4 * Copyright (C) 1991-1996, Thomas G. Lane.
5 * Modified 2003-2020 by Guido Vollbeding.
6 * This file is part of the Independent JPEG Group's software.
7 * For conditions of distribution and use, see the accompanying README file.
9 * This file contains downsampling routines.
11 * Downsampling input data is counted in "row groups". A row group
12 * is defined to be max_v_samp_factor pixel rows of each component,
13 * from which the downsampler produces v_samp_factor sample rows.
14 * A single row group is processed in each call to the downsampler module.
16 * The downsampler is responsible for edge-expansion of its output data
17 * to fill an integral number of DCT blocks horizontally. The source buffer
18 * may be modified if it is helpful for this purpose (the source buffer is
19 * allocated wide enough to correspond to the desired output width).
20 * The caller (the prep controller) is responsible for vertical padding.
22 * The downsampler may request "context rows" by setting need_context_rows
23 * during startup. In this case, the input arrays will contain at least
24 * one row group's worth of pixels above and below the passed-in data;
25 * the caller will create dummy rows at image top and bottom by replicating
26 * the first or last real pixel row.
28 * An excellent reference for image resampling is
29 * Digital Image Warping, George Wolberg, 1990.
30 * Pub. by IEEE Computer Society Press, Los Alamitos, CA. ISBN 0-8186-8944-7.
32 * The downsampling algorithm used here is a simple average of the source
33 * pixels covered by the output pixel. The hi-falutin sampling literature
34 * refers to this as a "box filter". In general the characteristics of a box
35 * filter are not very good, but for the specific cases we normally use (1:1
36 * and 2:1 ratios) the box is equivalent to a "triangle filter" which is not
37 * nearly so bad. If you intend to use other sampling ratios, you'd be well
38 * advised to improve this code.
40 * A simple input-smoothing capability is provided. This is mainly intended
41 * for cleaning up color-dithered GIF input files (if you find it inadequate,
42 * we suggest using an external filtering program such as pnmconvol). When
43 * enabled, each input pixel P is replaced by a weighted sum of itself and its
44 * eight neighbors. P's weight is 1-8*SF and each neighbor's weight is SF,
45 * where SF = (smoothing_factor / 1024).
46 * Currently, smoothing is only supported for 2h2v sampling factors.
49 #define JPEG_INTERNALS
54 /* Pointer to routine to downsample a single component */
55 typedef JMETHOD(void, downsample1_ptr
,
56 (j_compress_ptr cinfo
, jpeg_component_info
* compptr
,
57 JSAMPARRAY input_data
, JSAMPARRAY output_data
));
59 /* Private subobject */
62 struct jpeg_downsampler pub
; /* public fields */
64 /* Downsampling method pointers, one per component */
65 downsample1_ptr methods
[MAX_COMPONENTS
];
67 /* Height of an output row group for each component. */
68 int rowgroup_height
[MAX_COMPONENTS
];
70 /* These arrays save pixel expansion factors so that int_downsample need not
71 * recompute them each time. They are unused for other downsampling methods.
73 UINT8 h_expand
[MAX_COMPONENTS
];
74 UINT8 v_expand
[MAX_COMPONENTS
];
77 typedef my_downsampler
* my_downsample_ptr
;
81 * Initialize for a downsampling pass.
85 start_pass_downsample (j_compress_ptr cinfo
)
92 * Expand a component horizontally from width input_cols to width output_cols,
93 * by duplicating the rightmost samples.
97 expand_right_edge (JSAMPARRAY image_data
, int num_rows
,
98 JDIMENSION input_cols
, JDIMENSION output_cols
)
100 register JSAMPROW ptr
;
101 register JSAMPLE pixval
;
104 int numcols
= (int) (output_cols
- input_cols
);
107 for (row
= 0; row
< num_rows
; row
++) {
108 ptr
= image_data
[row
] + input_cols
;
109 pixval
= ptr
[-1]; /* don't need GETJSAMPLE() here */
110 for (count
= numcols
; count
> 0; count
--)
118 * Do downsampling for a whole row group (all components).
