Fix Ada runtime library breakage on Solaris
[official-gcc.git] / gcc / ada / inline.adb
bloba628a59e14515d22fc371fccd5cfc0f37add1c43
1 ------------------------------------------------------------------------------
2 -- --
3 -- GNAT COMPILER COMPONENTS --
4 -- --
5 -- I N L I N E --
6 -- --
7 -- B o d y --
8 -- --
9 -- Copyright (C) 1992-2024, Free Software Foundation, Inc. --
10 -- --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING3. If not, go to --
19 -- http://www.gnu.org/licenses for a complete copy of the license. --
20 -- --
21 -- GNAT was originally developed by the GNAT team at New York University. --
22 -- Extensive contributions were provided by Ada Core Technologies Inc. --
23 -- --
24 ------------------------------------------------------------------------------
26 with Alloc;
27 with Aspects; use Aspects;
28 with Atree; use Atree;
29 with Debug; use Debug;
30 with Einfo; use Einfo;
31 with Einfo.Entities; use Einfo.Entities;
32 with Einfo.Utils; use Einfo.Utils;
33 with Elists; use Elists;
34 with Errout; use Errout;
35 with Exp_Ch6; use Exp_Ch6;
36 with Exp_Ch7; use Exp_Ch7;
37 with Exp_Tss; use Exp_Tss;
38 with Exp_Util; use Exp_Util;
39 with Fname; use Fname;
40 with Fname.UF; use Fname.UF;
41 with Lib; use Lib;
42 with Namet; use Namet;
43 with Nmake; use Nmake;
44 with Nlists; use Nlists;
45 with Output; use Output;
46 with Sem_Aux; use Sem_Aux;
47 with Sem_Ch8; use Sem_Ch8;
48 with Sem_Ch10; use Sem_Ch10;
49 with Sem_Ch12; use Sem_Ch12;
50 with Sem_Prag; use Sem_Prag;
51 with Sem_Res; use Sem_Res;
52 with Sem_Util; use Sem_Util;
53 with Sinfo; use Sinfo;
54 with Sinfo.Nodes; use Sinfo.Nodes;
55 with Sinfo.Utils; use Sinfo.Utils;
56 with Sinput; use Sinput;
57 with Snames; use Snames;
58 with Stand; use Stand;
59 with Table;
60 with Tbuild; use Tbuild;
61 with Uintp; use Uintp;
62 with Uname; use Uname;
64 with GNAT.HTable;
66 package body Inline is
68 Check_Inlining_Restrictions : constant Boolean := True;
69 -- In the following cases the frontend rejects inlining because they
70 -- are not handled well by the backend. This variable facilitates
71 -- disabling these restrictions to evaluate future versions of the
72 -- GCC backend in which some of the restrictions may be supported.
74 -- - subprograms that have:
75 -- - nested subprograms
76 -- - instantiations
77 -- - package declarations
78 -- - task or protected object declarations
79 -- - some of the following statements:
80 -- - abort
81 -- - asynchronous-select
82 -- - conditional-entry-call
83 -- - delay-relative
84 -- - delay-until
85 -- - selective-accept
86 -- - timed-entry-call
88 Inlined_Calls : Elist_Id;
89 -- List of frontend inlined calls
91 Backend_Calls : Elist_Id;
92 -- List of inline calls passed to the backend
94 Backend_Instances : Elist_Id;
95 -- List of instances inlined for the backend
97 Backend_Inlined_Subps : Elist_Id;
98 -- List of subprograms inlined by the backend
100 Backend_Not_Inlined_Subps : Elist_Id;
101 -- List of subprograms that cannot be inlined by the backend
103 -----------------------------
104 -- Pending_Instantiations --
105 -----------------------------
107 -- We make entries in this table for the pending instantiations of generic
108 -- bodies that are created during semantic analysis. After the analysis is
109 -- complete, calling Instantiate_Bodies performs the actual instantiations.
111 package Pending_Instantiations is new Table.Table (
112 Table_Component_Type => Pending_Body_Info,
113 Table_Index_Type => Int,
114 Table_Low_Bound => 0,
115 Table_Initial => Alloc.Pending_Instantiations_Initial,
116 Table_Increment => Alloc.Pending_Instantiations_Increment,
117 Table_Name => "Pending_Instantiations");
119 -------------------------------------
120 -- Called_Pending_Instantiations --
121 -------------------------------------
123 -- With back-end inlining, the pending instantiations that are not in the
124 -- main unit or subunit are performed only after a call to the subprogram
125 -- instance, or to a subprogram within the package instance, is inlined.
126 -- Since such a call can be within a subsequent pending instantiation,
127 -- we make entries in this table that stores the index of these "called"
128 -- pending instantiations and perform them when the table is populated.
130 package Called_Pending_Instantiations is new Table.Table (
131 Table_Component_Type => Int,
132 Table_Index_Type => Int,
133 Table_Low_Bound => 0,
134 Table_Initial => Alloc.Pending_Instantiations_Initial,
135 Table_Increment => Alloc.Pending_Instantiations_Increment,
136 Table_Name => "Called_Pending_Instantiations");
138 ---------------------------------
139 -- To_Pending_Instantiations --
140 ---------------------------------
142 -- With back-end inlining, we also need to have a map from the pending
143 -- instantiations to their index in the Pending_Instantiations table.
145 Node_Table_Size : constant := 257;
146 -- Number of headers in hash table
148 subtype Node_Header_Num is Integer range 0 .. Node_Table_Size - 1;
149 -- Range of headers in hash table
151 function Node_Hash (Id : Node_Id) return Node_Header_Num;
152 -- Simple hash function for Node_Ids
154 package To_Pending_Instantiations is new GNAT.Htable.Simple_HTable
155 (Header_Num => Node_Header_Num,
156 Element => Int,
157 No_Element => -1,
158 Key => Node_Id,
159 Hash => Node_Hash,
160 Equal => "=");
162 -----------------
163 -- Node_Hash --
164 -----------------
166 function Node_Hash (Id : Node_Id) return Node_Header_Num is
167 begin
168 return Node_Header_Num (Id mod Node_Table_Size);
169 end Node_Hash;
171 --------------------
172 -- Inlined Bodies --
173 --------------------
175 -- Inlined functions are actually placed in line by the backend if the
176 -- corresponding bodies are available (i.e. compiled). Whenever we find
177 -- a call to an inlined subprogram, we add the name of the enclosing
178 -- compilation unit to a worklist. After all compilation, and after
179 -- expansion of generic bodies, we traverse the list of pending bodies
180 -- and compile them as well.
182 package Inlined_Bodies is new Table.Table (
183 Table_Component_Type => Entity_Id,
184 Table_Index_Type => Int,
185 Table_Low_Bound => 0,
186 Table_Initial => Alloc.Inlined_Bodies_Initial,
187 Table_Increment => Alloc.Inlined_Bodies_Increment,
188 Table_Name => "Inlined_Bodies");
190 -----------------------
191 -- Inline Processing --
192 -----------------------
194 -- For each call to an inlined subprogram, we make entries in a table
195 -- that stores caller and callee, and indicates the call direction from
196 -- one to the other. We also record the compilation unit that contains
197 -- the callee. After analyzing the bodies of all such compilation units,
198 -- we compute the transitive closure of inlined subprograms called from
199 -- the main compilation unit and make it available to the code generator
200 -- in no particular order, thus allowing cycles in the call graph.
202 Last_Inlined : Entity_Id := Empty;
204 -- For each entry in the table we keep a list of successors in topological
205 -- order, i.e. callers of the current subprogram.
207 type Subp_Index is new Nat;
208 No_Subp : constant Subp_Index := 0;
210 -- The subprogram entities are hashed into the Inlined table
212 Num_Hash_Headers : constant := 512;
214 Hash_Headers : array (Subp_Index range 0 .. Num_Hash_Headers - 1)
215 of Subp_Index;
217 type Succ_Index is new Nat;
218 No_Succ : constant Succ_Index := 0;
220 type Succ_Info is record
221 Subp : Subp_Index;
222 Next : Succ_Index;
223 end record;
225 -- The following table stores list elements for the successor lists. These
226 -- lists cannot be chained directly through entries in the Inlined table,
227 -- because a given subprogram can appear in several such lists.
229 package Successors is new Table.Table (
230 Table_Component_Type => Succ_Info,
231 Table_Index_Type => Succ_Index,
232 Table_Low_Bound => 1,
233 Table_Initial => Alloc.Successors_Initial,
234 Table_Increment => Alloc.Successors_Increment,
235 Table_Name => "Successors");
237 type Subp_Info is record
238 Name : Entity_Id := Empty;
239 Next : Subp_Index := No_Subp;
240 First_Succ : Succ_Index := No_Succ;
241 Main_Call : Boolean := False;
242 Processed : Boolean := False;
243 end record;
245 package Inlined is new Table.Table (
246 Table_Component_Type => Subp_Info,
247 Table_Index_Type => Subp_Index,
248 Table_Low_Bound => 1,
249 Table_Initial => Alloc.Inlined_Initial,
250 Table_Increment => Alloc.Inlined_Increment,
251 Table_Name => "Inlined");
253 -----------------------
254 -- Local Subprograms --
255 -----------------------
257 procedure Add_Call (Called : Entity_Id; Caller : Entity_Id := Empty);
258 -- Make two entries in Inlined table, for an inlined subprogram being
259 -- called, and for the inlined subprogram that contains the call. If
260 -- the call is in the main compilation unit, Caller is Empty.
262 procedure Add_Inlined_Instance (E : Entity_Id);
263 -- Add instance E to the list of inlined instances for the unit
265 procedure Add_Inlined_Subprogram (E : Entity_Id);
266 -- Add subprogram E to the list of inlined subprograms for the unit
268 function Add_Subp (E : Entity_Id) return Subp_Index;
269 -- Make entry in Inlined table for subprogram E, or return table index
270 -- that already holds E.
272 procedure Establish_Actual_Mapping_For_Inlined_Call
273 (N : Node_Id;
274 Subp : Entity_Id;
275 Decls : List_Id;
276 Body_Or_Expr_To_Check : Node_Id);
277 -- Establish a mapping from formals to actuals in the call N for the target
278 -- subprogram Subp, and create temporaries or renamings when needed for the
279 -- actuals that are expressions (except for actuals given by simple entity
280 -- names or literals) or that are scalars that require copying to preserve
281 -- semantics. Any temporary objects that are created are inserted in Decls.
282 -- Body_Or_Expr_To_Check indicates the target body (or possibly expression
283 -- of an expression function), which may be traversed to count formal uses.
285 function Get_Code_Unit_Entity (E : Entity_Id) return Entity_Id;
286 pragma Inline (Get_Code_Unit_Entity);
287 -- Return the entity node for the unit containing E. Always return the spec
288 -- for a package.
290 function Has_Initialized_Type (E : Entity_Id) return Boolean;
291 -- If a candidate for inlining contains type declarations for types with
292 -- nontrivial initialization procedures, they are not worth inlining.
294 function Has_Single_Return (N : Node_Id) return Boolean;
295 -- In general we cannot inline functions that return unconstrained type.
296 -- However, we can handle such functions if all return statements return
297 -- a local variable that is the first declaration in the body of the
298 -- function. In that case the call can be replaced by that local
299 -- variable as is done for other inlined calls.
301 function In_Main_Unit_Or_Subunit (E : Entity_Id) return Boolean;
302 -- Return True if E is in the main unit or its spec or in a subunit
304 function Is_Nested (E : Entity_Id) return Boolean;
305 -- If the function is nested inside some other function, it will always
306 -- be compiled if that function is, so don't add it to the inline list.
307 -- We cannot compile a nested function outside the scope of the containing
308 -- function anyway. This is also the case if the function is defined in a
309 -- task body or within an entry (for example, an initialization procedure).
311 procedure Remove_Aspects_And_Pragmas (Body_Decl : Node_Id);
312 -- Remove all aspects and/or pragmas that have no meaning in inlined body
313 -- Body_Decl. The analysis of these items is performed on the non-inlined
314 -- body. The items currently removed are:
315 -- Always_Terminates
316 -- Contract_Cases
317 -- Global
318 -- Depends
319 -- Exceptional_Cases
320 -- Postcondition
321 -- Precondition
322 -- Refined_Global
323 -- Refined_Depends
324 -- Refined_Post
325 -- Subprogram_Variant
326 -- Test_Case
327 -- Unmodified
328 -- Unreferenced
330 procedure Reset_Actual_Mapping_For_Inlined_Call (Subp : Entity_Id);
331 -- Reset the Renamed_Object field to Empty on all formals of Subp, which
332 -- can be set by a call to Establish_Actual_Mapping_For_Inlined_Call.
334 ------------------------------
335 -- Deferred Cleanup Actions --
336 ------------------------------
338 -- The cleanup actions for scopes that contain package instantiations with
339 -- a body are delayed until after the package body is instantiated. because
340 -- the body may contain finalizable objects or other constructs that affect
341 -- the cleanup code. A scope that contains such instantiations only needs
342 -- to be finalized once, even though it may contain more than one instance.
343 -- We keep a list of scopes that must still be finalized and Cleanup_Scopes
344 -- will be invoked after all the body instantiations have been completed.
346 To_Clean : Elist_Id;
348 procedure Add_Scope_To_Clean (Scop : Entity_Id);
349 -- Build set of scopes on which cleanup actions must be performed
351 procedure Cleanup_Scopes;
352 -- Complete cleanup actions on scopes that need it
354 --------------
355 -- Add_Call --
356 --------------
358 procedure Add_Call (Called : Entity_Id; Caller : Entity_Id := Empty) is
359 P1 : constant Subp_Index := Add_Subp (Called);
360 P2 : Subp_Index;
361 J : Succ_Index;
363 begin
364 if Present (Caller) then
365 P2 := Add_Subp (Caller);
367 -- Add P1 to the list of successors of P2, if not already there.
368 -- Note that P2 may contain more than one call to P1, and only
369 -- one needs to be recorded.
371 J := Inlined.Table (P2).First_Succ;
372 while J /= No_Succ loop
373 if Successors.Table (J).Subp = P1 then
374 return;
375 end if;
377 J := Successors.Table (J).Next;
378 end loop;
380 -- On exit, make a successor entry for P1
382 Successors.Increment_Last;
383 Successors.Table (Successors.Last).Subp := P1;
384 Successors.Table (Successors.Last).Next :=
385 Inlined.Table (P2).First_Succ;
386 Inlined.Table (P2).First_Succ := Successors.Last;
387 else
388 Inlined.Table (P1).Main_Call := True;
389 end if;
390 end Add_Call;
392 ----------------------
393 -- Add_Inlined_Body --
394 ----------------------
396 procedure Add_Inlined_Body (E : Entity_Id; N : Node_Id) is
398 type Inline_Level_Type is (Dont_Inline, Inline_Call, Inline_Package);
399 -- Level of inlining for the call: Dont_Inline means no inlining,
400 -- Inline_Call means that only the call is considered for inlining,
401 -- Inline_Package means that the call is considered for inlining and
402 -- its package compiled and scanned for more inlining opportunities.
404 function Is_Non_Loading_Expression_Function
405 (Id : Entity_Id) return Boolean;
406 -- Determine whether arbitrary entity Id denotes a subprogram which is
407 -- either
409 -- * An expression function
411 -- * A function completed by an expression function where both the
412 -- spec and body are in the same context.
414 function Must_Inline return Inline_Level_Type;
415 -- Inlining is only done if the call statement N is in the main unit,
416 -- or within the body of another inlined subprogram.
418 ----------------------------------------
419 -- Is_Non_Loading_Expression_Function --
420 ----------------------------------------
422 function Is_Non_Loading_Expression_Function
423 (Id : Entity_Id) return Boolean
425 Body_Decl : Node_Id;
426 Body_Id : Entity_Id;
427 Spec_Decl : Node_Id;
429 begin
430 -- A stand-alone expression function is transformed into a spec-body
431 -- pair in-place. Since both the spec and body are in the same list,
432 -- the inlining of such an expression function does not need to load
433 -- anything extra.
435 if Is_Expression_Function (Id) then
436 return True;
438 -- A function may be completed by an expression function
440 elsif Ekind (Id) = E_Function then
441 Spec_Decl := Unit_Declaration_Node (Id);
443 if Nkind (Spec_Decl) = N_Subprogram_Declaration then
444 Body_Id := Corresponding_Body (Spec_Decl);
446 if Present (Body_Id) then
447 Body_Decl := Unit_Declaration_Node (Body_Id);
449 -- The inlining of a completing expression function does
450 -- not need to load anything extra when both the spec and
451 -- body are in the same context.
453 return
454 Was_Expression_Function (Body_Decl)
455 and then Parent (Spec_Decl) = Parent (Body_Decl);
456 end if;
457 end if;
458 end if;
460 return False;
461 end Is_Non_Loading_Expression_Function;
463 -----------------
464 -- Must_Inline --
465 -----------------
467 function Must_Inline return Inline_Level_Type is
468 Scop : Entity_Id;
469 Comp : Node_Id;
471 begin
472 -- Check if call is in main unit
474 Scop := Current_Scope;
476 -- Do not try to inline if scope is standard. This could happen, for
477 -- example, for a call to Add_Global_Declaration, and it causes
478 -- trouble to try to inline at this level.
480 if Scop = Standard_Standard then
481 return Dont_Inline;
482 end if;
484 -- Otherwise lookup scope stack to outer scope
486 while Scope (Scop) /= Standard_Standard
487 and then not Is_Child_Unit (Scop)
488 loop
489 Scop := Scope (Scop);
490 end loop;
492 Comp := Parent (Scop);
493 while Nkind (Comp) /= N_Compilation_Unit loop
494 Comp := Parent (Comp);
495 end loop;
497 -- If the call is in the main unit, inline the call and compile the
498 -- package of the subprogram to find more calls to be inlined.
500 if Comp = Cunit (Main_Unit)
501 or else Comp = Library_Unit (Cunit (Main_Unit))
502 then
503 Add_Call (E);
504 return Inline_Package;
505 end if;
507 -- The call is not in the main unit. See if it is in some subprogram
508 -- that can be inlined outside its unit. If so, inline the call and,
509 -- if the inlining level is set to 1, stop there; otherwise also
510 -- compile the package as above.
512 Scop := Current_Scope;
513 while Scope (Scop) /= Standard_Standard
514 and then not Is_Child_Unit (Scop)
515 loop
516 if Is_Overloadable (Scop)
517 and then Is_Inlined (Scop)
518 and then not Is_Nested (Scop)
519 then
520 Add_Call (E, Scop);
522 if Inline_Level = 1 then
523 return Inline_Call;
524 else
525 return Inline_Package;
526 end if;
527 end if;
529 Scop := Scope (Scop);
530 end loop;
532 return Dont_Inline;
533 end Must_Inline;
535 Inst : Entity_Id;
536 Inst_Decl : Node_Id;
537 Level : Inline_Level_Type;
539 -- Start of processing for Add_Inlined_Body
541 begin
542 Append_New_Elmt (N, To => Backend_Calls);
544 -- Skip subprograms that cannot or need not be inlined outside their
545 -- unit or parent subprogram.
547 if Is_Abstract_Subprogram (E)
548 or else Convention (E) = Convention_Protected
549 or else In_Main_Unit_Or_Subunit (E)
550 or else Is_Nested (E)
551 then
552 return;
553 end if;
555 -- Find out whether the call must be inlined. Unless the result is
556 -- Dont_Inline, Must_Inline also creates an edge for the call in the
557 -- callgraph; however, it will not be activated until after Is_Called
558 -- is set on the subprogram.
560 Level := Must_Inline;
562 if Level = Dont_Inline then
563 return;
564 end if;
566 -- If a previous call to the subprogram has been inlined, nothing to do
568 if Is_Called (E) then
569 return;
570 end if;
572 -- If the subprogram is an instance, then inline the instance
574 if Is_Generic_Instance (E) then
575 Add_Inlined_Instance (E);
576 end if;
578 -- Mark the subprogram as called
580 Set_Is_Called (E);
582 -- If the call was generated by the compiler and is to a subprogram in
583 -- a run-time unit, we need to suppress debugging information for it,
584 -- so that the code that is eventually inlined will not affect the
585 -- debugging of the program. We do not do it if the call comes from
586 -- source because, even if the call is inlined, the user may expect it
587 -- to be present in the debugging information.
589 if not Comes_From_Source (N)
590 and then In_Extended_Main_Source_Unit (N)
591 and then Is_Predefined_Unit (Get_Source_Unit (E))
592 then
593 Set_Needs_Debug_Info (E, False);
594 end if;
596 -- If the subprogram is an expression function, or is completed by one
597 -- where both the spec and body are in the same context, then there is
598 -- no need to load any package body since the body of the function is
599 -- in the spec.
601 if Is_Non_Loading_Expression_Function (E) then
602 return;
603 end if;
605 -- Find unit containing E, and add to list of inlined bodies if needed.
606 -- Library-level functions must be handled specially, because there is
607 -- no enclosing package to retrieve. In this case, it is the body of
608 -- the function that will have to be loaded.
610 declare
611 Pack : constant Entity_Id := Get_Code_Unit_Entity (E);
613 begin
614 if Pack = E then
615 Inlined_Bodies.Increment_Last;
616 Inlined_Bodies.Table (Inlined_Bodies.Last) := E;
618 else
619 pragma Assert (Ekind (Pack) = E_Package);
621 -- If the subprogram is within an instance, inline the instance
623 if Comes_From_Source (E) then
624 Inst := Scope (E);
626 while Present (Inst) and then Inst /= Standard_Standard loop
627 exit when Is_Generic_Instance (Inst);
628 Inst := Scope (Inst);
629 end loop;
631 if Present (Inst)
632 and then Is_Generic_Instance (Inst)
633 and then not Is_Called (Inst)
634 then
635 Inst_Decl := Unit_Declaration_Node (Inst);
637 -- Do not inline the instance if the body already exists,
638 -- or the instance node is simply missing.
640 if Present (Corresponding_Body (Inst_Decl))
641 or else (Nkind (Parent (Inst_Decl)) /= N_Compilation_Unit
642 and then No (Next (Inst_Decl)))
643 then
644 Set_Is_Called (Inst);
645 else
646 Add_Inlined_Instance (Inst);
647 end if;
648 end if;
649 end if;
651 -- If the unit containing E is an instance, nothing more to do
653 if Is_Generic_Instance (Pack) then
654 null;
656 -- Do not inline the package if the subprogram is an init proc
657 -- or other internally generated subprogram, because in that
658 -- case the subprogram body appears in the same unit that
659 -- declares the type, and that body is visible to the back end.
660 -- Do not inline it either if it is in the main unit.
661 -- Extend the -gnatn2 processing to -gnatn1 for Inline_Always
662 -- calls if the back end takes care of inlining the call.
663 -- Note that Level is in Inline_Call | Inline_Package here.
