Merged trunk at revision 161680 into branch.
[official-gcc.git] / gcc / ada / inline.adb
blob1379a9e82dd68594af4fb629acf0b667ef334cd9
1 ------------------------------------------------------------------------------
2 -- --
3 -- GNAT COMPILER COMPONENTS --
4 -- --
5 -- I N L I N E --
6 -- --
7 -- B o d y --
8 -- --
9 -- Copyright (C) 1992-2010, Free Software Foundation, Inc. --
10 -- --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING3. If not, go to --
19 -- http://www.gnu.org/licenses for a complete copy of the license. --
20 -- --
21 -- GNAT was originally developed by the GNAT team at New York University. --
22 -- Extensive contributions were provided by Ada Core Technologies Inc. --
23 -- --
24 ------------------------------------------------------------------------------
26 with Atree; use Atree;
27 with Einfo; use Einfo;
28 with Elists; use Elists;
29 with Errout; use Errout;
30 with Exp_Ch7; use Exp_Ch7;
31 with Exp_Tss; use Exp_Tss;
32 with Fname; use Fname;
33 with Fname.UF; use Fname.UF;
34 with Lib; use Lib;
35 with Namet; use Namet;
36 with Nlists; use Nlists;
37 with Sem_Aux; use Sem_Aux;
38 with Sem_Ch8; use Sem_Ch8;
39 with Sem_Ch10; use Sem_Ch10;
40 with Sem_Ch12; use Sem_Ch12;
41 with Sem_Util; use Sem_Util;
42 with Sinfo; use Sinfo;
43 with Snames; use Snames;
44 with Stand; use Stand;
45 with Uname; use Uname;
47 package body Inline is
49 --------------------
50 -- Inlined Bodies --
51 --------------------
53 -- Inlined functions are actually placed in line by the backend if the
54 -- corresponding bodies are available (i.e. compiled). Whenever we find
55 -- a call to an inlined subprogram, we add the name of the enclosing
56 -- compilation unit to a worklist. After all compilation, and after
57 -- expansion of generic bodies, we traverse the list of pending bodies
58 -- and compile them as well.
60 package Inlined_Bodies is new Table.Table (
61 Table_Component_Type => Entity_Id,
62 Table_Index_Type => Int,
63 Table_Low_Bound => 0,
64 Table_Initial => Alloc.Inlined_Bodies_Initial,
65 Table_Increment => Alloc.Inlined_Bodies_Increment,
66 Table_Name => "Inlined_Bodies");
68 -----------------------
69 -- Inline Processing --
70 -----------------------
72 -- For each call to an inlined subprogram, we make entries in a table
73 -- that stores caller and callee, and indicates a prerequisite from
74 -- one to the other. We also record the compilation unit that contains
75 -- the callee. After analyzing the bodies of all such compilation units,
76 -- we produce a list of subprograms in topological order, for use by the
77 -- back-end. If P2 is a prerequisite of P1, then P1 calls P2, and for
78 -- proper inlining the back-end must analyze the body of P2 before that of
79 -- P1. The code below guarantees that the transitive closure of inlined
80 -- subprograms called from the main compilation unit is made available to
81 -- the code generator.
83 Last_Inlined : Entity_Id := Empty;
85 -- For each entry in the table we keep a list of successors in topological
86 -- order, i.e. callers of the current subprogram.
88 type Subp_Index is new Nat;
89 No_Subp : constant Subp_Index := 0;
91 -- The subprogram entities are hashed into the Inlined table
93 Num_Hash_Headers : constant := 512;
95 Hash_Headers : array (Subp_Index range 0 .. Num_Hash_Headers - 1)
96 of Subp_Index;
98 type Succ_Index is new Nat;
99 No_Succ : constant Succ_Index := 0;
101 type Succ_Info is record
102 Subp : Subp_Index;
103 Next : Succ_Index;
104 end record;
106 -- The following table stores list elements for the successor lists.
107 -- These lists cannot be chained directly through entries in the Inlined
108 -- table, because a given subprogram can appear in several such lists.
110 package Successors is new Table.Table (
111 Table_Component_Type => Succ_Info,
112 Table_Index_Type => Succ_Index,
113 Table_Low_Bound => 1,
114 Table_Initial => Alloc.Successors_Initial,
115 Table_Increment => Alloc.Successors_Increment,
116 Table_Name => "Successors");
118 type Subp_Info is record
119 Name : Entity_Id := Empty;
120 First_Succ : Succ_Index := No_Succ;
121 Count : Integer := 0;
122 Listed : Boolean := False;
123 Main_Call : Boolean := False;
124 Next : Subp_Index := No_Subp;
125 Next_Nopred : Subp_Index := No_Subp;
126 end record;
128 package Inlined is new Table.Table (
129 Table_Component_Type => Subp_Info,
130 Table_Index_Type => Subp_Index,
131 Table_Low_Bound => 1,
132 Table_Initial => Alloc.Inlined_Initial,
133 Table_Increment => Alloc.Inlined_Increment,
134 Table_Name => "Inlined");
136 -----------------------
137 -- Local Subprograms --
138 -----------------------
140 function Scope_In_Main_Unit (Scop : Entity_Id) return Boolean;
141 -- Return True if Scop is in the main unit or its spec, or in a
142 -- parent of the main unit if it is a child unit.
