3 Copyright (C) 2008 Verena Kaynig.
5 This program is free software; you can redistribute it and/or
6 modify it under the terms of the GNU General Public License
7 as published by the Free Software Foundation (http://www.gnu.org/licenses/gpl.txt )
9 This program is distributed in the hope that it will be useful,
10 but WITHOUT ANY WARRANTY; without even the implied warranty of
11 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 GNU General Public License for more details.
14 You should have received a copy of the GNU General Public License
15 along with this program; if not, write to the Free Software
16 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19 /* **************************************************************** *
20 * Representation of a non linear transform by explicit polynomial
24 * - make different kernels available
25 * - inverse transform for visualization
26 * - improve image interpolation
27 * - apply and applyInPlace should use precalculated transform?
28 * (What about out of image range pixels?)
30 * Author: Verena Kaynig
31 * Kontakt: verena.kaynig@inf.ethz.ch
33 * **************************************************************** */
35 package lenscorrection
;
37 import ij
.process
.ByteProcessor
;
38 import ij
.process
.ColorProcessor
;
39 import ij
.process
.FloatProcessor
;
40 import ij
.process
.ImageProcessor
;
43 import ij
.io
.FileSaver
;
45 import java
.awt
.Color
;
46 import java
.awt
.geom
.GeneralPath
;
47 import java
.io
.BufferedWriter
;
48 import java
.lang
.Math
;
54 import mpicbg
.trakem2
.transform
.TranslationModel2D
;
57 public class NonLinearTransform
implements mpicbg
.trakem2
.transform
.CoordinateTransform
{
59 private double[][] beta
= null;
60 private double[] normMean
= null;
61 private double[] normVar
= null;
62 private double[][][] transField
= null;
63 private int dimension
= 0;
64 private int length
= 0;
65 private int width
= 0;
66 private int height
= 0;
67 private boolean precalculated
= false;
69 public NonLinearTransform(double[][] b
, double[] nm
, double[] nv
, int d
, int w
, int h
){
74 length
= (dimension
+ 1)*(dimension
+ 2)/2;
79 public NonLinearTransform(int d
, int w
, int h
){
81 length
= (dimension
+ 1)*(dimension
+ 2)/2;
83 beta
= new double[length
][2];
84 normMean
= new double[length
];
85 normVar
= new double[length
];
87 for (int i
=0; i
< length
; i
++){
96 public NonLinearTransform(){};
98 public NonLinearTransform(String filename
){
102 public NonLinearTransform(double[][] coeffMatrix
, int w
, int h
){
103 length
= coeffMatrix
.length
;
104 beta
= new double[length
][2];
105 normMean
= new double[length
];
106 normVar
= new double[length
];
109 dimension
= (int)(-1.5 + Math
.sqrt(0.25 + 2*length
));
111 for(int i
=0; i
<length
; i
++){
112 beta
[i
][0] = coeffMatrix
[0][i
];
113 beta
[i
][1] = coeffMatrix
[1][i
];
114 normMean
[i
] = coeffMatrix
[2][i
];
115 normVar
[i
] = coeffMatrix
[3][i
];
120 //implements mpicbg.trakem2
121 public void init( String data
) throws NumberFormatException
{
122 final String
[] fields
= data
.split( " " );
125 dimension
= Integer
.parseInt(fields
[c
]); c
++;
126 length
= Integer
.parseInt(fields
[c
]); c
++;
128 beta
= new double[length
][2];
129 normMean
= new double[length
];
130 normVar
= new double[length
];
132 if ( fields
.length
== 4 + 4*length
)
134 for (int i
=0; i
< length
; i
++){
135 beta
[i
][0] = Double
.parseDouble(fields
[c
]); c
++;
136 beta
[i
][1] = Double
.parseDouble(fields
[c
]); c
++;
139 //System.out.println("c: " + c);
141 for (int i
=0; i
< length
; i
++){
142 normMean
[i
] = Double
.parseDouble(fields
[c
]); c
++;
145 //System.out.println("c: " + c);
147 for (int i
=0; i
< length
; i
++){
148 normVar
[i
] = Double
.parseDouble(fields
[c
]); c
++;
151 width
= Integer
.parseInt(fields
[c
]); c
++;
152 height
= Integer
.parseInt(fields
[c
]); c
++;
153 //System.out.println("c: " + c);
156 else throw new NumberFormatException( "Inappropriate parameters for " + this.getClass().getCanonicalName() );
161 public String