665 elsif ((Level = Inline_Call
666 and then Has_Pragma_Inline_Always (E)
667 and then Back_End_Inlining)
668 or else Level = Inline_Package)
669 and then not Is_Inlined (Pack)
670 and then not Is_Internal (E)
671 and then not In_Main_Unit_Or_Subunit (Pack)
672 then
673 Set_Is_Inlined (Pack);
674 Inlined_Bodies.Increment_Last;
675 Inlined_Bodies.Table (Inlined_Bodies.Last) := Pack;
676 end if;
677 end if;
679 -- Ensure that Analyze_Inlined_Bodies will be invoked after
680 -- completing the analysis of the current unit.
682 Inline_Processing_Required := True;
683 end;
684 end Add_Inlined_Body;
686 --------------------------
687 -- Add_Inlined_Instance --
688 --------------------------
690 procedure Add_Inlined_Instance (E : Entity_Id) is
691 Decl_Node : constant Node_Id := Unit_Declaration_Node (E);
692 Index : Int;
694 begin
695 -- This machinery is only used with back-end inlining
697 if not Back_End_Inlining then
698 return;
699 end if;
701 -- Register the instance in the list
703 Append_New_Elmt (Decl_Node, To => Backend_Instances);
705 -- Retrieve the index of its corresponding pending instantiation
706 -- and mark this corresponding pending instantiation as needed.
708 Index := To_Pending_Instantiations.Get (Decl_Node);
709 if Index >= 0 then
710 Called_Pending_Instantiations.Append (Index);
711 else
712 pragma Assert (False);
713 null;
714 end if;
716 Set_Is_Called (E);
717 end Add_Inlined_Instance;
719 ----------------------------
720 -- Add_Inlined_Subprogram --
721 ----------------------------
723 procedure Add_Inlined_Subprogram (E : Entity_Id) is
724 Decl : constant Node_Id := Parent (Declaration_Node (E));
725 Pack : constant Entity_Id := Get_Code_Unit_Entity (E);
727 procedure Register_Backend_Inlined_Subprogram (Subp : Entity_Id);
728 -- Append Subp to the list of subprograms inlined by the backend
730 procedure Register_Backend_Not_Inlined_Subprogram (Subp : Entity_Id);
731 -- Append Subp to the list of subprograms that cannot be inlined by
732 -- the backend.
734 -----------------------------------------
735 -- Register_Backend_Inlined_Subprogram --
736 -----------------------------------------
738 procedure Register_Backend_Inlined_Subprogram (Subp : Entity_Id) is
739 begin
740 Append_New_Elmt (Subp, To => Backend_Inlined_Subps);
741 end Register_Backend_Inlined_Subprogram;
743 ---------------------------------------------
744 -- Register_Backend_Not_Inlined_Subprogram --
745 ---------------------------------------------
747 procedure Register_Backend_Not_Inlined_Subprogram (Subp : Entity_Id) is
748 begin
749 Append_New_Elmt (Subp, To => Backend_Not_Inlined_Subps);
750 end Register_Backend_Not_Inlined_Subprogram;
752 -- Start of processing for Add_Inlined_Subprogram
754 begin
755 -- We can inline the subprogram if its unit is known to be inlined or is
756 -- an instance whose body will be analyzed anyway or the subprogram was
757 -- generated as a body by the compiler (for example an initialization
758 -- procedure) or its declaration was provided along with the body (for
759 -- example an expression function) and it does not declare types with
760 -- nontrivial initialization procedures.
762 if (Is_Inlined (Pack)
763 or else Is_Generic_Instance (Pack)
764 or else Nkind (Decl) = N_Subprogram_Body
765 or else Present (Corresponding_Body (Decl)))
766 and then not Has_Initialized_Type (E)
767 then
768 Register_Backend_Inlined_Subprogram (E);
770 if No (Last_Inlined) then
771 Set_First_Inlined_Subprogram (Cunit (Main_Unit), E);
772 else
773 Set_Next_Inlined_Subprogram (Last_Inlined, E);
774 end if;
776 Last_Inlined := E;
778 else
779 Register_Backend_Not_Inlined_Subprogram (E);
780 end if;
781 end Add_Inlined_Subprogram;
783 --------------------------------
784 -- Add_Pending_Instantiation --
785 --------------------------------
787 procedure Add_Pending_Instantiation
788 (Inst : Node_Id;
789 Act_Decl : Node_Id;
790 Fin_Scop : Node_Id := Empty)
792 Act_Decl_Id : Entity_Id;
793 Index : Int;
795 begin
796 -- Here is a defense against a ludicrous number of instantiations
797 -- caused by a circular set of instantiation attempts.
799 if Pending_Instantiations.Last + 1 >= Maximum_Instantiations then
800 Error_Msg_Uint_1 := UI_From_Int (Maximum_Instantiations);
801 Error_Msg_N ("too many instantiations, exceeds max of^", Inst);
802 Error_Msg_N ("\limit can be changed using -gnateinn switch", Inst);
803 raise Unrecoverable_Error;
804 end if;
806 -- Capture the body of the generic instantiation along with its context
807 -- for later processing by Instantiate_Bodies.
809 Pending_Instantiations.Append
810 ((Inst_Node => Inst,
811 Act_Decl => Act_Decl,
812 Fin_Scop => Fin_Scop,
813 Config_Switches => Save_Config_Switches,
814 Current_Sem_Unit => Current_Sem_Unit,
815 Expander_Status => Expander_Active,
816 Local_Suppress_Stack_Top => Local_Suppress_Stack_Top,
817 Scope_Suppress => Scope_Suppress,
818 Warnings => Save_Warnings));
820 -- With back-end inlining, also associate the index to the instantiation
822 if Back_End_Inlining then
823 Act_Decl_Id := Defining_Entity (Act_Decl);
824 Index := Pending_Instantiations.Last;
826 To_Pending_Instantiations.Set (Act_Decl, Index);
828 -- If an instantiation is in the main unit or subunit, or is a nested
829 -- subprogram, then its body is needed as per the analysis done in
830 -- Analyze_Package_Instantiation & Analyze_Subprogram_Instantiation.
832 if In_Main_Unit_Or_Subunit (Act_Decl_Id)
833 or else (Is_Subprogram (Act_Decl_Id)
834 and then Is_Nested (Act_Decl_Id))
835 then
836 Called_Pending_Instantiations.Append (Index);
838 Set_Is_Called (Act_Decl_Id);
839 end if;
840 end if;
841 end Add_Pending_Instantiation;
843 ------------------------
844 -- Add_Scope_To_Clean --
845 ------------------------
847 procedure Add_Scope_To_Clean (Scop : Entity_Id) is
848 Elmt : Elmt_Id;
850 begin
851 Elmt := First_Elmt (To_Clean);
852 while Present (Elmt) loop
853 if Node (Elmt) = Scop then
854 return;
855 end if;
857 Next_Elmt (Elmt);
858 end loop;
860 Append_Elmt (Scop, To_Clean);
861 end Add_Scope_To_Clean;
863 --------------
864 -- Add_Subp --
865 --------------
867 function Add_Subp (E : Entity_Id) return Subp_Index is
868 Index : Subp_Index := Subp_Index (E) mod Num_Hash_Headers;
869 J : Subp_Index;
871 procedure New_Entry;
872 -- Initialize entry in Inlined table
874 procedure New_Entry is
875 begin
876 Inlined.Increment_Last;
877 Inlined.Table (Inlined.Last).Name := E;
878 Inlined.Table (Inlined.Last).Next := No_Subp;
879 Inlined.Table (Inlined.Last).First_Succ := No_Succ;
880 Inlined.Table (Inlined.Last).Main_Call := False;
881 Inlined.Table (Inlined.Last).Processed := False;
882 end New_Entry;
884 -- Start of processing for Add_Subp
886 begin
887 if Hash_Headers (Index) = No_Subp then
888 New_Entry;
889 Hash_Headers (Index) := Inlined.Last;
890 return Inlined.Last;
892 else
893 J := Hash_Headers (Index);
894 while J /= No_Subp loop
895 if Inlined.Table (J).Name = E then
896 return J;
897 else
898 Index := J;
899 J := Inlined.Table (J).Next;
900 end if;
901 end loop;
903 -- On exit, subprogram was not found. Enter in table. Index is
904 -- the current last entry on the hash chain.
906 New_Entry;
907 Inlined.Table (Index).Next := Inlined.Last;
908 return Inlined.Last;
909 end if;
910 end Add_Subp;
912 ----------------------------
913 -- Analyze_Inlined_Bodies --
914 ----------------------------
916 procedure Analyze_Inlined_Bodies is
917 Comp_Unit : Node_Id;
918 J : Int;
919 Pack : Entity_Id;
920 Subp : Subp_Index;
921 S : Succ_Index;
923 type Pending_Index is new Nat;
925 package Pending_Inlined is new Table.Table (
926 Table_Component_Type => Subp_Index,
927 Table_Index_Type => Pending_Index,
928 Table_Low_Bound => 1,
929 Table_Initial => Alloc.Inlined_Initial,
930 Table_Increment => Alloc.Inlined_Increment,
931 Table_Name => "Pending_Inlined");
932 -- The workpile used to compute the transitive closure
934 -- Start of processing for Analyze_Inlined_Bodies
936 begin
937 if Serious_Errors_Detected = 0 then
938 Push_Scope (Standard_Standard);
940 J := 0;
941 while J <= Inlined_Bodies.Last
942 and then Serious_Errors_Detected = 0
943 loop
944 Pack := Inlined_Bodies.Table (J);
945 while Present (Pack)
946 and then Scope (Pack) /= Standard_Standard
947 and then not Is_Child_Unit (Pack)
948 loop
949 Pack := Scope (Pack);
950 end loop;
952 Comp_Unit := Parent (Pack);
953 while Present (Comp_Unit)
954 and then Nkind (Comp_Unit) /= N_Compilation_Unit
955 loop
956 Comp_Unit := Parent (Comp_Unit);
957 end loop;
959 -- Load the body if it exists and contains inlineable entities,
960 -- unless it is the main unit, or is an instance whose body has
961 -- already been analyzed.
963 if Present (Comp_Unit)
964 and then Comp_Unit /= Cunit (Main_Unit)
965 and then Body_Required (Comp_Unit)
966 and then
967 (Nkind (Unit (Comp_Unit)) /= N_Package_Declaration
968 or else
969 (No (Corresponding_Body (Unit (Comp_Unit)))
970 and then Body_Needed_For_Inlining
971 (Defining_Entity (Unit (Comp_Unit)))))
972 then
973 declare
974 Bname : constant Unit_Name_Type :=
975 Get_Body_Name (Get_Unit_Name (Unit (Comp_Unit)));
977 OK : Boolean;
979 begin
980 if not Is_Loaded (Bname) then
981 Style_Check := False;
982 Load_Needed_Body (Comp_Unit, OK);
984 if not OK then
986 -- Warn that a body was not available for inlining
987 -- by the back-end.
989 Error_Msg_Unit_1 := Bname;
990 Error_Msg_N
991 ("one or more inlined subprograms accessed in $!??",
992 Comp_Unit);
993 Error_Msg_File_1 :=
994 Get_File_Name (Bname, Subunit => False);
995 Error_Msg_N ("\but file{ was not found!??", Comp_Unit);
996 end if;
997 end if;
998 end;
999 end if;
1001 J := J + 1;
1003 if J > Inlined_Bodies.Last then
1005 -- The analysis of required bodies may have produced additional
1006 -- generic instantiations. To obtain further inlining, we need
1007 -- to perform another round of generic body instantiations.
1009 Instantiate_Bodies;
1011 -- Symmetrically, the instantiation of required generic bodies
1012 -- may have caused additional bodies to be inlined. To obtain
1013 -- further inlining, we keep looping over the inlined bodies.
1014 end if;
1015 end loop;
1017 -- The list of inlined subprograms is an overestimate, because it
1018 -- includes inlined functions called from functions that are compiled
1019 -- as part of an inlined package, but are not themselves called. An
1020 -- accurate computation of just those subprograms that are needed
1021 -- requires that we perform a transitive closure over the call graph,
1022 -- starting from calls in the main compilation unit.
1024 for Index in Inlined.First .. Inlined.Last loop
1025 if not Is_Called (Inlined.Table (Index).Name) then
1027 -- This means that Add_Inlined_Body added the subprogram to the
1028 -- table but wasn't able to handle its code unit. Do nothing.
1030 Inlined.Table (Index).Processed := True;
1032 elsif Inlined.Table (Index).Main_Call then
1033 Pending_Inlined.Increment_Last;
1034 Pending_Inlined.Table (Pending_Inlined.Last) := Index;
1035 Inlined.Table (Index).Processed := True;
1037 else
1038 Set_Is_Called (Inlined.Table (Index).Name, False);
1039 end if;
1040 end loop;
1042 -- Iterate over the workpile until it is emptied, propagating the
1043 -- Is_Called flag to the successors of the processed subprogram.
1045 while Pending_Inlined.Last >= Pending_Inlined.First loop
1046 Subp := Pending_Inlined.Table (Pending_Inlined.Last);
1047 Pending_Inlined.Decrement_Last;
1049 S := Inlined.Table (Subp).First_Succ;
1051 while S /= No_Succ loop
1052 Subp := Successors.Table (S).Subp;
1054 if not Inlined.Table (Subp).Processed then
1055 Set_Is_Called (Inlined.Table (Subp).Name);
1056 Pending_Inlined.Increment_Last;
1057 Pending_Inlined.Table (Pending_Inlined.Last) := Subp;
1058 Inlined.Table (Subp).Processed := True;
1059 end if;
1061 S := Successors.Table (S).Next;
1062 end loop;
1063 end loop;
1065 -- Finally add the called subprograms to the list of inlined
1066 -- subprograms for the unit.
1068 for Index in Inlined.First .. Inlined.Last loop
1069 declare
1070 E : constant Subprogram_Kind_Id := Inlined.Table (Index).Name;
1072 begin
1073 if Is_Called (E) and then not Is_Ignored_Ghost_Entity (E) then
1074 Add_Inlined_Subprogram (E);
1075 end if;
1076 end;
1077 end loop;
1079 Pop_Scope;
1080 end if;
1081 end Analyze_Inlined_Bodies;
1083 --------------------------
1084 -- Build_Body_To_Inline --
1085 --------------------------
1087 procedure Build_Body_To_Inline (N : Node_Id; Spec_Id : Entity_Id) is
1088 Decl : constant Node_Id := Unit_Declaration_Node (Spec_Id);
1089 Original_Body : Node_Id;
1090 Body_To_Analyze : Node_Id;
1091 Max_Size : constant := 10;
1093 function Has_Extended_Return return Boolean;
1094 -- This function returns True if the subprogram has an extended return
1095 -- statement.
1097 function Has_Pending_Instantiation return Boolean;
1098 -- If some enclosing body contains instantiations that appear before
1099 -- the corresponding generic body, the enclosing body has a freeze node
1100 -- so that it can be elaborated after the generic itself. This might
1101 -- conflict with subsequent inlinings, so that it is unsafe to try to
1102 -- inline in such a case.
1104 function Has_Single_Return_In_GNATprove_Mode return Boolean;
1105 -- This function is called only in GNATprove mode, and it returns
1106 -- True if the subprogram has no return statement or a single return
1107 -- statement as last statement. It returns False for subprogram with
1108 -- a single return as last statement inside one or more blocks, as
1109 -- inlining would generate gotos in that case as well (although the
1110 -- goto is useless in that case).
1112 function Uses_Secondary_Stack (Bod : Node_Id) return Boolean;
1113 -- If the body of the subprogram includes a call that returns an
1114 -- unconstrained type, the secondary stack is involved, and it is
1115 -- not worth inlining.
1117 -------------------------
1118 -- Has_Extended_Return --
1119 -------------------------
1121 function Has_Extended_Return return Boolean is
1122 Body_To_Inline : constant Node_Id := N;
1124 function Check_Return (N : Node_Id) return Traverse_Result;
1125 -- Returns OK on node N if this is not an extended return statement
1127 ------------------
1128 -- Check_Return --
1129 ------------------
1131 function Check_Return (N : Node_Id) return Traverse_Result is
1132 begin
1133 case Nkind (N) is
1134 when N_Extended_Return_Statement =>
1135 return Abandon;
1137 -- Skip locally declared subprogram bodies inside the body to
1138 -- inline, as the return statements inside those do not count.
1140 when N_Subprogram_Body =>
1141 if N = Body_To_Inline then
1142 return OK;
1143 else
1144 return Skip;
1145 end if;
1147 when others =>
1148 return OK;
1149 end case;
1150 end Check_Return;
1152 function Check_All_Returns is new Traverse_Func (Check_Return);
1154 -- Start of processing for Has_Extended_Return
1156 begin
1157 return Check_All_Returns (N) /= OK;
1158 end Has_Extended_Return;
1160 -------------------------------
1161 -- Has_Pending_Instantiation --
1162 -------------------------------
1164 function Has_Pending_Instantiation return Boolean is
1165 S : Entity_Id;
1167 begin
1168 S := Current_Scope;
1169 while Present (S) loop
1170 if Is_Compilation_Unit (S)
1171 or else Is_Child_Unit (S)
1172 then
1173 return False;
1175 elsif Ekind (S) = E_Package
1176 and then Has_Forward_Instantiation (S)
1177 then
1178 return True;
1179 end if;
1181 S := Scope (S);
1182 end loop;
1184 return False;
1185 end Has_Pending_Instantiation;
1187 -----------------------------------------
1188 -- Has_Single_Return_In_GNATprove_Mode --
1189 -----------------------------------------
1191 function Has_Single_Return_In_GNATprove_Mode return Boolean is
1192 Body_To_Inline : constant Node_Id := N;
1193 Last_Statement : Node_Id := Empty;
1195 function Check_Return (N : Node_Id) return Traverse_Result;
1196 -- Returns OK on node N if this is not a return statement different
1197 -- from the last statement in the subprogram.
1199 ------------------
1200 -- Check_Return --
1201 ------------------
1203 function Check_Return (N : Node_Id) return Traverse_Result is
1204 begin
1205 case Nkind (N) is
1206 when N_Extended_Return_Statement
1207 | N_Simple_Return_Statement
1209 if N = Last_Statement then
1210 return OK;
1211 else
1212 return Abandon;
1213 end if;
1215 -- Skip locally declared subprogram bodies inside the body to
1216 -- inline, as the return statements inside those do not count.
1218 when N_Subprogram_Body =>
1219 if N = Body_To_Inline then
1220 return OK;
1221 else
1222 return Skip;
1223 end if;
1225 when others =>
1226 return OK;
1227 end case;
1228 end Check_Return;
1230 function Check_All_Returns is new Traverse_Func (Check_Return);
1232 -- Start of processing for Has_Single_Return_In_GNATprove_Mode
1234 begin
1235 -- Retrieve the last statement
1237 Last_Statement := Last (Statements (Handled_Statement_Sequence (N)));
1239 -- Check that the last statement is the only possible return
1240 -- statement in the subprogram.
1242 return Check_All_Returns (N) = OK;
1243 end Has_Single_Return_In_GNATprove_Mode;
1245 --------------------------
1246 -- Uses_Secondary_Stack --
1247 --------------------------
1249 function Uses_Secondary_Stack (Bod : Node_Id) return Boolean is
1250 function Check_Call (N : Node_Id) return Traverse_Result;
1251 -- Look for function calls that return an unconstrained type
1253 ----------------
1254 -- Check_Call --
1255 ----------------
1257 function Check_Call (N : Node_Id) return Traverse_Result is
1258 begin
1259 if Nkind (N) = N_Function_Call
1260 and then Is_Entity_Name (Name (N))
1261 and then Is_Composite_Type (Etype (Entity (Name (N))))
1262 and then not Is_Constrained (Etype (Entity (Name (N))))
1263 then
1264 Cannot_Inline
1265 ("cannot inline & (call returns unconstrained type)?",
1266 N, Spec_Id);
1267 return Abandon;
1268 else
1269 return OK;
1270 end if;
1271 end Check_Call;
1273 function Check_Calls is new Traverse_Func (Check_Call);
1275 begin
1276 return Check_Calls (Bod) = Abandon;
1277 end Uses_Secondary_Stack;
1279 -- Start of processing for Build_Body_To_Inline
1281 begin
1282 -- Return immediately if done already
1284 if Nkind (Decl) = N_Subprogram_Declaration
1285 and then Present (Body_To_Inline (Decl))
1286 then
1287 return;
1289 -- Subprograms that have return statements in the middle of the body are
1290 -- inlined with gotos. GNATprove does not currently support gotos, so
1291 -- we prevent such inlining.
1293 elsif GNATprove_Mode
1294 and then not Has_Single_Return_In_GNATprove_Mode
1295 then
1296 Cannot_Inline ("cannot inline & (multiple returns)?", N, Spec_Id);
1297 return;
1299 -- Functions that return controlled types cannot currently be inlined
1300 -- because they require secondary stack handling; controlled actions
1301 -- may also interfere in complex ways with inlining.
1303 elsif Ekind (Spec_Id) = E_Function
1304 and then Needs_Finalization (Etype (Spec_Id))
1305 then
1306 Cannot_Inline
1307 ("cannot inline & (controlled return type)?", N, Spec_Id);
1308 return;
1309 end if;
1311 if Has_Excluded_Declaration (Spec_Id, Declarations (N)) then
1312 return;
1313 end if;
1315 if Present (Handled_Statement_Sequence (N)) then
1316 if Present (Exception_Handlers (Handled_Statement_Sequence (N))) then
1317 Cannot_Inline
1318 ("cannot inline& (exception handler)?",
1319 First (Exception_Handlers (Handled_Statement_Sequence (N))),
1320 Spec_Id);
1321 return;
1323 elsif Has_Excluded_Statement
1324 (Spec_Id, Statements (Handled_Statement_Sequence (N)))
1325 then
1326 return;
1327 end if;
1328 end if;
1330 -- We do not inline a subprogram that is too large, unless it is marked
1331 -- Inline_Always or we are in GNATprove mode. This pragma does not
1332 -- suppress the other checks on inlining (forbidden declarations,
1333 -- handlers, etc).
1335 if not (Has_Pragma_Inline_Always (Spec_Id) or else GNATprove_Mode)
1336 and then List_Length
1337 (Statements (Handled_Statement_Sequence (N))) > Max_Size
1338 then
1339 Cannot_Inline ("cannot inline& (body too large)?", N, Spec_Id);
1340 return;
1341 end if;
1343 if Has_Pending_Instantiation then
1344 Cannot_Inline
1345 ("cannot inline& (forward instance within enclosing body)?",
1346 N, Spec_Id);
1347 return;
1348 end if;
1350 -- Within an instance, the body to inline must be treated as a nested
1351 -- generic, so that the proper global references are preserved.
1353 -- Note that we do not do this at the library level, because it is not
1354 -- needed, and furthermore this causes trouble if front-end inlining
1355 -- is activated (-gnatN).