144 procedure Add_Call (Called : Entity_Id; Caller : Entity_Id := Empty);
145 -- Make two entries in Inlined table, for an inlined subprogram being
146 -- called, and for the inlined subprogram that contains the call. If
147 -- the call is in the main compilation unit, Caller is Empty.
149 function Add_Subp (E : Entity_Id) return Subp_Index;
150 -- Make entry in Inlined table for subprogram E, or return table index
151 -- that already holds E.
153 function Has_Initialized_Type (E : Entity_Id) return Boolean;
154 -- If a candidate for inlining contains type declarations for types with
155 -- non-trivial initialization procedures, they are not worth inlining.
157 function Is_Nested (E : Entity_Id) return Boolean;
158 -- If the function is nested inside some other function, it will
159 -- always be compiled if that function is, so don't add it to the
160 -- inline list. We cannot compile a nested function outside the
161 -- scope of the containing function anyway. This is also the case if
162 -- the function is defined in a task body or within an entry (for
163 -- example, an initialization procedure).
165 procedure Add_Inlined_Subprogram (Index : Subp_Index);
166 -- Add subprogram to Inlined List once all of its predecessors have been
167 -- placed on the list. Decrement the count of all its successors, and
168 -- add them to list (recursively) if count drops to zero.
170 ------------------------------
171 -- Deferred Cleanup Actions --
172 ------------------------------
174 -- The cleanup actions for scopes that contain instantiations is delayed
175 -- until after expansion of those instantiations, because they may
176 -- contain finalizable objects or tasks that affect the cleanup code.
177 -- A scope that contains instantiations only needs to be finalized once,
178 -- even if it contains more than one instance. We keep a list of scopes
179 -- that must still be finalized, and call cleanup_actions after all the
180 -- instantiations have been completed.
182 To_Clean : Elist_Id;
184 procedure Add_Scope_To_Clean (Inst : Entity_Id);
185 -- Build set of scopes on which cleanup actions must be performed
187 procedure Cleanup_Scopes;
188 -- Complete cleanup actions on scopes that need it
190 --------------
191 -- Add_Call --
192 --------------
194 procedure Add_Call (Called : Entity_Id; Caller : Entity_Id := Empty) is
195 P1 : constant Subp_Index := Add_Subp (Called);
196 P2 : Subp_Index;
197 J : Succ_Index;
199 begin
200 if Present (Caller) then
201 P2 := Add_Subp (Caller);
203 -- Add P2 to the list of successors of P1, if not already there.
204 -- Note that P2 may contain more than one call to P1, and only
205 -- one needs to be recorded.
207 J := Inlined.Table (P1).First_Succ;
208 while J /= No_Succ loop
209 if Successors.Table (J).Subp = P2 then
210 return;
211 end if;
213 J := Successors.Table (J).Next;
214 end loop;
216 -- On exit, make a successor entry for P2
218 Successors.Increment_Last;
219 Successors.Table (Successors.Last).Subp := P2;
220 Successors.Table (Successors.Last).Next :=
221 Inlined.Table (P1).First_Succ;
222 Inlined.Table (P1).First_Succ := Successors.Last;
224 Inlined.Table (P2).Count := Inlined.Table (P2).Count + 1;
226 else
227 Inlined.Table (P1).Main_Call := True;
228 end if;
229 end Add_Call;
231 ----------------------
232 -- Add_Inlined_Body --
233 ----------------------
235 procedure Add_Inlined_Body (E : Entity_Id) is
236 Pack : Entity_Id;
238 function Must_Inline return Boolean;
239 -- Inlining is only done if the call statement N is in the main unit,
240 -- or within the body of another inlined subprogram.
242 -----------------
243 -- Must_Inline --
244 -----------------
246 function Must_Inline return Boolean is
247 Scop : Entity_Id;
248 Comp : Node_Id;
250 begin
251 -- Check if call is in main unit
253 Scop := Current_Scope;
255 -- Do not try to inline if scope is standard. This could happen, for
256 -- example, for a call to Add_Global_Declaration, and it causes
257 -- trouble to try to inline at this level.
