4 * Copyright (C) 1991-1996, Thomas G. Lane.
5 * Modified 2011-2020 by Guido Vollbeding.
6 * This file is part of the Independent JPEG Group's software.
7 * For conditions of distribution and use, see the accompanying README file.
9 * This file contains 1-pass color quantization (color mapping) routines.
10 * These routines provide mapping to a fixed color map using equally spaced
11 * color values. Optional Floyd-Steinberg or ordered dithering is available.
14 #define JPEG_INTERNALS
18 #ifdef QUANT_1PASS_SUPPORTED
22 * The main purpose of 1-pass quantization is to provide a fast, if not very
23 * high quality, colormapped output capability. A 2-pass quantizer usually
24 * gives better visual quality; however, for quantized grayscale output this
25 * quantizer is perfectly adequate. Dithering is highly recommended with this
26 * quantizer, though you can turn it off if you really want to.
28 * In 1-pass quantization the colormap must be chosen in advance of seeing the
29 * image. We use a map consisting of all combinations of Ncolors[i] color
30 * values for the i'th component. The Ncolors[] values are chosen so that
31 * their product, the total number of colors, is no more than that requested.
32 * (In most cases, the product will be somewhat less.)
34 * Since the colormap is orthogonal, the representative value for each color
35 * component can be determined without considering the other components;
36 * then these indexes can be combined into a colormap index by a standard
37 * N-dimensional-array-subscript calculation. Most of the arithmetic involved
38 * can be precalculated and stored in the lookup table colorindex[].
39 * colorindex[i][j] maps pixel value j in component i to the nearest
40 * representative value (grid plane) for that component; this index is
41 * multiplied by the array stride for component i, so that the
42 * index of the colormap entry closest to a given pixel value is just
43 * sum( colorindex[component-number][pixel-component-value] )
44 * Aside from being fast, this scheme allows for variable spacing between
45 * representative values with no additional lookup cost.
47 * If gamma correction has been applied in color conversion, it might be wise
48 * to adjust the color grid spacing so that the representative colors are
49 * equidistant in linear space. At this writing, gamma correction is not
50 * implemented by jdcolor, so nothing is done here.
54 /* Declarations for ordered dithering.
56 * We use a standard 16x16 ordered dither array. The basic concept of ordered
57 * dithering is described in many references, for instance Dale Schumacher's
58 * chapter II.2 of Graphics Gems II (James Arvo, ed. Academic Press, 1991).
59 * In place of Schumacher's comparisons against a "threshold" value, we add a
60 * "dither" value to the input pixel and then round the result to the nearest
61 * output value. The dither value is equivalent to (0.5 - threshold) times
62 * the distance between output values. For ordered dithering, we assume that
63 * the output colors are equally spaced; if not, results will probably be
64 * worse, since the dither may be too much or too little at a given point.
66 * The normal calculation would be to form pixel value + dither, range-limit
67 * this to 0..MAXJSAMPLE, and then index into the colorindex table as usual.
68 * We can skip the separate range-limiting step by extending the colorindex
69 * table in both directions.
72 #define ODITHER_SIZE 16 /* dimension of dither matrix */
73 /* NB: if ODITHER_SIZE is not a power of 2, ODITHER_MASK uses will break */
74 #define ODITHER_CELLS (ODITHER_SIZE*ODITHER_SIZE) /* # cells in matrix */
75 #define ODITHER_MASK (ODITHER_SIZE-1) /* mask for wrapping around counters */
77 typedef int ODITHER_MATRIX
[ODITHER_SIZE
][ODITHER_SIZE
];
78 typedef int (*ODITHER_MATRIX_PTR
)[ODITHER_SIZE
];
80 static const UINT8 base_dither_matrix
[ODITHER_SIZE
][ODITHER_SIZE
] = {
81 /* Bayer's order-4 dither array. Generated by the code given in
82 * Stephen Hawley's article "Ordered Dithering" in Graphics Gems I.
83 * The values in this array must range from 0 to ODITHER_CELLS-1.
