, we only do this for pointer modes. */
9261 rmode = GET_MODE (result);
9262 if (rmode == VOIDmode)
9263 rmode = new_tmode;
9264 if (rmode != new_tmode)
9265 result = convert_memory_address_addr_space (new_tmode, result, as);
9267 return result;
9270 /* Generate code for computing CONSTRUCTOR EXP.
9271 An rtx for the computed value is returned. If AVOID_TEMP_MEM
9272 is TRUE, instead of creating a temporary variable in memory
9273 NULL is returned and the caller needs to handle it differently. */
9275 static rtx
9276 expand_constructor (tree exp, rtx target, enum expand_modifier modifier,
9277 bool avoid_temp_mem)
9279 tree type = TREE_TYPE (exp);
9280 machine_mode mode = TYPE_MODE (type);
9282 /* Try to avoid creating a temporary at all. This is possible
9283 if all of the initializer is zero.
9284 FIXME: try to handle all [0..255] initializers we can handle
9285 with memset. */
9286 if (TREE_STATIC (exp)
9287 && !TREE_ADDRESSABLE (exp)
9288 && target != 0 && mode == BLKmode
9289 && all_zeros_p (exp))
9291 clear_storage (target, expr_size (exp), BLOCK_OP_NORMAL);
9292 return target;
9295 /* All elts simple constants => refer to a constant in memory. But
9296 if this is a non-BLKmode mode, let it store a field at a time
9297 since that should make a CONST_INT, CONST_WIDE_INT or
9298 CONST_DOUBLE when we fold. Likewise, if we have a target we can
9299 use, it is best to store directly into the target unless the type
9300 is large enough that memcpy will be used. If we are making an
9301 initializer and all operands are constant, put it in memory as
9302 well.
9304 FIXME: Avoid trying to fill vector constructors piece-meal.
9305 Output them with output_constant_def below unless we're sure
9306 they're zeros. This should go away when vector initializers
9307 are treated like VECTOR_CST instead of arrays. */
9308 if ((TREE_STATIC (exp)
9309 && ((mode == BLKmode
9310 && ! (target != 0 && safe_from_p (target, exp, 1)))
9311 || TREE_ADDRESSABLE (exp)
9312 || (tree_fits_uhwi_p (TYPE_SIZE_UNIT (type))
9313 && (! can_move_by_pieces
9314 (tree_to_uhwi (TYPE_SIZE_UNIT (type)),
9315 TYPE_ALIGN (type)))
9316 && ! mostly_zeros_p (exp))))
9317 || ((modifier == EXPAND_INITIALIZER || modifier == EXPAND_CONST_ADDRESS)
9318 && TREE_CONSTANT (exp)))
9320 rtx constructor;
9322 if (avoid_temp_mem)
9323 return NULL_RTX;
9325 constructor = expand_expr_constant (exp, 1, modifier);
9327 if (modifier != EXPAND_CONST_ADDRESS
9328 && modifier != EXPAND_INITIALIZER
9329 && modifier != EXPAND_SUM)
9330 constructor = validize_mem (constructor);
9332 return constructor;
9335 /* If the CTOR is available in static storage and not mostly
9336 zeros and we can move it by pieces prefer to do so since
9337 that's usually more efficient than performing a series of
9338 stores from immediates. */
9339 if (avoid_temp_mem
9340 && TREE_STATIC (exp)
9341 && TREE_CONSTANT (exp)
9342 && tree_fits_uhwi_p (TYPE_SIZE_UNIT (type))
9343 && can_move_by_pieces (tree_to_uhwi (TYPE_SIZE_UNIT (type)),
9344 TYPE_ALIGN (type))
9345 && ! mostly_zeros_p (exp))
9346 return NULL_RTX;
9348 /* Handle calls that pass values in multiple non-contiguous
9349 locations. The Irix 6 ABI has examples of this. */
9350 if (target == 0 || ! safe_from_p (target, exp, 1)
9351 || GET_CODE (target) == PARALLEL || modifier == EXPAND_STACK_PARM
9352 /* Also make a temporary if the store is to volatile memory, to
9353 avoid individual accesses to aggregate members. */
9354 || (GET_CODE (target) == MEM
9355 && MEM_VOLATILE_P (target)
9356 && !TREE_ADDRESSABLE (TREE_TYPE (exp))))
9358 if (avoid_temp_mem)
9359 return NULL_RTX;
9361 target = assign_temp (type, TREE_ADDRESSABLE (exp), 1);
9364 store_constructor (exp, target, 0, int_expr_size (exp), false);
9365 return target;
9369 /* expand_expr: generate code for computing expression EXP.
9370 An rtx for the computed value is returned. The value is never null.
9371 In the case of a void EXP, const0_rtx is returned.
9373 The value may be stored in TARGET if TARGET is nonzero.
9374 TARGET is just a suggestion; callers must assume that
9375 the rtx returned may not be the same as TARGET.
9377 If TARGET is CONST0_RTX, it means that the value will be ignored.
9379 If TMODE is not VOIDmode, it suggests generating the
9380 result in mode TMODE. But this is done only when convenient.
9381 Otherwise, TMODE is ignored and the value generated in its natural mode.
9382 TMODE is just a suggestion; callers must assume that
9383 the rtx returned may not have mode TMODE.
9385 Note that TARGET may have neither TMODE nor MODE. In that case, it
9386 probably will not be used.
9388 If MODIFIER is EXPAND_SUM then when EXP is an addition
9389 we can return an rtx of the form (MULT (REG ...) (CONST_INT ...))
9390 or a nest of (PLUS ...) and (MINUS ...) where the terms are
9391 products as above, or REG or MEM, or constant.
9392 Ordinarily in such cases we would output mul or add instructions
9393 and then return a pseudo reg containing the sum.
9395 EXPAND_INITIALIZER is much like EXPAND_SUM except that
9396 it also marks a label as absolutely required (it can't be dead).
9397 It also makes a ZERO_EXTEND or SIGN_EXTEND instead of emitting extend insns.
9398 This is used for outputting expressions used in initializers.
9400 EXPAND_CONST_ADDRESS says that it is okay to return a MEM
9401 with a constant address even if that address is not normally legitimate.
9402 EXPAND_INITIALIZER and EXPAND_SUM also have this effect.
9404 EXPAND_STACK_PARM is used when expanding to a TARGET on the stack for
9405 a call parameter. Such targets require special care as we haven't yet
9406 marked TARGET so that it's safe from being trashed by libcalls. We
9407 don't want to use TARGET for anything but the final result;
9408 Intermediate values must go elsewhere. Additionally, calls to
9409 emit_block_move will be flagged with BLOCK_OP_CALL_PARM.
9411 If EXP is a VAR_DECL whose DECL_RTL was a MEM with an invalid
9412 address, and ALT_RTL is non-NULL, then *ALT_RTL is set to the
9413 DECL_RTL of the VAR_DECL. *ALT_RTL is also set if EXP is a
9414 COMPOUND_EXPR whose second argument is such a VAR_DECL, and so on
9415 recursively.
9416 If the result can be stored at TARGET, and ALT_RTL is non-NULL,
9417 then *ALT_RTL is set to TARGET (before legitimziation).
9419 If INNER_REFERENCE_P is true, we are expanding an inner reference.
9420 In this case, we don't adjust a returned MEM rtx that wouldn't be
9421 sufficiently aligned for its mode; instead, it's up to the caller
9422 to deal with it afterwards. This is used to make sure that unaligned
9423 base objects for which out-of-bounds accesses are supported, for
9424 example record types with trailing arrays, aren't realigned behind
9425 the back of the caller.
9426 The normal operating mode is to pass FALSE for this parameter. */
9429 expand_expr_real (tree exp, rtx target, machine_mode tmode,
9430 enum expand_modifier modifier, rtx *alt_rtl,
9431 bool inner_reference_p)
9433 rtx ret;
9435 /* Handle ERROR_MARK before anybody tries to access its type. */
9436 if (TREE_CODE (exp) == ERROR_MARK
9437 || (TREE_CODE (TREE_TYPE (exp)) == ERROR_MARK))
9439 ret = CONST0_RTX (tmode);
9440 return ret ? ret : const0_rtx;
9443 ret = expand_expr_real_1 (exp, target, tmode, modifier, alt_rtl,
9444 inner_reference_p);
9445 return ret;
9448 /* Try to expand the conditional expression which is represented by
9449 TREEOP0 ? TREEOP1 : TREEOP2 using conditonal moves. If it succeeds
9450 return the rtl reg which represents the result. Otherwise return
9451 NULL_RTX. */
9453 static rtx
9454 expand_cond_expr_using_cmove (tree treeop0 ATTRIBUTE_UNUSED,
9455 tree treeop1 ATTRIBUTE_UNUSED,
9456 tree treeop2 ATTRIBUTE_UNUSED)
9458 rtx insn;
9459 rtx op00, op01, op1, op2;
9460 enum rtx_code comparison_code;
9461 machine_mode comparison_mode;
9462 gimple *srcstmt;
9463 rtx temp;
9464 tree type = TREE_TYPE (treeop1);
9465 int unsignedp = TYPE_UNSIGNED (type);
9466 machine_mode mode = TYPE_MODE (type);
9467 machine_mode orig_mode = mode;
9468 static bool expanding_cond_expr_using_cmove = false;
9470 /* Conditional move expansion can end up TERing two operands which,
9471 when recursively hitting conditional expressions can result in
9472 exponential behavior if the cmove expansion ultimatively fails.
9473 It's hardly profitable to TER a cmove into a cmove so avoid doing
9474 that by failing early if we end up recursing. */
9475 if (expanding_cond_expr_using_cmove)
9476 return NULL_RTX;
9478 /* If we cannot do a conditional move on the mode, try doing it
9479 with the promoted mode. */
9480 if (!can_conditionally_move_p (mode))
9482 mode = promote_mode (type, mode, &unsignedp);
9483 if (!can_conditionally_move_p (mode))
9484 return NULL_RTX;
9485 temp = assign_temp (type, 0, 0); /* Use promoted mode for temp. */
9487 else
9488 temp = assign_temp (type, 0, 1);
9490 expanding_cond_expr_using_cmove = true;
9491 start_sequence ();
9492 expand_operands (treeop1, treeop2,
9493 mode == orig_mode ? temp : NULL_RTX, &op1, &op2,
9494 EXPAND_NORMAL);
9496 if (TREE_CODE (treeop0) == SSA_NAME
9497 && (srcstmt = get_def_for_expr_class (treeop0, tcc_comparison)))
9499 type = TREE_TYPE (gimple_assign_rhs1 (srcstmt));
9500 enum tree_code cmpcode = gimple_assign_rhs_code (srcstmt);
9501 op00 = expand_normal (gimple_assign_rhs1 (srcstmt));
9502 op01 = expand_normal (gimple_assign_rhs2 (srcstmt));
9503 comparison_mode = TYPE_MODE (type);
9504 unsignedp = TYPE_UNSIGNED (type);
9505 comparison_code = convert_tree_comp_to_rtx (cmpcode, unsignedp);
9507 else if (COMPARISON_CLASS_P (treeop0))
9509 type = TREE_TYPE (TREE_OPERAND (treeop0, 0));
9510 enum tree_code cmpcode = TREE_CODE (treeop0);
9511 op00 = expand_normal (TREE_OPERAND (treeop0, 0));
9512 op01 = expand_normal (TREE_OPERAND (treeop0, 1));
9513 unsignedp = TYPE_UNSIGNED (type);
9514 comparison_mode = TYPE_MODE (type);
9515 comparison_code = convert_tree_comp_to_rtx (cmpcode, unsignedp);
9517 else
9519 op00 = expand_normal (treeop0);
9520 op01 = const0_rtx;
9521 comparison_code = NE;
9522 comparison_mode = GET_MODE (op00);
9523 if (comparison_mode == VOIDmode)
9524 comparison_mode = TYPE_MODE (TREE_TYPE (treeop0));
9526 expanding_cond_expr_using_cmove = false;
9528 if (GET_MODE (op1) != mode)
9529 op1 = gen_lowpart (mode, op1);
9531 if (GET_MODE (op2) != mode)
9532 op2 = gen_lowpart (mode, op2);
9534 /* Try to emit the conditional move. */
9535 insn = emit_conditional_move (temp,
9536 { comparison_code, op00, op01,
9537 comparison_mode },
9538 op1, op2, mode,
9539 unsignedp);
9541 /* If we could do the conditional move, emit the sequence,
9542 and return. */
9543 if (insn)
9545 rtx_insn *seq = get_insns ();
9546 end_sequence ();
9547 emit_insn (seq);
9548 return convert_modes (orig_mode, mode, temp, 0);
9551 /* Otherwise discard the sequence and fall back to code with
9552 branches. */
9553 end_sequence ();
9554 return NULL_RTX;
9557 /* A helper function for expand_expr_real_2 to be used with a
9558 misaligned mem_ref TEMP. Assume an unsigned type if UNSIGNEDP
9559 is nonzero, with alignment ALIGN in bits.
9560 Store the value at TARGET if possible (if TARGET is nonzero).
9561 Regardless of TARGET, we return the rtx for where the value is placed.
9562 If the result can be stored at TARGET, and ALT_RTL is non-NULL,
9563 then *ALT_RTL is set to TARGET (before legitimziation). */
9565 static rtx
9566 expand_misaligned_mem_ref (rtx temp, machine_mode mode, int unsignedp,
9567 unsigned int align, rtx target, rtx *alt_rtl)
9569 enum insn_code icode;
9571 if ((icode = optab_handler (movmisalign_optab, mode))
9572 != CODE_FOR_nothing)
9574 class expand_operand ops[2];
9576 /* We've already validated the memory, and we're creating a
9577 new pseudo destination. The predicates really can't fail,
9578 nor can the generator. */
9579 create_output_operand (&ops[0], NULL_RTX, mode);
9580 create_fixed_operand (&ops[1], temp);
9581 expand_insn (icode, 2, ops);
9582 temp = ops[0].value;
9584 else if (targetm.slow_unaligned_access (mode, align))
9585 temp = extract_bit_field (temp, GET_MODE_BITSIZE (mode),
9586 0, unsignedp, target,
9587 mode, mode, false, alt_rtl);
9588 return temp;
9591 /* Helper function of expand_expr_2, expand a division or modulo.
9592 op0 and op1 should be already expanded treeop0 and treeop1, using
9593 expand_operands. */
9595 static rtx
9596 expand_expr_divmod (tree_code code, machine_mode mode, tree treeop0,
9597 tree treeop1, rtx op0, rtx op1, rtx target, int unsignedp)
9599 bool mod_p = (code == TRUNC_MOD_EXPR || code == FLOOR_MOD_EXPR
9600 || code == CEIL_MOD_EXPR || code == ROUND_MOD_EXPR);
9601 if (SCALAR_INT_MODE_P (mode)
9602 && optimize >= 2
9603 && get_range_pos_neg (treeop0) == 1
9604 && get_range_pos_neg (treeop1) == 1)
9606 /* If both arguments are known to be positive when interpreted
9607 as signed, we can expand it as both signed and unsigned
9608 division or modulo. Choose the cheaper sequence in that case. */
9609 bool speed_p = optimize_insn_for_speed_p ();
9610 do_pending_stack_adjust ();
9611 start_sequence ();
9612 rtx uns_ret = expand_divmod (mod_p, code, mode, op0, op1, target, 1);
9613 rtx_insn *uns_insns = get_insns ();
9614 end_sequence ();
9615 start_sequence ();
9616 rtx sgn_ret = expand_divmod (mod_p, code, mode, op0, op1, target, 0);
9617 rtx_insn *sgn_insns = get_insns ();
9618 end_sequence ();
9619 unsigned uns_cost = seq_cost (uns_insns, speed_p);
9620 unsigned sgn_cost = seq_cost (sgn_insns, speed_p);
9622 /* If costs are the same then use as tie breaker the other other
9623 factor. */
9624 if (uns_cost == sgn_cost)
9626 uns_cost = seq_cost (uns_insns, !speed_p);
9627 sgn_cost = seq_cost (sgn_insns, !speed_p);
9630 if (uns_cost < sgn_cost || (uns_cost == sgn_cost && unsignedp))
9632 emit_insn (uns_insns);
9633 return uns_ret;
9635 emit_insn (sgn_insns);
9636 return sgn_ret;
9638 return expand_divmod (mod_p, code, mode, op0, op1, target, unsignedp);
9642 expand_expr_real_2 (sepops ops, rtx target, machine_mode tmode,
9643 enum expand_modifier modifier)
9645 rtx op0, op1, op2, temp;
9646 rtx_code_label *lab;
9647 tree type;
9648 int unsignedp;
9649 machine_mode mode;
9650 scalar_int_mode int_mode;
9651 enum tree_code code = ops->code;
9652 optab this_optab;
9653 rtx subtarget, original_target;
9654 int ignore;
9655 bool reduce_bit_field;
9656 location_t loc = ops->location;
9657 tree treeop0, treeop1, treeop2;
9658 #define REDUCE_BIT_FIELD(expr) (reduce_bit_field \
9659 ? reduce_to_bit_field_precision ((expr), \
9660 target, \
9661 type) \
9662 : (expr))
9664 type = ops->type;
9665 mode = TYPE_MODE (type);
9666 unsignedp = TYPE_UNSIGNED (type);
9668 treeop0 = ops->op0;
9669 treeop1 = ops->op1;
9670 treeop2 = ops->op2;
9672 /* We should be called only on simple (binary or unary) expressions,
9673 exactly those that are valid in gimple expressions that aren't
9674 GIMPLE_SINGLE_RHS (or invalid). */
9675 gcc_assert (get_gimple_rhs_class (code) == GIMPLE_UNARY_RHS
9676 || get_gimple_rhs_class (code) == GIMPLE_BINARY_RHS
9677 || get_gimple_rhs_class (code) == GIMPLE_TERNARY_RHS);
9679 ignore = (target == const0_rtx
9680 || ((CONVERT_EXPR_CODE_P (code)
9681 || code == COND_EXPR || code == VIEW_CONVERT_EXPR)
9682 && TREE_CODE (type) == VOID_TYPE));
9684 /* We should be called only if we need the result. */
9685 gcc_assert (!ignore);
9687 /* An operation in what may be a bit-field type needs the
9688 result to be reduced to the precision of the bit-field type,
9689 which is narrower than that of the type's mode. */
9690 reduce_bit_field = (INTEGRAL_TYPE_P (type)
9691 && !type_has_mode_precision_p (type));
9693 if (reduce_bit_field
9694 && (modifier == EXPAND_STACK_PARM
9695 || (target && GET_MODE (target) != mode)))
9696 target = 0;
9698 /* Use subtarget as the target for operand 0 of a binary operation. */
9699 subtarget = get_subtarget (target);
9700 original_target = target;
9702 switch (code)
9704 case NON_LVALUE_EXPR:
9705 case PAREN_EXPR:
9706 CASE_CONVERT:
9707 if (treeop0 == error_mark_node)
9708 return const0_rtx;
9710 if (TREE_CODE (type) == UNION_TYPE)
9712 tree valtype = TREE_TYPE (treeop0);
9714 /* If both input and output are BLKmode, this conversion isn't doing
9715 anything except possibly changing memory attribute. */
9716 if (mode == BLKmode && TYPE_MODE (valtype) == BLKmode)
9718 rtx result = expand_expr (treeop0, target, tmode,
9719 modifier);
9721 result = copy_rtx (result);
9722 set_mem_attributes (result, type, 0);
9723 return result;
9726 if (target == 0)
9728 if (TYPE_MODE (type) != BLKmode)
9729 target = gen_reg_rtx (TYPE_MODE (type));
9730 else
9731 target = assign_temp (type, 1, 1);
9734 if (MEM_P (target))
9735 /* Store data into beginning of memory target. */
9736 store_expr (treeop0,
9737 adjust_address (target, TYPE_MODE (valtype), 0),
9738 modifier == EXPAND_STACK_PARM,
9739 false, TYPE_REVERSE_STORAGE_ORDER (type));
9741 else
9743 gcc_assert (REG_P (target)
9744 && !TYPE_REVERSE_STORAGE_ORDER (type));
9746 /* Store this field into a union of the proper type. */
9747 poly_uint64 op0_size
9748 = tree_to_poly_uint64 (TYPE_SIZE (TREE_TYPE (treeop0)));
9749 poly_uint64 union_size = GET_MODE_BITSIZE (mode);
9750 store_field (target,
9751 /* The conversion must be constructed so that
9752 we know at compile time how many bits
9753 to preserve. */
9754 ordered_min (op0_size, union_size),
9755 0, 0, 0, TYPE_MODE (valtype), treeop0, 0,
9756 false, false);
9759 /* Return the entire union. */
9760 return target;
9763 if (mode == TYPE_MODE (TREE_TYPE (treeop0)))
9765 op0 = expand_expr (treeop0, target, VOIDmode,
9766 modifier);
9768 return REDUCE_BIT_FIELD (op0);
9771 op0 = expand_expr (treeop0, NULL_RTX, mode,
9772 modifier == EXPAND_SUM ? EXPAND_NORMAL : modifier);
9773 if (GET_MODE (op0) == mode)
9776 /* If OP0 is a constant, just convert it into the proper mode. */
9777 else if (CONSTANT_P (op0))
9779 tree inner_type = TREE_TYPE (treeop0);
9780 machine_mode inner_mode = GET_MODE (op0);
9782 if (inner_mode == VOIDmode)
9783 inner_mode = TYPE_MODE (inner_type);
9785 if (modifier == EXPAND_INITIALIZER)
9786 op0 = lowpart_subreg (mode, op0, inner_mode);
9787 else
9788 op0= convert_modes (mode, inner_mode, op0,
9789 TYPE_UNSIGNED (inner_type));
9792 else if (modifier == EXPAND_INITIALIZER)
9793 op0 = gen_rtx_fmt_e (TYPE_UNSIGNED (TREE_TYPE (treeop0))
9794 ? ZERO_EXTEND : SIGN_EXTEND, mode, op0);
9796 else if (target == 0)
9797 op0 = convert_to_mode (mode, op0,
9798 TYPE_UNSIGNED (TREE_TYPE
9799 (treeop0)));
9800 else
9802 convert_move (target, op0,
9803 TYPE_UNSIGNED (TREE_TYPE (treeop0)));
9804 op0 = target;
9807 return REDUCE_BIT_FIELD (op0);
9809 case ADDR_SPACE_CONVERT_EXPR:
9811 tree treeop0_type = TREE_TYPE (treeop0);
9813 gcc_assert (POINTER_TYPE_P (type));
9814 gcc_assert (POINTER_TYPE_P (treeop0_type));
9816 addr_space_t as_to = TYPE_ADDR_SPACE (TREE_TYPE (type));
9817 addr_space_t as_from = TYPE_ADDR_SPACE (TREE_TYPE (treeop0_type));
9819 /* Conversions between pointers to the same address space should
9820 have been implemented via CONVERT_EXPR / NOP_EXPR. */
9821 gcc_assert (as_to != as_from);
9823 op0 = expand_expr (treeop0, NULL_RTX, VOIDmode, modifier);
9825 /* Ask target code to handle conversion between pointers
9826 to overlapping address spaces. */
9827 if (targetm.addr_space.subset_p (as_to, as_from)
9828 || targetm.addr_space.subset_p (as_from, as_to))
9830 op0 = targetm.addr_space.convert (op0, treeop0_type, type);
9832 else
9834 /* For disjoint address spaces, converting anything but a null
9835 pointer invokes undefined behavior. We truncate or extend the
9836 value as if we'd converted via integers, which handles 0 as
9837 required, and all others as the programmer likely expects. */
9838 #ifndef POINTERS_EXTEND_UNSIGNED
9839 const int POINTERS_EXTEND_UNSIGNED = 1;
9840 #endif
9841 op0 = convert_modes (mode, TYPE_MODE (treeop0_type),
9842 op0, POINTERS_EXTEND_UNSIGNED);
9844 gcc_assert (op0);
9845 return op0;
9848 case POINTER_PLUS_EXPR:
9849 /* Even though the sizetype mode and the pointer's mode can be different
9850 expand is able to handle this correctly and get the correct result out
9851 of the PLUS_EXPR code. */
9852 /* Make sure to sign-extend the sizetype offset in a POINTER_PLUS_EXPR
9853 if sizetype precision is smaller than pointer precision. */
9854 if (TYPE_PRECISION (sizetype) < TYPE_PRECISION (type))
9855 treeop1 = fold_convert_loc (loc, type,
9856 fold_convert_loc (loc, ssizetype,
9857 treeop1));
9858 /* If sizetype precision is larger than pointer precision, truncate the
9859 offset to have matching modes. */
9860 else if (TYPE_PRECISION (sizetype) > TYPE_PRECISION (type))
9861 treeop1 = fold_convert_loc (loc, type, treeop1);
9862 /* FALLTHRU */
9864 case PLUS_EXPR:
9865 /* If we are adding a constant, a VAR_DECL that is sp, fp, or ap, and
9866 something else, make sure we add the register to the constant and
9867 then to the other thing. This case can occur during strength
9868 reduction and doing it this way will produce better code if the
9869 frame pointer or argument pointer is eliminated.
