* gcc.c (getenv_spec_function): New function.
[official-gcc.git] / gcc / ada / inline.adb
blob3575d8f80a7eab65f3238716f45d18a1618245ce
1 ------------------------------------------------------------------------------
2 -- --
3 -- GNAT COMPILER COMPONENTS --
4 -- --
5 -- I N L I N E --
6 -- --
7 -- B o d y --
8 -- --
9 -- Copyright (C) 1992-2006, Free Software Foundation, Inc. --
10 -- --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 2, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING. If not, write --
19 -- to the Free Software Foundation, 51 Franklin Street, Fifth Floor, --
20 -- Boston, MA 02110-1301, USA. --
21 -- --
22 -- GNAT was originally developed by the GNAT team at New York University. --
23 -- Extensive contributions were provided by Ada Core Technologies Inc. --
24 -- --
25 ------------------------------------------------------------------------------
27 with Atree; use Atree;
28 with Einfo; use Einfo;
29 with Elists; use Elists;
30 with Errout; use Errout;
31 with Exp_Ch7; use Exp_Ch7;
32 with Exp_Tss; use Exp_Tss;
33 with Fname; use Fname;
34 with Fname.UF; use Fname.UF;
35 with Lib; use Lib;
36 with Nlists; use Nlists;
37 with Opt; use Opt;
38 with Sem_Ch8; use Sem_Ch8;
39 with Sem_Ch10; use Sem_Ch10;
40 with Sem_Ch12; use Sem_Ch12;
41 with Sem_Util; use Sem_Util;
42 with Sinfo; use Sinfo;
43 with Snames; use Snames;
44 with Stand; use Stand;
45 with Uname; use Uname;
47 package body Inline is
49 --------------------
50 -- Inlined Bodies --
51 --------------------
53 -- Inlined functions are actually placed in line by the backend if the
54 -- corresponding bodies are available (i.e. compiled). Whenever we find
55 -- a call to an inlined subprogram, we add the name of the enclosing
56 -- compilation unit to a worklist. After all compilation, and after
57 -- expansion of generic bodies, we traverse the list of pending bodies
58 -- and compile them as well.
60 package Inlined_Bodies is new Table.Table (
61 Table_Component_Type => Entity_Id,
62 Table_Index_Type => Int,
63 Table_Low_Bound => 0,
64 Table_Initial => Alloc.Inlined_Bodies_Initial,
65 Table_Increment => Alloc.Inlined_Bodies_Increment,
66 Table_Name => "Inlined_Bodies");
68 -----------------------
69 -- Inline Processing --
70 -----------------------
72 -- For each call to an inlined subprogram, we make entries in a table
73 -- that stores caller and callee, and indicates a prerequisite from
74 -- one to the other. We also record the compilation unit that contains
75 -- the callee. After analyzing the bodies of all such compilation units,
76 -- we produce a list of subprograms in topological order, for use by the
77 -- back-end. If P2 is a prerequisite of P1, then P1 calls P2, and for
78 -- proper inlining the back-end must analyze the body of P2 before that of
79 -- P1. The code below guarantees that the transitive closure of inlined
80 -- subprograms called from the main compilation unit is made available to
81 -- the code generator.
83 Last_Inlined : Entity_Id := Empty;
85 -- For each entry in the table we keep a list of successors in topological
86 -- order, i.e. callers of the current subprogram.
88 type Subp_Index is new Nat;
89 No_Subp : constant Subp_Index := 0;
91 -- The subprogram entities are hashed into the Inlined table
93 Num_Hash_Headers : constant := 512;
95 Hash_Headers : array (Subp_Index range 0 .. Num_Hash_Headers - 1)
96 of Subp_Index;
98 type Succ_Index is new Nat;
99 No_Succ : constant Succ_Index := 0;
101 type Succ_Info is record
102 Subp : Subp_Index;
103 Next : Succ_Index;
104 end record;
106 -- The following table stores list elements for the successor lists.
107 -- These lists cannot be chained directly through entries in the Inlined
108 -- table, because a given subprogram can appear in several such lists.
