Simplifications to PRAGMA optimize to make it easier to use. It always
[sqlite.git] / src / select.c
blob81e802d6e47965cbc0ff63dbc3265559ddc67d94
1 /*
2 ** 2001 September 15
3 **
4 ** The author disclaims copyright to this source code. In place of
5 ** a legal notice, here is a blessing:
6 **
7 ** May you do good and not evil.
8 ** May you find forgiveness for yourself and forgive others.
9 ** May you share freely, never taking more than you give.
11 *************************************************************************
12 ** This file contains C code routines that are called by the parser
13 ** to handle SELECT statements in SQLite.
15 #include "sqliteInt.h"
18 ** An instance of the following object is used to record information about
19 ** how to process the DISTINCT keyword, to simplify passing that information
20 ** into the selectInnerLoop() routine.
22 typedef struct DistinctCtx DistinctCtx;
23 struct DistinctCtx {
24 u8 isTnct; /* 0: Not distinct. 1: DISTICT 2: DISTINCT and ORDER BY */
25 u8 eTnctType; /* One of the WHERE_DISTINCT_* operators */
26 int tabTnct; /* Ephemeral table used for DISTINCT processing */
27 int addrTnct; /* Address of OP_OpenEphemeral opcode for tabTnct */
31 ** An instance of the following object is used to record information about
32 ** the ORDER BY (or GROUP BY) clause of query is being coded.
34 ** The aDefer[] array is used by the sorter-references optimization. For
35 ** example, assuming there is no index that can be used for the ORDER BY,
36 ** for the query:
38 ** SELECT a, bigblob FROM t1 ORDER BY a LIMIT 10;
40 ** it may be more efficient to add just the "a" values to the sorter, and
41 ** retrieve the associated "bigblob" values directly from table t1 as the
42 ** 10 smallest "a" values are extracted from the sorter.
44 ** When the sorter-reference optimization is used, there is one entry in the
45 ** aDefer[] array for each database table that may be read as values are
46 ** extracted from the sorter.
48 typedef struct SortCtx SortCtx;
49 struct SortCtx {
50 ExprList *pOrderBy; /* The ORDER BY (or GROUP BY clause) */
51 int nOBSat; /* Number of ORDER BY terms satisfied by indices */
52 int iECursor; /* Cursor number for the sorter */
53 int regReturn; /* Register holding block-output return address */
54 int labelBkOut; /* Start label for the block-output subroutine */
55 int addrSortIndex; /* Address of the OP_SorterOpen or OP_OpenEphemeral */
56 int labelDone; /* Jump here when done, ex: LIMIT reached */
57 int labelOBLopt; /* Jump here when sorter is full */
58 u8 sortFlags; /* Zero or more SORTFLAG_* bits */
59 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
60 u8 nDefer; /* Number of valid entries in aDefer[] */
61 struct DeferredCsr {
62 Table *pTab; /* Table definition */
63 int iCsr; /* Cursor number for table */
64 int nKey; /* Number of PK columns for table pTab (>=1) */
65 } aDefer[4];
66 #endif
67 struct RowLoadInfo *pDeferredRowLoad; /* Deferred row loading info or NULL */
68 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS
69 int addrPush; /* First instruction to push data into sorter */
70 int addrPushEnd; /* Last instruction that pushes data into sorter */
71 #endif
73 #define SORTFLAG_UseSorter 0x01 /* Use SorterOpen instead of OpenEphemeral */
76 ** Delete all the content of a Select structure. Deallocate the structure
77 ** itself depending on the value of bFree
79 ** If bFree==1, call sqlite3DbFree() on the p object.
80 ** If bFree==0, Leave the first Select object unfreed
82 static void clearSelect(sqlite3 *db, Select *p, int bFree){
83 assert( db!=0 );
84 while( p ){
85 Select *pPrior = p->pPrior;
86 sqlite3ExprListDelete(db, p->pEList);
87 sqlite3SrcListDelete(db, p->pSrc);
88 sqlite3ExprDelete(db, p->pWhere);
89 sqlite3ExprListDelete(db, p->pGroupBy);
90 sqlite3ExprDelete(db, p->pHaving);
91 sqlite3ExprListDelete(db, p->pOrderBy);
92 sqlite3ExprDelete(db, p->pLimit);
93 if( OK_IF_ALWAYS_TRUE(p->pWith) ) sqlite3WithDelete(db, p->pWith);
94 #ifndef SQLITE_OMIT_WINDOWFUNC
95 if( OK_IF_ALWAYS_TRUE(p->pWinDefn) ){
96 sqlite3WindowListDelete(db, p->pWinDefn);
98 while( p->pWin ){
99 assert( p->pWin->ppThis==&p->pWin );
100 sqlite3WindowUnlinkFromSelect(p->pWin);
102 #endif
103 if( bFree ) sqlite3DbNNFreeNN(db, p);
104 p = pPrior;
105 bFree = 1;
110 ** Initialize a SelectDest structure.
112 void sqlite3SelectDestInit(SelectDest *pDest, int eDest, int iParm){
113 pDest->eDest = (u8)eDest;
114 pDest->iSDParm = iParm;
115 pDest->iSDParm2 = 0;
116 pDest->zAffSdst = 0;
117 pDest->iSdst = 0;
118 pDest->nSdst = 0;
123 ** Allocate a new Select structure and return a pointer to that
124 ** structure.
126 Select *sqlite3SelectNew(
127 Parse *pParse, /* Parsing context */
128 ExprList *pEList, /* which columns to include in the result */
129 SrcList *pSrc, /* the FROM clause -- which tables to scan */
130 Expr *pWhere, /* the WHERE clause */
131 ExprList *pGroupBy, /* the GROUP BY clause */
132 Expr *pHaving, /* the HAVING clause */
133 ExprList *pOrderBy, /* the ORDER BY clause */
134 u32 selFlags, /* Flag parameters, such as SF_Distinct */
135 Expr *pLimit /* LIMIT value. NULL means not used */
137 Select *pNew, *pAllocated;
138 Select standin;
139 pAllocated = pNew = sqlite3DbMallocRawNN(pParse->db, sizeof(*pNew) );
140 if( pNew==0 ){
141 assert( pParse->db->mallocFailed );
142 pNew = &standin;
144 if( pEList==0 ){
145 pEList = sqlite3ExprListAppend(pParse, 0,
146 sqlite3Expr(pParse->db,TK_ASTERISK,0));
148 pNew->pEList = pEList;
149 pNew->op = TK_SELECT;
150 pNew->selFlags = selFlags;
151 pNew->iLimit = 0;
152 pNew->iOffset = 0;
153 pNew->selId = ++pParse->nSelect;
154 pNew->addrOpenEphm[0] = -1;
155 pNew->addrOpenEphm[1] = -1;
156 pNew->nSelectRow = 0;
157 if( pSrc==0 ) pSrc = sqlite3DbMallocZero(pParse->db, sizeof(*pSrc));
158 pNew->pSrc = pSrc;
159 pNew->pWhere = pWhere;
160 pNew->pGroupBy = pGroupBy;
161 pNew->pHaving = pHaving;
162 pNew->pOrderBy = pOrderBy;
163 pNew->pPrior = 0;
164 pNew->pNext = 0;
165 pNew->pLimit = pLimit;
166 pNew->pWith = 0;
167 #ifndef SQLITE_OMIT_WINDOWFUNC
168 pNew->pWin = 0;
169 pNew->pWinDefn = 0;
170 #endif
171 if( pParse->db->mallocFailed ) {
172 clearSelect(pParse->db, pNew, pNew!=&standin);
173 pAllocated = 0;
174 }else{
175 assert( pNew->pSrc!=0 || pParse->nErr>0 );
177 return pAllocated;
182 ** Delete the given Select structure and all of its substructures.
184 void sqlite3SelectDelete(sqlite3 *db, Select *p){
185 if( OK_IF_ALWAYS_TRUE(p) ) clearSelect(db, p, 1);
187 void sqlite3SelectDeleteGeneric(sqlite3 *db, void *p){
188 if( ALWAYS(p) ) clearSelect(db, (Select*)p, 1);
192 ** Return a pointer to the right-most SELECT statement in a compound.
194 static Select *findRightmost(Select *p){
195 while( p->pNext ) p = p->pNext;
196 return p;
200 ** Given 1 to 3 identifiers preceding the JOIN keyword, determine the
201 ** type of join. Return an integer constant that expresses that type
202 ** in terms of the following bit values:
204 ** JT_INNER
205 ** JT_CROSS
206 ** JT_OUTER
207 ** JT_NATURAL
208 ** JT_LEFT
209 ** JT_RIGHT
211 ** A full outer join is the combination of JT_LEFT and JT_RIGHT.
213 ** If an illegal or unsupported join type is seen, then still return
214 ** a join type, but put an error in the pParse structure.
216 ** These are the valid join types:
219 ** pA pB pC Return Value
220 ** ------- ----- ----- ------------
221 ** CROSS - - JT_CROSS
222 ** INNER - - JT_INNER
223 ** LEFT - - JT_LEFT|JT_OUTER
224 ** LEFT OUTER - JT_LEFT|JT_OUTER
225 ** RIGHT - - JT_RIGHT|JT_OUTER
226 ** RIGHT OUTER - JT_RIGHT|JT_OUTER
227 ** FULL - - JT_LEFT|JT_RIGHT|JT_OUTER
228 ** FULL OUTER - JT_LEFT|JT_RIGHT|JT_OUTER
229 ** NATURAL INNER - JT_NATURAL|JT_INNER
230 ** NATURAL LEFT - JT_NATURAL|JT_LEFT|JT_OUTER
231 ** NATURAL LEFT OUTER JT_NATURAL|JT_LEFT|JT_OUTER
232 ** NATURAL RIGHT - JT_NATURAL|JT_RIGHT|JT_OUTER
233 ** NATURAL RIGHT OUTER JT_NATURAL|JT_RIGHT|JT_OUTER
234 ** NATURAL FULL - JT_NATURAL|JT_LEFT|JT_RIGHT
235 ** NATURAL FULL OUTER JT_NATRUAL|JT_LEFT|JT_RIGHT
237 ** To preserve historical compatibly, SQLite also accepts a variety
238 ** of other non-standard and in many cases nonsensical join types.
239 ** This routine makes as much sense at it can from the nonsense join
240 ** type and returns a result. Examples of accepted nonsense join types
241 ** include but are not limited to:
243 ** INNER CROSS JOIN -> same as JOIN
244 ** NATURAL CROSS JOIN -> same as NATURAL JOIN
245 ** OUTER LEFT JOIN -> same as LEFT JOIN
246 ** LEFT NATURAL JOIN -> same as NATURAL LEFT JOIN
247 ** LEFT RIGHT JOIN -> same as FULL JOIN
248 ** RIGHT OUTER FULL JOIN -> same as FULL JOIN
249 ** CROSS CROSS CROSS JOIN -> same as JOIN
251 ** The only restrictions on the join type name are:
253 ** * "INNER" cannot appear together with "OUTER", "LEFT", "RIGHT",
254 ** or "FULL".
256 ** * "CROSS" cannot appear together with "OUTER", "LEFT", "RIGHT,
257 ** or "FULL".
259 ** * If "OUTER" is present then there must also be one of
260 ** "LEFT", "RIGHT", or "FULL"
262 int sqlite3JoinType(Parse *pParse, Token *pA, Token *pB, Token *pC){
263 int jointype = 0;
264 Token *apAll[3];
265 Token *p;
266 /* 0123456789 123456789 123456789 123 */
267 static const char zKeyText[] = "naturaleftouterightfullinnercross";
268 static const struct {
269 u8 i; /* Beginning of keyword text in zKeyText[] */
270 u8 nChar; /* Length of the keyword in characters */
271 u8 code; /* Join type mask */
272 } aKeyword[] = {
273 /* (0) natural */ { 0, 7, JT_NATURAL },
274 /* (1) left */ { 6, 4, JT_LEFT|JT_OUTER },
275 /* (2) outer */ { 10, 5, JT_OUTER },
276 /* (3) right */ { 14, 5, JT_RIGHT|JT_OUTER },
277 /* (4) full */ { 19, 4, JT_LEFT|JT_RIGHT|JT_OUTER },
278 /* (5) inner */ { 23, 5, JT_INNER },
279 /* (6) cross */ { 28, 5, JT_INNER|JT_CROSS },
281 int i, j;
282 apAll[0] = pA;
283 apAll[1] = pB;
284 apAll[2] = pC;
285 for(i=0; i<3 && apAll[i]; i++){
286 p = apAll[i];
287 for(j=0; j<ArraySize(aKeyword); j++){
288 if( p->n==aKeyword[j].nChar
289 && sqlite3StrNICmp((char*)p->z, &zKeyText[aKeyword[j].i], p->n)==0 ){
290 jointype |= aKeyword[j].code;
291 break;
294 testcase( j==0 || j==1 || j==2 || j==3 || j==4 || j==5 || j==6 );
295 if( j>=ArraySize(aKeyword) ){
296 jointype |= JT_ERROR;
297 break;
301 (jointype & (JT_INNER|JT_OUTER))==(JT_INNER|JT_OUTER) ||
302 (jointype & JT_ERROR)!=0 ||
303 (jointype & (JT_OUTER|JT_LEFT|JT_RIGHT))==JT_OUTER
305 const char *zSp1 = " ";
306 const char *zSp2 = " ";
307 if( pB==0 ){ zSp1++; }
308 if( pC==0 ){ zSp2++; }
309 sqlite3ErrorMsg(pParse, "unknown join type: "
310 "%T%s%T%s%T", pA, zSp1, pB, zSp2, pC);
311 jointype = JT_INNER;
313 return jointype;
317 ** Return the index of a column in a table. Return -1 if the column
318 ** is not contained in the table.
320 int sqlite3ColumnIndex(Table *pTab, const char *zCol){
321 int i;
322 u8 h = sqlite3StrIHash(zCol);
323 Column *pCol;
324 for(pCol=pTab->aCol, i=0; i<pTab->nCol; pCol++, i++){
325 if( pCol->hName==h && sqlite3StrICmp(pCol->zCnName, zCol)==0 ) return i;
327 return -1;
331 ** Mark a subquery result column as having been used.
333 void sqlite3SrcItemColumnUsed(SrcItem *pItem, int iCol){
334 assert( pItem!=0 );
335 assert( (int)pItem->fg.isNestedFrom == IsNestedFrom(pItem->pSelect) );
336 if( pItem->fg.isNestedFrom ){
337 ExprList *pResults;
338 assert( pItem->pSelect!=0 );
339 pResults = pItem->pSelect->pEList;
340 assert( pResults!=0 );
341 assert( iCol>=0 && iCol<pResults->nExpr );
342 pResults->a[iCol].fg.bUsed = 1;
347 ** Search the tables iStart..iEnd (inclusive) in pSrc, looking for a
348 ** table that has a column named zCol. The search is left-to-right.
349 ** The first match found is returned.
351 ** When found, set *piTab and *piCol to the table index and column index
352 ** of the matching column and return TRUE.
354 ** If not found, return FALSE.
356 static int tableAndColumnIndex(
357 SrcList *pSrc, /* Array of tables to search */
358 int iStart, /* First member of pSrc->a[] to check */
359 int iEnd, /* Last member of pSrc->a[] to check */
360 const char *zCol, /* Name of the column we are looking for */
361 int *piTab, /* Write index of pSrc->a[] here */
362 int *piCol, /* Write index of pSrc->a[*piTab].pTab->aCol[] here */
363 int bIgnoreHidden /* Ignore hidden columns */
365 int i; /* For looping over tables in pSrc */
366 int iCol; /* Index of column matching zCol */
368 assert( iEnd<pSrc->nSrc );
369 assert( iStart>=0 );
370 assert( (piTab==0)==(piCol==0) ); /* Both or neither are NULL */
372 for(i=iStart; i<=iEnd; i++){
373 iCol = sqlite3ColumnIndex(pSrc->a[i].pTab, zCol);
374 if( iCol>=0
375 && (bIgnoreHidden==0 || IsHiddenColumn(&pSrc->a[i].pTab->aCol[iCol])==0)
377 if( piTab ){
378 sqlite3SrcItemColumnUsed(&pSrc->a[i], iCol);
379 *piTab = i;
380 *piCol = iCol;
382 return 1;
385 return 0;
389 ** Set the EP_OuterON property on all terms of the given expression.
390 ** And set the Expr.w.iJoin to iTable for every term in the
391 ** expression.
393 ** The EP_OuterON property is used on terms of an expression to tell
394 ** the OUTER JOIN processing logic that this term is part of the
395 ** join restriction specified in the ON or USING clause and not a part
396 ** of the more general WHERE clause. These terms are moved over to the
397 ** WHERE clause during join processing but we need to remember that they
398 ** originated in the ON or USING clause.
400 ** The Expr.w.iJoin tells the WHERE clause processing that the
401 ** expression depends on table w.iJoin even if that table is not
402 ** explicitly mentioned in the expression. That information is needed
403 ** for cases like this:
405 ** SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.b AND t1.x=5
407 ** The where clause needs to defer the handling of the t1.x=5
408 ** term until after the t2 loop of the join. In that way, a
409 ** NULL t2 row will be inserted whenever t1.x!=5. If we do not
410 ** defer the handling of t1.x=5, it will be processed immediately
411 ** after the t1 loop and rows with t1.x!=5 will never appear in
412 ** the output, which is incorrect.
414 void sqlite3SetJoinExpr(Expr *p, int iTable, u32 joinFlag){
415 assert( joinFlag==EP_OuterON || joinFlag==EP_InnerON );
416 while( p ){
417 ExprSetProperty(p, joinFlag);
418 assert( !ExprHasProperty(p, EP_TokenOnly|EP_Reduced) );
419 ExprSetVVAProperty(p, EP_NoReduce);
420 p->w.iJoin = iTable;
421 if( p->op==TK_FUNCTION ){
422 assert( ExprUseXList(p) );
423 if( p->x.pList ){
424 int i;
425 for(i=0; i<p->x.pList->nExpr; i++){
426 sqlite3SetJoinExpr(p->x.pList->a[i].pExpr, iTable, joinFlag);
430 sqlite3SetJoinExpr(p->pLeft, iTable, joinFlag);
431 p = p->pRight;
435 /* Undo the work of sqlite3SetJoinExpr(). This is used when a LEFT JOIN
436 ** is simplified into an ordinary JOIN, and when an ON expression is
437 ** "pushed down" into the WHERE clause of a subquery.
439 ** Convert every term that is marked with EP_OuterON and w.iJoin==iTable into
440 ** an ordinary term that omits the EP_OuterON mark. Or if iTable<0, then
441 ** just clear every EP_OuterON and EP_InnerON mark from the expression tree.
443 ** If nullable is true, that means that Expr p might evaluate to NULL even
444 ** if it is a reference to a NOT NULL column. This can happen, for example,
445 ** if the table that p references is on the left side of a RIGHT JOIN.
446 ** If nullable is true, then take care to not remove the EP_CanBeNull bit.
447 ** See forum thread https://sqlite.org/forum/forumpost/b40696f50145d21c
449 static void unsetJoinExpr(Expr *p, int iTable, int nullable){
450 while( p ){
451 if( iTable<0 || (ExprHasProperty(p, EP_OuterON) && p->w.iJoin==iTable) ){
452 ExprClearProperty(p, EP_OuterON|EP_InnerON);
453 if( iTable>=0 ) ExprSetProperty(p, EP_InnerON);
455 if( p->op==TK_COLUMN && p->iTable==iTable && !nullable ){
456 ExprClearProperty(p, EP_CanBeNull);
458 if( p->op==TK_FUNCTION ){
459 assert( ExprUseXList(p) );
460 assert( p->pLeft==0 );
461 if( p->x.pList ){
462 int i;
463 for(i=0; i<p->x.pList->nExpr; i++){
464 unsetJoinExpr(p->x.pList->a[i].pExpr, iTable, nullable);
468 unsetJoinExpr(p->pLeft, iTable, nullable);
469 p = p->pRight;
474 ** This routine processes the join information for a SELECT statement.
476 ** * A NATURAL join is converted into a USING join. After that, we
477 ** do not need to be concerned with NATURAL joins and we only have
478 ** think about USING joins.
480 ** * ON and USING clauses result in extra terms being added to the
481 ** WHERE clause to enforce the specified constraints. The extra
482 ** WHERE clause terms will be tagged with EP_OuterON or
483 ** EP_InnerON so that we know that they originated in ON/USING.
485 ** The terms of a FROM clause are contained in the Select.pSrc structure.
486 ** The left most table is the first entry in Select.pSrc. The right-most
487 ** table is the last entry. The join operator is held in the entry to
488 ** the right. Thus entry 1 contains the join operator for the join between
489 ** entries 0 and 1. Any ON or USING clauses associated with the join are
490 ** also attached to the right entry.
492 ** This routine returns the number of errors encountered.
494 static int sqlite3ProcessJoin(Parse *pParse, Select *p){
495 SrcList *pSrc; /* All tables in the FROM clause */
496 int i, j; /* Loop counters */
497 SrcItem *pLeft; /* Left table being joined */
498 SrcItem *pRight; /* Right table being joined */
500 pSrc = p->pSrc;
501 pLeft = &pSrc->a[0];
502 pRight = &pLeft[1];
503 for(i=0; i<pSrc->nSrc-1; i++, pRight++, pLeft++){
504 Table *pRightTab = pRight->pTab;
505 u32 joinType;
507 if( NEVER(pLeft->pTab==0 || pRightTab==0) ) continue;
508 joinType = (pRight->fg.jointype & JT_OUTER)!=0 ? EP_OuterON : EP_InnerON;
510 /* If this is a NATURAL join, synthesize an appropriate USING clause
511 ** to specify which columns should be joined.
513 if( pRight->fg.jointype & JT_NATURAL ){
514 IdList *pUsing = 0;
515 if( pRight->fg.isUsing || pRight->u3.pOn ){
516 sqlite3ErrorMsg(pParse, "a NATURAL join may not have "
517 "an ON or USING clause", 0);
518 return 1;
520 for(j=0; j<pRightTab->nCol; j++){
521 char *zName; /* Name of column in the right table */
523 if( IsHiddenColumn(&pRightTab->aCol[j]) ) continue;
524 zName = pRightTab->aCol[j].zCnName;
525 if( tableAndColumnIndex(pSrc, 0, i, zName, 0, 0, 1) ){
526 pUsing = sqlite3IdListAppend(pParse, pUsing, 0);
527 if( pUsing ){
528 assert( pUsing->nId>0 );
529 assert( pUsing->a[pUsing->nId-1].zName==0 );
530 pUsing->a[pUsing->nId-1].zName = sqlite3DbStrDup(pParse->db, zName);
534 if( pUsing ){
535 pRight->fg.isUsing = 1;
536 pRight->fg.isSynthUsing = 1;
537 pRight->u3.pUsing = pUsing;
539 if( pParse->nErr ) return 1;
542 /* Create extra terms on the WHERE clause for each column named
543 ** in the USING clause. Example: If the two tables to be joined are
544 ** A and B and the USING clause names X, Y, and Z, then add this
545 ** to the WHERE clause: A.X=B.X AND A.Y=B.Y AND A.Z=B.Z
546 ** Report an error if any column mentioned in the USING clause is
547 ** not contained in both tables to be joined.
549 if( pRight->fg.isUsing ){
550 IdList *pList = pRight->u3.pUsing;
551 sqlite3 *db = pParse->db;
552 assert( pList!=0 );
553 for(j=0; j<pList->nId; j++){
554 char *zName; /* Name of the term in the USING clause */
555 int iLeft; /* Table on the left with matching column name */
556 int iLeftCol; /* Column number of matching column on the left */
557 int iRightCol; /* Column number of matching column on the right */
558 Expr *pE1; /* Reference to the column on the LEFT of the join */
559 Expr *pE2; /* Reference to the column on the RIGHT of the join */
560 Expr *pEq; /* Equality constraint. pE1 == pE2 */
562 zName = pList->a[j].zName;
563 iRightCol = sqlite3ColumnIndex(pRightTab, zName);
564 if( iRightCol<0
565 || tableAndColumnIndex(pSrc, 0, i, zName, &iLeft, &iLeftCol,
566 pRight->fg.isSynthUsing)==0
568 sqlite3ErrorMsg(pParse, "cannot join using column %s - column "
569 "not present in both tables", zName);
570 return 1;
572 pE1 = sqlite3CreateColumnExpr(db, pSrc, iLeft, iLeftCol);
573 sqlite3SrcItemColumnUsed(&pSrc->a[iLeft], iLeftCol);
574 if( (pSrc->a[0].fg.jointype & JT_LTORJ)!=0 ){
575 /* This branch runs if the query contains one or more RIGHT or FULL
576 ** JOINs. If only a single table on the left side of this join
577 ** contains the zName column, then this branch is a no-op.
578 ** But if there are two or more tables on the left side
579 ** of the join, construct a coalesce() function that gathers all
580 ** such tables. Raise an error if more than one of those references
581 ** to zName is not also within a prior USING clause.
583 ** We really ought to raise an error if there are two or more
584 ** non-USING references to zName on the left of an INNER or LEFT
585 ** JOIN. But older versions of SQLite do not do that, so we avoid
586 ** adding a new error so as to not break legacy applications.
588 ExprList *pFuncArgs = 0; /* Arguments to the coalesce() */
589 static const Token tkCoalesce = { "coalesce", 8 };
590 while( tableAndColumnIndex(pSrc, iLeft+1, i, zName, &iLeft, &iLeftCol,
591 pRight->fg.isSynthUsing)!=0 ){
592 if( pSrc->a[iLeft].fg.isUsing==0
593 || sqlite3IdListIndex(pSrc->a[iLeft].u3.pUsing, zName)<0
595 sqlite3ErrorMsg(pParse, "ambiguous reference to %s in USING()",
596 zName);
597 break;
599 pFuncArgs = sqlite3ExprListAppend(pParse, pFuncArgs, pE1);
600 pE1 = sqlite3CreateColumnExpr(db, pSrc, iLeft, iLeftCol);
601 sqlite3SrcItemColumnUsed(&pSrc->a[iLeft], iLeftCol);
603 if( pFuncArgs ){
604 pFuncArgs = sqlite3ExprListAppend(pParse, pFuncArgs, pE1);
605 pE1 = sqlite3ExprFunction(pParse, pFuncArgs, &tkCoalesce, 0);
608 pE2 = sqlite3CreateColumnExpr(db, pSrc, i+1, iRightCol);
609 sqlite3SrcItemColumnUsed(pRight, iRightCol);
610 pEq = sqlite3PExpr(pParse, TK_EQ, pE1, pE2);
611 assert( pE2!=0 || pEq==0 );
612 if( pEq ){
613 ExprSetProperty(pEq, joinType);
614 assert( !ExprHasProperty(pEq, EP_TokenOnly|EP_Reduced) );
615 ExprSetVVAProperty(pEq, EP_NoReduce);
616 pEq->w.iJoin = pE2->iTable;
618 p->pWhere = sqlite3ExprAnd(pParse, p->pWhere, pEq);
622 /* Add the ON clause to the end of the WHERE clause, connected by
623 ** an AND operator.
625 else if( pRight->u3.pOn ){
626 sqlite3SetJoinExpr(pRight->u3.pOn, pRight->iCursor, joinType);
627 p->pWhere = sqlite3ExprAnd(pParse, p->pWhere, pRight->u3.pOn);
628 pRight->u3.pOn = 0;
629 pRight->fg.isOn = 1;
632 return 0;
636 ** An instance of this object holds information (beyond pParse and pSelect)
637 ** needed to load the next result row that is to be added to the sorter.
639 typedef struct RowLoadInfo RowLoadInfo;
640 struct RowLoadInfo {
641 int regResult; /* Store results in array of registers here */
642 u8 ecelFlags; /* Flag argument to ExprCodeExprList() */
643 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
644 ExprList *pExtra; /* Extra columns needed by sorter refs */
645 int regExtraResult; /* Where to load the extra columns */
646 #endif
650 ** This routine does the work of loading query data into an array of
651 ** registers so that it can be added to the sorter.
653 static void innerLoopLoadRow(
654 Parse *pParse, /* Statement under construction */
655 Select *pSelect, /* The query being coded */
656 RowLoadInfo *pInfo /* Info needed to complete the row load */
658 sqlite3ExprCodeExprList(pParse, pSelect->pEList, pInfo->regResult,
659 0, pInfo->ecelFlags);
660 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
661 if( pInfo->pExtra ){
662 sqlite3ExprCodeExprList(pParse, pInfo->pExtra, pInfo->regExtraResult, 0, 0);
663 sqlite3ExprListDelete(pParse->db, pInfo->pExtra);
665 #endif
669 ** Code the OP_MakeRecord instruction that generates the entry to be
670 ** added into the sorter.
672 ** Return the register in which the result is stored.
674 static int makeSorterRecord(
675 Parse *pParse,
676 SortCtx *pSort,
677 Select *pSelect,
678 int regBase,
679 int nBase
681 int nOBSat = pSort->nOBSat;
682 Vdbe *v = pParse->pVdbe;
683 int regOut = ++pParse->nMem;
684 if( pSort->pDeferredRowLoad ){
685 innerLoopLoadRow(pParse, pSelect, pSort->pDeferredRowLoad);
687 sqlite3VdbeAddOp3(v, OP_MakeRecord, regBase+nOBSat, nBase-nOBSat, regOut);
688 return regOut;
692 ** Generate code that will push the record in registers regData
693 ** through regData+nData-1 onto the sorter.
695 static void pushOntoSorter(
696 Parse *pParse, /* Parser context */
697 SortCtx *pSort, /* Information about the ORDER BY clause */
698 Select *pSelect, /* The whole SELECT statement */
699 int regData, /* First register holding data to be sorted */
700 int regOrigData, /* First register holding data before packing */
701 int nData, /* Number of elements in the regData data array */
702 int nPrefixReg /* No. of reg prior to regData available for use */
704 Vdbe *v = pParse->pVdbe; /* Stmt under construction */
705 int bSeq = ((pSort->sortFlags & SORTFLAG_UseSorter)==0);
706 int nExpr = pSort->pOrderBy->nExpr; /* No. of ORDER BY terms */
707 int nBase = nExpr + bSeq + nData; /* Fields in sorter record */
708 int regBase; /* Regs for sorter record */
709 int regRecord = 0; /* Assembled sorter record */
710 int nOBSat = pSort->nOBSat; /* ORDER BY terms to skip */
711 int op; /* Opcode to add sorter record to sorter */
712 int iLimit; /* LIMIT counter */
713 int iSkip = 0; /* End of the sorter insert loop */
715 assert( bSeq==0 || bSeq==1 );
717 /* Three cases:
718 ** (1) The data to be sorted has already been packed into a Record
719 ** by a prior OP_MakeRecord. In this case nData==1 and regData
720 ** will be completely unrelated to regOrigData.
721 ** (2) All output columns are included in the sort record. In that
722 ** case regData==regOrigData.
723 ** (3) Some output columns are omitted from the sort record due to
724 ** the SQLITE_ENABLE_SORTER_REFERENCES optimization, or due to the
725 ** SQLITE_ECEL_OMITREF optimization, or due to the
726 ** SortCtx.pDeferredRowLoad optimization. In any of these cases
727 ** regOrigData is 0 to prevent this routine from trying to copy
728 ** values that might not yet exist.
730 assert( nData==1 || regData==regOrigData || regOrigData==0 );
732 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS
733 pSort->addrPush = sqlite3VdbeCurrentAddr(v);
734 #endif
736 if( nPrefixReg ){
737 assert( nPrefixReg==nExpr+bSeq );
738 regBase = regData - nPrefixReg;
739 }else{
740 regBase = pParse->nMem + 1;
741 pParse->nMem += nBase;
743 assert( pSelect->iOffset==0 || pSelect->iLimit!=0 );
744 iLimit = pSelect->iOffset ? pSelect->iOffset+1 : pSelect->iLimit;
745 pSort->labelDone = sqlite3VdbeMakeLabel(pParse);
746 sqlite3ExprCodeExprList(pParse, pSort->pOrderBy, regBase, regOrigData,
747 SQLITE_ECEL_DUP | (regOrigData? SQLITE_ECEL_REF : 0));
748 if( bSeq ){
749 sqlite3VdbeAddOp2(v, OP_Sequence, pSort->iECursor, regBase+nExpr);
751 if( nPrefixReg==0 && nData>0 ){
752 sqlite3ExprCodeMove(pParse, regData, regBase+nExpr+bSeq, nData);
754 if( nOBSat>0 ){
755 int regPrevKey; /* The first nOBSat columns of the previous row */
756 int addrFirst; /* Address of the OP_IfNot opcode */
757 int addrJmp; /* Address of the OP_Jump opcode */
758 VdbeOp *pOp; /* Opcode that opens the sorter */
759 int nKey; /* Number of sorting key columns, including OP_Sequence */
760 KeyInfo *pKI; /* Original KeyInfo on the sorter table */
762 regRecord = makeSorterRecord(pParse, pSort, pSelect, regBase, nBase);
763 regPrevKey = pParse->nMem+1;
764 pParse->nMem += pSort->nOBSat;
765 nKey = nExpr - pSort->nOBSat + bSeq;
766 if( bSeq ){
767 addrFirst = sqlite3VdbeAddOp1(v, OP_IfNot, regBase+nExpr);
768 }else{
769 addrFirst = sqlite3VdbeAddOp1(v, OP_SequenceTest, pSort->iECursor);
771 VdbeCoverage(v);
772 sqlite3VdbeAddOp3(v, OP_Compare, regPrevKey, regBase, pSort->nOBSat);
773 pOp = sqlite3VdbeGetOp(v, pSort->addrSortIndex);
774 if( pParse->db->mallocFailed ) return;
775 pOp->p2 = nKey + nData;
776 pKI = pOp->p4.pKeyInfo;
777 memset(pKI->aSortFlags, 0, pKI->nKeyField); /* Makes OP_Jump testable */
778 sqlite3VdbeChangeP4(v, -1, (char*)pKI, P4_KEYINFO);
779 testcase( pKI->nAllField > pKI->nKeyField+2 );
780 pOp->p4.pKeyInfo = sqlite3KeyInfoFromExprList(pParse,pSort->pOrderBy,nOBSat,
781 pKI->nAllField-pKI->nKeyField-1);
782 pOp = 0; /* Ensure pOp not used after sqlite3VdbeAddOp3() */
783 addrJmp = sqlite3VdbeCurrentAddr(v);
784 sqlite3VdbeAddOp3(v, OP_Jump, addrJmp+1, 0, addrJmp+1); VdbeCoverage(v);
785 pSort->labelBkOut = sqlite3VdbeMakeLabel(pParse);
786 pSort->regReturn = ++pParse->nMem;
787 sqlite3VdbeAddOp2(v, OP_Gosub, pSort->regReturn, pSort->labelBkOut);
788 sqlite3VdbeAddOp1(v, OP_ResetSorter, pSort->iECursor);
789 if( iLimit ){
790 sqlite3VdbeAddOp2(v, OP_IfNot, iLimit, pSort->labelDone);
791 VdbeCoverage(v);
793 sqlite3VdbeJumpHere(v, addrFirst);
794 sqlite3ExprCodeMove(pParse, regBase, regPrevKey, pSort->nOBSat);
795 sqlite3VdbeJumpHere(v, addrJmp);
797 if( iLimit ){
798 /* At this point the values for the new sorter entry are stored
799 ** in an array of registers. They need to be composed into a record
800 ** and inserted into the sorter if either (a) there are currently
801 ** less than LIMIT+OFFSET items or (b) the new record is smaller than
802 ** the largest record currently in the sorter. If (b) is true and there
803 ** are already LIMIT+OFFSET items in the sorter, delete the largest
804 ** entry before inserting the new one. This way there are never more
805 ** than LIMIT+OFFSET items in the sorter.
807 ** If the new record does not need to be inserted into the sorter,
808 ** jump to the next iteration of the loop. If the pSort->labelOBLopt
809 ** value is not zero, then it is a label of where to jump. Otherwise,
810 ** just bypass the row insert logic. See the header comment on the
811 ** sqlite3WhereOrderByLimitOptLabel() function for additional info.
813 int iCsr = pSort->iECursor;
814 sqlite3VdbeAddOp2(v, OP_IfNotZero, iLimit, sqlite3VdbeCurrentAddr(v)+4);
815 VdbeCoverage(v);
816 sqlite3VdbeAddOp2(v, OP_Last, iCsr, 0);
817 iSkip = sqlite3VdbeAddOp4Int(v, OP_IdxLE,
818 iCsr, 0, regBase+nOBSat, nExpr-nOBSat);
819 VdbeCoverage(v);
820 sqlite3VdbeAddOp1(v, OP_Delete, iCsr);
822 if( regRecord==0 ){
823 regRecord = makeSorterRecord(pParse, pSort, pSelect, regBase, nBase);
825 if( pSort->sortFlags & SORTFLAG_UseSorter ){
826 op = OP_SorterInsert;
827 }else{
828 op = OP_IdxInsert;
830 sqlite3VdbeAddOp4Int(v, op, pSort->iECursor, regRecord,
831 regBase+nOBSat, nBase-nOBSat);
832 if( iSkip ){
833 sqlite3VdbeChangeP2(v, iSkip,
834 pSort->labelOBLopt ? pSort->labelOBLopt : sqlite3VdbeCurrentAddr(v));
836 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS
837 pSort->addrPushEnd = sqlite3VdbeCurrentAddr(v)-1;
838 #endif
842 ** Add code to implement the OFFSET
844 static void codeOffset(
845 Vdbe *v, /* Generate code into this VM */
846 int iOffset, /* Register holding the offset counter */
847 int iContinue /* Jump here to skip the current record */
849 if( iOffset>0 ){
850 sqlite3VdbeAddOp3(v, OP_IfPos, iOffset, iContinue, 1); VdbeCoverage(v);
851 VdbeComment((v, "OFFSET"));
856 ** Add code that will check to make sure the array of registers starting at
857 ** iMem form a distinct entry. This is used by both "SELECT DISTINCT ..." and
858 ** distinct aggregates ("SELECT count(DISTINCT <expr>) ..."). Three strategies
859 ** are available. Which is used depends on the value of parameter eTnctType,
860 ** as follows:
862 ** WHERE_DISTINCT_UNORDERED/WHERE_DISTINCT_NOOP:
863 ** Build an ephemeral table that contains all entries seen before and
864 ** skip entries which have been seen before.
866 ** Parameter iTab is the cursor number of an ephemeral table that must
867 ** be opened before the VM code generated by this routine is executed.
868 ** The ephemeral cursor table is queried for a record identical to the
869 ** record formed by the current array of registers. If one is found,
870 ** jump to VM address addrRepeat. Otherwise, insert a new record into
871 ** the ephemeral cursor and proceed.
873 ** The returned value in this case is a copy of parameter iTab.
875 ** WHERE_DISTINCT_ORDERED:
876 ** In this case rows are being delivered sorted order. The ephemeral
877 ** table is not required. Instead, the current set of values
878 ** is compared against previous row. If they match, the new row
879 ** is not distinct and control jumps to VM address addrRepeat. Otherwise,
880 ** the VM program proceeds with processing the new row.
882 ** The returned value in this case is the register number of the first
883 ** in an array of registers used to store the previous result row so that
884 ** it can be compared to the next. The caller must ensure that this
885 ** register is initialized to NULL. (The fixDistinctOpenEph() routine
886 ** will take care of this initialization.)
888 ** WHERE_DISTINCT_UNIQUE:
889 ** In this case it has already been determined that the rows are distinct.
890 ** No special action is required. The return value is zero.
892 ** Parameter pEList is the list of expressions used to generated the
893 ** contents of each row. It is used by this routine to determine (a)
894 ** how many elements there are in the array of registers and (b) the
895 ** collation sequences that should be used for the comparisons if
896 ** eTnctType is WHERE_DISTINCT_ORDERED.
898 static int codeDistinct(
899 Parse *pParse, /* Parsing and code generating context */
900 int eTnctType, /* WHERE_DISTINCT_* value */
901 int iTab, /* A sorting index used to test for distinctness */
902 int addrRepeat, /* Jump to here if not distinct */
903 ExprList *pEList, /* Expression for each element */
904 int regElem /* First element */
906 int iRet = 0;
907 int nResultCol = pEList->nExpr;
908 Vdbe *v = pParse->pVdbe;
910 switch( eTnctType ){
911 case WHERE_DISTINCT_ORDERED: {
912 int i;
913 int iJump; /* Jump destination */
914 int regPrev; /* Previous row content */
916 /* Allocate space for the previous row */
917 iRet = regPrev = pParse->nMem+1;
918 pParse->nMem += nResultCol;
920 iJump = sqlite3VdbeCurrentAddr(v) + nResultCol;
921 for(i=0; i<nResultCol; i++){
922 CollSeq *pColl = sqlite3ExprCollSeq(pParse, pEList->a[i].pExpr);
923 if( i<nResultCol-1 ){
924 sqlite3VdbeAddOp3(v, OP_Ne, regElem+i, iJump, regPrev+i);
925 VdbeCoverage(v);
926 }else{
927 sqlite3VdbeAddOp3(v, OP_Eq, regElem+i, addrRepeat, regPrev+i);
928 VdbeCoverage(v);
930 sqlite3VdbeChangeP4(v, -1, (const char *)pColl, P4_COLLSEQ);
931 sqlite3VdbeChangeP5(v, SQLITE_NULLEQ);
933 assert( sqlite3VdbeCurrentAddr(v)==iJump || pParse->db->mallocFailed );
934 sqlite3VdbeAddOp3(v, OP_Copy, regElem, regPrev, nResultCol-1);
935 break;
938 case WHERE_DISTINCT_UNIQUE: {
939 /* nothing to do */
940 break;
943 default: {
944 int r1 = sqlite3GetTempReg(pParse);
945 sqlite3VdbeAddOp4Int(v, OP_Found, iTab, addrRepeat, regElem, nResultCol);
946 VdbeCoverage(v);
947 sqlite3VdbeAddOp3(v, OP_MakeRecord, regElem, nResultCol, r1);
948 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iTab, r1, regElem, nResultCol);
949 sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT);
950 sqlite3ReleaseTempReg(pParse, r1);
951 iRet = iTab;
952 break;
956 return iRet;
960 ** This routine runs after codeDistinct(). It makes necessary
961 ** adjustments to the OP_OpenEphemeral opcode that the codeDistinct()
962 ** routine made use of. This processing must be done separately since
963 ** sometimes codeDistinct is called before the OP_OpenEphemeral is actually
964 ** laid down.
966 ** WHERE_DISTINCT_NOOP:
967 ** WHERE_DISTINCT_UNORDERED:
969 ** No adjustments necessary. This function is a no-op.
971 ** WHERE_DISTINCT_UNIQUE:
973 ** The ephemeral table is not needed. So change the
974 ** OP_OpenEphemeral opcode into an OP_Noop.
976 ** WHERE_DISTINCT_ORDERED:
978 ** The ephemeral table is not needed. But we do need register
979 ** iVal to be initialized to NULL. So change the OP_OpenEphemeral
980 ** into an OP_Null on the iVal register.
982 static void fixDistinctOpenEph(
983 Parse *pParse, /* Parsing and code generating context */
984 int eTnctType, /* WHERE_DISTINCT_* value */
985 int iVal, /* Value returned by codeDistinct() */
986 int iOpenEphAddr /* Address of OP_OpenEphemeral instruction for iTab */
988 if( pParse->nErr==0
989 && (eTnctType==WHERE_DISTINCT_UNIQUE || eTnctType==WHERE_DISTINCT_ORDERED)
991 Vdbe *v = pParse->pVdbe;
992 sqlite3VdbeChangeToNoop(v, iOpenEphAddr);
993 if( sqlite3VdbeGetOp(v, iOpenEphAddr+1)->opcode==OP_Explain ){
994 sqlite3VdbeChangeToNoop(v, iOpenEphAddr+1);
996 if( eTnctType==WHERE_DISTINCT_ORDERED ){
997 /* Change the OP_OpenEphemeral to an OP_Null that sets the MEM_Cleared
998 ** bit on the first register of the previous value. This will cause the
999 ** OP_Ne added in codeDistinct() to always fail on the first iteration of
1000 ** the loop even if the first row is all NULLs. */
1001 VdbeOp *pOp = sqlite3VdbeGetOp(v, iOpenEphAddr);
1002 pOp->opcode = OP_Null;
1003 pOp->p1 = 1;
1004 pOp->p2 = iVal;
1009 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
1011 ** This function is called as part of inner-loop generation for a SELECT
1012 ** statement with an ORDER BY that is not optimized by an index. It
1013 ** determines the expressions, if any, that the sorter-reference
1014 ** optimization should be used for. The sorter-reference optimization
1015 ** is used for SELECT queries like:
1017 ** SELECT a, bigblob FROM t1 ORDER BY a LIMIT 10
1019 ** If the optimization is used for expression "bigblob", then instead of
1020 ** storing values read from that column in the sorter records, the PK of
1021 ** the row from table t1 is stored instead. Then, as records are extracted from
1022 ** the sorter to return to the user, the required value of bigblob is
1023 ** retrieved directly from table t1. If the values are very large, this
1024 ** can be more efficient than storing them directly in the sorter records.
1026 ** The ExprList_item.fg.bSorterRef flag is set for each expression in pEList
1027 ** for which the sorter-reference optimization should be enabled.
1028 ** Additionally, the pSort->aDefer[] array is populated with entries
1029 ** for all cursors required to evaluate all selected expressions. Finally.
1030 ** output variable (*ppExtra) is set to an expression list containing
1031 ** expressions for all extra PK values that should be stored in the
1032 ** sorter records.
1034 static void selectExprDefer(
1035 Parse *pParse, /* Leave any error here */
1036 SortCtx *pSort, /* Sorter context */
1037 ExprList *pEList, /* Expressions destined for sorter */
1038 ExprList **ppExtra /* Expressions to append to sorter record */
1040 int i;
1041 int nDefer = 0;
1042 ExprList *pExtra = 0;
1043 for(i=0; i<pEList->nExpr; i++){
1044 struct ExprList_item *pItem = &pEList->a[i];
1045 if( pItem->u.x.iOrderByCol==0 ){
1046 Expr *pExpr = pItem->pExpr;
1047 Table *pTab;
1048 if( pExpr->op==TK_COLUMN
1049 && pExpr->iColumn>=0
1050 && ALWAYS( ExprUseYTab(pExpr) )
1051 && (pTab = pExpr->y.pTab)!=0
1052 && IsOrdinaryTable(pTab)
1053 && (pTab->aCol[pExpr->iColumn].colFlags & COLFLAG_SORTERREF)!=0
1055 int j;
1056 for(j=0; j<nDefer; j++){
1057 if( pSort->aDefer[j].iCsr==pExpr->iTable ) break;
1059 if( j==nDefer ){
1060 if( nDefer==ArraySize(pSort->aDefer) ){
1061 continue;
1062 }else{
1063 int nKey = 1;
1064 int k;
1065 Index *pPk = 0;
1066 if( !HasRowid(pTab) ){
1067 pPk = sqlite3PrimaryKeyIndex(pTab);
1068 nKey = pPk->nKeyCol;
1070 for(k=0; k<nKey; k++){
1071 Expr *pNew = sqlite3PExpr(pParse, TK_COLUMN, 0, 0);
1072 if( pNew ){
1073 pNew->iTable = pExpr->iTable;
1074 assert( ExprUseYTab(pNew) );
1075 pNew->y.pTab = pExpr->y.pTab;
1076 pNew->iColumn = pPk ? pPk->aiColumn[k] : -1;
1077 pExtra = sqlite3ExprListAppend(pParse, pExtra, pNew);
1080 pSort->aDefer[nDefer].pTab = pExpr->y.pTab;
1081 pSort->aDefer[nDefer].iCsr = pExpr->iTable;
1082 pSort->aDefer[nDefer].nKey = nKey;
1083 nDefer++;
1086 pItem->fg.bSorterRef = 1;
1090 pSort->nDefer = (u8)nDefer;
1091 *ppExtra = pExtra;
1093 #endif
1096 ** This routine generates the code for the inside of the inner loop
1097 ** of a SELECT.
