* lib/target-supports.exp (check_effective_target_size32plus):
[official-gcc.git] / gcc / testsuite / lib / target-supports.exp
blob92c30926897d6ccad2b16f4ec593bfce5caab0e0
1 # Copyright (C) 1999-2014 Free Software Foundation, Inc.
3 # This program is free software; you can redistribute it and/or modify
4 # it under the terms of the GNU General Public License as published by
5 # the Free Software Foundation; either version 3 of the License, or
6 # (at your option) any later version.
8 # This program is distributed in the hope that it will be useful,
9 # but WITHOUT ANY WARRANTY; without even the implied warranty of
10 # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
11 # GNU General Public License for more details.
13 # You should have received a copy of the GNU General Public License
14 # along with GCC; see the file COPYING3. If not see
15 # <http://www.gnu.org/licenses/>.
17 # Please email any bugs, comments, and/or additions to this file to:
18 # gcc-patches@gcc.gnu.org
20 # This file defines procs for determining features supported by the target.
22 # Try to compile the code given by CONTENTS into an output file of
23 # type TYPE, where TYPE is as for target_compile. Return a list
24 # whose first element contains the compiler messages and whose
25 # second element is the name of the output file.
27 # BASENAME is a prefix to use for source and output files.
28 # If ARGS is not empty, its first element is a string that
29 # should be added to the command line.
31 # Assume by default that CONTENTS is C code.
32 # Otherwise, code should contain:
33 # "// C++" for c++,
34 # "! Fortran" for Fortran code,
35 # "/* ObjC", for ObjC
36 # "// ObjC++" for ObjC++
37 # and "// Go" for Go
38 # If the tool is ObjC/ObjC++ then we overide the extension to .m/.mm to
39 # allow for ObjC/ObjC++ specific flags.
40 proc check_compile {basename type contents args} {
41 global tool
42 verbose "check_compile tool: $tool for $basename"
44 if { [llength $args] > 0 } {
45 set options [list "additional_flags=[lindex $args 0]"]
46 } else {
47 set options ""
49 switch -glob -- $contents {
50 "*! Fortran*" { set src ${basename}[pid].f90 }
51 "*// C++*" { set src ${basename}[pid].cc }
52 "*// ObjC++*" { set src ${basename}[pid].mm }
53 "*/* ObjC*" { set src ${basename}[pid].m }
54 "*// Go*" { set src ${basename}[pid].go }
55 default {
56 switch -- $tool {
57 "objc" { set src ${basename}[pid].m }
58 "obj-c++" { set src ${basename}[pid].mm }
59 default { set src ${basename}[pid].c }
64 set compile_type $type
65 switch -glob $type {
66 assembly { set output ${basename}[pid].s }
67 object { set output ${basename}[pid].o }
68 executable { set output ${basename}[pid].exe }
69 "rtl-*" {
70 set output ${basename}[pid].s
71 lappend options "additional_flags=-fdump-$type"
72 set compile_type assembly
75 set f [open $src "w"]
76 puts $f $contents
77 close $f
78 set lines [${tool}_target_compile $src $output $compile_type "$options"]
79 file delete $src
81 set scan_output $output
82 # Don't try folding this into the switch above; calling "glob" before the
83 # file is created won't work.
84 if [regexp "rtl-(.*)" $type dummy rtl_type] {
85 set scan_output "[glob $src.\[0-9\]\[0-9\]\[0-9\]r.$rtl_type]"
86 file delete $output
89 return [list $lines $scan_output]
92 proc current_target_name { } {
93 global target_info
94 if [info exists target_info(target,name)] {
95 set answer $target_info(target,name)
96 } else {
97 set answer ""
99 return $answer
102 # Implement an effective-target check for property PROP by invoking
103 # the Tcl command ARGS and seeing if it returns true.
105 proc check_cached_effective_target { prop args } {
106 global et_cache
108 set target [current_target_name]
109 if {![info exists et_cache($prop,target)]
110 || $et_cache($prop,target) != $target} {
111 verbose "check_cached_effective_target $prop: checking $target" 2
112 set et_cache($prop,target) $target
113 set et_cache($prop,value) [uplevel eval $args]
115 set value $et_cache($prop,value)
116 verbose "check_cached_effective_target $prop: returning $value for $target" 2
117 return $value
120 # Like check_compile, but delete the output file and return true if the
121 # compiler printed no messages.
122 proc check_no_compiler_messages_nocache {args} {
123 set result [eval check_compile $args]
124 set lines [lindex $result 0]
125 set output [lindex $result 1]
126 remote_file build delete $output
127 return [string match "" $lines]
130 # Like check_no_compiler_messages_nocache, but cache the result.
131 # PROP is the property we're checking, and doubles as a prefix for
132 # temporary filenames.
133 proc check_no_compiler_messages {prop args} {
134 return [check_cached_effective_target $prop {
135 eval [list check_no_compiler_messages_nocache $prop] $args
139 # Like check_compile, but return true if the compiler printed no
140 # messages and if the contents of the output file satisfy PATTERN.
141 # If PATTERN has the form "!REGEXP", the contents satisfy it if they
142 # don't match regular expression REGEXP, otherwise they satisfy it
143 # if they do match regular expression PATTERN. (PATTERN can start
144 # with something like "[!]" if the regular expression needs to match
145 # "!" as the first character.)
147 # Delete the output file before returning. The other arguments are
148 # as for check_compile.
149 proc check_no_messages_and_pattern_nocache {basename pattern args} {
150 global tool
152 set result [eval [list check_compile $basename] $args]
153 set lines [lindex $result 0]
154 set output [lindex $result 1]
156 set ok 0
157 if { [string match "" $lines] } {
158 set chan [open "$output"]
159 set invert [regexp {^!(.*)} $pattern dummy pattern]
160 set ok [expr { [regexp $pattern [read $chan]] != $invert }]
161 close $chan
164 remote_file build delete $output
165 return $ok
168 # Like check_no_messages_and_pattern_nocache, but cache the result.
169 # PROP is the property we're checking, and doubles as a prefix for
170 # temporary filenames.
171 proc check_no_messages_and_pattern {prop pattern args} {
172 return [check_cached_effective_target $prop {
173 eval [list check_no_messages_and_pattern_nocache $prop $pattern] $args
177 # Try to compile and run an executable from code CONTENTS. Return true
178 # if the compiler reports no messages and if execution "passes" in the
179 # usual DejaGNU sense. The arguments are as for check_compile, with
180 # TYPE implicitly being "executable".
181 proc check_runtime_nocache {basename contents args} {
182 global tool
184 set result [eval [list check_compile $basename executable $contents] $args]
185 set lines [lindex $result 0]
186 set output [lindex $result 1]
188 set ok 0
189 if { [string match "" $lines] } {
190 # No error messages, everything is OK.
191 set result [remote_load target "./$output" "" ""]
192 set status [lindex $result 0]
193 verbose "check_runtime_nocache $basename: status is <$status>" 2
194 if { $status == "pass" } {
195 set ok 1
198 remote_file build delete $output
199 return $ok
202 # Like check_runtime_nocache, but cache the result. PROP is the
203 # property we're checking, and doubles as a prefix for temporary
204 # filenames.
205 proc check_runtime {prop args} {
206 global tool
208 return [check_cached_effective_target $prop {
209 eval [list check_runtime_nocache $prop] $args
213 ###############################
214 # proc check_weak_available { }
215 ###############################
217 # weak symbols are only supported in some configs/object formats
218 # this proc returns 1 if they're supported, 0 if they're not, or -1 if unsure
220 proc check_weak_available { } {
221 global target_cpu
223 # All mips targets should support it
225 if { [ string first "mips" $target_cpu ] >= 0 } {
226 return 1
229 # All AIX targets should support it
231 if { [istarget *-*-aix*] } {
232 return 1
235 # All solaris2 targets should support it
237 if { [istarget *-*-solaris2*] } {
238 return 1
241 # Windows targets Cygwin and MingW32 support it
243 if { [istarget *-*-cygwin*] || [istarget *-*-mingw*] } {
244 return 1
247 # HP-UX 10.X doesn't support it
249 if { [istarget hppa*-*-hpux10*] } {
250 return 0
253 # ELF and ECOFF support it. a.out does with gas/gld but may also with
254 # other linkers, so we should try it
256 set objformat [gcc_target_object_format]
258 switch $objformat {
259 elf { return 1 }
260 ecoff { return 1 }
261 a.out { return 1 }
262 mach-o { return 1 }
263 som { return 1 }
264 unknown { return -1 }
265 default { return 0 }
269 ###############################
270 # proc check_weak_override_available { }
271 ###############################
273 # Like check_weak_available, but return 0 if weak symbol definitions
274 # cannot be overridden.
276 proc check_weak_override_available { } {
277 if { [istarget *-*-mingw*] } {
278 return 0
280 return [check_weak_available]
283 ###############################
284 # proc check_visibility_available { what_kind }
285 ###############################
287 # The visibility attribute is only support in some object formats
288 # This proc returns 1 if it is supported, 0 if not.
289 # The argument is the kind of visibility, default/protected/hidden/internal.
291 proc check_visibility_available { what_kind } {
292 if [string match "" $what_kind] { set what_kind "hidden" }
294 return [check_no_compiler_messages visibility_available_$what_kind object "
295 void f() __attribute__((visibility(\"$what_kind\")));
296 void f() {}
300 ###############################
301 # proc check_alias_available { }
302 ###############################
304 # Determine if the target toolchain supports the alias attribute.
306 # Returns 2 if the target supports aliases. Returns 1 if the target
307 # only supports weak aliased. Returns 0 if the target does not
308 # support aliases at all. Returns -1 if support for aliases could not
309 # be determined.
311 proc check_alias_available { } {
312 global alias_available_saved
313 global tool
315 if [info exists alias_available_saved] {
316 verbose "check_alias_available returning saved $alias_available_saved" 2
317 } else {
318 set src alias[pid].c
319 set obj alias[pid].o
320 verbose "check_alias_available compiling testfile $src" 2
321 set f [open $src "w"]
322 # Compile a small test program. The definition of "g" is
323 # necessary to keep the Solaris assembler from complaining
324 # about the program.
325 puts $f "#ifdef __cplusplus\nextern \"C\"\n#endif\n"
326 puts $f "void g() {} void f() __attribute__((alias(\"g\")));"
327 close $f
328 set lines [${tool}_target_compile $src $obj object ""]
329 file delete $src
330 remote_file build delete $obj
332 if [string match "" $lines] then {
333 # No error messages, everything is OK.
334 set alias_available_saved 2
335 } else {
336 if [regexp "alias definitions not supported" $lines] {
337 verbose "check_alias_available target does not support aliases" 2
339 set objformat [gcc_target_object_format]
341 if { $objformat == "elf" } {
342 verbose "check_alias_available but target uses ELF format, so it ought to" 2
343 set alias_available_saved -1
344 } else {
345 set alias_available_saved 0
347 } else {
348 if [regexp "only weak aliases are supported" $lines] {
349 verbose "check_alias_available target supports only weak aliases" 2
350 set alias_available_saved 1
351 } else {
352 set alias_available_saved -1
357 verbose "check_alias_available returning $alias_available_saved" 2
360 return $alias_available_saved
363 # Returns 1 if the target toolchain supports strong aliases, 0 otherwise.
365 proc check_effective_target_alias { } {
366 if { [check_alias_available] < 2 } {
367 return 0
368 } else {
369 return 1
373 # Returns 1 if the target toolchain supports ifunc, 0 otherwise.
375 proc check_ifunc_available { } {
376 return [check_no_compiler_messages ifunc_available object {
377 #ifdef __cplusplus
378 extern "C"
379 #endif
380 void g() {}
381 void f() __attribute__((ifunc("g")));
385 # Returns true if --gc-sections is supported on the target.
387 proc check_gc_sections_available { } {
388 global gc_sections_available_saved
389 global tool
391 if {![info exists gc_sections_available_saved]} {
392 # Some targets don't support gc-sections despite whatever's
393 # advertised by ld's options.
394 if { [istarget alpha*-*-*]
395 || [istarget ia64-*-*] } {
396 set gc_sections_available_saved 0
397 return 0
400 # elf2flt uses -q (--emit-relocs), which is incompatible with
401 # --gc-sections.
402 if { [board_info target exists ldflags]
403 && [regexp " -elf2flt\[ =\]" " [board_info target ldflags] "] } {
404 set gc_sections_available_saved 0
405 return 0
408 # VxWorks kernel modules are relocatable objects linked with -r,
409 # while RTP executables are linked with -q (--emit-relocs).
410 # Both of these options are incompatible with --gc-sections.
411 if { [istarget *-*-vxworks*] } {
412 set gc_sections_available_saved 0
413 return 0
416 # Check if the ld used by gcc supports --gc-sections.
417 set gcc_spec [${tool}_target_compile "-dumpspecs" "" "none" ""]
418 regsub ".*\n\\*linker:\[ \t\]*\n(\[^ \t\n\]*).*" "$gcc_spec" {\1} linker
419 set gcc_ld [lindex [${tool}_target_compile "-print-prog-name=$linker" "" "none" ""] 0]
420 set ld_output [remote_exec host "$gcc_ld" "--help"]
421 if { [ string first "--gc-sections" $ld_output ] >= 0 } {
422 set gc_sections_available_saved 1
423 } else {
424 set gc_sections_available_saved 0
427 return $gc_sections_available_saved
430 # Return 1 if according to target_info struct and explicit target list
431 # target is supposed to support trampolines.
433 proc check_effective_target_trampolines { } {
434 if [target_info exists no_trampolines] {
435 return 0
437 if { [istarget avr-*-*]
438 || [istarget msp430-*-*]
439 || [istarget hppa2.0w-hp-hpux11.23]
440 || [istarget hppa64-hp-hpux11.23] } {
441 return 0;
443 return 1
446 # Return 1 if according to target_info struct and explicit target list
447 # target is supposed to keep null pointer checks. This could be due to
448 # use of option fno-delete-null-pointer-checks or hardwired in target.
450 proc check_effective_target_keeps_null_pointer_checks { } {
451 if [target_info exists keeps_null_pointer_checks] {
452 return 1
454 if { [istarget avr-*-*] } {
455 return 1;
457 return 0
460 # Return true if profiling is supported on the target.
462 proc check_profiling_available { test_what } {
463 global profiling_available_saved
465 verbose "Profiling argument is <$test_what>" 1
467 # These conditions depend on the argument so examine them before
468 # looking at the cache variable.
470 # Tree profiling requires TLS runtime support.
471 if { $test_what == "-fprofile-generate" } {
472 if { ![check_effective_target_tls_runtime] } {
473 return 0
477 # Support for -p on solaris2 relies on mcrt1.o which comes with the
478 # vendor compiler. We cannot reliably predict the directory where the
479 # vendor compiler (and thus mcrt1.o) is installed so we can't
480 # necessarily find mcrt1.o even if we have it.
481 if { [istarget *-*-solaris2*] && $test_what == "-p" } {
482 return 0
485 # We don't yet support profiling for MIPS16.
486 if { [istarget mips*-*-*]
487 && ![check_effective_target_nomips16]
488 && ($test_what == "-p" || $test_what == "-pg") } {
489 return 0
492 # MinGW does not support -p.
493 if { [istarget *-*-mingw*] && $test_what == "-p" } {
494 return 0
497 # cygwin does not support -p.
498 if { [istarget *-*-cygwin*] && $test_what == "-p" } {
499 return 0
502 # uClibc does not have gcrt1.o.
503 if { [check_effective_target_uclibc]
504 && ($test_what == "-p" || $test_what == "-pg") } {
505 return 0
508 # Now examine the cache variable.
509 if {![info exists profiling_available_saved]} {
510 # Some targets don't have any implementation of __bb_init_func or are
511 # missing other needed machinery.
512 if { [istarget aarch64*-*-elf]
513 || [istarget am3*-*-linux*]
514 || [istarget arm*-*-eabi*]
515 || [istarget arm*-*-elf]
516 || [istarget arm*-*-symbianelf*]
517 || [istarget avr-*-*]
518 || [istarget bfin-*-*]
519 || [istarget cris-*-*]
520 || [istarget crisv32-*-*]
521 || [istarget fido-*-elf]
522 || [istarget h8300-*-*]
523 || [istarget lm32-*-*]
524 || [istarget m32c-*-elf]
525 || [istarget m68k-*-elf]
526 || [istarget m68k-*-uclinux*]
527 || [istarget mep-*-elf]
528 || [istarget mips*-*-elf*]
529 || [istarget mmix-*-*]
530 || [istarget mn10300-*-elf*]
531 || [istarget moxie-*-elf*]
532 || [istarget msp430-*-*]
533 || [istarget nds32*-*-elf]
534 || [istarget nios2-*-elf]
535 || [istarget picochip-*-*]
536 || [istarget powerpc-*-eabi*]
537 || [istarget powerpc-*-elf]
538 || [istarget rx-*-*]
539 || [istarget tic6x-*-elf]
540 || [istarget xstormy16-*]
541 || [istarget xtensa*-*-elf]
542 || [istarget *-*-rtems*]
543 || [istarget *-*-vxworks*] } {
544 set profiling_available_saved 0
545 } else {
546 set profiling_available_saved 1
550 return $profiling_available_saved
553 # Check to see if a target is "freestanding". This is as per the definition
554 # in Section 4 of C99 standard. Effectively, it is a target which supports no
555 # extra headers or libraries other than what is considered essential.
556 proc check_effective_target_freestanding { } {
557 if { [istarget picochip-*-*] } then {
558 return 1
559 } else {
560 return 0
564 # Return 1 if target has packed layout of structure members by
565 # default, 0 otherwise. Note that this is slightly different than
566 # whether the target has "natural alignment": both attributes may be
567 # false.
569 proc check_effective_target_default_packed { } {
570 return [check_no_compiler_messages default_packed assembly {
571 struct x { char a; long b; } c;
572 int s[sizeof (c) == sizeof (char) + sizeof (long) ? 1 : -1];
576 # Return 1 if target has PCC_BITFIELD_TYPE_MATTERS defined. See
577 # documentation, where the test also comes from.
579 proc check_effective_target_pcc_bitfield_type_matters { } {
580 # PCC_BITFIELD_TYPE_MATTERS isn't just about unnamed or empty
581 # bitfields, but let's stick to the example code from the docs.
582 return [check_no_compiler_messages pcc_bitfield_type_matters assembly {
583 struct foo1 { char x; char :0; char y; };
584 struct foo2 { char x; int :0; char y; };
585 int s[sizeof (struct foo1) != sizeof (struct foo2) ? 1 : -1];
589 # Add to FLAGS all the target-specific flags needed to use thread-local storage.
591 proc add_options_for_tls { flags } {
592 # On Solaris 9, __tls_get_addr/___tls_get_addr only lives in
593 # libthread, so always pass -pthread for native TLS. Same for AIX.
594 # Need to duplicate native TLS check from
595 # check_effective_target_tls_native to avoid recursion.
596 if { ([istarget powerpc-ibm-aix*]) &&
597 [check_no_messages_and_pattern tls_native "!emutls" assembly {
598 __thread int i;
599 int f (void) { return i; }
600 void g (int j) { i = j; }
601 }] } {
602 return "$flags -pthread"
604 return $flags
607 # Return 1 if thread local storage (TLS) is supported, 0 otherwise.
609 proc check_effective_target_tls {} {
610 return [check_no_compiler_messages tls assembly {
611 __thread int i;
612 int f (void) { return i; }
613 void g (int j) { i = j; }
617 # Return 1 if *native* thread local storage (TLS) is supported, 0 otherwise.
619 proc check_effective_target_tls_native {} {
620 # VxWorks uses emulated TLS machinery, but with non-standard helper
621 # functions, so we fail to automatically detect it.
622 if { [istarget *-*-vxworks*] } {
623 return 0
626 return [check_no_messages_and_pattern tls_native "!emutls" assembly {
627 __thread int i;
628 int f (void) { return i; }
629 void g (int j) { i = j; }
633 # Return 1 if *emulated* thread local storage (TLS) is supported, 0 otherwise.
635 proc check_effective_target_tls_emulated {} {
636 # VxWorks uses emulated TLS machinery, but with non-standard helper
637 # functions, so we fail to automatically detect it.
638 if { [istarget *-*-vxworks*] } {
639 return 1
642 return [check_no_messages_and_pattern tls_emulated "emutls" assembly {
643 __thread int i;
644 int f (void) { return i; }
645 void g (int j) { i = j; }
649 # Return 1 if TLS executables can run correctly, 0 otherwise.
651 proc check_effective_target_tls_runtime {} {
652 # MSP430 runtime does not have TLS support, but just
653 # running the test below is insufficient to show this.
654 if { [istarget msp430-*-*] } {
655 return 0
657 return [check_runtime tls_runtime {
658 __thread int thr = 0;
659 int main (void) { return thr; }
660 } [add_options_for_tls ""]]
663 # Return 1 if atomic compare-and-swap is supported on 'int'
665 proc check_effective_target_cas_char {} {
666 return [check_no_compiler_messages cas_char assembly {
667 #ifndef __GCC_HAVE_SYNC_COMPARE_AND_SWAP_1
668 #error unsupported
669 #endif
670 } ""]
673 proc check_effective_target_cas_int {} {
674 return [check_no_compiler_messages cas_int assembly {
675 #if __INT_MAX__ == 0x7fff && __GCC_HAVE_SYNC_COMPARE_AND_SWAP_2
676 /* ok */
677 #elif __INT_MAX__ == 0x7fffffff && __GCC_HAVE_SYNC_COMPARE_AND_SWAP_4
678 /* ok */
679 #else
680 #error unsupported
681 #endif
682 } ""]
685 # Return 1 if -ffunction-sections is supported, 0 otherwise.
687 proc check_effective_target_function_sections {} {
688 # Darwin has its own scheme and silently accepts -ffunction-sections.
689 if { [istarget *-*-darwin*] } {
690 return 0
693 return [check_no_compiler_messages functionsections assembly {
694 void foo (void) { }
695 } "-ffunction-sections"]
698 # Return 1 if instruction scheduling is available, 0 otherwise.
700 proc check_effective_target_scheduling {} {
701 return [check_no_compiler_messages scheduling object {
702 void foo (void) { }
703 } "-fschedule-insns"]
706 # Return 1 if trapping arithmetic is available, 0 otherwise.
708 proc check_effective_target_trapping {} {
709 return [check_no_compiler_messages trapping object {
710 add (int a, int b) { return a + b; }
711 } "-ftrapv"]
714 # Return 1 if compilation with -fgraphite is error-free for trivial
715 # code, 0 otherwise.
717 proc check_effective_target_fgraphite {} {
718 return [check_no_compiler_messages fgraphite object {
719 void foo (void) { }
720 } "-O1 -fgraphite"]
723 # Return 1 if compilation with -fopenmp is error-free for trivial
724 # code, 0 otherwise.
726 proc check_effective_target_fopenmp {} {
727 return [check_no_compiler_messages fopenmp object {
728 void foo (void) { }
729 } "-fopenmp"]
732 # Return 1 if compilation with -fgnu-tm is error-free for trivial
733 # code, 0 otherwise.
735 proc check_effective_target_fgnu_tm {} {
736 return [check_no_compiler_messages fgnu_tm object {
737 void foo (void) { }
738 } "-fgnu-tm"]
741 # Return 1 if the target supports mmap, 0 otherwise.
743 proc check_effective_target_mmap {} {
744 return [check_function_available "mmap"]
747 # Return 1 if the target supports dlopen, 0 otherwise.
748 proc check_effective_target_dlopen {} {
749 return [check_no_compiler_messages dlopen executable {
750 #include <dlfcn.h>
751 int main(void) { dlopen ("dummy.so", RTLD_NOW); }
752 } [add_options_for_dlopen ""]]
755 proc add_options_for_dlopen { flags } {
756 return "$flags -ldl"
759 # Return 1 if the target supports clone, 0 otherwise.
760 proc check_effective_target_clone {} {
761 return [check_function_available "clone"]
764 # Return 1 if the target supports setrlimit, 0 otherwise.
765 proc check_effective_target_setrlimit {} {
766 # Darwin has non-posix compliant RLIMIT_AS
767 if { [istarget *-*-darwin*] } {
768 return 0
770 return [check_function_available "setrlimit"]
773 # Return 1 if the target supports swapcontext, 0 otherwise.
774 proc check_effective_target_swapcontext {} {
775 return [check_no_compiler_messages swapcontext executable {
776 #include <ucontext.h>
777 int main (void)
779 ucontext_t orig_context,child_context;
780 if (swapcontext(&child_context, &orig_context) < 0) { }
785 # Return 1 if compilation with -pthread is error-free for trivial
786 # code, 0 otherwise.
788 proc check_effective_target_pthread {} {
789 return [check_no_compiler_messages pthread object {
790 void foo (void) { }
791 } "-pthread"]
794 # Return 1 if compilation with -mpe-aligned-commons is error-free
795 # for trivial code, 0 otherwise.
