Daily bump.
[official-gcc.git] / gcc / expr.cc
blobee822c11dce632bd7901a3ad9f045c4ba108859d
1 /* Convert tree expression to rtl instructions, for GNU compiler.
2 Copyright (C) 1988-2024 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 #include "config.h"
21 #include "system.h"
22 #include "coretypes.h"
23 #include "backend.h"
24 #include "target.h"
25 #include "rtl.h"
26 #include "tree.h"
27 #include "gimple.h"
28 #include "predict.h"
29 #include "memmodel.h"
30 #include "tm_p.h"
31 #include "ssa.h"
32 #include "optabs.h"
33 #include "expmed.h"
34 #include "regs.h"
35 #include "emit-rtl.h"
36 #include "recog.h"
37 #include "cgraph.h"
38 #include "diagnostic.h"
39 #include "alias.h"
40 #include "fold-const.h"
41 #include "stor-layout.h"
42 #include "attribs.h"
43 #include "varasm.h"
44 #include "except.h"
45 #include "insn-attr.h"
46 #include "dojump.h"
47 #include "explow.h"
48 #include "calls.h"
49 #include "stmt.h"
50 /* Include expr.h after insn-config.h so we get HAVE_conditional_move. */
51 #include "expr.h"
52 #include "optabs-tree.h"
53 #include "libfuncs.h"
54 #include "reload.h"
55 #include "langhooks.h"
56 #include "common/common-target.h"
57 #include "tree-dfa.h"
58 #include "tree-ssa-live.h"
59 #include "tree-outof-ssa.h"
60 #include "tree-ssa-address.h"
61 #include "builtins.h"
62 #include "ccmp.h"
63 #include "gimple-iterator.h"
64 #include "gimple-fold.h"
65 #include "rtx-vector-builder.h"
66 #include "tree-pretty-print.h"
67 #include "flags.h"
70 /* If this is nonzero, we do not bother generating VOLATILE
71 around volatile memory references, and we are willing to
72 output indirect addresses. If cse is to follow, we reject
73 indirect addresses so a useful potential cse is generated;
74 if it is used only once, instruction combination will produce
75 the same indirect address eventually. */
76 int cse_not_expected;
78 static bool block_move_libcall_safe_for_call_parm (void);
79 static bool emit_block_move_via_pattern (rtx, rtx, rtx, unsigned, unsigned,
80 HOST_WIDE_INT, unsigned HOST_WIDE_INT,
81 unsigned HOST_WIDE_INT,
82 unsigned HOST_WIDE_INT, bool);
83 static void emit_block_move_via_loop (rtx, rtx, rtx, unsigned, int);
84 static void emit_block_move_via_sized_loop (rtx, rtx, rtx, unsigned, unsigned);
85 static void emit_block_move_via_oriented_loop (rtx, rtx, rtx, unsigned, unsigned);
86 static rtx emit_block_cmp_via_loop (rtx, rtx, rtx, tree, rtx, bool,
87 unsigned, unsigned);
88 static void clear_by_pieces (rtx, unsigned HOST_WIDE_INT, unsigned int);
89 static rtx_insn *compress_float_constant (rtx, rtx);
90 static rtx get_subtarget (rtx);
91 static rtx store_field (rtx, poly_int64, poly_int64, poly_uint64, poly_uint64,
92 machine_mode, tree, alias_set_type, bool, bool);
94 static unsigned HOST_WIDE_INT highest_pow2_factor_for_target (const_tree, const_tree);
96 static bool is_aligning_offset (const_tree, const_tree);
97 static rtx reduce_to_bit_field_precision (rtx, rtx, tree);
98 static rtx do_store_flag (sepops, rtx, machine_mode);
99 #ifdef PUSH_ROUNDING
100 static void emit_single_push_insn (machine_mode, rtx, tree);
101 #endif
102 static void do_tablejump (rtx, machine_mode, rtx, rtx, rtx,
103 profile_probability);
104 static rtx const_vector_from_tree (tree);
105 static tree tree_expr_size (const_tree);
106 static void convert_mode_scalar (rtx, rtx, int);
109 /* This is run to set up which modes can be used
110 directly in memory and to initialize the block move optab. It is run
111 at the beginning of compilation and when the target is reinitialized. */
113 void
114 init_expr_target (void)
116 rtx pat;
117 int num_clobbers;
118 rtx mem, mem1;
119 rtx reg;
121 /* Try indexing by frame ptr and try by stack ptr.
122 It is known that on the Convex the stack ptr isn't a valid index.
123 With luck, one or the other is valid on any machine. */
124 mem = gen_rtx_MEM (word_mode, stack_pointer_rtx);
125 mem1 = gen_rtx_MEM (word_mode, frame_pointer_rtx);
127 /* A scratch register we can modify in-place below to avoid
128 useless RTL allocations. */
129 reg = gen_rtx_REG (word_mode, LAST_VIRTUAL_REGISTER + 1);
131 rtx_insn *insn = as_a<rtx_insn *> (rtx_alloc (INSN));
132 pat = gen_rtx_SET (NULL_RTX, NULL_RTX);
133 PATTERN (insn) = pat;
135 for (machine_mode mode = VOIDmode; (int) mode < NUM_MACHINE_MODES;
136 mode = (machine_mode) ((int) mode + 1))
138 int regno;
140 direct_load[(int) mode] = direct_store[(int) mode] = 0;
141 PUT_MODE (mem, mode);
142 PUT_MODE (mem1, mode);
144 /* See if there is some register that can be used in this mode and
145 directly loaded or stored from memory. */
147 if (mode != VOIDmode && mode != BLKmode)
148 for (regno = 0; regno < FIRST_PSEUDO_REGISTER
149 && (direct_load[(int) mode] == 0 || direct_store[(int) mode] == 0);
150 regno++)
152 if (!targetm.hard_regno_mode_ok (regno, mode))
153 continue;
155 set_mode_and_regno (reg, mode, regno);
157 SET_SRC (pat) = mem;
158 SET_DEST (pat) = reg;
159 if (recog (pat, insn, &num_clobbers) >= 0)
160 direct_load[(int) mode] = 1;
162 SET_SRC (pat) = mem1;
163 SET_DEST (pat) = reg;
164 if (recog (pat, insn, &num_clobbers) >= 0)
165 direct_load[(int) mode] = 1;
167 SET_SRC (pat) = reg;
168 SET_DEST (pat) = mem;
169 if (recog (pat, insn, &num_clobbers) >= 0)
170 direct_store[(int) mode] = 1;
172 SET_SRC (pat) = reg;
173 SET_DEST (pat) = mem1;
174 if (recog (pat, insn, &num_clobbers) >= 0)
175 direct_store[(int) mode] = 1;
179 mem = gen_rtx_MEM (VOIDmode, gen_raw_REG (Pmode, LAST_VIRTUAL_REGISTER + 1));
181 opt_scalar_float_mode mode_iter;
182 FOR_EACH_MODE_IN_CLASS (mode_iter, MODE_FLOAT)
184 scalar_float_mode mode = mode_iter.require ();
185 scalar_float_mode srcmode;
186 FOR_EACH_MODE_UNTIL (srcmode, mode)
188 enum insn_code ic;
190 ic = can_extend_p (mode, srcmode, 0);
191 if (ic == CODE_FOR_nothing)
192 continue;
194 PUT_MODE (mem, srcmode);
196 if (insn_operand_matches (ic, 1, mem))
197 float_extend_from_mem[mode][srcmode] = true;
202 /* This is run at the start of compiling a function. */
204 void
205 init_expr (void)
207 memset (&crtl->expr, 0, sizeof (crtl->expr));
210 /* Copy data from FROM to TO, where the machine modes are not the same.
211 Both modes may be integer, or both may be floating, or both may be
212 fixed-point.
213 UNSIGNEDP should be nonzero if FROM is an unsigned type.
214 This causes zero-extension instead of sign-extension. */
216 void
217 convert_move (rtx to, rtx from, int unsignedp)
219 machine_mode to_mode = GET_MODE (to);
220 machine_mode from_mode = GET_MODE (from);
222 gcc_assert (to_mode != BLKmode);
223 gcc_assert (from_mode != BLKmode);
225 /* If the source and destination are already the same, then there's
226 nothing to do. */
227 if (to == from)
228 return;
230 /* If FROM is a SUBREG that indicates that we have already done at least
231 the required extension, strip it. We don't handle such SUBREGs as
232 TO here. */
234 scalar_int_mode to_int_mode;
235 if (GET_CODE (from) == SUBREG
236 && SUBREG_PROMOTED_VAR_P (from)
237 && is_a <scalar_int_mode> (to_mode, &to_int_mode)
238 && (GET_MODE_PRECISION (subreg_promoted_mode (from))
239 >= GET_MODE_PRECISION (to_int_mode))
240 && SUBREG_CHECK_PROMOTED_SIGN (from, unsignedp))
242 scalar_int_mode int_orig_mode;
243 scalar_int_mode int_inner_mode;
244 machine_mode orig_mode = GET_MODE (from);
246 from = gen_lowpart (to_int_mode, SUBREG_REG (from));
247 from_mode = to_int_mode;
249 /* Preserve SUBREG_PROMOTED_VAR_P if the new mode is wider than
250 the original mode, but narrower than the inner mode. */
251 if (GET_CODE (from) == SUBREG
252 && is_a <scalar_int_mode> (orig_mode, &int_orig_mode)
253 && GET_MODE_PRECISION (to_int_mode)
254 > GET_MODE_PRECISION (int_orig_mode)
255 && is_a <scalar_int_mode> (GET_MODE (SUBREG_REG (from)),
256 &int_inner_mode)
257 && GET_MODE_PRECISION (int_inner_mode)
258 > GET_MODE_PRECISION (to_int_mode))
260 SUBREG_PROMOTED_VAR_P (from) = 1;
261 SUBREG_PROMOTED_SET (from, unsignedp);
265 gcc_assert (GET_CODE (to) != SUBREG || !SUBREG_PROMOTED_VAR_P (to));
267 if (to_mode == from_mode
268 || (from_mode == VOIDmode && CONSTANT_P (from)))
270 emit_move_insn (to, from);
271 return;
274 if (VECTOR_MODE_P (to_mode) || VECTOR_MODE_P (from_mode))
276 if (GET_MODE_UNIT_PRECISION (to_mode)
277 > GET_MODE_UNIT_PRECISION (from_mode))
279 optab op = unsignedp ? zext_optab : sext_optab;
280 insn_code icode = convert_optab_handler (op, to_mode, from_mode);
281 if (icode != CODE_FOR_nothing)
283 emit_unop_insn (icode, to, from,
284 unsignedp ? ZERO_EXTEND : SIGN_EXTEND);
285 return;
289 if (GET_MODE_UNIT_PRECISION (to_mode)
290 < GET_MODE_UNIT_PRECISION (from_mode))
292 insn_code icode = convert_optab_handler (trunc_optab,
293 to_mode, from_mode);
294 if (icode != CODE_FOR_nothing)
296 emit_unop_insn (icode, to, from, TRUNCATE);
297 return;
301 gcc_assert (known_eq (GET_MODE_BITSIZE (from_mode),
302 GET_MODE_BITSIZE (to_mode)));
304 if (VECTOR_MODE_P (to_mode))
305 from = simplify_gen_subreg (to_mode, from, GET_MODE (from), 0);
306 else
307 to = simplify_gen_subreg (from_mode, to, GET_MODE (to), 0);
309 emit_move_insn (to, from);
310 return;
313 if (GET_CODE (to) == CONCAT && GET_CODE (from) == CONCAT)
315 convert_move (XEXP (to, 0), XEXP (from, 0), unsignedp);
316 convert_move (XEXP (to, 1), XEXP (from, 1), unsignedp);
317 return;
320 convert_mode_scalar (to, from, unsignedp);
323 /* Like convert_move, but deals only with scalar modes. */
325 static void
326 convert_mode_scalar (rtx to, rtx from, int unsignedp)
328 /* Both modes should be scalar types. */
329 scalar_mode from_mode = as_a <scalar_mode> (GET_MODE (from));
330 scalar_mode to_mode = as_a <scalar_mode> (GET_MODE (to));
331 bool to_real = SCALAR_FLOAT_MODE_P (to_mode);
332 bool from_real = SCALAR_FLOAT_MODE_P (from_mode);
333 enum insn_code code;
334 rtx libcall;
336 gcc_assert (to_real == from_real);
338 /* rtx code for making an equivalent value. */
339 enum rtx_code equiv_code = (unsignedp < 0 ? UNKNOWN
340 : (unsignedp ? ZERO_EXTEND : SIGN_EXTEND));
342 if (to_real)
344 rtx value;
345 rtx_insn *insns;
346 convert_optab tab;
348 gcc_assert ((GET_MODE_PRECISION (from_mode)
349 != GET_MODE_PRECISION (to_mode))
350 || (DECIMAL_FLOAT_MODE_P (from_mode)
351 != DECIMAL_FLOAT_MODE_P (to_mode))
352 || (REAL_MODE_FORMAT (from_mode) == &arm_bfloat_half_format
353 && REAL_MODE_FORMAT (to_mode) == &ieee_half_format)
354 || (REAL_MODE_FORMAT (to_mode) == &arm_bfloat_half_format
355 && REAL_MODE_FORMAT (from_mode) == &ieee_half_format));
357 if (GET_MODE_PRECISION (from_mode) == GET_MODE_PRECISION (to_mode))
358 /* Conversion between decimal float and binary float, same size. */
359 tab = DECIMAL_FLOAT_MODE_P (from_mode) ? trunc_optab : sext_optab;
360 else if (GET_MODE_PRECISION (from_mode) < GET_MODE_PRECISION (to_mode))
361 tab = sext_optab;
362 else
363 tab = trunc_optab;
365 /* Try converting directly if the insn is supported. */
367 code = convert_optab_handler (tab, to_mode, from_mode);
368 if (code != CODE_FOR_nothing)
370 emit_unop_insn (code, to, from,
371 tab == sext_optab ? FLOAT_EXTEND : FLOAT_TRUNCATE);
372 return;
375 #ifdef HAVE_SFmode
376 if (REAL_MODE_FORMAT (from_mode) == &arm_bfloat_half_format
377 && REAL_MODE_FORMAT (SFmode) == &ieee_single_format)
379 if (GET_MODE_PRECISION (to_mode) > GET_MODE_PRECISION (SFmode))
381 /* To cut down on libgcc size, implement
382 BFmode -> {DF,XF,TF}mode conversions by
383 BFmode -> SFmode -> {DF,XF,TF}mode conversions. */
384 rtx temp = gen_reg_rtx (SFmode);
385 convert_mode_scalar (temp, from, unsignedp);
386 convert_mode_scalar (to, temp, unsignedp);
387 return;
389 if (REAL_MODE_FORMAT (to_mode) == &ieee_half_format)
391 /* Similarly, implement BFmode -> HFmode as
392 BFmode -> SFmode -> HFmode conversion where SFmode
393 has superset of BFmode values. We don't need
394 to handle sNaNs by raising exception and turning
395 into into qNaN though, as that can be done in the
396 SFmode -> HFmode conversion too. */
397 rtx temp = gen_reg_rtx (SFmode);
398 int save_flag_finite_math_only = flag_finite_math_only;
399 flag_finite_math_only = true;
400 convert_mode_scalar (temp, from, unsignedp);
401 flag_finite_math_only = save_flag_finite_math_only;
402 convert_mode_scalar (to, temp, unsignedp);
403 return;
405 if (to_mode == SFmode
406 && !HONOR_NANS (from_mode)
407 && !HONOR_NANS (to_mode)
408 && optimize_insn_for_speed_p ())
410 /* If we don't expect sNaNs, for BFmode -> SFmode we can just
411 shift the bits up. */
412 machine_mode fromi_mode, toi_mode;
413 if (int_mode_for_size (GET_MODE_BITSIZE (from_mode),
414 0).exists (&fromi_mode)
415 && int_mode_for_size (GET_MODE_BITSIZE (to_mode),
416 0).exists (&toi_mode))
418 start_sequence ();
419 rtx fromi = lowpart_subreg (fromi_mode, from, from_mode);
420 rtx tof = NULL_RTX;
421 if (fromi)
423 rtx toi;
424 if (GET_MODE (fromi) == VOIDmode)
425 toi = simplify_unary_operation (ZERO_EXTEND, toi_mode,
426 fromi, fromi_mode);
427 else
429 toi = gen_reg_rtx (toi_mode);
430 convert_mode_scalar (toi, fromi, 1);
433 = maybe_expand_shift (LSHIFT_EXPR, toi_mode, toi,
434 GET_MODE_PRECISION (to_mode)
435 - GET_MODE_PRECISION (from_mode),
436 NULL_RTX, 1);
437 if (toi)
439 tof = lowpart_subreg (to_mode, toi, toi_mode);
440 if (tof)
441 emit_move_insn (to, tof);
444 insns = get_insns ();
445 end_sequence ();
446 if (tof)
448 emit_insn (insns);
449 return;
454 if (REAL_MODE_FORMAT (from_mode) == &ieee_single_format
455 && REAL_MODE_FORMAT (to_mode) == &arm_bfloat_half_format
456 && !HONOR_NANS (from_mode)
457 && !HONOR_NANS (to_mode)
458 && !flag_rounding_math
459 && optimize_insn_for_speed_p ())
461 /* If we don't expect qNaNs nor sNaNs and can assume rounding
462 to nearest, we can expand the conversion inline as
463 (fromi + 0x7fff + ((fromi >> 16) & 1)) >> 16. */
464 machine_mode fromi_mode, toi_mode;
465 if (int_mode_for_size (GET_MODE_BITSIZE (from_mode),
466 0).exists (&fromi_mode)
467 && int_mode_for_size (GET_MODE_BITSIZE (to_mode),
468 0).exists (&toi_mode))
470 start_sequence ();
471 rtx fromi = lowpart_subreg (fromi_mode, from, from_mode);
472 rtx tof = NULL_RTX;
475 if (!fromi)
476 break;
477 int shift = (GET_MODE_PRECISION (from_mode)
478 - GET_MODE_PRECISION (to_mode));
479 rtx temp1
480 = maybe_expand_shift (RSHIFT_EXPR, fromi_mode, fromi,
481 shift, NULL_RTX, 1);
482 if (!temp1)
483 break;
484 rtx temp2
485 = expand_binop (fromi_mode, and_optab, temp1, const1_rtx,
486 NULL_RTX, 1, OPTAB_DIRECT);
487 if (!temp2)
488 break;
489 rtx temp3
490 = expand_binop (fromi_mode, add_optab, fromi,
491 gen_int_mode ((HOST_WIDE_INT_1U
492 << (shift - 1)) - 1,
493 fromi_mode), NULL_RTX,
494 1, OPTAB_DIRECT);
495 if (!temp3)
496 break;
497 rtx temp4
498 = expand_binop (fromi_mode, add_optab, temp3, temp2,
499 NULL_RTX, 1, OPTAB_DIRECT);
500 if (!temp4)
501 break;
502 rtx temp5 = maybe_expand_shift (RSHIFT_EXPR, fromi_mode,
503 temp4, shift, NULL_RTX, 1);
504 if (!temp5)
505 break;
506 rtx temp6 = lowpart_subreg (toi_mode, temp5, fromi_mode);
507 if (!temp6)
508 break;
509 tof = lowpart_subreg (to_mode, force_reg (toi_mode, temp6),
510 toi_mode);
511 if (tof)
512 emit_move_insn (to, tof);
514 while (0);
515 insns = get_insns ();
516 end_sequence ();
517 if (tof)
519 emit_insn (insns);
520 return;
524 #endif
526 /* Otherwise use a libcall. */
527 libcall = convert_optab_libfunc (tab, to_mode, from_mode);
529 /* Is this conversion implemented yet? */
530 gcc_assert (libcall);
532 start_sequence ();
533 value = emit_library_call_value (libcall, NULL_RTX, LCT_CONST, to_mode,
534 from, from_mode);
535 insns = get_insns ();
536 end_sequence ();
537 emit_libcall_block (insns, to, value,
538 tab == trunc_optab ? gen_rtx_FLOAT_TRUNCATE (to_mode,
539 from)
540 : gen_rtx_FLOAT_EXTEND (to_mode, from));
541 return;
544 /* Handle pointer conversion. */ /* SPEE 900220. */
545 /* If the target has a converter from FROM_MODE to TO_MODE, use it. */
547 convert_optab ctab;
549 if (GET_MODE_PRECISION (from_mode) > GET_MODE_PRECISION (to_mode))
550 ctab = trunc_optab;
551 else if (unsignedp)
552 ctab = zext_optab;
553 else
554 ctab = sext_optab;
556 if (convert_optab_handler (ctab, to_mode, from_mode)
557 != CODE_FOR_nothing)
559 emit_unop_insn (convert_optab_handler (ctab, to_mode, from_mode),
560 to, from, UNKNOWN);
561 return;
565 /* Targets are expected to provide conversion insns between PxImode and
566 xImode for all MODE_PARTIAL_INT modes they use, but no others. */
567 if (GET_MODE_CLASS (to_mode) == MODE_PARTIAL_INT)
569 scalar_int_mode full_mode
570 = smallest_int_mode_for_size (GET_MODE_BITSIZE (to_mode));
572 gcc_assert (convert_optab_handler (trunc_optab, to_mode, full_mode)
573 != CODE_FOR_nothing);
575 if (full_mode != from_mode)
576 from = convert_to_mode (full_mode, from, unsignedp);
577 emit_unop_insn (convert_optab_handler (trunc_optab, to_mode, full_mode),
578 to, from, UNKNOWN);
579 return;
581 if (GET_MODE_CLASS (from_mode) == MODE_PARTIAL_INT)
583 rtx new_from;
584 scalar_int_mode full_mode
585 = smallest_int_mode_for_size (GET_MODE_BITSIZE (from_mode));
586 convert_optab ctab = unsignedp ? zext_optab : sext_optab;
587 enum insn_code icode;
589 icode = convert_optab_handler (ctab, full_mode, from_mode);
590 gcc_assert (icode != CODE_FOR_nothing);
592 if (to_mode == full_mode)
594 emit_unop_insn (icode, to, from, UNKNOWN);
595 return;
598 new_from = gen_reg_rtx (full_mode);
599 emit_unop_insn (icode, new_from, from, UNKNOWN);
601 /* else proceed to integer conversions below. */
602 from_mode = full_mode;
603 from = new_from;
606 /* Make sure both are fixed-point modes or both are not. */
607 gcc_assert (ALL_SCALAR_FIXED_POINT_MODE_P (from_mode) ==
608 ALL_SCALAR_FIXED_POINT_MODE_P (to_mode));
609 if (ALL_SCALAR_FIXED_POINT_MODE_P (from_mode))
611 /* If we widen from_mode to to_mode and they are in the same class,
612 we won't saturate the result.
613 Otherwise, always saturate the result to play safe. */
614 if (GET_MODE_CLASS (from_mode) == GET_MODE_CLASS (to_mode)
615 && GET_MODE_SIZE (from_mode) < GET_MODE_SIZE (to_mode))
616 expand_fixed_convert (to, from, 0, 0);
617 else
618 expand_fixed_convert (to, from, 0, 1);
619 return;
622 /* Now both modes are integers. */
624 /* Handle expanding beyond a word. */
625 if (GET_MODE_PRECISION (from_mode) < GET_MODE_PRECISION (to_mode)
626 && GET_MODE_PRECISION (to_mode) > BITS_PER_WORD)
628 rtx_insn *insns;
629 rtx lowpart;
630 rtx fill_value;
631 rtx lowfrom;
632 int i;
633 scalar_mode lowpart_mode;
634 int nwords = CEIL (GET_MODE_SIZE (to_mode), UNITS_PER_WORD);
636 /* Try converting directly if the insn is supported. */
637 if ((code = can_extend_p (to_mode, from_mode, unsignedp))
638 != CODE_FOR_nothing)
640 /* If FROM is a SUBREG, put it into a register. Do this
641 so that we always generate the same set of insns for
642 better cse'ing; if an intermediate assignment occurred,
643 we won't be doing the operation directly on the SUBREG. */
644 if (optimize > 0 && GET_CODE (from) == SUBREG)
645 from = force_reg (from_mode, from);
646 emit_unop_insn (code, to, from, equiv_code);
647 return;
649 /* Next, try converting via full word. */
650 else if (GET_MODE_PRECISION (from_mode) < BITS_PER_WORD
651 && ((code = can_extend_p (to_mode, word_mode, unsignedp))
652 != CODE_FOR_nothing))
654 rtx word_to = gen_reg_rtx (word_mode);
655 if (REG_P (to))
657 if (reg_overlap_mentioned_p (to, from))
658 from = force_reg (from_mode, from);
659 emit_clobber (to);
661 convert_move (word_to, from, unsignedp);
662 emit_unop_insn (code, to, word_to, equiv_code);
663 return;
666 /* No special multiword conversion insn; do it by hand. */
667 start_sequence ();
669 /* Since we will turn this into a no conflict block, we must ensure
670 the source does not overlap the target so force it into an isolated
671 register when maybe so. Likewise for any MEM input, since the
672 conversion sequence might require several references to it and we
673 must ensure we're getting the same value every time. */
675 if (MEM_P (from) || reg_overlap_mentioned_p (to, from))
676 from = force_reg (from_mode, from);
678 /* Get a copy of FROM widened to a word, if necessary. */
679 if (GET_MODE_PRECISION (from_mode) < BITS_PER_WORD)
680 lowpart_mode = word_mode;
681 else
682 lowpart_mode = from_mode;
684 lowfrom = convert_to_mode (lowpart_mode, from, unsignedp);
686 lowpart = gen_lowpart (lowpart_mode, to);
687 emit_move_insn (lowpart, lowfrom);
689 /* Compute the value to put in each remaining word. */
690 if (unsignedp)
691 fill_value = const0_rtx;
692 else
693 fill_value = emit_store_flag_force (gen_reg_rtx (word_mode),
694 LT, lowfrom, const0_rtx,
695 lowpart_mode, 0, -1);
697 /* Fill the remaining words. */
698 for (i = GET_MODE_SIZE (lowpart_mode) / UNITS_PER_WORD; i < nwords; i++)
700 int index = (WORDS_BIG_ENDIAN ? nwords - i - 1 : i);
701 rtx subword = operand_subword (to, index, 1, to_mode);
703 gcc_assert (subword);
705 if (fill_value != subword)
706 emit_move_insn (subword, fill_value);
709 insns = get_insns ();
710 end_sequence ();
712 emit_insn (insns);
713 return;
716 /* Truncating multi-word to a word or less. */
717 if (GET_MODE_PRECISION (from_mode) > BITS_PER_WORD
718 && GET_MODE_PRECISION (to_mode) <= BITS_PER_WORD)
720 if (!((MEM_P (from)
721 && ! MEM_VOLATILE_P (from)
722 && direct_load[(int) to_mode]
723 && ! mode_dependent_address_p (XEXP (from, 0),
724 MEM_ADDR_SPACE (from)))
725 || REG_P (from)
726 || GET_CODE (from) == SUBREG))
727 from = force_reg (from_mode, from);
728 convert_move (to, gen_lowpart (word_mode, from), 0);
729 return;
732 /* Now follow all the conversions between integers
733 no more than a word long. */
735 /* For truncation, usually we can just refer to FROM in a narrower mode. */
736 if (GET_MODE_BITSIZE (to_mode) < GET_MODE_BITSIZE (from_mode)
737 && TRULY_NOOP_TRUNCATION_MODES_P (to_mode, from_mode))
739 if (!((MEM_P (from)
740 && ! MEM_VOLATILE_P (from)
741 && direct_load[(int) to_mode]
742 && ! mode_dependent_address_p (XEXP (from, 0),
743 MEM_ADDR_SPACE (from)))
744 || REG_P (from)
745 || GET_CODE (from) == SUBREG))
746 from = force_reg (from_mode, from);
747 if (REG_P (from) && REGNO (from) < FIRST_PSEUDO_REGISTER
748 && !targetm.hard_regno_mode_ok (REGNO (from), to_mode))
749 from = copy_to_reg (from);
750 emit_move_insn (to, gen_lowpart (to_mode, from));
751 return;
754 /* Handle extension. */
755 if (GET_MODE_PRECISION (to_mode) > GET_MODE_PRECISION (from_mode))
757 /* Convert directly if that works. */
758 if ((code = can_extend_p (to_mode, from_mode, unsignedp))
759 != CODE_FOR_nothing)
761 emit_unop_insn (code, to, from, equiv_code);
762 return;
764 else
766 rtx tmp;
767 int shift_amount;
769 /* Search for a mode to convert via. */
770 opt_scalar_mode intermediate_iter;
771 FOR_EACH_MODE_FROM (intermediate_iter, from_mode)
773 scalar_mode intermediate = intermediate_iter.require ();
774 if (((can_extend_p (to_mode, intermediate, unsignedp)
775 != CODE_FOR_nothing)
776 || (GET_MODE_SIZE (to_mode) < GET_MODE_SIZE (intermediate)
777 && TRULY_NOOP_TRUNCATION_MODES_P (to_mode,
778 intermediate)))
779 && (can_extend_p (intermediate, from_mode, unsignedp)
780 != CODE_FOR_nothing))
782 convert_move (to, convert_to_mode (intermediate, from,
783 unsignedp), unsignedp);
784 return;
788 /* No suitable intermediate mode.
789 Generate what we need with shifts. */
790 shift_amount = (GET_MODE_PRECISION (to_mode)
791 - GET_MODE_PRECISION (from_mode));
792 from = gen_lowpart (to_mode, force_reg (from_mode, from));
793 tmp = expand_shift (LSHIFT_EXPR, to_mode, from, shift_amount,
794 to, unsignedp);
795 tmp = expand_shift (RSHIFT_EXPR, to_mode, tmp, shift_amount,
796 to, unsignedp);
797 if (tmp != to)
798 emit_move_insn (to, tmp);
799 return;
803 /* Support special truncate insns for certain modes. */
804 if (convert_optab_handler (trunc_optab, to_mode,
805 from_mode) != CODE_FOR_nothing)
807 emit_unop_insn (convert_optab_handler (trunc_optab, to_mode, from_mode),
808 to, from, UNKNOWN);
809 return;
812 /* Handle truncation of volatile memrefs, and so on;
813 the things that couldn't be truncated directly,
814 and for which there was no special instruction.
816 ??? Code above formerly short-circuited this, for most integer
817 mode pairs, with a force_reg in from_mode followed by a recursive
818 call to this routine. Appears always to have been wrong. */
819 if (GET_MODE_PRECISION (to_mode) < GET_MODE_PRECISION (from_mode))
821 rtx temp = force_reg (to_mode, gen_lowpart (to_mode, from));
822 emit_move_insn (to, temp);
823 return;
826 /* Mode combination is not recognized. */
827 gcc_unreachable ();
830 /* Return an rtx for a value that would result
831 from converting X to mode MODE.
832 Both X and MODE may be floating, or both integer.
833 UNSIGNEDP is nonzero if X is an unsigned value.
834 This can be done by referring to a part of X in place
835 or by copying to a new temporary with conversion. */
838 convert_to_mode (machine_mode mode, rtx x, int unsignedp)
840 return convert_modes (mode, VOIDmode, x, unsignedp);
843 /* Return an rtx for a value that would result
844 from converting X from mode OLDMODE to mode MODE.
845 Both modes may be floating, or both integer.
846 UNSIGNEDP is nonzero if X is an unsigned value.
848 This can be done by referring to a part of X in place
849 or by copying to a new temporary with conversion.
851 You can give VOIDmode for OLDMODE, if you are sure X has a nonvoid mode. */
854 convert_modes (machine_mode mode, machine_mode oldmode, rtx x, int unsignedp)
856 rtx temp;
857 scalar_int_mode int_mode;
859 /* If FROM is a SUBREG that indicates that we have already done at least
860 the required extension, strip it. */
862 if (GET_CODE (x) == SUBREG
863 && SUBREG_PROMOTED_VAR_P (x)
864 && is_a <scalar_int_mode> (mode, &int_mode)
865 && (GET_MODE_PRECISION (subreg_promoted_mode (x))
866 >= GET_MODE_PRECISION (int_mode))
867 && SUBREG_CHECK_PROMOTED_SIGN (x, unsignedp))
869 scalar_int_mode int_orig_mode;
870 scalar_int_mode int_inner_mode;
871 machine_mode orig_mode = GET_MODE (x);
872 x = gen_lowpart (int_mode, SUBREG_REG (x));
874 /* Preserve SUBREG_PROMOTED_VAR_P if the new mode is wider than
875 the original mode, but narrower than the inner mode. */
876 if (GET_CODE (x) == SUBREG
877 && is_a <scalar_int_mode> (orig_mode, &int_orig_mode)
878 && GET_MODE_PRECISION (int_mode)
879 > GET_MODE_PRECISION (int_orig_mode)
880 && is_a <scalar_int_mode> (GET_MODE (SUBREG_REG (x)),
881 &int_inner_mode)
882 && GET_MODE_PRECISION (int_inner_mode)
883 > GET_MODE_PRECISION (int_mode))
885 SUBREG_PROMOTED_VAR_P (x) = 1;
886 SUBREG_PROMOTED_SET (x, unsignedp);
890 if (GET_MODE (x) != VOIDmode)
891 oldmode = GET_MODE (x);
893 if (mode == oldmode)
894 return x;
896 if (CONST_SCALAR_INT_P (x)
897 && is_a <scalar_int_mode> (mode, &int_mode))
899 /* If the caller did not tell us the old mode, then there is not
900 much to do with respect to canonicalization. We have to
901 assume that all the bits are significant. */
902 if (!is_a <scalar_int_mode> (oldmode))
903 oldmode = MAX_MODE_INT;
904 wide_int w = wide_int::from (rtx_mode_t (x, oldmode),
905 GET_MODE_PRECISION (int_mode),
906 unsignedp ? UNSIGNED : SIGNED);
907 return immed_wide_int_const (w, int_mode);
910 /* We can do this with a gen_lowpart if both desired and current modes
911 are integer, and this is either a constant integer, a register, or a
912 non-volatile MEM. */
913 scalar_int_mode int_oldmode;
914 if (is_int_mode (mode, &int_mode)
915 && is_int_mode (oldmode, &int_oldmode)
916 && GET_MODE_PRECISION (int_mode) <= GET_MODE_PRECISION (int_oldmode)
917 && ((MEM_P (x) && !MEM_VOLATILE_P (x) && direct_load[(int) int_mode])
918 || CONST_POLY_INT_P (x)
919 || (REG_P (x)
920 && (!HARD_REGISTER_P (x)
921 || targetm.hard_regno_mode_ok (REGNO (x), int_mode))
922 && TRULY_NOOP_TRUNCATION_MODES_P (int_mode, GET_MODE (x)))))
923 return gen_lowpart (int_mode, x);
925 /* Converting from integer constant into mode is always equivalent to an
926 subreg operation. */
927 if (VECTOR_MODE_P (mode) && GET_MODE (x) == VOIDmode)
929 gcc_assert (known_eq (GET_MODE_BITSIZE (mode),
930 GET_MODE_BITSIZE (oldmode)));
931 return simplify_gen_subreg (mode, x, oldmode, 0);
934 temp = gen_reg_rtx (mode);
935 convert_move (temp, x, unsignedp);
936 return temp;
939 /* Variant of convert_modes for ABI parameter passing/return.
940 Return an rtx for a value that would result from converting X from
941 a floating point mode FMODE to wider integer mode MODE. */
944 convert_float_to_wider_int (machine_mode mode, machine_mode fmode, rtx x)
946 gcc_assert (SCALAR_INT_MODE_P (mode) && SCALAR_FLOAT_MODE_P (fmode));
947 scalar_int_mode tmp_mode = int_mode_for_mode (fmode).require ();
948 rtx tmp = force_reg (tmp_mode, gen_lowpart (tmp_mode, x));
949 return convert_modes (mode, tmp_mode, tmp, 1);
952 /* Variant of convert_modes for ABI parameter passing/return.
953 Return an rtx for a value that would result from converting X from
954 an integer mode IMODE to a narrower floating point mode MODE. */
957 convert_wider_int_to_float (machine_mode mode, machine_mode imode, rtx x)
959 gcc_assert (SCALAR_FLOAT_MODE_P (mode) && SCALAR_INT_MODE_P (imode));
960 scalar_int_mode tmp_mode = int_mode_for_mode (mode).require ();
961 rtx tmp = force_reg (tmp_mode, gen_lowpart (tmp_mode, x));
962 return gen_lowpart_SUBREG (mode, tmp);
965 /* Return the largest alignment we can use for doing a move (or store)
966 of MAX_PIECES. ALIGN is the largest alignment we could use. */
968 static unsigned int
969 alignment_for_piecewise_move (unsigned int max_pieces, unsigned int align)
971 scalar_int_mode tmode
972 = int_mode_for_size (max_pieces * BITS_PER_UNIT, 0).require ();
974 if (align >= GET_MODE_ALIGNMENT (tmode))
975 align = GET_MODE_ALIGNMENT (tmode);
976 else
978 scalar_int_mode xmode = NARROWEST_INT_MODE;
979 opt_scalar_int_mode mode_iter;
980 FOR_EACH_MODE_IN_CLASS (mode_iter, MODE_INT)
982 tmode = mode_iter.require ();
983 if (GET_MODE_SIZE (tmode) > max_pieces
984 || targetm.slow_unaligned_access (tmode, align))
985 break;
986 xmode = tmode;
989 align = MAX (align, GET_MODE_ALIGNMENT (xmode));
992 return align;
995 /* Return true if we know how to implement OP using vectors of bytes. */
996 static bool
997 can_use_qi_vectors (by_pieces_operation op)
999 return (op == COMPARE_BY_PIECES
1000 || op == SET_BY_PIECES
1001 || op == CLEAR_BY_PIECES);
1004 /* Return true if optabs exists for the mode and certain by pieces
1005 operations. */
1006 static bool
1007 by_pieces_mode_supported_p (fixed_size_mode mode, by_pieces_operation op)
1009 if (optab_handler (mov_optab, mode) == CODE_FOR_nothing)
1010 return false;
1012 if ((op == SET_BY_PIECES || op == CLEAR_BY_PIECES)
1013 && VECTOR_MODE_P (mode)
1014 && optab_handler (vec_duplicate_optab, mode) == CODE_FOR_nothing)
1015 return false;
1017 if (op == COMPARE_BY_PIECES
1018 && !can_compare_p (EQ, mode, ccp_jump))
1019 return false;
1021 return true;
1024 /* Return the widest mode that can be used to perform part of an
1025 operation OP on SIZE bytes. Try to use QI vector modes where
1026 possible. */
1027 static fixed_size_mode
1028 widest_fixed_size_mode_for_size (unsigned int size, by_pieces_operation op)
1030 fixed_size_mode result = NARROWEST_INT_MODE;
1032 gcc_checking_assert (size > 1);
1034 /* Use QI vector only if size is wider than a WORD. */
1035 if (can_use_qi_vectors (op) && size > UNITS_PER_WORD)
1037 machine_mode mode;
1038 fixed_size_mode candidate;
1039 FOR_EACH_MODE_IN_CLASS (mode, MODE_VECTOR_INT)
1040 if (is_a<fixed_size_mode> (mode, &candidate)
1041 && GET_MODE_INNER (candidate) == QImode)
1043 if (GET_MODE_SIZE (candidate) >= size)
1044 break;
1045 if (by_pieces_mode_supported_p (candidate, op))
1046 result = candidate;
1049 if (result != NARROWEST_INT_MODE)
1050 return result;
1053 opt_scalar_int_mode tmode;
1054 scalar_int_mode mode;
1055 FOR_EACH_MODE_IN_CLASS (tmode, MODE_INT)
1057 mode = tmode.require ();
1058 if (GET_MODE_SIZE (mode) < size
1059 && by_pieces_mode_supported_p (mode, op))
1060 result = mode;
1063 return result;
1066 /* Determine whether an operation OP on LEN bytes with alignment ALIGN can
1067 and should be performed piecewise. */
1069 static bool
1070 can_do_by_pieces (unsigned HOST_WIDE_INT len, unsigned int align,
1071 enum by_pieces_operation op)
1073 return targetm.use_by_pieces_infrastructure_p (len, align, op,
1074 optimize_insn_for_speed_p ());
1077 /* Determine whether the LEN bytes can be moved by using several move
1078 instructions. Return nonzero if a call to move_by_pieces should
1079 succeed. */
1081 bool
1082 can_move_by_pieces (unsigned HOST_WIDE_INT len, unsigned int align)
1084 return can_do_by_pieces (len, align, MOVE_BY_PIECES);
1087 /* Return number of insns required to perform operation OP by pieces
1088 for L bytes. ALIGN (in bits) is maximum alignment we can assume. */
1090 unsigned HOST_WIDE_INT
1091 by_pieces_ninsns (unsigned HOST_WIDE_INT l, unsigned int align,
1092 unsigned int max_size, by_pieces_operation op)
1094 unsigned HOST_WIDE_INT n_insns = 0;
1095 fixed_size_mode mode;
1097 if (targetm.overlap_op_by_pieces_p ())
1099 /* NB: Round up L and ALIGN to the widest integer mode for
1100 MAX_SIZE. */
1101 mode = widest_fixed_size_mode_for_size (max_size, op);
1102 gcc_assert (optab_handler (mov_optab, mode) != CODE_FOR_nothing);
1103 unsigned HOST_WIDE_INT up = ROUND_UP (l, GET_MODE_SIZE (mode));
1104 if (up > l)
1105 l = up;
1106 align = GET_MODE_ALIGNMENT (mode);
1109 align = alignment_for_piecewise_move (MOVE_MAX_PIECES, align);
1111 while (max_size > 1 && l > 0)
1113 mode = widest_fixed_size_mode_for_size (max_size, op);
1114 gcc_assert (optab_handler (mov_optab, mode) != CODE_FOR_nothing);
1116 unsigned int modesize = GET_MODE_SIZE (mode);
1118 if (align >= GET_MODE_ALIGNMENT (mode))
1120 unsigned HOST_WIDE_INT n_pieces = l / modesize;
1121 l %= modesize;
1122 switch (op)
1124 default:
1125 n_insns += n_pieces;
1126 break;
1128 case COMPARE_BY_PIECES:
1129 int batch = targetm.compare_by_pieces_branch_ratio (mode);
1130 int batch_ops = 4 * batch - 1;
1131 unsigned HOST_WIDE_INT full = n_pieces / batch;
1132 n_insns += full * batch_ops;
1133 if (n_pieces % batch != 0)
1134 n_insns++;
1135 break;
1139 max_size = modesize;
1142 gcc_assert (!l);
1143 return n_insns;
1146 /* Used when performing piecewise block operations, holds information
1147 about one of the memory objects involved. The member functions
1148 can be used to generate code for loading from the object and
1149 updating the address when iterating. */
1151 class pieces_addr
1153 /* The object being referenced, a MEM. Can be NULL_RTX to indicate
1154 stack pushes. */
1155 rtx m_obj;
1156 /* The address of the object. Can differ from that seen in the
1157 MEM rtx if we copied the address to a register. */
1158 rtx m_addr;
1159 /* Nonzero if the address on the object has an autoincrement already,
1160 signifies whether that was an increment or decrement. */
1161 signed char m_addr_inc;
1162 /* Nonzero if we intend to use autoinc without the address already
1163 having autoinc form. We will insert add insns around each memory
1164 reference, expecting later passes to form autoinc addressing modes.
1165 The only supported options are predecrement and postincrement. */
1166 signed char m_explicit_inc;
1167 /* True if we have either of the two possible cases of using
1168 autoincrement. */
1169 bool m_auto;
1170 /* True if this is an address to be used for load operations rather
1171 than stores. */
1172 bool m_is_load;
1174 /* Optionally, a function to obtain constants for any given offset into
1175 the objects, and data associated with it. */
1176 by_pieces_constfn m_constfn;
1177 void *m_cfndata;
1178 public:
1179 pieces_addr (rtx, bool, by_pieces_constfn, void *);
1180 rtx adjust (fixed_size_mode, HOST_WIDE_INT, by_pieces_prev * = nullptr);
1181 void increment_address (HOST_WIDE_INT);
1182 void maybe_predec (HOST_WIDE_INT);
1183 void maybe_postinc (HOST_WIDE_INT);
1184 void decide_autoinc (machine_mode, bool, HOST_WIDE_INT);
1185 int get_addr_inc ()
1187 return m_addr_inc;
1191 /* Initialize a pieces_addr structure from an object OBJ. IS_LOAD is
1192 true if the operation to be performed on this object is a load
1193 rather than a store. For stores, OBJ can be NULL, in which case we
1194 assume the operation is a stack push. For loads, the optional
1195 CONSTFN and its associated CFNDATA can be used in place of the
1196 memory load. */
1198 pieces_addr::pieces_addr (rtx obj, bool is_load, by_pieces_constfn constfn,
1199 void *cfndata)
1200 : m_obj (obj), m_is_load (is_load), m_constfn (constfn), m_cfndata (cfndata)
1202 m_addr_inc = 0;
1203 m_auto = false;
1204 if (obj)
1206 rtx addr = XEXP (obj, 0);
1207 rtx_code code = GET_CODE (addr);
1208 m_addr = addr;
1209 bool dec = code == PRE_DEC || code == POST_DEC;
1210 bool inc = code == PRE_INC || code == POST_INC;
1211 m_auto = inc || dec;
1212 if (m_auto)
1213 m_addr_inc = dec ? -1 : 1;
1215 /* While we have always looked for these codes here, the code
1216 implementing the memory operation has never handled them.
1217 Support could be added later if necessary or beneficial. */
1218 gcc_assert (code != PRE_INC && code != POST_DEC);
1220 else
1222 m_addr = NULL_RTX;
1223 if (!is_load)
1225 m_auto = true;
1226 if (STACK_GROWS_DOWNWARD)
1227 m_addr_inc = -1;
1228 else
1229 m_addr_inc = 1;
1231 else
1232 gcc_assert (constfn != NULL);
1234 m_explicit_inc = 0;
1235 if (constfn)
1236 gcc_assert (is_load);
1239 /* Decide whether to use autoinc for an address involved in a memory op.
1240 MODE is the mode of the accesses, REVERSE is true if we've decided to
1241 perform the operation starting from the end, and LEN is the length of
1242 the operation. Don't override an earlier decision to set m_auto. */
1244 void
1245 pieces_addr::decide_autoinc (machine_mode ARG_UNUSED (mode), bool reverse,
1246 HOST_WIDE_INT len)
1248 if (m_auto || m_obj == NULL_RTX)
1249 return;
1251 bool use_predec = (m_is_load
1252 ? USE_LOAD_PRE_DECREMENT (mode)
1253 : USE_STORE_PRE_DECREMENT (mode));
1254 bool use_postinc = (m_is_load
1255 ? USE_LOAD_POST_INCREMENT (mode)
1256 : USE_STORE_POST_INCREMENT (mode));
1257 machine_mode addr_mode = get_address_mode (m_obj);
1259 if (use_predec && reverse)
1261 m_addr = copy_to_mode_reg (addr_mode,
1262 plus_constant (addr_mode,
1263 m_addr, len));
1264 m_auto = true;
1265 m_explicit_inc = -1;
1267 else if (use_postinc && !reverse)
1269 m_addr = copy_to_mode_reg (addr_mode, m_addr);
1270 m_auto = true;
1271 m_explicit_inc = 1;
1273 else if (CONSTANT_P (m_addr))
1274 m_addr = copy_to_mode_reg (addr_mode, m_addr);
1277 /* Adjust the address to refer to the data at OFFSET in MODE. If we
1278 are using autoincrement for this address, we don't add the offset,
1279 but we still modify the MEM's properties. */
1282 pieces_addr::adjust (fixed_size_mode mode, HOST_WIDE_INT offset,
1283 by_pieces_prev *prev)
1285 if (m_constfn)
1286 /* Pass the previous data to m_constfn. */
1287 return m_constfn (m_cfndata, prev, offset, mode);
1288 if (m_obj == NULL_RTX)
1289 return NULL_RTX;
1290 if (m_auto)
1291 return adjust_automodify_address (m_obj, mode, m_addr, offset);
1292 else
1293 return adjust_address (m_obj, mode, offset);
1296 /* Emit an add instruction to increment the address by SIZE. */
1298 void
1299 pieces_addr::increment_address (HOST_WIDE_INT size)
1301 rtx amount = gen_int_mode (size, GET_MODE (m_addr));
1302 emit_insn (gen_add2_insn (m_addr, amount));
1305 /* If we are supposed to decrement the address after each access, emit code
1306 to do so now. Increment by SIZE (which has should have the correct sign
1307 already). */
1309 void
1310 pieces_addr::maybe_predec (HOST_WIDE_INT size)
1312 if (m_explicit_inc >= 0)
1313 return;
1314 gcc_assert (HAVE_PRE_DECREMENT);
1315 increment_address (size);
1318 /* If we are supposed to decrement the address after each access, emit code
1319 to do so now. Increment by SIZE. */
1321 void
1322 pieces_addr::maybe_postinc (HOST_WIDE_INT size)
1324 if (m_explicit_inc <= 0)
1325 return;
1326 gcc_assert (HAVE_POST_INCREMENT);
1327 increment_address (size);
1330 /* This structure is used by do_op_by_pieces to describe the operation
1331 to be performed. */
1333 class op_by_pieces_d
1335 private:
1336 fixed_size_mode get_usable_mode (fixed_size_mode, unsigned int);
1337 fixed_size_mode smallest_fixed_size_mode_for_size (unsigned int);
1339 protected:
1340 pieces_addr m_to, m_from;
1341 /* Make m_len read-only so that smallest_fixed_size_mode_for_size can
1342 use it to check the valid mode size. */
1343 const unsigned HOST_WIDE_INT m_len;
1344 HOST_WIDE_INT m_offset;
1345 unsigned int m_align;
1346 unsigned int m_max_size;
1347 bool m_reverse;
1348 /* True if this is a stack push. */
1349 bool m_push;
1350 /* True if targetm.overlap_op_by_pieces_p () returns true. */
1351 bool m_overlap_op_by_pieces;
1352 /* The type of operation that we're performing. */
1353 by_pieces_operation m_op;
1355 /* Virtual functions, overriden by derived classes for the specific
1356 operation. */
1357 virtual void generate (rtx, rtx, machine_mode) = 0;
1358 virtual bool prepare_mode (machine_mode, unsigned int) = 0;
1359 virtual void finish_mode (machine_mode)
1363 public:
1364 op_by_pieces_d (unsigned int, rtx, bool, rtx, bool, by_pieces_constfn,
1365 void *, unsigned HOST_WIDE_INT, unsigned int, bool,
1366 by_pieces_operation);
1367 void run ();
1370 /* The constructor for an op_by_pieces_d structure. We require two
1371 objects named TO and FROM, which are identified as loads or stores
1372 by TO_LOAD and FROM_LOAD. If FROM is a load, the optional FROM_CFN
1373 and its associated FROM_CFN_DATA can be used to replace loads with
1374 constant values. MAX_PIECES describes the maximum number of bytes
1375 at a time which can be moved efficiently. LEN describes the length
1376 of the operation. */
1378 op_by_pieces_d::op_by_pieces_d (unsigned int max_pieces, rtx to,
1379 bool to_load, rtx from, bool from_load,
1380 by_pieces_constfn from_cfn,
1381 void *from_cfn_data,
1382 unsigned HOST_WIDE_INT len,
1383 unsigned int align, bool push,
1384 by_pieces_operation op)
1385 : m_to (to, to_load, NULL, NULL),
1386 m_from (from, from_load, from_cfn, from_cfn_data),
1387 m_len (len), m_max_size (max_pieces + 1),
1388 m_push (push), m_op (op)
1390 int toi = m_to.get_addr_inc ();
1391 int fromi = m_from.get_addr_inc ();
1392 if (toi >= 0 && fromi >= 0)
1393 m_reverse = false;
1394 else if (toi <= 0 && fromi <= 0)
1395 m_reverse = true;
1396 else
1397 gcc_unreachable ();
1399 m_offset = m_reverse ? len : 0;
1400 align = MIN (to ? MEM_ALIGN (to) : align,
1401 from ? MEM_ALIGN (from) : align);
1403 /* If copying requires more than two move insns,
1404 copy addresses to registers (to make displacements shorter)
1405 and use post-increment if available. */
1406 if (by_pieces_ninsns (len, align, m_max_size, MOVE_BY_PIECES) > 2)
1408 /* Find the mode of the largest comparison. */
1409 fixed_size_mode mode
1410 = widest_fixed_size_mode_for_size (m_max_size, m_op);
1412 m_from.decide_autoinc (mode, m_reverse, len);
1413 m_to.decide_autoinc (mode, m_reverse, len);
1416 align = alignment_for_piecewise_move (MOVE_MAX_PIECES, align);
1417 m_align = align;
1419 m_overlap_op_by_pieces = targetm.overlap_op_by_pieces_p ();
1422 /* This function returns the largest usable integer mode for LEN bytes
1423 whose size is no bigger than size of MODE. */
1425 fixed_size_mode
1426 op_by_pieces_d::get_usable_mode (fixed_size_mode mode, unsigned int len)
1428 unsigned int size;
1431 size = GET_MODE_SIZE (mode);
1432 if (len >= size && prepare_mode (mode, m_align))
1433 break;
1434 /* widest_fixed_size_mode_for_size checks SIZE > 1. */
1435 mode = widest_fixed_size_mode_for_size (size, m_op);
1437 while (1);
1438 return mode;
1441 /* Return the smallest integer or QI vector mode that is not narrower
1442 than SIZE bytes. */
1444 fixed_size_mode
1445 op_by_pieces_d::smallest_fixed_size_mode_for_size (unsigned int size)
1447 /* Use QI vector only for > size of WORD. */
1448 if (can_use_qi_vectors (m_op) && size > UNITS_PER_WORD)
1450 machine_mode mode;
1451 fixed_size_mode candidate;
1452 FOR_EACH_MODE_IN_CLASS (mode, MODE_VECTOR_INT)
1453 if (is_a<fixed_size_mode> (mode, &candidate)
1454 && GET_MODE_INNER (candidate) == QImode)
1456 /* Don't return a mode wider than M_LEN. */
1457 if (GET_MODE_SIZE (candidate) > m_len)
1458 break;
1460 if (GET_MODE_SIZE (candidate) >= size
1461 && by_pieces_mode_supported_p (candidate, m_op))
1462 return candidate;
1466 return smallest_int_mode_for_size (size * BITS_PER_UNIT);
1469 /* This function contains the main loop used for expanding a block
1470 operation. First move what we can in the largest integer mode,
1471 then go to successively smaller modes. For every access, call
1472 GENFUN with the two operands and the EXTRA_DATA. */
1474 void
1475 op_by_pieces_d::run ()
1477 if (m_len == 0)
1478 return;
1480 unsigned HOST_WIDE_INT length = m_len;
1482 /* widest_fixed_size_mode_for_size checks M_MAX_SIZE > 1. */
1483 fixed_size_mode mode
1484 = widest_fixed_size_mode_for_size (m_max_size, m_op);
1485 mode = get_usable_mode (mode, length);
1487 by_pieces_prev to_prev = { nullptr, mode };
1488 by_pieces_prev from_prev = { nullptr, mode };
1492 unsigned int size = GET_MODE_SIZE (mode);
1493 rtx to1 = NULL_RTX, from1;
1495 while (length >= size)
1497 if (m_reverse)
1498 m_offset -= size;
1500 to1 = m_to.adjust (mode, m_offset, &to_prev);
1501 to_prev.data = to1;
1502 to_prev.mode = mode;
1503 from1 = m_from.adjust (mode, m_offset, &from_prev);
1504 from_prev.data = from1;
1505 from_prev.mode = mode;
1507 m_to.maybe_predec (-(HOST_WIDE_INT)size);
1508 m_from.maybe_predec (-(HOST_WIDE_INT)size);
1510 generate (to1, from1, mode);
1512 m_to.maybe_postinc (size);
1513 m_from.maybe_postinc (size);
1515 if (!m_reverse)
1516 m_offset += size;
1518 length -= size;
1521 finish_mode (mode);
1523 if (length == 0)
1524 return;
1526 if (!m_push && m_overlap_op_by_pieces)
1528 /* NB: Generate overlapping operations if it is not a stack
1529 push since stack push must not overlap. Get the smallest
1530 fixed size mode for M_LEN bytes. */
1531 mode = smallest_fixed_size_mode_for_size (length);
1532 mode = get_usable_mode (mode, GET_MODE_SIZE (mode));
1533 int gap = GET_MODE_SIZE (mode) - length;
1534 if (gap > 0)
1536 /* If size of MODE > M_LEN, generate the last operation
1537 in MODE for the remaining bytes with ovelapping memory
1538 from the previois operation. */
1539 if (m_reverse)
1540 m_offset += gap;
1541 else
1542 m_offset -= gap;
1543 length += gap;
1546 else
1548 /* widest_fixed_size_mode_for_size checks SIZE > 1. */
1549 mode = widest_fixed_size_mode_for_size (size, m_op);
1550 mode = get_usable_mode (mode, length);
1553 while (1);
1556 /* Derived class from op_by_pieces_d, providing support for block move
1557 operations. */
1559 #ifdef PUSH_ROUNDING
1560 #define PUSHG_P(to) ((to) == nullptr)
1561 #else
1562 #define PUSHG_P(to) false
1563 #endif
1565 class move_by_pieces_d : public op_by_pieces_d
1567 insn_gen_fn m_gen_fun;
1568 void generate (rtx, rtx, machine_mode) final override;
1569 bool prepare_mode (machine_mode, unsigned int) final override;
1571 public:
1572 move_by_pieces_d (rtx to, rtx from, unsigned HOST_WIDE_INT len,
1573 unsigned int align)
1574 : op_by_pieces_d (MOVE_MAX_PIECES, to, false, from, true, NULL,
1575 NULL, len, align, PUSHG_P (to), MOVE_BY_PIECES)
1578 rtx finish_retmode (memop_ret);
1581 /* Return true if MODE can be used for a set of copies, given an
1582 alignment ALIGN. Prepare whatever data is necessary for later
1583 calls to generate. */
1585 bool
1586 move_by_pieces_d::prepare_mode (machine_mode mode, unsigned int align)
1588 insn_code icode = optab_handler (mov_optab, mode);
1589 m_gen_fun = GEN_FCN (icode);
1590 return icode != CODE_FOR_nothing && align >= GET_MODE_ALIGNMENT (mode);
1593 /* A callback used when iterating for a compare_by_pieces_operation.
1594 OP0 and OP1 are the values that have been loaded and should be
1595 compared in MODE. If OP0 is NULL, this means we should generate a
1596 push; otherwise EXTRA_DATA holds a pointer to a pointer to the insn
1597 gen function that should be used to generate the mode. */
1599 void
1600 move_by_pieces_d::generate (rtx op0, rtx op1,
1601 machine_mode mode ATTRIBUTE_UNUSED)
1603 #ifdef PUSH_ROUNDING
1604 if (op0 == NULL_RTX)
1606 emit_single_push_insn (mode, op1, NULL);
1607 return;
1609 #endif
1610 emit_insn (m_gen_fun (op0, op1));
1613 /* Perform the final adjustment at the end of a string to obtain the
1614 correct return value for the block operation.
1615 Return value is based on RETMODE argument. */
1618 move_by_pieces_d::finish_retmode (memop_ret retmode)
1620 gcc_assert (!m_reverse);
1621 if (retmode == RETURN_END_MINUS_ONE)
1623 m_to.maybe_postinc (-1);
1624 --m_offset;
1626 return m_to.adjust (QImode, m_offset);
1629 /* Generate several move instructions to copy LEN bytes from block FROM to
1630 block TO. (These are MEM rtx's with BLKmode).
1632 If PUSH_ROUNDING is defined and TO is NULL, emit_single_push_insn is
1633 used to push FROM to the stack.
1635 ALIGN is maximum stack alignment we can assume.
1637 Return value is based on RETMODE argument. */
1640 move_by_pieces (rtx to, rtx from, unsigned HOST_WIDE_INT len,
1641 unsigned int align, memop_ret retmode)
1643 #ifndef PUSH_ROUNDING
1644 if (to == NULL)
1645 gcc_unreachable ();
1646 #endif
1648 move_by_pieces_d data (to, from, len, align);
1650 data.run ();
1652 if (retmode != RETURN_BEGIN)
1653 return data.finish_retmode (retmode);
1654 else
1655 return to;
1658 /* Derived class from op_by_pieces_d, providing support for block move
1659 operations. */
1661 class store_by_pieces_d : public op_by_pieces_d
1663 insn_gen_fn m_gen_fun;
1665 void generate (rtx, rtx, machine_mode) final override;
1666 bool prepare_mode (machine_mode, unsigned int) final override;
1668 public:
1669 store_by_pieces_d (rtx to, by_pieces_constfn cfn, void *cfn_data,
1670 unsigned HOST_WIDE_INT len, unsigned int align,
1671 by_pieces_operation op)
1672 : op_by_pieces_d (STORE_MAX_PIECES, to, false, NULL_RTX, true, cfn,
1673 cfn_data, len, align, false, op)
1676 rtx finish_retmode (memop_ret);
1679 /* Return true if MODE can be used for a set of stores, given an
1680 alignment ALIGN. Prepare whatever data is necessary for later
1681 calls to generate. */
1683 bool
1684 store_by_pieces_d::prepare_mode (machine_mode mode, unsigned int align)
1686 insn_code icode = optab_handler (mov_optab, mode);
1687 m_gen_fun = GEN_FCN (icode);
1688 return icode != CODE_FOR_nothing && align >= GET_MODE_ALIGNMENT (mode);
1691 /* A callback used when iterating for a store_by_pieces_operation.
1692 OP0 and OP1 are the values that have been loaded and should be
1693 compared in MODE. If OP0 is NULL, this means we should generate a
1694 push; otherwise EXTRA_DATA holds a pointer to a pointer to the insn
1695 gen function that should be used to generate the mode. */
1697 void
1698 store_by_pieces_d::generate (rtx op0, rtx op1, machine_mode)
1700 emit_insn (m_gen_fun (op0, op1));
1703 /* Perform the final adjustment at the end of a string to obtain the
1704 correct return value for the block operation.
1705 Return value is based on RETMODE argument. */
1708 store_by_pieces_d::finish_retmode (memop_ret retmode)
1710 gcc_assert (!m_reverse);
1711 if (retmode == RETURN_END_MINUS_ONE)
1713 m_to.maybe_postinc (-1);
1714 --m_offset;
1716 return m_to.adjust (QImode, m_offset);
1719 /* Determine whether the LEN bytes generated by CONSTFUN can be
1720 stored to memory using several move instructions. CONSTFUNDATA is
1721 a pointer which will be passed as argument in every CONSTFUN call.
1722 ALIGN is maximum alignment we can assume. MEMSETP is true if this is
1723 a memset operation and false if it's a copy of a constant string.
1724 Return true if a call to store_by_pieces should succeed. */
1726 bool
1727 can_store_by_pieces (unsigned HOST_WIDE_INT len,
1728 by_pieces_constfn constfun,
1729 void *constfundata, unsigned int align, bool memsetp)
1731 unsigned HOST_WIDE_INT l;
1732 unsigned int max_size;
1733 HOST_WIDE_INT offset = 0;
1734 enum insn_code icode;
1735 int reverse;
1736 /* cst is set but not used if LEGITIMATE_CONSTANT doesn't use it. */
1737 rtx cst ATTRIBUTE_UNUSED;
1739 if (len == 0)
1740 return true;
1742 if (!targetm.use_by_pieces_infrastructure_p (len, align,
1743 memsetp
1744 ? SET_BY_PIECES
1745 : STORE_BY_PIECES,
1746 optimize_insn_for_speed_p ()))
1747 return false;
1749 align = alignment_for_piecewise_move (STORE_MAX_PIECES, align);
1751 /* We would first store what we can in the largest integer mode, then go to
1752 successively smaller modes. */
1754 for (reverse = 0;
1755 reverse <= (HAVE_PRE_DECREMENT || HAVE_POST_DECREMENT);
1756 reverse++)
1758 l = len;
1759 max_size = STORE_MAX_PIECES + 1;
1760 while (max_size > 1 && l > 0)
1762 auto op = memsetp ? SET_BY_PIECES : STORE_BY_PIECES;
1763 auto mode = widest_fixed_size_mode_for_size (max_size, op);
1765 icode = optab_handler (mov_optab, mode);
1766 if (icode != CODE_FOR_nothing
1767 && align >= GET_MODE_ALIGNMENT (mode))
1769 unsigned int size = GET_MODE_SIZE (mode);
1771 while (l >= size)
1773 if (reverse)
1774 offset -= size;
1776 cst = (*constfun) (constfundata, nullptr, offset, mode);
1777 /* All CONST_VECTORs can be loaded for memset since
1778 vec_duplicate_optab is a precondition to pick a
1779 vector mode for the memset expander. */
1780 if (!((memsetp && VECTOR_MODE_P (mode))
1781 || targetm.legitimate_constant_p (mode, cst)))
1782 return false;
1784 if (!reverse)
1785 offset += size;
1787 l -= size;
1791 max_size = GET_MODE_SIZE (mode);
1794 /* The code above should have handled everything. */
1795 gcc_assert (!l);
1798 return true;
1801 /* Generate several move instructions to store LEN bytes generated by
1802 CONSTFUN to block TO. (A MEM rtx with BLKmode). CONSTFUNDATA is a
1803 pointer which will be passed as argument in every CONSTFUN call.
1804 ALIGN is maximum alignment we can assume. MEMSETP is true if this is
1805 a memset operation and false if it's a copy of a constant string.
1806 Return value is based on RETMODE argument. */
1809 store_by_pieces (rtx to, unsigned HOST_WIDE_INT len,
1810 by_pieces_constfn constfun,
1811 void *constfundata, unsigned int align, bool memsetp,
1812 memop_ret retmode)
1814 if (len == 0)
1816 gcc_assert (retmode != RETURN_END_MINUS_ONE);
1817 return to;
1820 gcc_assert (targetm.use_by_pieces_infrastructure_p
1821 (len, align,
1822 memsetp ? SET_BY_PIECES : STORE_BY_PIECES,
1823 optimize_insn_for_speed_p ()));
1825 store_by_pieces_d data (to, constfun, constfundata, len, align,
1826 memsetp ? SET_BY_PIECES : STORE_BY_PIECES);
1827 data.run ();
1829 if (retmode != RETURN_BEGIN)
1830 return data.finish_retmode (retmode);
1831 else
1832 return to;
1835 /* Generate several move instructions to clear LEN bytes of block TO. (A MEM
1836 rtx with BLKmode). ALIGN is maximum alignment we can assume. */
1838 static void
1839 clear_by_pieces (rtx to, unsigned HOST_WIDE_INT len, unsigned int align)
1841 if (len == 0)
1842 return;
1844 /* Use builtin_memset_read_str to support vector mode broadcast. */
1845 char c = 0;
1846 store_by_pieces_d data (to, builtin_memset_read_str, &c, len, align,
1847 CLEAR_BY_PIECES);
1848 data.run ();
1851 /* Context used by compare_by_pieces_genfn. It stores the fail label
1852 to jump to in case of miscomparison, and for branch ratios greater than 1,
1853 it stores an accumulator and the current and maximum counts before
1854 emitting another branch. */
1856 class compare_by_pieces_d : public op_by_pieces_d
1858 rtx_code_label *m_fail_label;
1859 rtx m_accumulator;
1860 int m_count, m_batch;
1862 void generate (rtx, rtx, machine_mode) final override;
1863 bool prepare_mode (machine_mode, unsigned int) final override;
1864 void finish_mode (machine_mode) final override;
1866 public:
1867 compare_by_pieces_d (rtx op0, rtx op1, by_pieces_constfn op1_cfn,
1868 void *op1_cfn_data, HOST_WIDE_INT len, int align,
1869 rtx_code_label *fail_label)
1870 : op_by_pieces_d (COMPARE_MAX_PIECES, op0, true, op1, true, op1_cfn,
1871 op1_cfn_data, len, align, false, COMPARE_BY_PIECES)
1873 m_fail_label = fail_label;
1877 /* A callback used when iterating for a compare_by_pieces_operation.
