Suppress -fstack-protector warning on hppa.
[official-gcc.git] / gcc / expr.cc
blobd9407432ea5d051852ecd162459a4d1232db1eda
1 /* Convert tree expression to rtl instructions, for GNU compiler.
2 Copyright (C) 1988-2022 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 #include "config.h"
21 #include "system.h"
22 #include "coretypes.h"
23 #include "backend.h"
24 #include "target.h"
25 #include "rtl.h"
26 #include "tree.h"
27 #include "gimple.h"
28 #include "predict.h"
29 #include "memmodel.h"
30 #include "tm_p.h"
31 #include "ssa.h"
32 #include "optabs.h"
33 #include "expmed.h"
34 #include "regs.h"
35 #include "emit-rtl.h"
36 #include "recog.h"
37 #include "cgraph.h"
38 #include "diagnostic.h"
39 #include "alias.h"
40 #include "fold-const.h"
41 #include "stor-layout.h"
42 #include "attribs.h"
43 #include "varasm.h"
44 #include "except.h"
45 #include "insn-attr.h"
46 #include "dojump.h"
47 #include "explow.h"
48 #include "calls.h"
49 #include "stmt.h"
50 /* Include expr.h after insn-config.h so we get HAVE_conditional_move. */
51 #include "expr.h"
52 #include "optabs-tree.h"
53 #include "libfuncs.h"
54 #include "reload.h"
55 #include "langhooks.h"
56 #include "common/common-target.h"
57 #include "tree-dfa.h"
58 #include "tree-ssa-live.h"
59 #include "tree-outof-ssa.h"
60 #include "tree-ssa-address.h"
61 #include "builtins.h"
62 #include "ccmp.h"
63 #include "gimple-iterator.h"
64 #include "gimple-fold.h"
65 #include "rtx-vector-builder.h"
66 #include "tree-pretty-print.h"
67 #include "flags.h"
70 /* If this is nonzero, we do not bother generating VOLATILE
71 around volatile memory references, and we are willing to
72 output indirect addresses. If cse is to follow, we reject
73 indirect addresses so a useful potential cse is generated;
74 if it is used only once, instruction combination will produce
75 the same indirect address eventually. */
76 int cse_not_expected;
78 static bool block_move_libcall_safe_for_call_parm (void);
79 static bool emit_block_move_via_pattern (rtx, rtx, rtx, unsigned, unsigned,
80 HOST_WIDE_INT, unsigned HOST_WIDE_INT,
81 unsigned HOST_WIDE_INT,
82 unsigned HOST_WIDE_INT, bool);
83 static void emit_block_move_via_loop (rtx, rtx, rtx, unsigned);
84 static void clear_by_pieces (rtx, unsigned HOST_WIDE_INT, unsigned int);
85 static rtx_insn *compress_float_constant (rtx, rtx);
86 static rtx get_subtarget (rtx);
87 static rtx store_field (rtx, poly_int64, poly_int64, poly_uint64, poly_uint64,
88 machine_mode, tree, alias_set_type, bool, bool);
90 static unsigned HOST_WIDE_INT highest_pow2_factor_for_target (const_tree, const_tree);
92 static int is_aligning_offset (const_tree, const_tree);
93 static rtx reduce_to_bit_field_precision (rtx, rtx, tree);
94 static rtx do_store_flag (sepops, rtx, machine_mode);
95 #ifdef PUSH_ROUNDING
96 static void emit_single_push_insn (machine_mode, rtx, tree);
97 #endif
98 static void do_tablejump (rtx, machine_mode, rtx, rtx, rtx,
99 profile_probability);
100 static rtx const_vector_from_tree (tree);
101 static tree tree_expr_size (const_tree);
102 static void convert_mode_scalar (rtx, rtx, int);
105 /* This is run to set up which modes can be used
106 directly in memory and to initialize the block move optab. It is run
107 at the beginning of compilation and when the target is reinitialized. */
109 void
110 init_expr_target (void)
112 rtx pat;
113 int num_clobbers;
114 rtx mem, mem1;
115 rtx reg;
117 /* Try indexing by frame ptr and try by stack ptr.
118 It is known that on the Convex the stack ptr isn't a valid index.
119 With luck, one or the other is valid on any machine. */
120 mem = gen_rtx_MEM (word_mode, stack_pointer_rtx);
121 mem1 = gen_rtx_MEM (word_mode, frame_pointer_rtx);
123 /* A scratch register we can modify in-place below to avoid
124 useless RTL allocations. */
125 reg = gen_rtx_REG (word_mode, LAST_VIRTUAL_REGISTER + 1);
127 rtx_insn *insn = as_a<rtx_insn *> (rtx_alloc (INSN));
128 pat = gen_rtx_SET (NULL_RTX, NULL_RTX);
129 PATTERN (insn) = pat;
131 for (machine_mode mode = VOIDmode; (int) mode < NUM_MACHINE_MODES;
132 mode = (machine_mode) ((int) mode + 1))
134 int regno;
136 direct_load[(int) mode] = direct_store[(int) mode] = 0;
137 PUT_MODE (mem, mode);
138 PUT_MODE (mem1, mode);
140 /* See if there is some register that can be used in this mode and
141 directly loaded or stored from memory. */
143 if (mode != VOIDmode && mode != BLKmode)
144 for (regno = 0; regno < FIRST_PSEUDO_REGISTER
145 && (direct_load[(int) mode] == 0 || direct_store[(int) mode] == 0);
146 regno++)
148 if (!targetm.hard_regno_mode_ok (regno, mode))
149 continue;
151 set_mode_and_regno (reg, mode, regno);
153 SET_SRC (pat) = mem;
154 SET_DEST (pat) = reg;
155 if (recog (pat, insn, &num_clobbers) >= 0)
156 direct_load[(int) mode] = 1;
158 SET_SRC (pat) = mem1;
159 SET_DEST (pat) = reg;
160 if (recog (pat, insn, &num_clobbers) >= 0)
161 direct_load[(int) mode] = 1;
163 SET_SRC (pat) = reg;
164 SET_DEST (pat) = mem;
165 if (recog (pat, insn, &num_clobbers) >= 0)
166 direct_store[(int) mode] = 1;
168 SET_SRC (pat) = reg;
169 SET_DEST (pat) = mem1;
170 if (recog (pat, insn, &num_clobbers) >= 0)
171 direct_store[(int) mode] = 1;
175 mem = gen_rtx_MEM (VOIDmode, gen_raw_REG (Pmode, LAST_VIRTUAL_REGISTER + 1));
177 opt_scalar_float_mode mode_iter;
178 FOR_EACH_MODE_IN_CLASS (mode_iter, MODE_FLOAT)
180 scalar_float_mode mode = mode_iter.require ();
181 scalar_float_mode srcmode;
182 FOR_EACH_MODE_UNTIL (srcmode, mode)
184 enum insn_code ic;
186 ic = can_extend_p (mode, srcmode, 0);
187 if (ic == CODE_FOR_nothing)
188 continue;
190 PUT_MODE (mem, srcmode);
192 if (insn_operand_matches (ic, 1, mem))
193 float_extend_from_mem[mode][srcmode] = true;
198 /* This is run at the start of compiling a function. */
200 void
201 init_expr (void)
203 memset (&crtl->expr, 0, sizeof (crtl->expr));
206 /* Copy data from FROM to TO, where the machine modes are not the same.
207 Both modes may be integer, or both may be floating, or both may be
208 fixed-point.
209 UNSIGNEDP should be nonzero if FROM is an unsigned type.
210 This causes zero-extension instead of sign-extension. */
212 void
213 convert_move (rtx to, rtx from, int unsignedp)
215 machine_mode to_mode = GET_MODE (to);
216 machine_mode from_mode = GET_MODE (from);
218 gcc_assert (to_mode != BLKmode);
219 gcc_assert (from_mode != BLKmode);
221 /* If the source and destination are already the same, then there's
222 nothing to do. */
223 if (to == from)
224 return;
226 /* If FROM is a SUBREG that indicates that we have already done at least
227 the required extension, strip it. We don't handle such SUBREGs as
228 TO here. */
230 scalar_int_mode to_int_mode;
231 if (GET_CODE (from) == SUBREG
232 && SUBREG_PROMOTED_VAR_P (from)
233 && is_a <scalar_int_mode> (to_mode, &to_int_mode)
234 && (GET_MODE_PRECISION (subreg_promoted_mode (from))
235 >= GET_MODE_PRECISION (to_int_mode))
236 && SUBREG_CHECK_PROMOTED_SIGN (from, unsignedp))
238 scalar_int_mode int_orig_mode;
239 scalar_int_mode int_inner_mode;
240 machine_mode orig_mode = GET_MODE (from);
242 from = gen_lowpart (to_int_mode, SUBREG_REG (from));
243 from_mode = to_int_mode;
245 /* Preserve SUBREG_PROMOTED_VAR_P if the new mode is wider than
246 the original mode, but narrower than the inner mode. */
247 if (GET_CODE (from) == SUBREG
248 && is_a <scalar_int_mode> (orig_mode, &int_orig_mode)
249 && GET_MODE_PRECISION (to_int_mode)
250 > GET_MODE_PRECISION (int_orig_mode)
251 && is_a <scalar_int_mode> (GET_MODE (SUBREG_REG (from)),
252 &int_inner_mode)
253 && GET_MODE_PRECISION (int_inner_mode)
254 > GET_MODE_PRECISION (to_int_mode))
256 SUBREG_PROMOTED_VAR_P (from) = 1;
257 SUBREG_PROMOTED_SET (from, unsignedp);
261 gcc_assert (GET_CODE (to) != SUBREG || !SUBREG_PROMOTED_VAR_P (to));
263 if (to_mode == from_mode
264 || (from_mode == VOIDmode && CONSTANT_P (from)))
266 emit_move_insn (to, from);
267 return;
270 if (VECTOR_MODE_P (to_mode) || VECTOR_MODE_P (from_mode))
272 if (GET_MODE_UNIT_PRECISION (to_mode)
273 > GET_MODE_UNIT_PRECISION (from_mode))
275 optab op = unsignedp ? zext_optab : sext_optab;
276 insn_code icode = convert_optab_handler (op, to_mode, from_mode);
277 if (icode != CODE_FOR_nothing)
279 emit_unop_insn (icode, to, from,
280 unsignedp ? ZERO_EXTEND : SIGN_EXTEND);
281 return;
285 if (GET_MODE_UNIT_PRECISION (to_mode)
286 < GET_MODE_UNIT_PRECISION (from_mode))
288 insn_code icode = convert_optab_handler (trunc_optab,
289 to_mode, from_mode);
290 if (icode != CODE_FOR_nothing)
292 emit_unop_insn (icode, to, from, TRUNCATE);
293 return;
297 gcc_assert (known_eq (GET_MODE_BITSIZE (from_mode),
298 GET_MODE_BITSIZE (to_mode)));
300 if (VECTOR_MODE_P (to_mode))
301 from = simplify_gen_subreg (to_mode, from, GET_MODE (from), 0);
302 else
303 to = simplify_gen_subreg (from_mode, to, GET_MODE (to), 0);
305 emit_move_insn (to, from);
306 return;
309 if (GET_CODE (to) == CONCAT && GET_CODE (from) == CONCAT)
311 convert_move (XEXP (to, 0), XEXP (from, 0), unsignedp);
312 convert_move (XEXP (to, 1), XEXP (from, 1), unsignedp);
313 return;
316 convert_mode_scalar (to, from, unsignedp);
319 /* Like convert_move, but deals only with scalar modes. */
321 static void
322 convert_mode_scalar (rtx to, rtx from, int unsignedp)
324 /* Both modes should be scalar types. */
325 scalar_mode from_mode = as_a <scalar_mode> (GET_MODE (from));
326 scalar_mode to_mode = as_a <scalar_mode> (GET_MODE (to));
327 bool to_real = SCALAR_FLOAT_MODE_P (to_mode);
328 bool from_real = SCALAR_FLOAT_MODE_P (from_mode);
329 enum insn_code code;
330 rtx libcall;
332 gcc_assert (to_real == from_real);
334 /* rtx code for making an equivalent value. */
335 enum rtx_code equiv_code = (unsignedp < 0 ? UNKNOWN
336 : (unsignedp ? ZERO_EXTEND : SIGN_EXTEND));
338 if (to_real)
340 rtx value;
341 rtx_insn *insns;
342 convert_optab tab;
344 gcc_assert ((GET_MODE_PRECISION (from_mode)
345 != GET_MODE_PRECISION (to_mode))
346 || (DECIMAL_FLOAT_MODE_P (from_mode)
347 != DECIMAL_FLOAT_MODE_P (to_mode))
348 || (REAL_MODE_FORMAT (from_mode) == &arm_bfloat_half_format
349 && REAL_MODE_FORMAT (to_mode) == &ieee_half_format)
350 || (REAL_MODE_FORMAT (to_mode) == &arm_bfloat_half_format
351 && REAL_MODE_FORMAT (from_mode) == &ieee_half_format));
353 if (GET_MODE_PRECISION (from_mode) == GET_MODE_PRECISION (to_mode))
354 /* Conversion between decimal float and binary float, same size. */
355 tab = DECIMAL_FLOAT_MODE_P (from_mode) ? trunc_optab : sext_optab;
356 else if (GET_MODE_PRECISION (from_mode) < GET_MODE_PRECISION (to_mode))
357 tab = sext_optab;
358 else
359 tab = trunc_optab;
361 /* Try converting directly if the insn is supported. */
363 code = convert_optab_handler (tab, to_mode, from_mode);
364 if (code != CODE_FOR_nothing)
366 emit_unop_insn (code, to, from,
367 tab == sext_optab ? FLOAT_EXTEND : FLOAT_TRUNCATE);
368 return;
371 #ifdef HAVE_SFmode
372 if (REAL_MODE_FORMAT (from_mode) == &arm_bfloat_half_format
373 && REAL_MODE_FORMAT (SFmode) == &ieee_single_format)
375 if (GET_MODE_PRECISION (to_mode) > GET_MODE_PRECISION (SFmode))
377 /* To cut down on libgcc size, implement
378 BFmode -> {DF,XF,TF}mode conversions by
379 BFmode -> SFmode -> {DF,XF,TF}mode conversions. */
380 rtx temp = gen_reg_rtx (SFmode);
381 convert_mode_scalar (temp, from, unsignedp);
382 convert_mode_scalar (to, temp, unsignedp);
383 return;
385 if (REAL_MODE_FORMAT (to_mode) == &ieee_half_format)
387 /* Similarly, implement BFmode -> HFmode as
388 BFmode -> SFmode -> HFmode conversion where SFmode
389 has superset of BFmode values. We don't need
390 to handle sNaNs by raising exception and turning
391 into into qNaN though, as that can be done in the
392 SFmode -> HFmode conversion too. */
393 rtx temp = gen_reg_rtx (SFmode);
394 int save_flag_finite_math_only = flag_finite_math_only;
395 flag_finite_math_only = true;
396 convert_mode_scalar (temp, from, unsignedp);
397 flag_finite_math_only = save_flag_finite_math_only;
398 convert_mode_scalar (to, temp, unsignedp);
399 return;
401 if (to_mode == SFmode
402 && !HONOR_NANS (from_mode)
403 && !HONOR_NANS (to_mode)
404 && optimize_insn_for_speed_p ())
406 /* If we don't expect sNaNs, for BFmode -> SFmode we can just
407 shift the bits up. */
408 machine_mode fromi_mode, toi_mode;
409 if (int_mode_for_size (GET_MODE_BITSIZE (from_mode),
410 0).exists (&fromi_mode)
411 && int_mode_for_size (GET_MODE_BITSIZE (to_mode),
412 0).exists (&toi_mode))
414 start_sequence ();
415 rtx fromi = lowpart_subreg (fromi_mode, from, from_mode);
416 rtx tof = NULL_RTX;
417 if (fromi)
419 rtx toi;
420 if (GET_MODE (fromi) == VOIDmode)
421 toi = simplify_unary_operation (ZERO_EXTEND, toi_mode,
422 fromi, fromi_mode);
423 else
425 toi = gen_reg_rtx (toi_mode);
426 convert_mode_scalar (toi, fromi, 1);
429 = maybe_expand_shift (LSHIFT_EXPR, toi_mode, toi,
430 GET_MODE_PRECISION (to_mode)
431 - GET_MODE_PRECISION (from_mode),
432 NULL_RTX, 1);
433 if (toi)
435 tof = lowpart_subreg (to_mode, toi, toi_mode);
436 if (tof)
437 emit_move_insn (to, tof);
440 insns = get_insns ();
441 end_sequence ();
442 if (tof)
444 emit_insn (insns);
445 return;
450 if (REAL_MODE_FORMAT (from_mode) == &ieee_single_format
451 && REAL_MODE_FORMAT (to_mode) == &arm_bfloat_half_format
452 && !HONOR_NANS (from_mode)
453 && !HONOR_NANS (to_mode)
454 && !flag_rounding_math
455 && optimize_insn_for_speed_p ())
457 /* If we don't expect qNaNs nor sNaNs and can assume rounding
458 to nearest, we can expand the conversion inline as
459 (fromi + 0x7fff + ((fromi >> 16) & 1)) >> 16. */
460 machine_mode fromi_mode, toi_mode;
461 if (int_mode_for_size (GET_MODE_BITSIZE (from_mode),
462 0).exists (&fromi_mode)
463 && int_mode_for_size (GET_MODE_BITSIZE (to_mode),
464 0).exists (&toi_mode))
466 start_sequence ();
467 rtx fromi = lowpart_subreg (fromi_mode, from, from_mode);
468 rtx tof = NULL_RTX;
471 if (!fromi)
472 break;
473 int shift = (GET_MODE_PRECISION (from_mode)
474 - GET_MODE_PRECISION (to_mode));
475 rtx temp1
476 = maybe_expand_shift (RSHIFT_EXPR, fromi_mode, fromi,
477 shift, NULL_RTX, 1);
478 if (!temp1)
479 break;
480 rtx temp2
481 = expand_binop (fromi_mode, and_optab, temp1, const1_rtx,
482 NULL_RTX, 1, OPTAB_DIRECT);
483 if (!temp2)
484 break;
485 rtx temp3
486 = expand_binop (fromi_mode, add_optab, fromi,
487 gen_int_mode ((HOST_WIDE_INT_1U
488 << (shift - 1)) - 1,
489 fromi_mode), NULL_RTX,
490 1, OPTAB_DIRECT);
491 if (!temp3)
492 break;
493 rtx temp4
494 = expand_binop (fromi_mode, add_optab, temp3, temp2,
495 NULL_RTX, 1, OPTAB_DIRECT);
496 if (!temp4)
497 break;
498 rtx temp5 = maybe_expand_shift (RSHIFT_EXPR, fromi_mode,
499 temp4, shift, NULL_RTX, 1);
500 if (!temp5)
501 break;
502 rtx temp6 = lowpart_subreg (toi_mode, temp5, fromi_mode);
503 if (!temp6)
504 break;
505 tof = lowpart_subreg (to_mode, force_reg (toi_mode, temp6),
506 toi_mode);
507 if (tof)
508 emit_move_insn (to, tof);
510 while (0);
511 insns = get_insns ();
512 end_sequence ();
513 if (tof)
515 emit_insn (insns);
516 return;
520 #endif
522 /* Otherwise use a libcall. */
523 libcall = convert_optab_libfunc (tab, to_mode, from_mode);
525 /* Is this conversion implemented yet? */
526 gcc_assert (libcall);
528 start_sequence ();
529 value = emit_library_call_value (libcall, NULL_RTX, LCT_CONST, to_mode,
530 from, from_mode);
531 insns = get_insns ();
532 end_sequence ();
533 emit_libcall_block (insns, to, value,
534 tab == trunc_optab ? gen_rtx_FLOAT_TRUNCATE (to_mode,
535 from)
536 : gen_rtx_FLOAT_EXTEND (to_mode, from));
537 return;
540 /* Handle pointer conversion. */ /* SPEE 900220. */
541 /* If the target has a converter from FROM_MODE to TO_MODE, use it. */
543 convert_optab ctab;
545 if (GET_MODE_PRECISION (from_mode) > GET_MODE_PRECISION (to_mode))
546 ctab = trunc_optab;
547 else if (unsignedp)
548 ctab = zext_optab;
549 else
550 ctab = sext_optab;
552 if (convert_optab_handler (ctab, to_mode, from_mode)
553 != CODE_FOR_nothing)
555 emit_unop_insn (convert_optab_handler (ctab, to_mode, from_mode),
556 to, from, UNKNOWN);
557 return;
561 /* Targets are expected to provide conversion insns between PxImode and
562 xImode for all MODE_PARTIAL_INT modes they use, but no others. */
563 if (GET_MODE_CLASS (to_mode) == MODE_PARTIAL_INT)
565 scalar_int_mode full_mode
566 = smallest_int_mode_for_size (GET_MODE_BITSIZE (to_mode));
568 gcc_assert (convert_optab_handler (trunc_optab, to_mode, full_mode)
569 != CODE_FOR_nothing);
571 if (full_mode != from_mode)
572 from = convert_to_mode (full_mode, from, unsignedp);
573 emit_unop_insn (convert_optab_handler (trunc_optab, to_mode, full_mode),
574 to, from, UNKNOWN);
575 return;
577 if (GET_MODE_CLASS (from_mode) == MODE_PARTIAL_INT)
579 rtx new_from;
580 scalar_int_mode full_mode
581 = smallest_int_mode_for_size (GET_MODE_BITSIZE (from_mode));
582 convert_optab ctab = unsignedp ? zext_optab : sext_optab;
583 enum insn_code icode;
585 icode = convert_optab_handler (ctab, full_mode, from_mode);
586 gcc_assert (icode != CODE_FOR_nothing);
588 if (to_mode == full_mode)
590 emit_unop_insn (icode, to, from, UNKNOWN);
591 return;
594 new_from = gen_reg_rtx (full_mode);
595 emit_unop_insn (icode, new_from, from, UNKNOWN);
597 /* else proceed to integer conversions below. */
598 from_mode = full_mode;
599 from = new_from;
602 /* Make sure both are fixed-point modes or both are not. */
603 gcc_assert (ALL_SCALAR_FIXED_POINT_MODE_P (from_mode) ==
604 ALL_SCALAR_FIXED_POINT_MODE_P (to_mode));
605 if (ALL_SCALAR_FIXED_POINT_MODE_P (from_mode))
607 /* If we widen from_mode to to_mode and they are in the same class,
608 we won't saturate the result.
609 Otherwise, always saturate the result to play safe. */
610 if (GET_MODE_CLASS (from_mode) == GET_MODE_CLASS (to_mode)
611 && GET_MODE_SIZE (from_mode) < GET_MODE_SIZE (to_mode))
612 expand_fixed_convert (to, from, 0, 0);
613 else
614 expand_fixed_convert (to, from, 0, 1);
615 return;
618 /* Now both modes are integers. */
620 /* Handle expanding beyond a word. */
621 if (GET_MODE_PRECISION (from_mode) < GET_MODE_PRECISION (to_mode)
622 && GET_MODE_PRECISION (to_mode) > BITS_PER_WORD)
624 rtx_insn *insns;
625 rtx lowpart;
626 rtx fill_value;
627 rtx lowfrom;
628 int i;
629 scalar_mode lowpart_mode;
630 int nwords = CEIL (GET_MODE_SIZE (to_mode), UNITS_PER_WORD);
632 /* Try converting directly if the insn is supported. */
633 if ((code = can_extend_p (to_mode, from_mode, unsignedp))
634 != CODE_FOR_nothing)
636 /* If FROM is a SUBREG, put it into a register. Do this
637 so that we always generate the same set of insns for
638 better cse'ing; if an intermediate assignment occurred,
639 we won't be doing the operation directly on the SUBREG. */
640 if (optimize > 0 && GET_CODE (from) == SUBREG)
641 from = force_reg (from_mode, from);
642 emit_unop_insn (code, to, from, equiv_code);
643 return;
645 /* Next, try converting via full word. */
646 else if (GET_MODE_PRECISION (from_mode) < BITS_PER_WORD
647 && ((code = can_extend_p (to_mode, word_mode, unsignedp))
648 != CODE_FOR_nothing))
650 rtx word_to = gen_reg_rtx (word_mode);
651 if (REG_P (to))
653 if (reg_overlap_mentioned_p (to, from))
654 from = force_reg (from_mode, from);
655 emit_clobber (to);
657 convert_move (word_to, from, unsignedp);
658 emit_unop_insn (code, to, word_to, equiv_code);
659 return;
662 /* No special multiword conversion insn; do it by hand. */
663 start_sequence ();
665 /* Since we will turn this into a no conflict block, we must ensure
666 the source does not overlap the target so force it into an isolated
667 register when maybe so. Likewise for any MEM input, since the
668 conversion sequence might require several references to it and we
669 must ensure we're getting the same value every time. */
671 if (MEM_P (from) || reg_overlap_mentioned_p (to, from))
672 from = force_reg (from_mode, from);
674 /* Get a copy of FROM widened to a word, if necessary. */
675 if (GET_MODE_PRECISION (from_mode) < BITS_PER_WORD)
676 lowpart_mode = word_mode;
677 else
678 lowpart_mode = from_mode;
680 lowfrom = convert_to_mode (lowpart_mode, from, unsignedp);
682 lowpart = gen_lowpart (lowpart_mode, to);
683 emit_move_insn (lowpart, lowfrom);
685 /* Compute the value to put in each remaining word. */
686 if (unsignedp)
687 fill_value = const0_rtx;
688 else
689 fill_value = emit_store_flag_force (gen_reg_rtx (word_mode),
690 LT, lowfrom, const0_rtx,
691 lowpart_mode, 0, -1);
693 /* Fill the remaining words. */
694 for (i = GET_MODE_SIZE (lowpart_mode) / UNITS_PER_WORD; i < nwords; i++)
696 int index = (WORDS_BIG_ENDIAN ? nwords - i - 1 : i);
697 rtx subword = operand_subword (to, index, 1, to_mode);
699 gcc_assert (subword);
701 if (fill_value != subword)
702 emit_move_insn (subword, fill_value);
705 insns = get_insns ();
706 end_sequence ();
708 emit_insn (insns);
709 return;
712 /* Truncating multi-word to a word or less. */
713 if (GET_MODE_PRECISION (from_mode) > BITS_PER_WORD
714 && GET_MODE_PRECISION (to_mode) <= BITS_PER_WORD)
716 if (!((MEM_P (from)
717 && ! MEM_VOLATILE_P (from)
718 && direct_load[(int) to_mode]
719 && ! mode_dependent_address_p (XEXP (from, 0),
720 MEM_ADDR_SPACE (from)))
721 || REG_P (from)
722 || GET_CODE (from) == SUBREG))
723 from = force_reg (from_mode, from);
724 convert_move (to, gen_lowpart (word_mode, from), 0);
725 return;
728 /* Now follow all the conversions between integers
729 no more than a word long. */
731 /* For truncation, usually we can just refer to FROM in a narrower mode. */
732 if (GET_MODE_BITSIZE (to_mode) < GET_MODE_BITSIZE (from_mode)
733 && TRULY_NOOP_TRUNCATION_MODES_P (to_mode, from_mode))
735 if (!((MEM_P (from)
736 && ! MEM_VOLATILE_P (from)
737 && direct_load[(int) to_mode]
738 && ! mode_dependent_address_p (XEXP (from, 0),
739 MEM_ADDR_SPACE (from)))
740 || REG_P (from)
741 || GET_CODE (from) == SUBREG))
742 from = force_reg (from_mode, from);
743 if (REG_P (from) && REGNO (from) < FIRST_PSEUDO_REGISTER
744 && !targetm.hard_regno_mode_ok (REGNO (from), to_mode))
745 from = copy_to_reg (from);
746 emit_move_insn (to, gen_lowpart (to_mode, from));
747 return;
750 /* Handle extension. */
751 if (GET_MODE_PRECISION (to_mode) > GET_MODE_PRECISION (from_mode))
753 /* Convert directly if that works. */
754 if ((code = can_extend_p (to_mode, from_mode, unsignedp))
755 != CODE_FOR_nothing)
757 emit_unop_insn (code, to, from, equiv_code);
758 return;
760 else
762 rtx tmp;
763 int shift_amount;
765 /* Search for a mode to convert via. */
766 opt_scalar_mode intermediate_iter;
767 FOR_EACH_MODE_FROM (intermediate_iter, from_mode)
769 scalar_mode intermediate = intermediate_iter.require ();
770 if (((can_extend_p (to_mode, intermediate, unsignedp)
771 != CODE_FOR_nothing)
772 || (GET_MODE_SIZE (to_mode) < GET_MODE_SIZE (intermediate)
773 && TRULY_NOOP_TRUNCATION_MODES_P (to_mode,
774 intermediate)))
775 && (can_extend_p (intermediate, from_mode, unsignedp)
776 != CODE_FOR_nothing))
778 convert_move (to, convert_to_mode (intermediate, from,
779 unsignedp), unsignedp);
780 return;
784 /* No suitable intermediate mode.
785 Generate what we need with shifts. */
786 shift_amount = (GET_MODE_PRECISION (to_mode)
787 - GET_MODE_PRECISION (from_mode));
788 from = gen_lowpart (to_mode, force_reg (from_mode, from));
789 tmp = expand_shift (LSHIFT_EXPR, to_mode, from, shift_amount,
790 to, unsignedp);
791 tmp = expand_shift (RSHIFT_EXPR, to_mode, tmp, shift_amount,
792 to, unsignedp);
793 if (tmp != to)
794 emit_move_insn (to, tmp);
795 return;
799 /* Support special truncate insns for certain modes. */
800 if (convert_optab_handler (trunc_optab, to_mode,
801 from_mode) != CODE_FOR_nothing)
803 emit_unop_insn (convert_optab_handler (trunc_optab, to_mode, from_mode),
804 to, from, UNKNOWN);
805 return;
808 /* Handle truncation of volatile memrefs, and so on;
809 the things that couldn't be truncated directly,
810 and for which there was no special instruction.
812 ??? Code above formerly short-circuited this, for most integer
813 mode pairs, with a force_reg in from_mode followed by a recursive
814 call to this routine. Appears always to have been wrong. */
815 if (GET_MODE_PRECISION (to_mode) < GET_MODE_PRECISION (from_mode))
817 rtx temp = force_reg (to_mode, gen_lowpart (to_mode, from));
818 emit_move_insn (to, temp);
819 return;
822 /* Mode combination is not recognized. */
823 gcc_unreachable ();
826 /* Return an rtx for a value that would result
827 from converting X to mode MODE.
828 Both X and MODE may be floating, or both integer.
829 UNSIGNEDP is nonzero if X is an unsigned value.
830 This can be done by referring to a part of X in place
831 or by copying to a new temporary with conversion. */
834 convert_to_mode (machine_mode mode, rtx x, int unsignedp)
836 return convert_modes (mode, VOIDmode, x, unsignedp);
839 /* Return an rtx for a value that would result
840 from converting X from mode OLDMODE to mode MODE.
841 Both modes may be floating, or both integer.
842 UNSIGNEDP is nonzero if X is an unsigned value.
844 This can be done by referring to a part of X in place
845 or by copying to a new temporary with conversion.
847 You can give VOIDmode for OLDMODE, if you are sure X has a nonvoid mode. */
850 convert_modes (machine_mode mode, machine_mode oldmode, rtx x, int unsignedp)
852 rtx temp;
853 scalar_int_mode int_mode;
855 /* If FROM is a SUBREG that indicates that we have already done at least
856 the required extension, strip it. */
858 if (GET_CODE (x) == SUBREG
859 && SUBREG_PROMOTED_VAR_P (x)
860 && is_a <scalar_int_mode> (mode, &int_mode)
861 && (GET_MODE_PRECISION (subreg_promoted_mode (x))
862 >= GET_MODE_PRECISION (int_mode))
863 && SUBREG_CHECK_PROMOTED_SIGN (x, unsignedp))
865 scalar_int_mode int_orig_mode;
866 scalar_int_mode int_inner_mode;
867 machine_mode orig_mode = GET_MODE (x);
868 x = gen_lowpart (int_mode, SUBREG_REG (x));
870 /* Preserve SUBREG_PROMOTED_VAR_P if the new mode is wider than
871 the original mode, but narrower than the inner mode. */
872 if (GET_CODE (x) == SUBREG
873 && is_a <scalar_int_mode> (orig_mode, &int_orig_mode)
874 && GET_MODE_PRECISION (int_mode)
875 > GET_MODE_PRECISION (int_orig_mode)
876 && is_a <scalar_int_mode> (GET_MODE (SUBREG_REG (x)),
877 &int_inner_mode)
878 && GET_MODE_PRECISION (int_inner_mode)
879 > GET_MODE_PRECISION (int_mode))
881 SUBREG_PROMOTED_VAR_P (x) = 1;
882 SUBREG_PROMOTED_SET (x, unsignedp);
886 if (GET_MODE (x) != VOIDmode)
887 oldmode = GET_MODE (x);
889 if (mode == oldmode)
890 return x;
892 if (CONST_SCALAR_INT_P (x)
893 && is_a <scalar_int_mode> (mode, &int_mode))
895 /* If the caller did not tell us the old mode, then there is not
896 much to do with respect to canonicalization. We have to
897 assume that all the bits are significant. */
898 if (!is_a <scalar_int_mode> (oldmode))
899 oldmode = MAX_MODE_INT;
900 wide_int w = wide_int::from (rtx_mode_t (x, oldmode),
901 GET_MODE_PRECISION (int_mode),
902 unsignedp ? UNSIGNED : SIGNED);
903 return immed_wide_int_const (w, int_mode);
906 /* We can do this with a gen_lowpart if both desired and current modes
907 are integer, and this is either a constant integer, a register, or a
908 non-volatile MEM. */
909 scalar_int_mode int_oldmode;
910 if (is_int_mode (mode, &int_mode)
911 && is_int_mode (oldmode, &int_oldmode)
912 && GET_MODE_PRECISION (int_mode) <= GET_MODE_PRECISION (int_oldmode)
913 && ((MEM_P (x) && !MEM_VOLATILE_P (x) && direct_load[(int) int_mode])
914 || CONST_POLY_INT_P (x)
915 || (REG_P (x)
916 && (!HARD_REGISTER_P (x)
917 || targetm.hard_regno_mode_ok (REGNO (x), int_mode))
918 && TRULY_NOOP_TRUNCATION_MODES_P (int_mode, GET_MODE (x)))))
919 return gen_lowpart (int_mode, x);
921 /* Converting from integer constant into mode is always equivalent to an
922 subreg operation. */
923 if (VECTOR_MODE_P (mode) && GET_MODE (x) == VOIDmode)
925 gcc_assert (known_eq (GET_MODE_BITSIZE (mode),
926 GET_MODE_BITSIZE (oldmode)));
927 return simplify_gen_subreg (mode, x, oldmode, 0);
930 temp = gen_reg_rtx (mode);
931 convert_move (temp, x, unsignedp);
932 return temp;
935 /* Variant of convert_modes for ABI parameter passing/return.
936 Return an rtx for a value that would result from converting X from
937 a floating point mode FMODE to wider integer mode MODE. */
940 convert_float_to_wider_int (machine_mode mode, machine_mode fmode, rtx x)
942 gcc_assert (SCALAR_INT_MODE_P (mode) && SCALAR_FLOAT_MODE_P (fmode));
943 scalar_int_mode tmp_mode = int_mode_for_mode (fmode).require ();
944 rtx tmp = force_reg (tmp_mode, gen_lowpart (tmp_mode, x));
945 return convert_modes (mode, tmp_mode, tmp, 1);
948 /* Variant of convert_modes for ABI parameter passing/return.
949 Return an rtx for a value that would result from converting X from
950 an integer mode IMODE to a narrower floating point mode MODE. */
953 convert_wider_int_to_float (machine_mode mode, machine_mode imode, rtx x)
955 gcc_assert (SCALAR_FLOAT_MODE_P (mode) && SCALAR_INT_MODE_P (imode));
956 scalar_int_mode tmp_mode = int_mode_for_mode (mode).require ();
957 rtx tmp = force_reg (tmp_mode, gen_lowpart (tmp_mode, x));
958 return gen_lowpart_SUBREG (mode, tmp);
961 /* Return the largest alignment we can use for doing a move (or store)
962 of MAX_PIECES. ALIGN is the largest alignment we could use. */
964 static unsigned int
965 alignment_for_piecewise_move (unsigned int max_pieces, unsigned int align)
967 scalar_int_mode tmode
968 = int_mode_for_size (max_pieces * BITS_PER_UNIT, 0).require ();
970 if (align >= GET_MODE_ALIGNMENT (tmode))
971 align = GET_MODE_ALIGNMENT (tmode);
972 else
974 scalar_int_mode xmode = NARROWEST_INT_MODE;
975 opt_scalar_int_mode mode_iter;
976 FOR_EACH_MODE_IN_CLASS (mode_iter, MODE_INT)
978 tmode = mode_iter.require ();
979 if (GET_MODE_SIZE (tmode) > max_pieces
980 || targetm.slow_unaligned_access (tmode, align))
981 break;
982 xmode = tmode;
985 align = MAX (align, GET_MODE_ALIGNMENT (xmode));
988 return align;
991 /* Return the widest QI vector, if QI_MODE is true, or integer mode
992 that is narrower than SIZE bytes. */
994 static fixed_size_mode
995 widest_fixed_size_mode_for_size (unsigned int size, bool qi_vector)
997 fixed_size_mode result = NARROWEST_INT_MODE;
999 gcc_checking_assert (size > 1);
1001 /* Use QI vector only if size is wider than a WORD. */
1002 if (qi_vector && size > UNITS_PER_WORD)
1004 machine_mode mode;
1005 fixed_size_mode candidate;
1006 FOR_EACH_MODE_IN_CLASS (mode, MODE_VECTOR_INT)
1007 if (is_a<fixed_size_mode> (mode, &candidate)
1008 && GET_MODE_INNER (candidate) == QImode)
1010 if (GET_MODE_SIZE (candidate) >= size)
1011 break;
1012 if (optab_handler (vec_duplicate_optab, candidate)
1013 != CODE_FOR_nothing)
1014 result = candidate;
1017 if (result != NARROWEST_INT_MODE)
1018 return result;
1021 opt_scalar_int_mode tmode;
1022 FOR_EACH_MODE_IN_CLASS (tmode, MODE_INT)
1023 if (GET_MODE_SIZE (tmode.require ()) < size)
1024 result = tmode.require ();
1026 return result;
1029 /* Determine whether an operation OP on LEN bytes with alignment ALIGN can
1030 and should be performed piecewise. */
1032 static bool
1033 can_do_by_pieces (unsigned HOST_WIDE_INT len, unsigned int align,
1034 enum by_pieces_operation op)
1036 return targetm.use_by_pieces_infrastructure_p (len, align, op,
1037 optimize_insn_for_speed_p ());
1040 /* Determine whether the LEN bytes can be moved by using several move
1041 instructions. Return nonzero if a call to move_by_pieces should
1042 succeed. */
1044 bool
1045 can_move_by_pieces (unsigned HOST_WIDE_INT len, unsigned int align)
1047 return can_do_by_pieces (len, align, MOVE_BY_PIECES);
1050 /* Return number of insns required to perform operation OP by pieces
1051 for L bytes. ALIGN (in bits) is maximum alignment we can assume. */
1053 unsigned HOST_WIDE_INT
1054 by_pieces_ninsns (unsigned HOST_WIDE_INT l, unsigned int align,
1055 unsigned int max_size, by_pieces_operation op)
1057 unsigned HOST_WIDE_INT n_insns = 0;
1058 fixed_size_mode mode;
1060 if (targetm.overlap_op_by_pieces_p () && op != COMPARE_BY_PIECES)
1062 /* NB: Round up L and ALIGN to the widest integer mode for
1063 MAX_SIZE. */
1064 mode = widest_fixed_size_mode_for_size (max_size,
1065 op == SET_BY_PIECES);
1066 if (optab_handler (mov_optab, mode) != CODE_FOR_nothing)
1068 unsigned HOST_WIDE_INT up = ROUND_UP (l, GET_MODE_SIZE (mode));
1069 if (up > l)
1070 l = up;
1071 align = GET_MODE_ALIGNMENT (mode);
1075 align = alignment_for_piecewise_move (MOVE_MAX_PIECES, align);
1077 while (max_size > 1 && l > 0)
1079 mode = widest_fixed_size_mode_for_size (max_size,
1080 op == SET_BY_PIECES);
1081 enum insn_code icode;
1083 unsigned int modesize = GET_MODE_SIZE (mode);
1085 icode = optab_handler (mov_optab, mode);
1086 if (icode != CODE_FOR_nothing && align >= GET_MODE_ALIGNMENT (mode))
1088 unsigned HOST_WIDE_INT n_pieces = l / modesize;
1089 l %= modesize;
1090 switch (op)
1092 default:
1093 n_insns += n_pieces;
1094 break;
1096 case COMPARE_BY_PIECES:
1097 int batch = targetm.compare_by_pieces_branch_ratio (mode);
1098 int batch_ops = 4 * batch - 1;
1099 unsigned HOST_WIDE_INT full = n_pieces / batch;
1100 n_insns += full * batch_ops;
1101 if (n_pieces % batch != 0)
1102 n_insns++;
1103 break;
1107 max_size = modesize;
1110 gcc_assert (!l);
1111 return n_insns;
1114 /* Used when performing piecewise block operations, holds information
1115 about one of the memory objects involved. The member functions
1116 can be used to generate code for loading from the object and
1117 updating the address when iterating. */
1119 class pieces_addr
1121 /* The object being referenced, a MEM. Can be NULL_RTX to indicate
1122 stack pushes. */
1123 rtx m_obj;
1124 /* The address of the object. Can differ from that seen in the
1125 MEM rtx if we copied the address to a register. */
1126 rtx m_addr;
1127 /* Nonzero if the address on the object has an autoincrement already,
1128 signifies whether that was an increment or decrement. */
1129 signed char m_addr_inc;
1130 /* Nonzero if we intend to use autoinc without the address already
1131 having autoinc form. We will insert add insns around each memory
1132 reference, expecting later passes to form autoinc addressing modes.
1133 The only supported options are predecrement and postincrement. */
1134 signed char m_explicit_inc;
1135 /* True if we have either of the two possible cases of using
1136 autoincrement. */
1137 bool m_auto;
1138 /* True if this is an address to be used for load operations rather
1139 than stores. */
1140 bool m_is_load;
1142 /* Optionally, a function to obtain constants for any given offset into
1143 the objects, and data associated with it. */
1144 by_pieces_constfn m_constfn;
1145 void *m_cfndata;
1146 public:
1147 pieces_addr (rtx, bool, by_pieces_constfn, void *);
1148 rtx adjust (fixed_size_mode, HOST_WIDE_INT, by_pieces_prev * = nullptr);
1149 void increment_address (HOST_WIDE_INT);
1150 void maybe_predec (HOST_WIDE_INT);
1151 void maybe_postinc (HOST_WIDE_INT);
1152 void decide_autoinc (machine_mode, bool, HOST_WIDE_INT);
1153 int get_addr_inc ()
1155 return m_addr_inc;
1159 /* Initialize a pieces_addr structure from an object OBJ. IS_LOAD is
1160 true if the operation to be performed on this object is a load
1161 rather than a store. For stores, OBJ can be NULL, in which case we
1162 assume the operation is a stack push. For loads, the optional
1163 CONSTFN and its associated CFNDATA can be used in place of the
1164 memory load. */
1166 pieces_addr::pieces_addr (rtx obj, bool is_load, by_pieces_constfn constfn,
1167 void *cfndata)
1168 : m_obj (obj), m_is_load (is_load), m_constfn (constfn), m_cfndata (cfndata)
1170 m_addr_inc = 0;
1171 m_auto = false;
1172 if (obj)
1174 rtx addr = XEXP (obj, 0);
1175 rtx_code code = GET_CODE (addr);
1176 m_addr = addr;
1177 bool dec = code == PRE_DEC || code == POST_DEC;
1178 bool inc = code == PRE_INC || code == POST_INC;
1179 m_auto = inc || dec;
1180 if (m_auto)
1181 m_addr_inc = dec ? -1 : 1;
1183 /* While we have always looked for these codes here, the code
1184 implementing the memory operation has never handled them.
1185 Support could be added later if necessary or beneficial. */
1186 gcc_assert (code != PRE_INC && code != POST_DEC);
1188 else
1190 m_addr = NULL_RTX;
1191 if (!is_load)
1193 m_auto = true;
1194 if (STACK_GROWS_DOWNWARD)
1195 m_addr_inc = -1;
1196 else
1197 m_addr_inc = 1;
1199 else
1200 gcc_assert (constfn != NULL);
1202 m_explicit_inc = 0;
1203 if (constfn)
1204 gcc_assert (is_load);
1207 /* Decide whether to use autoinc for an address involved in a memory op.
1208 MODE is the mode of the accesses, REVERSE is true if we've decided to
1209 perform the operation starting from the end, and LEN is the length of
1210 the operation. Don't override an earlier decision to set m_auto. */
1212 void
1213 pieces_addr::decide_autoinc (machine_mode ARG_UNUSED (mode), bool reverse,
1214 HOST_WIDE_INT len)
1216 if (m_auto || m_obj == NULL_RTX)
1217 return;
1219 bool use_predec = (m_is_load
1220 ? USE_LOAD_PRE_DECREMENT (mode)
1221 : USE_STORE_PRE_DECREMENT (mode));
1222 bool use_postinc = (m_is_load
1223 ? USE_LOAD_POST_INCREMENT (mode)
1224 : USE_STORE_POST_INCREMENT (mode));
1225 machine_mode addr_mode = get_address_mode (m_obj);
1227 if (use_predec && reverse)
1229 m_addr = copy_to_mode_reg (addr_mode,
1230 plus_constant (addr_mode,
1231 m_addr, len));
1232 m_auto = true;
1233 m_explicit_inc = -1;
1235 else if (use_postinc && !reverse)
1237 m_addr = copy_to_mode_reg (addr_mode, m_addr);
1238 m_auto = true;
1239 m_explicit_inc = 1;
1241 else if (CONSTANT_P (m_addr))
1242 m_addr = copy_to_mode_reg (addr_mode, m_addr);
1245 /* Adjust the address to refer to the data at OFFSET in MODE. If we
1246 are using autoincrement for this address, we don't add the offset,
1247 but we still modify the MEM's properties. */
1250 pieces_addr::adjust (fixed_size_mode mode, HOST_WIDE_INT offset,
1251 by_pieces_prev *prev)
1253 if (m_constfn)
1254 /* Pass the previous data to m_constfn. */
1255 return m_constfn (m_cfndata, prev, offset, mode);
1256 if (m_obj == NULL_RTX)
1257 return NULL_RTX;
1258 if (m_auto)
1259 return adjust_automodify_address (m_obj, mode, m_addr, offset);
1260 else
1261 return adjust_address (m_obj, mode, offset);
1264 /* Emit an add instruction to increment the address by SIZE. */
1266 void
1267 pieces_addr::increment_address (HOST_WIDE_INT size)
1269 rtx amount = gen_int_mode (size, GET_MODE (m_addr));
1270 emit_insn (gen_add2_insn (m_addr, amount));
1273 /* If we are supposed to decrement the address after each access, emit code
1274 to do so now. Increment by SIZE (which has should have the correct sign
1275 already). */
1277 void
1278 pieces_addr::maybe_predec (HOST_WIDE_INT size)
1280 if (m_explicit_inc >= 0)
1281 return;
1282 gcc_assert (HAVE_PRE_DECREMENT);
1283 increment_address (size);
1286 /* If we are supposed to decrement the address after each access, emit code
1287 to do so now. Increment by SIZE. */
1289 void
1290 pieces_addr::maybe_postinc (HOST_WIDE_INT size)
1292 if (m_explicit_inc <= 0)
1293 return;
1294 gcc_assert (HAVE_POST_INCREMENT);
1295 increment_address (size);
1298 /* This structure is used by do_op_by_pieces to describe the operation
1299 to be performed. */
1301 class op_by_pieces_d
1303 private:
1304 fixed_size_mode get_usable_mode (fixed_size_mode, unsigned int);
1305 fixed_size_mode smallest_fixed_size_mode_for_size (unsigned int);
1307 protected:
1308 pieces_addr m_to, m_from;
1309 /* Make m_len read-only so that smallest_fixed_size_mode_for_size can
1310 use it to check the valid mode size. */
1311 const unsigned HOST_WIDE_INT m_len;
1312 HOST_WIDE_INT m_offset;
1313 unsigned int m_align;
1314 unsigned int m_max_size;
1315 bool m_reverse;
1316 /* True if this is a stack push. */
1317 bool m_push;
1318 /* True if targetm.overlap_op_by_pieces_p () returns true. */
1319 bool m_overlap_op_by_pieces;
1320 /* True if QI vector mode can be used. */
1321 bool m_qi_vector_mode;
1323 /* Virtual functions, overriden by derived classes for the specific
1324 operation. */
1325 virtual void generate (rtx, rtx, machine_mode) = 0;
1326 virtual bool prepare_mode (machine_mode, unsigned int) = 0;
1327 virtual void finish_mode (machine_mode)
1331 public:
1332 op_by_pieces_d (unsigned int, rtx, bool, rtx, bool, by_pieces_constfn,
1333 void *, unsigned HOST_WIDE_INT, unsigned int, bool,
1334 bool = false);
1335 void run ();
1338 /* The constructor for an op_by_pieces_d structure. We require two
1339 objects named TO and FROM, which are identified as loads or stores
1340 by TO_LOAD and FROM_LOAD. If FROM is a load, the optional FROM_CFN
1341 and its associated FROM_CFN_DATA can be used to replace loads with
1342 constant values. MAX_PIECES describes the maximum number of bytes
1343 at a time which can be moved efficiently. LEN describes the length
1344 of the operation. */
1346 op_by_pieces_d::op_by_pieces_d (unsigned int max_pieces, rtx to,
1347 bool to_load, rtx from, bool from_load,
1348 by_pieces_constfn from_cfn,
1349 void *from_cfn_data,
1350 unsigned HOST_WIDE_INT len,
1351 unsigned int align, bool push,
1352 bool qi_vector_mode)
1353 : m_to (to, to_load, NULL, NULL),
1354 m_from (from, from_load, from_cfn, from_cfn_data),
1355 m_len (len), m_max_size (max_pieces + 1),
1356 m_push (push), m_qi_vector_mode (qi_vector_mode)
1358 int toi = m_to.get_addr_inc ();
1359 int fromi = m_from.get_addr_inc ();
1360 if (toi >= 0 && fromi >= 0)
1361 m_reverse = false;
1362 else if (toi <= 0 && fromi <= 0)
1363 m_reverse = true;
1364 else
1365 gcc_unreachable ();
1367 m_offset = m_reverse ? len : 0;
1368 align = MIN (to ? MEM_ALIGN (to) : align,
1369 from ? MEM_ALIGN (from) : align);
1371 /* If copying requires more than two move insns,
1372 copy addresses to registers (to make displacements shorter)
1373 and use post-increment if available. */
1374 if (by_pieces_ninsns (len, align, m_max_size, MOVE_BY_PIECES) > 2)
1376 /* Find the mode of the largest comparison. */
1377 fixed_size_mode mode
1378 = widest_fixed_size_mode_for_size (m_max_size,
1379 m_qi_vector_mode);
1381 m_from.decide_autoinc (mode, m_reverse, len);
1382 m_to.decide_autoinc (mode, m_reverse, len);
1385 align = alignment_for_piecewise_move (MOVE_MAX_PIECES, align);
1386 m_align = align;
1388 m_overlap_op_by_pieces = targetm.overlap_op_by_pieces_p ();
1391 /* This function returns the largest usable integer mode for LEN bytes
1392 whose size is no bigger than size of MODE. */
1394 fixed_size_mode
1395 op_by_pieces_d::get_usable_mode (fixed_size_mode mode, unsigned int len)
1397 unsigned int size;
1400 size = GET_MODE_SIZE (mode);
1401 if (len >= size && prepare_mode (mode, m_align))
1402 break;
1403 /* widest_fixed_size_mode_for_size checks SIZE > 1. */
1404 mode = widest_fixed_size_mode_for_size (size, m_qi_vector_mode);
1406 while (1);
1407 return mode;
1410 /* Return the smallest integer or QI vector mode that is not narrower
1411 than SIZE bytes. */
1413 fixed_size_mode
1414 op_by_pieces_d::smallest_fixed_size_mode_for_size (unsigned int size)
1416 /* Use QI vector only for > size of WORD. */
1417 if (m_qi_vector_mode && size > UNITS_PER_WORD)
1419 machine_mode mode;
1420 fixed_size_mode candidate;
1421 FOR_EACH_MODE_IN_CLASS (mode, MODE_VECTOR_INT)
1422 if (is_a<fixed_size_mode> (mode, &candidate)
1423 && GET_MODE_INNER (candidate) == QImode)
1425 /* Don't return a mode wider than M_LEN. */
1426 if (GET_MODE_SIZE (candidate) > m_len)
1427 break;
1429 if (GET_MODE_SIZE (candidate) >= size
1430 && (optab_handler (vec_duplicate_optab, candidate)
1431 != CODE_FOR_nothing))
1432 return candidate;
1436 return smallest_int_mode_for_size (size * BITS_PER_UNIT);
1439 /* This function contains the main loop used for expanding a block
1440 operation. First move what we can in the largest integer mode,
1441 then go to successively smaller modes. For every access, call
1442 GENFUN with the two operands and the EXTRA_DATA. */
1444 void
1445 op_by_pieces_d::run ()
1447 if (m_len == 0)
1448 return;
1450 unsigned HOST_WIDE_INT length = m_len;
1452 /* widest_fixed_size_mode_for_size checks M_MAX_SIZE > 1. */
1453 fixed_size_mode mode
1454 = widest_fixed_size_mode_for_size (m_max_size, m_qi_vector_mode);
1455 mode = get_usable_mode (mode, length);
1457 by_pieces_prev to_prev = { nullptr, mode };
1458 by_pieces_prev from_prev = { nullptr, mode };
1462 unsigned int size = GET_MODE_SIZE (mode);
1463 rtx to1 = NULL_RTX, from1;
1465 while (length >= size)
1467 if (m_reverse)
1468 m_offset -= size;
1470 to1 = m_to.adjust (mode, m_offset, &to_prev);
1471 to_prev.data = to1;
1472 to_prev.mode = mode;
1473 from1 = m_from.adjust (mode, m_offset, &from_prev);
1474 from_prev.data = from1;
1475 from_prev.mode = mode;
1477 m_to.maybe_predec (-(HOST_WIDE_INT)size);
1478 m_from.maybe_predec (-(HOST_WIDE_INT)size);
1480 generate (to1, from1, mode);
1482 m_to.maybe_postinc (size);
1483 m_from.maybe_postinc (size);
1485 if (!m_reverse)
1486 m_offset += size;
1488 length -= size;
1491 finish_mode (mode);
1493 if (length == 0)
1494 return;
1496 if (!m_push && m_overlap_op_by_pieces)
1498 /* NB: Generate overlapping operations if it is not a stack
1499 push since stack push must not overlap. Get the smallest
1500 fixed size mode for M_LEN bytes. */
1501 mode = smallest_fixed_size_mode_for_size (length);
1502 mode = get_usable_mode (mode, GET_MODE_SIZE (mode));
1503 int gap = GET_MODE_SIZE (mode) - length;
1504 if (gap > 0)
1506 /* If size of MODE > M_LEN, generate the last operation
1507 in MODE for the remaining bytes with ovelapping memory
1508 from the previois operation. */
1509 if (m_reverse)
1510 m_offset += gap;
1511 else
1512 m_offset -= gap;
1513 length += gap;
1516 else
1518 /* widest_fixed_size_mode_for_size checks SIZE > 1. */
1519 mode = widest_fixed_size_mode_for_size (size,
1520 m_qi_vector_mode);
1521 mode = get_usable_mode (mode, length);
1524 while (1);
1527 /* Derived class from op_by_pieces_d, providing support for block move
1528 operations. */
1530 #ifdef PUSH_ROUNDING
1531 #define PUSHG_P(to) ((to) == nullptr)
1532 #else
1533 #define PUSHG_P(to) false
1534 #endif
1536 class move_by_pieces_d : public op_by_pieces_d
1538 insn_gen_fn m_gen_fun;
1539 void generate (rtx, rtx, machine_mode) final override;
1540 bool prepare_mode (machine_mode, unsigned int) final override;
1542 public:
1543 move_by_pieces_d (rtx to, rtx from, unsigned HOST_WIDE_INT len,
1544 unsigned int align)
1545 : op_by_pieces_d (MOVE_MAX_PIECES, to, false, from, true, NULL,
1546 NULL, len, align, PUSHG_P (to))
1549 rtx finish_retmode (memop_ret);
1552 /* Return true if MODE can be used for a set of copies, given an
1553 alignment ALIGN. Prepare whatever data is necessary for later
1554 calls to generate. */
1556 bool
1557 move_by_pieces_d::prepare_mode (machine_mode mode, unsigned int align)
1559 insn_code icode = optab_handler (mov_optab, mode);
1560 m_gen_fun = GEN_FCN (icode);
1561 return icode != CODE_FOR_nothing && align >= GET_MODE_ALIGNMENT (mode);
1564 /* A callback used when iterating for a compare_by_pieces_operation.
1565 OP0 and OP1 are the values that have been loaded and should be
1566 compared in MODE. If OP0 is NULL, this means we should generate a
1567 push; otherwise EXTRA_DATA holds a pointer to a pointer to the insn
1568 gen function that should be used to generate the mode. */
1570 void
1571 move_by_pieces_d::generate (rtx op0, rtx op1,
1572 machine_mode mode ATTRIBUTE_UNUSED)
1574 #ifdef PUSH_ROUNDING
1575 if (op0 == NULL_RTX)
1577 emit_single_push_insn (mode, op1, NULL);
1578 return;
1580 #endif
1581 emit_insn (m_gen_fun (op0, op1));
1584 /* Perform the final adjustment at the end of a string to obtain the
1585 correct return value for the block operation.
1586 Return value is based on RETMODE argument. */
1589 move_by_pieces_d::finish_retmode (memop_ret retmode)
1591 gcc_assert (!m_reverse);
1592 if (retmode == RETURN_END_MINUS_ONE)
1594 m_to.maybe_postinc (-1);
1595 --m_offset;
1597 return m_to.adjust (QImode, m_offset);
1600 /* Generate several move instructions to copy LEN bytes from block FROM to
1601 block TO. (These are MEM rtx's with BLKmode).
1603 If PUSH_ROUNDING is defined and TO is NULL, emit_single_push_insn is
1604 used to push FROM to the stack.
1606 ALIGN is maximum stack alignment we can assume.
1608 Return value is based on RETMODE argument. */
1611 move_by_pieces (rtx to, rtx from, unsigned HOST_WIDE_INT len,
1612 unsigned int align, memop_ret retmode)
1614 #ifndef PUSH_ROUNDING
1615 if (to == NULL)
1616 gcc_unreachable ();
1617 #endif
1619 move_by_pieces_d data (to, from, len, align);
1621 data.run ();
1623 if (retmode != RETURN_BEGIN)
1624 return data.finish_retmode (retmode);
1625 else
1626 return to;
1629 /* Derived class from op_by_pieces_d, providing support for block move
1630 operations. */
1632 class store_by_pieces_d : public op_by_pieces_d
1634 insn_gen_fn m_gen_fun;
1635 void generate (rtx, rtx, machine_mode) final override;
1636 bool prepare_mode (machine_mode, unsigned int) final override;
1638 public:
1639 store_by_pieces_d (rtx to, by_pieces_constfn cfn, void *cfn_data,
1640 unsigned HOST_WIDE_INT len, unsigned int align,
1641 bool qi_vector_mode)
1642 : op_by_pieces_d (STORE_MAX_PIECES, to, false, NULL_RTX, true, cfn,
1643 cfn_data, len, align, false, qi_vector_mode)
1646 rtx finish_retmode (memop_ret);
1649 /* Return true if MODE can be used for a set of stores, given an
1650 alignment ALIGN. Prepare whatever data is necessary for later
1651 calls to generate. */
1653 bool
1654 store_by_pieces_d::prepare_mode (machine_mode mode, unsigned int align)
1656 insn_code icode = optab_handler (mov_optab, mode);
1657 m_gen_fun = GEN_FCN (icode);
1658 return icode != CODE_FOR_nothing && align >= GET_MODE_ALIGNMENT (mode);
1661 /* A callback used when iterating for a store_by_pieces_operation.
1662 OP0 and OP1 are the values that have been loaded and should be
1663 compared in MODE. If OP0 is NULL, this means we should generate a
1664 push; otherwise EXTRA_DATA holds a pointer to a pointer to the insn
1665 gen function that should be used to generate the mode. */
1667 void
1668 store_by_pieces_d::generate (rtx op0, rtx op1, machine_mode)
1670 emit_insn (m_gen_fun (op0, op1));
1673 /* Perform the final adjustment at the end of a string to obtain the
1674 correct return value for the block operation.
1675 Return value is based on RETMODE argument. */
1678 store_by_pieces_d::finish_retmode (memop_ret retmode)
1680 gcc_assert (!m_reverse);
1681 if (retmode == RETURN_END_MINUS_ONE)
1683 m_to.maybe_postinc (-1);
1684 --m_offset;
1686 return m_to.adjust (QImode, m_offset);
1689 /* Determine whether the LEN bytes generated by CONSTFUN can be
1690 stored to memory using several move instructions. CONSTFUNDATA is
1691 a pointer which will be passed as argument in every CONSTFUN call.
1692 ALIGN is maximum alignment we can assume. MEMSETP is true if this is
1693 a memset operation and false if it's a copy of a constant string.
1694 Return nonzero if a call to store_by_pieces should succeed. */
1697 can_store_by_pieces (unsigned HOST_WIDE_INT len,
1698 by_pieces_constfn constfun,
1699 void *constfundata, unsigned int align, bool memsetp)
1701 unsigned HOST_WIDE_INT l;
1702 unsigned int max_size;
1703 HOST_WIDE_INT offset = 0;
1704 enum insn_code icode;
1705 int reverse;
1706 /* cst is set but not used if LEGITIMATE_CONSTANT doesn't use it. */
1707 rtx cst ATTRIBUTE_UNUSED;
1709 if (len == 0)
1710 return 1;
1712 if (!targetm.use_by_pieces_infrastructure_p (len, align,
1713 memsetp
1714 ? SET_BY_PIECES
1715 : STORE_BY_PIECES,
1716 optimize_insn_for_speed_p ()))
1717 return 0;
1719 align = alignment_for_piecewise_move (STORE_MAX_PIECES, align);
1721 /* We would first store what we can in the largest integer mode, then go to
1722 successively smaller modes. */
1724 for (reverse = 0;
1725 reverse <= (HAVE_PRE_DECREMENT || HAVE_POST_DECREMENT);
1726 reverse++)
1728 l = len;
1729 max_size = STORE_MAX_PIECES + 1;
1730 while (max_size > 1 && l > 0)
1732 fixed_size_mode mode
1733 = widest_fixed_size_mode_for_size (max_size, memsetp);
1735 icode = optab_handler (mov_optab, mode);
1736 if (icode != CODE_FOR_nothing
1737 && align >= GET_MODE_ALIGNMENT (mode))
1739 unsigned int size = GET_MODE_SIZE (mode);
1741 while (l >= size)
1743 if (reverse)
1744 offset -= size;
1746 cst = (*constfun) (constfundata, nullptr, offset, mode);
1747 /* All CONST_VECTORs can be loaded for memset since
1748 vec_duplicate_optab is a precondition to pick a
1749 vector mode for the memset expander. */
1750 if (!((memsetp && VECTOR_MODE_P (mode))
1751 || targetm.legitimate_constant_p (mode, cst)))
1752 return 0;
1754 if (!reverse)
1755 offset += size;
1757 l -= size;
1761 max_size = GET_MODE_SIZE (mode);
1764 /* The code above should have handled everything. */
1765 gcc_assert (!l);
1768 return 1;
1771 /* Generate several move instructions to store LEN bytes generated by
1772 CONSTFUN to block TO. (A MEM rtx with BLKmode). CONSTFUNDATA is a
1773 pointer which will be passed as argument in every CONSTFUN call.
1774 ALIGN is maximum alignment we can assume. MEMSETP is true if this is
1775 a memset operation and false if it's a copy of a constant string.
1776 Return value is based on RETMODE argument. */
1779 store_by_pieces (rtx to, unsigned HOST_WIDE_INT len,
1780 by_pieces_constfn constfun,
1781 void *constfundata, unsigned int align, bool memsetp,
1782 memop_ret retmode)
1784 if (len == 0)
1786 gcc_assert (retmode != RETURN_END_MINUS_ONE);
1787 return to;
1790 gcc_assert (targetm.use_by_pieces_infrastructure_p
1791 (len, align,
1792 memsetp ? SET_BY_PIECES : STORE_BY_PIECES,
1793 optimize_insn_for_speed_p ()));
1795 store_by_pieces_d data (to, constfun, constfundata, len, align,
1796 memsetp);
1797 data.run ();
1799 if (retmode != RETURN_BEGIN)
1800 return data.finish_retmode (retmode);
1801 else
1802 return to;
1805 /* Generate several move instructions to clear LEN bytes of block TO. (A MEM
1806 rtx with BLKmode). ALIGN is maximum alignment we can assume. */
1808 static void
1809 clear_by_pieces (rtx to, unsigned HOST_WIDE_INT len, unsigned int align)
1811 if (len == 0)
1812 return;
1814 /* Use builtin_memset_read_str to support vector mode broadcast. */
1815 char c = 0;
1816 store_by_pieces_d data (to, builtin_memset_read_str, &c, len, align,
1817 true);
1818 data.run ();
1821 /* Context used by compare_by_pieces_genfn. It stores the fail label
1822 to jump to in case of miscomparison, and for branch ratios greater than 1,
1823 it stores an accumulator and the current and maximum counts before
1824 emitting another branch. */
1826 class compare_by_pieces_d : public op_by_pieces_d
1828 rtx_code_label *m_fail_label;
1829 rtx m_accumulator;
1830 int m_count, m_batch;
1832 void generate (rtx, rtx, machine_mode) final override;
1833 bool prepare_mode (machine_mode, unsigned int) final override;
1834 void finish_mode (machine_mode) final override;
1835 public:
1836 compare_by_pieces_d (rtx op0, rtx op1, by_pieces_constfn op1_cfn,
1837 void *op1_cfn_data, HOST_WIDE_INT len, int align,
1838 rtx_code_label *fail_label)
1839 : op_by_pieces_d (COMPARE_MAX_PIECES, op0, true, op1, true, op1_cfn,
1840 op1_cfn_data, len, align, false)
1842 m_fail_label = fail_label;
1846 /* A callback used when iterating for a compare_by_pieces_operation.
