Modify the behavior of sqlite_dbpage so that the null-INSERT that truncates
[sqlite.git] / src / select.c
blob9fcf30ff4a6898b2d644930d6edb8860d53ff4f1
1 /*
2 ** 2001 September 15
3 **
4 ** The author disclaims copyright to this source code. In place of
5 ** a legal notice, here is a blessing:
6 **
7 ** May you do good and not evil.
8 ** May you find forgiveness for yourself and forgive others.
9 ** May you share freely, never taking more than you give.
11 *************************************************************************
12 ** This file contains C code routines that are called by the parser
13 ** to handle SELECT statements in SQLite.
15 #include "sqliteInt.h"
18 ** An instance of the following object is used to record information about
19 ** how to process the DISTINCT keyword, to simplify passing that information
20 ** into the selectInnerLoop() routine.
22 typedef struct DistinctCtx DistinctCtx;
23 struct DistinctCtx {
24 u8 isTnct; /* 0: Not distinct. 1: DISTICT 2: DISTINCT and ORDER BY */
25 u8 eTnctType; /* One of the WHERE_DISTINCT_* operators */
26 int tabTnct; /* Ephemeral table used for DISTINCT processing */
27 int addrTnct; /* Address of OP_OpenEphemeral opcode for tabTnct */
31 ** An instance of the following object is used to record information about
32 ** the ORDER BY (or GROUP BY) clause of query is being coded.
34 ** The aDefer[] array is used by the sorter-references optimization. For
35 ** example, assuming there is no index that can be used for the ORDER BY,
36 ** for the query:
38 ** SELECT a, bigblob FROM t1 ORDER BY a LIMIT 10;
40 ** it may be more efficient to add just the "a" values to the sorter, and
41 ** retrieve the associated "bigblob" values directly from table t1 as the
42 ** 10 smallest "a" values are extracted from the sorter.
44 ** When the sorter-reference optimization is used, there is one entry in the
45 ** aDefer[] array for each database table that may be read as values are
46 ** extracted from the sorter.
48 typedef struct SortCtx SortCtx;
49 struct SortCtx {
50 ExprList *pOrderBy; /* The ORDER BY (or GROUP BY clause) */
51 int nOBSat; /* Number of ORDER BY terms satisfied by indices */
52 int iECursor; /* Cursor number for the sorter */
53 int regReturn; /* Register holding block-output return address */
54 int labelBkOut; /* Start label for the block-output subroutine */
55 int addrSortIndex; /* Address of the OP_SorterOpen or OP_OpenEphemeral */
56 int labelDone; /* Jump here when done, ex: LIMIT reached */
57 int labelOBLopt; /* Jump here when sorter is full */
58 u8 sortFlags; /* Zero or more SORTFLAG_* bits */
59 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
60 u8 nDefer; /* Number of valid entries in aDefer[] */
61 struct DeferredCsr {
62 Table *pTab; /* Table definition */
63 int iCsr; /* Cursor number for table */
64 int nKey; /* Number of PK columns for table pTab (>=1) */
65 } aDefer[4];
66 #endif
67 struct RowLoadInfo *pDeferredRowLoad; /* Deferred row loading info or NULL */
68 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS
69 int addrPush; /* First instruction to push data into sorter */
70 int addrPushEnd; /* Last instruction that pushes data into sorter */
71 #endif
73 #define SORTFLAG_UseSorter 0x01 /* Use SorterOpen instead of OpenEphemeral */
76 ** Delete all the content of a Select structure. Deallocate the structure
77 ** itself depending on the value of bFree
79 ** If bFree==1, call sqlite3DbFree() on the p object.
80 ** If bFree==0, Leave the first Select object unfreed
82 static void clearSelect(sqlite3 *db, Select *p, int bFree){
83 assert( db!=0 );
84 while( p ){
85 Select *pPrior = p->pPrior;
86 sqlite3ExprListDelete(db, p->pEList);
87 sqlite3SrcListDelete(db, p->pSrc);
88 sqlite3ExprDelete(db, p->pWhere);
89 sqlite3ExprListDelete(db, p->pGroupBy);
90 sqlite3ExprDelete(db, p->pHaving);
91 sqlite3ExprListDelete(db, p->pOrderBy);
92 sqlite3ExprDelete(db, p->pLimit);
93 if( OK_IF_ALWAYS_TRUE(p->pWith) ) sqlite3WithDelete(db, p->pWith);
94 #ifndef SQLITE_OMIT_WINDOWFUNC
95 if( OK_IF_ALWAYS_TRUE(p->pWinDefn) ){
96 sqlite3WindowListDelete(db, p->pWinDefn);
98 while( p->pWin ){
99 assert( p->pWin->ppThis==&p->pWin );
100 sqlite3WindowUnlinkFromSelect(p->pWin);
102 #endif
103 if( bFree ) sqlite3DbNNFreeNN(db, p);
104 p = pPrior;
105 bFree = 1;
110 ** Initialize a SelectDest structure.
112 void sqlite3SelectDestInit(SelectDest *pDest, int eDest, int iParm){
113 pDest->eDest = (u8)eDest;
114 pDest->iSDParm = iParm;
115 pDest->iSDParm2 = 0;
116 pDest->zAffSdst = 0;
117 pDest->iSdst = 0;
118 pDest->nSdst = 0;
123 ** Allocate a new Select structure and return a pointer to that
124 ** structure.
126 Select *sqlite3SelectNew(
127 Parse *pParse, /* Parsing context */
128 ExprList *pEList, /* which columns to include in the result */
129 SrcList *pSrc, /* the FROM clause -- which tables to scan */
130 Expr *pWhere, /* the WHERE clause */
131 ExprList *pGroupBy, /* the GROUP BY clause */
132 Expr *pHaving, /* the HAVING clause */
133 ExprList *pOrderBy, /* the ORDER BY clause */
134 u32 selFlags, /* Flag parameters, such as SF_Distinct */
135 Expr *pLimit /* LIMIT value. NULL means not used */
137 Select *pNew, *pAllocated;
138 Select standin;
139 pAllocated = pNew = sqlite3DbMallocRawNN(pParse->db, sizeof(*pNew) );
140 if( pNew==0 ){
141 assert( pParse->db->mallocFailed );
142 pNew = &standin;
144 if( pEList==0 ){
145 pEList = sqlite3ExprListAppend(pParse, 0,
146 sqlite3Expr(pParse->db,TK_ASTERISK,0));
148 pNew->pEList = pEList;
149 pNew->op = TK_SELECT;
150 pNew->selFlags = selFlags;
151 pNew->iLimit = 0;
152 pNew->iOffset = 0;
153 pNew->selId = ++pParse->nSelect;
154 pNew->addrOpenEphm[0] = -1;
155 pNew->addrOpenEphm[1] = -1;
156 pNew->nSelectRow = 0;
157 if( pSrc==0 ) pSrc = sqlite3DbMallocZero(pParse->db, sizeof(*pSrc));
158 pNew->pSrc = pSrc;
159 pNew->pWhere = pWhere;
160 pNew->pGroupBy = pGroupBy;
161 pNew->pHaving = pHaving;
162 pNew->pOrderBy = pOrderBy;
163 pNew->pPrior = 0;
164 pNew->pNext = 0;
165 pNew->pLimit = pLimit;
166 pNew->pWith = 0;
167 #ifndef SQLITE_OMIT_WINDOWFUNC
168 pNew->pWin = 0;
169 pNew->pWinDefn = 0;
170 #endif
171 if( pParse->db->mallocFailed ) {
172 clearSelect(pParse->db, pNew, pNew!=&standin);
173 pAllocated = 0;
174 }else{
175 assert( pNew->pSrc!=0 || pParse->nErr>0 );
177 return pAllocated;
182 ** Delete the given Select structure and all of its substructures.
184 void sqlite3SelectDelete(sqlite3 *db, Select *p){
185 if( OK_IF_ALWAYS_TRUE(p) ) clearSelect(db, p, 1);
187 void sqlite3SelectDeleteGeneric(sqlite3 *db, void *p){
188 if( ALWAYS(p) ) clearSelect(db, (Select*)p, 1);
192 ** Return a pointer to the right-most SELECT statement in a compound.
194 static Select *findRightmost(Select *p){
195 while( p->pNext ) p = p->pNext;
196 return p;
200 ** Given 1 to 3 identifiers preceding the JOIN keyword, determine the
201 ** type of join. Return an integer constant that expresses that type
202 ** in terms of the following bit values:
204 ** JT_INNER
205 ** JT_CROSS
206 ** JT_OUTER
207 ** JT_NATURAL
208 ** JT_LEFT
209 ** JT_RIGHT
211 ** A full outer join is the combination of JT_LEFT and JT_RIGHT.
213 ** If an illegal or unsupported join type is seen, then still return
214 ** a join type, but put an error in the pParse structure.
216 ** These are the valid join types:
219 ** pA pB pC Return Value
220 ** ------- ----- ----- ------------
221 ** CROSS - - JT_CROSS
222 ** INNER - - JT_INNER
223 ** LEFT - - JT_LEFT|JT_OUTER
224 ** LEFT OUTER - JT_LEFT|JT_OUTER
225 ** RIGHT - - JT_RIGHT|JT_OUTER
226 ** RIGHT OUTER - JT_RIGHT|JT_OUTER
227 ** FULL - - JT_LEFT|JT_RIGHT|JT_OUTER
228 ** FULL OUTER - JT_LEFT|JT_RIGHT|JT_OUTER
229 ** NATURAL INNER - JT_NATURAL|JT_INNER
230 ** NATURAL LEFT - JT_NATURAL|JT_LEFT|JT_OUTER
231 ** NATURAL LEFT OUTER JT_NATURAL|JT_LEFT|JT_OUTER
232 ** NATURAL RIGHT - JT_NATURAL|JT_RIGHT|JT_OUTER
233 ** NATURAL RIGHT OUTER JT_NATURAL|JT_RIGHT|JT_OUTER
234 ** NATURAL FULL - JT_NATURAL|JT_LEFT|JT_RIGHT
235 ** NATURAL FULL OUTER JT_NATRUAL|JT_LEFT|JT_RIGHT
237 ** To preserve historical compatibly, SQLite also accepts a variety
238 ** of other non-standard and in many cases nonsensical join types.
239 ** This routine makes as much sense at it can from the nonsense join
240 ** type and returns a result. Examples of accepted nonsense join types
241 ** include but are not limited to:
243 ** INNER CROSS JOIN -> same as JOIN
244 ** NATURAL CROSS JOIN -> same as NATURAL JOIN
245 ** OUTER LEFT JOIN -> same as LEFT JOIN
246 ** LEFT NATURAL JOIN -> same as NATURAL LEFT JOIN
247 ** LEFT RIGHT JOIN -> same as FULL JOIN
248 ** RIGHT OUTER FULL JOIN -> same as FULL JOIN
249 ** CROSS CROSS CROSS JOIN -> same as JOIN
251 ** The only restrictions on the join type name are:
253 ** * "INNER" cannot appear together with "OUTER", "LEFT", "RIGHT",
254 ** or "FULL".
256 ** * "CROSS" cannot appear together with "OUTER", "LEFT", "RIGHT,
257 ** or "FULL".
259 ** * If "OUTER" is present then there must also be one of
260 ** "LEFT", "RIGHT", or "FULL"
262 int sqlite3JoinType(Parse *pParse, Token *pA, Token *pB, Token *pC){
263 int jointype = 0;
264 Token *apAll[3];
265 Token *p;
266 /* 0123456789 123456789 123456789 123 */
267 static const char zKeyText[] = "naturaleftouterightfullinnercross";
268 static const struct {
269 u8 i; /* Beginning of keyword text in zKeyText[] */
270 u8 nChar; /* Length of the keyword in characters */
271 u8 code; /* Join type mask */
272 } aKeyword[] = {
273 /* (0) natural */ { 0, 7, JT_NATURAL },
274 /* (1) left */ { 6, 4, JT_LEFT|JT_OUTER },
275 /* (2) outer */ { 10, 5, JT_OUTER },
276 /* (3) right */ { 14, 5, JT_RIGHT|JT_OUTER },
277 /* (4) full */ { 19, 4, JT_LEFT|JT_RIGHT|JT_OUTER },
278 /* (5) inner */ { 23, 5, JT_INNER },
279 /* (6) cross */ { 28, 5, JT_INNER|JT_CROSS },
281 int i, j;
282 apAll[0] = pA;
283 apAll[1] = pB;
284 apAll[2] = pC;
285 for(i=0; i<3 && apAll[i]; i++){
286 p = apAll[i];
287 for(j=0; j<ArraySize(aKeyword); j++){
288 if( p->n==aKeyword[j].nChar
289 && sqlite3StrNICmp((char*)p->z, &zKeyText[aKeyword[j].i], p->n)==0 ){
290 jointype |= aKeyword[j].code;
291 break;
294 testcase( j==0 || j==1 || j==2 || j==3 || j==4 || j==5 || j==6 );
295 if( j>=ArraySize(aKeyword) ){
296 jointype |= JT_ERROR;
297 break;
301 (jointype & (JT_INNER|JT_OUTER))==(JT_INNER|JT_OUTER) ||
302 (jointype & JT_ERROR)!=0 ||
303 (jointype & (JT_OUTER|JT_LEFT|JT_RIGHT))==JT_OUTER
305 const char *zSp1 = " ";
306 const char *zSp2 = " ";
307 if( pB==0 ){ zSp1++; }
308 if( pC==0 ){ zSp2++; }
309 sqlite3ErrorMsg(pParse, "unknown join type: "
310 "%T%s%T%s%T", pA, zSp1, pB, zSp2, pC);
311 jointype = JT_INNER;
313 return jointype;
317 ** Return the index of a column in a table. Return -1 if the column
318 ** is not contained in the table.
320 int sqlite3ColumnIndex(Table *pTab, const char *zCol){
321 int i;
322 u8 h = sqlite3StrIHash(zCol);
323 Column *pCol;
324 for(pCol=pTab->aCol, i=0; i<pTab->nCol; pCol++, i++){
325 if( pCol->hName==h && sqlite3StrICmp(pCol->zCnName, zCol)==0 ) return i;
327 return -1;
331 ** Mark a subquery result column as having been used.
333 void sqlite3SrcItemColumnUsed(SrcItem *pItem, int iCol){
334 assert( pItem!=0 );
335 assert( (int)pItem->fg.isNestedFrom == IsNestedFrom(pItem) );
336 if( pItem->fg.isNestedFrom ){
337 ExprList *pResults;
338 assert( pItem->fg.isSubquery );
339 assert( pItem->u4.pSubq!=0 );
340 assert( pItem->u4.pSubq->pSelect!=0 );
341 pResults = pItem->u4.pSubq->pSelect->pEList;
342 assert( pResults!=0 );
343 assert( iCol>=0 && iCol<pResults->nExpr );
344 pResults->a[iCol].fg.bUsed = 1;
349 ** Search the tables iStart..iEnd (inclusive) in pSrc, looking for a
350 ** table that has a column named zCol. The search is left-to-right.
351 ** The first match found is returned.
353 ** When found, set *piTab and *piCol to the table index and column index
354 ** of the matching column and return TRUE.
356 ** If not found, return FALSE.
358 static int tableAndColumnIndex(
359 SrcList *pSrc, /* Array of tables to search */
360 int iStart, /* First member of pSrc->a[] to check */
361 int iEnd, /* Last member of pSrc->a[] to check */
362 const char *zCol, /* Name of the column we are looking for */
363 int *piTab, /* Write index of pSrc->a[] here */
364 int *piCol, /* Write index of pSrc->a[*piTab].pTab->aCol[] here */
365 int bIgnoreHidden /* Ignore hidden columns */
367 int i; /* For looping over tables in pSrc */
368 int iCol; /* Index of column matching zCol */
370 assert( iEnd<pSrc->nSrc );
371 assert( iStart>=0 );
372 assert( (piTab==0)==(piCol==0) ); /* Both or neither are NULL */
374 for(i=iStart; i<=iEnd; i++){
375 iCol = sqlite3ColumnIndex(pSrc->a[i].pSTab, zCol);
376 if( iCol>=0
377 && (bIgnoreHidden==0 || IsHiddenColumn(&pSrc->a[i].pSTab->aCol[iCol])==0)
379 if( piTab ){
380 sqlite3SrcItemColumnUsed(&pSrc->a[i], iCol);
381 *piTab = i;
382 *piCol = iCol;
384 return 1;
387 return 0;
391 ** Set the EP_OuterON property on all terms of the given expression.
392 ** And set the Expr.w.iJoin to iTable for every term in the
393 ** expression.
395 ** The EP_OuterON property is used on terms of an expression to tell
396 ** the OUTER JOIN processing logic that this term is part of the
397 ** join restriction specified in the ON or USING clause and not a part
398 ** of the more general WHERE clause. These terms are moved over to the
399 ** WHERE clause during join processing but we need to remember that they
400 ** originated in the ON or USING clause.
402 ** The Expr.w.iJoin tells the WHERE clause processing that the
403 ** expression depends on table w.iJoin even if that table is not
404 ** explicitly mentioned in the expression. That information is needed
405 ** for cases like this:
407 ** SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.b AND t1.x=5
409 ** The where clause needs to defer the handling of the t1.x=5
410 ** term until after the t2 loop of the join. In that way, a
411 ** NULL t2 row will be inserted whenever t1.x!=5. If we do not
412 ** defer the handling of t1.x=5, it will be processed immediately
413 ** after the t1 loop and rows with t1.x!=5 will never appear in
414 ** the output, which is incorrect.
416 void sqlite3SetJoinExpr(Expr *p, int iTable, u32 joinFlag){
417 assert( joinFlag==EP_OuterON || joinFlag==EP_InnerON );
418 while( p ){
419 ExprSetProperty(p, joinFlag);
420 assert( !ExprHasProperty(p, EP_TokenOnly|EP_Reduced) );
421 ExprSetVVAProperty(p, EP_NoReduce);
422 p->w.iJoin = iTable;
423 if( p->op==TK_FUNCTION ){
424 assert( ExprUseXList(p) );
425 if( p->x.pList ){
426 int i;
427 for(i=0; i<p->x.pList->nExpr; i++){
428 sqlite3SetJoinExpr(p->x.pList->a[i].pExpr, iTable, joinFlag);
432 sqlite3SetJoinExpr(p->pLeft, iTable, joinFlag);
433 p = p->pRight;
437 /* Undo the work of sqlite3SetJoinExpr(). This is used when a LEFT JOIN
438 ** is simplified into an ordinary JOIN, and when an ON expression is
439 ** "pushed down" into the WHERE clause of a subquery.
441 ** Convert every term that is marked with EP_OuterON and w.iJoin==iTable into
442 ** an ordinary term that omits the EP_OuterON mark. Or if iTable<0, then
443 ** just clear every EP_OuterON and EP_InnerON mark from the expression tree.
445 ** If nullable is true, that means that Expr p might evaluate to NULL even
446 ** if it is a reference to a NOT NULL column. This can happen, for example,
447 ** if the table that p references is on the left side of a RIGHT JOIN.
448 ** If nullable is true, then take care to not remove the EP_CanBeNull bit.
449 ** See forum thread https://sqlite.org/forum/forumpost/b40696f50145d21c
451 static void unsetJoinExpr(Expr *p, int iTable, int nullable){
452 while( p ){
453 if( iTable<0 || (ExprHasProperty(p, EP_OuterON) && p->w.iJoin==iTable) ){
454 ExprClearProperty(p, EP_OuterON|EP_InnerON);
455 if( iTable>=0 ) ExprSetProperty(p, EP_InnerON);
457 if( p->op==TK_COLUMN && p->iTable==iTable && !nullable ){
458 ExprClearProperty(p, EP_CanBeNull);
460 if( p->op==TK_FUNCTION ){
461 assert( ExprUseXList(p) );
462 assert( p->pLeft==0 );
463 if( p->x.pList ){
464 int i;
465 for(i=0; i<p->x.pList->nExpr; i++){
466 unsetJoinExpr(p->x.pList->a[i].pExpr, iTable, nullable);
470 unsetJoinExpr(p->pLeft, iTable, nullable);
471 p = p->pRight;
476 ** This routine processes the join information for a SELECT statement.
478 ** * A NATURAL join is converted into a USING join. After that, we
479 ** do not need to be concerned with NATURAL joins and we only have
480 ** think about USING joins.
482 ** * ON and USING clauses result in extra terms being added to the
483 ** WHERE clause to enforce the specified constraints. The extra
484 ** WHERE clause terms will be tagged with EP_OuterON or
485 ** EP_InnerON so that we know that they originated in ON/USING.
487 ** The terms of a FROM clause are contained in the Select.pSrc structure.
488 ** The left most table is the first entry in Select.pSrc. The right-most
489 ** table is the last entry. The join operator is held in the entry to
490 ** the right. Thus entry 1 contains the join operator for the join between
491 ** entries 0 and 1. Any ON or USING clauses associated with the join are
492 ** also attached to the right entry.
494 ** This routine returns the number of errors encountered.
496 static int sqlite3ProcessJoin(Parse *pParse, Select *p){
497 SrcList *pSrc; /* All tables in the FROM clause */
498 int i, j; /* Loop counters */
499 SrcItem *pLeft; /* Left table being joined */
500 SrcItem *pRight; /* Right table being joined */
502 pSrc = p->pSrc;
503 pLeft = &pSrc->a[0];
504 pRight = &pLeft[1];
505 for(i=0; i<pSrc->nSrc-1; i++, pRight++, pLeft++){
506 Table *pRightTab = pRight->pSTab;
507 u32 joinType;
509 if( NEVER(pLeft->pSTab==0 || pRightTab==0) ) continue;
510 joinType = (pRight->fg.jointype & JT_OUTER)!=0 ? EP_OuterON : EP_InnerON;
512 /* If this is a NATURAL join, synthesize an appropriate USING clause
513 ** to specify which columns should be joined.
515 if( pRight->fg.jointype & JT_NATURAL ){
516 IdList *pUsing = 0;
517 if( pRight->fg.isUsing || pRight->u3.pOn ){
518 sqlite3ErrorMsg(pParse, "a NATURAL join may not have "
519 "an ON or USING clause", 0);
520 return 1;
522 for(j=0; j<pRightTab->nCol; j++){
523 char *zName; /* Name of column in the right table */
525 if( IsHiddenColumn(&pRightTab->aCol[j]) ) continue;
526 zName = pRightTab->aCol[j].zCnName;
527 if( tableAndColumnIndex(pSrc, 0, i, zName, 0, 0, 1) ){
528 pUsing = sqlite3IdListAppend(pParse, pUsing, 0);
529 if( pUsing ){
530 assert( pUsing->nId>0 );
531 assert( pUsing->a[pUsing->nId-1].zName==0 );
532 pUsing->a[pUsing->nId-1].zName = sqlite3DbStrDup(pParse->db, zName);
536 if( pUsing ){
537 pRight->fg.isUsing = 1;
538 pRight->fg.isSynthUsing = 1;
539 pRight->u3.pUsing = pUsing;
541 if( pParse->nErr ) return 1;
544 /* Create extra terms on the WHERE clause for each column named
545 ** in the USING clause. Example: If the two tables to be joined are
546 ** A and B and the USING clause names X, Y, and Z, then add this
547 ** to the WHERE clause: A.X=B.X AND A.Y=B.Y AND A.Z=B.Z
548 ** Report an error if any column mentioned in the USING clause is
549 ** not contained in both tables to be joined.
551 if( pRight->fg.isUsing ){
552 IdList *pList = pRight->u3.pUsing;
553 sqlite3 *db = pParse->db;
554 assert( pList!=0 );
555 for(j=0; j<pList->nId; j++){
556 char *zName; /* Name of the term in the USING clause */
557 int iLeft; /* Table on the left with matching column name */
558 int iLeftCol; /* Column number of matching column on the left */
559 int iRightCol; /* Column number of matching column on the right */
560 Expr *pE1; /* Reference to the column on the LEFT of the join */
561 Expr *pE2; /* Reference to the column on the RIGHT of the join */
562 Expr *pEq; /* Equality constraint. pE1 == pE2 */
564 zName = pList->a[j].zName;
565 iRightCol = sqlite3ColumnIndex(pRightTab, zName);
566 if( iRightCol<0
567 || tableAndColumnIndex(pSrc, 0, i, zName, &iLeft, &iLeftCol,
568 pRight->fg.isSynthUsing)==0
570 sqlite3ErrorMsg(pParse, "cannot join using column %s - column "
571 "not present in both tables", zName);
572 return 1;
574 pE1 = sqlite3CreateColumnExpr(db, pSrc, iLeft, iLeftCol);
575 sqlite3SrcItemColumnUsed(&pSrc->a[iLeft], iLeftCol);
576 if( (pSrc->a[0].fg.jointype & JT_LTORJ)!=0 ){
577 /* This branch runs if the query contains one or more RIGHT or FULL
578 ** JOINs. If only a single table on the left side of this join
579 ** contains the zName column, then this branch is a no-op.
580 ** But if there are two or more tables on the left side
581 ** of the join, construct a coalesce() function that gathers all
582 ** such tables. Raise an error if more than one of those references
583 ** to zName is not also within a prior USING clause.
585 ** We really ought to raise an error if there are two or more
586 ** non-USING references to zName on the left of an INNER or LEFT
587 ** JOIN. But older versions of SQLite do not do that, so we avoid
588 ** adding a new error so as to not break legacy applications.
590 ExprList *pFuncArgs = 0; /* Arguments to the coalesce() */
591 static const Token tkCoalesce = { "coalesce", 8 };
592 while( tableAndColumnIndex(pSrc, iLeft+1, i, zName, &iLeft, &iLeftCol,
593 pRight->fg.isSynthUsing)!=0 ){
594 if( pSrc->a[iLeft].fg.isUsing==0
595 || sqlite3IdListIndex(pSrc->a[iLeft].u3.pUsing, zName)<0
597 sqlite3ErrorMsg(pParse, "ambiguous reference to %s in USING()",
598 zName);
599 break;
601 pFuncArgs = sqlite3ExprListAppend(pParse, pFuncArgs, pE1);
602 pE1 = sqlite3CreateColumnExpr(db, pSrc, iLeft, iLeftCol);
603 sqlite3SrcItemColumnUsed(&pSrc->a[iLeft], iLeftCol);
605 if( pFuncArgs ){
606 pFuncArgs = sqlite3ExprListAppend(pParse, pFuncArgs, pE1);
607 pE1 = sqlite3ExprFunction(pParse, pFuncArgs, &tkCoalesce, 0);
610 pE2 = sqlite3CreateColumnExpr(db, pSrc, i+1, iRightCol);
611 sqlite3SrcItemColumnUsed(pRight, iRightCol);
612 pEq = sqlite3PExpr(pParse, TK_EQ, pE1, pE2);
613 assert( pE2!=0 || pEq==0 );
614 if( pEq ){
615 ExprSetProperty(pEq, joinType);
616 assert( !ExprHasProperty(pEq, EP_TokenOnly|EP_Reduced) );
617 ExprSetVVAProperty(pEq, EP_NoReduce);
618 pEq->w.iJoin = pE2->iTable;
620 p->pWhere = sqlite3ExprAnd(pParse, p->pWhere, pEq);
624 /* Add the ON clause to the end of the WHERE clause, connected by
625 ** an AND operator.
627 else if( pRight->u3.pOn ){
628 sqlite3SetJoinExpr(pRight->u3.pOn, pRight->iCursor, joinType);
629 p->pWhere = sqlite3ExprAnd(pParse, p->pWhere, pRight->u3.pOn);
630 pRight->u3.pOn = 0;
631 pRight->fg.isOn = 1;
634 return 0;
638 ** An instance of this object holds information (beyond pParse and pSelect)
639 ** needed to load the next result row that is to be added to the sorter.
641 typedef struct RowLoadInfo RowLoadInfo;
642 struct RowLoadInfo {
643 int regResult; /* Store results in array of registers here */
644 u8 ecelFlags; /* Flag argument to ExprCodeExprList() */
645 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
646 ExprList *pExtra; /* Extra columns needed by sorter refs */
647 int regExtraResult; /* Where to load the extra columns */
648 #endif
652 ** This routine does the work of loading query data into an array of
653 ** registers so that it can be added to the sorter.
655 static void innerLoopLoadRow(
656 Parse *pParse, /* Statement under construction */
657 Select *pSelect, /* The query being coded */
658 RowLoadInfo *pInfo /* Info needed to complete the row load */
660 sqlite3ExprCodeExprList(pParse, pSelect->pEList, pInfo->regResult,
661 0, pInfo->ecelFlags);
662 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
663 if( pInfo->pExtra ){
664 sqlite3ExprCodeExprList(pParse, pInfo->pExtra, pInfo->regExtraResult, 0, 0);
665 sqlite3ExprListDelete(pParse->db, pInfo->pExtra);
667 #endif
671 ** Code the OP_MakeRecord instruction that generates the entry to be
672 ** added into the sorter.
674 ** Return the register in which the result is stored.
676 static int makeSorterRecord(
677 Parse *pParse,
678 SortCtx *pSort,
679 Select *pSelect,
680 int regBase,
681 int nBase
683 int nOBSat = pSort->nOBSat;
684 Vdbe *v = pParse->pVdbe;
685 int regOut = ++pParse->nMem;
686 if( pSort->pDeferredRowLoad ){
687 innerLoopLoadRow(pParse, pSelect, pSort->pDeferredRowLoad);
689 sqlite3VdbeAddOp3(v, OP_MakeRecord, regBase+nOBSat, nBase-nOBSat, regOut);
690 return regOut;
694 ** Generate code that will push the record in registers regData
695 ** through regData+nData-1 onto the sorter.
697 static void pushOntoSorter(
698 Parse *pParse, /* Parser context */
699 SortCtx *pSort, /* Information about the ORDER BY clause */
700 Select *pSelect, /* The whole SELECT statement */
701 int regData, /* First register holding data to be sorted */
702 int regOrigData, /* First register holding data before packing */
703 int nData, /* Number of elements in the regData data array */
704 int nPrefixReg /* No. of reg prior to regData available for use */
706 Vdbe *v = pParse->pVdbe; /* Stmt under construction */
707 int bSeq = ((pSort->sortFlags & SORTFLAG_UseSorter)==0);
708 int nExpr = pSort->pOrderBy->nExpr; /* No. of ORDER BY terms */
709 int nBase = nExpr + bSeq + nData; /* Fields in sorter record */
710 int regBase; /* Regs for sorter record */
711 int regRecord = 0; /* Assembled sorter record */
712 int nOBSat = pSort->nOBSat; /* ORDER BY terms to skip */
713 int op; /* Opcode to add sorter record to sorter */
714 int iLimit; /* LIMIT counter */
715 int iSkip = 0; /* End of the sorter insert loop */
717 assert( bSeq==0 || bSeq==1 );
719 /* Three cases:
720 ** (1) The data to be sorted has already been packed into a Record
721 ** by a prior OP_MakeRecord. In this case nData==1 and regData
722 ** will be completely unrelated to regOrigData.
723 ** (2) All output columns are included in the sort record. In that
724 ** case regData==regOrigData.
725 ** (3) Some output columns are omitted from the sort record due to
726 ** the SQLITE_ENABLE_SORTER_REFERENCES optimization, or due to the
727 ** SQLITE_ECEL_OMITREF optimization, or due to the
728 ** SortCtx.pDeferredRowLoad optimization. In any of these cases
729 ** regOrigData is 0 to prevent this routine from trying to copy
730 ** values that might not yet exist.
732 assert( nData==1 || regData==regOrigData || regOrigData==0 );
734 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS
735 pSort->addrPush = sqlite3VdbeCurrentAddr(v);
736 #endif
738 if( nPrefixReg ){
739 assert( nPrefixReg==nExpr+bSeq );
740 regBase = regData - nPrefixReg;
741 }else{
742 regBase = pParse->nMem + 1;
743 pParse->nMem += nBase;
745 assert( pSelect->iOffset==0 || pSelect->iLimit!=0 );
746 iLimit = pSelect->iOffset ? pSelect->iOffset+1 : pSelect->iLimit;
747 pSort->labelDone = sqlite3VdbeMakeLabel(pParse);
748 sqlite3ExprCodeExprList(pParse, pSort->pOrderBy, regBase, regOrigData,
749 SQLITE_ECEL_DUP | (regOrigData? SQLITE_ECEL_REF : 0));
750 if( bSeq ){
751 sqlite3VdbeAddOp2(v, OP_Sequence, pSort->iECursor, regBase+nExpr);
753 if( nPrefixReg==0 && nData>0 ){
754 sqlite3ExprCodeMove(pParse, regData, regBase+nExpr+bSeq, nData);
756 if( nOBSat>0 ){
757 int regPrevKey; /* The first nOBSat columns of the previous row */
758 int addrFirst; /* Address of the OP_IfNot opcode */
759 int addrJmp; /* Address of the OP_Jump opcode */
760 VdbeOp *pOp; /* Opcode that opens the sorter */
761 int nKey; /* Number of sorting key columns, including OP_Sequence */
762 KeyInfo *pKI; /* Original KeyInfo on the sorter table */
764 regRecord = makeSorterRecord(pParse, pSort, pSelect, regBase, nBase);
765 regPrevKey = pParse->nMem+1;
766 pParse->nMem += pSort->nOBSat;
767 nKey = nExpr - pSort->nOBSat + bSeq;
768 if( bSeq ){
769 addrFirst = sqlite3VdbeAddOp1(v, OP_IfNot, regBase+nExpr);
770 }else{
771 addrFirst = sqlite3VdbeAddOp1(v, OP_SequenceTest, pSort->iECursor);
773 VdbeCoverage(v);
774 sqlite3VdbeAddOp3(v, OP_Compare, regPrevKey, regBase, pSort->nOBSat);
775 pOp = sqlite3VdbeGetOp(v, pSort->addrSortIndex);
776 if( pParse->db->mallocFailed ) return;
777 pOp->p2 = nKey + nData;
778 pKI = pOp->p4.pKeyInfo;
779 memset(pKI->aSortFlags, 0, pKI->nKeyField); /* Makes OP_Jump testable */
780 sqlite3VdbeChangeP4(v, -1, (char*)pKI, P4_KEYINFO);
781 testcase( pKI->nAllField > pKI->nKeyField+2 );
782 pOp->p4.pKeyInfo = sqlite3KeyInfoFromExprList(pParse,pSort->pOrderBy,nOBSat,
783 pKI->nAllField-pKI->nKeyField-1);
784 pOp = 0; /* Ensure pOp not used after sqlite3VdbeAddOp3() */
785 addrJmp = sqlite3VdbeCurrentAddr(v);
786 sqlite3VdbeAddOp3(v, OP_Jump, addrJmp+1, 0, addrJmp+1); VdbeCoverage(v);
787 pSort->labelBkOut = sqlite3VdbeMakeLabel(pParse);
788 pSort->regReturn = ++pParse->nMem;
789 sqlite3VdbeAddOp2(v, OP_Gosub, pSort->regReturn, pSort->labelBkOut);
790 sqlite3VdbeAddOp1(v, OP_ResetSorter, pSort->iECursor);
791 if( iLimit ){
792 sqlite3VdbeAddOp2(v, OP_IfNot, iLimit, pSort->labelDone);
793 VdbeCoverage(v);
795 sqlite3VdbeJumpHere(v, addrFirst);
796 sqlite3ExprCodeMove(pParse, regBase, regPrevKey, pSort->nOBSat);
797 sqlite3VdbeJumpHere(v, addrJmp);
799 if( iLimit ){
800 /* At this point the values for the new sorter entry are stored
801 ** in an array of registers. They need to be composed into a record
802 ** and inserted into the sorter if either (a) there are currently
803 ** less than LIMIT+OFFSET items or (b) the new record is smaller than
804 ** the largest record currently in the sorter. If (b) is true and there
805 ** are already LIMIT+OFFSET items in the sorter, delete the largest
806 ** entry before inserting the new one. This way there are never more
807 ** than LIMIT+OFFSET items in the sorter.
809 ** If the new record does not need to be inserted into the sorter,
810 ** jump to the next iteration of the loop. If the pSort->labelOBLopt
811 ** value is not zero, then it is a label of where to jump. Otherwise,
812 ** just bypass the row insert logic. See the header comment on the
813 ** sqlite3WhereOrderByLimitOptLabel() function for additional info.
815 int iCsr = pSort->iECursor;
816 sqlite3VdbeAddOp2(v, OP_IfNotZero, iLimit, sqlite3VdbeCurrentAddr(v)+4);
817 VdbeCoverage(v);
818 sqlite3VdbeAddOp2(v, OP_Last, iCsr, 0);
819 iSkip = sqlite3VdbeAddOp4Int(v, OP_IdxLE,
820 iCsr, 0, regBase+nOBSat, nExpr-nOBSat);
821 VdbeCoverage(v);
822 sqlite3VdbeAddOp1(v, OP_Delete, iCsr);
824 if( regRecord==0 ){
825 regRecord = makeSorterRecord(pParse, pSort, pSelect, regBase, nBase);
827 if( pSort->sortFlags & SORTFLAG_UseSorter ){
828 op = OP_SorterInsert;
829 }else{
830 op = OP_IdxInsert;
832 sqlite3VdbeAddOp4Int(v, op, pSort->iECursor, regRecord,
833 regBase+nOBSat, nBase-nOBSat);
834 if( iSkip ){
835 sqlite3VdbeChangeP2(v, iSkip,
836 pSort->labelOBLopt ? pSort->labelOBLopt : sqlite3VdbeCurrentAddr(v));
838 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS
839 pSort->addrPushEnd = sqlite3VdbeCurrentAddr(v)-1;
840 #endif
844 ** Add code to implement the OFFSET
846 static void codeOffset(
847 Vdbe *v, /* Generate code into this VM */
848 int iOffset, /* Register holding the offset counter */
849 int iContinue /* Jump here to skip the current record */
851 if( iOffset>0 ){
852 sqlite3VdbeAddOp3(v, OP_IfPos, iOffset, iContinue, 1); VdbeCoverage(v);
853 VdbeComment((v, "OFFSET"));
858 ** Add code that will check to make sure the array of registers starting at
859 ** iMem form a distinct entry. This is used by both "SELECT DISTINCT ..." and
860 ** distinct aggregates ("SELECT count(DISTINCT <expr>) ..."). Three strategies
861 ** are available. Which is used depends on the value of parameter eTnctType,
862 ** as follows:
864 ** WHERE_DISTINCT_UNORDERED/WHERE_DISTINCT_NOOP:
865 ** Build an ephemeral table that contains all entries seen before and
866 ** skip entries which have been seen before.
868 ** Parameter iTab is the cursor number of an ephemeral table that must
869 ** be opened before the VM code generated by this routine is executed.
870 ** The ephemeral cursor table is queried for a record identical to the
871 ** record formed by the current array of registers. If one is found,
872 ** jump to VM address addrRepeat. Otherwise, insert a new record into
873 ** the ephemeral cursor and proceed.
875 ** The returned value in this case is a copy of parameter iTab.
877 ** WHERE_DISTINCT_ORDERED:
878 ** In this case rows are being delivered sorted order. The ephemeral
879 ** table is not required. Instead, the current set of values
880 ** is compared against previous row. If they match, the new row
881 ** is not distinct and control jumps to VM address addrRepeat. Otherwise,
882 ** the VM program proceeds with processing the new row.
884 ** The returned value in this case is the register number of the first
885 ** in an array of registers used to store the previous result row so that
886 ** it can be compared to the next. The caller must ensure that this
887 ** register is initialized to NULL. (The fixDistinctOpenEph() routine
888 ** will take care of this initialization.)
890 ** WHERE_DISTINCT_UNIQUE:
891 ** In this case it has already been determined that the rows are distinct.
892 ** No special action is required. The return value is zero.
894 ** Parameter pEList is the list of expressions used to generated the
895 ** contents of each row. It is used by this routine to determine (a)
896 ** how many elements there are in the array of registers and (b) the
897 ** collation sequences that should be used for the comparisons if
898 ** eTnctType is WHERE_DISTINCT_ORDERED.
900 static int codeDistinct(
901 Parse *pParse, /* Parsing and code generating context */
902 int eTnctType, /* WHERE_DISTINCT_* value */
903 int iTab, /* A sorting index used to test for distinctness */
904 int addrRepeat, /* Jump to here if not distinct */
905 ExprList *pEList, /* Expression for each element */
906 int regElem /* First element */
908 int iRet = 0;
909 int nResultCol = pEList->nExpr;
910 Vdbe *v = pParse->pVdbe;
912 switch( eTnctType ){
913 case WHERE_DISTINCT_ORDERED: {
914 int i;
915 int iJump; /* Jump destination */
916 int regPrev; /* Previous row content */
918 /* Allocate space for the previous row */
919 iRet = regPrev = pParse->nMem+1;
920 pParse->nMem += nResultCol;
922 iJump = sqlite3VdbeCurrentAddr(v) + nResultCol;
923 for(i=0; i<nResultCol; i++){
924 CollSeq *pColl = sqlite3ExprCollSeq(pParse, pEList->a[i].pExpr);
925 if( i<nResultCol-1 ){
926 sqlite3VdbeAddOp3(v, OP_Ne, regElem+i, iJump, regPrev+i);
927 VdbeCoverage(v);
928 }else{
929 sqlite3VdbeAddOp3(v, OP_Eq, regElem+i, addrRepeat, regPrev+i);
930 VdbeCoverage(v);
932 sqlite3VdbeChangeP4(v, -1, (const char *)pColl, P4_COLLSEQ);
933 sqlite3VdbeChangeP5(v, SQLITE_NULLEQ);
935 assert( sqlite3VdbeCurrentAddr(v)==iJump || pParse->db->mallocFailed );
936 sqlite3VdbeAddOp3(v, OP_Copy, regElem, regPrev, nResultCol-1);
937 break;
940 case WHERE_DISTINCT_UNIQUE: {
941 /* nothing to do */
942 break;
945 default: {
946 int r1 = sqlite3GetTempReg(pParse);
947 sqlite3VdbeAddOp4Int(v, OP_Found, iTab, addrRepeat, regElem, nResultCol);
948 VdbeCoverage(v);
949 sqlite3VdbeAddOp3(v, OP_MakeRecord, regElem, nResultCol, r1);
950 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iTab, r1, regElem, nResultCol);
951 sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT);
952 sqlite3ReleaseTempReg(pParse, r1);
953 iRet = iTab;
954 break;
958 return iRet;
962 ** This routine runs after codeDistinct(). It makes necessary
963 ** adjustments to the OP_OpenEphemeral opcode that the codeDistinct()
964 ** routine made use of. This processing must be done separately since
965 ** sometimes codeDistinct is called before the OP_OpenEphemeral is actually
966 ** laid down.
968 ** WHERE_DISTINCT_NOOP:
969 ** WHERE_DISTINCT_UNORDERED:
971 ** No adjustments necessary. This function is a no-op.
973 ** WHERE_DISTINCT_UNIQUE:
975 ** The ephemeral table is not needed. So change the
976 ** OP_OpenEphemeral opcode into an OP_Noop.
978 ** WHERE_DISTINCT_ORDERED:
980 ** The ephemeral table is not needed. But we do need register
981 ** iVal to be initialized to NULL. So change the OP_OpenEphemeral
982 ** into an OP_Null on the iVal register.
984 static void fixDistinctOpenEph(
985 Parse *pParse, /* Parsing and code generating context */
986 int eTnctType, /* WHERE_DISTINCT_* value */
987 int iVal, /* Value returned by codeDistinct() */
988 int iOpenEphAddr /* Address of OP_OpenEphemeral instruction for iTab */
990 if( pParse->nErr==0
991 && (eTnctType==WHERE_DISTINCT_UNIQUE || eTnctType==WHERE_DISTINCT_ORDERED)
993 Vdbe *v = pParse->pVdbe;
994 sqlite3VdbeChangeToNoop(v, iOpenEphAddr);
995 if( sqlite3VdbeGetOp(v, iOpenEphAddr+1)->opcode==OP_Explain ){
996 sqlite3VdbeChangeToNoop(v, iOpenEphAddr+1);
998 if( eTnctType==WHERE_DISTINCT_ORDERED ){
999 /* Change the OP_OpenEphemeral to an OP_Null that sets the MEM_Cleared
1000 ** bit on the first register of the previous value. This will cause the
1001 ** OP_Ne added in codeDistinct() to always fail on the first iteration of
1002 ** the loop even if the first row is all NULLs. */
1003 VdbeOp *pOp = sqlite3VdbeGetOp(v, iOpenEphAddr);
1004 pOp->opcode = OP_Null;
1005 pOp->p1 = 1;
1006 pOp->p2 = iVal;
1011 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
1013 ** This function is called as part of inner-loop generation for a SELECT
1014 ** statement with an ORDER BY that is not optimized by an index. It
1015 ** determines the expressions, if any, that the sorter-reference
1016 ** optimization should be used for. The sorter-reference optimization
1017 ** is used for SELECT queries like:
1019 ** SELECT a, bigblob FROM t1 ORDER BY a LIMIT 10
1021 ** If the optimization is used for expression "bigblob", then instead of
1022 ** storing values read from that column in the sorter records, the PK of
1023 ** the row from table t1 is stored instead. Then, as records are extracted from
1024 ** the sorter to return to the user, the required value of bigblob is
1025 ** retrieved directly from table t1. If the values are very large, this
1026 ** can be more efficient than storing them directly in the sorter records.
1028 ** The ExprList_item.fg.bSorterRef flag is set for each expression in pEList
1029 ** for which the sorter-reference optimization should be enabled.
1030 ** Additionally, the pSort->aDefer[] array is populated with entries
1031 ** for all cursors required to evaluate all selected expressions. Finally.
1032 ** output variable (*ppExtra) is set to an expression list containing
1033 ** expressions for all extra PK values that should be stored in the
1034 ** sorter records.
1036 static void selectExprDefer(
1037 Parse *pParse, /* Leave any error here */
1038 SortCtx *pSort, /* Sorter context */
1039 ExprList *pEList, /* Expressions destined for sorter */
1040 ExprList **ppExtra /* Expressions to append to sorter record */
1042 int i;
1043 int nDefer = 0;
1044 ExprList *pExtra = 0;
1045 for(i=0; i<pEList->nExpr; i++){
1046 struct ExprList_item *pItem = &pEList->a[i];
1047 if( pItem->u.x.iOrderByCol==0 ){
1048 Expr *pExpr = pItem->pExpr;
1049 Table *pTab;
1050 if( pExpr->op==TK_COLUMN
1051 && pExpr->iColumn>=0
1052 && ALWAYS( ExprUseYTab(pExpr) )
1053 && (pTab = pExpr->y.pTab)!=0
1054 && IsOrdinaryTable(pTab)
1055 && (pTab->aCol[pExpr->iColumn].colFlags & COLFLAG_SORTERREF)!=0
1057 int j;
1058 for(j=0; j<nDefer; j++){
1059 if( pSort->aDefer[j].iCsr==pExpr->iTable ) break;
1061 if( j==nDefer ){
1062 if( nDefer==ArraySize(pSort->aDefer) ){
1063 continue;
1064 }else{
1065 int nKey = 1;
1066 int k;
1067 Index *pPk = 0;
1068 if( !HasRowid(pTab) ){
1069 pPk = sqlite3PrimaryKeyIndex(pTab);
1070 nKey = pPk->nKeyCol;
1072 for(k=0; k<nKey; k++){
1073 Expr *pNew = sqlite3PExpr(pParse, TK_COLUMN, 0, 0);
1074 if( pNew ){
1075 pNew->iTable = pExpr->iTable;
1076 assert( ExprUseYTab(pNew) );
1077 pNew->y.pTab = pExpr->y.pTab;
1078 pNew->iColumn = pPk ? pPk->aiColumn[k] : -1;
1079 pExtra = sqlite3ExprListAppend(pParse, pExtra, pNew);
1082 pSort->aDefer[nDefer].pTab = pExpr->y.pTab;
1083 pSort->aDefer[nDefer].iCsr = pExpr->iTable;
1084 pSort->aDefer[nDefer].nKey = nKey;
1085 nDefer++;
1088 pItem->fg.bSorterRef = 1;
1092 pSort->nDefer = (u8)nDefer;
1093 *ppExtra = pExtra;
1095 #endif
1098 ** This routine generates the code for the inside of the inner loop
1099 ** of a SELECT.
1101 ** If srcTab is negative, then the p->pEList expressions
1102 ** are evaluated in order to get the data for this row. If srcTab is
1103 ** zero or more, then data is pulled from srcTab and p->pEList is used only
1104 ** to get the number of columns and the collation sequence for each column.