110 package Successors is new Table.Table (
111 Table_Component_Type => Succ_Info,
112 Table_Index_Type => Succ_Index,
113 Table_Low_Bound => 1,
114 Table_Initial => Alloc.Successors_Initial,
115 Table_Increment => Alloc.Successors_Increment,
116 Table_Name => "Successors");
118 type Subp_Info is record
119 Name : Entity_Id := Empty;
120 First_Succ : Succ_Index := No_Succ;
121 Count : Integer := 0;
122 Listed : Boolean := False;
123 Main_Call : Boolean := False;
124 Next : Subp_Index := No_Subp;
125 Next_Nopred : Subp_Index := No_Subp;
126 end record;
128 package Inlined is new Table.Table (
129 Table_Component_Type => Subp_Info,
130 Table_Index_Type => Subp_Index,
131 Table_Low_Bound => 1,
132 Table_Initial => Alloc.Inlined_Initial,
133 Table_Increment => Alloc.Inlined_Increment,
134 Table_Name => "Inlined");
136 -----------------------
137 -- Local Subprograms --
138 -----------------------
140 function Scope_In_Main_Unit (Scop : Entity_Id) return Boolean;
141 -- Return True if Scop is in the main unit or its spec, or in a
142 -- parent of the main unit if it is a child unit.
144 procedure Add_Call (Called : Entity_Id; Caller : Entity_Id := Empty);
145 -- Make two entries in Inlined table, for an inlined subprogram being
146 -- called, and for the inlined subprogram that contains the call. If
147 -- the call is in the main compilation unit, Caller is Empty.
149 function Add_Subp (E : Entity_Id) return Subp_Index;
150 -- Make entry in Inlined table for subprogram E, or return table index
151 -- that already holds E.
153 function Has_Initialized_Type (E : Entity_Id) return Boolean;
154 -- If a candidate for inlining contains type declarations for types with
155 -- non-trivial initialization procedures, they are not worth inlining.
157 function Is_Nested (E : Entity_Id) return Boolean;
158 -- If the function is nested inside some other function, it will
159 -- always be compiled if that function is, so don't add it to the
160 -- inline list. We cannot compile a nested function outside the
161 -- scope of the containing function anyway. This is also the case if
162 -- the function is defined in a task body or within an entry (for
163 -- example, an initialization procedure).
165 procedure Add_Inlined_Subprogram (Index : Subp_Index);
166 -- Add subprogram to Inlined List once all of its predecessors have been
167 -- placed on the list. Decrement the count of all its successors, and
168 -- add them to list (recursively) if count drops to zero.
170 ------------------------------
171 -- Deferred Cleanup Actions --
172 ------------------------------
174 -- The cleanup actions for scopes that contain instantiations is delayed
175 -- until after expansion of those instantiations, because they may
176 -- contain finalizable objects or tasks that affect the cleanup code.
177 -- A scope that contains instantiations only needs to be finalized once,
178 -- even if it contains more than one instance. We keep a list of scopes
179 -- that must still be finalized, and call cleanup_actions after all the
180 -- instantiations have been completed.
182 To_Clean : Elist_Id;
184 procedure Add_Scope_To_Clean (Inst : Entity_Id);
185 -- Build set of scopes on which cleanup actions must be performed
187 procedure Cleanup_Scopes;
188 -- Complete cleanup actions on scopes that need it
190 --------------
191 -- Add_Call --
192 --------------
194 procedure Add_Call (Called : Entity_Id; Caller : Entity_Id := Empty) is
195 P1 : constant Subp_Index := Add_Subp (Called);
196 P2 : Subp_Index;
197 J : Succ_Index;
199 begin
200 if Present (Caller) then
201 P2 := Add_Subp (Caller);
203 -- Add P2 to the list of successors of P1, if not already there.
204 -- Note that P2 may contain more than one call to P1, and only
205 -- one needs to be recorded.
207 J := Inlined.Table (P1).First_Succ;
209 while J /= No_Succ loop
211 if Successors.Table (J).Subp = P2 then
212 return;
213 end if;
215 J := Successors.Table (J).Next;
216 end loop;
218 -- On exit, make a successor entry for P2
220 Successors.Increment_Last;
221 Successors.Table (Successors.Last).Subp := P2;
222 Successors.Table (Successors.Last).Next :=
223 Inlined.Table (P1).First_Succ;
224 Inlined.Table (P1).First_Succ := Successors.Last;
226 Inlined.Table (P2).Count := Inlined.Table (P2).Count + 1;
228 else
229 Inlined.Table (P1).Main_Call := True;
230 end if;
231 end Add_Call;
233 ----------------------
234 -- Add_Inlined_Body --
235 ----------------------
237 procedure Add_Inlined_Body (E : Entity_Id) is
238 Pack : Entity_Id;
240 function Must_Inline return Boolean;
241 -- Inlining is only done if the call statement N is in the main unit,
242 -- or within the body of another inlined subprogram.