toXML(final String indent
){
162 return new StringBuffer(indent
).append("<ict_transform class=\"").append(this.getClass().getCanonicalName()).append("\" data=\"").append(toDataString()).append("\"/>").toString();
165 public String
toDataString(){
167 data
+= Integer
.toString(dimension
) + " ";
168 data
+= Integer
.toString(length
) + " ";
170 for (int i
=0; i
< length
; i
++){
171 data
+= Double
.toString(beta
[i
][0]) + " ";
172 data
+= Double
.toString(beta
[i
][1]) + " ";
175 for (int i
=0; i
< length
; i
++){
176 data
+= Double
.toString(normMean
[i
]) + " ";
179 for (int i
=0; i
< length
; i
++){
180 data
+= Double
.toString(normVar
[i
]) + " ";
182 data
+= Integer
.toString(width
) + " ";
183 data
+= Integer
.toString(height
) + " ";
189 public float[] apply( float[] location
){
191 double[] position
= {(double) location
[0], (double) location
[1]};
192 double[] featureVector
= kernelExpand(position
);
193 double[] newPosition
= multiply(beta
, featureVector
);
195 float[] newLocation
= new float[2];
196 newLocation
[0] = (float) newPosition
[0];
197 newLocation
[1] = (float) newPosition
[1];
202 public void applyInPlace( float[] location
){
203 double[] position
= {(double) location
[0], (double) location
[1]};
204 double[] featureVector
= kernelExpand(position
);
205 double[] newPosition
= multiply(beta
, featureVector
);
207 location
[0] = (float) newPosition
[0];
208 location
[1] = (float) newPosition
[1];
211 void precalculateTransfom(){
212 transField
= new double[width
][height
][2];
213 //double minX = width, minY = height, maxX = 0, maxY = 0;
215 for (int x
=0; x
<width
; x
++){
216 for (int y
=0; y
<height
; y
++){
217 double[] position
= {x
,y
};
218 double[] featureVector
= kernelExpand(position
);
219 double[] newPosition
= multiply(beta
, featureVector
);
221 if ((newPosition
[0] < 0) || (newPosition
[0] >= width
) ||
222 (newPosition
[1] < 0) || (newPosition
[1] >= height
))
224 transField
[x
][y
][0] = -1;
225 transField
[x
][y
][1] = -1;
229 transField
[x
][y
][0] = newPosition
[0];
230 transField
[x
][y
][1] = newPosition
[1];
232 //minX = Math.min(minX, x);
233 //minY = Math.min(minY, y);
234 //maxX = Math.max(maxX, x);
235 //maxY = Math.max(maxY, y);
240 precalculated
= true;
243 public double[][] getCoefficients(){
244 double[][] coeffMatrix
= new double[4][length
];
246 for(int i
=0; i
<length
; i
++){
247 coeffMatrix
[0][i
] = beta
[i
][0];
248 coeffMatrix
[1][i
] = beta
[i
][1];
249 coeffMatrix
[2][i
] = normMean
[i
];
250 coeffMatrix
[3][i
] = normVar
[i
];
256 public void setBeta(double[][] b
){
258 //FIXME: test if normMean and normVar are still valid for this beta
262 System
.out
.println("beta:");
263 for (int i
=0; i
< beta
.length
; i
++){
264 for (int j
=0; j
< beta
[i
].length
; j
++){
265 System
.out
.print(beta
[i
][j
]);
266 System
.out
.print(" ");
268 System
.out
.println();
271 System
.out
.println("normMean:");
272 for (int i
=0; i
< normMean
.length
; i
++){
273 System
.out
.print(normMean
[i
]);
274 System
.out
.print(" ");
277 System
.out
.println("normVar:");
278 for (int i
=0; i
< normVar
.length
; i
++){
279 System
.out
.print(normVar
[i
]);
280 System
.out
.print(" ");
283 System
.out
.println("Image size:");
284 System
.out
.println("width: " + width
+ " height: " + height
);
286 System
.out
.println();
290 public void save( final String filename
)
293 BufferedWriter out
= new BufferedWriter(
294 new OutputStreamWriter(
295 new FileOutputStream( filename
) ) );
297 out
.write("Kerneldimension");
299 out
.write(Integer
.toString(dimension
));
302 out
.write("number of rows");
304 out
.write(Integer
.toString(length
));
307 out
.write("Coefficients of the transform matrix:");
309 for (int i
=0; i
< length
; i
++){
310 String s
= Double
.toString(beta
[i
][0]);
312 s
+= Double
.toString(beta
[i
][1]);
317 out
.write("normMean:");
319 for (int i
=0; i
< length
; i
++){
320 out
.write(Double
.toString(normMean
[i
]));
324 out
.write("normVar: ");
326 for (int i
=0; i
< length
; i
++){
327 out
.write(Double
