[PATCH] powerpc: iseries: Add /system-id, /model and /compatible
[usb.git] / arch / powerpc / platforms / iseries / setup.c
blob8fe7237bc46fa0d71611c87a56968e695798776c
1 /*
2 * Copyright (c) 2000 Mike Corrigan <mikejc@us.ibm.com>
3 * Copyright (c) 1999-2000 Grant Erickson <grant@lcse.umn.edu>
5 * Description:
6 * Architecture- / platform-specific boot-time initialization code for
7 * the IBM iSeries LPAR. Adapted from original code by Grant Erickson and
8 * code by Gary Thomas, Cort Dougan <cort@fsmlabs.com>, and Dan Malek
9 * <dan@net4x.com>.
11 * This program is free software; you can redistribute it and/or
12 * modify it under the terms of the GNU General Public License
13 * as published by the Free Software Foundation; either version
14 * 2 of the License, or (at your option) any later version.
17 #undef DEBUG
19 #include <linux/config.h>
20 #include <linux/init.h>
21 #include <linux/threads.h>
22 #include <linux/smp.h>
23 #include <linux/param.h>
24 #include <linux/string.h>
25 #include <linux/initrd.h>
26 #include <linux/seq_file.h>
27 #include <linux/kdev_t.h>
28 #include <linux/major.h>
29 #include <linux/root_dev.h>
30 #include <linux/kernel.h>
32 #include <asm/processor.h>
33 #include <asm/machdep.h>
34 #include <asm/page.h>
35 #include <asm/mmu.h>
36 #include <asm/pgtable.h>
37 #include <asm/mmu_context.h>
38 #include <asm/cputable.h>
39 #include <asm/sections.h>
40 #include <asm/iommu.h>
41 #include <asm/firmware.h>
42 #include <asm/system.h>
43 #include <asm/time.h>
44 #include <asm/paca.h>
45 #include <asm/cache.h>
46 #include <asm/sections.h>
47 #include <asm/abs_addr.h>
48 #include <asm/iseries/hv_lp_config.h>
49 #include <asm/iseries/hv_call_event.h>
50 #include <asm/iseries/hv_call_xm.h>
51 #include <asm/iseries/it_lp_queue.h>
52 #include <asm/iseries/mf.h>
53 #include <asm/iseries/it_exp_vpd_panel.h>
54 #include <asm/iseries/hv_lp_event.h>
55 #include <asm/iseries/lpar_map.h>
56 #include <asm/udbg.h>
58 #include "naca.h"
59 #include "setup.h"
60 #include "irq.h"
61 #include "vpd_areas.h"
62 #include "processor_vpd.h"
63 #include "main_store.h"
64 #include "call_sm.h"
65 #include "call_hpt.h"
67 #ifdef DEBUG
68 #define DBG(fmt...) udbg_printf(fmt)
69 #else
70 #define DBG(fmt...)
71 #endif
73 /* Function Prototypes */
74 static unsigned long build_iSeries_Memory_Map(void);
75 static void iseries_shared_idle(void);
76 static void iseries_dedicated_idle(void);
77 #ifdef CONFIG_PCI
78 extern void iSeries_pci_final_fixup(void);
79 #else
80 static void iSeries_pci_final_fixup(void) { }
81 #endif
83 /* Global Variables */
84 int piranha_simulator;
86 extern int rd_size; /* Defined in drivers/block/rd.c */
87 extern unsigned long embedded_sysmap_start;
88 extern unsigned long embedded_sysmap_end;
90 extern unsigned long iSeries_recal_tb;
91 extern unsigned long iSeries_recal_titan;
93 static unsigned long cmd_mem_limit;
95 struct MemoryBlock {
96 unsigned long absStart;
97 unsigned long absEnd;
98 unsigned long logicalStart;
99 unsigned long logicalEnd;
103 * Process the main store vpd to determine where the holes in memory are
104 * and return the number of physical blocks and fill in the array of
105 * block data.
107 static unsigned long iSeries_process_Condor_mainstore_vpd(
108 struct MemoryBlock *mb_array, unsigned long max_entries)
110 unsigned long holeFirstChunk, holeSizeChunks;
111 unsigned long numMemoryBlocks = 1;
112 struct IoHriMainStoreSegment4 *msVpd =
113 (struct IoHriMainStoreSegment4 *)xMsVpd;
114 unsigned long holeStart = msVpd->nonInterleavedBlocksStartAdr;
115 unsigned long holeEnd = msVpd->nonInterleavedBlocksEndAdr;
116 unsigned long holeSize = holeEnd - holeStart;
118 printk("Mainstore_VPD: Condor\n");
120 * Determine if absolute memory has any
121 * holes so that we can interpret the
122 * access map we get back from the hypervisor
123 * correctly.