1847 OP0 and OP1 are the values that have been loaded and should be
1848 compared in MODE. DATA holds a pointer to the compare_by_pieces_data
1849 context structure. */
1851 void
1852 compare_by_pieces_d::generate (rtx op0, rtx op1, machine_mode mode)
1854 if (m_batch > 1)
1856 rtx temp = expand_binop (mode, sub_optab, op0, op1, NULL_RTX,
1857 true, OPTAB_LIB_WIDEN);
1858 if (m_count != 0)
1859 temp = expand_binop (mode, ior_optab, m_accumulator, temp, temp,
1860 true, OPTAB_LIB_WIDEN);
1861 m_accumulator = temp;
1863 if (++m_count < m_batch)
1864 return;
1866 m_count = 0;
1867 op0 = m_accumulator;
1868 op1 = const0_rtx;
1869 m_accumulator = NULL_RTX;
1871 do_compare_rtx_and_jump (op0, op1, NE, true, mode, NULL_RTX, NULL,
1872 m_fail_label, profile_probability::uninitialized ());
1875 /* Return true if MODE can be used for a set of moves and comparisons,
1876 given an alignment ALIGN. Prepare whatever data is necessary for
1877 later calls to generate. */
1879 bool
1880 compare_by_pieces_d::prepare_mode (machine_mode mode, unsigned int align)
1882 insn_code icode = optab_handler (mov_optab, mode);
1883 if (icode == CODE_FOR_nothing
1884 || align < GET_MODE_ALIGNMENT (mode)
1885 || !can_compare_p (EQ, mode, ccp_jump))
1886 return false;
1887 m_batch = targetm.compare_by_pieces_branch_ratio (mode);
1888 if (m_batch < 0)
1889 return false;
1890 m_accumulator = NULL_RTX;
1891 m_count = 0;
1892 return true;
1895 /* Called after expanding a series of comparisons in MODE. If we have
1896 accumulated results for which we haven't emitted a branch yet, do
1897 so now. */
1899 void
1900 compare_by_pieces_d::finish_mode (machine_mode mode)
1902 if (m_accumulator != NULL_RTX)
1903 do_compare_rtx_and_jump (m_accumulator, const0_rtx, NE, true, mode,
1904 NULL_RTX, NULL, m_fail_label,
1905 profile_probability::uninitialized ());
1908 /* Generate several move instructions to compare LEN bytes from blocks
1909 ARG0 and ARG1. (These are MEM rtx's with BLKmode).
1911 If PUSH_ROUNDING is defined and TO is NULL, emit_single_push_insn is
1912 used to push FROM to the stack.
1914 ALIGN is maximum stack alignment we can assume.
1916 Optionally, the caller can pass a constfn and associated data in A1_CFN
1917 and A1_CFN_DATA. describing that the second operand being compared is a
1918 known constant and how to obtain its data. */
1920 static rtx
1921 compare_by_pieces (rtx arg0, rtx arg1, unsigned HOST_WIDE_INT len,
1922 rtx target, unsigned int align,
1923 by_pieces_constfn a1_cfn, void *a1_cfn_data)
1925 rtx_code_label *fail_label = gen_label_rtx ();
1926 rtx_code_label *end_label = gen_label_rtx ();
1928 if (target == NULL_RTX
1929 || !REG_P (target) || REGNO (target) < FIRST_PSEUDO_REGISTER)
1930 target = gen_reg_rtx (TYPE_MODE (integer_type_node));
1932 compare_by_pieces_d data (arg0, arg1, a1_cfn, a1_cfn_data, len, align,
1933 fail_label);
1935 data.run ();
1937 emit_move_insn (target, const0_rtx);
1938 emit_jump (end_label);
1939 emit_barrier ();
1940 emit_label (fail_label);
1941 emit_move_insn (target, const1_rtx);
1942 emit_label (end_label);
1944 return target;
1947 /* Emit code to move a block Y to a block X. This may be done with
1948 string-move instructions, with multiple scalar move instructions,
1949 or with a library call.
1951 Both X and Y must be MEM rtx's (perhaps inside VOLATILE) with mode BLKmode.
1952 SIZE is an rtx that says how long they are.
1953 ALIGN is the maximum alignment we can assume they have.
1954 METHOD describes what kind of copy this is, and what mechanisms may be used.
1955 MIN_SIZE is the minimal size of block to move
1956 MAX_SIZE is the maximal size of block to move, if it cannot be represented
1957 in unsigned HOST_WIDE_INT, than it is mask of all ones.
1959 Return the address of the new block, if memcpy is called and returns it,
1960 0 otherwise. */
1963 emit_block_move_hints (rtx x, rtx y, rtx size, enum block_op_methods method,
1964 unsigned int expected_align, HOST_WIDE_INT expected_size,
1965 unsigned HOST_WIDE_INT min_size,
1966 unsigned HOST_WIDE_INT max_size,
1967 unsigned HOST_WIDE_INT probable_max_size,
1968 bool bail_out_libcall, bool *is_move_done,
1969 bool might_overlap)
1971 int may_use_call;
1972 rtx retval = 0;
1973 unsigned int align;
1975 if (is_move_done)
1976 *is_move_done = true;
1978 gcc_assert (size);
1979 if (CONST_INT_P (size) && INTVAL (size) == 0)
1980 return 0;
1982 switch (method)
1984 case BLOCK_OP_NORMAL:
1985 case BLOCK_OP_TAILCALL:
1986 may_use_call = 1;
1987 break;
1989 case BLOCK_OP_CALL_PARM:
1990 may_use_call = block_move_libcall_safe_for_call_parm ();
1992 /* Make inhibit_defer_pop nonzero around the library call
1993 to force it to pop the arguments right away. */
1994 NO_DEFER_POP;
1995 break;
1997 case BLOCK_OP_NO_LIBCALL:
1998 may_use_call = 0;
1999 break;
2001 case BLOCK_OP_NO_LIBCALL_RET:
2002 may_use_call = -1;
2003 break;
2005 default:
2006 gcc_unreachable ();
2009 gcc_assert (MEM_P (x) && MEM_P (y));
2010 align = MIN (MEM_ALIGN (x), MEM_ALIGN (y));
2011 gcc_assert (align >= BITS_PER_UNIT);
2013 /* Make sure we've got BLKmode addresses; store_one_arg can decide that
2014 block copy is more efficient for other large modes, e.g. DCmode. */
2015 x = adjust_address (x, BLKmode, 0);
2016 y = adjust_address (y, BLKmode, 0);
2018 /* If source and destination are the same, no need to copy anything. */
2019 if (rtx_equal_p (x, y)
2020 && !MEM_VOLATILE_P (x)
2021 && !MEM_VOLATILE_P (y))
2022 return 0;
2024 /* Set MEM_SIZE as appropriate for this block copy. The main place this
2025 can be incorrect is coming from __builtin_memcpy. */
2026 poly_int64 const_size;
2027 if (poly_int_rtx_p (size, &const_size))
2029 x = shallow_copy_rtx (x);
2030 y = shallow_copy_rtx (y);
2031 set_mem_size (x, const_size);
2032 set_mem_size (y, const_size);
2035 bool pieces_ok = CONST_INT_P (size)
2036 && can_move_by_pieces (INTVAL (size), align);
2037 bool pattern_ok = false;
2039 if (!pieces_ok || might_overlap)
2041 pattern_ok
2042 = emit_block_move_via_pattern (x, y, size, align,
2043 expected_align, expected_size,
2044 min_size, max_size, probable_max_size,
2045 might_overlap);
2046 if (!pattern_ok && might_overlap)
2048 /* Do not try any of the other methods below as they are not safe
2049 for overlapping moves. */
2050 *is_move_done = false;
2051 return retval;
2055 if (pattern_ok)
2057 else if (pieces_ok)
2058 move_by_pieces (x, y, INTVAL (size), align, RETURN_BEGIN);
2059 else if (may_use_call && !might_overlap
2060 && ADDR_SPACE_GENERIC_P (MEM_ADDR_SPACE (x))
2061 && ADDR_SPACE_GENERIC_P (MEM_ADDR_SPACE (y)))
2063 if (bail_out_libcall)
2065 if (is_move_done)
2066 *is_move_done = false;
2067 return retval;
2070 if (may_use_call < 0)
2071 return pc_rtx;
2073 retval = emit_block_copy_via_libcall (x, y, size,
2074 method == BLOCK_OP_TAILCALL);
2076 else if (might_overlap)
2077 *is_move_done = false;
2078 else
2079 emit_block_move_via_loop (x, y, size, align);
2081 if (method == BLOCK_OP_CALL_PARM)
2082 OK_DEFER_POP;
2084 return retval;
2088 emit_block_move (rtx x, rtx y, rtx size, enum block_op_methods method)
2090 unsigned HOST_WIDE_INT max, min = 0;
2091 if (GET_CODE (size) == CONST_INT)
2092 min = max = UINTVAL (size);
2093 else
2094 max = GET_MODE_MASK (GET_MODE (size));
2095 return emit_block_move_hints (x, y, size, method, 0, -1,
2096 min, max, max);
2099 /* A subroutine of emit_block_move. Returns true if calling the
2100 block move libcall will not clobber any parameters which may have
2101 already been placed on the stack. */
2103 static bool
2104 block_move_libcall_safe_for_call_parm (void)
2106 tree fn;
2108 /* If arguments are pushed on the stack, then they're safe. */
2109 if (targetm.calls.push_argument (0))
2110 return true;
2112 /* If registers go on the stack anyway, any argument is sure to clobber
2113 an outgoing argument. */
2114 #if defined (REG_PARM_STACK_SPACE)
2115 fn = builtin_decl_implicit (BUILT_IN_MEMCPY);
2116 /* Avoid set but not used warning if *REG_PARM_STACK_SPACE doesn't
2117 depend on its argument. */
2118 (void) fn;
2119 if (OUTGOING_REG_PARM_STACK_SPACE ((!fn ? NULL_TREE : TREE_TYPE (fn)))
2120 && REG_PARM_STACK_SPACE (fn) != 0)
2121 return false;
2122 #endif
2124 /* If any argument goes in memory, then it might clobber an outgoing
2125 argument. */
2127 CUMULATIVE_ARGS args_so_far_v;
2128 cumulative_args_t args_so_far;
2129 tree arg;
2131 fn = builtin_decl_implicit (BUILT_IN_MEMCPY);
2132 INIT_CUMULATIVE_ARGS (args_so_far_v, TREE_TYPE (fn), NULL_RTX, 0, 3);
2133 args_so_far = pack_cumulative_args (&args_so_far_v);
2135 arg = TYPE_ARG_TYPES (TREE_TYPE (fn));
2136 for ( ; arg != void_list_node ; arg = TREE_CHAIN (arg))
2138 machine_mode mode = TYPE_MODE (TREE_VALUE (arg));
2139 function_arg_info arg_info (mode, /*named=*/true);
2140 rtx tmp = targetm.calls.function_arg (args_so_far, arg_info);
2141 if (!tmp || !REG_P (tmp))
2142 return false;
2143 if (targetm.calls.arg_partial_bytes (args_so_far, arg_info))
2144 return false;
2145 targetm.calls.function_arg_advance (args_so_far, arg_info);
2148 return true;
2151 /* A subroutine of emit_block_move. Expand a cpymem or movmem pattern;
2152 return true if successful.
2154 X is the destination of the copy or move.
2155 Y is the source of the copy or move.
2156 SIZE is the size of the block to be moved.
2158 MIGHT_OVERLAP indicates this originated with expansion of a
2159 builtin_memmove() and the source and destination blocks may
2160 overlap.
2163 static bool
2164 emit_block_move_via_pattern (rtx x, rtx y, rtx size, unsigned int align,
2165 unsigned int expected_align,
2166 HOST_WIDE_INT expected_size,
2167 unsigned HOST_WIDE_INT min_size,
2168 unsigned HOST_WIDE_INT max_size,
2169 unsigned HOST_WIDE_INT probable_max_size,
2170 bool might_overlap)
2172 if (expected_align < align)
2173 expected_align = align;
2174 if (expected_size != -1)
2176 if ((unsigned HOST_WIDE_INT)expected_size > probable_max_size)
2177 expected_size = probable_max_size;
2178 if ((unsigned HOST_WIDE_INT)expected_size < min_size)
2179 expected_size = min_size;
2182 /* Since this is a move insn, we don't care about volatility. */
2183 temporary_volatile_ok v (true);
2185 /* Try the most limited insn first, because there's no point
2186 including more than one in the machine description unless
2187 the more limited one has some advantage. */
2189 opt_scalar_int_mode mode_iter;
2190 FOR_EACH_MODE_IN_CLASS (mode_iter, MODE_INT)
2192 scalar_int_mode mode = mode_iter.require ();
2193 enum insn_code code;
2194 if (might_overlap)
2195 code = direct_optab_handler (movmem_optab, mode);
2196 else
2197 code = direct_optab_handler (cpymem_optab, mode);
2199 if (code != CODE_FOR_nothing
2200 /* We don't need MODE to be narrower than BITS_PER_HOST_WIDE_INT
2201 here because if SIZE is less than the mode mask, as it is
2202 returned by the macro, it will definitely be less than the
2203 actual mode mask. Since SIZE is within the Pmode address
2204 space, we limit MODE to Pmode. */
2205 && ((CONST_INT_P (size)
2206 && ((unsigned HOST_WIDE_INT) INTVAL (size)
2207 <= (GET_MODE_MASK (mode) >> 1)))
2208 || max_size <= (GET_MODE_MASK (mode) >> 1)
2209 || GET_MODE_BITSIZE (mode) >= GET_MODE_BITSIZE (Pmode)))
2211 class expand_operand ops[9];
2212 unsigned int nops;
2214 /* ??? When called via emit_block_move_for_call, it'd be
2215 nice if there were some way to inform the backend, so
2216 that it doesn't fail the expansion because it thinks
2217 emitting the libcall would be more efficient. */
2218 nops = insn_data[(int) code].n_generator_args;
2219 gcc_assert (nops == 4 || nops == 6 || nops == 8 || nops == 9);
2221 create_fixed_operand (&ops[0], x);
2222 create_fixed_operand (&ops[1], y);
2223 /* The check above guarantees that this size conversion is valid. */
2224 create_convert_operand_to (&ops[2], size, mode, true);
2225 create_integer_operand (&ops[3], align / BITS_PER_UNIT);
2226 if (nops >= 6)
2228 create_integer_operand (&ops[4], expected_align / BITS_PER_UNIT);
2229 create_integer_operand (&ops[5], expected_size);
2231 if (nops >= 8)
2233 create_integer_operand (&ops[6], min_size);
2234 /* If we cannot represent the maximal size,
2235 make parameter NULL. */
2236 if ((HOST_WIDE_INT) max_size != -1)
2237 create_integer_operand (&ops[7], max_size);
2238 else
2239 create_fixed_operand (&ops[7], NULL);
2241 if (nops == 9)
2243 /* If we cannot represent the maximal size,
2244 make parameter NULL. */
2245 if ((HOST_WIDE_INT) probable_max_size != -1)
2246 create_integer_operand (&ops[8], probable_max_size);
2247 else
2248 create_fixed_operand (&ops[8], NULL);
2250 if (maybe_expand_insn (code, nops, ops))
2251 return true;
2255 return false;
2258 /* A subroutine of emit_block_move. Copy the data via an explicit
2259 loop. This is used only when libcalls are forbidden. */
2260 /* ??? It'd be nice to copy in hunks larger than QImode. */
2262 static void
2263 emit_block_move_via_loop (rtx x, rtx y, rtx size,
2264 unsigned int align ATTRIBUTE_UNUSED)
2266 rtx_code_label *cmp_label, *top_label;
2267 rtx iter, x_addr, y_addr, tmp;
2268 machine_mode x_addr_mode = get_address_mode (x);
2269 machine_mode y_addr_mode = get_address_mode (y);
2270 machine_mode iter_mode;
2272 iter_mode = GET_MODE (size);
2273 if (iter_mode == VOIDmode)
2274 iter_mode = word_mode;
2276 top_label = gen_label_rtx ();
2277 cmp_label = gen_label_rtx ();
2278 iter = gen_reg_rtx (iter_mode);
2280 emit_move_insn (iter, const0_rtx);
2282 x_addr = force_operand (XEXP (x, 0), NULL_RTX);
2283 y_addr = force_operand (XEXP (y, 0), NULL_RTX);
2284 do_pending_stack_adjust ();
2286 emit_jump (cmp_label);
2287 emit_label (top_label);
2289 tmp = convert_modes (x_addr_mode, iter_mode, iter, true);
2290 x_addr = simplify_gen_binary (PLUS, x_addr_mode, x_addr, tmp);
2292 if (x_addr_mode != y_addr_mode)
2293 tmp = convert_modes (y_addr_mode, iter_mode, iter, true);
2294 y_addr = simplify_gen_binary (PLUS, y_addr_mode, y_addr, tmp);
2296 x = change_address (x, QImode, x_addr);
2297 y = change_address (y, QImode, y_addr);
2299 emit_move_insn (x, y);
2301 tmp = expand_simple_binop (iter_mode, PLUS, iter, const1_rtx, iter,
2302 true, OPTAB_LIB_WIDEN);
2303 if (tmp != iter)
2304 emit_move_insn (iter, tmp);
2306 emit_label (cmp_label);
2308 emit_cmp_and_jump_insns (iter, size, LT, NULL_RTX, iter_mode,
2309 true, top_label,
2310 profile_probability::guessed_always ()
2311 .apply_scale (9, 10));
2314 /* Expand a call to memcpy or memmove or memcmp, and return the result.
2315 TAILCALL is true if this is a tail call. */
2318 emit_block_op_via_libcall (enum built_in_function fncode, rtx dst, rtx src,
2319 rtx size, bool tailcall)
2321 rtx dst_addr, src_addr;
2322 tree call_expr, dst_tree, src_tree, size_tree;
2323 machine_mode size_mode;
2325 /* Since dst and src are passed to a libcall, mark the corresponding
2326 tree EXPR as addressable. */
2327 tree dst_expr = MEM_EXPR (dst);
2328 tree src_expr = MEM_EXPR (src);
2329 if (dst_expr)
2330 mark_addressable (dst_expr);
2331 if (src_expr)
2332 mark_addressable (src_expr);
2334 dst_addr = copy_addr_to_reg (XEXP (dst, 0));
2335 dst_addr = convert_memory_address (ptr_mode, dst_addr);
2336 dst_tree = make_tree (ptr_type_node, dst_addr);
2338 src_addr = copy_addr_to_reg (XEXP (src, 0));
2339 src_addr = convert_memory_address (ptr_mode, src_addr);
2340 src_tree = make_tree (ptr_type_node, src_addr);
2342 size_mode = TYPE_MODE (sizetype);
2343 size = convert_to_mode (size_mode, size, 1);
2344 size = copy_to_mode_reg (size_mode, size);
2345 size_tree = make_tree (sizetype, size);
2347 /* It is incorrect to use the libcall calling conventions for calls to
2348 memcpy/memmove/memcmp because they can be provided by the user. */
2349 tree fn = builtin_decl_implicit (fncode);
2350 call_expr = build_call_expr (fn, 3, dst_tree, src_tree, size_tree);
2351 CALL_EXPR_TAILCALL (call_expr) = tailcall;
2353 return expand_call (call_expr, NULL_RTX, false);
2356 /* Try to expand cmpstrn or cmpmem operation ICODE with the given operands.
2357 ARG3_TYPE is the type of ARG3_RTX. Return the result rtx on success,
2358 otherwise return null. */
2361 expand_cmpstrn_or_cmpmem (insn_code icode, rtx target, rtx arg1_rtx,
2362 rtx arg2_rtx, tree arg3_type, rtx arg3_rtx,
2363 HOST_WIDE_INT align)
2365 machine_mode insn_mode = insn_data[icode].operand[0].mode;
2367 if (target && (!REG_P (target) || HARD_REGISTER_P (target)))
2368 target = NULL_RTX;
2370 class expand_operand ops[5];
2371 create_output_operand (&ops[0], target, insn_mode);
2372 create_fixed_operand (&ops[1], arg1_rtx);
2373 create_fixed_operand (&ops[2], arg2_rtx);
2374 create_convert_operand_from (&ops[3], arg3_rtx, TYPE_MODE (arg3_type),
2375 TYPE_UNSIGNED (arg3_type));
2376 create_integer_operand (&ops[4], align);
2377 if (maybe_expand_insn (icode, 5, ops))
2378 return ops[0].value;
2379 return NULL_RTX;
2382 /* Expand a block compare between X and Y with length LEN using the
2383 cmpmem optab, placing the result in TARGET. LEN_TYPE is the type
2384 of the expression that was used to calculate the length. ALIGN
2385 gives the known minimum common alignment. */
2387 static rtx
2388 emit_block_cmp_via_cmpmem (rtx x, rtx y, rtx len, tree len_type, rtx target,
2389 unsigned align)
2391 /* Note: The cmpstrnsi pattern, if it exists, is not suitable for
2392 implementing memcmp because it will stop if it encounters two
2393 zero bytes. */
2394 insn_code icode = direct_optab_handler (cmpmem_optab, SImode);
2396 if (icode == CODE_FOR_nothing)
2397 return NULL_RTX;
2399 return expand_cmpstrn_or_cmpmem (icode, target, x, y, len_type, len, align);
2402 /* Emit code to compare a block Y to a block X. This may be done with
2403 string-compare instructions, with multiple scalar instructions,
2404 or with a library call.
2406 Both X and Y must be MEM rtx's. LEN is an rtx that says how long
2407 they are. LEN_TYPE is the type of the expression that was used to
2408 calculate it.
2410 If EQUALITY_ONLY is true, it means we don't have to return the tri-state
2411 value of a normal memcmp call, instead we can just compare for equality.
2412 If FORCE_LIBCALL is true, we should emit a call to memcmp rather than
2413 returning NULL_RTX.
2415 Optionally, the caller can pass a constfn and associated data in Y_CFN
2416 and Y_CFN_DATA. describing that the second operand being compared is a
2417 known constant and how to obtain its data.
2418 Return the result of the comparison, or NULL_RTX if we failed to
2419 perform the operation. */
2422 emit_block_cmp_hints (rtx x, rtx y, rtx len, tree len_type, rtx target,
2423 bool equality_only, by_pieces_constfn y_cfn,
2424 void *y_cfndata)
2426 rtx result = 0;
2428 if (CONST_INT_P (len) && INTVAL (len) == 0)
2429 return const0_rtx;
2431 gcc_assert (MEM_P (x) && MEM_P (y));
2432 unsigned int align = MIN (MEM_ALIGN (x), MEM_ALIGN (y));
2433 gcc_assert (align >= BITS_PER_UNIT);
2435 x = adjust_address (x, BLKmode, 0);
2436 y = adjust_address (y, BLKmode, 0);
2438 if (equality_only
2439 && CONST_INT_P (len)
2440 && can_do_by_pieces (INTVAL (len), align, COMPARE_BY_PIECES))
2441 result = compare_by_pieces (x, y, INTVAL (len), target, align,
2442 y_cfn, y_cfndata);
2443 else
2444 result = emit_block_cmp_via_cmpmem (x, y, len, len_type, target, align);
2446 return result;
2449 /* Copy all or part of a value X into registers starting at REGNO.
2450 The number of registers to be filled is NREGS. */
2452 void
2453 move_block_to_reg (int regno, rtx x, int nregs, machine_mode mode)
2455 if (nregs == 0)
2456 return;
2458 if (CONSTANT_P (x) && !targetm.legitimate_constant_p (mode, x))
2459 x = validize_mem (force_const_mem (mode, x));
2461 /* See if the machine can do this with a load multiple insn. */
2462 if (targetm.have_load_multiple ())
2464 rtx_insn *last = get_last_insn ();
2465 rtx first = gen_rtx_REG (word_mode, regno);
2466 if (rtx_insn *pat = targetm.gen_load_multiple (first, x,
2467 GEN_INT (nregs)))
2469 emit_insn (pat);
2470 return;
2472 else
2473 delete_insns_since (last);
2476 for (int i = 0; i < nregs; i++)
2477 emit_move_insn (gen_rtx_REG (word_mode, regno + i),
2478 operand_subword_force (x, i, mode));
2481 /* Copy all or part of a BLKmode value X out of registers starting at REGNO.
2482 The number of registers to be filled is NREGS. */
2484 void
2485 move_block_from_reg (int regno, rtx x, int nregs)
2487 if (nregs == 0)
2488 return;
2490 /* See if the machine can do this with a store multiple insn. */
2491 if (targetm.have_store_multiple ())
2493 rtx_insn *last = get_last_insn ();
2494 rtx first = gen_rtx_REG (word_mode, regno);
2495 if (rtx_insn *pat = targetm.gen_store_multiple (x, first,
2496 GEN_INT (nregs)))
2498 emit_insn (pat);
2499 return;
2501 else
2502 delete_insns_since (last);
2505 for (int i = 0; i < nregs; i++)
2507 rtx tem = operand_subword (x, i, 1, BLKmode);
2509 gcc_assert (tem);
2511 emit_move_insn (tem, gen_rtx_REG (word_mode, regno + i));
2515 /* Generate a PARALLEL rtx for a new non-consecutive group of registers from
2516 ORIG, where ORIG is a non-consecutive group of registers represented by
2517 a PARALLEL. The clone is identical to the original except in that the
2518 original set of registers is replaced by a new set of pseudo registers.
2519 The new set has the same modes as the original set. */
2522 gen_group_rtx (rtx orig)
2524 int i, length;
2525 rtx *tmps;
2527 gcc_assert (GET_CODE (orig) == PARALLEL);
2529 length = XVECLEN (orig, 0);
2530 tmps = XALLOCAVEC (rtx, length);
2532 /* Skip a NULL entry in first slot. */
2533 i = XEXP (XVECEXP (orig, 0, 0), 0) ? 0 : 1;
2535 if (i)
2536 tmps[0] = 0;
2538 for (; i < length; i++)
2540 machine_mode mode = GET_MODE (XEXP (XVECEXP (orig, 0, i), 0));
2541 rtx offset = XEXP (XVECEXP (orig, 0, i), 1);
2543 tmps[i] = gen_rtx_EXPR_LIST (VOIDmode, gen_reg_rtx (mode), offset);
2546 return gen_rtx_PARALLEL (GET_MODE (orig), gen_rtvec_v (length, tmps));
2549 /* A subroutine of emit_group_load. Arguments as for emit_group_load,
2550 except that values are placed in TMPS[i], and must later be moved
2551 into corresponding XEXP (XVECEXP (DST, 0, i), 0) element. */
2553 static void
2554 emit_group_load_1 (rtx *tmps, rtx dst, rtx orig_src, tree type,
2555 poly_int64 ssize)
2557 rtx src;
2558 int start, i;
2559 machine_mode m = GET_MODE (orig_src);
2561 gcc_assert (GET_CODE (dst) == PARALLEL);
2563 if (m != VOIDmode
2564 && !SCALAR_INT_MODE_P (m)
2565 && !MEM_P (orig_src)
2566 && GET_CODE (orig_src) != CONCAT)
2568 scalar_int_mode imode;
2569 if (int_mode_for_mode (GET_MODE (orig_src)).exists (&imode))
2571 src = gen_reg_rtx (imode);
2572 emit_move_insn (gen_lowpart (GET_MODE (orig_src), src), orig_src);
2574 else
2576 src = assign_stack_temp (GET_MODE (orig_src), ssize);
2577 emit_move_insn (src, orig_src);
2579 emit_group_load_1 (tmps, dst, src, type, ssize);
2580 return;
2583 /* Check for a NULL entry, used to indicate that the parameter goes
2584 both on the stack and in registers. */
2585 if (XEXP (XVECEXP (dst, 0, 0), 0))
2586 start = 0;
2587 else
2588 start = 1;
2590 /* Process the pieces. */
2591 for (i = start; i < XVECLEN (dst, 0); i++)
2593 machine_mode mode = GET_MODE (XEXP (XVECEXP (dst, 0, i), 0));
2594 poly_int64 bytepos = rtx_to_poly_int64 (XEXP (XVECEXP (dst, 0, i), 1));
2595 poly_int64 bytelen = GET_MODE_SIZE (mode);
2596 poly_int64 shift = 0;
2598 /* Handle trailing fragments that run over the size of the struct.
2599 It's the target's responsibility to make sure that the fragment
2600 cannot be strictly smaller in some cases and strictly larger
2601 in others. */
2602 gcc_checking_assert (ordered_p (bytepos + bytelen, ssize));
2603 if (known_size_p (ssize) && maybe_gt (bytepos + bytelen, ssize))
2605 /* Arrange to shift the fragment to where it belongs.
2606 extract_bit_field loads to the lsb of the reg. */
2607 if (
2608 #ifdef BLOCK_REG_PADDING
2609 BLOCK_REG_PADDING (GET_MODE (orig_src), type, i == start)
2610 == (BYTES_BIG_ENDIAN ? PAD_UPWARD : PAD_DOWNWARD)
2611 #else
2612 BYTES_BIG_ENDIAN
2613 #endif
2615 shift = (bytelen - (ssize - bytepos)) * BITS_PER_UNIT;
2616 bytelen = ssize - bytepos;
2617 gcc_assert (maybe_gt (bytelen, 0));
2620 /* If we won't be loading directly from memory, protect the real source
2621 from strange tricks we might play; but make sure that the source can
2622 be loaded directly into the destination. */
2623 src = orig_src;
2624 if (!MEM_P (orig_src)
2625 && (!CONSTANT_P (orig_src)
2626 || (GET_MODE (orig_src) != mode
2627 && GET_MODE (orig_src) != VOIDmode)))
2629 if (GET_MODE (orig_src) == VOIDmode)
2630 src = gen_reg_rtx (mode);
2631 else
2632 src = gen_reg_rtx (GET_MODE (orig_src));
2634 emit_move_insn (src, orig_src);
2637 /* Optimize the access just a bit. */
2638 if (MEM_P (src)
2639 && (! targetm.slow_unaligned_access (mode, MEM_ALIGN (src))
2640 || MEM_ALIGN (src) >= GET_MODE_ALIGNMENT (mode))
2641 && multiple_p (bytepos * BITS_PER_UNIT, GET_MODE_ALIGNMENT (mode))
2642 && known_eq (bytelen, GET_MODE_SIZE (mode)))
2644 tmps[i] = gen_reg_rtx (mode);
2645 emit_move_insn (tmps[i], adjust_address (src, mode, bytepos));
2647 else if (COMPLEX_MODE_P (mode)
2648 && GET_MODE (src) == mode
2649 && known_eq (bytelen, GET_MODE_SIZE (mode)))
2650 /* Let emit_move_complex do the bulk of the work. */
2651 tmps[i] = src;
2652 else if (GET_CODE (src) == CONCAT)
2654 poly_int64 slen = GET_MODE_SIZE (GET_MODE (src));
2655 poly_int64 slen0 = GET_MODE_SIZE (GET_MODE (XEXP (src, 0)));
2656 unsigned int elt;
2657 poly_int64 subpos;
2659 if (can_div_trunc_p (bytepos, slen0, &elt, &subpos)
2660 && known_le (subpos + bytelen, slen0))
2662 /* The following assumes that the concatenated objects all
2663 have the same size. In this case, a simple calculation
2664 can be used to determine the object and the bit field
2665 to be extracted. */
2666 tmps[i] = XEXP (src, elt);
2667 if (maybe_ne (subpos, 0)
2668 || maybe_ne (subpos + bytelen, slen0)
2669 || (!CONSTANT_P (tmps[i])
2670 && (!REG_P (tmps[i]) || GET_MODE (tmps[i]) != mode)))
2671 tmps[i] = extract_bit_field (tmps[i], bytelen * BITS_PER_UNIT,
2672 subpos * BITS_PER_UNIT,
2673 1, NULL_RTX, mode, mode, false,
2674 NULL);
2676 else
2678 rtx mem;
2680 gcc_assert (known_eq (bytepos, 0));
2681 mem = assign_stack_temp (GET_MODE (src), slen);
2682 emit_move_insn (mem, src);
2683 tmps[i] = extract_bit_field (mem, bytelen * BITS_PER_UNIT,
2684 0, 1, NULL_RTX, mode, mode, false,
2685 NULL);
2688 else if (CONSTANT_P (src) && GET_MODE (dst) != BLKmode
2689 && XVECLEN (dst, 0) > 1)
2690 tmps[i] = simplify_gen_subreg (mode, src, GET_MODE (dst), bytepos);
2691 else if (CONSTANT_P (src))
2693 if (known_eq (bytelen, ssize))
2694 tmps[i] = src;
2695 else
2697 rtx first, second;
2699 /* TODO: const_wide_int can have sizes other than this... */
2700 gcc_assert (known_eq (2 * bytelen, ssize));
2701 split_double (src, &first, &second);
2702 if (i)
2703 tmps[i] = second;
2704 else
2705 tmps[i] = first;
2708 else if (REG_P (src) && GET_MODE (src) == mode)
2709 tmps[i] = src;
2710 else
2711 tmps[i] = extract_bit_field (src, bytelen * BITS_PER_UNIT,
2712 bytepos * BITS_PER_UNIT, 1, NULL_RTX,
2713 mode, mode, false, NULL);
2715 if (maybe_ne (shift, 0))
2716 tmps[i] = expand_shift (LSHIFT_EXPR, mode, tmps[i],
2717 shift, tmps[i], 0);
2721 /* Emit code to move a block SRC of type TYPE to a block DST,
2722 where DST is non-consecutive registers represented by a PARALLEL.
2723 SSIZE represents the total size of block ORIG_SRC in bytes, or -1
2724 if not known. */
2726 void
2727 emit_group_load (rtx dst, rtx src, tree type, poly_int64 ssize)
2729 rtx *tmps;
2730 int i;
2732 tmps = XALLOCAVEC (rtx, XVECLEN (dst, 0));
2733 emit_group_load_1 (tmps, dst, src, type, ssize);
2735 /* Copy the extracted pieces into the proper (probable) hard regs. */
2736 for (i = 0; i < XVECLEN (dst, 0); i++)
2738 rtx d = XEXP (XVECEXP (dst, 0, i), 0);
2739 if (d == NULL)
2740 continue;
2741 emit_move_insn (d, tmps[i]);
2745 /* Similar, but load SRC into new pseudos in a format that looks like
2746 PARALLEL. This can later be fed to emit_group_move to get things
2747 in the right place. */
2750 emit_group_load_into_temps (rtx parallel, rtx src, tree type, poly_int64 ssize)
2752 rtvec vec;
2753 int i;
2755 vec = rtvec_alloc (XVECLEN (parallel, 0));
2756 emit_group_load_1 (&RTVEC_ELT (vec, 0), parallel, src, type, ssize);
2758 /* Convert the vector to look just like the original PARALLEL, except
2759 with the computed values. */
2760 for (i = 0; i < XVECLEN (parallel, 0); i++)
2762 rtx e = XVECEXP (parallel, 0, i);
2763 rtx d = XEXP (e, 0);
2765 if (d)
2767 d = force_reg (GET_MODE (d), RTVEC_ELT (vec, i));
2768 e = alloc_EXPR_LIST (REG_NOTE_KIND (e), d, XEXP (e, 1));
2770 RTVEC_ELT (vec, i) = e;
2773 return gen_rtx_PARALLEL (GET_MODE (parallel), vec);
2776 /* Emit code to move a block SRC to block DST, where SRC and DST are
2777 non-consecutive groups of registers, each represented by a PARALLEL. */
2779 void
2780 emit_group_move (rtx dst, rtx src)
2782 int i;
2784 gcc_assert (GET_CODE (src) == PARALLEL
2785 && GET_CODE (dst) == PARALLEL
2786 && XVECLEN (src, 0) == XVECLEN (dst, 0));
2788 /* Skip first entry if NULL. */
2789 for (i = XEXP (XVECEXP (src, 0, 0), 0) ? 0 : 1; i < XVECLEN (src, 0); i++)
2790 emit_move_insn (XEXP (XVECEXP (dst, 0, i), 0),
2791 XEXP (XVECEXP (src, 0, i), 0));
2794 /* Move a group of registers represented by a PARALLEL into pseudos. */
2797 emit_group_move_into_temps (rtx src)
2799 rtvec vec = rtvec_alloc (XVECLEN (src, 0));
2800 int i;
2802 for (i = 0; i < XVECLEN (src, 0); i++)
2804 rtx e = XVECEXP (src, 0, i);
2805 rtx d = XEXP (e, 0);
2807 if (d)
2808 e = alloc_EXPR_LIST (REG_NOTE_KIND (e), copy_to_reg (d), XEXP (e, 1));
2809 RTVEC_ELT (vec, i) = e;
2812 return gen_rtx_PARALLEL (GET_MODE (src), vec);
2815 /* Emit code to move a block SRC to a block ORIG_DST of type TYPE,
2816 where SRC is non-consecutive registers represented by a PARALLEL.
2817 SSIZE represents the total size of block ORIG_DST, or -1 if not
2818 known. */
2820 void
2821 emit_group_store (rtx orig_dst, rtx src, tree type ATTRIBUTE_UNUSED,
2822 poly_int64 ssize)
2824 rtx *tmps, dst;
2825 int start, finish, i;
2826 machine_mode m = GET_MODE (orig_dst);
2828 gcc_assert (GET_CODE (src) == PARALLEL);
2830 if (!SCALAR_INT_MODE_P (m)
2831 && !MEM_P (orig_dst) && GET_CODE (orig_dst) != CONCAT)
2833 scalar_int_mode imode;
2834 if (int_mode_for_mode (GET_MODE (orig_dst)).exists (&imode))
2836 dst = gen_reg_rtx (imode);
2837 emit_group_store (dst, src, type, ssize);
2838 dst = gen_lowpart (GET_MODE (orig_dst), dst);
2840 else
2842 dst = assign_stack_temp (GET_MODE (orig_dst), ssize);
2843 emit_group_store (dst, src, type, ssize);
2845 emit_move_insn (orig_dst, dst);
2846 return;
2849 /* Check for a NULL entry, used to indicate that the parameter goes
2850 both on the stack and in registers. */
2851 if (XEXP (XVECEXP (src, 0, 0), 0))
2852 start = 0;
2853 else
2854 start = 1;
2855 finish = XVECLEN (src, 0);
2857 tmps = XALLOCAVEC (rtx, finish);
2859 /* Copy the (probable) hard regs into pseudos. */
2860 for (i = start; i < finish; i++)
2862 rtx reg = XEXP (XVECEXP (src, 0, i), 0);
2863 if (!REG_P (reg) || REGNO (reg) < FIRST_PSEUDO_REGISTER)
2865 tmps[i] = gen_reg_rtx (GET_MODE (reg));
2866 emit_move_insn (tmps[i], reg);
2868 else
2869 tmps[i] = reg;
2872 /* If we won't be storing directly into memory, protect the real destination
2873 from strange tricks we might play. */
2874 dst = orig_dst;
2875 if (GET_CODE (dst) == PARALLEL)
2877 rtx temp;
2879 /* We can get a PARALLEL dst if there is a conditional expression in
2880 a return statement. In that case, the dst and src are the same,
2881 so no action is necessary. */
2882 if (rtx_equal_p (dst, src))
2883 return;
2885 /* It is unclear if we can ever reach here, but we may as well handle
2886 it. Allocate a temporary, and split this into a store/load to/from
2887 the temporary. */
2888 temp = assign_stack_temp (GET_MODE (dst), ssize);
2889 emit_group_store (temp, src, type, ssize);
2890 emit_group_load (dst, temp, type, ssize);
2891 return;
2893 else if (!MEM_P (dst) && GET_CODE (dst) != CONCAT)
2895 machine_mode outer = GET_MODE (dst);
2896 machine_mode inner;
2897 poly_int64 bytepos;
2898 bool done = false;
2899 rtx temp;
2901 if (!REG_P (dst) || REGNO (dst) < FIRST_PSEUDO_REGISTER)
2902 dst = gen_reg_rtx (outer);
2904 /* Make life a bit easier for combine: if the first element of the
2905 vector is the word (or larger) low part of the destination mode,
2906 use a paradoxical subreg to initialize the destination. */
2907 if (start < finish)
2909 inner = GET_MODE (tmps[start]);
2910 bytepos = subreg_lowpart_offset (inner, outer);
2911 if (known_ge (GET_MODE_BITSIZE (inner), BITS_PER_WORD)
2912 && known_eq (rtx_to_poly_int64 (XEXP (XVECEXP (src, 0,
2913 start), 1)),
2914 bytepos))
2916 temp = simplify_gen_subreg (outer, tmps[start], inner, 0);
2917 if (temp)
2919 emit_move_insn (dst, temp);
2920 done = true;
2921 start++;
2926 /* If the first element wasn't the low part, try the last. */
2927 if (!done
2928 && start < finish - 1)
2930 inner = GET_MODE (tmps[finish - 1]);
2931 bytepos = subreg_lowpart_offset (inner, outer);
2932 if (known_ge (GET_MODE_BITSIZE (inner), BITS_PER_WORD)
2933 && known_eq (rtx_to_poly_int64 (XEXP (XVECEXP (src, 0,
2934 finish - 1), 1)),
2935 bytepos))
2937 temp = simplify_gen_subreg (outer, tmps[finish - 1], inner, 0);
2938 if (temp)
2940 emit_move_insn (dst, temp);
2941 done = true;
2942 finish--;
2947 /* Otherwise, simply initialize the result to zero. */
2948 if (!done)
2949 emit_move_insn (dst, CONST0_RTX (outer));
2952 /* Process the pieces. */
2953 for (i = start; i < finish; i++)
2955 poly_int64 bytepos = rtx_to_poly_int64 (XEXP (XVECEXP (src, 0, i), 1));
2956 machine_mode mode = GET_MODE (tmps[i]);
2957 poly_int64 bytelen = GET_MODE_SIZE (mode);
2958 poly_uint64 adj_bytelen;
2959 rtx dest = dst;
2961 /* Handle trailing fragments that run over the size of the struct.
2962 It's the target's responsibility to make sure that the fragment
2963 cannot be strictly smaller in some cases and strictly larger
2964 in others. */
2965 gcc_checking_assert (ordered_p (bytepos + bytelen, ssize));
2966 if (known_size_p (ssize) && maybe_gt (bytepos + bytelen, ssize))
2967 adj_bytelen = ssize - bytepos;
2968 else
2969 adj_bytelen = bytelen;
2971 /* Deal with destination CONCATs by either storing into one of the parts
2972 or doing a copy after storing into a register or stack temporary. */
2973 if (GET_CODE (dst) == CONCAT)
2975 if (known_le (bytepos + adj_bytelen,
2976 GET_MODE_SIZE (GET_MODE (XEXP (dst, 0)))))
2977 dest = XEXP (dst, 0);
2979 else if (known_ge (bytepos, GET_MODE_SIZE (GET_MODE (XEXP (dst, 0)))))
2981 bytepos -= GET_MODE_SIZE (GET_MODE (XEXP (dst, 0)));
2982 dest = XEXP (dst, 1);
2985 else
2987 machine_mode dest_mode = GET_MODE (dest);
2988 machine_mode tmp_mode = GET_MODE (tmps[i]);
2989 scalar_int_mode dest_imode;
2991 gcc_assert (known_eq (bytepos, 0) && XVECLEN (src, 0));
2993 /* If the source is a single scalar integer register, and the
2994 destination has a complex mode for which a same-sized integer
2995 mode exists, then we can take the left-justified part of the
2996 source in the complex mode. */
2997 if (finish == start + 1
2998 && REG_P (tmps[i])
2999 && SCALAR_INT_MODE_P (tmp_mode)
3000 && COMPLEX_MODE_P (dest_mode)
3001 && int_mode_for_mode (dest_mode).exists (&dest_imode))
3003 const scalar_int_mode tmp_imode
3004 = as_a <scalar_int_mode> (tmp_mode);
3006 if (GET_MODE_BITSIZE (dest_imode)
3007 < GET_MODE_BITSIZE (tmp_imode))
3009 dest = gen_reg_rtx (dest_imode);
3010 if (BYTES_BIG_ENDIAN)
3011 tmps[i] = expand_shift (RSHIFT_EXPR, tmp_mode, tmps[i],
3012 GET_MODE_BITSIZE (tmp_imode)
3013 - GET_MODE_BITSIZE (dest_imode),
3014 NULL_RTX, 1);
3015 emit_move_insn (dest, gen_lowpart (dest_imode, tmps[i]));
3016 dst = gen_lowpart (dest_mode, dest);
3018 else
3019 dst = gen_lowpart (dest_mode, tmps[i]);
3022 /* Otherwise spill the source onto the stack using the more
3023 aligned of the two modes. */
3024 else if (GET_MODE_ALIGNMENT (dest_mode)
3025 >= GET_MODE_ALIGNMENT (tmp_mode))
3027 dest = assign_stack_temp (dest_mode,
3028 GET_MODE_SIZE (dest_mode));
3029 emit_move_insn (adjust_address (dest, tmp_mode, bytepos),
3030 tmps[i]);
3031 dst = dest;
3034 else
3036 dest = assign_stack_temp (tmp_mode,
3037 GET_MODE_SIZE (tmp_mode));
3038 emit_move_insn (dest, tmps[i]);
3039 dst = adjust_address (dest, dest_mode, bytepos);
3042 break;
3046 /* Handle trailing fragments that run over the size of the struct. */
3047 if (known_size_p (ssize) && maybe_gt (bytepos + bytelen, ssize))
3049 /* store_bit_field always takes its value from the lsb.
3050 Move the fragment to the lsb if it's not already there. */
3051 if (
3052 #ifdef BLOCK_REG_PADDING
3053 BLOCK_REG_PADDING (GET_MODE (orig_dst), type, i == start)
3054 == (BYTES_BIG_ENDIAN ? PAD_UPWARD : PAD_DOWNWARD)
3055 #else
3056 BYTES_BIG_ENDIAN
3057 #endif
3060 poly_int64 shift = (bytelen - (ssize - bytepos)) * BITS_PER_UNIT;
3061 tmps[i] = expand_shift (RSHIFT_EXPR, mode, tmps[i],
3062 shift, tmps[i], 0);
3065 /* Make sure not to write past the end of the struct. */
3066 store_bit_field (dest,
3067 adj_bytelen * BITS_PER_UNIT, bytepos * BITS_PER_UNIT,
3068 bytepos * BITS_PER_UNIT, ssize * BITS_PER_UNIT - 1,
3069 VOIDmode, tmps[i], false, false);
3072 /* Optimize the access just a bit. */
3073 else if (MEM_P (dest)
3074 && (!targetm.slow_unaligned_access (mode, MEM_ALIGN (dest))
3075 || MEM_ALIGN (dest) >= GET_MODE_ALIGNMENT (mode))
3076 && multiple_p (bytepos * BITS_PER_UNIT,
3077 GET_MODE_ALIGNMENT (mode))
3078 && known_eq (bytelen, GET_MODE_SIZE (mode)))
3079 emit_move_insn (adjust_address (dest, mode, bytepos), tmps[i]);
3081 else
3082 store_bit_field (dest, bytelen * BITS_PER_UNIT, bytepos * BITS_PER_UNIT,
3083 0, 0, mode, tmps[i], false, false);
3086 /* Copy from the pseudo into the (probable) hard reg. */
3087 if (orig_dst != dst)
3088 emit_move_insn (orig_dst, dst);
3091 /* Return a form of X that does not use a PARALLEL. TYPE is the type
3092 of the value stored in X. */
3095 maybe_emit_group_store (rtx x, tree type)
3097 machine_mode mode = TYPE_MODE (type);
3098 gcc_checking_assert (GET_MODE (x) == VOIDmode || GET_MODE (x) == mode);
3099 if (GET_CODE (x) == PARALLEL)
3101 rtx result = gen_reg_rtx (mode);
3102 emit_group_store (result, x, type, int_size_in_bytes (type));
3103 return result;
3105 return x;
3108 /* Copy a BLKmode object of TYPE out of a register SRCREG into TARGET.
3110 This is used on targets that return BLKmode values in registers. */
3112 static void
3113 copy_blkmode_from_reg (rtx target, rtx srcreg, tree type)
3115 unsigned HOST_WIDE_INT bytes = int_size_in_bytes (type);
3116 rtx src = NULL, dst = NULL;
3117 unsigned HOST_WIDE_INT bitsize = MIN (TYPE_ALIGN (type), BITS_PER_WORD);
3118 unsigned HOST_WIDE_INT bitpos, xbitpos, padding_correction = 0;
3119 /* No current ABI uses variable-sized modes to pass a BLKmnode type. */
3120 fixed_size_mode mode = as_a <fixed_size_mode> (GET_MODE (srcreg));
3121 fixed_size_mode tmode = as_a <fixed_size_mode> (GET_MODE (target));
3122 fixed_size_mode copy_mode;
3124 /* BLKmode registers created in the back-end shouldn't have survived. */
3125 gcc_assert (mode != BLKmode);
3127 /* If the structure doesn't take up a whole number of words, see whether
3128 SRCREG is padded on the left or on the right. If it's on the left,
3129 set PADDING_CORRECTION to the number of bits to skip.
3131 In most ABIs, the structure will be returned at the least end of
3132 the register, which translates to right padding on little-endian
3133 targets and left padding on big-endian targets. The opposite
3134 holds if the structure is returned at the most significant
3135 end of the register. */
3136 if (bytes % UNITS_PER_WORD != 0
3137 && (targetm.calls.return_in_msb (type)
3138 ? !BYTES_BIG_ENDIAN
3139 : BYTES_BIG_ENDIAN))
3140 padding_correction
3141 = (BITS_PER_WORD - ((bytes % UNITS_PER_WORD) * BITS_PER_UNIT));
3143 /* We can use a single move if we have an exact mode for the size. */
3144 else if (MEM_P (target)
3145 && (!targetm.slow_unaligned_access (mode, MEM_ALIGN (target))
3146 || MEM_ALIGN (target) >= GET_MODE_ALIGNMENT (mode))
3147 && bytes == GET_MODE_SIZE (mode))
3149 emit_move_insn (adjust_address (target, mode, 0), srcreg);
3150 return;
3153 /* And if we additionally have the same mode for a register. */
3154 else if (REG_P (target)
3155 && GET_MODE (target) == mode
3156 && bytes == GET_MODE_SIZE (mode))
3158 emit_move_insn (target, srcreg);
3159 return;
3162 /* This code assumes srcreg is at least a full word. If it isn't, copy it
3163 into a new pseudo which is a full word. */
3164 if (GET_MODE_SIZE (mode) < UNITS_PER_WORD)
3166 srcreg = convert_to_mode (word_mode, srcreg, TYPE_UNSIGNED (type));
3167 mode = word_mode;
3170 /* Copy the structure BITSIZE bits at a time. If the target lives in
3171 memory, take care of not reading/writing past its end by selecting
3172 a copy mode suited to BITSIZE. This should always be possible given
3173 how it is computed.
3175 If the target lives in register, make sure not to select a copy mode
3176 larger than the mode of the register.
3178 We could probably emit more efficient code for machines which do not use
3179 strict alignment, but it doesn't seem worth the effort at the current
3180 time. */
3182 copy_mode = word_mode;
3183 if (MEM_P (target))
3185 opt_scalar_int_mode mem_mode = int_mode_for_size (bitsize, 1);
3186 if (mem_mode.exists ())
3187 copy_mode = mem_mode.require ();
3189 else if (REG_P (target) && GET_MODE_BITSIZE (tmode) < BITS_PER_WORD)
3190 copy_mode = tmode;
3192 for (bitpos = 0, xbitpos = padding_correction;
3193 bitpos < bytes * BITS_PER_UNIT;
3194 bitpos += bitsize, xbitpos += bitsize)
3196 /* We need a new source operand each time xbitpos is on a
3197 word boundary and when xbitpos == padding_correction
3198 (the first time through). */
3199 if (xbitpos % BITS_PER_WORD == 0 || xbitpos == padding_correction)
3200 src = operand_subword_force (srcreg, xbitpos / BITS_PER_WORD, mode);
3202 /* We need a new destination operand each time bitpos is on
3203 a word boundary. */
3204 if (REG_P (target) && GET_MODE_BITSIZE (tmode) < BITS_PER_WORD)
3205 dst = target;
3206 else if (bitpos % BITS_PER_WORD == 0)
3207 dst = operand_subword (target, bitpos / BITS_PER_WORD, 1, tmode);
3209 /* Use xbitpos for the source extraction (right justified) and
3210 bitpos for the destination store (left justified). */
3211 store_bit_field (dst, bitsize, bitpos % BITS_PER_WORD, 0, 0, copy_mode,
3212 extract_bit_field (src, bitsize,
3213 xbitpos % BITS_PER_WORD, 1,
3214 NULL_RTX, copy_mode, copy_mode,
3215 false, NULL),
3216 false, false);
3220 /* Copy BLKmode value SRC into a register of mode MODE_IN. Return the
3221 register if it contains any data, otherwise return null.
3223 This is used on targets that return BLKmode values in registers. */
3226 copy_blkmode_to_reg (machine_mode mode_in, tree src)
3228 int i, n_regs;
3229 unsigned HOST_WIDE_INT bitpos, xbitpos, padding_correction = 0, bytes;
3230 unsigned int bitsize;
3231 rtx *dst_words, dst, x, src_word = NULL_RTX, dst_word = NULL_RTX;
3232 /* No current ABI uses variable-sized modes to pass a BLKmnode type. */
3233 fixed_size_mode mode = as_a <fixed_size_mode> (mode_in);
3234 fixed_size_mode dst_mode;
3235 scalar_int_mode min_mode;
3237 gcc_assert (TYPE_MODE (TREE_TYPE (src)) == BLKmode);
3239 x = expand_normal (src);
3241 bytes = arg_int_size_in_bytes (TREE_TYPE (src));
3242 if (bytes == 0)
3243 return NULL_RTX;
3245 /* If the structure doesn't take up a whole number of words, see
3246 whether the register value should be padded on the left or on
3247 the right. Set PADDING_CORRECTION to the number of padding
3248 bits needed on the left side.
3250 In most ABIs, the structure will be returned at the least end of
3251 the register, which translates to right padding on little-endian
3252 targets and left padding on big-endian targets. The opposite
3253 holds if the structure is returned at the most significant
3254 end of the register. */
3255 if (bytes % UNITS_PER_WORD != 0
3256 && (targetm.calls.return_in_msb (TREE_TYPE (src))
3257 ? !BYTES_BIG_ENDIAN
3258 : BYTES_BIG_ENDIAN))
3259 padding_correction = (BITS_PER_WORD - ((bytes % UNITS_PER_WORD)
3260 * BITS_PER_UNIT));
3262 n_regs = (bytes + UNITS_PER_WORD - 1) / UNITS_PER_WORD;
3263 dst_words = XALLOCAVEC (rtx, n_regs);
3264 bitsize = MIN (TYPE_ALIGN (TREE_TYPE (src)), BITS_PER_WORD);
3265 min_mode = smallest_int_mode_for_size (bitsize);
3267 /* Copy the structure BITSIZE bits at a time. */
3268 for (bitpos = 0, xbitpos = padding_correction;
3269 bitpos < bytes * BITS_PER_UNIT;
3270 bitpos += bitsize, xbitpos += bitsize)
3272 /* We need a new destination pseudo each time xbitpos is
3273 on a word boundary and when xbitpos == padding_correction
3274 (the first time through). */
3275 if (xbitpos % BITS_PER_WORD == 0
3276 || xbitpos == padding_correction)
3278 /* Generate an appropriate register. */
3279 dst_word = gen_reg_rtx (word_mode);
3280 dst_words[xbitpos / BITS_PER_WORD] = dst_word;
3282 /* Clear the destination before we move anything into it. */
3283 emit_move_insn (dst_word, CONST0_RTX (word_mode));
3286 /* Find the largest integer mode that can be used to copy all or as
3287 many bits as possible of the structure if the target supports larger
3288 copies. There are too many corner cases here w.r.t to alignments on
3289 the read/writes. So if there is any padding just use single byte
3290 operations. */
3291 opt_scalar_int_mode mode_iter;
3292 if (padding_correction == 0 && !STRICT_ALIGNMENT)
3294 FOR_EACH_MODE_FROM (mode_iter, min_mode)
3296 unsigned int msize = GET_MODE_BITSIZE (mode_iter.require ());
3297 if (msize <= ((bytes * BITS_PER_UNIT) - bitpos)
3298 && msize <= BITS_PER_WORD)
3299 bitsize = msize;
3300 else
3301 break;
3305 /* We need a new source operand each time bitpos is on a word
3306 boundary. */
3307 if (bitpos % BITS_PER_WORD == 0)
3308 src_word = operand_subword_force (x, bitpos / BITS_PER_WORD, BLKmode);
3310 /* Use bitpos for the source extraction (left justified) and
3311 xbitpos for the destination store (right justified). */
3312 store_bit_field (dst_word, bitsize, xbitpos % BITS_PER_WORD,
3313 0, 0, word_mode,
3314 extract_bit_field (src_word, bitsize,
3315 bitpos % BITS_PER_WORD, 1,
3316 NULL_RTX, word_mode, word_mode,
3317 false, NULL),
3318 false, false);
3321 if (mode == BLKmode)
3323 /* Find the smallest integer mode large enough to hold the
3324 entire structure. */
3325 opt_scalar_int_mode mode_iter;
3326 FOR_EACH_MODE_IN_CLASS (mode_iter, MODE_INT)
3327 if (GET_MODE_SIZE (mode_iter.require ()) >= bytes)
3328 break;
3330 /* A suitable mode should have been found. */
3331 mode = mode_iter.require ();
3334 if (GET_MODE_SIZE (mode) < GET_MODE_SIZE (word_mode))
3335 dst_mode = word_mode;
3336 else
3337 dst_mode = mode;
3338 dst = gen_reg_rtx (dst_mode);
3340 for (i = 0; i < n_regs; i++)
3341 emit_move_insn (operand_subword (dst, i, 0, dst_mode), dst_words[i]);
3343 if (mode != dst_mode)
3344 dst = gen_lowpart (mode, dst);
3346 return dst;
3349 /* Add a USE expression for REG to the (possibly empty) list pointed
3350 to by CALL_FUSAGE. REG must denote a hard register. */
3352 void
3353 use_reg_mode (rtx *call_fusage, rtx reg, machine_mode mode)
3355 gcc_assert (REG_P (reg));
3357 if (!HARD_REGISTER_P (reg))
3358 return;
3360 *call_fusage
3361 = gen_rtx_EXPR_LIST (mode, gen_rtx_USE (VOIDmode, reg), *call_fusage);
3364 /* Add a CLOBBER expression for REG to the (possibly empty) list pointed
3365 to by CALL_FUSAGE. REG must denote a hard register. */
3367 void
3368 clobber_reg_mode (rtx *call_fusage, rtx reg, machine_mode mode)
3370 gcc_assert (REG_P (reg) && REGNO (reg) < FIRST_PSEUDO_REGISTER);
3372 *call_fusage
3373 = gen_rtx_EXPR_LIST (mode, gen_rtx_CLOBBER (VOIDmode, reg), *call_fusage);
3376 /* Add USE expressions to *CALL_FUSAGE for each of NREGS consecutive regs,
3377 starting at REGNO. All of these registers must be hard registers. */
3379 void
3380 use_regs (rtx *call_fusage, int regno, int nregs)
3382 int i;
3384 gcc_assert (regno + nregs <= FIRST_PSEUDO_REGISTER);
3386 for (i = 0; i < nregs; i++)
3387 use_reg (call_fusage, regno_reg_rtx[regno + i]);
3390 /* Add USE expressions to *CALL_FUSAGE for each REG contained in the
3391 PARALLEL REGS. This is for calls that pass values in multiple
3392 non-contiguous locations. The Irix 6 ABI has examples of this. */
3394 void
3395 use_group_regs (rtx *call_fusage, rtx regs)
3397 int i;
3399 for (i = 0; i < XVECLEN (regs, 0); i++)
3401 rtx reg = XEXP (XVECEXP (regs, 0, i), 0);
3403 /* A NULL entry means the parameter goes both on the stack and in
3404 registers. This can also be a MEM for targets that pass values
3405 partially on the stack and partially in registers. */
3406 if (reg != 0 && REG_P (reg))
3407 use_reg (call_fusage, reg);
3411 /* Return the defining gimple statement for SSA_NAME NAME if it is an
3412 assigment and the code of the expresion on the RHS is CODE. Return
3413 NULL otherwise. */
3415 static gimple *
3416 get_def_for_expr (tree name, enum tree_code code)
3418 gimple *def_stmt;
3420 if (TREE_CODE (name) != SSA_NAME)
3421 return NULL;
3423 def_stmt = get_gimple_for_ssa_name (name);
3424 if (!def_stmt
3425 || gimple_assign_rhs_code (def_stmt) != code)
3426 return NULL;
3428 return def_stmt;
3431 /* Return the defining gimple statement for SSA_NAME NAME if it is an
3432 assigment and the class of the expresion on the RHS is CLASS. Return
3433 NULL otherwise. */
3435 static gimple *
3436 get_def_for_expr_class (tree name, enum tree_code_class tclass)
3438 gimple *def_stmt;
3440 if (TREE_CODE (name) != SSA_NAME)
3441 return NULL;
3443 def_stmt = get_gimple_for_ssa_name (name);
3444 if (!def_stmt
3445 || TREE_CODE_CLASS (gimple_assign_rhs_code (def_stmt)) != tclass)
3446 return NULL;
3448 return def_stmt;
3451 /* Write zeros through the storage of OBJECT. If OBJECT has BLKmode, SIZE is
3452 its length in bytes. */
3455 clear_storage_hints (rtx object, rtx size, enum block_op_methods method,
3456 unsigned int expected_align, HOST_WIDE_INT expected_size,
3457 unsigned HOST_WIDE_INT min_size,
3458 unsigned HOST_WIDE_INT max_size,
3459 unsigned HOST_WIDE_INT probable_max_size,
3460 unsigned ctz_size)
3462 machine_mode mode = GET_MODE (object);
3463 unsigned int align;
3465 gcc_assert (method == BLOCK_OP_NORMAL || method == BLOCK_OP_TAILCALL);
3467 /* If OBJECT is not BLKmode and SIZE is the same size as its mode,
3468 just move a zero. Otherwise, do this a piece at a time. */
3469 poly_int64 size_val;
3470 if (mode != BLKmode
3471 && poly_int_rtx_p (size, &size_val)
3472 && known_eq (size_val, GET_MODE_SIZE (mode)))
3474 rtx zero = CONST0_RTX (mode);
3475 if (zero != NULL)
3477 emit_move_insn (object, zero);
3478 return NULL;
3481 if (COMPLEX_MODE_P (mode))
3483 zero = CONST0_RTX (GET_MODE_INNER (mode));
3484 if (zero != NULL)
3486 write_complex_part (object, zero, 0, true);
3487 write_complex_part (object, zero, 1, false);
3488 return NULL;
3493 if (size == const0_rtx)
3494 return NULL;
3496 align = MEM_ALIGN (object);
3498 if (CONST_INT_P (size)
3499 && targetm.use_by_pieces_infrastructure_p (INTVAL (size), align,
3500 CLEAR_BY_PIECES,
3501 optimize_insn_for_speed_p ()))
3502 clear_by_pieces (object, INTVAL (size), align);
3503 else if (set_storage_via_setmem (object, size, const0_rtx, align,
3504 expected_align, expected_size,
3505 min_size, max_size, probable_max_size))
3507 else if (try_store_by_multiple_pieces (object, size, ctz_size,
3508 min_size, max_size,
3509 NULL_RTX, 0, align))
3511 else if (ADDR_SPACE_GENERIC_P (MEM_ADDR_SPACE (object)))
3512 return set_storage_via_libcall (object, size, const0_rtx,
3513 method == BLOCK_OP_TAILCALL);
3514 else
3515 gcc_unreachable ();
3517 return NULL;
3521 clear_storage (rtx object, rtx size, enum block_op_methods method)
3523 unsigned HOST_WIDE_INT max, min = 0;
3524 if (GET_CODE (size) == CONST_INT)
3525 min = max = UINTVAL (size);
3526 else
3527 max = GET_MODE_MASK (GET_MODE (size));
3528 return clear_storage_hints (object, size, method, 0, -1, min, max, max, 0);
3532 /* A subroutine of clear_storage. Expand a call to memset.
