* Makefile.in (final.o): Depend on target.h.
[official-gcc.git] / gcc / config / m68k / m68k.h
blob68017af17dedfda1c9160497a1b5c0ac785d7111
1 /* Definitions of target machine for GNU compiler.
2 Sun 68000/68020 version.
3 Copyright (C) 1987, 1988, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
4 2000, 2001 Free Software Foundation, Inc.
6 This file is part of GNU CC.
8 GNU CC is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2, or (at your option)
11 any later version.
13 GNU CC is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
18 You should have received a copy of the GNU General Public License
19 along with GNU CC; see the file COPYING. If not, write to
20 the Free Software Foundation, 59 Temple Place - Suite 330,
21 Boston, MA 02111-1307, USA. */
24 /* Note that some other tm.h files include this one and then override
25 many of the definitions that relate to assembler syntax. */
28 /* Names to predefine in the preprocessor for this target machine. */
30 /* See sun3.h, sun2.h, isi.h for different CPP_PREDEFINES. */
32 /* Print subsidiary information on the compiler version in use. */
33 #ifdef MOTOROLA
34 #define TARGET_VERSION fprintf (stderr, " (68k, Motorola syntax)");
35 #else
36 #define TARGET_VERSION fprintf (stderr, " (68k, MIT syntax)");
37 #endif
39 /* Define SUPPORT_SUN_FPA to include support for generating code for
40 the Sun Floating Point Accelerator, an optional product for Sun 3
41 machines. By default, it is not defined. Avoid defining it unless
42 you need to output code for the Sun3+FPA architecture, as it has the
43 effect of slowing down the register set operations in hard-reg-set.h
44 (total number of registers will exceed number of bits in a long,
45 if defined, causing the set operations to expand to loops).
46 SUPPORT_SUN_FPA is typically defined in sun3.h. */
48 /* Run-time compilation parameters selecting different hardware subsets. */
50 extern int target_flags;
52 /* Macros used in the machine description to test the flags. */
54 /* Compile for a 68020 (not a 68000 or 68010). */
55 #define MASK_68020 1
56 #define TARGET_68020 (target_flags & MASK_68020)
58 /* Compile 68881 insns for floating point (not library calls). */
59 #define MASK_68881 2
60 #define TARGET_68881 (target_flags & MASK_68881)
62 /* Compile using 68020 bitfield insns. */
63 #define MASK_BITFIELD 4
64 #define TARGET_BITFIELD (target_flags & MASK_BITFIELD)
66 /* Compile using rtd insn calling sequence.
67 This will not work unless you use prototypes at least
68 for all functions that can take varying numbers of args. */
69 #define MASK_RTD 8
70 #define TARGET_RTD (target_flags & MASK_RTD)
72 /* Compile passing first two args in regs 0 and 1.
73 This exists only to test compiler features that will
74 be needed for RISC chips. It is not usable
75 and is not intended to be usable on this cpu. */
76 #define MASK_REGPARM 16
77 #define TARGET_REGPARM (target_flags & MASK_REGPARM)
79 /* Compile with 16-bit `int'. */
80 #define MASK_SHORT 32
81 #define TARGET_SHORT (target_flags & MASK_SHORT)
83 /* Compile with special insns for Sun FPA. */
84 #define MASK_FPA 64
85 #define TARGET_FPA (target_flags & MASK_FPA)
87 /* Compile (actually, link) for Sun SKY board. */
88 #define MASK_SKY 128
89 #define TARGET_SKY (target_flags & MASK_SKY)
91 /* Optimize for 68040, but still allow execution on 68020
92 (-m68020-40 or -m68040).
93 The 68040 will execute all 68030 and 68881/2 instructions, but some
94 of them must be emulated in software by the OS. When TARGET_68040 is
95 turned on, these instructions won't be used. This code will still
96 run on a 68030 and 68881/2. */
97 #define MASK_68040 256
98 #define TARGET_68040 (target_flags & MASK_68040)
100 /* Use the 68040-only fp instructions (-m68040 or -m68060). */
101 #define MASK_68040_ONLY 512
102 #define TARGET_68040_ONLY (target_flags & MASK_68040_ONLY)
104 /* Optimize for 68060, but still allow execution on 68020
105 (-m68020-60 or -m68060).
106 The 68060 will execute all 68030 and 68881/2 instructions, but some
107 of them must be emulated in software by the OS. When TARGET_68060 is
108 turned on, these instructions won't be used. This code will still
109 run on a 68030 and 68881/2. */
110 #define MASK_68060 1024
111 #define TARGET_68060 (target_flags & MASK_68060)
113 /* Compile for mcf5200 */
114 #define MASK_5200 2048
115 #define TARGET_5200 (target_flags & MASK_5200)
117 /* Align ints to a word boundary. This breaks compatibility with the
118 published ABI's for structures containing ints, but produces faster
119 code on cpus with 32 bit busses (020, 030, 040, 060, CPU32+, coldfire).
120 It's required for coldfire cpus without a misalignment module. */
121 #define MASK_ALIGN_INT 4096
122 #define TARGET_ALIGN_INT (target_flags & MASK_ALIGN_INT)
124 /* Compile for a CPU32 */
125 /* A 68020 without bitfields is a good heuristic for a CPU32 */
126 #define TARGET_CPU32 (TARGET_68020 && !TARGET_BITFIELD)
128 /* Use PC-relative addressing modes (without using a global offset table).
129 The m68000 supports 16-bit PC-relative addressing.
130 The m68020 supports 32-bit PC-relative addressing
131 (using outer displacements).
133 Under this model, all SYMBOL_REFs (and CONSTs) and LABEL_REFs are
134 treated as all containing an implicit PC-relative component, and hence
135 cannot be used directly as addresses for memory writes. See the comments
136 in m68k.c for more information. */
137 #define MASK_PCREL 8192
138 #define TARGET_PCREL (target_flags & MASK_PCREL)
140 /* Relax strict alignment. */
141 #define MASK_NO_STRICT_ALIGNMENT 16384
142 #define TARGET_STRICT_ALIGNMENT (~target_flags & MASK_NO_STRICT_ALIGNMENT)
144 /* Macro to define tables used to set the flags.
145 This is a list in braces of pairs in braces,
146 each pair being { "NAME", VALUE }
147 where VALUE is the bits to set or minus the bits to clear.
148 An empty string NAME is used to identify the default VALUE. */
150 #define TARGET_SWITCHES \
151 { { "68020", - (MASK_5200|MASK_68060|MASK_68040|MASK_68040_ONLY)}, \
152 { "c68020", - (MASK_5200|MASK_68060|MASK_68040|MASK_68040_ONLY)}, \
153 { "68020", (MASK_68020|MASK_BITFIELD)}, \
154 { "c68020", (MASK_68020|MASK_BITFIELD)}, \
155 { "68000", - (MASK_5200|MASK_68060|MASK_68040|MASK_68040_ONLY \
156 |MASK_68020|MASK_BITFIELD|MASK_68881)}, \
157 { "c68000", - (MASK_5200|MASK_68060|MASK_68040|MASK_68040_ONLY \
158 |MASK_68020|MASK_BITFIELD|MASK_68881)}, \
159 { "bitfield", MASK_BITFIELD}, \
160 { "nobitfield", - MASK_BITFIELD}, \
161 { "rtd", MASK_RTD}, \
162 { "nortd", - MASK_RTD}, \
163 { "short", MASK_SHORT}, \
164 { "noshort", - MASK_SHORT}, \
165 { "fpa", -(MASK_SKY|MASK_68040_ONLY|MASK_68881)}, \
166 { "fpa", MASK_FPA}, \
167 { "nofpa", - MASK_FPA}, \
168 { "sky", -(MASK_FPA|MASK_68040_ONLY|MASK_68881)}, \
169 { "sky", MASK_SKY}, \
170 { "nosky", - MASK_SKY}, \
171 { "68881", - (MASK_FPA|MASK_SKY)}, \
172 { "68881", MASK_68881}, \
173 { "soft-float", - (MASK_FPA|MASK_SKY|MASK_68040_ONLY|MASK_68881)}, \
174 { "68020-40", -(MASK_5200|MASK_68060|MASK_68040_ONLY)}, \
175 { "68020-40", (MASK_BITFIELD|MASK_68881|MASK_68020|MASK_68040)}, \
176 { "68020-60", -(MASK_5200|MASK_68040_ONLY)}, \
177 { "68020-60", (MASK_BITFIELD|MASK_68881|MASK_68020|MASK_68040 \
178 |MASK_68060)}, \
179 { "68030", - (MASK_5200|MASK_68060|MASK_68040|MASK_68040_ONLY)}, \
180 { "68030", (MASK_68020|MASK_BITFIELD)}, \
181 { "68040", - (MASK_5200|MASK_68060)}, \
182 { "68040", (MASK_68020|MASK_68881|MASK_BITFIELD \
183 |MASK_68040_ONLY|MASK_68040)}, \
184 { "68060", - (MASK_5200|MASK_68040)}, \
185 { "68060", (MASK_68020|MASK_68881|MASK_BITFIELD \
186 |MASK_68040_ONLY|MASK_68060)}, \
187 { "5200", - (MASK_68060|MASK_68040|MASK_68040_ONLY|MASK_68020 \
188 |MASK_BITFIELD|MASK_68881)}, \
189 { "5200", (MASK_5200)}, \
190 { "68851", 0}, \
191 { "no-68851", 0}, \
192 { "68302", - (MASK_5200|MASK_68060|MASK_68040|MASK_68040_ONLY \
193 |MASK_68020|MASK_BITFIELD|MASK_68881)}, \
194 { "68332", - (MASK_5200|MASK_68060|MASK_68040|MASK_68040_ONLY \
195 |MASK_BITFIELD|MASK_68881)}, \
196 { "68332", MASK_68020}, \
197 { "cpu32", - (MASK_5200|MASK_68060|MASK_68040|MASK_68040_ONLY \
198 |MASK_BITFIELD|MASK_68881)}, \
199 { "cpu32", MASK_68020}, \
200 { "align-int", MASK_ALIGN_INT }, \
201 { "no-align-int", -MASK_ALIGN_INT }, \
202 { "pcrel", MASK_PCREL}, \
203 { "strict-align", -MASK_NO_STRICT_ALIGNMENT}, \
204 { "no-strict-align", MASK_NO_STRICT_ALIGNMENT}, \
205 SUBTARGET_SWITCHES \
206 { "", TARGET_DEFAULT}}
207 /* TARGET_DEFAULT is defined in sun*.h and isi.h, etc. */
209 /* This macro is similar to `TARGET_SWITCHES' but defines names of
210 command options that have values. Its definition is an
211 initializer with a subgrouping for each command option.
213 Each subgrouping contains a string constant, that defines the
214 fixed part of the option name, and the address of a variable. The
215 variable, type `char *', is set to the variable part of the given
216 option if the fixed part matches. The actual option name is made
217 by appending `-m' to the specified name. */
218 #define TARGET_OPTIONS \
219 { { "align-loops=", &m68k_align_loops_string }, \
220 { "align-jumps=", &m68k_align_jumps_string }, \
221 { "align-functions=", &m68k_align_funcs_string }, \
222 SUBTARGET_OPTIONS \
225 /* Sometimes certain combinations of command options do not make
226 sense on a particular target machine. You can define a macro
227 `OVERRIDE_OPTIONS' to take account of this. This macro, if
228 defined, is executed once just after all the command options have
229 been parsed.
231 Don't use this macro to turn on various extra optimizations for
232 `-O'. That is what `OPTIMIZATION_OPTIONS' is for. */
234 #define OVERRIDE_OPTIONS \
236 override_options(); \
237 if (! TARGET_68020 && flag_pic == 2) \
238 error("-fPIC is not currently supported on the 68000 or 68010\n"); \
239 if (TARGET_PCREL && flag_pic == 0) \
240 flag_pic = 1; \
241 SUBTARGET_OVERRIDE_OPTIONS; \
244 /* These are meant to be redefined in the host dependent files */
245 #define SUBTARGET_SWITCHES
246 #define SUBTARGET_OPTIONS
247 #define SUBTARGET_OVERRIDE_OPTIONS
249 /* target machine storage layout */
251 /* Define for XFmode extended real floating point support.
252 This will automatically cause REAL_ARITHMETIC to be defined. */
253 #define LONG_DOUBLE_TYPE_SIZE 96
255 /* Define if you don't want extended real, but do want to use the
256 software floating point emulator for REAL_ARITHMETIC and
257 decimal <-> binary conversion. */
258 /* #define REAL_ARITHMETIC */
260 /* Define this if most significant bit is lowest numbered
261 in instructions that operate on numbered bit-fields.
