Require target lra in gcc.dg/pr108095.c
[official-gcc.git] / gcc / expr.cc
blob4220cbd9f8f0273f62a01c64a64442ebb8589562
1 /* Convert tree expression to rtl instructions, for GNU compiler.
2 Copyright (C) 1988-2023 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 #include "config.h"
21 #include "system.h"
22 #include "coretypes.h"
23 #include "backend.h"
24 #include "target.h"
25 #include "rtl.h"
26 #include "tree.h"
27 #include "gimple.h"
28 #include "predict.h"
29 #include "memmodel.h"
30 #include "tm_p.h"
31 #include "ssa.h"
32 #include "optabs.h"
33 #include "expmed.h"
34 #include "regs.h"
35 #include "emit-rtl.h"
36 #include "recog.h"
37 #include "cgraph.h"
38 #include "diagnostic.h"
39 #include "alias.h"
40 #include "fold-const.h"
41 #include "stor-layout.h"
42 #include "attribs.h"
43 #include "varasm.h"
44 #include "except.h"
45 #include "insn-attr.h"
46 #include "dojump.h"
47 #include "explow.h"
48 #include "calls.h"
49 #include "stmt.h"
50 /* Include expr.h after insn-config.h so we get HAVE_conditional_move. */
51 #include "expr.h"
52 #include "optabs-tree.h"
53 #include "libfuncs.h"
54 #include "reload.h"
55 #include "langhooks.h"
56 #include "common/common-target.h"
57 #include "tree-dfa.h"
58 #include "tree-ssa-live.h"
59 #include "tree-outof-ssa.h"
60 #include "tree-ssa-address.h"
61 #include "builtins.h"
62 #include "ccmp.h"
63 #include "gimple-iterator.h"
64 #include "gimple-fold.h"
65 #include "rtx-vector-builder.h"
66 #include "tree-pretty-print.h"
67 #include "flags.h"
70 /* If this is nonzero, we do not bother generating VOLATILE
71 around volatile memory references, and we are willing to
72 output indirect addresses. If cse is to follow, we reject
73 indirect addresses so a useful potential cse is generated;
74 if it is used only once, instruction combination will produce
75 the same indirect address eventually. */
76 int cse_not_expected;
78 static bool block_move_libcall_safe_for_call_parm (void);
79 static bool emit_block_move_via_pattern (rtx, rtx, rtx, unsigned, unsigned,
80 HOST_WIDE_INT, unsigned HOST_WIDE_INT,
81 unsigned HOST_WIDE_INT,
82 unsigned HOST_WIDE_INT, bool);
83 static void emit_block_move_via_loop (rtx, rtx, rtx, unsigned);
84 static void clear_by_pieces (rtx, unsigned HOST_WIDE_INT, unsigned int);
85 static rtx_insn *compress_float_constant (rtx, rtx);
86 static rtx get_subtarget (rtx);
87 static rtx store_field (rtx, poly_int64, poly_int64, poly_uint64, poly_uint64,
88 machine_mode, tree, alias_set_type, bool, bool);
90 static unsigned HOST_WIDE_INT highest_pow2_factor_for_target (const_tree, const_tree);
92 static bool is_aligning_offset (const_tree, const_tree);
93 static rtx reduce_to_bit_field_precision (rtx, rtx, tree);
94 static rtx do_store_flag (sepops, rtx, machine_mode);
95 #ifdef PUSH_ROUNDING
96 static void emit_single_push_insn (machine_mode, rtx, tree);
97 #endif
98 static void do_tablejump (rtx, machine_mode, rtx, rtx, rtx,
99 profile_probability);
100 static rtx const_vector_from_tree (tree);
101 static tree tree_expr_size (const_tree);
102 static void convert_mode_scalar (rtx, rtx, int);
105 /* This is run to set up which modes can be used
106 directly in memory and to initialize the block move optab. It is run
107 at the beginning of compilation and when the target is reinitialized. */
109 void
110 init_expr_target (void)
112 rtx pat;
113 int num_clobbers;
114 rtx mem, mem1;
115 rtx reg;
117 /* Try indexing by frame ptr and try by stack ptr.
118 It is known that on the Convex the stack ptr isn't a valid index.
119 With luck, one or the other is valid on any machine. */
120 mem = gen_rtx_MEM (word_mode, stack_pointer_rtx);
121 mem1 = gen_rtx_MEM (word_mode, frame_pointer_rtx);
123 /* A scratch register we can modify in-place below to avoid
124 useless RTL allocations. */
125 reg = gen_rtx_REG (word_mode, LAST_VIRTUAL_REGISTER + 1);
127 rtx_insn *insn = as_a<rtx_insn *> (rtx_alloc (INSN));
128 pat = gen_rtx_SET (NULL_RTX, NULL_RTX);
129 PATTERN (insn) = pat;
131 for (machine_mode mode = VOIDmode; (int) mode < NUM_MACHINE_MODES;
132 mode = (machine_mode) ((int) mode + 1))
134 int regno;
136 direct_load[(int) mode] = direct_store[(int) mode] = 0;
137 PUT_MODE (mem, mode);
138 PUT_MODE (mem1, mode);
140 /* See if there is some register that can be used in this mode and
141 directly loaded or stored from memory. */
143 if (mode != VOIDmode && mode != BLKmode)
144 for (regno = 0; regno < FIRST_PSEUDO_REGISTER
145 && (direct_load[(int) mode] == 0 || direct_store[(int) mode] == 0);
146 regno++)
148 if (!targetm.hard_regno_mode_ok (regno, mode))
149 continue;
151 set_mode_and_regno (reg, mode, regno);
153 SET_SRC (pat) = mem;
154 SET_DEST (pat) = reg;
155 if (recog (pat, insn, &num_clobbers) >= 0)
156 direct_load[(int) mode] = 1;
158 SET_SRC (pat) = mem1;
159 SET_DEST (pat) = reg;
160 if (recog (pat, insn, &num_clobbers) >= 0)
161 direct_load[(int) mode] = 1;
163 SET_SRC (pat) = reg;
164 SET_DEST (pat) = mem;
165 if (recog (pat, insn, &num_clobbers) >= 0)
166 direct_store[(int) mode] = 1;
168 SET_SRC (pat) = reg;
169 SET_DEST (pat) = mem1;
170 if (recog (pat, insn, &num_clobbers) >= 0)
171 direct_store[(int) mode] = 1;
175 mem = gen_rtx_MEM (VOIDmode, gen_raw_REG (Pmode, LAST_VIRTUAL_REGISTER + 1));
177 opt_scalar_float_mode mode_iter;
178 FOR_EACH_MODE_IN_CLASS (mode_iter, MODE_FLOAT)
180 scalar_float_mode mode = mode_iter.require ();
181 scalar_float_mode srcmode;
182 FOR_EACH_MODE_UNTIL (srcmode, mode)
184 enum insn_code ic;
186 ic = can_extend_p (mode, srcmode, 0);
187 if (ic == CODE_FOR_nothing)
188 continue;
190 PUT_MODE (mem, srcmode);
192 if (insn_operand_matches (ic, 1, mem))
193 float_extend_from_mem[mode][srcmode] = true;
198 /* This is run at the start of compiling a function. */
200 void
201 init_expr (void)
203 memset (&crtl->expr, 0, sizeof (crtl->expr));
206 /* Copy data from FROM to TO, where the machine modes are not the same.
207 Both modes may be integer, or both may be floating, or both may be
208 fixed-point.
209 UNSIGNEDP should be nonzero if FROM is an unsigned type.
210 This causes zero-extension instead of sign-extension. */
212 void
213 convert_move (rtx to, rtx from, int unsignedp)
215 machine_mode to_mode = GET_MODE (to);
216 machine_mode from_mode = GET_MODE (from);
218 gcc_assert (to_mode != BLKmode);
219 gcc_assert (from_mode != BLKmode);
221 /* If the source and destination are already the same, then there's
222 nothing to do. */
223 if (to == from)
224 return;
226 /* If FROM is a SUBREG that indicates that we have already done at least
227 the required extension, strip it. We don't handle such SUBREGs as
228 TO here. */
230 scalar_int_mode to_int_mode;
231 if (GET_CODE (from) == SUBREG
232 && SUBREG_PROMOTED_VAR_P (from)
233 && is_a <scalar_int_mode> (to_mode, &to_int_mode)
234 && (GET_MODE_PRECISION (subreg_promoted_mode (from))
235 >= GET_MODE_PRECISION (to_int_mode))
236 && SUBREG_CHECK_PROMOTED_SIGN (from, unsignedp))
238 scalar_int_mode int_orig_mode;
239 scalar_int_mode int_inner_mode;
240 machine_mode orig_mode = GET_MODE (from);
242 from = gen_lowpart (to_int_mode, SUBREG_REG (from));
243 from_mode = to_int_mode;
245 /* Preserve SUBREG_PROMOTED_VAR_P if the new mode is wider than
246 the original mode, but narrower than the inner mode. */
247 if (GET_CODE (from) == SUBREG
248 && is_a <scalar_int_mode> (orig_mode, &int_orig_mode)
249 && GET_MODE_PRECISION (to_int_mode)
250 > GET_MODE_PRECISION (int_orig_mode)
251 && is_a <scalar_int_mode> (GET_MODE (SUBREG_REG (from)),
252 &int_inner_mode)
253 && GET_MODE_PRECISION (int_inner_mode)
254 > GET_MODE_PRECISION (to_int_mode))
256 SUBREG_PROMOTED_VAR_P (from) = 1;
257 SUBREG_PROMOTED_SET (from, unsignedp);
261 gcc_assert (GET_CODE (to) != SUBREG || !SUBREG_PROMOTED_VAR_P (to));
263 if (to_mode == from_mode
264 || (from_mode == VOIDmode && CONSTANT_P (from)))
266 emit_move_insn (to, from);
267 return;
270 if (VECTOR_MODE_P (to_mode) || VECTOR_MODE_P (from_mode))
272 if (GET_MODE_UNIT_PRECISION (to_mode)
273 > GET_MODE_UNIT_PRECISION (from_mode))
275 optab op = unsignedp ? zext_optab : sext_optab;
276 insn_code icode = convert_optab_handler (op, to_mode, from_mode);
277 if (icode != CODE_FOR_nothing)
279 emit_unop_insn (icode, to, from,
280 unsignedp ? ZERO_EXTEND : SIGN_EXTEND);
281 return;
285 if (GET_MODE_UNIT_PRECISION (to_mode)
286 < GET_MODE_UNIT_PRECISION (from_mode))
288 insn_code icode = convert_optab_handler (trunc_optab,
289 to_mode, from_mode);
290 if (icode != CODE_FOR_nothing)
292 emit_unop_insn (icode, to, from, TRUNCATE);
293 return;
297 gcc_assert (known_eq (GET_MODE_BITSIZE (from_mode),
298 GET_MODE_BITSIZE (to_mode)));
300 if (VECTOR_MODE_P (to_mode))
301 from = simplify_gen_subreg (to_mode, from, GET_MODE (from), 0);
302 else
303 to = simplify_gen_subreg (from_mode, to, GET_MODE (to), 0);
305 emit_move_insn (to, from);
306 return;
309 if (GET_CODE (to) == CONCAT && GET_CODE (from) == CONCAT)
311 convert_move (XEXP (to, 0), XEXP (from, 0), unsignedp);
312 convert_move (XEXP (to, 1), XEXP (from, 1), unsignedp);
313 return;
316 convert_mode_scalar (to, from, unsignedp);
319 /* Like convert_move, but deals only with scalar modes. */
321 static void
322 convert_mode_scalar (rtx to, rtx from, int unsignedp)
324 /* Both modes should be scalar types. */
325 scalar_mode from_mode = as_a <scalar_mode> (GET_MODE (from));
326 scalar_mode to_mode = as_a <scalar_mode> (GET_MODE (to));
327 bool to_real = SCALAR_FLOAT_MODE_P (to_mode);
328 bool from_real = SCALAR_FLOAT_MODE_P (from_mode);
329 enum insn_code code;
330 rtx libcall;
332 gcc_assert (to_real == from_real);
334 /* rtx code for making an equivalent value. */
335 enum rtx_code equiv_code = (unsignedp < 0 ? UNKNOWN
336 : (unsignedp ? ZERO_EXTEND : SIGN_EXTEND));
338 if (to_real)
340 rtx value;
341 rtx_insn *insns;
342 convert_optab tab;
344 gcc_assert ((GET_MODE_PRECISION (from_mode)
345 != GET_MODE_PRECISION (to_mode))
346 || (DECIMAL_FLOAT_MODE_P (from_mode)
347 != DECIMAL_FLOAT_MODE_P (to_mode))
348 || (REAL_MODE_FORMAT (from_mode) == &arm_bfloat_half_format
349 && REAL_MODE_FORMAT (to_mode) == &ieee_half_format)
350 || (REAL_MODE_FORMAT (to_mode) == &arm_bfloat_half_format
351 && REAL_MODE_FORMAT (from_mode) == &ieee_half_format));
353 if (GET_MODE_PRECISION (from_mode) == GET_MODE_PRECISION (to_mode))
354 /* Conversion between decimal float and binary float, same size. */
355 tab = DECIMAL_FLOAT_MODE_P (from_mode) ? trunc_optab : sext_optab;
356 else if (GET_MODE_PRECISION (from_mode) < GET_MODE_PRECISION (to_mode))
357 tab = sext_optab;
358 else
359 tab = trunc_optab;
361 /* Try converting directly if the insn is supported. */
363 code = convert_optab_handler (tab, to_mode, from_mode);
364 if (code != CODE_FOR_nothing)
366 emit_unop_insn (code, to, from,
367 tab == sext_optab ? FLOAT_EXTEND : FLOAT_TRUNCATE);
368 return;
371 #ifdef HAVE_SFmode
372 if (REAL_MODE_FORMAT (from_mode) == &arm_bfloat_half_format
373 && REAL_MODE_FORMAT (SFmode) == &ieee_single_format)
375 if (GET_MODE_PRECISION (to_mode) > GET_MODE_PRECISION (SFmode))
377 /* To cut down on libgcc size, implement
378 BFmode -> {DF,XF,TF}mode conversions by
379 BFmode -> SFmode -> {DF,XF,TF}mode conversions. */
380 rtx temp = gen_reg_rtx (SFmode);
381 convert_mode_scalar (temp, from, unsignedp);
382 convert_mode_scalar (to, temp, unsignedp);
383 return;
385 if (REAL_MODE_FORMAT (to_mode) == &ieee_half_format)
387 /* Similarly, implement BFmode -> HFmode as
388 BFmode -> SFmode -> HFmode conversion where SFmode
389 has superset of BFmode values. We don't need
390 to handle sNaNs by raising exception and turning
391 into into qNaN though, as that can be done in the
392 SFmode -> HFmode conversion too. */
393 rtx temp = gen_reg_rtx (SFmode);
394 int save_flag_finite_math_only = flag_finite_math_only;
395 flag_finite_math_only = true;
396 convert_mode_scalar (temp, from, unsignedp);
397 flag_finite_math_only = save_flag_finite_math_only;
398 convert_mode_scalar (to, temp, unsignedp);
399 return;
401 if (to_mode == SFmode
402 && !HONOR_NANS (from_mode)
403 && !HONOR_NANS (to_mode)
404 && optimize_insn_for_speed_p ())
406 /* If we don't expect sNaNs, for BFmode -> SFmode we can just
407 shift the bits up. */
408 machine_mode fromi_mode, toi_mode;
409 if (int_mode_for_size (GET_MODE_BITSIZE (from_mode),
410 0).exists (&fromi_mode)
411 && int_mode_for_size (GET_MODE_BITSIZE (to_mode),
412 0).exists (&toi_mode))
414 start_sequence ();
415 rtx fromi = lowpart_subreg (fromi_mode, from, from_mode);
416 rtx tof = NULL_RTX;
417 if (fromi)
419 rtx toi;
420 if (GET_MODE (fromi) == VOIDmode)
421 toi = simplify_unary_operation (ZERO_EXTEND, toi_mode,
422 fromi, fromi_mode);
423 else
425 toi = gen_reg_rtx (toi_mode);
426 convert_mode_scalar (toi, fromi, 1);
429 = maybe_expand_shift (LSHIFT_EXPR, toi_mode, toi,
430 GET_MODE_PRECISION (to_mode)
431 - GET_MODE_PRECISION (from_mode),
432 NULL_RTX, 1);
433 if (toi)
435 tof = lowpart_subreg (to_mode, toi, toi_mode);
436 if (tof)
437 emit_move_insn (to, tof);
440 insns = get_insns ();
441 end_sequence ();
442 if (tof)
444 emit_insn (insns);
445 return;
450 if (REAL_MODE_FORMAT (from_mode) == &ieee_single_format
451 && REAL_MODE_FORMAT (to_mode) == &arm_bfloat_half_format
452 && !HONOR_NANS (from_mode)
453 && !HONOR_NANS (to_mode)
454 && !flag_rounding_math
455 && optimize_insn_for_speed_p ())
457 /* If we don't expect qNaNs nor sNaNs and can assume rounding
458 to nearest, we can expand the conversion inline as
459 (fromi + 0x7fff + ((fromi >> 16) & 1)) >> 16. */
460 machine_mode fromi_mode, toi_mode;
461 if (int_mode_for_size (GET_MODE_BITSIZE (from_mode),
462 0).exists (&fromi_mode)
463 && int_mode_for_size (GET_MODE_BITSIZE (to_mode),
464 0).exists (&toi_mode))
466 start_sequence ();
467 rtx fromi = lowpart_subreg (fromi_mode, from, from_mode);
468 rtx tof = NULL_RTX;
471 if (!fromi)
472 break;
473 int shift = (GET_MODE_PRECISION (from_mode)
474 - GET_MODE_PRECISION (to_mode));
475 rtx temp1
476 = maybe_expand_shift (RSHIFT_EXPR, fromi_mode, fromi,
477 shift, NULL_RTX, 1);
478 if (!temp1)
479 break;
480 rtx temp2
481 = expand_binop (fromi_mode, and_optab, temp1, const1_rtx,
482 NULL_RTX, 1, OPTAB_DIRECT);
483 if (!temp2)
484 break;
485 rtx temp3
486 = expand_binop (fromi_mode, add_optab, fromi,
487 gen_int_mode ((HOST_WIDE_INT_1U
488 << (shift - 1)) - 1,
489 fromi_mode), NULL_RTX,
490 1, OPTAB_DIRECT);
491 if (!temp3)
492 break;
493 rtx temp4
494 = expand_binop (fromi_mode, add_optab, temp3, temp2,
495 NULL_RTX, 1, OPTAB_DIRECT);
496 if (!temp4)
497 break;
498 rtx temp5 = maybe_expand_shift (RSHIFT_EXPR, fromi_mode,
499 temp4, shift, NULL_RTX, 1);
500 if (!temp5)
501 break;
502 rtx temp6 = lowpart_subreg (toi_mode, temp5, fromi_mode);
503 if (!temp6)
504 break;
505 tof = lowpart_subreg (to_mode, force_reg (toi_mode, temp6),
506 toi_mode);
507 if (tof)
508 emit_move_insn (to, tof);
510 while (0);
511 insns = get_insns ();
512 end_sequence ();
513 if (tof)
515 emit_insn (insns);
516 return;
520 #endif
522 /* Otherwise use a libcall. */
523 libcall = convert_optab_libfunc (tab, to_mode, from_mode);
525 /* Is this conversion implemented yet? */
526 gcc_assert (libcall);
528 start_sequence ();
529 value = emit_library_call_value (libcall, NULL_RTX, LCT_CONST, to_mode,
530 from, from_mode);
531 insns = get_insns ();
532 end_sequence ();
533 emit_libcall_block (insns, to, value,
534 tab == trunc_optab ? gen_rtx_FLOAT_TRUNCATE (to_mode,
535 from)
536 : gen_rtx_FLOAT_EXTEND (to_mode, from));
537 return;
540 /* Handle pointer conversion. */ /* SPEE 900220. */
541 /* If the target has a converter from FROM_MODE to TO_MODE, use it. */
543 convert_optab ctab;
545 if (GET_MODE_PRECISION (from_mode) > GET_MODE_PRECISION (to_mode))
546 ctab = trunc_optab;
547 else if (unsignedp)
548 ctab = zext_optab;
549 else
550 ctab = sext_optab;
552 if (convert_optab_handler (ctab, to_mode, from_mode)
553 != CODE_FOR_nothing)
555 emit_unop_insn (convert_optab_handler (ctab, to_mode, from_mode),
556 to, from, UNKNOWN);
557 return;
561 /* Targets are expected to provide conversion insns between PxImode and
562 xImode for all MODE_PARTIAL_INT modes they use, but no others. */
563 if (GET_MODE_CLASS (to_mode) == MODE_PARTIAL_INT)
565 scalar_int_mode full_mode
566 = smallest_int_mode_for_size (GET_MODE_BITSIZE (to_mode));
568 gcc_assert (convert_optab_handler (trunc_optab, to_mode, full_mode)
569 != CODE_FOR_nothing);
571 if (full_mode != from_mode)
572 from = convert_to_mode (full_mode, from, unsignedp);
573 emit_unop_insn (convert_optab_handler (trunc_optab, to_mode, full_mode),
574 to, from, UNKNOWN);
575 return;
577 if (GET_MODE_CLASS (from_mode) == MODE_PARTIAL_INT)
579 rtx new_from;
580 scalar_int_mode full_mode
581 = smallest_int_mode_for_size (GET_MODE_BITSIZE (from_mode));
582 convert_optab ctab = unsignedp ? zext_optab : sext_optab;
583 enum insn_code icode;
585 icode = convert_optab_handler (ctab, full_mode, from_mode);
586 gcc_assert (icode != CODE_FOR_nothing);
588 if (to_mode == full_mode)
590 emit_unop_insn (icode, to, from, UNKNOWN);
591 return;
594 new_from = gen_reg_rtx (full_mode);
595 emit_unop_insn (icode, new_from, from, UNKNOWN);
597 /* else proceed to integer conversions below. */
598 from_mode = full_mode;
599 from = new_from;
602 /* Make sure both are fixed-point modes or both are not. */
603 gcc_assert (ALL_SCALAR_FIXED_POINT_MODE_P (from_mode) ==
604 ALL_SCALAR_FIXED_POINT_MODE_P (to_mode));
605 if (ALL_SCALAR_FIXED_POINT_MODE_P (from_mode))
607 /* If we widen from_mode to to_mode and they are in the same class,
608 we won't saturate the result.
609 Otherwise, always saturate the result to play safe. */
610 if (GET_MODE_CLASS (from_mode) == GET_MODE_CLASS (to_mode)
611 && GET_MODE_SIZE (from_mode) < GET_MODE_SIZE (to_mode))
612 expand_fixed_convert (to, from, 0, 0);
613 else
614 expand_fixed_convert (to, from, 0, 1);
615 return;
618 /* Now both modes are integers. */
620 /* Handle expanding beyond a word. */
621 if (GET_MODE_PRECISION (from_mode) < GET_MODE_PRECISION (to_mode)
622 && GET_MODE_PRECISION (to_mode) > BITS_PER_WORD)
624 rtx_insn *insns;
625 rtx lowpart;
626 rtx fill_value;
627 rtx lowfrom;
628 int i;
629 scalar_mode lowpart_mode;
630 int nwords = CEIL (GET_MODE_SIZE (to_mode), UNITS_PER_WORD);
632 /* Try converting directly if the insn is supported. */
633 if ((code = can_extend_p (to_mode, from_mode, unsignedp))
634 != CODE_FOR_nothing)
636 /* If FROM is a SUBREG, put it into a register. Do this
637 so that we always generate the same set of insns for
638 better cse'ing; if an intermediate assignment occurred,
639 we won't be doing the operation directly on the SUBREG. */
640 if (optimize > 0 && GET_CODE (from) == SUBREG)
641 from = force_reg (from_mode, from);
642 emit_unop_insn (code, to, from, equiv_code);
643 return;
645 /* Next, try converting via full word. */
646 else if (GET_MODE_PRECISION (from_mode) < BITS_PER_WORD
647 && ((code = can_extend_p (to_mode, word_mode, unsignedp))
648 != CODE_FOR_nothing))
650 rtx word_to = gen_reg_rtx (word_mode);
651 if (REG_P (to))
653 if (reg_overlap_mentioned_p (to, from))
654 from = force_reg (from_mode, from);
655 emit_clobber (to);
657 convert_move (word_to, from, unsignedp);
658 emit_unop_insn (code, to, word_to, equiv_code);
659 return;
662 /* No special multiword conversion insn; do it by hand. */
663 start_sequence ();
665 /* Since we will turn this into a no conflict block, we must ensure
666 the source does not overlap the target so force it into an isolated
667 register when maybe so. Likewise for any MEM input, since the
668 conversion sequence might require several references to it and we
669 must ensure we're getting the same value every time. */
671 if (MEM_P (from) || reg_overlap_mentioned_p (to, from))
672 from = force_reg (from_mode, from);
674 /* Get a copy of FROM widened to a word, if necessary. */
675 if (GET_MODE_PRECISION (from_mode) < BITS_PER_WORD)
676 lowpart_mode = word_mode;
677 else
678 lowpart_mode = from_mode;
680 lowfrom = convert_to_mode (lowpart_mode, from, unsignedp);
682 lowpart = gen_lowpart (lowpart_mode, to);
683 emit_move_insn (lowpart, lowfrom);
685 /* Compute the value to put in each remaining word. */
686 if (unsignedp)
687 fill_value = const0_rtx;
688 else
689 fill_value = emit_store_flag_force (gen_reg_rtx (word_mode),
690 LT, lowfrom, const0_rtx,
691 lowpart_mode, 0, -1);
693 /* Fill the remaining words. */
694 for (i = GET_MODE_SIZE (lowpart_mode) / UNITS_PER_WORD; i < nwords; i++)
696 int index = (WORDS_BIG_ENDIAN ? nwords - i - 1 : i);
697 rtx subword = operand_subword (to, index, 1, to_mode);
699 gcc_assert (subword);
701 if (fill_value != subword)
702 emit_move_insn (subword, fill_value);
705 insns = get_insns ();
706 end_sequence ();
708 emit_insn (insns);
709 return;
712 /* Truncating multi-word to a word or less. */
713 if (GET_MODE_PRECISION (from_mode) > BITS_PER_WORD
714 && GET_MODE_PRECISION (to_mode) <= BITS_PER_WORD)
716 if (!((MEM_P (from)
717 && ! MEM_VOLATILE_P (from)
718 && direct_load[(int) to_mode]
719 && ! mode_dependent_address_p (XEXP (from, 0),
720 MEM_ADDR_SPACE (from)))
721 || REG_P (from)
722 || GET_CODE (from) == SUBREG))
723 from = force_reg (from_mode, from);
724 convert_move (to, gen_lowpart (word_mode, from), 0);
725 return;
728 /* Now follow all the conversions between integers
729 no more than a word long. */
731 /* For truncation, usually we can just refer to FROM in a narrower mode. */
732 if (GET_MODE_BITSIZE (to_mode) < GET_MODE_BITSIZE (from_mode)
733 && TRULY_NOOP_TRUNCATION_MODES_P (to_mode, from_mode))
735 if (!((MEM_P (from)
736 && ! MEM_VOLATILE_P (from)
737 && direct_load[(int) to_mode]
738 && ! mode_dependent_address_p (XEXP (from, 0),
739 MEM_ADDR_SPACE (from)))
740 || REG_P (from)
741 || GET_CODE (from) == SUBREG))
742 from = force_reg (from_mode, from);
743 if (REG_P (from) && REGNO (from) < FIRST_PSEUDO_REGISTER
744 && !targetm.hard_regno_mode_ok (REGNO (from), to_mode))
745 from = copy_to_reg (from);
746 emit_move_insn (to, gen_lowpart (to_mode, from));
747 return;
750 /* Handle extension. */
751 if (GET_MODE_PRECISION (to_mode) > GET_MODE_PRECISION (from_mode))
753 /* Convert directly if that works. */
754 if ((code = can_extend_p (to_mode, from_mode, unsignedp))
755 != CODE_FOR_nothing)
757 emit_unop_insn (code, to, from, equiv_code);
758 return;
760 else
762 rtx tmp;
763 int shift_amount;
765 /* Search for a mode to convert via. */
766 opt_scalar_mode intermediate_iter;
767 FOR_EACH_MODE_FROM (intermediate_iter, from_mode)
769 scalar_mode intermediate = intermediate_iter.require ();
770 if (((can_extend_p (to_mode, intermediate, unsignedp)
771 != CODE_FOR_nothing)
772 || (GET_MODE_SIZE (to_mode) < GET_MODE_SIZE (intermediate)
773 && TRULY_NOOP_TRUNCATION_MODES_P (to_mode,
774 intermediate)))
775 && (can_extend_p (intermediate, from_mode, unsignedp)
776 != CODE_FOR_nothing))
778 convert_move (to, convert_to_mode (intermediate, from,
779 unsignedp), unsignedp);
780 return;
784 /* No suitable intermediate mode.
785 Generate what we need with shifts. */
786 shift_amount = (GET_MODE_PRECISION (to_mode)
787 - GET_MODE_PRECISION (from_mode));
788 from = gen_lowpart (to_mode, force_reg (from_mode, from));
789 tmp = expand_shift (LSHIFT_EXPR, to_mode, from, shift_amount,
790 to, unsignedp);
791 tmp = expand_shift (RSHIFT_EXPR, to_mode, tmp, shift_amount,
792 to, unsignedp);
793 if (tmp != to)
794 emit_move_insn (to, tmp);
795 return;
799 /* Support special truncate insns for certain modes. */
800 if (convert_optab_handler (trunc_optab, to_mode,
801 from_mode) != CODE_FOR_nothing)
803 emit_unop_insn (convert_optab_handler (trunc_optab, to_mode, from_mode),
804 to, from, UNKNOWN);
805 return;
808 /* Handle truncation of volatile memrefs, and so on;
809 the things that couldn't be truncated directly,
810 and for which there was no special instruction.
812 ??? Code above formerly short-circuited this, for most integer
813 mode pairs, with a force_reg in from_mode followed by a recursive
814 call to this routine. Appears always to have been wrong. */
815 if (GET_MODE_PRECISION (to_mode) < GET_MODE_PRECISION (from_mode))
817 rtx temp = force_reg (to_mode, gen_lowpart (to_mode, from));
818 emit_move_insn (to, temp);
819 return;
822 /* Mode combination is not recognized. */
823 gcc_unreachable ();
826 /* Return an rtx for a value that would result
827 from converting X to mode MODE.
828 Both X and MODE may be floating, or both integer.
829 UNSIGNEDP is nonzero if X is an unsigned value.
830 This can be done by referring to a part of X in place
831 or by copying to a new temporary with conversion. */
834 convert_to_mode (machine_mode mode, rtx x, int unsignedp)
836 return convert_modes (mode, VOIDmode, x, unsignedp);
839 /* Return an rtx for a value that would result
840 from converting X from mode OLDMODE to mode MODE.
841 Both modes may be floating, or both integer.
842 UNSIGNEDP is nonzero if X is an unsigned value.
844 This can be done by referring to a part of X in place
845 or by copying to a new temporary with conversion.
847 You can give VOIDmode for OLDMODE, if you are sure X has a nonvoid mode. */
850 convert_modes (machine_mode mode, machine_mode oldmode, rtx x, int unsignedp)
852 rtx temp;
853 scalar_int_mode int_mode;
855 /* If FROM is a SUBREG that indicates that we have already done at least
856 the required extension, strip it. */
858 if (GET_CODE (x) == SUBREG
859 && SUBREG_PROMOTED_VAR_P (x)
860 && is_a <scalar_int_mode> (mode, &int_mode)
861 && (GET_MODE_PRECISION (subreg_promoted_mode (x))
862 >= GET_MODE_PRECISION (int_mode))
863 && SUBREG_CHECK_PROMOTED_SIGN (x, unsignedp))
865 scalar_int_mode int_orig_mode;
866 scalar_int_mode int_inner_mode;
867 machine_mode orig_mode = GET_MODE (x);
868 x = gen_lowpart (int_mode, SUBREG_REG (x));
870 /* Preserve SUBREG_PROMOTED_VAR_P if the new mode is wider than
871 the original mode, but narrower than the inner mode. */
872 if (GET_CODE (x) == SUBREG
873 && is_a <scalar_int_mode> (orig_mode, &int_orig_mode)
874 && GET_MODE_PRECISION (int_mode)
875 > GET_MODE_PRECISION (int_orig_mode)
876 && is_a <scalar_int_mode> (GET_MODE (SUBREG_REG (x)),
877 &int_inner_mode)
878 && GET_MODE_PRECISION (int_inner_mode)
879 > GET_MODE_PRECISION (int_mode))
881 SUBREG_PROMOTED_VAR_P (x) = 1;
882 SUBREG_PROMOTED_SET (x, unsignedp);
886 if (GET_MODE (x) != VOIDmode)
887 oldmode = GET_MODE (x);
889 if (mode == oldmode)
890 return x;
892 if (CONST_SCALAR_INT_P (x)
893 && is_a <scalar_int_mode> (mode, &int_mode))
895 /* If the caller did not tell us the old mode, then there is not
896 much to do with respect to canonicalization. We have to
897 assume that all the bits are significant. */
898 if (!is_a <scalar_int_mode> (oldmode))
899 oldmode = MAX_MODE_INT;
900 wide_int w = wide_int::from (rtx_mode_t (x, oldmode),
901 GET_MODE_PRECISION (int_mode),
902 unsignedp ? UNSIGNED : SIGNED);
903 return immed_wide_int_const (w, int_mode);
906 /* We can do this with a gen_lowpart if both desired and current modes
907 are integer, and this is either a constant integer, a register, or a
908 non-volatile MEM. */
909 scalar_int_mode int_oldmode;
910 if (is_int_mode (mode, &int_mode)
911 && is_int_mode (oldmode, &int_oldmode)
912 && GET_MODE_PRECISION (int_mode) <= GET_MODE_PRECISION (int_oldmode)
913 && ((MEM_P (x) && !MEM_VOLATILE_P (x) && direct_load[(int) int_mode])
914 || CONST_POLY_INT_P (x)
915 || (REG_P (x)
916 && (!HARD_REGISTER_P (x)
917 || targetm.hard_regno_mode_ok (REGNO (x), int_mode))
918 && TRULY_NOOP_TRUNCATION_MODES_P (int_mode, GET_MODE (x)))))
919 return gen_lowpart (int_mode, x);
921 /* Converting from integer constant into mode is always equivalent to an
922 subreg operation. */
923 if (VECTOR_MODE_P (mode) && GET_MODE (x) == VOIDmode)
925 gcc_assert (known_eq (GET_MODE_BITSIZE (mode),
926 GET_MODE_BITSIZE (oldmode)));
927 return simplify_gen_subreg (mode, x, oldmode, 0);
930 temp = gen_reg_rtx (mode);
931 convert_move (temp, x, unsignedp);
932 return temp;
935 /* Variant of convert_modes for ABI parameter passing/return.
936 Return an rtx for a value that would result from converting X from
937 a floating point mode FMODE to wider integer mode MODE. */
940 convert_float_to_wider_int (machine_mode mode, machine_mode fmode, rtx x)
942 gcc_assert (SCALAR_INT_MODE_P (mode) && SCALAR_FLOAT_MODE_P (fmode));
943 scalar_int_mode tmp_mode = int_mode_for_mode (fmode).require ();
944 rtx tmp = force_reg (tmp_mode, gen_lowpart (tmp_mode, x));
945 return convert_modes (mode, tmp_mode, tmp, 1);
948 /* Variant of convert_modes for ABI parameter passing/return.
949 Return an rtx for a value that would result from converting X from
950 an integer mode IMODE to a narrower floating point mode MODE. */
953 convert_wider_int_to_float (machine_mode mode, machine_mode imode, rtx x)
955 gcc_assert (SCALAR_FLOAT_MODE_P (mode) && SCALAR_INT_MODE_P (imode));
956 scalar_int_mode tmp_mode = int_mode_for_mode (mode).require ();
957 rtx tmp = force_reg (tmp_mode, gen_lowpart (tmp_mode, x));
958 return gen_lowpart_SUBREG (mode, tmp);
961 /* Return the largest alignment we can use for doing a move (or store)
962 of MAX_PIECES. ALIGN is the largest alignment we could use. */
964 static unsigned int
965 alignment_for_piecewise_move (unsigned int max_pieces, unsigned int align)
967 scalar_int_mode tmode
968 = int_mode_for_size (max_pieces * BITS_PER_UNIT, 0).require ();
970 if (align >= GET_MODE_ALIGNMENT (tmode))
971 align = GET_MODE_ALIGNMENT (tmode);
972 else
974 scalar_int_mode xmode = NARROWEST_INT_MODE;
975 opt_scalar_int_mode mode_iter;
976 FOR_EACH_MODE_IN_CLASS (mode_iter, MODE_INT)
978 tmode = mode_iter.require ();
979 if (GET_MODE_SIZE (tmode) > max_pieces
980 || targetm.slow_unaligned_access (tmode, align))
981 break;
982 xmode = tmode;
985 align = MAX (align, GET_MODE_ALIGNMENT (xmode));
988 return align;
991 /* Return the widest QI vector, if QI_MODE is true, or integer mode
992 that is narrower than SIZE bytes. */
994 static fixed_size_mode
995 widest_fixed_size_mode_for_size (unsigned int size, bool qi_vector)
997 fixed_size_mode result = NARROWEST_INT_MODE;
999 gcc_checking_assert (size > 1);
1001 /* Use QI vector only if size is wider than a WORD. */
1002 if (qi_vector && size > UNITS_PER_WORD)
1004 machine_mode mode;
1005 fixed_size_mode candidate;
1006 FOR_EACH_MODE_IN_CLASS (mode, MODE_VECTOR_INT)
1007 if (is_a<fixed_size_mode> (mode, &candidate)
1008 && GET_MODE_INNER (candidate) == QImode)
1010 if (GET_MODE_SIZE (candidate) >= size)
1011 break;
1012 if (optab_handler (vec_duplicate_optab, candidate)
1013 != CODE_FOR_nothing)
1014 result = candidate;
1017 if (result != NARROWEST_INT_MODE)
1018 return result;
1021 opt_scalar_int_mode tmode;
1022 FOR_EACH_MODE_IN_CLASS (tmode, MODE_INT)
1023 if (GET_MODE_SIZE (tmode.require ()) < size)
1024 result = tmode.require ();
1026 return result;
1029 /* Determine whether an operation OP on LEN bytes with alignment ALIGN can
1030 and should be performed piecewise. */
1032 static bool
1033 can_do_by_pieces (unsigned HOST_WIDE_INT len, unsigned int align,
1034 enum by_pieces_operation op)
1036 return targetm.use_by_pieces_infrastructure_p (len, align, op,
1037 optimize_insn_for_speed_p ());
1040 /* Determine whether the LEN bytes can be moved by using several move
1041 instructions. Return nonzero if a call to move_by_pieces should
1042 succeed. */
1044 bool
1045 can_move_by_pieces (unsigned HOST_WIDE_INT len, unsigned int align)
1047 return can_do_by_pieces (len, align, MOVE_BY_PIECES);
1050 /* Return number of insns required to perform operation OP by pieces
1051 for L bytes. ALIGN (in bits) is maximum alignment we can assume. */
1053 unsigned HOST_WIDE_INT
1054 by_pieces_ninsns (unsigned HOST_WIDE_INT l, unsigned int align,
1055 unsigned int max_size, by_pieces_operation op)
1057 unsigned HOST_WIDE_INT n_insns = 0;
1058 fixed_size_mode mode;
1060 if (targetm.overlap_op_by_pieces_p () && op != COMPARE_BY_PIECES)
1062 /* NB: Round up L and ALIGN to the widest integer mode for
1063 MAX_SIZE. */
1064 mode = widest_fixed_size_mode_for_size (max_size,
1065 op == SET_BY_PIECES);
1066 if (optab_handler (mov_optab, mode) != CODE_FOR_nothing)
1068 unsigned HOST_WIDE_INT up = ROUND_UP (l, GET_MODE_SIZE (mode));
1069 if (up > l)
1070 l = up;
1071 align = GET_MODE_ALIGNMENT (mode);
1075 align = alignment_for_piecewise_move (MOVE_MAX_PIECES, align);
1077 while (max_size > 1 && l > 0)
1079 mode = widest_fixed_size_mode_for_size (max_size,
1080 op == SET_BY_PIECES);
1081 enum insn_code icode;
1083 unsigned int modesize = GET_MODE_SIZE (mode);
1085 icode = optab_handler (mov_optab, mode);
1086 if (icode != CODE_FOR_nothing && align >= GET_MODE_ALIGNMENT (mode))
1088 unsigned HOST_WIDE_INT n_pieces = l / modesize;
1089 l %= modesize;
1090 switch (op)
1092 default:
1093 n_insns += n_pieces;
1094 break;
1096 case COMPARE_BY_PIECES:
1097 int batch = targetm.compare_by_pieces_branch_ratio (mode);
1098 int batch_ops = 4 * batch - 1;
1099 unsigned HOST_WIDE_INT full = n_pieces / batch;
1100 n_insns += full * batch_ops;
1101 if (n_pieces % batch != 0)
1102 n_insns++;
1103 break;
1107 max_size = modesize;
1110 gcc_assert (!l);
1111 return n_insns;
1114 /* Used when performing piecewise block operations, holds information
1115 about one of the memory objects involved. The member functions
1116 can be used to generate code for loading from the object and
1117 updating the address when iterating. */
1119 class pieces_addr
1121 /* The object being referenced, a MEM. Can be NULL_RTX to indicate
1122 stack pushes. */
1123 rtx m_obj;
1124 /* The address of the object. Can differ from that seen in the
1125 MEM rtx if we copied the address to a register. */
1126 rtx m_addr;
1127 /* Nonzero if the address on the object has an autoincrement already,
1128 signifies whether that was an increment or decrement. */
1129 signed char m_addr_inc;
1130 /* Nonzero if we intend to use autoinc without the address already
1131 having autoinc form. We will insert add insns around each memory
1132 reference, expecting later passes to form autoinc addressing modes.
1133 The only supported options are predecrement and postincrement. */
1134 signed char m_explicit_inc;
1135 /* True if we have either of the two possible cases of using
1136 autoincrement. */
1137 bool m_auto;
1138 /* True if this is an address to be used for load operations rather
1139 than stores. */
1140 bool m_is_load;
1142 /* Optionally, a function to obtain constants for any given offset into
1143 the objects, and data associated with it. */
1144 by_pieces_constfn m_constfn;
1145 void *m_cfndata;
1146 public:
1147 pieces_addr (rtx, bool, by_pieces_constfn, void *);
1148 rtx adjust (fixed_size_mode, HOST_WIDE_INT, by_pieces_prev * = nullptr);
1149 void increment_address (HOST_WIDE_INT);
1150 void maybe_predec (HOST_WIDE_INT);
1151 void maybe_postinc (HOST_WIDE_INT);
1152 void decide_autoinc (machine_mode, bool, HOST_WIDE_INT);
1153 int get_addr_inc ()
1155 return m_addr_inc;
1159 /* Initialize a pieces_addr structure from an object OBJ. IS_LOAD is
1160 true if the operation to be performed on this object is a load
1161 rather than a store. For stores, OBJ can be NULL, in which case we
1162 assume the operation is a stack push. For loads, the optional
1163 CONSTFN and its associated CFNDATA can be used in place of the
1164 memory load. */
1166 pieces_addr::pieces_addr (rtx obj, bool is_load, by_pieces_constfn constfn,
1167 void *cfndata)
1168 : m_obj (obj), m_is_load (is_load), m_constfn (constfn), m_cfndata (cfndata)
1170 m_addr_inc = 0;
1171 m_auto = false;
1172 if (obj)
1174 rtx addr = XEXP (obj, 0);
1175 rtx_code code = GET_CODE (addr);
1176 m_addr = addr;
1177 bool dec = code == PRE_DEC || code == POST_DEC;
1178 bool inc = code == PRE_INC || code == POST_INC;
1179 m_auto = inc || dec;
1180 if (m_auto)
1181 m_addr_inc = dec ? -1 : 1;
1183 /* While we have always looked for these codes here, the code
1184 implementing the memory operation has never handled them.
1185 Support could be added later if necessary or beneficial. */
1186 gcc_assert (code != PRE_INC && code != POST_DEC);
1188 else
1190 m_addr = NULL_RTX;
1191 if (!is_load)
1193 m_auto = true;
1194 if (STACK_GROWS_DOWNWARD)
1195 m_addr_inc = -1;
1196 else
1197 m_addr_inc = 1;
1199 else
1200 gcc_assert (constfn != NULL);
1202 m_explicit_inc = 0;
1203 if (constfn)
1204 gcc_assert (is_load);
1207 /* Decide whether to use autoinc for an address involved in a memory op.
1208 MODE is the mode of the accesses, REVERSE is true if we've decided to
1209 perform the operation starting from the end, and LEN is the length of
1210 the operation. Don't override an earlier decision to set m_auto. */
1212 void
1213 pieces_addr::decide_autoinc (machine_mode ARG_UNUSED (mode), bool reverse,
1214 HOST_WIDE_INT len)
1216 if (m_auto || m_obj == NULL_RTX)
1217 return;
1219 bool use_predec = (m_is_load
1220 ? USE_LOAD_PRE_DECREMENT (mode)
1221 : USE_STORE_PRE_DECREMENT (mode));
1222 bool use_postinc = (m_is_load
1223 ? USE_LOAD_POST_INCREMENT (mode)
1224 : USE_STORE_POST_INCREMENT (mode));
1225 machine_mode addr_mode = get_address_mode (m_obj);
1227 if (use_predec && reverse)
1229 m_addr = copy_to_mode_reg (addr_mode,
1230 plus_constant (addr_mode,
1231 m_addr, len));
1232 m_auto = true;
1233 m_explicit_inc = -1;
1235 else if (use_postinc && !reverse)
1237 m_addr = copy_to_mode_reg (addr_mode, m_addr);
1238 m_auto = true;
1239 m_explicit_inc = 1;
1241 else if (CONSTANT_P (m_addr))
1242 m_addr = copy_to_mode_reg (addr_mode, m_addr);
1245 /* Adjust the address to refer to the data at OFFSET in MODE. If we
1246 are using autoincrement for this address, we don't add the offset,
1247 but we still modify the MEM's properties. */
1250 pieces_addr::adjust (fixed_size_mode mode, HOST_WIDE_INT offset,
1251 by_pieces_prev *prev)
1253 if (m_constfn)
1254 /* Pass the previous data to m_constfn. */
1255 return m_constfn (m_cfndata, prev, offset, mode);
1256 if (m_obj == NULL_RTX)
1257 return NULL_RTX;
1258 if (m_auto)
1259 return adjust_automodify_address (m_obj, mode, m_addr, offset);
1260 else
1261 return adjust_address (m_obj, mode, offset);
1264 /* Emit an add instruction to increment the address by SIZE. */
1266 void
1267 pieces_addr::increment_address (HOST_WIDE_INT size)
1269 rtx amount = gen_int_mode (size, GET_MODE (m_addr));
1270 emit_insn (gen_add2_insn (m_addr, amount));
1273 /* If we are supposed to decrement the address after each access, emit code
1274 to do so now. Increment by SIZE (which has should have the correct sign
1275 already). */
1277 void
1278 pieces_addr::maybe_predec (HOST_WIDE_INT size)
1280 if (m_explicit_inc >= 0)
1281 return;
1282 gcc_assert (HAVE_PRE_DECREMENT);
1283 increment_address (size);
1286 /* If we are supposed to decrement the address after each access, emit code
1287 to do so now. Increment by SIZE. */
1289 void
1290 pieces_addr::maybe_postinc (HOST_WIDE_INT size)
1292 if (m_explicit_inc <= 0)
1293 return;
1294 gcc_assert (HAVE_POST_INCREMENT);
1295 increment_address (size);
1298 /* This structure is used by do_op_by_pieces to describe the operation
1299 to be performed. */
1301 class op_by_pieces_d
1303 private:
1304 fixed_size_mode get_usable_mode (fixed_size_mode, unsigned int);
1305 fixed_size_mode smallest_fixed_size_mode_for_size (unsigned int);
1307 protected:
1308 pieces_addr m_to, m_from;
1309 /* Make m_len read-only so that smallest_fixed_size_mode_for_size can
1310 use it to check the valid mode size. */
1311 const unsigned HOST_WIDE_INT m_len;
1312 HOST_WIDE_INT m_offset;
1313 unsigned int m_align;
1314 unsigned int m_max_size;
1315 bool m_reverse;
1316 /* True if this is a stack push. */
1317 bool m_push;
1318 /* True if targetm.overlap_op_by_pieces_p () returns true. */
1319 bool m_overlap_op_by_pieces;
1320 /* True if QI vector mode can be used. */
1321 bool m_qi_vector_mode;
1323 /* Virtual functions, overriden by derived classes for the specific
1324 operation. */
1325 virtual void generate (rtx, rtx, machine_mode) = 0;
1326 virtual bool prepare_mode (machine_mode, unsigned int) = 0;
1327 virtual void finish_mode (machine_mode)
1331 public:
1332 op_by_pieces_d (unsigned int, rtx, bool, rtx, bool, by_pieces_constfn,
1333 void *, unsigned HOST_WIDE_INT, unsigned int, bool,
1334 bool = false);
1335 void run ();
1338 /* The constructor for an op_by_pieces_d structure. We require two
1339 objects named TO and FROM, which are identified as loads or stores
1340 by TO_LOAD and FROM_LOAD. If FROM is a load, the optional FROM_CFN
1341 and its associated FROM_CFN_DATA can be used to replace loads with
1342 constant values. MAX_PIECES describes the maximum number of bytes
1343 at a time which can be moved efficiently. LEN describes the length
1344 of the operation. */
1346 op_by_pieces_d::op_by_pieces_d (unsigned int max_pieces, rtx to,
1347 bool to_load, rtx from, bool from_load,
1348 by_pieces_constfn from_cfn,
1349 void *from_cfn_data,
1350 unsigned HOST_WIDE_INT len,
1351 unsigned int align, bool push,
1352 bool qi_vector_mode)
1353 : m_to (to, to_load, NULL, NULL),
1354 m_from (from, from_load, from_cfn, from_cfn_data),
1355 m_len (len), m_max_size (max_pieces + 1),
1356 m_push (push), m_qi_vector_mode (qi_vector_mode)
1358 int toi = m_to.get_addr_inc ();
1359 int fromi = m_from.get_addr_inc ();
1360 if (toi >= 0 && fromi >= 0)
1361 m_reverse = false;
1362 else if (toi <= 0 && fromi <= 0)
1363 m_reverse = true;
1364 else
1365 gcc_unreachable ();
1367 m_offset = m_reverse ? len : 0;
1368 align = MIN (to ? MEM_ALIGN (to) : align,
1369 from ? MEM_ALIGN (from) : align);
1371 /* If copying requires more than two move insns,
1372 copy addresses to registers (to make displacements shorter)
1373 and use post-increment if available. */
1374 if (by_pieces_ninsns (len, align, m_max_size, MOVE_BY_PIECES) > 2)
1376 /* Find the mode of the largest comparison. */
1377 fixed_size_mode mode
1378 = widest_fixed_size_mode_for_size (m_max_size,
1379 m_qi_vector_mode);
1381 m_from.decide_autoinc (mode, m_reverse, len);
1382 m_to.decide_autoinc (mode, m_reverse, len);
1385 align = alignment_for_piecewise_move (MOVE_MAX_PIECES, align);
1386 m_align = align;
1388 m_overlap_op_by_pieces = targetm.overlap_op_by_pieces_p ();
1391 /* This function returns the largest usable integer mode for LEN bytes
1392 whose size is no bigger than size of MODE. */
1394 fixed_size_mode
1395 op_by_pieces_d::get_usable_mode (fixed_size_mode mode, unsigned int len)
1397 unsigned int size;
1400 size = GET_MODE_SIZE (mode);
1401 if (len >= size && prepare_mode (mode, m_align))
1402 break;
1403 /* widest_fixed_size_mode_for_size checks SIZE > 1. */
1404 mode = widest_fixed_size_mode_for_size (size, m_qi_vector_mode);
1406 while (1);
1407 return mode;
1410 /* Return the smallest integer or QI vector mode that is not narrower
1411 than SIZE bytes. */
1413 fixed_size_mode
1414 op_by_pieces_d::smallest_fixed_size_mode_for_size (unsigned int size)
1416 /* Use QI vector only for > size of WORD. */
1417 if (m_qi_vector_mode && size > UNITS_PER_WORD)
1419 machine_mode mode;
1420 fixed_size_mode candidate;
1421 FOR_EACH_MODE_IN_CLASS (mode, MODE_VECTOR_INT)
1422 if (is_a<fixed_size_mode> (mode, &candidate)
1423 && GET_MODE_INNER (candidate) == QImode)
1425 /* Don't return a mode wider than M_LEN. */
1426 if (GET_MODE_SIZE (candidate) > m_len)
1427 break;
1429 if (GET_MODE_SIZE (candidate) >= size
1430 && (optab_handler (vec_duplicate_optab, candidate)
1431 != CODE_FOR_nothing))
1432 return candidate;
1436 return smallest_int_mode_for_size (size * BITS_PER_UNIT);
1439 /* This function contains the main loop used for expanding a block
1440 operation. First move what we can in the largest integer mode,
1441 then go to successively smaller modes. For every access, call
1442 GENFUN with the two operands and the EXTRA_DATA. */
1444 void
1445 op_by_pieces_d::run ()
1447 if (m_len == 0)
1448 return;
1450 unsigned HOST_WIDE_INT length = m_len;
1452 /* widest_fixed_size_mode_for_size checks M_MAX_SIZE > 1. */
1453 fixed_size_mode mode
1454 = widest_fixed_size_mode_for_size (m_max_size, m_qi_vector_mode);
1455 mode = get_usable_mode (mode, length);
1457 by_pieces_prev to_prev = { nullptr, mode };
1458 by_pieces_prev from_prev = { nullptr, mode };
1462 unsigned int size = GET_MODE_SIZE (mode);
1463 rtx to1 = NULL_RTX, from1;
1465 while (length >= size)
1467 if (m_reverse)
1468 m_offset -= size;
1470 to1 = m_to.adjust (mode, m_offset, &to_prev);
1471 to_prev.data = to1;
1472 to_prev.mode = mode;
1473 from1 = m_from.adjust (mode, m_offset, &from_prev);
1474 from_prev.data = from1;
1475 from_prev.mode = mode;
1477 m_to.maybe_predec (-(HOST_WIDE_INT)size);
1478 m_from.maybe_predec (-(HOST_WIDE_INT)size);
1480 generate (to1, from1, mode);
1482 m_to.maybe_postinc (size);
1483 m_from.maybe_postinc (size);
1485 if (!m_reverse)
1486 m_offset += size;
1488 length -= size;
1491 finish_mode (mode);
1493 if (length == 0)
1494 return;
1496 if (!m_push && m_overlap_op_by_pieces)
1498 /* NB: Generate overlapping operations if it is not a stack
1499 push since stack push must not overlap. Get the smallest
1500 fixed size mode for M_LEN bytes. */
1501 mode = smallest_fixed_size_mode_for_size (length);
1502 mode = get_usable_mode (mode, GET_MODE_SIZE (mode));
1503 int gap = GET_MODE_SIZE (mode) - length;
1504 if (gap > 0)
1506 /* If size of MODE > M_LEN, generate the last operation
1507 in MODE for the remaining bytes with ovelapping memory
1508 from the previois operation. */
1509 if (m_reverse)
1510 m_offset += gap;
1511 else
1512 m_offset -= gap;
1513 length += gap;
1516 else
1518 /* widest_fixed_size_mode_for_size checks SIZE > 1. */
1519 mode = widest_fixed_size_mode_for_size (size,
1520 m_qi_vector_mode);
1521 mode = get_usable_mode (mode, length);
1524 while (1);
1527 /* Derived class from op_by_pieces_d, providing support for block move
1528 operations. */
1530 #ifdef PUSH_ROUNDING
1531 #define PUSHG_P(to) ((to) == nullptr)
1532 #else
1533 #define PUSHG_P(to) false
1534 #endif
1536 class move_by_pieces_d : public op_by_pieces_d
1538 insn_gen_fn m_gen_fun;
1539 void generate (rtx, rtx, machine_mode) final override;
1540 bool prepare_mode (machine_mode, unsigned int) final override;
1542 public:
1543 move_by_pieces_d (rtx to, rtx from, unsigned HOST_WIDE_INT len,
1544 unsigned int align)
1545 : op_by_pieces_d (MOVE_MAX_PIECES, to, false, from, true, NULL,
1546 NULL, len, align, PUSHG_P (to))
1549 rtx finish_retmode (memop_ret);
1552 /* Return true if MODE can be used for a set of copies, given an
1553 alignment ALIGN. Prepare whatever data is necessary for later
1554 calls to generate. */
1556 bool
1557 move_by_pieces_d::prepare_mode (machine_mode mode, unsigned int align)
1559 insn_code icode = optab_handler (mov_optab, mode);
1560 m_gen_fun = GEN_FCN (icode);
1561 return icode != CODE_FOR_nothing && align >= GET_MODE_ALIGNMENT (mode);
1564 /* A callback used when iterating for a compare_by_pieces_operation.
1565 OP0 and OP1 are the values that have been loaded and should be
1566 compared in MODE. If OP0 is NULL, this means we should generate a
1567 push; otherwise EXTRA_DATA holds a pointer to a pointer to the insn
1568 gen function that should be used to generate the mode. */
1570 void
1571 move_by_pieces_d::generate (rtx op0, rtx op1,
1572 machine_mode mode ATTRIBUTE_UNUSED)
1574 #ifdef PUSH_ROUNDING
1575 if (op0 == NULL_RTX)
1577 emit_single_push_insn (mode, op1, NULL);
1578 return;
1580 #endif
1581 emit_insn (m_gen_fun (op0, op1));
1584 /* Perform the final adjustment at the end of a string to obtain the
1585 correct return value for the block operation.
1586 Return value is based on RETMODE argument. */
1589 move_by_pieces_d::finish_retmode (memop_ret retmode)
1591 gcc_assert (!m_reverse);
1592 if (retmode == RETURN_END_MINUS_ONE)
1594 m_to.maybe_postinc (-1);
1595 --m_offset;
1597 return m_to.adjust (QImode, m_offset);
1600 /* Generate several move instructions to copy LEN bytes from block FROM to
1601 block TO. (These are MEM rtx's with BLKmode).
1603 If PUSH_ROUNDING is defined and TO is NULL, emit_single_push_insn is
1604 used to push FROM to the stack.
1606 ALIGN is maximum stack alignment we can assume.
1608 Return value is based on RETMODE argument. */
1611 move_by_pieces (rtx to, rtx from, unsigned HOST_WIDE_INT len,
1612 unsigned int align, memop_ret retmode)
1614 #ifndef PUSH_ROUNDING
1615 if (to == NULL)
1616 gcc_unreachable ();
1617 #endif
1619 move_by_pieces_d data (to, from, len, align);
1621 data.run ();
1623 if (retmode != RETURN_BEGIN)
1624 return data.finish_retmode (retmode);
1625 else
1626 return to;
1629 /* Derived class from op_by_pieces_d, providing support for block move
1630 operations. */
1632 class store_by_pieces_d : public op_by_pieces_d
1634 insn_gen_fn m_gen_fun;
1635 void generate (rtx, rtx, machine_mode) final override;
1636 bool prepare_mode (machine_mode, unsigned int) final override;
1638 public:
1639 store_by_pieces_d (rtx to, by_pieces_constfn cfn, void *cfn_data,
1640 unsigned HOST_WIDE_INT len, unsigned int align,
1641 bool qi_vector_mode)
1642 : op_by_pieces_d (STORE_MAX_PIECES, to, false, NULL_RTX, true, cfn,
1643 cfn_data, len, align, false, qi_vector_mode)
1646 rtx finish_retmode (memop_ret);
1649 /* Return true if MODE can be used for a set of stores, given an
1650 alignment ALIGN. Prepare whatever data is necessary for later
1651 calls to generate. */
1653 bool
1654 store_by_pieces_d::prepare_mode (machine_mode mode, unsigned int align)
1656 insn_code icode = optab_handler (mov_optab, mode);
1657 m_gen_fun = GEN_FCN (icode);
1658 return icode != CODE_FOR_nothing && align >= GET_MODE_ALIGNMENT (mode);
1661 /* A callback used when iterating for a store_by_pieces_operation.
1662 OP0 and OP1 are the values that have been loaded and should be
1663 compared in MODE. If OP0 is NULL, this means we should generate a
1664 push; otherwise EXTRA_DATA holds a pointer to a pointer to the insn
1665 gen function that should be used to generate the mode. */
1667 void
1668 store_by_pieces_d::generate (rtx op0, rtx op1, machine_mode)
1670 emit_insn (m_gen_fun (op0, op1));
1673 /* Perform the final adjustment at the end of a string to obtain the
1674 correct return value for the block operation.
1675 Return value is based on RETMODE argument. */
1678 store_by_pieces_d::finish_retmode (memop_ret retmode)
1680 gcc_assert (!m_reverse);
1681 if (retmode == RETURN_END_MINUS_ONE)
1683 m_to.maybe_postinc (-1);
1684 --m_offset;
1686 return m_to.adjust (QImode, m_offset);
1689 /* Determine whether the LEN bytes generated by CONSTFUN can be
1690 stored to memory using several move instructions. CONSTFUNDATA is
1691 a pointer which will be passed as argument in every CONSTFUN call.
1692 ALIGN is maximum alignment we can assume. MEMSETP is true if this is
1693 a memset operation and false if it's a copy of a constant string.
1694 Return true if a call to store_by_pieces should succeed. */
1696 bool
1697 can_store_by_pieces (unsigned HOST_WIDE_INT len,
1698 by_pieces_constfn constfun,
1699 void *constfundata, unsigned int align, bool memsetp)
1701 unsigned HOST_WIDE_INT l;
1702 unsigned int max_size;
1703 HOST_WIDE_INT offset = 0;
1704 enum insn_code icode;
1705 int reverse;
1706 /* cst is set but not used if LEGITIMATE_CONSTANT doesn't use it. */
1707 rtx cst ATTRIBUTE_UNUSED;
1709 if (len == 0)
1710 return true;
1712 if (!targetm.use_by_pieces_infrastructure_p (len, align,
1713 memsetp
1714 ? SET_BY_PIECES
1715 : STORE_BY_PIECES,
1716 optimize_insn_for_speed_p ()))
1717 return false;
1719 align = alignment_for_piecewise_move (STORE_MAX_PIECES, align);
1721 /* We would first store what we can in the largest integer mode, then go to
1722 successively smaller modes. */
1724 for (reverse = 0;
1725 reverse <= (HAVE_PRE_DECREMENT || HAVE_POST_DECREMENT);
1726 reverse++)
1728 l = len;
1729 max_size = STORE_MAX_PIECES + 1;
1730 while (max_size > 1 && l > 0)
1732 fixed_size_mode mode
1733 = widest_fixed_size_mode_for_size (max_size, memsetp);
1735 icode = optab_handler (mov_optab, mode);
1736 if (icode != CODE_FOR_nothing
1737 && align >= GET_MODE_ALIGNMENT (mode))
1739 unsigned int size = GET_MODE_SIZE (mode);
1741 while (l >= size)
1743 if (reverse)
1744 offset -= size;
1746 cst = (*constfun) (constfundata, nullptr, offset, mode);
1747 /* All CONST_VECTORs can be loaded for memset since
1748 vec_duplicate_optab is a precondition to pick a
1749 vector mode for the memset expander. */
1750 if (!((memsetp && VECTOR_MODE_P (mode))
1751 || targetm.legitimate_constant_p (mode, cst)))
1752 return false;
1754 if (!reverse)
1755 offset += size;
1757 l -= size;
1761 max_size = GET_MODE_SIZE (mode);
1764 /* The code above should have handled everything. */
1765 gcc_assert (!l);
1768 return true;
1771 /* Generate several move instructions to store LEN bytes generated by
1772 CONSTFUN to block TO. (A MEM rtx with BLKmode). CONSTFUNDATA is a
1773 pointer which will be passed as argument in every CONSTFUN call.
1774 ALIGN is maximum alignment we can assume. MEMSETP is true if this is
1775 a memset operation and false if it's a copy of a constant string.
1776 Return value is based on RETMODE argument. */
1779 store_by_pieces (rtx to, unsigned HOST_WIDE_INT len,
1780 by_pieces_constfn constfun,
1781 void *constfundata, unsigned int align, bool memsetp,
1782 memop_ret retmode)
1784 if (len == 0)
1786 gcc_assert (retmode != RETURN_END_MINUS_ONE);
1787 return to;
1790 gcc_assert (targetm.use_by_pieces_infrastructure_p
1791 (len, align,
1792 memsetp ? SET_BY_PIECES : STORE_BY_PIECES,
1793 optimize_insn_for_speed_p ()));
1795 store_by_pieces_d data (to, constfun, constfundata, len, align,
1796 memsetp);
1797 data.run ();
1799 if (retmode != RETURN_BEGIN)
1800 return data.finish_retmode (retmode);
1801 else
1802 return to;
1805 /* Generate several move instructions to clear LEN bytes of block TO. (A MEM
1806 rtx with BLKmode). ALIGN is maximum alignment we can assume. */
1808 static void
1809 clear_by_pieces (rtx to, unsigned HOST_WIDE_INT len, unsigned int align)
1811 if (len == 0)
1812 return;
1814 /* Use builtin_memset_read_str to support vector mode broadcast. */
1815 char c = 0;
1816 store_by_pieces_d data (to, builtin_memset_read_str, &c, len, align,
1817 true);
1818 data.run ();
1821 /* Context used by compare_by_pieces_genfn. It stores the fail label
1822 to jump to in case of miscomparison, and for branch ratios greater than 1,
1823 it stores an accumulator and the current and maximum counts before
1824 emitting another branch. */
1826 class compare_by_pieces_d : public op_by_pieces_d
1828 rtx_code_label *m_fail_label;
1829 rtx m_accumulator;
1830 int m_count, m_batch;
1832 void generate (rtx, rtx, machine_mode) final override;
1833 bool prepare_mode (machine_mode, unsigned int) final override;
1834 void finish_mode (machine_mode) final override;
1835 public:
1836 compare_by_pieces_d (rtx op0, rtx op1, by_pieces_constfn op1_cfn,
1837 void *op1_cfn_data, HOST_WIDE_INT len, int align,
1838 rtx_code_label *fail_label)
1839 : op_by_pieces_d (COMPARE_MAX_PIECES, op0, true, op1, true, op1_cfn,
1840 op1_cfn_data, len, align, false)
1842 m_fail_label = fail_label;
1846 /* A callback used when iterating for a compare_by_pieces_operation.