1878 OP0 and OP1 are the values that have been loaded and should be
1879 compared in MODE. DATA holds a pointer to the compare_by_pieces_data
1880 context structure. */
1882 void
1883 compare_by_pieces_d::generate (rtx op0, rtx op1, machine_mode mode)
1885 if (m_batch > 1)
1887 rtx temp = expand_binop (mode, sub_optab, op0, op1, NULL_RTX,
1888 true, OPTAB_LIB_WIDEN);
1889 if (m_count != 0)
1890 temp = expand_binop (mode, ior_optab, m_accumulator, temp, temp,
1891 true, OPTAB_LIB_WIDEN);
1892 m_accumulator = temp;
1894 if (++m_count < m_batch)
1895 return;
1897 m_count = 0;
1898 op0 = m_accumulator;
1899 op1 = const0_rtx;
1900 m_accumulator = NULL_RTX;
1902 do_compare_rtx_and_jump (op0, op1, NE, true, mode, NULL_RTX, NULL,
1903 m_fail_label, profile_probability::uninitialized ());
1906 /* Return true if MODE can be used for a set of moves and comparisons,
1907 given an alignment ALIGN. Prepare whatever data is necessary for
1908 later calls to generate. */
1910 bool
1911 compare_by_pieces_d::prepare_mode (machine_mode mode, unsigned int align)
1913 insn_code icode = optab_handler (mov_optab, mode);
1914 if (icode == CODE_FOR_nothing
1915 || align < GET_MODE_ALIGNMENT (mode)
1916 || !can_compare_p (EQ, mode, ccp_jump))
1917 return false;
1918 m_batch = targetm.compare_by_pieces_branch_ratio (mode);
1919 if (m_batch < 0)
1920 return false;
1921 m_accumulator = NULL_RTX;
1922 m_count = 0;
1923 return true;
1926 /* Called after expanding a series of comparisons in MODE. If we have
1927 accumulated results for which we haven't emitted a branch yet, do
1928 so now. */
1930 void
1931 compare_by_pieces_d::finish_mode (machine_mode mode)
1933 if (m_accumulator != NULL_RTX)
1934 do_compare_rtx_and_jump (m_accumulator, const0_rtx, NE, true, mode,
1935 NULL_RTX, NULL, m_fail_label,
1936 profile_probability::uninitialized ());
1939 /* Generate several move instructions to compare LEN bytes from blocks
1940 ARG0 and ARG1. (These are MEM rtx's with BLKmode).
1942 If PUSH_ROUNDING is defined and TO is NULL, emit_single_push_insn is
1943 used to push FROM to the stack.
1945 ALIGN is maximum stack alignment we can assume.
1947 Optionally, the caller can pass a constfn and associated data in A1_CFN
1948 and A1_CFN_DATA. describing that the second operand being compared is a
1949 known constant and how to obtain its data. */
1951 static rtx
1952 compare_by_pieces (rtx arg0, rtx arg1, unsigned HOST_WIDE_INT len,
1953 rtx target, unsigned int align,
1954 by_pieces_constfn a1_cfn, void *a1_cfn_data)
1956 rtx_code_label *fail_label = gen_label_rtx ();
1957 rtx_code_label *end_label = gen_label_rtx ();
1959 if (target == NULL_RTX
1960 || !REG_P (target) || REGNO (target) < FIRST_PSEUDO_REGISTER)
1961 target = gen_reg_rtx (TYPE_MODE (integer_type_node));
1963 compare_by_pieces_d data (arg0, arg1, a1_cfn, a1_cfn_data, len, align,
1964 fail_label);
1966 data.run ();
1968 emit_move_insn (target, const0_rtx);
1969 emit_jump (end_label);
1970 emit_barrier ();
1971 emit_label (fail_label);
1972 emit_move_insn (target, const1_rtx);
1973 emit_label (end_label);
1975 return target;
1978 /* Emit code to move a block Y to a block X. This may be done with
1979 string-move instructions, with multiple scalar move instructions,
1980 or with a library call.
1982 Both X and Y must be MEM rtx's (perhaps inside VOLATILE) with mode BLKmode.
1983 SIZE is an rtx that says how long they are.
1984 ALIGN is the maximum alignment we can assume they have.
1985 METHOD describes what kind of copy this is, and what mechanisms may be used.
1986 MIN_SIZE is the minimal size of block to move
1987 MAX_SIZE is the maximal size of block to move, if it cannot be represented
1988 in unsigned HOST_WIDE_INT, than it is mask of all ones.
1989 CTZ_SIZE is the trailing-zeros count of SIZE; even a nonconstant SIZE is
1990 known to be a multiple of 1<<CTZ_SIZE.
1992 Return the address of the new block, if memcpy is called and returns it,
1993 0 otherwise. */
1996 emit_block_move_hints (rtx x, rtx y, rtx size, enum block_op_methods method,
1997 unsigned int expected_align, HOST_WIDE_INT expected_size,
1998 unsigned HOST_WIDE_INT min_size,
1999 unsigned HOST_WIDE_INT max_size,
2000 unsigned HOST_WIDE_INT probable_max_size,
2001 bool bail_out_libcall, bool *is_move_done,
2002 bool might_overlap, unsigned ctz_size)
2004 int may_use_call;
2005 rtx retval = 0;
2006 unsigned int align;
2008 if (is_move_done)
2009 *is_move_done = true;
2011 gcc_assert (size);
2012 if (CONST_INT_P (size) && INTVAL (size) == 0)
2013 return 0;
2015 switch (method)
2017 case BLOCK_OP_NORMAL:
2018 case BLOCK_OP_TAILCALL:
2019 may_use_call = 1;
2020 break;
2022 case BLOCK_OP_CALL_PARM:
2023 may_use_call = block_move_libcall_safe_for_call_parm ();
2025 /* Make inhibit_defer_pop nonzero around the library call
2026 to force it to pop the arguments right away. */
2027 NO_DEFER_POP;
2028 break;
2030 case BLOCK_OP_NO_LIBCALL:
2031 may_use_call = 0;
2032 break;
2034 case BLOCK_OP_NO_LIBCALL_RET:
2035 may_use_call = -1;
2036 break;
2038 default:
2039 gcc_unreachable ();
2042 gcc_assert (MEM_P (x) && MEM_P (y));
2043 align = MIN (MEM_ALIGN (x), MEM_ALIGN (y));
2044 gcc_assert (align >= BITS_PER_UNIT);
2046 /* Make sure we've got BLKmode addresses; store_one_arg can decide that
2047 block copy is more efficient for other large modes, e.g. DCmode. */
2048 x = adjust_address (x, BLKmode, 0);
2049 y = adjust_address (y, BLKmode, 0);
2051 /* If source and destination are the same, no need to copy anything. */
2052 if (rtx_equal_p (x, y)
2053 && !MEM_VOLATILE_P (x)
2054 && !MEM_VOLATILE_P (y))
2055 return 0;
2057 /* Set MEM_SIZE as appropriate for this block copy. The main place this
2058 can be incorrect is coming from __builtin_memcpy. */
2059 poly_int64 const_size;
2060 if (poly_int_rtx_p (size, &const_size))
2062 x = shallow_copy_rtx (x);
2063 y = shallow_copy_rtx (y);
2064 set_mem_size (x, const_size);
2065 set_mem_size (y, const_size);
2068 bool pieces_ok = CONST_INT_P (size)
2069 && can_move_by_pieces (INTVAL (size), align);
2070 bool pattern_ok = false;
2072 if (!pieces_ok || might_overlap)
2074 pattern_ok
2075 = emit_block_move_via_pattern (x, y, size, align,
2076 expected_align, expected_size,
2077 min_size, max_size, probable_max_size,
2078 might_overlap);
2079 if (!pattern_ok && might_overlap)
2081 /* Do not try any of the other methods below as they are not safe
2082 for overlapping moves. */
2083 *is_move_done = false;
2084 return retval;
2088 bool dynamic_direction = false;
2089 if (!pattern_ok && !pieces_ok && may_use_call
2090 && (flag_inline_stringops & (might_overlap ? ILSOP_MEMMOVE : ILSOP_MEMCPY)))
2092 may_use_call = 0;
2093 dynamic_direction = might_overlap;
2096 if (pattern_ok)
2098 else if (pieces_ok)
2099 move_by_pieces (x, y, INTVAL (size), align, RETURN_BEGIN);
2100 else if (may_use_call && !might_overlap
2101 && ADDR_SPACE_GENERIC_P (MEM_ADDR_SPACE (x))
2102 && ADDR_SPACE_GENERIC_P (MEM_ADDR_SPACE (y)))
2104 if (bail_out_libcall)
2106 if (is_move_done)
2107 *is_move_done = false;
2108 return retval;
2111 if (may_use_call < 0)
2112 return pc_rtx;
2114 retval = emit_block_copy_via_libcall (x, y, size,
2115 method == BLOCK_OP_TAILCALL);
2117 else if (dynamic_direction)
2118 emit_block_move_via_oriented_loop (x, y, size, align, ctz_size);
2119 else if (might_overlap)
2120 *is_move_done = false;
2121 else
2122 emit_block_move_via_sized_loop (x, y, size, align, ctz_size);
2124 if (method == BLOCK_OP_CALL_PARM)
2125 OK_DEFER_POP;
2127 return retval;
2131 emit_block_move (rtx x, rtx y, rtx size, enum block_op_methods method,
2132 unsigned int ctz_size)
2134 unsigned HOST_WIDE_INT max, min = 0;
2135 if (GET_CODE (size) == CONST_INT)
2136 min = max = UINTVAL (size);
2137 else
2138 max = GET_MODE_MASK (GET_MODE (size));
2139 return emit_block_move_hints (x, y, size, method, 0, -1,
2140 min, max, max,
2141 false, NULL, false, ctz_size);
2144 /* A subroutine of emit_block_move. Returns true if calling the
2145 block move libcall will not clobber any parameters which may have
2146 already been placed on the stack. */
2148 static bool
2149 block_move_libcall_safe_for_call_parm (void)
2151 tree fn;
2153 /* If arguments are pushed on the stack, then they're safe. */
2154 if (targetm.calls.push_argument (0))
2155 return true;
2157 /* If registers go on the stack anyway, any argument is sure to clobber
2158 an outgoing argument. */
2159 #if defined (REG_PARM_STACK_SPACE)
2160 fn = builtin_decl_implicit (BUILT_IN_MEMCPY);
2161 /* Avoid set but not used warning if *REG_PARM_STACK_SPACE doesn't
2162 depend on its argument. */
2163 (void) fn;
2164 if (OUTGOING_REG_PARM_STACK_SPACE ((!fn ? NULL_TREE : TREE_TYPE (fn)))
2165 && REG_PARM_STACK_SPACE (fn) != 0)
2166 return false;
2167 #endif
2169 /* If any argument goes in memory, then it might clobber an outgoing
2170 argument. */
2172 CUMULATIVE_ARGS args_so_far_v;
2173 cumulative_args_t args_so_far;
2174 tree arg;
2176 fn = builtin_decl_implicit (BUILT_IN_MEMCPY);
2177 INIT_CUMULATIVE_ARGS (args_so_far_v, TREE_TYPE (fn), NULL_RTX, 0, 3);
2178 args_so_far = pack_cumulative_args (&args_so_far_v);
2180 arg = TYPE_ARG_TYPES (TREE_TYPE (fn));
2181 for ( ; arg != void_list_node ; arg = TREE_CHAIN (arg))
2183 machine_mode mode = TYPE_MODE (TREE_VALUE (arg));
2184 function_arg_info arg_info (mode, /*named=*/true);
2185 rtx tmp = targetm.calls.function_arg (args_so_far, arg_info);
2186 if (!tmp || !REG_P (tmp))
2187 return false;
2188 if (targetm.calls.arg_partial_bytes (args_so_far, arg_info))
2189 return false;
2190 targetm.calls.function_arg_advance (args_so_far, arg_info);
2193 return true;
2196 /* A subroutine of emit_block_move. Expand a cpymem or movmem pattern;
2197 return true if successful.
2199 X is the destination of the copy or move.
2200 Y is the source of the copy or move.
2201 SIZE is the size of the block to be moved.
2203 MIGHT_OVERLAP indicates this originated with expansion of a
2204 builtin_memmove() and the source and destination blocks may
2205 overlap.
2208 static bool
2209 emit_block_move_via_pattern (rtx x, rtx y, rtx size, unsigned int align,
2210 unsigned int expected_align,
2211 HOST_WIDE_INT expected_size,
2212 unsigned HOST_WIDE_INT min_size,
2213 unsigned HOST_WIDE_INT max_size,
2214 unsigned HOST_WIDE_INT probable_max_size,
2215 bool might_overlap)
2217 if (expected_align < align)
2218 expected_align = align;
2219 if (expected_size != -1)
2221 if ((unsigned HOST_WIDE_INT)expected_size > probable_max_size)
2222 expected_size = probable_max_size;
2223 if ((unsigned HOST_WIDE_INT)expected_size < min_size)
2224 expected_size = min_size;
2227 /* Since this is a move insn, we don't care about volatility. */
2228 temporary_volatile_ok v (true);
2230 /* Try the most limited insn first, because there's no point
2231 including more than one in the machine description unless
2232 the more limited one has some advantage. */
2234 opt_scalar_int_mode mode_iter;
2235 FOR_EACH_MODE_IN_CLASS (mode_iter, MODE_INT)
2237 scalar_int_mode mode = mode_iter.require ();
2238 enum insn_code code;
2239 if (might_overlap)
2240 code = direct_optab_handler (movmem_optab, mode);
2241 else
2242 code = direct_optab_handler (cpymem_optab, mode);
2244 if (code != CODE_FOR_nothing
2245 /* We don't need MODE to be narrower than BITS_PER_HOST_WIDE_INT
2246 here because if SIZE is less than the mode mask, as it is
2247 returned by the macro, it will definitely be less than the
2248 actual mode mask. Since SIZE is within the Pmode address
2249 space, we limit MODE to Pmode. */
2250 && ((CONST_INT_P (size)
2251 && ((unsigned HOST_WIDE_INT) INTVAL (size)
2252 <= (GET_MODE_MASK (mode) >> 1)))
2253 || max_size <= (GET_MODE_MASK (mode) >> 1)
2254 || GET_MODE_BITSIZE (mode) >= GET_MODE_BITSIZE (Pmode)))
2256 class expand_operand ops[9];
2257 unsigned int nops;
2259 /* ??? When called via emit_block_move_for_call, it'd be
2260 nice if there were some way to inform the backend, so
2261 that it doesn't fail the expansion because it thinks
2262 emitting the libcall would be more efficient. */
2263 nops = insn_data[(int) code].n_generator_args;
2264 gcc_assert (nops == 4 || nops == 6 || nops == 8 || nops == 9);
2266 create_fixed_operand (&ops[0], x);
2267 create_fixed_operand (&ops[1], y);
2268 /* The check above guarantees that this size conversion is valid. */
2269 create_convert_operand_to (&ops[2], size, mode, true);
2270 create_integer_operand (&ops[3], align / BITS_PER_UNIT);
2271 if (nops >= 6)
2273 create_integer_operand (&ops[4], expected_align / BITS_PER_UNIT);
2274 create_integer_operand (&ops[5], expected_size);
2276 if (nops >= 8)
2278 create_integer_operand (&ops[6], min_size);
2279 /* If we cannot represent the maximal size,
2280 make parameter NULL. */
2281 if ((HOST_WIDE_INT) max_size != -1)
2282 create_integer_operand (&ops[7], max_size);
2283 else
2284 create_fixed_operand (&ops[7], NULL);
2286 if (nops == 9)
2288 /* If we cannot represent the maximal size,
2289 make parameter NULL. */
2290 if ((HOST_WIDE_INT) probable_max_size != -1)
2291 create_integer_operand (&ops[8], probable_max_size);
2292 else
2293 create_fixed_operand (&ops[8], NULL);
2295 if (maybe_expand_insn (code, nops, ops))
2296 return true;
2300 return false;
2303 /* Like emit_block_move_via_loop, but choose a suitable INCR based on
2304 ALIGN and CTZ_SIZE. */
2306 static void
2307 emit_block_move_via_sized_loop (rtx x, rtx y, rtx size,
2308 unsigned int align,
2309 unsigned int ctz_size)
2311 int incr = align / BITS_PER_UNIT;
2313 if (CONST_INT_P (size))
2314 ctz_size = MAX (ctz_size, (unsigned) wi::ctz (UINTVAL (size)));
2316 if (HOST_WIDE_INT_1U << ctz_size < (unsigned HOST_WIDE_INT) incr)
2317 incr = HOST_WIDE_INT_1U << ctz_size;
2319 while (incr > 1 && !can_move_by_pieces (incr, align))
2320 incr >>= 1;
2322 gcc_checking_assert (incr);
2324 return emit_block_move_via_loop (x, y, size, align, incr);
2327 /* Like emit_block_move_via_sized_loop, but besides choosing INCR so
2328 as to ensure safe moves even in case of overlap, output dynamic
2329 tests to choose between two loops, one moving downwards, another
2330 moving upwards. */
2332 static void
2333 emit_block_move_via_oriented_loop (rtx x, rtx y, rtx size,
2334 unsigned int align,
2335 unsigned int ctz_size)
2337 int incr = align / BITS_PER_UNIT;
2339 if (CONST_INT_P (size))
2340 ctz_size = MAX (ctz_size, (unsigned) wi::ctz (UINTVAL (size)));
2342 if (HOST_WIDE_INT_1U << ctz_size < (unsigned HOST_WIDE_INT) incr)
2343 incr = HOST_WIDE_INT_1U << ctz_size;
2345 while (incr > 1 && !int_mode_for_size (incr, 0).exists ())
2346 incr >>= 1;
2348 gcc_checking_assert (incr);
2350 rtx_code_label *upw_label, *end_label;
2351 upw_label = gen_label_rtx ();
2352 end_label = gen_label_rtx ();
2354 rtx x_addr = force_operand (XEXP (x, 0), NULL_RTX);
2355 rtx y_addr = force_operand (XEXP (y, 0), NULL_RTX);
2356 do_pending_stack_adjust ();
2358 machine_mode mode = GET_MODE (x_addr);
2359 if (mode != GET_MODE (y_addr))
2361 scalar_int_mode xmode
2362 = smallest_int_mode_for_size (GET_MODE_BITSIZE (mode));
2363 scalar_int_mode ymode
2364 = smallest_int_mode_for_size (GET_MODE_BITSIZE
2365 (GET_MODE (y_addr)));
2366 if (GET_MODE_BITSIZE (xmode) < GET_MODE_BITSIZE (ymode))
2367 mode = ymode;
2368 else
2369 mode = xmode;
2371 #ifndef POINTERS_EXTEND_UNSIGNED
2372 const int POINTERS_EXTEND_UNSIGNED = 1;
2373 #endif
2374 x_addr = convert_modes (mode, GET_MODE (x_addr), x_addr,
2375 POINTERS_EXTEND_UNSIGNED);
2376 y_addr = convert_modes (mode, GET_MODE (y_addr), y_addr,
2377 POINTERS_EXTEND_UNSIGNED);
2380 /* Test for overlap: if (x >= y || x + size <= y) goto upw_label. */
2381 emit_cmp_and_jump_insns (x_addr, y_addr, GEU, NULL_RTX, mode,
2382 true, upw_label,
2383 profile_probability::guessed_always ()
2384 .apply_scale (5, 10));
2385 rtx tmp = convert_modes (GET_MODE (x_addr), GET_MODE (size), size, true);
2386 tmp = simplify_gen_binary (PLUS, GET_MODE (x_addr), x_addr, tmp);
2388 emit_cmp_and_jump_insns (tmp, y_addr, LEU, NULL_RTX, mode,
2389 true, upw_label,
2390 profile_probability::guessed_always ()
2391 .apply_scale (8, 10));
2393 emit_block_move_via_loop (x, y, size, align, -incr);
2395 emit_jump (end_label);
2396 emit_label (upw_label);
2398 emit_block_move_via_loop (x, y, size, align, incr);
2400 emit_label (end_label);
2403 /* A subroutine of emit_block_move. Copy the data via an explicit
2404 loop. This is used only when libcalls are forbidden, or when
2405 inlining is required. INCR is the block size to be copied in each
2406 loop iteration. If it is negative, the absolute value is used, and
2407 the block is copied backwards. INCR must be a power of two, an
2408 exact divisor for SIZE and ALIGN, and imply a mode that can be
2409 safely copied per iteration assuming no overlap. */
2411 static void
2412 emit_block_move_via_loop (rtx x, rtx y, rtx size,
2413 unsigned int align, int incr)
2415 rtx_code_label *cmp_label, *top_label;
2416 rtx iter, x_addr, y_addr, tmp;
2417 machine_mode x_addr_mode = get_address_mode (x);
2418 machine_mode y_addr_mode = get_address_mode (y);
2419 machine_mode iter_mode;
2421 iter_mode = GET_MODE (size);
2422 if (iter_mode == VOIDmode)
2423 iter_mode = word_mode;
2425 top_label = gen_label_rtx ();
2426 cmp_label = gen_label_rtx ();
2427 iter = gen_reg_rtx (iter_mode);
2429 bool downwards = incr < 0;
2430 rtx iter_init;
2431 rtx_code iter_cond;
2432 rtx iter_limit;
2433 rtx iter_incr;
2434 machine_mode move_mode;
2435 if (downwards)
2437 incr = -incr;
2438 iter_init = size;
2439 iter_cond = GEU;
2440 iter_limit = const0_rtx;
2441 iter_incr = GEN_INT (incr);
2443 else
2445 iter_init = const0_rtx;
2446 iter_cond = LTU;
2447 iter_limit = size;
2448 iter_incr = GEN_INT (incr);
2450 emit_move_insn (iter, iter_init);
2452 opt_scalar_int_mode int_move_mode
2453 = int_mode_for_size (incr * BITS_PER_UNIT, 1);
2454 if (!int_move_mode.exists (&move_mode)
2455 || GET_MODE_BITSIZE (int_move_mode.require ()) != incr * BITS_PER_UNIT)
2457 move_mode = BLKmode;
2458 gcc_checking_assert (can_move_by_pieces (incr, align));
2461 x_addr = force_operand (XEXP (x, 0), NULL_RTX);
2462 y_addr = force_operand (XEXP (y, 0), NULL_RTX);
2463 do_pending_stack_adjust ();
2465 emit_jump (cmp_label);
2466 emit_label (top_label);
2468 tmp = convert_modes (x_addr_mode, iter_mode, iter, true);
2469 x_addr = simplify_gen_binary (PLUS, x_addr_mode, x_addr, tmp);
2471 if (x_addr_mode != y_addr_mode)
2472 tmp = convert_modes (y_addr_mode, iter_mode, iter, true);
2473 y_addr = simplify_gen_binary (PLUS, y_addr_mode, y_addr, tmp);
2475 x = change_address (x, move_mode, x_addr);
2476 y = change_address (y, move_mode, y_addr);
2478 if (move_mode == BLKmode)
2480 bool done;
2481 emit_block_move_hints (x, y, iter_incr, BLOCK_OP_NO_LIBCALL,
2482 align, incr, incr, incr, incr,
2483 false, &done, false);
2484 gcc_checking_assert (done);
2486 else
2487 emit_move_insn (x, y);
2489 if (downwards)
2490 emit_label (cmp_label);
2492 tmp = expand_simple_binop (iter_mode, PLUS, iter, iter_incr, iter,
2493 true, OPTAB_LIB_WIDEN);
2494 if (tmp != iter)
2495 emit_move_insn (iter, tmp);
2497 if (!downwards)
2498 emit_label (cmp_label);
2500 emit_cmp_and_jump_insns (iter, iter_limit, iter_cond, NULL_RTX, iter_mode,
2501 true, top_label,
2502 profile_probability::guessed_always ()
2503 .apply_scale (9, 10));
2506 /* Expand a call to memcpy or memmove or memcmp, and return the result.
2507 TAILCALL is true if this is a tail call. */
2510 emit_block_op_via_libcall (enum built_in_function fncode, rtx dst, rtx src,
2511 rtx size, bool tailcall)
2513 rtx dst_addr, src_addr;
2514 tree call_expr, dst_tree, src_tree, size_tree;
2515 machine_mode size_mode;
2517 /* Since dst and src are passed to a libcall, mark the corresponding
2518 tree EXPR as addressable. */
2519 tree dst_expr = MEM_EXPR (dst);
2520 tree src_expr = MEM_EXPR (src);
2521 if (dst_expr)
2522 mark_addressable (dst_expr);
2523 if (src_expr)
2524 mark_addressable (src_expr);
2526 dst_addr = copy_addr_to_reg (XEXP (dst, 0));
2527 dst_addr = convert_memory_address (ptr_mode, dst_addr);
2528 dst_tree = make_tree (ptr_type_node, dst_addr);
2530 src_addr = copy_addr_to_reg (XEXP (src, 0));
2531 src_addr = convert_memory_address (ptr_mode, src_addr);
2532 src_tree = make_tree (ptr_type_node, src_addr);
2534 size_mode = TYPE_MODE (sizetype);
2535 size = convert_to_mode (size_mode, size, 1);
2536 size = copy_to_mode_reg (size_mode, size);
2537 size_tree = make_tree (sizetype, size);
2539 /* It is incorrect to use the libcall calling conventions for calls to
2540 memcpy/memmove/memcmp because they can be provided by the user. */
2541 tree fn = builtin_decl_implicit (fncode);
2542 call_expr = build_call_expr (fn, 3, dst_tree, src_tree, size_tree);
2543 CALL_EXPR_TAILCALL (call_expr) = tailcall;
2545 return expand_call (call_expr, NULL_RTX, false);
2548 /* Try to expand cmpstrn or cmpmem operation ICODE with the given operands.
2549 ARG3_TYPE is the type of ARG3_RTX. Return the result rtx on success,
2550 otherwise return null. */
2553 expand_cmpstrn_or_cmpmem (insn_code icode, rtx target, rtx arg1_rtx,
2554 rtx arg2_rtx, tree arg3_type, rtx arg3_rtx,
2555 HOST_WIDE_INT align)
2557 machine_mode insn_mode = insn_data[icode].operand[0].mode;
2559 if (target && (!REG_P (target) || HARD_REGISTER_P (target)))
2560 target = NULL_RTX;
2562 class expand_operand ops[5];
2563 create_output_operand (&ops[0], target, insn_mode);
2564 create_fixed_operand (&ops[1], arg1_rtx);
2565 create_fixed_operand (&ops[2], arg2_rtx);
2566 create_convert_operand_from (&ops[3], arg3_rtx, TYPE_MODE (arg3_type),
2567 TYPE_UNSIGNED (arg3_type));
2568 create_integer_operand (&ops[4], align);
2569 if (maybe_expand_insn (icode, 5, ops))
2570 return ops[0].value;
2571 return NULL_RTX;
2574 /* Expand a block compare between X and Y with length LEN using the
2575 cmpmem optab, placing the result in TARGET. LEN_TYPE is the type
2576 of the expression that was used to calculate the length. ALIGN
2577 gives the known minimum common alignment. */
2579 static rtx
2580 emit_block_cmp_via_cmpmem (rtx x, rtx y, rtx len, tree len_type, rtx target,
2581 unsigned align)
2583 /* Note: The cmpstrnsi pattern, if it exists, is not suitable for
2584 implementing memcmp because it will stop if it encounters two
2585 zero bytes. */
2586 insn_code icode = direct_optab_handler (cmpmem_optab, SImode);
2588 if (icode == CODE_FOR_nothing)
2589 return NULL_RTX;
2591 return expand_cmpstrn_or_cmpmem (icode, target, x, y, len_type, len, align);
2594 /* Emit code to compare a block Y to a block X. This may be done with
2595 string-compare instructions, with multiple scalar instructions,
2596 or with a library call.
2598 Both X and Y must be MEM rtx's. LEN is an rtx that says how long
2599 they are. LEN_TYPE is the type of the expression that was used to
2600 calculate it, and CTZ_LEN is the known trailing-zeros count of LEN,
2601 so LEN must be a multiple of 1<<CTZ_LEN even if it's not constant.
2603 If EQUALITY_ONLY is true, it means we don't have to return the tri-state
2604 value of a normal memcmp call, instead we can just compare for equality.
2605 If FORCE_LIBCALL is true, we should emit a call to memcmp rather than
2606 returning NULL_RTX.
2608 Optionally, the caller can pass a constfn and associated data in Y_CFN
2609 and Y_CFN_DATA. describing that the second operand being compared is a
2610 known constant and how to obtain its data.
2611 Return the result of the comparison, or NULL_RTX if we failed to
2612 perform the operation. */
2615 emit_block_cmp_hints (rtx x, rtx y, rtx len, tree len_type, rtx target,
2616 bool equality_only, by_pieces_constfn y_cfn,
2617 void *y_cfndata, unsigned ctz_len)
2619 rtx result = 0;
2621 if (CONST_INT_P (len) && INTVAL (len) == 0)
2622 return const0_rtx;
2624 gcc_assert (MEM_P (x) && MEM_P (y));
2625 unsigned int align = MIN (MEM_ALIGN (x), MEM_ALIGN (y));
2626 gcc_assert (align >= BITS_PER_UNIT);
2628 x = adjust_address (x, BLKmode, 0);
2629 y = adjust_address (y, BLKmode, 0);
2631 if (equality_only
2632 && CONST_INT_P (len)
2633 && can_do_by_pieces (INTVAL (len), align, COMPARE_BY_PIECES))
2634 result = compare_by_pieces (x, y, INTVAL (len), target, align,
2635 y_cfn, y_cfndata);
2636 else
2637 result = emit_block_cmp_via_cmpmem (x, y, len, len_type, target, align);
2639 if (!result && (flag_inline_stringops & ILSOP_MEMCMP))
2640 result = emit_block_cmp_via_loop (x, y, len, len_type,
2641 target, equality_only,
2642 align, ctz_len);
2644 return result;
2647 /* Like emit_block_cmp_hints, but with known alignment and no support
2648 for constats. Always expand to a loop with iterations that compare
2649 blocks of the largest compare-by-pieces size that divides both len
2650 and align, and then, if !EQUALITY_ONLY, identify the word and then
2651 the unit that first differs to return the result. */
2654 emit_block_cmp_via_loop (rtx x, rtx y, rtx len, tree len_type, rtx target,
2655 bool equality_only, unsigned align, unsigned ctz_len)
2657 unsigned incr = align / BITS_PER_UNIT;
2659 if (CONST_INT_P (len))
2660 ctz_len = MAX (ctz_len, (unsigned) wi::ctz (UINTVAL (len)));
2662 if (HOST_WIDE_INT_1U << ctz_len < (unsigned HOST_WIDE_INT) incr)
2663 incr = HOST_WIDE_INT_1U << ctz_len;
2665 while (incr > 1
2666 && !can_do_by_pieces (incr, align, COMPARE_BY_PIECES))
2667 incr >>= 1;
2669 rtx_code_label *cmp_label, *top_label, *ne_label, *res_label;
2670 rtx iter, x_addr, y_addr, tmp;
2671 machine_mode x_addr_mode = get_address_mode (x);
2672 machine_mode y_addr_mode = get_address_mode (y);
2673 machine_mode iter_mode;
2675 iter_mode = GET_MODE (len);
2676 if (iter_mode == VOIDmode)
2677 iter_mode = word_mode;
2679 rtx iter_init = const0_rtx;
2680 rtx_code iter_cond = LTU;
2681 rtx_code entry_cond = GEU;
2682 rtx iter_limit = len;
2683 rtx iter_incr = GEN_INT (incr);
2684 machine_mode cmp_mode;
2686 /* We can drop the loop back edge if we know there's exactly one
2687 iteration. */
2688 top_label = (!rtx_equal_p (len, iter_incr)
2689 ? gen_label_rtx ()
2690 : NULL);
2691 /* We need not test before entering the loop if len is known
2692 nonzero. ??? This could be even stricter, testing whether a
2693 nonconstant LEN could possibly be zero. */
2694 cmp_label = (!CONSTANT_P (len) || rtx_equal_p (len, iter_init)
2695 ? gen_label_rtx ()
2696 : NULL);
2697 ne_label = gen_label_rtx ();
2698 res_label = gen_label_rtx ();
2700 iter = gen_reg_rtx (iter_mode);
2701 emit_move_insn (iter, iter_init);
2703 opt_scalar_int_mode int_cmp_mode
2704 = int_mode_for_size (incr * BITS_PER_UNIT, 1);
2705 if (!int_cmp_mode.exists (&cmp_mode)
2706 || GET_MODE_BITSIZE (int_cmp_mode.require ()) != incr * BITS_PER_UNIT
2707 || !can_compare_p (NE, cmp_mode, ccp_jump))
2709 cmp_mode = BLKmode;
2710 gcc_checking_assert (incr != 1);
2713 /* Save the base addresses. */
2714 x_addr = force_operand (XEXP (x, 0), NULL_RTX);
2715 y_addr = force_operand (XEXP (y, 0), NULL_RTX);
2716 do_pending_stack_adjust ();
2718 if (cmp_label)
2720 if (top_label)
2721 emit_jump (cmp_label);
2722 else
2723 emit_cmp_and_jump_insns (iter, iter_limit, entry_cond,
2724 NULL_RTX, iter_mode,
2725 true, cmp_label,
2726 profile_probability::guessed_always ()
2727 .apply_scale (1, 10));
2729 if (top_label)
2730 emit_label (top_label);
2732 /* Offset the base addresses by ITER. */
2733 tmp = convert_modes (x_addr_mode, iter_mode, iter, true);
2734 x_addr = simplify_gen_binary (PLUS, x_addr_mode, x_addr, tmp);
2736 if (x_addr_mode != y_addr_mode)
2737 tmp = convert_modes (y_addr_mode, iter_mode, iter, true);
2738 y_addr = simplify_gen_binary (PLUS, y_addr_mode, y_addr, tmp);
2740 x = change_address (x, cmp_mode, x_addr);
2741 y = change_address (y, cmp_mode, y_addr);
2743 /* Compare one block. */
2744 rtx part_res;
2745 if (cmp_mode == BLKmode)
2746 part_res = compare_by_pieces (x, y, incr, target, align, 0, 0);
2747 else
2748 part_res = expand_binop (cmp_mode, sub_optab, x, y, NULL_RTX,
2749 true, OPTAB_LIB_WIDEN);
2751 /* Stop if we found a difference. */
2752 emit_cmp_and_jump_insns (part_res, GEN_INT (0), NE, NULL_RTX,
2753 GET_MODE (part_res), true, ne_label,
2754 profile_probability::guessed_always ()
2755 .apply_scale (1, 10));
2757 /* Increment ITER. */
2758 tmp = expand_simple_binop (iter_mode, PLUS, iter, iter_incr, iter,
2759 true, OPTAB_LIB_WIDEN);
2760 if (tmp != iter)
2761 emit_move_insn (iter, tmp);
2763 if (cmp_label)
2764 emit_label (cmp_label);
2765 /* Loop until we reach the limit. */
2767 if (top_label)
2768 emit_cmp_and_jump_insns (iter, iter_limit, iter_cond, NULL_RTX, iter_mode,
2769 true, top_label,
2770 profile_probability::guessed_always ()
2771 .apply_scale (9, 10));
2773 /* We got to the end without differences, so the result is zero. */
2774 if (target == NULL_RTX
2775 || !REG_P (target) || REGNO (target) < FIRST_PSEUDO_REGISTER)
2776 target = gen_reg_rtx (TYPE_MODE (integer_type_node));
2778 emit_move_insn (target, const0_rtx);
2779 emit_jump (res_label);
2781 emit_label (ne_label);
2783 /* Return nonzero, or pinpoint the difference to return the expected
2784 result for non-equality tests. */
2785 if (equality_only)
2786 emit_move_insn (target, const1_rtx);
2787 else
2789 if (incr > UNITS_PER_WORD)
2790 /* ??? Re-compare the block found to be different one word at a
2791 time. */
2792 part_res = emit_block_cmp_via_loop (x, y, GEN_INT (incr), len_type,
2793 target, equality_only,
2794 BITS_PER_WORD, 0);
2795 else if (incr > 1)
2796 /* ??? Re-compare the block found to be different one byte at a
2797 time. We could do better using part_res, and being careful
2798 about endianness. */
2799 part_res = emit_block_cmp_via_loop (x, y, GEN_INT (incr), len_type,
2800 target, equality_only,
2801 BITS_PER_UNIT, 0);
2802 else if (known_gt (GET_MODE_BITSIZE (GET_MODE (target)),
2803 GET_MODE_BITSIZE (cmp_mode)))
2804 part_res = expand_binop (GET_MODE (target), sub_optab, x, y, target,
2805 true, OPTAB_LIB_WIDEN);
2806 else
2808 /* In the odd chance target is QImode, we can't count on
2809 widening subtract to capture the result of the unsigned
2810 compares. */
2811 rtx_code_label *ltu_label;
2812 ltu_label = gen_label_rtx ();
2813 emit_cmp_and_jump_insns (x, y, LTU, NULL_RTX,
2814 cmp_mode, true, ltu_label,
2815 profile_probability::guessed_always ()
2816 .apply_scale (5, 10));
2818 emit_move_insn (target, const1_rtx);
2819 emit_jump (res_label);
2821 emit_label (ltu_label);
2822 emit_move_insn (target, constm1_rtx);
2823 part_res = target;
2826 if (target != part_res)
2827 convert_move (target, part_res, false);
2830 emit_label (res_label);
2832 return target;
2836 /* Copy all or part of a value X into registers starting at REGNO.
2837 The number of registers to be filled is NREGS. */
2839 void
2840 move_block_to_reg (int regno, rtx x, int nregs, machine_mode mode)
2842 if (nregs == 0)
2843 return;
2845 if (CONSTANT_P (x) && !targetm.legitimate_constant_p (mode, x))
2846 x = validize_mem (force_const_mem (mode, x));
2848 /* See if the machine can do this with a load multiple insn. */
2849 if (targetm.have_load_multiple ())
2851 rtx_insn *last = get_last_insn ();
2852 rtx first = gen_rtx_REG (word_mode, regno);
2853 if (rtx_insn *pat = targetm.gen_load_multiple (first, x,
2854 GEN_INT (nregs)))
2856 emit_insn (pat);
2857 return;
2859 else
2860 delete_insns_since (last);
2863 for (int i = 0; i < nregs; i++)
2864 emit_move_insn (gen_rtx_REG (word_mode, regno + i),
2865 operand_subword_force (x, i, mode));
2868 /* Copy all or part of a BLKmode value X out of registers starting at REGNO.
2869 The number of registers to be filled is NREGS. */
2871 void
2872 move_block_from_reg (int regno, rtx x, int nregs)
2874 if (nregs == 0)
2875 return;
2877 /* See if the machine can do this with a store multiple insn. */
2878 if (targetm.have_store_multiple ())
2880 rtx_insn *last = get_last_insn ();
2881 rtx first = gen_rtx_REG (word_mode, regno);
2882 if (rtx_insn *pat = targetm.gen_store_multiple (x, first,
2883 GEN_INT (nregs)))
2885 emit_insn (pat);
2886 return;
2888 else
2889 delete_insns_since (last);
2892 for (int i = 0; i < nregs; i++)
2894 rtx tem = operand_subword (x, i, 1, BLKmode);
2896 gcc_assert (tem);
2898 emit_move_insn (tem, gen_rtx_REG (word_mode, regno + i));
2902 /* Generate a PARALLEL rtx for a new non-consecutive group of registers from
2903 ORIG, where ORIG is a non-consecutive group of registers represented by
2904 a PARALLEL. The clone is identical to the original except in that the
2905 original set of registers is replaced by a new set of pseudo registers.
2906 The new set has the same modes as the original set. */
2909 gen_group_rtx (rtx orig)
2911 int i, length;
2912 rtx *tmps;
2914 gcc_assert (GET_CODE (orig) == PARALLEL);
2916 length = XVECLEN (orig, 0);
2917 tmps = XALLOCAVEC (rtx, length);
2919 /* Skip a NULL entry in first slot. */
2920 i = XEXP (XVECEXP (orig, 0, 0), 0) ? 0 : 1;
2922 if (i)
2923 tmps[0] = 0;
2925 for (; i < length; i++)
2927 machine_mode mode = GET_MODE (XEXP (XVECEXP (orig, 0, i), 0));
2928 rtx offset = XEXP (XVECEXP (orig, 0, i), 1);
2930 tmps[i] = gen_rtx_EXPR_LIST (VOIDmode, gen_reg_rtx (mode), offset);
2933 return gen_rtx_PARALLEL (GET_MODE (orig), gen_rtvec_v (length, tmps));
2936 /* A subroutine of emit_group_load. Arguments as for emit_group_load,
2937 except that values are placed in TMPS[i], and must later be moved
2938 into corresponding XEXP (XVECEXP (DST, 0, i), 0) element. */
2940 static void
2941 emit_group_load_1 (rtx *tmps, rtx dst, rtx orig_src, tree type,
2942 poly_int64 ssize)
2944 rtx src;
2945 int start, i;
2946 machine_mode m = GET_MODE (orig_src);
2948 gcc_assert (GET_CODE (dst) == PARALLEL);
2950 if (m != VOIDmode
2951 && !SCALAR_INT_MODE_P (m)
2952 && !MEM_P (orig_src)
2953 && GET_CODE (orig_src) != CONCAT)
2955 scalar_int_mode imode;
2956 if (int_mode_for_mode (GET_MODE (orig_src)).exists (&imode))
2958 src = gen_reg_rtx (imode);
2959 emit_move_insn (gen_lowpart (GET_MODE (orig_src), src), orig_src);
2961 else
2963 src = assign_stack_temp (GET_MODE (orig_src), ssize);
2964 emit_move_insn (src, orig_src);
2966 emit_group_load_1 (tmps, dst, src, type, ssize);
2967 return;
2970 /* Check for a NULL entry, used to indicate that the parameter goes
2971 both on the stack and in registers. */
2972 if (XEXP (XVECEXP (dst, 0, 0), 0))
2973 start = 0;
2974 else
2975 start = 1;
2977 /* Process the pieces. */
2978 for (i = start; i < XVECLEN (dst, 0); i++)
2980 machine_mode mode = GET_MODE (XEXP (XVECEXP (dst, 0, i), 0));
2981 poly_int64 bytepos = rtx_to_poly_int64 (XEXP (XVECEXP (dst, 0, i), 1));
2982 poly_int64 bytelen = GET_MODE_SIZE (mode);
2983 poly_int64 shift = 0;
2985 /* Handle trailing fragments that run over the size of the struct.
2986 It's the target's responsibility to make sure that the fragment
2987 cannot be strictly smaller in some cases and strictly larger
2988 in others. */
2989 gcc_checking_assert (ordered_p (bytepos + bytelen, ssize));
2990 if (known_size_p (ssize) && maybe_gt (bytepos + bytelen, ssize))
2992 /* Arrange to shift the fragment to where it belongs.
2993 extract_bit_field loads to the lsb of the reg. */
2994 if (
2995 #ifdef BLOCK_REG_PADDING
2996 BLOCK_REG_PADDING (GET_MODE (orig_src), type, i == start)
2997 == (BYTES_BIG_ENDIAN ? PAD_UPWARD : PAD_DOWNWARD)
2998 #else
2999 BYTES_BIG_ENDIAN
3000 #endif
3002 shift = (bytelen - (ssize - bytepos)) * BITS_PER_UNIT;
3003 bytelen = ssize - bytepos;
3004 gcc_assert (maybe_gt (bytelen, 0));
3007 /* If we won't be loading directly from memory, protect the real source
3008 from strange tricks we might play; but make sure that the source can
3009 be loaded directly into the destination. */
3010 src = orig_src;
3011 if (!MEM_P (orig_src)
3012 && (!REG_P (orig_src) || HARD_REGISTER_P (orig_src))
3013 && !CONSTANT_P (orig_src))
3015 gcc_assert (GET_MODE (orig_src) != VOIDmode);
3016 src = force_reg (GET_MODE (orig_src), orig_src);
3019 /* Optimize the access just a bit. */
3020 if (MEM_P (src)
3021 && (! targetm.slow_unaligned_access (mode, MEM_ALIGN (src))
3022 || MEM_ALIGN (src) >= GET_MODE_ALIGNMENT (mode))
3023 && multiple_p (bytepos * BITS_PER_UNIT, GET_MODE_ALIGNMENT (mode))
3024 && known_eq (bytelen, GET_MODE_SIZE (mode)))
3026 tmps[i] = gen_reg_rtx (mode);
3027 emit_move_insn (tmps[i], adjust_address (src, mode, bytepos));
3029 else if (COMPLEX_MODE_P (mode)
3030 && GET_MODE (src) == mode
3031 && known_eq (bytelen, GET_MODE_SIZE (mode)))
3032 /* Let emit_move_complex do the bulk of the work. */
3033 tmps[i] = src;
3034 else if (GET_CODE (src) == CONCAT)
3036 poly_int64 slen = GET_MODE_SIZE (GET_MODE (src));
3037 poly_int64 slen0 = GET_MODE_SIZE (GET_MODE (XEXP (src, 0)));
3038 unsigned int elt;
3039 poly_int64 subpos;
3041 if (can_div_trunc_p (bytepos, slen0, &elt, &subpos)
3042 && known_le (subpos + bytelen, slen0))
3044 /* The following assumes that the concatenated objects all
3045 have the same size. In this case, a simple calculation
3046 can be used to determine the object and the bit field
3047 to be extracted. */
3048 tmps[i] = XEXP (src, elt);
3049 if (maybe_ne (subpos, 0)
3050 || maybe_ne (subpos + bytelen, slen0)
3051 || (!CONSTANT_P (tmps[i])
3052 && (!REG_P (tmps[i]) || GET_MODE (tmps[i]) != mode)))
3053 tmps[i] = extract_bit_field (tmps[i], bytelen * BITS_PER_UNIT,
3054 subpos * BITS_PER_UNIT,
3055 1, NULL_RTX, mode, mode, false,
3056 NULL);
3058 else
3060 rtx mem;
3062 gcc_assert (known_eq (bytepos, 0));
3063 mem = assign_stack_temp (GET_MODE (src), slen);
3064 emit_move_insn (mem, src);
3065 tmps[i] = extract_bit_field (mem, bytelen * BITS_PER_UNIT,
3066 0, 1, NULL_RTX, mode, mode, false,
3067 NULL);
3070 else if (CONSTANT_P (src) && GET_MODE (dst) != BLKmode
3071 && XVECLEN (dst, 0) > 1)
3072 tmps[i] = simplify_gen_subreg (mode, src, GET_MODE (dst), bytepos);
3073 else if (CONSTANT_P (src))
3075 if (known_eq (bytelen, ssize))
3076 tmps[i] = src;
3077 else
3079 rtx first, second;
3081 /* TODO: const_wide_int can have sizes other than this... */
3082 gcc_assert (known_eq (2 * bytelen, ssize));
3083 split_double (src, &first, &second);
3084 if (i)
3085 tmps[i] = second;
3086 else
3087 tmps[i] = first;
3090 else if (REG_P (src) && GET_MODE (src) == mode)
3091 tmps[i] = src;
3092 else
3093 tmps[i] = extract_bit_field (src, bytelen * BITS_PER_UNIT,
3094 bytepos * BITS_PER_UNIT, 1, NULL_RTX,
3095 mode, mode, false, NULL);
3097 if (maybe_ne (shift, 0))
3098 tmps[i] = expand_shift (LSHIFT_EXPR, mode, tmps[i],
3099 shift, tmps[i], 0);
3103 /* Emit code to move a block SRC of type TYPE to a block DST,
3104 where DST is non-consecutive registers represented by a PARALLEL.
3105 SSIZE represents the total size of block ORIG_SRC in bytes, or -1
3106 if not known. */
3108 void
3109 emit_group_load (rtx dst, rtx src, tree type, poly_int64 ssize)
3111 rtx *tmps;
3112 int i;
3114 tmps = XALLOCAVEC (rtx, XVECLEN (dst, 0));
3115 emit_group_load_1 (tmps, dst, src, type, ssize);
3117 /* Copy the extracted pieces into the proper (probable) hard regs. */
3118 for (i = 0; i < XVECLEN (dst, 0); i++)
3120 rtx d = XEXP (XVECEXP (dst, 0, i), 0);
3121 if (d == NULL)
3122 continue;
3123 emit_move_insn (d, tmps[i]);
3127 /* Similar, but load SRC into new pseudos in a format that looks like
3128 PARALLEL. This can later be fed to emit_group_move to get things
3129 in the right place. */
3132 emit_group_load_into_temps (rtx parallel, rtx src, tree type, poly_int64 ssize)
3134 rtvec vec;
3135 int i;
3137 vec = rtvec_alloc (XVECLEN (parallel, 0));
3138 emit_group_load_1 (&RTVEC_ELT (vec, 0), parallel, src, type, ssize);
3140 /* Convert the vector to look just like the original PARALLEL, except
3141 with the computed values. */
3142 for (i = 0; i < XVECLEN (parallel, 0); i++)
3144 rtx e = XVECEXP (parallel, 0, i);
3145 rtx d = XEXP (e, 0);
3147 if (d)
3149 d = force_reg (GET_MODE (d), RTVEC_ELT (vec, i));
3150 e = alloc_EXPR_LIST (REG_NOTE_KIND (e), d, XEXP (e, 1));
3152 RTVEC_ELT (vec, i) = e;
3155 return gen_rtx_PARALLEL (GET_MODE (parallel), vec);
3158 /* Emit code to move a block SRC to block DST, where SRC and DST are
3159 non-consecutive groups of registers, each represented by a PARALLEL. */
3161 void
3162 emit_group_move (rtx dst, rtx src)
3164 int i;
3166 gcc_assert (GET_CODE (src) == PARALLEL
3167 && GET_CODE (dst) == PARALLEL
3168 && XVECLEN (src, 0) == XVECLEN (dst, 0));
3170 /* Skip first entry if NULL. */
3171 for (i = XEXP (XVECEXP (src, 0, 0), 0) ? 0 : 1; i < XVECLEN (src, 0); i++)
3172 emit_move_insn (XEXP (XVECEXP (dst, 0, i), 0),
3173 XEXP (XVECEXP (src, 0, i), 0));
3176 /* Move a group of registers represented by a PARALLEL into pseudos. */
3179 emit_group_move_into_temps (rtx src)
3181 rtvec vec = rtvec_alloc (XVECLEN (src, 0));
3182 int i;
3184 for (i = 0; i < XVECLEN (src, 0); i++)
3186 rtx e = XVECEXP (src, 0, i);
3187 rtx d = XEXP (e, 0);
3189 if (d)
3190 e = alloc_EXPR_LIST (REG_NOTE_KIND (e), copy_to_reg (d), XEXP (e, 1));
3191 RTVEC_ELT (vec, i) = e;
3194 return gen_rtx_PARALLEL (GET_MODE (src), vec);
3197 /* Emit code to move a block SRC to a block ORIG_DST of type TYPE,
3198 where SRC is non-consecutive registers represented by a PARALLEL.
3199 SSIZE represents the total size of block ORIG_DST, or -1 if not
3200 known. */
3202 void
3203 emit_group_store (rtx orig_dst, rtx src, tree type ATTRIBUTE_UNUSED,
3204 poly_int64 ssize)
3206 rtx *tmps, dst;
3207 int start, finish, i;
3208 machine_mode m = GET_MODE (orig_dst);
3210 gcc_assert (GET_CODE (src) == PARALLEL);
3212 if (!SCALAR_INT_MODE_P (m)
3213 && !MEM_P (orig_dst) && GET_CODE (orig_dst) != CONCAT)
3215 scalar_int_mode imode;
3216 if (int_mode_for_mode (GET_MODE (orig_dst)).exists (&imode))
3218 dst = gen_reg_rtx (imode);
3219 emit_group_store (dst, src, type, ssize);
3220 dst = gen_lowpart (GET_MODE (orig_dst), dst);
3222 else
3224 dst = assign_stack_temp (GET_MODE (orig_dst), ssize);
3225 emit_group_store (dst, src, type, ssize);
3227 emit_move_insn (orig_dst, dst);
3228 return;
3231 /* Check for a NULL entry, used to indicate that the parameter goes
3232 both on the stack and in registers. */
3233 if (XEXP (XVECEXP (src, 0, 0), 0))
3234 start = 0;
3235 else
3236 start = 1;
3237 finish = XVECLEN (src, 0);
3239 tmps = XALLOCAVEC (rtx, finish);
3241 /* Copy the (probable) hard regs into pseudos. */
3242 for (i = start; i < finish; i++)
3244 rtx reg = XEXP (XVECEXP (src, 0, i), 0);
3245 if (!REG_P (reg) || REGNO (reg) < FIRST_PSEUDO_REGISTER)
3247 tmps[i] = gen_reg_rtx (GET_MODE (reg));
3248 emit_move_insn (tmps[i], reg);
3250 else
3251 tmps[i] = reg;
3254 /* If we won't be storing directly into memory, protect the real destination
3255 from strange tricks we might play. */
3256 dst = orig_dst;
3257 if (GET_CODE (dst) == PARALLEL)
3259 rtx temp;
3261 /* We can get a PARALLEL dst if there is a conditional expression in
3262 a return statement. In that case, the dst and src are the same,
3263 so no action is necessary. */
3264 if (rtx_equal_p (dst, src))
3265 return;
3267 /* It is unclear if we can ever reach here, but we may as well handle
3268 it. Allocate a temporary, and split this into a store/load to/from
3269 the temporary. */
3270 temp = assign_stack_temp (GET_MODE (dst), ssize);
3271 emit_group_store (temp, src, type, ssize);
3272 emit_group_load (dst, temp, type, ssize);
3273 return;
3275 else if (!MEM_P (dst) && GET_CODE (dst) != CONCAT)
3277 machine_mode outer = GET_MODE (dst);
3278 machine_mode inner;
3279 poly_int64 bytepos;
3280 bool done = false;
3281 rtx temp;
3283 if (!REG_P (dst) || REGNO (dst) < FIRST_PSEUDO_REGISTER)
3284 dst = gen_reg_rtx (outer);
3286 /* Make life a bit easier for combine: if the first element of the
3287 vector is the low part of the destination mode, use a paradoxical
3288 subreg to initialize the destination. */
3289 if (start < finish)
3291 inner = GET_MODE (tmps[start]);
3292 bytepos = subreg_lowpart_offset (inner, outer);
3293 if (known_eq (rtx_to_poly_int64 (XEXP (XVECEXP (src, 0, start), 1)),
3294 bytepos))
3296 temp = simplify_gen_subreg (outer, tmps[start], inner, 0);
3297 if (temp)
3299 emit_move_insn (dst, temp);
3300 done = true;
3301 start++;
3306 /* If the first element wasn't the low part, try the last. */
3307 if (!done
3308 && start < finish - 1)
3310 inner = GET_MODE (tmps[finish - 1]);
3311 bytepos = subreg_lowpart_offset (inner, outer);
3312 if (known_eq (rtx_to_poly_int64 (XEXP (XVECEXP (src, 0,
3313 finish - 1), 1)),
3314 bytepos))
3316 temp = simplify_gen_subreg (outer, tmps[finish - 1], inner, 0);
3317 if (temp)
3319 emit_move_insn (dst, temp);
3320 done = true;
3321 finish--;
3326 /* Otherwise, simply initialize the result to zero. */
3327 if (!done)
3328 emit_move_insn (dst, CONST0_RTX (outer));
3331 /* Process the pieces. */
3332 for (i = start; i < finish; i++)
3334 poly_int64 bytepos = rtx_to_poly_int64 (XEXP (XVECEXP (src, 0, i), 1));
3335 machine_mode mode = GET_MODE (tmps[i]);
3336 poly_int64 bytelen = GET_MODE_SIZE (mode);
3337 poly_uint64 adj_bytelen;
3338 rtx dest = dst;
3340 /* Handle trailing fragments that run over the size of the struct.
3341 It's the target's responsibility to make sure that the fragment
3342 cannot be strictly smaller in some cases and strictly larger
3343 in others. */
3344 gcc_checking_assert (ordered_p (bytepos + bytelen, ssize));
3345 if (known_size_p (ssize) && maybe_gt (bytepos + bytelen, ssize))
3346 adj_bytelen = ssize - bytepos;
3347 else
3348 adj_bytelen = bytelen;
3350 /* Deal with destination CONCATs by either storing into one of the parts
3351 or doing a copy after storing into a register or stack temporary. */
3352 if (GET_CODE (dst) == CONCAT)
3354 if (known_le (bytepos + adj_bytelen,
3355 GET_MODE_SIZE (GET_MODE (XEXP (dst, 0)))))
3356 dest = XEXP (dst, 0);
3358 else if (known_ge (bytepos, GET_MODE_SIZE (GET_MODE (XEXP (dst, 0)))))
3360 bytepos -= GET_MODE_SIZE (GET_MODE (XEXP (dst, 0)));
3361 dest = XEXP (dst, 1);
3364 else
3366 machine_mode dest_mode = GET_MODE (dest);
3367 machine_mode tmp_mode = GET_MODE (tmps[i]);
3368 scalar_int_mode dest_imode;
3370 gcc_assert (known_eq (bytepos, 0) && XVECLEN (src, 0));
3372 /* If the source is a single scalar integer register, and the
3373 destination has a complex mode for which a same-sized integer
3374 mode exists, then we can take the left-justified part of the
3375 source in the complex mode. */
3376 if (finish == start + 1
3377 && REG_P (tmps[i])
3378 && SCALAR_INT_MODE_P (tmp_mode)
3379 && COMPLEX_MODE_P (dest_mode)
3380 && int_mode_for_mode (dest_mode).exists (&dest_imode))
3382 const scalar_int_mode tmp_imode
3383 = as_a <scalar_int_mode> (tmp_mode);
3385 if (GET_MODE_BITSIZE (dest_imode)
3386 < GET_MODE_BITSIZE (tmp_imode))
3388 dest = gen_reg_rtx (dest_imode);
3389 if (BYTES_BIG_ENDIAN)
3390 tmps[i] = expand_shift (RSHIFT_EXPR, tmp_mode, tmps[i],
3391 GET_MODE_BITSIZE (tmp_imode)
3392 - GET_MODE_BITSIZE (dest_imode),
3393 NULL_RTX, 1);
3394 emit_move_insn (dest, gen_lowpart (dest_imode, tmps[i]));
3395 dst = gen_lowpart (dest_mode, dest);
3397 else
3398 dst = gen_lowpart (dest_mode, tmps[i]);
3401 /* Otherwise spill the source onto the stack using the more
3402 aligned of the two modes. */
3403 else if (GET_MODE_ALIGNMENT (dest_mode)
3404 >= GET_MODE_ALIGNMENT (tmp_mode))
3406 dest = assign_stack_temp (dest_mode,
3407 GET_MODE_SIZE (dest_mode));
3408 emit_move_insn (adjust_address (dest, tmp_mode, bytepos),
3409 tmps[i]);
3410 dst = dest;
3413 else
3415 dest = assign_stack_temp (tmp_mode,
3416 GET_MODE_SIZE (tmp_mode));
3417 emit_move_insn (dest, tmps[i]);
3418 dst = adjust_address (dest, dest_mode, bytepos);
3421 break;
3425 /* Handle trailing fragments that run over the size of the struct. */
3426 if (known_size_p (ssize) && maybe_gt (bytepos + bytelen, ssize))
3428 /* store_bit_field always takes its value from the lsb.
3429 Move the fragment to the lsb if it's not already there. */
3430 if (
3431 #ifdef BLOCK_REG_PADDING
3432 BLOCK_REG_PADDING (GET_MODE (orig_dst), type, i == start)
3433 == (BYTES_BIG_ENDIAN ? PAD_UPWARD : PAD_DOWNWARD)
3434 #else
3435 BYTES_BIG_ENDIAN
3436 #endif
3439 poly_int64 shift = (bytelen - (ssize - bytepos)) * BITS_PER_UNIT;
3440 tmps[i] = expand_shift (RSHIFT_EXPR, mode, tmps[i],
3441 shift, tmps[i], 0);
3444 /* Make sure not to write past the end of the struct. */
3445 store_bit_field (dest,
3446 adj_bytelen * BITS_PER_UNIT, bytepos * BITS_PER_UNIT,
3447 bytepos * BITS_PER_UNIT, ssize * BITS_PER_UNIT - 1,
3448 VOIDmode, tmps[i], false, false);
3451 /* Optimize the access just a bit. */
3452 else if (MEM_P (dest)
3453 && (!targetm.slow_unaligned_access (mode, MEM_ALIGN (dest))
3454 || MEM_ALIGN (dest) >= GET_MODE_ALIGNMENT (mode))
3455 && multiple_p (bytepos * BITS_PER_UNIT,
3456 GET_MODE_ALIGNMENT (mode))
3457 && known_eq (bytelen, GET_MODE_SIZE (mode)))
3458 emit_move_insn (adjust_address (dest, mode, bytepos), tmps[i]);
3460 else
3461 store_bit_field (dest, bytelen * BITS_PER_UNIT, bytepos * BITS_PER_UNIT,
3462 0, 0, mode, tmps[i], false, false);
3465 /* Copy from the pseudo into the (probable) hard reg. */
3466 if (orig_dst != dst)
3467 emit_move_insn (orig_dst, dst);
3470 /* Return a form of X that does not use a PARALLEL. TYPE is the type
3471 of the value stored in X. */
3474 maybe_emit_group_store (rtx x, tree type)
3476 machine_mode mode = TYPE_MODE (type);
3477 gcc_checking_assert (GET_MODE (x) == VOIDmode || GET_MODE (x) == mode);
3478 if (GET_CODE (x) == PARALLEL)
3480 rtx result = gen_reg_rtx (mode);
3481 emit_group_store (result, x, type, int_size_in_bytes (type));
3482 return result;
3484 return x;
3487 /* Copy a BLKmode object of TYPE out of a register SRCREG into TARGET.
3489 This is used on targets that return BLKmode values in registers. */
3491 static void
3492 copy_blkmode_from_reg (rtx target, rtx srcreg, tree type)
3494 unsigned HOST_WIDE_INT bytes = int_size_in_bytes (type);
3495 rtx src = NULL, dst = NULL;
3496 unsigned HOST_WIDE_INT bitsize = MIN (TYPE_ALIGN (type), BITS_PER_WORD);
3497 unsigned HOST_WIDE_INT bitpos, xbitpos, padding_correction = 0;
3498 /* No current ABI uses variable-sized modes to pass a BLKmnode type. */
3499 fixed_size_mode mode = as_a <fixed_size_mode> (GET_MODE (srcreg));
3500 fixed_size_mode tmode = as_a <fixed_size_mode> (GET_MODE (target));
3501 fixed_size_mode copy_mode;
3503 /* BLKmode registers created in the back-end shouldn't have survived. */
3504 gcc_assert (mode != BLKmode);
3506 /* If the structure doesn't take up a whole number of words, see whether
3507 SRCREG is padded on the left or on the right. If it's on the left,
3508 set PADDING_CORRECTION to the number of bits to skip.
3510 In most ABIs, the structure will be returned at the least end of
3511 the register, which translates to right padding on little-endian
3512 targets and left padding on big-endian targets. The opposite
3513 holds if the structure is returned at the most significant
3514 end of the register. */
3515 if (bytes % UNITS_PER_WORD != 0
3516 && (targetm.calls.return_in_msb (type)
3517 ? !BYTES_BIG_ENDIAN
3518 : BYTES_BIG_ENDIAN))
3519 padding_correction
3520 = (BITS_PER_WORD - ((bytes % UNITS_PER_WORD) * BITS_PER_UNIT));
3522 /* We can use a single move if we have an exact mode for the size. */
3523 else if (MEM_P (target)
3524 && (!targetm.slow_unaligned_access (mode, MEM_ALIGN (target))
3525 || MEM_ALIGN (target) >= GET_MODE_ALIGNMENT (mode))
3526 && bytes == GET_MODE_SIZE (mode))
3528 emit_move_insn (adjust_address (target, mode, 0), srcreg);
3529 return;
3532 /* And if we additionally have the same mode for a register. */
3533 else if (REG_P (target)
3534 && GET_MODE (target) == mode
3535 && bytes == GET_MODE_SIZE (mode))
3537 emit_move_insn (target, srcreg);
3538 return;
3541 /* This code assumes srcreg is at least a full word. If it isn't, copy it
3542 into a new pseudo which is a full word. */
3543 if (GET_MODE_SIZE (mode) < UNITS_PER_WORD)
3545 srcreg = convert_to_mode (word_mode, srcreg, TYPE_UNSIGNED (type));
3546 mode = word_mode;
3549 /* Copy the structure BITSIZE bits at a time. If the target lives in
3550 memory, take care of not reading/writing past its end by selecting
3551 a copy mode suited to BITSIZE. This should always be possible given
3552 how it is computed.
3554 If the target lives in register, make sure not to select a copy mode
3555 larger than the mode of the register.
3557 We could probably emit more efficient code for machines which do not use
3558 strict alignment, but it doesn't seem worth the effort at the current
3559 time. */
3561 copy_mode = word_mode;
3562 if (MEM_P (target))
3564 opt_scalar_int_mode mem_mode = int_mode_for_size (bitsize, 1);
3565 if (mem_mode.exists ())
3566 copy_mode = mem_mode.require ();
3568 else if (REG_P (target) && GET_MODE_BITSIZE (tmode) < BITS_PER_WORD)
3569 copy_mode = tmode;
3571 for (bitpos = 0, xbitpos = padding_correction;
3572 bitpos < bytes * BITS_PER_UNIT;
3573 bitpos += bitsize, xbitpos += bitsize)
3575 /* We need a new source operand each time xbitpos is on a
3576 word boundary and when xbitpos == padding_correction
3577 (the first time through). */
3578 if (xbitpos % BITS_PER_WORD == 0 || xbitpos == padding_correction)
3579 src = operand_subword_force (srcreg, xbitpos / BITS_PER_WORD, mode);
3581 /* We need a new destination operand each time bitpos is on
3582 a word boundary. */
3583 if (REG_P (target) && GET_MODE_BITSIZE (tmode) < BITS_PER_WORD)
3584 dst = target;
3585 else if (bitpos % BITS_PER_WORD == 0)
3586 dst = operand_subword (target, bitpos / BITS_PER_WORD, 1, tmode);
3588 /* Use xbitpos for the source extraction (right justified) and
3589 bitpos for the destination store (left justified). */
3590 store_bit_field (dst, bitsize, bitpos % BITS_PER_WORD, 0, 0, copy_mode,
3591 extract_bit_field (src, bitsize,
3592 xbitpos % BITS_PER_WORD, 1,
3593 NULL_RTX, copy_mode, copy_mode,
3594 false, NULL),
3595 false, false);
3599 /* Copy BLKmode value SRC into a register of mode MODE_IN. Return the
3600 register if it contains any data, otherwise return null.
3602 This is used on targets that return BLKmode values in registers. */
3605 copy_blkmode_to_reg (machine_mode mode_in, tree src)
3607 int i, n_regs;
3608 unsigned HOST_WIDE_INT bitpos, xbitpos, padding_correction = 0, bytes;
3609 unsigned int bitsize;
3610 rtx *dst_words, dst, x, src_word = NULL_RTX, dst_word = NULL_RTX;
3611 /* No current ABI uses variable-sized modes to pass a BLKmnode type. */
3612 fixed_size_mode mode = as_a <fixed_size_mode> (mode_in);
3613 fixed_size_mode dst_mode;
3614 scalar_int_mode min_mode;
3616 gcc_assert (TYPE_MODE (TREE_TYPE (src)) == BLKmode);
3618 x = expand_normal (src);
3620 bytes = arg_int_size_in_bytes (TREE_TYPE (src));
3621 if (bytes == 0)
3622 return NULL_RTX;
3624 /* If the structure doesn't take up a whole number of words, see
3625 whether the register value should be padded on the left or on
3626 the right. Set PADDING_CORRECTION to the number of padding
3627 bits needed on the left side.