85 { 0,192, 48,240, 12,204, 60,252, 3,195, 51,243, 15,207, 63,255 },
86 { 128, 64,176,112,140, 76,188,124,131, 67,179,115,143, 79,191,127 },
87 { 32,224, 16,208, 44,236, 28,220, 35,227, 19,211, 47,239, 31,223 },
88 { 160, 96,144, 80,172,108,156, 92,163, 99,147, 83,175,111,159, 95 },
89 { 8,200, 56,248, 4,196, 52,244, 11,203, 59,251, 7,199, 55,247 },
90 { 136, 72,184,120,132, 68,180,116,139, 75,187,123,135, 71,183,119 },
91 { 40,232, 24,216, 36,228, 20,212, 43,235, 27,219, 39,231, 23,215 },
92 { 168,104,152, 88,164,100,148, 84,171,107,155, 91,167,103,151, 87 },
93 { 2,194, 50,242, 14,206, 62,254, 1,193, 49,241, 13,205, 61,253 },
94 { 130, 66,178,114,142, 78,190,126,129, 65,177,113,141, 77,189,125 },
95 { 34,226, 18,210, 46,238, 30,222, 33,225, 17,209, 45,237, 29,221 },
96 { 162, 98,146, 82,174,110,158, 94,161, 97,145, 81,173,109,157, 93 },
97 { 10,202, 58,250, 6,198, 54,246, 9,201, 57,249, 5,197, 53,245 },
98 { 138, 74,186,122,134, 70,182,118,137, 73,185,121,133, 69,181,117 },
99 { 42,234, 26,218, 38,230, 22,214, 41,233, 25,217, 37,229, 21,213 },
100 { 170,106,154, 90,166,102,150, 86,169,105,153, 89,165,101,149, 85 }
104 /* Declarations for Floyd-Steinberg dithering.
106 * Errors are accumulated into the array fserrors[], at a resolution of
107 * 1/16th of a pixel count. The error at a given pixel is propagated
108 * to its not-yet-processed neighbors using the standard F-S fractions,
111 * We work left-to-right on even rows, right-to-left on odd rows.
113 * We can get away with a single array (holding one row's worth of errors)
114 * by using it to store the current row's errors at pixel columns not yet
115 * processed, but the next row's errors at columns already processed. We
116 * need only a few extra variables to hold the errors immediately around the
117 * current column. (If we are lucky, those variables are in registers, but
118 * even if not, they're probably cheaper to access than array elements are.)
120 * The fserrors[] array is indexed [component#][position].
121 * We provide (#columns + 2) entries per component; the extra entry at each
122 * end saves us from special-casing the first and last pixels.
124 * Note: on a wide image, we might not have enough room in a PC's near data
125 * segment to hold the error array; so it is allocated with alloc_large.
128 #if BITS_IN_JSAMPLE == 8
129 typedef INT16 FSERROR
; /* 16 bits should be enough */
130 typedef int LOCFSERROR
; /* use 'int' for calculation temps */
132 typedef INT32 FSERROR
; /* may need more than 16 bits */
133 typedef INT32 LOCFSERROR
; /* be sure calculation temps are big enough */
136 typedef FSERROR FAR
*FSERRPTR
; /* pointer to error array (in FAR storage!) */
139 /* Private subobject */
141 #define MAX_Q_COMPS 4 /* max components I can handle */
144 struct jpeg_color_quantizer pub
; /* public fields */
146 /* Initially allocated colormap is saved here */
147 JSAMPARRAY sv_colormap
; /* The color map as a 2-D pixel array */
148 int sv_actual
; /* number of entries in use */
150 JSAMPARRAY colorindex
; /* Precomputed mapping for speed */
151 /* colorindex[i][j] = index of color closest to pixel value j in component i,
152 * premultiplied as described above. Since colormap indexes must fit into
153 * JSAMPLEs, the entries of this array will too.
155 boolean is_padded
; /* is the colorindex padded for odither? */
157 int Ncolors
[MAX_Q_COMPS
]; /* # of values alloced to each component */
159 /* Variables for ordered dithering */
160 int row_index
; /* cur row's vertical index in dither matrix */
161 ODITHER_MATRIX_PTR odither
[MAX_Q_COMPS
]; /* one dither array per component */
163 /* Variables for Floyd-Steinberg dithering */
164 FSERRPTR fserrors
[MAX_Q_COMPS
]; /* accumulated errors */
165 boolean on_odd_row
; /* flag to remember which row we are on */
168 typedef my_cquantizer
* my_cquantize_ptr
;
172 * Policy-making subroutines for create_colormap and create_colorindex.
173 * These routines determine the colormap to be used. The rest of the module
174 * only assumes that the colormap is orthogonal.
176 * * select_ncolors decides how to divvy up the available colors
177 * among the components.
178 * * output_value defines the set of representative values for a component.
179 * * largest_input_value defines the mapping from input values to
180 * representative values for a component.
181 * Note that the latter two routines may impose different policies for
182 * different components, though this is not currently done.