125 mb_array[0].logicalStart = 0;
126 mb_array[0].logicalEnd = 0x100000000;
127 mb_array[0].absStart = 0;
128 mb_array[0].absEnd = 0x100000000;
130 if (holeSize) {
131 numMemoryBlocks = 2;
132 holeStart = holeStart & 0x000fffffffffffff;
133 holeStart = addr_to_chunk(holeStart);
134 holeFirstChunk = holeStart;
135 holeSize = addr_to_chunk(holeSize);
136 holeSizeChunks = holeSize;
137 printk( "Main store hole: start chunk = %0lx, size = %0lx chunks\n",
138 holeFirstChunk, holeSizeChunks );
139 mb_array[0].logicalEnd = holeFirstChunk;
140 mb_array[0].absEnd = holeFirstChunk;
141 mb_array[1].logicalStart = holeFirstChunk;
142 mb_array[1].logicalEnd = 0x100000000 - holeSizeChunks;
143 mb_array[1].absStart = holeFirstChunk + holeSizeChunks;
144 mb_array[1].absEnd = 0x100000000;
146 return numMemoryBlocks;
149 #define MaxSegmentAreas 32
150 #define MaxSegmentAdrRangeBlocks 128
151 #define MaxAreaRangeBlocks 4
153 static unsigned long iSeries_process_Regatta_mainstore_vpd(
154 struct MemoryBlock *mb_array, unsigned long max_entries)
156 struct IoHriMainStoreSegment5 *msVpdP =
157 (struct IoHriMainStoreSegment5 *)xMsVpd;
158 unsigned long numSegmentBlocks = 0;
159 u32 existsBits = msVpdP->msAreaExists;
160 unsigned long area_num;
162 printk("Mainstore_VPD: Regatta\n");
164 for (area_num = 0; area_num < MaxSegmentAreas; ++area_num ) {
165 unsigned long numAreaBlocks;
166 struct IoHriMainStoreArea4 *currentArea;
168 if (existsBits & 0x80000000) {
169 unsigned long block_num;
171 currentArea = &msVpdP->msAreaArray[area_num];
172 numAreaBlocks = currentArea->numAdrRangeBlocks;
173 printk("ms_vpd: processing area %2ld blocks=%ld",
174 area_num, numAreaBlocks);
175 for (block_num = 0; block_num < numAreaBlocks;
176 ++block_num ) {
177 /* Process an address range block */
178 struct MemoryBlock tempBlock;
179 unsigned long i;
181 tempBlock.absStart =
182 (unsigned long)currentArea->xAdrRangeBlock[block_num].blockStart;
183 tempBlock.absEnd =
184 (unsigned long)currentArea->xAdrRangeBlock[block_num].blockEnd;
185 tempBlock.logicalStart = 0;
186 tempBlock.logicalEnd = 0;
187 printk("\n block %ld absStart=%016lx absEnd=%016lx",
188 block_num, tempBlock.absStart,
189 tempBlock.absEnd);
191 for (i = 0; i < numSegmentBlocks; ++i) {
192 if (mb_array[i].absStart ==
193 tempBlock.absStart)
194 break;
196 if (i == numSegmentBlocks) {
197 if (numSegmentBlocks == max_entries)
198 panic("iSeries_process_mainstore_vpd: too many memory blocks");
199 mb_array[numSegmentBlocks] = tempBlock;
200 ++numSegmentBlocks;
201 } else
202 printk(" (duplicate)");
204 printk("\n");
206 existsBits <<= 1;
208 /* Now sort the blocks found into ascending sequence */
209 if (numSegmentBlocks > 1) {
210 unsigned long m, n;
212 for (m = 0; m < numSegmentBlocks - 1; ++m) {
213 for (n = numSegmentBlocks - 1; m < n; --n) {
214 if (mb_array[n].absStart <
215 mb_array[n-1].absStart) {
216 struct MemoryBlock tempBlock;
218 tempBlock = mb_array[n];
219 mb_array[n] = mb_array[n-1];
220 mb_array[n-1] = tempBlock;
226 * Assign "logical" addresses to each block. These
227 * addresses correspond to the hypervisor "bitmap" space.