262 This is true for 68020 insns such as bfins and bfexts.
263 We make it true always by avoiding using the single-bit insns
264 except in special cases with constant bit numbers. */
265 #define BITS_BIG_ENDIAN 1
267 /* Define this if most significant byte of a word is the lowest numbered. */
268 /* That is true on the 68000. */
269 #define BYTES_BIG_ENDIAN 1
271 /* Define this if most significant word of a multiword number is the lowest
272 numbered. */
273 /* For 68000 we can decide arbitrarily
274 since there are no machine instructions for them.
275 So let's be consistent. */
276 #define WORDS_BIG_ENDIAN 1
278 /* number of bits in an addressable storage unit */
279 #define BITS_PER_UNIT 8
281 /* Width in bits of a "word", which is the contents of a machine register.
282 Note that this is not necessarily the width of data type `int';
283 if using 16-bit ints on a 68000, this would still be 32.
284 But on a machine with 16-bit registers, this would be 16. */
285 #define BITS_PER_WORD 32
287 /* Width of a word, in units (bytes). */
288 #define UNITS_PER_WORD 4
290 /* Width in bits of a pointer.
291 See also the macro `Pmode' defined below. */
292 #define POINTER_SIZE 32
294 /* Allocation boundary (in *bits*) for storing arguments in argument list. */
295 #define PARM_BOUNDARY (TARGET_SHORT ? 16 : 32)
297 /* Boundary (in *bits*) on which stack pointer should be aligned. */
298 #define STACK_BOUNDARY 16
300 /* Allocation boundary (in *bits*) for the code of a function. */
301 #define FUNCTION_BOUNDARY (1 << (m68k_align_funcs + 3))
303 /* Alignment of field after `int : 0' in a structure. */
304 #define EMPTY_FIELD_BOUNDARY 16
306 /* No data type wants to be aligned rounder than this.
307 Most published ABIs say that ints should be aligned on 16 bit
308 boundaries, but cpus with 32 bit busses get better performance
309 aligned on 32 bit boundaries. Coldfires without a misalignment
310 module require 32 bit alignment. */
311 #define BIGGEST_ALIGNMENT (TARGET_ALIGN_INT ? 32 : 16)
313 /* Set this nonzero if move instructions will actually fail to work
314 when given unaligned data. */
315 #define STRICT_ALIGNMENT (TARGET_STRICT_ALIGNMENT)
317 /* Maximum power of 2 that code can be aligned to. */
318 #define MAX_CODE_ALIGN 2 /* 4 byte alignment */
320 /* Align loop starts for optimal branching. */
321 #define LOOP_ALIGN(LABEL) (m68k_align_loops)
323 /* This is how to align an instruction for optimal branching. */
324 #define LABEL_ALIGN_AFTER_BARRIER(LABEL) (m68k_align_jumps)
326 #define SELECT_RTX_SECTION(MODE, X) \
328 if (!flag_pic) \
329 readonly_data_section(); \
330 else if (LEGITIMATE_PIC_OPERAND_P (X)) \
331 readonly_data_section(); \
332 else \
333 data_section(); \
336 /* Define number of bits in most basic integer type.
337 (If undefined, default is BITS_PER_WORD). */
339 #define INT_TYPE_SIZE (TARGET_SHORT ? 16 : 32)
341 /* Define these to avoid dependence on meaning of `int'. */
343 #define WCHAR_TYPE "long int"
344 #define WCHAR_TYPE_SIZE 32
346 /* Standard register usage. */
348 /* Number of actual hardware registers.
349 The hardware registers are assigned numbers for the compiler
350 from 0 to just below FIRST_PSEUDO_REGISTER.
351 All registers that the compiler knows about must be given numbers,
352 even those that are not normally considered general registers.
353 For the 68000, we give the data registers numbers 0-7,
354 the address registers numbers 010-017,
355 and the 68881 floating point registers numbers 020-027. */
356 #ifndef SUPPORT_SUN_FPA
357 #define FIRST_PSEUDO_REGISTER 24
358 #else
359 #define FIRST_PSEUDO_REGISTER 56
360 #endif
362 /* This defines the register which is used to hold the offset table for PIC. */
363 #define PIC_OFFSET_TABLE_REGNUM 13
365 #ifndef SUPPORT_SUN_FPA
367 /* 1 for registers that have pervasive standard uses
368 and are not available for the register allocator.
369 On the 68000, only the stack pointer is such. */
371 #define FIXED_REGISTERS \
372 {/* Data registers. */ \
373 0, 0, 0, 0, 0, 0, 0, 0, \
375 /* Address registers. */ \
376 0, 0, 0, 0, 0, 0, 0, 1, \
378 /* Floating point registers \
379 (if available). */ \
380 0, 0, 0, 0, 0, 0, 0, 0 }
382 /* 1 for registers not available across function calls.
383 These must include the FIXED_REGISTERS and also any
384 registers that can be used without being saved.
385 The latter must include the registers where values are returned
386 and the register where structure-value addresses are passed.
387 Aside from that, you can include as many other registers as you like. */
388 #define CALL_USED_REGISTERS \
389 {1, 1, 0, 0, 0, 0, 0, 0, \
390 1, 1, 0, 0, 0, 0, 0, 1, \
391 1, 1, 0, 0, 0, 0, 0, 0 }
393 #else /* SUPPORT_SUN_FPA */
395 /* 1 for registers that have pervasive standard uses
396 and are not available for the register allocator.
397 On the 68000, only the stack pointer is such. */
399 /* fpa0 is also reserved so that it can be used to move data back and
400 forth between high fpa regs and everything else. */
402 #define FIXED_REGISTERS \
403 {/* Data registers. */ \
404 0, 0, 0, 0, 0, 0, 0, 0, \
406 /* Address registers. */ \
407 0, 0, 0, 0, 0, 0, 0, 1, \
409 /* Floating point registers \
410 (if available). */ \
411 0, 0, 0, 0, 0, 0, 0, 0, \
413 /* Sun3 FPA registers. */ \
414 1, 0, 0, 0, 0, 0, 0, 0, \
415 0, 0, 0, 0, 0, 0, 0, 0, \
416 0, 0, 0, 0, 0, 0, 0, 0, \
417 0, 0, 0, 0, 0, 0, 0, 0 }
419 /* 1 for registers not available across function calls.
420 These must include the FIXED_REGISTERS and also any
421 registers that can be used without being saved.
422 The latter must include the registers where values are returned
423 and the register where structure-value addresses are passed.
424 Aside from that, you can include as many other registers as you like. */
425 #define CALL_USED_REGISTERS \
426 {1, 1, 0, 0, 0, 0, 0, 0, \
427 1, 1, 0, 0, 0, 0, 0, 1, \
428 1, 1, 0, 0, 0, 0, 0, 0, \
429 /* FPA registers. */ \
430 1, 1, 1, 1, 0, 0, 0, 0, \
431 0, 0, 0, 0, 0, 0, 0, 0, \
432 0, 0, 0, 0, 0, 0, 0, 0, \
433 0, 0, 0, 0, 0, 0, 0, 0 }
435 #endif /* defined SUPPORT_SUN_FPA */
438 /* Make sure everything's fine if we *don't* have a given processor.
439 This assumes that putting a register in fixed_regs will keep the
440 compiler's mitts completely off it. We don't bother to zero it out
441 of register classes. */
443 #ifdef SUPPORT_SUN_FPA
445 #define CONDITIONAL_REGISTER_USAGE \
447 int i; \
448 HARD_REG_SET x; \
449 if (! TARGET_FPA) \
451 COPY_HARD_REG_SET (x, reg_class_contents[(int)FPA_REGS]); \
452 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++ ) \
453 if (TEST_HARD_REG_BIT (x, i)) \
454 fixed_regs[i] = call_used_regs[i] = 1; \
456 if (! TARGET_68881) \
458 COPY_HARD_REG_SET (x, reg_class_contents[(int)FP_REGS]); \
459 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++ ) \
460 if (TEST_HARD_REG_BIT (x, i)) \
461 fixed_regs[i] = call_used_regs[i] = 1; \
463 if (flag_pic) \
464 fixed_regs[PIC_OFFSET_TABLE_REGNUM] \
465 = call_used_regs[PIC_OFFSET_TABLE_REGNUM] = 1;\
467 #else
468 #define CONDITIONAL_REGISTER_USAGE \
470 int i; \
471 HARD_REG_SET x; \
472 if (! TARGET_68881) \
474 COPY_HARD_REG_SET (x, reg_class_contents[(int)FP_REGS]); \
475 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++ ) \
476 if (TEST_HARD_REG_BIT (x, i)) \
477 fixed_regs[i] = call_used_regs[i] = 1; \
479 if (flag_pic) \
480 fixed_regs[PIC_OFFSET_TABLE_REGNUM] \
481 = call_used_regs[PIC_OFFSET_TABLE_REGNUM] = 1;\
484 #endif /* defined SUPPORT_SUN_FPA */
486 /* Return number of consecutive hard regs needed starting at reg REGNO
487 to hold something of mode MODE.
488 This is ordinarily the length in words of a value of mode MODE
489 but can be less for certain modes in special long registers.
491 On the 68000, ordinary registers hold 32 bits worth;
492 for the 68881 registers, a single register is always enough for
493 anything that can be stored in them at all. */
494 #define HARD_REGNO_NREGS(REGNO, MODE) \
495 ((REGNO) >= 16 ? GET_MODE_NUNITS (MODE) \
496 : ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD))
498 #ifndef SUPPORT_SUN_FPA
500 /* Value is 1 if hard register REGNO can hold a value of machine-mode MODE.
501 On the 68000, the cpu registers can hold any mode but the 68881 registers
502 can hold only SFmode or DFmode. */
504 #define HARD_REGNO_MODE_OK(REGNO, MODE) \
505 (((REGNO) < 16 \
506 && !((REGNO) < 8 && (REGNO) + GET_MODE_SIZE (MODE) / 4 > 8)) \
507 || ((REGNO) >= 16 && (REGNO) < 24 \
508 && (GET_MODE_CLASS (MODE) == MODE_FLOAT \
509 || GET_MODE_CLASS (MODE) == MODE_COMPLEX_FLOAT) \
510 && GET_MODE_UNIT_SIZE (MODE) <= 12))
512 #else /* defined SUPPORT_SUN_FPA */
514 /* Value is 1 if hard register REGNO can hold a value of machine-mode MODE.
515 On the 68000, the cpu registers can hold any mode but the 68881 registers
516 can hold only SFmode or DFmode. However, the Sun FPA register can
517 (apparently) hold whatever you feel like putting in them.
518 If using the fpa, don't put a double in d7/a0. */
520 /* ??? This is confused. The check to prohibit d7/a0 overlaps should always
521 be enabled regardless of whether TARGET_FPA is specified. It isn't clear
522 what the other d/a register checks are for. Every check using REGNO
523 actually needs to use a range, e.g. 24>=X<56 not <56. There is probably
524 no one using this code anymore.
525 This code used to be used to suppress register usage for the 68881 by
526 saying that the 68881 registers couldn't hold values of any mode if there
527 was no 68881. This was wrong, because reload (etc.) will still try
528 to save and restore call-saved registers during, for instance, non-local
529 goto. */
530 #define HARD_REGNO_MODE_OK(REGNO, MODE) \
531 (((REGNO) < 16 \
532 && !(TARGET_FPA \
533 && GET_MODE_CLASS ((MODE)) != MODE_INT \
534 && GET_MODE_UNIT_SIZE ((MODE)) > 4 \
535 && (REGNO) < 8 && (REGNO) + GET_MODE_SIZE ((MODE)) / 4 > 8 \
536 && (REGNO) % (GET_MODE_UNIT_SIZE ((MODE)) / 4) != 0)) \
537 || ((REGNO) >= 16 && (REGNO) < 24 \
538 ? ((GET_MODE_CLASS (MODE) == MODE_FLOAT \
539 || GET_MODE_CLASS (MODE) == MODE_COMPLEX_FLOAT) \
540 && GET_MODE_UNIT_SIZE (MODE) <= 12) \
541 : ((REGNO) < 56 ? TARGET_FPA && GET_MODE_UNIT_SIZE (MODE) <= 8 : 0)))
543 #endif /* defined SUPPORT_SUN_FPA */
545 /* Value is 1 if it is a good idea to tie two pseudo registers
546 when one has mode MODE1 and one has mode MODE2.
547 If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
548 for any hard reg, then this must be 0 for correct output. */
549 #define MODES_TIEABLE_P(MODE1, MODE2) \
550 (! TARGET_68881 \
551 || ((GET_MODE_CLASS (MODE1) == MODE_FLOAT \
552 || GET_MODE_CLASS (MODE1) == MODE_COMPLEX_FLOAT) \
553 == (GET_MODE_CLASS (MODE2) == MODE_FLOAT \
554 || GET_MODE_CLASS (MODE2) == MODE_COMPLEX_FLOAT)))
556 /* Specify the registers used for certain standard purposes.
