Merge commit '720b16875295d57e0e6a4e0ec32db4d47412f896'
[unleashed.git] / kernel / fs / zfs / spa_misc.c
blob5f73fc27e0692cd9d803129014589b52286cc5e3
1 /*
2 * CDDL HEADER START
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
19 * CDDL HEADER END
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 2011, 2017 by Delphix. All rights reserved.
24 * Copyright 2015 Nexenta Systems, Inc. All rights reserved.
25 * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved.
26 * Copyright 2013 Saso Kiselkov. All rights reserved.
27 * Copyright (c) 2014 Integros [integros.com]
28 * Copyright (c) 2017 Datto Inc.
31 #include <sys/zfs_context.h>
32 #include <sys/spa_impl.h>
33 #include <sys/spa_boot.h>
34 #include <sys/zio.h>
35 #include <sys/zio_checksum.h>
36 #include <sys/zio_compress.h>
37 #include <sys/dmu.h>
38 #include <sys/dmu_tx.h>
39 #include <sys/zap.h>
40 #include <sys/zil.h>
41 #include <sys/vdev_impl.h>
42 #include <sys/metaslab.h>
43 #include <sys/uberblock_impl.h>
44 #include <sys/txg.h>
45 #include <sys/avl.h>
46 #include <sys/unique.h>
47 #include <sys/dsl_pool.h>
48 #include <sys/dsl_dir.h>
49 #include <sys/dsl_prop.h>
50 #include <sys/dsl_scan.h>
51 #include <sys/fs/zfs.h>
52 #include <sys/metaslab_impl.h>
53 #include <sys/arc.h>
54 #include <sys/ddt.h>
55 #include "zfs_prop.h"
56 #include <sys/zfeature.h>
59 * SPA locking
61 * There are four basic locks for managing spa_t structures:
63 * spa_namespace_lock (global mutex)
65 * This lock must be acquired to do any of the following:
67 * - Lookup a spa_t by name
68 * - Add or remove a spa_t from the namespace
69 * - Increase spa_refcount from non-zero
70 * - Check if spa_refcount is zero
71 * - Rename a spa_t
72 * - add/remove/attach/detach devices
73 * - Held for the duration of create/destroy/import/export
75 * It does not need to handle recursion. A create or destroy may
76 * reference objects (files or zvols) in other pools, but by
77 * definition they must have an existing reference, and will never need
78 * to lookup a spa_t by name.
80 * spa_refcount (per-spa refcount_t protected by mutex)
82 * This reference count keep track of any active users of the spa_t. The
83 * spa_t cannot be destroyed or freed while this is non-zero. Internally,
84 * the refcount is never really 'zero' - opening a pool implicitly keeps
85 * some references in the DMU. Internally we check against spa_minref, but
86 * present the image of a zero/non-zero value to consumers.
88 * spa_config_lock[] (per-spa array of rwlocks)
90 * This protects the spa_t from config changes, and must be held in
91 * the following circumstances:
93 * - RW_READER to perform I/O to the spa
94 * - RW_WRITER to change the vdev config
96 * The locking order is fairly straightforward:
98 * spa_namespace_lock -> spa_refcount
100 * The namespace lock must be acquired to increase the refcount from 0
101 * or to check if it is zero.
103 * spa_refcount -> spa_config_lock[]
105 * There must be at least one valid reference on the spa_t to acquire
106 * the config lock.
108 * spa_namespace_lock -> spa_config_lock[]
110 * The namespace lock must always be taken before the config lock.
113 * The spa_namespace_lock can be acquired directly and is globally visible.
115 * The namespace is manipulated using the following functions, all of which
116 * require the spa_namespace_lock to be held.
118 * spa_lookup() Lookup a spa_t by name.
120 * spa_add() Create a new spa_t in the namespace.
122 * spa_remove() Remove a spa_t from the namespace. This also
123 * frees up any memory associated with the spa_t.
125 * spa_next() Returns the next spa_t in the system, or the
126 * first if NULL is passed.
128 * spa_evict_all() Shutdown and remove all spa_t structures in
129 * the system.
131 * spa_guid_exists() Determine whether a pool/device guid exists.
133 * The spa_refcount is manipulated using the following functions:
135 * spa_open_ref() Adds a reference to the given spa_t. Must be
136 * called with spa_namespace_lock held if the
137 * refcount is currently zero.
139 * spa_close() Remove a reference from the spa_t. This will
140 * not free the spa_t or remove it from the
141 * namespace. No locking is required.
143 * spa_refcount_zero() Returns true if the refcount is currently
144 * zero. Must be called with spa_namespace_lock
145 * held.
147 * The spa_config_lock[] is an array of rwlocks, ordered as follows:
148 * SCL_CONFIG > SCL_STATE > SCL_ALLOC > SCL_ZIO > SCL_FREE > SCL_VDEV.
149 * spa_config_lock[] is manipulated with spa_config_{enter,exit,held}().
151 * To read the configuration, it suffices to hold one of these locks as reader.
152 * To modify the configuration, you must hold all locks as writer. To modify
153 * vdev state without altering the vdev tree's topology (e.g. online/offline),
154 * you must hold SCL_STATE and SCL_ZIO as writer.
156 * We use these distinct config locks to avoid recursive lock entry.
157 * For example, spa_sync() (which holds SCL_CONFIG as reader) induces
158 * block allocations (SCL_ALLOC), which may require reading space maps
159 * from disk (dmu_read() -> zio_read() -> SCL_ZIO).
161 * The spa config locks cannot be normal rwlocks because we need the
162 * ability to hand off ownership. For example, SCL_ZIO is acquired
163 * by the issuing thread and later released by an interrupt thread.
164 * They do, however, obey the usual write-wanted semantics to prevent
165 * writer (i.e. system administrator) starvation.
167 * The lock acquisition rules are as follows:
169 * SCL_CONFIG
170 * Protects changes to the vdev tree topology, such as vdev
171 * add/remove/attach/detach. Protects the dirty config list
172 * (spa_config_dirty_list) and the set of spares and l2arc devices.
174 * SCL_STATE
175 * Protects changes to pool state and vdev state, such as vdev
176 * online/offline/fault/degrade/clear. Protects the dirty state list
177 * (spa_state_dirty_list) and global pool state (spa_state).
179 * SCL_ALLOC
180 * Protects changes to metaslab groups and classes.
181 * Held as reader by metaslab_alloc() and metaslab_claim().
183 * SCL_ZIO
184 * Held by bp-level zios (those which have no io_vd upon entry)
185 * to prevent changes to the vdev tree. The bp-level zio implicitly
186 * protects all of its vdev child zios, which do not hold SCL_ZIO.
188 * SCL_FREE
189 * Protects changes to metaslab groups and classes.
190 * Held as reader by metaslab_free(). SCL_FREE is distinct from
191 * SCL_ALLOC, and lower than SCL_ZIO, so that we can safely free
192 * blocks in zio_done() while another i/o that holds either
193 * SCL_ALLOC or SCL_ZIO is waiting for this i/o to complete.
195 * SCL_VDEV
196 * Held as reader to prevent changes to the vdev tree during trivial
197 * inquiries such as bp_get_dsize(). SCL_VDEV is distinct from the
198 * other locks, and lower than all of them, to ensure that it's safe
199 * to acquire regardless of caller context.
201 * In addition, the following rules apply:
203 * (a) spa_props_lock protects pool properties, spa_config and spa_config_list.
204 * The lock ordering is SCL_CONFIG > spa_props_lock.
206 * (b) I/O operations on leaf vdevs. For any zio operation that takes
207 * an explicit vdev_t argument -- such as zio_ioctl(), zio_read_phys(),
208 * or zio_write_phys() -- the caller must ensure that the config cannot
209 * cannot change in the interim, and that the vdev cannot be reopened.
210 * SCL_STATE as reader suffices for both.
212 * The vdev configuration is protected by spa_vdev_enter() / spa_vdev_exit().
214 * spa_vdev_enter() Acquire the namespace lock and the config lock
215 * for writing.
217 * spa_vdev_exit() Release the config lock, wait for all I/O
218 * to complete, sync the updated configs to the
219 * cache, and release the namespace lock.
221 * vdev state is protected by spa_vdev_state_enter() / spa_vdev_state_exit().
222 * Like spa_vdev_enter/exit, these are convenience wrappers -- the actual
223 * locking is, always, based on spa_namespace_lock and spa_config_lock[].
225 * spa_rename() is also implemented within this file since it requires
226 * manipulation of the namespace.