1106 static void selectInnerLoop(
1107 Parse *pParse, /* The parser context */
1108 Select *p, /* The complete select statement being coded */
1109 int srcTab, /* Pull data from this table if non-negative */
1110 SortCtx *pSort, /* If not NULL, info on how to process ORDER BY */
1111 DistinctCtx *pDistinct, /* If not NULL, info on how to process DISTINCT */
1112 SelectDest *pDest, /* How to dispose of the results */
1113 int iContinue, /* Jump here to continue with next row */
1114 int iBreak /* Jump here to break out of the inner loop */
1116 Vdbe *v = pParse->pVdbe;
1117 int i;
1118 int hasDistinct; /* True if the DISTINCT keyword is present */
1119 int eDest = pDest->eDest; /* How to dispose of results */
1120 int iParm = pDest->iSDParm; /* First argument to disposal method */
1121 int nResultCol; /* Number of result columns */
1122 int nPrefixReg = 0; /* Number of extra registers before regResult */
1123 RowLoadInfo sRowLoadInfo; /* Info for deferred row loading */
1125 /* Usually, regResult is the first cell in an array of memory cells
1126 ** containing the current result row. In this case regOrig is set to the
1127 ** same value. However, if the results are being sent to the sorter, the
1128 ** values for any expressions that are also part of the sort-key are omitted
1129 ** from this array. In this case regOrig is set to zero. */
1130 int regResult; /* Start of memory holding current results */
1131 int regOrig; /* Start of memory holding full result (or 0) */
1133 assert( v );
1134 assert( p->pEList!=0 );
1135 hasDistinct = pDistinct ? pDistinct->eTnctType : WHERE_DISTINCT_NOOP;
1136 if( pSort && pSort->pOrderBy==0 ) pSort = 0;
1137 if( pSort==0 && !hasDistinct ){
1138 assert( iContinue!=0 );
1139 codeOffset(v, p->iOffset, iContinue);
1142 /* Pull the requested columns.
1144 nResultCol = p->pEList->nExpr;
1146 if( pDest->iSdst==0 ){
1147 if( pSort ){
1148 nPrefixReg = pSort->pOrderBy->nExpr;
1149 if( !(pSort->sortFlags & SORTFLAG_UseSorter) ) nPrefixReg++;
1150 pParse->nMem += nPrefixReg;
1152 pDest->iSdst = pParse->nMem+1;
1153 pParse->nMem += nResultCol;
1154 }else if( pDest->iSdst+nResultCol > pParse->nMem ){
1155 /* This is an error condition that can result, for example, when a SELECT
1156 ** on the right-hand side of an INSERT contains more result columns than
1157 ** there are columns in the table on the left. The error will be caught
1158 ** and reported later. But we need to make sure enough memory is allocated
1159 ** to avoid other spurious errors in the meantime. */
1160 pParse->nMem += nResultCol;
1162 pDest->nSdst = nResultCol;
1163 regOrig = regResult = pDest->iSdst;
1164 if( srcTab>=0 ){
1165 for(i=0; i<nResultCol; i++){
1166 sqlite3VdbeAddOp3(v, OP_Column, srcTab, i, regResult+i);
1167 VdbeComment((v, "%s", p->pEList->a[i].zEName));
1169 }else if( eDest!=SRT_Exists ){
1170 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
1171 ExprList *pExtra = 0;
1172 #endif
1173 /* If the destination is an EXISTS(...) expression, the actual
1174 ** values returned by the SELECT are not required.
1176 u8 ecelFlags; /* "ecel" is an abbreviation of "ExprCodeExprList" */
1177 ExprList *pEList;
1178 if( eDest==SRT_Mem || eDest==SRT_Output || eDest==SRT_Coroutine ){
1179 ecelFlags = SQLITE_ECEL_DUP;
1180 }else{
1181 ecelFlags = 0;
1183 if( pSort && hasDistinct==0 && eDest!=SRT_EphemTab && eDest!=SRT_Table ){
1184 /* For each expression in p->pEList that is a copy of an expression in
1185 ** the ORDER BY clause (pSort->pOrderBy), set the associated
1186 ** iOrderByCol value to one more than the index of the ORDER BY
1187 ** expression within the sort-key that pushOntoSorter() will generate.
1188 ** This allows the p->pEList field to be omitted from the sorted record,
1189 ** saving space and CPU cycles. */
1190 ecelFlags |= (SQLITE_ECEL_OMITREF|SQLITE_ECEL_REF);
1192 for(i=pSort->nOBSat; i<pSort->pOrderBy->nExpr; i++){
1193 int j;
1194 if( (j = pSort->pOrderBy->a[i].u.x.iOrderByCol)>0 ){
1195 p->pEList->a[j-1].u.x.iOrderByCol = i+1-pSort->nOBSat;
1198 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
1199 selectExprDefer(pParse, pSort, p->pEList, &pExtra);
1200 if( pExtra && pParse->db->mallocFailed==0 ){
1201 /* If there are any extra PK columns to add to the sorter records,
1202 ** allocate extra memory cells and adjust the OpenEphemeral
1203 ** instruction to account for the larger records. This is only
1204 ** required if there are one or more WITHOUT ROWID tables with
1205 ** composite primary keys in the SortCtx.aDefer[] array. */
1206 VdbeOp *pOp = sqlite3VdbeGetOp(v, pSort->addrSortIndex);
1207 pOp->p2 += (pExtra->nExpr - pSort->nDefer);
1208 pOp->p4.pKeyInfo->nAllField += (pExtra->nExpr - pSort->nDefer);
1209 pParse->nMem += pExtra->nExpr;
1211 #endif
1213 /* Adjust nResultCol to account for columns that are omitted
1214 ** from the sorter by the optimizations in this branch */
1215 pEList = p->pEList;
1216 for(i=0; i<pEList->nExpr; i++){
1217 if( pEList->a[i].u.x.iOrderByCol>0
1218 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
1219 || pEList->a[i].fg.bSorterRef
1220 #endif
1222 nResultCol--;
1223 regOrig = 0;
1227 testcase( regOrig );
1228 testcase( eDest==SRT_Set );
1229 testcase( eDest==SRT_Mem );
1230 testcase( eDest==SRT_Coroutine );
1231 testcase( eDest==SRT_Output );
1232 assert( eDest==SRT_Set || eDest==SRT_Mem
1233 || eDest==SRT_Coroutine || eDest==SRT_Output
1234 || eDest==SRT_Upfrom );
1236 sRowLoadInfo.regResult = regResult;
1237 sRowLoadInfo.ecelFlags = ecelFlags;
1238 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
1239 sRowLoadInfo.pExtra = pExtra;
1240 sRowLoadInfo.regExtraResult = regResult + nResultCol;
1241 if( pExtra ) nResultCol += pExtra->nExpr;
1242 #endif
1243 if( p->iLimit
1244 && (ecelFlags & SQLITE_ECEL_OMITREF)!=0
1245 && nPrefixReg>0
1247 assert( pSort!=0 );
1248 assert( hasDistinct==0 );
1249 pSort->pDeferredRowLoad = &sRowLoadInfo;
1250 regOrig = 0;
1251 }else{
1252 innerLoopLoadRow(pParse, p, &sRowLoadInfo);
1256 /* If the DISTINCT keyword was present on the SELECT statement
1257 ** and this row has been seen before, then do not make this row
1258 ** part of the result.
1260 if( hasDistinct ){
1261 int eType = pDistinct->eTnctType;
1262 int iTab = pDistinct->tabTnct;
1263 assert( nResultCol==p->pEList->nExpr );
1264 iTab = codeDistinct(pParse, eType, iTab, iContinue, p->pEList, regResult);
1265 fixDistinctOpenEph(pParse, eType, iTab, pDistinct->addrTnct);
1266 if( pSort==0 ){
1267 codeOffset(v, p->iOffset, iContinue);
1271 switch( eDest ){
1272 /* In this mode, write each query result to the key of the temporary
1273 ** table iParm.
1275 #ifndef SQLITE_OMIT_COMPOUND_SELECT
1276 case SRT_Union: {
1277 int r1;
1278 r1 = sqlite3GetTempReg(pParse);
1279 sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nResultCol, r1);
1280 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, r1, regResult, nResultCol);
1281 sqlite3ReleaseTempReg(pParse, r1);
1282 break;
1285 /* Construct a record from the query result, but instead of
1286 ** saving that record, use it as a key to delete elements from
1287 ** the temporary table iParm.
1289 case SRT_Except: {
1290 sqlite3VdbeAddOp3(v, OP_IdxDelete, iParm, regResult, nResultCol);
1291 break;
1293 #endif /* SQLITE_OMIT_COMPOUND_SELECT */
1295 /* Store the result as data using a unique key.
1297 case SRT_Fifo:
1298 case SRT_DistFifo:
1299 case SRT_Table:
1300 case SRT_EphemTab: {
1301 int r1 = sqlite3GetTempRange(pParse, nPrefixReg+1);
1302 testcase( eDest==SRT_Table );
1303 testcase( eDest==SRT_EphemTab );
1304 testcase( eDest==SRT_Fifo );
1305 testcase( eDest==SRT_DistFifo );
1306 sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nResultCol, r1+nPrefixReg);
1307 #if !defined(SQLITE_ENABLE_NULL_TRIM) && defined(SQLITE_DEBUG)
1308 /* A destination of SRT_Table and a non-zero iSDParm2 parameter means
1309 ** that this is an "UPDATE ... FROM" on a virtual table or view. In this
1310 ** case set the p5 parameter of the OP_MakeRecord to OPFLAG_NOCHNG_MAGIC.
1311 ** This does not affect operation in any way - it just allows MakeRecord
1312 ** to process OPFLAG_NOCHANGE values without an assert() failing. */
1313 if( eDest==SRT_Table && pDest->iSDParm2 ){
1314 sqlite3VdbeChangeP5(v, OPFLAG_NOCHNG_MAGIC);
1316 #endif
1317 #ifndef SQLITE_OMIT_CTE
1318 if( eDest==SRT_DistFifo ){
1319 /* If the destination is DistFifo, then cursor (iParm+1) is open
1320 ** on an ephemeral index. If the current row is already present
1321 ** in the index, do not write it to the output. If not, add the
1322 ** current row to the index and proceed with writing it to the
1323 ** output table as well. */
1324 int addr = sqlite3VdbeCurrentAddr(v) + 4;
1325 sqlite3VdbeAddOp4Int(v, OP_Found, iParm+1, addr, r1, 0);
1326 VdbeCoverage(v);
1327 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm+1, r1,regResult,nResultCol);
1328 assert( pSort==0 );
1330 #endif
1331 if( pSort ){
1332 assert( regResult==regOrig );
1333 pushOntoSorter(pParse, pSort, p, r1+nPrefixReg, regOrig, 1, nPrefixReg);
1334 }else{
1335 int r2 = sqlite3GetTempReg(pParse);
1336 sqlite3VdbeAddOp2(v, OP_NewRowid, iParm, r2);
1337 sqlite3VdbeAddOp3(v, OP_Insert, iParm, r1, r2);
1338 sqlite3VdbeChangeP5(v, OPFLAG_APPEND);
1339 sqlite3ReleaseTempReg(pParse, r2);
1341 sqlite3ReleaseTempRange(pParse, r1, nPrefixReg+1);
1342 break;
1345 case SRT_Upfrom: {
1346 if( pSort ){
1347 pushOntoSorter(
1348 pParse, pSort, p, regResult, regOrig, nResultCol, nPrefixReg);
1349 }else{
1350 int i2 = pDest->iSDParm2;
1351 int r1 = sqlite3GetTempReg(pParse);
1353 /* If the UPDATE FROM join is an aggregate that matches no rows, it
1354 ** might still be trying to return one row, because that is what
1355 ** aggregates do. Don't record that empty row in the output table. */
1356 sqlite3VdbeAddOp2(v, OP_IsNull, regResult, iBreak); VdbeCoverage(v);
1358 sqlite3VdbeAddOp3(v, OP_MakeRecord,
1359 regResult+(i2<0), nResultCol-(i2<0), r1);
1360 if( i2<0 ){
1361 sqlite3VdbeAddOp3(v, OP_Insert, iParm, r1, regResult);
1362 }else{
1363 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, r1, regResult, i2);
1366 break;
1369 #ifndef SQLITE_OMIT_SUBQUERY
1370 /* If we are creating a set for an "expr IN (SELECT ...)" construct,
1371 ** then there should be a single item on the stack. Write this
1372 ** item into the set table with bogus data.
1374 case SRT_Set: {
1375 if( pSort ){
1376 /* At first glance you would think we could optimize out the
1377 ** ORDER BY in this case since the order of entries in the set
1378 ** does not matter. But there might be a LIMIT clause, in which
1379 ** case the order does matter */
1380 pushOntoSorter(
1381 pParse, pSort, p, regResult, regOrig, nResultCol, nPrefixReg);
1382 pDest->iSDParm2 = 0; /* Signal that any Bloom filter is unpopulated */
1383 }else{
1384 int r1 = sqlite3GetTempReg(pParse);
1385 assert( sqlite3Strlen30(pDest->zAffSdst)==nResultCol );
1386 sqlite3VdbeAddOp4(v, OP_MakeRecord, regResult, nResultCol,
1387 r1, pDest->zAffSdst, nResultCol);
1388 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, r1, regResult, nResultCol);
1389 if( pDest->iSDParm2 ){
1390 sqlite3VdbeAddOp4Int(v, OP_FilterAdd, pDest->iSDParm2, 0,
1391 regResult, nResultCol);
1392 ExplainQueryPlan((pParse, 0, "CREATE BLOOM FILTER"));
1394 sqlite3ReleaseTempReg(pParse, r1);
1396 break;
1400 /* If any row exist in the result set, record that fact and abort.
1402 case SRT_Exists: {
1403 sqlite3VdbeAddOp2(v, OP_Integer, 1, iParm);
1404 /* The LIMIT clause will terminate the loop for us */
1405 break;
1408 /* If this is a scalar select that is part of an expression, then
1409 ** store the results in the appropriate memory cell or array of
1410 ** memory cells and break out of the scan loop.
1412 case SRT_Mem: {
1413 if( pSort ){
1414 assert( nResultCol<=pDest->nSdst );
1415 pushOntoSorter(
1416 pParse, pSort, p, regResult, regOrig, nResultCol, nPrefixReg);
1417 }else{
1418 assert( nResultCol==pDest->nSdst );
1419 assert( regResult==iParm );
1420 /* The LIMIT clause will jump out of the loop for us */
1422 break;
1424 #endif /* #ifndef SQLITE_OMIT_SUBQUERY */
1426 case SRT_Coroutine: /* Send data to a co-routine */
1427 case SRT_Output: { /* Return the results */
1428 testcase( eDest==SRT_Coroutine );
1429 testcase( eDest==SRT_Output );
1430 if( pSort ){
1431 pushOntoSorter(pParse, pSort, p, regResult, regOrig, nResultCol,
1432 nPrefixReg);
1433 }else if( eDest==SRT_Coroutine ){
1434 sqlite3VdbeAddOp1(v, OP_Yield, pDest->iSDParm);
1435 }else{
1436 sqlite3VdbeAddOp2(v, OP_ResultRow, regResult, nResultCol);
1438 break;
1441 #ifndef SQLITE_OMIT_CTE
1442 /* Write the results into a priority queue that is order according to
1443 ** pDest->pOrderBy (in pSO). pDest->iSDParm (in iParm) is the cursor for an
1444 ** index with pSO->nExpr+2 columns. Build a key using pSO for the first
1445 ** pSO->nExpr columns, then make sure all keys are unique by adding a
1446 ** final OP_Sequence column. The last column is the record as a blob.
1448 case SRT_DistQueue:
1449 case SRT_Queue: {
1450 int nKey;
1451 int r1, r2, r3;
1452 int addrTest = 0;
1453 ExprList *pSO;
1454 pSO = pDest->pOrderBy;
1455 assert( pSO );
1456 nKey = pSO->nExpr;
1457 r1 = sqlite3GetTempReg(pParse);
1458 r2 = sqlite3GetTempRange(pParse, nKey+2);
1459 r3 = r2+nKey+1;
1460 if( eDest==SRT_DistQueue ){
1461 /* If the destination is DistQueue, then cursor (iParm+1) is open
1462 ** on a second ephemeral index that holds all values every previously
1463 ** added to the queue. */
1464 addrTest = sqlite3VdbeAddOp4Int(v, OP_Found, iParm+1, 0,
1465 regResult, nResultCol);
1466 VdbeCoverage(v);
1468 sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nResultCol, r3);
1469 if( eDest==SRT_DistQueue ){
1470 sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm+1, r3);
1471 sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT);
1473 for(i=0; i<nKey; i++){
1474 sqlite3VdbeAddOp2(v, OP_SCopy,
1475 regResult + pSO->a[i].u.x.iOrderByCol - 1,
1476 r2+i);
1478 sqlite3VdbeAddOp2(v, OP_Sequence, iParm, r2+nKey);
1479 sqlite3VdbeAddOp3(v, OP_MakeRecord, r2, nKey+2, r1);
1480 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, r1, r2, nKey+2);
1481 if( addrTest ) sqlite3VdbeJumpHere(v, addrTest);
1482 sqlite3ReleaseTempReg(pParse, r1);
1483 sqlite3ReleaseTempRange(pParse, r2, nKey+2);
1484 break;
1486 #endif /* SQLITE_OMIT_CTE */
1490 #if !defined(SQLITE_OMIT_TRIGGER)
1491 /* Discard the results. This is used for SELECT statements inside
1492 ** the body of a TRIGGER. The purpose of such selects is to call
1493 ** user-defined functions that have side effects. We do not care
1494 ** about the actual results of the select.
1496 default: {
1497 assert( eDest==SRT_Discard );
1498 break;
1500 #endif
1503 /* Jump to the end of the loop if the LIMIT is reached. Except, if
1504 ** there is a sorter, in which case the sorter has already limited
1505 ** the output for us.
1507 if( pSort==0 && p->iLimit ){
1508 sqlite3VdbeAddOp2(v, OP_DecrJumpZero, p->iLimit, iBreak); VdbeCoverage(v);
1513 ** Allocate a KeyInfo object sufficient for an index of N key columns and
1514 ** X extra columns.
1516 KeyInfo *sqlite3KeyInfoAlloc(sqlite3 *db, int N, int X){
1517 int nExtra = (N+X)*(sizeof(CollSeq*)+1) - sizeof(CollSeq*);
1518 KeyInfo *p = sqlite3DbMallocRawNN(db, sizeof(KeyInfo) + nExtra);
1519 if( p ){
1520 p->aSortFlags = (u8*)&p->aColl[N+X];
1521 p->nKeyField = (u16)N;
1522 p->nAllField = (u16)(N+X);
1523 p->enc = ENC(db);
1524 p->db = db;
1525 p->nRef = 1;
1526 memset(&p[1], 0, nExtra);
1527 }else{
1528 return (KeyInfo*)sqlite3OomFault(db);
1530 return p;
1534 ** Deallocate a KeyInfo object
1536 void sqlite3KeyInfoUnref(KeyInfo *p){
1537 if( p ){
1538 assert( p->db!=0 );
1539 assert( p->nRef>0 );
1540 p->nRef--;
1541 if( p->nRef==0 ) sqlite3DbNNFreeNN(p->db, p);
1546 ** Make a new pointer to a KeyInfo object
1548 KeyInfo *sqlite3KeyInfoRef(KeyInfo *p){
1549 if( p ){
1550 assert( p->nRef>0 );
1551 p->nRef++;
1553 return p;
1556 #ifdef SQLITE_DEBUG
1558 ** Return TRUE if a KeyInfo object can be change. The KeyInfo object
1559 ** can only be changed if this is just a single reference to the object.
1561 ** This routine is used only inside of assert() statements.
1563 int sqlite3KeyInfoIsWriteable(KeyInfo *p){ return p->nRef==1; }
1564 #endif /* SQLITE_DEBUG */
1567 ** Given an expression list, generate a KeyInfo structure that records
1568 ** the collating sequence for each expression in that expression list.
1570 ** If the ExprList is an ORDER BY or GROUP BY clause then the resulting
1571 ** KeyInfo structure is appropriate for initializing a virtual index to
1572 ** implement that clause. If the ExprList is the result set of a SELECT
1573 ** then the KeyInfo structure is appropriate for initializing a virtual
1574 ** index to implement a DISTINCT test.
1576 ** Space to hold the KeyInfo structure is obtained from malloc. The calling
1577 ** function is responsible for seeing that this structure is eventually
1578 ** freed.
1580 KeyInfo *sqlite3KeyInfoFromExprList(
1581 Parse *pParse, /* Parsing context */
1582 ExprList *pList, /* Form the KeyInfo object from this ExprList */
1583 int iStart, /* Begin with this column of pList */
1584 int nExtra /* Add this many extra columns to the end */
1586 int nExpr;
1587 KeyInfo *pInfo;
1588 struct ExprList_item *pItem;
1589 sqlite3 *db = pParse->db;
1590 int i;
1592 nExpr = pList->nExpr;
1593 pInfo = sqlite3KeyInfoAlloc(db, nExpr-iStart, nExtra+1);
1594 if( pInfo ){
1595 assert( sqlite3KeyInfoIsWriteable(pInfo) );
1596 for(i=iStart, pItem=pList->a+iStart; i<nExpr; i++, pItem++){
1597 pInfo->aColl[i-iStart] = sqlite3ExprNNCollSeq(pParse, pItem->pExpr);
1598 pInfo->aSortFlags[i-iStart] = pItem->fg.sortFlags;
1601 return pInfo;
1605 ** Name of the connection operator, used for error messages.
1607 const char *sqlite3SelectOpName(int id){
1608 char *z;
1609 switch( id ){
1610 case TK_ALL: z = "UNION ALL"; break;
1611 case TK_INTERSECT: z = "INTERSECT"; break;
1612 case TK_EXCEPT: z = "EXCEPT"; break;
1613 default: z = "UNION"; break;
1615 return z;
1618 #ifndef SQLITE_OMIT_EXPLAIN
1620 ** Unless an "EXPLAIN QUERY PLAN" command is being processed, this function
1621 ** is a no-op. Otherwise, it adds a single row of output to the EQP result,
1622 ** where the caption is of the form:
1624 ** "USE TEMP B-TREE FOR xxx"
1626 ** where xxx is one of "DISTINCT", "ORDER BY" or "GROUP BY". Exactly which
1627 ** is determined by the zUsage argument.
1629 static void explainTempTable(Parse *pParse, const char *zUsage){
1630 ExplainQueryPlan((pParse, 0, "USE TEMP B-TREE FOR %s", zUsage));
1634 ** Assign expression b to lvalue a. A second, no-op, version of this macro
1635 ** is provided when SQLITE_OMIT_EXPLAIN is defined. This allows the code
1636 ** in sqlite3Select() to assign values to structure member variables that
1637 ** only exist if SQLITE_OMIT_EXPLAIN is not defined without polluting the
1638 ** code with #ifndef directives.
1640 # define explainSetInteger(a, b) a = b
1642 #else
1643 /* No-op versions of the explainXXX() functions and macros. */
1644 # define explainTempTable(y,z)
1645 # define explainSetInteger(y,z)
1646 #endif
1650 ** If the inner loop was generated using a non-null pOrderBy argument,
1651 ** then the results were placed in a sorter. After the loop is terminated
1652 ** we need to run the sorter and output the results. The following
1653 ** routine generates the code needed to do that.
1655 static void generateSortTail(
1656 Parse *pParse, /* Parsing context */
1657 Select *p, /* The SELECT statement */
1658 SortCtx *pSort, /* Information on the ORDER BY clause */
1659 int nColumn, /* Number of columns of data */
1660 SelectDest *pDest /* Write the sorted results here */
1662 Vdbe *v = pParse->pVdbe; /* The prepared statement */
1663 int addrBreak = pSort->labelDone; /* Jump here to exit loop */
1664 int addrContinue = sqlite3VdbeMakeLabel(pParse);/* Jump here for next cycle */
1665 int addr; /* Top of output loop. Jump for Next. */
1666 int addrOnce = 0;
1667 int iTab;
1668 ExprList *pOrderBy = pSort->pOrderBy;
1669 int eDest = pDest->eDest;
1670 int iParm = pDest->iSDParm;
1671 int regRow;
1672 int regRowid;
1673 int iCol;
1674 int nKey; /* Number of key columns in sorter record */
1675 int iSortTab; /* Sorter cursor to read from */
1676 int i;
1677 int bSeq; /* True if sorter record includes seq. no. */
1678 int nRefKey = 0;
1679 struct ExprList_item *aOutEx = p->pEList->a;
1680 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS
1681 int addrExplain; /* Address of OP_Explain instruction */
1682 #endif
1684 nKey = pOrderBy->nExpr - pSort->nOBSat;
1685 if( pSort->nOBSat==0 || nKey==1 ){
1686 ExplainQueryPlan2(addrExplain, (pParse, 0,
1687 "USE TEMP B-TREE FOR %sORDER BY", pSort->nOBSat?"LAST TERM OF ":""
1689 }else{
1690 ExplainQueryPlan2(addrExplain, (pParse, 0,
1691 "USE TEMP B-TREE FOR LAST %d TERMS OF ORDER BY", nKey
1694 sqlite3VdbeScanStatusRange(v, addrExplain,pSort->addrPush,pSort->addrPushEnd);
1695 sqlite3VdbeScanStatusCounters(v, addrExplain, addrExplain, pSort->addrPush);
1698 assert( addrBreak<0 );
1699 if( pSort->labelBkOut ){
1700 sqlite3VdbeAddOp2(v, OP_Gosub, pSort->regReturn, pSort->labelBkOut);
1701 sqlite3VdbeGoto(v, addrBreak);
1702 sqlite3VdbeResolveLabel(v, pSort->labelBkOut);
1705 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
1706 /* Open any cursors needed for sorter-reference expressions */
1707 for(i=0; i<pSort->nDefer; i++){
1708 Table *pTab = pSort->aDefer[i].pTab;
1709 int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
1710 sqlite3OpenTable(pParse, pSort->aDefer[i].iCsr, iDb, pTab, OP_OpenRead);
1711 nRefKey = MAX(nRefKey, pSort->aDefer[i].nKey);
1713 #endif
1715 iTab = pSort->iECursor;
1716 if( eDest==SRT_Output || eDest==SRT_Coroutine || eDest==SRT_Mem ){
1717 if( eDest==SRT_Mem && p->iOffset ){
1718 sqlite3VdbeAddOp2(v, OP_Null, 0, pDest->iSdst);
1720 regRowid = 0;
1721 regRow = pDest->iSdst;
1722 }else{
1723 regRowid = sqlite3GetTempReg(pParse);
1724 if( eDest==SRT_EphemTab || eDest==SRT_Table ){
1725 regRow = sqlite3GetTempReg(pParse);
1726 nColumn = 0;
1727 }else{
1728 regRow = sqlite3GetTempRange(pParse, nColumn);
1731 if( pSort->sortFlags & SORTFLAG_UseSorter ){
1732 int regSortOut = ++pParse->nMem;
1733 iSortTab = pParse->nTab++;
1734 if( pSort->labelBkOut ){
1735 addrOnce = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v);
1737 sqlite3VdbeAddOp3(v, OP_OpenPseudo, iSortTab, regSortOut,
1738 nKey+1+nColumn+nRefKey);
1739 if( addrOnce ) sqlite3VdbeJumpHere(v, addrOnce);
1740 addr = 1 + sqlite3VdbeAddOp2(v, OP_SorterSort, iTab, addrBreak);
1741 VdbeCoverage(v);
1742 assert( p->iLimit==0 && p->iOffset==0 );
1743 sqlite3VdbeAddOp3(v, OP_SorterData, iTab, regSortOut, iSortTab);
1744 bSeq = 0;
1745 }else{
1746 addr = 1 + sqlite3VdbeAddOp2(v, OP_Sort, iTab, addrBreak); VdbeCoverage(v);
1747 codeOffset(v, p->iOffset, addrContinue);
1748 iSortTab = iTab;
1749 bSeq = 1;
1750 if( p->iOffset>0 ){
1751 sqlite3VdbeAddOp2(v, OP_AddImm, p->iLimit, -1);
1754 for(i=0, iCol=nKey+bSeq-1; i<nColumn; i++){
1755 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
1756 if( aOutEx[i].fg.bSorterRef ) continue;
1757 #endif
1758 if( aOutEx[i].u.x.iOrderByCol==0 ) iCol++;
1760 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
1761 if( pSort->nDefer ){
1762 int iKey = iCol+1;
1763 int regKey = sqlite3GetTempRange(pParse, nRefKey);
1765 for(i=0; i<pSort->nDefer; i++){
1766 int iCsr = pSort->aDefer[i].iCsr;
1767 Table *pTab = pSort->aDefer[i].pTab;
1768 int nKey = pSort->aDefer[i].nKey;
1770 sqlite3VdbeAddOp1(v, OP_NullRow, iCsr);
1771 if( HasRowid(pTab) ){
1772 sqlite3VdbeAddOp3(v, OP_Column, iSortTab, iKey++, regKey);
1773 sqlite3VdbeAddOp3(v, OP_SeekRowid, iCsr,
1774 sqlite3VdbeCurrentAddr(v)+1, regKey);
1775 }else{
1776 int k;
1777 int iJmp;
1778 assert( sqlite3PrimaryKeyIndex(pTab)->nKeyCol==nKey );
1779 for(k=0; k<nKey; k++){
1780 sqlite3VdbeAddOp3(v, OP_Column, iSortTab, iKey++, regKey+k);
1782 iJmp = sqlite3VdbeCurrentAddr(v);
1783 sqlite3VdbeAddOp4Int(v, OP_SeekGE, iCsr, iJmp+2, regKey, nKey);
1784 sqlite3VdbeAddOp4Int(v, OP_IdxLE, iCsr, iJmp+3, regKey, nKey);
1785 sqlite3VdbeAddOp1(v, OP_NullRow, iCsr);
1788 sqlite3ReleaseTempRange(pParse, regKey, nRefKey);
1790 #endif
1791 for(i=nColumn-1; i>=0; i--){
1792 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
1793 if( aOutEx[i].fg.bSorterRef ){
1794 sqlite3ExprCode(pParse, aOutEx[i].pExpr, regRow+i);
1795 }else
1796 #endif
1798 int iRead;
1799 if( aOutEx[i].u.x.iOrderByCol ){
1800 iRead = aOutEx[i].u.x.iOrderByCol-1;
1801 }else{
1802 iRead = iCol--;
1804 sqlite3VdbeAddOp3(v, OP_Column, iSortTab, iRead, regRow+i);
1805 VdbeComment((v, "%s", aOutEx[i].zEName));
1808 sqlite3VdbeScanStatusRange(v, addrExplain, addrExplain, -1);
1809 switch( eDest ){
1810 case SRT_Table:
1811 case SRT_EphemTab: {
1812 sqlite3VdbeAddOp3(v, OP_Column, iSortTab, nKey+bSeq, regRow);
1813 sqlite3VdbeAddOp2(v, OP_NewRowid, iParm, regRowid);
1814 sqlite3VdbeAddOp3(v, OP_Insert, iParm, regRow, regRowid);
1815 sqlite3VdbeChangeP5(v, OPFLAG_APPEND);
1816 break;
1818 #ifndef SQLITE_OMIT_SUBQUERY
1819 case SRT_Set: {
1820 assert( nColumn==sqlite3Strlen30(pDest->zAffSdst) );
1821 sqlite3VdbeAddOp4(v, OP_MakeRecord, regRow, nColumn, regRowid,
1822 pDest->zAffSdst, nColumn);
1823 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, regRowid, regRow, nColumn);
1824 break;
1826 case SRT_Mem: {
1827 /* The LIMIT clause will terminate the loop for us */
1828 break;
1830 #endif
1831 case SRT_Upfrom: {
1832 int i2 = pDest->iSDParm2;
1833 int r1 = sqlite3GetTempReg(pParse);
1834 sqlite3VdbeAddOp3(v, OP_MakeRecord,regRow+(i2<0),nColumn-(i2<0),r1);
1835 if( i2<0 ){
1836 sqlite3VdbeAddOp3(v, OP_Insert, iParm, r1, regRow);
1837 }else{
1838 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, r1, regRow, i2);
1840 break;
1842 default: {
1843 assert( eDest==SRT_Output || eDest==SRT_Coroutine );
1844 testcase( eDest==SRT_Output );
1845 testcase( eDest==SRT_Coroutine );
1846 if( eDest==SRT_Output ){
1847 sqlite3VdbeAddOp2(v, OP_ResultRow, pDest->iSdst, nColumn);
1848 }else{
1849 sqlite3VdbeAddOp1(v, OP_Yield, pDest->iSDParm);
1851 break;
1854 if( regRowid ){
1855 if( eDest==SRT_Set ){
1856 sqlite3ReleaseTempRange(pParse, regRow, nColumn);
1857 }else{
1858 sqlite3ReleaseTempReg(pParse, regRow);
1860 sqlite3ReleaseTempReg(pParse, regRowid);
1862 /* The bottom of the loop
1864 sqlite3VdbeResolveLabel(v, addrContinue);
1865 if( pSort->sortFlags & SORTFLAG_UseSorter ){
1866 sqlite3VdbeAddOp2(v, OP_SorterNext, iTab, addr); VdbeCoverage(v);
1867 }else{
1868 sqlite3VdbeAddOp2(v, OP_Next, iTab, addr); VdbeCoverage(v);
1870 sqlite3VdbeScanStatusRange(v, addrExplain, sqlite3VdbeCurrentAddr(v)-1, -1);
1871 if( pSort->regReturn ) sqlite3VdbeAddOp1(v, OP_Return, pSort->regReturn);
1872 sqlite3VdbeResolveLabel(v, addrBreak);
1876 ** Return a pointer to a string containing the 'declaration type' of the
1877 ** expression pExpr. The string may be treated as static by the caller.
1879 ** The declaration type is the exact datatype definition extracted from the
1880 ** original CREATE TABLE statement if the expression is a column. The
1881 ** declaration type for a ROWID field is INTEGER. Exactly when an expression
1882 ** is considered a column can be complex in the presence of subqueries. The
1883 ** result-set expression in all of the following SELECT statements is
1884 ** considered a column by this function.
1886 ** SELECT col FROM tbl;
1887 ** SELECT (SELECT col FROM tbl;
1888 ** SELECT (SELECT col FROM tbl);
1889 ** SELECT abc FROM (SELECT col AS abc FROM tbl);
1891 ** The declaration type for any expression other than a column is NULL.
1893 ** This routine has either 3 or 6 parameters depending on whether or not
1894 ** the SQLITE_ENABLE_COLUMN_METADATA compile-time option is used.
1896 #ifdef SQLITE_ENABLE_COLUMN_METADATA
1897 # define columnType(A,B,C,D,E) columnTypeImpl(A,B,C,D,E)
1898 #else /* if !defined(SQLITE_ENABLE_COLUMN_METADATA) */
1899 # define columnType(A,B,C,D,E) columnTypeImpl(A,B)
1900 #endif
1901 static const char *columnTypeImpl(
1902 NameContext *pNC,
1903 #ifndef SQLITE_ENABLE_COLUMN_METADATA
1904 Expr *pExpr
1905 #else
1906 Expr *pExpr,
1907 const char **pzOrigDb,
1908 const char **pzOrigTab,
1909 const char **pzOrigCol
1910 #endif
1912 char const *zType = 0;
1913 int j;
1914 #ifdef SQLITE_ENABLE_COLUMN_METADATA
1915 char const *zOrigDb = 0;
1916 char const *zOrigTab = 0;
1917 char const *zOrigCol = 0;
1918 #endif
1920 assert( pExpr!=0 );
1921 assert( pNC->pSrcList!=0 );
1922 switch( pExpr->op ){
1923 case TK_COLUMN: {
1924 /* The expression is a column. Locate the table the column is being
1925 ** extracted from in NameContext.pSrcList. This table may be real
1926 ** database table or a subquery.
1928 Table *pTab = 0; /* Table structure column is extracted from */
1929 Select *pS = 0; /* Select the column is extracted from */
1930 int iCol = pExpr->iColumn; /* Index of column in pTab */
1931 while( pNC && !pTab ){
1932 SrcList *pTabList = pNC->pSrcList;
1933 for(j=0;j<pTabList->nSrc && pTabList->a[j].iCursor!=pExpr->iTable;j++);
1934 if( j<pTabList->nSrc ){
1935 pTab = pTabList->a[j].pSTab;
1936 if( pTabList->a[j].fg.isSubquery ){
1937 pS = pTabList->a[j].u4.pSubq->pSelect;
1938 }else{
1939 pS = 0;
1941 }else{
1942 pNC = pNC->pNext;
1946 if( pTab==0 ){
1947 /* At one time, code such as "SELECT new.x" within a trigger would
1948 ** cause this condition to run. Since then, we have restructured how
1949 ** trigger code is generated and so this condition is no longer
1950 ** possible. However, it can still be true for statements like
1951 ** the following:
1953 ** CREATE TABLE t1(col INTEGER);
1954 ** SELECT (SELECT t1.col) FROM FROM t1;
1956 ** when columnType() is called on the expression "t1.col" in the
1957 ** sub-select. In this case, set the column type to NULL, even
1958 ** though it should really be "INTEGER".
1960 ** This is not a problem, as the column type of "t1.col" is never
1961 ** used. When columnType() is called on the expression
1962 ** "(SELECT t1.col)", the correct type is returned (see the TK_SELECT
1963 ** branch below. */
1964 break;
1967 assert( pTab && ExprUseYTab(pExpr) && pExpr->y.pTab==pTab );
1968 if( pS ){
1969 /* The "table" is actually a sub-select or a view in the FROM clause
1970 ** of the SELECT statement. Return the declaration type and origin
1971 ** data for the result-set column of the sub-select.
1973 if( iCol<pS->pEList->nExpr
1974 && (!ViewCanHaveRowid || iCol>=0)
1976 /* If iCol is less than zero, then the expression requests the
1977 ** rowid of the sub-select or view. This expression is legal (see
1978 ** test case misc2.2.2) - it always evaluates to NULL.
1980 NameContext sNC;
1981 Expr *p = pS->pEList->a[iCol].pExpr;
1982 sNC.pSrcList = pS->pSrc;
1983 sNC.pNext = pNC;
1984 sNC.pParse = pNC->pParse;
1985 zType = columnType(&sNC, p,&zOrigDb,&zOrigTab,&zOrigCol);
1987 }else{
1988 /* A real table or a CTE table */
1989 assert( !pS );
1990 #ifdef SQLITE_ENABLE_COLUMN_METADATA
1991 if( iCol<0 ) iCol = pTab->iPKey;
1992 assert( iCol==XN_ROWID || (iCol>=0 && iCol<pTab->nCol) );
1993 if( iCol<0 ){
1994 zType = "INTEGER";
1995 zOrigCol = "rowid";
1996 }else{
1997 zOrigCol = pTab->aCol[iCol].zCnName;
1998 zType = sqlite3ColumnType(&pTab->aCol[iCol],0);
2000 zOrigTab = pTab->zName;
2001 if( pNC->pParse && pTab->pSchema ){
2002 int iDb = sqlite3SchemaToIndex(pNC->pParse->db, pTab->pSchema);
2003 zOrigDb = pNC->pParse->db->aDb[iDb].zDbSName;
2005 #else
2006 assert( iCol==XN_ROWID || (iCol>=0 && iCol<pTab->nCol) );
2007 if( iCol<0 ){
2008 zType = "INTEGER";
2009 }else{
2010 zType = sqlite3ColumnType(&pTab->aCol[iCol],0);
2012 #endif
2014 break;
2016 #ifndef SQLITE_OMIT_SUBQUERY
2017 case TK_SELECT: {
2018 /* The expression is a sub-select. Return the declaration type and
2019 ** origin info for the single column in the result set of the SELECT
2020 ** statement.
2022 NameContext sNC;
2023 Select *pS;
2024 Expr *p;
2025 assert( ExprUseXSelect(pExpr) );
2026 pS = pExpr->x.pSelect;
2027 p = pS->pEList->a[0].pExpr;
2028 sNC.pSrcList = pS->pSrc;
2029 sNC.pNext = pNC;
2030 sNC.pParse = pNC->pParse;
2031 zType = columnType(&sNC, p, &zOrigDb, &zOrigTab, &zOrigCol);
2032 break;
2034 #endif
2037 #ifdef SQLITE_ENABLE_COLUMN_METADATA
2038 if( pzOrigDb ){
2039 assert( pzOrigTab && pzOrigCol );
2040 *pzOrigDb = zOrigDb;
2041 *pzOrigTab = zOrigTab;
2042 *pzOrigCol = zOrigCol;
2044 #endif
2045 return zType;
2049 ** Generate code that will tell the VDBE the declaration types of columns
2050 ** in the result set.
2052 static void generateColumnTypes(
2053 Parse *pParse, /* Parser context */
2054 SrcList *pTabList, /* List of tables */
2055 ExprList *pEList /* Expressions defining the result set */
2057 #ifndef SQLITE_OMIT_DECLTYPE
2058 Vdbe *v = pParse->pVdbe;
2059 int i;
2060 NameContext sNC;
2061 sNC.pSrcList = pTabList;
2062 sNC.pParse = pParse;
2063 sNC.pNext = 0;
2064 for(i=0; i<pEList->nExpr; i++){
2065 Expr *p = pEList->a[i].pExpr;
2066 const char *zType;
2067 #ifdef SQLITE_ENABLE_COLUMN_METADATA
2068 const char *zOrigDb = 0;
2069 const char *zOrigTab = 0;
2070 const char *zOrigCol = 0;
2071 zType = columnType(&sNC, p, &zOrigDb, &zOrigTab, &zOrigCol);
2073 /* The vdbe must make its own copy of the column-type and other
2074 ** column specific strings, in case the schema is reset before this
2075 ** virtual machine is deleted.
2077 sqlite3VdbeSetColName(v, i, COLNAME_DATABASE, zOrigDb, SQLITE_TRANSIENT);
2078 sqlite3VdbeSetColName(v, i, COLNAME_TABLE, zOrigTab, SQLITE_TRANSIENT);
2079 sqlite3VdbeSetColName(v, i, COLNAME_COLUMN, zOrigCol, SQLITE_TRANSIENT);
2080 #else
2081 zType = columnType(&sNC, p, 0, 0, 0);
2082 #endif
2083 sqlite3VdbeSetColName(v, i, COLNAME_DECLTYPE, zType, SQLITE_TRANSIENT);
2085 #endif /* !defined(SQLITE_OMIT_DECLTYPE) */
2090 ** Compute the column names for a SELECT statement.
2092 ** The only guarantee that SQLite makes about column names is that if the
2093 ** column has an AS clause assigning it a name, that will be the name used.
2094 ** That is the only documented guarantee. However, countless applications
2095 ** developed over the years have made baseless assumptions about column names
2096 ** and will break if those assumptions changes. Hence, use extreme caution
2097 ** when modifying this routine to avoid breaking legacy.
2099 ** See Also: sqlite3ColumnsFromExprList()
2101 ** The PRAGMA short_column_names and PRAGMA full_column_names settings are
2102 ** deprecated. The default setting is short=ON, full=OFF. 99.9% of all
2103 ** applications should operate this way. Nevertheless, we need to support the
2104 ** other modes for legacy:
2106 ** short=OFF, full=OFF: Column name is the text of the expression has it
2107 ** originally appears in the SELECT statement. In
2108 ** other words, the zSpan of the result expression.
2110 ** short=ON, full=OFF: (This is the default setting). If the result
2111 ** refers directly to a table column, then the
2112 ** result column name is just the table column
2113 ** name: COLUMN. Otherwise use zSpan.
2115 ** full=ON, short=ANY: If the result refers directly to a table column,
2116 ** then the result column name with the table name
2117 ** prefix, ex: TABLE.COLUMN. Otherwise use zSpan.
2119 void sqlite3GenerateColumnNames(
2120 Parse *pParse, /* Parser context */
2121 Select *pSelect /* Generate column names for this SELECT statement */
2123 Vdbe *v = pParse->pVdbe;
2124 int i;
2125 Table *pTab;
2126 SrcList *pTabList;
2127 ExprList *pEList;
2128 sqlite3 *db = pParse->db;
2129 int fullName; /* TABLE.COLUMN if no AS clause and is a direct table ref */
2130 int srcName; /* COLUMN or TABLE.COLUMN if no AS clause and is direct */
2132 if( pParse->colNamesSet ) return;
2133 /* Column names are determined by the left-most term of a compound select */
2134 while( pSelect->pPrior ) pSelect = pSelect->pPrior;
2135 TREETRACE(0x80,pParse,pSelect,("generating column names\n"));
2136 pTabList = pSelect->pSrc;
2137 pEList = pSelect->pEList;
2138 assert( v!=0 );
2139 assert( pTabList!=0 );
2140 pParse->colNamesSet = 1;
2141 fullName = (db->flags & SQLITE_FullColNames)!=0;
2142 srcName = (db->flags & SQLITE_ShortColNames)!=0 || fullName;
2143 sqlite3VdbeSetNumCols(v, pEList->nExpr);
2144 for(i=0; i<pEList->nExpr; i++){
2145 Expr *p = pEList->a[i].pExpr;
2147 assert( p!=0 );
2148 assert( p->op!=TK_AGG_COLUMN ); /* Agg processing has not run yet */
2149 assert( p->op!=TK_COLUMN
2150 || (ExprUseYTab(p) && p->y.pTab!=0) ); /* Covering idx not yet coded */
2151 if( pEList->a[i].zEName && pEList->a[i].fg.eEName==ENAME_NAME ){
2152 /* An AS clause always takes first priority */
2153 char *zName = pEList->a[i].zEName;
2154 sqlite3VdbeSetColName(v, i, COLNAME_NAME, zName, SQLITE_TRANSIENT);
2155 }else if( srcName && p->op==TK_COLUMN ){
2156 char *zCol;
2157 int iCol = p->iColumn;
2158 pTab = p->y.pTab;
2159 assert( pTab!=0 );
2160 if( iCol<0 ) iCol = pTab->iPKey;
2161 assert( iCol==-1 || (iCol>=0 && iCol<pTab->nCol) );
2162 if( iCol<0 ){
2163 zCol = "rowid";
2164 }else{
2165 zCol = pTab->aCol[iCol].zCnName;
2167 if( fullName ){
2168 char *zName = 0;
2169 zName = sqlite3MPrintf(db, "%s.%s", pTab->zName, zCol);
2170 sqlite3VdbeSetColName(v, i, COLNAME_NAME, zName, SQLITE_DYNAMIC);
2171 }else{
2172 sqlite3VdbeSetColName(v, i, COLNAME_NAME, zCol, SQLITE_TRANSIENT);
2174 }else{
2175 const char *z = pEList->a[i].zEName;
2176 z = z==0 ? sqlite3MPrintf(db, "column%d", i+1) : sqlite3DbStrDup(db, z);
2177 sqlite3VdbeSetColName(v, i, COLNAME_NAME, z, SQLITE_DYNAMIC);
2180 generateColumnTypes(pParse, pTabList, pEList);
2184 ** Given an expression list (which is really the list of expressions
2185 ** that form the result set of a SELECT statement) compute appropriate
2186 ** column names for a table that would hold the expression list.
2188 ** All column names will be unique.
2190 ** Only the column names are computed. Column.zType, Column.zColl,
2191 ** and other fields of Column are zeroed.
2193 ** Return SQLITE_OK on success. If a memory allocation error occurs,
2194 ** store NULL in *paCol and 0 in *pnCol and return SQLITE_NOMEM.
2196 ** The only guarantee that SQLite makes about column names is that if the
2197 ** column has an AS clause assigning it a name, that will be the name used.
2198 ** That is the only documented guarantee. However, countless applications
2199 ** developed over the years have made baseless assumptions about column names
2200 ** and will break if those assumptions changes. Hence, use extreme caution
2201 ** when modifying this routine to avoid breaking legacy.
2203 ** See Also: sqlite3GenerateColumnNames()
2205 int sqlite3ColumnsFromExprList(
2206 Parse *pParse, /* Parsing context */
2207 ExprList *pEList, /* Expr list from which to derive column names */
2208 i16 *pnCol, /* Write the number of columns here */
2209 Column **paCol /* Write the new column list here */
2211 sqlite3 *db = pParse->db; /* Database connection */
2212 int i, j; /* Loop counters */
2213 u32 cnt; /* Index added to make the name unique */
2214 Column *aCol, *pCol; /* For looping over result columns */
2215 int nCol; /* Number of columns in the result set */
2216 char *zName; /* Column name */
2217 int nName; /* Size of name in zName[] */
2218 Hash ht; /* Hash table of column names */
2219 Table *pTab;
2221 sqlite3HashInit(&ht);
2222 if( pEList ){
2223 nCol = pEList->nExpr;
2224 aCol = sqlite3DbMallocZero(db, sizeof(aCol[0])*nCol);
2225 testcase( aCol==0 );
2226 if( NEVER(nCol>32767) ) nCol = 32767;
2227 }else{
2228 nCol = 0;
2229 aCol = 0;
2231 assert( nCol==(i16)nCol );
2232 *pnCol = nCol;
2233 *paCol = aCol;
2235 for(i=0, pCol=aCol; i<nCol && !pParse->nErr; i++, pCol++){
2236 struct ExprList_item *pX = &pEList->a[i];
2237 struct ExprList_item *pCollide;
2238 /* Get an appropriate name for the column
2240 if( (zName = pX->zEName)!=0 && pX->fg.eEName==ENAME_NAME ){
2241 /* If the column contains an "AS <name>" phrase, use <name> as the name */
2242 }else{
2243 Expr *pColExpr = sqlite3ExprSkipCollateAndLikely(pX->pExpr);
2244 while( ALWAYS(pColExpr!=0) && pColExpr->op==TK_DOT ){
2245 pColExpr = pColExpr->pRight;
2246 assert( pColExpr!=0 );
2248 if( pColExpr->op==TK_COLUMN
2249 && ALWAYS( ExprUseYTab(pColExpr) )
2250 && ALWAYS( pColExpr->y.pTab!=0 )
2252 /* For columns use the column name name */
2253 int iCol = pColExpr->iColumn;
2254 pTab = pColExpr->y.pTab;
2255 if( iCol<0 ) iCol = pTab->iPKey;
2256 zName = iCol>=0 ? pTab->aCol[iCol].zCnName : "rowid";
2257 }else if( pColExpr->op==TK_ID ){
2258 assert( !ExprHasProperty(pColExpr, EP_IntValue) );
2259 zName = pColExpr->u.zToken;
2260 }else{
2261 /* Use the original text of the column expression as its name */
2262 assert( zName==pX->zEName ); /* pointer comparison intended */
2265 if( zName && !sqlite3IsTrueOrFalse(zName) ){
2266 zName = sqlite3DbStrDup(db, zName);
2267 }else{
2268 zName = sqlite3MPrintf(db,"column%d",i+1);
2271 /* Make sure the column name is unique. If the name is not unique,
2272 ** append an integer to the name so that it becomes unique.