1847 OP0 and OP1 are the values that have been loaded and should be
1848 compared in MODE. DATA holds a pointer to the compare_by_pieces_data
1849 context structure. */
1851 void
1852 compare_by_pieces_d::generate (rtx op0, rtx op1, machine_mode mode)
1854 if (m_batch > 1)
1856 rtx temp = expand_binop (mode, sub_optab, op0, op1, NULL_RTX,
1857 true, OPTAB_LIB_WIDEN);
1858 if (m_count != 0)
1859 temp = expand_binop (mode, ior_optab, m_accumulator, temp, temp,
1860 true, OPTAB_LIB_WIDEN);
1861 m_accumulator = temp;
1863 if (++m_count < m_batch)
1864 return;
1866 m_count = 0;
1867 op0 = m_accumulator;
1868 op1 = const0_rtx;
1869 m_accumulator = NULL_RTX;
1871 do_compare_rtx_and_jump (op0, op1, NE, true, mode, NULL_RTX, NULL,
1872 m_fail_label, profile_probability::uninitialized ());
1875 /* Return true if MODE can be used for a set of moves and comparisons,
1876 given an alignment ALIGN. Prepare whatever data is necessary for
1877 later calls to generate. */
1879 bool
1880 compare_by_pieces_d::prepare_mode (machine_mode mode, unsigned int align)
1882 insn_code icode = optab_handler (mov_optab, mode);
1883 if (icode == CODE_FOR_nothing
1884 || align < GET_MODE_ALIGNMENT (mode)
1885 || !can_compare_p (EQ, mode, ccp_jump))
1886 return false;
1887 m_batch = targetm.compare_by_pieces_branch_ratio (mode);
1888 if (m_batch < 0)
1889 return false;
1890 m_accumulator = NULL_RTX;
1891 m_count = 0;
1892 return true;
1895 /* Called after expanding a series of comparisons in MODE. If we have
1896 accumulated results for which we haven't emitted a branch yet, do
1897 so now. */
1899 void
1900 compare_by_pieces_d::finish_mode (machine_mode mode)
1902 if (m_accumulator != NULL_RTX)
1903 do_compare_rtx_and_jump (m_accumulator, const0_rtx, NE, true, mode,
1904 NULL_RTX, NULL, m_fail_label,
1905 profile_probability::uninitialized ());
1908 /* Generate several move instructions to compare LEN bytes from blocks
1909 ARG0 and ARG1. (These are MEM rtx's with BLKmode).
1911 If PUSH_ROUNDING is defined and TO is NULL, emit_single_push_insn is
1912 used to push FROM to the stack.
1914 ALIGN is maximum stack alignment we can assume.
1916 Optionally, the caller can pass a constfn and associated data in A1_CFN
1917 and A1_CFN_DATA. describing that the second operand being compared is a
1918 known constant and how to obtain its data. */
1920 static rtx
1921 compare_by_pieces (rtx arg0, rtx arg1, unsigned HOST_WIDE_INT len,
1922 rtx target, unsigned int align,
1923 by_pieces_constfn a1_cfn, void *a1_cfn_data)
1925 rtx_code_label *fail_label = gen_label_rtx ();
1926 rtx_code_label *end_label = gen_label_rtx ();
1928 if (target == NULL_RTX
1929 || !REG_P (target) || REGNO (target) < FIRST_PSEUDO_REGISTER)
1930 target = gen_reg_rtx (TYPE_MODE (integer_type_node));
1932 compare_by_pieces_d data (arg0, arg1, a1_cfn, a1_cfn_data, len, align,
1933 fail_label);
1935 data.run ();
1937 emit_move_insn (target, const0_rtx);
1938 emit_jump (end_label);
1939 emit_barrier ();
1940 emit_label (fail_label);
1941 emit_move_insn (target, const1_rtx);
1942 emit_label (end_label);
1944 return target;
1947 /* Emit code to move a block Y to a block X. This may be done with
1948 string-move instructions, with multiple scalar move instructions,
1949 or with a library call.
1951 Both X and Y must be MEM rtx's (perhaps inside VOLATILE) with mode BLKmode.
1952 SIZE is an rtx that says how long they are.
1953 ALIGN is the maximum alignment we can assume they have.
1954 METHOD describes what kind of copy this is, and what mechanisms may be used.
1955 MIN_SIZE is the minimal size of block to move
1956 MAX_SIZE is the maximal size of block to move, if it cannot be represented
1957 in unsigned HOST_WIDE_INT, than it is mask of all ones.
1959 Return the address of the new block, if memcpy is called and returns it,
1960 0 otherwise. */
1963 emit_block_move_hints (rtx x, rtx y, rtx size, enum block_op_methods method,
1964 unsigned int expected_align, HOST_WIDE_INT expected_size,
1965 unsigned HOST_WIDE_INT min_size,
1966 unsigned HOST_WIDE_INT max_size,
1967 unsigned HOST_WIDE_INT probable_max_size,
1968 bool bail_out_libcall, bool *is_move_done,
1969 bool might_overlap)
1971 int may_use_call;
1972 rtx retval = 0;
1973 unsigned int align;
1975 if (is_move_done)
1976 *is_move_done = true;
1978 gcc_assert (size);
1979 if (CONST_INT_P (size) && INTVAL (size) == 0)
1980 return 0;
1982 switch (method)
1984 case BLOCK_OP_NORMAL:
1985 case BLOCK_OP_TAILCALL:
1986 may_use_call = 1;
1987 break;
1989 case BLOCK_OP_CALL_PARM:
1990 may_use_call = block_move_libcall_safe_for_call_parm ();
1992 /* Make inhibit_defer_pop nonzero around the library call
1993 to force it to pop the arguments right away. */
1994 NO_DEFER_POP;
1995 break;
1997 case BLOCK_OP_NO_LIBCALL:
1998 may_use_call = 0;
1999 break;
2001 case BLOCK_OP_NO_LIBCALL_RET:
2002 may_use_call = -1;
2003 break;
2005 default:
2006 gcc_unreachable ();
2009 gcc_assert (MEM_P (x) && MEM_P (y));
2010 align = MIN (MEM_ALIGN (x), MEM_ALIGN (y));
2011 gcc_assert (align >= BITS_PER_UNIT);
2013 /* Make sure we've got BLKmode addresses; store_one_arg can decide that
2014 block copy is more efficient for other large modes, e.g. DCmode. */
2015 x = adjust_address (x, BLKmode, 0);
2016 y = adjust_address (y, BLKmode, 0);
2018 /* If source and destination are the same, no need to copy anything. */
2019 if (rtx_equal_p (x, y)
2020 && !MEM_VOLATILE_P (x)
2021 && !MEM_VOLATILE_P (y))
2022 return 0;
2024 /* Set MEM_SIZE as appropriate for this block copy. The main place this
2025 can be incorrect is coming from __builtin_memcpy. */
2026 poly_int64 const_size;
2027 if (poly_int_rtx_p (size, &const_size))
2029 x = shallow_copy_rtx (x);
2030 y = shallow_copy_rtx (y);
2031 set_mem_size (x, const_size);
2032 set_mem_size (y, const_size);
2035 bool pieces_ok = CONST_INT_P (size)
2036 && can_move_by_pieces (INTVAL (size), align);
2037 bool pattern_ok = false;
2039 if (!pieces_ok || might_overlap)
2041 pattern_ok
2042 = emit_block_move_via_pattern (x, y, size, align,
2043 expected_align, expected_size,
2044 min_size, max_size, probable_max_size,
2045 might_overlap);
2046 if (!pattern_ok && might_overlap)
2048 /* Do not try any of the other methods below as they are not safe
2049 for overlapping moves. */
2050 *is_move_done = false;
2051 return retval;
2055 if (pattern_ok)
2057 else if (pieces_ok)
2058 move_by_pieces (x, y, INTVAL (size), align, RETURN_BEGIN);
2059 else if (may_use_call && !might_overlap
2060 && ADDR_SPACE_GENERIC_P (MEM_ADDR_SPACE (x))
2061 && ADDR_SPACE_GENERIC_P (MEM_ADDR_SPACE (y)))
2063 if (bail_out_libcall)
2065 if (is_move_done)
2066 *is_move_done = false;
2067 return retval;
2070 if (may_use_call < 0)
2071 return pc_rtx;
2073 retval = emit_block_copy_via_libcall (x, y, size,
2074 method == BLOCK_OP_TAILCALL);
2076 else if (might_overlap)
2077 *is_move_done = false;
2078 else
2079 emit_block_move_via_loop (x, y, size, align);
2081 if (method == BLOCK_OP_CALL_PARM)
2082 OK_DEFER_POP;
2084 return retval;
2088 emit_block_move (rtx x, rtx y, rtx size, enum block_op_methods method)
2090 unsigned HOST_WIDE_INT max, min = 0;
2091 if (GET_CODE (size) == CONST_INT)
2092 min = max = UINTVAL (size);
2093 else
2094 max = GET_MODE_MASK (GET_MODE (size));
2095 return emit_block_move_hints (x, y, size, method, 0, -1,
2096 min, max, max);
2099 /* A subroutine of emit_block_move. Returns true if calling the
2100 block move libcall will not clobber any parameters which may have
2101 already been placed on the stack. */
2103 static bool
2104 block_move_libcall_safe_for_call_parm (void)
2106 tree fn;
2108 /* If arguments are pushed on the stack, then they're safe. */
2109 if (targetm.calls.push_argument (0))
2110 return true;
2112 /* If registers go on the stack anyway, any argument is sure to clobber
2113 an outgoing argument. */
2114 #if defined (REG_PARM_STACK_SPACE)
2115 fn = builtin_decl_implicit (BUILT_IN_MEMCPY);
2116 /* Avoid set but not used warning if *REG_PARM_STACK_SPACE doesn't
2117 depend on its argument. */
2118 (void) fn;
2119 if (OUTGOING_REG_PARM_STACK_SPACE ((!fn ? NULL_TREE : TREE_TYPE (fn)))
2120 && REG_PARM_STACK_SPACE (fn) != 0)
2121 return false;
2122 #endif
2124 /* If any argument goes in memory, then it might clobber an outgoing
2125 argument. */
2127 CUMULATIVE_ARGS args_so_far_v;
2128 cumulative_args_t args_so_far;
2129 tree arg;
2131 fn = builtin_decl_implicit (BUILT_IN_MEMCPY);
2132 INIT_CUMULATIVE_ARGS (args_so_far_v, TREE_TYPE (fn), NULL_RTX, 0, 3);
2133 args_so_far = pack_cumulative_args (&args_so_far_v);
2135 arg = TYPE_ARG_TYPES (TREE_TYPE (fn));
2136 for ( ; arg != void_list_node ; arg = TREE_CHAIN (arg))
2138 machine_mode mode = TYPE_MODE (TREE_VALUE (arg));
2139 function_arg_info arg_info (mode, /*named=*/true);
2140 rtx tmp = targetm.calls.function_arg (args_so_far, arg_info);
2141 if (!tmp || !REG_P (tmp))
2142 return false;
2143 if (targetm.calls.arg_partial_bytes (args_so_far, arg_info))
2144 return false;
2145 targetm.calls.function_arg_advance (args_so_far, arg_info);
2148 return true;
2151 /* A subroutine of emit_block_move. Expand a cpymem or movmem pattern;
2152 return true if successful.
2154 X is the destination of the copy or move.
2155 Y is the source of the copy or move.
2156 SIZE is the size of the block to be moved.
2158 MIGHT_OVERLAP indicates this originated with expansion of a
2159 builtin_memmove() and the source and destination blocks may
2160 overlap.
2163 static bool
2164 emit_block_move_via_pattern (rtx x, rtx y, rtx size, unsigned int align,
2165 unsigned int expected_align,
2166 HOST_WIDE_INT expected_size,
2167 unsigned HOST_WIDE_INT min_size,
2168 unsigned HOST_WIDE_INT max_size,
2169 unsigned HOST_WIDE_INT probable_max_size,
2170 bool might_overlap)
2172 if (expected_align < align)
2173 expected_align = align;
2174 if (expected_size != -1)
2176 if ((unsigned HOST_WIDE_INT)expected_size > probable_max_size)
2177 expected_size = probable_max_size;
2178 if ((unsigned HOST_WIDE_INT)expected_size < min_size)
2179 expected_size = min_size;
2182 /* Since this is a move insn, we don't care about volatility. */
2183 temporary_volatile_ok v (true);
2185 /* Try the most limited insn first, because there's no point
2186 including more than one in the machine description unless
2187 the more limited one has some advantage. */
2189 opt_scalar_int_mode mode_iter;
2190 FOR_EACH_MODE_IN_CLASS (mode_iter, MODE_INT)
2192 scalar_int_mode mode = mode_iter.require ();
2193 enum insn_code code;
2194 if (might_overlap)
2195 code = direct_optab_handler (movmem_optab, mode);
2196 else
2197 code = direct_optab_handler (cpymem_optab, mode);
2199 if (code != CODE_FOR_nothing
2200 /* We don't need MODE to be narrower than BITS_PER_HOST_WIDE_INT
2201 here because if SIZE is less than the mode mask, as it is
2202 returned by the macro, it will definitely be less than the
2203 actual mode mask. Since SIZE is within the Pmode address
2204 space, we limit MODE to Pmode. */
2205 && ((CONST_INT_P (size)
2206 && ((unsigned HOST_WIDE_INT) INTVAL (size)
2207 <= (GET_MODE_MASK (mode) >> 1)))
2208 || max_size <= (GET_MODE_MASK (mode) >> 1)
2209 || GET_MODE_BITSIZE (mode) >= GET_MODE_BITSIZE (Pmode)))
2211 class expand_operand ops[9];
2212 unsigned int nops;
2214 /* ??? When called via emit_block_move_for_call, it'd be
2215 nice if there were some way to inform the backend, so
2216 that it doesn't fail the expansion because it thinks
2217 emitting the libcall would be more efficient. */
2218 nops = insn_data[(int) code].n_generator_args;
2219 gcc_assert (nops == 4 || nops == 6 || nops == 8 || nops == 9);
2221 create_fixed_operand (&ops[0], x);
2222 create_fixed_operand (&ops[1], y);
2223 /* The check above guarantees that this size conversion is valid. */
2224 create_convert_operand_to (&ops[2], size, mode, true);
2225 create_integer_operand (&ops[3], align / BITS_PER_UNIT);
2226 if (nops >= 6)
2228 create_integer_operand (&ops[4], expected_align / BITS_PER_UNIT);
2229 create_integer_operand (&ops[5], expected_size);
2231 if (nops >= 8)
2233 create_integer_operand (&ops[6], min_size);
2234 /* If we cannot represent the maximal size,
2235 make parameter NULL. */
2236 if ((HOST_WIDE_INT) max_size != -1)
2237 create_integer_operand (&ops[7], max_size);
2238 else
2239 create_fixed_operand (&ops[7], NULL);
2241 if (nops == 9)
2243 /* If we cannot represent the maximal size,
2244 make parameter NULL. */
2245 if ((HOST_WIDE_INT) probable_max_size != -1)
2246 create_integer_operand (&ops[8], probable_max_size);
2247 else
2248 create_fixed_operand (&ops[8], NULL);
2250 if (maybe_expand_insn (code, nops, ops))
2251 return true;
2255 return false;
2258 /* A subroutine of emit_block_move. Copy the data via an explicit
2259 loop. This is used only when libcalls are forbidden. */
2260 /* ??? It'd be nice to copy in hunks larger than QImode. */
2262 static void
2263 emit_block_move_via_loop (rtx x, rtx y, rtx size,
2264 unsigned int align ATTRIBUTE_UNUSED)
2266 rtx_code_label *cmp_label, *top_label;
2267 rtx iter, x_addr, y_addr, tmp;
2268 machine_mode x_addr_mode = get_address_mode (x);
2269 machine_mode y_addr_mode = get_address_mode (y);
2270 machine_mode iter_mode;
2272 iter_mode = GET_MODE (size);
2273 if (iter_mode == VOIDmode)
2274 iter_mode = word_mode;
2276 top_label = gen_label_rtx ();
2277 cmp_label = gen_label_rtx ();
2278 iter = gen_reg_rtx (iter_mode);
2280 emit_move_insn (iter, const0_rtx);
2282 x_addr = force_operand (XEXP (x, 0), NULL_RTX);
2283 y_addr = force_operand (XEXP (y, 0), NULL_RTX);
2284 do_pending_stack_adjust ();
2286 emit_jump (cmp_label);
2287 emit_label (top_label);
2289 tmp = convert_modes (x_addr_mode, iter_mode, iter, true);
2290 x_addr = simplify_gen_binary (PLUS, x_addr_mode, x_addr, tmp);
2292 if (x_addr_mode != y_addr_mode)
2293 tmp = convert_modes (y_addr_mode, iter_mode, iter, true);
2294 y_addr = simplify_gen_binary (PLUS, y_addr_mode, y_addr, tmp);
2296 x = change_address (x, QImode, x_addr);
2297 y = change_address (y, QImode, y_addr);
2299 emit_move_insn (x, y);
2301 tmp = expand_simple_binop (iter_mode, PLUS, iter, const1_rtx, iter,
2302 true, OPTAB_LIB_WIDEN);
2303 if (tmp != iter)
2304 emit_move_insn (iter, tmp);
2306 emit_label (cmp_label);
2308 emit_cmp_and_jump_insns (iter, size, LT, NULL_RTX, iter_mode,
2309 true, top_label,
2310 profile_probability::guessed_always ()
2311 .apply_scale (9, 10));
2314 /* Expand a call to memcpy or memmove or memcmp, and return the result.
2315 TAILCALL is true if this is a tail call. */
2318 emit_block_op_via_libcall (enum built_in_function fncode, rtx dst, rtx src,
2319 rtx size, bool tailcall)
2321 rtx dst_addr, src_addr;
2322 tree call_expr, dst_tree, src_tree, size_tree;
2323 machine_mode size_mode;
2325 /* Since dst and src are passed to a libcall, mark the corresponding
2326 tree EXPR as addressable. */
2327 tree dst_expr = MEM_EXPR (dst);
2328 tree src_expr = MEM_EXPR (src);
2329 if (dst_expr)
2330 mark_addressable (dst_expr);
2331 if (src_expr)
2332 mark_addressable (src_expr);
2334 dst_addr = copy_addr_to_reg (XEXP (dst, 0));
2335 dst_addr = convert_memory_address (ptr_mode, dst_addr);
2336 dst_tree = make_tree (ptr_type_node, dst_addr);
2338 src_addr = copy_addr_to_reg (XEXP (src, 0));
2339 src_addr = convert_memory_address (ptr_mode, src_addr);
2340 src_tree = make_tree (ptr_type_node, src_addr);
2342 size_mode = TYPE_MODE (sizetype);
2343 size = convert_to_mode (size_mode, size, 1);
2344 size = copy_to_mode_reg (size_mode, size);
2345 size_tree = make_tree (sizetype, size);
2347 /* It is incorrect to use the libcall calling conventions for calls to
2348 memcpy/memmove/memcmp because they can be provided by the user. */
2349 tree fn = builtin_decl_implicit (fncode);
2350 call_expr = build_call_expr (fn, 3, dst_tree, src_tree, size_tree);
2351 CALL_EXPR_TAILCALL (call_expr) = tailcall;
2353 return expand_call (call_expr, NULL_RTX, false);
2356 /* Try to expand cmpstrn or cmpmem operation ICODE with the given operands.
2357 ARG3_TYPE is the type of ARG3_RTX. Return the result rtx on success,
2358 otherwise return null. */
2361 expand_cmpstrn_or_cmpmem (insn_code icode, rtx target, rtx arg1_rtx,
2362 rtx arg2_rtx, tree arg3_type, rtx arg3_rtx,
2363 HOST_WIDE_INT align)
2365 machine_mode insn_mode = insn_data[icode].operand[0].mode;
2367 if (target && (!REG_P (target) || HARD_REGISTER_P (target)))
2368 target = NULL_RTX;
2370 class expand_operand ops[5];
2371 create_output_operand (&ops[0], target, insn_mode);
2372 create_fixed_operand (&ops[1], arg1_rtx);
2373 create_fixed_operand (&ops[2], arg2_rtx);
2374 create_convert_operand_from (&ops[3], arg3_rtx, TYPE_MODE (arg3_type),
2375 TYPE_UNSIGNED (arg3_type));
2376 create_integer_operand (&ops[4], align);
2377 if (maybe_expand_insn (icode, 5, ops))
2378 return ops[0].value;
2379 return NULL_RTX;
2382 /* Expand a block compare between X and Y with length LEN using the
2383 cmpmem optab, placing the result in TARGET. LEN_TYPE is the type
2384 of the expression that was used to calculate the length. ALIGN
2385 gives the known minimum common alignment. */
2387 static rtx
2388 emit_block_cmp_via_cmpmem (rtx x, rtx y, rtx len, tree len_type, rtx target,
2389 unsigned align)
2391 /* Note: The cmpstrnsi pattern, if it exists, is not suitable for
2392 implementing memcmp because it will stop if it encounters two
2393 zero bytes. */
2394 insn_code icode = direct_optab_handler (cmpmem_optab, SImode);
2396 if (icode == CODE_FOR_nothing)
2397 return NULL_RTX;
2399 return expand_cmpstrn_or_cmpmem (icode, target, x, y, len_type, len, align);
2402 /* Emit code to compare a block Y to a block X. This may be done with
2403 string-compare instructions, with multiple scalar instructions,
2404 or with a library call.
2406 Both X and Y must be MEM rtx's. LEN is an rtx that says how long
2407 they are. LEN_TYPE is the type of the expression that was used to
2408 calculate it.
2410 If EQUALITY_ONLY is true, it means we don't have to return the tri-state
2411 value of a normal memcmp call, instead we can just compare for equality.
2412 If FORCE_LIBCALL is true, we should emit a call to memcmp rather than
2413 returning NULL_RTX.
2415 Optionally, the caller can pass a constfn and associated data in Y_CFN
2416 and Y_CFN_DATA. describing that the second operand being compared is a
2417 known constant and how to obtain its data.
2418 Return the result of the comparison, or NULL_RTX if we failed to
2419 perform the operation. */
2422 emit_block_cmp_hints (rtx x, rtx y, rtx len, tree len_type, rtx target,
2423 bool equality_only, by_pieces_constfn y_cfn,
2424 void *y_cfndata)
2426 rtx result = 0;
2428 if (CONST_INT_P (len) && INTVAL (len) == 0)
2429 return const0_rtx;
2431 gcc_assert (MEM_P (x) && MEM_P (y));
2432 unsigned int align = MIN (MEM_ALIGN (x), MEM_ALIGN (y));
2433 gcc_assert (align >= BITS_PER_UNIT);
2435 x = adjust_address (x, BLKmode, 0);
2436 y = adjust_address (y, BLKmode, 0);
2438 if (equality_only
2439 && CONST_INT_P (len)
2440 && can_do_by_pieces (INTVAL (len), align, COMPARE_BY_PIECES))
2441 result = compare_by_pieces (x, y, INTVAL (len), target, align,
2442 y_cfn, y_cfndata);
2443 else
2444 result = emit_block_cmp_via_cmpmem (x, y, len, len_type, target, align);
2446 return result;
2449 /* Copy all or part of a value X into registers starting at REGNO.
2450 The number of registers to be filled is NREGS. */
2452 void
2453 move_block_to_reg (int regno, rtx x, int nregs, machine_mode mode)
2455 if (nregs == 0)
2456 return;
2458 if (CONSTANT_P (x) && !targetm.legitimate_constant_p (mode, x))
2459 x = validize_mem (force_const_mem (mode, x));
2461 /* See if the machine can do this with a load multiple insn. */
2462 if (targetm.have_load_multiple ())
2464 rtx_insn *last = get_last_insn ();
2465 rtx first = gen_rtx_REG (word_mode, regno);
2466 if (rtx_insn *pat = targetm.gen_load_multiple (first, x,
2467 GEN_INT (nregs)))
2469 emit_insn (pat);
2470 return;
2472 else
2473 delete_insns_since (last);
2476 for (int i = 0; i < nregs; i++)
2477 emit_move_insn (gen_rtx_REG (word_mode, regno + i),
2478 operand_subword_force (x, i, mode));
2481 /* Copy all or part of a BLKmode value X out of registers starting at REGNO.
2482 The number of registers to be filled is NREGS. */
2484 void
2485 move_block_from_reg (int regno, rtx x, int nregs)
2487 if (nregs == 0)
2488 return;
2490 /* See if the machine can do this with a store multiple insn. */
2491 if (targetm.have_store_multiple ())
2493 rtx_insn *last = get_last_insn ();
2494 rtx first = gen_rtx_REG (word_mode, regno);
2495 if (rtx_insn *pat = targetm.gen_store_multiple (x, first,
2496 GEN_INT (nregs)))
2498 emit_insn (pat);
2499 return;
2501 else
2502 delete_insns_since (last);
2505 for (int i = 0; i < nregs; i++)
2507 rtx tem = operand_subword (x, i, 1, BLKmode);
2509 gcc_assert (tem);
2511 emit_move_insn (tem, gen_rtx_REG (word_mode, regno + i));
2515 /* Generate a PARALLEL rtx for a new non-consecutive group of registers from
2516 ORIG, where ORIG is a non-consecutive group of registers represented by
2517 a PARALLEL. The clone is identical to the original except in that the
2518 original set of registers is replaced by a new set of pseudo registers.
2519 The new set has the same modes as the original set. */
2522 gen_group_rtx (rtx orig)
2524 int i, length;
2525 rtx *tmps;
2527 gcc_assert (GET_CODE (orig) == PARALLEL);
2529 length = XVECLEN (orig, 0);
2530 tmps = XALLOCAVEC (rtx, length);
2532 /* Skip a NULL entry in first slot. */
2533 i = XEXP (XVECEXP (orig, 0, 0), 0) ? 0 : 1;
2535 if (i)
2536 tmps[0] = 0;
2538 for (; i < length; i++)
2540 machine_mode mode = GET_MODE (XEXP (XVECEXP (orig, 0, i), 0));
2541 rtx offset = XEXP (XVECEXP (orig, 0, i), 1);
2543 tmps[i] = gen_rtx_EXPR_LIST (VOIDmode, gen_reg_rtx (mode), offset);
2546 return gen_rtx_PARALLEL (GET_MODE (orig), gen_rtvec_v (length, tmps));
2549 /* A subroutine of emit_group_load. Arguments as for emit_group_load,
2550 except that values are placed in TMPS[i], and must later be moved
2551 into corresponding XEXP (XVECEXP (DST, 0, i), 0) element. */
2553 static void
2554 emit_group_load_1 (rtx *tmps, rtx dst, rtx orig_src, tree type,
2555 poly_int64 ssize)
2557 rtx src;
2558 int start, i;
2559 machine_mode m = GET_MODE (orig_src);
2561 gcc_assert (GET_CODE (dst) == PARALLEL);
2563 if (m != VOIDmode
2564 && !SCALAR_INT_MODE_P (m)
2565 && !MEM_P (orig_src)
2566 && GET_CODE (orig_src) != CONCAT)
2568 scalar_int_mode imode;
2569 if (int_mode_for_mode (GET_MODE (orig_src)).exists (&imode))
2571 src = gen_reg_rtx (imode);
2572 emit_move_insn (gen_lowpart (GET_MODE (orig_src), src), orig_src);
2574 else
2576 src = assign_stack_temp (GET_MODE (orig_src), ssize);
2577 emit_move_insn (src, orig_src);
2579 emit_group_load_1 (tmps, dst, src, type, ssize);
2580 return;
2583 /* Check for a NULL entry, used to indicate that the parameter goes
2584 both on the stack and in registers. */
2585 if (XEXP (XVECEXP (dst, 0, 0), 0))
2586 start = 0;
2587 else
2588 start = 1;
2590 /* Process the pieces. */
2591 for (i = start; i < XVECLEN (dst, 0); i++)
2593 machine_mode mode = GET_MODE (XEXP (XVECEXP (dst, 0, i), 0));
2594 poly_int64 bytepos = rtx_to_poly_int64 (XEXP (XVECEXP (dst, 0, i), 1));
2595 poly_int64 bytelen = GET_MODE_SIZE (mode);
2596 poly_int64 shift = 0;
2598 /* Handle trailing fragments that run over the size of the struct.
2599 It's the target's responsibility to make sure that the fragment
2600 cannot be strictly smaller in some cases and strictly larger
2601 in others. */
2602 gcc_checking_assert (ordered_p (bytepos + bytelen, ssize));
2603 if (known_size_p (ssize) && maybe_gt (bytepos + bytelen, ssize))
2605 /* Arrange to shift the fragment to where it belongs.
2606 extract_bit_field loads to the lsb of the reg. */
2607 if (
2608 #ifdef BLOCK_REG_PADDING
2609 BLOCK_REG_PADDING (GET_MODE (orig_src), type, i == start)
2610 == (BYTES_BIG_ENDIAN ? PAD_UPWARD : PAD_DOWNWARD)
2611 #else
2612 BYTES_BIG_ENDIAN
2613 #endif
2615 shift = (bytelen - (ssize - bytepos)) * BITS_PER_UNIT;
2616 bytelen = ssize - bytepos;
2617 gcc_assert (maybe_gt (bytelen, 0));
2620 /* If we won't be loading directly from memory, protect the real source
2621 from strange tricks we might play; but make sure that the source can
2622 be loaded directly into the destination. */
2623 src = orig_src;
2624 if (!MEM_P (orig_src)
2625 && (!REG_P (orig_src) || HARD_REGISTER_P (orig_src))
2626 && !CONSTANT_P (orig_src))
2628 gcc_assert (GET_MODE (orig_src) != VOIDmode);
2629 src = force_reg (GET_MODE (orig_src), orig_src);
2632 /* Optimize the access just a bit. */
2633 if (MEM_P (src)
2634 && (! targetm.slow_unaligned_access (mode, MEM_ALIGN (src))
2635 || MEM_ALIGN (src) >= GET_MODE_ALIGNMENT (mode))
2636 && multiple_p (bytepos * BITS_PER_UNIT, GET_MODE_ALIGNMENT (mode))
2637 && known_eq (bytelen, GET_MODE_SIZE (mode)))
2639 tmps[i] = gen_reg_rtx (mode);
2640 emit_move_insn (tmps[i], adjust_address (src, mode, bytepos));
2642 else if (COMPLEX_MODE_P (mode)
2643 && GET_MODE (src) == mode
2644 && known_eq (bytelen, GET_MODE_SIZE (mode)))
2645 /* Let emit_move_complex do the bulk of the work. */
2646 tmps[i] = src;
2647 else if (GET_CODE (src) == CONCAT)
2649 poly_int64 slen = GET_MODE_SIZE (GET_MODE (src));
2650 poly_int64 slen0 = GET_MODE_SIZE (GET_MODE (XEXP (src, 0)));
2651 unsigned int elt;
2652 poly_int64 subpos;
2654 if (can_div_trunc_p (bytepos, slen0, &elt, &subpos)
2655 && known_le (subpos + bytelen, slen0))
2657 /* The following assumes that the concatenated objects all
2658 have the same size. In this case, a simple calculation
2659 can be used to determine the object and the bit field
2660 to be extracted. */
2661 tmps[i] = XEXP (src, elt);
2662 if (maybe_ne (subpos, 0)
2663 || maybe_ne (subpos + bytelen, slen0)
2664 || (!CONSTANT_P (tmps[i])
2665 && (!REG_P (tmps[i]) || GET_MODE (tmps[i]) != mode)))
2666 tmps[i] = extract_bit_field (tmps[i], bytelen * BITS_PER_UNIT,
2667 subpos * BITS_PER_UNIT,
2668 1, NULL_RTX, mode, mode, false,
2669 NULL);
2671 else
2673 rtx mem;
2675 gcc_assert (known_eq (bytepos, 0));
2676 mem = assign_stack_temp (GET_MODE (src), slen);
2677 emit_move_insn (mem, src);
2678 tmps[i] = extract_bit_field (mem, bytelen * BITS_PER_UNIT,
2679 0, 1, NULL_RTX, mode, mode, false,
2680 NULL);
2683 else if (CONSTANT_P (src) && GET_MODE (dst) != BLKmode
2684 && XVECLEN (dst, 0) > 1)
2685 tmps[i] = simplify_gen_subreg (mode, src, GET_MODE (dst), bytepos);
2686 else if (CONSTANT_P (src))
2688 if (known_eq (bytelen, ssize))
2689 tmps[i] = src;
2690 else
2692 rtx first, second;
2694 /* TODO: const_wide_int can have sizes other than this... */
2695 gcc_assert (known_eq (2 * bytelen, ssize));
2696 split_double (src, &first, &second);
2697 if (i)
2698 tmps[i] = second;
2699 else
2700 tmps[i] = first;
2703 else if (REG_P (src) && GET_MODE (src) == mode)
2704 tmps[i] = src;
2705 else
2706 tmps[i] = extract_bit_field (src, bytelen * BITS_PER_UNIT,
2707 bytepos * BITS_PER_UNIT, 1, NULL_RTX,
2708 mode, mode, false, NULL);
2710 if (maybe_ne (shift, 0))
2711 tmps[i] = expand_shift (LSHIFT_EXPR, mode, tmps[i],
2712 shift, tmps[i], 0);
2716 /* Emit code to move a block SRC of type TYPE to a block DST,
2717 where DST is non-consecutive registers represented by a PARALLEL.
2718 SSIZE represents the total size of block ORIG_SRC in bytes, or -1
2719 if not known. */
2721 void
2722 emit_group_load (rtx dst, rtx src, tree type, poly_int64 ssize)
2724 rtx *tmps;
2725 int i;
2727 tmps = XALLOCAVEC (rtx, XVECLEN (dst, 0));
2728 emit_group_load_1 (tmps, dst, src, type, ssize);
2730 /* Copy the extracted pieces into the proper (probable) hard regs. */
2731 for (i = 0; i < XVECLEN (dst, 0); i++)
2733 rtx d = XEXP (XVECEXP (dst, 0, i), 0);
2734 if (d == NULL)
2735 continue;
2736 emit_move_insn (d, tmps[i]);
2740 /* Similar, but load SRC into new pseudos in a format that looks like
2741 PARALLEL. This can later be fed to emit_group_move to get things
2742 in the right place. */
2745 emit_group_load_into_temps (rtx parallel, rtx src, tree type, poly_int64 ssize)
2747 rtvec vec;
2748 int i;
2750 vec = rtvec_alloc (XVECLEN (parallel, 0));
2751 emit_group_load_1 (&RTVEC_ELT (vec, 0), parallel, src, type, ssize);
2753 /* Convert the vector to look just like the original PARALLEL, except
2754 with the computed values. */
2755 for (i = 0; i < XVECLEN (parallel, 0); i++)
2757 rtx e = XVECEXP (parallel, 0, i);
2758 rtx d = XEXP (e, 0);
2760 if (d)
2762 d = force_reg (GET_MODE (d), RTVEC_ELT (vec, i));
2763 e = alloc_EXPR_LIST (REG_NOTE_KIND (e), d, XEXP (e, 1));
2765 RTVEC_ELT (vec, i) = e;
2768 return gen_rtx_PARALLEL (GET_MODE (parallel), vec);
2771 /* Emit code to move a block SRC to block DST, where SRC and DST are
2772 non-consecutive groups of registers, each represented by a PARALLEL. */
2774 void
2775 emit_group_move (rtx dst, rtx src)
2777 int i;
2779 gcc_assert (GET_CODE (src) == PARALLEL
2780 && GET_CODE (dst) == PARALLEL
2781 && XVECLEN (src, 0) == XVECLEN (dst, 0));
2783 /* Skip first entry if NULL. */
2784 for (i = XEXP (XVECEXP (src, 0, 0), 0) ? 0 : 1; i < XVECLEN (src, 0); i++)
2785 emit_move_insn (XEXP (XVECEXP (dst, 0, i), 0),
2786 XEXP (XVECEXP (src, 0, i), 0));
2789 /* Move a group of registers represented by a PARALLEL into pseudos. */
2792 emit_group_move_into_temps (rtx src)
2794 rtvec vec = rtvec_alloc (XVECLEN (src, 0));
2795 int i;
2797 for (i = 0; i < XVECLEN (src, 0); i++)
2799 rtx e = XVECEXP (src, 0, i);
2800 rtx d = XEXP (e, 0);
2802 if (d)
2803 e = alloc_EXPR_LIST (REG_NOTE_KIND (e), copy_to_reg (d), XEXP (e, 1));
2804 RTVEC_ELT (vec, i) = e;
2807 return gen_rtx_PARALLEL (GET_MODE (src), vec);
2810 /* Emit code to move a block SRC to a block ORIG_DST of type TYPE,
2811 where SRC is non-consecutive registers represented by a PARALLEL.
2812 SSIZE represents the total size of block ORIG_DST, or -1 if not
2813 known. */
2815 void
2816 emit_group_store (rtx orig_dst, rtx src, tree type ATTRIBUTE_UNUSED,
2817 poly_int64 ssize)
2819 rtx *tmps, dst;
2820 int start, finish, i;
2821 machine_mode m = GET_MODE (orig_dst);
2823 gcc_assert (GET_CODE (src) == PARALLEL);
2825 if (!SCALAR_INT_MODE_P (m)
2826 && !MEM_P (orig_dst) && GET_CODE (orig_dst) != CONCAT)
2828 scalar_int_mode imode;
2829 if (int_mode_for_mode (GET_MODE (orig_dst)).exists (&imode))
2831 dst = gen_reg_rtx (imode);
2832 emit_group_store (dst, src, type, ssize);
2833 dst = gen_lowpart (GET_MODE (orig_dst), dst);
2835 else
2837 dst = assign_stack_temp (GET_MODE (orig_dst), ssize);
2838 emit_group_store (dst, src, type, ssize);
2840 emit_move_insn (orig_dst, dst);
2841 return;
2844 /* Check for a NULL entry, used to indicate that the parameter goes
2845 both on the stack and in registers. */
2846 if (XEXP (XVECEXP (src, 0, 0), 0))
2847 start = 0;
2848 else
2849 start = 1;
2850 finish = XVECLEN (src, 0);
2852 tmps = XALLOCAVEC (rtx, finish);
2854 /* Copy the (probable) hard regs into pseudos. */
2855 for (i = start; i < finish; i++)
2857 rtx reg = XEXP (XVECEXP (src, 0, i), 0);
2858 if (!REG_P (reg) || REGNO (reg) < FIRST_PSEUDO_REGISTER)
2860 tmps[i] = gen_reg_rtx (GET_MODE (reg));
2861 emit_move_insn (tmps[i], reg);
2863 else
2864 tmps[i] = reg;
2867 /* If we won't be storing directly into memory, protect the real destination
2868 from strange tricks we might play. */
2869 dst = orig_dst;
2870 if (GET_CODE (dst) == PARALLEL)
2872 rtx temp;
2874 /* We can get a PARALLEL dst if there is a conditional expression in
2875 a return statement. In that case, the dst and src are the same,
2876 so no action is necessary. */
2877 if (rtx_equal_p (dst, src))
2878 return;
2880 /* It is unclear if we can ever reach here, but we may as well handle
2881 it. Allocate a temporary, and split this into a store/load to/from
2882 the temporary. */
2883 temp = assign_stack_temp (GET_MODE (dst), ssize);
2884 emit_group_store (temp, src, type, ssize);
2885 emit_group_load (dst, temp, type, ssize);
2886 return;
2888 else if (!MEM_P (dst) && GET_CODE (dst) != CONCAT)
2890 machine_mode outer = GET_MODE (dst);
2891 machine_mode inner;
2892 poly_int64 bytepos;
2893 bool done = false;
2894 rtx temp;
2896 if (!REG_P (dst) || REGNO (dst) < FIRST_PSEUDO_REGISTER)
2897 dst = gen_reg_rtx (outer);
2899 /* Make life a bit easier for combine: if the first element of the
2900 vector is the low part of the destination mode, use a paradoxical
2901 subreg to initialize the destination. */
2902 if (start < finish)
2904 inner = GET_MODE (tmps[start]);
2905 bytepos = subreg_lowpart_offset (inner, outer);
2906 if (known_eq (rtx_to_poly_int64 (XEXP (XVECEXP (src, 0, start), 1)),
2907 bytepos))
2909 temp = simplify_gen_subreg (outer, tmps[start], inner, 0);
2910 if (temp)
2912 emit_move_insn (dst, temp);
2913 done = true;
2914 start++;
2919 /* If the first element wasn't the low part, try the last. */
2920 if (!done
2921 && start < finish - 1)
2923 inner = GET_MODE (tmps[finish - 1]);
2924 bytepos = subreg_lowpart_offset (inner, outer);
2925 if (known_eq (rtx_to_poly_int64 (XEXP (XVECEXP (src, 0,
2926 finish - 1), 1)),
2927 bytepos))
2929 temp = simplify_gen_subreg (outer, tmps[finish - 1], inner, 0);
2930 if (temp)
2932 emit_move_insn (dst, temp);
2933 done = true;
2934 finish--;
2939 /* Otherwise, simply initialize the result to zero. */
2940 if (!done)
2941 emit_move_insn (dst, CONST0_RTX (outer));
2944 /* Process the pieces. */
2945 for (i = start; i < finish; i++)
2947 poly_int64 bytepos = rtx_to_poly_int64 (XEXP (XVECEXP (src, 0, i), 1));
2948 machine_mode mode = GET_MODE (tmps[i]);
2949 poly_int64 bytelen = GET_MODE_SIZE (mode);
2950 poly_uint64 adj_bytelen;
2951 rtx dest = dst;
2953 /* Handle trailing fragments that run over the size of the struct.
2954 It's the target's responsibility to make sure that the fragment
2955 cannot be strictly smaller in some cases and strictly larger
2956 in others. */
2957 gcc_checking_assert (ordered_p (bytepos + bytelen, ssize));
2958 if (known_size_p (ssize) && maybe_gt (bytepos + bytelen, ssize))
2959 adj_bytelen = ssize - bytepos;
2960 else
2961 adj_bytelen = bytelen;
2963 /* Deal with destination CONCATs by either storing into one of the parts
2964 or doing a copy after storing into a register or stack temporary. */
2965 if (GET_CODE (dst) == CONCAT)
2967 if (known_le (bytepos + adj_bytelen,
2968 GET_MODE_SIZE (GET_MODE (XEXP (dst, 0)))))
2969 dest = XEXP (dst, 0);
2971 else if (known_ge (bytepos, GET_MODE_SIZE (GET_MODE (XEXP (dst, 0)))))
2973 bytepos -= GET_MODE_SIZE (GET_MODE (XEXP (dst, 0)));
2974 dest = XEXP (dst, 1);
2977 else
2979 machine_mode dest_mode = GET_MODE (dest);
2980 machine_mode tmp_mode = GET_MODE (tmps[i]);
2981 scalar_int_mode dest_imode;
2983 gcc_assert (known_eq (bytepos, 0) && XVECLEN (src, 0));
2985 /* If the source is a single scalar integer register, and the
2986 destination has a complex mode for which a same-sized integer
2987 mode exists, then we can take the left-justified part of the
2988 source in the complex mode. */
2989 if (finish == start + 1
2990 && REG_P (tmps[i])
2991 && SCALAR_INT_MODE_P (tmp_mode)
2992 && COMPLEX_MODE_P (dest_mode)
2993 && int_mode_for_mode (dest_mode).exists (&dest_imode))
2995 const scalar_int_mode tmp_imode
2996 = as_a <scalar_int_mode> (tmp_mode);
2998 if (GET_MODE_BITSIZE (dest_imode)
2999 < GET_MODE_BITSIZE (tmp_imode))
3001 dest = gen_reg_rtx (dest_imode);
3002 if (BYTES_BIG_ENDIAN)
3003 tmps[i] = expand_shift (RSHIFT_EXPR, tmp_mode, tmps[i],
3004 GET_MODE_BITSIZE (tmp_imode)
3005 - GET_MODE_BITSIZE (dest_imode),
3006 NULL_RTX, 1);
3007 emit_move_insn (dest, gen_lowpart (dest_imode, tmps[i]));
3008 dst = gen_lowpart (dest_mode, dest);
3010 else
3011 dst = gen_lowpart (dest_mode, tmps[i]);
3014 /* Otherwise spill the source onto the stack using the more
3015 aligned of the two modes. */
3016 else if (GET_MODE_ALIGNMENT (dest_mode)
3017 >= GET_MODE_ALIGNMENT (tmp_mode))
3019 dest = assign_stack_temp (dest_mode,
3020 GET_MODE_SIZE (dest_mode));
3021 emit_move_insn (adjust_address (dest, tmp_mode, bytepos),
3022 tmps[i]);
3023 dst = dest;
3026 else
3028 dest = assign_stack_temp (tmp_mode,
3029 GET_MODE_SIZE (tmp_mode));
3030 emit_move_insn (dest, tmps[i]);
3031 dst = adjust_address (dest, dest_mode, bytepos);
3034 break;
3038 /* Handle trailing fragments that run over the size of the struct. */
3039 if (known_size_p (ssize) && maybe_gt (bytepos + bytelen, ssize))
3041 /* store_bit_field always takes its value from the lsb.
3042 Move the fragment to the lsb if it's not already there. */
3043 if (
3044 #ifdef BLOCK_REG_PADDING
3045 BLOCK_REG_PADDING (GET_MODE (orig_dst), type, i == start)
3046 == (BYTES_BIG_ENDIAN ? PAD_UPWARD : PAD_DOWNWARD)
3047 #else
3048 BYTES_BIG_ENDIAN
3049 #endif
3052 poly_int64 shift = (bytelen - (ssize - bytepos)) * BITS_PER_UNIT;
3053 tmps[i] = expand_shift (RSHIFT_EXPR, mode, tmps[i],
3054 shift, tmps[i], 0);
3057 /* Make sure not to write past the end of the struct. */
3058 store_bit_field (dest,
3059 adj_bytelen * BITS_PER_UNIT, bytepos * BITS_PER_UNIT,
3060 bytepos * BITS_PER_UNIT, ssize * BITS_PER_UNIT - 1,
3061 VOIDmode, tmps[i], false, false);
3064 /* Optimize the access just a bit. */
3065 else if (MEM_P (dest)
3066 && (!targetm.slow_unaligned_access (mode, MEM_ALIGN (dest))
3067 || MEM_ALIGN (dest) >= GET_MODE_ALIGNMENT (mode))
3068 && multiple_p (bytepos * BITS_PER_UNIT,
3069 GET_MODE_ALIGNMENT (mode))
3070 && known_eq (bytelen, GET_MODE_SIZE (mode)))
3071 emit_move_insn (adjust_address (dest, mode, bytepos), tmps[i]);
3073 else
3074 store_bit_field (dest, bytelen * BITS_PER_UNIT, bytepos * BITS_PER_UNIT,
3075 0, 0, mode, tmps[i], false, false);
3078 /* Copy from the pseudo into the (probable) hard reg. */
3079 if (orig_dst != dst)
3080 emit_move_insn (orig_dst, dst);
3083 /* Return a form of X that does not use a PARALLEL. TYPE is the type
3084 of the value stored in X. */
3087 maybe_emit_group_store (rtx x, tree type)
3089 machine_mode mode = TYPE_MODE (type);
3090 gcc_checking_assert (GET_MODE (x) == VOIDmode || GET_MODE (x) == mode);
3091 if (GET_CODE (x) == PARALLEL)
3093 rtx result = gen_reg_rtx (mode);
3094 emit_group_store (result, x, type, int_size_in_bytes (type));
3095 return result;
3097 return x;
3100 /* Copy a BLKmode object of TYPE out of a register SRCREG into TARGET.
3102 This is used on targets that return BLKmode values in registers. */
3104 static void
3105 copy_blkmode_from_reg (rtx target, rtx srcreg, tree type)
3107 unsigned HOST_WIDE_INT bytes = int_size_in_bytes (type);
3108 rtx src = NULL, dst = NULL;
3109 unsigned HOST_WIDE_INT bitsize = MIN (TYPE_ALIGN (type), BITS_PER_WORD);
3110 unsigned HOST_WIDE_INT bitpos, xbitpos, padding_correction = 0;
3111 /* No current ABI uses variable-sized modes to pass a BLKmnode type. */
3112 fixed_size_mode mode = as_a <fixed_size_mode> (GET_MODE (srcreg));
3113 fixed_size_mode tmode = as_a <fixed_size_mode> (GET_MODE (target));
3114 fixed_size_mode copy_mode;
3116 /* BLKmode registers created in the back-end shouldn't have survived. */
3117 gcc_assert (mode != BLKmode);
3119 /* If the structure doesn't take up a whole number of words, see whether
3120 SRCREG is padded on the left or on the right. If it's on the left,
3121 set PADDING_CORRECTION to the number of bits to skip.
3123 In most ABIs, the structure will be returned at the least end of
3124 the register, which translates to right padding on little-endian
3125 targets and left padding on big-endian targets. The opposite
3126 holds if the structure is returned at the most significant
3127 end of the register. */
3128 if (bytes % UNITS_PER_WORD != 0
3129 && (targetm.calls.return_in_msb (type)
3130 ? !BYTES_BIG_ENDIAN
3131 : BYTES_BIG_ENDIAN))
3132 padding_correction
3133 = (BITS_PER_WORD - ((bytes % UNITS_PER_WORD) * BITS_PER_UNIT));
3135 /* We can use a single move if we have an exact mode for the size. */
3136 else if (MEM_P (target)
3137 && (!targetm.slow_unaligned_access (mode, MEM_ALIGN (target))
3138 || MEM_ALIGN (target) >= GET_MODE_ALIGNMENT (mode))
3139 && bytes == GET_MODE_SIZE (mode))
3141 emit_move_insn (adjust_address (target, mode, 0), srcreg);
3142 return;
3145 /* And if we additionally have the same mode for a register. */
3146 else if (REG_P (target)
3147 && GET_MODE (target) == mode
3148 && bytes == GET_MODE_SIZE (mode))
3150 emit_move_insn (target, srcreg);
3151 return;
3154 /* This code assumes srcreg is at least a full word. If it isn't, copy it
3155 into a new pseudo which is a full word. */
3156 if (GET_MODE_SIZE (mode) < UNITS_PER_WORD)
3158 srcreg = convert_to_mode (word_mode, srcreg, TYPE_UNSIGNED (type));
3159 mode = word_mode;
3162 /* Copy the structure BITSIZE bits at a time. If the target lives in
3163 memory, take care of not reading/writing past its end by selecting
3164 a copy mode suited to BITSIZE. This should always be possible given
3165 how it is computed.
3167 If the target lives in register, make sure not to select a copy mode
3168 larger than the mode of the register.
3170 We could probably emit more efficient code for machines which do not use
3171 strict alignment, but it doesn't seem worth the effort at the current
3172 time. */
3174 copy_mode = word_mode;
3175 if (MEM_P (target))
3177 opt_scalar_int_mode mem_mode = int_mode_for_size (bitsize, 1);
3178 if (mem_mode.exists ())
3179 copy_mode = mem_mode.require ();
3181 else if (REG_P (target) && GET_MODE_BITSIZE (tmode) < BITS_PER_WORD)
3182 copy_mode = tmode;
3184 for (bitpos = 0, xbitpos = padding_correction;
3185 bitpos < bytes * BITS_PER_UNIT;
3186 bitpos += bitsize, xbitpos += bitsize)
3188 /* We need a new source operand each time xbitpos is on a
3189 word boundary and when xbitpos == padding_correction
3190 (the first time through). */
3191 if (xbitpos % BITS_PER_WORD == 0 || xbitpos == padding_correction)
3192 src = operand_subword_force (srcreg, xbitpos / BITS_PER_WORD, mode);
3194 /* We need a new destination operand each time bitpos is on
3195 a word boundary. */
3196 if (REG_P (target) && GET_MODE_BITSIZE (tmode) < BITS_PER_WORD)
3197 dst = target;
3198 else if (bitpos % BITS_PER_WORD == 0)
3199 dst = operand_subword (target, bitpos / BITS_PER_WORD, 1, tmode);
3201 /* Use xbitpos for the source extraction (right justified) and
3202 bitpos for the destination store (left justified). */
3203 store_bit_field (dst, bitsize, bitpos % BITS_PER_WORD, 0, 0, copy_mode,
3204 extract_bit_field (src, bitsize,
3205 xbitpos % BITS_PER_WORD, 1,
3206 NULL_RTX, copy_mode, copy_mode,
3207 false, NULL),
3208 false, false);
3212 /* Copy BLKmode value SRC into a register of mode MODE_IN. Return the
3213 register if it contains any data, otherwise return null.
3215 This is used on targets that return BLKmode values in registers. */
3218 copy_blkmode_to_reg (machine_mode mode_in, tree src)
3220 int i, n_regs;
3221 unsigned HOST_WIDE_INT bitpos, xbitpos, padding_correction = 0, bytes;
3222 unsigned int bitsize;
3223 rtx *dst_words, dst, x, src_word = NULL_RTX, dst_word = NULL_RTX;
3224 /* No current ABI uses variable-sized modes to pass a BLKmnode type. */
3225 fixed_size_mode mode = as_a <fixed_size_mode> (mode_in);
3226 fixed_size_mode dst_mode;
3227 scalar_int_mode min_mode;
3229 gcc_assert (TYPE_MODE (TREE_TYPE (src)) == BLKmode);
3231 x = expand_normal (src);
3233 bytes = arg_int_size_in_bytes (TREE_TYPE (src));
3234 if (bytes == 0)
3235 return NULL_RTX;
3237 /* If the structure doesn't take up a whole number of words, see
3238 whether the register value should be padded on the left or on
3239 the right. Set PADDING_CORRECTION to the number of padding
3240 bits needed on the left side.
3242 In most ABIs, the structure will be returned at the least end of
3243 the register, which translates to right padding on little-endian
3244 targets and left padding on big-endian targets. The opposite
3245 holds if the structure is returned at the most significant
3246 end of the register. */
3247 if (bytes % UNITS_PER_WORD != 0
3248 && (targetm.calls.return_in_msb (TREE_TYPE (src))
3249 ? !BYTES_BIG_ENDIAN
3250 : BYTES_BIG_ENDIAN))
3251 padding_correction = (BITS_PER_WORD - ((bytes % UNITS_PER_WORD)
3252 * BITS_PER_UNIT));
3254 n_regs = (bytes + UNITS_PER_WORD - 1) / UNITS_PER_WORD;
3255 dst_words = XALLOCAVEC (rtx, n_regs);
3256 bitsize = MIN (TYPE_ALIGN (TREE_TYPE (src)), BITS_PER_WORD);
3257 min_mode = smallest_int_mode_for_size (bitsize);
3259 /* Copy the structure BITSIZE bits at a time. */
3260 for (bitpos = 0, xbitpos = padding_correction;
3261 bitpos < bytes * BITS_PER_UNIT;
3262 bitpos += bitsize, xbitpos += bitsize)
3264 /* We need a new destination pseudo each time xbitpos is
3265 on a word boundary and when xbitpos == padding_correction
3266 (the first time through). */
3267 if (xbitpos % BITS_PER_WORD == 0
3268 || xbitpos == padding_correction)
3270 /* Generate an appropriate register. */
3271 dst_word = gen_reg_rtx (word_mode);
3272 dst_words[xbitpos / BITS_PER_WORD] = dst_word;
3274 /* Clear the destination before we move anything into it. */
3275 emit_move_insn (dst_word, CONST0_RTX (word_mode));
3278 /* Find the largest integer mode that can be used to copy all or as
3279 many bits as possible of the structure if the target supports larger
3280 copies. There are too many corner cases here w.r.t to alignments on
3281 the read/writes. So if there is any padding just use single byte
3282 operations. */
3283 opt_scalar_int_mode mode_iter;
3284 if (padding_correction == 0 && !STRICT_ALIGNMENT)
3286 FOR_EACH_MODE_FROM (mode_iter, min_mode)
3288 unsigned int msize = GET_MODE_BITSIZE (mode_iter.require ());
3289 if (msize <= ((bytes * BITS_PER_UNIT) - bitpos)
3290 && msize <= BITS_PER_WORD)
3291 bitsize = msize;
3292 else
3293 break;
3297 /* We need a new source operand each time bitpos is on a word
3298 boundary. */
3299 if (bitpos % BITS_PER_WORD == 0)
3300 src_word = operand_subword_force (x, bitpos / BITS_PER_WORD, BLKmode);
3302 /* Use bitpos for the source extraction (left justified) and
3303 xbitpos for the destination store (right justified). */
3304 store_bit_field (dst_word, bitsize, xbitpos % BITS_PER_WORD,
3305 0, 0, word_mode,
3306 extract_bit_field (src_word, bitsize,
3307 bitpos % BITS_PER_WORD, 1,
3308 NULL_RTX, word_mode, word_mode,
3309 false, NULL),
3310 false, false);
3313 if (mode == BLKmode)
3315 /* Find the smallest integer mode large enough to hold the
3316 entire structure. */
3317 opt_scalar_int_mode mode_iter;
3318 FOR_EACH_MODE_IN_CLASS (mode_iter, MODE_INT)
3319 if (GET_MODE_SIZE (mode_iter.require ()) >= bytes)
3320 break;
3322 /* A suitable mode should have been found. */
3323 mode = mode_iter.require ();
3326 if (GET_MODE_SIZE (mode) < GET_MODE_SIZE (word_mode))
3327 dst_mode = word_mode;
3328 else
3329 dst_mode = mode;
3330 dst = gen_reg_rtx (dst_mode);
3332 for (i = 0; i < n_regs; i++)
3333 emit_move_insn (operand_subword (dst, i, 0, dst_mode), dst_words[i]);
3335 if (mode != dst_mode)
3336 dst = gen_lowpart (mode, dst);
3338 return dst;
3341 /* Add a USE expression for REG to the (possibly empty) list pointed
3342 to by CALL_FUSAGE. REG must denote a hard register. */
3344 void
3345 use_reg_mode (rtx *call_fusage, rtx reg, machine_mode mode)
3347 gcc_assert (REG_P (reg));
3349 if (!HARD_REGISTER_P (reg))
3350 return;
3352 *call_fusage
3353 = gen_rtx_EXPR_LIST (mode, gen_rtx_USE (VOIDmode, reg), *call_fusage);
3356 /* Add a CLOBBER expression for REG to the (possibly empty) list pointed
3357 to by CALL_FUSAGE. REG must denote a hard register. */
3359 void
3360 clobber_reg_mode (rtx *call_fusage, rtx reg, machine_mode mode)
3362 gcc_assert (REG_P (reg) && REGNO (reg) < FIRST_PSEUDO_REGISTER);
3364 *call_fusage
3365 = gen_rtx_EXPR_LIST (mode, gen_rtx_CLOBBER (VOIDmode, reg), *call_fusage);
3368 /* Add USE expressions to *CALL_FUSAGE for each of NREGS consecutive regs,
3369 starting at REGNO. All of these registers must be hard registers. */
3371 void
3372 use_regs (rtx *call_fusage, int regno, int nregs)
3374 int i;
3376 gcc_assert (regno + nregs <= FIRST_PSEUDO_REGISTER);
3378 for (i = 0; i < nregs; i++)
3379 use_reg (call_fusage, regno_reg_rtx[regno + i]);
3382 /* Add USE expressions to *CALL_FUSAGE for each REG contained in the
3383 PARALLEL REGS. This is for calls that pass values in multiple
3384 non-contiguous locations. The Irix 6 ABI has examples of this. */
3386 void
3387 use_group_regs (rtx *call_fusage, rtx regs)
3389 int i;
3391 for (i = 0; i < XVECLEN (regs, 0); i++)
3393 rtx reg = XEXP (XVECEXP (regs, 0, i), 0);
3395 /* A NULL entry means the parameter goes both on the stack and in
3396 registers. This can also be a MEM for targets that pass values
3397 partially on the stack and partially in registers. */
3398 if (reg != 0 && REG_P (reg))
3399 use_reg (call_fusage, reg);
3403 /* Return the defining gimple statement for SSA_NAME NAME if it is an
3404 assigment and the code of the expresion on the RHS is CODE. Return
3405 NULL otherwise. */
3407 static gimple *
3408 get_def_for_expr (tree name, enum tree_code code)
3410 gimple *def_stmt;
3412 if (TREE_CODE (name) != SSA_NAME)
3413 return NULL;
3415 def_stmt = get_gimple_for_ssa_name (name);
3416 if (!def_stmt
3417 || gimple_assign_rhs_code (def_stmt) != code)
3418 return NULL;
3420 return def_stmt;
3423 /* Return the defining gimple statement for SSA_NAME NAME if it is an
3424 assigment and the class of the expresion on the RHS is CLASS. Return
3425 NULL otherwise. */
3427 static gimple *
3428 get_def_for_expr_class (tree name, enum tree_code_class tclass)
3430 gimple *def_stmt;
3432 if (TREE_CODE (name) != SSA_NAME)
3433 return NULL;
3435 def_stmt = get_gimple_for_ssa_name (name);
3436 if (!def_stmt
3437 || TREE_CODE_CLASS (gimple_assign_rhs_code (def_stmt)) != tclass)
3438 return NULL;
3440 return def_stmt;
3443 /* Write zeros through the storage of OBJECT. If OBJECT has BLKmode, SIZE is
3444 its length in bytes. */
3447 clear_storage_hints (rtx object, rtx size, enum block_op_methods method,
3448 unsigned int expected_align, HOST_WIDE_INT expected_size,
3449 unsigned HOST_WIDE_INT min_size,
3450 unsigned HOST_WIDE_INT max_size,
3451 unsigned HOST_WIDE_INT probable_max_size,
3452 unsigned ctz_size)
3454 machine_mode mode = GET_MODE (object);
3455 unsigned int align;
3457 gcc_assert (method == BLOCK_OP_NORMAL || method == BLOCK_OP_TAILCALL);
3459 /* If OBJECT is not BLKmode and SIZE is the same size as its mode,
3460 just move a zero. Otherwise, do this a piece at a time. */
3461 poly_int64 size_val;
3462 if (mode != BLKmode
3463 && poly_int_rtx_p (size, &size_val)
3464 && known_eq (size_val, GET_MODE_SIZE (mode)))
3466 rtx zero = CONST0_RTX (mode);
3467 if (zero != NULL)
3469 emit_move_insn (object, zero);
3470 return NULL;
3473 if (COMPLEX_MODE_P (mode))
3475 zero = CONST0_RTX (GET_MODE_INNER (mode));
3476 if (zero != NULL)
3478 write_complex_part (object, zero, 0, true);
3479 write_complex_part (object, zero, 1, false);
3480 return NULL;
3485 if (size == const0_rtx)
3486 return NULL;
3488 align = MEM_ALIGN (object);
3490 if (CONST_INT_P (size)
3491 && targetm.use_by_pieces_infrastructure_p (INTVAL (size), align,
3492 CLEAR_BY_PIECES,
3493 optimize_insn_for_speed_p ()))
3494 clear_by_pieces (object, INTVAL (size), align);
3495 else if (set_storage_via_setmem (object, size, const0_rtx, align,
3496 expected_align, expected_size,
3497 min_size, max_size, probable_max_size))
3499 else if (try_store_by_multiple_pieces (object, size, ctz_size,
3500 min_size, max_size,
3501 NULL_RTX, 0, align))
3503 else if (ADDR_SPACE_GENERIC_P (MEM_ADDR_SPACE (object)))
3504 return set_storage_via_libcall (object, size, const0_rtx,
3505 method == BLOCK_OP_TAILCALL);
3506 else
3507 gcc_unreachable ();
3509 return NULL;
3513 clear_storage (rtx object, rtx size, enum block_op_methods method)
3515 unsigned HOST_WIDE_INT max, min = 0;
3516 if (GET_CODE (size) == CONST_INT)
3517 min = max = UINTVAL (size);
3518 else
3519 max = GET_MODE_MASK (GET_MODE (size));
3520 return clear_storage_hints (object, size, method, 0, -1, min, max, max, 0);
3524 /* A subroutine of clear_storage. Expand a call to memset.