3629 In most ABIs, the structure will be returned at the least end of
3630 the register, which translates to right padding on little-endian
3631 targets and left padding on big-endian targets. The opposite
3632 holds if the structure is returned at the most significant
3633 end of the register. */
3634 if (bytes % UNITS_PER_WORD != 0
3635 && (targetm.calls.return_in_msb (TREE_TYPE (src))
3636 ? !BYTES_BIG_ENDIAN
3637 : BYTES_BIG_ENDIAN))
3638 padding_correction = (BITS_PER_WORD - ((bytes % UNITS_PER_WORD)
3639 * BITS_PER_UNIT));
3641 n_regs = (bytes + UNITS_PER_WORD - 1) / UNITS_PER_WORD;
3642 dst_words = XALLOCAVEC (rtx, n_regs);
3643 bitsize = MIN (TYPE_ALIGN (TREE_TYPE (src)), BITS_PER_WORD);
3644 min_mode = smallest_int_mode_for_size (bitsize);
3646 /* Copy the structure BITSIZE bits at a time. */
3647 for (bitpos = 0, xbitpos = padding_correction;
3648 bitpos < bytes * BITS_PER_UNIT;
3649 bitpos += bitsize, xbitpos += bitsize)
3651 /* We need a new destination pseudo each time xbitpos is
3652 on a word boundary and when xbitpos == padding_correction
3653 (the first time through). */
3654 if (xbitpos % BITS_PER_WORD == 0
3655 || xbitpos == padding_correction)
3657 /* Generate an appropriate register. */
3658 dst_word = gen_reg_rtx (word_mode);
3659 dst_words[xbitpos / BITS_PER_WORD] = dst_word;
3661 /* Clear the destination before we move anything into it. */
3662 emit_move_insn (dst_word, CONST0_RTX (word_mode));
3665 /* Find the largest integer mode that can be used to copy all or as
3666 many bits as possible of the structure if the target supports larger
3667 copies. There are too many corner cases here w.r.t to alignments on
3668 the read/writes. So if there is any padding just use single byte
3669 operations. */
3670 opt_scalar_int_mode mode_iter;
3671 if (padding_correction == 0 && !STRICT_ALIGNMENT)
3673 FOR_EACH_MODE_FROM (mode_iter, min_mode)
3675 unsigned int msize = GET_MODE_BITSIZE (mode_iter.require ());
3676 if (msize <= ((bytes * BITS_PER_UNIT) - bitpos)
3677 && msize <= BITS_PER_WORD)
3678 bitsize = msize;
3679 else
3680 break;
3684 /* We need a new source operand each time bitpos is on a word
3685 boundary. */
3686 if (bitpos % BITS_PER_WORD == 0)
3687 src_word = operand_subword_force (x, bitpos / BITS_PER_WORD, BLKmode);
3689 /* Use bitpos for the source extraction (left justified) and
3690 xbitpos for the destination store (right justified). */
3691 store_bit_field (dst_word, bitsize, xbitpos % BITS_PER_WORD,
3692 0, 0, word_mode,
3693 extract_bit_field (src_word, bitsize,
3694 bitpos % BITS_PER_WORD, 1,
3695 NULL_RTX, word_mode, word_mode,
3696 false, NULL),
3697 false, false);
3700 if (mode == BLKmode)
3702 /* Find the smallest integer mode large enough to hold the
3703 entire structure. */
3704 opt_scalar_int_mode mode_iter;
3705 FOR_EACH_MODE_IN_CLASS (mode_iter, MODE_INT)
3706 if (GET_MODE_SIZE (mode_iter.require ()) >= bytes)
3707 break;
3709 /* A suitable mode should have been found. */
3710 mode = mode_iter.require ();
3713 if (GET_MODE_SIZE (mode) < GET_MODE_SIZE (word_mode))
3714 dst_mode = word_mode;
3715 else
3716 dst_mode = mode;
3717 dst = gen_reg_rtx (dst_mode);
3719 for (i = 0; i < n_regs; i++)
3720 emit_move_insn (operand_subword (dst, i, 0, dst_mode), dst_words[i]);
3722 if (mode != dst_mode)
3723 dst = gen_lowpart (mode, dst);
3725 return dst;
3728 /* Add a USE expression for REG to the (possibly empty) list pointed
3729 to by CALL_FUSAGE. REG must denote a hard register. */
3731 void
3732 use_reg_mode (rtx *call_fusage, rtx reg, machine_mode mode)
3734 gcc_assert (REG_P (reg));
3736 if (!HARD_REGISTER_P (reg))
3737 return;
3739 *call_fusage
3740 = gen_rtx_EXPR_LIST (mode, gen_rtx_USE (VOIDmode, reg), *call_fusage);
3743 /* Add a CLOBBER expression for REG to the (possibly empty) list pointed
3744 to by CALL_FUSAGE. REG must denote a hard register. */
3746 void
3747 clobber_reg_mode (rtx *call_fusage, rtx reg, machine_mode mode)
3749 gcc_assert (REG_P (reg) && REGNO (reg) < FIRST_PSEUDO_REGISTER);
3751 *call_fusage
3752 = gen_rtx_EXPR_LIST (mode, gen_rtx_CLOBBER (VOIDmode, reg), *call_fusage);
3755 /* Add USE expressions to *CALL_FUSAGE for each of NREGS consecutive regs,
3756 starting at REGNO. All of these registers must be hard registers. */
3758 void
3759 use_regs (rtx *call_fusage, int regno, int nregs)
3761 int i;
3763 gcc_assert (regno + nregs <= FIRST_PSEUDO_REGISTER);
3765 for (i = 0; i < nregs; i++)
3766 use_reg (call_fusage, regno_reg_rtx[regno + i]);
3769 /* Add USE expressions to *CALL_FUSAGE for each REG contained in the
3770 PARALLEL REGS. This is for calls that pass values in multiple
3771 non-contiguous locations. The Irix 6 ABI has examples of this. */
3773 void
3774 use_group_regs (rtx *call_fusage, rtx regs)
3776 int i;
3778 for (i = 0; i < XVECLEN (regs, 0); i++)
3780 rtx reg = XEXP (XVECEXP (regs, 0, i), 0);
3782 /* A NULL entry means the parameter goes both on the stack and in
3783 registers. This can also be a MEM for targets that pass values
3784 partially on the stack and partially in registers. */
3785 if (reg != 0 && REG_P (reg))
3786 use_reg (call_fusage, reg);
3790 /* Return the defining gimple statement for SSA_NAME NAME if it is an
3791 assigment and the code of the expresion on the RHS is CODE. Return
3792 NULL otherwise. */
3794 static gimple *
3795 get_def_for_expr (tree name, enum tree_code code)
3797 gimple *def_stmt;
3799 if (TREE_CODE (name) != SSA_NAME)
3800 return NULL;
3802 def_stmt = get_gimple_for_ssa_name (name);
3803 if (!def_stmt
3804 || gimple_assign_rhs_code (def_stmt) != code)
3805 return NULL;
3807 return def_stmt;
3810 /* Return the defining gimple statement for SSA_NAME NAME if it is an
3811 assigment and the class of the expresion on the RHS is CLASS. Return
3812 NULL otherwise. */
3814 static gimple *
3815 get_def_for_expr_class (tree name, enum tree_code_class tclass)
3817 gimple *def_stmt;
3819 if (TREE_CODE (name) != SSA_NAME)
3820 return NULL;
3822 def_stmt = get_gimple_for_ssa_name (name);
3823 if (!def_stmt
3824 || TREE_CODE_CLASS (gimple_assign_rhs_code (def_stmt)) != tclass)
3825 return NULL;
3827 return def_stmt;
3830 /* Write zeros through the storage of OBJECT. If OBJECT has BLKmode, SIZE is
3831 its length in bytes. */
3834 clear_storage_hints (rtx object, rtx size, enum block_op_methods method,
3835 unsigned int expected_align, HOST_WIDE_INT expected_size,
3836 unsigned HOST_WIDE_INT min_size,
3837 unsigned HOST_WIDE_INT max_size,
3838 unsigned HOST_WIDE_INT probable_max_size,
3839 unsigned ctz_size)
3841 machine_mode mode = GET_MODE (object);
3842 unsigned int align;
3844 gcc_assert (method == BLOCK_OP_NORMAL || method == BLOCK_OP_TAILCALL);
3846 /* If OBJECT is not BLKmode and SIZE is the same size as its mode,
3847 just move a zero. Otherwise, do this a piece at a time. */
3848 poly_int64 size_val;
3849 if (mode != BLKmode
3850 && poly_int_rtx_p (size, &size_val)
3851 && known_eq (size_val, GET_MODE_SIZE (mode)))
3853 rtx zero = CONST0_RTX (mode);
3854 if (zero != NULL)
3856 emit_move_insn (object, zero);
3857 return NULL;
3860 if (COMPLEX_MODE_P (mode))
3862 zero = CONST0_RTX (GET_MODE_INNER (mode));
3863 if (zero != NULL)
3865 write_complex_part (object, zero, 0, true);
3866 write_complex_part (object, zero, 1, false);
3867 return NULL;
3872 if (size == const0_rtx)
3873 return NULL;
3875 align = MEM_ALIGN (object);
3877 if (CONST_INT_P (size)
3878 && targetm.use_by_pieces_infrastructure_p (INTVAL (size), align,
3879 CLEAR_BY_PIECES,
3880 optimize_insn_for_speed_p ()))
3881 clear_by_pieces (object, INTVAL (size), align);
3882 else if (set_storage_via_setmem (object, size, const0_rtx, align,
3883 expected_align, expected_size,
3884 min_size, max_size, probable_max_size))
3886 else if (try_store_by_multiple_pieces (object, size, ctz_size,
3887 min_size, max_size,
3888 NULL_RTX, 0, align))
3890 else if (ADDR_SPACE_GENERIC_P (MEM_ADDR_SPACE (object)))
3891 return set_storage_via_libcall (object, size, const0_rtx,
3892 method == BLOCK_OP_TAILCALL);
3893 else
3894 gcc_unreachable ();
3896 return NULL;
3900 clear_storage (rtx object, rtx size, enum block_op_methods method)
3902 unsigned HOST_WIDE_INT max, min = 0;
3903 if (GET_CODE (size) == CONST_INT)
3904 min = max = UINTVAL (size);
3905 else
3906 max = GET_MODE_MASK (GET_MODE (size));
3907 return clear_storage_hints (object, size, method, 0, -1, min, max, max, 0);
3911 /* A subroutine of clear_storage. Expand a call to memset.
3912 Return the return value of memset, 0 otherwise. */
3915 set_storage_via_libcall (rtx object, rtx size, rtx val, bool tailcall)
3917 tree call_expr, fn, object_tree, size_tree, val_tree;
3918 machine_mode size_mode;
3920 object = copy_addr_to_reg (XEXP (object, 0));
3921 object_tree = make_tree (ptr_type_node, object);
3923 if (!CONST_INT_P (val))
3924 val = convert_to_mode (TYPE_MODE (integer_type_node), val, 1);
3925 val_tree = make_tree (integer_type_node, val);
3927 size_mode = TYPE_MODE (sizetype);
3928 size = convert_to_mode (size_mode, size, 1);
3929 size = copy_to_mode_reg (size_mode, size);
3930 size_tree = make_tree (sizetype, size);
3932 /* It is incorrect to use the libcall calling conventions for calls to
3933 memset because it can be provided by the user. */
3934 fn = builtin_decl_implicit (BUILT_IN_MEMSET);
3935 call_expr = build_call_expr (fn, 3, object_tree, val_tree, size_tree);
3936 CALL_EXPR_TAILCALL (call_expr) = tailcall;
3938 return expand_call (call_expr, NULL_RTX, false);
3941 /* Expand a setmem pattern; return true if successful. */
3943 bool
3944 set_storage_via_setmem (rtx object, rtx size, rtx val, unsigned int align,
3945 unsigned int expected_align, HOST_WIDE_INT expected_size,
3946 unsigned HOST_WIDE_INT min_size,
3947 unsigned HOST_WIDE_INT max_size,
3948 unsigned HOST_WIDE_INT probable_max_size)
3950 /* Try the most limited insn first, because there's no point
3951 including more than one in the machine description unless
3952 the more limited one has some advantage. */
3954 if (expected_align < align)
3955 expected_align = align;
3956 if (expected_size != -1)
3958 if ((unsigned HOST_WIDE_INT)expected_size > max_size)
3959 expected_size = max_size;
3960 if ((unsigned HOST_WIDE_INT)expected_size < min_size)
3961 expected_size = min_size;
3964 opt_scalar_int_mode mode_iter;
3965 FOR_EACH_MODE_IN_CLASS (mode_iter, MODE_INT)
3967 scalar_int_mode mode = mode_iter.require ();
3968 enum insn_code code = direct_optab_handler (setmem_optab, mode);
3970 if (code != CODE_FOR_nothing
3971 /* We don't need MODE to be narrower than BITS_PER_HOST_WIDE_INT
3972 here because if SIZE is less than the mode mask, as it is
3973 returned by the macro, it will definitely be less than the
3974 actual mode mask. Since SIZE is within the Pmode address
3975 space, we limit MODE to Pmode. */
3976 && ((CONST_INT_P (size)
3977 && ((unsigned HOST_WIDE_INT) INTVAL (size)
3978 <= (GET_MODE_MASK (mode) >> 1)))
3979 || max_size <= (GET_MODE_MASK (mode) >> 1)
3980 || GET_MODE_BITSIZE (mode) >= GET_MODE_BITSIZE (Pmode)))
3982 class expand_operand ops[9];
3983 unsigned int nops;
3985 nops = insn_data[(int) code].n_generator_args;
3986 gcc_assert (nops == 4 || nops == 6 || nops == 8 || nops == 9);
3988 create_fixed_operand (&ops[0], object);
3989 /* The check above guarantees that this size conversion is valid. */
3990 create_convert_operand_to (&ops[1], size, mode, true);
3991 create_convert_operand_from (&ops[2], val, byte_mode, true);
3992 create_integer_operand (&ops[3], align / BITS_PER_UNIT);
3993 if (nops >= 6)
3995 create_integer_operand (&ops[4], expected_align / BITS_PER_UNIT);
3996 create_integer_operand (&ops[5], expected_size);
3998 if (nops >= 8)
4000 create_integer_operand (&ops[6], min_size);
4001 /* If we cannot represent the maximal size,
4002 make parameter NULL. */
4003 if ((HOST_WIDE_INT) max_size != -1)
4004 create_integer_operand (&ops[7], max_size);
4005 else
4006 create_fixed_operand (&ops[7], NULL);
4008 if (nops == 9)
4010 /* If we cannot represent the maximal size,
4011 make parameter NULL. */
4012 if ((HOST_WIDE_INT) probable_max_size != -1)
4013 create_integer_operand (&ops[8], probable_max_size);
4014 else
4015 create_fixed_operand (&ops[8], NULL);
4017 if (maybe_expand_insn (code, nops, ops))
4018 return true;
4022 return false;
4026 /* Write to one of the components of the complex value CPLX. Write VAL to
4027 the real part if IMAG_P is false, and the imaginary part if its true.
4028 If UNDEFINED_P then the value in CPLX is currently undefined. */
4030 void
4031 write_complex_part (rtx cplx, rtx val, bool imag_p, bool undefined_p)
4033 machine_mode cmode;
4034 scalar_mode imode;
4035 unsigned ibitsize;
4037 if (GET_CODE (cplx) == CONCAT)
4039 emit_move_insn (XEXP (cplx, imag_p), val);
4040 return;
4043 cmode = GET_MODE (cplx);
4044 imode = GET_MODE_INNER (cmode);
4045 ibitsize = GET_MODE_BITSIZE (imode);
4047 /* For MEMs simplify_gen_subreg may generate an invalid new address
4048 because, e.g., the original address is considered mode-dependent
4049 by the target, which restricts simplify_subreg from invoking
4050 adjust_address_nv. Instead of preparing fallback support for an
4051 invalid address, we call adjust_address_nv directly. */
4052 if (MEM_P (cplx))
4054 emit_move_insn (adjust_address_nv (cplx, imode,
4055 imag_p ? GET_MODE_SIZE (imode) : 0),
4056 val);
4057 return;
4060 /* If the sub-object is at least word sized, then we know that subregging
4061 will work. This special case is important, since store_bit_field
4062 wants to operate on integer modes, and there's rarely an OImode to
4063 correspond to TCmode. */
4064 if (ibitsize >= BITS_PER_WORD
4065 /* For hard regs we have exact predicates. Assume we can split
4066 the original object if it spans an even number of hard regs.
4067 This special case is important for SCmode on 64-bit platforms
4068 where the natural size of floating-point regs is 32-bit. */
4069 || (REG_P (cplx)
4070 && REGNO (cplx) < FIRST_PSEUDO_REGISTER
4071 && REG_NREGS (cplx) % 2 == 0))
4073 rtx part = simplify_gen_subreg (imode, cplx, cmode,
4074 imag_p ? GET_MODE_SIZE (imode) : 0);
4075 if (part)
4077 emit_move_insn (part, val);
4078 return;
4080 else
4081 /* simplify_gen_subreg may fail for sub-word MEMs. */
4082 gcc_assert (MEM_P (cplx) && ibitsize < BITS_PER_WORD);
4085 store_bit_field (cplx, ibitsize, imag_p ? ibitsize : 0, 0, 0, imode, val,
4086 false, undefined_p);
4089 /* Extract one of the components of the complex value CPLX. Extract the
4090 real part if IMAG_P is false, and the imaginary part if it's true. */
4093 read_complex_part (rtx cplx, bool imag_p)
4095 machine_mode cmode;
4096 scalar_mode imode;
4097 unsigned ibitsize;
4099 if (GET_CODE (cplx) == CONCAT)
4100 return XEXP (cplx, imag_p);
4102 cmode = GET_MODE (cplx);
4103 imode = GET_MODE_INNER (cmode);
4104 ibitsize = GET_MODE_BITSIZE (imode);
4106 /* Special case reads from complex constants that got spilled to memory. */
4107 if (MEM_P (cplx) && GET_CODE (XEXP (cplx, 0)) == SYMBOL_REF)
4109 tree decl = SYMBOL_REF_DECL (XEXP (cplx, 0));
4110 if (decl && TREE_CODE (decl) == COMPLEX_CST)
4112 tree part = imag_p ? TREE_IMAGPART (decl) : TREE_REALPART (decl);
4113 if (CONSTANT_CLASS_P (part))
4114 return expand_expr (part, NULL_RTX, imode, EXPAND_NORMAL);
4118 /* For MEMs simplify_gen_subreg may generate an invalid new address
4119 because, e.g., the original address is considered mode-dependent
4120 by the target, which restricts simplify_subreg from invoking
4121 adjust_address_nv. Instead of preparing fallback support for an
4122 invalid address, we call adjust_address_nv directly. */
4123 if (MEM_P (cplx))
4124 return adjust_address_nv (cplx, imode,
4125 imag_p ? GET_MODE_SIZE (imode) : 0);
4127 /* If the sub-object is at least word sized, then we know that subregging
4128 will work. This special case is important, since extract_bit_field
4129 wants to operate on integer modes, and there's rarely an OImode to
4130 correspond to TCmode. */
4131 if (ibitsize >= BITS_PER_WORD
4132 /* For hard regs we have exact predicates. Assume we can split
4133 the original object if it spans an even number of hard regs.
4134 This special case is important for SCmode on 64-bit platforms
4135 where the natural size of floating-point regs is 32-bit. */
4136 || (REG_P (cplx)
4137 && REGNO (cplx) < FIRST_PSEUDO_REGISTER
4138 && REG_NREGS (cplx) % 2 == 0))
4140 rtx ret = simplify_gen_subreg (imode, cplx, cmode,
4141 imag_p ? GET_MODE_SIZE (imode) : 0);
4142 if (ret)
4143 return ret;
4144 else
4145 /* simplify_gen_subreg may fail for sub-word MEMs. */
4146 gcc_assert (MEM_P (cplx) && ibitsize < BITS_PER_WORD);
4149 return extract_bit_field (cplx, ibitsize, imag_p ? ibitsize : 0,
4150 true, NULL_RTX, imode, imode, false, NULL);
4153 /* A subroutine of emit_move_insn_1. Yet another lowpart generator.
4154 NEW_MODE and OLD_MODE are the same size. Return NULL if X cannot be
4155 represented in NEW_MODE. If FORCE is true, this will never happen, as
4156 we'll force-create a SUBREG if needed. */
4158 static rtx
4159 emit_move_change_mode (machine_mode new_mode,
4160 machine_mode old_mode, rtx x, bool force)
4162 rtx ret;
4164 if (push_operand (x, GET_MODE (x)))
4166 ret = gen_rtx_MEM (new_mode, XEXP (x, 0));
4167 MEM_COPY_ATTRIBUTES (ret, x);
4169 else if (MEM_P (x))
4171 /* We don't have to worry about changing the address since the
4172 size in bytes is supposed to be the same. */
4173 if (reload_in_progress)
4175 /* Copy the MEM to change the mode and move any
4176 substitutions from the old MEM to the new one. */
4177 ret = adjust_address_nv (x, new_mode, 0);
4178 copy_replacements (x, ret);
4180 else
4181 ret = adjust_address (x, new_mode, 0);
4183 else
4185 /* Note that we do want simplify_subreg's behavior of validating
4186 that the new mode is ok for a hard register. If we were to use
4187 simplify_gen_subreg, we would create the subreg, but would
4188 probably run into the target not being able to implement it. */
4189 /* Except, of course, when FORCE is true, when this is exactly what
4190 we want. Which is needed for CCmodes on some targets. */
4191 if (force)
4192 ret = simplify_gen_subreg (new_mode, x, old_mode, 0);
4193 else
4194 ret = simplify_subreg (new_mode, x, old_mode, 0);
4197 return ret;
4200 /* A subroutine of emit_move_insn_1. Generate a move from Y into X using
4201 an integer mode of the same size as MODE. Returns the instruction
4202 emitted, or NULL if such a move could not be generated. */
4204 static rtx_insn *
4205 emit_move_via_integer (machine_mode mode, rtx x, rtx y, bool force)
4207 scalar_int_mode imode;
4208 enum insn_code code;
4210 /* There must exist a mode of the exact size we require. */
4211 if (!int_mode_for_mode (mode).exists (&imode))
4212 return NULL;
4214 /* The target must support moves in this mode. */
4215 code = optab_handler (mov_optab, imode);
4216 if (code == CODE_FOR_nothing)
4217 return NULL;
4219 x = emit_move_change_mode (imode, mode, x, force);
4220 if (x == NULL_RTX)
4221 return NULL;
4222 y = emit_move_change_mode (imode, mode, y, force);
4223 if (y == NULL_RTX)
4224 return NULL;
4225 return emit_insn (GEN_FCN (code) (x, y));
4228 /* A subroutine of emit_move_insn_1. X is a push_operand in MODE.
4229 Return an equivalent MEM that does not use an auto-increment. */
4232 emit_move_resolve_push (machine_mode mode, rtx x)
4234 enum rtx_code code = GET_CODE (XEXP (x, 0));
4235 rtx temp;
4237 poly_int64 adjust = GET_MODE_SIZE (mode);
4238 #ifdef PUSH_ROUNDING
4239 adjust = PUSH_ROUNDING (adjust);
4240 #endif
4241 if (code == PRE_DEC || code == POST_DEC)
4242 adjust = -adjust;
4243 else if (code == PRE_MODIFY || code == POST_MODIFY)
4245 rtx expr = XEXP (XEXP (x, 0), 1);
4247 gcc_assert (GET_CODE (expr) == PLUS || GET_CODE (expr) == MINUS);
4248 poly_int64 val = rtx_to_poly_int64 (XEXP (expr, 1));
4249 if (GET_CODE (expr) == MINUS)
4250 val = -val;
4251 gcc_assert (known_eq (adjust, val) || known_eq (adjust, -val));
4252 adjust = val;
4255 /* Do not use anti_adjust_stack, since we don't want to update
4256 stack_pointer_delta. */
4257 temp = expand_simple_binop (Pmode, PLUS, stack_pointer_rtx,
4258 gen_int_mode (adjust, Pmode), stack_pointer_rtx,
4259 0, OPTAB_LIB_WIDEN);
4260 if (temp != stack_pointer_rtx)
4261 emit_move_insn (stack_pointer_rtx, temp);
4263 switch (code)
4265 case PRE_INC:
4266 case PRE_DEC:
4267 case PRE_MODIFY:
4268 temp = stack_pointer_rtx;
4269 break;
4270 case POST_INC:
4271 case POST_DEC:
4272 case POST_MODIFY:
4273 temp = plus_constant (Pmode, stack_pointer_rtx, -adjust);
4274 break;
4275 default:
4276 gcc_unreachable ();
4279 return replace_equiv_address (x, temp);
4282 /* A subroutine of emit_move_complex. Generate a move from Y into X.
4283 X is known to satisfy push_operand, and MODE is known to be complex.
4284 Returns the last instruction emitted. */
4286 rtx_insn *
4287 emit_move_complex_push (machine_mode mode, rtx x, rtx y)
4289 scalar_mode submode = GET_MODE_INNER (mode);
4290 bool imag_first;
4292 #ifdef PUSH_ROUNDING
4293 poly_int64 submodesize = GET_MODE_SIZE (submode);
4295 /* In case we output to the stack, but the size is smaller than the
4296 machine can push exactly, we need to use move instructions. */
4297 if (maybe_ne (PUSH_ROUNDING (submodesize), submodesize))
4299 x = emit_move_resolve_push (mode, x);
4300 return emit_move_insn (x, y);
4302 #endif
4304 /* Note that the real part always precedes the imag part in memory
4305 regardless of machine's endianness. */
4306 switch (GET_CODE (XEXP (x, 0)))
4308 case PRE_DEC:
4309 case POST_DEC:
4310 imag_first = true;
4311 break;
4312 case PRE_INC:
4313 case POST_INC:
4314 imag_first = false;
4315 break;
4316 default:
4317 gcc_unreachable ();
4320 emit_move_insn (gen_rtx_MEM (submode, XEXP (x, 0)),
4321 read_complex_part (y, imag_first));
4322 return emit_move_insn (gen_rtx_MEM (submode, XEXP (x, 0)),
4323 read_complex_part (y, !imag_first));
4326 /* A subroutine of emit_move_complex. Perform the move from Y to X
4327 via two moves of the parts. Returns the last instruction emitted. */
4329 rtx_insn *
4330 emit_move_complex_parts (rtx x, rtx y)
4332 /* Show the output dies here. This is necessary for SUBREGs
4333 of pseudos since we cannot track their lifetimes correctly;
4334 hard regs shouldn't appear here except as return values. */
4335 if (!reload_completed && !reload_in_progress
4336 && REG_P (x) && !reg_overlap_mentioned_p (x, y))
4337 emit_clobber (x);
4339 write_complex_part (x, read_complex_part (y, false), false, true);
4340 write_complex_part (x, read_complex_part (y, true), true, false);
4342 return get_last_insn ();
4345 /* A subroutine of emit_move_insn_1. Generate a move from Y into X.
4346 MODE is known to be complex. Returns the last instruction emitted. */
4348 static rtx_insn *
4349 emit_move_complex (machine_mode mode, rtx x, rtx y)
4351 bool try_int;
4353 /* Need to take special care for pushes, to maintain proper ordering
4354 of the data, and possibly extra padding. */
4355 if (push_operand (x, mode))
4356 return emit_move_complex_push (mode, x, y);
4358 /* See if we can coerce the target into moving both values at once, except
4359 for floating point where we favor moving as parts if this is easy. */
4360 if (GET_MODE_CLASS (mode) == MODE_COMPLEX_FLOAT
4361 && optab_handler (mov_optab, GET_MODE_INNER (mode)) != CODE_FOR_nothing
4362 && !(REG_P (x)
4363 && HARD_REGISTER_P (x)
4364 && REG_NREGS (x) == 1)
4365 && !(REG_P (y)
4366 && HARD_REGISTER_P (y)
4367 && REG_NREGS (y) == 1))
4368 try_int = false;
4369 /* Not possible if the values are inherently not adjacent. */
4370 else if (GET_CODE (x) == CONCAT || GET_CODE (y) == CONCAT)
4371 try_int = false;
4372 /* Is possible if both are registers (or subregs of registers). */
4373 else if (register_operand (x, mode) && register_operand (y, mode))
4374 try_int = true;
4375 /* If one of the operands is a memory, and alignment constraints
4376 are friendly enough, we may be able to do combined memory operations.
4377 We do not attempt this if Y is a constant because that combination is
4378 usually better with the by-parts thing below. */
4379 else if ((MEM_P (x) ? !CONSTANT_P (y) : MEM_P (y))
4380 && (!STRICT_ALIGNMENT
4381 || get_mode_alignment (mode) == BIGGEST_ALIGNMENT))
4382 try_int = true;
4383 else
4384 try_int = false;
4386 if (try_int)
4388 rtx_insn *ret;
4390 /* For memory to memory moves, optimal behavior can be had with the
4391 existing block move logic. But use normal expansion if optimizing
4392 for size. */
4393 if (MEM_P (x) && MEM_P (y))
4395 emit_block_move (x, y, gen_int_mode (GET_MODE_SIZE (mode), Pmode),
4396 (optimize_insn_for_speed_p()
4397 ? BLOCK_OP_NO_LIBCALL : BLOCK_OP_NORMAL));
4398 return get_last_insn ();
4401 ret = emit_move_via_integer (mode, x, y, true);
4402 if (ret)
4403 return ret;
4406 return emit_move_complex_parts (x, y);
4409 /* A subroutine of emit_move_insn_1. Generate a move from Y into X.
4410 MODE is known to be MODE_CC. Returns the last instruction emitted. */
4412 static rtx_insn *
4413 emit_move_ccmode (machine_mode mode, rtx x, rtx y)
4415 rtx_insn *ret;
4417 /* Assume all MODE_CC modes are equivalent; if we have movcc, use it. */
4418 if (mode != CCmode)
4420 enum insn_code code = optab_handler (mov_optab, CCmode);
4421 if (code != CODE_FOR_nothing)
4423 x = emit_move_change_mode (CCmode, mode, x, true);
4424 y = emit_move_change_mode (CCmode, mode, y, true);
4425 return emit_insn (GEN_FCN (code) (x, y));
4429 /* Otherwise, find the MODE_INT mode of the same width. */
4430 ret = emit_move_via_integer (mode, x, y, false);
4431 gcc_assert (ret != NULL);
4432 return ret;
4435 /* Return true if word I of OP lies entirely in the
4436 undefined bits of a paradoxical subreg. */
4438 static bool
4439 undefined_operand_subword_p (const_rtx op, int i)
4441 if (GET_CODE (op) != SUBREG)
4442 return false;
4443 machine_mode innermostmode = GET_MODE (SUBREG_REG (op));
4444 poly_int64 offset = i * UNITS_PER_WORD + subreg_memory_offset (op);
4445 return (known_ge (offset, GET_MODE_SIZE (innermostmode))
4446 || known_le (offset, -UNITS_PER_WORD));
4449 /* A subroutine of emit_move_insn_1. Generate a move from Y into X.
4450 MODE is any multi-word or full-word mode that lacks a move_insn
4451 pattern. Note that you will get better code if you define such
4452 patterns, even if they must turn into multiple assembler instructions. */
4454 static rtx_insn *
4455 emit_move_multi_word (machine_mode mode, rtx x, rtx y)
4457 rtx_insn *last_insn = 0;
4458 rtx_insn *seq;
4459 rtx inner;
4460 bool need_clobber;
4461 int i, mode_size;
4463 /* This function can only handle cases where the number of words is
4464 known at compile time. */
4465 mode_size = GET_MODE_SIZE (mode).to_constant ();
4466 gcc_assert (mode_size >= UNITS_PER_WORD);
4468 /* If X is a push on the stack, do the push now and replace
4469 X with a reference to the stack pointer. */
4470 if (push_operand (x, mode))
4471 x = emit_move_resolve_push (mode, x);
4473 /* If we are in reload, see if either operand is a MEM whose address
4474 is scheduled for replacement. */
4475 if (reload_in_progress && MEM_P (x)
4476 && (inner = find_replacement (&XEXP (x, 0))) != XEXP (x, 0))
4477 x = replace_equiv_address_nv (x, inner);
4478 if (reload_in_progress && MEM_P (y)
4479 && (inner = find_replacement (&XEXP (y, 0))) != XEXP (y, 0))
4480 y = replace_equiv_address_nv (y, inner);
4482 start_sequence ();
4484 need_clobber = false;
4485 for (i = 0; i < CEIL (mode_size, UNITS_PER_WORD); i++)
4487 /* Do not generate code for a move if it would go entirely
4488 to the non-existing bits of a paradoxical subreg. */
4489 if (undefined_operand_subword_p (x, i))
4490 continue;
4492 rtx xpart = operand_subword (x, i, 1, mode);
4493 rtx ypart;
4495 /* Do not generate code for a move if it would come entirely
4496 from the undefined bits of a paradoxical subreg. */
4497 if (undefined_operand_subword_p (y, i))
4498 continue;
4500 ypart = operand_subword (y, i, 1, mode);
4502 /* If we can't get a part of Y, put Y into memory if it is a
4503 constant. Otherwise, force it into a register. Then we must
4504 be able to get a part of Y. */
4505 if (ypart == 0 && CONSTANT_P (y))
4507 y = use_anchored_address (force_const_mem (mode, y));
4508 ypart = operand_subword (y, i, 1, mode);
4510 else if (ypart == 0)
4511 ypart = operand_subword_force (y, i, mode);
4513 gcc_assert (xpart && ypart);
4515 need_clobber |= (GET_CODE (xpart) == SUBREG);
4517 last_insn = emit_move_insn (xpart, ypart);
4520 seq = get_insns ();
4521 end_sequence ();
4523 /* Show the output dies here. This is necessary for SUBREGs
4524 of pseudos since we cannot track their lifetimes correctly;
4525 hard regs shouldn't appear here except as return values.
4526 We never want to emit such a clobber after reload. */
4527 if (x != y
4528 && ! (reload_in_progress || reload_completed)
4529 && need_clobber != 0)
4530 emit_clobber (x);
4532 emit_insn (seq);
4534 return last_insn;
4537 /* Low level part of emit_move_insn.
4538 Called just like emit_move_insn, but assumes X and Y
4539 are basically valid. */
4541 rtx_insn *
4542 emit_move_insn_1 (rtx x, rtx y)
4544 machine_mode mode = GET_MODE (x);
4545 enum insn_code code;
4547 gcc_assert ((unsigned int) mode < (unsigned int) MAX_MACHINE_MODE);
4549 code = optab_handler (mov_optab, mode);
4550 if (code != CODE_FOR_nothing)
4551 return emit_insn (GEN_FCN (code) (x, y));
4553 /* Expand complex moves by moving real part and imag part. */
4554 if (COMPLEX_MODE_P (mode))
4555 return emit_move_complex (mode, x, y);
4557 if (GET_MODE_CLASS (mode) == MODE_DECIMAL_FLOAT
4558 || ALL_FIXED_POINT_MODE_P (mode))
4560 rtx_insn *result = emit_move_via_integer (mode, x, y, true);
4562 /* If we can't find an integer mode, use multi words. */
4563 if (result)
4564 return result;
4565 else
4566 return emit_move_multi_word (mode, x, y);
4569 if (GET_MODE_CLASS (mode) == MODE_CC)
4570 return emit_move_ccmode (mode, x, y);
4572 /* Try using a move pattern for the corresponding integer mode. This is
4573 only safe when simplify_subreg can convert MODE constants into integer
4574 constants. At present, it can only do this reliably if the value
4575 fits within a HOST_WIDE_INT. */
4576 if (!CONSTANT_P (y)
4577 || known_le (GET_MODE_BITSIZE (mode), HOST_BITS_PER_WIDE_INT))
4579 rtx_insn *ret = emit_move_via_integer (mode, x, y, lra_in_progress);
4581 if (ret)
4583 if (! lra_in_progress || recog (PATTERN (ret), ret, 0) >= 0)
4584 return ret;
4588 return emit_move_multi_word (mode, x, y);
4591 /* Generate code to copy Y into X.
4592 Both Y and X must have the same mode, except that
4593 Y can be a constant with VOIDmode.
4594 This mode cannot be BLKmode; use emit_block_move for that.
4596 Return the last instruction emitted. */
4598 rtx_insn *
4599 emit_move_insn (rtx x, rtx y)
4601 machine_mode mode = GET_MODE (x);
4602 rtx y_cst = NULL_RTX;
4603 rtx_insn *last_insn;
4604 rtx set;
4606 gcc_assert (mode != BLKmode
4607 && (GET_MODE (y) == mode || GET_MODE (y) == VOIDmode));
4609 /* If we have a copy that looks like one of the following patterns:
4610 (set (subreg:M1 (reg:M2 ...)) (subreg:M1 (reg:M2 ...)))
4611 (set (subreg:M1 (reg:M2 ...)) (mem:M1 ADDR))
4612 (set (mem:M1 ADDR) (subreg:M1 (reg:M2 ...)))
4613 (set (subreg:M1 (reg:M2 ...)) (constant C))
4614 where mode M1 is equal in size to M2, try to detect whether the
4615 mode change involves an implicit round trip through memory.
4616 If so, see if we can avoid that by removing the subregs and
4617 doing the move in mode M2 instead. */
4619 rtx x_inner = NULL_RTX;
4620 rtx y_inner = NULL_RTX;
4622 auto candidate_subreg_p = [&](rtx subreg) {
4623 return (REG_P (SUBREG_REG (subreg))
4624 && known_eq (GET_MODE_SIZE (GET_MODE (SUBREG_REG (subreg))),
4625 GET_MODE_SIZE (GET_MODE (subreg)))
4626 && optab_handler (mov_optab, GET_MODE (SUBREG_REG (subreg)))
4627 != CODE_FOR_nothing);
4630 auto candidate_mem_p = [&](machine_mode innermode, rtx mem) {
4631 return (!targetm.can_change_mode_class (innermode, GET_MODE (mem), ALL_REGS)
4632 && !push_operand (mem, GET_MODE (mem))
4633 /* Not a candiate if innermode requires too much alignment. */
4634 && (MEM_ALIGN (mem) >= GET_MODE_ALIGNMENT (innermode)
4635 || targetm.slow_unaligned_access (GET_MODE (mem),
4636 MEM_ALIGN (mem))
4637 || !targetm.slow_unaligned_access (innermode,
4638 MEM_ALIGN (mem))));
4641 if (SUBREG_P (x) && candidate_subreg_p (x))
4642 x_inner = SUBREG_REG (x);
4644 if (SUBREG_P (y) && candidate_subreg_p (y))
4645 y_inner = SUBREG_REG (y);
4647 if (x_inner != NULL_RTX
4648 && y_inner != NULL_RTX
4649 && GET_MODE (x_inner) == GET_MODE (y_inner)
4650 && !targetm.can_change_mode_class (GET_MODE (x_inner), mode, ALL_REGS))
4652 x = x_inner;
4653 y = y_inner;
4654 mode = GET_MODE (x_inner);
4656 else if (x_inner != NULL_RTX
4657 && MEM_P (y)
4658 && candidate_mem_p (GET_MODE (x_inner), y))
4660 x = x_inner;
4661 y = adjust_address (y, GET_MODE (x_inner), 0);
4662 mode = GET_MODE (x_inner);
4664 else if (y_inner != NULL_RTX
4665 && MEM_P (x)
4666 && candidate_mem_p (GET_MODE (y_inner), x))
4668 x = adjust_address (x, GET_MODE (y_inner), 0);
4669 y = y_inner;
4670 mode = GET_MODE (y_inner);
4672 else if (x_inner != NULL_RTX
4673 && CONSTANT_P (y)
4674 && !targetm.can_change_mode_class (GET_MODE (x_inner),
4675 mode, ALL_REGS)
4676 && (y_inner = simplify_subreg (GET_MODE (x_inner), y, mode, 0)))
4678 x = x_inner;
4679 y = y_inner;
4680 mode = GET_MODE (x_inner);
4683 if (CONSTANT_P (y))
4685 if (optimize
4686 && SCALAR_FLOAT_MODE_P (GET_MODE (x))
4687 && (last_insn = compress_float_constant (x, y)))
4688 return last_insn;
4690 y_cst = y;
4692 if (!targetm.legitimate_constant_p (mode, y))
4694 y = force_const_mem (mode, y);
4696 /* If the target's cannot_force_const_mem prevented the spill,
4697 assume that the target's move expanders will also take care
4698 of the non-legitimate constant. */
4699 if (!y)
4700 y = y_cst;
4701 else
4702 y = use_anchored_address (y);
4706 /* If X or Y are memory references, verify that their addresses are valid
4707 for the machine. */
4708 if (MEM_P (x)
4709 && (! memory_address_addr_space_p (GET_MODE (x), XEXP (x, 0),
4710 MEM_ADDR_SPACE (x))
4711 && ! push_operand (x, GET_MODE (x))))
4712 x = validize_mem (x);
4714 if (MEM_P (y)
4715 && ! memory_address_addr_space_p (GET_MODE (y), XEXP (y, 0),
4716 MEM_ADDR_SPACE (y)))
4717 y = validize_mem (y);
4719 gcc_assert (mode != BLKmode);
4721 last_insn = emit_move_insn_1 (x, y);
4723 if (y_cst && REG_P (x)
4724 && (set = single_set (last_insn)) != NULL_RTX
4725 && SET_DEST (set) == x
4726 && ! rtx_equal_p (y_cst, SET_SRC (set)))
4727 set_unique_reg_note (last_insn, REG_EQUAL, copy_rtx (y_cst));
4729 return last_insn;
4732 /* Generate the body of an instruction to copy Y into X.
4733 It may be a list of insns, if one insn isn't enough. */
4735 rtx_insn *
4736 gen_move_insn (rtx x, rtx y)
4738 rtx_insn *seq;
4740 start_sequence ();
4741 emit_move_insn_1 (x, y);
4742 seq = get_insns ();
4743 end_sequence ();
4744 return seq;
4747 /* If Y is representable exactly in a narrower mode, and the target can
4748 perform the extension directly from constant or memory, then emit the
4749 move as an extension. */
4751 static rtx_insn *
4752 compress_float_constant (rtx x, rtx y)
4754 machine_mode dstmode = GET_MODE (x);
4755 machine_mode orig_srcmode = GET_MODE (y);
4756 machine_mode srcmode;
4757 const REAL_VALUE_TYPE *r;
4758 int oldcost, newcost;
4759 bool speed = optimize_insn_for_speed_p ();
4761 r = CONST_DOUBLE_REAL_VALUE (y);
4763 if (targetm.legitimate_constant_p (dstmode, y))
4764 oldcost = set_src_cost (y, orig_srcmode, speed);
4765 else
4766 oldcost = set_src_cost (force_const_mem (dstmode, y), dstmode, speed);
4768 FOR_EACH_MODE_UNTIL (srcmode, orig_srcmode)
4770 enum insn_code ic;
4771 rtx trunc_y;
4772 rtx_insn *last_insn;
4774 /* Skip if the target can't extend this way. */
4775 ic = can_extend_p (dstmode, srcmode, 0);
4776 if (ic == CODE_FOR_nothing)
4777 continue;
4779 /* Skip if the narrowed value isn't exact. */
4780 if (! exact_real_truncate (srcmode, r))
4781 continue;
4783 trunc_y = const_double_from_real_value (*r, srcmode);
4785 if (targetm.legitimate_constant_p (srcmode, trunc_y))
4787 /* Skip if the target needs extra instructions to perform
4788 the extension. */
4789 if (!insn_operand_matches (ic, 1, trunc_y))
4790 continue;
4791 /* This is valid, but may not be cheaper than the original. */
4792 newcost = set_src_cost (gen_rtx_FLOAT_EXTEND (dstmode, trunc_y),
4793 dstmode, speed);
4794 if (oldcost < newcost)
4795 continue;
4797 else if (float_extend_from_mem[dstmode][srcmode])
4799 trunc_y = force_const_mem (srcmode, trunc_y);
4800 /* This is valid, but may not be cheaper than the original. */
4801 newcost = set_src_cost (gen_rtx_FLOAT_EXTEND (dstmode, trunc_y),
4802 dstmode, speed);
4803 if (oldcost < newcost)
4804 continue;
4805 trunc_y = validize_mem (trunc_y);
4807 else
4808 continue;
4810 /* For CSE's benefit, force the compressed constant pool entry
4811 into a new pseudo. This constant may be used in different modes,
4812 and if not, combine will put things back together for us. */
4813 trunc_y = force_reg (srcmode, trunc_y);
4815 /* If x is a hard register, perform the extension into a pseudo,
4816 so that e.g. stack realignment code is aware of it. */
4817 rtx target = x;
4818 if (REG_P (x) && HARD_REGISTER_P (x))
4819 target = gen_reg_rtx (dstmode);
4821 emit_unop_insn (ic, target, trunc_y, UNKNOWN);
4822 last_insn = get_last_insn ();
4824 if (REG_P (target))
4825 set_unique_reg_note (last_insn, REG_EQUAL, y);
4827 if (target != x)
4828 return emit_move_insn (x, target);
4829 return last_insn;
4832 return NULL;
4835 /* Pushing data onto the stack. */
4837 /* Push a block of length SIZE (perhaps variable)
4838 and return an rtx to address the beginning of the block.
4839 The value may be virtual_outgoing_args_rtx.
4841 EXTRA is the number of bytes of padding to push in addition to SIZE.
4842 BELOW nonzero means this padding comes at low addresses;
4843 otherwise, the padding comes at high addresses. */
4846 push_block (rtx size, poly_int64 extra, int below)
4848 rtx temp;
4850 size = convert_modes (Pmode, ptr_mode, size, 1);
4851 if (CONSTANT_P (size))
4852 anti_adjust_stack (plus_constant (Pmode, size, extra));
4853 else if (REG_P (size) && known_eq (extra, 0))
4854 anti_adjust_stack (size);
4855 else
4857 temp = copy_to_mode_reg (Pmode, size);
4858 if (maybe_ne (extra, 0))
4859 temp = expand_binop (Pmode, add_optab, temp,
4860 gen_int_mode (extra, Pmode),
4861 temp, 0, OPTAB_LIB_WIDEN);
4862 anti_adjust_stack (temp);
4865 if (STACK_GROWS_DOWNWARD)
4867 temp = virtual_outgoing_args_rtx;
4868 if (maybe_ne (extra, 0) && below)
4869 temp = plus_constant (Pmode, temp, extra);
4871 else
4873 poly_int64 csize;
4874 if (poly_int_rtx_p (size, &csize))
4875 temp = plus_constant (Pmode, virtual_outgoing_args_rtx,
4876 -csize - (below ? 0 : extra));
4877 else if (maybe_ne (extra, 0) && !below)
4878 temp = gen_rtx_PLUS (Pmode, virtual_outgoing_args_rtx,
4879 negate_rtx (Pmode, plus_constant (Pmode, size,
4880 extra)));
4881 else
4882 temp = gen_rtx_PLUS (Pmode, virtual_outgoing_args_rtx,
4883 negate_rtx (Pmode, size));
4886 return memory_address (NARROWEST_INT_MODE, temp);
4889 /* A utility routine that returns the base of an auto-inc memory, or NULL. */
4891 static rtx
4892 mem_autoinc_base (rtx mem)
4894 if (MEM_P (mem))
4896 rtx addr = XEXP (mem, 0);
4897 if (GET_RTX_CLASS (GET_CODE (addr)) == RTX_AUTOINC)
4898 return XEXP (addr, 0);
4900 return NULL;
4903 /* A utility routine used here, in reload, and in try_split. The insns
4904 after PREV up to and including LAST are known to adjust the stack,
4905 with a final value of END_ARGS_SIZE. Iterate backward from LAST
4906 placing notes as appropriate. PREV may be NULL, indicating the
4907 entire insn sequence prior to LAST should be scanned.
4909 The set of allowed stack pointer modifications is small:
4910 (1) One or more auto-inc style memory references (aka pushes),
4911 (2) One or more addition/subtraction with the SP as destination,
4912 (3) A single move insn with the SP as destination,
4913 (4) A call_pop insn,
4914 (5) Noreturn call insns if !ACCUMULATE_OUTGOING_ARGS.
4916 Insns in the sequence that do not modify the SP are ignored,
4917 except for noreturn calls.
4919 The return value is the amount of adjustment that can be trivially
4920 verified, via immediate operand or auto-inc. If the adjustment
4921 cannot be trivially extracted, the return value is HOST_WIDE_INT_MIN. */
4923 poly_int64
4924 find_args_size_adjust (rtx_insn *insn)
4926 rtx dest, set, pat;
4927 int i;
4929 pat = PATTERN (insn);
4930 set = NULL;
4932 /* Look for a call_pop pattern. */
4933 if (CALL_P (insn))
4935 /* We have to allow non-call_pop patterns for the case
4936 of emit_single_push_insn of a TLS address. */
4937 if (GET_CODE (pat) != PARALLEL)
4938 return 0;
4940 /* All call_pop have a stack pointer adjust in the parallel.
4941 The call itself is always first, and the stack adjust is
4942 usually last, so search from the end. */
4943 for (i = XVECLEN (pat, 0) - 1; i > 0; --i)
4945 set = XVECEXP (pat, 0, i);
4946 if (GET_CODE (set) != SET)
4947 continue;
4948 dest = SET_DEST (set);
4949 if (dest == stack_pointer_rtx)
4950 break;
4952 /* We'd better have found the stack pointer adjust. */
4953 if (i == 0)
4954 return 0;
4955 /* Fall through to process the extracted SET and DEST
4956 as if it was a standalone insn. */
4958 else if (GET_CODE (pat) == SET)
4959 set = pat;
4960 else if ((set = single_set (insn)) != NULL)
4962 else if (GET_CODE (pat) == PARALLEL)
4964 /* ??? Some older ports use a parallel with a stack adjust
4965 and a store for a PUSH_ROUNDING pattern, rather than a
4966 PRE/POST_MODIFY rtx. Don't force them to update yet... */
4967 /* ??? See h8300 and m68k, pushqi1. */
4968 for (i = XVECLEN (pat, 0) - 1; i >= 0; --i)
4970 set = XVECEXP (pat, 0, i);
4971 if (GET_CODE (set) != SET)
4972 continue;
4973 dest = SET_DEST (set);
4974 if (dest == stack_pointer_rtx)
4975 break;
4977 /* We do not expect an auto-inc of the sp in the parallel. */
4978 gcc_checking_assert (mem_autoinc_base (dest) != stack_pointer_rtx);
4979 gcc_checking_assert (mem_autoinc_base (SET_SRC (set))
4980 != stack_pointer_rtx);
4982 if (i < 0)
4983 return 0;
4985 else
4986 return 0;
4988 dest = SET_DEST (set);
4990 /* Look for direct modifications of the stack pointer. */
4991 if (REG_P (dest) && REGNO (dest) == STACK_POINTER_REGNUM)
4993 /* Look for a trivial adjustment, otherwise assume nothing. */
4994 /* Note that the SPU restore_stack_block pattern refers to
4995 the stack pointer in V4SImode. Consider that non-trivial. */
4996 poly_int64 offset;
4997 if (SCALAR_INT_MODE_P (GET_MODE (dest))
4998 && strip_offset (SET_SRC (set), &offset) == stack_pointer_rtx)
4999 return offset;
5000 /* ??? Reload can generate no-op moves, which will be cleaned
5001 up later. Recognize it and continue searching. */
5002 else if (rtx_equal_p (dest, SET_SRC (set)))
5003 return 0;
5004 else
5005 return HOST_WIDE_INT_MIN;
5007 else
5009 rtx mem, addr;
5011 /* Otherwise only think about autoinc patterns. */
5012 if (mem_autoinc_base (dest) == stack_pointer_rtx)
5014 mem = dest;
5015 gcc_checking_assert (mem_autoinc_base (SET_SRC (set))
5016 != stack_pointer_rtx);
5018 else if (mem_autoinc_base (SET_SRC (set)) == stack_pointer_rtx)
5019 mem = SET_SRC (set);
5020 else
5021 return 0;
5023 addr = XEXP (mem, 0);
5024 switch (GET_CODE (addr))
5026 case PRE_INC:
5027 case POST_INC:
5028 return GET_MODE_SIZE (GET_MODE (mem));
5029 case PRE_DEC:
5030 case POST_DEC:
5031 return -GET_MODE_SIZE (GET_MODE (mem));
5032 case PRE_MODIFY:
5033 case POST_MODIFY:
5034 addr = XEXP (addr, 1);
5035 gcc_assert (GET_CODE (addr) == PLUS);
5036 gcc_assert (XEXP (addr, 0) == stack_pointer_rtx);
5037 return rtx_to_poly_int64 (XEXP (addr, 1));
5038 default:
5039 gcc_unreachable ();
5044 poly_int64
5045 fixup_args_size_notes (rtx_insn *prev, rtx_insn *last,
5046 poly_int64 end_args_size)
5048 poly_int64 args_size = end_args_size;
5049 bool saw_unknown = false;
5050 rtx_insn *insn;
5052 for (insn = last; insn != prev; insn = PREV_INSN (insn))
5054 if (!NONDEBUG_INSN_P (insn))
5055 continue;
5057 /* We might have existing REG_ARGS_SIZE notes, e.g. when pushing
5058 a call argument containing a TLS address that itself requires
5059 a call to __tls_get_addr. The handling of stack_pointer_delta
5060 in emit_single_push_insn is supposed to ensure that any such
5061 notes are already correct. */
5062 rtx note = find_reg_note (insn, REG_ARGS_SIZE, NULL_RTX);
5063 gcc_assert (!note || known_eq (args_size, get_args_size (note)));
5065 poly_int64 this_delta = find_args_size_adjust (insn);
5066 if (known_eq (this_delta, 0))
5068 if (!CALL_P (insn)
5069 || ACCUMULATE_OUTGOING_ARGS
5070 || find_reg_note (insn, REG_NORETURN, NULL_RTX) == NULL_RTX)
5071 continue;
5074 gcc_assert (!saw_unknown);
5075 if (known_eq (this_delta, HOST_WIDE_INT_MIN))
5076 saw_unknown = true;
5078 if (!note)
5079 add_args_size_note (insn, args_size);
5080 if (STACK_GROWS_DOWNWARD)
5081 this_delta = -poly_uint64 (this_delta);
5083 if (saw_unknown)
5084 args_size = HOST_WIDE_INT_MIN;
5085 else
5086 args_size -= this_delta;
5089 return args_size;
5092 #ifdef PUSH_ROUNDING
5093 /* Emit single push insn. */
5095 static void
5096 emit_single_push_insn_1 (machine_mode mode, rtx x, tree type)
5098 rtx dest_addr;
5099 poly_int64 rounded_size = PUSH_ROUNDING (GET_MODE_SIZE (mode));
5100 rtx dest;
5101 enum insn_code icode;
5103 /* If there is push pattern, use it. Otherwise try old way of throwing
5104 MEM representing push operation to move expander. */
5105 icode = optab_handler (push_optab, mode);
5106 if (icode != CODE_FOR_nothing)
5108 class expand_operand ops[1];
5110 create_input_operand (&ops[0], x, mode);
5111 if (maybe_expand_insn (icode, 1, ops))
5112 return;
5114 if (known_eq (GET_MODE_SIZE (mode), rounded_size))
5115 dest_addr = gen_rtx_fmt_e (STACK_PUSH_CODE, Pmode, stack_pointer_rtx);
5116 /* If we are to pad downward, adjust the stack pointer first and
5117 then store X into the stack location using an offset. This is
5118 because emit_move_insn does not know how to pad; it does not have
5119 access to type. */
5120 else if (targetm.calls.function_arg_padding (mode, type) == PAD_DOWNWARD)
5122 emit_move_insn (stack_pointer_rtx,
5123 expand_binop (Pmode,
5124 STACK_GROWS_DOWNWARD ? sub_optab
5125 : add_optab,
5126 stack_pointer_rtx,
5127 gen_int_mode (rounded_size, Pmode),
5128 NULL_RTX, 0, OPTAB_LIB_WIDEN));
5130 poly_int64 offset = rounded_size - GET_MODE_SIZE (mode);
5131 if (STACK_GROWS_DOWNWARD && STACK_PUSH_CODE == POST_DEC)
5132 /* We have already decremented the stack pointer, so get the
5133 previous value. */
5134 offset += rounded_size;
5136 if (!STACK_GROWS_DOWNWARD && STACK_PUSH_CODE == POST_INC)
5137 /* We have already incremented the stack pointer, so get the
5138 previous value. */
5139 offset -= rounded_size;
5141 dest_addr = plus_constant (Pmode, stack_pointer_rtx, offset);
5143 else
5145 if (STACK_GROWS_DOWNWARD)
5146 /* ??? This seems wrong if STACK_PUSH_CODE == POST_DEC. */
5147 dest_addr = plus_constant (Pmode, stack_pointer_rtx, -rounded_size);
5148 else
5149 /* ??? This seems wrong if STACK_PUSH_CODE == POST_INC. */
5150 dest_addr = plus_constant (Pmode, stack_pointer_rtx, rounded_size);
5152 dest_addr = gen_rtx_PRE_MODIFY (Pmode, stack_pointer_rtx, dest_addr);
5155 dest = gen_rtx_MEM (mode, dest_addr);
5157 if (type != 0)
5159 set_mem_attributes (dest, type, 1);
5161 if (cfun->tail_call_marked)
5162 /* Function incoming arguments may overlap with sibling call
5163 outgoing arguments and we cannot allow reordering of reads
5164 from function arguments with stores to outgoing arguments
5165 of sibling calls. */
5166 set_mem_alias_set (dest, 0);
5168 emit_move_insn (dest, x);
5171 /* Emit and annotate a single push insn. */
5173 static void
5174 emit_single_push_insn (machine_mode mode, rtx x, tree type)
5176 poly_int64 delta, old_delta = stack_pointer_delta;
5177 rtx_insn *prev = get_last_insn ();
5178 rtx_insn *last;
5180 emit_single_push_insn_1 (mode, x, type);
5182 /* Adjust stack_pointer_delta to describe the situation after the push
5183 we just performed. Note that we must do this after the push rather
5184 than before the push in case calculating X needs pushes and pops of
5185 its own (e.g. if calling __tls_get_addr). The REG_ARGS_SIZE notes
5186 for such pushes and pops must not include the effect of the future
5187 push of X. */
5188 stack_pointer_delta += PUSH_ROUNDING (GET_MODE_SIZE (mode));
5190 last = get_last_insn ();
5192 /* Notice the common case where we emitted exactly one insn. */
5193 if (PREV_INSN (last) == prev)
5195 add_args_size_note (last, stack_pointer_delta);
5196 return;
5199 delta = fixup_args_size_notes (prev, last, stack_pointer_delta);
5200 gcc_assert (known_eq (delta, HOST_WIDE_INT_MIN)
5201 || known_eq (delta, old_delta));
5203 #endif
5205 /* If reading SIZE bytes from X will end up reading from
5206 Y return the number of bytes that overlap. Return -1
5207 if there is no overlap or -2 if we can't determine
5208 (for example when X and Y have different base registers). */
5210 static int
5211 memory_load_overlap (rtx x, rtx y, HOST_WIDE_INT size)
5213 rtx tmp = plus_constant (Pmode, x, size);
5214 rtx sub = simplify_gen_binary (MINUS, Pmode, tmp, y);
5216 if (!CONST_INT_P (sub))
5217 return -2;
5219 HOST_WIDE_INT val = INTVAL (sub);
5221 return IN_RANGE (val, 1, size) ? val : -1;
5224 /* Generate code to push X onto the stack, assuming it has mode MODE and
5225 type TYPE.
5226 MODE is redundant except when X is a CONST_INT (since they don't
5227 carry mode info).
5228 SIZE is an rtx for the size of data to be copied (in bytes),
5229 needed only if X is BLKmode.
5230 Return true if successful. May return false if asked to push a
5231 partial argument during a sibcall optimization (as specified by
5232 SIBCALL_P) and the incoming and outgoing pointers cannot be shown
5233 to not overlap.
5235 ALIGN (in bits) is maximum alignment we can assume.
5237 If PARTIAL and REG are both nonzero, then copy that many of the first
5238 bytes of X into registers starting with REG, and push the rest of X.
5239 The amount of space pushed is decreased by PARTIAL bytes.
5240 REG must be a hard register in this case.
5241 If REG is zero but PARTIAL is not, take any all others actions for an
5242 argument partially in registers, but do not actually load any
5243 registers.
5245 EXTRA is the amount in bytes of extra space to leave next to this arg.
5246 This is ignored if an argument block has already been allocated.
5248 On a machine that lacks real push insns, ARGS_ADDR is the address of
5249 the bottom of the argument block for this call. We use indexing off there
5250 to store the arg. On machines with push insns, ARGS_ADDR is 0 when a
5251 argument block has not been preallocated.
5253 ARGS_SO_FAR is the size of args previously pushed for this call.
5255 REG_PARM_STACK_SPACE is nonzero if functions require stack space
5256 for arguments passed in registers. If nonzero, it will be the number
5257 of bytes required. */
5259 bool
5260 emit_push_insn (rtx x, machine_mode mode, tree type, rtx size,
5261 unsigned int align, int partial, rtx reg, poly_int64 extra,
5262 rtx args_addr, rtx args_so_far, int reg_parm_stack_space,
5263 rtx alignment_pad, bool sibcall_p)
5265 rtx xinner;
5266 pad_direction stack_direction
5267 = STACK_GROWS_DOWNWARD ? PAD_DOWNWARD : PAD_UPWARD;
5269 /* Decide where to pad the argument: PAD_DOWNWARD for below,
5270 PAD_UPWARD for above, or PAD_NONE for don't pad it.
5271 Default is below for small data on big-endian machines; else above. */
5272 pad_direction where_pad = targetm.calls.function_arg_padding (mode, type);
5274 /* Invert direction if stack is post-decrement.
5275 FIXME: why? */
5276 if (STACK_PUSH_CODE == POST_DEC)
5277 if (where_pad != PAD_NONE)
5278 where_pad = (where_pad == PAD_DOWNWARD ? PAD_UPWARD : PAD_DOWNWARD);
5280 xinner = x;
5282 int nregs = partial / UNITS_PER_WORD;
5283 rtx *tmp_regs = NULL;
5284 int overlapping = 0;
5286 if (mode == BLKmode
5287 || (STRICT_ALIGNMENT && align < GET_MODE_ALIGNMENT (mode)))
5289 /* Copy a block into the stack, entirely or partially. */
5291 rtx temp;
5292 int used;
5293 int offset;
5294 int skip;
5296 offset = partial % (PARM_BOUNDARY / BITS_PER_UNIT);
5297 used = partial - offset;
5299 if (mode != BLKmode)
5301 /* A value is to be stored in an insufficiently aligned
5302 stack slot; copy via a suitably aligned slot if
5303 necessary. */
5304 size = gen_int_mode (GET_MODE_SIZE (mode), Pmode);
5305 if (!MEM_P (xinner))
5307 temp = assign_temp (type, 1, 1);
5308 emit_move_insn (temp, xinner);
5309 xinner = temp;
5313 gcc_assert (size);
5315 /* USED is now the # of bytes we need not copy to the stack
5316 because registers will take care of them. */
5318 if (partial != 0)
5319 xinner = adjust_address (xinner, BLKmode, used);
5321 /* If the partial register-part of the arg counts in its stack size,
5322 skip the part of stack space corresponding to the registers.
5323 Otherwise, start copying to the beginning of the stack space,
5324 by setting SKIP to 0. */
5325 skip = (reg_parm_stack_space == 0) ? 0 : used;
5327 #ifdef PUSH_ROUNDING
5328 /* NB: Let the backend known the number of bytes to push and
5329 decide if push insns should be generated. */
5330 unsigned int push_size;
5331 if (CONST_INT_P (size))
5332 push_size = INTVAL (size);
5333 else
5334 push_size = 0;
5336 /* Do it with several push insns if that doesn't take lots of insns
5337 and if there is no difficulty with push insns that skip bytes
5338 on the stack for alignment purposes. */
5339 if (args_addr == 0
5340 && targetm.calls.push_argument (push_size)
5341 && CONST_INT_P (size)
5342 && skip == 0
5343 && MEM_ALIGN (xinner) >= align
5344 && can_move_by_pieces ((unsigned) INTVAL (size) - used, align)
5345 /* Here we avoid the case of a structure whose weak alignment
5346 forces many pushes of a small amount of data,
5347 and such small pushes do rounding that causes trouble. */
5348 && ((!targetm.slow_unaligned_access (word_mode, align))
5349 || align >= BIGGEST_ALIGNMENT
5350 || known_eq (PUSH_ROUNDING (align / BITS_PER_UNIT),
5351 align / BITS_PER_UNIT))
5352 && known_eq (PUSH_ROUNDING (INTVAL (size)), INTVAL (size)))
5354 /* Push padding now if padding above and stack grows down,
5355 or if padding below and stack grows up.
5356 But if space already allocated, this has already been done. */
5357 if (maybe_ne (extra, 0)
5358 && args_addr == 0
5359 && where_pad != PAD_NONE
5360 && where_pad != stack_direction)
5361 anti_adjust_stack (gen_int_mode (extra, Pmode));
5363 move_by_pieces (NULL, xinner, INTVAL (size) - used, align,
5364 RETURN_BEGIN);
5366 else
5367 #endif /* PUSH_ROUNDING */
5369 rtx target;
5371 /* Otherwise make space on the stack and copy the data
5372 to the address of that space. */
5374 /* Deduct words put into registers from the size we must copy. */
5375 if (partial != 0)
5377 if (CONST_INT_P (size))
5378 size = GEN_INT (INTVAL (size) - used);
5379 else
5380 size = expand_binop (GET_MODE (size), sub_optab, size,
5381 gen_int_mode (used, GET_MODE (size)),
5382 NULL_RTX, 0, OPTAB_LIB_WIDEN);
5385 /* Get the address of the stack space.
5386 In this case, we do not deal with EXTRA separately.
5387 A single stack adjust will do. */
5388 poly_int64 const_args_so_far;
5389 if (! args_addr)
5391 temp = push_block (size, extra, where_pad == PAD_DOWNWARD);
5392 extra = 0;
5394 else if (poly_int_rtx_p (args_so_far, &const_args_so_far))
5395 temp = memory_address (BLKmode,
5396 plus_constant (Pmode, args_addr,
5397 skip + const_args_so_far));
5398 else
5399 temp = memory_address (BLKmode,
5400 plus_constant (Pmode,
5401 gen_rtx_PLUS (Pmode,
5402 args_addr,
5403 args_so_far),
5404 skip));
5406 if (!ACCUMULATE_OUTGOING_ARGS)
5408 /* If the source is referenced relative to the stack pointer,
5409 copy it to another register to stabilize it. We do not need
5410 to do this if we know that we won't be changing sp. */
5412 if (reg_mentioned_p (virtual_stack_dynamic_rtx, temp)
5413 || reg_mentioned_p (virtual_outgoing_args_rtx, temp))
5414 temp = copy_to_reg (temp);
5417 target = gen_rtx_MEM (BLKmode, temp);
5419 /* We do *not* set_mem_attributes here, because incoming arguments
5420 may overlap with sibling call outgoing arguments and we cannot
5421 allow reordering of reads from function arguments with stores
5422 to outgoing arguments of sibling calls. We do, however, want
5423 to record the alignment of the stack slot. */
5424 /* ALIGN may well be better aligned than TYPE, e.g. due to
5425 PARM_BOUNDARY. Assume the caller isn't lying. */
5426 set_mem_align (target, align);
5428 /* If part should go in registers and pushing to that part would
5429 overwrite some of the values that need to go into regs, load the
5430 overlapping values into temporary pseudos to be moved into the hard
5431 regs at the end after the stack pushing has completed.
5432 We cannot load them directly into the hard regs here because
5433 they can be clobbered by the block move expansions.
5434 See PR 65358. */
5436 if (partial > 0 && reg != 0 && mode == BLKmode
5437 && GET_CODE (reg) != PARALLEL)
5439 overlapping = memory_load_overlap (XEXP (x, 0), temp, partial);
5440 if (overlapping > 0)
5442 gcc_assert (overlapping % UNITS_PER_WORD == 0);
5443 overlapping /= UNITS_PER_WORD;
5445 tmp_regs = XALLOCAVEC (rtx, overlapping);
5447 for (int i = 0; i < overlapping; i++)
5448 tmp_regs[i] = gen_reg_rtx (word_mode);
5450 for (int i = 0; i < overlapping; i++)
5451 emit_move_insn (tmp_regs[i],
5452 operand_subword_force (target, i, mode));
5454 else if (overlapping == -1)
5455 overlapping = 0;
5456 /* Could not determine whether there is overlap.
5457 Fail the sibcall. */
5458 else
5460 overlapping = 0;
5461 if (sibcall_p)
5462 return false;
5466 /* If source is a constant VAR_DECL with a simple constructor,
5467 store the constructor to the stack instead of moving it. */
5468 const_tree decl;
5469 if (partial == 0
5470 && MEM_P (xinner)
5471 && SYMBOL_REF_P (XEXP (xinner, 0))
5472 && (decl = SYMBOL_REF_DECL (XEXP (xinner, 0))) != NULL_TREE
5473 && VAR_P (decl)
5474 && TREE_READONLY (decl)
5475 && !TREE_SIDE_EFFECTS (decl)
5476 && immediate_const_ctor_p (DECL_INITIAL (decl), 2))
5477 store_constructor (DECL_INITIAL (decl), target, 0,
5478 int_expr_size (DECL_INITIAL (decl)), false);
5479 else
5480 emit_block_move (target, xinner, size, BLOCK_OP_CALL_PARM);
5483 else if (partial > 0)
5485 /* Scalar partly in registers. This case is only supported
5486 for fixed-wdth modes. */
5487 int num_words = GET_MODE_SIZE (mode).to_constant ();
5488 num_words /= UNITS_PER_WORD;
5489 int i;
5490 int not_stack;
5491 /* # bytes of start of argument
5492 that we must make space for but need not store. */
5493 int offset = partial % (PARM_BOUNDARY / BITS_PER_UNIT);
5494 int args_offset = INTVAL (args_so_far);
5495 int skip;
5497 /* Push padding now if padding above and stack grows down,
5498 or if padding below and stack grows up.