557 The values of these macros are register numbers. */
559 /* m68000 pc isn't overloaded on a register. */
560 /* #define PC_REGNUM */
562 /* Register to use for pushing function arguments. */
563 #define STACK_POINTER_REGNUM 15
565 /* Base register for access to local variables of the function. */
566 #define FRAME_POINTER_REGNUM 14
568 /* Value should be nonzero if functions must have frame pointers.
569 Zero means the frame pointer need not be set up (and parms
570 may be accessed via the stack pointer) in functions that seem suitable.
571 This is computed in `reload', in reload1.c. */
572 #define FRAME_POINTER_REQUIRED 0
574 /* Base register for access to arguments of the function. */
575 #define ARG_POINTER_REGNUM 14
577 /* Register in which static-chain is passed to a function. */
578 #define STATIC_CHAIN_REGNUM 8
580 /* Register in which address to store a structure value
581 is passed to a function. */
582 #define STRUCT_VALUE_REGNUM 9
584 /* Define the classes of registers for register constraints in the
585 machine description. Also define ranges of constants.
587 One of the classes must always be named ALL_REGS and include all hard regs.
588 If there is more than one class, another class must be named NO_REGS
589 and contain no registers.
591 The name GENERAL_REGS must be the name of a class (or an alias for
592 another name such as ALL_REGS). This is the class of registers
593 that is allowed by "g" or "r" in a register constraint.
594 Also, registers outside this class are allocated only when
595 instructions express preferences for them.
597 The classes must be numbered in nondecreasing order; that is,
598 a larger-numbered class must never be contained completely
599 in a smaller-numbered class.
601 For any two classes, it is very desirable that there be another
602 class that represents their union. */
604 /* The 68000 has three kinds of registers, so eight classes would be
605 a complete set. One of them is not needed. */
607 #ifndef SUPPORT_SUN_FPA
609 enum reg_class {
610 NO_REGS, DATA_REGS,
611 ADDR_REGS, FP_REGS,
612 GENERAL_REGS, DATA_OR_FP_REGS,
613 ADDR_OR_FP_REGS, ALL_REGS,
614 LIM_REG_CLASSES };
616 #define N_REG_CLASSES (int) LIM_REG_CLASSES
618 /* Give names of register classes as strings for dump file. */
620 #define REG_CLASS_NAMES \
621 { "NO_REGS", "DATA_REGS", \
622 "ADDR_REGS", "FP_REGS", \
623 "GENERAL_REGS", "DATA_OR_FP_REGS", \
624 "ADDR_OR_FP_REGS", "ALL_REGS" }
626 /* Define which registers fit in which classes.
627 This is an initializer for a vector of HARD_REG_SET
628 of length N_REG_CLASSES. */
630 #define REG_CLASS_CONTENTS \
632 {0x00000000}, /* NO_REGS */ \
633 {0x000000ff}, /* DATA_REGS */ \
634 {0x0000ff00}, /* ADDR_REGS */ \
635 {0x00ff0000}, /* FP_REGS */ \
636 {0x0000ffff}, /* GENERAL_REGS */ \
637 {0x00ff00ff}, /* DATA_OR_FP_REGS */ \
638 {0x00ffff00}, /* ADDR_OR_FP_REGS */ \
639 {0x00ffffff}, /* ALL_REGS */ \
642 /* The same information, inverted:
643 Return the class number of the smallest class containing
644 reg number REGNO. This could be a conditional expression
645 or could index an array. */
647 #define REGNO_REG_CLASS(REGNO) (((REGNO)>>3)+1)
649 #else /* defined SUPPORT_SUN_FPA */
652 * Notes on final choices:
654 * 1) Didn't feel any need to union-ize LOW_FPA_REGS with anything
655 * else.
656 * 2) Removed all unions that involve address registers with
657 * floating point registers (left in unions of address and data with
658 * floating point).
659 * 3) Defined GENERAL_REGS as ADDR_OR_DATA_REGS.
660 * 4) Defined ALL_REGS as FPA_OR_FP_OR_GENERAL_REGS.
661 * 4) Left in everything else.
663 enum reg_class { NO_REGS, LO_FPA_REGS, FPA_REGS, FP_REGS,
664 FP_OR_FPA_REGS, DATA_REGS, DATA_OR_FPA_REGS, DATA_OR_FP_REGS,
665 DATA_OR_FP_OR_FPA_REGS, ADDR_REGS, GENERAL_REGS,
666 GENERAL_OR_FPA_REGS, GENERAL_OR_FP_REGS, ALL_REGS,
667 LIM_REG_CLASSES };
669 #define N_REG_CLASSES (int) LIM_REG_CLASSES
671 /* Give names of register classes as strings for dump file. */
673 #define REG_CLASS_NAMES \
674 { "NO_REGS", "LO_FPA_REGS", "FPA_REGS", "FP_REGS", \
675 "FP_OR_FPA_REGS", "DATA_REGS", "DATA_OR_FPA_REGS", "DATA_OR_FP_REGS", \
676 "DATA_OR_FP_OR_FPA_REGS", "ADDR_REGS", "GENERAL_REGS", \
677 "GENERAL_OR_FPA_REGS", "GENERAL_OR_FP_REGS", "ALL_REGS" }
679 /* Define which registers fit in which classes.
680 This is an initializer for a vector of HARD_REG_SET
681 of length N_REG_CLASSES. */
683 #define REG_CLASS_CONTENTS \
685 {0, 0}, /* NO_REGS */ \
686 {0xff000000, 0x000000ff}, /* LO_FPA_REGS */ \
687 {0xff000000, 0x00ffffff}, /* FPA_REGS */ \
688 {0x00ff0000, 0x00000000}, /* FP_REGS */ \
689 {0xffff0000, 0x00ffffff}, /* FP_OR_FPA_REGS */ \
690 {0x000000ff, 0x00000000}, /* DATA_REGS */ \
691 {0xff0000ff, 0x00ffffff}, /* DATA_OR_FPA_REGS */ \
692 {0x00ff00ff, 0x00000000}, /* DATA_OR_FP_REGS */ \
693 {0xffff00ff, 0x00ffffff}, /* DATA_OR_FP_OR_FPA_REGS */\
694 {0x0000ff00, 0x00000000}, /* ADDR_REGS */ \
695 {0x0000ffff, 0x00000000}, /* GENERAL_REGS */ \
696 {0xff00ffff, 0x00ffffff}, /* GENERAL_OR_FPA_REGS */\
697 {0x00ffffff, 0x00000000}, /* GENERAL_OR_FP_REGS */\
698 {0xffffffff, 0x00ffffff}, /* ALL_REGS */ \
701 /* The same information, inverted:
702 Return the class number of the smallest class containing
703 reg number REGNO. This could be a conditional expression
704 or could index an array. */
706 extern enum reg_class regno_reg_class[];
707 #define REGNO_REG_CLASS(REGNO) (regno_reg_class[(REGNO)>>3])
709 #endif /* SUPPORT_SUN_FPA */
711 /* The class value for index registers, and the one for base regs. */
713 #define INDEX_REG_CLASS GENERAL_REGS
714 #define BASE_REG_CLASS ADDR_REGS
716 /* Get reg_class from a letter such as appears in the machine description.
717 We do a trick here to modify the effective constraints on the
718 machine description; we zorch the constraint letters that aren't
719 appropriate for a specific target. This allows us to guarantee
720 that a specific kind of register will not be used for a given target
721 without fiddling with the register classes above. */
723 #ifndef SUPPORT_SUN_FPA
725 #define REG_CLASS_FROM_LETTER(C) \
726 ((C) == 'a' ? ADDR_REGS : \
727 ((C) == 'd' ? DATA_REGS : \
728 ((C) == 'f' ? (TARGET_68881 ? FP_REGS : \
729 NO_REGS) : \
730 NO_REGS)))
732 #else /* defined SUPPORT_SUN_FPA */
734 #define REG_CLASS_FROM_LETTER(C) \
735 ((C) == 'a' ? ADDR_REGS : \
736 ((C) == 'd' ? DATA_REGS : \
737 ((C) == 'f' ? (TARGET_68881 ? FP_REGS : \
738 NO_REGS) : \
739 ((C) == 'x' ? (TARGET_FPA ? FPA_REGS : \
740 NO_REGS) : \
741 ((C) == 'y' ? (TARGET_FPA ? LO_FPA_REGS : \
742 NO_REGS) : \
743 NO_REGS)))))
745 #endif /* defined SUPPORT_SUN_FPA */
747 /* The letters I, J, K, L and M in a register constraint string
748 can be used to stand for particular ranges of immediate operands.
749 This macro defines what the ranges are.
750 C is the letter, and VALUE is a constant value.
751 Return 1 if VALUE is in the range specified by C.
753 For the 68000, `I' is used for the range 1 to 8
754 allowed as immediate shift counts and in addq.
755 `J' is used for the range of signed numbers that fit in 16 bits.
756 `K' is for numbers that moveq can't handle.
757 `L' is for range -8 to -1, range of values that can be added with subq.
758 `M' is for numbers that moveq+notb can't handle.
759 'N' is for range 24 to 31, rotatert:SI 8 to 1 expressed as rotate.
760 'O' is for 16 (for rotate using swap).
761 'P' is for range 8 to 15, rotatert:HI 8 to 1 expressed as rotate. */
763 #define CONST_OK_FOR_LETTER_P(VALUE, C) \
764 ((C) == 'I' ? (VALUE) > 0 && (VALUE) <= 8 : \
765 (C) == 'J' ? (VALUE) >= -0x8000 && (VALUE) <= 0x7FFF : \
766 (C) == 'K' ? (VALUE) < -0x80 || (VALUE) >= 0x80 : \
767 (C) == 'L' ? (VALUE) < 0 && (VALUE) >= -8 : \
768 (C) == 'M' ? (VALUE) < -0x100 || (VALUE) >= 0x100 : \
769 (C) == 'N' ? (VALUE) >= 24 && (VALUE) <= 31 : \
770 (C) == 'O' ? (VALUE) == 16 : \
771 (C) == 'P' ? (VALUE) >= 8 && (VALUE) <= 15 : 0)
774 * A small bit of explanation:
775 * "G" defines all of the floating constants that are *NOT* 68881
776 * constants. this is so 68881 constants get reloaded and the
777 * fpmovecr is used. "H" defines *only* the class of constants that
778 * the fpa can use, because these can be gotten at in any fpa
779 * instruction and there is no need to force reloads.
781 #ifndef SUPPORT_SUN_FPA
782 #define CONST_DOUBLE_OK_FOR_LETTER_P(VALUE, C) \
783 ((C) == 'G' ? ! (TARGET_68881 && standard_68881_constant_p (VALUE)) : 0 )
784 #else /* defined SUPPORT_SUN_FPA */
785 #define CONST_DOUBLE_OK_FOR_LETTER_P(VALUE, C) \
786 ((C) == 'G' ? ! (TARGET_68881 && standard_68881_constant_p (VALUE)) : \
787 (C) == 'H' ? (TARGET_FPA && standard_sun_fpa_constant_p (VALUE)) : 0)
788 #endif /* defined SUPPORT_SUN_FPA */
790 /* A C expression that defines the optional machine-dependent constraint
791 letters that can be used to segregate specific types of operands,
792 usually memory references, for the target machine. It should return 1 if
793 VALUE corresponds to the operand type represented by the constraint letter
794 C. If C is not defined as an extra constraint, the value returned should
795 be 0 regardless of VALUE. */
797 /* Letters in the range `Q' through `U' may be defined in a
798 machine-dependent fashion to stand for arbitrary operand types.
799 The machine description macro `EXTRA_CONSTRAINT' is passed the
800 operand as its first argument and the constraint letter as its
801 second operand.
803 `Q' means address register indirect addressing mode.
804 `S' is for operands that satisfy 'm' when -mpcrel is in effect.
805 `T' is for operands that satisfy 's' when -mpcrel is not in effect. */
807 #define EXTRA_CONSTRAINT(OP,CODE) \
808 (((CODE) == 'S') \
809 ? (TARGET_PCREL \
810 && GET_CODE (OP) == MEM \
811 && (GET_CODE (XEXP (OP, 0)) == SYMBOL_REF \
812 || GET_CODE (XEXP (OP, 0)) == LABEL_REF \
813 || GET_CODE (XEXP (OP, 0)) == CONST)) \
815 (((CODE) == 'T') \
816 ? ( !TARGET_PCREL \
817 && (GET_CODE (OP) == SYMBOL_REF \
818 || GET_CODE (OP) == LABEL_REF \
819 || GET_CODE (OP) == CONST)) \
821 (((CODE) == 'Q') \
822 ? (GET_CODE (OP) == MEM \
823 && GET_CODE (XEXP (OP, 0)) == REG) \
825 0)))
827 /* Given an rtx X being reloaded into a reg required to be
828 in class CLASS, return the class of reg to actually use.