2274 cnt = 0;
2275 while( zName && (pCollide = sqlite3HashFind(&ht, zName))!=0 ){
2276 if( pCollide->fg.bUsingTerm ){
2277 pCol->colFlags |= COLFLAG_NOEXPAND;
2279 nName = sqlite3Strlen30(zName);
2280 if( nName>0 ){
2281 for(j=nName-1; j>0 && sqlite3Isdigit(zName[j]); j--){}
2282 if( zName[j]==':' ) nName = j;
2284 zName = sqlite3MPrintf(db, "%.*z:%u", nName, zName, ++cnt);
2285 sqlite3ProgressCheck(pParse);
2286 if( cnt>3 ){
2287 sqlite3_randomness(sizeof(cnt), &cnt);
2290 pCol->zCnName = zName;
2291 pCol->hName = sqlite3StrIHash(zName);
2292 if( pX->fg.bNoExpand ){
2293 pCol->colFlags |= COLFLAG_NOEXPAND;
2295 sqlite3ColumnPropertiesFromName(0, pCol);
2296 if( zName && sqlite3HashInsert(&ht, zName, pX)==pX ){
2297 sqlite3OomFault(db);
2300 sqlite3HashClear(&ht);
2301 if( pParse->nErr ){
2302 for(j=0; j<i; j++){
2303 sqlite3DbFree(db, aCol[j].zCnName);
2305 sqlite3DbFree(db, aCol);
2306 *paCol = 0;
2307 *pnCol = 0;
2308 return pParse->rc;
2310 return SQLITE_OK;
2314 ** pTab is a transient Table object that represents a subquery of some
2315 ** kind (maybe a parenthesized subquery in the FROM clause of a larger
2316 ** query, or a VIEW, or a CTE). This routine computes type information
2317 ** for that Table object based on the Select object that implements the
2318 ** subquery. For the purposes of this routine, "type information" means:
2320 ** * The datatype name, as it might appear in a CREATE TABLE statement
2321 ** * Which collating sequence to use for the column
2322 ** * The affinity of the column
2324 void sqlite3SubqueryColumnTypes(
2325 Parse *pParse, /* Parsing contexts */
2326 Table *pTab, /* Add column type information to this table */
2327 Select *pSelect, /* SELECT used to determine types and collations */
2328 char aff /* Default affinity. */
2330 sqlite3 *db = pParse->db;
2331 Column *pCol;
2332 CollSeq *pColl;
2333 int i,j;
2334 Expr *p;
2335 struct ExprList_item *a;
2336 NameContext sNC;
2338 assert( pSelect!=0 );
2339 assert( (pSelect->selFlags & SF_Resolved)!=0 );
2340 assert( pTab->nCol==pSelect->pEList->nExpr || pParse->nErr>0 );
2341 assert( aff==SQLITE_AFF_NONE || aff==SQLITE_AFF_BLOB );
2342 if( db->mallocFailed || IN_RENAME_OBJECT ) return;
2343 while( pSelect->pPrior ) pSelect = pSelect->pPrior;
2344 a = pSelect->pEList->a;
2345 memset(&sNC, 0, sizeof(sNC));
2346 sNC.pSrcList = pSelect->pSrc;
2347 for(i=0, pCol=pTab->aCol; i<pTab->nCol; i++, pCol++){
2348 const char *zType;
2349 i64 n;
2350 int m = 0;
2351 Select *pS2 = pSelect;
2352 pTab->tabFlags |= (pCol->colFlags & COLFLAG_NOINSERT);
2353 p = a[i].pExpr;
2354 /* pCol->szEst = ... // Column size est for SELECT tables never used */
2355 pCol->affinity = sqlite3ExprAffinity(p);
2356 while( pCol->affinity<=SQLITE_AFF_NONE && pS2->pNext!=0 ){
2357 m |= sqlite3ExprDataType(pS2->pEList->a[i].pExpr);
2358 pS2 = pS2->pNext;
2359 pCol->affinity = sqlite3ExprAffinity(pS2->pEList->a[i].pExpr);
2361 if( pCol->affinity<=SQLITE_AFF_NONE ){
2362 pCol->affinity = aff;
2364 if( pCol->affinity>=SQLITE_AFF_TEXT && (pS2->pNext || pS2!=pSelect) ){
2365 for(pS2=pS2->pNext; pS2; pS2=pS2->pNext){
2366 m |= sqlite3ExprDataType(pS2->pEList->a[i].pExpr);
2368 if( pCol->affinity==SQLITE_AFF_TEXT && (m&0x01)!=0 ){
2369 pCol->affinity = SQLITE_AFF_BLOB;
2370 }else
2371 if( pCol->affinity>=SQLITE_AFF_NUMERIC && (m&0x02)!=0 ){
2372 pCol->affinity = SQLITE_AFF_BLOB;
2374 if( pCol->affinity>=SQLITE_AFF_NUMERIC && p->op==TK_CAST ){
2375 pCol->affinity = SQLITE_AFF_FLEXNUM;
2378 zType = columnType(&sNC, p, 0, 0, 0);
2379 if( zType==0 || pCol->affinity!=sqlite3AffinityType(zType, 0) ){
2380 if( pCol->affinity==SQLITE_AFF_NUMERIC
2381 || pCol->affinity==SQLITE_AFF_FLEXNUM
2383 zType = "NUM";
2384 }else{
2385 zType = 0;
2386 for(j=1; j<SQLITE_N_STDTYPE; j++){
2387 if( sqlite3StdTypeAffinity[j]==pCol->affinity ){
2388 zType = sqlite3StdType[j];
2389 break;
2394 if( zType ){
2395 const i64 k = sqlite3Strlen30(zType);
2396 n = sqlite3Strlen30(pCol->zCnName);
2397 pCol->zCnName = sqlite3DbReallocOrFree(db, pCol->zCnName, n+k+2);
2398 pCol->colFlags &= ~(COLFLAG_HASTYPE|COLFLAG_HASCOLL);
2399 if( pCol->zCnName ){
2400 memcpy(&pCol->zCnName[n+1], zType, k+1);
2401 pCol->colFlags |= COLFLAG_HASTYPE;
2404 pColl = sqlite3ExprCollSeq(pParse, p);
2405 if( pColl ){
2406 assert( pTab->pIndex==0 );
2407 sqlite3ColumnSetColl(db, pCol, pColl->zName);
2410 pTab->szTabRow = 1; /* Any non-zero value works */
2414 ** Given a SELECT statement, generate a Table structure that describes
2415 ** the result set of that SELECT.
2417 Table *sqlite3ResultSetOfSelect(Parse *pParse, Select *pSelect, char aff){
2418 Table *pTab;
2419 sqlite3 *db = pParse->db;
2420 u64 savedFlags;
2422 savedFlags = db->flags;
2423 db->flags &= ~(u64)SQLITE_FullColNames;
2424 db->flags |= SQLITE_ShortColNames;
2425 sqlite3SelectPrep(pParse, pSelect, 0);
2426 db->flags = savedFlags;
2427 if( pParse->nErr ) return 0;
2428 while( pSelect->pPrior ) pSelect = pSelect->pPrior;
2429 pTab = sqlite3DbMallocZero(db, sizeof(Table) );
2430 if( pTab==0 ){
2431 return 0;
2433 pTab->nTabRef = 1;
2434 pTab->zName = 0;
2435 pTab->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) );
2436 sqlite3ColumnsFromExprList(pParse, pSelect->pEList, &pTab->nCol, &pTab->aCol);
2437 sqlite3SubqueryColumnTypes(pParse, pTab, pSelect, aff);
2438 pTab->iPKey = -1;
2439 if( db->mallocFailed ){
2440 sqlite3DeleteTable(db, pTab);
2441 return 0;
2443 return pTab;
2447 ** Get a VDBE for the given parser context. Create a new one if necessary.
2448 ** If an error occurs, return NULL and leave a message in pParse.
2450 Vdbe *sqlite3GetVdbe(Parse *pParse){
2451 if( pParse->pVdbe ){
2452 return pParse->pVdbe;
2454 if( pParse->pToplevel==0
2455 && OptimizationEnabled(pParse->db,SQLITE_FactorOutConst)
2457 pParse->okConstFactor = 1;
2459 return sqlite3VdbeCreate(pParse);
2464 ** Compute the iLimit and iOffset fields of the SELECT based on the
2465 ** pLimit expressions. pLimit->pLeft and pLimit->pRight hold the expressions
2466 ** that appear in the original SQL statement after the LIMIT and OFFSET
2467 ** keywords. Or NULL if those keywords are omitted. iLimit and iOffset
2468 ** are the integer memory register numbers for counters used to compute
2469 ** the limit and offset. If there is no limit and/or offset, then
2470 ** iLimit and iOffset are negative.
2472 ** This routine changes the values of iLimit and iOffset only if
2473 ** a limit or offset is defined by pLimit->pLeft and pLimit->pRight. iLimit
2474 ** and iOffset should have been preset to appropriate default values (zero)
2475 ** prior to calling this routine.
2477 ** The iOffset register (if it exists) is initialized to the value
2478 ** of the OFFSET. The iLimit register is initialized to LIMIT. Register
2479 ** iOffset+1 is initialized to LIMIT+OFFSET.
2481 ** Only if pLimit->pLeft!=0 do the limit registers get
2482 ** redefined. The UNION ALL operator uses this property to force
2483 ** the reuse of the same limit and offset registers across multiple
2484 ** SELECT statements.
2486 static void computeLimitRegisters(Parse *pParse, Select *p, int iBreak){
2487 Vdbe *v = 0;
2488 int iLimit = 0;
2489 int iOffset;
2490 int n;
2491 Expr *pLimit = p->pLimit;
2493 if( p->iLimit ) return;
2496 ** "LIMIT -1" always shows all rows. There is some
2497 ** controversy about what the correct behavior should be.
2498 ** The current implementation interprets "LIMIT 0" to mean
2499 ** no rows.
2501 if( pLimit ){
2502 assert( pLimit->op==TK_LIMIT );
2503 assert( pLimit->pLeft!=0 );
2504 p->iLimit = iLimit = ++pParse->nMem;
2505 v = sqlite3GetVdbe(pParse);
2506 assert( v!=0 );
2507 if( sqlite3ExprIsInteger(pLimit->pLeft, &n, pParse) ){
2508 sqlite3VdbeAddOp2(v, OP_Integer, n, iLimit);
2509 VdbeComment((v, "LIMIT counter"));
2510 if( n==0 ){
2511 sqlite3VdbeGoto(v, iBreak);
2512 }else if( n>=0 && p->nSelectRow>sqlite3LogEst((u64)n) ){
2513 p->nSelectRow = sqlite3LogEst((u64)n);
2514 p->selFlags |= SF_FixedLimit;
2516 }else{
2517 sqlite3ExprCode(pParse, pLimit->pLeft, iLimit);
2518 sqlite3VdbeAddOp1(v, OP_MustBeInt, iLimit); VdbeCoverage(v);
2519 VdbeComment((v, "LIMIT counter"));
2520 sqlite3VdbeAddOp2(v, OP_IfNot, iLimit, iBreak); VdbeCoverage(v);
2522 if( pLimit->pRight ){
2523 p->iOffset = iOffset = ++pParse->nMem;
2524 pParse->nMem++; /* Allocate an extra register for limit+offset */
2525 sqlite3ExprCode(pParse, pLimit->pRight, iOffset);
2526 sqlite3VdbeAddOp1(v, OP_MustBeInt, iOffset); VdbeCoverage(v);
2527 VdbeComment((v, "OFFSET counter"));
2528 sqlite3VdbeAddOp3(v, OP_OffsetLimit, iLimit, iOffset+1, iOffset);
2529 VdbeComment((v, "LIMIT+OFFSET"));
2534 #ifndef SQLITE_OMIT_COMPOUND_SELECT
2536 ** Return the appropriate collating sequence for the iCol-th column of
2537 ** the result set for the compound-select statement "p". Return NULL if
2538 ** the column has no default collating sequence.
2540 ** The collating sequence for the compound select is taken from the
2541 ** left-most term of the select that has a collating sequence.
2543 static CollSeq *multiSelectCollSeq(Parse *pParse, Select *p, int iCol){
2544 CollSeq *pRet;
2545 if( p->pPrior ){
2546 pRet = multiSelectCollSeq(pParse, p->pPrior, iCol);
2547 }else{
2548 pRet = 0;
2550 assert( iCol>=0 );
2551 /* iCol must be less than p->pEList->nExpr. Otherwise an error would
2552 ** have been thrown during name resolution and we would not have gotten
2553 ** this far */
2554 if( pRet==0 && ALWAYS(iCol<p->pEList->nExpr) ){
2555 pRet = sqlite3ExprCollSeq(pParse, p->pEList->a[iCol].pExpr);
2557 return pRet;
2561 ** The select statement passed as the second parameter is a compound SELECT
2562 ** with an ORDER BY clause. This function allocates and returns a KeyInfo
2563 ** structure suitable for implementing the ORDER BY.
2565 ** Space to hold the KeyInfo structure is obtained from malloc. The calling
2566 ** function is responsible for ensuring that this structure is eventually
2567 ** freed.
2569 static KeyInfo *multiSelectOrderByKeyInfo(Parse *pParse, Select *p, int nExtra){
2570 ExprList *pOrderBy = p->pOrderBy;
2571 int nOrderBy = ALWAYS(pOrderBy!=0) ? pOrderBy->nExpr : 0;
2572 sqlite3 *db = pParse->db;
2573 KeyInfo *pRet = sqlite3KeyInfoAlloc(db, nOrderBy+nExtra, 1);
2574 if( pRet ){
2575 int i;
2576 for(i=0; i<nOrderBy; i++){
2577 struct ExprList_item *pItem = &pOrderBy->a[i];
2578 Expr *pTerm = pItem->pExpr;
2579 CollSeq *pColl;
2581 if( pTerm->flags & EP_Collate ){
2582 pColl = sqlite3ExprCollSeq(pParse, pTerm);
2583 }else{
2584 pColl = multiSelectCollSeq(pParse, p, pItem->u.x.iOrderByCol-1);
2585 if( pColl==0 ) pColl = db->pDfltColl;
2586 pOrderBy->a[i].pExpr =
2587 sqlite3ExprAddCollateString(pParse, pTerm, pColl->zName);
2589 assert( sqlite3KeyInfoIsWriteable(pRet) );
2590 pRet->aColl[i] = pColl;
2591 pRet->aSortFlags[i] = pOrderBy->a[i].fg.sortFlags;
2595 return pRet;
2598 #ifndef SQLITE_OMIT_CTE
2600 ** This routine generates VDBE code to compute the content of a WITH RECURSIVE
2601 ** query of the form:
2603 ** <recursive-table> AS (<setup-query> UNION [ALL] <recursive-query>)
2604 ** \___________/ \_______________/
2605 ** p->pPrior p
2608 ** There is exactly one reference to the recursive-table in the FROM clause
2609 ** of recursive-query, marked with the SrcList->a[].fg.isRecursive flag.
2611 ** The setup-query runs once to generate an initial set of rows that go
2612 ** into a Queue table. Rows are extracted from the Queue table one by
2613 ** one. Each row extracted from Queue is output to pDest. Then the single
2614 ** extracted row (now in the iCurrent table) becomes the content of the
2615 ** recursive-table for a recursive-query run. The output of the recursive-query
2616 ** is added back into the Queue table. Then another row is extracted from Queue
2617 ** and the iteration continues until the Queue table is empty.
2619 ** If the compound query operator is UNION then no duplicate rows are ever
2620 ** inserted into the Queue table. The iDistinct table keeps a copy of all rows
2621 ** that have ever been inserted into Queue and causes duplicates to be
2622 ** discarded. If the operator is UNION ALL, then duplicates are allowed.
2624 ** If the query has an ORDER BY, then entries in the Queue table are kept in
2625 ** ORDER BY order and the first entry is extracted for each cycle. Without
2626 ** an ORDER BY, the Queue table is just a FIFO.
2628 ** If a LIMIT clause is provided, then the iteration stops after LIMIT rows
2629 ** have been output to pDest. A LIMIT of zero means to output no rows and a
2630 ** negative LIMIT means to output all rows. If there is also an OFFSET clause
2631 ** with a positive value, then the first OFFSET outputs are discarded rather
2632 ** than being sent to pDest. The LIMIT count does not begin until after OFFSET
2633 ** rows have been skipped.
2635 static void generateWithRecursiveQuery(
2636 Parse *pParse, /* Parsing context */
2637 Select *p, /* The recursive SELECT to be coded */
2638 SelectDest *pDest /* What to do with query results */
2640 SrcList *pSrc = p->pSrc; /* The FROM clause of the recursive query */
2641 int nCol = p->pEList->nExpr; /* Number of columns in the recursive table */
2642 Vdbe *v = pParse->pVdbe; /* The prepared statement under construction */
2643 Select *pSetup; /* The setup query */
2644 Select *pFirstRec; /* Left-most recursive term */
2645 int addrTop; /* Top of the loop */
2646 int addrCont, addrBreak; /* CONTINUE and BREAK addresses */
2647 int iCurrent = 0; /* The Current table */
2648 int regCurrent; /* Register holding Current table */
2649 int iQueue; /* The Queue table */
2650 int iDistinct = 0; /* To ensure unique results if UNION */
2651 int eDest = SRT_Fifo; /* How to write to Queue */
2652 SelectDest destQueue; /* SelectDest targeting the Queue table */
2653 int i; /* Loop counter */
2654 int rc; /* Result code */
2655 ExprList *pOrderBy; /* The ORDER BY clause */
2656 Expr *pLimit; /* Saved LIMIT and OFFSET */
2657 int regLimit, regOffset; /* Registers used by LIMIT and OFFSET */
2659 #ifndef SQLITE_OMIT_WINDOWFUNC
2660 if( p->pWin ){
2661 sqlite3ErrorMsg(pParse, "cannot use window functions in recursive queries");
2662 return;
2664 #endif
2666 /* Obtain authorization to do a recursive query */
2667 if( sqlite3AuthCheck(pParse, SQLITE_RECURSIVE, 0, 0, 0) ) return;
2669 /* Process the LIMIT and OFFSET clauses, if they exist */
2670 addrBreak = sqlite3VdbeMakeLabel(pParse);
2671 p->nSelectRow = 320; /* 4 billion rows */
2672 computeLimitRegisters(pParse, p, addrBreak);
2673 pLimit = p->pLimit;
2674 regLimit = p->iLimit;
2675 regOffset = p->iOffset;
2676 p->pLimit = 0;
2677 p->iLimit = p->iOffset = 0;
2678 pOrderBy = p->pOrderBy;
2680 /* Locate the cursor number of the Current table */
2681 for(i=0; ALWAYS(i<pSrc->nSrc); i++){
2682 if( pSrc->a[i].fg.isRecursive ){
2683 iCurrent = pSrc->a[i].iCursor;
2684 break;
2688 /* Allocate cursors numbers for Queue and Distinct. The cursor number for
2689 ** the Distinct table must be exactly one greater than Queue in order
2690 ** for the SRT_DistFifo and SRT_DistQueue destinations to work. */
2691 iQueue = pParse->nTab++;
2692 if( p->op==TK_UNION ){
2693 eDest = pOrderBy ? SRT_DistQueue : SRT_DistFifo;
2694 iDistinct = pParse->nTab++;
2695 }else{
2696 eDest = pOrderBy ? SRT_Queue : SRT_Fifo;
2698 sqlite3SelectDestInit(&destQueue, eDest, iQueue);
2700 /* Allocate cursors for Current, Queue, and Distinct. */
2701 regCurrent = ++pParse->nMem;
2702 sqlite3VdbeAddOp3(v, OP_OpenPseudo, iCurrent, regCurrent, nCol);
2703 if( pOrderBy ){
2704 KeyInfo *pKeyInfo = multiSelectOrderByKeyInfo(pParse, p, 1);
2705 sqlite3VdbeAddOp4(v, OP_OpenEphemeral, iQueue, pOrderBy->nExpr+2, 0,
2706 (char*)pKeyInfo, P4_KEYINFO);
2707 destQueue.pOrderBy = pOrderBy;
2708 }else{
2709 sqlite3VdbeAddOp2(v, OP_OpenEphemeral, iQueue, nCol);
2711 VdbeComment((v, "Queue table"));
2712 if( iDistinct ){
2713 p->addrOpenEphm[0] = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, iDistinct, 0);
2714 p->selFlags |= SF_UsesEphemeral;
2717 /* Detach the ORDER BY clause from the compound SELECT */
2718 p->pOrderBy = 0;
2720 /* Figure out how many elements of the compound SELECT are part of the
2721 ** recursive query. Make sure no recursive elements use aggregate
2722 ** functions. Mark the recursive elements as UNION ALL even if they
2723 ** are really UNION because the distinctness will be enforced by the
2724 ** iDistinct table. pFirstRec is left pointing to the left-most
2725 ** recursive term of the CTE.
2727 for(pFirstRec=p; ALWAYS(pFirstRec!=0); pFirstRec=pFirstRec->pPrior){
2728 if( pFirstRec->selFlags & SF_Aggregate ){
2729 sqlite3ErrorMsg(pParse, "recursive aggregate queries not supported");
2730 goto end_of_recursive_query;
2732 pFirstRec->op = TK_ALL;
2733 if( (pFirstRec->pPrior->selFlags & SF_Recursive)==0 ) break;
2736 /* Store the results of the setup-query in Queue. */
2737 pSetup = pFirstRec->pPrior;
2738 pSetup->pNext = 0;
2739 ExplainQueryPlan((pParse, 1, "SETUP"));
2740 rc = sqlite3Select(pParse, pSetup, &destQueue);
2741 pSetup->pNext = p;
2742 if( rc ) goto end_of_recursive_query;
2744 /* Find the next row in the Queue and output that row */
2745 addrTop = sqlite3VdbeAddOp2(v, OP_Rewind, iQueue, addrBreak); VdbeCoverage(v);
2747 /* Transfer the next row in Queue over to Current */
2748 sqlite3VdbeAddOp1(v, OP_NullRow, iCurrent); /* To reset column cache */
2749 if( pOrderBy ){
2750 sqlite3VdbeAddOp3(v, OP_Column, iQueue, pOrderBy->nExpr+1, regCurrent);
2751 }else{
2752 sqlite3VdbeAddOp2(v, OP_RowData, iQueue, regCurrent);
2754 sqlite3VdbeAddOp1(v, OP_Delete, iQueue);
2756 /* Output the single row in Current */
2757 addrCont = sqlite3VdbeMakeLabel(pParse);
2758 codeOffset(v, regOffset, addrCont);
2759 selectInnerLoop(pParse, p, iCurrent,
2760 0, 0, pDest, addrCont, addrBreak);
2761 if( regLimit ){
2762 sqlite3VdbeAddOp2(v, OP_DecrJumpZero, regLimit, addrBreak);
2763 VdbeCoverage(v);
2765 sqlite3VdbeResolveLabel(v, addrCont);
2767 /* Execute the recursive SELECT taking the single row in Current as
2768 ** the value for the recursive-table. Store the results in the Queue.
2770 pFirstRec->pPrior = 0;
2771 ExplainQueryPlan((pParse, 1, "RECURSIVE STEP"));
2772 sqlite3Select(pParse, p, &destQueue);
2773 assert( pFirstRec->pPrior==0 );
2774 pFirstRec->pPrior = pSetup;
2776 /* Keep running the loop until the Queue is empty */
2777 sqlite3VdbeGoto(v, addrTop);
2778 sqlite3VdbeResolveLabel(v, addrBreak);
2780 end_of_recursive_query:
2781 sqlite3ExprListDelete(pParse->db, p->pOrderBy);
2782 p->pOrderBy = pOrderBy;
2783 p->pLimit = pLimit;
2784 return;
2786 #endif /* SQLITE_OMIT_CTE */
2788 /* Forward references */
2789 static int multiSelectOrderBy(
2790 Parse *pParse, /* Parsing context */
2791 Select *p, /* The right-most of SELECTs to be coded */
2792 SelectDest *pDest /* What to do with query results */
2796 ** Handle the special case of a compound-select that originates from a
2797 ** VALUES clause. By handling this as a special case, we avoid deep
2798 ** recursion, and thus do not need to enforce the SQLITE_LIMIT_COMPOUND_SELECT
2799 ** on a VALUES clause.
2801 ** Because the Select object originates from a VALUES clause:
2802 ** (1) There is no LIMIT or OFFSET or else there is a LIMIT of exactly 1
2803 ** (2) All terms are UNION ALL
2804 ** (3) There is no ORDER BY clause
2806 ** The "LIMIT of exactly 1" case of condition (1) comes about when a VALUES
2807 ** clause occurs within scalar expression (ex: "SELECT (VALUES(1),(2),(3))").
2808 ** The sqlite3CodeSubselect will have added the LIMIT 1 clause in tht case.
2809 ** Since the limit is exactly 1, we only need to evaluate the left-most VALUES.
2811 static int multiSelectValues(
2812 Parse *pParse, /* Parsing context */
2813 Select *p, /* The right-most of SELECTs to be coded */
2814 SelectDest *pDest /* What to do with query results */
2816 int nRow = 1;
2817 int rc = 0;
2818 int bShowAll = p->pLimit==0;
2819 assert( p->selFlags & SF_MultiValue );
2821 assert( p->selFlags & SF_Values );
2822 assert( p->op==TK_ALL || (p->op==TK_SELECT && p->pPrior==0) );
2823 assert( p->pNext==0 || p->pEList->nExpr==p->pNext->pEList->nExpr );
2824 #ifndef SQLITE_OMIT_WINDOWFUNC
2825 if( p->pWin ) return -1;
2826 #endif
2827 if( p->pPrior==0 ) break;
2828 assert( p->pPrior->pNext==p );
2829 p = p->pPrior;
2830 nRow += bShowAll;
2831 }while(1);
2832 ExplainQueryPlan((pParse, 0, "SCAN %d CONSTANT ROW%s", nRow,
2833 nRow==1 ? "" : "S"));
2834 while( p ){
2835 selectInnerLoop(pParse, p, -1, 0, 0, pDest, 1, 1);
2836 if( !bShowAll ) break;
2837 p->nSelectRow = nRow;
2838 p = p->pNext;
2840 return rc;
2844 ** Return true if the SELECT statement which is known to be the recursive
2845 ** part of a recursive CTE still has its anchor terms attached. If the
2846 ** anchor terms have already been removed, then return false.
2848 static int hasAnchor(Select *p){
2849 while( p && (p->selFlags & SF_Recursive)!=0 ){ p = p->pPrior; }
2850 return p!=0;
2854 ** This routine is called to process a compound query form from
2855 ** two or more separate queries using UNION, UNION ALL, EXCEPT, or
2856 ** INTERSECT
2858 ** "p" points to the right-most of the two queries. the query on the
2859 ** left is p->pPrior. The left query could also be a compound query
2860 ** in which case this routine will be called recursively.
2862 ** The results of the total query are to be written into a destination
2863 ** of type eDest with parameter iParm.
2865 ** Example 1: Consider a three-way compound SQL statement.
2867 ** SELECT a FROM t1 UNION SELECT b FROM t2 UNION SELECT c FROM t3
2869 ** This statement is parsed up as follows:
2871 ** SELECT c FROM t3
2872 ** |
2873 ** `-----> SELECT b FROM t2
2874 ** |
2875 ** `------> SELECT a FROM t1
2877 ** The arrows in the diagram above represent the Select.pPrior pointer.
2878 ** So if this routine is called with p equal to the t3 query, then
2879 ** pPrior will be the t2 query. p->op will be TK_UNION in this case.
2881 ** Notice that because of the way SQLite parses compound SELECTs, the
2882 ** individual selects always group from left to right.
2884 static int multiSelect(
2885 Parse *pParse, /* Parsing context */
2886 Select *p, /* The right-most of SELECTs to be coded */
2887 SelectDest *pDest /* What to do with query results */
2889 int rc = SQLITE_OK; /* Success code from a subroutine */
2890 Select *pPrior; /* Another SELECT immediately to our left */
2891 Vdbe *v; /* Generate code to this VDBE */
2892 SelectDest dest; /* Alternative data destination */
2893 Select *pDelete = 0; /* Chain of simple selects to delete */
2894 sqlite3 *db; /* Database connection */
2896 /* Make sure there is no ORDER BY or LIMIT clause on prior SELECTs. Only
2897 ** the last (right-most) SELECT in the series may have an ORDER BY or LIMIT.
2899 assert( p && p->pPrior ); /* Calling function guarantees this much */
2900 assert( (p->selFlags & SF_Recursive)==0 || p->op==TK_ALL || p->op==TK_UNION );
2901 assert( p->selFlags & SF_Compound );
2902 db = pParse->db;
2903 pPrior = p->pPrior;
2904 dest = *pDest;
2905 assert( pPrior->pOrderBy==0 );
2906 assert( pPrior->pLimit==0 );
2908 v = sqlite3GetVdbe(pParse);
2909 assert( v!=0 ); /* The VDBE already created by calling function */
2911 /* Create the destination temporary table if necessary
2913 if( dest.eDest==SRT_EphemTab ){
2914 assert( p->pEList );
2915 sqlite3VdbeAddOp2(v, OP_OpenEphemeral, dest.iSDParm, p->pEList->nExpr);
2916 dest.eDest = SRT_Table;
2919 /* Special handling for a compound-select that originates as a VALUES clause.
2921 if( p->selFlags & SF_MultiValue ){
2922 rc = multiSelectValues(pParse, p, &dest);
2923 if( rc>=0 ) goto multi_select_end;
2924 rc = SQLITE_OK;
2927 /* Make sure all SELECTs in the statement have the same number of elements
2928 ** in their result sets.
2930 assert( p->pEList && pPrior->pEList );
2931 assert( p->pEList->nExpr==pPrior->pEList->nExpr );
2933 #ifndef SQLITE_OMIT_CTE
2934 if( (p->selFlags & SF_Recursive)!=0 && hasAnchor(p) ){
2935 generateWithRecursiveQuery(pParse, p, &dest);
2936 }else
2937 #endif
2939 /* Compound SELECTs that have an ORDER BY clause are handled separately.
2941 if( p->pOrderBy ){
2942 return multiSelectOrderBy(pParse, p, pDest);
2943 }else{
2945 #ifndef SQLITE_OMIT_EXPLAIN
2946 if( pPrior->pPrior==0 ){
2947 ExplainQueryPlan((pParse, 1, "COMPOUND QUERY"));
2948 ExplainQueryPlan((pParse, 1, "LEFT-MOST SUBQUERY"));
2950 #endif
2952 /* Generate code for the left and right SELECT statements.
2954 switch( p->op ){
2955 case TK_ALL: {
2956 int addr = 0;
2957 int nLimit = 0; /* Initialize to suppress harmless compiler warning */
2958 assert( !pPrior->pLimit );
2959 pPrior->iLimit = p->iLimit;
2960 pPrior->iOffset = p->iOffset;
2961 pPrior->pLimit = p->pLimit;
2962 TREETRACE(0x200, pParse, p, ("multiSelect UNION ALL left...\n"));
2963 rc = sqlite3Select(pParse, pPrior, &dest);
2964 pPrior->pLimit = 0;
2965 if( rc ){
2966 goto multi_select_end;
2968 p->pPrior = 0;
2969 p->iLimit = pPrior->iLimit;
2970 p->iOffset = pPrior->iOffset;
2971 if( p->iLimit ){
2972 addr = sqlite3VdbeAddOp1(v, OP_IfNot, p->iLimit); VdbeCoverage(v);
2973 VdbeComment((v, "Jump ahead if LIMIT reached"));
2974 if( p->iOffset ){
2975 sqlite3VdbeAddOp3(v, OP_OffsetLimit,
2976 p->iLimit, p->iOffset+1, p->iOffset);
2979 ExplainQueryPlan((pParse, 1, "UNION ALL"));
2980 TREETRACE(0x200, pParse, p, ("multiSelect UNION ALL right...\n"));
2981 rc = sqlite3Select(pParse, p, &dest);
2982 testcase( rc!=SQLITE_OK );
2983 pDelete = p->pPrior;
2984 p->pPrior = pPrior;
2985 p->nSelectRow = sqlite3LogEstAdd(p->nSelectRow, pPrior->nSelectRow);
2986 if( p->pLimit
2987 && sqlite3ExprIsInteger(p->pLimit->pLeft, &nLimit, pParse)
2988 && nLimit>0 && p->nSelectRow > sqlite3LogEst((u64)nLimit)
2990 p->nSelectRow = sqlite3LogEst((u64)nLimit);
2992 if( addr ){
2993 sqlite3VdbeJumpHere(v, addr);
2995 break;
2997 case TK_EXCEPT:
2998 case TK_UNION: {
2999 int unionTab; /* Cursor number of the temp table holding result */
3000 u8 op = 0; /* One of the SRT_ operations to apply to self */
3001 int priorOp; /* The SRT_ operation to apply to prior selects */
3002 Expr *pLimit; /* Saved values of p->nLimit */
3003 int addr;
3004 SelectDest uniondest;
3006 testcase( p->op==TK_EXCEPT );
3007 testcase( p->op==TK_UNION );
3008 priorOp = SRT_Union;
3009 if( dest.eDest==priorOp ){
3010 /* We can reuse a temporary table generated by a SELECT to our
3011 ** right.
3013 assert( p->pLimit==0 ); /* Not allowed on leftward elements */
3014 unionTab = dest.iSDParm;
3015 }else{
3016 /* We will need to create our own temporary table to hold the
3017 ** intermediate results.
3019 unionTab = pParse->nTab++;
3020 assert( p->pOrderBy==0 );
3021 addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, unionTab, 0);
3022 assert( p->addrOpenEphm[0] == -1 );
3023 p->addrOpenEphm[0] = addr;
3024 findRightmost(p)->selFlags |= SF_UsesEphemeral;
3025 assert( p->pEList );
3029 /* Code the SELECT statements to our left
3031 assert( !pPrior->pOrderBy );
3032 sqlite3SelectDestInit(&uniondest, priorOp, unionTab);
3033 TREETRACE(0x200, pParse, p, ("multiSelect EXCEPT/UNION left...\n"));
3034 rc = sqlite3Select(pParse, pPrior, &uniondest);
3035 if( rc ){
3036 goto multi_select_end;
3039 /* Code the current SELECT statement
3041 if( p->op==TK_EXCEPT ){
3042 op = SRT_Except;
3043 }else{
3044 assert( p->op==TK_UNION );
3045 op = SRT_Union;
3047 p->pPrior = 0;
3048 pLimit = p->pLimit;
3049 p->pLimit = 0;
3050 uniondest.eDest = op;
3051 ExplainQueryPlan((pParse, 1, "%s USING TEMP B-TREE",
3052 sqlite3SelectOpName(p->op)));
3053 TREETRACE(0x200, pParse, p, ("multiSelect EXCEPT/UNION right...\n"));
3054 rc = sqlite3Select(pParse, p, &uniondest);
3055 testcase( rc!=SQLITE_OK );
3056 assert( p->pOrderBy==0 );
3057 pDelete = p->pPrior;
3058 p->pPrior = pPrior;
3059 p->pOrderBy = 0;
3060 if( p->op==TK_UNION ){
3061 p->nSelectRow = sqlite3LogEstAdd(p->nSelectRow, pPrior->nSelectRow);
3063 sqlite3ExprDelete(db, p->pLimit);
3064 p->pLimit = pLimit;
3065 p->iLimit = 0;
3066 p->iOffset = 0;
3068 /* Convert the data in the temporary table into whatever form
3069 ** it is that we currently need.
3071 assert( unionTab==dest.iSDParm || dest.eDest!=priorOp );
3072 assert( p->pEList || db->mallocFailed );
3073 if( dest.eDest!=priorOp && db->mallocFailed==0 ){
3074 int iCont, iBreak, iStart;
3075 iBreak = sqlite3VdbeMakeLabel(pParse);
3076 iCont = sqlite3VdbeMakeLabel(pParse);
3077 computeLimitRegisters(pParse, p, iBreak);
3078 sqlite3VdbeAddOp2(v, OP_Rewind, unionTab, iBreak); VdbeCoverage(v);
3079 iStart = sqlite3VdbeCurrentAddr(v);
3080 selectInnerLoop(pParse, p, unionTab,
3081 0, 0, &dest, iCont, iBreak);
3082 sqlite3VdbeResolveLabel(v, iCont);
3083 sqlite3VdbeAddOp2(v, OP_Next, unionTab, iStart); VdbeCoverage(v);
3084 sqlite3VdbeResolveLabel(v, iBreak);
3085 sqlite3VdbeAddOp2(v, OP_Close, unionTab, 0);
3087 break;
3089 default: assert( p->op==TK_INTERSECT ); {
3090 int tab1, tab2;
3091 int iCont, iBreak, iStart;
3092 Expr *pLimit;
3093 int addr;
3094 SelectDest intersectdest;
3095 int r1;
3097 /* INTERSECT is different from the others since it requires
3098 ** two temporary tables. Hence it has its own case. Begin
3099 ** by allocating the tables we will need.
3101 tab1 = pParse->nTab++;
3102 tab2 = pParse->nTab++;
3103 assert( p->pOrderBy==0 );
3105 addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, tab1, 0);
3106 assert( p->addrOpenEphm[0] == -1 );
3107 p->addrOpenEphm[0] = addr;
3108 findRightmost(p)->selFlags |= SF_UsesEphemeral;
3109 assert( p->pEList );
3111 /* Code the SELECTs to our left into temporary table "tab1".
3113 sqlite3SelectDestInit(&intersectdest, SRT_Union, tab1);
3114 TREETRACE(0x400, pParse, p, ("multiSelect INTERSECT left...\n"));
3115 rc = sqlite3Select(pParse, pPrior, &intersectdest);
3116 if( rc ){
3117 goto multi_select_end;
3120 /* Code the current SELECT into temporary table "tab2"
3122 addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, tab2, 0);
3123 assert( p->addrOpenEphm[1] == -1 );
3124 p->addrOpenEphm[1] = addr;
3125 p->pPrior = 0;
3126 pLimit = p->pLimit;
3127 p->pLimit = 0;
3128 intersectdest.iSDParm = tab2;
3129 ExplainQueryPlan((pParse, 1, "%s USING TEMP B-TREE",
3130 sqlite3SelectOpName(p->op)));
3131 TREETRACE(0x400, pParse, p, ("multiSelect INTERSECT right...\n"));
3132 rc = sqlite3Select(pParse, p, &intersectdest);
3133 testcase( rc!=SQLITE_OK );
3134 pDelete = p->pPrior;
3135 p->pPrior = pPrior;
3136 if( p->nSelectRow>pPrior->nSelectRow ){
3137 p->nSelectRow = pPrior->nSelectRow;
3139 sqlite3ExprDelete(db, p->pLimit);
3140 p->pLimit = pLimit;
3142 /* Generate code to take the intersection of the two temporary
3143 ** tables.
3145 if( rc ) break;
3146 assert( p->pEList );
3147 iBreak = sqlite3VdbeMakeLabel(pParse);
3148 iCont = sqlite3VdbeMakeLabel(pParse);
3149 computeLimitRegisters(pParse, p, iBreak);
3150 sqlite3VdbeAddOp2(v, OP_Rewind, tab1, iBreak); VdbeCoverage(v);
3151 r1 = sqlite3GetTempReg(pParse);
3152 iStart = sqlite3VdbeAddOp2(v, OP_RowData, tab1, r1);
3153 sqlite3VdbeAddOp4Int(v, OP_NotFound, tab2, iCont, r1, 0);
3154 VdbeCoverage(v);
3155 sqlite3ReleaseTempReg(pParse, r1);
3156 selectInnerLoop(pParse, p, tab1,
3157 0, 0, &dest, iCont, iBreak);
3158 sqlite3VdbeResolveLabel(v, iCont);
3159 sqlite3VdbeAddOp2(v, OP_Next, tab1, iStart); VdbeCoverage(v);
3160 sqlite3VdbeResolveLabel(v, iBreak);
3161 sqlite3VdbeAddOp2(v, OP_Close, tab2, 0);
3162 sqlite3VdbeAddOp2(v, OP_Close, tab1, 0);
3163 break;
3167 #ifndef SQLITE_OMIT_EXPLAIN
3168 if( p->pNext==0 ){
3169 ExplainQueryPlanPop(pParse);
3171 #endif
3173 if( pParse->nErr ) goto multi_select_end;
3175 /* Compute collating sequences used by
3176 ** temporary tables needed to implement the compound select.
3177 ** Attach the KeyInfo structure to all temporary tables.
3179 ** This section is run by the right-most SELECT statement only.
3180 ** SELECT statements to the left always skip this part. The right-most
3181 ** SELECT might also skip this part if it has no ORDER BY clause and
3182 ** no temp tables are required.
3184 if( p->selFlags & SF_UsesEphemeral ){
3185 int i; /* Loop counter */
3186 KeyInfo *pKeyInfo; /* Collating sequence for the result set */
3187 Select *pLoop; /* For looping through SELECT statements */
3188 CollSeq **apColl; /* For looping through pKeyInfo->aColl[] */
3189 int nCol; /* Number of columns in result set */
3191 assert( p->pNext==0 );
3192 assert( p->pEList!=0 );
3193 nCol = p->pEList->nExpr;
3194 pKeyInfo = sqlite3KeyInfoAlloc(db, nCol, 1);
3195 if( !pKeyInfo ){
3196 rc = SQLITE_NOMEM_BKPT;
3197 goto multi_select_end;
3199 for(i=0, apColl=pKeyInfo->aColl; i<nCol; i++, apColl++){
3200 *apColl = multiSelectCollSeq(pParse, p, i);
3201 if( 0==*apColl ){
3202 *apColl = db->pDfltColl;
3206 for(pLoop=p; pLoop; pLoop=pLoop->pPrior){
3207 for(i=0; i<2; i++){
3208 int addr = pLoop->addrOpenEphm[i];
3209 if( addr<0 ){
3210 /* If [0] is unused then [1] is also unused. So we can
3211 ** always safely abort as soon as the first unused slot is found */
3212 assert( pLoop->addrOpenEphm[1]<0 );
3213 break;
3215 sqlite3VdbeChangeP2(v, addr, nCol);
3216 sqlite3VdbeChangeP4(v, addr, (char*)sqlite3KeyInfoRef(pKeyInfo),
3217 P4_KEYINFO);
3218 pLoop->addrOpenEphm[i] = -1;
3221 sqlite3KeyInfoUnref(pKeyInfo);
3224 multi_select_end:
3225 pDest->iSdst = dest.iSdst;
3226 pDest->nSdst = dest.nSdst;
3227 if( pDelete ){
3228 sqlite3ParserAddCleanup(pParse, sqlite3SelectDeleteGeneric, pDelete);
3230 return rc;
3232 #endif /* SQLITE_OMIT_COMPOUND_SELECT */
3235 ** Error message for when two or more terms of a compound select have different
3236 ** size result sets.
3238 void sqlite3SelectWrongNumTermsError(Parse *pParse, Select *p){
3239 if( p->selFlags & SF_Values ){
3240 sqlite3ErrorMsg(pParse, "all VALUES must have the same number of terms");
3241 }else{
3242 sqlite3ErrorMsg(pParse, "SELECTs to the left and right of %s"
3243 " do not have the same number of result columns",
3244 sqlite3SelectOpName(p->op));
3249 ** Code an output subroutine for a coroutine implementation of a
3250 ** SELECT statement.
3252 ** The data to be output is contained in pIn->iSdst. There are
3253 ** pIn->nSdst columns to be output. pDest is where the output should
3254 ** be sent.
3256 ** regReturn is the number of the register holding the subroutine
3257 ** return address.
3259 ** If regPrev>0 then it is the first register in a vector that
3260 ** records the previous output. mem[regPrev] is a flag that is false
3261 ** if there has been no previous output. If regPrev>0 then code is
3262 ** generated to suppress duplicates. pKeyInfo is used for comparing
3263 ** keys.
3265 ** If the LIMIT found in p->iLimit is reached, jump immediately to
3266 ** iBreak.
3268 static int generateOutputSubroutine(
3269 Parse *pParse, /* Parsing context */
3270 Select *p, /* The SELECT statement */
3271 SelectDest *pIn, /* Coroutine supplying data */
3272 SelectDest *pDest, /* Where to send the data */
3273 int regReturn, /* The return address register */
3274 int regPrev, /* Previous result register. No uniqueness if 0 */
3275 KeyInfo *pKeyInfo, /* For comparing with previous entry */
3276 int iBreak /* Jump here if we hit the LIMIT */
3278 Vdbe *v = pParse->pVdbe;
3279 int iContinue;
3280 int addr;
3282 addr = sqlite3VdbeCurrentAddr(v);
3283 iContinue = sqlite3VdbeMakeLabel(pParse);
3285 /* Suppress duplicates for UNION, EXCEPT, and INTERSECT
3287 if( regPrev ){
3288 int addr1, addr2;
3289 addr1 = sqlite3VdbeAddOp1(v, OP_IfNot, regPrev); VdbeCoverage(v);
3290 addr2 = sqlite3VdbeAddOp4(v, OP_Compare, pIn->iSdst, regPrev+1, pIn->nSdst,
3291 (char*)sqlite3KeyInfoRef(pKeyInfo), P4_KEYINFO);
3292 sqlite3VdbeAddOp3(v, OP_Jump, addr2+2, iContinue, addr2+2); VdbeCoverage(v);
3293 sqlite3VdbeJumpHere(v, addr1);
3294 sqlite3VdbeAddOp3(v, OP_Copy, pIn->iSdst, regPrev+1, pIn->nSdst-1);
3295 sqlite3VdbeAddOp2(v, OP_Integer, 1, regPrev);
3297 if( pParse->db->mallocFailed ) return 0;
3299 /* Suppress the first OFFSET entries if there is an OFFSET clause
3301 codeOffset(v, p->iOffset, iContinue);
3303 assert( pDest->eDest!=SRT_Exists );
3304 assert( pDest->eDest!=SRT_Table );
3305 switch( pDest->eDest ){
3306 /* Store the result as data using a unique key.
3308 case SRT_EphemTab: {
3309 int r1 = sqlite3GetTempReg(pParse);
3310 int r2 = sqlite3GetTempReg(pParse);
3311 sqlite3VdbeAddOp3(v, OP_MakeRecord, pIn->iSdst, pIn->nSdst, r1);
3312 sqlite3VdbeAddOp2(v, OP_NewRowid, pDest->iSDParm, r2);
3313 sqlite3VdbeAddOp3(v, OP_Insert, pDest->iSDParm, r1, r2);
3314 sqlite3VdbeChangeP5(v, OPFLAG_APPEND);
3315 sqlite3ReleaseTempReg(pParse, r2);
3316 sqlite3ReleaseTempReg(pParse, r1);
3317 break;
3320 #ifndef SQLITE_OMIT_SUBQUERY
3321 /* If we are creating a set for an "expr IN (SELECT ...)".
3323 case SRT_Set: {
3324 int r1;
3325 testcase( pIn->nSdst>1 );
3326 r1 = sqlite3GetTempReg(pParse);
3327 sqlite3VdbeAddOp4(v, OP_MakeRecord, pIn->iSdst, pIn->nSdst,
3328 r1, pDest->zAffSdst, pIn->nSdst);
3329 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, pDest->iSDParm, r1,
3330 pIn->iSdst, pIn->nSdst);
3331 if( pDest->iSDParm2>0 ){
3332 sqlite3VdbeAddOp4Int(v, OP_FilterAdd, pDest->iSDParm2, 0,
3333 pIn->iSdst, pIn->nSdst);
3334 ExplainQueryPlan((pParse, 0, "CREATE BLOOM FILTER"));
3336 sqlite3ReleaseTempReg(pParse, r1);
3337 break;
3340 /* If this is a scalar select that is part of an expression, then
3341 ** store the results in the appropriate memory cell and break out
3342 ** of the scan loop. Note that the select might return multiple columns
3343 ** if it is the RHS of a row-value IN operator.
3345 case SRT_Mem: {
3346 testcase( pIn->nSdst>1 );
3347 sqlite3ExprCodeMove(pParse, pIn->iSdst, pDest->iSDParm, pIn->nSdst);
3348 /* The LIMIT clause will jump out of the loop for us */
3349 break;
3351 #endif /* #ifndef SQLITE_OMIT_SUBQUERY */
3353 /* The results are stored in a sequence of registers
3354 ** starting at pDest->iSdst. Then the co-routine yields.
