riscv64-tok.h: update with more instructions from the spec
[tinycc.git] / x86_64-gen.c
bloba41cbc10a64aa74d04fe86ef955282d98c9ecd26
1 /*
2 * x86-64 code generator for TCC
4 * Copyright (c) 2008 Shinichiro Hamaji
6 * Based on i386-gen.c by Fabrice Bellard
8 * This library is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU Lesser General Public
10 * License as published by the Free Software Foundation; either
11 * version 2 of the License, or (at your option) any later version.
13 * This library is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
16 * Lesser General Public License for more details.
18 * You should have received a copy of the GNU Lesser General Public
19 * License along with this library; if not, write to the Free Software
20 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
23 #ifdef TARGET_DEFS_ONLY
25 /* number of available registers */
26 #define NB_REGS 25
27 #define NB_ASM_REGS 16
28 #define CONFIG_TCC_ASM
30 /* a register can belong to several classes. The classes must be
31 sorted from more general to more precise (see gv2() code which does
32 assumptions on it). */
33 #define RC_INT 0x0001 /* generic integer register */
34 #define RC_FLOAT 0x0002 /* generic float register */
35 #define RC_RAX 0x0004
36 #define RC_RDX 0x0008
37 #define RC_RCX 0x0010
38 #define RC_RSI 0x0020
39 #define RC_RDI 0x0040
40 #define RC_ST0 0x0080 /* only for long double */
41 #define RC_R8 0x0100
42 #define RC_R9 0x0200
43 #define RC_R10 0x0400
44 #define RC_R11 0x0800
45 #define RC_XMM0 0x1000
46 #define RC_XMM1 0x2000
47 #define RC_XMM2 0x4000
48 #define RC_XMM3 0x8000
49 #define RC_XMM4 0x10000
50 #define RC_XMM5 0x20000
51 #define RC_XMM6 0x40000
52 #define RC_XMM7 0x80000
53 #define RC_IRET RC_RAX /* function return: integer register */
54 #define RC_IRE2 RC_RDX /* function return: second integer register */
55 #define RC_FRET RC_XMM0 /* function return: float register */
56 #define RC_FRE2 RC_XMM1 /* function return: second float register */
58 /* pretty names for the registers */
59 enum {
60 TREG_RAX = 0,
61 TREG_RCX = 1,
62 TREG_RDX = 2,
63 TREG_RSP = 4,
64 TREG_RSI = 6,
65 TREG_RDI = 7,
67 TREG_R8 = 8,
68 TREG_R9 = 9,
69 TREG_R10 = 10,
70 TREG_R11 = 11,
72 TREG_XMM0 = 16,
73 TREG_XMM1 = 17,
74 TREG_XMM2 = 18,
75 TREG_XMM3 = 19,
76 TREG_XMM4 = 20,
77 TREG_XMM5 = 21,
78 TREG_XMM6 = 22,
79 TREG_XMM7 = 23,
81 TREG_ST0 = 24,
83 TREG_MEM = 0x20
86 #define REX_BASE(reg) (((reg) >> 3) & 1)
87 #define REG_VALUE(reg) ((reg) & 7)
89 /* return registers for function */
90 #define REG_IRET TREG_RAX /* single word int return register */
91 #define REG_IRE2 TREG_RDX /* second word return register (for long long) */
92 #define REG_FRET TREG_XMM0 /* float return register */
93 #define REG_FRE2 TREG_XMM1 /* second float return register */
95 /* defined if function parameters must be evaluated in reverse order */
96 #define INVERT_FUNC_PARAMS
98 /* pointer size, in bytes */
99 #define PTR_SIZE 8
101 /* long double size and alignment, in bytes */
102 #define LDOUBLE_SIZE 16
103 #define LDOUBLE_ALIGN 16
104 /* maximum alignment (for aligned attribute support) */
105 #define MAX_ALIGN 16
107 /* define if return values need to be extended explicitely
108 at caller side (for interfacing with non-TCC compilers) */
109 #define PROMOTE_RET
111 #define TCC_TARGET_NATIVE_STRUCT_COPY
112 ST_FUNC void gen_struct_copy(int size);
114 /******************************************************/
115 #else /* ! TARGET_DEFS_ONLY */
116 /******************************************************/
117 #define USING_GLOBALS
118 #include "tcc.h"
119 #include <assert.h>
121 ST_DATA const char * const target_machine_defs =
122 "__x86_64__\0"
123 "__amd64__\0"
126 ST_DATA const int reg_classes[NB_REGS] = {
127 /* eax */ RC_INT | RC_RAX,
128 /* ecx */ RC_INT | RC_RCX,
129 /* edx */ RC_INT | RC_RDX,
133 RC_RSI,
134 RC_RDI,
135 RC_R8,
136 RC_R9,
137 RC_R10,
138 RC_R11,
143 /* xmm0 */ RC_FLOAT | RC_XMM0,
144 /* xmm1 */ RC_FLOAT | RC_XMM1,
145 /* xmm2 */ RC_FLOAT | RC_XMM2,
146 /* xmm3 */ RC_FLOAT | RC_XMM3,
147 /* xmm4 */ RC_FLOAT | RC_XMM4,
148 /* xmm5 */ RC_FLOAT | RC_XMM5,
149 /* xmm6 an xmm7 are included so gv() can be used on them,
150 but they are not tagged with RC_FLOAT because they are
151 callee saved on Windows */
152 RC_XMM6,
153 RC_XMM7,
154 /* st0 */ RC_ST0
157 static unsigned long func_sub_sp_offset;
158 static int func_ret_sub;
160 #if defined(CONFIG_TCC_BCHECK)
161 static addr_t func_bound_offset;
162 static unsigned long func_bound_ind;
163 ST_DATA int func_bound_add_epilog;
164 #endif
166 #ifdef TCC_TARGET_PE
167 static int func_scratch, func_alloca;
168 #endif
170 /* XXX: make it faster ? */
171 ST_FUNC void g(int c)
173 int ind1;
174 if (nocode_wanted)
175 return;
176 ind1 = ind + 1;
177 if (ind1 > cur_text_section->data_allocated)
178 section_realloc(cur_text_section, ind1);
179 cur_text_section->data[ind] = c;
180 ind = ind1;
183 ST_FUNC void o(unsigned int c)
185 while (c) {
186 g(c);
187 c = c >> 8;
191 ST_FUNC void gen_le16(int v)
193 g(v);
194 g(v >> 8);
197 ST_FUNC void gen_le32(int c)
199 g(c);
200 g(c >> 8);
201 g(c >> 16);
202 g(c >> 24);
205 ST_FUNC void gen_le64(int64_t c)
207 g(c);
208 g(c >> 8);
209 g(c >> 16);
210 g(c >> 24);
211 g(c >> 32);
212 g(c >> 40);
213 g(c >> 48);
214 g(c >> 56);
217 static void orex(int ll, int r, int r2, int b)
219 if ((r & VT_VALMASK) >= VT_CONST)
220 r = 0;
221 if ((r2 & VT_VALMASK) >= VT_CONST)
222 r2 = 0;
223 if (ll || REX_BASE(r) || REX_BASE(r2))
224 o(0x40 | REX_BASE(r) | (REX_BASE(r2) << 2) | (ll << 3));
225 o(b);
228 /* output a symbol and patch all calls to it */
229 ST_FUNC void gsym_addr(int t, int a)
231 while (t) {
232 unsigned char *ptr = cur_text_section->data + t;
233 uint32_t n = read32le(ptr); /* next value */
234 write32le(ptr, a < 0 ? -a : a - t - 4);
235 t = n;
239 static int is64_type(int t)
241 return ((t & VT_BTYPE) == VT_PTR ||
242 (t & VT_BTYPE) == VT_FUNC ||
243 (t & VT_BTYPE) == VT_LLONG);
246 /* instruction + 4 bytes data. Return the address of the data */
247 static int oad(int c, int s)
249 int t;
250 if (nocode_wanted)
251 return s;
252 o(c);
253 t = ind;
254 gen_le32(s);
255 return t;
258 /* generate jmp to a label */
259 #define gjmp2(instr,lbl) oad(instr,lbl)
261 ST_FUNC void gen_addr32(int r, Sym *sym, int c)
263 if (r & VT_SYM)
264 greloca(cur_text_section, sym, ind, R_X86_64_32S, c), c=0;
265 gen_le32(c);
268 /* output constant with relocation if 'r & VT_SYM' is true */
269 ST_FUNC void gen_addr64(int r, Sym *sym, int64_t c)
271 if (r & VT_SYM)
272 greloca(cur_text_section, sym, ind, R_X86_64_64, c), c=0;
273 gen_le64(c);
276 /* output constant with relocation if 'r & VT_SYM' is true */
277 ST_FUNC void gen_addrpc32(int r, Sym *sym, int c)
279 if (r & VT_SYM)
280 greloca(cur_text_section, sym, ind, R_X86_64_PC32, c-4), c=4;
281 gen_le32(c-4);
284 /* output got address with relocation */
285 static void gen_gotpcrel(int r, Sym *sym, int c)
287 #ifdef TCC_TARGET_PE
288 tcc_error("internal error: no GOT on PE: %s %x %x | %02x %02x %02x\n",
289 get_tok_str(sym->v, NULL), c, r,
290 cur_text_section->data[ind-3],
291 cur_text_section->data[ind-2],
