* Fixed wrong blurring
[trakem2.git] / lenscorrection / NonLinearTransform.java
blob74d89466fb29289bfa8ea25cfd9c9e92e40e3a47
1 /**
3 Copyright (C) 2008 Verena Kaynig.
5 This program is free software; you can redistribute it and/or
6 modify it under the terms of the GNU General Public License
7 as published by the Free Software Foundation (http://www.gnu.org/licenses/gpl.txt )
9 This program is distributed in the hope that it will be useful,
10 but WITHOUT ANY WARRANTY; without even the implied warranty of
11 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 GNU General Public License for more details.
14 You should have received a copy of the GNU General Public License
15 along with this program; if not, write to the Free Software
16 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
17 **/
19 /* **************************************************************** *
20 * Representation of a non linear transform by explicit polynomial
21 * kernel expansion.
23 * TODO:
24 * - make different kernels available
25 * - inverse transform for visualization
26 * - improve image interpolation
27 * - apply and applyInPlace should use precalculated transform?
28 * (What about out of image range pixels?)
30 * Author: Verena Kaynig
31 * Kontakt: verena.kaynig@inf.ethz.ch
33 * **************************************************************** */
35 package lenscorrection;
37 import ij.process.ByteProcessor;
38 import ij.process.ColorProcessor;
39 import ij.process.FloatProcessor;
40 import ij.process.ImageProcessor;
41 import ij.IJ;
42 import ij.ImagePlus;
43 import ij.io.FileSaver;
45 import java.awt.Color;
46 import java.awt.geom.GeneralPath;
47 import java.io.BufferedWriter;
48 import java.lang.Math;
50 import Jama.Matrix;
52 import java.io.*;
54 import mpicbg.trakem2.transform.TranslationModel2D;
57 public class NonLinearTransform implements mpicbg.trakem2.transform.CoordinateTransform{
59 private double[][] beta = null;
60 private double[] normMean = null;
61 private double[] normVar = null;
62 private double[][][] transField = null;
63 private int dimension = 0;
64 private int length = 0;
65 private int width = 0;
66 private int height = 0;
67 private boolean precalculated = false;
69 public NonLinearTransform(double[][] b, double[] nm, double[] nv, int d, int w, int h){
70 beta = b;
71 normMean = nm;
72 normVar = nv;
73 dimension = d;
74 length = (dimension + 1)*(dimension + 2)/2;
75 width = w;
76 height = h;
79 public NonLinearTransform(int d, int w, int h){
80 dimension = d;
81 length = (dimension + 1)*(dimension + 2)/2;
83 beta = new double[length][2];
84 normMean = new double[length];
85 normVar = new double[length];
87 for (int i=0; i < length; i++){
88 normMean[i] = 0;
89 normVar[i] = 1;
92 width = w;
93 height = h;
96 public NonLinearTransform(){};
98 public NonLinearTransform(String filename){
99 this.load(filename);
102 public NonLinearTransform(double[][] coeffMatrix, int w, int h){
103 length = coeffMatrix.length;
104 beta = new double[length][2];
105 normMean = new double[length];
106 normVar = new double[length];
107 width = w;
108 height = h;
109 dimension = (int)(-1.5 + Math.sqrt(0.25 + 2*length));
111 for(int i=0; i<length; i++){
112 beta[i][0] = coeffMatrix[0][i];
113 beta[i][1] = coeffMatrix[1][i];
114 normMean[i] = coeffMatrix[2][i];
115 normVar[i] = coeffMatrix[3][i];
120 //implements mpicbg.trakem2
121 public void init( String data ) throws NumberFormatException{
122 final String[] fields = data.split( " " );
123 int c = 0;
125 dimension = Integer.parseInt(fields[c]); c++;
126 length = Integer.parseInt(fields[c]); c++;
128 beta = new double[length][2];
129 normMean = new double[length];
130 normVar = new double[length];
132 if ( fields.length == 4 + 4*length )
134 for (int i=0; i < length; i++){
135 beta[i][0] = Double.parseDouble(fields[c]); c++;
136 beta[i][1] = Double.parseDouble(fields[c]); c++;
139 //System.out.println("c: " + c);
141 for (int i=0; i < length; i++){
142 normMean[i] = Double.parseDouble(fields[c]); c++;
145 //System.out.println("c: " + c);
147 for (int i=0; i < length; i++){
148 normVar[i] = Double.parseDouble(fields[c]); c++;
151 width = Integer.parseInt(fields[c]); c++;
152 height = Integer.parseInt(fields[c]); c++;
153 //System.out.println("c: " + c);