259 if Scop = Standard_Standard then
260 return False;
261 end if;
263 -- Otherwise lookup scope stack to outer scope
265 while Scope (Scop) /= Standard_Standard
266 and then not Is_Child_Unit (Scop)
267 loop
268 Scop := Scope (Scop);
269 end loop;
271 Comp := Parent (Scop);
272 while Nkind (Comp) /= N_Compilation_Unit loop
273 Comp := Parent (Comp);
274 end loop;
276 if Comp = Cunit (Main_Unit)
277 or else Comp = Library_Unit (Cunit (Main_Unit))
278 then
279 Add_Call (E);
280 return True;
281 end if;
283 -- Call is not in main unit. See if it's in some inlined subprogram
285 Scop := Current_Scope;
286 while Scope (Scop) /= Standard_Standard
287 and then not Is_Child_Unit (Scop)
288 loop
289 if Is_Overloadable (Scop)
290 and then Is_Inlined (Scop)
291 then
292 Add_Call (E, Scop);
293 return True;
294 end if;
296 Scop := Scope (Scop);
297 end loop;
299 return False;
300 end Must_Inline;
302 -- Start of processing for Add_Inlined_Body
304 begin
305 -- Find unit containing E, and add to list of inlined bodies if needed.
306 -- If the body is already present, no need to load any other unit. This
307 -- is the case for an initialization procedure, which appears in the
308 -- package declaration that contains the type. It is also the case if
309 -- the body has already been analyzed. Finally, if the unit enclosing
310 -- E is an instance, the instance body will be analyzed in any case,
311 -- and there is no need to add the enclosing unit (whose body might not
312 -- be available).
314 -- Library-level functions must be handled specially, because there is
315 -- no enclosing package to retrieve. In this case, it is the body of
316 -- the function that will have to be loaded.
318 if not Is_Abstract_Subprogram (E) and then not Is_Nested (E)
319 and then Convention (E) /= Convention_Protected
320 then
321 Pack := Scope (E);
323 if Must_Inline
324 and then Ekind (Pack) = E_Package
325 then
326 Set_Is_Called (E);
328 if Pack = Standard_Standard then
330 -- Library-level inlined function. Add function itself to
331 -- list of needed units.
333 Inlined_Bodies.Increment_Last;
334 Inlined_Bodies.Table (Inlined_Bodies.Last) := E;
336 elsif Is_Generic_Instance (Pack) then
337 null;
339 elsif not Is_Inlined (Pack)
340 and then not Has_Completion (E)
341 and then not Scope_In_Main_Unit (Pack)
342 then
343 Set_Is_Inlined (Pack);
344 Inlined_Bodies.Increment_Last;
345 Inlined_Bodies.Table (Inlined_Bodies.Last) := Pack;
346 end if;
347 end if;
348 end if;
349 end Add_Inlined_Body;
351 ----------------------------
352 -- Add_Inlined_Subprogram --
353 ----------------------------
355 procedure Add_Inlined_Subprogram (Index : Subp_Index) is
356 E : constant Entity_Id := Inlined.Table (Index).Name;
357 Succ : Succ_Index;
358 Subp : Subp_Index;
360 function Back_End_Cannot_Inline (Subp : Entity_Id) return Boolean;
361 -- There are various conditions under which back-end inlining cannot
362 -- be done reliably:
364 -- a) If a body has handlers, it must not be inlined, because this
365 -- may violate program semantics, and because in zero-cost exception
366 -- mode it will lead to undefined symbols at link time.
368 -- b) If a body contains inlined function instances, it cannot be
369 -- inlined under ZCX because the numeric suffix generated by gigi
370 -- will be different in the body and the place of the inlined call.
372 -- If the body to be inlined contains calls to subprograms declared
373 -- in the same body that have no previous spec, the back-end cannot
374 -- inline either because the bodies to be inlined are processed before
375 -- the rest of the enclosing package body, and gigi will then find
376 -- references to entities that have not been elaborated yet.
378 -- This procedure must be carefully coordinated with the back end.
380 ----------------------------
381 -- Back_End_Cannot_Inline --
382 ----------------------------
384 function Back_End_Cannot_Inline (Subp : Entity_Id) return Boolean is
385 Decl : constant Node_Id := Unit_Declaration_Node (Subp);
386 Body_Ent : Entity_Id;
387 Ent : Entity_Id;
388 Bad_Call : Node_Id;
390 function Process (N : Node_Id) return Traverse_Result;
391 -- Look for calls to subprograms with no previous spec, declared
392 -- in the same enclosiong package body.