9871 fold-const.cc will ensure that the constant is always in the inner
9872 PLUS_EXPR, so the only case we need to do anything about is if
9873 sp, ap, or fp is our second argument, in which case we must swap
9874 the innermost first argument and our second argument. */
9876 if (TREE_CODE (treeop0) == PLUS_EXPR
9877 && TREE_CODE (TREE_OPERAND (treeop0, 1)) == INTEGER_CST
9878 && VAR_P (treeop1)
9879 && (DECL_RTL (treeop1) == frame_pointer_rtx
9880 || DECL_RTL (treeop1) == stack_pointer_rtx
9881 || DECL_RTL (treeop1) == arg_pointer_rtx))
9883 gcc_unreachable ();
9886 /* If the result is to be ptr_mode and we are adding an integer to
9887 something, we might be forming a constant. So try to use
9888 plus_constant. If it produces a sum and we can't accept it,
9889 use force_operand. This allows P = &ARR[const] to generate
9890 efficient code on machines where a SYMBOL_REF is not a valid
9891 address.
9893 If this is an EXPAND_SUM call, always return the sum. */
9894 if (modifier == EXPAND_SUM || modifier == EXPAND_INITIALIZER
9895 || (mode == ptr_mode && (unsignedp || ! flag_trapv)))
9897 if (modifier == EXPAND_STACK_PARM)
9898 target = 0;
9899 if (TREE_CODE (treeop0) == INTEGER_CST
9900 && HWI_COMPUTABLE_MODE_P (mode)
9901 && TREE_CONSTANT (treeop1))
9903 rtx constant_part;
9904 HOST_WIDE_INT wc;
9905 machine_mode wmode = TYPE_MODE (TREE_TYPE (treeop1));
9907 op1 = expand_expr (treeop1, subtarget, VOIDmode,
9908 EXPAND_SUM);
9909 /* Use wi::shwi to ensure that the constant is
9910 truncated according to the mode of OP1, then sign extended
9911 to a HOST_WIDE_INT. Using the constant directly can result
9912 in non-canonical RTL in a 64x32 cross compile. */
9913 wc = TREE_INT_CST_LOW (treeop0);
9914 constant_part =
9915 immed_wide_int_const (wi::shwi (wc, wmode), wmode);
9916 op1 = plus_constant (mode, op1, INTVAL (constant_part));
9917 if (modifier != EXPAND_SUM && modifier != EXPAND_INITIALIZER)
9918 op1 = force_operand (op1, target);
9919 return REDUCE_BIT_FIELD (op1);
9922 else if (TREE_CODE (treeop1) == INTEGER_CST
9923 && HWI_COMPUTABLE_MODE_P (mode)
9924 && TREE_CONSTANT (treeop0))
9926 rtx constant_part;
9927 HOST_WIDE_INT wc;
9928 machine_mode wmode = TYPE_MODE (TREE_TYPE (treeop0));
9930 op0 = expand_expr (treeop0, subtarget, VOIDmode,
9931 (modifier == EXPAND_INITIALIZER
9932 ? EXPAND_INITIALIZER : EXPAND_SUM));
9933 if (! CONSTANT_P (op0))
9935 op1 = expand_expr (treeop1, NULL_RTX,
9936 VOIDmode, modifier);
9937 /* Return a PLUS if modifier says it's OK. */
9938 if (modifier == EXPAND_SUM
9939 || modifier == EXPAND_INITIALIZER)
9940 return simplify_gen_binary (PLUS, mode, op0, op1);
9941 goto binop2;
9943 /* Use wi::shwi to ensure that the constant is
9944 truncated according to the mode of OP1, then sign extended
9945 to a HOST_WIDE_INT. Using the constant directly can result
9946 in non-canonical RTL in a 64x32 cross compile. */
9947 wc = TREE_INT_CST_LOW (treeop1);
9948 constant_part
9949 = immed_wide_int_const (wi::shwi (wc, wmode), wmode);
9950 op0 = plus_constant (mode, op0, INTVAL (constant_part));
9951 if (modifier != EXPAND_SUM && modifier != EXPAND_INITIALIZER)
9952 op0 = force_operand (op0, target);
9953 return REDUCE_BIT_FIELD (op0);
9957 /* Use TER to expand pointer addition of a negated value
9958 as pointer subtraction. */
9959 if ((POINTER_TYPE_P (TREE_TYPE (treeop0))
9960 || (TREE_CODE (TREE_TYPE (treeop0)) == VECTOR_TYPE
9961 && POINTER_TYPE_P (TREE_TYPE (TREE_TYPE (treeop0)))))
9962 && TREE_CODE (treeop1) == SSA_NAME
9963 && TYPE_MODE (TREE_TYPE (treeop0))
9964 == TYPE_MODE (TREE_TYPE (treeop1)))
9966 gimple *def = get_def_for_expr (treeop1, NEGATE_EXPR);
9967 if (def)
9969 treeop1 = gimple_assign_rhs1 (def);
9970 code = MINUS_EXPR;
9971 goto do_minus;
9975 /* No sense saving up arithmetic to be done
9976 if it's all in the wrong mode to form part of an address.
9977 And force_operand won't know whether to sign-extend or
9978 zero-extend. */
9979 if (modifier != EXPAND_INITIALIZER
9980 && (modifier != EXPAND_SUM || mode != ptr_mode))
9982 expand_operands (treeop0, treeop1,
9983 subtarget, &op0, &op1, modifier);
9984 if (op0 == const0_rtx)
9985 return op1;
9986 if (op1 == const0_rtx)
9987 return op0;
9988 goto binop2;
9991 expand_operands (treeop0, treeop1,
9992 subtarget, &op0, &op1, modifier);
9993 return REDUCE_BIT_FIELD (simplify_gen_binary (PLUS, mode, op0, op1));
9995 case MINUS_EXPR:
9996 case POINTER_DIFF_EXPR:
9997 do_minus:
9998 /* For initializers, we are allowed to return a MINUS of two
9999 symbolic constants. Here we handle all cases when both operands
10000 are constant. */
10001 /* Handle difference of two symbolic constants,
10002 for the sake of an initializer. */
10003 if ((modifier == EXPAND_SUM || modifier == EXPAND_INITIALIZER)
10004 && really_constant_p (treeop0)
10005 && really_constant_p (treeop1))
10007 expand_operands (treeop0, treeop1,
10008 NULL_RTX, &op0, &op1, modifier);
10009 return simplify_gen_binary (MINUS, mode, op0, op1);
10012 /* No sense saving up arithmetic to be done
10013 if it's all in the wrong mode to form part of an address.
10014 And force_operand won't know whether to sign-extend or
10015 zero-extend. */
10016 if (modifier != EXPAND_INITIALIZER
10017 && (modifier != EXPAND_SUM || mode != ptr_mode))
10018 goto binop;
10020 expand_operands (treeop0, treeop1,
10021 subtarget, &op0, &op1, modifier);
10023 /* Convert A - const to A + (-const). */
10024 if (CONST_INT_P (op1))
10026 op1 = negate_rtx (mode, op1);
10027 return REDUCE_BIT_FIELD (simplify_gen_binary (PLUS, mode, op0, op1));
10030 goto binop2;
10032 case WIDEN_MULT_PLUS_EXPR:
10033 case WIDEN_MULT_MINUS_EXPR:
10034 expand_operands (treeop0, treeop1, NULL_RTX, &op0, &op1, EXPAND_NORMAL);
10035 op2 = expand_normal (treeop2);
10036 target = expand_widen_pattern_expr (ops, op0, op1, op2,
10037 target, unsignedp);
10038 return target;
10040 case WIDEN_MULT_EXPR:
10041 /* If first operand is constant, swap them.
10042 Thus the following special case checks need only
10043 check the second operand. */
10044 if (TREE_CODE (treeop0) == INTEGER_CST)
10045 std::swap (treeop0, treeop1);
10047 /* First, check if we have a multiplication of one signed and one
10048 unsigned operand. */
10049 if (TREE_CODE (treeop1) != INTEGER_CST
10050 && (TYPE_UNSIGNED (TREE_TYPE (treeop0))
10051 != TYPE_UNSIGNED (TREE_TYPE (treeop1))))
10053 machine_mode innermode = TYPE_MODE (TREE_TYPE (treeop0));
10054 this_optab = usmul_widen_optab;
10055 if (find_widening_optab_handler (this_optab, mode, innermode)
10056 != CODE_FOR_nothing)
10058 if (TYPE_UNSIGNED (TREE_TYPE (treeop0)))
10059 expand_operands (treeop0, treeop1, NULL_RTX, &op0, &op1,
10060 EXPAND_NORMAL);
10061 else
10062 expand_operands (treeop0, treeop1, NULL_RTX, &op1, &op0,
10063 EXPAND_NORMAL);
10064 /* op0 and op1 might still be constant, despite the above
10065 != INTEGER_CST check. Handle it. */
10066 if (GET_MODE (op0) == VOIDmode && GET_MODE (op1) == VOIDmode)
10068 op0 = convert_modes (mode, innermode, op0, true);
10069 op1 = convert_modes (mode, innermode, op1, false);
10070 return REDUCE_BIT_FIELD (expand_mult (mode, op0, op1,
10071 target, unsignedp));
10073 goto binop3;
10076 /* Check for a multiplication with matching signedness. */
10077 else if ((TREE_CODE (treeop1) == INTEGER_CST
10078 && int_fits_type_p (treeop1, TREE_TYPE (treeop0)))
10079 || (TYPE_UNSIGNED (TREE_TYPE (treeop1))
10080 == TYPE_UNSIGNED (TREE_TYPE (treeop0))))
10082 tree op0type = TREE_TYPE (treeop0);
10083 machine_mode innermode = TYPE_MODE (op0type);
10084 bool zextend_p = TYPE_UNSIGNED (op0type);
10085 optab other_optab = zextend_p ? smul_widen_optab : umul_widen_optab;
10086 this_optab = zextend_p ? umul_widen_optab : smul_widen_optab;
10088 if (TREE_CODE (treeop0) != INTEGER_CST)
10090 if (find_widening_optab_handler (this_optab, mode, innermode)
10091 != CODE_FOR_nothing)
10093 expand_operands (treeop0, treeop1, NULL_RTX, &op0, &op1,
10094 EXPAND_NORMAL);
10095 /* op0 and op1 might still be constant, despite the above
10096 != INTEGER_CST check. Handle it. */
10097 if (GET_MODE (op0) == VOIDmode && GET_MODE (op1) == VOIDmode)
10099 widen_mult_const:
10100 op0 = convert_modes (mode, innermode, op0, zextend_p);
10102 = convert_modes (mode, innermode, op1,
10103 TYPE_UNSIGNED (TREE_TYPE (treeop1)));
10104 return REDUCE_BIT_FIELD (expand_mult (mode, op0, op1,
10105 target,
10106 unsignedp));
10108 temp = expand_widening_mult (mode, op0, op1, target,
10109 unsignedp, this_optab);
10110 return REDUCE_BIT_FIELD (temp);
10112 if (find_widening_optab_handler (other_optab, mode, innermode)
10113 != CODE_FOR_nothing
10114 && innermode == word_mode)
10116 rtx htem, hipart;
10117 op0 = expand_normal (treeop0);
10118 op1 = expand_normal (treeop1);
10119 /* op0 and op1 might be constants, despite the above
10120 != INTEGER_CST check. Handle it. */
10121 if (GET_MODE (op0) == VOIDmode && GET_MODE (op1) == VOIDmode)
10122 goto widen_mult_const;
10123 temp = expand_binop (mode, other_optab, op0, op1, target,
10124 unsignedp, OPTAB_LIB_WIDEN);
10125 hipart = gen_highpart (word_mode, temp);
10126 htem = expand_mult_highpart_adjust (word_mode, hipart,
10127 op0, op1, hipart,
10128 zextend_p);
10129 if (htem != hipart)
10130 emit_move_insn (hipart, htem);
10131 return REDUCE_BIT_FIELD (temp);
10135 treeop0 = fold_build1 (CONVERT_EXPR, type, treeop0);
10136 treeop1 = fold_build1 (CONVERT_EXPR, type, treeop1);
10137 expand_operands (treeop0, treeop1, subtarget, &op0, &op1, EXPAND_NORMAL);
10138 return REDUCE_BIT_FIELD (expand_mult (mode, op0, op1, target, unsignedp));
10140 case MULT_EXPR:
10141 /* If this is a fixed-point operation, then we cannot use the code
10142 below because "expand_mult" doesn't support sat/no-sat fixed-point
10143 multiplications. */
10144 if (ALL_FIXED_POINT_MODE_P (mode))
10145 goto binop;
10147 /* If first operand is constant, swap them.
10148 Thus the following special case checks need only
10149 check the second operand. */
10150 if (TREE_CODE (treeop0) == INTEGER_CST)
10151 std::swap (treeop0, treeop1);
10153 /* Attempt to return something suitable for generating an
10154 indexed address, for machines that support that. */
10156 if (modifier == EXPAND_SUM && mode == ptr_mode
10157 && tree_fits_shwi_p (treeop1))
10159 tree exp1 = treeop1;
10161 op0 = expand_expr (treeop0, subtarget, VOIDmode,
10162 EXPAND_SUM);
10164 if (!REG_P (op0))
10165 op0 = force_operand (op0, NULL_RTX);
10166 if (!REG_P (op0))
10167 op0 = copy_to_mode_reg (mode, op0);
10169 op1 = gen_int_mode (tree_to_shwi (exp1),
10170 TYPE_MODE (TREE_TYPE (exp1)));
10171 return REDUCE_BIT_FIELD (gen_rtx_MULT (mode, op0, op1));
10174 if (modifier == EXPAND_STACK_PARM)
10175 target = 0;
10177 if (SCALAR_INT_MODE_P (mode) && optimize >= 2)
10179 gimple *def_stmt0 = get_def_for_expr (treeop0, TRUNC_DIV_EXPR);
10180 gimple *def_stmt1 = get_def_for_expr (treeop1, TRUNC_DIV_EXPR);
10181 if (def_stmt0
10182 && !operand_equal_p (treeop1, gimple_assign_rhs2 (def_stmt0), 0))
10183 def_stmt0 = NULL;
10184 if (def_stmt1
10185 && !operand_equal_p (treeop0, gimple_assign_rhs2 (def_stmt1), 0))
10186 def_stmt1 = NULL;
10188 if (def_stmt0 || def_stmt1)
10190 /* X / Y * Y can be expanded as X - X % Y too.
10191 Choose the cheaper sequence of those two. */
10192 if (def_stmt0)
10193 treeop0 = gimple_assign_rhs1 (def_stmt0);
10194 else
10196 treeop1 = treeop0;
10197 treeop0 = gimple_assign_rhs1 (def_stmt1);
10199 expand_operands (treeop0, treeop1, subtarget, &op0, &op1,
10200 EXPAND_NORMAL);
10201 bool speed_p = optimize_insn_for_speed_p ();
10202 do_pending_stack_adjust ();
10203 start_sequence ();
10204 rtx divmul_ret
10205 = expand_expr_divmod (TRUNC_DIV_EXPR, mode, treeop0, treeop1,
10206 op0, op1, NULL_RTX, unsignedp);
10207 divmul_ret = expand_mult (mode, divmul_ret, op1, target,
10208 unsignedp);
10209 rtx_insn *divmul_insns = get_insns ();
10210 end_sequence ();
10211 start_sequence ();
10212 rtx modsub_ret
10213 = expand_expr_divmod (TRUNC_MOD_EXPR, mode, treeop0, treeop1,
10214 op0, op1, NULL_RTX, unsignedp);
10215 this_optab = optab_for_tree_code (MINUS_EXPR, type,
10216 optab_default);
10217 modsub_ret = expand_binop (mode, this_optab, op0, modsub_ret,
10218 target, unsignedp, OPTAB_LIB_WIDEN);
10219 rtx_insn *modsub_insns = get_insns ();
10220 end_sequence ();
10221 unsigned divmul_cost = seq_cost (divmul_insns, speed_p);
10222 unsigned modsub_cost = seq_cost (modsub_insns, speed_p);
10223 /* If costs are the same then use as tie breaker the other other
10224 factor. */
10225 if (divmul_cost == modsub_cost)
10227 divmul_cost = seq_cost (divmul_insns, !speed_p);
10228 modsub_cost = seq_cost (modsub_insns, !speed_p);
10231 if (divmul_cost <= modsub_cost)
10233 emit_insn (divmul_insns);
10234 return REDUCE_BIT_FIELD (divmul_ret);
10236 emit_insn (modsub_insns);
10237 return REDUCE_BIT_FIELD (modsub_ret);
10241 expand_operands (treeop0, treeop1, subtarget, &op0, &op1, EXPAND_NORMAL);
10243 /* Expand X*Y as X&-Y when Y must be zero or one. */
10244 if (SCALAR_INT_MODE_P (mode))
10246 bool gimple_zero_one_valued_p (tree, tree (*)(tree));
10247 bool bit0_p = gimple_zero_one_valued_p (treeop0, nullptr);
10248 bool bit1_p = gimple_zero_one_valued_p (treeop1, nullptr);
10250 /* Expand X*Y as X&Y when both X and Y must be zero or one. */
10251 if (bit0_p && bit1_p)
10252 return REDUCE_BIT_FIELD (expand_and (mode, op0, op1, target));
10254 if (bit0_p || bit1_p)
10256 bool speed = optimize_insn_for_speed_p ();
10257 int cost = add_cost (speed, mode) + neg_cost (speed, mode);
10258 struct algorithm algorithm;
10259 enum mult_variant variant;
10260 if (CONST_INT_P (op1)
10261 ? !choose_mult_variant (mode, INTVAL (op1),
10262 &algorithm, &variant, cost)
10263 : cost < mul_cost (speed, mode))
10265 temp = bit0_p ? expand_and (mode, negate_rtx (mode, op0),
10266 op1, target)
10267 : expand_and (mode, op0,
10268 negate_rtx (mode, op1),
10269 target);
10270 return REDUCE_BIT_FIELD (temp);
10275 return REDUCE_BIT_FIELD (expand_mult (mode, op0, op1, target, unsignedp));
10277 case TRUNC_MOD_EXPR:
10278 case FLOOR_MOD_EXPR:
10279 case CEIL_MOD_EXPR:
10280 case ROUND_MOD_EXPR:
10282 case TRUNC_DIV_EXPR:
10283 case FLOOR_DIV_EXPR:
10284 case CEIL_DIV_EXPR:
10285 case ROUND_DIV_EXPR:
10286 case EXACT_DIV_EXPR:
10287 /* If this is a fixed-point operation, then we cannot use the code
10288 below because "expand_divmod" doesn't support sat/no-sat fixed-point
10289 divisions. */
10290 if (ALL_FIXED_POINT_MODE_P (mode))
10291 goto binop;
10293 if (modifier == EXPAND_STACK_PARM)
10294 target = 0;
10295 /* Possible optimization: compute the dividend with EXPAND_SUM
10296 then if the divisor is constant can optimize the case
10297 where some terms of the dividend have coeffs divisible by it. */
10298 expand_operands (treeop0, treeop1, subtarget, &op0, &op1, EXPAND_NORMAL);
10299 return expand_expr_divmod (code, mode, treeop0, treeop1, op0, op1,
10300 target, unsignedp);
10302 case RDIV_EXPR:
10303 goto binop;
10305 case MULT_HIGHPART_EXPR:
10306 expand_operands (treeop0, treeop1, subtarget, &op0, &op1, EXPAND_NORMAL);
10307 temp = expand_mult_highpart (mode, op0, op1, target, unsignedp);
10308 gcc_assert (temp);
10309 return temp;
10311 case FIXED_CONVERT_EXPR:
10312 op0 = expand_normal (treeop0);
10313 if (target == 0 || modifier == EXPAND_STACK_PARM)
10314 target = gen_reg_rtx (mode);
10316 if ((TREE_CODE (TREE_TYPE (treeop0)) == INTEGER_TYPE
10317 && TYPE_UNSIGNED (TREE_TYPE (treeop0)))
10318 || (TREE_CODE (type) == INTEGER_TYPE && TYPE_UNSIGNED (type)))
10319 expand_fixed_convert (target, op0, 1, TYPE_SATURATING (type));
10320 else
10321 expand_fixed_convert (target, op0, 0, TYPE_SATURATING (type));
10322 return target;
10324 case FIX_TRUNC_EXPR:
10325 op0 = expand_normal (treeop0);
10326 if (target == 0 || modifier == EXPAND_STACK_PARM)
10327 target = gen_reg_rtx (mode);
10328 expand_fix (target, op0, unsignedp);
10329 return target;
10331 case FLOAT_EXPR:
10332 op0 = expand_normal (treeop0);
10333 if (target == 0 || modifier == EXPAND_STACK_PARM)
10334 target = gen_reg_rtx (mode);
10335 /* expand_float can't figure out what to do if FROM has VOIDmode.
10336 So give it the correct mode. With -O, cse will optimize this. */
10337 if (GET_MODE (op0) == VOIDmode)
10338 op0 = copy_to_mode_reg (TYPE_MODE (TREE_TYPE (treeop0)),
10339 op0);
10340 expand_float (target, op0,
10341 TYPE_UNSIGNED (TREE_TYPE (treeop0)));
10342 return target;
10344 case NEGATE_EXPR:
10345 op0 = expand_expr (treeop0, subtarget,
10346 VOIDmode, EXPAND_NORMAL);
10347 if (modifier == EXPAND_STACK_PARM)
10348 target = 0;
10349 temp = expand_unop (mode,
10350 optab_for_tree_code (NEGATE_EXPR, type,
10351 optab_default),
10352 op0, target, 0);
10353 gcc_assert (temp);
10354 return REDUCE_BIT_FIELD (temp);
10356 case ABS_EXPR:
10357 case ABSU_EXPR:
10358 op0 = expand_expr (treeop0, subtarget,
10359 VOIDmode, EXPAND_NORMAL);
10360 if (modifier == EXPAND_STACK_PARM)
10361 target = 0;
10363 /* ABS_EXPR is not valid for complex arguments. */
10364 gcc_assert (GET_MODE_CLASS (mode) != MODE_COMPLEX_INT
10365 && GET_MODE_CLASS (mode) != MODE_COMPLEX_FLOAT);
10367 /* Unsigned abs is simply the operand. Testing here means we don't
10368 risk generating incorrect code below. */
10369 if (TYPE_UNSIGNED (TREE_TYPE (treeop0)))
10370 return op0;
10372 return expand_abs (mode, op0, target, unsignedp,
10373 safe_from_p (target, treeop0, 1));
10375 case MAX_EXPR:
10376 case MIN_EXPR:
10377 target = original_target;
10378 if (target == 0
10379 || modifier == EXPAND_STACK_PARM
10380 || (MEM_P (target) && MEM_VOLATILE_P (target))
10381 || GET_MODE (target) != mode
10382 || (REG_P (target)
10383 && REGNO (target) < FIRST_PSEUDO_REGISTER))
10384 target = gen_reg_rtx (mode);
10385 expand_operands (treeop0, treeop1,
10386 target, &op0, &op1, EXPAND_NORMAL);
10388 /* First try to do it with a special MIN or MAX instruction.
10389 If that does not win, use a conditional jump to select the proper
10390 value. */
10391 this_optab = optab_for_tree_code (code, type, optab_default);
10392 temp = expand_binop (mode, this_optab, op0, op1, target, unsignedp,
10393 OPTAB_WIDEN);
10394 if (temp != 0)
10395 return temp;
10397 if (VECTOR_TYPE_P (type))
10398 gcc_unreachable ();
10400 /* At this point, a MEM target is no longer useful; we will get better
10401 code without it. */
10403 if (! REG_P (target))
10404 target = gen_reg_rtx (mode);
10406 /* If op1 was placed in target, swap op0 and op1. */
10407 if (target != op0 && target == op1)
10408 std::swap (op0, op1);
10410 /* We generate better code and avoid problems with op1 mentioning
10411 target by forcing op1 into a pseudo if it isn't a constant. */
10412 if (! CONSTANT_P (op1))
10413 op1 = force_reg (mode, op1);
10416 enum rtx_code comparison_code;
10417 rtx cmpop1 = op1;
10419 if (code == MAX_EXPR)
10420 comparison_code = unsignedp ? GEU : GE;
10421 else
10422 comparison_code = unsignedp ? LEU : LE;
10424 /* Canonicalize to comparisons against 0. */
10425 if (op1 == const1_rtx)
10427 /* Converting (a >= 1 ? a : 1) into (a > 0 ? a : 1)
10428 or (a != 0 ? a : 1) for unsigned.