120 * In this version we simply downsample each component independently.
124 sep_downsample (j_compress_ptr cinfo
,
125 JSAMPIMAGE input_buf
, JDIMENSION in_row_index
,
126 JSAMPIMAGE output_buf
, JDIMENSION out_row_group_index
)
128 my_downsample_ptr downsample
= (my_downsample_ptr
) cinfo
->downsample
;
130 jpeg_component_info
* compptr
;
131 JSAMPARRAY in_ptr
, out_ptr
;
133 for (ci
= 0, compptr
= cinfo
->comp_info
; ci
< cinfo
->num_components
;
135 in_ptr
= input_buf
[ci
] + in_row_index
;
136 out_ptr
= output_buf
[ci
] +
137 (out_row_group_index
* downsample
->rowgroup_height
[ci
]);
138 (*downsample
->methods
[ci
]) (cinfo
, compptr
, in_ptr
, out_ptr
);
144 * Downsample pixel values of a single component.
145 * One row group is processed per call.
146 * This version handles arbitrary integral sampling ratios, without smoothing.
147 * Note that this version is not actually used for customary sampling ratios.
151 int_downsample (j_compress_ptr cinfo
, jpeg_component_info
* compptr
,
152 JSAMPARRAY input_data
, JSAMPARRAY output_data
)
154 my_downsample_ptr downsample
= (my_downsample_ptr
) cinfo
->downsample
;
155 int inrow
, outrow
, h_expand
, v_expand
, numpix
, numpix2
, h
, v
;
156 JDIMENSION outcol
, outcol_h
; /* outcol_h == outcol*h_expand */
157 JDIMENSION output_cols
= compptr
->width_in_blocks
* compptr
->DCT_h_scaled_size
;
158 JSAMPROW inptr
, outptr
;
161 h_expand
= downsample
->h_expand
[compptr
->component_index
];
162 v_expand
= downsample
->v_expand
[compptr
->component_index
];
163 numpix
= h_expand
* v_expand
;
166 /* Expand input data enough to let all the output samples be generated
167 * by the standard loop. Special-casing padded output would be more
170 expand_right_edge(input_data
, cinfo
->max_v_samp_factor
,
171 cinfo
->image_width
, output_cols
* h_expand
);
174 while (inrow
< cinfo
->max_v_samp_factor
) {
175 outptr
= output_data
[outrow
];
176 for (outcol
= 0, outcol_h
= 0; outcol
< output_cols
;
177 outcol
++, outcol_h
+= h_expand
) {
179 for (v
= 0; v
< v_expand
; v
++) {
180 inptr
= input_data
[inrow
+v
] + outcol_h
;
181 for (h
= 0; h
< h_expand
; h
++) {
182 outvalue
+= (INT32
) GETJSAMPLE(*inptr
++);
185 *outptr
++ = (JSAMPLE
) ((outvalue
+ numpix2
) / numpix
);
194 * Downsample pixel values of a single component.
195 * This version handles the special case of a full-size component,
200 fullsize_downsample (j_compress_ptr cinfo
, jpeg_component_info
* compptr
,
201 JSAMPARRAY input_data
, JSAMPARRAY output_data
)
204 jcopy_sample_rows(input_data
, output_data
,
205 cinfo
->max_v_samp_factor
, cinfo
->image_width
);
207 expand_right_edge(output_data
, cinfo
->max_v_samp_factor
, cinfo
->image_width
,
208 compptr
->width_in_blocks
* compptr
->DCT_h_scaled_size
);
213 * Downsample pixel values of a single component.
214 * This version handles the common case of 2:1 horizontal and 1:1 vertical,
217 * A note about the "bias" calculations: when rounding fractional values to
218 * integer, we do not want to always round 0.5 up to the next integer.
219 * If we did that, we'd introduce a noticeable bias towards larger values.
220 * Instead, this code is arranged so that 0.5 will be rounded up or down at
221 * alternate pixel locations (a simple ordered dither pattern).
