2015-05-04 Sandra Loosemore <sandra@codesourcery.com>
[official-gcc.git] / gcc / testsuite / lib / target-supports.exp
blobd68b48bad21924c9355c92489a4323b11baaa0f8
1 # Copyright (C) 1999-2015 Free Software Foundation, Inc.
3 # This program is free software; you can redistribute it and/or modify
4 # it under the terms of the GNU General Public License as published by
5 # the Free Software Foundation; either version 3 of the License, or
6 # (at your option) any later version.
8 # This program is distributed in the hope that it will be useful,
9 # but WITHOUT ANY WARRANTY; without even the implied warranty of
10 # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
11 # GNU General Public License for more details.
13 # You should have received a copy of the GNU General Public License
14 # along with GCC; see the file COPYING3. If not see
15 # <http://www.gnu.org/licenses/>.
17 # Please email any bugs, comments, and/or additions to this file to:
18 # gcc-patches@gcc.gnu.org
20 # This file defines procs for determining features supported by the target.
22 # Try to compile the code given by CONTENTS into an output file of
23 # type TYPE, where TYPE is as for target_compile. Return a list
24 # whose first element contains the compiler messages and whose
25 # second element is the name of the output file.
27 # BASENAME is a prefix to use for source and output files.
28 # If ARGS is not empty, its first element is a string that
29 # should be added to the command line.
31 # Assume by default that CONTENTS is C code.
32 # Otherwise, code should contain:
33 # "// C++" for c++,
34 # "! Fortran" for Fortran code,
35 # "/* ObjC", for ObjC
36 # "// ObjC++" for ObjC++
37 # and "// Go" for Go
38 # If the tool is ObjC/ObjC++ then we overide the extension to .m/.mm to
39 # allow for ObjC/ObjC++ specific flags.
40 proc check_compile {basename type contents args} {
41 global tool
42 verbose "check_compile tool: $tool for $basename"
44 # Save additional_sources to avoid compiling testsuite's sources
45 # against check_compile's source.
46 global additional_sources
47 if [info exists additional_sources] {
48 set tmp_additional_sources "$additional_sources"
49 set additional_sources ""
52 if { [llength $args] > 0 } {
53 set options [list "additional_flags=[lindex $args 0]"]
54 } else {
55 set options ""
57 switch -glob -- $contents {
58 "*! Fortran*" { set src ${basename}[pid].f90 }
59 "*// C++*" { set src ${basename}[pid].cc }
60 "*// ObjC++*" { set src ${basename}[pid].mm }
61 "*/* ObjC*" { set src ${basename}[pid].m }
62 "*// Go*" { set src ${basename}[pid].go }
63 default {
64 switch -- $tool {
65 "objc" { set src ${basename}[pid].m }
66 "obj-c++" { set src ${basename}[pid].mm }
67 default { set src ${basename}[pid].c }
72 set compile_type $type
73 switch -glob $type {
74 assembly { set output ${basename}[pid].s }
75 object { set output ${basename}[pid].o }
76 executable { set output ${basename}[pid].exe }
77 "rtl-*" {
78 set output ${basename}[pid].s
79 lappend options "additional_flags=-fdump-$type"
80 set compile_type assembly
83 set f [open $src "w"]
84 puts $f $contents
85 close $f
86 set lines [${tool}_target_compile $src $output $compile_type "$options"]
87 file delete $src
89 set scan_output $output
90 # Don't try folding this into the switch above; calling "glob" before the
91 # file is created won't work.
92 if [regexp "rtl-(.*)" $type dummy rtl_type] {
93 set scan_output "[glob $src.\[0-9\]\[0-9\]\[0-9\]r.$rtl_type]"
94 file delete $output
97 # Restore additional_sources.
98 if [info exists additional_sources] {
99 set additional_sources "$tmp_additional_sources"
102 return [list $lines $scan_output]
105 proc current_target_name { } {
106 global target_info
107 if [info exists target_info(target,name)] {
108 set answer $target_info(target,name)
109 } else {
110 set answer ""
112 return $answer
115 # Implement an effective-target check for property PROP by invoking
116 # the Tcl command ARGS and seeing if it returns true.
118 proc check_cached_effective_target { prop args } {
119 global et_cache
121 set target [current_target_name]
122 if {![info exists et_cache($prop,target)]
123 || $et_cache($prop,target) != $target} {
124 verbose "check_cached_effective_target $prop: checking $target" 2
125 set et_cache($prop,target) $target
126 set et_cache($prop,value) [uplevel eval $args]
128 set value $et_cache($prop,value)
129 verbose "check_cached_effective_target $prop: returning $value for $target" 2
130 return $value
133 # Like check_compile, but delete the output file and return true if the
134 # compiler printed no messages.
135 proc check_no_compiler_messages_nocache {args} {
136 set result [eval check_compile $args]
137 set lines [lindex $result 0]
138 set output [lindex $result 1]
139 remote_file build delete $output
140 return [string match "" $lines]
143 # Like check_no_compiler_messages_nocache, but cache the result.
144 # PROP is the property we're checking, and doubles as a prefix for
145 # temporary filenames.
146 proc check_no_compiler_messages {prop args} {
147 return [check_cached_effective_target $prop {
148 eval [list check_no_compiler_messages_nocache $prop] $args
152 # Like check_compile, but return true if the compiler printed no
153 # messages and if the contents of the output file satisfy PATTERN.
154 # If PATTERN has the form "!REGEXP", the contents satisfy it if they
155 # don't match regular expression REGEXP, otherwise they satisfy it
156 # if they do match regular expression PATTERN. (PATTERN can start
157 # with something like "[!]" if the regular expression needs to match
158 # "!" as the first character.)
160 # Delete the output file before returning. The other arguments are
161 # as for check_compile.
162 proc check_no_messages_and_pattern_nocache {basename pattern args} {
163 global tool
165 set result [eval [list check_compile $basename] $args]
166 set lines [lindex $result 0]
167 set output [lindex $result 1]
169 set ok 0
170 if { [string match "" $lines] } {
171 set chan [open "$output"]
172 set invert [regexp {^!(.*)} $pattern dummy pattern]
173 set ok [expr { [regexp $pattern [read $chan]] != $invert }]
174 close $chan
177 remote_file build delete $output
178 return $ok
181 # Like check_no_messages_and_pattern_nocache, but cache the result.
182 # PROP is the property we're checking, and doubles as a prefix for
183 # temporary filenames.
184 proc check_no_messages_and_pattern {prop pattern args} {
185 return [check_cached_effective_target $prop {
186 eval [list check_no_messages_and_pattern_nocache $prop $pattern] $args
190 # Try to compile and run an executable from code CONTENTS. Return true
191 # if the compiler reports no messages and if execution "passes" in the
192 # usual DejaGNU sense. The arguments are as for check_compile, with
193 # TYPE implicitly being "executable".
194 proc check_runtime_nocache {basename contents args} {
195 global tool
197 set result [eval [list check_compile $basename executable $contents] $args]
198 set lines [lindex $result 0]
199 set output [lindex $result 1]
201 set ok 0
202 if { [string match "" $lines] } {
203 # No error messages, everything is OK.
204 set result [remote_load target "./$output" "" ""]
205 set status [lindex $result 0]
206 verbose "check_runtime_nocache $basename: status is <$status>" 2
207 if { $status == "pass" } {
208 set ok 1
211 remote_file build delete $output
212 return $ok
215 # Like check_runtime_nocache, but cache the result. PROP is the
216 # property we're checking, and doubles as a prefix for temporary
217 # filenames.
218 proc check_runtime {prop args} {
219 global tool
221 return [check_cached_effective_target $prop {
222 eval [list check_runtime_nocache $prop] $args
226 ###############################
227 # proc check_weak_available { }
228 ###############################
230 # weak symbols are only supported in some configs/object formats
231 # this proc returns 1 if they're supported, 0 if they're not, or -1 if unsure
233 proc check_weak_available { } {
234 global target_cpu
236 # All mips targets should support it
238 if { [ string first "mips" $target_cpu ] >= 0 } {
239 return 1
242 # All AIX targets should support it
244 if { [istarget *-*-aix*] } {
245 return 1
248 # All solaris2 targets should support it
250 if { [istarget *-*-solaris2*] } {
251 return 1
254 # Windows targets Cygwin and MingW32 support it
256 if { [istarget *-*-cygwin*] || [istarget *-*-mingw*] } {
257 return 1
260 # HP-UX 10.X doesn't support it
262 if { [istarget hppa*-*-hpux10*] } {
263 return 0
266 # ELF and ECOFF support it. a.out does with gas/gld but may also with
267 # other linkers, so we should try it
269 set objformat [gcc_target_object_format]
271 switch $objformat {
272 elf { return 1 }
273 ecoff { return 1 }
274 a.out { return 1 }
275 mach-o { return 1 }
276 som { return 1 }
277 unknown { return -1 }
278 default { return 0 }
282 ###############################
283 # proc check_weak_override_available { }
284 ###############################
286 # Like check_weak_available, but return 0 if weak symbol definitions
287 # cannot be overridden.
289 proc check_weak_override_available { } {
290 if { [istarget *-*-mingw*] } {
291 return 0
293 return [check_weak_available]
296 ###############################
297 # proc check_visibility_available { what_kind }
298 ###############################
300 # The visibility attribute is only support in some object formats
301 # This proc returns 1 if it is supported, 0 if not.
302 # The argument is the kind of visibility, default/protected/hidden/internal.
304 proc check_visibility_available { what_kind } {
305 if [string match "" $what_kind] { set what_kind "hidden" }
307 return [check_no_compiler_messages visibility_available_$what_kind object "
308 void f() __attribute__((visibility(\"$what_kind\")));
309 void f() {}
313 ###############################
314 # proc check_alias_available { }
315 ###############################
317 # Determine if the target toolchain supports the alias attribute.
319 # Returns 2 if the target supports aliases. Returns 1 if the target
320 # only supports weak aliased. Returns 0 if the target does not
321 # support aliases at all. Returns -1 if support for aliases could not
322 # be determined.
324 proc check_alias_available { } {
325 global alias_available_saved
326 global tool
328 if [info exists alias_available_saved] {
329 verbose "check_alias_available returning saved $alias_available_saved" 2
330 } else {
331 set src alias[pid].c
332 set obj alias[pid].o
333 verbose "check_alias_available compiling testfile $src" 2
334 set f [open $src "w"]
335 # Compile a small test program. The definition of "g" is
336 # necessary to keep the Solaris assembler from complaining
337 # about the program.
338 puts $f "#ifdef __cplusplus\nextern \"C\"\n#endif\n"
339 puts $f "void g() {} void f() __attribute__((alias(\"g\")));"
340 close $f
341 set lines [${tool}_target_compile $src $obj object ""]
342 file delete $src
343 remote_file build delete $obj
345 if [string match "" $lines] then {
346 # No error messages, everything is OK.
347 set alias_available_saved 2
348 } else {
349 if [regexp "alias definitions not supported" $lines] {
350 verbose "check_alias_available target does not support aliases" 2
352 set objformat [gcc_target_object_format]
354 if { $objformat == "elf" } {
355 verbose "check_alias_available but target uses ELF format, so it ought to" 2
356 set alias_available_saved -1
357 } else {
358 set alias_available_saved 0
360 } else {
361 if [regexp "only weak aliases are supported" $lines] {
362 verbose "check_alias_available target supports only weak aliases" 2
363 set alias_available_saved 1
364 } else {
365 set alias_available_saved -1
370 verbose "check_alias_available returning $alias_available_saved" 2
373 return $alias_available_saved
376 # Returns 1 if the target toolchain supports strong aliases, 0 otherwise.
378 proc check_effective_target_alias { } {
379 if { [check_alias_available] < 2 } {
380 return 0
381 } else {
382 return 1
386 # Returns 1 if the target toolchain supports ifunc, 0 otherwise.
388 proc check_ifunc_available { } {
389 return [check_no_compiler_messages ifunc_available object {
390 #ifdef __cplusplus
391 extern "C"
392 #endif
393 void g() {}
394 void f() __attribute__((ifunc("g")));
398 # Returns true if --gc-sections is supported on the target.
400 proc check_gc_sections_available { } {
401 global gc_sections_available_saved
402 global tool
404 if {![info exists gc_sections_available_saved]} {
405 # Some targets don't support gc-sections despite whatever's
406 # advertised by ld's options.
407 if { [istarget alpha*-*-*]
408 || [istarget ia64-*-*] } {
409 set gc_sections_available_saved 0
410 return 0
413 # elf2flt uses -q (--emit-relocs), which is incompatible with
414 # --gc-sections.
415 if { [board_info target exists ldflags]
416 && [regexp " -elf2flt\[ =\]" " [board_info target ldflags] "] } {
417 set gc_sections_available_saved 0
418 return 0
421 # VxWorks kernel modules are relocatable objects linked with -r,
422 # while RTP executables are linked with -q (--emit-relocs).
423 # Both of these options are incompatible with --gc-sections.
424 if { [istarget *-*-vxworks*] } {
425 set gc_sections_available_saved 0
426 return 0
429 # Check if the ld used by gcc supports --gc-sections.
430 set gcc_spec [${tool}_target_compile "-dumpspecs" "" "none" ""]
431 regsub ".*\n\\*linker:\[ \t\]*\n(\[^ \t\n\]*).*" "$gcc_spec" {\1} linker
432 set gcc_ld [lindex [${tool}_target_compile "-print-prog-name=$linker" "" "none" ""] 0]
433 set ld_output [remote_exec host "$gcc_ld" "--help"]
434 if { [ string first "--gc-sections" $ld_output ] >= 0 } {
435 set gc_sections_available_saved 1
436 } else {
437 set gc_sections_available_saved 0
440 return $gc_sections_available_saved
443 # Return 1 if according to target_info struct and explicit target list
444 # target is supposed to support trampolines.
446 proc check_effective_target_trampolines { } {
447 if [target_info exists no_trampolines] {
448 return 0
450 if { [istarget avr-*-*]
451 || [istarget msp430-*-*]
452 || [istarget nvptx-*-*]
453 || [istarget hppa2.0w-hp-hpux11.23]
454 || [istarget hppa64-hp-hpux11.23] } {
455 return 0;
457 return 1
460 # Return 1 if according to target_info struct and explicit target list
461 # target disables -fdelete-null-pointer-checks. Targets should return 0
462 # if they simply default to -fno-delete-null-pointer-checks but obey
463 # -fdelete-null-pointer-checks when passed explicitly (and tests that
464 # depend on this option should do that).
466 proc check_effective_target_keeps_null_pointer_checks { } {
467 if [target_info exists keeps_null_pointer_checks] {
468 return 1
470 if { [istarget avr-*-*] } {
471 return 1;
473 return 0
476 # Return true if profiling is supported on the target.
478 proc check_profiling_available { test_what } {
479 global profiling_available_saved
481 verbose "Profiling argument is <$test_what>" 1
483 # These conditions depend on the argument so examine them before
484 # looking at the cache variable.
486 # Tree profiling requires TLS runtime support.
487 if { $test_what == "-fprofile-generate" } {
488 if { ![check_effective_target_tls_runtime] } {
489 return 0
493 # Support for -p on solaris2 relies on mcrt1.o which comes with the
494 # vendor compiler. We cannot reliably predict the directory where the
495 # vendor compiler (and thus mcrt1.o) is installed so we can't
496 # necessarily find mcrt1.o even if we have it.
497 if { [istarget *-*-solaris2*] && $test_what == "-p" } {
498 return 0
501 # We don't yet support profiling for MIPS16.
502 if { [istarget mips*-*-*]
503 && ![check_effective_target_nomips16]
504 && ($test_what == "-p" || $test_what == "-pg") } {
505 return 0
508 # MinGW does not support -p.
509 if { [istarget *-*-mingw*] && $test_what == "-p" } {
510 return 0
513 # cygwin does not support -p.
514 if { [istarget *-*-cygwin*] && $test_what == "-p" } {
515 return 0
518 # uClibc does not have gcrt1.o.
519 if { [check_effective_target_uclibc]
520 && ($test_what == "-p" || $test_what == "-pg") } {
521 return 0
524 # Now examine the cache variable.
525 if {![info exists profiling_available_saved]} {
526 # Some targets don't have any implementation of __bb_init_func or are
527 # missing other needed machinery.
528 if {[istarget aarch64*-*-elf]
529 || [istarget am3*-*-linux*]
530 || [istarget arm*-*-eabi*]
531 || [istarget arm*-*-elf]
532 || [istarget arm*-*-symbianelf*]
533 || [istarget avr-*-*]
534 || [istarget bfin-*-*]
535 || [istarget cris-*-*]
536 || [istarget crisv32-*-*]
537 || [istarget fido-*-elf]
538 || [istarget h8300-*-*]
539 || [istarget lm32-*-*]
540 || [istarget m32c-*-elf]
541 || [istarget m68k-*-elf]
542 || [istarget m68k-*-uclinux*]
543 || [istarget mep-*-elf]
544 || [istarget mips*-*-elf*]
545 || [istarget mmix-*-*]
546 || [istarget mn10300-*-elf*]
547 || [istarget moxie-*-elf*]
548 || [istarget msp430-*-*]
549 || [istarget nds32*-*-elf]
550 || [istarget nios2-*-elf]
551 || [istarget nvptx-*-*]
552 || [istarget powerpc-*-eabi*]
553 || [istarget powerpc-*-elf]
554 || [istarget rx-*-*]
555 || [istarget tic6x-*-elf]
556 || [istarget visium-*-*]
557 || [istarget xstormy16-*]
558 || [istarget xtensa*-*-elf]
559 || [istarget *-*-rtems*]
560 || [istarget *-*-vxworks*] } {
561 set profiling_available_saved 0
562 } else {
563 set profiling_available_saved 1
567 # -pg link test result can't be cached since it may change between
568 # runs.
569 set profiling_working $profiling_available_saved
570 if { $profiling_available_saved == 1
571 && ![check_no_compiler_messages_nocache profiling executable {
572 int main() { return 0; } } "-pg"] } {
573 set profiling_working 0
576 return $profiling_working
579 # Check to see if a target is "freestanding". This is as per the definition
580 # in Section 4 of C99 standard. Effectively, it is a target which supports no
581 # extra headers or libraries other than what is considered essential.
582 proc check_effective_target_freestanding { } {
583 return 0
586 # Return 1 if target has packed layout of structure members by
587 # default, 0 otherwise. Note that this is slightly different than
588 # whether the target has "natural alignment": both attributes may be
589 # false.
591 proc check_effective_target_default_packed { } {
592 return [check_no_compiler_messages default_packed assembly {
593 struct x { char a; long b; } c;
594 int s[sizeof (c) == sizeof (char) + sizeof (long) ? 1 : -1];
598 # Return 1 if target has PCC_BITFIELD_TYPE_MATTERS defined. See
599 # documentation, where the test also comes from.
601 proc check_effective_target_pcc_bitfield_type_matters { } {
602 # PCC_BITFIELD_TYPE_MATTERS isn't just about unnamed or empty
603 # bitfields, but let's stick to the example code from the docs.
604 return [check_no_compiler_messages pcc_bitfield_type_matters assembly {
605 struct foo1 { char x; char :0; char y; };
606 struct foo2 { char x; int :0; char y; };
607 int s[sizeof (struct foo1) != sizeof (struct foo2) ? 1 : -1];
611 # Add to FLAGS all the target-specific flags needed to use thread-local storage.
613 proc add_options_for_tls { flags } {
614 # On Solaris 9, __tls_get_addr/___tls_get_addr only lives in
615 # libthread, so always pass -pthread for native TLS. Same for AIX.
616 # Need to duplicate native TLS check from
617 # check_effective_target_tls_native to avoid recursion.
618 if { ([istarget powerpc-ibm-aix*]) &&
619 [check_no_messages_and_pattern tls_native "!emutls" assembly {
620 __thread int i;
621 int f (void) { return i; }
622 void g (int j) { i = j; }
623 }] } {
624 return "-pthread [g++_link_flags [get_multilibs "-pthread"] ] $flags "
626 return $flags
629 # Return 1 if indirect jumps are supported, 0 otherwise.
631 proc check_effective_target_indirect_jumps {} {
632 if { [istarget nvptx-*-*] } {
633 return 0
635 return 1
638 # Return 1 if nonlocal goto is supported, 0 otherwise.
640 proc check_effective_target_nonlocal_goto {} {
641 if { [istarget nvptx-*-*] } {
642 return 0
644 return 1
647 # Return 1 if taking label values is supported, 0 otherwise.
649 proc check_effective_target_label_values {} {
650 if { [istarget nvptx-*-*] } {
651 return 0
653 return [check_no_compiler_messages label_values assembly {
654 #ifdef NO_LABEL_VALUES
655 #error NO
656 #endif
660 # Return 1 if builtin_return_address and builtin_frame_address are
661 # supported, 0 otherwise.
663 proc check_effective_target_return_address {} {
664 if { [istarget nvptx-*-*] } {
665 return 0
667 return 1
670 # Return 1 if the assembler does not verify function types against
671 # calls, 0 otherwise. Such verification will typically show up problems
672 # with K&R C function declarations.
674 proc check_effective_target_untyped_assembly {} {
675 if { [istarget nvptx-*-*] } {
676 return 0
678 return 1
681 # Return 1 if alloca is supported, 0 otherwise.
683 proc check_effective_target_alloca {} {
684 if { [istarget nvptx-*-*] } {
685 return 0
687 return 1
690 # Return 1 if thread local storage (TLS) is supported, 0 otherwise.
692 proc check_effective_target_tls {} {
693 return [check_no_compiler_messages tls assembly {
694 __thread int i;
695 int f (void) { return i; }
696 void g (int j) { i = j; }
700 # Return 1 if *native* thread local storage (TLS) is supported, 0 otherwise.
702 proc check_effective_target_tls_native {} {
703 # VxWorks uses emulated TLS machinery, but with non-standard helper
704 # functions, so we fail to automatically detect it.
705 if { [istarget *-*-vxworks*] } {
706 return 0
709 return [check_no_messages_and_pattern tls_native "!emutls" assembly {
710 __thread int i;
711 int f (void) { return i; }
712 void g (int j) { i = j; }
716 # Return 1 if *emulated* thread local storage (TLS) is supported, 0 otherwise.
718 proc check_effective_target_tls_emulated {} {
719 # VxWorks uses emulated TLS machinery, but with non-standard helper
720 # functions, so we fail to automatically detect it.
721 if { [istarget *-*-vxworks*] } {
722 return 1
725 return [check_no_messages_and_pattern tls_emulated "emutls" assembly {
726 __thread int i;
727 int f (void) { return i; }
728 void g (int j) { i = j; }
732 # Return 1 if TLS executables can run correctly, 0 otherwise.
734 proc check_effective_target_tls_runtime {} {
735 # The runtime does not have TLS support, but just
736 # running the test below is insufficient to show this.
737 if { [istarget msp430-*-*] || [istarget visium-*-*] } {
738 return 0
740 return [check_runtime tls_runtime {
741 __thread int thr = 0;
742 int main (void) { return thr; }
743 } [add_options_for_tls ""]]
746 # Return 1 if atomic compare-and-swap is supported on 'int'
748 proc check_effective_target_cas_char {} {
749 return [check_no_compiler_messages cas_char assembly {
750 #ifndef __GCC_HAVE_SYNC_COMPARE_AND_SWAP_1
751 #error unsupported
752 #endif
753 } ""]
756 proc check_effective_target_cas_int {} {
757 return [check_no_compiler_messages cas_int assembly {
758 #if __INT_MAX__ == 0x7fff && __GCC_HAVE_SYNC_COMPARE_AND_SWAP_2
759 /* ok */
760 #elif __INT_MAX__ == 0x7fffffff && __GCC_HAVE_SYNC_COMPARE_AND_SWAP_4
761 /* ok */
762 #else
763 #error unsupported
764 #endif
765 } ""]
768 # Return 1 if -ffunction-sections is supported, 0 otherwise.
770 proc check_effective_target_function_sections {} {
771 # Darwin has its own scheme and silently accepts -ffunction-sections.
772 if { [istarget *-*-darwin*] } {
773 return 0
776 return [check_no_compiler_messages functionsections assembly {
777 void foo (void) { }
778 } "-ffunction-sections"]
781 # Return 1 if instruction scheduling is available, 0 otherwise.
783 proc check_effective_target_scheduling {} {
784 return [check_no_compiler_messages scheduling object {
785 void foo (void) { }
786 } "-fschedule-insns"]
789 # Return 1 if trapping arithmetic is available, 0 otherwise.
791 proc check_effective_target_trapping {} {
792 return [check_no_compiler_messages trapping object {
793 int add (int a, int b) { return a + b; }
794 } "-ftrapv"]
797 # Return 1 if compilation with -fgraphite is error-free for trivial
798 # code, 0 otherwise.
800 proc check_effective_target_fgraphite {} {
801 return [check_no_compiler_messages fgraphite object {
802 void foo (void) { }
803 } "-O1 -fgraphite"]
806 # Return 1 if compilation with -fopenacc is error-free for trivial
807 # code, 0 otherwise.
809 proc check_effective_target_fopenacc {} {
810 return [check_no_compiler_messages fopenacc object {
811 void foo (void) { }
812 } "-fopenacc"]
815 # Return 1 if compilation with -fopenmp is error-free for trivial
816 # code, 0 otherwise.
818 proc check_effective_target_fopenmp {} {
819 return [check_no_compiler_messages fopenmp object {
820 void foo (void) { }
821 } "-fopenmp"]
824 # Return 1 if compilation with -fgnu-tm is error-free for trivial
825 # code, 0 otherwise.
827 proc check_effective_target_fgnu_tm {} {
828 return [check_no_compiler_messages fgnu_tm object {
829 void foo (void) { }
830 } "-fgnu-tm"]
833 # Return 1 if the target supports mmap, 0 otherwise.
835 proc check_effective_target_mmap {} {
836 return [check_function_available "mmap"]
839 # Return 1 if the target supports dlopen, 0 otherwise.
840 proc check_effective_target_dlopen {} {
841 return [check_no_compiler_messages dlopen executable {
842 #include <dlfcn.h>
843 int main(void) { dlopen ("dummy.so", RTLD_NOW); }
844 } [add_options_for_dlopen ""]]
847 proc add_options_for_dlopen { flags } {
848 return "$flags -ldl"
851 # Return 1 if the target supports clone, 0 otherwise.