292 cur_text_section->data[ind-1]
294 #endif
295 greloca(cur_text_section, sym, ind, R_X86_64_GOTPCREL, -4);
296 gen_le32(0);
297 if (c) {
298 /* we use add c, %xxx for displacement */
299 orex(1, r, 0, 0x81);
300 o(0xc0 + REG_VALUE(r));
301 gen_le32(c);
305 static void gen_modrm_impl(int op_reg, int r, Sym *sym, int c, int is_got)
307 op_reg = REG_VALUE(op_reg) << 3;
308 if ((r & VT_VALMASK) == VT_CONST) {
309 /* constant memory reference */
310 if (!(r & VT_SYM)) {
311 /* Absolute memory reference */
312 o(0x04 | op_reg); /* [sib] | destreg */
313 oad(0x25, c); /* disp32 */
314 } else {
315 o(0x05 | op_reg); /* (%rip)+disp32 | destreg */
316 if (is_got) {
317 gen_gotpcrel(r, sym, c);
318 } else {
319 gen_addrpc32(r, sym, c);
322 } else if ((r & VT_VALMASK) == VT_LOCAL) {
323 /* currently, we use only ebp as base */
324 if (c == (char)c) {
325 /* short reference */
326 o(0x45 | op_reg);
327 g(c);
328 } else {
329 oad(0x85 | op_reg, c);
331 } else if ((r & VT_VALMASK) >= TREG_MEM) {
332 if (c) {
333 g(0x80 | op_reg | REG_VALUE(r));
334 gen_le32(c);
335 } else {
336 g(0x00 | op_reg | REG_VALUE(r));
338 } else {
339 g(0x00 | op_reg | REG_VALUE(r));
343 /* generate a modrm reference. 'op_reg' contains the additional 3
344 opcode bits */
345 static void gen_modrm(int op_reg, int r, Sym *sym, int c)
347 gen_modrm_impl(op_reg, r, sym, c, 0);
350 /* generate a modrm reference. 'op_reg' contains the additional 3
351 opcode bits */
352 static void gen_modrm64(int opcode, int op_reg, int r, Sym *sym, int c)
354 int is_got;
355 is_got = (op_reg & TREG_MEM) && !(sym->type.t & VT_STATIC);
356 orex(1, r, op_reg, opcode);
357 gen_modrm_impl(op_reg, r, sym, c, is_got);
361 /* load 'r' from value 'sv' */
362 void load(int r, SValue *sv)
364 int v, t, ft, fc, fr;
365 SValue v1;
367 #ifdef TCC_TARGET_PE
368 SValue v2;
369 sv = pe_getimport(sv, &v2);
370 #endif
372 fr = sv->r;
373 ft = sv->type.t & ~VT_DEFSIGN;
374 fc = sv->c.i;
375 if (fc != sv->c.i && (fr & VT_SYM))
376 tcc_error("64 bit addend in load");
378 ft &= ~(VT_VOLATILE | VT_CONSTANT);
380 #ifndef TCC_TARGET_PE
381 /* we use indirect access via got */
382 if ((fr & VT_VALMASK) == VT_CONST && (fr & VT_SYM) &&
383 (fr & VT_LVAL) && !(sv->sym->type.t & VT_STATIC)) {
384 /* use the result register as a temporal register */
385 int tr = r | TREG_MEM;
386 if (is_float(ft)) {
387 /* we cannot use float registers as a temporal register */
388 tr = get_reg(RC_INT) | TREG_MEM;
390 gen_modrm64(0x8b, tr, fr, sv->sym, 0);
392 /* load from the temporal register */
393 fr = tr | VT_LVAL;
395 #endif
397 v = fr & VT_VALMASK;
398 if (fr & VT_LVAL) {
399 int b, ll;
400 if (v == VT_LLOCAL) {
401 v1.type.t = VT_PTR;
402 v1.r = VT_LOCAL | VT_LVAL;
403 v1.c.i = fc;
404 fr = r;
405 if (!(reg_classes[fr] & (RC_INT|RC_R11)))
406 fr = get_reg(RC_INT);
407 load(fr, &v1);
409 if (fc != sv->c.i) {
410 /* If the addends doesn't fit into a 32bit signed
411 we must use a 64bit move. We've checked above
412 that this doesn't have a sym associated. */
413 v1.type.t = VT_LLONG;
414 v1.r = VT_CONST;
415 v1.c.i = sv->c.i;
416 fr = r;
417 if (!(reg_classes[fr] & (RC_INT|RC_R11)))
418 fr = get_reg(RC_INT);
419 load(fr, &v1);
420 fc = 0;
422 ll = 0;
423 /* Like GCC we can load from small enough properly sized
424 structs and unions as well.
425 XXX maybe move to generic operand handling, but should
426 occur only with asm, so tccasm.c might also be a better place */
427 if ((ft & VT_BTYPE) == VT_STRUCT) {
428 int align;
429 switch (type_size(&sv->type, &align)) {
430 case 1: ft = VT_BYTE; break;
431 case 2: ft = VT_SHORT; break;
432 case 4: ft = VT_INT; break;
433 case 8: ft = VT_LLONG; break;
434 default:
435 tcc_error("invalid aggregate type for register load");
436 break;
439 if ((ft & VT_BTYPE) == VT_FLOAT) {
440 b = 0x6e0f66;
441 r = REG_VALUE(r); /* movd */
442 } else if ((ft & VT_BTYPE) == VT_DOUBLE) {
443 b = 0x7e0ff3; /* movq */
444 r = REG_VALUE(r);
445 } else if ((ft & VT_BTYPE) == VT_LDOUBLE) {
446 b = 0xdb, r = 5; /* fldt */
447 } else if ((ft & VT_TYPE) == VT_BYTE || (ft & VT_TYPE) == VT_BOOL) {
448 b = 0xbe0f; /* movsbl */
449 } else if ((ft & VT_TYPE) == (VT_BYTE | VT_UNSIGNED)) {
450 b = 0xb60f; /* movzbl */
451 } else if ((ft & VT_TYPE) == VT_SHORT) {
452 b = 0xbf0f; /* movswl */
453 } else if ((ft & VT_TYPE) == (VT_SHORT | VT_UNSIGNED)) {
454 b = 0xb70f; /* movzwl */
455 } else if ((ft & VT_TYPE) == (VT_VOID)) {
456 /* Can happen with zero size structs */
457 return;
458 } else {
459 assert(((ft & VT_BTYPE) == VT_INT)
460 || ((ft & VT_BTYPE) == VT_LLONG)
461 || ((ft & VT_BTYPE) == VT_PTR)
462 || ((ft & VT_BTYPE) == VT_FUNC)
464 ll = is64_type(ft);
465 b = 0x8b;
467 if (ll) {
468 gen_modrm64(b, r, fr, sv->sym, fc);
469 } else {
470 orex(ll, fr, r, b);
471 gen_modrm(r, fr, sv->sym, fc);
473 } else {
474 if (v == VT_CONST) {
475 if (fr & VT_SYM) {
476 #ifdef TCC_TARGET_PE
477 orex(1,0,r,0x8d);
478 o(0x05 + REG_VALUE(r) * 8); /* lea xx(%rip), r */
479 gen_addrpc32(fr, sv->sym, fc);
480 #else
481 if (sv->sym->type.t & VT_STATIC) {
482 orex(1,0,r,0x8d);
483 o(0x05 + REG_VALUE(r) * 8); /* lea xx(%rip), r */
484 gen_addrpc32(fr, sv->sym, fc);
485 } else {
486 orex(1,0,r,0x8b);
487 o(0x05 + REG_VALUE(r) * 8); /* mov xx(%rip), r */
488 gen_gotpcrel(r, sv->sym, fc);
490 #endif
491 } else if (is64_type(ft)) {
492 orex(1,r,0, 0xb8 + REG_VALUE(r)); /* mov $xx, r */
493 gen_le64(sv->c.i);
494 } else {
495 orex(0,r,0, 0xb8 + REG_VALUE(r)); /* mov $xx, r */
496 gen_le32(fc);
498 } else if (v == VT_LOCAL) {
499 orex(1,0,r,0x8d); /* lea xxx(%ebp), r */
500 gen_modrm(r, VT_LOCAL, sv->sym, fc);
501 } else if (v == VT_CMP) {
502 if (fc & 0x100)
504 v = vtop->cmp_r;
505 fc &= ~0x100;
506 /* This was a float compare. If the parity bit is
507 set the result was unordered, meaning false for everything
508 except TOK_NE, and true for TOK_NE. */
509 orex(0, r, 0, 0xb0 + REG_VALUE(r)); /* mov $0/1,%al */
510 g(v ^ fc ^ (v == TOK_NE));
511 o(0x037a + (REX_BASE(r) << 8));
513 orex(0,r,0, 0x0f); /* setxx %br */
514 o(fc);
515 o(0xc0 + REG_VALUE(r));
516 orex(0,r,0, 0x0f);
517 o(0xc0b6 + REG_VALUE(r) * 0x900); /* movzbl %al, %eax */
518 } else if (v == VT_JMP || v == VT_JMPI) {
519 t = v & 1;
520 orex(0,r,0,0);
521 oad(0xb8 + REG_VALUE(r), t); /* mov $1, r */
522 o(0x05eb + (REX_BASE(r) << 8)); /* jmp after */
523 gsym(fc);
524 orex(0,r,0,0);
525 oad(0xb8 + REG_VALUE(r), t ^ 1); /* mov $0, r */
526 } else if (v != r) {
527 if ((r >= TREG_XMM0) && (r <= TREG_XMM7)) {
528 if (v == TREG_ST0) {
529 /* gen_cvt_ftof(VT_DOUBLE); */
530 o(0xf0245cdd); /* fstpl -0x10(%rsp) */
531 /* movsd -0x10(%rsp),%xmmN */
532 o(0x100ff2);
533 o(0x44 + REG_VALUE(r)*8); /* %xmmN */
534 o(0xf024);
535 } else {
536 assert((v >= TREG_XMM0) && (v <= TREG_XMM7));
537 if ((ft & VT_BTYPE) == VT_FLOAT) {
538 o(0x100ff3);
539 } else {
540 assert((ft & VT_BTYPE) == VT_DOUBLE);
541 o(0x100ff2);
543 o(0xc0 + REG_VALUE(v) + REG_VALUE(r)*8);
545 } else if (r == TREG_ST0) {
546 assert((v >= TREG_XMM0) && (v <= TREG_XMM7));
547 /* gen_cvt_ftof(VT_LDOUBLE); */
548 /* movsd %xmmN,-0x10(%rsp) */
549 o(0x110ff2);
550 o(0x44 + REG_VALUE(r)*8); /* %xmmN */
551 o(0xf024);
