Unleashed v1.4
[unleashed.git] / kernel / fs / zfs / spa_misc.c
blobf66550739112d9e39b9803e97a32b4b487f3fa29
1 /*
2 * CDDL HEADER START
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
19 * CDDL HEADER END
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 2011, 2018 by Delphix. All rights reserved.
24 * Copyright 2015 Nexenta Systems, Inc. All rights reserved.
25 * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved.
26 * Copyright 2013 Saso Kiselkov. All rights reserved.
27 * Copyright (c) 2014 Integros [integros.com]
28 * Copyright (c) 2017 Datto Inc.
31 #include <sys/zfs_context.h>
32 #include <sys/spa_impl.h>
33 #include <sys/spa_boot.h>
34 #include <sys/zio.h>
35 #include <sys/zio_checksum.h>
36 #include <sys/zio_compress.h>
37 #include <sys/dmu.h>
38 #include <sys/dmu_tx.h>
39 #include <sys/zap.h>
40 #include <sys/zil.h>
41 #include <sys/vdev_impl.h>
42 #include <sys/vdev_initialize.h>
43 #include <sys/metaslab.h>
44 #include <sys/uberblock_impl.h>
45 #include <sys/txg.h>
46 #include <sys/avl.h>
47 #include <sys/unique.h>
48 #include <sys/dsl_pool.h>
49 #include <sys/dsl_dir.h>
50 #include <sys/dsl_prop.h>
51 #include <sys/dsl_scan.h>
52 #include <sys/fs/zfs.h>
53 #include <sys/metaslab_impl.h>
54 #include <sys/arc.h>
55 #include <sys/ddt.h>
56 #include "zfs_prop.h"
57 #include <sys/zfeature.h>
60 * SPA locking
62 * There are four basic locks for managing spa_t structures:
64 * spa_namespace_lock (global mutex)
66 * This lock must be acquired to do any of the following:
68 * - Lookup a spa_t by name
69 * - Add or remove a spa_t from the namespace
70 * - Increase spa_refcount from non-zero
71 * - Check if spa_refcount is zero
72 * - Rename a spa_t
73 * - add/remove/attach/detach devices
74 * - Held for the duration of create/destroy/import/export
76 * It does not need to handle recursion. A create or destroy may
77 * reference objects (files or zvols) in other pools, but by
78 * definition they must have an existing reference, and will never need
79 * to lookup a spa_t by name.
81 * spa_refcount (per-spa refcount_t protected by mutex)
83 * This reference count keep track of any active users of the spa_t. The
84 * spa_t cannot be destroyed or freed while this is non-zero. Internally,
85 * the refcount is never really 'zero' - opening a pool implicitly keeps
86 * some references in the DMU. Internally we check against spa_minref, but
87 * present the image of a zero/non-zero value to consumers.
89 * spa_config_lock[] (per-spa array of rwlocks)
91 * This protects the spa_t from config changes, and must be held in
92 * the following circumstances:
94 * - RW_READER to perform I/O to the spa
95 * - RW_WRITER to change the vdev config
97 * The locking order is fairly straightforward:
99 * spa_namespace_lock -> spa_refcount
101 * The namespace lock must be acquired to increase the refcount from 0
102 * or to check if it is zero.
104 * spa_refcount -> spa_config_lock[]
106 * There must be at least one valid reference on the spa_t to acquire
107 * the config lock.
109 * spa_namespace_lock -> spa_config_lock[]
111 * The namespace lock must always be taken before the config lock.
114 * The spa_namespace_lock can be acquired directly and is globally visible.
116 * The namespace is manipulated using the following functions, all of which
117 * require the spa_namespace_lock to be held.
119 * spa_lookup() Lookup a spa_t by name.
121 * spa_add() Create a new spa_t in the namespace.
123 * spa_remove() Remove a spa_t from the namespace. This also
124 * frees up any memory associated with the spa_t.
126 * spa_next() Returns the next spa_t in the system, or the
127 * first if NULL is passed.
129 * spa_evict_all() Shutdown and remove all spa_t structures in
130 * the system.
132 * spa_guid_exists() Determine whether a pool/device guid exists.
134 * The spa_refcount is manipulated using the following functions:
136 * spa_open_ref() Adds a reference to the given spa_t. Must be
137 * called with spa_namespace_lock held if the
138 * refcount is currently zero.
140 * spa_close() Remove a reference from the spa_t. This will
141 * not free the spa_t or remove it from the
142 * namespace. No locking is required.
144 * spa_refcount_zero() Returns true if the refcount is currently
145 * zero. Must be called with spa_namespace_lock
146 * held.
148 * The spa_config_lock[] is an array of rwlocks, ordered as follows:
149 * SCL_CONFIG > SCL_STATE > SCL_ALLOC > SCL_ZIO > SCL_FREE > SCL_VDEV.
150 * spa_config_lock[] is manipulated with spa_config_{enter,exit,held}().
152 * To read the configuration, it suffices to hold one of these locks as reader.
153 * To modify the configuration, you must hold all locks as writer. To modify
154 * vdev state without altering the vdev tree's topology (e.g. online/offline),
155 * you must hold SCL_STATE and SCL_ZIO as writer.
157 * We use these distinct config locks to avoid recursive lock entry.
158 * For example, spa_sync() (which holds SCL_CONFIG as reader) induces
159 * block allocations (SCL_ALLOC), which may require reading space maps
160 * from disk (dmu_read() -> zio_read() -> SCL_ZIO).
162 * The spa config locks cannot be normal rwlocks because we need the
163 * ability to hand off ownership. For example, SCL_ZIO is acquired
164 * by the issuing thread and later released by an interrupt thread.
165 * They do, however, obey the usual write-wanted semantics to prevent
166 * writer (i.e. system administrator) starvation.
168 * The lock acquisition rules are as follows:
170 * SCL_CONFIG
171 * Protects changes to the vdev tree topology, such as vdev
172 * add/remove/attach/detach. Protects the dirty config list
173 * (spa_config_dirty_list) and the set of spares and l2arc devices.
175 * SCL_STATE
176 * Protects changes to pool state and vdev state, such as vdev
177 * online/offline/fault/degrade/clear. Protects the dirty state list
178 * (spa_state_dirty_list) and global pool state (spa_state).
180 * SCL_ALLOC
181 * Protects changes to metaslab groups and classes.
182 * Held as reader by metaslab_alloc() and metaslab_claim().
184 * SCL_ZIO
185 * Held by bp-level zios (those which have no io_vd upon entry)
186 * to prevent changes to the vdev tree. The bp-level zio implicitly
187 * protects all of its vdev child zios, which do not hold SCL_ZIO.
189 * SCL_FREE
190 * Protects changes to metaslab groups and classes.
191 * Held as reader by metaslab_free(). SCL_FREE is distinct from
192 * SCL_ALLOC, and lower than SCL_ZIO, so that we can safely free
193 * blocks in zio_done() while another i/o that holds either
194 * SCL_ALLOC or SCL_ZIO is waiting for this i/o to complete.
196 * SCL_VDEV
197 * Held as reader to prevent changes to the vdev tree during trivial
198 * inquiries such as bp_get_dsize(). SCL_VDEV is distinct from the
199 * other locks, and lower than all of them, to ensure that it's safe
200 * to acquire regardless of caller context.
202 * In addition, the following rules apply:
204 * (a) spa_props_lock protects pool properties, spa_config and spa_config_list.
205 * The lock ordering is SCL_CONFIG > spa_props_lock.
207 * (b) I/O operations on leaf vdevs. For any zio operation that takes
208 * an explicit vdev_t argument -- such as zio_ioctl(), zio_read_phys(),
209 * or zio_write_phys() -- the caller must ensure that the config cannot
210 * cannot change in the interim, and that the vdev cannot be reopened.
211 * SCL_STATE as reader suffices for both.
213 * The vdev configuration is protected by spa_vdev_enter() / spa_vdev_exit().
215 * spa_vdev_enter() Acquire the namespace lock and the config lock
216 * for writing.
218 * spa_vdev_exit() Release the config lock, wait for all I/O
219 * to complete, sync the updated configs to the
220 * cache, and release the namespace lock.
222 * vdev state is protected by spa_vdev_state_enter() / spa_vdev_state_exit().
223 * Like spa_vdev_enter/exit, these are convenience wrappers -- the actual
224 * locking is, always, based on spa_namespace_lock and spa_config_lock[].
227 static avl_tree_t spa_namespace_avl;
228 kmutex_t spa_namespace_lock;
229 static kcondvar_t spa_namespace_cv;
230 static int spa_active_count;
231 int spa_max_replication_override = SPA_DVAS_PER_BP;
233 static kmutex_t spa_spare_lock;
234 static avl_tree_t spa_spare_avl;
235 static kmutex_t spa_l2cache_lock;
236 static avl_tree_t spa_l2cache_avl;
238 kmem_cache_t *spa_buffer_pool;
239 int spa_mode_global;
241 #ifdef ZFS_DEBUG
243 * Everything except dprintf, spa, and indirect_remap is on by default
244 * in debug builds.