.toString(normVar
[i
]));
331 out
.write("image size: ");
333 out
.write(width
+ " " + height
);
336 catch(IOException e
){System
.out
.println("IOException");}
338 catch(FileNotFoundException e
){System
.out
.println("File not found!");}
341 public void load(String filename
){
343 BufferedReader in
= new BufferedReader(new FileReader(filename
));
345 String line
= in
.readLine(); //comment;
346 dimension
= Integer
.parseInt(in
.readLine());
347 line
= in
.readLine(); //comment;
348 line
= in
.readLine(); //comment;
349 length
= Integer
.parseInt(in
.readLine());
350 line
= in
.readLine(); //comment;
351 line
= in
.readLine(); //comment;
353 beta
= new double[length
][2];
355 for (int i
=0; i
< length
; i
++){
356 line
= in
.readLine();
357 int ind
= line
.indexOf(" ");
358 beta
[i
][0] = Double
.parseDouble(line
.substring(0, ind
));
359 beta
[i
][1] = Double
.parseDouble(line
.substring(ind
+4));
362 line
= in
.readLine(); //comment;
363 line
= in
.readLine(); //comment;
365 normMean
= new double[length
];
367 for (int i
=0; i
< length
; i
++){
368 normMean
[i
]=Double
.parseDouble(in
.readLine());
371 line
= in
.readLine(); //comment;
372 line
= in
.readLine(); //comment;
374 normVar
= new double[length
];
376 for (int i
=0; i
< length
; i
++){
377 normVar
[i
]=Double
.parseDouble(in
.readLine());
379 line
= in
.readLine(); //comment;
380 line
= in
.readLine(); //comment;
381 line
= in
.readLine();
382 int ind
= line
.indexOf(" ");
383 width
= Integer
.parseInt(line
.substring(0, ind
));
384 height
= Integer
.parseInt(line
.substring(ind
+4));
389 catch(IOException e
){System
.out
.println("IOException");}
391 catch(FileNotFoundException e
){System
.out
.println("File not found!");}
394 public ImageProcessor
[] transform(ImageProcessor ip
){
396 this.precalculateTransfom();
398 ImageProcessor newIp
= ip
.createProcessor(ip
.getWidth(), ip
.getHeight());
399 if (ip
instanceof ColorProcessor
) ip
.max(0);
400 ImageProcessor maskIp
= new ByteProcessor(ip
.getWidth(),ip
.getHeight());
402 for (int x
=0; x
< width
; x
++){
403 for (int y
=0; y
< height
; y
++){
404 if (transField
[x
][y
][0] == -1){
407 newIp
.set(x
, y
, (int) ip
.getInterpolatedPixel((int)transField
[x
][y
][0],(int)transField
[x
][y
][1]));
411 return new ImageProcessor
[]{newIp
, maskIp
};
414 private double[] multiply(double beta
[][], double featureVector
[]){
415 double[] result
= {0.0,0.0};
417 if (beta
.length
!= featureVector
.length
){
418 IJ
.log("Dimension of TransformMatrix and featureVector do not match!");
419 return new double[2];
422 for (int i
=0; i
<featureVector
.length
; i
++){
423 result
[0] = result
[0] + featureVector
[i
] * beta
[i
][0];
424 result
[1] = result
[1] + featureVector
[i
] * beta
[i
][1];
430 public double[] kernelExpand(double position
[]){
431 double expanded
[] = new double[length
];
434 for (int i
=1; i
<=dimension
; i
++){
435 for (double j
=i
; j
>=0; j
--){
436 double val
= Math
.pow(position
[0],j
) * Math
.pow(position
[1],i
-j
);
437 expanded
[counter
] = val
;
442 for (int i
=0; i
<length
-1; i
++){
443 expanded
[i
] = expanded
[i
] - normMean
[i
];
444 expanded
[i
] = expanded
[i
] / normVar
[i
];
447 expanded
[length
-1] = 100;
453 public double[][] kernelExpandMatrixNormalize(double positions
[][]){
454 normMean
= new double[length
];
455 normVar
= new double[length
];
457 for (int i
=0; i
< length
; i
++){
462 double expanded
[][] = new double[positions
.length
][length
];
464 for (int i
=0; i
< positions
.length
; i
++){
465 expanded
[i
] = kernelExpand(positions
[i
]);
468 for (int i
=0; i
< length
; i
++){
471 for (int j
=0; j
< expanded
.length
; j
++){
472 mean
+= expanded
[j
][i
];
475 mean
/= expanded
.length
;
477 for (int j
=0; j
< expanded
.length
; j
++){
478 var
+= (expanded
[j
][i
] - mean
)*(expanded
[j
][i
] - mean
);
480 var
/= (expanded
.length
-1);
481 var
= Math
.sqrt(var
);
487 return kernelExpandMatrix(positions
);
491 //this function uses the parameters already stored
492 //in this object to normalize the positions given.