797 proc check_effective_target_pe_aligned_commons {} {
798 if { [istarget *-*-cygwin*] || [istarget *-*-mingw*] } {
799 return [check_no_compiler_messages pe_aligned_commons object {
800 int foo;
801 } "-mpe-aligned-commons"]
803 return 0
806 # Return 1 if the target supports -static
807 proc check_effective_target_static {} {
808 return [check_no_compiler_messages static executable {
809 int main (void) { return 0; }
810 } "-static"]
813 # Return 1 if the target supports -fstack-protector
814 proc check_effective_target_fstack_protector {} {
815 return [check_runtime fstack_protector {
816 int main (void) { return 0; }
817 } "-fstack-protector"]
820 # Return 1 if compilation with -freorder-blocks-and-partition is error-free
821 # for trivial code, 0 otherwise.
823 proc check_effective_target_freorder {} {
824 return [check_no_compiler_messages freorder object {
825 void foo (void) { }
826 } "-freorder-blocks-and-partition"]
829 # Return 1 if -fpic and -fPIC are supported, as in no warnings or errors
830 # emitted, 0 otherwise. Whether a shared library can actually be built is
831 # out of scope for this test.
833 proc check_effective_target_fpic { } {
834 # Note that M68K has a multilib that supports -fpic but not
835 # -fPIC, so we need to check both. We test with a program that
836 # requires GOT references.
837 foreach arg {fpic fPIC} {
838 if [check_no_compiler_messages $arg object {
839 extern int foo (void); extern int bar;
840 int baz (void) { return foo () + bar; }
841 } "-$arg"] {
842 return 1
845 return 0
848 # Return 1 if -pie, -fpie and -fPIE are supported, 0 otherwise.
850 proc check_effective_target_pie { } {
851 if { [istarget *-*-darwin\[912\]*]
852 || [istarget *-*-linux*]
853 || [istarget *-*-gnu*] } {
854 return 1;
856 return 0
859 # Return true if the target supports -mpaired-single (as used on MIPS).
861 proc check_effective_target_mpaired_single { } {
862 return [check_no_compiler_messages mpaired_single object {
863 void foo (void) { }
864 } "-mpaired-single"]
867 # Return true if the target has access to FPU instructions.
869 proc check_effective_target_hard_float { } {
870 if { [istarget mips*-*-*] } {
871 return [check_no_compiler_messages hard_float assembly {
872 #if (defined __mips_soft_float || defined __mips16)
873 #error FOO
874 #endif
878 # This proc is actually checking the availabilty of FPU
879 # support for doubles, so on the RX we must fail if the
880 # 64-bit double multilib has been selected.
881 if { [istarget rx-*-*] } {
882 return 0
883 # return [check_no_compiler_messages hard_float assembly {
884 #if defined __RX_64_BIT_DOUBLES__
885 #error FOO
886 #endif
887 # }]
890 # The generic test equates hard_float with "no call for adding doubles".
891 return [check_no_messages_and_pattern hard_float "!\\(call" rtl-expand {
892 double a (double b, double c) { return b + c; }
896 # Return true if the target is a 64-bit MIPS target.
898 proc check_effective_target_mips64 { } {
899 return [check_no_compiler_messages mips64 assembly {
900 #ifndef __mips64
901 #error FOO
902 #endif
906 # Return true if the target is a MIPS target that does not produce
907 # MIPS16 code.
909 proc check_effective_target_nomips16 { } {
910 return [check_no_compiler_messages nomips16 object {
911 #ifndef __mips
912 #error FOO
913 #else
914 /* A cheap way of testing for -mflip-mips16. */
915 void foo (void) { asm ("addiu $20,$20,1"); }
916 void bar (void) { asm ("addiu $20,$20,1"); }
917 #endif
921 # Add the options needed for MIPS16 function attributes. At the moment,
922 # we don't support MIPS16 PIC.
924 proc add_options_for_mips16_attribute { flags } {
925 return "$flags -mno-abicalls -fno-pic -DMIPS16=__attribute__((mips16))"
928 # Return true if we can force a mode that allows MIPS16 code generation.
929 # We don't support MIPS16 PIC, and only support MIPS16 -mhard-float
930 # for o32 and o64.
932 proc check_effective_target_mips16_attribute { } {
933 return [check_no_compiler_messages mips16_attribute assembly {
934 #ifdef PIC
935 #error FOO
936 #endif
937 #if defined __mips_hard_float \
938 && (!defined _ABIO32 || _MIPS_SIM != _ABIO32) \
939 && (!defined _ABIO64 || _MIPS_SIM != _ABIO64)
940 #error FOO
941 #endif
942 } [add_options_for_mips16_attribute ""]]
945 # Return 1 if the target supports long double larger than double when
946 # using the new ABI, 0 otherwise.
948 proc check_effective_target_mips_newabi_large_long_double { } {
949 return [check_no_compiler_messages mips_newabi_large_long_double object {
950 int dummy[sizeof(long double) > sizeof(double) ? 1 : -1];
951 } "-mabi=64"]
954 # Return true if the target is a MIPS target that has access
955 # to the LL and SC instructions.
957 proc check_effective_target_mips_llsc { } {
958 if { ![istarget mips*-*-*] } {
959 return 0
961 # Assume that these instructions are always implemented for
962 # non-elf* targets, via emulation if necessary.
963 if { ![istarget *-*-elf*] } {
964 return 1
966 # Otherwise assume LL/SC support for everything but MIPS I.
967 return [check_no_compiler_messages mips_llsc assembly {
968 #if __mips == 1
969 #error FOO
970 #endif
974 # Return true if the target is a MIPS target that uses in-place relocations.
976 proc check_effective_target_mips_rel { } {
977 if { ![istarget mips*-*-*] } {
978 return 0
980 return [check_no_compiler_messages mips_rel object {
981 #if (defined _ABIN32 && _MIPS_SIM == _ABIN32) \
982 || (defined _ABI64 && _MIPS_SIM == _ABI64)
983 #error FOO
984 #endif
988 # Return true if the target is a MIPS target that uses the EABI.
990 proc check_effective_target_mips_eabi { } {
991 if { ![istarget mips*-*-*] } {
992 return 0
994 return [check_no_compiler_messages mips_eabi object {
995 #ifndef __mips_eabi
996 #error FOO
997 #endif
1001 # Return 1 if the current multilib does not generate PIC by default.
1003 proc check_effective_target_nonpic { } {
1004 return [check_no_compiler_messages nonpic assembly {
1005 #if __PIC__
1006 #error FOO
1007 #endif
1011 # Return 1 if the target does not use a status wrapper.
1013 proc check_effective_target_unwrapped { } {
1014 if { [target_info needs_status_wrapper] != "" \
1015 && [target_info needs_status_wrapper] != "0" } {
1016 return 0
1018 return 1
1021 # Return true if iconv is supported on the target. In particular IBM1047.
1023 proc check_iconv_available { test_what } {
1024 global libiconv
1026 # If the tool configuration file has not set libiconv, try "-liconv"
1027 if { ![info exists libiconv] } {
1028 set libiconv "-liconv"
1030 set test_what [lindex $test_what 1]
1031 return [check_runtime_nocache $test_what [subst {
1032 #include <iconv.h>
1033 int main (void)
1035 iconv_t cd;
1037 cd = iconv_open ("$test_what", "UTF-8");
1038 if (cd == (iconv_t) -1)
1039 return 1;
1040 return 0;
1042 }] $libiconv]
1045 # Return true if Cilk Library is supported on the target.
1046 proc check_libcilkrts_available { } {
1047 return [ check_no_compiler_messages_nocache libcilkrts_available executable {
1048 #ifdef __cplusplus
1049 extern "C"
1050 #endif
1051 int __cilkrts_set_param (const char *, const char *);
1052 int main (void) {
1053 int x = __cilkrts_set_param ("nworkers", "0");
1054 return x;
1056 } "-fcilkplus -lcilkrts" ]
1059 # Return 1 if an ASCII locale is supported on this host, 0 otherwise.
1061 proc check_ascii_locale_available { } {
1062 return 1
1065 # Return true if named sections are supported on this target.
1067 proc check_named_sections_available { } {
1068 return [check_no_compiler_messages named_sections assembly {
1069 int __attribute__ ((section("whatever"))) foo;
1073 # Return true if the "naked" function attribute is supported on this target.
1075 proc check_effective_target_naked_functions { } {
1076 return [check_no_compiler_messages naked_functions assembly {
1077 void f() __attribute__((naked));
1081 # Return 1 if the target supports Fortran real kinds larger than real(8),
1082 # 0 otherwise.
1084 # When the target name changes, replace the cached result.
1086 proc check_effective_target_fortran_large_real { } {
1087 return [check_no_compiler_messages fortran_large_real executable {
1088 ! Fortran
1089 integer,parameter :: k = selected_real_kind (precision (0.0_8) + 1)
1090 real(kind=k) :: x
1091 x = cos (x)
1096 # Return 1 if the target supports Fortran real kind real(16),
1097 # 0 otherwise. Contrary to check_effective_target_fortran_large_real
1098 # this checks for Real(16) only; the other returned real(10) if
1099 # both real(10) and real(16) are available.
1101 # When the target name changes, replace the cached result.
1103 proc check_effective_target_fortran_real_16 { } {
1104 return [check_no_compiler_messages fortran_real_16 executable {
1105 ! Fortran
1106 real(kind=16) :: x
1107 x = cos (x)
1113 # Return 1 if the target supports Fortran's IEEE modules,
1114 # 0 otherwise.
1116 # When the target name changes, replace the cached result.
1118 proc check_effective_target_fortran_ieee { flags } {
1119 return [check_no_compiler_messages fortran_ieee executable {
1120 ! Fortran
1121 use, intrinsic :: ieee_features
1123 } $flags ]
1127 # Return 1 if the target supports SQRT for the largest floating-point
1128 # type. (Some targets lack the libm support for this FP type.)
1129 # On most targets, this check effectively checks either whether sqrtl is
1130 # available or on __float128 systems whether libquadmath is installed,
1131 # which provides sqrtq.
1133 # When the target name changes, replace the cached result.
1135 proc check_effective_target_fortran_largest_fp_has_sqrt { } {
1136 return [check_no_compiler_messages fortran_largest_fp_has_sqrt executable {
1137 ! Fortran
1138 use iso_fortran_env, only: real_kinds
1139 integer,parameter:: maxFP = real_kinds(ubound(real_kinds,dim=1))
1140 real(kind=maxFP), volatile :: x
1141 x = 2.0_maxFP
1142 x = sqrt (x)
1148 # Return 1 if the target supports Fortran integer kinds larger than
1149 # integer(8), 0 otherwise.
1151 # When the target name changes, replace the cached result.
1153 proc check_effective_target_fortran_large_int { } {
1154 return [check_no_compiler_messages fortran_large_int executable {
1155 ! Fortran
1156 integer,parameter :: k = selected_int_kind (range (0_8) + 1)
1157 integer(kind=k) :: i
1162 # Return 1 if the target supports Fortran integer(16), 0 otherwise.
1164 # When the target name changes, replace the cached result.
1166 proc check_effective_target_fortran_integer_16 { } {
1167 return [check_no_compiler_messages fortran_integer_16 executable {
1168 ! Fortran
1169 integer(16) :: i
1174 # Return 1 if we can statically link libgfortran, 0 otherwise.
1176 # When the target name changes, replace the cached result.
1178 proc check_effective_target_static_libgfortran { } {
1179 return [check_no_compiler_messages static_libgfortran executable {
1180 ! Fortran
1181 print *, 'test'
1183 } "-static"]
1186 # Return 1 if cilk-plus is supported by the target, 0 otherwise.
1188 proc check_effective_target_cilkplus { } {
1189 # Skip cilk-plus tests on int16 and size16 targets for now.
1190 # The cilk-plus tests are not generic enough to cover these
1191 # cases and would throw hundreds of FAILs.
1192 if { [check_effective_target_int16]
1193 || ![check_effective_target_size32plus] } {
1194 return 0;
1197 # Skip AVR, its RAM is too small and too many tests would fail.
1198 if { [istarget avr-*-*] } {
1199 return 0;
1201 return 1
1204 proc check_linker_plugin_available { } {
1205 return [check_no_compiler_messages_nocache linker_plugin executable {
1206 int main() { return 0; }
1207 } "-flto -fuse-linker-plugin"]
1210 # Return 1 if the target supports executing 750CL paired-single instructions, 0
1211 # otherwise. Cache the result.
1213 proc check_750cl_hw_available { } {
1214 return [check_cached_effective_target 750cl_hw_available {
1215 # If this is not the right target then we can skip the test.
1216 if { ![istarget powerpc-*paired*] } {
1217 expr 0
1218 } else {
1219 check_runtime_nocache 750cl_hw_available {
1220 int main()
1222 #ifdef __MACH__
1223 asm volatile ("ps_mul v0,v0,v0");
1224 #else
1225 asm volatile ("ps_mul 0,0,0");
1226 #endif
1227 return 0;
1229 } "-mpaired"
1234 # Return 1 if the target OS supports running SSE executables, 0
1235 # otherwise. Cache the result.
1237 proc check_sse_os_support_available { } {
1238 return [check_cached_effective_target sse_os_support_available {
1239 # If this is not the right target then we can skip the test.
1240 if { !([istarget x86_64-*-*] || [istarget i?86-*-*]) } {
1241 expr 0
1242 } elseif { [istarget i?86-*-solaris2*] } {
1243 # The Solaris 2 kernel doesn't save and restore SSE registers
1244 # before Solaris 9 4/04. Before that, executables die with SIGILL.
1245 check_runtime_nocache sse_os_support_available {
1246 int main ()
1248 asm volatile ("movaps %xmm0,%xmm0");
1249 return 0;
1251 } "-msse"
1252 } else {
1253 expr 1
1258 # Return 1 if the target OS supports running AVX executables, 0
1259 # otherwise. Cache the result.
1261 proc check_avx_os_support_available { } {
1262 return [check_cached_effective_target avx_os_support_available {
1263 # If this is not the right target then we can skip the test.
1264 if { !([istarget x86_64-*-*] || [istarget i?86-*-*]) } {
1265 expr 0
1266 } else {
1267 # Check that OS has AVX and SSE saving enabled.
1268 check_runtime_nocache avx_os_support_available {
1269 int main ()
1271 unsigned int eax, edx;
1273 asm ("xgetbv" : "=a" (eax), "=d" (edx) : "c" (0));
1274 return (eax & 6) != 6;
1276 } ""
1281 # Return 1 if the target supports executing SSE instructions, 0
1282 # otherwise. Cache the result.
1284 proc check_sse_hw_available { } {
1285 return [check_cached_effective_target sse_hw_available {
1286 # If this is not the right target then we can skip the test.
1287 if { !([istarget x86_64-*-*] || [istarget i?86-*-*]) } {
1288 expr 0
1289 } else {
1290 check_runtime_nocache sse_hw_available {
1291 #include "cpuid.h"
1292 int main ()
1294 unsigned int eax, ebx, ecx, edx;
1295 if (__get_cpuid (1, &eax, &ebx, &ecx, &edx))
1296 return !(edx & bit_SSE);
1297 return 1;
1299 } ""
1304 # Return 1 if the target supports executing SSE2 instructions, 0
1305 # otherwise. Cache the result.
1307 proc check_sse2_hw_available { } {
1308 return [check_cached_effective_target sse2_hw_available {
1309 # If this is not the right target then we can skip the test.
1310 if { !([istarget x86_64-*-*] || [istarget i?86-*-*]) } {
1311 expr 0
1312 } else {
1313 check_runtime_nocache sse2_hw_available {
1314 #include "cpuid.h"
1315 int main ()
1317 unsigned int eax, ebx, ecx, edx;
1318 if (__get_cpuid (1, &eax, &ebx, &ecx, &edx))
1319 return !(edx & bit_SSE2);
1320 return 1;
1322 } ""
1327 # Return 1 if the target supports executing AVX instructions, 0
1328 # otherwise. Cache the result.
1330 proc check_avx_hw_available { } {
1331 return [check_cached_effective_target avx_hw_available {
1332 # If this is not the right target then we can skip the test.
1333 if { !([istarget x86_64-*-*] || [istarget i?86-*-*]) } {
1334 expr 0
1335 } else {
1336 check_runtime_nocache avx_hw_available {
1337 #include "cpuid.h"
1338 int main ()
1340 unsigned int eax, ebx, ecx, edx;
1341 if (__get_cpuid (1, &eax, &ebx, &ecx, &edx))
1342 return ((ecx & (bit_AVX | bit_OSXSAVE))
1343 != (bit_AVX | bit_OSXSAVE));
1344 return 1;
1346 } ""
1351 # Return 1 if the target supports running SSE executables, 0 otherwise.
1353 proc check_effective_target_sse_runtime { } {
1354 if { [check_effective_target_sse]
1355 && [check_sse_hw_available]
1356 && [check_sse_os_support_available] } {
1357 return 1
1359 return 0
1362 # Return 1 if the target supports running SSE2 executables, 0 otherwise.
1364 proc check_effective_target_sse2_runtime { } {
1365 if { [check_effective_target_sse2]
1366 && [check_sse2_hw_available]
1367 && [check_sse_os_support_available] } {
1368 return 1
1370 return 0
1373 # Return 1 if the target supports running AVX executables, 0 otherwise.
1375 proc check_effective_target_avx_runtime { } {
1376 if { [check_effective_target_avx]
1377 && [check_avx_hw_available]
1378 && [check_avx_os_support_available] } {
1379 return 1
1381 return 0
1384 # Return 1 if the target supports executing power8 vector instructions, 0
1385 # otherwise. Cache the result.
1387 proc check_p8vector_hw_available { } {
1388 return [check_cached_effective_target p8vector_hw_available {
1389 # Some simulators are known to not support VSX/power8 instructions.
1390 # For now, disable on Darwin
1391 if { [istarget powerpc-*-eabi] || [istarget powerpc*-*-eabispe] || [istarget *-*-darwin*]} {
1392 expr 0
1393 } else {
1394 set options "-mpower8-vector"
1395 check_runtime_nocache p8vector_hw_available {
1396 int main()
1398 #ifdef __MACH__
1399 asm volatile ("xxlorc vs0,vs0,vs0");
1400 #else
1401 asm volatile ("xxlorc 0,0,0");
1402 #endif
1403 return 0;
1405 } $options
1410 # Return 1 if the target supports executing VSX instructions, 0
1411 # otherwise. Cache the result.
1413 proc check_vsx_hw_available { } {
1414 return [check_cached_effective_target vsx_hw_available {
1415 # Some simulators are known to not support VSX instructions.
1416 # For now, disable on Darwin
1417 if { [istarget powerpc-*-eabi] || [istarget powerpc*-*-eabispe] || [istarget *-*-darwin*]} {
1418 expr 0
1419 } else {
1420 set options "-mvsx"
1421 check_runtime_nocache vsx_hw_available {
1422 int main()
1424 #ifdef __MACH__
1425 asm volatile ("xxlor vs0,vs0,vs0");
1426 #else
1427 asm volatile ("xxlor 0,0,0");
1428 #endif
1429 return 0;
1431 } $options
1436 # Return 1 if the target supports executing AltiVec instructions, 0
1437 # otherwise. Cache the result.
1439 proc check_vmx_hw_available { } {
1440 return [check_cached_effective_target vmx_hw_available {
1441 # Some simulators are known to not support VMX instructions.
1442 if { [istarget powerpc-*-eabi] || [istarget powerpc*-*-eabispe] } {
1443 expr 0
1444 } else {
1445 # Most targets don't require special flags for this test case, but
1446 # Darwin does. Just to be sure, make sure VSX is not enabled for
1447 # the altivec tests.
1448 if { [istarget *-*-darwin*]
1449 || [istarget *-*-aix*] } {
1450 set options "-maltivec -mno-vsx"
1451 } else {
1452 set options "-mno-vsx"
1454 check_runtime_nocache vmx_hw_available {
1455 int main()
1457 #ifdef __MACH__
1458 asm volatile ("vor v0,v0,v0");
1459 #else
1460 asm volatile ("vor 0,0,0");
1461 #endif
1462 return 0;
1464 } $options
1469 proc check_ppc_recip_hw_available { } {
1470 return [check_cached_effective_target ppc_recip_hw_available {
1471 # Some simulators may not support FRE/FRES/FRSQRTE/FRSQRTES
1472 # For now, disable on Darwin
1473 if { [istarget powerpc-*-eabi] || [istarget powerpc*-*-eabispe] || [istarget *-*-darwin*]} {
1474 expr 0
1475 } else {
1476 set options "-mpowerpc-gfxopt -mpowerpc-gpopt -mpopcntb"
1477 check_runtime_nocache ppc_recip_hw_available {
1478 volatile double d_recip, d_rsqrt, d_four = 4.0;
1479 volatile float f_recip, f_rsqrt, f_four = 4.0f;
1480 int main()
1482 asm volatile ("fres %0,%1" : "=f" (f_recip) : "f" (f_four));
1483 asm volatile ("fre %0,%1" : "=d" (d_recip) : "d" (d_four));
1484 asm volatile ("frsqrtes %0,%1" : "=f" (f_rsqrt) : "f" (f_four));
1485 asm volatile ("frsqrte %0,%1" : "=f" (d_rsqrt) : "d" (d_four));
1486 return 0;
1488 } $options
1493 # Return 1 if the target supports executing AltiVec and Cell PPU
1494 # instructions, 0 otherwise. Cache the result.
1496 proc check_effective_target_cell_hw { } {
1497 return [check_cached_effective_target cell_hw_available {
1498 # Some simulators are known to not support VMX and PPU instructions.
1499 if { [istarget powerpc-*-eabi*] } {
1500 expr 0
1501 } else {
1502 # Most targets don't require special flags for this test
1503 # case, but Darwin and AIX do.
1504 if { [istarget *-*-darwin*]
1505 || [istarget *-*-aix*] } {
1506 set options "-maltivec -mcpu=cell"
1507 } else {
1508 set options "-mcpu=cell"
1510 check_runtime_nocache cell_hw_available {
1511 int main()
1513 #ifdef __MACH__
1514 asm volatile ("vor v0,v0,v0");
1515 asm volatile ("lvlx v0,r0,r0");
1516 #else
1517 asm volatile ("vor 0,0,0");
1518 asm volatile ("lvlx 0,0,0");
1519 #endif
1520 return 0;
1522 } $options
1527 # Return 1 if the target supports executing 64-bit instructions, 0
1528 # otherwise. Cache the result.
1530 proc check_effective_target_powerpc64 { } {
1531 global powerpc64_available_saved
1532 global tool
1534 if [info exists powerpc64_available_saved] {
1535 verbose "check_effective_target_powerpc64 returning saved $powerpc64_available_saved" 2
1536 } else {
1537 set powerpc64_available_saved 0
1539 # Some simulators are known to not support powerpc64 instructions.
1540 if { [istarget powerpc-*-eabi*] || [istarget powerpc-ibm-aix*] } {
1541 verbose "check_effective_target_powerpc64 returning 0" 2
1542 return $powerpc64_available_saved
1545 # Set up, compile, and execute a test program containing a 64-bit
1546 # instruction. Include the current process ID in the file
1547 # names to prevent conflicts with invocations for multiple
1548 # testsuites.
1549 set src ppc[pid].c
1550 set exe ppc[pid].x
1552 set f [open $src "w"]
1553 puts $f "int main() {"
1554 puts $f "#ifdef __MACH__"
1555 puts $f " asm volatile (\"extsw r0,r0\");"
1556 puts $f "#else"
1557 puts $f " asm volatile (\"extsw 0,0\");"
1558 puts $f "#endif"
1559 puts $f " return 0; }"
1560 close $f
1562 set opts "additional_flags=-mcpu=G5"
1564 verbose "check_effective_target_powerpc64 compiling testfile $src" 2
1565 set lines [${tool}_target_compile $src $exe executable "$opts"]
1566 file delete $src
1568 if [string match "" $lines] then {
1569 # No error message, compilation succeeded.
1570 set result [${tool}_load "./$exe" "" ""]
1571 set status [lindex $result 0]
1572 remote_file build delete $exe
1573 verbose "check_effective_target_powerpc64 testfile status is <$status>" 2
1575 if { $status == "pass" } then {
1576 set powerpc64_available_saved 1
1578 } else {
1579 verbose "check_effective_target_powerpc64 testfile compilation failed" 2
1583 return $powerpc64_available_saved
1586 # GCC 3.4.0 for powerpc64-*-linux* included an ABI fix for passing
1587 # complex float arguments. This affects gfortran tests that call cabsf
1588 # in libm built by an earlier compiler. Return 1 if libm uses the same
1589 # argument passing as the compiler under test, 0 otherwise.
1591 # When the target name changes, replace the cached result.
1593 proc check_effective_target_broken_cplxf_arg { } {
1594 return [check_cached_effective_target broken_cplxf_arg {
1595 # Skip the work for targets known not to be affected.