246 int zfs_flags = ~(ZFS_DEBUG_DPRINTF | ZFS_DEBUG_INDIRECT_REMAP);
247 #else
248 int zfs_flags = 0;
249 #endif
252 * zfs_recover can be set to nonzero to attempt to recover from
253 * otherwise-fatal errors, typically caused by on-disk corruption. When
254 * set, calls to zfs_panic_recover() will turn into warning messages.
255 * This should only be used as a last resort, as it typically results
256 * in leaked space, or worse.
258 boolean_t zfs_recover = B_FALSE;
261 * If destroy encounters an EIO while reading metadata (e.g. indirect
262 * blocks), space referenced by the missing metadata can not be freed.
263 * Normally this causes the background destroy to become "stalled", as
264 * it is unable to make forward progress. While in this stalled state,
265 * all remaining space to free from the error-encountering filesystem is
266 * "temporarily leaked". Set this flag to cause it to ignore the EIO,
267 * permanently leak the space from indirect blocks that can not be read,
268 * and continue to free everything else that it can.
270 * The default, "stalling" behavior is useful if the storage partially
271 * fails (i.e. some but not all i/os fail), and then later recovers. In
272 * this case, we will be able to continue pool operations while it is
273 * partially failed, and when it recovers, we can continue to free the
274 * space, with no leaks. However, note that this case is actually
275 * fairly rare.
277 * Typically pools either (a) fail completely (but perhaps temporarily,
278 * e.g. a top-level vdev going offline), or (b) have localized,
279 * permanent errors (e.g. disk returns the wrong data due to bit flip or
280 * firmware bug). In case (a), this setting does not matter because the
281 * pool will be suspended and the sync thread will not be able to make
282 * forward progress regardless. In case (b), because the error is
283 * permanent, the best we can do is leak the minimum amount of space,
284 * which is what setting this flag will do. Therefore, it is reasonable
285 * for this flag to normally be set, but we chose the more conservative
286 * approach of not setting it, so that there is no possibility of
287 * leaking space in the "partial temporary" failure case.
289 boolean_t zfs_free_leak_on_eio = B_FALSE;
292 * Expiration time in milliseconds. This value has two meanings. First it is
293 * used to determine when the spa_deadman() logic should fire. By default the
294 * spa_deadman() will fire if spa_sync() has not completed in 1000 seconds.
295 * Secondly, the value determines if an I/O is considered "hung". Any I/O that
296 * has not completed in zfs_deadman_synctime_ms is considered "hung" resulting
297 * in a system panic.
299 uint64_t zfs_deadman_synctime_ms = 1000000ULL;
302 * Check time in milliseconds. This defines the frequency at which we check
303 * for hung I/O.
305 uint64_t zfs_deadman_checktime_ms = 5000ULL;
308 * Override the zfs deadman behavior via /etc/system. By default the
309 * deadman is enabled except on VMware and sparc deployments.
311 int zfs_deadman_enabled = -1;
314 * The worst case is single-sector max-parity RAID-Z blocks, in which
315 * case the space requirement is exactly (VDEV_RAIDZ_MAXPARITY + 1)
316 * times the size; so just assume that. Add to this the fact that
317 * we can have up to 3 DVAs per bp, and one more factor of 2 because
318 * the block may be dittoed with up to 3 DVAs by ddt_sync(). All together,
319 * the worst case is:
320 * (VDEV_RAIDZ_MAXPARITY + 1) * SPA_DVAS_PER_BP * 2 == 24
322 int spa_asize_inflation = 24;
325 * Normally, we don't allow the last 3.2% (1/(2^spa_slop_shift)) of space in
326 * the pool to be consumed. This ensures that we don't run the pool
327 * completely out of space, due to unaccounted changes (e.g. to the MOS).
328 * It also limits the worst-case time to allocate space. If we have
329 * less than this amount of free space, most ZPL operations (e.g. write,
330 * create) will return ENOSPC.
332 * Certain operations (e.g. file removal, most administrative actions) can
333 * use half the slop space. They will only return ENOSPC if less than half
334 * the slop space is free. Typically, once the pool has less than the slop
335 * space free, the user will use these operations to free up space in the pool.
336 * These are the operations that call dsl_pool_adjustedsize() with the netfree
337 * argument set to TRUE.
339 * Operations that are almost guaranteed to free up space in the absence of
340 * a pool checkpoint can use up to three quarters of the slop space
341 * (e.g zfs destroy).
343 * A very restricted set of operations are always permitted, regardless of
344 * the amount of free space. These are the operations that call
345 * dsl_sync_task(ZFS_SPACE_CHECK_NONE). If these operations result in a net
346 * increase in the amount of space used, it is possible to run the pool
347 * completely out of space, causing it to be permanently read-only.
349 * Note that on very small pools, the slop space will be larger than
350 * 3.2%, in an effort to have it be at least spa_min_slop (128MB),
351 * but we never allow it to be more than half the pool size.
353 * See also the comments in zfs_space_check_t.
355 int spa_slop_shift = 5;
356 uint64_t spa_min_slop = 128 * 1024 * 1024;
358 int spa_allocators = 4;
360 /*PRINTFLIKE2*/
361 void
362 spa_load_failed(spa_t *spa, const char *fmt, ...)
364 va_list adx;
365 char buf[256];
367 va_start(adx, fmt);
368 (void) vsnprintf(buf, sizeof (buf), fmt, adx);
369 va_end(adx);
371 zfs_dbgmsg("spa_load(%s, config %s): FAILED: %s", spa->spa_name,
372 spa->spa_trust_config ? "trusted" : "untrusted", buf);
375 /*PRINTFLIKE2*/
376 void
377 spa_load_note(spa_t *spa, const char *fmt, ...)
379 va_list adx;
380 char buf[256];
382 va_start(adx, fmt);
383 (void) vsnprintf(buf, sizeof (buf), fmt, adx);
384 va_end(adx);
386 zfs_dbgmsg("spa_load(%s, config %s): %s", spa->spa_name,
387 spa->spa_trust_config ? "trusted" : "untrusted", buf);
391 * ==========================================================================
392 * SPA config locking
393 * ==========================================================================
395 static void
396 spa_config_lock_init(spa_t *spa)
398 for (int i = 0; i < SCL_LOCKS; i++) {
399 spa_config_lock_t *scl = &spa->spa_config_lock[i];
400 mutex_init(&scl->scl_lock, NULL, MUTEX_DEFAULT, NULL);
401 cv_init(&scl->scl_cv, NULL, CV_DEFAULT, NULL);
402 refcount_create_untracked(&scl->scl_count);
403 scl->scl_writer = NULL;
404 scl->scl_write_wanted = 0;
408 static void
409 spa_config_lock_destroy(spa_t *spa)
411 for (int i = 0; i < SCL_LOCKS; i++) {
412 spa_config_lock_t *scl = &spa->spa_config_lock[i];
413 mutex_destroy(&scl->scl_lock);
414 cv_destroy(&scl->scl_cv);
415 refcount_destroy(&scl->scl_count);
416 ASSERT(scl->scl_writer == NULL);
417 ASSERT(scl->scl_write_wanted == 0);
422 spa_config_tryenter(spa_t *spa, int locks, void *tag, krw_t rw)
424 for (int i = 0; i < SCL_LOCKS; i++) {
425 spa_config_lock_t *scl = &spa->spa_config_lock[i];
426 if (!(locks & (1 << i)))
427 continue;
428 mutex_enter(&scl->scl_lock);
429 if (rw == RW_READER) {
430 if (scl->scl_writer || scl->scl_write_wanted) {
431 mutex_exit(&scl->scl_lock);
432 spa_config_exit(spa, locks & ((1 << i) - 1),
433 tag);
434 return (0);
436 } else {
437 ASSERT(scl->scl_writer != curthread);
438 if (!refcount_is_zero(&scl->scl_count)) {
439 mutex_exit(&scl->scl_lock);
440 spa_config_exit(spa, locks & ((1 << i) - 1),
441 tag);
442 return (0);
444 scl->scl_writer = curthread;
446 (void) refcount_add(&scl->scl_count, tag);
447 mutex_exit(&scl->scl_lock);
449 return (1);
452 void
453 spa_config_enter(spa_t *spa, int locks, void *tag, krw_t rw)
455 int wlocks_held = 0;
457 ASSERT3U(SCL_LOCKS, <, sizeof (wlocks_held) * NBBY);
459 for (int i = 0; i < SCL_LOCKS; i++) {
460 spa_config_lock_t *scl = &spa->spa_config_lock[i];
461 if (scl->scl_writer == curthread)
462 wlocks_held |= (1 << i);
463 if (!(locks & (1 << i)))
464 continue;
465 mutex_enter(&scl->scl_lock);
466 if (rw == RW_READER) {
467 while (scl->scl_writer || scl->scl_write_wanted) {
468 cv_wait(&scl->scl_cv, &scl->scl_lock);
470 } else {
471 ASSERT(scl->scl_writer != curthread);
472 while (!refcount_is_zero(&scl->scl_count)) {
473 scl->scl_write_wanted++;
474 cv_wait(&scl->scl_cv, &scl->scl_lock);
475 scl->scl_write_wanted--;
477 scl->scl_writer = curthread;
479 (void) refcount_add(&scl->scl_count, tag);
480 mutex_exit(&scl->scl_lock);
482 ASSERT3U(wlocks_held, <=, locks);
485 void
486 spa_config_exit(spa_t *spa, int locks, void *tag)
488 for (int i = SCL_LOCKS - 1; i >= 0; i--) {
489 spa_config_lock_t *scl = &spa->spa_config_lock[i];
490 if (!(locks & (1 << i)))
491 continue;
492 mutex_enter(&scl->scl_lock);
493 ASSERT(!refcount_is_zero(&scl->scl_count));
494 if (refcount_remove(&scl->scl_count, tag) == 0) {
495 ASSERT(scl->scl_writer == NULL ||
496 scl->scl_writer == curthread);
497 scl->scl_writer = NULL; /* OK in either case */
498 cv_broadcast(&scl->scl_cv);
500 mutex_exit(&scl->scl_lock);
505 spa_config_held(spa_t *spa, int locks, krw_t rw)
507 int locks_held = 0;
509 for (int i = 0; i < SCL_LOCKS; i++) {
510 spa_config_lock_t *scl = &spa->spa_config_lock[i];
511 if (!(locks & (1 << i)))
512 continue;
513 if ((rw == RW_READER && !refcount_is_zero(&scl->scl_count)) ||
514 (rw == RW_WRITER && scl->scl_writer == curthread))
515 locks_held |= 1 << i;
518 return (locks_held);
522 * ==========================================================================
523 * SPA namespace functions
524 * ==========================================================================
528 * Lookup the named spa_t in the AVL tree. The spa_namespace_lock must be held.