552 o(0xf02444dd); /* fldl -0x10(%rsp) */
553 } else {
554 orex(is64_type(ft), r, v, 0x89);
555 o(0xc0 + REG_VALUE(r) + REG_VALUE(v) * 8); /* mov v, r */
561 /* store register 'r' in lvalue 'v' */
562 void store(int r, SValue *v)
564 int fr, bt, ft, fc;
565 int op64 = 0;
566 /* store the REX prefix in this variable when PIC is enabled */
567 int pic = 0;
569 #ifdef TCC_TARGET_PE
570 SValue v2;
571 v = pe_getimport(v, &v2);
572 #endif
574 fr = v->r & VT_VALMASK;
575 ft = v->type.t;
576 fc = v->c.i;
577 if (fc != v->c.i && (fr & VT_SYM))
578 tcc_error("64 bit addend in store");
579 ft &= ~(VT_VOLATILE | VT_CONSTANT);
580 bt = ft & VT_BTYPE;
582 #ifndef TCC_TARGET_PE
583 /* we need to access the variable via got */
584 if (fr == VT_CONST
585 && (v->r & VT_SYM)
586 && !(v->sym->type.t & VT_STATIC)) {
587 /* mov xx(%rip), %r11 */
588 o(0x1d8b4c);
589 gen_gotpcrel(TREG_R11, v->sym, v->c.i);
590 pic = is64_type(bt) ? 0x49 : 0x41;
592 #endif
594 /* XXX: incorrect if float reg to reg */
595 if (bt == VT_FLOAT) {
596 o(0x66);
597 o(pic);
598 o(0x7e0f); /* movd */
599 r = REG_VALUE(r);
600 } else if (bt == VT_DOUBLE) {
601 o(0x66);
602 o(pic);
603 o(0xd60f); /* movq */
604 r = REG_VALUE(r);
605 } else if (bt == VT_LDOUBLE) {
606 o(0xc0d9); /* fld %st(0) */
607 o(pic);
608 o(0xdb); /* fstpt */
609 r = 7;
610 } else {
611 if (bt == VT_SHORT)
612 o(0x66);
613 o(pic);
614 if (bt == VT_BYTE || bt == VT_BOOL)
615 orex(0, 0, r, 0x88);
616 else if (is64_type(bt))
617 op64 = 0x89;
618 else
619 orex(0, 0, r, 0x89);
621 if (pic) {
622 /* xxx r, (%r11) where xxx is mov, movq, fld, or etc */
623 if (op64)
624 o(op64);
625 o(3 + (r << 3));
626 } else if (op64) {
627 if (fr == VT_CONST || fr == VT_LOCAL || (v->r & VT_LVAL)) {
628 gen_modrm64(op64, r, v->r, v->sym, fc);
629 } else if (fr != r) {
630 orex(1, fr, r, op64);
631 o(0xc0 + fr + r * 8); /* mov r, fr */
633 } else {
634 if (fr == VT_CONST || fr == VT_LOCAL || (v->r & VT_LVAL)) {
635 gen_modrm(r, v->r, v->sym, fc);
636 } else if (fr != r) {
637 o(0xc0 + fr + r * 8); /* mov r, fr */
642 /* 'is_jmp' is '1' if it is a jump */
643 static void gcall_or_jmp(int is_jmp)
645 int r;
646 if ((vtop->r & (VT_VALMASK | VT_LVAL)) == VT_CONST &&
647 ((vtop->r & VT_SYM) && (vtop->c.i-4) == (int)(vtop->c.i-4))) {
648 /* constant symbolic case -> simple relocation */
649 #ifdef TCC_TARGET_PE
650 greloca(cur_text_section, vtop->sym, ind + 1, R_X86_64_PC32, (int)(vtop->c.i-4));
651 #else
652 greloca(cur_text_section, vtop->sym, ind + 1, R_X86_64_PLT32, (int)(vtop->c.i-4));
653 #endif
654 oad(0xe8 + is_jmp, 0); /* call/jmp im */
655 } else {
656 /* otherwise, indirect call */
657 r = TREG_R11;
658 load(r, vtop);
659 o(0x41); /* REX */
660 o(0xff); /* call/jmp *r */
661 o(0xd0 + REG_VALUE(r) + (is_jmp << 4));
665 #if defined(CONFIG_TCC_BCHECK)
667 static void gen_bounds_call(int v)
669 Sym *sym = external_helper_sym(v);
670 oad(0xe8, 0);
671 #ifdef TCC_TARGET_PE
672 greloca(cur_text_section, sym, ind-4, R_X86_64_PC32, -4);
673 #else
674 greloca(cur_text_section, sym, ind-4, R_X86_64_PLT32, -4);
675 #endif
678 #ifdef TCC_TARGET_PE
679 # define TREG_FASTCALL_1 TREG_RCX
680 #else
681 # define TREG_FASTCALL_1 TREG_RDI
682 #endif
684 static void gen_bounds_prolog(void)
686 /* leave some room for bound checking code */
687 func_bound_offset = lbounds_section->data_offset;
688 func_bound_ind = ind;
689 func_bound_add_epilog = 0;
690 o(0x0d8d48 + ((TREG_FASTCALL_1 == TREG_RDI) * 0x300000)); /*lbound section pointer */
691 gen_le32 (0);
692 oad(0xb8, 0); /* call to function */
695 static void gen_bounds_epilog(void)
697 addr_t saved_ind;
698 addr_t *bounds_ptr;
699 Sym *sym_data;
700 int offset_modified = func_bound_offset != lbounds_section->data_offset;
702 if (!offset_modified && !func_bound_add_epilog)
703 return;
705 /* add end of table info */
706 bounds_ptr = section_ptr_add(lbounds_section, sizeof(addr_t));
707 *bounds_ptr = 0;
709 sym_data = get_sym_ref(&char_pointer_type, lbounds_section,
710 func_bound_offset, PTR_SIZE);
712 /* generate bound local allocation */
713 if (offset_modified) {
714 saved_ind = ind;
715 ind = func_bound_ind;
716 greloca(cur_text_section, sym_data, ind + 3, R_X86_64_PC32, -4);
717 ind = ind + 7;
718 gen_bounds_call(TOK___bound_local_new);
719 ind = saved_ind;
722 /* generate bound check local freeing */
723 o(0x5250); /* save returned value, if any */
724 o(0x20ec8348); /* sub $32,%rsp */
725 o(0x290f); /* movaps %xmm0,0x10(%rsp) */
726 o(0x102444);
727 o(0x240c290f); /* movaps %xmm1,(%rsp) */
728 greloca(cur_text_section, sym_data, ind + 3, R_X86_64_PC32, -4);
729 o(0x0d8d48 + ((TREG_FASTCALL_1 == TREG_RDI) * 0x300000)); /* lea xxx(%rip), %rcx/rdi */
730 gen_le32 (0);
731 gen_bounds_call(TOK___bound_local_delete);
732 o(0x280f); /* movaps 0x10(%rsp),%xmm0 */
733 o(0x102444);
734 o(0x240c280f); /* movaps (%rsp),%xmm1 */
735 o(0x20c48348); /* add $32,%rsp */
736 o(0x585a); /* restore returned value, if any */
738 #endif
740 #ifdef TCC_TARGET_PE
742 #define REGN 4
743 static const uint8_t arg_regs[REGN] = {
744 TREG_RCX, TREG_RDX, TREG_R8, TREG_R9
747 /* Prepare arguments in R10 and R11 rather than RCX and RDX
748 because gv() will not ever use these */
749 static int arg_prepare_reg(int idx) {
750 if (idx == 0 || idx == 1)
751 /* idx=0: r10, idx=1: r11 */
752 return idx + 10;
753 else
754 return idx >= 0 && idx < REGN ? arg_regs[idx] : 0;
757 /* Generate function call. The function address is pushed first, then
758 all the parameters in call order. This functions pops all the
759 parameters and the function address. */
761 static void gen_offs_sp(int b, int r, int d)
763 orex(1,0,r & 0x100 ? 0 : r, b);
764 if (d == (char)d) {
765 o(0x2444 | (REG_VALUE(r) << 3));
766 g(d);
767 } else {
768 o(0x2484 | (REG_VALUE(r) << 3));
769 gen_le32(d);
773 static int using_regs(int size)
775 return !(size > 8 || (size & (size - 1)));
778 /* Return the number of registers needed to return the struct, or 0 if
779 returning via struct pointer. */
780 ST_FUNC int gfunc_sret(CType *vt, int variadic, CType *ret, int *ret_align, int *regsize)
782 int size, align;
783 *ret_align = 1; // Never have to re-align return values for x86-64
784 *regsize = 8;
785 size = type_size(vt, &align);
786 if (!using_regs(size))
787 return 0;
788 if (size == 8)
789 ret->t = VT_LLONG;
790 else if (size == 4)
791 ret->t = VT_INT;
792 else if (size == 2)
793 ret->t = VT_SHORT;
794 else
795 ret->t = VT_BYTE;
796 ret->ref = NULL;
797 return 1;
800 static int is_sse_float(int t) {
801 int bt;
802 bt = t & VT_BTYPE;
803 return bt == VT_DOUBLE || bt == VT_FLOAT;
806 static int gfunc_arg_size(CType *type) {
807 int align;
808 if (type->t & (VT_ARRAY|VT_BITFIELD))
809 return 8;
810 return type_size(type, &align);
813 void gfunc_call(int nb_args)
815 int size, r, args_size, i, d, bt, struct_size;
816 int arg;
818 #ifdef CONFIG_TCC_BCHECK
819 if (tcc_state->do_bounds_check)
820 gbound_args(nb_args);
821 #endif
823 args_size = (nb_args < REGN ? REGN : nb_args) * PTR_SIZE;
824 arg = nb_args;
826 /* for struct arguments, we need to call memcpy and the function
827 call breaks register passing arguments we are preparing.