5499 But if space already allocated, this has already been done. */
5500 if (maybe_ne (extra, 0)
5501 && args_addr == 0
5502 && where_pad != PAD_NONE
5503 && where_pad != stack_direction)
5504 anti_adjust_stack (gen_int_mode (extra, Pmode));
5506 /* If we make space by pushing it, we might as well push
5507 the real data. Otherwise, we can leave OFFSET nonzero
5508 and leave the space uninitialized. */
5509 if (args_addr == 0)
5510 offset = 0;
5512 /* Now NOT_STACK gets the number of words that we don't need to
5513 allocate on the stack. Convert OFFSET to words too. */
5514 not_stack = (partial - offset) / UNITS_PER_WORD;
5515 offset /= UNITS_PER_WORD;
5517 /* If the partial register-part of the arg counts in its stack size,
5518 skip the part of stack space corresponding to the registers.
5519 Otherwise, start copying to the beginning of the stack space,
5520 by setting SKIP to 0. */
5521 skip = (reg_parm_stack_space == 0) ? 0 : not_stack;
5523 if (CONSTANT_P (x) && !targetm.legitimate_constant_p (mode, x))
5524 x = validize_mem (force_const_mem (mode, x));
5526 /* If X is a hard register in a non-integer mode, copy it into a pseudo;
5527 SUBREGs of such registers are not allowed. */
5528 if ((REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER
5529 && GET_MODE_CLASS (GET_MODE (x)) != MODE_INT))
5530 x = copy_to_reg (x);
5532 /* Loop over all the words allocated on the stack for this arg. */
5533 /* We can do it by words, because any scalar bigger than a word
5534 has a size a multiple of a word. */
5535 tree word_mode_type = lang_hooks.types.type_for_mode (word_mode, 1);
5536 for (i = num_words - 1; i >= not_stack; i--)
5537 if (i >= not_stack + offset)
5538 if (!emit_push_insn (operand_subword_force (x, i, mode),
5539 word_mode, word_mode_type, NULL_RTX, align, 0,
5540 NULL_RTX, 0, args_addr,
5541 GEN_INT (args_offset + ((i - not_stack + skip)
5542 * UNITS_PER_WORD)),
5543 reg_parm_stack_space, alignment_pad, sibcall_p))
5544 return false;
5546 else
5548 rtx addr;
5549 rtx dest;
5551 /* Push padding now if padding above and stack grows down,
5552 or if padding below and stack grows up.
5553 But if space already allocated, this has already been done. */
5554 if (maybe_ne (extra, 0)
5555 && args_addr == 0
5556 && where_pad != PAD_NONE
5557 && where_pad != stack_direction)
5558 anti_adjust_stack (gen_int_mode (extra, Pmode));
5560 #ifdef PUSH_ROUNDING
5561 if (args_addr == 0 && targetm.calls.push_argument (0))
5562 emit_single_push_insn (mode, x, type);
5563 else
5564 #endif
5566 addr = simplify_gen_binary (PLUS, Pmode, args_addr, args_so_far);
5567 dest = gen_rtx_MEM (mode, memory_address (mode, addr));
5569 /* We do *not* set_mem_attributes here, because incoming arguments
5570 may overlap with sibling call outgoing arguments and we cannot
5571 allow reordering of reads from function arguments with stores
5572 to outgoing arguments of sibling calls. We do, however, want
5573 to record the alignment of the stack slot. */
5574 /* ALIGN may well be better aligned than TYPE, e.g. due to
5575 PARM_BOUNDARY. Assume the caller isn't lying. */
5576 set_mem_align (dest, align);
5578 emit_move_insn (dest, x);
5582 /* Move the partial arguments into the registers and any overlapping
5583 values that we moved into the pseudos in tmp_regs. */
5584 if (partial > 0 && reg != 0)
5586 /* Handle calls that pass values in multiple non-contiguous locations.
5587 The Irix 6 ABI has examples of this. */
5588 if (GET_CODE (reg) == PARALLEL)
5589 emit_group_load (reg, x, type, -1);
5590 else
5592 gcc_assert (partial % UNITS_PER_WORD == 0);
5593 move_block_to_reg (REGNO (reg), x, nregs - overlapping, mode);
5595 for (int i = 0; i < overlapping; i++)
5596 emit_move_insn (gen_rtx_REG (word_mode, REGNO (reg)
5597 + nregs - overlapping + i),
5598 tmp_regs[i]);
5603 if (maybe_ne (extra, 0) && args_addr == 0 && where_pad == stack_direction)
5604 anti_adjust_stack (gen_int_mode (extra, Pmode));
5606 if (alignment_pad && args_addr == 0)
5607 anti_adjust_stack (alignment_pad);
5609 return true;
5612 /* Return X if X can be used as a subtarget in a sequence of arithmetic
5613 operations. */
5615 static rtx
5616 get_subtarget (rtx x)
5618 return (optimize
5619 || x == 0
5620 /* Only registers can be subtargets. */
5621 || !REG_P (x)
5622 /* Don't use hard regs to avoid extending their life. */
5623 || REGNO (x) < FIRST_PSEUDO_REGISTER
5624 ? 0 : x);
5627 /* A subroutine of expand_assignment. Optimize FIELD op= VAL, where
5628 FIELD is a bitfield. Returns true if the optimization was successful,
5629 and there's nothing else to do. */
5631 static bool
5632 optimize_bitfield_assignment_op (poly_uint64 pbitsize,
5633 poly_uint64 pbitpos,
5634 poly_uint64 pbitregion_start,
5635 poly_uint64 pbitregion_end,
5636 machine_mode mode1, rtx str_rtx,
5637 tree to, tree src, bool reverse)
5639 /* str_mode is not guaranteed to be a scalar type. */
5640 machine_mode str_mode = GET_MODE (str_rtx);
5641 unsigned int str_bitsize;
5642 tree op0, op1;
5643 rtx value, result;
5644 optab binop;
5645 gimple *srcstmt;
5646 enum tree_code code;
5648 unsigned HOST_WIDE_INT bitsize, bitpos, bitregion_start, bitregion_end;
5649 if (mode1 != VOIDmode
5650 || !pbitsize.is_constant (&bitsize)
5651 || !pbitpos.is_constant (&bitpos)
5652 || !pbitregion_start.is_constant (&bitregion_start)
5653 || !pbitregion_end.is_constant (&bitregion_end)
5654 || bitsize >= BITS_PER_WORD
5655 || !GET_MODE_BITSIZE (str_mode).is_constant (&str_bitsize)
5656 || str_bitsize > BITS_PER_WORD
5657 || TREE_SIDE_EFFECTS (to)
5658 || TREE_THIS_VOLATILE (to))
5659 return false;
5661 STRIP_NOPS (src);
5662 if (TREE_CODE (src) != SSA_NAME)
5663 return false;
5664 if (TREE_CODE (TREE_TYPE (src)) != INTEGER_TYPE)
5665 return false;
5667 srcstmt = get_gimple_for_ssa_name (src);
5668 if (!srcstmt
5669 || TREE_CODE_CLASS (gimple_assign_rhs_code (srcstmt)) != tcc_binary)
5670 return false;
5672 code = gimple_assign_rhs_code (srcstmt);
5674 op0 = gimple_assign_rhs1 (srcstmt);
5676 /* If OP0 is an SSA_NAME, then we want to walk the use-def chain
5677 to find its initialization. Hopefully the initialization will
5678 be from a bitfield load. */
5679 if (TREE_CODE (op0) == SSA_NAME)
5681 gimple *op0stmt = get_gimple_for_ssa_name (op0);
5683 /* We want to eventually have OP0 be the same as TO, which
5684 should be a bitfield. */
5685 if (!op0stmt
5686 || !is_gimple_assign (op0stmt)
5687 || gimple_assign_rhs_code (op0stmt) != TREE_CODE (to))
5688 return false;
5689 op0 = gimple_assign_rhs1 (op0stmt);
5692 op1 = gimple_assign_rhs2 (srcstmt);
5694 if (!operand_equal_p (to, op0, 0))
5695 return false;
5697 if (MEM_P (str_rtx))
5699 unsigned HOST_WIDE_INT offset1;
5701 if (str_bitsize == 0 || str_bitsize > BITS_PER_WORD)
5702 str_bitsize = BITS_PER_WORD;
5704 scalar_int_mode best_mode;
5705 if (!get_best_mode (bitsize, bitpos, bitregion_start, bitregion_end,
5706 MEM_ALIGN (str_rtx), str_bitsize, false, &best_mode))
5707 return false;
5708 str_mode = best_mode;
5709 str_bitsize = GET_MODE_BITSIZE (best_mode);
5711 offset1 = bitpos;
5712 bitpos %= str_bitsize;
5713 offset1 = (offset1 - bitpos) / BITS_PER_UNIT;
5714 str_rtx = adjust_address (str_rtx, str_mode, offset1);
5716 else if (!REG_P (str_rtx) && GET_CODE (str_rtx) != SUBREG)
5717 return false;
5719 /* If the bit field covers the whole REG/MEM, store_field
5720 will likely generate better code. */
5721 if (bitsize >= str_bitsize)
5722 return false;
5724 /* We can't handle fields split across multiple entities. */
5725 if (bitpos + bitsize > str_bitsize)
5726 return false;
5728 if (reverse ? !BYTES_BIG_ENDIAN : BYTES_BIG_ENDIAN)
5729 bitpos = str_bitsize - bitpos - bitsize;
5731 switch (code)
5733 case PLUS_EXPR:
5734 case MINUS_EXPR:
5735 /* For now, just optimize the case of the topmost bitfield
5736 where we don't need to do any masking and also
5737 1 bit bitfields where xor can be used.
5738 We might win by one instruction for the other bitfields
5739 too if insv/extv instructions aren't used, so that
5740 can be added later. */
5741 if ((reverse || bitpos + bitsize != str_bitsize)
5742 && (bitsize != 1 || TREE_CODE (op1) != INTEGER_CST))
5743 break;
5745 value = expand_expr (op1, NULL_RTX, str_mode, EXPAND_NORMAL);
5746 value = convert_modes (str_mode,
5747 TYPE_MODE (TREE_TYPE (op1)), value,
5748 TYPE_UNSIGNED (TREE_TYPE (op1)));
5750 /* We may be accessing data outside the field, which means
5751 we can alias adjacent data. */
5752 if (MEM_P (str_rtx))
5754 str_rtx = shallow_copy_rtx (str_rtx);
5755 set_mem_alias_set (str_rtx, 0);
5756 set_mem_expr (str_rtx, 0);
5759 if (bitsize == 1 && (reverse || bitpos + bitsize != str_bitsize))
5761 value = expand_and (str_mode, value, const1_rtx, NULL);
5762 binop = xor_optab;
5764 else
5765 binop = code == PLUS_EXPR ? add_optab : sub_optab;
5767 value = expand_shift (LSHIFT_EXPR, str_mode, value, bitpos, NULL_RTX, 1);
5768 if (reverse)
5769 value = flip_storage_order (str_mode, value);
5770 result = expand_binop (str_mode, binop, str_rtx,
5771 value, str_rtx, 1, OPTAB_WIDEN);
5772 if (result != str_rtx)
5773 emit_move_insn (str_rtx, result);
5774 return true;
5776 case BIT_IOR_EXPR:
5777 case BIT_XOR_EXPR:
5778 if (TREE_CODE (op1) != INTEGER_CST)
5779 break;
5780 value = expand_expr (op1, NULL_RTX, str_mode, EXPAND_NORMAL);
5781 value = convert_modes (str_mode,
5782 TYPE_MODE (TREE_TYPE (op1)), value,
5783 TYPE_UNSIGNED (TREE_TYPE (op1)));
5785 /* We may be accessing data outside the field, which means
5786 we can alias adjacent data. */
5787 if (MEM_P (str_rtx))
5789 str_rtx = shallow_copy_rtx (str_rtx);
5790 set_mem_alias_set (str_rtx, 0);
5791 set_mem_expr (str_rtx, 0);
5794 binop = code == BIT_IOR_EXPR ? ior_optab : xor_optab;
5795 if (bitpos + bitsize != str_bitsize)
5797 rtx mask = gen_int_mode ((HOST_WIDE_INT_1U << bitsize) - 1,
5798 str_mode);
5799 value = expand_and (str_mode, value, mask, NULL_RTX);
5801 value = expand_shift (LSHIFT_EXPR, str_mode, value, bitpos, NULL_RTX, 1);
5802 if (reverse)
5803 value = flip_storage_order (str_mode, value);
5804 result = expand_binop (str_mode, binop, str_rtx,
5805 value, str_rtx, 1, OPTAB_WIDEN);
5806 if (result != str_rtx)
5807 emit_move_insn (str_rtx, result);
5808 return true;
5810 default:
5811 break;
5814 return false;
5817 /* In the C++ memory model, consecutive bit fields in a structure are
5818 considered one memory location.
5820 Given a COMPONENT_REF EXP at position (BITPOS, OFFSET), this function
5821 returns the bit range of consecutive bits in which this COMPONENT_REF
5822 belongs. The values are returned in *BITSTART and *BITEND. *BITPOS
5823 and *OFFSET may be adjusted in the process.
5825 If the access does not need to be restricted, 0 is returned in both
5826 *BITSTART and *BITEND. */
5828 void
5829 get_bit_range (poly_uint64 *bitstart, poly_uint64 *bitend, tree exp,
5830 poly_int64 *bitpos, tree *offset)
5832 poly_int64 bitoffset;
5833 tree field, repr;
5835 gcc_assert (TREE_CODE (exp) == COMPONENT_REF);
5837 field = TREE_OPERAND (exp, 1);
5838 repr = DECL_BIT_FIELD_REPRESENTATIVE (field);
5839 /* If we do not have a DECL_BIT_FIELD_REPRESENTATIVE there is no
5840 need to limit the range we can access. */
5841 if (!repr)
5843 *bitstart = *bitend = 0;
5844 return;
5847 /* If we have a DECL_BIT_FIELD_REPRESENTATIVE but the enclosing record is
5848 part of a larger bit field, then the representative does not serve any
5849 useful purpose. This can occur in Ada. */
5850 if (handled_component_p (TREE_OPERAND (exp, 0)))
5852 machine_mode rmode;
5853 poly_int64 rbitsize, rbitpos;
5854 tree roffset;
5855 int unsignedp, reversep, volatilep = 0;
5856 get_inner_reference (TREE_OPERAND (exp, 0), &rbitsize, &rbitpos,
5857 &roffset, &rmode, &unsignedp, &reversep,
5858 &volatilep);
5859 if (!multiple_p (rbitpos, BITS_PER_UNIT))
5861 *bitstart = *bitend = 0;
5862 return;
5866 /* Compute the adjustment to bitpos from the offset of the field
5867 relative to the representative. DECL_FIELD_OFFSET of field and
5868 repr are the same by construction if they are not constants,
5869 see finish_bitfield_layout. */
5870 poly_uint64 field_offset, repr_offset;
5871 if (poly_int_tree_p (DECL_FIELD_OFFSET (field), &field_offset)
5872 && poly_int_tree_p (DECL_FIELD_OFFSET (repr), &repr_offset))
5873 bitoffset = (field_offset - repr_offset) * BITS_PER_UNIT;
5874 else
5875 bitoffset = 0;
5876 bitoffset += (tree_to_uhwi (DECL_FIELD_BIT_OFFSET (field))
5877 - tree_to_uhwi (DECL_FIELD_BIT_OFFSET (repr)));
5879 /* If the adjustment is larger than bitpos, we would have a negative bit
5880 position for the lower bound and this may wreak havoc later. Adjust
5881 offset and bitpos to make the lower bound non-negative in that case. */
5882 if (maybe_gt (bitoffset, *bitpos))
5884 poly_int64 adjust_bits = upper_bound (bitoffset, *bitpos) - *bitpos;
5885 poly_int64 adjust_bytes = exact_div (adjust_bits, BITS_PER_UNIT);
5887 *bitpos += adjust_bits;
5888 if (*offset == NULL_TREE)
5889 *offset = size_int (-adjust_bytes);
5890 else
5891 *offset = size_binop (MINUS_EXPR, *offset, size_int (adjust_bytes));
5892 *bitstart = 0;
5894 else
5895 *bitstart = *bitpos - bitoffset;
5897 *bitend = *bitstart + tree_to_poly_uint64 (DECL_SIZE (repr)) - 1;
5900 /* Returns true if BASE is a DECL that does not reside in memory and
5901 has non-BLKmode. DECL_RTL must not be a MEM; if
5902 DECL_RTL was not set yet, return false. */
5904 bool
5905 non_mem_decl_p (tree base)
5907 if (!DECL_P (base)
5908 || TREE_ADDRESSABLE (base)
5909 || DECL_MODE (base) == BLKmode)
5910 return false;
5912 if (!DECL_RTL_SET_P (base))
5913 return false;
5915 return (!MEM_P (DECL_RTL (base)));
5918 /* Returns true if REF refers to an object that does not
5919 reside in memory and has non-BLKmode. */
5921 bool
5922 mem_ref_refers_to_non_mem_p (tree ref)
5924 tree base;
5926 if (TREE_CODE (ref) == MEM_REF
5927 || TREE_CODE (ref) == TARGET_MEM_REF)
5929 tree addr = TREE_OPERAND (ref, 0);
5931 if (TREE_CODE (addr) != ADDR_EXPR)
5932 return false;
5934 base = TREE_OPERAND (addr, 0);
5936 else
5937 base = ref;
5939 return non_mem_decl_p (base);
5942 /* Expand an assignment that stores the value of FROM into TO. If NONTEMPORAL
5943 is true, try generating a nontemporal store. */
5945 void
5946 expand_assignment (tree to, tree from, bool nontemporal)
5948 rtx to_rtx = 0;
5949 rtx result;
5950 machine_mode mode;
5951 unsigned int align;
5952 enum insn_code icode;
5954 /* Don't crash if the lhs of the assignment was erroneous. */
5955 if (TREE_CODE (to) == ERROR_MARK)
5957 expand_normal (from);
5958 return;
5961 /* Optimize away no-op moves without side-effects. */
5962 if (operand_equal_p (to, from, 0))
5963 return;
5965 /* Handle misaligned stores. */
5966 mode = TYPE_MODE (TREE_TYPE (to));
5967 if ((TREE_CODE (to) == MEM_REF
5968 || TREE_CODE (to) == TARGET_MEM_REF
5969 || DECL_P (to))
5970 && mode != BLKmode
5971 && !mem_ref_refers_to_non_mem_p (to)
5972 && ((align = get_object_alignment (to))
5973 < GET_MODE_ALIGNMENT (mode))
5974 && (((icode = optab_handler (movmisalign_optab, mode))
5975 != CODE_FOR_nothing)
5976 || targetm.slow_unaligned_access (mode, align)))
5978 rtx reg, mem;
5980 reg = expand_expr (from, NULL_RTX, VOIDmode, EXPAND_NORMAL);
5981 /* Handle PARALLEL. */
5982 reg = maybe_emit_group_store (reg, TREE_TYPE (from));
5983 reg = force_not_mem (reg);
5984 mem = expand_expr (to, NULL_RTX, VOIDmode, EXPAND_WRITE);
5985 if (TREE_CODE (to) == MEM_REF && REF_REVERSE_STORAGE_ORDER (to))
5986 reg = flip_storage_order (mode, reg);
5988 if (icode != CODE_FOR_nothing)
5990 class expand_operand ops[2];
5992 create_fixed_operand (&ops[0], mem);
5993 create_input_operand (&ops[1], reg, mode);
5994 /* The movmisalign<mode> pattern cannot fail, else the assignment
5995 would silently be omitted. */
5996 expand_insn (icode, 2, ops);
5998 else
5999 store_bit_field (mem, GET_MODE_BITSIZE (mode), 0, 0, 0, mode, reg,
6000 false, false);
6001 return;
6004 /* Assignment of a structure component needs special treatment
6005 if the structure component's rtx is not simply a MEM.
6006 Assignment of an array element at a constant index, and assignment of
6007 an array element in an unaligned packed structure field, has the same
6008 problem. Same for (partially) storing into a non-memory object. */
6009 if (handled_component_p (to)
6010 || (TREE_CODE (to) == MEM_REF
6011 && (REF_REVERSE_STORAGE_ORDER (to)
6012 || mem_ref_refers_to_non_mem_p (to)))
6013 || TREE_CODE (TREE_TYPE (to)) == ARRAY_TYPE)
6015 machine_mode mode1;
6016 poly_int64 bitsize, bitpos;
6017 poly_uint64 bitregion_start = 0;
6018 poly_uint64 bitregion_end = 0;
6019 tree offset;
6020 int unsignedp, reversep, volatilep = 0;
6021 tree tem;
6023 push_temp_slots ();
6024 tem = get_inner_reference (to, &bitsize, &bitpos, &offset, &mode1,
6025 &unsignedp, &reversep, &volatilep);
6027 /* Make sure bitpos is not negative, it can wreak havoc later. */
6028 if (maybe_lt (bitpos, 0))
6030 gcc_assert (offset == NULL_TREE);
6031 offset = size_int (bits_to_bytes_round_down (bitpos));
6032 bitpos = num_trailing_bits (bitpos);
6035 if (TREE_CODE (to) == COMPONENT_REF
6036 && DECL_BIT_FIELD_TYPE (TREE_OPERAND (to, 1)))
6037 get_bit_range (&bitregion_start, &bitregion_end, to, &bitpos, &offset);
6038 /* The C++ memory model naturally applies to byte-aligned fields.
6039 However, if we do not have a DECL_BIT_FIELD_TYPE but BITPOS or
6040 BITSIZE are not byte-aligned, there is no need to limit the range
6041 we can access. This can occur with packed structures in Ada. */
6042 else if (maybe_gt (bitsize, 0)
6043 && multiple_p (bitsize, BITS_PER_UNIT)
6044 && multiple_p (bitpos, BITS_PER_UNIT))
6046 bitregion_start = bitpos;
6047 bitregion_end = bitpos + bitsize - 1;
6050 to_rtx = expand_expr (tem, NULL_RTX, VOIDmode, EXPAND_WRITE);
6052 /* If the field has a mode, we want to access it in the
6053 field's mode, not the computed mode.
6054 If a MEM has VOIDmode (external with incomplete type),
6055 use BLKmode for it instead. */
6056 if (MEM_P (to_rtx))
6058 if (mode1 != VOIDmode)
6059 to_rtx = adjust_address (to_rtx, mode1, 0);
6060 else if (GET_MODE (to_rtx) == VOIDmode)
6061 to_rtx = adjust_address (to_rtx, BLKmode, 0);
6064 if (offset != 0)
6066 machine_mode address_mode;
6067 rtx offset_rtx;
6069 if (!MEM_P (to_rtx))
6071 /* We can get constant negative offsets into arrays with broken
6072 user code. Translate this to a trap instead of ICEing. */
6073 gcc_assert (TREE_CODE (offset) == INTEGER_CST);
6074 expand_builtin_trap ();
6075 to_rtx = gen_rtx_MEM (BLKmode, const0_rtx);
6078 offset_rtx = expand_expr (offset, NULL_RTX, VOIDmode, EXPAND_SUM);
6079 address_mode = get_address_mode (to_rtx);
6080 if (GET_MODE (offset_rtx) != address_mode)
6082 /* We cannot be sure that the RTL in offset_rtx is valid outside
6083 of a memory address context, so force it into a register
6084 before attempting to convert it to the desired mode. */
6085 offset_rtx = force_operand (offset_rtx, NULL_RTX);
6086 offset_rtx = convert_to_mode (address_mode, offset_rtx, 0);
6089 /* If we have an expression in OFFSET_RTX and a non-zero
6090 byte offset in BITPOS, adding the byte offset before the
6091 OFFSET_RTX results in better intermediate code, which makes
6092 later rtl optimization passes perform better.
6094 We prefer intermediate code like this:
6096 r124:DI=r123:DI+0x18
6097 [r124:DI]=r121:DI
6099 ... instead of ...
6101 r124:DI=r123:DI+0x10
6102 [r124:DI+0x8]=r121:DI
6104 This is only done for aligned data values, as these can
6105 be expected to result in single move instructions. */
6106 poly_int64 bytepos;
6107 if (mode1 != VOIDmode
6108 && maybe_ne (bitpos, 0)
6109 && maybe_gt (bitsize, 0)
6110 && multiple_p (bitpos, BITS_PER_UNIT, &bytepos)
6111 && multiple_p (bitpos, bitsize)
6112 && multiple_p (bitsize, GET_MODE_ALIGNMENT (mode1))
6113 && MEM_ALIGN (to_rtx) >= GET_MODE_ALIGNMENT (mode1))
6115 to_rtx = adjust_address (to_rtx, mode1, bytepos);
6116 bitregion_start = 0;
6117 if (known_ge (bitregion_end, poly_uint64 (bitpos)))
6118 bitregion_end -= bitpos;
6119 bitpos = 0;
6122 to_rtx = offset_address (to_rtx, offset_rtx,
6123 highest_pow2_factor_for_target (to,
6124 offset));
6127 /* No action is needed if the target is not a memory and the field
6128 lies completely outside that target. This can occur if the source
6129 code contains an out-of-bounds access to a small array. */
6130 if (!MEM_P (to_rtx)
6131 && GET_MODE (to_rtx) != BLKmode
6132 && known_ge (bitpos, GET_MODE_PRECISION (GET_MODE (to_rtx))))
6134 expand_normal (from);
6135 result = NULL;
6137 /* Handle expand_expr of a complex value returning a CONCAT. */
6138 else if (GET_CODE (to_rtx) == CONCAT)
6140 machine_mode to_mode = GET_MODE (to_rtx);
6141 gcc_checking_assert (COMPLEX_MODE_P (to_mode));
6142 poly_int64 mode_bitsize = GET_MODE_BITSIZE (to_mode);
6143 unsigned short inner_bitsize = GET_MODE_UNIT_BITSIZE (to_mode);
6144 if (TYPE_MODE (TREE_TYPE (from)) == to_mode
6145 && known_eq (bitpos, 0)
6146 && known_eq (bitsize, mode_bitsize))
6147 result = store_expr (from, to_rtx, false, nontemporal, reversep);
6148 else if (TYPE_MODE (TREE_TYPE (from)) == GET_MODE_INNER (to_mode)
6149 && known_eq (bitsize, inner_bitsize)
6150 && (known_eq (bitpos, 0)
6151 || known_eq (bitpos, inner_bitsize)))
6152 result = store_expr (from, XEXP (to_rtx, maybe_ne (bitpos, 0)),
6153 false, nontemporal, reversep);
6154 else if (known_le (bitpos + bitsize, inner_bitsize))
6155 result = store_field (XEXP (to_rtx, 0), bitsize, bitpos,
6156 bitregion_start, bitregion_end,
6157 mode1, from, get_alias_set (to),
6158 nontemporal, reversep);
6159 else if (known_ge (bitpos, inner_bitsize))
6160 result = store_field (XEXP (to_rtx, 1), bitsize,
6161 bitpos - inner_bitsize,
6162 bitregion_start, bitregion_end,
6163 mode1, from, get_alias_set (to),
6164 nontemporal, reversep);
6165 else if (known_eq (bitpos, 0) && known_eq (bitsize, mode_bitsize))
6167 result = expand_normal (from);
6168 if (GET_CODE (result) == CONCAT)
6170 to_mode = GET_MODE_INNER (to_mode);
6171 machine_mode from_mode = GET_MODE_INNER (GET_MODE (result));
6172 rtx from_real
6173 = simplify_gen_subreg (to_mode, XEXP (result, 0),
6174 from_mode, 0);
6175 rtx from_imag
6176 = simplify_gen_subreg (to_mode, XEXP (result, 1),
6177 from_mode, 0);
6178 if (!from_real || !from_imag)
6179 goto concat_store_slow;
6180 emit_move_insn (XEXP (to_rtx, 0), from_real);
6181 emit_move_insn (XEXP (to_rtx, 1), from_imag);
6183 else
6185 machine_mode from_mode
6186 = GET_MODE (result) == VOIDmode
6187 ? TYPE_MODE (TREE_TYPE (from))
6188 : GET_MODE (result);
6189 rtx from_rtx;
6190 if (MEM_P (result))
6191 from_rtx = change_address (result, to_mode, NULL_RTX);
6192 else
6193 from_rtx
6194 = simplify_gen_subreg (to_mode, result, from_mode, 0);
6195 if (from_rtx)
6197 emit_move_insn (XEXP (to_rtx, 0),
6198 read_complex_part (from_rtx, false));
6199 emit_move_insn (XEXP (to_rtx, 1),
6200 read_complex_part (from_rtx, true));
6202 else
6204 to_mode = GET_MODE_INNER (to_mode);
6205 rtx from_real
6206 = simplify_gen_subreg (to_mode, result, from_mode, 0);
6207 rtx from_imag
6208 = simplify_gen_subreg (to_mode, result, from_mode,
6209 GET_MODE_SIZE (to_mode));
6210 if (!from_real || !from_imag)
6211 goto concat_store_slow;
6212 emit_move_insn (XEXP (to_rtx, 0), from_real);
6213 emit_move_insn (XEXP (to_rtx, 1), from_imag);
6217 else
6219 concat_store_slow:;
6220 rtx temp = assign_stack_temp (GET_MODE (to_rtx),
6221 GET_MODE_SIZE (GET_MODE (to_rtx)));
6222 write_complex_part (temp, XEXP (to_rtx, 0), false, true);
6223 write_complex_part (temp, XEXP (to_rtx, 1), true, false);
6224 result = store_field (temp, bitsize, bitpos,
6225 bitregion_start, bitregion_end,
6226 mode1, from, get_alias_set (to),
6227 nontemporal, reversep);
6228 emit_move_insn (XEXP (to_rtx, 0), read_complex_part (temp, false));
6229 emit_move_insn (XEXP (to_rtx, 1), read_complex_part (temp, true));
6232 /* For calls to functions returning variable length structures, if TO_RTX
6233 is not a MEM, go through a MEM because we must not create temporaries
6234 of the VLA type. */
6235 else if (!MEM_P (to_rtx)
6236 && TREE_CODE (from) == CALL_EXPR
6237 && COMPLETE_TYPE_P (TREE_TYPE (from))
6238 && TREE_CODE (TYPE_SIZE (TREE_TYPE (from))) != INTEGER_CST)
6240 rtx temp = assign_stack_temp (GET_MODE (to_rtx),
6241 GET_MODE_SIZE (GET_MODE (to_rtx)));
6242 result = store_field (temp, bitsize, bitpos, bitregion_start,
6243 bitregion_end, mode1, from, get_alias_set (to),
6244 nontemporal, reversep);
6245 emit_move_insn (to_rtx, temp);
6247 else
6249 if (MEM_P (to_rtx))
6251 /* If the field is at offset zero, we could have been given the
6252 DECL_RTX of the parent struct. Don't munge it. */
6253 to_rtx = shallow_copy_rtx (to_rtx);
6254 set_mem_attributes_minus_bitpos (to_rtx, to, 0, bitpos);
6255 if (volatilep)
6256 MEM_VOLATILE_P (to_rtx) = 1;
6259 gcc_checking_assert (known_ge (bitpos, 0));
6260 if (optimize_bitfield_assignment_op (bitsize, bitpos,
6261 bitregion_start, bitregion_end,
6262 mode1, to_rtx, to, from,
6263 reversep))
6264 result = NULL;
6265 else if (SUBREG_P (to_rtx)
6266 && SUBREG_PROMOTED_VAR_P (to_rtx))
6268 /* If to_rtx is a promoted subreg, we need to zero or sign
6269 extend the value afterwards. */
6270 if (TREE_CODE (to) == MEM_REF
6271 && TYPE_MODE (TREE_TYPE (from)) != BLKmode
6272 && !REF_REVERSE_STORAGE_ORDER (to)
6273 && known_eq (bitpos, 0)
6274 && known_eq (bitsize, GET_MODE_BITSIZE (GET_MODE (to_rtx))))
6275 result = store_expr (from, to_rtx, 0, nontemporal, false);
6276 /* Check if the field overlaps the MSB, requiring extension. */
6277 else if (maybe_eq (bitpos + bitsize,
6278 GET_MODE_BITSIZE (GET_MODE (to_rtx))))
6280 scalar_int_mode imode = subreg_unpromoted_mode (to_rtx);
6281 scalar_int_mode omode = subreg_promoted_mode (to_rtx);
6282 rtx to_rtx1 = lowpart_subreg (imode, SUBREG_REG (to_rtx),
6283 omode);
6284 result = store_field (to_rtx1, bitsize, bitpos,
6285 bitregion_start, bitregion_end,
6286 mode1, from, get_alias_set (to),
6287 nontemporal, reversep);
6288 /* If the target usually keeps IMODE appropriately
6289 extended in OMODE it's unsafe to refer to it using
6290 a SUBREG whilst this invariant doesn't hold. */
6291 if (targetm.mode_rep_extended (imode, omode) != UNKNOWN)
6292 to_rtx1 = simplify_gen_unary (TRUNCATE, imode,
6293 SUBREG_REG (to_rtx), omode);
6294 convert_move (SUBREG_REG (to_rtx), to_rtx1,
6295 SUBREG_PROMOTED_SIGN (to_rtx));
6297 else
6298 result = store_field (to_rtx, bitsize, bitpos,
6299 bitregion_start, bitregion_end,
6300 mode1, from, get_alias_set (to),
6301 nontemporal, reversep);
6303 else
6304 result = store_field (to_rtx, bitsize, bitpos,
6305 bitregion_start, bitregion_end,
6306 mode1, from, get_alias_set (to),
6307 nontemporal, reversep);
6310 if (result)
6311 preserve_temp_slots (result);
6312 pop_temp_slots ();
6313 return;
6316 /* If the rhs is a function call and its value is not an aggregate,
6317 call the function before we start to compute the lhs.
6318 This is needed for correct code for cases such as
6319 val = setjmp (buf) on machines where reference to val
6320 requires loading up part of an address in a separate insn.
6322 Don't do this if TO is a VAR_DECL or PARM_DECL whose DECL_RTL is REG
6323 since it might be a promoted variable where the zero- or sign- extension
6324 needs to be done. Handling this in the normal way is safe because no
6325 computation is done before the call. The same is true for SSA names. */
6326 if (TREE_CODE (from) == CALL_EXPR && ! aggregate_value_p (from, from)
6327 && COMPLETE_TYPE_P (TREE_TYPE (from))
6328 && TREE_CODE (TYPE_SIZE (TREE_TYPE (from))) == INTEGER_CST
6329 && ! (((VAR_P (to)
6330 || TREE_CODE (to) == PARM_DECL
6331 || TREE_CODE (to) == RESULT_DECL)
6332 && REG_P (DECL_RTL (to)))
6333 || TREE_CODE (to) == SSA_NAME))
6335 rtx value;
6337 push_temp_slots ();
6338 value = expand_normal (from);
6340 if (to_rtx == 0)
6341 to_rtx = expand_expr (to, NULL_RTX, VOIDmode, EXPAND_WRITE);
6343 /* Handle calls that return values in multiple non-contiguous locations.
6344 The Irix 6 ABI has examples of this. */
6345 if (GET_CODE (to_rtx) == PARALLEL)
6347 if (GET_CODE (value) == PARALLEL)
6348 emit_group_move (to_rtx, value);
6349 else
6350 emit_group_load (to_rtx, value, TREE_TYPE (from),
6351 int_size_in_bytes (TREE_TYPE (from)));
6353 else if (GET_CODE (value) == PARALLEL)
6354 emit_group_store (to_rtx, value, TREE_TYPE (from),
6355 int_size_in_bytes (TREE_TYPE (from)));
6356 else if (GET_MODE (to_rtx) == BLKmode)
6358 /* Handle calls that return BLKmode values in registers. */
6359 if (REG_P (value))
6360 copy_blkmode_from_reg (to_rtx, value, TREE_TYPE (from));
6361 else
6362 emit_block_move (to_rtx, value, expr_size (from), BLOCK_OP_NORMAL);
6364 else
6366 if (POINTER_TYPE_P (TREE_TYPE (to)))
6367 value = convert_memory_address_addr_space
6368 (as_a <scalar_int_mode> (GET_MODE (to_rtx)), value,
6369 TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (to))));
6371 emit_move_insn (to_rtx, value);
6374 preserve_temp_slots (to_rtx);
6375 pop_temp_slots ();
6376 return;
6379 /* Ordinary treatment. Expand TO to get a REG or MEM rtx. */
6380 to_rtx = expand_expr (to, NULL_RTX, VOIDmode, EXPAND_WRITE);
6382 /* Don't move directly into a return register. */
6383 if (TREE_CODE (to) == RESULT_DECL
6384 && (REG_P (to_rtx) || GET_CODE (to_rtx) == PARALLEL))
6386 rtx temp;
6388 push_temp_slots ();
6390 /* If the source is itself a return value, it still is in a pseudo at
6391 this point so we can move it back to the return register directly. */
6392 if (REG_P (to_rtx)
6393 && TYPE_MODE (TREE_TYPE (from)) == BLKmode
6394 && TREE_CODE (from) != CALL_EXPR)
6395 temp = copy_blkmode_to_reg (GET_MODE (to_rtx), from);
6396 else
6397 temp = expand_expr (from, NULL_RTX, GET_MODE (to_rtx), EXPAND_NORMAL);
6399 /* Handle calls that return values in multiple non-contiguous locations.
6400 The Irix 6 ABI has examples of this. */
6401 if (GET_CODE (to_rtx) == PARALLEL)
6403 if (GET_CODE (temp) == PARALLEL)
6404 emit_group_move (to_rtx, temp);
6405 else
6406 emit_group_load (to_rtx, temp, TREE_TYPE (from),
6407 int_size_in_bytes (TREE_TYPE (from)));
6409 else if (temp)
6410 emit_move_insn (to_rtx, temp);
6412 preserve_temp_slots (to_rtx);
6413 pop_temp_slots ();
6414 return;
6417 /* In case we are returning the contents of an object which overlaps
6418 the place the value is being stored, use a safe function when copying
6419 a value through a pointer into a structure value return block. */
6420 if (TREE_CODE (to) == RESULT_DECL
6421 && TREE_CODE (from) == INDIRECT_REF
6422 && ADDR_SPACE_GENERIC_P
6423 (TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (TREE_OPERAND (from, 0)))))
6424 && refs_may_alias_p (to, from)
6425 && cfun->returns_struct
6426 && !cfun->returns_pcc_struct)
6428 rtx from_rtx, size;
6430 push_temp_slots ();
6431 size = expr_size (from);
6432 from_rtx = expand_normal (from);
6434 emit_block_move_via_libcall (XEXP (to_rtx, 0), XEXP (from_rtx, 0), size);
6436 preserve_temp_slots (to_rtx);
6437 pop_temp_slots ();
6438 return;
6441 /* Compute FROM and store the value in the rtx we got. */
6443 push_temp_slots ();
6444 result = store_expr (from, to_rtx, 0, nontemporal, false);
6445 preserve_temp_slots (result);
6446 pop_temp_slots ();
6447 return;
6450 /* Emits nontemporal store insn that moves FROM to TO. Returns true if this
6451 succeeded, false otherwise. */
6453 bool
6454 emit_storent_insn (rtx to, rtx from)
6456 class expand_operand ops[2];
6457 machine_mode mode = GET_MODE (to);
6458 enum insn_code code = optab_handler (storent_optab, mode);
6460 if (code == CODE_FOR_nothing)
6461 return false;
6463 create_fixed_operand (&ops[0], to);
6464 create_input_operand (&ops[1], from, mode);
6465 return maybe_expand_insn (code, 2, ops);
6468 /* Helper function for store_expr storing of STRING_CST. */
6470 static rtx
6471 string_cst_read_str (void *data, void *, HOST_WIDE_INT offset,
6472 fixed_size_mode mode)
6474 tree str = (tree) data;
6476 gcc_assert (offset >= 0);
6477 if (offset >= TREE_STRING_LENGTH (str))
6478 return const0_rtx;
6480 if ((unsigned HOST_WIDE_INT) offset + GET_MODE_SIZE (mode)
6481 > (unsigned HOST_WIDE_INT) TREE_STRING_LENGTH (str))
6483 char *p = XALLOCAVEC (char, GET_MODE_SIZE (mode));
6484 size_t l = TREE_STRING_LENGTH (str) - offset;
6485 memcpy (p, TREE_STRING_POINTER (str) + offset, l);
6486 memset (p + l, '\0', GET_MODE_SIZE (mode) - l);
6487 return c_readstr (p, mode, false);
6490 return c_readstr (TREE_STRING_POINTER (str) + offset, mode, false);
6493 /* Generate code for computing expression EXP,
6494 and storing the value into TARGET.
6496 If the mode is BLKmode then we may return TARGET itself.
6497 It turns out that in BLKmode it doesn't cause a problem.
6498 because C has no operators that could combine two different
6499 assignments into the same BLKmode object with different values
6500 with no sequence point. Will other languages need this to
6501 be more thorough?
6503 If CALL_PARAM_P is nonzero, this is a store into a call param on the
6504 stack, and block moves may need to be treated specially.
6506 If NONTEMPORAL is true, try using a nontemporal store instruction.
6508 If REVERSE is true, the store is to be done in reverse order. */
6511 store_expr (tree exp, rtx target, int call_param_p,
6512 bool nontemporal, bool reverse)
6514 rtx temp;
6515 rtx alt_rtl = NULL_RTX;
6516 location_t loc = curr_insn_location ();
6517 bool shortened_string_cst = false;
6519 if (VOID_TYPE_P (TREE_TYPE (exp)))
6521 /* C++ can generate ?: expressions with a throw expression in one
6522 branch and an rvalue in the other. Here, we resolve attempts to
6523 store the throw expression's nonexistent result. */
6524 gcc_assert (!call_param_p);
6525 expand_expr (exp, const0_rtx, VOIDmode, EXPAND_NORMAL);
6526 return NULL_RTX;
6528 if (TREE_CODE (exp) == COMPOUND_EXPR)
6530 /* Perform first part of compound expression, then assign from second
6531 part. */
6532 expand_expr (TREE_OPERAND (exp, 0), const0_rtx, VOIDmode,
6533 call_param_p ? EXPAND_STACK_PARM : EXPAND_NORMAL);
6534 return store_expr (TREE_OPERAND (exp, 1), target,
6535 call_param_p, nontemporal, reverse);
6537 else if (TREE_CODE (exp) == COND_EXPR && GET_MODE (target) == BLKmode)
6539 /* For conditional expression, get safe form of the target. Then
6540 test the condition, doing the appropriate assignment on either
6541 side. This avoids the creation of unnecessary temporaries.
6542 For non-BLKmode, it is more efficient not to do this. */
6544 rtx_code_label *lab1 = gen_label_rtx (), *lab2 = gen_label_rtx ();
6546 do_pending_stack_adjust ();
6547 NO_DEFER_POP;
6548 jumpifnot (TREE_OPERAND (exp, 0), lab1,
6549 profile_probability::uninitialized ());
6550 store_expr (TREE_OPERAND (exp, 1), target, call_param_p,
6551 nontemporal, reverse);
6552 emit_jump_insn (targetm.gen_jump (lab2));
6553 emit_barrier ();
6554 emit_label (lab1);
6555 store_expr (TREE_OPERAND (exp, 2), target, call_param_p,
6556 nontemporal, reverse);
6557 emit_label (lab2);
6558 OK_DEFER_POP;
6560 return NULL_RTX;
6562 else if (GET_CODE (target) == SUBREG && SUBREG_PROMOTED_VAR_P (target))
6563 /* If this is a scalar in a register that is stored in a wider mode
6564 than the declared mode, compute the result into its declared mode
6565 and then convert to the wider mode. Our value is the computed
6566 expression. */
6568 rtx inner_target = 0;
6569 scalar_int_mode outer_mode = subreg_unpromoted_mode (target);
6570 scalar_int_mode inner_mode = subreg_promoted_mode (target);
6572 /* We can do the conversion inside EXP, which will often result
6573 in some optimizations. Do the conversion in two steps: first
6574 change the signedness, if needed, then the extend. But don't
6575 do this if the type of EXP is a subtype of something else
6576 since then the conversion might involve more than just
6577 converting modes. */
6578 if (INTEGRAL_TYPE_P (TREE_TYPE (exp))
6579 && TREE_TYPE (TREE_TYPE (exp)) == 0
6580 && GET_MODE_PRECISION (outer_mode)
6581 == TYPE_PRECISION (TREE_TYPE (exp)))
6583 if (!SUBREG_CHECK_PROMOTED_SIGN (target,
6584 TYPE_UNSIGNED (TREE_TYPE (exp))))
6586 /* Some types, e.g. Fortran's logical*4, won't have a signed
6587 version, so use the mode instead. */
6588 tree ntype
6589 = (signed_or_unsigned_type_for
6590 (SUBREG_PROMOTED_SIGN (target), TREE_TYPE (exp)));
6591 if (ntype == NULL)
6592 ntype = lang_hooks.types.type_for_mode
6593 (TYPE_MODE (TREE_TYPE (exp)),
6594 SUBREG_PROMOTED_SIGN (target));
6596 exp = fold_convert_loc (loc, ntype, exp);
6599 exp = fold_convert_loc (loc, lang_hooks.types.type_for_mode
6600 (inner_mode, SUBREG_PROMOTED_SIGN (target)),
6601 exp);
6603 inner_target = SUBREG_REG (target);
6606 temp = expand_expr (exp, inner_target, VOIDmode,
6607 call_param_p ? EXPAND_STACK_PARM : EXPAND_NORMAL);
6610 /* If TEMP is a VOIDmode constant, use convert_modes to make
6611 sure that we properly convert it. */
6612 if (CONSTANT_P (temp) && GET_MODE (temp) == VOIDmode)
6614 temp = convert_modes (outer_mode, TYPE_MODE (TREE_TYPE (exp)),
6615 temp, SUBREG_PROMOTED_SIGN (target));
6616 temp = convert_modes (inner_mode, outer_mode, temp,
6617 SUBREG_PROMOTED_SIGN (target));
6619 else if (!SCALAR_INT_MODE_P (GET_MODE (temp)))
6620 temp = convert_modes (outer_mode, TYPE_MODE (TREE_TYPE (exp)),
6621 temp, SUBREG_PROMOTED_SIGN (target));
6623 convert_move (SUBREG_REG (target), temp,
6624 SUBREG_PROMOTED_SIGN (target));
6626 return NULL_RTX;
6628 else if ((TREE_CODE (exp) == STRING_CST
6629 || (TREE_CODE (exp) == MEM_REF
6630 && TREE_CODE (TREE_OPERAND (exp, 0)) == ADDR_EXPR
6631 && TREE_CODE (TREE_OPERAND (TREE_OPERAND (exp, 0), 0))
6632 == STRING_CST
6633 && integer_zerop (TREE_OPERAND (exp, 1))))
6634 && !nontemporal && !call_param_p
6635 && MEM_P (target))
6637 /* Optimize initialization of an array with a STRING_CST. */
6638 HOST_WIDE_INT exp_len, str_copy_len;
6639 rtx dest_mem;
6640 tree str = TREE_CODE (exp) == STRING_CST
6641 ? exp : TREE_OPERAND (TREE_OPERAND (exp, 0), 0);
6643 exp_len = int_expr_size (exp);
6644 if (exp_len <= 0)
6645 goto normal_expr;
6647 if (TREE_STRING_LENGTH (str) <= 0)
6648 goto normal_expr;
6650 if (can_store_by_pieces (exp_len, string_cst_read_str, (void *) str,
6651 MEM_ALIGN (target), false))
6653 store_by_pieces (target, exp_len, string_cst_read_str, (void *) str,
6654 MEM_ALIGN (target), false, RETURN_BEGIN);
6655 return NULL_RTX;
6658 str_copy_len = TREE_STRING_LENGTH (str);
6660 /* Trailing NUL bytes in EXP will be handled by the call to
6661 clear_storage, which is more efficient than copying them from
6662 the STRING_CST, so trim those from STR_COPY_LEN. */
6663 while (str_copy_len)
6665 if (TREE_STRING_POINTER (str)[str_copy_len - 1])
6666 break;
6667 str_copy_len--;
6670 if ((STORE_MAX_PIECES & (STORE_MAX_PIECES - 1)) == 0)
6672 str_copy_len += STORE_MAX_PIECES - 1;
6673 str_copy_len &= ~(STORE_MAX_PIECES - 1);
6675 if (str_copy_len >= exp_len)
6676 goto normal_expr;
6678 if (!can_store_by_pieces (str_copy_len, string_cst_read_str,
6679 (void *) str, MEM_ALIGN (target), false))
6680 goto normal_expr;
6682 dest_mem = store_by_pieces (target, str_copy_len, string_cst_read_str,
6683 (void *) str, MEM_ALIGN (target), false,
6684 RETURN_END);
6685 clear_storage (adjust_address_1 (dest_mem, BLKmode, 0, 1, 1, 0,
6686 exp_len - str_copy_len),
6687 GEN_INT (exp_len - str_copy_len), BLOCK_OP_NORMAL);
6688 return NULL_RTX;
6690 else
6692 rtx tmp_target;
6694 normal_expr:
6695 /* If we want to use a nontemporal or a reverse order store, force the
6696 value into a register first. */
6697 tmp_target = nontemporal || reverse ? NULL_RTX : target;
6698 tree rexp = exp;
6699 if (TREE_CODE (exp) == STRING_CST
6700 && tmp_target == target
6701 && GET_MODE (target) == BLKmode
6702 && TYPE_MODE (TREE_TYPE (exp)) == BLKmode)
6704 rtx size = expr_size (exp);
6705 if (CONST_INT_P (size)
6706 && size != const0_rtx
6707 && (UINTVAL (size)
6708 > ((unsigned HOST_WIDE_INT) TREE_STRING_LENGTH (exp) + 32)))
6710 /* If the STRING_CST has much larger array type than
6711 TREE_STRING_LENGTH, only emit the TREE_STRING_LENGTH part of
6712 it into the rodata section as the code later on will use
6713 memset zero for the remainder anyway. See PR95052. */
6714 tmp_target = NULL_RTX;
6715 rexp = copy_node (exp);
6716 tree index
6717 = build_index_type (size_int (TREE_STRING_LENGTH (exp) - 1));
6718 TREE_TYPE (rexp) = build_array_type (TREE_TYPE (TREE_TYPE (exp)),
6719 index);
6720 shortened_string_cst = true;
6723 temp = expand_expr_real (rexp, tmp_target, GET_MODE (target),
6724 (call_param_p
6725 ? EXPAND_STACK_PARM : EXPAND_NORMAL),
6726 &alt_rtl, false);
6727 if (shortened_string_cst)
6729 gcc_assert (MEM_P (temp));
6730 temp = change_address (temp, BLKmode, NULL_RTX);
6734 /* If TEMP is a VOIDmode constant and the mode of the type of EXP is not
6735 the same as that of TARGET, adjust the constant. This is needed, for
6736 example, in case it is a CONST_DOUBLE or CONST_WIDE_INT and we want
6737 only a word-sized value. */
6738 if (CONSTANT_P (temp) && GET_MODE (temp) == VOIDmode
6739 && TREE_CODE (exp) != ERROR_MARK
6740 && GET_MODE (target) != TYPE_MODE (TREE_TYPE (exp)))
6742 gcc_assert (!shortened_string_cst);
6743 if (GET_MODE_CLASS (GET_MODE (target))
6744 != GET_MODE_CLASS (TYPE_MODE (TREE_TYPE (exp)))
6745 && known_eq (GET_MODE_BITSIZE (GET_MODE (target)),
6746 GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (exp)))))
6748 rtx t = simplify_gen_subreg (GET_MODE (target), temp,
6749 TYPE_MODE (TREE_TYPE (exp)), 0);
6750 if (t)
6751 temp = t;
6753 if (GET_MODE (temp) == VOIDmode)
6754 temp = convert_modes (GET_MODE (target), TYPE_MODE (TREE_TYPE (exp)),
6755 temp, TYPE_UNSIGNED (TREE_TYPE (exp)));
6758 /* If value was not generated in the target, store it there.
6759 Convert the value to TARGET's type first if necessary and emit the
6760 pending incrementations that have been queued when expanding EXP.
6761 Note that we cannot emit the whole queue blindly because this will
6762 effectively disable the POST_INC optimization later.
6764 If TEMP and TARGET compare equal according to rtx_equal_p, but
6765 one or both of them are volatile memory refs, we have to distinguish
6766 two cases:
6767 - expand_expr has used TARGET. In this case, we must not generate
6768 another copy. This can be detected by TARGET being equal according
6769 to == .
6770 - expand_expr has not used TARGET - that means that the source just
6771 happens to have the same RTX form. Since temp will have been created
6772 by expand_expr, it will compare unequal according to == .
6773 We must generate a copy in this case, to reach the correct number
6774 of volatile memory references. */
6776 if ((! rtx_equal_p (temp, target)
6777 || (temp != target && (side_effects_p (temp)
6778 || side_effects_p (target)
6779 || (MEM_P (temp)
6780 && !mems_same_for_tbaa_p (temp, target)))))
6781 && TREE_CODE (exp) != ERROR_MARK
6782 /* If store_expr stores a DECL whose DECL_RTL(exp) == TARGET,
6783 but TARGET is not valid memory reference, TEMP will differ
6784 from TARGET although it is really the same location. */
6785 && !(alt_rtl
6786 && rtx_equal_p (alt_rtl, target)
6787 && !side_effects_p (alt_rtl)
6788 && !side_effects_p (target))
6789 /* If there's nothing to copy, don't bother. Don't call
6790 expr_size unless necessary, because some front-ends (C++)
6791 expr_size-hook must not be given objects that are not
6792 supposed to be bit-copied or bit-initialized. */
6793 && expr_size (exp) != const0_rtx)
6795 if (GET_MODE (temp) != GET_MODE (target) && GET_MODE (temp) != VOIDmode)
6797 gcc_assert (!shortened_string_cst);
6798 if (GET_MODE (target) == BLKmode)
6800 /* Handle calls that return BLKmode values in registers. */
6801 if (REG_P (temp) && TREE_CODE (exp) == CALL_EXPR)
6802 copy_blkmode_from_reg (target, temp, TREE_TYPE (exp));
6803 else
6804 store_bit_field (target,
6805 rtx_to_poly_int64 (expr_size (exp))
6806 * BITS_PER_UNIT,
6807 0, 0, 0, GET_MODE (temp), temp, reverse,
6808 false);
6810 else
6811 convert_move (target, temp, TYPE_UNSIGNED (TREE_TYPE (exp)));
6814 else if (GET_MODE (temp) == BLKmode && TREE_CODE (exp) == STRING_CST)
6816 /* Handle copying a string constant into an array. The string
6817 constant may be shorter than the array. So copy just the string's
6818 actual length, and clear the rest. First get the size of the data
6819 type of the string, which is actually the size of the target. */
6820 rtx size = expr_size (exp);
6822 if (CONST_INT_P (size)
6823 && INTVAL (size) < TREE_STRING_LENGTH (exp))
6824 emit_block_move (target, temp, size,
6825 (call_param_p
6826 ? BLOCK_OP_CALL_PARM : BLOCK_OP_NORMAL));
6827 else
6829 machine_mode pointer_mode
6830 = targetm.addr_space.pointer_mode (MEM_ADDR_SPACE (target));
6831 machine_mode address_mode = get_address_mode (target);
6833 /* Compute the size of the data to copy from the string. */
6834 tree copy_size
6835 = size_binop_loc (loc, MIN_EXPR,
6836 make_tree (sizetype, size),
6837 size_int (TREE_STRING_LENGTH (exp)));
6838 rtx copy_size_rtx
6839 = expand_expr (copy_size, NULL_RTX, VOIDmode,
6840 (call_param_p
6841 ? EXPAND_STACK_PARM : EXPAND_NORMAL));
6842 rtx_code_label *label = 0;
6844 /* Copy that much. */
6845 copy_size_rtx = convert_to_mode (pointer_mode, copy_size_rtx,
6846 TYPE_UNSIGNED (sizetype));
6847 emit_block_move (target, temp, copy_size_rtx,
6848 (call_param_p
6849 ? BLOCK_OP_CALL_PARM : BLOCK_OP_NORMAL));
6851 /* Figure out how much is left in TARGET that we have to clear.
6852 Do all calculations in pointer_mode. */
6853 poly_int64 const_copy_size;
6854 if (poly_int_rtx_p (copy_size_rtx, &const_copy_size))
6856 size = plus_constant (address_mode, size, -const_copy_size);
6857 target = adjust_address (target, BLKmode, const_copy_size);
6859 else
6861 size = expand_binop (TYPE_MODE (sizetype), sub_optab, size,
6862 copy_size_rtx, NULL_RTX, 0,
6863 OPTAB_LIB_WIDEN);
6865 if (GET_MODE (copy_size_rtx) != address_mode)
6866 copy_size_rtx = convert_to_mode (address_mode,
6867 copy_size_rtx,
6868 TYPE_UNSIGNED (sizetype));
6870 target = offset_address (target, copy_size_rtx,
6871 highest_pow2_factor (copy_size));
6872 label = gen_label_rtx ();
6873 emit_cmp_and_jump_insns (size, const0_rtx, LT, NULL_RTX,
6874 GET_MODE (size), 0, label);
6877 if (size != const0_rtx)
6878 clear_storage (target, size, BLOCK_OP_NORMAL);
6880 if (label)
6881 emit_label (label);
6884 else if (shortened_string_cst)
6885 gcc_unreachable ();
6886 /* Handle calls that return values in multiple non-contiguous locations.
6887 The Irix 6 ABI has examples of this. */
6888 else if (GET_CODE (target) == PARALLEL)
6890 if (GET_CODE (temp) == PARALLEL)
6891 emit_group_move (target, temp);
6892 else
6893 emit_group_load (target, temp, TREE_TYPE (exp),
6894 int_size_in_bytes (TREE_TYPE (exp)));
6896 else if (GET_CODE (temp) == PARALLEL)
6897 emit_group_store (target, temp, TREE_TYPE (exp),
6898 int_size_in_bytes (TREE_TYPE (exp)));
6899 else if (GET_MODE (temp) == BLKmode)
6900 emit_block_move (target, temp, expr_size (exp),
6901 (call_param_p
6902 ? BLOCK_OP_CALL_PARM : BLOCK_OP_NORMAL));
6903 /* If we emit a nontemporal store, there is nothing else to do. */
6904 else if (nontemporal && emit_storent_insn (target, temp))
6906 else
6908 if (reverse)
6909 temp = flip_storage_order (GET_MODE (target), temp);
6910 temp = force_operand (temp, target);
6911 if (temp != target)
6912 emit_move_insn (target, temp);
6915 else
6916 gcc_assert (!shortened_string_cst);
6918 return NULL_RTX;
6921 /* Return true if field F of structure TYPE is a flexible array. */
6923 static bool
6924 flexible_array_member_p (const_tree f, const_tree type)
6926 const_tree tf;
6928 tf = TREE_TYPE (f);
6929 return (DECL_CHAIN (f) == NULL
6930 && TREE_CODE (tf) == ARRAY_TYPE
6931 && TYPE_DOMAIN (tf)
6932 && TYPE_MIN_VALUE (TYPE_DOMAIN (tf))
6933 && integer_zerop (TYPE_MIN_VALUE (TYPE_DOMAIN (tf)))
6934 && !TYPE_MAX_VALUE (TYPE_DOMAIN (tf))
6935 && int_size_in_bytes (type) >= 0);
6938 /* If FOR_CTOR_P, return the number of top-level elements that a constructor
6939 must have in order for it to completely initialize a value of type TYPE.
6940 Return -1 if the number isn't known.
6942 If !FOR_CTOR_P, return an estimate of the number of scalars in TYPE. */
6944 static HOST_WIDE_INT
6945 count_type_elements (const_tree type, bool for_ctor_p)
6947 switch (TREE_CODE (type))
6949 case ARRAY_TYPE:
6951 tree nelts;
6953 nelts = array_type_nelts (type);
6954 if (nelts && tree_fits_uhwi_p (nelts))
6956 unsigned HOST_WIDE_INT n;
6958 n = tree_to_uhwi (nelts) + 1;
6959 if (n == 0 || for_ctor_p)
6960 return n;
6961 else
6962 return n * count_type_elements (TREE_TYPE (type), false);
6964 return for_ctor_p ? -1 : 1;
6967 case RECORD_TYPE:
6969 unsigned HOST_WIDE_INT n;
6970 tree f;
6972 n = 0;
6973 for (f = TYPE_FIELDS (type); f ; f = DECL_CHAIN (f))
6974 if (TREE_CODE (f) == FIELD_DECL)
6976 if (!for_ctor_p)
6977 n += count_type_elements (TREE_TYPE (f), false);
6978 else if (!flexible_array_member_p (f, type))
6979 /* Don't count flexible arrays, which are not supposed
6980 to be initialized. */
6981 n += 1;
6984 return n;
6987 case UNION_TYPE:
6988 case QUAL_UNION_TYPE:
6990 tree f;
6991 HOST_WIDE_INT n, m;
6993 gcc_assert (!for_ctor_p);
6994 /* Estimate the number of scalars in each field and pick the
6995 maximum. Other estimates would do instead; the idea is simply
6996 to make sure that the estimate is not sensitive to the ordering
6997 of the fields. */
6998 n = 1;
6999 for (f = TYPE_FIELDS (type); f ; f = DECL_CHAIN (f))
7000 if (TREE_CODE (f) == FIELD_DECL)
7002 m = count_type_elements (TREE_TYPE (f), false);
7003 /* If the field doesn't span the whole union, add an extra
7004 scalar for the rest. */
7005 if (simple_cst_equal (TYPE_SIZE (TREE_TYPE (f)),
7006 TYPE_SIZE (type)) != 1)
7007 m++;
7008 if (n < m)
7009 n = m;
7011 return n;
7014 case COMPLEX_TYPE:
7015 return 2;
7017 case VECTOR_TYPE:
7019 unsigned HOST_WIDE_INT nelts;
7020 if (TYPE_VECTOR_SUBPARTS (type).is_constant (&nelts))
7021 return nelts;
7022 else
7023 return -1;
7026 case INTEGER_TYPE:
7027 case REAL_TYPE:
7028 case FIXED_POINT_TYPE:
7029 case ENUMERAL_TYPE:
7030 case BOOLEAN_TYPE:
7031 case POINTER_TYPE:
7032 case OFFSET_TYPE:
7033 case REFERENCE_TYPE:
7034 case NULLPTR_TYPE:
7035 case OPAQUE_TYPE:
7036 case BITINT_TYPE:
7037 return 1;
7039 case ERROR_MARK:
7040 return 0;
7042 case VOID_TYPE:
7043 case METHOD_TYPE:
7044 case FUNCTION_TYPE:
7045 case LANG_TYPE:
7046 default:
7047 gcc_unreachable ();
7051 /* Helper for categorize_ctor_elements. Identical interface. */
7053 static bool
7054 categorize_ctor_elements_1 (const_tree ctor, HOST_WIDE_INT *p_nz_elts,
7055 HOST_WIDE_INT *p_unique_nz_elts,
7056 HOST_WIDE_INT *p_init_elts, bool *p_complete)
7058 unsigned HOST_WIDE_INT idx;
7059 HOST_WIDE_INT nz_elts, unique_nz_elts, init_elts, num_fields;
7060 tree value, purpose, elt_type;
7062 /* Whether CTOR is a valid constant initializer, in accordance with what
7063 initializer_constant_valid_p does. If inferred from the constructor
7064 elements, true until proven otherwise. */
7065 bool const_from_elts_p = constructor_static_from_elts_p (ctor);
7066 bool const_p = const_from_elts_p ? true : TREE_STATIC (ctor);
7068 nz_elts = 0;
7069 unique_nz_elts = 0;
7070 init_elts = 0;
7071 num_fields = 0;
7072 elt_type = NULL_TREE;
7074 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (ctor), idx, purpose, value)
7076 HOST_WIDE_INT mult = 1;
7078 if (purpose && TREE_CODE (purpose) == RANGE_EXPR)
7080 tree lo_index = TREE_OPERAND (purpose, 0);
7081 tree hi_index = TREE_OPERAND (purpose, 1);
7083 if (tree_fits_uhwi_p (lo_index) && tree_fits_uhwi_p (hi_index))
7084 mult = (tree_to_uhwi (hi_index)
7085 - tree_to_uhwi (lo_index) + 1);
7087 num_fields += mult;
7088 elt_type = TREE_TYPE (value);
7090 switch (TREE_CODE (value))
7092 case CONSTRUCTOR:
7094 HOST_WIDE_INT nz = 0, unz = 0, ic = 0;
7096 bool const_elt_p = categorize_ctor_elements_1 (value, &nz, &unz,
7097 &ic, p_complete);
7099 nz_elts += mult * nz;
7100 unique_nz_elts += unz;
7101 init_elts += mult * ic;
7103 if (const_from_elts_p && const_p)
7104 const_p = const_elt_p;
7106 break;
7108 case INTEGER_CST:
7109 case REAL_CST:
7110 case FIXED_CST:
7111 if (!initializer_zerop (value))
7113 nz_elts += mult;
7114 unique_nz_elts++;
7116 init_elts += mult;
7117 break;
7119 case STRING_CST:
7120 nz_elts += mult * TREE_STRING_LENGTH (value);
7121 unique_nz_elts += TREE_STRING_LENGTH (value);
7122 init_elts += mult * TREE_STRING_LENGTH (value);
7123 break;
7125 case COMPLEX_CST:
7126 if (!initializer_zerop (TREE_REALPART (value)))
7128 nz_elts += mult;
7129 unique_nz_elts++;
7131 if (!initializer_zerop (TREE_IMAGPART (value)))
7133 nz_elts += mult;
7134 unique_nz_elts++;
7136 init_elts += 2 * mult;
7137 break;
7139 case VECTOR_CST:
7141 /* We can only construct constant-length vectors using
7142 CONSTRUCTOR. */
7143 unsigned int nunits = VECTOR_CST_NELTS (value).to_constant ();
7144 for (unsigned int i = 0; i < nunits; ++i)
7146 tree v = VECTOR_CST_ELT (value, i);
7147 if (!initializer_zerop (v))
7149 nz_elts += mult;
7150 unique_nz_elts++;
7152 init_elts += mult;
7155 break;
7157 default:
7159 HOST_WIDE_INT tc = count_type_elements (elt_type, false);
7160 nz_elts += mult * tc;
7161 unique_nz_elts += tc;
7162 init_elts += mult * tc;
7164 if (const_from_elts_p && const_p)
7165 const_p
7166 = initializer_constant_valid_p (value,
7167 elt_type,
7168 TYPE_REVERSE_STORAGE_ORDER
7169 (TREE_TYPE (ctor)))
7170 != NULL_TREE;
7172 break;
7176 if (*p_complete && !complete_ctor_at_level_p (TREE_TYPE (ctor),
7177 num_fields, elt_type))
7178 *p_complete = false;
7180 *p_nz_elts += nz_elts;
7181 *p_unique_nz_elts += unique_nz_elts;
7182 *p_init_elts += init_elts;
7184 return const_p;
7187 /* Examine CTOR to discover:
7188 * how many scalar fields are set to nonzero values,
7189 and place it in *P_NZ_ELTS;
7190 * the same, but counting RANGE_EXPRs as multiplier of 1 instead of
7191 high - low + 1 (this can be useful for callers to determine ctors
7192 that could be cheaply initialized with - perhaps nested - loops
7193 compared to copied from huge read-only data),
7194 and place it in *P_UNIQUE_NZ_ELTS;
7195 * how many scalar fields in total are in CTOR,
7196 and place it in *P_ELT_COUNT.
7197 * whether the constructor is complete -- in the sense that every
7198 meaningful byte is explicitly given a value --
7199 and place it in *P_COMPLETE.