10429 For MIN we are safe converting (a <= 1 ? a : 1)
10430 into (a <= 0 ? a : 1) */
10431 cmpop1 = const0_rtx;
10432 if (code == MAX_EXPR)
10433 comparison_code = unsignedp ? NE : GT;
10435 if (op1 == constm1_rtx && !unsignedp)
10437 /* Converting (a >= -1 ? a : -1) into (a >= 0 ? a : -1)
10438 and (a <= -1 ? a : -1) into (a < 0 ? a : -1) */
10439 cmpop1 = const0_rtx;
10440 if (code == MIN_EXPR)
10441 comparison_code = LT;
10444 /* Use a conditional move if possible. */
10445 if (can_conditionally_move_p (mode))
10447 rtx insn;
10449 start_sequence ();
10451 /* Try to emit the conditional move. */
10452 insn = emit_conditional_move (target,
10453 { comparison_code,
10454 op0, cmpop1, mode },
10455 op0, op1, mode,
10456 unsignedp);
10458 /* If we could do the conditional move, emit the sequence,
10459 and return. */
10460 if (insn)
10462 rtx_insn *seq = get_insns ();
10463 end_sequence ();
10464 emit_insn (seq);
10465 return target;
10468 /* Otherwise discard the sequence and fall back to code with
10469 branches. */
10470 end_sequence ();
10473 if (target != op0)
10474 emit_move_insn (target, op0);
10476 lab = gen_label_rtx ();
10477 do_compare_rtx_and_jump (target, cmpop1, comparison_code,
10478 unsignedp, mode, NULL_RTX, NULL, lab,
10479 profile_probability::uninitialized ());
10481 emit_move_insn (target, op1);
10482 emit_label (lab);
10483 return target;
10485 case BIT_NOT_EXPR:
10486 op0 = expand_expr (treeop0, subtarget,
10487 VOIDmode, EXPAND_NORMAL);
10488 if (modifier == EXPAND_STACK_PARM)
10489 target = 0;
10490 /* In case we have to reduce the result to bitfield precision
10491 for unsigned bitfield expand this as XOR with a proper constant
10492 instead. */
10493 if (reduce_bit_field && TYPE_UNSIGNED (type))
10495 int_mode = SCALAR_INT_TYPE_MODE (type);
10496 wide_int mask = wi::mask (TYPE_PRECISION (type),
10497 false, GET_MODE_PRECISION (int_mode));
10499 temp = expand_binop (int_mode, xor_optab, op0,
10500 immed_wide_int_const (mask, int_mode),
10501 target, 1, OPTAB_LIB_WIDEN);
10503 else
10504 temp = expand_unop (mode, one_cmpl_optab, op0, target, 1);
10505 gcc_assert (temp);
10506 return temp;
10508 /* ??? Can optimize bitwise operations with one arg constant.
10509 Can optimize (a bitwise1 n) bitwise2 (a bitwise3 b)
10510 and (a bitwise1 b) bitwise2 b (etc)
10511 but that is probably not worth while. */
10513 case BIT_AND_EXPR:
10514 case BIT_IOR_EXPR:
10515 case BIT_XOR_EXPR:
10516 goto binop;
10518 case LROTATE_EXPR:
10519 case RROTATE_EXPR:
10520 gcc_assert (VECTOR_MODE_P (TYPE_MODE (type))
10521 || type_has_mode_precision_p (type));
10522 /* fall through */
10524 case LSHIFT_EXPR:
10525 case RSHIFT_EXPR:
10527 /* If this is a fixed-point operation, then we cannot use the code
10528 below because "expand_shift" doesn't support sat/no-sat fixed-point
10529 shifts. */
10530 if (ALL_FIXED_POINT_MODE_P (mode))
10531 goto binop;
10533 if (! safe_from_p (subtarget, treeop1, 1))
10534 subtarget = 0;
10535 if (modifier == EXPAND_STACK_PARM)
10536 target = 0;
10537 op0 = expand_expr (treeop0, subtarget,
10538 VOIDmode, EXPAND_NORMAL);
10540 /* Left shift optimization when shifting across word_size boundary.
10542 If mode == GET_MODE_WIDER_MODE (word_mode), then normally
10543 there isn't native instruction to support this wide mode
10544 left shift. Given below scenario:
10546 Type A = (Type) B << C
10548 |< T >|
10549 | dest_high | dest_low |
10551 | word_size |
10553 If the shift amount C caused we shift B to across the word
10554 size boundary, i.e part of B shifted into high half of
10555 destination register, and part of B remains in the low
10556 half, then GCC will use the following left shift expand
10557 logic:
10559 1. Initialize dest_low to B.
10560 2. Initialize every bit of dest_high to the sign bit of B.
10561 3. Logic left shift dest_low by C bit to finalize dest_low.
10562 The value of dest_low before this shift is kept in a temp D.
10563 4. Logic left shift dest_high by C.
10564 5. Logic right shift D by (word_size - C).
10565 6. Or the result of 4 and 5 to finalize dest_high.
10567 While, by checking gimple statements, if operand B is
10568 coming from signed extension, then we can simplify above
10569 expand logic into:
10571 1. dest_high = src_low >> (word_size - C).
10572 2. dest_low = src_low << C.
10574 We can use one arithmetic right shift to finish all the
10575 purpose of steps 2, 4, 5, 6, thus we reduce the steps
10576 needed from 6 into 2.
10578 The case is similar for zero extension, except that we
10579 initialize dest_high to zero rather than copies of the sign
10580 bit from B. Furthermore, we need to use a logical right shift
10581 in this case.
10583 The choice of sign-extension versus zero-extension is
10584 determined entirely by whether or not B is signed and is
10585 independent of the current setting of unsignedp. */
10587 temp = NULL_RTX;
10588 if (code == LSHIFT_EXPR
10589 && target
10590 && REG_P (target)
10591 && GET_MODE_2XWIDER_MODE (word_mode).exists (&int_mode)
10592 && mode == int_mode
10593 && TREE_CONSTANT (treeop1)
10594 && TREE_CODE (treeop0) == SSA_NAME)
10596 gimple *def = SSA_NAME_DEF_STMT (treeop0);
10597 if (is_gimple_assign (def)
10598 && gimple_assign_rhs_code (def) == NOP_EXPR)
10600 scalar_int_mode rmode = SCALAR_INT_TYPE_MODE
10601 (TREE_TYPE (gimple_assign_rhs1 (def)));
10603 if (GET_MODE_SIZE (rmode) < GET_MODE_SIZE (int_mode)
10604 && TREE_INT_CST_LOW (treeop1) < GET_MODE_BITSIZE (word_mode)
10605 && ((TREE_INT_CST_LOW (treeop1) + GET_MODE_BITSIZE (rmode))
10606 >= GET_MODE_BITSIZE (word_mode)))
10608 rtx_insn *seq, *seq_old;
10609 poly_uint64 high_off = subreg_highpart_offset (word_mode,
10610 int_mode);
10611 bool extend_unsigned
10612 = TYPE_UNSIGNED (TREE_TYPE (gimple_assign_rhs1 (def)));
10613 rtx low = lowpart_subreg (word_mode, op0, int_mode);
10614 rtx dest_low = lowpart_subreg (word_mode, target, int_mode);
10615 rtx dest_high = simplify_gen_subreg (word_mode, target,
10616 int_mode, high_off);
10617 HOST_WIDE_INT ramount = (BITS_PER_WORD
10618 - TREE_INT_CST_LOW (treeop1));
10619 tree rshift = build_int_cst (TREE_TYPE (treeop1), ramount);
10621 start_sequence ();
10622 /* dest_high = src_low >> (word_size - C). */
10623 temp = expand_variable_shift (RSHIFT_EXPR, word_mode, low,
10624 rshift, dest_high,
10625 extend_unsigned);
10626 if (temp != dest_high)
10627 emit_move_insn (dest_high, temp);
10629 /* dest_low = src_low << C. */
10630 temp = expand_variable_shift (LSHIFT_EXPR, word_mode, low,
10631 treeop1, dest_low, unsignedp);
10632 if (temp != dest_low)
10633 emit_move_insn (dest_low, temp);
10635 seq = get_insns ();
10636 end_sequence ();
10637 temp = target ;
10639 if (have_insn_for (ASHIFT, int_mode))
10641 bool speed_p = optimize_insn_for_speed_p ();
10642 start_sequence ();
10643 rtx ret_old = expand_variable_shift (code, int_mode,
10644 op0, treeop1,
10645 target,
10646 unsignedp);
10648 seq_old = get_insns ();
10649 end_sequence ();
10650 if (seq_cost (seq, speed_p)
10651 >= seq_cost (seq_old, speed_p))
10653 seq = seq_old;
10654 temp = ret_old;
10657 emit_insn (seq);
10662 if (temp == NULL_RTX)
10663 temp = expand_variable_shift (code, mode, op0, treeop1, target,
10664 unsignedp);
10665 if (code == LSHIFT_EXPR)
10666 temp = REDUCE_BIT_FIELD (temp);
10667 return temp;
10670 /* Could determine the answer when only additive constants differ. Also,
10671 the addition of one can be handled by changing the condition. */
10672 case LT_EXPR:
10673 case LE_EXPR:
10674 case GT_EXPR:
10675 case GE_EXPR:
10676 case EQ_EXPR:
10677 case NE_EXPR:
10678 case UNORDERED_EXPR:
10679 case ORDERED_EXPR:
10680 case UNLT_EXPR:
10681 case UNLE_EXPR:
10682 case UNGT_EXPR:
10683 case UNGE_EXPR:
10684 case UNEQ_EXPR:
10685 case LTGT_EXPR:
10687 temp = do_store_flag (ops,
10688 modifier != EXPAND_STACK_PARM ? target : NULL_RTX,
10689 tmode != VOIDmode ? tmode : mode);
10690 if (temp)
10691 return temp;
10693 /* Use a compare and a jump for BLKmode comparisons, or for function
10694 type comparisons is have_canonicalize_funcptr_for_compare. */
10696 if ((target == 0
10697 || modifier == EXPAND_STACK_PARM
10698 || ! safe_from_p (target, treeop0, 1)
10699 || ! safe_from_p (target, treeop1, 1)
10700 /* Make sure we don't have a hard reg (such as function's return
10701 value) live across basic blocks, if not optimizing. */
10702 || (!optimize && REG_P (target)
10703 && REGNO (target) < FIRST_PSEUDO_REGISTER)))
10704 target = gen_reg_rtx (tmode != VOIDmode ? tmode : mode);
10706 emit_move_insn (target, const0_rtx);
10708 rtx_code_label *lab1 = gen_label_rtx ();
10709 jumpifnot_1 (code, treeop0, treeop1, lab1,
10710 profile_probability::uninitialized ());
10712 if (TYPE_PRECISION (type) == 1 && !TYPE_UNSIGNED (type))
10713 emit_move_insn (target, constm1_rtx);
10714 else
10715 emit_move_insn (target, const1_rtx);
10717 emit_label (lab1);
10718 return target;
10720 case COMPLEX_EXPR:
10721 /* Get the rtx code of the operands. */
10722 op0 = expand_normal (treeop0);
10723 op1 = expand_normal (treeop1);
10725 if (!target)
10726 target = gen_reg_rtx (TYPE_MODE (type));
10727 else
10728 /* If target overlaps with op1, then either we need to force
10729 op1 into a pseudo (if target also overlaps with op0),
10730 or write the complex parts in reverse order. */
10731 switch (GET_CODE (target))
10733 case CONCAT:
10734 if (reg_overlap_mentioned_p (XEXP (target, 0), op1))
10736 if (reg_overlap_mentioned_p (XEXP (target, 1), op0))
10738 complex_expr_force_op1:
10739 temp = gen_reg_rtx (GET_MODE_INNER (GET_MODE (target)));
10740 emit_move_insn (temp, op1);
10741 op1 = temp;
10742 break;
10744 complex_expr_swap_order:
10745 /* Move the imaginary (op1) and real (op0) parts to their
10746 location. */
10747 write_complex_part (target, op1, true, true);
10748 write_complex_part (target, op0, false, false);
10750 return target;
10752 break;
10753 case MEM:
10754 temp = adjust_address_nv (target,
10755 GET_MODE_INNER (GET_MODE (target)), 0);
10756 if (reg_overlap_mentioned_p (temp, op1))
10758 scalar_mode imode = GET_MODE_INNER (GET_MODE (target));
10759 temp = adjust_address_nv (target, imode,
10760 GET_MODE_SIZE (imode));
10761 if (reg_overlap_mentioned_p (temp, op0))
10762 goto complex_expr_force_op1;
10763 goto complex_expr_swap_order;
10765 break;
10766 default:
10767 if (reg_overlap_mentioned_p (target, op1))
10769 if (reg_overlap_mentioned_p (target, op0))
10770 goto complex_expr_force_op1;
10771 goto complex_expr_swap_order;
10773 break;
10776 /* Move the real (op0) and imaginary (op1) parts to their location. */
10777 write_complex_part (target, op0, false, true);
10778 write_complex_part (target, op1, true, false);
10780 return target;
10782 case WIDEN_SUM_EXPR:
10784 tree oprnd0 = treeop0;
10785 tree oprnd1 = treeop1;
10787 expand_operands (oprnd0, oprnd1, NULL_RTX, &op0, &op1, EXPAND_NORMAL);
10788 target = expand_widen_pattern_expr (ops, op0, NULL_RTX, op1,
10789 target, unsignedp);
10790 return target;
10793 case VEC_UNPACK_HI_EXPR:
10794 case VEC_UNPACK_LO_EXPR:
10795 case VEC_UNPACK_FIX_TRUNC_HI_EXPR:
10796 case VEC_UNPACK_FIX_TRUNC_LO_EXPR:
10798 op0 = expand_normal (treeop0);
10799 temp = expand_widen_pattern_expr (ops, op0, NULL_RTX, NULL_RTX,
10800 target, unsignedp);
10801 gcc_assert (temp);
10802 return temp;
10805 case VEC_UNPACK_FLOAT_HI_EXPR:
10806 case VEC_UNPACK_FLOAT_LO_EXPR:
10808 op0 = expand_normal (treeop0);
10809 /* The signedness is determined from input operand. */
10810 temp = expand_widen_pattern_expr
10811 (ops, op0, NULL_RTX, NULL_RTX,
10812 target, TYPE_UNSIGNED (TREE_TYPE (treeop0)));
10814 gcc_assert (temp);
10815 return temp;
10818 case VEC_WIDEN_MULT_HI_EXPR:
10819 case VEC_WIDEN_MULT_LO_EXPR:
10820 case VEC_WIDEN_MULT_EVEN_EXPR:
10821 case VEC_WIDEN_MULT_ODD_EXPR:
10822 case VEC_WIDEN_LSHIFT_HI_EXPR:
10823 case VEC_WIDEN_LSHIFT_LO_EXPR:
10824 expand_operands (treeop0, treeop1, NULL_RTX, &op0, &op1, EXPAND_NORMAL);
10825 target = expand_widen_pattern_expr (ops, op0, op1, NULL_RTX,
10826 target, unsignedp);
10827 gcc_assert (target);
10828 return target;
10830 case VEC_PACK_SAT_EXPR:
10831 case VEC_PACK_FIX_TRUNC_EXPR:
10832 mode = TYPE_MODE (TREE_TYPE (treeop0));
10833 subtarget = NULL_RTX;
10834 goto binop;
10836 case VEC_PACK_TRUNC_EXPR:
10837 if (VECTOR_BOOLEAN_TYPE_P (type)
10838 && VECTOR_BOOLEAN_TYPE_P (TREE_TYPE (treeop0))
10839 && mode == TYPE_MODE (TREE_TYPE (treeop0))
10840 && SCALAR_INT_MODE_P (mode))
10842 class expand_operand eops[4];
10843 machine_mode imode = TYPE_MODE (TREE_TYPE (treeop0));
10844 expand_operands (treeop0, treeop1,
10845 subtarget, &op0, &op1, EXPAND_NORMAL);
10846 this_optab = vec_pack_sbool_trunc_optab;
10847 enum insn_code icode = optab_handler (this_optab, imode);
10848 create_output_operand (&eops[0], target, mode);
10849 create_convert_operand_from (&eops[1], op0, imode, false);
10850 create_convert_operand_from (&eops[2], op1, imode, false);
10851 temp = GEN_INT (TYPE_VECTOR_SUBPARTS (type).to_constant ());
10852 create_input_operand (&eops[3], temp, imode);
10853 expand_insn (icode, 4, eops);
10854 return eops[0].value;
10856 mode = TYPE_MODE (TREE_TYPE (treeop0));
10857 subtarget = NULL_RTX;
10858 goto binop;
10860 case VEC_PACK_FLOAT_EXPR:
10861 mode = TYPE_MODE (TREE_TYPE (treeop0));
10862 expand_operands (treeop0, treeop1,
10863 subtarget, &op0, &op1, EXPAND_NORMAL);
10864 this_optab = optab_for_tree_code (code, TREE_TYPE (treeop0),
10865 optab_default);
10866 target = expand_binop (mode, this_optab, op0, op1, target,
10867 TYPE_UNSIGNED (TREE_TYPE (treeop0)),
10868 OPTAB_LIB_WIDEN);
10869 gcc_assert (target);
10870 return target;
10872 case VEC_PERM_EXPR:
10874 expand_operands (treeop0, treeop1, target, &op0, &op1, EXPAND_NORMAL);
10875 vec_perm_builder sel;
10876 if (TREE_CODE (treeop2) == VECTOR_CST
10877 && tree_to_vec_perm_builder (&sel, treeop2))
10879 machine_mode sel_mode = TYPE_MODE (TREE_TYPE (treeop2));
10880 temp = expand_vec_perm_const (mode, op0, op1, sel,
10881 sel_mode, target);
10883 else
10885 op2 = expand_normal (treeop2);
10886 temp = expand_vec_perm_var (mode, op0, op1, op2, target);
10888 gcc_assert (temp);
10889 return temp;
10892 case DOT_PROD_EXPR:
10894 tree oprnd0 = treeop0;
10895 tree oprnd1 = treeop1;
10896 tree oprnd2 = treeop2;
10898 expand_operands (oprnd0, oprnd1, NULL_RTX, &op0, &op1, EXPAND_NORMAL);
10899 op2 = expand_normal (oprnd2);
10900 target = expand_widen_pattern_expr (ops, op0, op1, op2,
10901 target, unsignedp);
10902 return target;
10905 case SAD_EXPR:
10907 tree oprnd0 = treeop0;
10908 tree oprnd1 = treeop1;
10909 tree oprnd2 = treeop2;
10911 expand_operands (oprnd0, oprnd1, NULL_RTX, &op0, &op1, EXPAND_NORMAL);
10912 op2 = expand_normal (oprnd2);
10913 target = expand_widen_pattern_expr (ops, op0, op1, op2,
10914 target, unsignedp);
10915 return target;
10918 case REALIGN_LOAD_EXPR:
10920 tree oprnd0 = treeop0;
10921 tree oprnd1 = treeop1;
10922 tree oprnd2 = treeop2;
10924 this_optab = optab_for_tree_code (code, type, optab_default);
10925 expand_operands (oprnd0, oprnd1, NULL_RTX, &op0, &op1, EXPAND_NORMAL);
10926 op2 = expand_normal (oprnd2);
10927 temp = expand_ternary_op (mode, this_optab, op0, op1, op2,
10928 target, unsignedp);
10929 gcc_assert (temp);
10930 return temp;
10933 case COND_EXPR:
10935 /* A COND_EXPR with its type being VOID_TYPE represents a
10936 conditional jump and is handled in
10937 expand_gimple_cond_expr. */
10938 gcc_assert (!VOID_TYPE_P (type));
10940 /* Note that COND_EXPRs whose type is a structure or union
10941 are required to be constructed to contain assignments of
10942 a temporary variable, so that we can evaluate them here
10943 for side effect only. If type is void, we must do likewise. */
10945 gcc_assert (!TREE_ADDRESSABLE (type)
10946 && !ignore
10947 && TREE_TYPE (treeop1) != void_type_node
10948 && TREE_TYPE (treeop2) != void_type_node);
10950 temp = expand_cond_expr_using_cmove (treeop0, treeop1, treeop2);
10951 if (temp)
10952 return temp;
10954 /* If we are not to produce a result, we have no target. Otherwise,
10955 if a target was specified use it; it will not be used as an
10956 intermediate target unless it is safe. If no target, use a
10957 temporary. */
10959 if (modifier != EXPAND_STACK_PARM
10960 && original_target
10961 && safe_from_p (original_target, treeop0, 1)
10962 && GET_MODE (original_target) == mode
10963 && !MEM_P (original_target))
10964 temp = original_target;
10965 else
10966 temp = assign_temp (type, 0, 1);
10968 do_pending_stack_adjust ();
10969 NO_DEFER_POP;
10970 rtx_code_label *lab0 = gen_label_rtx ();
10971 rtx_code_label *lab1 = gen_label_rtx ();
10972 jumpifnot (treeop0, lab0,
10973 profile_probability::uninitialized ());
10974 store_expr (treeop1, temp,
10975 modifier == EXPAND_STACK_PARM,
10976 false, false);
10978 emit_jump_insn (targetm.gen_jump (lab1));
10979 emit_barrier ();
10980 emit_label (lab0);
10981 store_expr (treeop2, temp,
10982 modifier == EXPAND_STACK_PARM,
10983 false, false);
10985 emit_label (lab1);
10986 OK_DEFER_POP;
10987 return temp;
10990 case VEC_DUPLICATE_EXPR:
10991 op0 = expand_expr (treeop0, NULL_RTX, VOIDmode, modifier);
10992 target = expand_vector_broadcast (mode, op0);
10993 gcc_assert (target);
10994 return target;
10996 case VEC_SERIES_EXPR:
10997 expand_operands (treeop0, treeop1, NULL_RTX, &op0, &op1, modifier);
10998 return expand_vec_series_expr (mode, op0, op1, target);
11000 case BIT_INSERT_EXPR:
11002 unsigned bitpos = tree_to_uhwi (treeop2);
11003 unsigned bitsize;
11004 if (INTEGRAL_TYPE_P (TREE_TYPE (treeop1)))
11005 bitsize = TYPE_PRECISION (TREE_TYPE (treeop1));
11006 else
11007 bitsize = tree_to_uhwi (TYPE_SIZE (TREE_TYPE (treeop1)));
11008 op0 = expand_normal (treeop0);
11009 op1 = expand_normal (treeop1);
11010 rtx dst = gen_reg_rtx (mode);
11011 emit_move_insn (dst, op0);
11012 store_bit_field (dst, bitsize, bitpos, 0, 0,
11013 TYPE_MODE (TREE_TYPE (treeop1)), op1, false, false);
11014 return dst;
11017 default:
11018 gcc_unreachable ();
11021 /* Here to do an ordinary binary operator. */
11022 binop:
11023 expand_operands (treeop0, treeop1,
11024 subtarget, &op0, &op1, EXPAND_NORMAL);
11025 binop2:
11026 this_optab = optab_for_tree_code (code, type, optab_default);
11027 binop3:
11028 if (modifier == EXPAND_STACK_PARM)
11029 target = 0;
11030 temp = expand_binop (mode, this_optab, op0, op1, target,
11031 unsignedp, OPTAB_LIB_WIDEN);
11032 gcc_assert (temp);
11033 /* Bitwise operations do not need bitfield reduction as we expect their
11034 operands being properly truncated. */
11035 if (code == BIT_XOR_EXPR
11036 || code == BIT_AND_EXPR
11037 || code == BIT_IOR_EXPR)
11038 return temp;
11039 return REDUCE_BIT_FIELD (temp);
11041 #undef REDUCE_BIT_FIELD
11044 /* Return TRUE if expression STMT is suitable for replacement.