828 So, we process arguments which will be passed by stack first. */
829 struct_size = args_size;
830 for(i = 0; i < nb_args; i++) {
831 SValue *sv;
833 --arg;
834 sv = &vtop[-i];
835 bt = (sv->type.t & VT_BTYPE);
836 size = gfunc_arg_size(&sv->type);
838 if (using_regs(size))
839 continue; /* arguments smaller than 8 bytes passed in registers or on stack */
841 if (bt == VT_STRUCT) {
842 /* align to stack align size */
843 size = (size + 15) & ~15;
844 /* generate structure store */
845 r = get_reg(RC_INT);
846 gen_offs_sp(0x8d, r, struct_size);
847 struct_size += size;
849 /* generate memcpy call */
850 vset(&sv->type, r | VT_LVAL, 0);
851 vpushv(sv);
852 vstore();
853 --vtop;
854 } else if (bt == VT_LDOUBLE) {
855 gv(RC_ST0);
856 gen_offs_sp(0xdb, 0x107, struct_size);
857 struct_size += 16;
861 if (func_scratch < struct_size)
862 func_scratch = struct_size;
864 arg = nb_args;
865 struct_size = args_size;
867 for(i = 0; i < nb_args; i++) {
868 --arg;
869 bt = (vtop->type.t & VT_BTYPE);
871 size = gfunc_arg_size(&vtop->type);
872 if (!using_regs(size)) {
873 /* align to stack align size */
874 size = (size + 15) & ~15;
875 if (arg >= REGN) {
876 d = get_reg(RC_INT);
877 gen_offs_sp(0x8d, d, struct_size);
878 gen_offs_sp(0x89, d, arg*8);
879 } else {
880 d = arg_prepare_reg(arg);
881 gen_offs_sp(0x8d, d, struct_size);
883 struct_size += size;
884 } else {
885 if (is_sse_float(vtop->type.t)) {
886 if (tcc_state->nosse)
887 tcc_error("SSE disabled");
888 if (arg >= REGN) {
889 gv(RC_XMM0);
890 /* movq %xmm0, j*8(%rsp) */
891 gen_offs_sp(0xd60f66, 0x100, arg*8);
892 } else {
893 /* Load directly to xmmN register */
894 gv(RC_XMM0 << arg);
895 d = arg_prepare_reg(arg);
896 /* mov %xmmN, %rxx */
897 o(0x66);
898 orex(1,d,0, 0x7e0f);
899 o(0xc0 + arg*8 + REG_VALUE(d));
901 } else {
902 if (bt == VT_STRUCT) {
903 vtop->type.ref = NULL;
904 vtop->type.t = size > 4 ? VT_LLONG : size > 2 ? VT_INT
905 : size > 1 ? VT_SHORT : VT_BYTE;
908 r = gv(RC_INT);
909 if (arg >= REGN) {
910 gen_offs_sp(0x89, r, arg*8);
911 } else {
912 d = arg_prepare_reg(arg);
913 orex(1,d,r,0x89); /* mov */
914 o(0xc0 + REG_VALUE(r) * 8 + REG_VALUE(d));
918 vtop--;
920 save_regs(0);
921 /* Copy R10 and R11 into RCX and RDX, respectively */
922 if (nb_args > 0) {
923 o(0xd1894c); /* mov %r10, %rcx */
924 if (nb_args > 1) {
925 o(0xda894c); /* mov %r11, %rdx */
929 gcall_or_jmp(0);
931 if ((vtop->r & VT_SYM) && vtop->sym->v == TOK_alloca) {
932 /* need to add the "func_scratch" area after alloca */
933 o(0x48); func_alloca = oad(0x05, func_alloca); /* add $NN, %rax */
934 #ifdef CONFIG_TCC_BCHECK
935 if (tcc_state->do_bounds_check)
936 gen_bounds_call(TOK___bound_alloca_nr); /* new region */
937 #endif
939 vtop--;
943 #define FUNC_PROLOG_SIZE 11
945 /* generate function prolog of type 't' */
946 void gfunc_prolog(Sym *func_sym)
948 CType *func_type = &func_sym->type;
949 int addr, reg_param_index, bt, size;
950 Sym *sym;
951 CType *type;
953 func_ret_sub = 0;
954 func_scratch = 32;
955 func_alloca = 0;
956 loc = 0;
958 addr = PTR_SIZE * 2;
959 ind += FUNC_PROLOG_SIZE;
960 func_sub_sp_offset = ind;
961 reg_param_index = 0;
963 sym = func_type->ref;
965 /* if the function returns a structure, then add an
966 implicit pointer parameter */
967 size = gfunc_arg_size(&func_vt);
968 if (!using_regs(size)) {
969 gen_modrm64(0x89, arg_regs[reg_param_index], VT_LOCAL, NULL, addr);
970 func_vc = addr;
971 reg_param_index++;
972 addr += 8;
975 /* define parameters */
976 while ((sym = sym->next) != NULL) {
977 type = &sym->type;
978 bt = type->t & VT_BTYPE;
979 size = gfunc_arg_size(type);
980 if (!using_regs(size)) {
981 if (reg_param_index < REGN) {
982 gen_modrm64(0x89, arg_regs[reg_param_index], VT_LOCAL, NULL, addr);
984 sym_push(sym->v & ~SYM_FIELD, type,
985 VT_LLOCAL | VT_LVAL, addr);
986 } else {
987 if (reg_param_index < REGN) {
988 /* save arguments passed by register */
989 if ((bt == VT_FLOAT) || (bt == VT_DOUBLE)) {
990 if (tcc_state->nosse)
991 tcc_error("SSE disabled");
992 o(0xd60f66); /* movq */
993 gen_modrm(reg_param_index, VT_LOCAL, NULL, addr);
994 } else {
995 gen_modrm64(0x89, arg_regs[reg_param_index], VT_LOCAL, NULL, addr);
998 sym_push(sym->v & ~SYM_FIELD, type,
999 VT_LOCAL | VT_LVAL, addr);
1001 addr += 8;
1002 reg_param_index++;
1005 while (reg_param_index < REGN) {
1006 if (func_var) {
1007 gen_modrm64(0x89, arg_regs[reg_param_index], VT_LOCAL, NULL, addr);
1008 addr += 8;
1010 reg_param_index++;
1012 #ifdef CONFIG_TCC_BCHECK
1013 if (tcc_state->do_bounds_check)
1014 gen_bounds_prolog();
1015 #endif
1018 /* generate function epilog */
1019 void gfunc_epilog(void)
1021 int v, saved_ind;
1023 /* align local size to word & save local variables */
1024 func_scratch = (func_scratch + 15) & -16;
1025 loc = (loc & -16) - func_scratch;
1027 #ifdef CONFIG_TCC_BCHECK
1028 if (tcc_state->do_bounds_check)
1029 gen_bounds_epilog();
1030 #endif
1032 o(0xc9); /* leave */
1033 if (func_ret_sub == 0) {
1034 o(0xc3); /* ret */
1035 } else {
1036 o(0xc2); /* ret n */
1037 g(func_ret_sub);
1038 g(func_ret_sub >> 8);
1041 saved_ind = ind;
1042 ind = func_sub_sp_offset - FUNC_PROLOG_SIZE;
1043 v = -loc;
1045 if (v >= 4096) {
1046 Sym *sym = external_helper_sym(TOK___chkstk);
1047 oad(0xb8, v); /* mov stacksize, %eax */
1048 oad(0xe8, 0); /* call __chkstk, (does the stackframe too) */
1049 greloca(cur_text_section, sym, ind-4, R_X86_64_PC32, -4);
1050 o(0x90); /* fill for FUNC_PROLOG_SIZE = 11 bytes */
1051 } else {
1052 o(0xe5894855); /* push %rbp, mov %rsp, %rbp */
1053 o(0xec8148); /* sub rsp, stacksize */
1054 gen_le32(v);
1057 /* add the "func_scratch" area after each alloca seen */
1058 gsym_addr(func_alloca, -func_scratch);
1060 cur_text_section->data_offset = saved_ind;
1061 pe_add_unwind_data(ind, saved_ind, v);
1062 ind = cur_text_section->data_offset;
1065 #else
1067 static void gadd_sp(int val)
1069 if (val == (char)val) {
1070 o(0xc48348);
1071 g(val);
1072 } else {
1073 oad(0xc48148, val); /* add $xxx, %rsp */
1077 typedef enum X86_64_Mode {
1078 x86_64_mode_none,
1079 x86_64_mode_memory,
1080 x86_64_mode_integer,
1081 x86_64_mode_sse,
1082 x86_64_mode_x87
1083 } X86_64_Mode;
1085 static X86_64_Mode classify_x86_64_merge(X86_64_Mode a, X86_64_Mode b)
1087 if (a == b)
1088 return a;
1089 else if (a == x86_64_mode_none)
1090 return b;
1091 else if (b == x86_64_mode_none)
1092 return a;
1093 else if ((a == x86_64_mode_memory) || (b == x86_64_mode_memory))
1094 return x86_64_mode_memory;
1095 else if ((a == x86_64_mode_integer) || (b == x86_64_mode_integer))
1096 return x86_64_mode_integer;
1097 else if ((a == x86_64_mode_x87) || (b == x86_64_mode_x87))
1098 return x86_64_mode_memory;
1099 else
1100 return x86_64_mode_sse;
1103 static X86_64_Mode classify_x86_64_inner(CType *ty)
1105 X86_64_Mode mode;
1106 Sym *f;
1108 switch (ty->t & VT_BTYPE) {
1109 case VT_VOID: return x86_64_mode_none;
1111 case VT_INT:
1112 case VT_BYTE:
1113 case VT_SHORT:
1114 case VT_LLONG:
1115 case VT_BOOL:
1116 case VT_PTR:
1117 case VT_FUNC:
1118 return x86_64_mode_integer;
1120 case VT_FLOAT:
1121 case VT_DOUBLE: return x86_64_mode_sse;
1123 case VT_LDOUBLE: return x86_64_mode_x87;
1125 case VT_STRUCT:
1126 f = ty->ref;
1128 mode = x86_64_mode_none;
1129 for (f = f->next; f; f = f->next)
1130 mode = classify_x86_64_merge(mode, classify_x86_64_inner(&f->type));
1132 return mode;
1134 assert(0);
1135 return 0;
1138 static X86_64_Mode classify_x86_64_arg(CType *ty, CType *ret, int *psize, int *palign, int *reg_count)
1140 X86_64_Mode mode;
1141 int size, align, ret_t = 0;
1143 if (ty->t & (VT_BITFIELD|VT_ARRAY)) {
1144 *psize = 8;
1145 *palign = 8;
1146 *reg_count = 1;
1147 ret_t = ty->t;
1148 mode = x86_64_mode_integer;
1149 } else {
1150 size = type_size(ty, &align);
1151 *psize = (size + 7) & ~7;
1152 *palign = (align + 7) & ~7;
1153 *reg_count = 0; /* avoid compiler warning */
1155 if (size > 16) {
1156 mode = x86_64_mode_memory;
1157 } else {
1158 mode = classify_x86_64_inner(ty);