852 proc check_effective_target_clone {} {
853 return [check_function_available "clone"]
856 # Return 1 if the target supports setrlimit, 0 otherwise.
857 proc check_effective_target_setrlimit {} {
858 # Darwin has non-posix compliant RLIMIT_AS
859 if { [istarget *-*-darwin*] } {
860 return 0
862 return [check_function_available "setrlimit"]
865 # Return 1 if the target supports swapcontext, 0 otherwise.
866 proc check_effective_target_swapcontext {} {
867 return [check_no_compiler_messages swapcontext executable {
868 #include <ucontext.h>
869 int main (void)
871 ucontext_t orig_context,child_context;
872 if (swapcontext(&child_context, &orig_context) < 0) { }
877 # Return 1 if compilation with -pthread is error-free for trivial
878 # code, 0 otherwise.
880 proc check_effective_target_pthread {} {
881 return [check_no_compiler_messages pthread object {
882 void foo (void) { }
883 } "-pthread"]
886 # Return 1 if compilation with -mpe-aligned-commons is error-free
887 # for trivial code, 0 otherwise.
889 proc check_effective_target_pe_aligned_commons {} {
890 if { [istarget *-*-cygwin*] || [istarget *-*-mingw*] } {
891 return [check_no_compiler_messages pe_aligned_commons object {
892 int foo;
893 } "-mpe-aligned-commons"]
895 return 0
898 # Return 1 if the target supports -static
899 proc check_effective_target_static {} {
900 return [check_no_compiler_messages static executable {
901 int main (void) { return 0; }
902 } "-static"]
905 # Return 1 if the target supports -fstack-protector
906 proc check_effective_target_fstack_protector {} {
907 return [check_runtime fstack_protector {
908 int main (void) { return 0; }
909 } "-fstack-protector"]
912 # Return 1 if compilation with -freorder-blocks-and-partition is error-free
913 # for trivial code, 0 otherwise.
915 proc check_effective_target_freorder {} {
916 return [check_no_compiler_messages freorder object {
917 void foo (void) { }
918 } "-freorder-blocks-and-partition"]
921 # Return 1 if -fpic and -fPIC are supported, as in no warnings or errors
922 # emitted, 0 otherwise. Whether a shared library can actually be built is
923 # out of scope for this test.
925 proc check_effective_target_fpic { } {
926 # Note that M68K has a multilib that supports -fpic but not
927 # -fPIC, so we need to check both. We test with a program that
928 # requires GOT references.
929 foreach arg {fpic fPIC} {
930 if [check_no_compiler_messages $arg object {
931 extern int foo (void); extern int bar;
932 int baz (void) { return foo () + bar; }
933 } "-$arg"] {
934 return 1
937 return 0
940 # Return 1 if -shared is supported, as in no warnings or errors
941 # emitted, 0 otherwise.
943 proc check_effective_target_shared { } {
944 # Note that M68K has a multilib that supports -fpic but not
945 # -fPIC, so we need to check both. We test with a program that
946 # requires GOT references.
947 return [check_no_compiler_messages shared executable {
948 extern int foo (void); extern int bar;
949 int baz (void) { return foo () + bar; }
950 } "-shared -fpic"]
953 # Return 1 if -pie, -fpie and -fPIE are supported, 0 otherwise.
955 proc check_effective_target_pie { } {
956 if { [istarget *-*-darwin\[912\]*]
957 || [istarget *-*-linux*]
958 || [istarget *-*-gnu*] } {
959 return 1;
961 return 0
964 # Return true if the target supports -mpaired-single (as used on MIPS).
966 proc check_effective_target_mpaired_single { } {
967 return [check_no_compiler_messages mpaired_single object {
968 void foo (void) { }
969 } "-mpaired-single"]
972 # Return true if the target has access to FPU instructions.
974 proc check_effective_target_hard_float { } {
975 if { [istarget mips*-*-*] } {
976 return [check_no_compiler_messages hard_float assembly {
977 #if (defined __mips_soft_float || defined __mips16)
978 #error __mips_soft_float || __mips16
979 #endif
983 # This proc is actually checking the availabilty of FPU
984 # support for doubles, so on the RX we must fail if the
985 # 64-bit double multilib has been selected.
986 if { [istarget rx-*-*] } {
987 return 0
988 # return [check_no_compiler_messages hard_float assembly {
989 #if defined __RX_64_BIT_DOUBLES__
990 #error __RX_64_BIT_DOUBLES__
991 #endif
992 # }]
995 # The generic test equates hard_float with "no call for adding doubles".
996 return [check_no_messages_and_pattern hard_float "!\\(call" rtl-expand {
997 double a (double b, double c) { return b + c; }
1001 # Return true if the target is a 64-bit MIPS target.
1003 proc check_effective_target_mips64 { } {
1004 return [check_no_compiler_messages mips64 assembly {
1005 #ifndef __mips64
1006 #error !__mips64
1007 #endif
1011 # Return true if the target is a MIPS target that does not produce
1012 # MIPS16 code.
1014 proc check_effective_target_nomips16 { } {
1015 return [check_no_compiler_messages nomips16 object {
1016 #ifndef __mips
1017 #error !__mips
1018 #else
1019 /* A cheap way of testing for -mflip-mips16. */
1020 void foo (void) { asm ("addiu $20,$20,1"); }
1021 void bar (void) { asm ("addiu $20,$20,1"); }
1022 #endif
1026 # Add the options needed for MIPS16 function attributes. At the moment,
1027 # we don't support MIPS16 PIC.
1029 proc add_options_for_mips16_attribute { flags } {
1030 return "$flags -mno-abicalls -fno-pic -DMIPS16=__attribute__((mips16))"
1033 # Return true if we can force a mode that allows MIPS16 code generation.
1034 # We don't support MIPS16 PIC, and only support MIPS16 -mhard-float
1035 # for o32 and o64.
1037 proc check_effective_target_mips16_attribute { } {
1038 return [check_no_compiler_messages mips16_attribute assembly {
1039 #ifdef PIC
1040 #error PIC
1041 #endif
1042 #if defined __mips_hard_float \
1043 && (!defined _ABIO32 || _MIPS_SIM != _ABIO32) \
1044 && (!defined _ABIO64 || _MIPS_SIM != _ABIO64)
1045 #error __mips_hard_float && (!_ABIO32 || !_ABIO64)
1046 #endif
1047 } [add_options_for_mips16_attribute ""]]
1050 # Return 1 if the target supports long double larger than double when
1051 # using the new ABI, 0 otherwise.
1053 proc check_effective_target_mips_newabi_large_long_double { } {
1054 return [check_no_compiler_messages mips_newabi_large_long_double object {
1055 int dummy[sizeof(long double) > sizeof(double) ? 1 : -1];
1056 } "-mabi=64"]
1059 # Return true if the target is a MIPS target that has access
1060 # to the LL and SC instructions.
1062 proc check_effective_target_mips_llsc { } {
1063 if { ![istarget mips*-*-*] } {
1064 return 0
1066 # Assume that these instructions are always implemented for
1067 # non-elf* targets, via emulation if necessary.
1068 if { ![istarget *-*-elf*] } {
1069 return 1
1071 # Otherwise assume LL/SC support for everything but MIPS I.
1072 return [check_no_compiler_messages mips_llsc assembly {
1073 #if __mips == 1
1074 #error __mips == 1
1075 #endif
1079 # Return true if the target is a MIPS target that uses in-place relocations.
1081 proc check_effective_target_mips_rel { } {
1082 if { ![istarget mips*-*-*] } {
1083 return 0
1085 return [check_no_compiler_messages mips_rel object {
1086 #if (defined _ABIN32 && _MIPS_SIM == _ABIN32) \
1087 || (defined _ABI64 && _MIPS_SIM == _ABI64)
1088 #error _ABIN32 && (_ABIN32 || _ABI64)
1089 #endif
1093 # Return true if the target is a MIPS target that uses the EABI.
1095 proc check_effective_target_mips_eabi { } {
1096 if { ![istarget mips*-*-*] } {
1097 return 0
1099 return [check_no_compiler_messages mips_eabi object {
1100 #ifndef __mips_eabi
1101 #error !__mips_eabi
1102 #endif
1106 # Return 1 if the current multilib does not generate PIC by default.
1108 proc check_effective_target_nonpic { } {
1109 return [check_no_compiler_messages nonpic assembly {
1110 #if __PIC__
1111 #error __PIC__
1112 #endif
1116 # Return 1 if the current multilib generates PIE by default.
1118 proc check_effective_target_pie_enabled { } {
1119 return [check_no_compiler_messages pie_enabled assembly {
1120 #ifndef __PIE__
1121 #error unsupported
1122 #endif
1126 # Return 1 if the target does not use a status wrapper.
1128 proc check_effective_target_unwrapped { } {
1129 if { [target_info needs_status_wrapper] != "" \
1130 && [target_info needs_status_wrapper] != "0" } {
1131 return 0
1133 return 1
1136 # Return true if iconv is supported on the target. In particular IBM1047.
1138 proc check_iconv_available { test_what } {
1139 global libiconv
1141 # If the tool configuration file has not set libiconv, try "-liconv"
1142 if { ![info exists libiconv] } {
1143 set libiconv "-liconv"
1145 set test_what [lindex $test_what 1]
1146 return [check_runtime_nocache $test_what [subst {
1147 #include <iconv.h>
1148 int main (void)
1150 iconv_t cd;
1152 cd = iconv_open ("$test_what", "UTF-8");
1153 if (cd == (iconv_t) -1)
1154 return 1;
1155 return 0;
1157 }] $libiconv]
1160 # Return true if Cilk Library is supported on the target.
1161 proc check_libcilkrts_available { } {
1162 return [ check_no_compiler_messages_nocache libcilkrts_available executable {
1163 #ifdef __cplusplus
1164 extern "C"
1165 #endif
1166 int __cilkrts_set_param (const char *, const char *);
1167 int main (void) {
1168 int x = __cilkrts_set_param ("nworkers", "0");
1169 return x;
1171 } "-fcilkplus -lcilkrts" ]
1174 # Return true if the atomic library is supported on the target.
1175 proc check_effective_target_libatomic_available { } {
1176 return [check_no_compiler_messages libatomic_available executable {
1177 int main (void) { return 0; }
1178 } "-latomic"]
1181 # Return 1 if an ASCII locale is supported on this host, 0 otherwise.
1183 proc check_ascii_locale_available { } {
1184 return 1
1187 # Return true if named sections are supported on this target.
1189 proc check_named_sections_available { } {
1190 return [check_no_compiler_messages named_sections assembly {
1191 int __attribute__ ((section("whatever"))) foo;
1195 # Return true if the "naked" function attribute is supported on this target.
1197 proc check_effective_target_naked_functions { } {
1198 return [check_no_compiler_messages naked_functions assembly {
1199 void f() __attribute__((naked));
1203 # Return 1 if the target supports Fortran real kinds larger than real(8),
1204 # 0 otherwise.
1206 # When the target name changes, replace the cached result.
1208 proc check_effective_target_fortran_large_real { } {
1209 return [check_no_compiler_messages fortran_large_real executable {
1210 ! Fortran
1211 integer,parameter :: k = selected_real_kind (precision (0.0_8) + 1)
1212 real(kind=k) :: x
1213 x = cos (x)
1218 # Return 1 if the target supports Fortran real kind real(16),
1219 # 0 otherwise. Contrary to check_effective_target_fortran_large_real
1220 # this checks for Real(16) only; the other returned real(10) if
1221 # both real(10) and real(16) are available.
1223 # When the target name changes, replace the cached result.
1225 proc check_effective_target_fortran_real_16 { } {
1226 return [check_no_compiler_messages fortran_real_16 executable {
1227 ! Fortran
1228 real(kind=16) :: x
1229 x = cos (x)
1235 # Return 1 if the target supports Fortran's IEEE modules,
1236 # 0 otherwise.
1238 # When the target name changes, replace the cached result.
1240 proc check_effective_target_fortran_ieee { flags } {
1241 return [check_no_compiler_messages fortran_ieee executable {
1242 ! Fortran
1243 use, intrinsic :: ieee_features
1245 } $flags ]
1249 # Return 1 if the target supports SQRT for the largest floating-point
1250 # type. (Some targets lack the libm support for this FP type.)
1251 # On most targets, this check effectively checks either whether sqrtl is
1252 # available or on __float128 systems whether libquadmath is installed,
1253 # which provides sqrtq.
1255 # When the target name changes, replace the cached result.
1257 proc check_effective_target_fortran_largest_fp_has_sqrt { } {
1258 return [check_no_compiler_messages fortran_largest_fp_has_sqrt executable {
1259 ! Fortran
1260 use iso_fortran_env, only: real_kinds
1261 integer,parameter:: maxFP = real_kinds(ubound(real_kinds,dim=1))
1262 real(kind=maxFP), volatile :: x
1263 x = 2.0_maxFP
1264 x = sqrt (x)
1270 # Return 1 if the target supports Fortran integer kinds larger than
1271 # integer(8), 0 otherwise.
1273 # When the target name changes, replace the cached result.
1275 proc check_effective_target_fortran_large_int { } {
1276 return [check_no_compiler_messages fortran_large_int executable {
1277 ! Fortran
1278 integer,parameter :: k = selected_int_kind (range (0_8) + 1)
1279 integer(kind=k) :: i
1284 # Return 1 if the target supports Fortran integer(16), 0 otherwise.
1286 # When the target name changes, replace the cached result.
1288 proc check_effective_target_fortran_integer_16 { } {
1289 return [check_no_compiler_messages fortran_integer_16 executable {
1290 ! Fortran
1291 integer(16) :: i
1296 # Return 1 if we can statically link libgfortran, 0 otherwise.
1298 # When the target name changes, replace the cached result.
1300 proc check_effective_target_static_libgfortran { } {
1301 return [check_no_compiler_messages static_libgfortran executable {
1302 ! Fortran
1303 print *, 'test'
1305 } "-static"]
1308 # Return 1 if cilk-plus is supported by the target, 0 otherwise.
1310 proc check_effective_target_cilkplus { } {
1311 # Skip cilk-plus tests on int16 and size16 targets for now.
1312 # The cilk-plus tests are not generic enough to cover these
1313 # cases and would throw hundreds of FAILs.
1314 if { [check_effective_target_int16]
1315 || ![check_effective_target_size32plus] } {
1316 return 0;
1319 # Skip AVR, its RAM is too small and too many tests would fail.
1320 if { [istarget avr-*-*] } {
1321 return 0;
1323 return 1
1326 proc check_linker_plugin_available { } {
1327 return [check_no_compiler_messages_nocache linker_plugin executable {
1328 int main() { return 0; }
1329 } "-flto -fuse-linker-plugin"]
1332 # Return 1 if the target supports executing 750CL paired-single instructions, 0
1333 # otherwise. Cache the result.
1335 proc check_750cl_hw_available { } {
1336 return [check_cached_effective_target 750cl_hw_available {
1337 # If this is not the right target then we can skip the test.
1338 if { ![istarget powerpc-*paired*] } {
1339 expr 0
1340 } else {
1341 check_runtime_nocache 750cl_hw_available {
1342 int main()
1344 #ifdef __MACH__
1345 asm volatile ("ps_mul v0,v0,v0");
1346 #else
1347 asm volatile ("ps_mul 0,0,0");
1348 #endif
1349 return 0;
1351 } "-mpaired"
1356 # Return 1 if the target OS supports running SSE executables, 0
1357 # otherwise. Cache the result.
1359 proc check_sse_os_support_available { } {
1360 return [check_cached_effective_target sse_os_support_available {
1361 # If this is not the right target then we can skip the test.
1362 if { !([istarget x86_64-*-*] || [istarget i?86-*-*]) } {
1363 expr 0
1364 } elseif { [istarget i?86-*-solaris2*] } {
1365 # The Solaris 2 kernel doesn't save and restore SSE registers
1366 # before Solaris 9 4/04. Before that, executables die with SIGILL.
1367 check_runtime_nocache sse_os_support_available {
1368 int main ()
1370 asm volatile ("movaps %xmm0,%xmm0");
1371 return 0;
1373 } "-msse"
1374 } else {
1375 expr 1
1380 # Return 1 if the target OS supports running AVX executables, 0
1381 # otherwise. Cache the result.
1383 proc check_avx_os_support_available { } {
1384 return [check_cached_effective_target avx_os_support_available {
1385 # If this is not the right target then we can skip the test.
1386 if { !([istarget x86_64-*-*] || [istarget i?86-*-*]) } {
1387 expr 0
1388 } else {
1389 # Check that OS has AVX and SSE saving enabled.
1390 check_runtime_nocache avx_os_support_available {
1391 int main ()
1393 unsigned int eax, edx;
1395 asm ("xgetbv" : "=a" (eax), "=d" (edx) : "c" (0));
1396 return (eax & 6) != 6;
1398 } ""
1403 # Return 1 if the target supports executing SSE instructions, 0
1404 # otherwise. Cache the result.
1406 proc check_sse_hw_available { } {
1407 return [check_cached_effective_target sse_hw_available {
1408 # If this is not the right target then we can skip the test.
1409 if { !([istarget x86_64-*-*] || [istarget i?86-*-*]) } {
1410 expr 0
1411 } else {
1412 check_runtime_nocache sse_hw_available {
1413 #include "cpuid.h"
1414 int main ()
1416 unsigned int eax, ebx, ecx, edx;
1417 if (__get_cpuid (1, &eax, &ebx, &ecx, &edx))
1418 return !(edx & bit_SSE);
1419 return 1;
1421 } ""
1426 # Return 1 if the target supports executing SSE2 instructions, 0
1427 # otherwise. Cache the result.
1429 proc check_sse2_hw_available { } {
1430 return [check_cached_effective_target sse2_hw_available {
1431 # If this is not the right target then we can skip the test.
1432 if { !([istarget x86_64-*-*] || [istarget i?86-*-*]) } {
1433 expr 0
1434 } else {
1435 check_runtime_nocache sse2_hw_available {
1436 #include "cpuid.h"
1437 int main ()
1439 unsigned int eax, ebx, ecx, edx;
1440 if (__get_cpuid (1, &eax, &ebx, &ecx, &edx))
1441 return !(edx & bit_SSE2);
1442 return 1;
1444 } ""
1449 # Return 1 if the target supports executing AVX instructions, 0
1450 # otherwise. Cache the result.
1452 proc check_avx_hw_available { } {
1453 return [check_cached_effective_target avx_hw_available {
1454 # If this is not the right target then we can skip the test.
1455 if { !([istarget x86_64-*-*] || [istarget i?86-*-*]) } {
1456 expr 0
1457 } else {
1458 check_runtime_nocache avx_hw_available {
1459 #include "cpuid.h"
1460 int main ()
1462 unsigned int eax, ebx, ecx, edx;
1463 if (__get_cpuid (1, &eax, &ebx, &ecx, &edx))
1464 return ((ecx & (bit_AVX | bit_OSXSAVE))
1465 != (bit_AVX | bit_OSXSAVE));
1466 return 1;
1468 } ""
1473 # Return 1 if the target supports running SSE executables, 0 otherwise.
1475 proc check_effective_target_sse_runtime { } {
1476 if { [check_effective_target_sse]
1477 && [check_sse_hw_available]
1478 && [check_sse_os_support_available] } {
1479 return 1
1481 return 0
1484 # Return 1 if the target supports running SSE2 executables, 0 otherwise.
1486 proc check_effective_target_sse2_runtime { } {
1487 if { [check_effective_target_sse2]
1488 && [check_sse2_hw_available]
1489 && [check_sse_os_support_available] } {
1490 return 1
1492 return 0
1495 # Return 1 if the target supports running AVX executables, 0 otherwise.
1497 proc check_effective_target_avx_runtime { } {
1498 if { [check_effective_target_avx]
1499 && [check_avx_hw_available]
1500 && [check_avx_os_support_available] } {
1501 return 1
1503 return 0
1506 # Return 1 if the target supports executing power8 vector instructions, 0
1507 # otherwise. Cache the result.
1509 proc check_p8vector_hw_available { } {
1510 return [check_cached_effective_target p8vector_hw_available {
1511 # Some simulators are known to not support VSX/power8 instructions.
1512 # For now, disable on Darwin
1513 if { [istarget powerpc-*-eabi] || [istarget powerpc*-*-eabispe] || [istarget *-*-darwin*]} {
1514 expr 0
1515 } else {
1516 set options "-mpower8-vector"
1517 check_runtime_nocache p8vector_hw_available {
1518 int main()
1520 #ifdef __MACH__
1521 asm volatile ("xxlorc vs0,vs0,vs0");
1522 #else
1523 asm volatile ("xxlorc 0,0,0");
1524 #endif
1525 return 0;
1527 } $options
1532 # Return 1 if the target supports executing VSX instructions, 0
1533 # otherwise. Cache the result.
1535 proc check_vsx_hw_available { } {
1536 return [check_cached_effective_target vsx_hw_available {
1537 # Some simulators are known to not support VSX instructions.
1538 # For now, disable on Darwin
1539 if { [istarget powerpc-*-eabi] || [istarget powerpc*-*-eabispe] || [istarget *-*-darwin*]} {
1540 expr 0
1541 } else {
1542 set options "-mvsx"
1543 check_runtime_nocache vsx_hw_available {
1544 int main()
1546 #ifdef __MACH__
1547 asm volatile ("xxlor vs0,vs0,vs0");
1548 #else
1549 asm volatile ("xxlor 0,0,0");
1550 #endif
1551 return 0;
1553 } $options
1558 # Return 1 if the target supports executing AltiVec instructions, 0
1559 # otherwise. Cache the result.
1561 proc check_vmx_hw_available { } {
1562 return [check_cached_effective_target vmx_hw_available {
1563 # Some simulators are known to not support VMX instructions.
1564 if { [istarget powerpc-*-eabi] || [istarget powerpc*-*-eabispe] } {
1565 expr 0
1566 } else {
1567 # Most targets don't require special flags for this test case, but
1568 # Darwin does. Just to be sure, make sure VSX is not enabled for
1569 # the altivec tests.
1570 if { [istarget *-*-darwin*]
1571 || [istarget *-*-aix*] } {
1572 set options "-maltivec -mno-vsx"
1573 } else {
1574 set options "-mno-vsx"
1576 check_runtime_nocache vmx_hw_available {
1577 int main()
1579 #ifdef __MACH__
1580 asm volatile ("vor v0,v0,v0");
1581 #else
1582 asm volatile ("vor 0,0,0");
1583 #endif
1584 return 0;
1586 } $options
1591 proc check_ppc_recip_hw_available { } {
1592 return [check_cached_effective_target ppc_recip_hw_available {
1593 # Some simulators may not support FRE/FRES/FRSQRTE/FRSQRTES
1594 # For now, disable on Darwin
1595 if { [istarget powerpc-*-eabi] || [istarget powerpc*-*-eabispe] || [istarget *-*-darwin*]} {
1596 expr 0
1597 } else {
1598 set options "-mpowerpc-gfxopt -mpowerpc-gpopt -mpopcntb"
1599 check_runtime_nocache ppc_recip_hw_available {
1600 volatile double d_recip, d_rsqrt, d_four = 4.0;
1601 volatile float f_recip, f_rsqrt, f_four = 4.0f;
1602 int main()
1604 asm volatile ("fres %0,%1" : "=f" (f_recip) : "f" (f_four));
1605 asm volatile ("fre %0,%1" : "=d" (d_recip) : "d" (d_four));
1606 asm volatile ("frsqrtes %0,%1" : "=f" (f_rsqrt) : "f" (f_four));
1607 asm volatile ("frsqrte %0,%1" : "=f" (d_rsqrt) : "d" (d_four));
1608 return 0;
1610 } $options
1615 # Return 1 if the target supports executing AltiVec and Cell PPU
1616 # instructions, 0 otherwise. Cache the result.
1618 proc check_effective_target_cell_hw { } {
1619 return [check_cached_effective_target cell_hw_available {
1620 # Some simulators are known to not support VMX and PPU instructions.
1621 if { [istarget powerpc-*-eabi*] } {
1622 expr 0
1623 } else {
1624 # Most targets don't require special flags for this test
1625 # case, but Darwin and AIX do.
1626 if { [istarget *-*-darwin*]
1627 || [istarget *-*-aix*] } {
1628 set options "-maltivec -mcpu=cell"
1629 } else {
1630 set options "-mcpu=cell"
1632 check_runtime_nocache cell_hw_available {
1633 int main()
1635 #ifdef __MACH__
1636 asm volatile ("vor v0,v0,v0");
1637 asm volatile ("lvlx v0,r0,r0");
1638 #else
1639 asm volatile ("vor 0,0,0");
1640 asm volatile ("lvlx 0,0,0");
1641 #endif
1642 return 0;
1644 } $options
1649 # Return 1 if the target supports executing 64-bit instructions, 0
1650 # otherwise. Cache the result.
1652 proc check_effective_target_powerpc64 { } {
1653 global powerpc64_available_saved
1654 global tool
1656 if [info exists powerpc64_available_saved] {
1657 verbose "check_effective_target_powerpc64 returning saved $powerpc64_available_saved" 2
1658 } else {
1659 set powerpc64_available_saved 0
1661 # Some simulators are known to not support powerpc64 instructions.
1662 if { [istarget powerpc-*-eabi*] || [istarget powerpc-ibm-aix*] } {
1663 verbose "check_effective_target_powerpc64 returning 0" 2
1664 return $powerpc64_available_saved
1667 # Set up, compile, and execute a test program containing a 64-bit
1668 # instruction. Include the current process ID in the file
1669 # names to prevent conflicts with invocations for multiple
1670 # testsuites.
1671 set src ppc[pid].c
1672 set exe ppc[pid].x
1674 set f [open $src "w"]
1675 puts $f "int main() {"
1676 puts $f "#ifdef __MACH__"
1677 puts $f " asm volatile (\"extsw r0,r0\");"
1678 puts $f "#else"
1679 puts $f " asm volatile (\"extsw 0,0\");"
1680 puts $f "#endif"
1681 puts $f " return 0; }"
1682 close $f
1684 set opts "additional_flags=-mcpu=G5"
1686 verbose "check_effective_target_powerpc64 compiling testfile $src" 2
1687 set lines [${tool}_target_compile $src $exe executable "$opts"]
1688 file delete $src
1690 if [string match "" $lines] then {
1691 # No error message, compilation succeeded.