1099 ** If srcTab is negative, then the p->pEList expressions
1100 ** are evaluated in order to get the data for this row. If srcTab is
1101 ** zero or more, then data is pulled from srcTab and p->pEList is used only
1102 ** to get the number of columns and the collation sequence for each column.
1104 static void selectInnerLoop(
1105 Parse *pParse, /* The parser context */
1106 Select *p, /* The complete select statement being coded */
1107 int srcTab, /* Pull data from this table if non-negative */
1108 SortCtx *pSort, /* If not NULL, info on how to process ORDER BY */
1109 DistinctCtx *pDistinct, /* If not NULL, info on how to process DISTINCT */
1110 SelectDest *pDest, /* How to dispose of the results */
1111 int iContinue, /* Jump here to continue with next row */
1112 int iBreak /* Jump here to break out of the inner loop */
1114 Vdbe *v = pParse->pVdbe;
1115 int i;
1116 int hasDistinct; /* True if the DISTINCT keyword is present */
1117 int eDest = pDest->eDest; /* How to dispose of results */
1118 int iParm = pDest->iSDParm; /* First argument to disposal method */
1119 int nResultCol; /* Number of result columns */
1120 int nPrefixReg = 0; /* Number of extra registers before regResult */
1121 RowLoadInfo sRowLoadInfo; /* Info for deferred row loading */
1123 /* Usually, regResult is the first cell in an array of memory cells
1124 ** containing the current result row. In this case regOrig is set to the
1125 ** same value. However, if the results are being sent to the sorter, the
1126 ** values for any expressions that are also part of the sort-key are omitted
1127 ** from this array. In this case regOrig is set to zero. */
1128 int regResult; /* Start of memory holding current results */
1129 int regOrig; /* Start of memory holding full result (or 0) */
1131 assert( v );
1132 assert( p->pEList!=0 );
1133 hasDistinct = pDistinct ? pDistinct->eTnctType : WHERE_DISTINCT_NOOP;
1134 if( pSort && pSort->pOrderBy==0 ) pSort = 0;
1135 if( pSort==0 && !hasDistinct ){
1136 assert( iContinue!=0 );
1137 codeOffset(v, p->iOffset, iContinue);
1140 /* Pull the requested columns.
1142 nResultCol = p->pEList->nExpr;
1144 if( pDest->iSdst==0 ){
1145 if( pSort ){
1146 nPrefixReg = pSort->pOrderBy->nExpr;
1147 if( !(pSort->sortFlags & SORTFLAG_UseSorter) ) nPrefixReg++;
1148 pParse->nMem += nPrefixReg;
1150 pDest->iSdst = pParse->nMem+1;
1151 pParse->nMem += nResultCol;
1152 }else if( pDest->iSdst+nResultCol > pParse->nMem ){
1153 /* This is an error condition that can result, for example, when a SELECT
1154 ** on the right-hand side of an INSERT contains more result columns than
1155 ** there are columns in the table on the left. The error will be caught
1156 ** and reported later. But we need to make sure enough memory is allocated
1157 ** to avoid other spurious errors in the meantime. */
1158 pParse->nMem += nResultCol;
1160 pDest->nSdst = nResultCol;
1161 regOrig = regResult = pDest->iSdst;
1162 if( srcTab>=0 ){
1163 for(i=0; i<nResultCol; i++){
1164 sqlite3VdbeAddOp3(v, OP_Column, srcTab, i, regResult+i);
1165 VdbeComment((v, "%s", p->pEList->a[i].zEName));
1167 }else if( eDest!=SRT_Exists ){
1168 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
1169 ExprList *pExtra = 0;
1170 #endif
1171 /* If the destination is an EXISTS(...) expression, the actual
1172 ** values returned by the SELECT are not required.
1174 u8 ecelFlags; /* "ecel" is an abbreviation of "ExprCodeExprList" */
1175 ExprList *pEList;
1176 if( eDest==SRT_Mem || eDest==SRT_Output || eDest==SRT_Coroutine ){
1177 ecelFlags = SQLITE_ECEL_DUP;
1178 }else{
1179 ecelFlags = 0;
1181 if( pSort && hasDistinct==0 && eDest!=SRT_EphemTab && eDest!=SRT_Table ){
1182 /* For each expression in p->pEList that is a copy of an expression in
1183 ** the ORDER BY clause (pSort->pOrderBy), set the associated
1184 ** iOrderByCol value to one more than the index of the ORDER BY
1185 ** expression within the sort-key that pushOntoSorter() will generate.
1186 ** This allows the p->pEList field to be omitted from the sorted record,
1187 ** saving space and CPU cycles. */
1188 ecelFlags |= (SQLITE_ECEL_OMITREF|SQLITE_ECEL_REF);
1190 for(i=pSort->nOBSat; i<pSort->pOrderBy->nExpr; i++){
1191 int j;
1192 if( (j = pSort->pOrderBy->a[i].u.x.iOrderByCol)>0 ){
1193 p->pEList->a[j-1].u.x.iOrderByCol = i+1-pSort->nOBSat;
1196 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
1197 selectExprDefer(pParse, pSort, p->pEList, &pExtra);
1198 if( pExtra && pParse->db->mallocFailed==0 ){
1199 /* If there are any extra PK columns to add to the sorter records,
1200 ** allocate extra memory cells and adjust the OpenEphemeral
1201 ** instruction to account for the larger records. This is only
1202 ** required if there are one or more WITHOUT ROWID tables with
1203 ** composite primary keys in the SortCtx.aDefer[] array. */
1204 VdbeOp *pOp = sqlite3VdbeGetOp(v, pSort->addrSortIndex);
1205 pOp->p2 += (pExtra->nExpr - pSort->nDefer);
1206 pOp->p4.pKeyInfo->nAllField += (pExtra->nExpr - pSort->nDefer);
1207 pParse->nMem += pExtra->nExpr;
1209 #endif
1211 /* Adjust nResultCol to account for columns that are omitted
1212 ** from the sorter by the optimizations in this branch */
1213 pEList = p->pEList;
1214 for(i=0; i<pEList->nExpr; i++){
1215 if( pEList->a[i].u.x.iOrderByCol>0
1216 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
1217 || pEList->a[i].fg.bSorterRef
1218 #endif
1220 nResultCol--;
1221 regOrig = 0;
1225 testcase( regOrig );
1226 testcase( eDest==SRT_Set );
1227 testcase( eDest==SRT_Mem );
1228 testcase( eDest==SRT_Coroutine );
1229 testcase( eDest==SRT_Output );
1230 assert( eDest==SRT_Set || eDest==SRT_Mem
1231 || eDest==SRT_Coroutine || eDest==SRT_Output
1232 || eDest==SRT_Upfrom );
1234 sRowLoadInfo.regResult = regResult;
1235 sRowLoadInfo.ecelFlags = ecelFlags;
1236 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
1237 sRowLoadInfo.pExtra = pExtra;
1238 sRowLoadInfo.regExtraResult = regResult + nResultCol;
1239 if( pExtra ) nResultCol += pExtra->nExpr;
1240 #endif
1241 if( p->iLimit
1242 && (ecelFlags & SQLITE_ECEL_OMITREF)!=0
1243 && nPrefixReg>0
1245 assert( pSort!=0 );
1246 assert( hasDistinct==0 );
1247 pSort->pDeferredRowLoad = &sRowLoadInfo;
1248 regOrig = 0;
1249 }else{
1250 innerLoopLoadRow(pParse, p, &sRowLoadInfo);
1254 /* If the DISTINCT keyword was present on the SELECT statement
1255 ** and this row has been seen before, then do not make this row
1256 ** part of the result.
1258 if( hasDistinct ){
1259 int eType = pDistinct->eTnctType;
1260 int iTab = pDistinct->tabTnct;
1261 assert( nResultCol==p->pEList->nExpr );
1262 iTab = codeDistinct(pParse, eType, iTab, iContinue, p->pEList, regResult);
1263 fixDistinctOpenEph(pParse, eType, iTab, pDistinct->addrTnct);
1264 if( pSort==0 ){
1265 codeOffset(v, p->iOffset, iContinue);
1269 switch( eDest ){
1270 /* In this mode, write each query result to the key of the temporary
1271 ** table iParm.
1273 #ifndef SQLITE_OMIT_COMPOUND_SELECT
1274 case SRT_Union: {
1275 int r1;
1276 r1 = sqlite3GetTempReg(pParse);
1277 sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nResultCol, r1);
1278 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, r1, regResult, nResultCol);
1279 sqlite3ReleaseTempReg(pParse, r1);
1280 break;
1283 /* Construct a record from the query result, but instead of
1284 ** saving that record, use it as a key to delete elements from
1285 ** the temporary table iParm.
1287 case SRT_Except: {
1288 sqlite3VdbeAddOp3(v, OP_IdxDelete, iParm, regResult, nResultCol);
1289 break;
1291 #endif /* SQLITE_OMIT_COMPOUND_SELECT */
1293 /* Store the result as data using a unique key.
1295 case SRT_Fifo:
1296 case SRT_DistFifo:
1297 case SRT_Table:
1298 case SRT_EphemTab: {
1299 int r1 = sqlite3GetTempRange(pParse, nPrefixReg+1);
1300 testcase( eDest==SRT_Table );
1301 testcase( eDest==SRT_EphemTab );
1302 testcase( eDest==SRT_Fifo );
1303 testcase( eDest==SRT_DistFifo );
1304 sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nResultCol, r1+nPrefixReg);
1305 #if !defined(SQLITE_ENABLE_NULL_TRIM) && defined(SQLITE_DEBUG)
1306 /* A destination of SRT_Table and a non-zero iSDParm2 parameter means
1307 ** that this is an "UPDATE ... FROM" on a virtual table or view. In this
1308 ** case set the p5 parameter of the OP_MakeRecord to OPFLAG_NOCHNG_MAGIC.
1309 ** This does not affect operation in any way - it just allows MakeRecord
1310 ** to process OPFLAG_NOCHANGE values without an assert() failing. */
1311 if( eDest==SRT_Table && pDest->iSDParm2 ){
1312 sqlite3VdbeChangeP5(v, OPFLAG_NOCHNG_MAGIC);
1314 #endif
1315 #ifndef SQLITE_OMIT_CTE
1316 if( eDest==SRT_DistFifo ){
1317 /* If the destination is DistFifo, then cursor (iParm+1) is open
1318 ** on an ephemeral index. If the current row is already present
1319 ** in the index, do not write it to the output. If not, add the
1320 ** current row to the index and proceed with writing it to the
1321 ** output table as well. */
1322 int addr = sqlite3VdbeCurrentAddr(v) + 4;
1323 sqlite3VdbeAddOp4Int(v, OP_Found, iParm+1, addr, r1, 0);
1324 VdbeCoverage(v);
1325 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm+1, r1,regResult,nResultCol);
1326 assert( pSort==0 );
1328 #endif
1329 if( pSort ){
1330 assert( regResult==regOrig );
1331 pushOntoSorter(pParse, pSort, p, r1+nPrefixReg, regOrig, 1, nPrefixReg);
1332 }else{
1333 int r2 = sqlite3GetTempReg(pParse);
1334 sqlite3VdbeAddOp2(v, OP_NewRowid, iParm, r2);
1335 sqlite3VdbeAddOp3(v, OP_Insert, iParm, r1, r2);
1336 sqlite3VdbeChangeP5(v, OPFLAG_APPEND);
1337 sqlite3ReleaseTempReg(pParse, r2);
1339 sqlite3ReleaseTempRange(pParse, r1, nPrefixReg+1);
1340 break;
1343 case SRT_Upfrom: {
1344 if( pSort ){
1345 pushOntoSorter(
1346 pParse, pSort, p, regResult, regOrig, nResultCol, nPrefixReg);
1347 }else{
1348 int i2 = pDest->iSDParm2;
1349 int r1 = sqlite3GetTempReg(pParse);
1351 /* If the UPDATE FROM join is an aggregate that matches no rows, it
1352 ** might still be trying to return one row, because that is what
1353 ** aggregates do. Don't record that empty row in the output table. */
1354 sqlite3VdbeAddOp2(v, OP_IsNull, regResult, iBreak); VdbeCoverage(v);
1356 sqlite3VdbeAddOp3(v, OP_MakeRecord,
1357 regResult+(i2<0), nResultCol-(i2<0), r1);
1358 if( i2<0 ){
1359 sqlite3VdbeAddOp3(v, OP_Insert, iParm, r1, regResult);
1360 }else{
1361 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, r1, regResult, i2);
1364 break;
1367 #ifndef SQLITE_OMIT_SUBQUERY
1368 /* If we are creating a set for an "expr IN (SELECT ...)" construct,
1369 ** then there should be a single item on the stack. Write this
1370 ** item into the set table with bogus data.
1372 case SRT_Set: {
1373 if( pSort ){
1374 /* At first glance you would think we could optimize out the
1375 ** ORDER BY in this case since the order of entries in the set
1376 ** does not matter. But there might be a LIMIT clause, in which
1377 ** case the order does matter */
1378 pushOntoSorter(
1379 pParse, pSort, p, regResult, regOrig, nResultCol, nPrefixReg);
1380 }else{
1381 int r1 = sqlite3GetTempReg(pParse);
1382 assert( sqlite3Strlen30(pDest->zAffSdst)==nResultCol );
1383 sqlite3VdbeAddOp4(v, OP_MakeRecord, regResult, nResultCol,
1384 r1, pDest->zAffSdst, nResultCol);
1385 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, r1, regResult, nResultCol);
1386 sqlite3ReleaseTempReg(pParse, r1);
1388 break;
1392 /* If any row exist in the result set, record that fact and abort.
1394 case SRT_Exists: {
1395 sqlite3VdbeAddOp2(v, OP_Integer, 1, iParm);
1396 /* The LIMIT clause will terminate the loop for us */
1397 break;
1400 /* If this is a scalar select that is part of an expression, then
1401 ** store the results in the appropriate memory cell or array of
1402 ** memory cells and break out of the scan loop.
1404 case SRT_Mem: {
1405 if( pSort ){
1406 assert( nResultCol<=pDest->nSdst );
1407 pushOntoSorter(
1408 pParse, pSort, p, regResult, regOrig, nResultCol, nPrefixReg);
1409 }else{
1410 assert( nResultCol==pDest->nSdst );
1411 assert( regResult==iParm );
1412 /* The LIMIT clause will jump out of the loop for us */
1414 break;
1416 #endif /* #ifndef SQLITE_OMIT_SUBQUERY */
1418 case SRT_Coroutine: /* Send data to a co-routine */
1419 case SRT_Output: { /* Return the results */
1420 testcase( eDest==SRT_Coroutine );
1421 testcase( eDest==SRT_Output );
1422 if( pSort ){
1423 pushOntoSorter(pParse, pSort, p, regResult, regOrig, nResultCol,
1424 nPrefixReg);
1425 }else if( eDest==SRT_Coroutine ){
1426 sqlite3VdbeAddOp1(v, OP_Yield, pDest->iSDParm);
1427 }else{
1428 sqlite3VdbeAddOp2(v, OP_ResultRow, regResult, nResultCol);
1430 break;
1433 #ifndef SQLITE_OMIT_CTE
1434 /* Write the results into a priority queue that is order according to
1435 ** pDest->pOrderBy (in pSO). pDest->iSDParm (in iParm) is the cursor for an
1436 ** index with pSO->nExpr+2 columns. Build a key using pSO for the first
1437 ** pSO->nExpr columns, then make sure all keys are unique by adding a
1438 ** final OP_Sequence column. The last column is the record as a blob.
1440 case SRT_DistQueue:
1441 case SRT_Queue: {
1442 int nKey;
1443 int r1, r2, r3;
1444 int addrTest = 0;
1445 ExprList *pSO;
1446 pSO = pDest->pOrderBy;
1447 assert( pSO );
1448 nKey = pSO->nExpr;
1449 r1 = sqlite3GetTempReg(pParse);
1450 r2 = sqlite3GetTempRange(pParse, nKey+2);
1451 r3 = r2+nKey+1;
1452 if( eDest==SRT_DistQueue ){
1453 /* If the destination is DistQueue, then cursor (iParm+1) is open
1454 ** on a second ephemeral index that holds all values every previously
1455 ** added to the queue. */
1456 addrTest = sqlite3VdbeAddOp4Int(v, OP_Found, iParm+1, 0,
1457 regResult, nResultCol);
1458 VdbeCoverage(v);
1460 sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nResultCol, r3);
1461 if( eDest==SRT_DistQueue ){
1462 sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm+1, r3);
1463 sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT);
1465 for(i=0; i<nKey; i++){
1466 sqlite3VdbeAddOp2(v, OP_SCopy,
1467 regResult + pSO->a[i].u.x.iOrderByCol - 1,
1468 r2+i);
1470 sqlite3VdbeAddOp2(v, OP_Sequence, iParm, r2+nKey);
1471 sqlite3VdbeAddOp3(v, OP_MakeRecord, r2, nKey+2, r1);
1472 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, r1, r2, nKey+2);
1473 if( addrTest ) sqlite3VdbeJumpHere(v, addrTest);
1474 sqlite3ReleaseTempReg(pParse, r1);
1475 sqlite3ReleaseTempRange(pParse, r2, nKey+2);
1476 break;
1478 #endif /* SQLITE_OMIT_CTE */
1482 #if !defined(SQLITE_OMIT_TRIGGER)
1483 /* Discard the results. This is used for SELECT statements inside
1484 ** the body of a TRIGGER. The purpose of such selects is to call
1485 ** user-defined functions that have side effects. We do not care
1486 ** about the actual results of the select.
1488 default: {
1489 assert( eDest==SRT_Discard );
1490 break;
1492 #endif
1495 /* Jump to the end of the loop if the LIMIT is reached. Except, if
1496 ** there is a sorter, in which case the sorter has already limited
1497 ** the output for us.
1499 if( pSort==0 && p->iLimit ){
1500 sqlite3VdbeAddOp2(v, OP_DecrJumpZero, p->iLimit, iBreak); VdbeCoverage(v);
1505 ** Allocate a KeyInfo object sufficient for an index of N key columns and
1506 ** X extra columns.
1508 KeyInfo *sqlite3KeyInfoAlloc(sqlite3 *db, int N, int X){
1509 int nExtra = (N+X)*(sizeof(CollSeq*)+1) - sizeof(CollSeq*);
1510 KeyInfo *p = sqlite3DbMallocRawNN(db, sizeof(KeyInfo) + nExtra);
1511 if( p ){
1512 p->aSortFlags = (u8*)&p->aColl[N+X];
1513 p->nKeyField = (u16)N;
1514 p->nAllField = (u16)(N+X);
1515 p->enc = ENC(db);
1516 p->db = db;
1517 p->nRef = 1;
1518 memset(&p[1], 0, nExtra);
1519 }else{
1520 return (KeyInfo*)sqlite3OomFault(db);
1522 return p;
1526 ** Deallocate a KeyInfo object
1528 void sqlite3KeyInfoUnref(KeyInfo *p){
1529 if( p ){
1530 assert( p->db!=0 );
1531 assert( p->nRef>0 );
1532 p->nRef--;
1533 if( p->nRef==0 ) sqlite3DbNNFreeNN(p->db, p);
1538 ** Make a new pointer to a KeyInfo object
1540 KeyInfo *sqlite3KeyInfoRef(KeyInfo *p){
1541 if( p ){
1542 assert( p->nRef>0 );
1543 p->nRef++;
1545 return p;
1548 #ifdef SQLITE_DEBUG
1550 ** Return TRUE if a KeyInfo object can be change. The KeyInfo object
1551 ** can only be changed if this is just a single reference to the object.
1553 ** This routine is used only inside of assert() statements.
1555 int sqlite3KeyInfoIsWriteable(KeyInfo *p){ return p->nRef==1; }
1556 #endif /* SQLITE_DEBUG */
1559 ** Given an expression list, generate a KeyInfo structure that records
1560 ** the collating sequence for each expression in that expression list.
1562 ** If the ExprList is an ORDER BY or GROUP BY clause then the resulting
1563 ** KeyInfo structure is appropriate for initializing a virtual index to
1564 ** implement that clause. If the ExprList is the result set of a SELECT
1565 ** then the KeyInfo structure is appropriate for initializing a virtual
1566 ** index to implement a DISTINCT test.
1568 ** Space to hold the KeyInfo structure is obtained from malloc. The calling
1569 ** function is responsible for seeing that this structure is eventually
1570 ** freed.
1572 KeyInfo *sqlite3KeyInfoFromExprList(
1573 Parse *pParse, /* Parsing context */
1574 ExprList *pList, /* Form the KeyInfo object from this ExprList */
1575 int iStart, /* Begin with this column of pList */
1576 int nExtra /* Add this many extra columns to the end */
1578 int nExpr;
1579 KeyInfo *pInfo;
1580 struct ExprList_item *pItem;
1581 sqlite3 *db = pParse->db;
1582 int i;
1584 nExpr = pList->nExpr;
1585 pInfo = sqlite3KeyInfoAlloc(db, nExpr-iStart, nExtra+1);
1586 if( pInfo ){
1587 assert( sqlite3KeyInfoIsWriteable(pInfo) );
1588 for(i=iStart, pItem=pList->a+iStart; i<nExpr; i++, pItem++){
1589 pInfo->aColl[i-iStart] = sqlite3ExprNNCollSeq(pParse, pItem->pExpr);
1590 pInfo->aSortFlags[i-iStart] = pItem->fg.sortFlags;
1593 return pInfo;
1597 ** Name of the connection operator, used for error messages.
1599 const char *sqlite3SelectOpName(int id){
1600 char *z;
1601 switch( id ){
1602 case TK_ALL: z = "UNION ALL"; break;
1603 case TK_INTERSECT: z = "INTERSECT"; break;
1604 case TK_EXCEPT: z = "EXCEPT"; break;
1605 default: z = "UNION"; break;
1607 return z;
1610 #ifndef SQLITE_OMIT_EXPLAIN
1612 ** Unless an "EXPLAIN QUERY PLAN" command is being processed, this function
1613 ** is a no-op. Otherwise, it adds a single row of output to the EQP result,
1614 ** where the caption is of the form:
1616 ** "USE TEMP B-TREE FOR xxx"
1618 ** where xxx is one of "DISTINCT", "ORDER BY" or "GROUP BY". Exactly which
1619 ** is determined by the zUsage argument.
1621 static void explainTempTable(Parse *pParse, const char *zUsage){
1622 ExplainQueryPlan((pParse, 0, "USE TEMP B-TREE FOR %s", zUsage));
1626 ** Assign expression b to lvalue a. A second, no-op, version of this macro
1627 ** is provided when SQLITE_OMIT_EXPLAIN is defined. This allows the code
1628 ** in sqlite3Select() to assign values to structure member variables that
1629 ** only exist if SQLITE_OMIT_EXPLAIN is not defined without polluting the
1630 ** code with #ifndef directives.
1632 # define explainSetInteger(a, b) a = b
1634 #else
1635 /* No-op versions of the explainXXX() functions and macros. */
1636 # define explainTempTable(y,z)
1637 # define explainSetInteger(y,z)
1638 #endif
1642 ** If the inner loop was generated using a non-null pOrderBy argument,
1643 ** then the results were placed in a sorter. After the loop is terminated
1644 ** we need to run the sorter and output the results. The following
1645 ** routine generates the code needed to do that.
1647 static void generateSortTail(
1648 Parse *pParse, /* Parsing context */
1649 Select *p, /* The SELECT statement */
1650 SortCtx *pSort, /* Information on the ORDER BY clause */
1651 int nColumn, /* Number of columns of data */
1652 SelectDest *pDest /* Write the sorted results here */
1654 Vdbe *v = pParse->pVdbe; /* The prepared statement */
1655 int addrBreak = pSort->labelDone; /* Jump here to exit loop */
1656 int addrContinue = sqlite3VdbeMakeLabel(pParse);/* Jump here for next cycle */
1657 int addr; /* Top of output loop. Jump for Next. */
1658 int addrOnce = 0;
1659 int iTab;
1660 ExprList *pOrderBy = pSort->pOrderBy;
1661 int eDest = pDest->eDest;
1662 int iParm = pDest->iSDParm;
1663 int regRow;
1664 int regRowid;
1665 int iCol;
1666 int nKey; /* Number of key columns in sorter record */
1667 int iSortTab; /* Sorter cursor to read from */
1668 int i;
1669 int bSeq; /* True if sorter record includes seq. no. */
1670 int nRefKey = 0;
1671 struct ExprList_item *aOutEx = p->pEList->a;
1672 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS
1673 int addrExplain; /* Address of OP_Explain instruction */
1674 #endif
1676 ExplainQueryPlan2(addrExplain, (pParse, 0,
1677 "USE TEMP B-TREE FOR %sORDER BY", pSort->nOBSat>0?"RIGHT PART OF ":"")
1679 sqlite3VdbeScanStatusRange(v, addrExplain,pSort->addrPush,pSort->addrPushEnd);
1680 sqlite3VdbeScanStatusCounters(v, addrExplain, addrExplain, pSort->addrPush);
1683 assert( addrBreak<0 );
1684 if( pSort->labelBkOut ){
1685 sqlite3VdbeAddOp2(v, OP_Gosub, pSort->regReturn, pSort->labelBkOut);
1686 sqlite3VdbeGoto(v, addrBreak);
1687 sqlite3VdbeResolveLabel(v, pSort->labelBkOut);
1690 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
1691 /* Open any cursors needed for sorter-reference expressions */
1692 for(i=0; i<pSort->nDefer; i++){
1693 Table *pTab = pSort->aDefer[i].pTab;
1694 int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
1695 sqlite3OpenTable(pParse, pSort->aDefer[i].iCsr, iDb, pTab, OP_OpenRead);
1696 nRefKey = MAX(nRefKey, pSort->aDefer[i].nKey);
1698 #endif
1700 iTab = pSort->iECursor;
1701 if( eDest==SRT_Output || eDest==SRT_Coroutine || eDest==SRT_Mem ){
1702 if( eDest==SRT_Mem && p->iOffset ){
1703 sqlite3VdbeAddOp2(v, OP_Null, 0, pDest->iSdst);
1705 regRowid = 0;
1706 regRow = pDest->iSdst;
1707 }else{
1708 regRowid = sqlite3GetTempReg(pParse);
1709 if( eDest==SRT_EphemTab || eDest==SRT_Table ){
1710 regRow = sqlite3GetTempReg(pParse);
1711 nColumn = 0;
1712 }else{
1713 regRow = sqlite3GetTempRange(pParse, nColumn);
1716 nKey = pOrderBy->nExpr - pSort->nOBSat;
1717 if( pSort->sortFlags & SORTFLAG_UseSorter ){
1718 int regSortOut = ++pParse->nMem;
1719 iSortTab = pParse->nTab++;
1720 if( pSort->labelBkOut ){
1721 addrOnce = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v);
1723 sqlite3VdbeAddOp3(v, OP_OpenPseudo, iSortTab, regSortOut,
1724 nKey+1+nColumn+nRefKey);
1725 if( addrOnce ) sqlite3VdbeJumpHere(v, addrOnce);
1726 addr = 1 + sqlite3VdbeAddOp2(v, OP_SorterSort, iTab, addrBreak);
1727 VdbeCoverage(v);
1728 assert( p->iLimit==0 && p->iOffset==0 );
1729 sqlite3VdbeAddOp3(v, OP_SorterData, iTab, regSortOut, iSortTab);
1730 bSeq = 0;
1731 }else{
1732 addr = 1 + sqlite3VdbeAddOp2(v, OP_Sort, iTab, addrBreak); VdbeCoverage(v);
1733 codeOffset(v, p->iOffset, addrContinue);
1734 iSortTab = iTab;
1735 bSeq = 1;
1736 if( p->iOffset>0 ){
1737 sqlite3VdbeAddOp2(v, OP_AddImm, p->iLimit, -1);
1740 for(i=0, iCol=nKey+bSeq-1; i<nColumn; i++){
1741 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
1742 if( aOutEx[i].fg.bSorterRef ) continue;
1743 #endif
1744 if( aOutEx[i].u.x.iOrderByCol==0 ) iCol++;
1746 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
1747 if( pSort->nDefer ){
1748 int iKey = iCol+1;
1749 int regKey = sqlite3GetTempRange(pParse, nRefKey);
1751 for(i=0; i<pSort->nDefer; i++){
1752 int iCsr = pSort->aDefer[i].iCsr;
1753 Table *pTab = pSort->aDefer[i].pTab;
1754 int nKey = pSort->aDefer[i].nKey;
1756 sqlite3VdbeAddOp1(v, OP_NullRow, iCsr);
1757 if( HasRowid(pTab) ){
1758 sqlite3VdbeAddOp3(v, OP_Column, iSortTab, iKey++, regKey);
1759 sqlite3VdbeAddOp3(v, OP_SeekRowid, iCsr,
1760 sqlite3VdbeCurrentAddr(v)+1, regKey);
1761 }else{
1762 int k;
1763 int iJmp;
1764 assert( sqlite3PrimaryKeyIndex(pTab)->nKeyCol==nKey );
1765 for(k=0; k<nKey; k++){
1766 sqlite3VdbeAddOp3(v, OP_Column, iSortTab, iKey++, regKey+k);
1768 iJmp = sqlite3VdbeCurrentAddr(v);
1769 sqlite3VdbeAddOp4Int(v, OP_SeekGE, iCsr, iJmp+2, regKey, nKey);
1770 sqlite3VdbeAddOp4Int(v, OP_IdxLE, iCsr, iJmp+3, regKey, nKey);
1771 sqlite3VdbeAddOp1(v, OP_NullRow, iCsr);
1774 sqlite3ReleaseTempRange(pParse, regKey, nRefKey);
1776 #endif
1777 for(i=nColumn-1; i>=0; i--){
1778 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
1779 if( aOutEx[i].fg.bSorterRef ){
1780 sqlite3ExprCode(pParse, aOutEx[i].pExpr, regRow+i);
1781 }else
1782 #endif
1784 int iRead;
1785 if( aOutEx[i].u.x.iOrderByCol ){
1786 iRead = aOutEx[i].u.x.iOrderByCol-1;
1787 }else{
1788 iRead = iCol--;
1790 sqlite3VdbeAddOp3(v, OP_Column, iSortTab, iRead, regRow+i);
1791 VdbeComment((v, "%s", aOutEx[i].zEName));
1794 sqlite3VdbeScanStatusRange(v, addrExplain, addrExplain, -1);
1795 switch( eDest ){
1796 case SRT_Table:
1797 case SRT_EphemTab: {
1798 sqlite3VdbeAddOp3(v, OP_Column, iSortTab, nKey+bSeq, regRow);
1799 sqlite3VdbeAddOp2(v, OP_NewRowid, iParm, regRowid);
1800 sqlite3VdbeAddOp3(v, OP_Insert, iParm, regRow, regRowid);
1801 sqlite3VdbeChangeP5(v, OPFLAG_APPEND);
1802 break;
1804 #ifndef SQLITE_OMIT_SUBQUERY
1805 case SRT_Set: {
1806 assert( nColumn==sqlite3Strlen30(pDest->zAffSdst) );
1807 sqlite3VdbeAddOp4(v, OP_MakeRecord, regRow, nColumn, regRowid,
1808 pDest->zAffSdst, nColumn);
1809 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, regRowid, regRow, nColumn);
1810 break;
1812 case SRT_Mem: {
1813 /* The LIMIT clause will terminate the loop for us */
1814 break;
1816 #endif
1817 case SRT_Upfrom: {
1818 int i2 = pDest->iSDParm2;
1819 int r1 = sqlite3GetTempReg(pParse);
1820 sqlite3VdbeAddOp3(v, OP_MakeRecord,regRow+(i2<0),nColumn-(i2<0),r1);
1821 if( i2<0 ){
1822 sqlite3VdbeAddOp3(v, OP_Insert, iParm, r1, regRow);
1823 }else{
1824 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, r1, regRow, i2);
1826 break;
1828 default: {
1829 assert( eDest==SRT_Output || eDest==SRT_Coroutine );
1830 testcase( eDest==SRT_Output );
1831 testcase( eDest==SRT_Coroutine );
1832 if( eDest==SRT_Output ){
1833 sqlite3VdbeAddOp2(v, OP_ResultRow, pDest->iSdst, nColumn);
1834 }else{
1835 sqlite3VdbeAddOp1(v, OP_Yield, pDest->iSDParm);
1837 break;
1840 if( regRowid ){
1841 if( eDest==SRT_Set ){
1842 sqlite3ReleaseTempRange(pParse, regRow, nColumn);
1843 }else{
1844 sqlite3ReleaseTempReg(pParse, regRow);
1846 sqlite3ReleaseTempReg(pParse, regRowid);
1848 /* The bottom of the loop
1850 sqlite3VdbeResolveLabel(v, addrContinue);
1851 if( pSort->sortFlags & SORTFLAG_UseSorter ){
1852 sqlite3VdbeAddOp2(v, OP_SorterNext, iTab, addr); VdbeCoverage(v);
1853 }else{
1854 sqlite3VdbeAddOp2(v, OP_Next, iTab, addr); VdbeCoverage(v);
1856 sqlite3VdbeScanStatusRange(v, addrExplain, sqlite3VdbeCurrentAddr(v)-1, -1);
1857 if( pSort->regReturn ) sqlite3VdbeAddOp1(v, OP_Return, pSort->regReturn);
1858 sqlite3VdbeResolveLabel(v, addrBreak);
1862 ** Return a pointer to a string containing the 'declaration type' of the
1863 ** expression pExpr. The string may be treated as static by the caller.
1865 ** The declaration type is the exact datatype definition extracted from the
1866 ** original CREATE TABLE statement if the expression is a column. The
1867 ** declaration type for a ROWID field is INTEGER. Exactly when an expression
1868 ** is considered a column can be complex in the presence of subqueries. The
1869 ** result-set expression in all of the following SELECT statements is
1870 ** considered a column by this function.
1872 ** SELECT col FROM tbl;
1873 ** SELECT (SELECT col FROM tbl;
1874 ** SELECT (SELECT col FROM tbl);
1875 ** SELECT abc FROM (SELECT col AS abc FROM tbl);
1877 ** The declaration type for any expression other than a column is NULL.
1879 ** This routine has either 3 or 6 parameters depending on whether or not
1880 ** the SQLITE_ENABLE_COLUMN_METADATA compile-time option is used.
1882 #ifdef SQLITE_ENABLE_COLUMN_METADATA
1883 # define columnType(A,B,C,D,E) columnTypeImpl(A,B,C,D,E)
1884 #else /* if !defined(SQLITE_ENABLE_COLUMN_METADATA) */
1885 # define columnType(A,B,C,D,E) columnTypeImpl(A,B)
1886 #endif
1887 static const char *columnTypeImpl(
1888 NameContext *pNC,
1889 #ifndef SQLITE_ENABLE_COLUMN_METADATA
1890 Expr *pExpr
1891 #else
1892 Expr *pExpr,
1893 const char **pzOrigDb,
1894 const char **pzOrigTab,
1895 const char **pzOrigCol
1896 #endif
1898 char const *zType = 0;
1899 int j;
1900 #ifdef SQLITE_ENABLE_COLUMN_METADATA
1901 char const *zOrigDb = 0;
1902 char const *zOrigTab = 0;
1903 char const *zOrigCol = 0;
1904 #endif
1906 assert( pExpr!=0 );
1907 assert( pNC->pSrcList!=0 );
1908 switch( pExpr->op ){
1909 case TK_COLUMN: {
1910 /* The expression is a column. Locate the table the column is being
1911 ** extracted from in NameContext.pSrcList. This table may be real
1912 ** database table or a subquery.
1914 Table *pTab = 0; /* Table structure column is extracted from */
1915 Select *pS = 0; /* Select the column is extracted from */
1916 int iCol = pExpr->iColumn; /* Index of column in pTab */
1917 while( pNC && !pTab ){
1918 SrcList *pTabList = pNC->pSrcList;
1919 for(j=0;j<pTabList->nSrc && pTabList->a[j].iCursor!=pExpr->iTable;j++);
1920 if( j<pTabList->nSrc ){
1921 pTab = pTabList->a[j].pTab;
1922 pS = pTabList->a[j].pSelect;
1923 }else{
1924 pNC = pNC->pNext;
1928 if( pTab==0 ){
1929 /* At one time, code such as "SELECT new.x" within a trigger would
1930 ** cause this condition to run. Since then, we have restructured how
1931 ** trigger code is generated and so this condition is no longer
1932 ** possible. However, it can still be true for statements like
1933 ** the following:
1935 ** CREATE TABLE t1(col INTEGER);
1936 ** SELECT (SELECT t1.col) FROM FROM t1;
1938 ** when columnType() is called on the expression "t1.col" in the
1939 ** sub-select. In this case, set the column type to NULL, even
1940 ** though it should really be "INTEGER".
1942 ** This is not a problem, as the column type of "t1.col" is never
1943 ** used. When columnType() is called on the expression
1944 ** "(SELECT t1.col)", the correct type is returned (see the TK_SELECT
1945 ** branch below. */
1946 break;
1949 assert( pTab && ExprUseYTab(pExpr) && pExpr->y.pTab==pTab );
1950 if( pS ){
1951 /* The "table" is actually a sub-select or a view in the FROM clause
1952 ** of the SELECT statement. Return the declaration type and origin
1953 ** data for the result-set column of the sub-select.
1955 if( iCol<pS->pEList->nExpr
1956 #ifdef SQLITE_ALLOW_ROWID_IN_VIEW
1957 && iCol>=0
1958 #else
1959 && ALWAYS(iCol>=0)
1960 #endif
1962 /* If iCol is less than zero, then the expression requests the
1963 ** rowid of the sub-select or view. This expression is legal (see
1964 ** test case misc2.2.2) - it always evaluates to NULL.
1966 NameContext sNC;
1967 Expr *p = pS->pEList->a[iCol].pExpr;
1968 sNC.pSrcList = pS->pSrc;
1969 sNC.pNext = pNC;
1970 sNC.pParse = pNC->pParse;
1971 zType = columnType(&sNC, p,&zOrigDb,&zOrigTab,&zOrigCol);
1973 }else{
1974 /* A real table or a CTE table */
1975 assert( !pS );
1976 #ifdef SQLITE_ENABLE_COLUMN_METADATA
1977 if( iCol<0 ) iCol = pTab->iPKey;
1978 assert( iCol==XN_ROWID || (iCol>=0 && iCol<pTab->nCol) );
1979 if( iCol<0 ){
1980 zType = "INTEGER";
1981 zOrigCol = "rowid";
1982 }else{
1983 zOrigCol = pTab->aCol[iCol].zCnName;
1984 zType = sqlite3ColumnType(&pTab->aCol[iCol],0);
1986 zOrigTab = pTab->zName;
1987 if( pNC->pParse && pTab->pSchema ){
1988 int iDb = sqlite3SchemaToIndex(pNC->pParse->db, pTab->pSchema);
1989 zOrigDb = pNC->pParse->db->aDb[iDb].zDbSName;
1991 #else
1992 assert( iCol==XN_ROWID || (iCol>=0 && iCol<pTab->nCol) );
1993 if( iCol<0 ){
1994 zType = "INTEGER";
1995 }else{
1996 zType = sqlite3ColumnType(&pTab->aCol[iCol],0);
1998 #endif
2000 break;
2002 #ifndef SQLITE_OMIT_SUBQUERY
2003 case TK_SELECT: {
2004 /* The expression is a sub-select. Return the declaration type and
2005 ** origin info for the single column in the result set of the SELECT
2006 ** statement.
2008 NameContext sNC;
2009 Select *pS;
2010 Expr *p;
2011 assert( ExprUseXSelect(pExpr) );
2012 pS = pExpr->x.pSelect;
2013 p = pS->pEList->a[0].pExpr;
2014 sNC.pSrcList = pS->pSrc;
2015 sNC.pNext = pNC;
2016 sNC.pParse = pNC->pParse;
2017 zType = columnType(&sNC, p, &zOrigDb, &zOrigTab, &zOrigCol);
2018 break;
2020 #endif
2023 #ifdef SQLITE_ENABLE_COLUMN_METADATA
2024 if( pzOrigDb ){
2025 assert( pzOrigTab && pzOrigCol );
2026 *pzOrigDb = zOrigDb;
2027 *pzOrigTab = zOrigTab;
2028 *pzOrigCol = zOrigCol;
2030 #endif
2031 return zType;
2035 ** Generate code that will tell the VDBE the declaration types of columns
2036 ** in the result set.
2038 static void generateColumnTypes(
2039 Parse *pParse, /* Parser context */
2040 SrcList *pTabList, /* List of tables */
2041 ExprList *pEList /* Expressions defining the result set */
2043 #ifndef SQLITE_OMIT_DECLTYPE
2044 Vdbe *v = pParse->pVdbe;
2045 int i;
2046 NameContext sNC;
2047 sNC.pSrcList = pTabList;
2048 sNC.pParse = pParse;
2049 sNC.pNext = 0;
2050 for(i=0; i<pEList->nExpr; i++){
2051 Expr *p = pEList->a[i].pExpr;
2052 const char *zType;
2053 #ifdef SQLITE_ENABLE_COLUMN_METADATA
2054 const char *zOrigDb = 0;
2055 const char *zOrigTab = 0;
2056 const char *zOrigCol = 0;
2057 zType = columnType(&sNC, p, &zOrigDb, &zOrigTab, &zOrigCol);
2059 /* The vdbe must make its own copy of the column-type and other
2060 ** column specific strings, in case the schema is reset before this
2061 ** virtual machine is deleted.
2063 sqlite3VdbeSetColName(v, i, COLNAME_DATABASE, zOrigDb, SQLITE_TRANSIENT);
2064 sqlite3VdbeSetColName(v, i, COLNAME_TABLE, zOrigTab, SQLITE_TRANSIENT);
2065 sqlite3VdbeSetColName(v, i, COLNAME_COLUMN, zOrigCol, SQLITE_TRANSIENT);
2066 #else
2067 zType = columnType(&sNC, p, 0, 0, 0);
2068 #endif
2069 sqlite3VdbeSetColName(v, i, COLNAME_DECLTYPE, zType, SQLITE_TRANSIENT);
2071 #endif /* !defined(SQLITE_OMIT_DECLTYPE) */
2076 ** Compute the column names for a SELECT statement.
2078 ** The only guarantee that SQLite makes about column names is that if the
2079 ** column has an AS clause assigning it a name, that will be the name used.
2080 ** That is the only documented guarantee. However, countless applications
2081 ** developed over the years have made baseless assumptions about column names
2082 ** and will break if those assumptions changes. Hence, use extreme caution
2083 ** when modifying this routine to avoid breaking legacy.
2085 ** See Also: sqlite3ColumnsFromExprList()
2087 ** The PRAGMA short_column_names and PRAGMA full_column_names settings are
2088 ** deprecated. The default setting is short=ON, full=OFF. 99.9% of all
2089 ** applications should operate this way. Nevertheless, we need to support the
2090 ** other modes for legacy:
2092 ** short=OFF, full=OFF: Column name is the text of the expression has it
2093 ** originally appears in the SELECT statement. In
2094 ** other words, the zSpan of the result expression.
2096 ** short=ON, full=OFF: (This is the default setting). If the result
2097 ** refers directly to a table column, then the
2098 ** result column name is just the table column
2099 ** name: COLUMN. Otherwise use zSpan.
2101 ** full=ON, short=ANY: If the result refers directly to a table column,
2102 ** then the result column name with the table name
2103 ** prefix, ex: TABLE.COLUMN. Otherwise use zSpan.
2105 void sqlite3GenerateColumnNames(
2106 Parse *pParse, /* Parser context */
2107 Select *pSelect /* Generate column names for this SELECT statement */
2109 Vdbe *v = pParse->pVdbe;
2110 int i;
2111 Table *pTab;
2112 SrcList *pTabList;
2113 ExprList *pEList;
2114 sqlite3 *db = pParse->db;
2115 int fullName; /* TABLE.COLUMN if no AS clause and is a direct table ref */
2116 int srcName; /* COLUMN or TABLE.COLUMN if no AS clause and is direct */
2118 if( pParse->colNamesSet ) return;
2119 /* Column names are determined by the left-most term of a compound select */
2120 while( pSelect->pPrior ) pSelect = pSelect->pPrior;
2121 TREETRACE(0x80,pParse,pSelect,("generating column names\n"));
2122 pTabList = pSelect->pSrc;
2123 pEList = pSelect->pEList;
2124 assert( v!=0 );
2125 assert( pTabList!=0 );
2126 pParse->colNamesSet = 1;
2127 fullName = (db->flags & SQLITE_FullColNames)!=0;
2128 srcName = (db->flags & SQLITE_ShortColNames)!=0 || fullName;
2129 sqlite3VdbeSetNumCols(v, pEList->nExpr);
2130 for(i=0; i<pEList->nExpr; i++){
2131 Expr *p = pEList->a[i].pExpr;
2133 assert( p!=0 );
2134 assert( p->op!=TK_AGG_COLUMN ); /* Agg processing has not run yet */
2135 assert( p->op!=TK_COLUMN
2136 || (ExprUseYTab(p) && p->y.pTab!=0) ); /* Covering idx not yet coded */
2137 if( pEList->a[i].zEName && pEList->a[i].fg.eEName==ENAME_NAME ){
2138 /* An AS clause always takes first priority */
2139 char *zName = pEList->a[i].zEName;
2140 sqlite3VdbeSetColName(v, i, COLNAME_NAME, zName, SQLITE_TRANSIENT);
2141 }else if( srcName && p->op==TK_COLUMN ){
2142 char *zCol;
2143 int iCol = p->iColumn;
2144 pTab = p->y.pTab;
2145 assert( pTab!=0 );
2146 if( iCol<0 ) iCol = pTab->iPKey;
2147 assert( iCol==-1 || (iCol>=0 && iCol<pTab->nCol) );
2148 if( iCol<0 ){
2149 zCol = "rowid";
2150 }else{
2151 zCol = pTab->aCol[iCol].zCnName;
2153 if( fullName ){
2154 char *zName = 0;
2155 zName = sqlite3MPrintf(db, "%s.%s", pTab->zName, zCol);
2156 sqlite3VdbeSetColName(v, i, COLNAME_NAME, zName, SQLITE_DYNAMIC);
2157 }else{
2158 sqlite3VdbeSetColName(v, i, COLNAME_NAME, zCol, SQLITE_TRANSIENT);
2160 }else{
2161 const char *z = pEList->a[i].zEName;
2162 z = z==0 ? sqlite3MPrintf(db, "column%d", i+1) : sqlite3DbStrDup(db, z);
2163 sqlite3VdbeSetColName(v, i, COLNAME_NAME, z, SQLITE_DYNAMIC);
2166 generateColumnTypes(pParse, pTabList, pEList);
2170 ** Given an expression list (which is really the list of expressions
2171 ** that form the result set of a SELECT statement) compute appropriate
2172 ** column names for a table that would hold the expression list.
2174 ** All column names will be unique.
2176 ** Only the column names are computed. Column.zType, Column.zColl,
2177 ** and other fields of Column are zeroed.
2179 ** Return SQLITE_OK on success. If a memory allocation error occurs,
2180 ** store NULL in *paCol and 0 in *pnCol and return SQLITE_NOMEM.
2182 ** The only guarantee that SQLite makes about column names is that if the
2183 ** column has an AS clause assigning it a name, that will be the name used.
2184 ** That is the only documented guarantee. However, countless applications
2185 ** developed over the years have made baseless assumptions about column names
2186 ** and will break if those assumptions changes. Hence, use extreme caution
2187 ** when modifying this routine to avoid breaking legacy.