3533 Return the return value of memset, 0 otherwise. */
3536 set_storage_via_libcall (rtx object, rtx size, rtx val, bool tailcall)
3538 tree call_expr, fn, object_tree, size_tree, val_tree;
3539 machine_mode size_mode;
3541 object = copy_addr_to_reg (XEXP (object, 0));
3542 object_tree = make_tree (ptr_type_node, object);
3544 if (!CONST_INT_P (val))
3545 val = convert_to_mode (TYPE_MODE (integer_type_node), val, 1);
3546 val_tree = make_tree (integer_type_node, val);
3548 size_mode = TYPE_MODE (sizetype);
3549 size = convert_to_mode (size_mode, size, 1);
3550 size = copy_to_mode_reg (size_mode, size);
3551 size_tree = make_tree (sizetype, size);
3553 /* It is incorrect to use the libcall calling conventions for calls to
3554 memset because it can be provided by the user. */
3555 fn = builtin_decl_implicit (BUILT_IN_MEMSET);
3556 call_expr = build_call_expr (fn, 3, object_tree, val_tree, size_tree);
3557 CALL_EXPR_TAILCALL (call_expr) = tailcall;
3559 return expand_call (call_expr, NULL_RTX, false);
3562 /* Expand a setmem pattern; return true if successful. */
3564 bool
3565 set_storage_via_setmem (rtx object, rtx size, rtx val, unsigned int align,
3566 unsigned int expected_align, HOST_WIDE_INT expected_size,
3567 unsigned HOST_WIDE_INT min_size,
3568 unsigned HOST_WIDE_INT max_size,
3569 unsigned HOST_WIDE_INT probable_max_size)
3571 /* Try the most limited insn first, because there's no point
3572 including more than one in the machine description unless
3573 the more limited one has some advantage. */
3575 if (expected_align < align)
3576 expected_align = align;
3577 if (expected_size != -1)
3579 if ((unsigned HOST_WIDE_INT)expected_size > max_size)
3580 expected_size = max_size;
3581 if ((unsigned HOST_WIDE_INT)expected_size < min_size)
3582 expected_size = min_size;
3585 opt_scalar_int_mode mode_iter;
3586 FOR_EACH_MODE_IN_CLASS (mode_iter, MODE_INT)
3588 scalar_int_mode mode = mode_iter.require ();
3589 enum insn_code code = direct_optab_handler (setmem_optab, mode);
3591 if (code != CODE_FOR_nothing
3592 /* We don't need MODE to be narrower than BITS_PER_HOST_WIDE_INT
3593 here because if SIZE is less than the mode mask, as it is
3594 returned by the macro, it will definitely be less than the
3595 actual mode mask. Since SIZE is within the Pmode address
3596 space, we limit MODE to Pmode. */
3597 && ((CONST_INT_P (size)
3598 && ((unsigned HOST_WIDE_INT) INTVAL (size)
3599 <= (GET_MODE_MASK (mode) >> 1)))
3600 || max_size <= (GET_MODE_MASK (mode) >> 1)
3601 || GET_MODE_BITSIZE (mode) >= GET_MODE_BITSIZE (Pmode)))
3603 class expand_operand ops[9];
3604 unsigned int nops;
3606 nops = insn_data[(int) code].n_generator_args;
3607 gcc_assert (nops == 4 || nops == 6 || nops == 8 || nops == 9);
3609 create_fixed_operand (&ops[0], object);
3610 /* The check above guarantees that this size conversion is valid. */
3611 create_convert_operand_to (&ops[1], size, mode, true);
3612 create_convert_operand_from (&ops[2], val, byte_mode, true);
3613 create_integer_operand (&ops[3], align / BITS_PER_UNIT);
3614 if (nops >= 6)
3616 create_integer_operand (&ops[4], expected_align / BITS_PER_UNIT);
3617 create_integer_operand (&ops[5], expected_size);
3619 if (nops >= 8)
3621 create_integer_operand (&ops[6], min_size);
3622 /* If we cannot represent the maximal size,
3623 make parameter NULL. */
3624 if ((HOST_WIDE_INT) max_size != -1)
3625 create_integer_operand (&ops[7], max_size);
3626 else
3627 create_fixed_operand (&ops[7], NULL);
3629 if (nops == 9)
3631 /* If we cannot represent the maximal size,
3632 make parameter NULL. */
3633 if ((HOST_WIDE_INT) probable_max_size != -1)
3634 create_integer_operand (&ops[8], probable_max_size);
3635 else
3636 create_fixed_operand (&ops[8], NULL);
3638 if (maybe_expand_insn (code, nops, ops))
3639 return true;
3643 return false;
3647 /* Write to one of the components of the complex value CPLX. Write VAL to
3648 the real part if IMAG_P is false, and the imaginary part if its true.
3649 If UNDEFINED_P then the value in CPLX is currently undefined. */
3651 void
3652 write_complex_part (rtx cplx, rtx val, bool imag_p, bool undefined_p)
3654 machine_mode cmode;
3655 scalar_mode imode;
3656 unsigned ibitsize;
3658 if (GET_CODE (cplx) == CONCAT)
3660 emit_move_insn (XEXP (cplx, imag_p), val);
3661 return;
3664 cmode = GET_MODE (cplx);
3665 imode = GET_MODE_INNER (cmode);
3666 ibitsize = GET_MODE_BITSIZE (imode);
3668 /* For MEMs simplify_gen_subreg may generate an invalid new address
3669 because, e.g., the original address is considered mode-dependent
3670 by the target, which restricts simplify_subreg from invoking
3671 adjust_address_nv. Instead of preparing fallback support for an
3672 invalid address, we call adjust_address_nv directly. */
3673 if (MEM_P (cplx))
3675 emit_move_insn (adjust_address_nv (cplx, imode,
3676 imag_p ? GET_MODE_SIZE (imode) : 0),
3677 val);
3678 return;
3681 /* If the sub-object is at least word sized, then we know that subregging
3682 will work. This special case is important, since store_bit_field
3683 wants to operate on integer modes, and there's rarely an OImode to
3684 correspond to TCmode. */
3685 if (ibitsize >= BITS_PER_WORD
3686 /* For hard regs we have exact predicates. Assume we can split
3687 the original object if it spans an even number of hard regs.
3688 This special case is important for SCmode on 64-bit platforms
3689 where the natural size of floating-point regs is 32-bit. */
3690 || (REG_P (cplx)
3691 && REGNO (cplx) < FIRST_PSEUDO_REGISTER
3692 && REG_NREGS (cplx) % 2 == 0))
3694 rtx part = simplify_gen_subreg (imode, cplx, cmode,
3695 imag_p ? GET_MODE_SIZE (imode) : 0);
3696 if (part)
3698 emit_move_insn (part, val);
3699 return;
3701 else
3702 /* simplify_gen_subreg may fail for sub-word MEMs. */
3703 gcc_assert (MEM_P (cplx) && ibitsize < BITS_PER_WORD);
3706 store_bit_field (cplx, ibitsize, imag_p ? ibitsize : 0, 0, 0, imode, val,
3707 false, undefined_p);
3710 /* Extract one of the components of the complex value CPLX. Extract the
3711 real part if IMAG_P is false, and the imaginary part if it's true. */
3714 read_complex_part (rtx cplx, bool imag_p)
3716 machine_mode cmode;
3717 scalar_mode imode;
3718 unsigned ibitsize;
3720 if (GET_CODE (cplx) == CONCAT)
3721 return XEXP (cplx, imag_p);
3723 cmode = GET_MODE (cplx);
3724 imode = GET_MODE_INNER (cmode);
3725 ibitsize = GET_MODE_BITSIZE (imode);
3727 /* Special case reads from complex constants that got spilled to memory. */
3728 if (MEM_P (cplx) && GET_CODE (XEXP (cplx, 0)) == SYMBOL_REF)
3730 tree decl = SYMBOL_REF_DECL (XEXP (cplx, 0));
3731 if (decl && TREE_CODE (decl) == COMPLEX_CST)
3733 tree part = imag_p ? TREE_IMAGPART (decl) : TREE_REALPART (decl);
3734 if (CONSTANT_CLASS_P (part))
3735 return expand_expr (part, NULL_RTX, imode, EXPAND_NORMAL);
3739 /* For MEMs simplify_gen_subreg may generate an invalid new address
3740 because, e.g., the original address is considered mode-dependent
3741 by the target, which restricts simplify_subreg from invoking
3742 adjust_address_nv. Instead of preparing fallback support for an
3743 invalid address, we call adjust_address_nv directly. */
3744 if (MEM_P (cplx))
3745 return adjust_address_nv (cplx, imode,
3746 imag_p ? GET_MODE_SIZE (imode) : 0);
3748 /* If the sub-object is at least word sized, then we know that subregging
3749 will work. This special case is important, since extract_bit_field
3750 wants to operate on integer modes, and there's rarely an OImode to
3751 correspond to TCmode. */
3752 if (ibitsize >= BITS_PER_WORD
3753 /* For hard regs we have exact predicates. Assume we can split
3754 the original object if it spans an even number of hard regs.
3755 This special case is important for SCmode on 64-bit platforms
3756 where the natural size of floating-point regs is 32-bit. */
3757 || (REG_P (cplx)
3758 && REGNO (cplx) < FIRST_PSEUDO_REGISTER
3759 && REG_NREGS (cplx) % 2 == 0))
3761 rtx ret = simplify_gen_subreg (imode, cplx, cmode,
3762 imag_p ? GET_MODE_SIZE (imode) : 0);
3763 if (ret)
3764 return ret;
3765 else
3766 /* simplify_gen_subreg may fail for sub-word MEMs. */
3767 gcc_assert (MEM_P (cplx) && ibitsize < BITS_PER_WORD);
3770 return extract_bit_field (cplx, ibitsize, imag_p ? ibitsize : 0,
3771 true, NULL_RTX, imode, imode, false, NULL);
3774 /* A subroutine of emit_move_insn_1. Yet another lowpart generator.
3775 NEW_MODE and OLD_MODE are the same size. Return NULL if X cannot be
3776 represented in NEW_MODE. If FORCE is true, this will never happen, as
3777 we'll force-create a SUBREG if needed. */
3779 static rtx
3780 emit_move_change_mode (machine_mode new_mode,
3781 machine_mode old_mode, rtx x, bool force)
3783 rtx ret;
3785 if (push_operand (x, GET_MODE (x)))
3787 ret = gen_rtx_MEM (new_mode, XEXP (x, 0));
3788 MEM_COPY_ATTRIBUTES (ret, x);
3790 else if (MEM_P (x))
3792 /* We don't have to worry about changing the address since the
3793 size in bytes is supposed to be the same. */
3794 if (reload_in_progress)
3796 /* Copy the MEM to change the mode and move any
3797 substitutions from the old MEM to the new one. */
3798 ret = adjust_address_nv (x, new_mode, 0);
3799 copy_replacements (x, ret);
3801 else
3802 ret = adjust_address (x, new_mode, 0);
3804 else
3806 /* Note that we do want simplify_subreg's behavior of validating
3807 that the new mode is ok for a hard register. If we were to use
3808 simplify_gen_subreg, we would create the subreg, but would
3809 probably run into the target not being able to implement it. */
3810 /* Except, of course, when FORCE is true, when this is exactly what
3811 we want. Which is needed for CCmodes on some targets. */
3812 if (force)
3813 ret = simplify_gen_subreg (new_mode, x, old_mode, 0);
3814 else
3815 ret = simplify_subreg (new_mode, x, old_mode, 0);
3818 return ret;
3821 /* A subroutine of emit_move_insn_1. Generate a move from Y into X using
3822 an integer mode of the same size as MODE. Returns the instruction
3823 emitted, or NULL if such a move could not be generated. */
3825 static rtx_insn *
3826 emit_move_via_integer (machine_mode mode, rtx x, rtx y, bool force)
3828 scalar_int_mode imode;
3829 enum insn_code code;
3831 /* There must exist a mode of the exact size we require. */
3832 if (!int_mode_for_mode (mode).exists (&imode))
3833 return NULL;
3835 /* The target must support moves in this mode. */
3836 code = optab_handler (mov_optab, imode);
3837 if (code == CODE_FOR_nothing)
3838 return NULL;
3840 x = emit_move_change_mode (imode, mode, x, force);
3841 if (x == NULL_RTX)
3842 return NULL;
3843 y = emit_move_change_mode (imode, mode, y, force);
3844 if (y == NULL_RTX)
3845 return NULL;
3846 return emit_insn (GEN_FCN (code) (x, y));
3849 /* A subroutine of emit_move_insn_1. X is a push_operand in MODE.
3850 Return an equivalent MEM that does not use an auto-increment. */
3853 emit_move_resolve_push (machine_mode mode, rtx x)
3855 enum rtx_code code = GET_CODE (XEXP (x, 0));
3856 rtx temp;
3858 poly_int64 adjust = GET_MODE_SIZE (mode);
3859 #ifdef PUSH_ROUNDING
3860 adjust = PUSH_ROUNDING (adjust);
3861 #endif
3862 if (code == PRE_DEC || code == POST_DEC)
3863 adjust = -adjust;
3864 else if (code == PRE_MODIFY || code == POST_MODIFY)
3866 rtx expr = XEXP (XEXP (x, 0), 1);
3868 gcc_assert (GET_CODE (expr) == PLUS || GET_CODE (expr) == MINUS);
3869 poly_int64 val = rtx_to_poly_int64 (XEXP (expr, 1));
3870 if (GET_CODE (expr) == MINUS)
3871 val = -val;
3872 gcc_assert (known_eq (adjust, val) || known_eq (adjust, -val));
3873 adjust = val;
3876 /* Do not use anti_adjust_stack, since we don't want to update
3877 stack_pointer_delta. */
3878 temp = expand_simple_binop (Pmode, PLUS, stack_pointer_rtx,
3879 gen_int_mode (adjust, Pmode), stack_pointer_rtx,
3880 0, OPTAB_LIB_WIDEN);
3881 if (temp != stack_pointer_rtx)
3882 emit_move_insn (stack_pointer_rtx, temp);
3884 switch (code)
3886 case PRE_INC:
3887 case PRE_DEC:
3888 case PRE_MODIFY:
3889 temp = stack_pointer_rtx;
3890 break;
3891 case POST_INC:
3892 case POST_DEC:
3893 case POST_MODIFY:
3894 temp = plus_constant (Pmode, stack_pointer_rtx, -adjust);
3895 break;
3896 default:
3897 gcc_unreachable ();
3900 return replace_equiv_address (x, temp);
3903 /* A subroutine of emit_move_complex. Generate a move from Y into X.
3904 X is known to satisfy push_operand, and MODE is known to be complex.
3905 Returns the last instruction emitted. */
3907 rtx_insn *
3908 emit_move_complex_push (machine_mode mode, rtx x, rtx y)
3910 scalar_mode submode = GET_MODE_INNER (mode);
3911 bool imag_first;
3913 #ifdef PUSH_ROUNDING
3914 poly_int64 submodesize = GET_MODE_SIZE (submode);
3916 /* In case we output to the stack, but the size is smaller than the
3917 machine can push exactly, we need to use move instructions. */
3918 if (maybe_ne (PUSH_ROUNDING (submodesize), submodesize))
3920 x = emit_move_resolve_push (mode, x);
3921 return emit_move_insn (x, y);
3923 #endif
3925 /* Note that the real part always precedes the imag part in memory
3926 regardless of machine's endianness. */
3927 switch (GET_CODE (XEXP (x, 0)))
3929 case PRE_DEC:
3930 case POST_DEC:
3931 imag_first = true;
3932 break;
3933 case PRE_INC:
3934 case POST_INC:
3935 imag_first = false;
3936 break;
3937 default:
3938 gcc_unreachable ();
3941 emit_move_insn (gen_rtx_MEM (submode, XEXP (x, 0)),
3942 read_complex_part (y, imag_first));
3943 return emit_move_insn (gen_rtx_MEM (submode, XEXP (x, 0)),
3944 read_complex_part (y, !imag_first));
3947 /* A subroutine of emit_move_complex. Perform the move from Y to X
3948 via two moves of the parts. Returns the last instruction emitted. */
3950 rtx_insn *
3951 emit_move_complex_parts (rtx x, rtx y)
3953 /* Show the output dies here. This is necessary for SUBREGs
3954 of pseudos since we cannot track their lifetimes correctly;
3955 hard regs shouldn't appear here except as return values. */
3956 if (!reload_completed && !reload_in_progress
3957 && REG_P (x) && !reg_overlap_mentioned_p (x, y))
3958 emit_clobber (x);
3960 write_complex_part (x, read_complex_part (y, false), false, true);
3961 write_complex_part (x, read_complex_part (y, true), true, false);
3963 return get_last_insn ();
3966 /* A subroutine of emit_move_insn_1. Generate a move from Y into X.
3967 MODE is known to be complex. Returns the last instruction emitted. */
3969 static rtx_insn *
3970 emit_move_complex (machine_mode mode, rtx x, rtx y)
3972 bool try_int;
3974 /* Need to take special care for pushes, to maintain proper ordering
3975 of the data, and possibly extra padding. */
3976 if (push_operand (x, mode))
3977 return emit_move_complex_push (mode, x, y);
3979 /* See if we can coerce the target into moving both values at once, except
3980 for floating point where we favor moving as parts if this is easy. */
3981 if (GET_MODE_CLASS (mode) == MODE_COMPLEX_FLOAT
3982 && optab_handler (mov_optab, GET_MODE_INNER (mode)) != CODE_FOR_nothing
3983 && !(REG_P (x)
3984 && HARD_REGISTER_P (x)
3985 && REG_NREGS (x) == 1)
3986 && !(REG_P (y)
3987 && HARD_REGISTER_P (y)
3988 && REG_NREGS (y) == 1))
3989 try_int = false;
3990 /* Not possible if the values are inherently not adjacent. */
3991 else if (GET_CODE (x) == CONCAT || GET_CODE (y) == CONCAT)
3992 try_int = false;
3993 /* Is possible if both are registers (or subregs of registers). */
3994 else if (register_operand (x, mode) && register_operand (y, mode))
3995 try_int = true;
3996 /* If one of the operands is a memory, and alignment constraints
3997 are friendly enough, we may be able to do combined memory operations.
3998 We do not attempt this if Y is a constant because that combination is
3999 usually better with the by-parts thing below. */
4000 else if ((MEM_P (x) ? !CONSTANT_P (y) : MEM_P (y))
4001 && (!STRICT_ALIGNMENT
4002 || get_mode_alignment (mode) == BIGGEST_ALIGNMENT))
4003 try_int = true;
4004 else
4005 try_int = false;
4007 if (try_int)
4009 rtx_insn *ret;
4011 /* For memory to memory moves, optimal behavior can be had with the
4012 existing block move logic. But use normal expansion if optimizing
4013 for size. */
4014 if (MEM_P (x) && MEM_P (y))
4016 emit_block_move (x, y, gen_int_mode (GET_MODE_SIZE (mode), Pmode),
4017 (optimize_insn_for_speed_p()
4018 ? BLOCK_OP_NO_LIBCALL : BLOCK_OP_NORMAL));
4019 return get_last_insn ();
4022 ret = emit_move_via_integer (mode, x, y, true);
4023 if (ret)
4024 return ret;
4027 return emit_move_complex_parts (x, y);
4030 /* A subroutine of emit_move_insn_1. Generate a move from Y into X.
4031 MODE is known to be MODE_CC. Returns the last instruction emitted. */
4033 static rtx_insn *
4034 emit_move_ccmode (machine_mode mode, rtx x, rtx y)
4036 rtx_insn *ret;
4038 /* Assume all MODE_CC modes are equivalent; if we have movcc, use it. */
4039 if (mode != CCmode)
4041 enum insn_code code = optab_handler (mov_optab, CCmode);
4042 if (code != CODE_FOR_nothing)
4044 x = emit_move_change_mode (CCmode, mode, x, true);
4045 y = emit_move_change_mode (CCmode, mode, y, true);
4046 return emit_insn (GEN_FCN (code) (x, y));
4050 /* Otherwise, find the MODE_INT mode of the same width. */
4051 ret = emit_move_via_integer (mode, x, y, false);
4052 gcc_assert (ret != NULL);
4053 return ret;
4056 /* Return true if word I of OP lies entirely in the
4057 undefined bits of a paradoxical subreg. */
4059 static bool
4060 undefined_operand_subword_p (const_rtx op, int i)
4062 if (GET_CODE (op) != SUBREG)
4063 return false;
4064 machine_mode innermostmode = GET_MODE (SUBREG_REG (op));
4065 poly_int64 offset = i * UNITS_PER_WORD + subreg_memory_offset (op);
4066 return (known_ge (offset, GET_MODE_SIZE (innermostmode))
4067 || known_le (offset, -UNITS_PER_WORD));
4070 /* A subroutine of emit_move_insn_1. Generate a move from Y into X.
4071 MODE is any multi-word or full-word mode that lacks a move_insn
4072 pattern. Note that you will get better code if you define such
4073 patterns, even if they must turn into multiple assembler instructions. */
4075 static rtx_insn *
4076 emit_move_multi_word (machine_mode mode, rtx x, rtx y)
4078 rtx_insn *last_insn = 0;
4079 rtx_insn *seq;
4080 rtx inner;
4081 bool need_clobber;
4082 int i, mode_size;
4084 /* This function can only handle cases where the number of words is
4085 known at compile time. */
4086 mode_size = GET_MODE_SIZE (mode).to_constant ();
4087 gcc_assert (mode_size >= UNITS_PER_WORD);
4089 /* If X is a push on the stack, do the push now and replace
4090 X with a reference to the stack pointer. */
4091 if (push_operand (x, mode))
4092 x = emit_move_resolve_push (mode, x);
4094 /* If we are in reload, see if either operand is a MEM whose address
4095 is scheduled for replacement. */
4096 if (reload_in_progress && MEM_P (x)
4097 && (inner = find_replacement (&XEXP (x, 0))) != XEXP (x, 0))
4098 x = replace_equiv_address_nv (x, inner);
4099 if (reload_in_progress && MEM_P (y)
4100 && (inner = find_replacement (&XEXP (y, 0))) != XEXP (y, 0))
4101 y = replace_equiv_address_nv (y, inner);
4103 start_sequence ();
4105 need_clobber = false;
4106 for (i = 0; i < CEIL (mode_size, UNITS_PER_WORD); i++)
4108 /* Do not generate code for a move if it would go entirely
4109 to the non-existing bits of a paradoxical subreg. */
4110 if (undefined_operand_subword_p (x, i))
4111 continue;
4113 rtx xpart = operand_subword (x, i, 1, mode);
4114 rtx ypart;
4116 /* Do not generate code for a move if it would come entirely
4117 from the undefined bits of a paradoxical subreg. */
4118 if (undefined_operand_subword_p (y, i))
4119 continue;
4121 ypart = operand_subword (y, i, 1, mode);
4123 /* If we can't get a part of Y, put Y into memory if it is a
4124 constant. Otherwise, force it into a register. Then we must
4125 be able to get a part of Y. */
4126 if (ypart == 0 && CONSTANT_P (y))
4128 y = use_anchored_address (force_const_mem (mode, y));
4129 ypart = operand_subword (y, i, 1, mode);
4131 else if (ypart == 0)
4132 ypart = operand_subword_force (y, i, mode);
4134 gcc_assert (xpart && ypart);
4136 need_clobber |= (GET_CODE (xpart) == SUBREG);
4138 last_insn = emit_move_insn (xpart, ypart);
4141 seq = get_insns ();
4142 end_sequence ();
4144 /* Show the output dies here. This is necessary for SUBREGs
4145 of pseudos since we cannot track their lifetimes correctly;
4146 hard regs shouldn't appear here except as return values.
4147 We never want to emit such a clobber after reload. */
4148 if (x != y
4149 && ! (reload_in_progress || reload_completed)
4150 && need_clobber != 0)
4151 emit_clobber (x);
4153 emit_insn (seq);
4155 return last_insn;
4158 /* Low level part of emit_move_insn.
4159 Called just like emit_move_insn, but assumes X and Y
4160 are basically valid. */
4162 rtx_insn *
4163 emit_move_insn_1 (rtx x, rtx y)
4165 machine_mode mode = GET_MODE (x);
4166 enum insn_code code;
4168 gcc_assert ((unsigned int) mode < (unsigned int) MAX_MACHINE_MODE);
4170 code = optab_handler (mov_optab, mode);
4171 if (code != CODE_FOR_nothing)
4172 return emit_insn (GEN_FCN (code) (x, y));
4174 /* Expand complex moves by moving real part and imag part. */
4175 if (COMPLEX_MODE_P (mode))
4176 return emit_move_complex (mode, x, y);
4178 if (GET_MODE_CLASS (mode) == MODE_DECIMAL_FLOAT
4179 || ALL_FIXED_POINT_MODE_P (mode))
4181 rtx_insn *result = emit_move_via_integer (mode, x, y, true);
4183 /* If we can't find an integer mode, use multi words. */
4184 if (result)
4185 return result;
4186 else
4187 return emit_move_multi_word (mode, x, y);
4190 if (GET_MODE_CLASS (mode) == MODE_CC)
4191 return emit_move_ccmode (mode, x, y);
4193 /* Try using a move pattern for the corresponding integer mode. This is
4194 only safe when simplify_subreg can convert MODE constants into integer
4195 constants. At present, it can only do this reliably if the value
4196 fits within a HOST_WIDE_INT. */
4197 if (!CONSTANT_P (y)
4198 || known_le (GET_MODE_BITSIZE (mode), HOST_BITS_PER_WIDE_INT))
4200 rtx_insn *ret = emit_move_via_integer (mode, x, y, lra_in_progress);
4202 if (ret)
4204 if (! lra_in_progress || recog (PATTERN (ret), ret, 0) >= 0)
4205 return ret;
4209 return emit_move_multi_word (mode, x, y);
4212 /* Generate code to copy Y into X.
4213 Both Y and X must have the same mode, except that
4214 Y can be a constant with VOIDmode.
4215 This mode cannot be BLKmode; use emit_block_move for that.
4217 Return the last instruction emitted. */
4219 rtx_insn *
4220 emit_move_insn (rtx x, rtx y)
4222 machine_mode mode = GET_MODE (x);
4223 rtx y_cst = NULL_RTX;
4224 rtx_insn *last_insn;
4225 rtx set;
4227 gcc_assert (mode != BLKmode
4228 && (GET_MODE (y) == mode || GET_MODE (y) == VOIDmode));
4230 /* If we have a copy that looks like one of the following patterns:
4231 (set (subreg:M1 (reg:M2 ...)) (subreg:M1 (reg:M2 ...)))
4232 (set (subreg:M1 (reg:M2 ...)) (mem:M1 ADDR))
4233 (set (mem:M1 ADDR) (subreg:M1 (reg:M2 ...)))
4234 (set (subreg:M1 (reg:M2 ...)) (constant C))
4235 where mode M1 is equal in size to M2, try to detect whether the
4236 mode change involves an implicit round trip through memory.
4237 If so, see if we can avoid that by removing the subregs and
4238 doing the move in mode M2 instead. */
4240 rtx x_inner = NULL_RTX;
4241 rtx y_inner = NULL_RTX;
4243 auto candidate_subreg_p = [&](rtx subreg) {
4244 return (REG_P (SUBREG_REG (subreg))
4245 && known_eq (GET_MODE_SIZE (GET_MODE (SUBREG_REG (subreg))),
4246 GET_MODE_SIZE (GET_MODE (subreg)))
4247 && optab_handler (mov_optab, GET_MODE (SUBREG_REG (subreg)))
4248 != CODE_FOR_nothing);
4251 auto candidate_mem_p = [&](machine_mode innermode, rtx mem) {
4252 return (!targetm.can_change_mode_class (innermode, GET_MODE (mem), ALL_REGS)
4253 && !push_operand (mem, GET_MODE (mem))
4254 /* Not a candiate if innermode requires too much alignment. */
4255 && (MEM_ALIGN (mem) >= GET_MODE_ALIGNMENT (innermode)
4256 || targetm.slow_unaligned_access (GET_MODE (mem),
4257 MEM_ALIGN (mem))
4258 || !targetm.slow_unaligned_access (innermode,
4259 MEM_ALIGN (mem))));
4262 if (SUBREG_P (x) && candidate_subreg_p (x))
4263 x_inner = SUBREG_REG (x);
4265 if (SUBREG_P (y) && candidate_subreg_p (y))
4266 y_inner = SUBREG_REG (y);
4268 if (x_inner != NULL_RTX
4269 && y_inner != NULL_RTX
4270 && GET_MODE (x_inner) == GET_MODE (y_inner)
4271 && !targetm.can_change_mode_class (GET_MODE (x_inner), mode, ALL_REGS))
4273 x = x_inner;
4274 y = y_inner;
4275 mode = GET_MODE (x_inner);
4277 else if (x_inner != NULL_RTX
4278 && MEM_P (y)
4279 && candidate_mem_p (GET_MODE (x_inner), y))
4281 x = x_inner;
4282 y = adjust_address (y, GET_MODE (x_inner), 0);
4283 mode = GET_MODE (x_inner);
4285 else if (y_inner != NULL_RTX
4286 && MEM_P (x)
4287 && candidate_mem_p (GET_MODE (y_inner), x))
4289 x = adjust_address (x, GET_MODE (y_inner), 0);
4290 y = y_inner;
4291 mode = GET_MODE (y_inner);
4293 else if (x_inner != NULL_RTX
4294 && CONSTANT_P (y)
4295 && !targetm.can_change_mode_class (GET_MODE (x_inner),
4296 mode, ALL_REGS)
4297 && (y_inner = simplify_subreg (GET_MODE (x_inner), y, mode, 0)))
4299 x = x_inner;
4300 y = y_inner;
4301 mode = GET_MODE (x_inner);
4304 if (CONSTANT_P (y))
4306 if (optimize
4307 && SCALAR_FLOAT_MODE_P (GET_MODE (x))
4308 && (last_insn = compress_float_constant (x, y)))
4309 return last_insn;
4311 y_cst = y;
4313 if (!targetm.legitimate_constant_p (mode, y))
4315 y = force_const_mem (mode, y);
4317 /* If the target's cannot_force_const_mem prevented the spill,
4318 assume that the target's move expanders will also take care
4319 of the non-legitimate constant. */
4320 if (!y)
4321 y = y_cst;
4322 else
4323 y = use_anchored_address (y);
4327 /* If X or Y are memory references, verify that their addresses are valid
4328 for the machine. */
4329 if (MEM_P (x)
4330 && (! memory_address_addr_space_p (GET_MODE (x), XEXP (x, 0),
4331 MEM_ADDR_SPACE (x))
4332 && ! push_operand (x, GET_MODE (x))))
4333 x = validize_mem (x);
4335 if (MEM_P (y)
4336 && ! memory_address_addr_space_p (GET_MODE (y), XEXP (y, 0),
4337 MEM_ADDR_SPACE (y)))
4338 y = validize_mem (y);
4340 gcc_assert (mode != BLKmode);
4342 last_insn = emit_move_insn_1 (x, y);
4344 if (y_cst && REG_P (x)
4345 && (set = single_set (last_insn)) != NULL_RTX
4346 && SET_DEST (set) == x
4347 && ! rtx_equal_p (y_cst, SET_SRC (set)))
4348 set_unique_reg_note (last_insn, REG_EQUAL, copy_rtx (y_cst));
4350 return last_insn;
4353 /* Generate the body of an instruction to copy Y into X.
4354 It may be a list of insns, if one insn isn't enough. */
4356 rtx_insn *
4357 gen_move_insn (rtx x, rtx y)
4359 rtx_insn *seq;
4361 start_sequence ();
4362 emit_move_insn_1 (x, y);
4363 seq = get_insns ();
4364 end_sequence ();
4365 return seq;
4368 /* If Y is representable exactly in a narrower mode, and the target can
4369 perform the extension directly from constant or memory, then emit the
4370 move as an extension. */
4372 static rtx_insn *
4373 compress_float_constant (rtx x, rtx y)
4375 machine_mode dstmode = GET_MODE (x);
4376 machine_mode orig_srcmode = GET_MODE (y);
4377 machine_mode srcmode;
4378 const REAL_VALUE_TYPE *r;
4379 int oldcost, newcost;
4380 bool speed = optimize_insn_for_speed_p ();
4382 r = CONST_DOUBLE_REAL_VALUE (y);
4384 if (targetm.legitimate_constant_p (dstmode, y))
4385 oldcost = set_src_cost (y, orig_srcmode, speed);
4386 else
4387 oldcost = set_src_cost (force_const_mem (dstmode, y), dstmode, speed);
4389 FOR_EACH_MODE_UNTIL (srcmode, orig_srcmode)
4391 enum insn_code ic;
4392 rtx trunc_y;
4393 rtx_insn *last_insn;
4395 /* Skip if the target can't extend this way. */
4396 ic = can_extend_p (dstmode, srcmode, 0);
4397 if (ic == CODE_FOR_nothing)
4398 continue;
4400 /* Skip if the narrowed value isn't exact. */
4401 if (! exact_real_truncate (srcmode, r))
4402 continue;
4404 trunc_y = const_double_from_real_value (*r, srcmode);
4406 if (targetm.legitimate_constant_p (srcmode, trunc_y))
4408 /* Skip if the target needs extra instructions to perform
4409 the extension. */
4410 if (!insn_operand_matches (ic, 1, trunc_y))
4411 continue;
4412 /* This is valid, but may not be cheaper than the original. */
4413 newcost = set_src_cost (gen_rtx_FLOAT_EXTEND (dstmode, trunc_y),
4414 dstmode, speed);
4415 if (oldcost < newcost)
4416 continue;
4418 else if (float_extend_from_mem[dstmode][srcmode])
4420 trunc_y = force_const_mem (srcmode, trunc_y);
4421 /* This is valid, but may not be cheaper than the original. */
4422 newcost = set_src_cost (gen_rtx_FLOAT_EXTEND (dstmode, trunc_y),
4423 dstmode, speed);
4424 if (oldcost < newcost)
4425 continue;
4426 trunc_y = validize_mem (trunc_y);
4428 else
4429 continue;
4431 /* For CSE's benefit, force the compressed constant pool entry
4432 into a new pseudo. This constant may be used in different modes,
4433 and if not, combine will put things back together for us. */
4434 trunc_y = force_reg (srcmode, trunc_y);
4436 /* If x is a hard register, perform the extension into a pseudo,
4437 so that e.g. stack realignment code is aware of it. */
4438 rtx target = x;
4439 if (REG_P (x) && HARD_REGISTER_P (x))
4440 target = gen_reg_rtx (dstmode);
4442 emit_unop_insn (ic, target, trunc_y, UNKNOWN);
4443 last_insn = get_last_insn ();
4445 if (REG_P (target))
4446 set_unique_reg_note (last_insn, REG_EQUAL, y);
4448 if (target != x)
4449 return emit_move_insn (x, target);
4450 return last_insn;
4453 return NULL;
4456 /* Pushing data onto the stack. */
4458 /* Push a block of length SIZE (perhaps variable)
4459 and return an rtx to address the beginning of the block.
4460 The value may be virtual_outgoing_args_rtx.
4462 EXTRA is the number of bytes of padding to push in addition to SIZE.
4463 BELOW nonzero means this padding comes at low addresses;
4464 otherwise, the padding comes at high addresses. */
4467 push_block (rtx size, poly_int64 extra, int below)
4469 rtx temp;
4471 size = convert_modes (Pmode, ptr_mode, size, 1);
4472 if (CONSTANT_P (size))
4473 anti_adjust_stack (plus_constant (Pmode, size, extra));
4474 else if (REG_P (size) && known_eq (extra, 0))
4475 anti_adjust_stack (size);
4476 else
4478 temp = copy_to_mode_reg (Pmode, size);
4479 if (maybe_ne (extra, 0))
4480 temp = expand_binop (Pmode, add_optab, temp,
4481 gen_int_mode (extra, Pmode),
4482 temp, 0, OPTAB_LIB_WIDEN);
4483 anti_adjust_stack (temp);
4486 if (STACK_GROWS_DOWNWARD)
4488 temp = virtual_outgoing_args_rtx;
4489 if (maybe_ne (extra, 0) && below)
4490 temp = plus_constant (Pmode, temp, extra);
4492 else
4494 poly_int64 csize;
4495 if (poly_int_rtx_p (size, &csize))
4496 temp = plus_constant (Pmode, virtual_outgoing_args_rtx,
4497 -csize - (below ? 0 : extra));
4498 else if (maybe_ne (extra, 0) && !below)
4499 temp = gen_rtx_PLUS (Pmode, virtual_outgoing_args_rtx,
4500 negate_rtx (Pmode, plus_constant (Pmode, size,
4501 extra)));
4502 else
4503 temp = gen_rtx_PLUS (Pmode, virtual_outgoing_args_rtx,
4504 negate_rtx (Pmode, size));
4507 return memory_address (NARROWEST_INT_MODE, temp);
4510 /* A utility routine that returns the base of an auto-inc memory, or NULL. */
4512 static rtx
4513 mem_autoinc_base (rtx mem)
4515 if (MEM_P (mem))
4517 rtx addr = XEXP (mem, 0);
4518 if (GET_RTX_CLASS (GET_CODE (addr)) == RTX_AUTOINC)
4519 return XEXP (addr, 0);
4521 return NULL;
4524 /* A utility routine used here, in reload, and in try_split. The insns
4525 after PREV up to and including LAST are known to adjust the stack,
4526 with a final value of END_ARGS_SIZE. Iterate backward from LAST
4527 placing notes as appropriate. PREV may be NULL, indicating the
4528 entire insn sequence prior to LAST should be scanned.
4530 The set of allowed stack pointer modifications is small:
4531 (1) One or more auto-inc style memory references (aka pushes),
4532 (2) One or more addition/subtraction with the SP as destination,
4533 (3) A single move insn with the SP as destination,
4534 (4) A call_pop insn,
4535 (5) Noreturn call insns if !ACCUMULATE_OUTGOING_ARGS.
4537 Insns in the sequence that do not modify the SP are ignored,
4538 except for noreturn calls.
4540 The return value is the amount of adjustment that can be trivially
4541 verified, via immediate operand or auto-inc. If the adjustment
4542 cannot be trivially extracted, the return value is HOST_WIDE_INT_MIN. */
4544 poly_int64
4545 find_args_size_adjust (rtx_insn *insn)
4547 rtx dest, set, pat;
4548 int i;
4550 pat = PATTERN (insn);
4551 set = NULL;
4553 /* Look for a call_pop pattern. */
4554 if (CALL_P (insn))
4556 /* We have to allow non-call_pop patterns for the case
4557 of emit_single_push_insn of a TLS address. */
4558 if (GET_CODE (pat) != PARALLEL)
4559 return 0;
4561 /* All call_pop have a stack pointer adjust in the parallel.
4562 The call itself is always first, and the stack adjust is
4563 usually last, so search from the end. */
4564 for (i = XVECLEN (pat, 0) - 1; i > 0; --i)
4566 set = XVECEXP (pat, 0, i);
4567 if (GET_CODE (set) != SET)
4568 continue;
4569 dest = SET_DEST (set);
4570 if (dest == stack_pointer_rtx)
4571 break;
4573 /* We'd better have found the stack pointer adjust. */
4574 if (i == 0)
4575 return 0;
4576 /* Fall through to process the extracted SET and DEST
4577 as if it was a standalone insn. */
4579 else if (GET_CODE (pat) == SET)
4580 set = pat;
4581 else if ((set = single_set (insn)) != NULL)
4583 else if (GET_CODE (pat) == PARALLEL)
4585 /* ??? Some older ports use a parallel with a stack adjust
4586 and a store for a PUSH_ROUNDING pattern, rather than a
4587 PRE/POST_MODIFY rtx. Don't force them to update yet... */
4588 /* ??? See h8300 and m68k, pushqi1. */
4589 for (i = XVECLEN (pat, 0) - 1; i >= 0; --i)
4591 set = XVECEXP (pat, 0, i);
4592 if (GET_CODE (set) != SET)
4593 continue;
4594 dest = SET_DEST (set);
4595 if (dest == stack_pointer_rtx)
4596 break;
4598 /* We do not expect an auto-inc of the sp in the parallel. */
4599 gcc_checking_assert (mem_autoinc_base (dest) != stack_pointer_rtx);
4600 gcc_checking_assert (mem_autoinc_base (SET_SRC (set))
4601 != stack_pointer_rtx);
4603 if (i < 0)
4604 return 0;
4606 else
4607 return 0;
4609 dest = SET_DEST (set);
4611 /* Look for direct modifications of the stack pointer. */
4612 if (REG_P (dest) && REGNO (dest) == STACK_POINTER_REGNUM)
4614 /* Look for a trivial adjustment, otherwise assume nothing. */
4615 /* Note that the SPU restore_stack_block pattern refers to
4616 the stack pointer in V4SImode. Consider that non-trivial. */
4617 poly_int64 offset;
4618 if (SCALAR_INT_MODE_P (GET_MODE (dest))
4619 && strip_offset (SET_SRC (set), &offset) == stack_pointer_rtx)
4620 return offset;
4621 /* ??? Reload can generate no-op moves, which will be cleaned
4622 up later. Recognize it and continue searching. */
4623 else if (rtx_equal_p (dest, SET_SRC (set)))
4624 return 0;
4625 else
4626 return HOST_WIDE_INT_MIN;
4628 else
4630 rtx mem, addr;
4632 /* Otherwise only think about autoinc patterns. */
4633 if (mem_autoinc_base (dest) == stack_pointer_rtx)
4635 mem = dest;
4636 gcc_checking_assert (mem_autoinc_base (SET_SRC (set))
4637 != stack_pointer_rtx);
4639 else if (mem_autoinc_base (SET_SRC (set)) == stack_pointer_rtx)
4640 mem = SET_SRC (set);
4641 else
4642 return 0;
4644 addr = XEXP (mem, 0);
4645 switch (GET_CODE (addr))
4647 case PRE_INC:
4648 case POST_INC:
4649 return GET_MODE_SIZE (GET_MODE (mem));
4650 case PRE_DEC:
4651 case POST_DEC:
4652 return -GET_MODE_SIZE (GET_MODE (mem));
4653 case PRE_MODIFY:
4654 case POST_MODIFY:
4655 addr = XEXP (addr, 1);
4656 gcc_assert (GET_CODE (addr) == PLUS);
4657 gcc_assert (XEXP (addr, 0) == stack_pointer_rtx);
4658 return rtx_to_poly_int64 (XEXP (addr, 1));
4659 default:
4660 gcc_unreachable ();
4665 poly_int64
4666 fixup_args_size_notes (rtx_insn *prev, rtx_insn *last,
4667 poly_int64 end_args_size)
4669 poly_int64 args_size = end_args_size;
4670 bool saw_unknown = false;
4671 rtx_insn *insn;
4673 for (insn = last; insn != prev; insn = PREV_INSN (insn))
4675 if (!NONDEBUG_INSN_P (insn))
4676 continue;
4678 /* We might have existing REG_ARGS_SIZE notes, e.g. when pushing
4679 a call argument containing a TLS address that itself requires
4680 a call to __tls_get_addr. The handling of stack_pointer_delta
4681 in emit_single_push_insn is supposed to ensure that any such
4682 notes are already correct. */
4683 rtx note = find_reg_note (insn, REG_ARGS_SIZE, NULL_RTX);
4684 gcc_assert (!note || known_eq (args_size, get_args_size (note)));
4686 poly_int64 this_delta = find_args_size_adjust (insn);
4687 if (known_eq (this_delta, 0))
4689 if (!CALL_P (insn)
4690 || ACCUMULATE_OUTGOING_ARGS
4691 || find_reg_note (insn, REG_NORETURN, NULL_RTX) == NULL_RTX)
4692 continue;
4695 gcc_assert (!saw_unknown);
4696 if (known_eq (this_delta, HOST_WIDE_INT_MIN))
4697 saw_unknown = true;
4699 if (!note)
4700 add_args_size_note (insn, args_size);
4701 if (STACK_GROWS_DOWNWARD)
4702 this_delta = -poly_uint64 (this_delta);
4704 if (saw_unknown)
4705 args_size = HOST_WIDE_INT_MIN;
4706 else
4707 args_size -= this_delta;
4710 return args_size;
4713 #ifdef PUSH_ROUNDING
4714 /* Emit single push insn. */
4716 static void
4717 emit_single_push_insn_1 (machine_mode mode, rtx x, tree type)
4719 rtx dest_addr;
4720 poly_int64 rounded_size = PUSH_ROUNDING (GET_MODE_SIZE (mode));
4721 rtx dest;
4722 enum insn_code icode;
4724 /* If there is push pattern, use it. Otherwise try old way of throwing
4725 MEM representing push operation to move expander. */
4726 icode = optab_handler (push_optab, mode);
4727 if (icode != CODE_FOR_nothing)
4729 class expand_operand ops[1];
4731 create_input_operand (&ops[0], x, mode);
4732 if (maybe_expand_insn (icode, 1, ops))
4733 return;
4735 if (known_eq (GET_MODE_SIZE (mode), rounded_size))
4736 dest_addr = gen_rtx_fmt_e (STACK_PUSH_CODE, Pmode, stack_pointer_rtx);
4737 /* If we are to pad downward, adjust the stack pointer first and
4738 then store X into the stack location using an offset. This is
4739 because emit_move_insn does not know how to pad; it does not have
4740 access to type. */
4741 else if (targetm.calls.function_arg_padding (mode, type) == PAD_DOWNWARD)
4743 emit_move_insn (stack_pointer_rtx,
4744 expand_binop (Pmode,
4745 STACK_GROWS_DOWNWARD ? sub_optab
4746 : add_optab,
4747 stack_pointer_rtx,
4748 gen_int_mode (rounded_size, Pmode),
4749 NULL_RTX, 0, OPTAB_LIB_WIDEN));
4751 poly_int64 offset = rounded_size - GET_MODE_SIZE (mode);
4752 if (STACK_GROWS_DOWNWARD && STACK_PUSH_CODE == POST_DEC)
4753 /* We have already decremented the stack pointer, so get the
4754 previous value. */
4755 offset += rounded_size;
4757 if (!STACK_GROWS_DOWNWARD && STACK_PUSH_CODE == POST_INC)
4758 /* We have already incremented the stack pointer, so get the
4759 previous value. */
4760 offset -= rounded_size;
4762 dest_addr = plus_constant (Pmode, stack_pointer_rtx, offset);
4764 else
4766 if (STACK_GROWS_DOWNWARD)
4767 /* ??? This seems wrong if STACK_PUSH_CODE == POST_DEC. */
4768 dest_addr = plus_constant (Pmode, stack_pointer_rtx, -rounded_size);
4769 else
4770 /* ??? This seems wrong if STACK_PUSH_CODE == POST_INC. */
4771 dest_addr = plus_constant (Pmode, stack_pointer_rtx, rounded_size);
4773 dest_addr = gen_rtx_PRE_MODIFY (Pmode, stack_pointer_rtx, dest_addr);
4776 dest = gen_rtx_MEM (mode, dest_addr);
4778 if (type != 0)
4780 set_mem_attributes (dest, type, 1);
4782 if (cfun->tail_call_marked)
4783 /* Function incoming arguments may overlap with sibling call
4784 outgoing arguments and we cannot allow reordering of reads
4785 from function arguments with stores to outgoing arguments
4786 of sibling calls. */
4787 set_mem_alias_set (dest, 0);
4789 emit_move_insn (dest, x);
4792 /* Emit and annotate a single push insn. */
4794 static void
4795 emit_single_push_insn (machine_mode mode, rtx x, tree type)
4797 poly_int64 delta, old_delta = stack_pointer_delta;
4798 rtx_insn *prev = get_last_insn ();
4799 rtx_insn *last;
4801 emit_single_push_insn_1 (mode, x, type);
4803 /* Adjust stack_pointer_delta to describe the situation after the push
4804 we just performed. Note that we must do this after the push rather
4805 than before the push in case calculating X needs pushes and pops of
4806 its own (e.g. if calling __tls_get_addr). The REG_ARGS_SIZE notes
4807 for such pushes and pops must not include the effect of the future
4808 push of X. */
4809 stack_pointer_delta += PUSH_ROUNDING (GET_MODE_SIZE (mode));
4811 last = get_last_insn ();
4813 /* Notice the common case where we emitted exactly one insn. */
4814 if (PREV_INSN (last) == prev)
4816 add_args_size_note (last, stack_pointer_delta);
4817 return;
4820 delta = fixup_args_size_notes (prev, last, stack_pointer_delta);
4821 gcc_assert (known_eq (delta, HOST_WIDE_INT_MIN)
4822 || known_eq (delta, old_delta));
4824 #endif
4826 /* If reading SIZE bytes from X will end up reading from
4827 Y return the number of bytes that overlap. Return -1
4828 if there is no overlap or -2 if we can't determine
4829 (for example when X and Y have different base registers). */
4831 static int
4832 memory_load_overlap (rtx x, rtx y, HOST_WIDE_INT size)
4834 rtx tmp = plus_constant (Pmode, x, size);
4835 rtx sub = simplify_gen_binary (MINUS, Pmode, tmp, y);
4837 if (!CONST_INT_P (sub))
4838 return -2;
4840 HOST_WIDE_INT val = INTVAL (sub);
4842 return IN_RANGE (val, 1, size) ? val : -1;
4845 /* Generate code to push X onto the stack, assuming it has mode MODE and
4846 type TYPE.
4847 MODE is redundant except when X is a CONST_INT (since they don't
4848 carry mode info).
4849 SIZE is an rtx for the size of data to be copied (in bytes),
4850 needed only if X is BLKmode.
4851 Return true if successful. May return false if asked to push a
4852 partial argument during a sibcall optimization (as specified by
4853 SIBCALL_P) and the incoming and outgoing pointers cannot be shown
4854 to not overlap.
4856 ALIGN (in bits) is maximum alignment we can assume.
4858 If PARTIAL and REG are both nonzero, then copy that many of the first
4859 bytes of X into registers starting with REG, and push the rest of X.
4860 The amount of space pushed is decreased by PARTIAL bytes.
4861 REG must be a hard register in this case.
4862 If REG is zero but PARTIAL is not, take any all others actions for an
4863 argument partially in registers, but do not actually load any
4864 registers.
4866 EXTRA is the amount in bytes of extra space to leave next to this arg.
4867 This is ignored if an argument block has already been allocated.
4869 On a machine that lacks real push insns, ARGS_ADDR is the address of
4870 the bottom of the argument block for this call. We use indexing off there
4871 to store the arg. On machines with push insns, ARGS_ADDR is 0 when a
4872 argument block has not been preallocated.
4874 ARGS_SO_FAR is the size of args previously pushed for this call.
4876 REG_PARM_STACK_SPACE is nonzero if functions require stack space
4877 for arguments passed in registers. If nonzero, it will be the number
4878 of bytes required. */
4880 bool
4881 emit_push_insn (rtx x, machine_mode mode, tree type, rtx size,
4882 unsigned int align, int partial, rtx reg, poly_int64 extra,
4883 rtx args_addr, rtx args_so_far, int reg_parm_stack_space,
4884 rtx alignment_pad, bool sibcall_p)
4886 rtx xinner;
4887 pad_direction stack_direction
4888 = STACK_GROWS_DOWNWARD ? PAD_DOWNWARD : PAD_UPWARD;
4890 /* Decide where to pad the argument: PAD_DOWNWARD for below,
4891 PAD_UPWARD for above, or PAD_NONE for don't pad it.
4892 Default is below for small data on big-endian machines; else above. */
4893 pad_direction where_pad = targetm.calls.function_arg_padding (mode, type);
4895 /* Invert direction if stack is post-decrement.
4896 FIXME: why? */
4897 if (STACK_PUSH_CODE == POST_DEC)
4898 if (where_pad != PAD_NONE)
4899 where_pad = (where_pad == PAD_DOWNWARD ? PAD_UPWARD : PAD_DOWNWARD);
4901 xinner = x;
4903 int nregs = partial / UNITS_PER_WORD;
4904 rtx *tmp_regs = NULL;
4905 int overlapping = 0;
4907 if (mode == BLKmode
4908 || (STRICT_ALIGNMENT && align < GET_MODE_ALIGNMENT (mode)))
4910 /* Copy a block into the stack, entirely or partially. */
4912 rtx temp;
4913 int used;
4914 int offset;
4915 int skip;
4917 offset = partial % (PARM_BOUNDARY / BITS_PER_UNIT);
4918 used = partial - offset;
4920 if (mode != BLKmode)
4922 /* A value is to be stored in an insufficiently aligned
4923 stack slot; copy via a suitably aligned slot if
4924 necessary. */
4925 size = gen_int_mode (GET_MODE_SIZE (mode), Pmode);
4926 if (!MEM_P (xinner))
4928 temp = assign_temp (type, 1, 1);
4929 emit_move_insn (temp, xinner);
4930 xinner = temp;
4934 gcc_assert (size);
4936 /* USED is now the # of bytes we need not copy to the stack
4937 because registers will take care of them. */
4939 if (partial != 0)
4940 xinner = adjust_address (xinner, BLKmode, used);
4942 /* If the partial register-part of the arg counts in its stack size,
4943 skip the part of stack space corresponding to the registers.
4944 Otherwise, start copying to the beginning of the stack space,
4945 by setting SKIP to 0. */
4946 skip = (reg_parm_stack_space == 0) ? 0 : used;
4948 #ifdef PUSH_ROUNDING
4949 /* NB: Let the backend known the number of bytes to push and
4950 decide if push insns should be generated. */
4951 unsigned int push_size;
4952 if (CONST_INT_P (size))
4953 push_size = INTVAL (size);
4954 else
4955 push_size = 0;
4957 /* Do it with several push insns if that doesn't take lots of insns
4958 and if there is no difficulty with push insns that skip bytes
4959 on the stack for alignment purposes. */
4960 if (args_addr == 0
4961 && targetm.calls.push_argument (push_size)
4962 && CONST_INT_P (size)
4963 && skip == 0
4964 && MEM_ALIGN (xinner) >= align
4965 && can_move_by_pieces ((unsigned) INTVAL (size) - used, align)
4966 /* Here we avoid the case of a structure whose weak alignment
4967 forces many pushes of a small amount of data,
4968 and such small pushes do rounding that causes trouble. */
4969 && ((!targetm.slow_unaligned_access (word_mode, align))
4970 || align >= BIGGEST_ALIGNMENT
4971 || known_eq (PUSH_ROUNDING (align / BITS_PER_UNIT),
4972 align / BITS_PER_UNIT))
4973 && known_eq (PUSH_ROUNDING (INTVAL (size)), INTVAL (size)))
4975 /* Push padding now if padding above and stack grows down,
4976 or if padding below and stack grows up.
4977 But if space already allocated, this has already been done. */
4978 if (maybe_ne (extra, 0)
4979 && args_addr == 0
4980 && where_pad != PAD_NONE
4981 && where_pad != stack_direction)
4982 anti_adjust_stack (gen_int_mode (extra, Pmode));
4984 move_by_pieces (NULL, xinner, INTVAL (size) - used, align,
4985 RETURN_BEGIN);
4987 else
4988 #endif /* PUSH_ROUNDING */
4990 rtx target;
4992 /* Otherwise make space on the stack and copy the data
4993 to the address of that space. */
4995 /* Deduct words put into registers from the size we must copy. */
4996 if (partial != 0)
4998 if (CONST_INT_P (size))
4999 size = GEN_INT (INTVAL (size) - used);
5000 else
5001 size = expand_binop (GET_MODE (size), sub_optab, size,
5002 gen_int_mode (used, GET_MODE (size)),
5003 NULL_RTX, 0, OPTAB_LIB_WIDEN);
5006 /* Get the address of the stack space.
5007 In this case, we do not deal with EXTRA separately.
5008 A single stack adjust will do. */
5009 poly_int64 const_args_so_far;
5010 if (! args_addr)
5012 temp = push_block (size, extra, where_pad == PAD_DOWNWARD);
5013 extra = 0;
5015 else if (poly_int_rtx_p (args_so_far, &const_args_so_far))
5016 temp = memory_address (BLKmode,
5017 plus_constant (Pmode, args_addr,
5018 skip + const_args_so_far));
5019 else
5020 temp = memory_address (BLKmode,
5021 plus_constant (Pmode,
5022 gen_rtx_PLUS (Pmode,
5023 args_addr,
5024 args_so_far),
5025 skip));
5027 if (!ACCUMULATE_OUTGOING_ARGS)
5029 /* If the source is referenced relative to the stack pointer,
5030 copy it to another register to stabilize it. We do not need
5031 to do this if we know that we won't be changing sp. */
5033 if (reg_mentioned_p (virtual_stack_dynamic_rtx, temp)
5034 || reg_mentioned_p (virtual_outgoing_args_rtx, temp))
5035 temp = copy_to_reg (temp);
5038 target = gen_rtx_MEM (BLKmode, temp);
5040 /* We do *not* set_mem_attributes here, because incoming arguments
5041 may overlap with sibling call outgoing arguments and we cannot
5042 allow reordering of reads from function arguments with stores
5043 to outgoing arguments of sibling calls. We do, however, want
5044 to record the alignment of the stack slot. */
5045 /* ALIGN may well be better aligned than TYPE, e.g. due to
5046 PARM_BOUNDARY. Assume the caller isn't lying. */
5047 set_mem_align (target, align);
5049 /* If part should go in registers and pushing to that part would
5050 overwrite some of the values that need to go into regs, load the
5051 overlapping values into temporary pseudos to be moved into the hard
5052 regs at the end after the stack pushing has completed.
5053 We cannot load them directly into the hard regs here because
5054 they can be clobbered by the block move expansions.
5055 See PR 65358. */
5057 if (partial > 0 && reg != 0 && mode == BLKmode
5058 && GET_CODE (reg) != PARALLEL)
5060 overlapping = memory_load_overlap (XEXP (x, 0), temp, partial);
5061 if (overlapping > 0)
5063 gcc_assert (overlapping % UNITS_PER_WORD == 0);
5064 overlapping /= UNITS_PER_WORD;
5066 tmp_regs = XALLOCAVEC (rtx, overlapping);
5068 for (int i = 0; i < overlapping; i++)
5069 tmp_regs[i] = gen_reg_rtx (word_mode);
5071 for (int i = 0; i < overlapping; i++)
5072 emit_move_insn (tmp_regs[i],
5073 operand_subword_force (target, i, mode));
5075 else if (overlapping == -1)
5076 overlapping = 0;
5077 /* Could not determine whether there is overlap.
5078 Fail the sibcall. */
5079 else
5081 overlapping = 0;
5082 if (sibcall_p)
5083 return false;
5087 /* If source is a constant VAR_DECL with a simple constructor,
5088 store the constructor to the stack instead of moving it. */
5089 const_tree decl;
5090 if (partial == 0
5091 && MEM_P (xinner)
5092 && SYMBOL_REF_P (XEXP (xinner, 0))
5093 && (decl = SYMBOL_REF_DECL (XEXP (xinner, 0))) != NULL_TREE
5094 && VAR_P (decl)
5095 && TREE_READONLY (decl)
5096 && !TREE_SIDE_EFFECTS (decl)
5097 && immediate_const_ctor_p (DECL_INITIAL (decl), 2))
5098 store_constructor (DECL_INITIAL (decl), target, 0,
5099 int_expr_size (DECL_INITIAL (decl)), false);
5100 else
5101 emit_block_move (target, xinner, size, BLOCK_OP_CALL_PARM);
5104 else if (partial > 0)
5106 /* Scalar partly in registers. This case is only supported
5107 for fixed-wdth modes. */
5108 int num_words = GET_MODE_SIZE (mode).to_constant ();
5109 num_words /= UNITS_PER_WORD;
5110 int i;
5111 int not_stack;
5112 /* # bytes of start of argument
5113 that we must make space for but need not store. */
5114 int offset = partial % (PARM_BOUNDARY / BITS_PER_UNIT);
5115 int args_offset = INTVAL (args_so_far);
5116 int skip;
5118 /* Push padding now if padding above and stack grows down,
5119 or if padding below and stack grows up.
5120 But if space already allocated, this has already been done. */
5121 if (maybe_ne (extra, 0)
5122 && args_addr == 0
5123 && where_pad != PAD_NONE
5124 && where_pad != stack_direction)
5125 anti_adjust_stack (gen_int_mode (extra, Pmode));
5127 /* If we make space by pushing it, we might as well push
5128 the real data. Otherwise, we can leave OFFSET nonzero
5129 and leave the space uninitialized. */
5130 if (args_addr == 0)
5131 offset = 0;
5133 /* Now NOT_STACK gets the number of words that we don't need to
5134 allocate on the stack. Convert OFFSET to words too. */
5135 not_stack = (partial - offset) / UNITS_PER_WORD;
5136 offset /= UNITS_PER_WORD;
5138 /* If the partial register-part of the arg counts in its stack size,
5139 skip the part of stack space corresponding to the registers.
5140 Otherwise, start copying to the beginning of the stack space,
5141 by setting SKIP to 0. */
5142 skip = (reg_parm_stack_space == 0) ? 0 : not_stack;
5144 if (CONSTANT_P (x) && !targetm.legitimate_constant_p (mode, x))
5145 x = validize_mem (force_const_mem (mode, x));
5147 /* If X is a hard register in a non-integer mode, copy it into a pseudo;
5148 SUBREGs of such registers are not allowed. */
5149 if ((REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER
5150 && GET_MODE_CLASS (GET_MODE (x)) != MODE_INT))
5151 x = copy_to_reg (x);
5153 /* Loop over all the words allocated on the stack for this arg. */
5154 /* We can do it by words, because any scalar bigger than a word
5155 has a size a multiple of a word. */
5156 for (i = num_words - 1; i >= not_stack; i--)
5157 if (i >= not_stack + offset)
5158 if (!emit_push_insn (operand_subword_force (x, i, mode),
5159 word_mode, NULL_TREE, NULL_RTX, align, 0, NULL_RTX,
5160 0, args_addr,
5161 GEN_INT (args_offset + ((i - not_stack + skip)
5162 * UNITS_PER_WORD)),
5163 reg_parm_stack_space, alignment_pad, sibcall_p))
5164 return false;
5166 else
5168 rtx addr;
5169 rtx dest;
5171 /* Push padding now if padding above and stack grows down,
5172 or if padding below and stack grows up.
5173 But if space already allocated, this has already been done. */
5174 if (maybe_ne (extra, 0)
5175 && args_addr == 0
5176 && where_pad != PAD_NONE
5177 && where_pad != stack_direction)
5178 anti_adjust_stack (gen_int_mode (extra, Pmode));
5180 #ifdef PUSH_ROUNDING
5181 if (args_addr == 0 && targetm.calls.push_argument (0))
5182 emit_single_push_insn (mode, x, type);
5183 else
5184 #endif
5186 addr = simplify_gen_binary (PLUS, Pmode, args_addr, args_so_far);
5187 dest = gen_rtx_MEM (mode, memory_address (mode, addr));
5189 /* We do *not* set_mem_attributes here, because incoming arguments
5190 may overlap with sibling call outgoing arguments and we cannot
5191 allow reordering of reads from function arguments with stores
5192 to outgoing arguments of sibling calls. We do, however, want
5193 to record the alignment of the stack slot. */
5194 /* ALIGN may well be better aligned than TYPE, e.g. due to
5195 PARM_BOUNDARY. Assume the caller isn't lying. */
5196 set_mem_align (dest, align);
5198 emit_move_insn (dest, x);
5202 /* Move the partial arguments into the registers and any overlapping
5203 values that we moved into the pseudos in tmp_regs. */
5204 if (partial > 0 && reg != 0)
5206 /* Handle calls that pass values in multiple non-contiguous locations.