187 select_ncolors (j_decompress_ptr cinfo
, int Ncolors
[])
188 /* Determine allocation of desired colors to components, */
189 /* and fill in Ncolors[] array to indicate choice. */
190 /* Return value is total number of colors (product of Ncolors[] values). */
192 int nc
= cinfo
->out_color_components
; /* number of color components */
193 int max_colors
= cinfo
->desired_number_of_colors
;
194 int total_colors
, iroot
, i
, j
;
197 static const int RGB_order
[3] = { RGB_GREEN
, RGB_RED
, RGB_BLUE
};
199 /* We can allocate at least the nc'th root of max_colors per component. */
200 /* Compute floor(nc'th root of max_colors). */
204 temp
= iroot
; /* set temp = iroot ** nc */
205 for (i
= 1; i
< nc
; i
++)
207 } while (temp
<= (long) max_colors
); /* repeat till iroot exceeds root */
208 iroot
--; /* now iroot = floor(root) */
210 /* Must have at least 2 color values per component */
212 ERREXIT1(cinfo
, JERR_QUANT_FEW_COLORS
, (int) temp
);
214 /* Initialize to iroot color values for each component */
216 for (i
= 0; i
< nc
; i
++) {
218 total_colors
*= iroot
;
220 /* We may be able to increment the count for one or more components without
221 * exceeding max_colors, though we know not all can be incremented.
222 * Sometimes, the first component can be incremented more than once!
223 * (Example: for 16 colors, we start at 2*2*2, go to 3*2*2, then 4*2*2.)
224 * In RGB colorspace, try to increment G first, then R, then B.
228 for (i
= 0; i
< nc
; i
++) {
229 j
= (cinfo
->out_color_space
== JCS_RGB
? RGB_order
[i
] : i
);
230 /* calculate new total_colors if Ncolors[j] is incremented */
231 temp
= total_colors
/ Ncolors
[j
];
232 temp
*= Ncolors
[j
]+1; /* done in long arith to avoid oflo */
233 if (temp
> (long) max_colors
)
234 break; /* won't fit, done with this pass */
235 Ncolors
[j
]++; /* OK, apply the increment */
236 total_colors
= (int) temp
;
246 output_value (j_decompress_ptr cinfo
, int ci
, int j
, int maxj
)
247 /* Return j'th output value, where j will range from 0 to maxj */
248 /* The output values must fall in 0..MAXJSAMPLE in increasing order */
250 /* We always provide values 0 and MAXJSAMPLE for each component;
251 * any additional values are equally spaced between these limits.
252 * (Forcing the upper and lower values to the limits ensures that
253 * dithering can't produce a color outside the selected gamut.)
255 return (int) (((INT32
) j
* MAXJSAMPLE
+ maxj
/2) / maxj
);
260 largest_input_value (j_decompress_ptr cinfo
, int ci
, int j
, int maxj
)
261 /* Return largest input value that should map to j'th output value */
262 /* Must have largest(j=0) >= 0, and largest(j=maxj) >= MAXJSAMPLE */
264 /* Breakpoints are halfway between values returned by output_value */
265 return (int) (((INT32
) (2*j
+ 1) * MAXJSAMPLE
+ maxj
) / (2*maxj
));
270 * Create the colormap.
274 create_colormap (j_decompress_ptr cinfo
)
276 my_cquantize_ptr cquantize
= (my_cquantize_ptr
) cinfo
->cquantize
;
277 JSAMPARRAY colormap
; /* Created colormap */
278 int total_colors
; /* Number of distinct output colors */
279 int i
,j
,k
, nci
, blksize
, blkdist
, ptr
, val
;
281 /* Select number of colors for each component */
282 total_colors
= select_ncolors(cinfo
, cquantize
->Ncolors
);
284 /* Report selected color counts */
285 if (cinfo
->out_color_components
== 3)
286 TRACEMS4(cinfo
, 1, JTRC_QUANT_3_NCOLORS
,
287 total_colors
, cquantize
->Ncolors
[0],
288 cquantize
->Ncolors
[1], cquantize
->Ncolors
[2]);
290 TRACEMS1(cinfo
, 1, JTRC_QUANT_NCOLORS
, total_colors
);
292 /* Allocate and fill in the colormap. */
293 /* The colors are ordered in the map in standard row-major order, */
294 /* i.e. rightmost (highest-indexed) color changes most rapidly. */
296 colormap
= (*cinfo
->mem
->alloc_sarray
) ((j_common_ptr
) cinfo
, JPOOL_IMAGE
,
297 (JDIMENSION
) total_colors
, (JDIMENSION
) cinfo
->out_color_components
);
299 /* blksize is number of adjacent repeated entries for a component */
300 /* blkdist is distance between groups of identical entries for a component */
301 blkdist
= total_colors
;
303 for (i
= 0; i
< cinfo
->out_color_components
; i
++) {
304 /* fill in colormap entries for i'th color component */
305 nci
= cquantize
->Ncolors
[i
]; /* # of distinct values for this color */
306 blksize
= blkdist
/ nci
;
307 for (j
= 0; j
< nci
; j
++) {
308 /* Compute j'th output value (out of nci) for component */
309 val
= output_value(cinfo
, i
, j
, nci
-1);
310 /* Fill in all colormap entries that have this value of this component */
311 for (ptr
= j
* blksize
; ptr
< total_colors
; ptr
+= blkdist
) {
312 /* fill in blksize entries beginning at ptr */
313 for (k
= 0; k
< blksize
; k
++)
314 colormap
[i
][ptr
+k
] = (JSAMPLE
) val
;
317 blkdist
= blksize
; /* blksize of this color is blkdist of next */
320 /* Save the colormap in private storage,
321 * where it will survive color quantization mode changes.