2189 ** See Also: sqlite3GenerateColumnNames()
2191 int sqlite3ColumnsFromExprList(
2192 Parse *pParse, /* Parsing context */
2193 ExprList *pEList, /* Expr list from which to derive column names */
2194 i16 *pnCol, /* Write the number of columns here */
2195 Column **paCol /* Write the new column list here */
2197 sqlite3 *db = pParse->db; /* Database connection */
2198 int i, j; /* Loop counters */
2199 u32 cnt; /* Index added to make the name unique */
2200 Column *aCol, *pCol; /* For looping over result columns */
2201 int nCol; /* Number of columns in the result set */
2202 char *zName; /* Column name */
2203 int nName; /* Size of name in zName[] */
2204 Hash ht; /* Hash table of column names */
2205 Table *pTab;
2207 sqlite3HashInit(&ht);
2208 if( pEList ){
2209 nCol = pEList->nExpr;
2210 aCol = sqlite3DbMallocZero(db, sizeof(aCol[0])*nCol);
2211 testcase( aCol==0 );
2212 if( NEVER(nCol>32767) ) nCol = 32767;
2213 }else{
2214 nCol = 0;
2215 aCol = 0;
2217 assert( nCol==(i16)nCol );
2218 *pnCol = nCol;
2219 *paCol = aCol;
2221 for(i=0, pCol=aCol; i<nCol && !pParse->nErr; i++, pCol++){
2222 struct ExprList_item *pX = &pEList->a[i];
2223 struct ExprList_item *pCollide;
2224 /* Get an appropriate name for the column
2226 if( (zName = pX->zEName)!=0 && pX->fg.eEName==ENAME_NAME ){
2227 /* If the column contains an "AS <name>" phrase, use <name> as the name */
2228 }else{
2229 Expr *pColExpr = sqlite3ExprSkipCollateAndLikely(pX->pExpr);
2230 while( ALWAYS(pColExpr!=0) && pColExpr->op==TK_DOT ){
2231 pColExpr = pColExpr->pRight;
2232 assert( pColExpr!=0 );
2234 if( pColExpr->op==TK_COLUMN
2235 && ALWAYS( ExprUseYTab(pColExpr) )
2236 && ALWAYS( pColExpr->y.pTab!=0 )
2238 /* For columns use the column name name */
2239 int iCol = pColExpr->iColumn;
2240 pTab = pColExpr->y.pTab;
2241 if( iCol<0 ) iCol = pTab->iPKey;
2242 zName = iCol>=0 ? pTab->aCol[iCol].zCnName : "rowid";
2243 }else if( pColExpr->op==TK_ID ){
2244 assert( !ExprHasProperty(pColExpr, EP_IntValue) );
2245 zName = pColExpr->u.zToken;
2246 }else{
2247 /* Use the original text of the column expression as its name */
2248 assert( zName==pX->zEName ); /* pointer comparison intended */
2251 if( zName && !sqlite3IsTrueOrFalse(zName) ){
2252 zName = sqlite3DbStrDup(db, zName);
2253 }else{
2254 zName = sqlite3MPrintf(db,"column%d",i+1);
2257 /* Make sure the column name is unique. If the name is not unique,
2258 ** append an integer to the name so that it becomes unique.
2260 cnt = 0;
2261 while( zName && (pCollide = sqlite3HashFind(&ht, zName))!=0 ){
2262 if( pCollide->fg.bUsingTerm ){
2263 pCol->colFlags |= COLFLAG_NOEXPAND;
2265 nName = sqlite3Strlen30(zName);
2266 if( nName>0 ){
2267 for(j=nName-1; j>0 && sqlite3Isdigit(zName[j]); j--){}
2268 if( zName[j]==':' ) nName = j;
2270 zName = sqlite3MPrintf(db, "%.*z:%u", nName, zName, ++cnt);
2271 sqlite3ProgressCheck(pParse);
2272 if( cnt>3 ){
2273 sqlite3_randomness(sizeof(cnt), &cnt);
2276 pCol->zCnName = zName;
2277 pCol->hName = sqlite3StrIHash(zName);
2278 if( pX->fg.bNoExpand ){
2279 pCol->colFlags |= COLFLAG_NOEXPAND;
2281 sqlite3ColumnPropertiesFromName(0, pCol);
2282 if( zName && sqlite3HashInsert(&ht, zName, pX)==pX ){
2283 sqlite3OomFault(db);
2286 sqlite3HashClear(&ht);
2287 if( pParse->nErr ){
2288 for(j=0; j<i; j++){
2289 sqlite3DbFree(db, aCol[j].zCnName);
2291 sqlite3DbFree(db, aCol);
2292 *paCol = 0;
2293 *pnCol = 0;
2294 return pParse->rc;
2296 return SQLITE_OK;
2300 ** pTab is a transient Table object that represents a subquery of some
2301 ** kind (maybe a parenthesized subquery in the FROM clause of a larger
2302 ** query, or a VIEW, or a CTE). This routine computes type information
2303 ** for that Table object based on the Select object that implements the
2304 ** subquery. For the purposes of this routine, "type information" means:
2306 ** * The datatype name, as it might appear in a CREATE TABLE statement
2307 ** * Which collating sequence to use for the column
2308 ** * The affinity of the column
2310 void sqlite3SubqueryColumnTypes(
2311 Parse *pParse, /* Parsing contexts */
2312 Table *pTab, /* Add column type information to this table */
2313 Select *pSelect, /* SELECT used to determine types and collations */
2314 char aff /* Default affinity. */
2316 sqlite3 *db = pParse->db;
2317 Column *pCol;
2318 CollSeq *pColl;
2319 int i,j;
2320 Expr *p;
2321 struct ExprList_item *a;
2322 NameContext sNC;
2324 assert( pSelect!=0 );
2325 testcase( (pSelect->selFlags & SF_Resolved)==0 );
2326 assert( (pSelect->selFlags & SF_Resolved)!=0 || IN_RENAME_OBJECT );
2327 assert( pTab->nCol==pSelect->pEList->nExpr || pParse->nErr>0 );
2328 assert( aff==SQLITE_AFF_NONE || aff==SQLITE_AFF_BLOB );
2329 if( db->mallocFailed || IN_RENAME_OBJECT ) return;
2330 while( pSelect->pPrior ) pSelect = pSelect->pPrior;
2331 a = pSelect->pEList->a;
2332 memset(&sNC, 0, sizeof(sNC));
2333 sNC.pSrcList = pSelect->pSrc;
2334 for(i=0, pCol=pTab->aCol; i<pTab->nCol; i++, pCol++){
2335 const char *zType;
2336 i64 n;
2337 pTab->tabFlags |= (pCol->colFlags & COLFLAG_NOINSERT);
2338 p = a[i].pExpr;
2339 /* pCol->szEst = ... // Column size est for SELECT tables never used */
2340 pCol->affinity = sqlite3ExprAffinity(p);
2341 if( pCol->affinity<=SQLITE_AFF_NONE ){
2342 pCol->affinity = aff;
2344 if( pCol->affinity>=SQLITE_AFF_TEXT && pSelect->pNext ){
2345 int m = 0;
2346 Select *pS2;
2347 for(m=0, pS2=pSelect->pNext; pS2; pS2=pS2->pNext){
2348 m |= sqlite3ExprDataType(pS2->pEList->a[i].pExpr);
2350 if( pCol->affinity==SQLITE_AFF_TEXT && (m&0x01)!=0 ){
2351 pCol->affinity = SQLITE_AFF_BLOB;
2352 }else
2353 if( pCol->affinity>=SQLITE_AFF_NUMERIC && (m&0x02)!=0 ){
2354 pCol->affinity = SQLITE_AFF_BLOB;
2356 if( pCol->affinity>=SQLITE_AFF_NUMERIC && p->op==TK_CAST ){
2357 pCol->affinity = SQLITE_AFF_FLEXNUM;
2360 zType = columnType(&sNC, p, 0, 0, 0);
2361 if( zType==0 || pCol->affinity!=sqlite3AffinityType(zType, 0) ){
2362 if( pCol->affinity==SQLITE_AFF_NUMERIC
2363 || pCol->affinity==SQLITE_AFF_FLEXNUM
2365 zType = "NUM";
2366 }else{
2367 zType = 0;
2368 for(j=1; j<SQLITE_N_STDTYPE; j++){
2369 if( sqlite3StdTypeAffinity[j]==pCol->affinity ){
2370 zType = sqlite3StdType[j];
2371 break;
2376 if( zType ){
2377 i64 m = sqlite3Strlen30(zType);
2378 n = sqlite3Strlen30(pCol->zCnName);
2379 pCol->zCnName = sqlite3DbReallocOrFree(db, pCol->zCnName, n+m+2);
2380 pCol->colFlags &= ~(COLFLAG_HASTYPE|COLFLAG_HASCOLL);
2381 if( pCol->zCnName ){
2382 memcpy(&pCol->zCnName[n+1], zType, m+1);
2383 pCol->colFlags |= COLFLAG_HASTYPE;
2386 pColl = sqlite3ExprCollSeq(pParse, p);
2387 if( pColl ){
2388 assert( pTab->pIndex==0 );
2389 sqlite3ColumnSetColl(db, pCol, pColl->zName);
2392 pTab->szTabRow = 1; /* Any non-zero value works */
2396 ** Given a SELECT statement, generate a Table structure that describes
2397 ** the result set of that SELECT.
2399 Table *sqlite3ResultSetOfSelect(Parse *pParse, Select *pSelect, char aff){
2400 Table *pTab;
2401 sqlite3 *db = pParse->db;
2402 u64 savedFlags;
2404 savedFlags = db->flags;
2405 db->flags &= ~(u64)SQLITE_FullColNames;
2406 db->flags |= SQLITE_ShortColNames;
2407 sqlite3SelectPrep(pParse, pSelect, 0);
2408 db->flags = savedFlags;
2409 if( pParse->nErr ) return 0;
2410 while( pSelect->pPrior ) pSelect = pSelect->pPrior;
2411 pTab = sqlite3DbMallocZero(db, sizeof(Table) );
2412 if( pTab==0 ){
2413 return 0;
2415 pTab->nTabRef = 1;
2416 pTab->zName = 0;
2417 pTab->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) );
2418 sqlite3ColumnsFromExprList(pParse, pSelect->pEList, &pTab->nCol, &pTab->aCol);
2419 sqlite3SubqueryColumnTypes(pParse, pTab, pSelect, aff);
2420 pTab->iPKey = -1;
2421 if( db->mallocFailed ){
2422 sqlite3DeleteTable(db, pTab);
2423 return 0;
2425 return pTab;
2429 ** Get a VDBE for the given parser context. Create a new one if necessary.
2430 ** If an error occurs, return NULL and leave a message in pParse.
2432 Vdbe *sqlite3GetVdbe(Parse *pParse){
2433 if( pParse->pVdbe ){
2434 return pParse->pVdbe;
2436 if( pParse->pToplevel==0
2437 && OptimizationEnabled(pParse->db,SQLITE_FactorOutConst)
2439 pParse->okConstFactor = 1;
2441 return sqlite3VdbeCreate(pParse);
2446 ** Compute the iLimit and iOffset fields of the SELECT based on the
2447 ** pLimit expressions. pLimit->pLeft and pLimit->pRight hold the expressions
2448 ** that appear in the original SQL statement after the LIMIT and OFFSET
2449 ** keywords. Or NULL if those keywords are omitted. iLimit and iOffset
2450 ** are the integer memory register numbers for counters used to compute
2451 ** the limit and offset. If there is no limit and/or offset, then
2452 ** iLimit and iOffset are negative.
2454 ** This routine changes the values of iLimit and iOffset only if
2455 ** a limit or offset is defined by pLimit->pLeft and pLimit->pRight. iLimit
2456 ** and iOffset should have been preset to appropriate default values (zero)
2457 ** prior to calling this routine.
2459 ** The iOffset register (if it exists) is initialized to the value
2460 ** of the OFFSET. The iLimit register is initialized to LIMIT. Register
2461 ** iOffset+1 is initialized to LIMIT+OFFSET.
2463 ** Only if pLimit->pLeft!=0 do the limit registers get
2464 ** redefined. The UNION ALL operator uses this property to force
2465 ** the reuse of the same limit and offset registers across multiple
2466 ** SELECT statements.
2468 static void computeLimitRegisters(Parse *pParse, Select *p, int iBreak){
2469 Vdbe *v = 0;
2470 int iLimit = 0;
2471 int iOffset;
2472 int n;
2473 Expr *pLimit = p->pLimit;
2475 if( p->iLimit ) return;
2478 ** "LIMIT -1" always shows all rows. There is some
2479 ** controversy about what the correct behavior should be.
2480 ** The current implementation interprets "LIMIT 0" to mean
2481 ** no rows.
2483 if( pLimit ){
2484 assert( pLimit->op==TK_LIMIT );
2485 assert( pLimit->pLeft!=0 );
2486 p->iLimit = iLimit = ++pParse->nMem;
2487 v = sqlite3GetVdbe(pParse);
2488 assert( v!=0 );
2489 if( sqlite3ExprIsInteger(pLimit->pLeft, &n) ){
2490 sqlite3VdbeAddOp2(v, OP_Integer, n, iLimit);
2491 VdbeComment((v, "LIMIT counter"));
2492 if( n==0 ){
2493 sqlite3VdbeGoto(v, iBreak);
2494 }else if( n>=0 && p->nSelectRow>sqlite3LogEst((u64)n) ){
2495 p->nSelectRow = sqlite3LogEst((u64)n);
2496 p->selFlags |= SF_FixedLimit;
2498 }else{
2499 sqlite3ExprCode(pParse, pLimit->pLeft, iLimit);
2500 sqlite3VdbeAddOp1(v, OP_MustBeInt, iLimit); VdbeCoverage(v);
2501 VdbeComment((v, "LIMIT counter"));
2502 sqlite3VdbeAddOp2(v, OP_IfNot, iLimit, iBreak); VdbeCoverage(v);
2504 if( pLimit->pRight ){
2505 p->iOffset = iOffset = ++pParse->nMem;
2506 pParse->nMem++; /* Allocate an extra register for limit+offset */
2507 sqlite3ExprCode(pParse, pLimit->pRight, iOffset);
2508 sqlite3VdbeAddOp1(v, OP_MustBeInt, iOffset); VdbeCoverage(v);
2509 VdbeComment((v, "OFFSET counter"));
2510 sqlite3VdbeAddOp3(v, OP_OffsetLimit, iLimit, iOffset+1, iOffset);
2511 VdbeComment((v, "LIMIT+OFFSET"));
2516 #ifndef SQLITE_OMIT_COMPOUND_SELECT
2518 ** Return the appropriate collating sequence for the iCol-th column of
2519 ** the result set for the compound-select statement "p". Return NULL if
2520 ** the column has no default collating sequence.
2522 ** The collating sequence for the compound select is taken from the
2523 ** left-most term of the select that has a collating sequence.
2525 static CollSeq *multiSelectCollSeq(Parse *pParse, Select *p, int iCol){
2526 CollSeq *pRet;
2527 if( p->pPrior ){
2528 pRet = multiSelectCollSeq(pParse, p->pPrior, iCol);
2529 }else{
2530 pRet = 0;
2532 assert( iCol>=0 );
2533 /* iCol must be less than p->pEList->nExpr. Otherwise an error would
2534 ** have been thrown during name resolution and we would not have gotten
2535 ** this far */
2536 if( pRet==0 && ALWAYS(iCol<p->pEList->nExpr) ){
2537 pRet = sqlite3ExprCollSeq(pParse, p->pEList->a[iCol].pExpr);
2539 return pRet;
2543 ** The select statement passed as the second parameter is a compound SELECT
2544 ** with an ORDER BY clause. This function allocates and returns a KeyInfo
2545 ** structure suitable for implementing the ORDER BY.
2547 ** Space to hold the KeyInfo structure is obtained from malloc. The calling
2548 ** function is responsible for ensuring that this structure is eventually
2549 ** freed.
2551 static KeyInfo *multiSelectOrderByKeyInfo(Parse *pParse, Select *p, int nExtra){
2552 ExprList *pOrderBy = p->pOrderBy;
2553 int nOrderBy = ALWAYS(pOrderBy!=0) ? pOrderBy->nExpr : 0;
2554 sqlite3 *db = pParse->db;
2555 KeyInfo *pRet = sqlite3KeyInfoAlloc(db, nOrderBy+nExtra, 1);
2556 if( pRet ){
2557 int i;
2558 for(i=0; i<nOrderBy; i++){
2559 struct ExprList_item *pItem = &pOrderBy->a[i];
2560 Expr *pTerm = pItem->pExpr;
2561 CollSeq *pColl;
2563 if( pTerm->flags & EP_Collate ){
2564 pColl = sqlite3ExprCollSeq(pParse, pTerm);
2565 }else{
2566 pColl = multiSelectCollSeq(pParse, p, pItem->u.x.iOrderByCol-1);
2567 if( pColl==0 ) pColl = db->pDfltColl;
2568 pOrderBy->a[i].pExpr =
2569 sqlite3ExprAddCollateString(pParse, pTerm, pColl->zName);
2571 assert( sqlite3KeyInfoIsWriteable(pRet) );
2572 pRet->aColl[i] = pColl;
2573 pRet->aSortFlags[i] = pOrderBy->a[i].fg.sortFlags;
2577 return pRet;
2580 #ifndef SQLITE_OMIT_CTE
2582 ** This routine generates VDBE code to compute the content of a WITH RECURSIVE
2583 ** query of the form:
2585 ** <recursive-table> AS (<setup-query> UNION [ALL] <recursive-query>)
2586 ** \___________/ \_______________/
2587 ** p->pPrior p
2590 ** There is exactly one reference to the recursive-table in the FROM clause
2591 ** of recursive-query, marked with the SrcList->a[].fg.isRecursive flag.
2593 ** The setup-query runs once to generate an initial set of rows that go
2594 ** into a Queue table. Rows are extracted from the Queue table one by
2595 ** one. Each row extracted from Queue is output to pDest. Then the single
2596 ** extracted row (now in the iCurrent table) becomes the content of the
2597 ** recursive-table for a recursive-query run. The output of the recursive-query
2598 ** is added back into the Queue table. Then another row is extracted from Queue
2599 ** and the iteration continues until the Queue table is empty.
2601 ** If the compound query operator is UNION then no duplicate rows are ever
2602 ** inserted into the Queue table. The iDistinct table keeps a copy of all rows
2603 ** that have ever been inserted into Queue and causes duplicates to be
2604 ** discarded. If the operator is UNION ALL, then duplicates are allowed.
2606 ** If the query has an ORDER BY, then entries in the Queue table are kept in
2607 ** ORDER BY order and the first entry is extracted for each cycle. Without
2608 ** an ORDER BY, the Queue table is just a FIFO.
2610 ** If a LIMIT clause is provided, then the iteration stops after LIMIT rows
2611 ** have been output to pDest. A LIMIT of zero means to output no rows and a
2612 ** negative LIMIT means to output all rows. If there is also an OFFSET clause
2613 ** with a positive value, then the first OFFSET outputs are discarded rather
2614 ** than being sent to pDest. The LIMIT count does not begin until after OFFSET
2615 ** rows have been skipped.
2617 static void generateWithRecursiveQuery(
2618 Parse *pParse, /* Parsing context */
2619 Select *p, /* The recursive SELECT to be coded */
2620 SelectDest *pDest /* What to do with query results */
2622 SrcList *pSrc = p->pSrc; /* The FROM clause of the recursive query */
2623 int nCol = p->pEList->nExpr; /* Number of columns in the recursive table */
2624 Vdbe *v = pParse->pVdbe; /* The prepared statement under construction */
2625 Select *pSetup; /* The setup query */
2626 Select *pFirstRec; /* Left-most recursive term */
2627 int addrTop; /* Top of the loop */
2628 int addrCont, addrBreak; /* CONTINUE and BREAK addresses */
2629 int iCurrent = 0; /* The Current table */
2630 int regCurrent; /* Register holding Current table */
2631 int iQueue; /* The Queue table */
2632 int iDistinct = 0; /* To ensure unique results if UNION */
2633 int eDest = SRT_Fifo; /* How to write to Queue */
2634 SelectDest destQueue; /* SelectDest targeting the Queue table */
2635 int i; /* Loop counter */
2636 int rc; /* Result code */
2637 ExprList *pOrderBy; /* The ORDER BY clause */
2638 Expr *pLimit; /* Saved LIMIT and OFFSET */
2639 int regLimit, regOffset; /* Registers used by LIMIT and OFFSET */
2641 #ifndef SQLITE_OMIT_WINDOWFUNC
2642 if( p->pWin ){
2643 sqlite3ErrorMsg(pParse, "cannot use window functions in recursive queries");
2644 return;
2646 #endif
2648 /* Obtain authorization to do a recursive query */
2649 if( sqlite3AuthCheck(pParse, SQLITE_RECURSIVE, 0, 0, 0) ) return;
2651 /* Process the LIMIT and OFFSET clauses, if they exist */
2652 addrBreak = sqlite3VdbeMakeLabel(pParse);
2653 p->nSelectRow = 320; /* 4 billion rows */
2654 computeLimitRegisters(pParse, p, addrBreak);
2655 pLimit = p->pLimit;
2656 regLimit = p->iLimit;
2657 regOffset = p->iOffset;
2658 p->pLimit = 0;
2659 p->iLimit = p->iOffset = 0;
2660 pOrderBy = p->pOrderBy;
2662 /* Locate the cursor number of the Current table */
2663 for(i=0; ALWAYS(i<pSrc->nSrc); i++){
2664 if( pSrc->a[i].fg.isRecursive ){
2665 iCurrent = pSrc->a[i].iCursor;
2666 break;
2670 /* Allocate cursors numbers for Queue and Distinct. The cursor number for
2671 ** the Distinct table must be exactly one greater than Queue in order
2672 ** for the SRT_DistFifo and SRT_DistQueue destinations to work. */
2673 iQueue = pParse->nTab++;
2674 if( p->op==TK_UNION ){
2675 eDest = pOrderBy ? SRT_DistQueue : SRT_DistFifo;
2676 iDistinct = pParse->nTab++;
2677 }else{
2678 eDest = pOrderBy ? SRT_Queue : SRT_Fifo;
2680 sqlite3SelectDestInit(&destQueue, eDest, iQueue);
2682 /* Allocate cursors for Current, Queue, and Distinct. */
2683 regCurrent = ++pParse->nMem;
2684 sqlite3VdbeAddOp3(v, OP_OpenPseudo, iCurrent, regCurrent, nCol);
2685 if( pOrderBy ){
2686 KeyInfo *pKeyInfo = multiSelectOrderByKeyInfo(pParse, p, 1);
2687 sqlite3VdbeAddOp4(v, OP_OpenEphemeral, iQueue, pOrderBy->nExpr+2, 0,
2688 (char*)pKeyInfo, P4_KEYINFO);
2689 destQueue.pOrderBy = pOrderBy;
2690 }else{
2691 sqlite3VdbeAddOp2(v, OP_OpenEphemeral, iQueue, nCol);
2693 VdbeComment((v, "Queue table"));
2694 if( iDistinct ){
2695 p->addrOpenEphm[0] = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, iDistinct, 0);
2696 p->selFlags |= SF_UsesEphemeral;
2699 /* Detach the ORDER BY clause from the compound SELECT */
2700 p->pOrderBy = 0;
2702 /* Figure out how many elements of the compound SELECT are part of the
2703 ** recursive query. Make sure no recursive elements use aggregate
2704 ** functions. Mark the recursive elements as UNION ALL even if they
2705 ** are really UNION because the distinctness will be enforced by the
2706 ** iDistinct table. pFirstRec is left pointing to the left-most
2707 ** recursive term of the CTE.
2709 for(pFirstRec=p; ALWAYS(pFirstRec!=0); pFirstRec=pFirstRec->pPrior){
2710 if( pFirstRec->selFlags & SF_Aggregate ){
2711 sqlite3ErrorMsg(pParse, "recursive aggregate queries not supported");
2712 goto end_of_recursive_query;
2714 pFirstRec->op = TK_ALL;
2715 if( (pFirstRec->pPrior->selFlags & SF_Recursive)==0 ) break;
2718 /* Store the results of the setup-query in Queue. */
2719 pSetup = pFirstRec->pPrior;
2720 pSetup->pNext = 0;
2721 ExplainQueryPlan((pParse, 1, "SETUP"));
2722 rc = sqlite3Select(pParse, pSetup, &destQueue);
2723 pSetup->pNext = p;
2724 if( rc ) goto end_of_recursive_query;
2726 /* Find the next row in the Queue and output that row */
2727 addrTop = sqlite3VdbeAddOp2(v, OP_Rewind, iQueue, addrBreak); VdbeCoverage(v);
2729 /* Transfer the next row in Queue over to Current */
2730 sqlite3VdbeAddOp1(v, OP_NullRow, iCurrent); /* To reset column cache */
2731 if( pOrderBy ){
2732 sqlite3VdbeAddOp3(v, OP_Column, iQueue, pOrderBy->nExpr+1, regCurrent);
2733 }else{
2734 sqlite3VdbeAddOp2(v, OP_RowData, iQueue, regCurrent);
2736 sqlite3VdbeAddOp1(v, OP_Delete, iQueue);
2738 /* Output the single row in Current */
2739 addrCont = sqlite3VdbeMakeLabel(pParse);
2740 codeOffset(v, regOffset, addrCont);
2741 selectInnerLoop(pParse, p, iCurrent,
2742 0, 0, pDest, addrCont, addrBreak);
2743 if( regLimit ){
2744 sqlite3VdbeAddOp2(v, OP_DecrJumpZero, regLimit, addrBreak);
2745 VdbeCoverage(v);
2747 sqlite3VdbeResolveLabel(v, addrCont);
2749 /* Execute the recursive SELECT taking the single row in Current as
2750 ** the value for the recursive-table. Store the results in the Queue.
2752 pFirstRec->pPrior = 0;
2753 ExplainQueryPlan((pParse, 1, "RECURSIVE STEP"));
2754 sqlite3Select(pParse, p, &destQueue);
2755 assert( pFirstRec->pPrior==0 );
2756 pFirstRec->pPrior = pSetup;
2758 /* Keep running the loop until the Queue is empty */
2759 sqlite3VdbeGoto(v, addrTop);
2760 sqlite3VdbeResolveLabel(v, addrBreak);
2762 end_of_recursive_query:
2763 sqlite3ExprListDelete(pParse->db, p->pOrderBy);
2764 p->pOrderBy = pOrderBy;
2765 p->pLimit = pLimit;
2766 return;
2768 #endif /* SQLITE_OMIT_CTE */
2770 /* Forward references */
2771 static int multiSelectOrderBy(
2772 Parse *pParse, /* Parsing context */
2773 Select *p, /* The right-most of SELECTs to be coded */
2774 SelectDest *pDest /* What to do with query results */
2778 ** Handle the special case of a compound-select that originates from a
2779 ** VALUES clause. By handling this as a special case, we avoid deep
2780 ** recursion, and thus do not need to enforce the SQLITE_LIMIT_COMPOUND_SELECT
2781 ** on a VALUES clause.
2783 ** Because the Select object originates from a VALUES clause:
2784 ** (1) There is no LIMIT or OFFSET or else there is a LIMIT of exactly 1
2785 ** (2) All terms are UNION ALL
2786 ** (3) There is no ORDER BY clause
2788 ** The "LIMIT of exactly 1" case of condition (1) comes about when a VALUES
2789 ** clause occurs within scalar expression (ex: "SELECT (VALUES(1),(2),(3))").
2790 ** The sqlite3CodeSubselect will have added the LIMIT 1 clause in tht case.
2791 ** Since the limit is exactly 1, we only need to evaluate the left-most VALUES.
2793 static int multiSelectValues(
2794 Parse *pParse, /* Parsing context */
2795 Select *p, /* The right-most of SELECTs to be coded */
2796 SelectDest *pDest /* What to do with query results */
2798 int nRow = 1;
2799 int rc = 0;
2800 int bShowAll = p->pLimit==0;
2801 assert( p->selFlags & SF_MultiValue );
2803 assert( p->selFlags & SF_Values );
2804 assert( p->op==TK_ALL || (p->op==TK_SELECT && p->pPrior==0) );
2805 assert( p->pNext==0 || p->pEList->nExpr==p->pNext->pEList->nExpr );
2806 #ifndef SQLITE_OMIT_WINDOWFUNC
2807 if( p->pWin ) return -1;
2808 #endif
2809 if( p->pPrior==0 ) break;
2810 assert( p->pPrior->pNext==p );
2811 p = p->pPrior;
2812 nRow += bShowAll;
2813 }while(1);
2814 ExplainQueryPlan((pParse, 0, "SCAN %d CONSTANT ROW%s", nRow,
2815 nRow==1 ? "" : "S"));
2816 while( p ){
2817 selectInnerLoop(pParse, p, -1, 0, 0, pDest, 1, 1);
2818 if( !bShowAll ) break;
2819 p->nSelectRow = nRow;
2820 p = p->pNext;
2822 return rc;
2826 ** Return true if the SELECT statement which is known to be the recursive
2827 ** part of a recursive CTE still has its anchor terms attached. If the
2828 ** anchor terms have already been removed, then return false.
2830 static int hasAnchor(Select *p){
2831 while( p && (p->selFlags & SF_Recursive)!=0 ){ p = p->pPrior; }
2832 return p!=0;
2836 ** This routine is called to process a compound query form from
2837 ** two or more separate queries using UNION, UNION ALL, EXCEPT, or
2838 ** INTERSECT
2840 ** "p" points to the right-most of the two queries. the query on the
2841 ** left is p->pPrior. The left query could also be a compound query
2842 ** in which case this routine will be called recursively.
2844 ** The results of the total query are to be written into a destination
2845 ** of type eDest with parameter iParm.
2847 ** Example 1: Consider a three-way compound SQL statement.
2849 ** SELECT a FROM t1 UNION SELECT b FROM t2 UNION SELECT c FROM t3
2851 ** This statement is parsed up as follows:
2853 ** SELECT c FROM t3
2854 ** |
2855 ** `-----> SELECT b FROM t2
2856 ** |
2857 ** `------> SELECT a FROM t1
2859 ** The arrows in the diagram above represent the Select.pPrior pointer.
2860 ** So if this routine is called with p equal to the t3 query, then
2861 ** pPrior will be the t2 query. p->op will be TK_UNION in this case.
2863 ** Notice that because of the way SQLite parses compound SELECTs, the
2864 ** individual selects always group from left to right.
2866 static int multiSelect(
2867 Parse *pParse, /* Parsing context */
2868 Select *p, /* The right-most of SELECTs to be coded */
2869 SelectDest *pDest /* What to do with query results */
2871 int rc = SQLITE_OK; /* Success code from a subroutine */
2872 Select *pPrior; /* Another SELECT immediately to our left */
2873 Vdbe *v; /* Generate code to this VDBE */
2874 SelectDest dest; /* Alternative data destination */
2875 Select *pDelete = 0; /* Chain of simple selects to delete */
2876 sqlite3 *db; /* Database connection */
2878 /* Make sure there is no ORDER BY or LIMIT clause on prior SELECTs. Only
2879 ** the last (right-most) SELECT in the series may have an ORDER BY or LIMIT.
2881 assert( p && p->pPrior ); /* Calling function guarantees this much */
2882 assert( (p->selFlags & SF_Recursive)==0 || p->op==TK_ALL || p->op==TK_UNION );
2883 assert( p->selFlags & SF_Compound );
2884 db = pParse->db;
2885 pPrior = p->pPrior;
2886 dest = *pDest;
2887 assert( pPrior->pOrderBy==0 );
2888 assert( pPrior->pLimit==0 );
2890 v = sqlite3GetVdbe(pParse);
2891 assert( v!=0 ); /* The VDBE already created by calling function */
2893 /* Create the destination temporary table if necessary
2895 if( dest.eDest==SRT_EphemTab ){
2896 assert( p->pEList );
2897 sqlite3VdbeAddOp2(v, OP_OpenEphemeral, dest.iSDParm, p->pEList->nExpr);
2898 dest.eDest = SRT_Table;
2901 /* Special handling for a compound-select that originates as a VALUES clause.
2903 if( p->selFlags & SF_MultiValue ){
2904 rc = multiSelectValues(pParse, p, &dest);
2905 if( rc>=0 ) goto multi_select_end;
2906 rc = SQLITE_OK;
2909 /* Make sure all SELECTs in the statement have the same number of elements
2910 ** in their result sets.
2912 assert( p->pEList && pPrior->pEList );
2913 assert( p->pEList->nExpr==pPrior->pEList->nExpr );
2915 #ifndef SQLITE_OMIT_CTE
2916 if( (p->selFlags & SF_Recursive)!=0 && hasAnchor(p) ){
2917 generateWithRecursiveQuery(pParse, p, &dest);
2918 }else
2919 #endif
2921 /* Compound SELECTs that have an ORDER BY clause are handled separately.
2923 if( p->pOrderBy ){
2924 return multiSelectOrderBy(pParse, p, pDest);
2925 }else{
2927 #ifndef SQLITE_OMIT_EXPLAIN
2928 if( pPrior->pPrior==0 ){
2929 ExplainQueryPlan((pParse, 1, "COMPOUND QUERY"));
2930 ExplainQueryPlan((pParse, 1, "LEFT-MOST SUBQUERY"));
2932 #endif
2934 /* Generate code for the left and right SELECT statements.
2936 switch( p->op ){
2937 case TK_ALL: {
2938 int addr = 0;
2939 int nLimit = 0; /* Initialize to suppress harmless compiler warning */
2940 assert( !pPrior->pLimit );
2941 pPrior->iLimit = p->iLimit;
2942 pPrior->iOffset = p->iOffset;
2943 pPrior->pLimit = p->pLimit;
2944 TREETRACE(0x200, pParse, p, ("multiSelect UNION ALL left...\n"));
2945 rc = sqlite3Select(pParse, pPrior, &dest);
2946 pPrior->pLimit = 0;
2947 if( rc ){
2948 goto multi_select_end;
2950 p->pPrior = 0;
2951 p->iLimit = pPrior->iLimit;
2952 p->iOffset = pPrior->iOffset;
2953 if( p->iLimit ){
2954 addr = sqlite3VdbeAddOp1(v, OP_IfNot, p->iLimit); VdbeCoverage(v);
2955 VdbeComment((v, "Jump ahead if LIMIT reached"));
2956 if( p->iOffset ){
2957 sqlite3VdbeAddOp3(v, OP_OffsetLimit,
2958 p->iLimit, p->iOffset+1, p->iOffset);
2961 ExplainQueryPlan((pParse, 1, "UNION ALL"));
2962 TREETRACE(0x200, pParse, p, ("multiSelect UNION ALL right...\n"));
2963 rc = sqlite3Select(pParse, p, &dest);
2964 testcase( rc!=SQLITE_OK );
2965 pDelete = p->pPrior;
2966 p->pPrior = pPrior;
2967 p->nSelectRow = sqlite3LogEstAdd(p->nSelectRow, pPrior->nSelectRow);
2968 if( p->pLimit
2969 && sqlite3ExprIsInteger(p->pLimit->pLeft, &nLimit)
2970 && nLimit>0 && p->nSelectRow > sqlite3LogEst((u64)nLimit)
2972 p->nSelectRow = sqlite3LogEst((u64)nLimit);
2974 if( addr ){
2975 sqlite3VdbeJumpHere(v, addr);
2977 break;
2979 case TK_EXCEPT:
2980 case TK_UNION: {
2981 int unionTab; /* Cursor number of the temp table holding result */
2982 u8 op = 0; /* One of the SRT_ operations to apply to self */
2983 int priorOp; /* The SRT_ operation to apply to prior selects */
2984 Expr *pLimit; /* Saved values of p->nLimit */
2985 int addr;
2986 SelectDest uniondest;
2988 testcase( p->op==TK_EXCEPT );
2989 testcase( p->op==TK_UNION );
2990 priorOp = SRT_Union;
2991 if( dest.eDest==priorOp ){
2992 /* We can reuse a temporary table generated by a SELECT to our
2993 ** right.
2995 assert( p->pLimit==0 ); /* Not allowed on leftward elements */
2996 unionTab = dest.iSDParm;
2997 }else{
2998 /* We will need to create our own temporary table to hold the
2999 ** intermediate results.
3001 unionTab = pParse->nTab++;
3002 assert( p->pOrderBy==0 );
3003 addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, unionTab, 0);
3004 assert( p->addrOpenEphm[0] == -1 );
3005 p->addrOpenEphm[0] = addr;
3006 findRightmost(p)->selFlags |= SF_UsesEphemeral;
3007 assert( p->pEList );
3011 /* Code the SELECT statements to our left
3013 assert( !pPrior->pOrderBy );
3014 sqlite3SelectDestInit(&uniondest, priorOp, unionTab);
3015 TREETRACE(0x200, pParse, p, ("multiSelect EXCEPT/UNION left...\n"));
3016 rc = sqlite3Select(pParse, pPrior, &uniondest);
3017 if( rc ){
3018 goto multi_select_end;
3021 /* Code the current SELECT statement
3023 if( p->op==TK_EXCEPT ){
3024 op = SRT_Except;
3025 }else{
3026 assert( p->op==TK_UNION );
3027 op = SRT_Union;
3029 p->pPrior = 0;
3030 pLimit = p->pLimit;
3031 p->pLimit = 0;
3032 uniondest.eDest = op;
3033 ExplainQueryPlan((pParse, 1, "%s USING TEMP B-TREE",
3034 sqlite3SelectOpName(p->op)));
3035 TREETRACE(0x200, pParse, p, ("multiSelect EXCEPT/UNION right...\n"));
3036 rc = sqlite3Select(pParse, p, &uniondest);
3037 testcase( rc!=SQLITE_OK );
3038 assert( p->pOrderBy==0 );
3039 pDelete = p->pPrior;
3040 p->pPrior = pPrior;
3041 p->pOrderBy = 0;
3042 if( p->op==TK_UNION ){
3043 p->nSelectRow = sqlite3LogEstAdd(p->nSelectRow, pPrior->nSelectRow);
3045 sqlite3ExprDelete(db, p->pLimit);
3046 p->pLimit = pLimit;
3047 p->iLimit = 0;
3048 p->iOffset = 0;
3050 /* Convert the data in the temporary table into whatever form
3051 ** it is that we currently need.
3053 assert( unionTab==dest.iSDParm || dest.eDest!=priorOp );
3054 assert( p->pEList || db->mallocFailed );
3055 if( dest.eDest!=priorOp && db->mallocFailed==0 ){
3056 int iCont, iBreak, iStart;
3057 iBreak = sqlite3VdbeMakeLabel(pParse);
3058 iCont = sqlite3VdbeMakeLabel(pParse);
3059 computeLimitRegisters(pParse, p, iBreak);
3060 sqlite3VdbeAddOp2(v, OP_Rewind, unionTab, iBreak); VdbeCoverage(v);
3061 iStart = sqlite3VdbeCurrentAddr(v);
3062 selectInnerLoop(pParse, p, unionTab,
3063 0, 0, &dest, iCont, iBreak);
3064 sqlite3VdbeResolveLabel(v, iCont);
3065 sqlite3VdbeAddOp2(v, OP_Next, unionTab, iStart); VdbeCoverage(v);
3066 sqlite3VdbeResolveLabel(v, iBreak);
3067 sqlite3VdbeAddOp2(v, OP_Close, unionTab, 0);
3069 break;
3071 default: assert( p->op==TK_INTERSECT ); {
3072 int tab1, tab2;
3073 int iCont, iBreak, iStart;
3074 Expr *pLimit;
3075 int addr;
3076 SelectDest intersectdest;
3077 int r1;
3079 /* INTERSECT is different from the others since it requires
3080 ** two temporary tables. Hence it has its own case. Begin
3081 ** by allocating the tables we will need.
3083 tab1 = pParse->nTab++;
3084 tab2 = pParse->nTab++;
3085 assert( p->pOrderBy==0 );
3087 addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, tab1, 0);
3088 assert( p->addrOpenEphm[0] == -1 );
3089 p->addrOpenEphm[0] = addr;
3090 findRightmost(p)->selFlags |= SF_UsesEphemeral;
3091 assert( p->pEList );
3093 /* Code the SELECTs to our left into temporary table "tab1".
3095 sqlite3SelectDestInit(&intersectdest, SRT_Union, tab1);
3096 TREETRACE(0x400, pParse, p, ("multiSelect INTERSECT left...\n"));
3097 rc = sqlite3Select(pParse, pPrior, &intersectdest);
3098 if( rc ){
3099 goto multi_select_end;
3102 /* Code the current SELECT into temporary table "tab2"
3104 addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, tab2, 0);
3105 assert( p->addrOpenEphm[1] == -1 );
3106 p->addrOpenEphm[1] = addr;
3107 p->pPrior = 0;
3108 pLimit = p->pLimit;
3109 p->pLimit = 0;
3110 intersectdest.iSDParm = tab2;
3111 ExplainQueryPlan((pParse, 1, "%s USING TEMP B-TREE",
3112 sqlite3SelectOpName(p->op)));
3113 TREETRACE(0x400, pParse, p, ("multiSelect INTERSECT right...\n"));
3114 rc = sqlite3Select(pParse, p, &intersectdest);
3115 testcase( rc!=SQLITE_OK );
3116 pDelete = p->pPrior;
3117 p->pPrior = pPrior;
3118 if( p->nSelectRow>pPrior->nSelectRow ){
3119 p->nSelectRow = pPrior->nSelectRow;
3121 sqlite3ExprDelete(db, p->pLimit);
3122 p->pLimit = pLimit;
3124 /* Generate code to take the intersection of the two temporary
3125 ** tables.
3127 if( rc ) break;
3128 assert( p->pEList );
3129 iBreak = sqlite3VdbeMakeLabel(pParse);
3130 iCont = sqlite3VdbeMakeLabel(pParse);
3131 computeLimitRegisters(pParse, p, iBreak);
3132 sqlite3VdbeAddOp2(v, OP_Rewind, tab1, iBreak); VdbeCoverage(v);
3133 r1 = sqlite3GetTempReg(pParse);
3134 iStart = sqlite3VdbeAddOp2(v, OP_RowData, tab1, r1);
3135 sqlite3VdbeAddOp4Int(v, OP_NotFound, tab2, iCont, r1, 0);
3136 VdbeCoverage(v);
3137 sqlite3ReleaseTempReg(pParse, r1);
3138 selectInnerLoop(pParse, p, tab1,
3139 0, 0, &dest, iCont, iBreak);
3140 sqlite3VdbeResolveLabel(v, iCont);
3141 sqlite3VdbeAddOp2(v, OP_Next, tab1, iStart); VdbeCoverage(v);
3142 sqlite3VdbeResolveLabel(v, iBreak);
3143 sqlite3VdbeAddOp2(v, OP_Close, tab2, 0);
3144 sqlite3VdbeAddOp2(v, OP_Close, tab1, 0);
3145 break;
3149 #ifndef SQLITE_OMIT_EXPLAIN
3150 if( p->pNext==0 ){
3151 ExplainQueryPlanPop(pParse);
3153 #endif
3155 if( pParse->nErr ) goto multi_select_end;
3157 /* Compute collating sequences used by
3158 ** temporary tables needed to implement the compound select.
3159 ** Attach the KeyInfo structure to all temporary tables.
3161 ** This section is run by the right-most SELECT statement only.
3162 ** SELECT statements to the left always skip this part. The right-most
3163 ** SELECT might also skip this part if it has no ORDER BY clause and
3164 ** no temp tables are required.
3166 if( p->selFlags & SF_UsesEphemeral ){
3167 int i; /* Loop counter */
3168 KeyInfo *pKeyInfo; /* Collating sequence for the result set */
3169 Select *pLoop; /* For looping through SELECT statements */
3170 CollSeq **apColl; /* For looping through pKeyInfo->aColl[] */
3171 int nCol; /* Number of columns in result set */
3173 assert( p->pNext==0 );
3174 assert( p->pEList!=0 );
3175 nCol = p->pEList->nExpr;
3176 pKeyInfo = sqlite3KeyInfoAlloc(db, nCol, 1);
3177 if( !pKeyInfo ){
3178 rc = SQLITE_NOMEM_BKPT;
3179 goto multi_select_end;
3181 for(i=0, apColl=pKeyInfo->aColl; i<nCol; i++, apColl++){
3182 *apColl = multiSelectCollSeq(pParse, p, i);
3183 if( 0==*apColl ){
3184 *apColl = db->pDfltColl;
3188 for(pLoop=p; pLoop; pLoop=pLoop->pPrior){
3189 for(i=0; i<2; i++){
3190 int addr = pLoop->addrOpenEphm[i];
3191 if( addr<0 ){
3192 /* If [0] is unused then [1] is also unused. So we can
3193 ** always safely abort as soon as the first unused slot is found */
3194 assert( pLoop->addrOpenEphm[1]<0 );
3195 break;
3197 sqlite3VdbeChangeP2(v, addr, nCol);
3198 sqlite3VdbeChangeP4(v, addr, (char*)sqlite3KeyInfoRef(pKeyInfo),
3199 P4_KEYINFO);
3200 pLoop->addrOpenEphm[i] = -1;
3203 sqlite3KeyInfoUnref(pKeyInfo);
3206 multi_select_end:
3207 pDest->iSdst = dest.iSdst;
3208 pDest->nSdst = dest.nSdst;
3209 if( pDelete ){
3210 sqlite3ParserAddCleanup(pParse, sqlite3SelectDeleteGeneric, pDelete);
3212 return rc;
3214 #endif /* SQLITE_OMIT_COMPOUND_SELECT */
3217 ** Error message for when two or more terms of a compound select have different
3218 ** size result sets.
3220 void sqlite3SelectWrongNumTermsError(Parse *pParse, Select *p){
3221 if( p->selFlags & SF_Values ){
3222 sqlite3ErrorMsg(pParse, "all VALUES must have the same number of terms");
3223 }else{
3224 sqlite3ErrorMsg(pParse, "SELECTs to the left and right of %s"
3225 " do not have the same number of result columns",
3226 sqlite3SelectOpName(p->op));
3231 ** Code an output subroutine for a coroutine implementation of a
3232 ** SELECT statement.
3234 ** The data to be output is contained in pIn->iSdst. There are
3235 ** pIn->nSdst columns to be output. pDest is where the output should
3236 ** be sent.
3238 ** regReturn is the number of the register holding the subroutine
3239 ** return address.
3241 ** If regPrev>0 then it is the first register in a vector that
3242 ** records the previous output. mem[regPrev] is a flag that is false
3243 ** if there has been no previous output. If regPrev>0 then code is
3244 ** generated to suppress duplicates. pKeyInfo is used for comparing
3245 ** keys.
3247 ** If the LIMIT found in p->iLimit is reached, jump immediately to
3248 ** iBreak.
3250 static int generateOutputSubroutine(
3251 Parse *pParse, /* Parsing context */
3252 Select *p, /* The SELECT statement */
3253 SelectDest *pIn, /* Coroutine supplying data */
3254 SelectDest *pDest, /* Where to send the data */
3255 int regReturn, /* The return address register */
3256 int regPrev, /* Previous result register. No uniqueness if 0 */
3257 KeyInfo *pKeyInfo, /* For comparing with previous entry */
3258 int iBreak /* Jump here if we hit the LIMIT */
3260 Vdbe *v = pParse->pVdbe;
3261 int iContinue;
3262 int addr;
3264 addr = sqlite3VdbeCurrentAddr(v);
3265 iContinue = sqlite3VdbeMakeLabel(pParse);
3267 /* Suppress duplicates for UNION, EXCEPT, and INTERSECT
3269 if( regPrev ){
3270 int addr1, addr2;
3271 addr1 = sqlite3VdbeAddOp1(v, OP_IfNot, regPrev); VdbeCoverage(v);
3272 addr2 = sqlite3VdbeAddOp4(v, OP_Compare, pIn->iSdst, regPrev+1, pIn->nSdst,
3273 (char*)sqlite3KeyInfoRef(pKeyInfo), P4_KEYINFO);
3274 sqlite3VdbeAddOp3(v, OP_Jump, addr2+2, iContinue, addr2+2); VdbeCoverage(v);
3275 sqlite3VdbeJumpHere(v, addr1);
3276 sqlite3VdbeAddOp3(v, OP_Copy, pIn->iSdst, regPrev+1, pIn->nSdst-1);
3277 sqlite3VdbeAddOp2(v, OP_Integer, 1, regPrev);
3279 if( pParse->db->mallocFailed ) return 0;
3281 /* Suppress the first OFFSET entries if there is an OFFSET clause
3283 codeOffset(v, p->iOffset, iContinue);
3285 assert( pDest->eDest!=SRT_Exists );
3286 assert( pDest->eDest!=SRT_Table );
3287 switch( pDest->eDest ){
3288 /* Store the result as data using a unique key.
