Use a mini Bloom filter to help reduce the number of pointless searches for
[sqlite.git] / src / select.c
blob4b0b554295d60d113d6d1a482ddfbc00ca5775d0
1 /*
2 ** 2001 September 15
3 **
4 ** The author disclaims copyright to this source code. In place of
5 ** a legal notice, here is a blessing:
6 **
7 ** May you do good and not evil.
8 ** May you find forgiveness for yourself and forgive others.
9 ** May you share freely, never taking more than you give.
11 *************************************************************************
12 ** This file contains C code routines that are called by the parser
13 ** to handle SELECT statements in SQLite.
15 #include "sqliteInt.h"
18 ** An instance of the following object is used to record information about
19 ** how to process the DISTINCT keyword, to simplify passing that information
20 ** into the selectInnerLoop() routine.
22 typedef struct DistinctCtx DistinctCtx;
23 struct DistinctCtx {
24 u8 isTnct; /* 0: Not distinct. 1: DISTICT 2: DISTINCT and ORDER BY */
25 u8 eTnctType; /* One of the WHERE_DISTINCT_* operators */
26 int tabTnct; /* Ephemeral table used for DISTINCT processing */
27 int addrTnct; /* Address of OP_OpenEphemeral opcode for tabTnct */
31 ** An instance of the following object is used to record information about
32 ** the ORDER BY (or GROUP BY) clause of query is being coded.
34 ** The aDefer[] array is used by the sorter-references optimization. For
35 ** example, assuming there is no index that can be used for the ORDER BY,
36 ** for the query:
38 ** SELECT a, bigblob FROM t1 ORDER BY a LIMIT 10;
40 ** it may be more efficient to add just the "a" values to the sorter, and
41 ** retrieve the associated "bigblob" values directly from table t1 as the
42 ** 10 smallest "a" values are extracted from the sorter.
44 ** When the sorter-reference optimization is used, there is one entry in the
45 ** aDefer[] array for each database table that may be read as values are
46 ** extracted from the sorter.
48 typedef struct SortCtx SortCtx;
49 struct SortCtx {
50 ExprList *pOrderBy; /* The ORDER BY (or GROUP BY clause) */
51 int nOBSat; /* Number of ORDER BY terms satisfied by indices */
52 int iECursor; /* Cursor number for the sorter */
53 int regReturn; /* Register holding block-output return address */
54 int labelBkOut; /* Start label for the block-output subroutine */
55 int addrSortIndex; /* Address of the OP_SorterOpen or OP_OpenEphemeral */
56 int labelDone; /* Jump here when done, ex: LIMIT reached */
57 int labelOBLopt; /* Jump here when sorter is full */
58 u8 sortFlags; /* Zero or more SORTFLAG_* bits */
59 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
60 u8 nDefer; /* Number of valid entries in aDefer[] */
61 struct DeferredCsr {
62 Table *pTab; /* Table definition */
63 int iCsr; /* Cursor number for table */
64 int nKey; /* Number of PK columns for table pTab (>=1) */
65 } aDefer[4];
66 #endif
67 struct RowLoadInfo *pDeferredRowLoad; /* Deferred row loading info or NULL */
68 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS
69 int addrPush; /* First instruction to push data into sorter */
70 int addrPushEnd; /* Last instruction that pushes data into sorter */
71 #endif
73 #define SORTFLAG_UseSorter 0x01 /* Use SorterOpen instead of OpenEphemeral */
76 ** Delete all the content of a Select structure. Deallocate the structure
77 ** itself depending on the value of bFree
79 ** If bFree==1, call sqlite3DbFree() on the p object.
80 ** If bFree==0, Leave the first Select object unfreed
82 static void clearSelect(sqlite3 *db, Select *p, int bFree){
83 assert( db!=0 );
84 while( p ){
85 Select *pPrior = p->pPrior;
86 sqlite3ExprListDelete(db, p->pEList);
87 sqlite3SrcListDelete(db, p->pSrc);
88 sqlite3ExprDelete(db, p->pWhere);
89 sqlite3ExprListDelete(db, p->pGroupBy);
90 sqlite3ExprDelete(db, p->pHaving);
91 sqlite3ExprListDelete(db, p->pOrderBy);
92 sqlite3ExprDelete(db, p->pLimit);
93 if( OK_IF_ALWAYS_TRUE(p->pWith) ) sqlite3WithDelete(db, p->pWith);
94 #ifndef SQLITE_OMIT_WINDOWFUNC
95 if( OK_IF_ALWAYS_TRUE(p->pWinDefn) ){
96 sqlite3WindowListDelete(db, p->pWinDefn);
98 while( p->pWin ){
99 assert( p->pWin->ppThis==&p->pWin );
100 sqlite3WindowUnlinkFromSelect(p->pWin);
102 #endif
103 if( bFree ) sqlite3DbNNFreeNN(db, p);
104 p = pPrior;
105 bFree = 1;
110 ** Initialize a SelectDest structure.