1357 if In_Instance and then Scope (Current_Scope) /= Standard_Standard then
1358 Save_Env (Scope (Current_Scope), Scope (Current_Scope));
1359 Original_Body := Copy_Generic_Node (N, Empty, Instantiating => True);
1360 else
1361 Original_Body := Copy_Separate_Tree (N);
1362 end if;
1364 -- We need to capture references to the formals in order to substitute
1365 -- the actuals at the point of inlining, i.e. instantiation. To treat
1366 -- the formals as globals to the body to inline, we nest it within a
1367 -- dummy parameterless subprogram, declared within the real one. To
1368 -- avoid generating an internal name (which is never public, and which
1369 -- affects serial numbers of other generated names), we use an internal
1370 -- symbol that cannot conflict with user declarations.
1372 Set_Parameter_Specifications (Specification (Original_Body), No_List);
1373 Set_Defining_Unit_Name
1374 (Specification (Original_Body),
1375 Make_Defining_Identifier (Sloc (N), Name_uParent));
1376 Set_Corresponding_Spec (Original_Body, Empty);
1378 -- Remove all aspects/pragmas that have no meaning in an inlined body
1380 Remove_Aspects_And_Pragmas (Original_Body);
1382 Body_To_Analyze :=
1383 Copy_Generic_Node (Original_Body, Empty, Instantiating => False);
1385 -- Set return type of function, which is also global and does not need
1386 -- to be resolved.
1388 if Ekind (Spec_Id) = E_Function then
1389 Set_Result_Definition
1390 (Specification (Body_To_Analyze),
1391 New_Occurrence_Of (Etype (Spec_Id), Sloc (N)));
1392 end if;
1394 if No (Declarations (N)) then
1395 Set_Declarations (N, New_List (Body_To_Analyze));
1396 else
1397 Append (Body_To_Analyze, Declarations (N));
1398 end if;
1400 Start_Generic;
1402 Analyze (Body_To_Analyze);
1403 Push_Scope (Defining_Entity (Body_To_Analyze));
1404 Save_Global_References (Original_Body);
1405 End_Scope;
1406 Remove (Body_To_Analyze);
1408 End_Generic;
1410 -- Restore environment if previously saved
1412 if In_Instance and then Scope (Current_Scope) /= Standard_Standard then
1413 Restore_Env;
1414 end if;
1416 -- Functions that return unconstrained composite types require
1417 -- secondary stack handling, and cannot currently be inlined, unless
1418 -- all return statements return a local variable that is the first
1419 -- local declaration in the body. We had to delay this check until
1420 -- the body of the function is analyzed since Has_Single_Return()
1421 -- requires a minimum decoration.
1423 if Ekind (Spec_Id) = E_Function
1424 and then not Is_Scalar_Type (Etype (Spec_Id))
1425 and then not Is_Access_Type (Etype (Spec_Id))
1426 and then not Is_Constrained (Etype (Spec_Id))
1427 then
1428 if not Has_Single_Return (Body_To_Analyze)
1430 -- Skip inlining if the function returns an unconstrained type
1431 -- using an extended return statement, since this part of the
1432 -- new inlining model is not yet supported by the current
1433 -- implementation.
1435 or else (Returns_Unconstrained_Type (Spec_Id)
1436 and then Has_Extended_Return)
1437 then
1438 Cannot_Inline
1439 ("cannot inline & (unconstrained return type)?", N, Spec_Id);
1440 return;
1441 end if;
1443 -- If secondary stack is used, there is no point in inlining. We have
1444 -- already issued the warning in this case, so nothing to do.
1446 elsif Uses_Secondary_Stack (Body_To_Analyze) then
1447 return;
1448 end if;
1450 Set_Body_To_Inline (Decl, Original_Body);
1451 Mutate_Ekind (Defining_Entity (Original_Body), Ekind (Spec_Id));
1452 Set_Is_Inlined (Spec_Id);
1453 end Build_Body_To_Inline;
1455 -------------------------------------------
1456 -- Call_Can_Be_Inlined_In_GNATprove_Mode --
1457 -------------------------------------------
1459 function Call_Can_Be_Inlined_In_GNATprove_Mode
1460 (N : Node_Id;
1461 Subp : Entity_Id) return Boolean
1463 function Has_Dereference (N : Node_Id) return Boolean;
1464 -- Return whether N contains an explicit dereference
1466 ---------------------
1467 -- Has_Dereference --
1468 ---------------------
1470 function Has_Dereference (N : Node_Id) return Boolean is
1472 function Process (N : Node_Id) return Traverse_Result;
1473 -- Process one node in search for dereference
1475 -------------
1476 -- Process --
1477 -------------
1479 function Process (N : Node_Id) return Traverse_Result is
1480 begin
1481 if Nkind (N) = N_Explicit_Dereference then
1482 return Abandon;
1483 else
1484 return OK;
1485 end if;
1486 end Process;
1488 function Traverse is new Traverse_Func (Process);
1489 -- Traverse tree to look for dereference
1491 begin
1492 return Traverse (N) = Abandon;
1493 end Has_Dereference;
1495 -- Local variables
1497 F : Entity_Id;
1498 A : Node_Id;
1500 begin
1501 -- Check if inlining may lead to missing a check on type conversion of
1502 -- input parameters otherwise.
1504 F := First_Formal (Subp);
1505 A := First_Actual (N);
1506 while Present (F) loop
1507 if Ekind (F) /= E_Out_Parameter
1508 and then not Same_Type (Etype (F), Etype (A))
1509 and then
1510 (Is_By_Reference_Type (Etype (A))
1511 or else Is_Limited_Type (Etype (A)))
1512 then
1513 return False;
1514 end if;
1516 Next_Formal (F);
1517 Next_Actual (A);
1518 end loop;
1520 -- Check if inlining may lead to introducing temporaries of access type,
1521 -- which can lead to missing checks for memory leaks. This can only
1522 -- come from an (IN-)OUT parameter transformed into a renaming by SPARK
1523 -- expansion, whose side-effects are removed, and a dereference in the
1524 -- corresponding actual. If the formal itself is of a deep type (it has
1525 -- access subcomponents), the subprogram already cannot be inlined in
1526 -- GNATprove mode.
1528 F := First_Formal (Subp);
1529 A := First_Actual (N);
1530 while Present (F) loop
1531 if Ekind (F) /= E_In_Parameter
1532 and then Has_Dereference (A)
1533 then
1534 return False;
1535 end if;
1537 Next_Formal (F);
1538 Next_Actual (A);
1539 end loop;
1541 return True;
1542 end Call_Can_Be_Inlined_In_GNATprove_Mode;
1544 --------------------------------------
1545 -- Can_Be_Inlined_In_GNATprove_Mode --
1546 --------------------------------------
1548 function Can_Be_Inlined_In_GNATprove_Mode
1549 (Spec_Id : Entity_Id;
1550 Body_Id : Entity_Id) return Boolean
1552 function Has_Formal_Or_Result_Of_Deep_Type
1553 (Id : Entity_Id) return Boolean;
1554 -- Returns true if the subprogram has at least one formal parameter or
1555 -- a return type of a deep type: either an access type or a composite
1556 -- type containing an access type.
1558 function Has_Formal_With_Per_Object_Constrained_Component
1559 (Id : Entity_Id) return Boolean;
1560 -- Returns true if the subprogram has at least one formal parameter of
1561 -- an unconstrained record type with per-object constraints on component
1562 -- types.
1564 function Has_Hide_Unhide_Annotation
1565 (Spec_Id, Body_Id : Entity_Id)
1566 return Boolean;
1567 -- Returns whether the subprogram has an annotation Hide_Info or
1568 -- Unhide_Info on its spec or body.
1570 function Has_Skip_Proof_Annotation (Id : Entity_Id) return Boolean;
1571 -- Returns True if subprogram Id has an annotation Skip_Proof or
1572 -- Skip_Flow_And_Proof.
1574 function Has_Some_Contract (Id : Entity_Id) return Boolean;
1575 -- Return True if subprogram Id has any contract. The presence of
1576 -- Extensions_Visible or Volatile_Function is also considered as a
1577 -- contract here.
1579 function Is_Unit_Subprogram (Id : Entity_Id) return Boolean;
1580 -- Return True if subprogram Id defines a compilation unit
1582 function In_Package_Spec (Id : Entity_Id) return Boolean;
1583 -- Return True if subprogram Id is defined in the package specification,
1584 -- either its visible or private part.
1586 function Maybe_Traversal_Function (Id : Entity_Id) return Boolean;
1587 -- Return True if subprogram Id could be a traversal function, as
1588 -- defined in SPARK RM 3.10. This is only a safe approximation, as the
1589 -- knowledge of the SPARK boundary is needed to determine exactly
1590 -- traversal functions.
1592 ---------------------------------------
1593 -- Has_Formal_Or_Result_Of_Deep_Type --
1594 ---------------------------------------
1596 function Has_Formal_Or_Result_Of_Deep_Type
1597 (Id : Entity_Id) return Boolean
1599 function Is_Deep (Typ : Entity_Id) return Boolean;
1600 -- Return True if Typ is deep: either an access type or a composite
1601 -- type containing an access type.
1603 -------------
1604 -- Is_Deep --
1605 -------------
1607 function Is_Deep (Typ : Entity_Id) return Boolean is
1608 begin
1609 case Type_Kind'(Ekind (Typ)) is
1610 when Access_Kind =>
1611 return True;
1613 when E_Array_Type
1614 | E_Array_Subtype
1616 return Is_Deep (Component_Type (Typ));
1618 when Record_Kind =>
1619 declare
1620 Comp : Entity_Id := First_Component_Or_Discriminant (Typ);
1621 begin
1622 while Present (Comp) loop
1623 if Is_Deep (Etype (Comp)) then
1624 return True;
1625 end if;
1626 Next_Component_Or_Discriminant (Comp);
1627 end loop;
1628 end;
1629 return False;
1631 when Scalar_Kind
1632 | E_String_Literal_Subtype
1633 | Concurrent_Kind
1634 | Incomplete_Kind
1635 | E_Exception_Type
1636 | E_Subprogram_Type
1638 return False;
1640 when E_Private_Type
1641 | E_Private_Subtype
1642 | E_Limited_Private_Type
1643 | E_Limited_Private_Subtype
1645 -- Conservatively consider that the type might be deep if
1646 -- its completion has not been seen yet.
1648 if No (Underlying_Type (Typ)) then
1649 return True;
1651 -- Do not peek under a private type if its completion has
1652 -- SPARK_Mode Off. In such a case, a deep type is considered
1653 -- by GNATprove to be not deep.
1655 elsif Present (Full_View (Typ))
1656 and then Present (SPARK_Pragma (Full_View (Typ)))
1657 and then Get_SPARK_Mode_From_Annotation
1658 (SPARK_Pragma (Full_View (Typ))) = Off
1659 then
1660 return False;
1662 -- Otherwise peek under the private type.
1664 else
1665 return Is_Deep (Underlying_Type (Typ));
1666 end if;
1667 end case;
1668 end Is_Deep;
1670 -- Local variables
1672 Subp_Id : constant Entity_Id := Ultimate_Alias (Id);
1673 Formal : Entity_Id;
1674 Formal_Typ : Entity_Id;
1676 -- Start of processing for Has_Formal_Or_Result_Of_Deep_Type
1678 begin
1679 -- Inspect all parameters of the subprogram looking for a formal
1680 -- of a deep type.
1682 Formal := First_Formal (Subp_Id);
1683 while Present (Formal) loop
1684 Formal_Typ := Etype (Formal);
1686 if Is_Deep (Formal_Typ) then
1687 return True;
1688 end if;
1690 Next_Formal (Formal);
1691 end loop;
1693 -- Check whether this is a function whose return type is deep
1695 if Ekind (Subp_Id) = E_Function
1696 and then Is_Deep (Etype (Subp_Id))
1697 then
1698 return True;
1699 end if;
1701 return False;
1702 end Has_Formal_Or_Result_Of_Deep_Type;
1704 ------------------------------------------------------
1705 -- Has_Formal_With_Per_Object_Constrained_Component --
1706 ------------------------------------------------------
1708 function Has_Formal_With_Per_Object_Constrained_Component
1709 (Id : Entity_Id) return Boolean
1711 function Has_Per_Object_Constrained_Component
1712 (Typ : Entity_Id) return Boolean;
1713 -- Determine whether unconstrained record type Typ has at least one
1714 -- component that depends on a discriminant.
1716 ------------------------------------------
1717 -- Has_Per_Object_Constrained_Component --
1718 ------------------------------------------
1720 function Has_Per_Object_Constrained_Component
1721 (Typ : Entity_Id) return Boolean
1723 Comp : Entity_Id;
1725 begin
1726 -- Inspect all components of the record type looking for one that
1727 -- depends on a discriminant.
1729 Comp := First_Component (Typ);
1730 while Present (Comp) loop
1731 if Has_Per_Object_Constraint (Comp) then
1732 return True;
1733 end if;
1735 Next_Component (Comp);
1736 end loop;
1738 return False;
1739 end Has_Per_Object_Constrained_Component;
1741 -- Local variables
1743 Subp_Id : constant Entity_Id := Ultimate_Alias (Id);
1744 Formal : Entity_Id;
1745 Formal_Typ : Entity_Id;
1747 -- Start of processing for
1748 -- Has_Formal_With_Per_Object_Constrained_Component
1750 begin
1751 -- Inspect all parameters of the subprogram looking for a formal
1752 -- of an unconstrained record type with at least one discriminant
1753 -- dependent component.
1755 Formal := First_Formal (Subp_Id);
1756 while Present (Formal) loop
1757 Formal_Typ := Etype (Formal);
1759 if Is_Record_Type (Formal_Typ)
1760 and then not Is_Constrained (Formal_Typ)
1761 and then Has_Per_Object_Constrained_Component (Formal_Typ)
1762 then
1763 return True;
1764 end if;
1766 Next_Formal (Formal);
1767 end loop;
1769 return False;
1770 end Has_Formal_With_Per_Object_Constrained_Component;
1772 --------------------------------
1773 -- Has_Hide_Unhide_Annotation --
1774 --------------------------------
1776 function Has_Hide_Unhide_Annotation
1777 (Spec_Id, Body_Id : Entity_Id)
1778 return Boolean
1780 function Has_Hide_Unhide_Pragma (Prag : Node_Id) return Boolean;
1781 -- Return whether a pragma Hide/Unhide is present in the list of
1782 -- pragmas starting with Prag.
1784 ----------------------------
1785 -- Has_Hide_Unhide_Pragma --
1786 ----------------------------
1788 function Has_Hide_Unhide_Pragma (Prag : Node_Id) return Boolean is
1789 Decl : Node_Id := Prag;
1790 begin
1791 while Present (Decl)
1792 and then Nkind (Decl) = N_Pragma
1793 loop
1794 if Get_Pragma_Id (Decl) = Pragma_Annotate
1795 and then List_Length (Pragma_Argument_Associations (Decl)) = 4
1796 then
1797 declare
1798 Arg1 : constant Node_Id :=
1799 First (Pragma_Argument_Associations (Decl));
1800 Arg2 : constant Node_Id := Next (Arg1);
1801 Arg1_Name : constant Name_Id :=
1802 Chars (Get_Pragma_Arg (Arg1));
1803 Arg2_Name : constant String :=
1804 Get_Name_String (Chars (Get_Pragma_Arg (Arg2)));
1805 begin
1806 if Arg1_Name = Name_Gnatprove
1807 and then Arg2_Name in "hide_info" | "unhide_info"
1808 then
1809 return True;
1810 end if;
1811 end;
1812 end if;
1814 Next (Decl);
1815 end loop;
1817 return False;
1818 end Has_Hide_Unhide_Pragma;
1820 begin
1821 if Present (Spec_Id)
1822 and then Is_List_Member (Unit_Declaration_Node (Spec_Id))
1823 and then Has_Hide_Unhide_Pragma
1824 (Next (Unit_Declaration_Node (Spec_Id)))
1825 then
1826 return True;
1828 elsif Present (Body_Id) then
1829 declare
1830 Subp_Body : constant N_Subprogram_Body_Id :=
1831 Unit_Declaration_Node (Body_Id);
1832 begin
1833 return
1834 (Is_List_Member (Subp_Body)
1835 and then Has_Hide_Unhide_Pragma (Next (Subp_Body)))
1836 or else
1837 Has_Hide_Unhide_Pragma (First (Declarations (Subp_Body)));
1838 end;
1840 else
1841 return False;
1842 end if;
1843 end Has_Hide_Unhide_Annotation;
1845 -------------------------------
1846 -- Has_Skip_Proof_Annotation --
1847 -------------------------------
1849 function Has_Skip_Proof_Annotation (Id : Entity_Id) return Boolean is
1850 Decl : Node_Id := Unit_Declaration_Node (Id);
1852 begin
1853 Next (Decl);
1855 while Present (Decl)
1856 and then Nkind (Decl) = N_Pragma
1857 loop
1858 if Get_Pragma_Id (Decl) = Pragma_Annotate
1859 and then List_Length (Pragma_Argument_Associations (Decl)) = 3
1860 then
1861 declare
1862 Arg1 : constant Node_Id :=
1863 First (Pragma_Argument_Associations (Decl));
1864 Arg2 : constant Node_Id := Next (Arg1);
1865 Arg1_Name : constant Name_Id :=
1866 Chars (Get_Pragma_Arg (Arg1));
1867 Arg2_Name : constant String :=
1868 Get_Name_String (Chars (Get_Pragma_Arg (Arg2)));
1869 begin
1870 if Arg1_Name = Name_Gnatprove
1871 and then Arg2_Name in "skip_proof" | "skip_flow_and_proof"
1872 then
1873 return True;
1874 end if;
1875 end;
1876 end if;
1878 Next (Decl);
1879 end loop;
1881 return False;
1882 end Has_Skip_Proof_Annotation;
1884 -----------------------
1885 -- Has_Some_Contract --
1886 -----------------------
1888 function Has_Some_Contract (Id : Entity_Id) return Boolean is
1889 Items : Node_Id;
1891 begin
1892 -- A call to an expression function may precede the actual body which
1893 -- is inserted at the end of the enclosing declarations. Ensure that
1894 -- the related entity is decorated before inspecting the contract.
1896 if Is_Subprogram_Or_Generic_Subprogram (Id) then
1897 Items := Contract (Id);
1899 -- Note that Classifications is not Empty when Extensions_Visible
1900 -- or Volatile_Function is present, which causes such subprograms
1901 -- to be considered to have a contract here. This is fine as we
1902 -- want to avoid inlining these too.
1904 return Present (Items)
1905 and then (Present (Pre_Post_Conditions (Items)) or else
1906 Present (Contract_Test_Cases (Items)) or else
1907 Present (Classifications (Items)));
1908 end if;
1910 return False;
1911 end Has_Some_Contract;
1913 ---------------------
1914 -- In_Package_Spec --
1915 ---------------------
1917 function In_Package_Spec (Id : Entity_Id) return Boolean is
1918 P : constant Node_Id := Parent (Subprogram_Spec (Id));
1919 -- Parent of the subprogram's declaration
1921 begin
1922 return Nkind (Enclosing_Declaration (P)) = N_Package_Declaration;
1923 end In_Package_Spec;
1925 ------------------------
1926 -- Is_Unit_Subprogram --
1927 ------------------------
1929 function Is_Unit_Subprogram (Id : Entity_Id) return Boolean is
1930 Decl : Node_Id := Parent (Parent (Id));
1931 begin
1932 if Nkind (Parent (Id)) = N_Defining_Program_Unit_Name then
1933 Decl := Parent (Decl);
1934 end if;
1936 return Nkind (Parent (Decl)) = N_Compilation_Unit;
1937 end Is_Unit_Subprogram;
1939 ------------------------------
1940 -- Maybe_Traversal_Function --
1941 ------------------------------
1943 function Maybe_Traversal_Function (Id : Entity_Id) return Boolean is
1944 begin
1945 return Ekind (Id) = E_Function
1947 -- Only traversal functions return an anonymous access-to-object
1948 -- type in SPARK.
1950 and then Is_Anonymous_Access_Type (Etype (Id));
1951 end Maybe_Traversal_Function;
1953 -- Local declarations
1955 Id : Entity_Id;
1956 -- Procedure or function entity for the subprogram
1958 -- Start of processing for Can_Be_Inlined_In_GNATprove_Mode
1960 begin
1961 pragma Assert (Present (Spec_Id) or else Present (Body_Id));
1963 if Present (Spec_Id) then
1964 Id := Spec_Id;
1965 else
1966 Id := Body_Id;
1967 end if;
1969 -- Only local subprograms without contracts are inlined in GNATprove
1970 -- mode, as these are the subprograms which a user is not interested in
1971 -- analyzing in isolation, but rather in the context of their call. This
1972 -- is a convenient convention, that could be changed for an explicit
1973 -- pragma/aspect one day.
1975 -- In a number of special cases, inlining is not desirable or not
1976 -- possible, see below.
1978 -- Do not inline unit-level subprograms
1980 if Is_Unit_Subprogram (Id) then
1981 return False;
1983 -- Do not inline subprograms declared in package specs, because they are
1984 -- not local, i.e. can be called either from anywhere (if declared in
1985 -- visible part) or from the child units (if declared in private part).
1987 elsif In_Package_Spec (Id) then
1988 return False;
1990 -- Do not inline subprograms declared in other units. This is important
1991 -- in particular for subprograms defined in the private part of a
1992 -- package spec, when analyzing one of its child packages, as otherwise
1993 -- we issue spurious messages about the impossibility to inline such
1994 -- calls.
1996 elsif not In_Extended_Main_Code_Unit (Id) then
1997 return False;
1999 -- Do not inline dispatching operations, as only their static calls
2000 -- can be analyzed in context, and not their dispatching calls.
2002 elsif Is_Dispatching_Operation (Id) then
2003 return False;
2005 -- Do not inline subprograms marked No_Return, possibly used for
2006 -- signaling errors, which GNATprove handles specially.
2008 elsif No_Return (Id) then
2009 return False;
2011 -- Do not inline subprograms that have a contract on the spec or the
2012 -- body. Use the contract(s) instead in GNATprove. This also prevents
2013 -- inlining of subprograms with Extensions_Visible or Volatile_Function.
2015 elsif (Present (Spec_Id) and then Has_Some_Contract (Spec_Id))
2016 or else
2017 (Present (Body_Id) and then Has_Some_Contract (Body_Id))
2018 then
2019 return False;
2021 -- Do not inline expression functions, which are directly inlined at the
2022 -- prover level.
2024 elsif (Present (Spec_Id) and then Is_Expression_Function (Spec_Id))
2025 or else
2026 (Present (Body_Id) and then Is_Expression_Function (Body_Id))
2027 then
2028 return False;
2030 -- Do not inline generic subprogram instances. The visibility rules of
2031 -- generic instances plays badly with inlining.
2033 elsif Is_Generic_Instance (Spec_Id) then
2034 return False;
2036 -- Only inline subprograms whose spec is marked SPARK_Mode On. For
2037 -- the subprogram body, a similar check is performed after the body
2038 -- is analyzed, as this is where a pragma SPARK_Mode might be inserted.
2040 elsif Present (Spec_Id)
2041 and then
2042 (No (SPARK_Pragma (Spec_Id))
2043 or else
2044 Get_SPARK_Mode_From_Annotation (SPARK_Pragma (Spec_Id)) /= On)
2045 then
2046 return False;
2048 -- Do not inline subprograms and entries defined inside protected types,
2049 -- which typically are not helper subprograms, which also avoids getting
2050 -- spurious messages on calls that cannot be inlined.