3290 case SRT_EphemTab: {
3291 int r1 = sqlite3GetTempReg(pParse);
3292 int r2 = sqlite3GetTempReg(pParse);
3293 sqlite3VdbeAddOp3(v, OP_MakeRecord, pIn->iSdst, pIn->nSdst, r1);
3294 sqlite3VdbeAddOp2(v, OP_NewRowid, pDest->iSDParm, r2);
3295 sqlite3VdbeAddOp3(v, OP_Insert, pDest->iSDParm, r1, r2);
3296 sqlite3VdbeChangeP5(v, OPFLAG_APPEND);
3297 sqlite3ReleaseTempReg(pParse, r2);
3298 sqlite3ReleaseTempReg(pParse, r1);
3299 break;
3302 #ifndef SQLITE_OMIT_SUBQUERY
3303 /* If we are creating a set for an "expr IN (SELECT ...)".
3305 case SRT_Set: {
3306 int r1;
3307 testcase( pIn->nSdst>1 );
3308 r1 = sqlite3GetTempReg(pParse);
3309 sqlite3VdbeAddOp4(v, OP_MakeRecord, pIn->iSdst, pIn->nSdst,
3310 r1, pDest->zAffSdst, pIn->nSdst);
3311 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, pDest->iSDParm, r1,
3312 pIn->iSdst, pIn->nSdst);
3313 sqlite3ReleaseTempReg(pParse, r1);
3314 break;
3317 /* If this is a scalar select that is part of an expression, then
3318 ** store the results in the appropriate memory cell and break out
3319 ** of the scan loop. Note that the select might return multiple columns
3320 ** if it is the RHS of a row-value IN operator.
3322 case SRT_Mem: {
3323 testcase( pIn->nSdst>1 );
3324 sqlite3ExprCodeMove(pParse, pIn->iSdst, pDest->iSDParm, pIn->nSdst);
3325 /* The LIMIT clause will jump out of the loop for us */
3326 break;
3328 #endif /* #ifndef SQLITE_OMIT_SUBQUERY */
3330 /* The results are stored in a sequence of registers
3331 ** starting at pDest->iSdst. Then the co-routine yields.
3333 case SRT_Coroutine: {
3334 if( pDest->iSdst==0 ){
3335 pDest->iSdst = sqlite3GetTempRange(pParse, pIn->nSdst);
3336 pDest->nSdst = pIn->nSdst;
3338 sqlite3ExprCodeMove(pParse, pIn->iSdst, pDest->iSdst, pIn->nSdst);
3339 sqlite3VdbeAddOp1(v, OP_Yield, pDest->iSDParm);
3340 break;
3343 /* If none of the above, then the result destination must be
3344 ** SRT_Output. This routine is never called with any other
3345 ** destination other than the ones handled above or SRT_Output.
3347 ** For SRT_Output, results are stored in a sequence of registers.
3348 ** Then the OP_ResultRow opcode is used to cause sqlite3_step() to
3349 ** return the next row of result.
3351 default: {
3352 assert( pDest->eDest==SRT_Output );
3353 sqlite3VdbeAddOp2(v, OP_ResultRow, pIn->iSdst, pIn->nSdst);
3354 break;
3358 /* Jump to the end of the loop if the LIMIT is reached.
3360 if( p->iLimit ){
3361 sqlite3VdbeAddOp2(v, OP_DecrJumpZero, p->iLimit, iBreak); VdbeCoverage(v);
3364 /* Generate the subroutine return
3366 sqlite3VdbeResolveLabel(v, iContinue);
3367 sqlite3VdbeAddOp1(v, OP_Return, regReturn);
3369 return addr;
3373 ** Alternative compound select code generator for cases when there
3374 ** is an ORDER BY clause.
3376 ** We assume a query of the following form:
3378 ** <selectA> <operator> <selectB> ORDER BY <orderbylist>
3380 ** <operator> is one of UNION ALL, UNION, EXCEPT, or INTERSECT. The idea
3381 ** is to code both <selectA> and <selectB> with the ORDER BY clause as
3382 ** co-routines. Then run the co-routines in parallel and merge the results
3383 ** into the output. In addition to the two coroutines (called selectA and
3384 ** selectB) there are 7 subroutines:
3386 ** outA: Move the output of the selectA coroutine into the output
3387 ** of the compound query.
3389 ** outB: Move the output of the selectB coroutine into the output
3390 ** of the compound query. (Only generated for UNION and
3391 ** UNION ALL. EXCEPT and INSERTSECT never output a row that
3392 ** appears only in B.)
3394 ** AltB: Called when there is data from both coroutines and A<B.
3396 ** AeqB: Called when there is data from both coroutines and A==B.
3398 ** AgtB: Called when there is data from both coroutines and A>B.
3400 ** EofA: Called when data is exhausted from selectA.
3402 ** EofB: Called when data is exhausted from selectB.
3404 ** The implementation of the latter five subroutines depend on which
3405 ** <operator> is used:
3408 ** UNION ALL UNION EXCEPT INTERSECT
3409 ** ------------- ----------------- -------------- -----------------
3410 ** AltB: outA, nextA outA, nextA outA, nextA nextA
3412 ** AeqB: outA, nextA nextA nextA outA, nextA
3414 ** AgtB: outB, nextB outB, nextB nextB nextB
3416 ** EofA: outB, nextB outB, nextB halt halt
3418 ** EofB: outA, nextA outA, nextA outA, nextA halt
3420 ** In the AltB, AeqB, and AgtB subroutines, an EOF on A following nextA
3421 ** causes an immediate jump to EofA and an EOF on B following nextB causes
3422 ** an immediate jump to EofB. Within EofA and EofB, and EOF on entry or
3423 ** following nextX causes a jump to the end of the select processing.
3425 ** Duplicate removal in the UNION, EXCEPT, and INTERSECT cases is handled
3426 ** within the output subroutine. The regPrev register set holds the previously
3427 ** output value. A comparison is made against this value and the output
3428 ** is skipped if the next results would be the same as the previous.
3430 ** The implementation plan is to implement the two coroutines and seven
3431 ** subroutines first, then put the control logic at the bottom. Like this:
3433 ** goto Init
3434 ** coA: coroutine for left query (A)
3435 ** coB: coroutine for right query (B)
3436 ** outA: output one row of A
3437 ** outB: output one row of B (UNION and UNION ALL only)
3438 ** EofA: ...
3439 ** EofB: ...
3440 ** AltB: ...
3441 ** AeqB: ...
3442 ** AgtB: ...
3443 ** Init: initialize coroutine registers
3444 ** yield coA
3445 ** if eof(A) goto EofA
3446 ** yield coB
3447 ** if eof(B) goto EofB
3448 ** Cmpr: Compare A, B
3449 ** Jump AltB, AeqB, AgtB
3450 ** End: ...
3452 ** We call AltB, AeqB, AgtB, EofA, and EofB "subroutines" but they are not
3453 ** actually called using Gosub and they do not Return. EofA and EofB loop
3454 ** until all data is exhausted then jump to the "end" label. AltB, AeqB,
3455 ** and AgtB jump to either L2 or to one of EofA or EofB.
3457 #ifndef SQLITE_OMIT_COMPOUND_SELECT
3458 static int multiSelectOrderBy(
3459 Parse *pParse, /* Parsing context */
3460 Select *p, /* The right-most of SELECTs to be coded */
3461 SelectDest *pDest /* What to do with query results */
3463 int i, j; /* Loop counters */
3464 Select *pPrior; /* Another SELECT immediately to our left */
3465 Select *pSplit; /* Left-most SELECT in the right-hand group */
3466 int nSelect; /* Number of SELECT statements in the compound */
3467 Vdbe *v; /* Generate code to this VDBE */
3468 SelectDest destA; /* Destination for coroutine A */
3469 SelectDest destB; /* Destination for coroutine B */
3470 int regAddrA; /* Address register for select-A coroutine */
3471 int regAddrB; /* Address register for select-B coroutine */
3472 int addrSelectA; /* Address of the select-A coroutine */
3473 int addrSelectB; /* Address of the select-B coroutine */
3474 int regOutA; /* Address register for the output-A subroutine */
3475 int regOutB; /* Address register for the output-B subroutine */
3476 int addrOutA; /* Address of the output-A subroutine */
3477 int addrOutB = 0; /* Address of the output-B subroutine */
3478 int addrEofA; /* Address of the select-A-exhausted subroutine */
3479 int addrEofA_noB; /* Alternate addrEofA if B is uninitialized */
3480 int addrEofB; /* Address of the select-B-exhausted subroutine */
3481 int addrAltB; /* Address of the A<B subroutine */
3482 int addrAeqB; /* Address of the A==B subroutine */
3483 int addrAgtB; /* Address of the A>B subroutine */
3484 int regLimitA; /* Limit register for select-A */
3485 int regLimitB; /* Limit register for select-A */
3486 int regPrev; /* A range of registers to hold previous output */
3487 int savedLimit; /* Saved value of p->iLimit */
3488 int savedOffset; /* Saved value of p->iOffset */
3489 int labelCmpr; /* Label for the start of the merge algorithm */
3490 int labelEnd; /* Label for the end of the overall SELECT stmt */
3491 int addr1; /* Jump instructions that get retargeted */
3492 int op; /* One of TK_ALL, TK_UNION, TK_EXCEPT, TK_INTERSECT */
3493 KeyInfo *pKeyDup = 0; /* Comparison information for duplicate removal */
3494 KeyInfo *pKeyMerge; /* Comparison information for merging rows */
3495 sqlite3 *db; /* Database connection */
3496 ExprList *pOrderBy; /* The ORDER BY clause */
3497 int nOrderBy; /* Number of terms in the ORDER BY clause */
3498 u32 *aPermute; /* Mapping from ORDER BY terms to result set columns */
3500 assert( p->pOrderBy!=0 );
3501 assert( pKeyDup==0 ); /* "Managed" code needs this. Ticket #3382. */
3502 db = pParse->db;
3503 v = pParse->pVdbe;
3504 assert( v!=0 ); /* Already thrown the error if VDBE alloc failed */
3505 labelEnd = sqlite3VdbeMakeLabel(pParse);
3506 labelCmpr = sqlite3VdbeMakeLabel(pParse);
3509 /* Patch up the ORDER BY clause
3511 op = p->op;
3512 assert( p->pPrior->pOrderBy==0 );
3513 pOrderBy = p->pOrderBy;
3514 assert( pOrderBy );
3515 nOrderBy = pOrderBy->nExpr;
3517 /* For operators other than UNION ALL we have to make sure that
3518 ** the ORDER BY clause covers every term of the result set. Add
3519 ** terms to the ORDER BY clause as necessary.
3521 if( op!=TK_ALL ){
3522 for(i=1; db->mallocFailed==0 && i<=p->pEList->nExpr; i++){
3523 struct ExprList_item *pItem;
3524 for(j=0, pItem=pOrderBy->a; j<nOrderBy; j++, pItem++){
3525 assert( pItem!=0 );
3526 assert( pItem->u.x.iOrderByCol>0 );
3527 if( pItem->u.x.iOrderByCol==i ) break;
3529 if( j==nOrderBy ){
3530 Expr *pNew = sqlite3Expr(db, TK_INTEGER, 0);
3531 if( pNew==0 ) return SQLITE_NOMEM_BKPT;
3532 pNew->flags |= EP_IntValue;
3533 pNew->u.iValue = i;
3534 p->pOrderBy = pOrderBy = sqlite3ExprListAppend(pParse, pOrderBy, pNew);
3535 if( pOrderBy ) pOrderBy->a[nOrderBy++].u.x.iOrderByCol = (u16)i;
3540 /* Compute the comparison permutation and keyinfo that is used with
3541 ** the permutation used to determine if the next
3542 ** row of results comes from selectA or selectB. Also add explicit
3543 ** collations to the ORDER BY clause terms so that when the subqueries
3544 ** to the right and the left are evaluated, they use the correct
3545 ** collation.
3547 aPermute = sqlite3DbMallocRawNN(db, sizeof(u32)*(nOrderBy + 1));
3548 if( aPermute ){
3549 struct ExprList_item *pItem;
3550 aPermute[0] = nOrderBy;
3551 for(i=1, pItem=pOrderBy->a; i<=nOrderBy; i++, pItem++){
3552 assert( pItem!=0 );
3553 assert( pItem->u.x.iOrderByCol>0 );
3554 assert( pItem->u.x.iOrderByCol<=p->pEList->nExpr );
3555 aPermute[i] = pItem->u.x.iOrderByCol - 1;
3557 pKeyMerge = multiSelectOrderByKeyInfo(pParse, p, 1);
3558 }else{
3559 pKeyMerge = 0;
3562 /* Allocate a range of temporary registers and the KeyInfo needed
3563 ** for the logic that removes duplicate result rows when the
3564 ** operator is UNION, EXCEPT, or INTERSECT (but not UNION ALL).
3566 if( op==TK_ALL ){
3567 regPrev = 0;
3568 }else{
3569 int nExpr = p->pEList->nExpr;
3570 assert( nOrderBy>=nExpr || db->mallocFailed );
3571 regPrev = pParse->nMem+1;
3572 pParse->nMem += nExpr+1;
3573 sqlite3VdbeAddOp2(v, OP_Integer, 0, regPrev);
3574 pKeyDup = sqlite3KeyInfoAlloc(db, nExpr, 1);
3575 if( pKeyDup ){
3576 assert( sqlite3KeyInfoIsWriteable(pKeyDup) );
3577 for(i=0; i<nExpr; i++){
3578 pKeyDup->aColl[i] = multiSelectCollSeq(pParse, p, i);
3579 pKeyDup->aSortFlags[i] = 0;
3584 /* Separate the left and the right query from one another
3586 nSelect = 1;
3587 if( (op==TK_ALL || op==TK_UNION)
3588 && OptimizationEnabled(db, SQLITE_BalancedMerge)
3590 for(pSplit=p; pSplit->pPrior!=0 && pSplit->op==op; pSplit=pSplit->pPrior){
3591 nSelect++;
3592 assert( pSplit->pPrior->pNext==pSplit );
3595 if( nSelect<=3 ){
3596 pSplit = p;
3597 }else{
3598 pSplit = p;
3599 for(i=2; i<nSelect; i+=2){ pSplit = pSplit->pPrior; }
3601 pPrior = pSplit->pPrior;
3602 assert( pPrior!=0 );
3603 pSplit->pPrior = 0;
3604 pPrior->pNext = 0;
3605 assert( p->pOrderBy == pOrderBy );
3606 assert( pOrderBy!=0 || db->mallocFailed );
3607 pPrior->pOrderBy = sqlite3ExprListDup(pParse->db, pOrderBy, 0);
3608 sqlite3ResolveOrderGroupBy(pParse, p, p->pOrderBy, "ORDER");
3609 sqlite3ResolveOrderGroupBy(pParse, pPrior, pPrior->pOrderBy, "ORDER");
3611 /* Compute the limit registers */
3612 computeLimitRegisters(pParse, p, labelEnd);
3613 if( p->iLimit && op==TK_ALL ){
3614 regLimitA = ++pParse->nMem;
3615 regLimitB = ++pParse->nMem;
3616 sqlite3VdbeAddOp2(v, OP_Copy, p->iOffset ? p->iOffset+1 : p->iLimit,
3617 regLimitA);
3618 sqlite3VdbeAddOp2(v, OP_Copy, regLimitA, regLimitB);
3619 }else{
3620 regLimitA = regLimitB = 0;
3622 sqlite3ExprDelete(db, p->pLimit);
3623 p->pLimit = 0;
3625 regAddrA = ++pParse->nMem;
3626 regAddrB = ++pParse->nMem;
3627 regOutA = ++pParse->nMem;
3628 regOutB = ++pParse->nMem;
3629 sqlite3SelectDestInit(&destA, SRT_Coroutine, regAddrA);
3630 sqlite3SelectDestInit(&destB, SRT_Coroutine, regAddrB);
3632 ExplainQueryPlan((pParse, 1, "MERGE (%s)", sqlite3SelectOpName(p->op)));
3634 /* Generate a coroutine to evaluate the SELECT statement to the
3635 ** left of the compound operator - the "A" select.
3637 addrSelectA = sqlite3VdbeCurrentAddr(v) + 1;
3638 addr1 = sqlite3VdbeAddOp3(v, OP_InitCoroutine, regAddrA, 0, addrSelectA);
3639 VdbeComment((v, "left SELECT"));
3640 pPrior->iLimit = regLimitA;
3641 ExplainQueryPlan((pParse, 1, "LEFT"));
3642 sqlite3Select(pParse, pPrior, &destA);
3643 sqlite3VdbeEndCoroutine(v, regAddrA);
3644 sqlite3VdbeJumpHere(v, addr1);
3646 /* Generate a coroutine to evaluate the SELECT statement on
3647 ** the right - the "B" select
3649 addrSelectB = sqlite3VdbeCurrentAddr(v) + 1;
3650 addr1 = sqlite3VdbeAddOp3(v, OP_InitCoroutine, regAddrB, 0, addrSelectB);
3651 VdbeComment((v, "right SELECT"));
3652 savedLimit = p->iLimit;
3653 savedOffset = p->iOffset;
3654 p->iLimit = regLimitB;
3655 p->iOffset = 0;
3656 ExplainQueryPlan((pParse, 1, "RIGHT"));
3657 sqlite3Select(pParse, p, &destB);
3658 p->iLimit = savedLimit;
3659 p->iOffset = savedOffset;
3660 sqlite3VdbeEndCoroutine(v, regAddrB);
3662 /* Generate a subroutine that outputs the current row of the A
3663 ** select as the next output row of the compound select.
3665 VdbeNoopComment((v, "Output routine for A"));
3666 addrOutA = generateOutputSubroutine(pParse,
3667 p, &destA, pDest, regOutA,
3668 regPrev, pKeyDup, labelEnd);
3670 /* Generate a subroutine that outputs the current row of the B
3671 ** select as the next output row of the compound select.
3673 if( op==TK_ALL || op==TK_UNION ){
3674 VdbeNoopComment((v, "Output routine for B"));
3675 addrOutB = generateOutputSubroutine(pParse,
3676 p, &destB, pDest, regOutB,
3677 regPrev, pKeyDup, labelEnd);
3679 sqlite3KeyInfoUnref(pKeyDup);
3681 /* Generate a subroutine to run when the results from select A
3682 ** are exhausted and only data in select B remains.
3684 if( op==TK_EXCEPT || op==TK_INTERSECT ){
3685 addrEofA_noB = addrEofA = labelEnd;
3686 }else{
3687 VdbeNoopComment((v, "eof-A subroutine"));
3688 addrEofA = sqlite3VdbeAddOp2(v, OP_Gosub, regOutB, addrOutB);
3689 addrEofA_noB = sqlite3VdbeAddOp2(v, OP_Yield, regAddrB, labelEnd);
3690 VdbeCoverage(v);
3691 sqlite3VdbeGoto(v, addrEofA);
3692 p->nSelectRow = sqlite3LogEstAdd(p->nSelectRow, pPrior->nSelectRow);
3695 /* Generate a subroutine to run when the results from select B
3696 ** are exhausted and only data in select A remains.
3698 if( op==TK_INTERSECT ){
3699 addrEofB = addrEofA;
3700 if( p->nSelectRow > pPrior->nSelectRow ) p->nSelectRow = pPrior->nSelectRow;
3701 }else{
3702 VdbeNoopComment((v, "eof-B subroutine"));
3703 addrEofB = sqlite3VdbeAddOp2(v, OP_Gosub, regOutA, addrOutA);
3704 sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, labelEnd); VdbeCoverage(v);
3705 sqlite3VdbeGoto(v, addrEofB);
3708 /* Generate code to handle the case of A<B
3710 VdbeNoopComment((v, "A-lt-B subroutine"));
3711 addrAltB = sqlite3VdbeAddOp2(v, OP_Gosub, regOutA, addrOutA);
3712 sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, addrEofA); VdbeCoverage(v);
3713 sqlite3VdbeGoto(v, labelCmpr);
3715 /* Generate code to handle the case of A==B
3717 if( op==TK_ALL ){
3718 addrAeqB = addrAltB;
3719 }else if( op==TK_INTERSECT ){
3720 addrAeqB = addrAltB;
3721 addrAltB++;
3722 }else{
3723 VdbeNoopComment((v, "A-eq-B subroutine"));
3724 addrAeqB =
3725 sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, addrEofA); VdbeCoverage(v);
3726 sqlite3VdbeGoto(v, labelCmpr);
3729 /* Generate code to handle the case of A>B
3731 VdbeNoopComment((v, "A-gt-B subroutine"));
3732 addrAgtB = sqlite3VdbeCurrentAddr(v);
3733 if( op==TK_ALL || op==TK_UNION ){
3734 sqlite3VdbeAddOp2(v, OP_Gosub, regOutB, addrOutB);
3736 sqlite3VdbeAddOp2(v, OP_Yield, regAddrB, addrEofB); VdbeCoverage(v);
3737 sqlite3VdbeGoto(v, labelCmpr);
3739 /* This code runs once to initialize everything.
3741 sqlite3VdbeJumpHere(v, addr1);
3742 sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, addrEofA_noB); VdbeCoverage(v);
3743 sqlite3VdbeAddOp2(v, OP_Yield, regAddrB, addrEofB); VdbeCoverage(v);
3745 /* Implement the main merge loop
3747 sqlite3VdbeResolveLabel(v, labelCmpr);
3748 sqlite3VdbeAddOp4(v, OP_Permutation, 0, 0, 0, (char*)aPermute, P4_INTARRAY);
3749 sqlite3VdbeAddOp4(v, OP_Compare, destA.iSdst, destB.iSdst, nOrderBy,
3750 (char*)pKeyMerge, P4_KEYINFO);
3751 sqlite3VdbeChangeP5(v, OPFLAG_PERMUTE);
3752 sqlite3VdbeAddOp3(v, OP_Jump, addrAltB, addrAeqB, addrAgtB); VdbeCoverage(v);
3754 /* Jump to the this point in order to terminate the query.
3756 sqlite3VdbeResolveLabel(v, labelEnd);
3758 /* Make arrangements to free the 2nd and subsequent arms of the compound
3759 ** after the parse has finished */
3760 if( pSplit->pPrior ){
3761 sqlite3ParserAddCleanup(pParse, sqlite3SelectDeleteGeneric, pSplit->pPrior);
3763 pSplit->pPrior = pPrior;
3764 pPrior->pNext = pSplit;
3765 sqlite3ExprListDelete(db, pPrior->pOrderBy);
3766 pPrior->pOrderBy = 0;
3768 /*** TBD: Insert subroutine calls to close cursors on incomplete
3769 **** subqueries ****/
3770 ExplainQueryPlanPop(pParse);
3771 return pParse->nErr!=0;
3773 #endif
3775 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
3777 /* An instance of the SubstContext object describes an substitution edit
3778 ** to be performed on a parse tree.
3780 ** All references to columns in table iTable are to be replaced by corresponding
3781 ** expressions in pEList.
3783 ** ## About "isOuterJoin":
3785 ** The isOuterJoin column indicates that the replacement will occur into a
3786 ** position in the parent that NULL-able due to an OUTER JOIN. Either the
3787 ** target slot in the parent is the right operand of a LEFT JOIN, or one of
3788 ** the left operands of a RIGHT JOIN. In either case, we need to potentially
3789 ** bypass the substituted expression with OP_IfNullRow.
3791 ** Suppose the original expression is an integer constant. Even though the table
3792 ** has the nullRow flag set, because the expression is an integer constant,
3793 ** it will not be NULLed out. So instead, we insert an OP_IfNullRow opcode
3794 ** that checks to see if the nullRow flag is set on the table. If the nullRow
3795 ** flag is set, then the value in the register is set to NULL and the original
3796 ** expression is bypassed. If the nullRow flag is not set, then the original
3797 ** expression runs to populate the register.
3799 ** Example where this is needed:
3801 ** CREATE TABLE t1(a INTEGER PRIMARY KEY, b INT);
3802 ** CREATE TABLE t2(x INT UNIQUE);
3804 ** SELECT a,b,m,x FROM t1 LEFT JOIN (SELECT 59 AS m,x FROM t2) ON b=x;
3806 ** When the subquery on the right side of the LEFT JOIN is flattened, we
3807 ** have to add OP_IfNullRow in front of the OP_Integer that implements the
3808 ** "m" value of the subquery so that a NULL will be loaded instead of 59
3809 ** when processing a non-matched row of the left.
3811 typedef struct SubstContext {
3812 Parse *pParse; /* The parsing context */
3813 int iTable; /* Replace references to this table */
3814 int iNewTable; /* New table number */
3815 int isOuterJoin; /* Add TK_IF_NULL_ROW opcodes on each replacement */
3816 ExprList *pEList; /* Replacement expressions */
3817 ExprList *pCList; /* Collation sequences for replacement expr */
3818 } SubstContext;
3820 /* Forward Declarations */
3821 static void substExprList(SubstContext*, ExprList*);
3822 static void substSelect(SubstContext*, Select*, int);
3825 ** Scan through the expression pExpr. Replace every reference to
3826 ** a column in table number iTable with a copy of the iColumn-th
3827 ** entry in pEList. (But leave references to the ROWID column
3828 ** unchanged.)
3830 ** This routine is part of the flattening procedure. A subquery
3831 ** whose result set is defined by pEList appears as entry in the
3832 ** FROM clause of a SELECT such that the VDBE cursor assigned to that
3833 ** FORM clause entry is iTable. This routine makes the necessary
3834 ** changes to pExpr so that it refers directly to the source table
3835 ** of the subquery rather the result set of the subquery.
3837 static Expr *substExpr(
3838 SubstContext *pSubst, /* Description of the substitution */
3839 Expr *pExpr /* Expr in which substitution occurs */
3841 if( pExpr==0 ) return 0;
3842 if( ExprHasProperty(pExpr, EP_OuterON|EP_InnerON)
3843 && pExpr->w.iJoin==pSubst->iTable
3845 testcase( ExprHasProperty(pExpr, EP_InnerON) );
3846 pExpr->w.iJoin = pSubst->iNewTable;
3848 if( pExpr->op==TK_COLUMN
3849 && pExpr->iTable==pSubst->iTable
3850 && !ExprHasProperty(pExpr, EP_FixedCol)
3852 #ifdef SQLITE_ALLOW_ROWID_IN_VIEW
3853 if( pExpr->iColumn<0 ){
3854 pExpr->op = TK_NULL;
3855 }else
3856 #endif
3858 Expr *pNew;
3859 int iColumn;
3860 Expr *pCopy;
3861 Expr ifNullRow;
3862 iColumn = pExpr->iColumn;
3863 assert( iColumn>=0 );
3864 assert( pSubst->pEList!=0 && iColumn<pSubst->pEList->nExpr );
3865 assert( pExpr->pRight==0 );
3866 pCopy = pSubst->pEList->a[iColumn].pExpr;
3867 if( sqlite3ExprIsVector(pCopy) ){
3868 sqlite3VectorErrorMsg(pSubst->pParse, pCopy);
3869 }else{
3870 sqlite3 *db = pSubst->pParse->db;
3871 if( pSubst->isOuterJoin
3872 && (pCopy->op!=TK_COLUMN || pCopy->iTable!=pSubst->iNewTable)
3874 memset(&ifNullRow, 0, sizeof(ifNullRow));
3875 ifNullRow.op = TK_IF_NULL_ROW;
3876 ifNullRow.pLeft = pCopy;
3877 ifNullRow.iTable = pSubst->iNewTable;
3878 ifNullRow.iColumn = -99;
3879 ifNullRow.flags = EP_IfNullRow;
3880 pCopy = &ifNullRow;
3882 testcase( ExprHasProperty(pCopy, EP_Subquery) );
3883 pNew = sqlite3ExprDup(db, pCopy, 0);
3884 if( db->mallocFailed ){
3885 sqlite3ExprDelete(db, pNew);
3886 return pExpr;
3888 if( pSubst->isOuterJoin ){
3889 ExprSetProperty(pNew, EP_CanBeNull);
3891 if( ExprHasProperty(pExpr,EP_OuterON|EP_InnerON) ){
3892 sqlite3SetJoinExpr(pNew, pExpr->w.iJoin,
3893 pExpr->flags & (EP_OuterON|EP_InnerON));
3895 sqlite3ExprDelete(db, pExpr);
3896 pExpr = pNew;
3897 if( pExpr->op==TK_TRUEFALSE ){
3898 pExpr->u.iValue = sqlite3ExprTruthValue(pExpr);
3899 pExpr->op = TK_INTEGER;
3900 ExprSetProperty(pExpr, EP_IntValue);
3903 /* Ensure that the expression now has an implicit collation sequence,
3904 ** just as it did when it was a column of a view or sub-query. */
3906 CollSeq *pNat = sqlite3ExprCollSeq(pSubst->pParse, pExpr);
3907 CollSeq *pColl = sqlite3ExprCollSeq(pSubst->pParse,
3908 pSubst->pCList->a[iColumn].pExpr
3910 if( pNat!=pColl || (pExpr->op!=TK_COLUMN && pExpr->op!=TK_COLLATE) ){
3911 pExpr = sqlite3ExprAddCollateString(pSubst->pParse, pExpr,
3912 (pColl ? pColl->zName : "BINARY")
3916 ExprClearProperty(pExpr, EP_Collate);
3919 }else{
3920 if( pExpr->op==TK_IF_NULL_ROW && pExpr->iTable==pSubst->iTable ){
3921 pExpr->iTable = pSubst->iNewTable;
3923 pExpr->pLeft = substExpr(pSubst, pExpr->pLeft);
3924 pExpr->pRight = substExpr(pSubst, pExpr->pRight);
3925 if( ExprUseXSelect(pExpr) ){
3926 substSelect(pSubst, pExpr->x.pSelect, 1);
3927 }else{
3928 substExprList(pSubst, pExpr->x.pList);
3930 #ifndef SQLITE_OMIT_WINDOWFUNC
3931 if( ExprHasProperty(pExpr, EP_WinFunc) ){
3932 Window *pWin = pExpr->y.pWin;
3933 pWin->pFilter = substExpr(pSubst, pWin->pFilter);
3934 substExprList(pSubst, pWin->pPartition);
3935 substExprList(pSubst, pWin->pOrderBy);
3937 #endif
3939 return pExpr;
3941 static void substExprList(
3942 SubstContext *pSubst, /* Description of the substitution */
3943 ExprList *pList /* List to scan and in which to make substitutes */
3945 int i;
3946 if( pList==0 ) return;
3947 for(i=0; i<pList->nExpr; i++){
3948 pList->a[i].pExpr = substExpr(pSubst, pList->a[i].pExpr);
3951 static void substSelect(
3952 SubstContext *pSubst, /* Description of the substitution */
3953 Select *p, /* SELECT statement in which to make substitutions */
3954 int doPrior /* Do substitutes on p->pPrior too */
3956 SrcList *pSrc;
3957 SrcItem *pItem;
3958 int i;
3959 if( !p ) return;
3961 substExprList(pSubst, p->pEList);
3962 substExprList(pSubst, p->pGroupBy);
3963 substExprList(pSubst, p->pOrderBy);
3964 p->pHaving = substExpr(pSubst, p->pHaving);
3965 p->pWhere = substExpr(pSubst, p->pWhere);
3966 pSrc = p->pSrc;
3967 assert( pSrc!=0 );
3968 for(i=pSrc->nSrc, pItem=pSrc->a; i>0; i--, pItem++){
3969 substSelect(pSubst, pItem->pSelect, 1);
3970 if( pItem->fg.isTabFunc ){
3971 substExprList(pSubst, pItem->u1.pFuncArg);
3974 }while( doPrior && (p = p->pPrior)!=0 );
3976 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */
3978 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
3980 ** pSelect is a SELECT statement and pSrcItem is one item in the FROM
3981 ** clause of that SELECT.
3983 ** This routine scans the entire SELECT statement and recomputes the
3984 ** pSrcItem->colUsed mask.
3986 static int recomputeColumnsUsedExpr(Walker *pWalker, Expr *pExpr){
3987 SrcItem *pItem;
3988 if( pExpr->op!=TK_COLUMN ) return WRC_Continue;
3989 pItem = pWalker->u.pSrcItem;
3990 if( pItem->iCursor!=pExpr->iTable ) return WRC_Continue;
3991 if( pExpr->iColumn<0 ) return WRC_Continue;
3992 pItem->colUsed |= sqlite3ExprColUsed(pExpr);
3993 return WRC_Continue;
3995 static void recomputeColumnsUsed(
3996 Select *pSelect, /* The complete SELECT statement */
3997 SrcItem *pSrcItem /* Which FROM clause item to recompute */
3999 Walker w;
4000 if( NEVER(pSrcItem->pTab==0) ) return;
4001 memset(&w, 0, sizeof(w));
4002 w.xExprCallback = recomputeColumnsUsedExpr;
4003 w.xSelectCallback = sqlite3SelectWalkNoop;
4004 w.u.pSrcItem = pSrcItem;
4005 pSrcItem->colUsed = 0;
4006 sqlite3WalkSelect(&w, pSelect);
4008 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */
4010 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
4012 ** Assign new cursor numbers to each of the items in pSrc. For each
4013 ** new cursor number assigned, set an entry in the aCsrMap[] array
4014 ** to map the old cursor number to the new:
4016 ** aCsrMap[iOld+1] = iNew;
4018 ** The array is guaranteed by the caller to be large enough for all
4019 ** existing cursor numbers in pSrc. aCsrMap[0] is the array size.
4021 ** If pSrc contains any sub-selects, call this routine recursively
4022 ** on the FROM clause of each such sub-select, with iExcept set to -1.
4024 static void srclistRenumberCursors(
4025 Parse *pParse, /* Parse context */
4026 int *aCsrMap, /* Array to store cursor mappings in */
4027 SrcList *pSrc, /* FROM clause to renumber */
4028 int iExcept /* FROM clause item to skip */
4030 int i;
4031 SrcItem *pItem;
4032 for(i=0, pItem=pSrc->a; i<pSrc->nSrc; i++, pItem++){
4033 if( i!=iExcept ){
4034 Select *p;
4035 assert( pItem->iCursor < aCsrMap[0] );
4036 if( !pItem->fg.isRecursive || aCsrMap[pItem->iCursor+1]==0 ){
4037 aCsrMap[pItem->iCursor+1] = pParse->nTab++;
4039 pItem->iCursor = aCsrMap[pItem->iCursor+1];
4040 for(p=pItem->pSelect; p; p=p->pPrior){
4041 srclistRenumberCursors(pParse, aCsrMap, p->pSrc, -1);
4048 ** *piCursor is a cursor number. Change it if it needs to be mapped.
4050 static void renumberCursorDoMapping(Walker *pWalker, int *piCursor){
4051 int *aCsrMap = pWalker->u.aiCol;
4052 int iCsr = *piCursor;
4053 if( iCsr < aCsrMap[0] && aCsrMap[iCsr+1]>0 ){
4054 *piCursor = aCsrMap[iCsr+1];
4059 ** Expression walker callback used by renumberCursors() to update
4060 ** Expr objects to match newly assigned cursor numbers.
4062 static int renumberCursorsCb(Walker *pWalker, Expr *pExpr){
4063 int op = pExpr->op;
4064 if( op==TK_COLUMN || op==TK_IF_NULL_ROW ){
4065 renumberCursorDoMapping(pWalker, &pExpr->iTable);
4067 if( ExprHasProperty(pExpr, EP_OuterON) ){
4068 renumberCursorDoMapping(pWalker, &pExpr->w.iJoin);
4070 return WRC_Continue;
4074 ** Assign a new cursor number to each cursor in the FROM clause (Select.pSrc)
4075 ** of the SELECT statement passed as the second argument, and to each
4076 ** cursor in the FROM clause of any FROM clause sub-selects, recursively.
4077 ** Except, do not assign a new cursor number to the iExcept'th element in
4078 ** the FROM clause of (*p). Update all expressions and other references
4079 ** to refer to the new cursor numbers.
4081 ** Argument aCsrMap is an array that may be used for temporary working
4082 ** space. Two guarantees are made by the caller:
4084 ** * the array is larger than the largest cursor number used within the
4085 ** select statement passed as an argument, and
4087 ** * the array entries for all cursor numbers that do *not* appear in
4088 ** FROM clauses of the select statement as described above are
4089 ** initialized to zero.
4091 static void renumberCursors(
4092 Parse *pParse, /* Parse context */
4093 Select *p, /* Select to renumber cursors within */
4094 int iExcept, /* FROM clause item to skip */
4095 int *aCsrMap /* Working space */
4097 Walker w;
4098 srclistRenumberCursors(pParse, aCsrMap, p->pSrc, iExcept);
4099 memset(&w, 0, sizeof(w));
4100 w.u.aiCol = aCsrMap;
4101 w.xExprCallback = renumberCursorsCb;
4102 w.xSelectCallback = sqlite3SelectWalkNoop;
4103 sqlite3WalkSelect(&w, p);
4105 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */
4108 ** If pSel is not part of a compound SELECT, return a pointer to its
4109 ** expression list. Otherwise, return a pointer to the expression list
4110 ** of the leftmost SELECT in the compound.
4112 static ExprList *findLeftmostExprlist(Select *pSel){
4113 while( pSel->pPrior ){
4114 pSel = pSel->pPrior;
4116 return pSel->pEList;
4120 ** Return true if any of the result-set columns in the compound query
4121 ** have incompatible affinities on one or more arms of the compound.
4123 static int compoundHasDifferentAffinities(Select *p){
4124 int ii;
4125 ExprList *pList;
4126 assert( p!=0 );
4127 assert( p->pEList!=0 );
4128 assert( p->pPrior!=0 );
4129 pList = p->pEList;
4130 for(ii=0; ii<pList->nExpr; ii++){
4131 char aff;
4132 Select *pSub1;
4133 assert( pList->a[ii].pExpr!=0 );
4134 aff = sqlite3ExprAffinity(pList->a[ii].pExpr);
4135 for(pSub1=p->pPrior; pSub1; pSub1=pSub1->pPrior){
4136 assert( pSub1->pEList!=0 );
4137 assert( pSub1->pEList->nExpr>ii );
4138 assert( pSub1->pEList->a[ii].pExpr!=0 );
4139 if( sqlite3ExprAffinity(pSub1->pEList->a[ii].pExpr)!=aff ){
4140 return 1;
4144 return 0;
4147 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
4149 ** This routine attempts to flatten subqueries as a performance optimization.
4150 ** This routine returns 1 if it makes changes and 0 if no flattening occurs.
4152 ** To understand the concept of flattening, consider the following
4153 ** query:
4155 ** SELECT a FROM (SELECT x+y AS a FROM t1 WHERE z<100) WHERE a>5
4157 ** The default way of implementing this query is to execute the
4158 ** subquery first and store the results in a temporary table, then
4159 ** run the outer query on that temporary table. This requires two
4160 ** passes over the data. Furthermore, because the temporary table
4161 ** has no indices, the WHERE clause on the outer query cannot be
4162 ** optimized.
4164 ** This routine attempts to rewrite queries such as the above into
4165 ** a single flat select, like this:
4167 ** SELECT x+y AS a FROM t1 WHERE z<100 AND a>5
4169 ** The code generated for this simplification gives the same result
4170 ** but only has to scan the data once. And because indices might
4171 ** exist on the table t1, a complete scan of the data might be
4172 ** avoided.
4174 ** Flattening is subject to the following constraints:
4176 ** (**) We no longer attempt to flatten aggregate subqueries. Was:
4177 ** The subquery and the outer query cannot both be aggregates.
4179 ** (**) We no longer attempt to flatten aggregate subqueries. Was:
4180 ** (2) If the subquery is an aggregate then
4181 ** (2a) the outer query must not be a join and
4182 ** (2b) the outer query must not use subqueries
4183 ** other than the one FROM-clause subquery that is a candidate
4184 ** for flattening. (This is due to ticket [2f7170d73bf9abf80]
4185 ** from 2015-02-09.)
4187 ** (3) If the subquery is the right operand of a LEFT JOIN then
4188 ** (3a) the subquery may not be a join and
4189 ** (3b) the FROM clause of the subquery may not contain a virtual
4190 ** table and
4191 ** (**) Was: "The outer query may not have a GROUP BY." This case
4192 ** is now managed correctly
4193 ** (3d) the outer query may not be DISTINCT.
4194 ** See also (26) for restrictions on RIGHT JOIN.
4196 ** (4) The subquery can not be DISTINCT.
4198 ** (**) At one point restrictions (4) and (5) defined a subset of DISTINCT
4199 ** sub-queries that were excluded from this optimization. Restriction
4200 ** (4) has since been expanded to exclude all DISTINCT subqueries.
4202 ** (**) We no longer attempt to flatten aggregate subqueries. Was:
4203 ** If the subquery is aggregate, the outer query may not be DISTINCT.
4205 ** (7) The subquery must have a FROM clause. TODO: For subqueries without
4206 ** A FROM clause, consider adding a FROM clause with the special
4207 ** table sqlite_once that consists of a single row containing a
4208 ** single NULL.
4210 ** (8) If the subquery uses LIMIT then the outer query may not be a join.
4212 ** (9) If the subquery uses LIMIT then the outer query may not be aggregate.
4214 ** (**) Restriction (10) was removed from the code on 2005-02-05 but we
4215 ** accidentally carried the comment forward until 2014-09-15. Original
4216 ** constraint: "If the subquery is aggregate then the outer query
4217 ** may not use LIMIT."
4219 ** (11) The subquery and the outer query may not both have ORDER BY clauses.
4221 ** (**) Not implemented. Subsumed into restriction (3). Was previously
4222 ** a separate restriction deriving from ticket #350.
4224 ** (13) The subquery and outer query may not both use LIMIT.
4226 ** (14) The subquery may not use OFFSET.
4228 ** (15) If the outer query is part of a compound select, then the
4229 ** subquery may not use LIMIT.
4230 ** (See ticket #2339 and ticket [02a8e81d44]).
4232 ** (16) If the outer query is aggregate, then the subquery may not
4233 ** use ORDER BY. (Ticket #2942) This used to not matter
4234 ** until we introduced the group_concat() function.
4236 ** (17) If the subquery is a compound select, then
4237 ** (17a) all compound operators must be a UNION ALL, and
4238 ** (17b) no terms within the subquery compound may be aggregate
4239 ** or DISTINCT, and
4240 ** (17c) every term within the subquery compound must have a FROM clause
4241 ** (17d) the outer query may not be
4242 ** (17d1) aggregate, or
4243 ** (17d2) DISTINCT
4244 ** (17e) the subquery may not contain window functions, and
4245 ** (17f) the subquery must not be the RHS of a LEFT JOIN.
4246 ** (17g) either the subquery is the first element of the outer
4247 ** query or there are no RIGHT or FULL JOINs in any arm
4248 ** of the subquery. (This is a duplicate of condition (27b).)
4249 ** (17h) The corresponding result set expressions in all arms of the
4250 ** compound must have the same affinity.
4252 ** The parent and sub-query may contain WHERE clauses. Subject to
4253 ** rules (11), (13) and (14), they may also contain ORDER BY,
4254 ** LIMIT and OFFSET clauses. The subquery cannot use any compound
4255 ** operator other than UNION ALL because all the other compound
4256 ** operators have an implied DISTINCT which is disallowed by
4257 ** restriction (4).
4259 ** Also, each component of the sub-query must return the same number
4260 ** of result columns. This is actually a requirement for any compound
4261 ** SELECT statement, but all the code here does is make sure that no
4262 ** such (illegal) sub-query is flattened. The caller will detect the
4263 ** syntax error and return a detailed message.
4265 ** (18) If the sub-query is a compound select, then all terms of the
4266 ** ORDER BY clause of the parent must be copies of a term returned
4267 ** by the parent query.
4269 ** (19) If the subquery uses LIMIT then the outer query may not
4270 ** have a WHERE clause.
4272 ** (20) If the sub-query is a compound select, then it must not use
4273 ** an ORDER BY clause. Ticket #3773. We could relax this constraint
4274 ** somewhat by saying that the terms of the ORDER BY clause must
4275 ** appear as unmodified result columns in the outer query. But we
4276 ** have other optimizations in mind to deal with that case.
4278 ** (21) If the subquery uses LIMIT then the outer query may not be
4279 ** DISTINCT. (See ticket [752e1646fc]).
4281 ** (22) The subquery may not be a recursive CTE.
4283 ** (23) If the outer query is a recursive CTE, then the sub-query may not be
4284 ** a compound query. This restriction is because transforming the
4285 ** parent to a compound query confuses the code that handles
4286 ** recursive queries in multiSelect().
4288 ** (**) We no longer attempt to flatten aggregate subqueries. Was:
4289 ** The subquery may not be an aggregate that uses the built-in min() or
4290 ** or max() functions. (Without this restriction, a query like:
4291 ** "SELECT x FROM (SELECT max(y), x FROM t1)" would not necessarily
4292 ** return the value X for which Y was maximal.)
4294 ** (25) If either the subquery or the parent query contains a window
4295 ** function in the select list or ORDER BY clause, flattening
4296 ** is not attempted.
4298 ** (26) The subquery may not be the right operand of a RIGHT JOIN.
4299 ** See also (3) for restrictions on LEFT JOIN.
4301 ** (27) The subquery may not contain a FULL or RIGHT JOIN unless it
4302 ** is the first element of the parent query. Two subcases:
4303 ** (27a) the subquery is not a compound query.
4304 ** (27b) the subquery is a compound query and the RIGHT JOIN occurs
4305 ** in any arm of the compound query. (See also (17g).)
4307 ** (28) The subquery is not a MATERIALIZED CTE. (This is handled
4308 ** in the caller before ever reaching this routine.)
4311 ** In this routine, the "p" parameter is a pointer to the outer query.
4312 ** The subquery is p->pSrc->a[iFrom]. isAgg is true if the outer query
4313 ** uses aggregates.
4315 ** If flattening is not attempted, this routine is a no-op and returns 0.
4316 ** If flattening is attempted this routine returns 1.
4318 ** All of the expression analysis must occur on both the outer query and
4319 ** the subquery before this routine runs.
4321 static int flattenSubquery(
4322 Parse *pParse, /* Parsing context */
4323 Select *p, /* The parent or outer SELECT statement */
4324 int iFrom, /* Index in p->pSrc->a[] of the inner subquery */
4325 int isAgg /* True if outer SELECT uses aggregate functions */
4327 const char *zSavedAuthContext = pParse->zAuthContext;
4328 Select *pParent; /* Current UNION ALL term of the other query */
4329 Select *pSub; /* The inner query or "subquery" */
4330 Select *pSub1; /* Pointer to the rightmost select in sub-query */
4331 SrcList *pSrc; /* The FROM clause of the outer query */
4332 SrcList *pSubSrc; /* The FROM clause of the subquery */
4333 int iParent; /* VDBE cursor number of the pSub result set temp table */
4334 int iNewParent = -1;/* Replacement table for iParent */
4335 int isOuterJoin = 0; /* True if pSub is the right side of a LEFT JOIN */
4336 int i; /* Loop counter */
4337 Expr *pWhere; /* The WHERE clause */
4338 SrcItem *pSubitem; /* The subquery */
4339 sqlite3 *db = pParse->db;
4340 Walker w; /* Walker to persist agginfo data */
4341 int *aCsrMap = 0;
4343 /* Check to see if flattening is permitted. Return 0 if not.