1692 set result [${tool}_load "./$exe" "" ""]
1693 set status [lindex $result 0]
1694 remote_file build delete $exe
1695 verbose "check_effective_target_powerpc64 testfile status is <$status>" 2
1697 if { $status == "pass" } then {
1698 set powerpc64_available_saved 1
1700 } else {
1701 verbose "check_effective_target_powerpc64 testfile compilation failed" 2
1705 return $powerpc64_available_saved
1708 # GCC 3.4.0 for powerpc64-*-linux* included an ABI fix for passing
1709 # complex float arguments. This affects gfortran tests that call cabsf
1710 # in libm built by an earlier compiler. Return 1 if libm uses the same
1711 # argument passing as the compiler under test, 0 otherwise.
1713 # When the target name changes, replace the cached result.
1715 proc check_effective_target_broken_cplxf_arg { } {
1716 return [check_cached_effective_target broken_cplxf_arg {
1717 # Skip the work for targets known not to be affected.
1718 if { ![istarget powerpc64-*-linux*] } {
1719 expr 0
1720 } elseif { ![is-effective-target lp64] } {
1721 expr 0
1722 } else {
1723 check_runtime_nocache broken_cplxf_arg {
1724 #include <complex.h>
1725 extern void abort (void);
1726 float fabsf (float);
1727 float cabsf (_Complex float);
1728 int main ()
1730 _Complex float cf;
1731 float f;
1732 cf = 3 + 4.0fi;
1733 f = cabsf (cf);
1734 if (fabsf (f - 5.0) > 0.0001)
1735 abort ();
1736 return 0;
1738 } "-lm"
1743 # Return 1 is this is a TI C6X target supporting C67X instructions
1744 proc check_effective_target_ti_c67x { } {
1745 return [check_no_compiler_messages ti_c67x assembly {
1746 #if !defined(_TMS320C6700)
1747 #error !_TMS320C6700
1748 #endif
1752 # Return 1 is this is a TI C6X target supporting C64X+ instructions
1753 proc check_effective_target_ti_c64xp { } {
1754 return [check_no_compiler_messages ti_c64xp assembly {
1755 #if !defined(_TMS320C6400_PLUS)
1756 #error !_TMS320C6400_PLUS
1757 #endif
1762 proc check_alpha_max_hw_available { } {
1763 return [check_runtime alpha_max_hw_available {
1764 int main() { return __builtin_alpha_amask(1<<8) != 0; }
1768 # Returns true iff the FUNCTION is available on the target system.
1769 # (This is essentially a Tcl implementation of Autoconf's
1770 # AC_CHECK_FUNC.)
1772 proc check_function_available { function } {
1773 return [check_no_compiler_messages ${function}_available \
1774 executable [subst {
1775 #ifdef __cplusplus
1776 extern "C"
1777 #endif
1778 char $function ();
1779 int main () { $function (); }
1780 }] "-fno-builtin" ]
1783 # Returns true iff "fork" is available on the target system.
1785 proc check_fork_available {} {
1786 return [check_function_available "fork"]
1789 # Returns true iff "mkfifo" is available on the target system.
1791 proc check_mkfifo_available {} {
1792 if { [istarget *-*-cygwin*] } {
1793 # Cygwin has mkfifo, but support is incomplete.
1794 return 0
1797 return [check_function_available "mkfifo"]
1800 # Returns true iff "__cxa_atexit" is used on the target system.
1802 proc check_cxa_atexit_available { } {
1803 return [check_cached_effective_target cxa_atexit_available {
1804 if { [istarget hppa*-*-hpux10*] } {
1805 # HP-UX 10 doesn't have __cxa_atexit but subsequent test passes.
1806 expr 0
1807 } elseif { [istarget *-*-vxworks] } {
1808 # vxworks doesn't have __cxa_atexit but subsequent test passes.
1809 expr 0
1810 } else {
1811 check_runtime_nocache cxa_atexit_available {
1812 // C++
1813 #include <stdlib.h>
1814 static unsigned int count;
1815 struct X
1817 X() { count = 1; }
1818 ~X()
1820 if (count != 3)
1821 exit(1);
1822 count = 4;
1825 void f()
1827 static X x;
1829 struct Y
1831 Y() { f(); count = 2; }
1832 ~Y()
1834 if (count != 2)
1835 exit(1);
1836 count = 3;
1839 Y y;
1840 int main() { return 0; }
1846 proc check_effective_target_objc2 { } {
1847 return [check_no_compiler_messages objc2 object {
1848 #ifdef __OBJC2__
1849 int dummy[1];
1850 #else
1851 #error !__OBJC2__
1852 #endif
1856 proc check_effective_target_next_runtime { } {
1857 return [check_no_compiler_messages objc2 object {
1858 #ifdef __NEXT_RUNTIME__
1859 int dummy[1];
1860 #else
1861 #error !__NEXT_RUNTIME__
1862 #endif
1866 # Return 1 if we're generating 32-bit code using default options, 0
1867 # otherwise.
1869 proc check_effective_target_ilp32 { } {
1870 return [check_no_compiler_messages ilp32 object {
1871 int dummy[sizeof (int) == 4
1872 && sizeof (void *) == 4
1873 && sizeof (long) == 4 ? 1 : -1];
1877 # Return 1 if we're generating ia32 code using default options, 0
1878 # otherwise.
1880 proc check_effective_target_ia32 { } {
1881 return [check_no_compiler_messages ia32 object {
1882 int dummy[sizeof (int) == 4
1883 && sizeof (void *) == 4
1884 && sizeof (long) == 4 ? 1 : -1] = { __i386__ };
1888 # Return 1 if we're generating x32 code using default options, 0
1889 # otherwise.
1891 proc check_effective_target_x32 { } {
1892 return [check_no_compiler_messages x32 object {
1893 int dummy[sizeof (int) == 4
1894 && sizeof (void *) == 4
1895 && sizeof (long) == 4 ? 1 : -1] = { __x86_64__ };
1899 # Return 1 if we're generating 32-bit integers using default
1900 # options, 0 otherwise.
1902 proc check_effective_target_int32 { } {
1903 return [check_no_compiler_messages int32 object {
1904 int dummy[sizeof (int) == 4 ? 1 : -1];
1908 # Return 1 if we're generating 32-bit or larger integers using default
1909 # options, 0 otherwise.
1911 proc check_effective_target_int32plus { } {
1912 return [check_no_compiler_messages int32plus object {
1913 int dummy[sizeof (int) >= 4 ? 1 : -1];
1917 # Return 1 if we're generating 32-bit or larger pointers using default
1918 # options, 0 otherwise.
1920 proc check_effective_target_ptr32plus { } {
1921 # The msp430 has 16-bit or 20-bit pointers. The 20-bit pointer is stored
1922 # in a 32-bit slot when in memory, so sizeof(void *) returns 4, but it
1923 # cannot really hold a 32-bit address, so we always return false here.
1924 if { [istarget msp430-*-*] } {
1925 return 0
1928 return [check_no_compiler_messages ptr32plus object {
1929 int dummy[sizeof (void *) >= 4 ? 1 : -1];
1933 # Return 1 if we support 32-bit or larger array and structure sizes
1934 # using default options, 0 otherwise. Avoid false positive on
1935 # targets with 20 or 24 bit address spaces.
1937 proc check_effective_target_size32plus { } {
1938 return [check_no_compiler_messages size32plus object {
1939 char dummy[16777217L];
1943 # Returns 1 if we're generating 16-bit or smaller integers with the
1944 # default options, 0 otherwise.
1946 proc check_effective_target_int16 { } {
1947 return [check_no_compiler_messages int16 object {
1948 int dummy[sizeof (int) < 4 ? 1 : -1];
1952 # Return 1 if we're generating 64-bit code using default options, 0
1953 # otherwise.
1955 proc check_effective_target_lp64 { } {
1956 return [check_no_compiler_messages lp64 object {
1957 int dummy[sizeof (int) == 4
1958 && sizeof (void *) == 8
1959 && sizeof (long) == 8 ? 1 : -1];
1963 # Return 1 if we're generating 64-bit code using default llp64 options,
1964 # 0 otherwise.
1966 proc check_effective_target_llp64 { } {
1967 return [check_no_compiler_messages llp64 object {
1968 int dummy[sizeof (int) == 4
1969 && sizeof (void *) == 8
1970 && sizeof (long long) == 8
1971 && sizeof (long) == 4 ? 1 : -1];
1975 # Return 1 if long and int have different sizes,
1976 # 0 otherwise.
1978 proc check_effective_target_long_neq_int { } {
1979 return [check_no_compiler_messages long_ne_int object {
1980 int dummy[sizeof (int) != sizeof (long) ? 1 : -1];
1984 # Return 1 if the target supports long double larger than double,
1985 # 0 otherwise.
1987 proc check_effective_target_large_long_double { } {
1988 return [check_no_compiler_messages large_long_double object {
1989 int dummy[sizeof(long double) > sizeof(double) ? 1 : -1];
1993 # Return 1 if the target supports double larger than float,
1994 # 0 otherwise.
1996 proc check_effective_target_large_double { } {
1997 return [check_no_compiler_messages large_double object {
1998 int dummy[sizeof(double) > sizeof(float) ? 1 : -1];
2002 # Return 1 if the target supports long double of 128 bits,
2003 # 0 otherwise.
2005 proc check_effective_target_longdouble128 { } {
2006 return [check_no_compiler_messages longdouble128 object {
2007 int dummy[sizeof(long double) == 16 ? 1 : -1];
2011 # Return 1 if the target supports double of 64 bits,
2012 # 0 otherwise.
2014 proc check_effective_target_double64 { } {
2015 return [check_no_compiler_messages double64 object {
2016 int dummy[sizeof(double) == 8 ? 1 : -1];
2020 # Return 1 if the target supports double of at least 64 bits,
2021 # 0 otherwise.
2023 proc check_effective_target_double64plus { } {
2024 return [check_no_compiler_messages double64plus object {
2025 int dummy[sizeof(double) >= 8 ? 1 : -1];
2029 # Return 1 if the target supports 'w' suffix on floating constant
2030 # 0 otherwise.
2032 proc check_effective_target_has_w_floating_suffix { } {
2033 set opts ""
2034 if [check_effective_target_c++] {
2035 append opts "-std=gnu++03"
2037 return [check_no_compiler_messages w_fp_suffix object {
2038 float dummy = 1.0w;
2039 } "$opts"]
2042 # Return 1 if the target supports 'q' suffix on floating constant
2043 # 0 otherwise.
2045 proc check_effective_target_has_q_floating_suffix { } {
2046 set opts ""
2047 if [check_effective_target_c++] {
2048 append opts "-std=gnu++03"
2050 return [check_no_compiler_messages q_fp_suffix object {
2051 float dummy = 1.0q;
2052 } "$opts"]
2054 # Return 1 if the target supports compiling fixed-point,
2055 # 0 otherwise.
2057 proc check_effective_target_fixed_point { } {
2058 return [check_no_compiler_messages fixed_point object {
2059 _Sat _Fract x; _Sat _Accum y;
2063 # Return 1 if the target supports compiling decimal floating point,
2064 # 0 otherwise.
2066 proc check_effective_target_dfp_nocache { } {
2067 verbose "check_effective_target_dfp_nocache: compiling source" 2
2068 set ret [check_no_compiler_messages_nocache dfp object {
2069 float x __attribute__((mode(DD)));
2071 verbose "check_effective_target_dfp_nocache: returning $ret" 2
2072 return $ret
2075 proc check_effective_target_dfprt_nocache { } {
2076 return [check_runtime_nocache dfprt {
2077 typedef float d64 __attribute__((mode(DD)));
2078 d64 x = 1.2df, y = 2.3dd, z;
2079 int main () { z = x + y; return 0; }
2083 # Return 1 if the target supports compiling Decimal Floating Point,
2084 # 0 otherwise.
2086 # This won't change for different subtargets so cache the result.
2088 proc check_effective_target_dfp { } {
2089 return [check_cached_effective_target dfp {
2090 check_effective_target_dfp_nocache
2094 # Return 1 if the target supports linking and executing Decimal Floating
2095 # Point, 0 otherwise.
2097 # This won't change for different subtargets so cache the result.
2099 proc check_effective_target_dfprt { } {
2100 return [check_cached_effective_target dfprt {
2101 check_effective_target_dfprt_nocache
2105 # Return 1 if the target supports executing DFP hardware instructions,
2106 # 0 otherwise. Cache the result.
2108 proc check_dfp_hw_available { } {
2109 return [check_cached_effective_target dfp_hw_available {
2110 # For now, disable on Darwin
2111 if { [istarget powerpc-*-eabi] || [istarget powerpc*-*-eabispe] || [istarget *-*-darwin*]} {
2112 expr 0
2113 } else {
2114 check_runtime_nocache dfp_hw_available {
2115 volatile _Decimal64 r;
2116 volatile _Decimal64 a = 4.0DD;
2117 volatile _Decimal64 b = 2.0DD;
2118 int main()
2120 asm volatile ("dadd %0,%1,%2" : "=d" (r) : "d" (a), "d" (b));
2121 asm volatile ("dsub %0,%1,%2" : "=d" (r) : "d" (a), "d" (b));
2122 asm volatile ("dmul %0,%1,%2" : "=d" (r) : "d" (a), "d" (b));
2123 asm volatile ("ddiv %0,%1,%2" : "=d" (r) : "d" (a), "d" (b));
2124 return 0;
2126 } "-mcpu=power6 -mhard-float"
2131 # Return 1 if the target supports compiling and assembling UCN, 0 otherwise.
2133 proc check_effective_target_ucn_nocache { } {
2134 # -std=c99 is only valid for C
2135 if [check_effective_target_c] {
2136 set ucnopts "-std=c99"
2137 } else {
2138 set ucnopts ""
2140 verbose "check_effective_target_ucn_nocache: compiling source" 2
2141 set ret [check_no_compiler_messages_nocache ucn object {
2142 int \u00C0;
2143 } $ucnopts]
2144 verbose "check_effective_target_ucn_nocache: returning $ret" 2
2145 return $ret
2148 # Return 1 if the target supports compiling and assembling UCN, 0 otherwise.
2150 # This won't change for different subtargets, so cache the result.
2152 proc check_effective_target_ucn { } {
2153 return [check_cached_effective_target ucn {
2154 check_effective_target_ucn_nocache
2158 # Return 1 if the target needs a command line argument to enable a SIMD
2159 # instruction set.
2161 proc check_effective_target_vect_cmdline_needed { } {
2162 global et_vect_cmdline_needed_saved
2163 global et_vect_cmdline_needed_target_name
2165 if { ![info exists et_vect_cmdline_needed_target_name] } {
2166 set et_vect_cmdline_needed_target_name ""
2169 # If the target has changed since we set the cached value, clear it.
2170 set current_target [current_target_name]
2171 if { $current_target != $et_vect_cmdline_needed_target_name } {
2172 verbose "check_effective_target_vect_cmdline_needed: `$et_vect_cmdline_needed_target_name' `$current_target'" 2
2173 set et_vect_cmdline_needed_target_name $current_target
2174 if { [info exists et_vect_cmdline_needed_saved] } {
2175 verbose "check_effective_target_vect_cmdline_needed: removing cached result" 2
2176 unset et_vect_cmdline_needed_saved
2180 if [info exists et_vect_cmdline_needed_saved] {
2181 verbose "check_effective_target_vect_cmdline_needed: using cached result" 2
2182 } else {
2183 set et_vect_cmdline_needed_saved 1
2184 if { [istarget alpha*-*-*]
2185 || [istarget ia64-*-*]
2186 || (([istarget x86_64-*-*] || [istarget i?86-*-*])
2187 && ([check_effective_target_x32]
2188 || [check_effective_target_lp64]))
2189 || ([istarget powerpc*-*-*]
2190 && ([check_effective_target_powerpc_spe]
2191 || [check_effective_target_powerpc_altivec]))
2192 || ([istarget sparc*-*-*] && [check_effective_target_sparc_vis])
2193 || [istarget spu-*-*]
2194 || ([istarget arm*-*-*] && [check_effective_target_arm_neon])
2195 || [istarget aarch64*-*-*] } {
2196 set et_vect_cmdline_needed_saved 0
2200 verbose "check_effective_target_vect_cmdline_needed: returning $et_vect_cmdline_needed_saved" 2
2201 return $et_vect_cmdline_needed_saved
2204 # Return 1 if the target supports hardware vectors of int, 0 otherwise.
2206 # This won't change for different subtargets so cache the result.
2208 proc check_effective_target_vect_int { } {
2209 global et_vect_int_saved
2211 if [info exists et_vect_int_saved] {
2212 verbose "check_effective_target_vect_int: using cached result" 2
2213 } else {
2214 set et_vect_int_saved 0
2215 if { [istarget i?86-*-*] || [istarget x86_64-*-*]
2216 || ([istarget powerpc*-*-*]
2217 && ![istarget powerpc-*-linux*paired*])
2218 || [istarget spu-*-*]
2219 || [istarget sparc*-*-*]
2220 || [istarget alpha*-*-*]
2221 || [istarget ia64-*-*]
2222 || [istarget aarch64*-*-*]
2223 || [check_effective_target_arm32]
2224 || ([istarget mips*-*-*]
2225 && [check_effective_target_mips_loongson]) } {
2226 set et_vect_int_saved 1
2230 verbose "check_effective_target_vect_int: returning $et_vect_int_saved" 2
2231 return $et_vect_int_saved
2234 # Return 1 if the target supports signed int->float conversion
2237 proc check_effective_target_vect_intfloat_cvt { } {
2238 global et_vect_intfloat_cvt_saved
2240 if [info exists et_vect_intfloat_cvt_saved] {
2241 verbose "check_effective_target_vect_intfloat_cvt: using cached result" 2
2242 } else {
2243 set et_vect_intfloat_cvt_saved 0
2244 if { [istarget i?86-*-*] || [istarget x86_64-*-*]
2245 || ([istarget powerpc*-*-*]
2246 && ![istarget powerpc-*-linux*paired*])
2247 || ([istarget arm*-*-*]
2248 && [check_effective_target_arm_neon_ok])} {
2249 set et_vect_intfloat_cvt_saved 1
2253 verbose "check_effective_target_vect_intfloat_cvt: returning $et_vect_intfloat_cvt_saved" 2
2254 return $et_vect_intfloat_cvt_saved
2257 #Return 1 if we're supporting __int128 for target, 0 otherwise.
2259 proc check_effective_target_int128 { } {
2260 return [check_no_compiler_messages int128 object {
2261 int dummy[
2262 #ifndef __SIZEOF_INT128__
2264 #else
2266 #endif
2271 # Return 1 if the target supports unsigned int->float conversion
2274 proc check_effective_target_vect_uintfloat_cvt { } {
2275 global et_vect_uintfloat_cvt_saved
2277 if [info exists et_vect_uintfloat_cvt_saved] {
2278 verbose "check_effective_target_vect_uintfloat_cvt: using cached result" 2
2279 } else {
2280 set et_vect_uintfloat_cvt_saved 0
2281 if { [istarget i?86-*-*] || [istarget x86_64-*-*]
2282 || ([istarget powerpc*-*-*]
2283 && ![istarget powerpc-*-linux*paired*])
2284 || [istarget aarch64*-*-*]
2285 || ([istarget arm*-*-*]
2286 && [check_effective_target_arm_neon_ok])} {
2287 set et_vect_uintfloat_cvt_saved 1
2291 verbose "check_effective_target_vect_uintfloat_cvt: returning $et_vect_uintfloat_cvt_saved" 2
2292 return $et_vect_uintfloat_cvt_saved
2296 # Return 1 if the target supports signed float->int conversion
2299 proc check_effective_target_vect_floatint_cvt { } {
2300 global et_vect_floatint_cvt_saved
2302 if [info exists et_vect_floatint_cvt_saved] {
2303 verbose "check_effective_target_vect_floatint_cvt: using cached result" 2
2304 } else {
2305 set et_vect_floatint_cvt_saved 0
2306 if { [istarget i?86-*-*] || [istarget x86_64-*-*]
2307 || ([istarget powerpc*-*-*]
2308 && ![istarget powerpc-*-linux*paired*])
2309 || ([istarget arm*-*-*]
2310 && [check_effective_target_arm_neon_ok])} {
2311 set et_vect_floatint_cvt_saved 1
2315 verbose "check_effective_target_vect_floatint_cvt: returning $et_vect_floatint_cvt_saved" 2
2316 return $et_vect_floatint_cvt_saved
2319 # Return 1 if the target supports unsigned float->int conversion
2322 proc check_effective_target_vect_floatuint_cvt { } {
2323 global et_vect_floatuint_cvt_saved
2325 if [info exists et_vect_floatuint_cvt_saved] {
2326 verbose "check_effective_target_vect_floatuint_cvt: using cached result" 2
2327 } else {
2328 set et_vect_floatuint_cvt_saved 0
2329 if { ([istarget powerpc*-*-*]
2330 && ![istarget powerpc-*-linux*paired*])
2331 || ([istarget arm*-*-*]
2332 && [check_effective_target_arm_neon_ok])} {
2333 set et_vect_floatuint_cvt_saved 1
2337 verbose "check_effective_target_vect_floatuint_cvt: returning $et_vect_floatuint_cvt_saved" 2
2338 return $et_vect_floatuint_cvt_saved
2341 # Return 1 if the target supports #pragma omp declare simd, 0 otherwise.
2343 # This won't change for different subtargets so cache the result.
2345 proc check_effective_target_vect_simd_clones { } {
2346 global et_vect_simd_clones_saved
2348 if [info exists et_vect_simd_clones_saved] {
2349 verbose "check_effective_target_vect_simd_clones: using cached result" 2
2350 } else {
2351 set et_vect_simd_clones_saved 0
2352 if { [istarget i?86-*-*] || [istarget x86_64-*-*] } {
2353 # On i?86/x86_64 #pragma omp declare simd builds a sse2, avx and
2354 # avx2 clone. Only the right clone for the specified arch will be
2355 # chosen, but still we need to at least be able to assemble
2356 # avx2.
2357 if { [check_effective_target_avx2] } {
2358 set et_vect_simd_clones_saved 1
2363 verbose "check_effective_target_vect_simd_clones: returning $et_vect_simd_clones_saved" 2
2364 return $et_vect_simd_clones_saved
2367 # Return 1 if this is a AArch64 target supporting big endian
2368 proc check_effective_target_aarch64_big_endian { } {
2369 return [check_no_compiler_messages aarch64_big_endian assembly {
2370 #if !defined(__aarch64__) || !defined(__AARCH64EB__)
2371 #error !__aarch64__ || !__AARCH64EB__
2372 #endif
2376 # Return 1 if this is a AArch64 target supporting little endian
2377 proc check_effective_target_aarch64_little_endian { } {
2378 if { ![istarget aarch64*-*-*] } {
2379 return 0
2382 return [check_no_compiler_messages aarch64_little_endian assembly {
2383 #if !defined(__aarch64__) || defined(__AARCH64EB__)
2384 #error FOO
2385 #endif
2389 # Return 1 if this is an arm target using 32-bit instructions
2390 proc check_effective_target_arm32 { } {
2391 if { ![istarget arm*-*-*] } {
2392 return 0
2395 return [check_no_compiler_messages arm32 assembly {
2396 #if !defined(__arm__) || (defined(__thumb__) && !defined(__thumb2__))
2397 #error !__arm || __thumb__ && !__thumb2__
2398 #endif
2402 # Return 1 if this is an arm target not using Thumb
2403 proc check_effective_target_arm_nothumb { } {
2404 if { ![istarget arm*-*-*] } {
2405 return 0
2408 return [check_no_compiler_messages arm_nothumb assembly {
2409 #if !defined(__arm__) || (defined(__thumb__) || defined(__thumb2__))
2410 #error !__arm__ || __thumb || __thumb2__
2411 #endif
2415 # Return 1 if this is a little-endian ARM target
2416 proc check_effective_target_arm_little_endian { } {
2417 if { ![istarget arm*-*-*] } {
2418 return 0
2421 return [check_no_compiler_messages arm_little_endian assembly {
2422 #if !defined(__arm__) || !defined(__ARMEL__)
2423 #error !__arm__ || !__ARMEL__
2424 #endif
2428 # Return 1 if this is an ARM target that only supports aligned vector accesses
2429 proc check_effective_target_arm_vect_no_misalign { } {
2430 if { ![istarget arm*-*-*] } {
2431 return 0
2434 return [check_no_compiler_messages arm_vect_no_misalign assembly {
2435 #if !defined(__arm__) \
2436 || (defined(__ARM_FEATURE_UNALIGNED) \
2437 && defined(__ARMEL__))
2438 #error !__arm__ || (__ARMEL__ && __ARM_FEATURE_UNALIGNED)
2439 #endif
2444 # Return 1 if this is an ARM target supporting -mfpu=vfp
2445 # -mfloat-abi=softfp. Some multilibs may be incompatible with these
2446 # options.
2448 proc check_effective_target_arm_vfp_ok { } {
2449 if { [check_effective_target_arm32] } {
2450 return [check_no_compiler_messages arm_vfp_ok object {
2451 int dummy;
2452 } "-mfpu=vfp -mfloat-abi=softfp"]
2453 } else {
2454 return 0
2458 # Return 1 if this is an ARM target supporting -mfpu=vfp3
2459 # -mfloat-abi=softfp.
2461 proc check_effective_target_arm_vfp3_ok { } {
2462 if { [check_effective_target_arm32] } {
2463 return [check_no_compiler_messages arm_vfp3_ok object {
2464 int dummy;
2465 } "-mfpu=vfp3 -mfloat-abi=softfp"]
2466 } else {
2467 return 0
2471 # Return 1 if this is an ARM target supporting -mfpu=fp-armv8
2472 # -mfloat-abi=softfp.
2473 proc check_effective_target_arm_v8_vfp_ok {} {
2474 if { [check_effective_target_arm32] } {
2475 return [check_no_compiler_messages arm_v8_vfp_ok object {
2476 int foo (void)
2478 __asm__ volatile ("vrinta.f32.f32 s0, s0");
2479 return 0;
2481 } "-mfpu=fp-armv8 -mfloat-abi=softfp"]
2482 } else {
2483 return 0
2487 # Return 1 if this is an ARM target supporting -mfpu=vfp
2488 # -mfloat-abi=hard. Some multilibs may be incompatible with these
2489 # options.