1596 if { ![istarget powerpc64-*-linux*] } {
1597 expr 0
1598 } elseif { ![is-effective-target lp64] } {
1599 expr 0
1600 } else {
1601 check_runtime_nocache broken_cplxf_arg {
1602 #include <complex.h>
1603 extern void abort (void);
1604 float fabsf (float);
1605 float cabsf (_Complex float);
1606 int main ()
1608 _Complex float cf;
1609 float f;
1610 cf = 3 + 4.0fi;
1611 f = cabsf (cf);
1612 if (fabsf (f - 5.0) > 0.0001)
1613 abort ();
1614 return 0;
1616 } "-lm"
1621 # Return 1 is this is a TI C6X target supporting C67X instructions
1622 proc check_effective_target_ti_c67x { } {
1623 return [check_no_compiler_messages ti_c67x assembly {
1624 #if !defined(_TMS320C6700)
1625 #error FOO
1626 #endif
1630 # Return 1 is this is a TI C6X target supporting C64X+ instructions
1631 proc check_effective_target_ti_c64xp { } {
1632 return [check_no_compiler_messages ti_c64xp assembly {
1633 #if !defined(_TMS320C6400_PLUS)
1634 #error FOO
1635 #endif
1640 proc check_alpha_max_hw_available { } {
1641 return [check_runtime alpha_max_hw_available {
1642 int main() { return __builtin_alpha_amask(1<<8) != 0; }
1646 # Returns true iff the FUNCTION is available on the target system.
1647 # (This is essentially a Tcl implementation of Autoconf's
1648 # AC_CHECK_FUNC.)
1650 proc check_function_available { function } {
1651 return [check_no_compiler_messages ${function}_available \
1652 executable [subst {
1653 #ifdef __cplusplus
1654 extern "C"
1655 #endif
1656 char $function ();
1657 int main () { $function (); }
1658 }] "-fno-builtin" ]
1661 # Returns true iff "fork" is available on the target system.
1663 proc check_fork_available {} {
1664 return [check_function_available "fork"]
1667 # Returns true iff "mkfifo" is available on the target system.
1669 proc check_mkfifo_available {} {
1670 if { [istarget *-*-cygwin*] } {
1671 # Cygwin has mkfifo, but support is incomplete.
1672 return 0
1675 return [check_function_available "mkfifo"]
1678 # Returns true iff "__cxa_atexit" is used on the target system.
1680 proc check_cxa_atexit_available { } {
1681 return [check_cached_effective_target cxa_atexit_available {
1682 if { [istarget hppa*-*-hpux10*] } {
1683 # HP-UX 10 doesn't have __cxa_atexit but subsequent test passes.
1684 expr 0
1685 } elseif { [istarget *-*-vxworks] } {
1686 # vxworks doesn't have __cxa_atexit but subsequent test passes.
1687 expr 0
1688 } else {
1689 check_runtime_nocache cxa_atexit_available {
1690 // C++
1691 #include <stdlib.h>
1692 static unsigned int count;
1693 struct X
1695 X() { count = 1; }
1696 ~X()
1698 if (count != 3)
1699 exit(1);
1700 count = 4;
1703 void f()
1705 static X x;
1707 struct Y
1709 Y() { f(); count = 2; }
1710 ~Y()
1712 if (count != 2)
1713 exit(1);
1714 count = 3;
1717 Y y;
1718 int main() { return 0; }
1724 proc check_effective_target_objc2 { } {
1725 return [check_no_compiler_messages objc2 object {
1726 #ifdef __OBJC2__
1727 int dummy[1];
1728 #else
1729 #error
1730 #endif
1734 proc check_effective_target_next_runtime { } {
1735 return [check_no_compiler_messages objc2 object {
1736 #ifdef __NEXT_RUNTIME__
1737 int dummy[1];
1738 #else
1739 #error
1740 #endif
1744 # Return 1 if we're generating 32-bit code using default options, 0
1745 # otherwise.
1747 proc check_effective_target_ilp32 { } {
1748 return [check_no_compiler_messages ilp32 object {
1749 int dummy[sizeof (int) == 4
1750 && sizeof (void *) == 4
1751 && sizeof (long) == 4 ? 1 : -1];
1755 # Return 1 if we're generating ia32 code using default options, 0
1756 # otherwise.
1758 proc check_effective_target_ia32 { } {
1759 return [check_no_compiler_messages ia32 object {
1760 int dummy[sizeof (int) == 4
1761 && sizeof (void *) == 4
1762 && sizeof (long) == 4 ? 1 : -1] = { __i386__ };
1766 # Return 1 if we're generating x32 code using default options, 0
1767 # otherwise.
1769 proc check_effective_target_x32 { } {
1770 return [check_no_compiler_messages x32 object {
1771 int dummy[sizeof (int) == 4
1772 && sizeof (void *) == 4
1773 && sizeof (long) == 4 ? 1 : -1] = { __x86_64__ };
1777 # Return 1 if we're generating 32-bit integers using default
1778 # options, 0 otherwise.
1780 proc check_effective_target_int32 { } {
1781 return [check_no_compiler_messages int32 object {
1782 int dummy[sizeof (int) == 4 ? 1 : -1];
1786 # Return 1 if we're generating 32-bit or larger integers using default
1787 # options, 0 otherwise.
1789 proc check_effective_target_int32plus { } {
1790 return [check_no_compiler_messages int32plus object {
1791 int dummy[sizeof (int) >= 4 ? 1 : -1];
1795 # Return 1 if we're generating 32-bit or larger pointers using default
1796 # options, 0 otherwise.
1798 proc check_effective_target_ptr32plus { } {
1799 # The msp430 has 16-bit or 20-bit pointers. The 20-bit pointer is stored
1800 # in a 32-bit slot when in memory, so sizeof(void *) returns 4, but it
1801 # cannot really hold a 32-bit address, so we always return false here.
1802 if { [istarget msp430-*-*] } {
1803 return 0
1806 return [check_no_compiler_messages ptr32plus object {
1807 int dummy[sizeof (void *) >= 4 ? 1 : -1];
1811 # Return 1 if we support 32-bit or larger array and structure sizes
1812 # using default options, 0 otherwise. Avoid false positive on
1813 # targets with 20 or 24 bit address spaces.
1815 proc check_effective_target_size32plus { } {
1816 return [check_no_compiler_messages size32plus object {
1817 char dummy[16777217L];
1821 # Returns 1 if we're generating 16-bit or smaller integers with the
1822 # default options, 0 otherwise.
1824 proc check_effective_target_int16 { } {
1825 return [check_no_compiler_messages int16 object {
1826 int dummy[sizeof (int) < 4 ? 1 : -1];
1830 # Return 1 if we're generating 64-bit code using default options, 0
1831 # otherwise.
1833 proc check_effective_target_lp64 { } {
1834 return [check_no_compiler_messages lp64 object {
1835 int dummy[sizeof (int) == 4
1836 && sizeof (void *) == 8
1837 && sizeof (long) == 8 ? 1 : -1];
1841 # Return 1 if we're generating 64-bit code using default llp64 options,
1842 # 0 otherwise.
1844 proc check_effective_target_llp64 { } {
1845 return [check_no_compiler_messages llp64 object {
1846 int dummy[sizeof (int) == 4
1847 && sizeof (void *) == 8
1848 && sizeof (long long) == 8
1849 && sizeof (long) == 4 ? 1 : -1];
1853 # Return 1 if long and int have different sizes,
1854 # 0 otherwise.
1856 proc check_effective_target_long_neq_int { } {
1857 return [check_no_compiler_messages long_ne_int object {
1858 int dummy[sizeof (int) != sizeof (long) ? 1 : -1];
1862 # Return 1 if the target supports long double larger than double,
1863 # 0 otherwise.
1865 proc check_effective_target_large_long_double { } {
1866 return [check_no_compiler_messages large_long_double object {
1867 int dummy[sizeof(long double) > sizeof(double) ? 1 : -1];
1871 # Return 1 if the target supports double larger than float,
1872 # 0 otherwise.
1874 proc check_effective_target_large_double { } {
1875 return [check_no_compiler_messages large_double object {
1876 int dummy[sizeof(double) > sizeof(float) ? 1 : -1];
1880 # Return 1 if the target supports long double of 128 bits,
1881 # 0 otherwise.
1883 proc check_effective_target_longdouble128 { } {
1884 return [check_no_compiler_messages longdouble128 object {
1885 int dummy[sizeof(long double) == 16 ? 1 : -1];
1889 # Return 1 if the target supports double of 64 bits,
1890 # 0 otherwise.
1892 proc check_effective_target_double64 { } {
1893 return [check_no_compiler_messages double64 object {
1894 int dummy[sizeof(double) == 8 ? 1 : -1];
1898 # Return 1 if the target supports double of at least 64 bits,
1899 # 0 otherwise.
1901 proc check_effective_target_double64plus { } {
1902 return [check_no_compiler_messages double64plus object {
1903 int dummy[sizeof(double) >= 8 ? 1 : -1];
1907 # Return 1 if the target supports 'w' suffix on floating constant
1908 # 0 otherwise.
1910 proc check_effective_target_has_w_floating_suffix { } {
1911 set opts ""
1912 if [check_effective_target_c++] {
1913 append opts "-std=gnu++03"
1915 return [check_no_compiler_messages w_fp_suffix object {
1916 float dummy = 1.0w;
1917 } "$opts"]
1920 # Return 1 if the target supports 'q' suffix on floating constant
1921 # 0 otherwise.
1923 proc check_effective_target_has_q_floating_suffix { } {
1924 set opts ""
1925 if [check_effective_target_c++] {
1926 append opts "-std=gnu++03"
1928 return [check_no_compiler_messages q_fp_suffix object {
1929 float dummy = 1.0q;
1930 } "$opts"]
1932 # Return 1 if the target supports compiling fixed-point,
1933 # 0 otherwise.
1935 proc check_effective_target_fixed_point { } {
1936 return [check_no_compiler_messages fixed_point object {
1937 _Sat _Fract x; _Sat _Accum y;
1941 # Return 1 if the target supports compiling decimal floating point,
1942 # 0 otherwise.
1944 proc check_effective_target_dfp_nocache { } {
1945 verbose "check_effective_target_dfp_nocache: compiling source" 2
1946 set ret [check_no_compiler_messages_nocache dfp object {
1947 float x __attribute__((mode(DD)));
1949 verbose "check_effective_target_dfp_nocache: returning $ret" 2
1950 return $ret
1953 proc check_effective_target_dfprt_nocache { } {
1954 return [check_runtime_nocache dfprt {
1955 typedef float d64 __attribute__((mode(DD)));
1956 d64 x = 1.2df, y = 2.3dd, z;
1957 int main () { z = x + y; return 0; }
1961 # Return 1 if the target supports compiling Decimal Floating Point,
1962 # 0 otherwise.
1964 # This won't change for different subtargets so cache the result.
1966 proc check_effective_target_dfp { } {
1967 return [check_cached_effective_target dfp {
1968 check_effective_target_dfp_nocache
1972 # Return 1 if the target supports linking and executing Decimal Floating
1973 # Point, 0 otherwise.
1975 # This won't change for different subtargets so cache the result.
1977 proc check_effective_target_dfprt { } {
1978 return [check_cached_effective_target dfprt {
1979 check_effective_target_dfprt_nocache
1983 # Return 1 if the target supports executing DFP hardware instructions,
1984 # 0 otherwise. Cache the result.
1986 proc check_dfp_hw_available { } {
1987 return [check_cached_effective_target dfp_hw_available {
1988 # For now, disable on Darwin
1989 if { [istarget powerpc-*-eabi] || [istarget powerpc*-*-eabispe] || [istarget *-*-darwin*]} {
1990 expr 0
1991 } else {
1992 check_runtime_nocache dfp_hw_available {
1993 volatile _Decimal64 r;
1994 volatile _Decimal64 a = 4.0DD;
1995 volatile _Decimal64 b = 2.0DD;
1996 int main()
1998 asm volatile ("dadd %0,%1,%2" : "=d" (r) : "d" (a), "d" (b));
1999 asm volatile ("dsub %0,%1,%2" : "=d" (r) : "d" (a), "d" (b));
2000 asm volatile ("dmul %0,%1,%2" : "=d" (r) : "d" (a), "d" (b));
2001 asm volatile ("ddiv %0,%1,%2" : "=d" (r) : "d" (a), "d" (b));
2002 return 0;
2004 } "-mcpu=power6 -mhard-float"
2009 # Return 1 if the target supports compiling and assembling UCN, 0 otherwise.
2011 proc check_effective_target_ucn_nocache { } {
2012 # -std=c99 is only valid for C
2013 if [check_effective_target_c] {
2014 set ucnopts "-std=c99"
2016 append ucnopts " -fextended-identifiers"
2017 verbose "check_effective_target_ucn_nocache: compiling source" 2
2018 set ret [check_no_compiler_messages_nocache ucn object {
2019 int \u00C0;
2020 } $ucnopts]
2021 verbose "check_effective_target_ucn_nocache: returning $ret" 2
2022 return $ret
2025 # Return 1 if the target supports compiling and assembling UCN, 0 otherwise.
2027 # This won't change for different subtargets, so cache the result.
2029 proc check_effective_target_ucn { } {
2030 return [check_cached_effective_target ucn {
2031 check_effective_target_ucn_nocache
2035 # Return 1 if the target needs a command line argument to enable a SIMD
2036 # instruction set.
2038 proc check_effective_target_vect_cmdline_needed { } {
2039 global et_vect_cmdline_needed_saved
2040 global et_vect_cmdline_needed_target_name
2042 if { ![info exists et_vect_cmdline_needed_target_name] } {
2043 set et_vect_cmdline_needed_target_name ""
2046 # If the target has changed since we set the cached value, clear it.
2047 set current_target [current_target_name]
2048 if { $current_target != $et_vect_cmdline_needed_target_name } {
2049 verbose "check_effective_target_vect_cmdline_needed: `$et_vect_cmdline_needed_target_name' `$current_target'" 2
2050 set et_vect_cmdline_needed_target_name $current_target
2051 if { [info exists et_vect_cmdline_needed_saved] } {
2052 verbose "check_effective_target_vect_cmdline_needed: removing cached result" 2
2053 unset et_vect_cmdline_needed_saved
2057 if [info exists et_vect_cmdline_needed_saved] {
2058 verbose "check_effective_target_vect_cmdline_needed: using cached result" 2
2059 } else {
2060 set et_vect_cmdline_needed_saved 1
2061 if { [istarget alpha*-*-*]
2062 || [istarget ia64-*-*]
2063 || (([istarget x86_64-*-*] || [istarget i?86-*-*])
2064 && ([check_effective_target_x32]
2065 || [check_effective_target_lp64]))
2066 || ([istarget powerpc*-*-*]
2067 && ([check_effective_target_powerpc_spe]
2068 || [check_effective_target_powerpc_altivec]))
2069 || ([istarget sparc*-*-*] && [check_effective_target_sparc_vis])
2070 || [istarget spu-*-*]
2071 || ([istarget arm*-*-*] && [check_effective_target_arm_neon])
2072 || [istarget aarch64*-*-*] } {
2073 set et_vect_cmdline_needed_saved 0
2077 verbose "check_effective_target_vect_cmdline_needed: returning $et_vect_cmdline_needed_saved" 2
2078 return $et_vect_cmdline_needed_saved
2081 # Return 1 if the target supports hardware vectors of int, 0 otherwise.
2083 # This won't change for different subtargets so cache the result.
2085 proc check_effective_target_vect_int { } {
2086 global et_vect_int_saved
2088 if [info exists et_vect_int_saved] {
2089 verbose "check_effective_target_vect_int: using cached result" 2
2090 } else {
2091 set et_vect_int_saved 0
2092 if { [istarget i?86-*-*]
2093 || ([istarget powerpc*-*-*]
2094 && ![istarget powerpc-*-linux*paired*])
2095 || [istarget spu-*-*]
2096 || [istarget x86_64-*-*]
2097 || [istarget sparc*-*-*]
2098 || [istarget alpha*-*-*]
2099 || [istarget ia64-*-*]
2100 || [istarget aarch64*-*-*]
2101 || [check_effective_target_arm32]
2102 || ([istarget mips*-*-*]
2103 && [check_effective_target_mips_loongson]) } {
2104 set et_vect_int_saved 1
2108 verbose "check_effective_target_vect_int: returning $et_vect_int_saved" 2
2109 return $et_vect_int_saved
2112 # Return 1 if the target supports signed int->float conversion
2115 proc check_effective_target_vect_intfloat_cvt { } {
2116 global et_vect_intfloat_cvt_saved
2118 if [info exists et_vect_intfloat_cvt_saved] {
2119 verbose "check_effective_target_vect_intfloat_cvt: using cached result" 2
2120 } else {
2121 set et_vect_intfloat_cvt_saved 0
2122 if { [istarget i?86-*-*]
2123 || ([istarget powerpc*-*-*]
2124 && ![istarget powerpc-*-linux*paired*])
2125 || [istarget x86_64-*-*]
2126 || ([istarget arm*-*-*]
2127 && [check_effective_target_arm_neon_ok])} {
2128 set et_vect_intfloat_cvt_saved 1
2132 verbose "check_effective_target_vect_intfloat_cvt: returning $et_vect_intfloat_cvt_saved" 2
2133 return $et_vect_intfloat_cvt_saved
2136 #Return 1 if we're supporting __int128 for target, 0 otherwise.
2138 proc check_effective_target_int128 { } {
2139 return [check_no_compiler_messages int128 object {
2140 int dummy[
2141 #ifndef __SIZEOF_INT128__
2143 #else
2145 #endif
2150 # Return 1 if the target supports unsigned int->float conversion
2153 proc check_effective_target_vect_uintfloat_cvt { } {
2154 global et_vect_uintfloat_cvt_saved
2156 if [info exists et_vect_uintfloat_cvt_saved] {
2157 verbose "check_effective_target_vect_uintfloat_cvt: using cached result" 2
2158 } else {
2159 set et_vect_uintfloat_cvt_saved 0
2160 if { [istarget i?86-*-*]
2161 || ([istarget powerpc*-*-*]
2162 && ![istarget powerpc-*-linux*paired*])
2163 || [istarget x86_64-*-*]
2164 || [istarget aarch64*-*-*]
2165 || ([istarget arm*-*-*]
2166 && [check_effective_target_arm_neon_ok])} {
2167 set et_vect_uintfloat_cvt_saved 1
2171 verbose "check_effective_target_vect_uintfloat_cvt: returning $et_vect_uintfloat_cvt_saved" 2
2172 return $et_vect_uintfloat_cvt_saved
2176 # Return 1 if the target supports signed float->int conversion
2179 proc check_effective_target_vect_floatint_cvt { } {
2180 global et_vect_floatint_cvt_saved
2182 if [info exists et_vect_floatint_cvt_saved] {
2183 verbose "check_effective_target_vect_floatint_cvt: using cached result" 2
2184 } else {
2185 set et_vect_floatint_cvt_saved 0
2186 if { [istarget i?86-*-*]
2187 || ([istarget powerpc*-*-*]
2188 && ![istarget powerpc-*-linux*paired*])
2189 || [istarget x86_64-*-*]
2190 || ([istarget arm*-*-*]
2191 && [check_effective_target_arm_neon_ok])} {
2192 set et_vect_floatint_cvt_saved 1
2196 verbose "check_effective_target_vect_floatint_cvt: returning $et_vect_floatint_cvt_saved" 2
2197 return $et_vect_floatint_cvt_saved
2200 # Return 1 if the target supports unsigned float->int conversion
2203 proc check_effective_target_vect_floatuint_cvt { } {
2204 global et_vect_floatuint_cvt_saved
2206 if [info exists et_vect_floatuint_cvt_saved] {
2207 verbose "check_effective_target_vect_floatuint_cvt: using cached result" 2
2208 } else {
2209 set et_vect_floatuint_cvt_saved 0
2210 if { ([istarget powerpc*-*-*]
2211 && ![istarget powerpc-*-linux*paired*])
2212 || ([istarget arm*-*-*]
2213 && [check_effective_target_arm_neon_ok])} {
2214 set et_vect_floatuint_cvt_saved 1
2218 verbose "check_effective_target_vect_floatuint_cvt: returning $et_vect_floatuint_cvt_saved" 2
2219 return $et_vect_floatuint_cvt_saved
2222 # Return 1 if the target supports #pragma omp declare simd, 0 otherwise.
2224 # This won't change for different subtargets so cache the result.
2226 proc check_effective_target_vect_simd_clones { } {
2227 global et_vect_simd_clones_saved
2229 if [info exists et_vect_simd_clones_saved] {
2230 verbose "check_effective_target_vect_simd_clones: using cached result" 2
2231 } else {
2232 set et_vect_simd_clones_saved 0
2233 if { [istarget i?86-*-*] || [istarget x86_64-*-*] } {
2234 # On i?86/x86_64 #pragma omp declare simd builds a sse2, avx and
2235 # avx2 clone. Only the right clone for the specified arch will be
2236 # chosen, but still we need to at least be able to assemble
2237 # avx2.
2238 if { [check_effective_target_avx2] } {
2239 set et_vect_simd_clones_saved 1
2244 verbose "check_effective_target_vect_simd_clones: returning $et_vect_simd_clones_saved" 2
2245 return $et_vect_simd_clones_saved
2248 # Return 1 if this is a AArch64 target supporting big endian
2249 proc check_effective_target_aarch64_big_endian { } {
2250 return [check_no_compiler_messages aarch64_big_endian assembly {
2251 #if !defined(__aarch64__) || !defined(__AARCH64EB__)
2252 #error FOO
2253 #endif
2257 # Return 1 if this is a AArch64 target supporting little endian
2258 proc check_effective_target_aarch64_little_endian { } {
2259 return [check_no_compiler_messages aarch64_little_endian assembly {
2260 #if !defined(__aarch64__) || defined(__AARCH64EB__)
2261 #error FOO
2262 #endif
2266 # Return 1 if this is an arm target using 32-bit instructions
2267 proc check_effective_target_arm32 { } {
2268 return [check_no_compiler_messages arm32 assembly {
2269 #if !defined(__arm__) || (defined(__thumb__) && !defined(__thumb2__))
2270 #error FOO
2271 #endif
2275 # Return 1 if this is an arm target not using Thumb
2276 proc check_effective_target_arm_nothumb { } {
2277 return [check_no_compiler_messages arm_nothumb assembly {
2278 #if !defined(__arm__) || (defined(__thumb__) || defined(__thumb2__))
2279 #error FOO
2280 #endif
2284 # Return 1 if this is a little-endian ARM target
2285 proc check_effective_target_arm_little_endian { } {
2286 return [check_no_compiler_messages arm_little_endian assembly {
2287 #if !defined(__arm__) || !defined(__ARMEL__)
2288 #error FOO
2289 #endif
2293 # Return 1 if this is an ARM target that only supports aligned vector accesses
2294 proc check_effective_target_arm_vect_no_misalign { } {
2295 return [check_no_compiler_messages arm_vect_no_misalign assembly {
2296 #if !defined(__arm__) \
2297 || (defined(__ARMEL__) \
2298 && (!defined(__thumb__) || defined(__thumb2__)))
2299 #error FOO
2300 #endif
2305 # Return 1 if this is an ARM target supporting -mfpu=vfp
2306 # -mfloat-abi=softfp. Some multilibs may be incompatible with these
2307 # options.
2309 proc check_effective_target_arm_vfp_ok { } {
2310 if { [check_effective_target_arm32] } {
2311 return [check_no_compiler_messages arm_vfp_ok object {
2312 int dummy;
2313 } "-mfpu=vfp -mfloat-abi=softfp"]
2314 } else {
2315 return 0
2319 # Return 1 if this is an ARM target supporting -mfpu=vfp3
2320 # -mfloat-abi=softfp.
2322 proc check_effective_target_arm_vfp3_ok { } {
2323 if { [check_effective_target_arm32] } {
2324 return [check_no_compiler_messages arm_vfp3_ok object {
2325 int dummy;
2326 } "-mfpu=vfp3 -mfloat-abi=softfp"]
2327 } else {
2328 return 0
2332 # Return 1 if this is an ARM target supporting -mfpu=fp-armv8
2333 # -mfloat-abi=softfp.
2334 proc check_effective_target_arm_v8_vfp_ok {} {
2335 if { [check_effective_target_arm32] } {
2336 return [check_no_compiler_messages arm_v8_vfp_ok object {
2337 int foo (void)
2339 __asm__ volatile ("vrinta.f32.f32 s0, s0");
2340 return 0;
2342 } "-mfpu=fp-armv8 -mfloat-abi=softfp"]
2343 } else {
2344 return 0
2348 # Return 1 if this is an ARM target supporting -mfpu=vfp
2349 # -mfloat-abi=hard. Some multilibs may be incompatible with these
2350 # options.
2352 proc check_effective_target_arm_hard_vfp_ok { } {
2353 if { [check_effective_target_arm32]
2354 && ! [check-flags [list "" { *-*-* } { "-mfloat-abi=*" } { "-mfloat-abi=hard" }]] } {
2355 return [check_no_compiler_messages arm_hard_vfp_ok executable {
2356 int main() { return 0;}
2357 } "-mfpu=vfp -mfloat-abi=hard"]
2358 } else {
2359 return 0
2363 # Return 1 if this is an ARM target that supports DSP multiply with
2364 # current multilib flags.
2366 proc check_effective_target_arm_dsp { } {
2367 return [check_no_compiler_messages arm_dsp assembly {
2368 #ifndef __ARM_FEATURE_DSP
2369 #error not DSP
2370 #endif
2371 int i;
2375 # Return 1 if this is an ARM target that supports unaligned word/halfword
2376 # load/store instructions.