4345 assert( p!=0 );
4346 assert( p->pPrior==0 );
4347 if( OptimizationDisabled(db, SQLITE_QueryFlattener) ) return 0;
4348 pSrc = p->pSrc;
4349 assert( pSrc && iFrom>=0 && iFrom<pSrc->nSrc );
4350 pSubitem = &pSrc->a[iFrom];
4351 iParent = pSubitem->iCursor;
4352 pSub = pSubitem->pSelect;
4353 assert( pSub!=0 );
4355 #ifndef SQLITE_OMIT_WINDOWFUNC
4356 if( p->pWin || pSub->pWin ) return 0; /* Restriction (25) */
4357 #endif
4359 pSubSrc = pSub->pSrc;
4360 assert( pSubSrc );
4361 /* Prior to version 3.1.2, when LIMIT and OFFSET had to be simple constants,
4362 ** not arbitrary expressions, we allowed some combining of LIMIT and OFFSET
4363 ** because they could be computed at compile-time. But when LIMIT and OFFSET
4364 ** became arbitrary expressions, we were forced to add restrictions (13)
4365 ** and (14). */
4366 if( pSub->pLimit && p->pLimit ) return 0; /* Restriction (13) */
4367 if( pSub->pLimit && pSub->pLimit->pRight ) return 0; /* Restriction (14) */
4368 if( (p->selFlags & SF_Compound)!=0 && pSub->pLimit ){
4369 return 0; /* Restriction (15) */
4371 if( pSubSrc->nSrc==0 ) return 0; /* Restriction (7) */
4372 if( pSub->selFlags & SF_Distinct ) return 0; /* Restriction (4) */
4373 if( pSub->pLimit && (pSrc->nSrc>1 || isAgg) ){
4374 return 0; /* Restrictions (8)(9) */
4376 if( p->pOrderBy && pSub->pOrderBy ){
4377 return 0; /* Restriction (11) */
4379 if( isAgg && pSub->pOrderBy ) return 0; /* Restriction (16) */
4380 if( pSub->pLimit && p->pWhere ) return 0; /* Restriction (19) */
4381 if( pSub->pLimit && (p->selFlags & SF_Distinct)!=0 ){
4382 return 0; /* Restriction (21) */
4384 if( pSub->selFlags & (SF_Recursive) ){
4385 return 0; /* Restrictions (22) */
4389 ** If the subquery is the right operand of a LEFT JOIN, then the
4390 ** subquery may not be a join itself (3a). Example of why this is not
4391 ** allowed:
4393 ** t1 LEFT OUTER JOIN (t2 JOIN t3)
4395 ** If we flatten the above, we would get
4397 ** (t1 LEFT OUTER JOIN t2) JOIN t3
4399 ** which is not at all the same thing.
4401 ** See also tickets #306, #350, and #3300.
4403 if( (pSubitem->fg.jointype & (JT_OUTER|JT_LTORJ))!=0 ){
4404 if( pSubSrc->nSrc>1 /* (3a) */
4405 || IsVirtual(pSubSrc->a[0].pTab) /* (3b) */
4406 || (p->selFlags & SF_Distinct)!=0 /* (3d) */
4407 || (pSubitem->fg.jointype & JT_RIGHT)!=0 /* (26) */
4409 return 0;
4411 isOuterJoin = 1;
4414 assert( pSubSrc->nSrc>0 ); /* True by restriction (7) */
4415 if( iFrom>0 && (pSubSrc->a[0].fg.jointype & JT_LTORJ)!=0 ){
4416 return 0; /* Restriction (27a) */
4419 /* Condition (28) is blocked by the caller */
4420 assert( !pSubitem->fg.isCte || pSubitem->u2.pCteUse->eM10d!=M10d_Yes );
4422 /* Restriction (17): If the sub-query is a compound SELECT, then it must
4423 ** use only the UNION ALL operator. And none of the simple select queries
4424 ** that make up the compound SELECT are allowed to be aggregate or distinct
4425 ** queries.
4427 if( pSub->pPrior ){
4428 int ii;
4429 if( pSub->pOrderBy ){
4430 return 0; /* Restriction (20) */
4432 if( isAgg || (p->selFlags & SF_Distinct)!=0 || isOuterJoin>0 ){
4433 return 0; /* (17d1), (17d2), or (17f) */
4435 for(pSub1=pSub; pSub1; pSub1=pSub1->pPrior){
4436 testcase( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct );
4437 testcase( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))==SF_Aggregate );
4438 assert( pSub->pSrc!=0 );
4439 assert( (pSub->selFlags & SF_Recursive)==0 );
4440 assert( pSub->pEList->nExpr==pSub1->pEList->nExpr );
4441 if( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))!=0 /* (17b) */
4442 || (pSub1->pPrior && pSub1->op!=TK_ALL) /* (17a) */
4443 || pSub1->pSrc->nSrc<1 /* (17c) */
4444 #ifndef SQLITE_OMIT_WINDOWFUNC
4445 || pSub1->pWin /* (17e) */
4446 #endif
4448 return 0;
4450 if( iFrom>0 && (pSub1->pSrc->a[0].fg.jointype & JT_LTORJ)!=0 ){
4451 /* Without this restriction, the JT_LTORJ flag would end up being
4452 ** omitted on left-hand tables of the right join that is being
4453 ** flattened. */
4454 return 0; /* Restrictions (17g), (27b) */
4456 testcase( pSub1->pSrc->nSrc>1 );
4459 /* Restriction (18). */
4460 if( p->pOrderBy ){
4461 for(ii=0; ii<p->pOrderBy->nExpr; ii++){
4462 if( p->pOrderBy->a[ii].u.x.iOrderByCol==0 ) return 0;
4466 /* Restriction (23) */
4467 if( (p->selFlags & SF_Recursive) ) return 0;
4469 /* Restriction (17h) */
4470 if( compoundHasDifferentAffinities(pSub) ) return 0;
4472 if( pSrc->nSrc>1 ){
4473 if( pParse->nSelect>500 ) return 0;
4474 if( OptimizationDisabled(db, SQLITE_FlttnUnionAll) ) return 0;
4475 aCsrMap = sqlite3DbMallocZero(db, ((i64)pParse->nTab+1)*sizeof(int));
4476 if( aCsrMap ) aCsrMap[0] = pParse->nTab;
4480 /***** If we reach this point, flattening is permitted. *****/
4481 TREETRACE(0x4,pParse,p,("flatten %u.%p from term %d\n",
4482 pSub->selId, pSub, iFrom));
4484 /* Authorize the subquery */
4485 pParse->zAuthContext = pSubitem->zName;
4486 TESTONLY(i =) sqlite3AuthCheck(pParse, SQLITE_SELECT, 0, 0, 0);
4487 testcase( i==SQLITE_DENY );
4488 pParse->zAuthContext = zSavedAuthContext;
4490 /* Delete the transient structures associated with the subquery */
4491 pSub1 = pSubitem->pSelect;
4492 sqlite3DbFree(db, pSubitem->zDatabase);
4493 sqlite3DbFree(db, pSubitem->zName);
4494 sqlite3DbFree(db, pSubitem->zAlias);
4495 pSubitem->zDatabase = 0;
4496 pSubitem->zName = 0;
4497 pSubitem->zAlias = 0;
4498 pSubitem->pSelect = 0;
4499 assert( pSubitem->fg.isUsing!=0 || pSubitem->u3.pOn==0 );
4501 /* If the sub-query is a compound SELECT statement, then (by restrictions
4502 ** 17 and 18 above) it must be a UNION ALL and the parent query must
4503 ** be of the form:
4505 ** SELECT <expr-list> FROM (<sub-query>) <where-clause>
4507 ** followed by any ORDER BY, LIMIT and/or OFFSET clauses. This block
4508 ** creates N-1 copies of the parent query without any ORDER BY, LIMIT or
4509 ** OFFSET clauses and joins them to the left-hand-side of the original
4510 ** using UNION ALL operators. In this case N is the number of simple
4511 ** select statements in the compound sub-query.
4513 ** Example:
4515 ** SELECT a+1 FROM (
4516 ** SELECT x FROM tab
4517 ** UNION ALL
4518 ** SELECT y FROM tab
4519 ** UNION ALL
4520 ** SELECT abs(z*2) FROM tab2
4521 ** ) WHERE a!=5 ORDER BY 1
4523 ** Transformed into:
4525 ** SELECT x+1 FROM tab WHERE x+1!=5
4526 ** UNION ALL
4527 ** SELECT y+1 FROM tab WHERE y+1!=5
4528 ** UNION ALL
4529 ** SELECT abs(z*2)+1 FROM tab2 WHERE abs(z*2)+1!=5
4530 ** ORDER BY 1
4532 ** We call this the "compound-subquery flattening".
4534 for(pSub=pSub->pPrior; pSub; pSub=pSub->pPrior){
4535 Select *pNew;
4536 ExprList *pOrderBy = p->pOrderBy;
4537 Expr *pLimit = p->pLimit;
4538 Select *pPrior = p->pPrior;
4539 Table *pItemTab = pSubitem->pTab;
4540 pSubitem->pTab = 0;
4541 p->pOrderBy = 0;
4542 p->pPrior = 0;
4543 p->pLimit = 0;
4544 pNew = sqlite3SelectDup(db, p, 0);
4545 p->pLimit = pLimit;
4546 p->pOrderBy = pOrderBy;
4547 p->op = TK_ALL;
4548 pSubitem->pTab = pItemTab;
4549 if( pNew==0 ){
4550 p->pPrior = pPrior;
4551 }else{
4552 pNew->selId = ++pParse->nSelect;
4553 if( aCsrMap && ALWAYS(db->mallocFailed==0) ){
4554 renumberCursors(pParse, pNew, iFrom, aCsrMap);
4556 pNew->pPrior = pPrior;
4557 if( pPrior ) pPrior->pNext = pNew;
4558 pNew->pNext = p;
4559 p->pPrior = pNew;
4560 TREETRACE(0x4,pParse,p,("compound-subquery flattener"
4561 " creates %u as peer\n",pNew->selId));
4563 assert( pSubitem->pSelect==0 );
4565 sqlite3DbFree(db, aCsrMap);
4566 if( db->mallocFailed ){
4567 pSubitem->pSelect = pSub1;
4568 return 1;
4571 /* Defer deleting the Table object associated with the
4572 ** subquery until code generation is
4573 ** complete, since there may still exist Expr.pTab entries that
4574 ** refer to the subquery even after flattening. Ticket #3346.
4576 ** pSubitem->pTab is always non-NULL by test restrictions and tests above.
4578 if( ALWAYS(pSubitem->pTab!=0) ){
4579 Table *pTabToDel = pSubitem->pTab;
4580 if( pTabToDel->nTabRef==1 ){
4581 Parse *pToplevel = sqlite3ParseToplevel(pParse);
4582 sqlite3ParserAddCleanup(pToplevel, sqlite3DeleteTableGeneric, pTabToDel);
4583 testcase( pToplevel->earlyCleanup );
4584 }else{
4585 pTabToDel->nTabRef--;
4587 pSubitem->pTab = 0;
4590 /* The following loop runs once for each term in a compound-subquery
4591 ** flattening (as described above). If we are doing a different kind
4592 ** of flattening - a flattening other than a compound-subquery flattening -
4593 ** then this loop only runs once.
4595 ** This loop moves all of the FROM elements of the subquery into the
4596 ** the FROM clause of the outer query. Before doing this, remember
4597 ** the cursor number for the original outer query FROM element in
4598 ** iParent. The iParent cursor will never be used. Subsequent code
4599 ** will scan expressions looking for iParent references and replace
4600 ** those references with expressions that resolve to the subquery FROM
4601 ** elements we are now copying in.
4603 pSub = pSub1;
4604 for(pParent=p; pParent; pParent=pParent->pPrior, pSub=pSub->pPrior){
4605 int nSubSrc;
4606 u8 jointype = 0;
4607 u8 ltorj = pSrc->a[iFrom].fg.jointype & JT_LTORJ;
4608 assert( pSub!=0 );
4609 pSubSrc = pSub->pSrc; /* FROM clause of subquery */
4610 nSubSrc = pSubSrc->nSrc; /* Number of terms in subquery FROM clause */
4611 pSrc = pParent->pSrc; /* FROM clause of the outer query */
4613 if( pParent==p ){
4614 jointype = pSubitem->fg.jointype; /* First time through the loop */
4617 /* The subquery uses a single slot of the FROM clause of the outer
4618 ** query. If the subquery has more than one element in its FROM clause,
4619 ** then expand the outer query to make space for it to hold all elements
4620 ** of the subquery.
4622 ** Example:
4624 ** SELECT * FROM tabA, (SELECT * FROM sub1, sub2), tabB;
4626 ** The outer query has 3 slots in its FROM clause. One slot of the
4627 ** outer query (the middle slot) is used by the subquery. The next
4628 ** block of code will expand the outer query FROM clause to 4 slots.
4629 ** The middle slot is expanded to two slots in order to make space
4630 ** for the two elements in the FROM clause of the subquery.
4632 if( nSubSrc>1 ){
4633 pSrc = sqlite3SrcListEnlarge(pParse, pSrc, nSubSrc-1,iFrom+1);
4634 if( pSrc==0 ) break;
4635 pParent->pSrc = pSrc;
4638 /* Transfer the FROM clause terms from the subquery into the
4639 ** outer query.
4641 for(i=0; i<nSubSrc; i++){
4642 SrcItem *pItem = &pSrc->a[i+iFrom];
4643 if( pItem->fg.isUsing ) sqlite3IdListDelete(db, pItem->u3.pUsing);
4644 assert( pItem->fg.isTabFunc==0 );
4645 *pItem = pSubSrc->a[i];
4646 pItem->fg.jointype |= ltorj;
4647 iNewParent = pSubSrc->a[i].iCursor;
4648 memset(&pSubSrc->a[i], 0, sizeof(pSubSrc->a[i]));
4650 pSrc->a[iFrom].fg.jointype &= JT_LTORJ;
4651 pSrc->a[iFrom].fg.jointype |= jointype | ltorj;
4653 /* Now begin substituting subquery result set expressions for
4654 ** references to the iParent in the outer query.
4656 ** Example:
4658 ** SELECT a+5, b*10 FROM (SELECT x*3 AS a, y+10 AS b FROM t1) WHERE a>b;
4659 ** \ \_____________ subquery __________/ /
4660 ** \_____________________ outer query ______________________________/
4662 ** We look at every expression in the outer query and every place we see
4663 ** "a" we substitute "x*3" and every place we see "b" we substitute "y+10".
4665 if( pSub->pOrderBy && (pParent->selFlags & SF_NoopOrderBy)==0 ){
4666 /* At this point, any non-zero iOrderByCol values indicate that the
4667 ** ORDER BY column expression is identical to the iOrderByCol'th
4668 ** expression returned by SELECT statement pSub. Since these values
4669 ** do not necessarily correspond to columns in SELECT statement pParent,
4670 ** zero them before transferring the ORDER BY clause.
4672 ** Not doing this may cause an error if a subsequent call to this
4673 ** function attempts to flatten a compound sub-query into pParent
4674 ** (the only way this can happen is if the compound sub-query is
4675 ** currently part of pSub->pSrc). See ticket [d11a6e908f]. */
4676 ExprList *pOrderBy = pSub->pOrderBy;
4677 for(i=0; i<pOrderBy->nExpr; i++){
4678 pOrderBy->a[i].u.x.iOrderByCol = 0;
4680 assert( pParent->pOrderBy==0 );
4681 pParent->pOrderBy = pOrderBy;
4682 pSub->pOrderBy = 0;
4684 pWhere = pSub->pWhere;
4685 pSub->pWhere = 0;
4686 if( isOuterJoin>0 ){
4687 sqlite3SetJoinExpr(pWhere, iNewParent, EP_OuterON);
4689 if( pWhere ){
4690 if( pParent->pWhere ){
4691 pParent->pWhere = sqlite3PExpr(pParse, TK_AND, pWhere, pParent->pWhere);
4692 }else{
4693 pParent->pWhere = pWhere;
4696 if( db->mallocFailed==0 ){
4697 SubstContext x;
4698 x.pParse = pParse;
4699 x.iTable = iParent;
4700 x.iNewTable = iNewParent;
4701 x.isOuterJoin = isOuterJoin;
4702 x.pEList = pSub->pEList;
4703 x.pCList = findLeftmostExprlist(pSub);
4704 substSelect(&x, pParent, 0);
4707 /* The flattened query is a compound if either the inner or the
4708 ** outer query is a compound. */
4709 pParent->selFlags |= pSub->selFlags & SF_Compound;
4710 assert( (pSub->selFlags & SF_Distinct)==0 ); /* restriction (17b) */
4713 ** SELECT ... FROM (SELECT ... LIMIT a OFFSET b) LIMIT x OFFSET y;
4715 ** One is tempted to try to add a and b to combine the limits. But this
4716 ** does not work if either limit is negative.
4718 if( pSub->pLimit ){
4719 pParent->pLimit = pSub->pLimit;
4720 pSub->pLimit = 0;
4723 /* Recompute the SrcItem.colUsed masks for the flattened
4724 ** tables. */
4725 for(i=0; i<nSubSrc; i++){
4726 recomputeColumnsUsed(pParent, &pSrc->a[i+iFrom]);
4730 /* Finally, delete what is left of the subquery and return success.
4732 sqlite3AggInfoPersistWalkerInit(&w, pParse);
4733 sqlite3WalkSelect(&w,pSub1);
4734 sqlite3SelectDelete(db, pSub1);
4736 #if TREETRACE_ENABLED
4737 if( sqlite3TreeTrace & 0x4 ){
4738 TREETRACE(0x4,pParse,p,("After flattening:\n"));
4739 sqlite3TreeViewSelect(0, p, 0);
4741 #endif
4743 return 1;
4745 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */
4748 ** A structure to keep track of all of the column values that are fixed to
4749 ** a known value due to WHERE clause constraints of the form COLUMN=VALUE.
4751 typedef struct WhereConst WhereConst;
4752 struct WhereConst {
4753 Parse *pParse; /* Parsing context */
4754 u8 *pOomFault; /* Pointer to pParse->db->mallocFailed */
4755 int nConst; /* Number for COLUMN=CONSTANT terms */
4756 int nChng; /* Number of times a constant is propagated */
4757 int bHasAffBlob; /* At least one column in apExpr[] as affinity BLOB */
4758 u32 mExcludeOn; /* Which ON expressions to exclude from considertion.
4759 ** Either EP_OuterON or EP_InnerON|EP_OuterON */
4760 Expr **apExpr; /* [i*2] is COLUMN and [i*2+1] is VALUE */
4764 ** Add a new entry to the pConst object. Except, do not add duplicate
4765 ** pColumn entries. Also, do not add if doing so would not be appropriate.
4767 ** The caller guarantees the pColumn is a column and pValue is a constant.
4768 ** This routine has to do some additional checks before completing the
4769 ** insert.
4771 static void constInsert(
4772 WhereConst *pConst, /* The WhereConst into which we are inserting */
4773 Expr *pColumn, /* The COLUMN part of the constraint */
4774 Expr *pValue, /* The VALUE part of the constraint */
4775 Expr *pExpr /* Overall expression: COLUMN=VALUE or VALUE=COLUMN */
4777 int i;
4778 assert( pColumn->op==TK_COLUMN );
4779 assert( sqlite3ExprIsConstant(pValue) );
4781 if( ExprHasProperty(pColumn, EP_FixedCol) ) return;
4782 if( sqlite3ExprAffinity(pValue)!=0 ) return;
4783 if( !sqlite3IsBinary(sqlite3ExprCompareCollSeq(pConst->pParse,pExpr)) ){
4784 return;
4787 /* 2018-10-25 ticket [cf5ed20f]
4788 ** Make sure the same pColumn is not inserted more than once */
4789 for(i=0; i<pConst->nConst; i++){
4790 const Expr *pE2 = pConst->apExpr[i*2];
4791 assert( pE2->op==TK_COLUMN );
4792 if( pE2->iTable==pColumn->iTable
4793 && pE2->iColumn==pColumn->iColumn
4795 return; /* Already present. Return without doing anything. */
4798 if( sqlite3ExprAffinity(pColumn)==SQLITE_AFF_BLOB ){
4799 pConst->bHasAffBlob = 1;
4802 pConst->nConst++;
4803 pConst->apExpr = sqlite3DbReallocOrFree(pConst->pParse->db, pConst->apExpr,
4804 pConst->nConst*2*sizeof(Expr*));
4805 if( pConst->apExpr==0 ){
4806 pConst->nConst = 0;
4807 }else{
4808 pConst->apExpr[pConst->nConst*2-2] = pColumn;
4809 pConst->apExpr[pConst->nConst*2-1] = pValue;
4814 ** Find all terms of COLUMN=VALUE or VALUE=COLUMN in pExpr where VALUE
4815 ** is a constant expression and where the term must be true because it
4816 ** is part of the AND-connected terms of the expression. For each term
4817 ** found, add it to the pConst structure.
4819 static void findConstInWhere(WhereConst *pConst, Expr *pExpr){
4820 Expr *pRight, *pLeft;
4821 if( NEVER(pExpr==0) ) return;
4822 if( ExprHasProperty(pExpr, pConst->mExcludeOn) ){
4823 testcase( ExprHasProperty(pExpr, EP_OuterON) );
4824 testcase( ExprHasProperty(pExpr, EP_InnerON) );
4825 return;
4827 if( pExpr->op==TK_AND ){
4828 findConstInWhere(pConst, pExpr->pRight);
4829 findConstInWhere(pConst, pExpr->pLeft);
4830 return;
4832 if( pExpr->op!=TK_EQ ) return;
4833 pRight = pExpr->pRight;
4834 pLeft = pExpr->pLeft;
4835 assert( pRight!=0 );
4836 assert( pLeft!=0 );
4837 if( pRight->op==TK_COLUMN && sqlite3ExprIsConstant(pLeft) ){
4838 constInsert(pConst,pRight,pLeft,pExpr);
4840 if( pLeft->op==TK_COLUMN && sqlite3ExprIsConstant(pRight) ){
4841 constInsert(pConst,pLeft,pRight,pExpr);
4846 ** This is a helper function for Walker callback propagateConstantExprRewrite().
4848 ** Argument pExpr is a candidate expression to be replaced by a value. If
4849 ** pExpr is equivalent to one of the columns named in pWalker->u.pConst,
4850 ** then overwrite it with the corresponding value. Except, do not do so
4851 ** if argument bIgnoreAffBlob is non-zero and the affinity of pExpr
4852 ** is SQLITE_AFF_BLOB.
4854 static int propagateConstantExprRewriteOne(
4855 WhereConst *pConst,
4856 Expr *pExpr,
4857 int bIgnoreAffBlob
4859 int i;
4860 if( pConst->pOomFault[0] ) return WRC_Prune;
4861 if( pExpr->op!=TK_COLUMN ) return WRC_Continue;
4862 if( ExprHasProperty(pExpr, EP_FixedCol|pConst->mExcludeOn) ){
4863 testcase( ExprHasProperty(pExpr, EP_FixedCol) );
4864 testcase( ExprHasProperty(pExpr, EP_OuterON) );
4865 testcase( ExprHasProperty(pExpr, EP_InnerON) );
4866 return WRC_Continue;
4868 for(i=0; i<pConst->nConst; i++){
4869 Expr *pColumn = pConst->apExpr[i*2];
4870 if( pColumn==pExpr ) continue;
4871 if( pColumn->iTable!=pExpr->iTable ) continue;
4872 if( pColumn->iColumn!=pExpr->iColumn ) continue;
4873 if( bIgnoreAffBlob && sqlite3ExprAffinity(pColumn)==SQLITE_AFF_BLOB ){
4874 break;
4876 /* A match is found. Add the EP_FixedCol property */
4877 pConst->nChng++;
4878 ExprClearProperty(pExpr, EP_Leaf);
4879 ExprSetProperty(pExpr, EP_FixedCol);
4880 assert( pExpr->pLeft==0 );
4881 pExpr->pLeft = sqlite3ExprDup(pConst->pParse->db, pConst->apExpr[i*2+1], 0);
4882 if( pConst->pParse->db->mallocFailed ) return WRC_Prune;
4883 break;
4885 return WRC_Prune;
4889 ** This is a Walker expression callback. pExpr is a node from the WHERE
4890 ** clause of a SELECT statement. This function examines pExpr to see if
4891 ** any substitutions based on the contents of pWalker->u.pConst should
4892 ** be made to pExpr or its immediate children.
4894 ** A substitution is made if:
4896 ** + pExpr is a column with an affinity other than BLOB that matches
4897 ** one of the columns in pWalker->u.pConst, or
4899 ** + pExpr is a binary comparison operator (=, <=, >=, <, >) that
4900 ** uses an affinity other than TEXT and one of its immediate
4901 ** children is a column that matches one of the columns in
4902 ** pWalker->u.pConst.
4904 static int propagateConstantExprRewrite(Walker *pWalker, Expr *pExpr){
4905 WhereConst *pConst = pWalker->u.pConst;
4906 assert( TK_GT==TK_EQ+1 );
4907 assert( TK_LE==TK_EQ+2 );
4908 assert( TK_LT==TK_EQ+3 );
4909 assert( TK_GE==TK_EQ+4 );
4910 if( pConst->bHasAffBlob ){
4911 if( (pExpr->op>=TK_EQ && pExpr->op<=TK_GE)
4912 || pExpr->op==TK_IS
4914 propagateConstantExprRewriteOne(pConst, pExpr->pLeft, 0);
4915 if( pConst->pOomFault[0] ) return WRC_Prune;
4916 if( sqlite3ExprAffinity(pExpr->pLeft)!=SQLITE_AFF_TEXT ){
4917 propagateConstantExprRewriteOne(pConst, pExpr->pRight, 0);
4921 return propagateConstantExprRewriteOne(pConst, pExpr, pConst->bHasAffBlob);
4925 ** The WHERE-clause constant propagation optimization.
4927 ** If the WHERE clause contains terms of the form COLUMN=CONSTANT or
4928 ** CONSTANT=COLUMN that are top-level AND-connected terms that are not
4929 ** part of a ON clause from a LEFT JOIN, then throughout the query
4930 ** replace all other occurrences of COLUMN with CONSTANT.
4932 ** For example, the query:
4934 ** SELECT * FROM t1, t2, t3 WHERE t1.a=39 AND t2.b=t1.a AND t3.c=t2.b
4936 ** Is transformed into
4938 ** SELECT * FROM t1, t2, t3 WHERE t1.a=39 AND t2.b=39 AND t3.c=39
4940 ** Return true if any transformations where made and false if not.
4942 ** Implementation note: Constant propagation is tricky due to affinity
4943 ** and collating sequence interactions. Consider this example:
4945 ** CREATE TABLE t1(a INT,b TEXT);
4946 ** INSERT INTO t1 VALUES(123,'0123');
4947 ** SELECT * FROM t1 WHERE a=123 AND b=a;
4948 ** SELECT * FROM t1 WHERE a=123 AND b=123;
4950 ** The two SELECT statements above should return different answers. b=a
4951 ** is always true because the comparison uses numeric affinity, but b=123
4952 ** is false because it uses text affinity and '0123' is not the same as '123'.
4953 ** To work around this, the expression tree is not actually changed from
4954 ** "b=a" to "b=123" but rather the "a" in "b=a" is tagged with EP_FixedCol
4955 ** and the "123" value is hung off of the pLeft pointer. Code generator
4956 ** routines know to generate the constant "123" instead of looking up the
4957 ** column value. Also, to avoid collation problems, this optimization is
4958 ** only attempted if the "a=123" term uses the default BINARY collation.
4960 ** 2021-05-25 forum post 6a06202608: Another troublesome case is...
4962 ** CREATE TABLE t1(x);
4963 ** INSERT INTO t1 VALUES(10.0);
4964 ** SELECT 1 FROM t1 WHERE x=10 AND x LIKE 10;
4966 ** The query should return no rows, because the t1.x value is '10.0' not '10'
4967 ** and '10.0' is not LIKE '10'. But if we are not careful, the first WHERE
4968 ** term "x=10" will cause the second WHERE term to become "10 LIKE 10",
4969 ** resulting in a false positive. To avoid this, constant propagation for
4970 ** columns with BLOB affinity is only allowed if the constant is used with
4971 ** operators ==, <=, <, >=, >, or IS in a way that will cause the correct
4972 ** type conversions to occur. See logic associated with the bHasAffBlob flag
4973 ** for details.
4975 static int propagateConstants(
4976 Parse *pParse, /* The parsing context */
4977 Select *p /* The query in which to propagate constants */
4979 WhereConst x;
4980 Walker w;
4981 int nChng = 0;
4982 x.pParse = pParse;
4983 x.pOomFault = &pParse->db->mallocFailed;
4985 x.nConst = 0;
4986 x.nChng = 0;
4987 x.apExpr = 0;
4988 x.bHasAffBlob = 0;
4989 if( ALWAYS(p->pSrc!=0)
4990 && p->pSrc->nSrc>0
4991 && (p->pSrc->a[0].fg.jointype & JT_LTORJ)!=0
4993 /* Do not propagate constants on any ON clause if there is a
4994 ** RIGHT JOIN anywhere in the query */
4995 x.mExcludeOn = EP_InnerON | EP_OuterON;
4996 }else{
4997 /* Do not propagate constants through the ON clause of a LEFT JOIN */
4998 x.mExcludeOn = EP_OuterON;
5000 findConstInWhere(&x, p->pWhere);
5001 if( x.nConst ){
5002 memset(&w, 0, sizeof(w));
5003 w.pParse = pParse;
5004 w.xExprCallback = propagateConstantExprRewrite;
5005 w.xSelectCallback = sqlite3SelectWalkNoop;
5006 w.xSelectCallback2 = 0;
5007 w.walkerDepth = 0;
5008 w.u.pConst = &x;
5009 sqlite3WalkExpr(&w, p->pWhere);
5010 sqlite3DbFree(x.pParse->db, x.apExpr);
5011 nChng += x.nChng;
5013 }while( x.nChng );
5014 return nChng;
5017 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
5018 # if !defined(SQLITE_OMIT_WINDOWFUNC)
5020 ** This function is called to determine whether or not it is safe to
5021 ** push WHERE clause expression pExpr down to FROM clause sub-query
5022 ** pSubq, which contains at least one window function. Return 1
5023 ** if it is safe and the expression should be pushed down, or 0
5024 ** otherwise.
5026 ** It is only safe to push the expression down if it consists only
5027 ** of constants and copies of expressions that appear in the PARTITION
5028 ** BY clause of all window function used by the sub-query. It is safe
5029 ** to filter out entire partitions, but not rows within partitions, as
5030 ** this may change the results of the window functions.
5032 ** At the time this function is called it is guaranteed that
5034 ** * the sub-query uses only one distinct window frame, and
5035 ** * that the window frame has a PARTITION BY clause.
5037 static int pushDownWindowCheck(Parse *pParse, Select *pSubq, Expr *pExpr){
5038 assert( pSubq->pWin->pPartition );
5039 assert( (pSubq->selFlags & SF_MultiPart)==0 );
5040 assert( pSubq->pPrior==0 );
5041 return sqlite3ExprIsConstantOrGroupBy(pParse, pExpr, pSubq->pWin->pPartition);
5043 # endif /* SQLITE_OMIT_WINDOWFUNC */
5044 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */
5046 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
5048 ** Make copies of relevant WHERE clause terms of the outer query into
5049 ** the WHERE clause of subquery. Example:
5051 ** SELECT * FROM (SELECT a AS x, c-d AS y FROM t1) WHERE x=5 AND y=10;
5053 ** Transformed into:
5055 ** SELECT * FROM (SELECT a AS x, c-d AS y FROM t1 WHERE a=5 AND c-d=10)
5056 ** WHERE x=5 AND y=10;
5058 ** The hope is that the terms added to the inner query will make it more
5059 ** efficient.
5061 ** Do not attempt this optimization if:
5063 ** (1) (** This restriction was removed on 2017-09-29. We used to
5064 ** disallow this optimization for aggregate subqueries, but now
5065 ** it is allowed by putting the extra terms on the HAVING clause.
5066 ** The added HAVING clause is pointless if the subquery lacks
5067 ** a GROUP BY clause. But such a HAVING clause is also harmless
5068 ** so there does not appear to be any reason to add extra logic
5069 ** to suppress it. **)
5071 ** (2) The inner query is the recursive part of a common table expression.
5073 ** (3) The inner query has a LIMIT clause (since the changes to the WHERE
5074 ** clause would change the meaning of the LIMIT).
5076 ** (4) The inner query is the right operand of a LEFT JOIN and the
5077 ** expression to be pushed down does not come from the ON clause
5078 ** on that LEFT JOIN.
5080 ** (5) The WHERE clause expression originates in the ON or USING clause
5081 ** of a LEFT JOIN where iCursor is not the right-hand table of that
5082 ** left join. An example:
5084 ** SELECT *
5085 ** FROM (SELECT 1 AS a1 UNION ALL SELECT 2) AS aa
5086 ** JOIN (SELECT 1 AS b2 UNION ALL SELECT 2) AS bb ON (a1=b2)
5087 ** LEFT JOIN (SELECT 8 AS c3 UNION ALL SELECT 9) AS cc ON (b2=2);
5089 ** The correct answer is three rows: (1,1,NULL),(2,2,8),(2,2,9).
5090 ** But if the (b2=2) term were to be pushed down into the bb subquery,
5091 ** then the (1,1,NULL) row would be suppressed.
5093 ** (6) Window functions make things tricky as changes to the WHERE clause
5094 ** of the inner query could change the window over which window
5095 ** functions are calculated. Therefore, do not attempt the optimization
5096 ** if:
5098 ** (6a) The inner query uses multiple incompatible window partitions.
5100 ** (6b) The inner query is a compound and uses window-functions.
5102 ** (6c) The WHERE clause does not consist entirely of constants and
5103 ** copies of expressions found in the PARTITION BY clause of
5104 ** all window-functions used by the sub-query. It is safe to
5105 ** filter out entire partitions, as this does not change the
5106 ** window over which any window-function is calculated.
5108 ** (7) The inner query is a Common Table Expression (CTE) that should
5109 ** be materialized. (This restriction is implemented in the calling
5110 ** routine.)
5112 ** (8) If the subquery is a compound that uses UNION, INTERSECT,
5113 ** or EXCEPT, then all of the result set columns for all arms of
5114 ** the compound must use the BINARY collating sequence.
5116 ** (9) All three of the following are true:
5118 ** (9a) The WHERE clause expression originates in the ON or USING clause
5119 ** of a join (either an INNER or an OUTER join), and
5121 ** (9b) The subquery is to the right of the ON/USING clause
5123 ** (9c) There is a RIGHT JOIN (or FULL JOIN) in between the ON/USING
5124 ** clause and the subquery.
5126 ** Without this restriction, the push-down optimization might move
5127 ** the ON/USING filter expression from the left side of a RIGHT JOIN
5128 ** over to the right side, which leads to incorrect answers. See
5129 ** also restriction (6) in sqlite3ExprIsSingleTableConstraint().
5131 ** (10) The inner query is not the right-hand table of a RIGHT JOIN.
5133 ** (11) The subquery is not a VALUES clause
5135 ** Return 0 if no changes are made and non-zero if one or more WHERE clause
5136 ** terms are duplicated into the subquery.
5138 static int pushDownWhereTerms(
5139 Parse *pParse, /* Parse context (for malloc() and error reporting) */
5140 Select *pSubq, /* The subquery whose WHERE clause is to be augmented */
5141 Expr *pWhere, /* The WHERE clause of the outer query */
5142 SrcList *pSrcList, /* The complete from clause of the outer query */
5143 int iSrc /* Which FROM clause term to try to push into */
5145 Expr *pNew;
5146 SrcItem *pSrc; /* The subquery FROM term into which WHERE is pushed */
5147 int nChng = 0;
5148 pSrc = &pSrcList->a[iSrc];
5149 if( pWhere==0 ) return 0;
5150 if( pSubq->selFlags & (SF_Recursive|SF_MultiPart) ){
5151 return 0; /* restrictions (2) and (11) */
5153 if( pSrc->fg.jointype & (JT_LTORJ|JT_RIGHT) ){
5154 return 0; /* restrictions (10) */
5157 if( pSubq->pPrior ){
5158 Select *pSel;
5159 int notUnionAll = 0;
5160 for(pSel=pSubq; pSel; pSel=pSel->pPrior){
5161 u8 op = pSel->op;
5162 assert( op==TK_ALL || op==TK_SELECT
5163 || op==TK_UNION || op==TK_INTERSECT || op==TK_EXCEPT );
5164 if( op!=TK_ALL && op!=TK_SELECT ){
5165 notUnionAll = 1;
5167 #ifndef SQLITE_OMIT_WINDOWFUNC
5168 if( pSel->pWin ) return 0; /* restriction (6b) */
5169 #endif
5171 if( notUnionAll ){
5172 /* If any of the compound arms are connected using UNION, INTERSECT,
5173 ** or EXCEPT, then we must ensure that none of the columns use a
5174 ** non-BINARY collating sequence. */
5175 for(pSel=pSubq; pSel; pSel=pSel->pPrior){
5176 int ii;
5177 const ExprList *pList = pSel->pEList;
5178 assert( pList!=0 );
5179 for(ii=0; ii<pList->nExpr; ii++){
5180 CollSeq *pColl = sqlite3ExprCollSeq(pParse, pList->a[ii].pExpr);
5181 if( !sqlite3IsBinary(pColl) ){
5182 return 0; /* Restriction (8) */
5187 }else{
5188 #ifndef SQLITE_OMIT_WINDOWFUNC
5189 if( pSubq->pWin && pSubq->pWin->pPartition==0 ) return 0;
5190 #endif
5193 #ifdef SQLITE_DEBUG
5194 /* Only the first term of a compound can have a WITH clause. But make
5195 ** sure no other terms are marked SF_Recursive in case something changes
5196 ** in the future.
5199 Select *pX;
5200 for(pX=pSubq; pX; pX=pX->pPrior){
5201 assert( (pX->selFlags & (SF_Recursive))==0 );
5204 #endif
5206 if( pSubq->pLimit!=0 ){
5207 return 0; /* restriction (3) */
5209 while( pWhere->op==TK_AND ){
5210 nChng += pushDownWhereTerms(pParse, pSubq, pWhere->pRight, pSrcList, iSrc);
5211 pWhere = pWhere->pLeft;
5214 #if 0 /* These checks now done by sqlite3ExprIsSingleTableConstraint() */
5215 if( ExprHasProperty(pWhere, EP_OuterON|EP_InnerON) /* (9a) */
5216 && (pSrcList->a[0].fg.jointype & JT_LTORJ)!=0 /* Fast pre-test of (9c) */
5218 int jj;
5219 for(jj=0; jj<iSrc; jj++){
5220 if( pWhere->w.iJoin==pSrcList->a[jj].iCursor ){
5221 /* If we reach this point, both (9a) and (9b) are satisfied.
5222 ** The following loop checks (9c):
5224 for(jj++; jj<iSrc; jj++){
5225 if( (pSrcList->a[jj].fg.jointype & JT_RIGHT)!=0 ){
5226 return 0; /* restriction (9) */
5232 if( isLeftJoin
5233 && (ExprHasProperty(pWhere,EP_OuterON)==0
5234 || pWhere->w.iJoin!=iCursor)
5236 return 0; /* restriction (4) */
5238 if( ExprHasProperty(pWhere,EP_OuterON)
5239 && pWhere->w.iJoin!=iCursor
5241 return 0; /* restriction (5) */
5243 #endif
5245 if( sqlite3ExprIsSingleTableConstraint(pWhere, pSrcList, iSrc) ){
5246 nChng++;
5247 pSubq->selFlags |= SF_PushDown;
5248 while( pSubq ){
5249 SubstContext x;
5250 pNew = sqlite3ExprDup(pParse->db, pWhere, 0);
5251 unsetJoinExpr(pNew, -1, 1);
5252 x.pParse = pParse;
5253 x.iTable = pSrc->iCursor;
5254 x.iNewTable = pSrc->iCursor;
5255 x.isOuterJoin = 0;
5256 x.pEList = pSubq->pEList;
5257 x.pCList = findLeftmostExprlist(pSubq);
5258 pNew = substExpr(&x, pNew);
5259 #ifndef SQLITE_OMIT_WINDOWFUNC
5260 if( pSubq->pWin && 0==pushDownWindowCheck(pParse, pSubq, pNew) ){
5261 /* Restriction 6c has prevented push-down in this case */
5262 sqlite3ExprDelete(pParse->db, pNew);
5263 nChng--;
5264 break;
5266 #endif
5267 if( pSubq->selFlags & SF_Aggregate ){
5268 pSubq->pHaving = sqlite3ExprAnd(pParse, pSubq->pHaving, pNew);
5269 }else{
5270 pSubq->pWhere = sqlite3ExprAnd(pParse, pSubq->pWhere, pNew);
5272 pSubq = pSubq->pPrior;
5275 return nChng;
5277 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */
5280 ** Check to see if a subquery contains result-set columns that are
5281 ** never used. If it does, change the value of those result-set columns
5282 ** to NULL so that they do not cause unnecessary work to compute.
5284 ** Return the number of column that were changed to NULL.
5286 static int disableUnusedSubqueryResultColumns(SrcItem *pItem){
5287 int nCol;
5288 Select *pSub; /* The subquery to be simplified */
5289 Select *pX; /* For looping over compound elements of pSub */
5290 Table *pTab; /* The table that describes the subquery */
5291 int j; /* Column number */
5292 int nChng = 0; /* Number of columns converted to NULL */
5293 Bitmask colUsed; /* Columns that may not be NULLed out */
5295 assert( pItem!=0 );
5296 if( pItem->fg.isCorrelated || pItem->fg.isCte ){
5297 return 0;
5299 assert( pItem->pTab!=0 );
5300 pTab = pItem->pTab;
5301 assert( pItem->pSelect!=0 );
5302 pSub = pItem->pSelect;
5303 assert( pSub->pEList->nExpr==pTab->nCol );
5304 for(pX=pSub; pX; pX=pX->pPrior){
5305 if( (pX->selFlags & (SF_Distinct|SF_Aggregate))!=0 ){
5306 testcase( pX->selFlags & SF_Distinct );
5307 testcase( pX->selFlags & SF_Aggregate );
5308 return 0;
5310 if( pX->pPrior && pX->op!=TK_ALL ){
5311 /* This optimization does not work for compound subqueries that
5312 ** use UNION, INTERSECT, or EXCEPT. Only UNION ALL is allowed. */
5313 return 0;
5315 #ifndef SQLITE_OMIT_WINDOWFUNC
5316 if( pX->pWin ){
5317 /* This optimization does not work for subqueries that use window
5318 ** functions. */
5319 return 0;
5321 #endif
5323 colUsed = pItem->colUsed;
5324 if( pSub->pOrderBy ){
5325 ExprList *pList = pSub->pOrderBy;
5326 for(j=0; j<pList->nExpr; j++){
5327 u16 iCol = pList->a[j].u.x.iOrderByCol;
5328 if( iCol>0 ){
5329 iCol--;
5330 colUsed |= ((Bitmask)1)<<(iCol>=BMS ? BMS-1 : iCol);
5334 nCol = pTab->nCol;
5335 for(j=0; j<nCol; j++){
5336 Bitmask m = j<BMS-1 ? MASKBIT(j) : TOPBIT;
5337 if( (m & colUsed)!=0 ) continue;
5338 for(pX=pSub; pX; pX=pX->pPrior) {
5339 Expr *pY = pX->pEList->a[j].pExpr;
5340 if( pY->op==TK_NULL ) continue;
5341 pY->op = TK_NULL;
5342 ExprClearProperty(pY, EP_Skip|EP_Unlikely);
5343 pX->selFlags |= SF_PushDown;
5344 nChng++;
5347 return nChng;
5352 ** The pFunc is the only aggregate function in the query. Check to see
5353 ** if the query is a candidate for the min/max optimization.
5355 ** If the query is a candidate for the min/max optimization, then set
5356 ** *ppMinMax to be an ORDER BY clause to be used for the optimization
5357 ** and return either WHERE_ORDERBY_MIN or WHERE_ORDERBY_MAX depending on
5358 ** whether pFunc is a min() or max() function.
5360 ** If the query is not a candidate for the min/max optimization, return
5361 ** WHERE_ORDERBY_NORMAL (which must be zero).
5363 ** This routine must be called after aggregate functions have been
5364 ** located but before their arguments have been subjected to aggregate
5365 ** analysis.
5367 static u8 minMaxQuery(sqlite3 *db, Expr *pFunc, ExprList **ppMinMax){
5368 int eRet = WHERE_ORDERBY_NORMAL; /* Return value */
5369 ExprList *pEList; /* Arguments to agg function */
5370 const char *zFunc; /* Name of aggregate function pFunc */
5371 ExprList *pOrderBy;
5372 u8 sortFlags = 0;
5374 assert( *ppMinMax==0 );
5375 assert( pFunc->op==TK_AGG_FUNCTION );
5376 assert( !IsWindowFunc(pFunc) );
5377 assert( ExprUseXList(pFunc) );
5378 pEList = pFunc->x.pList;
5379 if( pEList==0
5380 || pEList->nExpr!=1
5381 || ExprHasProperty(pFunc, EP_WinFunc)
5382 || OptimizationDisabled(db, SQLITE_MinMaxOpt)
5384 return eRet;
5386 assert( !ExprHasProperty(pFunc, EP_IntValue) );
5387 zFunc = pFunc->u.zToken;
5388 if( sqlite3StrICmp(zFunc, "min")==0 ){
5389 eRet = WHERE_ORDERBY_MIN;
5390 if( sqlite3ExprCanBeNull(pEList->a[0].pExpr) ){
5391 sortFlags = KEYINFO_ORDER_BIGNULL;
5393 }else if( sqlite3StrICmp(zFunc, "max")==0 ){
5394 eRet = WHERE_ORDERBY_MAX;
5395 sortFlags = KEYINFO_ORDER_DESC;
5396 }else{
5397 return eRet;
5399 *ppMinMax = pOrderBy = sqlite3ExprListDup(db, pEList, 0);
5400 assert( pOrderBy!=0 || db->mallocFailed );
5401 if( pOrderBy ) pOrderBy->a[0].fg.sortFlags = sortFlags;
5402 return eRet;
5406 ** The select statement passed as the first argument is an aggregate query.
5407 ** The second argument is the associated aggregate-info object. This
5408 ** function tests if the SELECT is of the form:
5410 ** SELECT count(*) FROM <tbl>
5412 ** where table is a database table, not a sub-select or view. If the query
5413 ** does match this pattern, then a pointer to the Table object representing
5414 ** <tbl> is returned. Otherwise, NULL is returned.
5416 ** This routine checks to see if it is safe to use the count optimization.
5417 ** A correct answer is still obtained (though perhaps more slowly) if
5418 ** this routine returns NULL when it could have returned a table pointer.
5419 ** But returning the pointer when NULL should have been returned can
5420 ** result in incorrect answers and/or crashes. So, when in doubt, return NULL.
5422 static Table *isSimpleCount(Select *p, AggInfo *pAggInfo){
5423 Table *pTab;
5424 Expr *pExpr;
5426 assert( !p->pGroupBy );
5428 if( p->pWhere
5429 || p->pEList->nExpr!=1
5430 || p->pSrc->nSrc!=1
5431 || p->pSrc->a[0].pSelect
5432 || pAggInfo->nFunc!=1
5433 || p->pHaving
5435 return 0;
5437 pTab = p->pSrc->a[0].pTab;
5438 assert( pTab!=0 );
5439 assert( !IsView(pTab) );
5440 if( !IsOrdinaryTable(pTab) ) return 0;
5441 pExpr = p->pEList->a[0].pExpr;
5442 assert( pExpr!=0 );
5443 if( pExpr->op!=TK_AGG_FUNCTION ) return 0;
5444 if( pExpr->pAggInfo!=pAggInfo ) return 0;
5445 if( (pAggInfo->aFunc[0].pFunc->funcFlags&SQLITE_FUNC_COUNT)==0 ) return 0;
5446 assert( pAggInfo->aFunc[0].pFExpr==pExpr );
5447 testcase( ExprHasProperty(pExpr, EP_Distinct) );
5448 testcase( ExprHasProperty(pExpr, EP_WinFunc) );
5449 if( ExprHasProperty(pExpr, EP_Distinct|EP_WinFunc) ) return 0;
5451 return pTab;
5455 ** If the source-list item passed as an argument was augmented with an
5456 ** INDEXED BY clause, then try to locate the specified index. If there
5457 ** was such a clause and the named index cannot be found, return
5458 ** SQLITE_ERROR and leave an error in pParse. Otherwise, populate
5459 ** pFrom->pIndex and return SQLITE_OK.
