3 * Multi Precision Integer functions
5 * Copyright 2004 Michael Jung
6 * Based on public domain code by Tom St Denis (tomstdenis@iahu.ca)
8 * This library is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU Lesser General Public
10 * License as published by the Free Software Foundation; either
11 * version 2.1 of the License, or (at your option) any later version.
13 * This library is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
16 * Lesser General Public License for more details.
18 * You should have received a copy of the GNU Lesser General Public
19 * License along with this library; if not, write to the Free Software
20 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA
24 * This file contains code from the LibTomCrypt cryptographic
25 * library written by Tom St Denis (tomstdenis@iahu.ca). LibTomCrypt
26 * is in the public domain. The code in this file is tailored to
27 * special requirements. Take a look at http://libtomcrypt.org for the
37 /* Known optimal configurations
38 CPU /Compiler /MUL CUTOFF/SQR CUTOFF
39 -------------------------------------------------------------
40 Intel P4 Northwood /GCC v3.4.1 / 88/ 128/LTM 0.32 ;-)
42 static const int KARATSUBA_MUL_CUTOFF
= 88, /* Min. number of digits before Karatsuba multiplication is used. */
43 KARATSUBA_SQR_CUTOFF
= 128; /* Min. number of digits before Karatsuba squaring is used. */
46 /* trim unused digits */
47 static void mp_clamp(mp_int
*a
);
49 /* compare |a| to |b| */
50 static int mp_cmp_mag(const mp_int
*a
, const mp_int
*b
);
52 /* Counts the number of lsbs which are zero before the first zero bit */
53 static int mp_cnt_lsb(const mp_int
*a
);
55 /* computes a = B**n mod b without division or multiplication useful for
56 * normalizing numbers in a Montgomery system.
58 static int mp_montgomery_calc_normalization(mp_int
*a
, const mp_int
*b
);
60 /* computes x/R == x (mod N) via Montgomery Reduction */
61 static int mp_montgomery_reduce(mp_int
*a
, const mp_int
*m
, mp_digit mp
);
63 /* setups the montgomery reduction */
64 static int mp_montgomery_setup(const mp_int
*a
, mp_digit
*mp
);
66 /* Barrett Reduction, computes a (mod b) with a precomputed value c
68 * Assumes that 0 < a <= b*b, note if 0 > a > -(b*b) then you can merely
69 * compute the reduction as -1 * mp_reduce(mp_abs(a)) [pseudo code].
71 static int mp_reduce(mp_int
*a
, const mp_int
*b
, const mp_int
*c
);
73 /* reduces a modulo b where b is of the form 2**p - k [0 <= a] */
74 static int mp_reduce_2k(mp_int
*a
, const mp_int
*n
, mp_digit d
);
76 /* determines k value for 2k reduction */
77 static int mp_reduce_2k_setup(const mp_int
*a
, mp_digit
*d
);
79 /* used to setup the Barrett reduction for a given modulus b */
80 static int mp_reduce_setup(mp_int
*a
, const mp_int
*b
);
83 static void mp_set(mp_int
*a
, mp_digit b
);
86 static int mp_sqr(const mp_int
*a
, mp_int
*b
);
88 /* c = a * a (mod b) */
89 static int mp_sqrmod(const mp_int
*a
, mp_int
*b
, mp_int
*c
);
92 static void bn_reverse(unsigned char *s
, int len
);
93 static int s_mp_add(mp_int
*a
, mp_int
*b
, mp_int
*c
);
94 static int s_mp_exptmod (const mp_int
* G
, const mp_int
* X
, mp_int
* P
, mp_int
* Y
);
95 #define s_mp_mul(a, b, c) s_mp_mul_digs(a, b, c, (a)->used + (b)->used + 1)
96 static int s_mp_mul_digs(const mp_int
*a
, const mp_int
*b
, mp_int
*c
, int digs
);
97 static int s_mp_mul_high_digs(const mp_int
*a
, const mp_int
*b
, mp_int
*c
, int digs
);
98 static int s_mp_sqr(const mp_int
*a
, mp_int
*b
);
99 static int s_mp_sub(const mp_int
*a
, const mp_int
*b
, mp_int
*c
);
100 static int mp_exptmod_fast(const mp_int
*G
, const mp_int
*X
, mp_int
*P
, mp_int
*Y
, int mode
);
101 static int mp_invmod_slow (const mp_int
* a
, mp_int
* b
, mp_int
* c
);
102 static int mp_karatsuba_mul(const mp_int
*a
, const mp_int
*b
, mp_int
*c
);
103 static int mp_karatsuba_sqr(const mp_int
*a
, mp_int
*b
);
105 /* grow as required */
106 static int mp_grow (mp_int
* a
, int size
)
111 /* if the alloc size is smaller alloc more ram */
112 if (a
->alloc
< size
) {
113 /* ensure there are always at least MP_PREC digits extra on top */
114 size
+= (MP_PREC
* 2) - (size
% MP_PREC
);
116 /* reallocate the array a->dp
118 * We store the return in a temporary variable
119 * in case the operation failed we don't want
120 * to overwrite the dp member of a.
122 tmp
= HeapReAlloc(GetProcessHeap(), 0, a
->dp
, sizeof (mp_digit
) * size
);
124 /* reallocation failed but "a" is still valid [can be freed] */
128 /* reallocation succeeded so set a->dp */
131 /* zero excess digits */
134 for (; i
< a
->alloc
; i
++) {
142 static int mp_div_2(const mp_int
* a
, mp_int
* b
)
147 if (b
->alloc
< a
->used
) {
148 if ((res
= mp_grow (b
, a
->used
)) != MP_OKAY
) {
156 register mp_digit r
, rr
, *tmpa
, *tmpb
;
159 tmpa
= a
->dp
+ b
->used
- 1;
162 tmpb
= b
->dp
+ b
->used
- 1;
166 for (x
= b
->used
- 1; x
>= 0; x
--) {
167 /* get the carry for the next iteration */
170 /* shift the current digit, add in carry and store */
171 *tmpb
-- = (*tmpa
-- >> 1) | (r
<< (DIGIT_BIT
- 1));
173 /* forward carry to next iteration */
177 /* zero excess digits */
178 tmpb
= b
->dp
+ b
->used
;
179 for (x
= b
->used
; x
< oldused
; x
++) {
188 /* swap the elements of two integers, for cases where you can't simply swap the
189 * mp_int pointers around
192 mp_exch (mp_int
* a
, mp_int
* b
)
201 /* init a new mp_int */
202 static int mp_init (mp_int
* a
)
206 /* allocate memory required and clear it */
207 a
->dp
= HeapAlloc(GetProcessHeap(), 0, sizeof (mp_digit
) * MP_PREC
);
212 /* set the digits to zero */
213 for (i
= 0; i
< MP_PREC
; i
++) {
217 /* set the used to zero, allocated digits to the default precision
218 * and sign to positive */
226 /* init an mp_init for a given size */
227 static int mp_init_size (mp_int
* a
, int size
)
231 /* pad size so there are always extra digits */
232 size
+= (MP_PREC
* 2) - (size
% MP_PREC
);
235 a
->dp
= HeapAlloc(GetProcessHeap(), 0, sizeof (mp_digit
) * size
);
240 /* set the members */
245 /* zero the digits */
246 for (x
= 0; x
< size
; x
++) {
253 /* clear one (frees) */
255 mp_clear (mp_int
* a
)
259 /* only do anything if a hasn't been freed previously */
261 /* first zero the digits */
262 for (i
= 0; i
< a
->used
; i
++) {
267 HeapFree(GetProcessHeap(), 0, a
->dp
);
269 /* reset members to make debugging easier */
271 a
->alloc
= a
->used
= 0;
282 memset (a
->dp
, 0, sizeof (mp_digit
) * a
->alloc
);
287 * Simple function copies the input and fixes the sign to positive
290 mp_abs (const mp_int
* a
, mp_int
* b
)
296 if ((res
= mp_copy (a
, b
)) != MP_OKAY
) {
301 /* force the sign of b to positive */
307 /* computes the modular inverse via binary extended euclidean algorithm,
308 * that is c = 1/a mod b
310 * Based on slow invmod except this is optimized for the case where b is
311 * odd as per HAC Note 14.64 on pp. 610
314 fast_mp_invmod (const mp_int
* a
, mp_int
* b
, mp_int
* c
)
316 mp_int x
, y
, u
, v
, B
, D
;
319 /* 2. [modified] b must be odd */
320 if (mp_iseven (b
) == 1) {
324 /* init all our temps */
325 if ((res
= mp_init_multi(&x
, &y
, &u
, &v
, &B
, &D
, NULL
)) != MP_OKAY
) {
329 /* x == modulus, y == value to invert */
330 if ((res
= mp_copy (b
, &x
)) != MP_OKAY
) {
334 /* we need y = |a| */
335 if ((res
= mp_abs (a
, &y
)) != MP_OKAY
) {
339 /* 3. u=x, v=y, A=1, B=0, C=0,D=1 */
340 if ((res
= mp_copy (&x
, &u
)) != MP_OKAY
) {
343 if ((res
= mp_copy (&y
, &v
)) != MP_OKAY
) {
349 /* 4. while u is even do */
350 while (mp_iseven (&u
) == 1) {
352 if ((res
= mp_div_2 (&u
, &u
)) != MP_OKAY
) {
355 /* 4.2 if B is odd then */
356 if (mp_isodd (&B
) == 1) {
357 if ((res
= mp_sub (&B
, &x
, &B
)) != MP_OKAY
) {
362 if ((res
= mp_div_2 (&B
, &B
)) != MP_OKAY
) {
367 /* 5. while v is even do */
368 while (mp_iseven (&v
) == 1) {
370 if ((res
= mp_div_2 (&v
, &v
)) != MP_OKAY
) {
373 /* 5.2 if D is odd then */
374 if (mp_isodd (&D
) == 1) {
376 if ((res
= mp_sub (&D
, &x
, &D
)) != MP_OKAY
) {
381 if ((res
= mp_div_2 (&D
, &D
)) != MP_OKAY
) {
386 /* 6. if u >= v then */
387 if (mp_cmp (&u
, &v
) != MP_LT
) {
388 /* u = u - v, B = B - D */
389 if ((res
= mp_sub (&u
, &v
, &u
)) != MP_OKAY
) {
393 if ((res
= mp_sub (&B
, &D
, &B
)) != MP_OKAY
) {
397 /* v - v - u, D = D - B */
398 if ((res
= mp_sub (&v
, &u
, &v
)) != MP_OKAY
) {
402 if ((res
= mp_sub (&D
, &B
, &D
)) != MP_OKAY
) {
407 /* if not zero goto step 4 */
408 if (mp_iszero (&u
) == 0) {
412 /* now a = C, b = D, gcd == g*v */
414 /* if v != 1 then there is no inverse */
415 if (mp_cmp_d (&v
, 1) != MP_EQ
) {
420 /* b is now the inverse */
422 while (D
.sign
== MP_NEG
) {
423 if ((res
= mp_add (&D
, b
, &D
)) != MP_OKAY
) {
431 __ERR
:mp_clear_multi (&x
, &y
, &u
, &v
, &B
, &D
, NULL
);
435 /* computes xR**-1 == x (mod N) via Montgomery Reduction
437 * This is an optimized implementation of montgomery_reduce
438 * which uses the comba method to quickly calculate the columns of the
441 * Based on Algorithm 14.32 on pp.601 of HAC.
444 fast_mp_montgomery_reduce (mp_int
* x
, const mp_int
* n
, mp_digit rho
)
447 mp_word W
[MP_WARRAY
];
449 /* get old used count */
452 /* grow a as required */
453 if (x
->alloc
< n
->used
+ 1) {
454 if ((res
= mp_grow (x
, n
->used
+ 1)) != MP_OKAY
) {
459 /* first we have to get the digits of the input into
460 * an array of double precision words W[...]
463 register mp_word
*_W
;
464 register mp_digit
*tmpx
;
466 /* alias for the W[] array */
469 /* alias for the digits of x*/
472 /* copy the digits of a into W[0..a->used-1] */
473 for (ix
= 0; ix
< x
->used
; ix
++) {
477 /* zero the high words of W[a->used..m->used*2] */
478 for (; ix
< n
->used
* 2 + 1; ix
++) {
483 /* now we proceed to zero successive digits
484 * from the least significant upwards
486 for (ix
= 0; ix
< n
->used
; ix
++) {
487 /* mu = ai * m' mod b
489 * We avoid a double precision multiplication (which isn't required)
490 * by casting the value down to a mp_digit. Note this requires
491 * that W[ix-1] have the carry cleared (see after the inner loop)
493 register mp_digit mu
;
494 mu
= (mp_digit
) (((W
[ix
] & MP_MASK
) * rho
) & MP_MASK
);
496 /* a = a + mu * m * b**i
498 * This is computed in place and on the fly. The multiplication
499 * by b**i is handled by offsetting which columns the results
502 * Note the comba method normally doesn't handle carries in the
503 * inner loop In this case we fix the carry from the previous
504 * column since the Montgomery reduction requires digits of the
505 * result (so far) [see above] to work. This is
506 * handled by fixing up one carry after the inner loop. The
507 * carry fixups are done in order so after these loops the
508 * first m->used words of W[] have the carries fixed
512 register mp_digit
*tmpn
;
513 register mp_word
*_W
;
515 /* alias for the digits of the modulus */
518 /* Alias for the columns set by an offset of ix */
522 for (iy
= 0; iy
< n
->used
; iy
++) {
523 *_W
++ += ((mp_word
)mu
) * ((mp_word
)*tmpn
++);
527 /* now fix carry for next digit, W[ix+1] */
528 W
[ix
+ 1] += W
[ix
] >> ((mp_word
) DIGIT_BIT
);
531 /* now we have to propagate the carries and
532 * shift the words downward [all those least
533 * significant digits we zeroed].