228 * Convert all addresses into units of 256K chunks.
231 unsigned long i, nextBitmapAddress;
233 printk("ms_vpd: %ld sorted memory blocks\n", numSegmentBlocks);
234 nextBitmapAddress = 0;
235 for (i = 0; i < numSegmentBlocks; ++i) {
236 unsigned long length = mb_array[i].absEnd -
237 mb_array[i].absStart;
239 mb_array[i].logicalStart = nextBitmapAddress;
240 mb_array[i].logicalEnd = nextBitmapAddress + length;
241 nextBitmapAddress += length;
242 printk(" Bitmap range: %016lx - %016lx\n"
243 " Absolute range: %016lx - %016lx\n",
244 mb_array[i].logicalStart,
245 mb_array[i].logicalEnd,
246 mb_array[i].absStart, mb_array[i].absEnd);
247 mb_array[i].absStart = addr_to_chunk(mb_array[i].absStart &
248 0x000fffffffffffff);
249 mb_array[i].absEnd = addr_to_chunk(mb_array[i].absEnd &
250 0x000fffffffffffff);
251 mb_array[i].logicalStart =
252 addr_to_chunk(mb_array[i].logicalStart);
253 mb_array[i].logicalEnd = addr_to_chunk(mb_array[i].logicalEnd);
257 return numSegmentBlocks;
260 static unsigned long iSeries_process_mainstore_vpd(struct MemoryBlock *mb_array,
261 unsigned long max_entries)
263 unsigned long i;
264 unsigned long mem_blocks = 0;
266 if (cpu_has_feature(CPU_FTR_SLB))
267 mem_blocks = iSeries_process_Regatta_mainstore_vpd(mb_array,
268 max_entries);
269 else
270 mem_blocks = iSeries_process_Condor_mainstore_vpd(mb_array,
271 max_entries);
273 printk("Mainstore_VPD: numMemoryBlocks = %ld \n", mem_blocks);
274 for (i = 0; i < mem_blocks; ++i) {
275 printk("Mainstore_VPD: block %3ld logical chunks %016lx - %016lx\n"
276 " abs chunks %016lx - %016lx\n",
277 i, mb_array[i].logicalStart, mb_array[i].logicalEnd,
278 mb_array[i].absStart, mb_array[i].absEnd);
280 return mem_blocks;
283 static void __init iSeries_get_cmdline(void)
285 char *p, *q;
287 /* copy the command line parameter from the primary VSP */
288 HvCallEvent_dmaToSp(cmd_line, 2 * 64* 1024, 256,
289 HvLpDma_Direction_RemoteToLocal);
291 p = cmd_line;
292 q = cmd_line + 255;
293 while(p < q) {
294 if (!*p || *p == '\n')
295 break;
296 ++p;
298 *p = 0;
301 static void __init iSeries_init_early(void)
303 DBG(" -> iSeries_init_early()\n");
305 ppc64_interrupt_controller = IC_ISERIES;
307 #if defined(CONFIG_BLK_DEV_INITRD)
309 * If the init RAM disk has been configured and there is
310 * a non-zero starting address for it, set it up
312 if (naca.xRamDisk) {
313 initrd_start = (unsigned long)__va(naca.xRamDisk);
314 initrd_end = initrd_start + naca.xRamDiskSize * HW_PAGE_SIZE;
315 initrd_below_start_ok = 1; // ramdisk in kernel space
316 ROOT_DEV = Root_RAM0;
317 if (((rd_size * 1024) / HW_PAGE_SIZE) < naca.xRamDiskSize)
318 rd_size = (naca.xRamDiskSize * HW_PAGE_SIZE) / 1024;
319 } else
320 #endif /* CONFIG_BLK_DEV_INITRD */
322 /* ROOT_DEV = MKDEV(VIODASD_MAJOR, 1); */
325 iSeries_recal_tb = get_tb();
326 iSeries_recal_titan = HvCallXm_loadTod();
329 * Initialize the hash table management pointers
331 hpte_init_iSeries();
334 * Initialize the DMA/TCE management
336 iommu_init_early_iSeries();
338 /* Initialize machine-dependency vectors */
339 #ifdef CONFIG_SMP
340 smp_init_iSeries();
341 #endif
342 if (itLpNaca.xPirEnvironMode == 0)
343 piranha_simulator = 1;
345 /* Associate Lp Event Queue 0 with processor 0 */
346 HvCallEvent_setLpEventQueueInterruptProc(0, 0);
348 mf_init();
350 /* If we were passed an initrd, set the ROOT_DEV properly if the values
351 * look sensible. If not, clear initrd reference.