2491 proc check_effective_target_arm_hard_vfp_ok { } {
2492 if { [check_effective_target_arm32]
2493 && ! [check-flags [list "" { *-*-* } { "-mfloat-abi=*" } { "-mfloat-abi=hard" }]] } {
2494 return [check_no_compiler_messages arm_hard_vfp_ok executable {
2495 int main() { return 0;}
2496 } "-mfpu=vfp -mfloat-abi=hard"]
2497 } else {
2498 return 0
2502 # Return 1 if this is an ARM target that supports DSP multiply with
2503 # current multilib flags.
2505 proc check_effective_target_arm_dsp { } {
2506 return [check_no_compiler_messages arm_dsp assembly {
2507 #ifndef __ARM_FEATURE_DSP
2508 #error not DSP
2509 #endif
2510 int i;
2514 # Return 1 if this is an ARM target that supports unaligned word/halfword
2515 # load/store instructions.
2517 proc check_effective_target_arm_unaligned { } {
2518 return [check_no_compiler_messages arm_unaligned assembly {
2519 #ifndef __ARM_FEATURE_UNALIGNED
2520 #error no unaligned support
2521 #endif
2522 int i;
2526 # Return 1 if this is an ARM target supporting -mfpu=crypto-neon-fp-armv8
2527 # -mfloat-abi=softfp or equivalent options. Some multilibs may be
2528 # incompatible with these options. Also set et_arm_crypto_flags to the
2529 # best options to add.
2531 proc check_effective_target_arm_crypto_ok_nocache { } {
2532 global et_arm_crypto_flags
2533 set et_arm_crypto_flags ""
2534 if { [check_effective_target_arm32] } {
2535 foreach flags {"" "-mfloat-abi=softfp" "-mfpu=crypto-neon-fp-armv8" "-mfpu=crypto-neon-fp-armv8 -mfloat-abi=softfp"} {
2536 if { [check_no_compiler_messages_nocache arm_crypto_ok object {
2537 #include "arm_neon.h"
2538 uint8x16_t
2539 foo (uint8x16_t a, uint8x16_t b)
2541 return vaeseq_u8 (a, b);
2543 } "$flags"] } {
2544 set et_arm_crypto_flags $flags
2545 return 1
2550 return 0
2553 # Return 1 if this is an ARM target supporting -mfpu=crypto-neon-fp-armv8
2555 proc check_effective_target_arm_crypto_ok { } {
2556 return [check_cached_effective_target arm_crypto_ok \
2557 check_effective_target_arm_crypto_ok_nocache]
2560 # Add options for crypto extensions.
2561 proc add_options_for_arm_crypto { flags } {
2562 if { ! [check_effective_target_arm_crypto_ok] } {
2563 return "$flags"
2565 global et_arm_crypto_flags
2566 return "$flags $et_arm_crypto_flags"
2569 # Add the options needed for NEON. We need either -mfloat-abi=softfp
2570 # or -mfloat-abi=hard, but if one is already specified by the
2571 # multilib, use it. Similarly, if a -mfpu option already enables
2572 # NEON, do not add -mfpu=neon.
2574 proc add_options_for_arm_neon { flags } {
2575 if { ! [check_effective_target_arm_neon_ok] } {
2576 return "$flags"
2578 global et_arm_neon_flags
2579 return "$flags $et_arm_neon_flags"
2582 proc add_options_for_arm_v8_vfp { flags } {
2583 if { ! [check_effective_target_arm_v8_vfp_ok] } {
2584 return "$flags"
2586 return "$flags -mfpu=fp-armv8 -mfloat-abi=softfp"
2589 proc add_options_for_arm_v8_neon { flags } {
2590 if { ! [check_effective_target_arm_v8_neon_ok] } {
2591 return "$flags"
2593 global et_arm_v8_neon_flags
2594 return "$flags $et_arm_v8_neon_flags -march=armv8-a"
2597 proc add_options_for_arm_crc { flags } {
2598 if { ! [check_effective_target_arm_crc_ok] } {
2599 return "$flags"
2601 global et_arm_crc_flags
2602 return "$flags $et_arm_crc_flags"
2605 # Add the options needed for NEON. We need either -mfloat-abi=softfp
2606 # or -mfloat-abi=hard, but if one is already specified by the
2607 # multilib, use it. Similarly, if a -mfpu option already enables
2608 # NEON, do not add -mfpu=neon.
2610 proc add_options_for_arm_neonv2 { flags } {
2611 if { ! [check_effective_target_arm_neonv2_ok] } {
2612 return "$flags"
2614 global et_arm_neonv2_flags
2615 return "$flags $et_arm_neonv2_flags"
2618 # Add the options needed for vfp3.
2619 proc add_options_for_arm_vfp3 { flags } {
2620 if { ! [check_effective_target_arm_vfp3_ok] } {
2621 return "$flags"
2623 return "$flags -mfpu=vfp3 -mfloat-abi=softfp"
2626 # Return 1 if this is an ARM target supporting -mfpu=neon
2627 # -mfloat-abi=softfp or equivalent options. Some multilibs may be
2628 # incompatible with these options. Also set et_arm_neon_flags to the
2629 # best options to add.
2631 proc check_effective_target_arm_neon_ok_nocache { } {
2632 global et_arm_neon_flags
2633 set et_arm_neon_flags ""
2634 if { [check_effective_target_arm32] } {
2635 foreach flags {"" "-mfloat-abi=softfp" "-mfpu=neon" "-mfpu=neon -mfloat-abi=softfp"} {
2636 if { [check_no_compiler_messages_nocache arm_neon_ok object {
2637 #include "arm_neon.h"
2638 int dummy;
2639 /* Avoid the case where a test adds -mfpu=neon, but the toolchain is
2640 configured for -mcpu=arm926ej-s, for example. */
2641 #if __ARM_ARCH < 7
2642 #error Architecture too old for NEON.
2643 #endif
2644 } "$flags"] } {
2645 set et_arm_neon_flags $flags
2646 return 1
2651 return 0
2654 proc check_effective_target_arm_neon_ok { } {
2655 return [check_cached_effective_target arm_neon_ok \
2656 check_effective_target_arm_neon_ok_nocache]
2659 proc check_effective_target_arm_crc_ok_nocache { } {
2660 global et_arm_crc_flags
2661 set et_arm_crc_flags "-march=armv8-a+crc"
2662 return [check_no_compiler_messages_nocache arm_crc_ok object {
2663 #if !defined (__ARM_FEATURE_CRC32)
2664 #error FOO
2665 #endif
2666 } "$et_arm_crc_flags"]
2669 proc check_effective_target_arm_crc_ok { } {
2670 return [check_cached_effective_target arm_crc_ok \
2671 check_effective_target_arm_crc_ok_nocache]
2674 # Return 1 if this is an ARM target supporting -mfpu=neon-fp16
2675 # -mfloat-abi=softfp or equivalent options. Some multilibs may be
2676 # incompatible with these options. Also set et_arm_neon_flags to the
2677 # best options to add.
2679 proc check_effective_target_arm_neon_fp16_ok_nocache { } {
2680 global et_arm_neon_fp16_flags
2681 set et_arm_neon_fp16_flags ""
2682 if { [check_effective_target_arm32] } {
2683 foreach flags {"" "-mfloat-abi=softfp" "-mfpu=neon-fp16"
2684 "-mfpu=neon-fp16 -mfloat-abi=softfp"} {
2685 if { [check_no_compiler_messages_nocache arm_neon_fp_16_ok object {
2686 #include "arm_neon.h"
2687 float16x4_t
2688 foo (float32x4_t arg)
2690 return vcvt_f16_f32 (arg);
2692 } "$flags"] } {
2693 set et_arm_neon_fp16_flags $flags
2694 return 1
2699 return 0
2702 proc check_effective_target_arm_neon_fp16_ok { } {
2703 return [check_cached_effective_target arm_neon_fp16_ok \
2704 check_effective_target_arm_neon_fp16_ok_nocache]
2707 proc add_options_for_arm_neon_fp16 { flags } {
2708 if { ! [check_effective_target_arm_neon_fp16_ok] } {
2709 return "$flags"
2711 global et_arm_neon_fp16_flags
2712 return "$flags $et_arm_neon_fp16_flags"
2715 # Return 1 if this is an ARM target supporting -mfpu=neon-fp-armv8
2716 # -mfloat-abi=softfp or equivalent options. Some multilibs may be
2717 # incompatible with these options. Also set et_arm_v8_neon_flags to the
2718 # best options to add.
2720 proc check_effective_target_arm_v8_neon_ok_nocache { } {
2721 global et_arm_v8_neon_flags
2722 set et_arm_v8_neon_flags ""
2723 if { [check_effective_target_arm32] } {
2724 foreach flags {"" "-mfloat-abi=softfp" "-mfpu=neon-fp-armv8" "-mfpu=neon-fp-armv8 -mfloat-abi=softfp"} {
2725 if { [check_no_compiler_messages_nocache arm_v8_neon_ok object {
2726 #if __ARM_ARCH < 8
2727 #error not armv8 or later
2728 #endif
2729 #include "arm_neon.h"
2730 void
2731 foo ()
2733 __asm__ volatile ("vrintn.f32 q0, q0");
2735 } "$flags -march=armv8-a"] } {
2736 set et_arm_v8_neon_flags $flags
2737 return 1
2742 return 0
2745 proc check_effective_target_arm_v8_neon_ok { } {
2746 return [check_cached_effective_target arm_v8_neon_ok \
2747 check_effective_target_arm_v8_neon_ok_nocache]
2750 # Return 1 if this is an ARM target supporting -mfpu=neon-vfpv4
2751 # -mfloat-abi=softfp or equivalent options. Some multilibs may be
2752 # incompatible with these options. Also set et_arm_neonv2_flags to the
2753 # best options to add.
2755 proc check_effective_target_arm_neonv2_ok_nocache { } {
2756 global et_arm_neonv2_flags
2757 set et_arm_neonv2_flags ""
2758 if { [check_effective_target_arm32] } {
2759 foreach flags {"" "-mfloat-abi=softfp" "-mfpu=neon-vfpv4" "-mfpu=neon-vfpv4 -mfloat-abi=softfp"} {
2760 if { [check_no_compiler_messages_nocache arm_neonv2_ok object {
2761 #include "arm_neon.h"
2762 float32x2_t
2763 foo (float32x2_t a, float32x2_t b, float32x2_t c)
2765 return vfma_f32 (a, b, c);
2767 } "$flags"] } {
2768 set et_arm_neonv2_flags $flags
2769 return 1
2774 return 0
2777 proc check_effective_target_arm_neonv2_ok { } {
2778 return [check_cached_effective_target arm_neonv2_ok \
2779 check_effective_target_arm_neonv2_ok_nocache]
2782 # Add the options needed for NEON. We need either -mfloat-abi=softfp
2783 # or -mfloat-abi=hard, but if one is already specified by the
2784 # multilib, use it.
2786 proc add_options_for_arm_fp16 { flags } {
2787 if { ! [check_effective_target_arm_fp16_ok] } {
2788 return "$flags"
2790 global et_arm_fp16_flags
2791 return "$flags $et_arm_fp16_flags"
2794 # Return 1 if this is an ARM target that can support a VFP fp16 variant.
2795 # Skip multilibs that are incompatible with these options and set
2796 # et_arm_fp16_flags to the best options to add.
2798 proc check_effective_target_arm_fp16_ok_nocache { } {
2799 global et_arm_fp16_flags
2800 set et_arm_fp16_flags ""
2801 if { ! [check_effective_target_arm32] } {
2802 return 0;
2804 if [check-flags [list "" { *-*-* } { "-mfpu=*" } { "-mfpu=*fp16*" "-mfpu=*fpv[4-9]*" "-mfpu=*fpv[1-9][0-9]*" } ]] {
2805 # Multilib flags would override -mfpu.
2806 return 0
2808 if [check-flags [list "" { *-*-* } { "-mfloat-abi=soft" } { "" } ]] {
2809 # Must generate floating-point instructions.
2810 return 0
2812 if [check_effective_target_arm_hf_eabi] {
2813 # Use existing float-abi and force an fpu which supports fp16
2814 set et_arm_fp16_flags "-mfpu=vfpv4"
2815 return 1;
2817 if [check-flags [list "" { *-*-* } { "-mfpu=*" } { "" } ]] {
2818 # The existing -mfpu value is OK; use it, but add softfp.
2819 set et_arm_fp16_flags "-mfloat-abi=softfp"
2820 return 1;
2822 # Add -mfpu for a VFP fp16 variant since there is no preprocessor
2823 # macro to check for this support.
2824 set flags "-mfpu=vfpv4 -mfloat-abi=softfp"
2825 if { [check_no_compiler_messages_nocache arm_fp16_ok assembly {
2826 int dummy;
2827 } "$flags"] } {
2828 set et_arm_fp16_flags "$flags"
2829 return 1
2832 return 0
2835 proc check_effective_target_arm_fp16_ok { } {
2836 return [check_cached_effective_target arm_fp16_ok \
2837 check_effective_target_arm_fp16_ok_nocache]
2840 # Creates a series of routines that return 1 if the given architecture
2841 # can be selected and a routine to give the flags to select that architecture
2842 # Note: Extra flags may be added to disable options from newer compilers
2843 # (Thumb in particular - but others may be added in the future)
2844 # Usage: /* { dg-require-effective-target arm_arch_v5_ok } */
2845 # /* { dg-add-options arm_arch_v5 } */
2846 # /* { dg-require-effective-target arm_arch_v5_multilib } */
2847 foreach { armfunc armflag armdef } { v4 "-march=armv4 -marm" __ARM_ARCH_4__
2848 v4t "-march=armv4t" __ARM_ARCH_4T__
2849 v5 "-march=armv5 -marm" __ARM_ARCH_5__
2850 v5t "-march=armv5t" __ARM_ARCH_5T__
2851 v5te "-march=armv5te" __ARM_ARCH_5TE__
2852 v6 "-march=armv6" __ARM_ARCH_6__
2853 v6k "-march=armv6k" __ARM_ARCH_6K__
2854 v6t2 "-march=armv6t2" __ARM_ARCH_6T2__
2855 v6z "-march=armv6z" __ARM_ARCH_6Z__
2856 v6m "-march=armv6-m -mthumb" __ARM_ARCH_6M__
2857 v7a "-march=armv7-a" __ARM_ARCH_7A__
2858 v7ve "-march=armv7ve" __ARM_ARCH_7A__
2859 v7r "-march=armv7-r" __ARM_ARCH_7R__
2860 v7m "-march=armv7-m -mthumb" __ARM_ARCH_7M__
2861 v7em "-march=armv7e-m -mthumb" __ARM_ARCH_7EM__
2862 v8a "-march=armv8-a" __ARM_ARCH_8A__ } {
2863 eval [string map [list FUNC $armfunc FLAG $armflag DEF $armdef ] {
2864 proc check_effective_target_arm_arch_FUNC_ok { } {
2865 if { [ string match "*-marm*" "FLAG" ] &&
2866 ![check_effective_target_arm_arm_ok] } {
2867 return 0
2869 return [check_no_compiler_messages arm_arch_FUNC_ok assembly {
2870 #if !defined (DEF)
2871 #error !DEF
2872 #endif
2873 } "FLAG" ]
2876 proc add_options_for_arm_arch_FUNC { flags } {
2877 return "$flags FLAG"
2880 proc check_effective_target_arm_arch_FUNC_multilib { } {
2881 return [check_runtime arm_arch_FUNC_multilib {
2883 main (void)
2885 return 0;
2887 } [add_options_for_arm_arch_FUNC ""]]
2892 # Return 1 if this is an ARM target where -marm causes ARM to be
2893 # used (not Thumb)
2895 proc check_effective_target_arm_arm_ok { } {
2896 return [check_no_compiler_messages arm_arm_ok assembly {
2897 #if !defined (__arm__) || defined (__thumb__) || defined (__thumb2__)
2898 #error !__arm__ || __thumb__ || __thumb2__
2899 #endif
2900 } "-marm"]
2904 # Return 1 is this is an ARM target where -mthumb causes Thumb-1 to be
2905 # used.
2907 proc check_effective_target_arm_thumb1_ok { } {
2908 return [check_no_compiler_messages arm_thumb1_ok assembly {
2909 #if !defined(__arm__) || !defined(__thumb__) || defined(__thumb2__)
2910 #error !__arm__ || !__thumb__ || __thumb2__
2911 #endif
2912 int foo (int i) { return i; }
2913 } "-mthumb"]
2916 # Return 1 is this is an ARM target where -mthumb causes Thumb-2 to be
2917 # used.
2919 proc check_effective_target_arm_thumb2_ok { } {
2920 return [check_no_compiler_messages arm_thumb2_ok assembly {
2921 #if !defined(__thumb2__)
2922 #error !__thumb2__
2923 #endif
2924 int foo (int i) { return i; }
2925 } "-mthumb"]
2928 # Return 1 if this is an ARM target where Thumb-1 is used without options
2929 # added by the test.
2931 proc check_effective_target_arm_thumb1 { } {
2932 return [check_no_compiler_messages arm_thumb1 assembly {
2933 #if !defined(__arm__) || !defined(__thumb__) || defined(__thumb2__)
2934 #error !__arm__ || !__thumb__ || __thumb2__
2935 #endif
2936 int i;
2937 } ""]
2940 # Return 1 if this is an ARM target where Thumb-2 is used without options
2941 # added by the test.
2943 proc check_effective_target_arm_thumb2 { } {
2944 return [check_no_compiler_messages arm_thumb2 assembly {
2945 #if !defined(__thumb2__)
2946 #error !__thumb2__
2947 #endif
2948 int i;
2949 } ""]
2952 # Return 1 if this is an ARM target where conditional execution is available.
2954 proc check_effective_target_arm_cond_exec { } {
2955 return [check_no_compiler_messages arm_cond_exec assembly {
2956 #if defined(__arm__) && defined(__thumb__) && !defined(__thumb2__)
2957 #error FOO
2958 #endif
2959 int i;
2960 } ""]
2963 # Return 1 if this is an ARM cortex-M profile cpu
2965 proc check_effective_target_arm_cortex_m { } {
2966 if { ![istarget arm*-*-*] } {
2967 return 0
2969 return [check_no_compiler_messages arm_cortex_m assembly {
2970 #if !defined(__ARM_ARCH_7M__) \
2971 && !defined (__ARM_ARCH_7EM__) \
2972 && !defined (__ARM_ARCH_6M__)
2973 #error !__ARM_ARCH_7M__ && !__ARM_ARCH_7EM__ && !__ARM_ARCH_6M__
2974 #endif
2975 int i;
2976 } "-mthumb"]
2979 # Return 1 if this compilation turns on string_ops_prefer_neon on.
2981 proc check_effective_target_arm_tune_string_ops_prefer_neon { } {
2982 return [check_no_messages_and_pattern arm_tune_string_ops_prefer_neon "@string_ops_prefer_neon:\t1" assembly {
2983 int foo (void) { return 0; }
2984 } "-O2 -mprint-tune-info" ]
2987 # Return 1 if the target supports executing NEON instructions, 0
2988 # otherwise. Cache the result.
2990 proc check_effective_target_arm_neon_hw { } {
2991 return [check_runtime arm_neon_hw_available {
2993 main (void)
2995 long long a = 0, b = 1;
2996 asm ("vorr %P0, %P1, %P2"
2997 : "=w" (a)
2998 : "0" (a), "w" (b));
2999 return (a != 1);
3001 } [add_options_for_arm_neon ""]]
3004 proc check_effective_target_arm_neonv2_hw { } {
3005 return [check_runtime arm_neon_hwv2_available {
3006 #include "arm_neon.h"
3008 main (void)
3010 float32x2_t a, b, c;
3011 asm ("vfma.f32 %P0, %P1, %P2"
3012 : "=w" (a)
3013 : "w" (b), "w" (c));
3014 return 0;
3016 } [add_options_for_arm_neonv2 ""]]
3019 # Return 1 if the target supports executing ARMv8 NEON instructions, 0
3020 # otherwise.
3022 proc check_effective_target_arm_v8_neon_hw { } {
3023 return [check_runtime arm_v8_neon_hw_available {
3024 #include "arm_neon.h"
3026 main (void)
3028 float32x2_t a;
3029 asm ("vrinta.f32 %P0, %P1"
3030 : "=w" (a)
3031 : "0" (a));
3032 return 0;
3034 } [add_options_for_arm_v8_neon ""]]
3037 # Return 1 if this is a ARM target with NEON enabled.
3039 proc check_effective_target_arm_neon { } {
3040 if { [check_effective_target_arm32] } {
3041 return [check_no_compiler_messages arm_neon object {
3042 #ifndef __ARM_NEON__
3043 #error not NEON
3044 #else
3045 int dummy;
3046 #endif
3048 } else {
3049 return 0
3053 proc check_effective_target_arm_neonv2 { } {
3054 if { [check_effective_target_arm32] } {
3055 return [check_no_compiler_messages arm_neon object {
3056 #ifndef __ARM_NEON__
3057 #error not NEON
3058 #else
3059 #ifndef __ARM_FEATURE_FMA
3060 #error not NEONv2
3061 #else
3062 int dummy;
3063 #endif
3064 #endif
3066 } else {
3067 return 0
3071 # Return 1 if this a Loongson-2E or -2F target using an ABI that supports
3072 # the Loongson vector modes.
3074 proc check_effective_target_mips_loongson { } {
3075 return [check_no_compiler_messages loongson assembly {
3076 #if !defined(__mips_loongson_vector_rev)
3077 #error !__mips_loongson_vector_rev
3078 #endif
3082 # Return 1 if this is a MIPS target that supports the legacy NAN.
3084 proc check_effective_target_mips_nanlegacy { } {
3085 return [check_no_compiler_messages nanlegacy assembly {
3086 #include <stdlib.h>
3087 int main () { return 0; }
3088 } "-mnan=legacy"]
3091 # Return 1 if this is an ARM target that adheres to the ABI for the ARM
3092 # Architecture.
3094 proc check_effective_target_arm_eabi { } {
3095 return [check_no_compiler_messages arm_eabi object {
3096 #ifndef __ARM_EABI__
3097 #error not EABI
3098 #else
3099 int dummy;
3100 #endif
3104 # Return 1 if this is an ARM target that adheres to the hard-float variant of
3105 # the ABI for the ARM Architecture (e.g. -mfloat-abi=hard).
3107 proc check_effective_target_arm_hf_eabi { } {
3108 return [check_no_compiler_messages arm_hf_eabi object {
3109 #if !defined(__ARM_EABI__) || !defined(__ARM_PCS_VFP)
3110 #error not hard-float EABI
3111 #else
3112 int dummy;
3113 #endif
3117 # Return 1 if this is an ARM target supporting -mcpu=iwmmxt.
3118 # Some multilibs may be incompatible with this option.
3120 proc check_effective_target_arm_iwmmxt_ok { } {
3121 if { [check_effective_target_arm32] } {
3122 return [check_no_compiler_messages arm_iwmmxt_ok object {
3123 int dummy;
3124 } "-mcpu=iwmmxt"]
3125 } else {
3126 return 0
3130 # Return true if LDRD/STRD instructions are prefered over LDM/STM instructions
3131 # for an ARM target.
3132 proc check_effective_target_arm_prefer_ldrd_strd { } {
3133 if { ![check_effective_target_arm32] } {
3134 return 0;
3137 return [check_no_messages_and_pattern arm_prefer_ldrd_strd "strd\tr" assembly {
3138 void foo (int *p) { p[0] = 1; p[1] = 0;}
3139 } "-O2 -mthumb" ]
3142 # Return 1 if this is a PowerPC target supporting -meabi.
3144 proc check_effective_target_powerpc_eabi_ok { } {
3145 if { [istarget powerpc*-*-*] } {
3146 return [check_no_compiler_messages powerpc_eabi_ok object {
3147 int dummy;
3148 } "-meabi"]
3149 } else {
3150 return 0
3154 # Return 1 if this is a PowerPC target with floating-point registers.
3156 proc check_effective_target_powerpc_fprs { } {
3157 if { [istarget powerpc*-*-*]
3158 || [istarget rs6000-*-*] } {
3159 return [check_no_compiler_messages powerpc_fprs object {
3160 #ifdef __NO_FPRS__
3161 #error no FPRs
3162 #else
3163 int dummy;
3164 #endif
3166 } else {
3167 return 0
3171 # Return 1 if this is a PowerPC target with hardware double-precision
3172 # floating point.
3174 proc check_effective_target_powerpc_hard_double { } {
3175 if { [istarget powerpc*-*-*]
3176 || [istarget rs6000-*-*] } {
3177 return [check_no_compiler_messages powerpc_hard_double object {
3178 #ifdef _SOFT_DOUBLE
3179 #error soft double
3180 #else
3181 int dummy;
3182 #endif
3184 } else {
3185 return 0
3189 # Return 1 if this is a PowerPC target supporting -maltivec.
3191 proc check_effective_target_powerpc_altivec_ok { } {
3192 if { ([istarget powerpc*-*-*]
3193 && ![istarget powerpc-*-linux*paired*])
3194 || [istarget rs6000-*-*] } {
3195 # AltiVec is not supported on AIX before 5.3.
3196 if { [istarget powerpc*-*-aix4*]
3197 || [istarget powerpc*-*-aix5.1*]
3198 || [istarget powerpc*-*-aix5.2*] } {
3199 return 0
3201 return [check_no_compiler_messages powerpc_altivec_ok object {
3202 int dummy;
3203 } "-maltivec"]
3204 } else {
3205 return 0
3209 # Return 1 if this is a PowerPC target supporting -mpower8-vector
3211 proc check_effective_target_powerpc_p8vector_ok { } {
3212 if { ([istarget powerpc*-*-*]
3213 && ![istarget powerpc-*-linux*paired*])
3214 || [istarget rs6000-*-*] } {
3215 # AltiVec is not supported on AIX before 5.3.
3216 if { [istarget powerpc*-*-aix4*]
3217 || [istarget powerpc*-*-aix5.1*]
3218 || [istarget powerpc*-*-aix5.2*] } {
3219 return 0
3221 return [check_no_compiler_messages powerpc_p8vector_ok object {
3222 int main (void) {
3223 #ifdef __MACH__
3224 asm volatile ("xxlorc vs0,vs0,vs0");
3225 #else
3226 asm volatile ("xxlorc 0,0,0");
3227 #endif
3228 return 0;
3230 } "-mpower8-vector"]
3231 } else {
3232 return 0
3236 # Return 1 if this is a PowerPC target supporting -mvsx
3238 proc check_effective_target_powerpc_vsx_ok { } {
3239 if { ([istarget powerpc*-*-*]
3240 && ![istarget powerpc-*-linux*paired*])
3241 || [istarget rs6000-*-*] } {
3242 # VSX is not supported on AIX before 7.1.