394 -------------
395 -- Process --
396 -------------
398 function Process (N : Node_Id) return Traverse_Result is
399 begin
400 if Nkind (N) = N_Procedure_Call_Statement
401 or else Nkind (N) = N_Function_Call
402 then
403 if Is_Entity_Name (Name (N))
404 and then Comes_From_Source (Entity (Name (N)))
405 and then
406 Nkind (Unit_Declaration_Node (Entity (Name (N))))
407 = N_Subprogram_Body
408 and then In_Same_Extended_Unit (Subp, Entity (Name (N)))
409 then
410 Bad_Call := N;
411 return Abandon;
412 else
413 return OK;
414 end if;
415 else
416 return OK;
417 end if;
418 end Process;
420 function Has_Exposed_Call is new Traverse_Func (Process);
422 -- Start of processing for Back_End_Cannot_Inline
424 begin
425 if Nkind (Decl) = N_Subprogram_Declaration
426 and then Present (Corresponding_Body (Decl))
427 then
428 Body_Ent := Corresponding_Body (Decl);
429 else
430 return False;
431 end if;
433 -- If subprogram is marked Inline_Always, inlining is mandatory
435 if Has_Pragma_Inline_Always (Subp) then
436 return False;
437 end if;
439 if Present
440 (Exception_Handlers
441 (Handled_Statement_Sequence
442 (Unit_Declaration_Node (Corresponding_Body (Decl)))))
443 then
444 return True;
445 end if;
447 Ent := First_Entity (Body_Ent);
448 while Present (Ent) loop
449 if Is_Subprogram (Ent)
450 and then Is_Generic_Instance (Ent)
451 then
452 return True;
453 end if;
455 Next_Entity (Ent);
456 end loop;
458 if Has_Exposed_Call
459 (Unit_Declaration_Node (Corresponding_Body (Decl))) = Abandon
460 then
461 if Ineffective_Inline_Warnings then
462 Error_Msg_N
463 ("?call to subprogram with no separate spec"
464 & " prevents inlining!!", Bad_Call);
465 end if;
467 return True;
468 else
469 return False;
470 end if;
471 end Back_End_Cannot_Inline;
473 -- Start of processing for Add_Inlined_Subprogram
475 begin
476 -- Insert the current subprogram in the list of inlined subprograms,
477 -- if it can actually be inlined by the back-end.
479 if not Scope_In_Main_Unit (E)
480 and then Is_Inlined (E)
481 and then not Is_Nested (E)
482 and then not Has_Initialized_Type (E)
483 then
484 if Back_End_Cannot_Inline (E) then
485 Set_Is_Inlined (E, False);
487 else
488 if No (Last_Inlined) then
489 Set_First_Inlined_Subprogram (Cunit (Main_Unit), E);
490 else
491 Set_Next_Inlined_Subprogram (Last_Inlined, E);
492 end if;
494 Last_Inlined := E;
495 end if;
496 end if;
498 Inlined.Table (Index).Listed := True;
500 -- Now add to the list those callers of the current subprogram that
501 -- are themselves called. They may appear on the graph as callers
502 -- of the current one, even if they are themselves not called, and
503 -- there is no point in including them in the list for the backend.
504 -- Furthermore, they might not even be public, in which case the
505 -- back-end cannot handle them at all.
507 Succ := Inlined.Table (Index).First_Succ;
508 while Succ /= No_Succ loop
509 Subp := Successors.Table (Succ).Subp;
510 Inlined.Table (Subp).Count := Inlined.Table (Subp).Count - 1;
512 if Inlined.Table (Subp).Count = 0
513 and then Is_Called (Inlined.Table (Subp).Name)
514 then
515 Add_Inlined_Subprogram (Subp);
516 end if;
518 Succ := Successors.Table (Succ).Next;
519 end loop;
520 end Add_Inlined_Subprogram;
522 ------------------------
523 -- Add_Scope_To_Clean --
524 ------------------------
526 procedure Add_Scope_To_Clean (Inst : Entity_Id) is
527 Scop : constant Entity_Id := Enclosing_Dynamic_Scope (Inst);
528 Elmt : Elmt_Id;
530 begin
531 -- If the instance appears in a library-level package declaration,
532 -- all finalization is global, and nothing needs doing here.
534 if Scop = Standard_Standard then
535 return;
536 end if;
538 -- If the instance appears within a generic subprogram there is nothing
539 -- to finalize either.