829 In general this is just CLASS; but on some machines
830 in some cases it is preferable to use a more restrictive class.
831 On the 68000 series, use a data reg if possible when the
832 value is a constant in the range where moveq could be used
833 and we ensure that QImodes are reloaded into data regs. */
835 #define PREFERRED_RELOAD_CLASS(X,CLASS) \
836 ((GET_CODE (X) == CONST_INT \
837 && (unsigned) (INTVAL (X) + 0x80) < 0x100 \
838 && (CLASS) != ADDR_REGS) \
839 ? DATA_REGS \
840 : (GET_MODE (X) == QImode && (CLASS) != ADDR_REGS) \
841 ? DATA_REGS \
842 : (GET_CODE (X) == CONST_DOUBLE \
843 && GET_MODE_CLASS (GET_MODE (X)) == MODE_FLOAT) \
844 ? (TARGET_68881 && (CLASS == FP_REGS || CLASS == DATA_OR_FP_REGS) \
845 ? FP_REGS : NO_REGS) \
846 : (TARGET_PCREL \
847 && (GET_CODE (X) == SYMBOL_REF || GET_CODE (X) == CONST \
848 || GET_CODE (X) == LABEL_REF)) \
849 ? ADDR_REGS \
850 : (CLASS))
852 /* Force QImode output reloads from subregs to be allocated to data regs,
853 since QImode stores from address regs are not supported. We make the
854 assumption that if the class is not ADDR_REGS, then it must be a superset
855 of DATA_REGS. */
857 #define LIMIT_RELOAD_CLASS(MODE, CLASS) \
858 (((MODE) == QImode && (CLASS) != ADDR_REGS) \
859 ? DATA_REGS \
860 : (CLASS))
862 /* Return the maximum number of consecutive registers
863 needed to represent mode MODE in a register of class CLASS. */
864 /* On the 68000, this is the size of MODE in words,
865 except in the FP regs, where a single reg is always enough. */
866 #ifndef SUPPORT_SUN_FPA
868 #define CLASS_MAX_NREGS(CLASS, MODE) \
869 ((CLASS) == FP_REGS ? 1 \
870 : ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD))
872 /* Moves between fp regs and other regs are two insns. */
873 #define REGISTER_MOVE_COST(MODE, CLASS1, CLASS2) \
874 (((CLASS1) == FP_REGS && (CLASS2) != FP_REGS) \
875 || ((CLASS2) == FP_REGS && (CLASS1) != FP_REGS) \
876 ? 4 : 2)
878 #else /* defined SUPPORT_SUN_FPA */
880 #define CLASS_MAX_NREGS(CLASS, MODE) \
881 ((CLASS) == FP_REGS || (CLASS) == FPA_REGS || (CLASS) == LO_FPA_REGS ? 1 \
882 : ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD))
884 /* Moves between fp regs and other regs are two insns. */
885 /* Likewise for high fpa regs and other regs. */
886 #define REGISTER_MOVE_COST(MODE, CLASS1, CLASS2) \
887 ((((CLASS1) == FP_REGS && (CLASS2) != FP_REGS) \
888 || ((CLASS2) == FP_REGS && (CLASS1) != FP_REGS) \
889 || ((CLASS1) == FPA_REGS && (CLASS2) != FPA_REGS) \
890 || ((CLASS2) == FPA_REGS && (CLASS1) != FPA_REGS)) \
891 ? 4 : 2)
893 #endif /* define SUPPORT_SUN_FPA */
895 /* Stack layout; function entry, exit and calling. */
897 /* Define this if pushing a word on the stack
898 makes the stack pointer a smaller address. */
899 #define STACK_GROWS_DOWNWARD
901 /* Nonzero if we need to generate stack-probe insns.
902 On most systems they are not needed.
903 When they are needed, define this as the stack offset to probe at. */
904 #define NEED_PROBE 0
906 /* Define this if the nominal address of the stack frame
907 is at the high-address end of the local variables;
908 that is, each additional local variable allocated
909 goes at a more negative offset in the frame. */
910 #define FRAME_GROWS_DOWNWARD
912 /* Offset within stack frame to start allocating local variables at.
913 If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
914 first local allocated. Otherwise, it is the offset to the BEGINNING
915 of the first local allocated. */
916 #define STARTING_FRAME_OFFSET 0
918 /* If we generate an insn to push BYTES bytes,
919 this says how many the stack pointer really advances by.
920 On the 68000, sp@- in a byte insn really pushes a word.
921 On the 5200 (coldfire), sp@- in a byte insn pushes just a byte. */
922 #define PUSH_ROUNDING(BYTES) (TARGET_5200 ? BYTES : ((BYTES) + 1) & ~1)
924 /* We want to avoid trying to push bytes. */
925 #define MOVE_BY_PIECES_P(SIZE, ALIGN) \
926 (move_by_pieces_ninsns (SIZE, ALIGN) < MOVE_RATIO \
927 && (((SIZE) >=16 && (ALIGN) >= 16) || (TARGET_5200)))
929 /* Offset of first parameter from the argument pointer register value. */
930 #define FIRST_PARM_OFFSET(FNDECL) 8
932 /* Value is the number of byte of arguments automatically
933 popped when returning from a subroutine call.
934 FUNDECL is the declaration node of the function (as a tree),
935 FUNTYPE is the data type of the function (as a tree),
936 or for a library call it is an identifier node for the subroutine name.
937 SIZE is the number of bytes of arguments passed on the stack.
939 On the 68000, the RTS insn cannot pop anything.
940 On the 68010, the RTD insn may be used to pop them if the number
941 of args is fixed, but if the number is variable then the caller
942 must pop them all. RTD can't be used for library calls now
943 because the library is compiled with the Unix compiler.
944 Use of RTD is a selectable option, since it is incompatible with
945 standard Unix calling sequences. If the option is not selected,
946 the caller must always pop the args. */
948 #define RETURN_POPS_ARGS(FUNDECL,FUNTYPE,SIZE) \
949 ((TARGET_RTD && (!(FUNDECL) || TREE_CODE (FUNDECL) != IDENTIFIER_NODE) \
950 && (TYPE_ARG_TYPES (FUNTYPE) == 0 \
951 || (TREE_VALUE (tree_last (TYPE_ARG_TYPES (FUNTYPE))) \
952 == void_type_node))) \
953 ? (SIZE) : 0)
955 /* Define how to find the value returned by a function.
956 VALTYPE is the data type of the value (as a tree).
957 If the precise function being called is known, FUNC is its FUNCTION_DECL;
958 otherwise, FUNC is 0. */
960 /* On the 68000 the return value is in D0 regardless. */
962 #define FUNCTION_VALUE(VALTYPE, FUNC) \
963 gen_rtx_REG (TYPE_MODE (VALTYPE), 0)
965 /* Define how to find the value returned by a library function
966 assuming the value has mode MODE. */
968 /* On the 68000 the return value is in D0 regardless. */
970 #define LIBCALL_VALUE(MODE) gen_rtx_REG (MODE, 0)
972 /* 1 if N is a possible register number for a function value.
973 On the 68000, d0 is the only register thus used. */
975 #define FUNCTION_VALUE_REGNO_P(N) ((N) == 0)
977 /* Define this to be true when FUNCTION_VALUE_REGNO_P is true for
978 more than one register. */
980 #define NEEDS_UNTYPED_CALL 0
982 /* Define this if PCC uses the nonreentrant convention for returning
983 structure and union values. */
985 #define PCC_STATIC_STRUCT_RETURN
987 /* 1 if N is a possible register number for function argument passing.
988 On the 68000, no registers are used in this way. */
990 #define FUNCTION_ARG_REGNO_P(N) 0
992 /* Define a data type for recording info about an argument list
993 during the scan of that argument list. This data type should
994 hold all necessary information about the function itself
995 and about the args processed so far, enough to enable macros
996 such as FUNCTION_ARG to determine where the next arg should go.
998 On the m68k, this is a single integer, which is a number of bytes
999 of arguments scanned so far. */
1001 #define CUMULATIVE_ARGS int
1003 /* Initialize a variable CUM of type CUMULATIVE_ARGS
1004 for a call to a function whose data type is FNTYPE.
1005 For a library call, FNTYPE is 0.
1007 On the m68k, the offset starts at 0. */
1009 #define INIT_CUMULATIVE_ARGS(CUM,FNTYPE,LIBNAME,INDIRECT) \
1010 ((CUM) = 0)
1012 /* Update the data in CUM to advance over an argument
1013 of mode MODE and data type TYPE.
1014 (TYPE is null for libcalls where that information may not be available.) */
1016 #define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \
1017 ((CUM) += ((MODE) != BLKmode \
1018 ? (GET_MODE_SIZE (MODE) + 3) & ~3 \
1019 : (int_size_in_bytes (TYPE) + 3) & ~3))
1021 /* Define where to put the arguments to a function.
1022 Value is zero to push the argument on the stack,
1023 or a hard register in which to store the argument.
1025 MODE is the argument's machine mode.
1026 TYPE is the data type of the argument (as a tree).
1027 This is null for libcalls where that information may
1028 not be available.
1029 CUM is a variable of type CUMULATIVE_ARGS which gives info about
1030 the preceding args and about the function being called.
1031 NAMED is nonzero if this argument is a named parameter
1032 (otherwise it is an extra parameter matching an ellipsis). */
1034 /* On the 68000 all args are pushed, except if -mregparm is specified
1035 then the first two words of arguments are passed in d0, d1.
1036 *NOTE* -mregparm does not work.
1037 It exists only to test register calling conventions. */
1039 #define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \
1040 ((TARGET_REGPARM && (CUM) < 8) ? gen_rtx_REG ((MODE), (CUM) / 4) : 0)
1042 /* For an arg passed partly in registers and partly in memory,
1043 this is the number of registers used.
1044 For args passed entirely in registers or entirely in memory, zero. */
1046 #define FUNCTION_ARG_PARTIAL_NREGS(CUM, MODE, TYPE, NAMED) \
1047 ((TARGET_REGPARM && (CUM) < 8 \
1048 && 8 < ((CUM) + ((MODE) == BLKmode \
1049 ? int_size_in_bytes (TYPE) \
1050 : GET_MODE_SIZE (MODE)))) \
1051 ? 2 - (CUM) / 4 : 0)
1053 /* Output assembler code to FILE to increment profiler label # LABELNO
1054 for profiling a function entry. */
1056 #define FUNCTION_PROFILER(FILE, LABELNO) \
1057 asm_fprintf (FILE, "\tlea %LLP%d,%Ra0\n\tjsr mcount\n", (LABELNO))
1059 /* Output assembler code to FILE to initialize this source file's
1060 basic block profiling info, if that has not already been done. */
1062 #define FUNCTION_BLOCK_PROFILER(FILE, BLOCK_OR_LABEL) \
1063 do \
1065 switch (profile_block_flag) \
1067 case 2: \
1068 asm_fprintf (FILE, "\tpea %d\n\tpea %LLPBX0\n\tjsr %U__bb_init_trace_func\n\taddql %I8,%Rsp\n", \
1069 (BLOCK_OR_LABEL)); \
1070 break; \
1072 default: \
1073 asm_fprintf (FILE, "\ttstl %LLPBX0\n\tbne %LLPI%d\n\tpea %LLPBX0\n\tjsr %U__bb_init_func\n\taddql %I4,%Rsp\n%LLPI%d:\n", \
1074 (BLOCK_OR_LABEL), (BLOCK_OR_LABEL)); \
1075 break; \
1078 while(0)
1080 /* Output assembler code to FILE to increment the counter for
1081 the BLOCKNO'th basic block in this source file. */
1083 #define BLOCK_PROFILER(FILE, BLOCKNO) \
1084 do \
1086 switch (profile_block_flag) \
1088 case 2: \
1089 asm_fprintf (FILE, "\tmovel %Ra1,%Rsp@-\n\tlea ___bb,%Ra1\n\tmovel %I%d,%Ra1@(0)\n\tmovel %I%LLPBX0,%Ra1@(4)\n\tmovel %Rsp@+,%Ra1\n\tjsr %U__bb_trace_func\n", \
1090 BLOCKNO); \
1091 break; \
1093 default: \
1094 asm_fprintf (FILE, "\taddql %I1,%LLPBX2+%d\n", 4 * BLOCKNO); \
1095 break; \
1098 while(0)
1100 /* Output assembler code to FILE to indicate return from
1101 a function during basic block profiling. */
1103 #define FUNCTION_BLOCK_PROFILER_EXIT(FILE) \
1104 asm_fprintf (FILE, "\tjsr %U__bb_trace_ret\n");
1106 /* Save all registers which may be clobbered by a function call.