2052 elsif Within_Protected_Type (Id) then
2053 return False;
2055 -- Do not inline predicate functions (treated specially by GNATprove)
2057 elsif Is_Predicate_Function (Id) then
2058 return False;
2060 -- Do not inline subprograms with a parameter of an unconstrained
2061 -- record type if it has discrimiant dependent fields. Indeed, with
2062 -- such parameters, the frontend cannot always ensure type compliance
2063 -- in record component accesses (in particular with records containing
2064 -- packed arrays).
2066 elsif Has_Formal_With_Per_Object_Constrained_Component (Id) then
2067 return False;
2069 -- Do not inline subprograms with a formal parameter or return type of
2070 -- a deep type, as in that case inlining might generate code that
2071 -- violates borrow-checking rules of SPARK 3.10 even if the original
2072 -- code did not.
2074 elsif Has_Formal_Or_Result_Of_Deep_Type (Id) then
2075 return False;
2077 -- Do not inline subprograms which may be traversal functions. Such
2078 -- inlining introduces temporary variables of named access type for
2079 -- which assignments are move instead of borrow/observe, possibly
2080 -- leading to spurious errors when checking SPARK rules related to
2081 -- pointer usage.
2083 elsif Maybe_Traversal_Function (Id) then
2084 return False;
2086 -- Do not inline subprograms with the Skip_Proof or Skip_Flow_And_Proof
2087 -- annotation, which should be handled separately.
2089 elsif Has_Skip_Proof_Annotation (Id) then
2090 return False;
2092 -- Do not inline subprograms with the Hide_Info or Unhide_Info
2093 -- annotation, since their scope has special visibility on the
2094 -- precise definition of some entities.
2096 elsif Has_Hide_Unhide_Annotation (Spec_Id, Body_Id) then
2097 return False;
2099 -- Otherwise, this is a subprogram declared inside the private part of a
2100 -- package, or inside a package body, or locally in a subprogram, and it
2101 -- does not have any contract. Inline it.
2103 else
2104 return True;
2105 end if;
2106 end Can_Be_Inlined_In_GNATprove_Mode;
2108 -------------------
2109 -- Cannot_Inline --
2110 -------------------
2112 procedure Cannot_Inline
2113 (Msg : String;
2114 N : Node_Id;
2115 Subp : Entity_Id;
2116 Is_Serious : Boolean := False;
2117 Suppress_Info : Boolean := False)
2119 begin
2120 -- In GNATprove mode, inlining is the technical means by which the
2121 -- higher-level goal of contextual analysis is reached, so issue
2122 -- messages about failure to apply contextual analysis to a
2123 -- subprogram, rather than failure to inline it.
2125 if GNATprove_Mode
2126 and then Msg (Msg'First .. Msg'First + 12) = "cannot inline"
2127 then
2128 declare
2129 Len1 : constant Positive :=
2130 String'("cannot inline")'Length;
2131 Len2 : constant Positive :=
2132 String'("info: no contextual analysis of")'Length;
2134 New_Msg : String (1 .. Msg'Length + Len2 - Len1);
2136 begin
2137 New_Msg (1 .. Len2) := "info: no contextual analysis of";
2138 New_Msg (Len2 + 1 .. Msg'Length + Len2 - Len1) :=
2139 Msg (Msg'First + Len1 .. Msg'Last);
2140 Cannot_Inline (New_Msg, N, Subp, Is_Serious, Suppress_Info);
2141 return;
2142 end;
2143 end if;
2145 pragma Assert (Msg (Msg'Last) = '?');
2147 -- Legacy front-end inlining model
2149 if not Back_End_Inlining then
2151 -- Do not emit warning if this is a predefined unit which is not
2152 -- the main unit. With validity checks enabled, some predefined
2153 -- subprograms may contain nested subprograms and become ineligible
2154 -- for inlining.
2156 if Is_Predefined_Unit (Get_Source_Unit (Subp))
2157 and then not In_Extended_Main_Source_Unit (Subp)
2158 then
2159 null;
2161 -- In GNATprove mode, issue an info message when -gnatd_f is set and
2162 -- Suppress_Info is False, and indicate that the subprogram is not
2163 -- always inlined by setting flag Is_Inlined_Always to False.
2165 elsif GNATprove_Mode then
2166 Set_Is_Inlined_Always (Subp, False);
2168 if Debug_Flag_Underscore_F and not Suppress_Info then
2169 Error_Msg_NE (Msg, N, Subp);
2170 end if;
2172 elsif Has_Pragma_Inline_Always (Subp) then
2174 -- Remove last character (question mark) to make this into an
2175 -- error, because the Inline_Always pragma cannot be obeyed.
2177 Error_Msg_NE (Msg (Msg'First .. Msg'Last - 1), N, Subp);
2179 elsif Ineffective_Inline_Warnings then
2180 Error_Msg_NE (Msg & "p?", N, Subp);
2181 end if;
2183 -- New semantics relying on back-end inlining
2185 elsif Is_Serious then
2187 -- Remove last character (question mark) to make this into an error.
2189 Error_Msg_NE (Msg (Msg'First .. Msg'Last - 1), N, Subp);
2191 else
2193 -- Do not emit warning if this is a predefined unit which is not
2194 -- the main unit. This behavior is currently provided for backward
2195 -- compatibility but it will be removed when we enforce the
2196 -- strictness of the new rules.
2198 if Is_Predefined_Unit (Get_Source_Unit (Subp))
2199 and then not In_Extended_Main_Source_Unit (Subp)
2200 then
2201 null;
2203 elsif Has_Pragma_Inline_Always (Subp) then
2205 -- Emit a warning if this is a call to a runtime subprogram
2206 -- which is located inside a generic. Previously this call
2207 -- was silently skipped.
2209 if Is_Generic_Instance (Subp) then
2210 declare
2211 Gen_P : constant Entity_Id := Generic_Parent (Parent (Subp));
2212 begin
2213 if Is_Predefined_Unit (Get_Source_Unit (Gen_P)) then
2214 Set_Is_Inlined (Subp, False);
2215 Error_Msg_NE (Msg & "p?", N, Subp);
2216 return;
2217 end if;
2218 end;
2219 end if;
2221 -- Remove last character (question mark) to make this into an
2222 -- error, because the Inline_Always pragma cannot be obeyed.
2224 Error_Msg_NE (Msg (Msg'First .. Msg'Last - 1), N, Subp);
2226 else
2227 Set_Is_Inlined (Subp, False);
2229 if Ineffective_Inline_Warnings then
2230 Error_Msg_NE (Msg & "p?", N, Subp);
2231 end if;
2232 end if;
2233 end if;
2234 end Cannot_Inline;
2236 --------------------------------------------
2237 -- Check_And_Split_Unconstrained_Function --
2238 --------------------------------------------
2240 procedure Check_And_Split_Unconstrained_Function
2241 (N : Node_Id;
2242 Spec_Id : Entity_Id;
2243 Body_Id : Entity_Id)
2245 procedure Build_Body_To_Inline (N : Node_Id; Spec_Id : Entity_Id);
2246 -- Use generic machinery to build an unexpanded body for the subprogram.
2247 -- This body is subsequently used for inline expansions at call sites.
2249 procedure Build_Return_Object_Formal
2250 (Loc : Source_Ptr;
2251 Obj_Decl : Node_Id;
2252 Formals : List_Id);
2253 -- Create a formal parameter for return object declaration Obj_Decl of
2254 -- an extended return statement and add it to list Formals.
2256 function Can_Split_Unconstrained_Function (N : Node_Id) return Boolean;
2257 -- Return true if we generate code for the function body N, the function
2258 -- body N has no local declarations and its unique statement is a single
2259 -- extended return statement with a handled statements sequence.
2261 procedure Copy_Formals
2262 (Loc : Source_Ptr;
2263 Subp_Id : Entity_Id;
2264 Formals : List_Id);
2265 -- Create new formal parameters from the formal parameters of subprogram
2266 -- Subp_Id and add them to list Formals.
2268 function Copy_Return_Object (Obj_Decl : Node_Id) return Node_Id;
2269 -- Create a copy of return object declaration Obj_Decl of an extended
2270 -- return statement.
2272 procedure Split_Unconstrained_Function
2273 (N : Node_Id;
2274 Spec_Id : Entity_Id);
2275 -- N is an inlined function body that returns an unconstrained type and
2276 -- has a single extended return statement. Split N in two subprograms:
2277 -- a procedure P' and a function F'. The formals of P' duplicate the
2278 -- formals of N plus an extra formal which is used to return a value;
2279 -- its body is composed by the declarations and list of statements
2280 -- of the extended return statement of N.
2282 --------------------------
2283 -- Build_Body_To_Inline --
2284 --------------------------
2286 procedure Build_Body_To_Inline (N : Node_Id; Spec_Id : Entity_Id) is
2287 procedure Generate_Subprogram_Body
2288 (N : Node_Id;
2289 Body_To_Inline : out Node_Id);
2290 -- Generate a parameterless duplicate of subprogram body N. Note that
2291 -- occurrences of pragmas referencing the formals are removed since
2292 -- they have no meaning when the body is inlined and the formals are
2293 -- rewritten (the analysis of the non-inlined body will handle these
2294 -- pragmas). A new internal name is associated with Body_To_Inline.
2296 ------------------------------
2297 -- Generate_Subprogram_Body --
2298 ------------------------------
2300 procedure Generate_Subprogram_Body
2301 (N : Node_Id;
2302 Body_To_Inline : out Node_Id)
2304 begin
2305 -- Within an instance, the body to inline must be treated as a
2306 -- nested generic so that proper global references are preserved.
2308 -- Note that we do not do this at the library level, because it
2309 -- is not needed, and furthermore this causes trouble if front
2310 -- end inlining is activated (-gnatN).
2312 if In_Instance
2313 and then Scope (Current_Scope) /= Standard_Standard
2314 then
2315 Body_To_Inline :=
2316 Copy_Generic_Node (N, Empty, Instantiating => True);
2317 else
2318 Body_To_Inline := New_Copy_Tree (N);
2319 end if;
2321 -- Remove aspects/pragmas that have no meaning in an inlined body
2323 Remove_Aspects_And_Pragmas (Body_To_Inline);
2325 -- We need to capture references to the formals in order
2326 -- to substitute the actuals at the point of inlining, i.e.
2327 -- instantiation. To treat the formals as globals to the body to
2328 -- inline, we nest it within a dummy parameterless subprogram,
2329 -- declared within the real one.
2331 Set_Parameter_Specifications
2332 (Specification (Body_To_Inline), No_List);
2334 -- A new internal name is associated with Body_To_Inline to avoid
2335 -- conflicts when the non-inlined body N is analyzed.
2337 Set_Defining_Unit_Name (Specification (Body_To_Inline),
2338 Make_Temporary (Sloc (N), 'P'));
2339 Set_Corresponding_Spec (Body_To_Inline, Empty);
2340 end Generate_Subprogram_Body;
2342 -- Local variables
2344 Decl : constant Node_Id := Unit_Declaration_Node (Spec_Id);
2345 Original_Body : Node_Id;
2346 Body_To_Analyze : Node_Id;
2348 -- Start of processing for Build_Body_To_Inline
2350 begin
2351 pragma Assert (Current_Scope = Spec_Id);
2353 -- Within an instance, the body to inline must be treated as a nested
2354 -- generic, so that the proper global references are preserved. We
2355 -- do not do this at the library level, because it is not needed, and
2356 -- furthermore this causes trouble if front-end inlining is activated
2357 -- (-gnatN).
2359 if In_Instance
2360 and then Scope (Current_Scope) /= Standard_Standard
2361 then
2362 Save_Env (Scope (Current_Scope), Scope (Current_Scope));
2363 end if;
2365 -- Capture references to formals in order to substitute the actuals
2366 -- at the point of inlining or instantiation. To treat the formals
2367 -- as globals to the body to inline, nest the body within a dummy
2368 -- parameterless subprogram, declared within the real one.
2370 Generate_Subprogram_Body (N, Original_Body);
2371 Body_To_Analyze :=
2372 Copy_Generic_Node (Original_Body, Empty, Instantiating => False);
2374 -- Set return type of function, which is also global and does not
2375 -- need to be resolved.
2377 if Ekind (Spec_Id) = E_Function then
2378 Set_Result_Definition (Specification (Body_To_Analyze),
2379 New_Occurrence_Of (Etype (Spec_Id), Sloc (N)));
2380 end if;
2382 if No (Declarations (N)) then
2383 Set_Declarations (N, New_List (Body_To_Analyze));
2384 else
2385 Append_To (Declarations (N), Body_To_Analyze);
2386 end if;
2388 Preanalyze (Body_To_Analyze);
2390 Push_Scope (Defining_Entity (Body_To_Analyze));
2391 Save_Global_References (Original_Body);
2392 End_Scope;
2393 Remove (Body_To_Analyze);
2395 -- Restore environment if previously saved
2397 if In_Instance
2398 and then Scope (Current_Scope) /= Standard_Standard
2399 then
2400 Restore_Env;
2401 end if;
2403 pragma Assert (No (Body_To_Inline (Decl)));
2404 Set_Body_To_Inline (Decl, Original_Body);
2405 Mutate_Ekind (Defining_Entity (Original_Body), Ekind (Spec_Id));
2406 end Build_Body_To_Inline;
2408 --------------------------------
2409 -- Build_Return_Object_Formal --
2410 --------------------------------
2412 procedure Build_Return_Object_Formal
2413 (Loc : Source_Ptr;
2414 Obj_Decl : Node_Id;
2415 Formals : List_Id)
2417 Obj_Def : constant Node_Id := Object_Definition (Obj_Decl);
2418 Obj_Id : constant Entity_Id := Defining_Entity (Obj_Decl);
2419 Typ_Def : Node_Id;
2421 begin
2422 -- Build the type definition of the formal parameter. The use of
2423 -- New_Copy_Tree ensures that global references preserved in the
2424 -- case of generics.
2426 if Is_Entity_Name (Obj_Def) then
2427 Typ_Def := New_Copy_Tree (Obj_Def);
2428 else
2429 Typ_Def := New_Copy_Tree (Subtype_Mark (Obj_Def));
2430 end if;
2432 -- Generate:
2434 -- Obj_Id : [out] Typ_Def
2436 -- Mode OUT should not be used when the return object is declared as
2437 -- a constant. Check the definition of the object declaration because
2438 -- the object has not been analyzed yet.
2440 Append_To (Formals,
2441 Make_Parameter_Specification (Loc,
2442 Defining_Identifier =>
2443 Make_Defining_Identifier (Loc, Chars (Obj_Id)),
2444 In_Present => False,
2445 Out_Present => not Constant_Present (Obj_Decl),
2446 Null_Exclusion_Present => False,
2447 Parameter_Type => Typ_Def));
2448 end Build_Return_Object_Formal;
2450 --------------------------------------
2451 -- Can_Split_Unconstrained_Function --
2452 --------------------------------------
2454 function Can_Split_Unconstrained_Function (N : Node_Id) return Boolean is
2455 Stmt : constant Node_Id :=
2456 First (Statements (Handled_Statement_Sequence (N)));
2457 Decl : Node_Id;
2459 begin
2460 -- No user defined declarations allowed in the function except inside
2461 -- the unique return statement; implicit labels are the only allowed
2462 -- declarations.
2464 Decl := First (Declarations (N));
2465 while Present (Decl) loop
2466 if Nkind (Decl) /= N_Implicit_Label_Declaration then
2467 return False;
2468 end if;
2470 Next (Decl);
2471 end loop;
2473 -- We only split the inlined function when we are generating the code
2474 -- of its body; otherwise we leave duplicated split subprograms in
2475 -- the tree which (if referenced) generate wrong references at link
2476 -- time.
2478 return In_Extended_Main_Code_Unit (N)
2479 and then Present (Stmt)
2480 and then Nkind (Stmt) = N_Extended_Return_Statement
2481 and then No (Next (Stmt))
2482 and then Present (Handled_Statement_Sequence (Stmt));
2483 end Can_Split_Unconstrained_Function;
2485 ------------------
2486 -- Copy_Formals --
2487 ------------------
2489 procedure Copy_Formals
2490 (Loc : Source_Ptr;
2491 Subp_Id : Entity_Id;
2492 Formals : List_Id)
2494 Formal : Entity_Id;
2495 Spec : Node_Id;
2497 begin
2498 Formal := First_Formal (Subp_Id);
2499 while Present (Formal) loop
2500 Spec := Parent (Formal);
2502 -- Create an exact copy of the formal parameter. The use of
2503 -- New_Copy_Tree ensures that global references are preserved
2504 -- in case of generics.
2506 Append_To (Formals,
2507 Make_Parameter_Specification (Loc,
2508 Defining_Identifier =>
2509 Make_Defining_Identifier (Sloc (Formal), Chars (Formal)),
2510 In_Present => In_Present (Spec),
2511 Out_Present => Out_Present (Spec),
2512 Null_Exclusion_Present => Null_Exclusion_Present (Spec),
2513 Parameter_Type =>
2514 New_Copy_Tree (Parameter_Type (Spec)),
2515 Expression => New_Copy_Tree (Expression (Spec))));
2517 Next_Formal (Formal);
2518 end loop;
2519 end Copy_Formals;
2521 ------------------------
2522 -- Copy_Return_Object --
2523 ------------------------
2525 function Copy_Return_Object (Obj_Decl : Node_Id) return Node_Id is
2526 Obj_Id : constant Entity_Id := Defining_Entity (Obj_Decl);
2528 begin
2529 -- The use of New_Copy_Tree ensures that global references are
2530 -- preserved in case of generics.
2532 return
2533 Make_Object_Declaration (Sloc (Obj_Decl),
2534 Defining_Identifier =>
2535 Make_Defining_Identifier (Sloc (Obj_Id), Chars (Obj_Id)),
2536 Aliased_Present => Aliased_Present (Obj_Decl),
2537 Constant_Present => Constant_Present (Obj_Decl),
2538 Null_Exclusion_Present => Null_Exclusion_Present (Obj_Decl),
2539 Object_Definition =>
2540 New_Copy_Tree (Object_Definition (Obj_Decl)),
2541 Expression => New_Copy_Tree (Expression (Obj_Decl)));
2542 end Copy_Return_Object;
2544 ----------------------------------
2545 -- Split_Unconstrained_Function --
2546 ----------------------------------
2548 procedure Split_Unconstrained_Function
2549 (N : Node_Id;
2550 Spec_Id : Entity_Id)
2552 Loc : constant Source_Ptr := Sloc (N);
2553 Ret_Stmt : constant Node_Id :=
2554 First (Statements (Handled_Statement_Sequence (N)));
2555 Ret_Obj : constant Node_Id :=
2556 First (Return_Object_Declarations (Ret_Stmt));
2558 procedure Build_Procedure
2559 (Proc_Id : out Entity_Id;
2560 Decl_List : out List_Id);
2561 -- Build a procedure containing the statements found in the extended
2562 -- return statement of the unconstrained function body N.
2564 ---------------------
2565 -- Build_Procedure --
2566 ---------------------
2568 procedure Build_Procedure
2569 (Proc_Id : out Entity_Id;
2570 Decl_List : out List_Id)
2572 Formals : constant List_Id := New_List;
2573 Subp_Name : constant Name_Id := New_Internal_Name ('F');
2575 Body_Decls : List_Id := No_List;
2576 Decl : Node_Id;
2577 Proc_Body : Node_Id;
2578 Proc_Spec : Node_Id;
2580 begin
2581 -- Create formal parameters for the return object and all formals
2582 -- of the unconstrained function in order to pass their values to
2583 -- the procedure.
2585 Build_Return_Object_Formal
2586 (Loc => Loc,
2587 Obj_Decl => Ret_Obj,
2588 Formals => Formals);
2590 Copy_Formals
2591 (Loc => Loc,
2592 Subp_Id => Spec_Id,
2593 Formals => Formals);
2595 Proc_Id := Make_Defining_Identifier (Loc, Chars => Subp_Name);
2597 Proc_Spec :=
2598 Make_Procedure_Specification (Loc,
2599 Defining_Unit_Name => Proc_Id,
2600 Parameter_Specifications => Formals);
2602 Decl_List := New_List;
2604 Append_To (Decl_List,
2605 Make_Subprogram_Declaration (Loc, Proc_Spec));
2607 -- Can_Convert_Unconstrained_Function checked that the function
2608 -- has no local declarations except implicit label declarations.
2609 -- Copy these declarations to the built procedure.
2611 if Present (Declarations (N)) then
2612 Body_Decls := New_List;
2614 Decl := First (Declarations (N));
2615 while Present (Decl) loop
2616 pragma Assert (Nkind (Decl) = N_Implicit_Label_Declaration);
2618 Append_To (Body_Decls,
2619 Make_Implicit_Label_Declaration (Loc,
2620 Make_Defining_Identifier (Loc,
2621 Chars => Chars (Defining_Identifier (Decl))),
2622 Label_Construct => Empty));
2624 Next (Decl);
2625 end loop;
2626 end if;
2628 pragma Assert (Present (Handled_Statement_Sequence (Ret_Stmt)));
2630 Proc_Body :=
2631 Make_Subprogram_Body (Loc,
2632 Specification => Copy_Subprogram_Spec (Proc_Spec),
2633 Declarations => Body_Decls,
2634 Handled_Statement_Sequence =>
2635 New_Copy_Tree (Handled_Statement_Sequence (Ret_Stmt)));
2637 Set_Defining_Unit_Name (Specification (Proc_Body),
2638 Make_Defining_Identifier (Loc, Subp_Name));
2640 Append_To (Decl_List, Proc_Body);
2641 end Build_Procedure;
2643 -- Local variables
2645 New_Obj : constant Node_Id := Copy_Return_Object (Ret_Obj);
2646 Blk_Stmt : Node_Id;
2647 Proc_Call : Node_Id;
2648 Proc_Id : Entity_Id;
2650 -- Start of processing for Split_Unconstrained_Function
2652 begin
2653 -- Build the associated procedure, analyze it and insert it before
2654 -- the function body N.
2656 declare
2657 Scope : constant Entity_Id := Current_Scope;
2658 Decl_List : List_Id;
2659 begin
2660 Pop_Scope;
2661 Build_Procedure (Proc_Id, Decl_List);
2662 Insert_Actions (N, Decl_List);
2663 Set_Is_Inlined (Proc_Id);
2664 Push_Scope (Scope);
2665 end;
2667 -- Build the call to the generated procedure
2669 declare
2670 Actual_List : constant List_Id := New_List;
2671 Formal : Entity_Id;
2673 begin
2674 Append_To (Actual_List,
2675 New_Occurrence_Of (Defining_Identifier (New_Obj), Loc));
2677 Formal := First_Formal (Spec_Id);
2678 while Present (Formal) loop
2679 Append_To (Actual_List, New_Occurrence_Of (Formal, Loc));
2681 -- Avoid spurious warning on unreferenced formals
2683 Set_Referenced (Formal);
2684 Next_Formal (Formal);
2685 end loop;
2687 Proc_Call :=
2688 Make_Procedure_Call_Statement (Loc,
2689 Name => New_Occurrence_Of (Proc_Id, Loc),
2690 Parameter_Associations => Actual_List);
2691 end;
2693 -- Generate:
2695 -- declare
2696 -- New_Obj : ...