2378 proc check_effective_target_arm_unaligned { } {
2379 return [check_no_compiler_messages arm_unaligned assembly {
2380 #ifndef __ARM_FEATURE_UNALIGNED
2381 #error no unaligned support
2382 #endif
2383 int i;
2387 # Return 1 if this is an ARM target supporting -mfpu=crypto-neon-fp-armv8
2388 # -mfloat-abi=softfp or equivalent options. Some multilibs may be
2389 # incompatible with these options. Also set et_arm_crypto_flags to the
2390 # best options to add.
2392 proc check_effective_target_arm_crypto_ok_nocache { } {
2393 global et_arm_crypto_flags
2394 set et_arm_crypto_flags ""
2395 if { [check_effective_target_arm32] } {
2396 foreach flags {"" "-mfloat-abi=softfp" "-mfpu=crypto-neon-fp-armv8" "-mfpu=crypto-neon-fp-armv8 -mfloat-abi=softfp"} {
2397 if { [check_no_compiler_messages_nocache arm_crypto_ok object {
2398 #include "arm_neon.h"
2399 uint8x16_t
2400 foo (uint8x16_t a, uint8x16_t b)
2402 return vaeseq_u8 (a, b);
2404 } "$flags"] } {
2405 set et_arm_crypto_flags $flags
2406 return 1
2411 return 0
2414 # Return 1 if this is an ARM target supporting -mfpu=crypto-neon-fp-armv8
2416 proc check_effective_target_arm_crypto_ok { } {
2417 return [check_cached_effective_target arm_crypto_ok \
2418 check_effective_target_arm_crypto_ok_nocache]
2421 # Add options for crypto extensions.
2422 proc add_options_for_arm_crypto { flags } {
2423 if { ! [check_effective_target_arm_crypto_ok] } {
2424 return "$flags"
2426 global et_arm_crypto_flags
2427 return "$flags $et_arm_crypto_flags"
2430 # Add the options needed for NEON. We need either -mfloat-abi=softfp
2431 # or -mfloat-abi=hard, but if one is already specified by the
2432 # multilib, use it. Similarly, if a -mfpu option already enables
2433 # NEON, do not add -mfpu=neon.
2435 proc add_options_for_arm_neon { flags } {
2436 if { ! [check_effective_target_arm_neon_ok] } {
2437 return "$flags"
2439 global et_arm_neon_flags
2440 return "$flags $et_arm_neon_flags"
2443 proc add_options_for_arm_v8_vfp { flags } {
2444 if { ! [check_effective_target_arm_v8_vfp_ok] } {
2445 return "$flags"
2447 return "$flags -mfpu=fp-armv8 -mfloat-abi=softfp"
2450 proc add_options_for_arm_v8_neon { flags } {
2451 if { ! [check_effective_target_arm_v8_neon_ok] } {
2452 return "$flags"
2454 global et_arm_v8_neon_flags
2455 return "$flags $et_arm_v8_neon_flags -march=armv8-a"
2458 proc add_options_for_arm_crc { flags } {
2459 if { ! [check_effective_target_arm_crc_ok] } {
2460 return "$flags"
2462 global et_arm_crc_flags
2463 return "$flags $et_arm_crc_flags"
2466 # Add the options needed for NEON. We need either -mfloat-abi=softfp
2467 # or -mfloat-abi=hard, but if one is already specified by the
2468 # multilib, use it. Similarly, if a -mfpu option already enables
2469 # NEON, do not add -mfpu=neon.
2471 proc add_options_for_arm_neonv2 { flags } {
2472 if { ! [check_effective_target_arm_neonv2_ok] } {
2473 return "$flags"
2475 global et_arm_neonv2_flags
2476 return "$flags $et_arm_neonv2_flags"
2479 # Add the options needed for vfp3.
2480 proc add_options_for_arm_vfp3 { flags } {
2481 if { ! [check_effective_target_arm_vfp3_ok] } {
2482 return "$flags"
2484 return "$flags -mfpu=vfp3 -mfloat-abi=softfp"
2487 # Return 1 if this is an ARM target supporting -mfpu=neon
2488 # -mfloat-abi=softfp or equivalent options. Some multilibs may be
2489 # incompatible with these options. Also set et_arm_neon_flags to the
2490 # best options to add.
2492 proc check_effective_target_arm_neon_ok_nocache { } {
2493 global et_arm_neon_flags
2494 set et_arm_neon_flags ""
2495 if { [check_effective_target_arm32] } {
2496 foreach flags {"" "-mfloat-abi=softfp" "-mfpu=neon" "-mfpu=neon -mfloat-abi=softfp"} {
2497 if { [check_no_compiler_messages_nocache arm_neon_ok object {
2498 #include "arm_neon.h"
2499 int dummy;
2500 } "$flags"] } {
2501 set et_arm_neon_flags $flags
2502 return 1
2507 return 0
2510 proc check_effective_target_arm_neon_ok { } {
2511 return [check_cached_effective_target arm_neon_ok \
2512 check_effective_target_arm_neon_ok_nocache]
2515 proc check_effective_target_arm_crc_ok_nocache { } {
2516 global et_arm_crc_flags
2517 set et_arm_crc_flags "-march=armv8-a+crc"
2518 return [check_no_compiler_messages_nocache arm_crc_ok object {
2519 #if !defined (__ARM_FEATURE_CRC32)
2520 #error FOO
2521 #endif
2522 } "$et_arm_crc_flags"]
2525 proc check_effective_target_arm_crc_ok { } {
2526 return [check_cached_effective_target arm_crc_ok \
2527 check_effective_target_arm_crc_ok_nocache]
2530 # Return 1 if this is an ARM target supporting -mfpu=neon-fp16
2531 # -mfloat-abi=softfp or equivalent options. Some multilibs may be
2532 # incompatible with these options. Also set et_arm_neon_flags to the
2533 # best options to add.
2535 proc check_effective_target_arm_neon_fp16_ok_nocache { } {
2536 global et_arm_neon_fp16_flags
2537 set et_arm_neon_fp16_flags ""
2538 if { [check_effective_target_arm32] } {
2539 foreach flags {"" "-mfloat-abi=softfp" "-mfpu=neon-fp16"
2540 "-mfpu=neon-fp16 -mfloat-abi=softfp"} {
2541 if { [check_no_compiler_messages_nocache arm_neon_fp_16_ok object {
2542 #include "arm_neon.h"
2543 float16x4_t
2544 foo (float32x4_t arg)
2546 return vcvt_f16_f32 (arg);
2548 } "$flags"] } {
2549 set et_arm_neon_fp16_flags $flags
2550 return 1
2555 return 0
2558 proc check_effective_target_arm_neon_fp16_ok { } {
2559 return [check_cached_effective_target arm_neon_fp16_ok \
2560 check_effective_target_arm_neon_fp16_ok_nocache]
2563 proc add_options_for_arm_neon_fp16 { flags } {
2564 if { ! [check_effective_target_arm_neon_fp16_ok] } {
2565 return "$flags"
2567 global et_arm_neon_fp16_flags
2568 return "$flags $et_arm_neon_fp16_flags"
2571 # Return 1 if this is an ARM target supporting -mfpu=neon-fp-armv8
2572 # -mfloat-abi=softfp or equivalent options. Some multilibs may be
2573 # incompatible with these options. Also set et_arm_v8_neon_flags to the
2574 # best options to add.
2576 proc check_effective_target_arm_v8_neon_ok_nocache { } {
2577 global et_arm_v8_neon_flags
2578 set et_arm_v8_neon_flags ""
2579 if { [check_effective_target_arm32] } {
2580 foreach flags {"" "-mfloat-abi=softfp" "-mfpu=neon-fp-armv8" "-mfpu=neon-fp-armv8 -mfloat-abi=softfp"} {
2581 if { [check_no_compiler_messages_nocache arm_v8_neon_ok object {
2582 #if __ARM_ARCH < 8
2583 #error not armv8 or later
2584 #endif
2585 #include "arm_neon.h"
2586 void
2587 foo ()
2589 __asm__ volatile ("vrintn.f32 q0, q0");
2591 } "$flags -march=armv8-a"] } {
2592 set et_arm_v8_neon_flags $flags
2593 return 1
2598 return 0
2601 proc check_effective_target_arm_v8_neon_ok { } {
2602 return [check_cached_effective_target arm_v8_neon_ok \
2603 check_effective_target_arm_v8_neon_ok_nocache]
2606 # Return 1 if this is an ARM target supporting -mfpu=neon-vfpv4
2607 # -mfloat-abi=softfp or equivalent options. Some multilibs may be
2608 # incompatible with these options. Also set et_arm_neonv2_flags to the
2609 # best options to add.
2611 proc check_effective_target_arm_neonv2_ok_nocache { } {
2612 global et_arm_neonv2_flags
2613 set et_arm_neonv2_flags ""
2614 if { [check_effective_target_arm32] } {
2615 foreach flags {"" "-mfloat-abi=softfp" "-mfpu=neon-vfpv4" "-mfpu=neon-vfpv4 -mfloat-abi=softfp"} {
2616 if { [check_no_compiler_messages_nocache arm_neonv2_ok object {
2617 #include "arm_neon.h"
2618 float32x2_t
2619 foo (float32x2_t a, float32x2_t b, float32x2_t c)
2621 return vfma_f32 (a, b, c);
2623 } "$flags"] } {
2624 set et_arm_neonv2_flags $flags
2625 return 1
2630 return 0
2633 proc check_effective_target_arm_neonv2_ok { } {
2634 return [check_cached_effective_target arm_neonv2_ok \
2635 check_effective_target_arm_neonv2_ok_nocache]
2638 # Add the options needed for NEON. We need either -mfloat-abi=softfp
2639 # or -mfloat-abi=hard, but if one is already specified by the
2640 # multilib, use it.
2642 proc add_options_for_arm_fp16 { flags } {
2643 if { ! [check_effective_target_arm_fp16_ok] } {
2644 return "$flags"
2646 global et_arm_fp16_flags
2647 return "$flags $et_arm_fp16_flags"
2650 # Return 1 if this is an ARM target that can support a VFP fp16 variant.
2651 # Skip multilibs that are incompatible with these options and set
2652 # et_arm_fp16_flags to the best options to add.
2654 proc check_effective_target_arm_fp16_ok_nocache { } {
2655 global et_arm_fp16_flags
2656 set et_arm_fp16_flags ""
2657 if { ! [check_effective_target_arm32] } {
2658 return 0;
2660 if [check-flags [list "" { *-*-* } { "-mfpu=*" } { "-mfpu=*fp16*" "-mfpu=*fpv[4-9]*" "-mfpu=*fpv[1-9][0-9]*" } ]] {
2661 # Multilib flags would override -mfpu.
2662 return 0
2664 if [check-flags [list "" { *-*-* } { "-mfloat-abi=soft" } { "" } ]] {
2665 # Must generate floating-point instructions.
2666 return 0
2668 if [check_effective_target_arm_hf_eabi] {
2669 # Use existing float-abi and force an fpu which supports fp16
2670 set et_arm_fp16_flags "-mfpu=vfpv4"
2671 return 1;
2673 if [check-flags [list "" { *-*-* } { "-mfpu=*" } { "" } ]] {
2674 # The existing -mfpu value is OK; use it, but add softfp.
2675 set et_arm_fp16_flags "-mfloat-abi=softfp"
2676 return 1;
2678 # Add -mfpu for a VFP fp16 variant since there is no preprocessor
2679 # macro to check for this support.
2680 set flags "-mfpu=vfpv4 -mfloat-abi=softfp"
2681 if { [check_no_compiler_messages_nocache arm_fp16_ok assembly {
2682 int dummy;
2683 } "$flags"] } {
2684 set et_arm_fp16_flags "$flags"
2685 return 1
2688 return 0
2691 proc check_effective_target_arm_fp16_ok { } {
2692 return [check_cached_effective_target arm_fp16_ok \
2693 check_effective_target_arm_fp16_ok_nocache]
2696 # Creates a series of routines that return 1 if the given architecture
2697 # can be selected and a routine to give the flags to select that architecture
2698 # Note: Extra flags may be added to disable options from newer compilers
2699 # (Thumb in particular - but others may be added in the future)
2700 # Usage: /* { dg-require-effective-target arm_arch_v5_ok } */
2701 # /* { dg-add-options arm_arch_v5 } */
2702 # /* { dg-require-effective-target arm_arch_v5_multilib } */
2703 foreach { armfunc armflag armdef } { v4 "-march=armv4 -marm" __ARM_ARCH_4__
2704 v4t "-march=armv4t" __ARM_ARCH_4T__
2705 v5 "-march=armv5 -marm" __ARM_ARCH_5__
2706 v5t "-march=armv5t" __ARM_ARCH_5T__
2707 v5te "-march=armv5te" __ARM_ARCH_5TE__
2708 v6 "-march=armv6" __ARM_ARCH_6__
2709 v6k "-march=armv6k" __ARM_ARCH_6K__
2710 v6t2 "-march=armv6t2" __ARM_ARCH_6T2__
2711 v6z "-march=armv6z" __ARM_ARCH_6Z__
2712 v6m "-march=armv6-m -mthumb" __ARM_ARCH_6M__
2713 v7a "-march=armv7-a" __ARM_ARCH_7A__
2714 v7ve "-march=armv7ve" __ARM_ARCH_7A__
2715 v7r "-march=armv7-r" __ARM_ARCH_7R__
2716 v7m "-march=armv7-m -mthumb" __ARM_ARCH_7M__
2717 v7em "-march=armv7e-m -mthumb" __ARM_ARCH_7EM__
2718 v8a "-march=armv8-a" __ARM_ARCH_8A__ } {
2719 eval [string map [list FUNC $armfunc FLAG $armflag DEF $armdef ] {
2720 proc check_effective_target_arm_arch_FUNC_ok { } {
2721 if { [ string match "*-marm*" "FLAG" ] &&
2722 ![check_effective_target_arm_arm_ok] } {
2723 return 0
2725 return [check_no_compiler_messages arm_arch_FUNC_ok assembly {
2726 #if !defined (DEF)
2727 #error FOO
2728 #endif
2729 } "FLAG" ]
2732 proc add_options_for_arm_arch_FUNC { flags } {
2733 return "$flags FLAG"
2736 proc check_effective_target_arm_arch_FUNC_multilib { } {
2737 return [check_runtime arm_arch_FUNC_multilib {
2739 main (void)
2741 return 0;
2743 } [add_options_for_arm_arch_FUNC ""]]
2748 # Return 1 if this is an ARM target where -marm causes ARM to be
2749 # used (not Thumb)
2751 proc check_effective_target_arm_arm_ok { } {
2752 return [check_no_compiler_messages arm_arm_ok assembly {
2753 #if !defined (__arm__) || defined (__thumb__) || defined (__thumb2__)
2754 #error FOO
2755 #endif
2756 } "-marm"]
2760 # Return 1 is this is an ARM target where -mthumb causes Thumb-1 to be
2761 # used.
2763 proc check_effective_target_arm_thumb1_ok { } {
2764 return [check_no_compiler_messages arm_thumb1_ok assembly {
2765 #if !defined(__arm__) || !defined(__thumb__) || defined(__thumb2__)
2766 #error FOO
2767 #endif
2768 int foo (int i) { return i; }
2769 } "-mthumb"]
2772 # Return 1 is this is an ARM target where -mthumb causes Thumb-2 to be
2773 # used.
2775 proc check_effective_target_arm_thumb2_ok { } {
2776 return [check_no_compiler_messages arm_thumb2_ok assembly {
2777 #if !defined(__thumb2__)
2778 #error FOO
2779 #endif
2780 int foo (int i) { return i; }
2781 } "-mthumb"]
2784 # Return 1 if this is an ARM target where Thumb-1 is used without options
2785 # added by the test.
2787 proc check_effective_target_arm_thumb1 { } {
2788 return [check_no_compiler_messages arm_thumb1 assembly {
2789 #if !defined(__arm__) || !defined(__thumb__) || defined(__thumb2__)
2790 #error not thumb1
2791 #endif
2792 int i;
2793 } ""]
2796 # Return 1 if this is an ARM target where Thumb-2 is used without options
2797 # added by the test.
2799 proc check_effective_target_arm_thumb2 { } {
2800 return [check_no_compiler_messages arm_thumb2 assembly {
2801 #if !defined(__thumb2__)
2802 #error FOO
2803 #endif
2804 int i;
2805 } ""]
2808 # Return 1 if this is an ARM target where conditional execution is available.
2810 proc check_effective_target_arm_cond_exec { } {
2811 return [check_no_compiler_messages arm_cond_exec assembly {
2812 #if defined(__arm__) && defined(__thumb__) && !defined(__thumb2__)
2813 #error FOO
2814 #endif
2815 int i;
2816 } ""]
2819 # Return 1 if this is an ARM cortex-M profile cpu
2821 proc check_effective_target_arm_cortex_m { } {
2822 return [check_no_compiler_messages arm_cortex_m assembly {
2823 #if !defined(__ARM_ARCH_7M__) \
2824 && !defined (__ARM_ARCH_7EM__) \
2825 && !defined (__ARM_ARCH_6M__)
2826 #error FOO
2827 #endif
2828 int i;
2829 } "-mthumb"]
2832 # Return 1 if the target supports executing NEON instructions, 0
2833 # otherwise. Cache the result.
2835 proc check_effective_target_arm_neon_hw { } {
2836 return [check_runtime arm_neon_hw_available {
2838 main (void)
2840 long long a = 0, b = 1;
2841 asm ("vorr %P0, %P1, %P2"
2842 : "=w" (a)
2843 : "0" (a), "w" (b));
2844 return (a != 1);
2846 } [add_options_for_arm_neon ""]]
2849 proc check_effective_target_arm_neonv2_hw { } {
2850 return [check_runtime arm_neon_hwv2_available {
2851 #include "arm_neon.h"
2853 main (void)
2855 float32x2_t a, b, c;
2856 asm ("vfma.f32 %P0, %P1, %P2"
2857 : "=w" (a)
2858 : "w" (b), "w" (c));
2859 return 0;
2861 } [add_options_for_arm_neonv2 ""]]
2864 # Return 1 if the target supports executing ARMv8 NEON instructions, 0
2865 # otherwise.
2867 proc check_effective_target_arm_v8_neon_hw { } {
2868 return [check_runtime arm_v8_neon_hw_available {
2869 #include "arm_neon.h"
2871 main (void)
2873 float32x2_t a;
2874 asm ("vrinta.f32 %P0, %P1"
2875 : "=w" (a)
2876 : "0" (a));
2877 return 0;
2879 } [add_options_for_arm_v8_neon ""]]
2882 # Return 1 if this is a ARM target with NEON enabled.
2884 proc check_effective_target_arm_neon { } {
2885 if { [check_effective_target_arm32] } {
2886 return [check_no_compiler_messages arm_neon object {
2887 #ifndef __ARM_NEON__
2888 #error not NEON
2889 #else
2890 int dummy;
2891 #endif
2893 } else {
2894 return 0
2898 proc check_effective_target_arm_neonv2 { } {
2899 if { [check_effective_target_arm32] } {
2900 return [check_no_compiler_messages arm_neon object {
2901 #ifndef __ARM_NEON__
2902 #error not NEON
2903 #else
2904 #ifndef __ARM_FEATURE_FMA
2905 #error not NEONv2
2906 #else
2907 int dummy;
2908 #endif
2909 #endif
2911 } else {
2912 return 0
2916 # Return 1 if this a Loongson-2E or -2F target using an ABI that supports
2917 # the Loongson vector modes.
2919 proc check_effective_target_mips_loongson { } {
2920 return [check_no_compiler_messages loongson assembly {
2921 #if !defined(__mips_loongson_vector_rev)
2922 #error FOO
2923 #endif
2927 # Return 1 if this is an ARM target that adheres to the ABI for the ARM
2928 # Architecture.
2930 proc check_effective_target_arm_eabi { } {
2931 return [check_no_compiler_messages arm_eabi object {
2932 #ifndef __ARM_EABI__
2933 #error not EABI
2934 #else
2935 int dummy;
2936 #endif
2940 # Return 1 if this is an ARM target that adheres to the hard-float variant of
2941 # the ABI for the ARM Architecture (e.g. -mfloat-abi=hard).
2943 proc check_effective_target_arm_hf_eabi { } {
2944 return [check_no_compiler_messages arm_hf_eabi object {
2945 #if !defined(__ARM_EABI__) || !defined(__ARM_PCS_VFP)
2946 #error not hard-float EABI
2947 #else
2948 int dummy;
2949 #endif
2953 # Return 1 if this is an ARM target supporting -mcpu=iwmmxt.
2954 # Some multilibs may be incompatible with this option.
2956 proc check_effective_target_arm_iwmmxt_ok { } {
2957 if { [check_effective_target_arm32] } {
2958 return [check_no_compiler_messages arm_iwmmxt_ok object {
2959 int dummy;
2960 } "-mcpu=iwmmxt"]
2961 } else {
2962 return 0
2966 # Return true if LDRD/STRD instructions are prefered over LDM/STM instructions
2967 # for an ARM target.
2968 proc check_effective_target_arm_prefer_ldrd_strd { } {
2969 if { ![check_effective_target_arm32] } {
2970 return 0;
2973 return [check_no_messages_and_pattern arm_prefer_ldrd_strd "strd\tr" assembly {
2974 void foo (int *p) { p[0] = 1; p[1] = 0;}
2975 } "-O2 -mthumb" ]
2978 # Return 1 if this is a PowerPC target supporting -meabi.
2980 proc check_effective_target_powerpc_eabi_ok { } {
2981 if { [istarget powerpc*-*-*] } {
2982 return [check_no_compiler_messages powerpc_eabi_ok object {
2983 int dummy;
2984 } "-meabi"]
2985 } else {
2986 return 0
2990 # Return 1 if this is a PowerPC target with floating-point registers.
2992 proc check_effective_target_powerpc_fprs { } {
2993 if { [istarget powerpc*-*-*]
2994 || [istarget rs6000-*-*] } {
2995 return [check_no_compiler_messages powerpc_fprs object {
2996 #ifdef __NO_FPRS__
2997 #error no FPRs
2998 #else
2999 int dummy;
3000 #endif
3002 } else {
3003 return 0
3007 # Return 1 if this is a PowerPC target with hardware double-precision
3008 # floating point.
3010 proc check_effective_target_powerpc_hard_double { } {
3011 if { [istarget powerpc*-*-*]
3012 || [istarget rs6000-*-*] } {
3013 return [check_no_compiler_messages powerpc_hard_double object {
3014 #ifdef _SOFT_DOUBLE
3015 #error soft double
3016 #else
3017 int dummy;
3018 #endif
3020 } else {
3021 return 0
3025 # Return 1 if this is a PowerPC target supporting -maltivec.
3027 proc check_effective_target_powerpc_altivec_ok { } {
3028 if { ([istarget powerpc*-*-*]
3029 && ![istarget powerpc-*-linux*paired*])
3030 || [istarget rs6000-*-*] } {
3031 # AltiVec is not supported on AIX before 5.3.
3032 if { [istarget powerpc*-*-aix4*]
3033 || [istarget powerpc*-*-aix5.1*]
3034 || [istarget powerpc*-*-aix5.2*] } {
3035 return 0
3037 return [check_no_compiler_messages powerpc_altivec_ok object {
3038 int dummy;
3039 } "-maltivec"]
3040 } else {
3041 return 0
3045 # Return 1 if this is a PowerPC target supporting -mpower8-vector
3047 proc check_effective_target_powerpc_p8vector_ok { } {
3048 if { ([istarget powerpc*-*-*]
3049 && ![istarget powerpc-*-linux*paired*])
3050 || [istarget rs6000-*-*] } {
3051 # AltiVec is not supported on AIX before 5.3.
3052 if { [istarget powerpc*-*-aix4*]
3053 || [istarget powerpc*-*-aix5.1*]
3054 || [istarget powerpc*-*-aix5.2*] } {
3055 return 0
3057 return [check_no_compiler_messages powerpc_p8vector_ok object {
3058 int main (void) {
3059 #ifdef __MACH__
3060 asm volatile ("xxlorc vs0,vs0,vs0");
3061 #else
3062 asm volatile ("xxlorc 0,0,0");
3063 #endif
3064 return 0;
3066 } "-mpower8-vector"]
3067 } else {
3068 return 0
3072 # Return 1 if this is a PowerPC target supporting -mvsx
3074 proc check_effective_target_powerpc_vsx_ok { } {
3075 if { ([istarget powerpc*-*-*]
3076 && ![istarget powerpc-*-linux*paired*])
3077 || [istarget rs6000-*-*] } {
3078 # VSX is not supported on AIX before 7.1.
3079 if { [istarget powerpc*-*-aix4*]
3080 || [istarget powerpc*-*-aix5*]
3081 || [istarget powerpc*-*-aix6*] } {
3082 return 0
3084 return [check_no_compiler_messages powerpc_vsx_ok object {
3085 int main (void) {
3086 #ifdef __MACH__
3087 asm volatile ("xxlor vs0,vs0,vs0");
3088 #else
3089 asm volatile ("xxlor 0,0,0");
3090 #endif
3091 return 0;
3093 } "-mvsx"]
3094 } else {
3095 return 0
3099 # Return 1 if this is a PowerPC target supporting -mhtm
3101 proc check_effective_target_powerpc_htm_ok { } {
3102 if { ([istarget powerpc*-*-*]
3103 && ![istarget powerpc-*-linux*paired*])
3104 || [istarget rs6000-*-*] } {
3105 # HTM is not supported on AIX yet.