353 #ifdef CONFIG_BLK_DEV_INITRD
354 if (initrd_start >= KERNELBASE && initrd_end >= KERNELBASE &&
355 initrd_end > initrd_start)
356 ROOT_DEV = Root_RAM0;
357 else
358 initrd_start = initrd_end = 0;
359 #endif /* CONFIG_BLK_DEV_INITRD */
361 DBG(" <- iSeries_init_early()\n");
364 struct mschunks_map mschunks_map = {
365 /* XXX We don't use these, but Piranha might need them. */
366 .chunk_size = MSCHUNKS_CHUNK_SIZE,
367 .chunk_shift = MSCHUNKS_CHUNK_SHIFT,
368 .chunk_mask = MSCHUNKS_OFFSET_MASK,
370 EXPORT_SYMBOL(mschunks_map);
372 void mschunks_alloc(unsigned long num_chunks)
374 klimit = _ALIGN(klimit, sizeof(u32));
375 mschunks_map.mapping = (u32 *)klimit;
376 klimit += num_chunks * sizeof(u32);
377 mschunks_map.num_chunks = num_chunks;
381 * The iSeries may have very large memories ( > 128 GB ) and a partition
382 * may get memory in "chunks" that may be anywhere in the 2**52 real
383 * address space. The chunks are 256K in size. To map this to the
384 * memory model Linux expects, the AS/400 specific code builds a
385 * translation table to translate what Linux thinks are "physical"
386 * addresses to the actual real addresses. This allows us to make
387 * it appear to Linux that we have contiguous memory starting at
388 * physical address zero while in fact this could be far from the truth.
389 * To avoid confusion, I'll let the words physical and/or real address
390 * apply to the Linux addresses while I'll use "absolute address" to
391 * refer to the actual hardware real address.
393 * build_iSeries_Memory_Map gets information from the Hypervisor and
394 * looks at the Main Store VPD to determine the absolute addresses
395 * of the memory that has been assigned to our partition and builds
396 * a table used to translate Linux's physical addresses to these
397 * absolute addresses. Absolute addresses are needed when
398 * communicating with the hypervisor (e.g. to build HPT entries)
400 * Returns the physical memory size
403 static unsigned long __init build_iSeries_Memory_Map(void)
405 u32 loadAreaFirstChunk, loadAreaLastChunk, loadAreaSize;
406 u32 nextPhysChunk;
407 u32 hptFirstChunk, hptLastChunk, hptSizeChunks, hptSizePages;
408 u32 totalChunks,moreChunks;
409 u32 currChunk, thisChunk, absChunk;
410 u32 currDword;
411 u32 chunkBit;
412 u64 map;
413 struct MemoryBlock mb[32];
414 unsigned long numMemoryBlocks, curBlock;
416 /* Chunk size on iSeries is 256K bytes */
417 totalChunks = (u32)HvLpConfig_getMsChunks();
418 mschunks_alloc(totalChunks);
421 * Get absolute address of our load area
422 * and map it to physical address 0
423 * This guarantees that the loadarea ends up at physical 0
424 * otherwise, it might not be returned by PLIC as the first
425 * chunks
428 loadAreaFirstChunk = (u32)addr_to_chunk(itLpNaca.xLoadAreaAddr);
429 loadAreaSize = itLpNaca.xLoadAreaChunks;
432 * Only add the pages already mapped here.
433 * Otherwise we might add the hpt pages
434 * The rest of the pages of the load area
435 * aren't in the HPT yet and can still
436 * be assigned an arbitrary physical address
438 if ((loadAreaSize * 64) > HvPagesToMap)
439 loadAreaSize = HvPagesToMap / 64;
441 loadAreaLastChunk = loadAreaFirstChunk + loadAreaSize - 1;
444 * TODO Do we need to do something if the HPT is in the 64MB load area?