536 register mp_digit
*tmpx
;
537 register mp_word
*_W
, *_W1
;
539 /* nox fix rest of carries */
541 /* alias for current word */
544 /* alias for next word, where the carry goes */
547 for (; ix
<= n
->used
* 2 + 1; ix
++) {
548 *_W
++ += *_W1
++ >> ((mp_word
) DIGIT_BIT
);
551 /* copy out, A = A/b**n
553 * The result is A/b**n but instead of converting from an
554 * array of mp_word to mp_digit than calling mp_rshd
555 * we just copy them in the right order
558 /* alias for destination word */
561 /* alias for shifted double precision result */
564 for (ix
= 0; ix
< n
->used
+ 1; ix
++) {
565 *tmpx
++ = (mp_digit
)(*_W
++ & ((mp_word
) MP_MASK
));
568 /* zero oldused digits, if the input a was larger than
569 * m->used+1 we'll have to clear the digits
571 for (; ix
< olduse
; ix
++) {
576 /* set the max used and clamp */
577 x
->used
= n
->used
+ 1;
580 /* if A >= m then A = A - m */
581 if (mp_cmp_mag (x
, n
) != MP_LT
) {
582 return s_mp_sub (x
, n
, x
);
587 /* Fast (comba) multiplier
589 * This is the fast column-array [comba] multiplier. It is
590 * designed to compute the columns of the product first
591 * then handle the carries afterwards. This has the effect
592 * of making the nested loops that compute the columns very
593 * simple and schedulable on super-scalar processors.
595 * This has been modified to produce a variable number of
596 * digits of output so if say only a half-product is required
597 * you don't have to compute the upper half (a feature
598 * required for fast Barrett reduction).
600 * Based on Algorithm 14.12 on pp.595 of HAC.
604 fast_s_mp_mul_digs (const mp_int
* a
, const mp_int
* b
, mp_int
* c
, int digs
)
606 int olduse
, res
, pa
, ix
, iz
;
607 mp_digit W
[MP_WARRAY
];
610 /* grow the destination as required */
611 if (c
->alloc
< digs
) {
612 if ((res
= mp_grow (c
, digs
)) != MP_OKAY
) {
617 /* number of output digits to produce */
618 pa
= MIN(digs
, a
->used
+ b
->used
);
620 /* clear the carry */
622 for (ix
= 0; ix
<= pa
; ix
++) {
625 mp_digit
*tmpx
, *tmpy
;
627 /* get offsets into the two bignums */
628 ty
= MIN(b
->used
-1, ix
);
631 /* setup temp aliases */
635 /* This is the number of times the loop will iterate, essentially it's
636 while (tx++ < a->used && ty-- >= 0) { ... }
638 iy
= MIN(a
->used
-tx
, ty
+1);
641 for (iz
= 0; iz
< iy
; ++iz
) {
642 _W
+= ((mp_word
)*tmpx
++)*((mp_word
)*tmpy
--);
646 W
[ix
] = ((mp_digit
)_W
) & MP_MASK
;
648 /* make next carry */
649 _W
= _W
>> ((mp_word
)DIGIT_BIT
);
657 register mp_digit
*tmpc
;
659 for (ix
= 0; ix
< digs
; ix
++) {
660 /* now extract the previous digit [below the carry] */
664 /* clear unused digits [that existed in the old copy of c] */
665 for (; ix
< olduse
; ix
++) {
673 /* this is a modified version of fast_s_mul_digs that only produces
674 * output digits *above* digs. See the comments for fast_s_mul_digs
675 * to see how it works.
677 * This is used in the Barrett reduction since for one of the multiplications
678 * only the higher digits were needed. This essentially halves the work.
680 * Based on Algorithm 14.12 on pp.595 of HAC.
683 fast_s_mp_mul_high_digs (const mp_int
* a
, const mp_int
* b
, mp_int
* c
, int digs
)
685 int olduse
, res
, pa
, ix
, iz
;
686 mp_digit W
[MP_WARRAY
];
689 /* grow the destination as required */
690 pa
= a
->used
+ b
->used
;
692 if ((res
= mp_grow (c
, pa
)) != MP_OKAY
) {
697 /* number of output digits to produce */
698 pa
= a
->used
+ b
->used
;
700 for (ix
= digs
; ix
<= pa
; ix
++) {
702 mp_digit
*tmpx
, *tmpy
;
704 /* get offsets into the two bignums */
705 ty
= MIN(b
->used
-1, ix
);
708 /* setup temp aliases */
712 /* This is the number of times the loop will iterate, essentially it's
713 while (tx++ < a->used && ty-- >= 0) { ... }
715 iy
= MIN(a
->used
-tx
, ty
+1);
718 for (iz
= 0; iz
< iy
; iz
++) {
719 _W
+= ((mp_word
)*tmpx
++)*((mp_word
)*tmpy
--);
723 W
[ix
] = ((mp_digit
)_W
) & MP_MASK
;
725 /* make next carry */
726 _W
= _W
>> ((mp_word
)DIGIT_BIT
);
734 register mp_digit
*tmpc
;
737 for (ix
= digs
; ix
<= pa
; ix
++) {
738 /* now extract the previous digit [below the carry] */
742 /* clear unused digits [that existed in the old copy of c] */
743 for (; ix
< olduse
; ix
++) {
753 * This is the comba method where the columns of the product
754 * are computed first then the carries are computed. This
755 * has the effect of making a very simple inner loop that
756 * is executed the most
758 * W2 represents the outer products and W the inner.
760 * A further optimizations is made because the inner
761 * products are of the form "A * B * 2". The *2 part does
762 * not need to be computed until the end which is good
763 * because 64-bit shifts are slow!
765 * Based on Algorithm 14.16 on pp.597 of HAC.
768 /* the jist of squaring...
770 you do like mult except the offset of the tmpx [one that starts closer to zero]
771 can't equal the offset of tmpy. So basically you set up iy like before then you min it with
772 (ty-tx) so that it never happens. You double all those you add in the inner loop
774 After that loop you do the squares and add them in.
776 Remove W2 and don't memset W
780 static int fast_s_mp_sqr (const mp_int
* a
, mp_int
* b
)
782 int olduse
, res
, pa
, ix
, iz
;
783 mp_digit W
[MP_WARRAY
], *tmpx
;
786 /* grow the destination as required */
787 pa
= a
->used
+ a
->used
;
789 if ((res
= mp_grow (b
, pa
)) != MP_OKAY
) {
794 /* number of output digits to produce */
796 for (ix
= 0; ix
<= pa
; ix
++) {
804 /* get offsets into the two bignums */
805 ty
= MIN(a
->used
-1, ix
);
808 /* setup temp aliases */
812 /* This is the number of times the loop will iterate, essentially it's
813 while (tx++ < a->used && ty-- >= 0) { ... }
815 iy
= MIN(a
->used
-tx
, ty
+1);
817 /* now for squaring tx can never equal ty
818 * we halve the distance since they approach at a rate of 2x
819 * and we have to round because odd cases need to be executed
821 iy
= MIN(iy
, (ty
-tx
+1)>>1);
824 for (iz
= 0; iz
< iy
; iz
++) {
825 _W
+= ((mp_word
)*tmpx
++)*((mp_word
)*tmpy
--);
828 /* double the inner product and add carry */
831 /* even columns have the square term in them */
833 _W
+= ((mp_word
)a
->dp
[ix
>>1])*((mp_word
)a
->dp
[ix
>>1]);
839 /* make next carry */
840 W1
= _W
>> ((mp_word
)DIGIT_BIT
);
845 b
->used
= a
->used
+a
->used
;
850 for (ix
= 0; ix
< pa
; ix
++) {
851 *tmpb
++ = W
[ix
] & MP_MASK
;
854 /* clear unused digits [that existed in the old copy of c] */
855 for (; ix
< olduse
; ix
++) {
865 * Simple algorithm which zeroes the int, grows it then just sets one bit
869 mp_2expt (mp_int
* a
, int b
)
873 /* zero a as per default */
876 /* grow a to accommodate the single bit */
877 if ((res
= mp_grow (a
, b
/ DIGIT_BIT
+ 1)) != MP_OKAY
) {
881 /* set the used count of where the bit will go */
882 a
->used
= b
/ DIGIT_BIT
+ 1;
884 /* put the single bit in its place */
885 a
->dp
[b
/ DIGIT_BIT
] = ((mp_digit
)1) << (b
% DIGIT_BIT
);
890 /* high level addition (handles signs) */
891 int mp_add (mp_int
* a
, mp_int
* b
, mp_int
* c
)
895 /* get sign of both inputs */
899 /* handle two cases, not four */
901 /* both positive or both negative */
902 /* add their magnitudes, copy the sign */
904 res
= s_mp_add (a
, b
, c
);
906 /* one positive, the other negative */
907 /* subtract the one with the greater magnitude from */
908 /* the one of the lesser magnitude. The result gets */
909 /* the sign of the one with the greater magnitude. */
910 if (mp_cmp_mag (a
, b
) == MP_LT
) {
912 res
= s_mp_sub (b
, a
, c
);
915 res
= s_mp_sub (a
, b
, c
);
922 /* single digit addition */
924 mp_add_d (mp_int
* a
, mp_digit b
, mp_int
* c
)
926 int res
, ix
, oldused
;
927 mp_digit
*tmpa
, *tmpc
, mu
;
929 /* grow c as required */
930 if (c
->alloc
< a
->used
+ 1) {
931 if ((res
= mp_grow(c
, a
->used
+ 1)) != MP_OKAY
) {
936 /* if a is negative and |a| >= b, call c = |a| - b */
937 if (a
->sign
== MP_NEG
&& (a
->used
> 1 || a
->dp
[0] >= b
)) {
938 /* temporarily fix sign of a */
942 res
= mp_sub_d(a
, b
, c
);
945 a
->sign
= c
->sign
= MP_NEG
;
950 /* old number of used digits in c */
953 /* sign always positive */
959 /* destination alias */
962 /* if a is positive */
963 if (a
->sign
== MP_ZPOS
) {
964 /* add digit, after this we're propagating
968 mu
= *tmpc
>> DIGIT_BIT
;
971 /* now handle rest of the digits */
972 for (ix
= 1; ix
< a
->used
; ix
++) {
973 *tmpc
= *tmpa
++ + mu
;
974 mu
= *tmpc
>> DIGIT_BIT
;
977 /* set final carry */
982 c
->used
= a
->used
+ 1;
984 /* a was negative and |a| < b */
987 /* the result is a single digit */
989 *tmpc
++ = b
- a
->dp
[0];
994 /* setup count so the clearing of oldused
995 * can fall through correctly
1000 /* now zero to oldused */
1001 while (ix
++ < oldused
) {
1009 /* trim unused digits
1011 * This is used to ensure that leading zero digits are
1012 * trimmed and the leading "used" digit will be non-zero
1013 * Typically very fast. Also fixes the sign if there
1014 * are no more leading digits
1017 mp_clamp (mp_int
* a
)
1019 /* decrease used while the most significant digit is
1022 while (a
->used
> 0 && a
->dp
[a
->used
- 1] == 0) {
1026 /* reset the sign flag if used == 0 */
1032 void mp_clear_multi(mp_int
*mp
, ...)
1034 mp_int
* next_mp
= mp
;
1037 while (next_mp
!= NULL
) {
1039 next_mp
= va_arg(args
, mp_int
*);
1044 /* compare two ints (signed)*/
1046 mp_cmp (const mp_int
* a
, const mp_int
* b
)
1048 /* compare based on sign */
1049 if (a
->sign
!= b
->sign
) {
1050 if (a
->sign
== MP_NEG
) {
1057 /* compare digits */
1058 if (a
->sign
== MP_NEG
) {
1059 /* if negative compare opposite direction */
1060 return mp_cmp_mag(b
, a
);
1062 return mp_cmp_mag(a
, b
);
1066 /* compare a digit */
1067 int mp_cmp_d(const mp_int
* a
, mp_digit b
)
1069 /* compare based on sign */
1070 if (a
->sign
== MP_NEG
) {
1074 /* compare based on magnitude */
1079 /* compare the only digit of a to b */
1082 } else if (a
->dp
[0] < b
) {
1089 /* compare maginitude of two ints (unsigned) */
1090 int mp_cmp_mag (const mp_int
* a
, const mp_int
* b
)
1093 mp_digit
*tmpa
, *tmpb
;
1095 /* compare based on # of non-zero digits */
1096 if (a
->used
> b
->used
) {
1100 if (a
->used
< b
->used
) {
1105 tmpa
= a
->dp
+ (a
->used
- 1);
1108 tmpb
= b
->dp
+ (a
->used
- 1);
1110 /* compare based on digits */
1111 for (n
= 0; n
< a
->used
; ++n
, --tmpa
, --tmpb
) {
1112 if (*tmpa
> *tmpb
) {
1116 if (*tmpa
< *tmpb
) {
1123 static const int lnz
[16] = {
1124 4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0
1127 /* Counts the number of lsbs which are zero before the first zero bit */
1128 int mp_cnt_lsb(const mp_int
*a
)
1134 if (mp_iszero(a
) == 1) {
1138 /* scan lower digits until non-zero */
1139 for (x
= 0; x
< a
->used
&& a
->dp
[x
] == 0; x
++);
1143 /* now scan this digit until a 1 is found */
1156 mp_copy (const mp_int
* a
, mp_int
* b
)
1160 /* if dst == src do nothing */
1166 if (b
->alloc
< a
->used
) {
1167 if ((res
= mp_grow (b
, a
->used
)) != MP_OKAY
) {
1172 /* zero b and copy the parameters over */
1174 register mp_digit
*tmpa
, *tmpb
;
1176 /* pointer aliases */
1184 /* copy all the digits */
1185 for (n
= 0; n
< a
->used
; n
++) {
1189 /* clear high digits */
1190 for (; n
< b
->used
; n
++) {
1195 /* copy used count and sign */
1201 /* returns the number of bits in an int */
1203 mp_count_bits (const mp_int
* a
)
1213 /* get number of digits and add that */
1214 r
= (a
->used
- 1) * DIGIT_BIT
;
1216 /* take the last digit and count the bits in it */
1217 q
= a
->dp
[a
->used
- 1];
1220 q
>>= ((mp_digit
) 1);
1225 /* calc a value mod 2**b */
1227 mp_mod_2d (const mp_int
* a
, int b
, mp_int
* c
)
1231 /* if b is <= 0 then zero the int */
1237 /* if the modulus is larger than the value than return */
1238 if (b
> a
->used
* DIGIT_BIT
) {
1239 res
= mp_copy (a
, c
);
1244 if ((res
= mp_copy (a
, c
)) != MP_OKAY
) {
1248 /* zero digits above the last digit of the modulus */
1249 for (x
= (b
/ DIGIT_BIT
) + ((b
% DIGIT_BIT
) == 0 ? 0 : 1); x
< c
->used
; x
++) {
1252 /* clear the digit that is not completely outside/inside the modulus */
1253 c
->dp
[b
/ DIGIT_BIT
] &= (1 << ((mp_digit
)b
% DIGIT_BIT
)) - 1;
1258 /* shift right a certain amount of digits */
1259 static void mp_rshd (mp_int
* a
, int b
)
1263 /* if b <= 0 then ignore it */
1268 /* if b > used then simply zero it and return */
1275 register mp_digit
*bottom
, *top
;
1277 /* shift the digits down */
1282 /* top [offset into digits] */
1285 /* this is implemented as a sliding window where
1286 * the window is b-digits long and digits from
1287 * the top of the window are copied to the bottom
1291 b-2 | b-1 | b0 | b1 | b2 | ... | bb | ---->
1293 \-------------------/ ---->
1295 for (x
= 0; x
< (a
->used
- b
); x
++) {
1299 /* zero the top digits */
1300 for (; x
< a
->used
; x
++) {
1305 /* remove excess digits */
1309 /* shift right by a certain bit count (store quotient in c, optional remainder in d) */
1310 static int mp_div_2d (const mp_int
* a
, int b
, mp_int
* c
, mp_int
* d
)
1317 /* if the shift count is <= 0 then we do no work */
1319 res
= mp_copy (a
, c
);
1326 if ((res
= mp_init (&t
)) != MP_OKAY
) {
1330 /* get the remainder */
1332 if ((res
= mp_mod_2d (a
, b
, &t
)) != MP_OKAY
) {
1339 if ((res
= mp_copy (a
, c
)) != MP_OKAY
) {
1344 /* shift by as many digits in the bit count */
1345 if (b
>= DIGIT_BIT
) {
1346 mp_rshd (c
, b
/ DIGIT_BIT
);
1349 /* shift any bit count < DIGIT_BIT */
1350 D
= (mp_digit
) (b
% DIGIT_BIT
);
1352 register mp_digit
*tmpc
, mask
, shift
;
1355 mask
= (((mp_digit
)1) << D
) - 1;
1358 shift
= DIGIT_BIT
- D
;
1361 tmpc
= c
->dp
+ (c
->used
- 1);
1365 for (x
= c
->used
- 1; x
>= 0; x
--) {
1366 /* get the lower bits of this word in a temp */
1369 /* shift the current word and mix in the carry bits from the previous word */
1370 *tmpc
= (*tmpc
>> D
) | (r
<< shift
);
1373 /* set the carry to the carry bits of the current word found above */
1385 /* shift left a certain amount of digits */
1386 static int mp_lshd (mp_int
* a
, int b
)
1390 /* if it's less than zero return */
1395 /* grow to fit the new digits */
1396 if (a
->alloc
< a
->used
+ b
) {
1397 if ((res
= mp_grow (a
, a
->used
+ b
)) != MP_OKAY
) {
1403 register mp_digit
*top
, *bottom
;
1405 /* increment the used by the shift amount then copy upwards */
1409 top
= a
->dp
+ a
->used
- 1;
1412 bottom
= a
->dp
+ a
->used
- 1 - b
;
1414 /* much like mp_rshd this is implemented using a sliding window
1415 * except the window goes the other way around. Copying from
1416 * the bottom to the top. see bn_mp_rshd.c for more info.