11045 Never consider memory loads as replaceable, because those don't ever lead
11046 into constant expressions. */
11048 static bool
11049 stmt_is_replaceable_p (gimple *stmt)
11051 if (ssa_is_replaceable_p (stmt))
11053 /* Don't move around loads. */
11054 if (!gimple_assign_single_p (stmt)
11055 || is_gimple_val (gimple_assign_rhs1 (stmt)))
11056 return true;
11058 return false;
11061 /* A subroutine of expand_expr_real_1. Expand gimple assignment G,
11062 which is known to set an SSA_NAME result. The other arguments are
11063 as for expand_expr_real_1. */
11066 expand_expr_real_gassign (gassign *g, rtx target, machine_mode tmode,
11067 enum expand_modifier modifier, rtx *alt_rtl,
11068 bool inner_reference_p)
11070 separate_ops ops;
11071 rtx r;
11072 location_t saved_loc = curr_insn_location ();
11073 auto loc = gimple_location (g);
11074 if (loc != UNKNOWN_LOCATION)
11075 set_curr_insn_location (loc);
11076 tree lhs = gimple_assign_lhs (g);
11077 ops.code = gimple_assign_rhs_code (g);
11078 ops.type = TREE_TYPE (lhs);
11079 switch (get_gimple_rhs_class (ops.code))
11081 case GIMPLE_TERNARY_RHS:
11082 ops.op2 = gimple_assign_rhs3 (g);
11083 /* Fallthru */
11084 case GIMPLE_BINARY_RHS:
11085 ops.op1 = gimple_assign_rhs2 (g);
11087 /* Try to expand conditonal compare. */
11088 if (targetm.gen_ccmp_first)
11090 gcc_checking_assert (targetm.gen_ccmp_next != NULL);
11091 r = expand_ccmp_expr (g, TYPE_MODE (ops.type));
11092 if (r)
11093 break;
11095 /* Fallthru */
11096 case GIMPLE_UNARY_RHS:
11097 ops.op0 = gimple_assign_rhs1 (g);
11098 ops.location = loc;
11099 r = expand_expr_real_2 (&ops, target, tmode, modifier);
11100 break;
11101 case GIMPLE_SINGLE_RHS:
11103 r = expand_expr_real (gimple_assign_rhs1 (g), target,
11104 tmode, modifier, alt_rtl,
11105 inner_reference_p);
11106 break;
11108 default:
11109 gcc_unreachable ();
11111 set_curr_insn_location (saved_loc);
11112 if (REG_P (r) && !REG_EXPR (r))
11113 set_reg_attrs_for_decl_rtl (lhs, r);
11114 return r;
11118 expand_expr_real_1 (tree exp, rtx target, machine_mode tmode,
11119 enum expand_modifier modifier, rtx *alt_rtl,
11120 bool inner_reference_p)
11122 rtx op0, op1, temp, decl_rtl;
11123 tree type;
11124 int unsignedp;
11125 machine_mode mode, dmode;
11126 enum tree_code code = TREE_CODE (exp);
11127 rtx subtarget, original_target;
11128 int ignore;
11129 bool reduce_bit_field;
11130 location_t loc = EXPR_LOCATION (exp);
11131 struct separate_ops ops;
11132 tree treeop0, treeop1, treeop2;
11133 tree ssa_name = NULL_TREE;
11134 gimple *g;
11136 /* Some ABIs define padding bits in _BitInt uninitialized. Normally, RTL
11137 expansion sign/zero extends integral types with less than mode precision
11138 when reading from bit-fields and after arithmetic operations (see
11139 REDUCE_BIT_FIELD in expand_expr_real_2) and on subsequent loads relies
11140 on those extensions to have been already performed, but because of the
11141 above for _BitInt they need to be sign/zero extended when reading from
11142 locations that could be exposed to ABI boundaries (when loading from
11143 objects in memory, or function arguments, return value). Because we
11144 internally extend after arithmetic operations, we can avoid doing that
11145 when reading from SSA_NAMEs of vars. */
11146 #define EXTEND_BITINT(expr) \
11147 ((TREE_CODE (type) == BITINT_TYPE \
11148 && reduce_bit_field \
11149 && mode != BLKmode \
11150 && modifier != EXPAND_MEMORY \
11151 && modifier != EXPAND_WRITE \
11152 && modifier != EXPAND_INITIALIZER \
11153 && modifier != EXPAND_CONST_ADDRESS) \
11154 ? reduce_to_bit_field_precision ((expr), NULL_RTX, type) : (expr))
11156 type = TREE_TYPE (exp);
11157 mode = TYPE_MODE (type);
11158 unsignedp = TYPE_UNSIGNED (type);
11160 treeop0 = treeop1 = treeop2 = NULL_TREE;
11161 if (!VL_EXP_CLASS_P (exp))
11162 switch (TREE_CODE_LENGTH (code))
11164 default:
11165 case 3: treeop2 = TREE_OPERAND (exp, 2); /* FALLTHRU */
11166 case 2: treeop1 = TREE_OPERAND (exp, 1); /* FALLTHRU */
11167 case 1: treeop0 = TREE_OPERAND (exp, 0); /* FALLTHRU */
11168 case 0: break;
11170 ops.code = code;
11171 ops.type = type;
11172 ops.op0 = treeop0;
11173 ops.op1 = treeop1;
11174 ops.op2 = treeop2;
11175 ops.location = loc;
11177 ignore = (target == const0_rtx
11178 || ((CONVERT_EXPR_CODE_P (code)
11179 || code == COND_EXPR || code == VIEW_CONVERT_EXPR)
11180 && TREE_CODE (type) == VOID_TYPE));
11182 /* An operation in what may be a bit-field type needs the
11183 result to be reduced to the precision of the bit-field type,
11184 which is narrower than that of the type's mode. */
11185 reduce_bit_field = (!ignore
11186 && INTEGRAL_TYPE_P (type)
11187 && !type_has_mode_precision_p (type));
11189 /* If we are going to ignore this result, we need only do something
11190 if there is a side-effect somewhere in the expression. If there
11191 is, short-circuit the most common cases here. Note that we must
11192 not call expand_expr with anything but const0_rtx in case this
11193 is an initial expansion of a size that contains a PLACEHOLDER_EXPR. */
11195 if (ignore)
11197 if (! TREE_SIDE_EFFECTS (exp))
11198 return const0_rtx;
11200 /* Ensure we reference a volatile object even if value is ignored, but
11201 don't do this if all we are doing is taking its address. */
11202 if (TREE_THIS_VOLATILE (exp)
11203 && TREE_CODE (exp) != FUNCTION_DECL
11204 && mode != VOIDmode && mode != BLKmode
11205 && modifier != EXPAND_CONST_ADDRESS)
11207 temp = expand_expr (exp, NULL_RTX, VOIDmode, modifier);
11208 if (MEM_P (temp))
11209 copy_to_reg (temp);
11210 return const0_rtx;
11213 if (TREE_CODE_CLASS (code) == tcc_unary
11214 || code == BIT_FIELD_REF
11215 || code == COMPONENT_REF
11216 || code == INDIRECT_REF)
11217 return expand_expr (treeop0, const0_rtx, VOIDmode,
11218 modifier);
11220 else if (TREE_CODE_CLASS (code) == tcc_binary
11221 || TREE_CODE_CLASS (code) == tcc_comparison
11222 || code == ARRAY_REF || code == ARRAY_RANGE_REF)
11224 expand_expr (treeop0, const0_rtx, VOIDmode, modifier);
11225 expand_expr (treeop1, const0_rtx, VOIDmode, modifier);
11226 return const0_rtx;
11229 target = 0;
11232 if (reduce_bit_field && modifier == EXPAND_STACK_PARM)
11233 target = 0;
11235 /* Use subtarget as the target for operand 0 of a binary operation. */
11236 subtarget = get_subtarget (target);
11237 original_target = target;
11239 switch (code)
11241 case LABEL_DECL:
11243 tree function = decl_function_context (exp);
11245 temp = label_rtx (exp);
11246 temp = gen_rtx_LABEL_REF (Pmode, temp);
11248 if (function != current_function_decl
11249 && function != 0)
11250 LABEL_REF_NONLOCAL_P (temp) = 1;
11252 temp = gen_rtx_MEM (FUNCTION_MODE, temp);
11253 return temp;
11256 case SSA_NAME:
11257 /* ??? ivopts calls expander, without any preparation from
11258 out-of-ssa. So fake instructions as if this was an access to the
11259 base variable. This unnecessarily allocates a pseudo, see how we can
11260 reuse it, if partition base vars have it set already. */
11261 if (!currently_expanding_to_rtl)
11263 tree var = SSA_NAME_VAR (exp);
11264 if (var && DECL_RTL_SET_P (var))
11265 return DECL_RTL (var);
11266 return gen_raw_REG (TYPE_MODE (TREE_TYPE (exp)),
11267 LAST_VIRTUAL_REGISTER + 1);
11270 g = get_gimple_for_ssa_name (exp);
11271 /* For EXPAND_INITIALIZER try harder to get something simpler. */
11272 if (g == NULL
11273 && modifier == EXPAND_INITIALIZER
11274 && !SSA_NAME_IS_DEFAULT_DEF (exp)
11275 && (optimize || !SSA_NAME_VAR (exp)
11276 || DECL_IGNORED_P (SSA_NAME_VAR (exp)))
11277 && stmt_is_replaceable_p (SSA_NAME_DEF_STMT (exp)))
11278 g = SSA_NAME_DEF_STMT (exp);
11279 if (g)
11280 return expand_expr_real_gassign (as_a<gassign *> (g), target, tmode,
11281 modifier, alt_rtl, inner_reference_p);
11283 ssa_name = exp;
11284 decl_rtl = get_rtx_for_ssa_name (ssa_name);
11285 exp = SSA_NAME_VAR (ssa_name);
11286 /* Optimize and avoid to EXTEND_BITINIT doing anything if it is an
11287 SSA_NAME computed within the current function. In such case the
11288 value have been already extended before. While if it is a function
11289 parameter, result or some memory location, we need to be prepared
11290 for some other compiler leaving the bits uninitialized. */
11291 if (!exp || VAR_P (exp))
11292 reduce_bit_field = false;
11293 goto expand_decl_rtl;
11295 case VAR_DECL:
11296 /* Allow accel compiler to handle variables that require special
11297 treatment, e.g. if they have been modified in some way earlier in
11298 compilation by the adjust_private_decl OpenACC hook. */
11299 if (flag_openacc && targetm.goacc.expand_var_decl)
11301 temp = targetm.goacc.expand_var_decl (exp);
11302 if (temp)
11303 return temp;
11305 /* Expand const VAR_DECLs with CONSTRUCTOR initializers that
11306 have scalar integer modes to a reg via store_constructor. */
11307 if (TREE_READONLY (exp)
11308 && !TREE_SIDE_EFFECTS (exp)
11309 && (modifier == EXPAND_NORMAL || modifier == EXPAND_STACK_PARM)
11310 && immediate_const_ctor_p (DECL_INITIAL (exp))
11311 && SCALAR_INT_MODE_P (TYPE_MODE (TREE_TYPE (exp)))
11312 && crtl->emit.regno_pointer_align_length
11313 && !target)
11315 target = gen_reg_rtx (TYPE_MODE (TREE_TYPE (exp)));
11316 store_constructor (DECL_INITIAL (exp), target, 0,
11317 int_expr_size (DECL_INITIAL (exp)), false);
11318 return target;
11320 /* ... fall through ... */
11322 case PARM_DECL:
11323 /* If a static var's type was incomplete when the decl was written,
11324 but the type is complete now, lay out the decl now. */
11325 if (DECL_SIZE (exp) == 0
11326 && COMPLETE_OR_UNBOUND_ARRAY_TYPE_P (TREE_TYPE (exp))
11327 && (TREE_STATIC (exp) || DECL_EXTERNAL (exp)))
11328 layout_decl (exp, 0);
11330 /* fall through */
11332 case FUNCTION_DECL:
11333 case RESULT_DECL:
11334 decl_rtl = DECL_RTL (exp);
11335 expand_decl_rtl:
11336 gcc_assert (decl_rtl);
11338 /* DECL_MODE might change when TYPE_MODE depends on attribute target
11339 settings for VECTOR_TYPE_P that might switch for the function. */
11340 if (currently_expanding_to_rtl
11341 && code == VAR_DECL && MEM_P (decl_rtl)
11342 && VECTOR_TYPE_P (type) && exp && DECL_MODE (exp) != mode)
11343 decl_rtl = change_address (decl_rtl, TYPE_MODE (type), 0);
11344 else
11345 decl_rtl = copy_rtx (decl_rtl);
11347 /* Record writes to register variables. */
11348 if (modifier == EXPAND_WRITE
11349 && REG_P (decl_rtl)
11350 && HARD_REGISTER_P (decl_rtl))
11351 add_to_hard_reg_set (&crtl->asm_clobbers,
11352 GET_MODE (decl_rtl), REGNO (decl_rtl));
11354 /* Ensure variable marked as used even if it doesn't go through
11355 a parser. If it hasn't be used yet, write out an external
11356 definition. */
11357 if (exp)
11358 TREE_USED (exp) = 1;
11360 /* Show we haven't gotten RTL for this yet. */
11361 temp = 0;
11363 /* Variables inherited from containing functions should have
11364 been lowered by this point. */
11365 if (exp)
11367 tree context = decl_function_context (exp);
11368 gcc_assert (SCOPE_FILE_SCOPE_P (context)
11369 || context == current_function_decl
11370 || TREE_STATIC (exp)
11371 || DECL_EXTERNAL (exp)
11372 /* ??? C++ creates functions that are not
11373 TREE_STATIC. */
11374 || TREE_CODE (exp) == FUNCTION_DECL);
11377 /* This is the case of an array whose size is to be determined
11378 from its initializer, while the initializer is still being parsed.
11379 ??? We aren't parsing while expanding anymore. */
11381 if (MEM_P (decl_rtl) && REG_P (XEXP (decl_rtl, 0)))
11382 temp = validize_mem (decl_rtl);
11384 /* If DECL_RTL is memory, we are in the normal case and the
11385 address is not valid, get the address into a register. */
11387 else if (MEM_P (decl_rtl) && modifier != EXPAND_INITIALIZER)
11389 if (alt_rtl)
11390 *alt_rtl = decl_rtl;
11391 decl_rtl = use_anchored_address (decl_rtl);
11392 if (modifier != EXPAND_CONST_ADDRESS
11393 && modifier != EXPAND_SUM
11394 && !memory_address_addr_space_p (exp ? DECL_MODE (exp)
11395 : GET_MODE (decl_rtl),
11396 XEXP (decl_rtl, 0),
11397 MEM_ADDR_SPACE (decl_rtl)))
11398 temp = replace_equiv_address (decl_rtl,
11399 copy_rtx (XEXP (decl_rtl, 0)));
11402 /* If we got something, return it. But first, set the alignment
11403 if the address is a register. */
11404 if (temp != 0)
11406 if (exp && MEM_P (temp) && REG_P (XEXP (temp, 0)))
11407 mark_reg_pointer (XEXP (temp, 0), DECL_ALIGN (exp));
11409 else if (MEM_P (decl_rtl))
11410 temp = decl_rtl;
11412 if (temp != 0)
11414 if (MEM_P (temp)
11415 && modifier != EXPAND_WRITE
11416 && modifier != EXPAND_MEMORY
11417 && modifier != EXPAND_INITIALIZER
11418 && modifier != EXPAND_CONST_ADDRESS
11419 && modifier != EXPAND_SUM
11420 && !inner_reference_p
11421 && mode != BLKmode
11422 && MEM_ALIGN (temp) < GET_MODE_ALIGNMENT (mode))
11423 temp = expand_misaligned_mem_ref (temp, mode, unsignedp,
11424 MEM_ALIGN (temp), NULL_RTX, NULL);
11426 return EXTEND_BITINT (temp);
11429 if (exp)
11430 dmode = DECL_MODE (exp);
11431 else
11432 dmode = TYPE_MODE (TREE_TYPE (ssa_name));
11434 /* If the mode of DECL_RTL does not match that of the decl,
11435 there are two cases: we are dealing with a BLKmode value
11436 that is returned in a register, or we are dealing with
11437 a promoted value. In the latter case, return a SUBREG
11438 of the wanted mode, but mark it so that we know that it
11439 was already extended. */
11440 if (REG_P (decl_rtl)
11441 && dmode != BLKmode
11442 && GET_MODE (decl_rtl) != dmode)
11444 machine_mode pmode;
11446 /* Get the signedness to be used for this variable. Ensure we get
11447 the same mode we got when the variable was declared. */
11448 if (code != SSA_NAME)
11449 pmode = promote_decl_mode (exp, &unsignedp);
11450 else if ((g = SSA_NAME_DEF_STMT (ssa_name))
11451 && gimple_code (g) == GIMPLE_CALL
11452 && !gimple_call_internal_p (g))
11453 pmode = promote_function_mode (type, mode, &unsignedp,
11454 gimple_call_fntype (g),
11456 else
11457 pmode = promote_ssa_mode (ssa_name, &unsignedp);
11458 gcc_assert (GET_MODE (decl_rtl) == pmode);
11460 /* Some ABIs require scalar floating point modes to be passed
11461 in a wider scalar integer mode. We need to explicitly
11462 truncate to an integer mode of the correct precision before
11463 using a SUBREG to reinterpret as a floating point value. */
11464 if (SCALAR_FLOAT_MODE_P (mode)
11465 && SCALAR_INT_MODE_P (pmode)
11466 && known_lt (GET_MODE_SIZE (mode), GET_MODE_SIZE (pmode)))
11467 return convert_wider_int_to_float (mode, pmode, decl_rtl);
11469 temp = gen_lowpart_SUBREG (mode, decl_rtl);
11470 SUBREG_PROMOTED_VAR_P (temp) = 1;
11471 SUBREG_PROMOTED_SET (temp, unsignedp);
11472 return EXTEND_BITINT (temp);
11475 return EXTEND_BITINT (decl_rtl);
11477 case INTEGER_CST:
11479 if (TREE_CODE (type) == BITINT_TYPE)
11481 unsigned int prec = TYPE_PRECISION (type);
11482 struct bitint_info info;
11483 bool ok = targetm.c.bitint_type_info (prec, &info);
11484 gcc_assert (ok);
11485 scalar_int_mode limb_mode
11486 = as_a <scalar_int_mode> (info.limb_mode);
11487 unsigned int limb_prec = GET_MODE_PRECISION (limb_mode);
11488 if (prec > limb_prec && prec > MAX_FIXED_MODE_SIZE)
11490 /* Emit large/huge _BitInt INTEGER_CSTs into memory. */
11491 exp = tree_output_constant_def (exp);
11492 return expand_expr (exp, target, VOIDmode, modifier);
11496 /* Given that TYPE_PRECISION (type) is not always equal to
11497 GET_MODE_PRECISION (TYPE_MODE (type)), we need to extend from
11498 the former to the latter according to the signedness of the
11499 type. */
11500 scalar_int_mode int_mode = SCALAR_INT_TYPE_MODE (type);
11501 temp = immed_wide_int_const
11502 (wi::to_wide (exp, GET_MODE_PRECISION (int_mode)), int_mode);
11503 return temp;
11506 case VECTOR_CST:
11508 tree tmp = NULL_TREE;
11509 if (VECTOR_MODE_P (mode))
11510 return const_vector_from_tree (exp);
11511 scalar_int_mode int_mode;
11512 if (is_int_mode (mode, &int_mode))
11514 tree type_for_mode = lang_hooks.types.type_for_mode (int_mode, 1);
11515 if (type_for_mode)
11516 tmp = fold_unary_loc (loc, VIEW_CONVERT_EXPR,
11517 type_for_mode, exp);
11519 if (!tmp)
11521 vec<constructor_elt, va_gc> *v;
11522 /* Constructors need to be fixed-length. FIXME. */
11523 unsigned int nunits = VECTOR_CST_NELTS (exp).to_constant ();
11524 vec_alloc (v, nunits);
11525 for (unsigned int i = 0; i < nunits; ++i)
11526 CONSTRUCTOR_APPEND_ELT (v, NULL_TREE, VECTOR_CST_ELT (exp, i));
11527 tmp = build_constructor (type, v);
11529 return expand_expr (tmp, ignore ? const0_rtx : target,
11530 tmode, modifier);
11533 case CONST_DECL:
11534 if (modifier == EXPAND_WRITE)
11536 /* Writing into CONST_DECL is always invalid, but handle it
11537 gracefully. */
11538 addr_space_t as = TYPE_ADDR_SPACE (TREE_TYPE (exp));
11539 scalar_int_mode address_mode = targetm.addr_space.address_mode (as);
11540 op0 = expand_expr_addr_expr_1 (exp, NULL_RTX, address_mode,
11541 EXPAND_NORMAL, as);
11542 op0 = memory_address_addr_space (mode, op0, as);
11543 temp = gen_rtx_MEM (mode, op0);
11544 set_mem_addr_space (temp, as);
11545 return temp;
11547 return expand_expr (DECL_INITIAL (exp), target, VOIDmode, modifier);
11549 case REAL_CST:
11550 /* If optimized, generate immediate CONST_DOUBLE
11551 which will be turned into memory by reload if necessary.
11553 We used to force a register so that loop.c could see it. But
11554 this does not allow gen_* patterns to perform optimizations with
11555 the constants. It also produces two insns in cases like "x = 1.0;".
11556 On most machines, floating-point constants are not permitted in
11557 many insns, so we'd end up copying it to a register in any case.
11559 Now, we do the copying in expand_binop, if appropriate. */
11560 return const_double_from_real_value (TREE_REAL_CST (exp),
11561 TYPE_MODE (TREE_TYPE (exp)));
11563 case FIXED_CST:
11564 return CONST_FIXED_FROM_FIXED_VALUE (TREE_FIXED_CST (exp),
11565 TYPE_MODE (TREE_TYPE (exp)));
11567 case COMPLEX_CST:
11568 /* Handle evaluating a complex constant in a CONCAT target. */
11569 if (original_target && GET_CODE (original_target) == CONCAT)
11571 rtx rtarg, itarg;
11573 mode = TYPE_MODE (TREE_TYPE (TREE_TYPE (exp)));
11574 rtarg = XEXP (original_target, 0);
11575 itarg = XEXP (original_target, 1);
11577 /* Move the real and imaginary parts separately. */
11578 op0 = expand_expr (TREE_REALPART (exp), rtarg, mode, EXPAND_NORMAL);
11579 op1 = expand_expr (TREE_IMAGPART (exp), itarg, mode, EXPAND_NORMAL);
11581 if (op0 != rtarg)
11582 emit_move_insn (rtarg, op0);
11583 if (op1 != itarg)
11584 emit_move_insn (itarg, op1);
11586 return original_target;
11589 /* fall through */
11591 case STRING_CST:
11592 temp = expand_expr_constant (exp, 1, modifier);
11594 /* temp contains a constant address.