5207 The Irix 6 ABI has examples of this. */
5208 if (GET_CODE (reg) == PARALLEL)
5209 emit_group_load (reg, x, type, -1);
5210 else
5212 gcc_assert (partial % UNITS_PER_WORD == 0);
5213 move_block_to_reg (REGNO (reg), x, nregs - overlapping, mode);
5215 for (int i = 0; i < overlapping; i++)
5216 emit_move_insn (gen_rtx_REG (word_mode, REGNO (reg)
5217 + nregs - overlapping + i),
5218 tmp_regs[i]);
5223 if (maybe_ne (extra, 0) && args_addr == 0 && where_pad == stack_direction)
5224 anti_adjust_stack (gen_int_mode (extra, Pmode));
5226 if (alignment_pad && args_addr == 0)
5227 anti_adjust_stack (alignment_pad);
5229 return true;
5232 /* Return X if X can be used as a subtarget in a sequence of arithmetic
5233 operations. */
5235 static rtx
5236 get_subtarget (rtx x)
5238 return (optimize
5239 || x == 0
5240 /* Only registers can be subtargets. */
5241 || !REG_P (x)
5242 /* Don't use hard regs to avoid extending their life. */
5243 || REGNO (x) < FIRST_PSEUDO_REGISTER
5244 ? 0 : x);
5247 /* A subroutine of expand_assignment. Optimize FIELD op= VAL, where
5248 FIELD is a bitfield. Returns true if the optimization was successful,
5249 and there's nothing else to do. */
5251 static bool
5252 optimize_bitfield_assignment_op (poly_uint64 pbitsize,
5253 poly_uint64 pbitpos,
5254 poly_uint64 pbitregion_start,
5255 poly_uint64 pbitregion_end,
5256 machine_mode mode1, rtx str_rtx,
5257 tree to, tree src, bool reverse)
5259 /* str_mode is not guaranteed to be a scalar type. */
5260 machine_mode str_mode = GET_MODE (str_rtx);
5261 unsigned int str_bitsize;
5262 tree op0, op1;
5263 rtx value, result;
5264 optab binop;
5265 gimple *srcstmt;
5266 enum tree_code code;
5268 unsigned HOST_WIDE_INT bitsize, bitpos, bitregion_start, bitregion_end;
5269 if (mode1 != VOIDmode
5270 || !pbitsize.is_constant (&bitsize)
5271 || !pbitpos.is_constant (&bitpos)
5272 || !pbitregion_start.is_constant (&bitregion_start)
5273 || !pbitregion_end.is_constant (&bitregion_end)
5274 || bitsize >= BITS_PER_WORD
5275 || !GET_MODE_BITSIZE (str_mode).is_constant (&str_bitsize)
5276 || str_bitsize > BITS_PER_WORD
5277 || TREE_SIDE_EFFECTS (to)
5278 || TREE_THIS_VOLATILE (to))
5279 return false;
5281 STRIP_NOPS (src);
5282 if (TREE_CODE (src) != SSA_NAME)
5283 return false;
5284 if (TREE_CODE (TREE_TYPE (src)) != INTEGER_TYPE)
5285 return false;
5287 srcstmt = get_gimple_for_ssa_name (src);
5288 if (!srcstmt
5289 || TREE_CODE_CLASS (gimple_assign_rhs_code (srcstmt)) != tcc_binary)
5290 return false;
5292 code = gimple_assign_rhs_code (srcstmt);
5294 op0 = gimple_assign_rhs1 (srcstmt);
5296 /* If OP0 is an SSA_NAME, then we want to walk the use-def chain
5297 to find its initialization. Hopefully the initialization will
5298 be from a bitfield load. */
5299 if (TREE_CODE (op0) == SSA_NAME)
5301 gimple *op0stmt = get_gimple_for_ssa_name (op0);
5303 /* We want to eventually have OP0 be the same as TO, which
5304 should be a bitfield. */
5305 if (!op0stmt
5306 || !is_gimple_assign (op0stmt)
5307 || gimple_assign_rhs_code (op0stmt) != TREE_CODE (to))
5308 return false;
5309 op0 = gimple_assign_rhs1 (op0stmt);
5312 op1 = gimple_assign_rhs2 (srcstmt);
5314 if (!operand_equal_p (to, op0, 0))
5315 return false;
5317 if (MEM_P (str_rtx))
5319 unsigned HOST_WIDE_INT offset1;
5321 if (str_bitsize == 0 || str_bitsize > BITS_PER_WORD)
5322 str_bitsize = BITS_PER_WORD;
5324 scalar_int_mode best_mode;
5325 if (!get_best_mode (bitsize, bitpos, bitregion_start, bitregion_end,
5326 MEM_ALIGN (str_rtx), str_bitsize, false, &best_mode))
5327 return false;
5328 str_mode = best_mode;
5329 str_bitsize = GET_MODE_BITSIZE (best_mode);
5331 offset1 = bitpos;
5332 bitpos %= str_bitsize;
5333 offset1 = (offset1 - bitpos) / BITS_PER_UNIT;
5334 str_rtx = adjust_address (str_rtx, str_mode, offset1);
5336 else if (!REG_P (str_rtx) && GET_CODE (str_rtx) != SUBREG)
5337 return false;
5339 /* If the bit field covers the whole REG/MEM, store_field
5340 will likely generate better code. */
5341 if (bitsize >= str_bitsize)
5342 return false;
5344 /* We can't handle fields split across multiple entities. */
5345 if (bitpos + bitsize > str_bitsize)
5346 return false;
5348 if (reverse ? !BYTES_BIG_ENDIAN : BYTES_BIG_ENDIAN)
5349 bitpos = str_bitsize - bitpos - bitsize;
5351 switch (code)
5353 case PLUS_EXPR:
5354 case MINUS_EXPR:
5355 /* For now, just optimize the case of the topmost bitfield
5356 where we don't need to do any masking and also
5357 1 bit bitfields where xor can be used.
5358 We might win by one instruction for the other bitfields
5359 too if insv/extv instructions aren't used, so that
5360 can be added later. */
5361 if ((reverse || bitpos + bitsize != str_bitsize)
5362 && (bitsize != 1 || TREE_CODE (op1) != INTEGER_CST))
5363 break;
5365 value = expand_expr (op1, NULL_RTX, str_mode, EXPAND_NORMAL);
5366 value = convert_modes (str_mode,
5367 TYPE_MODE (TREE_TYPE (op1)), value,
5368 TYPE_UNSIGNED (TREE_TYPE (op1)));
5370 /* We may be accessing data outside the field, which means
5371 we can alias adjacent data. */
5372 if (MEM_P (str_rtx))
5374 str_rtx = shallow_copy_rtx (str_rtx);
5375 set_mem_alias_set (str_rtx, 0);
5376 set_mem_expr (str_rtx, 0);
5379 if (bitsize == 1 && (reverse || bitpos + bitsize != str_bitsize))
5381 value = expand_and (str_mode, value, const1_rtx, NULL);
5382 binop = xor_optab;
5384 else
5385 binop = code == PLUS_EXPR ? add_optab : sub_optab;
5387 value = expand_shift (LSHIFT_EXPR, str_mode, value, bitpos, NULL_RTX, 1);
5388 if (reverse)
5389 value = flip_storage_order (str_mode, value);
5390 result = expand_binop (str_mode, binop, str_rtx,
5391 value, str_rtx, 1, OPTAB_WIDEN);
5392 if (result != str_rtx)
5393 emit_move_insn (str_rtx, result);
5394 return true;
5396 case BIT_IOR_EXPR:
5397 case BIT_XOR_EXPR:
5398 if (TREE_CODE (op1) != INTEGER_CST)
5399 break;
5400 value = expand_expr (op1, NULL_RTX, str_mode, EXPAND_NORMAL);
5401 value = convert_modes (str_mode,
5402 TYPE_MODE (TREE_TYPE (op1)), value,
5403 TYPE_UNSIGNED (TREE_TYPE (op1)));
5405 /* We may be accessing data outside the field, which means
5406 we can alias adjacent data. */
5407 if (MEM_P (str_rtx))
5409 str_rtx = shallow_copy_rtx (str_rtx);
5410 set_mem_alias_set (str_rtx, 0);
5411 set_mem_expr (str_rtx, 0);
5414 binop = code == BIT_IOR_EXPR ? ior_optab : xor_optab;
5415 if (bitpos + bitsize != str_bitsize)
5417 rtx mask = gen_int_mode ((HOST_WIDE_INT_1U << bitsize) - 1,
5418 str_mode);
5419 value = expand_and (str_mode, value, mask, NULL_RTX);
5421 value = expand_shift (LSHIFT_EXPR, str_mode, value, bitpos, NULL_RTX, 1);
5422 if (reverse)
5423 value = flip_storage_order (str_mode, value);
5424 result = expand_binop (str_mode, binop, str_rtx,
5425 value, str_rtx, 1, OPTAB_WIDEN);
5426 if (result != str_rtx)
5427 emit_move_insn (str_rtx, result);
5428 return true;
5430 default:
5431 break;
5434 return false;
5437 /* In the C++ memory model, consecutive bit fields in a structure are
5438 considered one memory location.
5440 Given a COMPONENT_REF EXP at position (BITPOS, OFFSET), this function
5441 returns the bit range of consecutive bits in which this COMPONENT_REF
5442 belongs. The values are returned in *BITSTART and *BITEND. *BITPOS
5443 and *OFFSET may be adjusted in the process.
5445 If the access does not need to be restricted, 0 is returned in both
5446 *BITSTART and *BITEND. */
5448 void
5449 get_bit_range (poly_uint64_pod *bitstart, poly_uint64_pod *bitend, tree exp,
5450 poly_int64_pod *bitpos, tree *offset)
5452 poly_int64 bitoffset;
5453 tree field, repr;
5455 gcc_assert (TREE_CODE (exp) == COMPONENT_REF);
5457 field = TREE_OPERAND (exp, 1);
5458 repr = DECL_BIT_FIELD_REPRESENTATIVE (field);
5459 /* If we do not have a DECL_BIT_FIELD_REPRESENTATIVE there is no
5460 need to limit the range we can access. */
5461 if (!repr)
5463 *bitstart = *bitend = 0;
5464 return;
5467 /* If we have a DECL_BIT_FIELD_REPRESENTATIVE but the enclosing record is
5468 part of a larger bit field, then the representative does not serve any
5469 useful purpose. This can occur in Ada. */
5470 if (handled_component_p (TREE_OPERAND (exp, 0)))
5472 machine_mode rmode;
5473 poly_int64 rbitsize, rbitpos;
5474 tree roffset;
5475 int unsignedp, reversep, volatilep = 0;
5476 get_inner_reference (TREE_OPERAND (exp, 0), &rbitsize, &rbitpos,
5477 &roffset, &rmode, &unsignedp, &reversep,
5478 &volatilep);
5479 if (!multiple_p (rbitpos, BITS_PER_UNIT))
5481 *bitstart = *bitend = 0;
5482 return;
5486 /* Compute the adjustment to bitpos from the offset of the field
5487 relative to the representative. DECL_FIELD_OFFSET of field and
5488 repr are the same by construction if they are not constants,
5489 see finish_bitfield_layout. */
5490 poly_uint64 field_offset, repr_offset;
5491 if (poly_int_tree_p (DECL_FIELD_OFFSET (field), &field_offset)
5492 && poly_int_tree_p (DECL_FIELD_OFFSET (repr), &repr_offset))
5493 bitoffset = (field_offset - repr_offset) * BITS_PER_UNIT;
5494 else
5495 bitoffset = 0;
5496 bitoffset += (tree_to_uhwi (DECL_FIELD_BIT_OFFSET (field))
5497 - tree_to_uhwi (DECL_FIELD_BIT_OFFSET (repr)));
5499 /* If the adjustment is larger than bitpos, we would have a negative bit
5500 position for the lower bound and this may wreak havoc later. Adjust
5501 offset and bitpos to make the lower bound non-negative in that case. */
5502 if (maybe_gt (bitoffset, *bitpos))
5504 poly_int64 adjust_bits = upper_bound (bitoffset, *bitpos) - *bitpos;
5505 poly_int64 adjust_bytes = exact_div (adjust_bits, BITS_PER_UNIT);
5507 *bitpos += adjust_bits;
5508 if (*offset == NULL_TREE)
5509 *offset = size_int (-adjust_bytes);
5510 else
5511 *offset = size_binop (MINUS_EXPR, *offset, size_int (adjust_bytes));
5512 *bitstart = 0;
5514 else
5515 *bitstart = *bitpos - bitoffset;
5517 *bitend = *bitstart + tree_to_poly_uint64 (DECL_SIZE (repr)) - 1;
5520 /* Returns true if BASE is a DECL that does not reside in memory and
5521 has non-BLKmode. DECL_RTL must not be a MEM; if
5522 DECL_RTL was not set yet, return false. */
5524 bool
5525 non_mem_decl_p (tree base)
5527 if (!DECL_P (base)
5528 || TREE_ADDRESSABLE (base)
5529 || DECL_MODE (base) == BLKmode)
5530 return false;
5532 if (!DECL_RTL_SET_P (base))
5533 return false;
5535 return (!MEM_P (DECL_RTL (base)));
5538 /* Returns true if REF refers to an object that does not
5539 reside in memory and has non-BLKmode. */
5541 bool
5542 mem_ref_refers_to_non_mem_p (tree ref)
5544 tree base;
5546 if (TREE_CODE (ref) == MEM_REF
5547 || TREE_CODE (ref) == TARGET_MEM_REF)
5549 tree addr = TREE_OPERAND (ref, 0);
5551 if (TREE_CODE (addr) != ADDR_EXPR)
5552 return false;
5554 base = TREE_OPERAND (addr, 0);
5556 else
5557 base = ref;
5559 return non_mem_decl_p (base);
5562 /* Expand an assignment that stores the value of FROM into TO. If NONTEMPORAL
5563 is true, try generating a nontemporal store. */
5565 void
5566 expand_assignment (tree to, tree from, bool nontemporal)
5568 rtx to_rtx = 0;
5569 rtx result;
5570 machine_mode mode;
5571 unsigned int align;
5572 enum insn_code icode;
5574 /* Don't crash if the lhs of the assignment was erroneous. */
5575 if (TREE_CODE (to) == ERROR_MARK)
5577 expand_normal (from);
5578 return;
5581 /* Optimize away no-op moves without side-effects. */
5582 if (operand_equal_p (to, from, 0))
5583 return;
5585 /* Handle misaligned stores. */
5586 mode = TYPE_MODE (TREE_TYPE (to));
5587 if ((TREE_CODE (to) == MEM_REF
5588 || TREE_CODE (to) == TARGET_MEM_REF
5589 || DECL_P (to))
5590 && mode != BLKmode
5591 && !mem_ref_refers_to_non_mem_p (to)
5592 && ((align = get_object_alignment (to))
5593 < GET_MODE_ALIGNMENT (mode))
5594 && (((icode = optab_handler (movmisalign_optab, mode))
5595 != CODE_FOR_nothing)
5596 || targetm.slow_unaligned_access (mode, align)))
5598 rtx reg, mem;
5600 reg = expand_expr (from, NULL_RTX, VOIDmode, EXPAND_NORMAL);
5601 /* Handle PARALLEL. */
5602 reg = maybe_emit_group_store (reg, TREE_TYPE (from));
5603 reg = force_not_mem (reg);
5604 mem = expand_expr (to, NULL_RTX, VOIDmode, EXPAND_WRITE);
5605 if (TREE_CODE (to) == MEM_REF && REF_REVERSE_STORAGE_ORDER (to))
5606 reg = flip_storage_order (mode, reg);
5608 if (icode != CODE_FOR_nothing)
5610 class expand_operand ops[2];
5612 create_fixed_operand (&ops[0], mem);
5613 create_input_operand (&ops[1], reg, mode);
5614 /* The movmisalign<mode> pattern cannot fail, else the assignment
5615 would silently be omitted. */
5616 expand_insn (icode, 2, ops);
5618 else
5619 store_bit_field (mem, GET_MODE_BITSIZE (mode), 0, 0, 0, mode, reg,
5620 false, false);
5621 return;
5624 /* Assignment of a structure component needs special treatment
5625 if the structure component's rtx is not simply a MEM.
5626 Assignment of an array element at a constant index, and assignment of
5627 an array element in an unaligned packed structure field, has the same
5628 problem. Same for (partially) storing into a non-memory object. */
5629 if (handled_component_p (to)
5630 || (TREE_CODE (to) == MEM_REF
5631 && (REF_REVERSE_STORAGE_ORDER (to)
5632 || mem_ref_refers_to_non_mem_p (to)))
5633 || TREE_CODE (TREE_TYPE (to)) == ARRAY_TYPE)
5635 machine_mode mode1;
5636 poly_int64 bitsize, bitpos;
5637 poly_uint64 bitregion_start = 0;
5638 poly_uint64 bitregion_end = 0;
5639 tree offset;
5640 int unsignedp, reversep, volatilep = 0;
5641 tree tem;
5643 push_temp_slots ();
5644 tem = get_inner_reference (to, &bitsize, &bitpos, &offset, &mode1,
5645 &unsignedp, &reversep, &volatilep);
5647 /* Make sure bitpos is not negative, it can wreak havoc later. */
5648 if (maybe_lt (bitpos, 0))
5650 gcc_assert (offset == NULL_TREE);
5651 offset = size_int (bits_to_bytes_round_down (bitpos));
5652 bitpos = num_trailing_bits (bitpos);
5655 if (TREE_CODE (to) == COMPONENT_REF
5656 && DECL_BIT_FIELD_TYPE (TREE_OPERAND (to, 1)))
5657 get_bit_range (&bitregion_start, &bitregion_end, to, &bitpos, &offset);
5658 /* The C++ memory model naturally applies to byte-aligned fields.
5659 However, if we do not have a DECL_BIT_FIELD_TYPE but BITPOS or
5660 BITSIZE are not byte-aligned, there is no need to limit the range
5661 we can access. This can occur with packed structures in Ada. */
5662 else if (maybe_gt (bitsize, 0)
5663 && multiple_p (bitsize, BITS_PER_UNIT)
5664 && multiple_p (bitpos, BITS_PER_UNIT))
5666 bitregion_start = bitpos;
5667 bitregion_end = bitpos + bitsize - 1;
5670 to_rtx = expand_expr (tem, NULL_RTX, VOIDmode, EXPAND_WRITE);
5672 /* If the field has a mode, we want to access it in the
5673 field's mode, not the computed mode.
5674 If a MEM has VOIDmode (external with incomplete type),
5675 use BLKmode for it instead. */
5676 if (MEM_P (to_rtx))
5678 if (mode1 != VOIDmode)
5679 to_rtx = adjust_address (to_rtx, mode1, 0);
5680 else if (GET_MODE (to_rtx) == VOIDmode)
5681 to_rtx = adjust_address (to_rtx, BLKmode, 0);
5684 if (offset != 0)
5686 machine_mode address_mode;
5687 rtx offset_rtx;
5689 if (!MEM_P (to_rtx))
5691 /* We can get constant negative offsets into arrays with broken
5692 user code. Translate this to a trap instead of ICEing. */
5693 gcc_assert (TREE_CODE (offset) == INTEGER_CST);
5694 expand_builtin_trap ();
5695 to_rtx = gen_rtx_MEM (BLKmode, const0_rtx);
5698 offset_rtx = expand_expr (offset, NULL_RTX, VOIDmode, EXPAND_SUM);
5699 address_mode = get_address_mode (to_rtx);
5700 if (GET_MODE (offset_rtx) != address_mode)
5702 /* We cannot be sure that the RTL in offset_rtx is valid outside
5703 of a memory address context, so force it into a register
5704 before attempting to convert it to the desired mode. */
5705 offset_rtx = force_operand (offset_rtx, NULL_RTX);
5706 offset_rtx = convert_to_mode (address_mode, offset_rtx, 0);
5709 /* If we have an expression in OFFSET_RTX and a non-zero
5710 byte offset in BITPOS, adding the byte offset before the
5711 OFFSET_RTX results in better intermediate code, which makes
5712 later rtl optimization passes perform better.
5714 We prefer intermediate code like this:
5716 r124:DI=r123:DI+0x18
5717 [r124:DI]=r121:DI
5719 ... instead of ...
5721 r124:DI=r123:DI+0x10
5722 [r124:DI+0x8]=r121:DI
5724 This is only done for aligned data values, as these can
5725 be expected to result in single move instructions. */
5726 poly_int64 bytepos;
5727 if (mode1 != VOIDmode
5728 && maybe_ne (bitpos, 0)
5729 && maybe_gt (bitsize, 0)
5730 && multiple_p (bitpos, BITS_PER_UNIT, &bytepos)
5731 && multiple_p (bitpos, bitsize)
5732 && multiple_p (bitsize, GET_MODE_ALIGNMENT (mode1))
5733 && MEM_ALIGN (to_rtx) >= GET_MODE_ALIGNMENT (mode1))
5735 to_rtx = adjust_address (to_rtx, mode1, bytepos);
5736 bitregion_start = 0;
5737 if (known_ge (bitregion_end, poly_uint64 (bitpos)))
5738 bitregion_end -= bitpos;
5739 bitpos = 0;
5742 to_rtx = offset_address (to_rtx, offset_rtx,
5743 highest_pow2_factor_for_target (to,
5744 offset));
5747 /* No action is needed if the target is not a memory and the field
5748 lies completely outside that target. This can occur if the source
5749 code contains an out-of-bounds access to a small array. */
5750 if (!MEM_P (to_rtx)
5751 && GET_MODE (to_rtx) != BLKmode
5752 && known_ge (bitpos, GET_MODE_PRECISION (GET_MODE (to_rtx))))
5754 expand_normal (from);
5755 result = NULL;
5757 /* Handle expand_expr of a complex value returning a CONCAT. */
5758 else if (GET_CODE (to_rtx) == CONCAT)
5760 machine_mode to_mode = GET_MODE (to_rtx);
5761 gcc_checking_assert (COMPLEX_MODE_P (to_mode));
5762 poly_int64 mode_bitsize = GET_MODE_BITSIZE (to_mode);
5763 unsigned short inner_bitsize = GET_MODE_UNIT_BITSIZE (to_mode);
5764 if (TYPE_MODE (TREE_TYPE (from)) == to_mode
5765 && known_eq (bitpos, 0)
5766 && known_eq (bitsize, mode_bitsize))
5767 result = store_expr (from, to_rtx, false, nontemporal, reversep);
5768 else if (TYPE_MODE (TREE_TYPE (from)) == GET_MODE_INNER (to_mode)
5769 && known_eq (bitsize, inner_bitsize)
5770 && (known_eq (bitpos, 0)
5771 || known_eq (bitpos, inner_bitsize)))
5772 result = store_expr (from, XEXP (to_rtx, maybe_ne (bitpos, 0)),
5773 false, nontemporal, reversep);
5774 else if (known_le (bitpos + bitsize, inner_bitsize))
5775 result = store_field (XEXP (to_rtx, 0), bitsize, bitpos,
5776 bitregion_start, bitregion_end,
5777 mode1, from, get_alias_set (to),
5778 nontemporal, reversep);
5779 else if (known_ge (bitpos, inner_bitsize))
5780 result = store_field (XEXP (to_rtx, 1), bitsize,
5781 bitpos - inner_bitsize,
5782 bitregion_start, bitregion_end,
5783 mode1, from, get_alias_set (to),
5784 nontemporal, reversep);
5785 else if (known_eq (bitpos, 0) && known_eq (bitsize, mode_bitsize))
5787 result = expand_normal (from);
5788 if (GET_CODE (result) == CONCAT)
5790 to_mode = GET_MODE_INNER (to_mode);
5791 machine_mode from_mode = GET_MODE_INNER (GET_MODE (result));
5792 rtx from_real
5793 = simplify_gen_subreg (to_mode, XEXP (result, 0),
5794 from_mode, 0);
5795 rtx from_imag
5796 = simplify_gen_subreg (to_mode, XEXP (result, 1),
5797 from_mode, 0);
5798 if (!from_real || !from_imag)
5799 goto concat_store_slow;
5800 emit_move_insn (XEXP (to_rtx, 0), from_real);
5801 emit_move_insn (XEXP (to_rtx, 1), from_imag);
5803 else
5805 machine_mode from_mode
5806 = GET_MODE (result) == VOIDmode
5807 ? TYPE_MODE (TREE_TYPE (from))
5808 : GET_MODE (result);
5809 rtx from_rtx;
5810 if (MEM_P (result))
5811 from_rtx = change_address (result, to_mode, NULL_RTX);
5812 else
5813 from_rtx
5814 = simplify_gen_subreg (to_mode, result, from_mode, 0);
5815 if (from_rtx)
5817 emit_move_insn (XEXP (to_rtx, 0),
5818 read_complex_part (from_rtx, false));
5819 emit_move_insn (XEXP (to_rtx, 1),
5820 read_complex_part (from_rtx, true));
5822 else
5824 to_mode = GET_MODE_INNER (to_mode);
5825 rtx from_real
5826 = simplify_gen_subreg (to_mode, result, from_mode, 0);
5827 rtx from_imag
5828 = simplify_gen_subreg (to_mode, result, from_mode,
5829 GET_MODE_SIZE (to_mode));
5830 if (!from_real || !from_imag)
5831 goto concat_store_slow;
5832 emit_move_insn (XEXP (to_rtx, 0), from_real);
5833 emit_move_insn (XEXP (to_rtx, 1), from_imag);
5837 else
5839 concat_store_slow:;
5840 rtx temp = assign_stack_temp (GET_MODE (to_rtx),
5841 GET_MODE_SIZE (GET_MODE (to_rtx)));
5842 write_complex_part (temp, XEXP (to_rtx, 0), false, true);
5843 write_complex_part (temp, XEXP (to_rtx, 1), true, false);
5844 result = store_field (temp, bitsize, bitpos,
5845 bitregion_start, bitregion_end,
5846 mode1, from, get_alias_set (to),
5847 nontemporal, reversep);
5848 emit_move_insn (XEXP (to_rtx, 0), read_complex_part (temp, false));
5849 emit_move_insn (XEXP (to_rtx, 1), read_complex_part (temp, true));
5852 /* For calls to functions returning variable length structures, if TO_RTX
5853 is not a MEM, go through a MEM because we must not create temporaries
5854 of the VLA type. */
5855 else if (!MEM_P (to_rtx)
5856 && TREE_CODE (from) == CALL_EXPR
5857 && COMPLETE_TYPE_P (TREE_TYPE (from))
5858 && TREE_CODE (TYPE_SIZE (TREE_TYPE (from))) != INTEGER_CST)
5860 rtx temp = assign_stack_temp (GET_MODE (to_rtx),
5861 GET_MODE_SIZE (GET_MODE (to_rtx)));
5862 result = store_field (temp, bitsize, bitpos, bitregion_start,
5863 bitregion_end, mode1, from, get_alias_set (to),
5864 nontemporal, reversep);
5865 emit_move_insn (to_rtx, temp);
5867 else
5869 if (MEM_P (to_rtx))
5871 /* If the field is at offset zero, we could have been given the
5872 DECL_RTX of the parent struct. Don't munge it. */
5873 to_rtx = shallow_copy_rtx (to_rtx);
5874 set_mem_attributes_minus_bitpos (to_rtx, to, 0, bitpos);
5875 if (volatilep)
5876 MEM_VOLATILE_P (to_rtx) = 1;
5879 gcc_checking_assert (known_ge (bitpos, 0));
5880 if (optimize_bitfield_assignment_op (bitsize, bitpos,
5881 bitregion_start, bitregion_end,
5882 mode1, to_rtx, to, from,
5883 reversep))
5884 result = NULL;
5885 else if (SUBREG_P (to_rtx)
5886 && SUBREG_PROMOTED_VAR_P (to_rtx))
5888 /* If to_rtx is a promoted subreg, we need to zero or sign
5889 extend the value afterwards. */
5890 if (TREE_CODE (to) == MEM_REF
5891 && TYPE_MODE (TREE_TYPE (from)) != BLKmode
5892 && !REF_REVERSE_STORAGE_ORDER (to)
5893 && known_eq (bitpos, 0)
5894 && known_eq (bitsize, GET_MODE_BITSIZE (GET_MODE (to_rtx))))
5895 result = store_expr (from, to_rtx, 0, nontemporal, false);
5896 else
5898 rtx to_rtx1
5899 = lowpart_subreg (subreg_unpromoted_mode (to_rtx),
5900 SUBREG_REG (to_rtx),
5901 subreg_promoted_mode (to_rtx));
5902 result = store_field (to_rtx1, bitsize, bitpos,
5903 bitregion_start, bitregion_end,
5904 mode1, from, get_alias_set (to),
5905 nontemporal, reversep);
5906 convert_move (SUBREG_REG (to_rtx), to_rtx1,
5907 SUBREG_PROMOTED_SIGN (to_rtx));
5910 else
5911 result = store_field (to_rtx, bitsize, bitpos,
5912 bitregion_start, bitregion_end,
5913 mode1, from, get_alias_set (to),
5914 nontemporal, reversep);
5917 if (result)
5918 preserve_temp_slots (result);
5919 pop_temp_slots ();
5920 return;
5923 /* If the rhs is a function call and its value is not an aggregate,
5924 call the function before we start to compute the lhs.
5925 This is needed for correct code for cases such as
5926 val = setjmp (buf) on machines where reference to val
5927 requires loading up part of an address in a separate insn.
5929 Don't do this if TO is a VAR_DECL or PARM_DECL whose DECL_RTL is REG
5930 since it might be a promoted variable where the zero- or sign- extension
5931 needs to be done. Handling this in the normal way is safe because no
5932 computation is done before the call. The same is true for SSA names. */
5933 if (TREE_CODE (from) == CALL_EXPR && ! aggregate_value_p (from, from)
5934 && COMPLETE_TYPE_P (TREE_TYPE (from))
5935 && TREE_CODE (TYPE_SIZE (TREE_TYPE (from))) == INTEGER_CST
5936 && ! (((VAR_P (to)
5937 || TREE_CODE (to) == PARM_DECL
5938 || TREE_CODE (to) == RESULT_DECL)
5939 && REG_P (DECL_RTL (to)))
5940 || TREE_CODE (to) == SSA_NAME))
5942 rtx value;
5944 push_temp_slots ();
5945 value = expand_normal (from);
5947 if (to_rtx == 0)
5948 to_rtx = expand_expr (to, NULL_RTX, VOIDmode, EXPAND_WRITE);
5950 /* Handle calls that return values in multiple non-contiguous locations.
5951 The Irix 6 ABI has examples of this. */
5952 if (GET_CODE (to_rtx) == PARALLEL)
5954 if (GET_CODE (value) == PARALLEL)
5955 emit_group_move (to_rtx, value);
5956 else
5957 emit_group_load (to_rtx, value, TREE_TYPE (from),
5958 int_size_in_bytes (TREE_TYPE (from)));
5960 else if (GET_CODE (value) == PARALLEL)
5961 emit_group_store (to_rtx, value, TREE_TYPE (from),
5962 int_size_in_bytes (TREE_TYPE (from)));
5963 else if (GET_MODE (to_rtx) == BLKmode)
5965 /* Handle calls that return BLKmode values in registers. */
5966 if (REG_P (value))
5967 copy_blkmode_from_reg (to_rtx, value, TREE_TYPE (from));
5968 else
5969 emit_block_move (to_rtx, value, expr_size (from), BLOCK_OP_NORMAL);
5971 else
5973 if (POINTER_TYPE_P (TREE_TYPE (to)))
5974 value = convert_memory_address_addr_space
5975 (as_a <scalar_int_mode> (GET_MODE (to_rtx)), value,
5976 TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (to))));
5978 emit_move_insn (to_rtx, value);
5981 preserve_temp_slots (to_rtx);
5982 pop_temp_slots ();
5983 return;
5986 /* Ordinary treatment. Expand TO to get a REG or MEM rtx. */
5987 to_rtx = expand_expr (to, NULL_RTX, VOIDmode, EXPAND_WRITE);
5989 /* Don't move directly into a return register. */
5990 if (TREE_CODE (to) == RESULT_DECL
5991 && (REG_P (to_rtx) || GET_CODE (to_rtx) == PARALLEL))
5993 rtx temp;
5995 push_temp_slots ();
5997 /* If the source is itself a return value, it still is in a pseudo at
5998 this point so we can move it back to the return register directly. */
5999 if (REG_P (to_rtx)
6000 && TYPE_MODE (TREE_TYPE (from)) == BLKmode
6001 && TREE_CODE (from) != CALL_EXPR)
6002 temp = copy_blkmode_to_reg (GET_MODE (to_rtx), from);
6003 else
6004 temp = expand_expr (from, NULL_RTX, GET_MODE (to_rtx), EXPAND_NORMAL);
6006 /* Handle calls that return values in multiple non-contiguous locations.
6007 The Irix 6 ABI has examples of this. */
6008 if (GET_CODE (to_rtx) == PARALLEL)
6010 if (GET_CODE (temp) == PARALLEL)
6011 emit_group_move (to_rtx, temp);
6012 else
6013 emit_group_load (to_rtx, temp, TREE_TYPE (from),
6014 int_size_in_bytes (TREE_TYPE (from)));
6016 else if (temp)
6017 emit_move_insn (to_rtx, temp);
6019 preserve_temp_slots (to_rtx);
6020 pop_temp_slots ();
6021 return;
6024 /* In case we are returning the contents of an object which overlaps
6025 the place the value is being stored, use a safe function when copying
6026 a value through a pointer into a structure value return block. */
6027 if (TREE_CODE (to) == RESULT_DECL
6028 && TREE_CODE (from) == INDIRECT_REF
6029 && ADDR_SPACE_GENERIC_P
6030 (TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (TREE_OPERAND (from, 0)))))
6031 && refs_may_alias_p (to, from)
6032 && cfun->returns_struct
6033 && !cfun->returns_pcc_struct)
6035 rtx from_rtx, size;
6037 push_temp_slots ();
6038 size = expr_size (from);
6039 from_rtx = expand_normal (from);
6041 emit_block_move_via_libcall (XEXP (to_rtx, 0), XEXP (from_rtx, 0), size);
6043 preserve_temp_slots (to_rtx);
6044 pop_temp_slots ();
6045 return;
6048 /* Compute FROM and store the value in the rtx we got. */
6050 push_temp_slots ();
6051 result = store_expr (from, to_rtx, 0, nontemporal, false);
6052 preserve_temp_slots (result);
6053 pop_temp_slots ();
6054 return;
6057 /* Emits nontemporal store insn that moves FROM to TO. Returns true if this
6058 succeeded, false otherwise. */
6060 bool
6061 emit_storent_insn (rtx to, rtx from)
6063 class expand_operand ops[2];
6064 machine_mode mode = GET_MODE (to);
6065 enum insn_code code = optab_handler (storent_optab, mode);
6067 if (code == CODE_FOR_nothing)
6068 return false;
6070 create_fixed_operand (&ops[0], to);
6071 create_input_operand (&ops[1], from, mode);
6072 return maybe_expand_insn (code, 2, ops);
6075 /* Helper function for store_expr storing of STRING_CST. */
6077 static rtx
6078 string_cst_read_str (void *data, void *, HOST_WIDE_INT offset,
6079 fixed_size_mode mode)
6081 tree str = (tree) data;
6083 gcc_assert (offset >= 0);
6084 if (offset >= TREE_STRING_LENGTH (str))
6085 return const0_rtx;
6087 if ((unsigned HOST_WIDE_INT) offset + GET_MODE_SIZE (mode)
6088 > (unsigned HOST_WIDE_INT) TREE_STRING_LENGTH (str))
6090 char *p = XALLOCAVEC (char, GET_MODE_SIZE (mode));
6091 size_t l = TREE_STRING_LENGTH (str) - offset;
6092 memcpy (p, TREE_STRING_POINTER (str) + offset, l);
6093 memset (p + l, '\0', GET_MODE_SIZE (mode) - l);
6094 return c_readstr (p, as_a <scalar_int_mode> (mode), false);
6097 /* The by-pieces infrastructure does not try to pick a vector mode
6098 for storing STRING_CST. */
6099 return c_readstr (TREE_STRING_POINTER (str) + offset,
6100 as_a <scalar_int_mode> (mode), false);
6103 /* Generate code for computing expression EXP,
6104 and storing the value into TARGET.
6106 If the mode is BLKmode then we may return TARGET itself.
6107 It turns out that in BLKmode it doesn't cause a problem.
6108 because C has no operators that could combine two different
6109 assignments into the same BLKmode object with different values
6110 with no sequence point. Will other languages need this to
6111 be more thorough?
6113 If CALL_PARAM_P is nonzero, this is a store into a call param on the
6114 stack, and block moves may need to be treated specially.
6116 If NONTEMPORAL is true, try using a nontemporal store instruction.
6118 If REVERSE is true, the store is to be done in reverse order. */
6121 store_expr (tree exp, rtx target, int call_param_p,
6122 bool nontemporal, bool reverse)
6124 rtx temp;
6125 rtx alt_rtl = NULL_RTX;
6126 location_t loc = curr_insn_location ();
6127 bool shortened_string_cst = false;
6129 if (VOID_TYPE_P (TREE_TYPE (exp)))
6131 /* C++ can generate ?: expressions with a throw expression in one
6132 branch and an rvalue in the other. Here, we resolve attempts to
6133 store the throw expression's nonexistent result. */
6134 gcc_assert (!call_param_p);
6135 expand_expr (exp, const0_rtx, VOIDmode, EXPAND_NORMAL);
6136 return NULL_RTX;
6138 if (TREE_CODE (exp) == COMPOUND_EXPR)
6140 /* Perform first part of compound expression, then assign from second
6141 part. */
6142 expand_expr (TREE_OPERAND (exp, 0), const0_rtx, VOIDmode,
6143 call_param_p ? EXPAND_STACK_PARM : EXPAND_NORMAL);
6144 return store_expr (TREE_OPERAND (exp, 1), target,
6145 call_param_p, nontemporal, reverse);
6147 else if (TREE_CODE (exp) == COND_EXPR && GET_MODE (target) == BLKmode)
6149 /* For conditional expression, get safe form of the target. Then
6150 test the condition, doing the appropriate assignment on either
6151 side. This avoids the creation of unnecessary temporaries.
6152 For non-BLKmode, it is more efficient not to do this. */
6154 rtx_code_label *lab1 = gen_label_rtx (), *lab2 = gen_label_rtx ();
6156 do_pending_stack_adjust ();
6157 NO_DEFER_POP;
6158 jumpifnot (TREE_OPERAND (exp, 0), lab1,
6159 profile_probability::uninitialized ());
6160 store_expr (TREE_OPERAND (exp, 1), target, call_param_p,
6161 nontemporal, reverse);
6162 emit_jump_insn (targetm.gen_jump (lab2));
6163 emit_barrier ();
6164 emit_label (lab1);
6165 store_expr (TREE_OPERAND (exp, 2), target, call_param_p,
6166 nontemporal, reverse);
6167 emit_label (lab2);
6168 OK_DEFER_POP;
6170 return NULL_RTX;
6172 else if (GET_CODE (target) == SUBREG && SUBREG_PROMOTED_VAR_P (target))
6173 /* If this is a scalar in a register that is stored in a wider mode
6174 than the declared mode, compute the result into its declared mode
6175 and then convert to the wider mode. Our value is the computed
6176 expression. */
6178 rtx inner_target = 0;
6179 scalar_int_mode outer_mode = subreg_unpromoted_mode (target);
6180 scalar_int_mode inner_mode = subreg_promoted_mode (target);
6182 /* We can do the conversion inside EXP, which will often result
6183 in some optimizations. Do the conversion in two steps: first
6184 change the signedness, if needed, then the extend. But don't
6185 do this if the type of EXP is a subtype of something else
6186 since then the conversion might involve more than just
6187 converting modes. */
6188 if (INTEGRAL_TYPE_P (TREE_TYPE (exp))
6189 && TREE_TYPE (TREE_TYPE (exp)) == 0
6190 && GET_MODE_PRECISION (outer_mode)
6191 == TYPE_PRECISION (TREE_TYPE (exp)))
6193 if (!SUBREG_CHECK_PROMOTED_SIGN (target,
6194 TYPE_UNSIGNED (TREE_TYPE (exp))))
6196 /* Some types, e.g. Fortran's logical*4, won't have a signed
6197 version, so use the mode instead. */
6198 tree ntype
6199 = (signed_or_unsigned_type_for
6200 (SUBREG_PROMOTED_SIGN (target), TREE_TYPE (exp)));
6201 if (ntype == NULL)
6202 ntype = lang_hooks.types.type_for_mode
6203 (TYPE_MODE (TREE_TYPE (exp)),
6204 SUBREG_PROMOTED_SIGN (target));
6206 exp = fold_convert_loc (loc, ntype, exp);
6209 exp = fold_convert_loc (loc, lang_hooks.types.type_for_mode
6210 (inner_mode, SUBREG_PROMOTED_SIGN (target)),
6211 exp);
6213 inner_target = SUBREG_REG (target);
6216 temp = expand_expr (exp, inner_target, VOIDmode,
6217 call_param_p ? EXPAND_STACK_PARM : EXPAND_NORMAL);
6220 /* If TEMP is a VOIDmode constant, use convert_modes to make
6221 sure that we properly convert it. */
6222 if (CONSTANT_P (temp) && GET_MODE (temp) == VOIDmode)
6224 temp = convert_modes (outer_mode, TYPE_MODE (TREE_TYPE (exp)),
6225 temp, SUBREG_PROMOTED_SIGN (target));
6226 temp = convert_modes (inner_mode, outer_mode, temp,
6227 SUBREG_PROMOTED_SIGN (target));
6230 convert_move (SUBREG_REG (target), temp,
6231 SUBREG_PROMOTED_SIGN (target));
6233 return NULL_RTX;
6235 else if ((TREE_CODE (exp) == STRING_CST
6236 || (TREE_CODE (exp) == MEM_REF
6237 && TREE_CODE (TREE_OPERAND (exp, 0)) == ADDR_EXPR
6238 && TREE_CODE (TREE_OPERAND (TREE_OPERAND (exp, 0), 0))
6239 == STRING_CST
6240 && integer_zerop (TREE_OPERAND (exp, 1))))
6241 && !nontemporal && !call_param_p
6242 && MEM_P (target))
6244 /* Optimize initialization of an array with a STRING_CST. */
6245 HOST_WIDE_INT exp_len, str_copy_len;
6246 rtx dest_mem;
6247 tree str = TREE_CODE (exp) == STRING_CST
6248 ? exp : TREE_OPERAND (TREE_OPERAND (exp, 0), 0);
6250 exp_len = int_expr_size (exp);
6251 if (exp_len <= 0)
6252 goto normal_expr;
6254 if (TREE_STRING_LENGTH (str) <= 0)
6255 goto normal_expr;
6257 if (can_store_by_pieces (exp_len, string_cst_read_str, (void *) str,
6258 MEM_ALIGN (target), false))
6260 store_by_pieces (target, exp_len, string_cst_read_str, (void *) str,
6261 MEM_ALIGN (target), false, RETURN_BEGIN);
6262 return NULL_RTX;
6265 str_copy_len = TREE_STRING_LENGTH (str);
6267 /* Trailing NUL bytes in EXP will be handled by the call to
6268 clear_storage, which is more efficient than copying them from
6269 the STRING_CST, so trim those from STR_COPY_LEN. */
6270 while (str_copy_len)
6272 if (TREE_STRING_POINTER (str)[str_copy_len - 1])
6273 break;
6274 str_copy_len--;
6277 if ((STORE_MAX_PIECES & (STORE_MAX_PIECES - 1)) == 0)
6279 str_copy_len += STORE_MAX_PIECES - 1;
6280 str_copy_len &= ~(STORE_MAX_PIECES - 1);
6282 if (str_copy_len >= exp_len)
6283 goto normal_expr;
6285 if (!can_store_by_pieces (str_copy_len, string_cst_read_str,
6286 (void *) str, MEM_ALIGN (target), false))
6287 goto normal_expr;
6289 dest_mem = store_by_pieces (target, str_copy_len, string_cst_read_str,
6290 (void *) str, MEM_ALIGN (target), false,
6291 RETURN_END);
6292 clear_storage (adjust_address_1 (dest_mem, BLKmode, 0, 1, 1, 0,
6293 exp_len - str_copy_len),
6294 GEN_INT (exp_len - str_copy_len), BLOCK_OP_NORMAL);
6295 return NULL_RTX;
6297 else
6299 rtx tmp_target;
6301 normal_expr:
6302 /* If we want to use a nontemporal or a reverse order store, force the
6303 value into a register first. */
6304 tmp_target = nontemporal || reverse ? NULL_RTX : target;
6305 tree rexp = exp;
6306 if (TREE_CODE (exp) == STRING_CST
6307 && tmp_target == target
6308 && GET_MODE (target) == BLKmode
6309 && TYPE_MODE (TREE_TYPE (exp)) == BLKmode)
6311 rtx size = expr_size (exp);
6312 if (CONST_INT_P (size)
6313 && size != const0_rtx
6314 && (UINTVAL (size)
6315 > ((unsigned HOST_WIDE_INT) TREE_STRING_LENGTH (exp) + 32)))
6317 /* If the STRING_CST has much larger array type than
6318 TREE_STRING_LENGTH, only emit the TREE_STRING_LENGTH part of
6319 it into the rodata section as the code later on will use
6320 memset zero for the remainder anyway. See PR95052. */
6321 tmp_target = NULL_RTX;
6322 rexp = copy_node (exp);
6323 tree index
6324 = build_index_type (size_int (TREE_STRING_LENGTH (exp) - 1));
6325 TREE_TYPE (rexp) = build_array_type (TREE_TYPE (TREE_TYPE (exp)),
6326 index);
6327 shortened_string_cst = true;
6330 temp = expand_expr_real (rexp, tmp_target, GET_MODE (target),
6331 (call_param_p
6332 ? EXPAND_STACK_PARM : EXPAND_NORMAL),
6333 &alt_rtl, false);
6334 if (shortened_string_cst)
6336 gcc_assert (MEM_P (temp));
6337 temp = change_address (temp, BLKmode, NULL_RTX);
6341 /* If TEMP is a VOIDmode constant and the mode of the type of EXP is not
6342 the same as that of TARGET, adjust the constant. This is needed, for
6343 example, in case it is a CONST_DOUBLE or CONST_WIDE_INT and we want
6344 only a word-sized value. */
6345 if (CONSTANT_P (temp) && GET_MODE (temp) == VOIDmode
6346 && TREE_CODE (exp) != ERROR_MARK
6347 && GET_MODE (target) != TYPE_MODE (TREE_TYPE (exp)))
6349 gcc_assert (!shortened_string_cst);
6350 if (GET_MODE_CLASS (GET_MODE (target))
6351 != GET_MODE_CLASS (TYPE_MODE (TREE_TYPE (exp)))
6352 && known_eq (GET_MODE_BITSIZE (GET_MODE (target)),
6353 GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (exp)))))
6355 rtx t = simplify_gen_subreg (GET_MODE (target), temp,
6356 TYPE_MODE (TREE_TYPE (exp)), 0);
6357 if (t)
6358 temp = t;
6360 if (GET_MODE (temp) == VOIDmode)
6361 temp = convert_modes (GET_MODE (target), TYPE_MODE (TREE_TYPE (exp)),
6362 temp, TYPE_UNSIGNED (TREE_TYPE (exp)));
6365 /* If value was not generated in the target, store it there.
6366 Convert the value to TARGET's type first if necessary and emit the
6367 pending incrementations that have been queued when expanding EXP.
6368 Note that we cannot emit the whole queue blindly because this will
6369 effectively disable the POST_INC optimization later.
6371 If TEMP and TARGET compare equal according to rtx_equal_p, but
6372 one or both of them are volatile memory refs, we have to distinguish
6373 two cases:
6374 - expand_expr has used TARGET. In this case, we must not generate
6375 another copy. This can be detected by TARGET being equal according
6376 to == .
6377 - expand_expr has not used TARGET - that means that the source just
6378 happens to have the same RTX form. Since temp will have been created
6379 by expand_expr, it will compare unequal according to == .
6380 We must generate a copy in this case, to reach the correct number
6381 of volatile memory references. */
6383 if ((! rtx_equal_p (temp, target)
6384 || (temp != target && (side_effects_p (temp)
6385 || side_effects_p (target)
6386 || (MEM_P (temp)
6387 && !mems_same_for_tbaa_p (temp, target)))))
6388 && TREE_CODE (exp) != ERROR_MARK
6389 /* If store_expr stores a DECL whose DECL_RTL(exp) == TARGET,
6390 but TARGET is not valid memory reference, TEMP will differ
6391 from TARGET although it is really the same location. */
6392 && !(alt_rtl
6393 && rtx_equal_p (alt_rtl, target)
6394 && !side_effects_p (alt_rtl)
6395 && !side_effects_p (target))
6396 /* If there's nothing to copy, don't bother. Don't call
6397 expr_size unless necessary, because some front-ends (C++)
6398 expr_size-hook must not be given objects that are not
6399 supposed to be bit-copied or bit-initialized. */
6400 && expr_size (exp) != const0_rtx)
6402 if (GET_MODE (temp) != GET_MODE (target) && GET_MODE (temp) != VOIDmode)
6404 gcc_assert (!shortened_string_cst);
6405 if (GET_MODE (target) == BLKmode)
6407 /* Handle calls that return BLKmode values in registers. */
6408 if (REG_P (temp) && TREE_CODE (exp) == CALL_EXPR)
6409 copy_blkmode_from_reg (target, temp, TREE_TYPE (exp));
6410 else
6411 store_bit_field (target,
6412 rtx_to_poly_int64 (expr_size (exp))
6413 * BITS_PER_UNIT,
6414 0, 0, 0, GET_MODE (temp), temp, reverse,
6415 false);
6417 else
6418 convert_move (target, temp, TYPE_UNSIGNED (TREE_TYPE (exp)));
6421 else if (GET_MODE (temp) == BLKmode && TREE_CODE (exp) == STRING_CST)
6423 /* Handle copying a string constant into an array. The string
6424 constant may be shorter than the array. So copy just the string's
6425 actual length, and clear the rest. First get the size of the data
6426 type of the string, which is actually the size of the target. */
6427 rtx size = expr_size (exp);
6429 if (CONST_INT_P (size)
6430 && INTVAL (size) < TREE_STRING_LENGTH (exp))
6431 emit_block_move (target, temp, size,
6432 (call_param_p
6433 ? BLOCK_OP_CALL_PARM : BLOCK_OP_NORMAL));
6434 else
6436 machine_mode pointer_mode
6437 = targetm.addr_space.pointer_mode (MEM_ADDR_SPACE (target));
6438 machine_mode address_mode = get_address_mode (target);
6440 /* Compute the size of the data to copy from the string. */
6441 tree copy_size
6442 = size_binop_loc (loc, MIN_EXPR,
6443 make_tree (sizetype, size),
6444 size_int (TREE_STRING_LENGTH (exp)));
6445 rtx copy_size_rtx
6446 = expand_expr (copy_size, NULL_RTX, VOIDmode,
6447 (call_param_p
6448 ? EXPAND_STACK_PARM : EXPAND_NORMAL));
6449 rtx_code_label *label = 0;
6451 /* Copy that much. */
6452 copy_size_rtx = convert_to_mode (pointer_mode, copy_size_rtx,
6453 TYPE_UNSIGNED (sizetype));
6454 emit_block_move (target, temp, copy_size_rtx,
6455 (call_param_p
6456 ? BLOCK_OP_CALL_PARM : BLOCK_OP_NORMAL));
6458 /* Figure out how much is left in TARGET that we have to clear.
6459 Do all calculations in pointer_mode. */
6460 poly_int64 const_copy_size;
6461 if (poly_int_rtx_p (copy_size_rtx, &const_copy_size))
6463 size = plus_constant (address_mode, size, -const_copy_size);
6464 target = adjust_address (target, BLKmode, const_copy_size);
6466 else
6468 size = expand_binop (TYPE_MODE (sizetype), sub_optab, size,
6469 copy_size_rtx, NULL_RTX, 0,
6470 OPTAB_LIB_WIDEN);
6472 if (GET_MODE (copy_size_rtx) != address_mode)
6473 copy_size_rtx = convert_to_mode (address_mode,
6474 copy_size_rtx,
6475 TYPE_UNSIGNED (sizetype));
6477 target = offset_address (target, copy_size_rtx,
6478 highest_pow2_factor (copy_size));
6479 label = gen_label_rtx ();
6480 emit_cmp_and_jump_insns (size, const0_rtx, LT, NULL_RTX,
6481 GET_MODE (size), 0, label);
6484 if (size != const0_rtx)
6485 clear_storage (target, size, BLOCK_OP_NORMAL);
6487 if (label)
6488 emit_label (label);
6491 else if (shortened_string_cst)
6492 gcc_unreachable ();
6493 /* Handle calls that return values in multiple non-contiguous locations.
6494 The Irix 6 ABI has examples of this. */
6495 else if (GET_CODE (target) == PARALLEL)
6497 if (GET_CODE (temp) == PARALLEL)
6498 emit_group_move (target, temp);
6499 else
6500 emit_group_load (target, temp, TREE_TYPE (exp),
6501 int_size_in_bytes (TREE_TYPE (exp)));
6503 else if (GET_CODE (temp) == PARALLEL)
6504 emit_group_store (target, temp, TREE_TYPE (exp),
6505 int_size_in_bytes (TREE_TYPE (exp)));
6506 else if (GET_MODE (temp) == BLKmode)
6507 emit_block_move (target, temp, expr_size (exp),
6508 (call_param_p
6509 ? BLOCK_OP_CALL_PARM : BLOCK_OP_NORMAL));
6510 /* If we emit a nontemporal store, there is nothing else to do. */
6511 else if (nontemporal && emit_storent_insn (target, temp))
6513 else
6515 if (reverse)
6516 temp = flip_storage_order (GET_MODE (target), temp);
6517 temp = force_operand (temp, target);
6518 if (temp != target)
6519 emit_move_insn (target, temp);
6522 else
6523 gcc_assert (!shortened_string_cst);
6525 return NULL_RTX;
6528 /* Return true if field F of structure TYPE is a flexible array. */
6530 static bool
6531 flexible_array_member_p (const_tree f, const_tree type)
6533 const_tree tf;
6535 tf = TREE_TYPE (f);
6536 return (DECL_CHAIN (f) == NULL
6537 && TREE_CODE (tf) == ARRAY_TYPE
6538 && TYPE_DOMAIN (tf)
6539 && TYPE_MIN_VALUE (TYPE_DOMAIN (tf))
6540 && integer_zerop (TYPE_MIN_VALUE (TYPE_DOMAIN (tf)))
6541 && !TYPE_MAX_VALUE (TYPE_DOMAIN (tf))
6542 && int_size_in_bytes (type) >= 0);
6545 /* If FOR_CTOR_P, return the number of top-level elements that a constructor
6546 must have in order for it to completely initialize a value of type TYPE.
6547 Return -1 if the number isn't known.
6549 If !FOR_CTOR_P, return an estimate of the number of scalars in TYPE. */
6551 static HOST_WIDE_INT
6552 count_type_elements (const_tree type, bool for_ctor_p)
6554 switch (TREE_CODE (type))
6556 case ARRAY_TYPE:
6558 tree nelts;
6560 nelts = array_type_nelts (type);
6561 if (nelts && tree_fits_uhwi_p (nelts))
6563 unsigned HOST_WIDE_INT n;
6565 n = tree_to_uhwi (nelts) + 1;
6566 if (n == 0 || for_ctor_p)
6567 return n;
6568 else
6569 return n * count_type_elements (TREE_TYPE (type), false);
6571 return for_ctor_p ? -1 : 1;
6574 case RECORD_TYPE:
6576 unsigned HOST_WIDE_INT n;
6577 tree f;
6579 n = 0;
6580 for (f = TYPE_FIELDS (type); f ; f = DECL_CHAIN (f))
6581 if (TREE_CODE (f) == FIELD_DECL)
6583 if (!for_ctor_p)
6584 n += count_type_elements (TREE_TYPE (f), false);
6585 else if (!flexible_array_member_p (f, type))
6586 /* Don't count flexible arrays, which are not supposed
6587 to be initialized. */
6588 n += 1;
6591 return n;
6594 case UNION_TYPE:
6595 case QUAL_UNION_TYPE:
6597 tree f;
6598 HOST_WIDE_INT n, m;
6600 gcc_assert (!for_ctor_p);
6601 /* Estimate the number of scalars in each field and pick the
6602 maximum. Other estimates would do instead; the idea is simply
6603 to make sure that the estimate is not sensitive to the ordering
6604 of the fields. */
6605 n = 1;
6606 for (f = TYPE_FIELDS (type); f ; f = DECL_CHAIN (f))
6607 if (TREE_CODE (f) == FIELD_DECL)
6609 m = count_type_elements (TREE_TYPE (f), false);
6610 /* If the field doesn't span the whole union, add an extra
6611 scalar for the rest. */
6612 if (simple_cst_equal (TYPE_SIZE (TREE_TYPE (f)),
6613 TYPE_SIZE (type)) != 1)
6614 m++;
6615 if (n < m)
6616 n = m;
6618 return n;
6621 case COMPLEX_TYPE:
6622 return 2;
6624 case VECTOR_TYPE:
6626 unsigned HOST_WIDE_INT nelts;
6627 if (TYPE_VECTOR_SUBPARTS (type).is_constant (&nelts))
6628 return nelts;
6629 else
6630 return -1;
6633 case INTEGER_TYPE:
6634 case REAL_TYPE:
6635 case FIXED_POINT_TYPE:
6636 case ENUMERAL_TYPE:
6637 case BOOLEAN_TYPE:
6638 case POINTER_TYPE:
6639 case OFFSET_TYPE:
6640 case REFERENCE_TYPE:
6641 case NULLPTR_TYPE:
6642 case OPAQUE_TYPE:
6643 return 1;
6645 case ERROR_MARK:
6646 return 0;
6648 case VOID_TYPE:
6649 case METHOD_TYPE:
6650 case FUNCTION_TYPE:
6651 case LANG_TYPE:
6652 default:
6653 gcc_unreachable ();
6657 /* Helper for categorize_ctor_elements. Identical interface. */
6659 static bool
6660 categorize_ctor_elements_1 (const_tree ctor, HOST_WIDE_INT *p_nz_elts,
6661 HOST_WIDE_INT *p_unique_nz_elts,
6662 HOST_WIDE_INT *p_init_elts, bool *p_complete)
6664 unsigned HOST_WIDE_INT idx;
6665 HOST_WIDE_INT nz_elts, unique_nz_elts, init_elts, num_fields;
6666 tree value, purpose, elt_type;
6668 /* Whether CTOR is a valid constant initializer, in accordance with what
6669 initializer_constant_valid_p does. If inferred from the constructor
6670 elements, true until proven otherwise. */
6671 bool const_from_elts_p = constructor_static_from_elts_p (ctor);
6672 bool const_p = const_from_elts_p ? true : TREE_STATIC (ctor);
6674 nz_elts = 0;
6675 unique_nz_elts = 0;
6676 init_elts = 0;
6677 num_fields = 0;
6678 elt_type = NULL_TREE;
6680 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (ctor), idx, purpose, value)
6682 HOST_WIDE_INT mult = 1;
6684 if (purpose && TREE_CODE (purpose) == RANGE_EXPR)
6686 tree lo_index = TREE_OPERAND (purpose, 0);
6687 tree hi_index = TREE_OPERAND (purpose, 1);
6689 if (tree_fits_uhwi_p (lo_index) && tree_fits_uhwi_p (hi_index))
6690 mult = (tree_to_uhwi (hi_index)
6691 - tree_to_uhwi (lo_index) + 1);
6693 num_fields += mult;
6694 elt_type = TREE_TYPE (value);
6696 switch (TREE_CODE (value))
6698 case CONSTRUCTOR:
6700 HOST_WIDE_INT nz = 0, unz = 0, ic = 0;
6702 bool const_elt_p = categorize_ctor_elements_1 (value, &nz, &unz,
6703 &ic, p_complete);
6705 nz_elts += mult * nz;
6706 unique_nz_elts += unz;
6707 init_elts += mult * ic;
6709 if (const_from_elts_p && const_p)
6710 const_p = const_elt_p;
6712 break;
6714 case INTEGER_CST:
6715 case REAL_CST:
6716 case FIXED_CST:
6717 if (!initializer_zerop (value))
6719 nz_elts += mult;
6720 unique_nz_elts++;
6722 init_elts += mult;
6723 break;
6725 case STRING_CST:
6726 nz_elts += mult * TREE_STRING_LENGTH (value);
6727 unique_nz_elts += TREE_STRING_LENGTH (value);
6728 init_elts += mult * TREE_STRING_LENGTH (value);
6729 break;
6731 case COMPLEX_CST:
6732 if (!initializer_zerop (TREE_REALPART (value)))
6734 nz_elts += mult;
6735 unique_nz_elts++;
6737 if (!initializer_zerop (TREE_IMAGPART (value)))
6739 nz_elts += mult;
6740 unique_nz_elts++;
6742 init_elts += 2 * mult;
6743 break;
6745 case VECTOR_CST:
6747 /* We can only construct constant-length vectors using
6748 CONSTRUCTOR. */
6749 unsigned int nunits = VECTOR_CST_NELTS (value).to_constant ();
6750 for (unsigned int i = 0; i < nunits; ++i)
6752 tree v = VECTOR_CST_ELT (value, i);
6753 if (!initializer_zerop (v))
6755 nz_elts += mult;
6756 unique_nz_elts++;
6758 init_elts += mult;
6761 break;
6763 default:
6765 HOST_WIDE_INT tc = count_type_elements (elt_type, false);
6766 nz_elts += mult * tc;
6767 unique_nz_elts += tc;
6768 init_elts += mult * tc;
6770 if (const_from_elts_p && const_p)
6771 const_p
6772 = initializer_constant_valid_p (value,
6773 elt_type,
6774 TYPE_REVERSE_STORAGE_ORDER
6775 (TREE_TYPE (ctor)))
6776 != NULL_TREE;
6778 break;
6782 if (*p_complete && !complete_ctor_at_level_p (TREE_TYPE (ctor),
6783 num_fields, elt_type))
6784 *p_complete = false;
6786 *p_nz_elts += nz_elts;
6787 *p_unique_nz_elts += unique_nz_elts;
6788 *p_init_elts += init_elts;
6790 return const_p;
6793 /* Examine CTOR to discover:
6794 * how many scalar fields are set to nonzero values,
6795 and place it in *P_NZ_ELTS;
6796 * the same, but counting RANGE_EXPRs as multiplier of 1 instead of
6797 high - low + 1 (this can be useful for callers to determine ctors
6798 that could be cheaply initialized with - perhaps nested - loops
6799 compared to copied from huge read-only data),
6800 and place it in *P_UNIQUE_NZ_ELTS;
6801 * how many scalar fields in total are in CTOR,
6802 and place it in *P_ELT_COUNT.
6803 * whether the constructor is complete -- in the sense that every
6804 meaningful byte is explicitly given a value --
6805 and place it in *P_COMPLETE.
6807 Return whether or not CTOR is a valid static constant initializer, the same
6808 as "initializer_constant_valid_p (CTOR, TREE_TYPE (CTOR)) != 0". */
6810 bool
6811 categorize_ctor_elements (const_tree ctor, HOST_WIDE_INT *p_nz_elts,
6812 HOST_WIDE_INT *p_unique_nz_elts,
6813 HOST_WIDE_INT *p_init_elts, bool *p_complete)
6815 *p_nz_elts = 0;
6816 *p_unique_nz_elts = 0;
6817 *p_init_elts = 0;
6818 *p_complete = true;
6820 return categorize_ctor_elements_1 (ctor, p_nz_elts, p_unique_nz_elts,
6821 p_init_elts, p_complete);
6824 /* Return true if constructor CTOR is simple enough to be materialized
6825 in an integer mode register. Limit the size to WORDS words, which
6826 is 1 by default. */
6828 bool
6829 immediate_const_ctor_p (const_tree ctor, unsigned int words)
6831 /* Allow function to be called with a VAR_DECL's DECL_INITIAL. */
6832 if (!ctor || TREE_CODE (ctor) != CONSTRUCTOR)
6833 return false;
6835 return TREE_CONSTANT (ctor)
6836 && !TREE_ADDRESSABLE (ctor)
6837 && CONSTRUCTOR_NELTS (ctor)
6838 && TREE_CODE (TREE_TYPE (ctor)) != ARRAY_TYPE
6839 && int_expr_size (ctor) <= words * UNITS_PER_WORD
6840 && initializer_constant_valid_for_bitfield_p (ctor);
6843 /* TYPE is initialized by a constructor with NUM_ELTS elements, the last
6844 of which had type LAST_TYPE. Each element was itself a complete
6845 initializer, in the sense that every meaningful byte was explicitly
6846 given a value. Return true if the same is true for the constructor
6847 as a whole. */
6849 bool
6850 complete_ctor_at_level_p (const_tree type, HOST_WIDE_INT num_elts,
6851 const_tree last_type)
6853 if (TREE_CODE (type) == UNION_TYPE
6854 || TREE_CODE (type) == QUAL_UNION_TYPE)
6856 if (num_elts == 0)
6857 return false;
6859 gcc_assert (num_elts == 1 && last_type);
6861 /* ??? We could look at each element of the union, and find the
6862 largest element. Which would avoid comparing the size of the
6863 initialized element against any tail padding in the union.
6864 Doesn't seem worth the effort... */
6865 return simple_cst_equal (TYPE_SIZE (type), TYPE_SIZE (last_type)) == 1;
6868 return count_type_elements (type, true) == num_elts;
6871 /* Return 1 if EXP contains mostly (3/4) zeros. */
6873 static int
6874 mostly_zeros_p (const_tree exp)
6876 if (TREE_CODE (exp) == CONSTRUCTOR)
6878 HOST_WIDE_INT nz_elts, unz_elts, init_elts;
6879 bool complete_p;
6881 categorize_ctor_elements (exp, &nz_elts, &unz_elts, &init_elts,
6882 &complete_p);
6883 return !complete_p || nz_elts < init_elts / 4;
6886 return initializer_zerop (exp);
6889 /* Return 1 if EXP contains all zeros. */
6891 static int
6892 all_zeros_p (const_tree exp)
6894 if (TREE_CODE (exp) == CONSTRUCTOR)
6896 HOST_WIDE_INT nz_elts, unz_elts, init_elts;
6897 bool complete_p;
6899 categorize_ctor_elements (exp, &nz_elts, &unz_elts, &init_elts,
6900 &complete_p);
6901 return nz_elts == 0;
6904 return initializer_zerop (exp);
6907 /* Helper function for store_constructor.