493 public double[][] kernelExpandMatrix(double positions
[][]){
496 double expanded
[][] = new double[positions
.length
][length
];
498 for (int i
=0; i
< positions
.length
; i
++){
499 expanded
[i
] = kernelExpand(positions
[i
]);
506 public void inverseTransform(double range
[][]){
507 Matrix expanded
= new Matrix(kernelExpandMatrix(range
));
508 Matrix b
= new Matrix(beta
);
510 Matrix transformed
= expanded
.times(b
);
511 expanded
= new Matrix(kernelExpandMatrixNormalize(transformed
.getArray()));
513 Matrix r
= new Matrix(range
);
514 Matrix invBeta
= expanded
.transpose().times(expanded
).inverse().times(expanded
.transpose()).times(r
);
515 setBeta(invBeta
.getArray());
518 //FIXME this takes way too much memory
519 public void visualize(){
521 int density
= Math
.max(width
,height
)/32;
522 int border
= Math
.max(width
,height
)/8;
524 double[][] orig
= new double[width
* height
][2];
525 double[][] trans
= new double[height
* width
][2];
526 double[][] gridOrigVert
= new double[width
*height
][2];
527 double[][] gridTransVert
= new double[width
*height
][2];
528 double[][] gridOrigHor
= new double[width
*height
][2];
529 double[][] gridTransHor
= new double[width
*height
][2];
531 FloatProcessor magnitude
= new FloatProcessor(width
, height
);
532 FloatProcessor angle
= new FloatProcessor(width
, height
);
533 ColorProcessor quiver
= new ColorProcessor(width
, height
);
534 ByteProcessor empty
= new ByteProcessor(width
+2*border
, height
+2*border
);
535 quiver
.setLineWidth(1);
536 quiver
.setColor(Color
.green
);
538 GeneralPath quiverField
= new GeneralPath();
540 float minM
= 1000, maxM
= 0;
541 float minArc
= 5, maxArc
= -6;
542 int countVert
= 0, countHor
= 0, countHorWhole
= 0;
544 for (int i
=0; i
< width
; i
++){
546 for (int j
=0; j
< height
; j
++){
547 double[] position
= {(double) i
,(double) j
};
548 double[] posExpanded
= kernelExpand(position
);
549 double[] newPosition
= multiply(beta
, posExpanded
);
551 orig
[i
*j
][0] = position
[0];
552 orig
[i
*j
][1] = position
[1];
554 trans
[i
*j
][0] = newPosition
[0];
555 trans
[i
*j
][1] = newPosition
[1];
557 double m
= (position
[0] - newPosition
[0]) * (position
[0] - newPosition
[0]);
558 m
+= (position
[1] - newPosition
[1]) * (position
[1] - newPosition
[1]);
560 magnitude
.setf(i
,j
, (float) m
);
561 minM
= Math
.min(minM
, (float) m
);
562 maxM
= Math
.max(maxM
, (float) m
);
564 double a
= Math
.atan2(position
[0] - newPosition
[0], position
[1] - newPosition
[1]);
565 minArc
= Math
.min(minArc
, (float) a
);
566 maxArc
= Math
.max(maxArc
, (float) a
);
567 angle
.setf(i
,j
, (float) a
);
569 if (i
%density
== 0 && j
%density
== 0)
570 drawQuiverField(quiverField
, position
[0], position
[1], newPosition
[0], newPosition
[1]);
572 gridOrigVert
[countVert
][0] = position
[0] + border
;
573 gridOrigVert
[countVert
][1] = position
[1] + border
;
574 gridTransVert
[countVert
][0] = newPosition
[0] + border
;
575 gridTransVert
[countVert
][1] = newPosition
[1] + border
;
579 gridOrigHor
[countHor
*width
+i
][0] = position
[0] + border
;
580 gridOrigHor
[countHor
*width
+i
][1] = position
[1] + border
;
581 gridTransHor
[countHor
*width
+i
][0] = newPosition
[0] + border
;
582 gridTransHor
[countHor
*width
+i
][1] = newPosition
[1] + border
;
589 magnitude
.setMinAndMax(minM
, maxM
);
590 angle
.setMinAndMax(minArc
, maxArc
);
591 //System.out.println(" " + minArc + " " + maxArc);
593 ImagePlus magImg
= new ImagePlus("Magnitude of Distortion Field", magnitude
);