229 static avl_tree_t spa_namespace_avl;
230 kmutex_t spa_namespace_lock;
231 static kcondvar_t spa_namespace_cv;
232 static int spa_active_count;
233 int spa_max_replication_override = SPA_DVAS_PER_BP;
235 static kmutex_t spa_spare_lock;
236 static avl_tree_t spa_spare_avl;
237 static kmutex_t spa_l2cache_lock;
238 static avl_tree_t spa_l2cache_avl;
240 kmem_cache_t *spa_buffer_pool;
241 int spa_mode_global;
243 #ifdef ZFS_DEBUG
244 /* Everything except dprintf and spa is on by default in debug builds */
245 int zfs_flags = ~(ZFS_DEBUG_DPRINTF | ZFS_DEBUG_SPA);
246 #else
247 int zfs_flags = 0;
248 #endif
251 * zfs_recover can be set to nonzero to attempt to recover from
252 * otherwise-fatal errors, typically caused by on-disk corruption. When
253 * set, calls to zfs_panic_recover() will turn into warning messages.
254 * This should only be used as a last resort, as it typically results
255 * in leaked space, or worse.
257 boolean_t zfs_recover = B_FALSE;
260 * If destroy encounters an EIO while reading metadata (e.g. indirect
261 * blocks), space referenced by the missing metadata can not be freed.
262 * Normally this causes the background destroy to become "stalled", as
263 * it is unable to make forward progress. While in this stalled state,
264 * all remaining space to free from the error-encountering filesystem is
265 * "temporarily leaked". Set this flag to cause it to ignore the EIO,
266 * permanently leak the space from indirect blocks that can not be read,
267 * and continue to free everything else that it can.
269 * The default, "stalling" behavior is useful if the storage partially
270 * fails (i.e. some but not all i/os fail), and then later recovers. In
271 * this case, we will be able to continue pool operations while it is
272 * partially failed, and when it recovers, we can continue to free the
273 * space, with no leaks. However, note that this case is actually
274 * fairly rare.
276 * Typically pools either (a) fail completely (but perhaps temporarily,
277 * e.g. a top-level vdev going offline), or (b) have localized,
278 * permanent errors (e.g. disk returns the wrong data due to bit flip or
279 * firmware bug). In case (a), this setting does not matter because the
280 * pool will be suspended and the sync thread will not be able to make
281 * forward progress regardless. In case (b), because the error is
282 * permanent, the best we can do is leak the minimum amount of space,
283 * which is what setting this flag will do. Therefore, it is reasonable
284 * for this flag to normally be set, but we chose the more conservative
285 * approach of not setting it, so that there is no possibility of
286 * leaking space in the "partial temporary" failure case.
288 boolean_t zfs_free_leak_on_eio = B_FALSE;
291 * Expiration time in milliseconds. This value has two meanings. First it is
292 * used to determine when the spa_deadman() logic should fire. By default the
293 * spa_deadman() will fire if spa_sync() has not completed in 1000 seconds.
294 * Secondly, the value determines if an I/O is considered "hung". Any I/O that
295 * has not completed in zfs_deadman_synctime_ms is considered "hung" resulting
296 * in a system panic.
298 uint64_t zfs_deadman_synctime_ms = 1000000ULL;
301 * Check time in milliseconds. This defines the frequency at which we check
302 * for hung I/O.
304 uint64_t zfs_deadman_checktime_ms = 5000ULL;
307 * Override the zfs deadman behavior via /etc/system. By default the
308 * deadman is enabled except on VMware and sparc deployments.
310 int zfs_deadman_enabled = -1;
313 * The worst case is single-sector max-parity RAID-Z blocks, in which
314 * case the space requirement is exactly (VDEV_RAIDZ_MAXPARITY + 1)
315 * times the size; so just assume that. Add to this the fact that
316 * we can have up to 3 DVAs per bp, and one more factor of 2 because
317 * the block may be dittoed with up to 3 DVAs by ddt_sync(). All together,
318 * the worst case is:
319 * (VDEV_RAIDZ_MAXPARITY + 1) * SPA_DVAS_PER_BP * 2 == 24
321 int spa_asize_inflation = 24;
324 * Normally, we don't allow the last 3.2% (1/(2^spa_slop_shift)) of space in
325 * the pool to be consumed. This ensures that we don't run the pool
326 * completely out of space, due to unaccounted changes (e.g. to the MOS).
327 * It also limits the worst-case time to allocate space. If we have
328 * less than this amount of free space, most ZPL operations (e.g. write,
329 * create) will return ENOSPC.
331 * Certain operations (e.g. file removal, most administrative actions) can
332 * use half the slop space. They will only return ENOSPC if less than half
333 * the slop space is free. Typically, once the pool has less than the slop
334 * space free, the user will use these operations to free up space in the pool.
335 * These are the operations that call dsl_pool_adjustedsize() with the netfree
336 * argument set to TRUE.
338 * A very restricted set of operations are always permitted, regardless of
339 * the amount of free space. These are the operations that call
340 * dsl_sync_task(ZFS_SPACE_CHECK_NONE), e.g. "zfs destroy". If these
341 * operations result in a net increase in the amount of space used,
342 * it is possible to run the pool completely out of space, causing it to
343 * be permanently read-only.
345 * Note that on very small pools, the slop space will be larger than
346 * 3.2%, in an effort to have it be at least spa_min_slop (128MB),
347 * but we never allow it to be more than half the pool size.
349 * See also the comments in zfs_space_check_t.
351 int spa_slop_shift = 5;
352 uint64_t spa_min_slop = 128 * 1024 * 1024;
355 * ==========================================================================
356 * SPA config locking
357 * ==========================================================================
359 static void
360 spa_config_lock_init(spa_t *spa)
362 for (int i = 0; i < SCL_LOCKS; i++) {
363 spa_config_lock_t *scl = &spa->spa_config_lock[i];
364 mutex_init(&scl->scl_lock, NULL, MUTEX_DEFAULT, NULL);
365 cv_init(&scl->scl_cv, NULL, CV_DEFAULT, NULL);
366 refcount_create_untracked(&scl->scl_count);
367 scl->scl_writer = NULL;
368 scl->scl_write_wanted = 0;
372 static void
373 spa_config_lock_destroy(spa_t *spa)
375 for (int i = 0; i < SCL_LOCKS; i++) {
376 spa_config_lock_t *scl = &spa->spa_config_lock[i];
377 mutex_destroy(&scl->scl_lock);
378 cv_destroy(&scl->scl_cv);
379 refcount_destroy(&scl->scl_count);
380 ASSERT(scl->scl_writer == NULL);
381 ASSERT(scl->scl_write_wanted == 0);
386 spa_config_tryenter(spa_t *spa, int locks, void *tag, krw_t rw)
388 for (int i = 0; i < SCL_LOCKS; i++) {
389 spa_config_lock_t *scl = &spa->spa_config_lock[i];
390 if (!(locks & (1 << i)))
391 continue;
392 mutex_enter(&scl->scl_lock);
393 if (rw == RW_READER) {
394 if (scl->scl_writer || scl->scl_write_wanted) {
395 mutex_exit(&scl->scl_lock);
396 spa_config_exit(spa, locks & ((1 << i) - 1),
397 tag);
398 return (0);
400 } else {
401 ASSERT(scl->scl_writer != curthread);
402 if (!refcount_is_zero(&scl->scl_count)) {
403 mutex_exit(&scl->scl_lock);
404 spa_config_exit(spa, locks & ((1 << i) - 1),
405 tag);
406 return (0);
408 scl->scl_writer = curthread;
410 (void) refcount_add(&scl->scl_count, tag);
411 mutex_exit(&scl->scl_lock);
413 return (1);
416 void
417 spa_config_enter(spa_t *spa, int locks, void *tag, krw_t rw)
419 int wlocks_held = 0;
421 ASSERT3U(SCL_LOCKS, <, sizeof (wlocks_held) * NBBY);
423 for (int i = 0; i < SCL_LOCKS; i++) {
424 spa_config_lock_t *scl = &spa->spa_config_lock[i];
425 if (scl->scl_writer == curthread)
426 wlocks_held |= (1 << i);
427 if (!(locks & (1 << i)))
428 continue;
429 mutex_enter(&scl->scl_lock);
430 if (rw == RW_READER) {
431 while (scl->scl_writer || scl->scl_write_wanted) {
432 cv_wait(&scl->scl_cv, &scl->scl_lock);
434 } else {
435 ASSERT(scl->scl_writer != curthread);
436 while (!refcount_is_zero(&scl->scl_count)) {
437 scl->scl_write_wanted++;
438 cv_wait(&scl->scl_cv, &scl->scl_lock);
439 scl->scl_write_wanted--;
441 scl->scl_writer = curthread;
443 (void) refcount_add(&scl->scl_count, tag);
444 mutex_exit(&scl->scl_lock);
446 ASSERT(wlocks_held <= locks);
449 void
450 spa_config_exit(spa_t *spa, int locks, void *tag)
452 for (int i = SCL_LOCKS - 1; i >= 0; i--) {
453 spa_config_lock_t *scl = &spa->spa_config_lock[i];
454 if (!(locks & (1 << i)))
455 continue;
456 mutex_enter(&scl->scl_lock);
457 ASSERT(!refcount_is_zero(&scl->scl_count));
458 if (refcount_remove(&scl->scl_count, tag) == 0) {
459 ASSERT(scl->scl_writer == NULL ||
460 scl->scl_writer == curthread);
461 scl->scl_writer = NULL; /* OK in either case */
462 cv_broadcast(&scl->scl_cv);
464 mutex_exit(&scl->scl_lock);
469 spa_config_held(spa_t *spa, int locks, krw_t rw)
471 int locks_held = 0;
473 for (int i = 0; i < SCL_LOCKS; i++) {
474 spa_config_lock_t *scl = &spa->spa_config_lock[i];
475 if (!(locks & (1 << i)))
476 continue;
477 if ((rw == RW_READER && !refcount_is_zero(&scl->scl_count)) ||
478 (rw == RW_WRITER && scl->scl_writer == curthread))
479 locks_held |= 1 << i;
482 return (locks_held);
486 * ==========================================================================
487 * SPA namespace functions
488 * ==========================================================================
492 * Lookup the named spa_t in the AVL tree. The spa_namespace_lock must be held.