6908 TARGET, BITSIZE, BITPOS, MODE, EXP are as for store_field.
6909 CLEARED is as for store_constructor.
6910 ALIAS_SET is the alias set to use for any stores.
6911 If REVERSE is true, the store is to be done in reverse order.
6913 This provides a recursive shortcut back to store_constructor when it isn't
6914 necessary to go through store_field. This is so that we can pass through
6915 the cleared field to let store_constructor know that we may not have to
6916 clear a substructure if the outer structure has already been cleared. */
6918 static void
6919 store_constructor_field (rtx target, poly_uint64 bitsize, poly_int64 bitpos,
6920 poly_uint64 bitregion_start,
6921 poly_uint64 bitregion_end,
6922 machine_mode mode,
6923 tree exp, int cleared,
6924 alias_set_type alias_set, bool reverse)
6926 poly_int64 bytepos;
6927 poly_uint64 bytesize;
6928 if (TREE_CODE (exp) == CONSTRUCTOR
6929 /* We can only call store_constructor recursively if the size and
6930 bit position are on a byte boundary. */
6931 && multiple_p (bitpos, BITS_PER_UNIT, &bytepos)
6932 && maybe_ne (bitsize, 0U)
6933 && multiple_p (bitsize, BITS_PER_UNIT, &bytesize)
6934 /* If we have a nonzero bitpos for a register target, then we just
6935 let store_field do the bitfield handling. This is unlikely to
6936 generate unnecessary clear instructions anyways. */
6937 && (known_eq (bitpos, 0) || MEM_P (target)))
6939 if (MEM_P (target))
6941 machine_mode target_mode = GET_MODE (target);
6942 if (target_mode != BLKmode
6943 && !multiple_p (bitpos, GET_MODE_ALIGNMENT (target_mode)))
6944 target_mode = BLKmode;
6945 target = adjust_address (target, target_mode, bytepos);
6949 /* Update the alias set, if required. */
6950 if (MEM_P (target) && ! MEM_KEEP_ALIAS_SET_P (target)
6951 && MEM_ALIAS_SET (target) != 0)
6953 target = copy_rtx (target);
6954 set_mem_alias_set (target, alias_set);
6957 store_constructor (exp, target, cleared, bytesize, reverse);
6959 else
6960 store_field (target, bitsize, bitpos, bitregion_start, bitregion_end, mode,
6961 exp, alias_set, false, reverse);
6965 /* Returns the number of FIELD_DECLs in TYPE. */
6967 static int
6968 fields_length (const_tree type)
6970 tree t = TYPE_FIELDS (type);
6971 int count = 0;
6973 for (; t; t = DECL_CHAIN (t))
6974 if (TREE_CODE (t) == FIELD_DECL)
6975 ++count;
6977 return count;
6981 /* Store the value of constructor EXP into the rtx TARGET.
6982 TARGET is either a REG or a MEM; we know it cannot conflict, since
6983 safe_from_p has been called.
6984 CLEARED is true if TARGET is known to have been zero'd.
6985 SIZE is the number of bytes of TARGET we are allowed to modify: this
6986 may not be the same as the size of EXP if we are assigning to a field
6987 which has been packed to exclude padding bits.
6988 If REVERSE is true, the store is to be done in reverse order. */
6990 void
6991 store_constructor (tree exp, rtx target, int cleared, poly_int64 size,
6992 bool reverse)
6994 tree type = TREE_TYPE (exp);
6995 HOST_WIDE_INT exp_size = int_size_in_bytes (type);
6996 poly_int64 bitregion_end = known_gt (size, 0) ? size * BITS_PER_UNIT - 1 : 0;
6998 switch (TREE_CODE (type))
7000 case RECORD_TYPE:
7001 case UNION_TYPE:
7002 case QUAL_UNION_TYPE:
7004 unsigned HOST_WIDE_INT idx;
7005 tree field, value;
7007 /* The storage order is specified for every aggregate type. */
7008 reverse = TYPE_REVERSE_STORAGE_ORDER (type);
7010 /* If size is zero or the target is already cleared, do nothing. */
7011 if (known_eq (size, 0) || cleared)
7012 cleared = 1;
7013 /* We either clear the aggregate or indicate the value is dead. */
7014 else if ((TREE_CODE (type) == UNION_TYPE
7015 || TREE_CODE (type) == QUAL_UNION_TYPE)
7016 && ! CONSTRUCTOR_ELTS (exp))
7017 /* If the constructor is empty, clear the union. */
7019 clear_storage (target, expr_size (exp), BLOCK_OP_NORMAL);
7020 cleared = 1;
7023 /* If we are building a static constructor into a register,
7024 set the initial value as zero so we can fold the value into
7025 a constant. But if more than one register is involved,
7026 this probably loses. */
7027 else if (REG_P (target) && TREE_STATIC (exp)
7028 && known_le (GET_MODE_SIZE (GET_MODE (target)),
7029 REGMODE_NATURAL_SIZE (GET_MODE (target))))
7031 emit_move_insn (target, CONST0_RTX (GET_MODE (target)));
7032 cleared = 1;
7035 /* If the constructor has fewer fields than the structure or
7036 if we are initializing the structure to mostly zeros, clear
7037 the whole structure first. Don't do this if TARGET is a
7038 register whose mode size isn't equal to SIZE since
7039 clear_storage can't handle this case. */
7040 else if (known_size_p (size)
7041 && (((int) CONSTRUCTOR_NELTS (exp) != fields_length (type))
7042 || mostly_zeros_p (exp))
7043 && (!REG_P (target)
7044 || known_eq (GET_MODE_SIZE (GET_MODE (target)), size)))
7046 clear_storage (target, gen_int_mode (size, Pmode),
7047 BLOCK_OP_NORMAL);
7048 cleared = 1;
7051 if (REG_P (target) && !cleared)
7052 emit_clobber (target);
7054 /* Store each element of the constructor into the
7055 corresponding field of TARGET. */
7056 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (exp), idx, field, value)
7058 machine_mode mode;
7059 HOST_WIDE_INT bitsize;
7060 HOST_WIDE_INT bitpos = 0;
7061 tree offset;
7062 rtx to_rtx = target;
7064 /* Just ignore missing fields. We cleared the whole
7065 structure, above, if any fields are missing. */
7066 if (field == 0)
7067 continue;
7069 if (cleared && initializer_zerop (value))
7070 continue;
7072 if (tree_fits_uhwi_p (DECL_SIZE (field)))
7073 bitsize = tree_to_uhwi (DECL_SIZE (field));
7074 else
7075 gcc_unreachable ();
7077 mode = DECL_MODE (field);
7078 if (DECL_BIT_FIELD (field))
7079 mode = VOIDmode;
7081 offset = DECL_FIELD_OFFSET (field);
7082 if (tree_fits_shwi_p (offset)
7083 && tree_fits_shwi_p (bit_position (field)))
7085 bitpos = int_bit_position (field);
7086 offset = NULL_TREE;
7088 else
7089 gcc_unreachable ();
7091 /* If this initializes a field that is smaller than a
7092 word, at the start of a word, try to widen it to a full
7093 word. This special case allows us to output C++ member
7094 function initializations in a form that the optimizers
7095 can understand. */
7096 if (WORD_REGISTER_OPERATIONS
7097 && REG_P (target)
7098 && bitsize < BITS_PER_WORD
7099 && bitpos % BITS_PER_WORD == 0
7100 && GET_MODE_CLASS (mode) == MODE_INT
7101 && TREE_CODE (value) == INTEGER_CST
7102 && exp_size >= 0
7103 && bitpos + BITS_PER_WORD <= exp_size * BITS_PER_UNIT)
7105 type = TREE_TYPE (value);
7107 if (TYPE_PRECISION (type) < BITS_PER_WORD)
7109 type = lang_hooks.types.type_for_mode
7110 (word_mode, TYPE_UNSIGNED (type));
7111 value = fold_convert (type, value);
7112 /* Make sure the bits beyond the original bitsize are zero
7113 so that we can correctly avoid extra zeroing stores in
7114 later constructor elements. */
7115 tree bitsize_mask
7116 = wide_int_to_tree (type, wi::mask (bitsize, false,
7117 BITS_PER_WORD));
7118 value = fold_build2 (BIT_AND_EXPR, type, value, bitsize_mask);
7121 if (BYTES_BIG_ENDIAN)
7122 value
7123 = fold_build2 (LSHIFT_EXPR, type, value,
7124 build_int_cst (type,
7125 BITS_PER_WORD - bitsize));
7126 bitsize = BITS_PER_WORD;
7127 mode = word_mode;
7130 if (MEM_P (to_rtx) && !MEM_KEEP_ALIAS_SET_P (to_rtx)
7131 && DECL_NONADDRESSABLE_P (field))
7133 to_rtx = copy_rtx (to_rtx);
7134 MEM_KEEP_ALIAS_SET_P (to_rtx) = 1;
7137 store_constructor_field (to_rtx, bitsize, bitpos,
7138 0, bitregion_end, mode,
7139 value, cleared,
7140 get_alias_set (TREE_TYPE (field)),
7141 reverse);
7143 break;
7145 case ARRAY_TYPE:
7147 tree value, index;
7148 unsigned HOST_WIDE_INT i;
7149 int need_to_clear;
7150 tree domain;
7151 tree elttype = TREE_TYPE (type);
7152 int const_bounds_p;
7153 HOST_WIDE_INT minelt = 0;
7154 HOST_WIDE_INT maxelt = 0;
7156 /* The storage order is specified for every aggregate type. */
7157 reverse = TYPE_REVERSE_STORAGE_ORDER (type);
7159 domain = TYPE_DOMAIN (type);
7160 const_bounds_p = (TYPE_MIN_VALUE (domain)
7161 && TYPE_MAX_VALUE (domain)
7162 && tree_fits_shwi_p (TYPE_MIN_VALUE (domain))
7163 && tree_fits_shwi_p (TYPE_MAX_VALUE (domain)));
7165 /* If we have constant bounds for the range of the type, get them. */
7166 if (const_bounds_p)
7168 minelt = tree_to_shwi (TYPE_MIN_VALUE (domain));
7169 maxelt = tree_to_shwi (TYPE_MAX_VALUE (domain));
7172 /* If the constructor has fewer elements than the array, clear
7173 the whole array first. Similarly if this is static
7174 constructor of a non-BLKmode object. */
7175 if (cleared)
7176 need_to_clear = 0;
7177 else if (REG_P (target) && TREE_STATIC (exp))
7178 need_to_clear = 1;
7179 else
7181 unsigned HOST_WIDE_INT idx;
7182 HOST_WIDE_INT count = 0, zero_count = 0;
7183 need_to_clear = ! const_bounds_p;
7185 /* This loop is a more accurate version of the loop in
7186 mostly_zeros_p (it handles RANGE_EXPR in an index). It
7187 is also needed to check for missing elements. */
7188 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (exp), idx, index, value)
7190 HOST_WIDE_INT this_node_count;
7192 if (need_to_clear)
7193 break;
7195 if (index != NULL_TREE && TREE_CODE (index) == RANGE_EXPR)
7197 tree lo_index = TREE_OPERAND (index, 0);
7198 tree hi_index = TREE_OPERAND (index, 1);
7200 if (! tree_fits_uhwi_p (lo_index)
7201 || ! tree_fits_uhwi_p (hi_index))
7203 need_to_clear = 1;
7204 break;
7207 this_node_count = (tree_to_uhwi (hi_index)
7208 - tree_to_uhwi (lo_index) + 1);
7210 else
7211 this_node_count = 1;
7213 count += this_node_count;
7214 if (mostly_zeros_p (value))
7215 zero_count += this_node_count;
7218 /* Clear the entire array first if there are any missing
7219 elements, or if the incidence of zero elements is >=
7220 75%. */
7221 if (! need_to_clear
7222 && (count < maxelt - minelt + 1
7223 || 4 * zero_count >= 3 * count))
7224 need_to_clear = 1;
7227 if (need_to_clear && maybe_gt (size, 0))
7229 if (REG_P (target))
7230 emit_move_insn (target, CONST0_RTX (GET_MODE (target)));
7231 else
7232 clear_storage (target, gen_int_mode (size, Pmode),
7233 BLOCK_OP_NORMAL);
7234 cleared = 1;
7237 if (!cleared && REG_P (target))
7238 /* Inform later passes that the old value is dead. */
7239 emit_clobber (target);
7241 /* Store each element of the constructor into the
7242 corresponding element of TARGET, determined by counting the
7243 elements. */
7244 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (exp), i, index, value)
7246 machine_mode mode;
7247 poly_int64 bitsize;
7248 HOST_WIDE_INT bitpos;
7249 rtx xtarget = target;
7251 if (cleared && initializer_zerop (value))
7252 continue;
7254 mode = TYPE_MODE (elttype);
7255 if (mode != BLKmode)
7256 bitsize = GET_MODE_BITSIZE (mode);
7257 else if (!poly_int_tree_p (TYPE_SIZE (elttype), &bitsize))
7258 bitsize = -1;
7260 if (index != NULL_TREE && TREE_CODE (index) == RANGE_EXPR)
7262 tree lo_index = TREE_OPERAND (index, 0);
7263 tree hi_index = TREE_OPERAND (index, 1);
7264 rtx index_r, pos_rtx;
7265 HOST_WIDE_INT lo, hi, count;
7266 tree position;
7268 /* If the range is constant and "small", unroll the loop. */
7269 if (const_bounds_p
7270 && tree_fits_shwi_p (lo_index)
7271 && tree_fits_shwi_p (hi_index)
7272 && (lo = tree_to_shwi (lo_index),
7273 hi = tree_to_shwi (hi_index),
7274 count = hi - lo + 1,
7275 (!MEM_P (target)
7276 || count <= 2
7277 || (tree_fits_uhwi_p (TYPE_SIZE (elttype))
7278 && (tree_to_uhwi (TYPE_SIZE (elttype)) * count
7279 <= 40 * 8)))))
7281 lo -= minelt; hi -= minelt;
7282 for (; lo <= hi; lo++)
7284 bitpos = lo * tree_to_shwi (TYPE_SIZE (elttype));
7286 if (MEM_P (target)
7287 && !MEM_KEEP_ALIAS_SET_P (target)
7288 && TREE_CODE (type) == ARRAY_TYPE
7289 && TYPE_NONALIASED_COMPONENT (type))
7291 target = copy_rtx (target);
7292 MEM_KEEP_ALIAS_SET_P (target) = 1;
7295 store_constructor_field
7296 (target, bitsize, bitpos, 0, bitregion_end,
7297 mode, value, cleared,
7298 get_alias_set (elttype), reverse);
7301 else
7303 rtx_code_label *loop_start = gen_label_rtx ();
7304 rtx_code_label *loop_end = gen_label_rtx ();
7305 tree exit_cond;
7307 expand_normal (hi_index);
7309 index = build_decl (EXPR_LOCATION (exp),
7310 VAR_DECL, NULL_TREE, domain);
7311 index_r = gen_reg_rtx (promote_decl_mode (index, NULL));
7312 SET_DECL_RTL (index, index_r);
7313 store_expr (lo_index, index_r, 0, false, reverse);
7315 /* Build the head of the loop. */
7316 do_pending_stack_adjust ();
7317 emit_label (loop_start);
7319 /* Assign value to element index. */
7320 position =
7321 fold_convert (ssizetype,
7322 fold_build2 (MINUS_EXPR,
7323 TREE_TYPE (index),
7324 index,
7325 TYPE_MIN_VALUE (domain)));
7327 position =
7328 size_binop (MULT_EXPR, position,
7329 fold_convert (ssizetype,
7330 TYPE_SIZE_UNIT (elttype)));
7332 pos_rtx = expand_normal (position);
7333 xtarget = offset_address (target, pos_rtx,
7334 highest_pow2_factor (position));
7335 xtarget = adjust_address (xtarget, mode, 0);
7336 if (TREE_CODE (value) == CONSTRUCTOR)
7337 store_constructor (value, xtarget, cleared,
7338 exact_div (bitsize, BITS_PER_UNIT),
7339 reverse);
7340 else
7341 store_expr (value, xtarget, 0, false, reverse);
7343 /* Generate a conditional jump to exit the loop. */
7344 exit_cond = build2 (LT_EXPR, integer_type_node,
7345 index, hi_index);
7346 jumpif (exit_cond, loop_end,
7347 profile_probability::uninitialized ());
7349 /* Update the loop counter, and jump to the head of
7350 the loop. */
7351 expand_assignment (index,
7352 build2 (PLUS_EXPR, TREE_TYPE (index),
7353 index, integer_one_node),
7354 false);
7356 emit_jump (loop_start);
7358 /* Build the end of the loop. */
7359 emit_label (loop_end);
7362 else if ((index != 0 && ! tree_fits_shwi_p (index))
7363 || ! tree_fits_uhwi_p (TYPE_SIZE (elttype)))
7365 tree position;
7367 if (index == 0)
7368 index = ssize_int (1);
7370 if (minelt)
7371 index = fold_convert (ssizetype,
7372 fold_build2 (MINUS_EXPR,
7373 TREE_TYPE (index),
7374 index,
7375 TYPE_MIN_VALUE (domain)));
7377 position =
7378 size_binop (MULT_EXPR, index,
7379 fold_convert (ssizetype,
7380 TYPE_SIZE_UNIT (elttype)));
7381 xtarget = offset_address (target,
7382 expand_normal (position),
7383 highest_pow2_factor (position));
7384 xtarget = adjust_address (xtarget, mode, 0);
7385 store_expr (value, xtarget, 0, false, reverse);
7387 else
7389 if (index != 0)
7390 bitpos = ((tree_to_shwi (index) - minelt)
7391 * tree_to_uhwi (TYPE_SIZE (elttype)));
7392 else
7393 bitpos = (i * tree_to_uhwi (TYPE_SIZE (elttype)));
7395 if (MEM_P (target) && !MEM_KEEP_ALIAS_SET_P (target)
7396 && TREE_CODE (type) == ARRAY_TYPE
7397 && TYPE_NONALIASED_COMPONENT (type))
7399 target = copy_rtx (target);
7400 MEM_KEEP_ALIAS_SET_P (target) = 1;
7402 store_constructor_field (target, bitsize, bitpos, 0,
7403 bitregion_end, mode, value,
7404 cleared, get_alias_set (elttype),
7405 reverse);
7408 break;
7411 case VECTOR_TYPE:
7413 unsigned HOST_WIDE_INT idx;
7414 constructor_elt *ce;
7415 int i;
7416 int need_to_clear;
7417 insn_code icode = CODE_FOR_nothing;
7418 tree elt;
7419 tree elttype = TREE_TYPE (type);
7420 int elt_size = vector_element_bits (type);
7421 machine_mode eltmode = TYPE_MODE (elttype);
7422 HOST_WIDE_INT bitsize;
7423 HOST_WIDE_INT bitpos;
7424 rtvec vector = NULL;
7425 poly_uint64 n_elts;
7426 unsigned HOST_WIDE_INT const_n_elts;
7427 alias_set_type alias;
7428 bool vec_vec_init_p = false;
7429 machine_mode mode = GET_MODE (target);
7431 gcc_assert (eltmode != BLKmode);
7433 /* Try using vec_duplicate_optab for uniform vectors. */
7434 if (!TREE_SIDE_EFFECTS (exp)
7435 && VECTOR_MODE_P (mode)
7436 && eltmode == GET_MODE_INNER (mode)
7437 && ((icode = optab_handler (vec_duplicate_optab, mode))
7438 != CODE_FOR_nothing)
7439 && (elt = uniform_vector_p (exp))
7440 && !VECTOR_TYPE_P (TREE_TYPE (elt)))
7442 class expand_operand ops[2];
7443 create_output_operand (&ops[0], target, mode);
7444 create_input_operand (&ops[1], expand_normal (elt), eltmode);
7445 expand_insn (icode, 2, ops);
7446 if (!rtx_equal_p (target, ops[0].value))
7447 emit_move_insn (target, ops[0].value);
7448 break;
7451 n_elts = TYPE_VECTOR_SUBPARTS (type);
7452 if (REG_P (target)
7453 && VECTOR_MODE_P (mode)
7454 && n_elts.is_constant (&const_n_elts))
7456 machine_mode emode = eltmode;
7457 bool vector_typed_elts_p = false;
7459 if (CONSTRUCTOR_NELTS (exp)
7460 && (TREE_CODE (TREE_TYPE (CONSTRUCTOR_ELT (exp, 0)->value))
7461 == VECTOR_TYPE))
7463 tree etype = TREE_TYPE (CONSTRUCTOR_ELT (exp, 0)->value);
7464 gcc_assert (known_eq (CONSTRUCTOR_NELTS (exp)
7465 * TYPE_VECTOR_SUBPARTS (etype),
7466 n_elts));
7467 emode = TYPE_MODE (etype);
7468 vector_typed_elts_p = true;
7470 icode = convert_optab_handler (vec_init_optab, mode, emode);
7471 if (icode != CODE_FOR_nothing)
7473 unsigned int n = const_n_elts;
7475 if (vector_typed_elts_p)
7477 n = CONSTRUCTOR_NELTS (exp);
7478 vec_vec_init_p = true;
7480 vector = rtvec_alloc (n);
7481 for (unsigned int k = 0; k < n; k++)
7482 RTVEC_ELT (vector, k) = CONST0_RTX (emode);
7486 /* Compute the size of the elements in the CTOR. It differs
7487 from the size of the vector type elements only when the
7488 CTOR elements are vectors themselves. */
7489 tree val_type = (CONSTRUCTOR_NELTS (exp) != 0
7490 ? TREE_TYPE (CONSTRUCTOR_ELT (exp, 0)->value)
7491 : elttype);
7492 if (VECTOR_TYPE_P (val_type))
7493 bitsize = tree_to_uhwi (TYPE_SIZE (val_type));
7494 else
7495 bitsize = elt_size;
7497 /* If the constructor has fewer elements than the vector,
7498 clear the whole array first. Similarly if this is static
7499 constructor of a non-BLKmode object. */
7500 if (cleared)
7501 need_to_clear = 0;
7502 else if (REG_P (target) && TREE_STATIC (exp))
7503 need_to_clear = 1;
7504 else
7506 unsigned HOST_WIDE_INT count = 0, zero_count = 0;
7507 tree value;
7509 FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (exp), idx, value)
7511 int n_elts_here = bitsize / elt_size;
7512 count += n_elts_here;
7513 if (mostly_zeros_p (value))
7514 zero_count += n_elts_here;
7517 /* Clear the entire vector first if there are any missing elements,
7518 or if the incidence of zero elements is >= 75%. */
7519 need_to_clear = (maybe_lt (count, n_elts)
7520 || 4 * zero_count >= 3 * count);
7523 if (need_to_clear && maybe_gt (size, 0) && !vector)
7525 if (REG_P (target))
7526 emit_move_insn (target, CONST0_RTX (mode));
7527 else
7528 clear_storage (target, gen_int_mode (size, Pmode),
7529 BLOCK_OP_NORMAL);
7530 cleared = 1;
7533 /* Inform later passes that the old value is dead. */
7534 if (!cleared && !vector && REG_P (target))
7535 emit_move_insn (target, CONST0_RTX (mode));
7537 if (MEM_P (target))
7538 alias = MEM_ALIAS_SET (target);
7539 else
7540 alias = get_alias_set (elttype);
7542 /* Store each element of the constructor into the corresponding
7543 element of TARGET, determined by counting the elements. */
7544 for (idx = 0, i = 0;
7545 vec_safe_iterate (CONSTRUCTOR_ELTS (exp), idx, &ce);
7546 idx++, i += bitsize / elt_size)
7548 HOST_WIDE_INT eltpos;
7549 tree value = ce->value;
7551 if (cleared && initializer_zerop (value))
7552 continue;
7554 if (ce->index)
7555 eltpos = tree_to_uhwi (ce->index);
7556 else
7557 eltpos = i;
7559 if (vector)
7561 if (vec_vec_init_p)
7563 gcc_assert (ce->index == NULL_TREE);
7564 gcc_assert (TREE_CODE (TREE_TYPE (value)) == VECTOR_TYPE);
7565 eltpos = idx;
7567 else
7568 gcc_assert (TREE_CODE (TREE_TYPE (value)) != VECTOR_TYPE);
7569 RTVEC_ELT (vector, eltpos) = expand_normal (value);
7571 else
7573 machine_mode value_mode
7574 = (TREE_CODE (TREE_TYPE (value)) == VECTOR_TYPE
7575 ? TYPE_MODE (TREE_TYPE (value)) : eltmode);
7576 bitpos = eltpos * elt_size;
7577 store_constructor_field (target, bitsize, bitpos, 0,
7578 bitregion_end, value_mode,
7579 value, cleared, alias, reverse);
7583 if (vector)
7584 emit_insn (GEN_FCN (icode) (target,
7585 gen_rtx_PARALLEL (mode, vector)));
7586 break;
7589 default:
7590 gcc_unreachable ();
7594 /* Store the value of EXP (an expression tree)
7595 into a subfield of TARGET which has mode MODE and occupies
7596 BITSIZE bits, starting BITPOS bits from the start of TARGET.
7597 If MODE is VOIDmode, it means that we are storing into a bit-field.
7599 BITREGION_START is bitpos of the first bitfield in this region.
7600 BITREGION_END is the bitpos of the ending bitfield in this region.
7601 These two fields are 0, if the C++ memory model does not apply,
7602 or we are not interested in keeping track of bitfield regions.
7604 Always return const0_rtx unless we have something particular to
7605 return.
7607 ALIAS_SET is the alias set for the destination. This value will
7608 (in general) be different from that for TARGET, since TARGET is a
7609 reference to the containing structure.
7611 If NONTEMPORAL is true, try generating a nontemporal store.
7613 If REVERSE is true, the store is to be done in reverse order. */
7615 static rtx
7616 store_field (rtx target, poly_int64 bitsize, poly_int64 bitpos,
7617 poly_uint64 bitregion_start, poly_uint64 bitregion_end,
7618 machine_mode mode, tree exp,
7619 alias_set_type alias_set, bool nontemporal, bool reverse)
7621 if (TREE_CODE (exp) == ERROR_MARK)
7622 return const0_rtx;
7624 /* If we have nothing to store, do nothing unless the expression has
7625 side-effects. Don't do that for zero sized addressable lhs of
7626 calls. */
7627 if (known_eq (bitsize, 0)
7628 && (!TREE_ADDRESSABLE (TREE_TYPE (exp))
7629 || TREE_CODE (exp) != CALL_EXPR))
7630 return expand_expr (exp, const0_rtx, VOIDmode, EXPAND_NORMAL);
7632 if (GET_CODE (target) == CONCAT)
7634 /* We're storing into a struct containing a single __complex. */
7636 gcc_assert (known_eq (bitpos, 0));
7637 return store_expr (exp, target, 0, nontemporal, reverse);
7640 /* If the structure is in a register or if the component
7641 is a bit field, we cannot use addressing to access it.
7642 Use bit-field techniques or SUBREG to store in it. */
7644 poly_int64 decl_bitsize;
7645 if (mode == VOIDmode
7646 || (mode != BLKmode && ! direct_store[(int) mode]
7647 && GET_MODE_CLASS (mode) != MODE_COMPLEX_INT
7648 && GET_MODE_CLASS (mode) != MODE_COMPLEX_FLOAT)
7649 || REG_P (target)
7650 || GET_CODE (target) == SUBREG
7651 /* If the field isn't aligned enough to store as an ordinary memref,
7652 store it as a bit field. */
7653 || (mode != BLKmode
7654 && ((((MEM_ALIGN (target) < GET_MODE_ALIGNMENT (mode))
7655 || !multiple_p (bitpos, GET_MODE_ALIGNMENT (mode)))
7656 && targetm.slow_unaligned_access (mode, MEM_ALIGN (target)))
7657 || !multiple_p (bitpos, BITS_PER_UNIT)))
7658 || (known_size_p (bitsize)
7659 && mode != BLKmode
7660 && maybe_gt (GET_MODE_BITSIZE (mode), bitsize))
7661 /* If the RHS and field are a constant size and the size of the
7662 RHS isn't the same size as the bitfield, we must use bitfield
7663 operations. */
7664 || (known_size_p (bitsize)
7665 && poly_int_tree_p (TYPE_SIZE (TREE_TYPE (exp)))
7666 && maybe_ne (wi::to_poly_offset (TYPE_SIZE (TREE_TYPE (exp))),
7667 bitsize)
7668 /* Except for initialization of full bytes from a CONSTRUCTOR, which
7669 we will handle specially below. */
7670 && !(TREE_CODE (exp) == CONSTRUCTOR
7671 && multiple_p (bitsize, BITS_PER_UNIT))
7672 /* And except for bitwise copying of TREE_ADDRESSABLE types,
7673 where the FIELD_DECL has the right bitsize, but TREE_TYPE (exp)
7674 includes some extra padding. store_expr / expand_expr will in
7675 that case call get_inner_reference that will have the bitsize
7676 we check here and thus the block move will not clobber the
7677 padding that shouldn't be clobbered. In the future we could
7678 replace the TREE_ADDRESSABLE check with a check that
7679 get_base_address needs to live in memory. */
7680 && (!TREE_ADDRESSABLE (TREE_TYPE (exp))
7681 || TREE_CODE (exp) != COMPONENT_REF
7682 || !multiple_p (bitsize, BITS_PER_UNIT)
7683 || !multiple_p (bitpos, BITS_PER_UNIT)
7684 || !poly_int_tree_p (DECL_SIZE (TREE_OPERAND (exp, 1)),
7685 &decl_bitsize)
7686 || maybe_ne (decl_bitsize, bitsize))
7687 /* A call with an addressable return type and return-slot
7688 optimization must not need bitfield operations but we must
7689 pass down the original target. */
7690 && (TREE_CODE (exp) != CALL_EXPR
7691 || !TREE_ADDRESSABLE (TREE_TYPE (exp))
7692 || !CALL_EXPR_RETURN_SLOT_OPT (exp)))
7693 /* If we are expanding a MEM_REF of a non-BLKmode non-addressable
7694 decl we must use bitfield operations. */
7695 || (known_size_p (bitsize)
7696 && TREE_CODE (exp) == MEM_REF
7697 && TREE_CODE (TREE_OPERAND (exp, 0)) == ADDR_EXPR
7698 && DECL_P (TREE_OPERAND (TREE_OPERAND (exp, 0), 0))
7699 && !TREE_ADDRESSABLE (TREE_OPERAND (TREE_OPERAND (exp, 0), 0))
7700 && DECL_MODE (TREE_OPERAND (TREE_OPERAND (exp, 0), 0)) != BLKmode))
7702 rtx temp;
7703 gimple *nop_def;
7705 /* If EXP is a NOP_EXPR of precision less than its mode, then that
7706 implies a mask operation. If the precision is the same size as
7707 the field we're storing into, that mask is redundant. This is
7708 particularly common with bit field assignments generated by the
7709 C front end. */
7710 nop_def = get_def_for_expr (exp, NOP_EXPR);
7711 if (nop_def)
7713 tree type = TREE_TYPE (exp);
7714 if (INTEGRAL_TYPE_P (type)
7715 && maybe_ne (TYPE_PRECISION (type),
7716 GET_MODE_BITSIZE (TYPE_MODE (type)))
7717 && known_eq (bitsize, TYPE_PRECISION (type)))
7719 tree op = gimple_assign_rhs1 (nop_def);
7720 type = TREE_TYPE (op);
7721 if (INTEGRAL_TYPE_P (type)
7722 && known_ge (TYPE_PRECISION (type), bitsize))
7723 exp = op;
7727 temp = expand_normal (exp);
7729 /* We don't support variable-sized BLKmode bitfields, since our
7730 handling of BLKmode is bound up with the ability to break
7731 things into words. */
7732 gcc_assert (mode != BLKmode || bitsize.is_constant ());
7734 /* Handle calls that return values in multiple non-contiguous locations.
7735 The Irix 6 ABI has examples of this. */
7736 if (GET_CODE (temp) == PARALLEL)
7738 HOST_WIDE_INT size = int_size_in_bytes (TREE_TYPE (exp));
7739 machine_mode temp_mode = GET_MODE (temp);
7740 if (temp_mode == BLKmode || temp_mode == VOIDmode)
7741 temp_mode = smallest_int_mode_for_size (size * BITS_PER_UNIT);
7742 rtx temp_target = gen_reg_rtx (temp_mode);
7743 emit_group_store (temp_target, temp, TREE_TYPE (exp), size);
7744 temp = temp_target;
7747 /* Handle calls that return BLKmode values in registers. */
7748 else if (mode == BLKmode && REG_P (temp) && TREE_CODE (exp) == CALL_EXPR)
7750 rtx temp_target = gen_reg_rtx (GET_MODE (temp));
7751 copy_blkmode_from_reg (temp_target, temp, TREE_TYPE (exp));
7752 temp = temp_target;
7755 /* If the value has aggregate type and an integral mode then, if BITSIZE
7756 is narrower than this mode and this is for big-endian data, we first
7757 need to put the value into the low-order bits for store_bit_field,
7758 except when MODE is BLKmode and BITSIZE larger than the word size
7759 (see the handling of fields larger than a word in store_bit_field).
7760 Moreover, the field may be not aligned on a byte boundary; in this
7761 case, if it has reverse storage order, it needs to be accessed as a
7762 scalar field with reverse storage order and we must first put the
7763 value into target order. */
7764 scalar_int_mode temp_mode;
7765 if (AGGREGATE_TYPE_P (TREE_TYPE (exp))
7766 && is_int_mode (GET_MODE (temp), &temp_mode))
7768 HOST_WIDE_INT size = GET_MODE_BITSIZE (temp_mode);
7770 reverse = TYPE_REVERSE_STORAGE_ORDER (TREE_TYPE (exp));
7772 if (reverse)
7773 temp = flip_storage_order (temp_mode, temp);
7775 gcc_checking_assert (known_le (bitsize, size));
7776 if (maybe_lt (bitsize, size)
7777 && reverse ? !BYTES_BIG_ENDIAN : BYTES_BIG_ENDIAN
7778 /* Use of to_constant for BLKmode was checked above. */
7779 && !(mode == BLKmode && bitsize.to_constant () > BITS_PER_WORD))
7780 temp = expand_shift (RSHIFT_EXPR, temp_mode, temp,
7781 size - bitsize, NULL_RTX, 1);
7784 /* Unless MODE is VOIDmode or BLKmode, convert TEMP to MODE. */
7785 if (mode != VOIDmode && mode != BLKmode
7786 && mode != TYPE_MODE (TREE_TYPE (exp)))
7787 temp = convert_modes (mode, TYPE_MODE (TREE_TYPE (exp)), temp, 1);
7789 /* If the mode of TEMP and TARGET is BLKmode, both must be in memory
7790 and BITPOS must be aligned on a byte boundary. If so, we simply do
7791 a block copy. Likewise for a BLKmode-like TARGET. */
7792 if (GET_MODE (temp) == BLKmode
7793 && (GET_MODE (target) == BLKmode
7794 || (MEM_P (target)
7795 && GET_MODE_CLASS (GET_MODE (target)) == MODE_INT
7796 && multiple_p (bitpos, BITS_PER_UNIT)
7797 && multiple_p (bitsize, BITS_PER_UNIT))))
7799 gcc_assert (MEM_P (target) && MEM_P (temp));
7800 poly_int64 bytepos = exact_div (bitpos, BITS_PER_UNIT);
7801 poly_int64 bytesize = bits_to_bytes_round_up (bitsize);
7803 target = adjust_address (target, VOIDmode, bytepos);
7804 emit_block_move (target, temp,
7805 gen_int_mode (bytesize, Pmode),
7806 BLOCK_OP_NORMAL);
7808 return const0_rtx;
7811 /* If the mode of TEMP is still BLKmode and BITSIZE not larger than the
7812 word size, we need to load the value (see again store_bit_field). */
7813 if (GET_MODE (temp) == BLKmode && known_le (bitsize, BITS_PER_WORD))
7815 temp_mode = smallest_int_mode_for_size (bitsize);
7816 temp = extract_bit_field (temp, bitsize, 0, 1, NULL_RTX, temp_mode,
7817 temp_mode, false, NULL);
7820 /* Store the value in the bitfield. */
7821 gcc_checking_assert (known_ge (bitpos, 0));
7822 store_bit_field (target, bitsize, bitpos,
7823 bitregion_start, bitregion_end,
7824 mode, temp, reverse, false);
7826 return const0_rtx;
7828 else
7830 /* Now build a reference to just the desired component. */
7831 rtx to_rtx = adjust_address (target, mode,
7832 exact_div (bitpos, BITS_PER_UNIT));
7834 if (to_rtx == target)
7835 to_rtx = copy_rtx (to_rtx);
7837 if (!MEM_KEEP_ALIAS_SET_P (to_rtx) && MEM_ALIAS_SET (to_rtx) != 0)
7838 set_mem_alias_set (to_rtx, alias_set);
7840 /* Above we avoided using bitfield operations for storing a CONSTRUCTOR
7841 into a target smaller than its type; handle that case now. */
7842 if (TREE_CODE (exp) == CONSTRUCTOR && known_size_p (bitsize))
7844 poly_int64 bytesize = exact_div (bitsize, BITS_PER_UNIT);
7845 store_constructor (exp, to_rtx, 0, bytesize, reverse);
7846 return to_rtx;
7849 return store_expr (exp, to_rtx, 0, nontemporal, reverse);
7853 /* Given an expression EXP that may be a COMPONENT_REF, a BIT_FIELD_REF,
7854 an ARRAY_REF, or an ARRAY_RANGE_REF, look for nested operations of these
7855 codes and find the ultimate containing object, which we return.
7857 We set *PBITSIZE to the size in bits that we want, *PBITPOS to the
7858 bit position, *PUNSIGNEDP to the signedness and *PREVERSEP to the
7859 storage order of the field.
7860 If the position of the field is variable, we store a tree
7861 giving the variable offset (in units) in *POFFSET.
7862 This offset is in addition to the bit position.
7863 If the position is not variable, we store 0 in *POFFSET.
7865 If any of the extraction expressions is volatile,
7866 we store 1 in *PVOLATILEP. Otherwise we don't change that.
7868 If the field is a non-BLKmode bit-field, *PMODE is set to VOIDmode.
7869 Otherwise, it is a mode that can be used to access the field.
7871 If the field describes a variable-sized object, *PMODE is set to
7872 BLKmode and *PBITSIZE is set to -1. An access cannot be made in
7873 this case, but the address of the object can be found. */
7875 tree
7876 get_inner_reference (tree exp, poly_int64_pod *pbitsize,
7877 poly_int64_pod *pbitpos, tree *poffset,
7878 machine_mode *pmode, int *punsignedp,
7879 int *preversep, int *pvolatilep)
7881 tree size_tree = 0;
7882 machine_mode mode = VOIDmode;
7883 bool blkmode_bitfield = false;
7884 tree offset = size_zero_node;
7885 poly_offset_int bit_offset = 0;
7887 /* First get the mode, signedness, storage order and size. We do this from
7888 just the outermost expression. */
7889 *pbitsize = -1;
7890 if (TREE_CODE (exp) == COMPONENT_REF)
7892 tree field = TREE_OPERAND (exp, 1);
7893 size_tree = DECL_SIZE (field);
7894 if (flag_strict_volatile_bitfields > 0
7895 && TREE_THIS_VOLATILE (exp)
7896 && DECL_BIT_FIELD_TYPE (field)
7897 && DECL_MODE (field) != BLKmode)
7898 /* Volatile bitfields should be accessed in the mode of the
7899 field's type, not the mode computed based on the bit
7900 size. */
7901 mode = TYPE_MODE (DECL_BIT_FIELD_TYPE (field));
7902 else if (!DECL_BIT_FIELD (field))
7904 mode = DECL_MODE (field);
7905 /* For vector fields re-check the target flags, as DECL_MODE
7906 could have been set with different target flags than
7907 the current function has. */
7908 if (VECTOR_TYPE_P (TREE_TYPE (field))
7909 && VECTOR_MODE_P (TYPE_MODE_RAW (TREE_TYPE (field))))
7910 mode = TYPE_MODE (TREE_TYPE (field));
7912 else if (DECL_MODE (field) == BLKmode)
7913 blkmode_bitfield = true;
7915 *punsignedp = DECL_UNSIGNED (field);
7917 else if (TREE_CODE (exp) == BIT_FIELD_REF)
7919 size_tree = TREE_OPERAND (exp, 1);
7920 *punsignedp = (! INTEGRAL_TYPE_P (TREE_TYPE (exp))
7921 || TYPE_UNSIGNED (TREE_TYPE (exp)));
7923 /* For vector element types with the correct size of access or for
7924 vector typed accesses use the mode of the access type. */
7925 if ((TREE_CODE (TREE_TYPE (TREE_OPERAND (exp, 0))) == VECTOR_TYPE
7926 && TREE_TYPE (exp) == TREE_TYPE (TREE_TYPE (TREE_OPERAND (exp, 0)))
7927 && tree_int_cst_equal (size_tree, TYPE_SIZE (TREE_TYPE (exp))))
7928 || VECTOR_TYPE_P (TREE_TYPE (exp)))
7929 mode = TYPE_MODE (TREE_TYPE (exp));
7931 else
7933 mode = TYPE_MODE (TREE_TYPE (exp));
7934 *punsignedp = TYPE_UNSIGNED (TREE_TYPE (exp));
7936 if (mode == BLKmode)
7937 size_tree = TYPE_SIZE (TREE_TYPE (exp));
7938 else
7939 *pbitsize = GET_MODE_BITSIZE (mode);
7942 if (size_tree != 0)
7944 if (! tree_fits_uhwi_p (size_tree))
7945 mode = BLKmode, *pbitsize = -1;
7946 else
7947 *pbitsize = tree_to_uhwi (size_tree);
7950 *preversep = reverse_storage_order_for_component_p (exp);
7952 /* Compute cumulative bit-offset for nested component-refs and array-refs,
7953 and find the ultimate containing object. */
7954 while (1)
7956 switch (TREE_CODE (exp))
7958 case BIT_FIELD_REF:
7959 bit_offset += wi::to_poly_offset (TREE_OPERAND (exp, 2));
7960 break;
7962 case COMPONENT_REF:
7964 tree field = TREE_OPERAND (exp, 1);
7965 tree this_offset = component_ref_field_offset (exp);
7967 /* If this field hasn't been filled in yet, don't go past it.
7968 This should only happen when folding expressions made during
7969 type construction. */
7970 if (this_offset == 0)
7971 break;
7973 offset = size_binop (PLUS_EXPR, offset, this_offset);
7974 bit_offset += wi::to_poly_offset (DECL_FIELD_BIT_OFFSET (field));
7976 /* ??? Right now we don't do anything with DECL_OFFSET_ALIGN. */
7978 break;
7980 case ARRAY_REF:
7981 case ARRAY_RANGE_REF:
7983 tree index = TREE_OPERAND (exp, 1);
7984 tree low_bound = array_ref_low_bound (exp);
7985 tree unit_size = array_ref_element_size (exp);
7987 /* We assume all arrays have sizes that are a multiple of a byte.
7988 First subtract the lower bound, if any, in the type of the
7989 index, then convert to sizetype and multiply by the size of
7990 the array element. */
7991 if (! integer_zerop (low_bound))
7992 index = fold_build2 (MINUS_EXPR, TREE_TYPE (index),
7993 index, low_bound);
7995 offset = size_binop (PLUS_EXPR, offset,
7996 size_binop (MULT_EXPR,
7997 fold_convert (sizetype, index),
7998 unit_size));
8000 break;
8002 case REALPART_EXPR:
8003 break;
8005 case IMAGPART_EXPR:
8006 bit_offset += *pbitsize;
8007 break;
8009 case VIEW_CONVERT_EXPR:
8010 break;
8012 case MEM_REF:
8013 /* Hand back the decl for MEM[&decl, off]. */
8014 if (TREE_CODE (TREE_OPERAND (exp, 0)) == ADDR_EXPR)
8016 tree off = TREE_OPERAND (exp, 1);
8017 if (!integer_zerop (off))
8019 poly_offset_int boff = mem_ref_offset (exp);
8020 boff <<= LOG2_BITS_PER_UNIT;
8021 bit_offset += boff;
8023 exp = TREE_OPERAND (TREE_OPERAND (exp, 0), 0);
8025 goto done;
8027 default:
8028 goto done;
8031 /* If any reference in the chain is volatile, the effect is volatile. */
8032 if (TREE_THIS_VOLATILE (exp))
8033 *pvolatilep = 1;
8035 exp = TREE_OPERAND (exp, 0);
8037 done:
8039 /* If OFFSET is constant, see if we can return the whole thing as a
8040 constant bit position. Make sure to handle overflow during
8041 this conversion. */
8042 if (poly_int_tree_p (offset))
8044 poly_offset_int tem = wi::sext (wi::to_poly_offset (offset),
8045 TYPE_PRECISION (sizetype));
8046 tem <<= LOG2_BITS_PER_UNIT;
8047 tem += bit_offset;
8048 if (tem.to_shwi (pbitpos))
8049 *poffset = offset = NULL_TREE;
8052 /* Otherwise, split it up. */
8053 if (offset)
8055 /* Avoid returning a negative bitpos as this may wreak havoc later. */
8056 if (!bit_offset.to_shwi (pbitpos) || maybe_lt (*pbitpos, 0))
8058 *pbitpos = num_trailing_bits (bit_offset.force_shwi ());
8059 poly_offset_int bytes = bits_to_bytes_round_down (bit_offset);
8060 offset = size_binop (PLUS_EXPR, offset,
8061 build_int_cst (sizetype, bytes.force_shwi ()));
8064 *poffset = offset;
8067 /* We can use BLKmode for a byte-aligned BLKmode bitfield. */
8068 if (mode == VOIDmode
8069 && blkmode_bitfield
8070 && multiple_p (*pbitpos, BITS_PER_UNIT)
8071 && multiple_p (*pbitsize, BITS_PER_UNIT))
8072 *pmode = BLKmode;
8073 else
8074 *pmode = mode;
8076 return exp;
8079 /* Alignment in bits the TARGET of an assignment may be assumed to have. */
8081 static unsigned HOST_WIDE_INT
8082 target_align (const_tree target)
8084 /* We might have a chain of nested references with intermediate misaligning
8085 bitfields components, so need to recurse to find out. */
8087 unsigned HOST_WIDE_INT this_align, outer_align;
8089 switch (TREE_CODE (target))
8091 case BIT_FIELD_REF:
8092 return 1;
8094 case COMPONENT_REF:
8095 this_align = DECL_ALIGN (TREE_OPERAND (target, 1));
8096 outer_align = target_align (TREE_OPERAND (target, 0));
8097 return MIN (this_align, outer_align);
8099 case ARRAY_REF:
8100 case ARRAY_RANGE_REF:
8101 this_align = TYPE_ALIGN (TREE_TYPE (target));
8102 outer_align = target_align (TREE_OPERAND (target, 0));
8103 return MIN (this_align, outer_align);
8105 CASE_CONVERT:
8106 case NON_LVALUE_EXPR:
8107 case VIEW_CONVERT_EXPR:
8108 this_align = TYPE_ALIGN (TREE_TYPE (target));
8109 outer_align = target_align (TREE_OPERAND (target, 0));
8110 return MAX (this_align, outer_align);
8112 default:
8113 return TYPE_ALIGN (TREE_TYPE (target));
8118 /* Given an rtx VALUE that may contain additions and multiplications, return
8119 an equivalent value that just refers to a register, memory, or constant.
8120 This is done by generating instructions to perform the arithmetic and
8121 returning a pseudo-register containing the value.
8123 The returned value may be a REG, SUBREG, MEM or constant. */
8126 force_operand (rtx value, rtx target)
8128 rtx op1, op2;
8129 /* Use subtarget as the target for operand 0 of a binary operation. */
8130 rtx subtarget = get_subtarget (target);
8131 enum rtx_code code = GET_CODE (value);
8133 /* Check for subreg applied to an expression produced by loop optimizer. */
8134 if (code == SUBREG
8135 && !REG_P (SUBREG_REG (value))
8136 && !MEM_P (SUBREG_REG (value)))
8138 value
8139 = simplify_gen_subreg (GET_MODE (value),
8140 force_reg (GET_MODE (SUBREG_REG (value)),
8141 force_operand (SUBREG_REG (value),
8142 NULL_RTX)),
8143 GET_MODE (SUBREG_REG (value)),
8144 SUBREG_BYTE (value));
8145 code = GET_CODE (value);
8148 /* Check for a PIC address load. */
8149 if ((code == PLUS || code == MINUS)
8150 && XEXP (value, 0) == pic_offset_table_rtx
8151 && (GET_CODE (XEXP (value, 1)) == SYMBOL_REF
8152 || GET_CODE (XEXP (value, 1)) == LABEL_REF
8153 || GET_CODE (XEXP (value, 1)) == CONST))
8155 if (!subtarget)
8156 subtarget = gen_reg_rtx (GET_MODE (value));
8157 emit_move_insn (subtarget, value);
8158 return subtarget;
8161 if (ARITHMETIC_P (value))
8163 op2 = XEXP (value, 1);
8164 if (!CONSTANT_P (op2) && !(REG_P (op2) && op2 != subtarget))
8165 subtarget = 0;
8166 if (code == MINUS && CONST_INT_P (op2))
8168 code = PLUS;
8169 op2 = negate_rtx (GET_MODE (value), op2);
8172 /* Check for an addition with OP2 a constant integer and our first
8173 operand a PLUS of a virtual register and something else. In that
8174 case, we want to emit the sum of the virtual register and the
8175 constant first and then add the other value. This allows virtual
8176 register instantiation to simply modify the constant rather than
8177 creating another one around this addition. */
8178 if (code == PLUS && CONST_INT_P (op2)
8179 && GET_CODE (XEXP (value, 0)) == PLUS
8180 && REG_P (XEXP (XEXP (value, 0), 0))
8181 && REGNO (XEXP (XEXP (value, 0), 0)) >= FIRST_VIRTUAL_REGISTER
8182 && REGNO (XEXP (XEXP (value, 0), 0)) <= LAST_VIRTUAL_REGISTER)
8184 rtx temp = expand_simple_binop (GET_MODE (value), code,
8185 XEXP (XEXP (value, 0), 0), op2,
8186 subtarget, 0, OPTAB_LIB_WIDEN);
8187 return expand_simple_binop (GET_MODE (value), code, temp,
8188 force_operand (XEXP (XEXP (value,
8189 0), 1), 0),
8190 target, 0, OPTAB_LIB_WIDEN);
8193 op1 = force_operand (XEXP (value, 0), subtarget);
8194 op2 = force_operand (op2, NULL_RTX);
8195 switch (code)
8197 case MULT:
8198 return expand_mult (GET_MODE (value), op1, op2, target, 1);
8199 case DIV:
8200 if (!INTEGRAL_MODE_P (GET_MODE (value)))
8201 return expand_simple_binop (GET_MODE (value), code, op1, op2,
8202 target, 1, OPTAB_LIB_WIDEN);
8203 else
8204 return expand_divmod (0,
8205 FLOAT_MODE_P (GET_MODE (value))
8206 ? RDIV_EXPR : TRUNC_DIV_EXPR,
8207 GET_MODE (value), NULL, NULL, op1, op2,
8208 target, 0);
8209 case MOD:
8210 return expand_divmod (1, TRUNC_MOD_EXPR, GET_MODE (value), NULL, NULL,
8211 op1, op2, target, 0);
8212 case UDIV:
8213 return expand_divmod (0, TRUNC_DIV_EXPR, GET_MODE (value), NULL, NULL,
8214 op1, op2, target, 1);
8215 case UMOD:
8216 return expand_divmod (1, TRUNC_MOD_EXPR, GET_MODE (value), NULL, NULL,
8217 op1, op2, target, 1);
8218 case ASHIFTRT:
8219 return expand_simple_binop (GET_MODE (value), code, op1, op2,
8220 target, 0, OPTAB_LIB_WIDEN);
8221 default:
8222 return expand_simple_binop (GET_MODE (value), code, op1, op2,
8223 target, 1, OPTAB_LIB_WIDEN);
8226 if (UNARY_P (value))
8228 if (!target)
8229 target = gen_reg_rtx (GET_MODE (value));
8230 op1 = force_operand (XEXP (value, 0), NULL_RTX);
8231 switch (code)
8233 case ZERO_EXTEND:
8234 case SIGN_EXTEND:
8235 case TRUNCATE:
8236 case FLOAT_EXTEND:
8237 case FLOAT_TRUNCATE:
8238 convert_move (target, op1, code == ZERO_EXTEND);
8239 return target;
8241 case FIX:
8242 case UNSIGNED_FIX:
8243 expand_fix (target, op1, code == UNSIGNED_FIX);
8244 return target;
8246 case FLOAT:
8247 case UNSIGNED_FLOAT:
8248 expand_float (target, op1, code == UNSIGNED_FLOAT);
8249 return target;
8251 default:
8252 return expand_simple_unop (GET_MODE (value), code, op1, target, 0);
8256 #ifdef INSN_SCHEDULING
8257 /* On machines that have insn scheduling, we want all memory reference to be
8258 explicit, so we need to deal with such paradoxical SUBREGs. */
8259 if (paradoxical_subreg_p (value) && MEM_P (SUBREG_REG (value)))
8260 value
8261 = simplify_gen_subreg (GET_MODE (value),
8262 force_reg (GET_MODE (SUBREG_REG (value)),
8263 force_operand (SUBREG_REG (value),
8264 NULL_RTX)),
8265 GET_MODE (SUBREG_REG (value)),
8266 SUBREG_BYTE (value));
8267 #endif
8269 return value;
8272 /* Subroutine of expand_expr: return nonzero iff there is no way that
8273 EXP can reference X, which is being modified. TOP_P is nonzero if this
8274 call is going to be used to determine whether we need a temporary
8275 for EXP, as opposed to a recursive call to this function.
8277 It is always safe for this routine to return zero since it merely
8278 searches for optimization opportunities. */
8281 safe_from_p (const_rtx x, tree exp, int top_p)
8283 rtx exp_rtl = 0;
8284 int i, nops;
8286 if (x == 0
8287 /* If EXP has varying size, we MUST use a target since we currently
8288 have no way of allocating temporaries of variable size
8289 (except for arrays that have TYPE_ARRAY_MAX_SIZE set).
8290 So we assume here that something at a higher level has prevented a
8291 clash. This is somewhat bogus, but the best we can do. Only
8292 do this when X is BLKmode and when we are at the top level. */
8293 || (top_p && TREE_TYPE (exp) != 0 && COMPLETE_TYPE_P (TREE_TYPE (exp))
8294 && TREE_CODE (TYPE_SIZE (TREE_TYPE (exp))) != INTEGER_CST
8295 && (TREE_CODE (TREE_TYPE (exp)) != ARRAY_TYPE
8296 || TYPE_ARRAY_MAX_SIZE (TREE_TYPE (exp)) == NULL_TREE
8297 || TREE_CODE (TYPE_ARRAY_MAX_SIZE (TREE_TYPE (exp)))
8298 != INTEGER_CST)
8299 && GET_MODE (x) == BLKmode)
8300 /* If X is in the outgoing argument area, it is always safe. */
8301 || (MEM_P (x)
8302 && (XEXP (x, 0) == virtual_outgoing_args_rtx
8303 || (GET_CODE (XEXP (x, 0)) == PLUS
8304 && XEXP (XEXP (x, 0), 0) == virtual_outgoing_args_rtx))))
8305 return 1;
8307 /* If this is a subreg of a hard register, declare it unsafe, otherwise,
8308 find the underlying pseudo. */
8309 if (GET_CODE (x) == SUBREG)
8311 x = SUBREG_REG (x);
8312 if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER)
8313 return 0;
8316 /* Now look at our tree code and possibly recurse. */
8317 switch (TREE_CODE_CLASS (TREE_CODE (exp)))
8319 case tcc_declaration:
8320 exp_rtl = DECL_RTL_IF_SET (exp);
8321 break;
8323 case tcc_constant:
8324 return 1;
8326 case tcc_exceptional:
8327 if (TREE_CODE (exp) == TREE_LIST)
8329 while (1)
8331 if (TREE_VALUE (exp) && !safe_from_p (x, TREE_VALUE (exp), 0))
8332 return 0;
8333 exp = TREE_CHAIN (exp);
8334 if (!exp)
8335 return 1;
8336 if (TREE_CODE (exp) != TREE_LIST)
8337 return safe_from_p (x, exp, 0);
8340 else if (TREE_CODE (exp) == CONSTRUCTOR)
8342 constructor_elt *ce;
8343 unsigned HOST_WIDE_INT idx;
8345 FOR_EACH_VEC_SAFE_ELT (CONSTRUCTOR_ELTS (exp), idx, ce)
8346 if ((ce->index != NULL_TREE && !safe_from_p (x, ce->index, 0))
8347 || !safe_from_p (x, ce->value, 0))
8348 return 0;
8349 return 1;
8351 else if (TREE_CODE (exp) == ERROR_MARK)
8352 return 1; /* An already-visited SAVE_EXPR? */
8353 else
8354 return 0;
8356 case tcc_statement:
8357 /* The only case we look at here is the DECL_INITIAL inside a
8358 DECL_EXPR. */
8359 return (TREE_CODE (exp) != DECL_EXPR
8360 || TREE_CODE (DECL_EXPR_DECL (exp)) != VAR_DECL
8361 || !DECL_INITIAL (DECL_EXPR_DECL (exp))
8362 || safe_from_p (x, DECL_INITIAL (DECL_EXPR_DECL (exp)), 0));
8364 case tcc_binary:
8365 case tcc_comparison:
8366 if (!safe_from_p (x, TREE_OPERAND (exp, 1), 0))
8367 return 0;
8368 /* Fall through. */
8370 case tcc_unary:
8371 return safe_from_p (x, TREE_OPERAND (exp, 0), 0);
8373 case tcc_expression:
8374 case tcc_reference:
8375 case tcc_vl_exp:
8376 /* Now do code-specific tests. EXP_RTL is set to any rtx we find in
8377 the expression. If it is set, we conflict iff we are that rtx or
8378 both are in memory. Otherwise, we check all operands of the
8379 expression recursively. */
8381 switch (TREE_CODE (exp))
8383 case ADDR_EXPR:
8384 /* If the operand is static or we are static, we can't conflict.
8385 Likewise if we don't conflict with the operand at all. */
8386 if (staticp (TREE_OPERAND (exp, 0))
8387 || TREE_STATIC (exp)
8388 || safe_from_p (x, TREE_OPERAND (exp, 0), 0))
8389 return 1;
8391 /* Otherwise, the only way this can conflict is if we are taking
8392 the address of a DECL a that address if part of X, which is
8393 very rare. */
8394 exp = TREE_OPERAND (exp, 0);
8395 if (DECL_P (exp))
8397 if (!DECL_RTL_SET_P (exp)
8398 || !MEM_P (DECL_RTL (exp)))
8399 return 0;
8400 else
8401 exp_rtl = XEXP (DECL_RTL (exp), 0);
8403 break;
8405 case MEM_REF:
8406 if (MEM_P (x)
8407 && alias_sets_conflict_p (MEM_ALIAS_SET (x),
8408 get_alias_set (exp)))
8409 return 0;
8410 break;
8412 case CALL_EXPR:
8413 /* Assume that the call will clobber all hard registers and
8414 all of memory. */
8415 if ((REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER)
8416 || MEM_P (x))
8417 return 0;
8418 break;
8420 case WITH_CLEANUP_EXPR:
8421 case CLEANUP_POINT_EXPR:
8422 /* Lowered by gimplify.cc. */
8423 gcc_unreachable ();
8425 case SAVE_EXPR:
8426 return safe_from_p (x, TREE_OPERAND (exp, 0), 0);
8428 default:
8429 break;
8432 /* If we have an rtx, we do not need to scan our operands. */
8433 if (exp_rtl)
8434 break;
8436 nops = TREE_OPERAND_LENGTH (exp);
8437 for (i = 0; i < nops; i++)
8438 if (TREE_OPERAND (exp, i) != 0
8439 && ! safe_from_p (x, TREE_OPERAND (exp, i), 0))
8440 return 0;
8442 break;
8444 case tcc_type:
8445 /* Should never get a type here. */
8446 gcc_unreachable ();
8449 /* If we have an rtl, find any enclosed object. Then see if we conflict
8450 with it. */
8451 if (exp_rtl)
8453 if (GET_CODE (exp_rtl) == SUBREG)
8455 exp_rtl = SUBREG_REG (exp_rtl);
8456 if (REG_P (exp_rtl)
8457 && REGNO (exp_rtl) < FIRST_PSEUDO_REGISTER)
8458 return 0;
8461 /* If the rtl is X, then it is not safe. Otherwise, it is unless both
8462 are memory and they conflict. */
8463 return ! (rtx_equal_p (x, exp_rtl)
8464 || (MEM_P (x) && MEM_P (exp_rtl)
8465 && true_dependence (exp_rtl, VOIDmode, x)));
8468 /* If we reach here, it is safe. */
8469 return 1;
8473 /* Return the highest power of two that EXP is known to be a multiple of.
8474 This is used in updating alignment of MEMs in array references. */
8476 unsigned HOST_WIDE_INT
8477 highest_pow2_factor (const_tree exp)
8479 unsigned HOST_WIDE_INT ret;
8480 int trailing_zeros = tree_ctz (exp);
8481 if (trailing_zeros >= HOST_BITS_PER_WIDE_INT)
8482 return BIGGEST_ALIGNMENT;
8483 ret = HOST_WIDE_INT_1U << trailing_zeros;
8484 if (ret > BIGGEST_ALIGNMENT)
8485 return BIGGEST_ALIGNMENT;
8486 return ret;
8489 /* Similar, except that the alignment requirements of TARGET are
8490 taken into account. Assume it is at least as aligned as its
8491 type, unless it is a COMPONENT_REF in which case the layout of
8492 the structure gives the alignment. */
8494 static unsigned HOST_WIDE_INT
8495 highest_pow2_factor_for_target (const_tree target, const_tree exp)
8497 unsigned HOST_WIDE_INT talign = target_align (target) / BITS_PER_UNIT;
8498 unsigned HOST_WIDE_INT factor = highest_pow2_factor (exp);
8500 return MAX (factor, talign);
8503 /* Convert the tree comparison code TCODE to the rtl one where the
8504 signedness is UNSIGNEDP. */
8506 static enum rtx_code
8507 convert_tree_comp_to_rtx (enum tree_code tcode, int unsignedp)
8509 enum rtx_code code;
8510 switch (tcode)
8512 case EQ_EXPR:
8513 code = EQ;
8514 break;
8515 case NE_EXPR:
8516 code = NE;
8517 break;
8518 case LT_EXPR:
8519 code = unsignedp ? LTU : LT;
8520 break;
8521 case LE_EXPR:
8522 code = unsignedp ? LEU : LE;
8523 break;
8524 case GT_EXPR:
8525 code = unsignedp ? GTU : GT;
8526 break;
8527 case GE_EXPR:
8528 code = unsignedp ? GEU : GE;
8529 break;
8530 case UNORDERED_EXPR:
8531 code = UNORDERED;
8532 break;
8533 case ORDERED_EXPR:
8534 code = ORDERED;
8535 break;
8536 case UNLT_EXPR:
8537 code = UNLT;
8538 break;
8539 case UNLE_EXPR:
8540 code = UNLE;
8541 break;
8542 case UNGT_EXPR:
8543 code = UNGT;
8544 break;
8545 case UNGE_EXPR:
8546 code = UNGE;
8547 break;
8548 case UNEQ_EXPR:
8549 code = UNEQ;
8550 break;
8551 case LTGT_EXPR:
8552 code = LTGT;
8553 break;
8555 default:
8556 gcc_unreachable ();
8558 return code;
8561 /* Subroutine of expand_expr. Expand the two operands of a binary
8562 expression EXP0 and EXP1 placing the results in OP0 and OP1.
8563 The value may be stored in TARGET if TARGET is nonzero. The
8564 MODIFIER argument is as documented by expand_expr. */
8566 void
8567 expand_operands (tree exp0, tree exp1, rtx target, rtx *op0, rtx *op1,
8568 enum expand_modifier modifier)
8570 if (! safe_from_p (target, exp1, 1))
8571 target = 0;
8572 if (operand_equal_p (exp0, exp1, 0))
8574 *op0 = expand_expr (exp0, target, VOIDmode, modifier);
8575 *op1 = copy_rtx (*op0);
8577 else
8579 *op0 = expand_expr (exp0, target, VOIDmode, modifier);
8580 *op1 = expand_expr (exp1, NULL_RTX, VOIDmode, modifier);
8585 /* Return a MEM that contains constant EXP. DEFER is as for
8586 output_constant_def and MODIFIER is as for expand_expr. */
8588 static rtx
8589 expand_expr_constant (tree exp, int defer, enum expand_modifier modifier)
8591 rtx mem;
8593 mem = output_constant_def (exp, defer);
8594 if (modifier != EXPAND_INITIALIZER)
8595 mem = use_anchored_address (mem);
8596 return mem;
8599 /* A subroutine of expand_expr_addr_expr. Evaluate the address of EXP.
8600 The TARGET, TMODE and MODIFIER arguments are as for expand_expr. */
8602 static rtx
8603 expand_expr_addr_expr_1 (tree exp, rtx target, scalar_int_mode tmode,
8604 enum expand_modifier modifier, addr_space_t as)
8606 rtx result, subtarget;
8607 tree inner, offset;
8608 poly_int64 bitsize, bitpos;
8609 int unsignedp, reversep, volatilep = 0;
8610 machine_mode mode1;
8612 /* If we are taking the address of a constant and are at the top level,
8613 we have to use output_constant_def since we can't call force_const_mem
8614 at top level. */
8615 /* ??? This should be considered a front-end bug. We should not be
8616 generating ADDR_EXPR of something that isn't an LVALUE. The only
8617 exception here is STRING_CST. */
8618 if (CONSTANT_CLASS_P (exp))
8620 result = XEXP (expand_expr_constant (exp, 0, modifier), 0);
8621 if (modifier < EXPAND_SUM)
8622 result = force_operand (result, target);
8623 return result;
8626 /* Everything must be something allowed by is_gimple_addressable. */
8627 switch (TREE_CODE (exp))
8629 case INDIRECT_REF:
8630 /* This case will happen via recursion for &a->b. */
8631 return expand_expr (TREE_OPERAND (exp, 0), target, tmode, modifier);
8633 case MEM_REF:
8635 tree tem = TREE_OPERAND (exp, 0);
8636 if (!integer_zerop (TREE_OPERAND (exp, 1)))
8637 tem = fold_build_pointer_plus (tem, TREE_OPERAND (exp, 1));
8638 return expand_expr (tem, target, tmode, modifier);
8641 case TARGET_MEM_REF:
8642 return addr_for_mem_ref (exp, as, true);
8644 case CONST_DECL:
8645 /* Expand the initializer like constants above. */
8646 result = XEXP (expand_expr_constant (DECL_INITIAL (exp),
8647 0, modifier), 0);
8648 if (modifier < EXPAND_SUM)
8649 result = force_operand (result, target);
8650 return result;
8652 case REALPART_EXPR:
8653 /* The real part of the complex number is always first, therefore
8654 the address is the same as the address of the parent object. */
8655 offset = 0;
8656 bitpos = 0;
8657 inner = TREE_OPERAND (exp, 0);
8658 break;
8660 case IMAGPART_EXPR:
8661 /* The imaginary part of the complex number is always second.