445 * This would be required if the itLpNaca.xLoadAreaChunks includes
446 * the HPT size
449 printk("Mapping load area - physical addr = 0000000000000000\n"
450 " absolute addr = %016lx\n",
451 chunk_to_addr(loadAreaFirstChunk));
452 printk("Load area size %dK\n", loadAreaSize * 256);
454 for (nextPhysChunk = 0; nextPhysChunk < loadAreaSize; ++nextPhysChunk)
455 mschunks_map.mapping[nextPhysChunk] =
456 loadAreaFirstChunk + nextPhysChunk;
459 * Get absolute address of our HPT and remember it so
460 * we won't map it to any physical address
462 hptFirstChunk = (u32)addr_to_chunk(HvCallHpt_getHptAddress());
463 hptSizePages = (u32)HvCallHpt_getHptPages();
464 hptSizeChunks = hptSizePages >>
465 (MSCHUNKS_CHUNK_SHIFT - HW_PAGE_SHIFT);
466 hptLastChunk = hptFirstChunk + hptSizeChunks - 1;
468 printk("HPT absolute addr = %016lx, size = %dK\n",
469 chunk_to_addr(hptFirstChunk), hptSizeChunks * 256);
472 * Determine if absolute memory has any
473 * holes so that we can interpret the
474 * access map we get back from the hypervisor
475 * correctly.
477 numMemoryBlocks = iSeries_process_mainstore_vpd(mb, 32);
480 * Process the main store access map from the hypervisor
481 * to build up our physical -> absolute translation table
483 curBlock = 0;
484 currChunk = 0;
485 currDword = 0;
486 moreChunks = totalChunks;
488 while (moreChunks) {
489 map = HvCallSm_get64BitsOfAccessMap(itLpNaca.xLpIndex,
490 currDword);
491 thisChunk = currChunk;
492 while (map) {
493 chunkBit = map >> 63;
494 map <<= 1;
495 if (chunkBit) {
496 --moreChunks;
497 while (thisChunk >= mb[curBlock].logicalEnd) {
498 ++curBlock;
499 if (curBlock >= numMemoryBlocks)
500 panic("out of memory blocks");
502 if (thisChunk < mb[curBlock].logicalStart)
503 panic("memory block error");
505 absChunk = mb[curBlock].absStart +
506 (thisChunk - mb[curBlock].logicalStart);
507 if (((absChunk < hptFirstChunk) ||
508 (absChunk > hptLastChunk)) &&
509 ((absChunk < loadAreaFirstChunk) ||
510 (absChunk > loadAreaLastChunk))) {
511 mschunks_map.mapping[nextPhysChunk] =
512 absChunk;
513 ++nextPhysChunk;
516 ++thisChunk;
518 ++currDword;
519 currChunk += 64;
523 * main store size (in chunks) is
524 * totalChunks - hptSizeChunks
525 * which should be equal to
526 * nextPhysChunk
528 return chunk_to_addr(nextPhysChunk);
532 * Document me.
534 static void __init iSeries_setup_arch(void)
536 if (get_lppaca()->shared_proc) {
537 ppc_md.idle_loop = iseries_shared_idle;
538 printk(KERN_INFO "Using shared processor idle loop\n");
539 } else {
540 ppc_md.idle_loop = iseries_dedicated_idle;
541 printk(KERN_INFO "Using dedicated idle loop\n");
544 /* Setup the Lp Event Queue */
545 setup_hvlpevent_queue();
547 printk("Max logical processors = %d\n",
548 itVpdAreas.xSlicMaxLogicalProcs);
549 printk("Max physical processors = %d\n",
550 itVpdAreas.xSlicMaxPhysicalProcs);
553 static void iSeries_show_cpuinfo(struct seq_file *m)
555 seq_printf(m, "machine\t\t: 64-bit iSeries Logical Partition\n");
558 static void __init iSeries_progress(char * st, unsigned short code)
560 printk("Progress: [%04x] - %s\n", (unsigned)code, st);
561 mf_display_progress(code);
564 static void __init iSeries_fixup_klimit(void)
567 * Change klimit to take into account any ram disk
568 * that may be included
570 if (naca.xRamDisk)
571 klimit = KERNELBASE + (u64)naca.xRamDisk +
572 (naca.xRamDiskSize * HW_PAGE_SIZE);
573 else {
575 * No ram disk was included - check and see if there
576 * was an embedded system map. Change klimit to take
577 * into account any embedded system map
579 if (embedded_sysmap_end)
580 klimit = KERNELBASE + ((embedded_sysmap_end + 4095) &
581 0xfffffffffffff000);
585 static int __init iSeries_src_init(void)
587 /* clear the progress line */
588 ppc_md.progress(" ", 0xffff);
589 return 0;
592 late_initcall(iSeries_src_init);
594 static inline void process_iSeries_events(void)
596 asm volatile ("li 0,0x5555; sc" : : : "r0", "r3");
599 static void yield_shared_processor(void)
601 unsigned long tb;
603 HvCall_setEnabledInterrupts(HvCall_MaskIPI |
604 HvCall_MaskLpEvent |
605 HvCall_MaskLpProd |
606 HvCall_MaskTimeout);
608 tb = get_tb();
609 /* Compute future tb value when yield should expire */
610 HvCall_yieldProcessor(HvCall_YieldTimed, tb+tb_ticks_per_jiffy);
613 * The decrementer stops during the yield. Force a fake decrementer
614 * here and let the timer_interrupt code sort out the actual time.