1418 for (x
= a
->used
- 1; x
>= b
; x
--) {
1422 /* zero the lower digits */
1424 for (x
= 0; x
< b
; x
++) {
1431 /* shift left by a certain bit count */
1432 static int mp_mul_2d (const mp_int
* a
, int b
, mp_int
* c
)
1439 if ((res
= mp_copy (a
, c
)) != MP_OKAY
) {
1444 if (c
->alloc
< c
->used
+ b
/DIGIT_BIT
+ 1) {
1445 if ((res
= mp_grow (c
, c
->used
+ b
/ DIGIT_BIT
+ 1)) != MP_OKAY
) {
1450 /* shift by as many digits in the bit count */
1451 if (b
>= DIGIT_BIT
) {
1452 if ((res
= mp_lshd (c
, b
/ DIGIT_BIT
)) != MP_OKAY
) {
1457 /* shift any bit count < DIGIT_BIT */
1458 d
= (mp_digit
) (b
% DIGIT_BIT
);
1460 register mp_digit
*tmpc
, shift
, mask
, r
, rr
;
1463 /* bitmask for carries */
1464 mask
= (((mp_digit
)1) << d
) - 1;
1466 /* shift for msbs */
1467 shift
= DIGIT_BIT
- d
;
1474 for (x
= 0; x
< c
->used
; x
++) {
1475 /* get the higher bits of the current word */
1476 rr
= (*tmpc
>> shift
) & mask
;
1478 /* shift the current word and OR in the carry */
1479 *tmpc
= ((*tmpc
<< d
) | r
) & MP_MASK
;
1482 /* set the carry to the carry bits of the current word */
1486 /* set final carry */
1488 c
->dp
[(c
->used
)++] = r
;
1495 /* multiply by a digit */
1497 mp_mul_d (const mp_int
* a
, mp_digit b
, mp_int
* c
)
1499 mp_digit u
, *tmpa
, *tmpc
;
1501 int ix
, res
, olduse
;
1503 /* make sure c is big enough to hold a*b */
1504 if (c
->alloc
< a
->used
+ 1) {
1505 if ((res
= mp_grow (c
, a
->used
+ 1)) != MP_OKAY
) {
1510 /* get the original destinations used count */
1516 /* alias for a->dp [source] */
1519 /* alias for c->dp [dest] */
1525 /* compute columns */
1526 for (ix
= 0; ix
< a
->used
; ix
++) {
1527 /* compute product and carry sum for this term */
1528 r
= ((mp_word
) u
) + ((mp_word
)*tmpa
++) * ((mp_word
)b
);
1530 /* mask off higher bits to get a single digit */
1531 *tmpc
++ = (mp_digit
) (r
& ((mp_word
) MP_MASK
));
1533 /* send carry into next iteration */
1534 u
= (mp_digit
) (r
>> ((mp_word
) DIGIT_BIT
));
1537 /* store final carry [if any] */
1540 /* now zero digits above the top */
1541 while (ix
++ < olduse
) {
1545 /* set used count */
1546 c
->used
= a
->used
+ 1;
1552 /* integer signed division.
1553 * c*b + d == a [e.g. a/b, c=quotient, d=remainder]
1554 * HAC pp.598 Algorithm 14.20
1556 * Note that the description in HAC is horribly
1557 * incomplete. For example, it doesn't consider
1558 * the case where digits are removed from 'x' in
1559 * the inner loop. It also doesn't consider the
1560 * case that y has fewer than three digits, etc..
1562 * The overall algorithm is as described as
1563 * 14.20 from HAC but fixed to treat these cases.
1565 static int mp_div (const mp_int
* a
, const mp_int
* b
, mp_int
* c
, mp_int
* d
)
1567 mp_int q
, x
, y
, t1
, t2
;
1568 int res
, n
, t
, i
, norm
, neg
;
1570 /* is divisor zero ? */
1571 if (mp_iszero (b
) == 1) {
1575 /* if a < b then q=0, r = a */
1576 if (mp_cmp_mag (a
, b
) == MP_LT
) {
1578 res
= mp_copy (a
, d
);
1588 if ((res
= mp_init_size (&q
, a
->used
+ 2)) != MP_OKAY
) {
1591 q
.used
= a
->used
+ 2;
1593 if ((res
= mp_init (&t1
)) != MP_OKAY
) {
1597 if ((res
= mp_init (&t2
)) != MP_OKAY
) {
1601 if ((res
= mp_init_copy (&x
, a
)) != MP_OKAY
) {
1605 if ((res
= mp_init_copy (&y
, b
)) != MP_OKAY
) {
1610 neg
= (a
->sign
== b
->sign
) ? MP_ZPOS
: MP_NEG
;
1611 x
.sign
= y
.sign
= MP_ZPOS
;
1613 /* normalize both x and y, ensure that y >= b/2, [b == 2**DIGIT_BIT] */
1614 norm
= mp_count_bits(&y
) % DIGIT_BIT
;
1615 if (norm
< DIGIT_BIT
-1) {
1616 norm
= (DIGIT_BIT
-1) - norm
;
1617 if ((res
= mp_mul_2d (&x
, norm
, &x
)) != MP_OKAY
) {
1620 if ((res
= mp_mul_2d (&y
, norm
, &y
)) != MP_OKAY
) {
1627 /* note hac does 0 based, so if used==5 then it's 0,1,2,3,4, e.g. use 4 */
1631 /* while (x >= y*b**n-t) do { q[n-t] += 1; x -= y*b**{n-t} } */
1632 if ((res
= mp_lshd (&y
, n
- t
)) != MP_OKAY
) { /* y = y*b**{n-t} */
1636 while (mp_cmp (&x
, &y
) != MP_LT
) {
1638 if ((res
= mp_sub (&x
, &y
, &x
)) != MP_OKAY
) {
1643 /* reset y by shifting it back down */
1644 mp_rshd (&y
, n
- t
);
1646 /* step 3. for i from n down to (t + 1) */
1647 for (i
= n
; i
>= (t
+ 1); i
--) {
1652 /* step 3.1 if xi == yt then set q{i-t-1} to b-1,
1653 * otherwise set q{i-t-1} to (xi*b + x{i-1})/yt */
1654 if (x
.dp
[i
] == y
.dp
[t
]) {
1655 q
.dp
[i
- t
- 1] = ((((mp_digit
)1) << DIGIT_BIT
) - 1);
1658 tmp
= ((mp_word
) x
.dp
[i
]) << ((mp_word
) DIGIT_BIT
);
1659 tmp
|= ((mp_word
) x
.dp
[i
- 1]);
1660 tmp
/= ((mp_word
) y
.dp
[t
]);
1661 if (tmp
> (mp_word
) MP_MASK
)
1663 q
.dp
[i
- t
- 1] = (mp_digit
) (tmp
& (mp_word
) (MP_MASK
));
1666 /* while (q{i-t-1} * (yt * b + y{t-1})) >
1667 xi * b**2 + xi-1 * b + xi-2
1671 q
.dp
[i
- t
- 1] = (q
.dp
[i
- t
- 1] + 1) & MP_MASK
;
1673 q
.dp
[i
- t
- 1] = (q
.dp
[i
- t
- 1] - 1) & MP_MASK
;
1675 /* find left hand */
1677 t1
.dp
[0] = (t
- 1 < 0) ? 0 : y
.dp
[t
- 1];
1680 if ((res
= mp_mul_d (&t1
, q
.dp
[i
- t
- 1], &t1
)) != MP_OKAY
) {
1684 /* find right hand */
1685 t2
.dp
[0] = (i
- 2 < 0) ? 0 : x
.dp
[i
- 2];
1686 t2
.dp
[1] = (i
- 1 < 0) ? 0 : x
.dp
[i
- 1];
1689 } while (mp_cmp_mag(&t1
, &t2
) == MP_GT
);
1691 /* step 3.3 x = x - q{i-t-1} * y * b**{i-t-1} */
1692 if ((res
= mp_mul_d (&y
, q
.dp
[i
- t
- 1], &t1
)) != MP_OKAY
) {
1696 if ((res
= mp_lshd (&t1
, i
- t
- 1)) != MP_OKAY
) {
1700 if ((res
= mp_sub (&x
, &t1
, &x
)) != MP_OKAY
) {
1704 /* if x < 0 then { x = x + y*b**{i-t-1}; q{i-t-1} -= 1; } */
1705 if (x
.sign
== MP_NEG
) {
1706 if ((res
= mp_copy (&y
, &t1
)) != MP_OKAY
) {
1709 if ((res
= mp_lshd (&t1
, i
- t
- 1)) != MP_OKAY
) {
1712 if ((res
= mp_add (&x
, &t1
, &x
)) != MP_OKAY
) {
1716 q
.dp
[i
- t
- 1] = (q
.dp
[i
- t
- 1] - 1UL) & MP_MASK
;
1720 /* now q is the quotient and x is the remainder
1721 * [which we have to normalize]
1724 /* get sign before writing to c */
1725 x
.sign
= x
.used
== 0 ? MP_ZPOS
: a
->sign
;
1734 mp_div_2d (&x
, norm
, &x
, NULL
);
1742 __T2
:mp_clear (&t2
);
1743 __T1
:mp_clear (&t1
);
1748 static BOOL
s_is_power_of_two(mp_digit b
, int *p
)
1752 for (x
= 1; x
< DIGIT_BIT
; x
++) {
1753 if (b
== (((mp_digit
)1)<<x
)) {
1761 /* single digit division (based on routine from MPI) */
1762 static int mp_div_d (const mp_int
* a
, mp_digit b
, mp_int
* c
, mp_digit
* d
)
1769 /* cannot divide by zero */
1775 if (b
== 1 || mp_iszero(a
) == 1) {
1780 return mp_copy(a
, c
);
1785 /* power of two ? */
1786 if (s_is_power_of_two(b
, &ix
)) {
1788 *d
= a
->dp
[0] & ((((mp_digit
)1)<<ix
) - 1);
1791 return mp_div_2d(a
, ix
, c
, NULL
);
1796 /* no easy answer [c'est la vie]. Just division */
1797 if ((res
= mp_init_size(&q
, a
->used
)) != MP_OKAY
) {
1804 for (ix
= a
->used
- 1; ix
>= 0; ix
--) {
1805 w
= (w
<< ((mp_word
)DIGIT_BIT
)) | ((mp_word
)a
->dp
[ix
]);
1808 t
= (mp_digit
)(w
/ b
);
1809 w
-= ((mp_word
)t
) * ((mp_word
)b
);
1829 /* reduce "x" in place modulo "n" using the Diminished Radix algorithm.
1831 * Based on algorithm from the paper
1833 * "Generating Efficient Primes for Discrete Log Cryptosystems"
1834 * Chae Hoon Lim, Pil Loong Lee,
1835 * POSTECH Information Research Laboratories
1837 * The modulus must be of a special format [see manual]
1839 * Has been modified to use algorithm 7.10 from the LTM book instead
1841 * Input x must be in the range 0 <= x <= (n-1)**2
1844 mp_dr_reduce (mp_int
* x
, const mp_int
* n
, mp_digit k
)
1848 mp_digit mu
, *tmpx1
, *tmpx2
;
1850 /* m = digits in modulus */
1853 /* ensure that "x" has at least 2m digits */
1854 if (x
->alloc
< m
+ m
) {
1855 if ((err
= mp_grow (x
, m
+ m
)) != MP_OKAY
) {
1860 /* top of loop, this is where the code resumes if
1861 * another reduction pass is required.