3525 Return the return value of memset, 0 otherwise. */
3528 set_storage_via_libcall (rtx object, rtx size, rtx val, bool tailcall)
3530 tree call_expr, fn, object_tree, size_tree, val_tree;
3531 machine_mode size_mode;
3533 object = copy_addr_to_reg (XEXP (object, 0));
3534 object_tree = make_tree (ptr_type_node, object);
3536 if (!CONST_INT_P (val))
3537 val = convert_to_mode (TYPE_MODE (integer_type_node), val, 1);
3538 val_tree = make_tree (integer_type_node, val);
3540 size_mode = TYPE_MODE (sizetype);
3541 size = convert_to_mode (size_mode, size, 1);
3542 size = copy_to_mode_reg (size_mode, size);
3543 size_tree = make_tree (sizetype, size);
3545 /* It is incorrect to use the libcall calling conventions for calls to
3546 memset because it can be provided by the user. */
3547 fn = builtin_decl_implicit (BUILT_IN_MEMSET);
3548 call_expr = build_call_expr (fn, 3, object_tree, val_tree, size_tree);
3549 CALL_EXPR_TAILCALL (call_expr) = tailcall;
3551 return expand_call (call_expr, NULL_RTX, false);
3554 /* Expand a setmem pattern; return true if successful. */
3556 bool
3557 set_storage_via_setmem (rtx object, rtx size, rtx val, unsigned int align,
3558 unsigned int expected_align, HOST_WIDE_INT expected_size,
3559 unsigned HOST_WIDE_INT min_size,
3560 unsigned HOST_WIDE_INT max_size,
3561 unsigned HOST_WIDE_INT probable_max_size)
3563 /* Try the most limited insn first, because there's no point
3564 including more than one in the machine description unless
3565 the more limited one has some advantage. */
3567 if (expected_align < align)
3568 expected_align = align;
3569 if (expected_size != -1)
3571 if ((unsigned HOST_WIDE_INT)expected_size > max_size)
3572 expected_size = max_size;
3573 if ((unsigned HOST_WIDE_INT)expected_size < min_size)
3574 expected_size = min_size;
3577 opt_scalar_int_mode mode_iter;
3578 FOR_EACH_MODE_IN_CLASS (mode_iter, MODE_INT)
3580 scalar_int_mode mode = mode_iter.require ();
3581 enum insn_code code = direct_optab_handler (setmem_optab, mode);
3583 if (code != CODE_FOR_nothing
3584 /* We don't need MODE to be narrower than BITS_PER_HOST_WIDE_INT
3585 here because if SIZE is less than the mode mask, as it is
3586 returned by the macro, it will definitely be less than the
3587 actual mode mask. Since SIZE is within the Pmode address
3588 space, we limit MODE to Pmode. */
3589 && ((CONST_INT_P (size)
3590 && ((unsigned HOST_WIDE_INT) INTVAL (size)
3591 <= (GET_MODE_MASK (mode) >> 1)))
3592 || max_size <= (GET_MODE_MASK (mode) >> 1)
3593 || GET_MODE_BITSIZE (mode) >= GET_MODE_BITSIZE (Pmode)))
3595 class expand_operand ops[9];
3596 unsigned int nops;
3598 nops = insn_data[(int) code].n_generator_args;
3599 gcc_assert (nops == 4 || nops == 6 || nops == 8 || nops == 9);
3601 create_fixed_operand (&ops[0], object);
3602 /* The check above guarantees that this size conversion is valid. */
3603 create_convert_operand_to (&ops[1], size, mode, true);
3604 create_convert_operand_from (&ops[2], val, byte_mode, true);
3605 create_integer_operand (&ops[3], align / BITS_PER_UNIT);
3606 if (nops >= 6)
3608 create_integer_operand (&ops[4], expected_align / BITS_PER_UNIT);
3609 create_integer_operand (&ops[5], expected_size);
3611 if (nops >= 8)
3613 create_integer_operand (&ops[6], min_size);
3614 /* If we cannot represent the maximal size,
3615 make parameter NULL. */
3616 if ((HOST_WIDE_INT) max_size != -1)
3617 create_integer_operand (&ops[7], max_size);
3618 else
3619 create_fixed_operand (&ops[7], NULL);
3621 if (nops == 9)
3623 /* If we cannot represent the maximal size,
3624 make parameter NULL. */
3625 if ((HOST_WIDE_INT) probable_max_size != -1)
3626 create_integer_operand (&ops[8], probable_max_size);
3627 else
3628 create_fixed_operand (&ops[8], NULL);
3630 if (maybe_expand_insn (code, nops, ops))
3631 return true;
3635 return false;
3639 /* Write to one of the components of the complex value CPLX. Write VAL to
3640 the real part if IMAG_P is false, and the imaginary part if its true.
3641 If UNDEFINED_P then the value in CPLX is currently undefined. */
3643 void
3644 write_complex_part (rtx cplx, rtx val, bool imag_p, bool undefined_p)
3646 machine_mode cmode;
3647 scalar_mode imode;
3648 unsigned ibitsize;
3650 if (GET_CODE (cplx) == CONCAT)
3652 emit_move_insn (XEXP (cplx, imag_p), val);
3653 return;
3656 cmode = GET_MODE (cplx);
3657 imode = GET_MODE_INNER (cmode);
3658 ibitsize = GET_MODE_BITSIZE (imode);
3660 /* For MEMs simplify_gen_subreg may generate an invalid new address
3661 because, e.g., the original address is considered mode-dependent
3662 by the target, which restricts simplify_subreg from invoking
3663 adjust_address_nv. Instead of preparing fallback support for an
3664 invalid address, we call adjust_address_nv directly. */
3665 if (MEM_P (cplx))
3667 emit_move_insn (adjust_address_nv (cplx, imode,
3668 imag_p ? GET_MODE_SIZE (imode) : 0),
3669 val);
3670 return;
3673 /* If the sub-object is at least word sized, then we know that subregging
3674 will work. This special case is important, since store_bit_field
3675 wants to operate on integer modes, and there's rarely an OImode to
3676 correspond to TCmode. */
3677 if (ibitsize >= BITS_PER_WORD
3678 /* For hard regs we have exact predicates. Assume we can split
3679 the original object if it spans an even number of hard regs.
3680 This special case is important for SCmode on 64-bit platforms
3681 where the natural size of floating-point regs is 32-bit. */
3682 || (REG_P (cplx)
3683 && REGNO (cplx) < FIRST_PSEUDO_REGISTER
3684 && REG_NREGS (cplx) % 2 == 0))
3686 rtx part = simplify_gen_subreg (imode, cplx, cmode,
3687 imag_p ? GET_MODE_SIZE (imode) : 0);
3688 if (part)
3690 emit_move_insn (part, val);
3691 return;
3693 else
3694 /* simplify_gen_subreg may fail for sub-word MEMs. */
3695 gcc_assert (MEM_P (cplx) && ibitsize < BITS_PER_WORD);
3698 store_bit_field (cplx, ibitsize, imag_p ? ibitsize : 0, 0, 0, imode, val,
3699 false, undefined_p);
3702 /* Extract one of the components of the complex value CPLX. Extract the
3703 real part if IMAG_P is false, and the imaginary part if it's true. */
3706 read_complex_part (rtx cplx, bool imag_p)
3708 machine_mode cmode;
3709 scalar_mode imode;
3710 unsigned ibitsize;
3712 if (GET_CODE (cplx) == CONCAT)
3713 return XEXP (cplx, imag_p);
3715 cmode = GET_MODE (cplx);
3716 imode = GET_MODE_INNER (cmode);
3717 ibitsize = GET_MODE_BITSIZE (imode);
3719 /* Special case reads from complex constants that got spilled to memory. */
3720 if (MEM_P (cplx) && GET_CODE (XEXP (cplx, 0)) == SYMBOL_REF)
3722 tree decl = SYMBOL_REF_DECL (XEXP (cplx, 0));
3723 if (decl && TREE_CODE (decl) == COMPLEX_CST)
3725 tree part = imag_p ? TREE_IMAGPART (decl) : TREE_REALPART (decl);
3726 if (CONSTANT_CLASS_P (part))
3727 return expand_expr (part, NULL_RTX, imode, EXPAND_NORMAL);
3731 /* For MEMs simplify_gen_subreg may generate an invalid new address
3732 because, e.g., the original address is considered mode-dependent
3733 by the target, which restricts simplify_subreg from invoking
3734 adjust_address_nv. Instead of preparing fallback support for an
3735 invalid address, we call adjust_address_nv directly. */
3736 if (MEM_P (cplx))
3737 return adjust_address_nv (cplx, imode,
3738 imag_p ? GET_MODE_SIZE (imode) : 0);
3740 /* If the sub-object is at least word sized, then we know that subregging
3741 will work. This special case is important, since extract_bit_field
3742 wants to operate on integer modes, and there's rarely an OImode to
3743 correspond to TCmode. */
3744 if (ibitsize >= BITS_PER_WORD
3745 /* For hard regs we have exact predicates. Assume we can split
3746 the original object if it spans an even number of hard regs.
3747 This special case is important for SCmode on 64-bit platforms
3748 where the natural size of floating-point regs is 32-bit. */
3749 || (REG_P (cplx)
3750 && REGNO (cplx) < FIRST_PSEUDO_REGISTER
3751 && REG_NREGS (cplx) % 2 == 0))
3753 rtx ret = simplify_gen_subreg (imode, cplx, cmode,
3754 imag_p ? GET_MODE_SIZE (imode) : 0);
3755 if (ret)
3756 return ret;
3757 else
3758 /* simplify_gen_subreg may fail for sub-word MEMs. */
3759 gcc_assert (MEM_P (cplx) && ibitsize < BITS_PER_WORD);
3762 return extract_bit_field (cplx, ibitsize, imag_p ? ibitsize : 0,
3763 true, NULL_RTX, imode, imode, false, NULL);
3766 /* A subroutine of emit_move_insn_1. Yet another lowpart generator.
3767 NEW_MODE and OLD_MODE are the same size. Return NULL if X cannot be
3768 represented in NEW_MODE. If FORCE is true, this will never happen, as
3769 we'll force-create a SUBREG if needed. */
3771 static rtx
3772 emit_move_change_mode (machine_mode new_mode,
3773 machine_mode old_mode, rtx x, bool force)
3775 rtx ret;
3777 if (push_operand (x, GET_MODE (x)))
3779 ret = gen_rtx_MEM (new_mode, XEXP (x, 0));
3780 MEM_COPY_ATTRIBUTES (ret, x);
3782 else if (MEM_P (x))
3784 /* We don't have to worry about changing the address since the
3785 size in bytes is supposed to be the same. */
3786 if (reload_in_progress)
3788 /* Copy the MEM to change the mode and move any
3789 substitutions from the old MEM to the new one. */
3790 ret = adjust_address_nv (x, new_mode, 0);
3791 copy_replacements (x, ret);
3793 else
3794 ret = adjust_address (x, new_mode, 0);
3796 else
3798 /* Note that we do want simplify_subreg's behavior of validating
3799 that the new mode is ok for a hard register. If we were to use
3800 simplify_gen_subreg, we would create the subreg, but would
3801 probably run into the target not being able to implement it. */
3802 /* Except, of course, when FORCE is true, when this is exactly what
3803 we want. Which is needed for CCmodes on some targets. */
3804 if (force)
3805 ret = simplify_gen_subreg (new_mode, x, old_mode, 0);
3806 else
3807 ret = simplify_subreg (new_mode, x, old_mode, 0);
3810 return ret;
3813 /* A subroutine of emit_move_insn_1. Generate a move from Y into X using
3814 an integer mode of the same size as MODE. Returns the instruction
3815 emitted, or NULL if such a move could not be generated. */
3817 static rtx_insn *
3818 emit_move_via_integer (machine_mode mode, rtx x, rtx y, bool force)
3820 scalar_int_mode imode;
3821 enum insn_code code;
3823 /* There must exist a mode of the exact size we require. */
3824 if (!int_mode_for_mode (mode).exists (&imode))
3825 return NULL;
3827 /* The target must support moves in this mode. */
3828 code = optab_handler (mov_optab, imode);
3829 if (code == CODE_FOR_nothing)
3830 return NULL;
3832 x = emit_move_change_mode (imode, mode, x, force);
3833 if (x == NULL_RTX)
3834 return NULL;
3835 y = emit_move_change_mode (imode, mode, y, force);
3836 if (y == NULL_RTX)
3837 return NULL;
3838 return emit_insn (GEN_FCN (code) (x, y));
3841 /* A subroutine of emit_move_insn_1. X is a push_operand in MODE.
3842 Return an equivalent MEM that does not use an auto-increment. */
3845 emit_move_resolve_push (machine_mode mode, rtx x)
3847 enum rtx_code code = GET_CODE (XEXP (x, 0));
3848 rtx temp;
3850 poly_int64 adjust = GET_MODE_SIZE (mode);
3851 #ifdef PUSH_ROUNDING
3852 adjust = PUSH_ROUNDING (adjust);
3853 #endif
3854 if (code == PRE_DEC || code == POST_DEC)
3855 adjust = -adjust;
3856 else if (code == PRE_MODIFY || code == POST_MODIFY)
3858 rtx expr = XEXP (XEXP (x, 0), 1);
3860 gcc_assert (GET_CODE (expr) == PLUS || GET_CODE (expr) == MINUS);
3861 poly_int64 val = rtx_to_poly_int64 (XEXP (expr, 1));
3862 if (GET_CODE (expr) == MINUS)
3863 val = -val;
3864 gcc_assert (known_eq (adjust, val) || known_eq (adjust, -val));
3865 adjust = val;
3868 /* Do not use anti_adjust_stack, since we don't want to update
3869 stack_pointer_delta. */
3870 temp = expand_simple_binop (Pmode, PLUS, stack_pointer_rtx,
3871 gen_int_mode (adjust, Pmode), stack_pointer_rtx,
3872 0, OPTAB_LIB_WIDEN);
3873 if (temp != stack_pointer_rtx)
3874 emit_move_insn (stack_pointer_rtx, temp);
3876 switch (code)
3878 case PRE_INC:
3879 case PRE_DEC:
3880 case PRE_MODIFY:
3881 temp = stack_pointer_rtx;
3882 break;
3883 case POST_INC:
3884 case POST_DEC:
3885 case POST_MODIFY:
3886 temp = plus_constant (Pmode, stack_pointer_rtx, -adjust);
3887 break;
3888 default:
3889 gcc_unreachable ();
3892 return replace_equiv_address (x, temp);
3895 /* A subroutine of emit_move_complex. Generate a move from Y into X.
3896 X is known to satisfy push_operand, and MODE is known to be complex.
3897 Returns the last instruction emitted. */
3899 rtx_insn *
3900 emit_move_complex_push (machine_mode mode, rtx x, rtx y)
3902 scalar_mode submode = GET_MODE_INNER (mode);
3903 bool imag_first;
3905 #ifdef PUSH_ROUNDING
3906 poly_int64 submodesize = GET_MODE_SIZE (submode);
3908 /* In case we output to the stack, but the size is smaller than the
3909 machine can push exactly, we need to use move instructions. */
3910 if (maybe_ne (PUSH_ROUNDING (submodesize), submodesize))
3912 x = emit_move_resolve_push (mode, x);
3913 return emit_move_insn (x, y);
3915 #endif
3917 /* Note that the real part always precedes the imag part in memory
3918 regardless of machine's endianness. */
3919 switch (GET_CODE (XEXP (x, 0)))
3921 case PRE_DEC:
3922 case POST_DEC:
3923 imag_first = true;
3924 break;
3925 case PRE_INC:
3926 case POST_INC:
3927 imag_first = false;
3928 break;
3929 default:
3930 gcc_unreachable ();
3933 emit_move_insn (gen_rtx_MEM (submode, XEXP (x, 0)),
3934 read_complex_part (y, imag_first));
3935 return emit_move_insn (gen_rtx_MEM (submode, XEXP (x, 0)),
3936 read_complex_part (y, !imag_first));
3939 /* A subroutine of emit_move_complex. Perform the move from Y to X
3940 via two moves of the parts. Returns the last instruction emitted. */
3942 rtx_insn *
3943 emit_move_complex_parts (rtx x, rtx y)
3945 /* Show the output dies here. This is necessary for SUBREGs
3946 of pseudos since we cannot track their lifetimes correctly;
3947 hard regs shouldn't appear here except as return values. */
3948 if (!reload_completed && !reload_in_progress
3949 && REG_P (x) && !reg_overlap_mentioned_p (x, y))
3950 emit_clobber (x);
3952 write_complex_part (x, read_complex_part (y, false), false, true);
3953 write_complex_part (x, read_complex_part (y, true), true, false);
3955 return get_last_insn ();
3958 /* A subroutine of emit_move_insn_1. Generate a move from Y into X.
3959 MODE is known to be complex. Returns the last instruction emitted. */
3961 static rtx_insn *
3962 emit_move_complex (machine_mode mode, rtx x, rtx y)
3964 bool try_int;
3966 /* Need to take special care for pushes, to maintain proper ordering
3967 of the data, and possibly extra padding. */
3968 if (push_operand (x, mode))
3969 return emit_move_complex_push (mode, x, y);
3971 /* See if we can coerce the target into moving both values at once, except
3972 for floating point where we favor moving as parts if this is easy. */
3973 if (GET_MODE_CLASS (mode) == MODE_COMPLEX_FLOAT
3974 && optab_handler (mov_optab, GET_MODE_INNER (mode)) != CODE_FOR_nothing
3975 && !(REG_P (x)
3976 && HARD_REGISTER_P (x)
3977 && REG_NREGS (x) == 1)
3978 && !(REG_P (y)
3979 && HARD_REGISTER_P (y)
3980 && REG_NREGS (y) == 1))
3981 try_int = false;
3982 /* Not possible if the values are inherently not adjacent. */
3983 else if (GET_CODE (x) == CONCAT || GET_CODE (y) == CONCAT)
3984 try_int = false;
3985 /* Is possible if both are registers (or subregs of registers). */
3986 else if (register_operand (x, mode) && register_operand (y, mode))
3987 try_int = true;
3988 /* If one of the operands is a memory, and alignment constraints
3989 are friendly enough, we may be able to do combined memory operations.
3990 We do not attempt this if Y is a constant because that combination is
3991 usually better with the by-parts thing below. */
3992 else if ((MEM_P (x) ? !CONSTANT_P (y) : MEM_P (y))
3993 && (!STRICT_ALIGNMENT
3994 || get_mode_alignment (mode) == BIGGEST_ALIGNMENT))
3995 try_int = true;
3996 else
3997 try_int = false;
3999 if (try_int)
4001 rtx_insn *ret;
4003 /* For memory to memory moves, optimal behavior can be had with the
4004 existing block move logic. But use normal expansion if optimizing
4005 for size. */
4006 if (MEM_P (x) && MEM_P (y))
4008 emit_block_move (x, y, gen_int_mode (GET_MODE_SIZE (mode), Pmode),
4009 (optimize_insn_for_speed_p()
4010 ? BLOCK_OP_NO_LIBCALL : BLOCK_OP_NORMAL));
4011 return get_last_insn ();
4014 ret = emit_move_via_integer (mode, x, y, true);
4015 if (ret)
4016 return ret;
4019 return emit_move_complex_parts (x, y);
4022 /* A subroutine of emit_move_insn_1. Generate a move from Y into X.
4023 MODE is known to be MODE_CC. Returns the last instruction emitted. */
4025 static rtx_insn *
4026 emit_move_ccmode (machine_mode mode, rtx x, rtx y)
4028 rtx_insn *ret;
4030 /* Assume all MODE_CC modes are equivalent; if we have movcc, use it. */
4031 if (mode != CCmode)
4033 enum insn_code code = optab_handler (mov_optab, CCmode);
4034 if (code != CODE_FOR_nothing)
4036 x = emit_move_change_mode (CCmode, mode, x, true);
4037 y = emit_move_change_mode (CCmode, mode, y, true);
4038 return emit_insn (GEN_FCN (code) (x, y));
4042 /* Otherwise, find the MODE_INT mode of the same width. */
4043 ret = emit_move_via_integer (mode, x, y, false);
4044 gcc_assert (ret != NULL);
4045 return ret;
4048 /* Return true if word I of OP lies entirely in the
4049 undefined bits of a paradoxical subreg. */
4051 static bool
4052 undefined_operand_subword_p (const_rtx op, int i)
4054 if (GET_CODE (op) != SUBREG)
4055 return false;
4056 machine_mode innermostmode = GET_MODE (SUBREG_REG (op));
4057 poly_int64 offset = i * UNITS_PER_WORD + subreg_memory_offset (op);
4058 return (known_ge (offset, GET_MODE_SIZE (innermostmode))
4059 || known_le (offset, -UNITS_PER_WORD));
4062 /* A subroutine of emit_move_insn_1. Generate a move from Y into X.
4063 MODE is any multi-word or full-word mode that lacks a move_insn
4064 pattern. Note that you will get better code if you define such
4065 patterns, even if they must turn into multiple assembler instructions. */
4067 static rtx_insn *
4068 emit_move_multi_word (machine_mode mode, rtx x, rtx y)
4070 rtx_insn *last_insn = 0;
4071 rtx_insn *seq;
4072 rtx inner;
4073 bool need_clobber;
4074 int i, mode_size;
4076 /* This function can only handle cases where the number of words is
4077 known at compile time. */
4078 mode_size = GET_MODE_SIZE (mode).to_constant ();
4079 gcc_assert (mode_size >= UNITS_PER_WORD);
4081 /* If X is a push on the stack, do the push now and replace
4082 X with a reference to the stack pointer. */
4083 if (push_operand (x, mode))
4084 x = emit_move_resolve_push (mode, x);
4086 /* If we are in reload, see if either operand is a MEM whose address
4087 is scheduled for replacement. */
4088 if (reload_in_progress && MEM_P (x)
4089 && (inner = find_replacement (&XEXP (x, 0))) != XEXP (x, 0))
4090 x = replace_equiv_address_nv (x, inner);
4091 if (reload_in_progress && MEM_P (y)
4092 && (inner = find_replacement (&XEXP (y, 0))) != XEXP (y, 0))
4093 y = replace_equiv_address_nv (y, inner);
4095 start_sequence ();
4097 need_clobber = false;
4098 for (i = 0; i < CEIL (mode_size, UNITS_PER_WORD); i++)
4100 /* Do not generate code for a move if it would go entirely
4101 to the non-existing bits of a paradoxical subreg. */
4102 if (undefined_operand_subword_p (x, i))
4103 continue;
4105 rtx xpart = operand_subword (x, i, 1, mode);
4106 rtx ypart;
4108 /* Do not generate code for a move if it would come entirely
4109 from the undefined bits of a paradoxical subreg. */
4110 if (undefined_operand_subword_p (y, i))
4111 continue;
4113 ypart = operand_subword (y, i, 1, mode);
4115 /* If we can't get a part of Y, put Y into memory if it is a
4116 constant. Otherwise, force it into a register. Then we must
4117 be able to get a part of Y. */
4118 if (ypart == 0 && CONSTANT_P (y))
4120 y = use_anchored_address (force_const_mem (mode, y));
4121 ypart = operand_subword (y, i, 1, mode);
4123 else if (ypart == 0)
4124 ypart = operand_subword_force (y, i, mode);
4126 gcc_assert (xpart && ypart);
4128 need_clobber |= (GET_CODE (xpart) == SUBREG);
4130 last_insn = emit_move_insn (xpart, ypart);
4133 seq = get_insns ();
4134 end_sequence ();
4136 /* Show the output dies here. This is necessary for SUBREGs
4137 of pseudos since we cannot track their lifetimes correctly;
4138 hard regs shouldn't appear here except as return values.
4139 We never want to emit such a clobber after reload. */
4140 if (x != y
4141 && ! (reload_in_progress || reload_completed)
4142 && need_clobber != 0)
4143 emit_clobber (x);
4145 emit_insn (seq);
4147 return last_insn;
4150 /* Low level part of emit_move_insn.
4151 Called just like emit_move_insn, but assumes X and Y
4152 are basically valid. */
4154 rtx_insn *
4155 emit_move_insn_1 (rtx x, rtx y)
4157 machine_mode mode = GET_MODE (x);
4158 enum insn_code code;
4160 gcc_assert ((unsigned int) mode < (unsigned int) MAX_MACHINE_MODE);
4162 code = optab_handler (mov_optab, mode);
4163 if (code != CODE_FOR_nothing)
4164 return emit_insn (GEN_FCN (code) (x, y));
4166 /* Expand complex moves by moving real part and imag part. */
4167 if (COMPLEX_MODE_P (mode))
4168 return emit_move_complex (mode, x, y);
4170 if (GET_MODE_CLASS (mode) == MODE_DECIMAL_FLOAT
4171 || ALL_FIXED_POINT_MODE_P (mode))
4173 rtx_insn *result = emit_move_via_integer (mode, x, y, true);
4175 /* If we can't find an integer mode, use multi words. */
4176 if (result)
4177 return result;
4178 else
4179 return emit_move_multi_word (mode, x, y);
4182 if (GET_MODE_CLASS (mode) == MODE_CC)
4183 return emit_move_ccmode (mode, x, y);
4185 /* Try using a move pattern for the corresponding integer mode. This is
4186 only safe when simplify_subreg can convert MODE constants into integer
4187 constants. At present, it can only do this reliably if the value
4188 fits within a HOST_WIDE_INT. */
4189 if (!CONSTANT_P (y)
4190 || known_le (GET_MODE_BITSIZE (mode), HOST_BITS_PER_WIDE_INT))
4192 rtx_insn *ret = emit_move_via_integer (mode, x, y, lra_in_progress);
4194 if (ret)
4196 if (! lra_in_progress || recog (PATTERN (ret), ret, 0) >= 0)
4197 return ret;
4201 return emit_move_multi_word (mode, x, y);
4204 /* Generate code to copy Y into X.
4205 Both Y and X must have the same mode, except that
4206 Y can be a constant with VOIDmode.
4207 This mode cannot be BLKmode; use emit_block_move for that.
4209 Return the last instruction emitted. */
4211 rtx_insn *
4212 emit_move_insn (rtx x, rtx y)
4214 machine_mode mode = GET_MODE (x);
4215 rtx y_cst = NULL_RTX;
4216 rtx_insn *last_insn;
4217 rtx set;
4219 gcc_assert (mode != BLKmode
4220 && (GET_MODE (y) == mode || GET_MODE (y) == VOIDmode));
4222 /* If we have a copy that looks like one of the following patterns:
4223 (set (subreg:M1 (reg:M2 ...)) (subreg:M1 (reg:M2 ...)))
4224 (set (subreg:M1 (reg:M2 ...)) (mem:M1 ADDR))
4225 (set (mem:M1 ADDR) (subreg:M1 (reg:M2 ...)))
4226 (set (subreg:M1 (reg:M2 ...)) (constant C))
4227 where mode M1 is equal in size to M2, try to detect whether the
4228 mode change involves an implicit round trip through memory.
4229 If so, see if we can avoid that by removing the subregs and
4230 doing the move in mode M2 instead. */
4232 rtx x_inner = NULL_RTX;
4233 rtx y_inner = NULL_RTX;
4235 auto candidate_subreg_p = [&](rtx subreg) {
4236 return (REG_P (SUBREG_REG (subreg))
4237 && known_eq (GET_MODE_SIZE (GET_MODE (SUBREG_REG (subreg))),
4238 GET_MODE_SIZE (GET_MODE (subreg)))
4239 && optab_handler (mov_optab, GET_MODE (SUBREG_REG (subreg)))
4240 != CODE_FOR_nothing);
4243 auto candidate_mem_p = [&](machine_mode innermode, rtx mem) {
4244 return (!targetm.can_change_mode_class (innermode, GET_MODE (mem), ALL_REGS)
4245 && !push_operand (mem, GET_MODE (mem))
4246 /* Not a candiate if innermode requires too much alignment. */
4247 && (MEM_ALIGN (mem) >= GET_MODE_ALIGNMENT (innermode)
4248 || targetm.slow_unaligned_access (GET_MODE (mem),
4249 MEM_ALIGN (mem))
4250 || !targetm.slow_unaligned_access (innermode,
4251 MEM_ALIGN (mem))));
4254 if (SUBREG_P (x) && candidate_subreg_p (x))
4255 x_inner = SUBREG_REG (x);
4257 if (SUBREG_P (y) && candidate_subreg_p (y))
4258 y_inner = SUBREG_REG (y);
4260 if (x_inner != NULL_RTX
4261 && y_inner != NULL_RTX
4262 && GET_MODE (x_inner) == GET_MODE (y_inner)
4263 && !targetm.can_change_mode_class (GET_MODE (x_inner), mode, ALL_REGS))
4265 x = x_inner;
4266 y = y_inner;
4267 mode = GET_MODE (x_inner);
4269 else if (x_inner != NULL_RTX
4270 && MEM_P (y)
4271 && candidate_mem_p (GET_MODE (x_inner), y))
4273 x = x_inner;
4274 y = adjust_address (y, GET_MODE (x_inner), 0);
4275 mode = GET_MODE (x_inner);
4277 else if (y_inner != NULL_RTX
4278 && MEM_P (x)
4279 && candidate_mem_p (GET_MODE (y_inner), x))
4281 x = adjust_address (x, GET_MODE (y_inner), 0);
4282 y = y_inner;
4283 mode = GET_MODE (y_inner);
4285 else if (x_inner != NULL_RTX
4286 && CONSTANT_P (y)
4287 && !targetm.can_change_mode_class (GET_MODE (x_inner),
4288 mode, ALL_REGS)
4289 && (y_inner = simplify_subreg (GET_MODE (x_inner), y, mode, 0)))
4291 x = x_inner;
4292 y = y_inner;
4293 mode = GET_MODE (x_inner);
4296 if (CONSTANT_P (y))
4298 if (optimize
4299 && SCALAR_FLOAT_MODE_P (GET_MODE (x))
4300 && (last_insn = compress_float_constant (x, y)))
4301 return last_insn;
4303 y_cst = y;
4305 if (!targetm.legitimate_constant_p (mode, y))
4307 y = force_const_mem (mode, y);
4309 /* If the target's cannot_force_const_mem prevented the spill,
4310 assume that the target's move expanders will also take care
4311 of the non-legitimate constant. */
4312 if (!y)
4313 y = y_cst;
4314 else
4315 y = use_anchored_address (y);
4319 /* If X or Y are memory references, verify that their addresses are valid
4320 for the machine. */
4321 if (MEM_P (x)
4322 && (! memory_address_addr_space_p (GET_MODE (x), XEXP (x, 0),
4323 MEM_ADDR_SPACE (x))
4324 && ! push_operand (x, GET_MODE (x))))
4325 x = validize_mem (x);
4327 if (MEM_P (y)
4328 && ! memory_address_addr_space_p (GET_MODE (y), XEXP (y, 0),
4329 MEM_ADDR_SPACE (y)))
4330 y = validize_mem (y);
4332 gcc_assert (mode != BLKmode);
4334 last_insn = emit_move_insn_1 (x, y);
4336 if (y_cst && REG_P (x)
4337 && (set = single_set (last_insn)) != NULL_RTX
4338 && SET_DEST (set) == x
4339 && ! rtx_equal_p (y_cst, SET_SRC (set)))
4340 set_unique_reg_note (last_insn, REG_EQUAL, copy_rtx (y_cst));
4342 return last_insn;
4345 /* Generate the body of an instruction to copy Y into X.
4346 It may be a list of insns, if one insn isn't enough. */
4348 rtx_insn *
4349 gen_move_insn (rtx x, rtx y)
4351 rtx_insn *seq;
4353 start_sequence ();
4354 emit_move_insn_1 (x, y);
4355 seq = get_insns ();
4356 end_sequence ();
4357 return seq;
4360 /* If Y is representable exactly in a narrower mode, and the target can
4361 perform the extension directly from constant or memory, then emit the
4362 move as an extension. */
4364 static rtx_insn *
4365 compress_float_constant (rtx x, rtx y)
4367 machine_mode dstmode = GET_MODE (x);
4368 machine_mode orig_srcmode = GET_MODE (y);
4369 machine_mode srcmode;
4370 const REAL_VALUE_TYPE *r;
4371 int oldcost, newcost;
4372 bool speed = optimize_insn_for_speed_p ();
4374 r = CONST_DOUBLE_REAL_VALUE (y);
4376 if (targetm.legitimate_constant_p (dstmode, y))
4377 oldcost = set_src_cost (y, orig_srcmode, speed);
4378 else
4379 oldcost = set_src_cost (force_const_mem (dstmode, y), dstmode, speed);
4381 FOR_EACH_MODE_UNTIL (srcmode, orig_srcmode)
4383 enum insn_code ic;
4384 rtx trunc_y;
4385 rtx_insn *last_insn;
4387 /* Skip if the target can't extend this way. */
4388 ic = can_extend_p (dstmode, srcmode, 0);
4389 if (ic == CODE_FOR_nothing)
4390 continue;
4392 /* Skip if the narrowed value isn't exact. */
4393 if (! exact_real_truncate (srcmode, r))
4394 continue;
4396 trunc_y = const_double_from_real_value (*r, srcmode);
4398 if (targetm.legitimate_constant_p (srcmode, trunc_y))
4400 /* Skip if the target needs extra instructions to perform
4401 the extension. */
4402 if (!insn_operand_matches (ic, 1, trunc_y))
4403 continue;
4404 /* This is valid, but may not be cheaper than the original. */
4405 newcost = set_src_cost (gen_rtx_FLOAT_EXTEND (dstmode, trunc_y),
4406 dstmode, speed);
4407 if (oldcost < newcost)
4408 continue;
4410 else if (float_extend_from_mem[dstmode][srcmode])
4412 trunc_y = force_const_mem (srcmode, trunc_y);
4413 /* This is valid, but may not be cheaper than the original. */
4414 newcost = set_src_cost (gen_rtx_FLOAT_EXTEND (dstmode, trunc_y),
4415 dstmode, speed);
4416 if (oldcost < newcost)
4417 continue;
4418 trunc_y = validize_mem (trunc_y);
4420 else
4421 continue;
4423 /* For CSE's benefit, force the compressed constant pool entry
4424 into a new pseudo. This constant may be used in different modes,
4425 and if not, combine will put things back together for us. */
4426 trunc_y = force_reg (srcmode, trunc_y);
4428 /* If x is a hard register, perform the extension into a pseudo,
4429 so that e.g. stack realignment code is aware of it. */
4430 rtx target = x;
4431 if (REG_P (x) && HARD_REGISTER_P (x))
4432 target = gen_reg_rtx (dstmode);
4434 emit_unop_insn (ic, target, trunc_y, UNKNOWN);
4435 last_insn = get_last_insn ();
4437 if (REG_P (target))
4438 set_unique_reg_note (last_insn, REG_EQUAL, y);
4440 if (target != x)
4441 return emit_move_insn (x, target);
4442 return last_insn;
4445 return NULL;
4448 /* Pushing data onto the stack. */
4450 /* Push a block of length SIZE (perhaps variable)
4451 and return an rtx to address the beginning of the block.
4452 The value may be virtual_outgoing_args_rtx.
4454 EXTRA is the number of bytes of padding to push in addition to SIZE.
4455 BELOW nonzero means this padding comes at low addresses;
4456 otherwise, the padding comes at high addresses. */
4459 push_block (rtx size, poly_int64 extra, int below)
4461 rtx temp;
4463 size = convert_modes (Pmode, ptr_mode, size, 1);
4464 if (CONSTANT_P (size))
4465 anti_adjust_stack (plus_constant (Pmode, size, extra));
4466 else if (REG_P (size) && known_eq (extra, 0))
4467 anti_adjust_stack (size);
4468 else
4470 temp = copy_to_mode_reg (Pmode, size);
4471 if (maybe_ne (extra, 0))
4472 temp = expand_binop (Pmode, add_optab, temp,
4473 gen_int_mode (extra, Pmode),
4474 temp, 0, OPTAB_LIB_WIDEN);
4475 anti_adjust_stack (temp);
4478 if (STACK_GROWS_DOWNWARD)
4480 temp = virtual_outgoing_args_rtx;
4481 if (maybe_ne (extra, 0) && below)
4482 temp = plus_constant (Pmode, temp, extra);
4484 else
4486 poly_int64 csize;
4487 if (poly_int_rtx_p (size, &csize))
4488 temp = plus_constant (Pmode, virtual_outgoing_args_rtx,
4489 -csize - (below ? 0 : extra));
4490 else if (maybe_ne (extra, 0) && !below)
4491 temp = gen_rtx_PLUS (Pmode, virtual_outgoing_args_rtx,
4492 negate_rtx (Pmode, plus_constant (Pmode, size,
4493 extra)));
4494 else
4495 temp = gen_rtx_PLUS (Pmode, virtual_outgoing_args_rtx,
4496 negate_rtx (Pmode, size));
4499 return memory_address (NARROWEST_INT_MODE, temp);
4502 /* A utility routine that returns the base of an auto-inc memory, or NULL. */
4504 static rtx
4505 mem_autoinc_base (rtx mem)
4507 if (MEM_P (mem))
4509 rtx addr = XEXP (mem, 0);
4510 if (GET_RTX_CLASS (GET_CODE (addr)) == RTX_AUTOINC)
4511 return XEXP (addr, 0);
4513 return NULL;
4516 /* A utility routine used here, in reload, and in try_split. The insns
4517 after PREV up to and including LAST are known to adjust the stack,
4518 with a final value of END_ARGS_SIZE. Iterate backward from LAST
4519 placing notes as appropriate. PREV may be NULL, indicating the
4520 entire insn sequence prior to LAST should be scanned.
4522 The set of allowed stack pointer modifications is small:
4523 (1) One or more auto-inc style memory references (aka pushes),
4524 (2) One or more addition/subtraction with the SP as destination,
4525 (3) A single move insn with the SP as destination,
4526 (4) A call_pop insn,
4527 (5) Noreturn call insns if !ACCUMULATE_OUTGOING_ARGS.
4529 Insns in the sequence that do not modify the SP are ignored,
4530 except for noreturn calls.
4532 The return value is the amount of adjustment that can be trivially
4533 verified, via immediate operand or auto-inc. If the adjustment
4534 cannot be trivially extracted, the return value is HOST_WIDE_INT_MIN. */
4536 poly_int64
4537 find_args_size_adjust (rtx_insn *insn)
4539 rtx dest, set, pat;
4540 int i;
4542 pat = PATTERN (insn);
4543 set = NULL;
4545 /* Look for a call_pop pattern. */
4546 if (CALL_P (insn))
4548 /* We have to allow non-call_pop patterns for the case
4549 of emit_single_push_insn of a TLS address. */
4550 if (GET_CODE (pat) != PARALLEL)
4551 return 0;
4553 /* All call_pop have a stack pointer adjust in the parallel.
4554 The call itself is always first, and the stack adjust is
4555 usually last, so search from the end. */
4556 for (i = XVECLEN (pat, 0) - 1; i > 0; --i)
4558 set = XVECEXP (pat, 0, i);
4559 if (GET_CODE (set) != SET)
4560 continue;
4561 dest = SET_DEST (set);
4562 if (dest == stack_pointer_rtx)
4563 break;
4565 /* We'd better have found the stack pointer adjust. */
4566 if (i == 0)
4567 return 0;
4568 /* Fall through to process the extracted SET and DEST
4569 as if it was a standalone insn. */
4571 else if (GET_CODE (pat) == SET)
4572 set = pat;
4573 else if ((set = single_set (insn)) != NULL)
4575 else if (GET_CODE (pat) == PARALLEL)
4577 /* ??? Some older ports use a parallel with a stack adjust
4578 and a store for a PUSH_ROUNDING pattern, rather than a
4579 PRE/POST_MODIFY rtx. Don't force them to update yet... */
4580 /* ??? See h8300 and m68k, pushqi1. */
4581 for (i = XVECLEN (pat, 0) - 1; i >= 0; --i)
4583 set = XVECEXP (pat, 0, i);
4584 if (GET_CODE (set) != SET)
4585 continue;
4586 dest = SET_DEST (set);
4587 if (dest == stack_pointer_rtx)
4588 break;
4590 /* We do not expect an auto-inc of the sp in the parallel. */
4591 gcc_checking_assert (mem_autoinc_base (dest) != stack_pointer_rtx);
4592 gcc_checking_assert (mem_autoinc_base (SET_SRC (set))
4593 != stack_pointer_rtx);
4595 if (i < 0)
4596 return 0;
4598 else
4599 return 0;
4601 dest = SET_DEST (set);
4603 /* Look for direct modifications of the stack pointer. */
4604 if (REG_P (dest) && REGNO (dest) == STACK_POINTER_REGNUM)
4606 /* Look for a trivial adjustment, otherwise assume nothing. */
4607 /* Note that the SPU restore_stack_block pattern refers to
4608 the stack pointer in V4SImode. Consider that non-trivial. */
4609 poly_int64 offset;
4610 if (SCALAR_INT_MODE_P (GET_MODE (dest))
4611 && strip_offset (SET_SRC (set), &offset) == stack_pointer_rtx)
4612 return offset;
4613 /* ??? Reload can generate no-op moves, which will be cleaned
4614 up later. Recognize it and continue searching. */
4615 else if (rtx_equal_p (dest, SET_SRC (set)))
4616 return 0;
4617 else
4618 return HOST_WIDE_INT_MIN;
4620 else
4622 rtx mem, addr;
4624 /* Otherwise only think about autoinc patterns. */
4625 if (mem_autoinc_base (dest) == stack_pointer_rtx)
4627 mem = dest;
4628 gcc_checking_assert (mem_autoinc_base (SET_SRC (set))
4629 != stack_pointer_rtx);
4631 else if (mem_autoinc_base (SET_SRC (set)) == stack_pointer_rtx)
4632 mem = SET_SRC (set);
4633 else
4634 return 0;
4636 addr = XEXP (mem, 0);
4637 switch (GET_CODE (addr))
4639 case PRE_INC:
4640 case POST_INC:
4641 return GET_MODE_SIZE (GET_MODE (mem));
4642 case PRE_DEC:
4643 case POST_DEC:
4644 return -GET_MODE_SIZE (GET_MODE (mem));
4645 case PRE_MODIFY:
4646 case POST_MODIFY:
4647 addr = XEXP (addr, 1);
4648 gcc_assert (GET_CODE (addr) == PLUS);
4649 gcc_assert (XEXP (addr, 0) == stack_pointer_rtx);
4650 return rtx_to_poly_int64 (XEXP (addr, 1));
4651 default:
4652 gcc_unreachable ();
4657 poly_int64
4658 fixup_args_size_notes (rtx_insn *prev, rtx_insn *last,
4659 poly_int64 end_args_size)
4661 poly_int64 args_size = end_args_size;
4662 bool saw_unknown = false;
4663 rtx_insn *insn;
4665 for (insn = last; insn != prev; insn = PREV_INSN (insn))
4667 if (!NONDEBUG_INSN_P (insn))
4668 continue;
4670 /* We might have existing REG_ARGS_SIZE notes, e.g. when pushing
4671 a call argument containing a TLS address that itself requires
4672 a call to __tls_get_addr. The handling of stack_pointer_delta
4673 in emit_single_push_insn is supposed to ensure that any such
4674 notes are already correct. */
4675 rtx note = find_reg_note (insn, REG_ARGS_SIZE, NULL_RTX);
4676 gcc_assert (!note || known_eq (args_size, get_args_size (note)));
4678 poly_int64 this_delta = find_args_size_adjust (insn);
4679 if (known_eq (this_delta, 0))
4681 if (!CALL_P (insn)
4682 || ACCUMULATE_OUTGOING_ARGS
4683 || find_reg_note (insn, REG_NORETURN, NULL_RTX) == NULL_RTX)
4684 continue;
4687 gcc_assert (!saw_unknown);
4688 if (known_eq (this_delta, HOST_WIDE_INT_MIN))
4689 saw_unknown = true;
4691 if (!note)
4692 add_args_size_note (insn, args_size);
4693 if (STACK_GROWS_DOWNWARD)
4694 this_delta = -poly_uint64 (this_delta);
4696 if (saw_unknown)
4697 args_size = HOST_WIDE_INT_MIN;
4698 else
4699 args_size -= this_delta;
4702 return args_size;
4705 #ifdef PUSH_ROUNDING
4706 /* Emit single push insn. */
4708 static void
4709 emit_single_push_insn_1 (machine_mode mode, rtx x, tree type)
4711 rtx dest_addr;
4712 poly_int64 rounded_size = PUSH_ROUNDING (GET_MODE_SIZE (mode));
4713 rtx dest;
4714 enum insn_code icode;
4716 /* If there is push pattern, use it. Otherwise try old way of throwing
4717 MEM representing push operation to move expander. */
4718 icode = optab_handler (push_optab, mode);
4719 if (icode != CODE_FOR_nothing)
4721 class expand_operand ops[1];
4723 create_input_operand (&ops[0], x, mode);
4724 if (maybe_expand_insn (icode, 1, ops))
4725 return;
4727 if (known_eq (GET_MODE_SIZE (mode), rounded_size))
4728 dest_addr = gen_rtx_fmt_e (STACK_PUSH_CODE, Pmode, stack_pointer_rtx);
4729 /* If we are to pad downward, adjust the stack pointer first and
4730 then store X into the stack location using an offset. This is
4731 because emit_move_insn does not know how to pad; it does not have
4732 access to type. */
4733 else if (targetm.calls.function_arg_padding (mode, type) == PAD_DOWNWARD)
4735 emit_move_insn (stack_pointer_rtx,
4736 expand_binop (Pmode,
4737 STACK_GROWS_DOWNWARD ? sub_optab
4738 : add_optab,
4739 stack_pointer_rtx,
4740 gen_int_mode (rounded_size, Pmode),
4741 NULL_RTX, 0, OPTAB_LIB_WIDEN));
4743 poly_int64 offset = rounded_size - GET_MODE_SIZE (mode);
4744 if (STACK_GROWS_DOWNWARD && STACK_PUSH_CODE == POST_DEC)
4745 /* We have already decremented the stack pointer, so get the
4746 previous value. */
4747 offset += rounded_size;
4749 if (!STACK_GROWS_DOWNWARD && STACK_PUSH_CODE == POST_INC)
4750 /* We have already incremented the stack pointer, so get the
4751 previous value. */
4752 offset -= rounded_size;
4754 dest_addr = plus_constant (Pmode, stack_pointer_rtx, offset);
4756 else
4758 if (STACK_GROWS_DOWNWARD)
4759 /* ??? This seems wrong if STACK_PUSH_CODE == POST_DEC. */
4760 dest_addr = plus_constant (Pmode, stack_pointer_rtx, -rounded_size);
4761 else
4762 /* ??? This seems wrong if STACK_PUSH_CODE == POST_INC. */
4763 dest_addr = plus_constant (Pmode, stack_pointer_rtx, rounded_size);
4765 dest_addr = gen_rtx_PRE_MODIFY (Pmode, stack_pointer_rtx, dest_addr);
4768 dest = gen_rtx_MEM (mode, dest_addr);
4770 if (type != 0)
4772 set_mem_attributes (dest, type, 1);
4774 if (cfun->tail_call_marked)
4775 /* Function incoming arguments may overlap with sibling call
4776 outgoing arguments and we cannot allow reordering of reads
4777 from function arguments with stores to outgoing arguments
4778 of sibling calls. */
4779 set_mem_alias_set (dest, 0);
4781 emit_move_insn (dest, x);
4784 /* Emit and annotate a single push insn. */
4786 static void
4787 emit_single_push_insn (machine_mode mode, rtx x, tree type)
4789 poly_int64 delta, old_delta = stack_pointer_delta;
4790 rtx_insn *prev = get_last_insn ();
4791 rtx_insn *last;
4793 emit_single_push_insn_1 (mode, x, type);
4795 /* Adjust stack_pointer_delta to describe the situation after the push
4796 we just performed. Note that we must do this after the push rather
4797 than before the push in case calculating X needs pushes and pops of
4798 its own (e.g. if calling __tls_get_addr). The REG_ARGS_SIZE notes
4799 for such pushes and pops must not include the effect of the future
4800 push of X. */
4801 stack_pointer_delta += PUSH_ROUNDING (GET_MODE_SIZE (mode));
4803 last = get_last_insn ();
4805 /* Notice the common case where we emitted exactly one insn. */
4806 if (PREV_INSN (last) == prev)
4808 add_args_size_note (last, stack_pointer_delta);
4809 return;
4812 delta = fixup_args_size_notes (prev, last, stack_pointer_delta);
4813 gcc_assert (known_eq (delta, HOST_WIDE_INT_MIN)
4814 || known_eq (delta, old_delta));
4816 #endif
4818 /* If reading SIZE bytes from X will end up reading from
4819 Y return the number of bytes that overlap. Return -1
4820 if there is no overlap or -2 if we can't determine
4821 (for example when X and Y have different base registers). */
4823 static int
4824 memory_load_overlap (rtx x, rtx y, HOST_WIDE_INT size)
4826 rtx tmp = plus_constant (Pmode, x, size);
4827 rtx sub = simplify_gen_binary (MINUS, Pmode, tmp, y);
4829 if (!CONST_INT_P (sub))
4830 return -2;
4832 HOST_WIDE_INT val = INTVAL (sub);
4834 return IN_RANGE (val, 1, size) ? val : -1;
4837 /* Generate code to push X onto the stack, assuming it has mode MODE and
4838 type TYPE.
4839 MODE is redundant except when X is a CONST_INT (since they don't
4840 carry mode info).
4841 SIZE is an rtx for the size of data to be copied (in bytes),
4842 needed only if X is BLKmode.
4843 Return true if successful. May return false if asked to push a
4844 partial argument during a sibcall optimization (as specified by
4845 SIBCALL_P) and the incoming and outgoing pointers cannot be shown
4846 to not overlap.
4848 ALIGN (in bits) is maximum alignment we can assume.
4850 If PARTIAL and REG are both nonzero, then copy that many of the first
4851 bytes of X into registers starting with REG, and push the rest of X.
4852 The amount of space pushed is decreased by PARTIAL bytes.
4853 REG must be a hard register in this case.
4854 If REG is zero but PARTIAL is not, take any all others actions for an
4855 argument partially in registers, but do not actually load any
4856 registers.
4858 EXTRA is the amount in bytes of extra space to leave next to this arg.
4859 This is ignored if an argument block has already been allocated.
4861 On a machine that lacks real push insns, ARGS_ADDR is the address of
4862 the bottom of the argument block for this call. We use indexing off there
4863 to store the arg. On machines with push insns, ARGS_ADDR is 0 when a
4864 argument block has not been preallocated.
4866 ARGS_SO_FAR is the size of args previously pushed for this call.
4868 REG_PARM_STACK_SPACE is nonzero if functions require stack space
4869 for arguments passed in registers. If nonzero, it will be the number
4870 of bytes required. */
4872 bool
4873 emit_push_insn (rtx x, machine_mode mode, tree type, rtx size,
4874 unsigned int align, int partial, rtx reg, poly_int64 extra,
4875 rtx args_addr, rtx args_so_far, int reg_parm_stack_space,
4876 rtx alignment_pad, bool sibcall_p)
4878 rtx xinner;
4879 pad_direction stack_direction
4880 = STACK_GROWS_DOWNWARD ? PAD_DOWNWARD : PAD_UPWARD;
4882 /* Decide where to pad the argument: PAD_DOWNWARD for below,
4883 PAD_UPWARD for above, or PAD_NONE for don't pad it.
4884 Default is below for small data on big-endian machines; else above. */
4885 pad_direction where_pad = targetm.calls.function_arg_padding (mode, type);
4887 /* Invert direction if stack is post-decrement.
4888 FIXME: why? */
4889 if (STACK_PUSH_CODE == POST_DEC)
4890 if (where_pad != PAD_NONE)
4891 where_pad = (where_pad == PAD_DOWNWARD ? PAD_UPWARD : PAD_DOWNWARD);
4893 xinner = x;
4895 int nregs = partial / UNITS_PER_WORD;
4896 rtx *tmp_regs = NULL;
4897 int overlapping = 0;
4899 if (mode == BLKmode
4900 || (STRICT_ALIGNMENT && align < GET_MODE_ALIGNMENT (mode)))
4902 /* Copy a block into the stack, entirely or partially. */
4904 rtx temp;
4905 int used;
4906 int offset;
4907 int skip;
4909 offset = partial % (PARM_BOUNDARY / BITS_PER_UNIT);
4910 used = partial - offset;
4912 if (mode != BLKmode)
4914 /* A value is to be stored in an insufficiently aligned
4915 stack slot; copy via a suitably aligned slot if
4916 necessary. */
4917 size = gen_int_mode (GET_MODE_SIZE (mode), Pmode);
4918 if (!MEM_P (xinner))
4920 temp = assign_temp (type, 1, 1);
4921 emit_move_insn (temp, xinner);
4922 xinner = temp;
4926 gcc_assert (size);
4928 /* USED is now the # of bytes we need not copy to the stack
4929 because registers will take care of them. */
4931 if (partial != 0)
4932 xinner = adjust_address (xinner, BLKmode, used);
4934 /* If the partial register-part of the arg counts in its stack size,
4935 skip the part of stack space corresponding to the registers.
4936 Otherwise, start copying to the beginning of the stack space,
4937 by setting SKIP to 0. */
4938 skip = (reg_parm_stack_space == 0) ? 0 : used;
4940 #ifdef PUSH_ROUNDING
4941 /* NB: Let the backend known the number of bytes to push and
4942 decide if push insns should be generated. */
4943 unsigned int push_size;
4944 if (CONST_INT_P (size))
4945 push_size = INTVAL (size);
4946 else
4947 push_size = 0;
4949 /* Do it with several push insns if that doesn't take lots of insns
4950 and if there is no difficulty with push insns that skip bytes
4951 on the stack for alignment purposes. */
4952 if (args_addr == 0
4953 && targetm.calls.push_argument (push_size)
4954 && CONST_INT_P (size)
4955 && skip == 0
4956 && MEM_ALIGN (xinner) >= align
4957 && can_move_by_pieces ((unsigned) INTVAL (size) - used, align)
4958 /* Here we avoid the case of a structure whose weak alignment
4959 forces many pushes of a small amount of data,
4960 and such small pushes do rounding that causes trouble. */
4961 && ((!targetm.slow_unaligned_access (word_mode, align))
4962 || align >= BIGGEST_ALIGNMENT
4963 || known_eq (PUSH_ROUNDING (align / BITS_PER_UNIT),
4964 align / BITS_PER_UNIT))
4965 && known_eq (PUSH_ROUNDING (INTVAL (size)), INTVAL (size)))
4967 /* Push padding now if padding above and stack grows down,
4968 or if padding below and stack grows up.
4969 But if space already allocated, this has already been done. */
4970 if (maybe_ne (extra, 0)
4971 && args_addr == 0
4972 && where_pad != PAD_NONE
4973 && where_pad != stack_direction)
4974 anti_adjust_stack (gen_int_mode (extra, Pmode));
4976 move_by_pieces (NULL, xinner, INTVAL (size) - used, align,
4977 RETURN_BEGIN);
4979 else
4980 #endif /* PUSH_ROUNDING */
4982 rtx target;
4984 /* Otherwise make space on the stack and copy the data
4985 to the address of that space. */
4987 /* Deduct words put into registers from the size we must copy. */
4988 if (partial != 0)
4990 if (CONST_INT_P (size))
4991 size = GEN_INT (INTVAL (size) - used);
4992 else
4993 size = expand_binop (GET_MODE (size), sub_optab, size,
4994 gen_int_mode (used, GET_MODE (size)),
4995 NULL_RTX, 0, OPTAB_LIB_WIDEN);
4998 /* Get the address of the stack space.
4999 In this case, we do not deal with EXTRA separately.
5000 A single stack adjust will do. */
5001 poly_int64 const_args_so_far;
5002 if (! args_addr)
5004 temp = push_block (size, extra, where_pad == PAD_DOWNWARD);
5005 extra = 0;
5007 else if (poly_int_rtx_p (args_so_far, &const_args_so_far))
5008 temp = memory_address (BLKmode,
5009 plus_constant (Pmode, args_addr,
5010 skip + const_args_so_far));
5011 else
5012 temp = memory_address (BLKmode,
5013 plus_constant (Pmode,
5014 gen_rtx_PLUS (Pmode,
5015 args_addr,
5016 args_so_far),
5017 skip));
5019 if (!ACCUMULATE_OUTGOING_ARGS)
5021 /* If the source is referenced relative to the stack pointer,
5022 copy it to another register to stabilize it. We do not need
5023 to do this if we know that we won't be changing sp. */
5025 if (reg_mentioned_p (virtual_stack_dynamic_rtx, temp)
5026 || reg_mentioned_p (virtual_outgoing_args_rtx, temp))
5027 temp = copy_to_reg (temp);
5030 target = gen_rtx_MEM (BLKmode, temp);
5032 /* We do *not* set_mem_attributes here, because incoming arguments
5033 may overlap with sibling call outgoing arguments and we cannot
5034 allow reordering of reads from function arguments with stores
5035 to outgoing arguments of sibling calls. We do, however, want
5036 to record the alignment of the stack slot. */
5037 /* ALIGN may well be better aligned than TYPE, e.g. due to
5038 PARM_BOUNDARY. Assume the caller isn't lying. */
5039 set_mem_align (target, align);
5041 /* If part should go in registers and pushing to that part would
5042 overwrite some of the values that need to go into regs, load the
5043 overlapping values into temporary pseudos to be moved into the hard
5044 regs at the end after the stack pushing has completed.
5045 We cannot load them directly into the hard regs here because
5046 they can be clobbered by the block move expansions.
5047 See PR 65358. */
5049 if (partial > 0 && reg != 0 && mode == BLKmode
5050 && GET_CODE (reg) != PARALLEL)
5052 overlapping = memory_load_overlap (XEXP (x, 0), temp, partial);
5053 if (overlapping > 0)
5055 gcc_assert (overlapping % UNITS_PER_WORD == 0);
5056 overlapping /= UNITS_PER_WORD;
5058 tmp_regs = XALLOCAVEC (rtx, overlapping);
5060 for (int i = 0; i < overlapping; i++)
5061 tmp_regs[i] = gen_reg_rtx (word_mode);
5063 for (int i = 0; i < overlapping; i++)
5064 emit_move_insn (tmp_regs[i],
5065 operand_subword_force (target, i, mode));
5067 else if (overlapping == -1)
5068 overlapping = 0;
5069 /* Could not determine whether there is overlap.
5070 Fail the sibcall. */
5071 else
5073 overlapping = 0;
5074 if (sibcall_p)
5075 return false;
5079 /* If source is a constant VAR_DECL with a simple constructor,
5080 store the constructor to the stack instead of moving it. */
5081 const_tree decl;
5082 if (partial == 0
5083 && MEM_P (xinner)
5084 && SYMBOL_REF_P (XEXP (xinner, 0))
5085 && (decl = SYMBOL_REF_DECL (XEXP (xinner, 0))) != NULL_TREE
5086 && VAR_P (decl)
5087 && TREE_READONLY (decl)
5088 && !TREE_SIDE_EFFECTS (decl)
5089 && immediate_const_ctor_p (DECL_INITIAL (decl), 2))
5090 store_constructor (DECL_INITIAL (decl), target, 0,
5091 int_expr_size (DECL_INITIAL (decl)), false);
5092 else
5093 emit_block_move (target, xinner, size, BLOCK_OP_CALL_PARM);
5096 else if (partial > 0)
5098 /* Scalar partly in registers. This case is only supported
5099 for fixed-wdth modes. */
5100 int num_words = GET_MODE_SIZE (mode).to_constant ();
5101 num_words /= UNITS_PER_WORD;
5102 int i;
5103 int not_stack;
5104 /* # bytes of start of argument
5105 that we must make space for but need not store. */
5106 int offset = partial % (PARM_BOUNDARY / BITS_PER_UNIT);
5107 int args_offset = INTVAL (args_so_far);
5108 int skip;
5110 /* Push padding now if padding above and stack grows down,
5111 or if padding below and stack grows up.
5112 But if space already allocated, this has already been done. */
5113 if (maybe_ne (extra, 0)
5114 && args_addr == 0
5115 && where_pad != PAD_NONE
5116 && where_pad != stack_direction)
5117 anti_adjust_stack (gen_int_mode (extra, Pmode));
5119 /* If we make space by pushing it, we might as well push
5120 the real data. Otherwise, we can leave OFFSET nonzero
5121 and leave the space uninitialized. */
5122 if (args_addr == 0)
5123 offset = 0;
5125 /* Now NOT_STACK gets the number of words that we don't need to
5126 allocate on the stack. Convert OFFSET to words too. */
5127 not_stack = (partial - offset) / UNITS_PER_WORD;
5128 offset /= UNITS_PER_WORD;
5130 /* If the partial register-part of the arg counts in its stack size,
5131 skip the part of stack space corresponding to the registers.
5132 Otherwise, start copying to the beginning of the stack space,
5133 by setting SKIP to 0. */
5134 skip = (reg_parm_stack_space == 0) ? 0 : not_stack;
5136 if (CONSTANT_P (x) && !targetm.legitimate_constant_p (mode, x))
5137 x = validize_mem (force_const_mem (mode, x));
5139 /* If X is a hard register in a non-integer mode, copy it into a pseudo;
5140 SUBREGs of such registers are not allowed. */
5141 if ((REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER
5142 && GET_MODE_CLASS (GET_MODE (x)) != MODE_INT))
5143 x = copy_to_reg (x);
5145 /* Loop over all the words allocated on the stack for this arg. */
5146 /* We can do it by words, because any scalar bigger than a word
5147 has a size a multiple of a word. */
5148 for (i = num_words - 1; i >= not_stack; i--)
5149 if (i >= not_stack + offset)
5150 if (!emit_push_insn (operand_subword_force (x, i, mode),
5151 word_mode, NULL_TREE, NULL_RTX, align, 0, NULL_RTX,
5152 0, args_addr,
5153 GEN_INT (args_offset + ((i - not_stack + skip)
5154 * UNITS_PER_WORD)),
5155 reg_parm_stack_space, alignment_pad, sibcall_p))
5156 return false;
5158 else
5160 rtx addr;
5161 rtx dest;
5163 /* Push padding now if padding above and stack grows down,
5164 or if padding below and stack grows up.
5165 But if space already allocated, this has already been done. */
5166 if (maybe_ne (extra, 0)
5167 && args_addr == 0
5168 && where_pad != PAD_NONE
5169 && where_pad != stack_direction)
5170 anti_adjust_stack (gen_int_mode (extra, Pmode));
5172 #ifdef PUSH_ROUNDING
5173 if (args_addr == 0 && targetm.calls.push_argument (0))
5174 emit_single_push_insn (mode, x, type);
5175 else
5176 #endif
5178 addr = simplify_gen_binary (PLUS, Pmode, args_addr, args_so_far);
5179 dest = gen_rtx_MEM (mode, memory_address (mode, addr));
5181 /* We do *not* set_mem_attributes here, because incoming arguments
5182 may overlap with sibling call outgoing arguments and we cannot
5183 allow reordering of reads from function arguments with stores
5184 to outgoing arguments of sibling calls. We do, however, want
5185 to record the alignment of the stack slot. */
5186 /* ALIGN may well be better aligned than TYPE, e.g. due to
5187 PARM_BOUNDARY. Assume the caller isn't lying. */
5188 set_mem_align (dest, align);
5190 emit_move_insn (dest, x);
5194 /* Move the partial arguments into the registers and any overlapping
5195 values that we moved into the pseudos in tmp_regs. */
5196 if (partial > 0 && reg != 0)
5198 /* Handle calls that pass values in multiple non-contiguous locations.
5199 The Irix 6 ABI has examples of this. */
5200 if (GET_CODE (reg) == PARALLEL)
5201 emit_group_load (reg, x, type, -1);
5202 else
5204 gcc_assert (partial % UNITS_PER_WORD == 0);
5205 move_block_to_reg (REGNO (reg), x, nregs - overlapping, mode);
5207 for (int i = 0; i < overlapping; i++)
5208 emit_move_insn (gen_rtx_REG (word_mode, REGNO (reg)
5209 + nregs - overlapping + i),
5210 tmp_regs[i]);
5215 if (maybe_ne (extra, 0) && args_addr == 0 && where_pad == stack_direction)
5216 anti_adjust_stack (gen_int_mode (extra, Pmode));
5218 if (alignment_pad && args_addr == 0)
5219 anti_adjust_stack (alignment_pad);
5221 return true;
5224 /* Return X if X can be used as a subtarget in a sequence of arithmetic
5225 operations. */
5227 static rtx
5228 get_subtarget (rtx x)
5230 return (optimize
5231 || x == 0
5232 /* Only registers can be subtargets. */
5233 || !REG_P (x)
5234 /* Don't use hard regs to avoid extending their life. */
5235 || REGNO (x) < FIRST_PSEUDO_REGISTER
5236 ? 0 : x);
5239 /* A subroutine of expand_assignment. Optimize FIELD op= VAL, where
5240 FIELD is a bitfield. Returns true if the optimization was successful,
5241 and there's nothing else to do. */
5243 static bool
5244 optimize_bitfield_assignment_op (poly_uint64 pbitsize,
5245 poly_uint64 pbitpos,
5246 poly_uint64 pbitregion_start,
5247 poly_uint64 pbitregion_end,
5248 machine_mode mode1, rtx str_rtx,
5249 tree to, tree src, bool reverse)
5251 /* str_mode is not guaranteed to be a scalar type. */
5252 machine_mode str_mode = GET_MODE (str_rtx);
5253 unsigned int str_bitsize;
5254 tree op0, op1;
5255 rtx value, result;
5256 optab binop;
5257 gimple *srcstmt;
5258 enum tree_code code;
5260 unsigned HOST_WIDE_INT bitsize, bitpos, bitregion_start, bitregion_end;
5261 if (mode1 != VOIDmode
5262 || !pbitsize.is_constant (&bitsize)
5263 || !pbitpos.is_constant (&bitpos)
5264 || !pbitregion_start.is_constant (&bitregion_start)
5265 || !pbitregion_end.is_constant (&bitregion_end)
5266 || bitsize >= BITS_PER_WORD
5267 || !GET_MODE_BITSIZE (str_mode).is_constant (&str_bitsize)
5268 || str_bitsize > BITS_PER_WORD
5269 || TREE_SIDE_EFFECTS (to)
5270 || TREE_THIS_VOLATILE (to))
5271 return false;
5273 STRIP_NOPS (src);
5274 if (TREE_CODE (src) != SSA_NAME)
5275 return false;
5276 if (TREE_CODE (TREE_TYPE (src)) != INTEGER_TYPE)
5277 return false;
5279 srcstmt = get_gimple_for_ssa_name (src);
5280 if (!srcstmt
5281 || TREE_CODE_CLASS (gimple_assign_rhs_code (srcstmt)) != tcc_binary)
5282 return false;
5284 code = gimple_assign_rhs_code (srcstmt);
5286 op0 = gimple_assign_rhs1 (srcstmt);
5288 /* If OP0 is an SSA_NAME, then we want to walk the use-def chain
5289 to find its initialization. Hopefully the initialization will
5290 be from a bitfield load. */
5291 if (TREE_CODE (op0) == SSA_NAME)
5293 gimple *op0stmt = get_gimple_for_ssa_name (op0);
5295 /* We want to eventually have OP0 be the same as TO, which
5296 should be a bitfield. */
5297 if (!op0stmt
5298 || !is_gimple_assign (op0stmt)
5299 || gimple_assign_rhs_code (op0stmt) != TREE_CODE (to))
5300 return false;
5301 op0 = gimple_assign_rhs1 (op0stmt);
5304 op1 = gimple_assign_rhs2 (srcstmt);
5306 if (!operand_equal_p (to, op0, 0))
5307 return false;
5309 if (MEM_P (str_rtx))
5311 unsigned HOST_WIDE_INT offset1;
5313 if (str_bitsize == 0 || str_bitsize > BITS_PER_WORD)
5314 str_bitsize = BITS_PER_WORD;
5316 scalar_int_mode best_mode;
5317 if (!get_best_mode (bitsize, bitpos, bitregion_start, bitregion_end,
5318 MEM_ALIGN (str_rtx), str_bitsize, false, &best_mode))
5319 return false;
5320 str_mode = best_mode;
5321 str_bitsize = GET_MODE_BITSIZE (best_mode);
5323 offset1 = bitpos;
5324 bitpos %= str_bitsize;
5325 offset1 = (offset1 - bitpos) / BITS_PER_UNIT;
5326 str_rtx = adjust_address (str_rtx, str_mode, offset1);
5328 else if (!REG_P (str_rtx) && GET_CODE (str_rtx) != SUBREG)
5329 return false;
5331 /* If the bit field covers the whole REG/MEM, store_field
5332 will likely generate better code. */
5333 if (bitsize >= str_bitsize)
5334 return false;
5336 /* We can't handle fields split across multiple entities. */
5337 if (bitpos + bitsize > str_bitsize)
5338 return false;
5340 if (reverse ? !BYTES_BIG_ENDIAN : BYTES_BIG_ENDIAN)
5341 bitpos = str_bitsize - bitpos - bitsize;
5343 switch (code)
5345 case PLUS_EXPR:
5346 case MINUS_EXPR:
5347 /* For now, just optimize the case of the topmost bitfield
5348 where we don't need to do any masking and also
5349 1 bit bitfields where xor can be used.