1159 switch (mode) {
1160 case x86_64_mode_integer:
1161 if (size > 8) {
1162 *reg_count = 2;
1163 ret_t = VT_QLONG;
1164 } else {
1165 *reg_count = 1;
1166 if (size > 4)
1167 ret_t = VT_LLONG;
1168 else if (size > 2)
1169 ret_t = VT_INT;
1170 else if (size > 1)
1171 ret_t = VT_SHORT;
1172 else
1173 ret_t = VT_BYTE;
1174 if ((ty->t & VT_BTYPE) == VT_STRUCT || (ty->t & VT_UNSIGNED))
1175 ret_t |= VT_UNSIGNED;
1177 break;
1179 case x86_64_mode_x87:
1180 *reg_count = 1;
1181 ret_t = VT_LDOUBLE;
1182 break;
1184 case x86_64_mode_sse:
1185 if (size > 8) {
1186 *reg_count = 2;
1187 ret_t = VT_QFLOAT;
1188 } else {
1189 *reg_count = 1;
1190 ret_t = (size > 4) ? VT_DOUBLE : VT_FLOAT;
1192 break;
1193 default: break; /* nothing to be done for x86_64_mode_memory and x86_64_mode_none*/
1198 if (ret) {
1199 ret->ref = NULL;
1200 ret->t = ret_t;
1203 return mode;
1206 ST_FUNC int classify_x86_64_va_arg(CType *ty)
1208 /* This definition must be synced with stdarg.h */
1209 enum __va_arg_type {
1210 __va_gen_reg, __va_float_reg, __va_stack
1212 int size, align, reg_count;
1213 X86_64_Mode mode = classify_x86_64_arg(ty, NULL, &size, &align, &reg_count);
1214 switch (mode) {
1215 default: return __va_stack;
1216 case x86_64_mode_integer: return __va_gen_reg;
1217 case x86_64_mode_sse: return __va_float_reg;
1221 /* Return the number of registers needed to return the struct, or 0 if
1222 returning via struct pointer. */
1223 ST_FUNC int gfunc_sret(CType *vt, int variadic, CType *ret, int *ret_align, int *regsize)
1225 int size, align, reg_count;
1226 if (classify_x86_64_arg(vt, ret, &size, &align, &reg_count) == x86_64_mode_memory)
1227 return 0;
1228 *ret_align = 1; // Never have to re-align return values for x86-64
1229 *regsize = 8 * reg_count; /* the (virtual) regsize is 16 for VT_QLONG/QFLOAT */
1230 return 1;
1233 #define REGN 6
1234 static const uint8_t arg_regs[REGN] = {
1235 TREG_RDI, TREG_RSI, TREG_RDX, TREG_RCX, TREG_R8, TREG_R9
1238 static int arg_prepare_reg(int idx) {
1239 if (idx == 2 || idx == 3)
1240 /* idx=2: r10, idx=3: r11 */
1241 return idx + 8;
1242 else
1243 return idx >= 0 && idx < REGN ? arg_regs[idx] : 0;
1246 /* Generate function call. The function address is pushed first, then
1247 all the parameters in call order. This functions pops all the
1248 parameters and the function address. */
1249 void gfunc_call(int nb_args)
1251 X86_64_Mode mode;
1252 CType type;
1253 int size, align, r, args_size, stack_adjust, i, reg_count, k;
1254 int nb_reg_args = 0;
1255 int nb_sse_args = 0;
1256 int sse_reg, gen_reg;
1257 char *onstack = tcc_malloc((nb_args + 1) * sizeof (char));
1259 #ifdef CONFIG_TCC_BCHECK
1260 if (tcc_state->do_bounds_check)
1261 gbound_args(nb_args);
1262 #endif
1264 /* calculate the number of integer/float register arguments, remember
1265 arguments to be passed via stack (in onstack[]), and also remember
1266 if we have to align the stack pointer to 16 (onstack[i] == 2). Needs
1267 to be done in a left-to-right pass over arguments. */
1268 stack_adjust = 0;
1269 for(i = nb_args - 1; i >= 0; i--) {
1270 mode = classify_x86_64_arg(&vtop[-i].type, NULL, &size, &align, &reg_count);
1271 if (size == 0) continue;
1272 if (mode == x86_64_mode_sse && nb_sse_args + reg_count <= 8) {
1273 nb_sse_args += reg_count;
1274 onstack[i] = 0;
1275 } else if (mode == x86_64_mode_integer && nb_reg_args + reg_count <= REGN) {
1276 nb_reg_args += reg_count;
1277 onstack[i] = 0;
1278 } else if (mode == x86_64_mode_none) {
1279 onstack[i] = 0;
1280 } else {
1281 if (align == 16 && (stack_adjust &= 15)) {
1282 onstack[i] = 2;
1283 stack_adjust = 0;
1284 } else
1285 onstack[i] = 1;
1286 stack_adjust += size;
1290 if (nb_sse_args && tcc_state->nosse)
1291 tcc_error("SSE disabled but floating point arguments passed");
1293 /* fetch cpu flag before generating any code */
1294 if ((vtop->r & VT_VALMASK) == VT_CMP)
1295 gv(RC_INT);
1297 /* for struct arguments, we need to call memcpy and the function
1298 call breaks register passing arguments we are preparing.
1299 So, we process arguments which will be passed by stack first. */
1300 gen_reg = nb_reg_args;
1301 sse_reg = nb_sse_args;
1302 args_size = 0;
1303 stack_adjust &= 15;
1304 for (i = k = 0; i < nb_args;) {
1305 mode = classify_x86_64_arg(&vtop[-i].type, NULL, &size, &align, &reg_count);
1306 if (size) {
1307 if (!onstack[i + k]) {
1308 ++i;
1309 continue;
1311 /* Possibly adjust stack to align SSE boundary. We're processing
1312 args from right to left while allocating happens left to right
1313 (stack grows down), so the adjustment needs to happen _after_
1314 an argument that requires it. */
1315 if (stack_adjust) {
1316 o(0x50); /* push %rax; aka sub $8,%rsp */
1317 args_size += 8;
1318 stack_adjust = 0;
1320 if (onstack[i + k] == 2)
1321 stack_adjust = 1;
1324 vrotb(i+1);
1326 switch (vtop->type.t & VT_BTYPE) {
1327 case VT_STRUCT:
1328 /* allocate the necessary size on stack */
1329 o(0x48);
1330 oad(0xec81, size); /* sub $xxx, %rsp */
1331 /* generate structure store */
1332 r = get_reg(RC_INT);
1333 orex(1, r, 0, 0x89); /* mov %rsp, r */
1334 o(0xe0 + REG_VALUE(r));
1335 vset(&vtop->type, r | VT_LVAL, 0);
1336 vswap();
1337 /* keep stack aligned for (__bound_)memmove call */
1338 o(0x10ec8348); /* sub $16,%rsp */
1339 o(0xf0e48348); /* and $-16,%rsp */
1340 orex(0,r,0,0x50 + REG_VALUE(r)); /* push r (last %rsp) */
1341 o(0x08ec8348); /* sub $8,%rsp */
1342 vstore();
1343 o(0x08c48348); /* add $8,%rsp */
1344 o(0x5c); /* pop %rsp */
1345 break;
1347 case VT_LDOUBLE:
1348 gv(RC_ST0);
1349 oad(0xec8148, size); /* sub $xxx, %rsp */
1350 o(0x7cdb); /* fstpt 0(%rsp) */
1351 g(0x24);
1352 g(0x00);
1353 break;
1355 case VT_FLOAT:
1356 case VT_DOUBLE:
1357 assert(mode == x86_64_mode_sse);
1358 r = gv(RC_FLOAT);
1359 o(0x50); /* push $rax */
1360 /* movq %xmmN, (%rsp) */
1361 o(0xd60f66);
1362 o(0x04 + REG_VALUE(r)*8);
1363 o(0x24);
1364 break;
1366 default:
1367 assert(mode == x86_64_mode_integer);
1368 /* simple type */
1369 /* XXX: implicit cast ? */
1370 r = gv(RC_INT);
1371 orex(0,r,0,0x50 + REG_VALUE(r)); /* push r */
1372 break;
1374 args_size += size;
1376 vpop();
1377 --nb_args;
1378 k++;
1381 tcc_free(onstack);
1383 /* XXX This should be superfluous. */
1384 save_regs(0); /* save used temporary registers */
1386 /* then, we prepare register passing arguments.
1387 Note that we cannot set RDX and RCX in this loop because gv()
1388 may break these temporary registers. Let's use R10 and R11
1389 instead of them */
1390 assert(gen_reg <= REGN);
1391 assert(sse_reg <= 8);
1392 for(i = 0; i < nb_args; i++) {
1393 mode = classify_x86_64_arg(&vtop->type, &type, &size, &align, &reg_count);
1394 if (size == 0) continue;
1395 /* Alter stack entry type so that gv() knows how to treat it */
1396 vtop->type = type;
1397 if (mode == x86_64_mode_sse) {
1398 if (reg_count == 2) {
1399 sse_reg -= 2;
1400 gv(RC_FRET); /* Use pair load into xmm0 & xmm1 */
1401 if (sse_reg) { /* avoid redundant movaps %xmm0, %xmm0 */
1402 /* movaps %xmm1, %xmmN */
1403 o(0x280f);
1404 o(0xc1 + ((sse_reg+1) << 3));
1405 /* movaps %xmm0, %xmmN */
1406 o(0x280f);
1407 o(0xc0 + (sse_reg << 3));
1409 } else {
1410 assert(reg_count == 1);
1411 --sse_reg;
1412 /* Load directly to register */
1413 gv(RC_XMM0 << sse_reg);
1415 } else if (mode == x86_64_mode_integer) {
1416 /* simple type */
1417 /* XXX: implicit cast ? */
1418 int d;
1419 gen_reg -= reg_count;
1420 r = gv(RC_INT);
1421 d = arg_prepare_reg(gen_reg);
1422 orex(1,d,r,0x89); /* mov */
1423 o(0xc0 + REG_VALUE(r) * 8 + REG_VALUE(d));
1424 if (reg_count == 2) {
1425 d = arg_prepare_reg(gen_reg+1);
1426 orex(1,d,vtop->r2,0x89); /* mov */
1427 o(0xc0 + REG_VALUE(vtop->r2) * 8 + REG_VALUE(d));
1430 vtop--;
1432 assert(gen_reg == 0);
1433 assert(sse_reg == 0);
1435 /* We shouldn't have many operands on the stack anymore, but the
1436 call address itself is still there, and it might be in %eax
1437 (or edx/ecx) currently, which the below writes would clobber.