112 void sqlite3SelectDestInit(SelectDest *pDest, int eDest, int iParm){
113 pDest->eDest = (u8)eDest;
114 pDest->iSDParm = iParm;
115 pDest->iSDParm2 = 0;
116 pDest->zAffSdst = 0;
117 pDest->iSdst = 0;
118 pDest->nSdst = 0;
123 ** Allocate a new Select structure and return a pointer to that
124 ** structure.
126 Select *sqlite3SelectNew(
127 Parse *pParse, /* Parsing context */
128 ExprList *pEList, /* which columns to include in the result */
129 SrcList *pSrc, /* the FROM clause -- which tables to scan */
130 Expr *pWhere, /* the WHERE clause */
131 ExprList *pGroupBy, /* the GROUP BY clause */
132 Expr *pHaving, /* the HAVING clause */
133 ExprList *pOrderBy, /* the ORDER BY clause */
134 u32 selFlags, /* Flag parameters, such as SF_Distinct */
135 Expr *pLimit /* LIMIT value. NULL means not used */
137 Select *pNew, *pAllocated;
138 Select standin;
139 pAllocated = pNew = sqlite3DbMallocRawNN(pParse->db, sizeof(*pNew) );
140 if( pNew==0 ){
141 assert( pParse->db->mallocFailed );
142 pNew = &standin;
144 if( pEList==0 ){
145 pEList = sqlite3ExprListAppend(pParse, 0,
146 sqlite3Expr(pParse->db,TK_ASTERISK,0));
148 pNew->pEList = pEList;
149 pNew->op = TK_SELECT;
150 pNew->selFlags = selFlags;
151 pNew->iLimit = 0;
152 pNew->iOffset = 0;
153 pNew->selId = ++pParse->nSelect;
154 pNew->addrOpenEphm[0] = -1;
155 pNew->addrOpenEphm[1] = -1;
156 pNew->nSelectRow = 0;
157 if( pSrc==0 ) pSrc = sqlite3DbMallocZero(pParse->db, sizeof(*pSrc));
158 pNew->pSrc = pSrc;
159 pNew->pWhere = pWhere;
160 pNew->pGroupBy = pGroupBy;
161 pNew->pHaving = pHaving;
162 pNew->pOrderBy = pOrderBy;
163 pNew->pPrior = 0;
164 pNew->pNext = 0;
165 pNew->pLimit = pLimit;
166 pNew->pWith = 0;
167 #ifndef SQLITE_OMIT_WINDOWFUNC
168 pNew->pWin = 0;
169 pNew->pWinDefn = 0;
170 #endif
171 if( pParse->db->mallocFailed ) {
172 clearSelect(pParse->db, pNew, pNew!=&standin);
173 pAllocated = 0;
174 }else{
175 assert( pNew->pSrc!=0 || pParse->nErr>0 );
177 return pAllocated;
182 ** Delete the given Select structure and all of its substructures.
184 void sqlite3SelectDelete(sqlite3 *db, Select *p){
185 if( OK_IF_ALWAYS_TRUE(p) ) clearSelect(db, p, 1);
187 void sqlite3SelectDeleteGeneric(sqlite3 *db, void *p){
188 if( ALWAYS(p) ) clearSelect(db, (Select*)p, 1);
192 ** Return a pointer to the right-most SELECT statement in a compound.
194 static Select *findRightmost(Select *p){
195 while( p->pNext ) p = p->pNext;
196 return p;
200 ** Given 1 to 3 identifiers preceding the JOIN keyword, determine the
201 ** type of join. Return an integer constant that expresses that type
202 ** in terms of the following bit values:
204 ** JT_INNER
205 ** JT_CROSS
206 ** JT_OUTER
207 ** JT_NATURAL
208 ** JT_LEFT
209 ** JT_RIGHT
211 ** A full outer join is the combination of JT_LEFT and JT_RIGHT.
213 ** If an illegal or unsupported join type is seen, then still return
214 ** a join type, but put an error in the pParse structure.