3243 if { [istarget powerpc*-*-aix4*]
3244 || [istarget powerpc*-*-aix5*]
3245 || [istarget powerpc*-*-aix6*] } {
3246 return 0
3248 return [check_no_compiler_messages powerpc_vsx_ok object {
3249 int main (void) {
3250 #ifdef __MACH__
3251 asm volatile ("xxlor vs0,vs0,vs0");
3252 #else
3253 asm volatile ("xxlor 0,0,0");
3254 #endif
3255 return 0;
3257 } "-mvsx"]
3258 } else {
3259 return 0
3263 # Return 1 if this is a PowerPC target supporting -mhtm
3265 proc check_effective_target_powerpc_htm_ok { } {
3266 if { ([istarget powerpc*-*-*]
3267 && ![istarget powerpc-*-linux*paired*])
3268 || [istarget rs6000-*-*] } {
3269 # HTM is not supported on AIX yet.
3270 if { [istarget powerpc*-*-aix*] } {
3271 return 0
3273 return [check_no_compiler_messages powerpc_htm_ok object {
3274 int main (void) {
3275 asm volatile ("tbegin. 0");
3276 return 0;
3278 } "-mhtm"]
3279 } else {
3280 return 0
3284 # Return 1 if the target supports executing HTM hardware instructions,
3285 # 0 otherwise. Cache the result.
3287 proc check_htm_hw_available { } {
3288 return [check_cached_effective_target htm_hw_available {
3289 # For now, disable on Darwin
3290 if { [istarget powerpc-*-eabi] || [istarget powerpc*-*-eabispe] || [istarget *-*-darwin*]} {
3291 expr 0
3292 } else {
3293 check_runtime_nocache htm_hw_available {
3294 int main()
3296 __builtin_ttest ();
3297 return 0;
3299 } "-mhtm"
3303 # Return 1 if this is a PowerPC target supporting -mcpu=cell.
3305 proc check_effective_target_powerpc_ppu_ok { } {
3306 if [check_effective_target_powerpc_altivec_ok] {
3307 return [check_no_compiler_messages cell_asm_available object {
3308 int main (void) {
3309 #ifdef __MACH__
3310 asm volatile ("lvlx v0,v0,v0");
3311 #else
3312 asm volatile ("lvlx 0,0,0");
3313 #endif
3314 return 0;
3317 } else {
3318 return 0
3322 # Return 1 if this is a PowerPC target that supports SPU.
3324 proc check_effective_target_powerpc_spu { } {
3325 if { [istarget powerpc*-*-linux*] } {
3326 return [check_effective_target_powerpc_altivec_ok]
3327 } else {
3328 return 0
3332 # Return 1 if this is a PowerPC SPE target. The check includes options
3333 # specified by dg-options for this test, so don't cache the result.
3335 proc check_effective_target_powerpc_spe_nocache { } {
3336 if { [istarget powerpc*-*-*] } {
3337 return [check_no_compiler_messages_nocache powerpc_spe object {
3338 #ifndef __SPE__
3339 #error not SPE
3340 #else
3341 int dummy;
3342 #endif
3343 } [current_compiler_flags]]
3344 } else {
3345 return 0
3349 # Return 1 if this is a PowerPC target with SPE enabled.
3351 proc check_effective_target_powerpc_spe { } {
3352 if { [istarget powerpc*-*-*] } {
3353 return [check_no_compiler_messages powerpc_spe object {
3354 #ifndef __SPE__
3355 #error not SPE
3356 #else
3357 int dummy;
3358 #endif
3360 } else {
3361 return 0
3365 # Return 1 if this is a PowerPC target with Altivec enabled.
3367 proc check_effective_target_powerpc_altivec { } {
3368 if { [istarget powerpc*-*-*] } {
3369 return [check_no_compiler_messages powerpc_altivec object {
3370 #ifndef __ALTIVEC__
3371 #error not Altivec
3372 #else
3373 int dummy;
3374 #endif
3376 } else {
3377 return 0
3381 # Return 1 if this is a PowerPC 405 target. The check includes options
3382 # specified by dg-options for this test, so don't cache the result.
3384 proc check_effective_target_powerpc_405_nocache { } {
3385 if { [istarget powerpc*-*-*] || [istarget rs6000-*-*] } {
3386 return [check_no_compiler_messages_nocache powerpc_405 object {
3387 #ifdef __PPC405__
3388 int dummy;
3389 #else
3390 #error not a PPC405
3391 #endif
3392 } [current_compiler_flags]]
3393 } else {
3394 return 0
3398 # Return 1 if this is a PowerPC target using the ELFv2 ABI.
3400 proc check_effective_target_powerpc_elfv2 { } {
3401 if { [istarget powerpc*-*-*] } {
3402 return [check_no_compiler_messages powerpc_elfv2 object {
3403 #if _CALL_ELF != 2
3404 #error not ELF v2 ABI
3405 #else
3406 int dummy;
3407 #endif
3409 } else {
3410 return 0
3414 # Return 1 if this is a SPU target with a toolchain that
3415 # supports automatic overlay generation.
3417 proc check_effective_target_spu_auto_overlay { } {
3418 if { [istarget spu*-*-elf*] } {
3419 return [check_no_compiler_messages spu_auto_overlay executable {
3420 int main (void) { }
3421 } "-Wl,--auto-overlay" ]
3422 } else {
3423 return 0
3427 # The VxWorks SPARC simulator accepts only EM_SPARC executables and
3428 # chokes on EM_SPARC32PLUS or EM_SPARCV9 executables. Return 1 if the
3429 # test environment appears to run executables on such a simulator.
3431 proc check_effective_target_ultrasparc_hw { } {
3432 return [check_runtime ultrasparc_hw {
3433 int main() { return 0; }
3434 } "-mcpu=ultrasparc"]
3437 # Return 1 if the test environment supports executing UltraSPARC VIS2
3438 # instructions. We check this by attempting: "bmask %g0, %g0, %g0"
3440 proc check_effective_target_ultrasparc_vis2_hw { } {
3441 return [check_runtime ultrasparc_vis2_hw {
3442 int main() { __asm__(".word 0x81b00320"); return 0; }
3443 } "-mcpu=ultrasparc3"]
3446 # Return 1 if the test environment supports executing UltraSPARC VIS3
3447 # instructions. We check this by attempting: "addxc %g0, %g0, %g0"
3449 proc check_effective_target_ultrasparc_vis3_hw { } {
3450 return [check_runtime ultrasparc_vis3_hw {
3451 int main() { __asm__(".word 0x81b00220"); return 0; }
3452 } "-mcpu=niagara3"]
3455 # Return 1 if this is a SPARC-V9 target.
3457 proc check_effective_target_sparc_v9 { } {
3458 if { [istarget sparc*-*-*] } {
3459 return [check_no_compiler_messages sparc_v9 object {
3460 int main (void) {
3461 asm volatile ("return %i7+8");
3462 return 0;
3465 } else {
3466 return 0
3470 # Return 1 if this is a SPARC target with VIS enabled.
3472 proc check_effective_target_sparc_vis { } {
3473 if { [istarget sparc*-*-*] } {
3474 return [check_no_compiler_messages sparc_vis object {
3475 #ifndef __VIS__
3476 #error not VIS
3477 #else
3478 int dummy;
3479 #endif
3481 } else {
3482 return 0
3486 # Return 1 if the target supports hardware vector shift operation.
3488 proc check_effective_target_vect_shift { } {
3489 global et_vect_shift_saved
3491 if [info exists et_vect_shift_saved] {
3492 verbose "check_effective_target_vect_shift: using cached result" 2
3493 } else {
3494 set et_vect_shift_saved 0
3495 if { ([istarget powerpc*-*-*]
3496 && ![istarget powerpc-*-linux*paired*])
3497 || [istarget ia64-*-*]
3498 || [istarget i?86-*-*] || [istarget x86_64-*-*]
3499 || [istarget aarch64*-*-*]
3500 || [check_effective_target_arm32]
3501 || ([istarget mips*-*-*]
3502 && [check_effective_target_mips_loongson]) } {
3503 set et_vect_shift_saved 1
3507 verbose "check_effective_target_vect_shift: returning $et_vect_shift_saved" 2
3508 return $et_vect_shift_saved
3511 proc check_effective_target_whole_vector_shift { } {
3512 if { [istarget i?86-*-*] || [istarget x86_64-*-*]
3513 || [istarget ia64-*-*]
3514 || [istarget aarch64*-*-*]
3515 || ([check_effective_target_arm32]
3516 && [check_effective_target_arm_little_endian])
3517 || ([istarget mips*-*-*]
3518 && [check_effective_target_mips_loongson]) } {
3519 set answer 1
3520 } else {
3521 set answer 0
3524 verbose "check_effective_target_vect_long: returning $answer" 2
3525 return $answer
3528 # Return 1 if the target supports vector bswap operations.
3530 proc check_effective_target_vect_bswap { } {
3531 global et_vect_bswap_saved
3533 if [info exists et_vect_bswap_saved] {
3534 verbose "check_effective_target_vect_bswap: using cached result" 2
3535 } else {
3536 set et_vect_bswap_saved 0
3537 if { [istarget aarch64*-*-*]
3538 || ([istarget arm*-*-*]
3539 && [check_effective_target_arm_neon])
3541 set et_vect_bswap_saved 1
3545 verbose "check_effective_target_vect_bswap: returning $et_vect_bswap_saved" 2
3546 return $et_vect_bswap_saved
3549 # Return 1 if the target supports hardware vector shift operation for char.
3551 proc check_effective_target_vect_shift_char { } {
3552 global et_vect_shift_char_saved
3554 if [info exists et_vect_shift_char_saved] {
3555 verbose "check_effective_target_vect_shift_char: using cached result" 2
3556 } else {
3557 set et_vect_shift_char_saved 0
3558 if { ([istarget powerpc*-*-*]
3559 && ![istarget powerpc-*-linux*paired*])
3560 || [check_effective_target_arm32] } {
3561 set et_vect_shift_char_saved 1
3565 verbose "check_effective_target_vect_shift_char: returning $et_vect_shift_char_saved" 2
3566 return $et_vect_shift_char_saved
3569 # Return 1 if the target supports hardware vectors of long, 0 otherwise.
3571 # This can change for different subtargets so do not cache the result.
3573 proc check_effective_target_vect_long { } {
3574 if { [istarget i?86-*-*] || [istarget x86_64-*-*]
3575 || (([istarget powerpc*-*-*]
3576 && ![istarget powerpc-*-linux*paired*])
3577 && [check_effective_target_ilp32])
3578 || [check_effective_target_arm32]
3579 || ([istarget sparc*-*-*] && [check_effective_target_ilp32]) } {
3580 set answer 1
3581 } else {
3582 set answer 0
3585 verbose "check_effective_target_vect_long: returning $answer" 2
3586 return $answer
3589 # Return 1 if the target supports hardware vectors of float, 0 otherwise.
3591 # This won't change for different subtargets so cache the result.
3593 proc check_effective_target_vect_float { } {
3594 global et_vect_float_saved
3596 if [info exists et_vect_float_saved] {
3597 verbose "check_effective_target_vect_float: using cached result" 2
3598 } else {
3599 set et_vect_float_saved 0
3600 if { [istarget i?86-*-*] || [istarget x86_64-*-*]
3601 || [istarget powerpc*-*-*]
3602 || [istarget spu-*-*]
3603 || [istarget mips-sde-elf]
3604 || [istarget mipsisa64*-*-*]
3605 || [istarget ia64-*-*]
3606 || [istarget aarch64*-*-*]
3607 || [check_effective_target_arm32] } {
3608 set et_vect_float_saved 1
3612 verbose "check_effective_target_vect_float: returning $et_vect_float_saved" 2
3613 return $et_vect_float_saved
3616 # Return 1 if the target supports hardware vectors of double, 0 otherwise.
3618 # This won't change for different subtargets so cache the result.
3620 proc check_effective_target_vect_double { } {
3621 global et_vect_double_saved
3623 if [info exists et_vect_double_saved] {
3624 verbose "check_effective_target_vect_double: using cached result" 2
3625 } else {
3626 set et_vect_double_saved 0
3627 if { [istarget i?86-*-*] || [istarget x86_64-*-*]
3628 || [istarget aarch64*-*-*] } {
3629 if { [check_no_compiler_messages vect_double assembly {
3630 #ifdef __tune_atom__
3631 # error No double vectorizer support.
3632 #endif
3633 }] } {
3634 set et_vect_double_saved 1
3635 } else {
3636 set et_vect_double_saved 0
3638 } elseif { [istarget spu-*-*] } {
3639 set et_vect_double_saved 1
3643 verbose "check_effective_target_vect_double: returning $et_vect_double_saved" 2
3644 return $et_vect_double_saved
3647 # Return 1 if the target supports hardware vectors of long long, 0 otherwise.
3649 # This won't change for different subtargets so cache the result.
3651 proc check_effective_target_vect_long_long { } {
3652 global et_vect_long_long_saved
3654 if [info exists et_vect_long_long_saved] {
3655 verbose "check_effective_target_vect_long_long: using cached result" 2
3656 } else {
3657 set et_vect_long_long_saved 0
3658 if { [istarget i?86-*-*] || [istarget x86_64-*-*] } {
3659 set et_vect_long_long_saved 1
3663 verbose "check_effective_target_vect_long_long: returning $et_vect_long_long_saved" 2
3664 return $et_vect_long_long_saved
3668 # Return 1 if the target plus current options does not support a vector
3669 # max instruction on "int", 0 otherwise.
3671 # This won't change for different subtargets so cache the result.
3673 proc check_effective_target_vect_no_int_max { } {
3674 global et_vect_no_int_max_saved
3676 if [info exists et_vect_no_int_max_saved] {
3677 verbose "check_effective_target_vect_no_int_max: using cached result" 2
3678 } else {
3679 set et_vect_no_int_max_saved 0
3680 if { [istarget sparc*-*-*]
3681 || [istarget spu-*-*]
3682 || [istarget alpha*-*-*]
3683 || ([istarget mips*-*-*]
3684 && [check_effective_target_mips_loongson]) } {
3685 set et_vect_no_int_max_saved 1
3688 verbose "check_effective_target_vect_no_int_max: returning $et_vect_no_int_max_saved" 2
3689 return $et_vect_no_int_max_saved
3692 # Return 1 if the target plus current options does not support a vector
3693 # add instruction on "int", 0 otherwise.
3695 # This won't change for different subtargets so cache the result.
3697 proc check_effective_target_vect_no_int_add { } {
3698 global et_vect_no_int_add_saved
3700 if [info exists et_vect_no_int_add_saved] {
3701 verbose "check_effective_target_vect_no_int_add: using cached result" 2
3702 } else {
3703 set et_vect_no_int_add_saved 0
3704 # Alpha only supports vector add on V8QI and V4HI.
3705 if { [istarget alpha*-*-*] } {
3706 set et_vect_no_int_add_saved 1
3709 verbose "check_effective_target_vect_no_int_add: returning $et_vect_no_int_add_saved" 2
3710 return $et_vect_no_int_add_saved
3713 # Return 1 if the target plus current options does not support vector
3714 # bitwise instructions, 0 otherwise.
3716 # This won't change for different subtargets so cache the result.
3718 proc check_effective_target_vect_no_bitwise { } {
3719 global et_vect_no_bitwise_saved
3721 if [info exists et_vect_no_bitwise_saved] {
3722 verbose "check_effective_target_vect_no_bitwise: using cached result" 2
3723 } else {
3724 set et_vect_no_bitwise_saved 0
3726 verbose "check_effective_target_vect_no_bitwise: returning $et_vect_no_bitwise_saved" 2
3727 return $et_vect_no_bitwise_saved
3730 # Return 1 if the target plus current options supports vector permutation,
3731 # 0 otherwise.
3733 # This won't change for different subtargets so cache the result.
3735 proc check_effective_target_vect_perm { } {
3736 global et_vect_perm
3738 if [info exists et_vect_perm_saved] {
3739 verbose "check_effective_target_vect_perm: using cached result" 2
3740 } else {
3741 set et_vect_perm_saved 0
3742 if { [is-effective-target arm_neon_ok]
3743 || [istarget aarch64*-*-*]
3744 || [istarget powerpc*-*-*]
3745 || [istarget spu-*-*]
3746 || [istarget i?86-*-*] || [istarget x86_64-*-*]
3747 || ([istarget mips*-*-*]
3748 && [check_effective_target_mpaired_single]) } {
3749 set et_vect_perm_saved 1
3752 verbose "check_effective_target_vect_perm: returning $et_vect_perm_saved" 2
3753 return $et_vect_perm_saved
3756 # Return 1 if the target plus current options supports vector permutation
3757 # on byte-sized elements, 0 otherwise.
3759 # This won't change for different subtargets so cache the result.
3761 proc check_effective_target_vect_perm_byte { } {
3762 global et_vect_perm_byte
3764 if [info exists et_vect_perm_byte_saved] {
3765 verbose "check_effective_target_vect_perm_byte: using cached result" 2
3766 } else {
3767 set et_vect_perm_byte_saved 0
3768 if { ([is-effective-target arm_neon_ok]
3769 && [is-effective-target arm_little_endian])
3770 || ([istarget aarch64*-*-*]
3771 && [is-effective-target aarch64_little_endian])
3772 || [istarget powerpc*-*-*]
3773 || [istarget spu-*-*] } {
3774 set et_vect_perm_byte_saved 1
3777 verbose "check_effective_target_vect_perm_byte: returning $et_vect_perm_byte_saved" 2
3778 return $et_vect_perm_byte_saved
3781 # Return 1 if the target plus current options supports vector permutation
3782 # on short-sized elements, 0 otherwise.
3784 # This won't change for different subtargets so cache the result.
3786 proc check_effective_target_vect_perm_short { } {
3787 global et_vect_perm_short
3789 if [info exists et_vect_perm_short_saved] {
3790 verbose "check_effective_target_vect_perm_short: using cached result" 2
3791 } else {
3792 set et_vect_perm_short_saved 0
3793 if { ([is-effective-target arm_neon_ok]
3794 && [is-effective-target arm_little_endian])
3795 || ([istarget aarch64*-*-*]
3796 && [is-effective-target aarch64_little_endian])
3797 || [istarget powerpc*-*-*]
3798 || [istarget spu-*-*] } {
3799 set et_vect_perm_short_saved 1
3802 verbose "check_effective_target_vect_perm_short: returning $et_vect_perm_short_saved" 2
3803 return $et_vect_perm_short_saved
3806 # Return 1 if the target plus current options supports a vector
3807 # widening summation of *short* args into *int* result, 0 otherwise.
3809 # This won't change for different subtargets so cache the result.
3811 proc check_effective_target_vect_widen_sum_hi_to_si_pattern { } {
3812 global et_vect_widen_sum_hi_to_si_pattern
3814 if [info exists et_vect_widen_sum_hi_to_si_pattern_saved] {
3815 verbose "check_effective_target_vect_widen_sum_hi_to_si_pattern: using cached result" 2
3816 } else {
3817 set et_vect_widen_sum_hi_to_si_pattern_saved 0
3818 if { [istarget powerpc*-*-*]
3819 || [istarget ia64-*-*] } {
3820 set et_vect_widen_sum_hi_to_si_pattern_saved 1
3823 verbose "check_effective_target_vect_widen_sum_hi_to_si_pattern: returning $et_vect_widen_sum_hi_to_si_pattern_saved" 2
3824 return $et_vect_widen_sum_hi_to_si_pattern_saved
3827 # Return 1 if the target plus current options supports a vector
3828 # widening summation of *short* args into *int* result, 0 otherwise.
3829 # A target can also support this widening summation if it can support
3830 # promotion (unpacking) from shorts to ints.
3832 # This won't change for different subtargets so cache the result.
3834 proc check_effective_target_vect_widen_sum_hi_to_si { } {
3835 global et_vect_widen_sum_hi_to_si
3837 if [info exists et_vect_widen_sum_hi_to_si_saved] {
3838 verbose "check_effective_target_vect_widen_sum_hi_to_si: using cached result" 2
3839 } else {
3840 set et_vect_widen_sum_hi_to_si_saved [check_effective_target_vect_unpack]
3841 if { [istarget powerpc*-*-*]
3842 || [istarget ia64-*-*] } {
3843 set et_vect_widen_sum_hi_to_si_saved 1
3846 verbose "check_effective_target_vect_widen_sum_hi_to_si: returning $et_vect_widen_sum_hi_to_si_saved" 2
3847 return $et_vect_widen_sum_hi_to_si_saved
3850 # Return 1 if the target plus current options supports a vector
3851 # widening summation of *char* args into *short* result, 0 otherwise.
3852 # A target can also support this widening summation if it can support
3853 # promotion (unpacking) from chars to shorts.
3855 # This won't change for different subtargets so cache the result.
3857 proc check_effective_target_vect_widen_sum_qi_to_hi { } {
3858 global et_vect_widen_sum_qi_to_hi
3860 if [info exists et_vect_widen_sum_qi_to_hi_saved] {
3861 verbose "check_effective_target_vect_widen_sum_qi_to_hi: using cached result" 2
3862 } else {
3863 set et_vect_widen_sum_qi_to_hi_saved 0
3864 if { [check_effective_target_vect_unpack]
3865 || [check_effective_target_arm_neon_ok]
3866 || [istarget ia64-*-*] } {
3867 set et_vect_widen_sum_qi_to_hi_saved 1
3870 verbose "check_effective_target_vect_widen_sum_qi_to_hi: returning $et_vect_widen_sum_qi_to_hi_saved" 2
3871 return $et_vect_widen_sum_qi_to_hi_saved
3874 # Return 1 if the target plus current options supports a vector
3875 # widening summation of *char* args into *int* result, 0 otherwise.
3877 # This won't change for different subtargets so cache the result.
3879 proc check_effective_target_vect_widen_sum_qi_to_si { } {
3880 global et_vect_widen_sum_qi_to_si
3882 if [info exists et_vect_widen_sum_qi_to_si_saved] {
3883 verbose "check_effective_target_vect_widen_sum_qi_to_si: using cached result" 2
3884 } else {
3885 set et_vect_widen_sum_qi_to_si_saved 0
3886 if { [istarget powerpc*-*-*] } {
3887 set et_vect_widen_sum_qi_to_si_saved 1
3890 verbose "check_effective_target_vect_widen_sum_qi_to_si: returning $et_vect_widen_sum_qi_to_si_saved" 2
3891 return $et_vect_widen_sum_qi_to_si_saved
3894 # Return 1 if the target plus current options supports a vector
3895 # widening multiplication of *char* args into *short* result, 0 otherwise.
3896 # A target can also support this widening multplication if it can support
3897 # promotion (unpacking) from chars to shorts, and vect_short_mult (non-widening
3898 # multiplication of shorts).
3900 # This won't change for different subtargets so cache the result.
3903 proc check_effective_target_vect_widen_mult_qi_to_hi { } {
3904 global et_vect_widen_mult_qi_to_hi
3906 if [info exists et_vect_widen_mult_qi_to_hi_saved] {
3907 verbose "check_effective_target_vect_widen_mult_qi_to_hi: using cached result" 2
3908 } else {
3909 if { [check_effective_target_vect_unpack]
3910 && [check_effective_target_vect_short_mult] } {
3911 set et_vect_widen_mult_qi_to_hi_saved 1
3912 } else {
3913 set et_vect_widen_mult_qi_to_hi_saved 0
3915 if { [istarget powerpc*-*-*]
3916 || [istarget aarch64*-*-*]
3917 || ([istarget arm*-*-*] && [check_effective_target_arm_neon_ok]) } {
3918 set et_vect_widen_mult_qi_to_hi_saved 1
3921 verbose "check_effective_target_vect_widen_mult_qi_to_hi: returning $et_vect_widen_mult_qi_to_hi_saved" 2
3922 return $et_vect_widen_mult_qi_to_hi_saved
3925 # Return 1 if the target plus current options supports a vector
3926 # widening multiplication of *short* args into *int* result, 0 otherwise.
3927 # A target can also support this widening multplication if it can support
3928 # promotion (unpacking) from shorts to ints, and vect_int_mult (non-widening
3929 # multiplication of ints).
3931 # This won't change for different subtargets so cache the result.
3934 proc check_effective_target_vect_widen_mult_hi_to_si { } {
3935 global et_vect_widen_mult_hi_to_si
3937 if [info exists et_vect_widen_mult_hi_to_si_saved] {
3938 verbose "check_effective_target_vect_widen_mult_hi_to_si: using cached result" 2
3939 } else {
3940 if { [check_effective_target_vect_unpack]
3941 && [check_effective_target_vect_int_mult] } {
3942 set et_vect_widen_mult_hi_to_si_saved 1
3943 } else {
3944 set et_vect_widen_mult_hi_to_si_saved 0
3946 if { [istarget powerpc*-*-*]
3947 || [istarget spu-*-*]
3948 || [istarget ia64-*-*]
3949 || [istarget aarch64*-*-*]
3950 || [istarget i?86-*-*] || [istarget x86_64-*-*]
3951 || ([istarget arm*-*-*] && [check_effective_target_arm_neon_ok]) } {
3952 set et_vect_widen_mult_hi_to_si_saved 1
3955 verbose "check_effective_target_vect_widen_mult_hi_to_si: returning $et_vect_widen_mult_hi_to_si_saved" 2
3956 return $et_vect_widen_mult_hi_to_si_saved
3959 # Return 1 if the target plus current options supports a vector
3960 # widening multiplication of *char* args into *short* result, 0 otherwise.
3962 # This won't change for different subtargets so cache the result.
3964 proc check_effective_target_vect_widen_mult_qi_to_hi_pattern { } {
3965 global et_vect_widen_mult_qi_to_hi_pattern
3967 if [info exists et_vect_widen_mult_qi_to_hi_pattern_saved] {
3968 verbose "check_effective_target_vect_widen_mult_qi_to_hi_pattern: using cached result" 2
3969 } else {
3970 set et_vect_widen_mult_qi_to_hi_pattern_saved 0
3971 if { [istarget powerpc*-*-*]
3972 || ([istarget arm*-*-*]
3973 && [check_effective_target_arm_neon_ok]
3974 && [check_effective_target_arm_little_endian]) } {
3975 set et_vect_widen_mult_qi_to_hi_pattern_saved 1
3978 verbose "check_effective_target_vect_widen_mult_qi_to_hi_pattern: returning $et_vect_widen_mult_qi_to_hi_pattern_saved" 2
3979 return $et_vect_widen_mult_qi_to_hi_pattern_saved
3982 # Return 1 if the target plus current options supports a vector
3983 # widening multiplication of *short* args into *int* result, 0 otherwise.