244 -----------------
245 -- Must_Inline --
246 -----------------
248 function Must_Inline return Boolean is
249 Scop : Entity_Id := Current_Scope;
250 Comp : Node_Id;
252 begin
253 -- Check if call is in main unit
255 while Scope (Scop) /= Standard_Standard
256 and then not Is_Child_Unit (Scop)
257 loop
258 Scop := Scope (Scop);
259 end loop;
261 Comp := Parent (Scop);
263 while Nkind (Comp) /= N_Compilation_Unit loop
264 Comp := Parent (Comp);
265 end loop;
267 if Comp = Cunit (Main_Unit)
268 or else Comp = Library_Unit (Cunit (Main_Unit))
269 then
270 Add_Call (E);
271 return True;
272 end if;
274 -- Call is not in main unit. See if it's in some inlined
275 -- subprogram.
277 Scop := Current_Scope;
278 while Scope (Scop) /= Standard_Standard
279 and then not Is_Child_Unit (Scop)
280 loop
281 if Is_Overloadable (Scop)
282 and then Is_Inlined (Scop)
283 then
284 Add_Call (E, Scop);
285 return True;
286 end if;
288 Scop := Scope (Scop);
289 end loop;
291 return False;
293 end Must_Inline;
295 -- Start of processing for Add_Inlined_Body
297 begin
298 -- Find unit containing E, and add to list of inlined bodies if needed.
299 -- If the body is already present, no need to load any other unit. This
300 -- is the case for an initialization procedure, which appears in the
301 -- package declaration that contains the type. It is also the case if
302 -- the body has already been analyzed. Finally, if the unit enclosing
303 -- E is an instance, the instance body will be analyzed in any case,
304 -- and there is no need to add the enclosing unit (whose body might not
305 -- be available).
307 -- Library-level functions must be handled specially, because there is
308 -- no enclosing package to retrieve. In this case, it is the body of
309 -- the function that will have to be loaded.
311 if not Is_Abstract (E) and then not Is_Nested (E)
312 and then Convention (E) /= Convention_Protected
313 then
314 Pack := Scope (E);
316 if Must_Inline
317 and then Ekind (Pack) = E_Package
318 then
319 Set_Is_Called (E);
321 if Pack = Standard_Standard then
323 -- Library-level inlined function. Add function iself to
324 -- list of needed units.
326 Inlined_Bodies.Increment_Last;
327 Inlined_Bodies.Table (Inlined_Bodies.Last) := E;
329 elsif Is_Generic_Instance (Pack) then
330 null;
332 elsif not Is_Inlined (Pack)
333 and then not Has_Completion (E)
334 and then not Scope_In_Main_Unit (Pack)
335 then
336 Set_Is_Inlined (Pack);
337 Inlined_Bodies.Increment_Last;
338 Inlined_Bodies.Table (Inlined_Bodies.Last) := Pack;
339 end if;
340 end if;
341 end if;
342 end Add_Inlined_Body;
344 ----------------------------
345 -- Add_Inlined_Subprogram --
346 ----------------------------
348 procedure Add_Inlined_Subprogram (Index : Subp_Index) is
349 E : constant Entity_Id := Inlined.Table (Index).Name;
350 Succ : Succ_Index;
351 Subp : Subp_Index;
353 function Back_End_Cannot_Inline (Subp : Entity_Id) return Boolean;
354 -- There are various conditions under which back-end inlining cannot
355 -- be done reliably:
357 -- a) If a body has handlers, it must not be inlined, because this
358 -- may violate program semantics, and because in zero-cost exception
359 -- mode it will lead to undefined symbols at link time.
361 -- b) If a body contains inlined function instances, it cannot be
362 -- inlined under ZCX because the numerix suffix generated by gigi
363 -- will be different in the body and the place of the inlined call.