323 cquantize
->sv_colormap
= colormap
;
324 cquantize
->sv_actual
= total_colors
;
329 * Create the color index table.
333 create_colorindex (j_decompress_ptr cinfo
)
335 my_cquantize_ptr cquantize
= (my_cquantize_ptr
) cinfo
->cquantize
;
337 int i
,j
,k
, nci
, blksize
, val
, pad
;
339 /* For ordered dither, we pad the color index tables by MAXJSAMPLE in
340 * each direction (input index values can be -MAXJSAMPLE .. 2*MAXJSAMPLE).
341 * This is not necessary in the other dithering modes. However, we
342 * flag whether it was done in case user changes dithering mode.
344 if (cinfo
->dither_mode
== JDITHER_ORDERED
) {
346 cquantize
->is_padded
= TRUE
;
349 cquantize
->is_padded
= FALSE
;
352 cquantize
->colorindex
= (*cinfo
->mem
->alloc_sarray
)
353 ((j_common_ptr
) cinfo
, JPOOL_IMAGE
,
354 (JDIMENSION
) (MAXJSAMPLE
+1 + pad
),
355 (JDIMENSION
) cinfo
->out_color_components
);
357 /* blksize is number of adjacent repeated entries for a component */
358 blksize
= cquantize
->sv_actual
;
360 for (i
= 0; i
< cinfo
->out_color_components
; i
++) {
361 /* fill in colorindex entries for i'th color component */
362 nci
= cquantize
->Ncolors
[i
]; /* # of distinct values for this color */
363 blksize
= blksize
/ nci
;
365 /* adjust colorindex pointers to provide padding at negative indexes. */
367 cquantize
->colorindex
[i
] += MAXJSAMPLE
;
369 /* in loop, val = index of current output value, */
370 /* and k = largest j that maps to current val */
371 indexptr
= cquantize
->colorindex
[i
];
373 k
= largest_input_value(cinfo
, i
, 0, nci
-1);
374 for (j
= 0; j
<= MAXJSAMPLE
; j
++) {
375 while (j
> k
) /* advance val if past boundary */
376 k
= largest_input_value(cinfo
, i
, ++val
, nci
-1);
377 /* premultiply so that no multiplication needed in main processing */
378 indexptr
[j
] = (JSAMPLE
) (val
* blksize
);
380 /* Pad at both ends if necessary */
382 for (j
= 1; j
<= MAXJSAMPLE
; j
++) {
383 indexptr
[-j
] = indexptr
[0];
384 indexptr
[MAXJSAMPLE
+j
] = indexptr
[MAXJSAMPLE
];
391 * Create an ordered-dither array for a component having ncolors
392 * distinct output values.
395 LOCAL(ODITHER_MATRIX_PTR
)
396 make_odither_array (j_decompress_ptr cinfo
, int ncolors
)
398 ODITHER_MATRIX_PTR odither
;
402 odither
= (ODITHER_MATRIX_PTR
) (*cinfo
->mem
->alloc_small
)
403 ((j_common_ptr
) cinfo
, JPOOL_IMAGE
, SIZEOF(ODITHER_MATRIX
));
404 /* The inter-value distance for this color is MAXJSAMPLE/(ncolors-1).
405 * Hence the dither value for the matrix cell with fill order f
406 * (f=0..N-1) should be (N-1-2*f)/(2*N) * MAXJSAMPLE/(ncolors-1).
407 * On 16-bit-int machine, be careful to avoid overflow.