529 * Returns NULL if no matching spa_t is found.
531 spa_t *
532 spa_lookup(const char *name)
534 static spa_t search; /* spa_t is large; don't allocate on stack */
535 spa_t *spa;
536 avl_index_t where;
537 char *cp;
539 ASSERT(MUTEX_HELD(&spa_namespace_lock));
541 (void) strlcpy(search.spa_name, name, sizeof (search.spa_name));
544 * If it's a full dataset name, figure out the pool name and
545 * just use that.
547 cp = strpbrk(search.spa_name, "/@#");
548 if (cp != NULL)
549 *cp = '\0';
551 spa = avl_find(&spa_namespace_avl, &search, &where);
553 return (spa);
557 * Fires when spa_sync has not completed within zfs_deadman_synctime_ms.
558 * If the zfs_deadman_enabled flag is set then it inspects all vdev queues
559 * looking for potentially hung I/Os.
561 void
562 spa_deadman(void *arg)
564 spa_t *spa = arg;
567 * Disable the deadman timer if the pool is suspended.
569 if (spa_suspended(spa)) {
570 VERIFY(cyclic_reprogram(spa->spa_deadman_cycid, CY_INFINITY));
571 return;
574 zfs_dbgmsg("slow spa_sync: started %llu seconds ago, calls %llu",
575 (gethrtime() - spa->spa_sync_starttime) / NANOSEC,
576 ++spa->spa_deadman_calls);
577 if (zfs_deadman_enabled)
578 vdev_deadman(spa->spa_root_vdev);
582 * Create an uninitialized spa_t with the given name. Requires
583 * spa_namespace_lock. The caller must ensure that the spa_t doesn't already
584 * exist by calling spa_lookup() first.
586 spa_t *
587 spa_add(const char *name, nvlist_t *config, const char *altroot)
589 spa_t *spa;
590 spa_config_dirent_t *dp;
591 cyc_handler_t hdlr;
592 cyc_time_t when;
594 ASSERT(MUTEX_HELD(&spa_namespace_lock));
596 spa = kmem_zalloc(sizeof (spa_t), KM_SLEEP);
598 mutex_init(&spa->spa_async_lock, NULL, MUTEX_DEFAULT, NULL);
599 mutex_init(&spa->spa_errlist_lock, NULL, MUTEX_DEFAULT, NULL);
600 mutex_init(&spa->spa_errlog_lock, NULL, MUTEX_DEFAULT, NULL);
601 mutex_init(&spa->spa_evicting_os_lock, NULL, MUTEX_DEFAULT, NULL);
602 mutex_init(&spa->spa_history_lock, NULL, MUTEX_DEFAULT, NULL);
603 mutex_init(&spa->spa_proc_lock, NULL, MUTEX_DEFAULT, NULL);
604 mutex_init(&spa->spa_props_lock, NULL, MUTEX_DEFAULT, NULL);
605 mutex_init(&spa->spa_cksum_tmpls_lock, NULL, MUTEX_DEFAULT, NULL);
606 mutex_init(&spa->spa_scrub_lock, NULL, MUTEX_DEFAULT, NULL);
607 mutex_init(&spa->spa_suspend_lock, NULL, MUTEX_DEFAULT, NULL);
608 mutex_init(&spa->spa_vdev_top_lock, NULL, MUTEX_DEFAULT, NULL);
609 mutex_init(&spa->spa_iokstat_lock, NULL, MUTEX_DEFAULT, NULL);
611 cv_init(&spa->spa_async_cv, NULL, CV_DEFAULT, NULL);
612 cv_init(&spa->spa_evicting_os_cv, NULL, CV_DEFAULT, NULL);
613 cv_init(&spa->spa_proc_cv, NULL, CV_DEFAULT, NULL);
614 cv_init(&spa->spa_scrub_io_cv, NULL, CV_DEFAULT, NULL);
615 cv_init(&spa->spa_suspend_cv, NULL, CV_DEFAULT, NULL);
617 for (int t = 0; t < TXG_SIZE; t++)
618 bplist_create(&spa->spa_free_bplist[t]);
620 (void) strlcpy(spa->spa_name, name, sizeof (spa->spa_name));
621 spa->spa_state = POOL_STATE_UNINITIALIZED;
622 spa->spa_freeze_txg = UINT64_MAX;
623 spa->spa_final_txg = UINT64_MAX;
624 spa->spa_load_max_txg = UINT64_MAX;
625 spa->spa_proc = &p0;
626 spa->spa_proc_state = SPA_PROC_NONE;
627 spa->spa_trust_config = B_TRUE;
629 hdlr.cyh_func = spa_deadman;
630 hdlr.cyh_arg = spa;
631 hdlr.cyh_level = CY_LOW_LEVEL;
633 spa->spa_deadman_synctime = MSEC2NSEC(zfs_deadman_synctime_ms);
636 * This determines how often we need to check for hung I/Os after
637 * the cyclic has already fired. Since checking for hung I/Os is
638 * an expensive operation we don't want to check too frequently.
639 * Instead wait for 5 seconds before checking again.
641 when.cyt_interval = MSEC2NSEC(zfs_deadman_checktime_ms);
642 when.cyt_when = CY_INFINITY;
643 mutex_enter(&cpu_lock);
644 spa->spa_deadman_cycid = cyclic_add(&hdlr, &when);
645 mutex_exit(&cpu_lock);
647 refcount_create(&spa->spa_refcount);
648 spa_config_lock_init(spa);
650 avl_add(&spa_namespace_avl, spa);
653 * Set the alternate root, if there is one.
655 if (altroot) {
656 spa->spa_root = spa_strdup(altroot);
657 spa_active_count++;
660 spa->spa_alloc_count = spa_allocators;
661 spa->spa_alloc_locks = kmem_zalloc(spa->spa_alloc_count *
662 sizeof (kmutex_t), KM_SLEEP);
663 spa->spa_alloc_trees = kmem_zalloc(spa->spa_alloc_count *
664 sizeof (avl_tree_t), KM_SLEEP);
665 for (int i = 0; i < spa->spa_alloc_count; i++) {
666 mutex_init(&spa->spa_alloc_locks[i], NULL, MUTEX_DEFAULT, NULL);
667 avl_create(&spa->spa_alloc_trees[i], zio_bookmark_compare,
668 sizeof (zio_t), offsetof(zio_t, io_alloc_node));
672 * Every pool starts with the default cachefile
674 list_create(&spa->spa_config_list, sizeof (spa_config_dirent_t),
675 offsetof(spa_config_dirent_t, scd_link));
677 dp = kmem_zalloc(sizeof (spa_config_dirent_t), KM_SLEEP);
678 dp->scd_path = altroot ? NULL : spa_strdup(spa_config_path);
679 list_insert_head(&spa->spa_config_list, dp);
681 VERIFY(nvlist_alloc(&spa->spa_load_info, NV_UNIQUE_NAME,
682 KM_SLEEP) == 0);
684 if (config != NULL) {
685 nvlist_t *features;
687 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_FEATURES_FOR_READ,
688 &features) == 0) {
689 VERIFY(nvlist_dup(features, &spa->spa_label_features,
690 0) == 0);
693 VERIFY(nvlist_dup(config, &spa->spa_config, 0) == 0);
696 if (spa->spa_label_features == NULL) {
697 VERIFY(nvlist_alloc(&spa->spa_label_features, NV_UNIQUE_NAME,
698 KM_SLEEP) == 0);
701 spa->spa_iokstat = kstat_create("zfs", 0, name,
702 "disk", KSTAT_TYPE_IO, 1, 0);
703 if (spa->spa_iokstat) {
704 spa->spa_iokstat->ks_lock = &spa->spa_iokstat_lock;
705 kstat_install(spa->spa_iokstat);
708 spa->spa_min_ashift = INT_MAX;
709 spa->spa_max_ashift = 0;
712 * As a pool is being created, treat all features as disabled by
713 * setting SPA_FEATURE_DISABLED for all entries in the feature
714 * refcount cache.