7201 Return whether or not CTOR is a valid static constant initializer, the same
7202 as "initializer_constant_valid_p (CTOR, TREE_TYPE (CTOR)) != 0". */
7204 bool
7205 categorize_ctor_elements (const_tree ctor, HOST_WIDE_INT *p_nz_elts,
7206 HOST_WIDE_INT *p_unique_nz_elts,
7207 HOST_WIDE_INT *p_init_elts, bool *p_complete)
7209 *p_nz_elts = 0;
7210 *p_unique_nz_elts = 0;
7211 *p_init_elts = 0;
7212 *p_complete = true;
7214 return categorize_ctor_elements_1 (ctor, p_nz_elts, p_unique_nz_elts,
7215 p_init_elts, p_complete);
7218 /* Return true if constructor CTOR is simple enough to be materialized
7219 in an integer mode register. Limit the size to WORDS words, which
7220 is 1 by default. */
7222 bool
7223 immediate_const_ctor_p (const_tree ctor, unsigned int words)
7225 /* Allow function to be called with a VAR_DECL's DECL_INITIAL. */
7226 if (!ctor || TREE_CODE (ctor) != CONSTRUCTOR)
7227 return false;
7229 return TREE_CONSTANT (ctor)
7230 && !TREE_ADDRESSABLE (ctor)
7231 && CONSTRUCTOR_NELTS (ctor)
7232 && TREE_CODE (TREE_TYPE (ctor)) != ARRAY_TYPE
7233 && int_expr_size (ctor) <= words * UNITS_PER_WORD
7234 && initializer_constant_valid_for_bitfield_p (ctor);
7237 /* TYPE is initialized by a constructor with NUM_ELTS elements, the last
7238 of which had type LAST_TYPE. Each element was itself a complete
7239 initializer, in the sense that every meaningful byte was explicitly
7240 given a value. Return true if the same is true for the constructor
7241 as a whole. */
7243 bool
7244 complete_ctor_at_level_p (const_tree type, HOST_WIDE_INT num_elts,
7245 const_tree last_type)
7247 if (TREE_CODE (type) == UNION_TYPE
7248 || TREE_CODE (type) == QUAL_UNION_TYPE)
7250 if (num_elts == 0)
7251 return false;
7253 gcc_assert (num_elts == 1 && last_type);
7255 /* ??? We could look at each element of the union, and find the
7256 largest element. Which would avoid comparing the size of the
7257 initialized element against any tail padding in the union.
7258 Doesn't seem worth the effort... */
7259 return simple_cst_equal (TYPE_SIZE (type), TYPE_SIZE (last_type)) == 1;
7262 return count_type_elements (type, true) == num_elts;
7265 /* Return true if EXP contains mostly (3/4) zeros. */
7267 static bool
7268 mostly_zeros_p (const_tree exp)
7270 if (TREE_CODE (exp) == CONSTRUCTOR)
7272 HOST_WIDE_INT nz_elts, unz_elts, init_elts;
7273 bool complete_p;
7275 categorize_ctor_elements (exp, &nz_elts, &unz_elts, &init_elts,
7276 &complete_p);
7277 return !complete_p || nz_elts < init_elts / 4;
7280 return initializer_zerop (exp);
7283 /* Return true if EXP contains all zeros. */
7285 static bool
7286 all_zeros_p (const_tree exp)
7288 if (TREE_CODE (exp) == CONSTRUCTOR)
7290 HOST_WIDE_INT nz_elts, unz_elts, init_elts;
7291 bool complete_p;
7293 categorize_ctor_elements (exp, &nz_elts, &unz_elts, &init_elts,
7294 &complete_p);
7295 return nz_elts == 0;
7298 return initializer_zerop (exp);
7301 /* Helper function for store_constructor.
7302 TARGET, BITSIZE, BITPOS, MODE, EXP are as for store_field.
7303 CLEARED is as for store_constructor.
7304 ALIAS_SET is the alias set to use for any stores.
7305 If REVERSE is true, the store is to be done in reverse order.
7307 This provides a recursive shortcut back to store_constructor when it isn't
7308 necessary to go through store_field. This is so that we can pass through
7309 the cleared field to let store_constructor know that we may not have to
7310 clear a substructure if the outer structure has already been cleared. */
7312 static void
7313 store_constructor_field (rtx target, poly_uint64 bitsize, poly_int64 bitpos,
7314 poly_uint64 bitregion_start,
7315 poly_uint64 bitregion_end,
7316 machine_mode mode,
7317 tree exp, int cleared,
7318 alias_set_type alias_set, bool reverse)
7320 poly_int64 bytepos;
7321 poly_uint64 bytesize;
7322 if (TREE_CODE (exp) == CONSTRUCTOR
7323 /* We can only call store_constructor recursively if the size and
7324 bit position are on a byte boundary. */
7325 && multiple_p (bitpos, BITS_PER_UNIT, &bytepos)
7326 && maybe_ne (bitsize, 0U)
7327 && multiple_p (bitsize, BITS_PER_UNIT, &bytesize)
7328 /* If we have a nonzero bitpos for a register target, then we just
7329 let store_field do the bitfield handling. This is unlikely to
7330 generate unnecessary clear instructions anyways. */
7331 && (known_eq (bitpos, 0) || MEM_P (target)))
7333 if (MEM_P (target))
7335 machine_mode target_mode = GET_MODE (target);
7336 if (target_mode != BLKmode
7337 && !multiple_p (bitpos, GET_MODE_ALIGNMENT (target_mode)))
7338 target_mode = BLKmode;
7339 target = adjust_address (target, target_mode, bytepos);
7343 /* Update the alias set, if required. */
7344 if (MEM_P (target) && ! MEM_KEEP_ALIAS_SET_P (target)
7345 && MEM_ALIAS_SET (target) != 0)
7347 target = copy_rtx (target);
7348 set_mem_alias_set (target, alias_set);
7351 store_constructor (exp, target, cleared, bytesize, reverse);
7353 else
7354 store_field (target, bitsize, bitpos, bitregion_start, bitregion_end, mode,
7355 exp, alias_set, false, reverse);
7359 /* Returns the number of FIELD_DECLs in TYPE. */
7361 static int
7362 fields_length (const_tree type)
7364 tree t = TYPE_FIELDS (type);
7365 int count = 0;
7367 for (; t; t = DECL_CHAIN (t))
7368 if (TREE_CODE (t) == FIELD_DECL)
7369 ++count;
7371 return count;
7375 /* Store the value of constructor EXP into the rtx TARGET.
7376 TARGET is either a REG or a MEM; we know it cannot conflict, since
7377 safe_from_p has been called.
7378 CLEARED is true if TARGET is known to have been zero'd.
7379 SIZE is the number of bytes of TARGET we are allowed to modify: this
7380 may not be the same as the size of EXP if we are assigning to a field
7381 which has been packed to exclude padding bits.
7382 If REVERSE is true, the store is to be done in reverse order. */
7384 void
7385 store_constructor (tree exp, rtx target, int cleared, poly_int64 size,
7386 bool reverse)
7388 tree type = TREE_TYPE (exp);
7389 HOST_WIDE_INT exp_size = int_size_in_bytes (type);
7390 poly_int64 bitregion_end = known_gt (size, 0) ? size * BITS_PER_UNIT - 1 : 0;
7392 switch (TREE_CODE (type))
7394 case RECORD_TYPE:
7395 case UNION_TYPE:
7396 case QUAL_UNION_TYPE:
7398 unsigned HOST_WIDE_INT idx;
7399 tree field, value;
7401 /* The storage order is specified for every aggregate type. */
7402 reverse = TYPE_REVERSE_STORAGE_ORDER (type);
7404 /* If size is zero or the target is already cleared, do nothing. */
7405 if (known_eq (size, 0) || cleared)
7406 cleared = 1;
7407 /* We either clear the aggregate or indicate the value is dead. */
7408 else if ((TREE_CODE (type) == UNION_TYPE
7409 || TREE_CODE (type) == QUAL_UNION_TYPE)
7410 && ! CONSTRUCTOR_ELTS (exp))
7411 /* If the constructor is empty, clear the union. */
7413 clear_storage (target, expr_size (exp), BLOCK_OP_NORMAL);
7414 cleared = 1;
7417 /* If we are building a static constructor into a register,
7418 set the initial value as zero so we can fold the value into
7419 a constant. But if more than one register is involved,
7420 this probably loses. */
7421 else if (REG_P (target) && TREE_STATIC (exp)
7422 && known_le (GET_MODE_SIZE (GET_MODE (target)),
7423 REGMODE_NATURAL_SIZE (GET_MODE (target))))
7425 emit_move_insn (target, CONST0_RTX (GET_MODE (target)));
7426 cleared = 1;
7429 /* If the constructor has fewer fields than the structure or
7430 if we are initializing the structure to mostly zeros, clear
7431 the whole structure first. Don't do this if TARGET is a
7432 register whose mode size isn't equal to SIZE since
7433 clear_storage can't handle this case. */
7434 else if (known_size_p (size)
7435 && (((int) CONSTRUCTOR_NELTS (exp) != fields_length (type))
7436 || mostly_zeros_p (exp))
7437 && (!REG_P (target)
7438 || known_eq (GET_MODE_SIZE (GET_MODE (target)), size)))
7440 clear_storage (target, gen_int_mode (size, Pmode),
7441 BLOCK_OP_NORMAL);
7442 cleared = 1;
7445 if (REG_P (target) && !cleared)
7446 emit_clobber (target);
7448 /* Store each element of the constructor into the
7449 corresponding field of TARGET. */
7450 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (exp), idx, field, value)
7452 machine_mode mode;
7453 HOST_WIDE_INT bitsize;
7454 HOST_WIDE_INT bitpos = 0;
7455 tree offset;
7456 rtx to_rtx = target;
7458 /* Just ignore missing fields. We cleared the whole
7459 structure, above, if any fields are missing. */
7460 if (field == 0)
7461 continue;
7463 if (cleared && initializer_zerop (value))
7464 continue;
7466 if (tree_fits_uhwi_p (DECL_SIZE (field)))
7467 bitsize = tree_to_uhwi (DECL_SIZE (field));
7468 else
7469 gcc_unreachable ();
7471 mode = DECL_MODE (field);
7472 if (DECL_BIT_FIELD (field))
7473 mode = VOIDmode;
7475 offset = DECL_FIELD_OFFSET (field);
7476 if (tree_fits_shwi_p (offset)
7477 && tree_fits_shwi_p (bit_position (field)))
7479 bitpos = int_bit_position (field);
7480 offset = NULL_TREE;
7482 else
7483 gcc_unreachable ();
7485 /* If this initializes a field that is smaller than a
7486 word, at the start of a word, try to widen it to a full
7487 word. This special case allows us to output C++ member
7488 function initializations in a form that the optimizers
7489 can understand. */
7490 if (WORD_REGISTER_OPERATIONS
7491 && REG_P (target)
7492 && bitsize < BITS_PER_WORD
7493 && bitpos % BITS_PER_WORD == 0
7494 && GET_MODE_CLASS (mode) == MODE_INT
7495 && TREE_CODE (value) == INTEGER_CST
7496 && exp_size >= 0
7497 && bitpos + BITS_PER_WORD <= exp_size * BITS_PER_UNIT)
7499 type = TREE_TYPE (value);
7501 if (TYPE_PRECISION (type) < BITS_PER_WORD)
7503 type = lang_hooks.types.type_for_mode
7504 (word_mode, TYPE_UNSIGNED (type));
7505 value = fold_convert (type, value);
7506 /* Make sure the bits beyond the original bitsize are zero
7507 so that we can correctly avoid extra zeroing stores in
7508 later constructor elements. */
7509 tree bitsize_mask
7510 = wide_int_to_tree (type, wi::mask (bitsize, false,
7511 BITS_PER_WORD));
7512 value = fold_build2 (BIT_AND_EXPR, type, value, bitsize_mask);
7515 if (BYTES_BIG_ENDIAN)
7516 value
7517 = fold_build2 (LSHIFT_EXPR, type, value,
7518 build_int_cst (type,
7519 BITS_PER_WORD - bitsize));
7520 bitsize = BITS_PER_WORD;
7521 mode = word_mode;
7524 if (MEM_P (to_rtx) && !MEM_KEEP_ALIAS_SET_P (to_rtx)
7525 && DECL_NONADDRESSABLE_P (field))
7527 to_rtx = copy_rtx (to_rtx);
7528 MEM_KEEP_ALIAS_SET_P (to_rtx) = 1;
7531 store_constructor_field (to_rtx, bitsize, bitpos,
7532 0, bitregion_end, mode,
7533 value, cleared,
7534 get_alias_set (TREE_TYPE (field)),
7535 reverse);
7537 break;
7539 case ARRAY_TYPE:
7541 tree value, index;
7542 unsigned HOST_WIDE_INT i;
7543 bool need_to_clear;
7544 tree domain;
7545 tree elttype = TREE_TYPE (type);
7546 bool const_bounds_p;
7547 HOST_WIDE_INT minelt = 0;
7548 HOST_WIDE_INT maxelt = 0;
7550 /* The storage order is specified for every aggregate type. */
7551 reverse = TYPE_REVERSE_STORAGE_ORDER (type);
7553 domain = TYPE_DOMAIN (type);
7554 const_bounds_p = (TYPE_MIN_VALUE (domain)
7555 && TYPE_MAX_VALUE (domain)
7556 && tree_fits_shwi_p (TYPE_MIN_VALUE (domain))
7557 && tree_fits_shwi_p (TYPE_MAX_VALUE (domain)));
7559 /* If we have constant bounds for the range of the type, get them. */
7560 if (const_bounds_p)
7562 minelt = tree_to_shwi (TYPE_MIN_VALUE (domain));
7563 maxelt = tree_to_shwi (TYPE_MAX_VALUE (domain));
7566 /* If the constructor has fewer elements than the array, clear
7567 the whole array first. Similarly if this is static
7568 constructor of a non-BLKmode object. */
7569 if (cleared)
7570 need_to_clear = false;
7571 else if (REG_P (target) && TREE_STATIC (exp))
7572 need_to_clear = true;
7573 else
7575 unsigned HOST_WIDE_INT idx;
7576 HOST_WIDE_INT count = 0, zero_count = 0;
7577 need_to_clear = ! const_bounds_p;
7579 /* This loop is a more accurate version of the loop in
7580 mostly_zeros_p (it handles RANGE_EXPR in an index). It
7581 is also needed to check for missing elements. */
7582 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (exp), idx, index, value)
7584 HOST_WIDE_INT this_node_count;
7586 if (need_to_clear)
7587 break;
7589 if (index != NULL_TREE && TREE_CODE (index) == RANGE_EXPR)
7591 tree lo_index = TREE_OPERAND (index, 0);
7592 tree hi_index = TREE_OPERAND (index, 1);
7594 if (! tree_fits_uhwi_p (lo_index)
7595 || ! tree_fits_uhwi_p (hi_index))
7597 need_to_clear = true;
7598 break;
7601 this_node_count = (tree_to_uhwi (hi_index)
7602 - tree_to_uhwi (lo_index) + 1);
7604 else
7605 this_node_count = 1;
7607 count += this_node_count;
7608 if (mostly_zeros_p (value))
7609 zero_count += this_node_count;
7612 /* Clear the entire array first if there are any missing
7613 elements, or if the incidence of zero elements is >=
7614 75%. */
7615 if (! need_to_clear
7616 && (count < maxelt - minelt + 1
7617 || 4 * zero_count >= 3 * count))
7618 need_to_clear = true;
7621 if (need_to_clear && maybe_gt (size, 0))
7623 if (REG_P (target))
7624 emit_move_insn (target, CONST0_RTX (GET_MODE (target)));
7625 else
7626 clear_storage (target, gen_int_mode (size, Pmode),
7627 BLOCK_OP_NORMAL);
7628 cleared = 1;
7631 if (!cleared && REG_P (target))
7632 /* Inform later passes that the old value is dead. */
7633 emit_clobber (target);
7635 /* Store each element of the constructor into the
7636 corresponding element of TARGET, determined by counting the
7637 elements. */
7638 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (exp), i, index, value)
7640 machine_mode mode;
7641 poly_int64 bitsize;
7642 HOST_WIDE_INT bitpos;
7643 rtx xtarget = target;
7645 if (cleared && initializer_zerop (value))
7646 continue;
7648 mode = TYPE_MODE (elttype);
7649 if (mode != BLKmode)
7650 bitsize = GET_MODE_BITSIZE (mode);
7651 else if (!poly_int_tree_p (TYPE_SIZE (elttype), &bitsize))
7652 bitsize = -1;
7654 if (index != NULL_TREE && TREE_CODE (index) == RANGE_EXPR)
7656 tree lo_index = TREE_OPERAND (index, 0);
7657 tree hi_index = TREE_OPERAND (index, 1);
7658 rtx index_r, pos_rtx;
7659 HOST_WIDE_INT lo, hi, count;
7660 tree position;
7662 /* If the range is constant and "small", unroll the loop. */
7663 if (const_bounds_p
7664 && tree_fits_shwi_p (lo_index)
7665 && tree_fits_shwi_p (hi_index)
7666 && (lo = tree_to_shwi (lo_index),
7667 hi = tree_to_shwi (hi_index),
7668 count = hi - lo + 1,
7669 (!MEM_P (target)
7670 || count <= 2
7671 || (tree_fits_uhwi_p (TYPE_SIZE (elttype))
7672 && (tree_to_uhwi (TYPE_SIZE (elttype)) * count
7673 <= 40 * 8)))))
7675 lo -= minelt; hi -= minelt;
7676 for (; lo <= hi; lo++)
7678 bitpos = lo * tree_to_shwi (TYPE_SIZE (elttype));
7680 if (MEM_P (target)
7681 && !MEM_KEEP_ALIAS_SET_P (target)
7682 && TREE_CODE (type) == ARRAY_TYPE
7683 && TYPE_NONALIASED_COMPONENT (type))
7685 target = copy_rtx (target);
7686 MEM_KEEP_ALIAS_SET_P (target) = 1;
7689 store_constructor_field
7690 (target, bitsize, bitpos, 0, bitregion_end,
7691 mode, value, cleared,
7692 get_alias_set (elttype), reverse);
7695 else
7697 rtx_code_label *loop_start = gen_label_rtx ();
7698 rtx_code_label *loop_end = gen_label_rtx ();
7699 tree exit_cond;
7701 expand_normal (hi_index);
7703 index = build_decl (EXPR_LOCATION (exp),
7704 VAR_DECL, NULL_TREE, domain);
7705 index_r = gen_reg_rtx (promote_decl_mode (index, NULL));
7706 SET_DECL_RTL (index, index_r);
7707 store_expr (lo_index, index_r, 0, false, reverse);
7709 /* Build the head of the loop. */
7710 do_pending_stack_adjust ();
7711 emit_label (loop_start);
7713 /* Assign value to element index. */
7714 position =
7715 fold_convert (ssizetype,
7716 fold_build2 (MINUS_EXPR,
7717 TREE_TYPE (index),
7718 index,
7719 TYPE_MIN_VALUE (domain)));
7721 position =
7722 size_binop (MULT_EXPR, position,
7723 fold_convert (ssizetype,
7724 TYPE_SIZE_UNIT (elttype)));
7726 pos_rtx = expand_normal (position);
7727 xtarget = offset_address (target, pos_rtx,
7728 highest_pow2_factor (position));
7729 xtarget = adjust_address (xtarget, mode, 0);
7730 if (TREE_CODE (value) == CONSTRUCTOR)
7731 store_constructor (value, xtarget, cleared,
7732 exact_div (bitsize, BITS_PER_UNIT),
7733 reverse);
7734 else
7735 store_expr (value, xtarget, 0, false, reverse);
7737 /* Generate a conditional jump to exit the loop. */
7738 exit_cond = build2 (LT_EXPR, integer_type_node,
7739 index, hi_index);
7740 jumpif (exit_cond, loop_end,
7741 profile_probability::uninitialized ());
7743 /* Update the loop counter, and jump to the head of
7744 the loop. */
7745 expand_assignment (index,
7746 build2 (PLUS_EXPR, TREE_TYPE (index),
7747 index, integer_one_node),
7748 false);
7750 emit_jump (loop_start);
7752 /* Build the end of the loop. */
7753 emit_label (loop_end);
7756 else if ((index != 0 && ! tree_fits_shwi_p (index))
7757 || ! tree_fits_uhwi_p (TYPE_SIZE (elttype)))
7759 tree position;
7761 if (index == 0)
7762 index = ssize_int (1);
7764 if (minelt)
7765 index = fold_convert (ssizetype,
7766 fold_build2 (MINUS_EXPR,
7767 TREE_TYPE (index),
7768 index,
7769 TYPE_MIN_VALUE (domain)));
7771 position =
7772 size_binop (MULT_EXPR, index,
7773 fold_convert (ssizetype,
7774 TYPE_SIZE_UNIT (elttype)));
7775 xtarget = offset_address (target,
7776 expand_normal (position),
7777 highest_pow2_factor (position));
7778 xtarget = adjust_address (xtarget, mode, 0);
7779 store_expr (value, xtarget, 0, false, reverse);
7781 else
7783 if (index != 0)
7784 bitpos = ((tree_to_shwi (index) - minelt)
7785 * tree_to_uhwi (TYPE_SIZE (elttype)));
7786 else
7787 bitpos = (i * tree_to_uhwi (TYPE_SIZE (elttype)));
7789 if (MEM_P (target) && !MEM_KEEP_ALIAS_SET_P (target)
7790 && TREE_CODE (type) == ARRAY_TYPE
7791 && TYPE_NONALIASED_COMPONENT (type))
7793 target = copy_rtx (target);
7794 MEM_KEEP_ALIAS_SET_P (target) = 1;
7796 store_constructor_field (target, bitsize, bitpos, 0,
7797 bitregion_end, mode, value,
7798 cleared, get_alias_set (elttype),
7799 reverse);
7802 break;
7805 case VECTOR_TYPE:
7807 unsigned HOST_WIDE_INT idx;
7808 constructor_elt *ce;
7809 int i;
7810 bool need_to_clear;
7811 insn_code icode = CODE_FOR_nothing;
7812 tree elt;
7813 tree elttype = TREE_TYPE (type);
7814 int elt_size = vector_element_bits (type);
7815 machine_mode eltmode = TYPE_MODE (elttype);
7816 HOST_WIDE_INT bitsize;
7817 HOST_WIDE_INT bitpos;
7818 rtvec vector = NULL;
7819 poly_uint64 n_elts;
7820 unsigned HOST_WIDE_INT const_n_elts;
7821 alias_set_type alias;
7822 bool vec_vec_init_p = false;
7823 machine_mode mode = GET_MODE (target);
7825 gcc_assert (eltmode != BLKmode);
7827 /* Try using vec_duplicate_optab for uniform vectors. */
7828 if (!TREE_SIDE_EFFECTS (exp)
7829 && VECTOR_MODE_P (mode)
7830 && eltmode == GET_MODE_INNER (mode)
7831 && ((icode = optab_handler (vec_duplicate_optab, mode))
7832 != CODE_FOR_nothing)
7833 && (elt = uniform_vector_p (exp))
7834 && !VECTOR_TYPE_P (TREE_TYPE (elt)))
7836 class expand_operand ops[2];
7837 create_output_operand (&ops[0], target, mode);
7838 create_input_operand (&ops[1], expand_normal (elt), eltmode);
7839 expand_insn (icode, 2, ops);
7840 if (!rtx_equal_p (target, ops[0].value))
7841 emit_move_insn (target, ops[0].value);
7842 break;
7844 /* Use sign-extension for uniform boolean vectors with
7845 integer modes and single-bit mask entries.
7846 Effectively "vec_duplicate" for bitmasks. */
7847 if (elt_size == 1
7848 && !TREE_SIDE_EFFECTS (exp)
7849 && VECTOR_BOOLEAN_TYPE_P (type)
7850 && SCALAR_INT_MODE_P (TYPE_MODE (type))
7851 && (elt = uniform_vector_p (exp))
7852 && !VECTOR_TYPE_P (TREE_TYPE (elt)))
7854 rtx op0 = force_reg (TYPE_MODE (TREE_TYPE (elt)),
7855 expand_normal (elt));
7856 rtx tmp = gen_reg_rtx (mode);
7857 convert_move (tmp, op0, 0);
7859 /* Ensure no excess bits are set.
7860 GCN needs this for nunits < 64.
7861 x86 needs this for nunits < 8. */
7862 auto nunits = TYPE_VECTOR_SUBPARTS (type).to_constant ();
7863 if (maybe_ne (GET_MODE_PRECISION (mode), nunits))
7864 tmp = expand_binop (mode, and_optab, tmp,
7865 GEN_INT ((1 << nunits) - 1), target,
7866 true, OPTAB_WIDEN);
7867 if (tmp != target)
7868 emit_move_insn (target, tmp);
7869 break;
7872 n_elts = TYPE_VECTOR_SUBPARTS (type);
7873 if (REG_P (target)
7874 && VECTOR_MODE_P (mode)
7875 && n_elts.is_constant (&const_n_elts))
7877 machine_mode emode = eltmode;
7878 bool vector_typed_elts_p = false;
7880 if (CONSTRUCTOR_NELTS (exp)
7881 && (TREE_CODE (TREE_TYPE (CONSTRUCTOR_ELT (exp, 0)->value))
7882 == VECTOR_TYPE))
7884 tree etype = TREE_TYPE (CONSTRUCTOR_ELT (exp, 0)->value);
7885 gcc_assert (known_eq (CONSTRUCTOR_NELTS (exp)
7886 * TYPE_VECTOR_SUBPARTS (etype),
7887 n_elts));
7888 emode = TYPE_MODE (etype);
7889 vector_typed_elts_p = true;
7891 icode = convert_optab_handler (vec_init_optab, mode, emode);
7892 if (icode != CODE_FOR_nothing)
7894 unsigned int n = const_n_elts;
7896 if (vector_typed_elts_p)
7898 n = CONSTRUCTOR_NELTS (exp);
7899 vec_vec_init_p = true;
7901 vector = rtvec_alloc (n);
7902 for (unsigned int k = 0; k < n; k++)
7903 RTVEC_ELT (vector, k) = CONST0_RTX (emode);
7907 /* Compute the size of the elements in the CTOR. It differs
7908 from the size of the vector type elements only when the
7909 CTOR elements are vectors themselves. */
7910 tree val_type = (CONSTRUCTOR_NELTS (exp) != 0
7911 ? TREE_TYPE (CONSTRUCTOR_ELT (exp, 0)->value)
7912 : elttype);
7913 if (VECTOR_TYPE_P (val_type))
7914 bitsize = tree_to_uhwi (TYPE_SIZE (val_type));
7915 else
7916 bitsize = elt_size;
7918 /* If the constructor has fewer elements than the vector,
7919 clear the whole array first. Similarly if this is static
7920 constructor of a non-BLKmode object. */
7921 if (cleared)
7922 need_to_clear = false;
7923 else if (REG_P (target) && TREE_STATIC (exp))
7924 need_to_clear = true;
7925 else
7927 unsigned HOST_WIDE_INT count = 0, zero_count = 0;
7928 tree value;
7930 FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (exp), idx, value)
7932 int n_elts_here = bitsize / elt_size;
7933 count += n_elts_here;
7934 if (mostly_zeros_p (value))
7935 zero_count += n_elts_here;
7938 /* Clear the entire vector first if there are any missing elements,
7939 or if the incidence of zero elements is >= 75%. */
7940 need_to_clear = (maybe_lt (count, n_elts)
7941 || 4 * zero_count >= 3 * count);
7944 if (need_to_clear && maybe_gt (size, 0) && !vector)
7946 if (REG_P (target))
7947 emit_move_insn (target, CONST0_RTX (mode));
7948 else
7949 clear_storage (target, gen_int_mode (size, Pmode),
7950 BLOCK_OP_NORMAL);
7951 cleared = 1;
7954 /* Inform later passes that the old value is dead. */
7955 if (!cleared && !vector && REG_P (target) && maybe_gt (n_elts, 1u))
7957 emit_move_insn (target, CONST0_RTX (mode));
7958 cleared = 1;
7961 if (MEM_P (target))
7962 alias = MEM_ALIAS_SET (target);
7963 else
7964 alias = get_alias_set (elttype);
7966 /* Store each element of the constructor into the corresponding
7967 element of TARGET, determined by counting the elements. */
7968 for (idx = 0, i = 0;
7969 vec_safe_iterate (CONSTRUCTOR_ELTS (exp), idx, &ce);
7970 idx++, i += bitsize / elt_size)
7972 HOST_WIDE_INT eltpos;
7973 tree value = ce->value;
7975 if (cleared && initializer_zerop (value))
7976 continue;
7978 if (ce->index)
7979 eltpos = tree_to_uhwi (ce->index);
7980 else
7981 eltpos = i;
7983 if (vector)
7985 if (vec_vec_init_p)
7987 gcc_assert (ce->index == NULL_TREE);
7988 gcc_assert (TREE_CODE (TREE_TYPE (value)) == VECTOR_TYPE);
7989 eltpos = idx;
7991 else
7992 gcc_assert (TREE_CODE (TREE_TYPE (value)) != VECTOR_TYPE);
7993 RTVEC_ELT (vector, eltpos) = expand_normal (value);
7995 else
7997 machine_mode value_mode
7998 = (TREE_CODE (TREE_TYPE (value)) == VECTOR_TYPE
7999 ? TYPE_MODE (TREE_TYPE (value)) : eltmode);
8000 bitpos = eltpos * elt_size;
8001 store_constructor_field (target, bitsize, bitpos, 0,
8002 bitregion_end, value_mode,
8003 value, cleared, alias, reverse);
8007 if (vector)
8008 emit_insn (GEN_FCN (icode) (target,
8009 gen_rtx_PARALLEL (mode, vector)));
8010 break;
8013 default:
8014 gcc_unreachable ();
8018 /* Store the value of EXP (an expression tree)
8019 into a subfield of TARGET which has mode MODE and occupies
8020 BITSIZE bits, starting BITPOS bits from the start of TARGET.
8021 If MODE is VOIDmode, it means that we are storing into a bit-field.
8023 BITREGION_START is bitpos of the first bitfield in this region.
8024 BITREGION_END is the bitpos of the ending bitfield in this region.
8025 These two fields are 0, if the C++ memory model does not apply,
8026 or we are not interested in keeping track of bitfield regions.
8028 Always return const0_rtx unless we have something particular to
8029 return.
8031 ALIAS_SET is the alias set for the destination. This value will
8032 (in general) be different from that for TARGET, since TARGET is a
8033 reference to the containing structure.
8035 If NONTEMPORAL is true, try generating a nontemporal store.
8037 If REVERSE is true, the store is to be done in reverse order. */
8039 static rtx
8040 store_field (rtx target, poly_int64 bitsize, poly_int64 bitpos,
8041 poly_uint64 bitregion_start, poly_uint64 bitregion_end,
8042 machine_mode mode, tree exp,
8043 alias_set_type alias_set, bool nontemporal, bool reverse)
8045 if (TREE_CODE (exp) == ERROR_MARK)
8046 return const0_rtx;
8048 /* If we have nothing to store, do nothing unless the expression has
8049 side-effects. Don't do that for zero sized addressable lhs of
8050 calls. */
8051 if (known_eq (bitsize, 0)
8052 && (!TREE_ADDRESSABLE (TREE_TYPE (exp))
8053 || TREE_CODE (exp) != CALL_EXPR))
8054 return expand_expr (exp, const0_rtx, VOIDmode, EXPAND_NORMAL);
8056 if (GET_CODE (target) == CONCAT)
8058 /* We're storing into a struct containing a single __complex. */
8060 gcc_assert (known_eq (bitpos, 0));
8061 return store_expr (exp, target, 0, nontemporal, reverse);
8064 /* If the structure is in a register or if the component
8065 is a bit field, we cannot use addressing to access it.
8066 Use bit-field techniques or SUBREG to store in it. */
8068 poly_int64 decl_bitsize;
8069 if (mode == VOIDmode
8070 || (mode != BLKmode && ! direct_store[(int) mode]
8071 && GET_MODE_CLASS (mode) != MODE_COMPLEX_INT
8072 && GET_MODE_CLASS (mode) != MODE_COMPLEX_FLOAT)
8073 || REG_P (target)
8074 || GET_CODE (target) == SUBREG
8075 /* If the field isn't aligned enough to store as an ordinary memref,
8076 store it as a bit field. */
8077 || (mode != BLKmode
8078 && ((((MEM_ALIGN (target) < GET_MODE_ALIGNMENT (mode))
8079 || !multiple_p (bitpos, GET_MODE_ALIGNMENT (mode)))
8080 && targetm.slow_unaligned_access (mode, MEM_ALIGN (target)))
8081 || !multiple_p (bitpos, BITS_PER_UNIT)))
8082 || (known_size_p (bitsize)
8083 && mode != BLKmode
8084 && maybe_gt (GET_MODE_BITSIZE (mode), bitsize))
8085 /* If the RHS and field are a constant size and the size of the
8086 RHS isn't the same size as the bitfield, we must use bitfield
8087 operations. */
8088 || (known_size_p (bitsize)
8089 && poly_int_tree_p (TYPE_SIZE (TREE_TYPE (exp)))
8090 && maybe_ne (wi::to_poly_offset (TYPE_SIZE (TREE_TYPE (exp))),
8091 bitsize)
8092 /* Except for initialization of full bytes from a CONSTRUCTOR, which
8093 we will handle specially below. */
8094 && !(TREE_CODE (exp) == CONSTRUCTOR
8095 && multiple_p (bitsize, BITS_PER_UNIT))
8096 /* And except for bitwise copying of TREE_ADDRESSABLE types,
8097 where the FIELD_DECL has the right bitsize, but TREE_TYPE (exp)
8098 includes some extra padding. store_expr / expand_expr will in
8099 that case call get_inner_reference that will have the bitsize
8100 we check here and thus the block move will not clobber the
8101 padding that shouldn't be clobbered. In the future we could
8102 replace the TREE_ADDRESSABLE check with a check that
8103 get_base_address needs to live in memory. */
8104 && (!TREE_ADDRESSABLE (TREE_TYPE (exp))
8105 || TREE_CODE (exp) != COMPONENT_REF
8106 || !multiple_p (bitsize, BITS_PER_UNIT)
8107 || !multiple_p (bitpos, BITS_PER_UNIT)
8108 || !poly_int_tree_p (DECL_SIZE (TREE_OPERAND (exp, 1)),
8109 &decl_bitsize)
8110 || maybe_ne (decl_bitsize, bitsize))
8111 /* A call with an addressable return type and return-slot
8112 optimization must not need bitfield operations but we must
8113 pass down the original target. */
8114 && (TREE_CODE (exp) != CALL_EXPR
8115 || !TREE_ADDRESSABLE (TREE_TYPE (exp))
8116 || !CALL_EXPR_RETURN_SLOT_OPT (exp)))
8117 /* If we are expanding a MEM_REF of a non-BLKmode non-addressable
8118 decl we must use bitfield operations. */
8119 || (known_size_p (bitsize)
8120 && TREE_CODE (exp) == MEM_REF
8121 && TREE_CODE (TREE_OPERAND (exp, 0)) == ADDR_EXPR
8122 && DECL_P (TREE_OPERAND (TREE_OPERAND (exp, 0), 0))
8123 && !TREE_ADDRESSABLE (TREE_OPERAND (TREE_OPERAND (exp, 0), 0))
8124 && DECL_MODE (TREE_OPERAND (TREE_OPERAND (exp, 0), 0)) != BLKmode))
8126 rtx temp;
8127 gimple *nop_def;
8129 /* If EXP is a NOP_EXPR of precision less than its mode, then that
8130 implies a mask operation. If the precision is the same size as
8131 the field we're storing into, that mask is redundant. This is
8132 particularly common with bit field assignments generated by the
8133 C front end. */
8134 nop_def = get_def_for_expr (exp, NOP_EXPR);
8135 if (nop_def)
8137 tree type = TREE_TYPE (exp);
8138 if (INTEGRAL_TYPE_P (type)
8139 && maybe_ne (TYPE_PRECISION (type),
8140 GET_MODE_BITSIZE (TYPE_MODE (type)))
8141 && known_eq (bitsize, TYPE_PRECISION (type)))
8143 tree op = gimple_assign_rhs1 (nop_def);
8144 type = TREE_TYPE (op);
8145 if (INTEGRAL_TYPE_P (type)
8146 && known_ge (TYPE_PRECISION (type), bitsize))
8147 exp = op;
8151 temp = expand_normal (exp);
8153 /* We don't support variable-sized BLKmode bitfields, since our
8154 handling of BLKmode is bound up with the ability to break
8155 things into words. */
8156 gcc_assert (mode != BLKmode || bitsize.is_constant ());
8158 /* Handle calls that return values in multiple non-contiguous locations.
8159 The Irix 6 ABI has examples of this. */
8160 if (GET_CODE (temp) == PARALLEL)
8162 HOST_WIDE_INT size = int_size_in_bytes (TREE_TYPE (exp));
8163 machine_mode temp_mode = GET_MODE (temp);
8164 if (temp_mode == BLKmode || temp_mode == VOIDmode)
8165 temp_mode = smallest_int_mode_for_size (size * BITS_PER_UNIT);
8166 rtx temp_target = gen_reg_rtx (temp_mode);
8167 emit_group_store (temp_target, temp, TREE_TYPE (exp), size);
8168 temp = temp_target;
8171 /* Handle calls that return BLKmode values in registers. */
8172 else if (mode == BLKmode && REG_P (temp) && TREE_CODE (exp) == CALL_EXPR)
8174 rtx temp_target = gen_reg_rtx (GET_MODE (temp));
8175 copy_blkmode_from_reg (temp_target, temp, TREE_TYPE (exp));
8176 temp = temp_target;
8179 /* If the value has aggregate type and an integral mode then, if BITSIZE
8180 is narrower than this mode and this is for big-endian data, we first
8181 need to put the value into the low-order bits for store_bit_field,
8182 except when MODE is BLKmode and BITSIZE larger than the word size
8183 (see the handling of fields larger than a word in store_bit_field).
8184 Moreover, the field may be not aligned on a byte boundary; in this
8185 case, if it has reverse storage order, it needs to be accessed as a
8186 scalar field with reverse storage order and we must first put the
8187 value into target order. */
8188 scalar_int_mode temp_mode;
8189 if (AGGREGATE_TYPE_P (TREE_TYPE (exp))
8190 && is_int_mode (GET_MODE (temp), &temp_mode))
8192 HOST_WIDE_INT size = GET_MODE_BITSIZE (temp_mode);
8194 reverse = TYPE_REVERSE_STORAGE_ORDER (TREE_TYPE (exp));
8196 if (reverse)
8197 temp = flip_storage_order (temp_mode, temp);
8199 gcc_checking_assert (known_le (bitsize, size));
8200 if (maybe_lt (bitsize, size)
8201 && reverse ? !BYTES_BIG_ENDIAN : BYTES_BIG_ENDIAN
8202 /* Use of to_constant for BLKmode was checked above. */
8203 && !(mode == BLKmode && bitsize.to_constant () > BITS_PER_WORD))
8204 temp = expand_shift (RSHIFT_EXPR, temp_mode, temp,
8205 size - bitsize, NULL_RTX, 1);
8208 /* Unless MODE is VOIDmode or BLKmode, convert TEMP to MODE. */
8209 if (mode != VOIDmode && mode != BLKmode
8210 && mode != TYPE_MODE (TREE_TYPE (exp)))
8211 temp = convert_modes (mode, TYPE_MODE (TREE_TYPE (exp)), temp, 1);
8213 /* If the mode of TEMP and TARGET is BLKmode, both must be in memory
8214 and BITPOS must be aligned on a byte boundary. If so, we simply do
8215 a block copy. Likewise for a BLKmode-like TARGET. */
8216 if (GET_MODE (temp) == BLKmode
8217 && (GET_MODE (target) == BLKmode
8218 || (MEM_P (target)
8219 && GET_MODE_CLASS (GET_MODE (target)) == MODE_INT
8220 && multiple_p (bitpos, BITS_PER_UNIT)
8221 && multiple_p (bitsize, BITS_PER_UNIT))))
8223 gcc_assert (MEM_P (target) && MEM_P (temp));
8224 poly_int64 bytepos = exact_div (bitpos, BITS_PER_UNIT);
8225 poly_int64 bytesize = bits_to_bytes_round_up (bitsize);
8227 target = adjust_address (target, VOIDmode, bytepos);
8228 emit_block_move (target, temp,
8229 gen_int_mode (bytesize, Pmode),
8230 BLOCK_OP_NORMAL);
8232 return const0_rtx;
8235 /* If the mode of TEMP is still BLKmode and BITSIZE not larger than the
8236 word size, we need to load the value (see again store_bit_field). */
8237 if (GET_MODE (temp) == BLKmode && known_le (bitsize, BITS_PER_WORD))
8239 temp_mode = smallest_int_mode_for_size (bitsize);
8240 temp = extract_bit_field (temp, bitsize, 0, 1, NULL_RTX, temp_mode,
8241 temp_mode, false, NULL);
8244 /* Store the value in the bitfield. */
8245 gcc_checking_assert (known_ge (bitpos, 0));
8246 store_bit_field (target, bitsize, bitpos,
8247 bitregion_start, bitregion_end,
8248 mode, temp, reverse, false);
8250 return const0_rtx;
8252 else
8254 /* Now build a reference to just the desired component. */
8255 rtx to_rtx = adjust_address (target, mode,
8256 exact_div (bitpos, BITS_PER_UNIT));
8258 if (to_rtx == target)
8259 to_rtx = copy_rtx (to_rtx);
8261 if (!MEM_KEEP_ALIAS_SET_P (to_rtx) && MEM_ALIAS_SET (to_rtx) != 0)
8262 set_mem_alias_set (to_rtx, alias_set);
8264 /* Above we avoided using bitfield operations for storing a CONSTRUCTOR
8265 into a target smaller than its type; handle that case now. */
8266 if (TREE_CODE (exp) == CONSTRUCTOR && known_size_p (bitsize))
8268 poly_int64 bytesize = exact_div (bitsize, BITS_PER_UNIT);
8269 store_constructor (exp, to_rtx, 0, bytesize, reverse);
8270 return to_rtx;
8273 return store_expr (exp, to_rtx, 0, nontemporal, reverse);
8277 /* Given an expression EXP that may be a COMPONENT_REF, a BIT_FIELD_REF,
8278 an ARRAY_REF, or an ARRAY_RANGE_REF, look for nested operations of these
8279 codes and find the ultimate containing object, which we return.
8281 We set *PBITSIZE to the size in bits that we want, *PBITPOS to the
8282 bit position, *PUNSIGNEDP to the signedness and *PREVERSEP to the
8283 storage order of the field.
8284 If the position of the field is variable, we store a tree
8285 giving the variable offset (in units) in *POFFSET.
8286 This offset is in addition to the bit position.
8287 If the position is not variable, we store 0 in *POFFSET.
8289 If any of the extraction expressions is volatile,
8290 we store 1 in *PVOLATILEP. Otherwise we don't change that.
8292 If the field is a non-BLKmode bit-field, *PMODE is set to VOIDmode.
8293 Otherwise, it is a mode that can be used to access the field.
8295 If the field describes a variable-sized object, *PMODE is set to
8296 BLKmode and *PBITSIZE is set to -1. An access cannot be made in
8297 this case, but the address of the object can be found. */
8299 tree
8300 get_inner_reference (tree exp, poly_int64 *pbitsize,
8301 poly_int64 *pbitpos, tree *poffset,
8302 machine_mode *pmode, int *punsignedp,
8303 int *preversep, int *pvolatilep)
8305 tree size_tree = 0;
8306 machine_mode mode = VOIDmode;
8307 bool blkmode_bitfield = false;
8308 tree offset = size_zero_node;
8309 poly_offset_int bit_offset = 0;
8311 /* First get the mode, signedness, storage order and size. We do this from
8312 just the outermost expression. */
8313 *pbitsize = -1;
8314 if (TREE_CODE (exp) == COMPONENT_REF)
8316 tree field = TREE_OPERAND (exp, 1);
8317 size_tree = DECL_SIZE (field);
8318 if (flag_strict_volatile_bitfields > 0
8319 && TREE_THIS_VOLATILE (exp)
8320 && DECL_BIT_FIELD_TYPE (field)
8321 && DECL_MODE (field) != BLKmode)
8322 /* Volatile bitfields should be accessed in the mode of the
8323 field's type, not the mode computed based on the bit
8324 size. */
8325 mode = TYPE_MODE (DECL_BIT_FIELD_TYPE (field));
8326 else if (!DECL_BIT_FIELD (field))
8328 mode = DECL_MODE (field);
8329 /* For vector fields re-check the target flags, as DECL_MODE
8330 could have been set with different target flags than
8331 the current function has. */
8332 if (VECTOR_TYPE_P (TREE_TYPE (field))
8333 && VECTOR_MODE_P (TYPE_MODE_RAW (TREE_TYPE (field))))
8334 mode = TYPE_MODE (TREE_TYPE (field));
8336 else if (DECL_MODE (field) == BLKmode)
8337 blkmode_bitfield = true;
8339 *punsignedp = DECL_UNSIGNED (field);
8341 else if (TREE_CODE (exp) == BIT_FIELD_REF)
8343 size_tree = TREE_OPERAND (exp, 1);
8344 *punsignedp = (! INTEGRAL_TYPE_P (TREE_TYPE (exp))
8345 || TYPE_UNSIGNED (TREE_TYPE (exp)));
8347 /* For vector element types with the correct size of access or for
8348 vector typed accesses use the mode of the access type. */
8349 if ((TREE_CODE (TREE_TYPE (TREE_OPERAND (exp, 0))) == VECTOR_TYPE
8350 && TREE_TYPE (exp) == TREE_TYPE (TREE_TYPE (TREE_OPERAND (exp, 0)))
8351 && tree_int_cst_equal (size_tree, TYPE_SIZE (TREE_TYPE (exp))))
8352 || VECTOR_TYPE_P (TREE_TYPE (exp)))
8353 mode = TYPE_MODE (TREE_TYPE (exp));
8355 else
8357 mode = TYPE_MODE (TREE_TYPE (exp));
8358 *punsignedp = TYPE_UNSIGNED (TREE_TYPE (exp));
8360 if (mode == BLKmode)
8361 size_tree = TYPE_SIZE (TREE_TYPE (exp));
8362 else
8363 *pbitsize = GET_MODE_BITSIZE (mode);
8366 if (size_tree != 0)
8368 if (! tree_fits_uhwi_p (size_tree))
8369 mode = BLKmode, *pbitsize = -1;
8370 else
8371 *pbitsize = tree_to_uhwi (size_tree);
8374 *preversep = reverse_storage_order_for_component_p (exp);
8376 /* Compute cumulative bit-offset for nested component-refs and array-refs,
8377 and find the ultimate containing object. */
8378 while (1)
8380 switch (TREE_CODE (exp))
8382 case BIT_FIELD_REF:
8383 bit_offset += wi::to_poly_offset (TREE_OPERAND (exp, 2));
8384 break;
8386 case COMPONENT_REF:
8388 tree field = TREE_OPERAND (exp, 1);
8389 tree this_offset = component_ref_field_offset (exp);
8391 /* If this field hasn't been filled in yet, don't go past it.
8392 This should only happen when folding expressions made during
8393 type construction. */
8394 if (this_offset == 0)
8395 break;
8397 offset = size_binop (PLUS_EXPR, offset, this_offset);
8398 bit_offset += wi::to_poly_offset (DECL_FIELD_BIT_OFFSET (field));
8400 /* ??? Right now we don't do anything with DECL_OFFSET_ALIGN. */
8402 break;
8404 case ARRAY_REF:
8405 case ARRAY_RANGE_REF:
8407 tree index = TREE_OPERAND (exp, 1);
8408 tree low_bound = array_ref_low_bound (exp);
8409 tree unit_size = array_ref_element_size (exp);
8411 /* We assume all arrays have sizes that are a multiple of a byte.
8412 First subtract the lower bound, if any, in the type of the
8413 index, then convert to sizetype and multiply by the size of
8414 the array element. */
8415 if (! integer_zerop (low_bound))
8416 index = fold_build2 (MINUS_EXPR, TREE_TYPE (index),
8417 index, low_bound);
8419 offset = size_binop (PLUS_EXPR, offset,
8420 size_binop (MULT_EXPR,
8421 fold_convert (sizetype, index),
8422 unit_size));
8424 break;
8426 case REALPART_EXPR:
8427 break;
8429 case IMAGPART_EXPR:
8430 bit_offset += *pbitsize;
8431 break;
8433 case VIEW_CONVERT_EXPR:
8434 break;
8436 case MEM_REF:
8437 /* Hand back the decl for MEM[&decl, off]. */
8438 if (TREE_CODE (TREE_OPERAND (exp, 0)) == ADDR_EXPR)
8440 tree off = TREE_OPERAND (exp, 1);
8441 if (!integer_zerop (off))
8443 poly_offset_int boff = mem_ref_offset (exp);
8444 boff <<= LOG2_BITS_PER_UNIT;
8445 bit_offset += boff;
8447 exp = TREE_OPERAND (TREE_OPERAND (exp, 0), 0);
8449 goto done;
8451 default:
8452 goto done;
8455 /* If any reference in the chain is volatile, the effect is volatile. */
8456 if (TREE_THIS_VOLATILE (exp))
8457 *pvolatilep = 1;
8459 exp = TREE_OPERAND (exp, 0);
8461 done:
8463 /* If OFFSET is constant, see if we can return the whole thing as a
8464 constant bit position. Make sure to handle overflow during
8465 this conversion. */
8466 if (poly_int_tree_p (offset))
8468 poly_offset_int tem = wi::sext (wi::to_poly_offset (offset),
8469 TYPE_PRECISION (sizetype));
8470 tem <<= LOG2_BITS_PER_UNIT;
8471 tem += bit_offset;
8472 if (tem.to_shwi (pbitpos))
8473 *poffset = offset = NULL_TREE;
8476 /* Otherwise, split it up. */
8477 if (offset)
8479 /* Avoid returning a negative bitpos as this may wreak havoc later. */
8480 if (!bit_offset.to_shwi (pbitpos) || maybe_lt (*pbitpos, 0))
8482 *pbitpos = num_trailing_bits (bit_offset.force_shwi ());
8483 poly_offset_int bytes = bits_to_bytes_round_down (bit_offset);
8484 offset = size_binop (PLUS_EXPR, offset,
8485 build_int_cst (sizetype, bytes.force_shwi ()));
8488 *poffset = offset;
8491 /* We can use BLKmode for a byte-aligned BLKmode bitfield. */
8492 if (mode == VOIDmode
8493 && blkmode_bitfield
8494 && multiple_p (*pbitpos, BITS_PER_UNIT)
8495 && multiple_p (*pbitsize, BITS_PER_UNIT))
8496 *pmode = BLKmode;
8497 else
8498 *pmode = mode;
8500 return exp;
8503 /* Alignment in bits the TARGET of an assignment may be assumed to have. */
8505 static unsigned HOST_WIDE_INT
8506 target_align (const_tree target)
8508 /* We might have a chain of nested references with intermediate misaligning
8509 bitfields components, so need to recurse to find out. */
8511 unsigned HOST_WIDE_INT this_align, outer_align;
8513 switch (TREE_CODE (target))
8515 case BIT_FIELD_REF:
8516 return 1;
8518 case COMPONENT_REF:
8519 this_align = DECL_ALIGN (TREE_OPERAND (target, 1));
8520 outer_align = target_align (TREE_OPERAND (target, 0));
8521 return MIN (this_align, outer_align);
8523 case ARRAY_REF:
8524 case ARRAY_RANGE_REF:
8525 this_align = TYPE_ALIGN (TREE_TYPE (target));
8526 outer_align = target_align (TREE_OPERAND (target, 0));
8527 return MIN (this_align, outer_align);
8529 CASE_CONVERT:
8530 case NON_LVALUE_EXPR:
8531 case VIEW_CONVERT_EXPR:
8532 this_align = TYPE_ALIGN (TREE_TYPE (target));
8533 outer_align = target_align (TREE_OPERAND (target, 0));
8534 return MAX (this_align, outer_align);
8536 default:
8537 return TYPE_ALIGN (TREE_TYPE (target));
8542 /* Given an rtx VALUE that may contain additions and multiplications, return
8543 an equivalent value that just refers to a register, memory, or constant.
8544 This is done by generating instructions to perform the arithmetic and
8545 returning a pseudo-register containing the value.
8547 The returned value may be a REG, SUBREG, MEM or constant. */
8550 force_operand (rtx value, rtx target)
8552 rtx op1, op2;
8553 /* Use subtarget as the target for operand 0 of a binary operation. */
8554 rtx subtarget = get_subtarget (target);
8555 enum rtx_code code = GET_CODE (value);
8557 /* Check for subreg applied to an expression produced by loop optimizer. */
8558 if (code == SUBREG
8559 && !REG_P (SUBREG_REG (value))
8560 && !MEM_P (SUBREG_REG (value)))
8562 value
8563 = simplify_gen_subreg (GET_MODE (value),
8564 force_reg (GET_MODE (SUBREG_REG (value)),
8565 force_operand (SUBREG_REG (value),
8566 NULL_RTX)),
8567 GET_MODE (SUBREG_REG (value)),
8568 SUBREG_BYTE (value));
8569 code = GET_CODE (value);
8572 /* Check for a PIC address load. */
8573 if ((code == PLUS || code == MINUS)
8574 && XEXP (value, 0) == pic_offset_table_rtx
8575 && (GET_CODE (XEXP (value, 1)) == SYMBOL_REF
8576 || GET_CODE (XEXP (value, 1)) == LABEL_REF
8577 || GET_CODE (XEXP (value, 1)) == CONST))
8579 if (!subtarget)
8580 subtarget = gen_reg_rtx (GET_MODE (value));
8581 emit_move_insn (subtarget, value);
8582 return subtarget;
8585 if (ARITHMETIC_P (value))
8587 op2 = XEXP (value, 1);
8588 if (!CONSTANT_P (op2) && !(REG_P (op2) && op2 != subtarget))
8589 subtarget = 0;
8590 if (code == MINUS && CONST_INT_P (op2))
8592 code = PLUS;
8593 op2 = negate_rtx (GET_MODE (value), op2);
8596 /* Check for an addition with OP2 a constant integer and our first
8597 operand a PLUS of a virtual register and something else. In that
8598 case, we want to emit the sum of the virtual register and the
8599 constant first and then add the other value. This allows virtual
8600 register instantiation to simply modify the constant rather than
8601 creating another one around this addition. */
8602 if (code == PLUS && CONST_INT_P (op2)
8603 && GET_CODE (XEXP (value, 0)) == PLUS
8604 && REG_P (XEXP (XEXP (value, 0), 0))
8605 && VIRTUAL_REGISTER_P (XEXP (XEXP (value, 0), 0)))
8607 rtx temp = expand_simple_binop (GET_MODE (value), code,
8608 XEXP (XEXP (value, 0), 0), op2,
8609 subtarget, 0, OPTAB_LIB_WIDEN);
8610 return expand_simple_binop (GET_MODE (value), code, temp,
8611 force_operand (XEXP (XEXP (value,
8612 0), 1), 0),
8613 target, 0, OPTAB_LIB_WIDEN);
8616 op1 = force_operand (XEXP (value, 0), subtarget);
8617 op2 = force_operand (op2, NULL_RTX);
8618 switch (code)
8620 case MULT:
8621 return expand_mult (GET_MODE (value), op1, op2, target, 1);
8622 case DIV:
8623 if (!INTEGRAL_MODE_P (GET_MODE (value)))
8624 return expand_simple_binop (GET_MODE (value), code, op1, op2,
8625 target, 1, OPTAB_LIB_WIDEN);
8626 else
8627 return expand_divmod (0,
8628 FLOAT_MODE_P (GET_MODE (value))
8629 ? RDIV_EXPR : TRUNC_DIV_EXPR,
8630 GET_MODE (value), op1, op2, target, 0);
8631 case MOD:
8632 return expand_divmod (1, TRUNC_MOD_EXPR, GET_MODE (value), op1, op2,
8633 target, 0);
8634 case UDIV:
8635 return expand_divmod (0, TRUNC_DIV_EXPR, GET_MODE (value), op1, op2,
8636 target, 1);
8637 case UMOD:
8638 return expand_divmod (1, TRUNC_MOD_EXPR, GET_MODE (value), op1, op2,
8639 target, 1);
8640 case ASHIFTRT:
8641 return expand_simple_binop (GET_MODE (value), code, op1, op2,
8642 target, 0, OPTAB_LIB_WIDEN);
8643 default:
8644 return expand_simple_binop (GET_MODE (value), code, op1, op2,
8645 target, 1, OPTAB_LIB_WIDEN);
8648 if (UNARY_P (value))
8650 if (!target)
8651 target = gen_reg_rtx (GET_MODE (value));
8652 op1 = force_operand (XEXP (value, 0), NULL_RTX);
8653 switch (code)
8655 case ZERO_EXTEND:
8656 case SIGN_EXTEND:
8657 case TRUNCATE:
8658 case FLOAT_EXTEND:
8659 case FLOAT_TRUNCATE:
8660 convert_move (target, op1, code == ZERO_EXTEND);
8661 return target;
8663 case FIX:
8664 case UNSIGNED_FIX:
8665 expand_fix (target, op1, code == UNSIGNED_FIX);
8666 return target;
8668 case FLOAT:
8669 case UNSIGNED_FLOAT:
8670 expand_float (target, op1, code == UNSIGNED_FLOAT);
8671 return target;
8673 default:
8674 return expand_simple_unop (GET_MODE (value), code, op1, target, 0);
8678 #ifdef INSN_SCHEDULING
8679 /* On machines that have insn scheduling, we want all memory reference to be
8680 explicit, so we need to deal with such paradoxical SUBREGs. */
8681 if (paradoxical_subreg_p (value) && MEM_P (SUBREG_REG (value)))
8682 value
8683 = simplify_gen_subreg (GET_MODE (value),
8684 force_reg (GET_MODE (SUBREG_REG (value)),
8685 force_operand (SUBREG_REG (value),
8686 NULL_RTX)),
8687 GET_MODE (SUBREG_REG (value)),
8688 SUBREG_BYTE (value));
8689 #endif
8691 return value;
8694 /* Subroutine of expand_expr: return true iff there is no way that
8695 EXP can reference X, which is being modified. TOP_P is nonzero if this
8696 call is going to be used to determine whether we need a temporary
8697 for EXP, as opposed to a recursive call to this function.
8699 It is always safe for this routine to return false since it merely
8700 searches for optimization opportunities. */
8702 bool
8703 safe_from_p (const_rtx x, tree exp, int top_p)
8705 rtx exp_rtl = 0;
8706 int i, nops;
8708 if (x == 0
8709 /* If EXP has varying size, we MUST use a target since we currently
8710 have no way of allocating temporaries of variable size
8711 (except for arrays that have TYPE_ARRAY_MAX_SIZE set).
8712 So we assume here that something at a higher level has prevented a
8713 clash. This is somewhat bogus, but the best we can do. Only
8714 do this when X is BLKmode and when we are at the top level. */
8715 || (top_p && TREE_TYPE (exp) != 0 && COMPLETE_TYPE_P (TREE_TYPE (exp))
8716 && TREE_CODE (TYPE_SIZE (TREE_TYPE (exp))) != INTEGER_CST
8717 && (TREE_CODE (TREE_TYPE (exp)) != ARRAY_TYPE
8718 || TYPE_ARRAY_MAX_SIZE (TREE_TYPE (exp)) == NULL_TREE
8719 || TREE_CODE (TYPE_ARRAY_MAX_SIZE (TREE_TYPE (exp)))
8720 != INTEGER_CST)
8721 && GET_MODE (x) == BLKmode)
8722 /* If X is in the outgoing argument area, it is always safe. */
8723 || (MEM_P (x)
8724 && (XEXP (x, 0) == virtual_outgoing_args_rtx
8725 || (GET_CODE (XEXP (x, 0)) == PLUS
8726 && XEXP (XEXP (x, 0), 0) == virtual_outgoing_args_rtx))))
8727 return true;
8729 /* If this is a subreg of a hard register, declare it unsafe, otherwise,
8730 find the underlying pseudo. */
8731 if (GET_CODE (x) == SUBREG)
8733 x = SUBREG_REG (x);
8734 if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER)
8735 return false;
8738 /* Now look at our tree code and possibly recurse. */
8739 switch (TREE_CODE_CLASS (TREE_CODE (exp)))
8741 case tcc_declaration:
8742 exp_rtl = DECL_RTL_IF_SET (exp);
8743 break;
8745 case tcc_constant:
8746 return true;
8748 case tcc_exceptional:
8749 if (TREE_CODE (exp) == TREE_LIST)
8751 while (1)
8753 if (TREE_VALUE (exp) && !safe_from_p (x, TREE_VALUE (exp), 0))
8754 return false;
8755 exp = TREE_CHAIN (exp);
8756 if (!exp)
8757 return true;
8758 if (TREE_CODE (exp) != TREE_LIST)
8759 return safe_from_p (x, exp, 0);
8762 else if (TREE_CODE (exp) == CONSTRUCTOR)
8764 constructor_elt *ce;
8765 unsigned HOST_WIDE_INT idx;
8767 FOR_EACH_VEC_SAFE_ELT (CONSTRUCTOR_ELTS (exp), idx, ce)
8768 if ((ce->index != NULL_TREE && !safe_from_p (x, ce->index, 0))
8769 || !safe_from_p (x, ce->value, 0))
8770 return false;
8771 return true;
8773 else if (TREE_CODE (exp) == ERROR_MARK)
8774 return true; /* An already-visited SAVE_EXPR? */
8775 else
8776 return false;
8778 case tcc_statement:
8779 /* The only case we look at here is the DECL_INITIAL inside a
8780 DECL_EXPR. */
8781 return (TREE_CODE (exp) != DECL_EXPR
8782 || TREE_CODE (DECL_EXPR_DECL (exp)) != VAR_DECL
8783 || !DECL_INITIAL (DECL_EXPR_DECL (exp))
8784 || safe_from_p (x, DECL_INITIAL (DECL_EXPR_DECL (exp)), 0));
8786 case tcc_binary:
8787 case tcc_comparison:
8788 if (!safe_from_p (x, TREE_OPERAND (exp, 1), 0))
8789 return false;
8790 /* Fall through. */
8792 case tcc_unary:
8793 return safe_from_p (x, TREE_OPERAND (exp, 0), 0);
8795 case tcc_expression:
8796 case tcc_reference:
8797 case tcc_vl_exp:
8798 /* Now do code-specific tests. EXP_RTL is set to any rtx we find in
8799 the expression. If it is set, we conflict iff we are that rtx or
8800 both are in memory. Otherwise, we check all operands of the
8801 expression recursively. */
8803 switch (TREE_CODE (exp))
8805 case ADDR_EXPR:
8806 /* If the operand is static or we are static, we can't conflict.
8807 Likewise if we don't conflict with the operand at all. */
8808 if (staticp (TREE_OPERAND (exp, 0))
8809 || TREE_STATIC (exp)
8810 || safe_from_p (x, TREE_OPERAND (exp, 0), 0))
8811 return true;
8813 /* Otherwise, the only way this can conflict is if we are taking
8814 the address of a DECL a that address if part of X, which is
8815 very rare. */
8816 exp = TREE_OPERAND (exp, 0);
8817 if (DECL_P (exp))
8819 if (!DECL_RTL_SET_P (exp)
8820 || !MEM_P (DECL_RTL (exp)))
8821 return false;
8822 else
8823 exp_rtl = XEXP (DECL_RTL (exp), 0);
8825 break;
8827 case MEM_REF:
8828 if (MEM_P (x)
8829 && alias_sets_conflict_p (MEM_ALIAS_SET (x),
8830 get_alias_set (exp)))
8831 return false;
8832 break;
8834 case CALL_EXPR:
8835 /* Assume that the call will clobber all hard registers and
8836 all of memory. */
8837 if ((REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER)
8838 || MEM_P (x))
8839 return false;
8840 break;
8842 case WITH_CLEANUP_EXPR:
8843 case CLEANUP_POINT_EXPR:
8844 /* Lowered by gimplify.cc. */
8845 gcc_unreachable ();
8847 case SAVE_EXPR:
8848 return safe_from_p (x, TREE_OPERAND (exp, 0), 0);
8850 default:
8851 break;
8854 /* If we have an rtx, we do not need to scan our operands. */
8855 if (exp_rtl)
8856 break;
8858 nops = TREE_OPERAND_LENGTH (exp);
8859 for (i = 0; i < nops; i++)
8860 if (TREE_OPERAND (exp, i) != 0
8861 && ! safe_from_p (x, TREE_OPERAND (exp, i), 0))
8862 return false;
8864 break;
8866 case tcc_type:
8867 /* Should never get a type here. */
8868 gcc_unreachable ();
8871 /* If we have an rtl, find any enclosed object. Then see if we conflict
8872 with it. */
8873 if (exp_rtl)
8875 if (GET_CODE (exp_rtl) == SUBREG)
8877 exp_rtl = SUBREG_REG (exp_rtl);
8878 if (REG_P (exp_rtl)
8879 && REGNO (exp_rtl) < FIRST_PSEUDO_REGISTER)
8880 return false;
8883 /* If the rtl is X, then it is not safe. Otherwise, it is unless both
8884 are memory and they conflict. */
8885 return ! (rtx_equal_p (x, exp_rtl)
8886 || (MEM_P (x) && MEM_P (exp_rtl)
8887 && true_dependence (exp_rtl, VOIDmode, x)));
8890 /* If we reach here, it is safe. */
8891 return true;
8895 /* Return the highest power of two that EXP is known to be a multiple of.
8896 This is used in updating alignment of MEMs in array references. */
8898 unsigned HOST_WIDE_INT
8899 highest_pow2_factor (const_tree exp)
8901 unsigned HOST_WIDE_INT ret;
8902 int trailing_zeros = tree_ctz (exp);
8903 if (trailing_zeros >= HOST_BITS_PER_WIDE_INT)
8904 return BIGGEST_ALIGNMENT;
8905 ret = HOST_WIDE_INT_1U << trailing_zeros;
8906 if (ret > BIGGEST_ALIGNMENT)
8907 return BIGGEST_ALIGNMENT;
8908 return ret;
8911 /* Similar, except that the alignment requirements of TARGET are
8912 taken into account. Assume it is at least as aligned as its
8913 type, unless it is a COMPONENT_REF in which case the layout of
8914 the structure gives the alignment. */
8916 static unsigned HOST_WIDE_INT
8917 highest_pow2_factor_for_target (const_tree target, const_tree exp)
8919 unsigned HOST_WIDE_INT talign = target_align (target) / BITS_PER_UNIT;
8920 unsigned HOST_WIDE_INT factor = highest_pow2_factor (exp);
8922 return MAX (factor, talign);
8925 /* Convert the tree comparison code TCODE to the rtl one where the
8926 signedness is UNSIGNEDP. */
8928 static enum rtx_code
8929 convert_tree_comp_to_rtx (enum tree_code tcode, int unsignedp)
8931 enum rtx_code code;
8932 switch (tcode)
8934 case EQ_EXPR:
8935 code = EQ;
8936 break;
8937 case NE_EXPR:
8938 code = NE;
8939 break;
8940 case LT_EXPR:
8941 code = unsignedp ? LTU : LT;
8942 break;
8943 case LE_EXPR:
8944 code = unsignedp ? LEU : LE;
8945 break;
8946 case GT_EXPR:
8947 code = unsignedp ? GTU : GT;
8948 break;
8949 case GE_EXPR:
8950 code = unsignedp ? GEU : GE;
8951 break;
8952 case UNORDERED_EXPR:
8953 code = UNORDERED;
8954 break;
8955 case ORDERED_EXPR:
8956 code = ORDERED;
8957 break;
8958 case UNLT_EXPR:
8959 code = UNLT;
8960 break;
8961 case UNLE_EXPR:
8962 code = UNLE;
8963 break;
8964 case UNGT_EXPR:
8965 code = UNGT;
8966 break;
8967 case UNGE_EXPR:
8968 code = UNGE;
8969 break;
8970 case UNEQ_EXPR:
8971 code = UNEQ;
8972 break;
8973 case LTGT_EXPR:
8974 code = LTGT;
8975 break;
8977 default:
8978 gcc_unreachable ();
8980 return code;
8983 /* Subroutine of expand_expr. Expand the two operands of a binary
8984 expression EXP0 and EXP1 placing the results in OP0 and OP1.