3985 # This won't change for different subtargets so cache the result.
3987 proc check_effective_target_vect_widen_mult_hi_to_si_pattern { } {
3988 global et_vect_widen_mult_hi_to_si_pattern
3990 if [info exists et_vect_widen_mult_hi_to_si_pattern_saved] {
3991 verbose "check_effective_target_vect_widen_mult_hi_to_si_pattern: using cached result" 2
3992 } else {
3993 set et_vect_widen_mult_hi_to_si_pattern_saved 0
3994 if { [istarget powerpc*-*-*]
3995 || [istarget spu-*-*]
3996 || [istarget ia64-*-*]
3997 || [istarget i?86-*-*] || [istarget x86_64-*-*]
3998 || ([istarget arm*-*-*]
3999 && [check_effective_target_arm_neon_ok]
4000 && [check_effective_target_arm_little_endian]) } {
4001 set et_vect_widen_mult_hi_to_si_pattern_saved 1
4004 verbose "check_effective_target_vect_widen_mult_hi_to_si_pattern: returning $et_vect_widen_mult_hi_to_si_pattern_saved" 2
4005 return $et_vect_widen_mult_hi_to_si_pattern_saved
4008 # Return 1 if the target plus current options supports a vector
4009 # widening multiplication of *int* args into *long* result, 0 otherwise.
4011 # This won't change for different subtargets so cache the result.
4013 proc check_effective_target_vect_widen_mult_si_to_di_pattern { } {
4014 global et_vect_widen_mult_si_to_di_pattern
4016 if [info exists et_vect_widen_mult_si_to_di_pattern_saved] {
4017 verbose "check_effective_target_vect_widen_mult_si_to_di_pattern: using cached result" 2
4018 } else {
4019 set et_vect_widen_mult_si_to_di_pattern_saved 0
4020 if {[istarget ia64-*-*]
4021 || [istarget i?86-*-*] || [istarget x86_64-*-*] } {
4022 set et_vect_widen_mult_si_to_di_pattern_saved 1
4025 verbose "check_effective_target_vect_widen_mult_si_to_di_pattern: returning $et_vect_widen_mult_si_to_di_pattern_saved" 2
4026 return $et_vect_widen_mult_si_to_di_pattern_saved
4029 # Return 1 if the target plus current options supports a vector
4030 # widening shift, 0 otherwise.
4032 # This won't change for different subtargets so cache the result.
4034 proc check_effective_target_vect_widen_shift { } {
4035 global et_vect_widen_shift_saved
4037 if [info exists et_vect_shift_saved] {
4038 verbose "check_effective_target_vect_widen_shift: using cached result" 2
4039 } else {
4040 set et_vect_widen_shift_saved 0
4041 if { ([istarget arm*-*-*] && [check_effective_target_arm_neon_ok]) } {
4042 set et_vect_widen_shift_saved 1
4045 verbose "check_effective_target_vect_widen_shift: returning $et_vect_widen_shift_saved" 2
4046 return $et_vect_widen_shift_saved
4049 # Return 1 if the target plus current options supports a vector
4050 # dot-product of signed chars, 0 otherwise.
4052 # This won't change for different subtargets so cache the result.
4054 proc check_effective_target_vect_sdot_qi { } {
4055 global et_vect_sdot_qi
4057 if [info exists et_vect_sdot_qi_saved] {
4058 verbose "check_effective_target_vect_sdot_qi: using cached result" 2
4059 } else {
4060 set et_vect_sdot_qi_saved 0
4061 if { [istarget ia64-*-*] } {
4062 set et_vect_udot_qi_saved 1
4065 verbose "check_effective_target_vect_sdot_qi: returning $et_vect_sdot_qi_saved" 2
4066 return $et_vect_sdot_qi_saved
4069 # Return 1 if the target plus current options supports a vector
4070 # dot-product of unsigned chars, 0 otherwise.
4072 # This won't change for different subtargets so cache the result.
4074 proc check_effective_target_vect_udot_qi { } {
4075 global et_vect_udot_qi
4077 if [info exists et_vect_udot_qi_saved] {
4078 verbose "check_effective_target_vect_udot_qi: using cached result" 2
4079 } else {
4080 set et_vect_udot_qi_saved 0
4081 if { [istarget powerpc*-*-*]
4082 || [istarget ia64-*-*] } {
4083 set et_vect_udot_qi_saved 1
4086 verbose "check_effective_target_vect_udot_qi: returning $et_vect_udot_qi_saved" 2
4087 return $et_vect_udot_qi_saved
4090 # Return 1 if the target plus current options supports a vector
4091 # dot-product of signed shorts, 0 otherwise.
4093 # This won't change for different subtargets so cache the result.
4095 proc check_effective_target_vect_sdot_hi { } {
4096 global et_vect_sdot_hi
4098 if [info exists et_vect_sdot_hi_saved] {
4099 verbose "check_effective_target_vect_sdot_hi: using cached result" 2
4100 } else {
4101 set et_vect_sdot_hi_saved 0
4102 if { ([istarget powerpc*-*-*] && ![istarget powerpc-*-linux*paired*])
4103 || [istarget ia64-*-*]
4104 || [istarget i?86-*-*] || [istarget x86_64-*-*] } {
4105 set et_vect_sdot_hi_saved 1
4108 verbose "check_effective_target_vect_sdot_hi: returning $et_vect_sdot_hi_saved" 2
4109 return $et_vect_sdot_hi_saved
4112 # Return 1 if the target plus current options supports a vector
4113 # dot-product of unsigned shorts, 0 otherwise.
4115 # This won't change for different subtargets so cache the result.
4117 proc check_effective_target_vect_udot_hi { } {
4118 global et_vect_udot_hi
4120 if [info exists et_vect_udot_hi_saved] {
4121 verbose "check_effective_target_vect_udot_hi: using cached result" 2
4122 } else {
4123 set et_vect_udot_hi_saved 0
4124 if { ([istarget powerpc*-*-*] && ![istarget powerpc-*-linux*paired*]) } {
4125 set et_vect_udot_hi_saved 1
4128 verbose "check_effective_target_vect_udot_hi: returning $et_vect_udot_hi_saved" 2
4129 return $et_vect_udot_hi_saved
4132 # Return 1 if the target plus current options supports a vector
4133 # sad operation of unsigned chars, 0 otherwise.
4135 # This won't change for different subtargets so cache the result.
4137 proc check_effective_target_vect_usad_char { } {
4138 global et_vect_usad_char
4140 if [info exists et_vect_usad_char_saved] {
4141 verbose "check_effective_target_vect_usad_char: using cached result" 2
4142 } else {
4143 set et_vect_usad_char_saved 0
4144 if { ([istarget i?86-*-*] || [istarget x86_64-*-*]) } {
4145 set et_vect_usad_char_saved 1
4148 verbose "check_effective_target_vect_usad_char: returning $et_vect_usad_char_saved" 2
4149 return $et_vect_usad_char_saved
4152 # Return 1 if the target plus current options supports a vector
4153 # demotion (packing) of shorts (to chars) and ints (to shorts)
4154 # using modulo arithmetic, 0 otherwise.
4156 # This won't change for different subtargets so cache the result.
4158 proc check_effective_target_vect_pack_trunc { } {
4159 global et_vect_pack_trunc
4161 if [info exists et_vect_pack_trunc_saved] {
4162 verbose "check_effective_target_vect_pack_trunc: using cached result" 2
4163 } else {
4164 set et_vect_pack_trunc_saved 0
4165 if { ([istarget powerpc*-*-*] && ![istarget powerpc-*-linux*paired*])
4166 || [istarget i?86-*-*] || [istarget x86_64-*-*]
4167 || [istarget aarch64*-*-*]
4168 || [istarget spu-*-*]
4169 || ([istarget arm*-*-*] && [check_effective_target_arm_neon_ok]
4170 && [check_effective_target_arm_little_endian]) } {
4171 set et_vect_pack_trunc_saved 1
4174 verbose "check_effective_target_vect_pack_trunc: returning $et_vect_pack_trunc_saved" 2
4175 return $et_vect_pack_trunc_saved
4178 # Return 1 if the target plus current options supports a vector
4179 # promotion (unpacking) of chars (to shorts) and shorts (to ints), 0 otherwise.
4181 # This won't change for different subtargets so cache the result.
4183 proc check_effective_target_vect_unpack { } {
4184 global et_vect_unpack
4186 if [info exists et_vect_unpack_saved] {
4187 verbose "check_effective_target_vect_unpack: using cached result" 2
4188 } else {
4189 set et_vect_unpack_saved 0
4190 if { ([istarget powerpc*-*-*] && ![istarget powerpc-*paired*])
4191 || [istarget i?86-*-*] || [istarget x86_64-*-*]
4192 || [istarget spu-*-*]
4193 || [istarget ia64-*-*]
4194 || [istarget aarch64*-*-*]
4195 || ([istarget arm*-*-*] && [check_effective_target_arm_neon_ok]
4196 && [check_effective_target_arm_little_endian]) } {
4197 set et_vect_unpack_saved 1
4200 verbose "check_effective_target_vect_unpack: returning $et_vect_unpack_saved" 2
4201 return $et_vect_unpack_saved
4204 # Return 1 if the target plus current options does not guarantee
4205 # that its STACK_BOUNDARY is >= the reguired vector alignment.
4207 # This won't change for different subtargets so cache the result.
4209 proc check_effective_target_unaligned_stack { } {
4210 global et_unaligned_stack_saved
4212 if [info exists et_unaligned_stack_saved] {
4213 verbose "check_effective_target_unaligned_stack: using cached result" 2
4214 } else {
4215 set et_unaligned_stack_saved 0
4217 verbose "check_effective_target_unaligned_stack: returning $et_unaligned_stack_saved" 2
4218 return $et_unaligned_stack_saved
4221 # Return 1 if the target plus current options does not support a vector
4222 # alignment mechanism, 0 otherwise.
4224 # This won't change for different subtargets so cache the result.
4226 proc check_effective_target_vect_no_align { } {
4227 global et_vect_no_align_saved
4229 if [info exists et_vect_no_align_saved] {
4230 verbose "check_effective_target_vect_no_align: using cached result" 2
4231 } else {
4232 set et_vect_no_align_saved 0
4233 if { [istarget mipsisa64*-*-*]
4234 || [istarget mips-sde-elf]
4235 || [istarget sparc*-*-*]
4236 || [istarget ia64-*-*]
4237 || [check_effective_target_arm_vect_no_misalign]
4238 || ([istarget powerpc*-*-*] && [check_p8vector_hw_available])
4239 || ([istarget mips*-*-*]
4240 && [check_effective_target_mips_loongson]) } {
4241 set et_vect_no_align_saved 1
4244 verbose "check_effective_target_vect_no_align: returning $et_vect_no_align_saved" 2
4245 return $et_vect_no_align_saved
4248 # Return 1 if the target supports a vector misalign access, 0 otherwise.
4250 # This won't change for different subtargets so cache the result.
4252 proc check_effective_target_vect_hw_misalign { } {
4253 global et_vect_hw_misalign_saved
4255 if [info exists et_vect_hw_misalign_saved] {
4256 verbose "check_effective_target_vect_hw_misalign: using cached result" 2
4257 } else {
4258 set et_vect_hw_misalign_saved 0
4259 if { [istarget i?86-*-*] || [istarget x86_64-*-*]
4260 || ([istarget powerpc*-*-*] && [check_p8vector_hw_available])
4261 || [istarget aarch64*-*-*] } {
4262 set et_vect_hw_misalign_saved 1
4265 verbose "check_effective_target_vect_hw_misalign: returning $et_vect_hw_misalign_saved" 2
4266 return $et_vect_hw_misalign_saved
4270 # Return 1 if arrays are aligned to the vector alignment
4271 # boundary, 0 otherwise.
4273 # This won't change for different subtargets so cache the result.
4275 proc check_effective_target_vect_aligned_arrays { } {
4276 global et_vect_aligned_arrays
4278 if [info exists et_vect_aligned_arrays_saved] {
4279 verbose "check_effective_target_vect_aligned_arrays: using cached result" 2
4280 } else {
4281 set et_vect_aligned_arrays_saved 0
4282 if { ([istarget x86_64-*-*] || [istarget i?86-*-*]) } {
4283 if { ([is-effective-target lp64]
4284 && ( ![check_avx_available]
4285 || [check_prefer_avx128])) } {
4286 set et_vect_aligned_arrays_saved 1
4289 if [istarget spu-*-*] {
4290 set et_vect_aligned_arrays_saved 1
4293 verbose "check_effective_target_vect_aligned_arrays: returning $et_vect_aligned_arrays_saved" 2
4294 return $et_vect_aligned_arrays_saved
4297 # Return 1 if types of size 32 bit or less are naturally aligned
4298 # (aligned to their type-size), 0 otherwise.
4300 # This won't change for different subtargets so cache the result.
4302 proc check_effective_target_natural_alignment_32 { } {
4303 global et_natural_alignment_32
4305 if [info exists et_natural_alignment_32_saved] {
4306 verbose "check_effective_target_natural_alignment_32: using cached result" 2
4307 } else {
4308 # FIXME: 32bit powerpc: guaranteed only if MASK_ALIGN_NATURAL/POWER.
4309 set et_natural_alignment_32_saved 1
4310 if { ([istarget *-*-darwin*] && [is-effective-target lp64]) } {
4311 set et_natural_alignment_32_saved 0
4314 verbose "check_effective_target_natural_alignment_32: returning $et_natural_alignment_32_saved" 2
4315 return $et_natural_alignment_32_saved
4318 # Return 1 if types of size 64 bit or less are naturally aligned (aligned to their
4319 # type-size), 0 otherwise.
4321 # This won't change for different subtargets so cache the result.
4323 proc check_effective_target_natural_alignment_64 { } {
4324 global et_natural_alignment_64
4326 if [info exists et_natural_alignment_64_saved] {
4327 verbose "check_effective_target_natural_alignment_64: using cached result" 2
4328 } else {
4329 set et_natural_alignment_64_saved 0
4330 if { ([is-effective-target lp64] && ![istarget *-*-darwin*])
4331 || [istarget spu-*-*] } {
4332 set et_natural_alignment_64_saved 1
4335 verbose "check_effective_target_natural_alignment_64: returning $et_natural_alignment_64_saved" 2
4336 return $et_natural_alignment_64_saved
4339 # Return 1 if all vector types are naturally aligned (aligned to their
4340 # type-size), 0 otherwise.
4342 # This won't change for different subtargets so cache the result.
4344 proc check_effective_target_vect_natural_alignment { } {
4345 global et_vect_natural_alignment
4347 if [info exists et_vect_natural_alignment_saved] {
4348 verbose "check_effective_target_vect_natural_alignment: using cached result" 2
4349 } else {
4350 set et_vect_natural_alignment_saved 1
4351 if { [check_effective_target_arm_eabi]
4352 || [istarget nvptx-*-*] } {
4353 set et_vect_natural_alignment_saved 0
4356 verbose "check_effective_target_vect_natural_alignment: returning $et_vect_natural_alignment_saved" 2
4357 return $et_vect_natural_alignment_saved
4360 # Return 1 if vector alignment (for types of size 32 bit or less) is reachable, 0 otherwise.
4362 # This won't change for different subtargets so cache the result.
4364 proc check_effective_target_vector_alignment_reachable { } {
4365 global et_vector_alignment_reachable
4367 if [info exists et_vector_alignment_reachable_saved] {
4368 verbose "check_effective_target_vector_alignment_reachable: using cached result" 2
4369 } else {
4370 if { [check_effective_target_vect_aligned_arrays]
4371 || [check_effective_target_natural_alignment_32] } {
4372 set et_vector_alignment_reachable_saved 1
4373 } else {
4374 set et_vector_alignment_reachable_saved 0
4377 verbose "check_effective_target_vector_alignment_reachable: returning $et_vector_alignment_reachable_saved" 2
4378 return $et_vector_alignment_reachable_saved
4381 # Return 1 if vector alignment for 64 bit is reachable, 0 otherwise.
4383 # This won't change for different subtargets so cache the result.
4385 proc check_effective_target_vector_alignment_reachable_for_64bit { } {
4386 global et_vector_alignment_reachable_for_64bit
4388 if [info exists et_vector_alignment_reachable_for_64bit_saved] {
4389 verbose "check_effective_target_vector_alignment_reachable_for_64bit: using cached result" 2
4390 } else {
4391 if { [check_effective_target_vect_aligned_arrays]
4392 || [check_effective_target_natural_alignment_64] } {
4393 set et_vector_alignment_reachable_for_64bit_saved 1
4394 } else {
4395 set et_vector_alignment_reachable_for_64bit_saved 0
4398 verbose "check_effective_target_vector_alignment_reachable_for_64bit: returning $et_vector_alignment_reachable_for_64bit_saved" 2
4399 return $et_vector_alignment_reachable_for_64bit_saved
4402 # Return 1 if the target only requires element alignment for vector accesses
4404 proc check_effective_target_vect_element_align { } {
4405 global et_vect_element_align
4407 if [info exists et_vect_element_align] {
4408 verbose "check_effective_target_vect_element_align: using cached result" 2
4409 } else {
4410 set et_vect_element_align 0
4411 if { ([istarget arm*-*-*]
4412 && ![check_effective_target_arm_vect_no_misalign])
4413 || [check_effective_target_vect_hw_misalign] } {
4414 set et_vect_element_align 1
4418 verbose "check_effective_target_vect_element_align: returning $et_vect_element_align" 2
4419 return $et_vect_element_align
4422 # Return 1 if the target supports vector conditional operations, 0 otherwise.
4424 proc check_effective_target_vect_condition { } {
4425 global et_vect_cond_saved
4427 if [info exists et_vect_cond_saved] {
4428 verbose "check_effective_target_vect_cond: using cached result" 2
4429 } else {
4430 set et_vect_cond_saved 0
4431 if { [istarget aarch64*-*-*]
4432 || [istarget powerpc*-*-*]
4433 || [istarget ia64-*-*]
4434 || [istarget i?86-*-*] || [istarget x86_64-*-*]
4435 || [istarget spu-*-*]
4436 || ([istarget arm*-*-*] && [check_effective_target_arm_neon_ok]) } {
4437 set et_vect_cond_saved 1
4441 verbose "check_effective_target_vect_cond: returning $et_vect_cond_saved" 2
4442 return $et_vect_cond_saved
4445 # Return 1 if the target supports vector conditional operations where
4446 # the comparison has different type from the lhs, 0 otherwise.
4448 proc check_effective_target_vect_cond_mixed { } {
4449 global et_vect_cond_mixed_saved
4451 if [info exists et_vect_cond_mixed_saved] {
4452 verbose "check_effective_target_vect_cond_mixed: using cached result" 2
4453 } else {
4454 set et_vect_cond_mixed_saved 0
4455 if { [istarget i?86-*-*] || [istarget x86_64-*-*]
4456 || [istarget powerpc*-*-*] } {
4457 set et_vect_cond_mixed_saved 1
4461 verbose "check_effective_target_vect_cond_mixed: returning $et_vect_cond_mixed_saved" 2
4462 return $et_vect_cond_mixed_saved
4465 # Return 1 if the target supports vector char multiplication, 0 otherwise.
4467 proc check_effective_target_vect_char_mult { } {
4468 global et_vect_char_mult_saved
4470 if [info exists et_vect_char_mult_saved] {
4471 verbose "check_effective_target_vect_char_mult: using cached result" 2
4472 } else {
4473 set et_vect_char_mult_saved 0
4474 if { [istarget aarch64*-*-*]
4475 || [istarget ia64-*-*]
4476 || [istarget i?86-*-*] || [istarget x86_64-*-*]
4477 || [check_effective_target_arm32] } {
4478 set et_vect_char_mult_saved 1
4482 verbose "check_effective_target_vect_char_mult: returning $et_vect_char_mult_saved" 2
4483 return $et_vect_char_mult_saved
4486 # Return 1 if the target supports vector short multiplication, 0 otherwise.
4488 proc check_effective_target_vect_short_mult { } {
4489 global et_vect_short_mult_saved
4491 if [info exists et_vect_short_mult_saved] {
4492 verbose "check_effective_target_vect_short_mult: using cached result" 2
4493 } else {
4494 set et_vect_short_mult_saved 0
4495 if { [istarget ia64-*-*]
4496 || [istarget spu-*-*]
4497 || [istarget i?86-*-*] || [istarget x86_64-*-*]
4498 || [istarget powerpc*-*-*]
4499 || [istarget aarch64*-*-*]
4500 || [check_effective_target_arm32]
4501 || ([istarget mips*-*-*]
4502 && [check_effective_target_mips_loongson]) } {
4503 set et_vect_short_mult_saved 1
4507 verbose "check_effective_target_vect_short_mult: returning $et_vect_short_mult_saved" 2
4508 return $et_vect_short_mult_saved
4511 # Return 1 if the target supports vector int multiplication, 0 otherwise.
4513 proc check_effective_target_vect_int_mult { } {
4514 global et_vect_int_mult_saved
4516 if [info exists et_vect_int_mult_saved] {
4517 verbose "check_effective_target_vect_int_mult: using cached result" 2
4518 } else {
4519 set et_vect_int_mult_saved 0
4520 if { ([istarget powerpc*-*-*] && ![istarget powerpc-*-linux*paired*])
4521 || [istarget spu-*-*]
4522 || [istarget i?86-*-*] || [istarget x86_64-*-*]
4523 || [istarget ia64-*-*]
4524 || [istarget aarch64*-*-*]
4525 || [check_effective_target_arm32] } {
4526 set et_vect_int_mult_saved 1
4530 verbose "check_effective_target_vect_int_mult: returning $et_vect_int_mult_saved" 2
4531 return $et_vect_int_mult_saved
4534 # Return 1 if the target supports vector even/odd elements extraction, 0 otherwise.
4536 proc check_effective_target_vect_extract_even_odd { } {
4537 global et_vect_extract_even_odd_saved
4539 if [info exists et_vect_extract_even_odd_saved] {
4540 verbose "check_effective_target_vect_extract_even_odd: using cached result" 2
4541 } else {
4542 set et_vect_extract_even_odd_saved 0
4543 if { [istarget aarch64*-*-*]
4544 || [istarget powerpc*-*-*]
4545 || [is-effective-target arm_neon_ok]
4546 || [istarget i?86-*-*] || [istarget x86_64-*-*]
4547 || [istarget ia64-*-*]
4548 || [istarget spu-*-*]
4549 || ([istarget mips*-*-*]
4550 && [check_effective_target_mpaired_single]) } {
4551 set et_vect_extract_even_odd_saved 1
4555 verbose "check_effective_target_vect_extract_even_odd: returning $et_vect_extract_even_odd_saved" 2
4556 return $et_vect_extract_even_odd_saved
4559 # Return 1 if the target supports vector interleaving, 0 otherwise.
4561 proc check_effective_target_vect_interleave { } {
4562 global et_vect_interleave_saved
4564 if [info exists et_vect_interleave_saved] {
4565 verbose "check_effective_target_vect_interleave: using cached result" 2
4566 } else {
4567 set et_vect_interleave_saved 0
4568 if { [istarget aarch64*-*-*]
4569 || [istarget powerpc*-*-*]
4570 || [is-effective-target arm_neon_ok]
4571 || [istarget i?86-*-*] || [istarget x86_64-*-*]
4572 || [istarget ia64-*-*]
4573 || [istarget spu-*-*]
4574 || ([istarget mips*-*-*]
4575 && [check_effective_target_mpaired_single]) } {
4576 set et_vect_interleave_saved 1
4580 verbose "check_effective_target_vect_interleave: returning $et_vect_interleave_saved" 2
4581 return $et_vect_interleave_saved
4584 foreach N {2 3 4 8} {
4585 eval [string map [list N $N] {
4586 # Return 1 if the target supports 2-vector interleaving
4587 proc check_effective_target_vect_stridedN { } {
4588 global et_vect_stridedN_saved
4590 if [info exists et_vect_stridedN_saved] {
4591 verbose "check_effective_target_vect_stridedN: using cached result" 2
4592 } else {
4593 set et_vect_stridedN_saved 0
4594 if { (N & -N) == N
4595 && [check_effective_target_vect_interleave]
4596 && [check_effective_target_vect_extract_even_odd] } {
4597 set et_vect_stridedN_saved 1
4599 if { ([istarget arm*-*-*]
4600 || [istarget aarch64*-*-*]) && N >= 2 && N <= 4 } {
4601 set et_vect_stridedN_saved 1
4605 verbose "check_effective_target_vect_stridedN: returning $et_vect_stridedN_saved" 2
4606 return $et_vect_stridedN_saved
4611 # Return 1 if the target supports multiple vector sizes
4613 proc check_effective_target_vect_multiple_sizes { } {
4614 global et_vect_multiple_sizes_saved
4616 set et_vect_multiple_sizes_saved 0
4617 if { ([istarget aarch64*-*-*]
4618 || ([istarget arm*-*-*] && [check_effective_target_arm_neon_ok])) } {
4619 set et_vect_multiple_sizes_saved 1
4621 if { ([istarget x86_64-*-*] || [istarget i?86-*-*]) } {
4622 if { ([check_avx_available] && ![check_prefer_avx128]) } {
4623 set et_vect_multiple_sizes_saved 1
4627 verbose "check_effective_target_vect_multiple_sizes: returning $et_vect_multiple_sizes_saved" 2
4628 return $et_vect_multiple_sizes_saved
4631 # Return 1 if the target supports vectors of 64 bits.
4633 proc check_effective_target_vect64 { } {
4634 global et_vect64_saved
4636 if [info exists et_vect64_saved] {
4637 verbose "check_effective_target_vect64: using cached result" 2
4638 } else {
4639 set et_vect64_saved 0
4640 if { ([istarget arm*-*-*]
4641 && [check_effective_target_arm_neon_ok]
4642 && [check_effective_target_arm_little_endian])
4643 || [istarget sparc*-*-*] } {
4644 set et_vect64_saved 1
4648 verbose "check_effective_target_vect64: returning $et_vect64_saved" 2
4649 return $et_vect64_saved
4652 # Return 1 if the target supports vector copysignf calls.