716 for (int i = 0; i < SPA_FEATURES; i++) {
717 spa->spa_feat_refcount_cache[i] = SPA_FEATURE_DISABLED;
720 return (spa);
724 * Removes a spa_t from the namespace, freeing up any memory used. Requires
725 * spa_namespace_lock. This is called only after the spa_t has been closed and
726 * deactivated.
728 void
729 spa_remove(spa_t *spa)
731 spa_config_dirent_t *dp;
733 ASSERT(MUTEX_HELD(&spa_namespace_lock));
734 ASSERT(spa->spa_state == POOL_STATE_UNINITIALIZED);
735 ASSERT3U(refcount_count(&spa->spa_refcount), ==, 0);
737 nvlist_free(spa->spa_config_splitting);
739 avl_remove(&spa_namespace_avl, spa);
740 cv_broadcast(&spa_namespace_cv);
742 if (spa->spa_root) {
743 spa_strfree(spa->spa_root);
744 spa_active_count--;
747 while ((dp = list_head(&spa->spa_config_list)) != NULL) {
748 list_remove(&spa->spa_config_list, dp);
749 if (dp->scd_path != NULL)
750 spa_strfree(dp->scd_path);
751 kmem_free(dp, sizeof (spa_config_dirent_t));
754 for (int i = 0; i < spa->spa_alloc_count; i++) {
755 avl_destroy(&spa->spa_alloc_trees[i]);
756 mutex_destroy(&spa->spa_alloc_locks[i]);
758 kmem_free(spa->spa_alloc_locks, spa->spa_alloc_count *
759 sizeof (kmutex_t));
760 kmem_free(spa->spa_alloc_trees, spa->spa_alloc_count *
761 sizeof (avl_tree_t));
763 list_destroy(&spa->spa_config_list);
765 nvlist_free(spa->spa_label_features);
766 nvlist_free(spa->spa_load_info);
767 spa_config_set(spa, NULL);
769 mutex_enter(&cpu_lock);
770 if (spa->spa_deadman_cycid != CYCLIC_NONE)
771 cyclic_remove(spa->spa_deadman_cycid);
772 mutex_exit(&cpu_lock);
773 spa->spa_deadman_cycid = CYCLIC_NONE;
775 refcount_destroy(&spa->spa_refcount);
777 spa_config_lock_destroy(spa);
779 kstat_delete(spa->spa_iokstat);
780 spa->spa_iokstat = NULL;
782 for (int t = 0; t < TXG_SIZE; t++)
783 bplist_destroy(&spa->spa_free_bplist[t]);
785 zio_checksum_templates_free(spa);
787 cv_destroy(&spa->spa_async_cv);
788 cv_destroy(&spa->spa_evicting_os_cv);
789 cv_destroy(&spa->spa_proc_cv);
790 cv_destroy(&spa->spa_scrub_io_cv);
791 cv_destroy(&spa->spa_suspend_cv);
793 mutex_destroy(&spa->spa_async_lock);
794 mutex_destroy(&spa->spa_errlist_lock);
795 mutex_destroy(&spa->spa_errlog_lock);
796 mutex_destroy(&spa->spa_evicting_os_lock);
797 mutex_destroy(&spa->spa_history_lock);
798 mutex_destroy(&spa->spa_proc_lock);
799 mutex_destroy(&spa->spa_props_lock);
800 mutex_destroy(&spa->spa_cksum_tmpls_lock);
801 mutex_destroy(&spa->spa_scrub_lock);
802 mutex_destroy(&spa->spa_suspend_lock);
803 mutex_destroy(&spa->spa_vdev_top_lock);
804 mutex_destroy(&spa->spa_iokstat_lock);
806 kmem_free(spa, sizeof (spa_t));
810 * Given a pool, return the next pool in the namespace, or NULL if there is
811 * none. If 'prev' is NULL, return the first pool.
813 spa_t *
814 spa_next(spa_t *prev)
816 ASSERT(MUTEX_HELD(&spa_namespace_lock));
818 if (prev)
819 return (AVL_NEXT(&spa_namespace_avl, prev));
820 else
821 return (avl_first(&spa_namespace_avl));
825 * ==========================================================================
826 * SPA refcount functions
827 * ==========================================================================
831 * Add a reference to the given spa_t. Must have at least one reference, or
832 * have the namespace lock held.
834 void
835 spa_open_ref(spa_t *spa, void *tag)
837 ASSERT(refcount_count(&spa->spa_refcount) >= spa->spa_minref ||
838 MUTEX_HELD(&spa_namespace_lock));
839 (void) refcount_add(&spa->spa_refcount, tag);
843 * Remove a reference to the given spa_t. Must have at least one reference, or
844 * have the namespace lock held.
846 void
847 spa_close(spa_t *spa, void *tag)
849 ASSERT(refcount_count(&spa->spa_refcount) > spa->spa_minref ||
850 MUTEX_HELD(&spa_namespace_lock));
851 (void) refcount_remove(&spa->spa_refcount, tag);
855 * Remove a reference to the given spa_t held by a dsl dir that is
856 * being asynchronously released. Async releases occur from a taskq
857 * performing eviction of dsl datasets and dirs. The namespace lock
858 * isn't held and the hold by the object being evicted may contribute to
859 * spa_minref (e.g. dataset or directory released during pool export),
860 * so the asserts in spa_close() do not apply.
862 void
863 spa_async_close(spa_t *spa, void *tag)
865 (void) refcount_remove(&spa->spa_refcount, tag);
869 * Check to see if the spa refcount is zero. Must be called with
870 * spa_namespace_lock held. We really compare against spa_minref, which is the
871 * number of references acquired when opening a pool
873 boolean_t
874 spa_refcount_zero(spa_t *spa)
876 ASSERT(MUTEX_HELD(&spa_namespace_lock));
878 return (refcount_count(&spa->spa_refcount) == spa->spa_minref);
882 * ==========================================================================
883 * SPA spare and l2cache tracking
884 * ==========================================================================
888 * Hot spares and cache devices are tracked using the same code below,
889 * for 'auxiliary' devices.
892 typedef struct spa_aux {
893 uint64_t aux_guid;
894 uint64_t aux_pool;
895 avl_node_t aux_avl;
896 int aux_count;
897 } spa_aux_t;
899 static int
900 spa_aux_compare(const void *a, const void *b)
902 const spa_aux_t *sa = a;
903 const spa_aux_t *sb = b;
905 if (sa->aux_guid < sb->aux_guid)
906 return (-1);
907 else if (sa->aux_guid > sb->aux_guid)
908 return (1);
909 else
910 return (0);
913 void
914 spa_aux_add(vdev_t *vd, avl_tree_t *avl)
916 avl_index_t where;
917 spa_aux_t search;
918 spa_aux_t *aux;
920 search.aux_guid = vd->vdev_guid;
921 if ((aux = avl_find(avl, &search, &where)) != NULL) {
922 aux->aux_count++;
923 } else {
924 aux = kmem_zalloc(sizeof (spa_aux_t), KM_SLEEP);
925 aux->aux_guid = vd->vdev_guid;
926 aux->aux_count = 1;
927 avl_insert(avl, aux, where);
931 void
932 spa_aux_remove(vdev_t *vd, avl_tree_t *avl)
934 spa_aux_t search;
935 spa_aux_t *aux;
936 avl_index_t where;
938 search.aux_guid = vd->vdev_guid;
939 aux = avl_find(avl, &search, &where);
941 ASSERT(aux != NULL);
943 if (--aux->aux_count == 0) {
944 avl_remove(avl, aux);
945 kmem_free(aux, sizeof (spa_aux_t));
946 } else if (aux->aux_pool == spa_guid(vd->vdev_spa)) {
947 aux->aux_pool = 0ULL;
951 boolean_t
952 spa_aux_exists(uint64_t guid, uint64_t *pool, int *refcnt, avl_tree_t *avl)
954 spa_aux_t search, *found;
956 search.aux_guid = guid;
957 found = avl_find(avl, &search, NULL);
959 if (pool) {
960 if (found)
961 *pool = found->aux_pool;
962 else
963 *pool = 0ULL;
966 if (refcnt) {
967 if (found)
968 *refcnt = found->aux_count;
969 else
970 *refcnt = 0;
973 return (found != NULL);
976 void
977 spa_aux_activate(vdev_t *vd, avl_tree_t *avl)
979 spa_aux_t search, *found;
980 avl_index_t where;
982 search.aux_guid = vd->vdev_guid;
983 found = avl_find(avl, &search, &where);
984 ASSERT(found != NULL);
985 ASSERT(found->aux_pool == 0ULL);
987 found->aux_pool = spa_guid(vd->vdev_spa);
991 * Spares are tracked globally due to the following constraints:
993 * - A spare may be part of multiple pools.
994 * - A spare may be added to a pool even if it's actively in use within
995 * another pool.
996 * - A spare in use in any pool can only be the source of a replacement if
997 * the target is a spare in the same pool.
999 * We keep track of all spares on the system through the use of a reference
1000 * counted AVL tree. When a vdev is added as a spare, or used as a replacement
1001 * spare, then we bump the reference count in the AVL tree. In addition, we set
1002 * the 'vdev_isspare' member to indicate that the device is a spare (active or
1003 * inactive). When a spare is made active (used to replace a device in the
1004 * pool), we also keep track of which pool its been made a part of.