596 // ImagePlus angleImg = new ImagePlus("Angle of Distortion Field Vectors", angle);
599 ImagePlus quiverImg
= new ImagePlus("Quiver Plot of Distortion Field", magnitude
);
601 quiverImg
.getCanvas().setDisplayList(quiverField
, Color
.green
, null );
602 quiverImg
.updateAndDraw();
604 // GeneralPath gridOrig = new GeneralPath();
605 // drawGrid(gridOrig, gridOrigVert, countVert, height);
606 // drawGrid(gridOrig, gridOrigHor, countHorWhole, width);
607 // ImagePlus gridImgOrig = new ImagePlus("Distortion Grid", empty);
608 // gridImgOrig.show();
609 // gridImgOrig.getCanvas().setDisplayList(gridOrig, Color.green, null );
610 // gridImgOrig.updateAndDraw();
612 GeneralPath gridTrans
= new GeneralPath();
613 drawGrid(gridTrans
, gridTransVert
, countVert
, height
);
614 drawGrid(gridTrans
, gridTransHor
, countHorWhole
, width
);
615 ImagePlus gridImgTrans
= new ImagePlus("Distortion Grid", empty
);
617 gridImgTrans
.getCanvas().setDisplayList(gridTrans
, Color
.green
, null );
618 gridImgTrans
.updateAndDraw();
620 //new FileSaver(quiverImg.getCanvas().imp).saveAsTiff("QuiverCanvas.tif");
621 new FileSaver(quiverImg
).saveAsTiff("QuiverImPs.tif");
623 System
.out
.println("FINISHED");
627 public void visualizeSmall(double lambda
){
628 int density
= Math
.max(width
,height
)/32;
630 double[][] orig
= new double[width
* height
][2];
631 double[][] trans
= new double[height
* width
][2];
633 FloatProcessor magnitude
= new FloatProcessor(width
, height
);
634 ColorProcessor quiver
= new ColorProcessor(width
, height
);
635 quiver
.setLineWidth(1);
636 quiver
.setColor(Color
.green
);
638 GeneralPath quiverField
= new GeneralPath();
640 float minM
= 1000, maxM
= 0;
641 float minArc
= 5, maxArc
= -6;
642 int countVert
= 0, countHor
= 0, countHorWhole
= 0;
644 for (int i
=0; i
< width
; i
++){
646 for (int j
=0; j
< height
; j
++){
647 double[] position
= {(double) i
,(double) j
};
648 double[] posExpanded
= kernelExpand(position
);
649 double[] newPosition
= multiply(beta
, posExpanded
);
651 orig
[i
*j
][0] = position
[0];
652 orig
[i
*j
][1] = position
[1];
654 trans
[i
*j
][0] = newPosition
[0];
655 trans
[i
*j
][1] = newPosition
[1];
657 double m
= (position
[0] - newPosition
[0]) * (position
[0] - newPosition
[0]);
658 m
+= (position
[1] - newPosition
[1]) * (position
[1] - newPosition
[1]);
660 magnitude
.setf(i
,j
, (float) m
);
661 minM
= Math
.min(minM
, (float) m
);
662 maxM
= Math
.max(maxM
, (float) m
);
664 if (i
%density
== 0 && j
%density
== 0)
665 drawQuiverField(quiverField
, position
[0], position
[1], newPosition
[0], newPosition
[1]);
669 magnitude
.setMinAndMax(minM
, maxM
);
670 ImagePlus quiverImg
= new ImagePlus("Quiver Plot for lambda = "+lambda
, magnitude
);
672 quiverImg
.getCanvas().setDisplayList(quiverField
, Color
.green
, null );
673 quiverImg
.updateAndDraw();
675 System
.out
.println("FINISHED");
679 public static void drawGrid(GeneralPath g
, double[][] points
, int count
, int s
){
680 for (int i
=0; i
< count
- 1; i
++){
682 g
.moveTo((float)points
[i
][0], (float)points
[i
][1]);
683 g
.lineTo((float)points
[i
+1][0], (float)points
[i
+1][1]);
688 public static void drawQuiverField(GeneralPath qf
, double x1
, double y1
, double x2
, double y2
)
690 qf
.moveTo((float)x1
, (float)y1
);
691 qf
.lineTo((float)x2
, (float)y2
);
694 public int getWidth(){
698 public int getHeight(){
704 * TODO Make this more efficient
706 final public NonLinearTransform
clone()
708 final NonLinearTransform t
= new NonLinearTransform();
709 t
.init( toDataString() );