8985 The value may be stored in TARGET if TARGET is nonzero. The
8986 MODIFIER argument is as documented by expand_expr. */
8988 void
8989 expand_operands (tree exp0, tree exp1, rtx target, rtx *op0, rtx *op1,
8990 enum expand_modifier modifier)
8992 if (! safe_from_p (target, exp1, 1))
8993 target = 0;
8994 if (operand_equal_p (exp0, exp1, 0))
8996 *op0 = expand_expr (exp0, target, VOIDmode, modifier);
8997 *op1 = copy_rtx (*op0);
8999 else
9001 *op0 = expand_expr (exp0, target, VOIDmode, modifier);
9002 *op1 = expand_expr (exp1, NULL_RTX, VOIDmode, modifier);
9007 /* Return a MEM that contains constant EXP. DEFER is as for
9008 output_constant_def and MODIFIER is as for expand_expr. */
9010 static rtx
9011 expand_expr_constant (tree exp, int defer, enum expand_modifier modifier)
9013 rtx mem;
9015 mem = output_constant_def (exp, defer);
9016 if (modifier != EXPAND_INITIALIZER)
9017 mem = use_anchored_address (mem);
9018 return mem;
9021 /* A subroutine of expand_expr_addr_expr. Evaluate the address of EXP.
9022 The TARGET, TMODE and MODIFIER arguments are as for expand_expr. */
9024 static rtx
9025 expand_expr_addr_expr_1 (tree exp, rtx target, scalar_int_mode tmode,
9026 enum expand_modifier modifier, addr_space_t as)
9028 rtx result, subtarget;
9029 tree inner, offset;
9030 poly_int64 bitsize, bitpos;
9031 int unsignedp, reversep, volatilep = 0;
9032 machine_mode mode1;
9034 /* If we are taking the address of a constant and are at the top level,
9035 we have to use output_constant_def since we can't call force_const_mem
9036 at top level. */
9037 /* ??? This should be considered a front-end bug. We should not be
9038 generating ADDR_EXPR of something that isn't an LVALUE. The only
9039 exception here is STRING_CST. */
9040 if (CONSTANT_CLASS_P (exp))
9042 result = XEXP (expand_expr_constant (exp, 0, modifier), 0);
9043 if (modifier < EXPAND_SUM)
9044 result = force_operand (result, target);
9045 return result;
9048 /* Everything must be something allowed by is_gimple_addressable. */
9049 switch (TREE_CODE (exp))
9051 case INDIRECT_REF:
9052 /* This case will happen via recursion for &a->b. */
9053 return expand_expr (TREE_OPERAND (exp, 0), target, tmode, modifier);
9055 case MEM_REF:
9057 tree tem = TREE_OPERAND (exp, 0);
9058 if (!integer_zerop (TREE_OPERAND (exp, 1)))
9059 tem = fold_build_pointer_plus (tem, TREE_OPERAND (exp, 1));
9060 return expand_expr (tem, target, tmode, modifier);
9063 case TARGET_MEM_REF:
9064 return addr_for_mem_ref (exp, as, true);
9066 case CONST_DECL:
9067 /* Expand the initializer like constants above. */
9068 result = XEXP (expand_expr_constant (DECL_INITIAL (exp),
9069 0, modifier), 0);
9070 if (modifier < EXPAND_SUM)
9071 result = force_operand (result, target);
9072 return result;
9074 case REALPART_EXPR:
9075 /* The real part of the complex number is always first, therefore
9076 the address is the same as the address of the parent object. */
9077 offset = 0;
9078 bitpos = 0;
9079 inner = TREE_OPERAND (exp, 0);
9080 break;
9082 case IMAGPART_EXPR:
9083 /* The imaginary part of the complex number is always second.
9084 The expression is therefore always offset by the size of the
9085 scalar type. */
9086 offset = 0;
9087 bitpos = GET_MODE_BITSIZE (SCALAR_TYPE_MODE (TREE_TYPE (exp)));
9088 inner = TREE_OPERAND (exp, 0);
9089 break;
9091 case COMPOUND_LITERAL_EXPR:
9092 /* Allow COMPOUND_LITERAL_EXPR in initializers or coming from
9093 initializers, if e.g. rtl_for_decl_init is called on DECL_INITIAL
9094 with COMPOUND_LITERAL_EXPRs in it, or ARRAY_REF on a const static
9095 array with address of COMPOUND_LITERAL_EXPR in DECL_INITIAL;
9096 the initializers aren't gimplified. */
9097 if (COMPOUND_LITERAL_EXPR_DECL (exp)
9098 && is_global_var (COMPOUND_LITERAL_EXPR_DECL (exp)))
9099 return expand_expr_addr_expr_1 (COMPOUND_LITERAL_EXPR_DECL (exp),
9100 target, tmode, modifier, as);
9101 /* FALLTHRU */
9102 default:
9103 /* If the object is a DECL, then expand it for its rtl. Don't bypass
9104 expand_expr, as that can have various side effects; LABEL_DECLs for
9105 example, may not have their DECL_RTL set yet. Expand the rtl of
9106 CONSTRUCTORs too, which should yield a memory reference for the
9107 constructor's contents. Assume language specific tree nodes can
9108 be expanded in some interesting way. */
9109 gcc_assert (TREE_CODE (exp) < LAST_AND_UNUSED_TREE_CODE);
9110 if (DECL_P (exp)
9111 || TREE_CODE (exp) == CONSTRUCTOR
9112 || TREE_CODE (exp) == COMPOUND_LITERAL_EXPR)
9114 result = expand_expr (exp, target, tmode,
9115 modifier == EXPAND_INITIALIZER
9116 ? EXPAND_INITIALIZER : EXPAND_CONST_ADDRESS);
9118 /* If the DECL isn't in memory, then the DECL wasn't properly
9119 marked TREE_ADDRESSABLE, which will be either a front-end
9120 or a tree optimizer bug. */
9122 gcc_assert (MEM_P (result));
9123 result = XEXP (result, 0);
9125 /* ??? Is this needed anymore? */
9126 if (DECL_P (exp))
9127 TREE_USED (exp) = 1;
9129 if (modifier != EXPAND_INITIALIZER
9130 && modifier != EXPAND_CONST_ADDRESS
9131 && modifier != EXPAND_SUM)
9132 result = force_operand (result, target);
9133 return result;
9136 /* Pass FALSE as the last argument to get_inner_reference although
9137 we are expanding to RTL. The rationale is that we know how to
9138 handle "aligning nodes" here: we can just bypass them because
9139 they won't change the final object whose address will be returned
9140 (they actually exist only for that purpose). */
9141 inner = get_inner_reference (exp, &bitsize, &bitpos, &offset, &mode1,
9142 &unsignedp, &reversep, &volatilep);
9143 break;
9146 /* We must have made progress. */
9147 gcc_assert (inner != exp);
9149 subtarget = offset || maybe_ne (bitpos, 0) ? NULL_RTX : target;
9150 /* For VIEW_CONVERT_EXPR, where the outer alignment is bigger than
9151 inner alignment, force the inner to be sufficiently aligned. */
9152 if (CONSTANT_CLASS_P (inner)
9153 && TYPE_ALIGN (TREE_TYPE (inner)) < TYPE_ALIGN (TREE_TYPE (exp)))
9155 inner = copy_node (inner);
9156 TREE_TYPE (inner) = copy_node (TREE_TYPE (inner));
9157 SET_TYPE_ALIGN (TREE_TYPE (inner), TYPE_ALIGN (TREE_TYPE (exp)));
9158 TYPE_USER_ALIGN (TREE_TYPE (inner)) = 1;
9160 result = expand_expr_addr_expr_1 (inner, subtarget, tmode, modifier, as);
9162 if (offset)
9164 rtx tmp;
9166 if (modifier != EXPAND_NORMAL)
9167 result = force_operand (result, NULL);
9168 tmp = expand_expr (offset, NULL_RTX, tmode,
9169 modifier == EXPAND_INITIALIZER
9170 ? EXPAND_INITIALIZER : EXPAND_NORMAL);
9172 /* expand_expr is allowed to return an object in a mode other
9173 than TMODE. If it did, we need to convert. */
9174 if (GET_MODE (tmp) != VOIDmode && tmode != GET_MODE (tmp))
9175 tmp = convert_modes (tmode, GET_MODE (tmp),
9176 tmp, TYPE_UNSIGNED (TREE_TYPE (offset)));
9177 result = convert_memory_address_addr_space (tmode, result, as);
9178 tmp = convert_memory_address_addr_space (tmode, tmp, as);
9180 if (modifier == EXPAND_SUM || modifier == EXPAND_INITIALIZER)
9181 result = simplify_gen_binary (PLUS, tmode, result, tmp);
9182 else
9184 subtarget = maybe_ne (bitpos, 0) ? NULL_RTX : target;
9185 result = expand_simple_binop (tmode, PLUS, result, tmp, subtarget,
9186 1, OPTAB_LIB_WIDEN);
9190 if (maybe_ne (bitpos, 0))
9192 /* Someone beforehand should have rejected taking the address
9193 of an object that isn't byte-aligned. */
9194 poly_int64 bytepos = exact_div (bitpos, BITS_PER_UNIT);
9195 result = convert_memory_address_addr_space (tmode, result, as);
9196 result = plus_constant (tmode, result, bytepos);
9197 if (modifier < EXPAND_SUM)
9198 result = force_operand (result, target);
9201 return result;
9204 /* A subroutine of expand_expr. Evaluate EXP, which is an ADDR_EXPR.
9205 The TARGET, TMODE and MODIFIER arguments are as for expand_expr. */
9207 static rtx
9208 expand_expr_addr_expr (tree exp, rtx target, machine_mode tmode,
9209 enum expand_modifier modifier)
9211 addr_space_t as = ADDR_SPACE_GENERIC;
9212 scalar_int_mode address_mode = Pmode;
9213 scalar_int_mode pointer_mode = ptr_mode;
9214 machine_mode rmode;
9215 rtx result;
9217 /* Target mode of VOIDmode says "whatever's natural". */
9218 if (tmode == VOIDmode)
9219 tmode = TYPE_MODE (TREE_TYPE (exp));
9221 if (POINTER_TYPE_P (TREE_TYPE (exp)))
9223 as = TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (exp)));
9224 address_mode = targetm.addr_space.address_mode (as);
9225 pointer_mode = targetm.addr_space.pointer_mode (as);
9228 /* We can get called with some Weird Things if the user does silliness
9229 like "(short) &a". In that case, convert_memory_address won't do
9230 the right thing, so ignore the given target mode. */
9231 scalar_int_mode new_tmode = (tmode == pointer_mode
9232 ? pointer_mode
9233 : address_mode);
9235 result = expand_expr_addr_expr_1 (TREE_OPERAND (exp, 0), target,
9236 new_tmode, modifier, as);
9238 /* Despite expand_expr claims concerning ignoring TMODE when not
9239 strictly convenient, stuff breaks if we don't honor it. Note
9240 that combined with the above, we only do this for pointer modes. */
9241 rmode = GET_MODE (result);
9242 if (rmode == VOIDmode)
9243 rmode = new_tmode;
9244 if (rmode != new_tmode)
9245 result = convert_memory_address_addr_space (new_tmode, result, as);
9247 return result;
9250 /* Generate code for computing CONSTRUCTOR EXP.
9251 An rtx for the computed value is returned. If AVOID_TEMP_MEM
9252 is TRUE, instead of creating a temporary variable in memory
9253 NULL is returned and the caller needs to handle it differently. */
9255 static rtx
9256 expand_constructor (tree exp, rtx target, enum expand_modifier modifier,
9257 bool avoid_temp_mem)
9259 tree type = TREE_TYPE (exp);
9260 machine_mode mode = TYPE_MODE (type);
9262 /* Try to avoid creating a temporary at all. This is possible
9263 if all of the initializer is zero.
9264 FIXME: try to handle all [0..255] initializers we can handle
9265 with memset. */
9266 if (TREE_STATIC (exp)
9267 && !TREE_ADDRESSABLE (exp)
9268 && target != 0 && mode == BLKmode
9269 && all_zeros_p (exp))
9271 clear_storage (target, expr_size (exp), BLOCK_OP_NORMAL);
9272 return target;
9275 /* All elts simple constants => refer to a constant in memory. But
9276 if this is a non-BLKmode mode, let it store a field at a time
9277 since that should make a CONST_INT, CONST_WIDE_INT or
9278 CONST_DOUBLE when we fold. Likewise, if we have a target we can
9279 use, it is best to store directly into the target unless the type
9280 is large enough that memcpy will be used. If we are making an
9281 initializer and all operands are constant, put it in memory as
9282 well.
9284 FIXME: Avoid trying to fill vector constructors piece-meal.
9285 Output them with output_constant_def below unless we're sure
9286 they're zeros. This should go away when vector initializers
9287 are treated like VECTOR_CST instead of arrays. */
9288 if ((TREE_STATIC (exp)
9289 && ((mode == BLKmode
9290 && ! (target != 0 && safe_from_p (target, exp, 1)))
9291 || TREE_ADDRESSABLE (exp)
9292 || (tree_fits_uhwi_p (TYPE_SIZE_UNIT (type))
9293 && (! can_move_by_pieces
9294 (tree_to_uhwi (TYPE_SIZE_UNIT (type)),
9295 TYPE_ALIGN (type)))
9296 && ! mostly_zeros_p (exp))))
9297 || ((modifier == EXPAND_INITIALIZER || modifier == EXPAND_CONST_ADDRESS)
9298 && TREE_CONSTANT (exp)))
9300 rtx constructor;
9302 if (avoid_temp_mem)
9303 return NULL_RTX;
9305 constructor = expand_expr_constant (exp, 1, modifier);
9307 if (modifier != EXPAND_CONST_ADDRESS
9308 && modifier != EXPAND_INITIALIZER
9309 && modifier != EXPAND_SUM)
9310 constructor = validize_mem (constructor);
9312 return constructor;
9315 /* If the CTOR is available in static storage and not mostly
9316 zeros and we can move it by pieces prefer to do so since
9317 that's usually more efficient than performing a series of
9318 stores from immediates. */
9319 if (avoid_temp_mem
9320 && TREE_STATIC (exp)
9321 && TREE_CONSTANT (exp)
9322 && tree_fits_uhwi_p (TYPE_SIZE_UNIT (type))
9323 && can_move_by_pieces (tree_to_uhwi (TYPE_SIZE_UNIT (type)),
9324 TYPE_ALIGN (type))
9325 && ! mostly_zeros_p (exp))
9326 return NULL_RTX;
9328 /* Handle calls that pass values in multiple non-contiguous
9329 locations. The Irix 6 ABI has examples of this. */
9330 if (target == 0 || ! safe_from_p (target, exp, 1)
9331 || GET_CODE (target) == PARALLEL || modifier == EXPAND_STACK_PARM
9332 /* Also make a temporary if the store is to volatile memory, to
9333 avoid individual accesses to aggregate members. */
9334 || (GET_CODE (target) == MEM
9335 && MEM_VOLATILE_P (target)
9336 && !TREE_ADDRESSABLE (TREE_TYPE (exp))))
9338 if (avoid_temp_mem)
9339 return NULL_RTX;
9341 target = assign_temp (type, TREE_ADDRESSABLE (exp), 1);
9344 store_constructor (exp, target, 0, int_expr_size (exp), false);
9345 return target;
9349 /* expand_expr: generate code for computing expression EXP.
9350 An rtx for the computed value is returned. The value is never null.
9351 In the case of a void EXP, const0_rtx is returned.
9353 The value may be stored in TARGET if TARGET is nonzero.
9354 TARGET is just a suggestion; callers must assume that
9355 the rtx returned may not be the same as TARGET.
9357 If TARGET is CONST0_RTX, it means that the value will be ignored.
9359 If TMODE is not VOIDmode, it suggests generating the
9360 result in mode TMODE. But this is done only when convenient.
9361 Otherwise, TMODE is ignored and the value generated in its natural mode.
9362 TMODE is just a suggestion; callers must assume that
9363 the rtx returned may not have mode TMODE.
9365 Note that TARGET may have neither TMODE nor MODE. In that case, it
9366 probably will not be used.
9368 If MODIFIER is EXPAND_SUM then when EXP is an addition
9369 we can return an rtx of the form (MULT (REG ...) (CONST_INT ...))
9370 or a nest of (PLUS ...) and (MINUS ...) where the terms are
9371 products as above, or REG or MEM, or constant.
9372 Ordinarily in such cases we would output mul or add instructions
9373 and then return a pseudo reg containing the sum.
9375 EXPAND_INITIALIZER is much like EXPAND_SUM except that
9376 it also marks a label as absolutely required (it can't be dead).
9377 It also makes a ZERO_EXTEND or SIGN_EXTEND instead of emitting extend insns.
9378 This is used for outputting expressions used in initializers.
9380 EXPAND_CONST_ADDRESS says that it is okay to return a MEM
9381 with a constant address even if that address is not normally legitimate.
9382 EXPAND_INITIALIZER and EXPAND_SUM also have this effect.
9384 EXPAND_STACK_PARM is used when expanding to a TARGET on the stack for
9385 a call parameter. Such targets require special care as we haven't yet
9386 marked TARGET so that it's safe from being trashed by libcalls. We
9387 don't want to use TARGET for anything but the final result;
9388 Intermediate values must go elsewhere. Additionally, calls to
9389 emit_block_move will be flagged with BLOCK_OP_CALL_PARM.
9391 If EXP is a VAR_DECL whose DECL_RTL was a MEM with an invalid
9392 address, and ALT_RTL is non-NULL, then *ALT_RTL is set to the
9393 DECL_RTL of the VAR_DECL. *ALT_RTL is also set if EXP is a
9394 COMPOUND_EXPR whose second argument is such a VAR_DECL, and so on
9395 recursively.
9396 If the result can be stored at TARGET, and ALT_RTL is non-NULL,
9397 then *ALT_RTL is set to TARGET (before legitimziation).
9399 If INNER_REFERENCE_P is true, we are expanding an inner reference.
9400 In this case, we don't adjust a returned MEM rtx that wouldn't be
9401 sufficiently aligned for its mode; instead, it's up to the caller
9402 to deal with it afterwards. This is used to make sure that unaligned
9403 base objects for which out-of-bounds accesses are supported, for
9404 example record types with trailing arrays, aren't realigned behind
9405 the back of the caller.
9406 The normal operating mode is to pass FALSE for this parameter. */
9409 expand_expr_real (tree exp, rtx target, machine_mode tmode,
9410 enum expand_modifier modifier, rtx *alt_rtl,
9411 bool inner_reference_p)
9413 rtx ret;
9415 /* Handle ERROR_MARK before anybody tries to access its type. */
9416 if (TREE_CODE (exp) == ERROR_MARK
9417 || (TREE_CODE (TREE_TYPE (exp)) == ERROR_MARK))
9419 ret = CONST0_RTX (tmode);
9420 return ret ? ret : const0_rtx;
9423 ret = expand_expr_real_1 (exp, target, tmode, modifier, alt_rtl,
9424 inner_reference_p);
9425 return ret;
9428 /* Try to expand the conditional expression which is represented by
9429 TREEOP0 ? TREEOP1 : TREEOP2 using conditonal moves. If it succeeds
9430 return the rtl reg which represents the result. Otherwise return
9431 NULL_RTX. */
9433 static rtx
9434 expand_cond_expr_using_cmove (tree treeop0 ATTRIBUTE_UNUSED,
9435 tree treeop1 ATTRIBUTE_UNUSED,
9436 tree treeop2 ATTRIBUTE_UNUSED)
9438 rtx insn;
9439 rtx op00, op01, op1, op2;
9440 enum rtx_code comparison_code;
9441 machine_mode comparison_mode;
9442 gimple *srcstmt;
9443 rtx temp;
9444 tree type = TREE_TYPE (treeop1);
9445 int unsignedp = TYPE_UNSIGNED (type);
9446 machine_mode mode = TYPE_MODE (type);
9447 machine_mode orig_mode = mode;
9448 static bool expanding_cond_expr_using_cmove = false;
9450 /* Conditional move expansion can end up TERing two operands which,
9451 when recursively hitting conditional expressions can result in
9452 exponential behavior if the cmove expansion ultimatively fails.
9453 It's hardly profitable to TER a cmove into a cmove so avoid doing
9454 that by failing early if we end up recursing. */
9455 if (expanding_cond_expr_using_cmove)
9456 return NULL_RTX;
9458 /* If we cannot do a conditional move on the mode, try doing it
9459 with the promoted mode. */
9460 if (!can_conditionally_move_p (mode))
9462 mode = promote_mode (type, mode, &unsignedp);
9463 if (!can_conditionally_move_p (mode))
9464 return NULL_RTX;
9465 temp = assign_temp (type, 0, 0); /* Use promoted mode for temp. */
9467 else
9468 temp = assign_temp (type, 0, 1);
9470 expanding_cond_expr_using_cmove = true;
9471 start_sequence ();
9472 expand_operands (treeop1, treeop2,
9473 mode == orig_mode ? temp : NULL_RTX, &op1, &op2,
9474 EXPAND_NORMAL);
9476 if (TREE_CODE (treeop0) == SSA_NAME
9477 && (srcstmt = get_def_for_expr_class (treeop0, tcc_comparison)))
9479 type = TREE_TYPE (gimple_assign_rhs1 (srcstmt));
9480 enum tree_code cmpcode = gimple_assign_rhs_code (srcstmt);
9481 op00 = expand_normal (gimple_assign_rhs1 (srcstmt));
9482 op01 = expand_normal (gimple_assign_rhs2 (srcstmt));
9483 comparison_mode = TYPE_MODE (type);
9484 unsignedp = TYPE_UNSIGNED (type);
9485 comparison_code = convert_tree_comp_to_rtx (cmpcode, unsignedp);
9487 else if (COMPARISON_CLASS_P (treeop0))
9489 type = TREE_TYPE (TREE_OPERAND (treeop0, 0));
9490 enum tree_code cmpcode = TREE_CODE (treeop0);
9491 op00 = expand_normal (TREE_OPERAND (treeop0, 0));
9492 op01 = expand_normal (TREE_OPERAND (treeop0, 1));
9493 unsignedp = TYPE_UNSIGNED (type);
9494 comparison_mode = TYPE_MODE (type);
9495 comparison_code = convert_tree_comp_to_rtx (cmpcode, unsignedp);
9497 else
9499 op00 = expand_normal (treeop0);
9500 op01 = const0_rtx;
9501 comparison_code = NE;
9502 comparison_mode = GET_MODE (op00);
9503 if (comparison_mode == VOIDmode)
9504 comparison_mode = TYPE_MODE (TREE_TYPE (treeop0));
9506 expanding_cond_expr_using_cmove = false;
9508 if (GET_MODE (op1) != mode)
9509 op1 = gen_lowpart (mode, op1);
9511 if (GET_MODE (op2) != mode)
9512 op2 = gen_lowpart (mode, op2);
9514 /* Try to emit the conditional move. */
9515 insn = emit_conditional_move (temp,
9516 { comparison_code, op00, op01,
9517 comparison_mode },
9518 op1, op2, mode,
9519 unsignedp);
9521 /* If we could do the conditional move, emit the sequence,
9522 and return. */
9523 if (insn)
9525 rtx_insn *seq = get_insns ();
9526 end_sequence ();
9527 emit_insn (seq);
9528 return convert_modes (orig_mode, mode, temp, 0);
9531 /* Otherwise discard the sequence and fall back to code with
9532 branches. */
9533 end_sequence ();
9534 return NULL_RTX;
9537 /* A helper function for expand_expr_real_2 to be used with a
9538 misaligned mem_ref TEMP. Assume an unsigned type if UNSIGNEDP
9539 is nonzero, with alignment ALIGN in bits.
9540 Store the value at TARGET if possible (if TARGET is nonzero).
9541 Regardless of TARGET, we return the rtx for where the value is placed.
9542 If the result can be stored at TARGET, and ALT_RTL is non-NULL,
9543 then *ALT_RTL is set to TARGET (before legitimziation). */
9545 static rtx
9546 expand_misaligned_mem_ref (rtx temp, machine_mode mode, int unsignedp,
9547 unsigned int align, rtx target, rtx *alt_rtl)
9549 enum insn_code icode;
9551 if ((icode = optab_handler (movmisalign_optab, mode))
9552 != CODE_FOR_nothing)
9554 class expand_operand ops[2];
9556 /* We've already validated the memory, and we're creating a
9557 new pseudo destination. The predicates really can't fail,
9558 nor can the generator. */
9559 create_output_operand (&ops[0], NULL_RTX, mode);
9560 create_fixed_operand (&ops[1], temp);
9561 expand_insn (icode, 2, ops);
9562 temp = ops[0].value;
9564 else if (targetm.slow_unaligned_access (mode, align))
9565 temp = extract_bit_field (temp, GET_MODE_BITSIZE (mode),
9566 0, unsignedp, target,
9567 mode, mode, false, alt_rtl);
9568 return temp;
9571 /* Helper function of expand_expr_2, expand a division or modulo.
9572 op0 and op1 should be already expanded treeop0 and treeop1, using
9573 expand_operands. */
9575 static rtx
9576 expand_expr_divmod (tree_code code, machine_mode mode, tree treeop0,
9577 tree treeop1, rtx op0, rtx op1, rtx target, int unsignedp)
9579 bool mod_p = (code == TRUNC_MOD_EXPR || code == FLOOR_MOD_EXPR
9580 || code == CEIL_MOD_EXPR || code == ROUND_MOD_EXPR);
9581 if (SCALAR_INT_MODE_P (mode)
9582 && optimize >= 2
9583 && get_range_pos_neg (treeop0) == 1
9584 && get_range_pos_neg (treeop1) == 1)
9586 /* If both arguments are known to be positive when interpreted
9587 as signed, we can expand it as both signed and unsigned
9588 division or modulo. Choose the cheaper sequence in that case. */
9589 bool speed_p = optimize_insn_for_speed_p ();
9590 do_pending_stack_adjust ();
9591 start_sequence ();
9592 rtx uns_ret = expand_divmod (mod_p, code, mode, op0, op1, target, 1);
9593 rtx_insn *uns_insns = get_insns ();
9594 end_sequence ();
9595 start_sequence ();
9596 rtx sgn_ret = expand_divmod (mod_p, code, mode, op0, op1, target, 0);
9597 rtx_insn *sgn_insns = get_insns ();
9598 end_sequence ();
9599 unsigned uns_cost = seq_cost (uns_insns, speed_p);
9600 unsigned sgn_cost = seq_cost (sgn_insns, speed_p);
9602 /* If costs are the same then use as tie breaker the other other
9603 factor. */
9604 if (uns_cost == sgn_cost)
9606 uns_cost = seq_cost (uns_insns, !speed_p);
9607 sgn_cost = seq_cost (sgn_insns, !speed_p);
9610 if (uns_cost < sgn_cost || (uns_cost == sgn_cost && unsignedp))
9612 emit_insn (uns_insns);
9613 return uns_ret;
9615 emit_insn (sgn_insns);
9616 return sgn_ret;
9618 return expand_divmod (mod_p, code, mode, op0, op1, target, unsignedp);
9622 expand_expr_real_2 (sepops ops, rtx target, machine_mode tmode,
9623 enum expand_modifier modifier)
9625 rtx op0, op1, op2, temp;
9626 rtx_code_label *lab;
9627 tree type;
9628 int unsignedp;
9629 machine_mode mode;
9630 scalar_int_mode int_mode;
9631 enum tree_code code = ops->code;
9632 optab this_optab;
9633 rtx subtarget, original_target;
9634 int ignore;
9635 bool reduce_bit_field;
9636 location_t loc = ops->location;
9637 tree treeop0, treeop1, treeop2;
9638 #define REDUCE_BIT_FIELD(expr) (reduce_bit_field \
9639 ? reduce_to_bit_field_precision ((expr), \
9640 target, \
9641 type) \
9642 : (expr))
9644 type = ops->type;
9645 mode = TYPE_MODE (type);
9646 unsignedp = TYPE_UNSIGNED (type);
9648 treeop0 = ops->op0;
9649 treeop1 = ops->op1;
9650 treeop2 = ops->op2;
9652 /* We should be called only on simple (binary or unary) expressions,
9653 exactly those that are valid in gimple expressions that aren't
9654 GIMPLE_SINGLE_RHS (or invalid). */
9655 gcc_assert (get_gimple_rhs_class (code) == GIMPLE_UNARY_RHS
9656 || get_gimple_rhs_class (code) == GIMPLE_BINARY_RHS
9657 || get_gimple_rhs_class (code) == GIMPLE_TERNARY_RHS);
9659 ignore = (target == const0_rtx
9660 || ((CONVERT_EXPR_CODE_P (code)
9661 || code == COND_EXPR || code == VIEW_CONVERT_EXPR)
9662 && TREE_CODE (type) == VOID_TYPE));
9664 /* We should be called only if we need the result. */
9665 gcc_assert (!ignore);
9667 /* An operation in what may be a bit-field type needs the
9668 result to be reduced to the precision of the bit-field type,
9669 which is narrower than that of the type's mode. */
9670 reduce_bit_field = (INTEGRAL_TYPE_P (type)
9671 && !type_has_mode_precision_p (type));
9673 if (reduce_bit_field
9674 && (modifier == EXPAND_STACK_PARM
9675 || (target && GET_MODE (target) != mode)))
9676 target = 0;
9678 /* Use subtarget as the target for operand 0 of a binary operation. */
9679 subtarget = get_subtarget (target);
9680 original_target = target;
9682 switch (code)
9684 case NON_LVALUE_EXPR:
9685 case PAREN_EXPR:
9686 CASE_CONVERT:
9687 if (treeop0 == error_mark_node)
9688 return const0_rtx;
9690 if (TREE_CODE (type) == UNION_TYPE)
9692 tree valtype = TREE_TYPE (treeop0);
9694 /* If both input and output are BLKmode, this conversion isn't doing
9695 anything except possibly changing memory attribute. */
9696 if (mode == BLKmode && TYPE_MODE (valtype) == BLKmode)
9698 rtx result = expand_expr (treeop0, target, tmode,
9699 modifier);
9701 result = copy_rtx (result);
9702 set_mem_attributes (result, type, 0);
9703 return result;
9706 if (target == 0)
9708 if (TYPE_MODE (type) != BLKmode)
9709 target = gen_reg_rtx (TYPE_MODE (type));
9710 else
9711 target = assign_temp (type, 1, 1);
9714 if (MEM_P (target))
9715 /* Store data into beginning of memory target. */
9716 store_expr (treeop0,
9717 adjust_address (target, TYPE_MODE (valtype), 0),
9718 modifier == EXPAND_STACK_PARM,
9719 false, TYPE_REVERSE_STORAGE_ORDER (type));
9721 else
9723 gcc_assert (REG_P (target)
9724 && !TYPE_REVERSE_STORAGE_ORDER (type));
9726 /* Store this field into a union of the proper type. */
9727 poly_uint64 op0_size
9728 = tree_to_poly_uint64 (TYPE_SIZE (TREE_TYPE (treeop0)));
9729 poly_uint64 union_size = GET_MODE_BITSIZE (mode);
9730 store_field (target,
9731 /* The conversion must be constructed so that
9732 we know at compile time how many bits
9733 to preserve. */
9734 ordered_min (op0_size, union_size),
9735 0, 0, 0, TYPE_MODE (valtype), treeop0, 0,
9736 false, false);
9739 /* Return the entire union. */
9740 return target;
9743 if (mode == TYPE_MODE (TREE_TYPE (treeop0)))
9745 op0 = expand_expr (treeop0, target, VOIDmode,
9746 modifier);
9748 return REDUCE_BIT_FIELD (op0);
9751 op0 = expand_expr (treeop0, NULL_RTX, mode,
9752 modifier == EXPAND_SUM ? EXPAND_NORMAL : modifier);
9753 if (GET_MODE (op0) == mode)
9756 /* If OP0 is a constant, just convert it into the proper mode. */
9757 else if (CONSTANT_P (op0))
9759 tree inner_type = TREE_TYPE (treeop0);
9760 machine_mode inner_mode = GET_MODE (op0);
9762 if (inner_mode == VOIDmode)
9763 inner_mode = TYPE_MODE (inner_type);
9765 if (modifier == EXPAND_INITIALIZER)
9766 op0 = lowpart_subreg (mode, op0, inner_mode);
9767 else
9768 op0= convert_modes (mode, inner_mode, op0,
9769 TYPE_UNSIGNED (inner_type));
9772 else if (modifier == EXPAND_INITIALIZER)
9773 op0 = gen_rtx_fmt_e (TYPE_UNSIGNED (TREE_TYPE (treeop0))
9774 ? ZERO_EXTEND : SIGN_EXTEND, mode, op0);
9776 else if (target == 0)
9777 op0 = convert_to_mode (mode, op0,
9778 TYPE_UNSIGNED (TREE_TYPE
9779 (treeop0)));
9780 else
9782 convert_move (target, op0,
9783 TYPE_UNSIGNED (TREE_TYPE (treeop0)));
9784 op0 = target;
9787 return REDUCE_BIT_FIELD (op0);
9789 case ADDR_SPACE_CONVERT_EXPR:
9791 tree treeop0_type = TREE_TYPE (treeop0);
9793 gcc_assert (POINTER_TYPE_P (type));
9794 gcc_assert (POINTER_TYPE_P (treeop0_type));
9796 addr_space_t as_to = TYPE_ADDR_SPACE (TREE_TYPE (type));
9797 addr_space_t as_from = TYPE_ADDR_SPACE (TREE_TYPE (treeop0_type));
9799 /* Conversions between pointers to the same address space should
9800 have been implemented via CONVERT_EXPR / NOP_EXPR. */
9801 gcc_assert (as_to != as_from);
9803 op0 = expand_expr (treeop0, NULL_RTX, VOIDmode, modifier);
9805 /* Ask target code to handle conversion between pointers
9806 to overlapping address spaces. */
9807 if (targetm.addr_space.subset_p (as_to, as_from)
9808 || targetm.addr_space.subset_p (as_from, as_to))
9810 op0 = targetm.addr_space.convert (op0, treeop0_type, type);
9812 else
9814 /* For disjoint address spaces, converting anything but a null
9815 pointer invokes undefined behavior. We truncate or extend the
9816 value as if we'd converted via integers, which handles 0 as
9817 required, and all others as the programmer likely expects. */
9818 #ifndef POINTERS_EXTEND_UNSIGNED
9819 const int POINTERS_EXTEND_UNSIGNED = 1;
9820 #endif
9821 op0 = convert_modes (mode, TYPE_MODE (treeop0_type),
9822 op0, POINTERS_EXTEND_UNSIGNED);
9824 gcc_assert (op0);
9825 return op0;
9828 case POINTER_PLUS_EXPR:
9829 /* Even though the sizetype mode and the pointer's mode can be different
9830 expand is able to handle this correctly and get the correct result out
9831 of the PLUS_EXPR code. */
9832 /* Make sure to sign-extend the sizetype offset in a POINTER_PLUS_EXPR
9833 if sizetype precision is smaller than pointer precision. */
9834 if (TYPE_PRECISION (sizetype) < TYPE_PRECISION (type))
9835 treeop1 = fold_convert_loc (loc, type,
9836 fold_convert_loc (loc, ssizetype,
9837 treeop1));
9838 /* If sizetype precision is larger than pointer precision, truncate the
9839 offset to have matching modes. */
9840 else if (TYPE_PRECISION (sizetype) > TYPE_PRECISION (type))
9841 treeop1 = fold_convert_loc (loc, type, treeop1);
9842 /* FALLTHRU */
9844 case PLUS_EXPR:
9845 /* If we are adding a constant, a VAR_DECL that is sp, fp, or ap, and
9846 something else, make sure we add the register to the constant and
9847 then to the other thing. This case can occur during strength
9848 reduction and doing it this way will produce better code if the
9849 frame pointer or argument pointer is eliminated.
9851 fold-const.cc will ensure that the constant is always in the inner
9852 PLUS_EXPR, so the only case we need to do anything about is if
9853 sp, ap, or fp is our second argument, in which case we must swap
9854 the innermost first argument and our second argument. */
9856 if (TREE_CODE (treeop0) == PLUS_EXPR
9857 && TREE_CODE (TREE_OPERAND (treeop0, 1)) == INTEGER_CST
9858 && VAR_P (treeop1)
9859 && (DECL_RTL (treeop1) == frame_pointer_rtx
9860 || DECL_RTL (treeop1) == stack_pointer_rtx
9861 || DECL_RTL (treeop1) == arg_pointer_rtx))
9863 gcc_unreachable ();
9866 /* If the result is to be ptr_mode and we are adding an integer to
9867 something, we might be forming a constant. So try to use
9868 plus_constant. If it produces a sum and we can't accept it,
9869 use force_operand. This allows P = &ARR[const] to generate
9870 efficient code on machines where a SYMBOL_REF is not a valid
9871 address.
9873 If this is an EXPAND_SUM call, always return the sum. */
9874 if (modifier == EXPAND_SUM || modifier == EXPAND_INITIALIZER
9875 || (mode == ptr_mode && (unsignedp || ! flag_trapv)))
9877 if (modifier == EXPAND_STACK_PARM)
9878 target = 0;
9879 if (TREE_CODE (treeop0) == INTEGER_CST
9880 && HWI_COMPUTABLE_MODE_P (mode)
9881 && TREE_CONSTANT (treeop1))
9883 rtx constant_part;
9884 HOST_WIDE_INT wc;
9885 machine_mode wmode = TYPE_MODE (TREE_TYPE (treeop1));
9887 op1 = expand_expr (treeop1, subtarget, VOIDmode,
9888 EXPAND_SUM);
9889 /* Use wi::shwi to ensure that the constant is
9890 truncated according to the mode of OP1, then sign extended
9891 to a HOST_WIDE_INT. Using the constant directly can result
9892 in non-canonical RTL in a 64x32 cross compile. */
9893 wc = TREE_INT_CST_LOW (treeop0);
9894 constant_part =
9895 immed_wide_int_const (wi::shwi (wc, wmode), wmode);
9896 op1 = plus_constant (mode, op1, INTVAL (constant_part));
9897 if (modifier != EXPAND_SUM && modifier != EXPAND_INITIALIZER)
9898 op1 = force_operand (op1, target);
9899 return REDUCE_BIT_FIELD (op1);
9902 else if (TREE_CODE (treeop1) == INTEGER_CST
9903 && HWI_COMPUTABLE_MODE_P (mode)
9904 && TREE_CONSTANT (treeop0))
9906 rtx constant_part;
9907 HOST_WIDE_INT wc;
9908 machine_mode wmode = TYPE_MODE (TREE_TYPE (treeop0));
9910 op0 = expand_expr (treeop0, subtarget, VOIDmode,
9911 (modifier == EXPAND_INITIALIZER
9912 ? EXPAND_INITIALIZER : EXPAND_SUM));
9913 if (! CONSTANT_P (op0))
9915 op1 = expand_expr (treeop1, NULL_RTX,
9916 VOIDmode, modifier);
9917 /* Return a PLUS if modifier says it's OK. */
9918 if (modifier == EXPAND_SUM
9919 || modifier == EXPAND_INITIALIZER)
9920 return simplify_gen_binary (PLUS, mode, op0, op1);
9921 goto binop2;
9923 /* Use wi::shwi to ensure that the constant is
9924 truncated according to the mode of OP1, then sign extended
9925 to a HOST_WIDE_INT. Using the constant directly can result
9926 in non-canonical RTL in a 64x32 cross compile. */
9927 wc = TREE_INT_CST_LOW (treeop1);
9928 constant_part
9929 = immed_wide_int_const (wi::shwi (wc, wmode), wmode);
9930 op0 = plus_constant (mode, op0, INTVAL (constant_part));
9931 if (modifier != EXPAND_SUM && modifier != EXPAND_INITIALIZER)
9932 op0 = force_operand (op0, target);
9933 return REDUCE_BIT_FIELD (op0);
9937 /* Use TER to expand pointer addition of a negated value
9938 as pointer subtraction. */
9939 if ((POINTER_TYPE_P (TREE_TYPE (treeop0))
9940 || (TREE_CODE (TREE_TYPE (treeop0)) == VECTOR_TYPE
9941 && POINTER_TYPE_P (TREE_TYPE (TREE_TYPE (treeop0)))))
9942 && TREE_CODE (treeop1) == SSA_NAME
9943 && TYPE_MODE (TREE_TYPE (treeop0))
9944 == TYPE_MODE (TREE_TYPE (treeop1)))
9946 gimple *def = get_def_for_expr (treeop1, NEGATE_EXPR);
9947 if (def)
9949 treeop1 = gimple_assign_rhs1 (def);
9950 code = MINUS_EXPR;
9951 goto do_minus;
9955 /* No sense saving up arithmetic to be done
9956 if it's all in the wrong mode to form part of an address.
9957 And force_operand won't know whether to sign-extend or
9958 zero-extend. */
9959 if (modifier != EXPAND_INITIALIZER
9960 && (modifier != EXPAND_SUM || mode != ptr_mode))
9962 expand_operands (treeop0, treeop1,
9963 subtarget, &op0, &op1, modifier);
9964 if (op0 == const0_rtx)
9965 return op1;
9966 if (op1 == const0_rtx)
9967 return op0;
9968 goto binop2;
9971 expand_operands (treeop0, treeop1,
9972 subtarget, &op0, &op1, modifier);
9973 return REDUCE_BIT_FIELD (simplify_gen_binary (PLUS, mode, op0, op1));
9975 case MINUS_EXPR:
9976 case POINTER_DIFF_EXPR:
9977 do_minus:
9978 /* For initializers, we are allowed to return a MINUS of two
9979 symbolic constants. Here we handle all cases when both operands
9980 are constant. */
9981 /* Handle difference of two symbolic constants,
9982 for the sake of an initializer. */
9983 if ((modifier == EXPAND_SUM || modifier == EXPAND_INITIALIZER)
9984 && really_constant_p (treeop0)
9985 && really_constant_p (treeop1))
9987 expand_operands (treeop0, treeop1,
9988 NULL_RTX, &op0, &op1, modifier);
9989 return simplify_gen_binary (MINUS, mode, op0, op1);
9992 /* No sense saving up arithmetic to be done
9993 if it's all in the wrong mode to form part of an address.
9994 And force_operand won't know whether to sign-extend or
9995 zero-extend. */
9996 if (modifier != EXPAND_INITIALIZER
9997 && (modifier != EXPAND_SUM || mode != ptr_mode))
9998 goto binop;
10000 expand_operands (treeop0, treeop1,
10001 subtarget, &op0, &op1, modifier);
10003 /* Convert A - const to A + (-const). */
10004 if (CONST_INT_P (op1))
10006 op1 = negate_rtx (mode, op1);
10007 return REDUCE_BIT_FIELD (simplify_gen_binary (PLUS, mode, op0, op1));
10010 goto binop2;
10012 case WIDEN_MULT_PLUS_EXPR:
10013 case WIDEN_MULT_MINUS_EXPR:
10014 expand_operands (treeop0, treeop1, NULL_RTX, &op0, &op1, EXPAND_NORMAL);
10015 op2 = expand_normal (treeop2);
10016 target = expand_widen_pattern_expr (ops, op0, op1, op2,
10017 target, unsignedp);
10018 return target;
10020 case WIDEN_MULT_EXPR:
10021 /* If first operand is constant, swap them.
10022 Thus the following special case checks need only
10023 check the second operand. */
10024 if (TREE_CODE (treeop0) == INTEGER_CST)
10025 std::swap (treeop0, treeop1);
10027 /* First, check if we have a multiplication of one signed and one
10028 unsigned operand. */
10029 if (TREE_CODE (treeop1) != INTEGER_CST
10030 && (TYPE_UNSIGNED (TREE_TYPE (treeop0))
10031 != TYPE_UNSIGNED (TREE_TYPE (treeop1))))
10033 machine_mode innermode = TYPE_MODE (TREE_TYPE (treeop0));
10034 this_optab = usmul_widen_optab;
10035 if (find_widening_optab_handler (this_optab, mode, innermode)
10036 != CODE_FOR_nothing)
10038 if (TYPE_UNSIGNED (TREE_TYPE (treeop0)))
10039 expand_operands (treeop0, treeop1, NULL_RTX, &op0, &op1,
10040 EXPAND_NORMAL);
10041 else
10042 expand_operands (treeop0, treeop1, NULL_RTX, &op1, &op0,
10043 EXPAND_NORMAL);
10044 /* op0 and op1 might still be constant, despite the above
10045 != INTEGER_CST check. Handle it. */
10046 if (GET_MODE (op0) == VOIDmode && GET_MODE (op1) == VOIDmode)
10048 op0 = convert_modes (mode, innermode, op0, true);
10049 op1 = convert_modes (mode, innermode, op1, false);
10050 return REDUCE_BIT_FIELD (expand_mult (mode, op0, op1,
10051 target, unsignedp));
10053 goto binop3;
10056 /* Check for a multiplication with matching signedness. */
10057 else if ((TREE_CODE (treeop1) == INTEGER_CST
10058 && int_fits_type_p (treeop1, TREE_TYPE (treeop0)))
10059 || (TYPE_UNSIGNED (TREE_TYPE (treeop1))
10060 == TYPE_UNSIGNED (TREE_TYPE (treeop0))))
10062 tree op0type = TREE_TYPE (treeop0);
10063 machine_mode innermode = TYPE_MODE (op0type);
10064 bool zextend_p = TYPE_UNSIGNED (op0type);
10065 optab other_optab = zextend_p ? smul_widen_optab : umul_widen_optab;
10066 this_optab = zextend_p ? umul_widen_optab : smul_widen_optab;
10068 if (TREE_CODE (treeop0) != INTEGER_CST)
10070 if (find_widening_optab_handler (this_optab, mode, innermode)
10071 != CODE_FOR_nothing)
10073 expand_operands (treeop0, treeop1, NULL_RTX, &op0, &op1,
10074 EXPAND_NORMAL);
10075 /* op0 and op1 might still be constant, despite the above
10076 != INTEGER_CST check. Handle it. */
10077 if (GET_MODE (op0) == VOIDmode && GET_MODE (op1) == VOIDmode)
10079 widen_mult_const:
10080 op0 = convert_modes (mode, innermode, op0, zextend_p);
10082 = convert_modes (mode, innermode, op1,
10083 TYPE_UNSIGNED (TREE_TYPE (treeop1)));
10084 return REDUCE_BIT_FIELD (expand_mult (mode, op0, op1,
10085 target,
10086 unsignedp));
10088 temp = expand_widening_mult (mode, op0, op1, target,
10089 unsignedp, this_optab);
10090 return REDUCE_BIT_FIELD (temp);
10092 if (find_widening_optab_handler (other_optab, mode, innermode)
10093 != CODE_FOR_nothing
10094 && innermode == word_mode)
10096 rtx htem, hipart;
10097 op0 = expand_normal (treeop0);
10098 op1 = expand_normal (treeop1);
10099 /* op0 and op1 might be constants, despite the above
10100 != INTEGER_CST check. Handle it. */
10101 if (GET_MODE (op0) == VOIDmode && GET_MODE (op1) == VOIDmode)
10102 goto widen_mult_const;
10103 temp = expand_binop (mode, other_optab, op0, op1, target,
10104 unsignedp, OPTAB_LIB_WIDEN);
10105 hipart = gen_highpart (word_mode, temp);
10106 htem = expand_mult_highpart_adjust (word_mode, hipart,
10107 op0, op1, hipart,
10108 zextend_p);
10109 if (htem != hipart)
10110 emit_move_insn (hipart, htem);
10111 return REDUCE_BIT_FIELD (temp);
10115 treeop0 = fold_build1 (CONVERT_EXPR, type, treeop0);
10116 treeop1 = fold_build1 (CONVERT_EXPR, type, treeop1);
10117 expand_operands (treeop0, treeop1, subtarget, &op0, &op1, EXPAND_NORMAL);
10118 return REDUCE_BIT_FIELD (expand_mult (mode, op0, op1, target, unsignedp));
10120 case MULT_EXPR:
10121 /* If this is a fixed-point operation, then we cannot use the code
10122 below because "expand_mult" doesn't support sat/no-sat fixed-point
10123 multiplications. */
10124 if (ALL_FIXED_POINT_MODE_P (mode))
10125 goto binop;
10127 /* If first operand is constant, swap them.
10128 Thus the following special case checks need only
10129 check the second operand. */
10130 if (TREE_CODE (treeop0) == INTEGER_CST)
10131 std::swap (treeop0, treeop1);
10133 /* Attempt to return something suitable for generating an
10134 indexed address, for machines that support that. */
10136 if (modifier == EXPAND_SUM && mode == ptr_mode
10137 && tree_fits_shwi_p (treeop1))
10139 tree exp1 = treeop1;
10141 op0 = expand_expr (treeop0, subtarget, VOIDmode,
10142 EXPAND_SUM);
10144 if (!REG_P (op0))
10145 op0 = force_operand (op0, NULL_RTX);
10146 if (!REG_P (op0))
10147 op0 = copy_to_mode_reg (mode, op0);
10149 op1 = gen_int_mode (tree_to_shwi (exp1),
10150 TYPE_MODE (TREE_TYPE (exp1)));
10151 return REDUCE_BIT_FIELD (gen_rtx_MULT (mode, op0, op1));
10154 if (modifier == EXPAND_STACK_PARM)
10155 target = 0;
10157 if (SCALAR_INT_MODE_P (mode) && optimize >= 2)
10159 gimple *def_stmt0 = get_def_for_expr (treeop0, TRUNC_DIV_EXPR);
10160 gimple *def_stmt1 = get_def_for_expr (treeop1, TRUNC_DIV_EXPR);
10161 if (def_stmt0
10162 && !operand_equal_p (treeop1, gimple_assign_rhs2 (def_stmt0), 0))
10163 def_stmt0 = NULL;
10164 if (def_stmt1
10165 && !operand_equal_p (treeop0, gimple_assign_rhs2 (def_stmt1), 0))
10166 def_stmt1 = NULL;
10168 if (def_stmt0 || def_stmt1)
10170 /* X / Y * Y can be expanded as X - X % Y too.
10171 Choose the cheaper sequence of those two. */
10172 if (def_stmt0)
10173 treeop0 = gimple_assign_rhs1 (def_stmt0);
10174 else
10176 treeop1 = treeop0;
10177 treeop0 = gimple_assign_rhs1 (def_stmt1);
10179 expand_operands (treeop0, treeop1, subtarget, &op0, &op1,
10180 EXPAND_NORMAL);
10181 bool speed_p = optimize_insn_for_speed_p ();
10182 do_pending_stack_adjust ();
10183 start_sequence ();
10184 rtx divmul_ret
10185 = expand_expr_divmod (TRUNC_DIV_EXPR, mode, treeop0, treeop1,
10186 op0, op1, NULL_RTX, unsignedp);
10187 divmul_ret = expand_mult (mode, divmul_ret, op1, target,
10188 unsignedp);
10189 rtx_insn *divmul_insns = get_insns ();
10190 end_sequence ();
10191 start_sequence ();
10192 rtx modsub_ret
10193 = expand_expr_divmod (TRUNC_MOD_EXPR, mode, treeop0, treeop1,
10194 op0, op1, NULL_RTX, unsignedp);
10195 this_optab = optab_for_tree_code (MINUS_EXPR, type,
10196 optab_default);
10197 modsub_ret = expand_binop (mode, this_optab, op0, modsub_ret,
10198 target, unsignedp, OPTAB_LIB_WIDEN);
10199 rtx_insn *modsub_insns = get_insns ();
10200 end_sequence ();
10201 unsigned divmul_cost = seq_cost (divmul_insns, speed_p);
10202 unsigned modsub_cost = seq_cost (modsub_insns, speed_p);
10203 /* If costs are the same then use as tie breaker the other other
10204 factor. */
10205 if (divmul_cost == modsub_cost)
10207 divmul_cost = seq_cost (divmul_insns, !speed_p);
10208 modsub_cost = seq_cost (modsub_insns, !speed_p);
10211 if (divmul_cost <= modsub_cost)
10213 emit_insn (divmul_insns);
10214 return REDUCE_BIT_FIELD (divmul_ret);
10216 emit_insn (modsub_insns);
10217 return REDUCE_BIT_FIELD (modsub_ret);
10221 expand_operands (treeop0, treeop1, subtarget, &op0, &op1, EXPAND_NORMAL);
10223 /* Expand X*Y as X&-Y when Y must be zero or one. */
10224 if (SCALAR_INT_MODE_P (mode))
10226 bool gimple_zero_one_valued_p (tree, tree (*)(tree));
10227 bool bit0_p = gimple_zero_one_valued_p (treeop0, nullptr);
10228 bool bit1_p = gimple_zero_one_valued_p (treeop1, nullptr);
10230 /* Expand X*Y as X&Y when both X and Y must be zero or one. */
10231 if (bit0_p && bit1_p)
10232 return REDUCE_BIT_FIELD (expand_and (mode, op0, op1, target));
10234 if (bit0_p || bit1_p)
10236 bool speed = optimize_insn_for_speed_p ();
10237 int cost = add_cost (speed, mode) + neg_cost (speed, mode);
10238 struct algorithm algorithm;
10239 enum mult_variant variant;
10240 if (CONST_INT_P (op1)
10241 ? !choose_mult_variant (mode, INTVAL (op1),
10242 &algorithm, &variant, cost)
10243 : cost < mul_cost (speed, mode))
10245 target = bit0_p ? expand_and (mode, negate_rtx (mode, op0),
10246 op1, target)
10247 : expand_and (mode, op0,
10248 negate_rtx (mode, op1),
10249 target);
10250 return REDUCE_BIT_FIELD (target);
10255 return REDUCE_BIT_FIELD (expand_mult (mode, op0, op1, target, unsignedp));
10257 case TRUNC_MOD_EXPR:
10258 case FLOOR_MOD_EXPR:
10259 case CEIL_MOD_EXPR:
10260 case ROUND_MOD_EXPR:
10262 case TRUNC_DIV_EXPR:
10263 case FLOOR_DIV_EXPR:
10264 case CEIL_DIV_EXPR:
10265 case ROUND_DIV_EXPR:
10266 case EXACT_DIV_EXPR:
10267 /* If this is a fixed-point operation, then we cannot use the code
10268 below because "expand_divmod" doesn't support sat/no-sat fixed-point
10269 divisions. */
10270 if (ALL_FIXED_POINT_MODE_P (mode))
10271 goto binop;
10273 if (modifier == EXPAND_STACK_PARM)
10274 target = 0;
10275 /* Possible optimization: compute the dividend with EXPAND_SUM
10276 then if the divisor is constant can optimize the case
10277 where some terms of the dividend have coeffs divisible by it. */
10278 expand_operands (treeop0, treeop1, subtarget, &op0, &op1, EXPAND_NORMAL);
10279 return expand_expr_divmod (code, mode, treeop0, treeop1, op0, op1,
10280 target, unsignedp);
10282 case RDIV_EXPR:
10283 goto binop;
10285 case MULT_HIGHPART_EXPR:
10286 expand_operands (treeop0, treeop1, subtarget, &op0, &op1, EXPAND_NORMAL);
10287 temp = expand_mult_highpart (mode, op0, op1, target, unsignedp);
10288 gcc_assert (temp);
10289 return temp;
10291 case FIXED_CONVERT_EXPR:
10292 op0 = expand_normal (treeop0);
10293 if (target == 0 || modifier == EXPAND_STACK_PARM)
10294 target = gen_reg_rtx (mode);
10296 if ((TREE_CODE (TREE_TYPE (treeop0)) == INTEGER_TYPE
10297 && TYPE_UNSIGNED (TREE_TYPE (treeop0)))
10298 || (TREE_CODE (type) == INTEGER_TYPE && TYPE_UNSIGNED (type)))
10299 expand_fixed_convert (target, op0, 1, TYPE_SATURATING (type));
10300 else
10301 expand_fixed_convert (target, op0, 0, TYPE_SATURATING (type));
10302 return target;
10304 case FIX_TRUNC_EXPR:
10305 op0 = expand_normal (treeop0);
10306 if (target == 0 || modifier == EXPAND_STACK_PARM)
10307 target = gen_reg_rtx (mode);
10308 expand_fix (target, op0, unsignedp);
10309 return target;
10311 case FLOAT_EXPR:
10312 op0 = expand_normal (treeop0);
10313 if (target == 0 || modifier == EXPAND_STACK_PARM)
10314 target = gen_reg_rtx (mode);
10315 /* expand_float can't figure out what to do if FROM has VOIDmode.
10316 So give it the correct mode. With -O, cse will optimize this. */
10317 if (GET_MODE (op0) == VOIDmode)
10318 op0 = copy_to_mode_reg (TYPE_MODE (TREE_TYPE (treeop0)),
10319 op0);
10320 expand_float (target, op0,
10321 TYPE_UNSIGNED (TREE_TYPE (treeop0)));
10322 return target;
10324 case NEGATE_EXPR:
10325 op0 = expand_expr (treeop0, subtarget,
10326 VOIDmode, EXPAND_NORMAL);
10327 if (modifier == EXPAND_STACK_PARM)
10328 target = 0;
10329 temp = expand_unop (mode,
10330 optab_for_tree_code (NEGATE_EXPR, type,
10331 optab_default),
10332 op0, target, 0);
10333 gcc_assert (temp);
10334 return REDUCE_BIT_FIELD (temp);
10336 case ABS_EXPR:
10337 case ABSU_EXPR:
10338 op0 = expand_expr (treeop0, subtarget,
10339 VOIDmode, EXPAND_NORMAL);
10340 if (modifier == EXPAND_STACK_PARM)
10341 target = 0;
10343 /* ABS_EXPR is not valid for complex arguments. */
10344 gcc_assert (GET_MODE_CLASS (mode) != MODE_COMPLEX_INT
10345 && GET_MODE_CLASS (mode) != MODE_COMPLEX_FLOAT);
10347 /* Unsigned abs is simply the operand. Testing here means we don't
10348 risk generating incorrect code below. */
10349 if (TYPE_UNSIGNED (TREE_TYPE (treeop0)))
10350 return op0;
10352 return expand_abs (mode, op0, target, unsignedp,
10353 safe_from_p (target, treeop0, 1));
10355 case MAX_EXPR:
10356 case MIN_EXPR:
10357 target = original_target;
10358 if (target == 0
10359 || modifier == EXPAND_STACK_PARM
10360 || (MEM_P (target) && MEM_VOLATILE_P (target))
10361 || GET_MODE (target) != mode
10362 || (REG_P (target)
10363 && REGNO (target) < FIRST_PSEUDO_REGISTER))
10364 target = gen_reg_rtx (mode);
10365 expand_operands (treeop0, treeop1,
10366 target, &op0, &op1, EXPAND_NORMAL);
10368 /* First try to do it with a special MIN or MAX instruction.
10369 If that does not win, use a conditional jump to select the proper
10370 value. */
10371 this_optab = optab_for_tree_code (code, type, optab_default);
10372 temp = expand_binop (mode, this_optab, op0, op1, target, unsignedp,
10373 OPTAB_WIDEN);
10374 if (temp != 0)
10375 return temp;
10377 if (VECTOR_TYPE_P (type))
10378 gcc_unreachable ();
10380 /* At this point, a MEM target is no longer useful; we will get better
10381 code without it. */
10383 if (! REG_P (target))
10384 target = gen_reg_rtx (mode);
10386 /* If op1 was placed in target, swap op0 and op1. */
10387 if (target != op0 && target == op1)
10388 std::swap (op0, op1);
10390 /* We generate better code and avoid problems with op1 mentioning
10391 target by forcing op1 into a pseudo if it isn't a constant. */
10392 if (! CONSTANT_P (op1))
10393 op1 = force_reg (mode, op1);
10396 enum rtx_code comparison_code;
10397 rtx cmpop1 = op1;
10399 if (code == MAX_EXPR)
10400 comparison_code = unsignedp ? GEU : GE;
10401 else
10402 comparison_code = unsignedp ? LEU : LE;
10404 /* Canonicalize to comparisons against 0. */
10405 if (op1 == const1_rtx)
10407 /* Converting (a >= 1 ? a : 1) into (a > 0 ? a : 1)
10408 or (a != 0 ? a : 1) for unsigned.
10409 For MIN we are safe converting (a <= 1 ? a : 1)
10410 into (a <= 0 ? a : 1) */
10411 cmpop1 = const0_rtx;
10412 if (code == MAX_EXPR)
10413 comparison_code = unsignedp ? NE : GT;
10415 if (op1 == constm1_rtx && !unsignedp)
10417 /* Converting (a >= -1 ? a : -1) into (a >= 0 ? a : -1)
10418 and (a <= -1 ? a : -1) into (a < 0 ? a : -1) */
10419 cmpop1 = const0_rtx;
10420 if (code == MIN_EXPR)
10421 comparison_code = LT;
10424 /* Use a conditional move if possible. */
10425 if (can_conditionally_move_p (mode))
10427 rtx insn;
10429 start_sequence ();
10431 /* Try to emit the conditional move. */
10432 insn = emit_conditional_move (target,
10433 { comparison_code,
10434 op0, cmpop1, mode },
10435 op0, op1, mode,
10436 unsignedp);
10438 /* If we could do the conditional move, emit the sequence,
10439 and return. */
10440 if (insn)
10442 rtx_insn *seq = get_insns ();
10443 end_sequence ();
10444 emit_insn (seq);
10445 return target;
10448 /* Otherwise discard the sequence and fall back to code with
10449 branches. */
10450 end_sequence ();
10453 if (target != op0)
10454 emit_move_insn (target, op0);
10456 lab = gen_label_rtx ();
10457 do_compare_rtx_and_jump (target, cmpop1, comparison_code,
10458 unsignedp, mode, NULL_RTX, NULL, lab,
10459 profile_probability::uninitialized ());
10461 emit_move_insn (target, op1);
10462 emit_label (lab);
10463 return target;
10465 case BIT_NOT_EXPR:
10466 op0 = expand_expr (treeop0, subtarget,
10467 VOIDmode, EXPAND_NORMAL);
10468 if (modifier == EXPAND_STACK_PARM)
10469 target = 0;
10470 /* In case we have to reduce the result to bitfield precision
10471 for unsigned bitfield expand this as XOR with a proper constant
10472 instead. */
10473 if (reduce_bit_field && TYPE_UNSIGNED (type))
10475 int_mode = SCALAR_INT_TYPE_MODE (type);
10476 wide_int mask = wi::mask (TYPE_PRECISION (type),
10477 false, GET_MODE_PRECISION (int_mode));
10479 temp = expand_binop (int_mode, xor_optab, op0,
10480 immed_wide_int_const (mask, int_mode),
10481 target, 1, OPTAB_LIB_WIDEN);
10483 else
10484 temp = expand_unop (mode, one_cmpl_optab, op0, target, 1);
10485 gcc_assert (temp);
10486 return temp;
10488 /* ??? Can optimize bitwise operations with one arg constant.
10489 Can optimize (a bitwise1 n) bitwise2 (a bitwise3 b)
10490 and (a bitwise1 b) bitwise2 b (etc)
10491 but that is probably not worth while. */
10493 case BIT_AND_EXPR:
10494 case BIT_IOR_EXPR:
10495 case BIT_XOR_EXPR:
10496 goto binop;
10498 case LROTATE_EXPR:
10499 case RROTATE_EXPR:
10500 gcc_assert (VECTOR_MODE_P (TYPE_MODE (type))
10501 || type_has_mode_precision_p (type));
10502 /* fall through */
10504 case LSHIFT_EXPR:
10505 case RSHIFT_EXPR:
10507 /* If this is a fixed-point operation, then we cannot use the code
10508 below because "expand_shift" doesn't support sat/no-sat fixed-point
10509 shifts. */
10510 if (ALL_FIXED_POINT_MODE_P (mode))
10511 goto binop;
10513 if (! safe_from_p (subtarget, treeop1, 1))
10514 subtarget = 0;
10515 if (modifier == EXPAND_STACK_PARM)
10516 target = 0;
10517 op0 = expand_expr (treeop0, subtarget,
10518 VOIDmode, EXPAND_NORMAL);
10520 /* Left shift optimization when shifting across word_size boundary.
10522 If mode == GET_MODE_WIDER_MODE (word_mode), then normally
10523 there isn't native instruction to support this wide mode
10524 left shift. Given below scenario:
10526 Type A = (Type) B << C
10528 |< T >|
10529 | dest_high | dest_low |
10531 | word_size |
10533 If the shift amount C caused we shift B to across the word
10534 size boundary, i.e part of B shifted into high half of
10535 destination register, and part of B remains in the low
10536 half, then GCC will use the following left shift expand
10537 logic:
10539 1. Initialize dest_low to B.
10540 2. Initialize every bit of dest_high to the sign bit of B.
10541 3. Logic left shift dest_low by C bit to finalize dest_low.
10542 The value of dest_low before this shift is kept in a temp D.
10543 4. Logic left shift dest_high by C.
10544 5. Logic right shift D by (word_size - C).
10545 6. Or the result of 4 and 5 to finalize dest_high.
10547 While, by checking gimple statements, if operand B is
10548 coming from signed extension, then we can simplify above
10549 expand logic into:
10551 1. dest_high = src_low >> (word_size - C).
10552 2. dest_low = src_low << C.
10554 We can use one arithmetic right shift to finish all the
10555 purpose of steps 2, 4, 5, 6, thus we reduce the steps
10556 needed from 6 into 2.
10558 The case is similar for zero extension, except that we
10559 initialize dest_high to zero rather than copies of the sign
10560 bit from B. Furthermore, we need to use a logical right shift
10561 in this case.