156 else throw new NumberFormatException( "Inappropriate parameters for " + this.getClass().getCanonicalName() );
161 public String toXML(final String indent){
162 return new StringBuffer(indent).append("<ict_transform class=\"").append(this.getClass().getCanonicalName()).append("\" data=\"").append(toDataString()).append("\"/>").toString();
165 public String toDataString(){
166 String data = "";
167 data += Integer.toString(dimension) + " ";
168 data += Integer.toString(length) + " ";
170 for (int i=0; i < length; i++){
171 data += Double.toString(beta[i][0]) + " ";
172 data += Double.toString(beta[i][1]) + " ";
175 for (int i=0; i < length; i++){
176 data += Double.toString(normMean[i]) + " ";
179 for (int i=0; i < length; i++){
180 data += Double.toString(normVar[i]) + " ";
182 data += Integer.toString(width) + " ";
183 data += Integer.toString(height) + " ";
185 return data;
189 public float[] apply( float[] location ){
191 double[] position = {(double) location[0], (double) location[1]};
192 double[] featureVector = kernelExpand(position);
193 double[] newPosition = multiply(beta, featureVector);
195 float[] newLocation = new float[2];
196 newLocation[0] = (float) newPosition[0];
197 newLocation[1] = (float) newPosition[1];
199 return newLocation;
202 public void applyInPlace( float[] location ){
203 double[] position = {(double) location[0], (double) location[1]};
204 double[] featureVector = kernelExpand(position);
205 double[] newPosition = multiply(beta, featureVector);
207 location[0] = (float) newPosition[0];
208 location[1] = (float) newPosition[1];
211 void precalculateTransfom(){
212 transField = new double[width][height][2];
213 //double minX = width, minY = height, maxX = 0, maxY = 0;
215 for (int x=0; x<width; x++){
216 for (int y=0; y<height; y++){
217 double[] position = {x,y};
218 double[] featureVector = kernelExpand(position);
219 double[] newPosition = multiply(beta, featureVector);
221 if ((newPosition[0] < 0) || (newPosition[0] >= width) ||
222 (newPosition[1] < 0) || (newPosition[1] >= height))
224 transField[x][y][0] = -1;
225 transField[x][y][1] = -1;
226 continue;
229 transField[x][y][0] = newPosition[0];
230 transField[x][y][1] = newPosition[1];
232 //minX = Math.min(minX, x);
233 //minY = Math.min(minY, y);
234 //maxX = Math.max(maxX, x);
235 //maxY = Math.max(maxY, y);
240 precalculated = true;
243 public double[][] getCoefficients(){
244 double[][] coeffMatrix = new double[4][length];
246 for(int i=0; i<length; i++){
247 coeffMatrix[0][i] = beta[i][0];
248 coeffMatrix[1][i] = beta[i][1];
249 coeffMatrix[2][i] = normMean[i];
250 coeffMatrix[3][i] = normVar[i];
253 return coeffMatrix;
256 public void setBeta(double[][] b){
257 beta = b;
258 //FIXME: test if normMean and normVar are still valid for this beta
261 public void print(){
262 System.out.println("beta:");
263 for (int i=0; i < beta.length; i++){
264 for (int j=0; j < beta[i].length; j++){
265 System.out.print(beta[i][j]);
266 System.out.print(" ");
268 System.out.println();
271 System.out.println("normMean:");
272 for (int i=0; i < normMean.length; i++){
273 System.out.print(normMean[i]);
274 System.out.print(" ");
277 System.out.println("normVar:");
278 for (int i=0; i < normVar.length; i++){
279 System.out.print(normVar[i]);
280 System.out.print(" ");
283 System.out.println("Image size:");
284 System.out.println("width: " + width + " height: " + height);
286 System.out.println();
290 public void save( final String filename )
292 try{
293 BufferedWriter out = new BufferedWriter(
294 new OutputStreamWriter(
295 new FileOutputStream( filename) ) );
296 try{
297 out.write("Kerneldimension");
298 out.newLine();
299 out.write(Integer.toString(dimension));
300 out.newLine();
301 out.newLine();
302 out.write("number of rows");
303 out.newLine();
304 out.write(Integer.toString(length));
305 out.newLine();
306 out.newLine();
307 out.write("Coefficients of the transform matrix:");
308 out.newLine();
309 for (int i=0; i < length; i++){
310 String s = Double.toString(beta[i][0]);
311 s += " ";
312 s += Double.toString(beta[i][1]);
313 out.write(s);
314 out.newLine();
316 out.newLine();
317 out.write("normMean:");
318 out.newLine();
319 for (int i=0; i < length; i++){
320 out.write(Double.toString(normMean[i]));
321 out.newLine();
323 out.newLine();
324 out.write("normVar: ");