1006 * The 'spa_spare_lock' protects the AVL tree. These functions are normally
1007 * called under the spa_namespace lock as part of vdev reconfiguration. The
1008 * separate spare lock exists for the status query path, which does not need to
1009 * be completely consistent with respect to other vdev configuration changes.
1012 static int
1013 spa_spare_compare(const void *a, const void *b)
1015 return (spa_aux_compare(a, b));
1018 void
1019 spa_spare_add(vdev_t *vd)
1021 mutex_enter(&spa_spare_lock);
1022 ASSERT(!vd->vdev_isspare);
1023 spa_aux_add(vd, &spa_spare_avl);
1024 vd->vdev_isspare = B_TRUE;
1025 mutex_exit(&spa_spare_lock);
1028 void
1029 spa_spare_remove(vdev_t *vd)
1031 mutex_enter(&spa_spare_lock);
1032 ASSERT(vd->vdev_isspare);
1033 spa_aux_remove(vd, &spa_spare_avl);
1034 vd->vdev_isspare = B_FALSE;
1035 mutex_exit(&spa_spare_lock);
1038 boolean_t
1039 spa_spare_exists(uint64_t guid, uint64_t *pool, int *refcnt)
1041 boolean_t found;
1043 mutex_enter(&spa_spare_lock);
1044 found = spa_aux_exists(guid, pool, refcnt, &spa_spare_avl);
1045 mutex_exit(&spa_spare_lock);
1047 return (found);
1050 void
1051 spa_spare_activate(vdev_t *vd)
1053 mutex_enter(&spa_spare_lock);
1054 ASSERT(vd->vdev_isspare);
1055 spa_aux_activate(vd, &spa_spare_avl);
1056 mutex_exit(&spa_spare_lock);
1060 * Level 2 ARC devices are tracked globally for the same reasons as spares.
1061 * Cache devices currently only support one pool per cache device, and so
1062 * for these devices the aux reference count is currently unused beyond 1.
1065 static int
1066 spa_l2cache_compare(const void *a, const void *b)
1068 return (spa_aux_compare(a, b));
1071 void
1072 spa_l2cache_add(vdev_t *vd)
1074 mutex_enter(&spa_l2cache_lock);
1075 ASSERT(!vd->vdev_isl2cache);
1076 spa_aux_add(vd, &spa_l2cache_avl);
1077 vd->vdev_isl2cache = B_TRUE;
1078 mutex_exit(&spa_l2cache_lock);
1081 void
1082 spa_l2cache_remove(vdev_t *vd)
1084 mutex_enter(&spa_l2cache_lock);
1085 ASSERT(vd->vdev_isl2cache);
1086 spa_aux_remove(vd, &spa_l2cache_avl);
1087 vd->vdev_isl2cache = B_FALSE;
1088 mutex_exit(&spa_l2cache_lock);
1091 boolean_t
1092 spa_l2cache_exists(uint64_t guid, uint64_t *pool)
1094 boolean_t found;
1096 mutex_enter(&spa_l2cache_lock);
1097 found = spa_aux_exists(guid, pool, NULL, &spa_l2cache_avl);
1098 mutex_exit(&spa_l2cache_lock);
1100 return (found);
1103 void
1104 spa_l2cache_activate(vdev_t *vd)
1106 mutex_enter(&spa_l2cache_lock);
1107 ASSERT(vd->vdev_isl2cache);
1108 spa_aux_activate(vd, &spa_l2cache_avl);
1109 mutex_exit(&spa_l2cache_lock);
1113 * ==========================================================================
1114 * SPA vdev locking
1115 * ==========================================================================
1119 * Lock the given spa_t for the purpose of adding or removing a vdev.
1120 * Grabs the global spa_namespace_lock plus the spa config lock for writing.
1121 * It returns the next transaction group for the spa_t.
1123 uint64_t
1124 spa_vdev_enter(spa_t *spa)
1126 mutex_enter(&spa->spa_vdev_top_lock);
1127 mutex_enter(&spa_namespace_lock);
1128 return (spa_vdev_config_enter(spa));
1132 * Internal implementation for spa_vdev_enter(). Used when a vdev
1133 * operation requires multiple syncs (i.e. removing a device) while
1134 * keeping the spa_namespace_lock held.
1136 uint64_t
1137 spa_vdev_config_enter(spa_t *spa)
1139 ASSERT(MUTEX_HELD(&spa_namespace_lock));
1141 spa_config_enter(spa, SCL_ALL, spa, RW_WRITER);
1143 return (spa_last_synced_txg(spa) + 1);
1147 * Used in combination with spa_vdev_config_enter() to allow the syncing
1148 * of multiple transactions without releasing the spa_namespace_lock.
1150 void
1151 spa_vdev_config_exit(spa_t *spa, vdev_t *vd, uint64_t txg, int error, char *tag)
1153 ASSERT(MUTEX_HELD(&spa_namespace_lock));
1155 int config_changed = B_FALSE;
1157 ASSERT(txg > spa_last_synced_txg(spa));
1159 spa->spa_pending_vdev = NULL;
1162 * Reassess the DTLs.
1164 vdev_dtl_reassess(spa->spa_root_vdev, 0, 0, B_FALSE);
1166 if (error == 0 && !list_is_empty(&spa->spa_config_dirty_list)) {
1167 config_changed = B_TRUE;
1168 spa->spa_config_generation++;
1172 * Verify the metaslab classes.
1174 ASSERT(metaslab_class_validate(spa_normal_class(spa)) == 0);
1175 ASSERT(metaslab_class_validate(spa_log_class(spa)) == 0);
1177 spa_config_exit(spa, SCL_ALL, spa);
1180 * Panic the system if the specified tag requires it. This
1181 * is useful for ensuring that configurations are updated
1182 * transactionally.
1184 if (zio_injection_enabled)
1185 zio_handle_panic_injection(spa, tag, 0);
1188 * Note: this txg_wait_synced() is important because it ensures
1189 * that there won't be more than one config change per txg.
1190 * This allows us to use the txg as the generation number.
1192 if (error == 0)
1193 txg_wait_synced(spa->spa_dsl_pool, txg);
1195 if (vd != NULL) {
1196 ASSERT(!vd->vdev_detached || vd->vdev_dtl_sm == NULL);
1197 if (vd->vdev_ops->vdev_op_leaf) {
1198 mutex_enter(&vd->vdev_initialize_lock);
1199 vdev_initialize_stop(vd, VDEV_INITIALIZE_CANCELED);
1200 mutex_exit(&vd->vdev_initialize_lock);
1203 spa_config_enter(spa, SCL_ALL, spa, RW_WRITER);
1204 vdev_free(vd);
1205 spa_config_exit(spa, SCL_ALL, spa);
1209 * If the config changed, update the config cache.
1211 if (config_changed)
1212 spa_write_cachefile(spa, B_FALSE, B_TRUE);
1216 * Unlock the spa_t after adding or removing a vdev. Besides undoing the
1217 * locking of spa_vdev_enter(), we also want make sure the transactions have
1218 * synced to disk, and then update the global configuration cache with the new
1219 * information.
1222 spa_vdev_exit(spa_t *spa, vdev_t *vd, uint64_t txg, int error)
1224 spa_vdev_config_exit(spa, vd, txg, error, FTAG);
1225 mutex_exit(&spa_namespace_lock);
1226 mutex_exit(&spa->spa_vdev_top_lock);
1228 return (error);
1232 * Lock the given spa_t for the purpose of changing vdev state.
1234 void
1235 spa_vdev_state_enter(spa_t *spa, int oplocks)
1237 int locks = SCL_STATE_ALL | oplocks;
1240 * Root pools may need to read of the underlying devfs filesystem
1241 * when opening up a vdev. Unfortunately if we're holding the
1242 * SCL_ZIO lock it will result in a deadlock when we try to issue
1243 * the read from the root filesystem. Instead we "prefetch"
1244 * the associated vnodes that we need prior to opening the
1245 * underlying devices and cache them so that we can prevent
1246 * any I/O when we are doing the actual open.
1248 if (spa_is_root(spa)) {
1249 int low = locks & ~(SCL_ZIO - 1);
1250 int high = locks & ~low;
1252 spa_config_enter(spa, high, spa, RW_WRITER);
1253 vdev_hold(spa->spa_root_vdev);
1254 spa_config_enter(spa, low, spa, RW_WRITER);
1255 } else {
1256 spa_config_enter(spa, locks, spa, RW_WRITER);
1258 spa->spa_vdev_locks = locks;
1262 spa_vdev_state_exit(spa_t *spa, vdev_t *vd, int error)
1264 boolean_t config_changed = B_FALSE;
1266 if (vd != NULL || error == 0)
1267 vdev_dtl_reassess(vd ? vd->vdev_top : spa->spa_root_vdev,
1268 0, 0, B_FALSE);
1270 if (vd != NULL) {
1271 vdev_state_dirty(vd->vdev_top);
1272 config_changed = B_TRUE;
1273 spa->spa_config_generation++;
1276 if (spa_is_root(spa))
1277 vdev_rele(spa->spa_root_vdev);
1279 ASSERT3U(spa->spa_vdev_locks, >=, SCL_STATE_ALL);
1280 spa_config_exit(spa, spa->spa_vdev_locks, spa);
1283 * If anything changed, wait for it to sync. This ensures that,
1284 * from the system administrator's perspective, zpool(8) commands
1285 * are synchronous. This is important for things like zpool offline:
1286 * when the command completes, you expect no further I/O from ZFS.