3106 if { [istarget powerpc*-*-aix*] } {
3107 return 0
3109 return [check_no_compiler_messages powerpc_htm_ok object {
3110 int main (void) {
3111 asm volatile ("tbegin. 0");
3112 return 0;
3114 } "-mhtm"]
3115 } else {
3116 return 0
3120 # Return 1 if this is a PowerPC target supporting -mcpu=cell.
3122 proc check_effective_target_powerpc_ppu_ok { } {
3123 if [check_effective_target_powerpc_altivec_ok] {
3124 return [check_no_compiler_messages cell_asm_available object {
3125 int main (void) {
3126 #ifdef __MACH__
3127 asm volatile ("lvlx v0,v0,v0");
3128 #else
3129 asm volatile ("lvlx 0,0,0");
3130 #endif
3131 return 0;
3134 } else {
3135 return 0
3139 # Return 1 if this is a PowerPC target that supports SPU.
3141 proc check_effective_target_powerpc_spu { } {
3142 if { [istarget powerpc*-*-linux*] } {
3143 return [check_effective_target_powerpc_altivec_ok]
3144 } else {
3145 return 0
3149 # Return 1 if this is a PowerPC SPE target. The check includes options
3150 # specified by dg-options for this test, so don't cache the result.
3152 proc check_effective_target_powerpc_spe_nocache { } {
3153 if { [istarget powerpc*-*-*] } {
3154 return [check_no_compiler_messages_nocache powerpc_spe object {
3155 #ifndef __SPE__
3156 #error not SPE
3157 #else
3158 int dummy;
3159 #endif
3160 } [current_compiler_flags]]
3161 } else {
3162 return 0
3166 # Return 1 if this is a PowerPC target with SPE enabled.
3168 proc check_effective_target_powerpc_spe { } {
3169 if { [istarget powerpc*-*-*] } {
3170 return [check_no_compiler_messages powerpc_spe object {
3171 #ifndef __SPE__
3172 #error not SPE
3173 #else
3174 int dummy;
3175 #endif
3177 } else {
3178 return 0
3182 # Return 1 if this is a PowerPC target with Altivec enabled.
3184 proc check_effective_target_powerpc_altivec { } {
3185 if { [istarget powerpc*-*-*] } {
3186 return [check_no_compiler_messages powerpc_altivec object {
3187 #ifndef __ALTIVEC__
3188 #error not Altivec
3189 #else
3190 int dummy;
3191 #endif
3193 } else {
3194 return 0
3198 # Return 1 if this is a PowerPC 405 target. The check includes options
3199 # specified by dg-options for this test, so don't cache the result.
3201 proc check_effective_target_powerpc_405_nocache { } {
3202 if { [istarget powerpc*-*-*] || [istarget rs6000-*-*] } {
3203 return [check_no_compiler_messages_nocache powerpc_405 object {
3204 #ifdef __PPC405__
3205 int dummy;
3206 #else
3207 #error not a PPC405
3208 #endif
3209 } [current_compiler_flags]]
3210 } else {
3211 return 0
3215 # Return 1 if this is a PowerPC target using the ELFv2 ABI.
3217 proc check_effective_target_powerpc_elfv2 { } {
3218 if { [istarget powerpc*-*-*] } {
3219 return [check_no_compiler_messages powerpc_elfv2 object {
3220 #if _CALL_ELF != 2
3221 #error not ELF v2 ABI
3222 #else
3223 int dummy;
3224 #endif
3226 } else {
3227 return 0
3231 # Return 1 if this is a SPU target with a toolchain that
3232 # supports automatic overlay generation.
3234 proc check_effective_target_spu_auto_overlay { } {
3235 if { [istarget spu*-*-elf*] } {
3236 return [check_no_compiler_messages spu_auto_overlay executable {
3237 int main (void) { }
3238 } "-Wl,--auto-overlay" ]
3239 } else {
3240 return 0
3244 # The VxWorks SPARC simulator accepts only EM_SPARC executables and
3245 # chokes on EM_SPARC32PLUS or EM_SPARCV9 executables. Return 1 if the
3246 # test environment appears to run executables on such a simulator.
3248 proc check_effective_target_ultrasparc_hw { } {
3249 return [check_runtime ultrasparc_hw {
3250 int main() { return 0; }
3251 } "-mcpu=ultrasparc"]
3254 # Return 1 if the test environment supports executing UltraSPARC VIS2
3255 # instructions. We check this by attempting: "bmask %g0, %g0, %g0"
3257 proc check_effective_target_ultrasparc_vis2_hw { } {
3258 return [check_runtime ultrasparc_vis2_hw {
3259 int main() { __asm__(".word 0x81b00320"); return 0; }
3260 } "-mcpu=ultrasparc3"]
3263 # Return 1 if the test environment supports executing UltraSPARC VIS3
3264 # instructions. We check this by attempting: "addxc %g0, %g0, %g0"
3266 proc check_effective_target_ultrasparc_vis3_hw { } {
3267 return [check_runtime ultrasparc_vis3_hw {
3268 int main() { __asm__(".word 0x81b00220"); return 0; }
3269 } "-mcpu=niagara3"]
3272 # Return 1 if this is a SPARC-V9 target.
3274 proc check_effective_target_sparc_v9 { } {
3275 if { [istarget sparc*-*-*] } {
3276 return [check_no_compiler_messages sparc_v9 object {
3277 int main (void) {
3278 asm volatile ("return %i7+8");
3279 return 0;
3282 } else {
3283 return 0
3287 # Return 1 if this is a SPARC target with VIS enabled.
3289 proc check_effective_target_sparc_vis { } {
3290 if { [istarget sparc*-*-*] } {
3291 return [check_no_compiler_messages sparc_vis object {
3292 #ifndef __VIS__
3293 #error not VIS
3294 #else
3295 int dummy;
3296 #endif
3298 } else {
3299 return 0
3303 # Return 1 if the target supports hardware vector shift operation.
3305 proc check_effective_target_vect_shift { } {
3306 global et_vect_shift_saved
3308 if [info exists et_vect_shift_saved] {
3309 verbose "check_effective_target_vect_shift: using cached result" 2
3310 } else {
3311 set et_vect_shift_saved 0
3312 if { ([istarget powerpc*-*-*]
3313 && ![istarget powerpc-*-linux*paired*])
3314 || [istarget ia64-*-*]
3315 || [istarget i?86-*-*]
3316 || [istarget x86_64-*-*]
3317 || [istarget aarch64*-*-*]
3318 || [check_effective_target_arm32]
3319 || ([istarget mips*-*-*]
3320 && [check_effective_target_mips_loongson]) } {
3321 set et_vect_shift_saved 1
3325 verbose "check_effective_target_vect_shift: returning $et_vect_shift_saved" 2
3326 return $et_vect_shift_saved
3329 # Return 1 if the target supports vector bswap operations.
3331 proc check_effective_target_vect_bswap { } {
3332 global et_vect_bswap_saved
3334 if [info exists et_vect_bswap_saved] {
3335 verbose "check_effective_target_vect_bswap: using cached result" 2
3336 } else {
3337 set et_vect_bswap_saved 0
3338 if { [istarget aarch64*-*-*]
3339 || ([istarget arm*-*-*]
3340 && [check_effective_target_arm_neon])
3342 set et_vect_bswap_saved 1
3346 verbose "check_effective_target_vect_bswap: returning $et_vect_bswap_saved" 2
3347 return $et_vect_bswap_saved
3350 # Return 1 if the target supports hardware vector shift operation for char.
3352 proc check_effective_target_vect_shift_char { } {
3353 global et_vect_shift_char_saved
3355 if [info exists et_vect_shift_char_saved] {
3356 verbose "check_effective_target_vect_shift_char: using cached result" 2
3357 } else {
3358 set et_vect_shift_char_saved 0
3359 if { ([istarget powerpc*-*-*]
3360 && ![istarget powerpc-*-linux*paired*])
3361 || [check_effective_target_arm32] } {
3362 set et_vect_shift_char_saved 1
3366 verbose "check_effective_target_vect_shift_char: returning $et_vect_shift_char_saved" 2
3367 return $et_vect_shift_char_saved
3370 # Return 1 if the target supports hardware vectors of long, 0 otherwise.
3372 # This can change for different subtargets so do not cache the result.
3374 proc check_effective_target_vect_long { } {
3375 if { [istarget i?86-*-*]
3376 || (([istarget powerpc*-*-*]
3377 && ![istarget powerpc-*-linux*paired*])
3378 && [check_effective_target_ilp32])
3379 || [istarget x86_64-*-*]
3380 || [check_effective_target_arm32]
3381 || ([istarget sparc*-*-*] && [check_effective_target_ilp32]) } {
3382 set answer 1
3383 } else {
3384 set answer 0
3387 verbose "check_effective_target_vect_long: returning $answer" 2
3388 return $answer
3391 # Return 1 if the target supports hardware vectors of float, 0 otherwise.
3393 # This won't change for different subtargets so cache the result.
3395 proc check_effective_target_vect_float { } {
3396 global et_vect_float_saved
3398 if [info exists et_vect_float_saved] {
3399 verbose "check_effective_target_vect_float: using cached result" 2
3400 } else {
3401 set et_vect_float_saved 0
3402 if { [istarget i?86-*-*]
3403 || [istarget powerpc*-*-*]
3404 || [istarget spu-*-*]
3405 || [istarget mips-sde-elf]
3406 || [istarget mipsisa64*-*-*]
3407 || [istarget x86_64-*-*]
3408 || [istarget ia64-*-*]
3409 || [istarget aarch64*-*-*]
3410 || [check_effective_target_arm32] } {
3411 set et_vect_float_saved 1
3415 verbose "check_effective_target_vect_float: returning $et_vect_float_saved" 2
3416 return $et_vect_float_saved
3419 # Return 1 if the target supports hardware vectors of double, 0 otherwise.
3421 # This won't change for different subtargets so cache the result.
3423 proc check_effective_target_vect_double { } {
3424 global et_vect_double_saved
3426 if [info exists et_vect_double_saved] {
3427 verbose "check_effective_target_vect_double: using cached result" 2
3428 } else {
3429 set et_vect_double_saved 0
3430 if { [istarget i?86-*-*]
3431 || [istarget aarch64*-*-*]
3432 || [istarget x86_64-*-*] } {
3433 if { [check_no_compiler_messages vect_double assembly {
3434 #ifdef __tune_atom__
3435 # error No double vectorizer support.
3436 #endif
3437 }] } {
3438 set et_vect_double_saved 1
3439 } else {
3440 set et_vect_double_saved 0
3442 } elseif { [istarget spu-*-*] } {
3443 set et_vect_double_saved 1
3447 verbose "check_effective_target_vect_double: returning $et_vect_double_saved" 2
3448 return $et_vect_double_saved
3451 # Return 1 if the target supports hardware vectors of long long, 0 otherwise.
3453 # This won't change for different subtargets so cache the result.
3455 proc check_effective_target_vect_long_long { } {
3456 global et_vect_long_long_saved
3458 if [info exists et_vect_long_long_saved] {
3459 verbose "check_effective_target_vect_long_long: using cached result" 2
3460 } else {
3461 set et_vect_long_long_saved 0
3462 if { [istarget i?86-*-*]
3463 || [istarget x86_64-*-*] } {
3464 set et_vect_long_long_saved 1
3468 verbose "check_effective_target_vect_long_long: returning $et_vect_long_long_saved" 2
3469 return $et_vect_long_long_saved
3473 # Return 1 if the target plus current options does not support a vector
3474 # max instruction on "int", 0 otherwise.
3476 # This won't change for different subtargets so cache the result.
3478 proc check_effective_target_vect_no_int_max { } {
3479 global et_vect_no_int_max_saved
3481 if [info exists et_vect_no_int_max_saved] {
3482 verbose "check_effective_target_vect_no_int_max: using cached result" 2
3483 } else {
3484 set et_vect_no_int_max_saved 0
3485 if { [istarget sparc*-*-*]
3486 || [istarget spu-*-*]
3487 || [istarget alpha*-*-*]
3488 || ([istarget mips*-*-*]
3489 && [check_effective_target_mips_loongson]) } {
3490 set et_vect_no_int_max_saved 1
3493 verbose "check_effective_target_vect_no_int_max: returning $et_vect_no_int_max_saved" 2
3494 return $et_vect_no_int_max_saved
3497 # Return 1 if the target plus current options does not support a vector
3498 # add instruction on "int", 0 otherwise.
3500 # This won't change for different subtargets so cache the result.
3502 proc check_effective_target_vect_no_int_add { } {
3503 global et_vect_no_int_add_saved
3505 if [info exists et_vect_no_int_add_saved] {
3506 verbose "check_effective_target_vect_no_int_add: using cached result" 2
3507 } else {
3508 set et_vect_no_int_add_saved 0
3509 # Alpha only supports vector add on V8QI and V4HI.
3510 if { [istarget alpha*-*-*] } {
3511 set et_vect_no_int_add_saved 1
3514 verbose "check_effective_target_vect_no_int_add: returning $et_vect_no_int_add_saved" 2
3515 return $et_vect_no_int_add_saved
3518 # Return 1 if the target plus current options does not support vector
3519 # bitwise instructions, 0 otherwise.
3521 # This won't change for different subtargets so cache the result.
3523 proc check_effective_target_vect_no_bitwise { } {
3524 global et_vect_no_bitwise_saved
3526 if [info exists et_vect_no_bitwise_saved] {
3527 verbose "check_effective_target_vect_no_bitwise: using cached result" 2
3528 } else {
3529 set et_vect_no_bitwise_saved 0
3531 verbose "check_effective_target_vect_no_bitwise: returning $et_vect_no_bitwise_saved" 2
3532 return $et_vect_no_bitwise_saved
3535 # Return 1 if the target plus current options supports vector permutation,
3536 # 0 otherwise.
3538 # This won't change for different subtargets so cache the result.
3540 proc check_effective_target_vect_perm { } {
3541 global et_vect_perm
3543 if [info exists et_vect_perm_saved] {
3544 verbose "check_effective_target_vect_perm: using cached result" 2
3545 } else {
3546 set et_vect_perm_saved 0
3547 if { [is-effective-target arm_neon_ok]
3548 || [istarget aarch64*-*-*]
3549 || [istarget powerpc*-*-*]
3550 || [istarget spu-*-*]
3551 || [istarget i?86-*-*]
3552 || [istarget x86_64-*-*]
3553 || ([istarget mips*-*-*]
3554 && [check_effective_target_mpaired_single]) } {
3555 set et_vect_perm_saved 1
3558 verbose "check_effective_target_vect_perm: returning $et_vect_perm_saved" 2
3559 return $et_vect_perm_saved
3562 # Return 1 if the target plus current options supports vector permutation
3563 # on byte-sized elements, 0 otherwise.
3565 # This won't change for different subtargets so cache the result.
3567 proc check_effective_target_vect_perm_byte { } {
3568 global et_vect_perm_byte
3570 if [info exists et_vect_perm_byte_saved] {
3571 verbose "check_effective_target_vect_perm_byte: using cached result" 2
3572 } else {
3573 set et_vect_perm_byte_saved 0
3574 if { ([is-effective-target arm_neon_ok]
3575 && [is-effective-target arm_little_endian])
3576 || ([istarget aarch64*-*-*]
3577 && [is-effective-target aarch64_little_endian])
3578 || [istarget powerpc*-*-*]
3579 || [istarget spu-*-*] } {
3580 set et_vect_perm_byte_saved 1
3583 verbose "check_effective_target_vect_perm_byte: returning $et_vect_perm_byte_saved" 2
3584 return $et_vect_perm_byte_saved
3587 # Return 1 if the target plus current options supports vector permutation
3588 # on short-sized elements, 0 otherwise.
3590 # This won't change for different subtargets so cache the result.
3592 proc check_effective_target_vect_perm_short { } {
3593 global et_vect_perm_short
3595 if [info exists et_vect_perm_short_saved] {
3596 verbose "check_effective_target_vect_perm_short: using cached result" 2
3597 } else {
3598 set et_vect_perm_short_saved 0
3599 if { ([is-effective-target arm_neon_ok]
3600 && [is-effective-target arm_little_endian])
3601 || ([istarget aarch64*-*-*]
3602 && [is-effective-target aarch64_little_endian])
3603 || [istarget powerpc*-*-*]
3604 || [istarget spu-*-*] } {
3605 set et_vect_perm_short_saved 1
3608 verbose "check_effective_target_vect_perm_short: returning $et_vect_perm_short_saved" 2
3609 return $et_vect_perm_short_saved
3612 # Return 1 if the target plus current options supports a vector
3613 # widening summation of *short* args into *int* result, 0 otherwise.
3615 # This won't change for different subtargets so cache the result.
3617 proc check_effective_target_vect_widen_sum_hi_to_si_pattern { } {
3618 global et_vect_widen_sum_hi_to_si_pattern
3620 if [info exists et_vect_widen_sum_hi_to_si_pattern_saved] {
3621 verbose "check_effective_target_vect_widen_sum_hi_to_si_pattern: using cached result" 2
3622 } else {
3623 set et_vect_widen_sum_hi_to_si_pattern_saved 0
3624 if { [istarget powerpc*-*-*]
3625 || [istarget ia64-*-*] } {
3626 set et_vect_widen_sum_hi_to_si_pattern_saved 1
3629 verbose "check_effective_target_vect_widen_sum_hi_to_si_pattern: returning $et_vect_widen_sum_hi_to_si_pattern_saved" 2
3630 return $et_vect_widen_sum_hi_to_si_pattern_saved
3633 # Return 1 if the target plus current options supports a vector
3634 # widening summation of *short* args into *int* result, 0 otherwise.
3635 # A target can also support this widening summation if it can support
3636 # promotion (unpacking) from shorts to ints.
3638 # This won't change for different subtargets so cache the result.
3640 proc check_effective_target_vect_widen_sum_hi_to_si { } {
3641 global et_vect_widen_sum_hi_to_si
3643 if [info exists et_vect_widen_sum_hi_to_si_saved] {
3644 verbose "check_effective_target_vect_widen_sum_hi_to_si: using cached result" 2
3645 } else {
3646 set et_vect_widen_sum_hi_to_si_saved [check_effective_target_vect_unpack]
3647 if { [istarget powerpc*-*-*]
3648 || [istarget ia64-*-*] } {
3649 set et_vect_widen_sum_hi_to_si_saved 1
3652 verbose "check_effective_target_vect_widen_sum_hi_to_si: returning $et_vect_widen_sum_hi_to_si_saved" 2
3653 return $et_vect_widen_sum_hi_to_si_saved
3656 # Return 1 if the target plus current options supports a vector
3657 # widening summation of *char* args into *short* result, 0 otherwise.
3658 # A target can also support this widening summation if it can support
3659 # promotion (unpacking) from chars to shorts.
3661 # This won't change for different subtargets so cache the result.
3663 proc check_effective_target_vect_widen_sum_qi_to_hi { } {
3664 global et_vect_widen_sum_qi_to_hi
3666 if [info exists et_vect_widen_sum_qi_to_hi_saved] {
3667 verbose "check_effective_target_vect_widen_sum_qi_to_hi: using cached result" 2
3668 } else {
3669 set et_vect_widen_sum_qi_to_hi_saved 0
3670 if { [check_effective_target_vect_unpack]
3671 || [check_effective_target_arm_neon_ok]
3672 || [istarget ia64-*-*] } {
3673 set et_vect_widen_sum_qi_to_hi_saved 1
3676 verbose "check_effective_target_vect_widen_sum_qi_to_hi: returning $et_vect_widen_sum_qi_to_hi_saved" 2
3677 return $et_vect_widen_sum_qi_to_hi_saved
3680 # Return 1 if the target plus current options supports a vector
3681 # widening summation of *char* args into *int* result, 0 otherwise.
3683 # This won't change for different subtargets so cache the result.
3685 proc check_effective_target_vect_widen_sum_qi_to_si { } {
3686 global et_vect_widen_sum_qi_to_si
3688 if [info exists et_vect_widen_sum_qi_to_si_saved] {
3689 verbose "check_effective_target_vect_widen_sum_qi_to_si: using cached result" 2
3690 } else {
3691 set et_vect_widen_sum_qi_to_si_saved 0
3692 if { [istarget powerpc*-*-*] } {
3693 set et_vect_widen_sum_qi_to_si_saved 1
3696 verbose "check_effective_target_vect_widen_sum_qi_to_si: returning $et_vect_widen_sum_qi_to_si_saved" 2
3697 return $et_vect_widen_sum_qi_to_si_saved
3700 # Return 1 if the target plus current options supports a vector
3701 # widening multiplication of *char* args into *short* result, 0 otherwise.
3702 # A target can also support this widening multplication if it can support
3703 # promotion (unpacking) from chars to shorts, and vect_short_mult (non-widening
3704 # multiplication of shorts).
3706 # This won't change for different subtargets so cache the result.
3709 proc check_effective_target_vect_widen_mult_qi_to_hi { } {
3710 global et_vect_widen_mult_qi_to_hi
3712 if [info exists et_vect_widen_mult_qi_to_hi_saved] {
3713 verbose "check_effective_target_vect_widen_mult_qi_to_hi: using cached result" 2
3714 } else {
3715 if { [check_effective_target_vect_unpack]
3716 && [check_effective_target_vect_short_mult] } {
3717 set et_vect_widen_mult_qi_to_hi_saved 1
3718 } else {
3719 set et_vect_widen_mult_qi_to_hi_saved 0
3721 if { [istarget powerpc*-*-*]
3722 || [istarget aarch64*-*-*]
3723 || ([istarget arm*-*-*] && [check_effective_target_arm_neon_ok]) } {
3724 set et_vect_widen_mult_qi_to_hi_saved 1
3727 verbose "check_effective_target_vect_widen_mult_qi_to_hi: returning $et_vect_widen_mult_qi_to_hi_saved" 2
3728 return $et_vect_widen_mult_qi_to_hi_saved
3731 # Return 1 if the target plus current options supports a vector
3732 # widening multiplication of *short* args into *int* result, 0 otherwise.
3733 # A target can also support this widening multplication if it can support
3734 # promotion (unpacking) from shorts to ints, and vect_int_mult (non-widening
3735 # multiplication of ints).
3737 # This won't change for different subtargets so cache the result.
3740 proc check_effective_target_vect_widen_mult_hi_to_si { } {
3741 global et_vect_widen_mult_hi_to_si
3743 if [info exists et_vect_widen_mult_hi_to_si_saved] {
3744 verbose "check_effective_target_vect_widen_mult_hi_to_si: using cached result" 2
3745 } else {
3746 if { [check_effective_target_vect_unpack]
3747 && [check_effective_target_vect_int_mult] } {
3748 set et_vect_widen_mult_hi_to_si_saved 1
3749 } else {
3750 set et_vect_widen_mult_hi_to_si_saved 0
3752 if { [istarget powerpc*-*-*]
3753 || [istarget spu-*-*]
3754 || [istarget ia64-*-*]
3755 || [istarget aarch64*-*-*]
3756 || [istarget i?86-*-*]
3757 || [istarget x86_64-*-*]
3758 || ([istarget arm*-*-*] && [check_effective_target_arm_neon_ok]) } {
3759 set et_vect_widen_mult_hi_to_si_saved 1
3762 verbose "check_effective_target_vect_widen_mult_hi_to_si: returning $et_vect_widen_mult_hi_to_si_saved" 2
3763 return $et_vect_widen_mult_hi_to_si_saved
3766 # Return 1 if the target plus current options supports a vector
3767 # widening multiplication of *char* args into *short* result, 0 otherwise.
3769 # This won't change for different subtargets so cache the result.
3771 proc check_effective_target_vect_widen_mult_qi_to_hi_pattern { } {
3772 global et_vect_widen_mult_qi_to_hi_pattern
3774 if [info exists et_vect_widen_mult_qi_to_hi_pattern_saved] {
3775 verbose "check_effective_target_vect_widen_mult_qi_to_hi_pattern: using cached result" 2
3776 } else {
3777 set et_vect_widen_mult_qi_to_hi_pattern_saved 0
3778 if { [istarget powerpc*-*-*]
3779 || ([istarget arm*-*-*]
3780 && [check_effective_target_arm_neon_ok]
3781 && [check_effective_target_arm_little_endian]) } {
3782 set et_vect_widen_mult_qi_to_hi_pattern_saved 1
3785 verbose "check_effective_target_vect_widen_mult_qi_to_hi_pattern: returning $et_vect_widen_mult_qi_to_hi_pattern_saved" 2
3786 return $et_vect_widen_mult_qi_to_hi_pattern_saved
3789 # Return 1 if the target plus current options supports a vector
3790 # widening multiplication of *short* args into *int* result, 0 otherwise.
3792 # This won't change for different subtargets so cache the result.