1864 /* aliases for digits */
1865 /* alias for lower half of x */
1868 /* alias for upper half of x, or x/B**m */
1871 /* set carry to zero */
1874 /* compute (x mod B**m) + k * [x/B**m] inline and inplace */
1875 for (i
= 0; i
< m
; i
++) {
1876 r
= ((mp_word
)*tmpx2
++) * ((mp_word
)k
) + *tmpx1
+ mu
;
1877 *tmpx1
++ = (mp_digit
)(r
& MP_MASK
);
1878 mu
= (mp_digit
)(r
>> ((mp_word
)DIGIT_BIT
));
1881 /* set final carry */
1884 /* zero words above m */
1885 for (i
= m
+ 1; i
< x
->used
; i
++) {
1889 /* clamp, sub and return */
1892 /* if x >= n then subtract and reduce again
1893 * Each successive "recursion" makes the input smaller and smaller.
1895 if (mp_cmp_mag (x
, n
) != MP_LT
) {
1902 /* sets the value of "d" required for mp_dr_reduce */
1903 static void mp_dr_setup(const mp_int
*a
, mp_digit
*d
)
1905 /* the casts are required if DIGIT_BIT is one less than
1906 * the number of bits in a mp_digit [e.g. DIGIT_BIT==31]
1908 *d
= (mp_digit
)((((mp_word
)1) << ((mp_word
)DIGIT_BIT
)) -
1909 ((mp_word
)a
->dp
[0]));
1912 /* this is a shell function that calls either the normal or Montgomery
1913 * exptmod functions. Originally the call to the montgomery code was
1914 * embedded in the normal function but that wasted a lot of stack space
1915 * for nothing (since 99% of the time the Montgomery code would be called)
1917 int mp_exptmod (const mp_int
* G
, const mp_int
* X
, mp_int
* P
, mp_int
* Y
)
1921 /* modulus P must be positive */
1922 if (P
->sign
== MP_NEG
) {
1926 /* if exponent X is negative we have to recurse */
1927 if (X
->sign
== MP_NEG
) {
1931 /* first compute 1/G mod P */
1932 if ((err
= mp_init(&tmpG
)) != MP_OKAY
) {
1935 if ((err
= mp_invmod(G
, P
, &tmpG
)) != MP_OKAY
) {
1941 if ((err
= mp_init(&tmpX
)) != MP_OKAY
) {
1945 if ((err
= mp_abs(X
, &tmpX
)) != MP_OKAY
) {
1946 mp_clear_multi(&tmpG
, &tmpX
, NULL
);
1950 /* and now compute (1/G)**|X| instead of G**X [X < 0] */
1951 err
= mp_exptmod(&tmpG
, &tmpX
, P
, Y
);
1952 mp_clear_multi(&tmpG
, &tmpX
, NULL
);
1958 /* if the modulus is odd use the fast method */
1959 if (mp_isodd (P
) == 1) {
1960 return mp_exptmod_fast (G
, X
, P
, Y
, dr
);
1962 /* otherwise use the generic Barrett reduction technique */
1963 return s_mp_exptmod (G
, X
, P
, Y
);
1967 /* computes Y == G**X mod P, HAC pp.616, Algorithm 14.85
1969 * Uses a left-to-right k-ary sliding window to compute the modular exponentiation.
1970 * The value of k changes based on the size of the exponent.
1972 * Uses Montgomery or Diminished Radix reduction [whichever appropriate]
1976 mp_exptmod_fast (const mp_int
* G
, const mp_int
* X
, mp_int
* P
, mp_int
* Y
, int redmode
)
1980 int err
, bitbuf
, bitcpy
, bitcnt
, mode
, digidx
, x
, y
, winsize
;
1982 /* use a pointer to the reduction algorithm. This allows us to use
1983 * one of many reduction algorithms without modding the guts of
1984 * the code with if statements everywhere.
1986 int (*redux
)(mp_int
*,const mp_int
*,mp_digit
);
1988 /* find window size */
1989 x
= mp_count_bits (X
);
1992 } else if (x
<= 36) {
1994 } else if (x
<= 140) {
1996 } else if (x
<= 450) {
1998 } else if (x
<= 1303) {
2000 } else if (x
<= 3529) {
2007 /* init first cell */
2008 if ((err
= mp_init(&M
[1])) != MP_OKAY
) {
2012 /* now init the second half of the array */
2013 for (x
= 1<<(winsize
-1); x
< (1 << winsize
); x
++) {
2014 if ((err
= mp_init(&M
[x
])) != MP_OKAY
) {
2015 for (y
= 1<<(winsize
-1); y
< x
; y
++) {
2023 /* determine and setup reduction code */
2025 /* now setup montgomery */
2026 if ((err
= mp_montgomery_setup (P
, &mp
)) != MP_OKAY
) {
2030 /* automatically pick the comba one if available (saves quite a few calls/ifs) */
2031 if (((P
->used
* 2 + 1) < MP_WARRAY
) &&
2032 P
->used
< (1 << ((CHAR_BIT
* sizeof (mp_word
)) - (2 * DIGIT_BIT
)))) {
2033 redux
= fast_mp_montgomery_reduce
;
2035 /* use slower baseline Montgomery method */
2036 redux
= mp_montgomery_reduce
;
2038 } else if (redmode
== 1) {
2039 /* setup DR reduction for moduli of the form B**k - b */
2040 mp_dr_setup(P
, &mp
);
2041 redux
= mp_dr_reduce
;
2043 /* setup DR reduction for moduli of the form 2**k - b */
2044 if ((err
= mp_reduce_2k_setup(P
, &mp
)) != MP_OKAY
) {
2047 redux
= mp_reduce_2k
;
2051 if ((err
= mp_init (&res
)) != MP_OKAY
) {
2059 * The first half of the table is not computed though accept for M[0] and M[1]
2063 /* now we need R mod m */
2064 if ((err
= mp_montgomery_calc_normalization (&res
, P
)) != MP_OKAY
) {
2068 /* now set M[1] to G * R mod m */
2069 if ((err
= mp_mulmod (G
, &res
, P
, &M
[1])) != MP_OKAY
) {
2074 if ((err
= mp_mod(G
, P
, &M
[1])) != MP_OKAY
) {
2079 /* compute the value at M[1<<(winsize-1)] by squaring M[1] (winsize-1) times */
2080 if ((err
= mp_copy (&M
[1], &M
[1 << (winsize
- 1)])) != MP_OKAY
) {
2084 for (x
= 0; x
< (winsize
- 1); x
++) {
2085 if ((err
= mp_sqr (&M
[1 << (winsize
- 1)], &M
[1 << (winsize
- 1)])) != MP_OKAY
) {
2088 if ((err
= redux (&M
[1 << (winsize
- 1)], P
, mp
)) != MP_OKAY
) {
2093 /* create upper table */
2094 for (x
= (1 << (winsize
- 1)) + 1; x
< (1 << winsize
); x
++) {
2095 if ((err
= mp_mul (&M
[x
- 1], &M
[1], &M
[x
])) != MP_OKAY
) {
2098 if ((err
= redux (&M
[x
], P
, mp
)) != MP_OKAY
) {
2103 /* set initial mode and bit cnt */
2107 digidx
= X
->used
- 1;
2112 /* grab next digit as required */
2113 if (--bitcnt
== 0) {
2114 /* if digidx == -1 we are out of digits so break */
2118 /* read next digit and reset bitcnt */
2119 buf
= X
->dp
[digidx
--];
2123 /* grab the next msb from the exponent */
2124 y
= (buf
>> (DIGIT_BIT
- 1)) & 1;
2125 buf
<<= (mp_digit
)1;
2127 /* if the bit is zero and mode == 0 then we ignore it
2128 * These represent the leading zero bits before the first 1 bit
2129 * in the exponent. Technically this opt is not required but it
2130 * does lower the # of trivial squaring/reductions used
2132 if (mode
== 0 && y
== 0) {
2136 /* if the bit is zero and mode == 1 then we square */
2137 if (mode
== 1 && y
== 0) {
2138 if ((err
= mp_sqr (&res
, &res
)) != MP_OKAY
) {
2141 if ((err
= redux (&res
, P
, mp
)) != MP_OKAY
) {
2147 /* else we add it to the window */
2148 bitbuf
|= (y
<< (winsize
- ++bitcpy
));
2151 if (bitcpy
== winsize
) {
2152 /* ok window is filled so square as required and multiply */
2154 for (x
= 0; x
< winsize
; x
++) {
2155 if ((err
= mp_sqr (&res
, &res
)) != MP_OKAY
) {
2158 if ((err
= redux (&res
, P
, mp
)) != MP_OKAY
) {
2164 if ((err
= mp_mul (&res
, &M
[bitbuf
], &res
)) != MP_OKAY
) {
2167 if ((err
= redux (&res
, P
, mp
)) != MP_OKAY
) {
2171 /* empty window and reset */
2178 /* if bits remain then square/multiply */
2179 if (mode
== 2 && bitcpy
> 0) {
2180 /* square then multiply if the bit is set */
2181 for (x
= 0; x
< bitcpy
; x
++) {
2182 if ((err
= mp_sqr (&res
, &res
)) != MP_OKAY
) {
2185 if ((err
= redux (&res
, P
, mp
)) != MP_OKAY
) {
2189 /* get next bit of the window */
2191 if ((bitbuf
& (1 << winsize
)) != 0) {
2193 if ((err
= mp_mul (&res
, &M
[1], &res
)) != MP_OKAY
) {
2196 if ((err
= redux (&res
, P
, mp
)) != MP_OKAY
) {
2204 /* fixup result if Montgomery reduction is used
2205 * recall that any value in a Montgomery system is
2206 * actually multiplied by R mod n. So we have
2207 * to reduce one more time to cancel out the factor
2210 if ((err
= redux(&res
, P
, mp
)) != MP_OKAY
) {
2215 /* swap res with Y */
2218 __RES
:mp_clear (&res
);
2221 for (x
= 1<<(winsize
-1); x
< (1 << winsize
); x
++) {
2227 /* Greatest Common Divisor using the binary method */
2228 int mp_gcd (const mp_int
* a
, const mp_int
* b
, mp_int
* c
)
2231 int k
, u_lsb
, v_lsb
, res
;
2233 /* either zero than gcd is the largest */
2234 if (mp_iszero (a
) == 1 && mp_iszero (b
) == 0) {
2235 return mp_abs (b
, c
);
2237 if (mp_iszero (a
) == 0 && mp_iszero (b
) == 1) {
2238 return mp_abs (a
, c
);
2241 /* optimized. At this point if a == 0 then
2242 * b must equal zero too
2244 if (mp_iszero (a
) == 1) {
2249 /* get copies of a and b we can modify */
2250 if ((res
= mp_init_copy (&u
, a
)) != MP_OKAY
) {
2254 if ((res
= mp_init_copy (&v
, b
)) != MP_OKAY
) {
2258 /* must be positive for the remainder of the algorithm */
2259 u
.sign
= v
.sign
= MP_ZPOS
;
2261 /* B1. Find the common power of two for u and v */
2262 u_lsb
= mp_cnt_lsb(&u
);
2263 v_lsb
= mp_cnt_lsb(&v
);
2264 k
= MIN(u_lsb
, v_lsb
);
2267 /* divide the power of two out */
2268 if ((res
= mp_div_2d(&u
, k
, &u
, NULL
)) != MP_OKAY
) {
2272 if ((res
= mp_div_2d(&v
, k
, &v
, NULL
)) != MP_OKAY
) {
2277 /* divide any remaining factors of two out */
2279 if ((res
= mp_div_2d(&u
, u_lsb
- k
, &u
, NULL
)) != MP_OKAY
) {
2285 if ((res
= mp_div_2d(&v
, v_lsb
- k
, &v
, NULL
)) != MP_OKAY
) {
2290 while (mp_iszero(&v
) == 0) {
2291 /* make sure v is the largest */
2292 if (mp_cmp_mag(&u
, &v
) == MP_GT
) {
2293 /* swap u and v to make sure v is >= u */
2297 /* subtract smallest from largest */
2298 if ((res
= s_mp_sub(&v
, &u
, &v
)) != MP_OKAY
) {
2302 /* Divide out all factors of two */
2303 if ((res
= mp_div_2d(&v
, mp_cnt_lsb(&v
), &v
, NULL
)) != MP_OKAY
) {
2308 /* multiply by 2**k which we divided out at the beginning */
2309 if ((res
= mp_mul_2d (&u
, k
, c
)) != MP_OKAY
) {
2319 /* get the lower 32-bits of an mp_int */
2320 unsigned long mp_get_int(const mp_int
* a
)
2329 /* get number of digits of the lsb we have to read */
2330 i
= MIN(a
->used
,(int)((sizeof(unsigned long)*CHAR_BIT
+DIGIT_BIT
-1)/DIGIT_BIT
))-1;
2332 /* get most significant digit of result */
2336 res
= (res
<< DIGIT_BIT
) | DIGIT(a
,i
);
2339 /* force result to 32-bits always so it is consistent on non 32-bit platforms */
2340 return res
& 0xFFFFFFFFUL
;
2343 /* creates "a" then copies b into it */
2344 int mp_init_copy (mp_int
* a
, const mp_int
* b
)
2348 if ((res
= mp_init (a
)) != MP_OKAY
) {
2351 return mp_copy (b
, a
);
2354 int mp_init_multi(mp_int
*mp
, ...)
2356 mp_err res
= MP_OKAY
; /* Assume ok until proven otherwise */
2357 int n
= 0; /* Number of ok inits */
2358 mp_int
* cur_arg
= mp
;
2361 va_start(args
, mp
); /* init args to next argument from caller */
2362 while (cur_arg
!= NULL
) {
2363 if (mp_init(cur_arg
) != MP_OKAY
) {
2364 /* Oops - error! Back-track and mp_clear what we already
2365 succeeded in init-ing, then return error.