1438 So evict all remaining operands here. */
1439 save_regs(0);
1441 /* Copy R10 and R11 into RDX and RCX, respectively */
1442 if (nb_reg_args > 2) {
1443 o(0xd2894c); /* mov %r10, %rdx */
1444 if (nb_reg_args > 3) {
1445 o(0xd9894c); /* mov %r11, %rcx */
1449 if (vtop->type.ref->f.func_type != FUNC_NEW) /* implies FUNC_OLD or FUNC_ELLIPSIS */
1450 oad(0xb8, nb_sse_args < 8 ? nb_sse_args : 8); /* mov nb_sse_args, %eax */
1451 gcall_or_jmp(0);
1452 if (args_size)
1453 gadd_sp(args_size);
1454 vtop--;
1457 #define FUNC_PROLOG_SIZE 11
1459 static void push_arg_reg(int i) {
1460 loc -= 8;
1461 gen_modrm64(0x89, arg_regs[i], VT_LOCAL, NULL, loc);
1464 /* generate function prolog of type 't' */
1465 void gfunc_prolog(Sym *func_sym)
1467 CType *func_type = &func_sym->type;
1468 X86_64_Mode mode, ret_mode;
1469 int i, addr, align, size, reg_count;
1470 int param_addr = 0, reg_param_index, sse_param_index;
1471 Sym *sym;
1472 CType *type;
1474 sym = func_type->ref;
1475 addr = PTR_SIZE * 2;
1476 loc = 0;
1477 ind += FUNC_PROLOG_SIZE;
1478 func_sub_sp_offset = ind;
1479 func_ret_sub = 0;
1480 ret_mode = classify_x86_64_arg(&func_vt, NULL, &size, &align, &reg_count);
1482 if (func_var) {
1483 int seen_reg_num, seen_sse_num, seen_stack_size;
1484 seen_reg_num = ret_mode == x86_64_mode_memory;
1485 seen_sse_num = 0;
1486 /* frame pointer and return address */
1487 seen_stack_size = PTR_SIZE * 2;
1488 /* count the number of seen parameters */
1489 sym = func_type->ref;
1490 while ((sym = sym->next) != NULL) {
1491 type = &sym->type;
1492 mode = classify_x86_64_arg(type, NULL, &size, &align, &reg_count);
1493 switch (mode) {
1494 default:
1495 stack_arg:
1496 seen_stack_size = ((seen_stack_size + align - 1) & -align) + size;
1497 break;
1499 case x86_64_mode_integer:
1500 if (seen_reg_num + reg_count > REGN)
1501 goto stack_arg;
1502 seen_reg_num += reg_count;
1503 break;
1505 case x86_64_mode_sse:
1506 if (seen_sse_num + reg_count > 8)
1507 goto stack_arg;
1508 seen_sse_num += reg_count;
1509 break;
1513 loc -= 24;
1514 /* movl $0x????????, -0x18(%rbp) */
1515 o(0xe845c7);
1516 gen_le32(seen_reg_num * 8);
1517 /* movl $0x????????, -0x14(%rbp) */
1518 o(0xec45c7);
1519 gen_le32(seen_sse_num * 16 + 48);
1520 /* leaq $0x????????, %r11 */
1521 o(0x9d8d4c);
1522 gen_le32(seen_stack_size);
1523 /* movq %r11, -0x10(%rbp) */
1524 o(0xf05d894c);
1525 /* leaq $-192(%rbp), %r11 */
1526 o(0x9d8d4c);
1527 gen_le32(-176 - 24);
1528 /* movq %r11, -0x8(%rbp) */
1529 o(0xf85d894c);
1531 /* save all register passing arguments */
1532 for (i = 0; i < 8; i++) {
1533 loc -= 16;
1534 if (!tcc_state->nosse) {
1535 o(0xd60f66); /* movq */
1536 gen_modrm(7 - i, VT_LOCAL, NULL, loc);
1538 /* movq $0, loc+8(%rbp) */
1539 o(0x85c748);
1540 gen_le32(loc + 8);
1541 gen_le32(0);
1543 for (i = 0; i < REGN; i++) {
1544 push_arg_reg(REGN-1-i);
1548 sym = func_type->ref;
1549 reg_param_index = 0;
1550 sse_param_index = 0;
1552 /* if the function returns a structure, then add an
1553 implicit pointer parameter */
1554 if (ret_mode == x86_64_mode_memory) {
1555 push_arg_reg(reg_param_index);
1556 func_vc = loc;
1557 reg_param_index++;
1559 /* define parameters */
1560 while ((sym = sym->next) != NULL) {
1561 type = &sym->type;
1562 mode = classify_x86_64_arg(type, NULL, &size, &align, &reg_count);
1563 switch (mode) {
1564 case x86_64_mode_sse:
1565 if (tcc_state->nosse)
1566 tcc_error("SSE disabled but floating point arguments used");
1567 if (sse_param_index + reg_count <= 8) {
1568 /* save arguments passed by register */
1569 loc -= reg_count * 8;
1570 param_addr = loc;
1571 for (i = 0; i < reg_count; ++i) {
1572 o(0xd60f66); /* movq */
1573 gen_modrm(sse_param_index, VT_LOCAL, NULL, param_addr + i*8);
1574 ++sse_param_index;
1576 } else {
1577 addr = (addr + align - 1) & -align;
1578 param_addr = addr;
1579 addr += size;
1581 break;
1583 case x86_64_mode_memory:
1584 case x86_64_mode_x87:
1585 addr = (addr + align - 1) & -align;
1586 param_addr = addr;
1587 addr += size;
1588 break;
1590 case x86_64_mode_integer: {
1591 if (reg_param_index + reg_count <= REGN) {
1592 /* save arguments passed by register */
1593 loc -= reg_count * 8;
1594 param_addr = loc;
1595 for (i = 0; i < reg_count; ++i) {
1596 gen_modrm64(0x89, arg_regs[reg_param_index], VT_LOCAL, NULL, param_addr + i*8);
1597 ++reg_param_index;
1599 } else {
1600 addr = (addr + align - 1) & -align;
1601 param_addr = addr;
1602 addr += size;
1604 break;
1606 default: break; /* nothing to be done for x86_64_mode_none */
1608 sym_push(sym->v & ~SYM_FIELD, type,
1609 VT_LOCAL | VT_LVAL, param_addr);
1612 #ifdef CONFIG_TCC_BCHECK
1613 if (tcc_state->do_bounds_check)
1614 gen_bounds_prolog();
1615 #endif
1618 /* generate function epilog */
1619 void gfunc_epilog(void)
1621 int v, saved_ind;
1623 #ifdef CONFIG_TCC_BCHECK
1624 if (tcc_state->do_bounds_check)
1625 gen_bounds_epilog();
1626 #endif
1627 o(0xc9); /* leave */
1628 if (func_ret_sub == 0) {
1629 o(0xc3); /* ret */
1630 } else {
1631 o(0xc2); /* ret n */
1632 g(func_ret_sub);
1633 g(func_ret_sub >> 8);
1635 /* align local size to word & save local variables */
1636 v = (-loc + 15) & -16;
1637 saved_ind = ind;
1638 ind = func_sub_sp_offset - FUNC_PROLOG_SIZE;
1639 o(0xe5894855); /* push %rbp, mov %rsp, %rbp */
1640 o(0xec8148); /* sub rsp, stacksize */
1641 gen_le32(v);
1642 ind = saved_ind;
1645 #endif /* not PE */
1647 ST_FUNC void gen_fill_nops(int bytes)
1649 while (bytes--)
1650 g(0x90);
1653 /* generate a jump to a label */
1654 int gjmp(int t)
1656 return gjmp2(0xe9, t);
1659 /* generate a jump to a fixed address */
1660 void gjmp_addr(int a)
1662 int r;
1663 r = a - ind - 2;
1664 if (r == (char)r) {
1665 g(0xeb);
1666 g(r);
1667 } else {
1668 oad(0xe9, a - ind - 5);
1672 ST_FUNC int gjmp_append(int n, int t)
1674 void *p;
1675 /* insert vtop->c jump list in t */
1676 if (n) {
1677 uint32_t n1 = n, n2;
1678 while ((n2 = read32le(p = cur_text_section->data + n1)))
1679 n1 = n2;
1680 write32le(p, t);
1681 t = n;
1683 return t;
1686 ST_FUNC int gjmp_cond(int op, int t)
1688 if (op & 0x100)
1690 /* This was a float compare. If the parity flag is set
1691 the result was unordered. For anything except != this
1692 means false and we don't jump (anding both conditions).