5350 We might win by one instruction for the other bitfields
5351 too if insv/extv instructions aren't used, so that
5352 can be added later. */
5353 if ((reverse || bitpos + bitsize != str_bitsize)
5354 && (bitsize != 1 || TREE_CODE (op1) != INTEGER_CST))
5355 break;
5357 value = expand_expr (op1, NULL_RTX, str_mode, EXPAND_NORMAL);
5358 value = convert_modes (str_mode,
5359 TYPE_MODE (TREE_TYPE (op1)), value,
5360 TYPE_UNSIGNED (TREE_TYPE (op1)));
5362 /* We may be accessing data outside the field, which means
5363 we can alias adjacent data. */
5364 if (MEM_P (str_rtx))
5366 str_rtx = shallow_copy_rtx (str_rtx);
5367 set_mem_alias_set (str_rtx, 0);
5368 set_mem_expr (str_rtx, 0);
5371 if (bitsize == 1 && (reverse || bitpos + bitsize != str_bitsize))
5373 value = expand_and (str_mode, value, const1_rtx, NULL);
5374 binop = xor_optab;
5376 else
5377 binop = code == PLUS_EXPR ? add_optab : sub_optab;
5379 value = expand_shift (LSHIFT_EXPR, str_mode, value, bitpos, NULL_RTX, 1);
5380 if (reverse)
5381 value = flip_storage_order (str_mode, value);
5382 result = expand_binop (str_mode, binop, str_rtx,
5383 value, str_rtx, 1, OPTAB_WIDEN);
5384 if (result != str_rtx)
5385 emit_move_insn (str_rtx, result);
5386 return true;
5388 case BIT_IOR_EXPR:
5389 case BIT_XOR_EXPR:
5390 if (TREE_CODE (op1) != INTEGER_CST)
5391 break;
5392 value = expand_expr (op1, NULL_RTX, str_mode, EXPAND_NORMAL);
5393 value = convert_modes (str_mode,
5394 TYPE_MODE (TREE_TYPE (op1)), value,
5395 TYPE_UNSIGNED (TREE_TYPE (op1)));
5397 /* We may be accessing data outside the field, which means
5398 we can alias adjacent data. */
5399 if (MEM_P (str_rtx))
5401 str_rtx = shallow_copy_rtx (str_rtx);
5402 set_mem_alias_set (str_rtx, 0);
5403 set_mem_expr (str_rtx, 0);
5406 binop = code == BIT_IOR_EXPR ? ior_optab : xor_optab;
5407 if (bitpos + bitsize != str_bitsize)
5409 rtx mask = gen_int_mode ((HOST_WIDE_INT_1U << bitsize) - 1,
5410 str_mode);
5411 value = expand_and (str_mode, value, mask, NULL_RTX);
5413 value = expand_shift (LSHIFT_EXPR, str_mode, value, bitpos, NULL_RTX, 1);
5414 if (reverse)
5415 value = flip_storage_order (str_mode, value);
5416 result = expand_binop (str_mode, binop, str_rtx,
5417 value, str_rtx, 1, OPTAB_WIDEN);
5418 if (result != str_rtx)
5419 emit_move_insn (str_rtx, result);
5420 return true;
5422 default:
5423 break;
5426 return false;
5429 /* In the C++ memory model, consecutive bit fields in a structure are
5430 considered one memory location.
5432 Given a COMPONENT_REF EXP at position (BITPOS, OFFSET), this function
5433 returns the bit range of consecutive bits in which this COMPONENT_REF
5434 belongs. The values are returned in *BITSTART and *BITEND. *BITPOS
5435 and *OFFSET may be adjusted in the process.
5437 If the access does not need to be restricted, 0 is returned in both
5438 *BITSTART and *BITEND. */
5440 void
5441 get_bit_range (poly_uint64 *bitstart, poly_uint64 *bitend, tree exp,
5442 poly_int64 *bitpos, tree *offset)
5444 poly_int64 bitoffset;
5445 tree field, repr;
5447 gcc_assert (TREE_CODE (exp) == COMPONENT_REF);
5449 field = TREE_OPERAND (exp, 1);
5450 repr = DECL_BIT_FIELD_REPRESENTATIVE (field);
5451 /* If we do not have a DECL_BIT_FIELD_REPRESENTATIVE there is no
5452 need to limit the range we can access. */
5453 if (!repr)
5455 *bitstart = *bitend = 0;
5456 return;
5459 /* If we have a DECL_BIT_FIELD_REPRESENTATIVE but the enclosing record is
5460 part of a larger bit field, then the representative does not serve any
5461 useful purpose. This can occur in Ada. */
5462 if (handled_component_p (TREE_OPERAND (exp, 0)))
5464 machine_mode rmode;
5465 poly_int64 rbitsize, rbitpos;
5466 tree roffset;
5467 int unsignedp, reversep, volatilep = 0;
5468 get_inner_reference (TREE_OPERAND (exp, 0), &rbitsize, &rbitpos,
5469 &roffset, &rmode, &unsignedp, &reversep,
5470 &volatilep);
5471 if (!multiple_p (rbitpos, BITS_PER_UNIT))
5473 *bitstart = *bitend = 0;
5474 return;
5478 /* Compute the adjustment to bitpos from the offset of the field
5479 relative to the representative. DECL_FIELD_OFFSET of field and
5480 repr are the same by construction if they are not constants,
5481 see finish_bitfield_layout. */
5482 poly_uint64 field_offset, repr_offset;
5483 if (poly_int_tree_p (DECL_FIELD_OFFSET (field), &field_offset)
5484 && poly_int_tree_p (DECL_FIELD_OFFSET (repr), &repr_offset))
5485 bitoffset = (field_offset - repr_offset) * BITS_PER_UNIT;
5486 else
5487 bitoffset = 0;
5488 bitoffset += (tree_to_uhwi (DECL_FIELD_BIT_OFFSET (field))
5489 - tree_to_uhwi (DECL_FIELD_BIT_OFFSET (repr)));
5491 /* If the adjustment is larger than bitpos, we would have a negative bit
5492 position for the lower bound and this may wreak havoc later. Adjust
5493 offset and bitpos to make the lower bound non-negative in that case. */
5494 if (maybe_gt (bitoffset, *bitpos))
5496 poly_int64 adjust_bits = upper_bound (bitoffset, *bitpos) - *bitpos;
5497 poly_int64 adjust_bytes = exact_div (adjust_bits, BITS_PER_UNIT);
5499 *bitpos += adjust_bits;
5500 if (*offset == NULL_TREE)
5501 *offset = size_int (-adjust_bytes);
5502 else
5503 *offset = size_binop (MINUS_EXPR, *offset, size_int (adjust_bytes));
5504 *bitstart = 0;
5506 else
5507 *bitstart = *bitpos - bitoffset;
5509 *bitend = *bitstart + tree_to_poly_uint64 (DECL_SIZE (repr)) - 1;
5512 /* Returns true if BASE is a DECL that does not reside in memory and
5513 has non-BLKmode. DECL_RTL must not be a MEM; if
5514 DECL_RTL was not set yet, return false. */
5516 bool
5517 non_mem_decl_p (tree base)
5519 if (!DECL_P (base)
5520 || TREE_ADDRESSABLE (base)
5521 || DECL_MODE (base) == BLKmode)
5522 return false;
5524 if (!DECL_RTL_SET_P (base))
5525 return false;
5527 return (!MEM_P (DECL_RTL (base)));
5530 /* Returns true if REF refers to an object that does not
5531 reside in memory and has non-BLKmode. */
5533 bool
5534 mem_ref_refers_to_non_mem_p (tree ref)
5536 tree base;
5538 if (TREE_CODE (ref) == MEM_REF
5539 || TREE_CODE (ref) == TARGET_MEM_REF)
5541 tree addr = TREE_OPERAND (ref, 0);
5543 if (TREE_CODE (addr) != ADDR_EXPR)
5544 return false;
5546 base = TREE_OPERAND (addr, 0);
5548 else
5549 base = ref;
5551 return non_mem_decl_p (base);
5554 /* Expand an assignment that stores the value of FROM into TO. If NONTEMPORAL
5555 is true, try generating a nontemporal store. */
5557 void
5558 expand_assignment (tree to, tree from, bool nontemporal)
5560 rtx to_rtx = 0;
5561 rtx result;
5562 machine_mode mode;
5563 unsigned int align;
5564 enum insn_code icode;
5566 /* Don't crash if the lhs of the assignment was erroneous. */
5567 if (TREE_CODE (to) == ERROR_MARK)
5569 expand_normal (from);
5570 return;
5573 /* Optimize away no-op moves without side-effects. */
5574 if (operand_equal_p (to, from, 0))
5575 return;
5577 /* Handle misaligned stores. */
5578 mode = TYPE_MODE (TREE_TYPE (to));
5579 if ((TREE_CODE (to) == MEM_REF
5580 || TREE_CODE (to) == TARGET_MEM_REF
5581 || DECL_P (to))
5582 && mode != BLKmode
5583 && !mem_ref_refers_to_non_mem_p (to)
5584 && ((align = get_object_alignment (to))
5585 < GET_MODE_ALIGNMENT (mode))
5586 && (((icode = optab_handler (movmisalign_optab, mode))
5587 != CODE_FOR_nothing)
5588 || targetm.slow_unaligned_access (mode, align)))
5590 rtx reg, mem;
5592 reg = expand_expr (from, NULL_RTX, VOIDmode, EXPAND_NORMAL);
5593 /* Handle PARALLEL. */
5594 reg = maybe_emit_group_store (reg, TREE_TYPE (from));
5595 reg = force_not_mem (reg);
5596 mem = expand_expr (to, NULL_RTX, VOIDmode, EXPAND_WRITE);
5597 if (TREE_CODE (to) == MEM_REF && REF_REVERSE_STORAGE_ORDER (to))
5598 reg = flip_storage_order (mode, reg);
5600 if (icode != CODE_FOR_nothing)
5602 class expand_operand ops[2];
5604 create_fixed_operand (&ops[0], mem);
5605 create_input_operand (&ops[1], reg, mode);
5606 /* The movmisalign<mode> pattern cannot fail, else the assignment
5607 would silently be omitted. */
5608 expand_insn (icode, 2, ops);
5610 else
5611 store_bit_field (mem, GET_MODE_BITSIZE (mode), 0, 0, 0, mode, reg,
5612 false, false);
5613 return;
5616 /* Assignment of a structure component needs special treatment
5617 if the structure component's rtx is not simply a MEM.
5618 Assignment of an array element at a constant index, and assignment of
5619 an array element in an unaligned packed structure field, has the same
5620 problem. Same for (partially) storing into a non-memory object. */
5621 if (handled_component_p (to)
5622 || (TREE_CODE (to) == MEM_REF
5623 && (REF_REVERSE_STORAGE_ORDER (to)
5624 || mem_ref_refers_to_non_mem_p (to)))
5625 || TREE_CODE (TREE_TYPE (to)) == ARRAY_TYPE)
5627 machine_mode mode1;
5628 poly_int64 bitsize, bitpos;
5629 poly_uint64 bitregion_start = 0;
5630 poly_uint64 bitregion_end = 0;
5631 tree offset;
5632 int unsignedp, reversep, volatilep = 0;
5633 tree tem;
5635 push_temp_slots ();
5636 tem = get_inner_reference (to, &bitsize, &bitpos, &offset, &mode1,
5637 &unsignedp, &reversep, &volatilep);
5639 /* Make sure bitpos is not negative, it can wreak havoc later. */
5640 if (maybe_lt (bitpos, 0))
5642 gcc_assert (offset == NULL_TREE);
5643 offset = size_int (bits_to_bytes_round_down (bitpos));
5644 bitpos = num_trailing_bits (bitpos);
5647 if (TREE_CODE (to) == COMPONENT_REF
5648 && DECL_BIT_FIELD_TYPE (TREE_OPERAND (to, 1)))
5649 get_bit_range (&bitregion_start, &bitregion_end, to, &bitpos, &offset);
5650 /* The C++ memory model naturally applies to byte-aligned fields.
5651 However, if we do not have a DECL_BIT_FIELD_TYPE but BITPOS or
5652 BITSIZE are not byte-aligned, there is no need to limit the range
5653 we can access. This can occur with packed structures in Ada. */
5654 else if (maybe_gt (bitsize, 0)
5655 && multiple_p (bitsize, BITS_PER_UNIT)
5656 && multiple_p (bitpos, BITS_PER_UNIT))
5658 bitregion_start = bitpos;
5659 bitregion_end = bitpos + bitsize - 1;
5662 to_rtx = expand_expr (tem, NULL_RTX, VOIDmode, EXPAND_WRITE);
5664 /* If the field has a mode, we want to access it in the
5665 field's mode, not the computed mode.
5666 If a MEM has VOIDmode (external with incomplete type),
5667 use BLKmode for it instead. */
5668 if (MEM_P (to_rtx))
5670 if (mode1 != VOIDmode)
5671 to_rtx = adjust_address (to_rtx, mode1, 0);
5672 else if (GET_MODE (to_rtx) == VOIDmode)
5673 to_rtx = adjust_address (to_rtx, BLKmode, 0);
5676 if (offset != 0)
5678 machine_mode address_mode;
5679 rtx offset_rtx;
5681 if (!MEM_P (to_rtx))
5683 /* We can get constant negative offsets into arrays with broken
5684 user code. Translate this to a trap instead of ICEing. */
5685 gcc_assert (TREE_CODE (offset) == INTEGER_CST);
5686 expand_builtin_trap ();
5687 to_rtx = gen_rtx_MEM (BLKmode, const0_rtx);
5690 offset_rtx = expand_expr (offset, NULL_RTX, VOIDmode, EXPAND_SUM);
5691 address_mode = get_address_mode (to_rtx);
5692 if (GET_MODE (offset_rtx) != address_mode)
5694 /* We cannot be sure that the RTL in offset_rtx is valid outside
5695 of a memory address context, so force it into a register
5696 before attempting to convert it to the desired mode. */
5697 offset_rtx = force_operand (offset_rtx, NULL_RTX);
5698 offset_rtx = convert_to_mode (address_mode, offset_rtx, 0);
5701 /* If we have an expression in OFFSET_RTX and a non-zero
5702 byte offset in BITPOS, adding the byte offset before the
5703 OFFSET_RTX results in better intermediate code, which makes
5704 later rtl optimization passes perform better.
5706 We prefer intermediate code like this:
5708 r124:DI=r123:DI+0x18
5709 [r124:DI]=r121:DI
5711 ... instead of ...
5713 r124:DI=r123:DI+0x10
5714 [r124:DI+0x8]=r121:DI
5716 This is only done for aligned data values, as these can
5717 be expected to result in single move instructions. */
5718 poly_int64 bytepos;
5719 if (mode1 != VOIDmode
5720 && maybe_ne (bitpos, 0)
5721 && maybe_gt (bitsize, 0)
5722 && multiple_p (bitpos, BITS_PER_UNIT, &bytepos)
5723 && multiple_p (bitpos, bitsize)
5724 && multiple_p (bitsize, GET_MODE_ALIGNMENT (mode1))
5725 && MEM_ALIGN (to_rtx) >= GET_MODE_ALIGNMENT (mode1))
5727 to_rtx = adjust_address (to_rtx, mode1, bytepos);
5728 bitregion_start = 0;
5729 if (known_ge (bitregion_end, poly_uint64 (bitpos)))
5730 bitregion_end -= bitpos;
5731 bitpos = 0;
5734 to_rtx = offset_address (to_rtx, offset_rtx,
5735 highest_pow2_factor_for_target (to,
5736 offset));
5739 /* No action is needed if the target is not a memory and the field
5740 lies completely outside that target. This can occur if the source
5741 code contains an out-of-bounds access to a small array. */
5742 if (!MEM_P (to_rtx)
5743 && GET_MODE (to_rtx) != BLKmode
5744 && known_ge (bitpos, GET_MODE_PRECISION (GET_MODE (to_rtx))))
5746 expand_normal (from);
5747 result = NULL;
5749 /* Handle expand_expr of a complex value returning a CONCAT. */
5750 else if (GET_CODE (to_rtx) == CONCAT)
5752 machine_mode to_mode = GET_MODE (to_rtx);
5753 gcc_checking_assert (COMPLEX_MODE_P (to_mode));
5754 poly_int64 mode_bitsize = GET_MODE_BITSIZE (to_mode);
5755 unsigned short inner_bitsize = GET_MODE_UNIT_BITSIZE (to_mode);
5756 if (TYPE_MODE (TREE_TYPE (from)) == to_mode
5757 && known_eq (bitpos, 0)
5758 && known_eq (bitsize, mode_bitsize))
5759 result = store_expr (from, to_rtx, false, nontemporal, reversep);
5760 else if (TYPE_MODE (TREE_TYPE (from)) == GET_MODE_INNER (to_mode)
5761 && known_eq (bitsize, inner_bitsize)
5762 && (known_eq (bitpos, 0)
5763 || known_eq (bitpos, inner_bitsize)))
5764 result = store_expr (from, XEXP (to_rtx, maybe_ne (bitpos, 0)),
5765 false, nontemporal, reversep);
5766 else if (known_le (bitpos + bitsize, inner_bitsize))
5767 result = store_field (XEXP (to_rtx, 0), bitsize, bitpos,
5768 bitregion_start, bitregion_end,
5769 mode1, from, get_alias_set (to),
5770 nontemporal, reversep);
5771 else if (known_ge (bitpos, inner_bitsize))
5772 result = store_field (XEXP (to_rtx, 1), bitsize,
5773 bitpos - inner_bitsize,
5774 bitregion_start, bitregion_end,
5775 mode1, from, get_alias_set (to),
5776 nontemporal, reversep);
5777 else if (known_eq (bitpos, 0) && known_eq (bitsize, mode_bitsize))
5779 result = expand_normal (from);
5780 if (GET_CODE (result) == CONCAT)
5782 to_mode = GET_MODE_INNER (to_mode);
5783 machine_mode from_mode = GET_MODE_INNER (GET_MODE (result));
5784 rtx from_real
5785 = simplify_gen_subreg (to_mode, XEXP (result, 0),
5786 from_mode, 0);
5787 rtx from_imag
5788 = simplify_gen_subreg (to_mode, XEXP (result, 1),
5789 from_mode, 0);
5790 if (!from_real || !from_imag)
5791 goto concat_store_slow;
5792 emit_move_insn (XEXP (to_rtx, 0), from_real);
5793 emit_move_insn (XEXP (to_rtx, 1), from_imag);
5795 else
5797 machine_mode from_mode
5798 = GET_MODE (result) == VOIDmode
5799 ? TYPE_MODE (TREE_TYPE (from))
5800 : GET_MODE (result);
5801 rtx from_rtx;
5802 if (MEM_P (result))
5803 from_rtx = change_address (result, to_mode, NULL_RTX);
5804 else
5805 from_rtx
5806 = simplify_gen_subreg (to_mode, result, from_mode, 0);
5807 if (from_rtx)
5809 emit_move_insn (XEXP (to_rtx, 0),
5810 read_complex_part (from_rtx, false));
5811 emit_move_insn (XEXP (to_rtx, 1),
5812 read_complex_part (from_rtx, true));
5814 else
5816 to_mode = GET_MODE_INNER (to_mode);
5817 rtx from_real
5818 = simplify_gen_subreg (to_mode, result, from_mode, 0);
5819 rtx from_imag
5820 = simplify_gen_subreg (to_mode, result, from_mode,
5821 GET_MODE_SIZE (to_mode));
5822 if (!from_real || !from_imag)
5823 goto concat_store_slow;
5824 emit_move_insn (XEXP (to_rtx, 0), from_real);
5825 emit_move_insn (XEXP (to_rtx, 1), from_imag);
5829 else
5831 concat_store_slow:;
5832 rtx temp = assign_stack_temp (GET_MODE (to_rtx),
5833 GET_MODE_SIZE (GET_MODE (to_rtx)));
5834 write_complex_part (temp, XEXP (to_rtx, 0), false, true);
5835 write_complex_part (temp, XEXP (to_rtx, 1), true, false);
5836 result = store_field (temp, bitsize, bitpos,
5837 bitregion_start, bitregion_end,
5838 mode1, from, get_alias_set (to),
5839 nontemporal, reversep);
5840 emit_move_insn (XEXP (to_rtx, 0), read_complex_part (temp, false));
5841 emit_move_insn (XEXP (to_rtx, 1), read_complex_part (temp, true));
5844 /* For calls to functions returning variable length structures, if TO_RTX
5845 is not a MEM, go through a MEM because we must not create temporaries
5846 of the VLA type. */
5847 else if (!MEM_P (to_rtx)
5848 && TREE_CODE (from) == CALL_EXPR
5849 && COMPLETE_TYPE_P (TREE_TYPE (from))
5850 && TREE_CODE (TYPE_SIZE (TREE_TYPE (from))) != INTEGER_CST)
5852 rtx temp = assign_stack_temp (GET_MODE (to_rtx),
5853 GET_MODE_SIZE (GET_MODE (to_rtx)));
5854 result = store_field (temp, bitsize, bitpos, bitregion_start,
5855 bitregion_end, mode1, from, get_alias_set (to),
5856 nontemporal, reversep);
5857 emit_move_insn (to_rtx, temp);
5859 else
5861 if (MEM_P (to_rtx))
5863 /* If the field is at offset zero, we could have been given the
5864 DECL_RTX of the parent struct. Don't munge it. */
5865 to_rtx = shallow_copy_rtx (to_rtx);
5866 set_mem_attributes_minus_bitpos (to_rtx, to, 0, bitpos);
5867 if (volatilep)
5868 MEM_VOLATILE_P (to_rtx) = 1;
5871 gcc_checking_assert (known_ge (bitpos, 0));
5872 if (optimize_bitfield_assignment_op (bitsize, bitpos,
5873 bitregion_start, bitregion_end,
5874 mode1, to_rtx, to, from,
5875 reversep))
5876 result = NULL;
5877 else if (SUBREG_P (to_rtx)
5878 && SUBREG_PROMOTED_VAR_P (to_rtx))
5880 /* If to_rtx is a promoted subreg, we need to zero or sign
5881 extend the value afterwards. */
5882 if (TREE_CODE (to) == MEM_REF
5883 && TYPE_MODE (TREE_TYPE (from)) != BLKmode
5884 && !REF_REVERSE_STORAGE_ORDER (to)
5885 && known_eq (bitpos, 0)
5886 && known_eq (bitsize, GET_MODE_BITSIZE (GET_MODE (to_rtx))))
5887 result = store_expr (from, to_rtx, 0, nontemporal, false);
5888 else
5890 rtx to_rtx1
5891 = lowpart_subreg (subreg_unpromoted_mode (to_rtx),
5892 SUBREG_REG (to_rtx),
5893 subreg_promoted_mode (to_rtx));
5894 result = store_field (to_rtx1, bitsize, bitpos,
5895 bitregion_start, bitregion_end,
5896 mode1, from, get_alias_set (to),
5897 nontemporal, reversep);
5898 convert_move (SUBREG_REG (to_rtx), to_rtx1,
5899 SUBREG_PROMOTED_SIGN (to_rtx));
5902 else
5903 result = store_field (to_rtx, bitsize, bitpos,
5904 bitregion_start, bitregion_end,
5905 mode1, from, get_alias_set (to),
5906 nontemporal, reversep);
5909 if (result)
5910 preserve_temp_slots (result);
5911 pop_temp_slots ();
5912 return;
5915 /* If the rhs is a function call and its value is not an aggregate,
5916 call the function before we start to compute the lhs.
5917 This is needed for correct code for cases such as
5918 val = setjmp (buf) on machines where reference to val
5919 requires loading up part of an address in a separate insn.
5921 Don't do this if TO is a VAR_DECL or PARM_DECL whose DECL_RTL is REG
5922 since it might be a promoted variable where the zero- or sign- extension
5923 needs to be done. Handling this in the normal way is safe because no
5924 computation is done before the call. The same is true for SSA names. */
5925 if (TREE_CODE (from) == CALL_EXPR && ! aggregate_value_p (from, from)
5926 && COMPLETE_TYPE_P (TREE_TYPE (from))
5927 && TREE_CODE (TYPE_SIZE (TREE_TYPE (from))) == INTEGER_CST
5928 && ! (((VAR_P (to)
5929 || TREE_CODE (to) == PARM_DECL
5930 || TREE_CODE (to) == RESULT_DECL)
5931 && REG_P (DECL_RTL (to)))
5932 || TREE_CODE (to) == SSA_NAME))
5934 rtx value;
5936 push_temp_slots ();
5937 value = expand_normal (from);
5939 if (to_rtx == 0)
5940 to_rtx = expand_expr (to, NULL_RTX, VOIDmode, EXPAND_WRITE);
5942 /* Handle calls that return values in multiple non-contiguous locations.
5943 The Irix 6 ABI has examples of this. */
5944 if (GET_CODE (to_rtx) == PARALLEL)
5946 if (GET_CODE (value) == PARALLEL)
5947 emit_group_move (to_rtx, value);
5948 else
5949 emit_group_load (to_rtx, value, TREE_TYPE (from),
5950 int_size_in_bytes (TREE_TYPE (from)));
5952 else if (GET_CODE (value) == PARALLEL)
5953 emit_group_store (to_rtx, value, TREE_TYPE (from),
5954 int_size_in_bytes (TREE_TYPE (from)));
5955 else if (GET_MODE (to_rtx) == BLKmode)
5957 /* Handle calls that return BLKmode values in registers. */
5958 if (REG_P (value))
5959 copy_blkmode_from_reg (to_rtx, value, TREE_TYPE (from));
5960 else
5961 emit_block_move (to_rtx, value, expr_size (from), BLOCK_OP_NORMAL);
5963 else
5965 if (POINTER_TYPE_P (TREE_TYPE (to)))
5966 value = convert_memory_address_addr_space
5967 (as_a <scalar_int_mode> (GET_MODE (to_rtx)), value,
5968 TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (to))));
5970 emit_move_insn (to_rtx, value);
5973 preserve_temp_slots (to_rtx);
5974 pop_temp_slots ();
5975 return;
5978 /* Ordinary treatment. Expand TO to get a REG or MEM rtx. */
5979 to_rtx = expand_expr (to, NULL_RTX, VOIDmode, EXPAND_WRITE);
5981 /* Don't move directly into a return register. */
5982 if (TREE_CODE (to) == RESULT_DECL
5983 && (REG_P (to_rtx) || GET_CODE (to_rtx) == PARALLEL))
5985 rtx temp;
5987 push_temp_slots ();
5989 /* If the source is itself a return value, it still is in a pseudo at
5990 this point so we can move it back to the return register directly. */
5991 if (REG_P (to_rtx)
5992 && TYPE_MODE (TREE_TYPE (from)) == BLKmode
5993 && TREE_CODE (from) != CALL_EXPR)
5994 temp = copy_blkmode_to_reg (GET_MODE (to_rtx), from);
5995 else
5996 temp = expand_expr (from, NULL_RTX, GET_MODE (to_rtx), EXPAND_NORMAL);
5998 /* Handle calls that return values in multiple non-contiguous locations.
5999 The Irix 6 ABI has examples of this. */
6000 if (GET_CODE (to_rtx) == PARALLEL)
6002 if (GET_CODE (temp) == PARALLEL)
6003 emit_group_move (to_rtx, temp);
6004 else
6005 emit_group_load (to_rtx, temp, TREE_TYPE (from),
6006 int_size_in_bytes (TREE_TYPE (from)));
6008 else if (temp)
6009 emit_move_insn (to_rtx, temp);
6011 preserve_temp_slots (to_rtx);
6012 pop_temp_slots ();
6013 return;
6016 /* In case we are returning the contents of an object which overlaps
6017 the place the value is being stored, use a safe function when copying
6018 a value through a pointer into a structure value return block. */
6019 if (TREE_CODE (to) == RESULT_DECL
6020 && TREE_CODE (from) == INDIRECT_REF
6021 && ADDR_SPACE_GENERIC_P
6022 (TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (TREE_OPERAND (from, 0)))))
6023 && refs_may_alias_p (to, from)
6024 && cfun->returns_struct
6025 && !cfun->returns_pcc_struct)
6027 rtx from_rtx, size;
6029 push_temp_slots ();
6030 size = expr_size (from);
6031 from_rtx = expand_normal (from);
6033 emit_block_move_via_libcall (XEXP (to_rtx, 0), XEXP (from_rtx, 0), size);
6035 preserve_temp_slots (to_rtx);
6036 pop_temp_slots ();
6037 return;
6040 /* Compute FROM and store the value in the rtx we got. */
6042 push_temp_slots ();
6043 result = store_expr (from, to_rtx, 0, nontemporal, false);
6044 preserve_temp_slots (result);
6045 pop_temp_slots ();
6046 return;
6049 /* Emits nontemporal store insn that moves FROM to TO. Returns true if this
6050 succeeded, false otherwise. */
6052 bool
6053 emit_storent_insn (rtx to, rtx from)
6055 class expand_operand ops[2];
6056 machine_mode mode = GET_MODE (to);
6057 enum insn_code code = optab_handler (storent_optab, mode);
6059 if (code == CODE_FOR_nothing)
6060 return false;
6062 create_fixed_operand (&ops[0], to);
6063 create_input_operand (&ops[1], from, mode);
6064 return maybe_expand_insn (code, 2, ops);
6067 /* Helper function for store_expr storing of STRING_CST. */
6069 static rtx
6070 string_cst_read_str (void *data, void *, HOST_WIDE_INT offset,
6071 fixed_size_mode mode)
6073 tree str = (tree) data;
6075 gcc_assert (offset >= 0);
6076 if (offset >= TREE_STRING_LENGTH (str))
6077 return const0_rtx;
6079 if ((unsigned HOST_WIDE_INT) offset + GET_MODE_SIZE (mode)
6080 > (unsigned HOST_WIDE_INT) TREE_STRING_LENGTH (str))
6082 char *p = XALLOCAVEC (char, GET_MODE_SIZE (mode));
6083 size_t l = TREE_STRING_LENGTH (str) - offset;
6084 memcpy (p, TREE_STRING_POINTER (str) + offset, l);
6085 memset (p + l, '\0', GET_MODE_SIZE (mode) - l);
6086 return c_readstr (p, mode, false);
6089 return c_readstr (TREE_STRING_POINTER (str) + offset, mode, false);
6092 /* Generate code for computing expression EXP,
6093 and storing the value into TARGET.
6095 If the mode is BLKmode then we may return TARGET itself.
6096 It turns out that in BLKmode it doesn't cause a problem.
6097 because C has no operators that could combine two different
6098 assignments into the same BLKmode object with different values
6099 with no sequence point. Will other languages need this to
6100 be more thorough?
6102 If CALL_PARAM_P is nonzero, this is a store into a call param on the
6103 stack, and block moves may need to be treated specially.
6105 If NONTEMPORAL is true, try using a nontemporal store instruction.
6107 If REVERSE is true, the store is to be done in reverse order. */
6110 store_expr (tree exp, rtx target, int call_param_p,
6111 bool nontemporal, bool reverse)
6113 rtx temp;
6114 rtx alt_rtl = NULL_RTX;
6115 location_t loc = curr_insn_location ();
6116 bool shortened_string_cst = false;
6118 if (VOID_TYPE_P (TREE_TYPE (exp)))
6120 /* C++ can generate ?: expressions with a throw expression in one
6121 branch and an rvalue in the other. Here, we resolve attempts to
6122 store the throw expression's nonexistent result. */
6123 gcc_assert (!call_param_p);
6124 expand_expr (exp, const0_rtx, VOIDmode, EXPAND_NORMAL);
6125 return NULL_RTX;
6127 if (TREE_CODE (exp) == COMPOUND_EXPR)
6129 /* Perform first part of compound expression, then assign from second
6130 part. */
6131 expand_expr (TREE_OPERAND (exp, 0), const0_rtx, VOIDmode,
6132 call_param_p ? EXPAND_STACK_PARM : EXPAND_NORMAL);
6133 return store_expr (TREE_OPERAND (exp, 1), target,
6134 call_param_p, nontemporal, reverse);
6136 else if (TREE_CODE (exp) == COND_EXPR && GET_MODE (target) == BLKmode)
6138 /* For conditional expression, get safe form of the target. Then
6139 test the condition, doing the appropriate assignment on either
6140 side. This avoids the creation of unnecessary temporaries.
6141 For non-BLKmode, it is more efficient not to do this. */
6143 rtx_code_label *lab1 = gen_label_rtx (), *lab2 = gen_label_rtx ();
6145 do_pending_stack_adjust ();
6146 NO_DEFER_POP;
6147 jumpifnot (TREE_OPERAND (exp, 0), lab1,
6148 profile_probability::uninitialized ());
6149 store_expr (TREE_OPERAND (exp, 1), target, call_param_p,
6150 nontemporal, reverse);
6151 emit_jump_insn (targetm.gen_jump (lab2));
6152 emit_barrier ();
6153 emit_label (lab1);
6154 store_expr (TREE_OPERAND (exp, 2), target, call_param_p,
6155 nontemporal, reverse);
6156 emit_label (lab2);
6157 OK_DEFER_POP;
6159 return NULL_RTX;
6161 else if (GET_CODE (target) == SUBREG && SUBREG_PROMOTED_VAR_P (target))
6162 /* If this is a scalar in a register that is stored in a wider mode
6163 than the declared mode, compute the result into its declared mode
6164 and then convert to the wider mode. Our value is the computed
6165 expression. */
6167 rtx inner_target = 0;
6168 scalar_int_mode outer_mode = subreg_unpromoted_mode (target);
6169 scalar_int_mode inner_mode = subreg_promoted_mode (target);
6171 /* We can do the conversion inside EXP, which will often result
6172 in some optimizations. Do the conversion in two steps: first
6173 change the signedness, if needed, then the extend. But don't
6174 do this if the type of EXP is a subtype of something else
6175 since then the conversion might involve more than just
6176 converting modes. */
6177 if (INTEGRAL_TYPE_P (TREE_TYPE (exp))
6178 && TREE_TYPE (TREE_TYPE (exp)) == 0
6179 && GET_MODE_PRECISION (outer_mode)
6180 == TYPE_PRECISION (TREE_TYPE (exp)))
6182 if (!SUBREG_CHECK_PROMOTED_SIGN (target,
6183 TYPE_UNSIGNED (TREE_TYPE (exp))))
6185 /* Some types, e.g. Fortran's logical*4, won't have a signed
6186 version, so use the mode instead. */
6187 tree ntype
6188 = (signed_or_unsigned_type_for
6189 (SUBREG_PROMOTED_SIGN (target), TREE_TYPE (exp)));
6190 if (ntype == NULL)
6191 ntype = lang_hooks.types.type_for_mode
6192 (TYPE_MODE (TREE_TYPE (exp)),
6193 SUBREG_PROMOTED_SIGN (target));
6195 exp = fold_convert_loc (loc, ntype, exp);
6198 exp = fold_convert_loc (loc, lang_hooks.types.type_for_mode
6199 (inner_mode, SUBREG_PROMOTED_SIGN (target)),
6200 exp);
6202 inner_target = SUBREG_REG (target);
6205 temp = expand_expr (exp, inner_target, VOIDmode,
6206 call_param_p ? EXPAND_STACK_PARM : EXPAND_NORMAL);
6209 /* If TEMP is a VOIDmode constant, use convert_modes to make
6210 sure that we properly convert it. */
6211 if (CONSTANT_P (temp) && GET_MODE (temp) == VOIDmode)
6213 temp = convert_modes (outer_mode, TYPE_MODE (TREE_TYPE (exp)),
6214 temp, SUBREG_PROMOTED_SIGN (target));
6215 temp = convert_modes (inner_mode, outer_mode, temp,
6216 SUBREG_PROMOTED_SIGN (target));
6218 else if (!SCALAR_INT_MODE_P (GET_MODE (temp)))
6219 temp = convert_modes (outer_mode, TYPE_MODE (TREE_TYPE (exp)),
6220 temp, SUBREG_PROMOTED_SIGN (target));
6222 convert_move (SUBREG_REG (target), temp,
6223 SUBREG_PROMOTED_SIGN (target));
6225 return NULL_RTX;
6227 else if ((TREE_CODE (exp) == STRING_CST
6228 || (TREE_CODE (exp) == MEM_REF
6229 && TREE_CODE (TREE_OPERAND (exp, 0)) == ADDR_EXPR
6230 && TREE_CODE (TREE_OPERAND (TREE_OPERAND (exp, 0), 0))
6231 == STRING_CST
6232 && integer_zerop (TREE_OPERAND (exp, 1))))
6233 && !nontemporal && !call_param_p
6234 && MEM_P (target))
6236 /* Optimize initialization of an array with a STRING_CST. */
6237 HOST_WIDE_INT exp_len, str_copy_len;
6238 rtx dest_mem;
6239 tree str = TREE_CODE (exp) == STRING_CST
6240 ? exp : TREE_OPERAND (TREE_OPERAND (exp, 0), 0);
6242 exp_len = int_expr_size (exp);
6243 if (exp_len <= 0)
6244 goto normal_expr;
6246 if (TREE_STRING_LENGTH (str) <= 0)
6247 goto normal_expr;
6249 if (can_store_by_pieces (exp_len, string_cst_read_str, (void *) str,
6250 MEM_ALIGN (target), false))
6252 store_by_pieces (target, exp_len, string_cst_read_str, (void *) str,
6253 MEM_ALIGN (target), false, RETURN_BEGIN);
6254 return NULL_RTX;
6257 str_copy_len = TREE_STRING_LENGTH (str);
6259 /* Trailing NUL bytes in EXP will be handled by the call to
6260 clear_storage, which is more efficient than copying them from
6261 the STRING_CST, so trim those from STR_COPY_LEN. */
6262 while (str_copy_len)
6264 if (TREE_STRING_POINTER (str)[str_copy_len - 1])
6265 break;
6266 str_copy_len--;
6269 if ((STORE_MAX_PIECES & (STORE_MAX_PIECES - 1)) == 0)
6271 str_copy_len += STORE_MAX_PIECES - 1;
6272 str_copy_len &= ~(STORE_MAX_PIECES - 1);
6274 if (str_copy_len >= exp_len)
6275 goto normal_expr;
6277 if (!can_store_by_pieces (str_copy_len, string_cst_read_str,
6278 (void *) str, MEM_ALIGN (target), false))
6279 goto normal_expr;
6281 dest_mem = store_by_pieces (target, str_copy_len, string_cst_read_str,
6282 (void *) str, MEM_ALIGN (target), false,
6283 RETURN_END);
6284 clear_storage (adjust_address_1 (dest_mem, BLKmode, 0, 1, 1, 0,
6285 exp_len - str_copy_len),
6286 GEN_INT (exp_len - str_copy_len), BLOCK_OP_NORMAL);
6287 return NULL_RTX;
6289 else
6291 rtx tmp_target;
6293 normal_expr:
6294 /* If we want to use a nontemporal or a reverse order store, force the
6295 value into a register first. */
6296 tmp_target = nontemporal || reverse ? NULL_RTX : target;
6297 tree rexp = exp;
6298 if (TREE_CODE (exp) == STRING_CST
6299 && tmp_target == target
6300 && GET_MODE (target) == BLKmode
6301 && TYPE_MODE (TREE_TYPE (exp)) == BLKmode)
6303 rtx size = expr_size (exp);
6304 if (CONST_INT_P (size)
6305 && size != const0_rtx
6306 && (UINTVAL (size)
6307 > ((unsigned HOST_WIDE_INT) TREE_STRING_LENGTH (exp) + 32)))
6309 /* If the STRING_CST has much larger array type than
6310 TREE_STRING_LENGTH, only emit the TREE_STRING_LENGTH part of
6311 it into the rodata section as the code later on will use
6312 memset zero for the remainder anyway. See PR95052. */
6313 tmp_target = NULL_RTX;
6314 rexp = copy_node (exp);
6315 tree index
6316 = build_index_type (size_int (TREE_STRING_LENGTH (exp) - 1));
6317 TREE_TYPE (rexp) = build_array_type (TREE_TYPE (TREE_TYPE (exp)),
6318 index);
6319 shortened_string_cst = true;
6322 temp = expand_expr_real (rexp, tmp_target, GET_MODE (target),
6323 (call_param_p
6324 ? EXPAND_STACK_PARM : EXPAND_NORMAL),
6325 &alt_rtl, false);
6326 if (shortened_string_cst)
6328 gcc_assert (MEM_P (temp));
6329 temp = change_address (temp, BLKmode, NULL_RTX);
6333 /* If TEMP is a VOIDmode constant and the mode of the type of EXP is not
6334 the same as that of TARGET, adjust the constant. This is needed, for
6335 example, in case it is a CONST_DOUBLE or CONST_WIDE_INT and we want
6336 only a word-sized value. */
6337 if (CONSTANT_P (temp) && GET_MODE (temp) == VOIDmode
6338 && TREE_CODE (exp) != ERROR_MARK
6339 && GET_MODE (target) != TYPE_MODE (TREE_TYPE (exp)))
6341 gcc_assert (!shortened_string_cst);
6342 if (GET_MODE_CLASS (GET_MODE (target))
6343 != GET_MODE_CLASS (TYPE_MODE (TREE_TYPE (exp)))
6344 && known_eq (GET_MODE_BITSIZE (GET_MODE (target)),
6345 GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (exp)))))
6347 rtx t = simplify_gen_subreg (GET_MODE (target), temp,
6348 TYPE_MODE (TREE_TYPE (exp)), 0);
6349 if (t)
6350 temp = t;
6352 if (GET_MODE (temp) == VOIDmode)
6353 temp = convert_modes (GET_MODE (target), TYPE_MODE (TREE_TYPE (exp)),
6354 temp, TYPE_UNSIGNED (TREE_TYPE (exp)));
6357 /* If value was not generated in the target, store it there.
6358 Convert the value to TARGET's type first if necessary and emit the
6359 pending incrementations that have been queued when expanding EXP.
6360 Note that we cannot emit the whole queue blindly because this will
6361 effectively disable the POST_INC optimization later.
6363 If TEMP and TARGET compare equal according to rtx_equal_p, but
6364 one or both of them are volatile memory refs, we have to distinguish
6365 two cases:
6366 - expand_expr has used TARGET. In this case, we must not generate
6367 another copy. This can be detected by TARGET being equal according
6368 to == .
6369 - expand_expr has not used TARGET - that means that the source just
6370 happens to have the same RTX form. Since temp will have been created
6371 by expand_expr, it will compare unequal according to == .
6372 We must generate a copy in this case, to reach the correct number
6373 of volatile memory references. */
6375 if ((! rtx_equal_p (temp, target)
6376 || (temp != target && (side_effects_p (temp)
6377 || side_effects_p (target)
6378 || (MEM_P (temp)
6379 && !mems_same_for_tbaa_p (temp, target)))))
6380 && TREE_CODE (exp) != ERROR_MARK
6381 /* If store_expr stores a DECL whose DECL_RTL(exp) == TARGET,
6382 but TARGET is not valid memory reference, TEMP will differ
6383 from TARGET although it is really the same location. */
6384 && !(alt_rtl
6385 && rtx_equal_p (alt_rtl, target)
6386 && !side_effects_p (alt_rtl)
6387 && !side_effects_p (target))
6388 /* If there's nothing to copy, don't bother. Don't call
6389 expr_size unless necessary, because some front-ends (C++)
6390 expr_size-hook must not be given objects that are not
6391 supposed to be bit-copied or bit-initialized. */
6392 && expr_size (exp) != const0_rtx)
6394 if (GET_MODE (temp) != GET_MODE (target) && GET_MODE (temp) != VOIDmode)
6396 gcc_assert (!shortened_string_cst);
6397 if (GET_MODE (target) == BLKmode)
6399 /* Handle calls that return BLKmode values in registers. */
6400 if (REG_P (temp) && TREE_CODE (exp) == CALL_EXPR)
6401 copy_blkmode_from_reg (target, temp, TREE_TYPE (exp));
6402 else
6403 store_bit_field (target,
6404 rtx_to_poly_int64 (expr_size (exp))
6405 * BITS_PER_UNIT,
6406 0, 0, 0, GET_MODE (temp), temp, reverse,
6407 false);
6409 else
6410 convert_move (target, temp, TYPE_UNSIGNED (TREE_TYPE (exp)));
6413 else if (GET_MODE (temp) == BLKmode && TREE_CODE (exp) == STRING_CST)
6415 /* Handle copying a string constant into an array. The string
6416 constant may be shorter than the array. So copy just the string's
6417 actual length, and clear the rest. First get the size of the data
6418 type of the string, which is actually the size of the target. */
6419 rtx size = expr_size (exp);
6421 if (CONST_INT_P (size)
6422 && INTVAL (size) < TREE_STRING_LENGTH (exp))
6423 emit_block_move (target, temp, size,
6424 (call_param_p
6425 ? BLOCK_OP_CALL_PARM : BLOCK_OP_NORMAL));
6426 else
6428 machine_mode pointer_mode
6429 = targetm.addr_space.pointer_mode (MEM_ADDR_SPACE (target));
6430 machine_mode address_mode = get_address_mode (target);
6432 /* Compute the size of the data to copy from the string. */
6433 tree copy_size
6434 = size_binop_loc (loc, MIN_EXPR,
6435 make_tree (sizetype, size),
6436 size_int (TREE_STRING_LENGTH (exp)));
6437 rtx copy_size_rtx
6438 = expand_expr (copy_size, NULL_RTX, VOIDmode,
6439 (call_param_p
6440 ? EXPAND_STACK_PARM : EXPAND_NORMAL));
6441 rtx_code_label *label = 0;
6443 /* Copy that much. */
6444 copy_size_rtx = convert_to_mode (pointer_mode, copy_size_rtx,
6445 TYPE_UNSIGNED (sizetype));
6446 emit_block_move (target, temp, copy_size_rtx,
6447 (call_param_p
6448 ? BLOCK_OP_CALL_PARM : BLOCK_OP_NORMAL));
6450 /* Figure out how much is left in TARGET that we have to clear.
6451 Do all calculations in pointer_mode. */
6452 poly_int64 const_copy_size;
6453 if (poly_int_rtx_p (copy_size_rtx, &const_copy_size))
6455 size = plus_constant (address_mode, size, -const_copy_size);
6456 target = adjust_address (target, BLKmode, const_copy_size);
6458 else
6460 size = expand_binop (TYPE_MODE (sizetype), sub_optab, size,
6461 copy_size_rtx, NULL_RTX, 0,
6462 OPTAB_LIB_WIDEN);
6464 if (GET_MODE (copy_size_rtx) != address_mode)
6465 copy_size_rtx = convert_to_mode (address_mode,
6466 copy_size_rtx,
6467 TYPE_UNSIGNED (sizetype));
6469 target = offset_address (target, copy_size_rtx,
6470 highest_pow2_factor (copy_size));
6471 label = gen_label_rtx ();
6472 emit_cmp_and_jump_insns (size, const0_rtx, LT, NULL_RTX,
6473 GET_MODE (size), 0, label);
6476 if (size != const0_rtx)
6477 clear_storage (target, size, BLOCK_OP_NORMAL);
6479 if (label)
6480 emit_label (label);
6483 else if (shortened_string_cst)
6484 gcc_unreachable ();
6485 /* Handle calls that return values in multiple non-contiguous locations.
6486 The Irix 6 ABI has examples of this. */
6487 else if (GET_CODE (target) == PARALLEL)
6489 if (GET_CODE (temp) == PARALLEL)
6490 emit_group_move (target, temp);
6491 else
6492 emit_group_load (target, temp, TREE_TYPE (exp),
6493 int_size_in_bytes (TREE_TYPE (exp)));
6495 else if (GET_CODE (temp) == PARALLEL)
6496 emit_group_store (target, temp, TREE_TYPE (exp),
6497 int_size_in_bytes (TREE_TYPE (exp)));
6498 else if (GET_MODE (temp) == BLKmode)
6499 emit_block_move (target, temp, expr_size (exp),
6500 (call_param_p
6501 ? BLOCK_OP_CALL_PARM : BLOCK_OP_NORMAL));
6502 /* If we emit a nontemporal store, there is nothing else to do. */
6503 else if (nontemporal && emit_storent_insn (target, temp))
6505 else
6507 if (reverse)
6508 temp = flip_storage_order (GET_MODE (target), temp);
6509 temp = force_operand (temp, target);
6510 if (temp != target)
6511 emit_move_insn (target, temp);
6514 else
6515 gcc_assert (!shortened_string_cst);
6517 return NULL_RTX;
6520 /* Return true if field F of structure TYPE is a flexible array. */
6522 static bool
6523 flexible_array_member_p (const_tree f, const_tree type)
6525 const_tree tf;
6527 tf = TREE_TYPE (f);
6528 return (DECL_CHAIN (f) == NULL
6529 && TREE_CODE (tf) == ARRAY_TYPE
6530 && TYPE_DOMAIN (tf)
6531 && TYPE_MIN_VALUE (TYPE_DOMAIN (tf))
6532 && integer_zerop (TYPE_MIN_VALUE (TYPE_DOMAIN (tf)))
6533 && !TYPE_MAX_VALUE (TYPE_DOMAIN (tf))
6534 && int_size_in_bytes (type) >= 0);
6537 /* If FOR_CTOR_P, return the number of top-level elements that a constructor
6538 must have in order for it to completely initialize a value of type TYPE.
6539 Return -1 if the number isn't known.
6541 If !FOR_CTOR_P, return an estimate of the number of scalars in TYPE. */
6543 static HOST_WIDE_INT
6544 count_type_elements (const_tree type, bool for_ctor_p)
6546 switch (TREE_CODE (type))
6548 case ARRAY_TYPE:
6550 tree nelts;
6552 nelts = array_type_nelts (type);
6553 if (nelts && tree_fits_uhwi_p (nelts))
6555 unsigned HOST_WIDE_INT n;
6557 n = tree_to_uhwi (nelts) + 1;
6558 if (n == 0 || for_ctor_p)
6559 return n;
6560 else
6561 return n * count_type_elements (TREE_TYPE (type), false);
6563 return for_ctor_p ? -1 : 1;
6566 case RECORD_TYPE:
6568 unsigned HOST_WIDE_INT n;
6569 tree f;
6571 n = 0;
6572 for (f = TYPE_FIELDS (type); f ; f = DECL_CHAIN (f))
6573 if (TREE_CODE (f) == FIELD_DECL)
6575 if (!for_ctor_p)
6576 n += count_type_elements (TREE_TYPE (f), false);
6577 else if (!flexible_array_member_p (f, type))
6578 /* Don't count flexible arrays, which are not supposed
6579 to be initialized. */
6580 n += 1;
6583 return n;
6586 case UNION_TYPE:
6587 case QUAL_UNION_TYPE:
6589 tree f;
6590 HOST_WIDE_INT n, m;
6592 gcc_assert (!for_ctor_p);
6593 /* Estimate the number of scalars in each field and pick the
6594 maximum. Other estimates would do instead; the idea is simply
6595 to make sure that the estimate is not sensitive to the ordering
6596 of the fields. */
6597 n = 1;
6598 for (f = TYPE_FIELDS (type); f ; f = DECL_CHAIN (f))
6599 if (TREE_CODE (f) == FIELD_DECL)
6601 m = count_type_elements (TREE_TYPE (f), false);
6602 /* If the field doesn't span the whole union, add an extra
6603 scalar for the rest. */
6604 if (simple_cst_equal (TYPE_SIZE (TREE_TYPE (f)),
6605 TYPE_SIZE (type)) != 1)
6606 m++;
6607 if (n < m)
6608 n = m;
6610 return n;
6613 case COMPLEX_TYPE:
6614 return 2;
6616 case VECTOR_TYPE:
6618 unsigned HOST_WIDE_INT nelts;
6619 if (TYPE_VECTOR_SUBPARTS (type).is_constant (&nelts))
6620 return nelts;
6621 else
6622 return -1;
6625 case INTEGER_TYPE:
6626 case REAL_TYPE:
6627 case FIXED_POINT_TYPE:
6628 case ENUMERAL_TYPE:
6629 case BOOLEAN_TYPE:
6630 case POINTER_TYPE:
6631 case OFFSET_TYPE:
6632 case REFERENCE_TYPE:
6633 case NULLPTR_TYPE:
6634 case OPAQUE_TYPE:
6635 return 1;
6637 case ERROR_MARK:
6638 return 0;
6640 case VOID_TYPE:
6641 case METHOD_TYPE:
6642 case FUNCTION_TYPE:
6643 case LANG_TYPE:
6644 default:
6645 gcc_unreachable ();
6649 /* Helper for categorize_ctor_elements. Identical interface. */
6651 static bool
6652 categorize_ctor_elements_1 (const_tree ctor, HOST_WIDE_INT *p_nz_elts,
6653 HOST_WIDE_INT *p_unique_nz_elts,
6654 HOST_WIDE_INT *p_init_elts, bool *p_complete)
6656 unsigned HOST_WIDE_INT idx;
6657 HOST_WIDE_INT nz_elts, unique_nz_elts, init_elts, num_fields;
6658 tree value, purpose, elt_type;
6660 /* Whether CTOR is a valid constant initializer, in accordance with what
6661 initializer_constant_valid_p does. If inferred from the constructor
6662 elements, true until proven otherwise. */
6663 bool const_from_elts_p = constructor_static_from_elts_p (ctor);
6664 bool const_p = const_from_elts_p ? true : TREE_STATIC (ctor);
6666 nz_elts = 0;
6667 unique_nz_elts = 0;
6668 init_elts = 0;
6669 num_fields = 0;
6670 elt_type = NULL_TREE;
6672 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (ctor), idx, purpose, value)
6674 HOST_WIDE_INT mult = 1;
6676 if (purpose && TREE_CODE (purpose) == RANGE_EXPR)
6678 tree lo_index = TREE_OPERAND (purpose, 0);
6679 tree hi_index = TREE_OPERAND (purpose, 1);
6681 if (tree_fits_uhwi_p (lo_index) && tree_fits_uhwi_p (hi_index))
6682 mult = (tree_to_uhwi (hi_index)
6683 - tree_to_uhwi (lo_index) + 1);
6685 num_fields += mult;
6686 elt_type = TREE_TYPE (value);
6688 switch (TREE_CODE (value))
6690 case CONSTRUCTOR:
6692 HOST_WIDE_INT nz = 0, unz = 0, ic = 0;
6694 bool const_elt_p = categorize_ctor_elements_1 (value, &nz, &unz,
6695 &ic, p_complete);
6697 nz_elts += mult * nz;
6698 unique_nz_elts += unz;
6699 init_elts += mult * ic;
6701 if (const_from_elts_p && const_p)
6702 const_p = const_elt_p;
6704 break;
6706 case INTEGER_CST:
6707 case REAL_CST:
6708 case FIXED_CST:
6709 if (!initializer_zerop (value))
6711 nz_elts += mult;
6712 unique_nz_elts++;
6714 init_elts += mult;
6715 break;
6717 case STRING_CST:
6718 nz_elts += mult * TREE_STRING_LENGTH (value);
6719 unique_nz_elts += TREE_STRING_LENGTH (value);
6720 init_elts += mult * TREE_STRING_LENGTH (value);
6721 break;
6723 case COMPLEX_CST:
6724 if (!initializer_zerop (TREE_REALPART (value)))
6726 nz_elts += mult;
6727 unique_nz_elts++;
6729 if (!initializer_zerop (TREE_IMAGPART (value)))
6731 nz_elts += mult;
6732 unique_nz_elts++;
6734 init_elts += 2 * mult;
6735 break;
6737 case VECTOR_CST:
6739 /* We can only construct constant-length vectors using
6740 CONSTRUCTOR. */
6741 unsigned int nunits = VECTOR_CST_NELTS (value).to_constant ();
6742 for (unsigned int i = 0; i < nunits; ++i)
6744 tree v = VECTOR_CST_ELT (value, i);
6745 if (!initializer_zerop (v))
6747 nz_elts += mult;
6748 unique_nz_elts++;
6750 init_elts += mult;
6753 break;
6755 default:
6757 HOST_WIDE_INT tc = count_type_elements (elt_type, false);
6758 nz_elts += mult * tc;
6759 unique_nz_elts += tc;
6760 init_elts += mult * tc;
6762 if (const_from_elts_p && const_p)
6763 const_p
6764 = initializer_constant_valid_p (value,
6765 elt_type,
6766 TYPE_REVERSE_STORAGE_ORDER
6767 (TREE_TYPE (ctor)))
6768 != NULL_TREE;
6770 break;
6774 if (*p_complete && !complete_ctor_at_level_p (TREE_TYPE (ctor),
6775 num_fields, elt_type))
6776 *p_complete = false;
6778 *p_nz_elts += nz_elts;
6779 *p_unique_nz_elts += unique_nz_elts;
6780 *p_init_elts += init_elts;
6782 return const_p;
6785 /* Examine CTOR to discover:
6786 * how many scalar fields are set to nonzero values,
6787 and place it in *P_NZ_ELTS;
6788 * the same, but counting RANGE_EXPRs as multiplier of 1 instead of
6789 high - low + 1 (this can be useful for callers to determine ctors
6790 that could be cheaply initialized with - perhaps nested - loops
6791 compared to copied from huge read-only data),
6792 and place it in *P_UNIQUE_NZ_ELTS;
6793 * how many scalar fields in total are in CTOR,
6794 and place it in *P_ELT_COUNT.
6795 * whether the constructor is complete -- in the sense that every
6796 meaningful byte is explicitly given a value --
6797 and place it in *P_COMPLETE.
6799 Return whether or not CTOR is a valid static constant initializer, the same
6800 as "initializer_constant_valid_p (CTOR, TREE_TYPE (CTOR)) != 0". */
6802 bool
6803 categorize_ctor_elements (const_tree ctor, HOST_WIDE_INT *p_nz_elts,
6804 HOST_WIDE_INT *p_unique_nz_elts,
6805 HOST_WIDE_INT *p_init_elts, bool *p_complete)
6807 *p_nz_elts = 0;
6808 *p_unique_nz_elts = 0;
6809 *p_init_elts = 0;
6810 *p_complete = true;
6812 return categorize_ctor_elements_1 (ctor, p_nz_elts, p_unique_nz_elts,
6813 p_init_elts, p_complete);
6816 /* Return true if constructor CTOR is simple enough to be materialized
6817 in an integer mode register. Limit the size to WORDS words, which
6818 is 1 by default. */
6820 bool
6821 immediate_const_ctor_p (const_tree ctor, unsigned int words)
6823 /* Allow function to be called with a VAR_DECL's DECL_INITIAL. */
6824 if (!ctor || TREE_CODE (ctor) != CONSTRUCTOR)
6825 return false;
6827 return TREE_CONSTANT (ctor)
6828 && !TREE_ADDRESSABLE (ctor)
6829 && CONSTRUCTOR_NELTS (ctor)
6830 && TREE_CODE (TREE_TYPE (ctor)) != ARRAY_TYPE
6831 && int_expr_size (ctor) <= words * UNITS_PER_WORD
6832 && initializer_constant_valid_for_bitfield_p (ctor);
6835 /* TYPE is initialized by a constructor with NUM_ELTS elements, the last
6836 of which had type LAST_TYPE. Each element was itself a complete
6837 initializer, in the sense that every meaningful byte was explicitly
6838 given a value. Return true if the same is true for the constructor
6839 as a whole. */
6841 bool
6842 complete_ctor_at_level_p (const_tree type, HOST_WIDE_INT num_elts,
6843 const_tree last_type)
6845 if (TREE_CODE (type) == UNION_TYPE
6846 || TREE_CODE (type) == QUAL_UNION_TYPE)
6848 if (num_elts == 0)
6849 return false;
6851 gcc_assert (num_elts == 1 && last_type);
6853 /* ??? We could look at each element of the union, and find the
6854 largest element. Which would avoid comparing the size of the
6855 initialized element against any tail padding in the union.
6856 Doesn't seem worth the effort... */
6857 return simple_cst_equal (TYPE_SIZE (type), TYPE_SIZE (last_type)) == 1;
6860 return count_type_elements (type, true) == num_elts;
6863 /* Return true if EXP contains mostly (3/4) zeros. */
6865 static bool
6866 mostly_zeros_p (const_tree exp)
6868 if (TREE_CODE (exp) == CONSTRUCTOR)
6870 HOST_WIDE_INT nz_elts, unz_elts, init_elts;
6871 bool complete_p;
6873 categorize_ctor_elements (exp, &nz_elts, &unz_elts, &init_elts,
6874 &complete_p);
6875 return !complete_p || nz_elts < init_elts / 4;
6878 return initializer_zerop (exp);
6881 /* Return true if EXP contains all zeros. */
6883 static bool
6884 all_zeros_p (const_tree exp)
6886 if (TREE_CODE (exp) == CONSTRUCTOR)
6888 HOST_WIDE_INT nz_elts, unz_elts, init_elts;
6889 bool complete_p;
6891 categorize_ctor_elements (exp, &nz_elts, &unz_elts, &init_elts,
6892 &complete_p);
6893 return nz_elts == 0;
6896 return initializer_zerop (exp);
6899 /* Helper function for store_constructor.
6900 TARGET, BITSIZE, BITPOS, MODE, EXP are as for store_field.
6901 CLEARED is as for store_constructor.
6902 ALIAS_SET is the alias set to use for any stores.
6903 If REVERSE is true, the store is to be done in reverse order.
6905 This provides a recursive shortcut back to store_constructor when it isn't
6906 necessary to go through store_field. This is so that we can pass through
6907 the cleared field to let store_constructor know that we may not have to
6908 clear a substructure if the outer structure has already been cleared. */
6910 static void
6911 store_constructor_field (rtx target, poly_uint64 bitsize, poly_int64 bitpos,
6912 poly_uint64 bitregion_start,
6913 poly_uint64 bitregion_end,
6914 machine_mode mode,
6915 tree exp, int cleared,
6916 alias_set_type alias_set, bool reverse)
6918 poly_int64 bytepos;
6919 poly_uint64 bytesize;
6920 if (TREE_CODE (exp) == CONSTRUCTOR
6921 /* We can only call store_constructor recursively if the size and
6922 bit position are on a byte boundary. */
6923 && multiple_p (bitpos, BITS_PER_UNIT, &bytepos)
6924 && maybe_ne (bitsize, 0U)
6925 && multiple_p (bitsize, BITS_PER_UNIT, &bytesize)
6926 /* If we have a nonzero bitpos for a register target, then we just
6927 let store_field do the bitfield handling. This is unlikely to
6928 generate unnecessary clear instructions anyways. */
6929 && (known_eq (bitpos, 0) || MEM_P (target)))
6931 if (MEM_P (target))
6933 machine_mode target_mode = GET_MODE (target);
6934 if (target_mode != BLKmode
6935 && !multiple_p (bitpos, GET_MODE_ALIGNMENT (target_mode)))
6936 target_mode = BLKmode;
6937 target = adjust_address (target, target_mode, bytepos);
6941 /* Update the alias set, if required. */
6942 if (MEM_P (target) && ! MEM_KEEP_ALIAS_SET_P (target)
6943 && MEM_ALIAS_SET (target) != 0)
6945 target = copy_rtx (target);
6946 set_mem_alias_set (target, alias_set);
6949 store_constructor (exp, target, cleared, bytesize, reverse);
6951 else
6952 store_field (target, bitsize, bitpos, bitregion_start, bitregion_end, mode,
6953 exp, alias_set, false, reverse);
6957 /* Returns the number of FIELD_DECLs in TYPE. */
6959 static int
6960 fields_length (const_tree type)
6962 tree t = TYPE_FIELDS (type);
6963 int count = 0;
6965 for (; t; t = DECL_CHAIN (t))
6966 if (TREE_CODE (t) == FIELD_DECL)
6967 ++count;
6969 return count;
6973 /* Store the value of constructor EXP into the rtx TARGET.
6974 TARGET is either a REG or a MEM; we know it cannot conflict, since
6975 safe_from_p has been called.
6976 CLEARED is true if TARGET is known to have been zero'd.
6977 SIZE is the number of bytes of TARGET we are allowed to modify: this
6978 may not be the same as the size of EXP if we are assigning to a field
6979 which has been packed to exclude padding bits.