616 get_lppaca()->int_dword.fields.decr_int = 1;
617 ppc64_runlatch_on();
618 process_iSeries_events();
621 static void iseries_shared_idle(void)
623 while (1) {
624 while (!need_resched() && !hvlpevent_is_pending()) {
625 local_irq_disable();
626 ppc64_runlatch_off();
628 /* Recheck with irqs off */
629 if (!need_resched() && !hvlpevent_is_pending())
630 yield_shared_processor();
632 HMT_medium();
633 local_irq_enable();
636 ppc64_runlatch_on();
638 if (hvlpevent_is_pending())
639 process_iSeries_events();
641 preempt_enable_no_resched();
642 schedule();
643 preempt_disable();
647 static void iseries_dedicated_idle(void)
649 set_thread_flag(TIF_POLLING_NRFLAG);
651 while (1) {
652 if (!need_resched()) {
653 while (!need_resched()) {
654 ppc64_runlatch_off();
655 HMT_low();
657 if (hvlpevent_is_pending()) {
658 HMT_medium();
659 ppc64_runlatch_on();
660 process_iSeries_events();
664 HMT_medium();
667 ppc64_runlatch_on();
668 preempt_enable_no_resched();
669 schedule();
670 preempt_disable();
674 #ifndef CONFIG_PCI
675 void __init iSeries_init_IRQ(void) { }
676 #endif
678 static int __init iseries_probe(int platform)
680 if (PLATFORM_ISERIES_LPAR != platform)
681 return 0;
683 ppc64_firmware_features |= FW_FEATURE_ISERIES;
684 ppc64_firmware_features |= FW_FEATURE_LPAR;
686 return 1;
689 struct machdep_calls __initdata iseries_md = {
690 .setup_arch = iSeries_setup_arch,
691 .show_cpuinfo = iSeries_show_cpuinfo,
692 .init_IRQ = iSeries_init_IRQ,
693 .get_irq = iSeries_get_irq,
694 .init_early = iSeries_init_early,
695 .pcibios_fixup = iSeries_pci_final_fixup,
696 .restart = mf_reboot,
697 .power_off = mf_power_off,
698 .halt = mf_power_off,
699 .get_boot_time = iSeries_get_boot_time,
700 .set_rtc_time = iSeries_set_rtc_time,
701 .get_rtc_time = iSeries_get_rtc_time,
702 .calibrate_decr = generic_calibrate_decr,
703 .progress = iSeries_progress,
704 .probe = iseries_probe,
705 /* XXX Implement enable_pmcs for iSeries */
708 struct blob {
709 unsigned char data[PAGE_SIZE];
710 unsigned long next;
713 struct iseries_flat_dt {
714 struct boot_param_header header;
715 u64 reserve_map[2];
716 struct blob dt;
717 struct blob strings;
720 struct iseries_flat_dt iseries_dt;
722 void dt_init(struct iseries_flat_dt *dt)
724 dt->header.off_mem_rsvmap =
725 offsetof(struct iseries_flat_dt, reserve_map);
726 dt->header.off_dt_struct = offsetof(struct iseries_flat_dt, dt);
727 dt->header.off_dt_strings = offsetof(struct iseries_flat_dt, strings);
728 dt->header.totalsize = sizeof(struct iseries_flat_dt);
729 dt->header.dt_strings_size = sizeof(struct blob);
731 /* There is no notion of hardware cpu id on iSeries */
732 dt->header.boot_cpuid_phys = smp_processor_id();
734 dt->dt.next = (unsigned long)&dt->dt.data;
735 dt->strings.next = (unsigned long)&dt->strings.data;
737 dt->header.magic = OF_DT_HEADER;
738 dt->header.version = 0x10;
739 dt->header.last_comp_version = 0x10;
741 dt->reserve_map[0] = 0;
742 dt->reserve_map[1] = 0;