541 declare
542 S : Entity_Id;
544 begin
545 S := Scope (Inst);
546 while Present (S) and then S /= Standard_Standard loop
547 if Is_Generic_Subprogram (S) then
548 return;
549 end if;
551 S := Scope (S);
552 end loop;
553 end;
555 Elmt := First_Elmt (To_Clean);
556 while Present (Elmt) loop
557 if Node (Elmt) = Scop then
558 return;
559 end if;
561 Elmt := Next_Elmt (Elmt);
562 end loop;
564 Append_Elmt (Scop, To_Clean);
565 end Add_Scope_To_Clean;
567 --------------
568 -- Add_Subp --
569 --------------
571 function Add_Subp (E : Entity_Id) return Subp_Index is
572 Index : Subp_Index := Subp_Index (E) mod Num_Hash_Headers;
573 J : Subp_Index;
575 procedure New_Entry;
576 -- Initialize entry in Inlined table
578 procedure New_Entry is
579 begin
580 Inlined.Increment_Last;
581 Inlined.Table (Inlined.Last).Name := E;
582 Inlined.Table (Inlined.Last).First_Succ := No_Succ;
583 Inlined.Table (Inlined.Last).Count := 0;
584 Inlined.Table (Inlined.Last).Listed := False;
585 Inlined.Table (Inlined.Last).Main_Call := False;
586 Inlined.Table (Inlined.Last).Next := No_Subp;
587 Inlined.Table (Inlined.Last).Next_Nopred := No_Subp;
588 end New_Entry;
590 -- Start of processing for Add_Subp
592 begin
593 if Hash_Headers (Index) = No_Subp then
594 New_Entry;
595 Hash_Headers (Index) := Inlined.Last;
596 return Inlined.Last;
598 else
599 J := Hash_Headers (Index);
600 while J /= No_Subp loop
601 if Inlined.Table (J).Name = E then
602 return J;
603 else
604 Index := J;
605 J := Inlined.Table (J).Next;
606 end if;
607 end loop;
609 -- On exit, subprogram was not found. Enter in table. Index is
610 -- the current last entry on the hash chain.
612 New_Entry;
613 Inlined.Table (Index).Next := Inlined.Last;
614 return Inlined.Last;
615 end if;
616 end Add_Subp;
618 ----------------------------
619 -- Analyze_Inlined_Bodies --
620 ----------------------------
622 procedure Analyze_Inlined_Bodies is
623 Comp_Unit : Node_Id;
624 J : Int;
625 Pack : Entity_Id;
626 S : Succ_Index;
628 begin
629 Analyzing_Inlined_Bodies := False;
631 if Serious_Errors_Detected = 0 then
632 Push_Scope (Standard_Standard);
634 J := 0;
635 while J <= Inlined_Bodies.Last
636 and then Serious_Errors_Detected = 0
637 loop
638 Pack := Inlined_Bodies.Table (J);
639 while Present (Pack)
640 and then Scope (Pack) /= Standard_Standard
641 and then not Is_Child_Unit (Pack)
642 loop
643 Pack := Scope (Pack);
644 end loop;
646 Comp_Unit := Parent (Pack);
647 while Present (Comp_Unit)
648 and then Nkind (Comp_Unit) /= N_Compilation_Unit
649 loop
650 Comp_Unit := Parent (Comp_Unit);
651 end loop;
653 -- Load the body, unless it the main unit, or is an instance
654 -- whose body has already been analyzed.
656 if Present (Comp_Unit)
657 and then Comp_Unit /= Cunit (Main_Unit)
658 and then Body_Required (Comp_Unit)
659 and then (Nkind (Unit (Comp_Unit)) /= N_Package_Declaration
660 or else No (Corresponding_Body (Unit (Comp_Unit))))
661 then
662 declare
663 Bname : constant Unit_Name_Type :=
664 Get_Body_Name (Get_Unit_Name (Unit (Comp_Unit)));
666 OK : Boolean;
668 begin
669 if not Is_Loaded (Bname) then
670 Load_Needed_Body (Comp_Unit, OK);
672 if not OK then
674 -- Warn that a body was not available for inlining
675 -- by the back-end.
677 Error_Msg_Unit_1 := Bname;
678 Error_Msg_N
679 ("one or more inlined subprograms accessed in $!?",
680 Comp_Unit);
681 Error_Msg_File_1 :=
682 Get_File_Name (Bname, Subunit => False);
683 Error_Msg_N ("\but file{ was not found!?", Comp_Unit);
684 end if;
685 end if;
686 end;
687 end if;
689 J := J + 1;
690 end loop;
692 -- The analysis of required bodies may have produced additional
693 -- generic instantiations. To obtain further inlining, we perform
694 -- another round of generic body instantiations. Establishing a
695 -- fully recursive loop between inlining and generic instantiations
696 -- is unlikely to yield more than this one additional pass.
698 Instantiate_Bodies;
700 -- The list of inlined subprograms is an overestimate, because
701 -- it includes inlined functions called from functions that are
702 -- compiled as part of an inlined package, but are not themselves
703 -- called. An accurate computation of just those subprograms that
704 -- are needed requires that we perform a transitive closure over
705 -- the call graph, starting from calls in the main program. Here
706 -- we do one step of the inverse transitive closure, and reset
707 -- the Is_Called flag on subprograms all of whose callers are not.