1288 if (vd != NULL)
1289 txg_wait_synced(spa->spa_dsl_pool, 0);
1292 * If the config changed, update the config cache.
1294 if (config_changed) {
1295 mutex_enter(&spa_namespace_lock);
1296 spa_write_cachefile(spa, B_FALSE, B_TRUE);
1297 mutex_exit(&spa_namespace_lock);
1300 return (error);
1304 * ==========================================================================
1305 * Miscellaneous functions
1306 * ==========================================================================
1309 void
1310 spa_activate_mos_feature(spa_t *spa, const char *feature, dmu_tx_t *tx)
1312 if (!nvlist_exists(spa->spa_label_features, feature)) {
1313 fnvlist_add_boolean(spa->spa_label_features, feature);
1315 * When we are creating the pool (tx_txg==TXG_INITIAL), we can't
1316 * dirty the vdev config because lock SCL_CONFIG is not held.
1317 * Thankfully, in this case we don't need to dirty the config
1318 * because it will be written out anyway when we finish
1319 * creating the pool.
1321 if (tx->tx_txg != TXG_INITIAL)
1322 vdev_config_dirty(spa->spa_root_vdev);
1326 void
1327 spa_deactivate_mos_feature(spa_t *spa, const char *feature)
1329 if (nvlist_remove_all(spa->spa_label_features, feature) == 0)
1330 vdev_config_dirty(spa->spa_root_vdev);
1334 * Return the spa_t associated with given pool_guid, if it exists. If
1335 * device_guid is non-zero, determine whether the pool exists *and* contains
1336 * a device with the specified device_guid.
1338 spa_t *
1339 spa_by_guid(uint64_t pool_guid, uint64_t device_guid)
1341 spa_t *spa;
1342 avl_tree_t *t = &spa_namespace_avl;
1344 ASSERT(MUTEX_HELD(&spa_namespace_lock));
1346 for (spa = avl_first(t); spa != NULL; spa = AVL_NEXT(t, spa)) {
1347 if (spa->spa_state == POOL_STATE_UNINITIALIZED)
1348 continue;
1349 if (spa->spa_root_vdev == NULL)
1350 continue;
1351 if (spa_guid(spa) == pool_guid) {
1352 if (device_guid == 0)
1353 break;
1355 if (vdev_lookup_by_guid(spa->spa_root_vdev,
1356 device_guid) != NULL)
1357 break;
1360 * Check any devices we may be in the process of adding.
1362 if (spa->spa_pending_vdev) {
1363 if (vdev_lookup_by_guid(spa->spa_pending_vdev,
1364 device_guid) != NULL)
1365 break;
1370 return (spa);
1374 * Determine whether a pool with the given pool_guid exists.
1376 boolean_t
1377 spa_guid_exists(uint64_t pool_guid, uint64_t device_guid)
1379 return (spa_by_guid(pool_guid, device_guid) != NULL);
1382 char *
1383 spa_strdup(const char *s)
1385 size_t len;
1386 char *new;
1388 len = strlen(s);
1389 new = kmem_alloc(len + 1, KM_SLEEP);
1390 bcopy(s, new, len);
1391 new[len] = '\0';
1393 return (new);
1396 void
1397 spa_strfree(char *s)
1399 kmem_free(s, strlen(s) + 1);
1402 uint64_t
1403 spa_get_random(uint64_t range)
1405 uint64_t r;
1407 ASSERT(range != 0);
1409 (void) random_get_pseudo_bytes((void *)&r, sizeof (uint64_t));
1411 return (r % range);
1414 uint64_t
1415 spa_generate_guid(spa_t *spa)
1417 uint64_t guid = spa_get_random(-1ULL);
1419 if (spa != NULL) {
1420 while (guid == 0 || spa_guid_exists(spa_guid(spa), guid))
1421 guid = spa_get_random(-1ULL);
1422 } else {
1423 while (guid == 0 || spa_guid_exists(guid, 0))
1424 guid = spa_get_random(-1ULL);
1427 return (guid);
1430 void
1431 snprintf_blkptr(char *buf, size_t buflen, const blkptr_t *bp)
1433 char type[256];
1434 char *checksum = NULL;
1435 char *compress = NULL;
1437 if (bp != NULL) {
1438 if (BP_GET_TYPE(bp) & DMU_OT_NEWTYPE) {
1439 dmu_object_byteswap_t bswap =
1440 DMU_OT_BYTESWAP(BP_GET_TYPE(bp));
1441 (void) snprintf(type, sizeof (type), "bswap %s %s",
1442 DMU_OT_IS_METADATA(BP_GET_TYPE(bp)) ?
1443 "metadata" : "data",
1444 dmu_ot_byteswap[bswap].ob_name);
1445 } else {
1446 (void) strlcpy(type, dmu_ot[BP_GET_TYPE(bp)].ot_name,
1447 sizeof (type));
1449 if (!BP_IS_EMBEDDED(bp)) {
1450 checksum =
1451 zio_checksum_table[BP_GET_CHECKSUM(bp)].ci_name;
1453 compress = zio_compress_table[BP_GET_COMPRESS(bp)].ci_name;
1456 SNPRINTF_BLKPTR(snprintf, ' ', buf, buflen, bp, type, checksum,
1457 compress);
1460 void
1461 spa_freeze(spa_t *spa)
1463 uint64_t freeze_txg = 0;
1465 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1466 if (spa->spa_freeze_txg == UINT64_MAX) {
1467 freeze_txg = spa_last_synced_txg(spa) + TXG_SIZE;
1468 spa->spa_freeze_txg = freeze_txg;
1470 spa_config_exit(spa, SCL_ALL, FTAG);
1471 if (freeze_txg != 0)
1472 txg_wait_synced(spa_get_dsl(spa), freeze_txg);
1475 void
1476 zfs_panic_recover(const char *fmt, ...)
1478 va_list adx;
1480 va_start(adx, fmt);
1481 vcmn_err(zfs_recover ? CE_WARN : CE_PANIC, fmt, adx);
1482 va_end(adx);
1486 * This is a stripped-down version of strtoull, suitable only for converting
1487 * lowercase hexadecimal numbers that don't overflow.
1489 uint64_t
1490 zfs_strtonum(const char *str, char **nptr)
1492 uint64_t val = 0;
1493 char c;
1494 int digit;
1496 while ((c = *str) != '\0') {
1497 if (c >= '0' && c <= '9')
1498 digit = c - '0';
1499 else if (c >= 'a' && c <= 'f')
1500 digit = 10 + c - 'a';
1501 else
1502 break;
1504 val *= 16;
1505 val += digit;
1507 str++;
1510 if (nptr)
1511 *nptr = (char *)str;
1513 return (val);
1517 * ==========================================================================
1518 * Accessor functions
1519 * ==========================================================================
1522 boolean_t
1523 spa_shutting_down(spa_t *spa)
1525 return (spa->spa_async_suspended);
1528 dsl_pool_t *
1529 spa_get_dsl(spa_t *spa)
1531 return (spa->spa_dsl_pool);
1534 boolean_t
1535 spa_is_initializing(spa_t *spa)
1537 return (spa->spa_is_initializing);
1540 boolean_t
1541 spa_indirect_vdevs_loaded(spa_t *spa)
1543 return (spa->spa_indirect_vdevs_loaded);
1546 blkptr_t *
1547 spa_get_rootblkptr(spa_t *spa)
1549 return (&spa->spa_ubsync.ub_rootbp);
1552 void
1553 spa_set_rootblkptr(spa_t *spa, const blkptr_t *bp)
1555 spa->spa_uberblock.ub_rootbp = *bp;
1558 void
1559 spa_altroot(spa_t *spa, char *buf, size_t buflen)
1561 if (spa->spa_root == NULL)
1562 buf[0] = '\0';
1563 else
1564 (void) strncpy(buf, spa->spa_root, buflen);
1568 spa_sync_pass(spa_t *spa)
1570 return (spa->spa_sync_pass);
1573 char *
1574 spa_name(spa_t *spa)
1576 return (spa->spa_name);
1579 uint64_t
1580 spa_guid(spa_t *spa)
1582 dsl_pool_t *dp = spa_get_dsl(spa);
1583 uint64_t guid;
1586 * If we fail to parse the config during spa_load(), we can go through
1587 * the error path (which posts an ereport) and end up here with no root
1588 * vdev. We stash the original pool guid in 'spa_config_guid' to handle
1589 * this case.
1591 if (spa->spa_root_vdev == NULL)
1592 return (spa->spa_config_guid);
1594 guid = spa->spa_last_synced_guid != 0 ?
1595 spa->spa_last_synced_guid : spa->spa_root_vdev->vdev_guid;
1598 * Return the most recently synced out guid unless we're
1599 * in syncing context.