745 void dt_check_blob(struct blob *b)
747 if (b->next >= (unsigned long)&b->next) {
748 DBG("Ran out of space in flat device tree blob!\n");
749 BUG();
753 void dt_push_u32(struct iseries_flat_dt *dt, u32 value)
755 *((u32*)dt->dt.next) = value;
756 dt->dt.next += sizeof(u32);
758 dt_check_blob(&dt->dt);
761 void dt_push_u64(struct iseries_flat_dt *dt, u64 value)
763 *((u64*)dt->dt.next) = value;
764 dt->dt.next += sizeof(u64);
766 dt_check_blob(&dt->dt);
769 unsigned long dt_push_bytes(struct blob *blob, char *data, int len)
771 unsigned long start = blob->next - (unsigned long)blob->data;
773 memcpy((char *)blob->next, data, len);
774 blob->next = _ALIGN(blob->next + len, 4);
776 dt_check_blob(blob);
778 return start;
781 void dt_start_node(struct iseries_flat_dt *dt, char *name)
783 dt_push_u32(dt, OF_DT_BEGIN_NODE);
784 dt_push_bytes(&dt->dt, name, strlen(name) + 1);
787 #define dt_end_node(dt) dt_push_u32(dt, OF_DT_END_NODE)
789 void dt_prop(struct iseries_flat_dt *dt, char *name, char *data, int len)
791 unsigned long offset;
793 dt_push_u32(dt, OF_DT_PROP);
795 /* Length of the data */
796 dt_push_u32(dt, len);
798 /* Put the property name in the string blob. */
799 offset = dt_push_bytes(&dt->strings, name, strlen(name) + 1);
801 /* The offset of the properties name in the string blob. */
802 dt_push_u32(dt, (u32)offset);
804 /* The actual data. */
805 dt_push_bytes(&dt->dt, data, len);
808 void dt_prop_str(struct iseries_flat_dt *dt, char *name, char *data)
810 dt_prop(dt, name, data, strlen(data) + 1); /* + 1 for NULL */
813 void dt_prop_u32(struct iseries_flat_dt *dt, char *name, u32 data)
815 dt_prop(dt, name, (char *)&data, sizeof(u32));
818 void dt_prop_u64(struct iseries_flat_dt *dt, char *name, u64 data)
820 dt_prop(dt, name, (char *)&data, sizeof(u64));
823 void dt_prop_u64_list(struct iseries_flat_dt *dt, char *name, u64 *data, int n)
825 dt_prop(dt, name, (char *)data, sizeof(u64) * n);
828 void dt_prop_u32_list(struct iseries_flat_dt *dt, char *name, u32 *data, int n)
830 dt_prop(dt, name, (char *)data, sizeof(u32) * n);
833 void dt_prop_empty(struct iseries_flat_dt *dt, char *name)
835 dt_prop(dt, name, NULL, 0);
838 void dt_cpus(struct iseries_flat_dt *dt)
840 unsigned char buf[32];
841 unsigned char *p;
842 unsigned int i, index;
843 struct IoHriProcessorVpd *d;
844 u32 pft_size[2];
846 /* yuck */
847 snprintf(buf, 32, "PowerPC,%s", cur_cpu_spec->cpu_name);
848 p = strchr(buf, ' ');
849 if (!p) p = buf + strlen(buf);
851 dt_start_node(dt, "cpus");
852 dt_prop_u32(dt, "#address-cells", 1);
853 dt_prop_u32(dt, "#size-cells", 0);
855 pft_size[0] = 0; /* NUMA CEC cookie, 0 for non NUMA */
856 pft_size[1] = __ilog2(HvCallHpt_getHptPages() * HW_PAGE_SIZE);
858 for (i = 0; i < NR_CPUS; i++) {
859 if (lppaca[i].dyn_proc_status >= 2)
860 continue;
862 snprintf(p, 32 - (p - buf), "@%d", i);
863 dt_start_node(dt, buf);
865 dt_prop_str(dt, "device_type", "cpu");
867 index = lppaca[i].dyn_hv_phys_proc_index;