1107 MACHINE_STATE_SAVE and MACHINE_STATE_RESTORE are target-code macros,
1108 used in libgcc2.c. They may not refer to TARGET_* macros !!! */
1109 #if defined (__mc68010__) || defined(mc68010) \
1110 || defined(__mc68020__) || defined(mc68020) \
1111 || defined(__mc68030__) || defined(mc68030) \
1112 || defined(__mc68040__) || defined(mc68040) \
1113 || defined(__mcpu32__) || defined(mcpu32)
1114 #define MACHINE_STATE_m68010_up
1115 #endif
1117 #ifdef MOTOROLA
1118 #if defined(__mcf5200__)
1119 #define MACHINE_STATE_SAVE(id) \
1121 asm ("sub.l 20,%sp"); \
1122 asm ("movm.l &0x0303,4(%sp)"); \
1123 asm ("move.w %ccr,%d0"); \
1124 asm ("movm.l &0x0001,(%sp)"); \
1126 #else /* !__mcf5200__ */
1127 #if defined(MACHINE_STATE_m68010_up)
1128 #ifdef __HPUX_ASM__
1129 /* HPUX assembler does not accept %ccr. */
1130 #define MACHINE_STATE_SAVE(id) \
1132 asm ("move.w %cc,-(%sp)"); \
1133 asm ("movm.l &0xc0c0,-(%sp)"); \
1135 #else /* ! __HPUX_ASM__ */
1136 #define MACHINE_STATE_SAVE(id) \
1138 asm ("move.w %ccr,-(%sp)"); \
1139 asm ("movm.l &0xc0c0,-(%sp)"); \
1141 #endif /* __HPUX_ASM__ */
1142 #else /* !MACHINE_STATE_m68010_up */
1143 #define MACHINE_STATE_SAVE(id) \
1145 asm ("move.w %sr,-(%sp)"); \
1146 asm ("movm.l &0xc0c0,-(%sp)"); \
1148 #endif /* MACHINE_STATE_m68010_up */
1149 #endif /* __mcf5200__ */
1150 #else /* !MOTOROLA */
1151 #if defined(__mcf5200__)
1152 #define MACHINE_STATE_SAVE(id) \
1154 asm ("subl %#20,%/sp" : ); \
1155 asm ("movml %/d0/%/d1/%/a0/%/a1,%/sp@(4)" : ); \
1156 asm ("movew %/cc,%/d0" : ); \
1157 asm ("movml %/d0,%/sp@" : ); \
1159 #else /* !__mcf5200__ */
1160 #if defined(MACHINE_STATE_m68010_up)
1161 #define MACHINE_STATE_SAVE(id) \
1163 asm ("movew %/cc,%/sp@-" : ); \
1164 asm ("moveml %/d0/%/d1/%/a0/%/a1,%/sp@-" : ); \
1166 #else /* !MACHINE_STATE_m68010_up */
1167 #define MACHINE_STATE_SAVE(id) \
1169 asm ("movew %/sr,%/sp@-" : ); \
1170 asm ("moveml %/d0/%/d1/%/a0/%/a1,%/sp@-" : ); \
1172 #endif /* MACHINE_STATE_m68010_up */
1173 #endif /* __mcf5200__ */
1174 #endif /* MOTOROLA */
1176 /* Restore all registers saved by MACHINE_STATE_SAVE. */
1178 #ifdef MOTOROLA
1179 #if defined(__mcf5200__)
1180 #define MACHINE_STATE_RESTORE(id) \
1182 asm ("movm.l (%sp),&0x0001"); \
1183 asm ("move.w %d0,%ccr"); \
1184 asm ("movm.l 4(%sp),&0x0303"); \
1185 asm ("add.l 20,%sp"); \
1187 #else /* !__mcf5200__ */
1188 #ifdef __HPUX_ASM__
1189 /* HPUX assembler does not accept %ccr. */
1190 #define MACHINE_STATE_RESTORE(id) \
1192 asm ("movm.l (%sp)+,&0x0303"); \
1193 asm ("move.w (%sp)+,%cc"); \
1195 #else /* ! __HPUX_ASM__ */
1196 #define MACHINE_STATE_RESTORE(id) \
1198 asm ("movm.l (%sp)+,&0x0303"); \
1199 asm ("move.w (%sp)+,%ccr"); \
1201 #endif /* __HPUX_ASM__ */
1202 #endif /* __mcf5200__ */
1203 #else /* !MOTOROLA */
1204 #if defined(__mcf5200__)
1205 #define MACHINE_STATE_RESTORE(id) \
1207 asm ("movml %/sp@,%/d0" : ); \
1208 asm ("movew %/d0,%/cc" : ); \
1209 asm ("movml %/sp@(4),%/d0/%/d1/%/a0/%/a1" : ); \
1210 asm ("addl %#20,%/sp" : ); \
1212 #else /* !__mcf5200__ */
1213 #define MACHINE_STATE_RESTORE(id) \
1215 asm ("moveml %/sp@+,%/d0/%/d1/%/a0/%/a1" : ); \
1216 asm ("movew %/sp@+,%/cc" : ); \
1218 #endif /* __mcf5200__ */
1219 #endif /* MOTOROLA */
1221 /* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
1222 the stack pointer does not matter. The value is tested only in
1223 functions that have frame pointers.
1224 No definition is equivalent to always zero. */
1226 #define EXIT_IGNORE_STACK 1
1228 /* This is a hook for other tm files to change. */
1229 /* #define FUNCTION_EXTRA_EPILOGUE(FILE, SIZE) */
1231 /* Determine if the epilogue should be output as RTL.
1232 You should override this if you define FUNCTION_EXTRA_EPILOGUE. */
1233 #define USE_RETURN_INSN use_return_insn ()
1235 /* Store in the variable DEPTH the initial difference between the
1236 frame pointer reg contents and the stack pointer reg contents,
1237 as of the start of the function body. This depends on the layout
1238 of the fixed parts of the stack frame and on how registers are saved.
1240 On the 68k, if we have a frame, we must add one word to its length
1241 to allow for the place that a6 is stored when we do have a frame pointer.
1242 Otherwise, we would need to compute the offset from the frame pointer
1243 of a local variable as a function of frame_pointer_needed, which
1244 is hard. */
1246 #define INITIAL_FRAME_POINTER_OFFSET(DEPTH) \
1247 { int regno; \
1248 int offset = -4; \
1249 for (regno = 16; regno < FIRST_PSEUDO_REGISTER; regno++) \
1250 if (regs_ever_live[regno] && ! call_used_regs[regno]) \
1251 offset += 12; \
1252 for (regno = 0; regno < 16; regno++) \
1253 if (regs_ever_live[regno] && ! call_used_regs[regno]) \
1254 offset += 4; \
1255 if (flag_pic && current_function_uses_pic_offset_table) \
1256 offset += 4; \
1257 (DEPTH) = (offset + ((get_frame_size () + 3) & -4) \
1258 + (get_frame_size () == 0 ? 0 : 4)); \
1261 /* Output assembler code for a block containing the constant parts
1262 of a trampoline, leaving space for the variable parts. */
1264 /* On the 68k, the trampoline looks like this:
1265 movl #STATIC,a0
1266 jmp FUNCTION
1268 WARNING: Targets that may run on 68040+ cpus must arrange for
1269 the instruction cache to be flushed. Previous incarnations of
1270 the m68k trampoline code attempted to get around this by either
1271 using an out-of-line transfer function or pc-relative data, but
1272 the fact remains that the code to jump to the transfer function
1273 or the code to load the pc-relative data needs to be flushed
1274 just as much as the "variable" portion of the trampoline.
1275 Recognizing that a cache flush is going to be required anyway,
1276 dispense with such notions and build a smaller trampoline. */
1278 /* Since more instructions are required to move a template into
1279 place than to create it on the spot, don't use a template. */
1281 /* Length in units of the trampoline for entering a nested function. */
1283 #define TRAMPOLINE_SIZE 12
1285 /* Alignment required for a trampoline in bits. */
1287 #define TRAMPOLINE_ALIGNMENT 16
1289 /* Targets redefine this to invoke code to either flush the cache,
1290 or enable stack execution (or both). */
1292 #ifndef FINALIZE_TRAMPOLINE
1293 #define FINALIZE_TRAMPOLINE(TRAMP)
1294 #endif
1296 /* Emit RTL insns to initialize the variable parts of a trampoline.
1297 FNADDR is an RTX for the address of the function's pure code.
1298 CXT is an RTX for the static chain value for the function.
1300 We generate a two-instructions program at address TRAMP :
1301 movea.l &CXT,%a0
1302 jmp FNADDR */
1304 #define INITIALIZE_TRAMPOLINE(TRAMP, FNADDR, CXT) \
1306 emit_move_insn (gen_rtx_MEM (HImode, TRAMP), GEN_INT(0x207C)); \
1307 emit_move_insn (gen_rtx_MEM (SImode, plus_constant (TRAMP, 2)), CXT); \
1308 emit_move_insn (gen_rtx_MEM (HImode, plus_constant (TRAMP, 6)), \
1309 GEN_INT(0x4EF9)); \
1310 emit_move_insn (gen_rtx_MEM (SImode, plus_constant (TRAMP, 8)), FNADDR); \
1311 FINALIZE_TRAMPOLINE(TRAMP); \
1314 /* This is the library routine that is used
1315 to transfer control from the trampoline
1316 to the actual nested function.
1317 It is defined for backward compatibility,
1318 for linking with object code that used the old
1319 trampoline definition. */
1321 /* A colon is used with no explicit operands
1322 to cause the template string to be scanned for %-constructs. */
1323 /* The function name __transfer_from_trampoline is not actually used.
1324 The function definition just permits use of "asm with operands"
1325 (though the operand list is empty). */
1326 #define TRANSFER_FROM_TRAMPOLINE \
1327 void \
1328 __transfer_from_trampoline () \
1330 register char *a0 asm ("%a0"); \
1331 asm (GLOBAL_ASM_OP "___trampoline"); \
1332 asm ("___trampoline:"); \
1333 asm volatile ("move%.l %0,%@" : : "m" (a0[22])); \
1334 asm volatile ("move%.l %1,%0" : "=a" (a0) : "m" (a0[18])); \
1335 asm ("rts":); \
1338 /* Addressing modes, and classification of registers for them. */
1340 #define HAVE_POST_INCREMENT 1
1341 /* #define HAVE_POST_DECREMENT 0 */
1343 #define HAVE_PRE_DECREMENT 1
1344 /* #define HAVE_PRE_INCREMENT 0 */
1346 /* Macros to check register numbers against specific register classes. */
1348 /* These assume that REGNO is a hard or pseudo reg number.
1349 They give nonzero only if REGNO is a hard reg of the suitable class
1350 or a pseudo reg currently allocated to a suitable hard reg.
1351 Since they use reg_renumber, they are safe only once reg_renumber
1352 has been allocated, which happens in local-alloc.c. */
1354 #define REGNO_OK_FOR_INDEX_P(REGNO) \
1355 ((REGNO) < 16 || (unsigned) reg_renumber[REGNO] < 16)
1356 #define REGNO_OK_FOR_BASE_P(REGNO) \
1357 (((REGNO) ^ 010) < 8 || (unsigned) (reg_renumber[REGNO] ^ 010) < 8)
1358 #define REGNO_OK_FOR_DATA_P(REGNO) \
1359 ((REGNO) < 8 || (unsigned) reg_renumber[REGNO] < 8)
1360 #define REGNO_OK_FOR_FP_P(REGNO) \
1361 (((REGNO) ^ 020) < 8 || (unsigned) (reg_renumber[REGNO] ^ 020) < 8)
1362 #ifdef SUPPORT_SUN_FPA
1363 #define REGNO_OK_FOR_FPA_P(REGNO) \
1364 (((REGNO) >= 24 && (REGNO) < 56) || (reg_renumber[REGNO] >= 24 && reg_renumber[REGNO] < 56))
1365 #endif
1367 /* Now macros that check whether X is a register and also,
1368 strictly, whether it is in a specified class.
1370 These macros are specific to the 68000, and may be used only
1371 in code for printing assembler insns and in conditions for
1372 define_optimization. */
1374 /* 1 if X is a data register. */
1376 #define DATA_REG_P(X) (REG_P (X) && REGNO_OK_FOR_DATA_P (REGNO (X)))
1378 /* 1 if X is an fp register. */
1380 #define FP_REG_P(X) (REG_P (X) && REGNO_OK_FOR_FP_P (REGNO (X)))
1382 /* 1 if X is an address register */
1384 #define ADDRESS_REG_P(X) (REG_P (X) && REGNO_OK_FOR_BASE_P (REGNO (X)))
1386 #ifdef SUPPORT_SUN_FPA
1387 /* 1 if X is a register in the Sun FPA. */
1388 #define FPA_REG_P(X) (REG_P (X) && REGNO_OK_FOR_FPA_P (REGNO (X)))
1389 #else
1390 /* Answer must be no if we don't have an FPA. */
1391 #define FPA_REG_P(X) 0
1392 #endif
1394 /* Maximum number of registers that can appear in a valid memory address. */
1396 #define MAX_REGS_PER_ADDRESS 2
1398 /* Recognize any constant value that is a valid address. */
1400 #define CONSTANT_ADDRESS_P(X) \
1401 (GET_CODE (X) == LABEL_REF || GET_CODE (X) == SYMBOL_REF \
1402 || GET_CODE (X) == CONST_INT || GET_CODE (X) == CONST \
1403 || GET_CODE (X) == HIGH)
1405 /* Nonzero if the constant value X is a legitimate general operand.