10563 The choice of sign-extension versus zero-extension is
10564 determined entirely by whether or not B is signed and is
10565 independent of the current setting of unsignedp. */
10567 temp = NULL_RTX;
10568 if (code == LSHIFT_EXPR
10569 && target
10570 && REG_P (target)
10571 && GET_MODE_2XWIDER_MODE (word_mode).exists (&int_mode)
10572 && mode == int_mode
10573 && TREE_CONSTANT (treeop1)
10574 && TREE_CODE (treeop0) == SSA_NAME)
10576 gimple *def = SSA_NAME_DEF_STMT (treeop0);
10577 if (is_gimple_assign (def)
10578 && gimple_assign_rhs_code (def) == NOP_EXPR)
10580 scalar_int_mode rmode = SCALAR_INT_TYPE_MODE
10581 (TREE_TYPE (gimple_assign_rhs1 (def)));
10583 if (GET_MODE_SIZE (rmode) < GET_MODE_SIZE (int_mode)
10584 && TREE_INT_CST_LOW (treeop1) < GET_MODE_BITSIZE (word_mode)
10585 && ((TREE_INT_CST_LOW (treeop1) + GET_MODE_BITSIZE (rmode))
10586 >= GET_MODE_BITSIZE (word_mode)))
10588 rtx_insn *seq, *seq_old;
10589 poly_uint64 high_off = subreg_highpart_offset (word_mode,
10590 int_mode);
10591 bool extend_unsigned
10592 = TYPE_UNSIGNED (TREE_TYPE (gimple_assign_rhs1 (def)));
10593 rtx low = lowpart_subreg (word_mode, op0, int_mode);
10594 rtx dest_low = lowpart_subreg (word_mode, target, int_mode);
10595 rtx dest_high = simplify_gen_subreg (word_mode, target,
10596 int_mode, high_off);
10597 HOST_WIDE_INT ramount = (BITS_PER_WORD
10598 - TREE_INT_CST_LOW (treeop1));
10599 tree rshift = build_int_cst (TREE_TYPE (treeop1), ramount);
10601 start_sequence ();
10602 /* dest_high = src_low >> (word_size - C). */
10603 temp = expand_variable_shift (RSHIFT_EXPR, word_mode, low,
10604 rshift, dest_high,
10605 extend_unsigned);
10606 if (temp != dest_high)
10607 emit_move_insn (dest_high, temp);
10609 /* dest_low = src_low << C. */
10610 temp = expand_variable_shift (LSHIFT_EXPR, word_mode, low,
10611 treeop1, dest_low, unsignedp);
10612 if (temp != dest_low)
10613 emit_move_insn (dest_low, temp);
10615 seq = get_insns ();
10616 end_sequence ();
10617 temp = target ;
10619 if (have_insn_for (ASHIFT, int_mode))
10621 bool speed_p = optimize_insn_for_speed_p ();
10622 start_sequence ();
10623 rtx ret_old = expand_variable_shift (code, int_mode,
10624 op0, treeop1,
10625 target,
10626 unsignedp);
10628 seq_old = get_insns ();
10629 end_sequence ();
10630 if (seq_cost (seq, speed_p)
10631 >= seq_cost (seq_old, speed_p))
10633 seq = seq_old;
10634 temp = ret_old;
10637 emit_insn (seq);
10642 if (temp == NULL_RTX)
10643 temp = expand_variable_shift (code, mode, op0, treeop1, target,
10644 unsignedp);
10645 if (code == LSHIFT_EXPR)
10646 temp = REDUCE_BIT_FIELD (temp);
10647 return temp;
10650 /* Could determine the answer when only additive constants differ. Also,
10651 the addition of one can be handled by changing the condition. */
10652 case LT_EXPR:
10653 case LE_EXPR:
10654 case GT_EXPR:
10655 case GE_EXPR:
10656 case EQ_EXPR:
10657 case NE_EXPR:
10658 case UNORDERED_EXPR:
10659 case ORDERED_EXPR:
10660 case UNLT_EXPR:
10661 case UNLE_EXPR:
10662 case UNGT_EXPR:
10663 case UNGE_EXPR:
10664 case UNEQ_EXPR:
10665 case LTGT_EXPR:
10667 temp = do_store_flag (ops,
10668 modifier != EXPAND_STACK_PARM ? target : NULL_RTX,
10669 tmode != VOIDmode ? tmode : mode);
10670 if (temp)
10671 return temp;
10673 /* Use a compare and a jump for BLKmode comparisons, or for function
10674 type comparisons is have_canonicalize_funcptr_for_compare. */
10676 if ((target == 0
10677 || modifier == EXPAND_STACK_PARM
10678 || ! safe_from_p (target, treeop0, 1)
10679 || ! safe_from_p (target, treeop1, 1)
10680 /* Make sure we don't have a hard reg (such as function's return
10681 value) live across basic blocks, if not optimizing. */
10682 || (!optimize && REG_P (target)
10683 && REGNO (target) < FIRST_PSEUDO_REGISTER)))
10684 target = gen_reg_rtx (tmode != VOIDmode ? tmode : mode);
10686 emit_move_insn (target, const0_rtx);
10688 rtx_code_label *lab1 = gen_label_rtx ();
10689 jumpifnot_1 (code, treeop0, treeop1, lab1,
10690 profile_probability::uninitialized ());
10692 if (TYPE_PRECISION (type) == 1 && !TYPE_UNSIGNED (type))
10693 emit_move_insn (target, constm1_rtx);
10694 else
10695 emit_move_insn (target, const1_rtx);
10697 emit_label (lab1);
10698 return target;
10700 case COMPLEX_EXPR:
10701 /* Get the rtx code of the operands. */
10702 op0 = expand_normal (treeop0);
10703 op1 = expand_normal (treeop1);
10705 if (!target)
10706 target = gen_reg_rtx (TYPE_MODE (type));
10707 else
10708 /* If target overlaps with op1, then either we need to force
10709 op1 into a pseudo (if target also overlaps with op0),
10710 or write the complex parts in reverse order. */
10711 switch (GET_CODE (target))
10713 case CONCAT:
10714 if (reg_overlap_mentioned_p (XEXP (target, 0), op1))
10716 if (reg_overlap_mentioned_p (XEXP (target, 1), op0))
10718 complex_expr_force_op1:
10719 temp = gen_reg_rtx (GET_MODE_INNER (GET_MODE (target)));
10720 emit_move_insn (temp, op1);
10721 op1 = temp;
10722 break;
10724 complex_expr_swap_order:
10725 /* Move the imaginary (op1) and real (op0) parts to their
10726 location. */
10727 write_complex_part (target, op1, true, true);
10728 write_complex_part (target, op0, false, false);
10730 return target;
10732 break;
10733 case MEM:
10734 temp = adjust_address_nv (target,
10735 GET_MODE_INNER (GET_MODE (target)), 0);
10736 if (reg_overlap_mentioned_p (temp, op1))
10738 scalar_mode imode = GET_MODE_INNER (GET_MODE (target));
10739 temp = adjust_address_nv (target, imode,
10740 GET_MODE_SIZE (imode));
10741 if (reg_overlap_mentioned_p (temp, op0))
10742 goto complex_expr_force_op1;
10743 goto complex_expr_swap_order;
10745 break;
10746 default:
10747 if (reg_overlap_mentioned_p (target, op1))
10749 if (reg_overlap_mentioned_p (target, op0))
10750 goto complex_expr_force_op1;
10751 goto complex_expr_swap_order;
10753 break;
10756 /* Move the real (op0) and imaginary (op1) parts to their location. */
10757 write_complex_part (target, op0, false, true);
10758 write_complex_part (target, op1, true, false);
10760 return target;
10762 case WIDEN_SUM_EXPR:
10764 tree oprnd0 = treeop0;
10765 tree oprnd1 = treeop1;
10767 expand_operands (oprnd0, oprnd1, NULL_RTX, &op0, &op1, EXPAND_NORMAL);
10768 target = expand_widen_pattern_expr (ops, op0, NULL_RTX, op1,
10769 target, unsignedp);
10770 return target;
10773 case VEC_UNPACK_HI_EXPR:
10774 case VEC_UNPACK_LO_EXPR:
10775 case VEC_UNPACK_FIX_TRUNC_HI_EXPR:
10776 case VEC_UNPACK_FIX_TRUNC_LO_EXPR:
10778 op0 = expand_normal (treeop0);
10779 temp = expand_widen_pattern_expr (ops, op0, NULL_RTX, NULL_RTX,
10780 target, unsignedp);
10781 gcc_assert (temp);
10782 return temp;
10785 case VEC_UNPACK_FLOAT_HI_EXPR:
10786 case VEC_UNPACK_FLOAT_LO_EXPR:
10788 op0 = expand_normal (treeop0);
10789 /* The signedness is determined from input operand. */
10790 temp = expand_widen_pattern_expr
10791 (ops, op0, NULL_RTX, NULL_RTX,
10792 target, TYPE_UNSIGNED (TREE_TYPE (treeop0)));
10794 gcc_assert (temp);
10795 return temp;
10798 case VEC_WIDEN_MULT_HI_EXPR:
10799 case VEC_WIDEN_MULT_LO_EXPR:
10800 case VEC_WIDEN_MULT_EVEN_EXPR:
10801 case VEC_WIDEN_MULT_ODD_EXPR:
10802 case VEC_WIDEN_LSHIFT_HI_EXPR:
10803 case VEC_WIDEN_LSHIFT_LO_EXPR:
10804 expand_operands (treeop0, treeop1, NULL_RTX, &op0, &op1, EXPAND_NORMAL);
10805 target = expand_widen_pattern_expr (ops, op0, op1, NULL_RTX,
10806 target, unsignedp);
10807 gcc_assert (target);
10808 return target;
10810 case VEC_PACK_SAT_EXPR:
10811 case VEC_PACK_FIX_TRUNC_EXPR:
10812 mode = TYPE_MODE (TREE_TYPE (treeop0));
10813 subtarget = NULL_RTX;
10814 goto binop;
10816 case VEC_PACK_TRUNC_EXPR:
10817 if (VECTOR_BOOLEAN_TYPE_P (type)
10818 && VECTOR_BOOLEAN_TYPE_P (TREE_TYPE (treeop0))
10819 && mode == TYPE_MODE (TREE_TYPE (treeop0))
10820 && SCALAR_INT_MODE_P (mode))
10822 class expand_operand eops[4];
10823 machine_mode imode = TYPE_MODE (TREE_TYPE (treeop0));
10824 expand_operands (treeop0, treeop1,
10825 subtarget, &op0, &op1, EXPAND_NORMAL);
10826 this_optab = vec_pack_sbool_trunc_optab;
10827 enum insn_code icode = optab_handler (this_optab, imode);
10828 create_output_operand (&eops[0], target, mode);
10829 create_convert_operand_from (&eops[1], op0, imode, false);
10830 create_convert_operand_from (&eops[2], op1, imode, false);
10831 temp = GEN_INT (TYPE_VECTOR_SUBPARTS (type).to_constant ());
10832 create_input_operand (&eops[3], temp, imode);
10833 expand_insn (icode, 4, eops);
10834 return eops[0].value;
10836 mode = TYPE_MODE (TREE_TYPE (treeop0));
10837 subtarget = NULL_RTX;
10838 goto binop;
10840 case VEC_PACK_FLOAT_EXPR:
10841 mode = TYPE_MODE (TREE_TYPE (treeop0));
10842 expand_operands (treeop0, treeop1,
10843 subtarget, &op0, &op1, EXPAND_NORMAL);
10844 this_optab = optab_for_tree_code (code, TREE_TYPE (treeop0),
10845 optab_default);
10846 target = expand_binop (mode, this_optab, op0, op1, target,
10847 TYPE_UNSIGNED (TREE_TYPE (treeop0)),
10848 OPTAB_LIB_WIDEN);
10849 gcc_assert (target);
10850 return target;
10852 case VEC_PERM_EXPR:
10854 expand_operands (treeop0, treeop1, target, &op0, &op1, EXPAND_NORMAL);
10855 vec_perm_builder sel;
10856 if (TREE_CODE (treeop2) == VECTOR_CST
10857 && tree_to_vec_perm_builder (&sel, treeop2))
10859 machine_mode sel_mode = TYPE_MODE (TREE_TYPE (treeop2));
10860 temp = expand_vec_perm_const (mode, op0, op1, sel,
10861 sel_mode, target);
10863 else
10865 op2 = expand_normal (treeop2);
10866 temp = expand_vec_perm_var (mode, op0, op1, op2, target);
10868 gcc_assert (temp);
10869 return temp;
10872 case DOT_PROD_EXPR:
10874 tree oprnd0 = treeop0;
10875 tree oprnd1 = treeop1;
10876 tree oprnd2 = treeop2;
10878 expand_operands (oprnd0, oprnd1, NULL_RTX, &op0, &op1, EXPAND_NORMAL);
10879 op2 = expand_normal (oprnd2);
10880 target = expand_widen_pattern_expr (ops, op0, op1, op2,
10881 target, unsignedp);
10882 return target;
10885 case SAD_EXPR:
10887 tree oprnd0 = treeop0;
10888 tree oprnd1 = treeop1;
10889 tree oprnd2 = treeop2;
10891 expand_operands (oprnd0, oprnd1, NULL_RTX, &op0, &op1, EXPAND_NORMAL);
10892 op2 = expand_normal (oprnd2);
10893 target = expand_widen_pattern_expr (ops, op0, op1, op2,
10894 target, unsignedp);
10895 return target;
10898 case REALIGN_LOAD_EXPR:
10900 tree oprnd0 = treeop0;
10901 tree oprnd1 = treeop1;
10902 tree oprnd2 = treeop2;
10904 this_optab = optab_for_tree_code (code, type, optab_default);
10905 expand_operands (oprnd0, oprnd1, NULL_RTX, &op0, &op1, EXPAND_NORMAL);
10906 op2 = expand_normal (oprnd2);
10907 temp = expand_ternary_op (mode, this_optab, op0, op1, op2,
10908 target, unsignedp);
10909 gcc_assert (temp);
10910 return temp;
10913 case COND_EXPR:
10915 /* A COND_EXPR with its type being VOID_TYPE represents a
10916 conditional jump and is handled in
10917 expand_gimple_cond_expr. */
10918 gcc_assert (!VOID_TYPE_P (type));
10920 /* Note that COND_EXPRs whose type is a structure or union
10921 are required to be constructed to contain assignments of
10922 a temporary variable, so that we can evaluate them here
10923 for side effect only. If type is void, we must do likewise. */
10925 gcc_assert (!TREE_ADDRESSABLE (type)
10926 && !ignore
10927 && TREE_TYPE (treeop1) != void_type_node
10928 && TREE_TYPE (treeop2) != void_type_node);
10930 temp = expand_cond_expr_using_cmove (treeop0, treeop1, treeop2);
10931 if (temp)
10932 return temp;
10934 /* If we are not to produce a result, we have no target. Otherwise,
10935 if a target was specified use it; it will not be used as an
10936 intermediate target unless it is safe. If no target, use a
10937 temporary. */
10939 if (modifier != EXPAND_STACK_PARM
10940 && original_target
10941 && safe_from_p (original_target, treeop0, 1)
10942 && GET_MODE (original_target) == mode
10943 && !MEM_P (original_target))
10944 temp = original_target;
10945 else
10946 temp = assign_temp (type, 0, 1);
10948 do_pending_stack_adjust ();
10949 NO_DEFER_POP;
10950 rtx_code_label *lab0 = gen_label_rtx ();
10951 rtx_code_label *lab1 = gen_label_rtx ();
10952 jumpifnot (treeop0, lab0,
10953 profile_probability::uninitialized ());
10954 store_expr (treeop1, temp,
10955 modifier == EXPAND_STACK_PARM,
10956 false, false);
10958 emit_jump_insn (targetm.gen_jump (lab1));
10959 emit_barrier ();
10960 emit_label (lab0);
10961 store_expr (treeop2, temp,
10962 modifier == EXPAND_STACK_PARM,
10963 false, false);
10965 emit_label (lab1);
10966 OK_DEFER_POP;
10967 return temp;
10970 case VEC_DUPLICATE_EXPR:
10971 op0 = expand_expr (treeop0, NULL_RTX, VOIDmode, modifier);
10972 target = expand_vector_broadcast (mode, op0);
10973 gcc_assert (target);
10974 return target;
10976 case VEC_SERIES_EXPR:
10977 expand_operands (treeop0, treeop1, NULL_RTX, &op0, &op1, modifier);
10978 return expand_vec_series_expr (mode, op0, op1, target);
10980 case BIT_INSERT_EXPR:
10982 unsigned bitpos = tree_to_uhwi (treeop2);
10983 unsigned bitsize;
10984 if (INTEGRAL_TYPE_P (TREE_TYPE (treeop1)))
10985 bitsize = TYPE_PRECISION (TREE_TYPE (treeop1));
10986 else
10987 bitsize = tree_to_uhwi (TYPE_SIZE (TREE_TYPE (treeop1)));
10988 op0 = expand_normal (treeop0);
10989 op1 = expand_normal (treeop1);
10990 rtx dst = gen_reg_rtx (mode);
10991 emit_move_insn (dst, op0);
10992 store_bit_field (dst, bitsize, bitpos, 0, 0,
10993 TYPE_MODE (TREE_TYPE (treeop1)), op1, false, false);
10994 return dst;
10997 default:
10998 gcc_unreachable ();
11001 /* Here to do an ordinary binary operator. */
11002 binop:
11003 expand_operands (treeop0, treeop1,
11004 subtarget, &op0, &op1, EXPAND_NORMAL);
11005 binop2:
11006 this_optab = optab_for_tree_code (code, type, optab_default);
11007 binop3:
11008 if (modifier == EXPAND_STACK_PARM)
11009 target = 0;
11010 temp = expand_binop (mode, this_optab, op0, op1, target,
11011 unsignedp, OPTAB_LIB_WIDEN);
11012 gcc_assert (temp);
11013 /* Bitwise operations do not need bitfield reduction as we expect their
11014 operands being properly truncated. */
11015 if (code == BIT_XOR_EXPR
11016 || code == BIT_AND_EXPR
11017 || code == BIT_IOR_EXPR)
11018 return temp;
11019 return REDUCE_BIT_FIELD (temp);
11021 #undef REDUCE_BIT_FIELD
11024 /* Return TRUE if expression STMT is suitable for replacement.
11025 Never consider memory loads as replaceable, because those don't ever lead
11026 into constant expressions. */
11028 static bool
11029 stmt_is_replaceable_p (gimple *stmt)
11031 if (ssa_is_replaceable_p (stmt))
11033 /* Don't move around loads. */
11034 if (!gimple_assign_single_p (stmt)
11035 || is_gimple_val (gimple_assign_rhs1 (stmt)))
11036 return true;
11038 return false;
11041 /* A subroutine of expand_expr_real_1. Expand gimple assignment G,
11042 which is known to set an SSA_NAME result. The other arguments are
11043 as for expand_expr_real_1. */
11046 expand_expr_real_gassign (gassign *g, rtx target, machine_mode tmode,
11047 enum expand_modifier modifier, rtx *alt_rtl,
11048 bool inner_reference_p)
11050 separate_ops ops;
11051 rtx r;
11052 location_t saved_loc = curr_insn_location ();
11053 auto loc = gimple_location (g);
11054 if (loc != UNKNOWN_LOCATION)
11055 set_curr_insn_location (loc);
11056 tree lhs = gimple_assign_lhs (g);
11057 ops.code = gimple_assign_rhs_code (g);
11058 ops.type = TREE_TYPE (lhs);
11059 switch (get_gimple_rhs_class (ops.code))
11061 case GIMPLE_TERNARY_RHS:
11062 ops.op2 = gimple_assign_rhs3 (g);
11063 /* Fallthru */
11064 case GIMPLE_BINARY_RHS:
11065 ops.op1 = gimple_assign_rhs2 (g);
11067 /* Try to expand conditonal compare. */
11068 if (targetm.gen_ccmp_first)
11070 gcc_checking_assert (targetm.gen_ccmp_next != NULL);
11071 r = expand_ccmp_expr (g, TYPE_MODE (ops.type));
11072 if (r)
11073 break;
11075 /* Fallthru */
11076 case GIMPLE_UNARY_RHS:
11077 ops.op0 = gimple_assign_rhs1 (g);
11078 ops.location = loc;
11079 r = expand_expr_real_2 (&ops, target, tmode, modifier);
11080 break;
11081 case GIMPLE_SINGLE_RHS:
11083 r = expand_expr_real (gimple_assign_rhs1 (g), target,
11084 tmode, modifier, alt_rtl,
11085 inner_reference_p);
11086 break;
11088 default:
11089 gcc_unreachable ();
11091 set_curr_insn_location (saved_loc);
11092 if (REG_P (r) && !REG_EXPR (r))
11093 set_reg_attrs_for_decl_rtl (lhs, r);
11094 return r;
11098 expand_expr_real_1 (tree exp, rtx target, machine_mode tmode,
11099 enum expand_modifier modifier, rtx *alt_rtl,
11100 bool inner_reference_p)
11102 rtx op0, op1, temp, decl_rtl;
11103 tree type;
11104 int unsignedp;
11105 machine_mode mode, dmode;
11106 enum tree_code code = TREE_CODE (exp);
11107 rtx subtarget, original_target;
11108 int ignore;
11109 bool reduce_bit_field;
11110 location_t loc = EXPR_LOCATION (exp);
11111 struct separate_ops ops;
11112 tree treeop0, treeop1, treeop2;
11113 tree ssa_name = NULL_TREE;
11114 gimple *g;
11116 /* Some ABIs define padding bits in _BitInt uninitialized. Normally, RTL
11117 expansion sign/zero extends integral types with less than mode precision
11118 when reading from bit-fields and after arithmetic operations (see
11119 REDUCE_BIT_FIELD in expand_expr_real_2) and on subsequent loads relies
11120 on those extensions to have been already performed, but because of the
11121 above for _BitInt they need to be sign/zero extended when reading from
11122 locations that could be exposed to ABI boundaries (when loading from
11123 objects in memory, or function arguments, return value). Because we
11124 internally extend after arithmetic operations, we can avoid doing that
11125 when reading from SSA_NAMEs of vars. */
11126 #define EXTEND_BITINT(expr) \
11127 ((TREE_CODE (type) == BITINT_TYPE \
11128 && reduce_bit_field \
11129 && mode != BLKmode \
11130 && modifier != EXPAND_MEMORY \
11131 && modifier != EXPAND_WRITE \
11132 && modifier != EXPAND_INITIALIZER \
11133 && modifier != EXPAND_CONST_ADDRESS) \
11134 ? reduce_to_bit_field_precision ((expr), NULL_RTX, type) : (expr))
11136 type = TREE_TYPE (exp);
11137 mode = TYPE_MODE (type);
11138 unsignedp = TYPE_UNSIGNED (type);
11140 treeop0 = treeop1 = treeop2 = NULL_TREE;
11141 if (!VL_EXP_CLASS_P (exp))
11142 switch (TREE_CODE_LENGTH (code))
11144 default:
11145 case 3: treeop2 = TREE_OPERAND (exp, 2); /* FALLTHRU */
11146 case 2: treeop1 = TREE_OPERAND (exp, 1); /* FALLTHRU */
11147 case 1: treeop0 = TREE_OPERAND (exp, 0); /* FALLTHRU */
11148 case 0: break;
11150 ops.code = code;
11151 ops.type = type;
11152 ops.op0 = treeop0;
11153 ops.op1 = treeop1;
11154 ops.op2 = treeop2;
11155 ops.location = loc;
11157 ignore = (target == const0_rtx
11158 || ((CONVERT_EXPR_CODE_P (code)
11159 || code == COND_EXPR || code == VIEW_CONVERT_EXPR)
11160 && TREE_CODE (type) == VOID_TYPE));
11162 /* An operation in what may be a bit-field type needs the
11163 result to be reduced to the precision of the bit-field type,
11164 which is narrower than that of the type's mode. */
11165 reduce_bit_field = (!ignore
11166 && INTEGRAL_TYPE_P (type)
11167 && !type_has_mode_precision_p (type));
11169 /* If we are going to ignore this result, we need only do something
11170 if there is a side-effect somewhere in the expression. If there
11171 is, short-circuit the most common cases here. Note that we must
11172 not call expand_expr with anything but const0_rtx in case this
11173 is an initial expansion of a size that contains a PLACEHOLDER_EXPR. */
11175 if (ignore)
11177 if (! TREE_SIDE_EFFECTS (exp))
11178 return const0_rtx;
11180 /* Ensure we reference a volatile object even if value is ignored, but
11181 don't do this if all we are doing is taking its address. */
11182 if (TREE_THIS_VOLATILE (exp)
11183 && TREE_CODE (exp) != FUNCTION_DECL
11184 && mode != VOIDmode && mode != BLKmode
11185 && modifier != EXPAND_CONST_ADDRESS)
11187 temp = expand_expr (exp, NULL_RTX, VOIDmode, modifier);
11188 if (MEM_P (temp))
11189 copy_to_reg (temp);
11190 return const0_rtx;
11193 if (TREE_CODE_CLASS (code) == tcc_unary
11194 || code == BIT_FIELD_REF
11195 || code == COMPONENT_REF
11196 || code == INDIRECT_REF)
11197 return expand_expr (treeop0, const0_rtx, VOIDmode,
11198 modifier);
11200 else if (TREE_CODE_CLASS (code) == tcc_binary
11201 || TREE_CODE_CLASS (code) == tcc_comparison
11202 || code == ARRAY_REF || code == ARRAY_RANGE_REF)
11204 expand_expr (treeop0, const0_rtx, VOIDmode, modifier);
11205 expand_expr (treeop1, const0_rtx, VOIDmode, modifier);
11206 return const0_rtx;
11209 target = 0;
11212 if (reduce_bit_field && modifier == EXPAND_STACK_PARM)
11213 target = 0;
11215 /* Use subtarget as the target for operand 0 of a binary operation. */
11216 subtarget = get_subtarget (target);
11217 original_target = target;
11219 switch (code)
11221 case LABEL_DECL:
11223 tree function = decl_function_context (exp);
11225 temp = label_rtx (exp);
11226 temp = gen_rtx_LABEL_REF (Pmode, temp);
11228 if (function != current_function_decl
11229 && function != 0)
11230 LABEL_REF_NONLOCAL_P (temp) = 1;
11232 temp = gen_rtx_MEM (FUNCTION_MODE, temp);
11233 return temp;
11236 case SSA_NAME:
11237 /* ??? ivopts calls expander, without any preparation from
11238 out-of-ssa. So fake instructions as if this was an access to the
11239 base variable. This unnecessarily allocates a pseudo, see how we can
11240 reuse it, if partition base vars have it set already. */
11241 if (!currently_expanding_to_rtl)
11243 tree var = SSA_NAME_VAR (exp);
11244 if (var && DECL_RTL_SET_P (var))
11245 return DECL_RTL (var);
11246 return gen_raw_REG (TYPE_MODE (TREE_TYPE (exp)),
11247 LAST_VIRTUAL_REGISTER + 1);
11250 g = get_gimple_for_ssa_name (exp);
11251 /* For EXPAND_INITIALIZER try harder to get something simpler. */
11252 if (g == NULL
11253 && modifier == EXPAND_INITIALIZER
11254 && !SSA_NAME_IS_DEFAULT_DEF (exp)
11255 && (optimize || !SSA_NAME_VAR (exp)
11256 || DECL_IGNORED_P (SSA_NAME_VAR (exp)))
11257 && stmt_is_replaceable_p (SSA_NAME_DEF_STMT (exp)))
11258 g = SSA_NAME_DEF_STMT (exp);
11259 if (g)
11260 return expand_expr_real_gassign (as_a<gassign *> (g), target, tmode,
11261 modifier, alt_rtl, inner_reference_p);
11263 ssa_name = exp;
11264 decl_rtl = get_rtx_for_ssa_name (ssa_name);
11265 exp = SSA_NAME_VAR (ssa_name);
11266 /* Optimize and avoid to EXTEND_BITINIT doing anything if it is an
11267 SSA_NAME computed within the current function. In such case the
11268 value have been already extended before. While if it is a function
11269 parameter, result or some memory location, we need to be prepared
11270 for some other compiler leaving the bits uninitialized. */
11271 if (!exp || VAR_P (exp))
11272 reduce_bit_field = false;
11273 goto expand_decl_rtl;
11275 case VAR_DECL:
11276 /* Allow accel compiler to handle variables that require special
11277 treatment, e.g. if they have been modified in some way earlier in
11278 compilation by the adjust_private_decl OpenACC hook. */
11279 if (flag_openacc && targetm.goacc.expand_var_decl)
11281 temp = targetm.goacc.expand_var_decl (exp);
11282 if (temp)
11283 return temp;
11285 /* Expand const VAR_DECLs with CONSTRUCTOR initializers that
11286 have scalar integer modes to a reg via store_constructor. */
11287 if (TREE_READONLY (exp)
11288 && !TREE_SIDE_EFFECTS (exp)
11289 && (modifier == EXPAND_NORMAL || modifier == EXPAND_STACK_PARM)
11290 && immediate_const_ctor_p (DECL_INITIAL (exp))
11291 && SCALAR_INT_MODE_P (TYPE_MODE (TREE_TYPE (exp)))
11292 && crtl->emit.regno_pointer_align_length
11293 && !target)
11295 target = gen_reg_rtx (TYPE_MODE (TREE_TYPE (exp)));
11296 store_constructor (DECL_INITIAL (exp), target, 0,
11297 int_expr_size (DECL_INITIAL (exp)), false);
11298 return target;
11300 /* ... fall through ... */
11302 case PARM_DECL:
11303 /* If a static var's type was incomplete when the decl was written,
11304 but the type is complete now, lay out the decl now. */
11305 if (DECL_SIZE (exp) == 0
11306 && COMPLETE_OR_UNBOUND_ARRAY_TYPE_P (TREE_TYPE (exp))
11307 && (TREE_STATIC (exp) || DECL_EXTERNAL (exp)))
11308 layout_decl (exp, 0);
11310 /* fall through */
11312 case FUNCTION_DECL:
11313 case RESULT_DECL:
11314 decl_rtl = DECL_RTL (exp);
11315 expand_decl_rtl:
11316 gcc_assert (decl_rtl);
11318 /* DECL_MODE might change when TYPE_MODE depends on attribute target
11319 settings for VECTOR_TYPE_P that might switch for the function. */
11320 if (currently_expanding_to_rtl
11321 && code == VAR_DECL && MEM_P (decl_rtl)
11322 && VECTOR_TYPE_P (type) && exp && DECL_MODE (exp) != mode)
11323 decl_rtl = change_address (decl_rtl, TYPE_MODE (type), 0);
11324 else
11325 decl_rtl = copy_rtx (decl_rtl);
11327 /* Record writes to register variables. */
11328 if (modifier == EXPAND_WRITE
11329 && REG_P (decl_rtl)
11330 && HARD_REGISTER_P (decl_rtl))
11331 add_to_hard_reg_set (&crtl->asm_clobbers,
11332 GET_MODE (decl_rtl), REGNO (decl_rtl));
11334 /* Ensure variable marked as used even if it doesn't go through
11335 a parser. If it hasn't be used yet, write out an external
11336 definition. */
11337 if (exp)
11338 TREE_USED (exp) = 1;
11340 /* Show we haven't gotten RTL for this yet. */
11341 temp = 0;
11343 /* Variables inherited from containing functions should have
11344 been lowered by this point. */
11345 if (exp)
11347 tree context = decl_function_context (exp);
11348 gcc_assert (SCOPE_FILE_SCOPE_P (context)
11349 || context == current_function_decl
11350 || TREE_STATIC (exp)
11351 || DECL_EXTERNAL (exp)
11352 /* ??? C++ creates functions that are not
11353 TREE_STATIC. */
11354 || TREE_CODE (exp) == FUNCTION_DECL);
11357 /* This is the case of an array whose size is to be determined
11358 from its initializer, while the initializer is still being parsed.
11359 ??? We aren't parsing while expanding anymore. */
11361 if (MEM_P (decl_rtl) && REG_P (XEXP (decl_rtl, 0)))
11362 temp = validize_mem (decl_rtl);
11364 /* If DECL_RTL is memory, we are in the normal case and the
11365 address is not valid, get the address into a register. */
11367 else if (MEM_P (decl_rtl) && modifier != EXPAND_INITIALIZER)
11369 if (alt_rtl)
11370 *alt_rtl = decl_rtl;
11371 decl_rtl = use_anchored_address (decl_rtl);
11372 if (modifier != EXPAND_CONST_ADDRESS
11373 && modifier != EXPAND_SUM
11374 && !memory_address_addr_space_p (exp ? DECL_MODE (exp)
11375 : GET_MODE (decl_rtl),
11376 XEXP (decl_rtl, 0),
11377 MEM_ADDR_SPACE (decl_rtl)))
11378 temp = replace_equiv_address (decl_rtl,
11379 copy_rtx (XEXP (decl_rtl, 0)));
11382 /* If we got something, return it. But first, set the alignment
11383 if the address is a register. */
11384 if (temp != 0)
11386 if (exp && MEM_P (temp) && REG_P (XEXP (temp, 0)))
11387 mark_reg_pointer (XEXP (temp, 0), DECL_ALIGN (exp));
11389 else if (MEM_P (decl_rtl))
11390 temp = decl_rtl;
11392 if (temp != 0)
11394 if (MEM_P (temp)
11395 && modifier != EXPAND_WRITE
11396 && modifier != EXPAND_MEMORY
11397 && modifier != EXPAND_INITIALIZER
11398 && modifier != EXPAND_CONST_ADDRESS
11399 && modifier != EXPAND_SUM
11400 && !inner_reference_p
11401 && mode != BLKmode
11402 && MEM_ALIGN (temp) < GET_MODE_ALIGNMENT (mode))
11403 temp = expand_misaligned_mem_ref (temp, mode, unsignedp,
11404 MEM_ALIGN (temp), NULL_RTX, NULL);
11406 return EXTEND_BITINT (temp);
11409 if (exp)
11410 dmode = DECL_MODE (exp);
11411 else
11412 dmode = TYPE_MODE (TREE_TYPE (ssa_name));
11414 /* If the mode of DECL_RTL does not match that of the decl,
11415 there are two cases: we are dealing with a BLKmode value
11416 that is returned in a register, or we are dealing with
11417 a promoted value. In the latter case, return a SUBREG
11418 of the wanted mode, but mark it so that we know that it
11419 was already extended. */
11420 if (REG_P (decl_rtl)
11421 && dmode != BLKmode
11422 && GET_MODE (decl_rtl) != dmode)
11424 machine_mode pmode;
11426 /* Get the signedness to be used for this variable. Ensure we get
11427 the same mode we got when the variable was declared. */
11428 if (code != SSA_NAME)
11429 pmode = promote_decl_mode (exp, &unsignedp);
11430 else if ((g = SSA_NAME_DEF_STMT (ssa_name))
11431 && gimple_code (g) == GIMPLE_CALL
11432 && !gimple_call_internal_p (g))
11433 pmode = promote_function_mode (type, mode, &unsignedp,
11434 gimple_call_fntype (g),
11436 else
11437 pmode = promote_ssa_mode (ssa_name, &unsignedp);
11438 gcc_assert (GET_MODE (decl_rtl) == pmode);
11440 /* Some ABIs require scalar floating point modes to be passed
11441 in a wider scalar integer mode. We need to explicitly
11442 truncate to an integer mode of the correct precision before
11443 using a SUBREG to reinterpret as a floating point value. */
11444 if (SCALAR_FLOAT_MODE_P (mode)
11445 && SCALAR_INT_MODE_P (pmode)
11446 && known_lt (GET_MODE_SIZE (mode), GET_MODE_SIZE (pmode)))
11447 return convert_wider_int_to_float (mode, pmode, decl_rtl);
11449 temp = gen_lowpart_SUBREG (mode, decl_rtl);
11450 SUBREG_PROMOTED_VAR_P (temp) = 1;
11451 SUBREG_PROMOTED_SET (temp, unsignedp);
11452 return EXTEND_BITINT (temp);
11455 return EXTEND_BITINT (decl_rtl);
11457 case INTEGER_CST:
11459 if (TREE_CODE (type) == BITINT_TYPE)
11461 unsigned int prec = TYPE_PRECISION (type);
11462 struct bitint_info info;
11463 bool ok = targetm.c.bitint_type_info (prec, &info);
11464 gcc_assert (ok);
11465 scalar_int_mode limb_mode
11466 = as_a <scalar_int_mode> (info.limb_mode);
11467 unsigned int limb_prec = GET_MODE_PRECISION (limb_mode);
11468 if (prec > limb_prec && prec > MAX_FIXED_MODE_SIZE)
11470 /* Emit large/huge _BitInt INTEGER_CSTs into memory. */
11471 exp = tree_output_constant_def (exp);
11472 return expand_expr (exp, target, VOIDmode, modifier);
11476 /* Given that TYPE_PRECISION (type) is not always equal to
11477 GET_MODE_PRECISION (TYPE_MODE (type)), we need to extend from
11478 the former to the latter according to the signedness of the
11479 type. */
11480 scalar_int_mode int_mode = SCALAR_INT_TYPE_MODE (type);
11481 temp = immed_wide_int_const
11482 (wi::to_wide (exp, GET_MODE_PRECISION (int_mode)), int_mode);
11483 return temp;
11486 case VECTOR_CST:
11488 tree tmp = NULL_TREE;
11489 if (VECTOR_MODE_P (mode))
11490 return const_vector_from_tree (exp);
11491 scalar_int_mode int_mode;
11492 if (is_int_mode (mode, &int_mode))
11494 tree type_for_mode = lang_hooks.types.type_for_mode (int_mode, 1);
11495 if (type_for_mode)
11496 tmp = fold_unary_loc (loc, VIEW_CONVERT_EXPR,
11497 type_for_mode, exp);
11499 if (!tmp)
11501 vec<constructor_elt, va_gc> *v;
11502 /* Constructors need to be fixed-length. FIXME. */
11503 unsigned int nunits = VECTOR_CST_NELTS (exp).to_constant ();
11504 vec_alloc (v, nunits);
11505 for (unsigned int i = 0; i < nunits; ++i)
11506 CONSTRUCTOR_APPEND_ELT (v, NULL_TREE, VECTOR_CST_ELT (exp, i));
11507 tmp = build_constructor (type, v);
11509 return expand_expr (tmp, ignore ? const0_rtx : target,
11510 tmode, modifier);
11513 case CONST_DECL:
11514 if (modifier == EXPAND_WRITE)
11516 /* Writing into CONST_DECL is always invalid, but handle it
11517 gracefully. */
11518 addr_space_t as = TYPE_ADDR_SPACE (TREE_TYPE (exp));
11519 scalar_int_mode address_mode = targetm.addr_space.address_mode (as);
11520 op0 = expand_expr_addr_expr_1 (exp, NULL_RTX, address_mode,
11521 EXPAND_NORMAL, as);
11522 op0 = memory_address_addr_space (mode, op0, as);
11523 temp = gen_rtx_MEM (mode, op0);
11524 set_mem_addr_space (temp, as);
11525 return temp;
11527 return expand_expr (DECL_INITIAL (exp), target, VOIDmode, modifier);
11529 case REAL_CST:
11530 /* If optimized, generate immediate CONST_DOUBLE
11531 which will be turned into memory by reload if necessary.
11533 We used to force a register so that loop.c could see it. But
11534 this does not allow gen_* patterns to perform optimizations with
11535 the constants. It also produces two insns in cases like "x = 1.0;".
11536 On most machines, floating-point constants are not permitted in
11537 many insns, so we'd end up copying it to a register in any case.
11539 Now, we do the copying in expand_binop, if appropriate. */
11540 return const_double_from_real_value (TREE_REAL_CST (exp),
11541 TYPE_MODE (TREE_TYPE (exp)));
11543 case FIXED_CST:
11544 return CONST_FIXED_FROM_FIXED_VALUE (TREE_FIXED_CST (exp),
11545 TYPE_MODE (TREE_TYPE (exp)));
11547 case COMPLEX_CST:
11548 /* Handle evaluating a complex constant in a CONCAT target. */
11549 if (original_target && GET_CODE (original_target) == CONCAT)
11551 rtx rtarg, itarg;
11553 mode = TYPE_MODE (TREE_TYPE (TREE_TYPE (exp)));
11554 rtarg = XEXP (original_target, 0);
11555 itarg = XEXP (original_target, 1);
11557 /* Move the real and imaginary parts separately. */
11558 op0 = expand_expr (TREE_REALPART (exp), rtarg, mode, EXPAND_NORMAL);
11559 op1 = expand_expr (TREE_IMAGPART (exp), itarg, mode, EXPAND_NORMAL);
11561 if (op0 != rtarg)
11562 emit_move_insn (rtarg, op0);
11563 if (op1 != itarg)
11564 emit_move_insn (itarg, op1);
11566 return original_target;
11569 /* fall through */
11571 case STRING_CST:
11572 temp = expand_expr_constant (exp, 1, modifier);
11574 /* temp contains a constant address.
11575 On RISC machines where a constant address isn't valid,
11576 make some insns to get that address into a register. */
11577 if (modifier != EXPAND_CONST_ADDRESS
11578 && modifier != EXPAND_INITIALIZER
11579 && modifier != EXPAND_SUM
11580 && ! memory_address_addr_space_p (mode, XEXP (temp, 0),
11581 MEM_ADDR_SPACE (temp)))
11582 return replace_equiv_address (temp,
11583 copy_rtx (XEXP (temp, 0)));
11584 return temp;
11586 case POLY_INT_CST:
11587 return immed_wide_int_const (poly_int_cst_value (exp), mode);
11589 case SAVE_EXPR:
11591 tree val = treeop0;
11592 rtx ret = expand_expr_real_1 (val, target, tmode, modifier, alt_rtl,
11593 inner_reference_p);
11595 if (!SAVE_EXPR_RESOLVED_P (exp))
11597 /* We can indeed still hit this case, typically via builtin
11598 expanders calling save_expr immediately before expanding
11599 something. Assume this means that we only have to deal
11600 with non-BLKmode values. */
11601 gcc_assert (GET_MODE (ret) != BLKmode);
11603 val = build_decl (curr_insn_location (),
11604 VAR_DECL, NULL, TREE_TYPE (exp));
11605 DECL_ARTIFICIAL (val) = 1;
11606 DECL_IGNORED_P (val) = 1;
11607 treeop0 = val;
11608 TREE_OPERAND (exp, 0) = treeop0;
11609 SAVE_EXPR_RESOLVED_P (exp) = 1;
11611 if (!CONSTANT_P (ret))
11612 ret = copy_to_reg (ret);
11613 SET_DECL_RTL (val, ret);
11616 return ret;
11620 case CONSTRUCTOR:
11621 /* If we don't need the result, just ensure we evaluate any
11622 subexpressions. */
11623 if (ignore)
11625 unsigned HOST_WIDE_INT idx;
11626 tree value;
11628 FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (exp), idx, value)
11629 expand_expr (value, const0_rtx, VOIDmode, EXPAND_NORMAL);
11631 return const0_rtx;
11634 return expand_constructor (exp, target, modifier, false);
11636 case TARGET_MEM_REF:
11638 addr_space_t as
11639 = TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (TREE_OPERAND (exp, 0))));
11640 unsigned int align;
11642 op0 = addr_for_mem_ref (exp, as, true);
11643 op0 = memory_address_addr_space (mode, op0, as);
11644 temp = gen_rtx_MEM (mode, op0);
11645 set_mem_attributes (temp, exp, 0);
11646 set_mem_addr_space (temp, as);
11647 align = get_object_alignment (exp);
11648 if (modifier != EXPAND_WRITE
11649 && modifier != EXPAND_MEMORY
11650 && mode != BLKmode
11651 && align < GET_MODE_ALIGNMENT (mode))
11652 temp = expand_misaligned_mem_ref (temp, mode, unsignedp,
11653 align, NULL_RTX, NULL);
11654 return EXTEND_BITINT (temp);
11657 case MEM_REF:
11659 const bool reverse = REF_REVERSE_STORAGE_ORDER (exp);
11660 addr_space_t as
11661 = TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (TREE_OPERAND (exp, 0))));
11662 machine_mode address_mode;
11663 tree base = TREE_OPERAND (exp, 0);
11664 gimple *def_stmt;
11665 unsigned align;
11666 /* Handle expansion of non-aliased memory with non-BLKmode. That
11667 might end up in a register. */
11668 if (mem_ref_refers_to_non_mem_p (exp))
11670 poly_int64 offset = mem_ref_offset (exp).force_shwi ();
11671 base = TREE_OPERAND (base, 0);
11672 poly_uint64 type_size;
11673 if (known_eq (offset, 0)
11674 && !reverse
11675 && poly_int_tree_p (TYPE_SIZE (type), &type_size)
11676 && known_eq (GET_MODE_BITSIZE (DECL_MODE (base)), type_size))
11677 return expand_expr (build1 (VIEW_CONVERT_EXPR, type, base),
11678 target, tmode, modifier);
11679 if (TYPE_MODE (type) == BLKmode)
11681 temp = assign_stack_temp (DECL_MODE (base),
11682 GET_MODE_SIZE (DECL_MODE (base)));
11683 store_expr (base, temp, 0, false, false);
11684 temp = adjust_address (temp, BLKmode, offset);
11685 set_mem_size (temp, int_size_in_bytes (type));
11686 return temp;
11688 exp = build3 (BIT_FIELD_REF, type, base, TYPE_SIZE (type),
11689 bitsize_int (offset * BITS_PER_UNIT));
11690 REF_REVERSE_STORAGE_ORDER (exp) = reverse;
11691 return expand_expr (exp, target, tmode, modifier);
11693 address_mode = targetm.addr_space.address_mode (as);
11694 if ((def_stmt = get_def_for_expr (base, BIT_AND_EXPR)))
11696 tree mask = gimple_assign_rhs2 (def_stmt);
11697 base = build2 (BIT_AND_EXPR, TREE_TYPE (base),
11698 gimple_assign_rhs1 (def_stmt), mask);
11699 TREE_OPERAND (exp, 0) = base;
11701 align = get_object_alignment (exp);
11702 op0 = expand_expr (base, NULL_RTX, VOIDmode, EXPAND_SUM);
11703 op0 = memory_address_addr_space (mode, op0, as);
11704 if (!integer_zerop (TREE_OPERAND (exp, 1)))
11706 rtx off = immed_wide_int_const (mem_ref_offset (exp), address_mode);
11707 op0 = simplify_gen_binary (PLUS, address_mode, op0, off);
11708 op0 = memory_address_addr_space (mode, op0, as);
11710 temp = gen_rtx_MEM (mode, op0);
11711 set_mem_attributes (temp, exp, 0);
11712 set_mem_addr_space (temp, as);
11713 if (TREE_THIS_VOLATILE (exp))
11714 MEM_VOLATILE_P (temp) = 1;
11715 if (modifier == EXPAND_WRITE || modifier == EXPAND_MEMORY)
11716 return temp;
11717 if (!inner_reference_p
11718 && mode != BLKmode
11719 && align < GET_MODE_ALIGNMENT (mode))
11720 temp = expand_misaligned_mem_ref (temp, mode, unsignedp, align,
11721 modifier == EXPAND_STACK_PARM
11722 ? NULL_RTX : target, alt_rtl);
11723 if (reverse)
11724 temp = flip_storage_order (mode, temp);
11725 return EXTEND_BITINT (temp);
11728 case ARRAY_REF:
11731 tree array = treeop0;
11732 tree index = treeop1;
11733 tree init;
11735 /* Fold an expression like: "foo"[2].
11736 This is not done in fold so it won't happen inside &.
11737 Don't fold if this is for wide characters since it's too
11738 difficult to do correctly and this is a very rare case. */
11740 if (modifier != EXPAND_CONST_ADDRESS
11741 && modifier != EXPAND_INITIALIZER
11742 && modifier != EXPAND_MEMORY)
11744 tree t = fold_read_from_constant_string (exp);
11746 if (t)
11747 return expand_expr (t, target, tmode, modifier);
11750 /* If this is a constant index into a constant array,
11751 just get the value from the array. Handle both the cases when
11752 we have an explicit constructor and when our operand is a variable
11753 that was declared const. */
11755 if (modifier != EXPAND_CONST_ADDRESS
11756 && modifier != EXPAND_INITIALIZER
11757 && modifier != EXPAND_MEMORY
11758 && TREE_CODE (array) == CONSTRUCTOR
11759 && ! TREE_SIDE_EFFECTS (array)
11760 && TREE_CODE (index) == INTEGER_CST)
11762 unsigned HOST_WIDE_INT ix;
11763 tree field, value;
11765 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (array), ix,
11766 field, value)
11767 if (tree_int_cst_equal (field, index))
11769 if (!TREE_SIDE_EFFECTS (value))
11770 return expand_expr (fold (value), target, tmode, modifier);
11771 break;
11775 else if (optimize >= 1
11776 && modifier != EXPAND_CONST_ADDRESS
11777 && modifier != EXPAND_INITIALIZER
11778 && modifier != EXPAND_MEMORY
11779 && TREE_READONLY (array) && ! TREE_SIDE_EFFECTS (array)
11780 && TREE_CODE (index) == INTEGER_CST
11781 && (VAR_P (array) || TREE_CODE (array) == CONST_DECL)
11782 && (init = ctor_for_folding (array)) != error_mark_node)
11784 if (init == NULL_TREE)
11786 tree value = build_zero_cst (type);
11787 if (TREE_CODE (value) == CONSTRUCTOR)
11789 /* If VALUE is a CONSTRUCTOR, this optimization is only
11790 useful if this doesn't store the CONSTRUCTOR into
11791 memory. If it does, it is more efficient to just
11792 load the data from the array directly. */
11793 rtx ret = expand_constructor (value, target,
11794 modifier, true);
11795 if (ret == NULL_RTX)
11796 value = NULL_TREE;
11799 if (value)
11800 return expand_expr (value, target, tmode, modifier);
11802 else if (TREE_CODE (init) == CONSTRUCTOR)
11804 unsigned HOST_WIDE_INT ix;
11805 tree field, value;
11807 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (init), ix,
11808 field, value)
11809 if (tree_int_cst_equal (field, index))
11811 if (TREE_SIDE_EFFECTS (value))
11812 break;
11814 if (TREE_CODE (value) == CONSTRUCTOR)
11816 /* If VALUE is a CONSTRUCTOR, this
11817 optimization is only useful if
11818 this doesn't store the CONSTRUCTOR
11819 into memory. If it does, it is more
11820 efficient to just load the data from
11821 the array directly. */
11822 rtx ret = expand_constructor (value, target,
11823 modifier, true);
11824 if (ret == NULL_RTX)
11825 break;
11828 return
11829 expand_expr (fold (value), target, tmode, modifier);
11832 else if (TREE_CODE (init) == STRING_CST)
11834 tree low_bound = array_ref_low_bound (exp);
11835 tree index1 = fold_convert_loc (loc, sizetype, treeop1);
11837 /* Optimize the special case of a zero lower bound.
11839 We convert the lower bound to sizetype to avoid problems
11840 with constant folding. E.g. suppose the lower bound is
11841 1 and its mode is QI. Without the conversion
11842 (ARRAY + (INDEX - (unsigned char)1))
11843 becomes
11844 (ARRAY + (-(unsigned char)1) + INDEX)
11845 which becomes
11846 (ARRAY + 255 + INDEX). Oops! */
11847 if (!integer_zerop (low_bound))
11848 index1 = size_diffop_loc (loc, index1,
11849 fold_convert_loc (loc, sizetype,
11850 low_bound));
11852 if (tree_fits_uhwi_p (index1)
11853 && compare_tree_int (index1, TREE_STRING_LENGTH (init)) < 0)
11855 tree char_type = TREE_TYPE (TREE_TYPE (init));
11856 scalar_int_mode char_mode;
11858 if (is_int_mode (TYPE_MODE (char_type), &char_mode)
11859 && GET_MODE_SIZE (char_mode) == 1)
11860 return gen_int_mode (TREE_STRING_POINTER (init)
11861 [TREE_INT_CST_LOW (index1)],
11862 char_mode);
11867 goto normal_inner_ref;
11869 case COMPONENT_REF:
11870 gcc_assert (TREE_CODE (treeop0) != CONSTRUCTOR);
11871 /* Fall through. */
11872 case BIT_FIELD_REF:
11873 case ARRAY_RANGE_REF:
11874 normal_inner_ref:
11876 machine_mode mode1, mode2;
11877 poly_int64 bitsize, bitpos, bytepos;
11878 tree offset;
11879 int reversep, volatilep = 0;
11880 tree tem
11881 = get_inner_reference (exp, &bitsize, &bitpos, &offset, &mode1,
11882 &unsignedp, &reversep, &volatilep);
11883 rtx orig_op0, memloc;
11884 bool clear_mem_expr = false;
11885 bool must_force_mem;
11887 /* If we got back the original object, something is wrong. Perhaps
11888 we are evaluating an expression too early. In any event, don't
11889 infinitely recurse. */
11890 gcc_assert (tem != exp);
11892 /* Make sure bitpos is not negative, this can wreak havoc later. */
11893 if (maybe_lt (bitpos, 0))
11895 gcc_checking_assert (offset == NULL_TREE);
11896 offset = size_int (bits_to_bytes_round_down (bitpos));
11897 bitpos = num_trailing_bits (bitpos);
11900 /* If we have either an offset, a BLKmode result, or a reference
11901 outside the underlying object, we must force it to memory.
11902 Such a case can occur in Ada if we have unchecked conversion
11903 of an expression from a scalar type to an aggregate type or
11904 for an ARRAY_RANGE_REF whose type is BLKmode, or if we were
11905 passed a partially uninitialized object or a view-conversion
11906 to a larger size. */
11907 must_force_mem = offset != NULL_TREE
11908 || mode1 == BLKmode
11909 || (mode == BLKmode
11910 && !int_mode_for_size (bitsize, 1).exists ());
11912 const enum expand_modifier tem_modifier
11913 = must_force_mem
11914 ? EXPAND_MEMORY
11915 : modifier == EXPAND_SUM ? EXPAND_NORMAL : modifier;
11917 /* If TEM's type is a union of variable size, pass TARGET to the inner
11918 computation, since it will need a temporary and TARGET is known
11919 to have to do. This occurs in unchecked conversion in Ada. */
11920 const rtx tem_target
11921 = TREE_CODE (TREE_TYPE (tem)) == UNION_TYPE
11922 && COMPLETE_TYPE_P (TREE_TYPE (tem))
11923 && TREE_CODE (TYPE_SIZE (TREE_TYPE (tem))) != INTEGER_CST
11924 && modifier != EXPAND_STACK_PARM
11925 ? target
11926 : NULL_RTX;
11928 orig_op0 = op0
11929 = expand_expr_real (tem, tem_target, VOIDmode, tem_modifier, NULL,
11930 true);
11932 /* If the field has a mode, we want to access it in the
11933 field's mode, not the computed mode.
11934 If a MEM has VOIDmode (external with incomplete type),
11935 use BLKmode for it instead. */
11936 if (MEM_P (op0))
11938 if (mode1 != VOIDmode)
11939 op0 = adjust_address (op0, mode1, 0);
11940 else if (GET_MODE (op0) == VOIDmode)
11941 op0 = adjust_address (op0, BLKmode, 0);
11944 mode2
11945 = CONSTANT_P (op0) ? TYPE_MODE (TREE_TYPE (tem)) : GET_MODE (op0);
11947 /* See above for the rationale. */
11948 if (maybe_gt (bitpos + bitsize, GET_MODE_BITSIZE (mode2)))
11949 must_force_mem = true;
11951 /* Handle CONCAT first. */
11952 if (GET_CODE (op0) == CONCAT && !must_force_mem)
11954 if (known_eq (bitpos, 0)
11955 && known_eq (bitsize, GET_MODE_BITSIZE (GET_MODE (op0)))
11956 && COMPLEX_MODE_P (mode1)
11957 && COMPLEX_MODE_P (GET_MODE (op0))
11958 && (GET_MODE_PRECISION (GET_MODE_INNER (mode1))
11959 == GET_MODE_PRECISION (GET_MODE_INNER (GET_MODE (op0)))))
11961 if (reversep)
11962 op0 = flip_storage_order (GET_MODE (op0), op0);
11963 if (mode1 != GET_MODE (op0))
11965 rtx parts[2];
11966 for (int i = 0; i < 2; i++)
11968 rtx op = read_complex_part (op0, i != 0);
11969 if (GET_CODE (op) == SUBREG)
11970 op = force_reg (GET_MODE (op), op);
11971 temp = gen_lowpart_common (GET_MODE_INNER (mode1), op);
11972 if (temp)
11973 op = temp;
11974 else
11976 if (!REG_P (op) && !MEM_P (op))
11977 op = force_reg (GET_MODE (op), op);
11978 op = gen_lowpart (GET_MODE_INNER (mode1), op);
11980 parts[i] = op;
11982 op0 = gen_rtx_CONCAT (mode1, parts[0], parts[1]);
11984 return op0;
11986 if (known_eq (bitpos, 0)
11987 && known_eq (bitsize,
11988 GET_MODE_BITSIZE (GET_MODE (XEXP (op0, 0))))
11989 && maybe_ne (bitsize, 0))
11991 op0 = XEXP (op0, 0);
11992 mode2 = GET_MODE (op0);
11994 else if (known_eq (bitpos,
11995 GET_MODE_BITSIZE (GET_MODE (XEXP (op0, 0))))
11996 && known_eq (bitsize,
11997 GET_MODE_BITSIZE (GET_MODE (XEXP (op0, 1))))
11998 && maybe_ne (bitpos, 0)
11999 && maybe_ne (bitsize, 0))
12001 op0 = XEXP (op0, 1);
12002 bitpos = 0;
12003 mode2 = GET_MODE (op0);
12005 else
12006 /* Otherwise force into memory. */
12007 must_force_mem = true;
12010 /* If this is a constant, put it in a register if it is a legitimate
12011 constant and we don't need a memory reference. */
12012 if (CONSTANT_P (op0)
12013 && mode2 != BLKmode
12014 && targetm.legitimate_constant_p (mode2, op0)
12015 && !must_force_mem)
12016 op0 = force_reg (mode2, op0);
12018 /* Otherwise, if this is a constant, try to force it to the constant
12019 pool. Note that back-ends, e.g. MIPS, may refuse to do so if it
12020 is a legitimate constant. */
12021 else if (CONSTANT_P (op0) && (memloc = force_const_mem (mode2, op0)))
12022 op0 = validize_mem (memloc);
12024 /* Otherwise, if this is a constant or the object is not in memory
12025 and need be, put it there. */
12026 else if (CONSTANT_P (op0) || (!MEM_P (op0) && must_force_mem))
12028 memloc = assign_temp (TREE_TYPE (tem), 1, 1);
12029 emit_move_insn (memloc, op0);
12030 op0 = memloc;
12031 clear_mem_expr = true;
12034 if (offset)
12036 machine_mode address_mode;
12037 rtx offset_rtx = expand_expr (offset, NULL_RTX, VOIDmode,
12038 EXPAND_SUM);
12040 gcc_assert (MEM_P (op0));
12042 address_mode = get_address_mode (op0);
12043 if (GET_MODE (offset_rtx) != address_mode)
12045 /* We cannot be sure that the RTL in offset_rtx is valid outside
12046 of a memory address context, so force it into a register
12047 before attempting to convert it to the desired mode. */
12048 offset_rtx = force_operand (offset_rtx, NULL_RTX);
12049 offset_rtx = convert_to_mode (address_mode, offset_rtx, 0);
12052 /* See the comment in expand_assignment for the rationale. */
12053 if (mode1 != VOIDmode
12054 && maybe_ne (bitpos, 0)
12055 && maybe_gt (bitsize, 0)
12056 && multiple_p (bitpos, BITS_PER_UNIT, &bytepos)
12057 && multiple_p (bitpos, bitsize)
12058 && multiple_p (bitsize, GET_MODE_ALIGNMENT (mode1))
12059 && MEM_ALIGN (op0) >= GET_MODE_ALIGNMENT (mode1))
12061 op0 = adjust_address (op0, mode1, bytepos);
12062 bitpos = 0;
12065 op0 = offset_address (op0, offset_rtx,
12066 highest_pow2_factor (offset));
12069 /* If OFFSET is making OP0 more aligned than BIGGEST_ALIGNMENT,
12070 record its alignment as BIGGEST_ALIGNMENT. */
12071 if (MEM_P (op0)
12072 && known_eq (bitpos, 0)
12073 && offset != 0
12074 && is_aligning_offset (offset, tem))
12075 set_mem_align (op0, BIGGEST_ALIGNMENT);
12077 /* Don't forget about volatility even if this is a bitfield. */
12078 if (MEM_P (op0) && volatilep && ! MEM_VOLATILE_P (op0))
12080 if (op0 == orig_op0)
12081 op0 = copy_rtx (op0);
12083 MEM_VOLATILE_P (op0) = 1;
12086 if (MEM_P (op0) && TREE_CODE (tem) == FUNCTION_DECL)
12088 if (op0 == orig_op0)
12089 op0 = copy_rtx (op0);
12091 set_mem_align (op0, BITS_PER_UNIT);
12094 /* In cases where an aligned union has an unaligned object
12095 as a field, we might be extracting a BLKmode value from
12096 an integer-mode (e.g., SImode) object. Handle this case
12097 by doing the extract into an object as wide as the field
12098 (which we know to be the width of a basic mode), then
12099 storing into memory, and changing the mode to BLKmode. */
12100 if (mode1 == VOIDmode
12101 || REG_P (op0) || GET_CODE (op0) == SUBREG
12102 || (mode1 != BLKmode && ! direct_load[(int) mode1]
12103 && GET_MODE_CLASS (mode) != MODE_COMPLEX_INT
12104 && GET_MODE_CLASS (mode) != MODE_COMPLEX_FLOAT
12105 && modifier != EXPAND_CONST_ADDRESS
12106 && modifier != EXPAND_INITIALIZER
12107 && modifier != EXPAND_MEMORY)
12108 /* If the bitfield is volatile and the bitsize
12109 is narrower than the access size of the bitfield,
12110 we need to extract bitfields from the access. */
12111 || (volatilep && TREE_CODE (exp) == COMPONENT_REF
12112 && DECL_BIT_FIELD_TYPE (TREE_OPERAND (exp, 1))
12113 && mode1 != BLKmode
12114 && maybe_lt (bitsize, GET_MODE_SIZE (mode1) * BITS_PER_UNIT))
12115 /* If the field isn't aligned enough to fetch as a memref,
12116 fetch it as a bit field. */
12117 || (mode1 != BLKmode
12118 && (((MEM_P (op0)
12119 ? MEM_ALIGN (op0) < GET_MODE_ALIGNMENT (mode1)
12120 || !multiple_p (bitpos, GET_MODE_ALIGNMENT (mode1))
12121 : TYPE_ALIGN (TREE_TYPE (tem)) < GET_MODE_ALIGNMENT (mode)
12122 || !multiple_p (bitpos, GET_MODE_ALIGNMENT (mode)))
12123 && modifier != EXPAND_MEMORY
12124 && ((modifier == EXPAND_CONST_ADDRESS
12125 || modifier == EXPAND_INITIALIZER)
12126 ? STRICT_ALIGNMENT
12127 : targetm.slow_unaligned_access (mode1,
12128 MEM_ALIGN (op0))))
12129 || !multiple_p (bitpos, BITS_PER_UNIT)))
12130 /* If the type and the field are a constant size and the
12131 size of the type isn't the same size as the bitfield,
12132 we must use bitfield operations. */
12133 || (known_size_p (bitsize)
12134 && TYPE_SIZE (TREE_TYPE (exp))
12135 && poly_int_tree_p (TYPE_SIZE (TREE_TYPE (exp)))
12136 && maybe_ne (wi::to_poly_offset (TYPE_SIZE (TREE_TYPE (exp))),
12137 bitsize)))
12139 machine_mode ext_mode = mode;
12141 if (ext_mode == BLKmode
12142 && ! (target != 0 && MEM_P (op0)
12143 && MEM_P (target)
12144 && multiple_p (bitpos, BITS_PER_UNIT)))
12145 ext_mode = int_mode_for_size (bitsize, 1).else_blk ();
12147 if (ext_mode == BLKmode)
12149 if (target == 0)
12150 target = assign_temp (type, 1, 1);
12152 /* ??? Unlike the similar test a few lines below, this one is
12153 very likely obsolete. */
12154 if (known_eq (bitsize, 0))
12155 return target;
12157 /* In this case, BITPOS must start at a byte boundary and
12158 TARGET, if specified, must be a MEM. */
12159 gcc_assert (MEM_P (op0)
12160 && (!target || MEM_P (target)));
12162 bytepos = exact_div (bitpos, BITS_PER_UNIT);
12163 poly_int64 bytesize = bits_to_bytes_round_up (bitsize);
12164 emit_block_move (target,
12165 adjust_address (op0, VOIDmode, bytepos),
12166 gen_int_mode (bytesize, Pmode),
12167 (modifier == EXPAND_STACK_PARM
12168 ? BLOCK_OP_CALL_PARM : BLOCK_OP_NORMAL));
12170 return target;
12173 /* If we have nothing to extract, the result will be 0 for targets
12174 with SHIFT_COUNT_TRUNCATED == 0 and garbage otherwise. Always
12175 return 0 for the sake of consistency, as reading a zero-sized
12176 bitfield is valid in Ada and the value is fully specified. */
12177 if (known_eq (bitsize, 0))
12178 return const0_rtx;
12180 op0 = validize_mem (op0);
12182 if (MEM_P (op0) && REG_P (XEXP (op0, 0)))
12183 mark_reg_pointer (XEXP (op0, 0), MEM_ALIGN (op0));
12185 /* If the result has aggregate type and the extraction is done in
12186 an integral mode, then the field may be not aligned on a byte
12187 boundary; in this case, if it has reverse storage order, it
12188 needs to be extracted as a scalar field with reverse storage
12189 order and put back into memory order afterwards. */
12190 if (AGGREGATE_TYPE_P (type)
12191 && GET_MODE_CLASS (ext_mode) == MODE_INT)
12192 reversep = TYPE_REVERSE_STORAGE_ORDER (type);
12194 gcc_checking_assert (known_ge (bitpos, 0));
12195 op0 = extract_bit_field (op0, bitsize, bitpos, unsignedp,
12196 (modifier == EXPAND_STACK_PARM
12197 ? NULL_RTX : target),
12198 ext_mode, ext_mode, reversep, alt_rtl);
12200 /* If the result has aggregate type and the mode of OP0 is an
12201 integral mode then, if BITSIZE is narrower than this mode
12202 and this is for big-endian data, we must put the field
12203 into the high-order bits. And we must also put it back
12204 into memory order if it has been previously reversed. */
12205 scalar_int_mode op0_mode;
12206 if (AGGREGATE_TYPE_P (type)
12207 && is_int_mode (GET_MODE (op0), &op0_mode))
12209 HOST_WIDE_INT size = GET_MODE_BITSIZE (op0_mode);
12211 gcc_checking_assert (known_le (bitsize, size));
12212 if (maybe_lt (bitsize, size)
12213 && reversep ? !BYTES_BIG_ENDIAN : BYTES_BIG_ENDIAN)
12214 op0 = expand_shift (LSHIFT_EXPR, op0_mode, op0,
12215 size - bitsize, op0, 1);
12217 if (reversep)
12218 op0 = flip_storage_order (op0_mode, op0);
12221 /* If the result type is BLKmode, store the data into a temporary
12222 of the appropriate type, but with the mode corresponding to the
12223 mode for the data we have (op0's mode). */
12224 if (mode == BLKmode)
12226 rtx new_rtx
12227 = assign_stack_temp_for_type (ext_mode,
12228 GET_MODE_BITSIZE (ext_mode),
12229 type);
12230 emit_move_insn (new_rtx, op0);
12231 op0 = copy_rtx (new_rtx);
12232 PUT_MODE (op0, BLKmode);
12235 return op0;
12238 /* If the result is BLKmode, use that to access the object
12239 now as well. */
12240 if (mode == BLKmode)
12241 mode1 = BLKmode;
12243 /* Get a reference to just this component. */
12244 bytepos = bits_to_bytes_round_down (bitpos);
12245 if (modifier == EXPAND_CONST_ADDRESS
12246 || modifier == EXPAND_SUM || modifier == EXPAND_INITIALIZER)
12247 op0 = adjust_address_nv (op0, mode1, bytepos);
12248 else
12249 op0 = adjust_address (op0, mode1, bytepos);
12251 if (op0 == orig_op0)
12252 op0 = copy_rtx (op0);
12254 /* Don't set memory attributes if the base expression is
12255 SSA_NAME that got expanded as a MEM or a CONSTANT. In that case,
12256 we should just honor its original memory attributes. */
12257 if (!(TREE_CODE (tem) == SSA_NAME
12258 && (MEM_P (orig_op0) || CONSTANT_P (orig_op0))))
12259 set_mem_attributes (op0, exp, 0);
12261 if (REG_P (XEXP (op0, 0)))
12262 mark_reg_pointer (XEXP (op0, 0), MEM_ALIGN (op0));
12264 /* If op0 is a temporary because the original expressions was forced
12265 to memory, clear MEM_EXPR so that the original expression cannot
12266 be marked as addressable through MEM_EXPR of the temporary. */
12267 if (clear_mem_expr)
12268 set_mem_expr (op0, NULL_TREE);
12270 MEM_VOLATILE_P (op0) |= volatilep;
12272 if (reversep
12273 && modifier != EXPAND_MEMORY
12274 && modifier != EXPAND_WRITE)
12275 op0 = flip_storage_order (mode1, op0);
12277 op0 = EXTEND_BITINT (op0);
12279 if (mode == mode1 || mode1 == BLKmode || mode1 == tmode
12280 || modifier == EXPAND_CONST_ADDRESS
12281 || modifier == EXPAND_INITIALIZER)
12282 return op0;
12284 if (target == 0)
12285 target = gen_reg_rtx (tmode != VOIDmode ? tmode : mode);
12287 convert_move (target, op0, unsignedp);
12288 return target;
12291 case OBJ_TYPE_REF:
12292 return expand_expr (OBJ_TYPE_REF_EXPR (exp), target, tmode, modifier);
12294 case CALL_EXPR:
12295 /* All valid uses of __builtin_va_arg_pack () are removed during
12296 inlining. */
12297 if (CALL_EXPR_VA_ARG_PACK (exp))
12298 error ("invalid use of %<__builtin_va_arg_pack ()%>");
12300 tree fndecl = get_callee_fndecl (exp), attr;
12302 if (fndecl
12303 /* Don't diagnose the error attribute in thunks, those are
12304 artificially created. */
12305 && !CALL_FROM_THUNK_P (exp)
12306 && (attr = lookup_attribute ("error",
12307 DECL_ATTRIBUTES (fndecl))) != NULL)
12309 const char *ident = lang_hooks.decl_printable_name (fndecl, 1);
12310 error ("call to %qs declared with attribute error: %s",
12311 identifier_to_locale (ident),
12312 TREE_STRING_POINTER (TREE_VALUE (TREE_VALUE (attr))));
12314 if (fndecl
12315 /* Don't diagnose the warning attribute in thunks, those are
12316 artificially created. */
12317 && !CALL_FROM_THUNK_P (exp)
12318 && (attr = lookup_attribute ("warning",
12319 DECL_ATTRIBUTES (fndecl))) != NULL)
12321 const char *ident = lang_hooks.decl_printable_name (fndecl, 1);
12322 warning_at (EXPR_LOCATION (exp),
12323 OPT_Wattribute_warning,
12324 "call to %qs declared with attribute warning: %s",
12325 identifier_to_locale (ident),
12326 TREE_STRING_POINTER (TREE_VALUE (TREE_VALUE (attr))));
12329 /* Check for a built-in function. */
12330 if (fndecl && fndecl_built_in_p (fndecl))
12332 gcc_assert (DECL_BUILT_IN_CLASS (fndecl) != BUILT_IN_FRONTEND);
12333 return expand_builtin (exp, target, subtarget, tmode, ignore);
12336 return expand_call (exp, target, ignore);
12338 case VIEW_CONVERT_EXPR:
12339 op0 = NULL_RTX;
12341 /* If we are converting to BLKmode, try to avoid an intermediate
12342 temporary by fetching an inner memory reference. */
12343 if (mode == BLKmode
12344 && poly_int_tree_p (TYPE_SIZE (type))
12345 && TYPE_MODE (TREE_TYPE (treeop0)) != BLKmode
12346 && handled_component_p (treeop0))
12348 machine_mode mode1;
12349 poly_int64 bitsize, bitpos, bytepos;
12350 tree offset;
12351 int reversep, volatilep = 0;
12352 tree tem
12353 = get_inner_reference (treeop0, &bitsize, &bitpos, &offset, &mode1,
12354 &unsignedp, &reversep, &volatilep);
12356 /* ??? We should work harder and deal with non-zero offsets. */
12357 if (!offset
12358 && multiple_p (bitpos, BITS_PER_UNIT, &bytepos)
12359 && !reversep
12360 && known_size_p (bitsize)
12361 && known_eq (wi::to_poly_offset (TYPE_SIZE (type)), bitsize))
12363 /* See the normal_inner_ref case for the rationale. */
12364 rtx orig_op0
12365 = expand_expr_real (tem,
12366 (TREE_CODE (TREE_TYPE (tem)) == UNION_TYPE
12367 && (TREE_CODE (TYPE_SIZE (TREE_TYPE (tem)))
12368 != INTEGER_CST)
12369 && modifier != EXPAND_STACK_PARM
12370 ? target : NULL_RTX),
12371 VOIDmode,
12372 modifier == EXPAND_SUM ? EXPAND_NORMAL : modifier,
12373 NULL, true);
12375 if (MEM_P (orig_op0))
12377 op0 = orig_op0;
12379 /* Get a reference to just this component. */
12380 if (modifier == EXPAND_CONST_ADDRESS
12381 || modifier == EXPAND_SUM
12382 || modifier == EXPAND_INITIALIZER)
12383 op0 = adjust_address_nv (op0, mode, bytepos);
12384 else
12385 op0 = adjust_address (op0, mode, bytepos);
12387 if (op0 == orig_op0)
12388 op0 = copy_rtx (op0);
12390 set_mem_attributes (op0, treeop0, 0);
12391 if (REG_P (XEXP (op0, 0)))
12392 mark_reg_pointer (XEXP (op0, 0), MEM_ALIGN (op0));
12394 MEM_VOLATILE_P (op0) |= volatilep;
12399 if (!op0)
12400 op0 = expand_expr_real (treeop0, NULL_RTX, VOIDmode, modifier,
12401 NULL, inner_reference_p);
12403 /* If the input and output modes are both the same, we are done. */
12404 if (mode == GET_MODE (op0))
12406 /* Similarly if the output mode is BLKmode and input is a MEM,
12407 adjust_address done below is all we need. */
12408 else if (mode == BLKmode && MEM_P (op0))
12410 /* If neither mode is BLKmode, and both modes are the same size
12411 then we can use gen_lowpart. */
12412 else if (mode != BLKmode
12413 && GET_MODE (op0) != BLKmode
12414 && known_eq (GET_MODE_PRECISION (mode),
12415 GET_MODE_PRECISION (GET_MODE (op0)))
12416 && !COMPLEX_MODE_P (GET_MODE (op0)))
12418 if (GET_CODE (op0) == SUBREG)
12419 op0 = force_reg (GET_MODE (op0), op0);
12420 temp = gen_lowpart_common (mode, op0);
12421 if (temp)
12422 op0 = temp;
12423 else
12425 if (!REG_P (op0) && !MEM_P (op0))
12426 op0 = force_reg (GET_MODE (op0), op0);
12427 op0 = gen_lowpart (mode, op0);
12430 /* If both types are integral, convert from one mode to the other. */
12431 else if (INTEGRAL_TYPE_P (type) && INTEGRAL_TYPE_P (TREE_TYPE (treeop0)))
12432 op0 = convert_modes (mode, GET_MODE (op0), op0,
12433 TYPE_UNSIGNED (TREE_TYPE (treeop0)));
12434 /* If the output type is a bit-field type, do an extraction. */
12435 else if (reduce_bit_field)
12436 return extract_bit_field (op0, TYPE_PRECISION (type), 0,
12437 TYPE_UNSIGNED (type), NULL_RTX,
12438 mode, mode, false, NULL);
12439 /* As a last resort, spill op0 to memory, and reload it in a
12440 different mode. */
12441 else if (!MEM_P (op0))
12443 /* If the operand is not a MEM, force it into memory. Since we
12444 are going to be changing the mode of the MEM, don't call
12445 force_const_mem for constants because we don't allow pool
12446 constants to change mode. */
12447 tree inner_type = TREE_TYPE (treeop0);
12449 gcc_assert (!TREE_ADDRESSABLE (exp));
12451 if (target == 0 || GET_MODE (target) != TYPE_MODE (inner_type))
12452 target
12453 = assign_stack_temp_for_type
12454 (TYPE_MODE (inner_type),
12455 GET_MODE_SIZE (TYPE_MODE (inner_type)), inner_type);
12457 emit_move_insn (target, op0);
12458 op0 = target;
12461 /* If OP0 is (now) a MEM, we need to deal with alignment issues. If the
12462 output type is such that the operand is known to be aligned, indicate
12463 that it is. Otherwise, we need only be concerned about alignment for
12464 non-BLKmode results. */
12465 if (MEM_P (op0))
12467 enum insn_code icode;
12469 if (modifier != EXPAND_WRITE
12470 && modifier != EXPAND_MEMORY
12471 && !inner_reference_p
12472 && mode != BLKmode
12473 && MEM_ALIGN (op0) < GET_MODE_ALIGNMENT (mode))
12475 /* If the target does have special handling for unaligned
12476 loads of mode then use them. */
12477 if ((icode = optab_handler (movmisalign_optab, mode))
12478 != CODE_FOR_nothing)
12480 rtx reg;
12482 op0 = adjust_address (op0, mode, 0);
12483 /* We've already validated the memory, and we're creating a
12484 new pseudo destination. The predicates really can't
12485 fail. */
12486 reg = gen_reg_rtx (mode);
12488 /* Nor can the insn generator. */
12489 rtx_insn *insn = GEN_FCN (icode) (reg, op0);
12490 emit_insn (insn);
12491 return reg;
12493 else if (STRICT_ALIGNMENT)
12495 poly_uint64 mode_size = GET_MODE_SIZE (mode);
12496 poly_uint64 temp_size = mode_size;
12497 if (GET_MODE (op0) != BLKmode)
12498 temp_size = upper_bound (temp_size,
12499 GET_MODE_SIZE (GET_MODE (op0)));
12500 rtx new_rtx
12501 = assign_stack_temp_for_type (mode, temp_size, type);
12502 rtx new_with_op0_mode
12503 = adjust_address (new_rtx, GET_MODE (op0), 0);
12505 gcc_assert (!TREE_ADDRESSABLE (exp));
12507 if (GET_MODE (op0) == BLKmode)
12509 rtx size_rtx = gen_int_mode (mode_size, Pmode);
12510 emit_block_move (new_with_op0_mode, op0, size_rtx,
12511 (modifier == EXPAND_STACK_PARM
12512 ? BLOCK_OP_CALL_PARM
12513 : BLOCK_OP_NORMAL));
12515 else
12516 emit_move_insn (new_with_op0_mode, op0);
12518 op0 = new_rtx;
12522 op0 = adjust_address (op0, mode, 0);
12525 return op0;
12527 case MODIFY_EXPR:
12529 tree lhs = treeop0;
12530 tree rhs = treeop1;
12531 gcc_assert (ignore);
12533 /* Check for |= or &= of a bitfield of size one into another bitfield
12534 of size 1. In this case, (unless we need the result of the
12535 assignment) we can do this more efficiently with a
12536 test followed by an assignment, if necessary.