225 h2v1_downsample (j_compress_ptr cinfo
, jpeg_component_info
* compptr
,
226 JSAMPARRAY input_data
, JSAMPARRAY output_data
)
230 JDIMENSION output_cols
= compptr
->width_in_blocks
* compptr
->DCT_h_scaled_size
;
231 register JSAMPROW inptr
, outptr
;
234 /* Expand input data enough to let all the output samples be generated
235 * by the standard loop. Special-casing padded output would be more
238 expand_right_edge(input_data
, cinfo
->max_v_samp_factor
,
239 cinfo
->image_width
, output_cols
* 2);
241 for (inrow
= 0; inrow
< cinfo
->max_v_samp_factor
; inrow
++) {
242 outptr
= output_data
[inrow
];
243 inptr
= input_data
[inrow
];
244 bias
= 0; /* bias = 0,1,0,1,... for successive samples */
245 for (outcol
= 0; outcol
< output_cols
; outcol
++) {
246 *outptr
++ = (JSAMPLE
) ((GETJSAMPLE(*inptr
) + GETJSAMPLE(inptr
[1])
248 bias
^= 1; /* 0=>1, 1=>0 */
256 * Downsample pixel values of a single component.
257 * This version handles the standard case of 2:1 horizontal and 2:1 vertical,
262 h2v2_downsample (j_compress_ptr cinfo
, jpeg_component_info
* compptr
,
263 JSAMPARRAY input_data
, JSAMPARRAY output_data
)
267 JDIMENSION output_cols
= compptr
->width_in_blocks
* compptr
->DCT_h_scaled_size
;
268 register JSAMPROW inptr0
, inptr1
, outptr
;
271 /* Expand input data enough to let all the output samples be generated
272 * by the standard loop. Special-casing padded output would be more
275 expand_right_edge(input_data
, cinfo
->max_v_samp_factor
,
276 cinfo
->image_width
, output_cols
* 2);
279 while (inrow
< cinfo
->max_v_samp_factor
) {
280 outptr
= output_data
[outrow
];
281 inptr0
= input_data
[inrow
];
282 inptr1
= input_data
[inrow
+1];
283 bias
= 1; /* bias = 1,2,1,2,... for successive samples */
284 for (outcol
= 0; outcol
< output_cols
; outcol
++) {
285 *outptr
++ = (JSAMPLE
) ((GETJSAMPLE(*inptr0
) + GETJSAMPLE(inptr0
[1]) +
286 GETJSAMPLE(*inptr1
) + GETJSAMPLE(inptr1
[1])
288 bias
^= 3; /* 1=>2, 2=>1 */
289 inptr0
+= 2; inptr1
+= 2;
297 #ifdef INPUT_SMOOTHING_SUPPORTED
300 * Downsample pixel values of a single component.
301 * This version handles the standard case of 2:1 horizontal and 2:1 vertical,
302 * with smoothing. One row of context is required.
306 h2v2_smooth_downsample (j_compress_ptr cinfo
, jpeg_component_info
* compptr
,
307 JSAMPARRAY input_data
, JSAMPARRAY output_data
)
311 JDIMENSION output_cols
= compptr
->width_in_blocks
* compptr
->DCT_h_scaled_size
;
312 register JSAMPROW inptr0
, inptr1
, above_ptr
, below_ptr
, outptr
;
313 INT32 membersum
, neighsum
, memberscale
, neighscale
;
315 /* Expand input data enough to let all the output samples be generated
316 * by the standard loop. Special-casing padded output would be more
319 expand_right_edge(input_data
- 1, cinfo
->max_v_samp_factor
+ 2,
320 cinfo
->image_width
, output_cols
* 2);
322 /* We don't bother to form the individual "smoothed" input pixel values;
323 * we can directly compute the output which is the average of the four
324 * smoothed values. Each of the four member pixels contributes a fraction
325 * (1-8*SF) to its own smoothed image and a fraction SF to each of the three
326 * other smoothed pixels, therefore a total fraction (1-5*SF)/4 to the final
327 * output. The four corner-adjacent neighbor pixels contribute a fraction
328 * SF to just one smoothed pixel, or SF/4 to the final output; while the
329 * eight edge-adjacent neighbors contribute SF to each of two smoothed
330 * pixels, or SF/2 overall. In order to use integer arithmetic, these
331 * factors are scaled by 2^16 = 65536.