2369 /* now start cleaning up */
2371 va_start(clean_args
, mp
);
2374 cur_arg
= va_arg(clean_args
, mp_int
*);
2381 cur_arg
= va_arg(args
, mp_int
*);
2384 return res
; /* Assumed ok, if error flagged above. */
2387 /* hac 14.61, pp608 */
2388 int mp_invmod (const mp_int
* a
, mp_int
* b
, mp_int
* c
)
2390 /* b cannot be negative */
2391 if (b
->sign
== MP_NEG
|| mp_iszero(b
) == 1) {
2395 /* if the modulus is odd we can use a faster routine instead */
2396 if (mp_isodd (b
) == 1) {
2397 return fast_mp_invmod (a
, b
, c
);
2400 return mp_invmod_slow(a
, b
, c
);
2403 /* hac 14.61, pp608 */
2404 int mp_invmod_slow (const mp_int
* a
, mp_int
* b
, mp_int
* c
)
2406 mp_int x
, y
, u
, v
, A
, B
, C
, D
;
2409 /* b cannot be negative */
2410 if (b
->sign
== MP_NEG
|| mp_iszero(b
) == 1) {
2415 if ((res
= mp_init_multi(&x
, &y
, &u
, &v
,
2416 &A
, &B
, &C
, &D
, NULL
)) != MP_OKAY
) {
2421 if ((res
= mp_copy (a
, &x
)) != MP_OKAY
) {
2424 if ((res
= mp_copy (b
, &y
)) != MP_OKAY
) {
2428 /* 2. [modified] if x,y are both even then return an error! */
2429 if (mp_iseven (&x
) == 1 && mp_iseven (&y
) == 1) {
2434 /* 3. u=x, v=y, A=1, B=0, C=0,D=1 */
2435 if ((res
= mp_copy (&x
, &u
)) != MP_OKAY
) {
2438 if ((res
= mp_copy (&y
, &v
)) != MP_OKAY
) {
2445 /* 4. while u is even do */
2446 while (mp_iseven (&u
) == 1) {
2448 if ((res
= mp_div_2 (&u
, &u
)) != MP_OKAY
) {
2451 /* 4.2 if A or B is odd then */
2452 if (mp_isodd (&A
) == 1 || mp_isodd (&B
) == 1) {
2453 /* A = (A+y)/2, B = (B-x)/2 */
2454 if ((res
= mp_add (&A
, &y
, &A
)) != MP_OKAY
) {
2457 if ((res
= mp_sub (&B
, &x
, &B
)) != MP_OKAY
) {
2461 /* A = A/2, B = B/2 */
2462 if ((res
= mp_div_2 (&A
, &A
)) != MP_OKAY
) {
2465 if ((res
= mp_div_2 (&B
, &B
)) != MP_OKAY
) {
2470 /* 5. while v is even do */
2471 while (mp_iseven (&v
) == 1) {
2473 if ((res
= mp_div_2 (&v
, &v
)) != MP_OKAY
) {
2476 /* 5.2 if C or D is odd then */
2477 if (mp_isodd (&C
) == 1 || mp_isodd (&D
) == 1) {
2478 /* C = (C+y)/2, D = (D-x)/2 */
2479 if ((res
= mp_add (&C
, &y
, &C
)) != MP_OKAY
) {
2482 if ((res
= mp_sub (&D
, &x
, &D
)) != MP_OKAY
) {
2486 /* C = C/2, D = D/2 */
2487 if ((res
= mp_div_2 (&C
, &C
)) != MP_OKAY
) {
2490 if ((res
= mp_div_2 (&D
, &D
)) != MP_OKAY
) {
2495 /* 6. if u >= v then */
2496 if (mp_cmp (&u
, &v
) != MP_LT
) {
2497 /* u = u - v, A = A - C, B = B - D */
2498 if ((res
= mp_sub (&u
, &v
, &u
)) != MP_OKAY
) {
2502 if ((res
= mp_sub (&A
, &C
, &A
)) != MP_OKAY
) {
2506 if ((res
= mp_sub (&B
, &D
, &B
)) != MP_OKAY
) {
2510 /* v - v - u, C = C - A, D = D - B */
2511 if ((res
= mp_sub (&v
, &u
, &v
)) != MP_OKAY
) {
2515 if ((res
= mp_sub (&C
, &A
, &C
)) != MP_OKAY
) {
2519 if ((res
= mp_sub (&D
, &B
, &D
)) != MP_OKAY
) {
2524 /* if not zero goto step 4 */
2525 if (mp_iszero (&u
) == 0)
2528 /* now a = C, b = D, gcd == g*v */
2530 /* if v != 1 then there is no inverse */
2531 if (mp_cmp_d (&v
, 1) != MP_EQ
) {
2536 /* if it's too low */
2537 while (mp_cmp_d(&C
, 0) == MP_LT
) {
2538 if ((res
= mp_add(&C
, b
, &C
)) != MP_OKAY
) {
2544 while (mp_cmp_mag(&C
, b
) != MP_LT
) {
2545 if ((res
= mp_sub(&C
, b
, &C
)) != MP_OKAY
) {
2550 /* C is now the inverse */
2553 __ERR
:mp_clear_multi (&x
, &y
, &u
, &v
, &A
, &B
, &C
, &D
, NULL
);
2557 /* c = |a| * |b| using Karatsuba Multiplication using
2558 * three half size multiplications
2560 * Let B represent the radix [e.g. 2**DIGIT_BIT] and
2561 * let n represent half of the number of digits in
2564 * a = a1 * B**n + a0
2565 * b = b1 * B**n + b0
2568 a1b1 * B**2n + ((a1 - a0)(b1 - b0) + a0b0 + a1b1) * B + a0b0
2570 * Note that a1b1 and a0b0 are used twice and only need to be
2571 * computed once. So in total three half size (half # of
2572 * digit) multiplications are performed, a0b0, a1b1 and
2575 * Note that a multiplication of half the digits requires
2576 * 1/4th the number of single precision multiplications so in
2577 * total after one call 25% of the single precision multiplications
2578 * are saved. Note also that the call to mp_mul can end up back
2579 * in this function if the a0, a1, b0, or b1 are above the threshold.
2580 * This is known as divide-and-conquer and leads to the famous
2581 * O(N**lg(3)) or O(N**1.584) work which is asymptotically lower than
2582 * the standard O(N**2) that the baseline/comba methods use.
2583 * Generally though the overhead of this method doesn't pay off
2584 * until a certain size (N ~ 80) is reached.
2586 int mp_karatsuba_mul (const mp_int
* a
, const mp_int
* b
, mp_int
* c
)
2588 mp_int x0
, x1
, y0
, y1
, t1
, x0y0
, x1y1
;
2591 /* default the return code to an error */
2594 /* min # of digits */
2595 B
= MIN (a
->used
, b
->used
);
2597 /* now divide in two */
2600 /* init copy all the temps */
2601 if (mp_init_size (&x0
, B
) != MP_OKAY
)
2603 if (mp_init_size (&x1
, a
->used
- B
) != MP_OKAY
)
2605 if (mp_init_size (&y0
, B
) != MP_OKAY
)
2607 if (mp_init_size (&y1
, b
->used
- B
) != MP_OKAY
)
2611 if (mp_init_size (&t1
, B
* 2) != MP_OKAY
)
2613 if (mp_init_size (&x0y0
, B
* 2) != MP_OKAY
)
2615 if (mp_init_size (&x1y1
, B
* 2) != MP_OKAY
)
2618 /* now shift the digits */
2619 x0
.used
= y0
.used
= B
;
2620 x1
.used
= a
->used
- B
;
2621 y1
.used
= b
->used
- B
;
2625 register mp_digit
*tmpa
, *tmpb
, *tmpx
, *tmpy
;
2627 /* we copy the digits directly instead of using higher level functions
2628 * since we also need to shift the digits
2635 for (x
= 0; x
< B
; x
++) {
2641 for (x
= B
; x
< a
->used
; x
++) {
2646 for (x
= B
; x
< b
->used
; x
++) {
2651 /* only need to clamp the lower words since by definition the
2652 * upper words x1/y1 must have a known number of digits
2657 /* now calc the products x0y0 and x1y1 */
2658 /* after this x0 is no longer required, free temp [x0==t2]! */
2659 if (mp_mul (&x0
, &y0
, &x0y0
) != MP_OKAY
)
2660 goto X1Y1
; /* x0y0 = x0*y0 */
2661 if (mp_mul (&x1
, &y1
, &x1y1
) != MP_OKAY
)
2662 goto X1Y1
; /* x1y1 = x1*y1 */
2664 /* now calc x1-x0 and y1-y0 */
2665 if (mp_sub (&x1
, &x0
, &t1
) != MP_OKAY
)
2666 goto X1Y1
; /* t1 = x1 - x0 */
2667 if (mp_sub (&y1
, &y0
, &x0
) != MP_OKAY
)
2668 goto X1Y1
; /* t2 = y1 - y0 */
2669 if (mp_mul (&t1
, &x0
, &t1
) != MP_OKAY
)
2670 goto X1Y1
; /* t1 = (x1 - x0) * (y1 - y0) */
2673 if (mp_add (&x0y0
, &x1y1
, &x0
) != MP_OKAY
)
2674 goto X1Y1
; /* t2 = x0y0 + x1y1 */
2675 if (mp_sub (&x0
, &t1
, &t1
) != MP_OKAY
)
2676 goto X1Y1
; /* t1 = x0y0 + x1y1 - (x1-x0)*(y1-y0) */
2679 if (mp_lshd (&t1
, B
) != MP_OKAY
)
2680 goto X1Y1
; /* t1 = (x0y0 + x1y1 - (x1-x0)*(y1-y0))<<B */
2681 if (mp_lshd (&x1y1
, B
* 2) != MP_OKAY
)
2682 goto X1Y1
; /* x1y1 = x1y1 << 2*B */
2684 if (mp_add (&x0y0
, &t1
, &t1
) != MP_OKAY
)
2685 goto X1Y1
; /* t1 = x0y0 + t1 */
2686 if (mp_add (&t1
, &x1y1
, c
) != MP_OKAY
)
2687 goto X1Y1
; /* t1 = x0y0 + t1 + x1y1 */
2689 /* Algorithm succeeded set the return code to MP_OKAY */
2692 X1Y1
:mp_clear (&x1y1
);
2693 X0Y0
:mp_clear (&x0y0
);
2703 /* Karatsuba squaring, computes b = a*a using three
2704 * half size squarings
2706 * See comments of karatsuba_mul for details. It
2707 * is essentially the same algorithm but merely
2708 * tuned to perform recursive squarings.
2710 int mp_karatsuba_sqr (const mp_int
* a
, mp_int
* b
)
2712 mp_int x0
, x1
, t1
, t2
, x0x0
, x1x1
;
2717 /* min # of digits */
2720 /* now divide in two */
2723 /* init copy all the temps */
2724 if (mp_init_size (&x0
, B
) != MP_OKAY
)
2726 if (mp_init_size (&x1
, a
->used
- B
) != MP_OKAY
)
2730 if (mp_init_size (&t1
, a
->used
* 2) != MP_OKAY
)
2732 if (mp_init_size (&t2
, a
->used
* 2) != MP_OKAY
)
2734 if (mp_init_size (&x0x0
, B
* 2) != MP_OKAY
)
2736 if (mp_init_size (&x1x1
, (a
->used
- B
) * 2) != MP_OKAY
)
2741 register mp_digit
*dst
, *src
;
2745 /* now shift the digits */
2747 for (x
= 0; x
< B
; x
++) {
2752 for (x
= B
; x
< a
->used
; x
++) {
2758 x1
.used
= a
->used
- B
;
2762 /* now calc the products x0*x0 and x1*x1 */
2763 if (mp_sqr (&x0
, &x0x0
) != MP_OKAY
)
2764 goto X1X1
; /* x0x0 = x0*x0 */
2765 if (mp_sqr (&x1
, &x1x1
) != MP_OKAY
)
2766 goto X1X1
; /* x1x1 = x1*x1 */
2768 /* now calc (x1-x0)**2 */
2769 if (mp_sub (&x1
, &x0
, &t1
) != MP_OKAY
)
2770 goto X1X1
; /* t1 = x1 - x0 */
2771 if (mp_sqr (&t1
, &t1
) != MP_OKAY
)
2772 goto X1X1
; /* t1 = (x1 - x0) * (x1 - x0) */
2775 if (s_mp_add (&x0x0
, &x1x1
, &t2
) != MP_OKAY
)
2776 goto X1X1
; /* t2 = x0x0 + x1x1 */
2777 if (mp_sub (&t2
, &t1
, &t1
) != MP_OKAY
)
2778 goto X1X1
; /* t1 = x0x0 + x1x1 - (x1-x0)*(x1-x0) */
2781 if (mp_lshd (&t1
, B
) != MP_OKAY
)
2782 goto X1X1
; /* t1 = (x0x0 + x1x1 - (x1-x0)*(x1-x0))<<B */
2783 if (mp_lshd (&x1x1
, B
* 2) != MP_OKAY
)
2784 goto X1X1
; /* x1x1 = x1x1 << 2*B */
2786 if (mp_add (&x0x0
, &t1
, &t1
) != MP_OKAY
)
2787 goto X1X1
; /* t1 = x0x0 + t1 */
2788 if (mp_add (&t1
, &x1x1
, b
) != MP_OKAY
)
2789 goto X1X1
; /* t1 = x0x0 + t1 + x1x1 */
2793 X1X1
:mp_clear (&x1x1
);
2794 X0X0
:mp_clear (&x0x0
);
2803 /* computes least common multiple as |a*b|/(a, b) */
2804 int mp_lcm (const mp_int
* a
, const mp_int
* b
, mp_int
* c
)
2810 if ((res
= mp_init_multi (&t1
, &t2
, NULL
)) != MP_OKAY
) {
2814 /* t1 = get the GCD of the two inputs */
2815 if ((res
= mp_gcd (a
, b
, &t1
)) != MP_OKAY
) {
2819 /* divide the smallest by the GCD */
2820 if (mp_cmp_mag(a
, b
) == MP_LT
) {
2821 /* store quotient in t2 so that t2 * b is the LCM */
2822 if ((res
= mp_div(a
, &t1
, &t2
, NULL
)) != MP_OKAY
) {
2825 res
= mp_mul(b
, &t2
, c
);
2827 /* store quotient in t2 so that t2 * a is the LCM */
2828 if ((res
= mp_div(b
, &t1
, &t2
, NULL
)) != MP_OKAY
) {
2831 res
= mp_mul(a
, &t2
, c
);
2834 /* fix the sign to positive */
2838 mp_clear_multi (&t1
, &t2
, NULL
);
2842 /* c = a mod b, 0 <= c < b */
2844 mp_mod (const mp_int
* a
, mp_int
* b
, mp_int
* c
)
2849 if ((res
= mp_init (&t
)) != MP_OKAY
) {
2853 if ((res
= mp_div (a
, b
, NULL
, &t
)) != MP_OKAY
) {
2858 if (t
.sign
!= b
->sign
) {
2859 res
= mp_add (b
, &t
, c
);
2870 mp_mod_d (const mp_int
* a
, mp_digit b
, mp_digit
* c
)
2872 return mp_div_d(a
, b
, NULL
, c
);
2876 static int mp_mul_2(const mp_int
* a
, mp_int
* b
)
2878 int x
, res
, oldused
;
2880 /* grow to accommodate result */
2881 if (b
->alloc
< a
->used
+ 1) {
2882 if ((res
= mp_grow (b
, a
->used
+ 1)) != MP_OKAY
) {
2891 register mp_digit r
, rr
, *tmpa
, *tmpb
;
2893 /* alias for source */
2896 /* alias for dest */
2901 for (x
= 0; x
< a
->used
; x
++) {
2903 /* get what will be the *next* carry bit from the
2904 * MSB of the current digit
2906 rr
= *tmpa
>> ((mp_digit
)(DIGIT_BIT
- 1));
2908 /* now shift up this digit, add in the carry [from the previous] */
2909 *tmpb
++ = ((*tmpa
++ << ((mp_digit
)1)) | r
) & MP_MASK
;
2911 /* copy the carry that would be from the source
2912 * digit into the next iteration
2917 /* new leading digit? */
2919 /* add a MSB which is always 1 at this point */
2924 /* now zero any excess digits on the destination
2925 * that we didn't write to
2927 tmpb
= b
->dp
+ b
->used
;
2928 for (x
= b
->used
; x
< oldused
; x
++) {
2937 * shifts with subtractions when the result is greater than b.