4654 proc check_effective_target_vect_call_copysignf { } {
4655 global et_vect_call_copysignf_saved
4657 if [info exists et_vect_call_copysignf_saved] {
4658 verbose "check_effective_target_vect_call_copysignf: using cached result" 2
4659 } else {
4660 set et_vect_call_copysignf_saved 0
4661 if { [istarget i?86-*-*] || [istarget x86_64-*-*]
4662 || [istarget powerpc*-*-*] } {
4663 set et_vect_call_copysignf_saved 1
4667 verbose "check_effective_target_vect_call_copysignf: returning $et_vect_call_copysignf_saved" 2
4668 return $et_vect_call_copysignf_saved
4671 # Return 1 if the target supports vector sqrtf calls.
4673 proc check_effective_target_vect_call_sqrtf { } {
4674 global et_vect_call_sqrtf_saved
4676 if [info exists et_vect_call_sqrtf_saved] {
4677 verbose "check_effective_target_vect_call_sqrtf: using cached result" 2
4678 } else {
4679 set et_vect_call_sqrtf_saved 0
4680 if { [istarget aarch64*-*-*]
4681 || [istarget i?86-*-*] || [istarget x86_64-*-*]
4682 || ([istarget powerpc*-*-*] && [check_vsx_hw_available]) } {
4683 set et_vect_call_sqrtf_saved 1
4687 verbose "check_effective_target_vect_call_sqrtf: returning $et_vect_call_sqrtf_saved" 2
4688 return $et_vect_call_sqrtf_saved
4691 # Return 1 if the target supports vector lrint calls.
4693 proc check_effective_target_vect_call_lrint { } {
4694 set et_vect_call_lrint 0
4695 if { ([istarget i?86-*-*] || [istarget x86_64-*-*])
4696 && [check_effective_target_ilp32] } {
4697 set et_vect_call_lrint 1
4700 verbose "check_effective_target_vect_call_lrint: returning $et_vect_call_lrint" 2
4701 return $et_vect_call_lrint
4704 # Return 1 if the target supports vector btrunc calls.
4706 proc check_effective_target_vect_call_btrunc { } {
4707 global et_vect_call_btrunc_saved
4709 if [info exists et_vect_call_btrunc_saved] {
4710 verbose "check_effective_target_vect_call_btrunc: using cached result" 2
4711 } else {
4712 set et_vect_call_btrunc_saved 0
4713 if { [istarget aarch64*-*-*] } {
4714 set et_vect_call_btrunc_saved 1
4718 verbose "check_effective_target_vect_call_btrunc: returning $et_vect_call_btrunc_saved" 2
4719 return $et_vect_call_btrunc_saved
4722 # Return 1 if the target supports vector btruncf calls.
4724 proc check_effective_target_vect_call_btruncf { } {
4725 global et_vect_call_btruncf_saved
4727 if [info exists et_vect_call_btruncf_saved] {
4728 verbose "check_effective_target_vect_call_btruncf: using cached result" 2
4729 } else {
4730 set et_vect_call_btruncf_saved 0
4731 if { [istarget aarch64*-*-*] } {
4732 set et_vect_call_btruncf_saved 1
4736 verbose "check_effective_target_vect_call_btruncf: returning $et_vect_call_btruncf_saved" 2
4737 return $et_vect_call_btruncf_saved
4740 # Return 1 if the target supports vector ceil calls.
4742 proc check_effective_target_vect_call_ceil { } {
4743 global et_vect_call_ceil_saved
4745 if [info exists et_vect_call_ceil_saved] {
4746 verbose "check_effective_target_vect_call_ceil: using cached result" 2
4747 } else {
4748 set et_vect_call_ceil_saved 0
4749 if { [istarget aarch64*-*-*] } {
4750 set et_vect_call_ceil_saved 1
4754 verbose "check_effective_target_vect_call_ceil: returning $et_vect_call_ceil_saved" 2
4755 return $et_vect_call_ceil_saved
4758 # Return 1 if the target supports vector ceilf calls.
4760 proc check_effective_target_vect_call_ceilf { } {
4761 global et_vect_call_ceilf_saved
4763 if [info exists et_vect_call_ceilf_saved] {
4764 verbose "check_effective_target_vect_call_ceilf: using cached result" 2
4765 } else {
4766 set et_vect_call_ceilf_saved 0
4767 if { [istarget aarch64*-*-*] } {
4768 set et_vect_call_ceilf_saved 1
4772 verbose "check_effective_target_vect_call_ceilf: returning $et_vect_call_ceilf_saved" 2
4773 return $et_vect_call_ceilf_saved
4776 # Return 1 if the target supports vector floor calls.
4778 proc check_effective_target_vect_call_floor { } {
4779 global et_vect_call_floor_saved
4781 if [info exists et_vect_call_floor_saved] {
4782 verbose "check_effective_target_vect_call_floor: using cached result" 2
4783 } else {
4784 set et_vect_call_floor_saved 0
4785 if { [istarget aarch64*-*-*] } {
4786 set et_vect_call_floor_saved 1
4790 verbose "check_effective_target_vect_call_floor: returning $et_vect_call_floor_saved" 2
4791 return $et_vect_call_floor_saved
4794 # Return 1 if the target supports vector floorf calls.
4796 proc check_effective_target_vect_call_floorf { } {
4797 global et_vect_call_floorf_saved
4799 if [info exists et_vect_call_floorf_saved] {
4800 verbose "check_effective_target_vect_call_floorf: using cached result" 2
4801 } else {
4802 set et_vect_call_floorf_saved 0
4803 if { [istarget aarch64*-*-*] } {
4804 set et_vect_call_floorf_saved 1
4808 verbose "check_effective_target_vect_call_floorf: returning $et_vect_call_floorf_saved" 2
4809 return $et_vect_call_floorf_saved
4812 # Return 1 if the target supports vector lceil calls.
4814 proc check_effective_target_vect_call_lceil { } {
4815 global et_vect_call_lceil_saved
4817 if [info exists et_vect_call_lceil_saved] {
4818 verbose "check_effective_target_vect_call_lceil: using cached result" 2
4819 } else {
4820 set et_vect_call_lceil_saved 0
4821 if { [istarget aarch64*-*-*] } {
4822 set et_vect_call_lceil_saved 1
4826 verbose "check_effective_target_vect_call_lceil: returning $et_vect_call_lceil_saved" 2
4827 return $et_vect_call_lceil_saved
4830 # Return 1 if the target supports vector lfloor calls.
4832 proc check_effective_target_vect_call_lfloor { } {
4833 global et_vect_call_lfloor_saved
4835 if [info exists et_vect_call_lfloor_saved] {
4836 verbose "check_effective_target_vect_call_lfloor: using cached result" 2
4837 } else {
4838 set et_vect_call_lfloor_saved 0
4839 if { [istarget aarch64*-*-*] } {
4840 set et_vect_call_lfloor_saved 1
4844 verbose "check_effective_target_vect_call_lfloor: returning $et_vect_call_lfloor_saved" 2
4845 return $et_vect_call_lfloor_saved
4848 # Return 1 if the target supports vector nearbyint calls.
4850 proc check_effective_target_vect_call_nearbyint { } {
4851 global et_vect_call_nearbyint_saved
4853 if [info exists et_vect_call_nearbyint_saved] {
4854 verbose "check_effective_target_vect_call_nearbyint: using cached result" 2
4855 } else {
4856 set et_vect_call_nearbyint_saved 0
4857 if { [istarget aarch64*-*-*] } {
4858 set et_vect_call_nearbyint_saved 1
4862 verbose "check_effective_target_vect_call_nearbyint: returning $et_vect_call_nearbyint_saved" 2
4863 return $et_vect_call_nearbyint_saved
4866 # Return 1 if the target supports vector nearbyintf calls.
4868 proc check_effective_target_vect_call_nearbyintf { } {
4869 global et_vect_call_nearbyintf_saved
4871 if [info exists et_vect_call_nearbyintf_saved] {
4872 verbose "check_effective_target_vect_call_nearbyintf: using cached result" 2
4873 } else {
4874 set et_vect_call_nearbyintf_saved 0
4875 if { [istarget aarch64*-*-*] } {
4876 set et_vect_call_nearbyintf_saved 1
4880 verbose "check_effective_target_vect_call_nearbyintf: returning $et_vect_call_nearbyintf_saved" 2
4881 return $et_vect_call_nearbyintf_saved
4884 # Return 1 if the target supports vector round calls.
4886 proc check_effective_target_vect_call_round { } {
4887 global et_vect_call_round_saved
4889 if [info exists et_vect_call_round_saved] {
4890 verbose "check_effective_target_vect_call_round: using cached result" 2
4891 } else {
4892 set et_vect_call_round_saved 0
4893 if { [istarget aarch64*-*-*] } {
4894 set et_vect_call_round_saved 1
4898 verbose "check_effective_target_vect_call_round: returning $et_vect_call_round_saved" 2
4899 return $et_vect_call_round_saved
4902 # Return 1 if the target supports vector roundf calls.
4904 proc check_effective_target_vect_call_roundf { } {
4905 global et_vect_call_roundf_saved
4907 if [info exists et_vect_call_roundf_saved] {
4908 verbose "check_effective_target_vect_call_roundf: using cached result" 2
4909 } else {
4910 set et_vect_call_roundf_saved 0
4911 if { [istarget aarch64*-*-*] } {
4912 set et_vect_call_roundf_saved 1
4916 verbose "check_effective_target_vect_call_roundf: returning $et_vect_call_roundf_saved" 2
4917 return $et_vect_call_roundf_saved
4920 # Return 1 if the target supports section-anchors
4922 proc check_effective_target_section_anchors { } {
4923 global et_section_anchors_saved
4925 if [info exists et_section_anchors_saved] {
4926 verbose "check_effective_target_section_anchors: using cached result" 2
4927 } else {
4928 set et_section_anchors_saved 0
4929 if { [istarget powerpc*-*-*]
4930 || [istarget arm*-*-*] } {
4931 set et_section_anchors_saved 1
4935 verbose "check_effective_target_section_anchors: returning $et_section_anchors_saved" 2
4936 return $et_section_anchors_saved
4939 # Return 1 if the target supports atomic operations on "int_128" values.
4941 proc check_effective_target_sync_int_128 { } {
4942 if { ([istarget x86_64-*-*] || [istarget i?86-*-*])
4943 && ![is-effective-target ia32] } {
4944 return 1
4945 } else {
4946 return 0
4950 # Return 1 if the target supports atomic operations on "int_128" values
4951 # and can execute them.
4953 proc check_effective_target_sync_int_128_runtime { } {
4954 if { ([istarget x86_64-*-*] || [istarget i?86-*-*])
4955 && ![is-effective-target ia32] } {
4956 return [check_cached_effective_target sync_int_128_available {
4957 check_runtime_nocache sync_int_128_available {
4958 #include "cpuid.h"
4959 int main ()
4961 unsigned int eax, ebx, ecx, edx;
4962 if (__get_cpuid (1, &eax, &ebx, &ecx, &edx))
4963 return !(ecx & bit_CMPXCHG16B);
4964 return 1;
4966 } ""
4968 } else {
4969 return 0
4973 # Return 1 if the target supports atomic operations on "long long".
4975 # Note: 32bit x86 targets require -march=pentium in dg-options.
4977 proc check_effective_target_sync_long_long { } {
4978 if { [istarget x86_64-*-*] || [istarget i?86-*-*])
4979 || [istarget aarch64*-*-*]
4980 || [istarget arm*-*-*]
4981 || [istarget alpha*-*-*]
4982 || ([istarget sparc*-*-*] && [check_effective_target_lp64]) } {
4983 return 1
4984 } else {
4985 return 0
4989 # Return 1 if the target supports atomic operations on "long long"
4990 # and can execute them.
4992 # Note: 32bit x86 targets require -march=pentium in dg-options.
4994 proc check_effective_target_sync_long_long_runtime { } {
4995 if { [istarget x86_64-*-*] || [istarget i?86-*-*] } {
4996 return [check_cached_effective_target sync_long_long_available {
4997 check_runtime_nocache sync_long_long_available {
4998 #include "cpuid.h"
4999 int main ()
5001 unsigned int eax, ebx, ecx, edx;
5002 if (__get_cpuid (1, &eax, &ebx, &ecx, &edx))
5003 return !(edx & bit_CMPXCHG8B);
5004 return 1;
5006 } ""
5008 } elseif { [istarget aarch64*-*-*] } {
5009 return 1
5010 } elseif { [istarget arm*-*-linux-*] } {
5011 return [check_runtime sync_longlong_runtime {
5012 #include <stdlib.h>
5013 int main ()
5015 long long l1;
5017 if (sizeof (long long) != 8)
5018 exit (1);
5020 /* Just check for native; checking for kernel fallback is tricky. */
5021 asm volatile ("ldrexd r0,r1, [%0]" : : "r" (&l1) : "r0", "r1");
5023 exit (0);
5025 } "" ]
5026 } elseif { [istarget alpha*-*-*] } {
5027 return 1
5028 } elseif { ([istarget sparc*-*-*]
5029 && [check_effective_target_lp64]
5030 && [check_effective_target_ultrasparc_hw]) } {
5031 return 1
5032 } elseif { [istarget powerpc*-*-*] && [check_effective_target_lp64] } {
5033 return 1
5034 } else {
5035 return 0
5039 # Return 1 if the target supports byte swap instructions.
5041 proc check_effective_target_bswap { } {
5042 global et_bswap_saved
5044 if [info exists et_bswap_saved] {
5045 verbose "check_effective_target_bswap: using cached result" 2
5046 } else {
5047 set et_bswap_saved 0
5048 if { [istarget aarch64*-*-*]
5049 || [istarget alpha*-*-*]
5050 || [istarget i?86-*-*] || [istarget x86_64-*-*]
5051 || [istarget m68k-*-*]
5052 || [istarget powerpc*-*-*]
5053 || [istarget rs6000-*-*]
5054 || [istarget s390*-*-*] } {
5055 set et_bswap_saved 1
5056 } else {
5057 if { [istarget arm*-*-*]
5058 && [check_no_compiler_messages_nocache arm_v6_or_later object {
5059 #if __ARM_ARCH < 6
5060 #error not armv6 or later
5061 #endif
5062 int i;
5063 } ""] } {
5064 set et_bswap_saved 1
5069 verbose "check_effective_target_bswap: returning $et_bswap_saved" 2
5070 return $et_bswap_saved
5073 # Return 1 if the target supports 16-bit byte swap instructions.
5075 proc check_effective_target_bswap16 { } {
5076 global et_bswap16_saved
5078 if [info exists et_bswap16_saved] {
5079 verbose "check_effective_target_bswap16: using cached result" 2
5080 } else {
5081 set et_bswap16_saved 0
5082 if { [is-effective-target bswap]
5083 && ![istarget alpha*-*-*]
5084 && !([istarget i?86-*-*] || [istarget x86_64-*-*]) } {
5085 set et_bswap16_saved 1
5089 verbose "check_effective_target_bswap16: returning $et_bswap16_saved" 2
5090 return $et_bswap16_saved
5093 # Return 1 if the target supports 32-bit byte swap instructions.
5095 proc check_effective_target_bswap32 { } {
5096 global et_bswap32_saved
5098 if [info exists et_bswap32_saved] {
5099 verbose "check_effective_target_bswap32: using cached result" 2
5100 } else {
5101 set et_bswap32_saved 0
5102 if { [is-effective-target bswap] } {
5103 set et_bswap32_saved 1
5107 verbose "check_effective_target_bswap32: returning $et_bswap32_saved" 2
5108 return $et_bswap32_saved
5111 # Return 1 if the target supports 64-bit byte swap instructions.
5113 proc check_effective_target_bswap64 { } {
5114 global et_bswap64_saved
5116 # expand_unop can expand 64-bit byte swap on 32-bit targets
5117 if { [is-effective-target bswap] && [is-effective-target int32plus] } {
5118 return 1
5120 return 0
5123 # Return 1 if the target supports atomic operations on "int" and "long".
5125 proc check_effective_target_sync_int_long { } {
5126 global et_sync_int_long_saved
5128 if [info exists et_sync_int_long_saved] {
5129 verbose "check_effective_target_sync_int_long: using cached result" 2
5130 } else {
5131 set et_sync_int_long_saved 0
5132 # This is intentionally powerpc but not rs6000, rs6000 doesn't have the
5133 # load-reserved/store-conditional instructions.
5134 if { [istarget ia64-*-*]
5135 || [istarget i?86-*-*] || [istarget x86_64-*-*]
5136 || [istarget aarch64*-*-*]
5137 || [istarget alpha*-*-*]
5138 || [istarget arm*-*-linux-*]
5139 || [istarget bfin*-*linux*]
5140 || [istarget hppa*-*linux*]
5141 || [istarget s390*-*-*]
5142 || [istarget powerpc*-*-*]
5143 || [istarget crisv32-*-*] || [istarget cris-*-*]
5144 || ([istarget sparc*-*-*] && [check_effective_target_sparc_v9])
5145 || [check_effective_target_mips_llsc] } {
5146 set et_sync_int_long_saved 1
5150 verbose "check_effective_target_sync_int_long: returning $et_sync_int_long_saved" 2
5151 return $et_sync_int_long_saved
5154 # Return 1 if the target supports atomic operations on "char" and "short".
5156 proc check_effective_target_sync_char_short { } {
5157 global et_sync_char_short_saved
5159 if [info exists et_sync_char_short_saved] {
5160 verbose "check_effective_target_sync_char_short: using cached result" 2
5161 } else {
5162 set et_sync_char_short_saved 0
5163 # This is intentionally powerpc but not rs6000, rs6000 doesn't have the
5164 # load-reserved/store-conditional instructions.
5165 if { [istarget aarch64*-*-*]
5166 || [istarget ia64-*-*]
5167 || [istarget i?86-*-*] || [istarget x86_64-*-*]
5168 || [istarget alpha*-*-*]
5169 || [istarget arm*-*-linux-*]
5170 || [istarget hppa*-*linux*]
5171 || [istarget s390*-*-*]
5172 || [istarget powerpc*-*-*]
5173 || [istarget crisv32-*-*] || [istarget cris-*-*]
5174 || ([istarget sparc*-*-*] && [check_effective_target_sparc_v9])
5175 || [check_effective_target_mips_llsc] } {
5176 set et_sync_char_short_saved 1
5180 verbose "check_effective_target_sync_char_short: returning $et_sync_char_short_saved" 2
5181 return $et_sync_char_short_saved
5184 # Return 1 if the target uses a ColdFire FPU.
5186 proc check_effective_target_coldfire_fpu { } {
5187 return [check_no_compiler_messages coldfire_fpu assembly {
5188 #ifndef __mcffpu__
5189 #error !__mcffpu__
5190 #endif
5194 # Return true if this is a uClibc target.
5196 proc check_effective_target_uclibc {} {
5197 return [check_no_compiler_messages uclibc object {
5198 #include <features.h>
5199 #if !defined (__UCLIBC__)
5200 #error !__UCLIBC__
5201 #endif
5205 # Return true if this is a uclibc target and if the uclibc feature
5206 # described by __$feature__ is not present.
5208 proc check_missing_uclibc_feature {feature} {
5209 return [check_no_compiler_messages $feature object "
5210 #include <features.h>
5211 #if !defined (__UCLIBC) || defined (__${feature}__)
5212 #error FOO
5213 #endif
5217 # Return true if this is a Newlib target.
5219 proc check_effective_target_newlib {} {
5220 return [check_no_compiler_messages newlib object {
5221 #include <newlib.h>
5225 # Return true if this is NOT a Bionic target.
5227 proc check_effective_target_non_bionic {} {
5228 return [check_no_compiler_messages non_bionic object {
5229 #include <ctype.h>
5230 #if defined (__BIONIC__)
5231 #error FOO
5232 #endif
5236 # Return true if this target has error.h header.
5238 proc check_effective_target_error_h {} {
5239 return [check_no_compiler_messages error_h object {
5240 #include <error.h>
5244 # Return true if this target has tgmath.h header.
5246 proc check_effective_target_tgmath_h {} {
5247 return [check_no_compiler_messages tgmath_h object {
5248 #include <tgmath.h>
5252 # Return true if target's libc supports complex functions.
5254 proc check_effective_target_libc_has_complex_functions {} {
5255 return [check_no_compiler_messages libc_has_complex_functions object {
5256 #include <complex.h>
5260 # Return 1 if
5261 # (a) an error of a few ULP is expected in string to floating-point
5262 # conversion functions; and
5263 # (b) overflow is not always detected correctly by those functions.
5265 proc check_effective_target_lax_strtofp {} {
5266 # By default, assume that all uClibc targets suffer from this.
5267 return [check_effective_target_uclibc]
5270 # Return 1 if this is a target for which wcsftime is a dummy
5271 # function that always returns 0.
5273 proc check_effective_target_dummy_wcsftime {} {
5274 # By default, assume that all uClibc targets suffer from this.
5275 return [check_effective_target_uclibc]
5278 # Return 1 if constructors with initialization priority arguments are
5279 # supposed on this target.
5281 proc check_effective_target_init_priority {} {
5282 return [check_no_compiler_messages init_priority assembly "
5283 void f() __attribute__((constructor (1000)));
5284 void f() \{\}
5288 # Return 1 if the target matches the effective target 'arg', 0 otherwise.
5289 # This can be used with any check_* proc that takes no argument and
5290 # returns only 1 or 0. It could be used with check_* procs that take
5291 # arguments with keywords that pass particular arguments.
5293 proc is-effective-target { arg } {
5294 set selected 0
5295 if { [info procs check_effective_target_${arg}] != [list] } {
5296 set selected [check_effective_target_${arg}]
5297 } else {
5298 switch $arg {
5299 "vmx_hw" { set selected [check_vmx_hw_available] }
5300 "vsx_hw" { set selected [check_vsx_hw_available] }
5301 "p8vector_hw" { set selected [check_p8vector_hw_available] }
5302 "ppc_recip_hw" { set selected [check_ppc_recip_hw_available] }
5303 "dfp_hw" { set selected [check_dfp_hw_available] }
5304 "htm_hw" { set selected [check_htm_hw_available] }
5305 "named_sections" { set selected [check_named_sections_available] }
5306 "gc_sections" { set selected [check_gc_sections_available] }
5307 "cxa_atexit" { set selected [check_cxa_atexit_available] }
5308 default { error "unknown effective target keyword `$arg'" }
5311 verbose "is-effective-target: $arg $selected" 2
5312 return $selected
5315 # Return 1 if the argument is an effective-target keyword, 0 otherwise.
5317 proc is-effective-target-keyword { arg } {
5318 if { [info procs check_effective_target_${arg}] != [list] } {
5319 return 1
5320 } else {
5321 # These have different names for their check_* procs.
5322 switch $arg {
5323 "vmx_hw" { return 1 }
5324 "vsx_hw" { return 1 }
5325 "p8vector_hw" { return 1 }
5326 "ppc_recip_hw" { return 1 }
5327 "dfp_hw" { return 1 }
5328 "htm_hw" { return 1 }
5329 "named_sections" { return 1 }
5330 "gc_sections" { return 1 }
5331 "cxa_atexit" { return 1 }
5332 default { return 0 }
5337 # Return 1 if target default to short enums
5339 proc check_effective_target_short_enums { } {
5340 return [check_no_compiler_messages short_enums assembly {
5341 enum foo { bar };
5342 int s[sizeof (enum foo) == 1 ? 1 : -1];
5346 # Return 1 if target supports merging string constants at link time.
5348 proc check_effective_target_string_merging { } {
5349 return [check_no_messages_and_pattern string_merging \
5350 "rodata\\.str" assembly {
5351 const char *var = "String";
5352 } {-O2}]
5355 # Return 1 if target has the basic signed and unsigned types in
5356 # <stdint.h>, 0 otherwise. This will be obsolete when GCC ensures a
5357 # working <stdint.h> for all targets.
5359 proc check_effective_target_stdint_types { } {
5360 return [check_no_compiler_messages stdint_types assembly {
5361 #include <stdint.h>
5362 int8_t a; int16_t b; int32_t c; int64_t d;
5363 uint8_t e; uint16_t f; uint32_t g; uint64_t h;
5367 # Return 1 if target has the basic signed and unsigned types in
5368 # <inttypes.h>, 0 otherwise. This is for tests that GCC's notions of
5369 # these types agree with those in the header, as some systems have
5370 # only <inttypes.h>.
5372 proc check_effective_target_inttypes_types { } {
5373 return [check_no_compiler_messages inttypes_types assembly {
5374 #include <inttypes.h>
5375 int8_t a; int16_t b; int32_t c; int64_t d;
5376 uint8_t e; uint16_t f; uint32_t g; uint64_t h;
5380 # Return 1 if programs are intended to be run on a simulator
5381 # (i.e. slowly) rather than hardware (i.e. fast).
5383 proc check_effective_target_simulator { } {
5385 # All "src/sim" simulators set this one.
5386 if [board_info target exists is_simulator] {
5387 return [board_info target is_simulator]
5390 # The "sid" simulators don't set that one, but at least they set
5391 # this one.
5392 if [board_info target exists slow_simulator] {
5393 return [board_info target slow_simulator]
5396 return 0
5399 # Return 1 if programs are intended to be run on hardware rather than
5400 # on a simulator
5402 proc check_effective_target_hw { } {
5404 # All "src/sim" simulators set this one.
5405 if [board_info target exists is_simulator] {
5406 if [board_info target is_simulator] {
5407 return 0
5408 } else {
5409 return 1
5413 # The "sid" simulators don't set that one, but at least they set
5414 # this one.
5415 if [board_info target exists slow_simulator] {
5416 if [board_info target slow_simulator] {
5417 return 0
5418 } else {
5419 return 1
5423 return 1
5426 # Return 1 if the target is a VxWorks kernel.
5428 proc check_effective_target_vxworks_kernel { } {
5429 return [check_no_compiler_messages vxworks_kernel assembly {
5430 #if !defined __vxworks || defined __RTP__
5431 #error NO
5432 #endif
5436 # Return 1 if the target is a VxWorks RTP.
5438 proc check_effective_target_vxworks_rtp { } {
5439 return [check_no_compiler_messages vxworks_rtp assembly {
5440 #if !defined __vxworks || !defined __RTP__
5441 #error NO
5442 #endif
5446 # Return 1 if the target is expected to provide wide character support.