11595 On RISC machines where a constant address isn't valid,
11596 make some insns to get that address into a register. */
11597 if (modifier != EXPAND_CONST_ADDRESS
11598 && modifier != EXPAND_INITIALIZER
11599 && modifier != EXPAND_SUM
11600 && ! memory_address_addr_space_p (mode, XEXP (temp, 0),
11601 MEM_ADDR_SPACE (temp)))
11602 return replace_equiv_address (temp,
11603 copy_rtx (XEXP (temp, 0)));
11604 return temp;
11606 case POLY_INT_CST:
11607 return immed_wide_int_const (poly_int_cst_value (exp), mode);
11609 case SAVE_EXPR:
11611 tree val = treeop0;
11612 rtx ret = expand_expr_real_1 (val, target, tmode, modifier, alt_rtl,
11613 inner_reference_p);
11615 if (!SAVE_EXPR_RESOLVED_P (exp))
11617 /* We can indeed still hit this case, typically via builtin
11618 expanders calling save_expr immediately before expanding
11619 something. Assume this means that we only have to deal
11620 with non-BLKmode values. */
11621 gcc_assert (GET_MODE (ret) != BLKmode);
11623 val = build_decl (curr_insn_location (),
11624 VAR_DECL, NULL, TREE_TYPE (exp));
11625 DECL_ARTIFICIAL (val) = 1;
11626 DECL_IGNORED_P (val) = 1;
11627 treeop0 = val;
11628 TREE_OPERAND (exp, 0) = treeop0;
11629 SAVE_EXPR_RESOLVED_P (exp) = 1;
11631 if (!CONSTANT_P (ret))
11632 ret = copy_to_reg (ret);
11633 SET_DECL_RTL (val, ret);
11636 return ret;
11640 case CONSTRUCTOR:
11641 /* If we don't need the result, just ensure we evaluate any
11642 subexpressions. */
11643 if (ignore)
11645 unsigned HOST_WIDE_INT idx;
11646 tree value;
11648 FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (exp), idx, value)
11649 expand_expr (value, const0_rtx, VOIDmode, EXPAND_NORMAL);
11651 return const0_rtx;
11654 return expand_constructor (exp, target, modifier, false);
11656 case TARGET_MEM_REF:
11658 addr_space_t as
11659 = TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (TREE_OPERAND (exp, 0))));
11660 unsigned int align;
11662 op0 = addr_for_mem_ref (exp, as, true);
11663 op0 = memory_address_addr_space (mode, op0, as);
11664 temp = gen_rtx_MEM (mode, op0);
11665 set_mem_attributes (temp, exp, 0);
11666 set_mem_addr_space (temp, as);
11667 align = get_object_alignment (exp);
11668 if (modifier != EXPAND_WRITE
11669 && modifier != EXPAND_MEMORY
11670 && mode != BLKmode
11671 && align < GET_MODE_ALIGNMENT (mode))
11672 temp = expand_misaligned_mem_ref (temp, mode, unsignedp,
11673 align, NULL_RTX, NULL);
11674 return EXTEND_BITINT (temp);
11677 case MEM_REF:
11679 const bool reverse = REF_REVERSE_STORAGE_ORDER (exp);
11680 addr_space_t as
11681 = TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (TREE_OPERAND (exp, 0))));
11682 machine_mode address_mode;
11683 tree base = TREE_OPERAND (exp, 0);
11684 gimple *def_stmt;
11685 unsigned align;
11686 /* Handle expansion of non-aliased memory with non-BLKmode. That
11687 might end up in a register. */
11688 if (mem_ref_refers_to_non_mem_p (exp))
11690 poly_int64 offset = mem_ref_offset (exp).force_shwi ();
11691 base = TREE_OPERAND (base, 0);
11692 poly_uint64 type_size;
11693 if (known_eq (offset, 0)
11694 && !reverse
11695 && poly_int_tree_p (TYPE_SIZE (type), &type_size)
11696 && known_eq (GET_MODE_BITSIZE (DECL_MODE (base)), type_size))
11697 return expand_expr (build1 (VIEW_CONVERT_EXPR, type, base),
11698 target, tmode, modifier);
11699 if (TYPE_MODE (type) == BLKmode)
11701 temp = assign_stack_temp (DECL_MODE (base),
11702 GET_MODE_SIZE (DECL_MODE (base)));
11703 store_expr (base, temp, 0, false, false);
11704 temp = adjust_address (temp, BLKmode, offset);
11705 set_mem_size (temp, int_size_in_bytes (type));
11706 return temp;
11708 exp = build3 (BIT_FIELD_REF, type, base, TYPE_SIZE (type),
11709 bitsize_int (offset * BITS_PER_UNIT));
11710 REF_REVERSE_STORAGE_ORDER (exp) = reverse;
11711 return expand_expr (exp, target, tmode, modifier);
11713 address_mode = targetm.addr_space.address_mode (as);
11714 if ((def_stmt = get_def_for_expr (base, BIT_AND_EXPR)))
11716 tree mask = gimple_assign_rhs2 (def_stmt);
11717 base = build2 (BIT_AND_EXPR, TREE_TYPE (base),
11718 gimple_assign_rhs1 (def_stmt), mask);
11719 TREE_OPERAND (exp, 0) = base;
11721 align = get_object_alignment (exp);
11722 op0 = expand_expr (base, NULL_RTX, VOIDmode, EXPAND_SUM);
11723 op0 = memory_address_addr_space (mode, op0, as);
11724 if (!integer_zerop (TREE_OPERAND (exp, 1)))
11726 rtx off = immed_wide_int_const (mem_ref_offset (exp), address_mode);
11727 op0 = simplify_gen_binary (PLUS, address_mode, op0, off);
11728 op0 = memory_address_addr_space (mode, op0, as);
11730 temp = gen_rtx_MEM (mode, op0);
11731 set_mem_attributes (temp, exp, 0);
11732 set_mem_addr_space (temp, as);
11733 if (TREE_THIS_VOLATILE (exp))
11734 MEM_VOLATILE_P (temp) = 1;
11735 if (modifier == EXPAND_WRITE || modifier == EXPAND_MEMORY)
11736 return temp;
11737 if (!inner_reference_p
11738 && mode != BLKmode
11739 && align < GET_MODE_ALIGNMENT (mode))
11740 temp = expand_misaligned_mem_ref (temp, mode, unsignedp, align,
11741 modifier == EXPAND_STACK_PARM
11742 ? NULL_RTX : target, alt_rtl);
11743 if (reverse)
11744 temp = flip_storage_order (mode, temp);
11745 return EXTEND_BITINT (temp);
11748 case ARRAY_REF:
11751 tree array = treeop0;
11752 tree index = treeop1;
11753 tree init;
11755 /* Fold an expression like: "foo"[2].
11756 This is not done in fold so it won't happen inside &.
11757 Don't fold if this is for wide characters since it's too
11758 difficult to do correctly and this is a very rare case. */
11760 if (modifier != EXPAND_CONST_ADDRESS
11761 && modifier != EXPAND_INITIALIZER
11762 && modifier != EXPAND_MEMORY)
11764 tree t = fold_read_from_constant_string (exp);
11766 if (t)
11767 return expand_expr (t, target, tmode, modifier);
11770 /* If this is a constant index into a constant array,
11771 just get the value from the array. Handle both the cases when
11772 we have an explicit constructor and when our operand is a variable
11773 that was declared const. */
11775 if (modifier != EXPAND_CONST_ADDRESS
11776 && modifier != EXPAND_INITIALIZER
11777 && modifier != EXPAND_MEMORY
11778 && TREE_CODE (array) == CONSTRUCTOR
11779 && ! TREE_SIDE_EFFECTS (array)
11780 && TREE_CODE (index) == INTEGER_CST)
11782 unsigned HOST_WIDE_INT ix;
11783 tree field, value;
11785 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (array), ix,
11786 field, value)
11787 if (tree_int_cst_equal (field, index))
11789 if (!TREE_SIDE_EFFECTS (value))
11790 return expand_expr (fold (value), target, tmode, modifier);
11791 break;
11795 else if (optimize >= 1
11796 && modifier != EXPAND_CONST_ADDRESS
11797 && modifier != EXPAND_INITIALIZER
11798 && modifier != EXPAND_MEMORY
11799 && TREE_READONLY (array) && ! TREE_SIDE_EFFECTS (array)
11800 && TREE_CODE (index) == INTEGER_CST
11801 && (VAR_P (array) || TREE_CODE (array) == CONST_DECL)
11802 && (init = ctor_for_folding (array)) != error_mark_node)
11804 if (init == NULL_TREE)
11806 tree value = build_zero_cst (type);
11807 if (TREE_CODE (value) == CONSTRUCTOR)
11809 /* If VALUE is a CONSTRUCTOR, this optimization is only
11810 useful if this doesn't store the CONSTRUCTOR into
11811 memory. If it does, it is more efficient to just
11812 load the data from the array directly. */
11813 rtx ret = expand_constructor (value, target,
11814 modifier, true);
11815 if (ret == NULL_RTX)
11816 value = NULL_TREE;
11819 if (value)
11820 return expand_expr (value, target, tmode, modifier);
11822 else if (TREE_CODE (init) == CONSTRUCTOR)
11824 unsigned HOST_WIDE_INT ix;
11825 tree field, value;
11827 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (init), ix,
11828 field, value)
11829 if (tree_int_cst_equal (field, index))
11831 if (TREE_SIDE_EFFECTS (value))
11832 break;
11834 if (TREE_CODE (value) == CONSTRUCTOR)
11836 /* If VALUE is a CONSTRUCTOR, this
11837 optimization is only useful if
11838 this doesn't store the CONSTRUCTOR
11839 into memory. If it does, it is more
11840 efficient to just load the data from
11841 the array directly. */
11842 rtx ret = expand_constructor (value, target,
11843 modifier, true);
11844 if (ret == NULL_RTX)
11845 break;
11848 return
11849 expand_expr (fold (value), target, tmode, modifier);
11852 else if (TREE_CODE (init) == STRING_CST)
11854 tree low_bound = array_ref_low_bound (exp);
11855 tree index1 = fold_convert_loc (loc, sizetype, treeop1);
11857 /* Optimize the special case of a zero lower bound.
11859 We convert the lower bound to sizetype to avoid problems
11860 with constant folding. E.g. suppose the lower bound is
11861 1 and its mode is QI. Without the conversion
11862 (ARRAY + (INDEX - (unsigned char)1))
11863 becomes
11864 (ARRAY + (-(unsigned char)1) + INDEX)
11865 which becomes
11866 (ARRAY + 255 + INDEX). Oops! */
11867 if (!integer_zerop (low_bound))
11868 index1 = size_diffop_loc (loc, index1,
11869 fold_convert_loc (loc, sizetype,
11870 low_bound));
11872 if (tree_fits_uhwi_p (index1)
11873 && compare_tree_int (index1, TREE_STRING_LENGTH (init)) < 0)
11875 tree char_type = TREE_TYPE (TREE_TYPE (init));
11876 scalar_int_mode char_mode;
11878 if (is_int_mode (TYPE_MODE (char_type), &char_mode)
11879 && GET_MODE_SIZE (char_mode) == 1)
11880 return gen_int_mode (TREE_STRING_POINTER (init)
11881 [TREE_INT_CST_LOW (index1)],
11882 char_mode);
11887 goto normal_inner_ref;
11889 case COMPONENT_REF:
11890 gcc_assert (TREE_CODE (treeop0) != CONSTRUCTOR);
11891 /* Fall through. */
11892 case BIT_FIELD_REF:
11893 case ARRAY_RANGE_REF:
11894 normal_inner_ref:
11896 machine_mode mode1, mode2;
11897 poly_int64 bitsize, bitpos, bytepos;
11898 tree offset;
11899 int reversep, volatilep = 0;
11900 tree tem
11901 = get_inner_reference (exp, &bitsize, &bitpos, &offset, &mode1,
11902 &unsignedp, &reversep, &volatilep);
11903 rtx orig_op0, memloc;
11904 bool clear_mem_expr = false;
11905 bool must_force_mem;
11907 /* If we got back the original object, something is wrong. Perhaps
11908 we are evaluating an expression too early. In any event, don't
11909 infinitely recurse. */
11910 gcc_assert (tem != exp);
11912 /* Make sure bitpos is not negative, this can wreak havoc later. */
11913 if (maybe_lt (bitpos, 0))
11915 gcc_checking_assert (offset == NULL_TREE);
11916 offset = size_int (bits_to_bytes_round_down (bitpos));
11917 bitpos = num_trailing_bits (bitpos);
11920 /* If we have either an offset, a BLKmode result, or a reference
11921 outside the underlying object, we must force it to memory.
11922 Such a case can occur in Ada if we have unchecked conversion
11923 of an expression from a scalar type to an aggregate type or
11924 for an ARRAY_RANGE_REF whose type is BLKmode, or if we were
11925 passed a partially uninitialized object or a view-conversion
11926 to a larger size. */
11927 must_force_mem = offset != NULL_TREE
11928 || mode1 == BLKmode
11929 || (mode == BLKmode
11930 && !int_mode_for_size (bitsize, 1).exists ());
11932 const enum expand_modifier tem_modifier
11933 = must_force_mem
11934 ? EXPAND_MEMORY
11935 : modifier == EXPAND_SUM ? EXPAND_NORMAL : modifier;
11937 /* If TEM's type is a union of variable size, pass TARGET to the inner
11938 computation, since it will need a temporary and TARGET is known
11939 to have to do. This occurs in unchecked conversion in Ada. */
11940 const rtx tem_target
11941 = TREE_CODE (TREE_TYPE (tem)) == UNION_TYPE
11942 && COMPLETE_TYPE_P (TREE_TYPE (tem))
11943 && TREE_CODE (TYPE_SIZE (TREE_TYPE (tem))) != INTEGER_CST
11944 && modifier != EXPAND_STACK_PARM
11945 ? target
11946 : NULL_RTX;
11948 orig_op0 = op0
11949 = expand_expr_real (tem, tem_target, VOIDmode, tem_modifier, NULL,
11950 true);
11952 /* If the field has a mode, we want to access it in the
11953 field's mode, not the computed mode.
11954 If a MEM has VOIDmode (external with incomplete type),
11955 use BLKmode for it instead. */
11956 if (MEM_P (op0))
11958 if (mode1 != VOIDmode)
11959 op0 = adjust_address (op0, mode1, 0);
11960 else if (GET_MODE (op0) == VOIDmode)
11961 op0 = adjust_address (op0, BLKmode, 0);
11964 mode2
11965 = CONSTANT_P (op0) ? TYPE_MODE (TREE_TYPE (tem)) : GET_MODE (op0);
11967 /* See above for the rationale. */
11968 if (maybe_gt (bitpos + bitsize, GET_MODE_BITSIZE (mode2)))
11969 must_force_mem = true;
11971 /* Handle CONCAT first. */
11972 if (GET_CODE (op0) == CONCAT && !must_force_mem)
11974 if (known_eq (bitpos, 0)
11975 && known_eq (bitsize, GET_MODE_BITSIZE (GET_MODE (op0)))
11976 && COMPLEX_MODE_P (mode1)
11977 && COMPLEX_MODE_P (GET_MODE (op0))
11978 && (GET_MODE_PRECISION (GET_MODE_INNER (mode1))
11979 == GET_MODE_PRECISION (GET_MODE_INNER (GET_MODE (op0)))))
11981 if (reversep)
11982 op0 = flip_storage_order (GET_MODE (op0), op0);
11983 if (mode1 != GET_MODE (op0))
11985 rtx parts[2];
11986 for (int i = 0; i < 2; i++)
11988 rtx op = read_complex_part (op0, i != 0);
11989 if (GET_CODE (op) == SUBREG)
11990 op = force_reg (GET_MODE (op), op);
11991 temp = gen_lowpart_common (GET_MODE_INNER (mode1), op);
11992 if (temp)
11993 op = temp;
11994 else
11996 if (!REG_P (op) && !MEM_P (op))
11997 op = force_reg (GET_MODE (op), op);
11998 op = gen_lowpart (GET_MODE_INNER (mode1), op);
12000 parts[i] = op;
12002 op0 = gen_rtx_CONCAT (mode1, parts[0], parts[1]);
12004 return op0;
12006 if (known_eq (bitpos, 0)
12007 && known_eq (bitsize,
12008 GET_MODE_BITSIZE (GET_MODE (XEXP (op0, 0))))
12009 && maybe_ne (bitsize, 0))
12011 op0 = XEXP (op0, 0);
12012 mode2 = GET_MODE (op0);
12014 else if (known_eq (bitpos,
12015 GET_MODE_BITSIZE (GET_MODE (XEXP (op0, 0))))
12016 && known_eq (bitsize,
12017 GET_MODE_BITSIZE (GET_MODE (XEXP (op0, 1))))
12018 && maybe_ne (bitpos, 0)
12019 && maybe_ne (bitsize, 0))
12021 op0 = XEXP (op0, 1);
12022 bitpos = 0;
12023 mode2 = GET_MODE (op0);
12025 else
12026 /* Otherwise force into memory. */
12027 must_force_mem = true;
12030 /* If this is a constant, put it in a register if it is a legitimate
12031 constant and we don't need a memory reference. */
12032 if (CONSTANT_P (op0)
12033 && mode2 != BLKmode
12034 && targetm.legitimate_constant_p (mode2, op0)
12035 && !must_force_mem)
12036 op0 = force_reg (mode2, op0);
12038 /* Otherwise, if this is a constant, try to force it to the constant
12039 pool. Note that back-ends, e.g. MIPS, may refuse to do so if it
12040 is a legitimate constant. */
12041 else if (CONSTANT_P (op0) && (memloc = force_const_mem (mode2, op0)))
12042 op0 = validize_mem (memloc);
12044 /* Otherwise, if this is a constant or the object is not in memory
12045 and need be, put it there. */
12046 else if (CONSTANT_P (op0) || (!MEM_P (op0) && must_force_mem))
12048 memloc = assign_temp (TREE_TYPE (tem), 1, 1);
12049 emit_move_insn (memloc, op0);
12050 op0 = memloc;
12051 clear_mem_expr = true;
12054 if (offset)
12056 machine_mode address_mode;
12057 rtx offset_rtx = expand_expr (offset, NULL_RTX, VOIDmode,
12058 EXPAND_SUM);
12060 gcc_assert (MEM_P (op0));
12062 address_mode = get_address_mode (op0);
12063 if (GET_MODE (offset_rtx) != address_mode)
12065 /* We cannot be sure that the RTL in offset_rtx is valid outside
12066 of a memory address context, so force it into a register
12067 before attempting to convert it to the desired mode. */
12068 offset_rtx = force_operand (offset_rtx, NULL_RTX);
12069 offset_rtx = convert_to_mode (address_mode, offset_rtx, 0);
12072 /* See the comment in expand_assignment for the rationale. */
12073 if (mode1 != VOIDmode
12074 && maybe_ne (bitpos, 0)
12075 && maybe_gt (bitsize, 0)
12076 && multiple_p (bitpos, BITS_PER_UNIT, &bytepos)
12077 && multiple_p (bitpos, bitsize)
12078 && multiple_p (bitsize, GET_MODE_ALIGNMENT (mode1))
12079 && MEM_ALIGN (op0) >= GET_MODE_ALIGNMENT (mode1))
12081 op0 = adjust_address (op0, mode1, bytepos);
12082 bitpos = 0;
12085 op0 = offset_address (op0, offset_rtx,
12086 highest_pow2_factor (offset));
12089 /* If OFFSET is making OP0 more aligned than BIGGEST_ALIGNMENT,
12090 record its alignment as BIGGEST_ALIGNMENT. */
12091 if (MEM_P (op0)
12092 && known_eq (bitpos, 0)
12093 && offset != 0
12094 && is_aligning_offset (offset, tem))
12095 set_mem_align (op0, BIGGEST_ALIGNMENT);
12097 /* Don't forget about volatility even if this is a bitfield. */
12098 if (MEM_P (op0) && volatilep && ! MEM_VOLATILE_P (op0))
12100 if (op0 == orig_op0)
12101 op0 = copy_rtx (op0);
12103 MEM_VOLATILE_P (op0) = 1;
12106 if (MEM_P (op0) && TREE_CODE (tem) == FUNCTION_DECL)
12108 if (op0 == orig_op0)
12109 op0 = copy_rtx (op0);
12111 set_mem_align (op0, BITS_PER_UNIT);
12114 /* In cases where an aligned union has an unaligned object
12115 as a field, we might be extracting a BLKmode value from
12116 an integer-mode (e.g., SImode) object. Handle this case
12117 by doing the extract into an object as wide as the field
12118 (which we know to be the width of a basic mode), then
12119 storing into memory, and changing the mode to BLKmode. */
12120 if (mode1 == VOIDmode
12121 || REG_P (op0) || GET_CODE (op0) == SUBREG
12122 || (mode1 != BLKmode && ! direct_load[(int) mode1]
12123 && GET_MODE_CLASS (mode) != MODE_COMPLEX_INT
12124 && GET_MODE_CLASS (mode) != MODE_COMPLEX_FLOAT
12125 && modifier != EXPAND_CONST_ADDRESS
12126 && modifier != EXPAND_INITIALIZER
12127 && modifier != EXPAND_MEMORY)
12128 /* If the bitfield is volatile and the bitsize
12129 is narrower than the access size of the bitfield,
12130 we need to extract bitfields from the access. */
12131 || (volatilep && TREE_CODE (exp) == COMPONENT_REF
12132 && DECL_BIT_FIELD_TYPE (TREE_OPERAND (exp, 1))
12133 && mode1 != BLKmode
12134 && maybe_lt (bitsize, GET_MODE_SIZE (mode1) * BITS_PER_UNIT))
12135 /* If the field isn't aligned enough to fetch as a memref,
12136 fetch it as a bit field. */
12137 || (mode1 != BLKmode
12138 && (((MEM_P (op0)
12139 ? MEM_ALIGN (op0) < GET_MODE_ALIGNMENT (mode1)
12140 || !multiple_p (bitpos, GET_MODE_ALIGNMENT (mode1))
12141 : TYPE_ALIGN (TREE_TYPE (tem)) < GET_MODE_ALIGNMENT (mode)
12142 || !multiple_p (bitpos, GET_MODE_ALIGNMENT (mode)))
12143 && modifier != EXPAND_MEMORY
12144 && ((modifier == EXPAND_CONST_ADDRESS
12145 || modifier == EXPAND_INITIALIZER)
12146 ? STRICT_ALIGNMENT
12147 : targetm.slow_unaligned_access (mode1,
12148 MEM_ALIGN (op0))))
12149 || !multiple_p (bitpos, BITS_PER_UNIT)))
12150 /* If the type and the field are a constant size and the
12151 size of the type isn't the same size as the bitfield,
12152 we must use bitfield operations. */
12153 || (known_size_p (bitsize)
12154 && TYPE_SIZE (TREE_TYPE (exp))
12155 && poly_int_tree_p (TYPE_SIZE (TREE_TYPE (exp)))
12156 && maybe_ne (wi::to_poly_offset (TYPE_SIZE (TREE_TYPE (exp))),
12157 bitsize)))
12159 machine_mode ext_mode = mode;
12161 if (ext_mode == BLKmode
12162 && ! (target != 0 && MEM_P (op0)
12163 && MEM_P (target)
12164 && multiple_p (bitpos, BITS_PER_UNIT)))
12165 ext_mode = int_mode_for_size (bitsize, 1).else_blk ();
12167 if (ext_mode == BLKmode)
12169 if (target == 0)
12170 target = assign_temp (type, 1, 1);
12172 /* ??? Unlike the similar test a few lines below, this one is
12173 very likely obsolete. */
12174 if (known_eq (bitsize, 0))
12175 return target;
12177 /* In this case, BITPOS must start at a byte boundary and
12178 TARGET, if specified, must be a MEM. */
12179 gcc_assert (MEM_P (op0)
12180 && (!target || MEM_P (target)));
12182 bytepos = exact_div (bitpos, BITS_PER_UNIT);
12183 poly_int64 bytesize = bits_to_bytes_round_up (bitsize);
12184 emit_block_move (target,
12185 adjust_address (op0, VOIDmode, bytepos),
12186 gen_int_mode (bytesize, Pmode),
12187 (modifier == EXPAND_STACK_PARM
12188 ? BLOCK_OP_CALL_PARM : BLOCK_OP_NORMAL));
12190 return target;
12193 /* If we have nothing to extract, the result will be 0 for targets
12194 with SHIFT_COUNT_TRUNCATED == 0 and garbage otherwise. Always
12195 return 0 for the sake of consistency, as reading a zero-sized
12196 bitfield is valid in Ada and the value is fully specified. */
12197 if (known_eq (bitsize, 0))
12198 return const0_rtx;
12200 op0 = validize_mem (op0);
12202 if (MEM_P (op0) && REG_P (XEXP (op0, 0)))
12203 mark_reg_pointer (XEXP (op0, 0), MEM_ALIGN (op0));
12205 /* If the result has aggregate type and the extraction is done in
12206 an integral mode, then the field may be not aligned on a byte
12207 boundary; in this case, if it has reverse storage order, it
12208 needs to be extracted as a scalar field with reverse storage
12209 order and put back into memory order afterwards. */
12210 if (AGGREGATE_TYPE_P (type)
12211 && GET_MODE_CLASS (ext_mode) == MODE_INT)
12212 reversep = TYPE_REVERSE_STORAGE_ORDER (type);
12214 gcc_checking_assert (known_ge (bitpos, 0));
12215 op0 = extract_bit_field (op0, bitsize, bitpos, unsignedp,
12216 (modifier == EXPAND_STACK_PARM
12217 ? NULL_RTX : target),
12218 ext_mode, ext_mode, reversep, alt_rtl);
12220 /* If the result has aggregate type and the mode of OP0 is an
12221 integral mode then, if BITSIZE is narrower than this mode
12222 and this is for big-endian data, we must put the field
12223 into the high-order bits. And we must also put it back
12224 into memory order if it has been previously reversed. */
12225 scalar_int_mode op0_mode;
12226 if (AGGREGATE_TYPE_P (type)
12227 && is_int_mode (GET_MODE (op0), &op0_mode))
12229 HOST_WIDE_INT size = GET_MODE_BITSIZE (op0_mode);
12231 gcc_checking_assert (known_le (bitsize, size));
12232 if (maybe_lt (bitsize, size)
12233 && reversep ? !BYTES_BIG_ENDIAN : BYTES_BIG_ENDIAN)
12234 op0 = expand_shift (LSHIFT_EXPR, op0_mode, op0,
12235 size - bitsize, op0, 1);
12237 if (reversep)
12238 op0 = flip_storage_order (op0_mode, op0);
12241 /* If the result type is BLKmode, store the data into a temporary
12242 of the appropriate type, but with the mode corresponding to the
12243 mode for the data we have (op0's mode). */
12244 if (mode == BLKmode)
12246 rtx new_rtx
12247 = assign_stack_temp_for_type (ext_mode,
12248 GET_MODE_BITSIZE (ext_mode),
12249 type);
12250 emit_move_insn (new_rtx, op0);
12251 op0 = copy_rtx (new_rtx);
12252 PUT_MODE (op0, BLKmode);
12255 return op0;
12258 /* If the result is BLKmode, use that to access the object
12259 now as well. */
12260 if (mode == BLKmode)
12261 mode1 = BLKmode;
12263 /* Get a reference to just this component. */
12264 bytepos = bits_to_bytes_round_down (bitpos);
12265 if (modifier == EXPAND_CONST_ADDRESS
12266 || modifier == EXPAND_SUM || modifier == EXPAND_INITIALIZER)
12267 op0 = adjust_address_nv (op0, mode1, bytepos);
12268 else
12269 op0 = adjust_address (op0, mode1, bytepos);
12271 if (op0 == orig_op0)