5461 int sqlite3IndexedByLookup(Parse *pParse, SrcItem *pFrom){
5462 Table *pTab = pFrom->pTab;
5463 char *zIndexedBy = pFrom->u1.zIndexedBy;
5464 Index *pIdx;
5465 assert( pTab!=0 );
5466 assert( pFrom->fg.isIndexedBy!=0 );
5468 for(pIdx=pTab->pIndex;
5469 pIdx && sqlite3StrICmp(pIdx->zName, zIndexedBy);
5470 pIdx=pIdx->pNext
5472 if( !pIdx ){
5473 sqlite3ErrorMsg(pParse, "no such index: %s", zIndexedBy, 0);
5474 pParse->checkSchema = 1;
5475 return SQLITE_ERROR;
5477 assert( pFrom->fg.isCte==0 );
5478 pFrom->u2.pIBIndex = pIdx;
5479 return SQLITE_OK;
5483 ** Detect compound SELECT statements that use an ORDER BY clause with
5484 ** an alternative collating sequence.
5486 ** SELECT ... FROM t1 EXCEPT SELECT ... FROM t2 ORDER BY .. COLLATE ...
5488 ** These are rewritten as a subquery:
5490 ** SELECT * FROM (SELECT ... FROM t1 EXCEPT SELECT ... FROM t2)
5491 ** ORDER BY ... COLLATE ...
5493 ** This transformation is necessary because the multiSelectOrderBy() routine
5494 ** above that generates the code for a compound SELECT with an ORDER BY clause
5495 ** uses a merge algorithm that requires the same collating sequence on the
5496 ** result columns as on the ORDER BY clause. See ticket
5497 ** http://www.sqlite.org/src/info/6709574d2a
5499 ** This transformation is only needed for EXCEPT, INTERSECT, and UNION.
5500 ** The UNION ALL operator works fine with multiSelectOrderBy() even when
5501 ** there are COLLATE terms in the ORDER BY.
5503 static int convertCompoundSelectToSubquery(Walker *pWalker, Select *p){
5504 int i;
5505 Select *pNew;
5506 Select *pX;
5507 sqlite3 *db;
5508 struct ExprList_item *a;
5509 SrcList *pNewSrc;
5510 Parse *pParse;
5511 Token dummy;
5513 if( p->pPrior==0 ) return WRC_Continue;
5514 if( p->pOrderBy==0 ) return WRC_Continue;
5515 for(pX=p; pX && (pX->op==TK_ALL || pX->op==TK_SELECT); pX=pX->pPrior){}
5516 if( pX==0 ) return WRC_Continue;
5517 a = p->pOrderBy->a;
5518 #ifndef SQLITE_OMIT_WINDOWFUNC
5519 /* If iOrderByCol is already non-zero, then it has already been matched
5520 ** to a result column of the SELECT statement. This occurs when the
5521 ** SELECT is rewritten for window-functions processing and then passed
5522 ** to sqlite3SelectPrep() and similar a second time. The rewriting done
5523 ** by this function is not required in this case. */
5524 if( a[0].u.x.iOrderByCol ) return WRC_Continue;
5525 #endif
5526 for(i=p->pOrderBy->nExpr-1; i>=0; i--){
5527 if( a[i].pExpr->flags & EP_Collate ) break;
5529 if( i<0 ) return WRC_Continue;
5531 /* If we reach this point, that means the transformation is required. */
5533 pParse = pWalker->pParse;
5534 db = pParse->db;
5535 pNew = sqlite3DbMallocZero(db, sizeof(*pNew) );
5536 if( pNew==0 ) return WRC_Abort;
5537 memset(&dummy, 0, sizeof(dummy));
5538 pNewSrc = sqlite3SrcListAppendFromTerm(pParse,0,0,0,&dummy,pNew,0);
5539 if( pNewSrc==0 ) return WRC_Abort;
5540 *pNew = *p;
5541 p->pSrc = pNewSrc;
5542 p->pEList = sqlite3ExprListAppend(pParse, 0, sqlite3Expr(db, TK_ASTERISK, 0));
5543 p->op = TK_SELECT;
5544 p->pWhere = 0;
5545 pNew->pGroupBy = 0;
5546 pNew->pHaving = 0;
5547 pNew->pOrderBy = 0;
5548 p->pPrior = 0;
5549 p->pNext = 0;
5550 p->pWith = 0;
5551 #ifndef SQLITE_OMIT_WINDOWFUNC
5552 p->pWinDefn = 0;
5553 #endif
5554 p->selFlags &= ~SF_Compound;
5555 assert( (p->selFlags & SF_Converted)==0 );
5556 p->selFlags |= SF_Converted;
5557 assert( pNew->pPrior!=0 );
5558 pNew->pPrior->pNext = pNew;
5559 pNew->pLimit = 0;
5560 return WRC_Continue;
5564 ** Check to see if the FROM clause term pFrom has table-valued function
5565 ** arguments. If it does, leave an error message in pParse and return
5566 ** non-zero, since pFrom is not allowed to be a table-valued function.
5568 static int cannotBeFunction(Parse *pParse, SrcItem *pFrom){
5569 if( pFrom->fg.isTabFunc ){
5570 sqlite3ErrorMsg(pParse, "'%s' is not a function", pFrom->zName);
5571 return 1;
5573 return 0;
5576 #ifndef SQLITE_OMIT_CTE
5578 ** Argument pWith (which may be NULL) points to a linked list of nested
5579 ** WITH contexts, from inner to outermost. If the table identified by
5580 ** FROM clause element pItem is really a common-table-expression (CTE)
5581 ** then return a pointer to the CTE definition for that table. Otherwise
5582 ** return NULL.
5584 ** If a non-NULL value is returned, set *ppContext to point to the With
5585 ** object that the returned CTE belongs to.
5587 static struct Cte *searchWith(
5588 With *pWith, /* Current innermost WITH clause */
5589 SrcItem *pItem, /* FROM clause element to resolve */
5590 With **ppContext /* OUT: WITH clause return value belongs to */
5592 const char *zName = pItem->zName;
5593 With *p;
5594 assert( pItem->zDatabase==0 );
5595 assert( zName!=0 );
5596 for(p=pWith; p; p=p->pOuter){
5597 int i;
5598 for(i=0; i<p->nCte; i++){
5599 if( sqlite3StrICmp(zName, p->a[i].zName)==0 ){
5600 *ppContext = p;
5601 return &p->a[i];
5604 if( p->bView ) break;
5606 return 0;
5609 /* The code generator maintains a stack of active WITH clauses
5610 ** with the inner-most WITH clause being at the top of the stack.
5612 ** This routine pushes the WITH clause passed as the second argument
5613 ** onto the top of the stack. If argument bFree is true, then this
5614 ** WITH clause will never be popped from the stack but should instead
5615 ** be freed along with the Parse object. In other cases, when
5616 ** bFree==0, the With object will be freed along with the SELECT
5617 ** statement with which it is associated.
5619 ** This routine returns a copy of pWith. Or, if bFree is true and
5620 ** the pWith object is destroyed immediately due to an OOM condition,
5621 ** then this routine return NULL.
5623 ** If bFree is true, do not continue to use the pWith pointer after
5624 ** calling this routine, Instead, use only the return value.
5626 With *sqlite3WithPush(Parse *pParse, With *pWith, u8 bFree){
5627 if( pWith ){
5628 if( bFree ){
5629 pWith = (With*)sqlite3ParserAddCleanup(pParse, sqlite3WithDeleteGeneric,
5630 pWith);
5631 if( pWith==0 ) return 0;
5633 if( pParse->nErr==0 ){
5634 assert( pParse->pWith!=pWith );
5635 pWith->pOuter = pParse->pWith;
5636 pParse->pWith = pWith;
5639 return pWith;
5643 ** This function checks if argument pFrom refers to a CTE declared by
5644 ** a WITH clause on the stack currently maintained by the parser (on the
5645 ** pParse->pWith linked list). And if currently processing a CTE
5646 ** CTE expression, through routine checks to see if the reference is
5647 ** a recursive reference to the CTE.
5649 ** If pFrom matches a CTE according to either of these two above, pFrom->pTab
5650 ** and other fields are populated accordingly.
5652 ** Return 0 if no match is found.
5653 ** Return 1 if a match is found.
5654 ** Return 2 if an error condition is detected.
5656 static int resolveFromTermToCte(
5657 Parse *pParse, /* The parsing context */
5658 Walker *pWalker, /* Current tree walker */
5659 SrcItem *pFrom /* The FROM clause term to check */
5661 Cte *pCte; /* Matched CTE (or NULL if no match) */
5662 With *pWith; /* The matching WITH */
5664 assert( pFrom->pTab==0 );
5665 if( pParse->pWith==0 ){
5666 /* There are no WITH clauses in the stack. No match is possible */
5667 return 0;
5669 if( pParse->nErr ){
5670 /* Prior errors might have left pParse->pWith in a goofy state, so
5671 ** go no further. */
5672 return 0;
5674 if( pFrom->zDatabase!=0 ){
5675 /* The FROM term contains a schema qualifier (ex: main.t1) and so
5676 ** it cannot possibly be a CTE reference. */
5677 return 0;
5679 if( pFrom->fg.notCte ){
5680 /* The FROM term is specifically excluded from matching a CTE.
5681 ** (1) It is part of a trigger that used to have zDatabase but had
5682 ** zDatabase removed by sqlite3FixTriggerStep().
5683 ** (2) This is the first term in the FROM clause of an UPDATE.
5685 return 0;
5687 pCte = searchWith(pParse->pWith, pFrom, &pWith);
5688 if( pCte ){
5689 sqlite3 *db = pParse->db;
5690 Table *pTab;
5691 ExprList *pEList;
5692 Select *pSel;
5693 Select *pLeft; /* Left-most SELECT statement */
5694 Select *pRecTerm; /* Left-most recursive term */
5695 int bMayRecursive; /* True if compound joined by UNION [ALL] */
5696 With *pSavedWith; /* Initial value of pParse->pWith */
5697 int iRecTab = -1; /* Cursor for recursive table */
5698 CteUse *pCteUse;
5700 /* If pCte->zCteErr is non-NULL at this point, then this is an illegal
5701 ** recursive reference to CTE pCte. Leave an error in pParse and return
5702 ** early. If pCte->zCteErr is NULL, then this is not a recursive reference.
5703 ** In this case, proceed. */
5704 if( pCte->zCteErr ){
5705 sqlite3ErrorMsg(pParse, pCte->zCteErr, pCte->zName);
5706 return 2;
5708 if( cannotBeFunction(pParse, pFrom) ) return 2;
5710 assert( pFrom->pTab==0 );
5711 pTab = sqlite3DbMallocZero(db, sizeof(Table));
5712 if( pTab==0 ) return 2;
5713 pCteUse = pCte->pUse;
5714 if( pCteUse==0 ){
5715 pCte->pUse = pCteUse = sqlite3DbMallocZero(db, sizeof(pCteUse[0]));
5716 if( pCteUse==0
5717 || sqlite3ParserAddCleanup(pParse,sqlite3DbFree,pCteUse)==0
5719 sqlite3DbFree(db, pTab);
5720 return 2;
5722 pCteUse->eM10d = pCte->eM10d;
5724 pFrom->pTab = pTab;
5725 pTab->nTabRef = 1;
5726 pTab->zName = sqlite3DbStrDup(db, pCte->zName);
5727 pTab->iPKey = -1;
5728 pTab->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) );
5729 pTab->tabFlags |= TF_Ephemeral | TF_NoVisibleRowid;
5730 pFrom->pSelect = sqlite3SelectDup(db, pCte->pSelect, 0);
5731 if( db->mallocFailed ) return 2;
5732 pFrom->pSelect->selFlags |= SF_CopyCte;
5733 assert( pFrom->pSelect );
5734 if( pFrom->fg.isIndexedBy ){
5735 sqlite3ErrorMsg(pParse, "no such index: \"%s\"", pFrom->u1.zIndexedBy);
5736 return 2;
5738 pFrom->fg.isCte = 1;
5739 pFrom->u2.pCteUse = pCteUse;
5740 pCteUse->nUse++;
5742 /* Check if this is a recursive CTE. */
5743 pRecTerm = pSel = pFrom->pSelect;
5744 bMayRecursive = ( pSel->op==TK_ALL || pSel->op==TK_UNION );
5745 while( bMayRecursive && pRecTerm->op==pSel->op ){
5746 int i;
5747 SrcList *pSrc = pRecTerm->pSrc;
5748 assert( pRecTerm->pPrior!=0 );
5749 for(i=0; i<pSrc->nSrc; i++){
5750 SrcItem *pItem = &pSrc->a[i];
5751 if( pItem->zDatabase==0
5752 && pItem->zName!=0
5753 && 0==sqlite3StrICmp(pItem->zName, pCte->zName)
5755 pItem->pTab = pTab;
5756 pTab->nTabRef++;
5757 pItem->fg.isRecursive = 1;
5758 if( pRecTerm->selFlags & SF_Recursive ){
5759 sqlite3ErrorMsg(pParse,
5760 "multiple references to recursive table: %s", pCte->zName
5762 return 2;
5764 pRecTerm->selFlags |= SF_Recursive;
5765 if( iRecTab<0 ) iRecTab = pParse->nTab++;
5766 pItem->iCursor = iRecTab;
5769 if( (pRecTerm->selFlags & SF_Recursive)==0 ) break;
5770 pRecTerm = pRecTerm->pPrior;
5773 pCte->zCteErr = "circular reference: %s";
5774 pSavedWith = pParse->pWith;
5775 pParse->pWith = pWith;
5776 if( pSel->selFlags & SF_Recursive ){
5777 int rc;
5778 assert( pRecTerm!=0 );
5779 assert( (pRecTerm->selFlags & SF_Recursive)==0 );
5780 assert( pRecTerm->pNext!=0 );
5781 assert( (pRecTerm->pNext->selFlags & SF_Recursive)!=0 );
5782 assert( pRecTerm->pWith==0 );
5783 pRecTerm->pWith = pSel->pWith;
5784 rc = sqlite3WalkSelect(pWalker, pRecTerm);
5785 pRecTerm->pWith = 0;
5786 if( rc ){
5787 pParse->pWith = pSavedWith;
5788 return 2;
5790 }else{
5791 if( sqlite3WalkSelect(pWalker, pSel) ){
5792 pParse->pWith = pSavedWith;
5793 return 2;
5796 pParse->pWith = pWith;
5798 for(pLeft=pSel; pLeft->pPrior; pLeft=pLeft->pPrior);
5799 pEList = pLeft->pEList;
5800 if( pCte->pCols ){
5801 if( pEList && pEList->nExpr!=pCte->pCols->nExpr ){
5802 sqlite3ErrorMsg(pParse, "table %s has %d values for %d columns",
5803 pCte->zName, pEList->nExpr, pCte->pCols->nExpr
5805 pParse->pWith = pSavedWith;
5806 return 2;
5808 pEList = pCte->pCols;
5811 sqlite3ColumnsFromExprList(pParse, pEList, &pTab->nCol, &pTab->aCol);
5812 if( bMayRecursive ){
5813 if( pSel->selFlags & SF_Recursive ){
5814 pCte->zCteErr = "multiple recursive references: %s";
5815 }else{
5816 pCte->zCteErr = "recursive reference in a subquery: %s";
5818 sqlite3WalkSelect(pWalker, pSel);
5820 pCte->zCteErr = 0;
5821 pParse->pWith = pSavedWith;
5822 return 1; /* Success */
5824 return 0; /* No match */
5826 #endif
5828 #ifndef SQLITE_OMIT_CTE
5830 ** If the SELECT passed as the second argument has an associated WITH
5831 ** clause, pop it from the stack stored as part of the Parse object.
5833 ** This function is used as the xSelectCallback2() callback by
5834 ** sqlite3SelectExpand() when walking a SELECT tree to resolve table
5835 ** names and other FROM clause elements.
5837 void sqlite3SelectPopWith(Walker *pWalker, Select *p){
5838 Parse *pParse = pWalker->pParse;
5839 if( OK_IF_ALWAYS_TRUE(pParse->pWith) && p->pPrior==0 ){
5840 With *pWith = findRightmost(p)->pWith;
5841 if( pWith!=0 ){
5842 assert( pParse->pWith==pWith || pParse->nErr );
5843 pParse->pWith = pWith->pOuter;
5847 #endif
5850 ** The SrcItem structure passed as the second argument represents a
5851 ** sub-query in the FROM clause of a SELECT statement. This function
5852 ** allocates and populates the SrcItem.pTab object. If successful,
5853 ** SQLITE_OK is returned. Otherwise, if an OOM error is encountered,
5854 ** SQLITE_NOMEM.
5856 int sqlite3ExpandSubquery(Parse *pParse, SrcItem *pFrom){
5857 Select *pSel = pFrom->pSelect;
5858 Table *pTab;
5860 assert( pSel );
5861 pFrom->pTab = pTab = sqlite3DbMallocZero(pParse->db, sizeof(Table));
5862 if( pTab==0 ) return SQLITE_NOMEM;
5863 pTab->nTabRef = 1;
5864 if( pFrom->zAlias ){
5865 pTab->zName = sqlite3DbStrDup(pParse->db, pFrom->zAlias);
5866 }else{
5867 pTab->zName = sqlite3MPrintf(pParse->db, "%!S", pFrom);
5869 while( pSel->pPrior ){ pSel = pSel->pPrior; }
5870 sqlite3ColumnsFromExprList(pParse, pSel->pEList,&pTab->nCol,&pTab->aCol);
5871 pTab->iPKey = -1;
5872 pTab->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) );
5873 #ifndef SQLITE_ALLOW_ROWID_IN_VIEW
5874 /* The usual case - do not allow ROWID on a subquery */
5875 pTab->tabFlags |= TF_Ephemeral | TF_NoVisibleRowid;
5876 #else
5877 pTab->tabFlags |= TF_Ephemeral; /* Legacy compatibility mode */
5878 #endif
5879 return pParse->nErr ? SQLITE_ERROR : SQLITE_OK;
5884 ** Check the N SrcItem objects to the right of pBase. (N might be zero!)
5885 ** If any of those SrcItem objects have a USING clause containing zName
5886 ** then return true.
5888 ** If N is zero, or none of the N SrcItem objects to the right of pBase
5889 ** contains a USING clause, or if none of the USING clauses contain zName,
5890 ** then return false.
5892 static int inAnyUsingClause(
5893 const char *zName, /* Name we are looking for */
5894 SrcItem *pBase, /* The base SrcItem. Looking at pBase[1] and following */
5895 int N /* How many SrcItems to check */
5897 while( N>0 ){
5898 N--;
5899 pBase++;
5900 if( pBase->fg.isUsing==0 ) continue;
5901 if( NEVER(pBase->u3.pUsing==0) ) continue;
5902 if( sqlite3IdListIndex(pBase->u3.pUsing, zName)>=0 ) return 1;
5904 return 0;
5909 ** This routine is a Walker callback for "expanding" a SELECT statement.
5910 ** "Expanding" means to do the following:
5912 ** (1) Make sure VDBE cursor numbers have been assigned to every
5913 ** element of the FROM clause.
5915 ** (2) Fill in the pTabList->a[].pTab fields in the SrcList that
5916 ** defines FROM clause. When views appear in the FROM clause,
5917 ** fill pTabList->a[].pSelect with a copy of the SELECT statement
5918 ** that implements the view. A copy is made of the view's SELECT
5919 ** statement so that we can freely modify or delete that statement
5920 ** without worrying about messing up the persistent representation
5921 ** of the view.
5923 ** (3) Add terms to the WHERE clause to accommodate the NATURAL keyword
5924 ** on joins and the ON and USING clause of joins.
5926 ** (4) Scan the list of columns in the result set (pEList) looking
5927 ** for instances of the "*" operator or the TABLE.* operator.
5928 ** If found, expand each "*" to be every column in every table
5929 ** and TABLE.* to be every column in TABLE.
5932 static int selectExpander(Walker *pWalker, Select *p){
5933 Parse *pParse = pWalker->pParse;
5934 int i, j, k, rc;
5935 SrcList *pTabList;
5936 ExprList *pEList;
5937 SrcItem *pFrom;
5938 sqlite3 *db = pParse->db;
5939 Expr *pE, *pRight, *pExpr;
5940 u16 selFlags = p->selFlags;
5941 u32 elistFlags = 0;
5943 p->selFlags |= SF_Expanded;
5944 if( db->mallocFailed ){
5945 return WRC_Abort;
5947 assert( p->pSrc!=0 );
5948 if( (selFlags & SF_Expanded)!=0 ){
5949 return WRC_Prune;
5951 if( pWalker->eCode ){
5952 /* Renumber selId because it has been copied from a view */
5953 p->selId = ++pParse->nSelect;
5955 pTabList = p->pSrc;
5956 pEList = p->pEList;
5957 if( pParse->pWith && (p->selFlags & SF_View) ){
5958 if( p->pWith==0 ){
5959 p->pWith = (With*)sqlite3DbMallocZero(db, sizeof(With));
5960 if( p->pWith==0 ){
5961 return WRC_Abort;
5964 p->pWith->bView = 1;
5966 sqlite3WithPush(pParse, p->pWith, 0);
5968 /* Make sure cursor numbers have been assigned to all entries in
5969 ** the FROM clause of the SELECT statement.
5971 sqlite3SrcListAssignCursors(pParse, pTabList);
5973 /* Look up every table named in the FROM clause of the select. If
5974 ** an entry of the FROM clause is a subquery instead of a table or view,
5975 ** then create a transient table structure to describe the subquery.
5977 for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){
5978 Table *pTab;
5979 assert( pFrom->fg.isRecursive==0 || pFrom->pTab!=0 );
5980 if( pFrom->pTab ) continue;
5981 assert( pFrom->fg.isRecursive==0 );
5982 if( pFrom->zName==0 ){
5983 #ifndef SQLITE_OMIT_SUBQUERY
5984 Select *pSel = pFrom->pSelect;
5985 /* A sub-query in the FROM clause of a SELECT */
5986 assert( pSel!=0 );
5987 assert( pFrom->pTab==0 );
5988 if( sqlite3WalkSelect(pWalker, pSel) ) return WRC_Abort;
5989 if( sqlite3ExpandSubquery(pParse, pFrom) ) return WRC_Abort;
5990 #endif
5991 #ifndef SQLITE_OMIT_CTE
5992 }else if( (rc = resolveFromTermToCte(pParse, pWalker, pFrom))!=0 ){
5993 if( rc>1 ) return WRC_Abort;
5994 pTab = pFrom->pTab;
5995 assert( pTab!=0 );
5996 #endif
5997 }else{
5998 /* An ordinary table or view name in the FROM clause */
5999 assert( pFrom->pTab==0 );
6000 pFrom->pTab = pTab = sqlite3LocateTableItem(pParse, 0, pFrom);
6001 if( pTab==0 ) return WRC_Abort;
6002 if( pTab->nTabRef>=0xffff ){
6003 sqlite3ErrorMsg(pParse, "too many references to \"%s\": max 65535",
6004 pTab->zName);
6005 pFrom->pTab = 0;
6006 return WRC_Abort;
6008 pTab->nTabRef++;
6009 if( !IsVirtual(pTab) && cannotBeFunction(pParse, pFrom) ){
6010 return WRC_Abort;
6012 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE)
6013 if( !IsOrdinaryTable(pTab) ){
6014 i16 nCol;
6015 u8 eCodeOrig = pWalker->eCode;
6016 if( sqlite3ViewGetColumnNames(pParse, pTab) ) return WRC_Abort;
6017 assert( pFrom->pSelect==0 );
6018 if( IsView(pTab) ){
6019 if( (db->flags & SQLITE_EnableView)==0
6020 && pTab->pSchema!=db->aDb[1].pSchema
6022 sqlite3ErrorMsg(pParse, "access to view \"%s\" prohibited",
6023 pTab->zName);
6025 pFrom->pSelect = sqlite3SelectDup(db, pTab->u.view.pSelect, 0);
6027 #ifndef SQLITE_OMIT_VIRTUALTABLE
6028 else if( ALWAYS(IsVirtual(pTab))
6029 && pFrom->fg.fromDDL
6030 && ALWAYS(pTab->u.vtab.p!=0)
6031 && pTab->u.vtab.p->eVtabRisk > ((db->flags & SQLITE_TrustedSchema)!=0)
6033 sqlite3ErrorMsg(pParse, "unsafe use of virtual table \"%s\"",
6034 pTab->zName);
6036 assert( SQLITE_VTABRISK_Normal==1 && SQLITE_VTABRISK_High==2 );
6037 #endif
6038 nCol = pTab->nCol;
6039 pTab->nCol = -1;
6040 pWalker->eCode = 1; /* Turn on Select.selId renumbering */
6041 sqlite3WalkSelect(pWalker, pFrom->pSelect);
6042 pWalker->eCode = eCodeOrig;
6043 pTab->nCol = nCol;
6045 #endif
6048 /* Locate the index named by the INDEXED BY clause, if any. */
6049 if( pFrom->fg.isIndexedBy && sqlite3IndexedByLookup(pParse, pFrom) ){
6050 return WRC_Abort;
6054 /* Process NATURAL keywords, and ON and USING clauses of joins.
6056 assert( db->mallocFailed==0 || pParse->nErr!=0 );
6057 if( pParse->nErr || sqlite3ProcessJoin(pParse, p) ){
6058 return WRC_Abort;
6061 /* For every "*" that occurs in the column list, insert the names of
6062 ** all columns in all tables. And for every TABLE.* insert the names
6063 ** of all columns in TABLE. The parser inserted a special expression
6064 ** with the TK_ASTERISK operator for each "*" that it found in the column
6065 ** list. The following code just has to locate the TK_ASTERISK
6066 ** expressions and expand each one to the list of all columns in
6067 ** all tables.
6069 ** The first loop just checks to see if there are any "*" operators
6070 ** that need expanding.
6072 for(k=0; k<pEList->nExpr; k++){
6073 pE = pEList->a[k].pExpr;
6074 if( pE->op==TK_ASTERISK ) break;
6075 assert( pE->op!=TK_DOT || pE->pRight!=0 );
6076 assert( pE->op!=TK_DOT || (pE->pLeft!=0 && pE->pLeft->op==TK_ID) );
6077 if( pE->op==TK_DOT && pE->pRight->op==TK_ASTERISK ) break;
6078 elistFlags |= pE->flags;
6080 if( k<pEList->nExpr ){
6082 ** If we get here it means the result set contains one or more "*"
6083 ** operators that need to be expanded. Loop through each expression
6084 ** in the result set and expand them one by one.
6086 struct ExprList_item *a = pEList->a;
6087 ExprList *pNew = 0;
6088 int flags = pParse->db->flags;
6089 int longNames = (flags & SQLITE_FullColNames)!=0
6090 && (flags & SQLITE_ShortColNames)==0;
6092 for(k=0; k<pEList->nExpr; k++){
6093 pE = a[k].pExpr;
6094 elistFlags |= pE->flags;
6095 pRight = pE->pRight;
6096 assert( pE->op!=TK_DOT || pRight!=0 );
6097 if( pE->op!=TK_ASTERISK
6098 && (pE->op!=TK_DOT || pRight->op!=TK_ASTERISK)
6100 /* This particular expression does not need to be expanded.
6102 pNew = sqlite3ExprListAppend(pParse, pNew, a[k].pExpr);
6103 if( pNew ){
6104 pNew->a[pNew->nExpr-1].zEName = a[k].zEName;
6105 pNew->a[pNew->nExpr-1].fg.eEName = a[k].fg.eEName;
6106 a[k].zEName = 0;
6108 a[k].pExpr = 0;
6109 }else{
6110 /* This expression is a "*" or a "TABLE.*" and needs to be
6111 ** expanded. */
6112 int tableSeen = 0; /* Set to 1 when TABLE matches */
6113 char *zTName = 0; /* text of name of TABLE */
6114 int iErrOfst;
6115 if( pE->op==TK_DOT ){
6116 assert( (selFlags & SF_NestedFrom)==0 );
6117 assert( pE->pLeft!=0 );
6118 assert( !ExprHasProperty(pE->pLeft, EP_IntValue) );
6119 zTName = pE->pLeft->u.zToken;
6120 assert( ExprUseWOfst(pE->pLeft) );
6121 iErrOfst = pE->pRight->w.iOfst;
6122 }else{
6123 assert( ExprUseWOfst(pE) );
6124 iErrOfst = pE->w.iOfst;
6126 for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){
6127 int nAdd; /* Number of cols including rowid */
6128 Table *pTab = pFrom->pTab; /* Table for this data source */
6129 ExprList *pNestedFrom; /* Result-set of a nested FROM clause */
6130 char *zTabName; /* AS name for this data source */
6131 const char *zSchemaName = 0; /* Schema name for this data source */
6132 int iDb; /* Schema index for this data src */
6133 IdList *pUsing; /* USING clause for pFrom[1] */
6135 if( (zTabName = pFrom->zAlias)==0 ){
6136 zTabName = pTab->zName;
6138 if( db->mallocFailed ) break;
6139 assert( (int)pFrom->fg.isNestedFrom == IsNestedFrom(pFrom->pSelect) );
6140 if( pFrom->fg.isNestedFrom ){
6141 assert( pFrom->pSelect!=0 );
6142 pNestedFrom = pFrom->pSelect->pEList;
6143 assert( pNestedFrom!=0 );
6144 assert( pNestedFrom->nExpr==pTab->nCol );
6145 assert( VisibleRowid(pTab)==0 );
6146 }else{
6147 if( zTName && sqlite3StrICmp(zTName, zTabName)!=0 ){
6148 continue;
6150 pNestedFrom = 0;
6151 iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
6152 zSchemaName = iDb>=0 ? db->aDb[iDb].zDbSName : "*";
6154 if( i+1<pTabList->nSrc
6155 && pFrom[1].fg.isUsing
6156 && (selFlags & SF_NestedFrom)!=0
6158 int ii;
6159 pUsing = pFrom[1].u3.pUsing;
6160 for(ii=0; ii<pUsing->nId; ii++){
6161 const char *zUName = pUsing->a[ii].zName;
6162 pRight = sqlite3Expr(db, TK_ID, zUName);
6163 sqlite3ExprSetErrorOffset(pRight, iErrOfst);
6164 pNew = sqlite3ExprListAppend(pParse, pNew, pRight);
6165 if( pNew ){
6166 struct ExprList_item *pX = &pNew->a[pNew->nExpr-1];
6167 assert( pX->zEName==0 );
6168 pX->zEName = sqlite3MPrintf(db,"..%s", zUName);
6169 pX->fg.eEName = ENAME_TAB;
6170 pX->fg.bUsingTerm = 1;
6173 }else{
6174 pUsing = 0;
6177 nAdd = pTab->nCol + (VisibleRowid(pTab) && (selFlags&SF_NestedFrom));
6178 for(j=0; j<nAdd; j++){
6179 const char *zName;
6180 struct ExprList_item *pX; /* Newly added ExprList term */
6182 if( j==pTab->nCol ){
6183 zName = sqlite3RowidAlias(pTab);
6184 if( zName==0 ) continue;
6185 }else{
6186 zName = pTab->aCol[j].zCnName;
6188 /* If pTab is actually an SF_NestedFrom sub-select, do not
6189 ** expand any ENAME_ROWID columns. */
6190 if( pNestedFrom && pNestedFrom->a[j].fg.eEName==ENAME_ROWID ){
6191 continue;
6194 if( zTName
6195 && pNestedFrom
6196 && sqlite3MatchEName(&pNestedFrom->a[j], 0, zTName, 0, 0)==0
6198 continue;
6201 /* If a column is marked as 'hidden', omit it from the expanded
6202 ** result-set list unless the SELECT has the SF_IncludeHidden
6203 ** bit set.
6205 if( (p->selFlags & SF_IncludeHidden)==0
6206 && IsHiddenColumn(&pTab->aCol[j])
6208 continue;
6210 if( (pTab->aCol[j].colFlags & COLFLAG_NOEXPAND)!=0
6211 && zTName==0
6212 && (selFlags & (SF_NestedFrom))==0
6214 continue;
6217 assert( zName );
6218 tableSeen = 1;
6220 if( i>0 && zTName==0 && (selFlags & SF_NestedFrom)==0 ){
6221 if( pFrom->fg.isUsing
6222 && sqlite3IdListIndex(pFrom->u3.pUsing, zName)>=0
6224 /* In a join with a USING clause, omit columns in the
6225 ** using clause from the table on the right. */
6226 continue;
6229 pRight = sqlite3Expr(db, TK_ID, zName);
6230 if( (pTabList->nSrc>1
6231 && ( (pFrom->fg.jointype & JT_LTORJ)==0
6232 || (selFlags & SF_NestedFrom)!=0
6233 || !inAnyUsingClause(zName,pFrom,pTabList->nSrc-i-1)
6236 || IN_RENAME_OBJECT
6238 Expr *pLeft;
6239 pLeft = sqlite3Expr(db, TK_ID, zTabName);
6240 pExpr = sqlite3PExpr(pParse, TK_DOT, pLeft, pRight);
6241 if( IN_RENAME_OBJECT && pE->pLeft ){
6242 sqlite3RenameTokenRemap(pParse, pLeft, pE->pLeft);
6244 if( zSchemaName ){
6245 pLeft = sqlite3Expr(db, TK_ID, zSchemaName);
6246 pExpr = sqlite3PExpr(pParse, TK_DOT, pLeft, pExpr);
6248 }else{
6249 pExpr = pRight;
6251 sqlite3ExprSetErrorOffset(pExpr, iErrOfst);
6252 pNew = sqlite3ExprListAppend(pParse, pNew, pExpr);
6253 if( pNew==0 ){
6254 break; /* OOM */
6256 pX = &pNew->a[pNew->nExpr-1];
6257 assert( pX->zEName==0 );
6258 if( (selFlags & SF_NestedFrom)!=0 && !IN_RENAME_OBJECT ){
6259 if( pNestedFrom ){
6260 pX->zEName = sqlite3DbStrDup(db, pNestedFrom->a[j].zEName);
6261 testcase( pX->zEName==0 );
6262 }else{
6263 pX->zEName = sqlite3MPrintf(db, "%s.%s.%s",
6264 zSchemaName, zTabName, zName);
6265 testcase( pX->zEName==0 );
6267 pX->fg.eEName = (j==pTab->nCol ? ENAME_ROWID : ENAME_TAB);
6268 if( (pFrom->fg.isUsing
6269 && sqlite3IdListIndex(pFrom->u3.pUsing, zName)>=0)
6270 || (pUsing && sqlite3IdListIndex(pUsing, zName)>=0)
6271 || (j<pTab->nCol && (pTab->aCol[j].colFlags & COLFLAG_NOEXPAND))
6273 pX->fg.bNoExpand = 1;
6275 }else if( longNames ){
6276 pX->zEName = sqlite3MPrintf(db, "%s.%s", zTabName, zName);
6277 pX->fg.eEName = ENAME_NAME;
6278 }else{
6279 pX->zEName = sqlite3DbStrDup(db, zName);
6280 pX->fg.eEName = ENAME_NAME;
6284 if( !tableSeen ){
6285 if( zTName ){
6286 sqlite3ErrorMsg(pParse, "no such table: %s", zTName);
6287 }else{
6288 sqlite3ErrorMsg(pParse, "no tables specified");
6293 sqlite3ExprListDelete(db, pEList);
6294 p->pEList = pNew;
6296 if( p->pEList ){
6297 if( p->pEList->nExpr>db->aLimit[SQLITE_LIMIT_COLUMN] ){
6298 sqlite3ErrorMsg(pParse, "too many columns in result set");
6299 return WRC_Abort;
6301 if( (elistFlags & (EP_HasFunc|EP_Subquery))!=0 ){
6302 p->selFlags |= SF_ComplexResult;
6305 #if TREETRACE_ENABLED
6306 if( sqlite3TreeTrace & 0x8 ){
6307 TREETRACE(0x8,pParse,p,("After result-set wildcard expansion:\n"));
6308 sqlite3TreeViewSelect(0, p, 0);
6310 #endif
6311 return WRC_Continue;
6314 #if SQLITE_DEBUG
6316 ** Always assert. This xSelectCallback2 implementation proves that the
6317 ** xSelectCallback2 is never invoked.
6319 void sqlite3SelectWalkAssert2(Walker *NotUsed, Select *NotUsed2){
6320 UNUSED_PARAMETER2(NotUsed, NotUsed2);
6321 assert( 0 );
6323 #endif
6325 ** This routine "expands" a SELECT statement and all of its subqueries.
6326 ** For additional information on what it means to "expand" a SELECT
6327 ** statement, see the comment on the selectExpand worker callback above.
6329 ** Expanding a SELECT statement is the first step in processing a
6330 ** SELECT statement. The SELECT statement must be expanded before
6331 ** name resolution is performed.
6333 ** If anything goes wrong, an error message is written into pParse.
6334 ** The calling function can detect the problem by looking at pParse->nErr
6335 ** and/or pParse->db->mallocFailed.
6337 static void sqlite3SelectExpand(Parse *pParse, Select *pSelect){
6338 Walker w;
6339 w.xExprCallback = sqlite3ExprWalkNoop;
6340 w.pParse = pParse;
6341 if( OK_IF_ALWAYS_TRUE(pParse->hasCompound) ){
6342 w.xSelectCallback = convertCompoundSelectToSubquery;
6343 w.xSelectCallback2 = 0;
6344 sqlite3WalkSelect(&w, pSelect);
6346 w.xSelectCallback = selectExpander;
6347 w.xSelectCallback2 = sqlite3SelectPopWith;
6348 w.eCode = 0;
6349 sqlite3WalkSelect(&w, pSelect);
6353 #ifndef SQLITE_OMIT_SUBQUERY
6355 ** This is a Walker.xSelectCallback callback for the sqlite3SelectTypeInfo()
6356 ** interface.
6358 ** For each FROM-clause subquery, add Column.zType, Column.zColl, and
6359 ** Column.affinity information to the Table structure that represents
6360 ** the result set of that subquery.
6362 ** The Table structure that represents the result set was constructed
6363 ** by selectExpander() but the type and collation and affinity information
6364 ** was omitted at that point because identifiers had not yet been resolved.
6365 ** This routine is called after identifier resolution.
6367 static void selectAddSubqueryTypeInfo(Walker *pWalker, Select *p){
6368 Parse *pParse;
6369 int i;
6370 SrcList *pTabList;
6371 SrcItem *pFrom;
6373 if( p->selFlags & SF_HasTypeInfo ) return;
6374 p->selFlags |= SF_HasTypeInfo;
6375 pParse = pWalker->pParse;
6376 testcase( (p->selFlags & SF_Resolved)==0 );
6377 assert( (p->selFlags & SF_Resolved) || IN_RENAME_OBJECT );
6378 pTabList = p->pSrc;
6379 for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){
6380 Table *pTab = pFrom->pTab;
6381 assert( pTab!=0 );
6382 if( (pTab->tabFlags & TF_Ephemeral)!=0 ){
6383 /* A sub-query in the FROM clause of a SELECT */
6384 Select *pSel = pFrom->pSelect;
6385 if( pSel ){
6386 sqlite3SubqueryColumnTypes(pParse, pTab, pSel, SQLITE_AFF_NONE);
6391 #endif
6395 ** This routine adds datatype and collating sequence information to
6396 ** the Table structures of all FROM-clause subqueries in a
6397 ** SELECT statement.
6399 ** Use this routine after name resolution.
6401 static void sqlite3SelectAddTypeInfo(Parse *pParse, Select *pSelect){
6402 #ifndef SQLITE_OMIT_SUBQUERY
6403 Walker w;
6404 w.xSelectCallback = sqlite3SelectWalkNoop;
6405 w.xSelectCallback2 = selectAddSubqueryTypeInfo;
6406 w.xExprCallback = sqlite3ExprWalkNoop;
6407 w.pParse = pParse;
6408 sqlite3WalkSelect(&w, pSelect);
6409 #endif
6414 ** This routine sets up a SELECT statement for processing. The
6415 ** following is accomplished:
6417 ** * VDBE Cursor numbers are assigned to all FROM-clause terms.
6418 ** * Ephemeral Table objects are created for all FROM-clause subqueries.
6419 ** * ON and USING clauses are shifted into WHERE statements
6420 ** * Wildcards "*" and "TABLE.*" in result sets are expanded.
6421 ** * Identifiers in expression are matched to tables.
6423 ** This routine acts recursively on all subqueries within the SELECT.
6425 void sqlite3SelectPrep(
6426 Parse *pParse, /* The parser context */
6427 Select *p, /* The SELECT statement being coded. */
6428 NameContext *pOuterNC /* Name context for container */
6430 assert( p!=0 || pParse->db->mallocFailed );
6431 assert( pParse->db->pParse==pParse );
6432 if( pParse->db->mallocFailed ) return;
6433 if( p->selFlags & SF_HasTypeInfo ) return;
6434 sqlite3SelectExpand(pParse, p);
6435 if( pParse->nErr ) return;
6436 sqlite3ResolveSelectNames(pParse, p, pOuterNC);
6437 if( pParse->nErr ) return;
6438 sqlite3SelectAddTypeInfo(pParse, p);
6441 #if TREETRACE_ENABLED
6443 ** Display all information about an AggInfo object
6445 static void printAggInfo(AggInfo *pAggInfo){
6446 int ii;
6447 sqlite3DebugPrintf("AggInfo %d/%p:\n",
6448 pAggInfo->selId, pAggInfo);
6449 for(ii=0; ii<pAggInfo->nColumn; ii++){
6450 struct AggInfo_col *pCol = &pAggInfo->aCol[ii];
6451 sqlite3DebugPrintf(
6452 "agg-column[%d] pTab=%s iTable=%d iColumn=%d iMem=%d"
6453 " iSorterColumn=%d %s\n",
6454 ii, pCol->pTab ? pCol->pTab->zName : "NULL",
6455 pCol->iTable, pCol->iColumn, pAggInfo->iFirstReg+ii,
6456 pCol->iSorterColumn,
6457 ii>=pAggInfo->nAccumulator ? "" : " Accumulator");
6458 sqlite3TreeViewExpr(0, pAggInfo->aCol[ii].pCExpr, 0);
6460 for(ii=0; ii<pAggInfo->nFunc; ii++){
6461 sqlite3DebugPrintf("agg-func[%d]: iMem=%d\n",
6462 ii, pAggInfo->iFirstReg+pAggInfo->nColumn+ii);
6463 sqlite3TreeViewExpr(0, pAggInfo->aFunc[ii].pFExpr, 0);
6466 #endif /* TREETRACE_ENABLED */
6469 ** Analyze the arguments to aggregate functions. Create new pAggInfo->aCol[]
6470 ** entries for columns that are arguments to aggregate functions but which
6471 ** are not otherwise used.
6473 ** The aCol[] entries in AggInfo prior to nAccumulator are columns that
6474 ** are referenced outside of aggregate functions. These might be columns
6475 ** that are part of the GROUP by clause, for example. Other database engines
6476 ** would throw an error if there is a column reference that is not in the
6477 ** GROUP BY clause and that is not part of an aggregate function argument.
6478 ** But SQLite allows this.
6480 ** The aCol[] entries beginning with the aCol[nAccumulator] and following
6481 ** are column references that are used exclusively as arguments to
6482 ** aggregate functions. This routine is responsible for computing
6483 ** (or recomputing) those aCol[] entries.
6485 static void analyzeAggFuncArgs(
6486 AggInfo *pAggInfo,
6487 NameContext *pNC
6489 int i;
6490 assert( pAggInfo!=0 );
6491 assert( pAggInfo->iFirstReg==0 );
6492 pNC->ncFlags |= NC_InAggFunc;
6493 for(i=0; i<pAggInfo->nFunc; i++){
6494 Expr *pExpr = pAggInfo->aFunc[i].pFExpr;
6495 assert( pExpr->op==TK_FUNCTION || pExpr->op==TK_AGG_FUNCTION );
6496 assert( ExprUseXList(pExpr) );
6497 sqlite3ExprAnalyzeAggList(pNC, pExpr->x.pList);
6498 if( pExpr->pLeft ){
6499 assert( pExpr->pLeft->op==TK_ORDER );
6500 assert( ExprUseXList(pExpr->pLeft) );
6501 sqlite3ExprAnalyzeAggList(pNC, pExpr->pLeft->x.pList);
6503 #ifndef SQLITE_OMIT_WINDOWFUNC
6504 assert( !IsWindowFunc(pExpr) );
6505 if( ExprHasProperty(pExpr, EP_WinFunc) ){
6506 sqlite3ExprAnalyzeAggregates(pNC, pExpr->y.pWin->pFilter);
6508 #endif
6510 pNC->ncFlags &= ~NC_InAggFunc;
6514 ** An index on expressions is being used in the inner loop of an
6515 ** aggregate query with a GROUP BY clause. This routine attempts
6516 ** to adjust the AggInfo object to take advantage of index and to
6517 ** perhaps use the index as a covering index.
6520 static void optimizeAggregateUseOfIndexedExpr(
6521 Parse *pParse, /* Parsing context */
6522 Select *pSelect, /* The SELECT statement being processed */
6523 AggInfo *pAggInfo, /* The aggregate info */
6524 NameContext *pNC /* Name context used to resolve agg-func args */
6526 assert( pAggInfo->iFirstReg==0 );
6527 assert( pSelect!=0 );
6528 assert( pSelect->pGroupBy!=0 );
6529 pAggInfo->nColumn = pAggInfo->nAccumulator;
6530 if( ALWAYS(pAggInfo->nSortingColumn>0) ){
6531 int mx = pSelect->pGroupBy->nExpr - 1;
6532 int j, k;
6533 for(j=0; j<pAggInfo->nColumn; j++){
6534 k = pAggInfo->aCol[j].iSorterColumn;
6535 if( k>mx ) mx = k;
6537 pAggInfo->nSortingColumn = mx+1;
6539 analyzeAggFuncArgs(pAggInfo, pNC);
6540 #if TREETRACE_ENABLED
6541 if( sqlite3TreeTrace & 0x20 ){
6542 IndexedExpr *pIEpr;
6543 TREETRACE(0x20, pParse, pSelect,
6544 ("AggInfo (possibly) adjusted for Indexed Exprs\n"));
6545 sqlite3TreeViewSelect(0, pSelect, 0);
6546 for(pIEpr=pParse->pIdxEpr; pIEpr; pIEpr=pIEpr->pIENext){
6547 printf("data-cursor=%d index={%d,%d}\n",
6548 pIEpr->iDataCur, pIEpr->iIdxCur, pIEpr->iIdxCol);
6549 sqlite3TreeViewExpr(0, pIEpr->pExpr, 0);
6551 printAggInfo(pAggInfo);
6553 #else
6554 UNUSED_PARAMETER(pSelect);
6555 UNUSED_PARAMETER(pParse);
6556 #endif
6560 ** Walker callback for aggregateConvertIndexedExprRefToColumn().
6562 static int aggregateIdxEprRefToColCallback(Walker *pWalker, Expr *pExpr){
6563 AggInfo *pAggInfo;
6564 struct AggInfo_col *pCol;
6565 UNUSED_PARAMETER(pWalker);
6566 if( pExpr->pAggInfo==0 ) return WRC_Continue;
6567 if( pExpr->op==TK_AGG_COLUMN ) return WRC_Continue;
6568 if( pExpr->op==TK_AGG_FUNCTION ) return WRC_Continue;
6569 if( pExpr->op==TK_IF_NULL_ROW ) return WRC_Continue;
6570 pAggInfo = pExpr->pAggInfo;
6571 if( NEVER(pExpr->iAgg>=pAggInfo->nColumn) ) return WRC_Continue;
6572 assert( pExpr->iAgg>=0 );
6573 pCol = &pAggInfo->aCol[pExpr->iAgg];
6574 pExpr->op = TK_AGG_COLUMN;
6575 pExpr->iTable = pCol->iTable;
6576 pExpr->iColumn = pCol->iColumn;
6577 ExprClearProperty(pExpr, EP_Skip|EP_Collate|EP_Unlikely);
6578 return WRC_Prune;
6582 ** Convert every pAggInfo->aFunc[].pExpr such that any node within
6583 ** those expressions that has pAppInfo set is changed into a TK_AGG_COLUMN
6584 ** opcode.