6980 If REVERSE is true, the store is to be done in reverse order. */
6982 void
6983 store_constructor (tree exp, rtx target, int cleared, poly_int64 size,
6984 bool reverse)
6986 tree type = TREE_TYPE (exp);
6987 HOST_WIDE_INT exp_size = int_size_in_bytes (type);
6988 poly_int64 bitregion_end = known_gt (size, 0) ? size * BITS_PER_UNIT - 1 : 0;
6990 switch (TREE_CODE (type))
6992 case RECORD_TYPE:
6993 case UNION_TYPE:
6994 case QUAL_UNION_TYPE:
6996 unsigned HOST_WIDE_INT idx;
6997 tree field, value;
6999 /* The storage order is specified for every aggregate type. */
7000 reverse = TYPE_REVERSE_STORAGE_ORDER (type);
7002 /* If size is zero or the target is already cleared, do nothing. */
7003 if (known_eq (size, 0) || cleared)
7004 cleared = 1;
7005 /* We either clear the aggregate or indicate the value is dead. */
7006 else if ((TREE_CODE (type) == UNION_TYPE
7007 || TREE_CODE (type) == QUAL_UNION_TYPE)
7008 && ! CONSTRUCTOR_ELTS (exp))
7009 /* If the constructor is empty, clear the union. */
7011 clear_storage (target, expr_size (exp), BLOCK_OP_NORMAL);
7012 cleared = 1;
7015 /* If we are building a static constructor into a register,
7016 set the initial value as zero so we can fold the value into
7017 a constant. But if more than one register is involved,
7018 this probably loses. */
7019 else if (REG_P (target) && TREE_STATIC (exp)
7020 && known_le (GET_MODE_SIZE (GET_MODE (target)),
7021 REGMODE_NATURAL_SIZE (GET_MODE (target))))
7023 emit_move_insn (target, CONST0_RTX (GET_MODE (target)));
7024 cleared = 1;
7027 /* If the constructor has fewer fields than the structure or
7028 if we are initializing the structure to mostly zeros, clear
7029 the whole structure first. Don't do this if TARGET is a
7030 register whose mode size isn't equal to SIZE since
7031 clear_storage can't handle this case. */
7032 else if (known_size_p (size)
7033 && (((int) CONSTRUCTOR_NELTS (exp) != fields_length (type))
7034 || mostly_zeros_p (exp))
7035 && (!REG_P (target)
7036 || known_eq (GET_MODE_SIZE (GET_MODE (target)), size)))
7038 clear_storage (target, gen_int_mode (size, Pmode),
7039 BLOCK_OP_NORMAL);
7040 cleared = 1;
7043 if (REG_P (target) && !cleared)
7044 emit_clobber (target);
7046 /* Store each element of the constructor into the
7047 corresponding field of TARGET. */
7048 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (exp), idx, field, value)
7050 machine_mode mode;
7051 HOST_WIDE_INT bitsize;
7052 HOST_WIDE_INT bitpos = 0;
7053 tree offset;
7054 rtx to_rtx = target;
7056 /* Just ignore missing fields. We cleared the whole
7057 structure, above, if any fields are missing. */
7058 if (field == 0)
7059 continue;
7061 if (cleared && initializer_zerop (value))
7062 continue;
7064 if (tree_fits_uhwi_p (DECL_SIZE (field)))
7065 bitsize = tree_to_uhwi (DECL_SIZE (field));
7066 else
7067 gcc_unreachable ();
7069 mode = DECL_MODE (field);
7070 if (DECL_BIT_FIELD (field))
7071 mode = VOIDmode;
7073 offset = DECL_FIELD_OFFSET (field);
7074 if (tree_fits_shwi_p (offset)
7075 && tree_fits_shwi_p (bit_position (field)))
7077 bitpos = int_bit_position (field);
7078 offset = NULL_TREE;
7080 else
7081 gcc_unreachable ();
7083 /* If this initializes a field that is smaller than a
7084 word, at the start of a word, try to widen it to a full
7085 word. This special case allows us to output C++ member
7086 function initializations in a form that the optimizers
7087 can understand. */
7088 if (WORD_REGISTER_OPERATIONS
7089 && REG_P (target)
7090 && bitsize < BITS_PER_WORD
7091 && bitpos % BITS_PER_WORD == 0
7092 && GET_MODE_CLASS (mode) == MODE_INT
7093 && TREE_CODE (value) == INTEGER_CST
7094 && exp_size >= 0
7095 && bitpos + BITS_PER_WORD <= exp_size * BITS_PER_UNIT)
7097 type = TREE_TYPE (value);
7099 if (TYPE_PRECISION (type) < BITS_PER_WORD)
7101 type = lang_hooks.types.type_for_mode
7102 (word_mode, TYPE_UNSIGNED (type));
7103 value = fold_convert (type, value);
7104 /* Make sure the bits beyond the original bitsize are zero
7105 so that we can correctly avoid extra zeroing stores in
7106 later constructor elements. */
7107 tree bitsize_mask
7108 = wide_int_to_tree (type, wi::mask (bitsize, false,
7109 BITS_PER_WORD));
7110 value = fold_build2 (BIT_AND_EXPR, type, value, bitsize_mask);
7113 if (BYTES_BIG_ENDIAN)
7114 value
7115 = fold_build2 (LSHIFT_EXPR, type, value,
7116 build_int_cst (type,
7117 BITS_PER_WORD - bitsize));
7118 bitsize = BITS_PER_WORD;
7119 mode = word_mode;
7122 if (MEM_P (to_rtx) && !MEM_KEEP_ALIAS_SET_P (to_rtx)
7123 && DECL_NONADDRESSABLE_P (field))
7125 to_rtx = copy_rtx (to_rtx);
7126 MEM_KEEP_ALIAS_SET_P (to_rtx) = 1;
7129 store_constructor_field (to_rtx, bitsize, bitpos,
7130 0, bitregion_end, mode,
7131 value, cleared,
7132 get_alias_set (TREE_TYPE (field)),
7133 reverse);
7135 break;
7137 case ARRAY_TYPE:
7139 tree value, index;
7140 unsigned HOST_WIDE_INT i;
7141 bool need_to_clear;
7142 tree domain;
7143 tree elttype = TREE_TYPE (type);
7144 bool const_bounds_p;
7145 HOST_WIDE_INT minelt = 0;
7146 HOST_WIDE_INT maxelt = 0;
7148 /* The storage order is specified for every aggregate type. */
7149 reverse = TYPE_REVERSE_STORAGE_ORDER (type);
7151 domain = TYPE_DOMAIN (type);
7152 const_bounds_p = (TYPE_MIN_VALUE (domain)
7153 && TYPE_MAX_VALUE (domain)
7154 && tree_fits_shwi_p (TYPE_MIN_VALUE (domain))
7155 && tree_fits_shwi_p (TYPE_MAX_VALUE (domain)));
7157 /* If we have constant bounds for the range of the type, get them. */
7158 if (const_bounds_p)
7160 minelt = tree_to_shwi (TYPE_MIN_VALUE (domain));
7161 maxelt = tree_to_shwi (TYPE_MAX_VALUE (domain));
7164 /* If the constructor has fewer elements than the array, clear
7165 the whole array first. Similarly if this is static
7166 constructor of a non-BLKmode object. */
7167 if (cleared)
7168 need_to_clear = false;
7169 else if (REG_P (target) && TREE_STATIC (exp))
7170 need_to_clear = true;
7171 else
7173 unsigned HOST_WIDE_INT idx;
7174 HOST_WIDE_INT count = 0, zero_count = 0;
7175 need_to_clear = ! const_bounds_p;
7177 /* This loop is a more accurate version of the loop in
7178 mostly_zeros_p (it handles RANGE_EXPR in an index). It
7179 is also needed to check for missing elements. */
7180 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (exp), idx, index, value)
7182 HOST_WIDE_INT this_node_count;
7184 if (need_to_clear)
7185 break;
7187 if (index != NULL_TREE && TREE_CODE (index) == RANGE_EXPR)
7189 tree lo_index = TREE_OPERAND (index, 0);
7190 tree hi_index = TREE_OPERAND (index, 1);
7192 if (! tree_fits_uhwi_p (lo_index)
7193 || ! tree_fits_uhwi_p (hi_index))
7195 need_to_clear = true;
7196 break;
7199 this_node_count = (tree_to_uhwi (hi_index)
7200 - tree_to_uhwi (lo_index) + 1);
7202 else
7203 this_node_count = 1;
7205 count += this_node_count;
7206 if (mostly_zeros_p (value))
7207 zero_count += this_node_count;
7210 /* Clear the entire array first if there are any missing
7211 elements, or if the incidence of zero elements is >=
7212 75%. */
7213 if (! need_to_clear
7214 && (count < maxelt - minelt + 1
7215 || 4 * zero_count >= 3 * count))
7216 need_to_clear = true;
7219 if (need_to_clear && maybe_gt (size, 0))
7221 if (REG_P (target))
7222 emit_move_insn (target, CONST0_RTX (GET_MODE (target)));
7223 else
7224 clear_storage (target, gen_int_mode (size, Pmode),
7225 BLOCK_OP_NORMAL);
7226 cleared = 1;
7229 if (!cleared && REG_P (target))
7230 /* Inform later passes that the old value is dead. */
7231 emit_clobber (target);
7233 /* Store each element of the constructor into the
7234 corresponding element of TARGET, determined by counting the
7235 elements. */
7236 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (exp), i, index, value)
7238 machine_mode mode;
7239 poly_int64 bitsize;
7240 HOST_WIDE_INT bitpos;
7241 rtx xtarget = target;
7243 if (cleared && initializer_zerop (value))
7244 continue;
7246 mode = TYPE_MODE (elttype);
7247 if (mode != BLKmode)
7248 bitsize = GET_MODE_BITSIZE (mode);
7249 else if (!poly_int_tree_p (TYPE_SIZE (elttype), &bitsize))
7250 bitsize = -1;
7252 if (index != NULL_TREE && TREE_CODE (index) == RANGE_EXPR)
7254 tree lo_index = TREE_OPERAND (index, 0);
7255 tree hi_index = TREE_OPERAND (index, 1);
7256 rtx index_r, pos_rtx;
7257 HOST_WIDE_INT lo, hi, count;
7258 tree position;
7260 /* If the range is constant and "small", unroll the loop. */
7261 if (const_bounds_p
7262 && tree_fits_shwi_p (lo_index)
7263 && tree_fits_shwi_p (hi_index)
7264 && (lo = tree_to_shwi (lo_index),
7265 hi = tree_to_shwi (hi_index),
7266 count = hi - lo + 1,
7267 (!MEM_P (target)
7268 || count <= 2
7269 || (tree_fits_uhwi_p (TYPE_SIZE (elttype))
7270 && (tree_to_uhwi (TYPE_SIZE (elttype)) * count
7271 <= 40 * 8)))))
7273 lo -= minelt; hi -= minelt;
7274 for (; lo <= hi; lo++)
7276 bitpos = lo * tree_to_shwi (TYPE_SIZE (elttype));
7278 if (MEM_P (target)
7279 && !MEM_KEEP_ALIAS_SET_P (target)
7280 && TREE_CODE (type) == ARRAY_TYPE
7281 && TYPE_NONALIASED_COMPONENT (type))
7283 target = copy_rtx (target);
7284 MEM_KEEP_ALIAS_SET_P (target) = 1;
7287 store_constructor_field
7288 (target, bitsize, bitpos, 0, bitregion_end,
7289 mode, value, cleared,
7290 get_alias_set (elttype), reverse);
7293 else
7295 rtx_code_label *loop_start = gen_label_rtx ();
7296 rtx_code_label *loop_end = gen_label_rtx ();
7297 tree exit_cond;
7299 expand_normal (hi_index);
7301 index = build_decl (EXPR_LOCATION (exp),
7302 VAR_DECL, NULL_TREE, domain);
7303 index_r = gen_reg_rtx (promote_decl_mode (index, NULL));
7304 SET_DECL_RTL (index, index_r);
7305 store_expr (lo_index, index_r, 0, false, reverse);
7307 /* Build the head of the loop. */
7308 do_pending_stack_adjust ();
7309 emit_label (loop_start);
7311 /* Assign value to element index. */
7312 position =
7313 fold_convert (ssizetype,
7314 fold_build2 (MINUS_EXPR,
7315 TREE_TYPE (index),
7316 index,
7317 TYPE_MIN_VALUE (domain)));
7319 position =
7320 size_binop (MULT_EXPR, position,
7321 fold_convert (ssizetype,
7322 TYPE_SIZE_UNIT (elttype)));
7324 pos_rtx = expand_normal (position);
7325 xtarget = offset_address (target, pos_rtx,
7326 highest_pow2_factor (position));
7327 xtarget = adjust_address (xtarget, mode, 0);
7328 if (TREE_CODE (value) == CONSTRUCTOR)
7329 store_constructor (value, xtarget, cleared,
7330 exact_div (bitsize, BITS_PER_UNIT),
7331 reverse);
7332 else
7333 store_expr (value, xtarget, 0, false, reverse);
7335 /* Generate a conditional jump to exit the loop. */
7336 exit_cond = build2 (LT_EXPR, integer_type_node,
7337 index, hi_index);
7338 jumpif (exit_cond, loop_end,
7339 profile_probability::uninitialized ());
7341 /* Update the loop counter, and jump to the head of
7342 the loop. */
7343 expand_assignment (index,
7344 build2 (PLUS_EXPR, TREE_TYPE (index),
7345 index, integer_one_node),
7346 false);
7348 emit_jump (loop_start);
7350 /* Build the end of the loop. */
7351 emit_label (loop_end);
7354 else if ((index != 0 && ! tree_fits_shwi_p (index))
7355 || ! tree_fits_uhwi_p (TYPE_SIZE (elttype)))
7357 tree position;
7359 if (index == 0)
7360 index = ssize_int (1);
7362 if (minelt)
7363 index = fold_convert (ssizetype,
7364 fold_build2 (MINUS_EXPR,
7365 TREE_TYPE (index),
7366 index,
7367 TYPE_MIN_VALUE (domain)));
7369 position =
7370 size_binop (MULT_EXPR, index,
7371 fold_convert (ssizetype,
7372 TYPE_SIZE_UNIT (elttype)));
7373 xtarget = offset_address (target,
7374 expand_normal (position),
7375 highest_pow2_factor (position));
7376 xtarget = adjust_address (xtarget, mode, 0);
7377 store_expr (value, xtarget, 0, false, reverse);
7379 else
7381 if (index != 0)
7382 bitpos = ((tree_to_shwi (index) - minelt)
7383 * tree_to_uhwi (TYPE_SIZE (elttype)));
7384 else
7385 bitpos = (i * tree_to_uhwi (TYPE_SIZE (elttype)));
7387 if (MEM_P (target) && !MEM_KEEP_ALIAS_SET_P (target)
7388 && TREE_CODE (type) == ARRAY_TYPE
7389 && TYPE_NONALIASED_COMPONENT (type))
7391 target = copy_rtx (target);
7392 MEM_KEEP_ALIAS_SET_P (target) = 1;
7394 store_constructor_field (target, bitsize, bitpos, 0,
7395 bitregion_end, mode, value,
7396 cleared, get_alias_set (elttype),
7397 reverse);
7400 break;
7403 case VECTOR_TYPE:
7405 unsigned HOST_WIDE_INT idx;
7406 constructor_elt *ce;
7407 int i;
7408 bool need_to_clear;
7409 insn_code icode = CODE_FOR_nothing;
7410 tree elt;
7411 tree elttype = TREE_TYPE (type);
7412 int elt_size = vector_element_bits (type);
7413 machine_mode eltmode = TYPE_MODE (elttype);
7414 HOST_WIDE_INT bitsize;
7415 HOST_WIDE_INT bitpos;
7416 rtvec vector = NULL;
7417 poly_uint64 n_elts;
7418 unsigned HOST_WIDE_INT const_n_elts;
7419 alias_set_type alias;
7420 bool vec_vec_init_p = false;
7421 machine_mode mode = GET_MODE (target);
7423 gcc_assert (eltmode != BLKmode);
7425 /* Try using vec_duplicate_optab for uniform vectors. */
7426 if (!TREE_SIDE_EFFECTS (exp)
7427 && VECTOR_MODE_P (mode)
7428 && eltmode == GET_MODE_INNER (mode)
7429 && ((icode = optab_handler (vec_duplicate_optab, mode))
7430 != CODE_FOR_nothing)
7431 && (elt = uniform_vector_p (exp))
7432 && !VECTOR_TYPE_P (TREE_TYPE (elt)))
7434 class expand_operand ops[2];
7435 create_output_operand (&ops[0], target, mode);
7436 create_input_operand (&ops[1], expand_normal (elt), eltmode);
7437 expand_insn (icode, 2, ops);
7438 if (!rtx_equal_p (target, ops[0].value))
7439 emit_move_insn (target, ops[0].value);
7440 break;
7442 /* Use sign-extension for uniform boolean vectors with
7443 integer modes. */
7444 if (!TREE_SIDE_EFFECTS (exp)
7445 && VECTOR_BOOLEAN_TYPE_P (type)
7446 && SCALAR_INT_MODE_P (mode)
7447 && (elt = uniform_vector_p (exp))
7448 && !VECTOR_TYPE_P (TREE_TYPE (elt)))
7450 rtx op0 = force_reg (TYPE_MODE (TREE_TYPE (elt)),
7451 expand_normal (elt));
7452 convert_move (target, op0, 0);
7453 break;
7456 n_elts = TYPE_VECTOR_SUBPARTS (type);
7457 if (REG_P (target)
7458 && VECTOR_MODE_P (mode)
7459 && n_elts.is_constant (&const_n_elts))
7461 machine_mode emode = eltmode;
7462 bool vector_typed_elts_p = false;
7464 if (CONSTRUCTOR_NELTS (exp)
7465 && (TREE_CODE (TREE_TYPE (CONSTRUCTOR_ELT (exp, 0)->value))
7466 == VECTOR_TYPE))
7468 tree etype = TREE_TYPE (CONSTRUCTOR_ELT (exp, 0)->value);
7469 gcc_assert (known_eq (CONSTRUCTOR_NELTS (exp)
7470 * TYPE_VECTOR_SUBPARTS (etype),
7471 n_elts));
7472 emode = TYPE_MODE (etype);
7473 vector_typed_elts_p = true;
7475 icode = convert_optab_handler (vec_init_optab, mode, emode);
7476 if (icode != CODE_FOR_nothing)
7478 unsigned int n = const_n_elts;
7480 if (vector_typed_elts_p)
7482 n = CONSTRUCTOR_NELTS (exp);
7483 vec_vec_init_p = true;
7485 vector = rtvec_alloc (n);
7486 for (unsigned int k = 0; k < n; k++)
7487 RTVEC_ELT (vector, k) = CONST0_RTX (emode);
7491 /* Compute the size of the elements in the CTOR. It differs
7492 from the size of the vector type elements only when the
7493 CTOR elements are vectors themselves. */
7494 tree val_type = (CONSTRUCTOR_NELTS (exp) != 0
7495 ? TREE_TYPE (CONSTRUCTOR_ELT (exp, 0)->value)
7496 : elttype);
7497 if (VECTOR_TYPE_P (val_type))
7498 bitsize = tree_to_uhwi (TYPE_SIZE (val_type));
7499 else
7500 bitsize = elt_size;
7502 /* If the constructor has fewer elements than the vector,
7503 clear the whole array first. Similarly if this is static
7504 constructor of a non-BLKmode object. */
7505 if (cleared)
7506 need_to_clear = false;
7507 else if (REG_P (target) && TREE_STATIC (exp))
7508 need_to_clear = true;
7509 else
7511 unsigned HOST_WIDE_INT count = 0, zero_count = 0;
7512 tree value;
7514 FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (exp), idx, value)
7516 int n_elts_here = bitsize / elt_size;
7517 count += n_elts_here;
7518 if (mostly_zeros_p (value))
7519 zero_count += n_elts_here;
7522 /* Clear the entire vector first if there are any missing elements,
7523 or if the incidence of zero elements is >= 75%. */
7524 need_to_clear = (maybe_lt (count, n_elts)
7525 || 4 * zero_count >= 3 * count);
7528 if (need_to_clear && maybe_gt (size, 0) && !vector)
7530 if (REG_P (target))
7531 emit_move_insn (target, CONST0_RTX (mode));
7532 else
7533 clear_storage (target, gen_int_mode (size, Pmode),
7534 BLOCK_OP_NORMAL);
7535 cleared = 1;
7538 /* Inform later passes that the old value is dead. */
7539 if (!cleared && !vector && REG_P (target) && maybe_gt (n_elts, 1u))
7541 emit_move_insn (target, CONST0_RTX (mode));
7542 cleared = 1;
7545 if (MEM_P (target))
7546 alias = MEM_ALIAS_SET (target);
7547 else
7548 alias = get_alias_set (elttype);
7550 /* Store each element of the constructor into the corresponding
7551 element of TARGET, determined by counting the elements. */
7552 for (idx = 0, i = 0;
7553 vec_safe_iterate (CONSTRUCTOR_ELTS (exp), idx, &ce);
7554 idx++, i += bitsize / elt_size)
7556 HOST_WIDE_INT eltpos;
7557 tree value = ce->value;
7559 if (cleared && initializer_zerop (value))
7560 continue;
7562 if (ce->index)
7563 eltpos = tree_to_uhwi (ce->index);
7564 else
7565 eltpos = i;
7567 if (vector)
7569 if (vec_vec_init_p)
7571 gcc_assert (ce->index == NULL_TREE);
7572 gcc_assert (TREE_CODE (TREE_TYPE (value)) == VECTOR_TYPE);
7573 eltpos = idx;
7575 else
7576 gcc_assert (TREE_CODE (TREE_TYPE (value)) != VECTOR_TYPE);
7577 RTVEC_ELT (vector, eltpos) = expand_normal (value);
7579 else
7581 machine_mode value_mode
7582 = (TREE_CODE (TREE_TYPE (value)) == VECTOR_TYPE
7583 ? TYPE_MODE (TREE_TYPE (value)) : eltmode);
7584 bitpos = eltpos * elt_size;
7585 store_constructor_field (target, bitsize, bitpos, 0,
7586 bitregion_end, value_mode,
7587 value, cleared, alias, reverse);
7591 if (vector)
7592 emit_insn (GEN_FCN (icode) (target,
7593 gen_rtx_PARALLEL (mode, vector)));
7594 break;
7597 default:
7598 gcc_unreachable ();
7602 /* Store the value of EXP (an expression tree)
7603 into a subfield of TARGET which has mode MODE and occupies
7604 BITSIZE bits, starting BITPOS bits from the start of TARGET.
7605 If MODE is VOIDmode, it means that we are storing into a bit-field.
7607 BITREGION_START is bitpos of the first bitfield in this region.
7608 BITREGION_END is the bitpos of the ending bitfield in this region.
7609 These two fields are 0, if the C++ memory model does not apply,
7610 or we are not interested in keeping track of bitfield regions.
7612 Always return const0_rtx unless we have something particular to
7613 return.
7615 ALIAS_SET is the alias set for the destination. This value will
7616 (in general) be different from that for TARGET, since TARGET is a
7617 reference to the containing structure.
7619 If NONTEMPORAL is true, try generating a nontemporal store.
7621 If REVERSE is true, the store is to be done in reverse order. */
7623 static rtx
7624 store_field (rtx target, poly_int64 bitsize, poly_int64 bitpos,
7625 poly_uint64 bitregion_start, poly_uint64 bitregion_end,
7626 machine_mode mode, tree exp,
7627 alias_set_type alias_set, bool nontemporal, bool reverse)
7629 if (TREE_CODE (exp) == ERROR_MARK)
7630 return const0_rtx;
7632 /* If we have nothing to store, do nothing unless the expression has
7633 side-effects. Don't do that for zero sized addressable lhs of
7634 calls. */
7635 if (known_eq (bitsize, 0)
7636 && (!TREE_ADDRESSABLE (TREE_TYPE (exp))
7637 || TREE_CODE (exp) != CALL_EXPR))
7638 return expand_expr (exp, const0_rtx, VOIDmode, EXPAND_NORMAL);
7640 if (GET_CODE (target) == CONCAT)
7642 /* We're storing into a struct containing a single __complex. */
7644 gcc_assert (known_eq (bitpos, 0));
7645 return store_expr (exp, target, 0, nontemporal, reverse);
7648 /* If the structure is in a register or if the component
7649 is a bit field, we cannot use addressing to access it.
7650 Use bit-field techniques or SUBREG to store in it. */
7652 poly_int64 decl_bitsize;
7653 if (mode == VOIDmode
7654 || (mode != BLKmode && ! direct_store[(int) mode]
7655 && GET_MODE_CLASS (mode) != MODE_COMPLEX_INT
7656 && GET_MODE_CLASS (mode) != MODE_COMPLEX_FLOAT)
7657 || REG_P (target)
7658 || GET_CODE (target) == SUBREG
7659 /* If the field isn't aligned enough to store as an ordinary memref,
7660 store it as a bit field. */
7661 || (mode != BLKmode
7662 && ((((MEM_ALIGN (target) < GET_MODE_ALIGNMENT (mode))
7663 || !multiple_p (bitpos, GET_MODE_ALIGNMENT (mode)))
7664 && targetm.slow_unaligned_access (mode, MEM_ALIGN (target)))
7665 || !multiple_p (bitpos, BITS_PER_UNIT)))
7666 || (known_size_p (bitsize)
7667 && mode != BLKmode
7668 && maybe_gt (GET_MODE_BITSIZE (mode), bitsize))
7669 /* If the RHS and field are a constant size and the size of the
7670 RHS isn't the same size as the bitfield, we must use bitfield
7671 operations. */
7672 || (known_size_p (bitsize)
7673 && poly_int_tree_p (TYPE_SIZE (TREE_TYPE (exp)))
7674 && maybe_ne (wi::to_poly_offset (TYPE_SIZE (TREE_TYPE (exp))),
7675 bitsize)
7676 /* Except for initialization of full bytes from a CONSTRUCTOR, which
7677 we will handle specially below. */
7678 && !(TREE_CODE (exp) == CONSTRUCTOR
7679 && multiple_p (bitsize, BITS_PER_UNIT))
7680 /* And except for bitwise copying of TREE_ADDRESSABLE types,
7681 where the FIELD_DECL has the right bitsize, but TREE_TYPE (exp)
7682 includes some extra padding. store_expr / expand_expr will in
7683 that case call get_inner_reference that will have the bitsize
7684 we check here and thus the block move will not clobber the
7685 padding that shouldn't be clobbered. In the future we could
7686 replace the TREE_ADDRESSABLE check with a check that
7687 get_base_address needs to live in memory. */
7688 && (!TREE_ADDRESSABLE (TREE_TYPE (exp))
7689 || TREE_CODE (exp) != COMPONENT_REF
7690 || !multiple_p (bitsize, BITS_PER_UNIT)
7691 || !multiple_p (bitpos, BITS_PER_UNIT)
7692 || !poly_int_tree_p (DECL_SIZE (TREE_OPERAND (exp, 1)),
7693 &decl_bitsize)
7694 || maybe_ne (decl_bitsize, bitsize))
7695 /* A call with an addressable return type and return-slot
7696 optimization must not need bitfield operations but we must
7697 pass down the original target. */
7698 && (TREE_CODE (exp) != CALL_EXPR
7699 || !TREE_ADDRESSABLE (TREE_TYPE (exp))
7700 || !CALL_EXPR_RETURN_SLOT_OPT (exp)))
7701 /* If we are expanding a MEM_REF of a non-BLKmode non-addressable
7702 decl we must use bitfield operations. */
7703 || (known_size_p (bitsize)
7704 && TREE_CODE (exp) == MEM_REF
7705 && TREE_CODE (TREE_OPERAND (exp, 0)) == ADDR_EXPR
7706 && DECL_P (TREE_OPERAND (TREE_OPERAND (exp, 0), 0))
7707 && !TREE_ADDRESSABLE (TREE_OPERAND (TREE_OPERAND (exp, 0), 0))
7708 && DECL_MODE (TREE_OPERAND (TREE_OPERAND (exp, 0), 0)) != BLKmode))
7710 rtx temp;
7711 gimple *nop_def;
7713 /* If EXP is a NOP_EXPR of precision less than its mode, then that
7714 implies a mask operation. If the precision is the same size as
7715 the field we're storing into, that mask is redundant. This is
7716 particularly common with bit field assignments generated by the
7717 C front end. */
7718 nop_def = get_def_for_expr (exp, NOP_EXPR);
7719 if (nop_def)
7721 tree type = TREE_TYPE (exp);
7722 if (INTEGRAL_TYPE_P (type)
7723 && maybe_ne (TYPE_PRECISION (type),
7724 GET_MODE_BITSIZE (TYPE_MODE (type)))
7725 && known_eq (bitsize, TYPE_PRECISION (type)))
7727 tree op = gimple_assign_rhs1 (nop_def);
7728 type = TREE_TYPE (op);
7729 if (INTEGRAL_TYPE_P (type)
7730 && known_ge (TYPE_PRECISION (type), bitsize))
7731 exp = op;
7735 temp = expand_normal (exp);
7737 /* We don't support variable-sized BLKmode bitfields, since our
7738 handling of BLKmode is bound up with the ability to break
7739 things into words. */
7740 gcc_assert (mode != BLKmode || bitsize.is_constant ());
7742 /* Handle calls that return values in multiple non-contiguous locations.
7743 The Irix 6 ABI has examples of this. */
7744 if (GET_CODE (temp) == PARALLEL)
7746 HOST_WIDE_INT size = int_size_in_bytes (TREE_TYPE (exp));
7747 machine_mode temp_mode = GET_MODE (temp);
7748 if (temp_mode == BLKmode || temp_mode == VOIDmode)
7749 temp_mode = smallest_int_mode_for_size (size * BITS_PER_UNIT);
7750 rtx temp_target = gen_reg_rtx (temp_mode);
7751 emit_group_store (temp_target, temp, TREE_TYPE (exp), size);
7752 temp = temp_target;
7755 /* Handle calls that return BLKmode values in registers. */
7756 else if (mode == BLKmode && REG_P (temp) && TREE_CODE (exp) == CALL_EXPR)
7758 rtx temp_target = gen_reg_rtx (GET_MODE (temp));
7759 copy_blkmode_from_reg (temp_target, temp, TREE_TYPE (exp));
7760 temp = temp_target;
7763 /* If the value has aggregate type and an integral mode then, if BITSIZE
7764 is narrower than this mode and this is for big-endian data, we first
7765 need to put the value into the low-order bits for store_bit_field,
7766 except when MODE is BLKmode and BITSIZE larger than the word size
7767 (see the handling of fields larger than a word in store_bit_field).
7768 Moreover, the field may be not aligned on a byte boundary; in this
7769 case, if it has reverse storage order, it needs to be accessed as a
7770 scalar field with reverse storage order and we must first put the
7771 value into target order. */
7772 scalar_int_mode temp_mode;
7773 if (AGGREGATE_TYPE_P (TREE_TYPE (exp))
7774 && is_int_mode (GET_MODE (temp), &temp_mode))
7776 HOST_WIDE_INT size = GET_MODE_BITSIZE (temp_mode);
7778 reverse = TYPE_REVERSE_STORAGE_ORDER (TREE_TYPE (exp));
7780 if (reverse)
7781 temp = flip_storage_order (temp_mode, temp);
7783 gcc_checking_assert (known_le (bitsize, size));
7784 if (maybe_lt (bitsize, size)
7785 && reverse ? !BYTES_BIG_ENDIAN : BYTES_BIG_ENDIAN
7786 /* Use of to_constant for BLKmode was checked above. */
7787 && !(mode == BLKmode && bitsize.to_constant () > BITS_PER_WORD))
7788 temp = expand_shift (RSHIFT_EXPR, temp_mode, temp,
7789 size - bitsize, NULL_RTX, 1);
7792 /* Unless MODE is VOIDmode or BLKmode, convert TEMP to MODE. */
7793 if (mode != VOIDmode && mode != BLKmode
7794 && mode != TYPE_MODE (TREE_TYPE (exp)))
7795 temp = convert_modes (mode, TYPE_MODE (TREE_TYPE (exp)), temp, 1);
7797 /* If the mode of TEMP and TARGET is BLKmode, both must be in memory
7798 and BITPOS must be aligned on a byte boundary. If so, we simply do
7799 a block copy. Likewise for a BLKmode-like TARGET. */
7800 if (GET_MODE (temp) == BLKmode
7801 && (GET_MODE (target) == BLKmode
7802 || (MEM_P (target)
7803 && GET_MODE_CLASS (GET_MODE (target)) == MODE_INT
7804 && multiple_p (bitpos, BITS_PER_UNIT)
7805 && multiple_p (bitsize, BITS_PER_UNIT))))
7807 gcc_assert (MEM_P (target) && MEM_P (temp));
7808 poly_int64 bytepos = exact_div (bitpos, BITS_PER_UNIT);
7809 poly_int64 bytesize = bits_to_bytes_round_up (bitsize);
7811 target = adjust_address (target, VOIDmode, bytepos);
7812 emit_block_move (target, temp,
7813 gen_int_mode (bytesize, Pmode),
7814 BLOCK_OP_NORMAL);
7816 return const0_rtx;
7819 /* If the mode of TEMP is still BLKmode and BITSIZE not larger than the
7820 word size, we need to load the value (see again store_bit_field). */
7821 if (GET_MODE (temp) == BLKmode && known_le (bitsize, BITS_PER_WORD))
7823 temp_mode = smallest_int_mode_for_size (bitsize);
7824 temp = extract_bit_field (temp, bitsize, 0, 1, NULL_RTX, temp_mode,
7825 temp_mode, false, NULL);
7828 /* Store the value in the bitfield. */
7829 gcc_checking_assert (known_ge (bitpos, 0));
7830 store_bit_field (target, bitsize, bitpos,
7831 bitregion_start, bitregion_end,
7832 mode, temp, reverse, false);
7834 return const0_rtx;
7836 else
7838 /* Now build a reference to just the desired component. */
7839 rtx to_rtx = adjust_address (target, mode,
7840 exact_div (bitpos, BITS_PER_UNIT));
7842 if (to_rtx == target)
7843 to_rtx = copy_rtx (to_rtx);
7845 if (!MEM_KEEP_ALIAS_SET_P (to_rtx) && MEM_ALIAS_SET (to_rtx) != 0)
7846 set_mem_alias_set (to_rtx, alias_set);
7848 /* Above we avoided using bitfield operations for storing a CONSTRUCTOR
7849 into a target smaller than its type; handle that case now. */
7850 if (TREE_CODE (exp) == CONSTRUCTOR && known_size_p (bitsize))
7852 poly_int64 bytesize = exact_div (bitsize, BITS_PER_UNIT);
7853 store_constructor (exp, to_rtx, 0, bytesize, reverse);
7854 return to_rtx;
7857 return store_expr (exp, to_rtx, 0, nontemporal, reverse);
7861 /* Given an expression EXP that may be a COMPONENT_REF, a BIT_FIELD_REF,
7862 an ARRAY_REF, or an ARRAY_RANGE_REF, look for nested operations of these
7863 codes and find the ultimate containing object, which we return.
7865 We set *PBITSIZE to the size in bits that we want, *PBITPOS to the
7866 bit position, *PUNSIGNEDP to the signedness and *PREVERSEP to the
7867 storage order of the field.
7868 If the position of the field is variable, we store a tree
7869 giving the variable offset (in units) in *POFFSET.
7870 This offset is in addition to the bit position.
7871 If the position is not variable, we store 0 in *POFFSET.
7873 If any of the extraction expressions is volatile,
7874 we store 1 in *PVOLATILEP. Otherwise we don't change that.
7876 If the field is a non-BLKmode bit-field, *PMODE is set to VOIDmode.
7877 Otherwise, it is a mode that can be used to access the field.
7879 If the field describes a variable-sized object, *PMODE is set to
7880 BLKmode and *PBITSIZE is set to -1. An access cannot be made in
7881 this case, but the address of the object can be found. */
7883 tree
7884 get_inner_reference (tree exp, poly_int64 *pbitsize,
7885 poly_int64 *pbitpos, tree *poffset,
7886 machine_mode *pmode, int *punsignedp,
7887 int *preversep, int *pvolatilep)
7889 tree size_tree = 0;
7890 machine_mode mode = VOIDmode;
7891 bool blkmode_bitfield = false;
7892 tree offset = size_zero_node;
7893 poly_offset_int bit_offset = 0;
7895 /* First get the mode, signedness, storage order and size. We do this from
7896 just the outermost expression. */
7897 *pbitsize = -1;
7898 if (TREE_CODE (exp) == COMPONENT_REF)
7900 tree field = TREE_OPERAND (exp, 1);
7901 size_tree = DECL_SIZE (field);
7902 if (flag_strict_volatile_bitfields > 0
7903 && TREE_THIS_VOLATILE (exp)
7904 && DECL_BIT_FIELD_TYPE (field)
7905 && DECL_MODE (field) != BLKmode)
7906 /* Volatile bitfields should be accessed in the mode of the
7907 field's type, not the mode computed based on the bit
7908 size. */
7909 mode = TYPE_MODE (DECL_BIT_FIELD_TYPE (field));
7910 else if (!DECL_BIT_FIELD (field))
7912 mode = DECL_MODE (field);
7913 /* For vector fields re-check the target flags, as DECL_MODE
7914 could have been set with different target flags than
7915 the current function has. */
7916 if (VECTOR_TYPE_P (TREE_TYPE (field))
7917 && VECTOR_MODE_P (TYPE_MODE_RAW (TREE_TYPE (field))))
7918 mode = TYPE_MODE (TREE_TYPE (field));
7920 else if (DECL_MODE (field) == BLKmode)
7921 blkmode_bitfield = true;
7923 *punsignedp = DECL_UNSIGNED (field);
7925 else if (TREE_CODE (exp) == BIT_FIELD_REF)
7927 size_tree = TREE_OPERAND (exp, 1);
7928 *punsignedp = (! INTEGRAL_TYPE_P (TREE_TYPE (exp))
7929 || TYPE_UNSIGNED (TREE_TYPE (exp)));
7931 /* For vector element types with the correct size of access or for
7932 vector typed accesses use the mode of the access type. */
7933 if ((TREE_CODE (TREE_TYPE (TREE_OPERAND (exp, 0))) == VECTOR_TYPE
7934 && TREE_TYPE (exp) == TREE_TYPE (TREE_TYPE (TREE_OPERAND (exp, 0)))
7935 && tree_int_cst_equal (size_tree, TYPE_SIZE (TREE_TYPE (exp))))
7936 || VECTOR_TYPE_P (TREE_TYPE (exp)))
7937 mode = TYPE_MODE (TREE_TYPE (exp));
7939 else
7941 mode = TYPE_MODE (TREE_TYPE (exp));
7942 *punsignedp = TYPE_UNSIGNED (TREE_TYPE (exp));
7944 if (mode == BLKmode)
7945 size_tree = TYPE_SIZE (TREE_TYPE (exp));
7946 else
7947 *pbitsize = GET_MODE_BITSIZE (mode);
7950 if (size_tree != 0)
7952 if (! tree_fits_uhwi_p (size_tree))
7953 mode = BLKmode, *pbitsize = -1;
7954 else
7955 *pbitsize = tree_to_uhwi (size_tree);
7958 *preversep = reverse_storage_order_for_component_p (exp);
7960 /* Compute cumulative bit-offset for nested component-refs and array-refs,
7961 and find the ultimate containing object. */
7962 while (1)
7964 switch (TREE_CODE (exp))
7966 case BIT_FIELD_REF:
7967 bit_offset += wi::to_poly_offset (TREE_OPERAND (exp, 2));
7968 break;
7970 case COMPONENT_REF:
7972 tree field = TREE_OPERAND (exp, 1);
7973 tree this_offset = component_ref_field_offset (exp);
7975 /* If this field hasn't been filled in yet, don't go past it.
7976 This should only happen when folding expressions made during
7977 type construction. */
7978 if (this_offset == 0)
7979 break;
7981 offset = size_binop (PLUS_EXPR, offset, this_offset);
7982 bit_offset += wi::to_poly_offset (DECL_FIELD_BIT_OFFSET (field));
7984 /* ??? Right now we don't do anything with DECL_OFFSET_ALIGN. */
7986 break;
7988 case ARRAY_REF:
7989 case ARRAY_RANGE_REF:
7991 tree index = TREE_OPERAND (exp, 1);
7992 tree low_bound = array_ref_low_bound (exp);
7993 tree unit_size = array_ref_element_size (exp);
7995 /* We assume all arrays have sizes that are a multiple of a byte.
7996 First subtract the lower bound, if any, in the type of the
7997 index, then convert to sizetype and multiply by the size of
7998 the array element. */
7999 if (! integer_zerop (low_bound))
8000 index = fold_build2 (MINUS_EXPR, TREE_TYPE (index),
8001 index, low_bound);
8003 offset = size_binop (PLUS_EXPR, offset,
8004 size_binop (MULT_EXPR,
8005 fold_convert (sizetype, index),
8006 unit_size));
8008 break;
8010 case REALPART_EXPR:
8011 break;
8013 case IMAGPART_EXPR:
8014 bit_offset += *pbitsize;
8015 break;
8017 case VIEW_CONVERT_EXPR:
8018 break;
8020 case MEM_REF:
8021 /* Hand back the decl for MEM[&decl, off]. */
8022 if (TREE_CODE (TREE_OPERAND (exp, 0)) == ADDR_EXPR)
8024 tree off = TREE_OPERAND (exp, 1);
8025 if (!integer_zerop (off))
8027 poly_offset_int boff = mem_ref_offset (exp);
8028 boff <<= LOG2_BITS_PER_UNIT;
8029 bit_offset += boff;
8031 exp = TREE_OPERAND (TREE_OPERAND (exp, 0), 0);
8033 goto done;
8035 default:
8036 goto done;
8039 /* If any reference in the chain is volatile, the effect is volatile. */
8040 if (TREE_THIS_VOLATILE (exp))
8041 *pvolatilep = 1;
8043 exp = TREE_OPERAND (exp, 0);
8045 done:
8047 /* If OFFSET is constant, see if we can return the whole thing as a
8048 constant bit position. Make sure to handle overflow during
8049 this conversion. */
8050 if (poly_int_tree_p (offset))
8052 poly_offset_int tem = wi::sext (wi::to_poly_offset (offset),
8053 TYPE_PRECISION (sizetype));
8054 tem <<= LOG2_BITS_PER_UNIT;
8055 tem += bit_offset;
8056 if (tem.to_shwi (pbitpos))
8057 *poffset = offset = NULL_TREE;
8060 /* Otherwise, split it up. */
8061 if (offset)
8063 /* Avoid returning a negative bitpos as this may wreak havoc later. */
8064 if (!bit_offset.to_shwi (pbitpos) || maybe_lt (*pbitpos, 0))
8066 *pbitpos = num_trailing_bits (bit_offset.force_shwi ());
8067 poly_offset_int bytes = bits_to_bytes_round_down (bit_offset);
8068 offset = size_binop (PLUS_EXPR, offset,
8069 build_int_cst (sizetype, bytes.force_shwi ()));
8072 *poffset = offset;
8075 /* We can use BLKmode for a byte-aligned BLKmode bitfield. */
8076 if (mode == VOIDmode
8077 && blkmode_bitfield
8078 && multiple_p (*pbitpos, BITS_PER_UNIT)
8079 && multiple_p (*pbitsize, BITS_PER_UNIT))
8080 *pmode = BLKmode;
8081 else
8082 *pmode = mode;
8084 return exp;
8087 /* Alignment in bits the TARGET of an assignment may be assumed to have. */
8089 static unsigned HOST_WIDE_INT
8090 target_align (const_tree target)
8092 /* We might have a chain of nested references with intermediate misaligning
8093 bitfields components, so need to recurse to find out. */
8095 unsigned HOST_WIDE_INT this_align, outer_align;
8097 switch (TREE_CODE (target))
8099 case BIT_FIELD_REF:
8100 return 1;
8102 case COMPONENT_REF:
8103 this_align = DECL_ALIGN (TREE_OPERAND (target, 1));
8104 outer_align = target_align (TREE_OPERAND (target, 0));
8105 return MIN (this_align, outer_align);
8107 case ARRAY_REF:
8108 case ARRAY_RANGE_REF:
8109 this_align = TYPE_ALIGN (TREE_TYPE (target));
8110 outer_align = target_align (TREE_OPERAND (target, 0));
8111 return MIN (this_align, outer_align);
8113 CASE_CONVERT:
8114 case NON_LVALUE_EXPR:
8115 case VIEW_CONVERT_EXPR:
8116 this_align = TYPE_ALIGN (TREE_TYPE (target));
8117 outer_align = target_align (TREE_OPERAND (target, 0));
8118 return MAX (this_align, outer_align);
8120 default:
8121 return TYPE_ALIGN (TREE_TYPE (target));
8126 /* Given an rtx VALUE that may contain additions and multiplications, return
8127 an equivalent value that just refers to a register, memory, or constant.
8128 This is done by generating instructions to perform the arithmetic and
8129 returning a pseudo-register containing the value.
8131 The returned value may be a REG, SUBREG, MEM or constant. */
8134 force_operand (rtx value, rtx target)
8136 rtx op1, op2;
8137 /* Use subtarget as the target for operand 0 of a binary operation. */
8138 rtx subtarget = get_subtarget (target);
8139 enum rtx_code code = GET_CODE (value);
8141 /* Check for subreg applied to an expression produced by loop optimizer. */
8142 if (code == SUBREG
8143 && !REG_P (SUBREG_REG (value))
8144 && !MEM_P (SUBREG_REG (value)))
8146 value
8147 = simplify_gen_subreg (GET_MODE (value),
8148 force_reg (GET_MODE (SUBREG_REG (value)),
8149 force_operand (SUBREG_REG (value),
8150 NULL_RTX)),
8151 GET_MODE (SUBREG_REG (value)),
8152 SUBREG_BYTE (value));
8153 code = GET_CODE (value);
8156 /* Check for a PIC address load. */
8157 if ((code == PLUS || code == MINUS)
8158 && XEXP (value, 0) == pic_offset_table_rtx
8159 && (GET_CODE (XEXP (value, 1)) == SYMBOL_REF
8160 || GET_CODE (XEXP (value, 1)) == LABEL_REF
8161 || GET_CODE (XEXP (value, 1)) == CONST))
8163 if (!subtarget)
8164 subtarget = gen_reg_rtx (GET_MODE (value));
8165 emit_move_insn (subtarget, value);
8166 return subtarget;
8169 if (ARITHMETIC_P (value))
8171 op2 = XEXP (value, 1);
8172 if (!CONSTANT_P (op2) && !(REG_P (op2) && op2 != subtarget))
8173 subtarget = 0;
8174 if (code == MINUS && CONST_INT_P (op2))
8176 code = PLUS;
8177 op2 = negate_rtx (GET_MODE (value), op2);
8180 /* Check for an addition with OP2 a constant integer and our first
8181 operand a PLUS of a virtual register and something else. In that
8182 case, we want to emit the sum of the virtual register and the
8183 constant first and then add the other value. This allows virtual
8184 register instantiation to simply modify the constant rather than
8185 creating another one around this addition. */
8186 if (code == PLUS && CONST_INT_P (op2)
8187 && GET_CODE (XEXP (value, 0)) == PLUS
8188 && REG_P (XEXP (XEXP (value, 0), 0))
8189 && VIRTUAL_REGISTER_P (XEXP (XEXP (value, 0), 0)))
8191 rtx temp = expand_simple_binop (GET_MODE (value), code,
8192 XEXP (XEXP (value, 0), 0), op2,
8193 subtarget, 0, OPTAB_LIB_WIDEN);
8194 return expand_simple_binop (GET_MODE (value), code, temp,
8195 force_operand (XEXP (XEXP (value,
8196 0), 1), 0),
8197 target, 0, OPTAB_LIB_WIDEN);
8200 op1 = force_operand (XEXP (value, 0), subtarget);
8201 op2 = force_operand (op2, NULL_RTX);
8202 switch (code)
8204 case MULT:
8205 return expand_mult (GET_MODE (value), op1, op2, target, 1);
8206 case DIV:
8207 if (!INTEGRAL_MODE_P (GET_MODE (value)))
8208 return expand_simple_binop (GET_MODE (value), code, op1, op2,
8209 target, 1, OPTAB_LIB_WIDEN);
8210 else
8211 return expand_divmod (0,
8212 FLOAT_MODE_P (GET_MODE (value))
8213 ? RDIV_EXPR : TRUNC_DIV_EXPR,
8214 GET_MODE (value), op1, op2, target, 0);
8215 case MOD:
8216 return expand_divmod (1, TRUNC_MOD_EXPR, GET_MODE (value), op1, op2,
8217 target, 0);
8218 case UDIV:
8219 return expand_divmod (0, TRUNC_DIV_EXPR, GET_MODE (value), op1, op2,
8220 target, 1);
8221 case UMOD:
8222 return expand_divmod (1, TRUNC_MOD_EXPR, GET_MODE (value), op1, op2,
8223 target, 1);
8224 case ASHIFTRT:
8225 return expand_simple_binop (GET_MODE (value), code, op1, op2,
8226 target, 0, OPTAB_LIB_WIDEN);
8227 default:
8228 return expand_simple_binop (GET_MODE (value), code, op1, op2,
8229 target, 1, OPTAB_LIB_WIDEN);
8232 if (UNARY_P (value))
8234 if (!target)
8235 target = gen_reg_rtx (GET_MODE (value));
8236 op1 = force_operand (XEXP (value, 0), NULL_RTX);
8237 switch (code)
8239 case ZERO_EXTEND:
8240 case SIGN_EXTEND:
8241 case TRUNCATE:
8242 case FLOAT_EXTEND:
8243 case FLOAT_TRUNCATE:
8244 convert_move (target, op1, code == ZERO_EXTEND);
8245 return target;
8247 case FIX:
8248 case UNSIGNED_FIX:
8249 expand_fix (target, op1, code == UNSIGNED_FIX);
8250 return target;
8252 case FLOAT:
8253 case UNSIGNED_FLOAT:
8254 expand_float (target, op1, code == UNSIGNED_FLOAT);
8255 return target;
8257 default:
8258 return expand_simple_unop (GET_MODE (value), code, op1, target, 0);
8262 #ifdef INSN_SCHEDULING
8263 /* On machines that have insn scheduling, we want all memory reference to be
8264 explicit, so we need to deal with such paradoxical SUBREGs. */
8265 if (paradoxical_subreg_p (value) && MEM_P (SUBREG_REG (value)))
8266 value
8267 = simplify_gen_subreg (GET_MODE (value),
8268 force_reg (GET_MODE (SUBREG_REG (value)),
8269 force_operand (SUBREG_REG (value),
8270 NULL_RTX)),
8271 GET_MODE (SUBREG_REG (value)),
8272 SUBREG_BYTE (value));
8273 #endif
8275 return value;
8278 /* Subroutine of expand_expr: return true iff there is no way that
8279 EXP can reference X, which is being modified. TOP_P is nonzero if this
8280 call is going to be used to determine whether we need a temporary
8281 for EXP, as opposed to a recursive call to this function.
8283 It is always safe for this routine to return false since it merely
8284 searches for optimization opportunities. */
8286 bool
8287 safe_from_p (const_rtx x, tree exp, int top_p)
8289 rtx exp_rtl = 0;
8290 int i, nops;
8292 if (x == 0
8293 /* If EXP has varying size, we MUST use a target since we currently
8294 have no way of allocating temporaries of variable size
8295 (except for arrays that have TYPE_ARRAY_MAX_SIZE set).
8296 So we assume here that something at a higher level has prevented a
8297 clash. This is somewhat bogus, but the best we can do. Only
8298 do this when X is BLKmode and when we are at the top level. */
8299 || (top_p && TREE_TYPE (exp) != 0 && COMPLETE_TYPE_P (TREE_TYPE (exp))
8300 && TREE_CODE (TYPE_SIZE (TREE_TYPE (exp))) != INTEGER_CST
8301 && (TREE_CODE (TREE_TYPE (exp)) != ARRAY_TYPE
8302 || TYPE_ARRAY_MAX_SIZE (TREE_TYPE (exp)) == NULL_TREE
8303 || TREE_CODE (TYPE_ARRAY_MAX_SIZE (TREE_TYPE (exp)))
8304 != INTEGER_CST)
8305 && GET_MODE (x) == BLKmode)
8306 /* If X is in the outgoing argument area, it is always safe. */
8307 || (MEM_P (x)
8308 && (XEXP (x, 0) == virtual_outgoing_args_rtx
8309 || (GET_CODE (XEXP (x, 0)) == PLUS
8310 && XEXP (XEXP (x, 0), 0) == virtual_outgoing_args_rtx))))
8311 return true;
8313 /* If this is a subreg of a hard register, declare it unsafe, otherwise,
8314 find the underlying pseudo. */
8315 if (GET_CODE (x) == SUBREG)
8317 x = SUBREG_REG (x);
8318 if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER)
8319 return false;
8322 /* Now look at our tree code and possibly recurse. */
8323 switch (TREE_CODE_CLASS (TREE_CODE (exp)))
8325 case tcc_declaration:
8326 exp_rtl = DECL_RTL_IF_SET (exp);
8327 break;
8329 case tcc_constant:
8330 return true;
8332 case tcc_exceptional:
8333 if (TREE_CODE (exp) == TREE_LIST)
8335 while (1)
8337 if (TREE_VALUE (exp) && !safe_from_p (x, TREE_VALUE (exp), 0))
8338 return false;
8339 exp = TREE_CHAIN (exp);
8340 if (!exp)
8341 return true;
8342 if (TREE_CODE (exp) != TREE_LIST)
8343 return safe_from_p (x, exp, 0);
8346 else if (TREE_CODE (exp) == CONSTRUCTOR)
8348 constructor_elt *ce;
8349 unsigned HOST_WIDE_INT idx;
8351 FOR_EACH_VEC_SAFE_ELT (CONSTRUCTOR_ELTS (exp), idx, ce)
8352 if ((ce->index != NULL_TREE && !safe_from_p (x, ce->index, 0))
8353 || !safe_from_p (x, ce->value, 0))
8354 return false;
8355 return true;
8357 else if (TREE_CODE (exp) == ERROR_MARK)
8358 return true; /* An already-visited SAVE_EXPR? */
8359 else
8360 return false;
8362 case tcc_statement:
8363 /* The only case we look at here is the DECL_INITIAL inside a
8364 DECL_EXPR. */
8365 return (TREE_CODE (exp) != DECL_EXPR
8366 || TREE_CODE (DECL_EXPR_DECL (exp)) != VAR_DECL
8367 || !DECL_INITIAL (DECL_EXPR_DECL (exp))
8368 || safe_from_p (x, DECL_INITIAL (DECL_EXPR_DECL (exp)), 0));
8370 case tcc_binary:
8371 case tcc_comparison:
8372 if (!safe_from_p (x, TREE_OPERAND (exp, 1), 0))
8373 return false;
8374 /* Fall through. */
8376 case tcc_unary:
8377 return safe_from_p (x, TREE_OPERAND (exp, 0), 0);
8379 case tcc_expression:
8380 case tcc_reference:
8381 case tcc_vl_exp:
8382 /* Now do code-specific tests. EXP_RTL is set to any rtx we find in
8383 the expression. If it is set, we conflict iff we are that rtx or
8384 both are in memory. Otherwise, we check all operands of the
8385 expression recursively. */
8387 switch (TREE_CODE (exp))
8389 case ADDR_EXPR:
8390 /* If the operand is static or we are static, we can't conflict.
8391 Likewise if we don't conflict with the operand at all. */
8392 if (staticp (TREE_OPERAND (exp, 0))
8393 || TREE_STATIC (exp)
8394 || safe_from_p (x, TREE_OPERAND (exp, 0), 0))
8395 return true;
8397 /* Otherwise, the only way this can conflict is if we are taking
8398 the address of a DECL a that address if part of X, which is
8399 very rare. */
8400 exp = TREE_OPERAND (exp, 0);
8401 if (DECL_P (exp))
8403 if (!DECL_RTL_SET_P (exp)
8404 || !MEM_P (DECL_RTL (exp)))
8405 return false;
8406 else
8407 exp_rtl = XEXP (DECL_RTL (exp), 0);
8409 break;
8411 case MEM_REF:
8412 if (MEM_P (x)
8413 && alias_sets_conflict_p (MEM_ALIAS_SET (x),
8414 get_alias_set (exp)))
8415 return false;
8416 break;
8418 case CALL_EXPR:
8419 /* Assume that the call will clobber all hard registers and
8420 all of memory. */
8421 if ((REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER)
8422 || MEM_P (x))
8423 return false;
8424 break;
8426 case WITH_CLEANUP_EXPR:
8427 case CLEANUP_POINT_EXPR:
8428 /* Lowered by gimplify.cc. */
8429 gcc_unreachable ();
8431 case SAVE_EXPR:
8432 return safe_from_p (x, TREE_OPERAND (exp, 0), 0);
8434 default:
8435 break;
8438 /* If we have an rtx, we do not need to scan our operands. */
8439 if (exp_rtl)
8440 break;
8442 nops = TREE_OPERAND_LENGTH (exp);
8443 for (i = 0; i < nops; i++)
8444 if (TREE_OPERAND (exp, i) != 0
8445 && ! safe_from_p (x, TREE_OPERAND (exp, i), 0))
8446 return false;
8448 break;
8450 case tcc_type:
8451 /* Should never get a type here. */
8452 gcc_unreachable ();
8455 /* If we have an rtl, find any enclosed object. Then see if we conflict
8456 with it. */
8457 if (exp_rtl)
8459 if (GET_CODE (exp_rtl) == SUBREG)
8461 exp_rtl = SUBREG_REG (exp_rtl);
8462 if (REG_P (exp_rtl)
8463 && REGNO (exp_rtl) < FIRST_PSEUDO_REGISTER)
8464 return false;
8467 /* If the rtl is X, then it is not safe. Otherwise, it is unless both
8468 are memory and they conflict. */
8469 return ! (rtx_equal_p (x, exp_rtl)
8470 || (MEM_P (x) && MEM_P (exp_rtl)
8471 && true_dependence (exp_rtl, VOIDmode, x)));
8474 /* If we reach here, it is safe. */
8475 return true;
8479 /* Return the highest power of two that EXP is known to be a multiple of.
8480 This is used in updating alignment of MEMs in array references. */
8482 unsigned HOST_WIDE_INT
8483 highest_pow2_factor (const_tree exp)
8485 unsigned HOST_WIDE_INT ret;
8486 int trailing_zeros = tree_ctz (exp);
8487 if (trailing_zeros >= HOST_BITS_PER_WIDE_INT)
8488 return BIGGEST_ALIGNMENT;
8489 ret = HOST_WIDE_INT_1U << trailing_zeros;
8490 if (ret > BIGGEST_ALIGNMENT)
8491 return BIGGEST_ALIGNMENT;
8492 return ret;
8495 /* Similar, except that the alignment requirements of TARGET are
8496 taken into account. Assume it is at least as aligned as its
8497 type, unless it is a COMPONENT_REF in which case the layout of
8498 the structure gives the alignment. */
8500 static unsigned HOST_WIDE_INT
8501 highest_pow2_factor_for_target (const_tree target, const_tree exp)
8503 unsigned HOST_WIDE_INT talign = target_align (target) / BITS_PER_UNIT;
8504 unsigned HOST_WIDE_INT factor = highest_pow2_factor (exp);
8506 return MAX (factor, talign);
8509 /* Convert the tree comparison code TCODE to the rtl one where the
8510 signedness is UNSIGNEDP. */
8512 static enum rtx_code
8513 convert_tree_comp_to_rtx (enum tree_code tcode, int unsignedp)
8515 enum rtx_code code;
8516 switch (tcode)
8518 case EQ_EXPR:
8519 code = EQ;
8520 break;
8521 case NE_EXPR:
8522 code = NE;
8523 break;
8524 case LT_EXPR:
8525 code = unsignedp ? LTU : LT;
8526 break;
8527 case LE_EXPR:
8528 code = unsignedp ? LEU : LE;
8529 break;
8530 case GT_EXPR:
8531 code = unsignedp ? GTU : GT;
8532 break;
8533 case GE_EXPR:
8534 code = unsignedp ? GEU : GE;
8535 break;
8536 case UNORDERED_EXPR:
8537 code = UNORDERED;
8538 break;
8539 case ORDERED_EXPR:
8540 code = ORDERED;
8541 break;
8542 case UNLT_EXPR:
8543 code = UNLT;
8544 break;
8545 case UNLE_EXPR:
8546 code = UNLE;
8547 break;
8548 case UNGT_EXPR:
8549 code = UNGT;
8550 break;
8551 case UNGE_EXPR:
8552 code = UNGE;
8553 break;
8554 case UNEQ_EXPR:
8555 code = UNEQ;
8556 break;
8557 case LTGT_EXPR:
8558 code = LTGT;
8559 break;
8561 default:
8562 gcc_unreachable ();
8564 return code;
8567 /* Subroutine of expand_expr. Expand the two operands of a binary
8568 expression EXP0 and EXP1 placing the results in OP0 and OP1.
8569 The value may be stored in TARGET if TARGET is nonzero. The
8570 MODIFIER argument is as documented by expand_expr. */
8572 void
8573 expand_operands (tree exp0, tree exp1, rtx target, rtx *op0, rtx *op1,
8574 enum expand_modifier modifier)
8576 if (! safe_from_p (target, exp1, 1))
8577 target = 0;
8578 if (operand_equal_p (exp0, exp1, 0))
8580 *op0 = expand_expr (exp0, target, VOIDmode, modifier);
8581 *op1 = copy_rtx (*op0);
8583 else
8585 *op0 = expand_expr (exp0, target, VOIDmode, modifier);
8586 *op1 = expand_expr (exp1, NULL_RTX, VOIDmode, modifier);
8591 /* Return a MEM that contains constant EXP. DEFER is as for
8592 output_constant_def and MODIFIER is as for expand_expr. */
8594 static rtx
8595 expand_expr_constant (tree exp, int defer, enum expand_modifier modifier)
8597 rtx mem;
8599 mem = output_constant_def (exp, defer);
8600 if (modifier != EXPAND_INITIALIZER)
8601 mem = use_anchored_address (mem);
8602 return mem;
8605 /* A subroutine of expand_expr_addr_expr. Evaluate the address of EXP.
8606 The TARGET, TMODE and MODIFIER arguments are as for expand_expr. */
8608 static rtx
8609 expand_expr_addr_expr_1 (tree exp, rtx target, scalar_int_mode tmode,
8610 enum expand_modifier modifier, addr_space_t as)
8612 rtx result, subtarget;
8613 tree inner, offset;
8614 poly_int64 bitsize, bitpos;
8615 int unsignedp, reversep, volatilep = 0;
8616 machine_mode mode1;
8618 /* If we are taking the address of a constant and are at the top level,
8619 we have to use output_constant_def since we can't call force_const_mem
8620 at top level. */
8621 /* ??? This should be considered a front-end bug. We should not be
8622 generating ADDR_EXPR of something that isn't an LVALUE. The only
8623 exception here is STRING_CST. */
8624 if (CONSTANT_CLASS_P (exp))
8626 result = XEXP (expand_expr_constant (exp, 0, modifier), 0);
8627 if (modifier < EXPAND_SUM)
8628 result = force_operand (result, target);
8629 return result;
8632 /* Everything must be something allowed by is_gimple_addressable. */
8633 switch (TREE_CODE (exp))
8635 case INDIRECT_REF:
8636 /* This case will happen via recursion for &a->b. */
8637 return expand_expr (TREE_OPERAND (exp, 0), target, tmode, modifier);
8639 case MEM_REF:
8641 tree tem = TREE_OPERAND (exp, 0);
8642 if (!integer_zerop (TREE_OPERAND (exp, 1)))
8643 tem = fold_build_pointer_plus (tem, TREE_OPERAND (exp, 1));
8644 return expand_expr (tem, target, tmode, modifier);
8647 case TARGET_MEM_REF:
8648 return addr_for_mem_ref (exp, as, true);
8650 case CONST_DECL:
8651 /* Expand the initializer like constants above. */
8652 result = XEXP (expand_expr_constant (DECL_INITIAL (exp),
8653 0, modifier), 0);
8654 if (modifier < EXPAND_SUM)
8655 result = force_operand (result, target);
8656 return result;
8658 case REALPART_EXPR:
8659 /* The real part of the complex number is always first, therefore
8660 the address is the same as the address of the parent object. */
8661 offset = 0;
8662 bitpos = 0;
8663 inner = TREE_OPERAND (exp, 0);
8664 break;
8666 case IMAGPART_EXPR:
8667 /* The imaginary part of the complex number is always second.
8668 The expression is therefore always offset by the size of the
8669 scalar type. */
8670 offset = 0;
8671 bitpos = GET_MODE_BITSIZE (SCALAR_TYPE_MODE (TREE_TYPE (exp)));
8672 inner = TREE_OPERAND (exp, 0);
8673 break;
8675 case COMPOUND_LITERAL_EXPR:
8676 /* Allow COMPOUND_LITERAL_EXPR in initializers or coming from
8677 initializers, if e.g. rtl_for_decl_init is called on DECL_INITIAL
8678 with COMPOUND_LITERAL_EXPRs in it, or ARRAY_REF on a const static
8679 array with address of COMPOUND_LITERAL_EXPR in DECL_INITIAL;
8680 the initializers aren't gimplified. */
8681 if (COMPOUND_LITERAL_EXPR_DECL (exp)
8682 && is_global_var (COMPOUND_LITERAL_EXPR_DECL (exp)))
8683 return expand_expr_addr_expr_1 (COMPOUND_LITERAL_EXPR_DECL (exp),
8684 target, tmode, modifier, as);
8685 /* FALLTHRU */
8686 default:
8687 /* If the object is a DECL, then expand it for its rtl. Don't bypass
8688 expand_expr, as that can have various side effects; LABEL_DECLs for
8689 example, may not have their DECL_RTL set yet. Expand the rtl of
8690 CONSTRUCTORs too, which should yield a memory reference for the
8691 constructor's contents. Assume language specific tree nodes can
8692 be expanded in some interesting way. */
8693 gcc_assert (TREE_CODE (exp) < LAST_AND_UNUSED_TREE_CODE);
8694 if (DECL_P (exp)
8695 || TREE_CODE (exp) == CONSTRUCTOR
8696 || TREE_CODE (exp) == COMPOUND_LITERAL_EXPR)
8698 result = expand_expr (exp, target, tmode,
8699 modifier == EXPAND_INITIALIZER
8700 ? EXPAND_INITIALIZER : EXPAND_CONST_ADDRESS);
8702 /* If the DECL isn't in memory, then the DECL wasn't properly
8703 marked TREE_ADDRESSABLE, which will be either a front-end
8704 or a tree optimizer bug. */
8706 gcc_assert (MEM_P (result));
8707 result = XEXP (result, 0);
8709 /* ??? Is this needed anymore? */
8710 if (DECL_P (exp))
8711 TREE_USED (exp) = 1;
8713 if (modifier != EXPAND_INITIALIZER
8714 && modifier != EXPAND_CONST_ADDRESS
8715 && modifier != EXPAND_SUM)
8716 result = force_operand (result, target);
8717 return result;
8720 /* Pass FALSE as the last argument to get_inner_reference although
8721 we are expanding to RTL. The rationale is that we know how to
8722 handle "aligning nodes" here: we can just bypass them because
8723 they won't change the final object whose address will be returned
8724 (they actually exist only for that purpose). */
8725 inner = get_inner_reference (exp, &bitsize, &bitpos, &offset, &mode1,
8726 &unsignedp, &reversep, &volatilep);
8727 break;
8730 /* We must have made progress. */
8731 gcc_assert (inner != exp);
8733 subtarget = offset || maybe_ne (bitpos, 0) ? NULL_RTX : target;
8734 /* For VIEW_CONVERT_EXPR, where the outer alignment is bigger than
8735 inner alignment, force the inner to be sufficiently aligned. */
8736 if (CONSTANT_CLASS_P (inner)
8737 && TYPE_ALIGN (TREE_TYPE (inner)) < TYPE_ALIGN (TREE_TYPE (exp)))
8739 inner = copy_node (inner);
8740 TREE_TYPE (inner) = copy_node (TREE_TYPE (inner));
8741 SET_TYPE_ALIGN (TREE_TYPE (inner), TYPE_ALIGN (TREE_TYPE (exp)));
8742 TYPE_USER_ALIGN (TREE_TYPE (inner)) = 1;
8744 result = expand_expr_addr_expr_1 (inner, subtarget, tmode, modifier, as);
8746 if (offset)
8748 rtx tmp;
8750 if (modifier != EXPAND_NORMAL)
8751 result = force_operand (result, NULL);
8752 tmp = expand_expr (offset, NULL_RTX, tmode,
8753 modifier == EXPAND_INITIALIZER
8754 ? EXPAND_INITIALIZER : EXPAND_NORMAL);
8756 /* expand_expr is allowed to return an object in a mode other
8757 than TMODE. If it did, we need to convert. */
8758 if (GET_MODE (tmp) != VOIDmode && tmode != GET_MODE (tmp))
8759 tmp = convert_modes (tmode, GET_MODE (tmp),
8760 tmp, TYPE_UNSIGNED (TREE_TYPE (offset)));
8761 result = convert_memory_address_addr_space (tmode, result, as);
8762 tmp = convert_memory_address_addr_space (tmode, tmp, as);
8764 if (modifier == EXPAND_SUM || modifier == EXPAND_INITIALIZER)
8765 result = simplify_gen_binary (PLUS, tmode, result, tmp);
8766 else
8768 subtarget = maybe_ne (bitpos, 0) ? NULL_RTX : target;
8769 result = expand_simple_binop (tmode, PLUS, result, tmp, subtarget,
8770 1, OPTAB_LIB_WIDEN);
8774 if (maybe_ne (bitpos, 0))
8776 /* Someone beforehand should have rejected taking the address
8777 of an object that isn't byte-aligned. */
8778 poly_int64 bytepos = exact_div (bitpos, BITS_PER_UNIT);
8779 result = convert_memory_address_addr_space (tmode, result, as);
8780 result = plus_constant (tmode, result, bytepos);
8781 if (modifier < EXPAND_SUM)
8782 result = force_operand (result, target);
8785 return result;
8788 /* A subroutine of expand_expr. Evaluate EXP, which is an ADDR_EXPR.