365 -- This procedure must be carefully coordinated with the back end
367 ----------------------------
368 -- Back_End_Cannot_Inline --
369 ----------------------------
371 function Back_End_Cannot_Inline (Subp : Entity_Id) return Boolean is
372 Decl : constant Node_Id := Unit_Declaration_Node (Subp);
373 Body_Ent : Entity_Id;
374 Ent : Entity_Id;
376 begin
377 if Nkind (Decl) = N_Subprogram_Declaration
378 and then Present (Corresponding_Body (Decl))
379 then
380 Body_Ent := Corresponding_Body (Decl);
381 else
382 return False;
383 end if;
385 -- If subprogram is marked Inline_Always, inlining is mandatory
387 if Is_Always_Inlined (Subp) then
388 return False;
389 end if;
391 if Present
392 (Exception_Handlers
393 (Handled_Statement_Sequence
394 (Unit_Declaration_Node (Corresponding_Body (Decl)))))
395 then
396 return True;
397 end if;
399 Ent := First_Entity (Body_Ent);
401 while Present (Ent) loop
402 if Is_Subprogram (Ent)
403 and then Is_Generic_Instance (Ent)
404 then
405 return True;
406 end if;
408 Next_Entity (Ent);
409 end loop;
410 return False;
411 end Back_End_Cannot_Inline;
413 -- Start of processing for Add_Inlined_Subprogram
415 begin
416 -- Insert the current subprogram in the list of inlined subprograms,
417 -- if it can actually be inlined by the back-end.
419 if not Scope_In_Main_Unit (E)
420 and then Is_Inlined (E)
421 and then not Is_Nested (E)
422 and then not Has_Initialized_Type (E)
423 then
424 if Back_End_Cannot_Inline (E) then
425 Set_Is_Inlined (E, False);
427 else
428 if No (Last_Inlined) then
429 Set_First_Inlined_Subprogram (Cunit (Main_Unit), E);
430 else
431 Set_Next_Inlined_Subprogram (Last_Inlined, E);
432 end if;
434 Last_Inlined := E;
435 end if;
436 end if;
438 Inlined.Table (Index).Listed := True;
439 Succ := Inlined.Table (Index).First_Succ;
441 while Succ /= No_Succ loop
442 Subp := Successors.Table (Succ).Subp;
443 Inlined.Table (Subp).Count := Inlined.Table (Subp).Count - 1;
445 if Inlined.Table (Subp).Count = 0 then
446 Add_Inlined_Subprogram (Subp);
447 end if;
449 Succ := Successors.Table (Succ).Next;
450 end loop;
451 end Add_Inlined_Subprogram;
453 ------------------------
454 -- Add_Scope_To_Clean --
455 ------------------------
457 procedure Add_Scope_To_Clean (Inst : Entity_Id) is
458 Scop : constant Entity_Id := Enclosing_Dynamic_Scope (Inst);
459 Elmt : Elmt_Id;
461 begin
462 -- If the instance appears in a library-level package declaration,
463 -- all finalization is global, and nothing needs doing here.
465 if Scop = Standard_Standard then
466 return;
467 end if;
469 -- If the instance appears within a generic subprogram there is nothing
470 -- to finalize either.
472 declare
473 S : Entity_Id;
474 begin
475 S := Scope (Inst);
476 while Present (S) and then S /= Standard_Standard loop
477 if Is_Generic_Subprogram (S) then
478 return;
479 end if;
481 S := Scope (S);
482 end loop;
483 end;
485 Elmt := First_Elmt (To_Clean);
487 while Present (Elmt) loop
489 if Node (Elmt) = Scop then
490 return;
491 end if;
493 Elmt := Next_Elmt (Elmt);
494 end loop;
496 Append_Elmt (Scop, To_Clean);
497 end Add_Scope_To_Clean;
499 --------------
500 -- Add_Subp --
501 --------------
503 function Add_Subp (E : Entity_Id) return Subp_Index is
504 Index : Subp_Index := Subp_Index (E) mod Num_Hash_Headers;
505 J : Subp_Index;
507 procedure New_Entry;
508 -- Initialize entry in Inlined table
510 procedure New_Entry is
511 begin
512 Inlined.Increment_Last;
513 Inlined.Table (Inlined.Last).Name := E;
514 Inlined.Table (Inlined.Last).First_Succ := No_Succ;
515 Inlined.Table (Inlined.Last).Count := 0;
516 Inlined.Table (Inlined.Last).Listed := False;
517 Inlined.Table (Inlined.Last).Main_Call := False;
518 Inlined.Table (Inlined.Last).Next := No_Subp;
519 Inlined.Table (Inlined.Last).Next_Nopred := No_Subp;
520 end New_Entry;
522 -- Start of processing for Add_Subp
524 begin
525 if Hash_Headers (Index) = No_Subp then
526 New_Entry;
527 Hash_Headers (Index) := Inlined.Last;
528 return Inlined.Last;
530 else
531 J := Hash_Headers (Index);
533 while J /= No_Subp loop
535 if Inlined.Table (J).Name = E then
536 return J;
537 else
538 Index := J;
539 J := Inlined.Table (J).Next;
540 end if;
541 end loop;
543 -- On exit, subprogram was not found. Enter in table. Index is
544 -- the current last entry on the hash chain.