709 for Index in Inlined.First .. Inlined.Last loop
710 S := Inlined.Table (Index).First_Succ;
712 if S /= No_Succ
713 and then not Inlined.Table (Index).Main_Call
714 then
715 Set_Is_Called (Inlined.Table (Index).Name, False);
717 while S /= No_Succ loop
718 if Is_Called
719 (Inlined.Table (Successors.Table (S).Subp).Name)
720 or else Inlined.Table (Successors.Table (S).Subp).Main_Call
721 then
722 Set_Is_Called (Inlined.Table (Index).Name);
723 exit;
724 end if;
726 S := Successors.Table (S).Next;
727 end loop;
728 end if;
729 end loop;
731 -- Now that the units are compiled, chain the subprograms within
732 -- that are called and inlined. Produce list of inlined subprograms
733 -- sorted in topological order. Start with all subprograms that
734 -- have no prerequisites, i.e. inlined subprograms that do not call
735 -- other inlined subprograms.
737 for Index in Inlined.First .. Inlined.Last loop
739 if Is_Called (Inlined.Table (Index).Name)
740 and then Inlined.Table (Index).Count = 0
741 and then not Inlined.Table (Index).Listed
742 then
743 Add_Inlined_Subprogram (Index);
744 end if;
745 end loop;
747 -- Because Add_Inlined_Subprogram treats recursively nodes that have
748 -- no prerequisites left, at the end of the loop all subprograms
749 -- must have been listed. If there are any unlisted subprograms
750 -- left, there must be some recursive chains that cannot be inlined.
752 for Index in Inlined.First .. Inlined.Last loop
753 if Is_Called (Inlined.Table (Index).Name)
754 and then Inlined.Table (Index).Count /= 0
755 and then not Is_Predefined_File_Name
756 (Unit_File_Name
757 (Get_Source_Unit (Inlined.Table (Index).Name)))
758 then
759 Error_Msg_N
760 ("& cannot be inlined?", Inlined.Table (Index).Name);
762 -- A warning on the first one might be sufficient ???
763 end if;
764 end loop;
766 Pop_Scope;
767 end if;
768 end Analyze_Inlined_Bodies;
770 -----------------------------
771 -- Check_Body_For_Inlining --
772 -----------------------------
774 procedure Check_Body_For_Inlining (N : Node_Id; P : Entity_Id) is
775 Bname : Unit_Name_Type;
776 E : Entity_Id;
777 OK : Boolean;
779 begin
780 if Is_Compilation_Unit (P)
781 and then not Is_Generic_Instance (P)
782 then
783 Bname := Get_Body_Name (Get_Unit_Name (Unit (N)));
785 E := First_Entity (P);
786 while Present (E) loop
787 if Has_Pragma_Inline_Always (E)
788 or else (Front_End_Inlining and then Has_Pragma_Inline (E))
789 then
790 if not Is_Loaded (Bname) then
791 Load_Needed_Body (N, OK);
793 if OK then
795 -- Check we are not trying to inline a parent whose body
796 -- depends on a child, when we are compiling the body of
797 -- the child. Otherwise we have a potential elaboration
798 -- circularity with inlined subprograms and with
799 -- Taft-Amendment types.
801 declare
802 Comp : Node_Id; -- Body just compiled
803 Child_Spec : Entity_Id; -- Spec of main unit
804 Ent : Entity_Id; -- For iteration
805 With_Clause : Node_Id; -- Context of body.
807 begin
808 if Nkind (Unit (Cunit (Main_Unit))) = N_Package_Body
809 and then Present (Body_Entity (P))
810 then
811 Child_Spec :=
812 Defining_Entity
813 ((Unit (Library_Unit (Cunit (Main_Unit)))));
815 Comp :=
816 Parent (Unit_Declaration_Node (Body_Entity (P)));
818 -- Check whether the context of the body just
819 -- compiled includes a child of itself, and that
820 -- child is the spec of the main compilation.
822 With_Clause := First (Context_Items (Comp));
823 while Present (With_Clause) loop
824 if Nkind (With_Clause) = N_With_Clause
825 and then
826 Scope (Entity (Name (With_Clause))) = P
827 and then
828 Entity (Name (With_Clause)) = Child_Spec
829 then
830 Error_Msg_Node_2 := Child_Spec;
831 Error_Msg_NE
832 ("body of & depends on child unit&?",
833 With_Clause, P);
834 Error_Msg_N
835 ("\subprograms in body cannot be inlined?",
836 With_Clause);
838 -- Disable further inlining from this unit,
839 -- and keep Taft-amendment types incomplete.