8789 The TARGET, TMODE and MODIFIER arguments are as for expand_expr. */
8791 static rtx
8792 expand_expr_addr_expr (tree exp, rtx target, machine_mode tmode,
8793 enum expand_modifier modifier)
8795 addr_space_t as = ADDR_SPACE_GENERIC;
8796 scalar_int_mode address_mode = Pmode;
8797 scalar_int_mode pointer_mode = ptr_mode;
8798 machine_mode rmode;
8799 rtx result;
8801 /* Target mode of VOIDmode says "whatever's natural". */
8802 if (tmode == VOIDmode)
8803 tmode = TYPE_MODE (TREE_TYPE (exp));
8805 if (POINTER_TYPE_P (TREE_TYPE (exp)))
8807 as = TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (exp)));
8808 address_mode = targetm.addr_space.address_mode (as);
8809 pointer_mode = targetm.addr_space.pointer_mode (as);
8812 /* We can get called with some Weird Things if the user does silliness
8813 like "(short) &a". In that case, convert_memory_address won't do
8814 the right thing, so ignore the given target mode. */
8815 scalar_int_mode new_tmode = (tmode == pointer_mode
8816 ? pointer_mode
8817 : address_mode);
8819 result = expand_expr_addr_expr_1 (TREE_OPERAND (exp, 0), target,
8820 new_tmode, modifier, as);
8822 /* Despite expand_expr claims concerning ignoring TMODE when not
8823 strictly convenient, stuff breaks if we don't honor it. Note
8824 that combined with the above, we only do this for pointer modes. */
8825 rmode = GET_MODE (result);
8826 if (rmode == VOIDmode)
8827 rmode = new_tmode;
8828 if (rmode != new_tmode)
8829 result = convert_memory_address_addr_space (new_tmode, result, as);
8831 return result;
8834 /* Generate code for computing CONSTRUCTOR EXP.
8835 An rtx for the computed value is returned. If AVOID_TEMP_MEM
8836 is TRUE, instead of creating a temporary variable in memory
8837 NULL is returned and the caller needs to handle it differently. */
8839 static rtx
8840 expand_constructor (tree exp, rtx target, enum expand_modifier modifier,
8841 bool avoid_temp_mem)
8843 tree type = TREE_TYPE (exp);
8844 machine_mode mode = TYPE_MODE (type);
8846 /* Try to avoid creating a temporary at all. This is possible
8847 if all of the initializer is zero.
8848 FIXME: try to handle all [0..255] initializers we can handle
8849 with memset. */
8850 if (TREE_STATIC (exp)
8851 && !TREE_ADDRESSABLE (exp)
8852 && target != 0 && mode == BLKmode
8853 && all_zeros_p (exp))
8855 clear_storage (target, expr_size (exp), BLOCK_OP_NORMAL);
8856 return target;
8859 /* All elts simple constants => refer to a constant in memory. But
8860 if this is a non-BLKmode mode, let it store a field at a time
8861 since that should make a CONST_INT, CONST_WIDE_INT or
8862 CONST_DOUBLE when we fold. Likewise, if we have a target we can
8863 use, it is best to store directly into the target unless the type
8864 is large enough that memcpy will be used. If we are making an
8865 initializer and all operands are constant, put it in memory as
8866 well.
8868 FIXME: Avoid trying to fill vector constructors piece-meal.
8869 Output them with output_constant_def below unless we're sure
8870 they're zeros. This should go away when vector initializers
8871 are treated like VECTOR_CST instead of arrays. */
8872 if ((TREE_STATIC (exp)
8873 && ((mode == BLKmode
8874 && ! (target != 0 && safe_from_p (target, exp, 1)))
8875 || TREE_ADDRESSABLE (exp)
8876 || (tree_fits_uhwi_p (TYPE_SIZE_UNIT (type))
8877 && (! can_move_by_pieces
8878 (tree_to_uhwi (TYPE_SIZE_UNIT (type)),
8879 TYPE_ALIGN (type)))
8880 && ! mostly_zeros_p (exp))))
8881 || ((modifier == EXPAND_INITIALIZER || modifier == EXPAND_CONST_ADDRESS)
8882 && TREE_CONSTANT (exp)))
8884 rtx constructor;
8886 if (avoid_temp_mem)
8887 return NULL_RTX;
8889 constructor = expand_expr_constant (exp, 1, modifier);
8891 if (modifier != EXPAND_CONST_ADDRESS
8892 && modifier != EXPAND_INITIALIZER
8893 && modifier != EXPAND_SUM)
8894 constructor = validize_mem (constructor);
8896 return constructor;
8899 /* If the CTOR is available in static storage and not mostly
8900 zeros and we can move it by pieces prefer to do so since
8901 that's usually more efficient than performing a series of
8902 stores from immediates. */
8903 if (avoid_temp_mem
8904 && TREE_STATIC (exp)
8905 && TREE_CONSTANT (exp)
8906 && tree_fits_uhwi_p (TYPE_SIZE_UNIT (type))
8907 && can_move_by_pieces (tree_to_uhwi (TYPE_SIZE_UNIT (type)),
8908 TYPE_ALIGN (type))
8909 && ! mostly_zeros_p (exp))
8910 return NULL_RTX;
8912 /* Handle calls that pass values in multiple non-contiguous
8913 locations. The Irix 6 ABI has examples of this. */
8914 if (target == 0 || ! safe_from_p (target, exp, 1)
8915 || GET_CODE (target) == PARALLEL || modifier == EXPAND_STACK_PARM
8916 /* Also make a temporary if the store is to volatile memory, to
8917 avoid individual accesses to aggregate members. */
8918 || (GET_CODE (target) == MEM
8919 && MEM_VOLATILE_P (target)
8920 && !TREE_ADDRESSABLE (TREE_TYPE (exp))))
8922 if (avoid_temp_mem)
8923 return NULL_RTX;
8925 target = assign_temp (type, TREE_ADDRESSABLE (exp), 1);
8928 store_constructor (exp, target, 0, int_expr_size (exp), false);
8929 return target;
8933 /* expand_expr: generate code for computing expression EXP.
8934 An rtx for the computed value is returned. The value is never null.
8935 In the case of a void EXP, const0_rtx is returned.
8937 The value may be stored in TARGET if TARGET is nonzero.
8938 TARGET is just a suggestion; callers must assume that
8939 the rtx returned may not be the same as TARGET.
8941 If TARGET is CONST0_RTX, it means that the value will be ignored.
8943 If TMODE is not VOIDmode, it suggests generating the
8944 result in mode TMODE. But this is done only when convenient.
8945 Otherwise, TMODE is ignored and the value generated in its natural mode.
8946 TMODE is just a suggestion; callers must assume that
8947 the rtx returned may not have mode TMODE.
8949 Note that TARGET may have neither TMODE nor MODE. In that case, it
8950 probably will not be used.
8952 If MODIFIER is EXPAND_SUM then when EXP is an addition
8953 we can return an rtx of the form (MULT (REG ...) (CONST_INT ...))
8954 or a nest of (PLUS ...) and (MINUS ...) where the terms are
8955 products as above, or REG or MEM, or constant.
8956 Ordinarily in such cases we would output mul or add instructions
8957 and then return a pseudo reg containing the sum.
8959 EXPAND_INITIALIZER is much like EXPAND_SUM except that
8960 it also marks a label as absolutely required (it can't be dead).
8961 It also makes a ZERO_EXTEND or SIGN_EXTEND instead of emitting extend insns.
8962 This is used for outputting expressions used in initializers.
8964 EXPAND_CONST_ADDRESS says that it is okay to return a MEM
8965 with a constant address even if that address is not normally legitimate.
8966 EXPAND_INITIALIZER and EXPAND_SUM also have this effect.
8968 EXPAND_STACK_PARM is used when expanding to a TARGET on the stack for
8969 a call parameter. Such targets require special care as we haven't yet
8970 marked TARGET so that it's safe from being trashed by libcalls. We
8971 don't want to use TARGET for anything but the final result;
8972 Intermediate values must go elsewhere. Additionally, calls to
8973 emit_block_move will be flagged with BLOCK_OP_CALL_PARM.
8975 If EXP is a VAR_DECL whose DECL_RTL was a MEM with an invalid
8976 address, and ALT_RTL is non-NULL, then *ALT_RTL is set to the
8977 DECL_RTL of the VAR_DECL. *ALT_RTL is also set if EXP is a
8978 COMPOUND_EXPR whose second argument is such a VAR_DECL, and so on
8979 recursively.
8980 If the result can be stored at TARGET, and ALT_RTL is non-NULL,
8981 then *ALT_RTL is set to TARGET (before legitimziation).
8983 If INNER_REFERENCE_P is true, we are expanding an inner reference.
8984 In this case, we don't adjust a returned MEM rtx that wouldn't be
8985 sufficiently aligned for its mode; instead, it's up to the caller
8986 to deal with it afterwards. This is used to make sure that unaligned
8987 base objects for which out-of-bounds accesses are supported, for
8988 example record types with trailing arrays, aren't realigned behind
8989 the back of the caller.
8990 The normal operating mode is to pass FALSE for this parameter. */
8993 expand_expr_real (tree exp, rtx target, machine_mode tmode,
8994 enum expand_modifier modifier, rtx *alt_rtl,
8995 bool inner_reference_p)
8997 rtx ret;
8999 /* Handle ERROR_MARK before anybody tries to access its type. */
9000 if (TREE_CODE (exp) == ERROR_MARK
9001 || (TREE_CODE (TREE_TYPE (exp)) == ERROR_MARK))
9003 ret = CONST0_RTX (tmode);
9004 return ret ? ret : const0_rtx;
9007 ret = expand_expr_real_1 (exp, target, tmode, modifier, alt_rtl,
9008 inner_reference_p);
9009 return ret;
9012 /* Try to expand the conditional expression which is represented by
9013 TREEOP0 ? TREEOP1 : TREEOP2 using conditonal moves. If it succeeds
9014 return the rtl reg which represents the result. Otherwise return
9015 NULL_RTX. */
9017 static rtx
9018 expand_cond_expr_using_cmove (tree treeop0 ATTRIBUTE_UNUSED,
9019 tree treeop1 ATTRIBUTE_UNUSED,
9020 tree treeop2 ATTRIBUTE_UNUSED)
9022 rtx insn;
9023 rtx op00, op01, op1, op2;
9024 enum rtx_code comparison_code;
9025 machine_mode comparison_mode;
9026 gimple *srcstmt;
9027 rtx temp;
9028 tree type = TREE_TYPE (treeop1);
9029 int unsignedp = TYPE_UNSIGNED (type);
9030 machine_mode mode = TYPE_MODE (type);
9031 machine_mode orig_mode = mode;
9032 static bool expanding_cond_expr_using_cmove = false;
9034 /* Conditional move expansion can end up TERing two operands which,
9035 when recursively hitting conditional expressions can result in
9036 exponential behavior if the cmove expansion ultimatively fails.
9037 It's hardly profitable to TER a cmove into a cmove so avoid doing
9038 that by failing early if we end up recursing. */
9039 if (expanding_cond_expr_using_cmove)
9040 return NULL_RTX;
9042 /* If we cannot do a conditional move on the mode, try doing it
9043 with the promoted mode. */
9044 if (!can_conditionally_move_p (mode))
9046 mode = promote_mode (type, mode, &unsignedp);
9047 if (!can_conditionally_move_p (mode))
9048 return NULL_RTX;
9049 temp = assign_temp (type, 0, 0); /* Use promoted mode for temp. */
9051 else
9052 temp = assign_temp (type, 0, 1);
9054 expanding_cond_expr_using_cmove = true;
9055 start_sequence ();
9056 expand_operands (treeop1, treeop2,
9057 mode == orig_mode ? temp : NULL_RTX, &op1, &op2,
9058 EXPAND_NORMAL);
9060 if (TREE_CODE (treeop0) == SSA_NAME
9061 && (srcstmt = get_def_for_expr_class (treeop0, tcc_comparison)))
9063 type = TREE_TYPE (gimple_assign_rhs1 (srcstmt));
9064 enum tree_code cmpcode = gimple_assign_rhs_code (srcstmt);
9065 op00 = expand_normal (gimple_assign_rhs1 (srcstmt));
9066 op01 = expand_normal (gimple_assign_rhs2 (srcstmt));
9067 comparison_mode = TYPE_MODE (type);
9068 unsignedp = TYPE_UNSIGNED (type);
9069 comparison_code = convert_tree_comp_to_rtx (cmpcode, unsignedp);
9071 else if (COMPARISON_CLASS_P (treeop0))
9073 type = TREE_TYPE (TREE_OPERAND (treeop0, 0));
9074 enum tree_code cmpcode = TREE_CODE (treeop0);
9075 op00 = expand_normal (TREE_OPERAND (treeop0, 0));
9076 op01 = expand_normal (TREE_OPERAND (treeop0, 1));
9077 unsignedp = TYPE_UNSIGNED (type);
9078 comparison_mode = TYPE_MODE (type);
9079 comparison_code = convert_tree_comp_to_rtx (cmpcode, unsignedp);
9081 else
9083 op00 = expand_normal (treeop0);
9084 op01 = const0_rtx;
9085 comparison_code = NE;
9086 comparison_mode = GET_MODE (op00);
9087 if (comparison_mode == VOIDmode)
9088 comparison_mode = TYPE_MODE (TREE_TYPE (treeop0));
9090 expanding_cond_expr_using_cmove = false;
9092 if (GET_MODE (op1) != mode)
9093 op1 = gen_lowpart (mode, op1);
9095 if (GET_MODE (op2) != mode)
9096 op2 = gen_lowpart (mode, op2);
9098 /* Try to emit the conditional move. */
9099 insn = emit_conditional_move (temp,
9100 { comparison_code, op00, op01,
9101 comparison_mode },
9102 op1, op2, mode,
9103 unsignedp);
9105 /* If we could do the conditional move, emit the sequence,
9106 and return. */
9107 if (insn)
9109 rtx_insn *seq = get_insns ();
9110 end_sequence ();
9111 emit_insn (seq);
9112 return convert_modes (orig_mode, mode, temp, 0);
9115 /* Otherwise discard the sequence and fall back to code with
9116 branches. */
9117 end_sequence ();
9118 return NULL_RTX;
9121 /* A helper function for expand_expr_real_2 to be used with a
9122 misaligned mem_ref TEMP. Assume an unsigned type if UNSIGNEDP
9123 is nonzero, with alignment ALIGN in bits.
9124 Store the value at TARGET if possible (if TARGET is nonzero).
9125 Regardless of TARGET, we return the rtx for where the value is placed.
9126 If the result can be stored at TARGET, and ALT_RTL is non-NULL,
9127 then *ALT_RTL is set to TARGET (before legitimziation). */
9129 static rtx
9130 expand_misaligned_mem_ref (rtx temp, machine_mode mode, int unsignedp,
9131 unsigned int align, rtx target, rtx *alt_rtl)
9133 enum insn_code icode;
9135 if ((icode = optab_handler (movmisalign_optab, mode))
9136 != CODE_FOR_nothing)
9138 class expand_operand ops[2];
9140 /* We've already validated the memory, and we're creating a
9141 new pseudo destination. The predicates really can't fail,
9142 nor can the generator. */
9143 create_output_operand (&ops[0], NULL_RTX, mode);
9144 create_fixed_operand (&ops[1], temp);
9145 expand_insn (icode, 2, ops);
9146 temp = ops[0].value;
9148 else if (targetm.slow_unaligned_access (mode, align))
9149 temp = extract_bit_field (temp, GET_MODE_BITSIZE (mode),
9150 0, unsignedp, target,
9151 mode, mode, false, alt_rtl);
9152 return temp;
9155 /* Helper function of expand_expr_2, expand a division or modulo.
9156 op0 and op1 should be already expanded treeop0 and treeop1, using
9157 expand_operands. */
9159 static rtx
9160 expand_expr_divmod (tree_code code, machine_mode mode, tree treeop0,
9161 tree treeop1, rtx op0, rtx op1, rtx target, int unsignedp)
9163 bool mod_p = (code == TRUNC_MOD_EXPR || code == FLOOR_MOD_EXPR
9164 || code == CEIL_MOD_EXPR || code == ROUND_MOD_EXPR);
9165 if (SCALAR_INT_MODE_P (mode)
9166 && optimize >= 2
9167 && get_range_pos_neg (treeop0) == 1
9168 && get_range_pos_neg (treeop1) == 1)
9170 /* If both arguments are known to be positive when interpreted
9171 as signed, we can expand it as both signed and unsigned
9172 division or modulo. Choose the cheaper sequence in that case. */
9173 bool speed_p = optimize_insn_for_speed_p ();
9174 do_pending_stack_adjust ();
9175 start_sequence ();
9176 rtx uns_ret = expand_divmod (mod_p, code, mode, op0, op1, target, 1);
9177 rtx_insn *uns_insns = get_insns ();
9178 end_sequence ();
9179 start_sequence ();
9180 rtx sgn_ret = expand_divmod (mod_p, code, mode, op0, op1, target, 0);
9181 rtx_insn *sgn_insns = get_insns ();
9182 end_sequence ();
9183 unsigned uns_cost = seq_cost (uns_insns, speed_p);
9184 unsigned sgn_cost = seq_cost (sgn_insns, speed_p);
9186 /* If costs are the same then use as tie breaker the other other
9187 factor. */
9188 if (uns_cost == sgn_cost)
9190 uns_cost = seq_cost (uns_insns, !speed_p);
9191 sgn_cost = seq_cost (sgn_insns, !speed_p);
9194 if (uns_cost < sgn_cost || (uns_cost == sgn_cost && unsignedp))
9196 emit_insn (uns_insns);
9197 return uns_ret;
9199 emit_insn (sgn_insns);
9200 return sgn_ret;
9202 return expand_divmod (mod_p, code, mode, op0, op1, target, unsignedp);
9206 expand_expr_real_2 (sepops ops, rtx target, machine_mode tmode,
9207 enum expand_modifier modifier)
9209 rtx op0, op1, op2, temp;
9210 rtx_code_label *lab;
9211 tree type;
9212 int unsignedp;
9213 machine_mode mode;
9214 scalar_int_mode int_mode;
9215 enum tree_code code = ops->code;
9216 optab this_optab;
9217 rtx subtarget, original_target;
9218 int ignore;
9219 bool reduce_bit_field;
9220 location_t loc = ops->location;
9221 tree treeop0, treeop1, treeop2;
9222 #define REDUCE_BIT_FIELD(expr) (reduce_bit_field \
9223 ? reduce_to_bit_field_precision ((expr), \
9224 target, \
9225 type) \
9226 : (expr))
9228 type = ops->type;
9229 mode = TYPE_MODE (type);
9230 unsignedp = TYPE_UNSIGNED (type);
9232 treeop0 = ops->op0;
9233 treeop1 = ops->op1;
9234 treeop2 = ops->op2;
9236 /* We should be called only on simple (binary or unary) expressions,
9237 exactly those that are valid in gimple expressions that aren't
9238 GIMPLE_SINGLE_RHS (or invalid). */
9239 gcc_assert (get_gimple_rhs_class (code) == GIMPLE_UNARY_RHS
9240 || get_gimple_rhs_class (code) == GIMPLE_BINARY_RHS
9241 || get_gimple_rhs_class (code) == GIMPLE_TERNARY_RHS);
9243 ignore = (target == const0_rtx
9244 || ((CONVERT_EXPR_CODE_P (code)
9245 || code == COND_EXPR || code == VIEW_CONVERT_EXPR)
9246 && TREE_CODE (type) == VOID_TYPE));
9248 /* We should be called only if we need the result. */
9249 gcc_assert (!ignore);
9251 /* An operation in what may be a bit-field type needs the
9252 result to be reduced to the precision of the bit-field type,
9253 which is narrower than that of the type's mode. */
9254 reduce_bit_field = (INTEGRAL_TYPE_P (type)
9255 && !type_has_mode_precision_p (type));
9257 if (reduce_bit_field
9258 && (modifier == EXPAND_STACK_PARM
9259 || (target && GET_MODE (target) != mode)))
9260 target = 0;
9262 /* Use subtarget as the target for operand 0 of a binary operation. */
9263 subtarget = get_subtarget (target);
9264 original_target = target;
9266 switch (code)
9268 case NON_LVALUE_EXPR:
9269 case PAREN_EXPR:
9270 CASE_CONVERT:
9271 if (treeop0 == error_mark_node)
9272 return const0_rtx;
9274 if (TREE_CODE (type) == UNION_TYPE)
9276 tree valtype = TREE_TYPE (treeop0);
9278 /* If both input and output are BLKmode, this conversion isn't doing
9279 anything except possibly changing memory attribute. */
9280 if (mode == BLKmode && TYPE_MODE (valtype) == BLKmode)
9282 rtx result = expand_expr (treeop0, target, tmode,
9283 modifier);
9285 result = copy_rtx (result);
9286 set_mem_attributes (result, type, 0);
9287 return result;
9290 if (target == 0)
9292 if (TYPE_MODE (type) != BLKmode)
9293 target = gen_reg_rtx (TYPE_MODE (type));
9294 else
9295 target = assign_temp (type, 1, 1);
9298 if (MEM_P (target))
9299 /* Store data into beginning of memory target. */
9300 store_expr (treeop0,
9301 adjust_address (target, TYPE_MODE (valtype), 0),
9302 modifier == EXPAND_STACK_PARM,
9303 false, TYPE_REVERSE_STORAGE_ORDER (type));
9305 else
9307 gcc_assert (REG_P (target)
9308 && !TYPE_REVERSE_STORAGE_ORDER (type));
9310 /* Store this field into a union of the proper type. */
9311 poly_uint64 op0_size
9312 = tree_to_poly_uint64 (TYPE_SIZE (TREE_TYPE (treeop0)));
9313 poly_uint64 union_size = GET_MODE_BITSIZE (mode);
9314 store_field (target,
9315 /* The conversion must be constructed so that
9316 we know at compile time how many bits
9317 to preserve. */
9318 ordered_min (op0_size, union_size),
9319 0, 0, 0, TYPE_MODE (valtype), treeop0, 0,
9320 false, false);
9323 /* Return the entire union. */
9324 return target;
9327 if (mode == TYPE_MODE (TREE_TYPE (treeop0)))
9329 op0 = expand_expr (treeop0, target, VOIDmode,
9330 modifier);
9332 /* If the signedness of the conversion differs and OP0 is
9333 a promoted SUBREG, clear that indication since we now
9334 have to do the proper extension. */
9335 if (TYPE_UNSIGNED (TREE_TYPE (treeop0)) != unsignedp
9336 && GET_CODE (op0) == SUBREG)
9337 SUBREG_PROMOTED_VAR_P (op0) = 0;
9339 return REDUCE_BIT_FIELD (op0);
9342 op0 = expand_expr (treeop0, NULL_RTX, mode,
9343 modifier == EXPAND_SUM ? EXPAND_NORMAL : modifier);
9344 if (GET_MODE (op0) == mode)
9347 /* If OP0 is a constant, just convert it into the proper mode. */
9348 else if (CONSTANT_P (op0))
9350 tree inner_type = TREE_TYPE (treeop0);
9351 machine_mode inner_mode = GET_MODE (op0);
9353 if (inner_mode == VOIDmode)
9354 inner_mode = TYPE_MODE (inner_type);
9356 if (modifier == EXPAND_INITIALIZER)
9357 op0 = lowpart_subreg (mode, op0, inner_mode);
9358 else
9359 op0= convert_modes (mode, inner_mode, op0,
9360 TYPE_UNSIGNED (inner_type));
9363 else if (modifier == EXPAND_INITIALIZER)
9364 op0 = gen_rtx_fmt_e (TYPE_UNSIGNED (TREE_TYPE (treeop0))
9365 ? ZERO_EXTEND : SIGN_EXTEND, mode, op0);
9367 else if (target == 0)
9368 op0 = convert_to_mode (mode, op0,
9369 TYPE_UNSIGNED (TREE_TYPE
9370 (treeop0)));
9371 else
9373 convert_move (target, op0,
9374 TYPE_UNSIGNED (TREE_TYPE (treeop0)));
9375 op0 = target;
9378 return REDUCE_BIT_FIELD (op0);
9380 case ADDR_SPACE_CONVERT_EXPR:
9382 tree treeop0_type = TREE_TYPE (treeop0);
9384 gcc_assert (POINTER_TYPE_P (type));
9385 gcc_assert (POINTER_TYPE_P (treeop0_type));
9387 addr_space_t as_to = TYPE_ADDR_SPACE (TREE_TYPE (type));
9388 addr_space_t as_from = TYPE_ADDR_SPACE (TREE_TYPE (treeop0_type));
9390 /* Conversions between pointers to the same address space should
9391 have been implemented via CONVERT_EXPR / NOP_EXPR. */
9392 gcc_assert (as_to != as_from);
9394 op0 = expand_expr (treeop0, NULL_RTX, VOIDmode, modifier);
9396 /* Ask target code to handle conversion between pointers
9397 to overlapping address spaces. */
9398 if (targetm.addr_space.subset_p (as_to, as_from)
9399 || targetm.addr_space.subset_p (as_from, as_to))
9401 op0 = targetm.addr_space.convert (op0, treeop0_type, type);
9403 else
9405 /* For disjoint address spaces, converting anything but a null
9406 pointer invokes undefined behavior. We truncate or extend the
9407 value as if we'd converted via integers, which handles 0 as
9408 required, and all others as the programmer likely expects. */
9409 #ifndef POINTERS_EXTEND_UNSIGNED
9410 const int POINTERS_EXTEND_UNSIGNED = 1;
9411 #endif
9412 op0 = convert_modes (mode, TYPE_MODE (treeop0_type),
9413 op0, POINTERS_EXTEND_UNSIGNED);
9415 gcc_assert (op0);
9416 return op0;
9419 case POINTER_PLUS_EXPR:
9420 /* Even though the sizetype mode and the pointer's mode can be different
9421 expand is able to handle this correctly and get the correct result out
9422 of the PLUS_EXPR code. */
9423 /* Make sure to sign-extend the sizetype offset in a POINTER_PLUS_EXPR
9424 if sizetype precision is smaller than pointer precision. */
9425 if (TYPE_PRECISION (sizetype) < TYPE_PRECISION (type))
9426 treeop1 = fold_convert_loc (loc, type,
9427 fold_convert_loc (loc, ssizetype,
9428 treeop1));
9429 /* If sizetype precision is larger than pointer precision, truncate the
9430 offset to have matching modes. */
9431 else if (TYPE_PRECISION (sizetype) > TYPE_PRECISION (type))
9432 treeop1 = fold_convert_loc (loc, type, treeop1);
9433 /* FALLTHRU */
9435 case PLUS_EXPR:
9436 /* If we are adding a constant, a VAR_DECL that is sp, fp, or ap, and
9437 something else, make sure we add the register to the constant and
9438 then to the other thing. This case can occur during strength
9439 reduction and doing it this way will produce better code if the
9440 frame pointer or argument pointer is eliminated.
9442 fold-const.cc will ensure that the constant is always in the inner
9443 PLUS_EXPR, so the only case we need to do anything about is if
9444 sp, ap, or fp is our second argument, in which case we must swap
9445 the innermost first argument and our second argument. */
9447 if (TREE_CODE (treeop0) == PLUS_EXPR
9448 && TREE_CODE (TREE_OPERAND (treeop0, 1)) == INTEGER_CST
9449 && VAR_P (treeop1)
9450 && (DECL_RTL (treeop1) == frame_pointer_rtx
9451 || DECL_RTL (treeop1) == stack_pointer_rtx
9452 || DECL_RTL (treeop1) == arg_pointer_rtx))
9454 gcc_unreachable ();
9457 /* If the result is to be ptr_mode and we are adding an integer to
9458 something, we might be forming a constant. So try to use
9459 plus_constant. If it produces a sum and we can't accept it,
9460 use force_operand. This allows P = &ARR[const] to generate
9461 efficient code on machines where a SYMBOL_REF is not a valid
9462 address.
9464 If this is an EXPAND_SUM call, always return the sum. */
9465 if (modifier == EXPAND_SUM || modifier == EXPAND_INITIALIZER
9466 || (mode == ptr_mode && (unsignedp || ! flag_trapv)))
9468 if (modifier == EXPAND_STACK_PARM)
9469 target = 0;
9470 if (TREE_CODE (treeop0) == INTEGER_CST
9471 && HWI_COMPUTABLE_MODE_P (mode)
9472 && TREE_CONSTANT (treeop1))
9474 rtx constant_part;
9475 HOST_WIDE_INT wc;
9476 machine_mode wmode = TYPE_MODE (TREE_TYPE (treeop1));
9478 op1 = expand_expr (treeop1, subtarget, VOIDmode,
9479 EXPAND_SUM);
9480 /* Use wi::shwi to ensure that the constant is
9481 truncated according to the mode of OP1, then sign extended
9482 to a HOST_WIDE_INT. Using the constant directly can result
9483 in non-canonical RTL in a 64x32 cross compile. */
9484 wc = TREE_INT_CST_LOW (treeop0);
9485 constant_part =
9486 immed_wide_int_const (wi::shwi (wc, wmode), wmode);
9487 op1 = plus_constant (mode, op1, INTVAL (constant_part));
9488 if (modifier != EXPAND_SUM && modifier != EXPAND_INITIALIZER)
9489 op1 = force_operand (op1, target);
9490 return REDUCE_BIT_FIELD (op1);
9493 else if (TREE_CODE (treeop1) == INTEGER_CST
9494 && HWI_COMPUTABLE_MODE_P (mode)
9495 && TREE_CONSTANT (treeop0))
9497 rtx constant_part;
9498 HOST_WIDE_INT wc;
9499 machine_mode wmode = TYPE_MODE (TREE_TYPE (treeop0));
9501 op0 = expand_expr (treeop0, subtarget, VOIDmode,
9502 (modifier == EXPAND_INITIALIZER
9503 ? EXPAND_INITIALIZER : EXPAND_SUM));
9504 if (! CONSTANT_P (op0))
9506 op1 = expand_expr (treeop1, NULL_RTX,
9507 VOIDmode, modifier);
9508 /* Return a PLUS if modifier says it's OK. */
9509 if (modifier == EXPAND_SUM
9510 || modifier == EXPAND_INITIALIZER)
9511 return simplify_gen_binary (PLUS, mode, op0, op1);
9512 goto binop2;
9514 /* Use wi::shwi to ensure that the constant is
9515 truncated according to the mode of OP1, then sign extended
9516 to a HOST_WIDE_INT. Using the constant directly can result
9517 in non-canonical RTL in a 64x32 cross compile. */
9518 wc = TREE_INT_CST_LOW (treeop1);
9519 constant_part
9520 = immed_wide_int_const (wi::shwi (wc, wmode), wmode);
9521 op0 = plus_constant (mode, op0, INTVAL (constant_part));
9522 if (modifier != EXPAND_SUM && modifier != EXPAND_INITIALIZER)
9523 op0 = force_operand (op0, target);
9524 return REDUCE_BIT_FIELD (op0);
9528 /* Use TER to expand pointer addition of a negated value
9529 as pointer subtraction. */
9530 if ((POINTER_TYPE_P (TREE_TYPE (treeop0))
9531 || (TREE_CODE (TREE_TYPE (treeop0)) == VECTOR_TYPE
9532 && POINTER_TYPE_P (TREE_TYPE (TREE_TYPE (treeop0)))))
9533 && TREE_CODE (treeop1) == SSA_NAME
9534 && TYPE_MODE (TREE_TYPE (treeop0))
9535 == TYPE_MODE (TREE_TYPE (treeop1)))
9537 gimple *def = get_def_for_expr (treeop1, NEGATE_EXPR);
9538 if (def)
9540 treeop1 = gimple_assign_rhs1 (def);
9541 code = MINUS_EXPR;
9542 goto do_minus;
9546 /* No sense saving up arithmetic to be done
9547 if it's all in the wrong mode to form part of an address.
9548 And force_operand won't know whether to sign-extend or
9549 zero-extend. */
9550 if (modifier != EXPAND_INITIALIZER
9551 && (modifier != EXPAND_SUM || mode != ptr_mode))
9553 expand_operands (treeop0, treeop1,
9554 subtarget, &op0, &op1, modifier);
9555 if (op0 == const0_rtx)
9556 return op1;
9557 if (op1 == const0_rtx)
9558 return op0;
9559 goto binop2;
9562 expand_operands (treeop0, treeop1,
9563 subtarget, &op0, &op1, modifier);
9564 return REDUCE_BIT_FIELD (simplify_gen_binary (PLUS, mode, op0, op1));
9566 case MINUS_EXPR:
9567 case POINTER_DIFF_EXPR:
9568 do_minus:
9569 /* For initializers, we are allowed to return a MINUS of two
9570 symbolic constants. Here we handle all cases when both operands
9571 are constant. */
9572 /* Handle difference of two symbolic constants,
9573 for the sake of an initializer. */
9574 if ((modifier == EXPAND_SUM || modifier == EXPAND_INITIALIZER)
9575 && really_constant_p (treeop0)
9576 && really_constant_p (treeop1))
9578 expand_operands (treeop0, treeop1,
9579 NULL_RTX, &op0, &op1, modifier);
9580 return simplify_gen_binary (MINUS, mode, op0, op1);
9583 /* No sense saving up arithmetic to be done
9584 if it's all in the wrong mode to form part of an address.
9585 And force_operand won't know whether to sign-extend or
9586 zero-extend. */
9587 if (modifier != EXPAND_INITIALIZER
9588 && (modifier != EXPAND_SUM || mode != ptr_mode))
9589 goto binop;
9591 expand_operands (treeop0, treeop1,
9592 subtarget, &op0, &op1, modifier);
9594 /* Convert A - const to A + (-const). */
9595 if (CONST_INT_P (op1))
9597 op1 = negate_rtx (mode, op1);
9598 return REDUCE_BIT_FIELD (simplify_gen_binary (PLUS, mode, op0, op1));
9601 goto binop2;
9603 case WIDEN_MULT_PLUS_EXPR:
9604 case WIDEN_MULT_MINUS_EXPR:
9605 expand_operands (treeop0, treeop1, NULL_RTX, &op0, &op1, EXPAND_NORMAL);
9606 op2 = expand_normal (treeop2);
9607 target = expand_widen_pattern_expr (ops, op0, op1, op2,
9608 target, unsignedp);
9609 return target;
9611 case WIDEN_MULT_EXPR:
9612 /* If first operand is constant, swap them.
9613 Thus the following special case checks need only
9614 check the second operand. */
9615 if (TREE_CODE (treeop0) == INTEGER_CST)
9616 std::swap (treeop0, treeop1);
9618 /* First, check if we have a multiplication of one signed and one
9619 unsigned operand. */
9620 if (TREE_CODE (treeop1) != INTEGER_CST
9621 && (TYPE_UNSIGNED (TREE_TYPE (treeop0))
9622 != TYPE_UNSIGNED (TREE_TYPE (treeop1))))
9624 machine_mode innermode = TYPE_MODE (TREE_TYPE (treeop0));
9625 this_optab = usmul_widen_optab;
9626 if (find_widening_optab_handler (this_optab, mode, innermode)
9627 != CODE_FOR_nothing)
9629 if (TYPE_UNSIGNED (TREE_TYPE (treeop0)))
9630 expand_operands (treeop0, treeop1, NULL_RTX, &op0, &op1,
9631 EXPAND_NORMAL);
9632 else
9633 expand_operands (treeop0, treeop1, NULL_RTX, &op1, &op0,
9634 EXPAND_NORMAL);
9635 /* op0 and op1 might still be constant, despite the above
9636 != INTEGER_CST check. Handle it. */
9637 if (GET_MODE (op0) == VOIDmode && GET_MODE (op1) == VOIDmode)
9639 op0 = convert_modes (mode, innermode, op0, true);
9640 op1 = convert_modes (mode, innermode, op1, false);
9641 return REDUCE_BIT_FIELD (expand_mult (mode, op0, op1,
9642 target, unsignedp));
9644 goto binop3;
9647 /* Check for a multiplication with matching signedness. */
9648 else if ((TREE_CODE (treeop1) == INTEGER_CST
9649 && int_fits_type_p (treeop1, TREE_TYPE (treeop0)))
9650 || (TYPE_UNSIGNED (TREE_TYPE (treeop1))
9651 == TYPE_UNSIGNED (TREE_TYPE (treeop0))))
9653 tree op0type = TREE_TYPE (treeop0);
9654 machine_mode innermode = TYPE_MODE (op0type);
9655 bool zextend_p = TYPE_UNSIGNED (op0type);
9656 optab other_optab = zextend_p ? smul_widen_optab : umul_widen_optab;
9657 this_optab = zextend_p ? umul_widen_optab : smul_widen_optab;
9659 if (TREE_CODE (treeop0) != INTEGER_CST)
9661 if (find_widening_optab_handler (this_optab, mode, innermode)
9662 != CODE_FOR_nothing)
9664 expand_operands (treeop0, treeop1, NULL_RTX, &op0, &op1,
9665 EXPAND_NORMAL);
9666 /* op0 and op1 might still be constant, despite the above
9667 != INTEGER_CST check. Handle it. */
9668 if (GET_MODE (op0) == VOIDmode && GET_MODE (op1) == VOIDmode)
9670 widen_mult_const:
9671 op0 = convert_modes (mode, innermode, op0, zextend_p);
9673 = convert_modes (mode, innermode, op1,
9674 TYPE_UNSIGNED (TREE_TYPE (treeop1)));
9675 return REDUCE_BIT_FIELD (expand_mult (mode, op0, op1,
9676 target,
9677 unsignedp));
9679 temp = expand_widening_mult (mode, op0, op1, target,
9680 unsignedp, this_optab);
9681 return REDUCE_BIT_FIELD (temp);
9683 if (find_widening_optab_handler (other_optab, mode, innermode)
9684 != CODE_FOR_nothing
9685 && innermode == word_mode)
9687 rtx htem, hipart;
9688 op0 = expand_normal (treeop0);
9689 op1 = expand_normal (treeop1);
9690 /* op0 and op1 might be constants, despite the above
9691 != INTEGER_CST check. Handle it. */
9692 if (GET_MODE (op0) == VOIDmode && GET_MODE (op1) == VOIDmode)
9693 goto widen_mult_const;
9694 temp = expand_binop (mode, other_optab, op0, op1, target,
9695 unsignedp, OPTAB_LIB_WIDEN);
9696 hipart = gen_highpart (word_mode, temp);
9697 htem = expand_mult_highpart_adjust (word_mode, hipart,
9698 op0, op1, hipart,
9699 zextend_p);
9700 if (htem != hipart)
9701 emit_move_insn (hipart, htem);
9702 return REDUCE_BIT_FIELD (temp);
9706 treeop0 = fold_build1 (CONVERT_EXPR, type, treeop0);
9707 treeop1 = fold_build1 (CONVERT_EXPR, type, treeop1);
9708 expand_operands (treeop0, treeop1, subtarget, &op0, &op1, EXPAND_NORMAL);
9709 return REDUCE_BIT_FIELD (expand_mult (mode, op0, op1, target, unsignedp));
9711 case MULT_EXPR:
9712 /* If this is a fixed-point operation, then we cannot use the code
9713 below because "expand_mult" doesn't support sat/no-sat fixed-point
9714 multiplications. */
9715 if (ALL_FIXED_POINT_MODE_P (mode))
9716 goto binop;
9718 /* If first operand is constant, swap them.
9719 Thus the following special case checks need only
9720 check the second operand. */
9721 if (TREE_CODE (treeop0) == INTEGER_CST)
9722 std::swap (treeop0, treeop1);
9724 /* Attempt to return something suitable for generating an
9725 indexed address, for machines that support that. */
9727 if (modifier == EXPAND_SUM && mode == ptr_mode
9728 && tree_fits_shwi_p (treeop1))
9730 tree exp1 = treeop1;
9732 op0 = expand_expr (treeop0, subtarget, VOIDmode,
9733 EXPAND_SUM);
9735 if (!REG_P (op0))
9736 op0 = force_operand (op0, NULL_RTX);
9737 if (!REG_P (op0))
9738 op0 = copy_to_mode_reg (mode, op0);
9740 op1 = gen_int_mode (tree_to_shwi (exp1),
9741 TYPE_MODE (TREE_TYPE (exp1)));
9742 return REDUCE_BIT_FIELD (gen_rtx_MULT (mode, op0, op1));
9745 if (modifier == EXPAND_STACK_PARM)
9746 target = 0;
9748 if (SCALAR_INT_MODE_P (mode) && optimize >= 2)
9750 gimple *def_stmt0 = get_def_for_expr (treeop0, TRUNC_DIV_EXPR);
9751 gimple *def_stmt1 = get_def_for_expr (treeop1, TRUNC_DIV_EXPR);
9752 if (def_stmt0
9753 && !operand_equal_p (treeop1, gimple_assign_rhs2 (def_stmt0), 0))
9754 def_stmt0 = NULL;
9755 if (def_stmt1
9756 && !operand_equal_p (treeop0, gimple_assign_rhs2 (def_stmt1), 0))
9757 def_stmt1 = NULL;
9759 if (def_stmt0 || def_stmt1)
9761 /* X / Y * Y can be expanded as X - X % Y too.
9762 Choose the cheaper sequence of those two. */
9763 if (def_stmt0)
9764 treeop0 = gimple_assign_rhs1 (def_stmt0);
9765 else
9767 treeop1 = treeop0;
9768 treeop0 = gimple_assign_rhs1 (def_stmt1);
9770 expand_operands (treeop0, treeop1, subtarget, &op0, &op1,
9771 EXPAND_NORMAL);
9772 bool speed_p = optimize_insn_for_speed_p ();
9773 do_pending_stack_adjust ();
9774 start_sequence ();
9775 rtx divmul_ret
9776 = expand_expr_divmod (TRUNC_DIV_EXPR, mode, treeop0, treeop1,
9777 op0, op1, NULL_RTX, unsignedp);
9778 divmul_ret = expand_mult (mode, divmul_ret, op1, target,
9779 unsignedp);
9780 rtx_insn *divmul_insns = get_insns ();
9781 end_sequence ();
9782 start_sequence ();
9783 rtx modsub_ret
9784 = expand_expr_divmod (TRUNC_MOD_EXPR, mode, treeop0, treeop1,
9785 op0, op1, NULL_RTX, unsignedp);
9786 this_optab = optab_for_tree_code (MINUS_EXPR, type,
9787 optab_default);
9788 modsub_ret = expand_binop (mode, this_optab, op0, modsub_ret,
9789 target, unsignedp, OPTAB_LIB_WIDEN);
9790 rtx_insn *modsub_insns = get_insns ();
9791 end_sequence ();
9792 unsigned divmul_cost = seq_cost (divmul_insns, speed_p);
9793 unsigned modsub_cost = seq_cost (modsub_insns, speed_p);
9794 /* If costs are the same then use as tie breaker the other other
9795 factor. */
9796 if (divmul_cost == modsub_cost)
9798 divmul_cost = seq_cost (divmul_insns, !speed_p);
9799 modsub_cost = seq_cost (modsub_insns, !speed_p);
9802 if (divmul_cost <= modsub_cost)
9804 emit_insn (divmul_insns);
9805 return REDUCE_BIT_FIELD (divmul_ret);
9807 emit_insn (modsub_insns);
9808 return REDUCE_BIT_FIELD (modsub_ret);
9812 expand_operands (treeop0, treeop1, subtarget, &op0, &op1, EXPAND_NORMAL);
9814 /* Expand X*Y as X&-Y when Y must be zero or one. */
9815 if (SCALAR_INT_MODE_P (mode))
9817 bool bit0_p = tree_nonzero_bits (treeop0) == 1;
9818 bool bit1_p = tree_nonzero_bits (treeop1) == 1;
9820 /* Expand X*Y as X&Y when both X and Y must be zero or one. */
9821 if (bit0_p && bit1_p)
9822 return REDUCE_BIT_FIELD (expand_and (mode, op0, op1, target));
9824 if (bit0_p || bit1_p)
9826 bool speed = optimize_insn_for_speed_p ();
9827 int cost = add_cost (speed, mode) + neg_cost (speed, mode);
9828 struct algorithm algorithm;
9829 enum mult_variant variant;
9830 if (CONST_INT_P (op1)
9831 ? !choose_mult_variant (mode, INTVAL (op1),
9832 &algorithm, &variant, cost)
9833 : cost < mul_cost (speed, mode))
9835 target = bit0_p ? expand_and (mode, negate_rtx (mode, op0),
9836 op1, target)
9837 : expand_and (mode, op0,
9838 negate_rtx (mode, op1),
9839 target);
9840 return REDUCE_BIT_FIELD (target);
9845 return REDUCE_BIT_FIELD (expand_mult (mode, op0, op1, target, unsignedp));
9847 case TRUNC_MOD_EXPR:
9848 case FLOOR_MOD_EXPR:
9849 case CEIL_MOD_EXPR:
9850 case ROUND_MOD_EXPR:
9852 case TRUNC_DIV_EXPR:
9853 case FLOOR_DIV_EXPR:
9854 case CEIL_DIV_EXPR:
9855 case ROUND_DIV_EXPR:
9856 case EXACT_DIV_EXPR:
9857 /* If this is a fixed-point operation, then we cannot use the code
9858 below because "expand_divmod" doesn't support sat/no-sat fixed-point
9859 divisions. */
9860 if (ALL_FIXED_POINT_MODE_P (mode))
9861 goto binop;
9863 if (modifier == EXPAND_STACK_PARM)
9864 target = 0;
9865 /* Possible optimization: compute the dividend with EXPAND_SUM
9866 then if the divisor is constant can optimize the case
9867 where some terms of the dividend have coeffs divisible by it. */
9868 expand_operands (treeop0, treeop1, subtarget, &op0, &op1, EXPAND_NORMAL);
9869 return expand_expr_divmod (code, mode, treeop0, treeop1, op0, op1,
9870 target, unsignedp);
9872 case RDIV_EXPR:
9873 goto binop;
9875 case MULT_HIGHPART_EXPR:
9876 expand_operands (treeop0, treeop1, subtarget, &op0, &op1, EXPAND_NORMAL);
9877 temp = expand_mult_highpart (mode, op0, op1, target, unsignedp);
9878 gcc_assert (temp);
9879 return temp;
9881 case FIXED_CONVERT_EXPR:
9882 op0 = expand_normal (treeop0);
9883 if (target == 0 || modifier == EXPAND_STACK_PARM)
9884 target = gen_reg_rtx (mode);
9886 if ((TREE_CODE (TREE_TYPE (treeop0)) == INTEGER_TYPE
9887 && TYPE_UNSIGNED (TREE_TYPE (treeop0)))
9888 || (TREE_CODE (type) == INTEGER_TYPE && TYPE_UNSIGNED (type)))
9889 expand_fixed_convert (target, op0, 1, TYPE_SATURATING (type));
9890 else
9891 expand_fixed_convert (target, op0, 0, TYPE_SATURATING (type));
9892 return target;
9894 case FIX_TRUNC_EXPR:
9895 op0 = expand_normal (treeop0);
9896 if (target == 0 || modifier == EXPAND_STACK_PARM)
9897 target = gen_reg_rtx (mode);
9898 expand_fix (target, op0, unsignedp);
9899 return target;
9901 case FLOAT_EXPR:
9902 op0 = expand_normal (treeop0);
9903 if (target == 0 || modifier == EXPAND_STACK_PARM)
9904 target = gen_reg_rtx (mode);
9905 /* expand_float can't figure out what to do if FROM has VOIDmode.
9906 So give it the correct mode. With -O, cse will optimize this. */
9907 if (GET_MODE (op0) == VOIDmode)
9908 op0 = copy_to_mode_reg (TYPE_MODE (TREE_TYPE (treeop0)),
9909 op0);
9910 expand_float (target, op0,
9911 TYPE_UNSIGNED (TREE_TYPE (treeop0)));
9912 return target;
9914 case NEGATE_EXPR:
9915 op0 = expand_expr (treeop0, subtarget,
9916 VOIDmode, EXPAND_NORMAL);
9917 if (modifier == EXPAND_STACK_PARM)
9918 target = 0;
9919 temp = expand_unop (mode,
9920 optab_for_tree_code (NEGATE_EXPR, type,
9921 optab_default),
9922 op0, target, 0);
9923 gcc_assert (temp);
9924 return REDUCE_BIT_FIELD (temp);
9926 case ABS_EXPR:
9927 case ABSU_EXPR:
9928 op0 = expand_expr (treeop0, subtarget,
9929 VOIDmode, EXPAND_NORMAL);
9930 if (modifier == EXPAND_STACK_PARM)
9931 target = 0;
9933 /* ABS_EXPR is not valid for complex arguments. */
9934 gcc_assert (GET_MODE_CLASS (mode) != MODE_COMPLEX_INT
9935 && GET_MODE_CLASS (mode) != MODE_COMPLEX_FLOAT);
9937 /* Unsigned abs is simply the operand. Testing here means we don't
9938 risk generating incorrect code below. */
9939 if (TYPE_UNSIGNED (TREE_TYPE (treeop0)))
9940 return op0;
9942 return expand_abs (mode, op0, target, unsignedp,
9943 safe_from_p (target, treeop0, 1));
9945 case MAX_EXPR:
9946 case MIN_EXPR:
9947 target = original_target;
9948 if (target == 0
9949 || modifier == EXPAND_STACK_PARM
9950 || (MEM_P (target) && MEM_VOLATILE_P (target))
9951 || GET_MODE (target) != mode
9952 || (REG_P (target)
9953 && REGNO (target) < FIRST_PSEUDO_REGISTER))
9954 target = gen_reg_rtx (mode);
9955 expand_operands (treeop0, treeop1,
9956 target, &op0, &op1, EXPAND_NORMAL);
9958 /* First try to do it with a special MIN or MAX instruction.
9959 If that does not win, use a conditional jump to select the proper
9960 value. */
9961 this_optab = optab_for_tree_code (code, type, optab_default);
9962 temp = expand_binop (mode, this_optab, op0, op1, target, unsignedp,
9963 OPTAB_WIDEN);
9964 if (temp != 0)
9965 return temp;
9967 if (VECTOR_TYPE_P (type))
9968 gcc_unreachable ();
9970 /* At this point, a MEM target is no longer useful; we will get better
9971 code without it. */
9973 if (! REG_P (target))
9974 target = gen_reg_rtx (mode);
9976 /* If op1 was placed in target, swap op0 and op1. */
9977 if (target != op0 && target == op1)
9978 std::swap (op0, op1);
9980 /* We generate better code and avoid problems with op1 mentioning
9981 target by forcing op1 into a pseudo if it isn't a constant. */
9982 if (! CONSTANT_P (op1))
9983 op1 = force_reg (mode, op1);
9986 enum rtx_code comparison_code;
9987 rtx cmpop1 = op1;
9989 if (code == MAX_EXPR)
9990 comparison_code = unsignedp ? GEU : GE;
9991 else
9992 comparison_code = unsignedp ? LEU : LE;
9994 /* Canonicalize to comparisons against 0. */
9995 if (op1 == const1_rtx)
9997 /* Converting (a >= 1 ? a : 1) into (a > 0 ? a : 1)
9998 or (a != 0 ? a : 1) for unsigned.
9999 For MIN we are safe converting (a <= 1 ? a : 1)
10000 into (a <= 0 ? a : 1) */
10001 cmpop1 = const0_rtx;
10002 if (code == MAX_EXPR)
10003 comparison_code = unsignedp ? NE : GT;
10005 if (op1 == constm1_rtx && !unsignedp)
10007 /* Converting (a >= -1 ? a : -1) into (a >= 0 ? a : -1)
10008 and (a <= -1 ? a : -1) into (a < 0 ? a : -1) */
10009 cmpop1 = const0_rtx;
10010 if (code == MIN_EXPR)
10011 comparison_code = LT;
10014 /* Use a conditional move if possible. */
10015 if (can_conditionally_move_p (mode))
10017 rtx insn;
10019 start_sequence ();
10021 /* Try to emit the conditional move. */
10022 insn = emit_conditional_move (target,
10023 { comparison_code,
10024 op0, cmpop1, mode },
10025 op0, op1, mode,
10026 unsignedp);
10028 /* If we could do the conditional move, emit the sequence,
10029 and return. */
10030 if (insn)
10032 rtx_insn *seq = get_insns ();
10033 end_sequence ();
10034 emit_insn (seq);
10035 return target;
10038 /* Otherwise discard the sequence and fall back to code with
10039 branches. */
10040 end_sequence ();
10043 if (target != op0)
10044 emit_move_insn (target, op0);
10046 lab = gen_label_rtx ();
10047 do_compare_rtx_and_jump (target, cmpop1, comparison_code,
10048 unsignedp, mode, NULL_RTX, NULL, lab,
10049 profile_probability::uninitialized ());
10051 emit_move_insn (target, op1);
10052 emit_label (lab);
10053 return target;
10055 case BIT_NOT_EXPR:
10056 op0 = expand_expr (treeop0, subtarget,
10057 VOIDmode, EXPAND_NORMAL);
10058 if (modifier == EXPAND_STACK_PARM)
10059 target = 0;
10060 /* In case we have to reduce the result to bitfield precision
10061 for unsigned bitfield expand this as XOR with a proper constant
10062 instead. */
10063 if (reduce_bit_field && TYPE_UNSIGNED (type))
10065 int_mode = SCALAR_INT_TYPE_MODE (type);
10066 wide_int mask = wi::mask (TYPE_PRECISION (type),
10067 false, GET_MODE_PRECISION (int_mode));
10069 temp = expand_binop (int_mode, xor_optab, op0,
10070 immed_wide_int_const (mask, int_mode),
10071 target, 1, OPTAB_LIB_WIDEN);
10073 else
10074 temp = expand_unop (mode, one_cmpl_optab, op0, target, 1);
10075 gcc_assert (temp);
10076 return temp;
10078 /* ??? Can optimize bitwise operations with one arg constant.
10079 Can optimize (a bitwise1 n) bitwise2 (a bitwise3 b)
10080 and (a bitwise1 b) bitwise2 b (etc)
10081 but that is probably not worth while. */
10083 case BIT_AND_EXPR:
10084 case BIT_IOR_EXPR:
10085 case BIT_XOR_EXPR:
10086 goto binop;
10088 case LROTATE_EXPR:
10089 case RROTATE_EXPR:
10090 gcc_assert (VECTOR_MODE_P (TYPE_MODE (type))
10091 || type_has_mode_precision_p (type));
10092 /* fall through */
10094 case LSHIFT_EXPR:
10095 case RSHIFT_EXPR:
10097 /* If this is a fixed-point operation, then we cannot use the code
10098 below because "expand_shift" doesn't support sat/no-sat fixed-point
10099 shifts. */
10100 if (ALL_FIXED_POINT_MODE_P (mode))
10101 goto binop;
10103 if (! safe_from_p (subtarget, treeop1, 1))
10104 subtarget = 0;
10105 if (modifier == EXPAND_STACK_PARM)
10106 target = 0;
10107 op0 = expand_expr (treeop0, subtarget,
10108 VOIDmode, EXPAND_NORMAL);
10110 /* Left shift optimization when shifting across word_size boundary.
10112 If mode == GET_MODE_WIDER_MODE (word_mode), then normally
10113 there isn't native instruction to support this wide mode
10114 left shift. Given below scenario:
10116 Type A = (Type) B << C
10118 |< T >|
10119 | dest_high | dest_low |
10121 | word_size |
10123 If the shift amount C caused we shift B to across the word
10124 size boundary, i.e part of B shifted into high half of
10125 destination register, and part of B remains in the low
10126 half, then GCC will use the following left shift expand
10127 logic:
10129 1. Initialize dest_low to B.
10130 2. Initialize every bit of dest_high to the sign bit of B.
10131 3. Logic left shift dest_low by C bit to finalize dest_low.
10132 The value of dest_low before this shift is kept in a temp D.
10133 4. Logic left shift dest_high by C.
10134 5. Logic right shift D by (word_size - C).
10135 6. Or the result of 4 and 5 to finalize dest_high.
10137 While, by checking gimple statements, if operand B is
10138 coming from signed extension, then we can simplify above
10139 expand logic into:
10141 1. dest_high = src_low >> (word_size - C).
10142 2. dest_low = src_low << C.
10144 We can use one arithmetic right shift to finish all the
10145 purpose of steps 2, 4, 5, 6, thus we reduce the steps
10146 needed from 6 into 2.
10148 The case is similar for zero extension, except that we
10149 initialize dest_high to zero rather than copies of the sign
10150 bit from B. Furthermore, we need to use a logical right shift
10151 in this case.