216 ** These are the valid join types:
219 ** pA pB pC Return Value
220 ** ------- ----- ----- ------------
221 ** CROSS - - JT_CROSS
222 ** INNER - - JT_INNER
223 ** LEFT - - JT_LEFT|JT_OUTER
224 ** LEFT OUTER - JT_LEFT|JT_OUTER
225 ** RIGHT - - JT_RIGHT|JT_OUTER
226 ** RIGHT OUTER - JT_RIGHT|JT_OUTER
227 ** FULL - - JT_LEFT|JT_RIGHT|JT_OUTER
228 ** FULL OUTER - JT_LEFT|JT_RIGHT|JT_OUTER
229 ** NATURAL INNER - JT_NATURAL|JT_INNER
230 ** NATURAL LEFT - JT_NATURAL|JT_LEFT|JT_OUTER
231 ** NATURAL LEFT OUTER JT_NATURAL|JT_LEFT|JT_OUTER
232 ** NATURAL RIGHT - JT_NATURAL|JT_RIGHT|JT_OUTER
233 ** NATURAL RIGHT OUTER JT_NATURAL|JT_RIGHT|JT_OUTER
234 ** NATURAL FULL - JT_NATURAL|JT_LEFT|JT_RIGHT
235 ** NATURAL FULL OUTER JT_NATRUAL|JT_LEFT|JT_RIGHT
237 ** To preserve historical compatibly, SQLite also accepts a variety
238 ** of other non-standard and in many cases nonsensical join types.
239 ** This routine makes as much sense at it can from the nonsense join
240 ** type and returns a result. Examples of accepted nonsense join types
241 ** include but are not limited to:
243 ** INNER CROSS JOIN -> same as JOIN
244 ** NATURAL CROSS JOIN -> same as NATURAL JOIN
245 ** OUTER LEFT JOIN -> same as LEFT JOIN
246 ** LEFT NATURAL JOIN -> same as NATURAL LEFT JOIN
247 ** LEFT RIGHT JOIN -> same as FULL JOIN
248 ** RIGHT OUTER FULL JOIN -> same as FULL JOIN
249 ** CROSS CROSS CROSS JOIN -> same as JOIN
251 ** The only restrictions on the join type name are:
253 ** * "INNER" cannot appear together with "OUTER", "LEFT", "RIGHT",
254 ** or "FULL".
256 ** * "CROSS" cannot appear together with "OUTER", "LEFT", "RIGHT,
257 ** or "FULL".
259 ** * If "OUTER" is present then there must also be one of
260 ** "LEFT", "RIGHT", or "FULL"
262 int sqlite3JoinType(Parse *pParse, Token *pA, Token *pB, Token *pC){
263 int jointype = 0;
264 Token *apAll[3];
265 Token *p;
266 /* 0123456789 123456789 123456789 123 */
267 static const char zKeyText[] = "naturaleftouterightfullinnercross";
268 static const struct {
269 u8 i; /* Beginning of keyword text in zKeyText[] */
270 u8 nChar; /* Length of the keyword in characters */
271 u8 code; /* Join type mask */
272 } aKeyword[] = {
273 /* (0) natural */ { 0, 7, JT_NATURAL },
274 /* (1) left */ { 6, 4, JT_LEFT|JT_OUTER },
275 /* (2) outer */ { 10, 5, JT_OUTER },
276 /* (3) right */ { 14, 5, JT_RIGHT|JT_OUTER },
277 /* (4) full */ { 19, 4, JT_LEFT|JT_RIGHT|JT_OUTER },
278 /* (5) inner */ { 23, 5, JT_INNER },
279 /* (6) cross */ { 28, 5, JT_INNER|JT_CROSS },
281 int i, j;
282 apAll[0] = pA;
283 apAll[1] = pB;
284 apAll[2] = pC;
285 for(i=0; i<3 && apAll[i]; i++){
286 p = apAll[i];
287 for(j=0; j<ArraySize(aKeyword); j++){
288 if( p->n==aKeyword[j].nChar
289 && sqlite3StrNICmp((char*)p->z, &zKeyText[aKeyword[j].i], p->n)==0 ){
290 jointype |= aKeyword[j].code;
291 break;
294 testcase( j==0 || j==1 || j==2 || j==3 || j==4 || j==5 || j==6 );
295 if( j>=ArraySize(aKeyword) ){
296 jointype |= JT_ERROR;
297 break;
301 (jointype & (JT_INNER|JT_OUTER))==(JT_INNER|JT_OUTER) ||
302 (jointype & JT_ERROR)!=0 ||
303 (jointype & (JT_OUTER|JT_LEFT|JT_RIGHT))==JT_OUTER
305 const char *zSp1 = " ";
306 const char *zSp2 = " ";
307 if( pB==0 ){ zSp1++; }
308 if( pC==0 ){ zSp2++; }
309 sqlite3ErrorMsg(pParse, "unknown join type: "
310 "%T%s%T%s%T", pA, zSp1, pB, zSp2, pC);
311 jointype = JT_INNER;
313 return jointype;
317 ** Return the index of a column in a table. Return -1 if the column
318 ** is not contained in the table.