332 * Also recall that SF = smoothing_factor / 1024.
335 memberscale
= 16384 - cinfo
->smoothing_factor
* 80; /* scaled (1-5*SF)/4 */
336 neighscale
= cinfo
->smoothing_factor
* 16; /* scaled SF/4 */
339 while (inrow
< cinfo
->max_v_samp_factor
) {
340 outptr
= output_data
[outrow
];
341 inptr0
= input_data
[inrow
];
342 inptr1
= input_data
[inrow
+1];
343 above_ptr
= input_data
[inrow
-1];
344 below_ptr
= input_data
[inrow
+2];
346 /* Special case for first column: pretend column -1 is same as column 0 */
347 membersum
= GETJSAMPLE(*inptr0
) + GETJSAMPLE(inptr0
[1]) +
348 GETJSAMPLE(*inptr1
) + GETJSAMPLE(inptr1
[1]);
349 neighsum
= GETJSAMPLE(*above_ptr
) + GETJSAMPLE(above_ptr
[1]) +
350 GETJSAMPLE(*below_ptr
) + GETJSAMPLE(below_ptr
[1]) +
351 GETJSAMPLE(*inptr0
) + GETJSAMPLE(inptr0
[2]) +
352 GETJSAMPLE(*inptr1
) + GETJSAMPLE(inptr1
[2]);
353 neighsum
+= neighsum
;
354 neighsum
+= GETJSAMPLE(*above_ptr
) + GETJSAMPLE(above_ptr
[2]) +
355 GETJSAMPLE(*below_ptr
) + GETJSAMPLE(below_ptr
[2]);
356 membersum
= membersum
* memberscale
+ neighsum
* neighscale
;
357 *outptr
++ = (JSAMPLE
) ((membersum
+ 32768) >> 16);
358 inptr0
+= 2; inptr1
+= 2; above_ptr
+= 2; below_ptr
+= 2;
360 for (colctr
= output_cols
- 2; colctr
> 0; colctr
--) {
361 /* sum of pixels directly mapped to this output element */
362 membersum
= GETJSAMPLE(*inptr0
) + GETJSAMPLE(inptr0
[1]) +
363 GETJSAMPLE(*inptr1
) + GETJSAMPLE(inptr1
[1]);
364 /* sum of edge-neighbor pixels */
365 neighsum
= GETJSAMPLE(*above_ptr
) + GETJSAMPLE(above_ptr
[1]) +
366 GETJSAMPLE(*below_ptr
) + GETJSAMPLE(below_ptr
[1]) +
367 GETJSAMPLE(inptr0
[-1]) + GETJSAMPLE(inptr0
[2]) +
368 GETJSAMPLE(inptr1
[-1]) + GETJSAMPLE(inptr1
[2]);
369 /* The edge-neighbors count twice as much as corner-neighbors */
370 neighsum
+= neighsum
;
371 /* Add in the corner-neighbors */
372 neighsum
+= GETJSAMPLE(above_ptr
[-1]) + GETJSAMPLE(above_ptr
[2]) +
373 GETJSAMPLE(below_ptr
[-1]) + GETJSAMPLE(below_ptr
[2]);
374 /* form final output scaled up by 2^16 */
375 membersum
= membersum
* memberscale
+ neighsum
* neighscale
;
376 /* round, descale and output it */
377 *outptr
++ = (JSAMPLE
) ((membersum
+ 32768) >> 16);
378 inptr0
+= 2; inptr1
+= 2; above_ptr
+= 2; below_ptr
+= 2;
381 /* Special case for last column */
382 membersum
= GETJSAMPLE(*inptr0
) + GETJSAMPLE(inptr0
[1]) +
383 GETJSAMPLE(*inptr1
) + GETJSAMPLE(inptr1
[1]);
384 neighsum
= GETJSAMPLE(*above_ptr
) + GETJSAMPLE(above_ptr
[1]) +
385 GETJSAMPLE(*below_ptr
) + GETJSAMPLE(below_ptr
[1]) +
386 GETJSAMPLE(inptr0
[-1]) + GETJSAMPLE(inptr0
[1]) +
387 GETJSAMPLE(inptr1
[-1]) + GETJSAMPLE(inptr1
[1]);
388 neighsum
+= neighsum
;
389 neighsum
+= GETJSAMPLE(above_ptr
[-1]) + GETJSAMPLE(above_ptr
[1]) +
390 GETJSAMPLE(below_ptr
[-1]) + GETJSAMPLE(below_ptr
[1]);
391 membersum
= membersum
* memberscale
+ neighsum
* neighscale
;
392 *outptr
= (JSAMPLE
) ((membersum
+ 32768) >> 16);
401 * Downsample pixel values of a single component.