868 d = &xIoHriProcessorVpd[index];
870 dt_prop_u32(dt, "i-cache-size", d->xInstCacheSize * 1024);
871 dt_prop_u32(dt, "i-cache-line-size", d->xInstCacheOperandSize);
873 dt_prop_u32(dt, "d-cache-size", d->xDataL1CacheSizeKB * 1024);
874 dt_prop_u32(dt, "d-cache-line-size", d->xDataCacheOperandSize);
876 /* magic conversions to Hz copied from old code */
877 dt_prop_u32(dt, "clock-frequency",
878 ((1UL << 34) * 1000000) / d->xProcFreq);
879 dt_prop_u32(dt, "timebase-frequency",
880 ((1UL << 32) * 1000000) / d->xTimeBaseFreq);
882 dt_prop_u32(dt, "reg", i);
884 dt_prop_u32_list(dt, "ibm,pft-size", pft_size, 2);
886 dt_end_node(dt);
889 dt_end_node(dt);
892 void dt_model(struct iseries_flat_dt *dt)
894 char buf[16] = "IBM,";
896 /* "IBM," + mfgId[2:3] + systemSerial[1:5] */
897 strne2a(buf + 4, xItExtVpdPanel.mfgID + 2, 2);
898 strne2a(buf + 6, xItExtVpdPanel.systemSerial + 1, 5);
899 buf[11] = '\0';
900 dt_prop_str(dt, "system-id", buf);
902 /* "IBM," + machineType[0:4] */
903 strne2a(buf + 4, xItExtVpdPanel.machineType, 4);
904 buf[8] = '\0';
905 dt_prop_str(dt, "model", buf);
907 dt_prop_str(dt, "compatible", "IBM,iSeries");
910 void build_flat_dt(struct iseries_flat_dt *dt, unsigned long phys_mem_size)
912 u64 tmp[2];
914 dt_init(dt);
916 dt_start_node(dt, "");
918 dt_prop_u32(dt, "#address-cells", 2);
919 dt_prop_u32(dt, "#size-cells", 2);
920 dt_model(dt);
922 /* /memory */
923 dt_start_node(dt, "memory@0");
924 dt_prop_str(dt, "name", "memory");
925 dt_prop_str(dt, "device_type", "memory");
926 tmp[0] = 0;
927 tmp[1] = phys_mem_size;
928 dt_prop_u64_list(dt, "reg", tmp, 2);
929 dt_end_node(dt);
931 /* /chosen */
932 dt_start_node(dt, "chosen");
933 dt_prop_u32(dt, "linux,platform", PLATFORM_ISERIES_LPAR);
934 if (cmd_mem_limit)
935 dt_prop_u64(dt, "linux,memory-limit", cmd_mem_limit);
936 dt_end_node(dt);
938 dt_cpus(dt);
940 dt_end_node(dt);
942 dt_push_u32(dt, OF_DT_END);
945 void * __init iSeries_early_setup(void)
947 unsigned long phys_mem_size;
949 iSeries_fixup_klimit();
952 * Initialize the table which translate Linux physical addresses to
953 * AS/400 absolute addresses
955 phys_mem_size = build_iSeries_Memory_Map();
957 iSeries_get_cmdline();
959 /* Save unparsed command line copy for /proc/cmdline */
960 strlcpy(saved_command_line, cmd_line, COMMAND_LINE_SIZE);
962 /* Parse early parameters, in particular mem=x */
963 parse_early_param();
965 build_flat_dt(&iseries_dt, phys_mem_size);
967 return (void *) __pa(&iseries_dt);
971 * On iSeries we just parse the mem=X option from the command line.
972 * On pSeries it's a bit more complicated, see prom_init_mem()
974 static int __init early_parsemem(char *p)
976 if (p)
977 cmd_mem_limit = ALIGN(memparse(p, &p), PAGE_SIZE);
978 return 0;
980 early_param("mem", early_parsemem);
982 static void hvputc(char c)
984 if (c == '\n')
985 hvputc('\r');
987 HvCall_writeLogBuffer(&c, 1);
990 void __init udbg_init_iseries(void)
992 udbg_putc = hvputc;