2697 -- begin
2698 -- Proc (New_Obj, ...);
2699 -- return New_Obj;
2700 -- end;
2702 Blk_Stmt :=
2703 Make_Block_Statement (Loc,
2704 Declarations => New_List (New_Obj),
2705 Handled_Statement_Sequence =>
2706 Make_Handled_Sequence_Of_Statements (Loc,
2707 Statements => New_List (
2709 Proc_Call,
2711 Make_Simple_Return_Statement (Loc,
2712 Expression =>
2713 New_Occurrence_Of
2714 (Defining_Identifier (New_Obj), Loc)))));
2716 Rewrite (Ret_Stmt, Blk_Stmt);
2717 end Split_Unconstrained_Function;
2719 -- Local variables
2721 Decl : constant Node_Id := Unit_Declaration_Node (Spec_Id);
2723 -- Start of processing for Check_And_Split_Unconstrained_Function
2725 begin
2726 pragma Assert (Back_End_Inlining
2727 and then Ekind (Spec_Id) = E_Function
2728 and then Returns_Unconstrained_Type (Spec_Id)
2729 and then Comes_From_Source (Body_Id)
2730 and then (Has_Pragma_Inline_Always (Spec_Id)
2731 or else Optimization_Level > 0));
2733 -- This routine must not be used in GNATprove mode since GNATprove
2734 -- relies on frontend inlining
2736 pragma Assert (not GNATprove_Mode);
2738 -- No need to split the function if we cannot generate the code
2740 if Serious_Errors_Detected /= 0 then
2741 return;
2742 end if;
2744 -- No action needed in stubs since the attribute Body_To_Inline
2745 -- is not available
2747 if Nkind (Decl) = N_Subprogram_Body_Stub then
2748 return;
2750 -- Cannot build the body to inline if the attribute is already set.
2751 -- This attribute may have been set if this is a subprogram renaming
2752 -- declarations (see Freeze.Build_Renamed_Body).
2754 elsif Present (Body_To_Inline (Decl)) then
2755 return;
2757 -- Do not generate a body to inline for protected functions, because the
2758 -- transformation generates a call to a protected procedure, causing
2759 -- spurious errors. We don't inline protected operations anyway, so
2760 -- this is no loss. We might as well ignore intrinsics and foreign
2761 -- conventions as well -- just allow Ada conventions.
2763 elsif not (Convention (Spec_Id) = Convention_Ada
2764 or else Convention (Spec_Id) = Convention_Ada_Pass_By_Copy
2765 or else Convention (Spec_Id) = Convention_Ada_Pass_By_Reference)
2766 then
2767 return;
2769 -- Check excluded declarations
2771 elsif Has_Excluded_Declaration (Spec_Id, Declarations (N)) then
2772 return;
2774 -- Check excluded statements. There is no need to protect us against
2775 -- exception handlers since they are supported by the GCC backend.
2777 elsif Present (Handled_Statement_Sequence (N))
2778 and then Has_Excluded_Statement
2779 (Spec_Id, Statements (Handled_Statement_Sequence (N)))
2780 then
2781 return;
2782 end if;
2784 -- Build the body to inline only if really needed
2786 if Can_Split_Unconstrained_Function (N) then
2787 Split_Unconstrained_Function (N, Spec_Id);
2788 Build_Body_To_Inline (N, Spec_Id);
2789 Set_Is_Inlined (Spec_Id);
2790 end if;
2791 end Check_And_Split_Unconstrained_Function;
2793 ---------------------------------------------
2794 -- Check_Object_Renaming_In_GNATprove_Mode --
2795 ---------------------------------------------
2797 procedure Check_Object_Renaming_In_GNATprove_Mode (Spec_Id : Entity_Id) is
2798 Decl : constant Node_Id := Unit_Declaration_Node (Spec_Id);
2799 Body_Decl : constant Node_Id :=
2800 Unit_Declaration_Node (Corresponding_Body (Decl));
2802 function Check_Object_Renaming (N : Node_Id) return Traverse_Result;
2803 -- Returns Abandon on node N if this is a reference to an object
2804 -- renaming, which will be expanded into the renamed object in
2805 -- GNATprove mode.
2807 ---------------------------
2808 -- Check_Object_Renaming --
2809 ---------------------------
2811 function Check_Object_Renaming (N : Node_Id) return Traverse_Result is
2812 begin
2813 case Nkind (Original_Node (N)) is
2814 when N_Expanded_Name
2815 | N_Identifier
2817 declare
2818 Obj_Id : constant Entity_Id := Entity (Original_Node (N));
2819 begin
2820 -- Recognize the case when SPARK expansion rewrites a
2821 -- reference to an object renaming.
2823 if Present (Obj_Id)
2824 and then Is_Object (Obj_Id)
2825 and then Present (Renamed_Object (Obj_Id))
2826 and then Nkind (Renamed_Object (Obj_Id)) not in N_Entity
2828 -- Copy_Generic_Node called for inlining expects the
2829 -- references to global entities to have the same kind
2830 -- in the "generic" code and its "instantiation".
2832 and then Nkind (Original_Node (N)) /=
2833 Nkind (Renamed_Object (Obj_Id))
2834 then
2835 return Abandon;
2836 else
2837 return OK;
2838 end if;
2839 end;
2841 when others =>
2842 return OK;
2843 end case;
2844 end Check_Object_Renaming;
2846 function Check_All_Object_Renamings is new
2847 Traverse_Func (Check_Object_Renaming);
2849 -- Start of processing for Check_Object_Renaming_In_GNATprove_Mode
2851 begin
2852 -- Subprograms with object renamings replaced by the special SPARK
2853 -- expansion cannot be inlined.
2855 if Check_All_Object_Renamings (Body_Decl) /= OK then
2856 Cannot_Inline ("cannot inline & (object renaming)?",
2857 Body_Decl, Spec_Id);
2858 Set_Body_To_Inline (Decl, Empty);
2859 end if;
2860 end Check_Object_Renaming_In_GNATprove_Mode;
2862 -------------------------------------
2863 -- Check_Package_Body_For_Inlining --
2864 -------------------------------------
2866 procedure Check_Package_Body_For_Inlining (N : Node_Id; P : Entity_Id) is
2867 Bname : Unit_Name_Type;
2868 E : Entity_Id;
2869 OK : Boolean;
2871 begin
2872 -- Legacy implementation (relying on frontend inlining)
2874 if not Back_End_Inlining
2875 and then Is_Compilation_Unit (P)
2876 and then not Is_Generic_Instance (P)
2877 then
2878 Bname := Get_Body_Name (Get_Unit_Name (Unit (N)));
2880 E := First_Entity (P);
2881 while Present (E) loop
2882 if Has_Pragma_Inline_Always (E)
2883 or else (Has_Pragma_Inline (E) and Front_End_Inlining)
2884 then
2885 if not Is_Loaded (Bname) then
2886 Load_Needed_Body (N, OK);
2888 if OK then
2890 -- Check we are not trying to inline a parent whose body
2891 -- depends on a child, when we are compiling the body of
2892 -- the child. Otherwise we have a potential elaboration
2893 -- circularity with inlined subprograms and with
2894 -- Taft-Amendment types.
2896 declare
2897 Comp : Node_Id; -- Body just compiled
2898 Child_Spec : Entity_Id; -- Spec of main unit
2899 Ent : Entity_Id; -- For iteration
2900 With_Clause : Node_Id; -- Context of body.
2902 begin
2903 if Nkind (Unit (Cunit (Main_Unit))) = N_Package_Body
2904 and then Present (Body_Entity (P))
2905 then
2906 Child_Spec :=
2907 Defining_Entity
2908 ((Unit (Library_Unit (Cunit (Main_Unit)))));
2910 Comp :=
2911 Parent (Unit_Declaration_Node (Body_Entity (P)));
2913 -- Check whether the context of the body just
2914 -- compiled includes a child of itself, and that
2915 -- child is the spec of the main compilation.
2917 With_Clause := First (Context_Items (Comp));
2918 while Present (With_Clause) loop
2919 if Nkind (With_Clause) = N_With_Clause
2920 and then
2921 Scope (Entity (Name (With_Clause))) = P
2922 and then
2923 Entity (Name (With_Clause)) = Child_Spec
2924 then
2925 Error_Msg_Node_2 := Child_Spec;
2926 Error_Msg_NE
2927 ("body of & depends on child unit&??",
2928 With_Clause, P);
2929 Error_Msg_N
2930 ("\subprograms in body cannot be inlined??",
2931 With_Clause);
2933 -- Disable further inlining from this unit,
2934 -- and keep Taft-amendment types incomplete.
2936 Ent := First_Entity (P);
2937 while Present (Ent) loop
2938 if Is_Type (Ent)
2939 and then Has_Completion_In_Body (Ent)
2940 then
2941 Set_Full_View (Ent, Empty);
2943 elsif Is_Subprogram (Ent) then
2944 Set_Is_Inlined (Ent, False);
2945 end if;
2947 Next_Entity (Ent);
2948 end loop;
2950 return;
2951 end if;
2953 Next (With_Clause);
2954 end loop;
2955 end if;
2956 end;
2958 elsif Ineffective_Inline_Warnings then
2959 Error_Msg_Unit_1 := Bname;
2960 Error_Msg_N
2961 ("unable to inline subprograms defined in $?p?", P);
2962 Error_Msg_N ("\body not found?p?", P);
2963 return;
2964 end if;
2965 end if;
2967 return;
2968 end if;
2970 Next_Entity (E);
2971 end loop;
2972 end if;
2973 end Check_Package_Body_For_Inlining;
2975 --------------------
2976 -- Cleanup_Scopes --
2977 --------------------
2979 procedure Cleanup_Scopes is
2980 Decl : Node_Id;
2981 Elmt : Elmt_Id;
2982 Fin : Entity_Id;
2983 Kind : Entity_Kind;
2984 Scop : Entity_Id;
2986 begin
2987 Elmt := First_Elmt (To_Clean);
2988 while Present (Elmt) loop
2989 Scop := Node (Elmt);
2990 Kind := Ekind (Scop);
2992 if Kind = E_Block then
2993 Decl := Parent (Block_Node (Scop));
2995 else
2996 Decl := Unit_Declaration_Node (Scop);
2998 if Nkind (Decl) in N_Subprogram_Declaration
2999 | N_Task_Type_Declaration
3000 | N_Subprogram_Body_Stub
3001 then
3002 Decl := Unit_Declaration_Node (Corresponding_Body (Decl));
3003 end if;
3004 end if;
3006 -- Finalizers are built only for package specs and bodies that are
3007 -- compilation units, so check that we do not have anything else.
3008 -- Moreover, they must be built at most once for each entity during
3009 -- the compilation of the main unit. However, if other units are
3010 -- later compiled for inlining purposes, they may also contain body
3011 -- instances and, therefore, appear again here, so we need to make
3012 -- sure that we do not build two finalizers for them (note that the
3013 -- contents of the finalizer for these units is irrelevant since it
3014 -- is not output in the generated code).
3016 if Kind in E_Package | E_Package_Body then
3017 declare
3018 Unit_Entity : constant Entity_Id :=
3019 (if Kind = E_Package then Scop else Spec_Entity (Scop));
3021 begin
3022 pragma Assert (Is_Compilation_Unit (Unit_Entity)
3023 and then (No (Finalizer (Scop))
3024 or else Unit_Entity /= Main_Unit_Entity));
3026 if No (Finalizer (Scop)) then
3027 Build_Finalizer
3028 (N => Decl,
3029 Clean_Stmts => No_List,
3030 Mark_Id => Empty,
3031 Top_Decls => No_List,
3032 Defer_Abort => False,
3033 Fin_Id => Fin);
3035 if Present (Fin) then
3036 Set_Finalizer (Scop, Fin);
3037 end if;
3038 end if;
3039 end;
3041 else
3042 Push_Scope (Scop);
3043 Expand_Cleanup_Actions (Decl);
3044 Pop_Scope;
3045 end if;
3047 Next_Elmt (Elmt);
3048 end loop;
3049 end Cleanup_Scopes;
3051 -----------------------------------------------
3052 -- Establish_Actual_Mapping_For_Inlined_Call --
3053 -----------------------------------------------
3055 procedure Establish_Actual_Mapping_For_Inlined_Call
3056 (N : Node_Id;
3057 Subp : Entity_Id;
3058 Decls : List_Id;
3059 Body_Or_Expr_To_Check : Node_Id)
3062 function Formal_Is_Used_Once (Formal : Entity_Id) return Boolean;
3063 -- Determine whether a formal parameter is used only once in
3064 -- Body_Or_Expr_To_Check.
3066 -------------------------
3067 -- Formal_Is_Used_Once --
3068 -------------------------
3070 function Formal_Is_Used_Once (Formal : Entity_Id) return Boolean is
3071 Use_Counter : Nat := 0;
3073 function Count_Uses (N : Node_Id) return Traverse_Result;
3074 -- Traverse the tree and count the uses of the formal parameter.
3075 -- In this case, for optimization purposes, we do not need to
3076 -- continue the traversal once more than one use is encountered.
3078 ----------------
3079 -- Count_Uses --
3080 ----------------
3082 function Count_Uses (N : Node_Id) return Traverse_Result is
3083 begin
3084 -- The original node is an identifier
3086 if Nkind (N) = N_Identifier
3087 and then Present (Entity (N))
3089 -- Original node's entity points to the one in the copied body
3091 and then Nkind (Entity (N)) = N_Identifier
3092 and then Present (Entity (Entity (N)))
3094 -- The entity of the copied node is the formal parameter
3096 and then Entity (Entity (N)) = Formal
3097 then
3098 Use_Counter := Use_Counter + 1;
3100 -- If this is a second use then abandon the traversal
3102 if Use_Counter > 1 then
3103 return Abandon;
3104 end if;
3105 end if;
3107 return OK;
3108 end Count_Uses;
3110 procedure Count_Formal_Uses is new Traverse_Proc (Count_Uses);
3112 -- Start of processing for Formal_Is_Used_Once
3114 begin
3115 Count_Formal_Uses (Body_Or_Expr_To_Check);
3116 return Use_Counter = 1;
3117 end Formal_Is_Used_Once;
3119 -- Local Data --
3121 F : Entity_Id;
3122 A : Node_Id;
3123 Decl : Node_Id;
3124 Loc : constant Source_Ptr := Sloc (N);
3125 New_A : Node_Id;
3126 Temp : Entity_Id;
3127 Temp_Typ : Entity_Id;
3129 -- Start of processing for Establish_Actual_Mapping_For_Inlined_Call
3131 begin
3132 F := First_Formal (Subp);
3133 A := First_Actual (N);
3134 while Present (F) loop
3135 -- Reset Last_Assignment for any parameters of mode out or in out, to
3136 -- prevent spurious warnings about overwriting for assignments to the
3137 -- formal in the inlined code.
3139 if Is_Entity_Name (A) and then Ekind (F) /= E_In_Parameter then
3141 -- In GNATprove mode a protected component acting as an actual
3142 -- subprogram parameter will appear as inlined-for-proof. However,
3143 -- its E_Component entity is not an assignable object, so the
3144 -- assertion in Set_Last_Assignment will fail. We just omit the
3145 -- call to Set_Last_Assignment, because GNATprove flags useless
3146 -- assignments with its own flow analysis.
3148 -- In GNAT mode such a problem does not occur, because protected
3149 -- components are inlined via object renamings whose entity kind
3150 -- E_Variable is assignable.
3152 if Is_Assignable (Entity (A)) then
3153 Set_Last_Assignment (Entity (A), Empty);
3154 else
3155 pragma Assert
3156 (GNATprove_Mode and then Is_Protected_Component (Entity (A)));
3157 end if;
3158 end if;
3160 -- If the argument may be a controlling argument in a call within
3161 -- the inlined body, we must preserve its class-wide nature to ensure
3162 -- that dynamic dispatching will take place subsequently. If the
3163 -- formal has a constraint, then it must be preserved to retain the
3164 -- semantics of the body.
3166 if Is_Class_Wide_Type (Etype (F))
3167 or else (Is_Access_Type (Etype (F))
3168 and then Is_Class_Wide_Type (Designated_Type (Etype (F))))
3169 then
3170 Temp_Typ := Etype (F);
3172 elsif Base_Type (Etype (F)) = Base_Type (Etype (A))
3173 and then Etype (F) /= Base_Type (Etype (F))
3174 and then Is_Constrained (Etype (F))
3175 then
3176 Temp_Typ := Etype (F);
3178 else
3179 Temp_Typ := Etype (A);
3180 end if;
3182 -- If the actual is a simple name or a literal, no need to create a
3183 -- temporary, object can be used directly. Skip this optimization in
3184 -- GNATprove mode, to make sure any check on a type conversion will
3185 -- be issued.
3187 if (Is_Entity_Name (A)
3188 and then
3189 (not Is_Scalar_Type (Etype (A))
3190 or else Ekind (Entity (A)) = E_Enumeration_Literal)
3191 and then not GNATprove_Mode)
3193 -- When the actual is an identifier and the corresponding formal is
3194 -- used only once in the original body, the formal can be substituted
3195 -- directly with the actual parameter. Skip this optimization in
3196 -- GNATprove mode, to make sure any check on a type conversion
3197 -- will be issued.
3199 or else
3200 (Nkind (A) = N_Identifier
3201 and then Formal_Is_Used_Once (F)
3202 and then not GNATprove_Mode)
3204 -- If the actual is a literal and the formal has its address taken,
3205 -- we cannot pass the literal itself as an argument, so its value
3206 -- must be captured in a temporary.
3208 or else
3209 (Nkind (A) in
3210 N_Real_Literal | N_Integer_Literal | N_Character_Literal
3211 and then not Address_Taken (F))
3212 then
3213 if Etype (F) /= Etype (A) then
3214 Set_Renamed_Object
3215 (F, Unchecked_Convert_To (Etype (F), Relocate_Node (A)));
3216 else
3217 Set_Renamed_Object (F, A);
3218 end if;
3220 else
3221 Temp := Make_Temporary (Loc, 'C');
3223 -- If the actual for an in/in-out parameter is a view conversion,
3224 -- make it into an unchecked conversion, given that an untagged
3225 -- type conversion is not a proper object for a renaming.
3227 -- In-out conversions that involve real conversions have already
3228 -- been transformed in Expand_Actuals.
3230 if Nkind (A) = N_Type_Conversion
3231 and then Ekind (F) /= E_In_Parameter
3232 then
3233 New_A := Unchecked_Convert_To (Etype (F), Expression (A));
3235 -- In GNATprove mode, keep the most precise type of the actual for
3236 -- the temporary variable, when the formal type is unconstrained.
3237 -- Otherwise, the AST may contain unexpected assignment statements
3238 -- to a temporary variable of unconstrained type renaming a local
3239 -- variable of constrained type, which is not expected by
3240 -- GNATprove.
3242 elsif Etype (F) /= Etype (A)
3243 and then (not GNATprove_Mode or else Is_Constrained (Etype (F)))
3244 then
3245 New_A := Unchecked_Convert_To (Etype (F), Relocate_Node (A));
3246 Temp_Typ := Etype (F);
3248 else
3249 New_A := Relocate_Node (A);
3250 end if;
3252 Set_Sloc (New_A, Sloc (N));
3254 -- If the actual has a by-reference type, it cannot be copied,
3255 -- so its value is captured in a renaming declaration. Otherwise
3256 -- declare a local constant initialized with the actual.
3258 -- We also use a renaming declaration for expressions of an array
3259 -- type that is not bit-packed, both for efficiency reasons and to
3260 -- respect the semantics of the call: in most cases the original
3261 -- call will pass the parameter by reference, and thus the inlined
3262 -- code will have the same semantics.
3264 -- Finally, we need a renaming declaration in the case of limited
3265 -- types for which initialization cannot be by copy either.
3267 if Ekind (F) = E_In_Parameter
3268 and then not Is_By_Reference_Type (Etype (A))
3269 and then not Is_Limited_Type (Etype (A))
3270 and then
3271 (not Is_Array_Type (Etype (A))
3272 or else not Is_Object_Reference (A)
3273 or else Is_Bit_Packed_Array (Etype (A)))
3274 then
3275 Decl :=
3276 Make_Object_Declaration (Loc,
3277 Defining_Identifier => Temp,
3278 Constant_Present => True,
3279 Object_Definition => New_Occurrence_Of (Temp_Typ, Loc),
3280 Expression => New_A);
3282 else
3283 -- In GNATprove mode, make an explicit copy of input
3284 -- parameters when formal and actual types differ, to make
3285 -- sure any check on the type conversion will be issued.
3286 -- The legality of the copy is ensured by calling first
3287 -- Call_Can_Be_Inlined_In_GNATprove_Mode.
3289 if GNATprove_Mode
3290 and then Ekind (F) /= E_Out_Parameter
3291 and then not Same_Type (Etype (F), Etype (A))
3292 then
3293 pragma Assert (not Is_By_Reference_Type (Etype (A)));
3294 pragma Assert (not Is_Limited_Type (Etype (A)));
3296 Append_To (Decls,
3297 Make_Object_Declaration (Loc,
3298 Defining_Identifier => Make_Temporary (Loc, 'C'),
3299 Constant_Present => True,
3300 Object_Definition => New_Occurrence_Of (Temp_Typ, Loc),
3301 Expression => New_Copy_Tree (New_A)));
3302 end if;
3304 Decl :=
3305 Make_Object_Renaming_Declaration (Loc,
3306 Defining_Identifier => Temp,
3307 Subtype_Mark => New_Occurrence_Of (Temp_Typ, Loc),
3308 Name => New_A);
3309 end if;
3311 Append (Decl, Decls);
3312 Set_Renamed_Object (F, Temp);
3313 end if;
3315 Next_Formal (F);
3316 Next_Actual (A);
3317 end loop;
3318 end Establish_Actual_Mapping_For_Inlined_Call;
3320 -------------------------
3321 -- Expand_Inlined_Call --
3322 -------------------------
3324 procedure Expand_Inlined_Call
3325 (N : Node_Id;
3326 Subp : Entity_Id;
3327 Orig_Subp : Entity_Id)
3329 Decls : constant List_Id := New_List;
3330 Is_Predef : constant Boolean :=
3331 Is_Predefined_Unit (Get_Source_Unit (Subp));
3332 Loc : constant Source_Ptr := Sloc (N);
3333 Orig_Bod : constant Node_Id :=
3334 Body_To_Inline (Unit_Declaration_Node (Subp));
3336 Uses_Back_End : constant Boolean :=
3337 Back_End_Inlining and then Optimization_Level > 0;
3338 -- The back-end expansion is used if the target supports back-end
3339 -- inlining and some level of optimixation is required; otherwise
3340 -- the inlining takes place fully as a tree expansion.