325 out.newLine();
326 for (int i=0; i < length; i++){
327 out.write(Double.toString(normVar[i]));
328 out.newLine();
330 out.newLine();
331 out.write("image size: ");
332 out.newLine();
333 out.write(width + " " + height);
334 out.close();
336 catch(IOException e){System.out.println("IOException");}
338 catch(FileNotFoundException e){System.out.println("File not found!");}
341 public void load(String filename){
342 try{
343 BufferedReader in = new BufferedReader(new FileReader(filename));
344 try{
345 String line = in.readLine(); //comment;
346 dimension = Integer.parseInt(in.readLine());
347 line = in.readLine(); //comment;
348 line = in.readLine(); //comment;
349 length = Integer.parseInt(in.readLine());
350 line = in.readLine(); //comment;
351 line = in.readLine(); //comment;
353 beta = new double[length][2];
355 for (int i=0; i < length; i++){
356 line = in.readLine();
357 int ind = line.indexOf(" ");
358 beta[i][0] = Double.parseDouble(line.substring(0, ind));
359 beta[i][1] = Double.parseDouble(line.substring(ind+4));
362 line = in.readLine(); //comment;
363 line = in.readLine(); //comment;
365 normMean = new double[length];
367 for (int i=0; i < length; i++){
368 normMean[i]=Double.parseDouble(in.readLine());
371 line = in.readLine(); //comment;
372 line = in.readLine(); //comment;
374 normVar = new double[length];
376 for (int i=0; i < length; i++){
377 normVar[i]=Double.parseDouble(in.readLine());
379 line = in.readLine(); //comment;
380 line = in.readLine(); //comment;
381 line = in.readLine();
382 int ind = line.indexOf(" ");
383 width = Integer.parseInt(line.substring(0, ind));
384 height = Integer.parseInt(line.substring(ind+4));
385 in.close();
387 print();
389 catch(IOException e){System.out.println("IOException");}
391 catch(FileNotFoundException e){System.out.println("File not found!");}
394 public ImageProcessor[] transform(ImageProcessor ip){
395 if (!precalculated)
396 this.precalculateTransfom();
398 ImageProcessor newIp = ip.createProcessor(ip.getWidth(), ip.getHeight());
399 if (ip instanceof ColorProcessor) ip.max(0);
400 ImageProcessor maskIp = new ByteProcessor(ip.getWidth(),ip.getHeight());
402 for (int x=0; x < width; x++){
403 for (int y=0; y < height; y++){
404 if (transField[x][y][0] == -1){
405 continue;
407 newIp.set(x, y, (int) ip.getInterpolatedPixel((int)transField[x][y][0],(int)transField[x][y][1]));
408 maskIp.set(x,y,255);
411 return new ImageProcessor[]{newIp, maskIp};
414 private double[] multiply(double beta[][], double featureVector[]){
415 double[] result = {0.0,0.0};
417 if (beta.length != featureVector.length){
418 IJ.log("Dimension of TransformMatrix and featureVector do not match!");
419 return new double[2];
422 for (int i=0; i<featureVector.length; i++){
423 result[0] = result[0] + featureVector[i] * beta[i][0];
424 result[1] = result[1] + featureVector[i] * beta[i][1];
427 return result;
430 public double[] kernelExpand(double position[]){
431 double expanded[] = new double[length];
433 int counter = 0;
434 for (int i=1; i<=dimension; i++){
435 for (double j=i; j>=0; j--){
436 double val = Math.pow(position[0],j) * Math.pow(position[1],i-j);
437 expanded[counter] = val;
438 ++counter;
442 for (int i=0; i<length-1; i++){
443 expanded[i] = expanded[i] - normMean[i];
444 expanded[i] = expanded[i] / normVar[i];
447 expanded[length-1] = 100;
449 return expanded;
453 public double[][] kernelExpandMatrixNormalize(double positions[][]){
454 normMean = new double[length];
455 normVar = new double[length];
457 for (int i=0; i < length; i++){
458 normMean[i] = 0;
459 normVar[i] = 1;
462 double expanded[][] = new double[positions.length][length];
464 for (int i=0; i < positions.length; i++){
465 expanded[i] = kernelExpand(positions[i]);
468 for (int i=0; i < length; i++){
469 double mean = 0;
470 double var = 0;
471 for (int j=0; j < expanded.length; j++){
472 mean += expanded[j][i];
475 mean /= expanded.length;
477 for (int j=0; j < expanded.length; j++){
478 var += (expanded[j][i] - mean)*(expanded[j][i] - mean);
480 var /= (expanded.length -1);
481 var = Math.sqrt(var);
483 normMean[i] = mean;
484 normVar[i] = var;
487 return kernelExpandMatrix(positions);
491 //this function uses the parameters already stored
492 //in this object to normalize the positions given.