546 New_Entry;
547 Inlined.Table (Index).Next := Inlined.Last;
548 return Inlined.Last;
549 end if;
550 end Add_Subp;
552 ----------------------------
553 -- Analyze_Inlined_Bodies --
554 ----------------------------
556 procedure Analyze_Inlined_Bodies is
557 Comp_Unit : Node_Id;
558 J : Int;
559 Pack : Entity_Id;
560 S : Succ_Index;
562 begin
563 Analyzing_Inlined_Bodies := False;
565 if Serious_Errors_Detected = 0 then
566 New_Scope (Standard_Standard);
568 J := 0;
569 while J <= Inlined_Bodies.Last
570 and then Serious_Errors_Detected = 0
571 loop
572 Pack := Inlined_Bodies.Table (J);
574 while Present (Pack)
575 and then Scope (Pack) /= Standard_Standard
576 and then not Is_Child_Unit (Pack)
577 loop
578 Pack := Scope (Pack);
579 end loop;
581 Comp_Unit := Parent (Pack);
582 while Present (Comp_Unit)
583 and then Nkind (Comp_Unit) /= N_Compilation_Unit
584 loop
585 Comp_Unit := Parent (Comp_Unit);
586 end loop;
588 -- Load the body, unless it the main unit, or is an instance
589 -- whose body has already been analyzed.
591 if Present (Comp_Unit)
592 and then Comp_Unit /= Cunit (Main_Unit)
593 and then Body_Required (Comp_Unit)
594 and then (Nkind (Unit (Comp_Unit)) /= N_Package_Declaration
595 or else No (Corresponding_Body (Unit (Comp_Unit))))
596 then
597 declare
598 Bname : constant Unit_Name_Type :=
599 Get_Body_Name (Get_Unit_Name (Unit (Comp_Unit)));
601 OK : Boolean;
603 begin
604 if not Is_Loaded (Bname) then
605 Load_Needed_Body (Comp_Unit, OK);
607 if not OK then
608 Error_Msg_Unit_1 := Bname;
609 Error_Msg_N
610 ("one or more inlined subprograms accessed in $!",
611 Comp_Unit);
612 Error_Msg_Name_1 :=
613 Get_File_Name (Bname, Subunit => False);
614 Error_Msg_N ("\but file{ was not found!", Comp_Unit);
615 raise Unrecoverable_Error;
616 end if;
617 end if;
618 end;
619 end if;
621 J := J + 1;
622 end loop;
624 -- The analysis of required bodies may have produced additional
625 -- generic instantiations. To obtain further inlining, we perform
626 -- another round of generic body instantiations. Establishing a
627 -- fully recursive loop between inlining and generic instantiations
628 -- is unlikely to yield more than this one additional pass.
630 Instantiate_Bodies;
632 -- The list of inlined subprograms is an overestimate, because
633 -- it includes inlined functions called from functions that are
634 -- compiled as part of an inlined package, but are not themselves
635 -- called. An accurate computation of just those subprograms that
636 -- are needed requires that we perform a transitive closure over
637 -- the call graph, starting from calls in the main program. Here
638 -- we do one step of the inverse transitive closure, and reset
639 -- the Is_Called flag on subprograms all of whose callers are not.
641 for Index in Inlined.First .. Inlined.Last loop
642 S := Inlined.Table (Index).First_Succ;
644 if S /= No_Succ
645 and then not Inlined.Table (Index).Main_Call
646 then
647 Set_Is_Called (Inlined.Table (Index).Name, False);
649 while S /= No_Succ loop
651 if Is_Called
652 (Inlined.Table (Successors.Table (S).Subp).Name)
653 or else Inlined.Table (Successors.Table (S).Subp).Main_Call
654 then
655 Set_Is_Called (Inlined.Table (Index).Name);
656 exit;
657 end if;
659 S := Successors.Table (S).Next;
660 end loop;
661 end if;
662 end loop;
664 -- Now that the units are compiled, chain the subprograms within
665 -- that are called and inlined. Produce list of inlined subprograms
666 -- sorted in topological order. Start with all subprograms that
667 -- have no prerequisites, i.e. inlined subprograms that do not call
668 -- other inlined subprograms.