3342 Blk : Node_Id;
3343 Decl : Node_Id;
3344 Exit_Lab : Entity_Id := Empty;
3345 Lab_Decl : Node_Id := Empty;
3346 Lab_Id : Node_Id;
3347 Num_Ret : Nat := 0;
3348 Ret_Type : Entity_Id;
3349 Temp : Entity_Id;
3351 Is_Unc : Boolean;
3352 Is_Unc_Decl : Boolean;
3353 -- If the type returned by the function is unconstrained and the call
3354 -- can be inlined, special processing is required.
3356 Return_Object : Entity_Id := Empty;
3357 -- Entity in declaration in an extended_return_statement
3359 Targ : Node_Id := Empty;
3360 -- The target of the call. If context is an assignment statement then
3361 -- this is the left-hand side of the assignment, else it is a temporary
3362 -- to which the return value is assigned prior to rewriting the call.
3364 Targ1 : Node_Id := Empty;
3365 -- A separate target used when the return type is unconstrained
3367 procedure Declare_Postconditions_Result;
3368 -- When generating C code, declare _Result, which may be used in the
3369 -- inlined _Postconditions procedure to verify the return value.
3371 procedure Make_Exit_Label;
3372 -- Build declaration for exit label to be used in Return statements,
3373 -- sets Exit_Lab (the label node) and Lab_Decl (corresponding implicit
3374 -- declaration). Does nothing if Exit_Lab already set.
3376 procedure Make_Loop_Labels_Unique (HSS : Node_Id);
3377 -- When compiling for CCG and performing front-end inlining, replace
3378 -- loop names and references to them so that they do not conflict with
3379 -- homographs in the current subprogram.
3381 function Process_Formals (N : Node_Id) return Traverse_Result;
3382 -- Replace occurrence of a formal with the corresponding actual, or the
3383 -- thunk generated for it. Replace a return statement with an assignment
3384 -- to the target of the call, with appropriate conversions if needed.
3386 function Process_Formals_In_Aspects (N : Node_Id) return Traverse_Result;
3387 -- Because aspects are linked indirectly to the rest of the tree,
3388 -- replacement of formals appearing in aspect specifications must
3389 -- be performed in a separate pass, using an instantiation of the
3390 -- previous subprogram over aspect specifications reachable from N.
3392 function Process_Sloc (Nod : Node_Id) return Traverse_Result;
3393 -- If the call being expanded is that of an internal subprogram, set the
3394 -- sloc of the generated block to that of the call itself, so that the
3395 -- expansion is skipped by the "next" command in gdb. Same processing
3396 -- for a subprogram in a predefined file, e.g. Ada.Tags. If
3397 -- Debug_Generated_Code is true, suppress this change to simplify our
3398 -- own development. Same in GNATprove mode, to ensure that warnings and
3399 -- diagnostics point to the proper location.
3401 procedure Reset_Dispatching_Calls (N : Node_Id);
3402 -- In subtree N search for occurrences of dispatching calls that use the
3403 -- Ada 2005 Object.Operation notation and the object is a formal of the
3404 -- inlined subprogram. Reset the entity associated with Operation in all
3405 -- the found occurrences.
3407 procedure Rewrite_Function_Call (N : Node_Id; Blk : Node_Id);
3408 -- If the function body is a single expression, replace call with
3409 -- expression, else insert block appropriately.
3411 procedure Rewrite_Procedure_Call (N : Node_Id; Blk : Node_Id);
3412 -- If procedure body has no local variables, inline body without
3413 -- creating block, otherwise rewrite call with block.
3415 -----------------------------------
3416 -- Declare_Postconditions_Result --
3417 -----------------------------------
3419 procedure Declare_Postconditions_Result is
3420 Enclosing_Subp : constant Entity_Id := Scope (Subp);
3422 begin
3423 pragma Assert
3424 (Modify_Tree_For_C
3425 and then Is_Subprogram (Enclosing_Subp)
3426 and then Present (Wrapped_Statements (Enclosing_Subp)));
3428 if Ekind (Enclosing_Subp) = E_Function then
3429 if Nkind (First (Parameter_Associations (N))) in
3430 N_Numeric_Or_String_Literal
3431 then
3432 Append_To (Declarations (Blk),
3433 Make_Object_Declaration (Loc,
3434 Defining_Identifier =>
3435 Make_Defining_Identifier (Loc, Name_uResult),
3436 Constant_Present => True,
3437 Object_Definition =>
3438 New_Occurrence_Of (Etype (Enclosing_Subp), Loc),
3439 Expression =>
3440 New_Copy_Tree (First (Parameter_Associations (N)))));
3441 else
3442 Append_To (Declarations (Blk),
3443 Make_Object_Renaming_Declaration (Loc,
3444 Defining_Identifier =>
3445 Make_Defining_Identifier (Loc, Name_uResult),
3446 Subtype_Mark =>
3447 New_Occurrence_Of (Etype (Enclosing_Subp), Loc),
3448 Name =>
3449 New_Copy_Tree (First (Parameter_Associations (N)))));
3450 end if;
3451 end if;
3452 end Declare_Postconditions_Result;
3454 ---------------------
3455 -- Make_Exit_Label --
3456 ---------------------
3458 procedure Make_Exit_Label is
3459 Lab_Ent : Entity_Id;
3460 begin
3461 if No (Exit_Lab) then
3462 Lab_Ent := Make_Temporary (Loc, 'L');
3463 Lab_Id := New_Occurrence_Of (Lab_Ent, Loc);
3464 Exit_Lab := Make_Label (Loc, Lab_Id);
3465 Lab_Decl :=
3466 Make_Implicit_Label_Declaration (Loc,
3467 Defining_Identifier => Lab_Ent,
3468 Label_Construct => Exit_Lab);
3469 end if;
3470 end Make_Exit_Label;
3472 -----------------------------
3473 -- Make_Loop_Labels_Unique --
3474 -----------------------------
3476 procedure Make_Loop_Labels_Unique (HSS : Node_Id) is
3477 function Process_Loop (N : Node_Id) return Traverse_Result;
3479 ------------------
3480 -- Process_Loop --
3481 ------------------
3483 function Process_Loop (N : Node_Id) return Traverse_Result is
3484 Id : Entity_Id;
3486 begin
3487 if Nkind (N) = N_Loop_Statement
3488 and then Present (Identifier (N))
3489 then
3490 -- Create new external name for loop and update the
3491 -- corresponding entity.
3493 Id := Entity (Identifier (N));
3494 Set_Chars (Id, New_External_Name (Chars (Id), 'L', -1));
3495 Set_Chars (Identifier (N), Chars (Id));
3497 elsif Nkind (N) = N_Exit_Statement
3498 and then Present (Name (N))
3499 then
3500 -- The exit statement must name an enclosing loop, whose name
3501 -- has already been updated.
3503 Set_Chars (Name (N), Chars (Entity (Name (N))));
3504 end if;
3506 return OK;
3507 end Process_Loop;
3509 procedure Update_Loop_Names is new Traverse_Proc (Process_Loop);
3511 -- Local variables
3513 Stmt : Node_Id;
3515 -- Start of processing for Make_Loop_Labels_Unique
3517 begin
3518 if Modify_Tree_For_C then
3519 Stmt := First (Statements (HSS));
3520 while Present (Stmt) loop
3521 Update_Loop_Names (Stmt);
3522 Next (Stmt);
3523 end loop;
3524 end if;
3525 end Make_Loop_Labels_Unique;
3527 ---------------------
3528 -- Process_Formals --
3529 ---------------------
3531 function Process_Formals (N : Node_Id) return Traverse_Result is
3532 A : Entity_Id;
3533 E : Entity_Id;
3534 Ret : Node_Id;
3536 Had_Private_View : Boolean;
3538 begin
3539 if Is_Entity_Name (N) and then Present (Entity (N)) then
3540 E := Entity (N);
3542 if Is_Formal (E) and then Scope (E) = Subp then
3543 A := Renamed_Object (E);
3545 -- Rewrite the occurrence of the formal into an occurrence of
3546 -- the actual. Also establish visibility on the proper view of
3547 -- the actual's subtype for the body's context (if the actual's
3548 -- subtype is private at the call point but its full view is
3549 -- visible to the body, then the inlined tree here must be
3550 -- analyzed with the full view).
3552 -- The Has_Private_View flag is cleared by rewriting, so it
3553 -- must be explicitly saved and restored, just like when
3554 -- instantiating the body to inline.
3556 if Is_Entity_Name (A) then
3557 Had_Private_View := Has_Private_View (N);
3558 Rewrite (N, New_Occurrence_Of (Entity (A), Sloc (N)));
3559 Set_Has_Private_View (N, Had_Private_View);
3560 Check_Private_View (N);
3562 elsif Nkind (A) = N_Defining_Identifier then
3563 Had_Private_View := Has_Private_View (N);
3564 Rewrite (N, New_Occurrence_Of (A, Sloc (N)));
3565 Set_Has_Private_View (N, Had_Private_View);
3566 Check_Private_View (N);
3568 -- Numeric literal
3570 else
3571 Rewrite (N, New_Copy (A));
3572 end if;
3573 end if;
3575 return Skip;
3577 elsif Is_Entity_Name (N)
3578 and then Present (Return_Object)
3579 and then Chars (N) = Chars (Return_Object)
3580 then
3581 -- Occurrence within an extended return statement. The return
3582 -- object is local to the body been inlined, and thus the generic
3583 -- copy is not analyzed yet, so we match by name, and replace it
3584 -- with target of call.
3586 if Nkind (Targ) = N_Defining_Identifier then
3587 Rewrite (N, New_Occurrence_Of (Targ, Loc));
3588 else
3589 Rewrite (N, New_Copy_Tree (Targ));
3590 end if;
3592 return Skip;
3594 elsif Nkind (N) = N_Simple_Return_Statement then
3595 if No (Expression (N)) then
3596 Num_Ret := Num_Ret + 1;
3597 Make_Exit_Label;
3598 Rewrite (N,
3599 Make_Goto_Statement (Loc, Name => New_Copy (Lab_Id)));
3601 else
3602 if Nkind (Parent (N)) = N_Handled_Sequence_Of_Statements
3603 and then Nkind (Parent (Parent (N))) = N_Subprogram_Body
3604 then
3605 -- Function body is a single expression. No need for
3606 -- exit label.
3608 null;
3610 else
3611 Num_Ret := Num_Ret + 1;
3612 Make_Exit_Label;
3613 end if;
3615 -- Because of the presence of private types, the views of the
3616 -- expression and the context may be different, so place
3617 -- a type conversion to the context type to avoid spurious
3618 -- errors, e.g. when the expression is a numeric literal and
3619 -- the context is private. If the expression is an aggregate,
3620 -- use a qualified expression, because an aggregate is not a
3621 -- legal argument of a conversion. Ditto for numeric, character
3622 -- and string literals, and attributes that yield a universal
3623 -- type, because those must be resolved to a specific type.
3625 if Nkind (Expression (N)) in N_Aggregate
3626 | N_Character_Literal
3627 | N_Null
3628 | N_String_Literal
3629 or else Yields_Universal_Type (Expression (N))
3630 then
3631 Ret :=
3632 Make_Qualified_Expression (Sloc (N),
3633 Subtype_Mark => New_Occurrence_Of (Ret_Type, Sloc (N)),
3634 Expression => Relocate_Node (Expression (N)));
3636 -- Use an unchecked type conversion between access types, for
3637 -- which a type conversion would not always be valid, as no
3638 -- check may result from the conversion.
3640 elsif Is_Access_Type (Ret_Type) then
3641 Ret :=
3642 Unchecked_Convert_To
3643 (Ret_Type, Relocate_Node (Expression (N)));
3645 -- Otherwise use a type conversion, which may trigger a check
3647 else
3648 Ret :=
3649 Make_Type_Conversion (Sloc (N),
3650 Subtype_Mark => New_Occurrence_Of (Ret_Type, Sloc (N)),
3651 Expression => Relocate_Node (Expression (N)));
3652 end if;
3654 if Nkind (Targ) = N_Defining_Identifier then
3655 Rewrite (N,
3656 Make_Assignment_Statement (Loc,
3657 Name => New_Occurrence_Of (Targ, Loc),
3658 Expression => Ret));
3659 else
3660 Rewrite (N,
3661 Make_Assignment_Statement (Loc,
3662 Name => New_Copy (Targ),
3663 Expression => Ret));
3664 end if;
3666 Set_Assignment_OK (Name (N));
3668 if Present (Exit_Lab) then
3669 Insert_After (N,
3670 Make_Goto_Statement (Loc, Name => New_Copy (Lab_Id)));
3671 end if;
3672 end if;
3674 return OK;
3676 -- An extended return becomes a block whose first statement is the
3677 -- assignment of the initial expression of the return object to the
3678 -- target of the call itself.
3680 elsif Nkind (N) = N_Extended_Return_Statement then
3681 declare
3682 Return_Decl : constant Entity_Id :=
3683 First (Return_Object_Declarations (N));
3684 Assign : Node_Id;
3686 begin
3687 Return_Object := Defining_Identifier (Return_Decl);
3689 if Present (Expression (Return_Decl)) then
3690 if Nkind (Targ) = N_Defining_Identifier then
3691 Assign :=
3692 Make_Assignment_Statement (Loc,
3693 Name => New_Occurrence_Of (Targ, Loc),
3694 Expression => Expression (Return_Decl));
3695 else
3696 Assign :=
3697 Make_Assignment_Statement (Loc,
3698 Name => New_Copy (Targ),
3699 Expression => Expression (Return_Decl));
3700 end if;
3702 Set_Assignment_OK (Name (Assign));
3704 if No (Handled_Statement_Sequence (N)) then
3705 Set_Handled_Statement_Sequence (N,
3706 Make_Handled_Sequence_Of_Statements (Loc,
3707 Statements => New_List));
3708 end if;
3710 Prepend (Assign,
3711 Statements (Handled_Statement_Sequence (N)));
3712 end if;
3714 Rewrite (N,
3715 Make_Block_Statement (Loc,
3716 Handled_Statement_Sequence =>
3717 Handled_Statement_Sequence (N)));
3719 return OK;
3720 end;
3722 -- Remove pragma Unreferenced since it may refer to formals that
3723 -- are not visible in the inlined body, and in any case we will
3724 -- not be posting warnings on the inlined body so it is unneeded.
3726 elsif Nkind (N) = N_Pragma
3727 and then Pragma_Name (N) = Name_Unreferenced
3728 then
3729 Rewrite (N, Make_Null_Statement (Sloc (N)));
3730 return OK;
3732 else
3733 return OK;
3734 end if;
3735 end Process_Formals;
3737 procedure Replace_Formals is new Traverse_Proc (Process_Formals);
3739 --------------------------------
3740 -- Process_Formals_In_Aspects --
3741 --------------------------------
3743 function Process_Formals_In_Aspects
3744 (N : Node_Id) return Traverse_Result
3746 begin
3747 if Nkind (N) = N_Aspect_Specification then
3748 Replace_Formals (Expression (N));
3749 end if;
3750 return OK;
3751 end Process_Formals_In_Aspects;
3753 procedure Replace_Formals_In_Aspects is
3754 new Traverse_Proc (Process_Formals_In_Aspects);
3756 ------------------
3757 -- Process_Sloc --
3758 ------------------
3760 function Process_Sloc (Nod : Node_Id) return Traverse_Result is
3761 begin
3762 if not Debug_Generated_Code then
3763 Set_Sloc (Nod, Sloc (N));
3764 Set_Comes_From_Source (Nod, False);
3765 end if;
3767 return OK;
3768 end Process_Sloc;
3770 procedure Reset_Slocs is new Traverse_Proc (Process_Sloc);
3772 ------------------------------
3773 -- Reset_Dispatching_Calls --
3774 ------------------------------
3776 procedure Reset_Dispatching_Calls (N : Node_Id) is
3778 function Do_Reset (N : Node_Id) return Traverse_Result;
3780 --------------
3781 -- Do_Reset --
3782 --------------
3784 function Do_Reset (N : Node_Id) return Traverse_Result is
3785 begin
3786 if Nkind (N) = N_Procedure_Call_Statement
3787 and then Nkind (Name (N)) = N_Selected_Component
3788 and then Nkind (Prefix (Name (N))) = N_Identifier
3789 and then Is_Formal (Entity (Prefix (Name (N))))
3790 and then Is_Dispatching_Operation
3791 (Entity (Selector_Name (Name (N))))
3792 then
3793 Set_Entity (Selector_Name (Name (N)), Empty);
3794 end if;
3796 return OK;
3797 end Do_Reset;
3799 procedure Do_Reset_Calls is new Traverse_Proc (Do_Reset);
3801 begin
3802 Do_Reset_Calls (N);
3803 end Reset_Dispatching_Calls;
3805 ---------------------------
3806 -- Rewrite_Function_Call --
3807 ---------------------------
3809 procedure Rewrite_Function_Call (N : Node_Id; Blk : Node_Id) is
3810 HSS : constant Node_Id := Handled_Statement_Sequence (Blk);
3811 Fst : constant Node_Id := First (Statements (HSS));
3813 begin
3814 Make_Loop_Labels_Unique (HSS);
3816 -- Optimize simple case: function body is a single return statement,
3817 -- which has been expanded into an assignment.
3819 if Is_Empty_List (Declarations (Blk))
3820 and then Nkind (Fst) = N_Assignment_Statement
3821 and then No (Next (Fst))
3822 then
3823 -- The function call may have been rewritten as the temporary
3824 -- that holds the result of the call, in which case remove the
3825 -- now useless declaration.
3827 if Nkind (N) = N_Identifier
3828 and then Nkind (Parent (Entity (N))) = N_Object_Declaration
3829 then
3830 Rewrite (Parent (Entity (N)), Make_Null_Statement (Loc));
3831 end if;
3833 Rewrite (N, Expression (Fst));
3835 elsif Nkind (N) = N_Identifier
3836 and then Nkind (Parent (Entity (N))) = N_Object_Declaration
3837 then
3838 -- The block assigns the result of the call to the temporary
3840 Insert_After (Parent (Entity (N)), Blk);
3842 -- If the context is an assignment, and the left-hand side is free of
3843 -- side effects, the replacement is also safe.
3845 elsif Nkind (Parent (N)) = N_Assignment_Statement
3846 and then
3847 (Is_Entity_Name (Name (Parent (N)))
3848 or else
3849 (Nkind (Name (Parent (N))) = N_Explicit_Dereference
3850 and then Is_Entity_Name (Prefix (Name (Parent (N)))))
3852 or else
3853 (Nkind (Name (Parent (N))) = N_Selected_Component
3854 and then Is_Entity_Name (Prefix (Name (Parent (N))))))
3855 then
3856 -- Replace assignment with the block
3858 declare
3859 Original_Assignment : constant Node_Id := Parent (N);
3861 begin
3862 -- Preserve the original assignment node to keep the complete
3863 -- assignment subtree consistent enough for Analyze_Assignment
3864 -- to proceed (specifically, the original Lhs node must still
3865 -- have an assignment statement as its parent).
3867 -- We cannot rely on Original_Node to go back from the block
3868 -- node to the assignment node, because the assignment might
3869 -- already be a rewrite substitution.
3871 Discard_Node (Relocate_Node (Original_Assignment));
3872 Rewrite (Original_Assignment, Blk);
3873 end;
3875 elsif Nkind (Parent (N)) = N_Object_Declaration then
3877 -- A call to a function which returns an unconstrained type
3878 -- found in the expression initializing an object-declaration is
3879 -- expanded into a procedure call which must be added after the
3880 -- object declaration.
3882 if Is_Unc_Decl and Back_End_Inlining then
3883 Insert_Action_After (Parent (N), Blk);
3884 else
3885 Set_Expression (Parent (N), Empty);
3886 Insert_After (Parent (N), Blk);
3887 end if;
3889 elsif Is_Unc and then not Back_End_Inlining then
3890 Insert_Before (Parent (N), Blk);
3891 end if;
3892 end Rewrite_Function_Call;
3894 ----------------------------
3895 -- Rewrite_Procedure_Call --
3896 ----------------------------
3898 procedure Rewrite_Procedure_Call (N : Node_Id; Blk : Node_Id) is
3899 HSS : constant Node_Id := Handled_Statement_Sequence (Blk);
3901 begin
3902 Make_Loop_Labels_Unique (HSS);
3904 -- If there is a transient scope for N, this will be the scope of the
3905 -- actions for N, and the statements in Blk need to be within this
3906 -- scope. For example, they need to have visibility on the constant
3907 -- declarations created for the formals.
3909 -- If N needs no transient scope, and if there are no declarations in
3910 -- the inlined body, we can do a little optimization and insert the
3911 -- statements for the body directly after N, and rewrite N to a
3912 -- null statement, instead of rewriting N into a full-blown block
3913 -- statement.
3915 if not Scope_Is_Transient
3916 and then Is_Empty_List (Declarations (Blk))
3917 then
3918 Insert_List_After (N, Statements (HSS));
3919 Rewrite (N, Make_Null_Statement (Loc));
3920 else
3921 Rewrite (N, Blk);
3922 end if;
3923 end Rewrite_Procedure_Call;
3925 -- Start of processing for Expand_Inlined_Call
3927 begin
3928 -- Initializations for old/new semantics
3930 if not Uses_Back_End then
3931 Is_Unc := Is_Array_Type (Etype (Subp))
3932 and then not Is_Constrained (Etype (Subp));
3933 Is_Unc_Decl := False;
3934 else
3935 Is_Unc := Returns_Unconstrained_Type (Subp)
3936 and then Optimization_Level > 0;
3937 Is_Unc_Decl := Nkind (Parent (N)) = N_Object_Declaration
3938 and then Is_Unc;
3939 end if;
3941 -- Check for an illegal attempt to inline a recursive procedure. If the
3942 -- subprogram has parameters this is detected when trying to supply a
3943 -- binding for parameters that already have one. For parameterless
3944 -- subprograms this must be done explicitly.
3946 if In_Open_Scopes (Subp) then
3947 Cannot_Inline
3948 ("cannot inline call to recursive subprogram?", N, Subp);
3949 Set_Is_Inlined (Subp, False);
3950 return;
3952 -- Skip inlining if this is not a true inlining since the attribute
3953 -- Body_To_Inline is also set for renamings (see sinfo.ads). For a
3954 -- true inlining, Orig_Bod has code rather than being an entity.
3956 elsif Nkind (Orig_Bod) in N_Entity then
3957 return;
3958 end if;
3960 if Nkind (Orig_Bod) in N_Defining_Identifier
3961 | N_Defining_Operator_Symbol
3962 then
3963 -- Subprogram is renaming_as_body. Calls occurring after the renaming
3964 -- can be replaced with calls to the renamed entity directly, because
3965 -- the subprograms are subtype conformant. If the renamed subprogram
3966 -- is an inherited operation, we must redo the expansion because
3967 -- implicit conversions may be needed. Similarly, if the renamed
3968 -- entity is inlined, expand the call for further optimizations.