1406 It is given that X satisfies CONSTANT_P or is a CONST_DOUBLE. */
1408 #define LEGITIMATE_CONSTANT_P(X) 1
1410 /* Nonzero if the constant value X is a legitimate general operand
1411 when generating PIC code. It is given that flag_pic is on and
1412 that X satisfies CONSTANT_P or is a CONST_DOUBLE.
1414 PCREL_GENERAL_OPERAND_OK makes reload accept addresses that are
1415 accepted by insn predicates, but which would otherwise fail the
1416 `general_operand' test. */
1418 #ifndef REG_OK_STRICT
1419 #define PCREL_GENERAL_OPERAND_OK 0
1420 #else
1421 #define PCREL_GENERAL_OPERAND_OK (TARGET_PCREL)
1422 #endif
1424 #define LEGITIMATE_PIC_OPERAND_P(X) \
1425 ((! symbolic_operand (X, VOIDmode) \
1426 && ! (GET_CODE (X) == CONST_DOUBLE && CONST_DOUBLE_MEM (X) \
1427 && GET_CODE (CONST_DOUBLE_MEM (X)) == MEM \
1428 && symbolic_operand (XEXP (CONST_DOUBLE_MEM (X), 0), \
1429 VOIDmode))) \
1430 || (GET_CODE (X) == SYMBOL_REF && SYMBOL_REF_FLAG (X)) \
1431 || PCREL_GENERAL_OPERAND_OK)
1433 /* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
1434 and check its validity for a certain class.
1435 We have two alternate definitions for each of them.
1436 The usual definition accepts all pseudo regs; the other rejects
1437 them unless they have been allocated suitable hard regs.
1438 The symbol REG_OK_STRICT causes the latter definition to be used.
1440 Most source files want to accept pseudo regs in the hope that
1441 they will get allocated to the class that the insn wants them to be in.
1442 Source files for reload pass need to be strict.
1443 After reload, it makes no difference, since pseudo regs have
1444 been eliminated by then. */
1446 #ifndef REG_OK_STRICT
1448 /* Nonzero if X is a hard reg that can be used as an index
1449 or if it is a pseudo reg. */
1450 #define REG_OK_FOR_INDEX_P(X) ((REGNO (X) ^ 020) >= 8)
1451 /* Nonzero if X is a hard reg that can be used as a base reg
1452 or if it is a pseudo reg. */
1453 #define REG_OK_FOR_BASE_P(X) ((REGNO (X) & ~027) != 0)
1455 #else
1457 /* Nonzero if X is a hard reg that can be used as an index. */
1458 #define REG_OK_FOR_INDEX_P(X) REGNO_OK_FOR_INDEX_P (REGNO (X))
1459 /* Nonzero if X is a hard reg that can be used as a base reg. */
1460 #define REG_OK_FOR_BASE_P(X) REGNO_OK_FOR_BASE_P (REGNO (X))
1462 #endif
1464 /* GO_IF_LEGITIMATE_ADDRESS recognizes an RTL expression
1465 that is a valid memory address for an instruction.
1466 The MODE argument is the machine mode for the MEM expression
1467 that wants to use this address.
1469 When generating PIC, an address involving a SYMBOL_REF is legitimate
1470 if and only if it is the sum of pic_offset_table_rtx and the SYMBOL_REF.
1471 We use LEGITIMATE_PIC_OPERAND_P to throw out the illegitimate addresses,
1472 and we explicitly check for the sum of pic_offset_table_rtx and a SYMBOL_REF.
1474 Likewise for a LABEL_REF when generating PIC.
1476 The other macros defined here are used only in GO_IF_LEGITIMATE_ADDRESS. */
1478 /* Allow SUBREG everywhere we allow REG. This results in better code. It
1479 also makes function inlining work when inline functions are called with
1480 arguments that are SUBREGs. */
1482 #define LEGITIMATE_BASE_REG_P(X) \
1483 ((GET_CODE (X) == REG && REG_OK_FOR_BASE_P (X)) \
1484 || (GET_CODE (X) == SUBREG \
1485 && GET_CODE (SUBREG_REG (X)) == REG \
1486 && REG_OK_FOR_BASE_P (SUBREG_REG (X))))
1488 #define INDIRECTABLE_1_ADDRESS_P(X) \
1489 ((CONSTANT_ADDRESS_P (X) && (!flag_pic || LEGITIMATE_PIC_OPERAND_P (X))) \
1490 || LEGITIMATE_BASE_REG_P (X) \
1491 || ((GET_CODE (X) == PRE_DEC || GET_CODE (X) == POST_INC) \
1492 && LEGITIMATE_BASE_REG_P (XEXP (X, 0))) \
1493 || (GET_CODE (X) == PLUS \
1494 && LEGITIMATE_BASE_REG_P (XEXP (X, 0)) \
1495 && GET_CODE (XEXP (X, 1)) == CONST_INT \
1496 && (TARGET_68020 \
1497 || ((unsigned) INTVAL (XEXP (X, 1)) + 0x8000) < 0x10000)) \
1498 || (GET_CODE (X) == PLUS && XEXP (X, 0) == pic_offset_table_rtx \
1499 && flag_pic && GET_CODE (XEXP (X, 1)) == SYMBOL_REF) \
1500 || (GET_CODE (X) == PLUS && XEXP (X, 0) == pic_offset_table_rtx \
1501 && flag_pic && GET_CODE (XEXP (X, 1)) == LABEL_REF))
1503 #define GO_IF_NONINDEXED_ADDRESS(X, ADDR) \
1504 { if (INDIRECTABLE_1_ADDRESS_P (X)) goto ADDR; }
1506 /* Only labels on dispatch tables are valid for indexing from. */
1507 #define GO_IF_INDEXABLE_BASE(X, ADDR) \
1508 { rtx temp; \
1509 if (GET_CODE (X) == LABEL_REF \
1510 && (temp = next_nonnote_insn (XEXP (X, 0))) != 0 \
1511 && GET_CODE (temp) == JUMP_INSN \
1512 && (GET_CODE (PATTERN (temp)) == ADDR_VEC \
1513 || GET_CODE (PATTERN (temp)) == ADDR_DIFF_VEC)) \
1514 goto ADDR; \
1515 if (LEGITIMATE_BASE_REG_P (X)) goto ADDR; }
1517 #define GO_IF_INDEXING(X, ADDR) \
1518 { if (GET_CODE (X) == PLUS && LEGITIMATE_INDEX_P (XEXP (X, 0))) \
1519 { GO_IF_INDEXABLE_BASE (XEXP (X, 1), ADDR); } \
1520 if (GET_CODE (X) == PLUS && LEGITIMATE_INDEX_P (XEXP (X, 1))) \
1521 { GO_IF_INDEXABLE_BASE (XEXP (X, 0), ADDR); } }
1523 #define GO_IF_INDEXED_ADDRESS(X, ADDR) \
1524 { GO_IF_INDEXING (X, ADDR); \
1525 if (GET_CODE (X) == PLUS) \
1526 { if (GET_CODE (XEXP (X, 1)) == CONST_INT \
1527 && (TARGET_68020 || (unsigned) INTVAL (XEXP (X, 1)) + 0x80 < 0x100)) \
1528 { rtx go_temp = XEXP (X, 0); GO_IF_INDEXING (go_temp, ADDR); } \
1529 if (GET_CODE (XEXP (X, 0)) == CONST_INT \
1530 && (TARGET_68020 || (unsigned) INTVAL (XEXP (X, 0)) + 0x80 < 0x100)) \
1531 { rtx go_temp = XEXP (X, 1); GO_IF_INDEXING (go_temp, ADDR); } } }
1533 /* coldfire/5200 does not allow HImode index registers. */
1534 #define LEGITIMATE_INDEX_REG_P(X) \
1535 ((GET_CODE (X) == REG && REG_OK_FOR_INDEX_P (X)) \
1536 || (! TARGET_5200 \
1537 && GET_CODE (X) == SIGN_EXTEND \
1538 && GET_CODE (XEXP (X, 0)) == REG \
1539 && GET_MODE (XEXP (X, 0)) == HImode \
1540 && REG_OK_FOR_INDEX_P (XEXP (X, 0))) \
1541 || (GET_CODE (X) == SUBREG \
1542 && GET_CODE (SUBREG_REG (X)) == REG \
1543 && REG_OK_FOR_INDEX_P (SUBREG_REG (X))))
1545 #define LEGITIMATE_INDEX_P(X) \
1546 (LEGITIMATE_INDEX_REG_P (X) \
1547 || ((TARGET_68020 || TARGET_5200) && GET_CODE (X) == MULT \
1548 && LEGITIMATE_INDEX_REG_P (XEXP (X, 0)) \
1549 && GET_CODE (XEXP (X, 1)) == CONST_INT \
1550 && (INTVAL (XEXP (X, 1)) == 2 \
1551 || INTVAL (XEXP (X, 1)) == 4 \
1552 || (INTVAL (XEXP (X, 1)) == 8 && !TARGET_5200))))
1554 /* If pic, we accept INDEX+LABEL, which is what do_tablejump makes. */
1555 #define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \
1556 { GO_IF_NONINDEXED_ADDRESS (X, ADDR); \
1557 GO_IF_INDEXED_ADDRESS (X, ADDR); \
1558 if (flag_pic && MODE == CASE_VECTOR_MODE && GET_CODE (X) == PLUS \
1559 && LEGITIMATE_INDEX_P (XEXP (X, 0)) \
1560 && GET_CODE (XEXP (X, 1)) == LABEL_REF) \
1561 goto ADDR; }
1563 /* Don't call memory_address_noforce for the address to fetch
1564 the switch offset. This address is ok as it stands (see above),
1565 but memory_address_noforce would alter it. */
1566 #define PIC_CASE_VECTOR_ADDRESS(index) index
1568 /* Try machine-dependent ways of modifying an illegitimate address
1569 to be legitimate. If we find one, return the new, valid address.
1570 This macro is used in only one place: `memory_address' in explow.c.
1572 OLDX is the address as it was before break_out_memory_refs was called.
1573 In some cases it is useful to look at this to decide what needs to be done.
1575 MODE and WIN are passed so that this macro can use
1576 GO_IF_LEGITIMATE_ADDRESS.
1578 It is always safe for this macro to do nothing. It exists to recognize
1579 opportunities to optimize the output.
1581 For the 68000, we handle X+REG by loading X into a register R and
1582 using R+REG. R will go in an address reg and indexing will be used.
1583 However, if REG is a broken-out memory address or multiplication,
1584 nothing needs to be done because REG can certainly go in an address reg. */
1586 #define COPY_ONCE(Y) if (!copied) { Y = copy_rtx (Y); copied = ch = 1; }
1587 #define LEGITIMIZE_ADDRESS(X,OLDX,MODE,WIN) \
1588 { register int ch = (X) != (OLDX); \
1589 if (GET_CODE (X) == PLUS) \
1590 { int copied = 0; \
1591 if (GET_CODE (XEXP (X, 0)) == MULT) \
1592 { COPY_ONCE (X); XEXP (X, 0) = force_operand (XEXP (X, 0), 0);} \
1593 if (GET_CODE (XEXP (X, 1)) == MULT) \
1594 { COPY_ONCE (X); XEXP (X, 1) = force_operand (XEXP (X, 1), 0);} \
1595 if (ch && GET_CODE (XEXP (X, 1)) == REG \
1596 && GET_CODE (XEXP (X, 0)) == REG) \
1597 goto WIN; \
1598 if (ch) { GO_IF_LEGITIMATE_ADDRESS (MODE, X, WIN); } \
1599 if (GET_CODE (XEXP (X, 0)) == REG \
1600 || (GET_CODE (XEXP (X, 0)) == SIGN_EXTEND \
1601 && GET_CODE (XEXP (XEXP (X, 0), 0)) == REG \
1602 && GET_MODE (XEXP (XEXP (X, 0), 0)) == HImode)) \
1603 { register rtx temp = gen_reg_rtx (Pmode); \
1604 register rtx val = force_operand (XEXP (X, 1), 0); \
1605 emit_move_insn (temp, val); \
1606 COPY_ONCE (X); \
1607 XEXP (X, 1) = temp; \
1608 goto WIN; } \
1609 else if (GET_CODE (XEXP (X, 1)) == REG \
1610 || (GET_CODE (XEXP (X, 1)) == SIGN_EXTEND \
1611 && GET_CODE (XEXP (XEXP (X, 1), 0)) == REG \
1612 && GET_MODE (XEXP (XEXP (X, 1), 0)) == HImode)) \
1613 { register rtx temp = gen_reg_rtx (Pmode); \
1614 register rtx val = force_operand (XEXP (X, 0), 0); \
1615 emit_move_insn (temp, val); \
1616 COPY_ONCE (X); \
1617 XEXP (X, 0) = temp; \
1618 goto WIN; }}}
1620 /* Go to LABEL if ADDR (a legitimate address expression)
1621 has an effect that depends on the machine mode it is used for.