409 den
= 2 * ODITHER_CELLS
* ((INT32
) (ncolors
- 1));
410 for (j
= 0; j
< ODITHER_SIZE
; j
++) {
411 for (k
= 0; k
< ODITHER_SIZE
; k
++) {
412 num
= ((INT32
) (ODITHER_CELLS
-1 - 2*((int)base_dither_matrix
[j
][k
])))
414 /* Ensure round towards zero despite C's lack of consistency
415 * about rounding negative values in integer division...
417 odither
[j
][k
] = (int) (num
<0 ? -((-num
)/den
) : num
/den
);
425 * Create the ordered-dither tables.
426 * Components having the same number of representative colors may
427 * share a dither table.
431 create_odither_tables (j_decompress_ptr cinfo
)
433 my_cquantize_ptr cquantize
= (my_cquantize_ptr
) cinfo
->cquantize
;
434 ODITHER_MATRIX_PTR odither
;
437 for (i
= 0; i
< cinfo
->out_color_components
; i
++) {
438 nci
= cquantize
->Ncolors
[i
]; /* # of distinct values for this color */
439 odither
= NULL
; /* search for matching prior component */
440 for (j
= 0; j
< i
; j
++) {
441 if (nci
== cquantize
->Ncolors
[j
]) {
442 odither
= cquantize
->odither
[j
];
446 if (odither
== NULL
) /* need a new table? */
447 odither
= make_odither_array(cinfo
, nci
);
448 cquantize
->odither
[i
] = odither
;
454 * Map some rows of pixels to the output colormapped representation.
458 color_quantize (j_decompress_ptr cinfo
, JSAMPARRAY input_buf
,
459 JSAMPARRAY output_buf
, int num_rows
)
460 /* General case, no dithering */
462 my_cquantize_ptr cquantize
= (my_cquantize_ptr
) cinfo
->cquantize
;
463 JSAMPARRAY colorindex
= cquantize
->colorindex
;
464 register int pixcode
, ci
;
465 register JSAMPROW ptrin
, ptrout
;
468 JDIMENSION width
= cinfo
->output_width
;
469 register int nc
= cinfo
->out_color_components
;
471 for (row
= 0; row
< num_rows
; row
++) {
472 ptrin
= input_buf
[row
];
473 ptrout
= output_buf
[row
];
474 for (col
= width
; col
> 0; col
--) {
476 for (ci
= 0; ci
< nc
; ci
++) {
477 pixcode
+= GETJSAMPLE(colorindex
[ci
][GETJSAMPLE(*ptrin
++)]);
479 *ptrout
++ = (JSAMPLE
) pixcode
;
486 color_quantize3 (j_decompress_ptr cinfo
, JSAMPARRAY input_buf
,
487 JSAMPARRAY output_buf
, int num_rows
)
488 /* Fast path for out_color_components==3, no dithering */
490 my_cquantize_ptr cquantize
= (my_cquantize_ptr
) cinfo
->cquantize
;
491 register int pixcode
;
492 register JSAMPROW ptrin
, ptrout
;
493 JSAMPROW colorindex0
= cquantize
->colorindex
[0];
494 JSAMPROW colorindex1
= cquantize
->colorindex
[1];
495 JSAMPROW colorindex2
= cquantize
->colorindex
[2];
498 JDIMENSION width
= cinfo
->output_width
;
500 for (row
= 0; row
< num_rows
; row
++) {
501 ptrin
= input_buf
[row
];
502 ptrout
= output_buf
[row
];
503 for (col
= width
; col
> 0; col
--) {
504 pixcode
= GETJSAMPLE(colorindex0
[GETJSAMPLE(*ptrin
++)]);
505 pixcode
+= GETJSAMPLE(colorindex1
[GETJSAMPLE(*ptrin
++)]);
506 pixcode
+= GETJSAMPLE(colorindex2
[GETJSAMPLE(*ptrin
++)]);
507 *ptrout
++ = (JSAMPLE
) pixcode
;
514 quantize_ord_dither (j_decompress_ptr cinfo
, JSAMPARRAY input_buf
,
515 JSAMPARRAY output_buf
, int num_rows
)
516 /* General case, with ordered dithering */
518 my_cquantize_ptr cquantize
= (my_cquantize_ptr
) cinfo
->cquantize
;
519 register JSAMPROW input_ptr
;
520 register JSAMPROW output_ptr
;
521 JSAMPROW colorindex_ci
;
522 int * dither
; /* points to active row of dither matrix */
523 int row_index
, col_index
; /* current indexes into dither matrix */
524 int nc
= cinfo
->out_color_components
;
528 JDIMENSION width
= cinfo
->output_width
;
530 for (row
= 0; row
< num_rows
; row
++) {
531 /* Initialize output values to 0 so can process components separately */
532 FMEMZERO((void FAR
*) output_buf
[row
], (size_t) width
* SIZEOF(JSAMPLE
));
533 row_index
= cquantize
->row_index
;
534 for (ci
= 0; ci
< nc
; ci
++) {
535 input_ptr
= input_buf
[row
] + ci
;
536 output_ptr
= output_buf
[row
];
537 colorindex_ci
= cquantize
->colorindex
[ci
];
538 dither
= cquantize
->odither
[ci
][row_index
];
541 for (col
= width
; col
> 0; col
--) {
542 /* Form pixel value + dither, range-limit to 0..MAXJSAMPLE,
543 * select output value, accumulate into output code for this pixel.