3970 Set_Name (N, New_Occurrence_Of (Orig_Bod, Loc));
3972 if Present (Alias (Orig_Bod)) or else Is_Inlined (Orig_Bod) then
3973 Expand_Call (N);
3974 end if;
3976 return;
3977 end if;
3979 -- Register the call in the list of inlined calls
3981 Append_New_Elmt (N, To => Inlined_Calls);
3983 -- Use generic machinery to copy body of inlined subprogram, as if it
3984 -- were an instantiation, resetting source locations appropriately, so
3985 -- that nested inlined calls appear in the main unit.
3987 Save_Env (Subp, Empty);
3988 Set_Copied_Sloc_For_Inlined_Body (N, Defining_Entity (Orig_Bod));
3990 -- Old semantics
3992 if not Uses_Back_End then
3993 declare
3994 Bod : Node_Id;
3996 begin
3997 Bod := Copy_Generic_Node (Orig_Bod, Empty, Instantiating => True);
3998 Blk :=
3999 Make_Block_Statement (Loc,
4000 Declarations => Declarations (Bod),
4001 Handled_Statement_Sequence =>
4002 Handled_Statement_Sequence (Bod));
4004 if No (Declarations (Bod)) then
4005 Set_Declarations (Blk, New_List);
4006 end if;
4008 -- When generating C code, declare _Result, which may be used to
4009 -- verify the return value.
4011 if Modify_Tree_For_C
4012 and then Nkind (N) = N_Procedure_Call_Statement
4013 and then Chars (Name (N)) = Name_uWrapped_Statements
4014 then
4015 Declare_Postconditions_Result;
4016 end if;
4018 -- For the unconstrained case, capture the name of the local
4019 -- variable that holds the result. This must be the first
4020 -- declaration in the block, because its bounds cannot depend
4021 -- on local variables. Otherwise there is no way to declare the
4022 -- result outside of the block. Needless to say, in general the
4023 -- bounds will depend on the actuals in the call.
4025 -- If the context is an assignment statement, as is the case
4026 -- for the expansion of an extended return, the left-hand side
4027 -- provides bounds even if the return type is unconstrained.
4029 if Is_Unc then
4030 declare
4031 First_Decl : Node_Id;
4033 begin
4034 First_Decl := First (Declarations (Blk));
4036 -- If the body is a single extended return statement,the
4037 -- resulting block is a nested block.
4039 if No (First_Decl) then
4040 First_Decl :=
4041 First (Statements (Handled_Statement_Sequence (Blk)));
4043 if Nkind (First_Decl) = N_Block_Statement then
4044 First_Decl := First (Declarations (First_Decl));
4045 end if;
4046 end if;
4048 -- No front-end inlining possible
4050 if Nkind (First_Decl) /= N_Object_Declaration then
4051 return;
4052 end if;
4054 if Nkind (Parent (N)) /= N_Assignment_Statement then
4055 Targ1 := Defining_Identifier (First_Decl);
4056 else
4057 Targ1 := Name (Parent (N));
4058 end if;
4059 end;
4060 end if;
4061 end;
4063 -- New semantics
4065 else
4066 declare
4067 Bod : Node_Id;
4069 begin
4070 -- General case
4072 if not Is_Unc then
4073 Bod :=
4074 Copy_Generic_Node (Orig_Bod, Empty, Instantiating => True);
4075 Blk :=
4076 Make_Block_Statement (Loc,
4077 Declarations => Declarations (Bod),
4078 Handled_Statement_Sequence =>
4079 Handled_Statement_Sequence (Bod));
4081 -- Inline a call to a function that returns an unconstrained type.
4082 -- The semantic analyzer checked that frontend-inlined functions
4083 -- returning unconstrained types have no declarations and have
4084 -- a single extended return statement. As part of its processing
4085 -- the function was split into two subprograms: a procedure P' and
4086 -- a function F' that has a block with a call to procedure P' (see
4087 -- Split_Unconstrained_Function).
4089 else
4090 pragma Assert
4091 (Nkind
4092 (First
4093 (Statements (Handled_Statement_Sequence (Orig_Bod)))) =
4094 N_Block_Statement);
4096 declare
4097 Blk_Stmt : constant Node_Id :=
4098 First (Statements (Handled_Statement_Sequence (Orig_Bod)));
4099 First_Stmt : constant Node_Id :=
4100 First (Statements (Handled_Statement_Sequence (Blk_Stmt)));
4101 Second_Stmt : constant Node_Id := Next (First_Stmt);
4103 begin
4104 pragma Assert
4105 (Nkind (First_Stmt) = N_Procedure_Call_Statement
4106 and then Nkind (Second_Stmt) = N_Simple_Return_Statement
4107 and then No (Next (Second_Stmt)));
4109 Bod :=
4110 Copy_Generic_Node
4111 (First
4112 (Statements (Handled_Statement_Sequence (Orig_Bod))),
4113 Empty, Instantiating => True);
4114 Blk := Bod;
4116 -- Capture the name of the local variable that holds the
4117 -- result. This must be the first declaration in the block,
4118 -- because its bounds cannot depend on local variables.
4119 -- Otherwise there is no way to declare the result outside
4120 -- of the block. Needless to say, in general the bounds will
4121 -- depend on the actuals in the call.
4123 if Nkind (Parent (N)) /= N_Assignment_Statement then
4124 Targ1 := Defining_Identifier (First (Declarations (Blk)));
4126 -- If the context is an assignment statement, as is the case
4127 -- for the expansion of an extended return, the left-hand
4128 -- side provides bounds even if the return type is
4129 -- unconstrained.
4131 else
4132 Targ1 := Name (Parent (N));
4133 end if;
4134 end;
4135 end if;
4137 if No (Declarations (Bod)) then
4138 Set_Declarations (Blk, New_List);
4139 end if;
4140 end;
4141 end if;
4143 -- If this is a derived function, establish the proper return type
4145 if Present (Orig_Subp) and then Orig_Subp /= Subp then
4146 Ret_Type := Etype (Orig_Subp);
4147 else
4148 Ret_Type := Etype (Subp);
4149 end if;
4151 -- Create temporaries for the actuals that are expressions, or that are
4152 -- scalars and require copying to preserve semantics.
4154 Establish_Actual_Mapping_For_Inlined_Call (N, Subp, Decls, Orig_Bod);
4156 -- Establish target of function call. If context is not assignment or
4157 -- declaration, create a temporary as a target. The declaration for the
4158 -- temporary may be subsequently optimized away if the body is a single
4159 -- expression, or if the left-hand side of the assignment is simple
4160 -- enough, i.e. an entity or an explicit dereference of one.
4162 if Ekind (Subp) = E_Function then
4163 if Nkind (Parent (N)) = N_Assignment_Statement
4164 and then Is_Entity_Name (Name (Parent (N)))
4165 then
4166 Targ := Name (Parent (N));
4168 elsif Nkind (Parent (N)) = N_Assignment_Statement
4169 and then Nkind (Name (Parent (N))) = N_Explicit_Dereference
4170 and then Is_Entity_Name (Prefix (Name (Parent (N))))
4171 then
4172 Targ := Name (Parent (N));
4174 elsif Nkind (Parent (N)) = N_Assignment_Statement
4175 and then Nkind (Name (Parent (N))) = N_Selected_Component
4176 and then Is_Entity_Name (Prefix (Name (Parent (N))))
4177 then
4178 Targ := New_Copy_Tree (Name (Parent (N)));
4180 elsif Nkind (Parent (N)) = N_Object_Declaration
4181 and then Is_Limited_Type (Etype (Subp))
4182 then
4183 Targ := Defining_Identifier (Parent (N));
4185 -- New semantics: In an object declaration avoid an extra copy
4186 -- of the result of a call to an inlined function that returns
4187 -- an unconstrained type
4189 elsif Uses_Back_End
4190 and then Nkind (Parent (N)) = N_Object_Declaration
4191 and then Is_Unc
4192 then
4193 Targ := Defining_Identifier (Parent (N));
4195 else
4196 -- Replace call with temporary and create its declaration
4198 Temp := Make_Temporary (Loc, 'C');
4199 Set_Is_Internal (Temp);
4201 -- For the unconstrained case, the generated temporary has the
4202 -- same constrained declaration as the result variable. It may
4203 -- eventually be possible to remove that temporary and use the
4204 -- result variable directly.
4206 if Is_Unc and then Nkind (Parent (N)) /= N_Assignment_Statement
4207 then
4208 Decl :=
4209 Make_Object_Declaration (Loc,
4210 Defining_Identifier => Temp,
4211 Object_Definition =>
4212 New_Copy_Tree (Object_Definition (Parent (Targ1))));
4214 Replace_Formals (Decl);
4216 else
4217 Decl :=
4218 Make_Object_Declaration (Loc,
4219 Defining_Identifier => Temp,
4220 Object_Definition => New_Occurrence_Of (Ret_Type, Loc));
4222 Set_Etype (Temp, Ret_Type);
4223 end if;
4225 Set_No_Initialization (Decl);
4226 Append (Decl, Decls);
4227 Rewrite (N, New_Occurrence_Of (Temp, Loc));
4228 Targ := Temp;
4229 end if;
4230 end if;
4232 Insert_Actions (N, Decls);
4234 if Is_Unc_Decl then
4236 -- Special management for inlining a call to a function that returns
4237 -- an unconstrained type and initializes an object declaration: we
4238 -- avoid generating undesired extra calls and goto statements.
4240 -- Given:
4241 -- function Func (...) return String is
4242 -- begin
4243 -- declare
4244 -- Result : String (1 .. 4);
4245 -- begin
4246 -- Proc (Result, ...);
4247 -- return Result;
4248 -- end;
4249 -- end Func;
4251 -- Result : String := Func (...);
4253 -- Replace this object declaration by:
4255 -- Result : String (1 .. 4);
4256 -- Proc (Result, ...);
4258 Remove_Homonym (Targ);
4260 Decl :=
4261 Make_Object_Declaration
4262 (Loc,
4263 Defining_Identifier => Targ,
4264 Object_Definition =>
4265 New_Copy_Tree (Object_Definition (Parent (Targ1))));
4266 Replace_Formals (Decl);
4267 Set_No_Initialization (Decl);
4268 Rewrite (Parent (N), Decl);
4269 Analyze (Parent (N));
4271 -- Avoid spurious warnings since we know that this declaration is
4272 -- referenced by the procedure call.
4274 Set_Never_Set_In_Source (Targ, False);
4276 -- Remove the local declaration of the extended return stmt from the
4277 -- inlined code
4279 Remove (Parent (Targ1));
4281 -- Update the reference to the result (since we have rewriten the
4282 -- object declaration)
4284 declare
4285 Blk_Call_Stmt : Node_Id;
4287 begin
4288 -- Capture the call to the procedure
4290 Blk_Call_Stmt :=
4291 First (Statements (Handled_Statement_Sequence (Blk)));
4292 pragma Assert
4293 (Nkind (Blk_Call_Stmt) = N_Procedure_Call_Statement);
4295 Remove (First (Parameter_Associations (Blk_Call_Stmt)));
4296 Prepend_To (Parameter_Associations (Blk_Call_Stmt),
4297 New_Occurrence_Of (Targ, Loc));
4298 end;
4300 -- Remove the return statement
4302 pragma Assert
4303 (Nkind (Last (Statements (Handled_Statement_Sequence (Blk)))) =
4304 N_Simple_Return_Statement);
4306 Remove (Last (Statements (Handled_Statement_Sequence (Blk))));
4307 end if;
4309 -- Traverse the tree and replace formals with actuals or their thunks.
4310 -- Attach block to tree before analysis and rewriting.
4312 Replace_Formals (Blk);
4313 Replace_Formals_In_Aspects (Blk);
4314 Set_Parent (Blk, N);
4316 if GNATprove_Mode then
4317 null;
4319 elsif not Comes_From_Source (Subp) or else Is_Predef then
4320 Reset_Slocs (Blk);
4321 end if;
4323 if Is_Unc_Decl then
4325 -- No action needed since return statement has been already removed
4327 null;
4329 elsif Present (Exit_Lab) then
4331 -- If there's a single return statement at the end of the subprogram,
4332 -- the corresponding goto statement and the corresponding label are
4333 -- useless.
4335 if Num_Ret = 1
4336 and then
4337 Nkind (Last (Statements (Handled_Statement_Sequence (Blk)))) =
4338 N_Goto_Statement
4339 then
4340 Remove (Last (Statements (Handled_Statement_Sequence (Blk))));
4341 else
4342 Append (Lab_Decl, (Declarations (Blk)));
4343 Append (Exit_Lab, Statements (Handled_Statement_Sequence (Blk)));
4344 end if;
4345 end if;
4347 -- Analyze Blk with In_Inlined_Body set, to avoid spurious errors
4348 -- on conflicting private views that Gigi would ignore. If this is a
4349 -- predefined unit, analyze with checks off, as is done in the non-
4350 -- inlined run-time units.
4352 declare
4353 I_Flag : constant Boolean := In_Inlined_Body;
4355 begin
4356 In_Inlined_Body := True;
4358 if Is_Predef then
4359 declare
4360 Style : constant Boolean := Style_Check;
4362 begin
4363 Style_Check := False;
4365 -- Search for dispatching calls that use the Object.Operation
4366 -- notation using an Object that is a parameter of the inlined
4367 -- function. We reset the decoration of Operation to force
4368 -- the reanalysis of the inlined dispatching call because
4369 -- the actual object has been inlined.
4371 Reset_Dispatching_Calls (Blk);
4373 -- In GNATprove mode, always consider checks on, even for
4374 -- predefined units.
4376 if GNATprove_Mode then
4377 Analyze (Blk);
4378 else
4379 Analyze (Blk, Suppress => All_Checks);
4380 end if;
4382 Style_Check := Style;
4383 end;
4385 else
4386 Analyze (Blk);
4387 end if;
4389 In_Inlined_Body := I_Flag;
4390 end;
4392 if Ekind (Subp) = E_Procedure then
4393 Rewrite_Procedure_Call (N, Blk);
4395 else
4396 Rewrite_Function_Call (N, Blk);
4398 if Is_Unc_Decl then
4399 null;
4401 -- For the unconstrained case, the replacement of the call has been
4402 -- made prior to the complete analysis of the generated declarations.
4403 -- Propagate the proper type now.
4405 elsif Is_Unc then
4406 if Nkind (N) = N_Identifier then
4407 Set_Etype (N, Etype (Entity (N)));
4408 else
4409 Set_Etype (N, Etype (Targ1));
4410 end if;
4411 end if;
4412 end if;
4414 Restore_Env;
4416 -- Cleanup mapping between formals and actuals for other expansions
4418 Reset_Actual_Mapping_For_Inlined_Call (Subp);
4419 end Expand_Inlined_Call;
4421 --------------------------
4422 -- Get_Code_Unit_Entity --
4423 --------------------------
4425 function Get_Code_Unit_Entity (E : Entity_Id) return Entity_Id is
4426 Unit : Entity_Id := Cunit_Entity (Get_Code_Unit (E));
4428 begin
4429 if Ekind (Unit) = E_Package_Body then
4430 Unit := Spec_Entity (Unit);
4431 end if;
4433 return Unit;
4434 end Get_Code_Unit_Entity;
4436 ------------------------------
4437 -- Has_Excluded_Declaration --
4438 ------------------------------
4440 function Has_Excluded_Declaration
4441 (Subp : Entity_Id;
4442 Decls : List_Id) return Boolean
4444 function Is_Unchecked_Conversion (D : Node_Id) return Boolean;
4445 -- Nested subprograms make a given body ineligible for inlining, but
4446 -- we make an exception for instantiations of unchecked conversion.
4447 -- The body has not been analyzed yet, so check the name, and verify
4448 -- that the visible entity with that name is the predefined unit.
4450 -----------------------------
4451 -- Is_Unchecked_Conversion --
4452 -----------------------------
4454 function Is_Unchecked_Conversion (D : Node_Id) return Boolean is
4455 Id : constant Node_Id := Name (D);
4456 Conv : Entity_Id;
4458 begin
4459 if Nkind (Id) = N_Identifier
4460 and then Chars (Id) = Name_Unchecked_Conversion
4461 then
4462 Conv := Current_Entity (Id);
4464 elsif Nkind (Id) in N_Selected_Component | N_Expanded_Name
4465 and then Chars (Selector_Name (Id)) = Name_Unchecked_Conversion
4466 then
4467 Conv := Current_Entity (Selector_Name (Id));
4468 else
4469 return False;
4470 end if;
4472 return Present (Conv)
4473 and then Is_Predefined_Unit (Get_Source_Unit (Conv))
4474 and then Is_Intrinsic_Subprogram (Conv);
4475 end Is_Unchecked_Conversion;
4477 -- Local variables
4479 Decl : Node_Id;
4481 -- Start of processing for Has_Excluded_Declaration
4483 begin
4484 -- No action needed if the check is not needed
4486 if not Check_Inlining_Restrictions then
4487 return False;
4488 end if;
4490 Decl := First (Decls);
4491 while Present (Decl) loop
4493 -- First declarations universally excluded
4495 if Nkind (Decl) = N_Package_Declaration then
4496 Cannot_Inline
4497 ("cannot inline & (nested package declaration)?", Decl, Subp);
4498 return True;
4500 elsif Nkind (Decl) = N_Package_Instantiation then
4501 Cannot_Inline
4502 ("cannot inline & (nested package instantiation)?", Decl, Subp);
4503 return True;
4504 end if;
4506 -- Then declarations excluded only for front-end inlining
4508 if Back_End_Inlining then
4509 null;
4511 elsif Nkind (Decl) = N_Task_Type_Declaration
4512 or else Nkind (Decl) = N_Single_Task_Declaration
4513 then
4514 Cannot_Inline
4515 ("cannot inline & (nested task type declaration)?", Decl, Subp);
4516 return True;
4518 elsif Nkind (Decl) in N_Protected_Type_Declaration
4519 | N_Single_Protected_Declaration
4520 then
4521 Cannot_Inline
4522 ("cannot inline & (nested protected type declaration)?",
4523 Decl, Subp);
4524 return True;
4526 elsif Nkind (Decl) = N_Subprogram_Body then
4527 Cannot_Inline
4528 ("cannot inline & (nested subprogram)?", Decl, Subp);
4529 return True;
4531 elsif Nkind (Decl) = N_Function_Instantiation
4532 and then not Is_Unchecked_Conversion (Decl)
4533 then
4534 Cannot_Inline
4535 ("cannot inline & (nested function instantiation)?", Decl, Subp);
4536 return True;
4538 elsif Nkind (Decl) = N_Procedure_Instantiation then
4539 Cannot_Inline
4540 ("cannot inline & (nested procedure instantiation)?",
4541 Decl, Subp);
4542 return True;
4544 -- Subtype declarations with predicates will generate predicate
4545 -- functions, i.e. nested subprogram bodies, so inlining is not
4546 -- possible.
4548 elsif Nkind (Decl) = N_Subtype_Declaration then
4549 declare
4550 A : Node_Id;
4551 A_Id : Aspect_Id;
4553 begin
4554 A := First (Aspect_Specifications (Decl));
4555 while Present (A) loop
4556 A_Id := Get_Aspect_Id (Chars (Identifier (A)));
4558 if A_Id = Aspect_Predicate
4559 or else A_Id = Aspect_Static_Predicate
4560 or else A_Id = Aspect_Dynamic_Predicate
4561 then
4562 Cannot_Inline
4563 ("cannot inline & (subtype declaration with "
4564 & "predicate)?", Decl, Subp);
4565 return True;
4566 end if;
4568 Next (A);
4569 end loop;
4570 end;
4571 end if;
4573 Next (Decl);
4574 end loop;
4576 return False;
4577 end Has_Excluded_Declaration;
4579 ----------------------------
4580 -- Has_Excluded_Statement --
4581 ----------------------------
4583 function Has_Excluded_Statement
4584 (Subp : Entity_Id;
4585 Stats : List_Id) return Boolean
4587 S : Node_Id;
4588 E : Node_Id;
4590 begin
4591 -- No action needed if the check is not needed
4593 if not Check_Inlining_Restrictions then
4594 return False;
4595 end if;
4597 S := First (Stats);
4598 while Present (S) loop
4599 if Nkind (S) in N_Abort_Statement
4600 | N_Asynchronous_Select
4601 | N_Conditional_Entry_Call
4602 | N_Delay_Relative_Statement
4603 | N_Delay_Until_Statement
4604 | N_Selective_Accept
4605 | N_Timed_Entry_Call
4606 then
4607 Cannot_Inline
4608 ("cannot inline & (non-allowed statement)?", S, Subp);
4609 return True;
4611 elsif Nkind (S) = N_Block_Statement then
4612 if Has_Excluded_Declaration (Subp, Declarations (S)) then
4613 return True;
4615 elsif Present (Handled_Statement_Sequence (S)) then
4616 if not Back_End_Inlining
4617 and then
4618 Present
4619 (Exception_Handlers (Handled_Statement_Sequence (S)))
4620 then
4621 Cannot_Inline
4622 ("cannot inline& (exception handler)?",
4623 First (Exception_Handlers
4624 (Handled_Statement_Sequence (S))),
4625 Subp);
4626 return True;
4628 elsif Has_Excluded_Statement
4629 (Subp, Statements (Handled_Statement_Sequence (S)))
4630 then
4631 return True;
4632 end if;
4633 end if;
4635 elsif Nkind (S) = N_Case_Statement then
4636 E := First (Alternatives (S));
4637 while Present (E) loop
4638 if Has_Excluded_Statement (Subp, Statements (E)) then
4639 return True;
4640 end if;
4642 Next (E);
4643 end loop;
4645 elsif Nkind (S) = N_If_Statement then
4646 if Has_Excluded_Statement (Subp, Then_Statements (S)) then
4647 return True;
4648 end if;
4650 if Present (Elsif_Parts (S)) then
4651 E := First (Elsif_Parts (S));
4652 while Present (E) loop
4653 if Has_Excluded_Statement (Subp, Then_Statements (E)) then
4654 return True;
4655 end if;
4657 Next (E);
4658 end loop;
4659 end if;
4661 if Present (Else_Statements (S))
4662 and then Has_Excluded_Statement (Subp, Else_Statements (S))
4663 then
4664 return True;
4665 end if;
4667 elsif Nkind (S) = N_Loop_Statement
4668 and then Has_Excluded_Statement (Subp, Statements (S))
4669 then
4670 return True;
4672 elsif Nkind (S) = N_Extended_Return_Statement then
4673 if Present (Handled_Statement_Sequence (S))
4674 and then
4675 Has_Excluded_Statement
4676 (Subp, Statements (Handled_Statement_Sequence (S)))
4677 then
4678 return True;
4680 elsif not Back_End_Inlining
4681 and then Present (Handled_Statement_Sequence (S))
4682 and then
4683 Present (Exception_Handlers
4684 (Handled_Statement_Sequence (S)))
4685 then
4686 Cannot_Inline
4687 ("cannot inline& (exception handler)?",
4688 First (Exception_Handlers (Handled_Statement_Sequence (S))),
4689 Subp);
4690 return True;
4691 end if;
4692 end if;
4694 Next (S);
4695 end loop;
4697 return False;
4698 end Has_Excluded_Statement;
4700 --------------------------
4701 -- Has_Initialized_Type --
4702 --------------------------
4704 function Has_Initialized_Type (E : Entity_Id) return Boolean is
4705 E_Body : constant Node_Id := Subprogram_Body (E);
4706 Decl : Node_Id;
4708 begin
4709 if No (E_Body) then -- imported subprogram
4710 return False;
4712 else
4713 Decl := First (Declarations (E_Body));
4714 while Present (Decl) loop
4715 if Nkind (Decl) = N_Full_Type_Declaration
4716 and then Comes_From_Source (Decl)
4717 and then Present (Init_Proc (Defining_Identifier (Decl)))
4718 then
4719 return True;
4720 end if;
4722 Next (Decl);
4723 end loop;
4724 end if;
4726 return False;
4727 end Has_Initialized_Type;
4729 -----------------------
4730 -- Has_Single_Return --
4731 -----------------------
4733 function Has_Single_Return (N : Node_Id) return Boolean is
4734 Return_Statement : Node_Id := Empty;
4736 function Check_Return (N : Node_Id) return Traverse_Result;
4738 ------------------
4739 -- Check_Return --
4740 ------------------
4742 function Check_Return (N : Node_Id) return Traverse_Result is
4743 begin
4744 if Nkind (N) = N_Simple_Return_Statement then
4745 if Present (Expression (N))
4746 and then Is_Entity_Name (Expression (N))
4747 then
4748 pragma Assert (Present (Entity (Expression (N))));
4750 if No (Return_Statement) then
4751 Return_Statement := N;
4752 return OK;
4754 else
4755 pragma Assert
4756 (Present (Entity (Expression (Return_Statement))));
4758 if Entity (Expression (N)) =
4759 Entity (Expression (Return_Statement))
4760 then
4761 return OK;
4762 else
4763 return Abandon;
4764 end if;
4765 end if;
4767 -- A return statement within an extended return is a noop after
4768 -- inlining.