493 * Returns NULL if no matching spa_t is found.
495 spa_t *
496 spa_lookup(const char *name)
498 static spa_t search; /* spa_t is large; don't allocate on stack */
499 spa_t *spa;
500 avl_index_t where;
501 char *cp;
503 ASSERT(MUTEX_HELD(&spa_namespace_lock));
505 (void) strlcpy(search.spa_name, name, sizeof (search.spa_name));
508 * If it's a full dataset name, figure out the pool name and
509 * just use that.
511 cp = strpbrk(search.spa_name, "/@#");
512 if (cp != NULL)
513 *cp = '\0';
515 spa = avl_find(&spa_namespace_avl, &search, &where);
517 return (spa);
521 * Fires when spa_sync has not completed within zfs_deadman_synctime_ms.
522 * If the zfs_deadman_enabled flag is set then it inspects all vdev queues
523 * looking for potentially hung I/Os.
525 void
526 spa_deadman(void *arg)
528 spa_t *spa = arg;
531 * Disable the deadman timer if the pool is suspended.
533 if (spa_suspended(spa)) {
534 VERIFY(cyclic_reprogram(spa->spa_deadman_cycid, CY_INFINITY));
535 return;
538 zfs_dbgmsg("slow spa_sync: started %llu seconds ago, calls %llu",
539 (gethrtime() - spa->spa_sync_starttime) / NANOSEC,
540 ++spa->spa_deadman_calls);
541 if (zfs_deadman_enabled)
542 vdev_deadman(spa->spa_root_vdev);
546 * Create an uninitialized spa_t with the given name. Requires
547 * spa_namespace_lock. The caller must ensure that the spa_t doesn't already
548 * exist by calling spa_lookup() first.
550 spa_t *
551 spa_add(const char *name, nvlist_t *config, const char *altroot)
553 spa_t *spa;
554 spa_config_dirent_t *dp;
555 cyc_handler_t hdlr;
556 cyc_time_t when;
558 ASSERT(MUTEX_HELD(&spa_namespace_lock));
560 spa = kmem_zalloc(sizeof (spa_t), KM_SLEEP);
562 mutex_init(&spa->spa_async_lock, NULL, MUTEX_DEFAULT, NULL);
563 mutex_init(&spa->spa_errlist_lock, NULL, MUTEX_DEFAULT, NULL);
564 mutex_init(&spa->spa_errlog_lock, NULL, MUTEX_DEFAULT, NULL);
565 mutex_init(&spa->spa_evicting_os_lock, NULL, MUTEX_DEFAULT, NULL);
566 mutex_init(&spa->spa_history_lock, NULL, MUTEX_DEFAULT, NULL);
567 mutex_init(&spa->spa_proc_lock, NULL, MUTEX_DEFAULT, NULL);
568 mutex_init(&spa->spa_props_lock, NULL, MUTEX_DEFAULT, NULL);
569 mutex_init(&spa->spa_cksum_tmpls_lock, NULL, MUTEX_DEFAULT, NULL);
570 mutex_init(&spa->spa_scrub_lock, NULL, MUTEX_DEFAULT, NULL);
571 mutex_init(&spa->spa_suspend_lock, NULL, MUTEX_DEFAULT, NULL);
572 mutex_init(&spa->spa_vdev_top_lock, NULL, MUTEX_DEFAULT, NULL);
573 mutex_init(&spa->spa_iokstat_lock, NULL, MUTEX_DEFAULT, NULL);
574 mutex_init(&spa->spa_alloc_lock, NULL, MUTEX_DEFAULT, NULL);
576 cv_init(&spa->spa_async_cv, NULL, CV_DEFAULT, NULL);
577 cv_init(&spa->spa_evicting_os_cv, NULL, CV_DEFAULT, NULL);
578 cv_init(&spa->spa_proc_cv, NULL, CV_DEFAULT, NULL);
579 cv_init(&spa->spa_scrub_io_cv, NULL, CV_DEFAULT, NULL);
580 cv_init(&spa->spa_suspend_cv, NULL, CV_DEFAULT, NULL);
582 for (int t = 0; t < TXG_SIZE; t++)
583 bplist_create(&spa->spa_free_bplist[t]);
585 (void) strlcpy(spa->spa_name, name, sizeof (spa->spa_name));
586 spa->spa_state = POOL_STATE_UNINITIALIZED;
587 spa->spa_freeze_txg = UINT64_MAX;
588 spa->spa_final_txg = UINT64_MAX;
589 spa->spa_load_max_txg = UINT64_MAX;
590 spa->spa_proc = &p0;
591 spa->spa_proc_state = SPA_PROC_NONE;
593 hdlr.cyh_func = spa_deadman;
594 hdlr.cyh_arg = spa;
595 hdlr.cyh_level = CY_LOW_LEVEL;
597 spa->spa_deadman_synctime = MSEC2NSEC(zfs_deadman_synctime_ms);
600 * This determines how often we need to check for hung I/Os after
601 * the cyclic has already fired. Since checking for hung I/Os is
602 * an expensive operation we don't want to check too frequently.
603 * Instead wait for 5 seconds before checking again.
605 when.cyt_interval = MSEC2NSEC(zfs_deadman_checktime_ms);
606 when.cyt_when = CY_INFINITY;
607 mutex_enter(&cpu_lock);
608 spa->spa_deadman_cycid = cyclic_add(&hdlr, &when);
609 mutex_exit(&cpu_lock);
611 refcount_create(&spa->spa_refcount);
612 spa_config_lock_init(spa);
614 avl_add(&spa_namespace_avl, spa);
617 * Set the alternate root, if there is one.
619 if (altroot) {
620 spa->spa_root = spa_strdup(altroot);
621 spa_active_count++;
624 avl_create(&spa->spa_alloc_tree, zio_bookmark_compare,
625 sizeof (zio_t), offsetof(zio_t, io_alloc_node));
628 * Every pool starts with the default cachefile
630 list_create(&spa->spa_config_list, sizeof (spa_config_dirent_t),
631 offsetof(spa_config_dirent_t, scd_link));
633 dp = kmem_zalloc(sizeof (spa_config_dirent_t), KM_SLEEP);
634 dp->scd_path = altroot ? NULL : spa_strdup(spa_config_path);
635 list_insert_head(&spa->spa_config_list, dp);
637 VERIFY(nvlist_alloc(&spa->spa_load_info, NV_UNIQUE_NAME,
638 KM_SLEEP) == 0);
640 if (config != NULL) {
641 nvlist_t *features;
643 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_FEATURES_FOR_READ,
644 &features) == 0) {
645 VERIFY(nvlist_dup(features, &spa->spa_label_features,
646 0) == 0);
649 VERIFY(nvlist_dup(config, &spa->spa_config, 0) == 0);
652 if (spa->spa_label_features == NULL) {
653 VERIFY(nvlist_alloc(&spa->spa_label_features, NV_UNIQUE_NAME,
654 KM_SLEEP) == 0);
657 spa->spa_iokstat = kstat_create("zfs", 0, name,
658 "disk", KSTAT_TYPE_IO, 1, 0);
659 if (spa->spa_iokstat) {
660 spa->spa_iokstat->ks_lock = &spa->spa_iokstat_lock;
661 kstat_install(spa->spa_iokstat);
664 spa->spa_debug = ((zfs_flags & ZFS_DEBUG_SPA) != 0);
666 spa->spa_min_ashift = INT_MAX;
667 spa->spa_max_ashift = 0;
670 * As a pool is being created, treat all features as disabled by
671 * setting SPA_FEATURE_DISABLED for all entries in the feature
672 * refcount cache.
674 for (int i = 0; i < SPA_FEATURES; i++) {
675 spa->spa_feat_refcount_cache[i] = SPA_FEATURE_DISABLED;
678 return (spa);
682 * Removes a spa_t from the namespace, freeing up any memory used. Requires
683 * spa_namespace_lock. This is called only after the spa_t has been closed and
684 * deactivated.
686 void
687 spa_remove(spa_t *spa)
689 spa_config_dirent_t *dp;
691 ASSERT(MUTEX_HELD(&spa_namespace_lock));
692 ASSERT(spa->spa_state == POOL_STATE_UNINITIALIZED);
693 ASSERT3U(refcount_count(&spa->spa_refcount), ==, 0);
695 nvlist_free(spa->spa_config_splitting);
697 avl_remove(&spa_namespace_avl, spa);
698 cv_broadcast(&spa_namespace_cv);
700 if (spa->spa_root) {
701 spa_strfree(spa->spa_root);
702 spa_active_count--;
705 while ((dp = list_head(&spa->spa_config_list)) != NULL) {
706 list_remove(&spa->spa_config_list, dp);
707 if (dp->scd_path != NULL)
708 spa_strfree(dp->scd_path);
709 kmem_free(dp, sizeof (spa_config_dirent_t));
712 avl_destroy(&spa->spa_alloc_tree);
713 list_destroy(&spa->spa_config_list);
715 nvlist_free(spa->spa_label_features);
716 nvlist_free(spa->spa_load_info);
717 spa_config_set(spa, NULL);
719 mutex_enter(&cpu_lock);
720 if (spa->spa_deadman_cycid != CYCLIC_NONE)
721 cyclic_remove(spa->spa_deadman_cycid);
722 mutex_exit(&cpu_lock);
723 spa->spa_deadman_cycid = CYCLIC_NONE;
725 refcount_destroy(&spa->spa_refcount);
727 spa_config_lock_destroy(spa);
729 kstat_delete(spa->spa_iokstat);
730 spa->spa_iokstat = NULL;
732 for (int t = 0; t < TXG_SIZE; t++)
733 bplist_destroy(&spa->spa_free_bplist[t]);
735 zio_checksum_templates_free(spa);
737 cv_destroy(&spa->spa_async_cv);
738 cv_destroy(&spa->spa_evicting_os_cv);
739 cv_destroy(&spa->spa_proc_cv);
740 cv_destroy(&spa->spa_scrub_io_cv);
741 cv_destroy(&spa->spa_suspend_cv);
743 mutex_destroy(&spa->spa_alloc_lock);
744 mutex_destroy(&spa->spa_async_lock);
745 mutex_destroy(&spa->spa_errlist_lock);
746 mutex_destroy(&spa->spa_errlog_lock);
747 mutex_destroy(&spa->spa_evicting_os_lock);
748 mutex_destroy(&spa->spa_history_lock);
749 mutex_destroy(&spa->spa_proc_lock);
750 mutex_destroy(&spa->spa_props_lock);
751 mutex_destroy(&spa->spa_cksum_tmpls_lock);
752 mutex_destroy(&spa->spa_scrub_lock);
753 mutex_destroy(&spa->spa_suspend_lock);
754 mutex_destroy(&spa->spa_vdev_top_lock);
755 mutex_destroy(&spa->spa_iokstat_lock);
757 kmem_free(spa, sizeof (spa_t));
761 * Given a pool, return the next pool in the namespace, or NULL if there is
762 * none. If 'prev' is NULL, return the first pool.
764 spa_t *
765 spa_next(spa_t *prev)
767 ASSERT(MUTEX_HELD(&spa_namespace_lock));
769 if (prev)
770 return (AVL_NEXT(&spa_namespace_avl, prev));
771 else
772 return (avl_first(&spa_namespace_avl));
776 * ==========================================================================
777 * SPA refcount functions
778 * ==========================================================================
782 * Add a reference to the given spa_t. Must have at least one reference, or
783 * have the namespace lock held.
785 void
786 spa_open_ref(spa_t *spa, void *tag)
788 ASSERT(refcount_count(&spa->spa_refcount) >= spa->spa_minref ||
789 MUTEX_HELD(&spa_namespace_lock));
790 (void) refcount_add(&spa->spa_refcount, tag);
794 * Remove a reference to the given spa_t. Must have at least one reference, or
795 * have the namespace lock held.
797 void
798 spa_close(spa_t *spa, void *tag)
800 ASSERT(refcount_count(&spa->spa_refcount) > spa->spa_minref ||
801 MUTEX_HELD(&spa_namespace_lock));
802 (void) refcount_remove(&spa->spa_refcount, tag);
806 * Remove a reference to the given spa_t held by a dsl dir that is
807 * being asynchronously released. Async releases occur from a taskq
808 * performing eviction of dsl datasets and dirs. The namespace lock
809 * isn't held and the hold by the object being evicted may contribute to
810 * spa_minref (e.g. dataset or directory released during pool export),
811 * so the asserts in spa_close() do not apply.
813 void
814 spa_async_close(spa_t *spa, void *tag)
816 (void) refcount_remove(&spa->spa_refcount, tag);
820 * Check to see if the spa refcount is zero. Must be called with
821 * spa_namespace_lock held. We really compare against spa_minref, which is the
822 * number of references acquired when opening a pool
824 boolean_t
825 spa_refcount_zero(spa_t *spa)
827 ASSERT(MUTEX_HELD(&spa_namespace_lock));
829 return (refcount_count(&spa->spa_refcount) == spa->spa_minref);
833 * ==========================================================================
834 * SPA spare and l2cache tracking
835 * ==========================================================================
839 * Hot spares and cache devices are tracked using the same code below,
840 * for 'auxiliary' devices.
843 typedef struct spa_aux {
844 uint64_t aux_guid;
845 uint64_t aux_pool;
846 avl_node_t aux_avl;
847 int aux_count;
848 } spa_aux_t;
850 static int
851 spa_aux_compare(const void *a, const void *b)
853 const spa_aux_t *sa = a;
854 const spa_aux_t *sb = b;
856 if (sa->aux_guid < sb->aux_guid)
857 return (-1);
858 else if (sa->aux_guid > sb->aux_guid)
859 return (1);
860 else
861 return (0);
864 void
865 spa_aux_add(vdev_t *vd, avl_tree_t *avl)
867 avl_index_t where;
868 spa_aux_t search;
869 spa_aux_t *aux;
871 search.aux_guid = vd->vdev_guid;
872 if ((aux = avl_find(avl, &search, &where)) != NULL) {
873 aux->aux_count++;
874 } else {
875 aux = kmem_zalloc(sizeof (spa_aux_t), KM_SLEEP);
876 aux->aux_guid = vd->vdev_guid;
877 aux->aux_count = 1;
878 avl_insert(avl, aux, where);
882 void
883 spa_aux_remove(vdev_t *vd, avl_tree_t *avl)
885 spa_aux_t search;
886 spa_aux_t *aux;
887 avl_index_t where;
889 search.aux_guid = vd->vdev_guid;
890 aux = avl_find(avl, &search, &where);
892 ASSERT(aux != NULL);
894 if (--aux->aux_count == 0) {
895 avl_remove(avl, aux);
896 kmem_free(aux, sizeof (spa_aux_t));
897 } else if (aux->aux_pool == spa_guid(vd->vdev_spa)) {
898 aux->aux_pool = 0ULL;
902 boolean_t
903 spa_aux_exists(uint64_t guid, uint64_t *pool, int *refcnt, avl_tree_t *avl)
905 spa_aux_t search, *found;
907 search.aux_guid = guid;
908 found = avl_find(avl, &search, NULL);
910 if (pool) {
911 if (found)
912 *pool = found->aux_pool;
913 else
914 *pool = 0ULL;
917 if (refcnt) {
918 if (found)
919 *refcnt = found->aux_count;
920 else
921 *refcnt = 0;
924 return (found != NULL);
927 void
928 spa_aux_activate(vdev_t *vd, avl_tree_t *avl)
930 spa_aux_t search, *found;
931 avl_index_t where;
933 search.aux_guid = vd->vdev_guid;
934 found = avl_find(avl, &search, &where);
935 ASSERT(found != NULL);
936 ASSERT(found->aux_pool == 0ULL);
938 found->aux_pool = spa_guid(vd->vdev_spa);
942 * Spares are tracked globally due to the following constraints:
944 * - A spare may be part of multiple pools.
945 * - A spare may be added to a pool even if it's actively in use within
946 * another pool.
947 * - A spare in use in any pool can only be the source of a replacement if
948 * the target is a spare in the same pool.
950 * We keep track of all spares on the system through the use of a reference
951 * counted AVL tree. When a vdev is added as a spare, or used as a replacement
952 * spare, then we bump the reference count in the AVL tree. In addition, we set
953 * the 'vdev_isspare' member to indicate that the device is a spare (active or
954 * inactive). When a spare is made active (used to replace a device in the
955 * pool), we also keep track of which pool its been made a part of.
957 * The 'spa_spare_lock' protects the AVL tree. These functions are normally
958 * called under the spa_namespace lock as part of vdev reconfiguration. The
959 * separate spare lock exists for the status query path, which does not need to
960 * be completely consistent with respect to other vdev configuration changes.
963 static int
964 spa_spare_compare(const void *a, const void *b)
966 return (spa_aux_compare(a, b));
969 void
970 spa_spare_add(vdev_t *vd)
972 mutex_enter(&spa_spare_lock);
973 ASSERT(!vd->vdev_isspare);
974 spa_aux_add(vd, &spa_spare_avl);
975 vd->vdev_isspare = B_TRUE;
976 mutex_exit(&spa_spare_lock);
979 void
980 spa_spare_remove(vdev_t *vd)
982 mutex_enter(&spa_spare_lock);
983 ASSERT(vd->vdev_isspare);
984 spa_aux_remove(vd, &spa_spare_avl);
985 vd->vdev_isspare = B_FALSE;
986 mutex_exit(&spa_spare_lock);
989 boolean_t
990 spa_spare_exists(uint64_t guid, uint64_t *pool, int *refcnt)
992 boolean_t found;
994 mutex_enter(&spa_spare_lock);
995 found = spa_aux_exists(guid, pool, refcnt, &spa_spare_avl);
996 mutex_exit(&spa_spare_lock);
998 return (found);
1001 void
1002 spa_spare_activate(vdev_t *vd)
1004 mutex_enter(&spa_spare_lock);
1005 ASSERT(vd->vdev_isspare);
1006 spa_aux_activate(vd, &spa_spare_avl);
1007 mutex_exit(&spa_spare_lock);
1011 * Level 2 ARC devices are tracked globally for the same reasons as spares.
1012 * Cache devices currently only support one pool per cache device, and so
1013 * for these devices the aux reference count is currently unused beyond 1.
1016 static int
1017 spa_l2cache_compare(const void *a, const void *b)
1019 return (spa_aux_compare(a, b));
1022 void
1023 spa_l2cache_add(vdev_t *vd)
1025 mutex_enter(&spa_l2cache_lock);
1026 ASSERT(!vd->vdev_isl2cache);
1027 spa_aux_add(vd, &spa_l2cache_avl);
1028 vd->vdev_isl2cache = B_TRUE;
1029 mutex_exit(&spa_l2cache_lock);
1032 void
1033 spa_l2cache_remove(vdev_t *vd)
1035 mutex_enter(&spa_l2cache_lock);
1036 ASSERT(vd->vdev_isl2cache);
1037 spa_aux_remove(vd, &spa_l2cache_avl);
1038 vd->vdev_isl2cache = B_FALSE;
1039 mutex_exit(&spa_l2cache_lock);
1042 boolean_t
1043 spa_l2cache_exists(uint64_t guid, uint64_t *pool)
1045 boolean_t found;
1047 mutex_enter(&spa_l2cache_lock);
1048 found = spa_aux_exists(guid, pool, NULL, &spa_l2cache_avl);
1049 mutex_exit(&spa_l2cache_lock);
1051 return (found);
1054 void
1055 spa_l2cache_activate(vdev_t *vd)
1057 mutex_enter(&spa_l2cache_lock);
1058 ASSERT(vd->vdev_isl2cache);
1059 spa_aux_activate(vd, &spa_l2cache_avl);
1060 mutex_exit(&spa_l2cache_lock);
1064 * ==========================================================================
1065 * SPA vdev locking
1066 * ==========================================================================
1070 * Lock the given spa_t for the purpose of adding or removing a vdev.
1071 * Grabs the global spa_namespace_lock plus the spa config lock for writing.
1072 * It returns the next transaction group for the spa_t.
1074 uint64_t
1075 spa_vdev_enter(spa_t *spa)
1077 mutex_enter(&spa->spa_vdev_top_lock);
1078 mutex_enter(&spa_namespace_lock);
1079 return (spa_vdev_config_enter(spa));
1083 * Internal implementation for spa_vdev_enter(). Used when a vdev
1084 * operation requires multiple syncs (i.e. removing a device) while
1085 * keeping the spa_namespace_lock held.
1087 uint64_t
1088 spa_vdev_config_enter(spa_t *spa)
1090 ASSERT(MUTEX_HELD(&spa_namespace_lock));
1092 spa_config_enter(spa, SCL_ALL, spa, RW_WRITER);
1094 return (spa_last_synced_txg(spa) + 1);
1098 * Used in combination with spa_vdev_config_enter() to allow the syncing
1099 * of multiple transactions without releasing the spa_namespace_lock.
1101 void
1102 spa_vdev_config_exit(spa_t *spa, vdev_t *vd, uint64_t txg, int error, char *tag)
1104 ASSERT(MUTEX_HELD(&spa_namespace_lock));
1106 int config_changed = B_FALSE;
1108 ASSERT(txg > spa_last_synced_txg(spa));
1110 spa->spa_pending_vdev = NULL;
1113 * Reassess the DTLs.
1115 vdev_dtl_reassess(spa->spa_root_vdev, 0, 0, B_FALSE);
1117 if (error == 0 && !list_is_empty(&spa->spa_config_dirty_list)) {
1118 config_changed = B_TRUE;
1119 spa->spa_config_generation++;
1123 * Verify the metaslab classes.
1125 ASSERT(metaslab_class_validate(spa_normal_class(spa)) == 0);
1126 ASSERT(metaslab_class_validate(spa_log_class(spa)) == 0);
1128 spa_config_exit(spa, SCL_ALL, spa);
1131 * Panic the system if the specified tag requires it. This
1132 * is useful for ensuring that configurations are updated
1133 * transactionally.
1135 if (zio_injection_enabled)
1136 zio_handle_panic_injection(spa, tag, 0);
1139 * Note: this txg_wait_synced() is important because it ensures
1140 * that there won't be more than one config change per txg.
1141 * This allows us to use the txg as the generation number.
1143 if (error == 0)
1144 txg_wait_synced(spa->spa_dsl_pool, txg);
1146 if (vd != NULL) {
1147 ASSERT(!vd->vdev_detached || vd->vdev_dtl_sm == NULL);
1148 spa_config_enter(spa, SCL_ALL, spa, RW_WRITER);
1149 vdev_free(vd);
1150 spa_config_exit(spa, SCL_ALL, spa);
1154 * If the config changed, update the config cache.
1156 if (config_changed)
1157 spa_config_sync(spa, B_FALSE, B_TRUE);
1161 * Unlock the spa_t after adding or removing a vdev. Besides undoing the
1162 * locking of spa_vdev_enter(), we also want make sure the transactions have
1163 * synced to disk, and then update the global configuration cache with the new
1164 * information.
1167 spa_vdev_exit(spa_t *spa, vdev_t *vd, uint64_t txg, int error)
1169 spa_vdev_config_exit(spa, vd, txg, error, FTAG);
1170 mutex_exit(&spa_namespace_lock);
1171 mutex_exit(&spa->spa_vdev_top_lock);
1173 return (error);
1177 * Lock the given spa_t for the purpose of changing vdev state.
1179 void
1180 spa_vdev_state_enter(spa_t *spa, int oplocks)
1182 int locks = SCL_STATE_ALL | oplocks;
1185 * Root pools may need to read of the underlying devfs filesystem
1186 * when opening up a vdev. Unfortunately if we're holding the
1187 * SCL_ZIO lock it will result in a deadlock when we try to issue
1188 * the read from the root filesystem. Instead we "prefetch"
1189 * the associated vnodes that we need prior to opening the
1190 * underlying devices and cache them so that we can prevent
1191 * any I/O when we are doing the actual open.
1193 if (spa_is_root(spa)) {
1194 int low = locks & ~(SCL_ZIO - 1);
1195 int high = locks & ~low;
1197 spa_config_enter(spa, high, spa, RW_WRITER);
1198 vdev_hold(spa->spa_root_vdev);
1199 spa_config_enter(spa, low, spa, RW_WRITER);
1200 } else {
1201 spa_config_enter(spa, locks, spa, RW_WRITER);
1203 spa->spa_vdev_locks = locks;
1207 spa_vdev_state_exit(spa_t *spa, vdev_t *vd, int error)
1209 boolean_t config_changed = B_FALSE;
1211 if (vd != NULL || error == 0)
1212 vdev_dtl_reassess(vd ? vd->vdev_top : spa->spa_root_vdev,
1213 0, 0, B_FALSE);
1215 if (vd != NULL) {
1216 vdev_state_dirty(vd->vdev_top);
1217 config_changed = B_TRUE;
1218 spa->spa_config_generation++;
1221 if (spa_is_root(spa))
1222 vdev_rele(spa->spa_root_vdev);
1224 ASSERT3U(spa->spa_vdev_locks, >=, SCL_STATE_ALL);
1225 spa_config_exit(spa, spa->spa_vdev_locks, spa);
1228 * If anything changed, wait for it to sync. This ensures that,
1229 * from the system administrator's perspective, zpool(8) commands
1230 * are synchronous. This is important for things like zpool offline:
1231 * when the command completes, you expect no further I/O from ZFS.
1233 if (vd != NULL)
1234 txg_wait_synced(spa->spa_dsl_pool, 0);
1237 * If the config changed, update the config cache.
1239 if (config_changed) {
1240 mutex_enter(&spa_namespace_lock);
1241 spa_config_sync(spa, B_FALSE, B_TRUE);
1242 mutex_exit(&spa_namespace_lock);
1245 return (error);
1249 * ==========================================================================
1250 * Miscellaneous functions
1251 * ==========================================================================
1254 void
1255 spa_activate_mos_feature(spa_t *spa, const char *feature, dmu_tx_t *tx)
1257 if (!nvlist_exists(spa->spa_label_features, feature)) {
1258 fnvlist_add_boolean(spa->spa_label_features, feature);
1260 * When we are creating the pool (tx_txg==TXG_INITIAL), we can't
1261 * dirty the vdev config because lock SCL_CONFIG is not held.
1262 * Thankfully, in this case we don't need to dirty the config
1263 * because it will be written out anyway when we finish
1264 * creating the pool.
1266 if (tx->tx_txg != TXG_INITIAL)
1267 vdev_config_dirty(spa->spa_root_vdev);
1271 void
1272 spa_deactivate_mos_feature(spa_t *spa, const char *feature)
1274 if (nvlist_remove_all(spa->spa_label_features, feature) == 0)
1275 vdev_config_dirty(spa->spa_root_vdev);
1279 * Rename a spa_t.
1282 spa_rename(const char *name, const char *newname)
1284 spa_t *spa;
1285 int err;
1288 * Lookup the spa_t and grab the config lock for writing. We need to
1289 * actually open the pool so that we can sync out the necessary labels.
1290 * It's OK to call spa_open() with the namespace lock held because we
1291 * allow recursive calls for other reasons.
1293 mutex_enter(&spa_namespace_lock);
1294 if ((err = spa_open(name, &spa, FTAG)) != 0) {
1295 mutex_exit(&spa_namespace_lock);
1296 return (err);
1299 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1301 avl_remove(&spa_namespace_avl, spa);
1302 (void) strlcpy(spa->spa_name, newname, sizeof (spa->spa_name));
1303 avl_add(&spa_namespace_avl, spa);
1306 * Sync all labels to disk with the new names by marking the root vdev
1307 * dirty and waiting for it to sync. It will pick up the new pool name
1308 * during the sync.
1310 vdev_config_dirty(spa->spa_root_vdev);
1312 spa_config_exit(spa, SCL_ALL, FTAG);
1314 txg_wait_synced(spa->spa_dsl_pool, 0);
1317 * Sync the updated config cache.
1319 spa_config_sync(spa, B_FALSE, B_TRUE);
1321 spa_close(spa, FTAG);
1323 mutex_exit(&spa_namespace_lock);
1325 return (0);
1329 * Return the spa_t associated with given pool_guid, if it exists. If
1330 * device_guid is non-zero, determine whether the pool exists *and* contains
1331 * a device with the specified device_guid.
1333 spa_t *
1334 spa_by_guid(uint64_t pool_guid, uint64_t device_guid)
1336 spa_t *spa;
1337 avl_tree_t *t = &spa_namespace_avl;
1339 ASSERT(MUTEX_HELD(&spa_namespace_lock));
1341 for (spa = avl_first(t); spa != NULL; spa = AVL_NEXT(t, spa)) {
1342 if (spa->spa_state == POOL_STATE_UNINITIALIZED)
1343 continue;
1344 if (spa->spa_root_vdev == NULL)
1345 continue;
1346 if (spa_guid(spa) == pool_guid) {
1347 if (device_guid == 0)
1348 break;
1350 if (vdev_lookup_by_guid(spa->spa_root_vdev,
1351 device_guid) != NULL)
1352 break;
1355 * Check any devices we may be in the process of adding.
1357 if (spa->spa_pending_vdev) {
1358 if (vdev_lookup_by_guid(spa->spa_pending_vdev,
1359 device_guid) != NULL)
1360 break;
1365 return (spa);
1369 * Determine whether a pool with the given pool_guid exists.
1371 boolean_t
1372 spa_guid_exists(uint64_t pool_guid, uint64_t device_guid)
1374 return (spa_by_guid(pool_guid, device_guid) != NULL);
1377 char *
1378 spa_strdup(const char *s)
1380 size_t len;
1381 char *new;
1383 len = strlen(s);
1384 new = kmem_alloc(len + 1, KM_SLEEP);
1385 bcopy(s, new, len);
1386 new[len] = '\0';
1388 return (new);
1391 void
1392 spa_strfree(char *s)
1394 kmem_free(s, strlen(s) + 1);
1397 uint64_t
1398 spa_get_random(uint64_t range)
1400 uint64_t r;
1402 ASSERT(range != 0);
1404 (void) random_get_pseudo_bytes((void *)&r, sizeof (uint64_t));
1406 return (r % range);
1409 uint64_t
1410 spa_generate_guid(spa_t *spa)
1412 uint64_t guid = spa_get_random(-1ULL);
1414 if (spa != NULL) {
1415 while (guid == 0 || spa_guid_exists(spa_guid(spa), guid))
1416 guid = spa_get_random(-1ULL);
1417 } else {
1418 while (guid == 0 || spa_guid_exists(guid, 0))
1419 guid = spa_get_random(-1ULL);
1422 return (guid);
1425 void
1426 snprintf_blkptr(char *buf, size_t buflen, const blkptr_t *bp)
1428 char type[256];
1429 char *checksum = NULL;
1430 char *compress = NULL;
1432 if (bp != NULL) {
1433 if (BP_GET_TYPE(bp) & DMU_OT_NEWTYPE) {
1434 dmu_object_byteswap_t bswap =
1435 DMU_OT_BYTESWAP(BP_GET_TYPE(bp));
1436 (void) snprintf(type, sizeof (type), "bswap %s %s",
1437 DMU_OT_IS_METADATA(BP_GET_TYPE(bp)) ?
1438 "metadata" : "data",
1439 dmu_ot_byteswap[bswap].ob_name);
1440 } else {
1441 (void) strlcpy(type, dmu_ot[BP_GET_TYPE(bp)].ot_name,
1442 sizeof (type));
1444 if (!BP_IS_EMBEDDED(bp)) {
1445 checksum =
1446 zio_checksum_table[BP_GET_CHECKSUM(bp)].ci_name;
1448 compress = zio_compress_table[BP_GET_COMPRESS(bp)].ci_name;
1451 SNPRINTF_BLKPTR(snprintf, ' ', buf, buflen, bp, type, checksum,
1452 compress);
1455 void
1456 spa_freeze(spa_t *spa)
1458 uint64_t freeze_txg = 0;
1460 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1461 if (spa->spa_freeze_txg == UINT64_MAX) {
1462 freeze_txg = spa_last_synced_txg(spa) + TXG_SIZE;
1463 spa->spa_freeze_txg = freeze_txg;
1465 spa_config_exit(spa, SCL_ALL, FTAG);
1466 if (freeze_txg != 0)
1467 txg_wait_synced(spa_get_dsl(spa), freeze_txg);
1470 void
1471 zfs_panic_recover(const char *fmt, ...)
1473 va_list adx;
1475 va_start(adx, fmt);
1476 vcmn_err(zfs_recover ? CE_WARN : CE_PANIC, fmt, adx);
1477 va_end(adx);
1481 * This is a stripped-down version of strtoull, suitable only for converting
1482 * lowercase hexadecimal numbers that don't overflow.
1484 uint64_t
1485 zfs_strtonum(const char *str, char **nptr)
1487 uint64_t val = 0;
1488 char c;
1489 int digit;
1491 while ((c = *str) != '\0') {
1492 if (c >= '0' && c <= '9')
1493 digit = c - '0';
1494 else if (c >= 'a' && c <= 'f')
1495 digit = 10 + c - 'a';
1496 else
1497 break;
1499 val *= 16;
1500 val += digit;
1502 str++;
1505 if (nptr)
1506 *nptr = (char *)str;
1508 return (val);
1512 * ==========================================================================
1513 * Accessor functions
1514 * ==========================================================================
1517 boolean_t
1518 spa_shutting_down(spa_t *spa)
1520 return (spa->spa_async_suspended);
1523 dsl_pool_t *
1524 spa_get_dsl(spa_t *spa)
1526 return (spa->spa_dsl_pool);
1529 boolean_t
1530 spa_is_initializing(spa_t *spa)
1532 return (spa->spa_is_initializing);
1535 blkptr_t *
1536 spa_get_rootblkptr(spa_t *spa)
1538 return (&spa->spa_ubsync.ub_rootbp);
1541 void
1542 spa_set_rootblkptr(spa_t *spa, const blkptr_t *bp)
1544 spa->spa_uberblock.ub_rootbp = *bp;
1547 void
1548 spa_altroot(spa_t *spa, char *buf, size_t buflen)
1550 if (spa->spa_root == NULL)
1551 buf[0] = '\0';
1552 else
1553 (void) strncpy(buf, spa->spa_root, buflen);
1557 spa_sync_pass(spa_t *spa)
1559 return (spa->spa_sync_pass);
1562 char *
1563 spa_name(spa_t *spa)
1565 return (spa->spa_name);
1568 uint64_t
1569 spa_guid(spa_t *spa)
1571 dsl_pool_t *dp = spa_get_dsl(spa);
1572 uint64_t guid;
1575 * If we fail to parse the config during spa_load(), we can go through
1576 * the error path (which posts an ereport) and end up here with no root
1577 * vdev. We stash the original pool guid in 'spa_config_guid' to handle
1578 * this case.
1580 if (spa->spa_root_vdev == NULL)
1581 return (spa->spa_config_guid);
1583 guid = spa->spa_last_synced_guid != 0 ?
1584 spa->spa_last_synced_guid : spa->spa_root_vdev->vdev_guid;
1587 * Return the most recently synced out guid unless we're
1588 * in syncing context.
1590 if (dp && dsl_pool_sync_context(dp))
1591 return (spa->spa_root_vdev->vdev_guid);
1592 else
1593 return (guid);
1596 uint64_t
1597 spa_load_guid(spa_t *spa)
1600 * This is a GUID that exists solely as a reference for the
1601 * purposes of the arc. It is generated at load time, and
1602 * is never written to persistent storage.
1604 return (spa->spa_load_guid);
1607 uint64_t
1608 spa_last_synced_txg(spa_t *spa)
1610 return (spa->spa_ubsync.ub_txg);
1613 uint64_t
1614 spa_first_txg(spa_t *spa)
1616 return (spa->spa_first_txg);
1619 uint64_t
1620 spa_syncing_txg(spa_t *spa)
1622 return (spa->spa_syncing_txg);
1626 * Return the last txg where data can be dirtied. The final txgs
1627 * will be used to just clear out any deferred frees that remain.
1629 uint64_t
1630 spa_final_dirty_txg(spa_t *spa)
1632 return (spa->spa_final_txg - TXG_DEFER_SIZE);
1635 pool_state_t
1636 spa_state(spa_t *spa)
1638 return (spa->spa_state);
1641 spa_load_state_t
1642 spa_load_state(spa_t *spa)
1644 return (spa->spa_load_state);
1647 uint64_t
1648 spa_freeze_txg(spa_t *spa)
1650 return (spa->spa_freeze_txg);
1653 /* ARGSUSED */
1654 uint64_t
1655 spa_get_worst_case_asize(spa_t *spa, uint64_t lsize)
1657 return (lsize * spa_asize_inflation);
1661 * Return the amount of slop space in bytes. It is 1/32 of the pool (3.2%),
1662 * or at least 128MB, unless that would cause it to be more than half the
1663 * pool size.
1665 * See the comment above spa_slop_shift for details.
1667 uint64_t
1668 spa_get_slop_space(spa_t *spa)
1670 uint64_t space = spa_get_dspace(spa);
1671 return (MAX(space >> spa_slop_shift, MIN(space >> 1, spa_min_slop)));
1674 uint64_t
1675 spa_get_dspace(spa_t *spa)
1677 return (spa->spa_dspace);
1680 void
1681 spa_update_dspace(spa_t *spa)
1683 spa->spa_dspace = metaslab_class_get_dspace(spa_normal_class(spa)) +
1684 ddt_get_dedup_dspace(spa);
1688 * Return the failure mode that has been set to this pool. The default
1689 * behavior will be to block all I/Os when a complete failure occurs.
1691 uint8_t
1692 spa_get_failmode(spa_t *spa)
1694 return (spa->spa_failmode);
1697 boolean_t
1698 spa_suspended(spa_t *spa)
1700 return (spa->spa_suspended);
1703 uint64_t
1704 spa_version(spa_t *spa)
1706 return (spa->spa_ubsync.ub_version);
1709 boolean_t
1710 spa_deflate(spa_t *spa)
1712 return (spa->spa_deflate);
1715 metaslab_class_t *
1716 spa_normal_class(spa_t *spa)
1718 return (spa->spa_normal_class);
1721 metaslab_class_t *
1722 spa_log_class(spa_t *spa)
1724 return (spa->spa_log_class);
1727 void
1728 spa_evicting_os_register(spa_t *spa, objset_t *os)
1730 mutex_enter(&spa->spa_evicting_os_lock);
1731 list_insert_head(&spa->spa_evicting_os_list, os);
1732 mutex_exit(&spa->spa_evicting_os_lock);
1735 void
1736 spa_evicting_os_deregister(spa_t *spa, objset_t *os)
1738 mutex_enter(&spa->spa_evicting_os_lock);
1739 list_remove(&spa->spa_evicting_os_list, os);
1740 cv_broadcast(&spa->spa_evicting_os_cv);
1741 mutex_exit(&spa->spa_evicting_os_lock);
1744 void
1745 spa_evicting_os_wait(spa_t *spa)
1747 mutex_enter(&spa->spa_evicting_os_lock);
1748 while (!list_is_empty(&spa->spa_evicting_os_list))
1749 cv_wait(&spa->spa_evicting_os_cv, &spa->spa_evicting_os_lock);
1750 mutex_exit(&spa->spa_evicting_os_lock);
1752 dmu_buf_user_evict_wait();
1756 spa_max_replication(spa_t *spa)
1759 * As of SPA_VERSION == SPA_VERSION_DITTO_BLOCKS, we are able to
1760 * handle BPs with more than one DVA allocated. Set our max
1761 * replication level accordingly.