6586 static void aggregateConvertIndexedExprRefToColumn(AggInfo *pAggInfo){
6587 int i;
6588 Walker w;
6589 memset(&w, 0, sizeof(w));
6590 w.xExprCallback = aggregateIdxEprRefToColCallback;
6591 for(i=0; i<pAggInfo->nFunc; i++){
6592 sqlite3WalkExpr(&w, pAggInfo->aFunc[i].pFExpr);
6598 ** Allocate a block of registers so that there is one register for each
6599 ** pAggInfo->aCol[] and pAggInfo->aFunc[] entry in pAggInfo. The first
6600 ** register in this block is stored in pAggInfo->iFirstReg.
6602 ** This routine may only be called once for each AggInfo object. Prior
6603 ** to calling this routine:
6605 ** * The aCol[] and aFunc[] arrays may be modified
6606 ** * The AggInfoColumnReg() and AggInfoFuncReg() macros may not be used
6608 ** After calling this routine:
6610 ** * The aCol[] and aFunc[] arrays are fixed
6611 ** * The AggInfoColumnReg() and AggInfoFuncReg() macros may be used
6614 static void assignAggregateRegisters(Parse *pParse, AggInfo *pAggInfo){
6615 assert( pAggInfo!=0 );
6616 assert( pAggInfo->iFirstReg==0 );
6617 pAggInfo->iFirstReg = pParse->nMem + 1;
6618 pParse->nMem += pAggInfo->nColumn + pAggInfo->nFunc;
6622 ** Reset the aggregate accumulator.
6624 ** The aggregate accumulator is a set of memory cells that hold
6625 ** intermediate results while calculating an aggregate. This
6626 ** routine generates code that stores NULLs in all of those memory
6627 ** cells.
6629 static void resetAccumulator(Parse *pParse, AggInfo *pAggInfo){
6630 Vdbe *v = pParse->pVdbe;
6631 int i;
6632 struct AggInfo_func *pFunc;
6633 int nReg = pAggInfo->nFunc + pAggInfo->nColumn;
6634 assert( pAggInfo->iFirstReg>0 );
6635 assert( pParse->db->pParse==pParse );
6636 assert( pParse->db->mallocFailed==0 || pParse->nErr!=0 );
6637 if( nReg==0 ) return;
6638 if( pParse->nErr ) return;
6639 sqlite3VdbeAddOp3(v, OP_Null, 0, pAggInfo->iFirstReg,
6640 pAggInfo->iFirstReg+nReg-1);
6641 for(pFunc=pAggInfo->aFunc, i=0; i<pAggInfo->nFunc; i++, pFunc++){
6642 if( pFunc->iDistinct>=0 ){
6643 Expr *pE = pFunc->pFExpr;
6644 assert( ExprUseXList(pE) );
6645 if( pE->x.pList==0 || pE->x.pList->nExpr!=1 ){
6646 sqlite3ErrorMsg(pParse, "DISTINCT aggregates must have exactly one "
6647 "argument");
6648 pFunc->iDistinct = -1;
6649 }else{
6650 KeyInfo *pKeyInfo = sqlite3KeyInfoFromExprList(pParse, pE->x.pList,0,0);
6651 pFunc->iDistAddr = sqlite3VdbeAddOp4(v, OP_OpenEphemeral,
6652 pFunc->iDistinct, 0, 0, (char*)pKeyInfo, P4_KEYINFO);
6653 ExplainQueryPlan((pParse, 0, "USE TEMP B-TREE FOR %s(DISTINCT)",
6654 pFunc->pFunc->zName));
6657 if( pFunc->iOBTab>=0 ){
6658 ExprList *pOBList;
6659 KeyInfo *pKeyInfo;
6660 int nExtra = 0;
6661 assert( pFunc->pFExpr->pLeft!=0 );
6662 assert( pFunc->pFExpr->pLeft->op==TK_ORDER );
6663 assert( ExprUseXList(pFunc->pFExpr->pLeft) );
6664 assert( pFunc->pFunc!=0 );
6665 pOBList = pFunc->pFExpr->pLeft->x.pList;
6666 if( !pFunc->bOBUnique ){
6667 nExtra++; /* One extra column for the OP_Sequence */
6669 if( pFunc->bOBPayload ){
6670 /* extra columns for the function arguments */
6671 assert( ExprUseXList(pFunc->pFExpr) );
6672 nExtra += pFunc->pFExpr->x.pList->nExpr;
6674 if( pFunc->bUseSubtype ){
6675 nExtra += pFunc->pFExpr->x.pList->nExpr;
6677 pKeyInfo = sqlite3KeyInfoFromExprList(pParse, pOBList, 0, nExtra);
6678 if( !pFunc->bOBUnique && pParse->nErr==0 ){
6679 pKeyInfo->nKeyField++;
6681 sqlite3VdbeAddOp4(v, OP_OpenEphemeral,
6682 pFunc->iOBTab, pOBList->nExpr+nExtra, 0,
6683 (char*)pKeyInfo, P4_KEYINFO);
6684 ExplainQueryPlan((pParse, 0, "USE TEMP B-TREE FOR %s(ORDER BY)",
6685 pFunc->pFunc->zName));
6691 ** Invoke the OP_AggFinalize opcode for every aggregate function
6692 ** in the AggInfo structure.
6694 static void finalizeAggFunctions(Parse *pParse, AggInfo *pAggInfo){
6695 Vdbe *v = pParse->pVdbe;
6696 int i;
6697 struct AggInfo_func *pF;
6698 for(i=0, pF=pAggInfo->aFunc; i<pAggInfo->nFunc; i++, pF++){
6699 ExprList *pList;
6700 assert( ExprUseXList(pF->pFExpr) );
6701 pList = pF->pFExpr->x.pList;
6702 if( pF->iOBTab>=0 ){
6703 /* For an ORDER BY aggregate, calls to OP_AggStep were deferred. Inputs
6704 ** were stored in emphermal table pF->iOBTab. Here, we extract those
6705 ** inputs (in ORDER BY order) and make all calls to OP_AggStep
6706 ** before doing the OP_AggFinal call. */
6707 int iTop; /* Start of loop for extracting columns */
6708 int nArg; /* Number of columns to extract */
6709 int nKey; /* Key columns to be skipped */
6710 int regAgg; /* Extract into this array */
6711 int j; /* Loop counter */
6713 assert( pF->pFunc!=0 );
6714 nArg = pList->nExpr;
6715 regAgg = sqlite3GetTempRange(pParse, nArg);
6717 if( pF->bOBPayload==0 ){
6718 nKey = 0;
6719 }else{
6720 assert( pF->pFExpr->pLeft!=0 );
6721 assert( ExprUseXList(pF->pFExpr->pLeft) );
6722 assert( pF->pFExpr->pLeft->x.pList!=0 );
6723 nKey = pF->pFExpr->pLeft->x.pList->nExpr;
6724 if( ALWAYS(!pF->bOBUnique) ) nKey++;
6726 iTop = sqlite3VdbeAddOp1(v, OP_Rewind, pF->iOBTab); VdbeCoverage(v);
6727 for(j=nArg-1; j>=0; j--){
6728 sqlite3VdbeAddOp3(v, OP_Column, pF->iOBTab, nKey+j, regAgg+j);
6730 if( pF->bUseSubtype ){
6731 int regSubtype = sqlite3GetTempReg(pParse);
6732 int iBaseCol = nKey + nArg + (pF->bOBPayload==0 && pF->bOBUnique==0);
6733 for(j=nArg-1; j>=0; j--){
6734 sqlite3VdbeAddOp3(v, OP_Column, pF->iOBTab, iBaseCol+j, regSubtype);
6735 sqlite3VdbeAddOp2(v, OP_SetSubtype, regSubtype, regAgg+j);
6737 sqlite3ReleaseTempReg(pParse, regSubtype);
6739 sqlite3VdbeAddOp3(v, OP_AggStep, 0, regAgg, AggInfoFuncReg(pAggInfo,i));
6740 sqlite3VdbeAppendP4(v, pF->pFunc, P4_FUNCDEF);
6741 sqlite3VdbeChangeP5(v, (u8)nArg);
6742 sqlite3VdbeAddOp2(v, OP_Next, pF->iOBTab, iTop+1); VdbeCoverage(v);
6743 sqlite3VdbeJumpHere(v, iTop);
6744 sqlite3ReleaseTempRange(pParse, regAgg, nArg);
6746 sqlite3VdbeAddOp2(v, OP_AggFinal, AggInfoFuncReg(pAggInfo,i),
6747 pList ? pList->nExpr : 0);
6748 sqlite3VdbeAppendP4(v, pF->pFunc, P4_FUNCDEF);
6753 ** Generate code that will update the accumulator memory cells for an
6754 ** aggregate based on the current cursor position.
6756 ** If regAcc is non-zero and there are no min() or max() aggregates
6757 ** in pAggInfo, then only populate the pAggInfo->nAccumulator accumulator
6758 ** registers if register regAcc contains 0. The caller will take care
6759 ** of setting and clearing regAcc.
6761 ** For an ORDER BY aggregate, the actual accumulator memory cell update
6762 ** is deferred until after all input rows have been received, so that they
6763 ** can be run in the requested order. In that case, instead of invoking
6764 ** OP_AggStep to update the accumulator, just add the arguments that would
6765 ** have been passed into OP_AggStep into the sorting ephemeral table
6766 ** (along with the appropriate sort key).
6768 static void updateAccumulator(
6769 Parse *pParse,
6770 int regAcc,
6771 AggInfo *pAggInfo,
6772 int eDistinctType
6774 Vdbe *v = pParse->pVdbe;
6775 int i;
6776 int regHit = 0;
6777 int addrHitTest = 0;
6778 struct AggInfo_func *pF;
6779 struct AggInfo_col *pC;
6781 assert( pAggInfo->iFirstReg>0 );
6782 if( pParse->nErr ) return;
6783 pAggInfo->directMode = 1;
6784 for(i=0, pF=pAggInfo->aFunc; i<pAggInfo->nFunc; i++, pF++){
6785 int nArg;
6786 int addrNext = 0;
6787 int regAgg;
6788 int regAggSz = 0;
6789 int regDistinct = 0;
6790 ExprList *pList;
6791 assert( ExprUseXList(pF->pFExpr) );
6792 assert( !IsWindowFunc(pF->pFExpr) );
6793 assert( pF->pFunc!=0 );
6794 pList = pF->pFExpr->x.pList;
6795 if( ExprHasProperty(pF->pFExpr, EP_WinFunc) ){
6796 Expr *pFilter = pF->pFExpr->y.pWin->pFilter;
6797 if( pAggInfo->nAccumulator
6798 && (pF->pFunc->funcFlags & SQLITE_FUNC_NEEDCOLL)
6799 && regAcc
6801 /* If regAcc==0, there there exists some min() or max() function
6802 ** without a FILTER clause that will ensure the magnet registers
6803 ** are populated. */
6804 if( regHit==0 ) regHit = ++pParse->nMem;
6805 /* If this is the first row of the group (regAcc contains 0), clear the
6806 ** "magnet" register regHit so that the accumulator registers
6807 ** are populated if the FILTER clause jumps over the the
6808 ** invocation of min() or max() altogether. Or, if this is not
6809 ** the first row (regAcc contains 1), set the magnet register so that
6810 ** the accumulators are not populated unless the min()/max() is invoked
6811 ** and indicates that they should be. */
6812 sqlite3VdbeAddOp2(v, OP_Copy, regAcc, regHit);
6814 addrNext = sqlite3VdbeMakeLabel(pParse);
6815 sqlite3ExprIfFalse(pParse, pFilter, addrNext, SQLITE_JUMPIFNULL);
6817 if( pF->iOBTab>=0 ){
6818 /* Instead of invoking AggStep, we must push the arguments that would
6819 ** have been passed to AggStep onto the sorting table. */
6820 int jj; /* Registered used so far in building the record */
6821 ExprList *pOBList; /* The ORDER BY clause */
6822 assert( pList!=0 );
6823 nArg = pList->nExpr;
6824 assert( nArg>0 );
6825 assert( pF->pFExpr->pLeft!=0 );
6826 assert( pF->pFExpr->pLeft->op==TK_ORDER );
6827 assert( ExprUseXList(pF->pFExpr->pLeft) );
6828 pOBList = pF->pFExpr->pLeft->x.pList;
6829 assert( pOBList!=0 );
6830 assert( pOBList->nExpr>0 );
6831 regAggSz = pOBList->nExpr;
6832 if( !pF->bOBUnique ){
6833 regAggSz++; /* One register for OP_Sequence */
6835 if( pF->bOBPayload ){
6836 regAggSz += nArg;
6838 if( pF->bUseSubtype ){
6839 regAggSz += nArg;
6841 regAggSz++; /* One extra register to hold result of MakeRecord */
6842 regAgg = sqlite3GetTempRange(pParse, regAggSz);
6843 regDistinct = regAgg;
6844 sqlite3ExprCodeExprList(pParse, pOBList, regAgg, 0, SQLITE_ECEL_DUP);
6845 jj = pOBList->nExpr;
6846 if( !pF->bOBUnique ){
6847 sqlite3VdbeAddOp2(v, OP_Sequence, pF->iOBTab, regAgg+jj);
6848 jj++;
6850 if( pF->bOBPayload ){
6851 regDistinct = regAgg+jj;
6852 sqlite3ExprCodeExprList(pParse, pList, regDistinct, 0, SQLITE_ECEL_DUP);
6853 jj += nArg;
6855 if( pF->bUseSubtype ){
6856 int kk;
6857 int regBase = pF->bOBPayload ? regDistinct : regAgg;
6858 for(kk=0; kk<nArg; kk++, jj++){
6859 sqlite3VdbeAddOp2(v, OP_GetSubtype, regBase+kk, regAgg+jj);
6862 }else if( pList ){
6863 nArg = pList->nExpr;
6864 regAgg = sqlite3GetTempRange(pParse, nArg);
6865 regDistinct = regAgg;
6866 sqlite3ExprCodeExprList(pParse, pList, regAgg, 0, SQLITE_ECEL_DUP);
6867 }else{
6868 nArg = 0;
6869 regAgg = 0;
6871 if( pF->iDistinct>=0 && pList ){
6872 if( addrNext==0 ){
6873 addrNext = sqlite3VdbeMakeLabel(pParse);
6875 pF->iDistinct = codeDistinct(pParse, eDistinctType,
6876 pF->iDistinct, addrNext, pList, regDistinct);
6878 if( pF->iOBTab>=0 ){
6879 /* Insert a new record into the ORDER BY table */
6880 sqlite3VdbeAddOp3(v, OP_MakeRecord, regAgg, regAggSz-1,
6881 regAgg+regAggSz-1);
6882 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, pF->iOBTab, regAgg+regAggSz-1,
6883 regAgg, regAggSz-1);
6884 sqlite3ReleaseTempRange(pParse, regAgg, regAggSz);
6885 }else{
6886 /* Invoke the AggStep function */
6887 if( pF->pFunc->funcFlags & SQLITE_FUNC_NEEDCOLL ){
6888 CollSeq *pColl = 0;
6889 struct ExprList_item *pItem;
6890 int j;
6891 assert( pList!=0 ); /* pList!=0 if pF->pFunc has NEEDCOLL */
6892 for(j=0, pItem=pList->a; !pColl && j<nArg; j++, pItem++){
6893 pColl = sqlite3ExprCollSeq(pParse, pItem->pExpr);
6895 if( !pColl ){
6896 pColl = pParse->db->pDfltColl;
6898 if( regHit==0 && pAggInfo->nAccumulator ) regHit = ++pParse->nMem;
6899 sqlite3VdbeAddOp4(v, OP_CollSeq, regHit, 0, 0,
6900 (char *)pColl, P4_COLLSEQ);
6902 sqlite3VdbeAddOp3(v, OP_AggStep, 0, regAgg, AggInfoFuncReg(pAggInfo,i));
6903 sqlite3VdbeAppendP4(v, pF->pFunc, P4_FUNCDEF);
6904 sqlite3VdbeChangeP5(v, (u8)nArg);
6905 sqlite3ReleaseTempRange(pParse, regAgg, nArg);
6907 if( addrNext ){
6908 sqlite3VdbeResolveLabel(v, addrNext);
6911 if( regHit==0 && pAggInfo->nAccumulator ){
6912 regHit = regAcc;
6914 if( regHit ){
6915 addrHitTest = sqlite3VdbeAddOp1(v, OP_If, regHit); VdbeCoverage(v);
6917 for(i=0, pC=pAggInfo->aCol; i<pAggInfo->nAccumulator; i++, pC++){
6918 sqlite3ExprCode(pParse, pC->pCExpr, AggInfoColumnReg(pAggInfo,i));
6921 pAggInfo->directMode = 0;
6922 if( addrHitTest ){
6923 sqlite3VdbeJumpHereOrPopInst(v, addrHitTest);
6928 ** Add a single OP_Explain instruction to the VDBE to explain a simple
6929 ** count(*) query ("SELECT count(*) FROM pTab").
6931 #ifndef SQLITE_OMIT_EXPLAIN
6932 static void explainSimpleCount(
6933 Parse *pParse, /* Parse context */
6934 Table *pTab, /* Table being queried */
6935 Index *pIdx /* Index used to optimize scan, or NULL */
6937 if( pParse->explain==2 ){
6938 int bCover = (pIdx!=0 && (HasRowid(pTab) || !IsPrimaryKeyIndex(pIdx)));
6939 sqlite3VdbeExplain(pParse, 0, "SCAN %s%s%s",
6940 pTab->zName,
6941 bCover ? " USING COVERING INDEX " : "",
6942 bCover ? pIdx->zName : ""
6946 #else
6947 # define explainSimpleCount(a,b,c)
6948 #endif
6951 ** sqlite3WalkExpr() callback used by havingToWhere().
6953 ** If the node passed to the callback is a TK_AND node, return
6954 ** WRC_Continue to tell sqlite3WalkExpr() to iterate through child nodes.
6956 ** Otherwise, return WRC_Prune. In this case, also check if the
6957 ** sub-expression matches the criteria for being moved to the WHERE
6958 ** clause. If so, add it to the WHERE clause and replace the sub-expression
6959 ** within the HAVING expression with a constant "1".
6961 static int havingToWhereExprCb(Walker *pWalker, Expr *pExpr){
6962 if( pExpr->op!=TK_AND ){
6963 Select *pS = pWalker->u.pSelect;
6964 /* This routine is called before the HAVING clause of the current
6965 ** SELECT is analyzed for aggregates. So if pExpr->pAggInfo is set
6966 ** here, it indicates that the expression is a correlated reference to a
6967 ** column from an outer aggregate query, or an aggregate function that
6968 ** belongs to an outer query. Do not move the expression to the WHERE
6969 ** clause in this obscure case, as doing so may corrupt the outer Select
6970 ** statements AggInfo structure. */
6971 if( sqlite3ExprIsConstantOrGroupBy(pWalker->pParse, pExpr, pS->pGroupBy)
6972 && ExprAlwaysFalse(pExpr)==0
6973 && pExpr->pAggInfo==0
6975 sqlite3 *db = pWalker->pParse->db;
6976 Expr *pNew = sqlite3Expr(db, TK_INTEGER, "1");
6977 if( pNew ){
6978 Expr *pWhere = pS->pWhere;
6979 SWAP(Expr, *pNew, *pExpr);
6980 pNew = sqlite3ExprAnd(pWalker->pParse, pWhere, pNew);
6981 pS->pWhere = pNew;
6982 pWalker->eCode = 1;
6985 return WRC_Prune;
6987 return WRC_Continue;
6991 ** Transfer eligible terms from the HAVING clause of a query, which is
6992 ** processed after grouping, to the WHERE clause, which is processed before
6993 ** grouping. For example, the query:
6995 ** SELECT * FROM <tables> WHERE a=? GROUP BY b HAVING b=? AND c=?
6997 ** can be rewritten as:
6999 ** SELECT * FROM <tables> WHERE a=? AND b=? GROUP BY b HAVING c=?
7001 ** A term of the HAVING expression is eligible for transfer if it consists
7002 ** entirely of constants and expressions that are also GROUP BY terms that
7003 ** use the "BINARY" collation sequence.
7005 static void havingToWhere(Parse *pParse, Select *p){
7006 Walker sWalker;
7007 memset(&sWalker, 0, sizeof(sWalker));
7008 sWalker.pParse = pParse;
7009 sWalker.xExprCallback = havingToWhereExprCb;
7010 sWalker.u.pSelect = p;
7011 sqlite3WalkExpr(&sWalker, p->pHaving);
7012 #if TREETRACE_ENABLED
7013 if( sWalker.eCode && (sqlite3TreeTrace & 0x100)!=0 ){
7014 TREETRACE(0x100,pParse,p,("Move HAVING terms into WHERE:\n"));
7015 sqlite3TreeViewSelect(0, p, 0);
7017 #endif
7021 ** Check to see if the pThis entry of pTabList is a self-join of another view.
7022 ** Search FROM-clause entries in the range of iFirst..iEnd, including iFirst
7023 ** but stopping before iEnd.
7025 ** If pThis is a self-join, then return the SrcItem for the first other
7026 ** instance of that view found. If pThis is not a self-join then return 0.
7028 static SrcItem *isSelfJoinView(
7029 SrcList *pTabList, /* Search for self-joins in this FROM clause */
7030 SrcItem *pThis, /* Search for prior reference to this subquery */
7031 int iFirst, int iEnd /* Range of FROM-clause entries to search. */
7033 SrcItem *pItem;
7034 assert( pThis->pSelect!=0 );
7035 if( pThis->pSelect->selFlags & SF_PushDown ) return 0;
7036 while( iFirst<iEnd ){
7037 Select *pS1;
7038 pItem = &pTabList->a[iFirst++];
7039 if( pItem->pSelect==0 ) continue;
7040 if( pItem->fg.viaCoroutine ) continue;
7041 if( pItem->zName==0 ) continue;
7042 assert( pItem->pTab!=0 );
7043 assert( pThis->pTab!=0 );
7044 if( pItem->pTab->pSchema!=pThis->pTab->pSchema ) continue;
7045 if( sqlite3_stricmp(pItem->zName, pThis->zName)!=0 ) continue;
7046 pS1 = pItem->pSelect;
7047 if( pItem->pTab->pSchema==0 && pThis->pSelect->selId!=pS1->selId ){
7048 /* The query flattener left two different CTE tables with identical
7049 ** names in the same FROM clause. */
7050 continue;
7052 if( pItem->pSelect->selFlags & SF_PushDown ){
7053 /* The view was modified by some other optimization such as
7054 ** pushDownWhereTerms() */
7055 continue;
7057 return pItem;
7059 return 0;
7063 ** Deallocate a single AggInfo object
7065 static void agginfoFree(sqlite3 *db, void *pArg){
7066 AggInfo *p = (AggInfo*)pArg;
7067 sqlite3DbFree(db, p->aCol);
7068 sqlite3DbFree(db, p->aFunc);
7069 sqlite3DbFreeNN(db, p);
7073 ** Attempt to transform a query of the form
7075 ** SELECT count(*) FROM (SELECT x FROM t1 UNION ALL SELECT y FROM t2)
7077 ** Into this:
7079 ** SELECT (SELECT count(*) FROM t1)+(SELECT count(*) FROM t2)
7081 ** The transformation only works if all of the following are true:
7083 ** * The subquery is a UNION ALL of two or more terms
7084 ** * The subquery does not have a LIMIT clause
7085 ** * There is no WHERE or GROUP BY or HAVING clauses on the subqueries
7086 ** * The outer query is a simple count(*) with no WHERE clause or other
7087 ** extraneous syntax.
7089 ** Return TRUE if the optimization is undertaken.
7091 static int countOfViewOptimization(Parse *pParse, Select *p){
7092 Select *pSub, *pPrior;
7093 Expr *pExpr;
7094 Expr *pCount;
7095 sqlite3 *db;
7096 if( (p->selFlags & SF_Aggregate)==0 ) return 0; /* This is an aggregate */
7097 if( p->pEList->nExpr!=1 ) return 0; /* Single result column */
7098 if( p->pWhere ) return 0;
7099 if( p->pHaving ) return 0;
7100 if( p->pGroupBy ) return 0;
7101 if( p->pOrderBy ) return 0;
7102 pExpr = p->pEList->a[0].pExpr;
7103 if( pExpr->op!=TK_AGG_FUNCTION ) return 0; /* Result is an aggregate */
7104 assert( ExprUseUToken(pExpr) );
7105 if( sqlite3_stricmp(pExpr->u.zToken,"count") ) return 0; /* Is count() */
7106 assert( ExprUseXList(pExpr) );
7107 if( pExpr->x.pList!=0 ) return 0; /* Must be count(*) */
7108 if( p->pSrc->nSrc!=1 ) return 0; /* One table in FROM */
7109 if( ExprHasProperty(pExpr, EP_WinFunc) ) return 0;/* Not a window function */
7110 pSub = p->pSrc->a[0].pSelect;
7111 if( pSub==0 ) return 0; /* The FROM is a subquery */
7112 if( pSub->pPrior==0 ) return 0; /* Must be a compound */
7113 if( pSub->selFlags & SF_CopyCte ) return 0; /* Not a CTE */
7115 if( pSub->op!=TK_ALL && pSub->pPrior ) return 0; /* Must be UNION ALL */
7116 if( pSub->pWhere ) return 0; /* No WHERE clause */
7117 if( pSub->pLimit ) return 0; /* No LIMIT clause */
7118 if( pSub->selFlags & SF_Aggregate ) return 0; /* Not an aggregate */
7119 assert( pSub->pHaving==0 ); /* Due to the previous */
7120 pSub = pSub->pPrior; /* Repeat over compound */
7121 }while( pSub );
7123 /* If we reach this point then it is OK to perform the transformation */
7125 db = pParse->db;
7126 pCount = pExpr;
7127 pExpr = 0;
7128 pSub = p->pSrc->a[0].pSelect;
7129 p->pSrc->a[0].pSelect = 0;
7130 sqlite3SrcListDelete(db, p->pSrc);
7131 p->pSrc = sqlite3DbMallocZero(pParse->db, sizeof(*p->pSrc));
7132 while( pSub ){
7133 Expr *pTerm;
7134 pPrior = pSub->pPrior;
7135 pSub->pPrior = 0;
7136 pSub->pNext = 0;
7137 pSub->selFlags |= SF_Aggregate;
7138 pSub->selFlags &= ~SF_Compound;
7139 pSub->nSelectRow = 0;
7140 sqlite3ParserAddCleanup(pParse, sqlite3ExprListDeleteGeneric, pSub->pEList);
7141 pTerm = pPrior ? sqlite3ExprDup(db, pCount, 0) : pCount;
7142 pSub->pEList = sqlite3ExprListAppend(pParse, 0, pTerm);
7143 pTerm = sqlite3PExpr(pParse, TK_SELECT, 0, 0);
7144 sqlite3PExprAddSelect(pParse, pTerm, pSub);
7145 if( pExpr==0 ){
7146 pExpr = pTerm;
7147 }else{
7148 pExpr = sqlite3PExpr(pParse, TK_PLUS, pTerm, pExpr);
7150 pSub = pPrior;
7152 p->pEList->a[0].pExpr = pExpr;
7153 p->selFlags &= ~SF_Aggregate;
7155 #if TREETRACE_ENABLED
7156 if( sqlite3TreeTrace & 0x200 ){
7157 TREETRACE(0x200,pParse,p,("After count-of-view optimization:\n"));
7158 sqlite3TreeViewSelect(0, p, 0);
7160 #endif
7161 return 1;
7165 ** If any term of pSrc, or any SF_NestedFrom sub-query, is not the same
7166 ** as pSrcItem but has the same alias as p0, then return true.
7167 ** Otherwise return false.
7169 static int sameSrcAlias(SrcItem *p0, SrcList *pSrc){
7170 int i;
7171 for(i=0; i<pSrc->nSrc; i++){
7172 SrcItem *p1 = &pSrc->a[i];
7173 if( p1==p0 ) continue;
7174 if( p0->pTab==p1->pTab && 0==sqlite3_stricmp(p0->zAlias, p1->zAlias) ){
7175 return 1;
7177 if( p1->pSelect
7178 && (p1->pSelect->selFlags & SF_NestedFrom)!=0
7179 && sameSrcAlias(p0, p1->pSelect->pSrc)
7181 return 1;
7184 return 0;
7188 ** Return TRUE (non-zero) if the i-th entry in the pTabList SrcList can
7189 ** be implemented as a co-routine. The i-th entry is guaranteed to be
7190 ** a subquery.
7192 ** The subquery is implemented as a co-routine if all of the following are
7193 ** true:
7195 ** (1) The subquery will likely be implemented in the outer loop of
7196 ** the query. This will be the case if any one of the following
7197 ** conditions hold:
7198 ** (a) The subquery is the only term in the FROM clause
7199 ** (b) The subquery is the left-most term and a CROSS JOIN or similar
7200 ** requires it to be the outer loop
7201 ** (c) All of the following are true:
7202 ** (i) The subquery is the left-most subquery in the FROM clause
7203 ** (ii) There is nothing that would prevent the subquery from
7204 ** being used as the outer loop if the sqlite3WhereBegin()
7205 ** routine nominates it to that position.
7206 ** (iii) The query is not a UPDATE ... FROM
7207 ** (2) The subquery is not a CTE that should be materialized because
7208 ** (a) the AS MATERIALIZED keyword is used, or
7209 ** (b) the CTE is used multiple times and does not have the
7210 ** NOT MATERIALIZED keyword
7211 ** (3) The subquery is not part of a left operand for a RIGHT JOIN
7212 ** (4) The SQLITE_Coroutine optimization disable flag is not set
7213 ** (5) The subquery is not self-joined
7215 static int fromClauseTermCanBeCoroutine(
7216 Parse *pParse, /* Parsing context */
7217 SrcList *pTabList, /* FROM clause */
7218 int i, /* Which term of the FROM clause holds the subquery */
7219 int selFlags /* Flags on the SELECT statement */
7221 SrcItem *pItem = &pTabList->a[i];
7222 if( pItem->fg.isCte ){
7223 const CteUse *pCteUse = pItem->u2.pCteUse;
7224 if( pCteUse->eM10d==M10d_Yes ) return 0; /* (2a) */
7225 if( pCteUse->nUse>=2 && pCteUse->eM10d!=M10d_No ) return 0; /* (2b) */
7227 if( pTabList->a[0].fg.jointype & JT_LTORJ ) return 0; /* (3) */
7228 if( OptimizationDisabled(pParse->db, SQLITE_Coroutines) ) return 0; /* (4) */
7229 if( isSelfJoinView(pTabList, pItem, i+1, pTabList->nSrc)!=0 ){
7230 return 0; /* (5) */
7232 if( i==0 ){
7233 if( pTabList->nSrc==1 ) return 1; /* (1a) */
7234 if( pTabList->a[1].fg.jointype & JT_CROSS ) return 1; /* (1b) */
7235 if( selFlags & SF_UpdateFrom ) return 0; /* (1c-iii) */
7236 return 1;
7238 if( selFlags & SF_UpdateFrom ) return 0; /* (1c-iii) */
7239 while( 1 /*exit-by-break*/ ){
7240 if( pItem->fg.jointype & (JT_OUTER|JT_CROSS) ) return 0; /* (1c-ii) */
7241 if( i==0 ) break;
7242 i--;
7243 pItem--;
7244 if( pItem->pSelect!=0 ) return 0; /* (1c-i) */
7246 return 1;
7250 ** Generate code for the SELECT statement given in the p argument.
7252 ** The results are returned according to the SelectDest structure.
7253 ** See comments in sqliteInt.h for further information.
7255 ** This routine returns the number of errors. If any errors are
7256 ** encountered, then an appropriate error message is left in
7257 ** pParse->zErrMsg.
7259 ** This routine does NOT free the Select structure passed in. The
7260 ** calling function needs to do that.
7262 int sqlite3Select(
7263 Parse *pParse, /* The parser context */
7264 Select *p, /* The SELECT statement being coded. */
7265 SelectDest *pDest /* What to do with the query results */
7267 int i, j; /* Loop counters */
7268 WhereInfo *pWInfo; /* Return from sqlite3WhereBegin() */
7269 Vdbe *v; /* The virtual machine under construction */
7270 int isAgg; /* True for select lists like "count(*)" */
7271 ExprList *pEList = 0; /* List of columns to extract. */
7272 SrcList *pTabList; /* List of tables to select from */
7273 Expr *pWhere; /* The WHERE clause. May be NULL */
7274 ExprList *pGroupBy; /* The GROUP BY clause. May be NULL */
7275 Expr *pHaving; /* The HAVING clause. May be NULL */
7276 AggInfo *pAggInfo = 0; /* Aggregate information */
7277 int rc = 1; /* Value to return from this function */
7278 DistinctCtx sDistinct; /* Info on how to code the DISTINCT keyword */
7279 SortCtx sSort; /* Info on how to code the ORDER BY clause */
7280 int iEnd; /* Address of the end of the query */
7281 sqlite3 *db; /* The database connection */
7282 ExprList *pMinMaxOrderBy = 0; /* Added ORDER BY for min/max queries */
7283 u8 minMaxFlag; /* Flag for min/max queries */
7285 db = pParse->db;
7286 assert( pParse==db->pParse );
7287 v = sqlite3GetVdbe(pParse);
7288 if( p==0 || pParse->nErr ){
7289 return 1;
7291 assert( db->mallocFailed==0 );
7292 if( sqlite3AuthCheck(pParse, SQLITE_SELECT, 0, 0, 0) ) return 1;
7293 #if TREETRACE_ENABLED
7294 TREETRACE(0x1,pParse,p, ("begin processing:\n", pParse->addrExplain));
7295 if( sqlite3TreeTrace & 0x10000 ){
7296 if( (sqlite3TreeTrace & 0x10001)==0x10000 ){
7297 sqlite3TreeViewLine(0, "In sqlite3Select() at %s:%d",
7298 __FILE__, __LINE__);
7300 sqlite3ShowSelect(p);
7302 #endif
7304 assert( p->pOrderBy==0 || pDest->eDest!=SRT_DistFifo );
7305 assert( p->pOrderBy==0 || pDest->eDest!=SRT_Fifo );
7306 assert( p->pOrderBy==0 || pDest->eDest!=SRT_DistQueue );
7307 assert( p->pOrderBy==0 || pDest->eDest!=SRT_Queue );
7308 if( IgnorableDistinct(pDest) ){
7309 assert(pDest->eDest==SRT_Exists || pDest->eDest==SRT_Union ||
7310 pDest->eDest==SRT_Except || pDest->eDest==SRT_Discard ||
7311 pDest->eDest==SRT_DistQueue || pDest->eDest==SRT_DistFifo );
7312 /* All of these destinations are also able to ignore the ORDER BY clause */
7313 if( p->pOrderBy ){
7314 #if TREETRACE_ENABLED
7315 TREETRACE(0x800,pParse,p, ("dropping superfluous ORDER BY:\n"));
7316 if( sqlite3TreeTrace & 0x800 ){
7317 sqlite3TreeViewExprList(0, p->pOrderBy, 0, "ORDERBY");
7319 #endif
7320 sqlite3ParserAddCleanup(pParse, sqlite3ExprListDeleteGeneric,
7321 p->pOrderBy);
7322 testcase( pParse->earlyCleanup );
7323 p->pOrderBy = 0;
7325 p->selFlags &= ~SF_Distinct;
7326 p->selFlags |= SF_NoopOrderBy;
7328 sqlite3SelectPrep(pParse, p, 0);
7329 if( pParse->nErr ){
7330 goto select_end;
7332 assert( db->mallocFailed==0 );
7333 assert( p->pEList!=0 );
7334 #if TREETRACE_ENABLED
7335 if( sqlite3TreeTrace & 0x10 ){
7336 TREETRACE(0x10,pParse,p, ("after name resolution:\n"));
7337 sqlite3TreeViewSelect(0, p, 0);
7339 #endif
7341 /* If the SF_UFSrcCheck flag is set, then this function is being called
7342 ** as part of populating the temp table for an UPDATE...FROM statement.
7343 ** In this case, it is an error if the target object (pSrc->a[0]) name
7344 ** or alias is duplicated within FROM clause (pSrc->a[1..n]).
7346 ** Postgres disallows this case too. The reason is that some other
7347 ** systems handle this case differently, and not all the same way,
7348 ** which is just confusing. To avoid this, we follow PG's lead and
7349 ** disallow it altogether. */
7350 if( p->selFlags & SF_UFSrcCheck ){
7351 SrcItem *p0 = &p->pSrc->a[0];
7352 if( sameSrcAlias(p0, p->pSrc) ){
7353 sqlite3ErrorMsg(pParse,
7354 "target object/alias may not appear in FROM clause: %s",
7355 p0->zAlias ? p0->zAlias : p0->pTab->zName
7357 goto select_end;
7360 /* Clear the SF_UFSrcCheck flag. The check has already been performed,
7361 ** and leaving this flag set can cause errors if a compound sub-query
7362 ** in p->pSrc is flattened into this query and this function called
7363 ** again as part of compound SELECT processing. */
7364 p->selFlags &= ~SF_UFSrcCheck;
7367 if( pDest->eDest==SRT_Output ){
7368 sqlite3GenerateColumnNames(pParse, p);
7371 #ifndef SQLITE_OMIT_WINDOWFUNC
7372 if( sqlite3WindowRewrite(pParse, p) ){
7373 assert( pParse->nErr );
7374 goto select_end;
7376 #if TREETRACE_ENABLED
7377 if( p->pWin && (sqlite3TreeTrace & 0x40)!=0 ){
7378 TREETRACE(0x40,pParse,p, ("after window rewrite:\n"));
7379 sqlite3TreeViewSelect(0, p, 0);
7381 #endif
7382 #endif /* SQLITE_OMIT_WINDOWFUNC */
7383 pTabList = p->pSrc;
7384 isAgg = (p->selFlags & SF_Aggregate)!=0;
7385 memset(&sSort, 0, sizeof(sSort));
7386 sSort.pOrderBy = p->pOrderBy;
7388 /* Try to do various optimizations (flattening subqueries, and strength
7389 ** reduction of join operators) in the FROM clause up into the main query
7391 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
7392 for(i=0; !p->pPrior && i<pTabList->nSrc; i++){
7393 SrcItem *pItem = &pTabList->a[i];
7394 Select *pSub = pItem->pSelect;
7395 Table *pTab = pItem->pTab;
7397 /* The expander should have already created transient Table objects
7398 ** even for FROM clause elements such as subqueries that do not correspond
7399 ** to a real table */
7400 assert( pTab!=0 );
7402 /* Try to simplify joins:
7404 ** LEFT JOIN -> JOIN
7405 ** RIGHT JOIN -> JOIN
7406 ** FULL JOIN -> RIGHT JOIN
7408 ** If terms of the i-th table are used in the WHERE clause in such a
7409 ** way that the i-th table cannot be the NULL row of a join, then
7410 ** perform the appropriate simplification. This is called
7411 ** "OUTER JOIN strength reduction" in the SQLite documentation.
7413 if( (pItem->fg.jointype & (JT_LEFT|JT_LTORJ))!=0
7414 && sqlite3ExprImpliesNonNullRow(p->pWhere, pItem->iCursor,
7415 pItem->fg.jointype & JT_LTORJ)
7416 && OptimizationEnabled(db, SQLITE_SimplifyJoin)
7418 if( pItem->fg.jointype & JT_LEFT ){
7419 if( pItem->fg.jointype & JT_RIGHT ){
7420 TREETRACE(0x1000,pParse,p,
7421 ("FULL-JOIN simplifies to RIGHT-JOIN on term %d\n",i));
7422 pItem->fg.jointype &= ~JT_LEFT;
7423 }else{
7424 TREETRACE(0x1000,pParse,p,
7425 ("LEFT-JOIN simplifies to JOIN on term %d\n",i));
7426 pItem->fg.jointype &= ~(JT_LEFT|JT_OUTER);
7427 unsetJoinExpr(p->pWhere, pItem->iCursor, 0);
7430 if( pItem->fg.jointype & JT_LTORJ ){
7431 for(j=i+1; j<pTabList->nSrc; j++){
7432 SrcItem *pI2 = &pTabList->a[j];
7433 if( pI2->fg.jointype & JT_RIGHT ){
7434 if( pI2->fg.jointype & JT_LEFT ){
7435 TREETRACE(0x1000,pParse,p,
7436 ("FULL-JOIN simplifies to LEFT-JOIN on term %d\n",j));
7437 pI2->fg.jointype &= ~JT_RIGHT;
7438 }else{
7439 TREETRACE(0x1000,pParse,p,
7440 ("RIGHT-JOIN simplifies to JOIN on term %d\n",j));
7441 pI2->fg.jointype &= ~(JT_RIGHT|JT_OUTER);
7442 unsetJoinExpr(p->pWhere, pI2->iCursor, 1);
7446 for(j=pTabList->nSrc-1; j>=0; j--){
7447 pTabList->a[j].fg.jointype &= ~JT_LTORJ;
7448 if( pTabList->a[j].fg.jointype & JT_RIGHT ) break;
7453 /* No further action if this term of the FROM clause is not a subquery */
7454 if( pSub==0 ) continue;
7456 /* Catch mismatch in the declared columns of a view and the number of
7457 ** columns in the SELECT on the RHS */
7458 if( pTab->nCol!=pSub->pEList->nExpr ){
7459 sqlite3ErrorMsg(pParse, "expected %d columns for '%s' but got %d",
7460 pTab->nCol, pTab->zName, pSub->pEList->nExpr);
7461 goto select_end;
7464 /* Do not attempt the usual optimizations (flattening and ORDER BY
7465 ** elimination) on a MATERIALIZED common table expression because
7466 ** a MATERIALIZED common table expression is an optimization fence.
7468 if( pItem->fg.isCte && pItem->u2.pCteUse->eM10d==M10d_Yes ){
7469 continue;
7472 /* Do not try to flatten an aggregate subquery.
7474 ** Flattening an aggregate subquery is only possible if the outer query
7475 ** is not a join. But if the outer query is not a join, then the subquery
7476 ** will be implemented as a co-routine and there is no advantage to
7477 ** flattening in that case.
7479 if( (pSub->selFlags & SF_Aggregate)!=0 ) continue;
7480 assert( pSub->pGroupBy==0 );
7482 /* If a FROM-clause subquery has an ORDER BY clause that is not
7483 ** really doing anything, then delete it now so that it does not
7484 ** interfere with query flattening. See the discussion at
7485 ** https://sqlite.org/forum/forumpost/2d76f2bcf65d256a
7487 ** Beware of these cases where the ORDER BY clause may not be safely
7488 ** omitted:
7490 ** (1) There is also a LIMIT clause
7491 ** (2) The subquery was added to help with window-function
7492 ** processing
7493 ** (3) The subquery is in the FROM clause of an UPDATE
7494 ** (4) The outer query uses an aggregate function other than
7495 ** the built-in count(), min(), or max().
7496 ** (5) The ORDER BY isn't going to accomplish anything because
7497 ** one of:
7498 ** (a) The outer query has a different ORDER BY clause
7499 ** (b) The subquery is part of a join
7500 ** See forum post 062d576715d277c8
7502 ** Also retain the ORDER BY if the OmitOrderBy optimization is disabled.
7504 if( pSub->pOrderBy!=0
7505 && (p->pOrderBy!=0 || pTabList->nSrc>1) /* Condition (5) */
7506 && pSub->pLimit==0 /* Condition (1) */
7507 && (pSub->selFlags & SF_OrderByReqd)==0 /* Condition (2) */
7508 && (p->selFlags & SF_OrderByReqd)==0 /* Condition (3) and (4) */
7509 && OptimizationEnabled(db, SQLITE_OmitOrderBy)
7511 TREETRACE(0x800,pParse,p,
7512 ("omit superfluous ORDER BY on %r FROM-clause subquery\n",i+1));
7513 sqlite3ParserAddCleanup(pParse, sqlite3ExprListDeleteGeneric,
7514 pSub->pOrderBy);
7515 pSub->pOrderBy = 0;
7518 /* If the outer query contains a "complex" result set (that is,
7519 ** if the result set of the outer query uses functions or subqueries)
7520 ** and if the subquery contains an ORDER BY clause and if
7521 ** it will be implemented as a co-routine, then do not flatten. This
7522 ** restriction allows SQL constructs like this:
7524 ** SELECT expensive_function(x)
7525 ** FROM (SELECT x FROM tab ORDER BY y LIMIT 10);
7527 ** The expensive_function() is only computed on the 10 rows that
7528 ** are output, rather than every row of the table.
7530 ** The requirement that the outer query have a complex result set
7531 ** means that flattening does occur on simpler SQL constraints without
7532 ** the expensive_function() like:
7534 ** SELECT x FROM (SELECT x FROM tab ORDER BY y LIMIT 10);
7536 if( pSub->pOrderBy!=0
7537 && i==0
7538 && (p->selFlags & SF_ComplexResult)!=0
7539 && (pTabList->nSrc==1
7540 || (pTabList->a[1].fg.jointype&(JT_OUTER|JT_CROSS))!=0)
7542 continue;
7545 if( flattenSubquery(pParse, p, i, isAgg) ){
7546 if( pParse->nErr ) goto select_end;
7547 /* This subquery can be absorbed into its parent. */
7548 i = -1;
7550 pTabList = p->pSrc;
7551 if( db->mallocFailed ) goto select_end;
7552 if( !IgnorableOrderby(pDest) ){
7553 sSort.pOrderBy = p->pOrderBy;
7556 #endif
7558 #ifndef SQLITE_OMIT_COMPOUND_SELECT
7559 /* Handle compound SELECT statements using the separate multiSelect()
7560 ** procedure.
7562 if( p->pPrior ){
7563 rc = multiSelect(pParse, p, pDest);
7564 #if TREETRACE_ENABLED
7565 TREETRACE(0x400,pParse,p,("end compound-select processing\n"));
7566 if( (sqlite3TreeTrace & 0x400)!=0 && ExplainQueryPlanParent(pParse)==0 ){
7567 sqlite3TreeViewSelect(0, p, 0);
7569 #endif
7570 if( p->pNext==0 ) ExplainQueryPlanPop(pParse);
7571 return rc;
7573 #endif
7575 /* Do the WHERE-clause constant propagation optimization if this is
7576 ** a join. No need to speed time on this operation for non-join queries
7577 ** as the equivalent optimization will be handled by query planner in
7578 ** sqlite3WhereBegin().
7580 if( p->pWhere!=0
7581 && p->pWhere->op==TK_AND
7582 && OptimizationEnabled(db, SQLITE_PropagateConst)
7583 && propagateConstants(pParse, p)
7585 #if TREETRACE_ENABLED
7586 if( sqlite3TreeTrace & 0x2000 ){
7587 TREETRACE(0x2000,pParse,p,("After constant propagation:\n"));
7588 sqlite3TreeViewSelect(0, p, 0);
7590 #endif
7591 }else{
7592 TREETRACE(0x2000,pParse,p,("Constant propagation not helpful\n"));
7595 if( OptimizationEnabled(db, SQLITE_QueryFlattener|SQLITE_CountOfView)
7596 && countOfViewOptimization(pParse, p)
7598 if( db->mallocFailed ) goto select_end;
7599 pTabList = p->pSrc;
7602 /* For each term in the FROM clause, do two things:
7603 ** (1) Authorized unreferenced tables
7604 ** (2) Generate code for all sub-queries
7606 for(i=0; i<pTabList->nSrc; i++){
7607 SrcItem *pItem = &pTabList->a[i];
7608 SrcItem *pPrior;
7609 SelectDest dest;
7610 Select *pSub;
7611 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
7612 const char *zSavedAuthContext;
7613 #endif
7615 /* Issue SQLITE_READ authorizations with a fake column name for any
7616 ** tables that are referenced but from which no values are extracted.