8662 The expression is therefore always offset by the size of the
8663 scalar type. */
8664 offset = 0;
8665 bitpos = GET_MODE_BITSIZE (SCALAR_TYPE_MODE (TREE_TYPE (exp)));
8666 inner = TREE_OPERAND (exp, 0);
8667 break;
8669 case COMPOUND_LITERAL_EXPR:
8670 /* Allow COMPOUND_LITERAL_EXPR in initializers or coming from
8671 initializers, if e.g. rtl_for_decl_init is called on DECL_INITIAL
8672 with COMPOUND_LITERAL_EXPRs in it, or ARRAY_REF on a const static
8673 array with address of COMPOUND_LITERAL_EXPR in DECL_INITIAL;
8674 the initializers aren't gimplified. */
8675 if (COMPOUND_LITERAL_EXPR_DECL (exp)
8676 && is_global_var (COMPOUND_LITERAL_EXPR_DECL (exp)))
8677 return expand_expr_addr_expr_1 (COMPOUND_LITERAL_EXPR_DECL (exp),
8678 target, tmode, modifier, as);
8679 /* FALLTHRU */
8680 default:
8681 /* If the object is a DECL, then expand it for its rtl. Don't bypass
8682 expand_expr, as that can have various side effects; LABEL_DECLs for
8683 example, may not have their DECL_RTL set yet. Expand the rtl of
8684 CONSTRUCTORs too, which should yield a memory reference for the
8685 constructor's contents. Assume language specific tree nodes can
8686 be expanded in some interesting way. */
8687 gcc_assert (TREE_CODE (exp) < LAST_AND_UNUSED_TREE_CODE);
8688 if (DECL_P (exp)
8689 || TREE_CODE (exp) == CONSTRUCTOR
8690 || TREE_CODE (exp) == COMPOUND_LITERAL_EXPR)
8692 result = expand_expr (exp, target, tmode,
8693 modifier == EXPAND_INITIALIZER
8694 ? EXPAND_INITIALIZER : EXPAND_CONST_ADDRESS);
8696 /* If the DECL isn't in memory, then the DECL wasn't properly
8697 marked TREE_ADDRESSABLE, which will be either a front-end
8698 or a tree optimizer bug. */
8700 gcc_assert (MEM_P (result));
8701 result = XEXP (result, 0);
8703 /* ??? Is this needed anymore? */
8704 if (DECL_P (exp))
8705 TREE_USED (exp) = 1;
8707 if (modifier != EXPAND_INITIALIZER
8708 && modifier != EXPAND_CONST_ADDRESS
8709 && modifier != EXPAND_SUM)
8710 result = force_operand (result, target);
8711 return result;
8714 /* Pass FALSE as the last argument to get_inner_reference although
8715 we are expanding to RTL. The rationale is that we know how to
8716 handle "aligning nodes" here: we can just bypass them because
8717 they won't change the final object whose address will be returned
8718 (they actually exist only for that purpose). */
8719 inner = get_inner_reference (exp, &bitsize, &bitpos, &offset, &mode1,
8720 &unsignedp, &reversep, &volatilep);
8721 break;
8724 /* We must have made progress. */
8725 gcc_assert (inner != exp);
8727 subtarget = offset || maybe_ne (bitpos, 0) ? NULL_RTX : target;
8728 /* For VIEW_CONVERT_EXPR, where the outer alignment is bigger than
8729 inner alignment, force the inner to be sufficiently aligned. */
8730 if (CONSTANT_CLASS_P (inner)
8731 && TYPE_ALIGN (TREE_TYPE (inner)) < TYPE_ALIGN (TREE_TYPE (exp)))
8733 inner = copy_node (inner);
8734 TREE_TYPE (inner) = copy_node (TREE_TYPE (inner));
8735 SET_TYPE_ALIGN (TREE_TYPE (inner), TYPE_ALIGN (TREE_TYPE (exp)));
8736 TYPE_USER_ALIGN (TREE_TYPE (inner)) = 1;
8738 result = expand_expr_addr_expr_1 (inner, subtarget, tmode, modifier, as);
8740 if (offset)
8742 rtx tmp;
8744 if (modifier != EXPAND_NORMAL)
8745 result = force_operand (result, NULL);
8746 tmp = expand_expr (offset, NULL_RTX, tmode,
8747 modifier == EXPAND_INITIALIZER
8748 ? EXPAND_INITIALIZER : EXPAND_NORMAL);
8750 /* expand_expr is allowed to return an object in a mode other
8751 than TMODE. If it did, we need to convert. */
8752 if (GET_MODE (tmp) != VOIDmode && tmode != GET_MODE (tmp))
8753 tmp = convert_modes (tmode, GET_MODE (tmp),
8754 tmp, TYPE_UNSIGNED (TREE_TYPE (offset)));
8755 result = convert_memory_address_addr_space (tmode, result, as);
8756 tmp = convert_memory_address_addr_space (tmode, tmp, as);
8758 if (modifier == EXPAND_SUM || modifier == EXPAND_INITIALIZER)
8759 result = simplify_gen_binary (PLUS, tmode, result, tmp);
8760 else
8762 subtarget = maybe_ne (bitpos, 0) ? NULL_RTX : target;
8763 result = expand_simple_binop (tmode, PLUS, result, tmp, subtarget,
8764 1, OPTAB_LIB_WIDEN);
8768 if (maybe_ne (bitpos, 0))
8770 /* Someone beforehand should have rejected taking the address
8771 of an object that isn't byte-aligned. */
8772 poly_int64 bytepos = exact_div (bitpos, BITS_PER_UNIT);
8773 result = convert_memory_address_addr_space (tmode, result, as);
8774 result = plus_constant (tmode, result, bytepos);
8775 if (modifier < EXPAND_SUM)
8776 result = force_operand (result, target);
8779 return result;
8782 /* A subroutine of expand_expr. Evaluate EXP, which is an ADDR_EXPR.
8783 The TARGET, TMODE and MODIFIER arguments are as for expand_expr. */
8785 static rtx
8786 expand_expr_addr_expr (tree exp, rtx target, machine_mode tmode,
8787 enum expand_modifier modifier)
8789 addr_space_t as = ADDR_SPACE_GENERIC;
8790 scalar_int_mode address_mode = Pmode;
8791 scalar_int_mode pointer_mode = ptr_mode;
8792 machine_mode rmode;
8793 rtx result;
8795 /* Target mode of VOIDmode says "whatever's natural". */
8796 if (tmode == VOIDmode)
8797 tmode = TYPE_MODE (TREE_TYPE (exp));
8799 if (POINTER_TYPE_P (TREE_TYPE (exp)))
8801 as = TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (exp)));
8802 address_mode = targetm.addr_space.address_mode (as);
8803 pointer_mode = targetm.addr_space.pointer_mode (as);
8806 /* We can get called with some Weird Things if the user does silliness
8807 like "(short) &a". In that case, convert_memory_address won't do
8808 the right thing, so ignore the given target mode. */
8809 scalar_int_mode new_tmode = (tmode == pointer_mode
8810 ? pointer_mode
8811 : address_mode);
8813 result = expand_expr_addr_expr_1 (TREE_OPERAND (exp, 0), target,
8814 new_tmode, modifier, as);
8816 /* Despite expand_expr claims concerning ignoring TMODE when not
8817 strictly convenient, stuff breaks if we don't honor it. Note
8818 that combined with the above, we only do this for pointer modes. */
8819 rmode = GET_MODE (result);
8820 if (rmode == VOIDmode)
8821 rmode = new_tmode;
8822 if (rmode != new_tmode)
8823 result = convert_memory_address_addr_space (new_tmode, result, as);
8825 return result;
8828 /* Generate code for computing CONSTRUCTOR EXP.
8829 An rtx for the computed value is returned. If AVOID_TEMP_MEM
8830 is TRUE, instead of creating a temporary variable in memory
8831 NULL is returned and the caller needs to handle it differently. */
8833 static rtx
8834 expand_constructor (tree exp, rtx target, enum expand_modifier modifier,
8835 bool avoid_temp_mem)
8837 tree type = TREE_TYPE (exp);
8838 machine_mode mode = TYPE_MODE (type);
8840 /* Try to avoid creating a temporary at all. This is possible
8841 if all of the initializer is zero.
8842 FIXME: try to handle all [0..255] initializers we can handle
8843 with memset. */
8844 if (TREE_STATIC (exp)
8845 && !TREE_ADDRESSABLE (exp)
8846 && target != 0 && mode == BLKmode
8847 && all_zeros_p (exp))
8849 clear_storage (target, expr_size (exp), BLOCK_OP_NORMAL);
8850 return target;
8853 /* All elts simple constants => refer to a constant in memory. But
8854 if this is a non-BLKmode mode, let it store a field at a time
8855 since that should make a CONST_INT, CONST_WIDE_INT or
8856 CONST_DOUBLE when we fold. Likewise, if we have a target we can
8857 use, it is best to store directly into the target unless the type
8858 is large enough that memcpy will be used. If we are making an
8859 initializer and all operands are constant, put it in memory as
8860 well.
8862 FIXME: Avoid trying to fill vector constructors piece-meal.
8863 Output them with output_constant_def below unless we're sure
8864 they're zeros. This should go away when vector initializers
8865 are treated like VECTOR_CST instead of arrays. */
8866 if ((TREE_STATIC (exp)
8867 && ((mode == BLKmode
8868 && ! (target != 0 && safe_from_p (target, exp, 1)))
8869 || TREE_ADDRESSABLE (exp)
8870 || (tree_fits_uhwi_p (TYPE_SIZE_UNIT (type))
8871 && (! can_move_by_pieces
8872 (tree_to_uhwi (TYPE_SIZE_UNIT (type)),
8873 TYPE_ALIGN (type)))
8874 && ! mostly_zeros_p (exp))))
8875 || ((modifier == EXPAND_INITIALIZER || modifier == EXPAND_CONST_ADDRESS)
8876 && TREE_CONSTANT (exp)))
8878 rtx constructor;
8880 if (avoid_temp_mem)
8881 return NULL_RTX;
8883 constructor = expand_expr_constant (exp, 1, modifier);
8885 if (modifier != EXPAND_CONST_ADDRESS
8886 && modifier != EXPAND_INITIALIZER
8887 && modifier != EXPAND_SUM)
8888 constructor = validize_mem (constructor);
8890 return constructor;
8893 /* If the CTOR is available in static storage and not mostly
8894 zeros and we can move it by pieces prefer to do so since
8895 that's usually more efficient than performing a series of
8896 stores from immediates. */
8897 if (avoid_temp_mem
8898 && TREE_STATIC (exp)
8899 && TREE_CONSTANT (exp)
8900 && tree_fits_uhwi_p (TYPE_SIZE_UNIT (type))
8901 && can_move_by_pieces (tree_to_uhwi (TYPE_SIZE_UNIT (type)),
8902 TYPE_ALIGN (type))
8903 && ! mostly_zeros_p (exp))
8904 return NULL_RTX;
8906 /* Handle calls that pass values in multiple non-contiguous
8907 locations. The Irix 6 ABI has examples of this. */
8908 if (target == 0 || ! safe_from_p (target, exp, 1)
8909 || GET_CODE (target) == PARALLEL || modifier == EXPAND_STACK_PARM
8910 /* Also make a temporary if the store is to volatile memory, to
8911 avoid individual accesses to aggregate members. */
8912 || (GET_CODE (target) == MEM
8913 && MEM_VOLATILE_P (target)
8914 && !TREE_ADDRESSABLE (TREE_TYPE (exp))))
8916 if (avoid_temp_mem)
8917 return NULL_RTX;
8919 target = assign_temp (type, TREE_ADDRESSABLE (exp), 1);
8922 store_constructor (exp, target, 0, int_expr_size (exp), false);
8923 return target;
8927 /* expand_expr: generate code for computing expression EXP.
8928 An rtx for the computed value is returned. The value is never null.
8929 In the case of a void EXP, const0_rtx is returned.
8931 The value may be stored in TARGET if TARGET is nonzero.
8932 TARGET is just a suggestion; callers must assume that
8933 the rtx returned may not be the same as TARGET.
8935 If TARGET is CONST0_RTX, it means that the value will be ignored.
8937 If TMODE is not VOIDmode, it suggests generating the
8938 result in mode TMODE. But this is done only when convenient.
8939 Otherwise, TMODE is ignored and the value generated in its natural mode.
8940 TMODE is just a suggestion; callers must assume that
8941 the rtx returned may not have mode TMODE.
8943 Note that TARGET may have neither TMODE nor MODE. In that case, it
8944 probably will not be used.
8946 If MODIFIER is EXPAND_SUM then when EXP is an addition
8947 we can return an rtx of the form (MULT (REG ...) (CONST_INT ...))
8948 or a nest of (PLUS ...) and (MINUS ...) where the terms are
8949 products as above, or REG or MEM, or constant.
8950 Ordinarily in such cases we would output mul or add instructions
8951 and then return a pseudo reg containing the sum.
8953 EXPAND_INITIALIZER is much like EXPAND_SUM except that
8954 it also marks a label as absolutely required (it can't be dead).
8955 It also makes a ZERO_EXTEND or SIGN_EXTEND instead of emitting extend insns.
8956 This is used for outputting expressions used in initializers.
8958 EXPAND_CONST_ADDRESS says that it is okay to return a MEM
8959 with a constant address even if that address is not normally legitimate.
8960 EXPAND_INITIALIZER and EXPAND_SUM also have this effect.
8962 EXPAND_STACK_PARM is used when expanding to a TARGET on the stack for
8963 a call parameter. Such targets require special care as we haven't yet
8964 marked TARGET so that it's safe from being trashed by libcalls. We
8965 don't want to use TARGET for anything but the final result;
8966 Intermediate values must go elsewhere. Additionally, calls to
8967 emit_block_move will be flagged with BLOCK_OP_CALL_PARM.
8969 If EXP is a VAR_DECL whose DECL_RTL was a MEM with an invalid
8970 address, and ALT_RTL is non-NULL, then *ALT_RTL is set to the
8971 DECL_RTL of the VAR_DECL. *ALT_RTL is also set if EXP is a
8972 COMPOUND_EXPR whose second argument is such a VAR_DECL, and so on
8973 recursively.
8974 If the result can be stored at TARGET, and ALT_RTL is non-NULL,
8975 then *ALT_RTL is set to TARGET (before legitimziation).
8977 If INNER_REFERENCE_P is true, we are expanding an inner reference.
8978 In this case, we don't adjust a returned MEM rtx that wouldn't be
8979 sufficiently aligned for its mode; instead, it's up to the caller
8980 to deal with it afterwards. This is used to make sure that unaligned
8981 base objects for which out-of-bounds accesses are supported, for
8982 example record types with trailing arrays, aren't realigned behind
8983 the back of the caller.
8984 The normal operating mode is to pass FALSE for this parameter. */
8987 expand_expr_real (tree exp, rtx target, machine_mode tmode,
8988 enum expand_modifier modifier, rtx *alt_rtl,
8989 bool inner_reference_p)
8991 rtx ret;
8993 /* Handle ERROR_MARK before anybody tries to access its type. */
8994 if (TREE_CODE (exp) == ERROR_MARK
8995 || (TREE_CODE (TREE_TYPE (exp)) == ERROR_MARK))
8997 ret = CONST0_RTX (tmode);
8998 return ret ? ret : const0_rtx;
9001 ret = expand_expr_real_1 (exp, target, tmode, modifier, alt_rtl,
9002 inner_reference_p);
9003 return ret;
9006 /* Try to expand the conditional expression which is represented by
9007 TREEOP0 ? TREEOP1 : TREEOP2 using conditonal moves. If it succeeds
9008 return the rtl reg which represents the result. Otherwise return
9009 NULL_RTX. */
9011 static rtx
9012 expand_cond_expr_using_cmove (tree treeop0 ATTRIBUTE_UNUSED,
9013 tree treeop1 ATTRIBUTE_UNUSED,
9014 tree treeop2 ATTRIBUTE_UNUSED)
9016 rtx insn;
9017 rtx op00, op01, op1, op2;
9018 enum rtx_code comparison_code;
9019 machine_mode comparison_mode;
9020 gimple *srcstmt;
9021 rtx temp;
9022 tree type = TREE_TYPE (treeop1);
9023 int unsignedp = TYPE_UNSIGNED (type);
9024 machine_mode mode = TYPE_MODE (type);
9025 machine_mode orig_mode = mode;
9026 static bool expanding_cond_expr_using_cmove = false;
9028 /* Conditional move expansion can end up TERing two operands which,
9029 when recursively hitting conditional expressions can result in
9030 exponential behavior if the cmove expansion ultimatively fails.
9031 It's hardly profitable to TER a cmove into a cmove so avoid doing
9032 that by failing early if we end up recursing. */
9033 if (expanding_cond_expr_using_cmove)
9034 return NULL_RTX;
9036 /* If we cannot do a conditional move on the mode, try doing it
9037 with the promoted mode. */
9038 if (!can_conditionally_move_p (mode))
9040 mode = promote_mode (type, mode, &unsignedp);
9041 if (!can_conditionally_move_p (mode))
9042 return NULL_RTX;
9043 temp = assign_temp (type, 0, 0); /* Use promoted mode for temp. */
9045 else
9046 temp = assign_temp (type, 0, 1);
9048 expanding_cond_expr_using_cmove = true;
9049 start_sequence ();
9050 expand_operands (treeop1, treeop2,
9051 mode == orig_mode ? temp : NULL_RTX, &op1, &op2,
9052 EXPAND_NORMAL);
9054 if (TREE_CODE (treeop0) == SSA_NAME
9055 && (srcstmt = get_def_for_expr_class (treeop0, tcc_comparison)))
9057 type = TREE_TYPE (gimple_assign_rhs1 (srcstmt));
9058 enum tree_code cmpcode = gimple_assign_rhs_code (srcstmt);
9059 op00 = expand_normal (gimple_assign_rhs1 (srcstmt));
9060 op01 = expand_normal (gimple_assign_rhs2 (srcstmt));
9061 comparison_mode = TYPE_MODE (type);
9062 unsignedp = TYPE_UNSIGNED (type);
9063 comparison_code = convert_tree_comp_to_rtx (cmpcode, unsignedp);
9065 else if (COMPARISON_CLASS_P (treeop0))
9067 type = TREE_TYPE (TREE_OPERAND (treeop0, 0));
9068 enum tree_code cmpcode = TREE_CODE (treeop0);
9069 op00 = expand_normal (TREE_OPERAND (treeop0, 0));
9070 op01 = expand_normal (TREE_OPERAND (treeop0, 1));
9071 unsignedp = TYPE_UNSIGNED (type);
9072 comparison_mode = TYPE_MODE (type);
9073 comparison_code = convert_tree_comp_to_rtx (cmpcode, unsignedp);
9075 else
9077 op00 = expand_normal (treeop0);
9078 op01 = const0_rtx;
9079 comparison_code = NE;
9080 comparison_mode = GET_MODE (op00);
9081 if (comparison_mode == VOIDmode)
9082 comparison_mode = TYPE_MODE (TREE_TYPE (treeop0));
9084 expanding_cond_expr_using_cmove = false;
9086 if (GET_MODE (op1) != mode)
9087 op1 = gen_lowpart (mode, op1);
9089 if (GET_MODE (op2) != mode)
9090 op2 = gen_lowpart (mode, op2);
9092 /* Try to emit the conditional move. */
9093 insn = emit_conditional_move (temp,
9094 { comparison_code, op00, op01,
9095 comparison_mode },
9096 op1, op2, mode,
9097 unsignedp);
9099 /* If we could do the conditional move, emit the sequence,
9100 and return. */
9101 if (insn)
9103 rtx_insn *seq = get_insns ();
9104 end_sequence ();
9105 emit_insn (seq);
9106 return convert_modes (orig_mode, mode, temp, 0);
9109 /* Otherwise discard the sequence and fall back to code with
9110 branches. */
9111 end_sequence ();
9112 return NULL_RTX;
9115 /* A helper function for expand_expr_real_2 to be used with a
9116 misaligned mem_ref TEMP. Assume an unsigned type if UNSIGNEDP
9117 is nonzero, with alignment ALIGN in bits.
9118 Store the value at TARGET if possible (if TARGET is nonzero).
9119 Regardless of TARGET, we return the rtx for where the value is placed.
9120 If the result can be stored at TARGET, and ALT_RTL is non-NULL,
9121 then *ALT_RTL is set to TARGET (before legitimziation). */
9123 static rtx
9124 expand_misaligned_mem_ref (rtx temp, machine_mode mode, int unsignedp,
9125 unsigned int align, rtx target, rtx *alt_rtl)
9127 enum insn_code icode;
9129 if ((icode = optab_handler (movmisalign_optab, mode))
9130 != CODE_FOR_nothing)
9132 class expand_operand ops[2];
9134 /* We've already validated the memory, and we're creating a
9135 new pseudo destination. The predicates really can't fail,
9136 nor can the generator. */
9137 create_output_operand (&ops[0], NULL_RTX, mode);
9138 create_fixed_operand (&ops[1], temp);
9139 expand_insn (icode, 2, ops);
9140 temp = ops[0].value;
9142 else if (targetm.slow_unaligned_access (mode, align))
9143 temp = extract_bit_field (temp, GET_MODE_BITSIZE (mode),
9144 0, unsignedp, target,
9145 mode, mode, false, alt_rtl);
9146 return temp;
9149 /* Helper function of expand_expr_2, expand a division or modulo.
9150 op0 and op1 should be already expanded treeop0 and treeop1, using
9151 expand_operands. */
9153 static rtx
9154 expand_expr_divmod (tree_code code, machine_mode mode, tree treeop0,
9155 tree treeop1, rtx op0, rtx op1, rtx target, int unsignedp)
9157 bool mod_p = (code == TRUNC_MOD_EXPR || code == FLOOR_MOD_EXPR
9158 || code == CEIL_MOD_EXPR || code == ROUND_MOD_EXPR);
9159 if (SCALAR_INT_MODE_P (mode)
9160 && optimize >= 2
9161 && get_range_pos_neg (treeop0) == 1
9162 && get_range_pos_neg (treeop1) == 1)
9164 /* If both arguments are known to be positive when interpreted
9165 as signed, we can expand it as both signed and unsigned
9166 division or modulo. Choose the cheaper sequence in that case. */
9167 bool speed_p = optimize_insn_for_speed_p ();
9168 do_pending_stack_adjust ();
9169 start_sequence ();
9170 rtx uns_ret = expand_divmod (mod_p, code, mode, treeop0, treeop1,
9171 op0, op1, target, 1);
9172 rtx_insn *uns_insns = get_insns ();
9173 end_sequence ();
9174 start_sequence ();
9175 rtx sgn_ret = expand_divmod (mod_p, code, mode, treeop0, treeop1,
9176 op0, op1, target, 0);
9177 rtx_insn *sgn_insns = get_insns ();
9178 end_sequence ();
9179 unsigned uns_cost = seq_cost (uns_insns, speed_p);
9180 unsigned sgn_cost = seq_cost (sgn_insns, speed_p);
9182 /* If costs are the same then use as tie breaker the other other
9183 factor. */
9184 if (uns_cost == sgn_cost)
9186 uns_cost = seq_cost (uns_insns, !speed_p);
9187 sgn_cost = seq_cost (sgn_insns, !speed_p);
9190 if (uns_cost < sgn_cost || (uns_cost == sgn_cost && unsignedp))
9192 emit_insn (uns_insns);
9193 return uns_ret;
9195 emit_insn (sgn_insns);
9196 return sgn_ret;
9198 return expand_divmod (mod_p, code, mode, treeop0, treeop1,
9199 op0, op1, target, unsignedp);
9203 expand_expr_real_2 (sepops ops, rtx target, machine_mode tmode,
9204 enum expand_modifier modifier)
9206 rtx op0, op1, op2, temp;
9207 rtx_code_label *lab;
9208 tree type;
9209 int unsignedp;
9210 machine_mode mode;
9211 scalar_int_mode int_mode;
9212 enum tree_code code = ops->code;
9213 optab this_optab;
9214 rtx subtarget, original_target;
9215 int ignore;
9216 bool reduce_bit_field;
9217 location_t loc = ops->location;
9218 tree treeop0, treeop1, treeop2;
9219 #define REDUCE_BIT_FIELD(expr) (reduce_bit_field \
9220 ? reduce_to_bit_field_precision ((expr), \
9221 target, \
9222 type) \
9223 : (expr))
9225 type = ops->type;
9226 mode = TYPE_MODE (type);
9227 unsignedp = TYPE_UNSIGNED (type);
9229 treeop0 = ops->op0;
9230 treeop1 = ops->op1;
9231 treeop2 = ops->op2;
9233 /* We should be called only on simple (binary or unary) expressions,
9234 exactly those that are valid in gimple expressions that aren't
9235 GIMPLE_SINGLE_RHS (or invalid). */
9236 gcc_assert (get_gimple_rhs_class (code) == GIMPLE_UNARY_RHS
9237 || get_gimple_rhs_class (code) == GIMPLE_BINARY_RHS
9238 || get_gimple_rhs_class (code) == GIMPLE_TERNARY_RHS);
9240 ignore = (target == const0_rtx
9241 || ((CONVERT_EXPR_CODE_P (code)
9242 || code == COND_EXPR || code == VIEW_CONVERT_EXPR)
9243 && TREE_CODE (type) == VOID_TYPE));
9245 /* We should be called only if we need the result. */
9246 gcc_assert (!ignore);
9248 /* An operation in what may be a bit-field type needs the
9249 result to be reduced to the precision of the bit-field type,
9250 which is narrower than that of the type's mode. */
9251 reduce_bit_field = (INTEGRAL_TYPE_P (type)
9252 && !type_has_mode_precision_p (type));
9254 if (reduce_bit_field
9255 && (modifier == EXPAND_STACK_PARM
9256 || (target && GET_MODE (target) != mode)))
9257 target = 0;
9259 /* Use subtarget as the target for operand 0 of a binary operation. */
9260 subtarget = get_subtarget (target);
9261 original_target = target;
9263 switch (code)
9265 case NON_LVALUE_EXPR:
9266 case PAREN_EXPR:
9267 CASE_CONVERT:
9268 if (treeop0 == error_mark_node)
9269 return const0_rtx;
9271 if (TREE_CODE (type) == UNION_TYPE)
9273 tree valtype = TREE_TYPE (treeop0);
9275 /* If both input and output are BLKmode, this conversion isn't doing
9276 anything except possibly changing memory attribute. */
9277 if (mode == BLKmode && TYPE_MODE (valtype) == BLKmode)
9279 rtx result = expand_expr (treeop0, target, tmode,
9280 modifier);
9282 result = copy_rtx (result);
9283 set_mem_attributes (result, type, 0);
9284 return result;
9287 if (target == 0)
9289 if (TYPE_MODE (type) != BLKmode)
9290 target = gen_reg_rtx (TYPE_MODE (type));
9291 else
9292 target = assign_temp (type, 1, 1);
9295 if (MEM_P (target))
9296 /* Store data into beginning of memory target. */
9297 store_expr (treeop0,
9298 adjust_address (target, TYPE_MODE (valtype), 0),
9299 modifier == EXPAND_STACK_PARM,
9300 false, TYPE_REVERSE_STORAGE_ORDER (type));
9302 else
9304 gcc_assert (REG_P (target)
9305 && !TYPE_REVERSE_STORAGE_ORDER (type));
9307 /* Store this field into a union of the proper type. */
9308 poly_uint64 op0_size
9309 = tree_to_poly_uint64 (TYPE_SIZE (TREE_TYPE (treeop0)));
9310 poly_uint64 union_size = GET_MODE_BITSIZE (mode);
9311 store_field (target,
9312 /* The conversion must be constructed so that
9313 we know at compile time how many bits
9314 to preserve. */
9315 ordered_min (op0_size, union_size),
9316 0, 0, 0, TYPE_MODE (valtype), treeop0, 0,
9317 false, false);
9320 /* Return the entire union. */
9321 return target;
9324 if (mode == TYPE_MODE (TREE_TYPE (treeop0)))
9326 op0 = expand_expr (treeop0, target, VOIDmode,
9327 modifier);
9329 /* If the signedness of the conversion differs and OP0 is
9330 a promoted SUBREG, clear that indication since we now
9331 have to do the proper extension. */
9332 if (TYPE_UNSIGNED (TREE_TYPE (treeop0)) != unsignedp
9333 && GET_CODE (op0) == SUBREG)
9334 SUBREG_PROMOTED_VAR_P (op0) = 0;
9336 return REDUCE_BIT_FIELD (op0);
9339 op0 = expand_expr (treeop0, NULL_RTX, mode,
9340 modifier == EXPAND_SUM ? EXPAND_NORMAL : modifier);
9341 if (GET_MODE (op0) == mode)
9344 /* If OP0 is a constant, just convert it into the proper mode. */
9345 else if (CONSTANT_P (op0))
9347 tree inner_type = TREE_TYPE (treeop0);
9348 machine_mode inner_mode = GET_MODE (op0);
9350 if (inner_mode == VOIDmode)
9351 inner_mode = TYPE_MODE (inner_type);
9353 if (modifier == EXPAND_INITIALIZER)
9354 op0 = lowpart_subreg (mode, op0, inner_mode);
9355 else
9356 op0= convert_modes (mode, inner_mode, op0,
9357 TYPE_UNSIGNED (inner_type));
9360 else if (modifier == EXPAND_INITIALIZER)
9361 op0 = gen_rtx_fmt_e (TYPE_UNSIGNED (TREE_TYPE (treeop0))
9362 ? ZERO_EXTEND : SIGN_EXTEND, mode, op0);
9364 else if (target == 0)
9365 op0 = convert_to_mode (mode, op0,
9366 TYPE_UNSIGNED (TREE_TYPE
9367 (treeop0)));
9368 else
9370 convert_move (target, op0,
9371 TYPE_UNSIGNED (TREE_TYPE (treeop0)));
9372 op0 = target;
9375 return REDUCE_BIT_FIELD (op0);
9377 case ADDR_SPACE_CONVERT_EXPR:
9379 tree treeop0_type = TREE_TYPE (treeop0);
9381 gcc_assert (POINTER_TYPE_P (type));
9382 gcc_assert (POINTER_TYPE_P (treeop0_type));
9384 addr_space_t as_to = TYPE_ADDR_SPACE (TREE_TYPE (type));
9385 addr_space_t as_from = TYPE_ADDR_SPACE (TREE_TYPE (treeop0_type));
9387 /* Conversions between pointers to the same address space should
9388 have been implemented via CONVERT_EXPR / NOP_EXPR. */
9389 gcc_assert (as_to != as_from);
9391 op0 = expand_expr (treeop0, NULL_RTX, VOIDmode, modifier);
9393 /* Ask target code to handle conversion between pointers
9394 to overlapping address spaces. */
9395 if (targetm.addr_space.subset_p (as_to, as_from)
9396 || targetm.addr_space.subset_p (as_from, as_to))
9398 op0 = targetm.addr_space.convert (op0, treeop0_type, type);
9400 else
9402 /* For disjoint address spaces, converting anything but a null
9403 pointer invokes undefined behavior. We truncate or extend the
9404 value as if we'd converted via integers, which handles 0 as
9405 required, and all others as the programmer likely expects. */
9406 #ifndef POINTERS_EXTEND_UNSIGNED
9407 const int POINTERS_EXTEND_UNSIGNED = 1;
9408 #endif
9409 op0 = convert_modes (mode, TYPE_MODE (treeop0_type),
9410 op0, POINTERS_EXTEND_UNSIGNED);
9412 gcc_assert (op0);
9413 return op0;
9416 case POINTER_PLUS_EXPR:
9417 /* Even though the sizetype mode and the pointer's mode can be different
9418 expand is able to handle this correctly and get the correct result out
9419 of the PLUS_EXPR code. */
9420 /* Make sure to sign-extend the sizetype offset in a POINTER_PLUS_EXPR
9421 if sizetype precision is smaller than pointer precision. */
9422 if (TYPE_PRECISION (sizetype) < TYPE_PRECISION (type))
9423 treeop1 = fold_convert_loc (loc, type,
9424 fold_convert_loc (loc, ssizetype,
9425 treeop1));
9426 /* If sizetype precision is larger than pointer precision, truncate the
9427 offset to have matching modes. */
9428 else if (TYPE_PRECISION (sizetype) > TYPE_PRECISION (type))
9429 treeop1 = fold_convert_loc (loc, type, treeop1);
9430 /* FALLTHRU */
9432 case PLUS_EXPR:
9433 /* If we are adding a constant, a VAR_DECL that is sp, fp, or ap, and
9434 something else, make sure we add the register to the constant and
9435 then to the other thing. This case can occur during strength
9436 reduction and doing it this way will produce better code if the
9437 frame pointer or argument pointer is eliminated.
9439 fold-const.cc will ensure that the constant is always in the inner
9440 PLUS_EXPR, so the only case we need to do anything about is if
9441 sp, ap, or fp is our second argument, in which case we must swap
9442 the innermost first argument and our second argument. */
9444 if (TREE_CODE (treeop0) == PLUS_EXPR
9445 && TREE_CODE (TREE_OPERAND (treeop0, 1)) == INTEGER_CST
9446 && VAR_P (treeop1)
9447 && (DECL_RTL (treeop1) == frame_pointer_rtx
9448 || DECL_RTL (treeop1) == stack_pointer_rtx
9449 || DECL_RTL (treeop1) == arg_pointer_rtx))
9451 gcc_unreachable ();
9454 /* If the result is to be ptr_mode and we are adding an integer to
9455 something, we might be forming a constant. So try to use
9456 plus_constant. If it produces a sum and we can't accept it,
9457 use force_operand. This allows P = &ARR[const] to generate
9458 efficient code on machines where a SYMBOL_REF is not a valid
9459 address.
9461 If this is an EXPAND_SUM call, always return the sum. */
9462 if (modifier == EXPAND_SUM || modifier == EXPAND_INITIALIZER
9463 || (mode == ptr_mode && (unsignedp || ! flag_trapv)))
9465 if (modifier == EXPAND_STACK_PARM)
9466 target = 0;
9467 if (TREE_CODE (treeop0) == INTEGER_CST
9468 && HWI_COMPUTABLE_MODE_P (mode)
9469 && TREE_CONSTANT (treeop1))
9471 rtx constant_part;
9472 HOST_WIDE_INT wc;
9473 machine_mode wmode = TYPE_MODE (TREE_TYPE (treeop1));
9475 op1 = expand_expr (treeop1, subtarget, VOIDmode,
9476 EXPAND_SUM);
9477 /* Use wi::shwi to ensure that the constant is
9478 truncated according to the mode of OP1, then sign extended
9479 to a HOST_WIDE_INT. Using the constant directly can result
9480 in non-canonical RTL in a 64x32 cross compile. */
9481 wc = TREE_INT_CST_LOW (treeop0);
9482 constant_part =
9483 immed_wide_int_const (wi::shwi (wc, wmode), wmode);
9484 op1 = plus_constant (mode, op1, INTVAL (constant_part));
9485 if (modifier != EXPAND_SUM && modifier != EXPAND_INITIALIZER)
9486 op1 = force_operand (op1, target);
9487 return REDUCE_BIT_FIELD (op1);
9490 else if (TREE_CODE (treeop1) == INTEGER_CST
9491 && HWI_COMPUTABLE_MODE_P (mode)
9492 && TREE_CONSTANT (treeop0))
9494 rtx constant_part;
9495 HOST_WIDE_INT wc;
9496 machine_mode wmode = TYPE_MODE (TREE_TYPE (treeop0));
9498 op0 = expand_expr (treeop0, subtarget, VOIDmode,
9499 (modifier == EXPAND_INITIALIZER
9500 ? EXPAND_INITIALIZER : EXPAND_SUM));
9501 if (! CONSTANT_P (op0))
9503 op1 = expand_expr (treeop1, NULL_RTX,
9504 VOIDmode, modifier);
9505 /* Return a PLUS if modifier says it's OK. */
9506 if (modifier == EXPAND_SUM
9507 || modifier == EXPAND_INITIALIZER)
9508 return simplify_gen_binary (PLUS, mode, op0, op1);
9509 goto binop2;
9511 /* Use wi::shwi to ensure that the constant is
9512 truncated according to the mode of OP1, then sign extended
9513 to a HOST_WIDE_INT. Using the constant directly can result
9514 in non-canonical RTL in a 64x32 cross compile. */
9515 wc = TREE_INT_CST_LOW (treeop1);
9516 constant_part
9517 = immed_wide_int_const (wi::shwi (wc, wmode), wmode);
9518 op0 = plus_constant (mode, op0, INTVAL (constant_part));
9519 if (modifier != EXPAND_SUM && modifier != EXPAND_INITIALIZER)
9520 op0 = force_operand (op0, target);
9521 return REDUCE_BIT_FIELD (op0);
9525 /* Use TER to expand pointer addition of a negated value
9526 as pointer subtraction. */
9527 if ((POINTER_TYPE_P (TREE_TYPE (treeop0))
9528 || (TREE_CODE (TREE_TYPE (treeop0)) == VECTOR_TYPE
9529 && POINTER_TYPE_P (TREE_TYPE (TREE_TYPE (treeop0)))))
9530 && TREE_CODE (treeop1) == SSA_NAME
9531 && TYPE_MODE (TREE_TYPE (treeop0))
9532 == TYPE_MODE (TREE_TYPE (treeop1)))
9534 gimple *def = get_def_for_expr (treeop1, NEGATE_EXPR);
9535 if (def)
9537 treeop1 = gimple_assign_rhs1 (def);
9538 code = MINUS_EXPR;
9539 goto do_minus;
9543 /* No sense saving up arithmetic to be done
9544 if it's all in the wrong mode to form part of an address.
9545 And force_operand won't know whether to sign-extend or
9546 zero-extend. */
9547 if (modifier != EXPAND_INITIALIZER
9548 && (modifier != EXPAND_SUM || mode != ptr_mode))
9550 expand_operands (treeop0, treeop1,
9551 subtarget, &op0, &op1, modifier);
9552 if (op0 == const0_rtx)
9553 return op1;
9554 if (op1 == const0_rtx)
9555 return op0;
9556 goto binop2;
9559 expand_operands (treeop0, treeop1,
9560 subtarget, &op0, &op1, modifier);
9561 return REDUCE_BIT_FIELD (simplify_gen_binary (PLUS, mode, op0, op1));
9563 case MINUS_EXPR:
9564 case POINTER_DIFF_EXPR:
9565 do_minus:
9566 /* For initializers, we are allowed to return a MINUS of two
9567 symbolic constants. Here we handle all cases when both operands
9568 are constant. */
9569 /* Handle difference of two symbolic constants,
9570 for the sake of an initializer. */
9571 if ((modifier == EXPAND_SUM || modifier == EXPAND_INITIALIZER)
9572 && really_constant_p (treeop0)
9573 && really_constant_p (treeop1))
9575 expand_operands (treeop0, treeop1,
9576 NULL_RTX, &op0, &op1, modifier);
9577 return simplify_gen_binary (MINUS, mode, op0, op1);
9580 /* No sense saving up arithmetic to be done
9581 if it's all in the wrong mode to form part of an address.
9582 And force_operand won't know whether to sign-extend or
9583 zero-extend. */
9584 if (modifier != EXPAND_INITIALIZER
9585 && (modifier != EXPAND_SUM || mode != ptr_mode))
9586 goto binop;
9588 expand_operands (treeop0, treeop1,
9589 subtarget, &op0, &op1, modifier);
9591 /* Convert A - const to A + (-const). */
9592 if (CONST_INT_P (op1))
9594 op1 = negate_rtx (mode, op1);
9595 return REDUCE_BIT_FIELD (simplify_gen_binary (PLUS, mode, op0, op1));
9598 goto binop2;
9600 case WIDEN_MULT_PLUS_EXPR:
9601 case WIDEN_MULT_MINUS_EXPR:
9602 expand_operands (treeop0, treeop1, NULL_RTX, &op0, &op1, EXPAND_NORMAL);
9603 op2 = expand_normal (treeop2);
9604 target = expand_widen_pattern_expr (ops, op0, op1, op2,
9605 target, unsignedp);
9606 return target;
9608 case WIDEN_PLUS_EXPR:
9609 case WIDEN_MINUS_EXPR:
9610 case WIDEN_MULT_EXPR:
9611 /* If first operand is constant, swap them.
9612 Thus the following special case checks need only
9613 check the second operand. */
9614 if (TREE_CODE (treeop0) == INTEGER_CST)
9615 std::swap (treeop0, treeop1);
9617 /* First, check if we have a multiplication of one signed and one
9618 unsigned operand. */
9619 if (TREE_CODE (treeop1) != INTEGER_CST
9620 && (TYPE_UNSIGNED (TREE_TYPE (treeop0))
9621 != TYPE_UNSIGNED (TREE_TYPE (treeop1))))
9623 machine_mode innermode = TYPE_MODE (TREE_TYPE (treeop0));
9624 this_optab = usmul_widen_optab;
9625 if (find_widening_optab_handler (this_optab, mode, innermode)
9626 != CODE_FOR_nothing)
9628 if (TYPE_UNSIGNED (TREE_TYPE (treeop0)))
9629 expand_operands (treeop0, treeop1, NULL_RTX, &op0, &op1,
9630 EXPAND_NORMAL);
9631 else
9632 expand_operands (treeop0, treeop1, NULL_RTX, &op1, &op0,
9633 EXPAND_NORMAL);
9634 /* op0 and op1 might still be constant, despite the above
9635 != INTEGER_CST check. Handle it. */
9636 if (GET_MODE (op0) == VOIDmode && GET_MODE (op1) == VOIDmode)
9638 op0 = convert_modes (mode, innermode, op0, true);
9639 op1 = convert_modes (mode, innermode, op1, false);
9640 return REDUCE_BIT_FIELD (expand_mult (mode, op0, op1,
9641 target, unsignedp));
9643 goto binop3;
9646 /* Check for a multiplication with matching signedness. */
9647 else if ((TREE_CODE (treeop1) == INTEGER_CST
9648 && int_fits_type_p (treeop1, TREE_TYPE (treeop0)))
9649 || (TYPE_UNSIGNED (TREE_TYPE (treeop1))
9650 == TYPE_UNSIGNED (TREE_TYPE (treeop0))))
9652 tree op0type = TREE_TYPE (treeop0);
9653 machine_mode innermode = TYPE_MODE (op0type);
9654 bool zextend_p = TYPE_UNSIGNED (op0type);
9655 optab other_optab = zextend_p ? smul_widen_optab : umul_widen_optab;
9656 this_optab = zextend_p ? umul_widen_optab : smul_widen_optab;
9658 if (TREE_CODE (treeop0) != INTEGER_CST)
9660 if (find_widening_optab_handler (this_optab, mode, innermode)
9661 != CODE_FOR_nothing)
9663 expand_operands (treeop0, treeop1, NULL_RTX, &op0, &op1,
9664 EXPAND_NORMAL);
9665 /* op0 and op1 might still be constant, despite the above
9666 != INTEGER_CST check. Handle it. */
9667 if (GET_MODE (op0) == VOIDmode && GET_MODE (op1) == VOIDmode)
9669 widen_mult_const:
9670 op0 = convert_modes (mode, innermode, op0, zextend_p);
9672 = convert_modes (mode, innermode, op1,
9673 TYPE_UNSIGNED (TREE_TYPE (treeop1)));
9674 return REDUCE_BIT_FIELD (expand_mult (mode, op0, op1,
9675 target,
9676 unsignedp));
9678 temp = expand_widening_mult (mode, op0, op1, target,
9679 unsignedp, this_optab);
9680 return REDUCE_BIT_FIELD (temp);
9682 if (find_widening_optab_handler (other_optab, mode, innermode)
9683 != CODE_FOR_nothing
9684 && innermode == word_mode)
9686 rtx htem, hipart;
9687 op0 = expand_normal (treeop0);
9688 op1 = expand_normal (treeop1);
9689 /* op0 and op1 might be constants, despite the above
9690 != INTEGER_CST check. Handle it. */
9691 if (GET_MODE (op0) == VOIDmode && GET_MODE (op1) == VOIDmode)
9692 goto widen_mult_const;
9693 temp = expand_binop (mode, other_optab, op0, op1, target,
9694 unsignedp, OPTAB_LIB_WIDEN);
9695 hipart = gen_highpart (word_mode, temp);
9696 htem = expand_mult_highpart_adjust (word_mode, hipart,
9697 op0, op1, hipart,
9698 zextend_p);
9699 if (htem != hipart)
9700 emit_move_insn (hipart, htem);
9701 return REDUCE_BIT_FIELD (temp);
9705 treeop0 = fold_build1 (CONVERT_EXPR, type, treeop0);
9706 treeop1 = fold_build1 (CONVERT_EXPR, type, treeop1);
9707 expand_operands (treeop0, treeop1, subtarget, &op0, &op1, EXPAND_NORMAL);
9708 return REDUCE_BIT_FIELD (expand_mult (mode, op0, op1, target, unsignedp));
9710 case MULT_EXPR:
9711 /* If this is a fixed-point operation, then we cannot use the code
9712 below because "expand_mult" doesn't support sat/no-sat fixed-point
9713 multiplications. */
9714 if (ALL_FIXED_POINT_MODE_P (mode))
9715 goto binop;
9717 /* If first operand is constant, swap them.
9718 Thus the following special case checks need only
9719 check the second operand. */
9720 if (TREE_CODE (treeop0) == INTEGER_CST)
9721 std::swap (treeop0, treeop1);
9723 /* Attempt to return something suitable for generating an
9724 indexed address, for machines that support that. */
9726 if (modifier == EXPAND_SUM && mode == ptr_mode
9727 && tree_fits_shwi_p (treeop1))
9729 tree exp1 = treeop1;
9731 op0 = expand_expr (treeop0, subtarget, VOIDmode,
9732 EXPAND_SUM);
9734 if (!REG_P (op0))
9735 op0 = force_operand (op0, NULL_RTX);
9736 if (!REG_P (op0))
9737 op0 = copy_to_mode_reg (mode, op0);
9739 op1 = gen_int_mode (tree_to_shwi (exp1),
9740 TYPE_MODE (TREE_TYPE (exp1)));
9741 return REDUCE_BIT_FIELD (gen_rtx_MULT (mode, op0, op1));
9744 if (modifier == EXPAND_STACK_PARM)
9745 target = 0;
9747 if (SCALAR_INT_MODE_P (mode) && optimize >= 2)
9749 gimple *def_stmt0 = get_def_for_expr (treeop0, TRUNC_DIV_EXPR);
9750 gimple *def_stmt1 = get_def_for_expr (treeop1, TRUNC_DIV_EXPR);
9751 if (def_stmt0
9752 && !operand_equal_p (treeop1, gimple_assign_rhs2 (def_stmt0), 0))
9753 def_stmt0 = NULL;
9754 if (def_stmt1
9755 && !operand_equal_p (treeop0, gimple_assign_rhs2 (def_stmt1), 0))
9756 def_stmt1 = NULL;
9758 if (def_stmt0 || def_stmt1)
9760 /* X / Y * Y can be expanded as X - X % Y too.
9761 Choose the cheaper sequence of those two. */
9762 if (def_stmt0)
9763 treeop0 = gimple_assign_rhs1 (def_stmt0);
9764 else
9766 treeop1 = treeop0;
9767 treeop0 = gimple_assign_rhs1 (def_stmt1);
9769 expand_operands (treeop0, treeop1, subtarget, &op0, &op1,
9770 EXPAND_NORMAL);
9771 bool speed_p = optimize_insn_for_speed_p ();
9772 do_pending_stack_adjust ();
9773 start_sequence ();
9774 rtx divmul_ret
9775 = expand_expr_divmod (TRUNC_DIV_EXPR, mode, treeop0, treeop1,
9776 op0, op1, NULL_RTX, unsignedp);
9777 divmul_ret = expand_mult (mode, divmul_ret, op1, target,
9778 unsignedp);
9779 rtx_insn *divmul_insns = get_insns ();
9780 end_sequence ();
9781 start_sequence ();
9782 rtx modsub_ret
9783 = expand_expr_divmod (TRUNC_MOD_EXPR, mode, treeop0, treeop1,
9784 op0, op1, NULL_RTX, unsignedp);
9785 this_optab = optab_for_tree_code (MINUS_EXPR, type,
9786 optab_default);
9787 modsub_ret = expand_binop (mode, this_optab, op0, modsub_ret,
9788 target, unsignedp, OPTAB_LIB_WIDEN);
9789 rtx_insn *modsub_insns = get_insns ();
9790 end_sequence ();
9791 unsigned divmul_cost = seq_cost (divmul_insns, speed_p);
9792 unsigned modsub_cost = seq_cost (modsub_insns, speed_p);
9793 /* If costs are the same then use as tie breaker the other other
9794 factor. */
9795 if (divmul_cost == modsub_cost)
9797 divmul_cost = seq_cost (divmul_insns, !speed_p);
9798 modsub_cost = seq_cost (modsub_insns, !speed_p);
9801 if (divmul_cost <= modsub_cost)
9803 emit_insn (divmul_insns);
9804 return REDUCE_BIT_FIELD (divmul_ret);
9806 emit_insn (modsub_insns);
9807 return REDUCE_BIT_FIELD (modsub_ret);
9811 expand_operands (treeop0, treeop1, subtarget, &op0, &op1, EXPAND_NORMAL);
9813 /* Expand X*Y as X&-Y when Y must be zero or one. */
9814 if (SCALAR_INT_MODE_P (mode))
9816 bool bit0_p = tree_nonzero_bits (treeop0) == 1;
9817 bool bit1_p = tree_nonzero_bits (treeop1) == 1;
9819 /* Expand X*Y as X&Y when both X and Y must be zero or one. */
9820 if (bit0_p && bit1_p)
9821 return REDUCE_BIT_FIELD (expand_and (mode, op0, op1, target));
9823 if (bit0_p || bit1_p)
9825 bool speed = optimize_insn_for_speed_p ();
9826 int cost = add_cost (speed, mode) + neg_cost (speed, mode);
9827 struct algorithm algorithm;
9828 enum mult_variant variant;
9829 if (CONST_INT_P (op1)
9830 ? !choose_mult_variant (mode, INTVAL (op1),
9831 &algorithm, &variant, cost)
9832 : cost < mul_cost (speed, mode))
9834 target = bit0_p ? expand_and (mode, negate_rtx (mode, op0),
9835 op1, target)
9836 : expand_and (mode, op0,
9837 negate_rtx (mode, op1),
9838 target);
9839 return REDUCE_BIT_FIELD (target);
9844 return REDUCE_BIT_FIELD (expand_mult (mode, op0, op1, target, unsignedp));
9846 case TRUNC_MOD_EXPR:
9847 case FLOOR_MOD_EXPR:
9848 case CEIL_MOD_EXPR:
9849 case ROUND_MOD_EXPR:
9851 case TRUNC_DIV_EXPR:
9852 case FLOOR_DIV_EXPR:
9853 case CEIL_DIV_EXPR:
9854 case ROUND_DIV_EXPR:
9855 case EXACT_DIV_EXPR:
9856 /* If this is a fixed-point operation, then we cannot use the code
9857 below because "expand_divmod" doesn't support sat/no-sat fixed-point
9858 divisions. */
9859 if (ALL_FIXED_POINT_MODE_P (mode))
9860 goto binop;
9862 if (modifier == EXPAND_STACK_PARM)
9863 target = 0;
9864 /* Possible optimization: compute the dividend with EXPAND_SUM
9865 then if the divisor is constant can optimize the case
9866 where some terms of the dividend have coeffs divisible by it. */
9867 expand_operands (treeop0, treeop1, subtarget, &op0, &op1, EXPAND_NORMAL);
9868 return expand_expr_divmod (code, mode, treeop0, treeop1, op0, op1,
9869 target, unsignedp);
9871 case RDIV_EXPR:
9872 goto binop;
9874 case MULT_HIGHPART_EXPR:
9875 expand_operands (treeop0, treeop1, subtarget, &op0, &op1, EXPAND_NORMAL);
9876 temp = expand_mult_highpart (mode, op0, op1, target, unsignedp);
9877 gcc_assert (temp);
9878 return temp;
9880 case FIXED_CONVERT_EXPR:
9881 op0 = expand_normal (treeop0);
9882 if (target == 0 || modifier == EXPAND_STACK_PARM)
9883 target = gen_reg_rtx (mode);
9885 if ((TREE_CODE (TREE_TYPE (treeop0)) == INTEGER_TYPE
9886 && TYPE_UNSIGNED (TREE_TYPE (treeop0)))
9887 || (TREE_CODE (type) == INTEGER_TYPE && TYPE_UNSIGNED (type)))
9888 expand_fixed_convert (target, op0, 1, TYPE_SATURATING (type));
9889 else
9890 expand_fixed_convert (target, op0, 0, TYPE_SATURATING (type));
9891 return target;
9893 case FIX_TRUNC_EXPR:
9894 op0 = expand_normal (treeop0);
9895 if (target == 0 || modifier == EXPAND_STACK_PARM)
9896 target = gen_reg_rtx (mode);
9897 expand_fix (target, op0, unsignedp);
9898 return target;
9900 case FLOAT_EXPR:
9901 op0 = expand_normal (treeop0);
9902 if (target == 0 || modifier == EXPAND_STACK_PARM)
9903 target = gen_reg_rtx (mode);
9904 /* expand_float can't figure out what to do if FROM has VOIDmode.
9905 So give it the correct mode. With -O, cse will optimize this. */
9906 if (GET_MODE (op0) == VOIDmode)
9907 op0 = copy_to_mode_reg (TYPE_MODE (TREE_TYPE (treeop0)),
9908 op0);
9909 expand_float (target, op0,
9910 TYPE_UNSIGNED (TREE_TYPE (treeop0)));
9911 return target;
9913 case NEGATE_EXPR:
9914 op0 = expand_expr (treeop0, subtarget,
9915 VOIDmode, EXPAND_NORMAL);
9916 if (modifier == EXPAND_STACK_PARM)
9917 target = 0;
9918 temp = expand_unop (mode,
9919 optab_for_tree_code (NEGATE_EXPR, type,
9920 optab_default),
9921 op0, target, 0);
9922 gcc_assert (temp);
9923 return REDUCE_BIT_FIELD (temp);
9925 case ABS_EXPR:
9926 case ABSU_EXPR:
9927 op0 = expand_expr (treeop0, subtarget,
9928 VOIDmode, EXPAND_NORMAL);
9929 if (modifier == EXPAND_STACK_PARM)
9930 target = 0;
9932 /* ABS_EXPR is not valid for complex arguments. */
9933 gcc_assert (GET_MODE_CLASS (mode) != MODE_COMPLEX_INT
9934 && GET_MODE_CLASS (mode) != MODE_COMPLEX_FLOAT);
9936 /* Unsigned abs is simply the operand. Testing here means we don't
9937 risk generating incorrect code below. */
9938 if (TYPE_UNSIGNED (TREE_TYPE (treeop0)))
9939 return op0;
9941 return expand_abs (mode, op0, target, unsignedp,
9942 safe_from_p (target, treeop0, 1));
9944 case MAX_EXPR:
9945 case MIN_EXPR:
9946 target = original_target;
9947 if (target == 0
9948 || modifier == EXPAND_STACK_PARM
9949 || (MEM_P (target) && MEM_VOLATILE_P (target))
9950 || GET_MODE (target) != mode
9951 || (REG_P (target)
9952 && REGNO (target) < FIRST_PSEUDO_REGISTER))
9953 target = gen_reg_rtx (mode);
9954 expand_operands (treeop0, treeop1,
9955 target, &op0, &op1, EXPAND_NORMAL);
9957 /* First try to do it with a special MIN or MAX instruction.
9958 If that does not win, use a conditional jump to select the proper
9959 value. */
9960 this_optab = optab_for_tree_code (code, type, optab_default);
9961 temp = expand_binop (mode, this_optab, op0, op1, target, unsignedp,
9962 OPTAB_WIDEN);
9963 if (temp != 0)
9964 return temp;
9966 if (VECTOR_TYPE_P (type))
9967 gcc_unreachable ();
9969 /* At this point, a MEM target is no longer useful; we will get better
9970 code without it. */
9972 if (! REG_P (target))
9973 target = gen_reg_rtx (mode);
9975 /* If op1 was placed in target, swap op0 and op1. */
9976 if (target != op0 && target == op1)
9977 std::swap (op0, op1);
9979 /* We generate better code and avoid problems with op1 mentioning
9980 target by forcing op1 into a pseudo if it isn't a constant. */
9981 if (! CONSTANT_P (op1))
9982 op1 = force_reg (mode, op1);
9985 enum rtx_code comparison_code;
9986 rtx cmpop1 = op1;
9988 if (code == MAX_EXPR)
9989 comparison_code = unsignedp ? GEU : GE;
9990 else
9991 comparison_code = unsignedp ? LEU : LE;
9993 /* Canonicalize to comparisons against 0. */
9994 if (op1 == const1_rtx)
9996 /* Converting (a >= 1 ? a : 1) into (a > 0 ? a : 1)
9997 or (a != 0 ? a : 1) for unsigned.
9998 For MIN we are safe converting (a <= 1 ? a : 1)
9999 into (a <= 0 ? a : 1) */
10000 cmpop1 = const0_rtx;
10001 if (code == MAX_EXPR)
10002 comparison_code = unsignedp ? NE : GT;
10004 if (op1 == constm1_rtx && !unsignedp)
10006 /* Converting (a >= -1 ? a : -1) into (a >= 0 ? a : -1)
10007 and (a <= -1 ? a : -1) into (a < 0 ? a : -1) */
10008 cmpop1 = const0_rtx;
10009 if (code == MIN_EXPR)
10010 comparison_code = LT;
10013 /* Use a conditional move if possible. */
10014 if (can_conditionally_move_p (mode))
10016 rtx insn;
10018 start_sequence ();
10020 /* Try to emit the conditional move. */
10021 insn = emit_conditional_move (target,
10022 { comparison_code,
10023 op0, cmpop1, mode },
10024 op0, op1, mode,
10025 unsignedp);
10027 /* If we could do the conditional move, emit the sequence,
10028 and return. */
10029 if (insn)
10031 rtx_insn *seq = get_insns ();
10032 end_sequence ();
10033 emit_insn (seq);
10034 return target;
10037 /* Otherwise discard the sequence and fall back to code with
10038 branches. */
10039 end_sequence ();
10042 if (target != op0)
10043 emit_move_insn (target, op0);
10045 lab = gen_label_rtx ();
10046 do_compare_rtx_and_jump (target, cmpop1, comparison_code,
10047 unsignedp, mode, NULL_RTX, NULL, lab,
10048 profile_probability::uninitialized ());
10050 emit_move_insn (target, op1);
10051 emit_label (lab);
10052 return target;
10054 case BIT_NOT_EXPR:
10055 op0 = expand_expr (treeop0, subtarget,
10056 VOIDmode, EXPAND_NORMAL);
10057 if (modifier == EXPAND_STACK_PARM)
10058 target = 0;
10059 /* In case we have to reduce the result to bitfield precision
10060 for unsigned bitfield expand this as XOR with a proper constant
10061 instead. */
10062 if (reduce_bit_field && TYPE_UNSIGNED (type))
10064 int_mode = SCALAR_INT_TYPE_MODE (type);
10065 wide_int mask = wi::mask (TYPE_PRECISION (type),
10066 false, GET_MODE_PRECISION (int_mode));
10068 temp = expand_binop (int_mode, xor_optab, op0,
10069 immed_wide_int_const (mask, int_mode),
10070 target, 1, OPTAB_LIB_WIDEN);
10072 else
10073 temp = expand_unop (mode, one_cmpl_optab, op0, target, 1);
10074 gcc_assert (temp);
10075 return temp;
10077 /* ??? Can optimize bitwise operations with one arg constant.
10078 Can optimize (a bitwise1 n) bitwise2 (a bitwise3 b)
10079 and (a bitwise1 b) bitwise2 b (etc)
10080 but that is probably not worth while. */
10082 case BIT_AND_EXPR:
10083 case BIT_IOR_EXPR:
10084 case BIT_XOR_EXPR:
10085 goto binop;
10087 case LROTATE_EXPR:
10088 case RROTATE_EXPR:
10089 gcc_assert (VECTOR_MODE_P (TYPE_MODE (type))
10090 || type_has_mode_precision_p (type));
10091 /* fall through */
10093 case LSHIFT_EXPR:
10094 case RSHIFT_EXPR:
10096 /* If this is a fixed-point operation, then we cannot use the code
10097 below because "expand_shift" doesn't support sat/no-sat fixed-point
10098 shifts. */
10099 if (ALL_FIXED_POINT_MODE_P (mode))
10100 goto binop;
10102 if (! safe_from_p (subtarget, treeop1, 1))
10103 subtarget = 0;
10104 if (modifier == EXPAND_STACK_PARM)
10105 target = 0;
10106 op0 = expand_expr (treeop0, subtarget,
10107 VOIDmode, EXPAND_NORMAL);
10109 /* Left shift optimization when shifting across word_size boundary.
10111 If mode == GET_MODE_WIDER_MODE (word_mode), then normally
10112 there isn't native instruction to support this wide mode
10113 left shift. Given below scenario:
10115 Type A = (Type) B << C
10117 |< T >|
10118 | dest_high | dest_low |
10120 | word_size |
10122 If the shift amount C caused we shift B to across the word
10123 size boundary, i.e part of B shifted into high half of
10124 destination register, and part of B remains in the low
10125 half, then GCC will use the following left shift expand
10126 logic:
10128 1. Initialize dest_low to B.
10129 2. Initialize every bit of dest_high to the sign bit of B.
10130 3. Logic left shift dest_low by C bit to finalize dest_low.
10131 The value of dest_low before this shift is kept in a temp D.
10132 4. Logic left shift dest_high by C.
10133 5. Logic right shift D by (word_size - C).
10134 6. Or the result of 4 and 5 to finalize dest_high.
10136 While, by checking gimple statements, if operand B is
10137 coming from signed extension, then we can simplify above
10138 expand logic into:
10140 1. dest_high = src_low >> (word_size - C).
10141 2. dest_low = src_low << C.
10143 We can use one arithmetic right shift to finish all the
10144 purpose of steps 2, 4, 5, 6, thus we reduce the steps
10145 needed from 6 into 2.
10147 The case is similar for zero extension, except that we
10148 initialize dest_high to zero rather than copies of the sign
10149 bit from B. Furthermore, we need to use a logical right shift
10150 in this case.