12272 op0 = copy_rtx (op0);
12274 /* Don't set memory attributes if the base expression is
12275 SSA_NAME that got expanded as a MEM or a CONSTANT. In that case,
12276 we should just honor its original memory attributes. */
12277 if (!(TREE_CODE (tem) == SSA_NAME
12278 && (MEM_P (orig_op0) || CONSTANT_P (orig_op0))))
12279 set_mem_attributes (op0, exp, 0);
12281 if (REG_P (XEXP (op0, 0)))
12282 mark_reg_pointer (XEXP (op0, 0), MEM_ALIGN (op0));
12284 /* If op0 is a temporary because the original expressions was forced
12285 to memory, clear MEM_EXPR so that the original expression cannot
12286 be marked as addressable through MEM_EXPR of the temporary. */
12287 if (clear_mem_expr)
12288 set_mem_expr (op0, NULL_TREE);
12290 MEM_VOLATILE_P (op0) |= volatilep;
12292 if (reversep
12293 && modifier != EXPAND_MEMORY
12294 && modifier != EXPAND_WRITE)
12295 op0 = flip_storage_order (mode1, op0);
12297 op0 = EXTEND_BITINT (op0);
12299 if (mode == mode1 || mode1 == BLKmode || mode1 == tmode
12300 || modifier == EXPAND_CONST_ADDRESS
12301 || modifier == EXPAND_INITIALIZER)
12302 return op0;
12304 if (target == 0)
12305 target = gen_reg_rtx (tmode != VOIDmode ? tmode : mode);
12307 convert_move (target, op0, unsignedp);
12308 return target;
12311 case OBJ_TYPE_REF:
12312 return expand_expr (OBJ_TYPE_REF_EXPR (exp), target, tmode, modifier);
12314 case CALL_EXPR:
12315 /* All valid uses of __builtin_va_arg_pack () are removed during
12316 inlining. */
12317 if (CALL_EXPR_VA_ARG_PACK (exp))
12318 error ("invalid use of %<__builtin_va_arg_pack ()%>");
12320 tree fndecl = get_callee_fndecl (exp), attr;
12322 if (fndecl
12323 /* Don't diagnose the error attribute in thunks, those are
12324 artificially created. */
12325 && !CALL_FROM_THUNK_P (exp)
12326 && (attr = lookup_attribute ("error",
12327 DECL_ATTRIBUTES (fndecl))) != NULL)
12329 const char *ident = lang_hooks.decl_printable_name (fndecl, 1);
12330 error ("call to %qs declared with attribute error: %s",
12331 identifier_to_locale (ident),
12332 TREE_STRING_POINTER (TREE_VALUE (TREE_VALUE (attr))));
12334 if (fndecl
12335 /* Don't diagnose the warning attribute in thunks, those are
12336 artificially created. */
12337 && !CALL_FROM_THUNK_P (exp)
12338 && (attr = lookup_attribute ("warning",
12339 DECL_ATTRIBUTES (fndecl))) != NULL)
12341 const char *ident = lang_hooks.decl_printable_name (fndecl, 1);
12342 warning_at (EXPR_LOCATION (exp),
12343 OPT_Wattribute_warning,
12344 "call to %qs declared with attribute warning: %s",
12345 identifier_to_locale (ident),
12346 TREE_STRING_POINTER (TREE_VALUE (TREE_VALUE (attr))));
12349 /* Check for a built-in function. */
12350 if (fndecl && fndecl_built_in_p (fndecl))
12352 gcc_assert (DECL_BUILT_IN_CLASS (fndecl) != BUILT_IN_FRONTEND);
12353 return expand_builtin (exp, target, subtarget, tmode, ignore);
12356 temp = expand_call (exp, target, ignore);
12357 return EXTEND_BITINT (temp);
12359 case VIEW_CONVERT_EXPR:
12360 op0 = NULL_RTX;
12362 /* If we are converting to BLKmode, try to avoid an intermediate
12363 temporary by fetching an inner memory reference. */
12364 if (mode == BLKmode
12365 && poly_int_tree_p (TYPE_SIZE (type))
12366 && TYPE_MODE (TREE_TYPE (treeop0)) != BLKmode
12367 && handled_component_p (treeop0))
12369 machine_mode mode1;
12370 poly_int64 bitsize, bitpos, bytepos;
12371 tree offset;
12372 int reversep, volatilep = 0;
12373 tree tem
12374 = get_inner_reference (treeop0, &bitsize, &bitpos, &offset, &mode1,
12375 &unsignedp, &reversep, &volatilep);
12377 /* ??? We should work harder and deal with non-zero offsets. */
12378 if (!offset
12379 && multiple_p (bitpos, BITS_PER_UNIT, &bytepos)
12380 && !reversep
12381 && known_size_p (bitsize)
12382 && known_eq (wi::to_poly_offset (TYPE_SIZE (type)), bitsize))
12384 /* See the normal_inner_ref case for the rationale. */
12385 rtx orig_op0
12386 = expand_expr_real (tem,
12387 (TREE_CODE (TREE_TYPE (tem)) == UNION_TYPE
12388 && (TREE_CODE (TYPE_SIZE (TREE_TYPE (tem)))
12389 != INTEGER_CST)
12390 && modifier != EXPAND_STACK_PARM
12391 ? target : NULL_RTX),
12392 VOIDmode,
12393 modifier == EXPAND_SUM ? EXPAND_NORMAL : modifier,
12394 NULL, true);
12396 if (MEM_P (orig_op0))
12398 op0 = orig_op0;
12400 /* Get a reference to just this component. */
12401 if (modifier == EXPAND_CONST_ADDRESS
12402 || modifier == EXPAND_SUM
12403 || modifier == EXPAND_INITIALIZER)
12404 op0 = adjust_address_nv (op0, mode, bytepos);
12405 else
12406 op0 = adjust_address (op0, mode, bytepos);
12408 if (op0 == orig_op0)
12409 op0 = copy_rtx (op0);
12411 set_mem_attributes (op0, treeop0, 0);
12412 if (REG_P (XEXP (op0, 0)))
12413 mark_reg_pointer (XEXP (op0, 0), MEM_ALIGN (op0));
12415 MEM_VOLATILE_P (op0) |= volatilep;
12420 if (!op0)
12421 op0 = expand_expr_real (treeop0, NULL_RTX, VOIDmode, modifier,
12422 NULL, inner_reference_p);
12424 /* If the input and output modes are both the same, we are done. */
12425 if (mode == GET_MODE (op0))
12427 /* Similarly if the output mode is BLKmode and input is a MEM,
12428 adjust_address done below is all we need. */
12429 else if (mode == BLKmode && MEM_P (op0))
12431 /* If neither mode is BLKmode, and both modes are the same size
12432 then we can use gen_lowpart. */
12433 else if (mode != BLKmode
12434 && GET_MODE (op0) != BLKmode
12435 && known_eq (GET_MODE_PRECISION (mode),
12436 GET_MODE_PRECISION (GET_MODE (op0)))
12437 && !COMPLEX_MODE_P (GET_MODE (op0)))
12439 if (GET_CODE (op0) == SUBREG)
12440 op0 = force_reg (GET_MODE (op0), op0);
12441 temp = gen_lowpart_common (mode, op0);
12442 if (temp)
12443 op0 = temp;
12444 else
12446 if (!REG_P (op0) && !MEM_P (op0))
12447 op0 = force_reg (GET_MODE (op0), op0);
12448 op0 = gen_lowpart (mode, op0);
12451 /* If both types are integral, convert from one mode to the other. */
12452 else if (INTEGRAL_TYPE_P (type)
12453 && INTEGRAL_TYPE_P (TREE_TYPE (treeop0))
12454 && mode != BLKmode
12455 && GET_MODE (op0) != BLKmode)
12456 op0 = convert_modes (mode, GET_MODE (op0), op0,
12457 TYPE_UNSIGNED (TREE_TYPE (treeop0)));
12458 /* If the output type is a bit-field type, do an extraction. */
12459 else if (reduce_bit_field)
12460 return extract_bit_field (op0, TYPE_PRECISION (type), 0,
12461 TYPE_UNSIGNED (type), NULL_RTX,
12462 mode, mode, false, NULL);
12463 /* As a last resort, spill op0 to memory, and reload it in a
12464 different mode. */
12465 else if (!MEM_P (op0))
12467 /* If the operand is not a MEM, force it into memory. Since we
12468 are going to be changing the mode of the MEM, don't call
12469 force_const_mem for constants because we don't allow pool
12470 constants to change mode. */
12471 tree inner_type = TREE_TYPE (treeop0);
12473 gcc_assert (!TREE_ADDRESSABLE (exp));
12475 if (target == 0 || GET_MODE (target) != TYPE_MODE (inner_type))
12476 target
12477 = assign_stack_temp_for_type
12478 (TYPE_MODE (inner_type),
12479 GET_MODE_SIZE (TYPE_MODE (inner_type)), inner_type);
12481 emit_move_insn (target, op0);
12482 op0 = target;
12485 /* If OP0 is (now) a MEM, we need to deal with alignment issues. If the
12486 output type is such that the operand is known to be aligned, indicate
12487 that it is. Otherwise, we need only be concerned about alignment for
12488 non-BLKmode results. */
12489 if (MEM_P (op0))
12491 enum insn_code icode;
12493 if (modifier != EXPAND_WRITE
12494 && modifier != EXPAND_MEMORY
12495 && !inner_reference_p
12496 && mode != BLKmode
12497 && MEM_ALIGN (op0) < GET_MODE_ALIGNMENT (mode))
12499 /* If the target does have special handling for unaligned
12500 loads of mode then use them. */
12501 if ((icode = optab_handler (movmisalign_optab, mode))
12502 != CODE_FOR_nothing)
12504 rtx reg;
12506 op0 = adjust_address (op0, mode, 0);
12507 /* We've already validated the memory, and we're creating a
12508 new pseudo destination. The predicates really can't
12509 fail. */
12510 reg = gen_reg_rtx (mode);
12512 /* Nor can the insn generator. */
12513 rtx_insn *insn = GEN_FCN (icode) (reg, op0);
12514 emit_insn (insn);
12515 return reg;
12517 else if (STRICT_ALIGNMENT)
12519 poly_uint64 mode_size = GET_MODE_SIZE (mode);
12520 poly_uint64 temp_size = mode_size;
12521 if (GET_MODE (op0) != BLKmode)
12522 temp_size = upper_bound (temp_size,
12523 GET_MODE_SIZE (GET_MODE (op0)));
12524 rtx new_rtx
12525 = assign_stack_temp_for_type (mode, temp_size, type);
12526 rtx new_with_op0_mode
12527 = adjust_address (new_rtx, GET_MODE (op0), 0);
12529 gcc_assert (!TREE_ADDRESSABLE (exp));
12531 if (GET_MODE (op0) == BLKmode)
12533 rtx size_rtx = gen_int_mode (mode_size, Pmode);
12534 emit_block_move (new_with_op0_mode, op0, size_rtx,
12535 (modifier == EXPAND_STACK_PARM
12536 ? BLOCK_OP_CALL_PARM
12537 : BLOCK_OP_NORMAL));
12539 else
12540 emit_move_insn (new_with_op0_mode, op0);
12542 op0 = new_rtx;
12546 op0 = adjust_address (op0, mode, 0);
12549 return op0;
12551 case MODIFY_EXPR:
12553 tree lhs = treeop0;
12554 tree rhs = treeop1;
12555 gcc_assert (ignore);
12557 /* Check for |= or &= of a bitfield of size one into another bitfield
12558 of size 1. In this case, (unless we need the result of the
12559 assignment) we can do this more efficiently with a
12560 test followed by an assignment, if necessary.
12562 ??? At this point, we can't get a BIT_FIELD_REF here. But if
12563 things change so we do, this code should be enhanced to
12564 support it. */
12565 if (TREE_CODE (lhs) == COMPONENT_REF
12566 && (TREE_CODE (rhs) == BIT_IOR_EXPR
12567 || TREE_CODE (rhs) == BIT_AND_EXPR)
12568 && TREE_OPERAND (rhs, 0) == lhs
12569 && TREE_CODE (TREE_OPERAND (rhs, 1)) == COMPONENT_REF
12570 && integer_onep (DECL_SIZE (TREE_OPERAND (lhs, 1)))
12571 && integer_onep (DECL_SIZE (TREE_OPERAND (TREE_OPERAND (rhs, 1), 1))))
12573 rtx_code_label *label = gen_label_rtx ();
12574 int value = TREE_CODE (rhs) == BIT_IOR_EXPR;
12575 profile_probability prob = profile_probability::uninitialized ();
12576 if (value)
12577 jumpifnot (TREE_OPERAND (rhs, 1), label, prob);
12578 else
12579 jumpif (TREE_OPERAND (rhs, 1), label, prob);
12580 expand_assignment (lhs, build_int_cst (TREE_TYPE (rhs), value),
12581 false);
12582 do_pending_stack_adjust ();
12583 emit_label (label);
12584 return const0_rtx;
12587 expand_assignment (lhs, rhs, false);
12588 return const0_rtx;
12591 case ADDR_EXPR:
12592 return expand_expr_addr_expr (exp, target, tmode, modifier);
12594 case REALPART_EXPR:
12595 op0 = expand_normal (treeop0);
12596 return read_complex_part (op0, false);
12598 case IMAGPART_EXPR:
12599 op0 = expand_normal (treeop0);
12600 return read_complex_part (op0, true);
12602 case RETURN_EXPR:
12603 case LABEL_EXPR:
12604 case GOTO_EXPR:
12605 case SWITCH_EXPR:
12606 case ASM_EXPR:
12607 /* Expanded in cfgexpand.cc. */
12608 gcc_unreachable ();
12610 case TRY_CATCH_EXPR:
12611 case CATCH_EXPR:
12612 case EH_FILTER_EXPR:
12613 case TRY_FINALLY_EXPR:
12614 case EH_ELSE_EXPR:
12615 /* Lowered by tree-eh.cc. */
12616 gcc_unreachable ();
12618 case WITH_CLEANUP_EXPR:
12619 case CLEANUP_POINT_EXPR:
12620 case TARGET_EXPR:
12621 case CASE_LABEL_EXPR:
12622 case VA_ARG_EXPR:
12623 case BIND_EXPR:
12624 case INIT_EXPR:
12625 case CONJ_EXPR:
12626 case COMPOUND_EXPR:
12627 case PREINCREMENT_EXPR:
12628 case PREDECREMENT_EXPR:
12629 case POSTINCREMENT_EXPR:
12630 case POSTDECREMENT_EXPR:
12631 case LOOP_EXPR:
12632 case EXIT_EXPR:
12633 case COMPOUND_LITERAL_EXPR:
12634 /* Lowered by gimplify.cc. */
12635 gcc_unreachable ();
12637 case FDESC_EXPR:
12638 /* Function descriptors are not valid except for as
12639 initialization constants, and should not be expanded. */
12640 gcc_unreachable ();
12642 case WITH_SIZE_EXPR:
12643 /* WITH_SIZE_EXPR expands to its first argument. The caller should
12644 have pulled out the size to use in whatever context it needed. */
12645 return expand_expr_real (treeop0, original_target, tmode,
12646 modifier, alt_rtl, inner_reference_p);
12648 default:
12649 return expand_expr_real_2 (&ops, target, tmode, modifier);
12652 #undef EXTEND_BITINT
12654 /* Subroutine of above: reduce EXP to the precision of TYPE (in the
12655 signedness of TYPE), possibly returning the result in TARGET.
12656 TYPE is known to be a partial integer type. */
12657 static rtx
12658 reduce_to_bit_field_precision (rtx exp, rtx target, tree type)
12660 scalar_int_mode mode = SCALAR_INT_TYPE_MODE (type);
12661 HOST_WIDE_INT prec = TYPE_PRECISION (type);
12662 gcc_assert ((GET_MODE (exp) == VOIDmode || GET_MODE (exp) == mode)
12663 && (!target || GET_MODE (target) == mode));
12665 /* For constant values, reduce using wide_int_to_tree. */
12666 if (poly_int_rtx_p (exp))
12668 auto value = wi::to_poly_wide (exp, mode);
12669 tree t = wide_int_to_tree (type, value);
12670 return expand_expr (t, target, VOIDmode, EXPAND_NORMAL);
12672 else if (TYPE_UNSIGNED (type))
12674 rtx mask = immed_wide_int_const
12675 (wi::mask (prec, false, GET_MODE_PRECISION (mode)), mode);
12676 return expand_and (mode, exp, mask, target);
12678 else
12680 int count = GET_MODE_PRECISION (mode) - prec;
12681 exp = expand_shift (LSHIFT_EXPR, mode, exp, count, target, 0);
12682 return expand_shift (RSHIFT_EXPR, mode, exp, count, target, 0);
12686 /* Subroutine of above: returns true if OFFSET corresponds to an offset that
12687 when applied to the address of EXP produces an address known to be
12688 aligned more than BIGGEST_ALIGNMENT. */
12690 static bool
12691 is_aligning_offset (const_tree offset, const_tree exp)
12693 /* Strip off any conversions. */
12694 while (CONVERT_EXPR_P (offset))
12695 offset = TREE_OPERAND (offset, 0);
12697 /* We must now have a BIT_AND_EXPR with a constant that is one less than
12698 power of 2 and which is larger than BIGGEST_ALIGNMENT. */
12699 if (TREE_CODE (offset) != BIT_AND_EXPR
12700 || !tree_fits_uhwi_p (TREE_OPERAND (offset, 1))
12701 || compare_tree_int (TREE_OPERAND (offset, 1),
12702 BIGGEST_ALIGNMENT / BITS_PER_UNIT) <= 0
12703 || !pow2p_hwi (tree_to_uhwi (TREE_OPERAND (offset, 1)) + 1))
12704 return false;
12706 /* Look at the first operand of BIT_AND_EXPR and strip any conversion.
12707 It must be NEGATE_EXPR. Then strip any more conversions. */
12708 offset = TREE_OPERAND (offset, 0);
12709 while (CONVERT_EXPR_P (offset))
12710 offset = TREE_OPERAND (offset, 0);
12712 if (TREE_CODE (offset) != NEGATE_EXPR)
12713 return false;
12715 offset = TREE_OPERAND (offset, 0);
12716 while (CONVERT_EXPR_P (offset))
12717 offset = TREE_OPERAND (offset, 0);
12719 /* This must now be the address of EXP. */
12720 return TREE_CODE (offset) == ADDR_EXPR && TREE_OPERAND (offset, 0) == exp;
12723 /* Return a STRING_CST corresponding to ARG's constant initializer either
12724 if it's a string constant, or, when VALREP is set, any other constant,
12725 or null otherwise.
12726 On success, set *PTR_OFFSET to the (possibly non-constant) byte offset
12727 within the byte string that ARG is references. If nonnull set *MEM_SIZE
12728 to the size of the byte string. If nonnull, set *DECL to the constant
12729 declaration ARG refers to. */
12731 static tree
12732 constant_byte_string (tree arg, tree *ptr_offset, tree *mem_size, tree *decl,
12733 bool valrep = false)
12735 tree dummy = NULL_TREE;
12736 if (!mem_size)
12737 mem_size = &dummy;
12739 /* Store the type of the original expression before conversions
12740 via NOP_EXPR or POINTER_PLUS_EXPR to other types have been
12741 removed. */
12742 tree argtype = TREE_TYPE (arg);
12744 tree array;
12745 STRIP_NOPS (arg);
12747 /* Non-constant index into the character array in an ARRAY_REF
12748 expression or null. */
12749 tree varidx = NULL_TREE;
12751 poly_int64 base_off = 0;
12753 if (TREE_CODE (arg) == ADDR_EXPR)
12755 arg = TREE_OPERAND (arg, 0);
12756 tree ref = arg;
12757 if (TREE_CODE (arg) == ARRAY_REF)
12759 tree idx = TREE_OPERAND (arg, 1);
12760 if (TREE_CODE (idx) != INTEGER_CST)
12762 /* From a pointer (but not array) argument extract the variable
12763 index to prevent get_addr_base_and_unit_offset() from failing
12764 due to it. Use it later to compute the non-constant offset
12765 into the string and return it to the caller. */
12766 varidx = idx;
12767 ref = TREE_OPERAND (arg, 0);
12769 if (TREE_CODE (TREE_TYPE (arg)) == ARRAY_TYPE)
12770 return NULL_TREE;
12772 if (!integer_zerop (array_ref_low_bound (arg)))
12773 return NULL_TREE;
12775 if (!integer_onep (array_ref_element_size (arg)))
12776 return NULL_TREE;
12779 array = get_addr_base_and_unit_offset (ref, &base_off);
12780 if (!array
12781 || (TREE_CODE (array) != VAR_DECL
12782 && TREE_CODE (array) != CONST_DECL
12783 && TREE_CODE (array) != STRING_CST))
12784 return NULL_TREE;
12786 else if (TREE_CODE (arg) == PLUS_EXPR || TREE_CODE (arg) == POINTER_PLUS_EXPR)
12788 tree arg0 = TREE_OPERAND (arg, 0);
12789 tree arg1 = TREE_OPERAND (arg, 1);
12791 tree offset;
12792 tree str = string_constant (arg0, &offset, mem_size, decl);
12793 if (!str)
12795 str = string_constant (arg1, &offset, mem_size, decl);
12796 arg1 = arg0;
12799 if (str)
12801 /* Avoid pointers to arrays (see bug 86622). */
12802 if (POINTER_TYPE_P (TREE_TYPE (arg))
12803 && TREE_CODE (TREE_TYPE (TREE_TYPE (arg))) == ARRAY_TYPE
12804 && !(decl && !*decl)
12805 && !(decl && tree_fits_uhwi_p (DECL_SIZE_UNIT (*decl))
12806 && tree_fits_uhwi_p (*mem_size)
12807 && tree_int_cst_equal (*mem_size, DECL_SIZE_UNIT (*decl))))
12808 return NULL_TREE;
12810 tree type = TREE_TYPE (offset);
12811 arg1 = fold_convert (type, arg1);
12812 *ptr_offset = fold_build2 (PLUS_EXPR, type, offset, arg1);
12813 return str;
12815 return NULL_TREE;
12817 else if (TREE_CODE (arg) == SSA_NAME)
12819 gimple *stmt = SSA_NAME_DEF_STMT (arg);
12820 if (!is_gimple_assign (stmt))
12821 return NULL_TREE;
12823 tree rhs1 = gimple_assign_rhs1 (stmt);
12824 tree_code code = gimple_assign_rhs_code (stmt);
12825 if (code == ADDR_EXPR)
12826 return string_constant (rhs1, ptr_offset, mem_size, decl);
12827 else if (code != POINTER_PLUS_EXPR)
12828 return NULL_TREE;
12830 tree offset;
12831 if (tree str = string_constant (rhs1, &offset, mem_size, decl))
12833 /* Avoid pointers to arrays (see bug 86622). */
12834 if (POINTER_TYPE_P (TREE_TYPE (rhs1))
12835 && TREE_CODE (TREE_TYPE (TREE_TYPE (rhs1))) == ARRAY_TYPE
12836 && !(decl && !*decl)
12837 && !(decl && tree_fits_uhwi_p (DECL_SIZE_UNIT (*decl))
12838 && tree_fits_uhwi_p (*mem_size)
12839 && tree_int_cst_equal (*mem_size, DECL_SIZE_UNIT (*decl))))
12840 return NULL_TREE;
12842 tree rhs2 = gimple_assign_rhs2 (stmt);
12843 tree type = TREE_TYPE (offset);
12844 rhs2 = fold_convert (type, rhs2);
12845 *ptr_offset = fold_build2 (PLUS_EXPR, type, offset, rhs2);
12846 return str;
12848 return NULL_TREE;
12850 else if (DECL_P (arg))
12851 array = arg;
12852 else
12853 return NULL_TREE;
12855 tree offset = wide_int_to_tree (sizetype, base_off);
12856 if (varidx)
12858 if (TREE_CODE (TREE_TYPE (array)) != ARRAY_TYPE)
12859 return NULL_TREE;
12861 gcc_assert (TREE_CODE (arg) == ARRAY_REF);
12862 tree chartype = TREE_TYPE (TREE_TYPE (TREE_OPERAND (arg, 0)));
12863 if (TREE_CODE (chartype) != INTEGER_TYPE)
12864 return NULL;
12866 offset = fold_convert (sizetype, varidx);
12869 if (TREE_CODE (array) == STRING_CST)
12871 *ptr_offset = fold_convert (sizetype, offset);
12872 *mem_size = TYPE_SIZE_UNIT (TREE_TYPE (array));
12873 if (decl)
12874 *decl = NULL_TREE;
12875 gcc_checking_assert (tree_to_shwi (TYPE_SIZE_UNIT (TREE_TYPE (array)))
12876 >= TREE_STRING_LENGTH (array));
12877 return array;
12880 tree init = ctor_for_folding (array);
12881 if (!init || init == error_mark_node)
12882 return NULL_TREE;
12884 if (valrep)
12886 HOST_WIDE_INT cstoff;
12887 if (!base_off.is_constant (&cstoff))
12888 return NULL_TREE;
12890 /* Check that the host and target are sane. */
12891 if (CHAR_BIT != 8 || BITS_PER_UNIT != 8)
12892 return NULL_TREE;
12894 HOST_WIDE_INT typesz = int_size_in_bytes (TREE_TYPE (init));
12895 if (typesz <= 0 || (int) typesz != typesz)
12896 return NULL_TREE;
12898 HOST_WIDE_INT size = typesz;
12899 if (VAR_P (array)
12900 && DECL_SIZE_UNIT (array)
12901 && tree_fits_shwi_p (DECL_SIZE_UNIT (array)))
12903 size = tree_to_shwi (DECL_SIZE_UNIT (array));
12904 gcc_checking_assert (size >= typesz);
12907 /* If value representation was requested convert the initializer
12908 for the whole array or object into a string of bytes forming
12909 its value representation and return it. */
12910 unsigned char *bytes = XNEWVEC (unsigned char, size);
12911 int r = native_encode_initializer (init, bytes, size);
12912 if (r < typesz)
12914 XDELETEVEC (bytes);
12915 return NULL_TREE;
12918 if (r < size)
12919 memset (bytes + r, '\0', size - r);
12921 const char *p = reinterpret_cast<const char *>(bytes);
12922 init = build_string_literal (size, p, char_type_node);
12923 init = TREE_OPERAND (init, 0);
12924 init = TREE_OPERAND (init, 0);
12925 XDELETE (bytes);
12927 *mem_size = size_int (TREE_STRING_LENGTH (init));
12928 *ptr_offset = wide_int_to_tree (ssizetype, base_off);
12930 if (decl)
12931 *decl = array;
12933 return init;
12936 if (TREE_CODE (init) == CONSTRUCTOR)
12938 /* Convert the 64-bit constant offset to a wider type to avoid
12939 overflow and use it to obtain the initializer for the subobject
12940 it points into. */
12941 offset_int wioff;
12942 if (!base_off.is_constant (&wioff))
12943 return NULL_TREE;
12945 wioff *= BITS_PER_UNIT;
12946 if (!wi::fits_uhwi_p (wioff))
12947 return NULL_TREE;
12949 base_off = wioff.to_uhwi ();
12950 unsigned HOST_WIDE_INT fieldoff = 0;
12951 init = fold_ctor_reference (TREE_TYPE (arg), init, base_off, 0, array,
12952 &fieldoff);
12953 if (!init || init == error_mark_node)
12954 return NULL_TREE;
12956 HOST_WIDE_INT cstoff;
12957 if (!base_off.is_constant (&cstoff))
12958 return NULL_TREE;
12960 cstoff = (cstoff - fieldoff) / BITS_PER_UNIT;
12961 tree off = build_int_cst (sizetype, cstoff);
12962 if (varidx)
12963 offset = fold_build2 (PLUS_EXPR, TREE_TYPE (offset), offset, off);
12964 else
12965 offset = off;
12968 *ptr_offset = offset;
12970 tree inittype = TREE_TYPE (init);
12972 if (TREE_CODE (init) == INTEGER_CST
12973 && (TREE_CODE (TREE_TYPE (array)) == INTEGER_TYPE
12974 || TYPE_MAIN_VARIANT (inittype) == char_type_node))
12976 /* Check that the host and target are sane. */
12977 if (CHAR_BIT != 8 || BITS_PER_UNIT != 8)
12978 return NULL_TREE;
12980 /* For a reference to (address of) a single constant character,
12981 store the native representation of the character in CHARBUF.