544 * Range-limiting need not be done explicitly, as we have extended
545 * the colorindex table to produce the right answers for out-of-range
546 * inputs. The maximum dither is +- MAXJSAMPLE; this sets the
547 * required amount of padding.
549 *output_ptr
+= colorindex_ci
[GETJSAMPLE(*input_ptr
)+dither
[col_index
]];
552 col_index
= (col_index
+ 1) & ODITHER_MASK
;
555 /* Advance row index for next row */
556 row_index
= (row_index
+ 1) & ODITHER_MASK
;
557 cquantize
->row_index
= row_index
;
563 quantize3_ord_dither (j_decompress_ptr cinfo
, JSAMPARRAY input_buf
,
564 JSAMPARRAY output_buf
, int num_rows
)
565 /* Fast path for out_color_components==3, with ordered dithering */
567 my_cquantize_ptr cquantize
= (my_cquantize_ptr
) cinfo
->cquantize
;
568 register int pixcode
;
569 register JSAMPROW input_ptr
;
570 register JSAMPROW output_ptr
;
571 JSAMPROW colorindex0
= cquantize
->colorindex
[0];
572 JSAMPROW colorindex1
= cquantize
->colorindex
[1];
573 JSAMPROW colorindex2
= cquantize
->colorindex
[2];
574 int * dither0
; /* points to active row of dither matrix */
577 int row_index
, col_index
; /* current indexes into dither matrix */
580 JDIMENSION width
= cinfo
->output_width
;
582 for (row
= 0; row
< num_rows
; row
++) {
583 row_index
= cquantize
->row_index
;
584 input_ptr
= input_buf
[row
];
585 output_ptr
= output_buf
[row
];
586 dither0
= cquantize
->odither
[0][row_index
];
587 dither1
= cquantize
->odither
[1][row_index
];
588 dither2
= cquantize
->odither
[2][row_index
];
591 for (col
= width
; col
> 0; col
--) {
592 pixcode
= GETJSAMPLE(colorindex0
[GETJSAMPLE(*input_ptr
++) +
593 dither0
[col_index
]]);
594 pixcode
+= GETJSAMPLE(colorindex1
[GETJSAMPLE(*input_ptr
++) +
595 dither1
[col_index
]]);
596 pixcode
+= GETJSAMPLE(colorindex2
[GETJSAMPLE(*input_ptr
++) +
597 dither2
[col_index
]]);
598 *output_ptr
++ = (JSAMPLE
) pixcode
;
599 col_index
= (col_index
+ 1) & ODITHER_MASK
;
601 row_index
= (row_index
+ 1) & ODITHER_MASK
;
602 cquantize
->row_index
= row_index
;
608 quantize_fs_dither (j_decompress_ptr cinfo
, JSAMPARRAY input_buf
,
609 JSAMPARRAY output_buf
, int num_rows
)
610 /* General case, with Floyd-Steinberg dithering */
612 my_cquantize_ptr cquantize
= (my_cquantize_ptr
) cinfo
->cquantize
;
613 register LOCFSERROR cur
; /* current error or pixel value */
614 LOCFSERROR belowerr
; /* error for pixel below cur */
615 LOCFSERROR bpreverr
; /* error for below/prev col */
616 LOCFSERROR bnexterr
; /* error for below/next col */
618 register FSERRPTR errorptr
; /* => fserrors[] at column before current */
619 register JSAMPROW input_ptr
;
620 register JSAMPROW output_ptr
;
621 JSAMPROW colorindex_ci
;
622 JSAMPROW colormap_ci
;
624 int nc
= cinfo
->out_color_components
;
625 int dir
; /* 1 for left-to-right, -1 for right-to-left */
626 int dirnc
; /* dir * nc */
630 JDIMENSION width
= cinfo
->output_width
;
631 JSAMPLE
*range_limit
= cinfo
->sample_range_limit
;
634 for (row
= 0; row
< num_rows
; row
++) {
635 /* Initialize output values to 0 so can process components separately */
636 FMEMZERO((void FAR
*) output_buf
[row
], (size_t) width
* SIZEOF(JSAMPLE
));
637 for (ci
= 0; ci
< nc
; ci
++) {
638 input_ptr
= input_buf
[row
] + ci
;
639 output_ptr
= output_buf
[row
];
640 if (cquantize
->on_odd_row
) {
641 /* work right to left in this row */
642 input_ptr
+= (width