12538 ??? At this point, we can't get a BIT_FIELD_REF here. But if
12539 things change so we do, this code should be enhanced to
12540 support it. */
12541 if (TREE_CODE (lhs) == COMPONENT_REF
12542 && (TREE_CODE (rhs) == BIT_IOR_EXPR
12543 || TREE_CODE (rhs) == BIT_AND_EXPR)
12544 && TREE_OPERAND (rhs, 0) == lhs
12545 && TREE_CODE (TREE_OPERAND (rhs, 1)) == COMPONENT_REF
12546 && integer_onep (DECL_SIZE (TREE_OPERAND (lhs, 1)))
12547 && integer_onep (DECL_SIZE (TREE_OPERAND (TREE_OPERAND (rhs, 1), 1))))
12549 rtx_code_label *label = gen_label_rtx ();
12550 int value = TREE_CODE (rhs) == BIT_IOR_EXPR;
12551 profile_probability prob = profile_probability::uninitialized ();
12552 if (value)
12553 jumpifnot (TREE_OPERAND (rhs, 1), label, prob);
12554 else
12555 jumpif (TREE_OPERAND (rhs, 1), label, prob);
12556 expand_assignment (lhs, build_int_cst (TREE_TYPE (rhs), value),
12557 false);
12558 do_pending_stack_adjust ();
12559 emit_label (label);
12560 return const0_rtx;
12563 expand_assignment (lhs, rhs, false);
12564 return const0_rtx;
12567 case ADDR_EXPR:
12568 return expand_expr_addr_expr (exp, target, tmode, modifier);
12570 case REALPART_EXPR:
12571 op0 = expand_normal (treeop0);
12572 return read_complex_part (op0, false);
12574 case IMAGPART_EXPR:
12575 op0 = expand_normal (treeop0);
12576 return read_complex_part (op0, true);
12578 case RETURN_EXPR:
12579 case LABEL_EXPR:
12580 case GOTO_EXPR:
12581 case SWITCH_EXPR:
12582 case ASM_EXPR:
12583 /* Expanded in cfgexpand.cc. */
12584 gcc_unreachable ();
12586 case TRY_CATCH_EXPR:
12587 case CATCH_EXPR:
12588 case EH_FILTER_EXPR:
12589 case TRY_FINALLY_EXPR:
12590 case EH_ELSE_EXPR:
12591 /* Lowered by tree-eh.cc. */
12592 gcc_unreachable ();
12594 case WITH_CLEANUP_EXPR:
12595 case CLEANUP_POINT_EXPR:
12596 case TARGET_EXPR:
12597 case CASE_LABEL_EXPR:
12598 case VA_ARG_EXPR:
12599 case BIND_EXPR:
12600 case INIT_EXPR:
12601 case CONJ_EXPR:
12602 case COMPOUND_EXPR:
12603 case PREINCREMENT_EXPR:
12604 case PREDECREMENT_EXPR:
12605 case POSTINCREMENT_EXPR:
12606 case POSTDECREMENT_EXPR:
12607 case LOOP_EXPR:
12608 case EXIT_EXPR:
12609 case COMPOUND_LITERAL_EXPR:
12610 /* Lowered by gimplify.cc. */
12611 gcc_unreachable ();
12613 case FDESC_EXPR:
12614 /* Function descriptors are not valid except for as
12615 initialization constants, and should not be expanded. */
12616 gcc_unreachable ();
12618 case WITH_SIZE_EXPR:
12619 /* WITH_SIZE_EXPR expands to its first argument. The caller should
12620 have pulled out the size to use in whatever context it needed. */
12621 return expand_expr_real (treeop0, original_target, tmode,
12622 modifier, alt_rtl, inner_reference_p);
12624 default:
12625 return expand_expr_real_2 (&ops, target, tmode, modifier);
12628 #undef EXTEND_BITINT
12630 /* Subroutine of above: reduce EXP to the precision of TYPE (in the
12631 signedness of TYPE), possibly returning the result in TARGET.
12632 TYPE is known to be a partial integer type. */
12633 static rtx
12634 reduce_to_bit_field_precision (rtx exp, rtx target, tree type)
12636 scalar_int_mode mode = SCALAR_INT_TYPE_MODE (type);
12637 HOST_WIDE_INT prec = TYPE_PRECISION (type);
12638 gcc_assert ((GET_MODE (exp) == VOIDmode || GET_MODE (exp) == mode)
12639 && (!target || GET_MODE (target) == mode));
12641 /* For constant values, reduce using wide_int_to_tree. */
12642 if (poly_int_rtx_p (exp))
12644 auto value = wi::to_poly_wide (exp, mode);
12645 tree t = wide_int_to_tree (type, value);
12646 return expand_expr (t, target, VOIDmode, EXPAND_NORMAL);
12648 else if (TYPE_UNSIGNED (type))
12650 rtx mask = immed_wide_int_const
12651 (wi::mask (prec, false, GET_MODE_PRECISION (mode)), mode);
12652 return expand_and (mode, exp, mask, target);
12654 else
12656 int count = GET_MODE_PRECISION (mode) - prec;
12657 exp = expand_shift (LSHIFT_EXPR, mode, exp, count, target, 0);
12658 return expand_shift (RSHIFT_EXPR, mode, exp, count, target, 0);
12662 /* Subroutine of above: returns true if OFFSET corresponds to an offset that
12663 when applied to the address of EXP produces an address known to be
12664 aligned more than BIGGEST_ALIGNMENT. */
12666 static bool
12667 is_aligning_offset (const_tree offset, const_tree exp)
12669 /* Strip off any conversions. */
12670 while (CONVERT_EXPR_P (offset))
12671 offset = TREE_OPERAND (offset, 0);
12673 /* We must now have a BIT_AND_EXPR with a constant that is one less than
12674 power of 2 and which is larger than BIGGEST_ALIGNMENT. */
12675 if (TREE_CODE (offset) != BIT_AND_EXPR
12676 || !tree_fits_uhwi_p (TREE_OPERAND (offset, 1))
12677 || compare_tree_int (TREE_OPERAND (offset, 1),
12678 BIGGEST_ALIGNMENT / BITS_PER_UNIT) <= 0
12679 || !pow2p_hwi (tree_to_uhwi (TREE_OPERAND (offset, 1)) + 1))
12680 return false;
12682 /* Look at the first operand of BIT_AND_EXPR and strip any conversion.
12683 It must be NEGATE_EXPR. Then strip any more conversions. */
12684 offset = TREE_OPERAND (offset, 0);
12685 while (CONVERT_EXPR_P (offset))
12686 offset = TREE_OPERAND (offset, 0);
12688 if (TREE_CODE (offset) != NEGATE_EXPR)
12689 return false;
12691 offset = TREE_OPERAND (offset, 0);
12692 while (CONVERT_EXPR_P (offset))
12693 offset = TREE_OPERAND (offset, 0);
12695 /* This must now be the address of EXP. */
12696 return TREE_CODE (offset) == ADDR_EXPR && TREE_OPERAND (offset, 0) == exp;
12699 /* Return a STRING_CST corresponding to ARG's constant initializer either
12700 if it's a string constant, or, when VALREP is set, any other constant,
12701 or null otherwise.
12702 On success, set *PTR_OFFSET to the (possibly non-constant) byte offset
12703 within the byte string that ARG is references. If nonnull set *MEM_SIZE
12704 to the size of the byte string. If nonnull, set *DECL to the constant
12705 declaration ARG refers to. */
12707 static tree
12708 constant_byte_string (tree arg, tree *ptr_offset, tree *mem_size, tree *decl,
12709 bool valrep = false)
12711 tree dummy = NULL_TREE;
12712 if (!mem_size)
12713 mem_size = &dummy;
12715 /* Store the type of the original expression before conversions
12716 via NOP_EXPR or POINTER_PLUS_EXPR to other types have been
12717 removed. */
12718 tree argtype = TREE_TYPE (arg);
12720 tree array;
12721 STRIP_NOPS (arg);
12723 /* Non-constant index into the character array in an ARRAY_REF
12724 expression or null. */
12725 tree varidx = NULL_TREE;
12727 poly_int64 base_off = 0;
12729 if (TREE_CODE (arg) == ADDR_EXPR)
12731 arg = TREE_OPERAND (arg, 0);
12732 tree ref = arg;
12733 if (TREE_CODE (arg) == ARRAY_REF)
12735 tree idx = TREE_OPERAND (arg, 1);
12736 if (TREE_CODE (idx) != INTEGER_CST)
12738 /* From a pointer (but not array) argument extract the variable
12739 index to prevent get_addr_base_and_unit_offset() from failing
12740 due to it. Use it later to compute the non-constant offset
12741 into the string and return it to the caller. */
12742 varidx = idx;
12743 ref = TREE_OPERAND (arg, 0);
12745 if (TREE_CODE (TREE_TYPE (arg)) == ARRAY_TYPE)
12746 return NULL_TREE;
12748 if (!integer_zerop (array_ref_low_bound (arg)))
12749 return NULL_TREE;
12751 if (!integer_onep (array_ref_element_size (arg)))
12752 return NULL_TREE;
12755 array = get_addr_base_and_unit_offset (ref, &base_off);
12756 if (!array
12757 || (TREE_CODE (array) != VAR_DECL
12758 && TREE_CODE (array) != CONST_DECL
12759 && TREE_CODE (array) != STRING_CST))
12760 return NULL_TREE;
12762 else if (TREE_CODE (arg) == PLUS_EXPR || TREE_CODE (arg) == POINTER_PLUS_EXPR)
12764 tree arg0 = TREE_OPERAND (arg, 0);
12765 tree arg1 = TREE_OPERAND (arg, 1);
12767 tree offset;
12768 tree str = string_constant (arg0, &offset, mem_size, decl);
12769 if (!str)
12771 str = string_constant (arg1, &offset, mem_size, decl);
12772 arg1 = arg0;
12775 if (str)
12777 /* Avoid pointers to arrays (see bug 86622). */
12778 if (POINTER_TYPE_P (TREE_TYPE (arg))
12779 && TREE_CODE (TREE_TYPE (TREE_TYPE (arg))) == ARRAY_TYPE
12780 && !(decl && !*decl)
12781 && !(decl && tree_fits_uhwi_p (DECL_SIZE_UNIT (*decl))
12782 && tree_fits_uhwi_p (*mem_size)
12783 && tree_int_cst_equal (*mem_size, DECL_SIZE_UNIT (*decl))))
12784 return NULL_TREE;
12786 tree type = TREE_TYPE (offset);
12787 arg1 = fold_convert (type, arg1);
12788 *ptr_offset = fold_build2 (PLUS_EXPR, type, offset, arg1);
12789 return str;
12791 return NULL_TREE;
12793 else if (TREE_CODE (arg) == SSA_NAME)
12795 gimple *stmt = SSA_NAME_DEF_STMT (arg);
12796 if (!is_gimple_assign (stmt))
12797 return NULL_TREE;
12799 tree rhs1 = gimple_assign_rhs1 (stmt);
12800 tree_code code = gimple_assign_rhs_code (stmt);
12801 if (code == ADDR_EXPR)
12802 return string_constant (rhs1, ptr_offset, mem_size, decl);
12803 else if (code != POINTER_PLUS_EXPR)
12804 return NULL_TREE;
12806 tree offset;
12807 if (tree str = string_constant (rhs1, &offset, mem_size, decl))
12809 /* Avoid pointers to arrays (see bug 86622). */
12810 if (POINTER_TYPE_P (TREE_TYPE (rhs1))
12811 && TREE_CODE (TREE_TYPE (TREE_TYPE (rhs1))) == ARRAY_TYPE
12812 && !(decl && !*decl)
12813 && !(decl && tree_fits_uhwi_p (DECL_SIZE_UNIT (*decl))
12814 && tree_fits_uhwi_p (*mem_size)
12815 && tree_int_cst_equal (*mem_size, DECL_SIZE_UNIT (*decl))))
12816 return NULL_TREE;
12818 tree rhs2 = gimple_assign_rhs2 (stmt);
12819 tree type = TREE_TYPE (offset);
12820 rhs2 = fold_convert (type, rhs2);
12821 *ptr_offset = fold_build2 (PLUS_EXPR, type, offset, rhs2);
12822 return str;
12824 return NULL_TREE;
12826 else if (DECL_P (arg))
12827 array = arg;
12828 else
12829 return NULL_TREE;
12831 tree offset = wide_int_to_tree (sizetype, base_off);
12832 if (varidx)
12834 if (TREE_CODE (TREE_TYPE (array)) != ARRAY_TYPE)
12835 return NULL_TREE;
12837 gcc_assert (TREE_CODE (arg) == ARRAY_REF);
12838 tree chartype = TREE_TYPE (TREE_TYPE (TREE_OPERAND (arg, 0)));
12839 if (TREE_CODE (chartype) != INTEGER_TYPE)
12840 return NULL;
12842 offset = fold_convert (sizetype, varidx);
12845 if (TREE_CODE (array) == STRING_CST)
12847 *ptr_offset = fold_convert (sizetype, offset);
12848 *mem_size = TYPE_SIZE_UNIT (TREE_TYPE (array));
12849 if (decl)
12850 *decl = NULL_TREE;
12851 gcc_checking_assert (tree_to_shwi (TYPE_SIZE_UNIT (TREE_TYPE (array)))
12852 >= TREE_STRING_LENGTH (array));
12853 return array;
12856 tree init = ctor_for_folding (array);
12857 if (!init || init == error_mark_node)
12858 return NULL_TREE;
12860 if (valrep)
12862 HOST_WIDE_INT cstoff;
12863 if (!base_off.is_constant (&cstoff))
12864 return NULL_TREE;
12866 /* Check that the host and target are sane. */
12867 if (CHAR_BIT != 8 || BITS_PER_UNIT != 8)
12868 return NULL_TREE;
12870 HOST_WIDE_INT typesz = int_size_in_bytes (TREE_TYPE (init));
12871 if (typesz <= 0 || (int) typesz != typesz)
12872 return NULL_TREE;
12874 HOST_WIDE_INT size = typesz;
12875 if (VAR_P (array)
12876 && DECL_SIZE_UNIT (array)
12877 && tree_fits_shwi_p (DECL_SIZE_UNIT (array)))
12879 size = tree_to_shwi (DECL_SIZE_UNIT (array));
12880 gcc_checking_assert (size >= typesz);
12883 /* If value representation was requested convert the initializer
12884 for the whole array or object into a string of bytes forming
12885 its value representation and return it. */
12886 unsigned char *bytes = XNEWVEC (unsigned char, size);
12887 int r = native_encode_initializer (init, bytes, size);
12888 if (r < typesz)
12890 XDELETEVEC (bytes);
12891 return NULL_TREE;
12894 if (r < size)
12895 memset (bytes + r, '\0', size - r);
12897 const char *p = reinterpret_cast<const char *>(bytes);
12898 init = build_string_literal (size, p, char_type_node);
12899 init = TREE_OPERAND (init, 0);
12900 init = TREE_OPERAND (init, 0);
12901 XDELETE (bytes);
12903 *mem_size = size_int (TREE_STRING_LENGTH (init));
12904 *ptr_offset = wide_int_to_tree (ssizetype, base_off);
12906 if (decl)
12907 *decl = array;
12909 return init;
12912 if (TREE_CODE (init) == CONSTRUCTOR)
12914 /* Convert the 64-bit constant offset to a wider type to avoid
12915 overflow and use it to obtain the initializer for the subobject
12916 it points into. */
12917 offset_int wioff;
12918 if (!base_off.is_constant (&wioff))
12919 return NULL_TREE;
12921 wioff *= BITS_PER_UNIT;
12922 if (!wi::fits_uhwi_p (wioff))
12923 return NULL_TREE;
12925 base_off = wioff.to_uhwi ();
12926 unsigned HOST_WIDE_INT fieldoff = 0;
12927 init = fold_ctor_reference (TREE_TYPE (arg), init, base_off, 0, array,
12928 &fieldoff);
12929 if (!init || init == error_mark_node)
12930 return NULL_TREE;
12932 HOST_WIDE_INT cstoff;
12933 if (!base_off.is_constant (&cstoff))
12934 return NULL_TREE;
12936 cstoff = (cstoff - fieldoff) / BITS_PER_UNIT;
12937 tree off = build_int_cst (sizetype, cstoff);
12938 if (varidx)
12939 offset = fold_build2 (PLUS_EXPR, TREE_TYPE (offset), offset, off);
12940 else
12941 offset = off;
12944 *ptr_offset = offset;
12946 tree inittype = TREE_TYPE (init);
12948 if (TREE_CODE (init) == INTEGER_CST
12949 && (TREE_CODE (TREE_TYPE (array)) == INTEGER_TYPE
12950 || TYPE_MAIN_VARIANT (inittype) == char_type_node))
12952 /* Check that the host and target are sane. */
12953 if (CHAR_BIT != 8 || BITS_PER_UNIT != 8)
12954 return NULL_TREE;
12956 /* For a reference to (address of) a single constant character,
12957 store the native representation of the character in CHARBUF.
12958 If the reference is to an element of an array or a member
12959 of a struct, only consider narrow characters until ctors
12960 for wide character arrays are transformed to STRING_CSTs
12961 like those for narrow arrays. */
12962 unsigned char charbuf[MAX_BITSIZE_MODE_ANY_MODE / BITS_PER_UNIT];
12963 int len = native_encode_expr (init, charbuf, sizeof charbuf, 0);
12964 if (len > 0)
12966 /* Construct a string literal with elements of INITTYPE and
12967 the representation above. Then strip
12968 the ADDR_EXPR (ARRAY_REF (...)) around the STRING_CST. */
12969 init = build_string_literal (len, (char *)charbuf, inittype);
12970 init = TREE_OPERAND (TREE_OPERAND (init, 0), 0);
12974 tree initsize = TYPE_SIZE_UNIT (inittype);
12976 if (TREE_CODE (init) == CONSTRUCTOR && initializer_zerop (init))
12978 /* Fold an empty/zero constructor for an implicitly initialized
12979 object or subobject into the empty string. */
12981 /* Determine the character type from that of the original
12982 expression. */
12983 tree chartype = argtype;
12984 if (POINTER_TYPE_P (chartype))
12985 chartype = TREE_TYPE (chartype);
12986 while (TREE_CODE (chartype) == ARRAY_TYPE)
12987 chartype = TREE_TYPE (chartype);
12989 if (INTEGRAL_TYPE_P (chartype)
12990 && TYPE_PRECISION (chartype) == TYPE_PRECISION (char_type_node))
12992 /* Convert a char array to an empty STRING_CST having an array
12993 of the expected type and size. */
12994 if (!initsize)
12995 initsize = integer_zero_node;
12997 unsigned HOST_WIDE_INT size = tree_to_uhwi (initsize);
12998 if (size > (unsigned HOST_WIDE_INT) INT_MAX)
12999 return NULL_TREE;
13001 init = build_string_literal (size, NULL, chartype, size);
13002 init = TREE_OPERAND (init, 0);
13003 init = TREE_OPERAND (init, 0);
13005 *ptr_offset = integer_zero_node;
13009 if (decl)
13010 *decl = array;
13012 if (TREE_CODE (init) != STRING_CST)
13013 return NULL_TREE;
13015 *mem_size = initsize;
13017 gcc_checking_assert (tree_to_shwi (initsize) >= TREE_STRING_LENGTH (init));
13019 return init;
13022 /* Return STRING_CST if an ARG corresponds to a string constant or zero
13023 if it doesn't. If we return nonzero, set *PTR_OFFSET to the (possibly
13024 non-constant) offset in bytes within the string that ARG is accessing.
13025 If MEM_SIZE is non-zero the storage size of the memory is returned.
13026 If DECL is non-zero the constant declaration is returned if available. */
13028 tree
13029 string_constant (tree arg, tree *ptr_offset, tree *mem_size, tree *decl)
13031 return constant_byte_string (arg, ptr_offset, mem_size, decl, false);
13034 /* Similar to string_constant, return a STRING_CST corresponding
13035 to the value representation of the first argument if it's
13036 a constant. */
13038 tree
13039 byte_representation (tree arg, tree *ptr_offset, tree *mem_size, tree *decl)
13041 return constant_byte_string (arg, ptr_offset, mem_size, decl, true);
13044 /* Optimize x % C1 == C2 for signed modulo if C1 is a power of two and C2
13045 is non-zero and C3 ((1<<(prec-1)) | (C1 - 1)):
13046 for C2 > 0 to x & C3 == C2
13047 for C2 < 0 to x & C3 == (C2 & C3). */
13048 enum tree_code
13049 maybe_optimize_pow2p_mod_cmp (enum tree_code code, tree *arg0, tree *arg1)
13051 gimple *stmt = get_def_for_expr (*arg0, TRUNC_MOD_EXPR);
13052 tree treeop0 = gimple_assign_rhs1 (stmt);
13053 tree treeop1 = gimple_assign_rhs2 (stmt);
13054 tree type = TREE_TYPE (*arg0);
13055 scalar_int_mode mode;
13056 if (!is_a <scalar_int_mode> (TYPE_MODE (type), &mode))
13057 return code;
13058 if (GET_MODE_BITSIZE (mode) != TYPE_PRECISION (type)
13059 || TYPE_PRECISION (type) <= 1
13060 || TYPE_UNSIGNED (type)
13061 /* Signed x % c == 0 should have been optimized into unsigned modulo
13062 earlier. */
13063 || integer_zerop (*arg1)
13064 /* If c is known to be non-negative, modulo will be expanded as unsigned
13065 modulo. */
13066 || get_range_pos_neg (treeop0) == 1)
13067 return code;
13069 /* x % c == d where d < 0 && d <= -c should be always false. */
13070 if (tree_int_cst_sgn (*arg1) == -1
13071 && -wi::to_widest (treeop1) >= wi::to_widest (*arg1))
13072 return code;
13074 int prec = TYPE_PRECISION (type);
13075 wide_int w = wi::to_wide (treeop1) - 1;
13076 w |= wi::shifted_mask (0, prec - 1, true, prec);
13077 tree c3 = wide_int_to_tree (type, w);
13078 tree c4 = *arg1;
13079 if (tree_int_cst_sgn (*arg1) == -1)
13080 c4 = wide_int_to_tree (type, w & wi::to_wide (*arg1));
13082 rtx op0 = expand_normal (treeop0);
13083 treeop0 = make_tree (TREE_TYPE (treeop0), op0);
13085 bool speed_p = optimize_insn_for_speed_p ();
13087 do_pending_stack_adjust ();
13089 location_t loc = gimple_location (stmt);
13090 struct separate_ops ops;
13091 ops.code = TRUNC_MOD_EXPR;
13092 ops.location = loc;
13093 ops.type = TREE_TYPE (treeop0);
13094 ops.op0 = treeop0;
13095 ops.op1 = treeop1;
13096 ops.op2 = NULL_TREE;
13097 start_sequence ();
13098 rtx mor = expand_expr_real_2 (&ops, NULL_RTX, TYPE_MODE (ops.type),
13099 EXPAND_NORMAL);
13100 rtx_insn *moinsns = get_insns ();
13101 end_sequence ();
13103 unsigned mocost = seq_cost (moinsns, speed_p);
13104 mocost += rtx_cost (mor, mode, EQ, 0, speed_p);
13105 mocost += rtx_cost (expand_normal (*arg1), mode, EQ, 1, speed_p);
13107 ops.code = BIT_AND_EXPR;
13108 ops.location = loc;
13109 ops.type = TREE_TYPE (treeop0);
13110 ops.op0 = treeop0;
13111 ops.op1 = c3;
13112 ops.op2 = NULL_TREE;
13113 start_sequence ();
13114 rtx mur = expand_expr_real_2 (&ops, NULL_RTX, TYPE_MODE (ops.type),
13115 EXPAND_NORMAL);
13116 rtx_insn *muinsns = get_insns ();
13117 end_sequence ();
13119 unsigned mucost = seq_cost (muinsns, speed_p);
13120 mucost += rtx_cost (mur, mode, EQ, 0, speed_p);
13121 mucost += rtx_cost (expand_normal (c4), mode, EQ, 1, speed_p);
13123 if (mocost <= mucost)
13125 emit_insn (moinsns);
13126 *arg0 = make_tree (TREE_TYPE (*arg0), mor);
13127 return code;
13130 emit_insn (muinsns);
13131 *arg0 = make_tree (TREE_TYPE (*arg0), mur);
13132 *arg1 = c4;
13133 return code;
13136 /* Attempt to optimize unsigned (X % C1) == C2 (or (X % C1) != C2).
13137 If C1 is odd to:
13138 (X - C2) * C3 <= C4 (or >), where
13139 C3 is modular multiplicative inverse of C1 and 1<<prec and
13140 C4 is ((1<<prec) - 1) / C1 or ((1<<prec) - 1) / C1 - 1 (the latter
13141 if C2 > ((1<<prec) - 1) % C1).
13142 If C1 is even, S = ctz (C1) and C2 is 0, use
13143 ((X * C3) r>> S) <= C4, where C3 is modular multiplicative
13144 inverse of C1>>S and 1<<prec and C4 is (((1<<prec) - 1) / (C1>>S)) >> S.
13146 For signed (X % C1) == 0 if C1 is odd to (all operations in it
13147 unsigned):
13148 (X * C3) + C4 <= 2 * C4, where
13149 C3 is modular multiplicative inverse of (unsigned) C1 and 1<<prec and
13150 C4 is ((1<<(prec - 1) - 1) / C1).
13151 If C1 is even, S = ctz(C1), use
13152 ((X * C3) + C4) r>> S <= (C4 >> (S - 1))
13153 where C3 is modular multiplicative inverse of (unsigned)(C1>>S) and 1<<prec
13154 and C4 is ((1<<(prec - 1) - 1) / (C1>>S)) & (-1<<S).
13156 See the Hacker's Delight book, section 10-17. */
13157 enum tree_code
13158 maybe_optimize_mod_cmp (enum tree_code code, tree *arg0, tree *arg1)
13160 gcc_checking_assert (code == EQ_EXPR || code == NE_EXPR);
13161 gcc_checking_assert (TREE_CODE (*arg1) == INTEGER_CST);
13163 if (optimize < 2)
13164 return code;
13166 gimple *stmt = get_def_for_expr (*arg0, TRUNC_MOD_EXPR);
13167 if (stmt == NULL)
13168 return code;
13170 tree treeop0 = gimple_assign_rhs1 (stmt);
13171 tree treeop1 = gimple_assign_rhs2 (stmt);
13172 if (TREE_CODE (treeop0) != SSA_NAME
13173 || TREE_CODE (treeop1) != INTEGER_CST
13174 /* Don't optimize the undefined behavior case x % 0;
13175 x % 1 should have been optimized into zero, punt if
13176 it makes it here for whatever reason;
13177 x % -c should have been optimized into x % c. */
13178 || compare_tree_int (treeop1, 2) <= 0
13179 /* Likewise x % c == d where d >= c should be always false. */
13180 || tree_int_cst_le (treeop1, *arg1))
13181 return code;
13183 /* Unsigned x % pow2 is handled right already, for signed
13184 modulo handle it in maybe_optimize_pow2p_mod_cmp. */
13185 if (integer_pow2p (treeop1))
13186 return maybe_optimize_pow2p_mod_cmp (code, arg0, arg1);
13188 tree type = TREE_TYPE (*arg0);
13189 scalar_int_mode mode;
13190 if (!is_a <scalar_int_mode> (TYPE_MODE (type), &mode))
13191 return code;
13192 if (GET_MODE_BITSIZE (mode) != TYPE_PRECISION (type)
13193 || TYPE_PRECISION (type) <= 1)
13194 return code;
13196 signop sgn = UNSIGNED;
13197 /* If both operands are known to have the sign bit clear, handle
13198 even the signed modulo case as unsigned. treeop1 is always
13199 positive >= 2, checked above. */
13200 if (!TYPE_UNSIGNED (type) && get_range_pos_neg (treeop0) != 1)
13201 sgn = SIGNED;
13203 if (!TYPE_UNSIGNED (type))
13205 if (tree_int_cst_sgn (*arg1) == -1)
13206 return code;
13207 type = unsigned_type_for (type);
13208 if (!type || TYPE_MODE (type) != TYPE_MODE (TREE_TYPE (*arg0)))
13209 return code;
13212 int prec = TYPE_PRECISION (type);
13213 wide_int w = wi::to_wide (treeop1);
13214 int shift = wi::ctz (w);
13215 /* Unsigned (X % C1) == C2 is equivalent to (X - C2) % C1 == 0 if
13216 C2 <= -1U % C1, because for any Z >= 0U - C2 in that case (Z % C1) != 0.
13217 If C1 is odd, we can handle all cases by subtracting
13218 C4 below. We could handle even the even C1 and C2 > -1U % C1 cases
13219 e.g. by testing for overflow on the subtraction, punt on that for now
13220 though. */
13221 if ((sgn == SIGNED || shift) && !integer_zerop (*arg1))
13223 if (sgn == SIGNED)
13224 return code;
13225 wide_int x = wi::umod_trunc (wi::mask (prec, false, prec), w);
13226 if (wi::gtu_p (wi::to_wide (*arg1), x))
13227 return code;
13230 imm_use_iterator imm_iter;
13231 use_operand_p use_p;
13232 FOR_EACH_IMM_USE_FAST (use_p, imm_iter, treeop0)
13234 gimple *use_stmt = USE_STMT (use_p);
13235 /* Punt if treeop0 is used in the same bb in a division
13236 or another modulo with the same divisor. We should expect
13237 the division and modulo combined together. */
13238 if (use_stmt == stmt
13239 || gimple_bb (use_stmt) != gimple_bb (stmt))
13240 continue;
13241 if (!is_gimple_assign (use_stmt)
13242 || (gimple_assign_rhs_code (use_stmt) != TRUNC_DIV_EXPR
13243 && gimple_assign_rhs_code (use_stmt) != TRUNC_MOD_EXPR))
13244 continue;
13245 if (gimple_assign_rhs1 (use_stmt) != treeop0
13246 || !operand_equal_p (gimple_assign_rhs2 (use_stmt), treeop1, 0))
13247 continue;
13248 return code;
13251 w = wi::lrshift (w, shift);
13252 wide_int a = wide_int::from (w, prec + 1, UNSIGNED);
13253 wide_int b = wi::shifted_mask (prec, 1, false, prec + 1);
13254 wide_int m = wide_int::from (wi::mod_inv (a, b), prec, UNSIGNED);
13255 tree c3 = wide_int_to_tree (type, m);
13256 tree c5 = NULL_TREE;
13257 wide_int d, e;
13258 if (sgn == UNSIGNED)
13260 d = wi::divmod_trunc (wi::mask (prec, false, prec), w, UNSIGNED, &e);
13261 /* Use <= floor ((1<<prec) - 1) / C1 only if C2 <= ((1<<prec) - 1) % C1,
13262 otherwise use < or subtract one from C4. E.g. for
13263 x % 3U == 0 we transform this into x * 0xaaaaaaab <= 0x55555555, but
13264 x % 3U == 1 already needs to be
13265 (x - 1) * 0xaaaaaaabU <= 0x55555554. */
13266 if (!shift && wi::gtu_p (wi::to_wide (*arg1), e))
13267 d -= 1;
13268 if (shift)
13269 d = wi::lrshift (d, shift);
13271 else
13273 e = wi::udiv_trunc (wi::mask (prec - 1, false, prec), w);
13274 if (!shift)
13275 d = wi::lshift (e, 1);
13276 else
13278 e = wi::bit_and (e, wi::mask (shift, true, prec));
13279 d = wi::lrshift (e, shift - 1);
13281 c5 = wide_int_to_tree (type, e);
13283 tree c4 = wide_int_to_tree (type, d);
13285 rtx op0 = expand_normal (treeop0);
13286 treeop0 = make_tree (TREE_TYPE (treeop0), op0);
13288 bool speed_p = optimize_insn_for_speed_p ();
13290 do_pending_stack_adjust ();
13292 location_t loc = gimple_location (stmt);
13293 struct separate_ops ops;
13294 ops.code = TRUNC_MOD_EXPR;
13295 ops.location = loc;
13296 ops.type = TREE_TYPE (treeop0);
13297 ops.op0 = treeop0;
13298 ops.op1 = treeop1;
13299 ops.op2 = NULL_TREE;
13300 start_sequence ();
13301 rtx mor = expand_expr_real_2 (&ops, NULL_RTX, TYPE_MODE (ops.type),
13302 EXPAND_NORMAL);
13303 rtx_insn *moinsns = get_insns ();
13304 end_sequence ();
13306 unsigned mocost = seq_cost (moinsns, speed_p);
13307 mocost += rtx_cost (mor, mode, EQ, 0, speed_p);
13308 mocost += rtx_cost (expand_normal (*arg1), mode, EQ, 1, speed_p);
13310 tree t = fold_convert_loc (loc, type, treeop0);
13311 if (!integer_zerop (*arg1))
13312 t = fold_build2_loc (loc, MINUS_EXPR, type, t, fold_convert (type, *arg1));
13313 t = fold_build2_loc (loc, MULT_EXPR, type, t, c3);
13314 if (sgn == SIGNED)
13315 t = fold_build2_loc (loc, PLUS_EXPR, type, t, c5);
13316 if (shift)
13318 tree s = build_int_cst (NULL_TREE, shift);
13319 t = fold_build2_loc (loc, RROTATE_EXPR, type, t, s);
13322 start_sequence ();
13323 rtx mur = expand_normal (t);
13324 rtx_insn *muinsns = get_insns ();
13325 end_sequence ();
13327 unsigned mucost = seq_cost (muinsns, speed_p);
13328 mucost += rtx_cost (mur, mode, LE, 0, speed_p);
13329 mucost += rtx_cost (expand_normal (c4), mode, LE, 1, speed_p);
13331 if (mocost <= mucost)
13333 emit_insn (moinsns);
13334 *arg0 = make_tree (TREE_TYPE (*arg0), mor);
13335 return code;
13338 emit_insn (muinsns);
13339 *arg0 = make_tree (type, mur);
13340 *arg1 = c4;
13341 return code == EQ_EXPR ? LE_EXPR : GT_EXPR;
13344 /* Optimize x - y < 0 into x < 0 if x - y has undefined overflow. */
13346 void
13347 maybe_optimize_sub_cmp_0 (enum tree_code code, tree *arg0, tree *arg1)
13349 gcc_checking_assert (code == GT_EXPR || code == GE_EXPR
13350 || code == LT_EXPR || code == LE_EXPR);
13351 gcc_checking_assert (integer_zerop (*arg1));
13353 if (!optimize)
13354 return;
13356 gimple *stmt = get_def_for_expr (*arg0, MINUS_EXPR);
13357 if (stmt == NULL)
13358 return;
13360 tree treeop0 = gimple_assign_rhs1 (stmt);
13361 tree treeop1 = gimple_assign_rhs2 (stmt);
13362 if (!TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (treeop0)))
13363 return;
13365 if (issue_strict_overflow_warning (WARN_STRICT_OVERFLOW_COMPARISON))
13366 warning_at (gimple_location (stmt), OPT_Wstrict_overflow,
13367 "assuming signed overflow does not occur when "
13368 "simplifying %<X - Y %s 0%> to %<X %s Y%>",
13369 op_symbol_code (code), op_symbol_code (code));
13371 *arg0 = treeop0;
13372 *arg1 = treeop1;
13376 /* Expand CODE with arguments INNER & (1<<BITNUM) and 0 that represents
13377 a single bit equality/inequality test, returns where the result is located. */
13379 static rtx
13380 expand_single_bit_test (location_t loc, enum tree_code code,
13381 tree inner, int bitnum,
13382 tree result_type, rtx target,
13383 machine_mode mode)
13385 gcc_assert (code == NE_EXPR || code == EQ_EXPR);
13387 tree type = TREE_TYPE (inner);
13388 scalar_int_mode operand_mode = SCALAR_INT_TYPE_MODE (type);
13389 int ops_unsigned;
13390 tree signed_type, unsigned_type, intermediate_type;
13391 gimple *inner_def;
13393 /* First, see if we can fold the single bit test into a sign-bit
13394 test. */
13395 if (bitnum == TYPE_PRECISION (type) - 1
13396 && type_has_mode_precision_p (type))
13398 tree stype = signed_type_for (type);
13399 tree tmp = fold_build2_loc (loc, code == EQ_EXPR ? GE_EXPR : LT_EXPR,
13400 result_type,
13401 fold_convert_loc (loc, stype, inner),
13402 build_int_cst (stype, 0));
13403 return expand_expr (tmp, target, VOIDmode, EXPAND_NORMAL);
13406 /* Otherwise we have (A & C) != 0 where C is a single bit,
13407 convert that into ((A >> C2) & 1). Where C2 = log2(C).
13408 Similarly for (A & C) == 0. */
13410 /* If INNER is a right shift of a constant and it plus BITNUM does
13411 not overflow, adjust BITNUM and INNER. */
13412 if ((inner_def = get_def_for_expr (inner, RSHIFT_EXPR))
13413 && TREE_CODE (gimple_assign_rhs2 (inner_def)) == INTEGER_CST
13414 && bitnum < TYPE_PRECISION (type)
13415 && wi::ltu_p (wi::to_wide (gimple_assign_rhs2 (inner_def)),
13416 TYPE_PRECISION (type) - bitnum))
13418 bitnum += tree_to_uhwi (gimple_assign_rhs2 (inner_def));
13419 inner = gimple_assign_rhs1 (inner_def);
13422 /* If we are going to be able to omit the AND below, we must do our
13423 operations as unsigned. If we must use the AND, we have a choice.
13424 Normally unsigned is faster, but for some machines signed is. */
13425 ops_unsigned = (load_extend_op (operand_mode) == SIGN_EXTEND
13426 && !flag_syntax_only) ? 0 : 1;
13428 signed_type = lang_hooks.types.type_for_mode (operand_mode, 0);
13429 unsigned_type = lang_hooks.types.type_for_mode (operand_mode, 1);
13430 intermediate_type = ops_unsigned ? unsigned_type : signed_type;
13431 inner = fold_convert_loc (loc, intermediate_type, inner);
13433 rtx inner0 = expand_expr (inner, NULL_RTX, VOIDmode, EXPAND_NORMAL);
13435 if (CONST_SCALAR_INT_P (inner0))
13437 wide_int t = rtx_mode_t (inner0, operand_mode);
13438 bool setp = (wi::lrshift (t, bitnum) & 1) != 0;
13439 return (setp ^ (code == EQ_EXPR)) ? const1_rtx : const0_rtx;
13441 int bitpos = bitnum;
13443 if (BYTES_BIG_ENDIAN)
13444 bitpos = GET_MODE_BITSIZE (operand_mode) - 1 - bitpos;
13446 inner0 = extract_bit_field (inner0, 1, bitpos, 1, target,
13447 operand_mode, mode, 0, NULL);
13449 if (code == EQ_EXPR)
13450 inner0 = expand_binop (GET_MODE (inner0), xor_optab, inner0, const1_rtx,
13451 NULL_RTX, 1, OPTAB_LIB_WIDEN);
13452 if (GET_MODE (inner0) != mode)
13454 rtx t = gen_reg_rtx (mode);
13455 convert_move (t, inner0, 0);
13456 return t;
13458 return inner0;
13461 /* Generate code to calculate OPS, and exploded expression
13462 using a store-flag instruction and return an rtx for the result.
13463 OPS reflects a comparison.
13465 If TARGET is nonzero, store the result there if convenient.
13467 Return zero if there is no suitable set-flag instruction
13468 available on this machine.
13470 Once expand_expr has been called on the arguments of the comparison,
13471 we are committed to doing the store flag, since it is not safe to
13472 re-evaluate the expression. We emit the store-flag insn by calling
13473 emit_store_flag, but only expand the arguments if we have a reason
13474 to believe that emit_store_flag will be successful. If we think that
13475 it will, but it isn't, we have to simulate the store-flag with a
13476 set/jump/set sequence. */
13478 static rtx
13479 do_store_flag (sepops ops, rtx target, machine_mode mode)
13481 enum rtx_code code;
13482 tree arg0, arg1, type;
13483 machine_mode operand_mode;
13484 int unsignedp;
13485 rtx op0, op1;
13486 rtx subtarget = target;
13487 location_t loc = ops->location;
13489 arg0 = ops->op0;
13490 arg1 = ops->op1;
13492 /* Don't crash if the comparison was erroneous. */
13493 if (arg0 == error_mark_node || arg1 == error_mark_node)
13494 return const0_rtx;
13496 type = TREE_TYPE (arg0);
13497 operand_mode = TYPE_MODE (type);
13498 unsignedp = TYPE_UNSIGNED (type);
13500 /* We won't bother with BLKmode store-flag operations because it would mean
13501 passing a lot of information to emit_store_flag. */
13502 if (operand_mode == BLKmode)
13503 return 0;
13505 /* We won't bother with store-flag operations involving function pointers
13506 when function pointers must be canonicalized before comparisons. */
13507 if (targetm.have_canonicalize_funcptr_for_compare ()
13508 && ((POINTER_TYPE_P (TREE_TYPE (arg0))
13509 && FUNC_OR_METHOD_TYPE_P (TREE_TYPE (TREE_TYPE (arg0))))
13510 || (POINTER_TYPE_P (TREE_TYPE (arg1))
13511 && FUNC_OR_METHOD_TYPE_P (TREE_TYPE (TREE_TYPE (arg1))))))
13512 return 0;
13514 STRIP_NOPS (arg0);
13515 STRIP_NOPS (arg1);
13517 /* For vector typed comparisons emit code to generate the desired
13518 all-ones or all-zeros mask. */
13519 if (VECTOR_TYPE_P (ops->type))
13521 tree ifexp = build2 (ops->code, ops->type, arg0, arg1);
13522 if (VECTOR_BOOLEAN_TYPE_P (ops->type)
13523 && expand_vec_cmp_expr_p (TREE_TYPE (arg0), ops->type, ops->code))
13524 return expand_vec_cmp_expr (ops->type, ifexp, target);
13525 else
13526 gcc_unreachable ();
13529 /* Optimize (x % C1) == C2 or (x % C1) != C2 if it is beneficial
13530 into (x - C2) * C3 < C4. */
13531 if ((ops->code == EQ_EXPR || ops->code == NE_EXPR)
13532 && TREE_CODE (arg0) == SSA_NAME
13533 && TREE_CODE (arg1) == INTEGER_CST)
13535 enum tree_code new_code = maybe_optimize_mod_cmp (ops->code,
13536 &arg0, &arg1);
13537 if (new_code != ops->code)
13539 struct separate_ops nops = *ops;
13540 nops.code = ops->code = new_code;
13541 nops.op0 = arg0;
13542 nops.op1 = arg1;
13543 nops.type = TREE_TYPE (arg0);
13544 return do_store_flag (&nops, target, mode);
13548 /* Optimize (x - y) < 0 into x < y if x - y has undefined overflow. */
13549 if (!unsignedp
13550 && (ops->code == LT_EXPR || ops->code == LE_EXPR
13551 || ops->code == GT_EXPR || ops->code == GE_EXPR)
13552 && integer_zerop (arg1)
13553 && TREE_CODE (arg0) == SSA_NAME)
13554 maybe_optimize_sub_cmp_0 (ops->code, &arg0, &arg1);
13556 /* Get the rtx comparison code to use. We know that EXP is a comparison
13557 operation of some type. Some comparisons against 1 and -1 can be
13558 converted to comparisons with zero. Do so here so that the tests
13559 below will be aware that we have a comparison with zero. These
13560 tests will not catch constants in the first operand, but constants
13561 are rarely passed as the first operand. */
13563 switch (ops->code)
13565 case EQ_EXPR:
13566 code = EQ;
13567 break;
13568 case NE_EXPR:
13569 code = NE;
13570 break;
13571 case LT_EXPR:
13572 if (integer_onep (arg1))
13573 arg1 = integer_zero_node, code = unsignedp ? LEU : LE;
13574 else
13575 code = unsignedp ? LTU : LT;
13576 break;
13577 case LE_EXPR:
13578 if (! unsignedp && integer_all_onesp (arg1))
13579 arg1 = integer_zero_node, code = LT;
13580 else
13581 code = unsignedp ? LEU : LE;
13582 break;
13583 case GT_EXPR:
13584 if (! unsignedp && integer_all_onesp (arg1))
13585 arg1 = integer_zero_node, code = GE;
13586 else
13587 code = unsignedp ? GTU : GT;
13588 break;
13589 case GE_EXPR:
13590 if (integer_onep (arg1))
13591 arg1 = integer_zero_node, code = unsignedp ? GTU : GT;
13592 else
13593 code = unsignedp ? GEU : GE;
13594 break;
13596 case UNORDERED_EXPR:
13597 code = UNORDERED;
13598 break;
13599 case ORDERED_EXPR:
13600 code = ORDERED;
13601 break;
13602 case UNLT_EXPR:
13603 code = UNLT;
13604 break;
13605 case UNLE_EXPR:
13606 code = UNLE;
13607 break;
13608 case UNGT_EXPR:
13609 code = UNGT;
13610 break;
13611 case UNGE_EXPR:
13612 code = UNGE;
13613 break;
13614 case UNEQ_EXPR:
13615 code = UNEQ;
13616 break;
13617 case LTGT_EXPR:
13618 code = LTGT;
13619 break;
13621 default:
13622 gcc_unreachable ();
13625 /* Put a constant second. */
13626 if (TREE_CODE (arg0) == REAL_CST || TREE_CODE (arg0) == INTEGER_CST
13627 || TREE_CODE (arg0) == FIXED_CST)
13629 std::swap (arg0, arg1);
13630 code = swap_condition (code);
13633 /* If this is an equality or inequality test of a single bit, we can
13634 do this by shifting the bit being tested to the low-order bit and
13635 masking the result with the constant 1. If the condition was EQ,
13636 we xor it with 1. This does not require an scc insn and is faster
13637 than an scc insn even if we have it. */
13639 if ((code == NE || code == EQ)
13640 && (integer_zerop (arg1)
13641 || integer_pow2p (arg1))
13642 /* vector types are not handled here. */
13643 && TREE_CODE (TREE_TYPE (arg1)) != VECTOR_TYPE
13644 && (TYPE_PRECISION (ops->type) != 1 || TYPE_UNSIGNED (ops->type)))
13646 tree narg0 = arg0;
13647 wide_int nz = tree_nonzero_bits (narg0);
13648 gimple *srcstmt = get_def_for_expr (narg0, BIT_AND_EXPR);
13649 /* If the defining statement was (x & POW2), then use that instead of
13650 the non-zero bits. */
13651 if (srcstmt && integer_pow2p (gimple_assign_rhs2 (srcstmt)))
13653 nz = wi::to_wide (gimple_assign_rhs2 (srcstmt));
13654 narg0 = gimple_assign_rhs1 (srcstmt);
13657 if (wi::popcount (nz) == 1
13658 && (integer_zerop (arg1)
13659 || wi::to_wide (arg1) == nz))
13661 int bitnum = wi::exact_log2 (nz);
13662 enum tree_code tcode = EQ_EXPR;
13663 if ((code == NE) ^ !integer_zerop (arg1))
13664 tcode = NE_EXPR;
13666 type = lang_hooks.types.type_for_mode (mode, unsignedp);
13667 return expand_single_bit_test (loc, tcode,
13668 narg0,
13669 bitnum, type, target, mode);
13674 if (! get_subtarget (target)
13675 || GET_MODE (subtarget) != operand_mode)
13676 subtarget = 0;
13678 expand_operands (arg0, arg1, subtarget, &op0, &op1, EXPAND_NORMAL);
13680 if (target == 0)
13681 target = gen_reg_rtx (mode);
13683 /* Try a cstore if possible. */
13684 return emit_store_flag_force (target, code, op0, op1,
13685 operand_mode, unsignedp,
13686 (TYPE_PRECISION (ops->type) == 1
13687 && !TYPE_UNSIGNED (ops->type)) ? -1 : 1);
13690 /* Attempt to generate a casesi instruction. Returns true if successful,
13691 false otherwise (i.e. if there is no casesi instruction).
13693 DEFAULT_PROBABILITY is the probability of jumping to the default
13694 label. */
13695 bool
13696 try_casesi (tree index_type, tree index_expr, tree minval, tree range,
13697 rtx table_label, rtx default_label, rtx fallback_label,
13698 profile_probability default_probability)
13700 class expand_operand ops[5];
13701 scalar_int_mode index_mode = SImode;
13702 rtx op1, op2, index;
13704 if (! targetm.have_casesi ())
13705 return false;
13707 /* The index must be some form of integer. Convert it to SImode. */
13708 scalar_int_mode omode = SCALAR_INT_TYPE_MODE (index_type);
13709 if (GET_MODE_BITSIZE (omode) > GET_MODE_BITSIZE (index_mode))
13711 rtx rangertx = expand_normal (range);
13713 /* We must handle the endpoints in the original mode. */
13714 index_expr = build2 (MINUS_EXPR, index_type,
13715 index_expr, minval);
13716 minval = integer_zero_node;
13717 index = expand_normal (index_expr);
13718 if (default_label)
13719 emit_cmp_and_jump_insns (rangertx, index, LTU, NULL_RTX,
13720 omode, 1, default_label,
13721 default_probability);
13722 /* Now we can safely truncate. */
13723 index = convert_to_mode (index_mode, index, 0);
13725 else
13727 if (omode != index_mode)
13729 index_type = lang_hooks.types.type_for_mode (index_mode, 0);
13730 index_expr = fold_convert (index_type, index_expr);
13733 index = expand_normal (index_expr);
13736 do_pending_stack_adjust ();
13738 op1 = expand_normal (minval);
13739 op2 = expand_normal (range);
13741 create_input_operand (&ops[0], index, index_mode);
13742 create_convert_operand_from_type (&ops[1], op1, TREE_TYPE (minval));
13743 create_convert_operand_from_type (&ops[2], op2, TREE_TYPE (range));
13744 create_fixed_operand (&ops[3], table_label);
13745 create_fixed_operand (&ops[4], (default_label
13746 ? default_label
13747 : fallback_label));
13748 expand_jump_insn (targetm.code_for_casesi, 5, ops);
13749 return true;
13752 /* Attempt to generate a tablejump instruction; same concept. */
13753 /* Subroutine of the next function.
13755 INDEX is the value being switched on, with the lowest value
13756 in the table already subtracted.
13757 MODE is its expected mode (needed if INDEX is constant).
13758 RANGE is the length of the jump table.
13759 TABLE_LABEL is a CODE_LABEL rtx for the table itself.
13761 DEFAULT_LABEL is a CODE_LABEL rtx to jump to if the
13762 index value is out of range.
13763 DEFAULT_PROBABILITY is the probability of jumping to
13764 the default label. */
13766 static void
13767 do_tablejump (rtx index, machine_mode mode, rtx range, rtx table_label,
13768 rtx default_label, profile_probability default_probability)
13770 rtx temp, vector;
13772 if (INTVAL (range) > cfun->cfg->max_jumptable_ents)
13773 cfun->cfg->max_jumptable_ents = INTVAL (range);
13775 /* Do an unsigned comparison (in the proper mode) between the index
13776 expression and the value which represents the length of the range.
13777 Since we just finished subtracting the lower bound of the range
13778 from the index expression, this comparison allows us to simultaneously
13779 check that the original index expression value is both greater than
13780 or equal to the minimum value of the range and less than or equal to
13781 the maximum value of the range. */
13783 if (default_label)
13784 emit_cmp_and_jump_insns (index, range, GTU, NULL_RTX, mode, 1,
13785 default_label, default_probability);
13787 /* If index is in range, it must fit in Pmode.
13788 Convert to Pmode so we can index with it. */
13789 if (mode != Pmode)
13791 unsigned int width;
13793 /* We know the value of INDEX is between 0 and RANGE. If we have a
13794 sign-extended subreg, and RANGE does not have the sign bit set, then
13795 we have a value that is valid for both sign and zero extension. In
13796 this case, we get better code if we sign extend. */
13797 if (GET_CODE (index) == SUBREG
13798 && SUBREG_PROMOTED_VAR_P (index)
13799 && SUBREG_PROMOTED_SIGNED_P (index)
13800 && ((width = GET_MODE_PRECISION (as_a <scalar_int_mode> (mode)))
13801 <= HOST_BITS_PER_WIDE_INT)
13802 && ! (UINTVAL (range) & (HOST_WIDE_INT_1U << (width - 1))))
13803 index = convert_to_mode (Pmode, index, 0);
13804 else
13805 index = convert_to_mode (Pmode, index, 1);
13808 /* Don't let a MEM slip through, because then INDEX that comes
13809 out of PIC_CASE_VECTOR_ADDRESS won't be a valid address,
13810 and break_out_memory_refs will go to work on it and mess it up. */
13811 #ifdef PIC_CASE_VECTOR_ADDRESS
13812 if (flag_pic && !REG_P (index))
13813 index = copy_to_mode_reg (Pmode, index);
13814 #endif
13816 /* ??? The only correct use of CASE_VECTOR_MODE is the one inside the
13817 GET_MODE_SIZE, because this indicates how large insns are. The other
13818 uses should all be Pmode, because they are addresses. This code
13819 could fail if addresses and insns are not the same size. */
13820 index = simplify_gen_binary (MULT, Pmode, index,
13821 gen_int_mode (GET_MODE_SIZE (CASE_VECTOR_MODE),
13822 Pmode));
13823 index = simplify_gen_binary (PLUS, Pmode, index,
13824 gen_rtx_LABEL_REF (Pmode, table_label));
13826 #ifdef PIC_CASE_VECTOR_ADDRESS
13827 if (flag_pic)
13828 index = PIC_CASE_VECTOR_ADDRESS (index);
13829 else
13830 #endif
13831 index = memory_address (CASE_VECTOR_MODE, index);
13832 temp = gen_reg_rtx (CASE_VECTOR_MODE);
13833 vector = gen_const_mem (CASE_VECTOR_MODE, index);
13834 convert_move (temp, vector, 0);
13836 emit_jump_insn (targetm.gen_tablejump (temp, table_label));
13838 /* If we are generating PIC code or if the table is PC-relative, the
13839 table and JUMP_INSN must be adjacent, so don't output a BARRIER. */
13840 if (! CASE_VECTOR_PC_RELATIVE && ! flag_pic)
13841 emit_barrier ();
13844 bool
13845 try_tablejump (tree index_type, tree index_expr, tree minval, tree range,
13846 rtx table_label, rtx default_label,
13847 profile_probability default_probability)
13849 rtx index;
13851 if (! targetm.have_tablejump ())
13852 return false;
13854 index_expr = fold_build2 (MINUS_EXPR, index_type,
13855 fold_convert (index_type, index_expr),
13856 fold_convert (index_type, minval));
13857 index = expand_normal (index_expr);
13858 do_pending_stack_adjust ();
13860 do_tablejump (index, TYPE_MODE (index_type),
13861 convert_modes (TYPE_MODE (index_type),
13862 TYPE_MODE (TREE_TYPE (range)),
13863 expand_normal (range),
13864 TYPE_UNSIGNED (TREE_TYPE (range))),
13865 table_label, default_label, default_probability);
13866 return true;
13869 /* Return a CONST_VECTOR rtx representing vector mask for
13870 a VECTOR_CST of booleans. */
13871 static rtx
13872 const_vector_mask_from_tree (tree exp)
13874 machine_mode mode = TYPE_MODE (TREE_TYPE (exp));
13875 machine_mode inner = GET_MODE_INNER (mode);
13877 rtx_vector_builder builder (mode, VECTOR_CST_NPATTERNS (exp),
13878 VECTOR_CST_NELTS_PER_PATTERN (exp));
13879 unsigned int count = builder.encoded_nelts ();
13880 for (unsigned int i = 0; i < count; ++i)
13882 tree elt = VECTOR_CST_ELT (exp, i);
13883 gcc_assert (TREE_CODE (elt) == INTEGER_CST);
13884 if (integer_zerop (elt))
13885 builder.quick_push (CONST0_RTX (inner));
13886 else if (integer_onep (elt)
13887 || integer_minus_onep (elt))
13888 builder.quick_push (CONSTM1_RTX (inner));
13889 else
13890 gcc_unreachable ();
13892 return builder.build ();
13895 /* Return a CONST_VECTOR rtx for a VECTOR_CST tree. */
13896 static rtx
13897 const_vector_from_tree (tree exp)
13899 machine_mode mode = TYPE_MODE (TREE_TYPE (exp));
13901 if (initializer_zerop (exp))
13902 return CONST0_RTX (mode);
13904 if (VECTOR_BOOLEAN_TYPE_P (TREE_TYPE (exp)))
13905 return const_vector_mask_from_tree (exp);
13907 machine_mode inner = GET_MODE_INNER (mode);
13909 rtx_vector_builder builder (mode, VECTOR_CST_NPATTERNS (exp),
13910 VECTOR_CST_NELTS_PER_PATTERN (exp));
13911 unsigned int count = builder.encoded_nelts ();
13912 for (unsigned int i = 0; i < count; ++i)
13914 tree elt = VECTOR_CST_ELT (exp, i);
13915 if (TREE_CODE (elt) == REAL_CST)
13916 builder.quick_push (const_double_from_real_value (TREE_REAL_CST (elt),
13917 inner));
13918 else if (TREE_CODE (elt) == FIXED_CST)
13919 builder.quick_push (CONST_FIXED_FROM_FIXED_VALUE (TREE_FIXED_CST (elt),
13920 inner));
13921 else
13922 builder.quick_push (immed_wide_int_const (wi::to_poly_wide (elt),
13923 inner));
13925 return builder.build ();
13928 /* Build a decl for a personality function given a language prefix. */
13930 tree
13931 build_personality_function (const char *lang)
13933 const char *unwind_and_version;
13934 tree decl, type;
13935 char *name;
13937 switch (targetm_common.except_unwind_info (&global_options))
13939 case UI_NONE:
13940 return NULL;
13941 case UI_SJLJ:
13942 unwind_and_version = "_sj0";
13943 break;
13944 case UI_DWARF2:
13945 case UI_TARGET:
13946 unwind_and_version = "_v0";
13947 break;
13948 case UI_SEH:
13949 unwind_and_version = "_seh0";
13950 break;
13951 default:
13952 gcc_unreachable ();
13955 name = ACONCAT (("__", lang, "_personality", unwind_and_version, NULL));
13957 type = build_function_type_list (unsigned_type_node,
13958 integer_type_node, integer_type_node,
13959 long_long_unsigned_type_node,
13960 ptr_type_node, ptr_type_node, NULL_TREE);
13961 decl = build_decl (UNKNOWN_LOCATION, FUNCTION_DECL,
13962 get_identifier (name), type);
13963 DECL_ARTIFICIAL (decl) = 1;
13964 DECL_EXTERNAL (decl) = 1;
13965 TREE_PUBLIC (decl) = 1;
13967 /* Zap the nonsensical SYMBOL_REF_DECL for this. What we're left with
13968 are the flags assigned by targetm.encode_section_info. */
13969 SET_SYMBOL_REF_DECL (XEXP (DECL_RTL (decl), 0), NULL);
13971 return decl;
13974 /* Extracts the personality function of DECL and returns the corresponding
13975 libfunc. */
13978 get_personality_function (tree decl)
13980 tree personality = DECL_FUNCTION_PERSONALITY (decl);
13981 enum eh_personality_kind pk;
13983 pk = function_needs_eh_personality (DECL_STRUCT_FUNCTION (decl));
13984 if (pk == eh_personality_none)
13985 return NULL;
13987 if (!personality
13988 && pk == eh_personality_any)
13989 personality = lang_hooks.eh_personality ();
13991 if (pk == eh_personality_lang)
13992 gcc_assert (personality != NULL_TREE);
13994 return XEXP (DECL_RTL (personality), 0);
13997 /* Returns a tree for the size of EXP in bytes. */
13999 static tree
14000 tree_expr_size (const_tree exp)
14002 if (DECL_P (exp)
14003 && DECL_SIZE_UNIT (exp) != 0)
14004 return DECL_SIZE_UNIT (exp);
14005 else
14006 return size_in_bytes (TREE_TYPE (exp));
14009 /* Return an rtx for the size in bytes of the value of EXP. */
14012 expr_size (tree exp)
14014 tree size;
14016 if (TREE_CODE (exp) == WITH_SIZE_EXPR)
14017 size = TREE_OPERAND (exp, 1);
14018 else
14020 size = tree_expr_size (exp);
14021 gcc_assert (size);
14022 gcc_assert (size == SUBSTITUTE_PLACEHOLDER_IN_EXPR (size, exp));
14025 return expand_expr (size, NULL_RTX, TYPE_MODE (sizetype), EXPAND_NORMAL);
14028 /* Return a wide integer for the size in bytes of the value of EXP, or -1
14029 if the size can vary or is larger than an integer. */
14031 HOST_WIDE_INT
14032 int_expr_size (const_tree exp)
14034 tree size;
14036 if (TREE_CODE (exp) == WITH_SIZE_EXPR)
14037 size = TREE_OPERAND (exp, 1);
14038 else
14040 size = tree_expr_size (exp);
14041 gcc_assert (size);
14044 if (size == 0 || !tree_fits_shwi_p (size))
14045 return -1;
14047 return tree_to_shwi (size);