3356 case SRT_Coroutine: {
3357 if( pDest->iSdst==0 ){
3358 pDest->iSdst = sqlite3GetTempRange(pParse, pIn->nSdst);
3359 pDest->nSdst = pIn->nSdst;
3361 sqlite3ExprCodeMove(pParse, pIn->iSdst, pDest->iSdst, pIn->nSdst);
3362 sqlite3VdbeAddOp1(v, OP_Yield, pDest->iSDParm);
3363 break;
3366 /* If none of the above, then the result destination must be
3367 ** SRT_Output. This routine is never called with any other
3368 ** destination other than the ones handled above or SRT_Output.
3370 ** For SRT_Output, results are stored in a sequence of registers.
3371 ** Then the OP_ResultRow opcode is used to cause sqlite3_step() to
3372 ** return the next row of result.
3374 default: {
3375 assert( pDest->eDest==SRT_Output );
3376 sqlite3VdbeAddOp2(v, OP_ResultRow, pIn->iSdst, pIn->nSdst);
3377 break;
3381 /* Jump to the end of the loop if the LIMIT is reached.
3383 if( p->iLimit ){
3384 sqlite3VdbeAddOp2(v, OP_DecrJumpZero, p->iLimit, iBreak); VdbeCoverage(v);
3387 /* Generate the subroutine return
3389 sqlite3VdbeResolveLabel(v, iContinue);
3390 sqlite3VdbeAddOp1(v, OP_Return, regReturn);
3392 return addr;
3396 ** Alternative compound select code generator for cases when there
3397 ** is an ORDER BY clause.
3399 ** We assume a query of the following form:
3401 ** <selectA> <operator> <selectB> ORDER BY <orderbylist>
3403 ** <operator> is one of UNION ALL, UNION, EXCEPT, or INTERSECT. The idea
3404 ** is to code both <selectA> and <selectB> with the ORDER BY clause as
3405 ** co-routines. Then run the co-routines in parallel and merge the results
3406 ** into the output. In addition to the two coroutines (called selectA and
3407 ** selectB) there are 7 subroutines:
3409 ** outA: Move the output of the selectA coroutine into the output
3410 ** of the compound query.
3412 ** outB: Move the output of the selectB coroutine into the output
3413 ** of the compound query. (Only generated for UNION and
3414 ** UNION ALL. EXCEPT and INSERTSECT never output a row that
3415 ** appears only in B.)
3417 ** AltB: Called when there is data from both coroutines and A<B.
3419 ** AeqB: Called when there is data from both coroutines and A==B.
3421 ** AgtB: Called when there is data from both coroutines and A>B.
3423 ** EofA: Called when data is exhausted from selectA.
3425 ** EofB: Called when data is exhausted from selectB.
3427 ** The implementation of the latter five subroutines depend on which
3428 ** <operator> is used:
3431 ** UNION ALL UNION EXCEPT INTERSECT
3432 ** ------------- ----------------- -------------- -----------------
3433 ** AltB: outA, nextA outA, nextA outA, nextA nextA
3435 ** AeqB: outA, nextA nextA nextA outA, nextA
3437 ** AgtB: outB, nextB outB, nextB nextB nextB
3439 ** EofA: outB, nextB outB, nextB halt halt
3441 ** EofB: outA, nextA outA, nextA outA, nextA halt
3443 ** In the AltB, AeqB, and AgtB subroutines, an EOF on A following nextA
3444 ** causes an immediate jump to EofA and an EOF on B following nextB causes
3445 ** an immediate jump to EofB. Within EofA and EofB, and EOF on entry or
3446 ** following nextX causes a jump to the end of the select processing.
3448 ** Duplicate removal in the UNION, EXCEPT, and INTERSECT cases is handled
3449 ** within the output subroutine. The regPrev register set holds the previously
3450 ** output value. A comparison is made against this value and the output
3451 ** is skipped if the next results would be the same as the previous.
3453 ** The implementation plan is to implement the two coroutines and seven
3454 ** subroutines first, then put the control logic at the bottom. Like this:
3456 ** goto Init
3457 ** coA: coroutine for left query (A)
3458 ** coB: coroutine for right query (B)
3459 ** outA: output one row of A
3460 ** outB: output one row of B (UNION and UNION ALL only)
3461 ** EofA: ...
3462 ** EofB: ...
3463 ** AltB: ...
3464 ** AeqB: ...
3465 ** AgtB: ...
3466 ** Init: initialize coroutine registers
3467 ** yield coA
3468 ** if eof(A) goto EofA
3469 ** yield coB
3470 ** if eof(B) goto EofB
3471 ** Cmpr: Compare A, B
3472 ** Jump AltB, AeqB, AgtB
3473 ** End: ...
3475 ** We call AltB, AeqB, AgtB, EofA, and EofB "subroutines" but they are not
3476 ** actually called using Gosub and they do not Return. EofA and EofB loop
3477 ** until all data is exhausted then jump to the "end" label. AltB, AeqB,
3478 ** and AgtB jump to either L2 or to one of EofA or EofB.
3480 #ifndef SQLITE_OMIT_COMPOUND_SELECT
3481 static int multiSelectOrderBy(
3482 Parse *pParse, /* Parsing context */
3483 Select *p, /* The right-most of SELECTs to be coded */
3484 SelectDest *pDest /* What to do with query results */
3486 int i, j; /* Loop counters */
3487 Select *pPrior; /* Another SELECT immediately to our left */
3488 Select *pSplit; /* Left-most SELECT in the right-hand group */
3489 int nSelect; /* Number of SELECT statements in the compound */
3490 Vdbe *v; /* Generate code to this VDBE */
3491 SelectDest destA; /* Destination for coroutine A */
3492 SelectDest destB; /* Destination for coroutine B */
3493 int regAddrA; /* Address register for select-A coroutine */
3494 int regAddrB; /* Address register for select-B coroutine */
3495 int addrSelectA; /* Address of the select-A coroutine */
3496 int addrSelectB; /* Address of the select-B coroutine */
3497 int regOutA; /* Address register for the output-A subroutine */
3498 int regOutB; /* Address register for the output-B subroutine */
3499 int addrOutA; /* Address of the output-A subroutine */
3500 int addrOutB = 0; /* Address of the output-B subroutine */
3501 int addrEofA; /* Address of the select-A-exhausted subroutine */
3502 int addrEofA_noB; /* Alternate addrEofA if B is uninitialized */
3503 int addrEofB; /* Address of the select-B-exhausted subroutine */
3504 int addrAltB; /* Address of the A<B subroutine */
3505 int addrAeqB; /* Address of the A==B subroutine */
3506 int addrAgtB; /* Address of the A>B subroutine */
3507 int regLimitA; /* Limit register for select-A */
3508 int regLimitB; /* Limit register for select-A */
3509 int regPrev; /* A range of registers to hold previous output */
3510 int savedLimit; /* Saved value of p->iLimit */
3511 int savedOffset; /* Saved value of p->iOffset */
3512 int labelCmpr; /* Label for the start of the merge algorithm */
3513 int labelEnd; /* Label for the end of the overall SELECT stmt */
3514 int addr1; /* Jump instructions that get retargeted */
3515 int op; /* One of TK_ALL, TK_UNION, TK_EXCEPT, TK_INTERSECT */
3516 KeyInfo *pKeyDup = 0; /* Comparison information for duplicate removal */
3517 KeyInfo *pKeyMerge; /* Comparison information for merging rows */
3518 sqlite3 *db; /* Database connection */
3519 ExprList *pOrderBy; /* The ORDER BY clause */
3520 int nOrderBy; /* Number of terms in the ORDER BY clause */
3521 u32 *aPermute; /* Mapping from ORDER BY terms to result set columns */
3523 assert( p->pOrderBy!=0 );
3524 assert( pKeyDup==0 ); /* "Managed" code needs this. Ticket #3382. */
3525 db = pParse->db;
3526 v = pParse->pVdbe;
3527 assert( v!=0 ); /* Already thrown the error if VDBE alloc failed */
3528 labelEnd = sqlite3VdbeMakeLabel(pParse);
3529 labelCmpr = sqlite3VdbeMakeLabel(pParse);
3532 /* Patch up the ORDER BY clause
3534 op = p->op;
3535 assert( p->pPrior->pOrderBy==0 );
3536 pOrderBy = p->pOrderBy;
3537 assert( pOrderBy );
3538 nOrderBy = pOrderBy->nExpr;
3540 /* For operators other than UNION ALL we have to make sure that
3541 ** the ORDER BY clause covers every term of the result set. Add
3542 ** terms to the ORDER BY clause as necessary.
3544 if( op!=TK_ALL ){
3545 for(i=1; db->mallocFailed==0 && i<=p->pEList->nExpr; i++){
3546 struct ExprList_item *pItem;
3547 for(j=0, pItem=pOrderBy->a; j<nOrderBy; j++, pItem++){
3548 assert( pItem!=0 );
3549 assert( pItem->u.x.iOrderByCol>0 );
3550 if( pItem->u.x.iOrderByCol==i ) break;
3552 if( j==nOrderBy ){
3553 Expr *pNew = sqlite3Expr(db, TK_INTEGER, 0);
3554 if( pNew==0 ) return SQLITE_NOMEM_BKPT;
3555 pNew->flags |= EP_IntValue;
3556 pNew->u.iValue = i;
3557 p->pOrderBy = pOrderBy = sqlite3ExprListAppend(pParse, pOrderBy, pNew);
3558 if( pOrderBy ) pOrderBy->a[nOrderBy++].u.x.iOrderByCol = (u16)i;
3563 /* Compute the comparison permutation and keyinfo that is used with
3564 ** the permutation used to determine if the next
3565 ** row of results comes from selectA or selectB. Also add explicit
3566 ** collations to the ORDER BY clause terms so that when the subqueries
3567 ** to the right and the left are evaluated, they use the correct
3568 ** collation.
3570 aPermute = sqlite3DbMallocRawNN(db, sizeof(u32)*(nOrderBy + 1));
3571 if( aPermute ){
3572 struct ExprList_item *pItem;
3573 aPermute[0] = nOrderBy;
3574 for(i=1, pItem=pOrderBy->a; i<=nOrderBy; i++, pItem++){
3575 assert( pItem!=0 );
3576 assert( pItem->u.x.iOrderByCol>0 );
3577 assert( pItem->u.x.iOrderByCol<=p->pEList->nExpr );
3578 aPermute[i] = pItem->u.x.iOrderByCol - 1;
3580 pKeyMerge = multiSelectOrderByKeyInfo(pParse, p, 1);
3581 }else{
3582 pKeyMerge = 0;
3585 /* Allocate a range of temporary registers and the KeyInfo needed
3586 ** for the logic that removes duplicate result rows when the
3587 ** operator is UNION, EXCEPT, or INTERSECT (but not UNION ALL).
3589 if( op==TK_ALL ){
3590 regPrev = 0;
3591 }else{
3592 int nExpr = p->pEList->nExpr;
3593 assert( nOrderBy>=nExpr || db->mallocFailed );
3594 regPrev = pParse->nMem+1;
3595 pParse->nMem += nExpr+1;
3596 sqlite3VdbeAddOp2(v, OP_Integer, 0, regPrev);
3597 pKeyDup = sqlite3KeyInfoAlloc(db, nExpr, 1);
3598 if( pKeyDup ){
3599 assert( sqlite3KeyInfoIsWriteable(pKeyDup) );
3600 for(i=0; i<nExpr; i++){
3601 pKeyDup->aColl[i] = multiSelectCollSeq(pParse, p, i);
3602 pKeyDup->aSortFlags[i] = 0;
3607 /* Separate the left and the right query from one another
3609 nSelect = 1;
3610 if( (op==TK_ALL || op==TK_UNION)
3611 && OptimizationEnabled(db, SQLITE_BalancedMerge)
3613 for(pSplit=p; pSplit->pPrior!=0 && pSplit->op==op; pSplit=pSplit->pPrior){
3614 nSelect++;
3615 assert( pSplit->pPrior->pNext==pSplit );
3618 if( nSelect<=3 ){
3619 pSplit = p;
3620 }else{
3621 pSplit = p;
3622 for(i=2; i<nSelect; i+=2){ pSplit = pSplit->pPrior; }
3624 pPrior = pSplit->pPrior;
3625 assert( pPrior!=0 );
3626 pSplit->pPrior = 0;
3627 pPrior->pNext = 0;
3628 assert( p->pOrderBy == pOrderBy );
3629 assert( pOrderBy!=0 || db->mallocFailed );
3630 pPrior->pOrderBy = sqlite3ExprListDup(pParse->db, pOrderBy, 0);
3631 sqlite3ResolveOrderGroupBy(pParse, p, p->pOrderBy, "ORDER");
3632 sqlite3ResolveOrderGroupBy(pParse, pPrior, pPrior->pOrderBy, "ORDER");
3634 /* Compute the limit registers */
3635 computeLimitRegisters(pParse, p, labelEnd);
3636 if( p->iLimit && op==TK_ALL ){
3637 regLimitA = ++pParse->nMem;
3638 regLimitB = ++pParse->nMem;
3639 sqlite3VdbeAddOp2(v, OP_Copy, p->iOffset ? p->iOffset+1 : p->iLimit,
3640 regLimitA);
3641 sqlite3VdbeAddOp2(v, OP_Copy, regLimitA, regLimitB);
3642 }else{
3643 regLimitA = regLimitB = 0;
3645 sqlite3ExprDelete(db, p->pLimit);
3646 p->pLimit = 0;
3648 regAddrA = ++pParse->nMem;
3649 regAddrB = ++pParse->nMem;
3650 regOutA = ++pParse->nMem;
3651 regOutB = ++pParse->nMem;
3652 sqlite3SelectDestInit(&destA, SRT_Coroutine, regAddrA);
3653 sqlite3SelectDestInit(&destB, SRT_Coroutine, regAddrB);
3655 ExplainQueryPlan((pParse, 1, "MERGE (%s)", sqlite3SelectOpName(p->op)));
3657 /* Generate a coroutine to evaluate the SELECT statement to the
3658 ** left of the compound operator - the "A" select.
3660 addrSelectA = sqlite3VdbeCurrentAddr(v) + 1;
3661 addr1 = sqlite3VdbeAddOp3(v, OP_InitCoroutine, regAddrA, 0, addrSelectA);
3662 VdbeComment((v, "left SELECT"));
3663 pPrior->iLimit = regLimitA;
3664 ExplainQueryPlan((pParse, 1, "LEFT"));
3665 sqlite3Select(pParse, pPrior, &destA);
3666 sqlite3VdbeEndCoroutine(v, regAddrA);
3667 sqlite3VdbeJumpHere(v, addr1);
3669 /* Generate a coroutine to evaluate the SELECT statement on
3670 ** the right - the "B" select
3672 addrSelectB = sqlite3VdbeCurrentAddr(v) + 1;
3673 addr1 = sqlite3VdbeAddOp3(v, OP_InitCoroutine, regAddrB, 0, addrSelectB);
3674 VdbeComment((v, "right SELECT"));
3675 savedLimit = p->iLimit;
3676 savedOffset = p->iOffset;
3677 p->iLimit = regLimitB;
3678 p->iOffset = 0;
3679 ExplainQueryPlan((pParse, 1, "RIGHT"));
3680 sqlite3Select(pParse, p, &destB);
3681 p->iLimit = savedLimit;
3682 p->iOffset = savedOffset;
3683 sqlite3VdbeEndCoroutine(v, regAddrB);
3685 /* Generate a subroutine that outputs the current row of the A
3686 ** select as the next output row of the compound select.
3688 VdbeNoopComment((v, "Output routine for A"));
3689 addrOutA = generateOutputSubroutine(pParse,
3690 p, &destA, pDest, regOutA,
3691 regPrev, pKeyDup, labelEnd);
3693 /* Generate a subroutine that outputs the current row of the B
3694 ** select as the next output row of the compound select.
3696 if( op==TK_ALL || op==TK_UNION ){
3697 VdbeNoopComment((v, "Output routine for B"));
3698 addrOutB = generateOutputSubroutine(pParse,
3699 p, &destB, pDest, regOutB,
3700 regPrev, pKeyDup, labelEnd);
3702 sqlite3KeyInfoUnref(pKeyDup);
3704 /* Generate a subroutine to run when the results from select A
3705 ** are exhausted and only data in select B remains.
3707 if( op==TK_EXCEPT || op==TK_INTERSECT ){
3708 addrEofA_noB = addrEofA = labelEnd;
3709 }else{
3710 VdbeNoopComment((v, "eof-A subroutine"));
3711 addrEofA = sqlite3VdbeAddOp2(v, OP_Gosub, regOutB, addrOutB);
3712 addrEofA_noB = sqlite3VdbeAddOp2(v, OP_Yield, regAddrB, labelEnd);
3713 VdbeCoverage(v);
3714 sqlite3VdbeGoto(v, addrEofA);
3715 p->nSelectRow = sqlite3LogEstAdd(p->nSelectRow, pPrior->nSelectRow);
3718 /* Generate a subroutine to run when the results from select B
3719 ** are exhausted and only data in select A remains.
3721 if( op==TK_INTERSECT ){
3722 addrEofB = addrEofA;
3723 if( p->nSelectRow > pPrior->nSelectRow ) p->nSelectRow = pPrior->nSelectRow;
3724 }else{
3725 VdbeNoopComment((v, "eof-B subroutine"));
3726 addrEofB = sqlite3VdbeAddOp2(v, OP_Gosub, regOutA, addrOutA);
3727 sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, labelEnd); VdbeCoverage(v);
3728 sqlite3VdbeGoto(v, addrEofB);
3731 /* Generate code to handle the case of A<B
3733 VdbeNoopComment((v, "A-lt-B subroutine"));
3734 addrAltB = sqlite3VdbeAddOp2(v, OP_Gosub, regOutA, addrOutA);
3735 sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, addrEofA); VdbeCoverage(v);
3736 sqlite3VdbeGoto(v, labelCmpr);
3738 /* Generate code to handle the case of A==B
3740 if( op==TK_ALL ){
3741 addrAeqB = addrAltB;
3742 }else if( op==TK_INTERSECT ){
3743 addrAeqB = addrAltB;
3744 addrAltB++;
3745 }else{
3746 VdbeNoopComment((v, "A-eq-B subroutine"));
3747 addrAeqB =
3748 sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, addrEofA); VdbeCoverage(v);
3749 sqlite3VdbeGoto(v, labelCmpr);
3752 /* Generate code to handle the case of A>B
3754 VdbeNoopComment((v, "A-gt-B subroutine"));
3755 addrAgtB = sqlite3VdbeCurrentAddr(v);
3756 if( op==TK_ALL || op==TK_UNION ){
3757 sqlite3VdbeAddOp2(v, OP_Gosub, regOutB, addrOutB);
3759 sqlite3VdbeAddOp2(v, OP_Yield, regAddrB, addrEofB); VdbeCoverage(v);
3760 sqlite3VdbeGoto(v, labelCmpr);
3762 /* This code runs once to initialize everything.
3764 sqlite3VdbeJumpHere(v, addr1);
3765 sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, addrEofA_noB); VdbeCoverage(v);
3766 sqlite3VdbeAddOp2(v, OP_Yield, regAddrB, addrEofB); VdbeCoverage(v);
3768 /* Implement the main merge loop
3770 sqlite3VdbeResolveLabel(v, labelCmpr);
3771 sqlite3VdbeAddOp4(v, OP_Permutation, 0, 0, 0, (char*)aPermute, P4_INTARRAY);
3772 sqlite3VdbeAddOp4(v, OP_Compare, destA.iSdst, destB.iSdst, nOrderBy,
3773 (char*)pKeyMerge, P4_KEYINFO);
3774 sqlite3VdbeChangeP5(v, OPFLAG_PERMUTE);
3775 sqlite3VdbeAddOp3(v, OP_Jump, addrAltB, addrAeqB, addrAgtB); VdbeCoverage(v);
3777 /* Jump to the this point in order to terminate the query.
3779 sqlite3VdbeResolveLabel(v, labelEnd);
3781 /* Make arrangements to free the 2nd and subsequent arms of the compound
3782 ** after the parse has finished */
3783 if( pSplit->pPrior ){
3784 sqlite3ParserAddCleanup(pParse, sqlite3SelectDeleteGeneric, pSplit->pPrior);
3786 pSplit->pPrior = pPrior;
3787 pPrior->pNext = pSplit;
3788 sqlite3ExprListDelete(db, pPrior->pOrderBy);
3789 pPrior->pOrderBy = 0;
3791 /*** TBD: Insert subroutine calls to close cursors on incomplete
3792 **** subqueries ****/
3793 ExplainQueryPlanPop(pParse);
3794 return pParse->nErr!=0;
3796 #endif
3798 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
3800 /* An instance of the SubstContext object describes an substitution edit
3801 ** to be performed on a parse tree.
3803 ** All references to columns in table iTable are to be replaced by corresponding
3804 ** expressions in pEList.
3806 ** ## About "isOuterJoin":
3808 ** The isOuterJoin column indicates that the replacement will occur into a
3809 ** position in the parent that NULL-able due to an OUTER JOIN. Either the
3810 ** target slot in the parent is the right operand of a LEFT JOIN, or one of
3811 ** the left operands of a RIGHT JOIN. In either case, we need to potentially
3812 ** bypass the substituted expression with OP_IfNullRow.
3814 ** Suppose the original expression is an integer constant. Even though the table
3815 ** has the nullRow flag set, because the expression is an integer constant,
3816 ** it will not be NULLed out. So instead, we insert an OP_IfNullRow opcode
3817 ** that checks to see if the nullRow flag is set on the table. If the nullRow
3818 ** flag is set, then the value in the register is set to NULL and the original
3819 ** expression is bypassed. If the nullRow flag is not set, then the original
3820 ** expression runs to populate the register.
3822 ** Example where this is needed:
3824 ** CREATE TABLE t1(a INTEGER PRIMARY KEY, b INT);
3825 ** CREATE TABLE t2(x INT UNIQUE);
3827 ** SELECT a,b,m,x FROM t1 LEFT JOIN (SELECT 59 AS m,x FROM t2) ON b=x;
3829 ** When the subquery on the right side of the LEFT JOIN is flattened, we
3830 ** have to add OP_IfNullRow in front of the OP_Integer that implements the
3831 ** "m" value of the subquery so that a NULL will be loaded instead of 59
3832 ** when processing a non-matched row of the left.
3834 typedef struct SubstContext {
3835 Parse *pParse; /* The parsing context */
3836 int iTable; /* Replace references to this table */
3837 int iNewTable; /* New table number */
3838 int isOuterJoin; /* Add TK_IF_NULL_ROW opcodes on each replacement */
3839 ExprList *pEList; /* Replacement expressions */
3840 ExprList *pCList; /* Collation sequences for replacement expr */
3841 } SubstContext;
3843 /* Forward Declarations */
3844 static void substExprList(SubstContext*, ExprList*);
3845 static void substSelect(SubstContext*, Select*, int);
3848 ** Scan through the expression pExpr. Replace every reference to
3849 ** a column in table number iTable with a copy of the iColumn-th
3850 ** entry in pEList. (But leave references to the ROWID column
3851 ** unchanged.)
3853 ** This routine is part of the flattening procedure. A subquery
3854 ** whose result set is defined by pEList appears as entry in the
3855 ** FROM clause of a SELECT such that the VDBE cursor assigned to that
3856 ** FORM clause entry is iTable. This routine makes the necessary
3857 ** changes to pExpr so that it refers directly to the source table
3858 ** of the subquery rather the result set of the subquery.
3860 static Expr *substExpr(
3861 SubstContext *pSubst, /* Description of the substitution */
3862 Expr *pExpr /* Expr in which substitution occurs */
3864 if( pExpr==0 ) return 0;
3865 if( ExprHasProperty(pExpr, EP_OuterON|EP_InnerON)
3866 && pExpr->w.iJoin==pSubst->iTable
3868 testcase( ExprHasProperty(pExpr, EP_InnerON) );
3869 pExpr->w.iJoin = pSubst->iNewTable;
3871 if( pExpr->op==TK_COLUMN
3872 && pExpr->iTable==pSubst->iTable
3873 && !ExprHasProperty(pExpr, EP_FixedCol)
3875 #ifdef SQLITE_ALLOW_ROWID_IN_VIEW
3876 if( pExpr->iColumn<0 ){
3877 pExpr->op = TK_NULL;
3878 }else
3879 #endif
3881 Expr *pNew;
3882 int iColumn;
3883 Expr *pCopy;
3884 Expr ifNullRow;
3885 iColumn = pExpr->iColumn;
3886 assert( iColumn>=0 );
3887 assert( pSubst->pEList!=0 && iColumn<pSubst->pEList->nExpr );
3888 assert( pExpr->pRight==0 );
3889 pCopy = pSubst->pEList->a[iColumn].pExpr;
3890 if( sqlite3ExprIsVector(pCopy) ){
3891 sqlite3VectorErrorMsg(pSubst->pParse, pCopy);
3892 }else{
3893 sqlite3 *db = pSubst->pParse->db;
3894 if( pSubst->isOuterJoin
3895 && (pCopy->op!=TK_COLUMN || pCopy->iTable!=pSubst->iNewTable)
3897 memset(&ifNullRow, 0, sizeof(ifNullRow));
3898 ifNullRow.op = TK_IF_NULL_ROW;
3899 ifNullRow.pLeft = pCopy;
3900 ifNullRow.iTable = pSubst->iNewTable;
3901 ifNullRow.iColumn = -99;
3902 ifNullRow.flags = EP_IfNullRow;
3903 pCopy = &ifNullRow;
3905 testcase( ExprHasProperty(pCopy, EP_Subquery) );
3906 pNew = sqlite3ExprDup(db, pCopy, 0);
3907 if( db->mallocFailed ){
3908 sqlite3ExprDelete(db, pNew);
3909 return pExpr;
3911 if( pSubst->isOuterJoin ){
3912 ExprSetProperty(pNew, EP_CanBeNull);
3914 if( ExprHasProperty(pExpr,EP_OuterON|EP_InnerON) ){
3915 sqlite3SetJoinExpr(pNew, pExpr->w.iJoin,
3916 pExpr->flags & (EP_OuterON|EP_InnerON));
3918 sqlite3ExprDelete(db, pExpr);
3919 pExpr = pNew;
3920 if( pExpr->op==TK_TRUEFALSE ){
3921 pExpr->u.iValue = sqlite3ExprTruthValue(pExpr);
3922 pExpr->op = TK_INTEGER;
3923 ExprSetProperty(pExpr, EP_IntValue);
3926 /* Ensure that the expression now has an implicit collation sequence,
3927 ** just as it did when it was a column of a view or sub-query. */
3929 CollSeq *pNat = sqlite3ExprCollSeq(pSubst->pParse, pExpr);
3930 CollSeq *pColl = sqlite3ExprCollSeq(pSubst->pParse,
3931 pSubst->pCList->a[iColumn].pExpr
3933 if( pNat!=pColl || (pExpr->op!=TK_COLUMN && pExpr->op!=TK_COLLATE) ){
3934 pExpr = sqlite3ExprAddCollateString(pSubst->pParse, pExpr,
3935 (pColl ? pColl->zName : "BINARY")
3939 ExprClearProperty(pExpr, EP_Collate);
3942 }else{
3943 if( pExpr->op==TK_IF_NULL_ROW && pExpr->iTable==pSubst->iTable ){
3944 pExpr->iTable = pSubst->iNewTable;
3946 pExpr->pLeft = substExpr(pSubst, pExpr->pLeft);
3947 pExpr->pRight = substExpr(pSubst, pExpr->pRight);
3948 if( ExprUseXSelect(pExpr) ){
3949 substSelect(pSubst, pExpr->x.pSelect, 1);
3950 }else{
3951 substExprList(pSubst, pExpr->x.pList);
3953 #ifndef SQLITE_OMIT_WINDOWFUNC
3954 if( ExprHasProperty(pExpr, EP_WinFunc) ){
3955 Window *pWin = pExpr->y.pWin;
3956 pWin->pFilter = substExpr(pSubst, pWin->pFilter);
3957 substExprList(pSubst, pWin->pPartition);
3958 substExprList(pSubst, pWin->pOrderBy);
3960 #endif
3962 return pExpr;
3964 static void substExprList(
3965 SubstContext *pSubst, /* Description of the substitution */
3966 ExprList *pList /* List to scan and in which to make substitutes */
3968 int i;
3969 if( pList==0 ) return;
3970 for(i=0; i<pList->nExpr; i++){
3971 pList->a[i].pExpr = substExpr(pSubst, pList->a[i].pExpr);
3974 static void substSelect(
3975 SubstContext *pSubst, /* Description of the substitution */
3976 Select *p, /* SELECT statement in which to make substitutions */
3977 int doPrior /* Do substitutes on p->pPrior too */
3979 SrcList *pSrc;
3980 SrcItem *pItem;
3981 int i;
3982 if( !p ) return;
3984 substExprList(pSubst, p->pEList);
3985 substExprList(pSubst, p->pGroupBy);
3986 substExprList(pSubst, p->pOrderBy);
3987 p->pHaving = substExpr(pSubst, p->pHaving);
3988 p->pWhere = substExpr(pSubst, p->pWhere);
3989 pSrc = p->pSrc;
3990 assert( pSrc!=0 );
3991 for(i=pSrc->nSrc, pItem=pSrc->a; i>0; i--, pItem++){
3992 if( pItem->fg.isSubquery ){
3993 substSelect(pSubst, pItem->u4.pSubq->pSelect, 1);
3995 if( pItem->fg.isTabFunc ){
3996 substExprList(pSubst, pItem->u1.pFuncArg);
3999 }while( doPrior && (p = p->pPrior)!=0 );
4001 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */
4003 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
4005 ** pSelect is a SELECT statement and pSrcItem is one item in the FROM
4006 ** clause of that SELECT.
4008 ** This routine scans the entire SELECT statement and recomputes the
4009 ** pSrcItem->colUsed mask.
4011 static int recomputeColumnsUsedExpr(Walker *pWalker, Expr *pExpr){
4012 SrcItem *pItem;
4013 if( pExpr->op!=TK_COLUMN ) return WRC_Continue;
4014 pItem = pWalker->u.pSrcItem;
4015 if( pItem->iCursor!=pExpr->iTable ) return WRC_Continue;
4016 if( pExpr->iColumn<0 ) return WRC_Continue;
4017 pItem->colUsed |= sqlite3ExprColUsed(pExpr);
4018 return WRC_Continue;
4020 static void recomputeColumnsUsed(
4021 Select *pSelect, /* The complete SELECT statement */
4022 SrcItem *pSrcItem /* Which FROM clause item to recompute */
4024 Walker w;
4025 if( NEVER(pSrcItem->pSTab==0) ) return;
4026 memset(&w, 0, sizeof(w));
4027 w.xExprCallback = recomputeColumnsUsedExpr;
4028 w.xSelectCallback = sqlite3SelectWalkNoop;
4029 w.u.pSrcItem = pSrcItem;
4030 pSrcItem->colUsed = 0;
4031 sqlite3WalkSelect(&w, pSelect);
4033 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */
4035 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
4037 ** Assign new cursor numbers to each of the items in pSrc. For each
4038 ** new cursor number assigned, set an entry in the aCsrMap[] array
4039 ** to map the old cursor number to the new:
4041 ** aCsrMap[iOld+1] = iNew;
4043 ** The array is guaranteed by the caller to be large enough for all
4044 ** existing cursor numbers in pSrc. aCsrMap[0] is the array size.
4046 ** If pSrc contains any sub-selects, call this routine recursively
4047 ** on the FROM clause of each such sub-select, with iExcept set to -1.
4049 static void srclistRenumberCursors(
4050 Parse *pParse, /* Parse context */
4051 int *aCsrMap, /* Array to store cursor mappings in */
4052 SrcList *pSrc, /* FROM clause to renumber */
4053 int iExcept /* FROM clause item to skip */
4055 int i;
4056 SrcItem *pItem;
4057 for(i=0, pItem=pSrc->a; i<pSrc->nSrc; i++, pItem++){
4058 if( i!=iExcept ){
4059 Select *p;
4060 assert( pItem->iCursor < aCsrMap[0] );
4061 if( !pItem->fg.isRecursive || aCsrMap[pItem->iCursor+1]==0 ){
4062 aCsrMap[pItem->iCursor+1] = pParse->nTab++;
4064 pItem->iCursor = aCsrMap[pItem->iCursor+1];
4065 if( pItem->fg.isSubquery ){
4066 for(p=pItem->u4.pSubq->pSelect; p; p=p->pPrior){
4067 srclistRenumberCursors(pParse, aCsrMap, p->pSrc, -1);
4075 ** *piCursor is a cursor number. Change it if it needs to be mapped.
4077 static void renumberCursorDoMapping(Walker *pWalker, int *piCursor){
4078 int *aCsrMap = pWalker->u.aiCol;
4079 int iCsr = *piCursor;
4080 if( iCsr < aCsrMap[0] && aCsrMap[iCsr+1]>0 ){
4081 *piCursor = aCsrMap[iCsr+1];
4086 ** Expression walker callback used by renumberCursors() to update
4087 ** Expr objects to match newly assigned cursor numbers.
4089 static int renumberCursorsCb(Walker *pWalker, Expr *pExpr){
4090 int op = pExpr->op;
4091 if( op==TK_COLUMN || op==TK_IF_NULL_ROW ){
4092 renumberCursorDoMapping(pWalker, &pExpr->iTable);
4094 if( ExprHasProperty(pExpr, EP_OuterON) ){
4095 renumberCursorDoMapping(pWalker, &pExpr->w.iJoin);
4097 return WRC_Continue;
4101 ** Assign a new cursor number to each cursor in the FROM clause (Select.pSrc)
4102 ** of the SELECT statement passed as the second argument, and to each
4103 ** cursor in the FROM clause of any FROM clause sub-selects, recursively.
4104 ** Except, do not assign a new cursor number to the iExcept'th element in
4105 ** the FROM clause of (*p). Update all expressions and other references
4106 ** to refer to the new cursor numbers.
4108 ** Argument aCsrMap is an array that may be used for temporary working
4109 ** space. Two guarantees are made by the caller:
4111 ** * the array is larger than the largest cursor number used within the
4112 ** select statement passed as an argument, and
4114 ** * the array entries for all cursor numbers that do *not* appear in
4115 ** FROM clauses of the select statement as described above are
4116 ** initialized to zero.
4118 static void renumberCursors(
4119 Parse *pParse, /* Parse context */
4120 Select *p, /* Select to renumber cursors within */
4121 int iExcept, /* FROM clause item to skip */
4122 int *aCsrMap /* Working space */
4124 Walker w;
4125 srclistRenumberCursors(pParse, aCsrMap, p->pSrc, iExcept);
4126 memset(&w, 0, sizeof(w));
4127 w.u.aiCol = aCsrMap;
4128 w.xExprCallback = renumberCursorsCb;
4129 w.xSelectCallback = sqlite3SelectWalkNoop;
4130 sqlite3WalkSelect(&w, p);
4132 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */
4135 ** If pSel is not part of a compound SELECT, return a pointer to its
4136 ** expression list. Otherwise, return a pointer to the expression list
4137 ** of the leftmost SELECT in the compound.
4139 static ExprList *findLeftmostExprlist(Select *pSel){
4140 while( pSel->pPrior ){
4141 pSel = pSel->pPrior;
4143 return pSel->pEList;
4147 ** Return true if any of the result-set columns in the compound query
4148 ** have incompatible affinities on one or more arms of the compound.
4150 static int compoundHasDifferentAffinities(Select *p){
4151 int ii;
4152 ExprList *pList;
4153 assert( p!=0 );
4154 assert( p->pEList!=0 );
4155 assert( p->pPrior!=0 );
4156 pList = p->pEList;
4157 for(ii=0; ii<pList->nExpr; ii++){
4158 char aff;
4159 Select *pSub1;
4160 assert( pList->a[ii].pExpr!=0 );
4161 aff = sqlite3ExprAffinity(pList->a[ii].pExpr);
4162 for(pSub1=p->pPrior; pSub1; pSub1=pSub1->pPrior){
4163 assert( pSub1->pEList!=0 );
4164 assert( pSub1->pEList->nExpr>ii );
4165 assert( pSub1->pEList->a[ii].pExpr!=0 );
4166 if( sqlite3ExprAffinity(pSub1->pEList->a[ii].pExpr)!=aff ){
4167 return 1;
4171 return 0;
4174 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
4176 ** This routine attempts to flatten subqueries as a performance optimization.
4177 ** This routine returns 1 if it makes changes and 0 if no flattening occurs.
4179 ** To understand the concept of flattening, consider the following
4180 ** query:
4182 ** SELECT a FROM (SELECT x+y AS a FROM t1 WHERE z<100) WHERE a>5
4184 ** The default way of implementing this query is to execute the
4185 ** subquery first and store the results in a temporary table, then
4186 ** run the outer query on that temporary table. This requires two
4187 ** passes over the data. Furthermore, because the temporary table
4188 ** has no indices, the WHERE clause on the outer query cannot be
4189 ** optimized.
4191 ** This routine attempts to rewrite queries such as the above into
4192 ** a single flat select, like this:
4194 ** SELECT x+y AS a FROM t1 WHERE z<100 AND a>5
4196 ** The code generated for this simplification gives the same result
4197 ** but only has to scan the data once. And because indices might
4198 ** exist on the table t1, a complete scan of the data might be
4199 ** avoided.
4201 ** Flattening is subject to the following constraints:
4203 ** (**) We no longer attempt to flatten aggregate subqueries. Was:
4204 ** The subquery and the outer query cannot both be aggregates.
4206 ** (**) We no longer attempt to flatten aggregate subqueries. Was:
4207 ** (2) If the subquery is an aggregate then
4208 ** (2a) the outer query must not be a join and
4209 ** (2b) the outer query must not use subqueries
4210 ** other than the one FROM-clause subquery that is a candidate
4211 ** for flattening. (This is due to ticket [2f7170d73bf9abf80]
4212 ** from 2015-02-09.)
4214 ** (3) If the subquery is the right operand of a LEFT JOIN then
4215 ** (3a) the subquery may not be a join and
4216 ** (3b) the FROM clause of the subquery may not contain a virtual
4217 ** table and
4218 ** (**) Was: "The outer query may not have a GROUP BY." This case
4219 ** is now managed correctly
4220 ** (3d) the outer query may not be DISTINCT.
4221 ** See also (26) for restrictions on RIGHT JOIN.
4223 ** (4) The subquery can not be DISTINCT.
4225 ** (**) At one point restrictions (4) and (5) defined a subset of DISTINCT
4226 ** sub-queries that were excluded from this optimization. Restriction
4227 ** (4) has since been expanded to exclude all DISTINCT subqueries.
4229 ** (**) We no longer attempt to flatten aggregate subqueries. Was:
4230 ** If the subquery is aggregate, the outer query may not be DISTINCT.
4232 ** (7) The subquery must have a FROM clause. TODO: For subqueries without
4233 ** A FROM clause, consider adding a FROM clause with the special
4234 ** table sqlite_once that consists of a single row containing a
4235 ** single NULL.
4237 ** (8) If the subquery uses LIMIT then the outer query may not be a join.
4239 ** (9) If the subquery uses LIMIT then the outer query may not be aggregate.
4241 ** (**) Restriction (10) was removed from the code on 2005-02-05 but we
4242 ** accidentally carried the comment forward until 2014-09-15. Original
4243 ** constraint: "If the subquery is aggregate then the outer query
4244 ** may not use LIMIT."
4246 ** (11) The subquery and the outer query may not both have ORDER BY clauses.
4248 ** (**) Not implemented. Subsumed into restriction (3). Was previously
4249 ** a separate restriction deriving from ticket #350.
4251 ** (13) The subquery and outer query may not both use LIMIT.
4253 ** (14) The subquery may not use OFFSET.
4255 ** (15) If the outer query is part of a compound select, then the
4256 ** subquery may not use LIMIT.
4257 ** (See ticket #2339 and ticket [02a8e81d44]).
4259 ** (16) If the outer query is aggregate, then the subquery may not
4260 ** use ORDER BY. (Ticket #2942) This used to not matter
4261 ** until we introduced the group_concat() function.
4263 ** (17) If the subquery is a compound select, then
4264 ** (17a) all compound operators must be a UNION ALL, and
4265 ** (17b) no terms within the subquery compound may be aggregate
4266 ** or DISTINCT, and
4267 ** (17c) every term within the subquery compound must have a FROM clause
4268 ** (17d) the outer query may not be
4269 ** (17d1) aggregate, or
4270 ** (17d2) DISTINCT
4271 ** (17e) the subquery may not contain window functions, and
4272 ** (17f) the subquery must not be the RHS of a LEFT JOIN.
4273 ** (17g) either the subquery is the first element of the outer
4274 ** query or there are no RIGHT or FULL JOINs in any arm
4275 ** of the subquery. (This is a duplicate of condition (27b).)
4276 ** (17h) The corresponding result set expressions in all arms of the
4277 ** compound must have the same affinity.
4279 ** The parent and sub-query may contain WHERE clauses. Subject to
4280 ** rules (11), (13) and (14), they may also contain ORDER BY,
4281 ** LIMIT and OFFSET clauses. The subquery cannot use any compound
4282 ** operator other than UNION ALL because all the other compound
4283 ** operators have an implied DISTINCT which is disallowed by
4284 ** restriction (4).
4286 ** Also, each component of the sub-query must return the same number
4287 ** of result columns. This is actually a requirement for any compound
4288 ** SELECT statement, but all the code here does is make sure that no
4289 ** such (illegal) sub-query is flattened. The caller will detect the
4290 ** syntax error and return a detailed message.
4292 ** (18) If the sub-query is a compound select, then all terms of the
4293 ** ORDER BY clause of the parent must be copies of a term returned
4294 ** by the parent query.
4296 ** (19) If the subquery uses LIMIT then the outer query may not
4297 ** have a WHERE clause.
4299 ** (20) If the sub-query is a compound select, then it must not use
4300 ** an ORDER BY clause. Ticket #3773. We could relax this constraint
4301 ** somewhat by saying that the terms of the ORDER BY clause must
4302 ** appear as unmodified result columns in the outer query. But we
4303 ** have other optimizations in mind to deal with that case.
4305 ** (21) If the subquery uses LIMIT then the outer query may not be
4306 ** DISTINCT. (See ticket [752e1646fc]).
4308 ** (22) The subquery may not be a recursive CTE.
4310 ** (23) If the outer query is a recursive CTE, then the sub-query may not be
4311 ** a compound query. This restriction is because transforming the
4312 ** parent to a compound query confuses the code that handles
4313 ** recursive queries in multiSelect().
4315 ** (**) We no longer attempt to flatten aggregate subqueries. Was:
4316 ** The subquery may not be an aggregate that uses the built-in min() or
4317 ** or max() functions. (Without this restriction, a query like:
4318 ** "SELECT x FROM (SELECT max(y), x FROM t1)" would not necessarily
4319 ** return the value X for which Y was maximal.)
4321 ** (25) If either the subquery or the parent query contains a window
4322 ** function in the select list or ORDER BY clause, flattening
4323 ** is not attempted.
4325 ** (26) The subquery may not be the right operand of a RIGHT JOIN.
4326 ** See also (3) for restrictions on LEFT JOIN.
4328 ** (27) The subquery may not contain a FULL or RIGHT JOIN unless it
4329 ** is the first element of the parent query. Two subcases:
4330 ** (27a) the subquery is not a compound query.
4331 ** (27b) the subquery is a compound query and the RIGHT JOIN occurs
4332 ** in any arm of the compound query. (See also (17g).)
4334 ** (28) The subquery is not a MATERIALIZED CTE. (This is handled
4335 ** in the caller before ever reaching this routine.)
4338 ** In this routine, the "p" parameter is a pointer to the outer query.
4339 ** The subquery is p->pSrc->a[iFrom]. isAgg is true if the outer query
4340 ** uses aggregates.
4342 ** If flattening is not attempted, this routine is a no-op and returns 0.
4343 ** If flattening is attempted this routine returns 1.
4345 ** All of the expression analysis must occur on both the outer query and
4346 ** the subquery before this routine runs.
4348 static int flattenSubquery(
4349 Parse *pParse, /* Parsing context */
4350 Select *p, /* The parent or outer SELECT statement */
4351 int iFrom, /* Index in p->pSrc->a[] of the inner subquery */
4352 int isAgg /* True if outer SELECT uses aggregate functions */
4354 const char *zSavedAuthContext = pParse->zAuthContext;
4355 Select *pParent; /* Current UNION ALL term of the other query */
4356 Select *pSub; /* The inner query or "subquery" */
4357 Select *pSub1; /* Pointer to the rightmost select in sub-query */
4358 SrcList *pSrc; /* The FROM clause of the outer query */
4359 SrcList *pSubSrc; /* The FROM clause of the subquery */
4360 int iParent; /* VDBE cursor number of the pSub result set temp table */
4361 int iNewParent = -1;/* Replacement table for iParent */
4362 int isOuterJoin = 0; /* True if pSub is the right side of a LEFT JOIN */
4363 int i; /* Loop counter */
4364 Expr *pWhere; /* The WHERE clause */
4365 SrcItem *pSubitem; /* The subquery */
4366 sqlite3 *db = pParse->db;
4367 Walker w; /* Walker to persist agginfo data */
4368 int *aCsrMap = 0;
4370 /* Check to see if flattening is permitted. Return 0 if not.
4372 assert( p!=0 );
4373 assert( p->pPrior==0 );
4374 if( OptimizationDisabled(db, SQLITE_QueryFlattener) ) return 0;
4375 pSrc = p->pSrc;
4376 assert( pSrc && iFrom>=0 && iFrom<pSrc->nSrc );
4377 pSubitem = &pSrc->a[iFrom];
4378 iParent = pSubitem->iCursor;
4379 assert( pSubitem->fg.isSubquery );
4380 pSub = pSubitem->u4.pSubq->pSelect;
4381 assert( pSub!=0 );
4383 #ifndef SQLITE_OMIT_WINDOWFUNC
4384 if( p->pWin || pSub->pWin ) return 0; /* Restriction (25) */
4385 #endif
4387 pSubSrc = pSub->pSrc;
4388 assert( pSubSrc );
4389 /* Prior to version 3.1.2, when LIMIT and OFFSET had to be simple constants,
4390 ** not arbitrary expressions, we allowed some combining of LIMIT and OFFSET
4391 ** because they could be computed at compile-time. But when LIMIT and OFFSET
4392 ** became arbitrary expressions, we were forced to add restrictions (13)
4393 ** and (14). */
4394 if( pSub->pLimit && p->pLimit ) return 0; /* Restriction (13) */
4395 if( pSub->pLimit && pSub->pLimit->pRight ) return 0; /* Restriction (14) */
4396 if( (p->selFlags & SF_Compound)!=0 && pSub->pLimit ){
4397 return 0; /* Restriction (15) */
4399 if( pSubSrc->nSrc==0 ) return 0; /* Restriction (7) */
4400 if( pSub->selFlags & SF_Distinct ) return 0; /* Restriction (4) */
4401 if( pSub->pLimit && (pSrc->nSrc>1 || isAgg) ){
4402 return 0; /* Restrictions (8)(9) */
4404 if( p->pOrderBy && pSub->pOrderBy ){
4405 return 0; /* Restriction (11) */
4407 if( isAgg && pSub->pOrderBy ) return 0; /* Restriction (16) */
4408 if( pSub->pLimit && p->pWhere ) return 0; /* Restriction (19) */
4409 if( pSub->pLimit && (p->selFlags & SF_Distinct)!=0 ){
4410 return 0; /* Restriction (21) */
4412 if( pSub->selFlags & (SF_Recursive) ){
4413 return 0; /* Restrictions (22) */
4417 ** If the subquery is the right operand of a LEFT JOIN, then the
4418 ** subquery may not be a join itself (3a). Example of why this is not
4419 ** allowed:
4421 ** t1 LEFT OUTER JOIN (t2 JOIN t3)
4423 ** If we flatten the above, we would get
4425 ** (t1 LEFT OUTER JOIN t2) JOIN t3
4427 ** which is not at all the same thing.
4429 ** See also tickets #306, #350, and #3300.
4431 if( (pSubitem->fg.jointype & (JT_OUTER|JT_LTORJ))!=0 ){
4432 if( pSubSrc->nSrc>1 /* (3a) */
4433 || IsVirtual(pSubSrc->a[0].pSTab) /* (3b) */
4434 || (p->selFlags & SF_Distinct)!=0 /* (3d) */
4435 || (pSubitem->fg.jointype & JT_RIGHT)!=0 /* (26) */
4437 return 0;
4439 isOuterJoin = 1;
4442 assert( pSubSrc->nSrc>0 ); /* True by restriction (7) */
4443 if( iFrom>0 && (pSubSrc->a[0].fg.jointype & JT_LTORJ)!=0 ){
4444 return 0; /* Restriction (27a) */
4447 /* Condition (28) is blocked by the caller */
4448 assert( !pSubitem->fg.isCte || pSubitem->u2.pCteUse->eM10d!=M10d_Yes );
4450 /* Restriction (17): If the sub-query is a compound SELECT, then it must
4451 ** use only the UNION ALL operator. And none of the simple select queries
4452 ** that make up the compound SELECT are allowed to be aggregate or distinct
4453 ** queries.