-1) * nc
; /* so point to rightmost pixel */
643 output_ptr
+= width
-1;
646 errorptr
= cquantize
->fserrors
[ci
] + (width
+1); /* => entry after last column */
648 /* work left to right in this row */
651 errorptr
= cquantize
->fserrors
[ci
]; /* => entry before first column */
653 colorindex_ci
= cquantize
->colorindex
[ci
];
654 colormap_ci
= cquantize
->sv_colormap
[ci
];
655 /* Preset error values: no error propagated to first pixel from left */
657 /* and no error propagated to row below yet */
658 belowerr
= bpreverr
= 0;
660 for (col
= width
; col
> 0; col
--) {
661 /* cur holds the error propagated from the previous pixel on the
662 * current line. Add the error propagated from the previous line
663 * to form the complete error correction term for this pixel, and
664 * round the error term (which is expressed * 16) to an integer.
665 * RIGHT_SHIFT rounds towards minus infinity, so adding 8 is correct
666 * for either sign of the error value.
667 * Note: errorptr points to *previous* column's array entry.
669 cur
= RIGHT_SHIFT(cur
+ errorptr
[dir
] + 8, 4);
670 /* Form pixel value + error, and range-limit to 0..MAXJSAMPLE.
671 * The maximum error is +- MAXJSAMPLE; this sets the required size
672 * of the range_limit array.
674 cur
+= GETJSAMPLE(*input_ptr
);
675 cur
= GETJSAMPLE(range_limit
[cur
]);
676 /* Select output value, accumulate into output code for this pixel */
677 pixcode
= GETJSAMPLE(colorindex_ci
[cur
]);
678 *output_ptr
+= (JSAMPLE
) pixcode
;
679 /* Compute actual representation error at this pixel */
680 /* Note: we can do this even though we don't have the final */
681 /* pixel code, because the colormap is orthogonal. */
682 cur
-= GETJSAMPLE(colormap_ci
[pixcode
]);
683 /* Compute error fractions to be propagated to adjacent pixels.
684 * Add these into the running sums, and simultaneously shift the
685 * next-line error sums left by 1 column.
689 cur
+= delta
; /* form error * 3 */
690 errorptr
[0] = (FSERROR
) (bpreverr
+ cur
);
691 cur
+= delta
; /* form error * 5 */
692 bpreverr
= belowerr
+ cur
;
694 cur
+= delta
; /* form error * 7 */
695 /* At this point cur contains the 7/16 error value to be propagated
696 * to the next pixel on the current line, and all the errors for the
697 * next line have been shifted over. We are therefore ready to move on.
699 input_ptr
+= dirnc
; /* advance input ptr to next column */
700 output_ptr
+= dir
; /* advance output ptr to next column */
701 errorptr
+= dir
; /* advance errorptr to current column */
703 /* Post-loop cleanup: we must unload the final error value into the
704 * final fserrors[] entry. Note we need not unload belowerr because
705 * it is for the dummy column before or after the actual array.
707 errorptr
[0] = (FSERROR
) bpreverr
; /* unload prev err into array */
709 cquantize
->on_odd_row
= (cquantize
->on_odd_row
? FALSE
: TRUE
);
715 * Allocate workspace for Floyd-Steinberg errors.
719 alloc_fs_workspace (j_decompress_ptr cinfo
)
721 my_cquantize_ptr cquantize
= (my_cquantize_ptr
) cinfo
->cquantize
;
725 arraysize
= ((size_t) cinfo
->output_width
+ (size_t) 2) * SIZEOF(FSERROR
);
726 for (i
= 0; i
< cinfo
->out_color_components
; i
++) {
727 cquantize
->fserrors
[i
] = (FSERRPTR
) (*cinfo
->mem
->alloc_large
)
728 ((j_common_ptr
) cinfo
, JPOOL_IMAGE
, arraysize
);
734 * Initialize for one-pass color quantization.