1622 On the 68000, only predecrement and postincrement address depend thus
1623 (the amount of decrement or increment being the length of the operand). */
1625 #define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR,LABEL) \
1626 if (GET_CODE (ADDR) == POST_INC || GET_CODE (ADDR) == PRE_DEC) goto LABEL
1628 /* Specify the machine mode that this machine uses
1629 for the index in the tablejump instruction. */
1630 #define CASE_VECTOR_MODE HImode
1632 /* Define as C expression which evaluates to nonzero if the tablejump
1633 instruction expects the table to contain offsets from the address of the
1634 table.
1635 Do not define this if the table should contain absolute addresses. */
1636 #define CASE_VECTOR_PC_RELATIVE 1
1638 /* Specify the tree operation to be used to convert reals to integers. */
1639 #define IMPLICIT_FIX_EXPR FIX_ROUND_EXPR
1641 /* This is the kind of divide that is easiest to do in the general case. */
1642 #define EASY_DIV_EXPR TRUNC_DIV_EXPR
1644 /* Define this as 1 if `char' should by default be signed; else as 0. */
1645 #define DEFAULT_SIGNED_CHAR 1
1647 /* Don't cse the address of the function being compiled. */
1648 #define NO_RECURSIVE_FUNCTION_CSE
1650 /* Max number of bytes we can move from memory to memory
1651 in one reasonably fast instruction. */
1652 #define MOVE_MAX 4
1654 /* Define this if zero-extension is slow (more than one real instruction). */
1655 #define SLOW_ZERO_EXTEND
1657 /* Nonzero if access to memory by bytes is slow and undesirable. */
1658 #define SLOW_BYTE_ACCESS 0
1660 /* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
1661 is done just by pretending it is already truncated. */
1662 #define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
1664 /* We assume that the store-condition-codes instructions store 0 for false
1665 and some other value for true. This is the value stored for true. */
1667 #define STORE_FLAG_VALUE (-1)
1669 /* When a prototype says `char' or `short', really pass an `int'. */
1670 #define PROMOTE_PROTOTYPES 1
1672 /* Specify the machine mode that pointers have.
1673 After generation of rtl, the compiler makes no further distinction
1674 between pointers and any other objects of this machine mode. */
1675 #define Pmode SImode
1677 /* A function address in a call instruction
1678 is a byte address (for indexing purposes)
1679 so give the MEM rtx a byte's mode. */
1680 #define FUNCTION_MODE QImode
1682 /* Compute the cost of computing a constant rtl expression RTX
1683 whose rtx-code is CODE. The body of this macro is a portion
1684 of a switch statement. If the code is computed here,
1685 return it with a return statement. Otherwise, break from the switch. */
1687 #define CONST_COSTS(RTX,CODE,OUTER_CODE) \
1688 case CONST_INT: \
1689 /* Constant zero is super cheap due to clr instruction. */ \
1690 if (RTX == const0_rtx) return 0; \
1691 /* if ((OUTER_CODE) == SET) */ \
1692 return const_int_cost(RTX); \
1693 case CONST: \
1694 case LABEL_REF: \
1695 case SYMBOL_REF: \
1696 return 3; \
1697 case CONST_DOUBLE: \
1698 return 5;
1700 /* Compute the cost of various arithmetic operations.
1701 These are vaguely right for a 68020. */
1702 /* The costs for long multiply have been adjusted to
1703 work properly in synth_mult on the 68020,
1704 relative to an average of the time for add and the time for shift,
1705 taking away a little more because sometimes move insns are needed. */
1706 /* div?.w is relatively cheaper on 68000 counted in COSTS_N_INSNS terms. */
1707 #define MULL_COST (TARGET_68060 ? 2 : TARGET_68040 ? 5 : 13)
1708 #define MULW_COST (TARGET_68060 ? 2 : TARGET_68040 ? 3 : TARGET_68020 ? 8 : 5)
1709 #define DIVW_COST (TARGET_68020 ? 27 : 12)
1711 #define RTX_COSTS(X,CODE,OUTER_CODE) \
1712 case PLUS: \
1713 /* An lea costs about three times as much as a simple add. */ \
1714 if (GET_MODE (X) == SImode \
1715 && GET_CODE (XEXP (X, 1)) == REG \
1716 && GET_CODE (XEXP (X, 0)) == MULT \
1717 && GET_CODE (XEXP (XEXP (X, 0), 0)) == REG \
1718 && GET_CODE (XEXP (XEXP (X, 0), 1)) == CONST_INT \
1719 && (INTVAL (XEXP (XEXP (X, 0), 1)) == 2 \
1720 || INTVAL (XEXP (XEXP (X, 0), 1)) == 4 \
1721 || INTVAL (XEXP (XEXP (X, 0), 1)) == 8)) \
1722 return COSTS_N_INSNS (3); /* lea an@(dx:l:i),am */ \
1723 break; \
1724 case ASHIFT: \
1725 case ASHIFTRT: \
1726 case LSHIFTRT: \
1727 if (TARGET_68060) \
1728 return COSTS_N_INSNS(1); \
1729 if (! TARGET_68020) \
1731 if (GET_CODE (XEXP (X, 1)) == CONST_INT) \
1733 if (INTVAL (XEXP (X, 1)) < 16) \
1734 return COSTS_N_INSNS (2) + INTVAL (XEXP (X, 1)) / 2; \
1735 else \
1736 /* We're using clrw + swap for these cases. */ \
1737 return COSTS_N_INSNS (4) + (INTVAL (XEXP (X, 1)) - 16) / 2; \
1739 return COSTS_N_INSNS (10); /* worst case */ \
1741 /* A shift by a big integer takes an extra instruction. */ \
1742 if (GET_CODE (XEXP (X, 1)) == CONST_INT \
1743 && (INTVAL (XEXP (X, 1)) == 16)) \
1744 return COSTS_N_INSNS (2); /* clrw;swap */ \
1745 if (GET_CODE (XEXP (X, 1)) == CONST_INT \
1746 && !(INTVAL (XEXP (X, 1)) > 0 \
1747 && INTVAL (XEXP (X, 1)) <= 8)) \
1748 return COSTS_N_INSNS (3); /* lsr #i,dn */ \
1749 break; \
1750 case MULT: \
1751 if ((GET_CODE (XEXP (X, 0)) == ZERO_EXTEND \
1752 || GET_CODE (XEXP (X, 0)) == SIGN_EXTEND) \
1753 && GET_MODE (X) == SImode) \
1754 return COSTS_N_INSNS (MULW_COST); \
1755 if (GET_MODE (X) == QImode || GET_MODE (X) == HImode) \
1756 return COSTS_N_INSNS (MULW_COST); \
1757 else \
1758 return COSTS_N_INSNS (MULL_COST); \
1759 case DIV: \
1760 case UDIV: \
1761 case MOD: \
1762 case UMOD: \
1763 if (GET_MODE (X) == QImode || GET_MODE (X) == HImode) \
1764 return COSTS_N_INSNS (DIVW_COST); /* div.w */ \
1765 return COSTS_N_INSNS (43); /* div.l */
1767 /* Tell final.c how to eliminate redundant test instructions. */
1769 /* Here we define machine-dependent flags and fields in cc_status
1770 (see `conditions.h'). */
1772 /* Set if the cc value is actually in the 68881, so a floating point
1773 conditional branch must be output. */
1774 #define CC_IN_68881 04000
1776 /* Store in cc_status the expressions that the condition codes will
1777 describe after execution of an instruction whose pattern is EXP.
1778 Do not alter them if the instruction would not alter the cc's. */
1780 /* On the 68000, all the insns to store in an address register fail to
1781 set the cc's. However, in some cases these instructions can make it
1782 possibly invalid to use the saved cc's. In those cases we clear out
1783 some or all of the saved cc's so they won't be used. */
1785 #define NOTICE_UPDATE_CC(EXP,INSN) notice_update_cc (EXP, INSN)
1787 #define OUTPUT_JUMP(NORMAL, FLOAT, NO_OV) \
1788 { if (cc_prev_status.flags & CC_IN_68881) \
1789 return FLOAT; \
1790 if (cc_prev_status.flags & CC_NO_OVERFLOW) \
1791 return NO_OV; \
1792 return NORMAL; }
1794 /* Control the assembler format that we output. */
1796 /* Output at beginning of assembler file. */
1798 #define ASM_FILE_START(FILE) \
1799 fprintf (FILE, "#NO_APP\n");
1801 /* Output to assembler file text saying following lines
1802 may contain character constants, extra white space, comments, etc. */
1804 #define ASM_APP_ON "#APP\n"
1806 /* Output to assembler file text saying following lines
1807 no longer contain unusual constructs. */
1809 #define ASM_APP_OFF "#NO_APP\n"
1811 /* Output before read-only data. */
1813 #define TEXT_SECTION_ASM_OP "\t.text"
1815 /* Output before writable data. */
1817 #define DATA_SECTION_ASM_OP "\t.data"
1819 /* Here are four prefixes that are used by asm_fprintf to
1820 facilitate customization for alternate assembler syntaxes.
1821 Machines with no likelihood of an alternate syntax need not
1822 define these and need not use asm_fprintf. */
1824 /* The prefix for register names. Note that REGISTER_NAMES
1825 is supposed to include this prefix. */
1827 #define REGISTER_PREFIX ""
1829 /* The prefix for local labels. You should be able to define this as
1830 an empty string, or any arbitrary string (such as ".", ".L%", etc)
1831 without having to make any other changes to account for the specific
1832 definition. Note it is a string literal, not interpreted by printf
1833 and friends. */
1835 #define LOCAL_LABEL_PREFIX ""
1837 /* The prefix to add to user-visible assembler symbols. */
1839 #define USER_LABEL_PREFIX "_"
1841 /* The prefix for immediate operands. */
1843 #define IMMEDIATE_PREFIX "#"
1845 /* How to refer to registers in assembler output.
1846 This sequence is indexed by compiler's hard-register-number (see above). */
1848 #ifndef SUPPORT_SUN_FPA
1850 #define REGISTER_NAMES \
1851 {"d0", "d1", "d2", "d3", "d4", "d5", "d6", "d7", \
1852 "a0", "a1", "a2", "a3", "a4", "a5", "a6", "sp", \
1853 "fp0", "fp1", "fp2", "fp3", "fp4", "fp5", "fp6", "fp7" }
1855 #else /* SUPPORTED_SUN_FPA */
1857 #define REGISTER_NAMES \
1858 {"d0", "d1", "d2", "d3", "d4", "d5", "d6", "d7", \
1859 "a0", "a1", "a2", "a3", "a4", "a5", "a6", "sp", \
1860 "fp0", "fp1", "fp2", "fp3", "fp4", "fp5", "fp6", "fp7", \
1861 "fpa0", "fpa1", "fpa2", "fpa3", "fpa4", "fpa5", "fpa6", "fpa7", \
1862 "fpa8", "fpa9", "fpa10", "fpa11", "fpa12", "fpa13", "fpa14", "fpa15", \
1863 "fpa16", "fpa17", "fpa18", "fpa19", "fpa20", "fpa21", "fpa22", "fpa23", \
1864 "fpa24", "fpa25", "fpa26", "fpa27", "fpa28", "fpa29", "fpa30", "fpa31" }
1866 #endif /* defined SUPPORT_SUN_FPA */
1868 /* How to renumber registers for dbx and gdb.
1869 On the Sun-3, the floating point registers have numbers
1870 18 to 25, not 16 to 23 as they do in the compiler. */
1872 #define DBX_REGISTER_NUMBER(REGNO) ((REGNO) < 16 ? (REGNO) : (REGNO) + 2)
1874 /* Before the prologue, RA is at 0(%sp). */
1875 #define INCOMING_RETURN_ADDR_RTX \
1876 gen_rtx_MEM (VOIDmode, gen_rtx_REG (VOIDmode, STACK_POINTER_REGNUM))
1878 /* We must not use the DBX register numbers for the DWARF 2 CFA column
1879 numbers because that maps to numbers beyond FIRST_PSEUDO_REGISTER.