4455 if( pSub->pPrior ){
4456 int ii;
4457 if( pSub->pOrderBy ){
4458 return 0; /* Restriction (20) */
4460 if( isAgg || (p->selFlags & SF_Distinct)!=0 || isOuterJoin>0 ){
4461 return 0; /* (17d1), (17d2), or (17f) */
4463 for(pSub1=pSub; pSub1; pSub1=pSub1->pPrior){
4464 testcase( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct );
4465 testcase( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))==SF_Aggregate );
4466 assert( pSub->pSrc!=0 );
4467 assert( (pSub->selFlags & SF_Recursive)==0 );
4468 assert( pSub->pEList->nExpr==pSub1->pEList->nExpr );
4469 if( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))!=0 /* (17b) */
4470 || (pSub1->pPrior && pSub1->op!=TK_ALL) /* (17a) */
4471 || pSub1->pSrc->nSrc<1 /* (17c) */
4472 #ifndef SQLITE_OMIT_WINDOWFUNC
4473 || pSub1->pWin /* (17e) */
4474 #endif
4476 return 0;
4478 if( iFrom>0 && (pSub1->pSrc->a[0].fg.jointype & JT_LTORJ)!=0 ){
4479 /* Without this restriction, the JT_LTORJ flag would end up being
4480 ** omitted on left-hand tables of the right join that is being
4481 ** flattened. */
4482 return 0; /* Restrictions (17g), (27b) */
4484 testcase( pSub1->pSrc->nSrc>1 );
4487 /* Restriction (18). */
4488 if( p->pOrderBy ){
4489 for(ii=0; ii<p->pOrderBy->nExpr; ii++){
4490 if( p->pOrderBy->a[ii].u.x.iOrderByCol==0 ) return 0;
4494 /* Restriction (23) */
4495 if( (p->selFlags & SF_Recursive) ) return 0;
4497 /* Restriction (17h) */
4498 if( compoundHasDifferentAffinities(pSub) ) return 0;
4500 if( pSrc->nSrc>1 ){
4501 if( pParse->nSelect>500 ) return 0;
4502 if( OptimizationDisabled(db, SQLITE_FlttnUnionAll) ) return 0;
4503 aCsrMap = sqlite3DbMallocZero(db, ((i64)pParse->nTab+1)*sizeof(int));
4504 if( aCsrMap ) aCsrMap[0] = pParse->nTab;
4508 /***** If we reach this point, flattening is permitted. *****/
4509 TREETRACE(0x4,pParse,p,("flatten %u.%p from term %d\n",
4510 pSub->selId, pSub, iFrom));
4512 /* Authorize the subquery */
4513 pParse->zAuthContext = pSubitem->zName;
4514 TESTONLY(i =) sqlite3AuthCheck(pParse, SQLITE_SELECT, 0, 0, 0);
4515 testcase( i==SQLITE_DENY );
4516 pParse->zAuthContext = zSavedAuthContext;
4518 /* Delete the transient structures associated with the subquery */
4520 if( ALWAYS(pSubitem->fg.isSubquery) ){
4521 pSub1 = sqlite3SubqueryDetach(db, pSubitem);
4522 }else{
4523 pSub1 = 0;
4525 assert( pSubitem->fg.isSubquery==0 );
4526 assert( pSubitem->fg.fixedSchema==0 );
4527 sqlite3DbFree(db, pSubitem->zName);
4528 sqlite3DbFree(db, pSubitem->zAlias);
4529 pSubitem->zName = 0;
4530 pSubitem->zAlias = 0;
4531 assert( pSubitem->fg.isUsing!=0 || pSubitem->u3.pOn==0 );
4533 /* If the sub-query is a compound SELECT statement, then (by restrictions
4534 ** 17 and 18 above) it must be a UNION ALL and the parent query must
4535 ** be of the form:
4537 ** SELECT <expr-list> FROM (<sub-query>) <where-clause>
4539 ** followed by any ORDER BY, LIMIT and/or OFFSET clauses. This block
4540 ** creates N-1 copies of the parent query without any ORDER BY, LIMIT or
4541 ** OFFSET clauses and joins them to the left-hand-side of the original
4542 ** using UNION ALL operators. In this case N is the number of simple
4543 ** select statements in the compound sub-query.
4545 ** Example:
4547 ** SELECT a+1 FROM (
4548 ** SELECT x FROM tab
4549 ** UNION ALL
4550 ** SELECT y FROM tab
4551 ** UNION ALL
4552 ** SELECT abs(z*2) FROM tab2
4553 ** ) WHERE a!=5 ORDER BY 1
4555 ** Transformed into:
4557 ** SELECT x+1 FROM tab WHERE x+1!=5
4558 ** UNION ALL
4559 ** SELECT y+1 FROM tab WHERE y+1!=5
4560 ** UNION ALL
4561 ** SELECT abs(z*2)+1 FROM tab2 WHERE abs(z*2)+1!=5
4562 ** ORDER BY 1
4564 ** We call this the "compound-subquery flattening".
4566 for(pSub=pSub->pPrior; pSub; pSub=pSub->pPrior){
4567 Select *pNew;
4568 ExprList *pOrderBy = p->pOrderBy;
4569 Expr *pLimit = p->pLimit;
4570 Select *pPrior = p->pPrior;
4571 Table *pItemTab = pSubitem->pSTab;
4572 pSubitem->pSTab = 0;
4573 p->pOrderBy = 0;
4574 p->pPrior = 0;
4575 p->pLimit = 0;
4576 pNew = sqlite3SelectDup(db, p, 0);
4577 p->pLimit = pLimit;
4578 p->pOrderBy = pOrderBy;
4579 p->op = TK_ALL;
4580 pSubitem->pSTab = pItemTab;
4581 if( pNew==0 ){
4582 p->pPrior = pPrior;
4583 }else{
4584 pNew->selId = ++pParse->nSelect;
4585 if( aCsrMap && ALWAYS(db->mallocFailed==0) ){
4586 renumberCursors(pParse, pNew, iFrom, aCsrMap);
4588 pNew->pPrior = pPrior;
4589 if( pPrior ) pPrior->pNext = pNew;
4590 pNew->pNext = p;
4591 p->pPrior = pNew;
4592 TREETRACE(0x4,pParse,p,("compound-subquery flattener"
4593 " creates %u as peer\n",pNew->selId));
4595 assert( pSubitem->fg.isSubquery==0 );
4597 sqlite3DbFree(db, aCsrMap);
4598 if( db->mallocFailed ){
4599 assert( pSubitem->fg.fixedSchema==0 );
4600 assert( pSubitem->fg.isSubquery==0 );
4601 assert( pSubitem->u4.zDatabase==0 );
4602 sqlite3SrcItemAttachSubquery(pParse, pSubitem, pSub1, 0);
4603 return 1;
4606 /* Defer deleting the Table object associated with the
4607 ** subquery until code generation is
4608 ** complete, since there may still exist Expr.pTab entries that
4609 ** refer to the subquery even after flattening. Ticket #3346.
4611 ** pSubitem->pTab is always non-NULL by test restrictions and tests above.
4613 if( ALWAYS(pSubitem->pSTab!=0) ){
4614 Table *pTabToDel = pSubitem->pSTab;
4615 if( pTabToDel->nTabRef==1 ){
4616 Parse *pToplevel = sqlite3ParseToplevel(pParse);
4617 sqlite3ParserAddCleanup(pToplevel, sqlite3DeleteTableGeneric, pTabToDel);
4618 testcase( pToplevel->earlyCleanup );
4619 }else{
4620 pTabToDel->nTabRef--;
4622 pSubitem->pSTab = 0;
4625 /* The following loop runs once for each term in a compound-subquery
4626 ** flattening (as described above). If we are doing a different kind
4627 ** of flattening - a flattening other than a compound-subquery flattening -
4628 ** then this loop only runs once.
4630 ** This loop moves all of the FROM elements of the subquery into the
4631 ** the FROM clause of the outer query. Before doing this, remember
4632 ** the cursor number for the original outer query FROM element in
4633 ** iParent. The iParent cursor will never be used. Subsequent code
4634 ** will scan expressions looking for iParent references and replace
4635 ** those references with expressions that resolve to the subquery FROM
4636 ** elements we are now copying in.
4638 pSub = pSub1;
4639 for(pParent=p; pParent; pParent=pParent->pPrior, pSub=pSub->pPrior){
4640 int nSubSrc;
4641 u8 jointype = 0;
4642 u8 ltorj = pSrc->a[iFrom].fg.jointype & JT_LTORJ;
4643 assert( pSub!=0 );
4644 pSubSrc = pSub->pSrc; /* FROM clause of subquery */
4645 nSubSrc = pSubSrc->nSrc; /* Number of terms in subquery FROM clause */
4646 pSrc = pParent->pSrc; /* FROM clause of the outer query */
4648 if( pParent==p ){
4649 jointype = pSubitem->fg.jointype; /* First time through the loop */
4652 /* The subquery uses a single slot of the FROM clause of the outer
4653 ** query. If the subquery has more than one element in its FROM clause,
4654 ** then expand the outer query to make space for it to hold all elements
4655 ** of the subquery.
4657 ** Example:
4659 ** SELECT * FROM tabA, (SELECT * FROM sub1, sub2), tabB;
4661 ** The outer query has 3 slots in its FROM clause. One slot of the
4662 ** outer query (the middle slot) is used by the subquery. The next
4663 ** block of code will expand the outer query FROM clause to 4 slots.
4664 ** The middle slot is expanded to two slots in order to make space
4665 ** for the two elements in the FROM clause of the subquery.
4667 if( nSubSrc>1 ){
4668 pSrc = sqlite3SrcListEnlarge(pParse, pSrc, nSubSrc-1,iFrom+1);
4669 if( pSrc==0 ) break;
4670 pParent->pSrc = pSrc;
4673 /* Transfer the FROM clause terms from the subquery into the
4674 ** outer query.
4676 for(i=0; i<nSubSrc; i++){
4677 SrcItem *pItem = &pSrc->a[i+iFrom];
4678 assert( pItem->fg.isTabFunc==0 );
4679 assert( pItem->fg.isSubquery
4680 || pItem->fg.fixedSchema
4681 || pItem->u4.zDatabase==0 );
4682 if( pItem->fg.isUsing ) sqlite3IdListDelete(db, pItem->u3.pUsing);
4683 *pItem = pSubSrc->a[i];
4684 pItem->fg.jointype |= ltorj;
4685 iNewParent = pSubSrc->a[i].iCursor;
4686 memset(&pSubSrc->a[i], 0, sizeof(pSubSrc->a[i]));
4688 pSrc->a[iFrom].fg.jointype &= JT_LTORJ;
4689 pSrc->a[iFrom].fg.jointype |= jointype | ltorj;
4691 /* Now begin substituting subquery result set expressions for
4692 ** references to the iParent in the outer query.
4694 ** Example:
4696 ** SELECT a+5, b*10 FROM (SELECT x*3 AS a, y+10 AS b FROM t1) WHERE a>b;
4697 ** \ \_____________ subquery __________/ /
4698 ** \_____________________ outer query ______________________________/
4700 ** We look at every expression in the outer query and every place we see
4701 ** "a" we substitute "x*3" and every place we see "b" we substitute "y+10".
4703 if( pSub->pOrderBy && (pParent->selFlags & SF_NoopOrderBy)==0 ){
4704 /* At this point, any non-zero iOrderByCol values indicate that the
4705 ** ORDER BY column expression is identical to the iOrderByCol'th
4706 ** expression returned by SELECT statement pSub. Since these values
4707 ** do not necessarily correspond to columns in SELECT statement pParent,
4708 ** zero them before transferring the ORDER BY clause.
4710 ** Not doing this may cause an error if a subsequent call to this
4711 ** function attempts to flatten a compound sub-query into pParent
4712 ** (the only way this can happen is if the compound sub-query is
4713 ** currently part of pSub->pSrc). See ticket [d11a6e908f]. */
4714 ExprList *pOrderBy = pSub->pOrderBy;
4715 for(i=0; i<pOrderBy->nExpr; i++){
4716 pOrderBy->a[i].u.x.iOrderByCol = 0;
4718 assert( pParent->pOrderBy==0 );
4719 pParent->pOrderBy = pOrderBy;
4720 pSub->pOrderBy = 0;
4722 pWhere = pSub->pWhere;
4723 pSub->pWhere = 0;
4724 if( isOuterJoin>0 ){
4725 sqlite3SetJoinExpr(pWhere, iNewParent, EP_OuterON);
4727 if( pWhere ){
4728 if( pParent->pWhere ){
4729 pParent->pWhere = sqlite3PExpr(pParse, TK_AND, pWhere, pParent->pWhere);
4730 }else{
4731 pParent->pWhere = pWhere;
4734 if( db->mallocFailed==0 ){
4735 SubstContext x;
4736 x.pParse = pParse;
4737 x.iTable = iParent;
4738 x.iNewTable = iNewParent;
4739 x.isOuterJoin = isOuterJoin;
4740 x.pEList = pSub->pEList;
4741 x.pCList = findLeftmostExprlist(pSub);
4742 substSelect(&x, pParent, 0);
4745 /* The flattened query is a compound if either the inner or the
4746 ** outer query is a compound. */
4747 pParent->selFlags |= pSub->selFlags & SF_Compound;
4748 assert( (pSub->selFlags & SF_Distinct)==0 ); /* restriction (17b) */
4751 ** SELECT ... FROM (SELECT ... LIMIT a OFFSET b) LIMIT x OFFSET y;
4753 ** One is tempted to try to add a and b to combine the limits. But this
4754 ** does not work if either limit is negative.
4756 if( pSub->pLimit ){
4757 pParent->pLimit = pSub->pLimit;
4758 pSub->pLimit = 0;
4761 /* Recompute the SrcItem.colUsed masks for the flattened
4762 ** tables. */
4763 for(i=0; i<nSubSrc; i++){
4764 recomputeColumnsUsed(pParent, &pSrc->a[i+iFrom]);
4768 /* Finally, delete what is left of the subquery and return success.
4770 sqlite3AggInfoPersistWalkerInit(&w, pParse);
4771 sqlite3WalkSelect(&w,pSub1);
4772 sqlite3SelectDelete(db, pSub1);
4774 #if TREETRACE_ENABLED
4775 if( sqlite3TreeTrace & 0x4 ){
4776 TREETRACE(0x4,pParse,p,("After flattening:\n"));
4777 sqlite3TreeViewSelect(0, p, 0);
4779 #endif
4781 return 1;
4783 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */
4786 ** A structure to keep track of all of the column values that are fixed to
4787 ** a known value due to WHERE clause constraints of the form COLUMN=VALUE.
4789 typedef struct WhereConst WhereConst;
4790 struct WhereConst {
4791 Parse *pParse; /* Parsing context */
4792 u8 *pOomFault; /* Pointer to pParse->db->mallocFailed */
4793 int nConst; /* Number for COLUMN=CONSTANT terms */
4794 int nChng; /* Number of times a constant is propagated */
4795 int bHasAffBlob; /* At least one column in apExpr[] as affinity BLOB */
4796 u32 mExcludeOn; /* Which ON expressions to exclude from considertion.
4797 ** Either EP_OuterON or EP_InnerON|EP_OuterON */
4798 Expr **apExpr; /* [i*2] is COLUMN and [i*2+1] is VALUE */
4802 ** Add a new entry to the pConst object. Except, do not add duplicate
4803 ** pColumn entries. Also, do not add if doing so would not be appropriate.
4805 ** The caller guarantees the pColumn is a column and pValue is a constant.
4806 ** This routine has to do some additional checks before completing the
4807 ** insert.
4809 static void constInsert(
4810 WhereConst *pConst, /* The WhereConst into which we are inserting */
4811 Expr *pColumn, /* The COLUMN part of the constraint */
4812 Expr *pValue, /* The VALUE part of the constraint */
4813 Expr *pExpr /* Overall expression: COLUMN=VALUE or VALUE=COLUMN */
4815 int i;
4816 assert( pColumn->op==TK_COLUMN );
4817 assert( sqlite3ExprIsConstant(pConst->pParse, pValue) );
4819 if( ExprHasProperty(pColumn, EP_FixedCol) ) return;
4820 if( sqlite3ExprAffinity(pValue)!=0 ) return;
4821 if( !sqlite3IsBinary(sqlite3ExprCompareCollSeq(pConst->pParse,pExpr)) ){
4822 return;
4825 /* 2018-10-25 ticket [cf5ed20f]
4826 ** Make sure the same pColumn is not inserted more than once */
4827 for(i=0; i<pConst->nConst; i++){
4828 const Expr *pE2 = pConst->apExpr[i*2];
4829 assert( pE2->op==TK_COLUMN );
4830 if( pE2->iTable==pColumn->iTable
4831 && pE2->iColumn==pColumn->iColumn
4833 return; /* Already present. Return without doing anything. */
4836 if( sqlite3ExprAffinity(pColumn)==SQLITE_AFF_BLOB ){
4837 pConst->bHasAffBlob = 1;
4840 pConst->nConst++;
4841 pConst->apExpr = sqlite3DbReallocOrFree(pConst->pParse->db, pConst->apExpr,
4842 pConst->nConst*2*sizeof(Expr*));
4843 if( pConst->apExpr==0 ){
4844 pConst->nConst = 0;
4845 }else{
4846 pConst->apExpr[pConst->nConst*2-2] = pColumn;
4847 pConst->apExpr[pConst->nConst*2-1] = pValue;
4852 ** Find all terms of COLUMN=VALUE or VALUE=COLUMN in pExpr where VALUE
4853 ** is a constant expression and where the term must be true because it
4854 ** is part of the AND-connected terms of the expression. For each term
4855 ** found, add it to the pConst structure.
4857 static void findConstInWhere(WhereConst *pConst, Expr *pExpr){
4858 Expr *pRight, *pLeft;
4859 if( NEVER(pExpr==0) ) return;
4860 if( ExprHasProperty(pExpr, pConst->mExcludeOn) ){
4861 testcase( ExprHasProperty(pExpr, EP_OuterON) );
4862 testcase( ExprHasProperty(pExpr, EP_InnerON) );
4863 return;
4865 if( pExpr->op==TK_AND ){
4866 findConstInWhere(pConst, pExpr->pRight);
4867 findConstInWhere(pConst, pExpr->pLeft);
4868 return;
4870 if( pExpr->op!=TK_EQ ) return;
4871 pRight = pExpr->pRight;
4872 pLeft = pExpr->pLeft;
4873 assert( pRight!=0 );
4874 assert( pLeft!=0 );
4875 if( pRight->op==TK_COLUMN && sqlite3ExprIsConstant(pConst->pParse, pLeft) ){
4876 constInsert(pConst,pRight,pLeft,pExpr);
4878 if( pLeft->op==TK_COLUMN && sqlite3ExprIsConstant(pConst->pParse, pRight) ){
4879 constInsert(pConst,pLeft,pRight,pExpr);
4884 ** This is a helper function for Walker callback propagateConstantExprRewrite().
4886 ** Argument pExpr is a candidate expression to be replaced by a value. If
4887 ** pExpr is equivalent to one of the columns named in pWalker->u.pConst,
4888 ** then overwrite it with the corresponding value. Except, do not do so
4889 ** if argument bIgnoreAffBlob is non-zero and the affinity of pExpr
4890 ** is SQLITE_AFF_BLOB.
4892 static int propagateConstantExprRewriteOne(
4893 WhereConst *pConst,
4894 Expr *pExpr,
4895 int bIgnoreAffBlob
4897 int i;
4898 if( pConst->pOomFault[0] ) return WRC_Prune;
4899 if( pExpr->op!=TK_COLUMN ) return WRC_Continue;
4900 if( ExprHasProperty(pExpr, EP_FixedCol|pConst->mExcludeOn) ){
4901 testcase( ExprHasProperty(pExpr, EP_FixedCol) );
4902 testcase( ExprHasProperty(pExpr, EP_OuterON) );
4903 testcase( ExprHasProperty(pExpr, EP_InnerON) );
4904 return WRC_Continue;
4906 for(i=0; i<pConst->nConst; i++){
4907 Expr *pColumn = pConst->apExpr[i*2];
4908 if( pColumn==pExpr ) continue;
4909 if( pColumn->iTable!=pExpr->iTable ) continue;
4910 if( pColumn->iColumn!=pExpr->iColumn ) continue;
4911 if( bIgnoreAffBlob && sqlite3ExprAffinity(pColumn)==SQLITE_AFF_BLOB ){
4912 break;
4914 /* A match is found. Add the EP_FixedCol property */
4915 pConst->nChng++;
4916 ExprClearProperty(pExpr, EP_Leaf);
4917 ExprSetProperty(pExpr, EP_FixedCol);
4918 assert( pExpr->pLeft==0 );
4919 pExpr->pLeft = sqlite3ExprDup(pConst->pParse->db, pConst->apExpr[i*2+1], 0);
4920 if( pConst->pParse->db->mallocFailed ) return WRC_Prune;
4921 break;
4923 return WRC_Prune;
4927 ** This is a Walker expression callback. pExpr is a node from the WHERE
4928 ** clause of a SELECT statement. This function examines pExpr to see if
4929 ** any substitutions based on the contents of pWalker->u.pConst should
4930 ** be made to pExpr or its immediate children.
4932 ** A substitution is made if:
4934 ** + pExpr is a column with an affinity other than BLOB that matches
4935 ** one of the columns in pWalker->u.pConst, or
4937 ** + pExpr is a binary comparison operator (=, <=, >=, <, >) that
4938 ** uses an affinity other than TEXT and one of its immediate
4939 ** children is a column that matches one of the columns in
4940 ** pWalker->u.pConst.
4942 static int propagateConstantExprRewrite(Walker *pWalker, Expr *pExpr){
4943 WhereConst *pConst = pWalker->u.pConst;
4944 assert( TK_GT==TK_EQ+1 );
4945 assert( TK_LE==TK_EQ+2 );
4946 assert( TK_LT==TK_EQ+3 );
4947 assert( TK_GE==TK_EQ+4 );
4948 if( pConst->bHasAffBlob ){
4949 if( (pExpr->op>=TK_EQ && pExpr->op<=TK_GE)
4950 || pExpr->op==TK_IS
4952 propagateConstantExprRewriteOne(pConst, pExpr->pLeft, 0);
4953 if( pConst->pOomFault[0] ) return WRC_Prune;
4954 if( sqlite3ExprAffinity(pExpr->pLeft)!=SQLITE_AFF_TEXT ){
4955 propagateConstantExprRewriteOne(pConst, pExpr->pRight, 0);
4959 return propagateConstantExprRewriteOne(pConst, pExpr, pConst->bHasAffBlob);
4963 ** The WHERE-clause constant propagation optimization.
4965 ** If the WHERE clause contains terms of the form COLUMN=CONSTANT or
4966 ** CONSTANT=COLUMN that are top-level AND-connected terms that are not
4967 ** part of a ON clause from a LEFT JOIN, then throughout the query
4968 ** replace all other occurrences of COLUMN with CONSTANT.
4970 ** For example, the query:
4972 ** SELECT * FROM t1, t2, t3 WHERE t1.a=39 AND t2.b=t1.a AND t3.c=t2.b
4974 ** Is transformed into
4976 ** SELECT * FROM t1, t2, t3 WHERE t1.a=39 AND t2.b=39 AND t3.c=39
4978 ** Return true if any transformations where made and false if not.
4980 ** Implementation note: Constant propagation is tricky due to affinity
4981 ** and collating sequence interactions. Consider this example:
4983 ** CREATE TABLE t1(a INT,b TEXT);
4984 ** INSERT INTO t1 VALUES(123,'0123');
4985 ** SELECT * FROM t1 WHERE a=123 AND b=a;
4986 ** SELECT * FROM t1 WHERE a=123 AND b=123;
4988 ** The two SELECT statements above should return different answers. b=a
4989 ** is always true because the comparison uses numeric affinity, but b=123
4990 ** is false because it uses text affinity and '0123' is not the same as '123'.
4991 ** To work around this, the expression tree is not actually changed from
4992 ** "b=a" to "b=123" but rather the "a" in "b=a" is tagged with EP_FixedCol
4993 ** and the "123" value is hung off of the pLeft pointer. Code generator
4994 ** routines know to generate the constant "123" instead of looking up the
4995 ** column value. Also, to avoid collation problems, this optimization is
4996 ** only attempted if the "a=123" term uses the default BINARY collation.
4998 ** 2021-05-25 forum post 6a06202608: Another troublesome case is...
5000 ** CREATE TABLE t1(x);
5001 ** INSERT INTO t1 VALUES(10.0);
5002 ** SELECT 1 FROM t1 WHERE x=10 AND x LIKE 10;
5004 ** The query should return no rows, because the t1.x value is '10.0' not '10'
5005 ** and '10.0' is not LIKE '10'. But if we are not careful, the first WHERE
5006 ** term "x=10" will cause the second WHERE term to become "10 LIKE 10",
5007 ** resulting in a false positive. To avoid this, constant propagation for
5008 ** columns with BLOB affinity is only allowed if the constant is used with
5009 ** operators ==, <=, <, >=, >, or IS in a way that will cause the correct
5010 ** type conversions to occur. See logic associated with the bHasAffBlob flag
5011 ** for details.
5013 static int propagateConstants(
5014 Parse *pParse, /* The parsing context */
5015 Select *p /* The query in which to propagate constants */
5017 WhereConst x;
5018 Walker w;
5019 int nChng = 0;
5020 x.pParse = pParse;
5021 x.pOomFault = &pParse->db->mallocFailed;
5023 x.nConst = 0;
5024 x.nChng = 0;
5025 x.apExpr = 0;
5026 x.bHasAffBlob = 0;
5027 if( ALWAYS(p->pSrc!=0)
5028 && p->pSrc->nSrc>0
5029 && (p->pSrc->a[0].fg.jointype & JT_LTORJ)!=0
5031 /* Do not propagate constants on any ON clause if there is a
5032 ** RIGHT JOIN anywhere in the query */
5033 x.mExcludeOn = EP_InnerON | EP_OuterON;
5034 }else{
5035 /* Do not propagate constants through the ON clause of a LEFT JOIN */
5036 x.mExcludeOn = EP_OuterON;
5038 findConstInWhere(&x, p->pWhere);
5039 if( x.nConst ){
5040 memset(&w, 0, sizeof(w));
5041 w.pParse = pParse;
5042 w.xExprCallback = propagateConstantExprRewrite;
5043 w.xSelectCallback = sqlite3SelectWalkNoop;
5044 w.xSelectCallback2 = 0;
5045 w.walkerDepth = 0;
5046 w.u.pConst = &x;
5047 sqlite3WalkExpr(&w, p->pWhere);
5048 sqlite3DbFree(x.pParse->db, x.apExpr);
5049 nChng += x.nChng;
5051 }while( x.nChng );
5052 return nChng;
5055 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
5056 # if !defined(SQLITE_OMIT_WINDOWFUNC)
5058 ** This function is called to determine whether or not it is safe to
5059 ** push WHERE clause expression pExpr down to FROM clause sub-query
5060 ** pSubq, which contains at least one window function. Return 1
5061 ** if it is safe and the expression should be pushed down, or 0
5062 ** otherwise.
5064 ** It is only safe to push the expression down if it consists only
5065 ** of constants and copies of expressions that appear in the PARTITION
5066 ** BY clause of all window function used by the sub-query. It is safe
5067 ** to filter out entire partitions, but not rows within partitions, as
5068 ** this may change the results of the window functions.
5070 ** At the time this function is called it is guaranteed that
5072 ** * the sub-query uses only one distinct window frame, and
5073 ** * that the window frame has a PARTITION BY clause.
5075 static int pushDownWindowCheck(Parse *pParse, Select *pSubq, Expr *pExpr){
5076 assert( pSubq->pWin->pPartition );
5077 assert( (pSubq->selFlags & SF_MultiPart)==0 );
5078 assert( pSubq->pPrior==0 );
5079 return sqlite3ExprIsConstantOrGroupBy(pParse, pExpr, pSubq->pWin->pPartition);
5081 # endif /* SQLITE_OMIT_WINDOWFUNC */
5082 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */
5084 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
5086 ** Make copies of relevant WHERE clause terms of the outer query into
5087 ** the WHERE clause of subquery. Example:
5089 ** SELECT * FROM (SELECT a AS x, c-d AS y FROM t1) WHERE x=5 AND y=10;
5091 ** Transformed into:
5093 ** SELECT * FROM (SELECT a AS x, c-d AS y FROM t1 WHERE a=5 AND c-d=10)
5094 ** WHERE x=5 AND y=10;
5096 ** The hope is that the terms added to the inner query will make it more
5097 ** efficient.
5099 ** NAME AMBIGUITY
5101 ** This optimization is called the "WHERE-clause push-down optimization"
5102 ** or sometimes the "predicate push-down optimization".
5104 ** Do not confuse this optimization with another unrelated optimization
5105 ** with a similar name: The "MySQL push-down optimization" causes WHERE
5106 ** clause terms that can be evaluated using only the index and without
5107 ** reference to the table are run first, so that if they are false,
5108 ** unnecessary table seeks are avoided.
5110 ** RULES
5112 ** Do not attempt this optimization if:
5114 ** (1) (** This restriction was removed on 2017-09-29. We used to
5115 ** disallow this optimization for aggregate subqueries, but now
5116 ** it is allowed by putting the extra terms on the HAVING clause.
5117 ** The added HAVING clause is pointless if the subquery lacks
5118 ** a GROUP BY clause. But such a HAVING clause is also harmless
5119 ** so there does not appear to be any reason to add extra logic
5120 ** to suppress it. **)
5122 ** (2) The inner query is the recursive part of a common table expression.
5124 ** (3) The inner query has a LIMIT clause (since the changes to the WHERE
5125 ** clause would change the meaning of the LIMIT).
5127 ** (4) The inner query is the right operand of a LEFT JOIN and the
5128 ** expression to be pushed down does not come from the ON clause
5129 ** on that LEFT JOIN.
5131 ** (5) The WHERE clause expression originates in the ON or USING clause
5132 ** of a LEFT JOIN where iCursor is not the right-hand table of that
5133 ** left join. An example:
5135 ** SELECT *
5136 ** FROM (SELECT 1 AS a1 UNION ALL SELECT 2) AS aa
5137 ** JOIN (SELECT 1 AS b2 UNION ALL SELECT 2) AS bb ON (a1=b2)
5138 ** LEFT JOIN (SELECT 8 AS c3 UNION ALL SELECT 9) AS cc ON (b2=2);
5140 ** The correct answer is three rows: (1,1,NULL),(2,2,8),(2,2,9).
5141 ** But if the (b2=2) term were to be pushed down into the bb subquery,
5142 ** then the (1,1,NULL) row would be suppressed.
5144 ** (6) Window functions make things tricky as changes to the WHERE clause
5145 ** of the inner query could change the window over which window
5146 ** functions are calculated. Therefore, do not attempt the optimization
5147 ** if:
5149 ** (6a) The inner query uses multiple incompatible window partitions.
5151 ** (6b) The inner query is a compound and uses window-functions.
5153 ** (6c) The WHERE clause does not consist entirely of constants and
5154 ** copies of expressions found in the PARTITION BY clause of
5155 ** all window-functions used by the sub-query. It is safe to
5156 ** filter out entire partitions, as this does not change the
5157 ** window over which any window-function is calculated.
5159 ** (7) The inner query is a Common Table Expression (CTE) that should
5160 ** be materialized. (This restriction is implemented in the calling
5161 ** routine.)
5163 ** (8) If the subquery is a compound that uses UNION, INTERSECT,
5164 ** or EXCEPT, then all of the result set columns for all arms of
5165 ** the compound must use the BINARY collating sequence.
5167 ** (9) All three of the following are true:
5169 ** (9a) The WHERE clause expression originates in the ON or USING clause
5170 ** of a join (either an INNER or an OUTER join), and
5172 ** (9b) The subquery is to the right of the ON/USING clause
5174 ** (9c) There is a RIGHT JOIN (or FULL JOIN) in between the ON/USING
5175 ** clause and the subquery.
5177 ** Without this restriction, the WHERE-clause push-down optimization
5178 ** might move the ON/USING filter expression from the left side of a
5179 ** RIGHT JOIN over to the right side, which leads to incorrect answers.
5180 ** See also restriction (6) in sqlite3ExprIsSingleTableConstraint().
5182 ** (10) The inner query is not the right-hand table of a RIGHT JOIN.
5184 ** (11) The subquery is not a VALUES clause
5186 ** (12) The WHERE clause is not "rowid ISNULL" or the equivalent. This
5187 ** case only comes up if SQLite is compiled using
5188 ** SQLITE_ALLOW_ROWID_IN_VIEW.
5190 ** Return 0 if no changes are made and non-zero if one or more WHERE clause
5191 ** terms are duplicated into the subquery.
5193 static int pushDownWhereTerms(
5194 Parse *pParse, /* Parse context (for malloc() and error reporting) */
5195 Select *pSubq, /* The subquery whose WHERE clause is to be augmented */
5196 Expr *pWhere, /* The WHERE clause of the outer query */
5197 SrcList *pSrcList, /* The complete from clause of the outer query */
5198 int iSrc /* Which FROM clause term to try to push into */
5200 Expr *pNew;
5201 SrcItem *pSrc; /* The subquery FROM term into which WHERE is pushed */
5202 int nChng = 0;
5203 pSrc = &pSrcList->a[iSrc];
5204 if( pWhere==0 ) return 0;
5205 if( pSubq->selFlags & (SF_Recursive|SF_MultiPart) ){
5206 return 0; /* restrictions (2) and (11) */
5208 if( pSrc->fg.jointype & (JT_LTORJ|JT_RIGHT) ){
5209 return 0; /* restrictions (10) */
5212 if( pSubq->pPrior ){
5213 Select *pSel;
5214 int notUnionAll = 0;
5215 for(pSel=pSubq; pSel; pSel=pSel->pPrior){
5216 u8 op = pSel->op;
5217 assert( op==TK_ALL || op==TK_SELECT
5218 || op==TK_UNION || op==TK_INTERSECT || op==TK_EXCEPT );
5219 if( op!=TK_ALL && op!=TK_SELECT ){
5220 notUnionAll = 1;
5222 #ifndef SQLITE_OMIT_WINDOWFUNC
5223 if( pSel->pWin ) return 0; /* restriction (6b) */
5224 #endif
5226 if( notUnionAll ){
5227 /* If any of the compound arms are connected using UNION, INTERSECT,
5228 ** or EXCEPT, then we must ensure that none of the columns use a
5229 ** non-BINARY collating sequence. */
5230 for(pSel=pSubq; pSel; pSel=pSel->pPrior){
5231 int ii;
5232 const ExprList *pList = pSel->pEList;
5233 assert( pList!=0 );
5234 for(ii=0; ii<pList->nExpr; ii++){
5235 CollSeq *pColl = sqlite3ExprCollSeq(pParse, pList->a[ii].pExpr);
5236 if( !sqlite3IsBinary(pColl) ){
5237 return 0; /* Restriction (8) */
5242 }else{
5243 #ifndef SQLITE_OMIT_WINDOWFUNC
5244 if( pSubq->pWin && pSubq->pWin->pPartition==0 ) return 0;
5245 #endif
5248 #ifdef SQLITE_DEBUG
5249 /* Only the first term of a compound can have a WITH clause. But make
5250 ** sure no other terms are marked SF_Recursive in case something changes
5251 ** in the future.
5254 Select *pX;
5255 for(pX=pSubq; pX; pX=pX->pPrior){
5256 assert( (pX->selFlags & (SF_Recursive))==0 );
5259 #endif
5261 if( pSubq->pLimit!=0 ){
5262 return 0; /* restriction (3) */
5264 while( pWhere->op==TK_AND ){
5265 nChng += pushDownWhereTerms(pParse, pSubq, pWhere->pRight, pSrcList, iSrc);
5266 pWhere = pWhere->pLeft;
5269 #if 0 /* These checks now done by sqlite3ExprIsSingleTableConstraint() */
5270 if( ExprHasProperty(pWhere, EP_OuterON|EP_InnerON) /* (9a) */
5271 && (pSrcList->a[0].fg.jointype & JT_LTORJ)!=0 /* Fast pre-test of (9c) */
5273 int jj;
5274 for(jj=0; jj<iSrc; jj++){
5275 if( pWhere->w.iJoin==pSrcList->a[jj].iCursor ){
5276 /* If we reach this point, both (9a) and (9b) are satisfied.
5277 ** The following loop checks (9c):
5279 for(jj++; jj<iSrc; jj++){
5280 if( (pSrcList->a[jj].fg.jointype & JT_RIGHT)!=0 ){
5281 return 0; /* restriction (9) */
5287 if( isLeftJoin
5288 && (ExprHasProperty(pWhere,EP_OuterON)==0
5289 || pWhere->w.iJoin!=iCursor)
5291 return 0; /* restriction (4) */
5293 if( ExprHasProperty(pWhere,EP_OuterON)
5294 && pWhere->w.iJoin!=iCursor
5296 return 0; /* restriction (5) */
5298 #endif
5300 #ifdef SQLITE_ALLOW_ROWID_IN_VIEW
5301 if( ViewCanHaveRowid && (pWhere->op==TK_ISNULL || pWhere->op==TK_NOTNULL) ){
5302 Expr *pLeft = pWhere->pLeft;
5303 if( ALWAYS(pLeft)
5304 && pLeft->op==TK_COLUMN
5305 && pLeft->iColumn < 0
5307 return 0; /* Restriction (12) */
5310 #endif
5312 if( sqlite3ExprIsSingleTableConstraint(pWhere, pSrcList, iSrc, 1) ){
5313 nChng++;
5314 pSubq->selFlags |= SF_PushDown;
5315 while( pSubq ){
5316 SubstContext x;
5317 pNew = sqlite3ExprDup(pParse->db, pWhere, 0);
5318 unsetJoinExpr(pNew, -1, 1);
5319 x.pParse = pParse;
5320 x.iTable = pSrc->iCursor;
5321 x.iNewTable = pSrc->iCursor;
5322 x.isOuterJoin = 0;
5323 x.pEList = pSubq->pEList;
5324 x.pCList = findLeftmostExprlist(pSubq);
5325 pNew = substExpr(&x, pNew);
5326 #ifndef SQLITE_OMIT_WINDOWFUNC
5327 if( pSubq->pWin && 0==pushDownWindowCheck(pParse, pSubq, pNew) ){
5328 /* Restriction 6c has prevented push-down in this case */
5329 sqlite3ExprDelete(pParse->db, pNew);
5330 nChng--;
5331 break;
5333 #endif
5334 if( pSubq->selFlags & SF_Aggregate ){
5335 pSubq->pHaving = sqlite3ExprAnd(pParse, pSubq->pHaving, pNew);
5336 }else{
5337 pSubq->pWhere = sqlite3ExprAnd(pParse, pSubq->pWhere, pNew);
5339 pSubq = pSubq->pPrior;
5342 return nChng;
5344 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */
5347 ** Check to see if a subquery contains result-set columns that are
5348 ** never used. If it does, change the value of those result-set columns
5349 ** to NULL so that they do not cause unnecessary work to compute.
5351 ** Return the number of column that were changed to NULL.
5353 static int disableUnusedSubqueryResultColumns(SrcItem *pItem){
5354 int nCol;
5355 Select *pSub; /* The subquery to be simplified */
5356 Select *pX; /* For looping over compound elements of pSub */
5357 Table *pTab; /* The table that describes the subquery */
5358 int j; /* Column number */
5359 int nChng = 0; /* Number of columns converted to NULL */
5360 Bitmask colUsed; /* Columns that may not be NULLed out */
5362 assert( pItem!=0 );
5363 if( pItem->fg.isCorrelated || pItem->fg.isCte ){
5364 return 0;
5366 assert( pItem->pSTab!=0 );
5367 pTab = pItem->pSTab;
5368 assert( pItem->fg.isSubquery );
5369 pSub = pItem->u4.pSubq->pSelect;
5370 assert( pSub->pEList->nExpr==pTab->nCol );
5371 for(pX=pSub; pX; pX=pX->pPrior){
5372 if( (pX->selFlags & (SF_Distinct|SF_Aggregate))!=0 ){
5373 testcase( pX->selFlags & SF_Distinct );
5374 testcase( pX->selFlags & SF_Aggregate );
5375 return 0;
5377 if( pX->pPrior && pX->op!=TK_ALL ){
5378 /* This optimization does not work for compound subqueries that
5379 ** use UNION, INTERSECT, or EXCEPT. Only UNION ALL is allowed. */
5380 return 0;
5382 #ifndef SQLITE_OMIT_WINDOWFUNC
5383 if( pX->pWin ){
5384 /* This optimization does not work for subqueries that use window
5385 ** functions. */
5386 return 0;
5388 #endif
5390 colUsed = pItem->colUsed;
5391 if( pSub->pOrderBy ){
5392 ExprList *pList = pSub->pOrderBy;
5393 for(j=0; j<pList->nExpr; j++){
5394 u16 iCol = pList->a[j].u.x.iOrderByCol;
5395 if( iCol>0 ){
5396 iCol--;
5397 colUsed |= ((Bitmask)1)<<(iCol>=BMS ? BMS-1 : iCol);
5401 nCol = pTab->nCol;
5402 for(j=0; j<nCol; j++){
5403 Bitmask m = j<BMS-1 ? MASKBIT(j) : TOPBIT;
5404 if( (m & colUsed)!=0 ) continue;
5405 for(pX=pSub; pX; pX=pX->pPrior) {
5406 Expr *pY = pX->pEList->a[j].pExpr;
5407 if( pY->op==TK_NULL ) continue;
5408 pY->op = TK_NULL;
5409 ExprClearProperty(pY, EP_Skip|EP_Unlikely);
5410 pX->selFlags |= SF_PushDown;
5411 nChng++;
5414 return nChng;
5419 ** The pFunc is the only aggregate function in the query. Check to see
5420 ** if the query is a candidate for the min/max optimization.
5422 ** If the query is a candidate for the min/max optimization, then set
5423 ** *ppMinMax to be an ORDER BY clause to be used for the optimization
5424 ** and return either WHERE_ORDERBY_MIN or WHERE_ORDERBY_MAX depending on
5425 ** whether pFunc is a min() or max() function.
5427 ** If the query is not a candidate for the min/max optimization, return
5428 ** WHERE_ORDERBY_NORMAL (which must be zero).
5430 ** This routine must be called after aggregate functions have been
5431 ** located but before their arguments have been subjected to aggregate
5432 ** analysis.
5434 static u8 minMaxQuery(sqlite3 *db, Expr *pFunc, ExprList **ppMinMax){
5435 int eRet = WHERE_ORDERBY_NORMAL; /* Return value */
5436 ExprList *pEList; /* Arguments to agg function */
5437 const char *zFunc; /* Name of aggregate function pFunc */
5438 ExprList *pOrderBy;
5439 u8 sortFlags = 0;
5441 assert( *ppMinMax==0 );
5442 assert( pFunc->op==TK_AGG_FUNCTION );
5443 assert( !IsWindowFunc(pFunc) );
5444 assert( ExprUseXList(pFunc) );
5445 pEList = pFunc->x.pList;
5446 if( pEList==0
5447 || pEList->nExpr!=1
5448 || ExprHasProperty(pFunc, EP_WinFunc)
5449 || OptimizationDisabled(db, SQLITE_MinMaxOpt)
5451 return eRet;
5453 assert( !ExprHasProperty(pFunc, EP_IntValue) );
5454 zFunc = pFunc->u.zToken;
5455 if( sqlite3StrICmp(zFunc, "min")==0 ){
5456 eRet = WHERE_ORDERBY_MIN;
5457 if( sqlite3ExprCanBeNull(pEList->a[0].pExpr) ){
5458 sortFlags = KEYINFO_ORDER_BIGNULL;
5460 }else if( sqlite3StrICmp(zFunc, "max")==0 ){
5461 eRet = WHERE_ORDERBY_MAX;
5462 sortFlags = KEYINFO_ORDER_DESC;
5463 }else{
5464 return eRet;
5466 *ppMinMax = pOrderBy = sqlite3ExprListDup(db, pEList, 0);
5467 assert( pOrderBy!=0 || db->mallocFailed );
5468 if( pOrderBy ) pOrderBy->a[0].fg.sortFlags = sortFlags;
5469 return eRet;
5473 ** The select statement passed as the first argument is an aggregate query.
5474 ** The second argument is the associated aggregate-info object. This
5475 ** function tests if the SELECT is of the form:
5477 ** SELECT count(*) FROM <tbl>
5479 ** where table is a database table, not a sub-select or view. If the query
5480 ** does match this pattern, then a pointer to the Table object representing
5481 ** <tbl> is returned. Otherwise, NULL is returned.
5483 ** This routine checks to see if it is safe to use the count optimization.
5484 ** A correct answer is still obtained (though perhaps more slowly) if
5485 ** this routine returns NULL when it could have returned a table pointer.
5486 ** But returning the pointer when NULL should have been returned can
5487 ** result in incorrect answers and/or crashes. So, when in doubt, return NULL.
5489 static Table *isSimpleCount(Select *p, AggInfo *pAggInfo){
5490 Table *pTab;
5491 Expr *pExpr;
5493 assert( !p->pGroupBy );
5495 if( p->pWhere
5496 || p->pEList->nExpr!=1
5497 || p->pSrc->nSrc!=1
5498 || p->pSrc->a[0].fg.isSubquery
5499 || pAggInfo->nFunc!=1
5500 || p->pHaving
5502 return 0;
5504 pTab = p->pSrc->a[0].pSTab;
5505 assert( pTab!=0 );
5506 assert( !IsView(pTab) );
5507 if( !IsOrdinaryTable(pTab) ) return 0;
5508 pExpr = p->pEList->a[0].pExpr;
5509 assert( pExpr!=0 );
5510 if( pExpr->op!=TK_AGG_FUNCTION ) return 0;
5511 if( pExpr->pAggInfo!=pAggInfo ) return 0;
5512 if( (pAggInfo->aFunc[0].pFunc->funcFlags&SQLITE_FUNC_COUNT)==0 ) return 0;
5513 assert( pAggInfo->aFunc[0].pFExpr==pExpr );
5514 testcase( ExprHasProperty(pExpr, EP_Distinct) );
5515 testcase( ExprHasProperty(pExpr, EP_WinFunc) );
5516 if( ExprHasProperty(pExpr, EP_Distinct|EP_WinFunc) ) return 0;
5518 return pTab;
5522 ** If the source-list item passed as an argument was augmented with an
5523 ** INDEXED BY clause, then try to locate the specified index. If there
5524 ** was such a clause and the named index cannot be found, return
5525 ** SQLITE_ERROR and leave an error in pParse. Otherwise, populate
5526 ** pFrom->pIndex and return SQLITE_OK.
5528 int sqlite3IndexedByLookup(Parse *pParse, SrcItem *pFrom){
5529 Table *pTab = pFrom->pSTab;
5530 char *zIndexedBy = pFrom->u1.zIndexedBy;
5531 Index *pIdx;
5532 assert( pTab!=0 );
5533 assert( pFrom->fg.isIndexedBy!=0 );
5535 for(pIdx=pTab->pIndex;
5536 pIdx && sqlite3StrICmp(pIdx->zName, zIndexedBy);
5537 pIdx=pIdx->pNext
5539 if( !pIdx ){
5540 sqlite3ErrorMsg(pParse, "no such index: %s", zIndexedBy, 0);
5541 pParse->checkSchema = 1;
5542 return SQLITE_ERROR;
5544 assert( pFrom->fg.isCte==0 );
5545 pFrom->u2.pIBIndex = pIdx;
5546 return SQLITE_OK;
5550 ** Detect compound SELECT statements that use an ORDER BY clause with
5551 ** an alternative collating sequence.
5553 ** SELECT ... FROM t1 EXCEPT SELECT ... FROM t2 ORDER BY .. COLLATE ...
5555 ** These are rewritten as a subquery:
5557 ** SELECT * FROM (SELECT ... FROM t1 EXCEPT SELECT ... FROM t2)
5558 ** ORDER BY ... COLLATE ...
5560 ** This transformation is necessary because the multiSelectOrderBy() routine
5561 ** above that generates the code for a compound SELECT with an ORDER BY clause
5562 ** uses a merge algorithm that requires the same collating sequence on the
5563 ** result columns as on the ORDER BY clause. See ticket
5564 ** http://www.sqlite.org/src/info/6709574d2a
5566 ** This transformation is only needed for EXCEPT, INTERSECT, and UNION.
5567 ** The UNION ALL operator works fine with multiSelectOrderBy() even when
5568 ** there are COLLATE terms in the ORDER BY.