10153 The choice of sign-extension versus zero-extension is
10154 determined entirely by whether or not B is signed and is
10155 independent of the current setting of unsignedp. */
10157 temp = NULL_RTX;
10158 if (code == LSHIFT_EXPR
10159 && target
10160 && REG_P (target)
10161 && GET_MODE_2XWIDER_MODE (word_mode).exists (&int_mode)
10162 && mode == int_mode
10163 && TREE_CONSTANT (treeop1)
10164 && TREE_CODE (treeop0) == SSA_NAME)
10166 gimple *def = SSA_NAME_DEF_STMT (treeop0);
10167 if (is_gimple_assign (def)
10168 && gimple_assign_rhs_code (def) == NOP_EXPR)
10170 scalar_int_mode rmode = SCALAR_INT_TYPE_MODE
10171 (TREE_TYPE (gimple_assign_rhs1 (def)));
10173 if (GET_MODE_SIZE (rmode) < GET_MODE_SIZE (int_mode)
10174 && TREE_INT_CST_LOW (treeop1) < GET_MODE_BITSIZE (word_mode)
10175 && ((TREE_INT_CST_LOW (treeop1) + GET_MODE_BITSIZE (rmode))
10176 >= GET_MODE_BITSIZE (word_mode)))
10178 rtx_insn *seq, *seq_old;
10179 poly_uint64 high_off = subreg_highpart_offset (word_mode,
10180 int_mode);
10181 bool extend_unsigned
10182 = TYPE_UNSIGNED (TREE_TYPE (gimple_assign_rhs1 (def)));
10183 rtx low = lowpart_subreg (word_mode, op0, int_mode);
10184 rtx dest_low = lowpart_subreg (word_mode, target, int_mode);
10185 rtx dest_high = simplify_gen_subreg (word_mode, target,
10186 int_mode, high_off);
10187 HOST_WIDE_INT ramount = (BITS_PER_WORD
10188 - TREE_INT_CST_LOW (treeop1));
10189 tree rshift = build_int_cst (TREE_TYPE (treeop1), ramount);
10191 start_sequence ();
10192 /* dest_high = src_low >> (word_size - C). */
10193 temp = expand_variable_shift (RSHIFT_EXPR, word_mode, low,
10194 rshift, dest_high,
10195 extend_unsigned);
10196 if (temp != dest_high)
10197 emit_move_insn (dest_high, temp);
10199 /* dest_low = src_low << C. */
10200 temp = expand_variable_shift (LSHIFT_EXPR, word_mode, low,
10201 treeop1, dest_low, unsignedp);
10202 if (temp != dest_low)
10203 emit_move_insn (dest_low, temp);
10205 seq = get_insns ();
10206 end_sequence ();
10207 temp = target ;
10209 if (have_insn_for (ASHIFT, int_mode))
10211 bool speed_p = optimize_insn_for_speed_p ();
10212 start_sequence ();
10213 rtx ret_old = expand_variable_shift (code, int_mode,
10214 op0, treeop1,
10215 target,
10216 unsignedp);
10218 seq_old = get_insns ();
10219 end_sequence ();
10220 if (seq_cost (seq, speed_p)
10221 >= seq_cost (seq_old, speed_p))
10223 seq = seq_old;
10224 temp = ret_old;
10227 emit_insn (seq);
10232 if (temp == NULL_RTX)
10233 temp = expand_variable_shift (code, mode, op0, treeop1, target,
10234 unsignedp);
10235 if (code == LSHIFT_EXPR)
10236 temp = REDUCE_BIT_FIELD (temp);
10237 return temp;
10240 /* Could determine the answer when only additive constants differ. Also,
10241 the addition of one can be handled by changing the condition. */
10242 case LT_EXPR:
10243 case LE_EXPR:
10244 case GT_EXPR:
10245 case GE_EXPR:
10246 case EQ_EXPR:
10247 case NE_EXPR:
10248 case UNORDERED_EXPR:
10249 case ORDERED_EXPR:
10250 case UNLT_EXPR:
10251 case UNLE_EXPR:
10252 case UNGT_EXPR:
10253 case UNGE_EXPR:
10254 case UNEQ_EXPR:
10255 case LTGT_EXPR:
10257 temp = do_store_flag (ops,
10258 modifier != EXPAND_STACK_PARM ? target : NULL_RTX,
10259 tmode != VOIDmode ? tmode : mode);
10260 if (temp)
10261 return temp;
10263 /* Use a compare and a jump for BLKmode comparisons, or for function
10264 type comparisons is have_canonicalize_funcptr_for_compare. */
10266 if ((target == 0
10267 || modifier == EXPAND_STACK_PARM
10268 || ! safe_from_p (target, treeop0, 1)
10269 || ! safe_from_p (target, treeop1, 1)
10270 /* Make sure we don't have a hard reg (such as function's return
10271 value) live across basic blocks, if not optimizing. */
10272 || (!optimize && REG_P (target)
10273 && REGNO (target) < FIRST_PSEUDO_REGISTER)))
10274 target = gen_reg_rtx (tmode != VOIDmode ? tmode : mode);
10276 emit_move_insn (target, const0_rtx);
10278 rtx_code_label *lab1 = gen_label_rtx ();
10279 jumpifnot_1 (code, treeop0, treeop1, lab1,
10280 profile_probability::uninitialized ());
10282 if (TYPE_PRECISION (type) == 1 && !TYPE_UNSIGNED (type))
10283 emit_move_insn (target, constm1_rtx);
10284 else
10285 emit_move_insn (target, const1_rtx);
10287 emit_label (lab1);
10288 return target;
10290 case COMPLEX_EXPR:
10291 /* Get the rtx code of the operands. */
10292 op0 = expand_normal (treeop0);
10293 op1 = expand_normal (treeop1);
10295 if (!target)
10296 target = gen_reg_rtx (TYPE_MODE (type));
10297 else
10298 /* If target overlaps with op1, then either we need to force
10299 op1 into a pseudo (if target also overlaps with op0),
10300 or write the complex parts in reverse order. */
10301 switch (GET_CODE (target))
10303 case CONCAT:
10304 if (reg_overlap_mentioned_p (XEXP (target, 0), op1))
10306 if (reg_overlap_mentioned_p (XEXP (target, 1), op0))
10308 complex_expr_force_op1:
10309 temp = gen_reg_rtx (GET_MODE_INNER (GET_MODE (target)));
10310 emit_move_insn (temp, op1);
10311 op1 = temp;
10312 break;
10314 complex_expr_swap_order:
10315 /* Move the imaginary (op1) and real (op0) parts to their
10316 location. */
10317 write_complex_part (target, op1, true, true);
10318 write_complex_part (target, op0, false, false);
10320 return target;
10322 break;
10323 case MEM:
10324 temp = adjust_address_nv (target,
10325 GET_MODE_INNER (GET_MODE (target)), 0);
10326 if (reg_overlap_mentioned_p (temp, op1))
10328 scalar_mode imode = GET_MODE_INNER (GET_MODE (target));
10329 temp = adjust_address_nv (target, imode,
10330 GET_MODE_SIZE (imode));
10331 if (reg_overlap_mentioned_p (temp, op0))
10332 goto complex_expr_force_op1;
10333 goto complex_expr_swap_order;
10335 break;
10336 default:
10337 if (reg_overlap_mentioned_p (target, op1))
10339 if (reg_overlap_mentioned_p (target, op0))
10340 goto complex_expr_force_op1;
10341 goto complex_expr_swap_order;
10343 break;
10346 /* Move the real (op0) and imaginary (op1) parts to their location. */
10347 write_complex_part (target, op0, false, true);
10348 write_complex_part (target, op1, true, false);
10350 return target;
10352 case WIDEN_SUM_EXPR:
10354 tree oprnd0 = treeop0;
10355 tree oprnd1 = treeop1;
10357 expand_operands (oprnd0, oprnd1, NULL_RTX, &op0, &op1, EXPAND_NORMAL);
10358 target = expand_widen_pattern_expr (ops, op0, NULL_RTX, op1,
10359 target, unsignedp);
10360 return target;
10363 case VEC_UNPACK_HI_EXPR:
10364 case VEC_UNPACK_LO_EXPR:
10365 case VEC_UNPACK_FIX_TRUNC_HI_EXPR:
10366 case VEC_UNPACK_FIX_TRUNC_LO_EXPR:
10368 op0 = expand_normal (treeop0);
10369 temp = expand_widen_pattern_expr (ops, op0, NULL_RTX, NULL_RTX,
10370 target, unsignedp);
10371 gcc_assert (temp);
10372 return temp;
10375 case VEC_UNPACK_FLOAT_HI_EXPR:
10376 case VEC_UNPACK_FLOAT_LO_EXPR:
10378 op0 = expand_normal (treeop0);
10379 /* The signedness is determined from input operand. */
10380 temp = expand_widen_pattern_expr
10381 (ops, op0, NULL_RTX, NULL_RTX,
10382 target, TYPE_UNSIGNED (TREE_TYPE (treeop0)));
10384 gcc_assert (temp);
10385 return temp;
10388 case VEC_WIDEN_MULT_HI_EXPR:
10389 case VEC_WIDEN_MULT_LO_EXPR:
10390 case VEC_WIDEN_MULT_EVEN_EXPR:
10391 case VEC_WIDEN_MULT_ODD_EXPR:
10392 case VEC_WIDEN_LSHIFT_HI_EXPR:
10393 case VEC_WIDEN_LSHIFT_LO_EXPR:
10394 expand_operands (treeop0, treeop1, NULL_RTX, &op0, &op1, EXPAND_NORMAL);
10395 target = expand_widen_pattern_expr (ops, op0, op1, NULL_RTX,
10396 target, unsignedp);
10397 gcc_assert (target);
10398 return target;
10400 case VEC_PACK_SAT_EXPR:
10401 case VEC_PACK_FIX_TRUNC_EXPR:
10402 mode = TYPE_MODE (TREE_TYPE (treeop0));
10403 subtarget = NULL_RTX;
10404 goto binop;
10406 case VEC_PACK_TRUNC_EXPR:
10407 if (VECTOR_BOOLEAN_TYPE_P (type)
10408 && VECTOR_BOOLEAN_TYPE_P (TREE_TYPE (treeop0))
10409 && mode == TYPE_MODE (TREE_TYPE (treeop0))
10410 && SCALAR_INT_MODE_P (mode))
10412 class expand_operand eops[4];
10413 machine_mode imode = TYPE_MODE (TREE_TYPE (treeop0));
10414 expand_operands (treeop0, treeop1,
10415 subtarget, &op0, &op1, EXPAND_NORMAL);
10416 this_optab = vec_pack_sbool_trunc_optab;
10417 enum insn_code icode = optab_handler (this_optab, imode);
10418 create_output_operand (&eops[0], target, mode);
10419 create_convert_operand_from (&eops[1], op0, imode, false);
10420 create_convert_operand_from (&eops[2], op1, imode, false);
10421 temp = GEN_INT (TYPE_VECTOR_SUBPARTS (type).to_constant ());
10422 create_input_operand (&eops[3], temp, imode);
10423 expand_insn (icode, 4, eops);
10424 return eops[0].value;
10426 mode = TYPE_MODE (TREE_TYPE (treeop0));
10427 subtarget = NULL_RTX;
10428 goto binop;
10430 case VEC_PACK_FLOAT_EXPR:
10431 mode = TYPE_MODE (TREE_TYPE (treeop0));
10432 expand_operands (treeop0, treeop1,
10433 subtarget, &op0, &op1, EXPAND_NORMAL);
10434 this_optab = optab_for_tree_code (code, TREE_TYPE (treeop0),
10435 optab_default);
10436 target = expand_binop (mode, this_optab, op0, op1, target,
10437 TYPE_UNSIGNED (TREE_TYPE (treeop0)),
10438 OPTAB_LIB_WIDEN);
10439 gcc_assert (target);
10440 return target;
10442 case VEC_PERM_EXPR:
10444 expand_operands (treeop0, treeop1, target, &op0, &op1, EXPAND_NORMAL);
10445 vec_perm_builder sel;
10446 if (TREE_CODE (treeop2) == VECTOR_CST
10447 && tree_to_vec_perm_builder (&sel, treeop2))
10449 machine_mode sel_mode = TYPE_MODE (TREE_TYPE (treeop2));
10450 temp = expand_vec_perm_const (mode, op0, op1, sel,
10451 sel_mode, target);
10453 else
10455 op2 = expand_normal (treeop2);
10456 temp = expand_vec_perm_var (mode, op0, op1, op2, target);
10458 gcc_assert (temp);
10459 return temp;
10462 case DOT_PROD_EXPR:
10464 tree oprnd0 = treeop0;
10465 tree oprnd1 = treeop1;
10466 tree oprnd2 = treeop2;
10468 expand_operands (oprnd0, oprnd1, NULL_RTX, &op0, &op1, EXPAND_NORMAL);
10469 op2 = expand_normal (oprnd2);
10470 target = expand_widen_pattern_expr (ops, op0, op1, op2,
10471 target, unsignedp);
10472 return target;
10475 case SAD_EXPR:
10477 tree oprnd0 = treeop0;
10478 tree oprnd1 = treeop1;
10479 tree oprnd2 = treeop2;
10481 expand_operands (oprnd0, oprnd1, NULL_RTX, &op0, &op1, EXPAND_NORMAL);
10482 op2 = expand_normal (oprnd2);
10483 target = expand_widen_pattern_expr (ops, op0, op1, op2,
10484 target, unsignedp);
10485 return target;
10488 case REALIGN_LOAD_EXPR:
10490 tree oprnd0 = treeop0;
10491 tree oprnd1 = treeop1;
10492 tree oprnd2 = treeop2;
10494 this_optab = optab_for_tree_code (code, type, optab_default);
10495 expand_operands (oprnd0, oprnd1, NULL_RTX, &op0, &op1, EXPAND_NORMAL);
10496 op2 = expand_normal (oprnd2);
10497 temp = expand_ternary_op (mode, this_optab, op0, op1, op2,
10498 target, unsignedp);
10499 gcc_assert (temp);
10500 return temp;
10503 case COND_EXPR:
10505 /* A COND_EXPR with its type being VOID_TYPE represents a
10506 conditional jump and is handled in
10507 expand_gimple_cond_expr. */
10508 gcc_assert (!VOID_TYPE_P (type));
10510 /* Note that COND_EXPRs whose type is a structure or union
10511 are required to be constructed to contain assignments of
10512 a temporary variable, so that we can evaluate them here
10513 for side effect only. If type is void, we must do likewise. */
10515 gcc_assert (!TREE_ADDRESSABLE (type)
10516 && !ignore
10517 && TREE_TYPE (treeop1) != void_type_node
10518 && TREE_TYPE (treeop2) != void_type_node);
10520 temp = expand_cond_expr_using_cmove (treeop0, treeop1, treeop2);
10521 if (temp)
10522 return temp;
10524 /* If we are not to produce a result, we have no target. Otherwise,
10525 if a target was specified use it; it will not be used as an
10526 intermediate target unless it is safe. If no target, use a
10527 temporary. */
10529 if (modifier != EXPAND_STACK_PARM
10530 && original_target
10531 && safe_from_p (original_target, treeop0, 1)
10532 && GET_MODE (original_target) == mode
10533 && !MEM_P (original_target))
10534 temp = original_target;
10535 else
10536 temp = assign_temp (type, 0, 1);
10538 do_pending_stack_adjust ();
10539 NO_DEFER_POP;
10540 rtx_code_label *lab0 = gen_label_rtx ();
10541 rtx_code_label *lab1 = gen_label_rtx ();
10542 jumpifnot (treeop0, lab0,
10543 profile_probability::uninitialized ());
10544 store_expr (treeop1, temp,
10545 modifier == EXPAND_STACK_PARM,
10546 false, false);
10548 emit_jump_insn (targetm.gen_jump (lab1));
10549 emit_barrier ();
10550 emit_label (lab0);
10551 store_expr (treeop2, temp,
10552 modifier == EXPAND_STACK_PARM,
10553 false, false);
10555 emit_label (lab1);
10556 OK_DEFER_POP;
10557 return temp;
10560 case VEC_DUPLICATE_EXPR:
10561 op0 = expand_expr (treeop0, NULL_RTX, VOIDmode, modifier);
10562 target = expand_vector_broadcast (mode, op0);
10563 gcc_assert (target);
10564 return target;
10566 case VEC_SERIES_EXPR:
10567 expand_operands (treeop0, treeop1, NULL_RTX, &op0, &op1, modifier);
10568 return expand_vec_series_expr (mode, op0, op1, target);
10570 case BIT_INSERT_EXPR:
10572 unsigned bitpos = tree_to_uhwi (treeop2);
10573 unsigned bitsize;
10574 if (INTEGRAL_TYPE_P (TREE_TYPE (treeop1)))
10575 bitsize = TYPE_PRECISION (TREE_TYPE (treeop1));
10576 else
10577 bitsize = tree_to_uhwi (TYPE_SIZE (TREE_TYPE (treeop1)));
10578 op0 = expand_normal (treeop0);
10579 op1 = expand_normal (treeop1);
10580 rtx dst = gen_reg_rtx (mode);
10581 emit_move_insn (dst, op0);
10582 store_bit_field (dst, bitsize, bitpos, 0, 0,
10583 TYPE_MODE (TREE_TYPE (treeop1)), op1, false, false);
10584 return dst;
10587 default:
10588 gcc_unreachable ();
10591 /* Here to do an ordinary binary operator. */
10592 binop:
10593 expand_operands (treeop0, treeop1,
10594 subtarget, &op0, &op1, EXPAND_NORMAL);
10595 binop2:
10596 this_optab = optab_for_tree_code (code, type, optab_default);
10597 binop3:
10598 if (modifier == EXPAND_STACK_PARM)
10599 target = 0;
10600 temp = expand_binop (mode, this_optab, op0, op1, target,
10601 unsignedp, OPTAB_LIB_WIDEN);
10602 gcc_assert (temp);
10603 /* Bitwise operations do not need bitfield reduction as we expect their
10604 operands being properly truncated. */
10605 if (code == BIT_XOR_EXPR
10606 || code == BIT_AND_EXPR
10607 || code == BIT_IOR_EXPR)
10608 return temp;
10609 return REDUCE_BIT_FIELD (temp);
10611 #undef REDUCE_BIT_FIELD
10614 /* Return TRUE if expression STMT is suitable for replacement.
10615 Never consider memory loads as replaceable, because those don't ever lead
10616 into constant expressions. */
10618 static bool
10619 stmt_is_replaceable_p (gimple *stmt)
10621 if (ssa_is_replaceable_p (stmt))
10623 /* Don't move around loads. */
10624 if (!gimple_assign_single_p (stmt)
10625 || is_gimple_val (gimple_assign_rhs1 (stmt)))
10626 return true;
10628 return false;
10632 expand_expr_real_1 (tree exp, rtx target, machine_mode tmode,
10633 enum expand_modifier modifier, rtx *alt_rtl,
10634 bool inner_reference_p)
10636 rtx op0, op1, temp, decl_rtl;
10637 tree type;
10638 int unsignedp;
10639 machine_mode mode, dmode;
10640 enum tree_code code = TREE_CODE (exp);
10641 rtx subtarget, original_target;
10642 int ignore;
10643 bool reduce_bit_field;
10644 location_t loc = EXPR_LOCATION (exp);
10645 struct separate_ops ops;
10646 tree treeop0, treeop1, treeop2;
10647 tree ssa_name = NULL_TREE;
10648 gimple *g;
10650 /* Some ABIs define padding bits in _BitInt uninitialized. Normally, RTL
10651 expansion sign/zero extends integral types with less than mode precision
10652 when reading from bit-fields and after arithmetic operations (see
10653 REDUCE_BIT_FIELD in expand_expr_real_2) and on subsequent loads relies
10654 on those extensions to have been already performed, but because of the
10655 above for _BitInt they need to be sign/zero extended when reading from
10656 locations that could be exposed to ABI boundaries (when loading from
10657 objects in memory, or function arguments, return value). Because we
10658 internally extend after arithmetic operations, we can avoid doing that
10659 when reading from SSA_NAMEs of vars. */
10660 #define EXTEND_BITINT(expr) \
10661 ((TREE_CODE (type) == BITINT_TYPE \
10662 && reduce_bit_field \
10663 && mode != BLKmode \
10664 && modifier != EXPAND_MEMORY \
10665 && modifier != EXPAND_WRITE \
10666 && modifier != EXPAND_CONST_ADDRESS) \
10667 ? reduce_to_bit_field_precision ((expr), NULL_RTX, type) : (expr))
10669 type = TREE_TYPE (exp);
10670 mode = TYPE_MODE (type);
10671 unsignedp = TYPE_UNSIGNED (type);
10673 treeop0 = treeop1 = treeop2 = NULL_TREE;
10674 if (!VL_EXP_CLASS_P (exp))
10675 switch (TREE_CODE_LENGTH (code))
10677 default:
10678 case 3: treeop2 = TREE_OPERAND (exp, 2); /* FALLTHRU */
10679 case 2: treeop1 = TREE_OPERAND (exp, 1); /* FALLTHRU */
10680 case 1: treeop0 = TREE_OPERAND (exp, 0); /* FALLTHRU */
10681 case 0: break;
10683 ops.code = code;
10684 ops.type = type;
10685 ops.op0 = treeop0;
10686 ops.op1 = treeop1;
10687 ops.op2 = treeop2;
10688 ops.location = loc;
10690 ignore = (target == const0_rtx
10691 || ((CONVERT_EXPR_CODE_P (code)
10692 || code == COND_EXPR || code == VIEW_CONVERT_EXPR)
10693 && TREE_CODE (type) == VOID_TYPE));
10695 /* An operation in what may be a bit-field type needs the
10696 result to be reduced to the precision of the bit-field type,
10697 which is narrower than that of the type's mode. */
10698 reduce_bit_field = (!ignore
10699 && INTEGRAL_TYPE_P (type)
10700 && !type_has_mode_precision_p (type));
10702 /* If we are going to ignore this result, we need only do something
10703 if there is a side-effect somewhere in the expression. If there
10704 is, short-circuit the most common cases here. Note that we must
10705 not call expand_expr with anything but const0_rtx in case this
10706 is an initial expansion of a size that contains a PLACEHOLDER_EXPR. */
10708 if (ignore)
10710 if (! TREE_SIDE_EFFECTS (exp))
10711 return const0_rtx;
10713 /* Ensure we reference a volatile object even if value is ignored, but
10714 don't do this if all we are doing is taking its address. */
10715 if (TREE_THIS_VOLATILE (exp)
10716 && TREE_CODE (exp) != FUNCTION_DECL
10717 && mode != VOIDmode && mode != BLKmode
10718 && modifier != EXPAND_CONST_ADDRESS)
10720 temp = expand_expr (exp, NULL_RTX, VOIDmode, modifier);
10721 if (MEM_P (temp))
10722 copy_to_reg (temp);
10723 return const0_rtx;
10726 if (TREE_CODE_CLASS (code) == tcc_unary
10727 || code == BIT_FIELD_REF
10728 || code == COMPONENT_REF
10729 || code == INDIRECT_REF)
10730 return expand_expr (treeop0, const0_rtx, VOIDmode,
10731 modifier);
10733 else if (TREE_CODE_CLASS (code) == tcc_binary
10734 || TREE_CODE_CLASS (code) == tcc_comparison
10735 || code == ARRAY_REF || code == ARRAY_RANGE_REF)
10737 expand_expr (treeop0, const0_rtx, VOIDmode, modifier);
10738 expand_expr (treeop1, const0_rtx, VOIDmode, modifier);
10739 return const0_rtx;
10742 target = 0;
10745 if (reduce_bit_field && modifier == EXPAND_STACK_PARM)
10746 target = 0;
10748 /* Use subtarget as the target for operand 0 of a binary operation. */
10749 subtarget = get_subtarget (target);
10750 original_target = target;
10752 switch (code)
10754 case LABEL_DECL:
10756 tree function = decl_function_context (exp);
10758 temp = label_rtx (exp);
10759 temp = gen_rtx_LABEL_REF (Pmode, temp);
10761 if (function != current_function_decl
10762 && function != 0)
10763 LABEL_REF_NONLOCAL_P (temp) = 1;
10765 temp = gen_rtx_MEM (FUNCTION_MODE, temp);
10766 return temp;
10769 case SSA_NAME:
10770 /* ??? ivopts calls expander, without any preparation from
10771 out-of-ssa. So fake instructions as if this was an access to the
10772 base variable. This unnecessarily allocates a pseudo, see how we can
10773 reuse it, if partition base vars have it set already. */
10774 if (!currently_expanding_to_rtl)
10776 tree var = SSA_NAME_VAR (exp);
10777 if (var && DECL_RTL_SET_P (var))
10778 return DECL_RTL (var);
10779 return gen_raw_REG (TYPE_MODE (TREE_TYPE (exp)),
10780 LAST_VIRTUAL_REGISTER + 1);
10783 g = get_gimple_for_ssa_name (exp);
10784 /* For EXPAND_INITIALIZER try harder to get something simpler. */
10785 if (g == NULL
10786 && modifier == EXPAND_INITIALIZER
10787 && !SSA_NAME_IS_DEFAULT_DEF (exp)
10788 && (optimize || !SSA_NAME_VAR (exp)
10789 || DECL_IGNORED_P (SSA_NAME_VAR (exp)))
10790 && stmt_is_replaceable_p (SSA_NAME_DEF_STMT (exp)))
10791 g = SSA_NAME_DEF_STMT (exp);
10792 if (g)
10794 rtx r;
10795 location_t saved_loc = curr_insn_location ();
10796 loc = gimple_location (g);
10797 if (loc != UNKNOWN_LOCATION)
10798 set_curr_insn_location (loc);
10799 ops.code = gimple_assign_rhs_code (g);
10800 switch (get_gimple_rhs_class (ops.code))
10802 case GIMPLE_TERNARY_RHS:
10803 ops.op2 = gimple_assign_rhs3 (g);
10804 /* Fallthru */
10805 case GIMPLE_BINARY_RHS:
10806 ops.op1 = gimple_assign_rhs2 (g);
10808 /* Try to expand conditonal compare. */
10809 if (targetm.gen_ccmp_first)
10811 gcc_checking_assert (targetm.gen_ccmp_next != NULL);
10812 r = expand_ccmp_expr (g, mode);
10813 if (r)
10814 break;
10816 /* Fallthru */
10817 case GIMPLE_UNARY_RHS:
10818 ops.op0 = gimple_assign_rhs1 (g);
10819 ops.type = TREE_TYPE (gimple_assign_lhs (g));
10820 ops.location = loc;
10821 r = expand_expr_real_2 (&ops, target, tmode, modifier);
10822 break;
10823 case GIMPLE_SINGLE_RHS:
10825 r = expand_expr_real (gimple_assign_rhs1 (g), target,
10826 tmode, modifier, alt_rtl,
10827 inner_reference_p);
10828 break;
10830 default:
10831 gcc_unreachable ();
10833 set_curr_insn_location (saved_loc);
10834 if (REG_P (r) && !REG_EXPR (r))
10835 set_reg_attrs_for_decl_rtl (SSA_NAME_VAR (exp), r);
10836 return r;
10839 ssa_name = exp;
10840 decl_rtl = get_rtx_for_ssa_name (ssa_name);
10841 exp = SSA_NAME_VAR (ssa_name);
10842 /* Optimize and avoid to EXTEND_BITINIT doing anything if it is an
10843 SSA_NAME computed within the current function. In such case the
10844 value have been already extended before. While if it is a function
10845 parameter, result or some memory location, we need to be prepared
10846 for some other compiler leaving the bits uninitialized. */
10847 if (!exp || VAR_P (exp))
10848 reduce_bit_field = false;
10849 goto expand_decl_rtl;
10851 case VAR_DECL:
10852 /* Allow accel compiler to handle variables that require special
10853 treatment, e.g. if they have been modified in some way earlier in
10854 compilation by the adjust_private_decl OpenACC hook. */
10855 if (flag_openacc && targetm.goacc.expand_var_decl)
10857 temp = targetm.goacc.expand_var_decl (exp);
10858 if (temp)
10859 return temp;
10861 /* Expand const VAR_DECLs with CONSTRUCTOR initializers that
10862 have scalar integer modes to a reg via store_constructor. */
10863 if (TREE_READONLY (exp)
10864 && !TREE_SIDE_EFFECTS (exp)
10865 && (modifier == EXPAND_NORMAL || modifier == EXPAND_STACK_PARM)
10866 && immediate_const_ctor_p (DECL_INITIAL (exp))
10867 && SCALAR_INT_MODE_P (TYPE_MODE (TREE_TYPE (exp)))
10868 && crtl->emit.regno_pointer_align_length
10869 && !target)
10871 target = gen_reg_rtx (TYPE_MODE (TREE_TYPE (exp)));
10872 store_constructor (DECL_INITIAL (exp), target, 0,
10873 int_expr_size (DECL_INITIAL (exp)), false);
10874 return target;
10876 /* ... fall through ... */
10878 case PARM_DECL:
10879 /* If a static var's type was incomplete when the decl was written,
10880 but the type is complete now, lay out the decl now. */
10881 if (DECL_SIZE (exp) == 0
10882 && COMPLETE_OR_UNBOUND_ARRAY_TYPE_P (TREE_TYPE (exp))
10883 && (TREE_STATIC (exp) || DECL_EXTERNAL (exp)))
10884 layout_decl (exp, 0);
10886 /* fall through */
10888 case FUNCTION_DECL:
10889 case RESULT_DECL:
10890 decl_rtl = DECL_RTL (exp);
10891 expand_decl_rtl:
10892 gcc_assert (decl_rtl);
10894 /* DECL_MODE might change when TYPE_MODE depends on attribute target
10895 settings for VECTOR_TYPE_P that might switch for the function. */
10896 if (currently_expanding_to_rtl
10897 && code == VAR_DECL && MEM_P (decl_rtl)
10898 && VECTOR_TYPE_P (type) && exp && DECL_MODE (exp) != mode)
10899 decl_rtl = change_address (decl_rtl, TYPE_MODE (type), 0);
10900 else
10901 decl_rtl = copy_rtx (decl_rtl);
10903 /* Record writes to register variables. */
10904 if (modifier == EXPAND_WRITE
10905 && REG_P (decl_rtl)
10906 && HARD_REGISTER_P (decl_rtl))
10907 add_to_hard_reg_set (&crtl->asm_clobbers,
10908 GET_MODE (decl_rtl), REGNO (decl_rtl));
10910 /* Ensure variable marked as used even if it doesn't go through
10911 a parser. If it hasn't be used yet, write out an external
10912 definition. */
10913 if (exp)
10914 TREE_USED (exp) = 1;
10916 /* Show we haven't gotten RTL for this yet. */
10917 temp = 0;
10919 /* Variables inherited from containing functions should have
10920 been lowered by this point. */
10921 if (exp)
10923 tree context = decl_function_context (exp);
10924 gcc_assert (SCOPE_FILE_SCOPE_P (context)
10925 || context == current_function_decl
10926 || TREE_STATIC (exp)
10927 || DECL_EXTERNAL (exp)
10928 /* ??? C++ creates functions that are not
10929 TREE_STATIC. */
10930 || TREE_CODE (exp) == FUNCTION_DECL);
10933 /* This is the case of an array whose size is to be determined
10934 from its initializer, while the initializer is still being parsed.
10935 ??? We aren't parsing while expanding anymore. */
10937 if (MEM_P (decl_rtl) && REG_P (XEXP (decl_rtl, 0)))
10938 temp = validize_mem (decl_rtl);
10940 /* If DECL_RTL is memory, we are in the normal case and the
10941 address is not valid, get the address into a register. */
10943 else if (MEM_P (decl_rtl) && modifier != EXPAND_INITIALIZER)
10945 if (alt_rtl)
10946 *alt_rtl = decl_rtl;
10947 decl_rtl = use_anchored_address (decl_rtl);
10948 if (modifier != EXPAND_CONST_ADDRESS
10949 && modifier != EXPAND_SUM
10950 && !memory_address_addr_space_p (exp ? DECL_MODE (exp)
10951 : GET_MODE (decl_rtl),
10952 XEXP (decl_rtl, 0),
10953 MEM_ADDR_SPACE (decl_rtl)))
10954 temp = replace_equiv_address (decl_rtl,
10955 copy_rtx (XEXP (decl_rtl, 0)));
10958 /* If we got something, return it. But first, set the alignment
10959 if the address is a register. */
10960 if (temp != 0)
10962 if (exp && MEM_P (temp) && REG_P (XEXP (temp, 0)))
10963 mark_reg_pointer (XEXP (temp, 0), DECL_ALIGN (exp));
10965 else if (MEM_P (decl_rtl))
10966 temp = decl_rtl;
10968 if (temp != 0)
10970 if (MEM_P (temp)
10971 && modifier != EXPAND_WRITE
10972 && modifier != EXPAND_MEMORY
10973 && modifier != EXPAND_INITIALIZER
10974 && modifier != EXPAND_CONST_ADDRESS
10975 && modifier != EXPAND_SUM
10976 && !inner_reference_p
10977 && mode != BLKmode
10978 && MEM_ALIGN (temp) < GET_MODE_ALIGNMENT (mode))
10979 temp = expand_misaligned_mem_ref (temp, mode, unsignedp,
10980 MEM_ALIGN (temp), NULL_RTX, NULL);
10982 return EXTEND_BITINT (temp);
10985 if (exp)
10986 dmode = DECL_MODE (exp);
10987 else
10988 dmode = TYPE_MODE (TREE_TYPE (ssa_name));
10990 /* If the mode of DECL_RTL does not match that of the decl,
10991 there are two cases: we are dealing with a BLKmode value
10992 that is returned in a register, or we are dealing with
10993 a promoted value. In the latter case, return a SUBREG
10994 of the wanted mode, but mark it so that we know that it
10995 was already extended. */
10996 if (REG_P (decl_rtl)
10997 && dmode != BLKmode
10998 && GET_MODE (decl_rtl) != dmode)
11000 machine_mode pmode;
11002 /* Get the signedness to be used for this variable. Ensure we get
11003 the same mode we got when the variable was declared. */
11004 if (code != SSA_NAME)
11005 pmode = promote_decl_mode (exp, &unsignedp);
11006 else if ((g = SSA_NAME_DEF_STMT (ssa_name))
11007 && gimple_code (g) == GIMPLE_CALL
11008 && !gimple_call_internal_p (g))
11009 pmode = promote_function_mode (type, mode, &unsignedp,
11010 gimple_call_fntype (g),
11012 else
11013 pmode = promote_ssa_mode (ssa_name, &unsignedp);
11014 gcc_assert (GET_MODE (decl_rtl) == pmode);
11016 /* Some ABIs require scalar floating point modes to be passed
11017 in a wider scalar integer mode. We need to explicitly
11018 truncate to an integer mode of the correct precision before
11019 using a SUBREG to reinterpret as a floating point value. */
11020 if (SCALAR_FLOAT_MODE_P (mode)
11021 && SCALAR_INT_MODE_P (pmode)
11022 && known_lt (GET_MODE_SIZE (mode), GET_MODE_SIZE (pmode)))
11023 return convert_wider_int_to_float (mode, pmode, decl_rtl);
11025 temp = gen_lowpart_SUBREG (mode, decl_rtl);
11026 SUBREG_PROMOTED_VAR_P (temp) = 1;
11027 SUBREG_PROMOTED_SET (temp, unsignedp);
11028 return EXTEND_BITINT (temp);
11031 return EXTEND_BITINT (decl_rtl);
11033 case INTEGER_CST:
11035 if (TREE_CODE (type) == BITINT_TYPE)
11037 unsigned int prec = TYPE_PRECISION (type);
11038 struct bitint_info info;
11039 bool ok = targetm.c.bitint_type_info (prec, &info);
11040 gcc_assert (ok);
11041 scalar_int_mode limb_mode
11042 = as_a <scalar_int_mode> (info.limb_mode);
11043 unsigned int limb_prec = GET_MODE_PRECISION (limb_mode);
11044 if (prec > limb_prec && prec > MAX_FIXED_MODE_SIZE)
11046 /* Emit large/huge _BitInt INTEGER_CSTs into memory. */
11047 exp = tree_output_constant_def (exp);
11048 return expand_expr (exp, target, VOIDmode, modifier);
11052 /* Given that TYPE_PRECISION (type) is not always equal to
11053 GET_MODE_PRECISION (TYPE_MODE (type)), we need to extend from
11054 the former to the latter according to the signedness of the
11055 type. */
11056 scalar_int_mode int_mode = SCALAR_INT_TYPE_MODE (type);
11057 temp = immed_wide_int_const
11058 (wi::to_wide (exp, GET_MODE_PRECISION (int_mode)), int_mode);
11059 return temp;
11062 case VECTOR_CST:
11064 tree tmp = NULL_TREE;
11065 if (VECTOR_MODE_P (mode))
11066 return const_vector_from_tree (exp);
11067 scalar_int_mode int_mode;
11068 if (is_int_mode (mode, &int_mode))
11070 tree type_for_mode = lang_hooks.types.type_for_mode (int_mode, 1);
11071 if (type_for_mode)
11072 tmp = fold_unary_loc (loc, VIEW_CONVERT_EXPR,
11073 type_for_mode, exp);
11075 if (!tmp)
11077 vec<constructor_elt, va_gc> *v;
11078 /* Constructors need to be fixed-length. FIXME. */
11079 unsigned int nunits = VECTOR_CST_NELTS (exp).to_constant ();
11080 vec_alloc (v, nunits);
11081 for (unsigned int i = 0; i < nunits; ++i)
11082 CONSTRUCTOR_APPEND_ELT (v, NULL_TREE, VECTOR_CST_ELT (exp, i));
11083 tmp = build_constructor (type, v);
11085 return expand_expr (tmp, ignore ? const0_rtx : target,
11086 tmode, modifier);
11089 case CONST_DECL:
11090 if (modifier == EXPAND_WRITE)
11092 /* Writing into CONST_DECL is always invalid, but handle it
11093 gracefully. */
11094 addr_space_t as = TYPE_ADDR_SPACE (TREE_TYPE (exp));
11095 scalar_int_mode address_mode = targetm.addr_space.address_mode (as);
11096 op0 = expand_expr_addr_expr_1 (exp, NULL_RTX, address_mode,
11097 EXPAND_NORMAL, as);
11098 op0 = memory_address_addr_space (mode, op0, as);
11099 temp = gen_rtx_MEM (mode, op0);
11100 set_mem_addr_space (temp, as);
11101 return temp;
11103 return expand_expr (DECL_INITIAL (exp), target, VOIDmode, modifier);
11105 case REAL_CST:
11106 /* If optimized, generate immediate CONST_DOUBLE
11107 which will be turned into memory by reload if necessary.
11109 We used to force a register so that loop.c could see it. But
11110 this does not allow gen_* patterns to perform optimizations with
11111 the constants. It also produces two insns in cases like "x = 1.0;".
11112 On most machines, floating-point constants are not permitted in
11113 many insns, so we'd end up copying it to a register in any case.
11115 Now, we do the copying in expand_binop, if appropriate. */
11116 return const_double_from_real_value (TREE_REAL_CST (exp),
11117 TYPE_MODE (TREE_TYPE (exp)));
11119 case FIXED_CST:
11120 return CONST_FIXED_FROM_FIXED_VALUE (TREE_FIXED_CST (exp),
11121 TYPE_MODE (TREE_TYPE (exp)));
11123 case COMPLEX_CST:
11124 /* Handle evaluating a complex constant in a CONCAT target. */
11125 if (original_target && GET_CODE (original_target) == CONCAT)
11127 rtx rtarg, itarg;
11129 mode = TYPE_MODE (TREE_TYPE (TREE_TYPE (exp)));
11130 rtarg = XEXP (original_target, 0);
11131 itarg = XEXP (original_target, 1);
11133 /* Move the real and imaginary parts separately. */
11134 op0 = expand_expr (TREE_REALPART (exp), rtarg, mode, EXPAND_NORMAL);
11135 op1 = expand_expr (TREE_IMAGPART (exp), itarg, mode, EXPAND_NORMAL);
11137 if (op0 != rtarg)
11138 emit_move_insn (rtarg, op0);
11139 if (op1 != itarg)
11140 emit_move_insn (itarg, op1);
11142 return original_target;
11145 /* fall through */
11147 case STRING_CST:
11148 temp = expand_expr_constant (exp, 1, modifier);
11150 /* temp contains a constant address.
11151 On RISC machines where a constant address isn't valid,
11152 make some insns to get that address into a register. */
11153 if (modifier != EXPAND_CONST_ADDRESS
11154 && modifier != EXPAND_INITIALIZER
11155 && modifier != EXPAND_SUM
11156 && ! memory_address_addr_space_p (mode, XEXP (temp, 0),
11157 MEM_ADDR_SPACE (temp)))
11158 return replace_equiv_address (temp,
11159 copy_rtx (XEXP (temp, 0)));
11160 return temp;
11162 case POLY_INT_CST:
11163 return immed_wide_int_const (poly_int_cst_value (exp), mode);
11165 case SAVE_EXPR:
11167 tree val = treeop0;
11168 rtx ret = expand_expr_real_1 (val, target, tmode, modifier, alt_rtl,
11169 inner_reference_p);
11171 if (!SAVE_EXPR_RESOLVED_P (exp))
11173 /* We can indeed still hit this case, typically via builtin
11174 expanders calling save_expr immediately before expanding
11175 something. Assume this means that we only have to deal
11176 with non-BLKmode values. */
11177 gcc_assert (GET_MODE (ret) != BLKmode);
11179 val = build_decl (curr_insn_location (),
11180 VAR_DECL, NULL, TREE_TYPE (exp));
11181 DECL_ARTIFICIAL (val) = 1;
11182 DECL_IGNORED_P (val) = 1;
11183 treeop0 = val;
11184 TREE_OPERAND (exp, 0) = treeop0;
11185 SAVE_EXPR_RESOLVED_P (exp) = 1;
11187 if (!CONSTANT_P (ret))
11188 ret = copy_to_reg (ret);
11189 SET_DECL_RTL (val, ret);
11192 return ret;
11196 case CONSTRUCTOR:
11197 /* If we don't need the result, just ensure we evaluate any
11198 subexpressions. */
11199 if (ignore)
11201 unsigned HOST_WIDE_INT idx;
11202 tree value;
11204 FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (exp), idx, value)
11205 expand_expr (value, const0_rtx, VOIDmode, EXPAND_NORMAL);
11207 return const0_rtx;
11210 return expand_constructor (exp, target, modifier, false);
11212 case TARGET_MEM_REF:
11214 addr_space_t as
11215 = TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (TREE_OPERAND (exp, 0))));
11216 unsigned int align;
11218 op0 = addr_for_mem_ref (exp, as, true);
11219 op0 = memory_address_addr_space (mode, op0, as);
11220 temp = gen_rtx_MEM (mode, op0);
11221 set_mem_attributes (temp, exp, 0);
11222 set_mem_addr_space (temp, as);
11223 align = get_object_alignment (exp);
11224 if (modifier != EXPAND_WRITE
11225 && modifier != EXPAND_MEMORY
11226 && mode != BLKmode
11227 && align < GET_MODE_ALIGNMENT (mode))
11228 temp = expand_misaligned_mem_ref (temp, mode, unsignedp,
11229 align, NULL_RTX, NULL);
11230 return EXTEND_BITINT (temp);
11233 case MEM_REF:
11235 const bool reverse = REF_REVERSE_STORAGE_ORDER (exp);
11236 addr_space_t as
11237 = TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (TREE_OPERAND (exp, 0))));
11238 machine_mode address_mode;
11239 tree base = TREE_OPERAND (exp, 0);
11240 gimple *def_stmt;
11241 unsigned align;
11242 /* Handle expansion of non-aliased memory with non-BLKmode. That
11243 might end up in a register. */
11244 if (mem_ref_refers_to_non_mem_p (exp))
11246 poly_int64 offset = mem_ref_offset (exp).force_shwi ();
11247 base = TREE_OPERAND (base, 0);
11248 poly_uint64 type_size;
11249 if (known_eq (offset, 0)
11250 && !reverse
11251 && poly_int_tree_p (TYPE_SIZE (type), &type_size)
11252 && known_eq (GET_MODE_BITSIZE (DECL_MODE (base)), type_size))
11253 return expand_expr (build1 (VIEW_CONVERT_EXPR, type, base),
11254 target, tmode, modifier);
11255 if (TYPE_MODE (type) == BLKmode)
11257 temp = assign_stack_temp (DECL_MODE (base),
11258 GET_MODE_SIZE (DECL_MODE (base)));
11259 store_expr (base, temp, 0, false, false);
11260 temp = adjust_address (temp, BLKmode, offset);
11261 set_mem_size (temp, int_size_in_bytes (type));
11262 return temp;
11264 exp = build3 (BIT_FIELD_REF, type, base, TYPE_SIZE (type),
11265 bitsize_int (offset * BITS_PER_UNIT));
11266 REF_REVERSE_STORAGE_ORDER (exp) = reverse;
11267 return expand_expr (exp, target, tmode, modifier);
11269 address_mode = targetm.addr_space.address_mode (as);
11270 if ((def_stmt = get_def_for_expr (base, BIT_AND_EXPR)))
11272 tree mask = gimple_assign_rhs2 (def_stmt);
11273 base = build2 (BIT_AND_EXPR, TREE_TYPE (base),
11274 gimple_assign_rhs1 (def_stmt), mask);
11275 TREE_OPERAND (exp, 0) = base;
11277 align = get_object_alignment (exp);
11278 op0 = expand_expr (base, NULL_RTX, VOIDmode, EXPAND_SUM);
11279 op0 = memory_address_addr_space (mode, op0, as);
11280 if (!integer_zerop (TREE_OPERAND (exp, 1)))
11282 rtx off = immed_wide_int_const (mem_ref_offset (exp), address_mode);
11283 op0 = simplify_gen_binary (PLUS, address_mode, op0, off);
11284 op0 = memory_address_addr_space (mode, op0, as);
11286 temp = gen_rtx_MEM (mode, op0);
11287 set_mem_attributes (temp, exp, 0);
11288 set_mem_addr_space (temp, as);
11289 if (TREE_THIS_VOLATILE (exp))
11290 MEM_VOLATILE_P (temp) = 1;
11291 if (modifier == EXPAND_WRITE || modifier == EXPAND_MEMORY)
11292 return temp;
11293 if (!inner_reference_p
11294 && mode != BLKmode
11295 && align < GET_MODE_ALIGNMENT (mode))
11296 temp = expand_misaligned_mem_ref (temp, mode, unsignedp, align,
11297 modifier == EXPAND_STACK_PARM
11298 ? NULL_RTX : target, alt_rtl);
11299 if (reverse)
11300 temp = flip_storage_order (mode, temp);
11301 return EXTEND_BITINT (temp);
11304 case ARRAY_REF:
11307 tree array = treeop0;
11308 tree index = treeop1;
11309 tree init;
11311 /* Fold an expression like: "foo"[2].
11312 This is not done in fold so it won't happen inside &.
11313 Don't fold if this is for wide characters since it's too
11314 difficult to do correctly and this is a very rare case. */
11316 if (modifier != EXPAND_CONST_ADDRESS
11317 && modifier != EXPAND_INITIALIZER
11318 && modifier != EXPAND_MEMORY)
11320 tree t = fold_read_from_constant_string (exp);
11322 if (t)
11323 return expand_expr (t, target, tmode, modifier);
11326 /* If this is a constant index into a constant array,
11327 just get the value from the array. Handle both the cases when
11328 we have an explicit constructor and when our operand is a variable
11329 that was declared const. */
11331 if (modifier != EXPAND_CONST_ADDRESS
11332 && modifier != EXPAND_INITIALIZER
11333 && modifier != EXPAND_MEMORY
11334 && TREE_CODE (array) == CONSTRUCTOR
11335 && ! TREE_SIDE_EFFECTS (array)
11336 && TREE_CODE (index) == INTEGER_CST)
11338 unsigned HOST_WIDE_INT ix;
11339 tree field, value;
11341 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (array), ix,
11342 field, value)
11343 if (tree_int_cst_equal (field, index))
11345 if (!TREE_SIDE_EFFECTS (value))
11346 return expand_expr (fold (value), target, tmode, modifier);
11347 break;
11351 else if (optimize >= 1
11352 && modifier != EXPAND_CONST_ADDRESS
11353 && modifier != EXPAND_INITIALIZER
11354 && modifier != EXPAND_MEMORY
11355 && TREE_READONLY (array) && ! TREE_SIDE_EFFECTS (array)
11356 && TREE_CODE (index) == INTEGER_CST
11357 && (VAR_P (array) || TREE_CODE (array) == CONST_DECL)
11358 && (init = ctor_for_folding (array)) != error_mark_node)
11360 if (init == NULL_TREE)
11362 tree value = build_zero_cst (type);
11363 if (TREE_CODE (value) == CONSTRUCTOR)
11365 /* If VALUE is a CONSTRUCTOR, this optimization is only
11366 useful if this doesn't store the CONSTRUCTOR into
11367 memory. If it does, it is more efficient to just
11368 load the data from the array directly. */
11369 rtx ret = expand_constructor (value, target,
11370 modifier, true);
11371 if (ret == NULL_RTX)
11372 value = NULL_TREE;
11375 if (value)
11376 return expand_expr (value, target, tmode, modifier);
11378 else if (TREE_CODE (init) == CONSTRUCTOR)
11380 unsigned HOST_WIDE_INT ix;
11381 tree field, value;
11383 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (init), ix,
11384 field, value)
11385 if (tree_int_cst_equal (field, index))
11387 if (TREE_SIDE_EFFECTS (value))
11388 break;
11390 if (TREE_CODE (value) == CONSTRUCTOR)
11392 /* If VALUE is a CONSTRUCTOR, this
11393 optimization is only useful if
11394 this doesn't store the CONSTRUCTOR
11395 into memory. If it does, it is more
11396 efficient to just load the data from
11397 the array directly. */
11398 rtx ret = expand_constructor (value, target,
11399 modifier, true);
11400 if (ret == NULL_RTX)
11401 break;
11404 return
11405 expand_expr (fold (value), target, tmode, modifier);
11408 else if (TREE_CODE (init) == STRING_CST)
11410 tree low_bound = array_ref_low_bound (exp);
11411 tree index1 = fold_convert_loc (loc, sizetype, treeop1);
11413 /* Optimize the special case of a zero lower bound.
11415 We convert the lower bound to sizetype to avoid problems
11416 with constant folding. E.g. suppose the lower bound is
11417 1 and its mode is QI. Without the conversion
11418 (ARRAY + (INDEX - (unsigned char)1))
11419 becomes
11420 (ARRAY + (-(unsigned char)1) + INDEX)
11421 which becomes
11422 (ARRAY + 255 + INDEX). Oops! */
11423 if (!integer_zerop (low_bound))
11424 index1 = size_diffop_loc (loc, index1,
11425 fold_convert_loc (loc, sizetype,
11426 low_bound));
11428 if (tree_fits_uhwi_p (index1)
11429 && compare_tree_int (index1, TREE_STRING_LENGTH (init)) < 0)
11431 tree char_type = TREE_TYPE (TREE_TYPE (init));
11432 scalar_int_mode char_mode;
11434 if (is_int_mode (TYPE_MODE (char_type), &char_mode)
11435 && GET_MODE_SIZE (char_mode) == 1)
11436 return gen_int_mode (TREE_STRING_POINTER (init)
11437 [TREE_INT_CST_LOW (index1)],
11438 char_mode);
11443 goto normal_inner_ref;
11445 case COMPONENT_REF:
11446 gcc_assert (TREE_CODE (treeop0) != CONSTRUCTOR);
11447 /* Fall through. */
11448 case BIT_FIELD_REF:
11449 case ARRAY_RANGE_REF:
11450 normal_inner_ref:
11452 machine_mode mode1, mode2;
11453 poly_int64 bitsize, bitpos, bytepos;
11454 tree offset;
11455 int reversep, volatilep = 0;
11456 tree tem
11457 = get_inner_reference (exp, &bitsize, &bitpos, &offset, &mode1,
11458 &unsignedp, &reversep, &volatilep);
11459 rtx orig_op0, memloc;
11460 bool clear_mem_expr = false;
11461 bool must_force_mem;
11463 /* If we got back the original object, something is wrong. Perhaps
11464 we are evaluating an expression too early. In any event, don't
11465 infinitely recurse. */
11466 gcc_assert (tem != exp);
11468 /* Make sure bitpos is not negative, this can wreak havoc later. */
11469 if (maybe_lt (bitpos, 0))
11471 gcc_checking_assert (offset == NULL_TREE);
11472 offset = size_int (bits_to_bytes_round_down (bitpos));
11473 bitpos = num_trailing_bits (bitpos);
11476 /* If we have either an offset, a BLKmode result, or a reference
11477 outside the underlying object, we must force it to memory.
11478 Such a case can occur in Ada if we have unchecked conversion
11479 of an expression from a scalar type to an aggregate type or
11480 for an ARRAY_RANGE_REF whose type is BLKmode, or if we were
11481 passed a partially uninitialized object or a view-conversion
11482 to a larger size. */
11483 must_force_mem = offset != NULL_TREE
11484 || mode1 == BLKmode
11485 || (mode == BLKmode
11486 && !int_mode_for_size (bitsize, 1).exists ());
11488 const enum expand_modifier tem_modifier
11489 = must_force_mem
11490 ? EXPAND_MEMORY
11491 : modifier == EXPAND_SUM ? EXPAND_NORMAL : modifier;
11493 /* If TEM's type is a union of variable size, pass TARGET to the inner
11494 computation, since it will need a temporary and TARGET is known
11495 to have to do. This occurs in unchecked conversion in Ada. */
11496 const rtx tem_target
11497 = TREE_CODE (TREE_TYPE (tem)) == UNION_TYPE
11498 && COMPLETE_TYPE_P (TREE_TYPE (tem))
11499 && TREE_CODE (TYPE_SIZE (TREE_TYPE (tem))) != INTEGER_CST
11500 && modifier != EXPAND_STACK_PARM
11501 ? target
11502 : NULL_RTX;
11504 orig_op0 = op0
11505 = expand_expr_real (tem, tem_target, VOIDmode, tem_modifier, NULL,
11506 true);
11508 /* If the field has a mode, we want to access it in the
11509 field's mode, not the computed mode.
11510 If a MEM has VOIDmode (external with incomplete type),
11511 use BLKmode for it instead. */
11512 if (MEM_P (op0))
11514 if (mode1 != VOIDmode)
11515 op0 = adjust_address (op0, mode1, 0);
11516 else if (GET_MODE (op0) == VOIDmode)
11517 op0 = adjust_address (op0, BLKmode, 0);
11520 mode2
11521 = CONSTANT_P (op0) ? TYPE_MODE (TREE_TYPE (tem)) : GET_MODE (op0);
11523 /* See above for the rationale. */
11524 if (maybe_gt (bitpos + bitsize, GET_MODE_BITSIZE (mode2)))
11525 must_force_mem = true;
11527 /* Handle CONCAT first. */
11528 if (GET_CODE (op0) == CONCAT && !must_force_mem)
11530 if (known_eq (bitpos, 0)
11531 && known_eq (bitsize, GET_MODE_BITSIZE (GET_MODE (op0)))
11532 && COMPLEX_MODE_P (mode1)
11533 && COMPLEX_MODE_P (GET_MODE (op0))
11534 && (GET_MODE_PRECISION (GET_MODE_INNER (mode1))
11535 == GET_MODE_PRECISION (GET_MODE_INNER (GET_MODE (op0)))))
11537 if (reversep)
11538 op0 = flip_storage_order (GET_MODE (op0), op0);
11539 if (mode1 != GET_MODE (op0))
11541 rtx parts[2];
11542 for (int i = 0; i < 2; i++)
11544 rtx op = read_complex_part (op0, i != 0);
11545 if (GET_CODE (op) == SUBREG)
11546 op = force_reg (GET_MODE (op), op);
11547 temp = gen_lowpart_common (GET_MODE_INNER (mode1), op);
11548 if (temp)
11549 op = temp;
11550 else
11552 if (!REG_P (op) && !MEM_P (op))
11553 op = force_reg (GET_MODE (op), op);
11554 op = gen_lowpart (GET_MODE_INNER (mode1), op);
11556 parts[i] = op;
11558 op0 = gen_rtx_CONCAT (mode1, parts[0], parts[1]);
11560 return op0;
11562 if (known_eq (bitpos, 0)
11563 && known_eq (bitsize,
11564 GET_MODE_BITSIZE (GET_MODE (XEXP (op0, 0))))
11565 && maybe_ne (bitsize, 0))
11567 op0 = XEXP (op0, 0);
11568 mode2 = GET_MODE (op0);
11570 else if (known_eq (bitpos,
11571 GET_MODE_BITSIZE (GET_MODE (XEXP (op0, 0))))
11572 && known_eq (bitsize,
11573 GET_MODE_BITSIZE (GET_MODE (XEXP (op0, 1))))
11574 && maybe_ne (bitpos, 0)
11575 && maybe_ne (bitsize, 0))
11577 op0 = XEXP (op0, 1);
11578 bitpos = 0;
11579 mode2 = GET_MODE (op0);
11581 else
11582 /* Otherwise force into memory. */
11583 must_force_mem = true;
11586 /* If this is a constant, put it in a register if it is a legitimate
11587 constant and we don't need a memory reference. */
11588 if (CONSTANT_P (op0)
11589 && mode2 != BLKmode
11590 && targetm.legitimate_constant_p (mode2, op0)
11591 && !must_force_mem)
11592 op0 = force_reg (mode2, op0);
11594 /* Otherwise, if this is a constant, try to force it to the constant
11595 pool. Note that back-ends, e.g. MIPS, may refuse to do so if it
11596 is a legitimate constant. */
11597 else if (CONSTANT_P (op0) && (memloc = force_const_mem (mode2, op0)))
11598 op0 = validize_mem (memloc);
11600 /* Otherwise, if this is a constant or the object is not in memory
11601 and need be, put it there. */
11602 else if (CONSTANT_P (op0) || (!MEM_P (op0) && must_force_mem))
11604 memloc = assign_temp (TREE_TYPE (tem), 1, 1);
11605 emit_move_insn (memloc, op0);
11606 op0 = memloc;
11607 clear_mem_expr = true;
11610 if (offset)
11612 machine_mode address_mode;
11613 rtx offset_rtx = expand_expr (offset, NULL_RTX, VOIDmode,
11614 EXPAND_SUM);
11616 gcc_assert (MEM_P (op0));
11618 address_mode = get_address_mode (op0);
11619 if (GET_MODE (offset_rtx) != address_mode)
11621 /* We cannot be sure that the RTL in offset_rtx is valid outside
11622 of a memory address context, so force it into a register
11623 before attempting to convert it to the desired mode. */
11624 offset_rtx = force_operand (offset_rtx, NULL_RTX);
11625 offset_rtx = convert_to_mode (address_mode, offset_rtx, 0);
11628 /* See the comment in expand_assignment for the rationale. */
11629 if (mode1 != VOIDmode
11630 && maybe_ne (bitpos, 0)
11631 && maybe_gt (bitsize, 0)
11632 && multiple_p (bitpos, BITS_PER_UNIT, &bytepos)
11633 && multiple_p (bitpos, bitsize)
11634 && multiple_p (bitsize, GET_MODE_ALIGNMENT (mode1))
11635 && MEM_ALIGN (op0) >= GET_MODE_ALIGNMENT (mode1))
11637 op0 = adjust_address (op0, mode1, bytepos);
11638 bitpos = 0;
11641 op0 = offset_address (op0, offset_rtx,
11642 highest_pow2_factor (offset));
11645 /* If OFFSET is making OP0 more aligned than BIGGEST_ALIGNMENT,
11646 record its alignment as BIGGEST_ALIGNMENT. */
11647 if (MEM_P (op0)
11648 && known_eq (bitpos, 0)
11649 && offset != 0
11650 && is_aligning_offset (offset, tem))
11651 set_mem_align (op0, BIGGEST_ALIGNMENT);
11653 /* Don't forget about volatility even if this is a bitfield. */
11654 if (MEM_P (op0) && volatilep && ! MEM_VOLATILE_P (op0))
11656 if (op0 == orig_op0)
11657 op0 = copy_rtx (op0);
11659 MEM_VOLATILE_P (op0) = 1;
11662 if (MEM_P (op0) && TREE_CODE (tem) == FUNCTION_DECL)
11664 if (op0 == orig_op0)
11665 op0 = copy_rtx (op0);
11667 set_mem_align (op0, BITS_PER_UNIT);
11670 /* In cases where an aligned union has an unaligned object
11671 as a field, we might be extracting a BLKmode value from
11672 an integer-mode (e.g., SImode) object. Handle this case
11673 by doing the extract into an object as wide as the field
11674 (which we know to be the width of a basic mode), then
11675 storing into memory, and changing the mode to BLKmode. */
11676 if (mode1 == VOIDmode
11677 || REG_P (op0) || GET_CODE (op0) == SUBREG
11678 || (mode1 != BLKmode && ! direct_load[(int) mode1]
11679 && GET_MODE_CLASS (mode) != MODE_COMPLEX_INT
11680 && GET_MODE_CLASS (mode) != MODE_COMPLEX_FLOAT
11681 && modifier != EXPAND_CONST_ADDRESS
11682 && modifier != EXPAND_INITIALIZER
11683 && modifier != EXPAND_MEMORY)
11684 /* If the bitfield is volatile and the bitsize
11685 is narrower than the access size of the bitfield,
11686 we need to extract bitfields from the access. */
11687 || (volatilep && TREE_CODE (exp) == COMPONENT_REF
11688 && DECL_BIT_FIELD_TYPE (TREE_OPERAND (exp, 1))
11689 && mode1 != BLKmode
11690 && maybe_lt (bitsize, GET_MODE_SIZE (mode1) * BITS_PER_UNIT))
11691 /* If the field isn't aligned enough to fetch as a memref,
11692 fetch it as a bit field. */
11693 || (mode1 != BLKmode
11694 && (((MEM_P (op0)
11695 ? MEM_ALIGN (op0) < GET_MODE_ALIGNMENT (mode1)
11696 || !multiple_p (bitpos, GET_MODE_ALIGNMENT (mode1))
11697 : TYPE_ALIGN (TREE_TYPE (tem)) < GET_MODE_ALIGNMENT (mode)
11698 || !multiple_p (bitpos, GET_MODE_ALIGNMENT (mode)))
11699 && modifier != EXPAND_MEMORY
11700 && ((modifier == EXPAND_CONST_ADDRESS
11701 || modifier == EXPAND_INITIALIZER)
11702 ? STRICT_ALIGNMENT
11703 : targetm.slow_unaligned_access (mode1,
11704 MEM_ALIGN (op0))))
11705 || !multiple_p (bitpos, BITS_PER_UNIT)))
11706 /* If the type and the field are a constant size and the
11707 size of the type isn't the same size as the bitfield,
11708 we must use bitfield operations. */
11709 || (known_size_p (bitsize)
11710 && TYPE_SIZE (TREE_TYPE (exp))
11711 && poly_int_tree_p (TYPE_SIZE (TREE_TYPE (exp)))
11712 && maybe_ne (wi::to_poly_offset (TYPE_SIZE (TREE_TYPE (exp))),
11713 bitsize)))
11715 machine_mode ext_mode = mode;
11717 if (ext_mode == BLKmode
11718 && ! (target != 0 && MEM_P (op0)
11719 && MEM_P (target)
11720 && multiple_p (bitpos, BITS_PER_UNIT)))
11721 ext_mode = int_mode_for_size (bitsize, 1).else_blk ();
11723 if (ext_mode == BLKmode)
11725 if (target == 0)
11726 target = assign_temp (type, 1, 1);
11728 /* ??? Unlike the similar test a few lines below, this one is
11729 very likely obsolete. */
11730 if (known_eq (bitsize, 0))
11731 return target;
11733 /* In this case, BITPOS must start at a byte boundary and
11734 TARGET, if specified, must be a MEM. */
11735 gcc_assert (MEM_P (op0)
11736 && (!target || MEM_P (target)));
11738 bytepos = exact_div (bitpos, BITS_PER_UNIT);
11739 poly_int64 bytesize = bits_to_bytes_round_up (bitsize);
11740 emit_block_move (target,
11741 adjust_address (op0, VOIDmode, bytepos),
11742 gen_int_mode (bytesize, Pmode),
11743 (modifier == EXPAND_STACK_PARM
11744 ? BLOCK_OP_CALL_PARM : BLOCK_OP_NORMAL));
11746 return target;
11749 /* If we have nothing to extract, the result will be 0 for targets
11750 with SHIFT_COUNT_TRUNCATED == 0 and garbage otherwise. Always
11751 return 0 for the sake of consistency, as reading a zero-sized
11752 bitfield is valid in Ada and the value is fully specified. */
11753 if (known_eq (bitsize, 0))
11754 return const0_rtx;
11756 op0 = validize_mem (op0);
11758 if (MEM_P (op0) && REG_P (XEXP (op0, 0)))
11759 mark_reg_pointer (XEXP (op0, 0), MEM_ALIGN (op0));
11761 /* If the result has aggregate type and the extraction is done in
11762 an integral mode, then the field may be not aligned on a byte
11763 boundary; in this case, if it has reverse storage order, it
11764 needs to be extracted as a scalar field with reverse storage
11765 order and put back into memory order afterwards. */
11766 if (AGGREGATE_TYPE_P (type)
11767 && GET_MODE_CLASS (ext_mode) == MODE_INT)
11768 reversep = TYPE_REVERSE_STORAGE_ORDER (type);
11770 gcc_checking_assert (known_ge (bitpos, 0));
11771 op0 = extract_bit_field (op0, bitsize, bitpos, unsignedp,
11772 (modifier == EXPAND_STACK_PARM
11773 ? NULL_RTX : target),
11774 ext_mode, ext_mode, reversep, alt_rtl);
11776 /* If the result has aggregate type and the mode of OP0 is an
11777 integral mode then, if BITSIZE is narrower than this mode
11778 and this is for big-endian data, we must put the field
11779 into the high-order bits. And we must also put it back
11780 into memory order if it has been previously reversed. */
11781 scalar_int_mode op0_mode;
11782 if (AGGREGATE_TYPE_P (type)
11783 && is_int_mode (GET_MODE (op0), &op0_mode))
11785 HOST_WIDE_INT size = GET_MODE_BITSIZE (op0_mode);
11787 gcc_checking_assert (known_le (bitsize, size));
11788 if (maybe_lt (bitsize, size)
11789 && reversep ? !BYTES_BIG_ENDIAN : BYTES_BIG_ENDIAN)
11790 op0 = expand_shift (LSHIFT_EXPR, op0_mode, op0,
11791 size - bitsize, op0, 1);
11793 if (reversep)
11794 op0 = flip_storage_order (op0_mode, op0);
11797 /* If the result type is BLKmode, store the data into a temporary
11798 of the appropriate type, but with the mode corresponding to the
11799 mode for the data we have (op0's mode). */
11800 if (mode == BLKmode)
11802 rtx new_rtx
11803 = assign_stack_temp_for_type (ext_mode,
11804 GET_MODE_BITSIZE (ext_mode),
11805 type);
11806 emit_move_insn (new_rtx, op0);
11807 op0 = copy_rtx (new_rtx);
11808 PUT_MODE (op0, BLKmode);
11811 return op0;
11814 /* If the result is BLKmode, use that to access the object
11815 now as well. */
11816 if (mode == BLKmode)
11817 mode1 = BLKmode;
11819 /* Get a reference to just this component. */
11820 bytepos = bits_to_bytes_round_down (bitpos);
11821 if (modifier == EXPAND_CONST_ADDRESS
11822 || modifier == EXPAND_SUM || modifier == EXPAND_INITIALIZER)
11823 op0 = adjust_address_nv (op0, mode1, bytepos);
11824 else
11825 op0 = adjust_address (op0, mode1, bytepos);
11827 if (op0 == orig_op0)
11828 op0 = copy_rtx (op0);
11830 /* Don't set memory attributes if the base expression is
11831 SSA_NAME that got expanded as a MEM or a CONSTANT. In that case,
11832 we should just honor its original memory attributes. */
11833 if (!(TREE_CODE (tem) == SSA_NAME
11834 && (MEM_P (orig_op0) || CONSTANT_P (orig_op0))))
11835 set_mem_attributes (op0, exp, 0);
11837 if (REG_P (XEXP (op0, 0)))
11838 mark_reg_pointer (XEXP (op0, 0), MEM_ALIGN (op0));
11840 /* If op0 is a temporary because the original expressions was forced
11841 to memory, clear MEM_EXPR so that the original expression cannot
11842 be marked as addressable through MEM_EXPR of the temporary. */
11843 if (clear_mem_expr)
11844 set_mem_expr (op0, NULL_TREE);
11846 MEM_VOLATILE_P (op0) |= volatilep;
11848 if (reversep
11849 && modifier != EXPAND_MEMORY
11850 && modifier != EXPAND_WRITE)
11851 op0 = flip_storage_order (mode1, op0);
11853 op0 = EXTEND_BITINT (op0);
11855 if (mode == mode1 || mode1 == BLKmode || mode1 == tmode
11856 || modifier == EXPAND_CONST_ADDRESS
11857 || modifier == EXPAND_INITIALIZER)
11858 return op0;
11860 if (target == 0)
11861 target = gen_reg_rtx (tmode != VOIDmode ? tmode : mode);
11863 convert_move (target, op0, unsignedp);
11864 return target;
11867 case OBJ_TYPE_REF:
11868 return expand_expr (OBJ_TYPE_REF_EXPR (exp), target, tmode, modifier);
11870 case CALL_EXPR:
11871 /* All valid uses of __builtin_va_arg_pack () are removed during
11872 inlining. */
11873 if (CALL_EXPR_VA_ARG_PACK (exp))
11874 error ("invalid use of %<__builtin_va_arg_pack ()%>");
11876 tree fndecl = get_callee_fndecl (exp), attr;
11878 if (fndecl
11879 /* Don't diagnose the error attribute in thunks, those are
11880 artificially created. */
11881 && !CALL_FROM_THUNK_P (exp)
11882 && (attr = lookup_attribute ("error",
11883 DECL_ATTRIBUTES (fndecl))) != NULL)
11885 const char *ident = lang_hooks.decl_printable_name (fndecl, 1);
11886 error ("call to %qs declared with attribute error: %s",
11887 identifier_to_locale (ident),
11888 TREE_STRING_POINTER (TREE_VALUE (TREE_VALUE (attr))));
11890 if (fndecl
11891 /* Don't diagnose the warning attribute in thunks, those are
11892 artificially created. */
11893 && !CALL_FROM_THUNK_P (exp)
11894 && (attr = lookup_attribute ("warning",
11895 DECL_ATTRIBUTES (fndecl))) != NULL)
11897 const char *ident = lang_hooks.decl_printable_name (fndecl, 1);
11898 warning_at (EXPR_LOCATION (exp),
11899 OPT_Wattribute_warning,
11900 "call to %qs declared with attribute warning: %s",
11901 identifier_to_locale (ident),
11902 TREE_STRING_POINTER (TREE_VALUE (TREE_VALUE (attr))));
11905 /* Check for a built-in function. */
11906 if (fndecl && fndecl_built_in_p (fndecl))
11908 gcc_assert (DECL_BUILT_IN_CLASS (fndecl) != BUILT_IN_FRONTEND);
11909 return expand_builtin (exp, target, subtarget, tmode, ignore);
11912 return expand_call (exp, target, ignore);
11914 case VIEW_CONVERT_EXPR:
11915 op0 = NULL_RTX;
11917 /* If we are converting to BLKmode, try to avoid an intermediate
11918 temporary by fetching an inner memory reference. */
11919 if (mode == BLKmode
11920 && poly_int_tree_p (TYPE_SIZE (type))
11921 && TYPE_MODE (TREE_TYPE (treeop0)) != BLKmode
11922 && handled_component_p (treeop0))
11924 machine_mode mode1;
11925 poly_int64 bitsize, bitpos, bytepos;
11926 tree offset;
11927 int reversep, volatilep = 0;
11928 tree tem
11929 = get_inner_reference (treeop0, &bitsize, &bitpos, &offset, &mode1,
11930 &unsignedp, &reversep, &volatilep);
11932 /* ??? We should work harder and deal with non-zero offsets. */
11933 if (!offset
11934 && multiple_p (bitpos, BITS_PER_UNIT, &bytepos)
11935 && !reversep
11936 && known_size_p (bitsize)
11937 && known_eq (wi::to_poly_offset (TYPE_SIZE (type)), bitsize))
11939 /* See the normal_inner_ref case for the rationale. */
11940 rtx orig_op0
11941 = expand_expr_real (tem,
11942 (TREE_CODE (TREE_TYPE (tem)) == UNION_TYPE
11943 && (TREE_CODE (TYPE_SIZE (TREE_TYPE (tem)))
11944 != INTEGER_CST)
11945 && modifier != EXPAND_STACK_PARM
11946 ? target : NULL_RTX),
11947 VOIDmode,
11948 modifier == EXPAND_SUM ? EXPAND_NORMAL : modifier,
11949 NULL, true);
11951 if (MEM_P (orig_op0))
11953 op0 = orig_op0;
11955 /* Get a reference to just this component. */
11956 if (modifier == EXPAND_CONST_ADDRESS
11957 || modifier == EXPAND_SUM
11958 || modifier == EXPAND_INITIALIZER)
11959 op0 = adjust_address_nv (op0, mode, bytepos);
11960 else
11961 op0 = adjust_address (op0, mode, bytepos);
11963 if (op0 == orig_op0)
11964 op0 = copy_rtx (op0);
11966 set_mem_attributes (op0, treeop0, 0);
11967 if (REG_P (XEXP (op0, 0)))
11968 mark_reg_pointer (XEXP (op0, 0), MEM_ALIGN (op0));
11970 MEM_VOLATILE_P (op0) |= volatilep;
11975 if (!op0)
11976 op0 = expand_expr_real (treeop0, NULL_RTX, VOIDmode, modifier,
11977 NULL, inner_reference_p);
11979 /* If the input and output modes are both the same, we are done. */
11980 if (mode == GET_MODE (op0))
11982 /* If neither mode is BLKmode, and both modes are the same size
11983 then we can use gen_lowpart. */
11984 else if (mode != BLKmode
11985 && GET_MODE (op0) != BLKmode
11986 && known_eq (GET_MODE_PRECISION (mode),
11987 GET_MODE_PRECISION (GET_MODE (op0)))
11988 && !COMPLEX_MODE_P (GET_MODE (op0)))
11990 if (GET_CODE (op0) == SUBREG)
11991 op0 = force_reg (GET_MODE (op0), op0);
11992 temp = gen_lowpart_common (mode, op0);
11993 if (temp)
11994 op0 = temp;
11995 else
11997 if (!REG_P (op0) && !MEM_P (op0))
11998 op0 = force_reg (GET_MODE (op0), op0);
11999 op0 = gen_lowpart (mode, op0);
12002 /* If both types are integral, convert from one mode to the other. */
12003 else if (INTEGRAL_TYPE_P (type) && INTEGRAL_TYPE_P (TREE_TYPE (treeop0)))
12004 op0 = convert_modes (mode, GET_MODE (op0), op0,
12005 TYPE_UNSIGNED (TREE_TYPE (treeop0)));
12006 /* If the output type is a bit-field type, do an extraction. */
12007 else if (reduce_bit_field)
12008 return extract_bit_field (op0, TYPE_PRECISION (type), 0,
12009 TYPE_UNSIGNED (type), NULL_RTX,
12010 mode, mode, false, NULL);
12011 /* As a last resort, spill op0 to memory, and reload it in a
12012 different mode. */
12013 else if (!MEM_P (op0))
12015 /* If the operand is not a MEM, force it into memory. Since we
12016 are going to be changing the mode of the MEM, don't call
12017 force_const_mem for constants because we don't allow pool
12018 constants to change mode. */
12019 tree inner_type = TREE_TYPE (treeop0);
12021 gcc_assert (!TREE_ADDRESSABLE (exp));
12023 if (target == 0 || GET_MODE (target) != TYPE_MODE (inner_type))
12024 target
12025 = assign_stack_temp_for_type
12026 (TYPE_MODE (inner_type),
12027 GET_MODE_SIZE (TYPE_MODE (inner_type)), inner_type);
12029 emit_move_insn (target, op0);
12030 op0 = target;
12033 /* If OP0 is (now) a MEM, we need to deal with alignment issues. If the
12034 output type is such that the operand is known to be aligned, indicate
12035 that it is. Otherwise, we need only be concerned about alignment for
12036 non-BLKmode results. */
12037 if (MEM_P (op0))
12039 enum insn_code icode;
12041 if (modifier != EXPAND_WRITE
12042 && modifier != EXPAND_MEMORY
12043 && !inner_reference_p
12044 && mode != BLKmode
12045 && MEM_ALIGN (op0) < GET_MODE_ALIGNMENT (mode))
12047 /* If the target does have special handling for unaligned
12048 loads of mode then use them. */
12049 if ((icode = optab_handler (movmisalign_optab, mode))
12050 != CODE_FOR_nothing)
12052 rtx reg;
12054 op0 = adjust_address (op0, mode, 0);
12055 /* We've already validated the memory, and we're creating a
12056 new pseudo destination. The predicates really can't
12057 fail. */
12058 reg = gen_reg_rtx (mode);
12060 /* Nor can the insn generator. */
12061 rtx_insn *insn = GEN_FCN (icode) (reg, op0);
12062 emit_insn (insn);
12063 return reg;
12065 else if (STRICT_ALIGNMENT)
12067 poly_uint64 mode_size = GET_MODE_SIZE (mode);
12068 poly_uint64 temp_size = mode_size;
12069 if (GET_MODE (op0) != BLKmode)
12070 temp_size = upper_bound (temp_size,
12071 GET_MODE_SIZE (GET_MODE (op0)));
12072 rtx new_rtx
12073 = assign_stack_temp_for_type (mode, temp_size, type);
12074 rtx new_with_op0_mode
12075 = adjust_address (new_rtx, GET_MODE (op0), 0);
12077 gcc_assert (!TREE_ADDRESSABLE (exp));
12079 if (GET_MODE (op0) == BLKmode)
12081 rtx size_rtx = gen_int_mode (mode_size, Pmode);
12082 emit_block_move (new_with_op0_mode, op0, size_rtx,
12083 (modifier == EXPAND_STACK_PARM
12084 ? BLOCK_OP_CALL_PARM
12085 : BLOCK_OP_NORMAL));
12087 else
12088 emit_move_insn (new_with_op0_mode, op0);
12090 op0 = new_rtx;
12094 op0 = adjust_address (op0, mode, 0);
12097 return op0;
12099 case MODIFY_EXPR:
12101 tree lhs = treeop0;
12102 tree rhs = treeop1;
12103 gcc_assert (ignore);
12105 /* Check for |= or &= of a bitfield of size one into another bitfield
12106 of size 1. In this case, (unless we need the result of the
12107 assignment) we can do this more efficiently with a
12108 test followed by an assignment, if necessary.