841 Ent := First_Entity (P);
842 while Present (Ent) loop
843 if Is_Type (Ent)
844 and then Has_Completion_In_Body (Ent)
845 then
846 Set_Full_View (Ent, Empty);
848 elsif Is_Subprogram (Ent) then
849 Set_Is_Inlined (Ent, False);
850 end if;
852 Next_Entity (Ent);
853 end loop;
855 return;
856 end if;
858 Next (With_Clause);
859 end loop;
860 end if;
861 end;
863 elsif Ineffective_Inline_Warnings then
864 Error_Msg_Unit_1 := Bname;
865 Error_Msg_N
866 ("unable to inline subprograms defined in $?", P);
867 Error_Msg_N ("\body not found?", P);
868 return;
869 end if;
870 end if;
872 return;
873 end if;
875 Next_Entity (E);
876 end loop;
877 end if;
878 end Check_Body_For_Inlining;
880 --------------------
881 -- Cleanup_Scopes --
882 --------------------
884 procedure Cleanup_Scopes is
885 Elmt : Elmt_Id;
886 Decl : Node_Id;
887 Scop : Entity_Id;
889 begin
890 Elmt := First_Elmt (To_Clean);
891 while Present (Elmt) loop
892 Scop := Node (Elmt);
894 if Ekind (Scop) = E_Entry then
895 Scop := Protected_Body_Subprogram (Scop);
897 elsif Is_Subprogram (Scop)
898 and then Is_Protected_Type (Scope (Scop))
899 and then Present (Protected_Body_Subprogram (Scop))
900 then
901 -- If a protected operation contains an instance, its
902 -- cleanup operations have been delayed, and the subprogram
903 -- has been rewritten in the expansion of the enclosing
904 -- protected body. It is the corresponding subprogram that
905 -- may require the cleanup operations, so propagate the
906 -- information that triggers cleanup activity.
908 Set_Uses_Sec_Stack
909 (Protected_Body_Subprogram (Scop),
910 Uses_Sec_Stack (Scop));
911 Set_Finalization_Chain_Entity
912 (Protected_Body_Subprogram (Scop),
913 Finalization_Chain_Entity (Scop));
914 Scop := Protected_Body_Subprogram (Scop);
915 end if;
917 if Ekind (Scop) = E_Block then
918 Decl := Parent (Block_Node (Scop));
920 else
921 Decl := Unit_Declaration_Node (Scop);
923 if Nkind (Decl) = N_Subprogram_Declaration
924 or else Nkind (Decl) = N_Task_Type_Declaration
925 or else Nkind (Decl) = N_Subprogram_Body_Stub
926 then
927 Decl := Unit_Declaration_Node (Corresponding_Body (Decl));
928 end if;
929 end if;
931 Push_Scope (Scop);
932 Expand_Cleanup_Actions (Decl);
933 End_Scope;
935 Elmt := Next_Elmt (Elmt);
936 end loop;
937 end Cleanup_Scopes;
939 --------------------------
940 -- Has_Initialized_Type --
941 --------------------------
943 function Has_Initialized_Type (E : Entity_Id) return Boolean is
944 E_Body : constant Node_Id := Get_Subprogram_Body (E);
945 Decl : Node_Id;
947 begin
948 if No (E_Body) then -- imported subprogram
949 return False;
951 else
952 Decl := First (Declarations (E_Body));
953 while Present (Decl) loop
955 if Nkind (Decl) = N_Full_Type_Declaration
956 and then Present (Init_Proc (Defining_Identifier (Decl)))
957 then
958 return True;
959 end if;
961 Next (Decl);
962 end loop;
963 end if;
965 return False;
966 end Has_Initialized_Type;
968 ----------------
969 -- Initialize --
970 ----------------
972 procedure Initialize is
973 begin
974 Analyzing_Inlined_Bodies := False;
975 Pending_Descriptor.Init;
976 Pending_Instantiations.Init;
977 Inlined_Bodies.Init;
978 Successors.Init;
979 Inlined.Init;
981 for J in Hash_Headers'Range loop
982 Hash_Headers (J) := No_Subp;
983 end loop;
984 end Initialize;
986 ------------------------
987 -- Instantiate_Bodies --
988 ------------------------
990 -- Generic bodies contain all the non-local references, so an
991 -- instantiation does not need any more context than Standard
992 -- itself, even if the instantiation appears in an inner scope.
993 -- Generic associations have verified that the contract model is
994 -- satisfied, so that any error that may occur in the analysis of
995 -- the body is an internal error.
997 procedure Instantiate_Bodies is
998 J : Int;
999 Info : Pending_Body_Info;
1001 begin
1002 if Serious_Errors_Detected = 0 then
1004 Expander_Active := (Operating_Mode = Opt.Generate_Code);
1005 Push_Scope (Standard_Standard);
1006 To_Clean := New_Elmt_List;
1008 if Is_Generic_Unit (Cunit_Entity (Main_Unit)) then
1009 Start_Generic;
1010 end if;
1012 -- A body instantiation may generate additional instantiations, so
1013 -- the following loop must scan to the end of a possibly expanding
1014 -- set (that's why we can't simply use a FOR loop here).