5570 static int convertCompoundSelectToSubquery(Walker *pWalker, Select *p){
5571 int i;
5572 Select *pNew;
5573 Select *pX;
5574 sqlite3 *db;
5575 struct ExprList_item *a;
5576 SrcList *pNewSrc;
5577 Parse *pParse;
5578 Token dummy;
5580 if( p->pPrior==0 ) return WRC_Continue;
5581 if( p->pOrderBy==0 ) return WRC_Continue;
5582 for(pX=p; pX && (pX->op==TK_ALL || pX->op==TK_SELECT); pX=pX->pPrior){}
5583 if( pX==0 ) return WRC_Continue;
5584 a = p->pOrderBy->a;
5585 #ifndef SQLITE_OMIT_WINDOWFUNC
5586 /* If iOrderByCol is already non-zero, then it has already been matched
5587 ** to a result column of the SELECT statement. This occurs when the
5588 ** SELECT is rewritten for window-functions processing and then passed
5589 ** to sqlite3SelectPrep() and similar a second time. The rewriting done
5590 ** by this function is not required in this case. */
5591 if( a[0].u.x.iOrderByCol ) return WRC_Continue;
5592 #endif
5593 for(i=p->pOrderBy->nExpr-1; i>=0; i--){
5594 if( a[i].pExpr->flags & EP_Collate ) break;
5596 if( i<0 ) return WRC_Continue;
5598 /* If we reach this point, that means the transformation is required. */
5600 pParse = pWalker->pParse;
5601 db = pParse->db;
5602 pNew = sqlite3DbMallocZero(db, sizeof(*pNew) );
5603 if( pNew==0 ) return WRC_Abort;
5604 memset(&dummy, 0, sizeof(dummy));
5605 pNewSrc = sqlite3SrcListAppendFromTerm(pParse,0,0,0,&dummy,pNew,0);
5606 assert( pNewSrc!=0 || pParse->nErr );
5607 if( pParse->nErr ){
5608 sqlite3SrcListDelete(db, pNewSrc);
5609 return WRC_Abort;
5611 *pNew = *p;
5612 p->pSrc = pNewSrc;
5613 p->pEList = sqlite3ExprListAppend(pParse, 0, sqlite3Expr(db, TK_ASTERISK, 0));
5614 p->op = TK_SELECT;
5615 p->pWhere = 0;
5616 pNew->pGroupBy = 0;
5617 pNew->pHaving = 0;
5618 pNew->pOrderBy = 0;
5619 p->pPrior = 0;
5620 p->pNext = 0;
5621 p->pWith = 0;
5622 #ifndef SQLITE_OMIT_WINDOWFUNC
5623 p->pWinDefn = 0;
5624 #endif
5625 p->selFlags &= ~SF_Compound;
5626 assert( (p->selFlags & SF_Converted)==0 );
5627 p->selFlags |= SF_Converted;
5628 assert( pNew->pPrior!=0 );
5629 pNew->pPrior->pNext = pNew;
5630 pNew->pLimit = 0;
5631 return WRC_Continue;
5635 ** Check to see if the FROM clause term pFrom has table-valued function
5636 ** arguments. If it does, leave an error message in pParse and return
5637 ** non-zero, since pFrom is not allowed to be a table-valued function.
5639 static int cannotBeFunction(Parse *pParse, SrcItem *pFrom){
5640 if( pFrom->fg.isTabFunc ){
5641 sqlite3ErrorMsg(pParse, "'%s' is not a function", pFrom->zName);
5642 return 1;
5644 return 0;
5647 #ifndef SQLITE_OMIT_CTE
5649 ** Argument pWith (which may be NULL) points to a linked list of nested
5650 ** WITH contexts, from inner to outermost. If the table identified by
5651 ** FROM clause element pItem is really a common-table-expression (CTE)
5652 ** then return a pointer to the CTE definition for that table. Otherwise
5653 ** return NULL.
5655 ** If a non-NULL value is returned, set *ppContext to point to the With
5656 ** object that the returned CTE belongs to.
5658 static struct Cte *searchWith(
5659 With *pWith, /* Current innermost WITH clause */
5660 SrcItem *pItem, /* FROM clause element to resolve */
5661 With **ppContext /* OUT: WITH clause return value belongs to */
5663 const char *zName = pItem->zName;
5664 With *p;
5665 assert( pItem->fg.fixedSchema || pItem->u4.zDatabase==0 );
5666 assert( zName!=0 );
5667 for(p=pWith; p; p=p->pOuter){
5668 int i;
5669 for(i=0; i<p->nCte; i++){
5670 if( sqlite3StrICmp(zName, p->a[i].zName)==0 ){
5671 *ppContext = p;
5672 return &p->a[i];
5675 if( p->bView ) break;
5677 return 0;
5680 /* The code generator maintains a stack of active WITH clauses
5681 ** with the inner-most WITH clause being at the top of the stack.
5683 ** This routine pushes the WITH clause passed as the second argument
5684 ** onto the top of the stack. If argument bFree is true, then this
5685 ** WITH clause will never be popped from the stack but should instead
5686 ** be freed along with the Parse object. In other cases, when
5687 ** bFree==0, the With object will be freed along with the SELECT
5688 ** statement with which it is associated.
5690 ** This routine returns a copy of pWith. Or, if bFree is true and
5691 ** the pWith object is destroyed immediately due to an OOM condition,
5692 ** then this routine return NULL.
5694 ** If bFree is true, do not continue to use the pWith pointer after
5695 ** calling this routine, Instead, use only the return value.
5697 With *sqlite3WithPush(Parse *pParse, With *pWith, u8 bFree){
5698 if( pWith ){
5699 if( bFree ){
5700 pWith = (With*)sqlite3ParserAddCleanup(pParse, sqlite3WithDeleteGeneric,
5701 pWith);
5702 if( pWith==0 ) return 0;
5704 if( pParse->nErr==0 ){
5705 assert( pParse->pWith!=pWith );
5706 pWith->pOuter = pParse->pWith;
5707 pParse->pWith = pWith;
5710 return pWith;
5714 ** This function checks if argument pFrom refers to a CTE declared by
5715 ** a WITH clause on the stack currently maintained by the parser (on the
5716 ** pParse->pWith linked list). And if currently processing a CTE
5717 ** CTE expression, through routine checks to see if the reference is
5718 ** a recursive reference to the CTE.
5720 ** If pFrom matches a CTE according to either of these two above, pFrom->pTab
5721 ** and other fields are populated accordingly.
5723 ** Return 0 if no match is found.
5724 ** Return 1 if a match is found.
5725 ** Return 2 if an error condition is detected.
5727 static int resolveFromTermToCte(
5728 Parse *pParse, /* The parsing context */
5729 Walker *pWalker, /* Current tree walker */
5730 SrcItem *pFrom /* The FROM clause term to check */
5732 Cte *pCte; /* Matched CTE (or NULL if no match) */
5733 With *pWith; /* The matching WITH */
5735 assert( pFrom->pSTab==0 );
5736 if( pParse->pWith==0 ){
5737 /* There are no WITH clauses in the stack. No match is possible */
5738 return 0;
5740 if( pParse->nErr ){
5741 /* Prior errors might have left pParse->pWith in a goofy state, so
5742 ** go no further. */
5743 return 0;
5745 assert( pFrom->fg.hadSchema==0 || pFrom->fg.notCte!=0 );
5746 if( pFrom->fg.fixedSchema==0 && pFrom->u4.zDatabase!=0 ){
5747 /* The FROM term contains a schema qualifier (ex: main.t1) and so
5748 ** it cannot possibly be a CTE reference. */
5749 return 0;
5751 if( pFrom->fg.notCte ){
5752 /* The FROM term is specifically excluded from matching a CTE.
5753 ** (1) It is part of a trigger that used to have zDatabase but had
5754 ** zDatabase removed by sqlite3FixTriggerStep().
5755 ** (2) This is the first term in the FROM clause of an UPDATE.
5757 return 0;
5759 pCte = searchWith(pParse->pWith, pFrom, &pWith);
5760 if( pCte ){
5761 sqlite3 *db = pParse->db;
5762 Table *pTab;
5763 ExprList *pEList;
5764 Select *pSel;
5765 Select *pLeft; /* Left-most SELECT statement */
5766 Select *pRecTerm; /* Left-most recursive term */
5767 int bMayRecursive; /* True if compound joined by UNION [ALL] */
5768 With *pSavedWith; /* Initial value of pParse->pWith */
5769 int iRecTab = -1; /* Cursor for recursive table */
5770 CteUse *pCteUse;
5772 /* If pCte->zCteErr is non-NULL at this point, then this is an illegal
5773 ** recursive reference to CTE pCte. Leave an error in pParse and return
5774 ** early. If pCte->zCteErr is NULL, then this is not a recursive reference.
5775 ** In this case, proceed. */
5776 if( pCte->zCteErr ){
5777 sqlite3ErrorMsg(pParse, pCte->zCteErr, pCte->zName);
5778 return 2;
5780 if( cannotBeFunction(pParse, pFrom) ) return 2;
5782 assert( pFrom->pSTab==0 );
5783 pTab = sqlite3DbMallocZero(db, sizeof(Table));
5784 if( pTab==0 ) return 2;
5785 pCteUse = pCte->pUse;
5786 if( pCteUse==0 ){
5787 pCte->pUse = pCteUse = sqlite3DbMallocZero(db, sizeof(pCteUse[0]));
5788 if( pCteUse==0
5789 || sqlite3ParserAddCleanup(pParse,sqlite3DbFree,pCteUse)==0
5791 sqlite3DbFree(db, pTab);
5792 return 2;
5794 pCteUse->eM10d = pCte->eM10d;
5796 pFrom->pSTab = pTab;
5797 pTab->nTabRef = 1;
5798 pTab->zName = sqlite3DbStrDup(db, pCte->zName);
5799 pTab->iPKey = -1;
5800 pTab->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) );
5801 pTab->tabFlags |= TF_Ephemeral | TF_NoVisibleRowid;
5802 sqlite3SrcItemAttachSubquery(pParse, pFrom, pCte->pSelect, 1);
5803 if( db->mallocFailed ) return 2;
5804 assert( pFrom->fg.isSubquery && pFrom->u4.pSubq );
5805 pSel = pFrom->u4.pSubq->pSelect;
5806 assert( pSel!=0 );
5807 pSel->selFlags |= SF_CopyCte;
5808 if( pFrom->fg.isIndexedBy ){
5809 sqlite3ErrorMsg(pParse, "no such index: \"%s\"", pFrom->u1.zIndexedBy);
5810 return 2;
5812 assert( !pFrom->fg.isIndexedBy );
5813 pFrom->fg.isCte = 1;
5814 pFrom->u2.pCteUse = pCteUse;
5815 pCteUse->nUse++;
5817 /* Check if this is a recursive CTE. */
5818 pRecTerm = pSel;
5819 bMayRecursive = ( pSel->op==TK_ALL || pSel->op==TK_UNION );
5820 while( bMayRecursive && pRecTerm->op==pSel->op ){
5821 int i;
5822 SrcList *pSrc = pRecTerm->pSrc;
5823 assert( pRecTerm->pPrior!=0 );
5824 for(i=0; i<pSrc->nSrc; i++){
5825 SrcItem *pItem = &pSrc->a[i];
5826 if( pItem->zName!=0
5827 && !pItem->fg.hadSchema
5828 && ALWAYS( !pItem->fg.isSubquery )
5829 && (pItem->fg.fixedSchema || pItem->u4.zDatabase==0)
5830 && 0==sqlite3StrICmp(pItem->zName, pCte->zName)
5832 pItem->pSTab = pTab;
5833 pTab->nTabRef++;
5834 pItem->fg.isRecursive = 1;
5835 if( pRecTerm->selFlags & SF_Recursive ){
5836 sqlite3ErrorMsg(pParse,
5837 "multiple references to recursive table: %s", pCte->zName
5839 return 2;
5841 pRecTerm->selFlags |= SF_Recursive;
5842 if( iRecTab<0 ) iRecTab = pParse->nTab++;
5843 pItem->iCursor = iRecTab;
5846 if( (pRecTerm->selFlags & SF_Recursive)==0 ) break;
5847 pRecTerm = pRecTerm->pPrior;
5850 pCte->zCteErr = "circular reference: %s";
5851 pSavedWith = pParse->pWith;
5852 pParse->pWith = pWith;
5853 if( pSel->selFlags & SF_Recursive ){
5854 int rc;
5855 assert( pRecTerm!=0 );
5856 assert( (pRecTerm->selFlags & SF_Recursive)==0 );
5857 assert( pRecTerm->pNext!=0 );
5858 assert( (pRecTerm->pNext->selFlags & SF_Recursive)!=0 );
5859 assert( pRecTerm->pWith==0 );
5860 pRecTerm->pWith = pSel->pWith;
5861 rc = sqlite3WalkSelect(pWalker, pRecTerm);
5862 pRecTerm->pWith = 0;
5863 if( rc ){
5864 pParse->pWith = pSavedWith;
5865 return 2;
5867 }else{
5868 if( sqlite3WalkSelect(pWalker, pSel) ){
5869 pParse->pWith = pSavedWith;
5870 return 2;
5873 pParse->pWith = pWith;
5875 for(pLeft=pSel; pLeft->pPrior; pLeft=pLeft->pPrior);
5876 pEList = pLeft->pEList;
5877 if( pCte->pCols ){
5878 if( pEList && pEList->nExpr!=pCte->pCols->nExpr ){
5879 sqlite3ErrorMsg(pParse, "table %s has %d values for %d columns",
5880 pCte->zName, pEList->nExpr, pCte->pCols->nExpr
5882 pParse->pWith = pSavedWith;
5883 return 2;
5885 pEList = pCte->pCols;
5888 sqlite3ColumnsFromExprList(pParse, pEList, &pTab->nCol, &pTab->aCol);
5889 if( bMayRecursive ){
5890 if( pSel->selFlags & SF_Recursive ){
5891 pCte->zCteErr = "multiple recursive references: %s";
5892 }else{
5893 pCte->zCteErr = "recursive reference in a subquery: %s";
5895 sqlite3WalkSelect(pWalker, pSel);
5897 pCte->zCteErr = 0;
5898 pParse->pWith = pSavedWith;
5899 return 1; /* Success */
5901 return 0; /* No match */
5903 #endif
5905 #ifndef SQLITE_OMIT_CTE
5907 ** If the SELECT passed as the second argument has an associated WITH
5908 ** clause, pop it from the stack stored as part of the Parse object.
5910 ** This function is used as the xSelectCallback2() callback by
5911 ** sqlite3SelectExpand() when walking a SELECT tree to resolve table
5912 ** names and other FROM clause elements.
5914 void sqlite3SelectPopWith(Walker *pWalker, Select *p){
5915 Parse *pParse = pWalker->pParse;
5916 if( OK_IF_ALWAYS_TRUE(pParse->pWith) && p->pPrior==0 ){
5917 With *pWith = findRightmost(p)->pWith;
5918 if( pWith!=0 ){
5919 assert( pParse->pWith==pWith || pParse->nErr );
5920 pParse->pWith = pWith->pOuter;
5924 #endif
5927 ** The SrcItem structure passed as the second argument represents a
5928 ** sub-query in the FROM clause of a SELECT statement. This function
5929 ** allocates and populates the SrcItem.pTab object. If successful,
5930 ** SQLITE_OK is returned. Otherwise, if an OOM error is encountered,
5931 ** SQLITE_NOMEM.
5933 int sqlite3ExpandSubquery(Parse *pParse, SrcItem *pFrom){
5934 Select *pSel;
5935 Table *pTab;
5937 assert( pFrom->fg.isSubquery );
5938 assert( pFrom->u4.pSubq!=0 );
5939 pSel = pFrom->u4.pSubq->pSelect;
5940 assert( pSel );
5941 pFrom->pSTab = pTab = sqlite3DbMallocZero(pParse->db, sizeof(Table));
5942 if( pTab==0 ) return SQLITE_NOMEM;
5943 pTab->nTabRef = 1;
5944 if( pFrom->zAlias ){
5945 pTab->zName = sqlite3DbStrDup(pParse->db, pFrom->zAlias);
5946 }else{
5947 pTab->zName = sqlite3MPrintf(pParse->db, "%!S", pFrom);
5949 while( pSel->pPrior ){ pSel = pSel->pPrior; }
5950 sqlite3ColumnsFromExprList(pParse, pSel->pEList,&pTab->nCol,&pTab->aCol);
5951 pTab->iPKey = -1;
5952 pTab->eTabType = TABTYP_VIEW;
5953 pTab->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) );
5954 #ifndef SQLITE_ALLOW_ROWID_IN_VIEW
5955 /* The usual case - do not allow ROWID on a subquery */
5956 pTab->tabFlags |= TF_Ephemeral | TF_NoVisibleRowid;
5957 #else
5958 /* Legacy compatibility mode */
5959 pTab->tabFlags |= TF_Ephemeral | sqlite3Config.mNoVisibleRowid;
5960 #endif
5961 return pParse->nErr ? SQLITE_ERROR : SQLITE_OK;
5966 ** Check the N SrcItem objects to the right of pBase. (N might be zero!)
5967 ** If any of those SrcItem objects have a USING clause containing zName
5968 ** then return true.
5970 ** If N is zero, or none of the N SrcItem objects to the right of pBase
5971 ** contains a USING clause, or if none of the USING clauses contain zName,
5972 ** then return false.
5974 static int inAnyUsingClause(
5975 const char *zName, /* Name we are looking for */
5976 SrcItem *pBase, /* The base SrcItem. Looking at pBase[1] and following */
5977 int N /* How many SrcItems to check */
5979 while( N>0 ){
5980 N--;
5981 pBase++;
5982 if( pBase->fg.isUsing==0 ) continue;
5983 if( NEVER(pBase->u3.pUsing==0) ) continue;
5984 if( sqlite3IdListIndex(pBase->u3.pUsing, zName)>=0 ) return 1;
5986 return 0;
5991 ** This routine is a Walker callback for "expanding" a SELECT statement.
5992 ** "Expanding" means to do the following:
5994 ** (1) Make sure VDBE cursor numbers have been assigned to every
5995 ** element of the FROM clause.
5997 ** (2) Fill in the pTabList->a[].pTab fields in the SrcList that
5998 ** defines FROM clause. When views appear in the FROM clause,
5999 ** fill pTabList->a[].pSelect with a copy of the SELECT statement
6000 ** that implements the view. A copy is made of the view's SELECT
6001 ** statement so that we can freely modify or delete that statement
6002 ** without worrying about messing up the persistent representation
6003 ** of the view.
6005 ** (3) Add terms to the WHERE clause to accommodate the NATURAL keyword
6006 ** on joins and the ON and USING clause of joins.
6008 ** (4) Scan the list of columns in the result set (pEList) looking
6009 ** for instances of the "*" operator or the TABLE.* operator.
6010 ** If found, expand each "*" to be every column in every table
6011 ** and TABLE.* to be every column in TABLE.
6014 static int selectExpander(Walker *pWalker, Select *p){
6015 Parse *pParse = pWalker->pParse;
6016 int i, j, k, rc;
6017 SrcList *pTabList;
6018 ExprList *pEList;
6019 SrcItem *pFrom;
6020 sqlite3 *db = pParse->db;
6021 Expr *pE, *pRight, *pExpr;
6022 u16 selFlags = p->selFlags;
6023 u32 elistFlags = 0;
6025 p->selFlags |= SF_Expanded;
6026 if( db->mallocFailed ){
6027 return WRC_Abort;
6029 assert( p->pSrc!=0 );
6030 if( (selFlags & SF_Expanded)!=0 ){
6031 return WRC_Prune;
6033 if( pWalker->eCode ){
6034 /* Renumber selId because it has been copied from a view */
6035 p->selId = ++pParse->nSelect;
6037 pTabList = p->pSrc;
6038 pEList = p->pEList;
6039 if( pParse->pWith && (p->selFlags & SF_View) ){
6040 if( p->pWith==0 ){
6041 p->pWith = (With*)sqlite3DbMallocZero(db, sizeof(With));
6042 if( p->pWith==0 ){
6043 return WRC_Abort;
6046 p->pWith->bView = 1;
6048 sqlite3WithPush(pParse, p->pWith, 0);
6050 /* Make sure cursor numbers have been assigned to all entries in
6051 ** the FROM clause of the SELECT statement.
6053 sqlite3SrcListAssignCursors(pParse, pTabList);
6055 /* Look up every table named in the FROM clause of the select. If
6056 ** an entry of the FROM clause is a subquery instead of a table or view,
6057 ** then create a transient table structure to describe the subquery.
6059 for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){
6060 Table *pTab;
6061 assert( pFrom->fg.isRecursive==0 || pFrom->pSTab!=0 );
6062 if( pFrom->pSTab ) continue;
6063 assert( pFrom->fg.isRecursive==0 );
6064 if( pFrom->zName==0 ){
6065 #ifndef SQLITE_OMIT_SUBQUERY
6066 Select *pSel;
6067 assert( pFrom->fg.isSubquery && pFrom->u4.pSubq!=0 );
6068 pSel = pFrom->u4.pSubq->pSelect;
6069 /* A sub-query in the FROM clause of a SELECT */
6070 assert( pSel!=0 );
6071 assert( pFrom->pSTab==0 );
6072 if( sqlite3WalkSelect(pWalker, pSel) ) return WRC_Abort;
6073 if( sqlite3ExpandSubquery(pParse, pFrom) ) return WRC_Abort;
6074 #endif
6075 #ifndef SQLITE_OMIT_CTE
6076 }else if( (rc = resolveFromTermToCte(pParse, pWalker, pFrom))!=0 ){
6077 if( rc>1 ) return WRC_Abort;
6078 pTab = pFrom->pSTab;
6079 assert( pTab!=0 );
6080 #endif
6081 }else{
6082 /* An ordinary table or view name in the FROM clause */
6083 assert( pFrom->pSTab==0 );
6084 pFrom->pSTab = pTab = sqlite3LocateTableItem(pParse, 0, pFrom);
6085 if( pTab==0 ) return WRC_Abort;
6086 if( pTab->nTabRef>=0xffff ){
6087 sqlite3ErrorMsg(pParse, "too many references to \"%s\": max 65535",
6088 pTab->zName);
6089 pFrom->pSTab = 0;
6090 return WRC_Abort;
6092 pTab->nTabRef++;
6093 if( !IsVirtual(pTab) && cannotBeFunction(pParse, pFrom) ){
6094 return WRC_Abort;
6096 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE)
6097 if( !IsOrdinaryTable(pTab) ){
6098 i16 nCol;
6099 u8 eCodeOrig = pWalker->eCode;
6100 if( sqlite3ViewGetColumnNames(pParse, pTab) ) return WRC_Abort;
6101 assert( pFrom->fg.isSubquery==0 );
6102 if( IsView(pTab) ){
6103 if( (db->flags & SQLITE_EnableView)==0
6104 && pTab->pSchema!=db->aDb[1].pSchema
6106 sqlite3ErrorMsg(pParse, "access to view \"%s\" prohibited",
6107 pTab->zName);
6109 sqlite3SrcItemAttachSubquery(pParse, pFrom, pTab->u.view.pSelect, 1);
6111 #ifndef SQLITE_OMIT_VIRTUALTABLE
6112 else if( ALWAYS(IsVirtual(pTab))
6113 && pFrom->fg.fromDDL
6114 && ALWAYS(pTab->u.vtab.p!=0)
6115 && pTab->u.vtab.p->eVtabRisk > ((db->flags & SQLITE_TrustedSchema)!=0)
6117 sqlite3ErrorMsg(pParse, "unsafe use of virtual table \"%s\"",
6118 pTab->zName);
6120 assert( SQLITE_VTABRISK_Normal==1 && SQLITE_VTABRISK_High==2 );
6121 #endif
6122 nCol = pTab->nCol;
6123 pTab->nCol = -1;
6124 pWalker->eCode = 1; /* Turn on Select.selId renumbering */
6125 if( pFrom->fg.isSubquery ){
6126 sqlite3WalkSelect(pWalker, pFrom->u4.pSubq->pSelect);
6128 pWalker->eCode = eCodeOrig;
6129 pTab->nCol = nCol;
6131 #endif
6134 /* Locate the index named by the INDEXED BY clause, if any. */
6135 if( pFrom->fg.isIndexedBy && sqlite3IndexedByLookup(pParse, pFrom) ){
6136 return WRC_Abort;
6140 /* Process NATURAL keywords, and ON and USING clauses of joins.
6142 assert( db->mallocFailed==0 || pParse->nErr!=0 );
6143 if( pParse->nErr || sqlite3ProcessJoin(pParse, p) ){
6144 return WRC_Abort;
6147 /* For every "*" that occurs in the column list, insert the names of
6148 ** all columns in all tables. And for every TABLE.* insert the names
6149 ** of all columns in TABLE. The parser inserted a special expression
6150 ** with the TK_ASTERISK operator for each "*" that it found in the column
6151 ** list. The following code just has to locate the TK_ASTERISK
6152 ** expressions and expand each one to the list of all columns in
6153 ** all tables.
6155 ** The first loop just checks to see if there are any "*" operators
6156 ** that need expanding.
6158 for(k=0; k<pEList->nExpr; k++){
6159 pE = pEList->a[k].pExpr;
6160 if( pE->op==TK_ASTERISK ) break;
6161 assert( pE->op!=TK_DOT || pE->pRight!=0 );
6162 assert( pE->op!=TK_DOT || (pE->pLeft!=0 && pE->pLeft->op==TK_ID) );
6163 if( pE->op==TK_DOT && pE->pRight->op==TK_ASTERISK ) break;
6164 elistFlags |= pE->flags;
6166 if( k<pEList->nExpr ){
6168 ** If we get here it means the result set contains one or more "*"
6169 ** operators that need to be expanded. Loop through each expression
6170 ** in the result set and expand them one by one.
6172 struct ExprList_item *a = pEList->a;
6173 ExprList *pNew = 0;
6174 int flags = pParse->db->flags;
6175 int longNames = (flags & SQLITE_FullColNames)!=0
6176 && (flags & SQLITE_ShortColNames)==0;
6178 for(k=0; k<pEList->nExpr; k++){
6179 pE = a[k].pExpr;
6180 elistFlags |= pE->flags;
6181 pRight = pE->pRight;
6182 assert( pE->op!=TK_DOT || pRight!=0 );
6183 if( pE->op!=TK_ASTERISK
6184 && (pE->op!=TK_DOT || pRight->op!=TK_ASTERISK)
6186 /* This particular expression does not need to be expanded.
6188 pNew = sqlite3ExprListAppend(pParse, pNew, a[k].pExpr);
6189 if( pNew ){
6190 pNew->a[pNew->nExpr-1].zEName = a[k].zEName;
6191 pNew->a[pNew->nExpr-1].fg.eEName = a[k].fg.eEName;
6192 a[k].zEName = 0;
6194 a[k].pExpr = 0;
6195 }else{
6196 /* This expression is a "*" or a "TABLE.*" and needs to be
6197 ** expanded. */
6198 int tableSeen = 0; /* Set to 1 when TABLE matches */
6199 char *zTName = 0; /* text of name of TABLE */
6200 int iErrOfst;
6201 if( pE->op==TK_DOT ){
6202 assert( (selFlags & SF_NestedFrom)==0 );
6203 assert( pE->pLeft!=0 );
6204 assert( !ExprHasProperty(pE->pLeft, EP_IntValue) );
6205 zTName = pE->pLeft->u.zToken;
6206 assert( ExprUseWOfst(pE->pLeft) );
6207 iErrOfst = pE->pRight->w.iOfst;
6208 }else{
6209 assert( ExprUseWOfst(pE) );
6210 iErrOfst = pE->w.iOfst;
6212 for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){
6213 int nAdd; /* Number of cols including rowid */
6214 Table *pTab = pFrom->pSTab; /* Table for this data source */
6215 ExprList *pNestedFrom; /* Result-set of a nested FROM clause */
6216 char *zTabName; /* AS name for this data source */
6217 const char *zSchemaName = 0; /* Schema name for this data source */
6218 int iDb; /* Schema index for this data src */
6219 IdList *pUsing; /* USING clause for pFrom[1] */
6221 if( (zTabName = pFrom->zAlias)==0 ){
6222 zTabName = pTab->zName;
6224 if( db->mallocFailed ) break;
6225 assert( (int)pFrom->fg.isNestedFrom == IsNestedFrom(pFrom) );
6226 if( pFrom->fg.isNestedFrom ){
6227 assert( pFrom->fg.isSubquery && pFrom->u4.pSubq );
6228 assert( pFrom->u4.pSubq->pSelect!=0 );
6229 pNestedFrom = pFrom->u4.pSubq->pSelect->pEList;
6230 assert( pNestedFrom!=0 );
6231 assert( pNestedFrom->nExpr==pTab->nCol );
6232 assert( VisibleRowid(pTab)==0 || ViewCanHaveRowid );
6233 }else{
6234 if( zTName && sqlite3StrICmp(zTName, zTabName)!=0 ){
6235 continue;
6237 pNestedFrom = 0;
6238 iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
6239 zSchemaName = iDb>=0 ? db->aDb[iDb].zDbSName : "*";
6241 if( i+1<pTabList->nSrc
6242 && pFrom[1].fg.isUsing
6243 && (selFlags & SF_NestedFrom)!=0
6245 int ii;
6246 pUsing = pFrom[1].u3.pUsing;
6247 for(ii=0; ii<pUsing->nId; ii++){
6248 const char *zUName = pUsing->a[ii].zName;
6249 pRight = sqlite3Expr(db, TK_ID, zUName);
6250 sqlite3ExprSetErrorOffset(pRight, iErrOfst);
6251 pNew = sqlite3ExprListAppend(pParse, pNew, pRight);
6252 if( pNew ){
6253 struct ExprList_item *pX = &pNew->a[pNew->nExpr-1];
6254 assert( pX->zEName==0 );
6255 pX->zEName = sqlite3MPrintf(db,"..%s", zUName);
6256 pX->fg.eEName = ENAME_TAB;
6257 pX->fg.bUsingTerm = 1;
6260 }else{
6261 pUsing = 0;
6264 nAdd = pTab->nCol;
6265 if( VisibleRowid(pTab) && (selFlags & SF_NestedFrom)!=0 ) nAdd++;
6266 for(j=0; j<nAdd; j++){
6267 const char *zName;
6268 struct ExprList_item *pX; /* Newly added ExprList term */
6270 if( j==pTab->nCol ){
6271 zName = sqlite3RowidAlias(pTab);
6272 if( zName==0 ) continue;
6273 }else{
6274 zName = pTab->aCol[j].zCnName;
6276 /* If pTab is actually an SF_NestedFrom sub-select, do not
6277 ** expand any ENAME_ROWID columns. */
6278 if( pNestedFrom && pNestedFrom->a[j].fg.eEName==ENAME_ROWID ){
6279 continue;
6282 if( zTName
6283 && pNestedFrom
6284 && sqlite3MatchEName(&pNestedFrom->a[j], 0, zTName, 0, 0)==0
6286 continue;
6289 /* If a column is marked as 'hidden', omit it from the expanded
6290 ** result-set list unless the SELECT has the SF_IncludeHidden
6291 ** bit set.
6293 if( (p->selFlags & SF_IncludeHidden)==0
6294 && IsHiddenColumn(&pTab->aCol[j])
6296 continue;
6298 if( (pTab->aCol[j].colFlags & COLFLAG_NOEXPAND)!=0
6299 && zTName==0
6300 && (selFlags & (SF_NestedFrom))==0
6302 continue;
6305 assert( zName );
6306 tableSeen = 1;
6308 if( i>0 && zTName==0 && (selFlags & SF_NestedFrom)==0 ){
6309 if( pFrom->fg.isUsing
6310 && sqlite3IdListIndex(pFrom->u3.pUsing, zName)>=0
6312 /* In a join with a USING clause, omit columns in the
6313 ** using clause from the table on the right. */
6314 continue;
6317 pRight = sqlite3Expr(db, TK_ID, zName);
6318 if( (pTabList->nSrc>1
6319 && ( (pFrom->fg.jointype & JT_LTORJ)==0
6320 || (selFlags & SF_NestedFrom)!=0
6321 || !inAnyUsingClause(zName,pFrom,pTabList->nSrc-i-1)
6324 || IN_RENAME_OBJECT
6326 Expr *pLeft;
6327 pLeft = sqlite3Expr(db, TK_ID, zTabName);
6328 pExpr = sqlite3PExpr(pParse, TK_DOT, pLeft, pRight);
6329 if( IN_RENAME_OBJECT && pE->pLeft ){
6330 sqlite3RenameTokenRemap(pParse, pLeft, pE->pLeft);
6332 if( zSchemaName ){
6333 pLeft = sqlite3Expr(db, TK_ID, zSchemaName);
6334 pExpr = sqlite3PExpr(pParse, TK_DOT, pLeft, pExpr);
6336 }else{
6337 pExpr = pRight;
6339 sqlite3ExprSetErrorOffset(pExpr, iErrOfst);
6340 pNew = sqlite3ExprListAppend(pParse, pNew, pExpr);
6341 if( pNew==0 ){
6342 break; /* OOM */
6344 pX = &pNew->a[pNew->nExpr-1];
6345 assert( pX->zEName==0 );
6346 if( (selFlags & SF_NestedFrom)!=0 && !IN_RENAME_OBJECT ){
6347 if( pNestedFrom && (!ViewCanHaveRowid || j<pNestedFrom->nExpr) ){
6348 assert( j<pNestedFrom->nExpr );
6349 pX->zEName = sqlite3DbStrDup(db, pNestedFrom->a[j].zEName);
6350 testcase( pX->zEName==0 );
6351 }else{
6352 pX->zEName = sqlite3MPrintf(db, "%s.%s.%s",
6353 zSchemaName, zTabName, zName);
6354 testcase( pX->zEName==0 );
6356 pX->fg.eEName = (j==pTab->nCol ? ENAME_ROWID : ENAME_TAB);
6357 if( (pFrom->fg.isUsing
6358 && sqlite3IdListIndex(pFrom->u3.pUsing, zName)>=0)
6359 || (pUsing && sqlite3IdListIndex(pUsing, zName)>=0)
6360 || (j<pTab->nCol && (pTab->aCol[j].colFlags & COLFLAG_NOEXPAND))
6362 pX->fg.bNoExpand = 1;
6364 }else if( longNames ){
6365 pX->zEName = sqlite3MPrintf(db, "%s.%s", zTabName, zName);
6366 pX->fg.eEName = ENAME_NAME;
6367 }else{
6368 pX->zEName = sqlite3DbStrDup(db, zName);
6369 pX->fg.eEName = ENAME_NAME;
6373 if( !tableSeen ){
6374 if( zTName ){
6375 sqlite3ErrorMsg(pParse, "no such table: %s", zTName);
6376 }else{
6377 sqlite3ErrorMsg(pParse, "no tables specified");
6382 sqlite3ExprListDelete(db, pEList);
6383 p->pEList = pNew;
6385 if( p->pEList ){
6386 if( p->pEList->nExpr>db->aLimit[SQLITE_LIMIT_COLUMN] ){
6387 sqlite3ErrorMsg(pParse, "too many columns in result set");
6388 return WRC_Abort;
6390 if( (elistFlags & (EP_HasFunc|EP_Subquery))!=0 ){
6391 p->selFlags |= SF_ComplexResult;
6394 #if TREETRACE_ENABLED
6395 if( sqlite3TreeTrace & 0x8 ){
6396 TREETRACE(0x8,pParse,p,("After result-set wildcard expansion:\n"));
6397 sqlite3TreeViewSelect(0, p, 0);
6399 #endif
6400 return WRC_Continue;
6403 #if SQLITE_DEBUG
6405 ** Always assert. This xSelectCallback2 implementation proves that the
6406 ** xSelectCallback2 is never invoked.
6408 void sqlite3SelectWalkAssert2(Walker *NotUsed, Select *NotUsed2){
6409 UNUSED_PARAMETER2(NotUsed, NotUsed2);
6410 assert( 0 );
6412 #endif
6414 ** This routine "expands" a SELECT statement and all of its subqueries.
6415 ** For additional information on what it means to "expand" a SELECT
6416 ** statement, see the comment on the selectExpand worker callback above.
6418 ** Expanding a SELECT statement is the first step in processing a
6419 ** SELECT statement. The SELECT statement must be expanded before
6420 ** name resolution is performed.
6422 ** If anything goes wrong, an error message is written into pParse.
6423 ** The calling function can detect the problem by looking at pParse->nErr
6424 ** and/or pParse->db->mallocFailed.
6426 static void sqlite3SelectExpand(Parse *pParse, Select *pSelect){
6427 Walker w;
6428 w.xExprCallback = sqlite3ExprWalkNoop;
6429 w.pParse = pParse;
6430 if( OK_IF_ALWAYS_TRUE(pParse->hasCompound) ){
6431 w.xSelectCallback = convertCompoundSelectToSubquery;
6432 w.xSelectCallback2 = 0;
6433 sqlite3WalkSelect(&w, pSelect);
6435 w.xSelectCallback = selectExpander;
6436 w.xSelectCallback2 = sqlite3SelectPopWith;
6437 w.eCode = 0;
6438 sqlite3WalkSelect(&w, pSelect);
6442 #ifndef SQLITE_OMIT_SUBQUERY
6444 ** This is a Walker.xSelectCallback callback for the sqlite3SelectTypeInfo()
6445 ** interface.
6447 ** For each FROM-clause subquery, add Column.zType, Column.zColl, and
6448 ** Column.affinity information to the Table structure that represents
6449 ** the result set of that subquery.
6451 ** The Table structure that represents the result set was constructed
6452 ** by selectExpander() but the type and collation and affinity information
6453 ** was omitted at that point because identifiers had not yet been resolved.
6454 ** This routine is called after identifier resolution.
6456 static void selectAddSubqueryTypeInfo(Walker *pWalker, Select *p){
6457 Parse *pParse;
6458 int i;
6459 SrcList *pTabList;
6460 SrcItem *pFrom;
6462 if( p->selFlags & SF_HasTypeInfo ) return;
6463 p->selFlags |= SF_HasTypeInfo;
6464 pParse = pWalker->pParse;
6465 assert( (p->selFlags & SF_Resolved) );
6466 pTabList = p->pSrc;
6467 for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){
6468 Table *pTab = pFrom->pSTab;
6469 assert( pTab!=0 );
6470 if( (pTab->tabFlags & TF_Ephemeral)!=0 && pFrom->fg.isSubquery ){
6471 /* A sub-query in the FROM clause of a SELECT */
6472 Select *pSel = pFrom->u4.pSubq->pSelect;
6473 sqlite3SubqueryColumnTypes(pParse, pTab, pSel, SQLITE_AFF_NONE);
6477 #endif
6481 ** This routine adds datatype and collating sequence information to
6482 ** the Table structures of all FROM-clause subqueries in a
6483 ** SELECT statement.
6485 ** Use this routine after name resolution.
6487 static void sqlite3SelectAddTypeInfo(Parse *pParse, Select *pSelect){
6488 #ifndef SQLITE_OMIT_SUBQUERY
6489 Walker w;
6490 w.xSelectCallback = sqlite3SelectWalkNoop;
6491 w.xSelectCallback2 = selectAddSubqueryTypeInfo;
6492 w.xExprCallback = sqlite3ExprWalkNoop;
6493 w.pParse = pParse;
6494 sqlite3WalkSelect(&w, pSelect);
6495 #endif
6500 ** This routine sets up a SELECT statement for processing. The
6501 ** following is accomplished:
6503 ** * VDBE Cursor numbers are assigned to all FROM-clause terms.
6504 ** * Ephemeral Table objects are created for all FROM-clause subqueries.
6505 ** * ON and USING clauses are shifted into WHERE statements
6506 ** * Wildcards "*" and "TABLE.*" in result sets are expanded.
6507 ** * Identifiers in expression are matched to tables.
6509 ** This routine acts recursively on all subqueries within the SELECT.
6511 void sqlite3SelectPrep(
6512 Parse *pParse, /* The parser context */
6513 Select *p, /* The SELECT statement being coded. */
6514 NameContext *pOuterNC /* Name context for container */
6516 assert( p!=0 || pParse->db->mallocFailed );
6517 assert( pParse->db->pParse==pParse );
6518 if( pParse->db->mallocFailed ) return;
6519 if( p->selFlags & SF_HasTypeInfo ) return;
6520 sqlite3SelectExpand(pParse, p);
6521 if( pParse->nErr ) return;
6522 sqlite3ResolveSelectNames(pParse, p, pOuterNC);
6523 if( pParse->nErr ) return;
6524 sqlite3SelectAddTypeInfo(pParse, p);
6527 #if TREETRACE_ENABLED
6529 ** Display all information about an AggInfo object
6531 static void printAggInfo(AggInfo *pAggInfo){
6532 int ii;
6533 sqlite3DebugPrintf("AggInfo %d/%p:\n",
6534 pAggInfo->selId, pAggInfo);
6535 for(ii=0; ii<pAggInfo->nColumn; ii++){
6536 struct AggInfo_col *pCol = &pAggInfo->aCol[ii];
6537 sqlite3DebugPrintf(
6538 "agg-column[%d] pTab=%s iTable=%d iColumn=%d iMem=%d"
6539 " iSorterColumn=%d %s\n",
6540 ii, pCol->pTab ? pCol->pTab->zName : "NULL",
6541 pCol->iTable, pCol->iColumn, pAggInfo->iFirstReg+ii,
6542 pCol->iSorterColumn,
6543 ii>=pAggInfo->nAccumulator ? "" : " Accumulator");
6544 sqlite3TreeViewExpr(0, pAggInfo->aCol[ii].pCExpr, 0);
6546 for(ii=0; ii<pAggInfo->nFunc; ii++){
6547 sqlite3DebugPrintf("agg-func[%d]: iMem=%d\n",
6548 ii, pAggInfo->iFirstReg+pAggInfo->nColumn+ii);
6549 sqlite3TreeViewExpr(0, pAggInfo->aFunc[ii].pFExpr, 0);
6552 #endif /* TREETRACE_ENABLED */
6555 ** Analyze the arguments to aggregate functions. Create new pAggInfo->aCol[]
6556 ** entries for columns that are arguments to aggregate functions but which
6557 ** are not otherwise used.
6559 ** The aCol[] entries in AggInfo prior to nAccumulator are columns that
6560 ** are referenced outside of aggregate functions. These might be columns
6561 ** that are part of the GROUP by clause, for example. Other database engines
6562 ** would throw an error if there is a column reference that is not in the
6563 ** GROUP BY clause and that is not part of an aggregate function argument.
6564 ** But SQLite allows this.
6566 ** The aCol[] entries beginning with the aCol[nAccumulator] and following
6567 ** are column references that are used exclusively as arguments to
6568 ** aggregate functions. This routine is responsible for computing
6569 ** (or recomputing) those aCol[] entries.
6571 static void analyzeAggFuncArgs(
6572 AggInfo *pAggInfo,
6573 NameContext *pNC
6575 int i;
6576 assert( pAggInfo!=0 );
6577 assert( pAggInfo->iFirstReg==0 );
6578 pNC->ncFlags |= NC_InAggFunc;
6579 for(i=0; i<pAggInfo->nFunc; i++){
6580 Expr *pExpr = pAggInfo->aFunc[i].pFExpr;
6581 assert( pExpr->op==TK_FUNCTION || pExpr->op==TK_AGG_FUNCTION );
6582 assert( ExprUseXList(pExpr) );
6583 sqlite3ExprAnalyzeAggList(pNC, pExpr->x.pList);
6584 if( pExpr->pLeft ){
6585 assert( pExpr->pLeft->op==TK_ORDER );
6586 assert( ExprUseXList(pExpr->pLeft) );
6587 sqlite3ExprAnalyzeAggList(pNC, pExpr->pLeft->x.pList);
6589 #ifndef SQLITE_OMIT_WINDOWFUNC
6590 assert( !IsWindowFunc(pExpr) );
6591 if( ExprHasProperty(pExpr, EP_WinFunc) ){
6592 sqlite3ExprAnalyzeAggregates(pNC, pExpr->y.pWin->pFilter);
6594 #endif
6596 pNC->ncFlags &= ~NC_InAggFunc;
6600 ** An index on expressions is being used in the inner loop of an
6601 ** aggregate query with a GROUP BY clause. This routine attempts
6602 ** to adjust the AggInfo object to take advantage of index and to
6603 ** perhaps use the index as a covering index.
6606 static void optimizeAggregateUseOfIndexedExpr(
6607 Parse *pParse, /* Parsing context */
6608 Select *pSelect, /* The SELECT statement being processed */
6609 AggInfo *pAggInfo, /* The aggregate info */
6610 NameContext *pNC /* Name context used to resolve agg-func args */
6612 assert( pAggInfo->iFirstReg==0 );
6613 assert( pSelect!=0 );
6614 assert( pSelect->pGroupBy!=0 );
6615 pAggInfo->nColumn = pAggInfo->nAccumulator;
6616 if( ALWAYS(pAggInfo->nSortingColumn>0) ){
6617 int mx = pSelect->pGroupBy->nExpr - 1;
6618 int j, k;
6619 for(j=0; j<pAggInfo->nColumn; j++){
6620 k = pAggInfo->aCol[j].iSorterColumn;
6621 if( k>mx ) mx = k;
6623 pAggInfo->nSortingColumn = mx+1;
6625 analyzeAggFuncArgs(pAggInfo, pNC);
6626 #if TREETRACE_ENABLED
6627 if( sqlite3TreeTrace & 0x20 ){
6628 IndexedExpr *pIEpr;
6629 TREETRACE(0x20, pParse, pSelect,
6630 ("AggInfo (possibly) adjusted for Indexed Exprs\n"));
6631 sqlite3TreeViewSelect(0, pSelect, 0);
6632 for(pIEpr=pParse->pIdxEpr; pIEpr; pIEpr=pIEpr->pIENext){
6633 printf("data-cursor=%d index={%d,%d}\n",
6634 pIEpr->iDataCur, pIEpr->iIdxCur, pIEpr->iIdxCol);
6635 sqlite3TreeViewExpr(0, pIEpr->pExpr, 0);
6637 printAggInfo(pAggInfo);
6639 #else
6640 UNUSED_PARAMETER(pSelect);
6641 UNUSED_PARAMETER(pParse);
6642 #endif
6646 ** Walker callback for aggregateConvertIndexedExprRefToColumn().
6648 static int aggregateIdxEprRefToColCallback(Walker *pWalker, Expr *pExpr){
6649 AggInfo *pAggInfo;
6650 struct AggInfo_col *pCol;
6651 UNUSED_PARAMETER(pWalker);
6652 if( pExpr->pAggInfo==0 ) return WRC_Continue;
6653 if( pExpr->op==TK_AGG_COLUMN ) return WRC_Continue;
6654 if( pExpr->op==TK_AGG_FUNCTION ) return WRC_Continue;
6655 if( pExpr->op==TK_IF_NULL_ROW ) return WRC_Continue;
6656 pAggInfo = pExpr->pAggInfo;
6657 if( NEVER(pExpr->iAgg>=pAggInfo->nColumn) ) return WRC_Continue;
6658 assert( pExpr->iAgg>=0 );
6659 pCol = &pAggInfo->aCol[pExpr->iAgg];
6660 pExpr->op = TK_AGG_COLUMN;
6661 pExpr->iTable = pCol->iTable;
6662 pExpr->iColumn = pCol->iColumn;
6663 ExprClearProperty(pExpr, EP_Skip|EP_Collate|EP_Unlikely);
6664 return WRC_Prune;
6668 ** Convert every pAggInfo->aFunc[].pExpr such that any node within
6669 ** those expressions that has pAppInfo set is changed into a TK_AGG_COLUMN
6670 ** opcode.
6672 static void aggregateConvertIndexedExprRefToColumn(AggInfo *pAggInfo){
6673 int i;
6674 Walker w;
6675 memset(&w, 0, sizeof(w));
6676 w.xExprCallback = aggregateIdxEprRefToColCallback;
6677 for(i=0; i<pAggInfo->nFunc; i++){
6678 sqlite3WalkExpr(&w, pAggInfo->aFunc[i].pFExpr);
6684 ** Allocate a block of registers so that there is one register for each
6685 ** pAggInfo->aCol[] and pAggInfo->aFunc[] entry in pAggInfo. The first
6686 ** register in this block is stored in pAggInfo->iFirstReg.
6688 ** This routine may only be called once for each AggInfo object. Prior
6689 ** to calling this routine:
6691 ** * The aCol[] and aFunc[] arrays may be modified
6692 ** * The AggInfoColumnReg() and AggInfoFuncReg() macros may not be used
6694 ** After calling this routine:
6696 ** * The aCol[] and aFunc[] arrays are fixed
6697 ** * The AggInfoColumnReg() and AggInfoFuncReg() macros may be used
6700 static void assignAggregateRegisters(Parse *pParse, AggInfo *pAggInfo){
6701 assert( pAggInfo!=0 );
6702 assert( pAggInfo->iFirstReg==0 );
6703 pAggInfo->iFirstReg = pParse->nMem + 1;
6704 pParse->nMem += pAggInfo->nColumn + pAggInfo->nFunc;
6708 ** Reset the aggregate accumulator.
6710 ** The aggregate accumulator is a set of memory cells that hold
6711 ** intermediate results while calculating an aggregate. This
6712 ** routine generates code that stores NULLs in all of those memory
6713 ** cells.