10152 The choice of sign-extension versus zero-extension is
10153 determined entirely by whether or not B is signed and is
10154 independent of the current setting of unsignedp. */
10156 temp = NULL_RTX;
10157 if (code == LSHIFT_EXPR
10158 && target
10159 && REG_P (target)
10160 && GET_MODE_2XWIDER_MODE (word_mode).exists (&int_mode)
10161 && mode == int_mode
10162 && TREE_CONSTANT (treeop1)
10163 && TREE_CODE (treeop0) == SSA_NAME)
10165 gimple *def = SSA_NAME_DEF_STMT (treeop0);
10166 if (is_gimple_assign (def)
10167 && gimple_assign_rhs_code (def) == NOP_EXPR)
10169 scalar_int_mode rmode = SCALAR_INT_TYPE_MODE
10170 (TREE_TYPE (gimple_assign_rhs1 (def)));
10172 if (GET_MODE_SIZE (rmode) < GET_MODE_SIZE (int_mode)
10173 && TREE_INT_CST_LOW (treeop1) < GET_MODE_BITSIZE (word_mode)
10174 && ((TREE_INT_CST_LOW (treeop1) + GET_MODE_BITSIZE (rmode))
10175 >= GET_MODE_BITSIZE (word_mode)))
10177 rtx_insn *seq, *seq_old;
10178 poly_uint64 high_off = subreg_highpart_offset (word_mode,
10179 int_mode);
10180 bool extend_unsigned
10181 = TYPE_UNSIGNED (TREE_TYPE (gimple_assign_rhs1 (def)));
10182 rtx low = lowpart_subreg (word_mode, op0, int_mode);
10183 rtx dest_low = lowpart_subreg (word_mode, target, int_mode);
10184 rtx dest_high = simplify_gen_subreg (word_mode, target,
10185 int_mode, high_off);
10186 HOST_WIDE_INT ramount = (BITS_PER_WORD
10187 - TREE_INT_CST_LOW (treeop1));
10188 tree rshift = build_int_cst (TREE_TYPE (treeop1), ramount);
10190 start_sequence ();
10191 /* dest_high = src_low >> (word_size - C). */
10192 temp = expand_variable_shift (RSHIFT_EXPR, word_mode, low,
10193 rshift, dest_high,
10194 extend_unsigned);
10195 if (temp != dest_high)
10196 emit_move_insn (dest_high, temp);
10198 /* dest_low = src_low << C. */
10199 temp = expand_variable_shift (LSHIFT_EXPR, word_mode, low,
10200 treeop1, dest_low, unsignedp);
10201 if (temp != dest_low)
10202 emit_move_insn (dest_low, temp);
10204 seq = get_insns ();
10205 end_sequence ();
10206 temp = target ;
10208 if (have_insn_for (ASHIFT, int_mode))
10210 bool speed_p = optimize_insn_for_speed_p ();
10211 start_sequence ();
10212 rtx ret_old = expand_variable_shift (code, int_mode,
10213 op0, treeop1,
10214 target,
10215 unsignedp);
10217 seq_old = get_insns ();
10218 end_sequence ();
10219 if (seq_cost (seq, speed_p)
10220 >= seq_cost (seq_old, speed_p))
10222 seq = seq_old;
10223 temp = ret_old;
10226 emit_insn (seq);
10231 if (temp == NULL_RTX)
10232 temp = expand_variable_shift (code, mode, op0, treeop1, target,
10233 unsignedp);
10234 if (code == LSHIFT_EXPR)
10235 temp = REDUCE_BIT_FIELD (temp);
10236 return temp;
10239 /* Could determine the answer when only additive constants differ. Also,
10240 the addition of one can be handled by changing the condition. */
10241 case LT_EXPR:
10242 case LE_EXPR:
10243 case GT_EXPR:
10244 case GE_EXPR:
10245 case EQ_EXPR:
10246 case NE_EXPR:
10247 case UNORDERED_EXPR:
10248 case ORDERED_EXPR:
10249 case UNLT_EXPR:
10250 case UNLE_EXPR:
10251 case UNGT_EXPR:
10252 case UNGE_EXPR:
10253 case UNEQ_EXPR:
10254 case LTGT_EXPR:
10256 temp = do_store_flag (ops,
10257 modifier != EXPAND_STACK_PARM ? target : NULL_RTX,
10258 tmode != VOIDmode ? tmode : mode);
10259 if (temp)
10260 return temp;
10262 /* Use a compare and a jump for BLKmode comparisons, or for function
10263 type comparisons is have_canonicalize_funcptr_for_compare. */
10265 if ((target == 0
10266 || modifier == EXPAND_STACK_PARM
10267 || ! safe_from_p (target, treeop0, 1)
10268 || ! safe_from_p (target, treeop1, 1)
10269 /* Make sure we don't have a hard reg (such as function's return
10270 value) live across basic blocks, if not optimizing. */
10271 || (!optimize && REG_P (target)
10272 && REGNO (target) < FIRST_PSEUDO_REGISTER)))
10273 target = gen_reg_rtx (tmode != VOIDmode ? tmode : mode);
10275 emit_move_insn (target, const0_rtx);
10277 rtx_code_label *lab1 = gen_label_rtx ();
10278 jumpifnot_1 (code, treeop0, treeop1, lab1,
10279 profile_probability::uninitialized ());
10281 if (TYPE_PRECISION (type) == 1 && !TYPE_UNSIGNED (type))
10282 emit_move_insn (target, constm1_rtx);
10283 else
10284 emit_move_insn (target, const1_rtx);
10286 emit_label (lab1);
10287 return target;
10289 case COMPLEX_EXPR:
10290 /* Get the rtx code of the operands. */
10291 op0 = expand_normal (treeop0);
10292 op1 = expand_normal (treeop1);
10294 if (!target)
10295 target = gen_reg_rtx (TYPE_MODE (type));
10296 else
10297 /* If target overlaps with op1, then either we need to force
10298 op1 into a pseudo (if target also overlaps with op0),
10299 or write the complex parts in reverse order. */
10300 switch (GET_CODE (target))
10302 case CONCAT:
10303 if (reg_overlap_mentioned_p (XEXP (target, 0), op1))
10305 if (reg_overlap_mentioned_p (XEXP (target, 1), op0))
10307 complex_expr_force_op1:
10308 temp = gen_reg_rtx (GET_MODE_INNER (GET_MODE (target)));
10309 emit_move_insn (temp, op1);
10310 op1 = temp;
10311 break;
10313 complex_expr_swap_order:
10314 /* Move the imaginary (op1) and real (op0) parts to their
10315 location. */
10316 write_complex_part (target, op1, true, true);
10317 write_complex_part (target, op0, false, false);
10319 return target;
10321 break;
10322 case MEM:
10323 temp = adjust_address_nv (target,
10324 GET_MODE_INNER (GET_MODE (target)), 0);
10325 if (reg_overlap_mentioned_p (temp, op1))
10327 scalar_mode imode = GET_MODE_INNER (GET_MODE (target));
10328 temp = adjust_address_nv (target, imode,
10329 GET_MODE_SIZE (imode));
10330 if (reg_overlap_mentioned_p (temp, op0))
10331 goto complex_expr_force_op1;
10332 goto complex_expr_swap_order;
10334 break;
10335 default:
10336 if (reg_overlap_mentioned_p (target, op1))
10338 if (reg_overlap_mentioned_p (target, op0))
10339 goto complex_expr_force_op1;
10340 goto complex_expr_swap_order;
10342 break;
10345 /* Move the real (op0) and imaginary (op1) parts to their location. */
10346 write_complex_part (target, op0, false, true);
10347 write_complex_part (target, op1, true, false);
10349 return target;
10351 case WIDEN_SUM_EXPR:
10353 tree oprnd0 = treeop0;
10354 tree oprnd1 = treeop1;
10356 expand_operands (oprnd0, oprnd1, NULL_RTX, &op0, &op1, EXPAND_NORMAL);
10357 target = expand_widen_pattern_expr (ops, op0, NULL_RTX, op1,
10358 target, unsignedp);
10359 return target;
10362 case VEC_UNPACK_HI_EXPR:
10363 case VEC_UNPACK_LO_EXPR:
10364 case VEC_UNPACK_FIX_TRUNC_HI_EXPR:
10365 case VEC_UNPACK_FIX_TRUNC_LO_EXPR:
10367 op0 = expand_normal (treeop0);
10368 temp = expand_widen_pattern_expr (ops, op0, NULL_RTX, NULL_RTX,
10369 target, unsignedp);
10370 gcc_assert (temp);
10371 return temp;
10374 case VEC_UNPACK_FLOAT_HI_EXPR:
10375 case VEC_UNPACK_FLOAT_LO_EXPR:
10377 op0 = expand_normal (treeop0);
10378 /* The signedness is determined from input operand. */
10379 temp = expand_widen_pattern_expr
10380 (ops, op0, NULL_RTX, NULL_RTX,
10381 target, TYPE_UNSIGNED (TREE_TYPE (treeop0)));
10383 gcc_assert (temp);
10384 return temp;
10387 case VEC_WIDEN_PLUS_HI_EXPR:
10388 case VEC_WIDEN_PLUS_LO_EXPR:
10389 case VEC_WIDEN_MINUS_HI_EXPR:
10390 case VEC_WIDEN_MINUS_LO_EXPR:
10391 case VEC_WIDEN_MULT_HI_EXPR:
10392 case VEC_WIDEN_MULT_LO_EXPR:
10393 case VEC_WIDEN_MULT_EVEN_EXPR:
10394 case VEC_WIDEN_MULT_ODD_EXPR:
10395 case VEC_WIDEN_LSHIFT_HI_EXPR:
10396 case VEC_WIDEN_LSHIFT_LO_EXPR:
10397 expand_operands (treeop0, treeop1, NULL_RTX, &op0, &op1, EXPAND_NORMAL);
10398 target = expand_widen_pattern_expr (ops, op0, op1, NULL_RTX,
10399 target, unsignedp);
10400 gcc_assert (target);
10401 return target;
10403 case VEC_PACK_SAT_EXPR:
10404 case VEC_PACK_FIX_TRUNC_EXPR:
10405 mode = TYPE_MODE (TREE_TYPE (treeop0));
10406 subtarget = NULL_RTX;
10407 goto binop;
10409 case VEC_PACK_TRUNC_EXPR:
10410 if (VECTOR_BOOLEAN_TYPE_P (type)
10411 && VECTOR_BOOLEAN_TYPE_P (TREE_TYPE (treeop0))
10412 && mode == TYPE_MODE (TREE_TYPE (treeop0))
10413 && SCALAR_INT_MODE_P (mode))
10415 class expand_operand eops[4];
10416 machine_mode imode = TYPE_MODE (TREE_TYPE (treeop0));
10417 expand_operands (treeop0, treeop1,
10418 subtarget, &op0, &op1, EXPAND_NORMAL);
10419 this_optab = vec_pack_sbool_trunc_optab;
10420 enum insn_code icode = optab_handler (this_optab, imode);
10421 create_output_operand (&eops[0], target, mode);
10422 create_convert_operand_from (&eops[1], op0, imode, false);
10423 create_convert_operand_from (&eops[2], op1, imode, false);
10424 temp = GEN_INT (TYPE_VECTOR_SUBPARTS (type).to_constant ());
10425 create_input_operand (&eops[3], temp, imode);
10426 expand_insn (icode, 4, eops);
10427 return eops[0].value;
10429 mode = TYPE_MODE (TREE_TYPE (treeop0));
10430 subtarget = NULL_RTX;
10431 goto binop;
10433 case VEC_PACK_FLOAT_EXPR:
10434 mode = TYPE_MODE (TREE_TYPE (treeop0));
10435 expand_operands (treeop0, treeop1,
10436 subtarget, &op0, &op1, EXPAND_NORMAL);
10437 this_optab = optab_for_tree_code (code, TREE_TYPE (treeop0),
10438 optab_default);
10439 target = expand_binop (mode, this_optab, op0, op1, target,
10440 TYPE_UNSIGNED (TREE_TYPE (treeop0)),
10441 OPTAB_LIB_WIDEN);
10442 gcc_assert (target);
10443 return target;
10445 case VEC_PERM_EXPR:
10447 expand_operands (treeop0, treeop1, target, &op0, &op1, EXPAND_NORMAL);
10448 vec_perm_builder sel;
10449 if (TREE_CODE (treeop2) == VECTOR_CST
10450 && tree_to_vec_perm_builder (&sel, treeop2))
10452 machine_mode sel_mode = TYPE_MODE (TREE_TYPE (treeop2));
10453 temp = expand_vec_perm_const (mode, op0, op1, sel,
10454 sel_mode, target);
10456 else
10458 op2 = expand_normal (treeop2);
10459 temp = expand_vec_perm_var (mode, op0, op1, op2, target);
10461 gcc_assert (temp);
10462 return temp;
10465 case DOT_PROD_EXPR:
10467 tree oprnd0 = treeop0;
10468 tree oprnd1 = treeop1;
10469 tree oprnd2 = treeop2;
10471 expand_operands (oprnd0, oprnd1, NULL_RTX, &op0, &op1, EXPAND_NORMAL);
10472 op2 = expand_normal (oprnd2);
10473 target = expand_widen_pattern_expr (ops, op0, op1, op2,
10474 target, unsignedp);
10475 return target;
10478 case SAD_EXPR:
10480 tree oprnd0 = treeop0;
10481 tree oprnd1 = treeop1;
10482 tree oprnd2 = treeop2;
10484 expand_operands (oprnd0, oprnd1, NULL_RTX, &op0, &op1, EXPAND_NORMAL);
10485 op2 = expand_normal (oprnd2);
10486 target = expand_widen_pattern_expr (ops, op0, op1, op2,
10487 target, unsignedp);
10488 return target;
10491 case REALIGN_LOAD_EXPR:
10493 tree oprnd0 = treeop0;
10494 tree oprnd1 = treeop1;
10495 tree oprnd2 = treeop2;
10497 this_optab = optab_for_tree_code (code, type, optab_default);
10498 expand_operands (oprnd0, oprnd1, NULL_RTX, &op0, &op1, EXPAND_NORMAL);
10499 op2 = expand_normal (oprnd2);
10500 temp = expand_ternary_op (mode, this_optab, op0, op1, op2,
10501 target, unsignedp);
10502 gcc_assert (temp);
10503 return temp;
10506 case COND_EXPR:
10508 /* A COND_EXPR with its type being VOID_TYPE represents a
10509 conditional jump and is handled in
10510 expand_gimple_cond_expr. */
10511 gcc_assert (!VOID_TYPE_P (type));
10513 /* Note that COND_EXPRs whose type is a structure or union
10514 are required to be constructed to contain assignments of
10515 a temporary variable, so that we can evaluate them here
10516 for side effect only. If type is void, we must do likewise. */
10518 gcc_assert (!TREE_ADDRESSABLE (type)
10519 && !ignore
10520 && TREE_TYPE (treeop1) != void_type_node
10521 && TREE_TYPE (treeop2) != void_type_node);
10523 temp = expand_cond_expr_using_cmove (treeop0, treeop1, treeop2);
10524 if (temp)
10525 return temp;
10527 /* If we are not to produce a result, we have no target. Otherwise,
10528 if a target was specified use it; it will not be used as an
10529 intermediate target unless it is safe. If no target, use a
10530 temporary. */
10532 if (modifier != EXPAND_STACK_PARM
10533 && original_target
10534 && safe_from_p (original_target, treeop0, 1)
10535 && GET_MODE (original_target) == mode
10536 && !MEM_P (original_target))
10537 temp = original_target;
10538 else
10539 temp = assign_temp (type, 0, 1);
10541 do_pending_stack_adjust ();
10542 NO_DEFER_POP;
10543 rtx_code_label *lab0 = gen_label_rtx ();
10544 rtx_code_label *lab1 = gen_label_rtx ();
10545 jumpifnot (treeop0, lab0,
10546 profile_probability::uninitialized ());
10547 store_expr (treeop1, temp,
10548 modifier == EXPAND_STACK_PARM,
10549 false, false);
10551 emit_jump_insn (targetm.gen_jump (lab1));
10552 emit_barrier ();
10553 emit_label (lab0);
10554 store_expr (treeop2, temp,
10555 modifier == EXPAND_STACK_PARM,
10556 false, false);
10558 emit_label (lab1);
10559 OK_DEFER_POP;
10560 return temp;
10563 case VEC_DUPLICATE_EXPR:
10564 op0 = expand_expr (treeop0, NULL_RTX, VOIDmode, modifier);
10565 target = expand_vector_broadcast (mode, op0);
10566 gcc_assert (target);
10567 return target;
10569 case VEC_SERIES_EXPR:
10570 expand_operands (treeop0, treeop1, NULL_RTX, &op0, &op1, modifier);
10571 return expand_vec_series_expr (mode, op0, op1, target);
10573 case BIT_INSERT_EXPR:
10575 unsigned bitpos = tree_to_uhwi (treeop2);
10576 unsigned bitsize;
10577 if (INTEGRAL_TYPE_P (TREE_TYPE (treeop1)))
10578 bitsize = TYPE_PRECISION (TREE_TYPE (treeop1));
10579 else
10580 bitsize = tree_to_uhwi (TYPE_SIZE (TREE_TYPE (treeop1)));
10581 op0 = expand_normal (treeop0);
10582 op1 = expand_normal (treeop1);
10583 rtx dst = gen_reg_rtx (mode);
10584 emit_move_insn (dst, op0);
10585 store_bit_field (dst, bitsize, bitpos, 0, 0,
10586 TYPE_MODE (TREE_TYPE (treeop1)), op1, false, false);
10587 return dst;
10590 default:
10591 gcc_unreachable ();
10594 /* Here to do an ordinary binary operator. */
10595 binop:
10596 expand_operands (treeop0, treeop1,
10597 subtarget, &op0, &op1, EXPAND_NORMAL);
10598 binop2:
10599 this_optab = optab_for_tree_code (code, type, optab_default);
10600 binop3:
10601 if (modifier == EXPAND_STACK_PARM)
10602 target = 0;
10603 temp = expand_binop (mode, this_optab, op0, op1, target,
10604 unsignedp, OPTAB_LIB_WIDEN);
10605 gcc_assert (temp);
10606 /* Bitwise operations do not need bitfield reduction as we expect their
10607 operands being properly truncated. */
10608 if (code == BIT_XOR_EXPR
10609 || code == BIT_AND_EXPR
10610 || code == BIT_IOR_EXPR)
10611 return temp;
10612 return REDUCE_BIT_FIELD (temp);
10614 #undef REDUCE_BIT_FIELD
10617 /* Return TRUE if expression STMT is suitable for replacement.
10618 Never consider memory loads as replaceable, because those don't ever lead
10619 into constant expressions. */
10621 static bool
10622 stmt_is_replaceable_p (gimple *stmt)
10624 if (ssa_is_replaceable_p (stmt))
10626 /* Don't move around loads. */
10627 if (!gimple_assign_single_p (stmt)
10628 || is_gimple_val (gimple_assign_rhs1 (stmt)))
10629 return true;
10631 return false;
10635 expand_expr_real_1 (tree exp, rtx target, machine_mode tmode,
10636 enum expand_modifier modifier, rtx *alt_rtl,
10637 bool inner_reference_p)
10639 rtx op0, op1, temp, decl_rtl;
10640 tree type;
10641 int unsignedp;
10642 machine_mode mode, dmode;
10643 enum tree_code code = TREE_CODE (exp);
10644 rtx subtarget, original_target;
10645 int ignore;
10646 bool reduce_bit_field;
10647 location_t loc = EXPR_LOCATION (exp);
10648 struct separate_ops ops;
10649 tree treeop0, treeop1, treeop2;
10650 tree ssa_name = NULL_TREE;
10651 gimple *g;
10653 type = TREE_TYPE (exp);
10654 mode = TYPE_MODE (type);
10655 unsignedp = TYPE_UNSIGNED (type);
10657 treeop0 = treeop1 = treeop2 = NULL_TREE;
10658 if (!VL_EXP_CLASS_P (exp))
10659 switch (TREE_CODE_LENGTH (code))
10661 default:
10662 case 3: treeop2 = TREE_OPERAND (exp, 2); /* FALLTHRU */
10663 case 2: treeop1 = TREE_OPERAND (exp, 1); /* FALLTHRU */
10664 case 1: treeop0 = TREE_OPERAND (exp, 0); /* FALLTHRU */
10665 case 0: break;
10667 ops.code = code;
10668 ops.type = type;
10669 ops.op0 = treeop0;
10670 ops.op1 = treeop1;
10671 ops.op2 = treeop2;
10672 ops.location = loc;
10674 ignore = (target == const0_rtx
10675 || ((CONVERT_EXPR_CODE_P (code)
10676 || code == COND_EXPR || code == VIEW_CONVERT_EXPR)
10677 && TREE_CODE (type) == VOID_TYPE));
10679 /* An operation in what may be a bit-field type needs the
10680 result to be reduced to the precision of the bit-field type,
10681 which is narrower than that of the type's mode. */
10682 reduce_bit_field = (!ignore
10683 && INTEGRAL_TYPE_P (type)
10684 && !type_has_mode_precision_p (type));
10686 /* If we are going to ignore this result, we need only do something
10687 if there is a side-effect somewhere in the expression. If there
10688 is, short-circuit the most common cases here. Note that we must
10689 not call expand_expr with anything but const0_rtx in case this
10690 is an initial expansion of a size that contains a PLACEHOLDER_EXPR. */
10692 if (ignore)
10694 if (! TREE_SIDE_EFFECTS (exp))
10695 return const0_rtx;
10697 /* Ensure we reference a volatile object even if value is ignored, but
10698 don't do this if all we are doing is taking its address. */
10699 if (TREE_THIS_VOLATILE (exp)
10700 && TREE_CODE (exp) != FUNCTION_DECL
10701 && mode != VOIDmode && mode != BLKmode
10702 && modifier != EXPAND_CONST_ADDRESS)
10704 temp = expand_expr (exp, NULL_RTX, VOIDmode, modifier);
10705 if (MEM_P (temp))
10706 copy_to_reg (temp);
10707 return const0_rtx;
10710 if (TREE_CODE_CLASS (code) == tcc_unary
10711 || code == BIT_FIELD_REF
10712 || code == COMPONENT_REF
10713 || code == INDIRECT_REF)
10714 return expand_expr (treeop0, const0_rtx, VOIDmode,
10715 modifier);
10717 else if (TREE_CODE_CLASS (code) == tcc_binary
10718 || TREE_CODE_CLASS (code) == tcc_comparison
10719 || code == ARRAY_REF || code == ARRAY_RANGE_REF)
10721 expand_expr (treeop0, const0_rtx, VOIDmode, modifier);
10722 expand_expr (treeop1, const0_rtx, VOIDmode, modifier);
10723 return const0_rtx;
10726 target = 0;
10729 if (reduce_bit_field && modifier == EXPAND_STACK_PARM)
10730 target = 0;
10732 /* Use subtarget as the target for operand 0 of a binary operation. */
10733 subtarget = get_subtarget (target);
10734 original_target = target;
10736 switch (code)
10738 case LABEL_DECL:
10740 tree function = decl_function_context (exp);
10742 temp = label_rtx (exp);
10743 temp = gen_rtx_LABEL_REF (Pmode, temp);
10745 if (function != current_function_decl
10746 && function != 0)
10747 LABEL_REF_NONLOCAL_P (temp) = 1;
10749 temp = gen_rtx_MEM (FUNCTION_MODE, temp);
10750 return temp;
10753 case SSA_NAME:
10754 /* ??? ivopts calls expander, without any preparation from
10755 out-of-ssa. So fake instructions as if this was an access to the
10756 base variable. This unnecessarily allocates a pseudo, see how we can
10757 reuse it, if partition base vars have it set already. */
10758 if (!currently_expanding_to_rtl)
10760 tree var = SSA_NAME_VAR (exp);
10761 if (var && DECL_RTL_SET_P (var))
10762 return DECL_RTL (var);
10763 return gen_raw_REG (TYPE_MODE (TREE_TYPE (exp)),
10764 LAST_VIRTUAL_REGISTER + 1);
10767 g = get_gimple_for_ssa_name (exp);
10768 /* For EXPAND_INITIALIZER try harder to get something simpler. */
10769 if (g == NULL
10770 && modifier == EXPAND_INITIALIZER
10771 && !SSA_NAME_IS_DEFAULT_DEF (exp)
10772 && (optimize || !SSA_NAME_VAR (exp)
10773 || DECL_IGNORED_P (SSA_NAME_VAR (exp)))
10774 && stmt_is_replaceable_p (SSA_NAME_DEF_STMT (exp)))
10775 g = SSA_NAME_DEF_STMT (exp);
10776 if (g)
10778 rtx r;
10779 location_t saved_loc = curr_insn_location ();
10780 loc = gimple_location (g);
10781 if (loc != UNKNOWN_LOCATION)
10782 set_curr_insn_location (loc);
10783 ops.code = gimple_assign_rhs_code (g);
10784 switch (get_gimple_rhs_class (ops.code))
10786 case GIMPLE_TERNARY_RHS:
10787 ops.op2 = gimple_assign_rhs3 (g);
10788 /* Fallthru */
10789 case GIMPLE_BINARY_RHS:
10790 ops.op1 = gimple_assign_rhs2 (g);
10792 /* Try to expand conditonal compare. */
10793 if (targetm.gen_ccmp_first)
10795 gcc_checking_assert (targetm.gen_ccmp_next != NULL);
10796 r = expand_ccmp_expr (g, mode);
10797 if (r)
10798 break;
10800 /* Fallthru */
10801 case GIMPLE_UNARY_RHS:
10802 ops.op0 = gimple_assign_rhs1 (g);
10803 ops.type = TREE_TYPE (gimple_assign_lhs (g));
10804 ops.location = loc;
10805 r = expand_expr_real_2 (&ops, target, tmode, modifier);
10806 break;
10807 case GIMPLE_SINGLE_RHS:
10809 r = expand_expr_real (gimple_assign_rhs1 (g), target,
10810 tmode, modifier, alt_rtl,
10811 inner_reference_p);
10812 break;
10814 default:
10815 gcc_unreachable ();
10817 set_curr_insn_location (saved_loc);
10818 if (REG_P (r) && !REG_EXPR (r))
10819 set_reg_attrs_for_decl_rtl (SSA_NAME_VAR (exp), r);
10820 return r;
10823 ssa_name = exp;
10824 decl_rtl = get_rtx_for_ssa_name (ssa_name);
10825 exp = SSA_NAME_VAR (ssa_name);
10826 goto expand_decl_rtl;
10828 case VAR_DECL:
10829 /* Allow accel compiler to handle variables that require special
10830 treatment, e.g. if they have been modified in some way earlier in
10831 compilation by the adjust_private_decl OpenACC hook. */
10832 if (flag_openacc && targetm.goacc.expand_var_decl)
10834 temp = targetm.goacc.expand_var_decl (exp);
10835 if (temp)
10836 return temp;
10838 /* Expand const VAR_DECLs with CONSTRUCTOR initializers that
10839 have scalar integer modes to a reg via store_constructor. */
10840 if (TREE_READONLY (exp)
10841 && !TREE_SIDE_EFFECTS (exp)
10842 && (modifier == EXPAND_NORMAL || modifier == EXPAND_STACK_PARM)
10843 && immediate_const_ctor_p (DECL_INITIAL (exp))
10844 && SCALAR_INT_MODE_P (TYPE_MODE (TREE_TYPE (exp)))
10845 && crtl->emit.regno_pointer_align_length
10846 && !target)
10848 target = gen_reg_rtx (TYPE_MODE (TREE_TYPE (exp)));
10849 store_constructor (DECL_INITIAL (exp), target, 0,
10850 int_expr_size (DECL_INITIAL (exp)), false);
10851 return target;
10853 /* ... fall through ... */
10855 case PARM_DECL:
10856 /* If a static var's type was incomplete when the decl was written,
10857 but the type is complete now, lay out the decl now. */
10858 if (DECL_SIZE (exp) == 0
10859 && COMPLETE_OR_UNBOUND_ARRAY_TYPE_P (TREE_TYPE (exp))
10860 && (TREE_STATIC (exp) || DECL_EXTERNAL (exp)))
10861 layout_decl (exp, 0);
10863 /* fall through */
10865 case FUNCTION_DECL:
10866 case RESULT_DECL:
10867 decl_rtl = DECL_RTL (exp);
10868 expand_decl_rtl:
10869 gcc_assert (decl_rtl);
10871 /* DECL_MODE might change when TYPE_MODE depends on attribute target
10872 settings for VECTOR_TYPE_P that might switch for the function. */
10873 if (currently_expanding_to_rtl
10874 && code == VAR_DECL && MEM_P (decl_rtl)
10875 && VECTOR_TYPE_P (type) && exp && DECL_MODE (exp) != mode)
10876 decl_rtl = change_address (decl_rtl, TYPE_MODE (type), 0);
10877 else
10878 decl_rtl = copy_rtx (decl_rtl);
10880 /* Record writes to register variables. */
10881 if (modifier == EXPAND_WRITE
10882 && REG_P (decl_rtl)
10883 && HARD_REGISTER_P (decl_rtl))
10884 add_to_hard_reg_set (&crtl->asm_clobbers,
10885 GET_MODE (decl_rtl), REGNO (decl_rtl));
10887 /* Ensure variable marked as used even if it doesn't go through
10888 a parser. If it hasn't be used yet, write out an external
10889 definition. */
10890 if (exp)
10891 TREE_USED (exp) = 1;
10893 /* Show we haven't gotten RTL for this yet. */
10894 temp = 0;
10896 /* Variables inherited from containing functions should have
10897 been lowered by this point. */
10898 if (exp)
10900 tree context = decl_function_context (exp);
10901 gcc_assert (SCOPE_FILE_SCOPE_P (context)
10902 || context == current_function_decl
10903 || TREE_STATIC (exp)
10904 || DECL_EXTERNAL (exp)
10905 /* ??? C++ creates functions that are not
10906 TREE_STATIC. */
10907 || TREE_CODE (exp) == FUNCTION_DECL);
10910 /* This is the case of an array whose size is to be determined
10911 from its initializer, while the initializer is still being parsed.
10912 ??? We aren't parsing while expanding anymore. */
10914 if (MEM_P (decl_rtl) && REG_P (XEXP (decl_rtl, 0)))
10915 temp = validize_mem (decl_rtl);
10917 /* If DECL_RTL is memory, we are in the normal case and the
10918 address is not valid, get the address into a register. */
10920 else if (MEM_P (decl_rtl) && modifier != EXPAND_INITIALIZER)
10922 if (alt_rtl)
10923 *alt_rtl = decl_rtl;
10924 decl_rtl = use_anchored_address (decl_rtl);
10925 if (modifier != EXPAND_CONST_ADDRESS
10926 && modifier != EXPAND_SUM
10927 && !memory_address_addr_space_p (exp ? DECL_MODE (exp)
10928 : GET_MODE (decl_rtl),
10929 XEXP (decl_rtl, 0),
10930 MEM_ADDR_SPACE (decl_rtl)))
10931 temp = replace_equiv_address (decl_rtl,
10932 copy_rtx (XEXP (decl_rtl, 0)));
10935 /* If we got something, return it. But first, set the alignment
10936 if the address is a register. */
10937 if (temp != 0)
10939 if (exp && MEM_P (temp) && REG_P (XEXP (temp, 0)))
10940 mark_reg_pointer (XEXP (temp, 0), DECL_ALIGN (exp));
10942 else if (MEM_P (decl_rtl))
10943 temp = decl_rtl;
10945 if (temp != 0)
10947 if (MEM_P (temp)
10948 && modifier != EXPAND_WRITE
10949 && modifier != EXPAND_MEMORY
10950 && modifier != EXPAND_INITIALIZER
10951 && modifier != EXPAND_CONST_ADDRESS
10952 && modifier != EXPAND_SUM
10953 && !inner_reference_p
10954 && mode != BLKmode
10955 && MEM_ALIGN (temp) < GET_MODE_ALIGNMENT (mode))
10956 temp = expand_misaligned_mem_ref (temp, mode, unsignedp,
10957 MEM_ALIGN (temp), NULL_RTX, NULL);
10959 return temp;
10962 if (exp)
10963 dmode = DECL_MODE (exp);
10964 else
10965 dmode = TYPE_MODE (TREE_TYPE (ssa_name));
10967 /* If the mode of DECL_RTL does not match that of the decl,
10968 there are two cases: we are dealing with a BLKmode value
10969 that is returned in a register, or we are dealing with
10970 a promoted value. In the latter case, return a SUBREG
10971 of the wanted mode, but mark it so that we know that it
10972 was already extended. */
10973 if (REG_P (decl_rtl)
10974 && dmode != BLKmode
10975 && GET_MODE (decl_rtl) != dmode)
10977 machine_mode pmode;
10979 /* Get the signedness to be used for this variable. Ensure we get
10980 the same mode we got when the variable was declared. */
10981 if (code != SSA_NAME)
10982 pmode = promote_decl_mode (exp, &unsignedp);
10983 else if ((g = SSA_NAME_DEF_STMT (ssa_name))
10984 && gimple_code (g) == GIMPLE_CALL
10985 && !gimple_call_internal_p (g))
10986 pmode = promote_function_mode (type, mode, &unsignedp,
10987 gimple_call_fntype (g),
10989 else
10990 pmode = promote_ssa_mode (ssa_name, &unsignedp);
10991 gcc_assert (GET_MODE (decl_rtl) == pmode);
10993 /* Some ABIs require scalar floating point modes to be passed
10994 in a wider scalar integer mode. We need to explicitly
10995 truncate to an integer mode of the correct precision before
10996 using a SUBREG to reinterpret as a floating point value. */
10997 if (SCALAR_FLOAT_MODE_P (mode)
10998 && SCALAR_INT_MODE_P (pmode)
10999 && known_lt (GET_MODE_SIZE (mode), GET_MODE_SIZE (pmode)))
11000 return convert_wider_int_to_float (mode, pmode, decl_rtl);
11002 temp = gen_lowpart_SUBREG (mode, decl_rtl);
11003 SUBREG_PROMOTED_VAR_P (temp) = 1;
11004 SUBREG_PROMOTED_SET (temp, unsignedp);
11005 return temp;
11008 return decl_rtl;
11010 case INTEGER_CST:
11012 /* Given that TYPE_PRECISION (type) is not always equal to
11013 GET_MODE_PRECISION (TYPE_MODE (type)), we need to extend from
11014 the former to the latter according to the signedness of the
11015 type. */
11016 scalar_int_mode int_mode = SCALAR_INT_TYPE_MODE (type);
11017 temp = immed_wide_int_const
11018 (wi::to_wide (exp, GET_MODE_PRECISION (int_mode)), int_mode);
11019 return temp;
11022 case VECTOR_CST:
11024 tree tmp = NULL_TREE;
11025 if (VECTOR_MODE_P (mode))
11026 return const_vector_from_tree (exp);
11027 scalar_int_mode int_mode;
11028 if (is_int_mode (mode, &int_mode))
11030 tree type_for_mode = lang_hooks.types.type_for_mode (int_mode, 1);
11031 if (type_for_mode)
11032 tmp = fold_unary_loc (loc, VIEW_CONVERT_EXPR,
11033 type_for_mode, exp);
11035 if (!tmp)
11037 vec<constructor_elt, va_gc> *v;
11038 /* Constructors need to be fixed-length. FIXME. */
11039 unsigned int nunits = VECTOR_CST_NELTS (exp).to_constant ();
11040 vec_alloc (v, nunits);
11041 for (unsigned int i = 0; i < nunits; ++i)
11042 CONSTRUCTOR_APPEND_ELT (v, NULL_TREE, VECTOR_CST_ELT (exp, i));
11043 tmp = build_constructor (type, v);
11045 return expand_expr (tmp, ignore ? const0_rtx : target,
11046 tmode, modifier);
11049 case CONST_DECL:
11050 if (modifier == EXPAND_WRITE)
11052 /* Writing into CONST_DECL is always invalid, but handle it
11053 gracefully. */
11054 addr_space_t as = TYPE_ADDR_SPACE (TREE_TYPE (exp));
11055 scalar_int_mode address_mode = targetm.addr_space.address_mode (as);
11056 op0 = expand_expr_addr_expr_1 (exp, NULL_RTX, address_mode,
11057 EXPAND_NORMAL, as);
11058 op0 = memory_address_addr_space (mode, op0, as);
11059 temp = gen_rtx_MEM (mode, op0);
11060 set_mem_addr_space (temp, as);
11061 return temp;
11063 return expand_expr (DECL_INITIAL (exp), target, VOIDmode, modifier);
11065 case REAL_CST:
11066 /* If optimized, generate immediate CONST_DOUBLE
11067 which will be turned into memory by reload if necessary.
11069 We used to force a register so that loop.c could see it. But
11070 this does not allow gen_* patterns to perform optimizations with
11071 the constants. It also produces two insns in cases like "x = 1.0;".
11072 On most machines, floating-point constants are not permitted in
11073 many insns, so we'd end up copying it to a register in any case.
11075 Now, we do the copying in expand_binop, if appropriate. */
11076 return const_double_from_real_value (TREE_REAL_CST (exp),
11077 TYPE_MODE (TREE_TYPE (exp)));
11079 case FIXED_CST:
11080 return CONST_FIXED_FROM_FIXED_VALUE (TREE_FIXED_CST (exp),
11081 TYPE_MODE (TREE_TYPE (exp)));
11083 case COMPLEX_CST:
11084 /* Handle evaluating a complex constant in a CONCAT target. */
11085 if (original_target && GET_CODE (original_target) == CONCAT)
11087 rtx rtarg, itarg;
11089 mode = TYPE_MODE (TREE_TYPE (TREE_TYPE (exp)));
11090 rtarg = XEXP (original_target, 0);
11091 itarg = XEXP (original_target, 1);
11093 /* Move the real and imaginary parts separately. */
11094 op0 = expand_expr (TREE_REALPART (exp), rtarg, mode, EXPAND_NORMAL);
11095 op1 = expand_expr (TREE_IMAGPART (exp), itarg, mode, EXPAND_NORMAL);
11097 if (op0 != rtarg)
11098 emit_move_insn (rtarg, op0);
11099 if (op1 != itarg)
11100 emit_move_insn (itarg, op1);
11102 return original_target;
11105 /* fall through */
11107 case STRING_CST:
11108 temp = expand_expr_constant (exp, 1, modifier);
11110 /* temp contains a constant address.
11111 On RISC machines where a constant address isn't valid,
11112 make some insns to get that address into a register. */
11113 if (modifier != EXPAND_CONST_ADDRESS
11114 && modifier != EXPAND_INITIALIZER
11115 && modifier != EXPAND_SUM
11116 && ! memory_address_addr_space_p (mode, XEXP (temp, 0),
11117 MEM_ADDR_SPACE (temp)))
11118 return replace_equiv_address (temp,
11119 copy_rtx (XEXP (temp, 0)));
11120 return temp;
11122 case POLY_INT_CST:
11123 return immed_wide_int_const (poly_int_cst_value (exp), mode);
11125 case SAVE_EXPR:
11127 tree val = treeop0;
11128 rtx ret = expand_expr_real_1 (val, target, tmode, modifier, alt_rtl,
11129 inner_reference_p);
11131 if (!SAVE_EXPR_RESOLVED_P (exp))
11133 /* We can indeed still hit this case, typically via builtin
11134 expanders calling save_expr immediately before expanding
11135 something. Assume this means that we only have to deal
11136 with non-BLKmode values. */
11137 gcc_assert (GET_MODE (ret) != BLKmode);
11139 val = build_decl (curr_insn_location (),
11140 VAR_DECL, NULL, TREE_TYPE (exp));
11141 DECL_ARTIFICIAL (val) = 1;
11142 DECL_IGNORED_P (val) = 1;
11143 treeop0 = val;
11144 TREE_OPERAND (exp, 0) = treeop0;
11145 SAVE_EXPR_RESOLVED_P (exp) = 1;
11147 if (!CONSTANT_P (ret))
11148 ret = copy_to_reg (ret);
11149 SET_DECL_RTL (val, ret);
11152 return ret;
11156 case CONSTRUCTOR:
11157 /* If we don't need the result, just ensure we evaluate any
11158 subexpressions. */
11159 if (ignore)
11161 unsigned HOST_WIDE_INT idx;
11162 tree value;
11164 FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (exp), idx, value)
11165 expand_expr (value, const0_rtx, VOIDmode, EXPAND_NORMAL);
11167 return const0_rtx;
11170 return expand_constructor (exp, target, modifier, false);
11172 case TARGET_MEM_REF:
11174 addr_space_t as
11175 = TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (TREE_OPERAND (exp, 0))));
11176 unsigned int align;
11178 op0 = addr_for_mem_ref (exp, as, true);
11179 op0 = memory_address_addr_space (mode, op0, as);
11180 temp = gen_rtx_MEM (mode, op0);
11181 set_mem_attributes (temp, exp, 0);
11182 set_mem_addr_space (temp, as);
11183 align = get_object_alignment (exp);
11184 if (modifier != EXPAND_WRITE
11185 && modifier != EXPAND_MEMORY
11186 && mode != BLKmode
11187 && align < GET_MODE_ALIGNMENT (mode))
11188 temp = expand_misaligned_mem_ref (temp, mode, unsignedp,
11189 align, NULL_RTX, NULL);
11190 return temp;
11193 case MEM_REF:
11195 const bool reverse = REF_REVERSE_STORAGE_ORDER (exp);
11196 addr_space_t as
11197 = TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (TREE_OPERAND (exp, 0))));
11198 machine_mode address_mode;
11199 tree base = TREE_OPERAND (exp, 0);
11200 gimple *def_stmt;
11201 unsigned align;
11202 /* Handle expansion of non-aliased memory with non-BLKmode. That
11203 might end up in a register. */
11204 if (mem_ref_refers_to_non_mem_p (exp))
11206 poly_int64 offset = mem_ref_offset (exp).force_shwi ();
11207 base = TREE_OPERAND (base, 0);
11208 poly_uint64 type_size;
11209 if (known_eq (offset, 0)
11210 && !reverse
11211 && poly_int_tree_p (TYPE_SIZE (type), &type_size)
11212 && known_eq (GET_MODE_BITSIZE (DECL_MODE (base)), type_size))
11213 return expand_expr (build1 (VIEW_CONVERT_EXPR, type, base),
11214 target, tmode, modifier);
11215 if (TYPE_MODE (type) == BLKmode)
11217 temp = assign_stack_temp (DECL_MODE (base),
11218 GET_MODE_SIZE (DECL_MODE (base)));
11219 store_expr (base, temp, 0, false, false);
11220 temp = adjust_address (temp, BLKmode, offset);
11221 set_mem_size (temp, int_size_in_bytes (type));
11222 return temp;
11224 exp = build3 (BIT_FIELD_REF, type, base, TYPE_SIZE (type),
11225 bitsize_int (offset * BITS_PER_UNIT));
11226 REF_REVERSE_STORAGE_ORDER (exp) = reverse;
11227 return expand_expr (exp, target, tmode, modifier);
11229 address_mode = targetm.addr_space.address_mode (as);
11230 if ((def_stmt = get_def_for_expr (base, BIT_AND_EXPR)))
11232 tree mask = gimple_assign_rhs2 (def_stmt);
11233 base = build2 (BIT_AND_EXPR, TREE_TYPE (base),
11234 gimple_assign_rhs1 (def_stmt), mask);
11235 TREE_OPERAND (exp, 0) = base;
11237 align = get_object_alignment (exp);
11238 op0 = expand_expr (base, NULL_RTX, VOIDmode, EXPAND_SUM);
11239 op0 = memory_address_addr_space (mode, op0, as);
11240 if (!integer_zerop (TREE_OPERAND (exp, 1)))
11242 rtx off = immed_wide_int_const (mem_ref_offset (exp), address_mode);
11243 op0 = simplify_gen_binary (PLUS, address_mode, op0, off);
11244 op0 = memory_address_addr_space (mode, op0, as);
11246 temp = gen_rtx_MEM (mode, op0);
11247 set_mem_attributes (temp, exp, 0);
11248 set_mem_addr_space (temp, as);
11249 if (TREE_THIS_VOLATILE (exp))
11250 MEM_VOLATILE_P (temp) = 1;
11251 if (modifier != EXPAND_WRITE
11252 && modifier != EXPAND_MEMORY
11253 && !inner_reference_p
11254 && mode != BLKmode
11255 && align < GET_MODE_ALIGNMENT (mode))
11256 temp = expand_misaligned_mem_ref (temp, mode, unsignedp, align,
11257 modifier == EXPAND_STACK_PARM
11258 ? NULL_RTX : target, alt_rtl);
11259 if (reverse
11260 && modifier != EXPAND_MEMORY
11261 && modifier != EXPAND_WRITE)
11262 temp = flip_storage_order (mode, temp);
11263 return temp;
11266 case ARRAY_REF:
11269 tree array = treeop0;
11270 tree index = treeop1;
11271 tree init;
11273 /* Fold an expression like: "foo"[2].
11274 This is not done in fold so it won't happen inside &.
11275 Don't fold if this is for wide characters since it's too
11276 difficult to do correctly and this is a very rare case. */
11278 if (modifier != EXPAND_CONST_ADDRESS
11279 && modifier != EXPAND_INITIALIZER
11280 && modifier != EXPAND_MEMORY)
11282 tree t = fold_read_from_constant_string (exp);
11284 if (t)
11285 return expand_expr (t, target, tmode, modifier);
11288 /* If this is a constant index into a constant array,
11289 just get the value from the array. Handle both the cases when
11290 we have an explicit constructor and when our operand is a variable
11291 that was declared const. */
11293 if (modifier != EXPAND_CONST_ADDRESS
11294 && modifier != EXPAND_INITIALIZER
11295 && modifier != EXPAND_MEMORY
11296 && TREE_CODE (array) == CONSTRUCTOR
11297 && ! TREE_SIDE_EFFECTS (array)
11298 && TREE_CODE (index) == INTEGER_CST)
11300 unsigned HOST_WIDE_INT ix;
11301 tree field, value;
11303 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (array), ix,
11304 field, value)
11305 if (tree_int_cst_equal (field, index))
11307 if (!TREE_SIDE_EFFECTS (value))
11308 return expand_expr (fold (value), target, tmode, modifier);
11309 break;
11313 else if (optimize >= 1
11314 && modifier != EXPAND_CONST_ADDRESS
11315 && modifier != EXPAND_INITIALIZER
11316 && modifier != EXPAND_MEMORY
11317 && TREE_READONLY (array) && ! TREE_SIDE_EFFECTS (array)
11318 && TREE_CODE (index) == INTEGER_CST
11319 && (VAR_P (array) || TREE_CODE (array) == CONST_DECL)
11320 && (init = ctor_for_folding (array)) != error_mark_node)
11322 if (init == NULL_TREE)
11324 tree value = build_zero_cst (type);
11325 if (TREE_CODE (value) == CONSTRUCTOR)
11327 /* If VALUE is a CONSTRUCTOR, this optimization is only
11328 useful if this doesn't store the CONSTRUCTOR into
11329 memory. If it does, it is more efficient to just
11330 load the data from the array directly. */
11331 rtx ret = expand_constructor (value, target,
11332 modifier, true);
11333 if (ret == NULL_RTX)
11334 value = NULL_TREE;
11337 if (value)
11338 return expand_expr (value, target, tmode, modifier);
11340 else if (TREE_CODE (init) == CONSTRUCTOR)
11342 unsigned HOST_WIDE_INT ix;
11343 tree field, value;
11345 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (init), ix,
11346 field, value)
11347 if (tree_int_cst_equal (field, index))
11349 if (TREE_SIDE_EFFECTS (value))
11350 break;
11352 if (TREE_CODE (value) == CONSTRUCTOR)
11354 /* If VALUE is a CONSTRUCTOR, this
11355 optimization is only useful if
11356 this doesn't store the CONSTRUCTOR
11357 into memory. If it does, it is more
11358 efficient to just load the data from
11359 the array directly. */
11360 rtx ret = expand_constructor (value, target,
11361 modifier, true);
11362 if (ret == NULL_RTX)
11363 break;
11366 return
11367 expand_expr (fold (value), target, tmode, modifier);
11370 else if (TREE_CODE (init) == STRING_CST)
11372 tree low_bound = array_ref_low_bound (exp);
11373 tree index1 = fold_convert_loc (loc, sizetype, treeop1);
11375 /* Optimize the special case of a zero lower bound.
11377 We convert the lower bound to sizetype to avoid problems
11378 with constant folding. E.g. suppose the lower bound is
11379 1 and its mode is QI. Without the conversion
11380 (ARRAY + (INDEX - (unsigned char)1))
11381 becomes
11382 (ARRAY + (-(unsigned char)1) + INDEX)
11383 which becomes
11384 (ARRAY + 255 + INDEX). Oops! */
11385 if (!integer_zerop (low_bound))
11386 index1 = size_diffop_loc (loc, index1,
11387 fold_convert_loc (loc, sizetype,
11388 low_bound));
11390 if (tree_fits_uhwi_p (index1)
11391 && compare_tree_int (index1, TREE_STRING_LENGTH (init)) < 0)
11393 tree char_type = TREE_TYPE (TREE_TYPE (init));
11394 scalar_int_mode char_mode;
11396 if (is_int_mode (TYPE_MODE (char_type), &char_mode)
11397 && GET_MODE_SIZE (char_mode) == 1)
11398 return gen_int_mode (TREE_STRING_POINTER (init)
11399 [TREE_INT_CST_LOW (index1)],
11400 char_mode);
11405 goto normal_inner_ref;
11407 case COMPONENT_REF:
11408 gcc_assert (TREE_CODE (treeop0) != CONSTRUCTOR);
11409 /* Fall through. */
11410 case BIT_FIELD_REF:
11411 case ARRAY_RANGE_REF:
11412 normal_inner_ref:
11414 machine_mode mode1, mode2;
11415 poly_int64 bitsize, bitpos, bytepos;
11416 tree offset;
11417 int reversep, volatilep = 0;
11418 tree tem
11419 = get_inner_reference (exp, &bitsize, &bitpos, &offset, &mode1,
11420 &unsignedp, &reversep, &volatilep);
11421 rtx orig_op0, memloc;
11422 bool clear_mem_expr = false;
11423 bool must_force_mem;
11425 /* If we got back the original object, something is wrong. Perhaps
11426 we are evaluating an expression too early. In any event, don't
11427 infinitely recurse. */
11428 gcc_assert (tem != exp);
11430 /* Make sure bitpos is not negative, this can wreak havoc later. */
11431 if (maybe_lt (bitpos, 0))
11433 gcc_checking_assert (offset == NULL_TREE);
11434 offset = size_int (bits_to_bytes_round_down (bitpos));
11435 bitpos = num_trailing_bits (bitpos);
11438 /* If we have either an offset, a BLKmode result, or a reference
11439 outside the underlying object, we must force it to memory.
11440 Such a case can occur in Ada if we have unchecked conversion
11441 of an expression from a scalar type to an aggregate type or
11442 for an ARRAY_RANGE_REF whose type is BLKmode, or if we were
11443 passed a partially uninitialized object or a view-conversion
11444 to a larger size. */
11445 must_force_mem = offset != NULL_TREE
11446 || mode1 == BLKmode
11447 || (mode == BLKmode
11448 && !int_mode_for_size (bitsize, 1).exists ());
11450 const enum expand_modifier tem_modifier
11451 = must_force_mem
11452 ? EXPAND_MEMORY
11453 : modifier == EXPAND_SUM ? EXPAND_NORMAL : modifier;
11455 /* If TEM's type is a union of variable size, pass TARGET to the inner
11456 computation, since it will need a temporary and TARGET is known
11457 to have to do. This occurs in unchecked conversion in Ada. */
11458 const rtx tem_target
11459 = TREE_CODE (TREE_TYPE (tem)) == UNION_TYPE
11460 && COMPLETE_TYPE_P (TREE_TYPE (tem))
11461 && TREE_CODE (TYPE_SIZE (TREE_TYPE (tem))) != INTEGER_CST
11462 && modifier != EXPAND_STACK_PARM
11463 ? target
11464 : NULL_RTX;
11466 orig_op0 = op0
11467 = expand_expr_real (tem, tem_target, VOIDmode, tem_modifier, NULL,
11468 true);
11470 /* If the field has a mode, we want to access it in the
11471 field's mode, not the computed mode.
11472 If a MEM has VOIDmode (external with incomplete type),
11473 use BLKmode for it instead. */
11474 if (MEM_P (op0))
11476 if (mode1 != VOIDmode)
11477 op0 = adjust_address (op0, mode1, 0);
11478 else if (GET_MODE (op0) == VOIDmode)
11479 op0 = adjust_address (op0, BLKmode, 0);
11482 mode2
11483 = CONSTANT_P (op0) ? TYPE_MODE (TREE_TYPE (tem)) : GET_MODE (op0);
11485 /* See above for the rationale. */
11486 if (maybe_gt (bitpos + bitsize, GET_MODE_BITSIZE (mode2)))
11487 must_force_mem = true;
11489 /* Handle CONCAT first. */
11490 if (GET_CODE (op0) == CONCAT && !must_force_mem)
11492 if (known_eq (bitpos, 0)
11493 && known_eq (bitsize, GET_MODE_BITSIZE (GET_MODE (op0)))
11494 && COMPLEX_MODE_P (mode1)
11495 && COMPLEX_MODE_P (GET_MODE (op0))
11496 && (GET_MODE_PRECISION (GET_MODE_INNER (mode1))
11497 == GET_MODE_PRECISION (GET_MODE_INNER (GET_MODE (op0)))))
11499 if (reversep)
11500 op0 = flip_storage_order (GET_MODE (op0), op0);
11501 if (mode1 != GET_MODE (op0))
11503 rtx parts[2];
11504 for (int i = 0; i < 2; i++)
11506 rtx op = read_complex_part (op0, i != 0);
11507 if (GET_CODE (op) == SUBREG)
11508 op = force_reg (GET_MODE (op), op);
11509 temp = gen_lowpart_common (GET_MODE_INNER (mode1), op);
11510 if (temp)
11511 op = temp;
11512 else
11514 if (!REG_P (op) && !MEM_P (op))
11515 op = force_reg (GET_MODE (op), op);
11516 op = gen_lowpart (GET_MODE_INNER (mode1), op);
11518 parts[i] = op;
11520 op0 = gen_rtx_CONCAT (mode1, parts[0], parts[1]);
11522 return op0;
11524 if (known_eq (bitpos, 0)
11525 && known_eq (bitsize,
11526 GET_MODE_BITSIZE (GET_MODE (XEXP (op0, 0))))
11527 && maybe_ne (bitsize, 0))
11529 op0 = XEXP (op0, 0);
11530 mode2 = GET_MODE (op0);
11532 else if (known_eq (bitpos,
11533 GET_MODE_BITSIZE (GET_MODE (XEXP (op0, 0))))
11534 && known_eq (bitsize,
11535 GET_MODE_BITSIZE (GET_MODE (XEXP (op0, 1))))
11536 && maybe_ne (bitpos, 0)
11537 && maybe_ne (bitsize, 0))
11539 op0 = XEXP (op0, 1);
11540 bitpos = 0;
11541 mode2 = GET_MODE (op0);
11543 else
11544 /* Otherwise force into memory. */
11545 must_force_mem = true;
11548 /* If this is a constant, put it in a register if it is a legitimate
11549 constant and we don't need a memory reference. */
11550 if (CONSTANT_P (op0)
11551 && mode2 != BLKmode
11552 && targetm.legitimate_constant_p (mode2, op0)
11553 && !must_force_mem)
11554 op0 = force_reg (mode2, op0);
11556 /* Otherwise, if this is a constant, try to force it to the constant
11557 pool. Note that back-ends, e.g. MIPS, may refuse to do so if it
11558 is a legitimate constant. */
11559 else if (CONSTANT_P (op0) && (memloc = force_const_mem (mode2, op0)))
11560 op0 = validize_mem (memloc);
11562 /* Otherwise, if this is a constant or the object is not in memory
11563 and need be, put it there. */
11564 else if (CONSTANT_P (op0) || (!MEM_P (op0) && must_force_mem))
11566 memloc = assign_temp (TREE_TYPE (tem), 1, 1);
11567 emit_move_insn (memloc, op0);
11568 op0 = memloc;
11569 clear_mem_expr = true;
11572 if (offset)
11574 machine_mode address_mode;
11575 rtx offset_rtx = expand_expr (offset, NULL_RTX, VOIDmode,
11576 EXPAND_SUM);
11578 gcc_assert (MEM_P (op0));
11580 address_mode = get_address_mode (op0);
11581 if (GET_MODE (offset_rtx) != address_mode)
11583 /* We cannot be sure that the RTL in offset_rtx is valid outside
11584 of a memory address context, so force it into a register
11585 before attempting to convert it to the desired mode. */
11586 offset_rtx = force_operand (offset_rtx, NULL_RTX);
11587 offset_rtx = convert_to_mode (address_mode, offset_rtx, 0);
11590 /* See the comment in expand_assignment for the rationale. */
11591 if (mode1 != VOIDmode
11592 && maybe_ne (bitpos, 0)
11593 && maybe_gt (bitsize, 0)
11594 && multiple_p (bitpos, BITS_PER_UNIT, &bytepos)
11595 && multiple_p (bitpos, bitsize)
11596 && multiple_p (bitsize, GET_MODE_ALIGNMENT (mode1))
11597 && MEM_ALIGN (op0) >= GET_MODE_ALIGNMENT (mode1))
11599 op0 = adjust_address (op0, mode1, bytepos);
11600 bitpos = 0;
11603 op0 = offset_address (op0, offset_rtx,
11604 highest_pow2_factor (offset));
11607 /* If OFFSET is making OP0 more aligned than BIGGEST_ALIGNMENT,
11608 record its alignment as BIGGEST_ALIGNMENT. */
11609 if (MEM_P (op0)
11610 && known_eq (bitpos, 0)
11611 && offset != 0
11612 && is_aligning_offset (offset, tem))
11613 set_mem_align (op0, BIGGEST_ALIGNMENT);
11615 /* Don't forget about volatility even if this is a bitfield. */
11616 if (MEM_P (op0) && volatilep && ! MEM_VOLATILE_P (op0))
11618 if (op0 == orig_op0)
11619 op0 = copy_rtx (op0);
11621 MEM_VOLATILE_P (op0) = 1;
11624 if (MEM_P (op0) && TREE_CODE (tem) == FUNCTION_DECL)
11626 if (op0 == orig_op0)
11627 op0 = copy_rtx (op0);
11629 set_mem_align (op0, BITS_PER_UNIT);
11632 /* In cases where an aligned union has an unaligned object
11633 as a field, we might be extracting a BLKmode value from
11634 an integer-mode (e.g., SImode) object. Handle this case
11635 by doing the extract into an object as wide as the field
11636 (which we know to be the width of a basic mode), then
11637 storing into memory, and changing the mode to BLKmode. */
11638 if (mode1 == VOIDmode
11639 || REG_P (op0) || GET_CODE (op0) == SUBREG
11640 || (mode1 != BLKmode && ! direct_load[(int) mode1]
11641 && GET_MODE_CLASS (mode) != MODE_COMPLEX_INT
11642 && GET_MODE_CLASS (mode) != MODE_COMPLEX_FLOAT
11643 && modifier != EXPAND_CONST_ADDRESS
11644 && modifier != EXPAND_INITIALIZER
11645 && modifier != EXPAND_MEMORY)
11646 /* If the bitfield is volatile and the bitsize
11647 is narrower than the access size of the bitfield,
11648 we need to extract bitfields from the access. */
11649 || (volatilep && TREE_CODE (exp) == COMPONENT_REF
11650 && DECL_BIT_FIELD_TYPE (TREE_OPERAND (exp, 1))
11651 && mode1 != BLKmode
11652 && maybe_lt (bitsize, GET_MODE_SIZE (mode1) * BITS_PER_UNIT))
11653 /* If the field isn't aligned enough to fetch as a memref,
11654 fetch it as a bit field. */
11655 || (mode1 != BLKmode
11656 && (((MEM_P (op0)
11657 ? MEM_ALIGN (op0) < GET_MODE_ALIGNMENT (mode1)
11658 || !multiple_p (bitpos, GET_MODE_ALIGNMENT (mode1))
11659 : TYPE_ALIGN (TREE_TYPE (tem)) < GET_MODE_ALIGNMENT (mode)
11660 || !multiple_p (bitpos, GET_MODE_ALIGNMENT (mode)))
11661 && modifier != EXPAND_MEMORY
11662 && ((modifier == EXPAND_CONST_ADDRESS
11663 || modifier == EXPAND_INITIALIZER)
11664 ? STRICT_ALIGNMENT
11665 : targetm.slow_unaligned_access (mode1,
11666 MEM_ALIGN (op0))))
11667 || !multiple_p (bitpos, BITS_PER_UNIT)))
11668 /* If the type and the field are a constant size and the
11669 size of the type isn't the same size as the bitfield,
11670 we must use bitfield operations. */
11671 || (known_size_p (bitsize)
11672 && TYPE_SIZE (TREE_TYPE (exp))
11673 && poly_int_tree_p (TYPE_SIZE (TREE_TYPE (exp)))
11674 && maybe_ne (wi::to_poly_offset (TYPE_SIZE (TREE_TYPE (exp))),
11675 bitsize)))
11677 machine_mode ext_mode = mode;
11679 if (ext_mode == BLKmode
11680 && ! (target != 0 && MEM_P (op0)
11681 && MEM_P (target)
11682 && multiple_p (bitpos, BITS_PER_UNIT)))
11683 ext_mode = int_mode_for_size (bitsize, 1).else_blk ();
11685 if (ext_mode == BLKmode)
11687 if (target == 0)
11688 target = assign_temp (type, 1, 1);
11690 /* ??? Unlike the similar test a few lines below, this one is
11691 very likely obsolete. */
11692 if (known_eq (bitsize, 0))
11693 return target;
11695 /* In this case, BITPOS must start at a byte boundary and
11696 TARGET, if specified, must be a MEM. */
11697 gcc_assert (MEM_P (op0)
11698 && (!target || MEM_P (target)));
11700 bytepos = exact_div (bitpos, BITS_PER_UNIT);
11701 poly_int64 bytesize = bits_to_bytes_round_up (bitsize);
11702 emit_block_move (target,
11703 adjust_address (op0, VOIDmode, bytepos),
11704 gen_int_mode (bytesize, Pmode),
11705 (modifier == EXPAND_STACK_PARM
11706 ? BLOCK_OP_CALL_PARM : BLOCK_OP_NORMAL));
11708 return target;
11711 /* If we have nothing to extract, the result will be 0 for targets
11712 with SHIFT_COUNT_TRUNCATED == 0 and garbage otherwise. Always
11713 return 0 for the sake of consistency, as reading a zero-sized
11714 bitfield is valid in Ada and the value is fully specified. */
11715 if (known_eq (bitsize, 0))
11716 return const0_rtx;
11718 op0 = validize_mem (op0);
11720 if (MEM_P (op0) && REG_P (XEXP (op0, 0)))
11721 mark_reg_pointer (XEXP (op0, 0), MEM_ALIGN (op0));
11723 /* If the result has aggregate type and the extraction is done in
11724 an integral mode, then the field may be not aligned on a byte
11725 boundary; in this case, if it has reverse storage order, it
11726 needs to be extracted as a scalar field with reverse storage
11727 order and put back into memory order afterwards. */
11728 if (AGGREGATE_TYPE_P (type)
11729 && GET_MODE_CLASS (ext_mode) == MODE_INT)
11730 reversep = TYPE_REVERSE_STORAGE_ORDER (type);
11732 gcc_checking_assert (known_ge (bitpos, 0));
11733 op0 = extract_bit_field (op0, bitsize, bitpos, unsignedp,
11734 (modifier == EXPAND_STACK_PARM
11735 ? NULL_RTX : target),
11736 ext_mode, ext_mode, reversep, alt_rtl);
11738 /* If the result has aggregate type and the mode of OP0 is an
11739 integral mode then, if BITSIZE is narrower than this mode
11740 and this is for big-endian data, we must put the field
11741 into the high-order bits. And we must also put it back
11742 into memory order if it has been previously reversed. */
11743 scalar_int_mode op0_mode;
11744 if (AGGREGATE_TYPE_P (type)
11745 && is_int_mode (GET_MODE (op0), &op0_mode))
11747 HOST_WIDE_INT size = GET_MODE_BITSIZE (op0_mode);
11749 gcc_checking_assert (known_le (bitsize, size));
11750 if (maybe_lt (bitsize, size)
11751 && reversep ? !BYTES_BIG_ENDIAN : BYTES_BIG_ENDIAN)
11752 op0 = expand_shift (LSHIFT_EXPR, op0_mode, op0,
11753 size - bitsize, op0, 1);
11755 if (reversep)
11756 op0 = flip_storage_order (op0_mode, op0);
11759 /* If the result type is BLKmode, store the data into a temporary
11760 of the appropriate type, but with the mode corresponding to the
11761 mode for the data we have (op0's mode). */
11762 if (mode == BLKmode)
11764 rtx new_rtx
11765 = assign_stack_temp_for_type (ext_mode,
11766 GET_MODE_BITSIZE (ext_mode),
11767 type);
11768 emit_move_insn (new_rtx, op0);
11769 op0 = copy_rtx (new_rtx);
11770 PUT_MODE (op0, BLKmode);
11773 return op0;
11776 /* If the result is BLKmode, use that to access the object
11777 now as well. */
11778 if (mode == BLKmode)
11779 mode1 = BLKmode;
11781 /* Get a reference to just this component. */
11782 bytepos = bits_to_bytes_round_down (bitpos);
11783 if (modifier == EXPAND_CONST_ADDRESS
11784 || modifier == EXPAND_SUM || modifier == EXPAND_INITIALIZER)
11785 op0 = adjust_address_nv (op0, mode1, bytepos);
11786 else
11787 op0 = adjust_address (op0, mode1, bytepos);
11789 if (op0 == orig_op0)
11790 op0 = copy_rtx (op0);
11792 /* Don't set memory attributes if the base expression is
11793 SSA_NAME that got expanded as a MEM or a CONSTANT. In that case,
11794 we should just honor its original memory attributes. */
11795 if (!(TREE_CODE (tem) == SSA_NAME
11796 && (MEM_P (orig_op0) || CONSTANT_P (orig_op0))))
11797 set_mem_attributes (op0, exp, 0);
11799 if (REG_P (XEXP (op0, 0)))
11800 mark_reg_pointer (XEXP (op0, 0), MEM_ALIGN (op0));
11802 /* If op0 is a temporary because the original expressions was forced
11803 to memory, clear MEM_EXPR so that the original expression cannot
11804 be marked as addressable through MEM_EXPR of the temporary. */
11805 if (clear_mem_expr)
11806 set_mem_expr (op0, NULL_TREE);
11808 MEM_VOLATILE_P (op0) |= volatilep;
11810 if (reversep
11811 && modifier != EXPAND_MEMORY
11812 && modifier != EXPAND_WRITE)
11813 op0 = flip_storage_order (mode1, op0);
11815 if (mode == mode1 || mode1 == BLKmode || mode1 == tmode
11816 || modifier == EXPAND_CONST_ADDRESS
11817 || modifier == EXPAND_INITIALIZER)
11818 return op0;
11820 if (target == 0)
11821 target = gen_reg_rtx (tmode != VOIDmode ? tmode : mode);
11823 convert_move (target, op0, unsignedp);
11824 return target;
11827 case OBJ_TYPE_REF:
11828 return expand_expr (OBJ_TYPE_REF_EXPR (exp), target, tmode, modifier);
11830 case CALL_EXPR:
11831 /* All valid uses of __builtin_va_arg_pack () are removed during
11832 inlining. */
11833 if (CALL_EXPR_VA_ARG_PACK (exp))
11834 error ("invalid use of %<__builtin_va_arg_pack ()%>");
11836 tree fndecl = get_callee_fndecl (exp), attr;
11838 if (fndecl
11839 /* Don't diagnose the error attribute in thunks, those are
11840 artificially created. */
11841 && !CALL_FROM_THUNK_P (exp)
11842 && (attr = lookup_attribute ("error",
11843 DECL_ATTRIBUTES (fndecl))) != NULL)
11845 const char *ident = lang_hooks.decl_printable_name (fndecl, 1);
11846 error ("call to %qs declared with attribute error: %s",
11847 identifier_to_locale (ident),
11848 TREE_STRING_POINTER (TREE_VALUE (TREE_VALUE (attr))));
11850 if (fndecl
11851 /* Don't diagnose the warning attribute in thunks, those are
11852 artificially created. */
11853 && !CALL_FROM_THUNK_P (exp)
11854 && (attr = lookup_attribute ("warning",
11855 DECL_ATTRIBUTES (fndecl))) != NULL)
11857 const char *ident = lang_hooks.decl_printable_name (fndecl, 1);
11858 warning_at (EXPR_LOCATION (exp),
11859 OPT_Wattribute_warning,
11860 "call to %qs declared with attribute warning: %s",
11861 identifier_to_locale (ident),
11862 TREE_STRING_POINTER (TREE_VALUE (TREE_VALUE (attr))));
11865 /* Check for a built-in function. */
11866 if (fndecl && fndecl_built_in_p (fndecl))
11868 gcc_assert (DECL_BUILT_IN_CLASS (fndecl) != BUILT_IN_FRONTEND);
11869 return expand_builtin (exp, target, subtarget, tmode, ignore);
11872 return expand_call (exp, target, ignore);
11874 case VIEW_CONVERT_EXPR:
11875 op0 = NULL_RTX;
11877 /* If we are converting to BLKmode, try to avoid an intermediate
11878 temporary by fetching an inner memory reference. */
11879 if (mode == BLKmode
11880 && poly_int_tree_p (TYPE_SIZE (type))
11881 && TYPE_MODE (TREE_TYPE (treeop0)) != BLKmode
11882 && handled_component_p (treeop0))
11884 machine_mode mode1;
11885 poly_int64 bitsize, bitpos, bytepos;
11886 tree offset;
11887 int reversep, volatilep = 0;
11888 tree tem
11889 = get_inner_reference (treeop0, &bitsize, &bitpos, &offset, &mode1,
11890 &unsignedp, &reversep, &volatilep);
11892 /* ??? We should work harder and deal with non-zero offsets. */
11893 if (!offset
11894 && multiple_p (bitpos, BITS_PER_UNIT, &bytepos)
11895 && !reversep
11896 && known_size_p (bitsize)
11897 && known_eq (wi::to_poly_offset (TYPE_SIZE (type)), bitsize))
11899 /* See the normal_inner_ref case for the rationale. */
11900 rtx orig_op0
11901 = expand_expr_real (tem,
11902 (TREE_CODE (TREE_TYPE (tem)) == UNION_TYPE
11903 && (TREE_CODE (TYPE_SIZE (TREE_TYPE (tem)))
11904 != INTEGER_CST)
11905 && modifier != EXPAND_STACK_PARM
11906 ? target : NULL_RTX),
11907 VOIDmode,
11908 modifier == EXPAND_SUM ? EXPAND_NORMAL : modifier,
11909 NULL, true);
11911 if (MEM_P (orig_op0))
11913 op0 = orig_op0;
11915 /* Get a reference to just this component. */
11916 if (modifier == EXPAND_CONST_ADDRESS
11917 || modifier == EXPAND_SUM
11918 || modifier == EXPAND_INITIALIZER)
11919 op0 = adjust_address_nv (op0, mode, bytepos);
11920 else
11921 op0 = adjust_address (op0, mode, bytepos);
11923 if (op0 == orig_op0)
11924 op0 = copy_rtx (op0);
11926 set_mem_attributes (op0, treeop0, 0);
11927 if (REG_P (XEXP (op0, 0)))
11928 mark_reg_pointer (XEXP (op0, 0), MEM_ALIGN (op0));
11930 MEM_VOLATILE_P (op0) |= volatilep;
11935 if (!op0)
11936 op0 = expand_expr_real (treeop0, NULL_RTX, VOIDmode, modifier,
11937 NULL, inner_reference_p);
11939 /* If the input and output modes are both the same, we are done. */
11940 if (mode == GET_MODE (op0))
11942 /* If neither mode is BLKmode, and both modes are the same size
11943 then we can use gen_lowpart. */
11944 else if (mode != BLKmode
11945 && GET_MODE (op0) != BLKmode
11946 && known_eq (GET_MODE_PRECISION (mode),
11947 GET_MODE_PRECISION (GET_MODE (op0)))
11948 && !COMPLEX_MODE_P (GET_MODE (op0)))
11950 if (GET_CODE (op0) == SUBREG)
11951 op0 = force_reg (GET_MODE (op0), op0);
11952 temp = gen_lowpart_common (mode, op0);
11953 if (temp)
11954 op0 = temp;
11955 else
11957 if (!REG_P (op0) && !MEM_P (op0))
11958 op0 = force_reg (GET_MODE (op0), op0);
11959 op0 = gen_lowpart (mode, op0);
11962 /* If both types are integral, convert from one mode to the other. */
11963 else if (INTEGRAL_TYPE_P (type) && INTEGRAL_TYPE_P (TREE_TYPE (treeop0)))
11964 op0 = convert_modes (mode, GET_MODE (op0), op0,
11965 TYPE_UNSIGNED (TREE_TYPE (treeop0)));
11966 /* If the output type is a bit-field type, do an extraction. */
11967 else if (reduce_bit_field)
11968 return extract_bit_field (op0, TYPE_PRECISION (type), 0,
11969 TYPE_UNSIGNED (type), NULL_RTX,
11970 mode, mode, false, NULL);
11971 /* As a last resort, spill op0 to memory, and reload it in a
11972 different mode. */
11973 else if (!MEM_P (op0))
11975 /* If the operand is not a MEM, force it into memory. Since we
11976 are going to be changing the mode of the MEM, don't call
11977 force_const_mem for constants because we don't allow pool
11978 constants to change mode. */
11979 tree inner_type = TREE_TYPE (treeop0);
11981 gcc_assert (!TREE_ADDRESSABLE (exp));
11983 if (target == 0 || GET_MODE (target) != TYPE_MODE (inner_type))
11984 target
11985 = assign_stack_temp_for_type
11986 (TYPE_MODE (inner_type),
11987 GET_MODE_SIZE (TYPE_MODE (inner_type)), inner_type);
11989 emit_move_insn (target, op0);
11990 op0 = target;
11993 /* If OP0 is (now) a MEM, we need to deal with alignment issues. If the
11994 output type is such that the operand is known to be aligned, indicate
11995 that it is. Otherwise, we need only be concerned about alignment for
11996 non-BLKmode results. */
11997 if (MEM_P (op0))
11999 enum insn_code icode;
12001 if (modifier != EXPAND_WRITE
12002 && modifier != EXPAND_MEMORY
12003 && !inner_reference_p
12004 && mode != BLKmode
12005 && MEM_ALIGN (op0) < GET_MODE_ALIGNMENT (mode))
12007 /* If the target does have special handling for unaligned
12008 loads of mode then use them. */
12009 if ((icode = optab_handler (movmisalign_optab, mode))
12010 != CODE_FOR_nothing)
12012 rtx reg;
12014 op0 = adjust_address (op0, mode, 0);
12015 /* We've already validated the memory, and we're creating a
12016 new pseudo destination. The predicates really can't
12017 fail. */
12018 reg = gen_reg_rtx (mode);
12020 /* Nor can the insn generator. */
12021 rtx_insn *insn = GEN_FCN (icode) (reg, op0);
12022 emit_insn (insn);
12023 return reg;
12025 else if (STRICT_ALIGNMENT)
12027 poly_uint64 mode_size = GET_MODE_SIZE (mode);
12028 poly_uint64 temp_size = mode_size;
12029 if (GET_MODE (op0) != BLKmode)
12030 temp_size = upper_bound (temp_size,
12031 GET_MODE_SIZE (GET_MODE (op0)));
12032 rtx new_rtx
12033 = assign_stack_temp_for_type (mode, temp_size, type);
12034 rtx new_with_op0_mode
12035 = adjust_address (new_rtx, GET_MODE (op0), 0);
12037 gcc_assert (!TREE_ADDRESSABLE (exp));
12039 if (GET_MODE (op0) == BLKmode)
12041 rtx size_rtx = gen_int_mode (mode_size, Pmode);
12042 emit_block_move (new_with_op0_mode, op0, size_rtx,
12043 (modifier == EXPAND_STACK_PARM
12044 ? BLOCK_OP_CALL_PARM
12045 : BLOCK_OP_NORMAL));
12047 else
12048 emit_move_insn (new_with_op0_mode, op0);
12050 op0 = new_rtx;
12054 op0 = adjust_address (op0, mode, 0);
12057 return op0;
12059 case MODIFY_EXPR:
12061 tree lhs = treeop0;
12062 tree rhs = treeop1;
12063 gcc_assert (ignore);
12065 /* Check for |= or &= of a bitfield of size one into another bitfield
12066 of size 1. In this case, (unless we need the result of the
12067 assignment) we can do this more efficiently with a
12068 test followed by an assignment, if necessary.