493 public double[][] kernelExpandMatrix(double positions[][]){
496 double expanded[][] = new double[positions.length][length];
498 for (int i=0; i < positions.length; i++){
499 expanded[i] = kernelExpand(positions[i]);
502 return expanded;
506 public void inverseTransform(double range[][]){
507 Matrix expanded = new Matrix(kernelExpandMatrix(range));
508 Matrix b = new Matrix(beta);
510 Matrix transformed = expanded.times(b);
511 expanded = new Matrix(kernelExpandMatrixNormalize(transformed.getArray()));
513 Matrix r = new Matrix(range);
514 Matrix invBeta = expanded.transpose().times(expanded).inverse().times(expanded.transpose()).times(r);
515 setBeta(invBeta.getArray());
518 //FIXME this takes way too much memory
519 public void visualize(){
521 int density = Math.max(width,height)/32;
522 int border = Math.max(width,height)/8;
524 double[][] orig = new double[width * height][2];
525 double[][] trans = new double[height * width][2];
526 double[][] gridOrigVert = new double[width*height][2];
527 double[][] gridTransVert = new double[width*height][2];
528 double[][] gridOrigHor = new double[width*height][2];
529 double[][] gridTransHor = new double[width*height][2];
531 FloatProcessor magnitude = new FloatProcessor(width, height);
532 FloatProcessor angle = new FloatProcessor(width, height);
533 ColorProcessor quiver = new ColorProcessor(width, height);
534 ByteProcessor empty = new ByteProcessor(width+2*border, height+2*border);
535 quiver.setLineWidth(1);
536 quiver.setColor(Color.green);
538 GeneralPath quiverField = new GeneralPath();
540 float minM = 1000, maxM = 0;
541 float minArc = 5, maxArc = -6;
542 int countVert = 0, countHor = 0, countHorWhole = 0;
544 for (int i=0; i < width; i++){
545 countHor = 0;
546 for (int j=0; j < height; j++){
547 double[] position = {(double) i,(double) j};
548 double[] posExpanded = kernelExpand(position);
549 double[] newPosition = multiply(beta, posExpanded);
551 orig[i*j][0] = position[0];
552 orig[i*j][1] = position[1];
554 trans[i*j][0] = newPosition[0];
555 trans[i*j][1] = newPosition[1];
557 double m = (position[0] - newPosition[0]) * (position[0] - newPosition[0]);
558 m += (position[1] - newPosition[1]) * (position[1] - newPosition[1]);
559 m = Math.sqrt(m);
560 magnitude.setf(i,j, (float) m);
561 minM = Math.min(minM, (float) m);
562 maxM = Math.max(maxM, (float) m);
564 double a = Math.atan2(position[0] - newPosition[0], position[1] - newPosition[1]);
565 minArc = Math.min(minArc, (float) a);
566 maxArc = Math.max(maxArc, (float) a);
567 angle.setf(i,j, (float) a);
569 if (i%density == 0 && j%density == 0)
570 drawQuiverField(quiverField, position[0], position[1], newPosition[0], newPosition[1]);
571 if (i%density == 0){
572 gridOrigVert[countVert][0] = position[0] + border;
573 gridOrigVert[countVert][1] = position[1] + border;
574 gridTransVert[countVert][0] = newPosition[0] + border;
575 gridTransVert[countVert][1] = newPosition[1] + border;
576 countVert++;
578 if (j%density == 0){
579 gridOrigHor[countHor*width+i][0] = position[0] + border;
580 gridOrigHor[countHor*width+i][1] = position[1] + border;
581 gridTransHor[countHor*width+i][0] = newPosition[0] + border;
582 gridTransHor[countHor*width+i][1] = newPosition[1] + border;
583 countHor++;
584 countHorWhole++;
589 magnitude.setMinAndMax(minM, maxM);
590 angle.setMinAndMax(minArc, maxArc);
591 //System.out.println(" " + minArc + " " + maxArc);
593 ImagePlus magImg = new ImagePlus("Magnitude of Distortion Field", magnitude);
594 magImg.show();
596 // ImagePlus angleImg = new ImagePlus("Angle of Distortion Field Vectors", angle);