6715 static void resetAccumulator(Parse *pParse, AggInfo *pAggInfo){
6716 Vdbe *v = pParse->pVdbe;
6717 int i;
6718 struct AggInfo_func *pFunc;
6719 int nReg = pAggInfo->nFunc + pAggInfo->nColumn;
6720 assert( pAggInfo->iFirstReg>0 );
6721 assert( pParse->db->pParse==pParse );
6722 assert( pParse->db->mallocFailed==0 || pParse->nErr!=0 );
6723 if( nReg==0 ) return;
6724 if( pParse->nErr ) return;
6725 sqlite3VdbeAddOp3(v, OP_Null, 0, pAggInfo->iFirstReg,
6726 pAggInfo->iFirstReg+nReg-1);
6727 for(pFunc=pAggInfo->aFunc, i=0; i<pAggInfo->nFunc; i++, pFunc++){
6728 if( pFunc->iDistinct>=0 ){
6729 Expr *pE = pFunc->pFExpr;
6730 assert( ExprUseXList(pE) );
6731 if( pE->x.pList==0 || pE->x.pList->nExpr!=1 ){
6732 sqlite3ErrorMsg(pParse, "DISTINCT aggregates must have exactly one "
6733 "argument");
6734 pFunc->iDistinct = -1;
6735 }else{
6736 KeyInfo *pKeyInfo = sqlite3KeyInfoFromExprList(pParse, pE->x.pList,0,0);
6737 pFunc->iDistAddr = sqlite3VdbeAddOp4(v, OP_OpenEphemeral,
6738 pFunc->iDistinct, 0, 0, (char*)pKeyInfo, P4_KEYINFO);
6739 ExplainQueryPlan((pParse, 0, "USE TEMP B-TREE FOR %s(DISTINCT)",
6740 pFunc->pFunc->zName));
6743 if( pFunc->iOBTab>=0 ){
6744 ExprList *pOBList;
6745 KeyInfo *pKeyInfo;
6746 int nExtra = 0;
6747 assert( pFunc->pFExpr->pLeft!=0 );
6748 assert( pFunc->pFExpr->pLeft->op==TK_ORDER );
6749 assert( ExprUseXList(pFunc->pFExpr->pLeft) );
6750 assert( pFunc->pFunc!=0 );
6751 pOBList = pFunc->pFExpr->pLeft->x.pList;
6752 if( !pFunc->bOBUnique ){
6753 nExtra++; /* One extra column for the OP_Sequence */
6755 if( pFunc->bOBPayload ){
6756 /* extra columns for the function arguments */
6757 assert( ExprUseXList(pFunc->pFExpr) );
6758 nExtra += pFunc->pFExpr->x.pList->nExpr;
6760 if( pFunc->bUseSubtype ){
6761 nExtra += pFunc->pFExpr->x.pList->nExpr;
6763 pKeyInfo = sqlite3KeyInfoFromExprList(pParse, pOBList, 0, nExtra);
6764 if( !pFunc->bOBUnique && pParse->nErr==0 ){
6765 pKeyInfo->nKeyField++;
6767 sqlite3VdbeAddOp4(v, OP_OpenEphemeral,
6768 pFunc->iOBTab, pOBList->nExpr+nExtra, 0,
6769 (char*)pKeyInfo, P4_KEYINFO);
6770 ExplainQueryPlan((pParse, 0, "USE TEMP B-TREE FOR %s(ORDER BY)",
6771 pFunc->pFunc->zName));
6777 ** Invoke the OP_AggFinalize opcode for every aggregate function
6778 ** in the AggInfo structure.
6780 static void finalizeAggFunctions(Parse *pParse, AggInfo *pAggInfo){
6781 Vdbe *v = pParse->pVdbe;
6782 int i;
6783 struct AggInfo_func *pF;
6784 for(i=0, pF=pAggInfo->aFunc; i<pAggInfo->nFunc; i++, pF++){
6785 ExprList *pList;
6786 assert( ExprUseXList(pF->pFExpr) );
6787 if( pParse->nErr ) return;
6788 pList = pF->pFExpr->x.pList;
6789 if( pF->iOBTab>=0 ){
6790 /* For an ORDER BY aggregate, calls to OP_AggStep were deferred. Inputs
6791 ** were stored in emphermal table pF->iOBTab. Here, we extract those
6792 ** inputs (in ORDER BY order) and make all calls to OP_AggStep
6793 ** before doing the OP_AggFinal call. */
6794 int iTop; /* Start of loop for extracting columns */
6795 int nArg; /* Number of columns to extract */
6796 int nKey; /* Key columns to be skipped */
6797 int regAgg; /* Extract into this array */
6798 int j; /* Loop counter */
6800 assert( pF->pFunc!=0 );
6801 nArg = pList->nExpr;
6802 regAgg = sqlite3GetTempRange(pParse, nArg);
6804 if( pF->bOBPayload==0 ){
6805 nKey = 0;
6806 }else{
6807 assert( pF->pFExpr->pLeft!=0 );
6808 assert( ExprUseXList(pF->pFExpr->pLeft) );
6809 assert( pF->pFExpr->pLeft->x.pList!=0 );
6810 nKey = pF->pFExpr->pLeft->x.pList->nExpr;
6811 if( ALWAYS(!pF->bOBUnique) ) nKey++;
6813 iTop = sqlite3VdbeAddOp1(v, OP_Rewind, pF->iOBTab); VdbeCoverage(v);
6814 for(j=nArg-1; j>=0; j--){
6815 sqlite3VdbeAddOp3(v, OP_Column, pF->iOBTab, nKey+j, regAgg+j);
6817 if( pF->bUseSubtype ){
6818 int regSubtype = sqlite3GetTempReg(pParse);
6819 int iBaseCol = nKey + nArg + (pF->bOBPayload==0 && pF->bOBUnique==0);
6820 for(j=nArg-1; j>=0; j--){
6821 sqlite3VdbeAddOp3(v, OP_Column, pF->iOBTab, iBaseCol+j, regSubtype);
6822 sqlite3VdbeAddOp2(v, OP_SetSubtype, regSubtype, regAgg+j);
6824 sqlite3ReleaseTempReg(pParse, regSubtype);
6826 sqlite3VdbeAddOp3(v, OP_AggStep, 0, regAgg, AggInfoFuncReg(pAggInfo,i));
6827 sqlite3VdbeAppendP4(v, pF->pFunc, P4_FUNCDEF);
6828 sqlite3VdbeChangeP5(v, (u8)nArg);
6829 sqlite3VdbeAddOp2(v, OP_Next, pF->iOBTab, iTop+1); VdbeCoverage(v);
6830 sqlite3VdbeJumpHere(v, iTop);
6831 sqlite3ReleaseTempRange(pParse, regAgg, nArg);
6833 sqlite3VdbeAddOp2(v, OP_AggFinal, AggInfoFuncReg(pAggInfo,i),
6834 pList ? pList->nExpr : 0);
6835 sqlite3VdbeAppendP4(v, pF->pFunc, P4_FUNCDEF);
6840 ** Generate code that will update the accumulator memory cells for an
6841 ** aggregate based on the current cursor position.
6843 ** If regAcc is non-zero and there are no min() or max() aggregates
6844 ** in pAggInfo, then only populate the pAggInfo->nAccumulator accumulator
6845 ** registers if register regAcc contains 0. The caller will take care
6846 ** of setting and clearing regAcc.
6848 ** For an ORDER BY aggregate, the actual accumulator memory cell update
6849 ** is deferred until after all input rows have been received, so that they
6850 ** can be run in the requested order. In that case, instead of invoking
6851 ** OP_AggStep to update the accumulator, just add the arguments that would
6852 ** have been passed into OP_AggStep into the sorting ephemeral table
6853 ** (along with the appropriate sort key).
6855 static void updateAccumulator(
6856 Parse *pParse,
6857 int regAcc,
6858 AggInfo *pAggInfo,
6859 int eDistinctType
6861 Vdbe *v = pParse->pVdbe;
6862 int i;
6863 int regHit = 0;
6864 int addrHitTest = 0;
6865 struct AggInfo_func *pF;
6866 struct AggInfo_col *pC;
6868 assert( pAggInfo->iFirstReg>0 );
6869 if( pParse->nErr ) return;
6870 pAggInfo->directMode = 1;
6871 for(i=0, pF=pAggInfo->aFunc; i<pAggInfo->nFunc; i++, pF++){
6872 int nArg;
6873 int addrNext = 0;
6874 int regAgg;
6875 int regAggSz = 0;
6876 int regDistinct = 0;
6877 ExprList *pList;
6878 assert( ExprUseXList(pF->pFExpr) );
6879 assert( !IsWindowFunc(pF->pFExpr) );
6880 assert( pF->pFunc!=0 );
6881 pList = pF->pFExpr->x.pList;
6882 if( ExprHasProperty(pF->pFExpr, EP_WinFunc) ){
6883 Expr *pFilter = pF->pFExpr->y.pWin->pFilter;
6884 if( pAggInfo->nAccumulator
6885 && (pF->pFunc->funcFlags & SQLITE_FUNC_NEEDCOLL)
6886 && regAcc
6888 /* If regAcc==0, there there exists some min() or max() function
6889 ** without a FILTER clause that will ensure the magnet registers
6890 ** are populated. */
6891 if( regHit==0 ) regHit = ++pParse->nMem;
6892 /* If this is the first row of the group (regAcc contains 0), clear the
6893 ** "magnet" register regHit so that the accumulator registers
6894 ** are populated if the FILTER clause jumps over the the
6895 ** invocation of min() or max() altogether. Or, if this is not
6896 ** the first row (regAcc contains 1), set the magnet register so that
6897 ** the accumulators are not populated unless the min()/max() is invoked
6898 ** and indicates that they should be. */
6899 sqlite3VdbeAddOp2(v, OP_Copy, regAcc, regHit);
6901 addrNext = sqlite3VdbeMakeLabel(pParse);
6902 sqlite3ExprIfFalse(pParse, pFilter, addrNext, SQLITE_JUMPIFNULL);
6904 if( pF->iOBTab>=0 ){
6905 /* Instead of invoking AggStep, we must push the arguments that would
6906 ** have been passed to AggStep onto the sorting table. */
6907 int jj; /* Registered used so far in building the record */
6908 ExprList *pOBList; /* The ORDER BY clause */
6909 assert( pList!=0 );
6910 nArg = pList->nExpr;
6911 assert( nArg>0 );
6912 assert( pF->pFExpr->pLeft!=0 );
6913 assert( pF->pFExpr->pLeft->op==TK_ORDER );
6914 assert( ExprUseXList(pF->pFExpr->pLeft) );
6915 pOBList = pF->pFExpr->pLeft->x.pList;
6916 assert( pOBList!=0 );
6917 assert( pOBList->nExpr>0 );
6918 regAggSz = pOBList->nExpr;
6919 if( !pF->bOBUnique ){
6920 regAggSz++; /* One register for OP_Sequence */
6922 if( pF->bOBPayload ){
6923 regAggSz += nArg;
6925 if( pF->bUseSubtype ){
6926 regAggSz += nArg;
6928 regAggSz++; /* One extra register to hold result of MakeRecord */
6929 regAgg = sqlite3GetTempRange(pParse, regAggSz);
6930 regDistinct = regAgg;
6931 sqlite3ExprCodeExprList(pParse, pOBList, regAgg, 0, SQLITE_ECEL_DUP);
6932 jj = pOBList->nExpr;
6933 if( !pF->bOBUnique ){
6934 sqlite3VdbeAddOp2(v, OP_Sequence, pF->iOBTab, regAgg+jj);
6935 jj++;
6937 if( pF->bOBPayload ){
6938 regDistinct = regAgg+jj;
6939 sqlite3ExprCodeExprList(pParse, pList, regDistinct, 0, SQLITE_ECEL_DUP);
6940 jj += nArg;
6942 if( pF->bUseSubtype ){
6943 int kk;
6944 int regBase = pF->bOBPayload ? regDistinct : regAgg;
6945 for(kk=0; kk<nArg; kk++, jj++){
6946 sqlite3VdbeAddOp2(v, OP_GetSubtype, regBase+kk, regAgg+jj);
6949 }else if( pList ){
6950 nArg = pList->nExpr;
6951 regAgg = sqlite3GetTempRange(pParse, nArg);
6952 regDistinct = regAgg;
6953 sqlite3ExprCodeExprList(pParse, pList, regAgg, 0, SQLITE_ECEL_DUP);
6954 }else{
6955 nArg = 0;
6956 regAgg = 0;
6958 if( pF->iDistinct>=0 && pList ){
6959 if( addrNext==0 ){
6960 addrNext = sqlite3VdbeMakeLabel(pParse);
6962 pF->iDistinct = codeDistinct(pParse, eDistinctType,
6963 pF->iDistinct, addrNext, pList, regDistinct);
6965 if( pF->iOBTab>=0 ){
6966 /* Insert a new record into the ORDER BY table */
6967 sqlite3VdbeAddOp3(v, OP_MakeRecord, regAgg, regAggSz-1,
6968 regAgg+regAggSz-1);
6969 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, pF->iOBTab, regAgg+regAggSz-1,
6970 regAgg, regAggSz-1);
6971 sqlite3ReleaseTempRange(pParse, regAgg, regAggSz);
6972 }else{
6973 /* Invoke the AggStep function */
6974 if( pF->pFunc->funcFlags & SQLITE_FUNC_NEEDCOLL ){
6975 CollSeq *pColl = 0;
6976 struct ExprList_item *pItem;
6977 int j;
6978 assert( pList!=0 ); /* pList!=0 if pF->pFunc has NEEDCOLL */
6979 for(j=0, pItem=pList->a; !pColl && j<nArg; j++, pItem++){
6980 pColl = sqlite3ExprCollSeq(pParse, pItem->pExpr);
6982 if( !pColl ){
6983 pColl = pParse->db->pDfltColl;
6985 if( regHit==0 && pAggInfo->nAccumulator ) regHit = ++pParse->nMem;
6986 sqlite3VdbeAddOp4(v, OP_CollSeq, regHit, 0, 0,
6987 (char *)pColl, P4_COLLSEQ);
6989 sqlite3VdbeAddOp3(v, OP_AggStep, 0, regAgg, AggInfoFuncReg(pAggInfo,i));
6990 sqlite3VdbeAppendP4(v, pF->pFunc, P4_FUNCDEF);
6991 sqlite3VdbeChangeP5(v, (u8)nArg);
6992 sqlite3ReleaseTempRange(pParse, regAgg, nArg);
6994 if( addrNext ){
6995 sqlite3VdbeResolveLabel(v, addrNext);
6997 if( pParse->nErr ) return;
6999 if( regHit==0 && pAggInfo->nAccumulator ){
7000 regHit = regAcc;
7002 if( regHit ){
7003 addrHitTest = sqlite3VdbeAddOp1(v, OP_If, regHit); VdbeCoverage(v);
7005 for(i=0, pC=pAggInfo->aCol; i<pAggInfo->nAccumulator; i++, pC++){
7006 sqlite3ExprCode(pParse, pC->pCExpr, AggInfoColumnReg(pAggInfo,i));
7007 if( pParse->nErr ) return;
7010 pAggInfo->directMode = 0;
7011 if( addrHitTest ){
7012 sqlite3VdbeJumpHereOrPopInst(v, addrHitTest);
7017 ** Add a single OP_Explain instruction to the VDBE to explain a simple
7018 ** count(*) query ("SELECT count(*) FROM pTab").
7020 #ifndef SQLITE_OMIT_EXPLAIN
7021 static void explainSimpleCount(
7022 Parse *pParse, /* Parse context */
7023 Table *pTab, /* Table being queried */
7024 Index *pIdx /* Index used to optimize scan, or NULL */
7026 if( pParse->explain==2 ){
7027 int bCover = (pIdx!=0 && (HasRowid(pTab) || !IsPrimaryKeyIndex(pIdx)));
7028 sqlite3VdbeExplain(pParse, 0, "SCAN %s%s%s",
7029 pTab->zName,
7030 bCover ? " USING COVERING INDEX " : "",
7031 bCover ? pIdx->zName : ""
7035 #else
7036 # define explainSimpleCount(a,b,c)
7037 #endif
7040 ** sqlite3WalkExpr() callback used by havingToWhere().
7042 ** If the node passed to the callback is a TK_AND node, return
7043 ** WRC_Continue to tell sqlite3WalkExpr() to iterate through child nodes.
7045 ** Otherwise, return WRC_Prune. In this case, also check if the
7046 ** sub-expression matches the criteria for being moved to the WHERE
7047 ** clause. If so, add it to the WHERE clause and replace the sub-expression
7048 ** within the HAVING expression with a constant "1".
7050 static int havingToWhereExprCb(Walker *pWalker, Expr *pExpr){
7051 if( pExpr->op!=TK_AND ){
7052 Select *pS = pWalker->u.pSelect;
7053 /* This routine is called before the HAVING clause of the current
7054 ** SELECT is analyzed for aggregates. So if pExpr->pAggInfo is set
7055 ** here, it indicates that the expression is a correlated reference to a
7056 ** column from an outer aggregate query, or an aggregate function that
7057 ** belongs to an outer query. Do not move the expression to the WHERE
7058 ** clause in this obscure case, as doing so may corrupt the outer Select
7059 ** statements AggInfo structure. */
7060 if( sqlite3ExprIsConstantOrGroupBy(pWalker->pParse, pExpr, pS->pGroupBy)
7061 && ExprAlwaysFalse(pExpr)==0
7062 && pExpr->pAggInfo==0
7064 sqlite3 *db = pWalker->pParse->db;
7065 Expr *pNew = sqlite3Expr(db, TK_INTEGER, "1");
7066 if( pNew ){
7067 Expr *pWhere = pS->pWhere;
7068 SWAP(Expr, *pNew, *pExpr);
7069 pNew = sqlite3ExprAnd(pWalker->pParse, pWhere, pNew);
7070 pS->pWhere = pNew;
7071 pWalker->eCode = 1;
7074 return WRC_Prune;
7076 return WRC_Continue;
7080 ** Transfer eligible terms from the HAVING clause of a query, which is
7081 ** processed after grouping, to the WHERE clause, which is processed before
7082 ** grouping. For example, the query:
7084 ** SELECT * FROM <tables> WHERE a=? GROUP BY b HAVING b=? AND c=?
7086 ** can be rewritten as:
7088 ** SELECT * FROM <tables> WHERE a=? AND b=? GROUP BY b HAVING c=?
7090 ** A term of the HAVING expression is eligible for transfer if it consists
7091 ** entirely of constants and expressions that are also GROUP BY terms that
7092 ** use the "BINARY" collation sequence.
7094 static void havingToWhere(Parse *pParse, Select *p){
7095 Walker sWalker;
7096 memset(&sWalker, 0, sizeof(sWalker));
7097 sWalker.pParse = pParse;
7098 sWalker.xExprCallback = havingToWhereExprCb;
7099 sWalker.u.pSelect = p;
7100 sqlite3WalkExpr(&sWalker, p->pHaving);
7101 #if TREETRACE_ENABLED
7102 if( sWalker.eCode && (sqlite3TreeTrace & 0x100)!=0 ){
7103 TREETRACE(0x100,pParse,p,("Move HAVING terms into WHERE:\n"));
7104 sqlite3TreeViewSelect(0, p, 0);
7106 #endif
7110 ** Check to see if the pThis entry of pTabList is a self-join of another view.
7111 ** Search FROM-clause entries in the range of iFirst..iEnd, including iFirst
7112 ** but stopping before iEnd.
7114 ** If pThis is a self-join, then return the SrcItem for the first other
7115 ** instance of that view found. If pThis is not a self-join then return 0.
7117 static SrcItem *isSelfJoinView(
7118 SrcList *pTabList, /* Search for self-joins in this FROM clause */
7119 SrcItem *pThis, /* Search for prior reference to this subquery */
7120 int iFirst, int iEnd /* Range of FROM-clause entries to search. */
7122 SrcItem *pItem;
7123 Select *pSel;
7124 assert( pThis->fg.isSubquery );
7125 pSel = pThis->u4.pSubq->pSelect;
7126 assert( pSel!=0 );
7127 if( pSel->selFlags & SF_PushDown ) return 0;
7128 while( iFirst<iEnd ){
7129 Select *pS1;
7130 pItem = &pTabList->a[iFirst++];
7131 if( !pItem->fg.isSubquery ) continue;
7132 if( pItem->fg.viaCoroutine ) continue;
7133 if( pItem->zName==0 ) continue;
7134 assert( pItem->pSTab!=0 );
7135 assert( pThis->pSTab!=0 );
7136 if( pItem->pSTab->pSchema!=pThis->pSTab->pSchema ) continue;
7137 if( sqlite3_stricmp(pItem->zName, pThis->zName)!=0 ) continue;
7138 pS1 = pItem->u4.pSubq->pSelect;
7139 if( pItem->pSTab->pSchema==0 && pSel->selId!=pS1->selId ){
7140 /* The query flattener left two different CTE tables with identical
7141 ** names in the same FROM clause. */
7142 continue;
7144 if( pS1->selFlags & SF_PushDown ){
7145 /* The view was modified by some other optimization such as
7146 ** pushDownWhereTerms() */
7147 continue;
7149 return pItem;
7151 return 0;
7155 ** Deallocate a single AggInfo object
7157 static void agginfoFree(sqlite3 *db, void *pArg){
7158 AggInfo *p = (AggInfo*)pArg;
7159 sqlite3DbFree(db, p->aCol);
7160 sqlite3DbFree(db, p->aFunc);
7161 sqlite3DbFreeNN(db, p);
7165 ** Attempt to transform a query of the form
7167 ** SELECT count(*) FROM (SELECT x FROM t1 UNION ALL SELECT y FROM t2)
7169 ** Into this:
7171 ** SELECT (SELECT count(*) FROM t1)+(SELECT count(*) FROM t2)
7173 ** The transformation only works if all of the following are true:
7175 ** * The subquery is a UNION ALL of two or more terms
7176 ** * The subquery does not have a LIMIT clause
7177 ** * There is no WHERE or GROUP BY or HAVING clauses on the subqueries
7178 ** * The outer query is a simple count(*) with no WHERE clause or other
7179 ** extraneous syntax.
7181 ** Return TRUE if the optimization is undertaken.
7183 static int countOfViewOptimization(Parse *pParse, Select *p){
7184 Select *pSub, *pPrior;
7185 Expr *pExpr;
7186 Expr *pCount;
7187 sqlite3 *db;
7188 SrcItem *pFrom;
7189 if( (p->selFlags & SF_Aggregate)==0 ) return 0; /* This is an aggregate */
7190 if( p->pEList->nExpr!=1 ) return 0; /* Single result column */
7191 if( p->pWhere ) return 0;
7192 if( p->pHaving ) return 0;
7193 if( p->pGroupBy ) return 0;
7194 if( p->pOrderBy ) return 0;
7195 pExpr = p->pEList->a[0].pExpr;
7196 if( pExpr->op!=TK_AGG_FUNCTION ) return 0; /* Result is an aggregate */
7197 assert( ExprUseUToken(pExpr) );
7198 if( sqlite3_stricmp(pExpr->u.zToken,"count") ) return 0; /* Is count() */
7199 assert( ExprUseXList(pExpr) );
7200 if( pExpr->x.pList!=0 ) return 0; /* Must be count(*) */
7201 if( p->pSrc->nSrc!=1 ) return 0; /* One table in FROM */
7202 if( ExprHasProperty(pExpr, EP_WinFunc) ) return 0;/* Not a window function */
7203 pFrom = p->pSrc->a;
7204 if( pFrom->fg.isSubquery==0 ) return 0; /* FROM is a subquery */
7205 pSub = pFrom->u4.pSubq->pSelect;
7206 if( pSub->pPrior==0 ) return 0; /* Must be a compound */
7207 if( pSub->selFlags & SF_CopyCte ) return 0; /* Not a CTE */
7209 if( pSub->op!=TK_ALL && pSub->pPrior ) return 0; /* Must be UNION ALL */
7210 if( pSub->pWhere ) return 0; /* No WHERE clause */
7211 if( pSub->pLimit ) return 0; /* No LIMIT clause */
7212 if( pSub->selFlags & SF_Aggregate ) return 0; /* Not an aggregate */
7213 assert( pSub->pHaving==0 ); /* Due to the previous */
7214 pSub = pSub->pPrior; /* Repeat over compound */
7215 }while( pSub );
7217 /* If we reach this point then it is OK to perform the transformation */
7219 db = pParse->db;
7220 pCount = pExpr;
7221 pExpr = 0;
7222 pSub = sqlite3SubqueryDetach(db, pFrom);
7223 sqlite3SrcListDelete(db, p->pSrc);
7224 p->pSrc = sqlite3DbMallocZero(pParse->db, sizeof(*p->pSrc));
7225 while( pSub ){
7226 Expr *pTerm;
7227 pPrior = pSub->pPrior;
7228 pSub->pPrior = 0;
7229 pSub->pNext = 0;
7230 pSub->selFlags |= SF_Aggregate;
7231 pSub->selFlags &= ~SF_Compound;
7232 pSub->nSelectRow = 0;
7233 sqlite3ParserAddCleanup(pParse, sqlite3ExprListDeleteGeneric, pSub->pEList);
7234 pTerm = pPrior ? sqlite3ExprDup(db, pCount, 0) : pCount;
7235 pSub->pEList = sqlite3ExprListAppend(pParse, 0, pTerm);
7236 pTerm = sqlite3PExpr(pParse, TK_SELECT, 0, 0);
7237 sqlite3PExprAddSelect(pParse, pTerm, pSub);
7238 if( pExpr==0 ){
7239 pExpr = pTerm;
7240 }else{
7241 pExpr = sqlite3PExpr(pParse, TK_PLUS, pTerm, pExpr);
7243 pSub = pPrior;
7245 p->pEList->a[0].pExpr = pExpr;
7246 p->selFlags &= ~SF_Aggregate;
7248 #if TREETRACE_ENABLED
7249 if( sqlite3TreeTrace & 0x200 ){
7250 TREETRACE(0x200,pParse,p,("After count-of-view optimization:\n"));
7251 sqlite3TreeViewSelect(0, p, 0);
7253 #endif
7254 return 1;
7258 ** If any term of pSrc, or any SF_NestedFrom sub-query, is not the same
7259 ** as pSrcItem but has the same alias as p0, then return true.
7260 ** Otherwise return false.
7262 static int sameSrcAlias(SrcItem *p0, SrcList *pSrc){
7263 int i;
7264 for(i=0; i<pSrc->nSrc; i++){
7265 SrcItem *p1 = &pSrc->a[i];
7266 if( p1==p0 ) continue;
7267 if( p0->pSTab==p1->pSTab && 0==sqlite3_stricmp(p0->zAlias, p1->zAlias) ){
7268 return 1;
7270 if( p1->fg.isSubquery
7271 && (p1->u4.pSubq->pSelect->selFlags & SF_NestedFrom)!=0
7272 && sameSrcAlias(p0, p1->u4.pSubq->pSelect->pSrc)
7274 return 1;
7277 return 0;
7281 ** Return TRUE (non-zero) if the i-th entry in the pTabList SrcList can
7282 ** be implemented as a co-routine. The i-th entry is guaranteed to be
7283 ** a subquery.
7285 ** The subquery is implemented as a co-routine if all of the following are
7286 ** true:
7288 ** (1) The subquery will likely be implemented in the outer loop of
7289 ** the query. This will be the case if any one of the following
7290 ** conditions hold:
7291 ** (a) The subquery is the only term in the FROM clause
7292 ** (b) The subquery is the left-most term and a CROSS JOIN or similar
7293 ** requires it to be the outer loop
7294 ** (c) All of the following are true:
7295 ** (i) The subquery is the left-most subquery in the FROM clause
7296 ** (ii) There is nothing that would prevent the subquery from
7297 ** being used as the outer loop if the sqlite3WhereBegin()
7298 ** routine nominates it to that position.
7299 ** (iii) The query is not a UPDATE ... FROM
7300 ** (2) The subquery is not a CTE that should be materialized because
7301 ** (a) the AS MATERIALIZED keyword is used, or
7302 ** (b) the CTE is used multiple times and does not have the
7303 ** NOT MATERIALIZED keyword
7304 ** (3) The subquery is not part of a left operand for a RIGHT JOIN
7305 ** (4) The SQLITE_Coroutine optimization disable flag is not set
7306 ** (5) The subquery is not self-joined
7308 static int fromClauseTermCanBeCoroutine(
7309 Parse *pParse, /* Parsing context */
7310 SrcList *pTabList, /* FROM clause */
7311 int i, /* Which term of the FROM clause holds the subquery */
7312 int selFlags /* Flags on the SELECT statement */
7314 SrcItem *pItem = &pTabList->a[i];
7315 if( pItem->fg.isCte ){
7316 const CteUse *pCteUse = pItem->u2.pCteUse;
7317 if( pCteUse->eM10d==M10d_Yes ) return 0; /* (2a) */
7318 if( pCteUse->nUse>=2 && pCteUse->eM10d!=M10d_No ) return 0; /* (2b) */
7320 if( pTabList->a[0].fg.jointype & JT_LTORJ ) return 0; /* (3) */
7321 if( OptimizationDisabled(pParse->db, SQLITE_Coroutines) ) return 0; /* (4) */
7322 if( isSelfJoinView(pTabList, pItem, i+1, pTabList->nSrc)!=0 ){
7323 return 0; /* (5) */
7325 if( i==0 ){
7326 if( pTabList->nSrc==1 ) return 1; /* (1a) */
7327 if( pTabList->a[1].fg.jointype & JT_CROSS ) return 1; /* (1b) */
7328 if( selFlags & SF_UpdateFrom ) return 0; /* (1c-iii) */
7329 return 1;
7331 if( selFlags & SF_UpdateFrom ) return 0; /* (1c-iii) */
7332 while( 1 /*exit-by-break*/ ){
7333 if( pItem->fg.jointype & (JT_OUTER|JT_CROSS) ) return 0; /* (1c-ii) */
7334 if( i==0 ) break;
7335 i--;
7336 pItem--;
7337 if( pItem->fg.isSubquery ) return 0; /* (1c-i) */
7339 return 1;
7343 ** Generate byte-code for the SELECT statement given in the p argument.
7345 ** The results are returned according to the SelectDest structure.
7346 ** See comments in sqliteInt.h for further information.
7348 ** This routine returns the number of errors. If any errors are
7349 ** encountered, then an appropriate error message is left in
7350 ** pParse->zErrMsg.
7352 ** This routine does NOT free the Select structure passed in. The
7353 ** calling function needs to do that.
7355 ** This is a long function. The following is an outline of the processing
7356 ** steps, with tags referencing various milestones:
7358 ** * Resolve names and similar preparation tag-select-0100
7359 ** * Scan of the FROM clause tag-select-0200
7360 ** + OUTER JOIN strength reduction tag-select-0220
7361 ** + Sub-query ORDER BY removal tag-select-0230
7362 ** + Query flattening tag-select-0240
7363 ** * Separate subroutine for compound-SELECT tag-select-0300
7364 ** * WHERE-clause constant propagation tag-select-0330
7365 ** * Count()-of-VIEW optimization tag-select-0350
7366 ** * Scan of the FROM clause again tag-select-0400
7367 ** + Authorize unreferenced tables tag-select-0410
7368 ** + Predicate push-down optimization tag-select-0420
7369 ** + Omit unused subquery columns optimization tag-select-0440
7370 ** + Generate code to implement subqueries tag-select-0480
7371 ** - Co-routines tag-select-0482
7372 ** - Reuse previously computed CTE tag-select-0484
7373 ** - REuse previously computed VIEW tag-select-0486
7374 ** - Materialize a VIEW or CTE tag-select-0488
7375 ** * DISTINCT ORDER BY -> GROUP BY optimization tag-select-0500
7376 ** * Set up for ORDER BY tag-select-0600
7377 ** * Create output table tag-select-0630
7378 ** * Prepare registers for LIMIT tag-select-0650
7379 ** * Setup for DISTINCT tag-select-0680
7380 ** * Generate code for non-aggregate and non-GROUP BY tag-select-0700
7381 ** * Generate code for aggregate and/or GROUP BY tag-select-0800
7382 ** + GROUP BY queries tag-select-0810
7383 ** + non-GROUP BY queries tag-select-0820
7384 ** - Special case of count() w/o GROUP BY tag-select-0821
7385 ** - General case of non-GROUP BY aggregates tag-select-0822
7386 ** * Sort results, as needed tag-select-0900
7387 ** * Internal self-checks tag-select-1000
7389 int sqlite3Select(
7390 Parse *pParse, /* The parser context */
7391 Select *p, /* The SELECT statement being coded. */
7392 SelectDest *pDest /* What to do with the query results */
7394 int i, j; /* Loop counters */
7395 WhereInfo *pWInfo; /* Return from sqlite3WhereBegin() */
7396 Vdbe *v; /* The virtual machine under construction */
7397 int isAgg; /* True for select lists like "count(*)" */
7398 ExprList *pEList = 0; /* List of columns to extract. */
7399 SrcList *pTabList; /* List of tables to select from */
7400 Expr *pWhere; /* The WHERE clause. May be NULL */
7401 ExprList *pGroupBy; /* The GROUP BY clause. May be NULL */
7402 Expr *pHaving; /* The HAVING clause. May be NULL */
7403 AggInfo *pAggInfo = 0; /* Aggregate information */
7404 int rc = 1; /* Value to return from this function */
7405 DistinctCtx sDistinct; /* Info on how to code the DISTINCT keyword */
7406 SortCtx sSort; /* Info on how to code the ORDER BY clause */
7407 int iEnd; /* Address of the end of the query */
7408 sqlite3 *db; /* The database connection */
7409 ExprList *pMinMaxOrderBy = 0; /* Added ORDER BY for min/max queries */
7410 u8 minMaxFlag; /* Flag for min/max queries */
7412 db = pParse->db;
7413 assert( pParse==db->pParse );
7414 v = sqlite3GetVdbe(pParse);
7415 if( p==0 || pParse->nErr ){
7416 return 1;
7418 assert( db->mallocFailed==0 );
7419 if( sqlite3AuthCheck(pParse, SQLITE_SELECT, 0, 0, 0) ) return 1;
7420 #if TREETRACE_ENABLED
7421 TREETRACE(0x1,pParse,p, ("begin processing:\n", pParse->addrExplain));
7422 if( sqlite3TreeTrace & 0x10000 ){
7423 if( (sqlite3TreeTrace & 0x10001)==0x10000 ){
7424 sqlite3TreeViewLine(0, "In sqlite3Select() at %s:%d",
7425 __FILE__, __LINE__);
7427 sqlite3ShowSelect(p);
7429 #endif
7431 /* tag-select-0100 */
7432 assert( p->pOrderBy==0 || pDest->eDest!=SRT_DistFifo );
7433 assert( p->pOrderBy==0 || pDest->eDest!=SRT_Fifo );
7434 assert( p->pOrderBy==0 || pDest->eDest!=SRT_DistQueue );
7435 assert( p->pOrderBy==0 || pDest->eDest!=SRT_Queue );
7436 if( IgnorableDistinct(pDest) ){
7437 assert(pDest->eDest==SRT_Exists || pDest->eDest==SRT_Union ||
7438 pDest->eDest==SRT_Except || pDest->eDest==SRT_Discard ||
7439 pDest->eDest==SRT_DistQueue || pDest->eDest==SRT_DistFifo );
7440 /* All of these destinations are also able to ignore the ORDER BY clause */
7441 if( p->pOrderBy ){
7442 #if TREETRACE_ENABLED
7443 TREETRACE(0x800,pParse,p, ("dropping superfluous ORDER BY:\n"));
7444 if( sqlite3TreeTrace & 0x800 ){
7445 sqlite3TreeViewExprList(0, p->pOrderBy, 0, "ORDERBY");
7447 #endif
7448 sqlite3ParserAddCleanup(pParse, sqlite3ExprListDeleteGeneric,
7449 p->pOrderBy);
7450 testcase( pParse->earlyCleanup );
7451 p->pOrderBy = 0;
7453 p->selFlags &= ~SF_Distinct;
7454 p->selFlags |= SF_NoopOrderBy;
7456 sqlite3SelectPrep(pParse, p, 0);
7457 if( pParse->nErr ){
7458 goto select_end;
7460 assert( db->mallocFailed==0 );
7461 assert( p->pEList!=0 );
7462 #if TREETRACE_ENABLED
7463 if( sqlite3TreeTrace & 0x10 ){
7464 TREETRACE(0x10,pParse,p, ("after name resolution:\n"));
7465 sqlite3TreeViewSelect(0, p, 0);
7467 #endif
7469 /* If the SF_UFSrcCheck flag is set, then this function is being called
7470 ** as part of populating the temp table for an UPDATE...FROM statement.
7471 ** In this case, it is an error if the target object (pSrc->a[0]) name
7472 ** or alias is duplicated within FROM clause (pSrc->a[1..n]).
7474 ** Postgres disallows this case too. The reason is that some other
7475 ** systems handle this case differently, and not all the same way,
7476 ** which is just confusing. To avoid this, we follow PG's lead and
7477 ** disallow it altogether. */
7478 if( p->selFlags & SF_UFSrcCheck ){
7479 SrcItem *p0 = &p->pSrc->a[0];
7480 if( sameSrcAlias(p0, p->pSrc) ){
7481 sqlite3ErrorMsg(pParse,
7482 "target object/alias may not appear in FROM clause: %s",
7483 p0->zAlias ? p0->zAlias : p0->pSTab->zName
7485 goto select_end;
7488 /* Clear the SF_UFSrcCheck flag. The check has already been performed,
7489 ** and leaving this flag set can cause errors if a compound sub-query
7490 ** in p->pSrc is flattened into this query and this function called
7491 ** again as part of compound SELECT processing. */
7492 p->selFlags &= ~SF_UFSrcCheck;
7495 if( pDest->eDest==SRT_Output ){
7496 sqlite3GenerateColumnNames(pParse, p);
7499 #ifndef SQLITE_OMIT_WINDOWFUNC
7500 if( sqlite3WindowRewrite(pParse, p) ){
7501 assert( pParse->nErr );
7502 goto select_end;
7504 #if TREETRACE_ENABLED
7505 if( p->pWin && (sqlite3TreeTrace & 0x40)!=0 ){
7506 TREETRACE(0x40,pParse,p, ("after window rewrite:\n"));
7507 sqlite3TreeViewSelect(0, p, 0);
7509 #endif
7510 #endif /* SQLITE_OMIT_WINDOWFUNC */
7511 pTabList = p->pSrc;
7512 isAgg = (p->selFlags & SF_Aggregate)!=0;
7513 memset(&sSort, 0, sizeof(sSort));
7514 sSort.pOrderBy = p->pOrderBy;
7516 /* Try to do various optimizations (flattening subqueries, and strength
7517 ** reduction of join operators) in the FROM clause up into the main query
7518 ** tag-select-0200
7520 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
7521 for(i=0; !p->pPrior && i<pTabList->nSrc; i++){
7522 SrcItem *pItem = &pTabList->a[i];
7523 Select *pSub = pItem->fg.isSubquery ? pItem->u4.pSubq->pSelect : 0;
7524 Table *pTab = pItem->pSTab;
7526 /* The expander should have already created transient Table objects
7527 ** even for FROM clause elements such as subqueries that do not correspond
7528 ** to a real table */
7529 assert( pTab!=0 );
7531 /* Try to simplify joins:
7533 ** LEFT JOIN -> JOIN
7534 ** RIGHT JOIN -> JOIN
7535 ** FULL JOIN -> RIGHT JOIN
7537 ** If terms of the i-th table are used in the WHERE clause in such a
7538 ** way that the i-th table cannot be the NULL row of a join, then
7539 ** perform the appropriate simplification. This is called
7540 ** "OUTER JOIN strength reduction" in the SQLite documentation.
7541 ** tag-select-0220
7543 if( (pItem->fg.jointype & (JT_LEFT|JT_LTORJ))!=0
7544 && sqlite3ExprImpliesNonNullRow(p->pWhere, pItem->iCursor,
7545 pItem->fg.jointype & JT_LTORJ)
7546 && OptimizationEnabled(db, SQLITE_SimplifyJoin)
7548 if( pItem->fg.jointype & JT_LEFT ){
7549 if( pItem->fg.jointype & JT_RIGHT ){
7550 TREETRACE(0x1000,pParse,p,
7551 ("FULL-JOIN simplifies to RIGHT-JOIN on term %d\n",i));
7552 pItem->fg.jointype &= ~JT_LEFT;
7553 }else{
7554 TREETRACE(0x1000,pParse,p,
7555 ("LEFT-JOIN simplifies to JOIN on term %d\n",i));
7556 pItem->fg.jointype &= ~(JT_LEFT|JT_OUTER);
7557 unsetJoinExpr(p->pWhere, pItem->iCursor, 0);
7560 if( pItem->fg.jointype & JT_LTORJ ){
7561 for(j=i+1; j<pTabList->nSrc; j++){
7562 SrcItem *pI2 = &pTabList->a[j];
7563 if( pI2->fg.jointype & JT_RIGHT ){
7564 if( pI2->fg.jointype & JT_LEFT ){
7565 TREETRACE(0x1000,pParse,p,
7566 ("FULL-JOIN simplifies to LEFT-JOIN on term %d\n",j));
7567 pI2->fg.jointype &= ~JT_RIGHT;
7568 }else{
7569 TREETRACE(0x1000,pParse,p,
7570 ("RIGHT-JOIN simplifies to JOIN on term %d\n",j));
7571 pI2->fg.jointype &= ~(JT_RIGHT|JT_OUTER);
7572 unsetJoinExpr(p->pWhere, pI2->iCursor, 1);
7576 for(j=pTabList->nSrc-1; j>=0; j--){
7577 pTabList->a[j].fg.jointype &= ~JT_LTORJ;
7578 if( pTabList->a[j].fg.jointype & JT_RIGHT ) break;
7583 /* No further action if this term of the FROM clause is not a subquery */
7584 if( pSub==0 ) continue;
7586 /* Catch mismatch in the declared columns of a view and the number of
7587 ** columns in the SELECT on the RHS */
7588 if( pTab->nCol!=pSub->pEList->nExpr ){
7589 sqlite3ErrorMsg(pParse, "expected %d columns for '%s' but got %d",
7590 pTab->nCol, pTab->zName, pSub->pEList->nExpr);
7591 goto select_end;
7594 /* Do not attempt the usual optimizations (flattening and ORDER BY
7595 ** elimination) on a MATERIALIZED common table expression because
7596 ** a MATERIALIZED common table expression is an optimization fence.
7598 if( pItem->fg.isCte && pItem->u2.pCteUse->eM10d==M10d_Yes ){
7599 continue;
7602 /* Do not try to flatten an aggregate subquery.
7604 ** Flattening an aggregate subquery is only possible if the outer query
7605 ** is not a join. But if the outer query is not a join, then the subquery
7606 ** will be implemented as a co-routine and there is no advantage to
7607 ** flattening in that case.
7609 if( (pSub->selFlags & SF_Aggregate)!=0 ) continue;
7610 assert( pSub->pGroupBy==0 );
7612 /* tag-select-0230:
7613 ** If a FROM-clause subquery has an ORDER BY clause that is not
7614 ** really doing anything, then delete it now so that it does not
7615 ** interfere with query flattening. See the discussion at
7616 ** https://sqlite.org/forum/forumpost/2d76f2bcf65d256a
7618 ** Beware of these cases where the ORDER BY clause may not be safely
7619 ** omitted:
7621 ** (1) There is also a LIMIT clause
7622 ** (2) The subquery was added to help with window-function
7623 ** processing
7624 ** (3) The subquery is in the FROM clause of an UPDATE
7625 ** (4) The outer query uses an aggregate function other than
7626 ** the built-in count(), min(), or max().
7627 ** (5) The ORDER BY isn't going to accomplish anything because
7628 ** one of:
7629 ** (a) The outer query has a different ORDER BY clause
7630 ** (b) The subquery is part of a join
7631 ** See forum post 062d576715d277c8
7632 ** (6) The subquery is not a recursive CTE. ORDER BY has a different
7633 ** meaning for recursive CTEs and this optimization does not
7634 ** apply.
7636 ** Also retain the ORDER BY if the OmitOrderBy optimization is disabled.
7638 if( pSub->pOrderBy!=0
7639 && (p->pOrderBy!=0 || pTabList->nSrc>1) /* Condition (5) */
7640 && pSub->pLimit==0 /* Condition (1) */
7641 && (pSub->selFlags & (SF_OrderByReqd|SF_Recursive))==0 /* (2) and (6) */
7642 && (p->selFlags & SF_OrderByReqd)==0 /* Condition (3) and (4) */
7643 && OptimizationEnabled(db, SQLITE_OmitOrderBy)
7645 TREETRACE(0x800,pParse,p,
7646 ("omit superfluous ORDER BY on %r FROM-clause subquery\n",i+1));
7647 sqlite3ParserAddCleanup(pParse, sqlite3ExprListDeleteGeneric,
7648 pSub->pOrderBy);
7649 pSub->pOrderBy = 0;
7652 /* If the outer query contains a "complex" result set (that is,
7653 ** if the result set of the outer query uses functions or subqueries)
7654 ** and if the subquery contains an ORDER BY clause and if
7655 ** it will be implemented as a co-routine, then do not flatten. This
7656 ** restriction allows SQL constructs like this:
7658 ** SELECT expensive_function(x)
7659 ** FROM (SELECT x FROM tab ORDER BY y LIMIT 10);
7661 ** The expensive_function() is only computed on the 10 rows that
7662 ** are output, rather than every row of the table.
7664 ** The requirement that the outer query have a complex result set
7665 ** means that flattening does occur on simpler SQL constraints without
7666 ** the expensive_function() like:
7668 ** SELECT x FROM (SELECT x FROM tab ORDER BY y LIMIT 10);
7670 if( pSub->pOrderBy!=0
7671 && i==0
7672 && (p->selFlags & SF_ComplexResult)!=0
7673 && (pTabList->nSrc==1
7674 || (pTabList->a[1].fg.jointype&(JT_OUTER|JT_CROSS))!=0)
7676 continue;
7679 /* tag-select-0240 */
7680 if( flattenSubquery(pParse, p, i, isAgg) ){
7681 if( pParse->nErr ) goto select_end;
7682 /* This subquery can be absorbed into its parent. */
7683 i = -1;
7685 pTabList = p->pSrc;
7686 if( db->mallocFailed ) goto select_end;
7687 if( !IgnorableOrderby(pDest) ){
7688 sSort.pOrderBy = p->pOrderBy;
7691 #endif
7693 #ifndef SQLITE_OMIT_COMPOUND_SELECT
7694 /* Handle compound SELECT statements using the separate multiSelect()
7695 ** procedure. tag-select-0300
7697 if( p->pPrior ){
7698 rc = multiSelect(pParse, p, pDest);
7699 #if TREETRACE_ENABLED
7700 TREETRACE(0x400,pParse,p,("end compound-select processing\n"));
7701 if( (sqlite3TreeTrace & 0x400)!=0 && ExplainQueryPlanParent(pParse)==0 ){
7702 sqlite3TreeViewSelect(0, p, 0);
7704 #endif
7705 if( p->pNext==0 ) ExplainQueryPlanPop(pParse);
7706 return rc;
7708 #endif
7710 /* Do the WHERE-clause constant propagation optimization if this is
7711 ** a join. No need to spend time on this operation for non-join queries
7712 ** as the equivalent optimization will be handled by query planner in
7713 ** sqlite3WhereBegin(). tag-select-0330
7715 if( p->pWhere!=0
7716 && p->pWhere->op==TK_AND
7717 && OptimizationEnabled(db, SQLITE_PropagateConst)
7718 && propagateConstants(pParse, p)
7720 #if TREETRACE_ENABLED
7721 if( sqlite3TreeTrace & 0x2000 ){
7722 TREETRACE(0x2000,pParse,p,("After constant propagation:\n"));
7723 sqlite3TreeViewSelect(0, p, 0);
7725 #endif
7726 }else{
7727 TREETRACE(0x2000,pParse,p,("Constant propagation not helpful\n"));
7730 /* tag-select-0350 */
7731 if( OptimizationEnabled(db, SQLITE_QueryFlattener|SQLITE_CountOfView)
7732 && countOfViewOptimization(pParse, p)
7734 if( db->mallocFailed ) goto select_end;
7735 pTabList = p->pSrc;
7738 /* Loop over all terms in the FROM clause and do two things for each term:
7740 ** (1) Authorize unreferenced tables
7741 ** (2) Generate code for all sub-queries
7743 ** tag-select-0400
7745 for(i=0; i<pTabList->nSrc; i++){
7746 SrcItem *pItem = &pTabList->a[i];
7747 SrcItem *pPrior;
7748 SelectDest dest;
7749 Subquery *pSubq;
7750 Select *pSub;
7751 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
7752 const char *zSavedAuthContext;
7753 #endif
7755 /* Authorized unreferenced tables. tag-select-0410
7757 ** Issue SQLITE_READ authorizations with a fake column name for any
7758 ** tables that are referenced but from which no values are extracted.
7759 ** Examples of where these kinds of null SQLITE_READ authorizations
7760 ** would occur:
7762 ** SELECT count(*) FROM t1; -- SQLITE_READ t1.""
7763 ** SELECT t1.* FROM t1, t2; -- SQLITE_READ t2.""
7765 ** The fake column name is an empty string. It is possible for a table to
7766 ** have a column named by the empty string, in which case there is no way to
7767 ** distinguish between an unreferenced table and an actual reference to the
7768 ** "" column. The original design was for the fake column name to be a NULL,
7769 ** which would be unambiguous. But legacy authorization callbacks might
7770 ** assume the column name is non-NULL and segfault. The use of an empty
7771 ** string for the fake column name seems safer.