3794 proc check_effective_target_vect_widen_mult_hi_to_si_pattern { } {
3795 global et_vect_widen_mult_hi_to_si_pattern
3797 if [info exists et_vect_widen_mult_hi_to_si_pattern_saved] {
3798 verbose "check_effective_target_vect_widen_mult_hi_to_si_pattern: using cached result" 2
3799 } else {
3800 set et_vect_widen_mult_hi_to_si_pattern_saved 0
3801 if { [istarget powerpc*-*-*]
3802 || [istarget spu-*-*]
3803 || [istarget ia64-*-*]
3804 || [istarget i?86-*-*]
3805 || [istarget x86_64-*-*]
3806 || ([istarget arm*-*-*]
3807 && [check_effective_target_arm_neon_ok]
3808 && [check_effective_target_arm_little_endian]) } {
3809 set et_vect_widen_mult_hi_to_si_pattern_saved 1
3812 verbose "check_effective_target_vect_widen_mult_hi_to_si_pattern: returning $et_vect_widen_mult_hi_to_si_pattern_saved" 2
3813 return $et_vect_widen_mult_hi_to_si_pattern_saved
3816 # Return 1 if the target plus current options supports a vector
3817 # widening multiplication of *int* args into *long* result, 0 otherwise.
3819 # This won't change for different subtargets so cache the result.
3821 proc check_effective_target_vect_widen_mult_si_to_di_pattern { } {
3822 global et_vect_widen_mult_si_to_di_pattern
3824 if [info exists et_vect_widen_mult_si_to_di_pattern_saved] {
3825 verbose "check_effective_target_vect_widen_mult_si_to_di_pattern: using cached result" 2
3826 } else {
3827 set et_vect_widen_mult_si_to_di_pattern_saved 0
3828 if {[istarget ia64-*-*]
3829 || [istarget i?86-*-*]
3830 || [istarget x86_64-*-*] } {
3831 set et_vect_widen_mult_si_to_di_pattern_saved 1
3834 verbose "check_effective_target_vect_widen_mult_si_to_di_pattern: returning $et_vect_widen_mult_si_to_di_pattern_saved" 2
3835 return $et_vect_widen_mult_si_to_di_pattern_saved
3838 # Return 1 if the target plus current options supports a vector
3839 # widening shift, 0 otherwise.
3841 # This won't change for different subtargets so cache the result.
3843 proc check_effective_target_vect_widen_shift { } {
3844 global et_vect_widen_shift_saved
3846 if [info exists et_vect_shift_saved] {
3847 verbose "check_effective_target_vect_widen_shift: using cached result" 2
3848 } else {
3849 set et_vect_widen_shift_saved 0
3850 if { ([istarget arm*-*-*] && [check_effective_target_arm_neon_ok]) } {
3851 set et_vect_widen_shift_saved 1
3854 verbose "check_effective_target_vect_widen_shift: returning $et_vect_widen_shift_saved" 2
3855 return $et_vect_widen_shift_saved
3858 # Return 1 if the target plus current options supports a vector
3859 # dot-product of signed chars, 0 otherwise.
3861 # This won't change for different subtargets so cache the result.
3863 proc check_effective_target_vect_sdot_qi { } {
3864 global et_vect_sdot_qi
3866 if [info exists et_vect_sdot_qi_saved] {
3867 verbose "check_effective_target_vect_sdot_qi: using cached result" 2
3868 } else {
3869 set et_vect_sdot_qi_saved 0
3870 if { [istarget ia64-*-*] } {
3871 set et_vect_udot_qi_saved 1
3874 verbose "check_effective_target_vect_sdot_qi: returning $et_vect_sdot_qi_saved" 2
3875 return $et_vect_sdot_qi_saved
3878 # Return 1 if the target plus current options supports a vector
3879 # dot-product of unsigned chars, 0 otherwise.
3881 # This won't change for different subtargets so cache the result.
3883 proc check_effective_target_vect_udot_qi { } {
3884 global et_vect_udot_qi
3886 if [info exists et_vect_udot_qi_saved] {
3887 verbose "check_effective_target_vect_udot_qi: using cached result" 2
3888 } else {
3889 set et_vect_udot_qi_saved 0
3890 if { [istarget powerpc*-*-*]
3891 || [istarget ia64-*-*] } {
3892 set et_vect_udot_qi_saved 1
3895 verbose "check_effective_target_vect_udot_qi: returning $et_vect_udot_qi_saved" 2
3896 return $et_vect_udot_qi_saved
3899 # Return 1 if the target plus current options supports a vector
3900 # dot-product of signed shorts, 0 otherwise.
3902 # This won't change for different subtargets so cache the result.
3904 proc check_effective_target_vect_sdot_hi { } {
3905 global et_vect_sdot_hi
3907 if [info exists et_vect_sdot_hi_saved] {
3908 verbose "check_effective_target_vect_sdot_hi: using cached result" 2
3909 } else {
3910 set et_vect_sdot_hi_saved 0
3911 if { ([istarget powerpc*-*-*] && ![istarget powerpc-*-linux*paired*])
3912 || [istarget ia64-*-*]
3913 || [istarget i?86-*-*]
3914 || [istarget x86_64-*-*] } {
3915 set et_vect_sdot_hi_saved 1
3918 verbose "check_effective_target_vect_sdot_hi: returning $et_vect_sdot_hi_saved" 2
3919 return $et_vect_sdot_hi_saved
3922 # Return 1 if the target plus current options supports a vector
3923 # dot-product of unsigned shorts, 0 otherwise.
3925 # This won't change for different subtargets so cache the result.
3927 proc check_effective_target_vect_udot_hi { } {
3928 global et_vect_udot_hi
3930 if [info exists et_vect_udot_hi_saved] {
3931 verbose "check_effective_target_vect_udot_hi: using cached result" 2
3932 } else {
3933 set et_vect_udot_hi_saved 0
3934 if { ([istarget powerpc*-*-*] && ![istarget powerpc-*-linux*paired*]) } {
3935 set et_vect_udot_hi_saved 1
3938 verbose "check_effective_target_vect_udot_hi: returning $et_vect_udot_hi_saved" 2
3939 return $et_vect_udot_hi_saved
3942 # Return 1 if the target plus current options supports a vector
3943 # sad operation of unsigned chars, 0 otherwise.
3945 # This won't change for different subtargets so cache the result.
3947 proc check_effective_target_vect_usad_char { } {
3948 global et_vect_usad_char
3950 if [info exists et_vect_usad_char_saved] {
3951 verbose "check_effective_target_vect_usad_char: using cached result" 2
3952 } else {
3953 set et_vect_usad_char_saved 0
3954 if { ([istarget i?86-*-*]
3955 || [istarget x86_64-*-*]) } {
3956 set et_vect_usad_char_saved 1
3959 verbose "check_effective_target_vect_usad_char: returning $et_vect_usad_char_saved" 2
3960 return $et_vect_usad_char_saved
3963 # Return 1 if the target plus current options supports a vector
3964 # demotion (packing) of shorts (to chars) and ints (to shorts)
3965 # using modulo arithmetic, 0 otherwise.
3967 # This won't change for different subtargets so cache the result.
3969 proc check_effective_target_vect_pack_trunc { } {
3970 global et_vect_pack_trunc
3972 if [info exists et_vect_pack_trunc_saved] {
3973 verbose "check_effective_target_vect_pack_trunc: using cached result" 2
3974 } else {
3975 set et_vect_pack_trunc_saved 0
3976 if { ([istarget powerpc*-*-*] && ![istarget powerpc-*-linux*paired*])
3977 || [istarget i?86-*-*]
3978 || [istarget x86_64-*-*]
3979 || [istarget aarch64*-*-*]
3980 || [istarget spu-*-*]
3981 || ([istarget arm*-*-*] && [check_effective_target_arm_neon_ok]
3982 && [check_effective_target_arm_little_endian]) } {
3983 set et_vect_pack_trunc_saved 1
3986 verbose "check_effective_target_vect_pack_trunc: returning $et_vect_pack_trunc_saved" 2
3987 return $et_vect_pack_trunc_saved
3990 # Return 1 if the target plus current options supports a vector
3991 # promotion (unpacking) of chars (to shorts) and shorts (to ints), 0 otherwise.
3993 # This won't change for different subtargets so cache the result.
3995 proc check_effective_target_vect_unpack { } {
3996 global et_vect_unpack
3998 if [info exists et_vect_unpack_saved] {
3999 verbose "check_effective_target_vect_unpack: using cached result" 2
4000 } else {
4001 set et_vect_unpack_saved 0
4002 if { ([istarget powerpc*-*-*] && ![istarget powerpc-*paired*])
4003 || [istarget i?86-*-*]
4004 || [istarget x86_64-*-*]
4005 || [istarget spu-*-*]
4006 || [istarget ia64-*-*]
4007 || [istarget aarch64*-*-*]
4008 || ([istarget arm*-*-*] && [check_effective_target_arm_neon_ok]
4009 && [check_effective_target_arm_little_endian]) } {
4010 set et_vect_unpack_saved 1
4013 verbose "check_effective_target_vect_unpack: returning $et_vect_unpack_saved" 2
4014 return $et_vect_unpack_saved
4017 # Return 1 if the target plus current options does not guarantee
4018 # that its STACK_BOUNDARY is >= the reguired vector alignment.
4020 # This won't change for different subtargets so cache the result.
4022 proc check_effective_target_unaligned_stack { } {
4023 global et_unaligned_stack_saved
4025 if [info exists et_unaligned_stack_saved] {
4026 verbose "check_effective_target_unaligned_stack: using cached result" 2
4027 } else {
4028 set et_unaligned_stack_saved 0
4030 verbose "check_effective_target_unaligned_stack: returning $et_unaligned_stack_saved" 2
4031 return $et_unaligned_stack_saved
4034 # Return 1 if the target plus current options does not support a vector
4035 # alignment mechanism, 0 otherwise.
4037 # This won't change for different subtargets so cache the result.
4039 proc check_effective_target_vect_no_align { } {
4040 global et_vect_no_align_saved
4042 if [info exists et_vect_no_align_saved] {
4043 verbose "check_effective_target_vect_no_align: using cached result" 2
4044 } else {
4045 set et_vect_no_align_saved 0
4046 if { [istarget mipsisa64*-*-*]
4047 || [istarget mips-sde-elf]
4048 || [istarget sparc*-*-*]
4049 || [istarget ia64-*-*]
4050 || [check_effective_target_arm_vect_no_misalign]
4051 || ([istarget mips*-*-*]
4052 && [check_effective_target_mips_loongson]) } {
4053 set et_vect_no_align_saved 1
4056 verbose "check_effective_target_vect_no_align: returning $et_vect_no_align_saved" 2
4057 return $et_vect_no_align_saved
4060 # Return 1 if the target supports a vector misalign access, 0 otherwise.
4062 # This won't change for different subtargets so cache the result.
4064 proc check_effective_target_vect_hw_misalign { } {
4065 global et_vect_hw_misalign_saved
4067 if [info exists et_vect_hw_misalign_saved] {
4068 verbose "check_effective_target_vect_hw_misalign: using cached result" 2
4069 } else {
4070 set et_vect_hw_misalign_saved 0
4071 if { ([istarget x86_64-*-*]
4072 || [istarget aarch64*-*-*]
4073 || [istarget i?86-*-*]) } {
4074 set et_vect_hw_misalign_saved 1
4077 verbose "check_effective_target_vect_hw_misalign: returning $et_vect_hw_misalign_saved" 2
4078 return $et_vect_hw_misalign_saved
4082 # Return 1 if arrays are aligned to the vector alignment
4083 # boundary, 0 otherwise.
4085 # This won't change for different subtargets so cache the result.
4087 proc check_effective_target_vect_aligned_arrays { } {
4088 global et_vect_aligned_arrays
4090 if [info exists et_vect_aligned_arrays_saved] {
4091 verbose "check_effective_target_vect_aligned_arrays: using cached result" 2
4092 } else {
4093 set et_vect_aligned_arrays_saved 0
4094 if { ([istarget x86_64-*-*] || [istarget i?86-*-*]) } {
4095 if { ([is-effective-target lp64]
4096 && ( ![check_avx_available]
4097 || [check_prefer_avx128])) } {
4098 set et_vect_aligned_arrays_saved 1
4101 if [istarget spu-*-*] {
4102 set et_vect_aligned_arrays_saved 1
4105 verbose "check_effective_target_vect_aligned_arrays: returning $et_vect_aligned_arrays_saved" 2
4106 return $et_vect_aligned_arrays_saved
4109 # Return 1 if types of size 32 bit or less are naturally aligned
4110 # (aligned to their type-size), 0 otherwise.
4112 # This won't change for different subtargets so cache the result.
4114 proc check_effective_target_natural_alignment_32 { } {
4115 global et_natural_alignment_32
4117 if [info exists et_natural_alignment_32_saved] {
4118 verbose "check_effective_target_natural_alignment_32: using cached result" 2
4119 } else {
4120 # FIXME: 32bit powerpc: guaranteed only if MASK_ALIGN_NATURAL/POWER.
4121 set et_natural_alignment_32_saved 1
4122 if { ([istarget *-*-darwin*] && [is-effective-target lp64]) } {
4123 set et_natural_alignment_32_saved 0
4126 verbose "check_effective_target_natural_alignment_32: returning $et_natural_alignment_32_saved" 2
4127 return $et_natural_alignment_32_saved
4130 # Return 1 if types of size 64 bit or less are naturally aligned (aligned to their
4131 # type-size), 0 otherwise.
4133 # This won't change for different subtargets so cache the result.
4135 proc check_effective_target_natural_alignment_64 { } {
4136 global et_natural_alignment_64
4138 if [info exists et_natural_alignment_64_saved] {
4139 verbose "check_effective_target_natural_alignment_64: using cached result" 2
4140 } else {
4141 set et_natural_alignment_64_saved 0
4142 if { ([is-effective-target lp64] && ![istarget *-*-darwin*])
4143 || [istarget spu-*-*] } {
4144 set et_natural_alignment_64_saved 1
4147 verbose "check_effective_target_natural_alignment_64: returning $et_natural_alignment_64_saved" 2
4148 return $et_natural_alignment_64_saved
4151 # Return 1 if all vector types are naturally aligned (aligned to their
4152 # type-size), 0 otherwise.
4154 # This won't change for different subtargets so cache the result.
4156 proc check_effective_target_vect_natural_alignment { } {
4157 global et_vect_natural_alignment
4159 if [info exists et_vect_natural_alignment_saved] {
4160 verbose "check_effective_target_vect_natural_alignment: using cached result" 2
4161 } else {
4162 set et_vect_natural_alignment_saved 1
4163 if { [check_effective_target_arm_eabi] } {
4164 set et_vect_natural_alignment_saved 0
4167 verbose "check_effective_target_vect_natural_alignment: returning $et_vect_natural_alignment_saved" 2
4168 return $et_vect_natural_alignment_saved
4171 # Return 1 if vector alignment (for types of size 32 bit or less) is reachable, 0 otherwise.
4173 # This won't change for different subtargets so cache the result.
4175 proc check_effective_target_vector_alignment_reachable { } {
4176 global et_vector_alignment_reachable
4178 if [info exists et_vector_alignment_reachable_saved] {
4179 verbose "check_effective_target_vector_alignment_reachable: using cached result" 2
4180 } else {
4181 if { [check_effective_target_vect_aligned_arrays]
4182 || [check_effective_target_natural_alignment_32] } {
4183 set et_vector_alignment_reachable_saved 1
4184 } else {
4185 set et_vector_alignment_reachable_saved 0
4188 verbose "check_effective_target_vector_alignment_reachable: returning $et_vector_alignment_reachable_saved" 2
4189 return $et_vector_alignment_reachable_saved
4192 # Return 1 if vector alignment for 64 bit is reachable, 0 otherwise.
4194 # This won't change for different subtargets so cache the result.
4196 proc check_effective_target_vector_alignment_reachable_for_64bit { } {
4197 global et_vector_alignment_reachable_for_64bit
4199 if [info exists et_vector_alignment_reachable_for_64bit_saved] {
4200 verbose "check_effective_target_vector_alignment_reachable_for_64bit: using cached result" 2
4201 } else {
4202 if { [check_effective_target_vect_aligned_arrays]
4203 || [check_effective_target_natural_alignment_64] } {
4204 set et_vector_alignment_reachable_for_64bit_saved 1
4205 } else {
4206 set et_vector_alignment_reachable_for_64bit_saved 0
4209 verbose "check_effective_target_vector_alignment_reachable_for_64bit: returning $et_vector_alignment_reachable_for_64bit_saved" 2
4210 return $et_vector_alignment_reachable_for_64bit_saved
4213 # Return 1 if the target only requires element alignment for vector accesses
4215 proc check_effective_target_vect_element_align { } {
4216 global et_vect_element_align
4218 if [info exists et_vect_element_align] {
4219 verbose "check_effective_target_vect_element_align: using cached result" 2
4220 } else {
4221 set et_vect_element_align 0
4222 if { ([istarget arm*-*-*]
4223 && ![check_effective_target_arm_vect_no_misalign])
4224 || [check_effective_target_vect_hw_misalign] } {
4225 set et_vect_element_align 1
4229 verbose "check_effective_target_vect_element_align: returning $et_vect_element_align" 2
4230 return $et_vect_element_align
4233 # Return 1 if the target supports vector conditional operations, 0 otherwise.
4235 proc check_effective_target_vect_condition { } {
4236 global et_vect_cond_saved
4238 if [info exists et_vect_cond_saved] {
4239 verbose "check_effective_target_vect_cond: using cached result" 2
4240 } else {
4241 set et_vect_cond_saved 0
4242 if { [istarget aarch64*-*-*]
4243 || [istarget powerpc*-*-*]
4244 || [istarget ia64-*-*]
4245 || [istarget i?86-*-*]
4246 || [istarget spu-*-*]
4247 || [istarget x86_64-*-*]
4248 || ([istarget arm*-*-*] && [check_effective_target_arm_neon_ok]) } {
4249 set et_vect_cond_saved 1
4253 verbose "check_effective_target_vect_cond: returning $et_vect_cond_saved" 2
4254 return $et_vect_cond_saved
4257 # Return 1 if the target supports vector conditional operations where
4258 # the comparison has different type from the lhs, 0 otherwise.
4260 proc check_effective_target_vect_cond_mixed { } {
4261 global et_vect_cond_mixed_saved
4263 if [info exists et_vect_cond_mixed_saved] {
4264 verbose "check_effective_target_vect_cond_mixed: using cached result" 2
4265 } else {
4266 set et_vect_cond_mixed_saved 0
4267 if { [istarget i?86-*-*]
4268 || [istarget x86_64-*-*]
4269 || [istarget powerpc*-*-*] } {
4270 set et_vect_cond_mixed_saved 1
4274 verbose "check_effective_target_vect_cond_mixed: returning $et_vect_cond_mixed_saved" 2
4275 return $et_vect_cond_mixed_saved
4278 # Return 1 if the target supports vector char multiplication, 0 otherwise.
4280 proc check_effective_target_vect_char_mult { } {
4281 global et_vect_char_mult_saved
4283 if [info exists et_vect_char_mult_saved] {
4284 verbose "check_effective_target_vect_char_mult: using cached result" 2
4285 } else {
4286 set et_vect_char_mult_saved 0
4287 if { [istarget aarch64*-*-*]
4288 || [istarget ia64-*-*]
4289 || [istarget i?86-*-*]
4290 || [istarget x86_64-*-*]
4291 || [check_effective_target_arm32] } {
4292 set et_vect_char_mult_saved 1
4296 verbose "check_effective_target_vect_char_mult: returning $et_vect_char_mult_saved" 2
4297 return $et_vect_char_mult_saved
4300 # Return 1 if the target supports vector short multiplication, 0 otherwise.
4302 proc check_effective_target_vect_short_mult { } {
4303 global et_vect_short_mult_saved
4305 if [info exists et_vect_short_mult_saved] {
4306 verbose "check_effective_target_vect_short_mult: using cached result" 2
4307 } else {
4308 set et_vect_short_mult_saved 0
4309 if { [istarget ia64-*-*]
4310 || [istarget spu-*-*]
4311 || [istarget i?86-*-*]
4312 || [istarget x86_64-*-*]
4313 || [istarget powerpc*-*-*]
4314 || [istarget aarch64*-*-*]
4315 || [check_effective_target_arm32]
4316 || ([istarget mips*-*-*]
4317 && [check_effective_target_mips_loongson]) } {
4318 set et_vect_short_mult_saved 1
4322 verbose "check_effective_target_vect_short_mult: returning $et_vect_short_mult_saved" 2
4323 return $et_vect_short_mult_saved
4326 # Return 1 if the target supports vector int multiplication, 0 otherwise.
4328 proc check_effective_target_vect_int_mult { } {
4329 global et_vect_int_mult_saved
4331 if [info exists et_vect_int_mult_saved] {
4332 verbose "check_effective_target_vect_int_mult: using cached result" 2
4333 } else {
4334 set et_vect_int_mult_saved 0
4335 if { ([istarget powerpc*-*-*] && ![istarget powerpc-*-linux*paired*])
4336 || [istarget spu-*-*]
4337 || [istarget i?86-*-*]
4338 || [istarget x86_64-*-*]
4339 || [istarget ia64-*-*]
4340 || [istarget aarch64*-*-*]
4341 || [check_effective_target_arm32] } {
4342 set et_vect_int_mult_saved 1
4346 verbose "check_effective_target_vect_int_mult: returning $et_vect_int_mult_saved" 2
4347 return $et_vect_int_mult_saved
4350 # Return 1 if the target supports vector even/odd elements extraction, 0 otherwise.
4352 proc check_effective_target_vect_extract_even_odd { } {
4353 global et_vect_extract_even_odd_saved
4355 if [info exists et_vect_extract_even_odd_saved] {
4356 verbose "check_effective_target_vect_extract_even_odd: using cached result" 2
4357 } else {
4358 set et_vect_extract_even_odd_saved 0
4359 if { [istarget aarch64*-*-*]
4360 || [istarget powerpc*-*-*]
4361 || [is-effective-target arm_neon_ok]
4362 || [istarget i?86-*-*]
4363 || [istarget x86_64-*-*]
4364 || [istarget ia64-*-*]
4365 || [istarget spu-*-*]
4366 || ([istarget mips*-*-*]
4367 && [check_effective_target_mpaired_single]) } {
4368 set et_vect_extract_even_odd_saved 1
4372 verbose "check_effective_target_vect_extract_even_odd: returning $et_vect_extract_even_odd_saved" 2
4373 return $et_vect_extract_even_odd_saved
4376 # Return 1 if the target supports vector interleaving, 0 otherwise.
4378 proc check_effective_target_vect_interleave { } {
4379 global et_vect_interleave_saved
4381 if [info exists et_vect_interleave_saved] {
4382 verbose "check_effective_target_vect_interleave: using cached result" 2
4383 } else {
4384 set et_vect_interleave_saved 0
4385 if { [istarget aarch64*-*-*]
4386 || [istarget powerpc*-*-*]
4387 || [is-effective-target arm_neon_ok]
4388 || [istarget i?86-*-*]
4389 || [istarget x86_64-*-*]
4390 || [istarget ia64-*-*]
4391 || [istarget spu-*-*]
4392 || ([istarget mips*-*-*]
4393 && [check_effective_target_mpaired_single]) } {
4394 set et_vect_interleave_saved 1
4398 verbose "check_effective_target_vect_interleave: returning $et_vect_interleave_saved" 2
4399 return $et_vect_interleave_saved
4402 foreach N {2 3 4 8} {
4403 eval [string map [list N $N] {
4404 # Return 1 if the target supports 2-vector interleaving
4405 proc check_effective_target_vect_stridedN { } {
4406 global et_vect_stridedN_saved
4408 if [info exists et_vect_stridedN_saved] {
4409 verbose "check_effective_target_vect_stridedN: using cached result" 2
4410 } else {
4411 set et_vect_stridedN_saved 0
4412 if { (N & -N) == N
4413 && [check_effective_target_vect_interleave]
4414 && [check_effective_target_vect_extract_even_odd] } {
4415 set et_vect_stridedN_saved 1
4417 if { ([istarget arm*-*-*]
4418 || [istarget aarch64*-*-*]) && N >= 2 && N <= 4 } {
4419 set et_vect_stridedN_saved 1
4423 verbose "check_effective_target_vect_stridedN: returning $et_vect_stridedN_saved" 2
4424 return $et_vect_stridedN_saved
4429 # Return 1 if the target supports multiple vector sizes
4431 proc check_effective_target_vect_multiple_sizes { } {
4432 global et_vect_multiple_sizes_saved
4434 set et_vect_multiple_sizes_saved 0
4435 if { ([istarget aarch64*-*-*]
4436 || ([istarget arm*-*-*] && [check_effective_target_arm_neon_ok])) } {
4437 set et_vect_multiple_sizes_saved 1
4439 if { ([istarget x86_64-*-*] || [istarget i?86-*-*]) } {
4440 if { ([check_avx_available] && ![check_prefer_avx128]) } {
4441 set et_vect_multiple_sizes_saved 1
4445 verbose "check_effective_target_vect_multiple_sizes: returning $et_vect_multiple_sizes_saved" 2
4446 return $et_vect_multiple_sizes_saved
4449 # Return 1 if the target supports vectors of 64 bits.