738 start_pass_1_quant (j_decompress_ptr cinfo
, boolean is_pre_scan
)
740 my_cquantize_ptr cquantize
= (my_cquantize_ptr
) cinfo
->cquantize
;
744 /* Install my colormap. */
745 cinfo
->colormap
= cquantize
->sv_colormap
;
746 cinfo
->actual_number_of_colors
= cquantize
->sv_actual
;
748 /* Initialize for desired dithering mode. */
749 switch (cinfo
->dither_mode
) {
751 if (cinfo
->out_color_components
== 3)
752 cquantize
->pub
.color_quantize
= color_quantize3
;
754 cquantize
->pub
.color_quantize
= color_quantize
;
756 case JDITHER_ORDERED
:
757 if (cinfo
->out_color_components
== 3)
758 cquantize
->pub
.color_quantize
= quantize3_ord_dither
;
760 cquantize
->pub
.color_quantize
= quantize_ord_dither
;
761 cquantize
->row_index
= 0; /* initialize state for ordered dither */
762 /* If user changed to ordered dither from another mode,
763 * we must recreate the color index table with padding.
764 * This will cost extra space, but probably isn't very likely.
766 if (! cquantize
->is_padded
)
767 create_colorindex(cinfo
);
768 /* Create ordered-dither tables if we didn't already. */
769 if (cquantize
->odither
[0] == NULL
)
770 create_odither_tables(cinfo
);
773 cquantize
->pub
.color_quantize
= quantize_fs_dither
;
774 cquantize
->on_odd_row
= FALSE
; /* initialize state for F-S dither */
775 /* Allocate Floyd-Steinberg workspace if didn't already. */
776 if (cquantize
->fserrors
[0] == NULL
)
777 alloc_fs_workspace(cinfo
);
778 /* Initialize the propagated errors to zero. */
779 arraysize
= ((size_t) cinfo
->output_width
+ (size_t) 2) * SIZEOF(FSERROR
);
780 for (i
= 0; i
< cinfo
->out_color_components
; i
++)
781 FMEMZERO((void FAR
*) cquantize
->fserrors
[i
], arraysize
);
784 ERREXIT(cinfo
, JERR_NOT_COMPILED
);
790 * Finish up at the end of the pass.
794 finish_pass_1_quant (j_decompress_ptr cinfo
)
796 /* no work in 1-pass case */
801 * Switch to a new external colormap between output passes.
802 * Shouldn't get to this module!
806 new_color_map_1_quant (j_decompress_ptr cinfo
)
808 ERREXIT(cinfo
, JERR_MODE_CHANGE
);
813 * Module initialization routine for 1-pass color quantization.
817 jinit_1pass_quantizer (j_decompress_ptr cinfo
)
819 my_cquantize_ptr cquantize
;
821 cquantize
= (my_cquantize_ptr
) (*cinfo
->mem
->alloc_small
)
822 ((j_common_ptr
) cinfo
, JPOOL_IMAGE
, SIZEOF(my_cquantizer
));
823 cinfo
->cquantize
= &cquantize
->pub
;
824 cquantize
->pub
.start_pass
= start_pass_1_quant
;
825 cquantize
->pub
.finish_pass
= finish_pass_1_quant
;
826 cquantize
->pub
.new_color_map
= new_color_map_1_quant
;
827 cquantize
->fserrors
[0] = NULL
; /* Flag FS workspace not allocated */
828 cquantize
->odither
[0] = NULL
; /* Also flag odither arrays not allocated */
830 /* Make sure my internal arrays won't overflow */
831 if (cinfo
->out_color_components
> MAX_Q_COMPS
)
832 ERREXIT1(cinfo
, JERR_QUANT_COMPONENTS
, MAX_Q_COMPS
);
833 /* Make sure colormap indexes can be represented by JSAMPLEs */
834 if (cinfo
->desired_number_of_colors
> (MAXJSAMPLE
+1))
835 ERREXIT1(cinfo
, JERR_QUANT_MANY_COLORS
, MAXJSAMPLE
+1);
837 /* Create the colormap and color index table. */
838 create_colormap(cinfo
);
839 create_colorindex(cinfo
);
841 /* Allocate Floyd-Steinberg workspace now if requested.
842 * We do this now since it is FAR storage and may affect the memory
843 * manager's space calculations. If the user changes to FS dither
844 * mode in a later pass, we will allocate the space then, and will
845 * possibly overrun the max_memory_to_use setting.
847 if (cinfo
->dither_mode
== JDITHER_FS
)
848 alloc_fs_workspace(cinfo
);
851 #endif /* QUANT_1PASS_SUPPORTED */