12982 If the reference is to an element of an array or a member
12983 of a struct, only consider narrow characters until ctors
12984 for wide character arrays are transformed to STRING_CSTs
12985 like those for narrow arrays. */
12986 unsigned char charbuf[MAX_BITSIZE_MODE_ANY_MODE / BITS_PER_UNIT];
12987 int len = native_encode_expr (init, charbuf, sizeof charbuf, 0);
12988 if (len > 0)
12990 /* Construct a string literal with elements of INITTYPE and
12991 the representation above. Then strip
12992 the ADDR_EXPR (ARRAY_REF (...)) around the STRING_CST. */
12993 init = build_string_literal (len, (char *)charbuf, inittype);
12994 init = TREE_OPERAND (TREE_OPERAND (init, 0), 0);
12998 tree initsize = TYPE_SIZE_UNIT (inittype);
13000 if (TREE_CODE (init) == CONSTRUCTOR && initializer_zerop (init))
13002 /* Fold an empty/zero constructor for an implicitly initialized
13003 object or subobject into the empty string. */
13005 /* Determine the character type from that of the original
13006 expression. */
13007 tree chartype = argtype;
13008 if (POINTER_TYPE_P (chartype))
13009 chartype = TREE_TYPE (chartype);
13010 while (TREE_CODE (chartype) == ARRAY_TYPE)
13011 chartype = TREE_TYPE (chartype);
13013 if (INTEGRAL_TYPE_P (chartype)
13014 && TYPE_PRECISION (chartype) == TYPE_PRECISION (char_type_node))
13016 /* Convert a char array to an empty STRING_CST having an array
13017 of the expected type and size. */
13018 if (!initsize)
13019 initsize = integer_zero_node;
13021 unsigned HOST_WIDE_INT size = tree_to_uhwi (initsize);
13022 if (size > (unsigned HOST_WIDE_INT) INT_MAX)
13023 return NULL_TREE;
13025 init = build_string_literal (size, NULL, chartype, size);
13026 init = TREE_OPERAND (init, 0);
13027 init = TREE_OPERAND (init, 0);
13029 *ptr_offset = integer_zero_node;
13033 if (decl)
13034 *decl = array;
13036 if (TREE_CODE (init) != STRING_CST)
13037 return NULL_TREE;
13039 *mem_size = initsize;
13041 gcc_checking_assert (tree_to_shwi (initsize) >= TREE_STRING_LENGTH (init));
13043 return init;
13046 /* Return STRING_CST if an ARG corresponds to a string constant or zero
13047 if it doesn't. If we return nonzero, set *PTR_OFFSET to the (possibly
13048 non-constant) offset in bytes within the string that ARG is accessing.
13049 If MEM_SIZE is non-zero the storage size of the memory is returned.
13050 If DECL is non-zero the constant declaration is returned if available. */
13052 tree
13053 string_constant (tree arg, tree *ptr_offset, tree *mem_size, tree *decl)
13055 return constant_byte_string (arg, ptr_offset, mem_size, decl, false);
13058 /* Similar to string_constant, return a STRING_CST corresponding
13059 to the value representation of the first argument if it's
13060 a constant. */
13062 tree
13063 byte_representation (tree arg, tree *ptr_offset, tree *mem_size, tree *decl)
13065 return constant_byte_string (arg, ptr_offset, mem_size, decl, true);
13068 /* Optimize x % C1 == C2 for signed modulo if C1 is a power of two and C2
13069 is non-zero and C3 ((1<<(prec-1)) | (C1 - 1)):
13070 for C2 > 0 to x & C3 == C2
13071 for C2 < 0 to x & C3 == (C2 & C3). */
13072 enum tree_code
13073 maybe_optimize_pow2p_mod_cmp (enum tree_code code, tree *arg0, tree *arg1)
13075 gimple *stmt = get_def_for_expr (*arg0, TRUNC_MOD_EXPR);
13076 tree treeop0 = gimple_assign_rhs1 (stmt);
13077 tree treeop1 = gimple_assign_rhs2 (stmt);
13078 tree type = TREE_TYPE (*arg0);
13079 scalar_int_mode mode;
13080 if (!is_a <scalar_int_mode> (TYPE_MODE (type), &mode))
13081 return code;
13082 if (GET_MODE_BITSIZE (mode) != TYPE_PRECISION (type)
13083 || TYPE_PRECISION (type) <= 1
13084 || TYPE_UNSIGNED (type)
13085 /* Signed x % c == 0 should have been optimized into unsigned modulo
13086 earlier. */
13087 || integer_zerop (*arg1)
13088 /* If c is known to be non-negative, modulo will be expanded as unsigned
13089 modulo. */
13090 || get_range_pos_neg (treeop0) == 1)
13091 return code;
13093 /* x % c == d where d < 0 && d <= -c should be always false. */
13094 if (tree_int_cst_sgn (*arg1) == -1
13095 && -wi::to_widest (treeop1) >= wi::to_widest (*arg1))
13096 return code;
13098 int prec = TYPE_PRECISION (type);
13099 wide_int w = wi::to_wide (treeop1) - 1;
13100 w |= wi::shifted_mask (0, prec - 1, true, prec);
13101 tree c3 = wide_int_to_tree (type, w);
13102 tree c4 = *arg1;
13103 if (tree_int_cst_sgn (*arg1) == -1)
13104 c4 = wide_int_to_tree (type, w & wi::to_wide (*arg1));
13106 rtx op0 = expand_normal (treeop0);
13107 treeop0 = make_tree (TREE_TYPE (treeop0), op0);
13109 bool speed_p = optimize_insn_for_speed_p ();
13111 do_pending_stack_adjust ();
13113 location_t loc = gimple_location (stmt);
13114 struct separate_ops ops;
13115 ops.code = TRUNC_MOD_EXPR;
13116 ops.location = loc;
13117 ops.type = TREE_TYPE (treeop0);
13118 ops.op0 = treeop0;
13119 ops.op1 = treeop1;
13120 ops.op2 = NULL_TREE;
13121 start_sequence ();
13122 rtx mor = expand_expr_real_2 (&ops, NULL_RTX, TYPE_MODE (ops.type),
13123 EXPAND_NORMAL);
13124 rtx_insn *moinsns = get_insns ();
13125 end_sequence ();
13127 unsigned mocost = seq_cost (moinsns, speed_p);
13128 mocost += rtx_cost (mor, mode, EQ, 0, speed_p);
13129 mocost += rtx_cost (expand_normal (*arg1), mode, EQ, 1, speed_p);
13131 ops.code = BIT_AND_EXPR;
13132 ops.location = loc;
13133 ops.type = TREE_TYPE (treeop0);
13134 ops.op0 = treeop0;
13135 ops.op1 = c3;
13136 ops.op2 = NULL_TREE;
13137 start_sequence ();
13138 rtx mur = expand_expr_real_2 (&ops, NULL_RTX, TYPE_MODE (ops.type),
13139 EXPAND_NORMAL);
13140 rtx_insn *muinsns = get_insns ();
13141 end_sequence ();
13143 unsigned mucost = seq_cost (muinsns, speed_p);
13144 mucost += rtx_cost (mur, mode, EQ, 0, speed_p);
13145 mucost += rtx_cost (expand_normal (c4), mode, EQ, 1, speed_p);
13147 if (mocost <= mucost)
13149 emit_insn (moinsns);
13150 *arg0 = make_tree (TREE_TYPE (*arg0), mor);
13151 return code;
13154 emit_insn (muinsns);
13155 *arg0 = make_tree (TREE_TYPE (*arg0), mur);
13156 *arg1 = c4;
13157 return code;
13160 /* Attempt to optimize unsigned (X % C1) == C2 (or (X % C1) != C2).
13161 If C1 is odd to:
13162 (X - C2) * C3 <= C4 (or >), where
13163 C3 is modular multiplicative inverse of C1 and 1<<prec and
13164 C4 is ((1<<prec) - 1) / C1 or ((1<<prec) - 1) / C1 - 1 (the latter
13165 if C2 > ((1<<prec) - 1) % C1).
13166 If C1 is even, S = ctz (C1) and C2 is 0, use
13167 ((X * C3) r>> S) <= C4, where C3 is modular multiplicative
13168 inverse of C1>>S and 1<<prec and C4 is (((1<<prec) - 1) / (C1>>S)) >> S.
13170 For signed (X % C1) == 0 if C1 is odd to (all operations in it
13171 unsigned):
13172 (X * C3) + C4 <= 2 * C4, where
13173 C3 is modular multiplicative inverse of (unsigned) C1 and 1<<prec and
13174 C4 is ((1<<(prec - 1) - 1) / C1).
13175 If C1 is even, S = ctz(C1), use
13176 ((X * C3) + C4) r>> S <= (C4 >> (S - 1))
13177 where C3 is modular multiplicative inverse of (unsigned)(C1>>S) and 1<<prec
13178 and C4 is ((1<<(prec - 1) - 1) / (C1>>S)) & (-1<<S).
13180 See the Hacker's Delight book, section 10-17. */
13181 enum tree_code
13182 maybe_optimize_mod_cmp (enum tree_code code, tree *arg0, tree *arg1)
13184 gcc_checking_assert (code == EQ_EXPR || code == NE_EXPR);
13185 gcc_checking_assert (TREE_CODE (*arg1) == INTEGER_CST);
13187 if (optimize < 2)
13188 return code;
13190 gimple *stmt = get_def_for_expr (*arg0, TRUNC_MOD_EXPR);
13191 if (stmt == NULL)
13192 return code;
13194 tree treeop0 = gimple_assign_rhs1 (stmt);
13195 tree treeop1 = gimple_assign_rhs2 (stmt);
13196 if (TREE_CODE (treeop0) != SSA_NAME
13197 || TREE_CODE (treeop1) != INTEGER_CST
13198 /* Don't optimize the undefined behavior case x % 0;
13199 x % 1 should have been optimized into zero, punt if
13200 it makes it here for whatever reason;
13201 x % -c should have been optimized into x % c. */
13202 || compare_tree_int (treeop1, 2) <= 0
13203 /* Likewise x % c == d where d >= c should be always false. */
13204 || tree_int_cst_le (treeop1, *arg1))
13205 return code;
13207 /* Unsigned x % pow2 is handled right already, for signed
13208 modulo handle it in maybe_optimize_pow2p_mod_cmp. */
13209 if (integer_pow2p (treeop1))
13210 return maybe_optimize_pow2p_mod_cmp (code, arg0, arg1);
13212 tree type = TREE_TYPE (*arg0);
13213 scalar_int_mode mode;
13214 if (!is_a <scalar_int_mode> (TYPE_MODE (type), &mode))
13215 return code;
13216 if (GET_MODE_BITSIZE (mode) != TYPE_PRECISION (type)
13217 || TYPE_PRECISION (type) <= 1)
13218 return code;
13220 signop sgn = UNSIGNED;
13221 /* If both operands are known to have the sign bit clear, handle
13222 even the signed modulo case as unsigned. treeop1 is always
13223 positive >= 2, checked above. */
13224 if (!TYPE_UNSIGNED (type) && get_range_pos_neg (treeop0) != 1)
13225 sgn = SIGNED;
13227 if (!TYPE_UNSIGNED (type))
13229 if (tree_int_cst_sgn (*arg1) == -1)
13230 return code;
13231 type = unsigned_type_for (type);
13232 if (!type || TYPE_MODE (type) != TYPE_MODE (TREE_TYPE (*arg0)))
13233 return code;
13236 int prec = TYPE_PRECISION (type);
13237 wide_int w = wi::to_wide (treeop1);
13238 int shift = wi::ctz (w);
13239 /* Unsigned (X % C1) == C2 is equivalent to (X - C2) % C1 == 0 if
13240 C2 <= -1U % C1, because for any Z >= 0U - C2 in that case (Z % C1) != 0.
13241 If C1 is odd, we can handle all cases by subtracting
13242 C4 below. We could handle even the even C1 and C2 > -1U % C1 cases
13243 e.g. by testing for overflow on the subtraction, punt on that for now
13244 though. */
13245 if ((sgn == SIGNED || shift) && !integer_zerop (*arg1))
13247 if (sgn == SIGNED)
13248 return code;
13249 wide_int x = wi::umod_trunc (wi::mask (prec, false, prec), w);
13250 if (wi::gtu_p (wi::to_wide (*arg1), x))
13251 return code;
13254 imm_use_iterator imm_iter;
13255 use_operand_p use_p;
13256 FOR_EACH_IMM_USE_FAST (use_p, imm_iter, treeop0)
13258 gimple *use_stmt = USE_STMT (use_p);
13259 /* Punt if treeop0 is used in the same bb in a division
13260 or another modulo with the same divisor. We should expect
13261 the division and modulo combined together. */
13262 if (use_stmt == stmt
13263 || gimple_bb (use_stmt) != gimple_bb (stmt))
13264 continue;
13265 if (!is_gimple_assign (use_stmt)
13266 || (gimple_assign_rhs_code (use_stmt) != TRUNC_DIV_EXPR
13267 && gimple_assign_rhs_code (use_stmt) != TRUNC_MOD_EXPR))
13268 continue;
13269 if (gimple_assign_rhs1 (use_stmt) != treeop0
13270 || !operand_equal_p (gimple_assign_rhs2 (use_stmt), treeop1, 0))
13271 continue;
13272 return code;
13275 w = wi::lrshift (w, shift);
13276 wide_int a = wide_int::from (w, prec + 1, UNSIGNED);
13277 wide_int b = wi::shifted_mask (prec, 1, false, prec + 1);
13278 wide_int m = wide_int::from (wi::mod_inv (a, b), prec, UNSIGNED);
13279 tree c3 = wide_int_to_tree (type, m);
13280 tree c5 = NULL_TREE;
13281 wide_int d, e;
13282 if (sgn == UNSIGNED)
13284 d = wi::divmod_trunc (wi::mask (prec, false, prec), w, UNSIGNED, &e);
13285 /* Use <= floor ((1<<prec) - 1) / C1 only if C2 <= ((1<<prec) - 1) % C1,
13286 otherwise use < or subtract one from C4. E.g. for
13287 x % 3U == 0 we transform this into x * 0xaaaaaaab <= 0x55555555, but
13288 x % 3U == 1 already needs to be
13289 (x - 1) * 0xaaaaaaabU <= 0x55555554. */
13290 if (!shift && wi::gtu_p (wi::to_wide (*arg1), e))
13291 d -= 1;
13292 if (shift)
13293 d = wi::lrshift (d, shift);
13295 else
13297 e = wi::udiv_trunc (wi::mask (prec - 1, false, prec), w);
13298 if (!shift)
13299 d = wi::lshift (e, 1);
13300 else
13302 e = wi::bit_and (e, wi::mask (shift, true, prec));
13303 d = wi::lrshift (e, shift - 1);
13305 c5 = wide_int_to_tree (type, e);
13307 tree c4 = wide_int_to_tree (type, d);
13309 rtx op0 = expand_normal (treeop0);
13310 treeop0 = make_tree (TREE_TYPE (treeop0), op0);
13312 bool speed_p = optimize_insn_for_speed_p ();
13314 do_pending_stack_adjust ();
13316 location_t loc = gimple_location (stmt);
13317 struct separate_ops ops;
13318 ops.code = TRUNC_MOD_EXPR;
13319 ops.location = loc;
13320 ops.type = TREE_TYPE (treeop0);
13321 ops.op0 = treeop0;
13322 ops.op1 = treeop1;
13323 ops.op2 = NULL_TREE;
13324 start_sequence ();
13325 rtx mor = expand_expr_real_2 (&ops, NULL_RTX, TYPE_MODE (ops.type),
13326 EXPAND_NORMAL);
13327 rtx_insn *moinsns = get_insns ();
13328 end_sequence ();
13330 unsigned mocost = seq_cost (moinsns, speed_p);
13331 mocost += rtx_cost (mor, mode, EQ, 0, speed_p);
13332 mocost += rtx_cost (expand_normal (*arg1), mode, EQ, 1, speed_p);
13334 tree t = fold_convert_loc (loc, type, treeop0);
13335 if (!integer_zerop (*arg1))
13336 t = fold_build2_loc (loc, MINUS_EXPR, type, t, fold_convert (type, *arg1));
13337 t = fold_build2_loc (loc, MULT_EXPR, type, t, c3);
13338 if (sgn == SIGNED)
13339 t = fold_build2_loc (loc, PLUS_EXPR, type, t, c5);
13340 if (shift)
13342 tree s = build_int_cst (NULL_TREE, shift);
13343 t = fold_build2_loc (loc, RROTATE_EXPR, type, t, s);
13346 start_sequence ();
13347 rtx mur = expand_normal (t);
13348 rtx_insn *muinsns = get_insns ();
13349 end_sequence ();
13351 unsigned mucost = seq_cost (muinsns, speed_p);
13352 mucost += rtx_cost (mur, mode, LE, 0, speed_p);
13353 mucost += rtx_cost (expand_normal (c4), mode, LE, 1, speed_p);
13355 if (mocost <= mucost)
13357 emit_insn (moinsns);
13358 *arg0 = make_tree (TREE_TYPE (*arg0), mor);
13359 return code;
13362 emit_insn (muinsns);
13363 *arg0 = make_tree (type, mur);
13364 *arg1 = c4;
13365 return code == EQ_EXPR ? LE_EXPR : GT_EXPR;
13368 /* Optimize x - y < 0 into x < 0 if x - y has undefined overflow. */
13370 void
13371 maybe_optimize_sub_cmp_0 (enum tree_code code, tree *arg0, tree *arg1)
13373 gcc_checking_assert (code == GT_EXPR || code == GE_EXPR
13374 || code == LT_EXPR || code == LE_EXPR);
13375 gcc_checking_assert (integer_zerop (*arg1));
13377 if (!optimize)
13378 return;
13380 gimple *stmt = get_def_for_expr (*arg0, MINUS_EXPR);
13381 if (stmt == NULL)
13382 return;
13384 tree treeop0 = gimple_assign_rhs1 (stmt);
13385 tree treeop1 = gimple_assign_rhs2 (stmt);
13386 if (!TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (treeop0)))
13387 return;
13389 if (issue_strict_overflow_warning (WARN_STRICT_OVERFLOW_COMPARISON))
13390 warning_at (gimple_location (stmt), OPT_Wstrict_overflow,
13391 "assuming signed overflow does not occur when "
13392 "simplifying %<X - Y %s 0%> to %<X %s Y%>",
13393 op_symbol_code (code), op_symbol_code (code));
13395 *arg0 = treeop0;
13396 *arg1 = treeop1;
13400 /* Expand CODE with arguments INNER & (1<<BITNUM) and 0 that represents
13401 a single bit equality/inequality test, returns where the result is located. */
13403 static rtx
13404 expand_single_bit_test (location_t loc, enum tree_code code,
13405 tree inner, int bitnum,
13406 tree result_type, rtx target,
13407 machine_mode mode)
13409 gcc_assert (code == NE_EXPR || code == EQ_EXPR);
13411 tree type = TREE_TYPE (inner);
13412 scalar_int_mode operand_mode = SCALAR_INT_TYPE_MODE (type);
13413 int ops_unsigned;
13414 tree signed_type, unsigned_type, intermediate_type;
13415 gimple *inner_def;
13417 /* First, see if we can fold the single bit test into a sign-bit
13418 test. */
13419 if (bitnum == TYPE_PRECISION (type) - 1
13420 && type_has_mode_precision_p (type))
13422 tree stype = signed_type_for (type);
13423 tree tmp = fold_build2_loc (loc, code == EQ_EXPR ? GE_EXPR : LT_EXPR,
13424 result_type,
13425 fold_convert_loc (loc, stype, inner),
13426 build_int_cst (stype, 0));
13427 return expand_expr (tmp, target, VOIDmode, EXPAND_NORMAL);
13430 /* Otherwise we have (A & C) != 0 where C is a single bit,
13431 convert that into ((A >> C2) & 1). Where C2 = log2(C).
13432 Similarly for (A & C) == 0. */
13434 /* If INNER is a right shift of a constant and it plus BITNUM does
13435 not overflow, adjust BITNUM and INNER. */
13436 if ((inner_def = get_def_for_expr (inner, RSHIFT_EXPR))
13437 && TREE_CODE (gimple_assign_rhs2 (inner_def)) == INTEGER_CST
13438 && bitnum < TYPE_PRECISION (type)
13439 && wi::ltu_p (wi::to_wide (gimple_assign_rhs2 (inner_def)),
13440 TYPE_PRECISION (type) - bitnum))
13442 bitnum += tree_to_uhwi (gimple_assign_rhs2 (inner_def));
13443 inner = gimple_assign_rhs1 (inner_def);
13446 /* If we are going to be able to omit the AND below, we must do our
13447 operations as unsigned. If we must use the AND, we have a choice.