2939 * The method is slightly modified to shift B unconditionally up to just under
2940 * the leading bit of b. This saves a lot of multiple precision shifting.
2942 int mp_montgomery_calc_normalization (mp_int
* a
, const mp_int
* b
)
2946 /* how many bits of last digit does b use */
2947 bits
= mp_count_bits (b
) % DIGIT_BIT
;
2951 if ((res
= mp_2expt (a
, (b
->used
- 1) * DIGIT_BIT
+ bits
- 1)) != MP_OKAY
) {
2960 /* now compute C = A * B mod b */
2961 for (x
= bits
- 1; x
< DIGIT_BIT
; x
++) {
2962 if ((res
= mp_mul_2 (a
, a
)) != MP_OKAY
) {
2965 if (mp_cmp_mag (a
, b
) != MP_LT
) {
2966 if ((res
= s_mp_sub (a
, b
, a
)) != MP_OKAY
) {
2975 /* computes xR**-1 == x (mod N) via Montgomery Reduction */
2977 mp_montgomery_reduce (mp_int
* x
, const mp_int
* n
, mp_digit rho
)
2982 /* can the fast reduction [comba] method be used?
2984 * Note that unlike in mul you're safely allowed *less*
2985 * than the available columns [255 per default] since carries
2986 * are fixed up in the inner loop.
2988 digs
= n
->used
* 2 + 1;
2989 if ((digs
< MP_WARRAY
) &&
2991 (1 << ((CHAR_BIT
* sizeof (mp_word
)) - (2 * DIGIT_BIT
)))) {
2992 return fast_mp_montgomery_reduce (x
, n
, rho
);
2995 /* grow the input as required */
2996 if (x
->alloc
< digs
) {
2997 if ((res
= mp_grow (x
, digs
)) != MP_OKAY
) {
3003 for (ix
= 0; ix
< n
->used
; ix
++) {
3004 /* mu = ai * rho mod b
3006 * The value of rho must be precalculated via
3007 * montgomery_setup() such that
3008 * it equals -1/n0 mod b this allows the
3009 * following inner loop to reduce the
3010 * input one digit at a time
3012 mu
= (mp_digit
) (((mp_word
)x
->dp
[ix
]) * ((mp_word
)rho
) & MP_MASK
);
3014 /* a = a + mu * m * b**i */
3017 register mp_digit
*tmpn
, *tmpx
, u
;
3020 /* alias for digits of the modulus */
3023 /* alias for the digits of x [the input] */
3026 /* set the carry to zero */
3029 /* Multiply and add in place */
3030 for (iy
= 0; iy
< n
->used
; iy
++) {
3031 /* compute product and sum */
3032 r
= ((mp_word
)mu
) * ((mp_word
)*tmpn
++) +
3033 ((mp_word
) u
) + ((mp_word
) * tmpx
);
3036 u
= (mp_digit
)(r
>> ((mp_word
) DIGIT_BIT
));
3039 *tmpx
++ = (mp_digit
)(r
& ((mp_word
) MP_MASK
));
3041 /* At this point the ix'th digit of x should be zero */
3044 /* propagate carries upwards as required*/
3047 u
= *tmpx
>> DIGIT_BIT
;
3053 /* at this point the n.used'th least
3054 * significant digits of x are all zero
3055 * which means we can shift x to the
3056 * right by n.used digits and the
3057 * residue is unchanged.
3060 /* x = x/b**n.used */
3062 mp_rshd (x
, n
->used
);
3064 /* if x >= n then x = x - n */
3065 if (mp_cmp_mag (x
, n
) != MP_LT
) {
3066 return s_mp_sub (x
, n
, x
);
3072 /* setups the montgomery reduction stuff */
3074 mp_montgomery_setup (const mp_int
* n
, mp_digit
* rho
)
3078 /* fast inversion mod 2**k
3080 * Based on the fact that
3082 * XA = 1 (mod 2**n) => (X(2-XA)) A = 1 (mod 2**2n)
3083 * => 2*X*A - X*X*A*A = 1
3084 * => 2*(1) - (1) = 1
3092 x
= (((b
+ 2) & 4) << 1) + b
; /* here x*a==1 mod 2**4 */
3093 x
*= 2 - b
* x
; /* here x*a==1 mod 2**8 */
3094 x
*= 2 - b
* x
; /* here x*a==1 mod 2**16 */
3095 x
*= 2 - b
* x
; /* here x*a==1 mod 2**32 */
3097 /* rho = -1/m mod b */
3098 *rho
= (((mp_word
)1 << ((mp_word
) DIGIT_BIT
)) - x
) & MP_MASK
;
3103 /* high level multiplication (handles sign) */
3104 int mp_mul (const mp_int
* a
, const mp_int
* b
, mp_int
* c
)
3107 neg
= (a
->sign
== b
->sign
) ? MP_ZPOS
: MP_NEG
;
3109 /* use Karatsuba? */
3110 if (MIN (a
->used
, b
->used
) >= KARATSUBA_MUL_CUTOFF
) {
3111 res
= mp_karatsuba_mul (a
, b
, c
);
3114 /* can we use the fast multiplier?
3116 * The fast multiplier can be used if the output will
3117 * have less than MP_WARRAY digits and the number of
3118 * digits won't affect carry propagation
3120 int digs
= a
->used
+ b
->used
+ 1;
3122 if ((digs
< MP_WARRAY
) &&
3123 MIN(a
->used
, b
->used
) <=
3124 (1 << ((CHAR_BIT
* sizeof (mp_word
)) - (2 * DIGIT_BIT
)))) {
3125 res
= fast_s_mp_mul_digs (a
, b
, c
, digs
);
3127 res
= s_mp_mul (a
, b
, c
); /* uses s_mp_mul_digs */
3129 c
->sign
= (c
->used
> 0) ? neg
: MP_ZPOS
;
3133 /* d = a * b (mod c) */
3135 mp_mulmod (const mp_int
* a
, const mp_int
* b
, mp_int
* c
, mp_int
* d
)
3140 if ((res
= mp_init (&t
)) != MP_OKAY
) {
3144 if ((res
= mp_mul (a
, b
, &t
)) != MP_OKAY
) {
3148 res
= mp_mod (&t
, c
, d
);
3153 /* table of first PRIME_SIZE primes */
3154 static const mp_digit __prime_tab
[] = {
3155 0x0002, 0x0003, 0x0005, 0x0007, 0x000B, 0x000D, 0x0011, 0x0013,
3156 0x0017, 0x001D, 0x001F, 0x0025, 0x0029, 0x002B, 0x002F, 0x0035,
3157 0x003B, 0x003D, 0x0043, 0x0047, 0x0049, 0x004F, 0x0053, 0x0059,
3158 0x0061, 0x0065, 0x0067, 0x006B, 0x006D, 0x0071, 0x007F, 0x0083,
3159 0x0089, 0x008B, 0x0095, 0x0097, 0x009D, 0x00A3, 0x00A7, 0x00AD,
3160 0x00B3, 0x00B5, 0x00BF, 0x00C1, 0x00C5, 0x00C7, 0x00D3, 0x00DF,
3161 0x00E3, 0x00E5, 0x00E9, 0x00EF, 0x00F1, 0x00FB, 0x0101, 0x0107,
3162 0x010D, 0x010F, 0x0115, 0x0119, 0x011B, 0x0125, 0x0133, 0x0137,
3164 0x0139, 0x013D, 0x014B, 0x0151, 0x015B, 0x015D, 0x0161, 0x0167,
3165 0x016F, 0x0175, 0x017B, 0x017F, 0x0185, 0x018D, 0x0191, 0x0199,
3166 0x01A3, 0x01A5, 0x01AF, 0x01B1, 0x01B7, 0x01BB, 0x01C1, 0x01C9,
3167 0x01CD, 0x01CF, 0x01D3, 0x01DF, 0x01E7, 0x01EB, 0x01F3, 0x01F7,
3168 0x01FD, 0x0209, 0x020B, 0x021D, 0x0223, 0x022D, 0x0233, 0x0239,
3169 0x023B, 0x0241, 0x024B, 0x0251, 0x0257, 0x0259, 0x025F, 0x0265,
3170 0x0269, 0x026B, 0x0277, 0x0281, 0x0283, 0x0287, 0x028D, 0x0293,
3171 0x0295, 0x02A1, 0x02A5, 0x02AB, 0x02B3, 0x02BD, 0x02C5, 0x02CF,
3173 0x02D7, 0x02DD, 0x02E3, 0x02E7, 0x02EF, 0x02F5, 0x02F9, 0x0301,
3174 0x0305, 0x0313, 0x031D, 0x0329, 0x032B, 0x0335, 0x0337, 0x033B,
3175 0x033D, 0x0347, 0x0355, 0x0359, 0x035B, 0x035F, 0x036D, 0x0371,
3176 0x0373, 0x0377, 0x038B, 0x038F, 0x0397, 0x03A1, 0x03A9, 0x03AD,
3177 0x03B3, 0x03B9, 0x03C7, 0x03CB, 0x03D1, 0x03D7, 0x03DF, 0x03E5,
3178 0x03F1, 0x03F5, 0x03FB, 0x03FD, 0x0407, 0x0409, 0x040F, 0x0419,
3179 0x041B, 0x0425, 0x0427, 0x042D, 0x043F, 0x0443, 0x0445, 0x0449,
3180 0x044F, 0x0455, 0x045D, 0x0463, 0x0469, 0x047F, 0x0481, 0x048B,
3182 0x0493, 0x049D, 0x04A3, 0x04A9, 0x04B1, 0x04BD, 0x04C1, 0x04C7,
3183 0x04CD, 0x04CF, 0x04D5, 0x04E1, 0x04EB, 0x04FD, 0x04FF, 0x0503,
3184 0x0509, 0x050B, 0x0511, 0x0515, 0x0517, 0x051B, 0x0527, 0x0529,
3185 0x052F, 0x0551, 0x0557, 0x055D, 0x0565, 0x0577, 0x0581, 0x058F,
3186 0x0593, 0x0595, 0x0599, 0x059F, 0x05A7, 0x05AB, 0x05AD, 0x05B3,
3187 0x05BF, 0x05C9, 0x05CB, 0x05CF, 0x05D1, 0x05D5, 0x05DB, 0x05E7,
3188 0x05F3, 0x05FB, 0x0607, 0x060D, 0x0611, 0x0617, 0x061F, 0x0623,
3189 0x062B, 0x062F, 0x063D, 0x0641, 0x0647, 0x0649, 0x064D, 0x0653
3192 /* determines if an integers is divisible by one
3193 * of the first PRIME_SIZE primes or not
3195 * sets result to 0 if not, 1 if yes
3197 static int mp_prime_is_divisible (const mp_int
* a
, int *result
)
3202 /* default to not */
3205 for (ix
= 0; ix
< PRIME_SIZE
; ix
++) {
3206 /* what is a mod __prime_tab[ix] */
3207 if ((err
= mp_mod_d (a
, __prime_tab
[ix
], &res
)) != MP_OKAY
) {
3211 /* is the residue zero? */
3221 /* Miller-Rabin test of "a" to the base of "b" as described in
3222 * HAC pp. 139 Algorithm 4.24
3224 * Sets result to 0 if definitely composite or 1 if probably prime.