5448 proc check_effective_target_wchar { } {
5449 if {[check_missing_uclibc_feature UCLIBC_HAS_WCHAR]} {
5450 return 0
5452 return [check_no_compiler_messages wchar assembly {
5453 #include <wchar.h>
5457 # Return 1 if the target has <pthread.h>.
5459 proc check_effective_target_pthread_h { } {
5460 return [check_no_compiler_messages pthread_h assembly {
5461 #include <pthread.h>
5465 # Return 1 if the target can truncate a file from a file-descriptor,
5466 # as used by libgfortran/io/unix.c:fd_truncate; i.e. ftruncate or
5467 # chsize. We test for a trivially functional truncation; no stubs.
5468 # As libgfortran uses _FILE_OFFSET_BITS 64, we do too; it'll cause a
5469 # different function to be used.
5471 proc check_effective_target_fd_truncate { } {
5472 set prog {
5473 #define _FILE_OFFSET_BITS 64
5474 #include <unistd.h>
5475 #include <stdio.h>
5476 #include <stdlib.h>
5477 #include <string.h>
5478 int main ()
5480 FILE *f = fopen ("tst.tmp", "wb");
5481 int fd;
5482 const char t[] = "test writing more than ten characters";
5483 char s[11];
5484 int status = 0;
5485 fd = fileno (f);
5486 write (fd, t, sizeof (t) - 1);
5487 lseek (fd, 0, 0);
5488 if (ftruncate (fd, 10) != 0)
5489 status = 1;
5490 close (fd);
5491 fclose (f);
5492 if (status)
5494 unlink ("tst.tmp");
5495 exit (status);
5497 f = fopen ("tst.tmp", "rb");
5498 if (fread (s, 1, sizeof (s), f) != 10 || strncmp (s, t, 10) != 0)
5499 status = 1;
5500 fclose (f);
5501 unlink ("tst.tmp");
5502 exit (status);
5506 if { [check_runtime ftruncate $prog] } {
5507 return 1;
5510 regsub "ftruncate" $prog "chsize" prog
5511 return [check_runtime chsize $prog]
5514 # Add to FLAGS all the target-specific flags needed to access the c99 runtime.
5516 proc add_options_for_c99_runtime { flags } {
5517 if { [istarget *-*-solaris2*] } {
5518 return "$flags -std=c99"
5520 if { [istarget powerpc-*-darwin*] } {
5521 return "$flags -mmacosx-version-min=10.3"
5523 return $flags
5526 # Add to FLAGS all the target-specific flags needed to enable
5527 # full IEEE compliance mode.
5529 proc add_options_for_ieee { flags } {
5530 if { [istarget alpha*-*-*]
5531 || [istarget sh*-*-*] } {
5532 return "$flags -mieee"
5534 if { [istarget rx-*-*] } {
5535 return "$flags -mnofpu"
5537 return $flags
5540 if {![info exists flags_to_postpone]} {
5541 set flags_to_postpone ""
5544 # Add to FLAGS the flags needed to enable functions to bind locally
5545 # when using pic/PIC passes in the testsuite.
5546 proc add_options_for_bind_pic_locally { flags } {
5547 global flags_to_postpone
5549 # Instead of returning 'flags' with the -fPIE or -fpie appended, we save it
5550 # in 'flags_to_postpone' and append it later in gcc_target_compile procedure in
5551 # order to make sure that the multilib_flags doesn't override this.
5553 if {[check_no_compiler_messages using_pic2 assembly {
5554 #if __PIC__ != 2
5555 #error __PIC__ != 2
5556 #endif
5557 }]} {
5558 set flags_to_postpone "-fPIE"
5559 return $flags
5561 if {[check_no_compiler_messages using_pic1 assembly {
5562 #if __PIC__ != 1
5563 #error __PIC__ != 1
5564 #endif
5565 }]} {
5566 set flags_to_postpone "-fpie"
5567 return $flags
5569 return $flags
5572 # Add to FLAGS the flags needed to enable 64-bit vectors.
5574 proc add_options_for_double_vectors { flags } {
5575 if [is-effective-target arm_neon_ok] {
5576 return "$flags -mvectorize-with-neon-double"
5579 return $flags
5582 # Return 1 if the target provides a full C99 runtime.
5584 proc check_effective_target_c99_runtime { } {
5585 return [check_cached_effective_target c99_runtime {
5586 global srcdir
5588 set file [open "$srcdir/gcc.dg/builtins-config.h"]
5589 set contents [read $file]
5590 close $file
5591 append contents {
5592 #ifndef HAVE_C99_RUNTIME
5593 #error !HAVE_C99_RUNTIME
5594 #endif
5596 check_no_compiler_messages_nocache c99_runtime assembly \
5597 $contents [add_options_for_c99_runtime ""]
5601 # Return 1 if target wchar_t is at least 4 bytes.
5603 proc check_effective_target_4byte_wchar_t { } {
5604 return [check_no_compiler_messages 4byte_wchar_t object {
5605 int dummy[sizeof (__WCHAR_TYPE__) >= 4 ? 1 : -1];
5609 # Return 1 if the target supports automatic stack alignment.
5611 proc check_effective_target_automatic_stack_alignment { } {
5612 # Ordinarily x86 supports automatic stack alignment ...
5613 if { [istarget i?86*-*-*] || [istarget x86_64-*-*] } then {
5614 if { [istarget *-*-mingw*] || [istarget *-*-cygwin*] } {
5615 # ... except Win64 SEH doesn't. Succeed for Win32 though.
5616 return [check_effective_target_ilp32];
5618 return 1;
5620 return 0;
5623 # Return true if we are compiling for AVX target.
5625 proc check_avx_available { } {
5626 if { [check_no_compiler_messages avx_available assembly {
5627 #ifndef __AVX__
5628 #error unsupported
5629 #endif
5630 } ""] } {
5631 return 1;
5633 return 0;
5636 # Return true if 32- and 16-bytes vectors are available.
5638 proc check_effective_target_vect_sizes_32B_16B { } {
5639 if { [check_avx_available] && ![check_prefer_avx128] } {
5640 return 1;
5641 } else {
5642 return 0;
5646 # Return true if 128-bits vectors are preferred even if 256-bits vectors
5647 # are available.
5649 proc check_prefer_avx128 { } {
5650 if ![check_avx_available] {
5651 return 0;
5653 return [check_no_messages_and_pattern avx_explicit "xmm" assembly {
5654 float a[1024],b[1024],c[1024];
5655 void foo (void) { int i; for (i = 0; i < 1024; i++) a[i]=b[i]+c[i];}
5656 } "-O2 -ftree-vectorize"]
5660 # Return 1 if avx512f instructions can be compiled.
5662 proc check_effective_target_avx512f { } {
5663 return [check_no_compiler_messages avx512f object {
5664 typedef double __m512d __attribute__ ((__vector_size__ (64)));
5666 __m512d _mm512_add (__m512d a)
5668 return __builtin_ia32_addpd512_mask (a, a, a, 1, 4);
5670 } "-O2 -mavx512f" ]
5673 # Return 1 if avx instructions can be compiled.
5675 proc check_effective_target_avx { } {
5676 if { !([istarget x86_64-*-*] || [istarget i?86-*-*]) } {
5677 return 0
5679 return [check_no_compiler_messages avx object {
5680 void _mm256_zeroall (void)
5682 __builtin_ia32_vzeroall ();
5684 } "-O2 -mavx" ]
5687 # Return 1 if avx2 instructions can be compiled.
5688 proc check_effective_target_avx2 { } {
5689 return [check_no_compiler_messages avx2 object {
5690 typedef long long __v4di __attribute__ ((__vector_size__ (32)));
5691 __v4di
5692 mm256_is32_andnotsi256 (__v4di __X, __v4di __Y)
5694 return __builtin_ia32_andnotsi256 (__X, __Y);
5696 } "-O0 -mavx2" ]
5699 # Return 1 if sse instructions can be compiled.
5700 proc check_effective_target_sse { } {
5701 return [check_no_compiler_messages sse object {
5702 int main ()
5704 __builtin_ia32_stmxcsr ();
5705 return 0;
5707 } "-O2 -msse" ]
5710 # Return 1 if sse2 instructions can be compiled.
5711 proc check_effective_target_sse2 { } {
5712 return [check_no_compiler_messages sse2 object {
5713 typedef long long __m128i __attribute__ ((__vector_size__ (16)));
5715 __m128i _mm_srli_si128 (__m128i __A, int __N)
5717 return (__m128i)__builtin_ia32_psrldqi128 (__A, 8);
5719 } "-O2 -msse2" ]
5722 # Return 1 if F16C instructions can be compiled.
5724 proc check_effective_target_f16c { } {
5725 return [check_no_compiler_messages f16c object {
5726 #include "immintrin.h"
5727 float
5728 foo (unsigned short val)
5730 return _cvtsh_ss (val);
5732 } "-O2 -mf16c" ]
5735 # Return 1 if C wchar_t type is compatible with char16_t.
5737 proc check_effective_target_wchar_t_char16_t_compatible { } {
5738 return [check_no_compiler_messages wchar_t_char16_t object {
5739 __WCHAR_TYPE__ wc;
5740 __CHAR16_TYPE__ *p16 = &wc;
5741 char t[(((__CHAR16_TYPE__) -1) < 0 == ((__WCHAR_TYPE__) -1) < 0) ? 1 : -1];
5745 # Return 1 if C wchar_t type is compatible with char32_t.
5747 proc check_effective_target_wchar_t_char32_t_compatible { } {
5748 return [check_no_compiler_messages wchar_t_char32_t object {
5749 __WCHAR_TYPE__ wc;
5750 __CHAR32_TYPE__ *p32 = &wc;
5751 char t[(((__CHAR32_TYPE__) -1) < 0 == ((__WCHAR_TYPE__) -1) < 0) ? 1 : -1];
5755 # Return 1 if pow10 function exists.
5757 proc check_effective_target_pow10 { } {
5758 return [check_runtime pow10 {
5759 #include <math.h>
5760 int main () {
5761 double x;
5762 x = pow10 (1);
5763 return 0;
5765 } "-lm" ]
5768 # Return 1 if current options generate DFP instructions, 0 otherwise.
5770 proc check_effective_target_hard_dfp {} {
5771 return [check_no_messages_and_pattern hard_dfp "!adddd3" assembly {
5772 typedef float d64 __attribute__((mode(DD)));
5773 d64 x, y, z;
5774 void foo (void) { z = x + y; }
5778 # Return 1 if string.h and wchar.h headers provide C++ requires overloads
5779 # for strchr etc. functions.
5781 proc check_effective_target_correct_iso_cpp_string_wchar_protos { } {
5782 return [check_no_compiler_messages correct_iso_cpp_string_wchar_protos assembly {
5783 #include <string.h>
5784 #include <wchar.h>
5785 #if !defined(__cplusplus) \
5786 || !defined(__CORRECT_ISO_CPP_STRING_H_PROTO) \
5787 || !defined(__CORRECT_ISO_CPP_WCHAR_H_PROTO)
5788 ISO C++ correct string.h and wchar.h protos not supported.
5789 #else
5790 int i;
5791 #endif
5795 # Return 1 if GNU as is used.
5797 proc check_effective_target_gas { } {
5798 global use_gas_saved
5799 global tool
5801 if {![info exists use_gas_saved]} {
5802 # Check if the as used by gcc is GNU as.
5803 set gcc_as [lindex [${tool}_target_compile "-print-prog-name=as" "" "none" ""] 0]
5804 # Provide /dev/null as input, otherwise gas times out reading from
5805 # stdin.
5806 set status [remote_exec host "$gcc_as" "-v /dev/null"]
5807 set as_output [lindex $status 1]
5808 if { [ string first "GNU" $as_output ] >= 0 } {
5809 set use_gas_saved 1
5810 } else {
5811 set use_gas_saved 0
5814 return $use_gas_saved
5817 # Return 1 if GNU ld is used.
5819 proc check_effective_target_gld { } {
5820 global use_gld_saved
5821 global tool
5823 if {![info exists use_gld_saved]} {
5824 # Check if the ld used by gcc is GNU ld.
5825 set gcc_ld [lindex [${tool}_target_compile "-print-prog-name=ld" "" "none" ""] 0]
5826 set status [remote_exec host "$gcc_ld" "--version"]
5827 set ld_output [lindex $status 1]
5828 if { [ string first "GNU" $ld_output ] >= 0 } {
5829 set use_gld_saved 1
5830 } else {
5831 set use_gld_saved 0
5834 return $use_gld_saved
5837 # Return 1 if the compiler has been configure with link-time optimization
5838 # (LTO) support.
5840 proc check_effective_target_lto { } {
5841 if { [istarget nvptx-*-*] } {
5842 return 0;
5844 return [check_no_compiler_messages lto object {
5845 void foo (void) { }
5846 } "-flto"]
5849 # Return 1 if -mx32 -maddress-mode=short can compile, 0 otherwise.
5851 proc check_effective_target_maybe_x32 { } {
5852 return [check_no_compiler_messages maybe_x32 object {
5853 void foo (void) {}
5854 } "-mx32 -maddress-mode=short"]
5857 # Return 1 if this target supports the -fsplit-stack option, 0
5858 # otherwise.
5860 proc check_effective_target_split_stack {} {
5861 return [check_no_compiler_messages split_stack object {
5862 void foo (void) { }
5863 } "-fsplit-stack"]
5866 # Return 1 if this target supports the -masm=intel option, 0
5867 # otherwise
5869 proc check_effective_target_masm_intel {} {
5870 return [check_no_compiler_messages masm_intel object {
5871 extern void abort (void);
5872 } "-masm=intel"]
5875 # Return 1 if the language for the compiler under test is C.
5877 proc check_effective_target_c { } {
5878 global tool
5879 if [string match $tool "gcc"] {
5880 return 1
5882 return 0
5885 # Return 1 if the language for the compiler under test is C++.
5887 proc check_effective_target_c++ { } {
5888 global tool
5889 if [string match $tool "g++"] {
5890 return 1
5892 return 0
5895 # Check whether the current active language standard supports the features
5896 # of C++11/C++14 by checking for the presence of one of the -std
5897 # flags. This assumes that the default for the compiler is C++98, and that
5898 # there will never be multiple -std= arguments on the command line.
5899 proc check_effective_target_c++11_only { } {
5900 if ![check_effective_target_c++] {
5901 return 0
5903 return [check-flags { { } { } { -std=c++0x -std=gnu++0x -std=c++11 -std=gnu++11 } }]
5905 proc check_effective_target_c++11 { } {
5906 if [check_effective_target_c++11_only] {
5907 return 1
5909 return [check_effective_target_c++14]
5911 proc check_effective_target_c++11_down { } {
5912 if ![check_effective_target_c++] {
5913 return 0
5915 return ![check_effective_target_c++14]
5918 proc check_effective_target_c++14_only { } {
5919 if ![check_effective_target_c++] {
5920 return 0
5922 return [check-flags { { } { } { -std=c++14 -std=gnu++14 -std=c++14 -std=gnu++14 } }]
5925 proc check_effective_target_c++14 { } {
5926 if [check_effective_target_c++14_only] {
5927 return 1
5929 return [check_effective_target_c++1z]
5931 proc check_effective_target_c++14_down { } {
5932 if ![check_effective_target_c++] {
5933 return 0
5935 return ![check_effective_target_c++1z]
5938 proc check_effective_target_c++98_only { } {
5939 if ![check_effective_target_c++] {
5940 return 0
5942 return ![check_effective_target_c++11]
5945 proc check_effective_target_c++1z_only { } {
5946 if ![check_effective_target_c++] {
5947 return 0
5949 return [check-flags { { } { } { -std=c++1z -std=gnu++1z } }]
5951 proc check_effective_target_c++1z { } {
5952 return [check_effective_target_c++1z_only]
5955 # Return 1 if expensive testcases should be run.
5957 proc check_effective_target_run_expensive_tests { } {
5958 if { [getenv GCC_TEST_RUN_EXPENSIVE] != "" } {
5959 return 1
5961 return 0
5964 # Returns 1 if "mempcpy" is available on the target system.
5966 proc check_effective_target_mempcpy {} {
5967 return [check_function_available "mempcpy"]
5970 # Returns 1 if "stpcpy" is available on the target system.
5972 proc check_effective_target_stpcpy {} {
5973 return [check_function_available "stpcpy"]
5976 # Check whether the vectorizer tests are supported by the target and
5977 # append additional target-dependent compile flags to DEFAULT_VECTCFLAGS.
5978 # Set dg-do-what-default to either compile or run, depending on target
5979 # capabilities. Return 1 if vectorizer tests are supported by
5980 # target, 0 otherwise.
5982 proc check_vect_support_and_set_flags { } {
5983 global DEFAULT_VECTCFLAGS
5984 global dg-do-what-default
5986 if [istarget powerpc-*paired*] {
5987 lappend DEFAULT_VECTCFLAGS "-mpaired"
5988 if [check_750cl_hw_available] {
5989 set dg-do-what-default run
5990 } else {
5991 set dg-do-what-default compile
5993 } elseif [istarget powerpc*-*-*] {
5994 # Skip targets not supporting -maltivec.
5995 if ![is-effective-target powerpc_altivec_ok] {
5996 return 0
5999 lappend DEFAULT_VECTCFLAGS "-maltivec"
6000 if [check_p8vector_hw_available] {
6001 lappend DEFAULT_VECTCFLAGS "-mpower8-vector"
6002 } elseif [check_vsx_hw_available] {
6003 lappend DEFAULT_VECTCFLAGS "-mvsx" "-mno-allow-movmisalign"
6006 if [check_vmx_hw_available] {
6007 set dg-do-what-default run
6008 } else {
6009 if [is-effective-target ilp32] {
6010 # Specify a cpu that supports VMX for compile-only tests.
6011 lappend DEFAULT_VECTCFLAGS "-mcpu=970"
6013 set dg-do-what-default compile
6015 } elseif { [istarget spu-*-*] } {
6016 set dg-do-what-default run
6017 } elseif { [istarget i?86-*-*] || [istarget x86_64-*-*] } {
6018 lappend DEFAULT_VECTCFLAGS "-msse2"
6019 if { [check_effective_target_sse2_runtime] } {
6020 set dg-do-what-default run
6021 } else {
6022 set dg-do-what-default compile
6024 } elseif { [istarget mips*-*-*]
6025 && ([check_effective_target_mpaired_single]
6026 || [check_effective_target_mips_loongson])
6027 && [check_effective_target_nomips16] } {
6028 if { [check_effective_target_mpaired_single] } {
6029 lappend DEFAULT_VECTCFLAGS "-mpaired-single"
6031 set dg-do-what-default run
6032 } elseif [istarget sparc*-*-*] {
6033 lappend DEFAULT_VECTCFLAGS "-mcpu=ultrasparc" "-mvis"
6034 if [check_effective_target_ultrasparc_hw] {
6035 set dg-do-what-default run
6036 } else {
6037 set dg-do-what-default compile
6039 } elseif [istarget alpha*-*-*] {
6040 # Alpha's vectorization capabilities are extremely limited.
6041 # It's more effort than its worth disabling all of the tests
6042 # that it cannot pass. But if you actually want to see what
6043 # does work, command out the return.
6044 return 0
6046 lappend DEFAULT_VECTCFLAGS "-mmax"
6047 if [check_alpha_max_hw_available] {
6048 set dg-do-what-default run
6049 } else {
6050 set dg-do-what-default compile
6052 } elseif [istarget ia64-*-*] {
6053 set dg-do-what-default run
6054 } elseif [is-effective-target arm_neon_ok] {
6055 eval lappend DEFAULT_VECTCFLAGS [add_options_for_arm_neon ""]
6056 # NEON does not support denormals, so is not used for vectorization by
6057 # default to avoid loss of precision. We must pass -ffast-math to test
6058 # vectorization of float operations.
6059 lappend DEFAULT_VECTCFLAGS "-ffast-math"
6060 if [is-effective-target arm_neon_hw] {
6061 set dg-do-what-default run
6062 } else {
6063 set dg-do-what-default compile
6065 } elseif [istarget "aarch64*-*-*"] {
6066 set dg-do-what-default run
6067 } else {
6068 return 0
6071 return 1
6074 # Return 1 if the target does *not* require strict alignment.
6076 proc check_effective_target_non_strict_align {} {
6077 return [check_no_compiler_messages non_strict_align assembly {
6078 char *y;
6079 typedef char __attribute__ ((__aligned__(__BIGGEST_ALIGNMENT__))) c;
6080 c *z;
6081 void foo(void) { z = (c *) y; }
6082 } "-Wcast-align"]
6085 # Return 1 if the target has <ucontext.h>.
6087 proc check_effective_target_ucontext_h { } {
6088 return [check_no_compiler_messages ucontext_h assembly {
6089 #include <ucontext.h>
6093 proc check_effective_target_aarch64_tiny { } {
6094 if { [istarget aarch64*-*-*] } {
6095 return [check_no_compiler_messages aarch64_tiny object {
6096 #ifdef __AARCH64_CMODEL_TINY__
6097 int dummy;
6098 #else
6099 #error target not AArch64 tiny code model
6100 #endif
6102 } else {
6103 return 0
6107 proc check_effective_target_aarch64_small { } {
6108 if { [istarget aarch64*-*-*] } {
6109 return [check_no_compiler_messages aarch64_small object {
6110 #ifdef __AARCH64_CMODEL_SMALL__
6111 int dummy;
6112 #else
6113 #error target not AArch64 small code model
6114 #endif
6116 } else {
6117 return 0
6121 proc check_effective_target_aarch64_large { } {
6122 if { [istarget aarch64*-*-*] } {
6123 return [check_no_compiler_messages aarch64_large object {
6124 #ifdef __AARCH64_CMODEL_LARGE__
6125 int dummy;
6126 #else
6127 #error target not AArch64 large code model
6128 #endif
6130 } else {
6131 return 0
6135 # Return 1 if <fenv.h> is available with all the standard IEEE
6136 # exceptions and floating-point exceptions are raised by arithmetic
6137 # operations. (If the target requires special options for "inexact"
6138 # exceptions, those need to be specified in the testcases.)
6140 proc check_effective_target_fenv_exceptions {} {
6141 return [check_runtime fenv_exceptions {
6142 #include <fenv.h>
6143 #include <stdlib.h>
6144 #ifndef FE_DIVBYZERO
6145 # error Missing FE_DIVBYZERO
6146 #endif
6147 #ifndef FE_INEXACT
6148 # error Missing FE_INEXACT
6149 #endif
6150 #ifndef FE_INVALID
6151 # error Missing FE_INVALID
6152 #endif
6153 #ifndef FE_OVERFLOW
6154 # error Missing FE_OVERFLOW
6155 #endif
6156 #ifndef FE_UNDERFLOW
6157 # error Missing FE_UNDERFLOW
6158 #endif
6159 volatile float a = 0.0f, r;
6161 main (void)
6163 r = a / a;
6164 if (fetestexcept (FE_INVALID))
6165 exit (0);
6166 else
6167 abort ();
6169 } [add_options_for_ieee "-std=gnu99"]]
6172 proc check_effective_target_tiny {} {
6173 global et_target_tiny_saved
6175 if [info exists et_target_tine_saved] {
6176 verbose "check_effective_target_tiny: using cached result" 2
6177 } else {
6178 set et_target_tiny_saved 0
6179 if { [istarget aarch64*-*-*]
6180 && [check_effective_target_aarch64_tiny] } {
6181 set et_target_tiny_saved 1
6185 return $et_target_tiny_saved
6188 # Return 1 if LOGICAL_OP_NON_SHORT_CIRCUIT is set to 0 for the current target.
6190 proc check_effective_target_logical_op_short_circuit {} {
6191 if { [istarget mips*-*-*]
6192 || [istarget arc*-*-*]
6193 || [istarget avr*-*-*]
6194 || [istarget crisv32-*-*] || [istarget cris-*-*]
6195 || [istarget mmix-*-*]
6196 || [istarget s390*-*-*]
6197 || [istarget powerpc*-*-*]
6198 || [istarget nios2*-*-*]
6199 || [istarget visium-*-*]
6200 || [check_effective_target_arm_cortex_m] } {
6201 return 1
6203 return 0
6206 # Record that dg-final test TEST requires convential compilation.
6208 proc force_conventional_output_for { test } {
6209 if { [info proc $test] == "" } {
6210 perror "$test does not exist"
6211 exit 1
6213 proc ${test}_required_options {} {
6214 global gcc_force_conventional_output
6215 return $gcc_force_conventional_output
6219 # Return 1 if the x86-64 target supports PIE with copy reloc, 0
6220 # otherwise. Cache the result.
6222 proc check_effective_target_pie_copyreloc { } {
6223 global pie_copyreloc_available_saved
6224 global tool
6225 global GCC_UNDER_TEST
6227 if { !([istarget x86_64-*-*] || [istarget i?86-*-*]) } {
6228 return 0
6231 # Need auto-host.h to check linker support.
6232 if { ![file exists ../../auto-host.h ] } {
6233 return 0
6236 if [info exists pie_copyreloc_available_saved] {
6237 verbose "check_effective_target_pie_copyreloc returning saved $pie_copyreloc_available_saved" 2
6238 } else {
6239 # Set up and compile to see if linker supports PIE with copy
6240 # reloc. Include the current process ID in the file names to
6241 # prevent conflicts with invocations for multiple testsuites.
6243 set src pie[pid].c
6244 set obj pie[pid].o
6246 set f [open $src "w"]
6247 puts $f "#include \"../../auto-host.h\""
6248 puts $f "#if HAVE_LD_PIE_COPYRELOC == 0"
6249 puts $f "# error Linker does not support PIE with copy reloc."
6250 puts $f "#endif"
6251 close $f
6253 verbose "check_effective_target_pie_copyreloc compiling testfile $src" 2
6254 set lines [${tool}_target_compile $src $obj object ""]
6256 file delete $src
6257 file delete $obj
6259 if [string match "" $lines] then {
6260 verbose "check_effective_target_pie_copyreloc testfile compilation passed" 2
6261 set pie_copyreloc_available_saved 1
6262 } else {
6263 verbose "check_effective_target_pie_copyreloc testfile compilation failed" 2
6264 set pie_copyreloc_available_saved 0
6268 return $pie_copyreloc_available_saved
6271 # Return 1 if the target uses comdat groups.
6273 proc check_effective_target_comdat_group {} {
6274 return [check_no_messages_and_pattern comdat_group "\.section\[^\n\r]*,comdat" assembly {
6275 // C++
6276 inline int foo () { return 1; }
6277 int (*fn) () = foo;