7773 if( pItem->colUsed==0 && pItem->zName!=0 ){
7774 const char *zDb;
7775 if( pItem->fg.fixedSchema ){
7776 int iDb = sqlite3SchemaToIndex(pParse->db, pItem->u4.pSchema);
7777 zDb = db->aDb[iDb].zDbSName;
7778 }else if( pItem->fg.isSubquery ){
7779 zDb = 0;
7780 }else{
7781 zDb = pItem->u4.zDatabase;
7783 sqlite3AuthCheck(pParse, SQLITE_READ, pItem->zName, "", zDb);
7786 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
7787 /* Generate code for all sub-queries in the FROM clause
7789 if( pItem->fg.isSubquery==0 ) continue;
7790 pSubq = pItem->u4.pSubq;
7791 assert( pSubq!=0 );
7792 pSub = pSubq->pSelect;
7794 /* The code for a subquery should only be generated once. */
7795 if( pSubq->addrFillSub!=0 ) continue;
7797 /* Increment Parse.nHeight by the height of the largest expression
7798 ** tree referred to by this, the parent select. The child select
7799 ** may contain expression trees of at most
7800 ** (SQLITE_MAX_EXPR_DEPTH-Parse.nHeight) height. This is a bit
7801 ** more conservative than necessary, but much easier than enforcing
7802 ** an exact limit.
7804 pParse->nHeight += sqlite3SelectExprHeight(p);
7806 /* Make copies of constant WHERE-clause terms in the outer query down
7807 ** inside the subquery. This can help the subquery to run more efficiently.
7808 ** This is the "predicate push-down optimization". tag-select-0420
7810 if( OptimizationEnabled(db, SQLITE_PushDown)
7811 && (pItem->fg.isCte==0
7812 || (pItem->u2.pCteUse->eM10d!=M10d_Yes && pItem->u2.pCteUse->nUse<2))
7813 && pushDownWhereTerms(pParse, pSub, p->pWhere, pTabList, i)
7815 #if TREETRACE_ENABLED
7816 if( sqlite3TreeTrace & 0x4000 ){
7817 TREETRACE(0x4000,pParse,p,
7818 ("After WHERE-clause push-down into subquery %d:\n", pSub->selId));
7819 sqlite3TreeViewSelect(0, p, 0);
7821 #endif
7822 assert( pSubq->pSelect && (pSub->selFlags & SF_PushDown)!=0 );
7823 }else{
7824 TREETRACE(0x4000,pParse,p,("WHERE-lcause push-down not possible\n"));
7827 /* Convert unused result columns of the subquery into simple NULL
7828 ** expressions, to avoid unneeded searching and computation.
7829 ** tag-select-0440
7831 if( OptimizationEnabled(db, SQLITE_NullUnusedCols)
7832 && disableUnusedSubqueryResultColumns(pItem)
7834 #if TREETRACE_ENABLED
7835 if( sqlite3TreeTrace & 0x4000 ){
7836 TREETRACE(0x4000,pParse,p,
7837 ("Change unused result columns to NULL for subquery %d:\n",
7838 pSub->selId));
7839 sqlite3TreeViewSelect(0, p, 0);
7841 #endif
7844 zSavedAuthContext = pParse->zAuthContext;
7845 pParse->zAuthContext = pItem->zName;
7847 /* Generate byte-code to implement the subquery tag-select-0480
7849 if( fromClauseTermCanBeCoroutine(pParse, pTabList, i, p->selFlags) ){
7850 /* Implement a co-routine that will return a single row of the result
7851 ** set on each invocation. tag-select-0482
7853 int addrTop = sqlite3VdbeCurrentAddr(v)+1;
7855 pSubq->regReturn = ++pParse->nMem;
7856 sqlite3VdbeAddOp3(v, OP_InitCoroutine, pSubq->regReturn, 0, addrTop);
7857 VdbeComment((v, "%!S", pItem));
7858 pSubq->addrFillSub = addrTop;
7859 sqlite3SelectDestInit(&dest, SRT_Coroutine, pSubq->regReturn);
7860 ExplainQueryPlan((pParse, 1, "CO-ROUTINE %!S", pItem));
7861 sqlite3Select(pParse, pSub, &dest);
7862 pItem->pSTab->nRowLogEst = pSub->nSelectRow;
7863 pItem->fg.viaCoroutine = 1;
7864 pSubq->regResult = dest.iSdst;
7865 sqlite3VdbeEndCoroutine(v, pSubq->regReturn);
7866 VdbeComment((v, "end %!S", pItem));
7867 sqlite3VdbeJumpHere(v, addrTop-1);
7868 sqlite3ClearTempRegCache(pParse);
7869 }else if( pItem->fg.isCte && pItem->u2.pCteUse->addrM9e>0 ){
7870 /* This is a CTE for which materialization code has already been
7871 ** generated. Invoke the subroutine to compute the materialization,
7872 ** then make the pItem->iCursor be a copy of the ephemeral table that
7873 ** holds the result of the materialization. tag-select-0484 */
7874 CteUse *pCteUse = pItem->u2.pCteUse;
7875 sqlite3VdbeAddOp2(v, OP_Gosub, pCteUse->regRtn, pCteUse->addrM9e);
7876 if( pItem->iCursor!=pCteUse->iCur ){
7877 sqlite3VdbeAddOp2(v, OP_OpenDup, pItem->iCursor, pCteUse->iCur);
7878 VdbeComment((v, "%!S", pItem));
7880 pSub->nSelectRow = pCteUse->nRowEst;
7881 }else if( (pPrior = isSelfJoinView(pTabList, pItem, 0, i))!=0 ){
7882 /* This view has already been materialized by a prior entry in
7883 ** this same FROM clause. Reuse it. tag-select-0486 */
7884 Subquery *pPriorSubq;
7885 assert( pPrior->fg.isSubquery );
7886 pPriorSubq = pPrior->u4.pSubq;
7887 assert( pPriorSubq!=0 );
7888 if( pPriorSubq->addrFillSub ){
7889 sqlite3VdbeAddOp2(v, OP_Gosub, pPriorSubq->regReturn,
7890 pPriorSubq->addrFillSub);
7892 sqlite3VdbeAddOp2(v, OP_OpenDup, pItem->iCursor, pPrior->iCursor);
7893 pSub->nSelectRow = pPriorSubq->pSelect->nSelectRow;
7894 }else{
7895 /* Materialize the view. If the view is not correlated, generate a
7896 ** subroutine to do the materialization so that subsequent uses of
7897 ** the same view can reuse the materialization. tag-select-0488 */
7898 int topAddr;
7899 int onceAddr = 0;
7900 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS
7901 int addrExplain;
7902 #endif
7904 pSubq->regReturn = ++pParse->nMem;
7905 topAddr = sqlite3VdbeAddOp0(v, OP_Goto);
7906 pSubq->addrFillSub = topAddr+1;
7907 pItem->fg.isMaterialized = 1;
7908 if( pItem->fg.isCorrelated==0 ){
7909 /* If the subquery is not correlated and if we are not inside of
7910 ** a trigger, then we only need to compute the value of the subquery
7911 ** once. */
7912 onceAddr = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v);
7913 VdbeComment((v, "materialize %!S", pItem));
7914 }else{
7915 VdbeNoopComment((v, "materialize %!S", pItem));
7917 sqlite3SelectDestInit(&dest, SRT_EphemTab, pItem->iCursor);
7919 ExplainQueryPlan2(addrExplain, (pParse, 1, "MATERIALIZE %!S", pItem));
7920 sqlite3Select(pParse, pSub, &dest);
7921 pItem->pSTab->nRowLogEst = pSub->nSelectRow;
7922 if( onceAddr ) sqlite3VdbeJumpHere(v, onceAddr);
7923 sqlite3VdbeAddOp2(v, OP_Return, pSubq->regReturn, topAddr+1);
7924 VdbeComment((v, "end %!S", pItem));
7925 sqlite3VdbeScanStatusRange(v, addrExplain, addrExplain, -1);
7926 sqlite3VdbeJumpHere(v, topAddr);
7927 sqlite3ClearTempRegCache(pParse);
7928 if( pItem->fg.isCte && pItem->fg.isCorrelated==0 ){
7929 CteUse *pCteUse = pItem->u2.pCteUse;
7930 pCteUse->addrM9e = pSubq->addrFillSub;
7931 pCteUse->regRtn = pSubq->regReturn;
7932 pCteUse->iCur = pItem->iCursor;
7933 pCteUse->nRowEst = pSub->nSelectRow;
7936 if( db->mallocFailed ) goto select_end;
7937 pParse->nHeight -= sqlite3SelectExprHeight(p);
7938 pParse->zAuthContext = zSavedAuthContext;
7939 #endif
7942 /* Various elements of the SELECT copied into local variables for
7943 ** convenience */
7944 pEList = p->pEList;
7945 pWhere = p->pWhere;
7946 pGroupBy = p->pGroupBy;
7947 pHaving = p->pHaving;
7948 sDistinct.isTnct = (p->selFlags & SF_Distinct)!=0;
7950 #if TREETRACE_ENABLED
7951 if( sqlite3TreeTrace & 0x8000 ){
7952 TREETRACE(0x8000,pParse,p,("After all FROM-clause analysis:\n"));
7953 sqlite3TreeViewSelect(0, p, 0);
7955 #endif
7957 /* tag-select-0500
7959 ** If the query is DISTINCT with an ORDER BY but is not an aggregate, and
7960 ** if the select-list is the same as the ORDER BY list, then this query
7961 ** can be rewritten as a GROUP BY. In other words, this:
7963 ** SELECT DISTINCT xyz FROM ... ORDER BY xyz
7965 ** is transformed to:
7967 ** SELECT xyz FROM ... GROUP BY xyz ORDER BY xyz
7969 ** The second form is preferred as a single index (or temp-table) may be
7970 ** used for both the ORDER BY and DISTINCT processing. As originally
7971 ** written the query must use a temp-table for at least one of the ORDER
7972 ** BY and DISTINCT, and an index or separate temp-table for the other.
7974 if( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct
7975 && sqlite3ExprListCompare(sSort.pOrderBy, pEList, -1)==0
7976 && OptimizationEnabled(db, SQLITE_GroupByOrder)
7977 #ifndef SQLITE_OMIT_WINDOWFUNC
7978 && p->pWin==0
7979 #endif
7981 p->selFlags &= ~SF_Distinct;
7982 pGroupBy = p->pGroupBy = sqlite3ExprListDup(db, pEList, 0);
7983 if( pGroupBy ){
7984 for(i=0; i<pGroupBy->nExpr; i++){
7985 pGroupBy->a[i].u.x.iOrderByCol = i+1;
7988 p->selFlags |= SF_Aggregate;
7989 /* Notice that even thought SF_Distinct has been cleared from p->selFlags,
7990 ** the sDistinct.isTnct is still set. Hence, isTnct represents the
7991 ** original setting of the SF_Distinct flag, not the current setting */
7992 assert( sDistinct.isTnct );
7993 sDistinct.isTnct = 2;
7995 #if TREETRACE_ENABLED
7996 if( sqlite3TreeTrace & 0x20000 ){
7997 TREETRACE(0x20000,pParse,p,("Transform DISTINCT into GROUP BY:\n"));
7998 sqlite3TreeViewSelect(0, p, 0);
8000 #endif
8003 /* If there is an ORDER BY clause, then create an ephemeral index to
8004 ** do the sorting. But this sorting ephemeral index might end up
8005 ** being unused if the data can be extracted in pre-sorted order.
8006 ** If that is the case, then the OP_OpenEphemeral instruction will be
8007 ** changed to an OP_Noop once we figure out that the sorting index is
8008 ** not needed. The sSort.addrSortIndex variable is used to facilitate
8009 ** that change. tag-select-0600
8011 if( sSort.pOrderBy ){
8012 KeyInfo *pKeyInfo;
8013 pKeyInfo = sqlite3KeyInfoFromExprList(
8014 pParse, sSort.pOrderBy, 0, pEList->nExpr);
8015 sSort.iECursor = pParse->nTab++;
8016 sSort.addrSortIndex =
8017 sqlite3VdbeAddOp4(v, OP_OpenEphemeral,
8018 sSort.iECursor, sSort.pOrderBy->nExpr+1+pEList->nExpr, 0,
8019 (char*)pKeyInfo, P4_KEYINFO
8021 }else{
8022 sSort.addrSortIndex = -1;
8025 /* If the output is destined for a temporary table, open that table.
8026 ** tag-select-0630
8028 if( pDest->eDest==SRT_EphemTab ){
8029 sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pDest->iSDParm, pEList->nExpr);
8030 if( p->selFlags & SF_NestedFrom ){
8031 /* Delete or NULL-out result columns that will never be used */
8032 int ii;
8033 for(ii=pEList->nExpr-1; ii>0 && pEList->a[ii].fg.bUsed==0; ii--){
8034 sqlite3ExprDelete(db, pEList->a[ii].pExpr);
8035 sqlite3DbFree(db, pEList->a[ii].zEName);
8036 pEList->nExpr--;
8038 for(ii=0; ii<pEList->nExpr; ii++){
8039 if( pEList->a[ii].fg.bUsed==0 ) pEList->a[ii].pExpr->op = TK_NULL;
8044 /* Set the limiter. tag-select-0650
8046 iEnd = sqlite3VdbeMakeLabel(pParse);
8047 if( (p->selFlags & SF_FixedLimit)==0 ){
8048 p->nSelectRow = 320; /* 4 billion rows */
8050 if( p->pLimit ) computeLimitRegisters(pParse, p, iEnd);
8051 if( p->iLimit==0 && sSort.addrSortIndex>=0 ){
8052 sqlite3VdbeChangeOpcode(v, sSort.addrSortIndex, OP_SorterOpen);
8053 sSort.sortFlags |= SORTFLAG_UseSorter;
8056 /* Open an ephemeral index to use for the distinct set. tag-select-0680
8058 if( p->selFlags & SF_Distinct ){
8059 sDistinct.tabTnct = pParse->nTab++;
8060 sDistinct.addrTnct = sqlite3VdbeAddOp4(v, OP_OpenEphemeral,
8061 sDistinct.tabTnct, 0, 0,
8062 (char*)sqlite3KeyInfoFromExprList(pParse, p->pEList,0,0),
8063 P4_KEYINFO);
8064 sqlite3VdbeChangeP5(v, BTREE_UNORDERED);
8065 sDistinct.eTnctType = WHERE_DISTINCT_UNORDERED;
8066 }else{
8067 sDistinct.eTnctType = WHERE_DISTINCT_NOOP;
8070 if( !isAgg && pGroupBy==0 ){
8071 /* No aggregate functions and no GROUP BY clause. tag-select-0700 */
8072 u16 wctrlFlags = (sDistinct.isTnct ? WHERE_WANT_DISTINCT : 0)
8073 | (p->selFlags & SF_FixedLimit);
8074 #ifndef SQLITE_OMIT_WINDOWFUNC
8075 Window *pWin = p->pWin; /* Main window object (or NULL) */
8076 if( pWin ){
8077 sqlite3WindowCodeInit(pParse, p);
8079 #endif
8080 assert( WHERE_USE_LIMIT==SF_FixedLimit );
8083 /* Begin the database scan. */
8084 TREETRACE(0x2,pParse,p,("WhereBegin\n"));
8085 pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, sSort.pOrderBy,
8086 p->pEList, p, wctrlFlags, p->nSelectRow);
8087 if( pWInfo==0 ) goto select_end;
8088 if( sqlite3WhereOutputRowCount(pWInfo) < p->nSelectRow ){
8089 p->nSelectRow = sqlite3WhereOutputRowCount(pWInfo);
8091 if( sDistinct.isTnct && sqlite3WhereIsDistinct(pWInfo) ){
8092 sDistinct.eTnctType = sqlite3WhereIsDistinct(pWInfo);
8094 if( sSort.pOrderBy ){
8095 sSort.nOBSat = sqlite3WhereIsOrdered(pWInfo);
8096 sSort.labelOBLopt = sqlite3WhereOrderByLimitOptLabel(pWInfo);
8097 if( sSort.nOBSat==sSort.pOrderBy->nExpr ){
8098 sSort.pOrderBy = 0;
8101 TREETRACE(0x2,pParse,p,("WhereBegin returns\n"));
8103 /* If sorting index that was created by a prior OP_OpenEphemeral
8104 ** instruction ended up not being needed, then change the OP_OpenEphemeral
8105 ** into an OP_Noop.
8107 if( sSort.addrSortIndex>=0 && sSort.pOrderBy==0 ){
8108 sqlite3VdbeChangeToNoop(v, sSort.addrSortIndex);
8111 assert( p->pEList==pEList );
8112 #ifndef SQLITE_OMIT_WINDOWFUNC
8113 if( pWin ){
8114 int addrGosub = sqlite3VdbeMakeLabel(pParse);
8115 int iCont = sqlite3VdbeMakeLabel(pParse);
8116 int iBreak = sqlite3VdbeMakeLabel(pParse);
8117 int regGosub = ++pParse->nMem;
8119 sqlite3WindowCodeStep(pParse, p, pWInfo, regGosub, addrGosub);
8121 sqlite3VdbeAddOp2(v, OP_Goto, 0, iBreak);
8122 sqlite3VdbeResolveLabel(v, addrGosub);
8123 VdbeNoopComment((v, "inner-loop subroutine"));
8124 sSort.labelOBLopt = 0;
8125 selectInnerLoop(pParse, p, -1, &sSort, &sDistinct, pDest, iCont, iBreak);
8126 sqlite3VdbeResolveLabel(v, iCont);
8127 sqlite3VdbeAddOp1(v, OP_Return, regGosub);
8128 VdbeComment((v, "end inner-loop subroutine"));
8129 sqlite3VdbeResolveLabel(v, iBreak);
8130 }else
8131 #endif /* SQLITE_OMIT_WINDOWFUNC */
8133 /* Use the standard inner loop. */
8134 selectInnerLoop(pParse, p, -1, &sSort, &sDistinct, pDest,
8135 sqlite3WhereContinueLabel(pWInfo),
8136 sqlite3WhereBreakLabel(pWInfo));
8138 /* End the database scan loop.
8140 TREETRACE(0x2,pParse,p,("WhereEnd\n"));
8141 sqlite3WhereEnd(pWInfo);
8143 }else{
8144 /* This case is for when there exist aggregate functions or a GROUP BY
8145 ** clause or both. tag-select-0800 */
8146 NameContext sNC; /* Name context for processing aggregate information */
8147 int iAMem; /* First Mem address for storing current GROUP BY */
8148 int iBMem; /* First Mem address for previous GROUP BY */
8149 int iUseFlag; /* Mem address holding flag indicating that at least
8150 ** one row of the input to the aggregator has been
8151 ** processed */
8152 int iAbortFlag; /* Mem address which causes query abort if positive */
8153 int groupBySort; /* Rows come from source in GROUP BY order */
8154 int addrEnd; /* End of processing for this SELECT */
8155 int sortPTab = 0; /* Pseudotable used to decode sorting results */
8156 int sortOut = 0; /* Output register from the sorter */
8157 int orderByGrp = 0; /* True if the GROUP BY and ORDER BY are the same */
8159 /* Remove any and all aliases between the result set and the
8160 ** GROUP BY clause.
8162 if( pGroupBy ){
8163 int k; /* Loop counter */
8164 struct ExprList_item *pItem; /* For looping over expression in a list */
8166 for(k=p->pEList->nExpr, pItem=p->pEList->a; k>0; k--, pItem++){
8167 pItem->u.x.iAlias = 0;
8169 for(k=pGroupBy->nExpr, pItem=pGroupBy->a; k>0; k--, pItem++){
8170 pItem->u.x.iAlias = 0;
8172 assert( 66==sqlite3LogEst(100) );
8173 if( p->nSelectRow>66 ) p->nSelectRow = 66;
8175 /* If there is both a GROUP BY and an ORDER BY clause and they are
8176 ** identical, then it may be possible to disable the ORDER BY clause
8177 ** on the grounds that the GROUP BY will cause elements to come out
8178 ** in the correct order. It also may not - the GROUP BY might use a
8179 ** database index that causes rows to be grouped together as required
8180 ** but not actually sorted. Either way, record the fact that the
8181 ** ORDER BY and GROUP BY clauses are the same by setting the orderByGrp
8182 ** variable. */
8183 if( sSort.pOrderBy && pGroupBy->nExpr==sSort.pOrderBy->nExpr ){
8184 int ii;
8185 /* The GROUP BY processing doesn't care whether rows are delivered in
8186 ** ASC or DESC order - only that each group is returned contiguously.
8187 ** So set the ASC/DESC flags in the GROUP BY to match those in the
8188 ** ORDER BY to maximize the chances of rows being delivered in an
8189 ** order that makes the ORDER BY redundant. */
8190 for(ii=0; ii<pGroupBy->nExpr; ii++){
8191 u8 sortFlags;
8192 sortFlags = sSort.pOrderBy->a[ii].fg.sortFlags & KEYINFO_ORDER_DESC;
8193 pGroupBy->a[ii].fg.sortFlags = sortFlags;
8195 if( sqlite3ExprListCompare(pGroupBy, sSort.pOrderBy, -1)==0 ){
8196 orderByGrp = 1;
8199 }else{
8200 assert( 0==sqlite3LogEst(1) );
8201 p->nSelectRow = 0;
8204 /* Create a label to jump to when we want to abort the query */
8205 addrEnd = sqlite3VdbeMakeLabel(pParse);
8207 /* Convert TK_COLUMN nodes into TK_AGG_COLUMN and make entries in
8208 ** sAggInfo for all TK_AGG_FUNCTION nodes in expressions of the
8209 ** SELECT statement.
8211 pAggInfo = sqlite3DbMallocZero(db, sizeof(*pAggInfo) );
8212 if( pAggInfo ){
8213 sqlite3ParserAddCleanup(pParse, agginfoFree, pAggInfo);
8214 testcase( pParse->earlyCleanup );
8216 if( db->mallocFailed ){
8217 goto select_end;
8219 pAggInfo->selId = p->selId;
8220 #ifdef SQLITE_DEBUG
8221 pAggInfo->pSelect = p;
8222 #endif
8223 memset(&sNC, 0, sizeof(sNC));
8224 sNC.pParse = pParse;
8225 sNC.pSrcList = pTabList;
8226 sNC.uNC.pAggInfo = pAggInfo;
8227 VVA_ONLY( sNC.ncFlags = NC_UAggInfo; )
8228 pAggInfo->nSortingColumn = pGroupBy ? pGroupBy->nExpr : 0;
8229 pAggInfo->pGroupBy = pGroupBy;
8230 sqlite3ExprAnalyzeAggList(&sNC, pEList);
8231 sqlite3ExprAnalyzeAggList(&sNC, sSort.pOrderBy);
8232 if( pHaving ){
8233 if( pGroupBy ){
8234 assert( pWhere==p->pWhere );
8235 assert( pHaving==p->pHaving );
8236 assert( pGroupBy==p->pGroupBy );
8237 havingToWhere(pParse, p);
8238 pWhere = p->pWhere;
8240 sqlite3ExprAnalyzeAggregates(&sNC, pHaving);
8242 pAggInfo->nAccumulator = pAggInfo->nColumn;
8243 if( p->pGroupBy==0 && p->pHaving==0 && pAggInfo->nFunc==1 ){
8244 minMaxFlag = minMaxQuery(db, pAggInfo->aFunc[0].pFExpr, &pMinMaxOrderBy);
8245 }else{
8246 minMaxFlag = WHERE_ORDERBY_NORMAL;
8248 analyzeAggFuncArgs(pAggInfo, &sNC);
8249 if( db->mallocFailed ) goto select_end;
8250 #if TREETRACE_ENABLED
8251 if( sqlite3TreeTrace & 0x20 ){
8252 TREETRACE(0x20,pParse,p,("After aggregate analysis %p:\n", pAggInfo));
8253 sqlite3TreeViewSelect(0, p, 0);
8254 if( minMaxFlag ){
8255 sqlite3DebugPrintf("MIN/MAX Optimization (0x%02x) adds:\n", minMaxFlag);
8256 sqlite3TreeViewExprList(0, pMinMaxOrderBy, 0, "ORDERBY");
8258 printAggInfo(pAggInfo);
8260 #endif
8263 /* Processing for aggregates with GROUP BY is very different and
8264 ** much more complex than aggregates without a GROUP BY. tag-select-0810
8266 if( pGroupBy ){
8267 KeyInfo *pKeyInfo; /* Keying information for the group by clause */
8268 int addr1; /* A-vs-B comparison jump */
8269 int addrOutputRow; /* Start of subroutine that outputs a result row */
8270 int regOutputRow; /* Return address register for output subroutine */
8271 int addrSetAbort; /* Set the abort flag and return */
8272 int addrTopOfLoop; /* Top of the input loop */
8273 int addrSortingIdx; /* The OP_OpenEphemeral for the sorting index */
8274 int addrReset; /* Subroutine for resetting the accumulator */
8275 int regReset; /* Return address register for reset subroutine */
8276 ExprList *pDistinct = 0;
8277 u16 distFlag = 0;
8278 int eDist = WHERE_DISTINCT_NOOP;
8280 if( pAggInfo->nFunc==1
8281 && pAggInfo->aFunc[0].iDistinct>=0
8282 && ALWAYS(pAggInfo->aFunc[0].pFExpr!=0)
8283 && ALWAYS(ExprUseXList(pAggInfo->aFunc[0].pFExpr))
8284 && pAggInfo->aFunc[0].pFExpr->x.pList!=0
8286 Expr *pExpr = pAggInfo->aFunc[0].pFExpr->x.pList->a[0].pExpr;
8287 pExpr = sqlite3ExprDup(db, pExpr, 0);
8288 pDistinct = sqlite3ExprListDup(db, pGroupBy, 0);
8289 pDistinct = sqlite3ExprListAppend(pParse, pDistinct, pExpr);
8290 distFlag = pDistinct ? (WHERE_WANT_DISTINCT|WHERE_AGG_DISTINCT) : 0;
8293 /* If there is a GROUP BY clause we might need a sorting index to
8294 ** implement it. Allocate that sorting index now. If it turns out
8295 ** that we do not need it after all, the OP_SorterOpen instruction
8296 ** will be converted into a Noop.
8298 pAggInfo->sortingIdx = pParse->nTab++;
8299 pKeyInfo = sqlite3KeyInfoFromExprList(pParse, pGroupBy,
8300 0, pAggInfo->nColumn);
8301 addrSortingIdx = sqlite3VdbeAddOp4(v, OP_SorterOpen,
8302 pAggInfo->sortingIdx, pAggInfo->nSortingColumn,
8303 0, (char*)pKeyInfo, P4_KEYINFO);
8305 /* Initialize memory locations used by GROUP BY aggregate processing
8307 iUseFlag = ++pParse->nMem;
8308 iAbortFlag = ++pParse->nMem;
8309 regOutputRow = ++pParse->nMem;
8310 addrOutputRow = sqlite3VdbeMakeLabel(pParse);
8311 regReset = ++pParse->nMem;
8312 addrReset = sqlite3VdbeMakeLabel(pParse);
8313 iAMem = pParse->nMem + 1;
8314 pParse->nMem += pGroupBy->nExpr;
8315 iBMem = pParse->nMem + 1;
8316 pParse->nMem += pGroupBy->nExpr;
8317 sqlite3VdbeAddOp2(v, OP_Integer, 0, iAbortFlag);
8318 VdbeComment((v, "clear abort flag"));
8319 sqlite3VdbeAddOp3(v, OP_Null, 0, iAMem, iAMem+pGroupBy->nExpr-1);
8321 /* Begin a loop that will extract all source rows in GROUP BY order.
8322 ** This might involve two separate loops with an OP_Sort in between, or
8323 ** it might be a single loop that uses an index to extract information
8324 ** in the right order to begin with.
8326 sqlite3VdbeAddOp2(v, OP_Gosub, regReset, addrReset);
8327 TREETRACE(0x2,pParse,p,("WhereBegin\n"));
8328 pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, pGroupBy, pDistinct,
8329 p, (sDistinct.isTnct==2 ? WHERE_DISTINCTBY : WHERE_GROUPBY)
8330 | (orderByGrp ? WHERE_SORTBYGROUP : 0) | distFlag, 0
8332 if( pWInfo==0 ){
8333 sqlite3ExprListDelete(db, pDistinct);
8334 goto select_end;
8336 if( pParse->pIdxEpr ){
8337 optimizeAggregateUseOfIndexedExpr(pParse, p, pAggInfo, &sNC);
8339 assignAggregateRegisters(pParse, pAggInfo);
8340 eDist = sqlite3WhereIsDistinct(pWInfo);
8341 TREETRACE(0x2,pParse,p,("WhereBegin returns\n"));
8342 if( sqlite3WhereIsOrdered(pWInfo)==pGroupBy->nExpr ){
8343 /* The optimizer is able to deliver rows in group by order so
8344 ** we do not have to sort. The OP_OpenEphemeral table will be
8345 ** cancelled later because we still need to use the pKeyInfo
8347 groupBySort = 0;
8348 }else{
8349 /* Rows are coming out in undetermined order. We have to push
8350 ** each row into a sorting index, terminate the first loop,
8351 ** then loop over the sorting index in order to get the output
8352 ** in sorted order
8354 int regBase;
8355 int regRecord;
8356 int nCol;
8357 int nGroupBy;
8359 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS
8360 int addrExp; /* Address of OP_Explain instruction */
8361 #endif
8362 ExplainQueryPlan2(addrExp, (pParse, 0, "USE TEMP B-TREE FOR %s",
8363 (sDistinct.isTnct && (p->selFlags&SF_Distinct)==0) ?
8364 "DISTINCT" : "GROUP BY"
8367 groupBySort = 1;
8368 nGroupBy = pGroupBy->nExpr;
8369 nCol = nGroupBy;
8370 j = nGroupBy;
8371 for(i=0; i<pAggInfo->nColumn; i++){
8372 if( pAggInfo->aCol[i].iSorterColumn>=j ){
8373 nCol++;
8374 j++;
8377 regBase = sqlite3GetTempRange(pParse, nCol);
8378 sqlite3ExprCodeExprList(pParse, pGroupBy, regBase, 0, 0);
8379 j = nGroupBy;
8380 pAggInfo->directMode = 1;
8381 for(i=0; i<pAggInfo->nColumn; i++){
8382 struct AggInfo_col *pCol = &pAggInfo->aCol[i];
8383 if( pCol->iSorterColumn>=j ){
8384 sqlite3ExprCode(pParse, pCol->pCExpr, j + regBase);
8385 j++;
8388 pAggInfo->directMode = 0;
8389 regRecord = sqlite3GetTempReg(pParse);
8390 sqlite3VdbeScanStatusCounters(v, addrExp, 0, sqlite3VdbeCurrentAddr(v));
8391 sqlite3VdbeAddOp3(v, OP_MakeRecord, regBase, nCol, regRecord);
8392 sqlite3VdbeAddOp2(v, OP_SorterInsert, pAggInfo->sortingIdx, regRecord);
8393 sqlite3VdbeScanStatusRange(v, addrExp, sqlite3VdbeCurrentAddr(v)-2, -1);
8394 sqlite3ReleaseTempReg(pParse, regRecord);
8395 sqlite3ReleaseTempRange(pParse, regBase, nCol);
8396 TREETRACE(0x2,pParse,p,("WhereEnd\n"));
8397 sqlite3WhereEnd(pWInfo);
8398 pAggInfo->sortingIdxPTab = sortPTab = pParse->nTab++;
8399 sortOut = sqlite3GetTempReg(pParse);
8400 sqlite3VdbeScanStatusCounters(v, addrExp, sqlite3VdbeCurrentAddr(v), 0);
8401 sqlite3VdbeAddOp3(v, OP_OpenPseudo, sortPTab, sortOut, nCol);
8402 sqlite3VdbeAddOp2(v, OP_SorterSort, pAggInfo->sortingIdx, addrEnd);
8403 VdbeComment((v, "GROUP BY sort")); VdbeCoverage(v);
8404 pAggInfo->useSortingIdx = 1;
8405 sqlite3VdbeScanStatusRange(v, addrExp, -1, sortPTab);
8406 sqlite3VdbeScanStatusRange(v, addrExp, -1, pAggInfo->sortingIdx);
8409 /* If there are entries in pAgggInfo->aFunc[] that contain subexpressions
8410 ** that are indexed (and that were previously identified and tagged
8411 ** in optimizeAggregateUseOfIndexedExpr()) then those subexpressions
8412 ** must now be converted into a TK_AGG_COLUMN node so that the value
8413 ** is correctly pulled from the index rather than being recomputed. */
8414 if( pParse->pIdxEpr ){
8415 aggregateConvertIndexedExprRefToColumn(pAggInfo);
8416 #if TREETRACE_ENABLED
8417 if( sqlite3TreeTrace & 0x20 ){
8418 TREETRACE(0x20, pParse, p,
8419 ("AggInfo function expressions converted to reference index\n"));
8420 sqlite3TreeViewSelect(0, p, 0);
8421 printAggInfo(pAggInfo);
8423 #endif
8426 /* If the index or temporary table used by the GROUP BY sort
8427 ** will naturally deliver rows in the order required by the ORDER BY
8428 ** clause, cancel the ephemeral table open coded earlier.
8430 ** This is an optimization - the correct answer should result regardless.
8431 ** Use the SQLITE_GroupByOrder flag with SQLITE_TESTCTRL_OPTIMIZER to
8432 ** disable this optimization for testing purposes. */
8433 if( orderByGrp && OptimizationEnabled(db, SQLITE_GroupByOrder)
8434 && (groupBySort || sqlite3WhereIsSorted(pWInfo))
8436 sSort.pOrderBy = 0;
8437 sqlite3VdbeChangeToNoop(v, sSort.addrSortIndex);
8440 /* Evaluate the current GROUP BY terms and store in b0, b1, b2...
8441 ** (b0 is memory location iBMem+0, b1 is iBMem+1, and so forth)
8442 ** Then compare the current GROUP BY terms against the GROUP BY terms
8443 ** from the previous row currently stored in a0, a1, a2...
8445 addrTopOfLoop = sqlite3VdbeCurrentAddr(v);
8446 if( groupBySort ){
8447 sqlite3VdbeAddOp3(v, OP_SorterData, pAggInfo->sortingIdx,
8448 sortOut, sortPTab);
8450 for(j=0; j<pGroupBy->nExpr; j++){
8451 int iOrderByCol = pGroupBy->a[j].u.x.iOrderByCol;
8453 if( groupBySort ){
8454 sqlite3VdbeAddOp3(v, OP_Column, sortPTab, j, iBMem+j);
8455 }else{
8456 pAggInfo->directMode = 1;
8457 sqlite3ExprCode(pParse, pGroupBy->a[j].pExpr, iBMem+j);
8460 if( iOrderByCol ){
8461 Expr *pX = p->pEList->a[iOrderByCol-1].pExpr;
8462 Expr *pBase = sqlite3ExprSkipCollateAndLikely(pX);
8463 if( ALWAYS(pBase!=0)
8464 && pBase->op!=TK_AGG_COLUMN
8465 && pBase->op!=TK_REGISTER
8467 sqlite3ExprToRegister(pX, iAMem+j);
8471 sqlite3VdbeAddOp4(v, OP_Compare, iAMem, iBMem, pGroupBy->nExpr,
8472 (char*)sqlite3KeyInfoRef(pKeyInfo), P4_KEYINFO);
8473 addr1 = sqlite3VdbeCurrentAddr(v);
8474 sqlite3VdbeAddOp3(v, OP_Jump, addr1+1, 0, addr1+1); VdbeCoverage(v);
8476 /* Generate code that runs whenever the GROUP BY changes.
8477 ** Changes in the GROUP BY are detected by the previous code
8478 ** block. If there were no changes, this block is skipped.
8480 ** This code copies current group by terms in b0,b1,b2,...
8481 ** over to a0,a1,a2. It then calls the output subroutine
8482 ** and resets the aggregate accumulator registers in preparation
8483 ** for the next GROUP BY batch.
8485 sqlite3VdbeAddOp2(v, OP_Gosub, regOutputRow, addrOutputRow);
8486 VdbeComment((v, "output one row"));
8487 sqlite3ExprCodeMove(pParse, iBMem, iAMem, pGroupBy->nExpr);
8488 sqlite3VdbeAddOp2(v, OP_IfPos, iAbortFlag, addrEnd); VdbeCoverage(v);
8489 VdbeComment((v, "check abort flag"));
8490 sqlite3VdbeAddOp2(v, OP_Gosub, regReset, addrReset);
8491 VdbeComment((v, "reset accumulator"));
8493 /* Update the aggregate accumulators based on the content of
8494 ** the current row
8496 sqlite3VdbeJumpHere(v, addr1);
8497 updateAccumulator(pParse, iUseFlag, pAggInfo, eDist);
8498 sqlite3VdbeAddOp2(v, OP_Integer, 1, iUseFlag);
8499 VdbeComment((v, "indicate data in accumulator"));
8501 /* End of the loop
8503 if( groupBySort ){
8504 sqlite3VdbeAddOp2(v, OP_SorterNext, pAggInfo->sortingIdx,addrTopOfLoop);
8505 VdbeCoverage(v);
8506 }else{
8507 TREETRACE(0x2,pParse,p,("WhereEnd\n"));
8508 sqlite3WhereEnd(pWInfo);
8509 sqlite3VdbeChangeToNoop(v, addrSortingIdx);
8511 sqlite3ExprListDelete(db, pDistinct);
8513 /* Output the final row of result
8515 sqlite3VdbeAddOp2(v, OP_Gosub, regOutputRow, addrOutputRow);
8516 VdbeComment((v, "output final row"));
8518 /* Jump over the subroutines
8520 sqlite3VdbeGoto(v, addrEnd);
8522 /* Generate a subroutine that outputs a single row of the result
8523 ** set. This subroutine first looks at the iUseFlag. If iUseFlag
8524 ** is less than or equal to zero, the subroutine is a no-op. If
8525 ** the processing calls for the query to abort, this subroutine
8526 ** increments the iAbortFlag memory location before returning in
8527 ** order to signal the caller to abort.
8529 addrSetAbort = sqlite3VdbeCurrentAddr(v);
8530 sqlite3VdbeAddOp2(v, OP_Integer, 1, iAbortFlag);
8531 VdbeComment((v, "set abort flag"));
8532 sqlite3VdbeAddOp1(v, OP_Return, regOutputRow);
8533 sqlite3VdbeResolveLabel(v, addrOutputRow);
8534 addrOutputRow = sqlite3VdbeCurrentAddr(v);
8535 sqlite3VdbeAddOp2(v, OP_IfPos, iUseFlag, addrOutputRow+2);
8536 VdbeCoverage(v);
8537 VdbeComment((v, "Groupby result generator entry point"));
8538 sqlite3VdbeAddOp1(v, OP_Return, regOutputRow);
8539 finalizeAggFunctions(pParse, pAggInfo);
8540 sqlite3ExprIfFalse(pParse, pHaving, addrOutputRow+1, SQLITE_JUMPIFNULL);
8541 selectInnerLoop(pParse, p, -1, &sSort,
8542 &sDistinct, pDest,
8543 addrOutputRow+1, addrSetAbort);
8544 sqlite3VdbeAddOp1(v, OP_Return, regOutputRow);
8545 VdbeComment((v, "end groupby result generator"));
8547 /* Generate a subroutine that will reset the group-by accumulator
8549 sqlite3VdbeResolveLabel(v, addrReset);
8550 resetAccumulator(pParse, pAggInfo);
8551 sqlite3VdbeAddOp2(v, OP_Integer, 0, iUseFlag);
8552 VdbeComment((v, "indicate accumulator empty"));
8553 sqlite3VdbeAddOp1(v, OP_Return, regReset);
8555 if( distFlag!=0 && eDist!=WHERE_DISTINCT_NOOP ){
8556 struct AggInfo_func *pF = &pAggInfo->aFunc[0];
8557 fixDistinctOpenEph(pParse, eDist, pF->iDistinct, pF->iDistAddr);
8559 } /* endif pGroupBy. Begin aggregate queries without GROUP BY: */
8560 else {
8561 /* Aggregate functions without GROUP BY. tag-select-0820 */
8562 Table *pTab;
8563 if( (pTab = isSimpleCount(p, pAggInfo))!=0 ){
8564 /* tag-select-0821
8566 ** If isSimpleCount() returns a pointer to a Table structure, then
8567 ** the SQL statement is of the form:
8569 ** SELECT count(*) FROM <tbl>
8571 ** where the Table structure returned represents table <tbl>.
8573 ** This statement is so common that it is optimized specially. The
8574 ** OP_Count instruction is executed either on the intkey table that
8575 ** contains the data for table <tbl> or on one of its indexes. It
8576 ** is better to execute the op on an index, as indexes are almost
8577 ** always spread across less pages than their corresponding tables.
8579 const int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
8580 const int iCsr = pParse->nTab++; /* Cursor to scan b-tree */
8581 Index *pIdx; /* Iterator variable */
8582 KeyInfo *pKeyInfo = 0; /* Keyinfo for scanned index */
8583 Index *pBest = 0; /* Best index found so far */
8584 Pgno iRoot = pTab->tnum; /* Root page of scanned b-tree */
8586 sqlite3CodeVerifySchema(pParse, iDb);
8587 sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName);
8589 /* Search for the index that has the lowest scan cost.
8591 ** (2011-04-15) Do not do a full scan of an unordered index.
8593 ** (2013-10-03) Do not count the entries in a partial index.
8595 ** In practice the KeyInfo structure will not be used. It is only
8596 ** passed to keep OP_OpenRead happy.
8598 if( !HasRowid(pTab) ) pBest = sqlite3PrimaryKeyIndex(pTab);
8599 if( !p->pSrc->a[0].fg.notIndexed ){
8600 for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
8601 if( pIdx->bUnordered==0
8602 && pIdx->szIdxRow<pTab->szTabRow
8603 && pIdx->pPartIdxWhere==0
8604 && (!pBest || pIdx->szIdxRow<pBest->szIdxRow)
8606 pBest = pIdx;
8610 if( pBest ){
8611 iRoot = pBest->tnum;
8612 pKeyInfo = sqlite3KeyInfoOfIndex(pParse, pBest);
8615 /* Open a read-only cursor, execute the OP_Count, close the cursor. */
8616 sqlite3VdbeAddOp4Int(v, OP_OpenRead, iCsr, (int)iRoot, iDb, 1);
8617 if( pKeyInfo ){
8618 sqlite3VdbeChangeP4(v, -1, (char *)pKeyInfo, P4_KEYINFO);
8620 assignAggregateRegisters(pParse, pAggInfo);
8621 sqlite3VdbeAddOp2(v, OP_Count, iCsr, AggInfoFuncReg(pAggInfo,0));
8622 sqlite3VdbeAddOp1(v, OP_Close, iCsr);
8623 explainSimpleCount(pParse, pTab, pBest);
8624 }else{
8625 /* The general case of an aggregate query without GROUP BY
8626 ** tag-select-0822 */
8627 int regAcc = 0; /* "populate accumulators" flag */
8628 ExprList *pDistinct = 0;
8629 u16 distFlag = 0;
8630 int eDist;
8632 /* If there are accumulator registers but no min() or max() functions
8633 ** without FILTER clauses, allocate register regAcc. Register regAcc
8634 ** will contain 0 the first time the inner loop runs, and 1 thereafter.
8635 ** The code generated by updateAccumulator() uses this to ensure
8636 ** that the accumulator registers are (a) updated only once if
8637 ** there are no min() or max functions or (b) always updated for the
8638 ** first row visited by the aggregate, so that they are updated at
8639 ** least once even if the FILTER clause means the min() or max()
8640 ** function visits zero rows. */
8641 if( pAggInfo->nAccumulator ){
8642 for(i=0; i<pAggInfo->nFunc; i++){
8643 if( ExprHasProperty(pAggInfo->aFunc[i].pFExpr, EP_WinFunc) ){
8644 continue;
8646 if( pAggInfo->aFunc[i].pFunc->funcFlags&SQLITE_FUNC_NEEDCOLL ){
8647 break;
8650 if( i==pAggInfo->nFunc ){
8651 regAcc = ++pParse->nMem;
8652 sqlite3VdbeAddOp2(v, OP_Integer, 0, regAcc);
8654 }else if( pAggInfo->nFunc==1 && pAggInfo->aFunc[0].iDistinct>=0 ){
8655 assert( ExprUseXList(pAggInfo->aFunc[0].pFExpr) );
8656 pDistinct = pAggInfo->aFunc[0].pFExpr->x.pList;
8657 distFlag = pDistinct ? (WHERE_WANT_DISTINCT|WHERE_AGG_DISTINCT) : 0;
8659 assignAggregateRegisters(pParse, pAggInfo);
8661 /* This case runs if the aggregate has no GROUP BY clause. The
8662 ** processing is much simpler since there is only a single row
8663 ** of output.
8665 assert( p->pGroupBy==0 );
8666 resetAccumulator(pParse, pAggInfo);
8668 /* If this query is a candidate for the min/max optimization, then
8669 ** minMaxFlag will have been previously set to either
8670 ** WHERE_ORDERBY_MIN or WHERE_ORDERBY_MAX and pMinMaxOrderBy will
8671 ** be an appropriate ORDER BY expression for the optimization.
8673 assert( minMaxFlag==WHERE_ORDERBY_NORMAL || pMinMaxOrderBy!=0 );
8674 assert( pMinMaxOrderBy==0 || pMinMaxOrderBy->nExpr==1 );
8676 TREETRACE(0x2,pParse,p,("WhereBegin\n"));
8677 pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, pMinMaxOrderBy,
8678 pDistinct, p, minMaxFlag|distFlag, 0);
8679 if( pWInfo==0 ){
8680 goto select_end;
8682 TREETRACE(0x2,pParse,p,("WhereBegin returns\n"));
8683 eDist = sqlite3WhereIsDistinct(pWInfo);
8684 updateAccumulator(pParse, regAcc, pAggInfo, eDist);
8685 if( eDist!=WHERE_DISTINCT_NOOP ){
8686 struct AggInfo_func *pF = pAggInfo->aFunc;
8687 if( pF ){
8688 fixDistinctOpenEph(pParse, eDist, pF->iDistinct, pF->iDistAddr);
8692 if( regAcc ) sqlite3VdbeAddOp2(v, OP_Integer, 1, regAcc);
8693 if( minMaxFlag ){
8694 sqlite3WhereMinMaxOptEarlyOut(v, pWInfo);
8696 TREETRACE(0x2,pParse,p,("WhereEnd\n"));
8697 sqlite3WhereEnd(pWInfo);
8698 finalizeAggFunctions(pParse, pAggInfo);
8701 sSort.pOrderBy = 0;
8702 sqlite3ExprIfFalse(pParse, pHaving, addrEnd, SQLITE_JUMPIFNULL);
8703 selectInnerLoop(pParse, p, -1, 0, 0,
8704 pDest, addrEnd, addrEnd);
8706 sqlite3VdbeResolveLabel(v, addrEnd);
8708 } /* endif aggregate query */
8710 if( sDistinct.eTnctType==WHERE_DISTINCT_UNORDERED ){
8711 explainTempTable(pParse, "DISTINCT");
8714 /* If there is an ORDER BY clause, then we need to sort the results
8715 ** and send them to the callback one by one. tag-select-0900
8717 if( sSort.pOrderBy ){
8718 assert( p->pEList==pEList );
8719 generateSortTail(pParse, p, &sSort, pEList->nExpr, pDest);
8722 /* Jump here to skip this query
8724 sqlite3VdbeResolveLabel(v, iEnd);
8726 /* The SELECT has been coded. If there is an error in the Parse structure,
8727 ** set the return code to 1. Otherwise 0. */
8728 rc = (pParse->nErr>0);
8730 /* Control jumps to here if an error is encountered above, or upon
8731 ** successful coding of the SELECT.
8733 select_end:
8734 assert( db->mallocFailed==0 || db->mallocFailed==1 );
8735 assert( db->mallocFailed==0 || pParse->nErr!=0 );
8736 sqlite3ExprListDelete(db, pMinMaxOrderBy);
8737 #ifdef SQLITE_DEBUG
8738 /* Internal self-checks. tag-select-1000 */
8739 if( pAggInfo && !db->mallocFailed ){
8740 #if TREETRACE_ENABLED
8741 if( sqlite3TreeTrace & 0x20 ){
8742 TREETRACE(0x20,pParse,p,("Finished with AggInfo\n"));
8743 printAggInfo(pAggInfo);
8745 #endif
8746 for(i=0; i<pAggInfo->nColumn; i++){
8747 Expr *pExpr = pAggInfo->aCol[i].pCExpr;
8748 if( pExpr==0 ) continue;
8749 assert( pExpr->pAggInfo==pAggInfo );
8750 assert( pExpr->iAgg==i );
8752 for(i=0; i<pAggInfo->nFunc; i++){
8753 Expr *pExpr = pAggInfo->aFunc[i].pFExpr;
8754 assert( pExpr!=0 );
8755 assert( pExpr->pAggInfo==pAggInfo );
8756 assert( pExpr->iAgg==i );
8759 #endif
8761 #if TREETRACE_ENABLED
8762 TREETRACE(0x1,pParse,p,("end processing\n"));
8763 if( (sqlite3TreeTrace & 0x40000)!=0 && ExplainQueryPlanParent(pParse)==0 ){
8764 sqlite3TreeViewSelect(0, p, 0);
8766 #endif
8767 ExplainQueryPlanPop(pParse);
8768 return rc;