3225 * Randomly the chance of error is no more than 1/4 and often
3228 static int mp_prime_miller_rabin (mp_int
* a
, const mp_int
* b
, int *result
)
3237 if (mp_cmp_d(b
, 1) != MP_GT
) {
3241 /* get n1 = a - 1 */
3242 if ((err
= mp_init_copy (&n1
, a
)) != MP_OKAY
) {
3245 if ((err
= mp_sub_d (&n1
, 1, &n1
)) != MP_OKAY
) {
3249 /* set 2**s * r = n1 */
3250 if ((err
= mp_init_copy (&r
, &n1
)) != MP_OKAY
) {
3254 /* count the number of least significant bits
3259 /* now divide n - 1 by 2**s */
3260 if ((err
= mp_div_2d (&r
, s
, &r
, NULL
)) != MP_OKAY
) {
3264 /* compute y = b**r mod a */
3265 if ((err
= mp_init (&y
)) != MP_OKAY
) {
3268 if ((err
= mp_exptmod (b
, &r
, a
, &y
)) != MP_OKAY
) {
3272 /* if y != 1 and y != n1 do */
3273 if (mp_cmp_d (&y
, 1) != MP_EQ
&& mp_cmp (&y
, &n1
) != MP_EQ
) {
3275 /* while j <= s-1 and y != n1 */
3276 while ((j
<= (s
- 1)) && mp_cmp (&y
, &n1
) != MP_EQ
) {
3277 if ((err
= mp_sqrmod (&y
, a
, &y
)) != MP_OKAY
) {
3281 /* if y == 1 then composite */
3282 if (mp_cmp_d (&y
, 1) == MP_EQ
) {
3289 /* if y != n1 then composite */
3290 if (mp_cmp (&y
, &n1
) != MP_EQ
) {
3295 /* probably prime now */
3299 __N1
:mp_clear (&n1
);
3303 /* performs a variable number of rounds of Miller-Rabin
3305 * Probability of error after t rounds is no more than
3308 * Sets result to 1 if probably prime, 0 otherwise
3310 static int mp_prime_is_prime (mp_int
* a
, int t
, int *result
)
3318 /* valid value of t? */
3319 if (t
<= 0 || t
> PRIME_SIZE
) {
3323 /* is the input equal to one of the primes in the table? */
3324 for (ix
= 0; ix
< PRIME_SIZE
; ix
++) {
3325 if (mp_cmp_d(a
, __prime_tab
[ix
]) == MP_EQ
) {
3331 /* first perform trial division */
3332 if ((err
= mp_prime_is_divisible (a
, &res
)) != MP_OKAY
) {
3336 /* return if it was trivially divisible */
3337 if (res
== MP_YES
) {
3341 /* now perform the miller-rabin rounds */
3342 if ((err
= mp_init (&b
)) != MP_OKAY
) {
3346 for (ix
= 0; ix
< t
; ix
++) {
3348 mp_set (&b
, __prime_tab
[ix
]);
3350 if ((err
= mp_prime_miller_rabin (a
, &b
, &res
)) != MP_OKAY
) {
3359 /* passed the test */
3365 static const struct {
3378 /* returns # of RM trials required for a given bit size */
3379 int mp_prime_rabin_miller_trials(int size
)
3383 for (x
= 0; x
< ARRAY_SIZE(sizes
); x
++) {
3384 if (sizes
[x
].k
== size
) {
3386 } else if (sizes
[x
].k
> size
) {
3387 return (x
== 0) ? sizes
[0].t
: sizes
[x
- 1].t
;
3390 return sizes
[x
-1].t
+ 1;
3393 /* makes a truly random prime of a given size (bits),
3395 * Flags are as follows:
3397 * LTM_PRIME_BBS - make prime congruent to 3 mod 4
3398 * LTM_PRIME_SAFE - make sure (p-1)/2 is prime as well (implies LTM_PRIME_BBS)
3399 * LTM_PRIME_2MSB_OFF - make the 2nd highest bit zero
3400 * LTM_PRIME_2MSB_ON - make the 2nd highest bit one
3402 * You have to supply a callback which fills in a buffer with random bytes. "dat" is a parameter you can
3403 * have passed to the callback (e.g. a state or something). This function doesn't use "dat" itself
3408 /* This is possibly the mother of all prime generation functions, muahahahahaha! */
3409 int mp_prime_random_ex(mp_int
*a
, int t
, int size
, int flags
, ltm_prime_callback cb
, void *dat
)
3411 unsigned char *tmp
, maskAND
, maskOR_msb
, maskOR_lsb
;
3412 int res
, err
, bsize
, maskOR_msb_offset
;
3414 /* sanity check the input */
3415 if (size
<= 1 || t
<= 0) {
3419 /* LTM_PRIME_SAFE implies LTM_PRIME_BBS */
3420 if (flags
& LTM_PRIME_SAFE
) {
3421 flags
|= LTM_PRIME_BBS
;
3424 /* calc the byte size */
3425 bsize
= (size
>>3)+((size
&7)?1:0);
3427 /* we need a buffer of bsize bytes */
3428 tmp
= HeapAlloc(GetProcessHeap(), 0, bsize
);
3433 /* calc the maskAND value for the MSbyte*/
3434 maskAND
= ((size
&7) == 0) ? 0xFF : (0xFF >> (8 - (size
& 7)));
3436 /* calc the maskOR_msb */
3438 maskOR_msb_offset
= ((size
& 7) == 1) ? 1 : 0;
3439 if (flags
& LTM_PRIME_2MSB_ON
) {
3440 maskOR_msb
|= 1 << ((size
- 2) & 7);
3441 } else if (flags
& LTM_PRIME_2MSB_OFF
) {
3442 maskAND
&= ~(1 << ((size
- 2) & 7));
3445 /* get the maskOR_lsb */
3447 if (flags
& LTM_PRIME_BBS
) {
3452 /* read the bytes */
3453 if (cb(tmp
, bsize
, dat
) != bsize
) {
3458 /* work over the MSbyte */
3460 tmp
[0] |= 1 << ((size
- 1) & 7);
3462 /* mix in the maskORs */
3463 tmp
[maskOR_msb_offset
] |= maskOR_msb
;
3464 tmp
[bsize
-1] |= maskOR_lsb
;
3467 if ((err
= mp_read_unsigned_bin(a
, tmp
, bsize
)) != MP_OKAY
) { goto error
; }
3470 if ((err
= mp_prime_is_prime(a
, t
, &res
)) != MP_OKAY
) { goto error
; }
3475 if (flags
& LTM_PRIME_SAFE
) {
3476 /* see if (a-1)/2 is prime */
3477 if ((err
= mp_sub_d(a
, 1, a
)) != MP_OKAY
) { goto error
; }
3478 if ((err
= mp_div_2(a
, a
)) != MP_OKAY
) { goto error
; }
3481 if ((err
= mp_prime_is_prime(a
, t
, &res
)) != MP_OKAY
) { goto error
; }
3483 } while (res
== MP_NO
);
3485 if (flags
& LTM_PRIME_SAFE
) {
3486 /* restore a to the original value */
3487 if ((err
= mp_mul_2(a
, a
)) != MP_OKAY
) { goto error
; }
3488 if ((err
= mp_add_d(a
, 1, a
)) != MP_OKAY
) { goto error
; }
3493 HeapFree(GetProcessHeap(), 0, tmp
);
3497 /* reads an unsigned char array, assumes the msb is stored first [big endian] */
3499 mp_read_unsigned_bin (mp_int
* a
, const unsigned char *b
, int c
)
3503 /* make sure there are at least two digits */
3505 if ((res
= mp_grow(a
, 2)) != MP_OKAY
) {
3513 /* read the bytes in */
3515 if ((res
= mp_mul_2d (a
, 8, a
)) != MP_OKAY
) {
3526 /* reduces x mod m, assumes 0 < x < m**2, mu is
3527 * precomputed via mp_reduce_setup.
3528 * From HAC pp.604 Algorithm 14.42
3531 mp_reduce (mp_int
* x
, const mp_int
* m
, const mp_int
* mu
)
3534 int res
, um
= m
->used
;
3537 if ((res
= mp_init_copy (&q
, x
)) != MP_OKAY
) {
3541 /* q1 = x / b**(k-1) */
3542 mp_rshd (&q
, um
- 1);
3544 /* according to HAC this optimization is ok */
3545 if (((unsigned long) um
) > (((mp_digit
)1) << (DIGIT_BIT
- 1))) {
3546 if ((res
= mp_mul (&q
, mu
, &q
)) != MP_OKAY
) {
3550 if ((res
= s_mp_mul_high_digs (&q
, mu
, &q
, um
- 1)) != MP_OKAY
) {
3555 /* q3 = q2 / b**(k+1) */
3556 mp_rshd (&q
, um
+ 1);
3558 /* x = x mod b**(k+1), quick (no division) */
3559 if ((res
= mp_mod_2d (x
, DIGIT_BIT
* (um
+ 1), x
)) != MP_OKAY
) {
3563 /* q = q * m mod b**(k+1), quick (no division) */
3564 if ((res
= s_mp_mul_digs (&q
, m
, &q
, um
+ 1)) != MP_OKAY
) {
3569 if ((res
= mp_sub (x
, &q
, x
)) != MP_OKAY
) {
3573 /* If x < 0, add b**(k+1) to it */
3574 if (mp_cmp_d (x
, 0) == MP_LT
) {
3576 if ((res
= mp_lshd (&q
, um
+ 1)) != MP_OKAY
)
3578 if ((res
= mp_add (x
, &q
, x
)) != MP_OKAY
)
3582 /* Back off if it's too big */
3583 while (mp_cmp (x
, m
) != MP_LT
) {
3584 if ((res
= s_mp_sub (x
, m
, x
)) != MP_OKAY
) {
3595 /* reduces a modulo n where n is of the form 2**p - d */
3597 mp_reduce_2k(mp_int
*a
, const mp_int
*n
, mp_digit d
)
3602 if ((res
= mp_init(&q
)) != MP_OKAY
) {
3606 p
= mp_count_bits(n
);
3608 /* q = a/2**p, a = a mod 2**p */
3609 if ((res
= mp_div_2d(a
, p
, &q
, a
)) != MP_OKAY
) {
3615 if ((res
= mp_mul_d(&q
, d
, &q
)) != MP_OKAY
) {
3621 if ((res
= s_mp_add(a
, &q
, a
)) != MP_OKAY
) {
3625 if (mp_cmp_mag(a
, n
) != MP_LT
) {
3635 /* determines the setup value */
3637 mp_reduce_2k_setup(const mp_int
*a
, mp_digit
*d
)
3642 if ((res
= mp_init(&tmp
)) != MP_OKAY
) {
3646 p
= mp_count_bits(a
);
3647 if ((res
= mp_2expt(&tmp
, p
)) != MP_OKAY
) {
3652 if ((res
= s_mp_sub(&tmp
, a
, &tmp
)) != MP_OKAY
) {
3662 /* pre-calculate the value required for Barrett reduction
3663 * For a given modulus "b" it calculates the value required in "a"
3665 int mp_reduce_setup (mp_int
* a
, const mp_int
* b
)
3669 if ((res
= mp_2expt (a
, b
->used
* 2 * DIGIT_BIT
)) != MP_OKAY
) {
3672 return mp_div (a
, b
, a
, NULL
);
3675 /* set to a digit */
3676 void mp_set (mp_int
* a
, mp_digit b
)
3679 a
->dp
[0] = b
& MP_MASK
;
3680 a
->used
= (a
->dp
[0] != 0) ? 1 : 0;
3683 /* set a 32-bit const */
3684 int mp_set_int (mp_int
* a
, unsigned long b
)
3690 /* set four bits at a time */
3691 for (x
= 0; x
< 8; x
++) {
3692 /* shift the number up four bits */
3693 if ((res
= mp_mul_2d (a
, 4, a
)) != MP_OKAY
) {
3697 /* OR in the top four bits of the source */
3698 a
->dp
[0] |= (b
>> 28) & 15;
3700 /* shift the source up to the next four bits */
3703 /* ensure that digits are not clamped off */
3710 /* shrink a bignum */
3711 int mp_shrink (mp_int
* a
)
3714 if (a
->alloc
!= a
->used
&& a
->used
> 0) {
3715 if ((tmp
= HeapReAlloc(GetProcessHeap(), 0, a
->dp
, sizeof (mp_digit
) * a
->used
)) == NULL
) {
3724 /* computes b = a*a */
3726 mp_sqr (const mp_int
* a
, mp_int
* b
)
3730 if (a
->used
>= KARATSUBA_SQR_CUTOFF
) {
3731 res
= mp_karatsuba_sqr (a
, b
);
3734 /* can we use the fast comba multiplier? */
3735 if ((a
->used
* 2 + 1) < MP_WARRAY
&&
3737 (1 << (sizeof(mp_word
) * CHAR_BIT
- 2*DIGIT_BIT
- 1))) {
3738 res
= fast_s_mp_sqr (a
, b
);
3740 res
= s_mp_sqr (a
, b
);
3746 /* c = a * a (mod b) */
3748 mp_sqrmod (const mp_int
* a
, mp_int
* b
, mp_int
* c
)
3753 if ((res
= mp_init (&t
)) != MP_OKAY
) {
3757 if ((res
= mp_sqr (a
, &t
)) != MP_OKAY
) {
3761 res
= mp_mod (&t
, b
, c
);
3766 /* high level subtraction (handles signs) */
3768 mp_sub (mp_int
* a
, mp_int
* b
, mp_int
* c
)
3776 /* subtract a negative from a positive, OR */
3777 /* subtract a positive from a negative. */
3778 /* In either case, ADD their magnitudes, */
3779 /* and use the sign of the first number. */
3781 res
= s_mp_add (a
, b
, c
);
3783 /* subtract a positive from a positive, OR */
3784 /* subtract a negative from a negative. */
3785 /* First, take the difference between their */
3786 /* magnitudes, then... */
3787 if (mp_cmp_mag (a
, b
) != MP_LT
) {
3788 /* Copy the sign from the first */
3790 /* The first has a larger or equal magnitude */
3791 res
= s_mp_sub (a
, b
, c
);
3793 /* The result has the *opposite* sign from */
3794 /* the first number. */
3795 c
->sign
= (sa
== MP_ZPOS
) ? MP_NEG
: MP_ZPOS
;
3796 /* The second has a larger magnitude */
3797 res
= s_mp_sub (b
, a
, c
);
3803 /* single digit subtraction */
3805 mp_sub_d (mp_int
* a
, mp_digit b
, mp_int
* c
)
3807 mp_digit
*tmpa
, *tmpc
, mu
;
3808 int res
, ix
, oldused
;
3810 /* grow c as required */
3811 if (c
->alloc
< a
->used
+ 1) {
3812 if ((res
= mp_grow(c
, a
->used
+ 1)) != MP_OKAY
) {
3817 /* if a is negative just do an unsigned
3818 * addition [with fudged signs]
3820 if (a
->sign
== MP_NEG
) {
3822 res
= mp_add_d(a
, b
, c
);
3823 a
->sign
= c
->sign
= MP_NEG
;
3832 /* if a <= b simply fix the single digit */
3833 if ((a
->used
== 1 && a
->dp
[0] <= b
) || a
->used
== 0) {
3835 *tmpc
++ = b
- *tmpa
;
3841 /* negative/1digit */
3849 /* subtract first digit */
3850 *tmpc
= *tmpa
++ - b
;
3851 mu
= *tmpc
>> (sizeof(mp_digit
) * CHAR_BIT
- 1);
3854 /* handle rest of the digits */
3855 for (ix
= 1; ix
< a
->used
; ix
++) {
3856 *tmpc
= *tmpa
++ - mu
;
3857 mu
= *tmpc
>> (sizeof(mp_digit
) * CHAR_BIT
- 1);
3862 /* zero excess digits */
3863 while (ix
++ < oldused
) {
3870 /* store in unsigned [big endian] format */