670 for Index in Inlined.First .. Inlined.Last loop
672 if Is_Called (Inlined.Table (Index).Name)
673 and then Inlined.Table (Index).Count = 0
674 and then not Inlined.Table (Index).Listed
675 then
676 Add_Inlined_Subprogram (Index);
677 end if;
678 end loop;
680 -- Because Add_Inlined_Subprogram treats recursively nodes that have
681 -- no prerequisites left, at the end of the loop all subprograms
682 -- must have been listed. If there are any unlisted subprograms
683 -- left, there must be some recursive chains that cannot be inlined.
685 for Index in Inlined.First .. Inlined.Last loop
686 if Is_Called (Inlined.Table (Index).Name)
687 and then Inlined.Table (Index).Count /= 0
688 and then not Is_Predefined_File_Name
689 (Unit_File_Name
690 (Get_Source_Unit (Inlined.Table (Index).Name)))
691 then
692 Error_Msg_N
693 ("& cannot be inlined?", Inlined.Table (Index).Name);
695 -- A warning on the first one might be sufficient ???
696 end if;
697 end loop;
699 Pop_Scope;
700 end if;
701 end Analyze_Inlined_Bodies;
703 -----------------------------
704 -- Check_Body_For_Inlining --
705 -----------------------------
707 procedure Check_Body_For_Inlining (N : Node_Id; P : Entity_Id) is
708 Bname : Unit_Name_Type;
709 E : Entity_Id;
710 OK : Boolean;
712 begin
713 if Is_Compilation_Unit (P)
714 and then not Is_Generic_Instance (P)
715 then
716 Bname := Get_Body_Name (Get_Unit_Name (Unit (N)));
717 E := First_Entity (P);
719 while Present (E) loop
720 if Is_Always_Inlined (E)
721 or else (Front_End_Inlining and then Has_Pragma_Inline (E))
722 then
723 if not Is_Loaded (Bname) then
724 Load_Needed_Body (N, OK);
726 if OK then
728 -- Check that we are not trying to inline a parent
729 -- whose body depends on a child, when we are compiling
730 -- the body of the child. Otherwise we have a potential
731 -- elaboration circularity with inlined subprograms and
732 -- with Taft-Amendment types.
734 declare
735 Comp : Node_Id; -- Body just compiled
736 Child_Spec : Entity_Id; -- Spec of main unit
737 Ent : Entity_Id; -- For iteration
738 With_Clause : Node_Id; -- Context of body.
740 begin
741 if Nkind (Unit (Cunit (Main_Unit))) = N_Package_Body
742 and then Present (Body_Entity (P))
743 then
744 Child_Spec :=
745 Defining_Entity (
746 (Unit (Library_Unit (Cunit (Main_Unit)))));
748 Comp :=
749 Parent (Unit_Declaration_Node (Body_Entity (P)));
751 With_Clause := First (Context_Items (Comp));
753 -- Check whether the context of the body just
754 -- compiled includes a child of itself, and that
755 -- child is the spec of the main compilation.
757 while Present (With_Clause) loop
758 if Nkind (With_Clause) = N_With_Clause
759 and then
760 Scope (Entity (Name (With_Clause))) = P
761 and then
762 Entity (Name (With_Clause)) = Child_Spec
763 then
764 Error_Msg_Node_2 := Child_Spec;
765 Error_Msg_NE
766 ("body of & depends on child unit&?",
767 With_Clause, P);
768 Error_Msg_N
769 ("\subprograms in body cannot be inlined?",
770 With_Clause);
772 -- Disable further inlining from this unit,
773 -- and keep Taft-amendment types incomplete.