1601 if (dp && dsl_pool_sync_context(dp))
1602 return (spa->spa_root_vdev->vdev_guid);
1603 else
1604 return (guid);
1607 uint64_t
1608 spa_load_guid(spa_t *spa)
1611 * This is a GUID that exists solely as a reference for the
1612 * purposes of the arc. It is generated at load time, and
1613 * is never written to persistent storage.
1615 return (spa->spa_load_guid);
1618 uint64_t
1619 spa_last_synced_txg(spa_t *spa)
1621 return (spa->spa_ubsync.ub_txg);
1624 uint64_t
1625 spa_first_txg(spa_t *spa)
1627 return (spa->spa_first_txg);
1630 uint64_t
1631 spa_syncing_txg(spa_t *spa)
1633 return (spa->spa_syncing_txg);
1637 * Return the last txg where data can be dirtied. The final txgs
1638 * will be used to just clear out any deferred frees that remain.
1640 uint64_t
1641 spa_final_dirty_txg(spa_t *spa)
1643 return (spa->spa_final_txg - TXG_DEFER_SIZE);
1646 pool_state_t
1647 spa_state(spa_t *spa)
1649 return (spa->spa_state);
1652 spa_load_state_t
1653 spa_load_state(spa_t *spa)
1655 return (spa->spa_load_state);
1658 uint64_t
1659 spa_freeze_txg(spa_t *spa)
1661 return (spa->spa_freeze_txg);
1664 /* ARGSUSED */
1665 uint64_t
1666 spa_get_worst_case_asize(spa_t *spa, uint64_t lsize)
1668 return (lsize * spa_asize_inflation);
1672 * Return the amount of slop space in bytes. It is 1/32 of the pool (3.2%),
1673 * or at least 128MB, unless that would cause it to be more than half the
1674 * pool size.
1676 * See the comment above spa_slop_shift for details.
1678 uint64_t
1679 spa_get_slop_space(spa_t *spa)
1681 uint64_t space = spa_get_dspace(spa);
1682 return (MAX(space >> spa_slop_shift, MIN(space >> 1, spa_min_slop)));
1685 uint64_t
1686 spa_get_dspace(spa_t *spa)
1688 return (spa->spa_dspace);
1691 uint64_t
1692 spa_get_checkpoint_space(spa_t *spa)
1694 return (spa->spa_checkpoint_info.sci_dspace);
1697 void
1698 spa_update_dspace(spa_t *spa)
1700 spa->spa_dspace = metaslab_class_get_dspace(spa_normal_class(spa)) +
1701 ddt_get_dedup_dspace(spa);
1702 if (spa->spa_vdev_removal != NULL) {
1704 * We can't allocate from the removing device, so
1705 * subtract its size. This prevents the DMU/DSL from
1706 * filling up the (now smaller) pool while we are in the
1707 * middle of removing the device.
1709 * Note that the DMU/DSL doesn't actually know or care
1710 * how much space is allocated (it does its own tracking
1711 * of how much space has been logically used). So it
1712 * doesn't matter that the data we are moving may be
1713 * allocated twice (on the old device and the new
1714 * device).
1716 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
1717 vdev_t *vd =
1718 vdev_lookup_top(spa, spa->spa_vdev_removal->svr_vdev_id);
1719 spa->spa_dspace -= spa_deflate(spa) ?
1720 vd->vdev_stat.vs_dspace : vd->vdev_stat.vs_space;
1721 spa_config_exit(spa, SCL_VDEV, FTAG);
1726 * Return the failure mode that has been set to this pool. The default
1727 * behavior will be to block all I/Os when a complete failure occurs.
1729 uint8_t
1730 spa_get_failmode(spa_t *spa)
1732 return (spa->spa_failmode);
1735 boolean_t
1736 spa_suspended(spa_t *spa)
1738 return (spa->spa_suspended);
1741 uint64_t
1742 spa_version(spa_t *spa)
1744 return (spa->spa_ubsync.ub_version);
1747 boolean_t
1748 spa_deflate(spa_t *spa)
1750 return (spa->spa_deflate);
1753 metaslab_class_t *
1754 spa_normal_class(spa_t *spa)
1756 return (spa->spa_normal_class);
1759 metaslab_class_t *
1760 spa_log_class(spa_t *spa)
1762 return (spa->spa_log_class);
1765 void
1766 spa_evicting_os_register(spa_t *spa, objset_t *os)
1768 mutex_enter(&spa->spa_evicting_os_lock);
1769 list_insert_head(&spa->spa_evicting_os_list, os);
1770 mutex_exit(&spa->spa_evicting_os_lock);
1773 void
1774 spa_evicting_os_deregister(spa_t *spa, objset_t *os)
1776 mutex_enter(&spa->spa_evicting_os_lock);
1777 list_remove(&spa->spa_evicting_os_list, os);
1778 cv_broadcast(&spa->spa_evicting_os_cv);
1779 mutex_exit(&spa->spa_evicting_os_lock);
1782 void
1783 spa_evicting_os_wait(spa_t *spa)
1785 mutex_enter(&spa->spa_evicting_os_lock);
1786 while (!list_is_empty(&spa->spa_evicting_os_list))
1787 cv_wait(&spa->spa_evicting_os_cv, &spa->spa_evicting_os_lock);
1788 mutex_exit(&spa->spa_evicting_os_lock);
1790 dmu_buf_user_evict_wait();
1794 spa_max_replication(spa_t *spa)
1797 * As of SPA_VERSION == SPA_VERSION_DITTO_BLOCKS, we are able to
1798 * handle BPs with more than one DVA allocated. Set our max
1799 * replication level accordingly.
1801 if (spa_version(spa) < SPA_VERSION_DITTO_BLOCKS)
1802 return (1);
1803 return (MIN(SPA_DVAS_PER_BP, spa_max_replication_override));
1807 spa_prev_software_version(spa_t *spa)
1809 return (spa->spa_prev_software_version);
1812 uint64_t
1813 spa_deadman_synctime(spa_t *spa)
1815 return (spa->spa_deadman_synctime);
1818 uint64_t
1819 dva_get_dsize_sync(spa_t *spa, const dva_t *dva)
1821 uint64_t asize = DVA_GET_ASIZE(dva);
1822 uint64_t dsize = asize;
1824 ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
1826 if (asize != 0 && spa->spa_deflate) {
1827 vdev_t *vd = vdev_lookup_top(spa, DVA_GET_VDEV(dva));
1828 dsize = (asize >> SPA_MINBLOCKSHIFT) * vd->vdev_deflate_ratio;
1831 return (dsize);
1834 uint64_t
1835 bp_get_dsize_sync(spa_t *spa, const blkptr_t *bp)
1837 uint64_t dsize = 0;
1839 for (int d = 0; d < BP_GET_NDVAS(bp); d++)
1840 dsize += dva_get_dsize_sync(spa, &bp->blk_dva[d]);
1842 return (dsize);
1845 uint64_t
1846 bp_get_dsize(spa_t *spa, const blkptr_t *bp)
1848 uint64_t dsize = 0;
1850 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
1852 for (int d = 0; d < BP_GET_NDVAS(bp); d++)
1853 dsize += dva_get_dsize_sync(spa, &bp->blk_dva[d]);
1855 spa_config_exit(spa, SCL_VDEV, FTAG);
1857 return (dsize);
1860 uint64_t
1861 spa_dirty_data(spa_t *spa)
1863 return (spa->spa_dsl_pool->dp_dirty_total);
1867 * ==========================================================================
1868 * Initialization and Termination
1869 * ==========================================================================
1872 static int
1873 spa_name_compare(const void *a1, const void *a2)
1875 const spa_t *s1 = a1;
1876 const spa_t *s2 = a2;
1877 int s;
1879 s = strcmp(s1->spa_name, s2->spa_name);
1880 if (s > 0)
1881 return (1);
1882 if (s < 0)
1883 return (-1);
1884 return (0);
1888 spa_busy(void)
1890 return (spa_active_count);
1893 void
1894 spa_boot_init()
1896 spa_config_load();
1899 void
1900 spa_init(int mode)
1902 mutex_init(&spa_namespace_lock, NULL, MUTEX_DEFAULT, NULL);
1903 mutex_init(&spa_spare_lock, NULL, MUTEX_DEFAULT, NULL);
1904 mutex_init(&spa_l2cache_lock, NULL, MUTEX_DEFAULT, NULL);
1905 cv_init(&spa_namespace_cv, NULL, CV_DEFAULT, NULL);
1907 avl_create(&spa_namespace_avl, spa_name_compare, sizeof (spa_t),
1908 offsetof(spa_t, spa_avl));
1910 avl_create(&spa_spare_avl, spa_spare_compare, sizeof (spa_aux_t),
1911 offsetof(spa_aux_t, aux_avl));
1913 avl_create(&spa_l2cache_avl, spa_l2cache_compare, sizeof (spa_aux_t),
1914 offsetof(spa_aux_t, aux_avl));
1916 spa_mode_global = mode;
1918 #ifdef _KERNEL
1919 spa_arch_init();
1920 #else
1921 if (spa_mode_global != FREAD && dprintf_find_string("watch")) {
1922 arc_procfd = open("/proc/self/ctl", O_WRONLY);
1923 if (arc_procfd == -1) {
1924 perror("could not enable watchpoints: "
1925 "opening /proc/self/ctl failed: ");
1926 } else {
1927 arc_watch = B_TRUE;
1930 #endif
1932 refcount_init();
1933 unique_init();
1934 range_tree_init();
1935 metaslab_alloc_trace_init();
1936 zio_init();
1937 dmu_init();
1938 zil_init();
1939 vdev_cache_stat_init();
1940 zfs_prop_init();
1941 zpool_prop_init();
1942 zpool_feature_init();
1943 spa_config_load();
1944 l2arc_start();
1947 void
1948 spa_fini(void)
1950 l2arc_stop();
1952 spa_evict_all();
1954 vdev_cache_stat_fini();
1955 zil_fini();
1956 dmu_fini();
1957 zio_fini();
1958 metaslab_alloc_trace_fini();
1959 range_tree_fini();
1960 unique_fini();
1961 refcount_fini();
1963 avl_destroy(&spa_namespace_avl);
1964 avl_destroy(&spa_spare_avl);
1965 avl_destroy(&spa_l2cache_avl);
1967 cv_destroy(&spa_namespace_cv);
1968 mutex_destroy(&spa_namespace_lock);
1969 mutex_destroy(&spa_spare_lock);
1970 mutex_destroy(&spa_l2cache_lock);
1974 * Return whether this pool has slogs. No locking needed.