3872 mp_to_unsigned_bin (const mp_int
* a
, unsigned char *b
)
3877 if ((res
= mp_init_copy (&t
, a
)) != MP_OKAY
) {
3882 while (mp_iszero (&t
) == 0) {
3883 b
[x
++] = (unsigned char) (t
.dp
[0] & 255);
3884 if ((res
= mp_div_2d (&t
, 8, &t
, NULL
)) != MP_OKAY
) {
3894 /* get the size for an unsigned equivalent */
3896 mp_unsigned_bin_size (const mp_int
* a
)
3898 int size
= mp_count_bits (a
);
3899 return (size
/ 8 + ((size
& 7) != 0 ? 1 : 0));
3902 /* reverse an array, used for radix code */
3904 bn_reverse (unsigned char *s
, int len
)
3920 /* low level addition, based on HAC pp.594, Algorithm 14.7 */
3922 s_mp_add (mp_int
* a
, mp_int
* b
, mp_int
* c
)
3925 int olduse
, res
, min
, max
;
3927 /* find sizes, we let |a| <= |b| which means we have to sort
3928 * them. "x" will point to the input with the most digits
3930 if (a
->used
> b
->used
) {
3941 if (c
->alloc
< max
+ 1) {
3942 if ((res
= mp_grow (c
, max
+ 1)) != MP_OKAY
) {
3947 /* get old used digit count and set new one */
3952 register mp_digit u
, *tmpa
, *tmpb
, *tmpc
;
3955 /* alias for digit pointers */
3966 /* zero the carry */
3968 for (i
= 0; i
< min
; i
++) {
3969 /* Compute the sum at one digit, T[i] = A[i] + B[i] + U */
3970 *tmpc
= *tmpa
++ + *tmpb
++ + u
;
3972 /* U = carry bit of T[i] */
3973 u
= *tmpc
>> ((mp_digit
)DIGIT_BIT
);
3975 /* take away carry bit from T[i] */
3979 /* now copy higher words if any, that is in A+B
3980 * if A or B has more digits add those in
3983 for (; i
< max
; i
++) {
3984 /* T[i] = X[i] + U */
3985 *tmpc
= x
->dp
[i
] + u
;
3987 /* U = carry bit of T[i] */
3988 u
= *tmpc
>> ((mp_digit
)DIGIT_BIT
);
3990 /* take away carry bit from T[i] */
3998 /* clear digits above oldused */
3999 for (i
= c
->used
; i
< olduse
; i
++) {
4008 static int s_mp_exptmod (const mp_int
* G
, const mp_int
* X
, mp_int
* P
, mp_int
* Y
)
4010 mp_int M
[256], res
, mu
;
4012 int err
, bitbuf
, bitcpy
, bitcnt
, mode
, digidx
, x
, y
, winsize
;
4014 /* find window size */
4015 x
= mp_count_bits (X
);
4018 } else if (x
<= 36) {
4020 } else if (x
<= 140) {
4022 } else if (x
<= 450) {
4024 } else if (x
<= 1303) {
4026 } else if (x
<= 3529) {
4033 /* init first cell */
4034 if ((err
= mp_init(&M
[1])) != MP_OKAY
) {
4038 /* now init the second half of the array */
4039 for (x
= 1<<(winsize
-1); x
< (1 << winsize
); x
++) {
4040 if ((err
= mp_init(&M
[x
])) != MP_OKAY
) {
4041 for (y
= 1<<(winsize
-1); y
< x
; y
++) {
4049 /* create mu, used for Barrett reduction */
4050 if ((err
= mp_init (&mu
)) != MP_OKAY
) {
4053 if ((err
= mp_reduce_setup (&mu
, P
)) != MP_OKAY
) {
4059 * The M table contains powers of the base,
4060 * e.g. M[x] = G**x mod P
4062 * The first half of the table is not
4063 * computed though accept for M[0] and M[1]
4065 if ((err
= mp_mod (G
, P
, &M
[1])) != MP_OKAY
) {
4069 /* compute the value at M[1<<(winsize-1)] by squaring
4070 * M[1] (winsize-1) times
4072 if ((err
= mp_copy (&M
[1], &M
[1 << (winsize
- 1)])) != MP_OKAY
) {
4076 for (x
= 0; x
< (winsize
- 1); x
++) {
4077 if ((err
= mp_sqr (&M
[1 << (winsize
- 1)],
4078 &M
[1 << (winsize
- 1)])) != MP_OKAY
) {
4081 if ((err
= mp_reduce (&M
[1 << (winsize
- 1)], P
, &mu
)) != MP_OKAY
) {
4086 /* create upper table, that is M[x] = M[x-1] * M[1] (mod P)
4087 * for x = (2**(winsize - 1) + 1) to (2**winsize - 1)
4089 for (x
= (1 << (winsize
- 1)) + 1; x
< (1 << winsize
); x
++) {
4090 if ((err
= mp_mul (&M
[x
- 1], &M
[1], &M
[x
])) != MP_OKAY
) {
4093 if ((err
= mp_reduce (&M
[x
], P
, &mu
)) != MP_OKAY
) {
4099 if ((err
= mp_init (&res
)) != MP_OKAY
) {
4104 /* set initial mode and bit cnt */
4108 digidx
= X
->used
- 1;
4113 /* grab next digit as required */
4114 if (--bitcnt
== 0) {
4115 /* if digidx == -1 we are out of digits */
4119 /* read next digit and reset the bitcnt */
4120 buf
= X
->dp
[digidx
--];
4124 /* grab the next msb from the exponent */
4125 y
= (buf
>> (mp_digit
)(DIGIT_BIT
- 1)) & 1;
4126 buf
<<= (mp_digit
)1;
4128 /* if the bit is zero and mode == 0 then we ignore it
4129 * These represent the leading zero bits before the first 1 bit
4130 * in the exponent. Technically this opt is not required but it
4131 * does lower the # of trivial squaring/reductions used
4133 if (mode
== 0 && y
== 0) {
4137 /* if the bit is zero and mode == 1 then we square */
4138 if (mode
== 1 && y
== 0) {
4139 if ((err
= mp_sqr (&res
, &res
)) != MP_OKAY
) {
4142 if ((err
= mp_reduce (&res
, P
, &mu
)) != MP_OKAY
) {
4148 /* else we add it to the window */
4149 bitbuf
|= (y
<< (winsize
- ++bitcpy
));
4152 if (bitcpy
== winsize
) {
4153 /* ok window is filled so square as required and multiply */
4155 for (x
= 0; x
< winsize
; x
++) {
4156 if ((err
= mp_sqr (&res
, &res
)) != MP_OKAY
) {
4159 if ((err
= mp_reduce (&res
, P
, &mu
)) != MP_OKAY
) {
4165 if ((err
= mp_mul (&res
, &M
[bitbuf
], &res
)) != MP_OKAY
) {
4168 if ((err
= mp_reduce (&res
, P
, &mu
)) != MP_OKAY
) {
4172 /* empty window and reset */
4179 /* if bits remain then square/multiply */
4180 if (mode
== 2 && bitcpy
> 0) {
4181 /* square then multiply if the bit is set */
4182 for (x
= 0; x
< bitcpy
; x
++) {
4183 if ((err
= mp_sqr (&res
, &res
)) != MP_OKAY
) {
4186 if ((err
= mp_reduce (&res
, P
, &mu
)) != MP_OKAY
) {
4191 if ((bitbuf
& (1 << winsize
)) != 0) {
4193 if ((err
= mp_mul (&res
, &M
[1], &res
)) != MP_OKAY
) {
4196 if ((err
= mp_reduce (&res
, P
, &mu
)) != MP_OKAY
) {
4205 __RES
:mp_clear (&res
);
4206 __MU
:mp_clear (&mu
);
4209 for (x
= 1<<(winsize
-1); x
< (1 << winsize
); x
++) {
4215 /* multiplies |a| * |b| and only computes up to digs digits of result
4216 * HAC pp. 595, Algorithm 14.12 Modified so you can control how
4217 * many digits of output are created.
4220 s_mp_mul_digs (const mp_int
* a
, const mp_int
* b
, mp_int
* c
, int digs
)
4223 int res
, pa
, pb
, ix
, iy
;
4226 mp_digit tmpx
, *tmpt
, *tmpy
;
4228 /* can we use the fast multiplier? */
4229 if (((digs
) < MP_WARRAY
) &&
4230 MIN (a
->used
, b
->used
) <
4231 (1 << ((CHAR_BIT
* sizeof (mp_word
)) - (2 * DIGIT_BIT
)))) {
4232 return fast_s_mp_mul_digs (a
, b
, c
, digs
);
4235 if ((res
= mp_init_size (&t
, digs
)) != MP_OKAY
) {
4240 /* compute the digits of the product directly */
4242 for (ix
= 0; ix
< pa
; ix
++) {
4243 /* set the carry to zero */
4246 /* limit ourselves to making digs digits of output */
4247 pb
= MIN (b
->used
, digs
- ix
);
4249 /* setup some aliases */
4250 /* copy of the digit from a used within the nested loop */
4253 /* an alias for the destination shifted ix places */
4256 /* an alias for the digits of b */
4259 /* compute the columns of the output and propagate the carry */
4260 for (iy
= 0; iy
< pb
; iy
++) {
4261 /* compute the column as a mp_word */
4262 r
= ((mp_word
)*tmpt
) +
4263 ((mp_word
)tmpx
) * ((mp_word
)*tmpy
++) +
4266 /* the new column is the lower part of the result */
4267 *tmpt
++ = (mp_digit
) (r
& ((mp_word
) MP_MASK
));
4269 /* get the carry word from the result */
4270 u
= (mp_digit
) (r
>> ((mp_word
) DIGIT_BIT
));
4272 /* set carry if it is placed below digs */
4273 if (ix
+ iy
< digs
) {
4285 /* multiplies |a| * |b| and does not compute the lower digs digits
4286 * [meant to get the higher part of the product]
4289 s_mp_mul_high_digs (const mp_int
* a
, const mp_int
* b
, mp_int
* c
, int digs
)
4292 int res
, pa
, pb
, ix
, iy
;
4295 mp_digit tmpx
, *tmpt
, *tmpy
;
4297 /* can we use the fast multiplier? */
4298 if (((a
->used
+ b
->used
+ 1) < MP_WARRAY
)
4299 && MIN (a
->used
, b
->used
) < (1 << ((CHAR_BIT
* sizeof (mp_word
)) - (2 * DIGIT_BIT
)))) {
4300 return fast_s_mp_mul_high_digs (a
, b
, c
, digs
);
4303 if ((res
= mp_init_size (&t
, a
->used
+ b
->used
+ 1)) != MP_OKAY
) {
4306 t
.used
= a
->used
+ b
->used
+ 1;
4310 for (ix
= 0; ix
< pa
; ix
++) {
4311 /* clear the carry */
4314 /* left hand side of A[ix] * B[iy] */
4317 /* alias to the address of where the digits will be stored */
4318 tmpt
= &(t
.dp
[digs
]);
4320 /* alias for where to read the right hand side from */
4321 tmpy
= b
->dp
+ (digs
- ix
);
4323 for (iy
= digs
- ix
; iy
< pb
; iy
++) {
4324 /* calculate the double precision result */
4325 r
= ((mp_word
)*tmpt
) +
4326 ((mp_word
)tmpx
) * ((mp_word
)*tmpy
++) +
4329 /* get the lower part */
4330 *tmpt
++ = (mp_digit
) (r
& ((mp_word
) MP_MASK
));
4332 /* carry the carry */
4333 u
= (mp_digit
) (r
>> ((mp_word
) DIGIT_BIT
));
4343 /* low level squaring, b = a*a, HAC pp.596-597, Algorithm 14.16 */
4345 s_mp_sqr (const mp_int
* a
, mp_int
* b
)
4348 int res
, ix
, iy
, pa
;
4350 mp_digit u
, tmpx
, *tmpt
;
4353 if ((res
= mp_init_size (&t
, 2*pa
+ 1)) != MP_OKAY
) {
4357 /* default used is maximum possible size */
4360 for (ix
= 0; ix
< pa
; ix
++) {
4361 /* first calculate the digit at 2*ix */
4362 /* calculate double precision result */
4363 r
= ((mp_word
) t
.dp
[2*ix
]) +
4364 ((mp_word
)a
->dp
[ix
])*((mp_word
)a
->dp
[ix
]);
4366 /* store lower part in result */
4367 t
.dp
[ix
+ix
] = (mp_digit
) (r
& ((mp_word
) MP_MASK
));
4370 u
= (mp_digit
)(r
>> ((mp_word
) DIGIT_BIT
));
4372 /* left hand side of A[ix] * A[iy] */
4375 /* alias for where to store the results */
4376 tmpt
= t
.dp
+ (2*ix
+ 1);
4378 for (iy
= ix
+ 1; iy
< pa
; iy
++) {
4379 /* first calculate the product */
4380 r
= ((mp_word
)tmpx
) * ((mp_word
)a
->dp
[iy
]);
4382 /* now calculate the double precision result, note we use
4383 * addition instead of *2 since it's easier to optimize
4385 r
= ((mp_word
) *tmpt
) + r
+ r
+ ((mp_word
) u
);
4387 /* store lower part */
4388 *tmpt
++ = (mp_digit
) (r
& ((mp_word
) MP_MASK
));
4391 u
= (mp_digit
)(r
>> ((mp_word
) DIGIT_BIT
));
4393 /* propagate upwards */
4395 r
= ((mp_word
) *tmpt
) + ((mp_word
) u
);
4396 *tmpt
++ = (mp_digit
) (r
& ((mp_word
) MP_MASK
));
4397 u
= (mp_digit
)(r
>> ((mp_word
) DIGIT_BIT
));
4407 /* low level subtraction (assumes |a| > |b|), HAC pp.595 Algorithm 14.9 */
4409 s_mp_sub (const mp_int
* a
, const mp_int
* b
, mp_int
* c
)
4411 int olduse
, res
, min
, max
;
4418 if (c
->alloc
< max
) {
4419 if ((res
= mp_grow (c
, max
)) != MP_OKAY
) {
4427 register mp_digit u
, *tmpa
, *tmpb
, *tmpc
;
4430 /* alias for digit pointers */
4435 /* set carry to zero */
4437 for (i
= 0; i
< min
; i
++) {
4438 /* T[i] = A[i] - B[i] - U */
4439 *tmpc
= *tmpa
++ - *tmpb
++ - u
;
4441 /* U = carry bit of T[i]
4442 * Note this saves performing an AND operation since
4443 * if a carry does occur it will propagate all the way to the
4444 * MSB. As a result a single shift is enough to get the carry
4446 u
= *tmpc
>> ((mp_digit
)(CHAR_BIT
* sizeof (mp_digit
) - 1));
4448 /* Clear carry from T[i] */
4452 /* now copy higher words if any, e.g. if A has more digits than B */
4453 for (; i
< max
; i
++) {
4454 /* T[i] = A[i] - U */
4455 *tmpc
= *tmpa
++ - u
;
4457 /* U = carry bit of T[i] */
4458 u
= *tmpc
>> ((mp_digit
)(CHAR_BIT
* sizeof (mp_digit
) - 1));
4460 /* Clear carry from T[i] */
4464 /* clear digits above used (since we may not have grown result above) */
4465 for (i
= c
->used
; i
< olduse
; i
++) {