12110 ??? At this point, we can't get a BIT_FIELD_REF here. But if
12111 things change so we do, this code should be enhanced to
12112 support it. */
12113 if (TREE_CODE (lhs) == COMPONENT_REF
12114 && (TREE_CODE (rhs) == BIT_IOR_EXPR
12115 || TREE_CODE (rhs) == BIT_AND_EXPR)
12116 && TREE_OPERAND (rhs, 0) == lhs
12117 && TREE_CODE (TREE_OPERAND (rhs, 1)) == COMPONENT_REF
12118 && integer_onep (DECL_SIZE (TREE_OPERAND (lhs, 1)))
12119 && integer_onep (DECL_SIZE (TREE_OPERAND (TREE_OPERAND (rhs, 1), 1))))
12121 rtx_code_label *label = gen_label_rtx ();
12122 int value = TREE_CODE (rhs) == BIT_IOR_EXPR;
12123 profile_probability prob = profile_probability::uninitialized ();
12124 if (value)
12125 jumpifnot (TREE_OPERAND (rhs, 1), label, prob);
12126 else
12127 jumpif (TREE_OPERAND (rhs, 1), label, prob);
12128 expand_assignment (lhs, build_int_cst (TREE_TYPE (rhs), value),
12129 false);
12130 do_pending_stack_adjust ();
12131 emit_label (label);
12132 return const0_rtx;
12135 expand_assignment (lhs, rhs, false);
12136 return const0_rtx;
12139 case ADDR_EXPR:
12140 return expand_expr_addr_expr (exp, target, tmode, modifier);
12142 case REALPART_EXPR:
12143 op0 = expand_normal (treeop0);
12144 return read_complex_part (op0, false);
12146 case IMAGPART_EXPR:
12147 op0 = expand_normal (treeop0);
12148 return read_complex_part (op0, true);
12150 case RETURN_EXPR:
12151 case LABEL_EXPR:
12152 case GOTO_EXPR:
12153 case SWITCH_EXPR:
12154 case ASM_EXPR:
12155 /* Expanded in cfgexpand.cc. */
12156 gcc_unreachable ();
12158 case TRY_CATCH_EXPR:
12159 case CATCH_EXPR:
12160 case EH_FILTER_EXPR:
12161 case TRY_FINALLY_EXPR:
12162 case EH_ELSE_EXPR:
12163 /* Lowered by tree-eh.cc. */
12164 gcc_unreachable ();
12166 case WITH_CLEANUP_EXPR:
12167 case CLEANUP_POINT_EXPR:
12168 case TARGET_EXPR:
12169 case CASE_LABEL_EXPR:
12170 case VA_ARG_EXPR:
12171 case BIND_EXPR:
12172 case INIT_EXPR:
12173 case CONJ_EXPR:
12174 case COMPOUND_EXPR:
12175 case PREINCREMENT_EXPR:
12176 case PREDECREMENT_EXPR:
12177 case POSTINCREMENT_EXPR:
12178 case POSTDECREMENT_EXPR:
12179 case LOOP_EXPR:
12180 case EXIT_EXPR:
12181 case COMPOUND_LITERAL_EXPR:
12182 /* Lowered by gimplify.cc. */
12183 gcc_unreachable ();
12185 case FDESC_EXPR:
12186 /* Function descriptors are not valid except for as
12187 initialization constants, and should not be expanded. */
12188 gcc_unreachable ();
12190 case WITH_SIZE_EXPR:
12191 /* WITH_SIZE_EXPR expands to its first argument. The caller should
12192 have pulled out the size to use in whatever context it needed. */
12193 return expand_expr_real (treeop0, original_target, tmode,
12194 modifier, alt_rtl, inner_reference_p);
12196 default:
12197 return expand_expr_real_2 (&ops, target, tmode, modifier);
12200 #undef EXTEND_BITINT
12202 /* Subroutine of above: reduce EXP to the precision of TYPE (in the
12203 signedness of TYPE), possibly returning the result in TARGET.
12204 TYPE is known to be a partial integer type. */
12205 static rtx
12206 reduce_to_bit_field_precision (rtx exp, rtx target, tree type)
12208 scalar_int_mode mode = SCALAR_INT_TYPE_MODE (type);
12209 HOST_WIDE_INT prec = TYPE_PRECISION (type);
12210 gcc_assert ((GET_MODE (exp) == VOIDmode || GET_MODE (exp) == mode)
12211 && (!target || GET_MODE (target) == mode));
12213 /* For constant values, reduce using wide_int_to_tree. */
12214 if (poly_int_rtx_p (exp))
12216 auto value = wi::to_poly_wide (exp, mode);
12217 tree t = wide_int_to_tree (type, value);
12218 return expand_expr (t, target, VOIDmode, EXPAND_NORMAL);
12220 else if (TYPE_UNSIGNED (type))
12222 rtx mask = immed_wide_int_const
12223 (wi::mask (prec, false, GET_MODE_PRECISION (mode)), mode);
12224 return expand_and (mode, exp, mask, target);
12226 else
12228 int count = GET_MODE_PRECISION (mode) - prec;
12229 exp = expand_shift (LSHIFT_EXPR, mode, exp, count, target, 0);
12230 return expand_shift (RSHIFT_EXPR, mode, exp, count, target, 0);
12234 /* Subroutine of above: returns true if OFFSET corresponds to an offset that
12235 when applied to the address of EXP produces an address known to be
12236 aligned more than BIGGEST_ALIGNMENT. */
12238 static bool
12239 is_aligning_offset (const_tree offset, const_tree exp)
12241 /* Strip off any conversions. */
12242 while (CONVERT_EXPR_P (offset))
12243 offset = TREE_OPERAND (offset, 0);
12245 /* We must now have a BIT_AND_EXPR with a constant that is one less than
12246 power of 2 and which is larger than BIGGEST_ALIGNMENT. */
12247 if (TREE_CODE (offset) != BIT_AND_EXPR
12248 || !tree_fits_uhwi_p (TREE_OPERAND (offset, 1))
12249 || compare_tree_int (TREE_OPERAND (offset, 1),
12250 BIGGEST_ALIGNMENT / BITS_PER_UNIT) <= 0
12251 || !pow2p_hwi (tree_to_uhwi (TREE_OPERAND (offset, 1)) + 1))
12252 return false;
12254 /* Look at the first operand of BIT_AND_EXPR and strip any conversion.
12255 It must be NEGATE_EXPR. Then strip any more conversions. */
12256 offset = TREE_OPERAND (offset, 0);
12257 while (CONVERT_EXPR_P (offset))
12258 offset = TREE_OPERAND (offset, 0);
12260 if (TREE_CODE (offset) != NEGATE_EXPR)
12261 return false;
12263 offset = TREE_OPERAND (offset, 0);
12264 while (CONVERT_EXPR_P (offset))
12265 offset = TREE_OPERAND (offset, 0);
12267 /* This must now be the address of EXP. */
12268 return TREE_CODE (offset) == ADDR_EXPR && TREE_OPERAND (offset, 0) == exp;
12271 /* Return a STRING_CST corresponding to ARG's constant initializer either
12272 if it's a string constant, or, when VALREP is set, any other constant,
12273 or null otherwise.
12274 On success, set *PTR_OFFSET to the (possibly non-constant) byte offset
12275 within the byte string that ARG is references. If nonnull set *MEM_SIZE
12276 to the size of the byte string. If nonnull, set *DECL to the constant
12277 declaration ARG refers to. */
12279 static tree
12280 constant_byte_string (tree arg, tree *ptr_offset, tree *mem_size, tree *decl,
12281 bool valrep = false)
12283 tree dummy = NULL_TREE;
12284 if (!mem_size)
12285 mem_size = &dummy;
12287 /* Store the type of the original expression before conversions
12288 via NOP_EXPR or POINTER_PLUS_EXPR to other types have been
12289 removed. */
12290 tree argtype = TREE_TYPE (arg);
12292 tree array;
12293 STRIP_NOPS (arg);
12295 /* Non-constant index into the character array in an ARRAY_REF
12296 expression or null. */
12297 tree varidx = NULL_TREE;
12299 poly_int64 base_off = 0;
12301 if (TREE_CODE (arg) == ADDR_EXPR)
12303 arg = TREE_OPERAND (arg, 0);
12304 tree ref = arg;
12305 if (TREE_CODE (arg) == ARRAY_REF)
12307 tree idx = TREE_OPERAND (arg, 1);
12308 if (TREE_CODE (idx) != INTEGER_CST)
12310 /* From a pointer (but not array) argument extract the variable
12311 index to prevent get_addr_base_and_unit_offset() from failing
12312 due to it. Use it later to compute the non-constant offset
12313 into the string and return it to the caller. */
12314 varidx = idx;
12315 ref = TREE_OPERAND (arg, 0);
12317 if (TREE_CODE (TREE_TYPE (arg)) == ARRAY_TYPE)
12318 return NULL_TREE;
12320 if (!integer_zerop (array_ref_low_bound (arg)))
12321 return NULL_TREE;
12323 if (!integer_onep (array_ref_element_size (arg)))
12324 return NULL_TREE;
12327 array = get_addr_base_and_unit_offset (ref, &base_off);
12328 if (!array
12329 || (TREE_CODE (array) != VAR_DECL
12330 && TREE_CODE (array) != CONST_DECL
12331 && TREE_CODE (array) != STRING_CST))
12332 return NULL_TREE;
12334 else if (TREE_CODE (arg) == PLUS_EXPR || TREE_CODE (arg) == POINTER_PLUS_EXPR)
12336 tree arg0 = TREE_OPERAND (arg, 0);
12337 tree arg1 = TREE_OPERAND (arg, 1);
12339 tree offset;
12340 tree str = string_constant (arg0, &offset, mem_size, decl);
12341 if (!str)
12343 str = string_constant (arg1, &offset, mem_size, decl);
12344 arg1 = arg0;
12347 if (str)
12349 /* Avoid pointers to arrays (see bug 86622). */
12350 if (POINTER_TYPE_P (TREE_TYPE (arg))
12351 && TREE_CODE (TREE_TYPE (TREE_TYPE (arg))) == ARRAY_TYPE
12352 && !(decl && !*decl)
12353 && !(decl && tree_fits_uhwi_p (DECL_SIZE_UNIT (*decl))
12354 && tree_fits_uhwi_p (*mem_size)
12355 && tree_int_cst_equal (*mem_size, DECL_SIZE_UNIT (*decl))))
12356 return NULL_TREE;
12358 tree type = TREE_TYPE (offset);
12359 arg1 = fold_convert (type, arg1);
12360 *ptr_offset = fold_build2 (PLUS_EXPR, type, offset, arg1);
12361 return str;
12363 return NULL_TREE;
12365 else if (TREE_CODE (arg) == SSA_NAME)
12367 gimple *stmt = SSA_NAME_DEF_STMT (arg);
12368 if (!is_gimple_assign (stmt))
12369 return NULL_TREE;
12371 tree rhs1 = gimple_assign_rhs1 (stmt);
12372 tree_code code = gimple_assign_rhs_code (stmt);
12373 if (code == ADDR_EXPR)
12374 return string_constant (rhs1, ptr_offset, mem_size, decl);
12375 else if (code != POINTER_PLUS_EXPR)
12376 return NULL_TREE;
12378 tree offset;
12379 if (tree str = string_constant (rhs1, &offset, mem_size, decl))
12381 /* Avoid pointers to arrays (see bug 86622). */
12382 if (POINTER_TYPE_P (TREE_TYPE (rhs1))
12383 && TREE_CODE (TREE_TYPE (TREE_TYPE (rhs1))) == ARRAY_TYPE
12384 && !(decl && !*decl)
12385 && !(decl && tree_fits_uhwi_p (DECL_SIZE_UNIT (*decl))
12386 && tree_fits_uhwi_p (*mem_size)
12387 && tree_int_cst_equal (*mem_size, DECL_SIZE_UNIT (*decl))))
12388 return NULL_TREE;
12390 tree rhs2 = gimple_assign_rhs2 (stmt);
12391 tree type = TREE_TYPE (offset);
12392 rhs2 = fold_convert (type, rhs2);
12393 *ptr_offset = fold_build2 (PLUS_EXPR, type, offset, rhs2);
12394 return str;
12396 return NULL_TREE;
12398 else if (DECL_P (arg))
12399 array = arg;
12400 else
12401 return NULL_TREE;
12403 tree offset = wide_int_to_tree (sizetype, base_off);
12404 if (varidx)
12406 if (TREE_CODE (TREE_TYPE (array)) != ARRAY_TYPE)
12407 return NULL_TREE;
12409 gcc_assert (TREE_CODE (arg) == ARRAY_REF);
12410 tree chartype = TREE_TYPE (TREE_TYPE (TREE_OPERAND (arg, 0)));
12411 if (TREE_CODE (chartype) != INTEGER_TYPE)
12412 return NULL;
12414 offset = fold_convert (sizetype, varidx);
12417 if (TREE_CODE (array) == STRING_CST)
12419 *ptr_offset = fold_convert (sizetype, offset);
12420 *mem_size = TYPE_SIZE_UNIT (TREE_TYPE (array));
12421 if (decl)
12422 *decl = NULL_TREE;
12423 gcc_checking_assert (tree_to_shwi (TYPE_SIZE_UNIT (TREE_TYPE (array)))
12424 >= TREE_STRING_LENGTH (array));
12425 return array;
12428 tree init = ctor_for_folding (array);
12429 if (!init || init == error_mark_node)
12430 return NULL_TREE;
12432 if (valrep)
12434 HOST_WIDE_INT cstoff;
12435 if (!base_off.is_constant (&cstoff))
12436 return NULL_TREE;
12438 /* Check that the host and target are sane. */
12439 if (CHAR_BIT != 8 || BITS_PER_UNIT != 8)
12440 return NULL_TREE;
12442 HOST_WIDE_INT typesz = int_size_in_bytes (TREE_TYPE (init));
12443 if (typesz <= 0 || (int) typesz != typesz)
12444 return NULL_TREE;
12446 HOST_WIDE_INT size = typesz;
12447 if (VAR_P (array)
12448 && DECL_SIZE_UNIT (array)
12449 && tree_fits_shwi_p (DECL_SIZE_UNIT (array)))
12451 size = tree_to_shwi (DECL_SIZE_UNIT (array));
12452 gcc_checking_assert (size >= typesz);
12455 /* If value representation was requested convert the initializer
12456 for the whole array or object into a string of bytes forming
12457 its value representation and return it. */
12458 unsigned char *bytes = XNEWVEC (unsigned char, size);
12459 int r = native_encode_initializer (init, bytes, size);
12460 if (r < typesz)
12462 XDELETEVEC (bytes);
12463 return NULL_TREE;
12466 if (r < size)
12467 memset (bytes + r, '\0', size - r);
12469 const char *p = reinterpret_cast<const char *>(bytes);
12470 init = build_string_literal (size, p, char_type_node);
12471 init = TREE_OPERAND (init, 0);
12472 init = TREE_OPERAND (init, 0);
12473 XDELETE (bytes);
12475 *mem_size = size_int (TREE_STRING_LENGTH (init));
12476 *ptr_offset = wide_int_to_tree (ssizetype, base_off);
12478 if (decl)
12479 *decl = array;
12481 return init;
12484 if (TREE_CODE (init) == CONSTRUCTOR)
12486 /* Convert the 64-bit constant offset to a wider type to avoid
12487 overflow and use it to obtain the initializer for the subobject
12488 it points into. */
12489 offset_int wioff;
12490 if (!base_off.is_constant (&wioff))
12491 return NULL_TREE;
12493 wioff *= BITS_PER_UNIT;
12494 if (!wi::fits_uhwi_p (wioff))
12495 return NULL_TREE;
12497 base_off = wioff.to_uhwi ();
12498 unsigned HOST_WIDE_INT fieldoff = 0;
12499 init = fold_ctor_reference (TREE_TYPE (arg), init, base_off, 0, array,
12500 &fieldoff);
12501 if (!init || init == error_mark_node)
12502 return NULL_TREE;
12504 HOST_WIDE_INT cstoff;
12505 if (!base_off.is_constant (&cstoff))
12506 return NULL_TREE;
12508 cstoff = (cstoff - fieldoff) / BITS_PER_UNIT;
12509 tree off = build_int_cst (sizetype, cstoff);
12510 if (varidx)
12511 offset = fold_build2 (PLUS_EXPR, TREE_TYPE (offset), offset, off);
12512 else
12513 offset = off;
12516 *ptr_offset = offset;
12518 tree inittype = TREE_TYPE (init);
12520 if (TREE_CODE (init) == INTEGER_CST
12521 && (TREE_CODE (TREE_TYPE (array)) == INTEGER_TYPE
12522 || TYPE_MAIN_VARIANT (inittype) == char_type_node))
12524 /* Check that the host and target are sane. */
12525 if (CHAR_BIT != 8 || BITS_PER_UNIT != 8)
12526 return NULL_TREE;
12528 /* For a reference to (address of) a single constant character,
12529 store the native representation of the character in CHARBUF.
12530 If the reference is to an element of an array or a member
12531 of a struct, only consider narrow characters until ctors
12532 for wide character arrays are transformed to STRING_CSTs
12533 like those for narrow arrays. */
12534 unsigned char charbuf[MAX_BITSIZE_MODE_ANY_MODE / BITS_PER_UNIT];
12535 int len = native_encode_expr (init, charbuf, sizeof charbuf, 0);
12536 if (len > 0)
12538 /* Construct a string literal with elements of INITTYPE and
12539 the representation above. Then strip
12540 the ADDR_EXPR (ARRAY_REF (...)) around the STRING_CST. */
12541 init = build_string_literal (len, (char *)charbuf, inittype);
12542 init = TREE_OPERAND (TREE_OPERAND (init, 0), 0);
12546 tree initsize = TYPE_SIZE_UNIT (inittype);
12548 if (TREE_CODE (init) == CONSTRUCTOR && initializer_zerop (init))
12550 /* Fold an empty/zero constructor for an implicitly initialized
12551 object or subobject into the empty string. */
12553 /* Determine the character type from that of the original
12554 expression. */
12555 tree chartype = argtype;
12556 if (POINTER_TYPE_P (chartype))
12557 chartype = TREE_TYPE (chartype);
12558 while (TREE_CODE (chartype) == ARRAY_TYPE)
12559 chartype = TREE_TYPE (chartype);
12561 if (INTEGRAL_TYPE_P (chartype)
12562 && TYPE_PRECISION (chartype) == TYPE_PRECISION (char_type_node))
12564 /* Convert a char array to an empty STRING_CST having an array
12565 of the expected type and size. */
12566 if (!initsize)
12567 initsize = integer_zero_node;
12569 unsigned HOST_WIDE_INT size = tree_to_uhwi (initsize);
12570 if (size > (unsigned HOST_WIDE_INT) INT_MAX)
12571 return NULL_TREE;
12573 init = build_string_literal (size, NULL, chartype, size);
12574 init = TREE_OPERAND (init, 0);
12575 init = TREE_OPERAND (init, 0);
12577 *ptr_offset = integer_zero_node;
12581 if (decl)
12582 *decl = array;
12584 if (TREE_CODE (init) != STRING_CST)
12585 return NULL_TREE;
12587 *mem_size = initsize;
12589 gcc_checking_assert (tree_to_shwi (initsize) >= TREE_STRING_LENGTH (init));
12591 return init;
12594 /* Return STRING_CST if an ARG corresponds to a string constant or zero
12595 if it doesn't. If we return nonzero, set *PTR_OFFSET to the (possibly
12596 non-constant) offset in bytes within the string that ARG is accessing.
12597 If MEM_SIZE is non-zero the storage size of the memory is returned.
12598 If DECL is non-zero the constant declaration is returned if available. */
12600 tree
12601 string_constant (tree arg, tree *ptr_offset, tree *mem_size, tree *decl)
12603 return constant_byte_string (arg, ptr_offset, mem_size, decl, false);
12606 /* Similar to string_constant, return a STRING_CST corresponding
12607 to the value representation of the first argument if it's
12608 a constant. */
12610 tree
12611 byte_representation (tree arg, tree *ptr_offset, tree *mem_size, tree *decl)
12613 return constant_byte_string (arg, ptr_offset, mem_size, decl, true);
12616 /* Optimize x % C1 == C2 for signed modulo if C1 is a power of two and C2
12617 is non-zero and C3 ((1<<(prec-1)) | (C1 - 1)):
12618 for C2 > 0 to x & C3 == C2
12619 for C2 < 0 to x & C3 == (C2 & C3). */
12620 enum tree_code
12621 maybe_optimize_pow2p_mod_cmp (enum tree_code code, tree *arg0, tree *arg1)
12623 gimple *stmt = get_def_for_expr (*arg0, TRUNC_MOD_EXPR);
12624 tree treeop0 = gimple_assign_rhs1 (stmt);
12625 tree treeop1 = gimple_assign_rhs2 (stmt);
12626 tree type = TREE_TYPE (*arg0);
12627 scalar_int_mode mode;
12628 if (!is_a <scalar_int_mode> (TYPE_MODE (type), &mode))
12629 return code;
12630 if (GET_MODE_BITSIZE (mode) != TYPE_PRECISION (type)
12631 || TYPE_PRECISION (type) <= 1
12632 || TYPE_UNSIGNED (type)
12633 /* Signed x % c == 0 should have been optimized into unsigned modulo
12634 earlier. */
12635 || integer_zerop (*arg1)
12636 /* If c is known to be non-negative, modulo will be expanded as unsigned
12637 modulo. */
12638 || get_range_pos_neg (treeop0) == 1)
12639 return code;
12641 /* x % c == d where d < 0 && d <= -c should be always false. */
12642 if (tree_int_cst_sgn (*arg1) == -1
12643 && -wi::to_widest (treeop1) >= wi::to_widest (*arg1))
12644 return code;
12646 int prec = TYPE_PRECISION (type);
12647 wide_int w = wi::to_wide (treeop1) - 1;
12648 w |= wi::shifted_mask (0, prec - 1, true, prec);
12649 tree c3 = wide_int_to_tree (type, w);
12650 tree c4 = *arg1;
12651 if (tree_int_cst_sgn (*arg1) == -1)
12652 c4 = wide_int_to_tree (type, w & wi::to_wide (*arg1));
12654 rtx op0 = expand_normal (treeop0);
12655 treeop0 = make_tree (TREE_TYPE (treeop0), op0);
12657 bool speed_p = optimize_insn_for_speed_p ();
12659 do_pending_stack_adjust ();
12661 location_t loc = gimple_location (stmt);
12662 struct separate_ops ops;
12663 ops.code = TRUNC_MOD_EXPR;
12664 ops.location = loc;
12665 ops.type = TREE_TYPE (treeop0);
12666 ops.op0 = treeop0;
12667 ops.op1 = treeop1;
12668 ops.op2 = NULL_TREE;
12669 start_sequence ();
12670 rtx mor = expand_expr_real_2 (&ops, NULL_RTX, TYPE_MODE (ops.type),
12671 EXPAND_NORMAL);
12672 rtx_insn *moinsns = get_insns ();
12673 end_sequence ();
12675 unsigned mocost = seq_cost (moinsns, speed_p);
12676 mocost += rtx_cost (mor, mode, EQ, 0, speed_p);
12677 mocost += rtx_cost (expand_normal (*arg1), mode, EQ, 1, speed_p);
12679 ops.code = BIT_AND_EXPR;
12680 ops.location = loc;
12681 ops.type = TREE_TYPE (treeop0);
12682 ops.op0 = treeop0;
12683 ops.op1 = c3;
12684 ops.op2 = NULL_TREE;
12685 start_sequence ();
12686 rtx mur = expand_expr_real_2 (&ops, NULL_RTX, TYPE_MODE (ops.type),
12687 EXPAND_NORMAL);
12688 rtx_insn *muinsns = get_insns ();
12689 end_sequence ();
12691 unsigned mucost = seq_cost (muinsns, speed_p);
12692 mucost += rtx_cost (mur, mode, EQ, 0, speed_p);
12693 mucost += rtx_cost (expand_normal (c4), mode, EQ, 1, speed_p);
12695 if (mocost <= mucost)
12697 emit_insn (moinsns);
12698 *arg0 = make_tree (TREE_TYPE (*arg0), mor);
12699 return code;
12702 emit_insn (muinsns);
12703 *arg0 = make_tree (TREE_TYPE (*arg0), mur);
12704 *arg1 = c4;
12705 return code;
12708 /* Attempt to optimize unsigned (X % C1) == C2 (or (X % C1) != C2).
12709 If C1 is odd to:
12710 (X - C2) * C3 <= C4 (or >), where
12711 C3 is modular multiplicative inverse of C1 and 1<<prec and
12712 C4 is ((1<<prec) - 1) / C1 or ((1<<prec) - 1) / C1 - 1 (the latter
12713 if C2 > ((1<<prec) - 1) % C1).
12714 If C1 is even, S = ctz (C1) and C2 is 0, use
12715 ((X * C3) r>> S) <= C4, where C3 is modular multiplicative
12716 inverse of C1>>S and 1<<prec and C4 is (((1<<prec) - 1) / (C1>>S)) >> S.
12718 For signed (X % C1) == 0 if C1 is odd to (all operations in it
12719 unsigned):
12720 (X * C3) + C4 <= 2 * C4, where
12721 C3 is modular multiplicative inverse of (unsigned) C1 and 1<<prec and
12722 C4 is ((1<<(prec - 1) - 1) / C1).
12723 If C1 is even, S = ctz(C1), use
12724 ((X * C3) + C4) r>> S <= (C4 >> (S - 1))
12725 where C3 is modular multiplicative inverse of (unsigned)(C1>>S) and 1<<prec
12726 and C4 is ((1<<(prec - 1) - 1) / (C1>>S)) & (-1<<S).
12728 See the Hacker's Delight book, section 10-17. */
12729 enum tree_code
12730 maybe_optimize_mod_cmp (enum tree_code code, tree *arg0, tree *arg1)
12732 gcc_checking_assert (code == EQ_EXPR || code == NE_EXPR);
12733 gcc_checking_assert (TREE_CODE (*arg1) == INTEGER_CST);
12735 if (optimize < 2)
12736 return code;
12738 gimple *stmt = get_def_for_expr (*arg0, TRUNC_MOD_EXPR);
12739 if (stmt == NULL)
12740 return code;
12742 tree treeop0 = gimple_assign_rhs1 (stmt);
12743 tree treeop1 = gimple_assign_rhs2 (stmt);
12744 if (TREE_CODE (treeop0) != SSA_NAME
12745 || TREE_CODE (treeop1) != INTEGER_CST
12746 /* Don't optimize the undefined behavior case x % 0;
12747 x % 1 should have been optimized into zero, punt if
12748 it makes it here for whatever reason;
12749 x % -c should have been optimized into x % c. */
12750 || compare_tree_int (treeop1, 2) <= 0
12751 /* Likewise x % c == d where d >= c should be always false. */
12752 || tree_int_cst_le (treeop1, *arg1))
12753 return code;
12755 /* Unsigned x % pow2 is handled right already, for signed
12756 modulo handle it in maybe_optimize_pow2p_mod_cmp. */
12757 if (integer_pow2p (treeop1))
12758 return maybe_optimize_pow2p_mod_cmp (code, arg0, arg1);
12760 tree type = TREE_TYPE (*arg0);
12761 scalar_int_mode mode;
12762 if (!is_a <scalar_int_mode> (TYPE_MODE (type), &mode))
12763 return code;
12764 if (GET_MODE_BITSIZE (mode) != TYPE_PRECISION (type)
12765 || TYPE_PRECISION (type) <= 1)
12766 return code;
12768 signop sgn = UNSIGNED;
12769 /* If both operands are known to have the sign bit clear, handle
12770 even the signed modulo case as unsigned. treeop1 is always
12771 positive >= 2, checked above. */
12772 if (!TYPE_UNSIGNED (type) && get_range_pos_neg (treeop0) != 1)
12773 sgn = SIGNED;
12775 if (!TYPE_UNSIGNED (type))
12777 if (tree_int_cst_sgn (*arg1) == -1)
12778 return code;
12779 type = unsigned_type_for (type);
12780 if (!type || TYPE_MODE (type) != TYPE_MODE (TREE_TYPE (*arg0)))
12781 return code;
12784 int prec = TYPE_PRECISION (type);
12785 wide_int w = wi::to_wide (treeop1);
12786 int shift = wi::ctz (w);
12787 /* Unsigned (X % C1) == C2 is equivalent to (X - C2) % C1 == 0 if
12788 C2 <= -1U % C1, because for any Z >= 0U - C2 in that case (Z % C1) != 0.
12789 If C1 is odd, we can handle all cases by subtracting
12790 C4 below. We could handle even the even C1 and C2 > -1U % C1 cases
12791 e.g. by testing for overflow on the subtraction, punt on that for now
12792 though. */
12793 if ((sgn == SIGNED || shift) && !integer_zerop (*arg1))
12795 if (sgn == SIGNED)
12796 return code;
12797 wide_int x = wi::umod_trunc (wi::mask (prec, false, prec), w);
12798 if (wi::gtu_p (wi::to_wide (*arg1), x))
12799 return code;
12802 imm_use_iterator imm_iter;
12803 use_operand_p use_p;
12804 FOR_EACH_IMM_USE_FAST (use_p, imm_iter, treeop0)
12806 gimple *use_stmt = USE_STMT (use_p);
12807 /* Punt if treeop0 is used in the same bb in a division
12808 or another modulo with the same divisor. We should expect
12809 the division and modulo combined together. */
12810 if (use_stmt == stmt
12811 || gimple_bb (use_stmt) != gimple_bb (stmt))
12812 continue;
12813 if (!is_gimple_assign (use_stmt)
12814 || (gimple_assign_rhs_code (use_stmt) != TRUNC_DIV_EXPR
12815 && gimple_assign_rhs_code (use_stmt) != TRUNC_MOD_EXPR))
12816 continue;
12817 if (gimple_assign_rhs1 (use_stmt) != treeop0
12818 || !operand_equal_p (gimple_assign_rhs2 (use_stmt), treeop1, 0))
12819 continue;
12820 return code;
12823 w = wi::lrshift (w, shift);
12824 wide_int a = wide_int::from (w, prec + 1, UNSIGNED);
12825 wide_int b = wi::shifted_mask (prec, 1, false, prec + 1);
12826 wide_int m = wide_int::from (wi::mod_inv (a, b), prec, UNSIGNED);
12827 tree c3 = wide_int_to_tree (type, m);
12828 tree c5 = NULL_TREE;
12829 wide_int d, e;
12830 if (sgn == UNSIGNED)
12832 d = wi::divmod_trunc (wi::mask (prec, false, prec), w, UNSIGNED, &e);
12833 /* Use <= floor ((1<<prec) - 1) / C1 only if C2 <= ((1<<prec) - 1) % C1,
12834 otherwise use < or subtract one from C4. E.g. for
12835 x % 3U == 0 we transform this into x * 0xaaaaaaab <= 0x55555555, but
12836 x % 3U == 1 already needs to be
12837 (x - 1) * 0xaaaaaaabU <= 0x55555554. */
12838 if (!shift && wi::gtu_p (wi::to_wide (*arg1), e))
12839 d -= 1;
12840 if (shift)
12841 d = wi::lrshift (d, shift);
12843 else
12845 e = wi::udiv_trunc (wi::mask (prec - 1, false, prec), w);
12846 if (!shift)
12847 d = wi::lshift (e, 1);
12848 else
12850 e = wi::bit_and (e, wi::mask (shift, true, prec));
12851 d = wi::lrshift (e, shift - 1);
12853 c5 = wide_int_to_tree (type, e);
12855 tree c4 = wide_int_to_tree (type, d);
12857 rtx op0 = expand_normal (treeop0);
12858 treeop0 = make_tree (TREE_TYPE (treeop0), op0);
12860 bool speed_p = optimize_insn_for_speed_p ();
12862 do_pending_stack_adjust ();
12864 location_t loc = gimple_location (stmt);
12865 struct separate_ops ops;
12866 ops.code = TRUNC_MOD_EXPR;
12867 ops.location = loc;
12868 ops.type = TREE_TYPE (treeop0);
12869 ops.op0 = treeop0;
12870 ops.op1 = treeop1;
12871 ops.op2 = NULL_TREE;
12872 start_sequence ();
12873 rtx mor = expand_expr_real_2 (&ops, NULL_RTX, TYPE_MODE (ops.type),
12874 EXPAND_NORMAL);
12875 rtx_insn *moinsns = get_insns ();
12876 end_sequence ();
12878 unsigned mocost = seq_cost (moinsns, speed_p);
12879 mocost += rtx_cost (mor, mode, EQ, 0, speed_p);
12880 mocost += rtx_cost (expand_normal (*arg1), mode, EQ, 1, speed_p);
12882 tree t = fold_convert_loc (loc, type, treeop0);
12883 if (!integer_zerop (*arg1))
12884 t = fold_build2_loc (loc, MINUS_EXPR, type, t, fold_convert (type, *arg1));
12885 t = fold_build2_loc (loc, MULT_EXPR, type, t, c3);
12886 if (sgn == SIGNED)
12887 t = fold_build2_loc (loc, PLUS_EXPR, type, t, c5);
12888 if (shift)
12890 tree s = build_int_cst (NULL_TREE, shift);
12891 t = fold_build2_loc (loc, RROTATE_EXPR, type, t, s);
12894 start_sequence ();
12895 rtx mur = expand_normal (t);
12896 rtx_insn *muinsns = get_insns ();
12897 end_sequence ();
12899 unsigned mucost = seq_cost (muinsns, speed_p);
12900 mucost += rtx_cost (mur, mode, LE, 0, speed_p);
12901 mucost += rtx_cost (expand_normal (c4), mode, LE, 1, speed_p);
12903 if (mocost <= mucost)
12905 emit_insn (moinsns);
12906 *arg0 = make_tree (TREE_TYPE (*arg0), mor);
12907 return code;
12910 emit_insn (muinsns);
12911 *arg0 = make_tree (type, mur);
12912 *arg1 = c4;
12913 return code == EQ_EXPR ? LE_EXPR : GT_EXPR;
12916 /* Optimize x - y < 0 into x < 0 if x - y has undefined overflow. */
12918 void
12919 maybe_optimize_sub_cmp_0 (enum tree_code code, tree *arg0, tree *arg1)
12921 gcc_checking_assert (code == GT_EXPR || code == GE_EXPR
12922 || code == LT_EXPR || code == LE_EXPR);
12923 gcc_checking_assert (integer_zerop (*arg1));
12925 if (!optimize)
12926 return;
12928 gimple *stmt = get_def_for_expr (*arg0, MINUS_EXPR);
12929 if (stmt == NULL)
12930 return;
12932 tree treeop0 = gimple_assign_rhs1 (stmt);
12933 tree treeop1 = gimple_assign_rhs2 (stmt);
12934 if (!TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (treeop0)))
12935 return;
12937 if (issue_strict_overflow_warning (WARN_STRICT_OVERFLOW_COMPARISON))
12938 warning_at (gimple_location (stmt), OPT_Wstrict_overflow,
12939 "assuming signed overflow does not occur when "
12940 "simplifying %<X - Y %s 0%> to %<X %s Y%>",
12941 op_symbol_code (code), op_symbol_code (code));
12943 *arg0 = treeop0;
12944 *arg1 = treeop1;
12948 /* Expand CODE with arguments INNER & (1<<BITNUM) and 0 that represents
12949 a single bit equality/inequality test, returns where the result is located. */
12951 static rtx
12952 expand_single_bit_test (location_t loc, enum tree_code code,
12953 tree inner, int bitnum,
12954 tree result_type, rtx target,
12955 machine_mode mode)
12957 gcc_assert (code == NE_EXPR || code == EQ_EXPR);
12959 tree type = TREE_TYPE (inner);
12960 scalar_int_mode operand_mode = SCALAR_INT_TYPE_MODE (type);
12961 int ops_unsigned;
12962 tree signed_type, unsigned_type, intermediate_type;
12963 gimple *inner_def;
12965 /* First, see if we can fold the single bit test into a sign-bit
12966 test. */
12967 if (bitnum == TYPE_PRECISION (type) - 1
12968 && type_has_mode_precision_p (type))
12970 tree stype = signed_type_for (type);
12971 tree tmp = fold_build2_loc (loc, code == EQ_EXPR ? GE_EXPR : LT_EXPR,
12972 result_type,
12973 fold_convert_loc (loc, stype, inner),
12974 build_int_cst (stype, 0));
12975 return expand_expr (tmp, target, VOIDmode, EXPAND_NORMAL);
12978 /* Otherwise we have (A & C) != 0 where C is a single bit,
12979 convert that into ((A >> C2) & 1). Where C2 = log2(C).
12980 Similarly for (A & C) == 0. */
12982 /* If INNER is a right shift of a constant and it plus BITNUM does
12983 not overflow, adjust BITNUM and INNER. */
12984 if ((inner_def = get_def_for_expr (inner, RSHIFT_EXPR))
12985 && TREE_CODE (gimple_assign_rhs2 (inner_def)) == INTEGER_CST
12986 && bitnum < TYPE_PRECISION (type)
12987 && wi::ltu_p (wi::to_wide (gimple_assign_rhs2 (inner_def)),
12988 TYPE_PRECISION (type) - bitnum))
12990 bitnum += tree_to_uhwi (gimple_assign_rhs2 (inner_def));
12991 inner = gimple_assign_rhs1 (inner_def);
12994 /* If we are going to be able to omit the AND below, we must do our
12995 operations as unsigned. If we must use the AND, we have a choice.
12996 Normally unsigned is faster, but for some machines signed is. */
12997 ops_unsigned = (load_extend_op (operand_mode) == SIGN_EXTEND
12998 && !flag_syntax_only) ? 0 : 1;
13000 signed_type = lang_hooks.types.type_for_mode (operand_mode, 0);
13001 unsigned_type = lang_hooks.types.type_for_mode (operand_mode, 1);
13002 intermediate_type = ops_unsigned ? unsigned_type : signed_type;
13003 inner = fold_convert_loc (loc, intermediate_type, inner);
13005 rtx inner0 = expand_expr (inner, NULL_RTX, VOIDmode, EXPAND_NORMAL);
13007 if (CONST_SCALAR_INT_P (inner0))
13009 wide_int t = rtx_mode_t (inner0, operand_mode);
13010 bool setp = (wi::lrshift (t, bitnum) & 1) != 0;
13011 return (setp ^ (code == EQ_EXPR)) ? const1_rtx : const0_rtx;
13013 int bitpos = bitnum;
13015 if (BYTES_BIG_ENDIAN)
13016 bitpos = GET_MODE_BITSIZE (operand_mode) - 1 - bitpos;
13018 inner0 = extract_bit_field (inner0, 1, bitpos, 1, target,
13019 operand_mode, mode, 0, NULL);
13021 if (code == EQ_EXPR)
13022 inner0 = expand_binop (GET_MODE (inner0), xor_optab, inner0, const1_rtx,
13023 NULL_RTX, 1, OPTAB_LIB_WIDEN);
13024 if (GET_MODE (inner0) != mode)
13026 rtx t = gen_reg_rtx (mode);
13027 convert_move (t, inner0, 0);
13028 return t;
13030 return inner0;
13033 /* Generate code to calculate OPS, and exploded expression
13034 using a store-flag instruction and return an rtx for the result.
13035 OPS reflects a comparison.
13037 If TARGET is nonzero, store the result there if convenient.
13039 Return zero if there is no suitable set-flag instruction
13040 available on this machine.
13042 Once expand_expr has been called on the arguments of the comparison,
13043 we are committed to doing the store flag, since it is not safe to
13044 re-evaluate the expression. We emit the store-flag insn by calling
13045 emit_store_flag, but only expand the arguments if we have a reason
13046 to believe that emit_store_flag will be successful. If we think that
13047 it will, but it isn't, we have to simulate the store-flag with a
13048 set/jump/set sequence. */
13050 static rtx
13051 do_store_flag (sepops ops, rtx target, machine_mode mode)
13053 enum rtx_code code;
13054 tree arg0, arg1, type;
13055 machine_mode operand_mode;
13056 int unsignedp;
13057 rtx op0, op1;
13058 rtx subtarget = target;
13059 location_t loc = ops->location;
13061 arg0 = ops->op0;
13062 arg1 = ops->op1;
13064 /* Don't crash if the comparison was erroneous. */
13065 if (arg0 == error_mark_node || arg1 == error_mark_node)
13066 return const0_rtx;
13068 type = TREE_TYPE (arg0);
13069 operand_mode = TYPE_MODE (type);
13070 unsignedp = TYPE_UNSIGNED (type);
13072 /* We won't bother with BLKmode store-flag operations because it would mean
13073 passing a lot of information to emit_store_flag. */
13074 if (operand_mode == BLKmode)
13075 return 0;
13077 /* We won't bother with store-flag operations involving function pointers
13078 when function pointers must be canonicalized before comparisons. */
13079 if (targetm.have_canonicalize_funcptr_for_compare ()
13080 && ((POINTER_TYPE_P (TREE_TYPE (arg0))
13081 && FUNC_OR_METHOD_TYPE_P (TREE_TYPE (TREE_TYPE (arg0))))
13082 || (POINTER_TYPE_P (TREE_TYPE (arg1))
13083 && FUNC_OR_METHOD_TYPE_P (TREE_TYPE (TREE_TYPE (arg1))))))
13084 return 0;
13086 STRIP_NOPS (arg0);
13087 STRIP_NOPS (arg1);
13089 /* For vector typed comparisons emit code to generate the desired
13090 all-ones or all-zeros mask. */
13091 if (VECTOR_TYPE_P (ops->type))
13093 tree ifexp = build2 (ops->code, ops->type, arg0, arg1);
13094 if (VECTOR_BOOLEAN_TYPE_P (ops->type)
13095 && expand_vec_cmp_expr_p (TREE_TYPE (arg0), ops->type, ops->code))
13096 return expand_vec_cmp_expr (ops->type, ifexp, target);
13097 else
13098 gcc_unreachable ();
13101 /* Optimize (x % C1) == C2 or (x % C1) != C2 if it is beneficial
13102 into (x - C2) * C3 < C4. */
13103 if ((ops->code == EQ_EXPR || ops->code == NE_EXPR)
13104 && TREE_CODE (arg0) == SSA_NAME
13105 && TREE_CODE (arg1) == INTEGER_CST)
13107 enum tree_code new_code = maybe_optimize_mod_cmp (ops->code,
13108 &arg0, &arg1);
13109 if (new_code != ops->code)
13111 struct separate_ops nops = *ops;
13112 nops.code = ops->code = new_code;
13113 nops.op0 = arg0;
13114 nops.op1 = arg1;
13115 nops.type = TREE_TYPE (arg0);
13116 return do_store_flag (&nops, target, mode);
13120 /* Optimize (x - y) < 0 into x < y if x - y has undefined overflow. */
13121 if (!unsignedp
13122 && (ops->code == LT_EXPR || ops->code == LE_EXPR
13123 || ops->code == GT_EXPR || ops->code == GE_EXPR)
13124 && integer_zerop (arg1)
13125 && TREE_CODE (arg0) == SSA_NAME)
13126 maybe_optimize_sub_cmp_0 (ops->code, &arg0, &arg1);
13128 /* Get the rtx comparison code to use. We know that EXP is a comparison
13129 operation of some type. Some comparisons against 1 and -1 can be
13130 converted to comparisons with zero. Do so here so that the tests
13131 below will be aware that we have a comparison with zero. These
13132 tests will not catch constants in the first operand, but constants
13133 are rarely passed as the first operand. */
13135 switch (ops->code)
13137 case EQ_EXPR:
13138 code = EQ;
13139 break;
13140 case NE_EXPR:
13141 code = NE;
13142 break;
13143 case LT_EXPR:
13144 if (integer_onep (arg1))
13145 arg1 = integer_zero_node, code = unsignedp ? LEU : LE;
13146 else
13147 code = unsignedp ? LTU : LT;
13148 break;
13149 case LE_EXPR:
13150 if (! unsignedp && integer_all_onesp (arg1))
13151 arg1 = integer_zero_node, code = LT;
13152 else
13153 code = unsignedp ? LEU : LE;
13154 break;
13155 case GT_EXPR:
13156 if (! unsignedp && integer_all_onesp (arg1))
13157 arg1 = integer_zero_node, code = GE;
13158 else
13159 code = unsignedp ? GTU : GT;
13160 break;
13161 case GE_EXPR:
13162 if (integer_onep (arg1))
13163 arg1 = integer_zero_node, code = unsignedp ? GTU : GT;
13164 else
13165 code = unsignedp ? GEU : GE;
13166 break;
13168 case UNORDERED_EXPR:
13169 code = UNORDERED;
13170 break;
13171 case ORDERED_EXPR:
13172 code = ORDERED;
13173 break;
13174 case UNLT_EXPR:
13175 code = UNLT;
13176 break;
13177 case UNLE_EXPR:
13178 code = UNLE;
13179 break;
13180 case UNGT_EXPR:
13181 code = UNGT;
13182 break;
13183 case UNGE_EXPR:
13184 code = UNGE;
13185 break;
13186 case UNEQ_EXPR:
13187 code = UNEQ;
13188 break;
13189 case LTGT_EXPR:
13190 code = LTGT;
13191 break;
13193 default:
13194 gcc_unreachable ();
13197 /* Put a constant second. */
13198 if (TREE_CODE (arg0) == REAL_CST || TREE_CODE (arg0) == INTEGER_CST
13199 || TREE_CODE (arg0) == FIXED_CST)
13201 std::swap (arg0, arg1);
13202 code = swap_condition (code);
13205 /* If this is an equality or inequality test of a single bit, we can
13206 do this by shifting the bit being tested to the low-order bit and
13207 masking the result with the constant 1. If the condition was EQ,
13208 we xor it with 1. This does not require an scc insn and is faster
13209 than an scc insn even if we have it. */
13211 if ((code == NE || code == EQ)
13212 && (integer_zerop (arg1)
13213 || integer_pow2p (arg1))
13214 && (TYPE_PRECISION (ops->type) != 1 || TYPE_UNSIGNED (ops->type)))
13216 wide_int nz = tree_nonzero_bits (arg0);
13217 gimple *srcstmt = get_def_for_expr (arg0, BIT_AND_EXPR);
13218 /* If the defining statement was (x & POW2), then use that instead of
13219 the non-zero bits. */
13220 if (srcstmt && integer_pow2p (gimple_assign_rhs2 (srcstmt)))
13222 nz = wi::to_wide (gimple_assign_rhs2 (srcstmt));
13223 arg0 = gimple_assign_rhs1 (srcstmt);
13226 if (wi::popcount (nz) == 1
13227 && (integer_zerop (arg1)
13228 || wi::to_wide (arg1) == nz))
13230 int bitnum = wi::exact_log2 (nz);
13231 enum tree_code tcode = EQ_EXPR;
13232 if ((code == NE) ^ !integer_zerop (arg1))
13233 tcode = NE_EXPR;
13235 type = lang_hooks.types.type_for_mode (mode, unsignedp);
13236 return expand_single_bit_test (loc, tcode,
13237 arg0,
13238 bitnum, type, target, mode);
13243 if (! get_subtarget (target)
13244 || GET_MODE (subtarget) != operand_mode)
13245 subtarget = 0;
13247 expand_operands (arg0, arg1, subtarget, &op0, &op1, EXPAND_NORMAL);
13249 if (target == 0)
13250 target = gen_reg_rtx (mode);
13252 /* Try a cstore if possible. */
13253 return emit_store_flag_force (target, code, op0, op1,
13254 operand_mode, unsignedp,
13255 (TYPE_PRECISION (ops->type) == 1
13256 && !TYPE_UNSIGNED (ops->type)) ? -1 : 1);
13259 /* Attempt to generate a casesi instruction. Returns true if successful,
13260 false otherwise (i.e. if there is no casesi instruction).
13262 DEFAULT_PROBABILITY is the probability of jumping to the default
13263 label. */
13264 bool
13265 try_casesi (tree index_type, tree index_expr, tree minval, tree range,
13266 rtx table_label, rtx default_label, rtx fallback_label,
13267 profile_probability default_probability)
13269 class expand_operand ops[5];
13270 scalar_int_mode index_mode = SImode;
13271 rtx op1, op2, index;
13273 if (! targetm.have_casesi ())
13274 return false;
13276 /* The index must be some form of integer. Convert it to SImode. */
13277 scalar_int_mode omode = SCALAR_INT_TYPE_MODE (index_type);
13278 if (GET_MODE_BITSIZE (omode) > GET_MODE_BITSIZE (index_mode))
13280 rtx rangertx = expand_normal (range);
13282 /* We must handle the endpoints in the original mode. */
13283 index_expr = build2 (MINUS_EXPR, index_type,
13284 index_expr, minval);
13285 minval = integer_zero_node;
13286 index = expand_normal (index_expr);
13287 if (default_label)
13288 emit_cmp_and_jump_insns (rangertx, index, LTU, NULL_RTX,
13289 omode, 1, default_label,
13290 default_probability);
13291 /* Now we can safely truncate. */
13292 index = convert_to_mode (index_mode, index, 0);
13294 else
13296 if (omode != index_mode)
13298 index_type = lang_hooks.types.type_for_mode (index_mode, 0);
13299 index_expr = fold_convert (index_type, index_expr);
13302 index = expand_normal (index_expr);
13305 do_pending_stack_adjust ();
13307 op1 = expand_normal (minval);
13308 op2 = expand_normal (range);
13310 create_input_operand (&ops[0], index, index_mode);
13311 create_convert_operand_from_type (&ops[1], op1, TREE_TYPE (minval));
13312 create_convert_operand_from_type (&ops[2], op2, TREE_TYPE (range));
13313 create_fixed_operand (&ops[3], table_label);
13314 create_fixed_operand (&ops[4], (default_label
13315 ? default_label
13316 : fallback_label));
13317 expand_jump_insn (targetm.code_for_casesi, 5, ops);
13318 return true;
13321 /* Attempt to generate a tablejump instruction; same concept. */
13322 /* Subroutine of the next function.
13324 INDEX is the value being switched on, with the lowest value
13325 in the table already subtracted.
13326 MODE is its expected mode (needed if INDEX is constant).
13327 RANGE is the length of the jump table.
13328 TABLE_LABEL is a CODE_LABEL rtx for the table itself.
13330 DEFAULT_LABEL is a CODE_LABEL rtx to jump to if the
13331 index value is out of range.
13332 DEFAULT_PROBABILITY is the probability of jumping to
13333 the default label. */
13335 static void
13336 do_tablejump (rtx index, machine_mode mode, rtx range, rtx table_label,
13337 rtx default_label, profile_probability default_probability)
13339 rtx temp, vector;
13341 if (INTVAL (range) > cfun->cfg->max_jumptable_ents)
13342 cfun->cfg->max_jumptable_ents = INTVAL (range);
13344 /* Do an unsigned comparison (in the proper mode) between the index
13345 expression and the value which represents the length of the range.
13346 Since we just finished subtracting the lower bound of the range
13347 from the index expression, this comparison allows us to simultaneously
13348 check that the original index expression value is both greater than
13349 or equal to the minimum value of the range and less than or equal to
13350 the maximum value of the range. */
13352 if (default_label)
13353 emit_cmp_and_jump_insns (index, range, GTU, NULL_RTX, mode, 1,
13354 default_label, default_probability);
13356 /* If index is in range, it must fit in Pmode.
13357 Convert to Pmode so we can index with it. */
13358 if (mode != Pmode)
13360 unsigned int width;
13362 /* We know the value of INDEX is between 0 and RANGE. If we have a
13363 sign-extended subreg, and RANGE does not have the sign bit set, then
13364 we have a value that is valid for both sign and zero extension. In
13365 this case, we get better code if we sign extend. */
13366 if (GET_CODE (index) == SUBREG
13367 && SUBREG_PROMOTED_VAR_P (index)
13368 && SUBREG_PROMOTED_SIGNED_P (index)
13369 && ((width = GET_MODE_PRECISION (as_a <scalar_int_mode> (mode)))
13370 <= HOST_BITS_PER_WIDE_INT)
13371 && ! (UINTVAL (range) & (HOST_WIDE_INT_1U << (width - 1))))
13372 index = convert_to_mode (Pmode, index, 0);
13373 else
13374 index = convert_to_mode (Pmode, index, 1);
13377 /* Don't let a MEM slip through, because then INDEX that comes
13378 out of PIC_CASE_VECTOR_ADDRESS won't be a valid address,
13379 and break_out_memory_refs will go to work on it and mess it up. */
13380 #ifdef PIC_CASE_VECTOR_ADDRESS
13381 if (flag_pic && !REG_P (index))
13382 index = copy_to_mode_reg (Pmode, index);
13383 #endif
13385 /* ??? The only correct use of CASE_VECTOR_MODE is the one inside the
13386 GET_MODE_SIZE, because this indicates how large insns are. The other
13387 uses should all be Pmode, because they are addresses. This code
13388 could fail if addresses and insns are not the same size. */
13389 index = simplify_gen_binary (MULT, Pmode, index,
13390 gen_int_mode (GET_MODE_SIZE (CASE_VECTOR_MODE),
13391 Pmode));
13392 index = simplify_gen_binary (PLUS, Pmode, index,
13393 gen_rtx_LABEL_REF (Pmode, table_label));
13395 #ifdef PIC_CASE_VECTOR_ADDRESS
13396 if (flag_pic)
13397 index = PIC_CASE_VECTOR_ADDRESS (index);
13398 else
13399 #endif
13400 index = memory_address (CASE_VECTOR_MODE, index);
13401 temp = gen_reg_rtx (CASE_VECTOR_MODE);
13402 vector = gen_const_mem (CASE_VECTOR_MODE, index);
13403 convert_move (temp, vector, 0);
13405 emit_jump_insn (targetm.gen_tablejump (temp, table_label));
13407 /* If we are generating PIC code or if the table is PC-relative, the
13408 table and JUMP_INSN must be adjacent, so don't output a BARRIER. */
13409 if (! CASE_VECTOR_PC_RELATIVE && ! flag_pic)
13410 emit_barrier ();
13413 bool
13414 try_tablejump (tree index_type, tree index_expr, tree minval, tree range,
13415 rtx table_label, rtx default_label,
13416 profile_probability default_probability)
13418 rtx index;
13420 if (! targetm.have_tablejump ())
13421 return false;
13423 index_expr = fold_build2 (MINUS_EXPR, index_type,
13424 fold_convert (index_type, index_expr),
13425 fold_convert (index_type, minval));
13426 index = expand_normal (index_expr);
13427 do_pending_stack_adjust ();
13429 do_tablejump (index, TYPE_MODE (index_type),
13430 convert_modes (TYPE_MODE (index_type),
13431 TYPE_MODE (TREE_TYPE (range)),
13432 expand_normal (range),
13433 TYPE_UNSIGNED (TREE_TYPE (range))),
13434 table_label, default_label, default_probability);
13435 return true;
13438 /* Return a CONST_VECTOR rtx representing vector mask for
13439 a VECTOR_CST of booleans. */
13440 static rtx
13441 const_vector_mask_from_tree (tree exp)
13443 machine_mode mode = TYPE_MODE (TREE_TYPE (exp));
13444 machine_mode inner = GET_MODE_INNER (mode);
13446 rtx_vector_builder builder (mode, VECTOR_CST_NPATTERNS (exp),
13447 VECTOR_CST_NELTS_PER_PATTERN (exp));
13448 unsigned int count = builder.encoded_nelts ();
13449 for (unsigned int i = 0; i < count; ++i)
13451 tree elt = VECTOR_CST_ELT (exp, i);
13452 gcc_assert (TREE_CODE (elt) == INTEGER_CST);
13453 if (integer_zerop (elt))
13454 builder.quick_push (CONST0_RTX (inner));
13455 else if (integer_onep (elt)
13456 || integer_minus_onep (elt))
13457 builder.quick_push (CONSTM1_RTX (inner));
13458 else
13459 gcc_unreachable ();
13461 return builder.build ();
13464 /* Return a CONST_VECTOR rtx for a VECTOR_CST tree. */
13465 static rtx
13466 const_vector_from_tree (tree exp)
13468 machine_mode mode = TYPE_MODE (TREE_TYPE (exp));
13470 if (initializer_zerop (exp))
13471 return CONST0_RTX (mode);
13473 if (VECTOR_BOOLEAN_TYPE_P (TREE_TYPE (exp)))
13474 return const_vector_mask_from_tree (exp);
13476 machine_mode inner = GET_MODE_INNER (mode);
13478 rtx_vector_builder builder (mode, VECTOR_CST_NPATTERNS (exp),
13479 VECTOR_CST_NELTS_PER_PATTERN (exp));
13480 unsigned int count = builder.encoded_nelts ();
13481 for (unsigned int i = 0; i < count; ++i)
13483 tree elt = VECTOR_CST_ELT (exp, i);
13484 if (TREE_CODE (elt) == REAL_CST)
13485 builder.quick_push (const_double_from_real_value (TREE_REAL_CST (elt),
13486 inner));
13487 else if (TREE_CODE (elt) == FIXED_CST)
13488 builder.quick_push (CONST_FIXED_FROM_FIXED_VALUE (TREE_FIXED_CST (elt),
13489 inner));
13490 else
13491 builder.quick_push (immed_wide_int_const (wi::to_poly_wide (elt),
13492 inner));
13494 return builder.build ();
13497 /* Build a decl for a personality function given a language prefix. */
13499 tree
13500 build_personality_function (const char *lang)
13502 const char *unwind_and_version;
13503 tree decl, type;
13504 char *name;
13506 switch (targetm_common.except_unwind_info (&global_options))
13508 case UI_NONE:
13509 return NULL;
13510 case UI_SJLJ:
13511 unwind_and_version = "_sj0";
13512 break;
13513 case UI_DWARF2:
13514 case UI_TARGET:
13515 unwind_and_version = "_v0";
13516 break;
13517 case UI_SEH:
13518 unwind_and_version = "_seh0";
13519 break;
13520 default:
13521 gcc_unreachable ();
13524 name = ACONCAT (("__", lang, "_personality", unwind_and_version, NULL));
13526 type = build_function_type_list (unsigned_type_node,
13527 integer_type_node, integer_type_node,
13528 long_long_unsigned_type_node,
13529 ptr_type_node, ptr_type_node, NULL_TREE);
13530 decl = build_decl (UNKNOWN_LOCATION, FUNCTION_DECL,
13531 get_identifier (name), type);
13532 DECL_ARTIFICIAL (decl) = 1;
13533 DECL_EXTERNAL (decl) = 1;
13534 TREE_PUBLIC (decl) = 1;
13536 /* Zap the nonsensical SYMBOL_REF_DECL for this. What we're left with
13537 are the flags assigned by targetm.encode_section_info. */
13538 SET_SYMBOL_REF_DECL (XEXP (DECL_RTL (decl), 0), NULL);
13540 return decl;
13543 /* Extracts the personality function of DECL and returns the corresponding
13544 libfunc. */
13547 get_personality_function (tree decl)
13549 tree personality = DECL_FUNCTION_PERSONALITY (decl);
13550 enum eh_personality_kind pk;
13552 pk = function_needs_eh_personality (DECL_STRUCT_FUNCTION (decl));
13553 if (pk == eh_personality_none)
13554 return NULL;
13556 if (!personality
13557 && pk == eh_personality_any)
13558 personality = lang_hooks.eh_personality ();
13560 if (pk == eh_personality_lang)
13561 gcc_assert (personality != NULL_TREE);
13563 return XEXP (DECL_RTL (personality), 0);
13566 /* Returns a tree for the size of EXP in bytes. */
13568 static tree
13569 tree_expr_size (const_tree exp)
13571 if (DECL_P (exp)
13572 && DECL_SIZE_UNIT (exp) != 0)
13573 return DECL_SIZE_UNIT (exp);
13574 else
13575 return size_in_bytes (TREE_TYPE (exp));
13578 /* Return an rtx for the size in bytes of the value of EXP. */
13581 expr_size (tree exp)
13583 tree size;
13585 if (TREE_CODE (exp) == WITH_SIZE_EXPR)
13586 size = TREE_OPERAND (exp, 1);
13587 else
13589 size = tree_expr_size (exp);
13590 gcc_assert (size);
13591 gcc_assert (size == SUBSTITUTE_PLACEHOLDER_IN_EXPR (size, exp));
13594 return expand_expr (size, NULL_RTX, TYPE_MODE (sizetype), EXPAND_NORMAL);
13597 /* Return a wide integer for the size in bytes of the value of EXP, or -1
13598 if the size can vary or is larger than an integer. */
13600 HOST_WIDE_INT
13601 int_expr_size (const_tree exp)
13603 tree size;
13605 if (TREE_CODE (exp) == WITH_SIZE_EXPR)
13606 size = TREE_OPERAND (exp, 1);
13607 else
13609 size = tree_expr_size (exp);
13610 gcc_assert (size);
13613 if (size == 0 || !tree_fits_shwi_p (size))
13614 return -1;
13616 return tree_to_shwi (size);