13448 Normally unsigned is faster, but for some machines signed is. */
13449 ops_unsigned = (load_extend_op (operand_mode) == SIGN_EXTEND
13450 && !flag_syntax_only) ? 0 : 1;
13452 signed_type = lang_hooks.types.type_for_mode (operand_mode, 0);
13453 unsigned_type = lang_hooks.types.type_for_mode (operand_mode, 1);
13454 intermediate_type = ops_unsigned ? unsigned_type : signed_type;
13455 inner = fold_convert_loc (loc, intermediate_type, inner);
13457 rtx inner0 = expand_expr (inner, NULL_RTX, VOIDmode, EXPAND_NORMAL);
13459 if (CONST_SCALAR_INT_P (inner0))
13461 wide_int t = rtx_mode_t (inner0, operand_mode);
13462 bool setp = (wi::lrshift (t, bitnum) & 1) != 0;
13463 return (setp ^ (code == EQ_EXPR)) ? const1_rtx : const0_rtx;
13465 int bitpos = bitnum;
13467 if (BYTES_BIG_ENDIAN)
13468 bitpos = GET_MODE_BITSIZE (operand_mode) - 1 - bitpos;
13470 inner0 = extract_bit_field (inner0, 1, bitpos, 1, target,
13471 operand_mode, mode, 0, NULL);
13473 if (code == EQ_EXPR)
13474 inner0 = expand_binop (GET_MODE (inner0), xor_optab, inner0, const1_rtx,
13475 NULL_RTX, 1, OPTAB_LIB_WIDEN);
13476 if (GET_MODE (inner0) != mode)
13478 rtx t = gen_reg_rtx (mode);
13479 convert_move (t, inner0, 0);
13480 return t;
13482 return inner0;
13485 /* Generate code to calculate OPS, and exploded expression
13486 using a store-flag instruction and return an rtx for the result.
13487 OPS reflects a comparison.
13489 If TARGET is nonzero, store the result there if convenient.
13491 Return zero if there is no suitable set-flag instruction
13492 available on this machine.
13494 Once expand_expr has been called on the arguments of the comparison,
13495 we are committed to doing the store flag, since it is not safe to
13496 re-evaluate the expression. We emit the store-flag insn by calling
13497 emit_store_flag, but only expand the arguments if we have a reason
13498 to believe that emit_store_flag will be successful. If we think that
13499 it will, but it isn't, we have to simulate the store-flag with a
13500 set/jump/set sequence. */
13502 static rtx
13503 do_store_flag (sepops ops, rtx target, machine_mode mode)
13505 enum rtx_code code;
13506 tree arg0, arg1, type;
13507 machine_mode operand_mode;
13508 int unsignedp;
13509 rtx op0, op1;
13510 rtx subtarget = target;
13511 location_t loc = ops->location;
13512 unsigned HOST_WIDE_INT nunits;
13514 arg0 = ops->op0;
13515 arg1 = ops->op1;
13517 /* Don't crash if the comparison was erroneous. */
13518 if (arg0 == error_mark_node || arg1 == error_mark_node)
13519 return const0_rtx;
13521 type = TREE_TYPE (arg0);
13522 operand_mode = TYPE_MODE (type);
13523 unsignedp = TYPE_UNSIGNED (type);
13525 /* We won't bother with BLKmode store-flag operations because it would mean
13526 passing a lot of information to emit_store_flag. */
13527 if (operand_mode == BLKmode)
13528 return 0;
13530 /* We won't bother with store-flag operations involving function pointers
13531 when function pointers must be canonicalized before comparisons. */
13532 if (targetm.have_canonicalize_funcptr_for_compare ()
13533 && ((POINTER_TYPE_P (TREE_TYPE (arg0))
13534 && FUNC_OR_METHOD_TYPE_P (TREE_TYPE (TREE_TYPE (arg0))))
13535 || (POINTER_TYPE_P (TREE_TYPE (arg1))
13536 && FUNC_OR_METHOD_TYPE_P (TREE_TYPE (TREE_TYPE (arg1))))))
13537 return 0;
13539 STRIP_NOPS (arg0);
13540 STRIP_NOPS (arg1);
13542 /* For vector typed comparisons emit code to generate the desired
13543 all-ones or all-zeros mask. */
13544 if (VECTOR_TYPE_P (ops->type))
13546 tree ifexp = build2 (ops->code, ops->type, arg0, arg1);
13547 if (VECTOR_BOOLEAN_TYPE_P (ops->type)
13548 && expand_vec_cmp_expr_p (TREE_TYPE (arg0), ops->type, ops->code))
13549 return expand_vec_cmp_expr (ops->type, ifexp, target);
13550 else
13551 gcc_unreachable ();
13554 /* Optimize (x % C1) == C2 or (x % C1) != C2 if it is beneficial
13555 into (x - C2) * C3 < C4. */
13556 if ((ops->code == EQ_EXPR || ops->code == NE_EXPR)
13557 && TREE_CODE (arg0) == SSA_NAME
13558 && TREE_CODE (arg1) == INTEGER_CST)
13560 enum tree_code new_code = maybe_optimize_mod_cmp (ops->code,
13561 &arg0, &arg1);
13562 if (new_code != ops->code)
13564 struct separate_ops nops = *ops;
13565 nops.code = ops->code = new_code;
13566 nops.op0 = arg0;
13567 nops.op1 = arg1;
13568 nops.type = TREE_TYPE (arg0);
13569 return do_store_flag (&nops, target, mode);
13573 /* Optimize (x - y) < 0 into x < y if x - y has undefined overflow. */
13574 if (!unsignedp
13575 && (ops->code == LT_EXPR || ops->code == LE_EXPR
13576 || ops->code == GT_EXPR || ops->code == GE_EXPR)
13577 && integer_zerop (arg1)
13578 && TREE_CODE (arg0) == SSA_NAME)
13579 maybe_optimize_sub_cmp_0 (ops->code, &arg0, &arg1);
13581 /* Get the rtx comparison code to use. We know that EXP is a comparison
13582 operation of some type. Some comparisons against 1 and -1 can be
13583 converted to comparisons with zero. Do so here so that the tests
13584 below will be aware that we have a comparison with zero. These
13585 tests will not catch constants in the first operand, but constants
13586 are rarely passed as the first operand. */
13588 switch (ops->code)
13590 case EQ_EXPR:
13591 code = EQ;
13592 break;
13593 case NE_EXPR:
13594 code = NE;
13595 break;
13596 case LT_EXPR:
13597 if (integer_onep (arg1))
13598 arg1 = integer_zero_node, code = unsignedp ? LEU : LE;
13599 else
13600 code = unsignedp ? LTU : LT;
13601 break;
13602 case LE_EXPR:
13603 if (! unsignedp && integer_all_onesp (arg1))
13604 arg1 = integer_zero_node, code = LT;
13605 else
13606 code = unsignedp ? LEU : LE;
13607 break;
13608 case GT_EXPR:
13609 if (! unsignedp && integer_all_onesp (arg1))
13610 arg1 = integer_zero_node, code = GE;
13611 else
13612 code = unsignedp ? GTU : GT;
13613 break;
13614 case GE_EXPR:
13615 if (integer_onep (arg1))
13616 arg1 = integer_zero_node, code = unsignedp ? GTU : GT;
13617 else
13618 code = unsignedp ? GEU : GE;
13619 break;
13621 case UNORDERED_EXPR:
13622 code = UNORDERED;
13623 break;
13624 case ORDERED_EXPR:
13625 code = ORDERED;
13626 break;
13627 case UNLT_EXPR:
13628 code = UNLT;
13629 break;
13630 case UNLE_EXPR:
13631 code = UNLE;
13632 break;
13633 case UNGT_EXPR:
13634 code = UNGT;
13635 break;
13636 case UNGE_EXPR:
13637 code = UNGE;
13638 break;
13639 case UNEQ_EXPR:
13640 code = UNEQ;
13641 break;
13642 case LTGT_EXPR:
13643 code = LTGT;
13644 break;
13646 default:
13647 gcc_unreachable ();
13650 /* Put a constant second. */
13651 if (TREE_CODE (arg0) == REAL_CST || TREE_CODE (arg0) == INTEGER_CST
13652 || TREE_CODE (arg0) == FIXED_CST)
13654 std::swap (arg0, arg1);
13655 code = swap_condition (code);
13658 /* If this is an equality or inequality test of a single bit, we can
13659 do this by shifting the bit being tested to the low-order bit and
13660 masking the result with the constant 1. If the condition was EQ,
13661 we xor it with 1. This does not require an scc insn and is faster
13662 than an scc insn even if we have it. */
13664 if ((code == NE || code == EQ)
13665 && (integer_zerop (arg1)
13666 || integer_pow2p (arg1))
13667 /* vector types are not handled here. */
13668 && TREE_CODE (TREE_TYPE (arg1)) != VECTOR_TYPE
13669 && (TYPE_PRECISION (ops->type) != 1 || TYPE_UNSIGNED (ops->type)))
13671 tree narg0 = arg0;
13672 wide_int nz = tree_nonzero_bits (narg0);
13673 gimple *srcstmt = get_def_for_expr (narg0, BIT_AND_EXPR);
13674 /* If the defining statement was (x & POW2), then use that instead of
13675 the non-zero bits. */
13676 if (srcstmt && integer_pow2p (gimple_assign_rhs2 (srcstmt)))
13678 nz = wi::to_wide (gimple_assign_rhs2 (srcstmt));
13679 narg0 = gimple_assign_rhs1 (srcstmt);
13682 if (wi::popcount (nz) == 1
13683 && (integer_zerop (arg1)
13684 || wi::to_wide (arg1) == nz))
13686 int bitnum = wi::exact_log2 (nz);
13687 enum tree_code tcode = EQ_EXPR;
13688 if ((code == NE) ^ !integer_zerop (arg1))
13689 tcode = NE_EXPR;
13691 type = lang_hooks.types.type_for_mode (mode, unsignedp);
13692 return expand_single_bit_test (loc, tcode,
13693 narg0,
13694 bitnum, type, target, mode);
13699 if (! get_subtarget (target)
13700 || GET_MODE (subtarget) != operand_mode)
13701 subtarget = 0;
13703 expand_operands (arg0, arg1, subtarget, &op0, &op1, EXPAND_NORMAL);
13705 /* For boolean vectors with less than mode precision
13706 make sure to fill padding with consistent values. */
13707 if (VECTOR_BOOLEAN_TYPE_P (type)
13708 && SCALAR_INT_MODE_P (operand_mode)
13709 && TYPE_VECTOR_SUBPARTS (type).is_constant (&nunits)
13710 && maybe_ne (GET_MODE_PRECISION (operand_mode), nunits))
13712 gcc_assert (code == EQ || code == NE);
13713 op0 = expand_binop (mode, and_optab, op0,
13714 GEN_INT ((HOST_WIDE_INT_1U << nunits) - 1),
13715 NULL_RTX, true, OPTAB_WIDEN);
13716 op1 = expand_binop (mode, and_optab, op1,
13717 GEN_INT ((HOST_WIDE_INT_1U << nunits) - 1),
13718 NULL_RTX, true, OPTAB_WIDEN);
13721 if (target == 0)
13722 target = gen_reg_rtx (mode);
13724 /* Try a cstore if possible. */
13725 return emit_store_flag_force (target, code, op0, op1,
13726 operand_mode, unsignedp,
13727 (TYPE_PRECISION (ops->type) == 1
13728 && !TYPE_UNSIGNED (ops->type)) ? -1 : 1);
13731 /* Attempt to generate a casesi instruction. Returns true if successful,
13732 false otherwise (i.e. if there is no casesi instruction).
13734 DEFAULT_PROBABILITY is the probability of jumping to the default
13735 label. */
13736 bool
13737 try_casesi (tree index_type, tree index_expr, tree minval, tree range,
13738 rtx table_label, rtx default_label, rtx fallback_label,
13739 profile_probability default_probability)
13741 class expand_operand ops[5];
13742 scalar_int_mode index_mode = SImode;
13743 rtx op1, op2, index;
13745 if (! targetm.have_casesi ())
13746 return false;
13748 /* The index must be some form of integer. Convert it to SImode. */
13749 scalar_int_mode omode = SCALAR_INT_TYPE_MODE (index_type);
13750 if (GET_MODE_BITSIZE (omode) > GET_MODE_BITSIZE (index_mode))
13752 rtx rangertx = expand_normal (range);
13754 /* We must handle the endpoints in the original mode. */
13755 index_expr = build2 (MINUS_EXPR, index_type,
13756 index_expr, minval);
13757 minval = integer_zero_node;
13758 index = expand_normal (index_expr);
13759 if (default_label)
13760 emit_cmp_and_jump_insns (rangertx, index, LTU, NULL_RTX,
13761 omode, 1, default_label,
13762 default_probability);
13763 /* Now we can safely truncate. */
13764 index = convert_to_mode (index_mode, index, 0);
13766 else
13768 if (omode != index_mode)
13770 index_type = lang_hooks.types.type_for_mode (index_mode, 0);
13771 index_expr = fold_convert (index_type, index_expr);
13774 index = expand_normal (index_expr);
13777 do_pending_stack_adjust ();
13779 op1 = expand_normal (minval);
13780 op2 = expand_normal (range);
13782 create_input_operand (&ops[0], index, index_mode);
13783 create_convert_operand_from_type (&ops[1], op1, TREE_TYPE (minval));
13784 create_convert_operand_from_type (&ops[2], op2, TREE_TYPE (range));
13785 create_fixed_operand (&ops[3], table_label);
13786 create_fixed_operand (&ops[4], (default_label
13787 ? default_label
13788 : fallback_label));
13789 expand_jump_insn (targetm.code_for_casesi, 5, ops);
13790 return true;
13793 /* Attempt to generate a tablejump instruction; same concept. */
13794 /* Subroutine of the next function.
13796 INDEX is the value being switched on, with the lowest value
13797 in the table already subtracted.
13798 MODE is its expected mode (needed if INDEX is constant).
13799 RANGE is the length of the jump table.
13800 TABLE_LABEL is a CODE_LABEL rtx for the table itself.
13802 DEFAULT_LABEL is a CODE_LABEL rtx to jump to if the
13803 index value is out of range.
13804 DEFAULT_PROBABILITY is the probability of jumping to
13805 the default label. */
13807 static void
13808 do_tablejump (rtx index, machine_mode mode, rtx range, rtx table_label,
13809 rtx default_label, profile_probability default_probability)
13811 rtx temp, vector;
13813 if (INTVAL (range) > cfun->cfg->max_jumptable_ents)
13814 cfun->cfg->max_jumptable_ents = INTVAL (range);
13816 /* Do an unsigned comparison (in the proper mode) between the index
13817 expression and the value which represents the length of the range.
13818 Since we just finished subtracting the lower bound of the range
13819 from the index expression, this comparison allows us to simultaneously
13820 check that the original index expression value is both greater than
13821 or equal to the minimum value of the range and less than or equal to
13822 the maximum value of the range. */
13824 if (default_label)
13825 emit_cmp_and_jump_insns (index, range, GTU, NULL_RTX, mode, 1,
13826 default_label, default_probability);
13828 /* If index is in range, it must fit in Pmode.
13829 Convert to Pmode so we can index with it. */
13830 if (mode != Pmode)
13832 unsigned int width;
13834 /* We know the value of INDEX is between 0 and RANGE. If we have a
13835 sign-extended subreg, and RANGE does not have the sign bit set, then
13836 we have a value that is valid for both sign and zero extension. In
13837 this case, we get better code if we sign extend. */
13838 if (GET_CODE (index) == SUBREG
13839 && SUBREG_PROMOTED_VAR_P (index)
13840 && SUBREG_PROMOTED_SIGNED_P (index)
13841 && ((width = GET_MODE_PRECISION (as_a <scalar_int_mode> (mode)))
13842 <= HOST_BITS_PER_WIDE_INT)
13843 && ! (UINTVAL (range) & (HOST_WIDE_INT_1U << (width - 1))))
13844 index = convert_to_mode (Pmode, index, 0);
13845 else
13846 index = convert_to_mode (Pmode, index, 1);
13849 /* Don't let a MEM slip through, because then INDEX that comes
13850 out of PIC_CASE_VECTOR_ADDRESS won't be a valid address,
13851 and break_out_memory_refs will go to work on it and mess it up. */
13852 #ifdef PIC_CASE_VECTOR_ADDRESS
13853 if (flag_pic && !REG_P (index))
13854 index = copy_to_mode_reg (Pmode, index);
13855 #endif
13857 /* ??? The only correct use of CASE_VECTOR_MODE is the one inside the
13858 GET_MODE_SIZE, because this indicates how large insns are. The other
13859 uses should all be Pmode, because they are addresses. This code
13860 could fail if addresses and insns are not the same size. */
13861 index = simplify_gen_binary (MULT, Pmode, index,
13862 gen_int_mode (GET_MODE_SIZE (CASE_VECTOR_MODE),
13863 Pmode));
13864 index = simplify_gen_binary (PLUS, Pmode, index,
13865 gen_rtx_LABEL_REF (Pmode, table_label));
13867 #ifdef PIC_CASE_VECTOR_ADDRESS
13868 if (flag_pic)
13869 index = PIC_CASE_VECTOR_ADDRESS (index);
13870 else
13871 #endif
13872 index = memory_address (CASE_VECTOR_MODE, index);
13873 temp = gen_reg_rtx (CASE_VECTOR_MODE);
13874 vector = gen_const_mem (CASE_VECTOR_MODE, index);
13875 convert_move (temp, vector, 0);
13877 emit_jump_insn (targetm.gen_tablejump (temp, table_label));
13879 /* If we are generating PIC code or if the table is PC-relative, the
13880 table and JUMP_INSN must be adjacent, so don't output a BARRIER. */
13881 if (! CASE_VECTOR_PC_RELATIVE && ! flag_pic)
13882 emit_barrier ();
13885 bool
13886 try_tablejump (tree index_type, tree index_expr, tree minval, tree range,
13887 rtx table_label, rtx default_label,
13888 profile_probability default_probability)
13890 rtx index;
13892 if (! targetm.have_tablejump ())
13893 return false;
13895 index_expr = fold_build2 (MINUS_EXPR, index_type,
13896 fold_convert (index_type, index_expr),
13897 fold_convert (index_type, minval));
13898 index = expand_normal (index_expr);
13899 do_pending_stack_adjust ();
13901 do_tablejump (index, TYPE_MODE (index_type),
13902 convert_modes (TYPE_MODE (index_type),
13903 TYPE_MODE (TREE_TYPE (range)),
13904 expand_normal (range),
13905 TYPE_UNSIGNED (TREE_TYPE (range))),
13906 table_label, default_label, default_probability);
13907 return true;
13910 /* Return a CONST_VECTOR rtx representing vector mask for
13911 a VECTOR_CST of booleans. */
13912 static rtx
13913 const_vector_mask_from_tree (tree exp)
13915 machine_mode mode = TYPE_MODE (TREE_TYPE (exp));
13916 machine_mode inner = GET_MODE_INNER (mode);
13918 rtx_vector_builder builder (mode, VECTOR_CST_NPATTERNS (exp),
13919 VECTOR_CST_NELTS_PER_PATTERN (exp));
13920 unsigned int count = builder.encoded_nelts ();
13921 for (unsigned int i = 0; i < count; ++i)
13923 tree elt = VECTOR_CST_ELT (exp, i);
13924 gcc_assert (TREE_CODE (elt) == INTEGER_CST);
13925 if (integer_zerop (elt))
13926 builder.quick_push (CONST0_RTX (inner));
13927 else if (integer_onep (elt)
13928 || integer_minus_onep (elt))
13929 builder.quick_push (CONSTM1_RTX (inner));
13930 else
13931 gcc_unreachable ();
13933 return builder.build ();
13936 /* Return a CONST_VECTOR rtx for a VECTOR_CST tree. */
13937 static rtx
13938 const_vector_from_tree (tree exp)
13940 machine_mode mode = TYPE_MODE (TREE_TYPE (exp));
13942 if (initializer_zerop (exp))
13943 return CONST0_RTX (mode);
13945 if (VECTOR_BOOLEAN_TYPE_P (TREE_TYPE (exp)))
13946 return const_vector_mask_from_tree (exp);
13948 machine_mode inner = GET_MODE_INNER (mode);
13950 rtx_vector_builder builder (mode, VECTOR_CST_NPATTERNS (exp),
13951 VECTOR_CST_NELTS_PER_PATTERN (exp));
13952 unsigned int count = builder.encoded_nelts ();
13953 for (unsigned int i = 0; i < count; ++i)
13955 tree elt = VECTOR_CST_ELT (exp, i);
13956 if (TREE_CODE (elt) == REAL_CST)
13957 builder.quick_push (const_double_from_real_value (TREE_REAL_CST (elt),
13958 inner));
13959 else if (TREE_CODE (elt) == FIXED_CST)
13960 builder.quick_push (CONST_FIXED_FROM_FIXED_VALUE (TREE_FIXED_CST (elt),
13961 inner));
13962 else
13963 builder.quick_push (immed_wide_int_const (wi::to_poly_wide (elt),
13964 inner));
13966 return builder.build ();
13969 /* Build a decl for a personality function given a language prefix. */
13971 tree
13972 build_personality_function (const char *lang)
13974 const char *unwind_and_version;
13975 tree decl, type;
13976 char *name;
13978 switch (targetm_common.except_unwind_info (&global_options))
13980 case UI_NONE:
13981 return NULL;
13982 case UI_SJLJ:
13983 unwind_and_version = "_sj0";
13984 break;
13985 case UI_DWARF2:
13986 case UI_TARGET:
13987 unwind_and_version = "_v0";
13988 break;
13989 case UI_SEH:
13990 unwind_and_version = "_seh0";
13991 break;
13992 default:
13993 gcc_unreachable ();
13996 name = ACONCAT (("__", lang, "_personality", unwind_and_version, NULL));
13998 type = build_function_type_list (unsigned_type_node,
13999 integer_type_node, integer_type_node,
14000 long_long_unsigned_type_node,
14001 ptr_type_node, ptr_type_node, NULL_TREE);
14002 decl = build_decl (UNKNOWN_LOCATION, FUNCTION_DECL,
14003 get_identifier (name), type);
14004 DECL_ARTIFICIAL (decl) = 1;
14005 DECL_EXTERNAL (decl) = 1;
14006 TREE_PUBLIC (decl) = 1;
14008 /* Zap the nonsensical SYMBOL_REF_DECL for this. What we're left with
14009 are the flags assigned by targetm.encode_section_info. */
14010 SET_SYMBOL_REF_DECL (XEXP (DECL_RTL (decl), 0), NULL);
14012 return decl;
14015 /* Extracts the personality function of DECL and returns the corresponding
14016 libfunc. */
14019 get_personality_function (tree decl)
14021 tree personality = DECL_FUNCTION_PERSONALITY (decl);
14022 enum eh_personality_kind pk;
14024 pk = function_needs_eh_personality (DECL_STRUCT_FUNCTION (decl));
14025 if (pk == eh_personality_none)
14026 return NULL;
14028 if (!personality
14029 && pk == eh_personality_any)
14030 personality = lang_hooks.eh_personality ();
14032 if (pk == eh_personality_lang)
14033 gcc_assert (personality != NULL_TREE);
14035 return XEXP (DECL_RTL (personality), 0);
14038 /* Returns a tree for the size of EXP in bytes. */
14040 static tree
14041 tree_expr_size (const_tree exp)
14043 if (DECL_P (exp)
14044 && DECL_SIZE_UNIT (exp) != 0)
14045 return DECL_SIZE_UNIT (exp);
14046 else
14047 return size_in_bytes (TREE_TYPE (exp));
14050 /* Return an rtx for the size in bytes of the value of EXP. */
14053 expr_size (tree exp)
14055 tree size;
14057 if (TREE_CODE (exp) == WITH_SIZE_EXPR)
14058 size = TREE_OPERAND (exp, 1);
14059 else
14061 size = tree_expr_size (exp);
14062 gcc_assert (size);
14063 gcc_assert (size == SUBSTITUTE_PLACEHOLDER_IN_EXPR (size, exp));
14066 return expand_expr (size, NULL_RTX, TYPE_MODE (sizetype), EXPAND_NORMAL);
14069 /* Return a wide integer for the size in bytes of the value of EXP, or -1
14070 if the size can vary or is larger than an integer. */
14072 HOST_WIDE_INT
14073 int_expr_size (const_tree exp)
14075 tree size;
14077 if (TREE_CODE (exp) == WITH_SIZE_EXPR)
14078 size = TREE_OPERAND (exp, 1);
14079 else
14081 size = tree_expr_size (exp);
14082 gcc_assert (size);
14085 if (size == 0 || !tree_fits_shwi_p (size))
14086 return -1;
14088 return tree_to_shwi (size);