402 * This version handles the special case of a full-size component,
403 * with smoothing. One row of context is required.
407 fullsize_smooth_downsample (j_compress_ptr cinfo
, jpeg_component_info
*compptr
,
408 JSAMPARRAY input_data
, JSAMPARRAY output_data
)
412 JDIMENSION output_cols
= compptr
->width_in_blocks
* compptr
->DCT_h_scaled_size
;
413 register JSAMPROW inptr
, above_ptr
, below_ptr
, outptr
;
414 INT32 membersum
, neighsum
, memberscale
, neighscale
;
415 int colsum
, lastcolsum
, nextcolsum
;
417 /* Expand input data enough to let all the output samples be generated
418 * by the standard loop. Special-casing padded output would be more
421 expand_right_edge(input_data
- 1, cinfo
->max_v_samp_factor
+ 2,
422 cinfo
->image_width
, output_cols
);
424 /* Each of the eight neighbor pixels contributes a fraction SF to the
425 * smoothed pixel, while the main pixel contributes (1-8*SF). In order
426 * to use integer arithmetic, these factors are multiplied by 2^16 = 65536.
427 * Also recall that SF = smoothing_factor / 1024.
430 memberscale
= 65536L - cinfo
->smoothing_factor
* 512L; /* scaled 1-8*SF */
431 neighscale
= cinfo
->smoothing_factor
* 64; /* scaled SF */
433 for (inrow
= 0; inrow
< cinfo
->max_v_samp_factor
; inrow
++) {
434 outptr
= output_data
[inrow
];
435 inptr
= input_data
[inrow
];
436 above_ptr
= input_data
[inrow
-1];
437 below_ptr
= input_data
[inrow
+1];
439 /* Special case for first column */
440 colsum
= GETJSAMPLE(*above_ptr
++) + GETJSAMPLE(*below_ptr
++) +
442 membersum
= GETJSAMPLE(*inptr
++);
443 nextcolsum
= GETJSAMPLE(*above_ptr
) + GETJSAMPLE(*below_ptr
) +
445 neighsum
= colsum
+ (colsum
- membersum
) + nextcolsum
;
446 membersum
= membersum
* memberscale
+ neighsum
* neighscale
;
447 *outptr
++ = (JSAMPLE
) ((membersum
+ 32768) >> 16);
448 lastcolsum
= colsum
; colsum
= nextcolsum
;
450 for (colctr
= output_cols
- 2; colctr
> 0; colctr
--) {
451 membersum
= GETJSAMPLE(*inptr
++);
452 above_ptr
++; below_ptr
++;
453 nextcolsum
= GETJSAMPLE(*above_ptr
) + GETJSAMPLE(*below_ptr
) +
455 neighsum
= lastcolsum
+ (colsum
- membersum
) + nextcolsum
;
456 membersum
= membersum
* memberscale
+ neighsum
* neighscale
;
457 *outptr
++ = (JSAMPLE
) ((membersum
+ 32768) >> 16);
458 lastcolsum
= colsum
; colsum
= nextcolsum
;
461 /* Special case for last column */
462 membersum
= GETJSAMPLE(*inptr
);
463 neighsum
= lastcolsum
+ (colsum
- membersum
) + colsum
;
464 membersum
= membersum
* memberscale
+ neighsum
* neighscale
;
465 *outptr
= (JSAMPLE
) ((membersum
+ 32768) >> 16);
470 #endif /* INPUT_SMOOTHING_SUPPORTED */
474 * Module initialization routine for downsampling.