1016 J := 0;
1017 while J <= Pending_Instantiations.Last
1018 and then Serious_Errors_Detected = 0
1019 loop
1020 Info := Pending_Instantiations.Table (J);
1022 -- If the instantiation node is absent, it has been removed
1023 -- as part of unreachable code.
1025 if No (Info.Inst_Node) then
1026 null;
1028 elsif Nkind (Info.Act_Decl) = N_Package_Declaration then
1029 Instantiate_Package_Body (Info);
1030 Add_Scope_To_Clean (Defining_Entity (Info.Act_Decl));
1032 else
1033 Instantiate_Subprogram_Body (Info);
1034 end if;
1036 J := J + 1;
1037 end loop;
1039 -- Reset the table of instantiations. Additional instantiations
1040 -- may be added through inlining, when additional bodies are
1041 -- analyzed.
1043 Pending_Instantiations.Init;
1045 -- We can now complete the cleanup actions of scopes that contain
1046 -- pending instantiations (skipped for generic units, since we
1047 -- never need any cleanups in generic units).
1048 -- pending instantiations.
1050 if Expander_Active
1051 and then not Is_Generic_Unit (Main_Unit_Entity)
1052 then
1053 Cleanup_Scopes;
1054 elsif Is_Generic_Unit (Cunit_Entity (Main_Unit)) then
1055 End_Generic;
1056 end if;
1058 Pop_Scope;
1059 end if;
1060 end Instantiate_Bodies;
1062 ---------------
1063 -- Is_Nested --
1064 ---------------
1066 function Is_Nested (E : Entity_Id) return Boolean is
1067 Scop : Entity_Id;
1069 begin
1070 Scop := Scope (E);
1071 while Scop /= Standard_Standard loop
1072 if Ekind (Scop) in Subprogram_Kind then
1073 return True;
1075 elsif Ekind (Scop) = E_Task_Type
1076 or else Ekind (Scop) = E_Entry
1077 or else Ekind (Scop) = E_Entry_Family then
1078 return True;
1079 end if;
1081 Scop := Scope (Scop);
1082 end loop;
1084 return False;
1085 end Is_Nested;
1087 ----------
1088 -- Lock --
1089 ----------
1091 procedure Lock is
1092 begin
1093 Pending_Instantiations.Locked := True;
1094 Inlined_Bodies.Locked := True;
1095 Successors.Locked := True;
1096 Inlined.Locked := True;
1097 Pending_Instantiations.Release;
1098 Inlined_Bodies.Release;
1099 Successors.Release;
1100 Inlined.Release;
1101 end Lock;
1103 --------------------------
1104 -- Remove_Dead_Instance --
1105 --------------------------
1107 procedure Remove_Dead_Instance (N : Node_Id) is
1108 J : Int;
1110 begin
1111 J := 0;
1112 while J <= Pending_Instantiations.Last loop
1113 if Pending_Instantiations.Table (J).Inst_Node = N then
1114 Pending_Instantiations.Table (J).Inst_Node := Empty;
1115 return;
1116 end if;
1118 J := J + 1;
1119 end loop;
1120 end Remove_Dead_Instance;
1122 ------------------------
1123 -- Scope_In_Main_Unit --
1124 ------------------------
1126 function Scope_In_Main_Unit (Scop : Entity_Id) return Boolean is
1127 Comp : Node_Id;
1128 S : Entity_Id;
1129 Ent : Entity_Id := Cunit_Entity (Main_Unit);
1131 begin
1132 -- The scope may be within the main unit, or it may be an ancestor
1133 -- of the main unit, if the main unit is a child unit. In both cases
1134 -- it makes no sense to process the body before the main unit. In
1135 -- the second case, this may lead to circularities if a parent body
1136 -- depends on a child spec, and we are analyzing the child.
1138 S := Scop;
1139 while Scope (S) /= Standard_Standard
1140 and then not Is_Child_Unit (S)
1141 loop
1142 S := Scope (S);
1143 end loop;
1145 Comp := Parent (S);
1146 while Present (Comp)
1147 and then Nkind (Comp) /= N_Compilation_Unit
1148 loop
1149 Comp := Parent (Comp);
1150 end loop;
1152 if Is_Child_Unit (Ent) then
1153 while Present (Ent)
1154 and then Is_Child_Unit (Ent)
1155 loop
1156 if Scope (Ent) = S then
1157 return True;
1158 end if;
1160 Ent := Scope (Ent);
1161 end loop;
1162 end if;
1164 return
1165 Comp = Cunit (Main_Unit)
1166 or else Comp = Library_Unit (Cunit (Main_Unit));
1167 end Scope_In_Main_Unit;
1169 end Inline;