1975 * It's not a problem if the wrong answer is returned as it's only for
1976 * performance and not correctness
1978 boolean_t
1979 spa_has_slogs(spa_t *spa)
1981 return (spa->spa_log_class->mc_rotor != NULL);
1984 spa_log_state_t
1985 spa_get_log_state(spa_t *spa)
1987 return (spa->spa_log_state);
1990 void
1991 spa_set_log_state(spa_t *spa, spa_log_state_t state)
1993 spa->spa_log_state = state;
1996 boolean_t
1997 spa_is_root(spa_t *spa)
1999 return (spa->spa_is_root);
2002 boolean_t
2003 spa_writeable(spa_t *spa)
2005 return (!!(spa->spa_mode & FWRITE) && spa->spa_trust_config);
2009 * Returns true if there is a pending sync task in any of the current
2010 * syncing txg, the current quiescing txg, or the current open txg.
2012 boolean_t
2013 spa_has_pending_synctask(spa_t *spa)
2015 return (!txg_all_lists_empty(&spa->spa_dsl_pool->dp_sync_tasks) ||
2016 !txg_all_lists_empty(&spa->spa_dsl_pool->dp_early_sync_tasks));
2020 spa_mode(spa_t *spa)
2022 return (spa->spa_mode);
2025 uint64_t
2026 spa_bootfs(spa_t *spa)
2028 return (spa->spa_bootfs);
2031 uint64_t
2032 spa_delegation(spa_t *spa)
2034 return (spa->spa_delegation);
2037 objset_t *
2038 spa_meta_objset(spa_t *spa)
2040 return (spa->spa_meta_objset);
2043 enum zio_checksum
2044 spa_dedup_checksum(spa_t *spa)
2046 return (spa->spa_dedup_checksum);
2050 * Reset pool scan stat per scan pass (or reboot).
2052 void
2053 spa_scan_stat_init(spa_t *spa)
2055 /* data not stored on disk */
2056 spa->spa_scan_pass_start = gethrestime_sec();
2057 if (dsl_scan_is_paused_scrub(spa->spa_dsl_pool->dp_scan))
2058 spa->spa_scan_pass_scrub_pause = spa->spa_scan_pass_start;
2059 else
2060 spa->spa_scan_pass_scrub_pause = 0;
2061 spa->spa_scan_pass_scrub_spent_paused = 0;
2062 spa->spa_scan_pass_exam = 0;
2063 vdev_scan_stat_init(spa->spa_root_vdev);
2067 * Get scan stats for zpool status reports
2070 spa_scan_get_stats(spa_t *spa, pool_scan_stat_t *ps)
2072 dsl_scan_t *scn = spa->spa_dsl_pool ? spa->spa_dsl_pool->dp_scan : NULL;
2074 if (scn == NULL || scn->scn_phys.scn_func == POOL_SCAN_NONE)
2075 return (SET_ERROR(ENOENT));
2076 bzero(ps, sizeof (pool_scan_stat_t));
2078 /* data stored on disk */
2079 ps->pss_func = scn->scn_phys.scn_func;
2080 ps->pss_start_time = scn->scn_phys.scn_start_time;
2081 ps->pss_end_time = scn->scn_phys.scn_end_time;
2082 ps->pss_to_examine = scn->scn_phys.scn_to_examine;
2083 ps->pss_examined = scn->scn_phys.scn_examined;
2084 ps->pss_to_process = scn->scn_phys.scn_to_process;
2085 ps->pss_processed = scn->scn_phys.scn_processed;
2086 ps->pss_errors = scn->scn_phys.scn_errors;
2087 ps->pss_state = scn->scn_phys.scn_state;
2089 /* data not stored on disk */
2090 ps->pss_pass_start = spa->spa_scan_pass_start;
2091 ps->pss_pass_exam = spa->spa_scan_pass_exam;
2092 ps->pss_pass_scrub_pause = spa->spa_scan_pass_scrub_pause;
2093 ps->pss_pass_scrub_spent_paused = spa->spa_scan_pass_scrub_spent_paused;
2095 return (0);
2099 spa_maxblocksize(spa_t *spa)
2101 if (spa_feature_is_enabled(spa, SPA_FEATURE_LARGE_BLOCKS))
2102 return (SPA_MAXBLOCKSIZE);
2103 else
2104 return (SPA_OLD_MAXBLOCKSIZE);
2108 * Returns the txg that the last device removal completed. No indirect mappings
2109 * have been added since this txg.
2111 uint64_t
2112 spa_get_last_removal_txg(spa_t *spa)
2114 uint64_t vdevid;
2115 uint64_t ret = -1ULL;
2117 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
2119 * sr_prev_indirect_vdev is only modified while holding all the
2120 * config locks, so it is sufficient to hold SCL_VDEV as reader when
2121 * examining it.
2123 vdevid = spa->spa_removing_phys.sr_prev_indirect_vdev;
2125 while (vdevid != -1ULL) {
2126 vdev_t *vd = vdev_lookup_top(spa, vdevid);
2127 vdev_indirect_births_t *vib = vd->vdev_indirect_births;
2129 ASSERT3P(vd->vdev_ops, ==, &vdev_indirect_ops);
2132 * If the removal did not remap any data, we don't care.
2134 if (vdev_indirect_births_count(vib) != 0) {
2135 ret = vdev_indirect_births_last_entry_txg(vib);
2136 break;
2139 vdevid = vd->vdev_indirect_config.vic_prev_indirect_vdev;
2141 spa_config_exit(spa, SCL_VDEV, FTAG);
2143 IMPLY(ret != -1ULL,
2144 spa_feature_is_active(spa, SPA_FEATURE_DEVICE_REMOVAL));
2146 return (ret);
2149 boolean_t
2150 spa_trust_config(spa_t *spa)
2152 return (spa->spa_trust_config);
2155 uint64_t
2156 spa_missing_tvds_allowed(spa_t *spa)
2158 return (spa->spa_missing_tvds_allowed);
2161 void
2162 spa_set_missing_tvds(spa_t *spa, uint64_t missing)
2164 spa->spa_missing_tvds = missing;
2167 boolean_t
2168 spa_top_vdevs_spacemap_addressable(spa_t *spa)
2170 vdev_t *rvd = spa->spa_root_vdev;
2171 for (uint64_t c = 0; c < rvd->vdev_children; c++) {
2172 if (!vdev_is_spacemap_addressable(rvd->vdev_child[c]))
2173 return (B_FALSE);
2175 return (B_TRUE);
2178 boolean_t
2179 spa_has_checkpoint(spa_t *spa)
2181 return (spa->spa_checkpoint_txg != 0);
2184 boolean_t
2185 spa_importing_readonly_checkpoint(spa_t *spa)
2187 return ((spa->spa_import_flags & ZFS_IMPORT_CHECKPOINT) &&
2188 spa->spa_mode == FREAD);
2191 uint64_t
2192 spa_min_claim_txg(spa_t *spa)
2194 uint64_t checkpoint_txg = spa->spa_uberblock.ub_checkpoint_txg;
2196 if (checkpoint_txg != 0)
2197 return (checkpoint_txg + 1);
2199 return (spa->spa_first_txg);
2203 * If there is a checkpoint, async destroys may consume more space from
2204 * the pool instead of freeing it. In an attempt to save the pool from
2205 * getting suspended when it is about to run out of space, we stop
2206 * processing async destroys.
2208 boolean_t
2209 spa_suspend_async_destroy(spa_t *spa)
2211 dsl_pool_t *dp = spa_get_dsl(spa);
2213 uint64_t unreserved = dsl_pool_unreserved_space(dp,
2214 ZFS_SPACE_CHECK_EXTRA_RESERVED);
2215 uint64_t used = dsl_dir_phys(dp->dp_root_dir)->dd_used_bytes;
2216 uint64_t avail = (unreserved > used) ? (unreserved - used) : 0;
2218 if (spa_has_checkpoint(spa) && avail == 0)
2219 return (B_TRUE);
2221 return (B_FALSE);