1693 For != this means true (oring both).
1694 Take care about inverting the test. We need to jump
1695 to our target if the result was unordered and test wasn't NE,
1696 otherwise if unordered we don't want to jump. */
1697 int v = vtop->cmp_r;
1698 op &= ~0x100;
1699 if (op ^ v ^ (v != TOK_NE))
1700 o(0x067a); /* jp +6 */
1701 else
1703 g(0x0f);
1704 t = gjmp2(0x8a, t); /* jp t */
1707 g(0x0f);
1708 t = gjmp2(op - 16, t);
1709 return t;
1712 /* generate an integer binary operation */
1713 void gen_opi(int op)
1715 int r, fr, opc, c;
1716 int ll, uu, cc;
1718 ll = is64_type(vtop[-1].type.t);
1719 uu = (vtop[-1].type.t & VT_UNSIGNED) != 0;
1720 cc = (vtop->r & (VT_VALMASK | VT_LVAL | VT_SYM)) == VT_CONST;
1722 switch(op) {
1723 case '+':
1724 case TOK_ADDC1: /* add with carry generation */
1725 opc = 0;
1726 gen_op8:
1727 if (cc && (!ll || (int)vtop->c.i == vtop->c.i)) {
1728 /* constant case */
1729 vswap();
1730 r = gv(RC_INT);
1731 vswap();
1732 c = vtop->c.i;
1733 if (c == (char)c) {
1734 /* XXX: generate inc and dec for smaller code ? */
1735 orex(ll, r, 0, 0x83);
1736 o(0xc0 | (opc << 3) | REG_VALUE(r));
1737 g(c);
1738 } else {
1739 orex(ll, r, 0, 0x81);
1740 oad(0xc0 | (opc << 3) | REG_VALUE(r), c);
1742 } else {
1743 gv2(RC_INT, RC_INT);
1744 r = vtop[-1].r;
1745 fr = vtop[0].r;
1746 orex(ll, r, fr, (opc << 3) | 0x01);
1747 o(0xc0 + REG_VALUE(r) + REG_VALUE(fr) * 8);
1749 vtop--;
1750 if (op >= TOK_ULT && op <= TOK_GT)
1751 vset_VT_CMP(op);
1752 break;
1753 case '-':
1754 case TOK_SUBC1: /* sub with carry generation */
1755 opc = 5;
1756 goto gen_op8;
1757 case TOK_ADDC2: /* add with carry use */
1758 opc = 2;
1759 goto gen_op8;
1760 case TOK_SUBC2: /* sub with carry use */
1761 opc = 3;
1762 goto gen_op8;
1763 case '&':
1764 opc = 4;
1765 goto gen_op8;
1766 case '^':
1767 opc = 6;
1768 goto gen_op8;
1769 case '|':
1770 opc = 1;
1771 goto gen_op8;
1772 case '*':
1773 gv2(RC_INT, RC_INT);
1774 r = vtop[-1].r;
1775 fr = vtop[0].r;
1776 orex(ll, fr, r, 0xaf0f); /* imul fr, r */
1777 o(0xc0 + REG_VALUE(fr) + REG_VALUE(r) * 8);
1778 vtop--;
1779 break;
1780 case TOK_SHL:
1781 opc = 4;
1782 goto gen_shift;
1783 case TOK_SHR:
1784 opc = 5;
1785 goto gen_shift;
1786 case TOK_SAR:
1787 opc = 7;
1788 gen_shift:
1789 opc = 0xc0 | (opc << 3);
1790 if (cc) {
1791 /* constant case */
1792 vswap();
1793 r = gv(RC_INT);
1794 vswap();
1795 orex(ll, r, 0, 0xc1); /* shl/shr/sar $xxx, r */
1796 o(opc | REG_VALUE(r));
1797 g(vtop->c.i & (ll ? 63 : 31));
1798 } else {
1799 /* we generate the shift in ecx */
1800 gv2(RC_INT, RC_RCX);
1801 r = vtop[-1].r;
1802 orex(ll, r, 0, 0xd3); /* shl/shr/sar %cl, r */
1803 o(opc | REG_VALUE(r));
1805 vtop--;
1806 break;
1807 case TOK_UDIV:
1808 case TOK_UMOD:
1809 uu = 1;
1810 goto divmod;
1811 case '/':
1812 case '%':
1813 case TOK_PDIV:
1814 uu = 0;
1815 divmod:
1816 /* first operand must be in eax */
1817 /* XXX: need better constraint for second operand */
1818 gv2(RC_RAX, RC_RCX);
1819 r = vtop[-1].r;
1820 fr = vtop[0].r;
1821 vtop--;
1822 save_reg(TREG_RDX);
1823 orex(ll, 0, 0, uu ? 0xd231 : 0x99); /* xor %edx,%edx : cqto */
1824 orex(ll, fr, 0, 0xf7); /* div fr, %eax */
1825 o((uu ? 0xf0 : 0xf8) + REG_VALUE(fr));
1826 if (op == '%' || op == TOK_UMOD)
1827 r = TREG_RDX;
1828 else
1829 r = TREG_RAX;
1830 vtop->r = r;
1831 break;
1832 default:
1833 opc = 7;
1834 goto gen_op8;
1838 void gen_opl(int op)
1840 gen_opi(op);
1843 void vpush_const(int t, int v)
1845 CType ctype = { t | VT_CONSTANT, 0 };
1846 vpushsym(&ctype, external_global_sym(v, &ctype));
1847 vtop->r |= VT_LVAL;
1850 /* generate a floating point operation 'v = t1 op t2' instruction. The
1851 two operands are guaranteed to have the same floating point type */
1852 /* XXX: need to use ST1 too */
1853 void gen_opf(int op)
1855 int a, ft, fc, swapped, r;
1856 int bt = vtop->type.t & VT_BTYPE;
1857 int float_type = bt == VT_LDOUBLE ? RC_ST0 : RC_FLOAT;
1859 if (op == TOK_NEG) { /* unary minus */
1860 gv(float_type);
1861 if (float_type == RC_ST0) {
1862 o(0xe0d9); /* fchs */
1863 } else {
1864 /* -0.0, in libtcc1.c */
1865 vpush_const(bt, bt == VT_FLOAT ? TOK___mzerosf : TOK___mzerodf);
1866 gv(RC_FLOAT);
1867 if (bt == VT_DOUBLE)
1868 o(0x66);
1869 /* xorp[sd] %xmm1, %xmm0 */
1870 o(0xc0570f | (REG_VALUE(vtop[0].r) + REG_VALUE(vtop[-1].r)*8) << 16);
1871 vtop--;
1873 return;
1876 /* convert constants to memory references */
1877 if ((vtop[-1].r & (VT_VALMASK | VT_LVAL)) == VT_CONST) {
1878 vswap();
1879 gv(float_type);
1880 vswap();
1882 if ((vtop[0].r & (VT_VALMASK | VT_LVAL)) == VT_CONST)
1883 gv(float_type);
1885 /* must put at least one value in the floating point register */
1886 if ((vtop[-1].r & VT_LVAL) &&
1887 (vtop[0].r & VT_LVAL)) {
1888 vswap();
1889 gv(float_type);
1890 vswap();
1892 swapped = 0;
1893 /* swap the stack if needed so that t1 is the register and t2 is
1894 the memory reference */
1895 if (vtop[-1].r & VT_LVAL) {
1896 vswap();
1897 swapped = 1;
1899 if ((vtop->type.t & VT_BTYPE) == VT_LDOUBLE) {
1900 if (op >= TOK_ULT && op <= TOK_GT) {
1901 /* load on stack second operand */
1902 load(TREG_ST0, vtop);
1903 save_reg(TREG_RAX); /* eax is used by FP comparison code */
1904 if (op == TOK_GE || op == TOK_GT)
1905 swapped = !swapped;
1906 else if (op == TOK_EQ || op == TOK_NE)
1907 swapped = 0;
1908 if (swapped)
1909 o(0xc9d9); /* fxch %st(1) */
1910 if (op == TOK_EQ || op == TOK_NE)
1911 o(0xe9da); /* fucompp */
1912 else
1913 o(0xd9de); /* fcompp */
1914 o(0xe0df); /* fnstsw %ax */
1915 if (op == TOK_EQ) {
1916 o(0x45e480); /* and $0x45, %ah */
1917 o(0x40fC80); /* cmp $0x40, %ah */
1918 } else if (op == TOK_NE) {
1919 o(0x45e480); /* and $0x45, %ah */
1920 o(0x40f480); /* xor $0x40, %ah */
1921 op = TOK_NE;
1922 } else if (op == TOK_GE || op == TOK_LE) {
1923 o(0x05c4f6); /* test $0x05, %ah */
1924 op = TOK_EQ;
1925 } else {
1926 o(0x45c4f6); /* test $0x45, %ah */
1927 op = TOK_EQ;
1929 vtop--;
1930 vset_VT_CMP(op);
1931 } else {
1932 /* no memory reference possible for long double operations */
1933 load(TREG_ST0, vtop);
1934 swapped = !swapped;
1936 switch(op) {
1937 default:
1938 case '+':
1939 a = 0;
1940 break;
1941 case '-':
1942 a = 4;
1943 if (swapped)
1944 a++;
1945 break;
1946 case '*':
1947 a = 1;
1948 break;
1949 case '/':
1950 a = 6;
1951 if (swapped)
1952 a++;
1953 break;
1955 ft = vtop->type.t;
1956 fc = vtop->c.i;
1957 o(0xde); /* fxxxp %st, %st(1) */
1958 o(0xc1 + (a << 3));
1959 vtop--;
1961 } else {
1962 if (op >= TOK_ULT && op <= TOK_GT) {
1963 /* if saved lvalue, then we must reload it */
1964 r = vtop->r;
1965 fc = vtop->c.i;
1966 if ((r & VT_VALMASK) == VT_LLOCAL) {
1967 SValue v1;
1968 r = get_reg(RC_INT);
1969 v1.type.t = VT_PTR;
1970 v1.r = VT_LOCAL | VT_LVAL;
1971 v1.c.i = fc;
1972 load(r, &v1);
1973 fc = 0;
1974 vtop->r = r = r | VT_LVAL;
1977 if (op == TOK_EQ || op == TOK_NE) {
1978 swapped = 0;
1979 } else {
1980 if (op == TOK_LE || op == TOK_LT)
1981 swapped = !swapped;
1982 if (op == TOK_LE || op == TOK_GE) {
1983 op = 0x93; /* setae */
1984 } else {
1985 op = 0x97; /* seta */
1989 if (swapped) {
1990 gv(RC_FLOAT);
1991 vswap();
1993 assert(!(vtop[-1].r & VT_LVAL));
1995 if ((vtop->type.t & VT_BTYPE) == VT_DOUBLE)
1996 o(0x66);
1997 if (op == TOK_EQ || op == TOK_NE)
1998 o(0x2e0f); /* ucomisd */
1999 else
2000 o(0x2f0f); /* comisd */
2002 if (vtop->r & VT_LVAL) {
2003 gen_modrm(vtop[-1].r, r, vtop->sym, fc);
2004 } else {
2005 o(0xc0 + REG_VALUE(vtop[0].r) + REG_VALUE(vtop[-1].r)*8);
2008 vtop--;
2009 vset_VT_CMP(op | 0x100);
2010 vtop->cmp_r = op;
2011 } else {
2012 assert((vtop->type.t & VT_BTYPE) != VT_LDOUBLE);