597 // angleImg.show();
599 ImagePlus quiverImg = new ImagePlus("Quiver Plot of Distortion Field", magnitude);
600 quiverImg.show();
601 quiverImg.getCanvas().setDisplayList(quiverField, Color.green, null );
602 quiverImg.updateAndDraw();
604 // GeneralPath gridOrig = new GeneralPath();
605 // drawGrid(gridOrig, gridOrigVert, countVert, height);
606 // drawGrid(gridOrig, gridOrigHor, countHorWhole, width);
607 // ImagePlus gridImgOrig = new ImagePlus("Distortion Grid", empty);
608 // gridImgOrig.show();
609 // gridImgOrig.getCanvas().setDisplayList(gridOrig, Color.green, null );
610 // gridImgOrig.updateAndDraw();
612 GeneralPath gridTrans = new GeneralPath();
613 drawGrid(gridTrans, gridTransVert, countVert, height);
614 drawGrid(gridTrans, gridTransHor, countHorWhole, width);
615 ImagePlus gridImgTrans = new ImagePlus("Distortion Grid", empty);
616 gridImgTrans.show();
617 gridImgTrans.getCanvas().setDisplayList(gridTrans, Color.green, null );
618 gridImgTrans.updateAndDraw();
620 //new FileSaver(quiverImg.getCanvas().imp).saveAsTiff("QuiverCanvas.tif");
621 new FileSaver(quiverImg).saveAsTiff("QuiverImPs.tif");
623 System.out.println("FINISHED");
627 public void visualizeSmall(double lambda){
628 int density = Math.max(width,height)/32;
630 double[][] orig = new double[width * height][2];
631 double[][] trans = new double[height * width][2];
633 FloatProcessor magnitude = new FloatProcessor(width, height);
634 ColorProcessor quiver = new ColorProcessor(width, height);
635 quiver.setLineWidth(1);
636 quiver.setColor(Color.green);
638 GeneralPath quiverField = new GeneralPath();
640 float minM = 1000, maxM = 0;
641 float minArc = 5, maxArc = -6;
642 int countVert = 0, countHor = 0, countHorWhole = 0;
644 for (int i=0; i < width; i++){
645 countHor = 0;
646 for (int j=0; j < height; j++){
647 double[] position = {(double) i,(double) j};
648 double[] posExpanded = kernelExpand(position);
649 double[] newPosition = multiply(beta, posExpanded);
651 orig[i*j][0] = position[0];
652 orig[i*j][1] = position[1];
654 trans[i*j][0] = newPosition[0];
655 trans[i*j][1] = newPosition[1];
657 double m = (position[0] - newPosition[0]) * (position[0] - newPosition[0]);
658 m += (position[1] - newPosition[1]) * (position[1] - newPosition[1]);
659 m = Math.sqrt(m);
660 magnitude.setf(i,j, (float) m);
661 minM = Math.min(minM, (float) m);
662 maxM = Math.max(maxM, (float) m);
664 if (i%density == 0 && j%density == 0)
665 drawQuiverField(quiverField, position[0], position[1], newPosition[0], newPosition[1]);
669 magnitude.setMinAndMax(minM, maxM);
670 ImagePlus quiverImg = new ImagePlus("Quiver Plot for lambda = "+lambda, magnitude);
671 quiverImg.show();
672 quiverImg.getCanvas().setDisplayList(quiverField, Color.green, null );
673 quiverImg.updateAndDraw();
675 System.out.println("FINISHED");
679 public static void drawGrid(GeneralPath g, double[][] points, int count, int s){
680 for (int i=0; i < count - 1; i++){
681 if ((i+1)%s != 0){
682 g.moveTo((float)points[i][0], (float)points[i][1]);
683 g.lineTo((float)points[i+1][0], (float)points[i+1][1]);
688 public static void drawQuiverField(GeneralPath qf, double x1, double y1, double x2, double y2)
690 qf.moveTo((float)x1, (float)y1);
691 qf.lineTo((float)x2, (float)y2);
694 public int getWidth(){
695 return width;
698 public int getHeight(){
699 return height;
702 @Override
704 * TODO Make this more efficient
706 final public NonLinearTransform clone()
708 final NonLinearTransform t = new NonLinearTransform();
709 t.init( toDataString() );
710 return t;