775 Ent := First_Entity (P);
777 while Present (Ent) loop
778 if Is_Type (Ent)
779 and then Has_Completion_In_Body (Ent)
780 then
781 Set_Full_View (Ent, Empty);
783 elsif Is_Subprogram (Ent) then
784 Set_Is_Inlined (Ent, False);
785 end if;
787 Next_Entity (Ent);
788 end loop;
790 return;
791 end if;
793 Next (With_Clause);
794 end loop;
795 end if;
796 end;
798 elsif Ineffective_Inline_Warnings then
799 Error_Msg_Unit_1 := Bname;
800 Error_Msg_N
801 ("unable to inline subprograms defined in $?", P);
802 Error_Msg_N ("\body not found?", P);
803 return;
804 end if;
805 end if;
807 return;
808 end if;
810 Next_Entity (E);
811 end loop;
812 end if;
813 end Check_Body_For_Inlining;
815 --------------------
816 -- Cleanup_Scopes --
817 --------------------
819 procedure Cleanup_Scopes is
820 Elmt : Elmt_Id;
821 Decl : Node_Id;
822 Scop : Entity_Id;
824 begin
825 Elmt := First_Elmt (To_Clean);
827 while Present (Elmt) loop
828 Scop := Node (Elmt);
830 if Ekind (Scop) = E_Entry then
831 Scop := Protected_Body_Subprogram (Scop);
833 elsif Is_Subprogram (Scop)
834 and then Is_Protected_Type (Scope (Scop))
835 and then Present (Protected_Body_Subprogram (Scop))
836 then
837 -- If a protected operation contains an instance, its
838 -- cleanup operations have been delayed, and the subprogram
839 -- has been rewritten in the expansion of the enclosing
840 -- protected body. It is the corresponding subprogram that
841 -- may require the cleanup operations.
843 Set_Uses_Sec_Stack
844 (Protected_Body_Subprogram (Scop),
845 Uses_Sec_Stack (Scop));
846 Scop := Protected_Body_Subprogram (Scop);
847 end if;
849 if Ekind (Scop) = E_Block then
850 Decl := Parent (Block_Node (Scop));
852 else
853 Decl := Unit_Declaration_Node (Scop);
855 if Nkind (Decl) = N_Subprogram_Declaration
856 or else Nkind (Decl) = N_Task_Type_Declaration
857 or else Nkind (Decl) = N_Subprogram_Body_Stub
858 then
859 Decl := Unit_Declaration_Node (Corresponding_Body (Decl));
860 end if;
861 end if;
863 New_Scope (Scop);
864 Expand_Cleanup_Actions (Decl);
865 End_Scope;
867 Elmt := Next_Elmt (Elmt);
868 end loop;
869 end Cleanup_Scopes;
871 --------------------------
872 -- Has_Initialized_Type --
873 --------------------------
875 function Has_Initialized_Type (E : Entity_Id) return Boolean is
876 E_Body : constant Node_Id := Get_Subprogram_Body (E);
877 Decl : Node_Id;
879 begin
880 if No (E_Body) then -- imported subprogram
881 return False;
883 else
884 Decl := First (Declarations (E_Body));
886 while Present (Decl) loop
888 if Nkind (Decl) = N_Full_Type_Declaration
889 and then Present (Init_Proc (Defining_Identifier (Decl)))
890 then
891 return True;
892 end if;
894 Next (Decl);
895 end loop;
896 end if;
898 return False;
899 end Has_Initialized_Type;
901 ----------------
902 -- Initialize --
903 ----------------
905 procedure Initialize is
906 begin
907 Analyzing_Inlined_Bodies := False;
908 Pending_Descriptor.Init;
909 Pending_Instantiations.Init;
910 Inlined_Bodies.Init;
911 Successors.Init;
912 Inlined.Init;
914 for J in Hash_Headers'Range loop
915 Hash_Headers (J) := No_Subp;
916 end loop;
917 end Initialize;
919 ------------------------
920 -- Instantiate_Bodies --
921 ------------------------
923 -- Generic bodies contain all the non-local references, so an
924 -- instantiation does not need any more context than Standard
925 -- itself, even if the instantiation appears in an inner scope.
926 -- Generic associations have verified that the contract model is
927 -- satisfied, so that any error that may occur in the analysis of
928 -- the body is an internal error.
930 procedure Instantiate_Bodies is
931 J : Int;
932 Info : Pending_Body_Info;
934 begin
935 if Serious_Errors_Detected = 0 then
937 Expander_Active := (Operating_Mode = Opt.Generate_Code);
938 New_Scope (Standard_Standard);
939 To_Clean := New_Elmt_List;
941 if Is_Generic_Unit (Cunit_Entity (Main_Unit)) then
942 Start_Generic;
943 end if;
945 -- A body instantiation may generate additional instantiations, so
946 -- the following loop must scan to the end of a possibly expanding
947 -- set (that's why we can't simply use a FOR loop here).