2013 switch(op) {
2014 default:
2015 case '+':
2016 a = 0;
2017 break;
2018 case '-':
2019 a = 4;
2020 break;
2021 case '*':
2022 a = 1;
2023 break;
2024 case '/':
2025 a = 6;
2026 break;
2028 ft = vtop->type.t;
2029 fc = vtop->c.i;
2030 assert((ft & VT_BTYPE) != VT_LDOUBLE);
2032 r = vtop->r;
2033 /* if saved lvalue, then we must reload it */
2034 if ((vtop->r & VT_VALMASK) == VT_LLOCAL) {
2035 SValue v1;
2036 r = get_reg(RC_INT);
2037 v1.type.t = VT_PTR;
2038 v1.r = VT_LOCAL | VT_LVAL;
2039 v1.c.i = fc;
2040 load(r, &v1);
2041 fc = 0;
2042 vtop->r = r = r | VT_LVAL;
2045 assert(!(vtop[-1].r & VT_LVAL));
2046 if (swapped) {
2047 assert(vtop->r & VT_LVAL);
2048 gv(RC_FLOAT);
2049 vswap();
2052 if ((ft & VT_BTYPE) == VT_DOUBLE) {
2053 o(0xf2);
2054 } else {
2055 o(0xf3);
2057 o(0x0f);
2058 o(0x58 + a);
2060 if (vtop->r & VT_LVAL) {
2061 gen_modrm(vtop[-1].r, r, vtop->sym, fc);
2062 } else {
2063 o(0xc0 + REG_VALUE(vtop[0].r) + REG_VALUE(vtop[-1].r)*8);
2066 vtop--;
2071 /* convert integers to fp 't' type. Must handle 'int', 'unsigned int'
2072 and 'long long' cases. */
2073 void gen_cvt_itof(int t)
2075 if ((t & VT_BTYPE) == VT_LDOUBLE) {
2076 save_reg(TREG_ST0);
2077 gv(RC_INT);
2078 if ((vtop->type.t & VT_BTYPE) == VT_LLONG) {
2079 /* signed long long to float/double/long double (unsigned case
2080 is handled generically) */
2081 o(0x50 + (vtop->r & VT_VALMASK)); /* push r */
2082 o(0x242cdf); /* fildll (%rsp) */
2083 o(0x08c48348); /* add $8, %rsp */
2084 } else if ((vtop->type.t & (VT_BTYPE | VT_UNSIGNED)) ==
2085 (VT_INT | VT_UNSIGNED)) {
2086 /* unsigned int to float/double/long double */
2087 o(0x6a); /* push $0 */
2088 g(0x00);
2089 o(0x50 + (vtop->r & VT_VALMASK)); /* push r */
2090 o(0x242cdf); /* fildll (%rsp) */
2091 o(0x10c48348); /* add $16, %rsp */
2092 } else {
2093 /* int to float/double/long double */
2094 o(0x50 + (vtop->r & VT_VALMASK)); /* push r */
2095 o(0x2404db); /* fildl (%rsp) */
2096 o(0x08c48348); /* add $8, %rsp */
2098 vtop->r = TREG_ST0;
2099 } else {
2100 int r = get_reg(RC_FLOAT);
2101 gv(RC_INT);
2102 o(0xf2 + ((t & VT_BTYPE) == VT_FLOAT?1:0));
2103 if ((vtop->type.t & (VT_BTYPE | VT_UNSIGNED)) ==
2104 (VT_INT | VT_UNSIGNED) ||
2105 (vtop->type.t & VT_BTYPE) == VT_LLONG) {
2106 o(0x48); /* REX */
2108 o(0x2a0f);
2109 o(0xc0 + (vtop->r & VT_VALMASK) + REG_VALUE(r)*8); /* cvtsi2sd */
2110 vtop->r = r;
2114 /* convert from one floating point type to another */
2115 void gen_cvt_ftof(int t)
2117 int ft, bt, tbt;
2119 ft = vtop->type.t;
2120 bt = ft & VT_BTYPE;
2121 tbt = t & VT_BTYPE;
2123 if (bt == VT_FLOAT) {
2124 gv(RC_FLOAT);
2125 if (tbt == VT_DOUBLE) {
2126 o(0x140f); /* unpcklps */
2127 o(0xc0 + REG_VALUE(vtop->r)*9);
2128 o(0x5a0f); /* cvtps2pd */
2129 o(0xc0 + REG_VALUE(vtop->r)*9);
2130 } else if (tbt == VT_LDOUBLE) {
2131 save_reg(RC_ST0);
2132 /* movss %xmm0,-0x10(%rsp) */
2133 o(0x110ff3);
2134 o(0x44 + REG_VALUE(vtop->r)*8);
2135 o(0xf024);
2136 o(0xf02444d9); /* flds -0x10(%rsp) */
2137 vtop->r = TREG_ST0;
2139 } else if (bt == VT_DOUBLE) {
2140 gv(RC_FLOAT);
2141 if (tbt == VT_FLOAT) {
2142 o(0x140f66); /* unpcklpd */
2143 o(0xc0 + REG_VALUE(vtop->r)*9);
2144 o(0x5a0f66); /* cvtpd2ps */
2145 o(0xc0 + REG_VALUE(vtop->r)*9);
2146 } else if (tbt == VT_LDOUBLE) {
2147 save_reg(RC_ST0);
2148 /* movsd %xmm0,-0x10(%rsp) */
2149 o(0x110ff2);
2150 o(0x44 + REG_VALUE(vtop->r)*8);
2151 o(0xf024);
2152 o(0xf02444dd); /* fldl -0x10(%rsp) */
2153 vtop->r = TREG_ST0;
2155 } else {
2156 int r;
2157 gv(RC_ST0);
2158 r = get_reg(RC_FLOAT);
2159 if (tbt == VT_DOUBLE) {
2160 o(0xf0245cdd); /* fstpl -0x10(%rsp) */
2161 /* movsd -0x10(%rsp),%xmm0 */
2162 o(0x100ff2);
2163 o(0x44 + REG_VALUE(r)*8);
2164 o(0xf024);
2165 vtop->r = r;
2166 } else if (tbt == VT_FLOAT) {
2167 o(0xf0245cd9); /* fstps -0x10(%rsp) */
2168 /* movss -0x10(%rsp),%xmm0 */
2169 o(0x100ff3);
2170 o(0x44 + REG_VALUE(r)*8);
2171 o(0xf024);
2172 vtop->r = r;
2177 /* convert fp to int 't' type */
2178 void gen_cvt_ftoi(int t)
2180 int ft, bt, size, r;
2181 ft = vtop->type.t;
2182 bt = ft & VT_BTYPE;
2183 if (bt == VT_LDOUBLE) {
2184 gen_cvt_ftof(VT_DOUBLE);
2185 bt = VT_DOUBLE;
2188 gv(RC_FLOAT);
2189 if (t != VT_INT)
2190 size = 8;
2191 else
2192 size = 4;
2194 r = get_reg(RC_INT);
2195 if (bt == VT_FLOAT) {
2196 o(0xf3);
2197 } else if (bt == VT_DOUBLE) {
2198 o(0xf2);
2199 } else {
2200 assert(0);
2202 orex(size == 8, r, 0, 0x2c0f); /* cvttss2si or cvttsd2si */
2203 o(0xc0 + REG_VALUE(vtop->r) + REG_VALUE(r)*8);
2204 vtop->r = r;
2207 // Generate sign extension from 32 to 64 bits:
2208 ST_FUNC void gen_cvt_sxtw(void)
2210 int r = gv(RC_INT);
2211 /* x86_64 specific: movslq */
2212 o(0x6348);
2213 o(0xc0 + (REG_VALUE(r) << 3) + REG_VALUE(r));
2216 /* char/short to int conversion */
2217 ST_FUNC void gen_cvt_csti(int t)
2219 int r, sz, xl, ll;
2220 r = gv(RC_INT);
2221 sz = !(t & VT_UNSIGNED);
2222 xl = (t & VT_BTYPE) == VT_SHORT;
2223 ll = (vtop->type.t & VT_BTYPE) == VT_LLONG;
2224 orex(ll, r, 0, 0xc0b60f /* mov[sz] %a[xl], %eax */
2225 | (sz << 3 | xl) << 8
2226 | (REG_VALUE(r) << 3 | REG_VALUE(r)) << 16
2230 /* increment tcov counter */
2231 ST_FUNC void gen_increment_tcov (SValue *sv)
2233 o(0x058348); /* addq $1, xxx(%rip) */
2234 greloca(cur_text_section, sv->sym, ind, R_X86_64_PC32, -5);
2235 gen_le32(0);
2236 o(1);
2239 /* computed goto support */
2240 ST_FUNC void ggoto(void)
2242 gcall_or_jmp(1);
2243 vtop--;
2246 /* Save the stack pointer onto the stack and return the location of its address */
2247 ST_FUNC void gen_vla_sp_save(int addr) {
2248 /* mov %rsp,addr(%rbp)*/
2249 gen_modrm64(0x89, TREG_RSP, VT_LOCAL, NULL, addr);
2252 /* Restore the SP from a location on the stack */
2253 ST_FUNC void gen_vla_sp_restore(int addr) {
2254 gen_modrm64(0x8b, TREG_RSP, VT_LOCAL, NULL, addr);
2257 #ifdef TCC_TARGET_PE
2258 /* Save result of gen_vla_alloc onto the stack */
2259 ST_FUNC void gen_vla_result(int addr) {
2260 /* mov %rax,addr(%rbp)*/
2261 gen_modrm64(0x89, TREG_RAX, VT_LOCAL, NULL, addr);
2263 #endif
2265 /* Subtract from the stack pointer, and push the resulting value onto the stack */
2266 ST_FUNC void gen_vla_alloc(CType *type, int align) {
2267 int use_call = 0;
2269 #if defined(CONFIG_TCC_BCHECK)
2270 use_call = tcc_state->do_bounds_check;
2271 #endif
2272 #ifdef TCC_TARGET_PE /* alloca does more than just adjust %rsp on Windows */
2273 use_call = 1;
2274 #endif
2275 if (use_call)
2277 vpush_helper_func(TOK_alloca);
2278 vswap(); /* Move alloca ref past allocation size */
2279 gfunc_call(1);
2281 else {
2282 int r;
2283 r = gv(RC_INT); /* allocation size */
2284 /* sub r,%rsp */
2285 o(0x2b48);
2286 o(0xe0 | REG_VALUE(r));
2287 /* We align to 16 bytes rather than align */
2288 /* and ~15, %rsp */
2289 o(0xf0e48348);
2290 vpop();
2295 * Assmuing the top part of the stack looks like below,
2296 * src dest src
2298 ST_FUNC void gen_struct_copy(int size)
2300 int n = size / PTR_SIZE;
2301 #ifdef TCC_TARGET_PE
2302 o(0x5756); /* push rsi, rdi */
2303 #endif
2304 gv2(RC_RDI, RC_RSI);
2305 if (n <= 4) {
2306 while (n)
2307 o(0xa548), --n;
2308 } else {
2309 vpushi(n);
2310 gv(RC_RCX);
2311 o(0xa548f3);
2312 vpop();
2314 if (size & 0x04)
2315 o(0xa5);
2316 if (size & 0x02)
2317 o(0xa566);
2318 if (size & 0x01)
2319 o(0xa4);
2320 #ifdef TCC_TARGET_PE
2321 o(0x5e5f); /* pop rdi, rsi */
2322 #endif
2323 vpop();
2324 vpop();
2327 /* end of x86-64 code generator */
2328 /*************************************************************/
2329 #endif /* ! TARGET_DEFS_ONLY */
2330 /******************************************************/