4451 proc check_effective_target_vect64 { } {
4452 global et_vect64_saved
4454 if [info exists et_vect64_saved] {
4455 verbose "check_effective_target_vect64: using cached result" 2
4456 } else {
4457 set et_vect64_saved 0
4458 if { ([istarget arm*-*-*]
4459 && [check_effective_target_arm_neon_ok]
4460 && [check_effective_target_arm_little_endian]) } {
4461 set et_vect64_saved 1
4465 verbose "check_effective_target_vect64: returning $et_vect64_saved" 2
4466 return $et_vect64_saved
4469 # Return 1 if the target supports vector copysignf calls.
4471 proc check_effective_target_vect_call_copysignf { } {
4472 global et_vect_call_copysignf_saved
4474 if [info exists et_vect_call_copysignf_saved] {
4475 verbose "check_effective_target_vect_call_copysignf: using cached result" 2
4476 } else {
4477 set et_vect_call_copysignf_saved 0
4478 if { [istarget i?86-*-*]
4479 || [istarget x86_64-*-*]
4480 || [istarget powerpc*-*-*] } {
4481 set et_vect_call_copysignf_saved 1
4485 verbose "check_effective_target_vect_call_copysignf: returning $et_vect_call_copysignf_saved" 2
4486 return $et_vect_call_copysignf_saved
4489 # Return 1 if the target supports vector sqrtf calls.
4491 proc check_effective_target_vect_call_sqrtf { } {
4492 global et_vect_call_sqrtf_saved
4494 if [info exists et_vect_call_sqrtf_saved] {
4495 verbose "check_effective_target_vect_call_sqrtf: using cached result" 2
4496 } else {
4497 set et_vect_call_sqrtf_saved 0
4498 if { [istarget aarch64*-*-*]
4499 || [istarget i?86-*-*]
4500 || [istarget x86_64-*-*]
4501 || ([istarget powerpc*-*-*] && [check_vsx_hw_available]) } {
4502 set et_vect_call_sqrtf_saved 1
4506 verbose "check_effective_target_vect_call_sqrtf: returning $et_vect_call_sqrtf_saved" 2
4507 return $et_vect_call_sqrtf_saved
4510 # Return 1 if the target supports vector lrint calls.
4512 proc check_effective_target_vect_call_lrint { } {
4513 set et_vect_call_lrint 0
4514 if { ([istarget i?86-*-*] || [istarget x86_64-*-*]) && [check_effective_target_ilp32] } {
4515 set et_vect_call_lrint 1
4518 verbose "check_effective_target_vect_call_lrint: returning $et_vect_call_lrint" 2
4519 return $et_vect_call_lrint
4522 # Return 1 if the target supports vector btrunc calls.
4524 proc check_effective_target_vect_call_btrunc { } {
4525 global et_vect_call_btrunc_saved
4527 if [info exists et_vect_call_btrunc_saved] {
4528 verbose "check_effective_target_vect_call_btrunc: using cached result" 2
4529 } else {
4530 set et_vect_call_btrunc_saved 0
4531 if { [istarget aarch64*-*-*] } {
4532 set et_vect_call_btrunc_saved 1
4536 verbose "check_effective_target_vect_call_btrunc: returning $et_vect_call_btrunc_saved" 2
4537 return $et_vect_call_btrunc_saved
4540 # Return 1 if the target supports vector btruncf calls.
4542 proc check_effective_target_vect_call_btruncf { } {
4543 global et_vect_call_btruncf_saved
4545 if [info exists et_vect_call_btruncf_saved] {
4546 verbose "check_effective_target_vect_call_btruncf: using cached result" 2
4547 } else {
4548 set et_vect_call_btruncf_saved 0
4549 if { [istarget aarch64*-*-*] } {
4550 set et_vect_call_btruncf_saved 1
4554 verbose "check_effective_target_vect_call_btruncf: returning $et_vect_call_btruncf_saved" 2
4555 return $et_vect_call_btruncf_saved
4558 # Return 1 if the target supports vector ceil calls.
4560 proc check_effective_target_vect_call_ceil { } {
4561 global et_vect_call_ceil_saved
4563 if [info exists et_vect_call_ceil_saved] {
4564 verbose "check_effective_target_vect_call_ceil: using cached result" 2
4565 } else {
4566 set et_vect_call_ceil_saved 0
4567 if { [istarget aarch64*-*-*] } {
4568 set et_vect_call_ceil_saved 1
4572 verbose "check_effective_target_vect_call_ceil: returning $et_vect_call_ceil_saved" 2
4573 return $et_vect_call_ceil_saved
4576 # Return 1 if the target supports vector ceilf calls.
4578 proc check_effective_target_vect_call_ceilf { } {
4579 global et_vect_call_ceilf_saved
4581 if [info exists et_vect_call_ceilf_saved] {
4582 verbose "check_effective_target_vect_call_ceilf: using cached result" 2
4583 } else {
4584 set et_vect_call_ceilf_saved 0
4585 if { [istarget aarch64*-*-*] } {
4586 set et_vect_call_ceilf_saved 1
4590 verbose "check_effective_target_vect_call_ceilf: returning $et_vect_call_ceilf_saved" 2
4591 return $et_vect_call_ceilf_saved
4594 # Return 1 if the target supports vector floor calls.
4596 proc check_effective_target_vect_call_floor { } {
4597 global et_vect_call_floor_saved
4599 if [info exists et_vect_call_floor_saved] {
4600 verbose "check_effective_target_vect_call_floor: using cached result" 2
4601 } else {
4602 set et_vect_call_floor_saved 0
4603 if { [istarget aarch64*-*-*] } {
4604 set et_vect_call_floor_saved 1
4608 verbose "check_effective_target_vect_call_floor: returning $et_vect_call_floor_saved" 2
4609 return $et_vect_call_floor_saved
4612 # Return 1 if the target supports vector floorf calls.
4614 proc check_effective_target_vect_call_floorf { } {
4615 global et_vect_call_floorf_saved
4617 if [info exists et_vect_call_floorf_saved] {
4618 verbose "check_effective_target_vect_call_floorf: using cached result" 2
4619 } else {
4620 set et_vect_call_floorf_saved 0
4621 if { [istarget aarch64*-*-*] } {
4622 set et_vect_call_floorf_saved 1
4626 verbose "check_effective_target_vect_call_floorf: returning $et_vect_call_floorf_saved" 2
4627 return $et_vect_call_floorf_saved
4630 # Return 1 if the target supports vector lceil calls.
4632 proc check_effective_target_vect_call_lceil { } {
4633 global et_vect_call_lceil_saved
4635 if [info exists et_vect_call_lceil_saved] {
4636 verbose "check_effective_target_vect_call_lceil: using cached result" 2
4637 } else {
4638 set et_vect_call_lceil_saved 0
4639 if { [istarget aarch64*-*-*] } {
4640 set et_vect_call_lceil_saved 1
4644 verbose "check_effective_target_vect_call_lceil: returning $et_vect_call_lceil_saved" 2
4645 return $et_vect_call_lceil_saved
4648 # Return 1 if the target supports vector lfloor calls.
4650 proc check_effective_target_vect_call_lfloor { } {
4651 global et_vect_call_lfloor_saved
4653 if [info exists et_vect_call_lfloor_saved] {
4654 verbose "check_effective_target_vect_call_lfloor: using cached result" 2
4655 } else {
4656 set et_vect_call_lfloor_saved 0
4657 if { [istarget aarch64*-*-*] } {
4658 set et_vect_call_lfloor_saved 1
4662 verbose "check_effective_target_vect_call_lfloor: returning $et_vect_call_lfloor_saved" 2
4663 return $et_vect_call_lfloor_saved
4666 # Return 1 if the target supports vector nearbyint calls.
4668 proc check_effective_target_vect_call_nearbyint { } {
4669 global et_vect_call_nearbyint_saved
4671 if [info exists et_vect_call_nearbyint_saved] {
4672 verbose "check_effective_target_vect_call_nearbyint: using cached result" 2
4673 } else {
4674 set et_vect_call_nearbyint_saved 0
4675 if { [istarget aarch64*-*-*] } {
4676 set et_vect_call_nearbyint_saved 1
4680 verbose "check_effective_target_vect_call_nearbyint: returning $et_vect_call_nearbyint_saved" 2
4681 return $et_vect_call_nearbyint_saved
4684 # Return 1 if the target supports vector nearbyintf calls.
4686 proc check_effective_target_vect_call_nearbyintf { } {
4687 global et_vect_call_nearbyintf_saved
4689 if [info exists et_vect_call_nearbyintf_saved] {
4690 verbose "check_effective_target_vect_call_nearbyintf: using cached result" 2
4691 } else {
4692 set et_vect_call_nearbyintf_saved 0
4693 if { [istarget aarch64*-*-*] } {
4694 set et_vect_call_nearbyintf_saved 1
4698 verbose "check_effective_target_vect_call_nearbyintf: returning $et_vect_call_nearbyintf_saved" 2
4699 return $et_vect_call_nearbyintf_saved
4702 # Return 1 if the target supports vector round calls.
4704 proc check_effective_target_vect_call_round { } {
4705 global et_vect_call_round_saved
4707 if [info exists et_vect_call_round_saved] {
4708 verbose "check_effective_target_vect_call_round: using cached result" 2
4709 } else {
4710 set et_vect_call_round_saved 0
4711 if { [istarget aarch64*-*-*] } {
4712 set et_vect_call_round_saved 1
4716 verbose "check_effective_target_vect_call_round: returning $et_vect_call_round_saved" 2
4717 return $et_vect_call_round_saved
4720 # Return 1 if the target supports vector roundf calls.
4722 proc check_effective_target_vect_call_roundf { } {
4723 global et_vect_call_roundf_saved
4725 if [info exists et_vect_call_roundf_saved] {
4726 verbose "check_effective_target_vect_call_roundf: using cached result" 2
4727 } else {
4728 set et_vect_call_roundf_saved 0
4729 if { [istarget aarch64*-*-*] } {
4730 set et_vect_call_roundf_saved 1
4734 verbose "check_effective_target_vect_call_roundf: returning $et_vect_call_roundf_saved" 2
4735 return $et_vect_call_roundf_saved
4738 # Return 1 if the target supports section-anchors
4740 proc check_effective_target_section_anchors { } {
4741 global et_section_anchors_saved
4743 if [info exists et_section_anchors_saved] {
4744 verbose "check_effective_target_section_anchors: using cached result" 2
4745 } else {
4746 set et_section_anchors_saved 0
4747 if { [istarget powerpc*-*-*]
4748 || [istarget arm*-*-*] } {
4749 set et_section_anchors_saved 1
4753 verbose "check_effective_target_section_anchors: returning $et_section_anchors_saved" 2
4754 return $et_section_anchors_saved
4757 # Return 1 if the target supports atomic operations on "int_128" values.
4759 proc check_effective_target_sync_int_128 { } {
4760 if { ([istarget x86_64-*-*] || [istarget i?86-*-*])
4761 && ![is-effective-target ia32] } {
4762 return 1
4763 } else {
4764 return 0
4768 # Return 1 if the target supports atomic operations on "int_128" values
4769 # and can execute them.
4771 proc check_effective_target_sync_int_128_runtime { } {
4772 if { ([istarget x86_64-*-*] || [istarget i?86-*-*])
4773 && ![is-effective-target ia32] } {
4774 return [check_cached_effective_target sync_int_128_available {
4775 check_runtime_nocache sync_int_128_available {
4776 #include "cpuid.h"
4777 int main ()
4779 unsigned int eax, ebx, ecx, edx;
4780 if (__get_cpuid (1, &eax, &ebx, &ecx, &edx))
4781 return !(ecx & bit_CMPXCHG16B);
4782 return 1;
4784 } ""
4786 } else {
4787 return 0
4791 # Return 1 if the target supports atomic operations on "long long".
4793 # Note: 32bit x86 targets require -march=pentium in dg-options.
4795 proc check_effective_target_sync_long_long { } {
4796 if { [istarget x86_64-*-*]
4797 || [istarget i?86-*-*])
4798 || [istarget aarch64*-*-*]
4799 || [istarget arm*-*-*]
4800 || [istarget alpha*-*-*]
4801 || ([istarget sparc*-*-*] && [check_effective_target_lp64]) } {
4802 return 1
4803 } else {
4804 return 0
4808 # Return 1 if the target supports atomic operations on "long long"
4809 # and can execute them.
4811 # Note: 32bit x86 targets require -march=pentium in dg-options.
4813 proc check_effective_target_sync_long_long_runtime { } {
4814 if { [istarget x86_64-*-*]
4815 || [istarget i?86-*-*] } {
4816 return [check_cached_effective_target sync_long_long_available {
4817 check_runtime_nocache sync_long_long_available {
4818 #include "cpuid.h"
4819 int main ()
4821 unsigned int eax, ebx, ecx, edx;
4822 if (__get_cpuid (1, &eax, &ebx, &ecx, &edx))
4823 return !(edx & bit_CMPXCHG8B);
4824 return 1;
4826 } ""
4828 } elseif { [istarget aarch64*-*-*] } {
4829 return 1
4830 } elseif { [istarget arm*-*-linux-*] } {
4831 return [check_runtime sync_longlong_runtime {
4832 #include <stdlib.h>
4833 int main ()
4835 long long l1;
4837 if (sizeof (long long) != 8)
4838 exit (1);
4840 /* Just check for native; checking for kernel fallback is tricky. */
4841 asm volatile ("ldrexd r0,r1, [%0]" : : "r" (&l1) : "r0", "r1");
4843 exit (0);
4845 } "" ]
4846 } elseif { [istarget alpha*-*-*] } {
4847 return 1
4848 } elseif { ([istarget sparc*-*-*]
4849 && [check_effective_target_lp64]
4850 && [check_effective_target_ultrasparc_hw]) } {
4851 return 1
4852 } elseif { [istarget powerpc*-*-*] && [check_effective_target_lp64] } {
4853 return 1
4854 } else {
4855 return 0
4859 # Return 1 if the target supports byte swap instructions.
4861 proc check_effective_target_bswap { } {
4862 global et_bswap_saved
4864 if [info exists et_bswap_saved] {
4865 verbose "check_effective_target_bswap: using cached result" 2
4866 } else {
4867 set et_bswap_saved 0
4868 if { [istarget aarch64-*-*]
4869 || [istarget alpha*-*-*]
4870 || [istarget arm*-*-*]
4871 || [istarget i?86-*-*]
4872 || [istarget m68k-*-*]
4873 || [istarget powerpc*-*-*]
4874 || [istarget rs6000-*-*]
4875 || [istarget s390*-*-*]
4876 || [istarget x86_64-*-*] } {
4877 set et_bswap_saved 1
4881 verbose "check_effective_target_bswap: returning $et_bswap_saved" 2
4882 return $et_bswap_saved
4885 # Return 1 if the target supports 16-bit byte swap instructions.
4887 proc check_effective_target_bswap16 { } {
4888 global et_bswap16_saved
4890 if [info exists et_bswap16_saved] {
4891 verbose "check_effective_target_bswap16: using cached result" 2
4892 } else {
4893 set et_bswap16_saved 0
4894 if { [is-effective-target bswap]
4895 && ![istarget alpha*-*-*]
4896 && ![istarget i?86-*-*]
4897 && ![istarget x86_64-*-*] } {
4898 set et_bswap16_saved 1
4902 verbose "check_effective_target_bswap16: returning $et_bswap16_saved" 2
4903 return $et_bswap16_saved
4906 # Return 1 if the target supports 32-bit byte swap instructions.
4908 proc check_effective_target_bswap32 { } {
4909 global et_bswap32_saved
4911 if [info exists et_bswap32_saved] {
4912 verbose "check_effective_target_bswap32: using cached result" 2
4913 } else {
4914 set et_bswap32_saved 0
4915 if { [is-effective-target bswap] } {
4916 set et_bswap32_saved 1
4920 verbose "check_effective_target_bswap32: returning $et_bswap32_saved" 2
4921 return $et_bswap32_saved
4924 # Return 1 if the target supports 64-bit byte swap instructions.
4926 proc check_effective_target_bswap64 { } {
4927 global et_bswap64_saved
4929 if [info exists et_bswap64_saved] {
4930 verbose "check_effective_target_bswap64: using cached result" 2
4931 } else {
4932 set et_bswap64_saved 0
4933 if { [is-effective-target bswap]
4934 && [is-effective-target lp64] } {
4935 set et_bswap64_saved 1
4939 verbose "check_effective_target_bswap64: returning $et_bswap64_saved" 2
4940 return $et_bswap64_saved
4943 # Return 1 if the target supports atomic operations on "int" and "long".
4945 proc check_effective_target_sync_int_long { } {
4946 global et_sync_int_long_saved
4948 if [info exists et_sync_int_long_saved] {
4949 verbose "check_effective_target_sync_int_long: using cached result" 2
4950 } else {
4951 set et_sync_int_long_saved 0
4952 # This is intentionally powerpc but not rs6000, rs6000 doesn't have the
4953 # load-reserved/store-conditional instructions.
4954 if { [istarget ia64-*-*]
4955 || [istarget i?86-*-*]
4956 || [istarget x86_64-*-*]
4957 || [istarget aarch64*-*-*]
4958 || [istarget alpha*-*-*]
4959 || [istarget arm*-*-linux-*]
4960 || [istarget bfin*-*linux*]
4961 || [istarget hppa*-*linux*]
4962 || [istarget s390*-*-*]
4963 || [istarget powerpc*-*-*]
4964 || [istarget crisv32-*-*] || [istarget cris-*-*]
4965 || ([istarget sparc*-*-*] && [check_effective_target_sparc_v9])
4966 || [check_effective_target_mips_llsc] } {
4967 set et_sync_int_long_saved 1
4971 verbose "check_effective_target_sync_int_long: returning $et_sync_int_long_saved" 2
4972 return $et_sync_int_long_saved
4975 # Return 1 if the target supports atomic operations on "char" and "short".
4977 proc check_effective_target_sync_char_short { } {
4978 global et_sync_char_short_saved
4980 if [info exists et_sync_char_short_saved] {
4981 verbose "check_effective_target_sync_char_short: using cached result" 2
4982 } else {
4983 set et_sync_char_short_saved 0
4984 # This is intentionally powerpc but not rs6000, rs6000 doesn't have the
4985 # load-reserved/store-conditional instructions.
4986 if { [istarget aarch64*-*-*]
4987 || [istarget ia64-*-*]
4988 || [istarget i?86-*-*]
4989 || [istarget x86_64-*-*]
4990 || [istarget alpha*-*-*]
4991 || [istarget arm*-*-linux-*]
4992 || [istarget hppa*-*linux*]
4993 || [istarget s390*-*-*]
4994 || [istarget powerpc*-*-*]
4995 || [istarget crisv32-*-*] || [istarget cris-*-*]
4996 || ([istarget sparc*-*-*] && [check_effective_target_sparc_v9])
4997 || [check_effective_target_mips_llsc] } {
4998 set et_sync_char_short_saved 1
5002 verbose "check_effective_target_sync_char_short: returning $et_sync_char_short_saved" 2
5003 return $et_sync_char_short_saved
5006 # Return 1 if the target uses a ColdFire FPU.
5008 proc check_effective_target_coldfire_fpu { } {
5009 return [check_no_compiler_messages coldfire_fpu assembly {
5010 #ifndef __mcffpu__
5011 #error FOO
5012 #endif
5016 # Return true if this is a uClibc target.
5018 proc check_effective_target_uclibc {} {
5019 return [check_no_compiler_messages uclibc object {
5020 #include <features.h>
5021 #if !defined (__UCLIBC__)
5022 #error FOO
5023 #endif
5027 # Return true if this is a uclibc target and if the uclibc feature
5028 # described by __$feature__ is not present.
5030 proc check_missing_uclibc_feature {feature} {
5031 return [check_no_compiler_messages $feature object "
5032 #include <features.h>
5033 #if !defined (__UCLIBC) || defined (__${feature}__)
5034 #error FOO
5035 #endif
5039 # Return true if this is a Newlib target.
5041 proc check_effective_target_newlib {} {
5042 return [check_no_compiler_messages newlib object {
5043 #include <newlib.h>
5047 # Return true if this is NOT a Bionic target.
5049 proc check_effective_target_non_bionic {} {
5050 return [check_no_compiler_messages non_bionic object {
5051 #include <ctype.h>
5052 #if defined (__BIONIC__)
5053 #error FOO
5054 #endif
5058 # Return 1 if
5059 # (a) an error of a few ULP is expected in string to floating-point
5060 # conversion functions; and
5061 # (b) overflow is not always detected correctly by those functions.
5063 proc check_effective_target_lax_strtofp {} {
5064 # By default, assume that all uClibc targets suffer from this.
5065 return [check_effective_target_uclibc]
5068 # Return 1 if this is a target for which wcsftime is a dummy
5069 # function that always returns 0.
5071 proc check_effective_target_dummy_wcsftime {} {
5072 # By default, assume that all uClibc targets suffer from this.
5073 return [check_effective_target_uclibc]
5076 # Return 1 if constructors with initialization priority arguments are
5077 # supposed on this target.
5079 proc check_effective_target_init_priority {} {
5080 return [check_no_compiler_messages init_priority assembly "
5081 void f() __attribute__((constructor (1000)));
5082 void f() \{\}
5086 # Return 1 if the target matches the effective target 'arg', 0 otherwise.
5087 # This can be used with any check_* proc that takes no argument and
5088 # returns only 1 or 0. It could be used with check_* procs that take
5089 # arguments with keywords that pass particular arguments.
5091 proc is-effective-target { arg } {
5092 set selected 0
5093 if { [info procs check_effective_target_${arg}] != [list] } {
5094 set selected [check_effective_target_${arg}]
5095 } else {
5096 switch $arg {
5097 "vmx_hw" { set selected [check_vmx_hw_available] }
5098 "vsx_hw" { set selected [check_vsx_hw_available] }
5099 "p8vector_hw" { set selected [check_p8vector_hw_available] }
5100 "ppc_recip_hw" { set selected [check_ppc_recip_hw_available] }
5101 "dfp_hw" { set selected [check_dfp_hw_available] }
5102 "named_sections" { set selected [check_named_sections_available] }
5103 "gc_sections" { set selected [check_gc_sections_available] }
5104 "cxa_atexit" { set selected [check_cxa_atexit_available] }
5105 default { error "unknown effective target keyword `$arg'" }
5108 verbose "is-effective-target: $arg $selected" 2
5109 return $selected
5112 # Return 1 if the argument is an effective-target keyword, 0 otherwise.
5114 proc is-effective-target-keyword { arg } {
5115 if { [info procs check_effective_target_${arg}] != [list] } {
5116 return 1
5117 } else {
5118 # These have different names for their check_* procs.
5119 switch $arg {
5120 "vmx_hw" { return 1 }
5121 "vsx_hw" { return 1 }
5122 "p8vector_hw" { return 1 }
5123 "ppc_recip_hw" { return 1 }
5124 "dfp_hw" { return 1 }
5125 "named_sections" { return 1 }
5126 "gc_sections" { return 1 }
5127 "cxa_atexit" { return 1 }
5128 default { return 0 }
5133 # Return 1 if target default to short enums
5135 proc check_effective_target_short_enums { } {
5136 return [check_no_compiler_messages short_enums assembly {
5137 enum foo { bar };
5138 int s[sizeof (enum foo) == 1 ? 1 : -1];
5142 # Return 1 if target supports merging string constants at link time.
5144 proc check_effective_target_string_merging { } {
5145 return [check_no_messages_and_pattern string_merging \
5146 "rodata\\.str" assembly {
5147 const char *var = "String";
5148 } {-O2}]
5151 # Return 1 if target has the basic signed and unsigned types in
5152 # <stdint.h>, 0 otherwise. This will be obsolete when GCC ensures a
5153 # working <stdint.h> for all targets.
5155 proc check_effective_target_stdint_types { } {
5156 return [check_no_compiler_messages stdint_types assembly {
5157 #include <stdint.h>
5158 int8_t a; int16_t b; int32_t c; int64_t d;
5159 uint8_t e; uint16_t f; uint32_t g; uint64_t h;
5163 # Return 1 if target has the basic signed and unsigned types in
5164 # <inttypes.h>, 0 otherwise. This is for tests that GCC's notions of
5165 # these types agree with those in the header, as some systems have
5166 # only <inttypes.h>.
5168 proc check_effective_target_inttypes_types { } {
5169 return [check_no_compiler_messages inttypes_types assembly {
5170 #include <inttypes.h>
5171 int8_t a; int16_t b; int32_t c; int64_t d;
5172 uint8_t e; uint16_t f; uint32_t g; uint64_t h;
5176 # Return 1 if programs are intended to be run on a simulator
5177 # (i.e. slowly) rather than hardware (i.e. fast).
5179 proc check_effective_target_simulator { } {
5181 # All "src/sim" simulators set this one.
5182 if [board_info target exists is_simulator] {
5183 return [board_info target is_simulator]
5186 # The "sid" simulators don't set that one, but at least they set
5187 # this one.