4770 elsif No (Expression (N))
4771 and then Nkind (Parent (Parent (N))) =
4772 N_Extended_Return_Statement
4773 then
4774 return OK;
4776 else
4777 -- Expression has wrong form
4779 return Abandon;
4780 end if;
4782 -- We can only inline a build-in-place function if it has a single
4783 -- extended return.
4785 elsif Nkind (N) = N_Extended_Return_Statement then
4786 if No (Return_Statement) then
4787 Return_Statement := N;
4788 return OK;
4790 else
4791 return Abandon;
4792 end if;
4794 else
4795 return OK;
4796 end if;
4797 end Check_Return;
4799 function Check_All_Returns is new Traverse_Func (Check_Return);
4801 -- Start of processing for Has_Single_Return
4803 begin
4804 if Check_All_Returns (N) /= OK then
4805 return False;
4807 elsif Nkind (Return_Statement) = N_Extended_Return_Statement then
4808 return True;
4810 else
4811 return
4812 Present (First (Declarations (N)))
4813 and then Nkind (First (Declarations (N))) = N_Object_Declaration
4814 and then Entity (Expression (Return_Statement)) =
4815 Defining_Identifier (First (Declarations (N)));
4816 end if;
4817 end Has_Single_Return;
4819 -----------------------------
4820 -- In_Main_Unit_Or_Subunit --
4821 -----------------------------
4823 function In_Main_Unit_Or_Subunit (E : Entity_Id) return Boolean is
4824 Comp : Node_Id := Cunit (Get_Code_Unit (E));
4826 begin
4827 -- Check whether the subprogram or package to inline is within the main
4828 -- unit or its spec or within a subunit. In either case there are no
4829 -- additional bodies to process. If the subprogram appears in a parent
4830 -- of the current unit, the check on whether inlining is possible is
4831 -- done in Analyze_Inlined_Bodies.
4833 while Nkind (Unit (Comp)) = N_Subunit loop
4834 Comp := Library_Unit (Comp);
4835 end loop;
4837 return Comp = Cunit (Main_Unit)
4838 or else Comp = Library_Unit (Cunit (Main_Unit));
4839 end In_Main_Unit_Or_Subunit;
4841 ----------------
4842 -- Initialize --
4843 ----------------
4845 procedure Initialize is
4846 begin
4847 Pending_Instantiations.Init;
4848 Called_Pending_Instantiations.Init;
4849 Inlined_Bodies.Init;
4850 Successors.Init;
4851 Inlined.Init;
4853 for J in Hash_Headers'Range loop
4854 Hash_Headers (J) := No_Subp;
4855 end loop;
4857 Inlined_Calls := No_Elist;
4858 Backend_Calls := No_Elist;
4859 Backend_Instances := No_Elist;
4860 Backend_Inlined_Subps := No_Elist;
4861 Backend_Not_Inlined_Subps := No_Elist;
4862 end Initialize;
4864 ---------------------------------
4865 -- Inline_Static_Function_Call --
4866 ---------------------------------
4868 procedure Inline_Static_Function_Call (N : Node_Id; Subp : Entity_Id) is
4870 function Replace_Formal (N : Node_Id) return Traverse_Result;
4871 -- Replace each occurrence of a formal with the
4872 -- corresponding actual, using the mapping created
4873 -- by Establish_Actual_Mapping_For_Inlined_Call.
4875 function Reset_Sloc (Nod : Node_Id) return Traverse_Result;
4876 -- Reset the Sloc of a node to that of the call itself, so that errors
4877 -- will be flagged on the call to the static expression function itself
4878 -- rather than on the expression of the function's declaration.
4880 --------------------
4881 -- Replace_Formal --
4882 --------------------
4884 function Replace_Formal (N : Node_Id) return Traverse_Result is
4885 A : Entity_Id;
4886 E : Entity_Id;
4888 begin
4889 if Is_Entity_Name (N) and then Present (Entity (N)) then
4890 E := Entity (N);
4892 if Is_Formal (E) and then Scope (E) = Subp then
4893 A := Renamed_Object (E);
4895 if Nkind (A) = N_Defining_Identifier then
4896 Rewrite (N, New_Occurrence_Of (A, Sloc (N)));
4898 -- Literal cases
4900 else
4901 Rewrite (N, New_Copy (A));
4902 end if;
4903 end if;
4905 return Skip;
4907 else
4908 return OK;
4909 end if;
4910 end Replace_Formal;
4912 procedure Replace_Formals is new Traverse_Proc (Replace_Formal);
4914 ------------------
4915 -- Process_Sloc --
4916 ------------------
4918 function Reset_Sloc (Nod : Node_Id) return Traverse_Result is
4919 begin
4920 Set_Sloc (Nod, Sloc (N));
4921 Set_Comes_From_Source (Nod, False);
4923 return OK;
4924 end Reset_Sloc;
4926 procedure Reset_Slocs is new Traverse_Proc (Reset_Sloc);
4928 -- Start of processing for Inline_Static_Function_Call
4930 begin
4931 pragma Assert (Is_Static_Function_Call (N));
4933 declare
4934 Decls : constant List_Id := New_List;
4935 Func_Expr : constant Node_Id :=
4936 Expression_Of_Expression_Function (Subp);
4937 Expr_Copy : constant Node_Id := New_Copy_Tree (Func_Expr);
4939 begin
4940 -- Create a mapping from formals to actuals, also creating temps in
4941 -- Decls, when needed, to hold the actuals.
4943 Establish_Actual_Mapping_For_Inlined_Call (N, Subp, Decls, Func_Expr);
4945 -- Ensure that the copy has the same parent as the call (this seems
4946 -- to matter when GNATprove_Mode is set and there are nested static
4947 -- calls; prevents blowups in Insert_Actions, though it's not clear
4948 -- exactly why this is needed???).
4950 Set_Parent (Expr_Copy, Parent (N));
4952 Insert_Actions (N, Decls);
4954 -- Now substitute actuals for their corresponding formal references
4955 -- within the expression.
4957 Replace_Formals (Expr_Copy);
4959 Reset_Slocs (Expr_Copy);
4961 -- Apply a qualified expression with the function's result subtype,
4962 -- to ensure that we check the expression against any constraint
4963 -- or predicate, which will cause the call to be illegal if the
4964 -- folded expression doesn't satisfy them. (The predicate case
4965 -- might not get checked if the subtype hasn't been frozen yet,
4966 -- which can happen if this static expression happens to be what
4967 -- causes the freezing, because Has_Static_Predicate doesn't get
4968 -- set on the subtype until it's frozen and Build_Predicates is
4969 -- called. It's not clear how to address this case. ???)
4971 Rewrite (Expr_Copy,
4972 Make_Qualified_Expression (Sloc (Expr_Copy),
4973 Subtype_Mark =>
4974 New_Occurrence_Of (Etype (N), Sloc (Expr_Copy)),
4975 Expression =>
4976 Relocate_Node (Expr_Copy)));
4978 Set_Etype (Expr_Copy, Etype (N));
4980 Analyze_And_Resolve (Expr_Copy, Etype (N));
4982 -- Finally rewrite the function call as the folded static result
4984 Rewrite (N, Expr_Copy);
4986 -- Cleanup mapping between formals and actuals for other expansions
4988 Reset_Actual_Mapping_For_Inlined_Call (Subp);
4989 end;
4990 end Inline_Static_Function_Call;
4992 ------------------------
4993 -- Instantiate_Bodies --
4994 ------------------------
4996 -- Generic bodies contain all the non-local references, so an
4997 -- instantiation does not need any more context than Standard
4998 -- itself, even if the instantiation appears in an inner scope.
4999 -- Generic associations have verified that the contract model is
5000 -- satisfied, so that any error that may occur in the analysis of
5001 -- the body is an internal error.
5003 procedure Instantiate_Bodies is
5005 procedure Instantiate_Body (Info : Pending_Body_Info);
5006 -- Instantiate a pending body
5008 ------------------------
5009 -- Instantiate_Body --
5010 ------------------------
5012 procedure Instantiate_Body (Info : Pending_Body_Info) is
5013 Scop : Entity_Id;
5015 begin
5016 -- If the instantiation node is absent, it has been removed as part
5017 -- of unreachable code.
5019 if No (Info.Inst_Node) then
5020 null;
5022 -- If the instantiation node is a package body, this means that the
5023 -- instance is a compilation unit and the instantiation has already
5024 -- been performed by Build_Instance_Compilation_Unit_Nodes.
5026 elsif Nkind (Info.Inst_Node) = N_Package_Body then
5027 null;
5029 -- For other package instances, instantiate the body and register the
5030 -- finalization scope, if any, for subsequent generation of cleanups.
5032 elsif Nkind (Info.Inst_Node) = N_Package_Instantiation then
5034 -- If the enclosing finalization scope is a package body, set the
5035 -- In_Package_Body flag on its spec. This is required, in the case
5036 -- where the body contains other package instantiations that have
5037 -- a body, for Analyze_Package_Instantiation to compute a correct
5038 -- finalization scope.
5040 if Present (Info.Fin_Scop)
5041 and then Ekind (Info.Fin_Scop) = E_Package_Body
5042 then
5043 Set_In_Package_Body (Spec_Entity (Info.Fin_Scop), True);
5044 end if;
5046 Instantiate_Package_Body (Info);
5048 if Present (Info.Fin_Scop) then
5049 Scop := Info.Fin_Scop;
5051 -- If the enclosing finalization scope is dynamic, the instance
5052 -- may have been relocated, for example if it was declared in a
5053 -- protected entry, protected subprogram, or task body.
5055 if Is_Dynamic_Scope (Scop) then
5056 Scop :=
5057 Enclosing_Dynamic_Scope (Defining_Entity (Info.Act_Decl));
5058 end if;
5060 Add_Scope_To_Clean (Scop);
5062 -- Reset the In_Package_Body flag if it was set above
5064 if Ekind (Info.Fin_Scop) = E_Package_Body then
5065 Set_In_Package_Body (Spec_Entity (Info.Fin_Scop), False);
5066 end if;
5067 end if;
5069 -- For subprogram instances, always instantiate the body
5071 else
5072 Instantiate_Subprogram_Body (Info);
5073 end if;
5074 end Instantiate_Body;
5076 J, K : Nat;
5077 Info : Pending_Body_Info;
5079 -- Start of processing for Instantiate_Bodies
5081 begin
5082 if Serious_Errors_Detected = 0 then
5083 Expander_Active := (Operating_Mode = Opt.Generate_Code);
5084 Push_Scope (Standard_Standard);
5085 To_Clean := New_Elmt_List;
5087 if Is_Generic_Unit (Cunit_Entity (Main_Unit)) then
5088 Start_Generic;
5089 end if;
5091 -- A body instantiation may generate additional instantiations, so
5092 -- the following loop must scan to the end of a possibly expanding
5093 -- set (that's why we cannot simply use a FOR loop here). We must
5094 -- also capture the element lest the set be entirely reallocated.
5096 J := 0;
5097 if Back_End_Inlining then
5098 while J <= Called_Pending_Instantiations.Last
5099 and then Serious_Errors_Detected = 0
5100 loop
5101 K := Called_Pending_Instantiations.Table (J);
5102 Info := Pending_Instantiations.Table (K);
5103 Instantiate_Body (Info);
5105 J := J + 1;
5106 end loop;
5108 else
5109 while J <= Pending_Instantiations.Last
5110 and then Serious_Errors_Detected = 0
5111 loop
5112 Info := Pending_Instantiations.Table (J);
5113 Instantiate_Body (Info);
5115 J := J + 1;
5116 end loop;
5117 end if;
5119 -- Reset the table of instantiations. Additional instantiations
5120 -- may be added through inlining, when additional bodies are
5121 -- analyzed.
5123 if Back_End_Inlining then
5124 Called_Pending_Instantiations.Init;
5125 else
5126 Pending_Instantiations.Init;
5127 end if;
5129 -- We can now complete the cleanup actions of scopes that contain
5130 -- pending instantiations (skipped for generic units, since we
5131 -- never need any cleanups in generic units).
5133 if Expander_Active
5134 and then not Is_Generic_Unit (Main_Unit_Entity)
5135 then
5136 Cleanup_Scopes;
5137 elsif Is_Generic_Unit (Cunit_Entity (Main_Unit)) then
5138 End_Generic;
5139 end if;
5141 Pop_Scope;
5142 end if;
5143 end Instantiate_Bodies;
5145 ---------------
5146 -- Is_Nested --
5147 ---------------
5149 function Is_Nested (E : Entity_Id) return Boolean is
5150 Scop : Entity_Id;
5152 begin
5153 Scop := Scope (E);
5154 while Scop /= Standard_Standard loop
5155 if Is_Subprogram (Scop) then
5156 return True;
5158 elsif Ekind (Scop) = E_Task_Type
5159 or else Ekind (Scop) = E_Entry
5160 or else Ekind (Scop) = E_Entry_Family
5161 then
5162 return True;
5163 end if;
5165 Scop := Scope (Scop);
5166 end loop;
5168 return False;
5169 end Is_Nested;
5171 ------------------------
5172 -- List_Inlining_Info --
5173 ------------------------
5175 procedure List_Inlining_Info is
5176 Elmt : Elmt_Id;
5177 Nod : Node_Id;
5178 Count : Nat;
5180 begin
5181 if not Debug_Flag_Dot_J then
5182 return;
5183 end if;
5185 -- Generate listing of calls inlined by the frontend
5187 if Present (Inlined_Calls) then
5188 Count := 0;
5189 Elmt := First_Elmt (Inlined_Calls);
5190 while Present (Elmt) loop
5191 Nod := Node (Elmt);
5193 if not In_Internal_Unit (Nod) then
5194 Count := Count + 1;
5196 if Count = 1 then
5197 Write_Str ("List of calls inlined by the frontend");
5198 Write_Eol;
5199 end if;
5201 Write_Str (" ");
5202 Write_Int (Count);
5203 Write_Str (":");
5204 Write_Location (Sloc (Nod));
5205 Write_Str (":");
5206 Output.Write_Eol;
5207 end if;
5209 Next_Elmt (Elmt);
5210 end loop;
5211 end if;
5213 -- Generate listing of calls passed to the backend
5215 if Present (Backend_Calls) then
5216 Count := 0;
5218 Elmt := First_Elmt (Backend_Calls);
5219 while Present (Elmt) loop
5220 Nod := Node (Elmt);
5222 if not In_Internal_Unit (Nod) then
5223 Count := Count + 1;
5225 if Count = 1 then
5226 Write_Str ("List of inlined calls passed to the backend");
5227 Write_Eol;
5228 end if;
5230 Write_Str (" ");
5231 Write_Int (Count);
5232 Write_Str (":");
5233 Write_Location (Sloc (Nod));
5234 Output.Write_Eol;
5235 end if;
5237 Next_Elmt (Elmt);
5238 end loop;
5239 end if;
5241 -- Generate listing of instances inlined for the backend
5243 if Present (Backend_Instances) then
5244 Count := 0;
5246 Elmt := First_Elmt (Backend_Instances);
5247 while Present (Elmt) loop
5248 Nod := Node (Elmt);
5250 if not In_Internal_Unit (Nod) then
5251 Count := Count + 1;
5253 if Count = 1 then
5254 Write_Str ("List of instances inlined for the backend");
5255 Write_Eol;
5256 end if;
5258 Write_Str (" ");
5259 Write_Int (Count);
5260 Write_Str (":");
5261 Write_Location (Sloc (Nod));
5262 Output.Write_Eol;
5263 end if;
5265 Next_Elmt (Elmt);
5266 end loop;
5267 end if;
5269 -- Generate listing of subprograms passed to the backend
5271 if Present (Backend_Inlined_Subps) and then Back_End_Inlining then
5272 Count := 0;
5274 Elmt := First_Elmt (Backend_Inlined_Subps);
5275 while Present (Elmt) loop
5276 Nod := Node (Elmt);
5278 if not In_Internal_Unit (Nod) then
5279 Count := Count + 1;
5281 if Count = 1 then
5282 Write_Str
5283 ("List of inlined subprograms passed to the backend");
5284 Write_Eol;
5285 end if;
5287 Write_Str (" ");
5288 Write_Int (Count);
5289 Write_Str (":");
5290 Write_Name (Chars (Nod));
5291 Write_Str (" (");
5292 Write_Location (Sloc (Nod));
5293 Write_Str (")");
5294 Output.Write_Eol;
5295 end if;
5297 Next_Elmt (Elmt);
5298 end loop;
5299 end if;
5301 -- Generate listing of subprograms that cannot be inlined by the backend
5303 if Present (Backend_Not_Inlined_Subps) and then Back_End_Inlining then
5304 Count := 0;
5306 Elmt := First_Elmt (Backend_Not_Inlined_Subps);
5307 while Present (Elmt) loop
5308 Nod := Node (Elmt);
5310 if not In_Internal_Unit (Nod) then
5311 Count := Count + 1;
5313 if Count = 1 then
5314 Write_Str
5315 ("List of subprograms that cannot be inlined by backend");
5316 Write_Eol;
5317 end if;
5319 Write_Str (" ");
5320 Write_Int (Count);
5321 Write_Str (":");
5322 Write_Name (Chars (Nod));
5323 Write_Str (" (");
5324 Write_Location (Sloc (Nod));
5325 Write_Str (")");
5326 Output.Write_Eol;
5327 end if;
5329 Next_Elmt (Elmt);
5330 end loop;
5331 end if;
5332 end List_Inlining_Info;
5334 ----------
5335 -- Lock --
5336 ----------
5338 procedure Lock is
5339 begin
5340 Pending_Instantiations.Release;
5341 Pending_Instantiations.Locked := True;
5342 Called_Pending_Instantiations.Release;
5343 Called_Pending_Instantiations.Locked := True;
5344 Inlined_Bodies.Release;
5345 Inlined_Bodies.Locked := True;
5346 Successors.Release;
5347 Successors.Locked := True;
5348 Inlined.Release;
5349 Inlined.Locked := True;
5350 end Lock;
5352 --------------------------------
5353 -- Remove_Aspects_And_Pragmas --
5354 --------------------------------
5356 procedure Remove_Aspects_And_Pragmas (Body_Decl : Node_Id) is
5357 procedure Remove_Items (List : List_Id);
5358 -- Remove all useless aspects/pragmas from a particular list
5360 ------------------
5361 -- Remove_Items --
5362 ------------------
5364 procedure Remove_Items (List : List_Id) is
5365 Item : Node_Id;
5366 Item_Id : Node_Id;
5367 Next_Item : Node_Id;
5369 begin
5370 -- Traverse the list looking for an aspect specification or a pragma
5372 Item := First (List);
5373 while Present (Item) loop
5374 Next_Item := Next (Item);
5376 if Nkind (Item) = N_Aspect_Specification then
5377 Item_Id := Identifier (Item);
5378 elsif Nkind (Item) = N_Pragma then
5379 Item_Id := Pragma_Identifier (Item);
5380 else
5381 Item_Id := Empty;
5382 end if;
5384 if Present (Item_Id)
5385 and then Chars (Item_Id) in Name_Always_Terminates
5386 | Name_Contract_Cases
5387 | Name_Global
5388 | Name_Depends
5389 | Name_Exceptional_Cases
5390 | Name_Postcondition
5391 | Name_Precondition
5392 | Name_Refined_Global
5393 | Name_Refined_Depends
5394 | Name_Refined_Post
5395 | Name_Subprogram_Variant
5396 | Name_Test_Case
5397 | Name_Unmodified
5398 | Name_Unreferenced
5399 | Name_Unused
5400 then
5401 Remove (Item);
5402 end if;
5404 Item := Next_Item;
5405 end loop;
5406 end Remove_Items;
5408 -- Start of processing for Remove_Aspects_And_Pragmas
5410 begin
5411 Remove_Items (Aspect_Specifications (Body_Decl));
5412 Remove_Items (Declarations (Body_Decl));
5414 -- Pragmas Unmodified, Unreferenced, and Unused may additionally appear
5415 -- in the body of the subprogram.
5417 Remove_Items (Statements (Handled_Statement_Sequence (Body_Decl)));
5418 end Remove_Aspects_And_Pragmas;
5420 --------------------------
5421 -- Remove_Dead_Instance --
5422 --------------------------
5424 procedure Remove_Dead_Instance (N : Node_Id) is
5425 begin
5426 for J in 0 .. Pending_Instantiations.Last loop
5427 if Pending_Instantiations.Table (J).Inst_Node = N then
5428 Pending_Instantiations.Table (J).Inst_Node := Empty;
5429 return;
5430 end if;
5431 end loop;
5432 end Remove_Dead_Instance;
5434 -------------------------------------------
5435 -- Reset_Actual_Mapping_For_Inlined_Call --
5436 -------------------------------------------
5438 procedure Reset_Actual_Mapping_For_Inlined_Call (Subp : Entity_Id) is
5439 F : Entity_Id := First_Formal (Subp);
5441 begin
5442 while Present (F) loop
5443 Set_Renamed_Object (F, Empty);
5444 Next_Formal (F);
5445 end loop;
5446 end Reset_Actual_Mapping_For_Inlined_Call;
5448 end Inline;