7617 ** Examples of where these kinds of null SQLITE_READ authorizations
7618 ** would occur:
7620 ** SELECT count(*) FROM t1; -- SQLITE_READ t1.""
7621 ** SELECT t1.* FROM t1, t2; -- SQLITE_READ t2.""
7623 ** The fake column name is an empty string. It is possible for a table to
7624 ** have a column named by the empty string, in which case there is no way to
7625 ** distinguish between an unreferenced table and an actual reference to the
7626 ** "" column. The original design was for the fake column name to be a NULL,
7627 ** which would be unambiguous. But legacy authorization callbacks might
7628 ** assume the column name is non-NULL and segfault. The use of an empty
7629 ** string for the fake column name seems safer.
7631 if( pItem->colUsed==0 && pItem->zName!=0 ){
7632 sqlite3AuthCheck(pParse, SQLITE_READ, pItem->zName, "", pItem->zDatabase);
7635 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
7636 /* Generate code for all sub-queries in the FROM clause
7638 pSub = pItem->pSelect;
7639 if( pSub==0 ) continue;
7641 /* The code for a subquery should only be generated once. */
7642 assert( pItem->addrFillSub==0 );
7644 /* Increment Parse.nHeight by the height of the largest expression
7645 ** tree referred to by this, the parent select. The child select
7646 ** may contain expression trees of at most
7647 ** (SQLITE_MAX_EXPR_DEPTH-Parse.nHeight) height. This is a bit
7648 ** more conservative than necessary, but much easier than enforcing
7649 ** an exact limit.
7651 pParse->nHeight += sqlite3SelectExprHeight(p);
7653 /* Make copies of constant WHERE-clause terms in the outer query down
7654 ** inside the subquery. This can help the subquery to run more efficiently.
7656 if( OptimizationEnabled(db, SQLITE_PushDown)
7657 && (pItem->fg.isCte==0
7658 || (pItem->u2.pCteUse->eM10d!=M10d_Yes && pItem->u2.pCteUse->nUse<2))
7659 && pushDownWhereTerms(pParse, pSub, p->pWhere, pTabList, i)
7661 #if TREETRACE_ENABLED
7662 if( sqlite3TreeTrace & 0x4000 ){
7663 TREETRACE(0x4000,pParse,p,
7664 ("After WHERE-clause push-down into subquery %d:\n", pSub->selId));
7665 sqlite3TreeViewSelect(0, p, 0);
7667 #endif
7668 assert( pItem->pSelect && (pItem->pSelect->selFlags & SF_PushDown)!=0 );
7669 }else{
7670 TREETRACE(0x4000,pParse,p,("Push-down not possible\n"));
7673 /* Convert unused result columns of the subquery into simple NULL
7674 ** expressions, to avoid unneeded searching and computation.
7676 if( OptimizationEnabled(db, SQLITE_NullUnusedCols)
7677 && disableUnusedSubqueryResultColumns(pItem)
7679 #if TREETRACE_ENABLED
7680 if( sqlite3TreeTrace & 0x4000 ){
7681 TREETRACE(0x4000,pParse,p,
7682 ("Change unused result columns to NULL for subquery %d:\n",
7683 pSub->selId));
7684 sqlite3TreeViewSelect(0, p, 0);
7686 #endif
7689 zSavedAuthContext = pParse->zAuthContext;
7690 pParse->zAuthContext = pItem->zName;
7692 /* Generate code to implement the subquery
7694 if( fromClauseTermCanBeCoroutine(pParse, pTabList, i, p->selFlags) ){
7695 /* Implement a co-routine that will return a single row of the result
7696 ** set on each invocation.
7698 int addrTop = sqlite3VdbeCurrentAddr(v)+1;
7700 pItem->regReturn = ++pParse->nMem;
7701 sqlite3VdbeAddOp3(v, OP_InitCoroutine, pItem->regReturn, 0, addrTop);
7702 VdbeComment((v, "%!S", pItem));
7703 pItem->addrFillSub = addrTop;
7704 sqlite3SelectDestInit(&dest, SRT_Coroutine, pItem->regReturn);
7705 ExplainQueryPlan((pParse, 1, "CO-ROUTINE %!S", pItem));
7706 sqlite3Select(pParse, pSub, &dest);
7707 pItem->pTab->nRowLogEst = pSub->nSelectRow;
7708 pItem->fg.viaCoroutine = 1;
7709 pItem->regResult = dest.iSdst;
7710 sqlite3VdbeEndCoroutine(v, pItem->regReturn);
7711 sqlite3VdbeJumpHere(v, addrTop-1);
7712 sqlite3ClearTempRegCache(pParse);
7713 }else if( pItem->fg.isCte && pItem->u2.pCteUse->addrM9e>0 ){
7714 /* This is a CTE for which materialization code has already been
7715 ** generated. Invoke the subroutine to compute the materialization,
7716 ** the make the pItem->iCursor be a copy of the ephemeral table that
7717 ** holds the result of the materialization. */
7718 CteUse *pCteUse = pItem->u2.pCteUse;
7719 sqlite3VdbeAddOp2(v, OP_Gosub, pCteUse->regRtn, pCteUse->addrM9e);
7720 if( pItem->iCursor!=pCteUse->iCur ){
7721 sqlite3VdbeAddOp2(v, OP_OpenDup, pItem->iCursor, pCteUse->iCur);
7722 VdbeComment((v, "%!S", pItem));
7724 pSub->nSelectRow = pCteUse->nRowEst;
7725 }else if( (pPrior = isSelfJoinView(pTabList, pItem, 0, i))!=0 ){
7726 /* This view has already been materialized by a prior entry in
7727 ** this same FROM clause. Reuse it. */
7728 if( pPrior->addrFillSub ){
7729 sqlite3VdbeAddOp2(v, OP_Gosub, pPrior->regReturn, pPrior->addrFillSub);
7731 sqlite3VdbeAddOp2(v, OP_OpenDup, pItem->iCursor, pPrior->iCursor);
7732 pSub->nSelectRow = pPrior->pSelect->nSelectRow;
7733 }else{
7734 /* Materialize the view. If the view is not correlated, generate a
7735 ** subroutine to do the materialization so that subsequent uses of
7736 ** the same view can reuse the materialization. */
7737 int topAddr;
7738 int onceAddr = 0;
7739 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS
7740 int addrExplain;
7741 #endif
7743 pItem->regReturn = ++pParse->nMem;
7744 topAddr = sqlite3VdbeAddOp0(v, OP_Goto);
7745 pItem->addrFillSub = topAddr+1;
7746 pItem->fg.isMaterialized = 1;
7747 if( pItem->fg.isCorrelated==0 ){
7748 /* If the subquery is not correlated and if we are not inside of
7749 ** a trigger, then we only need to compute the value of the subquery
7750 ** once. */
7751 onceAddr = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v);
7752 VdbeComment((v, "materialize %!S", pItem));
7753 }else{
7754 VdbeNoopComment((v, "materialize %!S", pItem));
7756 sqlite3SelectDestInit(&dest, SRT_EphemTab, pItem->iCursor);
7758 ExplainQueryPlan2(addrExplain, (pParse, 1, "MATERIALIZE %!S", pItem));
7759 sqlite3Select(pParse, pSub, &dest);
7760 pItem->pTab->nRowLogEst = pSub->nSelectRow;
7761 if( onceAddr ) sqlite3VdbeJumpHere(v, onceAddr);
7762 sqlite3VdbeAddOp2(v, OP_Return, pItem->regReturn, topAddr+1);
7763 VdbeComment((v, "end %!S", pItem));
7764 sqlite3VdbeScanStatusRange(v, addrExplain, addrExplain, -1);
7765 sqlite3VdbeJumpHere(v, topAddr);
7766 sqlite3ClearTempRegCache(pParse);
7767 if( pItem->fg.isCte && pItem->fg.isCorrelated==0 ){
7768 CteUse *pCteUse = pItem->u2.pCteUse;
7769 pCteUse->addrM9e = pItem->addrFillSub;
7770 pCteUse->regRtn = pItem->regReturn;
7771 pCteUse->iCur = pItem->iCursor;
7772 pCteUse->nRowEst = pSub->nSelectRow;
7775 if( db->mallocFailed ) goto select_end;
7776 pParse->nHeight -= sqlite3SelectExprHeight(p);
7777 pParse->zAuthContext = zSavedAuthContext;
7778 #endif
7781 /* Various elements of the SELECT copied into local variables for
7782 ** convenience */
7783 pEList = p->pEList;
7784 pWhere = p->pWhere;
7785 pGroupBy = p->pGroupBy;
7786 pHaving = p->pHaving;
7787 sDistinct.isTnct = (p->selFlags & SF_Distinct)!=0;
7789 #if TREETRACE_ENABLED
7790 if( sqlite3TreeTrace & 0x8000 ){
7791 TREETRACE(0x8000,pParse,p,("After all FROM-clause analysis:\n"));
7792 sqlite3TreeViewSelect(0, p, 0);
7794 #endif
7796 /* If the query is DISTINCT with an ORDER BY but is not an aggregate, and
7797 ** if the select-list is the same as the ORDER BY list, then this query
7798 ** can be rewritten as a GROUP BY. In other words, this:
7800 ** SELECT DISTINCT xyz FROM ... ORDER BY xyz
7802 ** is transformed to:
7804 ** SELECT xyz FROM ... GROUP BY xyz ORDER BY xyz
7806 ** The second form is preferred as a single index (or temp-table) may be
7807 ** used for both the ORDER BY and DISTINCT processing. As originally
7808 ** written the query must use a temp-table for at least one of the ORDER
7809 ** BY and DISTINCT, and an index or separate temp-table for the other.
7811 if( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct
7812 && sqlite3ExprListCompare(sSort.pOrderBy, pEList, -1)==0
7813 #ifndef SQLITE_OMIT_WINDOWFUNC
7814 && p->pWin==0
7815 #endif
7817 p->selFlags &= ~SF_Distinct;
7818 pGroupBy = p->pGroupBy = sqlite3ExprListDup(db, pEList, 0);
7819 p->selFlags |= SF_Aggregate;
7820 /* Notice that even thought SF_Distinct has been cleared from p->selFlags,
7821 ** the sDistinct.isTnct is still set. Hence, isTnct represents the
7822 ** original setting of the SF_Distinct flag, not the current setting */
7823 assert( sDistinct.isTnct );
7824 sDistinct.isTnct = 2;
7826 #if TREETRACE_ENABLED
7827 if( sqlite3TreeTrace & 0x20000 ){
7828 TREETRACE(0x20000,pParse,p,("Transform DISTINCT into GROUP BY:\n"));
7829 sqlite3TreeViewSelect(0, p, 0);
7831 #endif
7834 /* If there is an ORDER BY clause, then create an ephemeral index to
7835 ** do the sorting. But this sorting ephemeral index might end up
7836 ** being unused if the data can be extracted in pre-sorted order.
7837 ** If that is the case, then the OP_OpenEphemeral instruction will be
7838 ** changed to an OP_Noop once we figure out that the sorting index is
7839 ** not needed. The sSort.addrSortIndex variable is used to facilitate
7840 ** that change.
7842 if( sSort.pOrderBy ){
7843 KeyInfo *pKeyInfo;
7844 pKeyInfo = sqlite3KeyInfoFromExprList(
7845 pParse, sSort.pOrderBy, 0, pEList->nExpr);
7846 sSort.iECursor = pParse->nTab++;
7847 sSort.addrSortIndex =
7848 sqlite3VdbeAddOp4(v, OP_OpenEphemeral,
7849 sSort.iECursor, sSort.pOrderBy->nExpr+1+pEList->nExpr, 0,
7850 (char*)pKeyInfo, P4_KEYINFO
7852 }else{
7853 sSort.addrSortIndex = -1;
7856 /* If the output is destined for a temporary table, open that table.
7858 if( pDest->eDest==SRT_EphemTab ){
7859 sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pDest->iSDParm, pEList->nExpr);
7860 if( p->selFlags & SF_NestedFrom ){
7861 /* Delete or NULL-out result columns that will never be used */
7862 int ii;
7863 for(ii=pEList->nExpr-1; ii>0 && pEList->a[ii].fg.bUsed==0; ii--){
7864 sqlite3ExprDelete(db, pEList->a[ii].pExpr);
7865 sqlite3DbFree(db, pEList->a[ii].zEName);
7866 pEList->nExpr--;
7868 for(ii=0; ii<pEList->nExpr; ii++){
7869 if( pEList->a[ii].fg.bUsed==0 ) pEList->a[ii].pExpr->op = TK_NULL;
7874 /* Set the limiter.
7876 iEnd = sqlite3VdbeMakeLabel(pParse);
7877 if( (p->selFlags & SF_FixedLimit)==0 ){
7878 p->nSelectRow = 320; /* 4 billion rows */
7880 if( p->pLimit ) computeLimitRegisters(pParse, p, iEnd);
7881 if( p->iLimit==0 && sSort.addrSortIndex>=0 ){
7882 sqlite3VdbeChangeOpcode(v, sSort.addrSortIndex, OP_SorterOpen);
7883 sSort.sortFlags |= SORTFLAG_UseSorter;
7886 /* Open an ephemeral index to use for the distinct set.
7888 if( p->selFlags & SF_Distinct ){
7889 sDistinct.tabTnct = pParse->nTab++;
7890 sDistinct.addrTnct = sqlite3VdbeAddOp4(v, OP_OpenEphemeral,
7891 sDistinct.tabTnct, 0, 0,
7892 (char*)sqlite3KeyInfoFromExprList(pParse, p->pEList,0,0),
7893 P4_KEYINFO);
7894 sqlite3VdbeChangeP5(v, BTREE_UNORDERED);
7895 sDistinct.eTnctType = WHERE_DISTINCT_UNORDERED;
7896 }else{
7897 sDistinct.eTnctType = WHERE_DISTINCT_NOOP;
7900 if( !isAgg && pGroupBy==0 ){
7901 /* No aggregate functions and no GROUP BY clause */
7902 u16 wctrlFlags = (sDistinct.isTnct ? WHERE_WANT_DISTINCT : 0)
7903 | (p->selFlags & SF_FixedLimit);
7904 #ifndef SQLITE_OMIT_WINDOWFUNC
7905 Window *pWin = p->pWin; /* Main window object (or NULL) */
7906 if( pWin ){
7907 sqlite3WindowCodeInit(pParse, p);
7909 #endif
7910 assert( WHERE_USE_LIMIT==SF_FixedLimit );
7913 /* Begin the database scan. */
7914 TREETRACE(0x2,pParse,p,("WhereBegin\n"));
7915 pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, sSort.pOrderBy,
7916 p->pEList, p, wctrlFlags, p->nSelectRow);
7917 if( pWInfo==0 ) goto select_end;
7918 if( sqlite3WhereOutputRowCount(pWInfo) < p->nSelectRow ){
7919 p->nSelectRow = sqlite3WhereOutputRowCount(pWInfo);
7921 if( sDistinct.isTnct && sqlite3WhereIsDistinct(pWInfo) ){
7922 sDistinct.eTnctType = sqlite3WhereIsDistinct(pWInfo);
7924 if( sSort.pOrderBy ){
7925 sSort.nOBSat = sqlite3WhereIsOrdered(pWInfo);
7926 sSort.labelOBLopt = sqlite3WhereOrderByLimitOptLabel(pWInfo);
7927 if( sSort.nOBSat==sSort.pOrderBy->nExpr ){
7928 sSort.pOrderBy = 0;
7931 TREETRACE(0x2,pParse,p,("WhereBegin returns\n"));
7933 /* If sorting index that was created by a prior OP_OpenEphemeral
7934 ** instruction ended up not being needed, then change the OP_OpenEphemeral
7935 ** into an OP_Noop.
7937 if( sSort.addrSortIndex>=0 && sSort.pOrderBy==0 ){
7938 sqlite3VdbeChangeToNoop(v, sSort.addrSortIndex);
7941 assert( p->pEList==pEList );
7942 #ifndef SQLITE_OMIT_WINDOWFUNC
7943 if( pWin ){
7944 int addrGosub = sqlite3VdbeMakeLabel(pParse);
7945 int iCont = sqlite3VdbeMakeLabel(pParse);
7946 int iBreak = sqlite3VdbeMakeLabel(pParse);
7947 int regGosub = ++pParse->nMem;
7949 sqlite3WindowCodeStep(pParse, p, pWInfo, regGosub, addrGosub);
7951 sqlite3VdbeAddOp2(v, OP_Goto, 0, iBreak);
7952 sqlite3VdbeResolveLabel(v, addrGosub);
7953 VdbeNoopComment((v, "inner-loop subroutine"));
7954 sSort.labelOBLopt = 0;
7955 selectInnerLoop(pParse, p, -1, &sSort, &sDistinct, pDest, iCont, iBreak);
7956 sqlite3VdbeResolveLabel(v, iCont);
7957 sqlite3VdbeAddOp1(v, OP_Return, regGosub);
7958 VdbeComment((v, "end inner-loop subroutine"));
7959 sqlite3VdbeResolveLabel(v, iBreak);
7960 }else
7961 #endif /* SQLITE_OMIT_WINDOWFUNC */
7963 /* Use the standard inner loop. */
7964 selectInnerLoop(pParse, p, -1, &sSort, &sDistinct, pDest,
7965 sqlite3WhereContinueLabel(pWInfo),
7966 sqlite3WhereBreakLabel(pWInfo));
7968 /* End the database scan loop.
7970 TREETRACE(0x2,pParse,p,("WhereEnd\n"));
7971 sqlite3WhereEnd(pWInfo);
7973 }else{
7974 /* This case when there exist aggregate functions or a GROUP BY clause
7975 ** or both */
7976 NameContext sNC; /* Name context for processing aggregate information */
7977 int iAMem; /* First Mem address for storing current GROUP BY */
7978 int iBMem; /* First Mem address for previous GROUP BY */
7979 int iUseFlag; /* Mem address holding flag indicating that at least
7980 ** one row of the input to the aggregator has been
7981 ** processed */
7982 int iAbortFlag; /* Mem address which causes query abort if positive */
7983 int groupBySort; /* Rows come from source in GROUP BY order */
7984 int addrEnd; /* End of processing for this SELECT */
7985 int sortPTab = 0; /* Pseudotable used to decode sorting results */
7986 int sortOut = 0; /* Output register from the sorter */
7987 int orderByGrp = 0; /* True if the GROUP BY and ORDER BY are the same */
7989 /* Remove any and all aliases between the result set and the
7990 ** GROUP BY clause.
7992 if( pGroupBy ){
7993 int k; /* Loop counter */
7994 struct ExprList_item *pItem; /* For looping over expression in a list */
7996 for(k=p->pEList->nExpr, pItem=p->pEList->a; k>0; k--, pItem++){
7997 pItem->u.x.iAlias = 0;
7999 for(k=pGroupBy->nExpr, pItem=pGroupBy->a; k>0; k--, pItem++){
8000 pItem->u.x.iAlias = 0;
8002 assert( 66==sqlite3LogEst(100) );
8003 if( p->nSelectRow>66 ) p->nSelectRow = 66;
8005 /* If there is both a GROUP BY and an ORDER BY clause and they are
8006 ** identical, then it may be possible to disable the ORDER BY clause
8007 ** on the grounds that the GROUP BY will cause elements to come out
8008 ** in the correct order. It also may not - the GROUP BY might use a
8009 ** database index that causes rows to be grouped together as required
8010 ** but not actually sorted. Either way, record the fact that the
8011 ** ORDER BY and GROUP BY clauses are the same by setting the orderByGrp
8012 ** variable. */
8013 if( sSort.pOrderBy && pGroupBy->nExpr==sSort.pOrderBy->nExpr ){
8014 int ii;
8015 /* The GROUP BY processing doesn't care whether rows are delivered in
8016 ** ASC or DESC order - only that each group is returned contiguously.
8017 ** So set the ASC/DESC flags in the GROUP BY to match those in the
8018 ** ORDER BY to maximize the chances of rows being delivered in an
8019 ** order that makes the ORDER BY redundant. */
8020 for(ii=0; ii<pGroupBy->nExpr; ii++){
8021 u8 sortFlags;
8022 sortFlags = sSort.pOrderBy->a[ii].fg.sortFlags & KEYINFO_ORDER_DESC;
8023 pGroupBy->a[ii].fg.sortFlags = sortFlags;
8025 if( sqlite3ExprListCompare(pGroupBy, sSort.pOrderBy, -1)==0 ){
8026 orderByGrp = 1;
8029 }else{
8030 assert( 0==sqlite3LogEst(1) );
8031 p->nSelectRow = 0;
8034 /* Create a label to jump to when we want to abort the query */
8035 addrEnd = sqlite3VdbeMakeLabel(pParse);
8037 /* Convert TK_COLUMN nodes into TK_AGG_COLUMN and make entries in
8038 ** sAggInfo for all TK_AGG_FUNCTION nodes in expressions of the
8039 ** SELECT statement.
8041 pAggInfo = sqlite3DbMallocZero(db, sizeof(*pAggInfo) );
8042 if( pAggInfo ){
8043 sqlite3ParserAddCleanup(pParse, agginfoFree, pAggInfo);
8044 testcase( pParse->earlyCleanup );
8046 if( db->mallocFailed ){
8047 goto select_end;
8049 pAggInfo->selId = p->selId;
8050 #ifdef SQLITE_DEBUG
8051 pAggInfo->pSelect = p;
8052 #endif
8053 memset(&sNC, 0, sizeof(sNC));
8054 sNC.pParse = pParse;
8055 sNC.pSrcList = pTabList;
8056 sNC.uNC.pAggInfo = pAggInfo;
8057 VVA_ONLY( sNC.ncFlags = NC_UAggInfo; )
8058 pAggInfo->nSortingColumn = pGroupBy ? pGroupBy->nExpr : 0;
8059 pAggInfo->pGroupBy = pGroupBy;
8060 sqlite3ExprAnalyzeAggList(&sNC, pEList);
8061 sqlite3ExprAnalyzeAggList(&sNC, sSort.pOrderBy);
8062 if( pHaving ){
8063 if( pGroupBy ){
8064 assert( pWhere==p->pWhere );
8065 assert( pHaving==p->pHaving );
8066 assert( pGroupBy==p->pGroupBy );
8067 havingToWhere(pParse, p);
8068 pWhere = p->pWhere;
8070 sqlite3ExprAnalyzeAggregates(&sNC, pHaving);
8072 pAggInfo->nAccumulator = pAggInfo->nColumn;
8073 if( p->pGroupBy==0 && p->pHaving==0 && pAggInfo->nFunc==1 ){
8074 minMaxFlag = minMaxQuery(db, pAggInfo->aFunc[0].pFExpr, &pMinMaxOrderBy);
8075 }else{
8076 minMaxFlag = WHERE_ORDERBY_NORMAL;
8078 analyzeAggFuncArgs(pAggInfo, &sNC);
8079 if( db->mallocFailed ) goto select_end;
8080 #if TREETRACE_ENABLED
8081 if( sqlite3TreeTrace & 0x20 ){
8082 TREETRACE(0x20,pParse,p,("After aggregate analysis %p:\n", pAggInfo));
8083 sqlite3TreeViewSelect(0, p, 0);
8084 if( minMaxFlag ){
8085 sqlite3DebugPrintf("MIN/MAX Optimization (0x%02x) adds:\n", minMaxFlag);
8086 sqlite3TreeViewExprList(0, pMinMaxOrderBy, 0, "ORDERBY");
8088 printAggInfo(pAggInfo);
8090 #endif
8093 /* Processing for aggregates with GROUP BY is very different and
8094 ** much more complex than aggregates without a GROUP BY.
8096 if( pGroupBy ){
8097 KeyInfo *pKeyInfo; /* Keying information for the group by clause */
8098 int addr1; /* A-vs-B comparison jump */
8099 int addrOutputRow; /* Start of subroutine that outputs a result row */
8100 int regOutputRow; /* Return address register for output subroutine */
8101 int addrSetAbort; /* Set the abort flag and return */
8102 int addrTopOfLoop; /* Top of the input loop */
8103 int addrSortingIdx; /* The OP_OpenEphemeral for the sorting index */
8104 int addrReset; /* Subroutine for resetting the accumulator */
8105 int regReset; /* Return address register for reset subroutine */
8106 ExprList *pDistinct = 0;
8107 u16 distFlag = 0;
8108 int eDist = WHERE_DISTINCT_NOOP;
8110 if( pAggInfo->nFunc==1
8111 && pAggInfo->aFunc[0].iDistinct>=0
8112 && ALWAYS(pAggInfo->aFunc[0].pFExpr!=0)
8113 && ALWAYS(ExprUseXList(pAggInfo->aFunc[0].pFExpr))
8114 && pAggInfo->aFunc[0].pFExpr->x.pList!=0
8116 Expr *pExpr = pAggInfo->aFunc[0].pFExpr->x.pList->a[0].pExpr;
8117 pExpr = sqlite3ExprDup(db, pExpr, 0);
8118 pDistinct = sqlite3ExprListDup(db, pGroupBy, 0);
8119 pDistinct = sqlite3ExprListAppend(pParse, pDistinct, pExpr);
8120 distFlag = pDistinct ? (WHERE_WANT_DISTINCT|WHERE_AGG_DISTINCT) : 0;
8123 /* If there is a GROUP BY clause we might need a sorting index to
8124 ** implement it. Allocate that sorting index now. If it turns out
8125 ** that we do not need it after all, the OP_SorterOpen instruction
8126 ** will be converted into a Noop.
8128 pAggInfo->sortingIdx = pParse->nTab++;
8129 pKeyInfo = sqlite3KeyInfoFromExprList(pParse, pGroupBy,
8130 0, pAggInfo->nColumn);
8131 addrSortingIdx = sqlite3VdbeAddOp4(v, OP_SorterOpen,
8132 pAggInfo->sortingIdx, pAggInfo->nSortingColumn,
8133 0, (char*)pKeyInfo, P4_KEYINFO);
8135 /* Initialize memory locations used by GROUP BY aggregate processing
8137 iUseFlag = ++pParse->nMem;
8138 iAbortFlag = ++pParse->nMem;
8139 regOutputRow = ++pParse->nMem;
8140 addrOutputRow = sqlite3VdbeMakeLabel(pParse);
8141 regReset = ++pParse->nMem;
8142 addrReset = sqlite3VdbeMakeLabel(pParse);
8143 iAMem = pParse->nMem + 1;
8144 pParse->nMem += pGroupBy->nExpr;
8145 iBMem = pParse->nMem + 1;
8146 pParse->nMem += pGroupBy->nExpr;
8147 sqlite3VdbeAddOp2(v, OP_Integer, 0, iAbortFlag);
8148 VdbeComment((v, "clear abort flag"));
8149 sqlite3VdbeAddOp3(v, OP_Null, 0, iAMem, iAMem+pGroupBy->nExpr-1);
8151 /* Begin a loop that will extract all source rows in GROUP BY order.
8152 ** This might involve two separate loops with an OP_Sort in between, or
8153 ** it might be a single loop that uses an index to extract information
8154 ** in the right order to begin with.
8156 sqlite3VdbeAddOp2(v, OP_Gosub, regReset, addrReset);
8157 TREETRACE(0x2,pParse,p,("WhereBegin\n"));
8158 pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, pGroupBy, pDistinct,
8159 p, (sDistinct.isTnct==2 ? WHERE_DISTINCTBY : WHERE_GROUPBY)
8160 | (orderByGrp ? WHERE_SORTBYGROUP : 0) | distFlag, 0
8162 if( pWInfo==0 ){
8163 sqlite3ExprListDelete(db, pDistinct);
8164 goto select_end;
8166 if( pParse->pIdxEpr ){
8167 optimizeAggregateUseOfIndexedExpr(pParse, p, pAggInfo, &sNC);
8169 assignAggregateRegisters(pParse, pAggInfo);
8170 eDist = sqlite3WhereIsDistinct(pWInfo);
8171 TREETRACE(0x2,pParse,p,("WhereBegin returns\n"));
8172 if( sqlite3WhereIsOrdered(pWInfo)==pGroupBy->nExpr ){
8173 /* The optimizer is able to deliver rows in group by order so
8174 ** we do not have to sort. The OP_OpenEphemeral table will be
8175 ** cancelled later because we still need to use the pKeyInfo
8177 groupBySort = 0;
8178 }else{
8179 /* Rows are coming out in undetermined order. We have to push
8180 ** each row into a sorting index, terminate the first loop,
8181 ** then loop over the sorting index in order to get the output
8182 ** in sorted order
8184 int regBase;
8185 int regRecord;
8186 int nCol;
8187 int nGroupBy;
8189 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS
8190 int addrExp; /* Address of OP_Explain instruction */
8191 #endif
8192 ExplainQueryPlan2(addrExp, (pParse, 0, "USE TEMP B-TREE FOR %s",
8193 (sDistinct.isTnct && (p->selFlags&SF_Distinct)==0) ?
8194 "DISTINCT" : "GROUP BY"
8197 groupBySort = 1;
8198 nGroupBy = pGroupBy->nExpr;
8199 nCol = nGroupBy;
8200 j = nGroupBy;
8201 for(i=0; i<pAggInfo->nColumn; i++){
8202 if( pAggInfo->aCol[i].iSorterColumn>=j ){
8203 nCol++;
8204 j++;
8207 regBase = sqlite3GetTempRange(pParse, nCol);
8208 sqlite3ExprCodeExprList(pParse, pGroupBy, regBase, 0, 0);
8209 j = nGroupBy;
8210 pAggInfo->directMode = 1;
8211 for(i=0; i<pAggInfo->nColumn; i++){
8212 struct AggInfo_col *pCol = &pAggInfo->aCol[i];
8213 if( pCol->iSorterColumn>=j ){
8214 sqlite3ExprCode(pParse, pCol->pCExpr, j + regBase);
8215 j++;
8218 pAggInfo->directMode = 0;
8219 regRecord = sqlite3GetTempReg(pParse);
8220 sqlite3VdbeScanStatusCounters(v, addrExp, 0, sqlite3VdbeCurrentAddr(v));
8221 sqlite3VdbeAddOp3(v, OP_MakeRecord, regBase, nCol, regRecord);
8222 sqlite3VdbeAddOp2(v, OP_SorterInsert, pAggInfo->sortingIdx, regRecord);
8223 sqlite3VdbeScanStatusRange(v, addrExp, sqlite3VdbeCurrentAddr(v)-2, -1);
8224 sqlite3ReleaseTempReg(pParse, regRecord);
8225 sqlite3ReleaseTempRange(pParse, regBase, nCol);
8226 TREETRACE(0x2,pParse,p,("WhereEnd\n"));
8227 sqlite3WhereEnd(pWInfo);
8228 pAggInfo->sortingIdxPTab = sortPTab = pParse->nTab++;
8229 sortOut = sqlite3GetTempReg(pParse);
8230 sqlite3VdbeScanStatusCounters(v, addrExp, sqlite3VdbeCurrentAddr(v), 0);
8231 sqlite3VdbeAddOp3(v, OP_OpenPseudo, sortPTab, sortOut, nCol);
8232 sqlite3VdbeAddOp2(v, OP_SorterSort, pAggInfo->sortingIdx, addrEnd);
8233 VdbeComment((v, "GROUP BY sort")); VdbeCoverage(v);
8234 pAggInfo->useSortingIdx = 1;
8235 sqlite3VdbeScanStatusRange(v, addrExp, -1, sortPTab);
8236 sqlite3VdbeScanStatusRange(v, addrExp, -1, pAggInfo->sortingIdx);
8239 /* If there are entries in pAgggInfo->aFunc[] that contain subexpressions
8240 ** that are indexed (and that were previously identified and tagged
8241 ** in optimizeAggregateUseOfIndexedExpr()) then those subexpressions
8242 ** must now be converted into a TK_AGG_COLUMN node so that the value
8243 ** is correctly pulled from the index rather than being recomputed. */
8244 if( pParse->pIdxEpr ){
8245 aggregateConvertIndexedExprRefToColumn(pAggInfo);
8246 #if TREETRACE_ENABLED
8247 if( sqlite3TreeTrace & 0x20 ){
8248 TREETRACE(0x20, pParse, p,
8249 ("AggInfo function expressions converted to reference index\n"));
8250 sqlite3TreeViewSelect(0, p, 0);
8251 printAggInfo(pAggInfo);
8253 #endif
8256 /* If the index or temporary table used by the GROUP BY sort
8257 ** will naturally deliver rows in the order required by the ORDER BY
8258 ** clause, cancel the ephemeral table open coded earlier.
8260 ** This is an optimization - the correct answer should result regardless.
8261 ** Use the SQLITE_GroupByOrder flag with SQLITE_TESTCTRL_OPTIMIZER to
8262 ** disable this optimization for testing purposes. */
8263 if( orderByGrp && OptimizationEnabled(db, SQLITE_GroupByOrder)
8264 && (groupBySort || sqlite3WhereIsSorted(pWInfo))
8266 sSort.pOrderBy = 0;
8267 sqlite3VdbeChangeToNoop(v, sSort.addrSortIndex);
8270 /* Evaluate the current GROUP BY terms and store in b0, b1, b2...
8271 ** (b0 is memory location iBMem+0, b1 is iBMem+1, and so forth)
8272 ** Then compare the current GROUP BY terms against the GROUP BY terms
8273 ** from the previous row currently stored in a0, a1, a2...
8275 addrTopOfLoop = sqlite3VdbeCurrentAddr(v);
8276 if( groupBySort ){
8277 sqlite3VdbeAddOp3(v, OP_SorterData, pAggInfo->sortingIdx,
8278 sortOut, sortPTab);
8280 for(j=0; j<pGroupBy->nExpr; j++){
8281 if( groupBySort ){
8282 sqlite3VdbeAddOp3(v, OP_Column, sortPTab, j, iBMem+j);
8283 }else{
8284 pAggInfo->directMode = 1;
8285 sqlite3ExprCode(pParse, pGroupBy->a[j].pExpr, iBMem+j);
8288 sqlite3VdbeAddOp4(v, OP_Compare, iAMem, iBMem, pGroupBy->nExpr,
8289 (char*)sqlite3KeyInfoRef(pKeyInfo), P4_KEYINFO);
8290 addr1 = sqlite3VdbeCurrentAddr(v);
8291 sqlite3VdbeAddOp3(v, OP_Jump, addr1+1, 0, addr1+1); VdbeCoverage(v);
8293 /* Generate code that runs whenever the GROUP BY changes.
8294 ** Changes in the GROUP BY are detected by the previous code
8295 ** block. If there were no changes, this block is skipped.
8297 ** This code copies current group by terms in b0,b1,b2,...
8298 ** over to a0,a1,a2. It then calls the output subroutine
8299 ** and resets the aggregate accumulator registers in preparation
8300 ** for the next GROUP BY batch.
8302 sqlite3ExprCodeMove(pParse, iBMem, iAMem, pGroupBy->nExpr);
8303 sqlite3VdbeAddOp2(v, OP_Gosub, regOutputRow, addrOutputRow);
8304 VdbeComment((v, "output one row"));
8305 sqlite3VdbeAddOp2(v, OP_IfPos, iAbortFlag, addrEnd); VdbeCoverage(v);
8306 VdbeComment((v, "check abort flag"));
8307 sqlite3VdbeAddOp2(v, OP_Gosub, regReset, addrReset);
8308 VdbeComment((v, "reset accumulator"));
8310 /* Update the aggregate accumulators based on the content of
8311 ** the current row
8313 sqlite3VdbeJumpHere(v, addr1);
8314 updateAccumulator(pParse, iUseFlag, pAggInfo, eDist);
8315 sqlite3VdbeAddOp2(v, OP_Integer, 1, iUseFlag);
8316 VdbeComment((v, "indicate data in accumulator"));
8318 /* End of the loop
8320 if( groupBySort ){
8321 sqlite3VdbeAddOp2(v, OP_SorterNext, pAggInfo->sortingIdx,addrTopOfLoop);
8322 VdbeCoverage(v);
8323 }else{
8324 TREETRACE(0x2,pParse,p,("WhereEnd\n"));
8325 sqlite3WhereEnd(pWInfo);
8326 sqlite3VdbeChangeToNoop(v, addrSortingIdx);
8328 sqlite3ExprListDelete(db, pDistinct);
8330 /* Output the final row of result
8332 sqlite3VdbeAddOp2(v, OP_Gosub, regOutputRow, addrOutputRow);
8333 VdbeComment((v, "output final row"));
8335 /* Jump over the subroutines
8337 sqlite3VdbeGoto(v, addrEnd);
8339 /* Generate a subroutine that outputs a single row of the result
8340 ** set. This subroutine first looks at the iUseFlag. If iUseFlag
8341 ** is less than or equal to zero, the subroutine is a no-op. If
8342 ** the processing calls for the query to abort, this subroutine
8343 ** increments the iAbortFlag memory location before returning in
8344 ** order to signal the caller to abort.
8346 addrSetAbort = sqlite3VdbeCurrentAddr(v);
8347 sqlite3VdbeAddOp2(v, OP_Integer, 1, iAbortFlag);
8348 VdbeComment((v, "set abort flag"));
8349 sqlite3VdbeAddOp1(v, OP_Return, regOutputRow);
8350 sqlite3VdbeResolveLabel(v, addrOutputRow);
8351 addrOutputRow = sqlite3VdbeCurrentAddr(v);
8352 sqlite3VdbeAddOp2(v, OP_IfPos, iUseFlag, addrOutputRow+2);
8353 VdbeCoverage(v);
8354 VdbeComment((v, "Groupby result generator entry point"));
8355 sqlite3VdbeAddOp1(v, OP_Return, regOutputRow);
8356 finalizeAggFunctions(pParse, pAggInfo);
8357 sqlite3ExprIfFalse(pParse, pHaving, addrOutputRow+1, SQLITE_JUMPIFNULL);
8358 selectInnerLoop(pParse, p, -1, &sSort,
8359 &sDistinct, pDest,
8360 addrOutputRow+1, addrSetAbort);
8361 sqlite3VdbeAddOp1(v, OP_Return, regOutputRow);
8362 VdbeComment((v, "end groupby result generator"));
8364 /* Generate a subroutine that will reset the group-by accumulator
8366 sqlite3VdbeResolveLabel(v, addrReset);
8367 resetAccumulator(pParse, pAggInfo);
8368 sqlite3VdbeAddOp2(v, OP_Integer, 0, iUseFlag);
8369 VdbeComment((v, "indicate accumulator empty"));
8370 sqlite3VdbeAddOp1(v, OP_Return, regReset);
8372 if( distFlag!=0 && eDist!=WHERE_DISTINCT_NOOP ){
8373 struct AggInfo_func *pF = &pAggInfo->aFunc[0];
8374 fixDistinctOpenEph(pParse, eDist, pF->iDistinct, pF->iDistAddr);
8376 } /* endif pGroupBy. Begin aggregate queries without GROUP BY: */
8377 else {
8378 Table *pTab;
8379 if( (pTab = isSimpleCount(p, pAggInfo))!=0 ){
8380 /* If isSimpleCount() returns a pointer to a Table structure, then
8381 ** the SQL statement is of the form:
8383 ** SELECT count(*) FROM <tbl>
8385 ** where the Table structure returned represents table <tbl>.
8387 ** This statement is so common that it is optimized specially. The
8388 ** OP_Count instruction is executed either on the intkey table that
8389 ** contains the data for table <tbl> or on one of its indexes. It
8390 ** is better to execute the op on an index, as indexes are almost
8391 ** always spread across less pages than their corresponding tables.
8393 const int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
8394 const int iCsr = pParse->nTab++; /* Cursor to scan b-tree */
8395 Index *pIdx; /* Iterator variable */
8396 KeyInfo *pKeyInfo = 0; /* Keyinfo for scanned index */
8397 Index *pBest = 0; /* Best index found so far */
8398 Pgno iRoot = pTab->tnum; /* Root page of scanned b-tree */
8400 sqlite3CodeVerifySchema(pParse, iDb);
8401 sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName);
8403 /* Search for the index that has the lowest scan cost.
8405 ** (2011-04-15) Do not do a full scan of an unordered index.
8407 ** (2013-10-03) Do not count the entries in a partial index.
8409 ** In practice the KeyInfo structure will not be used. It is only
8410 ** passed to keep OP_OpenRead happy.
8412 if( !HasRowid(pTab) ) pBest = sqlite3PrimaryKeyIndex(pTab);
8413 if( !p->pSrc->a[0].fg.notIndexed ){
8414 for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
8415 if( pIdx->bUnordered==0
8416 && pIdx->szIdxRow<pTab->szTabRow
8417 && pIdx->pPartIdxWhere==0
8418 && (!pBest || pIdx->szIdxRow<pBest->szIdxRow)
8420 pBest = pIdx;
8424 if( pBest ){
8425 iRoot = pBest->tnum;
8426 pKeyInfo = sqlite3KeyInfoOfIndex(pParse, pBest);
8429 /* Open a read-only cursor, execute the OP_Count, close the cursor. */
8430 sqlite3VdbeAddOp4Int(v, OP_OpenRead, iCsr, (int)iRoot, iDb, 1);
8431 if( pKeyInfo ){
8432 sqlite3VdbeChangeP4(v, -1, (char *)pKeyInfo, P4_KEYINFO);
8434 assignAggregateRegisters(pParse, pAggInfo);
8435 sqlite3VdbeAddOp2(v, OP_Count, iCsr, AggInfoFuncReg(pAggInfo,0));
8436 sqlite3VdbeAddOp1(v, OP_Close, iCsr);
8437 explainSimpleCount(pParse, pTab, pBest);
8438 }else{
8439 int regAcc = 0; /* "populate accumulators" flag */
8440 ExprList *pDistinct = 0;
8441 u16 distFlag = 0;
8442 int eDist;
8444 /* If there are accumulator registers but no min() or max() functions
8445 ** without FILTER clauses, allocate register regAcc. Register regAcc
8446 ** will contain 0 the first time the inner loop runs, and 1 thereafter.
8447 ** The code generated by updateAccumulator() uses this to ensure
8448 ** that the accumulator registers are (a) updated only once if
8449 ** there are no min() or max functions or (b) always updated for the
8450 ** first row visited by the aggregate, so that they are updated at
8451 ** least once even if the FILTER clause means the min() or max()
8452 ** function visits zero rows. */
8453 if( pAggInfo->nAccumulator ){
8454 for(i=0; i<pAggInfo->nFunc; i++){
8455 if( ExprHasProperty(pAggInfo->aFunc[i].pFExpr, EP_WinFunc) ){
8456 continue;
8458 if( pAggInfo->aFunc[i].pFunc->funcFlags&SQLITE_FUNC_NEEDCOLL ){
8459 break;
8462 if( i==pAggInfo->nFunc ){
8463 regAcc = ++pParse->nMem;
8464 sqlite3VdbeAddOp2(v, OP_Integer, 0, regAcc);
8466 }else if( pAggInfo->nFunc==1 && pAggInfo->aFunc[0].iDistinct>=0 ){
8467 assert( ExprUseXList(pAggInfo->aFunc[0].pFExpr) );
8468 pDistinct = pAggInfo->aFunc[0].pFExpr->x.pList;
8469 distFlag = pDistinct ? (WHERE_WANT_DISTINCT|WHERE_AGG_DISTINCT) : 0;
8471 assignAggregateRegisters(pParse, pAggInfo);
8473 /* This case runs if the aggregate has no GROUP BY clause. The
8474 ** processing is much simpler since there is only a single row
8475 ** of output.
8477 assert( p->pGroupBy==0 );
8478 resetAccumulator(pParse, pAggInfo);
8480 /* If this query is a candidate for the min/max optimization, then
8481 ** minMaxFlag will have been previously set to either
8482 ** WHERE_ORDERBY_MIN or WHERE_ORDERBY_MAX and pMinMaxOrderBy will
8483 ** be an appropriate ORDER BY expression for the optimization.
8485 assert( minMaxFlag==WHERE_ORDERBY_NORMAL || pMinMaxOrderBy!=0 );
8486 assert( pMinMaxOrderBy==0 || pMinMaxOrderBy->nExpr==1 );
8488 TREETRACE(0x2,pParse,p,("WhereBegin\n"));
8489 pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, pMinMaxOrderBy,
8490 pDistinct, p, minMaxFlag|distFlag, 0);
8491 if( pWInfo==0 ){
8492 goto select_end;
8494 TREETRACE(0x2,pParse,p,("WhereBegin returns\n"));
8495 eDist = sqlite3WhereIsDistinct(pWInfo);
8496 updateAccumulator(pParse, regAcc, pAggInfo, eDist);
8497 if( eDist!=WHERE_DISTINCT_NOOP ){
8498 struct AggInfo_func *pF = pAggInfo->aFunc;
8499 if( pF ){
8500 fixDistinctOpenEph(pParse, eDist, pF->iDistinct, pF->iDistAddr);
8504 if( regAcc ) sqlite3VdbeAddOp2(v, OP_Integer, 1, regAcc);
8505 if( minMaxFlag ){
8506 sqlite3WhereMinMaxOptEarlyOut(v, pWInfo);
8508 TREETRACE(0x2,pParse,p,("WhereEnd\n"));
8509 sqlite3WhereEnd(pWInfo);
8510 finalizeAggFunctions(pParse, pAggInfo);
8513 sSort.pOrderBy = 0;
8514 sqlite3ExprIfFalse(pParse, pHaving, addrEnd, SQLITE_JUMPIFNULL);
8515 selectInnerLoop(pParse, p, -1, 0, 0,
8516 pDest, addrEnd, addrEnd);
8518 sqlite3VdbeResolveLabel(v, addrEnd);
8520 } /* endif aggregate query */
8522 if( sDistinct.eTnctType==WHERE_DISTINCT_UNORDERED ){
8523 explainTempTable(pParse, "DISTINCT");
8526 /* If there is an ORDER BY clause, then we need to sort the results
8527 ** and send them to the callback one by one.
8529 if( sSort.pOrderBy ){
8530 assert( p->pEList==pEList );
8531 generateSortTail(pParse, p, &sSort, pEList->nExpr, pDest);
8534 /* Jump here to skip this query
8536 sqlite3VdbeResolveLabel(v, iEnd);
8538 /* The SELECT has been coded. If there is an error in the Parse structure,
8539 ** set the return code to 1. Otherwise 0. */
8540 rc = (pParse->nErr>0);
8542 /* Control jumps to here if an error is encountered above, or upon
8543 ** successful coding of the SELECT.
8545 select_end:
8546 assert( db->mallocFailed==0 || db->mallocFailed==1 );
8547 assert( db->mallocFailed==0 || pParse->nErr!=0 );
8548 sqlite3ExprListDelete(db, pMinMaxOrderBy);
8549 #ifdef SQLITE_DEBUG
8550 if( pAggInfo && !db->mallocFailed ){
8551 #if TREETRACE_ENABLED
8552 if( sqlite3TreeTrace & 0x20 ){
8553 TREETRACE(0x20,pParse,p,("Finished with AggInfo\n"));
8554 printAggInfo(pAggInfo);
8556 #endif
8557 for(i=0; i<pAggInfo->nColumn; i++){
8558 Expr *pExpr = pAggInfo->aCol[i].pCExpr;
8559 if( pExpr==0 ) continue;
8560 assert( pExpr->pAggInfo==pAggInfo );
8561 assert( pExpr->iAgg==i );
8563 for(i=0; i<pAggInfo->nFunc; i++){
8564 Expr *pExpr = pAggInfo->aFunc[i].pFExpr;
8565 assert( pExpr!=0 );
8566 assert( pExpr->pAggInfo==pAggInfo );
8567 assert( pExpr->iAgg==i );
8570 #endif
8572 #if TREETRACE_ENABLED
8573 TREETRACE(0x1,pParse,p,("end processing\n"));
8574 if( (sqlite3TreeTrace & 0x40000)!=0 && ExplainQueryPlanParent(pParse)==0 ){
8575 sqlite3TreeViewSelect(0, p, 0);
8577 #endif
8578 ExplainQueryPlanPop(pParse);
8579 return rc;