5188 if [board_info target exists slow_simulator] {
5189 return [board_info target slow_simulator]
5192 return 0
5195 # Return 1 if programs are intended to be run on hardware rather than
5196 # on a simulator
5198 proc check_effective_target_hw { } {
5200 # All "src/sim" simulators set this one.
5201 if [board_info target exists is_simulator] {
5202 if [board_info target is_simulator] {
5203 return 0
5204 } else {
5205 return 1
5209 # The "sid" simulators don't set that one, but at least they set
5210 # this one.
5211 if [board_info target exists slow_simulator] {
5212 if [board_info target slow_simulator] {
5213 return 0
5214 } else {
5215 return 1
5219 return 1
5222 # Return 1 if the target is a VxWorks kernel.
5224 proc check_effective_target_vxworks_kernel { } {
5225 return [check_no_compiler_messages vxworks_kernel assembly {
5226 #if !defined __vxworks || defined __RTP__
5227 #error NO
5228 #endif
5232 # Return 1 if the target is a VxWorks RTP.
5234 proc check_effective_target_vxworks_rtp { } {
5235 return [check_no_compiler_messages vxworks_rtp assembly {
5236 #if !defined __vxworks || !defined __RTP__
5237 #error NO
5238 #endif
5242 # Return 1 if the target is expected to provide wide character support.
5244 proc check_effective_target_wchar { } {
5245 if {[check_missing_uclibc_feature UCLIBC_HAS_WCHAR]} {
5246 return 0
5248 return [check_no_compiler_messages wchar assembly {
5249 #include <wchar.h>
5253 # Return 1 if the target has <pthread.h>.
5255 proc check_effective_target_pthread_h { } {
5256 return [check_no_compiler_messages pthread_h assembly {
5257 #include <pthread.h>
5261 # Return 1 if the target can truncate a file from a file-descriptor,
5262 # as used by libgfortran/io/unix.c:fd_truncate; i.e. ftruncate or
5263 # chsize. We test for a trivially functional truncation; no stubs.
5264 # As libgfortran uses _FILE_OFFSET_BITS 64, we do too; it'll cause a
5265 # different function to be used.
5267 proc check_effective_target_fd_truncate { } {
5268 set prog {
5269 #define _FILE_OFFSET_BITS 64
5270 #include <unistd.h>
5271 #include <stdio.h>
5272 #include <stdlib.h>
5273 int main ()
5275 FILE *f = fopen ("tst.tmp", "wb");
5276 int fd;
5277 const char t[] = "test writing more than ten characters";
5278 char s[11];
5279 int status = 0;
5280 fd = fileno (f);
5281 write (fd, t, sizeof (t) - 1);
5282 lseek (fd, 0, 0);
5283 if (ftruncate (fd, 10) != 0)
5284 status = 1;
5285 close (fd);
5286 fclose (f);
5287 if (status)
5289 unlink ("tst.tmp");
5290 exit (status);
5292 f = fopen ("tst.tmp", "rb");
5293 if (fread (s, 1, sizeof (s), f) != 10 || strncmp (s, t, 10) != 0)
5294 status = 1;
5295 fclose (f);
5296 unlink ("tst.tmp");
5297 exit (status);
5301 if { [check_runtime ftruncate $prog] } {
5302 return 1;
5305 regsub "ftruncate" $prog "chsize" prog
5306 return [check_runtime chsize $prog]
5309 # Add to FLAGS all the target-specific flags needed to access the c99 runtime.
5311 proc add_options_for_c99_runtime { flags } {
5312 if { [istarget *-*-solaris2*] } {
5313 return "$flags -std=c99"
5315 if { [istarget powerpc-*-darwin*] } {
5316 return "$flags -mmacosx-version-min=10.3"
5318 return $flags
5321 # Add to FLAGS all the target-specific flags needed to enable
5322 # full IEEE compliance mode.
5324 proc add_options_for_ieee { flags } {
5325 if { [istarget alpha*-*-*]
5326 || [istarget sh*-*-*] } {
5327 return "$flags -mieee"
5329 if { [istarget rx-*-*] } {
5330 return "$flags -mnofpu"
5332 return $flags
5335 if {![info exists flags_to_postpone]} {
5336 set flags_to_postpone ""
5339 # Add to FLAGS the flags needed to enable functions to bind locally
5340 # when using pic/PIC passes in the testsuite.
5341 proc add_options_for_bind_pic_locally { flags } {
5342 global flags_to_postpone
5344 # Instead of returning 'flags' with the -fPIE or -fpie appended, we save it
5345 # in 'flags_to_postpone' and append it later in gcc_target_compile procedure in
5346 # order to make sure that the multilib_flags doesn't override this.
5348 if {[check_no_compiler_messages using_pic2 assembly {
5349 #if __PIC__ != 2
5350 #error FOO
5351 #endif
5352 }]} {
5353 set flags_to_postpone "-fPIE"
5354 return $flags
5356 if {[check_no_compiler_messages using_pic1 assembly {
5357 #if __PIC__ != 1
5358 #error FOO
5359 #endif
5360 }]} {
5361 set flags_to_postpone "-fpie"
5362 return $flags
5364 return $flags
5367 # Add to FLAGS the flags needed to enable 64-bit vectors.
5369 proc add_options_for_double_vectors { flags } {
5370 if [is-effective-target arm_neon_ok] {
5371 return "$flags -mvectorize-with-neon-double"
5374 return $flags
5377 # Return 1 if the target provides a full C99 runtime.
5379 proc check_effective_target_c99_runtime { } {
5380 return [check_cached_effective_target c99_runtime {
5381 global srcdir
5383 set file [open "$srcdir/gcc.dg/builtins-config.h"]
5384 set contents [read $file]
5385 close $file
5386 append contents {
5387 #ifndef HAVE_C99_RUNTIME
5388 #error FOO
5389 #endif
5391 check_no_compiler_messages_nocache c99_runtime assembly \
5392 $contents [add_options_for_c99_runtime ""]
5396 # Return 1 if target wchar_t is at least 4 bytes.
5398 proc check_effective_target_4byte_wchar_t { } {
5399 return [check_no_compiler_messages 4byte_wchar_t object {
5400 int dummy[sizeof (__WCHAR_TYPE__) >= 4 ? 1 : -1];
5404 # Return 1 if the target supports automatic stack alignment.
5406 proc check_effective_target_automatic_stack_alignment { } {
5407 # Ordinarily x86 supports automatic stack alignment ...
5408 if { [istarget i?86*-*-*] || [istarget x86_64-*-*] } then {
5409 if { [istarget *-*-mingw*] || [istarget *-*-cygwin*] } {
5410 # ... except Win64 SEH doesn't. Succeed for Win32 though.
5411 return [check_effective_target_ilp32];
5413 return 1;
5415 return 0;
5418 # Return true if we are compiling for AVX target.
5420 proc check_avx_available { } {
5421 if { [check_no_compiler_messages avx_available assembly {
5422 #ifndef __AVX__
5423 #error unsupported
5424 #endif
5425 } ""] } {
5426 return 1;
5428 return 0;
5431 # Return true if 32- and 16-bytes vectors are available.
5433 proc check_effective_target_vect_sizes_32B_16B { } {
5434 if { [check_avx_available] && ![check_prefer_avx128] } {
5435 return 1;
5436 } else {
5437 return 0;
5441 # Return true if 128-bits vectors are preferred even if 256-bits vectors
5442 # are available.
5444 proc check_prefer_avx128 { } {
5445 if ![check_avx_available] {
5446 return 0;
5448 return [check_no_messages_and_pattern avx_explicit "xmm" assembly {
5449 float a[1024],b[1024],c[1024];
5450 void foo (void) { int i; for (i = 0; i < 1024; i++) a[i]=b[i]+c[i];}
5451 } "-O2 -ftree-vectorize"]
5455 # Return 1 if avx512f instructions can be compiled.
5457 proc check_effective_target_avx512f { } {
5458 return [check_no_compiler_messages avx512f object {
5459 typedef double __m512d __attribute__ ((__vector_size__ (64)));
5461 __m512d _mm512_add (__m512d a)
5463 return __builtin_ia32_addpd512_mask (a, a, a, 1, 4);
5465 } "-O2 -mavx512f" ]
5468 # Return 1 if avx instructions can be compiled.
5470 proc check_effective_target_avx { } {
5471 if { !([istarget x86_64-*-*] || [istarget i?86-*-*]) } {
5472 return 0
5474 return [check_no_compiler_messages avx object {
5475 void _mm256_zeroall (void)
5477 __builtin_ia32_vzeroall ();
5479 } "-O2 -mavx" ]
5482 # Return 1 if avx2 instructions can be compiled.
5483 proc check_effective_target_avx2 { } {
5484 return [check_no_compiler_messages avx2 object {
5485 typedef long long __v4di __attribute__ ((__vector_size__ (32)));
5486 __v4di
5487 mm256_is32_andnotsi256 (__v4di __X, __v4di __Y)
5489 return __builtin_ia32_andnotsi256 (__X, __Y);
5491 } "-O0 -mavx2" ]
5494 # Return 1 if sse instructions can be compiled.
5495 proc check_effective_target_sse { } {
5496 return [check_no_compiler_messages sse object {
5497 int main ()
5499 __builtin_ia32_stmxcsr ();
5500 return 0;
5502 } "-O2 -msse" ]
5505 # Return 1 if sse2 instructions can be compiled.
5506 proc check_effective_target_sse2 { } {
5507 return [check_no_compiler_messages sse2 object {
5508 typedef long long __m128i __attribute__ ((__vector_size__ (16)));
5510 __m128i _mm_srli_si128 (__m128i __A, int __N)
5512 return (__m128i)__builtin_ia32_psrldqi128 (__A, 8);
5514 } "-O2 -msse2" ]
5517 # Return 1 if F16C instructions can be compiled.
5519 proc check_effective_target_f16c { } {
5520 return [check_no_compiler_messages f16c object {
5521 #include "immintrin.h"
5522 float
5523 foo (unsigned short val)
5525 return _cvtsh_ss (val);
5527 } "-O2 -mf16c" ]
5530 # Return 1 if C wchar_t type is compatible with char16_t.
5532 proc check_effective_target_wchar_t_char16_t_compatible { } {
5533 return [check_no_compiler_messages wchar_t_char16_t object {
5534 __WCHAR_TYPE__ wc;
5535 __CHAR16_TYPE__ *p16 = &wc;
5536 char t[(((__CHAR16_TYPE__) -1) < 0 == ((__WCHAR_TYPE__) -1) < 0) ? 1 : -1];
5540 # Return 1 if C wchar_t type is compatible with char32_t.
5542 proc check_effective_target_wchar_t_char32_t_compatible { } {
5543 return [check_no_compiler_messages wchar_t_char32_t object {
5544 __WCHAR_TYPE__ wc;
5545 __CHAR32_TYPE__ *p32 = &wc;
5546 char t[(((__CHAR32_TYPE__) -1) < 0 == ((__WCHAR_TYPE__) -1) < 0) ? 1 : -1];
5550 # Return 1 if pow10 function exists.
5552 proc check_effective_target_pow10 { } {
5553 return [check_runtime pow10 {
5554 #include <math.h>
5555 int main () {
5556 double x;
5557 x = pow10 (1);
5558 return 0;
5560 } "-lm" ]
5563 # Return 1 if current options generate DFP instructions, 0 otherwise.
5565 proc check_effective_target_hard_dfp {} {
5566 return [check_no_messages_and_pattern hard_dfp "!adddd3" assembly {
5567 typedef float d64 __attribute__((mode(DD)));
5568 d64 x, y, z;
5569 void foo (void) { z = x + y; }
5573 # Return 1 if string.h and wchar.h headers provide C++ requires overloads
5574 # for strchr etc. functions.
5576 proc check_effective_target_correct_iso_cpp_string_wchar_protos { } {
5577 return [check_no_compiler_messages correct_iso_cpp_string_wchar_protos assembly {
5578 #include <string.h>
5579 #include <wchar.h>
5580 #if !defined(__cplusplus) \
5581 || !defined(__CORRECT_ISO_CPP_STRING_H_PROTO) \
5582 || !defined(__CORRECT_ISO_CPP_WCHAR_H_PROTO)
5583 ISO C++ correct string.h and wchar.h protos not supported.
5584 #else
5585 int i;
5586 #endif
5590 # Return 1 if GNU as is used.
5592 proc check_effective_target_gas { } {
5593 global use_gas_saved
5594 global tool
5596 if {![info exists use_gas_saved]} {
5597 # Check if the as used by gcc is GNU as.
5598 set gcc_as [lindex [${tool}_target_compile "-print-prog-name=as" "" "none" ""] 0]
5599 # Provide /dev/null as input, otherwise gas times out reading from
5600 # stdin.
5601 set status [remote_exec host "$gcc_as" "-v /dev/null"]
5602 set as_output [lindex $status 1]
5603 if { [ string first "GNU" $as_output ] >= 0 } {
5604 set use_gas_saved 1
5605 } else {
5606 set use_gas_saved 0
5609 return $use_gas_saved
5612 # Return 1 if GNU ld is used.
5614 proc check_effective_target_gld { } {
5615 global use_gld_saved
5616 global tool
5618 if {![info exists use_gld_saved]} {
5619 # Check if the ld used by gcc is GNU ld.
5620 set gcc_ld [lindex [${tool}_target_compile "-print-prog-name=ld" "" "none" ""] 0]
5621 set status [remote_exec host "$gcc_ld" "--version"]
5622 set ld_output [lindex $status 1]
5623 if { [ string first "GNU" $ld_output ] >= 0 } {
5624 set use_gld_saved 1
5625 } else {
5626 set use_gld_saved 0
5629 return $use_gld_saved
5632 # Return 1 if the compiler has been configure with link-time optimization
5633 # (LTO) support.
5635 proc check_effective_target_lto { } {
5636 global ENABLE_LTO
5637 return [info exists ENABLE_LTO]
5640 # Return 1 if -mx32 -maddress-mode=short can compile, 0 otherwise.
5642 proc check_effective_target_maybe_x32 { } {
5643 return [check_no_compiler_messages maybe_x32 object {
5644 void foo (void) {}
5645 } "-mx32 -maddress-mode=short"]
5648 # Return 1 if this target supports the -fsplit-stack option, 0
5649 # otherwise.
5651 proc check_effective_target_split_stack {} {
5652 return [check_no_compiler_messages split_stack object {
5653 void foo (void) { }
5654 } "-fsplit-stack"]
5657 # Return 1 if this target supports the -masm=intel option, 0
5658 # otherwise
5660 proc check_effective_target_masm_intel {} {
5661 return [check_no_compiler_messages masm_intel object {
5662 extern void abort (void);
5663 } "-masm=intel"]
5666 # Return 1 if the language for the compiler under test is C.
5668 proc check_effective_target_c { } {
5669 global tool
5670 if [string match $tool "gcc"] {
5671 return 1
5673 return 0
5676 # Return 1 if the language for the compiler under test is C++.
5678 proc check_effective_target_c++ { } {
5679 global tool
5680 if [string match $tool "g++"] {
5681 return 1
5683 return 0
5686 # Check whether the current active language standard supports the features
5687 # of C++11/C++14 by checking for the presence of one of the -std
5688 # flags. This assumes that the default for the compiler is C++98, and that
5689 # there will never be multiple -std= arguments on the command line.
5690 proc check_effective_target_c++11_only { } {
5691 if ![check_effective_target_c++] {
5692 return 0
5694 return [check-flags { { } { } { -std=c++0x -std=gnu++0x -std=c++11 -std=gnu++11 } }]
5696 proc check_effective_target_c++11 { } {
5697 if [check_effective_target_c++11_only] {
5698 return 1
5700 return [check_effective_target_c++14]
5702 proc check_effective_target_c++11_down { } {
5703 if ![check_effective_target_c++] {
5704 return 0
5706 return ![check_effective_target_c++14]
5709 proc check_effective_target_c++14_only { } {
5710 if ![check_effective_target_c++] {
5711 return 0
5713 return [check-flags { { } { } { -std=c++1y -std=gnu++1y -std=c++14 -std=gnu++14 } }]
5716 proc check_effective_target_c++14 { } {
5717 if [check_effective_target_c++14_only] {
5718 return 1
5720 return [check_effective_target_c++1z]
5722 proc check_effective_target_c++14_down { } {
5723 if ![check_effective_target_c++] {
5724 return 0
5726 return ![check_effective_target_c++1z]
5729 proc check_effective_target_c++98_only { } {
5730 if ![check_effective_target_c++] {
5731 return 0
5733 return ![check_effective_target_c++11]
5736 proc check_effective_target_c++1z_only { } {
5737 if ![check_effective_target_c++] {
5738 return 0
5740 return [check-flags { { } { } { -std=c++1z -std=gnu++1z } }]
5742 proc check_effective_target_c++1z { } {
5743 return [check_effective_target_c++1z_only]
5746 # Return 1 if expensive testcases should be run.
5748 proc check_effective_target_run_expensive_tests { } {
5749 if { [getenv GCC_TEST_RUN_EXPENSIVE] != "" } {
5750 return 1
5752 return 0
5755 # Returns 1 if "mempcpy" is available on the target system.
5757 proc check_effective_target_mempcpy {} {
5758 return [check_function_available "mempcpy"]
5761 # Check whether the vectorizer tests are supported by the target and
5762 # append additional target-dependent compile flags to DEFAULT_VECTCFLAGS.
5763 # Set dg-do-what-default to either compile or run, depending on target
5764 # capabilities. Return 1 if vectorizer tests are supported by
5765 # target, 0 otherwise.
5767 proc check_vect_support_and_set_flags { } {
5768 global DEFAULT_VECTCFLAGS
5769 global dg-do-what-default
5771 if [istarget powerpc-*paired*] {
5772 lappend DEFAULT_VECTCFLAGS "-mpaired"
5773 if [check_750cl_hw_available] {
5774 set dg-do-what-default run
5775 } else {
5776 set dg-do-what-default compile
5778 } elseif [istarget powerpc*-*-*] {
5779 # Skip targets not supporting -maltivec.
5780 if ![is-effective-target powerpc_altivec_ok] {
5781 return 0
5784 lappend DEFAULT_VECTCFLAGS "-maltivec"
5785 if [check_p8vector_hw_available] {
5786 lappend DEFAULT_VECTCFLAGS "-mpower8-vector" "-mno-allow-movmisalign"
5787 } elseif [check_vsx_hw_available] {
5788 lappend DEFAULT_VECTCFLAGS "-mvsx" "-mno-allow-movmisalign"
5791 if [check_vmx_hw_available] {
5792 set dg-do-what-default run
5793 } else {
5794 if [is-effective-target ilp32] {
5795 # Specify a cpu that supports VMX for compile-only tests.
5796 lappend DEFAULT_VECTCFLAGS "-mcpu=970"
5798 set dg-do-what-default compile
5800 } elseif { [istarget spu-*-*] } {
5801 set dg-do-what-default run
5802 } elseif { [istarget i?86-*-*] || [istarget x86_64-*-*] } {
5803 lappend DEFAULT_VECTCFLAGS "-msse2"
5804 if { [check_effective_target_sse2_runtime] } {
5805 set dg-do-what-default run
5806 } else {
5807 set dg-do-what-default compile
5809 } elseif { [istarget mips*-*-*]
5810 && ([check_effective_target_mpaired_single]
5811 || [check_effective_target_mips_loongson])
5812 && [check_effective_target_nomips16] } {
5813 if { [check_effective_target_mpaired_single] } {
5814 lappend DEFAULT_VECTCFLAGS "-mpaired-single"
5816 set dg-do-what-default run
5817 } elseif [istarget sparc*-*-*] {
5818 lappend DEFAULT_VECTCFLAGS "-mcpu=ultrasparc" "-mvis"
5819 if [check_effective_target_ultrasparc_hw] {
5820 set dg-do-what-default run
5821 } else {
5822 set dg-do-what-default compile
5824 } elseif [istarget alpha*-*-*] {
5825 # Alpha's vectorization capabilities are extremely limited.
5826 # It's more effort than its worth disabling all of the tests
5827 # that it cannot pass. But if you actually want to see what
5828 # does work, command out the return.
5829 return 0
5831 lappend DEFAULT_VECTCFLAGS "-mmax"
5832 if [check_alpha_max_hw_available] {
5833 set dg-do-what-default run
5834 } else {
5835 set dg-do-what-default compile
5837 } elseif [istarget ia64-*-*] {
5838 set dg-do-what-default run
5839 } elseif [is-effective-target arm_neon_ok] {
5840 eval lappend DEFAULT_VECTCFLAGS [add_options_for_arm_neon ""]
5841 # NEON does not support denormals, so is not used for vectorization by
5842 # default to avoid loss of precision. We must pass -ffast-math to test
5843 # vectorization of float operations.
5844 lappend DEFAULT_VECTCFLAGS "-ffast-math"
5845 if [is-effective-target arm_neon_hw] {
5846 set dg-do-what-default run
5847 } else {
5848 set dg-do-what-default compile
5850 } elseif [istarget "aarch64*-*-*"] {
5851 set dg-do-what-default run
5852 } else {
5853 return 0
5856 return 1
5859 # Return 1 if the target does *not* require strict alignment.
5861 proc check_effective_target_non_strict_align {} {
5862 return [check_no_compiler_messages non_strict_align assembly {
5863 char *y;
5864 typedef char __attribute__ ((__aligned__(__BIGGEST_ALIGNMENT__))) c;
5865 c *z;
5866 void foo(void) { z = (c *) y; }
5867 } "-Wcast-align"]
5870 # Return 1 if the target has <ucontext.h>.
5872 proc check_effective_target_ucontext_h { } {
5873 return [check_no_compiler_messages ucontext_h assembly {
5874 #include <ucontext.h>
5878 proc check_effective_target_aarch64_tiny { } {
5879 if { [istarget aarch64*-*-*] } {
5880 return [check_no_compiler_messages aarch64_tiny object {
5881 #ifdef __AARCH64_CMODEL_TINY__
5882 int dummy;
5883 #else
5884 #error target not AArch64 tiny code model
5885 #endif
5887 } else {
5888 return 0
5892 proc check_effective_target_aarch64_small { } {
5893 if { [istarget aarch64*-*-*] } {
5894 return [check_no_compiler_messages aarch64_small object {
5895 #ifdef __AARCH64_CMODEL_SMALL__
5896 int dummy;
5897 #else
5898 #error target not AArch64 small code model
5899 #endif
5901 } else {
5902 return 0
5906 proc check_effective_target_aarch64_large { } {
5907 if { [istarget aarch64*-*-*] } {
5908 return [check_no_compiler_messages aarch64_large object {
5909 #ifdef __AARCH64_CMODEL_LARGE__
5910 int dummy;
5911 #else
5912 #error target not AArch64 large code model
5913 #endif
5915 } else {
5916 return 0
5920 # Return 1 if <fenv.h> is available with all the standard IEEE
5921 # exceptions and floating-point exceptions are raised by arithmetic
5922 # operations. (If the target requires special options for "inexact"
5923 # exceptions, those need to be specified in the testcases.)
5925 proc check_effective_target_fenv_exceptions {} {
5926 return [check_runtime fenv_exceptions {
5927 #include <fenv.h>
5928 #include <stdlib.h>
5929 #ifndef FE_DIVBYZERO
5930 # error Missing FE_DIVBYZERO
5931 #endif
5932 #ifndef FE_INEXACT
5933 # error Missing FE_INEXACT
5934 #endif
5935 #ifndef FE_INVALID
5936 # error Missing FE_INVALID
5937 #endif
5938 #ifndef FE_OVERFLOW
5939 # error Missing FE_OVERFLOW
5940 #endif
5941 #ifndef FE_UNDERFLOW
5942 # error Missing FE_UNDERFLOW
5943 #endif
5944 volatile float a = 0.0f, r;
5946 main (void)
5948 r = a / a;
5949 if (fetestexcept (FE_INVALID))
5950 exit (0);
5951 else
5952 abort ();
5954 } [add_options_for_ieee "-std=gnu99"]]
5957 proc check_effective_target_tiny {} {
5958 if { [istarget aarch64*-*-*]
5959 && [check_effective_target_aarch64_tiny] } {
5960 return 1
5962 return 0
5965 # Return 1 if LOGICAL_OP_NON_SHORT_CIRCUIT is set to 0 for the current target.
5967 proc check_effective_target_logical_op_short_circuit {} {
5968 if { [istarget mips*-*-*]
5969 || [istarget arc*-*-*]
5970 || [istarget avr*-*-*]
5971 || [istarget crisv32-*-*] || [istarget cris-*-*]
5972 || [istarget mmix-*-*]
5973 || [istarget s390*-*-*]
5974 || [istarget powerpc*-*-*]
5975 || [istarget nios2*-*-*]
5976 || [check_effective_target_arm_cortex_m] } {
5977 return 1
5979 return 0
5982 # Record that dg-final test TEST requires convential compilation.
5984 proc force_conventional_output_for { test } {
5985 if { [info proc $test] == "" } {
5986 perror "$test does not exist"
5987 exit 1
5989 proc ${test}_required_options {} {
5990 global gcc_force_conventional_output
5991 return $gcc_force_conventional_output