475 * Note that we must select a routine for each component.
479 jinit_downsampler (j_compress_ptr cinfo
)
481 my_downsample_ptr downsample
;
483 jpeg_component_info
* compptr
;
484 boolean smoothok
= TRUE
;
485 int h_in_group
, v_in_group
, h_out_group
, v_out_group
;
487 downsample
= (my_downsample_ptr
) (*cinfo
->mem
->alloc_small
)
488 ((j_common_ptr
) cinfo
, JPOOL_IMAGE
, SIZEOF(my_downsampler
));
489 cinfo
->downsample
= &downsample
->pub
;
490 downsample
->pub
.start_pass
= start_pass_downsample
;
491 downsample
->pub
.downsample
= sep_downsample
;
492 downsample
->pub
.need_context_rows
= FALSE
;
494 if (cinfo
->CCIR601_sampling
)
495 ERREXIT(cinfo
, JERR_CCIR601_NOTIMPL
);
497 /* Verify we can handle the sampling factors, and set up method pointers */
498 for (ci
= 0, compptr
= cinfo
->comp_info
; ci
< cinfo
->num_components
;
500 /* Compute size of an "output group" for DCT scaling. This many samples
501 * are to be converted from max_h_samp_factor * max_v_samp_factor pixels.
503 h_out_group
= (compptr
->h_samp_factor
* compptr
->DCT_h_scaled_size
) /
504 cinfo
->min_DCT_h_scaled_size
;
505 v_out_group
= (compptr
->v_samp_factor
* compptr
->DCT_v_scaled_size
) /
506 cinfo
->min_DCT_v_scaled_size
;
507 h_in_group
= cinfo
->max_h_samp_factor
;
508 v_in_group
= cinfo
->max_v_samp_factor
;
509 downsample
->rowgroup_height
[ci
] = v_out_group
; /* save for use later */
510 if (h_in_group
== h_out_group
&& v_in_group
== v_out_group
) {
511 #ifdef INPUT_SMOOTHING_SUPPORTED
512 if (cinfo
->smoothing_factor
) {
513 downsample
->methods
[ci
] = fullsize_smooth_downsample
;
514 downsample
->pub
.need_context_rows
= TRUE
;
517 downsample
->methods
[ci
] = fullsize_downsample
;
518 } else if (h_in_group
== h_out_group
* 2 &&
519 v_in_group
== v_out_group
) {
521 downsample
->methods
[ci
] = h2v1_downsample
;
522 } else if (h_in_group
== h_out_group
* 2 &&
523 v_in_group
== v_out_group
* 2) {
524 #ifdef INPUT_SMOOTHING_SUPPORTED
525 if (cinfo
->smoothing_factor
) {
526 downsample
->methods
[ci
] = h2v2_smooth_downsample
;
527 downsample
->pub
.need_context_rows
= TRUE
;
530 downsample
->methods
[ci
] = h2v2_downsample
;
531 } else if ((h_in_group
% h_out_group
) == 0 &&
532 (v_in_group
% v_out_group
) == 0) {
534 downsample
->methods
[ci
] = int_downsample
;
535 downsample
->h_expand
[ci
] = (UINT8
) (h_in_group
/ h_out_group
);
536 downsample
->v_expand
[ci
] = (UINT8
) (v_in_group
/ v_out_group
);
538 ERREXIT(cinfo
, JERR_FRACT_SAMPLE_NOTIMPL
);
541 #ifdef INPUT_SMOOTHING_SUPPORTED
542 if (cinfo
->smoothing_factor
&& !smoothok
)
543 TRACEMS(cinfo
, 0, JTRC_SMOOTH_NOTIMPL
);