12070 ??? At this point, we can't get a BIT_FIELD_REF here. But if
12071 things change so we do, this code should be enhanced to
12072 support it. */
12073 if (TREE_CODE (lhs) == COMPONENT_REF
12074 && (TREE_CODE (rhs) == BIT_IOR_EXPR
12075 || TREE_CODE (rhs) == BIT_AND_EXPR)
12076 && TREE_OPERAND (rhs, 0) == lhs
12077 && TREE_CODE (TREE_OPERAND (rhs, 1)) == COMPONENT_REF
12078 && integer_onep (DECL_SIZE (TREE_OPERAND (lhs, 1)))
12079 && integer_onep (DECL_SIZE (TREE_OPERAND (TREE_OPERAND (rhs, 1), 1))))
12081 rtx_code_label *label = gen_label_rtx ();
12082 int value = TREE_CODE (rhs) == BIT_IOR_EXPR;
12083 profile_probability prob = profile_probability::uninitialized ();
12084 if (value)
12085 jumpifnot (TREE_OPERAND (rhs, 1), label, prob);
12086 else
12087 jumpif (TREE_OPERAND (rhs, 1), label, prob);
12088 expand_assignment (lhs, build_int_cst (TREE_TYPE (rhs), value),
12089 false);
12090 do_pending_stack_adjust ();
12091 emit_label (label);
12092 return const0_rtx;
12095 expand_assignment (lhs, rhs, false);
12096 return const0_rtx;
12099 case ADDR_EXPR:
12100 return expand_expr_addr_expr (exp, target, tmode, modifier);
12102 case REALPART_EXPR:
12103 op0 = expand_normal (treeop0);
12104 return read_complex_part (op0, false);
12106 case IMAGPART_EXPR:
12107 op0 = expand_normal (treeop0);
12108 return read_complex_part (op0, true);
12110 case RETURN_EXPR:
12111 case LABEL_EXPR:
12112 case GOTO_EXPR:
12113 case SWITCH_EXPR:
12114 case ASM_EXPR:
12115 /* Expanded in cfgexpand.cc. */
12116 gcc_unreachable ();
12118 case TRY_CATCH_EXPR:
12119 case CATCH_EXPR:
12120 case EH_FILTER_EXPR:
12121 case TRY_FINALLY_EXPR:
12122 case EH_ELSE_EXPR:
12123 /* Lowered by tree-eh.cc. */
12124 gcc_unreachable ();
12126 case WITH_CLEANUP_EXPR:
12127 case CLEANUP_POINT_EXPR:
12128 case TARGET_EXPR:
12129 case CASE_LABEL_EXPR:
12130 case VA_ARG_EXPR:
12131 case BIND_EXPR:
12132 case INIT_EXPR:
12133 case CONJ_EXPR:
12134 case COMPOUND_EXPR:
12135 case PREINCREMENT_EXPR:
12136 case PREDECREMENT_EXPR:
12137 case POSTINCREMENT_EXPR:
12138 case POSTDECREMENT_EXPR:
12139 case LOOP_EXPR:
12140 case EXIT_EXPR:
12141 case COMPOUND_LITERAL_EXPR:
12142 /* Lowered by gimplify.cc. */
12143 gcc_unreachable ();
12145 case FDESC_EXPR:
12146 /* Function descriptors are not valid except for as
12147 initialization constants, and should not be expanded. */
12148 gcc_unreachable ();
12150 case WITH_SIZE_EXPR:
12151 /* WITH_SIZE_EXPR expands to its first argument. The caller should
12152 have pulled out the size to use in whatever context it needed. */
12153 return expand_expr_real (treeop0, original_target, tmode,
12154 modifier, alt_rtl, inner_reference_p);
12156 default:
12157 return expand_expr_real_2 (&ops, target, tmode, modifier);
12161 /* Subroutine of above: reduce EXP to the precision of TYPE (in the
12162 signedness of TYPE), possibly returning the result in TARGET.
12163 TYPE is known to be a partial integer type. */
12164 static rtx
12165 reduce_to_bit_field_precision (rtx exp, rtx target, tree type)
12167 scalar_int_mode mode = SCALAR_INT_TYPE_MODE (type);
12168 HOST_WIDE_INT prec = TYPE_PRECISION (type);
12169 gcc_assert ((GET_MODE (exp) == VOIDmode || GET_MODE (exp) == mode)
12170 && (!target || GET_MODE (target) == mode));
12172 /* For constant values, reduce using wide_int_to_tree. */
12173 if (poly_int_rtx_p (exp))
12175 auto value = wi::to_poly_wide (exp, mode);
12176 tree t = wide_int_to_tree (type, value);
12177 return expand_expr (t, target, VOIDmode, EXPAND_NORMAL);
12179 else if (TYPE_UNSIGNED (type))
12181 rtx mask = immed_wide_int_const
12182 (wi::mask (prec, false, GET_MODE_PRECISION (mode)), mode);
12183 return expand_and (mode, exp, mask, target);
12185 else
12187 int count = GET_MODE_PRECISION (mode) - prec;
12188 exp = expand_shift (LSHIFT_EXPR, mode, exp, count, target, 0);
12189 return expand_shift (RSHIFT_EXPR, mode, exp, count, target, 0);
12193 /* Subroutine of above: returns 1 if OFFSET corresponds to an offset that
12194 when applied to the address of EXP produces an address known to be
12195 aligned more than BIGGEST_ALIGNMENT. */
12197 static int
12198 is_aligning_offset (const_tree offset, const_tree exp)
12200 /* Strip off any conversions. */
12201 while (CONVERT_EXPR_P (offset))
12202 offset = TREE_OPERAND (offset, 0);
12204 /* We must now have a BIT_AND_EXPR with a constant that is one less than
12205 power of 2 and which is larger than BIGGEST_ALIGNMENT. */
12206 if (TREE_CODE (offset) != BIT_AND_EXPR
12207 || !tree_fits_uhwi_p (TREE_OPERAND (offset, 1))
12208 || compare_tree_int (TREE_OPERAND (offset, 1),
12209 BIGGEST_ALIGNMENT / BITS_PER_UNIT) <= 0
12210 || !pow2p_hwi (tree_to_uhwi (TREE_OPERAND (offset, 1)) + 1))
12211 return 0;
12213 /* Look at the first operand of BIT_AND_EXPR and strip any conversion.
12214 It must be NEGATE_EXPR. Then strip any more conversions. */
12215 offset = TREE_OPERAND (offset, 0);
12216 while (CONVERT_EXPR_P (offset))
12217 offset = TREE_OPERAND (offset, 0);
12219 if (TREE_CODE (offset) != NEGATE_EXPR)
12220 return 0;
12222 offset = TREE_OPERAND (offset, 0);
12223 while (CONVERT_EXPR_P (offset))
12224 offset = TREE_OPERAND (offset, 0);
12226 /* This must now be the address of EXP. */
12227 return TREE_CODE (offset) == ADDR_EXPR && TREE_OPERAND (offset, 0) == exp;
12230 /* Return a STRING_CST corresponding to ARG's constant initializer either
12231 if it's a string constant, or, when VALREP is set, any other constant,
12232 or null otherwise.
12233 On success, set *PTR_OFFSET to the (possibly non-constant) byte offset
12234 within the byte string that ARG is references. If nonnull set *MEM_SIZE
12235 to the size of the byte string. If nonnull, set *DECL to the constant
12236 declaration ARG refers to. */
12238 static tree
12239 constant_byte_string (tree arg, tree *ptr_offset, tree *mem_size, tree *decl,
12240 bool valrep = false)
12242 tree dummy = NULL_TREE;
12243 if (!mem_size)
12244 mem_size = &dummy;
12246 /* Store the type of the original expression before conversions
12247 via NOP_EXPR or POINTER_PLUS_EXPR to other types have been
12248 removed. */
12249 tree argtype = TREE_TYPE (arg);
12251 tree array;
12252 STRIP_NOPS (arg);
12254 /* Non-constant index into the character array in an ARRAY_REF
12255 expression or null. */
12256 tree varidx = NULL_TREE;
12258 poly_int64 base_off = 0;
12260 if (TREE_CODE (arg) == ADDR_EXPR)
12262 arg = TREE_OPERAND (arg, 0);
12263 tree ref = arg;
12264 if (TREE_CODE (arg) == ARRAY_REF)
12266 tree idx = TREE_OPERAND (arg, 1);
12267 if (TREE_CODE (idx) != INTEGER_CST)
12269 /* From a pointer (but not array) argument extract the variable
12270 index to prevent get_addr_base_and_unit_offset() from failing
12271 due to it. Use it later to compute the non-constant offset
12272 into the string and return it to the caller. */
12273 varidx = idx;
12274 ref = TREE_OPERAND (arg, 0);
12276 if (TREE_CODE (TREE_TYPE (arg)) == ARRAY_TYPE)
12277 return NULL_TREE;
12279 if (!integer_zerop (array_ref_low_bound (arg)))
12280 return NULL_TREE;
12282 if (!integer_onep (array_ref_element_size (arg)))
12283 return NULL_TREE;
12286 array = get_addr_base_and_unit_offset (ref, &base_off);
12287 if (!array
12288 || (TREE_CODE (array) != VAR_DECL
12289 && TREE_CODE (array) != CONST_DECL
12290 && TREE_CODE (array) != STRING_CST))
12291 return NULL_TREE;
12293 else if (TREE_CODE (arg) == PLUS_EXPR || TREE_CODE (arg) == POINTER_PLUS_EXPR)
12295 tree arg0 = TREE_OPERAND (arg, 0);
12296 tree arg1 = TREE_OPERAND (arg, 1);
12298 tree offset;
12299 tree str = string_constant (arg0, &offset, mem_size, decl);
12300 if (!str)
12302 str = string_constant (arg1, &offset, mem_size, decl);
12303 arg1 = arg0;
12306 if (str)
12308 /* Avoid pointers to arrays (see bug 86622). */
12309 if (POINTER_TYPE_P (TREE_TYPE (arg))
12310 && TREE_CODE (TREE_TYPE (TREE_TYPE (arg))) == ARRAY_TYPE
12311 && !(decl && !*decl)
12312 && !(decl && tree_fits_uhwi_p (DECL_SIZE_UNIT (*decl))
12313 && tree_fits_uhwi_p (*mem_size)
12314 && tree_int_cst_equal (*mem_size, DECL_SIZE_UNIT (*decl))))
12315 return NULL_TREE;
12317 tree type = TREE_TYPE (offset);
12318 arg1 = fold_convert (type, arg1);
12319 *ptr_offset = fold_build2 (PLUS_EXPR, type, offset, arg1);
12320 return str;
12322 return NULL_TREE;
12324 else if (TREE_CODE (arg) == SSA_NAME)
12326 gimple *stmt = SSA_NAME_DEF_STMT (arg);
12327 if (!is_gimple_assign (stmt))
12328 return NULL_TREE;
12330 tree rhs1 = gimple_assign_rhs1 (stmt);
12331 tree_code code = gimple_assign_rhs_code (stmt);
12332 if (code == ADDR_EXPR)
12333 return string_constant (rhs1, ptr_offset, mem_size, decl);
12334 else if (code != POINTER_PLUS_EXPR)
12335 return NULL_TREE;
12337 tree offset;
12338 if (tree str = string_constant (rhs1, &offset, mem_size, decl))
12340 /* Avoid pointers to arrays (see bug 86622). */
12341 if (POINTER_TYPE_P (TREE_TYPE (rhs1))
12342 && TREE_CODE (TREE_TYPE (TREE_TYPE (rhs1))) == ARRAY_TYPE
12343 && !(decl && !*decl)
12344 && !(decl && tree_fits_uhwi_p (DECL_SIZE_UNIT (*decl))
12345 && tree_fits_uhwi_p (*mem_size)
12346 && tree_int_cst_equal (*mem_size, DECL_SIZE_UNIT (*decl))))
12347 return NULL_TREE;
12349 tree rhs2 = gimple_assign_rhs2 (stmt);
12350 tree type = TREE_TYPE (offset);
12351 rhs2 = fold_convert (type, rhs2);
12352 *ptr_offset = fold_build2 (PLUS_EXPR, type, offset, rhs2);
12353 return str;
12355 return NULL_TREE;
12357 else if (DECL_P (arg))
12358 array = arg;
12359 else
12360 return NULL_TREE;
12362 tree offset = wide_int_to_tree (sizetype, base_off);
12363 if (varidx)
12365 if (TREE_CODE (TREE_TYPE (array)) != ARRAY_TYPE)
12366 return NULL_TREE;
12368 gcc_assert (TREE_CODE (arg) == ARRAY_REF);
12369 tree chartype = TREE_TYPE (TREE_TYPE (TREE_OPERAND (arg, 0)));
12370 if (TREE_CODE (chartype) != INTEGER_TYPE)
12371 return NULL;
12373 offset = fold_convert (sizetype, varidx);
12376 if (TREE_CODE (array) == STRING_CST)
12378 *ptr_offset = fold_convert (sizetype, offset);
12379 *mem_size = TYPE_SIZE_UNIT (TREE_TYPE (array));
12380 if (decl)
12381 *decl = NULL_TREE;
12382 gcc_checking_assert (tree_to_shwi (TYPE_SIZE_UNIT (TREE_TYPE (array)))
12383 >= TREE_STRING_LENGTH (array));
12384 return array;
12387 tree init = ctor_for_folding (array);
12388 if (!init || init == error_mark_node)
12389 return NULL_TREE;
12391 if (valrep)
12393 HOST_WIDE_INT cstoff;
12394 if (!base_off.is_constant (&cstoff))
12395 return NULL_TREE;
12397 /* Check that the host and target are sane. */
12398 if (CHAR_BIT != 8 || BITS_PER_UNIT != 8)
12399 return NULL_TREE;
12401 HOST_WIDE_INT typesz = int_size_in_bytes (TREE_TYPE (init));
12402 if (typesz <= 0 || (int) typesz != typesz)
12403 return NULL_TREE;
12405 HOST_WIDE_INT size = typesz;
12406 if (VAR_P (array)
12407 && DECL_SIZE_UNIT (array)
12408 && tree_fits_shwi_p (DECL_SIZE_UNIT (array)))
12410 size = tree_to_shwi (DECL_SIZE_UNIT (array));
12411 gcc_checking_assert (size >= typesz);
12414 /* If value representation was requested convert the initializer
12415 for the whole array or object into a string of bytes forming
12416 its value representation and return it. */
12417 unsigned char *bytes = XNEWVEC (unsigned char, size);
12418 int r = native_encode_initializer (init, bytes, size);
12419 if (r < typesz)
12421 XDELETEVEC (bytes);
12422 return NULL_TREE;
12425 if (r < size)
12426 memset (bytes + r, '\0', size - r);
12428 const char *p = reinterpret_cast<const char *>(bytes);
12429 init = build_string_literal (size, p, char_type_node);
12430 init = TREE_OPERAND (init, 0);
12431 init = TREE_OPERAND (init, 0);
12432 XDELETE (bytes);
12434 *mem_size = size_int (TREE_STRING_LENGTH (init));
12435 *ptr_offset = wide_int_to_tree (ssizetype, base_off);
12437 if (decl)
12438 *decl = array;
12440 return init;
12443 if (TREE_CODE (init) == CONSTRUCTOR)
12445 /* Convert the 64-bit constant offset to a wider type to avoid
12446 overflow and use it to obtain the initializer for the subobject
12447 it points into. */
12448 offset_int wioff;
12449 if (!base_off.is_constant (&wioff))
12450 return NULL_TREE;
12452 wioff *= BITS_PER_UNIT;
12453 if (!wi::fits_uhwi_p (wioff))
12454 return NULL_TREE;
12456 base_off = wioff.to_uhwi ();
12457 unsigned HOST_WIDE_INT fieldoff = 0;
12458 init = fold_ctor_reference (TREE_TYPE (arg), init, base_off, 0, array,
12459 &fieldoff);
12460 if (!init || init == error_mark_node)
12461 return NULL_TREE;
12463 HOST_WIDE_INT cstoff;
12464 if (!base_off.is_constant (&cstoff))
12465 return NULL_TREE;
12467 cstoff = (cstoff - fieldoff) / BITS_PER_UNIT;
12468 tree off = build_int_cst (sizetype, cstoff);
12469 if (varidx)
12470 offset = fold_build2 (PLUS_EXPR, TREE_TYPE (offset), offset, off);
12471 else
12472 offset = off;
12475 *ptr_offset = offset;
12477 tree inittype = TREE_TYPE (init);
12479 if (TREE_CODE (init) == INTEGER_CST
12480 && (TREE_CODE (TREE_TYPE (array)) == INTEGER_TYPE
12481 || TYPE_MAIN_VARIANT (inittype) == char_type_node))
12483 /* Check that the host and target are sane. */
12484 if (CHAR_BIT != 8 || BITS_PER_UNIT != 8)
12485 return NULL_TREE;
12487 /* For a reference to (address of) a single constant character,
12488 store the native representation of the character in CHARBUF.
12489 If the reference is to an element of an array or a member
12490 of a struct, only consider narrow characters until ctors
12491 for wide character arrays are transformed to STRING_CSTs
12492 like those for narrow arrays. */
12493 unsigned char charbuf[MAX_BITSIZE_MODE_ANY_MODE / BITS_PER_UNIT];
12494 int len = native_encode_expr (init, charbuf, sizeof charbuf, 0);
12495 if (len > 0)
12497 /* Construct a string literal with elements of INITTYPE and
12498 the representation above. Then strip
12499 the ADDR_EXPR (ARRAY_REF (...)) around the STRING_CST. */
12500 init = build_string_literal (len, (char *)charbuf, inittype);
12501 init = TREE_OPERAND (TREE_OPERAND (init, 0), 0);
12505 tree initsize = TYPE_SIZE_UNIT (inittype);
12507 if (TREE_CODE (init) == CONSTRUCTOR && initializer_zerop (init))
12509 /* Fold an empty/zero constructor for an implicitly initialized
12510 object or subobject into the empty string. */
12512 /* Determine the character type from that of the original
12513 expression. */
12514 tree chartype = argtype;
12515 if (POINTER_TYPE_P (chartype))
12516 chartype = TREE_TYPE (chartype);
12517 while (TREE_CODE (chartype) == ARRAY_TYPE)
12518 chartype = TREE_TYPE (chartype);
12520 if (INTEGRAL_TYPE_P (chartype)
12521 && TYPE_PRECISION (chartype) == TYPE_PRECISION (char_type_node))
12523 /* Convert a char array to an empty STRING_CST having an array
12524 of the expected type and size. */
12525 if (!initsize)
12526 initsize = integer_zero_node;
12528 unsigned HOST_WIDE_INT size = tree_to_uhwi (initsize);
12529 if (size > (unsigned HOST_WIDE_INT) INT_MAX)
12530 return NULL_TREE;
12532 init = build_string_literal (size, NULL, chartype, size);
12533 init = TREE_OPERAND (init, 0);
12534 init = TREE_OPERAND (init, 0);
12536 *ptr_offset = integer_zero_node;
12540 if (decl)
12541 *decl = array;
12543 if (TREE_CODE (init) != STRING_CST)
12544 return NULL_TREE;
12546 *mem_size = initsize;
12548 gcc_checking_assert (tree_to_shwi (initsize) >= TREE_STRING_LENGTH (init));
12550 return init;
12553 /* Return STRING_CST if an ARG corresponds to a string constant or zero
12554 if it doesn't. If we return nonzero, set *PTR_OFFSET to the (possibly
12555 non-constant) offset in bytes within the string that ARG is accessing.
12556 If MEM_SIZE is non-zero the storage size of the memory is returned.
12557 If DECL is non-zero the constant declaration is returned if available. */
12559 tree
12560 string_constant (tree arg, tree *ptr_offset, tree *mem_size, tree *decl)
12562 return constant_byte_string (arg, ptr_offset, mem_size, decl, false);
12565 /* Similar to string_constant, return a STRING_CST corresponding
12566 to the value representation of the first argument if it's
12567 a constant. */
12569 tree
12570 byte_representation (tree arg, tree *ptr_offset, tree *mem_size, tree *decl)
12572 return constant_byte_string (arg, ptr_offset, mem_size, decl, true);
12575 /* Optimize x % C1 == C2 for signed modulo if C1 is a power of two and C2
12576 is non-zero and C3 ((1<<(prec-1)) | (C1 - 1)):
12577 for C2 > 0 to x & C3 == C2
12578 for C2 < 0 to x & C3 == (C2 & C3). */
12579 enum tree_code
12580 maybe_optimize_pow2p_mod_cmp (enum tree_code code, tree *arg0, tree *arg1)
12582 gimple *stmt = get_def_for_expr (*arg0, TRUNC_MOD_EXPR);
12583 tree treeop0 = gimple_assign_rhs1 (stmt);
12584 tree treeop1 = gimple_assign_rhs2 (stmt);
12585 tree type = TREE_TYPE (*arg0);
12586 scalar_int_mode mode;
12587 if (!is_a <scalar_int_mode> (TYPE_MODE (type), &mode))
12588 return code;
12589 if (GET_MODE_BITSIZE (mode) != TYPE_PRECISION (type)
12590 || TYPE_PRECISION (type) <= 1
12591 || TYPE_UNSIGNED (type)
12592 /* Signed x % c == 0 should have been optimized into unsigned modulo
12593 earlier. */
12594 || integer_zerop (*arg1)
12595 /* If c is known to be non-negative, modulo will be expanded as unsigned
12596 modulo. */
12597 || get_range_pos_neg (treeop0) == 1)
12598 return code;
12600 /* x % c == d where d < 0 && d <= -c should be always false. */
12601 if (tree_int_cst_sgn (*arg1) == -1
12602 && -wi::to_widest (treeop1) >= wi::to_widest (*arg1))
12603 return code;
12605 int prec = TYPE_PRECISION (type);
12606 wide_int w = wi::to_wide (treeop1) - 1;
12607 w |= wi::shifted_mask (0, prec - 1, true, prec);
12608 tree c3 = wide_int_to_tree (type, w);
12609 tree c4 = *arg1;
12610 if (tree_int_cst_sgn (*arg1) == -1)
12611 c4 = wide_int_to_tree (type, w & wi::to_wide (*arg1));
12613 rtx op0 = expand_normal (treeop0);
12614 treeop0 = make_tree (TREE_TYPE (treeop0), op0);
12616 bool speed_p = optimize_insn_for_speed_p ();
12618 do_pending_stack_adjust ();
12620 location_t loc = gimple_location (stmt);
12621 struct separate_ops ops;
12622 ops.code = TRUNC_MOD_EXPR;
12623 ops.location = loc;
12624 ops.type = TREE_TYPE (treeop0);
12625 ops.op0 = treeop0;
12626 ops.op1 = treeop1;
12627 ops.op2 = NULL_TREE;
12628 start_sequence ();
12629 rtx mor = expand_expr_real_2 (&ops, NULL_RTX, TYPE_MODE (ops.type),
12630 EXPAND_NORMAL);
12631 rtx_insn *moinsns = get_insns ();
12632 end_sequence ();
12634 unsigned mocost = seq_cost (moinsns, speed_p);
12635 mocost += rtx_cost (mor, mode, EQ, 0, speed_p);
12636 mocost += rtx_cost (expand_normal (*arg1), mode, EQ, 1, speed_p);
12638 ops.code = BIT_AND_EXPR;
12639 ops.location = loc;
12640 ops.type = TREE_TYPE (treeop0);
12641 ops.op0 = treeop0;
12642 ops.op1 = c3;
12643 ops.op2 = NULL_TREE;
12644 start_sequence ();
12645 rtx mur = expand_expr_real_2 (&ops, NULL_RTX, TYPE_MODE (ops.type),
12646 EXPAND_NORMAL);
12647 rtx_insn *muinsns = get_insns ();
12648 end_sequence ();
12650 unsigned mucost = seq_cost (muinsns, speed_p);
12651 mucost += rtx_cost (mur, mode, EQ, 0, speed_p);
12652 mucost += rtx_cost (expand_normal (c4), mode, EQ, 1, speed_p);
12654 if (mocost <= mucost)
12656 emit_insn (moinsns);
12657 *arg0 = make_tree (TREE_TYPE (*arg0), mor);
12658 return code;
12661 emit_insn (muinsns);
12662 *arg0 = make_tree (TREE_TYPE (*arg0), mur);
12663 *arg1 = c4;
12664 return code;
12667 /* Attempt to optimize unsigned (X % C1) == C2 (or (X % C1) != C2).
12668 If C1 is odd to:
12669 (X - C2) * C3 <= C4 (or >), where
12670 C3 is modular multiplicative inverse of C1 and 1<<prec and
12671 C4 is ((1<<prec) - 1) / C1 or ((1<<prec) - 1) / C1 - 1 (the latter
12672 if C2 > ((1<<prec) - 1) % C1).
12673 If C1 is even, S = ctz (C1) and C2 is 0, use
12674 ((X * C3) r>> S) <= C4, where C3 is modular multiplicative
12675 inverse of C1>>S and 1<<prec and C4 is (((1<<prec) - 1) / (C1>>S)) >> S.
12677 For signed (X % C1) == 0 if C1 is odd to (all operations in it
12678 unsigned):
12679 (X * C3) + C4 <= 2 * C4, where
12680 C3 is modular multiplicative inverse of (unsigned) C1 and 1<<prec and
12681 C4 is ((1<<(prec - 1) - 1) / C1).
12682 If C1 is even, S = ctz(C1), use
12683 ((X * C3) + C4) r>> S <= (C4 >> (S - 1))
12684 where C3 is modular multiplicative inverse of (unsigned)(C1>>S) and 1<<prec
12685 and C4 is ((1<<(prec - 1) - 1) / (C1>>S)) & (-1<<S).
12687 See the Hacker's Delight book, section 10-17. */
12688 enum tree_code
12689 maybe_optimize_mod_cmp (enum tree_code code, tree *arg0, tree *arg1)
12691 gcc_checking_assert (code == EQ_EXPR || code == NE_EXPR);
12692 gcc_checking_assert (TREE_CODE (*arg1) == INTEGER_CST);
12694 if (optimize < 2)
12695 return code;
12697 gimple *stmt = get_def_for_expr (*arg0, TRUNC_MOD_EXPR);
12698 if (stmt == NULL)
12699 return code;
12701 tree treeop0 = gimple_assign_rhs1 (stmt);
12702 tree treeop1 = gimple_assign_rhs2 (stmt);
12703 if (TREE_CODE (treeop0) != SSA_NAME
12704 || TREE_CODE (treeop1) != INTEGER_CST
12705 /* Don't optimize the undefined behavior case x % 0;
12706 x % 1 should have been optimized into zero, punt if
12707 it makes it here for whatever reason;
12708 x % -c should have been optimized into x % c. */
12709 || compare_tree_int (treeop1, 2) <= 0
12710 /* Likewise x % c == d where d >= c should be always false. */
12711 || tree_int_cst_le (treeop1, *arg1))
12712 return code;
12714 /* Unsigned x % pow2 is handled right already, for signed
12715 modulo handle it in maybe_optimize_pow2p_mod_cmp. */
12716 if (integer_pow2p (treeop1))
12717 return maybe_optimize_pow2p_mod_cmp (code, arg0, arg1);
12719 tree type = TREE_TYPE (*arg0);
12720 scalar_int_mode mode;
12721 if (!is_a <scalar_int_mode> (TYPE_MODE (type), &mode))
12722 return code;
12723 if (GET_MODE_BITSIZE (mode) != TYPE_PRECISION (type)
12724 || TYPE_PRECISION (type) <= 1)
12725 return code;
12727 signop sgn = UNSIGNED;
12728 /* If both operands are known to have the sign bit clear, handle
12729 even the signed modulo case as unsigned. treeop1 is always
12730 positive >= 2, checked above. */
12731 if (!TYPE_UNSIGNED (type) && get_range_pos_neg (treeop0) != 1)
12732 sgn = SIGNED;
12734 if (!TYPE_UNSIGNED (type))
12736 if (tree_int_cst_sgn (*arg1) == -1)
12737 return code;
12738 type = unsigned_type_for (type);
12739 if (!type || TYPE_MODE (type) != TYPE_MODE (TREE_TYPE (*arg0)))
12740 return code;
12743 int prec = TYPE_PRECISION (type);
12744 wide_int w = wi::to_wide (treeop1);
12745 int shift = wi::ctz (w);
12746 /* Unsigned (X % C1) == C2 is equivalent to (X - C2) % C1 == 0 if
12747 C2 <= -1U % C1, because for any Z >= 0U - C2 in that case (Z % C1) != 0.
12748 If C1 is odd, we can handle all cases by subtracting
12749 C4 below. We could handle even the even C1 and C2 > -1U % C1 cases
12750 e.g. by testing for overflow on the subtraction, punt on that for now
12751 though. */
12752 if ((sgn == SIGNED || shift) && !integer_zerop (*arg1))
12754 if (sgn == SIGNED)
12755 return code;
12756 wide_int x = wi::umod_trunc (wi::mask (prec, false, prec), w);
12757 if (wi::gtu_p (wi::to_wide (*arg1), x))
12758 return code;
12761 imm_use_iterator imm_iter;
12762 use_operand_p use_p;
12763 FOR_EACH_IMM_USE_FAST (use_p, imm_iter, treeop0)
12765 gimple *use_stmt = USE_STMT (use_p);
12766 /* Punt if treeop0 is used in the same bb in a division
12767 or another modulo with the same divisor. We should expect
12768 the division and modulo combined together. */
12769 if (use_stmt == stmt
12770 || gimple_bb (use_stmt) != gimple_bb (stmt))
12771 continue;
12772 if (!is_gimple_assign (use_stmt)
12773 || (gimple_assign_rhs_code (use_stmt) != TRUNC_DIV_EXPR
12774 && gimple_assign_rhs_code (use_stmt) != TRUNC_MOD_EXPR))
12775 continue;
12776 if (gimple_assign_rhs1 (use_stmt) != treeop0
12777 || !operand_equal_p (gimple_assign_rhs2 (use_stmt), treeop1, 0))
12778 continue;
12779 return code;
12782 w = wi::lrshift (w, shift);
12783 wide_int a = wide_int::from (w, prec + 1, UNSIGNED);
12784 wide_int b = wi::shifted_mask (prec, 1, false, prec + 1);
12785 wide_int m = wide_int::from (wi::mod_inv (a, b), prec, UNSIGNED);
12786 tree c3 = wide_int_to_tree (type, m);
12787 tree c5 = NULL_TREE;
12788 wide_int d, e;
12789 if (sgn == UNSIGNED)
12791 d = wi::divmod_trunc (wi::mask (prec, false, prec), w, UNSIGNED, &e);
12792 /* Use <= floor ((1<<prec) - 1) / C1 only if C2 <= ((1<<prec) - 1) % C1,
12793 otherwise use < or subtract one from C4. E.g. for
12794 x % 3U == 0 we transform this into x * 0xaaaaaaab <= 0x55555555, but
12795 x % 3U == 1 already needs to be
12796 (x - 1) * 0xaaaaaaabU <= 0x55555554. */
12797 if (!shift && wi::gtu_p (wi::to_wide (*arg1), e))
12798 d -= 1;
12799 if (shift)
12800 d = wi::lrshift (d, shift);
12802 else
12804 e = wi::udiv_trunc (wi::mask (prec - 1, false, prec), w);
12805 if (!shift)
12806 d = wi::lshift (e, 1);
12807 else
12809 e = wi::bit_and (e, wi::mask (shift, true, prec));
12810 d = wi::lrshift (e, shift - 1);
12812 c5 = wide_int_to_tree (type, e);
12814 tree c4 = wide_int_to_tree (type, d);
12816 rtx op0 = expand_normal (treeop0);
12817 treeop0 = make_tree (TREE_TYPE (treeop0), op0);
12819 bool speed_p = optimize_insn_for_speed_p ();
12821 do_pending_stack_adjust ();
12823 location_t loc = gimple_location (stmt);
12824 struct separate_ops ops;
12825 ops.code = TRUNC_MOD_EXPR;
12826 ops.location = loc;
12827 ops.type = TREE_TYPE (treeop0);
12828 ops.op0 = treeop0;
12829 ops.op1 = treeop1;
12830 ops.op2 = NULL_TREE;
12831 start_sequence ();
12832 rtx mor = expand_expr_real_2 (&ops, NULL_RTX, TYPE_MODE (ops.type),
12833 EXPAND_NORMAL);
12834 rtx_insn *moinsns = get_insns ();
12835 end_sequence ();
12837 unsigned mocost = seq_cost (moinsns, speed_p);
12838 mocost += rtx_cost (mor, mode, EQ, 0, speed_p);
12839 mocost += rtx_cost (expand_normal (*arg1), mode, EQ, 1, speed_p);
12841 tree t = fold_convert_loc (loc, type, treeop0);
12842 if (!integer_zerop (*arg1))
12843 t = fold_build2_loc (loc, MINUS_EXPR, type, t, fold_convert (type, *arg1));
12844 t = fold_build2_loc (loc, MULT_EXPR, type, t, c3);
12845 if (sgn == SIGNED)
12846 t = fold_build2_loc (loc, PLUS_EXPR, type, t, c5);
12847 if (shift)
12849 tree s = build_int_cst (NULL_TREE, shift);
12850 t = fold_build2_loc (loc, RROTATE_EXPR, type, t, s);
12853 start_sequence ();
12854 rtx mur = expand_normal (t);
12855 rtx_insn *muinsns = get_insns ();
12856 end_sequence ();
12858 unsigned mucost = seq_cost (muinsns, speed_p);
12859 mucost += rtx_cost (mur, mode, LE, 0, speed_p);
12860 mucost += rtx_cost (expand_normal (c4), mode, LE, 1, speed_p);
12862 if (mocost <= mucost)
12864 emit_insn (moinsns);
12865 *arg0 = make_tree (TREE_TYPE (*arg0), mor);
12866 return code;
12869 emit_insn (muinsns);
12870 *arg0 = make_tree (type, mur);
12871 *arg1 = c4;
12872 return code == EQ_EXPR ? LE_EXPR : GT_EXPR;
12875 /* Optimize x - y < 0 into x < 0 if x - y has undefined overflow. */
12877 void
12878 maybe_optimize_sub_cmp_0 (enum tree_code code, tree *arg0, tree *arg1)
12880 gcc_checking_assert (code == GT_EXPR || code == GE_EXPR
12881 || code == LT_EXPR || code == LE_EXPR);
12882 gcc_checking_assert (integer_zerop (*arg1));
12884 if (!optimize)
12885 return;
12887 gimple *stmt = get_def_for_expr (*arg0, MINUS_EXPR);
12888 if (stmt == NULL)
12889 return;
12891 tree treeop0 = gimple_assign_rhs1 (stmt);
12892 tree treeop1 = gimple_assign_rhs2 (stmt);
12893 if (!TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (treeop0)))
12894 return;
12896 if (issue_strict_overflow_warning (WARN_STRICT_OVERFLOW_COMPARISON))
12897 warning_at (gimple_location (stmt), OPT_Wstrict_overflow,
12898 "assuming signed overflow does not occur when "
12899 "simplifying %<X - Y %s 0%> to %<X %s Y%>",
12900 op_symbol_code (code), op_symbol_code (code));
12902 *arg0 = treeop0;
12903 *arg1 = treeop1;
12906 /* Generate code to calculate OPS, and exploded expression
12907 using a store-flag instruction and return an rtx for the result.
12908 OPS reflects a comparison.
12910 If TARGET is nonzero, store the result there if convenient.
12912 Return zero if there is no suitable set-flag instruction
12913 available on this machine.
12915 Once expand_expr has been called on the arguments of the comparison,
12916 we are committed to doing the store flag, since it is not safe to
12917 re-evaluate the expression. We emit the store-flag insn by calling
12918 emit_store_flag, but only expand the arguments if we have a reason
12919 to believe that emit_store_flag will be successful. If we think that
12920 it will, but it isn't, we have to simulate the store-flag with a
12921 set/jump/set sequence. */
12923 static rtx
12924 do_store_flag (sepops ops, rtx target, machine_mode mode)
12926 enum rtx_code code;
12927 tree arg0, arg1, type;
12928 machine_mode operand_mode;
12929 int unsignedp;
12930 rtx op0, op1;
12931 rtx subtarget = target;
12932 location_t loc = ops->location;
12934 arg0 = ops->op0;
12935 arg1 = ops->op1;
12937 /* Don't crash if the comparison was erroneous. */
12938 if (arg0 == error_mark_node || arg1 == error_mark_node)
12939 return const0_rtx;
12941 type = TREE_TYPE (arg0);
12942 operand_mode = TYPE_MODE (type);
12943 unsignedp = TYPE_UNSIGNED (type);
12945 /* We won't bother with BLKmode store-flag operations because it would mean
12946 passing a lot of information to emit_store_flag. */
12947 if (operand_mode == BLKmode)
12948 return 0;
12950 /* We won't bother with store-flag operations involving function pointers
12951 when function pointers must be canonicalized before comparisons. */
12952 if (targetm.have_canonicalize_funcptr_for_compare ()
12953 && ((POINTER_TYPE_P (TREE_TYPE (arg0))
12954 && FUNC_OR_METHOD_TYPE_P (TREE_TYPE (TREE_TYPE (arg0))))
12955 || (POINTER_TYPE_P (TREE_TYPE (arg1))
12956 && FUNC_OR_METHOD_TYPE_P (TREE_TYPE (TREE_TYPE (arg1))))))
12957 return 0;
12959 STRIP_NOPS (arg0);
12960 STRIP_NOPS (arg1);
12962 /* For vector typed comparisons emit code to generate the desired
12963 all-ones or all-zeros mask. */
12964 if (TREE_CODE (ops->type) == VECTOR_TYPE)
12966 tree ifexp = build2 (ops->code, ops->type, arg0, arg1);
12967 if (VECTOR_BOOLEAN_TYPE_P (ops->type)
12968 && expand_vec_cmp_expr_p (TREE_TYPE (arg0), ops->type, ops->code))
12969 return expand_vec_cmp_expr (ops->type, ifexp, target);
12970 else
12971 gcc_unreachable ();
12974 /* Optimize (x % C1) == C2 or (x % C1) != C2 if it is beneficial
12975 into (x - C2) * C3 < C4. */
12976 if ((ops->code == EQ_EXPR || ops->code == NE_EXPR)
12977 && TREE_CODE (arg0) == SSA_NAME
12978 && TREE_CODE (arg1) == INTEGER_CST)
12980 enum tree_code new_code = maybe_optimize_mod_cmp (ops->code,
12981 &arg0, &arg1);
12982 if (new_code != ops->code)
12984 struct separate_ops nops = *ops;
12985 nops.code = ops->code = new_code;
12986 nops.op0 = arg0;
12987 nops.op1 = arg1;
12988 nops.type = TREE_TYPE (arg0);
12989 return do_store_flag (&nops, target, mode);
12993 /* Optimize (x - y) < 0 into x < y if x - y has undefined overflow. */
12994 if (!unsignedp
12995 && (ops->code == LT_EXPR || ops->code == LE_EXPR
12996 || ops->code == GT_EXPR || ops->code == GE_EXPR)
12997 && integer_zerop (arg1)
12998 && TREE_CODE (arg0) == SSA_NAME)
12999 maybe_optimize_sub_cmp_0 (ops->code, &arg0, &arg1);
13001 /* Get the rtx comparison code to use. We know that EXP is a comparison
13002 operation of some type. Some comparisons against 1 and -1 can be
13003 converted to comparisons with zero. Do so here so that the tests
13004 below will be aware that we have a comparison with zero. These
13005 tests will not catch constants in the first operand, but constants
13006 are rarely passed as the first operand. */
13008 switch (ops->code)
13010 case EQ_EXPR:
13011 code = EQ;
13012 break;
13013 case NE_EXPR:
13014 code = NE;
13015 break;
13016 case LT_EXPR:
13017 if (integer_onep (arg1))
13018 arg1 = integer_zero_node, code = unsignedp ? LEU : LE;
13019 else
13020 code = unsignedp ? LTU : LT;
13021 break;
13022 case LE_EXPR:
13023 if (! unsignedp && integer_all_onesp (arg1))
13024 arg1 = integer_zero_node, code = LT;
13025 else
13026 code = unsignedp ? LEU : LE;
13027 break;
13028 case GT_EXPR:
13029 if (! unsignedp && integer_all_onesp (arg1))
13030 arg1 = integer_zero_node, code = GE;
13031 else
13032 code = unsignedp ? GTU : GT;
13033 break;
13034 case GE_EXPR:
13035 if (integer_onep (arg1))
13036 arg1 = integer_zero_node, code = unsignedp ? GTU : GT;
13037 else
13038 code = unsignedp ? GEU : GE;
13039 break;
13041 case UNORDERED_EXPR:
13042 code = UNORDERED;
13043 break;
13044 case ORDERED_EXPR:
13045 code = ORDERED;
13046 break;
13047 case UNLT_EXPR:
13048 code = UNLT;
13049 break;
13050 case UNLE_EXPR:
13051 code = UNLE;
13052 break;
13053 case UNGT_EXPR:
13054 code = UNGT;
13055 break;
13056 case UNGE_EXPR:
13057 code = UNGE;
13058 break;
13059 case UNEQ_EXPR:
13060 code = UNEQ;
13061 break;
13062 case LTGT_EXPR:
13063 code = LTGT;
13064 break;
13066 default:
13067 gcc_unreachable ();
13070 /* Put a constant second. */
13071 if (TREE_CODE (arg0) == REAL_CST || TREE_CODE (arg0) == INTEGER_CST
13072 || TREE_CODE (arg0) == FIXED_CST)
13074 std::swap (arg0, arg1);
13075 code = swap_condition (code);
13078 /* If this is an equality or inequality test of a single bit, we can
13079 do this by shifting the bit being tested to the low-order bit and
13080 masking the result with the constant 1. If the condition was EQ,
13081 we xor it with 1. This does not require an scc insn and is faster
13082 than an scc insn even if we have it.
13084 The code to make this transformation was moved into fold_single_bit_test,
13085 so we just call into the folder and expand its result. */
13087 if ((code == NE || code == EQ)
13088 && integer_zerop (arg1)
13089 && (TYPE_PRECISION (ops->type) != 1 || TYPE_UNSIGNED (ops->type)))
13091 gimple *srcstmt = get_def_for_expr (arg0, BIT_AND_EXPR);
13092 if (srcstmt
13093 && integer_pow2p (gimple_assign_rhs2 (srcstmt)))
13095 enum tree_code tcode = code == NE ? NE_EXPR : EQ_EXPR;
13096 type = lang_hooks.types.type_for_mode (mode, unsignedp);
13097 tree temp = fold_build2_loc (loc, BIT_AND_EXPR, TREE_TYPE (arg1),
13098 gimple_assign_rhs1 (srcstmt),
13099 gimple_assign_rhs2 (srcstmt));
13100 temp = fold_single_bit_test (loc, tcode, temp, arg1, type);
13101 if (temp)
13102 return expand_expr (temp, target, VOIDmode, EXPAND_NORMAL);
13106 if (! get_subtarget (target)
13107 || GET_MODE (subtarget) != operand_mode)
13108 subtarget = 0;
13110 expand_operands (arg0, arg1, subtarget, &op0, &op1, EXPAND_NORMAL);
13112 if (target == 0)
13113 target = gen_reg_rtx (mode);
13115 /* Try a cstore if possible. */
13116 return emit_store_flag_force (target, code, op0, op1,
13117 operand_mode, unsignedp,
13118 (TYPE_PRECISION (ops->type) == 1
13119 && !TYPE_UNSIGNED (ops->type)) ? -1 : 1);
13122 /* Attempt to generate a casesi instruction. Returns 1 if successful,
13123 0 otherwise (i.e. if there is no casesi instruction).
13125 DEFAULT_PROBABILITY is the probability of jumping to the default
13126 label. */
13128 try_casesi (tree index_type, tree index_expr, tree minval, tree range,
13129 rtx table_label, rtx default_label, rtx fallback_label,
13130 profile_probability default_probability)
13132 class expand_operand ops[5];
13133 scalar_int_mode index_mode = SImode;
13134 rtx op1, op2, index;
13136 if (! targetm.have_casesi ())
13137 return 0;
13139 /* The index must be some form of integer. Convert it to SImode. */
13140 scalar_int_mode omode = SCALAR_INT_TYPE_MODE (index_type);
13141 if (GET_MODE_BITSIZE (omode) > GET_MODE_BITSIZE (index_mode))
13143 rtx rangertx = expand_normal (range);
13145 /* We must handle the endpoints in the original mode. */
13146 index_expr = build2 (MINUS_EXPR, index_type,
13147 index_expr, minval);
13148 minval = integer_zero_node;
13149 index = expand_normal (index_expr);
13150 if (default_label)
13151 emit_cmp_and_jump_insns (rangertx, index, LTU, NULL_RTX,
13152 omode, 1, default_label,
13153 default_probability);
13154 /* Now we can safely truncate. */
13155 index = convert_to_mode (index_mode, index, 0);
13157 else
13159 if (omode != index_mode)
13161 index_type = lang_hooks.types.type_for_mode (index_mode, 0);
13162 index_expr = fold_convert (index_type, index_expr);
13165 index = expand_normal (index_expr);
13168 do_pending_stack_adjust ();
13170 op1 = expand_normal (minval);
13171 op2 = expand_normal (range);
13173 create_input_operand (&ops[0], index, index_mode);
13174 create_convert_operand_from_type (&ops[1], op1, TREE_TYPE (minval));
13175 create_convert_operand_from_type (&ops[2], op2, TREE_TYPE (range));
13176 create_fixed_operand (&ops[3], table_label);
13177 create_fixed_operand (&ops[4], (default_label
13178 ? default_label
13179 : fallback_label));
13180 expand_jump_insn (targetm.code_for_casesi, 5, ops);
13181 return 1;
13184 /* Attempt to generate a tablejump instruction; same concept. */
13185 /* Subroutine of the next function.
13187 INDEX is the value being switched on, with the lowest value
13188 in the table already subtracted.
13189 MODE is its expected mode (needed if INDEX is constant).
13190 RANGE is the length of the jump table.
13191 TABLE_LABEL is a CODE_LABEL rtx for the table itself.
13193 DEFAULT_LABEL is a CODE_LABEL rtx to jump to if the
13194 index value is out of range.
13195 DEFAULT_PROBABILITY is the probability of jumping to
13196 the default label. */
13198 static void
13199 do_tablejump (rtx index, machine_mode mode, rtx range, rtx table_label,
13200 rtx default_label, profile_probability default_probability)
13202 rtx temp, vector;
13204 if (INTVAL (range) > cfun->cfg->max_jumptable_ents)
13205 cfun->cfg->max_jumptable_ents = INTVAL (range);
13207 /* Do an unsigned comparison (in the proper mode) between the index
13208 expression and the value which represents the length of the range.
13209 Since we just finished subtracting the lower bound of the range
13210 from the index expression, this comparison allows us to simultaneously
13211 check that the original index expression value is both greater than
13212 or equal to the minimum value of the range and less than or equal to
13213 the maximum value of the range. */
13215 if (default_label)
13216 emit_cmp_and_jump_insns (index, range, GTU, NULL_RTX, mode, 1,
13217 default_label, default_probability);
13219 /* If index is in range, it must fit in Pmode.
13220 Convert to Pmode so we can index with it. */
13221 if (mode != Pmode)
13223 unsigned int width;
13225 /* We know the value of INDEX is between 0 and RANGE. If we have a
13226 sign-extended subreg, and RANGE does not have the sign bit set, then
13227 we have a value that is valid for both sign and zero extension. In
13228 this case, we get better code if we sign extend. */
13229 if (GET_CODE (index) == SUBREG
13230 && SUBREG_PROMOTED_VAR_P (index)
13231 && SUBREG_PROMOTED_SIGNED_P (index)
13232 && ((width = GET_MODE_PRECISION (as_a <scalar_int_mode> (mode)))
13233 <= HOST_BITS_PER_WIDE_INT)
13234 && ! (UINTVAL (range) & (HOST_WIDE_INT_1U << (width - 1))))
13235 index = convert_to_mode (Pmode, index, 0);
13236 else
13237 index = convert_to_mode (Pmode, index, 1);
13240 /* Don't let a MEM slip through, because then INDEX that comes
13241 out of PIC_CASE_VECTOR_ADDRESS won't be a valid address,
13242 and break_out_memory_refs will go to work on it and mess it up. */
13243 #ifdef PIC_CASE_VECTOR_ADDRESS
13244 if (flag_pic && !REG_P (index))
13245 index = copy_to_mode_reg (Pmode, index);
13246 #endif
13248 /* ??? The only correct use of CASE_VECTOR_MODE is the one inside the
13249 GET_MODE_SIZE, because this indicates how large insns are. The other
13250 uses should all be Pmode, because they are addresses. This code
13251 could fail if addresses and insns are not the same size. */
13252 index = simplify_gen_binary (MULT, Pmode, index,
13253 gen_int_mode (GET_MODE_SIZE (CASE_VECTOR_MODE),
13254 Pmode));
13255 index = simplify_gen_binary (PLUS, Pmode, index,
13256 gen_rtx_LABEL_REF (Pmode, table_label));
13258 #ifdef PIC_CASE_VECTOR_ADDRESS
13259 if (flag_pic)
13260 index = PIC_CASE_VECTOR_ADDRESS (index);
13261 else
13262 #endif
13263 index = memory_address (CASE_VECTOR_MODE, index);
13264 temp = gen_reg_rtx (CASE_VECTOR_MODE);
13265 vector = gen_const_mem (CASE_VECTOR_MODE, index);
13266 convert_move (temp, vector, 0);
13268 emit_jump_insn (targetm.gen_tablejump (temp, table_label));
13270 /* If we are generating PIC code or if the table is PC-relative, the
13271 table and JUMP_INSN must be adjacent, so don't output a BARRIER. */
13272 if (! CASE_VECTOR_PC_RELATIVE && ! flag_pic)
13273 emit_barrier ();
13277 try_tablejump (tree index_type, tree index_expr, tree minval, tree range,
13278 rtx table_label, rtx default_label,
13279 profile_probability default_probability)
13281 rtx index;
13283 if (! targetm.have_tablejump ())
13284 return 0;
13286 index_expr = fold_build2 (MINUS_EXPR, index_type,
13287 fold_convert (index_type, index_expr),
13288 fold_convert (index_type, minval));
13289 index = expand_normal (index_expr);
13290 do_pending_stack_adjust ();
13292 do_tablejump (index, TYPE_MODE (index_type),
13293 convert_modes (TYPE_MODE (index_type),
13294 TYPE_MODE (TREE_TYPE (range)),
13295 expand_normal (range),
13296 TYPE_UNSIGNED (TREE_TYPE (range))),
13297 table_label, default_label, default_probability);
13298 return 1;
13301 /* Return a CONST_VECTOR rtx representing vector mask for
13302 a VECTOR_CST of booleans. */
13303 static rtx
13304 const_vector_mask_from_tree (tree exp)
13306 machine_mode mode = TYPE_MODE (TREE_TYPE (exp));
13307 machine_mode inner = GET_MODE_INNER (mode);
13309 rtx_vector_builder builder (mode, VECTOR_CST_NPATTERNS (exp),
13310 VECTOR_CST_NELTS_PER_PATTERN (exp));
13311 unsigned int count = builder.encoded_nelts ();
13312 for (unsigned int i = 0; i < count; ++i)
13314 tree elt = VECTOR_CST_ELT (exp, i);
13315 gcc_assert (TREE_CODE (elt) == INTEGER_CST);
13316 if (integer_zerop (elt))
13317 builder.quick_push (CONST0_RTX (inner));
13318 else if (integer_onep (elt)
13319 || integer_minus_onep (elt))
13320 builder.quick_push (CONSTM1_RTX (inner));
13321 else
13322 gcc_unreachable ();
13324 return builder.build ();
13327 /* Return a CONST_VECTOR rtx for a VECTOR_CST tree. */
13328 static rtx
13329 const_vector_from_tree (tree exp)
13331 machine_mode mode = TYPE_MODE (TREE_TYPE (exp));
13333 if (initializer_zerop (exp))
13334 return CONST0_RTX (mode);
13336 if (VECTOR_BOOLEAN_TYPE_P (TREE_TYPE (exp)))
13337 return const_vector_mask_from_tree (exp);
13339 machine_mode inner = GET_MODE_INNER (mode);
13341 rtx_vector_builder builder (mode, VECTOR_CST_NPATTERNS (exp),
13342 VECTOR_CST_NELTS_PER_PATTERN (exp));
13343 unsigned int count = builder.encoded_nelts ();
13344 for (unsigned int i = 0; i < count; ++i)
13346 tree elt = VECTOR_CST_ELT (exp, i);
13347 if (TREE_CODE (elt) == REAL_CST)
13348 builder.quick_push (const_double_from_real_value (TREE_REAL_CST (elt),
13349 inner));
13350 else if (TREE_CODE (elt) == FIXED_CST)
13351 builder.quick_push (CONST_FIXED_FROM_FIXED_VALUE (TREE_FIXED_CST (elt),
13352 inner));
13353 else
13354 builder.quick_push (immed_wide_int_const (wi::to_poly_wide (elt),
13355 inner));
13357 return builder.build ();
13360 /* Build a decl for a personality function given a language prefix. */
13362 tree
13363 build_personality_function (const char *lang)
13365 const char *unwind_and_version;
13366 tree decl, type;
13367 char *name;
13369 switch (targetm_common.except_unwind_info (&global_options))
13371 case UI_NONE:
13372 return NULL;
13373 case UI_SJLJ:
13374 unwind_and_version = "_sj0";
13375 break;
13376 case UI_DWARF2:
13377 case UI_TARGET:
13378 unwind_and_version = "_v0";
13379 break;
13380 case UI_SEH:
13381 unwind_and_version = "_seh0";
13382 break;
13383 default:
13384 gcc_unreachable ();
13387 name = ACONCAT (("__", lang, "_personality", unwind_and_version, NULL));
13389 type = build_function_type_list (unsigned_type_node,
13390 integer_type_node, integer_type_node,
13391 long_long_unsigned_type_node,
13392 ptr_type_node, ptr_type_node, NULL_TREE);
13393 decl = build_decl (UNKNOWN_LOCATION, FUNCTION_DECL,
13394 get_identifier (name), type);
13395 DECL_ARTIFICIAL (decl) = 1;
13396 DECL_EXTERNAL (decl) = 1;
13397 TREE_PUBLIC (decl) = 1;
13399 /* Zap the nonsensical SYMBOL_REF_DECL for this. What we're left with
13400 are the flags assigned by targetm.encode_section_info. */
13401 SET_SYMBOL_REF_DECL (XEXP (DECL_RTL (decl), 0), NULL);
13403 return decl;
13406 /* Extracts the personality function of DECL and returns the corresponding
13407 libfunc. */
13410 get_personality_function (tree decl)
13412 tree personality = DECL_FUNCTION_PERSONALITY (decl);
13413 enum eh_personality_kind pk;
13415 pk = function_needs_eh_personality (DECL_STRUCT_FUNCTION (decl));
13416 if (pk == eh_personality_none)
13417 return NULL;
13419 if (!personality
13420 && pk == eh_personality_any)
13421 personality = lang_hooks.eh_personality ();
13423 if (pk == eh_personality_lang)
13424 gcc_assert (personality != NULL_TREE);
13426 return XEXP (DECL_RTL (personality), 0);
13429 /* Returns a tree for the size of EXP in bytes. */
13431 static tree
13432 tree_expr_size (const_tree exp)
13434 if (DECL_P (exp)
13435 && DECL_SIZE_UNIT (exp) != 0)
13436 return DECL_SIZE_UNIT (exp);
13437 else
13438 return size_in_bytes (TREE_TYPE (exp));
13441 /* Return an rtx for the size in bytes of the value of EXP. */
13444 expr_size (tree exp)
13446 tree size;
13448 if (TREE_CODE (exp) == WITH_SIZE_EXPR)
13449 size = TREE_OPERAND (exp, 1);
13450 else
13452 size = tree_expr_size (exp);
13453 gcc_assert (size);
13454 gcc_assert (size == SUBSTITUTE_PLACEHOLDER_IN_EXPR (size, exp));
13457 return expand_expr (size, NULL_RTX, TYPE_MODE (sizetype), EXPAND_NORMAL);
13460 /* Return a wide integer for the size in bytes of the value of EXP, or -1
13461 if the size can vary or is larger than an integer. */
13463 HOST_WIDE_INT
13464 int_expr_size (const_tree exp)
13466 tree size;
13468 if (TREE_CODE (exp) == WITH_SIZE_EXPR)
13469 size = TREE_OPERAND (exp, 1);
13470 else
13472 size = tree_expr_size (exp);
13473 gcc_assert (size);
13476 if (size == 0 || !tree_fits_shwi_p (size))
13477 return -1;
13479 return tree_to_shwi (size);