949 J := 0;
951 while J <= Pending_Instantiations.Last
952 and then Serious_Errors_Detected = 0
953 loop
954 Info := Pending_Instantiations.Table (J);
956 -- If the instantiation node is absent, it has been removed
957 -- as part of unreachable code.
959 if No (Info.Inst_Node) then
960 null;
962 elsif Nkind (Info.Act_Decl) = N_Package_Declaration then
963 Instantiate_Package_Body (Info);
964 Add_Scope_To_Clean (Defining_Entity (Info.Act_Decl));
966 else
967 Instantiate_Subprogram_Body (Info);
968 end if;
970 J := J + 1;
971 end loop;
973 -- Reset the table of instantiations. Additional instantiations
974 -- may be added through inlining, when additional bodies are
975 -- analyzed.
977 Pending_Instantiations.Init;
979 -- We can now complete the cleanup actions of scopes that contain
980 -- pending instantiations (skipped for generic units, since we
981 -- never need any cleanups in generic units).
982 -- pending instantiations.
984 if Expander_Active
985 and then not Is_Generic_Unit (Main_Unit_Entity)
986 then
987 Cleanup_Scopes;
988 elsif Is_Generic_Unit (Cunit_Entity (Main_Unit)) then
989 End_Generic;
990 end if;
992 Pop_Scope;
993 end if;
994 end Instantiate_Bodies;
996 ---------------
997 -- Is_Nested --
998 ---------------
1000 function Is_Nested (E : Entity_Id) return Boolean is
1001 Scop : Entity_Id := Scope (E);
1003 begin
1004 while Scop /= Standard_Standard loop
1005 if Ekind (Scop) in Subprogram_Kind then
1006 return True;
1008 elsif Ekind (Scop) = E_Task_Type
1009 or else Ekind (Scop) = E_Entry
1010 or else Ekind (Scop) = E_Entry_Family then
1011 return True;
1012 end if;
1014 Scop := Scope (Scop);
1015 end loop;
1017 return False;
1018 end Is_Nested;
1020 ----------
1021 -- Lock --
1022 ----------
1024 procedure Lock is
1025 begin
1026 Pending_Instantiations.Locked := True;
1027 Inlined_Bodies.Locked := True;
1028 Successors.Locked := True;
1029 Inlined.Locked := True;
1030 Pending_Instantiations.Release;
1031 Inlined_Bodies.Release;
1032 Successors.Release;
1033 Inlined.Release;
1034 end Lock;
1036 --------------------------
1037 -- Remove_Dead_Instance --
1038 --------------------------
1040 procedure Remove_Dead_Instance (N : Node_Id) is
1041 J : Int;
1043 begin
1044 J := 0;
1046 while J <= Pending_Instantiations.Last loop
1048 if Pending_Instantiations.Table (J).Inst_Node = N then
1049 Pending_Instantiations.Table (J).Inst_Node := Empty;
1050 return;
1051 end if;
1053 J := J + 1;
1054 end loop;
1055 end Remove_Dead_Instance;
1057 ------------------------
1058 -- Scope_In_Main_Unit --
1059 ------------------------
1061 function Scope_In_Main_Unit (Scop : Entity_Id) return Boolean is
1062 Comp : Node_Id;
1063 S : Entity_Id := Scop;
1064 Ent : Entity_Id := Cunit_Entity (Main_Unit);
1066 begin
1067 -- The scope may be within the main unit, or it may be an ancestor
1068 -- of the main unit, if the main unit is a child unit. In both cases
1069 -- it makes no sense to process the body before the main unit. In
1070 -- the second case, this may lead to circularities if a parent body
1071 -- depends on a child spec, and we are analyzing the child.
1073 while Scope (S) /= Standard_Standard
1074 and then not Is_Child_Unit (S)
1075 loop
1076 S := Scope (S);
1077 end loop;
1079 Comp := Parent (S);
1081 while Present (Comp)
1082 and then Nkind (Comp) /= N_Compilation_Unit
1083 loop
1084 Comp := Parent (Comp);
1085 end loop;
1087 if Is_Child_Unit (Ent) then
1089 while Present (Ent)
1090 and then Is_Child_Unit (Ent)
1091 loop
1092 if Scope (Ent) = S then
1093 return True;
1094 end if;
1096 Ent := Scope (Ent);
1097 end loop;
1098 end if;
1100 return
1101 Comp = Cunit (Main_Unit)
1102 or else Comp = Library_Unit (Cunit (Main_Unit));
1103 end Scope_In_Main_Unit;
1105 end Inline;