1880 Instead use the identity mapping. */
1881 #define DWARF_FRAME_REGNUM(REG) REG
1883 /* Before the prologue, the top of the frame is at 4(%sp). */
1884 #define INCOMING_FRAME_SP_OFFSET 4
1886 /* This is how to output the definition of a user-level label named NAME,
1887 such as the label on a static function or variable NAME. */
1889 #define ASM_OUTPUT_LABEL(FILE,NAME) \
1890 do { assemble_name (FILE, NAME); fputs (":\n", FILE); } while (0)
1892 /* This is how to output a command to make the user-level label named NAME
1893 defined for reference from other files. */
1895 #define GLOBAL_ASM_OP "\t.globl\t"
1896 #define ASM_GLOBALIZE_LABEL(FILE,NAME) \
1897 do { fprintf (FILE, "%s", GLOBAL_ASM_OP); \
1898 assemble_name (FILE, NAME); \
1899 fputs ("\n", FILE);} while (0)
1901 /* This is how to output a reference to a user-level label named NAME.
1902 `assemble_name' uses this. */
1904 #define ASM_OUTPUT_LABELREF(FILE,NAME) \
1905 asm_fprintf (FILE, "%0U%s", NAME)
1907 /* This is how to output an internal numbered label where
1908 PREFIX is the class of label and NUM is the number within the class. */
1910 #define ASM_OUTPUT_INTERNAL_LABEL(FILE,PREFIX,NUM) \
1911 asm_fprintf (FILE, "%0L%s%d:\n", PREFIX, NUM)
1913 /* This is how to store into the string LABEL
1914 the symbol_ref name of an internal numbered label where
1915 PREFIX is the class of label and NUM is the number within the class.
1916 This is suitable for output with `assemble_name'. */
1918 #define ASM_GENERATE_INTERNAL_LABEL(LABEL,PREFIX,NUM) \
1919 sprintf (LABEL, "*%s%s%d", LOCAL_LABEL_PREFIX, PREFIX, NUM)
1921 /* This is how to output a `long double' extended real constant. */
1923 #define ASM_OUTPUT_LONG_DOUBLE(FILE,VALUE) \
1924 do { long l[3]; \
1925 REAL_VALUE_TO_TARGET_LONG_DOUBLE (VALUE, l); \
1926 fprintf (FILE, "\t.long 0x%lx,0x%lx,0x%lx\n", l[0], l[1], l[2]); \
1927 } while (0)
1929 /* This is how to output an assembler line defining a `double' constant. */
1931 #define ASM_OUTPUT_DOUBLE(FILE,VALUE) \
1932 do { char dstr[30]; \
1933 REAL_VALUE_TO_DECIMAL (VALUE, "%.20g", dstr); \
1934 fprintf (FILE, "\t.double 0r%s\n", dstr); \
1935 } while (0)
1937 /* This is how to output an assembler line defining a `float' constant. */
1939 #define ASM_OUTPUT_FLOAT(FILE,VALUE) \
1940 do { long l; \
1941 REAL_VALUE_TO_TARGET_SINGLE (VALUE, l); \
1942 fprintf (FILE, "\t.long 0x%lx\n", l); \
1943 } while (0)
1945 /* This is how to output an assembler line defining an `int' constant. */
1947 #define ASM_OUTPUT_INT(FILE,VALUE) \
1948 ( fprintf (FILE, "\t.long "), \
1949 output_addr_const (FILE, (VALUE)), \
1950 fprintf (FILE, "\n"))
1952 /* Likewise for `char' and `short' constants. */
1954 #define ASM_OUTPUT_SHORT(FILE,VALUE) \
1955 ( fprintf (FILE, "\t.word "), \
1956 output_addr_const (FILE, (VALUE)), \
1957 fprintf (FILE, "\n"))
1959 #define ASM_OUTPUT_CHAR(FILE,VALUE) \
1960 ( fprintf (FILE, "\t.byte "), \
1961 output_addr_const (FILE, (VALUE)), \
1962 fprintf (FILE, "\n"))
1964 /* This is how to output an assembler line for a numeric constant byte. */
1966 #define ASM_OUTPUT_BYTE(FILE,VALUE) \
1967 fprintf (FILE, "\t.byte 0x%x\n", (VALUE))
1969 /* This is how to output an insn to push a register on the stack.
1970 It need not be very fast code. */
1972 #define ASM_OUTPUT_REG_PUSH(FILE,REGNO) \
1973 asm_fprintf (FILE, "\tmovel %s,%Rsp@-\n", reg_names[REGNO])
1975 /* This is how to output an insn to pop a register from the stack.
1976 It need not be very fast code. */
1978 #define ASM_OUTPUT_REG_POP(FILE,REGNO) \
1979 asm_fprintf (FILE, "\tmovel %Rsp@+,%s\n", reg_names[REGNO])
1981 /* This is how to output an element of a case-vector that is absolute.
1982 (The 68000 does not use such vectors,
1983 but we must define this macro anyway.) */
1985 #define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE) \
1986 asm_fprintf (FILE, "\t.long %LL%d\n", VALUE)
1988 /* This is how to output an element of a case-vector that is relative. */
1990 #define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, BODY, VALUE, REL) \
1991 asm_fprintf (FILE, "\t.word %LL%d-%LL%d\n", VALUE, REL)
1993 /* This is how to output an assembler line
1994 that says to advance the location counter
1995 to a multiple of 2**LOG bytes. */
1997 /* We don't have a way to align to more than a two-byte boundary, so do the
1998 best we can and don't complain. */
1999 #define ASM_OUTPUT_ALIGN(FILE,LOG) \
2000 if ((LOG) >= 1) \
2001 fprintf (FILE, "\t.even\n");
2003 #define ASM_OUTPUT_SKIP(FILE,SIZE) \
2004 fprintf (FILE, "\t.skip %u\n", (SIZE))
2006 /* This says how to output an assembler line
2007 to define a global common symbol. */
2009 #define ASM_OUTPUT_COMMON(FILE, NAME, SIZE, ROUNDED) \
2010 ( fputs (".comm ", (FILE)), \
2011 assemble_name ((FILE), (NAME)), \
2012 fprintf ((FILE), ",%u\n", (ROUNDED)))
2014 /* This says how to output an assembler line
2015 to define a local common symbol. */
2017 #define ASM_OUTPUT_LOCAL(FILE, NAME, SIZE, ROUNDED) \
2018 ( fputs (".lcomm ", (FILE)), \
2019 assemble_name ((FILE), (NAME)), \
2020 fprintf ((FILE), ",%u\n", (ROUNDED)))
2022 /* Store in OUTPUT a string (made with alloca) containing
2023 an assembler-name for a local static variable named NAME.
2024 LABELNO is an integer which is different for each call. */
2026 #define ASM_FORMAT_PRIVATE_NAME(OUTPUT, NAME, LABELNO) \
2027 ( (OUTPUT) = (char *) alloca (strlen ((NAME)) + 10), \
2028 sprintf ((OUTPUT), "%s.%d", (NAME), (LABELNO)))
2030 /* Define the parentheses used to group arithmetic operations
2031 in assembler code. */
2033 #define ASM_OPEN_PAREN "("
2034 #define ASM_CLOSE_PAREN ")"
2036 /* Output a float value (represented as a C double) as an immediate operand.
2037 This macro is a 68k-specific macro. */
2039 #define ASM_OUTPUT_FLOAT_OPERAND(CODE,FILE,VALUE) \
2040 do { \
2041 if (CODE == 'f') \
2043 char dstr[30]; \
2044 REAL_VALUE_TO_DECIMAL (VALUE, "%.9g", dstr); \
2045 asm_fprintf ((FILE), "%I0r%s", dstr); \
2047 else \
2049 long l; \
2050 REAL_VALUE_TO_TARGET_SINGLE (VALUE, l); \
2051 asm_fprintf ((FILE), "%I0x%lx", l); \
2053 } while (0)
2055 /* Output a double value (represented as a C double) as an immediate operand.
2056 This macro is a 68k-specific macro. */
2057 #define ASM_OUTPUT_DOUBLE_OPERAND(FILE,VALUE) \
2058 do { char dstr[30]; \
2059 REAL_VALUE_TO_DECIMAL (VALUE, "%.20g", dstr); \
2060 asm_fprintf (FILE, "%I0r%s", dstr); \
2061 } while (0)
2063 /* Note, long double immediate operands are not actually
2064 generated by m68k.md. */
2065 #define ASM_OUTPUT_LONG_DOUBLE_OPERAND(FILE,VALUE) \
2066 do { char dstr[30]; \
2067 REAL_VALUE_TO_DECIMAL (VALUE, "%.20g", dstr); \
2068 asm_fprintf (FILE, "%I0r%s", dstr); \
2069 } while (0)
2071 /* Print operand X (an rtx) in assembler syntax to file FILE.
2072 CODE is a letter or dot (`z' in `%z0') or 0 if no letter was specified.
2073 For `%' followed by punctuation, CODE is the punctuation and X is null.
2075 On the 68000, we use several CODE characters:
2076 '.' for dot needed in Motorola-style opcode names.
2077 '-' for an operand pushing on the stack:
2078 sp@-, -(sp) or -(%sp) depending on the style of syntax.
2079 '+' for an operand pushing on the stack:
2080 sp@+, (sp)+ or (%sp)+ depending on the style of syntax.
2081 '@' for a reference to the top word on the stack:
2082 sp@, (sp) or (%sp) depending on the style of syntax.
2083 '#' for an immediate operand prefix (# in MIT and Motorola syntax
2084 but & in SGS syntax).
2085 '!' for the fpcr register (used in some float-to-fixed conversions).
2086 '$' for the letter `s' in an op code, but only on the 68040.
2087 '&' for the letter `d' in an op code, but only on the 68040.
2088 '/' for register prefix needed by longlong.h.
2090 'b' for byte insn (no effect, on the Sun; this is for the ISI).
2091 'd' to force memory addressing to be absolute, not relative.
2092 'f' for float insn (print a CONST_DOUBLE as a float rather than in hex)
2093 'o' for operands to go directly to output_operand_address (bypassing
2094 print_operand_address--used only for SYMBOL_REFs under TARGET_PCREL)
2095 'w' for FPA insn (print a CONST_DOUBLE as a SunFPA constant rather
2096 than directly). Second part of 'y' below.
2097 'x' for float insn (print a CONST_DOUBLE as a float rather than in hex),
2098 or print pair of registers as rx:ry.
2099 'y' for a FPA insn (print pair of registers as rx:ry). This also outputs
2100 CONST_DOUBLE's as SunFPA constant RAM registers if
2101 possible, so it should not be used except for the SunFPA. */
2103 #define PRINT_OPERAND_PUNCT_VALID_P(CODE) \
2104 ((CODE) == '.' || (CODE) == '#' || (CODE) == '-' \
2105 || (CODE) == '+' || (CODE) == '@' || (CODE) == '!' \
2106 || (CODE) == '$' || (CODE) == '&' || (CODE) == '/')
2108 /* A C compound statement to output to stdio stream STREAM the
2109 assembler syntax for an instruction operand X. X is an RTL
2110 expression.
2112 CODE is a value that can be used to specify one of several ways
2113 of printing the operand. It is used when identical operands
2114 must be printed differently depending on the context. CODE
2115 comes from the `%' specification that was used to request
2116 printing of the operand. If the specification was just `%DIGIT'
2117 then CODE is 0; if the specification was `%LTR DIGIT' then CODE
2118 is the ASCII code for LTR.
2120 If X is a register, this macro should print the register's name.
2121 The names can be found in an array `reg_names' whose type is
2122 `char *[]'. `reg_names' is initialized from `REGISTER_NAMES'.
2124 When the machine description has a specification `%PUNCT' (a `%'
2125 followed by a punctuation character), this macro is called with
2126 a null pointer for X and the punctuation character for CODE.
2128 See m68k.c for the m68k specific codes. */
2130 #define PRINT_OPERAND(FILE, X, CODE) print_operand (FILE, X, CODE)
2132 /* A C compound statement to output to stdio stream STREAM the
2133 assembler syntax for an instruction operand that is a memory
2134 reference whose address is ADDR. ADDR is an RTL expression.
2136 On some machines, the syntax for a symbolic address depends on
2137 the section that the address refers to. On these machines,
2138 define the macro `ENCODE_SECTION_INFO' to store the information
2139 into the `symbol_ref', and then check for it here. */
2141 #define PRINT_OPERAND_ADDRESS(FILE, ADDR) print_operand_address (FILE, ADDR)
2143 /* Variables in m68k.c */
2144 extern const char *m68k_align_loops_string;
2145 extern const char *m68k_align_jumps_string;
2146 extern const char *m68k_align_funcs_string;
2147 extern int m68k_align_loops;
2148 extern int m68k_align_jumps;
2149 extern int m68k_align_funcs;
2150 extern int m68k_last_compare_had_fp_operands;
2154 Local variables:
2155 version-control: t
2156 End: