4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 2011, 2018 by Delphix. All rights reserved.
24 * Copyright 2015 Nexenta Systems, Inc. All rights reserved.
25 * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved.
26 * Copyright 2013 Saso Kiselkov. All rights reserved.
27 * Copyright (c) 2014 Integros [integros.com]
28 * Copyright (c) 2017 Datto Inc.
31 #include <sys/zfs_context.h>
32 #include <sys/spa_impl.h>
33 #include <sys/spa_boot.h>
35 #include <sys/zio_checksum.h>
36 #include <sys/zio_compress.h>
38 #include <sys/dmu_tx.h>
41 #include <sys/vdev_impl.h>
42 #include <sys/vdev_initialize.h>
43 #include <sys/metaslab.h>
44 #include <sys/uberblock_impl.h>
47 #include <sys/unique.h>
48 #include <sys/dsl_pool.h>
49 #include <sys/dsl_dir.h>
50 #include <sys/dsl_prop.h>
51 #include <sys/dsl_scan.h>
52 #include <sys/fs/zfs.h>
53 #include <sys/metaslab_impl.h>
57 #include <sys/zfeature.h>
62 * There are four basic locks for managing spa_t structures:
64 * spa_namespace_lock (global mutex)
66 * This lock must be acquired to do any of the following:
68 * - Lookup a spa_t by name
69 * - Add or remove a spa_t from the namespace
70 * - Increase spa_refcount from non-zero
71 * - Check if spa_refcount is zero
73 * - add/remove/attach/detach devices
74 * - Held for the duration of create/destroy/import/export
76 * It does not need to handle recursion. A create or destroy may
77 * reference objects (files or zvols) in other pools, but by
78 * definition they must have an existing reference, and will never need
79 * to lookup a spa_t by name.
81 * spa_refcount (per-spa refcount_t protected by mutex)
83 * This reference count keep track of any active users of the spa_t. The
84 * spa_t cannot be destroyed or freed while this is non-zero. Internally,
85 * the refcount is never really 'zero' - opening a pool implicitly keeps
86 * some references in the DMU. Internally we check against spa_minref, but
87 * present the image of a zero/non-zero value to consumers.
89 * spa_config_lock[] (per-spa array of rwlocks)
91 * This protects the spa_t from config changes, and must be held in
92 * the following circumstances:
94 * - RW_READER to perform I/O to the spa
95 * - RW_WRITER to change the vdev config
97 * The locking order is fairly straightforward:
99 * spa_namespace_lock -> spa_refcount
101 * The namespace lock must be acquired to increase the refcount from 0
102 * or to check if it is zero.
104 * spa_refcount -> spa_config_lock[]
106 * There must be at least one valid reference on the spa_t to acquire
109 * spa_namespace_lock -> spa_config_lock[]
111 * The namespace lock must always be taken before the config lock.
114 * The spa_namespace_lock can be acquired directly and is globally visible.
116 * The namespace is manipulated using the following functions, all of which
117 * require the spa_namespace_lock to be held.
119 * spa_lookup() Lookup a spa_t by name.
121 * spa_add() Create a new spa_t in the namespace.
123 * spa_remove() Remove a spa_t from the namespace. This also
124 * frees up any memory associated with the spa_t.
126 * spa_next() Returns the next spa_t in the system, or the
127 * first if NULL is passed.
129 * spa_evict_all() Shutdown and remove all spa_t structures in
132 * spa_guid_exists() Determine whether a pool/device guid exists.
134 * The spa_refcount is manipulated using the following functions:
136 * spa_open_ref() Adds a reference to the given spa_t. Must be
137 * called with spa_namespace_lock held if the
138 * refcount is currently zero.
140 * spa_close() Remove a reference from the spa_t. This will
141 * not free the spa_t or remove it from the
142 * namespace. No locking is required.
144 * spa_refcount_zero() Returns true if the refcount is currently
145 * zero. Must be called with spa_namespace_lock
148 * The spa_config_lock[] is an array of rwlocks, ordered as follows:
149 * SCL_CONFIG > SCL_STATE > SCL_ALLOC > SCL_ZIO > SCL_FREE > SCL_VDEV.
150 * spa_config_lock[] is manipulated with spa_config_{enter,exit,held}().
152 * To read the configuration, it suffices to hold one of these locks as reader.
153 * To modify the configuration, you must hold all locks as writer. To modify
154 * vdev state without altering the vdev tree's topology (e.g. online/offline),
155 * you must hold SCL_STATE and SCL_ZIO as writer.
157 * We use these distinct config locks to avoid recursive lock entry.
158 * For example, spa_sync() (which holds SCL_CONFIG as reader) induces
159 * block allocations (SCL_ALLOC), which may require reading space maps
160 * from disk (dmu_read() -> zio_read() -> SCL_ZIO).
162 * The spa config locks cannot be normal rwlocks because we need the
163 * ability to hand off ownership. For example, SCL_ZIO is acquired
164 * by the issuing thread and later released by an interrupt thread.
165 * They do, however, obey the usual write-wanted semantics to prevent
166 * writer (i.e. system administrator) starvation.
168 * The lock acquisition rules are as follows:
171 * Protects changes to the vdev tree topology, such as vdev
172 * add/remove/attach/detach. Protects the dirty config list
173 * (spa_config_dirty_list) and the set of spares and l2arc devices.
176 * Protects changes to pool state and vdev state, such as vdev
177 * online/offline/fault/degrade/clear. Protects the dirty state list
178 * (spa_state_dirty_list) and global pool state (spa_state).
181 * Protects changes to metaslab groups and classes.
182 * Held as reader by metaslab_alloc() and metaslab_claim().
185 * Held by bp-level zios (those which have no io_vd upon entry)
186 * to prevent changes to the vdev tree. The bp-level zio implicitly
187 * protects all of its vdev child zios, which do not hold SCL_ZIO.
190 * Protects changes to metaslab groups and classes.
191 * Held as reader by metaslab_free(). SCL_FREE is distinct from
192 * SCL_ALLOC, and lower than SCL_ZIO, so that we can safely free
193 * blocks in zio_done() while another i/o that holds either
194 * SCL_ALLOC or SCL_ZIO is waiting for this i/o to complete.
197 * Held as reader to prevent changes to the vdev tree during trivial
198 * inquiries such as bp_get_dsize(). SCL_VDEV is distinct from the
199 * other locks, and lower than all of them, to ensure that it's safe
200 * to acquire regardless of caller context.
202 * In addition, the following rules apply:
204 * (a) spa_props_lock protects pool properties, spa_config and spa_config_list.
205 * The lock ordering is SCL_CONFIG > spa_props_lock.
207 * (b) I/O operations on leaf vdevs. For any zio operation that takes
208 * an explicit vdev_t argument -- such as zio_ioctl(), zio_read_phys(),
209 * or zio_write_phys() -- the caller must ensure that the config cannot
210 * cannot change in the interim, and that the vdev cannot be reopened.
211 * SCL_STATE as reader suffices for both.
213 * The vdev configuration is protected by spa_vdev_enter() / spa_vdev_exit().
215 * spa_vdev_enter() Acquire the namespace lock and the config lock
218 * spa_vdev_exit() Release the config lock, wait for all I/O
219 * to complete, sync the updated configs to the
220 * cache, and release the namespace lock.
222 * vdev state is protected by spa_vdev_state_enter() / spa_vdev_state_exit().
223 * Like spa_vdev_enter/exit, these are convenience wrappers -- the actual
224 * locking is, always, based on spa_namespace_lock and spa_config_lock[].
227 static avl_tree_t spa_namespace_avl
;
228 kmutex_t spa_namespace_lock
;
229 static kcondvar_t spa_namespace_cv
;
230 static int spa_active_count
;
231 int spa_max_replication_override
= SPA_DVAS_PER_BP
;
233 static kmutex_t spa_spare_lock
;
234 static avl_tree_t spa_spare_avl
;
235 static kmutex_t spa_l2cache_lock
;
236 static avl_tree_t spa_l2cache_avl
;
238 kmem_cache_t
*spa_buffer_pool
;
243 * Everything except dprintf, spa, and indirect_remap is on by default
246 int zfs_flags
= ~(ZFS_DEBUG_DPRINTF
| ZFS_DEBUG_INDIRECT_REMAP
);
252 * zfs_recover can be set to nonzero to attempt to recover from
253 * otherwise-fatal errors, typically caused by on-disk corruption. When
254 * set, calls to zfs_panic_recover() will turn into warning messages.
255 * This should only be used as a last resort, as it typically results
256 * in leaked space, or worse.
258 boolean_t zfs_recover
= B_FALSE
;
261 * If destroy encounters an EIO while reading metadata (e.g. indirect
262 * blocks), space referenced by the missing metadata can not be freed.
263 * Normally this causes the background destroy to become "stalled", as
264 * it is unable to make forward progress. While in this stalled state,
265 * all remaining space to free from the error-encountering filesystem is
266 * "temporarily leaked". Set this flag to cause it to ignore the EIO,
267 * permanently leak the space from indirect blocks that can not be read,
268 * and continue to free everything else that it can.
270 * The default, "stalling" behavior is useful if the storage partially
271 * fails (i.e. some but not all i/os fail), and then later recovers. In
272 * this case, we will be able to continue pool operations while it is
273 * partially failed, and when it recovers, we can continue to free the
274 * space, with no leaks. However, note that this case is actually
277 * Typically pools either (a) fail completely (but perhaps temporarily,
278 * e.g. a top-level vdev going offline), or (b) have localized,
279 * permanent errors (e.g. disk returns the wrong data due to bit flip or
280 * firmware bug). In case (a), this setting does not matter because the
281 * pool will be suspended and the sync thread will not be able to make
282 * forward progress regardless. In case (b), because the error is
283 * permanent, the best we can do is leak the minimum amount of space,
284 * which is what setting this flag will do. Therefore, it is reasonable
285 * for this flag to normally be set, but we chose the more conservative
286 * approach of not setting it, so that there is no possibility of
287 * leaking space in the "partial temporary" failure case.
289 boolean_t zfs_free_leak_on_eio
= B_FALSE
;
292 * Expiration time in milliseconds. This value has two meanings. First it is
293 * used to determine when the spa_deadman() logic should fire. By default the
294 * spa_deadman() will fire if spa_sync() has not completed in 1000 seconds.
295 * Secondly, the value determines if an I/O is considered "hung". Any I/O that
296 * has not completed in zfs_deadman_synctime_ms is considered "hung" resulting
299 uint64_t zfs_deadman_synctime_ms
= 1000000ULL;
302 * Check time in milliseconds. This defines the frequency at which we check
305 uint64_t zfs_deadman_checktime_ms
= 5000ULL;
308 * Override the zfs deadman behavior via /etc/system. By default the
309 * deadman is enabled except on VMware and sparc deployments.
311 int zfs_deadman_enabled
= -1;
314 * The worst case is single-sector max-parity RAID-Z blocks, in which
315 * case the space requirement is exactly (VDEV_RAIDZ_MAXPARITY + 1)
316 * times the size; so just assume that. Add to this the fact that
317 * we can have up to 3 DVAs per bp, and one more factor of 2 because
318 * the block may be dittoed with up to 3 DVAs by ddt_sync(). All together,
320 * (VDEV_RAIDZ_MAXPARITY + 1) * SPA_DVAS_PER_BP * 2 == 24
322 int spa_asize_inflation
= 24;
325 * Normally, we don't allow the last 3.2% (1/(2^spa_slop_shift)) of space in
326 * the pool to be consumed. This ensures that we don't run the pool
327 * completely out of space, due to unaccounted changes (e.g. to the MOS).
328 * It also limits the worst-case time to allocate space. If we have
329 * less than this amount of free space, most ZPL operations (e.g. write,
330 * create) will return ENOSPC.
332 * Certain operations (e.g. file removal, most administrative actions) can
333 * use half the slop space. They will only return ENOSPC if less than half
334 * the slop space is free. Typically, once the pool has less than the slop
335 * space free, the user will use these operations to free up space in the pool.
336 * These are the operations that call dsl_pool_adjustedsize() with the netfree
337 * argument set to TRUE.
339 * Operations that are almost guaranteed to free up space in the absence of
340 * a pool checkpoint can use up to three quarters of the slop space
343 * A very restricted set of operations are always permitted, regardless of
344 * the amount of free space. These are the operations that call
345 * dsl_sync_task(ZFS_SPACE_CHECK_NONE). If these operations result in a net
346 * increase in the amount of space used, it is possible to run the pool
347 * completely out of space, causing it to be permanently read-only.
349 * Note that on very small pools, the slop space will be larger than
350 * 3.2%, in an effort to have it be at least spa_min_slop (128MB),
351 * but we never allow it to be more than half the pool size.
353 * See also the comments in zfs_space_check_t.
355 int spa_slop_shift
= 5;
356 uint64_t spa_min_slop
= 128 * 1024 * 1024;
358 int spa_allocators
= 4;
362 spa_load_failed(spa_t
*spa
, const char *fmt
, ...)
368 (void) vsnprintf(buf
, sizeof (buf
), fmt
, adx
);
371 zfs_dbgmsg("spa_load(%s, config %s): FAILED: %s", spa
->spa_name
,
372 spa
->spa_trust_config
? "trusted" : "untrusted", buf
);
377 spa_load_note(spa_t
*spa
, const char *fmt
, ...)
383 (void) vsnprintf(buf
, sizeof (buf
), fmt
, adx
);
386 zfs_dbgmsg("spa_load(%s, config %s): %s", spa
->spa_name
,
387 spa
->spa_trust_config
? "trusted" : "untrusted", buf
);
391 * ==========================================================================
393 * ==========================================================================
396 spa_config_lock_init(spa_t
*spa
)
398 for (int i
= 0; i
< SCL_LOCKS
; i
++) {
399 spa_config_lock_t
*scl
= &spa
->spa_config_lock
[i
];
400 mutex_init(&scl
->scl_lock
, NULL
, MUTEX_DEFAULT
, NULL
);
401 cv_init(&scl
->scl_cv
, NULL
, CV_DEFAULT
, NULL
);
402 refcount_create_untracked(&scl
->scl_count
);
403 scl
->scl_writer
= NULL
;
404 scl
->scl_write_wanted
= 0;
409 spa_config_lock_destroy(spa_t
*spa
)
411 for (int i
= 0; i
< SCL_LOCKS
; i
++) {
412 spa_config_lock_t
*scl
= &spa
->spa_config_lock
[i
];
413 mutex_destroy(&scl
->scl_lock
);
414 cv_destroy(&scl
->scl_cv
);
415 refcount_destroy(&scl
->scl_count
);
416 ASSERT(scl
->scl_writer
== NULL
);
417 ASSERT(scl
->scl_write_wanted
== 0);
422 spa_config_tryenter(spa_t
*spa
, int locks
, void *tag
, krw_t rw
)
424 for (int i
= 0; i
< SCL_LOCKS
; i
++) {
425 spa_config_lock_t
*scl
= &spa
->spa_config_lock
[i
];
426 if (!(locks
& (1 << i
)))
428 mutex_enter(&scl
->scl_lock
);
429 if (rw
== RW_READER
) {
430 if (scl
->scl_writer
|| scl
->scl_write_wanted
) {
431 mutex_exit(&scl
->scl_lock
);
432 spa_config_exit(spa
, locks
& ((1 << i
) - 1),
437 ASSERT(scl
->scl_writer
!= curthread
);
438 if (!refcount_is_zero(&scl
->scl_count
)) {
439 mutex_exit(&scl
->scl_lock
);
440 spa_config_exit(spa
, locks
& ((1 << i
) - 1),
444 scl
->scl_writer
= curthread
;
446 (void) refcount_add(&scl
->scl_count
, tag
);
447 mutex_exit(&scl
->scl_lock
);
453 spa_config_enter(spa_t
*spa
, int locks
, void *tag
, krw_t rw
)
457 ASSERT3U(SCL_LOCKS
, <, sizeof (wlocks_held
) * NBBY
);
459 for (int i
= 0; i
< SCL_LOCKS
; i
++) {
460 spa_config_lock_t
*scl
= &spa
->spa_config_lock
[i
];
461 if (scl
->scl_writer
== curthread
)
462 wlocks_held
|= (1 << i
);
463 if (!(locks
& (1 << i
)))
465 mutex_enter(&scl
->scl_lock
);
466 if (rw
== RW_READER
) {
467 while (scl
->scl_writer
|| scl
->scl_write_wanted
) {
468 cv_wait(&scl
->scl_cv
, &scl
->scl_lock
);
471 ASSERT(scl
->scl_writer
!= curthread
);
472 while (!refcount_is_zero(&scl
->scl_count
)) {
473 scl
->scl_write_wanted
++;
474 cv_wait(&scl
->scl_cv
, &scl
->scl_lock
);
475 scl
->scl_write_wanted
--;
477 scl
->scl_writer
= curthread
;
479 (void) refcount_add(&scl
->scl_count
, tag
);
480 mutex_exit(&scl
->scl_lock
);
482 ASSERT3U(wlocks_held
, <=, locks
);
486 spa_config_exit(spa_t
*spa
, int locks
, void *tag
)
488 for (int i
= SCL_LOCKS
- 1; i
>= 0; i
--) {
489 spa_config_lock_t
*scl
= &spa
->spa_config_lock
[i
];
490 if (!(locks
& (1 << i
)))
492 mutex_enter(&scl
->scl_lock
);
493 ASSERT(!refcount_is_zero(&scl
->scl_count
));
494 if (refcount_remove(&scl
->scl_count
, tag
) == 0) {
495 ASSERT(scl
->scl_writer
== NULL
||
496 scl
->scl_writer
== curthread
);
497 scl
->scl_writer
= NULL
; /* OK in either case */
498 cv_broadcast(&scl
->scl_cv
);
500 mutex_exit(&scl
->scl_lock
);
505 spa_config_held(spa_t
*spa
, int locks
, krw_t rw
)
509 for (int i
= 0; i
< SCL_LOCKS
; i
++) {
510 spa_config_lock_t
*scl
= &spa
->spa_config_lock
[i
];
511 if (!(locks
& (1 << i
)))
513 if ((rw
== RW_READER
&& !refcount_is_zero(&scl
->scl_count
)) ||
514 (rw
== RW_WRITER
&& scl
->scl_writer
== curthread
))
515 locks_held
|= 1 << i
;
522 * ==========================================================================
523 * SPA namespace functions
524 * ==========================================================================
528 * Lookup the named spa_t in the AVL tree. The spa_namespace_lock must be held.
529 * Returns NULL if no matching spa_t is found.
532 spa_lookup(const char *name
)
534 static spa_t search
; /* spa_t is large; don't allocate on stack */
539 ASSERT(MUTEX_HELD(&spa_namespace_lock
));
541 (void) strlcpy(search
.spa_name
, name
, sizeof (search
.spa_name
));
544 * If it's a full dataset name, figure out the pool name and
547 cp
= strpbrk(search
.spa_name
, "/@#");
551 spa
= avl_find(&spa_namespace_avl
, &search
, &where
);
557 * Fires when spa_sync has not completed within zfs_deadman_synctime_ms.
558 * If the zfs_deadman_enabled flag is set then it inspects all vdev queues
559 * looking for potentially hung I/Os.
562 spa_deadman(void *arg
)
567 * Disable the deadman timer if the pool is suspended.
569 if (spa_suspended(spa
)) {
570 VERIFY(cyclic_reprogram(spa
->spa_deadman_cycid
, CY_INFINITY
));
574 zfs_dbgmsg("slow spa_sync: started %llu seconds ago, calls %llu",
575 (gethrtime() - spa
->spa_sync_starttime
) / NANOSEC
,
576 ++spa
->spa_deadman_calls
);
577 if (zfs_deadman_enabled
)
578 vdev_deadman(spa
->spa_root_vdev
);
582 * Create an uninitialized spa_t with the given name. Requires
583 * spa_namespace_lock. The caller must ensure that the spa_t doesn't already
584 * exist by calling spa_lookup() first.
587 spa_add(const char *name
, nvlist_t
*config
, const char *altroot
)
590 spa_config_dirent_t
*dp
;
594 ASSERT(MUTEX_HELD(&spa_namespace_lock
));
596 spa
= kmem_zalloc(sizeof (spa_t
), KM_SLEEP
);
598 mutex_init(&spa
->spa_async_lock
, NULL
, MUTEX_DEFAULT
, NULL
);
599 mutex_init(&spa
->spa_errlist_lock
, NULL
, MUTEX_DEFAULT
, NULL
);
600 mutex_init(&spa
->spa_errlog_lock
, NULL
, MUTEX_DEFAULT
, NULL
);
601 mutex_init(&spa
->spa_evicting_os_lock
, NULL
, MUTEX_DEFAULT
, NULL
);
602 mutex_init(&spa
->spa_history_lock
, NULL
, MUTEX_DEFAULT
, NULL
);
603 mutex_init(&spa
->spa_proc_lock
, NULL
, MUTEX_DEFAULT
, NULL
);
604 mutex_init(&spa
->spa_props_lock
, NULL
, MUTEX_DEFAULT
, NULL
);
605 mutex_init(&spa
->spa_cksum_tmpls_lock
, NULL
, MUTEX_DEFAULT
, NULL
);
606 mutex_init(&spa
->spa_scrub_lock
, NULL
, MUTEX_DEFAULT
, NULL
);
607 mutex_init(&spa
->spa_suspend_lock
, NULL
, MUTEX_DEFAULT
, NULL
);
608 mutex_init(&spa
->spa_vdev_top_lock
, NULL
, MUTEX_DEFAULT
, NULL
);
609 mutex_init(&spa
->spa_iokstat_lock
, NULL
, MUTEX_DEFAULT
, NULL
);
611 cv_init(&spa
->spa_async_cv
, NULL
, CV_DEFAULT
, NULL
);
612 cv_init(&spa
->spa_evicting_os_cv
, NULL
, CV_DEFAULT
, NULL
);
613 cv_init(&spa
->spa_proc_cv
, NULL
, CV_DEFAULT
, NULL
);
614 cv_init(&spa
->spa_scrub_io_cv
, NULL
, CV_DEFAULT
, NULL
);
615 cv_init(&spa
->spa_suspend_cv
, NULL
, CV_DEFAULT
, NULL
);
617 for (int t
= 0; t
< TXG_SIZE
; t
++)
618 bplist_create(&spa
->spa_free_bplist
[t
]);
620 (void) strlcpy(spa
->spa_name
, name
, sizeof (spa
->spa_name
));
621 spa
->spa_state
= POOL_STATE_UNINITIALIZED
;
622 spa
->spa_freeze_txg
= UINT64_MAX
;
623 spa
->spa_final_txg
= UINT64_MAX
;
624 spa
->spa_load_max_txg
= UINT64_MAX
;
626 spa
->spa_proc_state
= SPA_PROC_NONE
;
627 spa
->spa_trust_config
= B_TRUE
;
629 hdlr
.cyh_func
= spa_deadman
;
631 hdlr
.cyh_level
= CY_LOW_LEVEL
;
633 spa
->spa_deadman_synctime
= MSEC2NSEC(zfs_deadman_synctime_ms
);
636 * This determines how often we need to check for hung I/Os after
637 * the cyclic has already fired. Since checking for hung I/Os is
638 * an expensive operation we don't want to check too frequently.
639 * Instead wait for 5 seconds before checking again.
641 when
.cyt_interval
= MSEC2NSEC(zfs_deadman_checktime_ms
);
642 when
.cyt_when
= CY_INFINITY
;
643 mutex_enter(&cpu_lock
);
644 spa
->spa_deadman_cycid
= cyclic_add(&hdlr
, &when
);
645 mutex_exit(&cpu_lock
);
647 refcount_create(&spa
->spa_refcount
);
648 spa_config_lock_init(spa
);
650 avl_add(&spa_namespace_avl
, spa
);
653 * Set the alternate root, if there is one.
656 spa
->spa_root
= spa_strdup(altroot
);
660 spa
->spa_alloc_count
= spa_allocators
;
661 spa
->spa_alloc_locks
= kmem_zalloc(spa
->spa_alloc_count
*
662 sizeof (kmutex_t
), KM_SLEEP
);
663 spa
->spa_alloc_trees
= kmem_zalloc(spa
->spa_alloc_count
*
664 sizeof (avl_tree_t
), KM_SLEEP
);
665 for (int i
= 0; i
< spa
->spa_alloc_count
; i
++) {
666 mutex_init(&spa
->spa_alloc_locks
[i
], NULL
, MUTEX_DEFAULT
, NULL
);
667 avl_create(&spa
->spa_alloc_trees
[i
], zio_bookmark_compare
,
668 sizeof (zio_t
), offsetof(zio_t
, io_alloc_node
));
672 * Every pool starts with the default cachefile
674 list_create(&spa
->spa_config_list
, sizeof (spa_config_dirent_t
),
675 offsetof(spa_config_dirent_t
, scd_link
));
677 dp
= kmem_zalloc(sizeof (spa_config_dirent_t
), KM_SLEEP
);
678 dp
->scd_path
= altroot
? NULL
: spa_strdup(spa_config_path
);
679 list_insert_head(&spa
->spa_config_list
, dp
);
681 VERIFY(nvlist_alloc(&spa
->spa_load_info
, NV_UNIQUE_NAME
,
684 if (config
!= NULL
) {
687 if (nvlist_lookup_nvlist(config
, ZPOOL_CONFIG_FEATURES_FOR_READ
,
689 VERIFY(nvlist_dup(features
, &spa
->spa_label_features
,
693 VERIFY(nvlist_dup(config
, &spa
->spa_config
, 0) == 0);
696 if (spa
->spa_label_features
== NULL
) {
697 VERIFY(nvlist_alloc(&spa
->spa_label_features
, NV_UNIQUE_NAME
,
701 spa
->spa_iokstat
= kstat_create("zfs", 0, name
,
702 "disk", KSTAT_TYPE_IO
, 1, 0);
703 if (spa
->spa_iokstat
) {
704 spa
->spa_iokstat
->ks_lock
= &spa
->spa_iokstat_lock
;
705 kstat_install(spa
->spa_iokstat
);
708 spa
->spa_min_ashift
= INT_MAX
;
709 spa
->spa_max_ashift
= 0;
712 * As a pool is being created, treat all features as disabled by
713 * setting SPA_FEATURE_DISABLED for all entries in the feature
716 for (int i
= 0; i
< SPA_FEATURES
; i
++) {
717 spa
->spa_feat_refcount_cache
[i
] = SPA_FEATURE_DISABLED
;
724 * Removes a spa_t from the namespace, freeing up any memory used. Requires
725 * spa_namespace_lock. This is called only after the spa_t has been closed and
729 spa_remove(spa_t
*spa
)
731 spa_config_dirent_t
*dp
;
733 ASSERT(MUTEX_HELD(&spa_namespace_lock
));
734 ASSERT(spa
->spa_state
== POOL_STATE_UNINITIALIZED
);
735 ASSERT3U(refcount_count(&spa
->spa_refcount
), ==, 0);
737 nvlist_free(spa
->spa_config_splitting
);
739 avl_remove(&spa_namespace_avl
, spa
);
740 cv_broadcast(&spa_namespace_cv
);
743 spa_strfree(spa
->spa_root
);
747 while ((dp
= list_head(&spa
->spa_config_list
)) != NULL
) {
748 list_remove(&spa
->spa_config_list
, dp
);
749 if (dp
->scd_path
!= NULL
)
750 spa_strfree(dp
->scd_path
);
751 kmem_free(dp
, sizeof (spa_config_dirent_t
));
754 for (int i
= 0; i
< spa
->spa_alloc_count
; i
++) {
755 avl_destroy(&spa
->spa_alloc_trees
[i
]);
756 mutex_destroy(&spa
->spa_alloc_locks
[i
]);
758 kmem_free(spa
->spa_alloc_locks
, spa
->spa_alloc_count
*
760 kmem_free(spa
->spa_alloc_trees
, spa
->spa_alloc_count
*
761 sizeof (avl_tree_t
));
763 list_destroy(&spa
->spa_config_list
);
765 nvlist_free(spa
->spa_label_features
);
766 nvlist_free(spa
->spa_load_info
);
767 spa_config_set(spa
, NULL
);
769 mutex_enter(&cpu_lock
);
770 if (spa
->spa_deadman_cycid
!= CYCLIC_NONE
)
771 cyclic_remove(spa
->spa_deadman_cycid
);
772 mutex_exit(&cpu_lock
);
773 spa
->spa_deadman_cycid
= CYCLIC_NONE
;
775 refcount_destroy(&spa
->spa_refcount
);
777 spa_config_lock_destroy(spa
);
779 kstat_delete(spa
->spa_iokstat
);
780 spa
->spa_iokstat
= NULL
;
782 for (int t
= 0; t
< TXG_SIZE
; t
++)
783 bplist_destroy(&spa
->spa_free_bplist
[t
]);
785 zio_checksum_templates_free(spa
);
787 cv_destroy(&spa
->spa_async_cv
);
788 cv_destroy(&spa
->spa_evicting_os_cv
);
789 cv_destroy(&spa
->spa_proc_cv
);
790 cv_destroy(&spa
->spa_scrub_io_cv
);
791 cv_destroy(&spa
->spa_suspend_cv
);
793 mutex_destroy(&spa
->spa_async_lock
);
794 mutex_destroy(&spa
->spa_errlist_lock
);
795 mutex_destroy(&spa
->spa_errlog_lock
);
796 mutex_destroy(&spa
->spa_evicting_os_lock
);
797 mutex_destroy(&spa
->spa_history_lock
);
798 mutex_destroy(&spa
->spa_proc_lock
);
799 mutex_destroy(&spa
->spa_props_lock
);
800 mutex_destroy(&spa
->spa_cksum_tmpls_lock
);
801 mutex_destroy(&spa
->spa_scrub_lock
);
802 mutex_destroy(&spa
->spa_suspend_lock
);
803 mutex_destroy(&spa
->spa_vdev_top_lock
);
804 mutex_destroy(&spa
->spa_iokstat_lock
);
806 kmem_free(spa
, sizeof (spa_t
));
810 * Given a pool, return the next pool in the namespace, or NULL if there is
811 * none. If 'prev' is NULL, return the first pool.
814 spa_next(spa_t
*prev
)
816 ASSERT(MUTEX_HELD(&spa_namespace_lock
));
819 return (AVL_NEXT(&spa_namespace_avl
, prev
));
821 return (avl_first(&spa_namespace_avl
));
825 * ==========================================================================
826 * SPA refcount functions
827 * ==========================================================================
831 * Add a reference to the given spa_t. Must have at least one reference, or
832 * have the namespace lock held.
835 spa_open_ref(spa_t
*spa
, void *tag
)
837 ASSERT(refcount_count(&spa
->spa_refcount
) >= spa
->spa_minref
||
838 MUTEX_HELD(&spa_namespace_lock
));
839 (void) refcount_add(&spa
->spa_refcount
, tag
);
843 * Remove a reference to the given spa_t. Must have at least one reference, or
844 * have the namespace lock held.
847 spa_close(spa_t
*spa
, void *tag
)
849 ASSERT(refcount_count(&spa
->spa_refcount
) > spa
->spa_minref
||
850 MUTEX_HELD(&spa_namespace_lock
));
851 (void) refcount_remove(&spa
->spa_refcount
, tag
);
855 * Remove a reference to the given spa_t held by a dsl dir that is
856 * being asynchronously released. Async releases occur from a taskq
857 * performing eviction of dsl datasets and dirs. The namespace lock
858 * isn't held and the hold by the object being evicted may contribute to
859 * spa_minref (e.g. dataset or directory released during pool export),
860 * so the asserts in spa_close() do not apply.
863 spa_async_close(spa_t
*spa
, void *tag
)
865 (void) refcount_remove(&spa
->spa_refcount
, tag
);
869 * Check to see if the spa refcount is zero. Must be called with
870 * spa_namespace_lock held. We really compare against spa_minref, which is the
871 * number of references acquired when opening a pool
874 spa_refcount_zero(spa_t
*spa
)
876 ASSERT(MUTEX_HELD(&spa_namespace_lock
));
878 return (refcount_count(&spa
->spa_refcount
) == spa
->spa_minref
);
882 * ==========================================================================
883 * SPA spare and l2cache tracking
884 * ==========================================================================
888 * Hot spares and cache devices are tracked using the same code below,
889 * for 'auxiliary' devices.
892 typedef struct spa_aux
{
900 spa_aux_compare(const void *a
, const void *b
)
902 const spa_aux_t
*sa
= a
;
903 const spa_aux_t
*sb
= b
;
905 if (sa
->aux_guid
< sb
->aux_guid
)
907 else if (sa
->aux_guid
> sb
->aux_guid
)
914 spa_aux_add(vdev_t
*vd
, avl_tree_t
*avl
)
920 search
.aux_guid
= vd
->vdev_guid
;
921 if ((aux
= avl_find(avl
, &search
, &where
)) != NULL
) {
924 aux
= kmem_zalloc(sizeof (spa_aux_t
), KM_SLEEP
);
925 aux
->aux_guid
= vd
->vdev_guid
;
927 avl_insert(avl
, aux
, where
);
932 spa_aux_remove(vdev_t
*vd
, avl_tree_t
*avl
)
938 search
.aux_guid
= vd
->vdev_guid
;
939 aux
= avl_find(avl
, &search
, &where
);
943 if (--aux
->aux_count
== 0) {
944 avl_remove(avl
, aux
);
945 kmem_free(aux
, sizeof (spa_aux_t
));
946 } else if (aux
->aux_pool
== spa_guid(vd
->vdev_spa
)) {
947 aux
->aux_pool
= 0ULL;
952 spa_aux_exists(uint64_t guid
, uint64_t *pool
, int *refcnt
, avl_tree_t
*avl
)
954 spa_aux_t search
, *found
;
956 search
.aux_guid
= guid
;
957 found
= avl_find(avl
, &search
, NULL
);
961 *pool
= found
->aux_pool
;
968 *refcnt
= found
->aux_count
;
973 return (found
!= NULL
);
977 spa_aux_activate(vdev_t
*vd
, avl_tree_t
*avl
)
979 spa_aux_t search
, *found
;
982 search
.aux_guid
= vd
->vdev_guid
;
983 found
= avl_find(avl
, &search
, &where
);
984 ASSERT(found
!= NULL
);
985 ASSERT(found
->aux_pool
== 0ULL);
987 found
->aux_pool
= spa_guid(vd
->vdev_spa
);
991 * Spares are tracked globally due to the following constraints:
993 * - A spare may be part of multiple pools.
994 * - A spare may be added to a pool even if it's actively in use within
996 * - A spare in use in any pool can only be the source of a replacement if
997 * the target is a spare in the same pool.
999 * We keep track of all spares on the system through the use of a reference
1000 * counted AVL tree. When a vdev is added as a spare, or used as a replacement
1001 * spare, then we bump the reference count in the AVL tree. In addition, we set
1002 * the 'vdev_isspare' member to indicate that the device is a spare (active or
1003 * inactive). When a spare is made active (used to replace a device in the
1004 * pool), we also keep track of which pool its been made a part of.
1006 * The 'spa_spare_lock' protects the AVL tree. These functions are normally
1007 * called under the spa_namespace lock as part of vdev reconfiguration. The
1008 * separate spare lock exists for the status query path, which does not need to
1009 * be completely consistent with respect to other vdev configuration changes.
1013 spa_spare_compare(const void *a
, const void *b
)
1015 return (spa_aux_compare(a
, b
));
1019 spa_spare_add(vdev_t
*vd
)
1021 mutex_enter(&spa_spare_lock
);
1022 ASSERT(!vd
->vdev_isspare
);
1023 spa_aux_add(vd
, &spa_spare_avl
);
1024 vd
->vdev_isspare
= B_TRUE
;
1025 mutex_exit(&spa_spare_lock
);
1029 spa_spare_remove(vdev_t
*vd
)
1031 mutex_enter(&spa_spare_lock
);
1032 ASSERT(vd
->vdev_isspare
);
1033 spa_aux_remove(vd
, &spa_spare_avl
);
1034 vd
->vdev_isspare
= B_FALSE
;
1035 mutex_exit(&spa_spare_lock
);
1039 spa_spare_exists(uint64_t guid
, uint64_t *pool
, int *refcnt
)
1043 mutex_enter(&spa_spare_lock
);
1044 found
= spa_aux_exists(guid
, pool
, refcnt
, &spa_spare_avl
);
1045 mutex_exit(&spa_spare_lock
);
1051 spa_spare_activate(vdev_t
*vd
)
1053 mutex_enter(&spa_spare_lock
);
1054 ASSERT(vd
->vdev_isspare
);
1055 spa_aux_activate(vd
, &spa_spare_avl
);
1056 mutex_exit(&spa_spare_lock
);
1060 * Level 2 ARC devices are tracked globally for the same reasons as spares.
1061 * Cache devices currently only support one pool per cache device, and so
1062 * for these devices the aux reference count is currently unused beyond 1.
1066 spa_l2cache_compare(const void *a
, const void *b
)
1068 return (spa_aux_compare(a
, b
));
1072 spa_l2cache_add(vdev_t
*vd
)
1074 mutex_enter(&spa_l2cache_lock
);
1075 ASSERT(!vd
->vdev_isl2cache
);
1076 spa_aux_add(vd
, &spa_l2cache_avl
);
1077 vd
->vdev_isl2cache
= B_TRUE
;
1078 mutex_exit(&spa_l2cache_lock
);
1082 spa_l2cache_remove(vdev_t
*vd
)
1084 mutex_enter(&spa_l2cache_lock
);
1085 ASSERT(vd
->vdev_isl2cache
);
1086 spa_aux_remove(vd
, &spa_l2cache_avl
);
1087 vd
->vdev_isl2cache
= B_FALSE
;
1088 mutex_exit(&spa_l2cache_lock
);
1092 spa_l2cache_exists(uint64_t guid
, uint64_t *pool
)
1096 mutex_enter(&spa_l2cache_lock
);
1097 found
= spa_aux_exists(guid
, pool
, NULL
, &spa_l2cache_avl
);
1098 mutex_exit(&spa_l2cache_lock
);
1104 spa_l2cache_activate(vdev_t
*vd
)
1106 mutex_enter(&spa_l2cache_lock
);
1107 ASSERT(vd
->vdev_isl2cache
);
1108 spa_aux_activate(vd
, &spa_l2cache_avl
);
1109 mutex_exit(&spa_l2cache_lock
);
1113 * ==========================================================================
1115 * ==========================================================================
1119 * Lock the given spa_t for the purpose of adding or removing a vdev.
1120 * Grabs the global spa_namespace_lock plus the spa config lock for writing.
1121 * It returns the next transaction group for the spa_t.
1124 spa_vdev_enter(spa_t
*spa
)
1126 mutex_enter(&spa
->spa_vdev_top_lock
);
1127 mutex_enter(&spa_namespace_lock
);
1128 return (spa_vdev_config_enter(spa
));
1132 * Internal implementation for spa_vdev_enter(). Used when a vdev
1133 * operation requires multiple syncs (i.e. removing a device) while
1134 * keeping the spa_namespace_lock held.
1137 spa_vdev_config_enter(spa_t
*spa
)
1139 ASSERT(MUTEX_HELD(&spa_namespace_lock
));
1141 spa_config_enter(spa
, SCL_ALL
, spa
, RW_WRITER
);
1143 return (spa_last_synced_txg(spa
) + 1);
1147 * Used in combination with spa_vdev_config_enter() to allow the syncing
1148 * of multiple transactions without releasing the spa_namespace_lock.
1151 spa_vdev_config_exit(spa_t
*spa
, vdev_t
*vd
, uint64_t txg
, int error
, char *tag
)
1153 ASSERT(MUTEX_HELD(&spa_namespace_lock
));
1155 int config_changed
= B_FALSE
;
1157 ASSERT(txg
> spa_last_synced_txg(spa
));
1159 spa
->spa_pending_vdev
= NULL
;
1162 * Reassess the DTLs.
1164 vdev_dtl_reassess(spa
->spa_root_vdev
, 0, 0, B_FALSE
);
1166 if (error
== 0 && !list_is_empty(&spa
->spa_config_dirty_list
)) {
1167 config_changed
= B_TRUE
;
1168 spa
->spa_config_generation
++;
1172 * Verify the metaslab classes.
1174 ASSERT(metaslab_class_validate(spa_normal_class(spa
)) == 0);
1175 ASSERT(metaslab_class_validate(spa_log_class(spa
)) == 0);
1177 spa_config_exit(spa
, SCL_ALL
, spa
);
1180 * Panic the system if the specified tag requires it. This
1181 * is useful for ensuring that configurations are updated
1184 if (zio_injection_enabled
)
1185 zio_handle_panic_injection(spa
, tag
, 0);
1188 * Note: this txg_wait_synced() is important because it ensures
1189 * that there won't be more than one config change per txg.
1190 * This allows us to use the txg as the generation number.
1193 txg_wait_synced(spa
->spa_dsl_pool
, txg
);
1196 ASSERT(!vd
->vdev_detached
|| vd
->vdev_dtl_sm
== NULL
);
1197 if (vd
->vdev_ops
->vdev_op_leaf
) {
1198 mutex_enter(&vd
->vdev_initialize_lock
);
1199 vdev_initialize_stop(vd
, VDEV_INITIALIZE_CANCELED
);
1200 mutex_exit(&vd
->vdev_initialize_lock
);
1203 spa_config_enter(spa
, SCL_ALL
, spa
, RW_WRITER
);
1205 spa_config_exit(spa
, SCL_ALL
, spa
);
1209 * If the config changed, update the config cache.
1212 spa_write_cachefile(spa
, B_FALSE
, B_TRUE
);
1216 * Unlock the spa_t after adding or removing a vdev. Besides undoing the
1217 * locking of spa_vdev_enter(), we also want make sure the transactions have
1218 * synced to disk, and then update the global configuration cache with the new
1222 spa_vdev_exit(spa_t
*spa
, vdev_t
*vd
, uint64_t txg
, int error
)
1224 spa_vdev_config_exit(spa
, vd
, txg
, error
, FTAG
);
1225 mutex_exit(&spa_namespace_lock
);
1226 mutex_exit(&spa
->spa_vdev_top_lock
);
1232 * Lock the given spa_t for the purpose of changing vdev state.
1235 spa_vdev_state_enter(spa_t
*spa
, int oplocks
)
1237 int locks
= SCL_STATE_ALL
| oplocks
;
1240 * Root pools may need to read of the underlying devfs filesystem
1241 * when opening up a vdev. Unfortunately if we're holding the
1242 * SCL_ZIO lock it will result in a deadlock when we try to issue
1243 * the read from the root filesystem. Instead we "prefetch"
1244 * the associated vnodes that we need prior to opening the
1245 * underlying devices and cache them so that we can prevent
1246 * any I/O when we are doing the actual open.
1248 if (spa_is_root(spa
)) {
1249 int low
= locks
& ~(SCL_ZIO
- 1);
1250 int high
= locks
& ~low
;
1252 spa_config_enter(spa
, high
, spa
, RW_WRITER
);
1253 vdev_hold(spa
->spa_root_vdev
);
1254 spa_config_enter(spa
, low
, spa
, RW_WRITER
);
1256 spa_config_enter(spa
, locks
, spa
, RW_WRITER
);
1258 spa
->spa_vdev_locks
= locks
;
1262 spa_vdev_state_exit(spa_t
*spa
, vdev_t
*vd
, int error
)
1264 boolean_t config_changed
= B_FALSE
;
1266 if (vd
!= NULL
|| error
== 0)
1267 vdev_dtl_reassess(vd
? vd
->vdev_top
: spa
->spa_root_vdev
,
1271 vdev_state_dirty(vd
->vdev_top
);
1272 config_changed
= B_TRUE
;
1273 spa
->spa_config_generation
++;
1276 if (spa_is_root(spa
))
1277 vdev_rele(spa
->spa_root_vdev
);
1279 ASSERT3U(spa
->spa_vdev_locks
, >=, SCL_STATE_ALL
);
1280 spa_config_exit(spa
, spa
->spa_vdev_locks
, spa
);
1283 * If anything changed, wait for it to sync. This ensures that,
1284 * from the system administrator's perspective, zpool(8) commands
1285 * are synchronous. This is important for things like zpool offline:
1286 * when the command completes, you expect no further I/O from ZFS.
1289 txg_wait_synced(spa
->spa_dsl_pool
, 0);
1292 * If the config changed, update the config cache.
1294 if (config_changed
) {
1295 mutex_enter(&spa_namespace_lock
);
1296 spa_write_cachefile(spa
, B_FALSE
, B_TRUE
);
1297 mutex_exit(&spa_namespace_lock
);
1304 * ==========================================================================
1305 * Miscellaneous functions
1306 * ==========================================================================
1310 spa_activate_mos_feature(spa_t
*spa
, const char *feature
, dmu_tx_t
*tx
)
1312 if (!nvlist_exists(spa
->spa_label_features
, feature
)) {
1313 fnvlist_add_boolean(spa
->spa_label_features
, feature
);
1315 * When we are creating the pool (tx_txg==TXG_INITIAL), we can't
1316 * dirty the vdev config because lock SCL_CONFIG is not held.
1317 * Thankfully, in this case we don't need to dirty the config
1318 * because it will be written out anyway when we finish
1319 * creating the pool.
1321 if (tx
->tx_txg
!= TXG_INITIAL
)
1322 vdev_config_dirty(spa
->spa_root_vdev
);
1327 spa_deactivate_mos_feature(spa_t
*spa
, const char *feature
)
1329 if (nvlist_remove_all(spa
->spa_label_features
, feature
) == 0)
1330 vdev_config_dirty(spa
->spa_root_vdev
);
1334 * Return the spa_t associated with given pool_guid, if it exists. If
1335 * device_guid is non-zero, determine whether the pool exists *and* contains
1336 * a device with the specified device_guid.
1339 spa_by_guid(uint64_t pool_guid
, uint64_t device_guid
)
1342 avl_tree_t
*t
= &spa_namespace_avl
;
1344 ASSERT(MUTEX_HELD(&spa_namespace_lock
));
1346 for (spa
= avl_first(t
); spa
!= NULL
; spa
= AVL_NEXT(t
, spa
)) {
1347 if (spa
->spa_state
== POOL_STATE_UNINITIALIZED
)
1349 if (spa
->spa_root_vdev
== NULL
)
1351 if (spa_guid(spa
) == pool_guid
) {
1352 if (device_guid
== 0)
1355 if (vdev_lookup_by_guid(spa
->spa_root_vdev
,
1356 device_guid
) != NULL
)
1360 * Check any devices we may be in the process of adding.
1362 if (spa
->spa_pending_vdev
) {
1363 if (vdev_lookup_by_guid(spa
->spa_pending_vdev
,
1364 device_guid
) != NULL
)
1374 * Determine whether a pool with the given pool_guid exists.
1377 spa_guid_exists(uint64_t pool_guid
, uint64_t device_guid
)
1379 return (spa_by_guid(pool_guid
, device_guid
) != NULL
);
1383 spa_strdup(const char *s
)
1389 new = kmem_alloc(len
+ 1, KM_SLEEP
);
1397 spa_strfree(char *s
)
1399 kmem_free(s
, strlen(s
) + 1);
1403 spa_get_random(uint64_t range
)
1409 (void) random_get_pseudo_bytes((void *)&r
, sizeof (uint64_t));
1415 spa_generate_guid(spa_t
*spa
)
1417 uint64_t guid
= spa_get_random(-1ULL);
1420 while (guid
== 0 || spa_guid_exists(spa_guid(spa
), guid
))
1421 guid
= spa_get_random(-1ULL);
1423 while (guid
== 0 || spa_guid_exists(guid
, 0))
1424 guid
= spa_get_random(-1ULL);
1431 snprintf_blkptr(char *buf
, size_t buflen
, const blkptr_t
*bp
)
1434 char *checksum
= NULL
;
1435 char *compress
= NULL
;
1438 if (BP_GET_TYPE(bp
) & DMU_OT_NEWTYPE
) {
1439 dmu_object_byteswap_t bswap
=
1440 DMU_OT_BYTESWAP(BP_GET_TYPE(bp
));
1441 (void) snprintf(type
, sizeof (type
), "bswap %s %s",
1442 DMU_OT_IS_METADATA(BP_GET_TYPE(bp
)) ?
1443 "metadata" : "data",
1444 dmu_ot_byteswap
[bswap
].ob_name
);
1446 (void) strlcpy(type
, dmu_ot
[BP_GET_TYPE(bp
)].ot_name
,
1449 if (!BP_IS_EMBEDDED(bp
)) {
1451 zio_checksum_table
[BP_GET_CHECKSUM(bp
)].ci_name
;
1453 compress
= zio_compress_table
[BP_GET_COMPRESS(bp
)].ci_name
;
1456 SNPRINTF_BLKPTR(snprintf
, ' ', buf
, buflen
, bp
, type
, checksum
,
1461 spa_freeze(spa_t
*spa
)
1463 uint64_t freeze_txg
= 0;
1465 spa_config_enter(spa
, SCL_ALL
, FTAG
, RW_WRITER
);
1466 if (spa
->spa_freeze_txg
== UINT64_MAX
) {
1467 freeze_txg
= spa_last_synced_txg(spa
) + TXG_SIZE
;
1468 spa
->spa_freeze_txg
= freeze_txg
;
1470 spa_config_exit(spa
, SCL_ALL
, FTAG
);
1471 if (freeze_txg
!= 0)
1472 txg_wait_synced(spa_get_dsl(spa
), freeze_txg
);
1476 zfs_panic_recover(const char *fmt
, ...)
1481 vcmn_err(zfs_recover
? CE_WARN
: CE_PANIC
, fmt
, adx
);
1486 * This is a stripped-down version of strtoull, suitable only for converting
1487 * lowercase hexadecimal numbers that don't overflow.
1490 zfs_strtonum(const char *str
, char **nptr
)
1496 while ((c
= *str
) != '\0') {
1497 if (c
>= '0' && c
<= '9')
1499 else if (c
>= 'a' && c
<= 'f')
1500 digit
= 10 + c
- 'a';
1511 *nptr
= (char *)str
;
1517 * ==========================================================================
1518 * Accessor functions
1519 * ==========================================================================
1523 spa_shutting_down(spa_t
*spa
)
1525 return (spa
->spa_async_suspended
);
1529 spa_get_dsl(spa_t
*spa
)
1531 return (spa
->spa_dsl_pool
);
1535 spa_is_initializing(spa_t
*spa
)
1537 return (spa
->spa_is_initializing
);
1541 spa_indirect_vdevs_loaded(spa_t
*spa
)
1543 return (spa
->spa_indirect_vdevs_loaded
);
1547 spa_get_rootblkptr(spa_t
*spa
)
1549 return (&spa
->spa_ubsync
.ub_rootbp
);
1553 spa_set_rootblkptr(spa_t
*spa
, const blkptr_t
*bp
)
1555 spa
->spa_uberblock
.ub_rootbp
= *bp
;
1559 spa_altroot(spa_t
*spa
, char *buf
, size_t buflen
)
1561 if (spa
->spa_root
== NULL
)
1564 (void) strncpy(buf
, spa
->spa_root
, buflen
);
1568 spa_sync_pass(spa_t
*spa
)
1570 return (spa
->spa_sync_pass
);
1574 spa_name(spa_t
*spa
)
1576 return (spa
->spa_name
);
1580 spa_guid(spa_t
*spa
)
1582 dsl_pool_t
*dp
= spa_get_dsl(spa
);
1586 * If we fail to parse the config during spa_load(), we can go through
1587 * the error path (which posts an ereport) and end up here with no root
1588 * vdev. We stash the original pool guid in 'spa_config_guid' to handle
1591 if (spa
->spa_root_vdev
== NULL
)
1592 return (spa
->spa_config_guid
);
1594 guid
= spa
->spa_last_synced_guid
!= 0 ?
1595 spa
->spa_last_synced_guid
: spa
->spa_root_vdev
->vdev_guid
;
1598 * Return the most recently synced out guid unless we're
1599 * in syncing context.
1601 if (dp
&& dsl_pool_sync_context(dp
))
1602 return (spa
->spa_root_vdev
->vdev_guid
);
1608 spa_load_guid(spa_t
*spa
)
1611 * This is a GUID that exists solely as a reference for the
1612 * purposes of the arc. It is generated at load time, and
1613 * is never written to persistent storage.
1615 return (spa
->spa_load_guid
);
1619 spa_last_synced_txg(spa_t
*spa
)
1621 return (spa
->spa_ubsync
.ub_txg
);
1625 spa_first_txg(spa_t
*spa
)
1627 return (spa
->spa_first_txg
);
1631 spa_syncing_txg(spa_t
*spa
)
1633 return (spa
->spa_syncing_txg
);
1637 * Return the last txg where data can be dirtied. The final txgs
1638 * will be used to just clear out any deferred frees that remain.
1641 spa_final_dirty_txg(spa_t
*spa
)
1643 return (spa
->spa_final_txg
- TXG_DEFER_SIZE
);
1647 spa_state(spa_t
*spa
)
1649 return (spa
->spa_state
);
1653 spa_load_state(spa_t
*spa
)
1655 return (spa
->spa_load_state
);
1659 spa_freeze_txg(spa_t
*spa
)
1661 return (spa
->spa_freeze_txg
);
1666 spa_get_worst_case_asize(spa_t
*spa
, uint64_t lsize
)
1668 return (lsize
* spa_asize_inflation
);
1672 * Return the amount of slop space in bytes. It is 1/32 of the pool (3.2%),
1673 * or at least 128MB, unless that would cause it to be more than half the
1676 * See the comment above spa_slop_shift for details.
1679 spa_get_slop_space(spa_t
*spa
)
1681 uint64_t space
= spa_get_dspace(spa
);
1682 return (MAX(space
>> spa_slop_shift
, MIN(space
>> 1, spa_min_slop
)));
1686 spa_get_dspace(spa_t
*spa
)
1688 return (spa
->spa_dspace
);
1692 spa_get_checkpoint_space(spa_t
*spa
)
1694 return (spa
->spa_checkpoint_info
.sci_dspace
);
1698 spa_update_dspace(spa_t
*spa
)
1700 spa
->spa_dspace
= metaslab_class_get_dspace(spa_normal_class(spa
)) +
1701 ddt_get_dedup_dspace(spa
);
1702 if (spa
->spa_vdev_removal
!= NULL
) {
1704 * We can't allocate from the removing device, so
1705 * subtract its size. This prevents the DMU/DSL from
1706 * filling up the (now smaller) pool while we are in the
1707 * middle of removing the device.
1709 * Note that the DMU/DSL doesn't actually know or care
1710 * how much space is allocated (it does its own tracking
1711 * of how much space has been logically used). So it
1712 * doesn't matter that the data we are moving may be
1713 * allocated twice (on the old device and the new
1716 spa_config_enter(spa
, SCL_VDEV
, FTAG
, RW_READER
);
1718 vdev_lookup_top(spa
, spa
->spa_vdev_removal
->svr_vdev_id
);
1719 spa
->spa_dspace
-= spa_deflate(spa
) ?
1720 vd
->vdev_stat
.vs_dspace
: vd
->vdev_stat
.vs_space
;
1721 spa_config_exit(spa
, SCL_VDEV
, FTAG
);
1726 * Return the failure mode that has been set to this pool. The default
1727 * behavior will be to block all I/Os when a complete failure occurs.
1730 spa_get_failmode(spa_t
*spa
)
1732 return (spa
->spa_failmode
);
1736 spa_suspended(spa_t
*spa
)
1738 return (spa
->spa_suspended
);
1742 spa_version(spa_t
*spa
)
1744 return (spa
->spa_ubsync
.ub_version
);
1748 spa_deflate(spa_t
*spa
)
1750 return (spa
->spa_deflate
);
1754 spa_normal_class(spa_t
*spa
)
1756 return (spa
->spa_normal_class
);
1760 spa_log_class(spa_t
*spa
)
1762 return (spa
->spa_log_class
);
1766 spa_evicting_os_register(spa_t
*spa
, objset_t
*os
)
1768 mutex_enter(&spa
->spa_evicting_os_lock
);
1769 list_insert_head(&spa
->spa_evicting_os_list
, os
);
1770 mutex_exit(&spa
->spa_evicting_os_lock
);
1774 spa_evicting_os_deregister(spa_t
*spa
, objset_t
*os
)
1776 mutex_enter(&spa
->spa_evicting_os_lock
);
1777 list_remove(&spa
->spa_evicting_os_list
, os
);
1778 cv_broadcast(&spa
->spa_evicting_os_cv
);
1779 mutex_exit(&spa
->spa_evicting_os_lock
);
1783 spa_evicting_os_wait(spa_t
*spa
)
1785 mutex_enter(&spa
->spa_evicting_os_lock
);
1786 while (!list_is_empty(&spa
->spa_evicting_os_list
))
1787 cv_wait(&spa
->spa_evicting_os_cv
, &spa
->spa_evicting_os_lock
);
1788 mutex_exit(&spa
->spa_evicting_os_lock
);
1790 dmu_buf_user_evict_wait();
1794 spa_max_replication(spa_t
*spa
)
1797 * As of SPA_VERSION == SPA_VERSION_DITTO_BLOCKS, we are able to
1798 * handle BPs with more than one DVA allocated. Set our max
1799 * replication level accordingly.
1801 if (spa_version(spa
) < SPA_VERSION_DITTO_BLOCKS
)
1803 return (MIN(SPA_DVAS_PER_BP
, spa_max_replication_override
));
1807 spa_prev_software_version(spa_t
*spa
)
1809 return (spa
->spa_prev_software_version
);
1813 spa_deadman_synctime(spa_t
*spa
)
1815 return (spa
->spa_deadman_synctime
);
1819 dva_get_dsize_sync(spa_t
*spa
, const dva_t
*dva
)
1821 uint64_t asize
= DVA_GET_ASIZE(dva
);
1822 uint64_t dsize
= asize
;
1824 ASSERT(spa_config_held(spa
, SCL_ALL
, RW_READER
) != 0);
1826 if (asize
!= 0 && spa
->spa_deflate
) {
1827 vdev_t
*vd
= vdev_lookup_top(spa
, DVA_GET_VDEV(dva
));
1828 dsize
= (asize
>> SPA_MINBLOCKSHIFT
) * vd
->vdev_deflate_ratio
;
1835 bp_get_dsize_sync(spa_t
*spa
, const blkptr_t
*bp
)
1839 for (int d
= 0; d
< BP_GET_NDVAS(bp
); d
++)
1840 dsize
+= dva_get_dsize_sync(spa
, &bp
->blk_dva
[d
]);
1846 bp_get_dsize(spa_t
*spa
, const blkptr_t
*bp
)
1850 spa_config_enter(spa
, SCL_VDEV
, FTAG
, RW_READER
);
1852 for (int d
= 0; d
< BP_GET_NDVAS(bp
); d
++)
1853 dsize
+= dva_get_dsize_sync(spa
, &bp
->blk_dva
[d
]);
1855 spa_config_exit(spa
, SCL_VDEV
, FTAG
);
1861 spa_dirty_data(spa_t
*spa
)
1863 return (spa
->spa_dsl_pool
->dp_dirty_total
);
1867 * ==========================================================================
1868 * Initialization and Termination
1869 * ==========================================================================
1873 spa_name_compare(const void *a1
, const void *a2
)
1875 const spa_t
*s1
= a1
;
1876 const spa_t
*s2
= a2
;
1879 s
= strcmp(s1
->spa_name
, s2
->spa_name
);
1890 return (spa_active_count
);
1902 mutex_init(&spa_namespace_lock
, NULL
, MUTEX_DEFAULT
, NULL
);
1903 mutex_init(&spa_spare_lock
, NULL
, MUTEX_DEFAULT
, NULL
);
1904 mutex_init(&spa_l2cache_lock
, NULL
, MUTEX_DEFAULT
, NULL
);
1905 cv_init(&spa_namespace_cv
, NULL
, CV_DEFAULT
, NULL
);
1907 avl_create(&spa_namespace_avl
, spa_name_compare
, sizeof (spa_t
),
1908 offsetof(spa_t
, spa_avl
));
1910 avl_create(&spa_spare_avl
, spa_spare_compare
, sizeof (spa_aux_t
),
1911 offsetof(spa_aux_t
, aux_avl
));
1913 avl_create(&spa_l2cache_avl
, spa_l2cache_compare
, sizeof (spa_aux_t
),
1914 offsetof(spa_aux_t
, aux_avl
));
1916 spa_mode_global
= mode
;
1921 if (spa_mode_global
!= FREAD
&& dprintf_find_string("watch")) {
1922 arc_procfd
= open("/proc/self/ctl", O_WRONLY
);
1923 if (arc_procfd
== -1) {
1924 perror("could not enable watchpoints: "
1925 "opening /proc/self/ctl failed: ");
1935 metaslab_alloc_trace_init();
1939 vdev_cache_stat_init();
1942 zpool_feature_init();
1954 vdev_cache_stat_fini();
1958 metaslab_alloc_trace_fini();
1963 avl_destroy(&spa_namespace_avl
);
1964 avl_destroy(&spa_spare_avl
);
1965 avl_destroy(&spa_l2cache_avl
);
1967 cv_destroy(&spa_namespace_cv
);
1968 mutex_destroy(&spa_namespace_lock
);
1969 mutex_destroy(&spa_spare_lock
);
1970 mutex_destroy(&spa_l2cache_lock
);
1974 * Return whether this pool has slogs. No locking needed.
1975 * It's not a problem if the wrong answer is returned as it's only for
1976 * performance and not correctness
1979 spa_has_slogs(spa_t
*spa
)
1981 return (spa
->spa_log_class
->mc_rotor
!= NULL
);
1985 spa_get_log_state(spa_t
*spa
)
1987 return (spa
->spa_log_state
);
1991 spa_set_log_state(spa_t
*spa
, spa_log_state_t state
)
1993 spa
->spa_log_state
= state
;
1997 spa_is_root(spa_t
*spa
)
1999 return (spa
->spa_is_root
);
2003 spa_writeable(spa_t
*spa
)
2005 return (!!(spa
->spa_mode
& FWRITE
) && spa
->spa_trust_config
);
2009 * Returns true if there is a pending sync task in any of the current
2010 * syncing txg, the current quiescing txg, or the current open txg.
2013 spa_has_pending_synctask(spa_t
*spa
)
2015 return (!txg_all_lists_empty(&spa
->spa_dsl_pool
->dp_sync_tasks
) ||
2016 !txg_all_lists_empty(&spa
->spa_dsl_pool
->dp_early_sync_tasks
));
2020 spa_mode(spa_t
*spa
)
2022 return (spa
->spa_mode
);
2026 spa_bootfs(spa_t
*spa
)
2028 return (spa
->spa_bootfs
);
2032 spa_delegation(spa_t
*spa
)
2034 return (spa
->spa_delegation
);
2038 spa_meta_objset(spa_t
*spa
)
2040 return (spa
->spa_meta_objset
);
2044 spa_dedup_checksum(spa_t
*spa
)
2046 return (spa
->spa_dedup_checksum
);
2050 * Reset pool scan stat per scan pass (or reboot).
2053 spa_scan_stat_init(spa_t
*spa
)
2055 /* data not stored on disk */
2056 spa
->spa_scan_pass_start
= gethrestime_sec();
2057 if (dsl_scan_is_paused_scrub(spa
->spa_dsl_pool
->dp_scan
))
2058 spa
->spa_scan_pass_scrub_pause
= spa
->spa_scan_pass_start
;
2060 spa
->spa_scan_pass_scrub_pause
= 0;
2061 spa
->spa_scan_pass_scrub_spent_paused
= 0;
2062 spa
->spa_scan_pass_exam
= 0;
2063 vdev_scan_stat_init(spa
->spa_root_vdev
);
2067 * Get scan stats for zpool status reports
2070 spa_scan_get_stats(spa_t
*spa
, pool_scan_stat_t
*ps
)
2072 dsl_scan_t
*scn
= spa
->spa_dsl_pool
? spa
->spa_dsl_pool
->dp_scan
: NULL
;
2074 if (scn
== NULL
|| scn
->scn_phys
.scn_func
== POOL_SCAN_NONE
)
2075 return (SET_ERROR(ENOENT
));
2076 bzero(ps
, sizeof (pool_scan_stat_t
));
2078 /* data stored on disk */
2079 ps
->pss_func
= scn
->scn_phys
.scn_func
;
2080 ps
->pss_start_time
= scn
->scn_phys
.scn_start_time
;
2081 ps
->pss_end_time
= scn
->scn_phys
.scn_end_time
;
2082 ps
->pss_to_examine
= scn
->scn_phys
.scn_to_examine
;
2083 ps
->pss_examined
= scn
->scn_phys
.scn_examined
;
2084 ps
->pss_to_process
= scn
->scn_phys
.scn_to_process
;
2085 ps
->pss_processed
= scn
->scn_phys
.scn_processed
;
2086 ps
->pss_errors
= scn
->scn_phys
.scn_errors
;
2087 ps
->pss_state
= scn
->scn_phys
.scn_state
;
2089 /* data not stored on disk */
2090 ps
->pss_pass_start
= spa
->spa_scan_pass_start
;
2091 ps
->pss_pass_exam
= spa
->spa_scan_pass_exam
;
2092 ps
->pss_pass_scrub_pause
= spa
->spa_scan_pass_scrub_pause
;
2093 ps
->pss_pass_scrub_spent_paused
= spa
->spa_scan_pass_scrub_spent_paused
;
2099 spa_maxblocksize(spa_t
*spa
)
2101 if (spa_feature_is_enabled(spa
, SPA_FEATURE_LARGE_BLOCKS
))
2102 return (SPA_MAXBLOCKSIZE
);
2104 return (SPA_OLD_MAXBLOCKSIZE
);
2108 * Returns the txg that the last device removal completed. No indirect mappings
2109 * have been added since this txg.
2112 spa_get_last_removal_txg(spa_t
*spa
)
2115 uint64_t ret
= -1ULL;
2117 spa_config_enter(spa
, SCL_VDEV
, FTAG
, RW_READER
);
2119 * sr_prev_indirect_vdev is only modified while holding all the
2120 * config locks, so it is sufficient to hold SCL_VDEV as reader when
2123 vdevid
= spa
->spa_removing_phys
.sr_prev_indirect_vdev
;
2125 while (vdevid
!= -1ULL) {
2126 vdev_t
*vd
= vdev_lookup_top(spa
, vdevid
);
2127 vdev_indirect_births_t
*vib
= vd
->vdev_indirect_births
;
2129 ASSERT3P(vd
->vdev_ops
, ==, &vdev_indirect_ops
);
2132 * If the removal did not remap any data, we don't care.
2134 if (vdev_indirect_births_count(vib
) != 0) {
2135 ret
= vdev_indirect_births_last_entry_txg(vib
);
2139 vdevid
= vd
->vdev_indirect_config
.vic_prev_indirect_vdev
;
2141 spa_config_exit(spa
, SCL_VDEV
, FTAG
);
2144 spa_feature_is_active(spa
, SPA_FEATURE_DEVICE_REMOVAL
));
2150 spa_trust_config(spa_t
*spa
)
2152 return (spa
->spa_trust_config
);
2156 spa_missing_tvds_allowed(spa_t
*spa
)
2158 return (spa
->spa_missing_tvds_allowed
);
2162 spa_set_missing_tvds(spa_t
*spa
, uint64_t missing
)
2164 spa
->spa_missing_tvds
= missing
;
2168 spa_top_vdevs_spacemap_addressable(spa_t
*spa
)
2170 vdev_t
*rvd
= spa
->spa_root_vdev
;
2171 for (uint64_t c
= 0; c
< rvd
->vdev_children
; c
++) {
2172 if (!vdev_is_spacemap_addressable(rvd
->vdev_child
[c
]))
2179 spa_has_checkpoint(spa_t
*spa
)
2181 return (spa
->spa_checkpoint_txg
!= 0);
2185 spa_importing_readonly_checkpoint(spa_t
*spa
)
2187 return ((spa
->spa_import_flags
& ZFS_IMPORT_CHECKPOINT
) &&
2188 spa
->spa_mode
== FREAD
);
2192 spa_min_claim_txg(spa_t
*spa
)
2194 uint64_t checkpoint_txg
= spa
->spa_uberblock
.ub_checkpoint_txg
;
2196 if (checkpoint_txg
!= 0)
2197 return (checkpoint_txg
+ 1);
2199 return (spa
->spa_first_txg
);
2203 * If there is a checkpoint, async destroys may consume more space from
2204 * the pool instead of freeing it. In an attempt to save the pool from
2205 * getting suspended when it is about to run out of space, we stop
2206 * processing async destroys.
2209 spa_suspend_async_destroy(spa_t
*spa
)
2211 dsl_pool_t
*dp
= spa_get_dsl(spa
);
2213 uint64_t unreserved
= dsl_pool_unreserved_space(dp
,
2214 ZFS_SPACE_CHECK_EXTRA_RESERVED
);
2215 uint64_t used
= dsl_dir_phys(dp
->dp_root_dir
)->dd_used_bytes
;
2216 uint64_t avail
= (unreserved
> used
) ? (unreserved
- used
) : 0;
2218 if (spa_has_checkpoint(spa
) && avail
== 0)