1763 if (spa_version(spa) < SPA_VERSION_DITTO_BLOCKS)
1764 return (1);
1765 return (MIN(SPA_DVAS_PER_BP, spa_max_replication_override));
1769 spa_prev_software_version(spa_t *spa)
1771 return (spa->spa_prev_software_version);
1774 uint64_t
1775 spa_deadman_synctime(spa_t *spa)
1777 return (spa->spa_deadman_synctime);
1780 uint64_t
1781 dva_get_dsize_sync(spa_t *spa, const dva_t *dva)
1783 uint64_t asize = DVA_GET_ASIZE(dva);
1784 uint64_t dsize = asize;
1786 ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
1788 if (asize != 0 && spa->spa_deflate) {
1789 vdev_t *vd = vdev_lookup_top(spa, DVA_GET_VDEV(dva));
1790 dsize = (asize >> SPA_MINBLOCKSHIFT) * vd->vdev_deflate_ratio;
1793 return (dsize);
1796 uint64_t
1797 bp_get_dsize_sync(spa_t *spa, const blkptr_t *bp)
1799 uint64_t dsize = 0;
1801 for (int d = 0; d < BP_GET_NDVAS(bp); d++)
1802 dsize += dva_get_dsize_sync(spa, &bp->blk_dva[d]);
1804 return (dsize);
1807 uint64_t
1808 bp_get_dsize(spa_t *spa, const blkptr_t *bp)
1810 uint64_t dsize = 0;
1812 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
1814 for (int d = 0; d < BP_GET_NDVAS(bp); d++)
1815 dsize += dva_get_dsize_sync(spa, &bp->blk_dva[d]);
1817 spa_config_exit(spa, SCL_VDEV, FTAG);
1819 return (dsize);
1823 * ==========================================================================
1824 * Initialization and Termination
1825 * ==========================================================================
1828 static int
1829 spa_name_compare(const void *a1, const void *a2)
1831 const spa_t *s1 = a1;
1832 const spa_t *s2 = a2;
1833 int s;
1835 s = strcmp(s1->spa_name, s2->spa_name);
1836 if (s > 0)
1837 return (1);
1838 if (s < 0)
1839 return (-1);
1840 return (0);
1844 spa_busy(void)
1846 return (spa_active_count);
1849 void
1850 spa_boot_init()
1852 spa_config_load();
1855 void
1856 spa_init(int mode)
1858 mutex_init(&spa_namespace_lock, NULL, MUTEX_DEFAULT, NULL);
1859 mutex_init(&spa_spare_lock, NULL, MUTEX_DEFAULT, NULL);
1860 mutex_init(&spa_l2cache_lock, NULL, MUTEX_DEFAULT, NULL);
1861 cv_init(&spa_namespace_cv, NULL, CV_DEFAULT, NULL);
1863 avl_create(&spa_namespace_avl, spa_name_compare, sizeof (spa_t),
1864 offsetof(spa_t, spa_avl));
1866 avl_create(&spa_spare_avl, spa_spare_compare, sizeof (spa_aux_t),
1867 offsetof(spa_aux_t, aux_avl));
1869 avl_create(&spa_l2cache_avl, spa_l2cache_compare, sizeof (spa_aux_t),
1870 offsetof(spa_aux_t, aux_avl));
1872 spa_mode_global = mode;
1874 #ifdef _KERNEL
1875 spa_arch_init();
1876 #else
1877 if (spa_mode_global != FREAD && dprintf_find_string("watch")) {
1878 arc_procfd = open("/proc/self/ctl", O_WRONLY);
1879 if (arc_procfd == -1) {
1880 perror("could not enable watchpoints: "
1881 "opening /proc/self/ctl failed: ");
1882 } else {
1883 arc_watch = B_TRUE;
1886 #endif
1888 refcount_init();
1889 unique_init();
1890 range_tree_init();
1891 metaslab_alloc_trace_init();
1892 zio_init();
1893 dmu_init();
1894 zil_init();
1895 vdev_cache_stat_init();
1896 zfs_prop_init();
1897 zpool_prop_init();
1898 zpool_feature_init();
1899 spa_config_load();
1900 l2arc_start();
1903 void
1904 spa_fini(void)
1906 l2arc_stop();
1908 spa_evict_all();
1910 vdev_cache_stat_fini();
1911 zil_fini();
1912 dmu_fini();
1913 zio_fini();
1914 metaslab_alloc_trace_fini();
1915 range_tree_fini();
1916 unique_fini();
1917 refcount_fini();
1919 avl_destroy(&spa_namespace_avl);
1920 avl_destroy(&spa_spare_avl);
1921 avl_destroy(&spa_l2cache_avl);
1923 cv_destroy(&spa_namespace_cv);
1924 mutex_destroy(&spa_namespace_lock);
1925 mutex_destroy(&spa_spare_lock);
1926 mutex_destroy(&spa_l2cache_lock);
1930 * Return whether this pool has slogs. No locking needed.
1931 * It's not a problem if the wrong answer is returned as it's only for
1932 * performance and not correctness
1934 boolean_t
1935 spa_has_slogs(spa_t *spa)
1937 return (spa->spa_log_class->mc_rotor != NULL);
1940 spa_log_state_t
1941 spa_get_log_state(spa_t *spa)
1943 return (spa->spa_log_state);
1946 void
1947 spa_set_log_state(spa_t *spa, spa_log_state_t state)
1949 spa->spa_log_state = state;
1952 boolean_t
1953 spa_is_root(spa_t *spa)
1955 return (spa->spa_is_root);
1958 boolean_t
1959 spa_writeable(spa_t *spa)
1961 return (!!(spa->spa_mode & FWRITE));
1965 * Returns true if there is a pending sync task in any of the current
1966 * syncing txg, the current quiescing txg, or the current open txg.
1968 boolean_t
1969 spa_has_pending_synctask(spa_t *spa)
1971 return (!txg_all_lists_empty(&spa->spa_dsl_pool->dp_sync_tasks));
1975 spa_mode(spa_t *spa)
1977 return (spa->spa_mode);
1980 uint64_t
1981 spa_bootfs(spa_t *spa)
1983 return (spa->spa_bootfs);
1986 uint64_t
1987 spa_delegation(spa_t *spa)
1989 return (spa->spa_delegation);
1992 objset_t *
1993 spa_meta_objset(spa_t *spa)
1995 return (spa->spa_meta_objset);
1998 enum zio_checksum
1999 spa_dedup_checksum(spa_t *spa)
2001 return (spa->spa_dedup_checksum);
2005 * Reset pool scan stat per scan pass (or reboot).
2007 void
2008 spa_scan_stat_init(spa_t *spa)
2010 /* data not stored on disk */
2011 spa->spa_scan_pass_start = gethrestime_sec();
2012 if (dsl_scan_is_paused_scrub(spa->spa_dsl_pool->dp_scan))
2013 spa->spa_scan_pass_scrub_pause = spa->spa_scan_pass_start;
2014 else
2015 spa->spa_scan_pass_scrub_pause = 0;
2016 spa->spa_scan_pass_scrub_spent_paused = 0;
2017 spa->spa_scan_pass_exam = 0;
2018 vdev_scan_stat_init(spa->spa_root_vdev);
2022 * Get scan stats for zpool status reports
2025 spa_scan_get_stats(spa_t *spa, pool_scan_stat_t *ps)
2027 dsl_scan_t *scn = spa->spa_dsl_pool ? spa->spa_dsl_pool->dp_scan : NULL;
2029 if (scn == NULL || scn->scn_phys.scn_func == POOL_SCAN_NONE)
2030 return (SET_ERROR(ENOENT));
2031 bzero(ps, sizeof (pool_scan_stat_t));
2033 /* data stored on disk */
2034 ps->pss_func = scn->scn_phys.scn_func;
2035 ps->pss_start_time = scn->scn_phys.scn_start_time;
2036 ps->pss_end_time = scn->scn_phys.scn_end_time;
2037 ps->pss_to_examine = scn->scn_phys.scn_to_examine;
2038 ps->pss_examined = scn->scn_phys.scn_examined;
2039 ps->pss_to_process = scn->scn_phys.scn_to_process;
2040 ps->pss_processed = scn->scn_phys.scn_processed;
2041 ps->pss_errors = scn->scn_phys.scn_errors;
2042 ps->pss_state = scn->scn_phys.scn_state;
2044 /* data not stored on disk */
2045 ps->pss_pass_start = spa->spa_scan_pass_start;
2046 ps->pss_pass_exam = spa->spa_scan_pass_exam;
2047 ps->pss_pass_scrub_pause = spa->spa_scan_pass_scrub_pause;
2048 ps->pss_pass_scrub_spent_paused = spa->spa_scan_pass_scrub_spent_paused;
2050 return (0);
2053 boolean_t
2054 spa_debug_enabled(spa_t *spa)
2056 return (spa->spa_debug);
2060 spa_maxblocksize(spa_t *spa)
2062 if (spa_feature_is_enabled(spa, SPA_FEATURE_LARGE_BLOCKS))
2063 return (SPA_MAXBLOCKSIZE);
2064 else
2065 return (SPA_OLD_MAXBLOCKSIZE);