320 int sqlite3ColumnIndex(Table *pTab, const char *zCol){
321 int i;
322 u8 h = sqlite3StrIHash(zCol);
323 Column *pCol;
324 for(pCol=pTab->aCol, i=0; i<pTab->nCol; pCol++, i++){
325 if( pCol->hName==h && sqlite3StrICmp(pCol->zCnName, zCol)==0 ) return i;
327 return -1;
331 ** Mark a subquery result column as having been used.
333 void sqlite3SrcItemColumnUsed(SrcItem *pItem, int iCol){
334 assert( pItem!=0 );
335 assert( (int)pItem->fg.isNestedFrom == IsNestedFrom(pItem->pSelect) );
336 if( pItem->fg.isNestedFrom ){
337 ExprList *pResults;
338 assert( pItem->pSelect!=0 );
339 pResults = pItem->pSelect->pEList;
340 assert( pResults!=0 );
341 assert( iCol>=0 && iCol<pResults->nExpr );
342 pResults->a[iCol].fg.bUsed = 1;
347 ** Search the tables iStart..iEnd (inclusive) in pSrc, looking for a
348 ** table that has a column named zCol. The search is left-to-right.
349 ** The first match found is returned.
351 ** When found, set *piTab and *piCol to the table index and column index
352 ** of the matching column and return TRUE.
354 ** If not found, return FALSE.
356 static int tableAndColumnIndex(
357 SrcList *pSrc, /* Array of tables to search */
358 int iStart, /* First member of pSrc->a[] to check */
359 int iEnd, /* Last member of pSrc->a[] to check */
360 const char *zCol, /* Name of the column we are looking for */
361 int *piTab, /* Write index of pSrc->a[] here */
362 int *piCol, /* Write index of pSrc->a[*piTab].pTab->aCol[] here */
363 int bIgnoreHidden /* Ignore hidden columns */
365 int i; /* For looping over tables in pSrc */
366 int iCol; /* Index of column matching zCol */
368 assert( iEnd<pSrc->nSrc );
369 assert( iStart>=0 );
370 assert( (piTab==0)==(piCol==0) ); /* Both or neither are NULL */
372 for(i=iStart; i<=iEnd; i++){
373 iCol = sqlite3ColumnIndex(pSrc->a[i].pTab, zCol);
374 if( iCol>=0
375 && (bIgnoreHidden==0 || IsHiddenColumn(&pSrc->a[i].pTab->aCol[iCol])==0)
377 if( piTab ){
378 sqlite3SrcItemColumnUsed(&pSrc->a[i], iCol);
379 *piTab = i;
380 *piCol = iCol;
382 return 1;
385 return 0;
389 ** Set the EP_OuterON property on all terms of the given expression.
390 ** And set the Expr.w.iJoin to iTable for every term in the
391 ** expression.
393 ** The EP_OuterON property is used on terms of an expression to tell
394 ** the OUTER JOIN processing logic that this term is part of the
395 ** join restriction specified in the ON or USING clause and not a part
396 ** of the more general WHERE clause. These terms are moved over to the
397 ** WHERE clause during join processing but we need to remember that they
398 ** originated in the ON or USING clause.
400 ** The Expr.w.iJoin tells the WHERE clause processing that the
401 ** expression depends on table w.iJoin even if that table is not
402 ** explicitly mentioned in the expression. That information is needed
403 ** for cases like this:
405 ** SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.b AND t1.x=5
407 ** The where clause needs to defer the handling of the t1.x=5
408 ** term until after the t2 loop of the join. In that way, a
409 ** NULL t2 row will be inserted whenever t1.x!=5. If we do not
410 ** defer the handling of t1.x=5, it will be processed immediately
411 ** after the t1 loop and rows with t1.x!=5 will never appear in
412 ** the output, which is incorrect.
414 void sqlite3SetJoinExpr(Expr *p, int iTable, u32 joinFlag){
415 assert( joinFlag==EP_OuterON || joinFlag==EP_InnerON );
416 while( p ){
417 ExprSetProperty(p, joinFlag);
418 assert( !ExprHasProperty(p, EP_TokenOnly|EP_Reduced) );
419 ExprSetVVAProperty(p, EP_NoReduce);
420 p->w.iJoin = iTable;
421 if( p->op==TK_FUNCTION ){
422 assert( ExprUseXList(p) );
423 if( p->x.pList ){
424 int i;
425 for(i=0; i<p->x.pList->nExpr; i++){
426 sqlite3SetJoinExpr(p->x.pList->a[i].pExpr, iTable, joinFlag);
430 sqlite3SetJoinExpr(p->pLeft, iTable, joinFlag);
431 p = p->pRight;
435 /* Undo the work of sqlite3SetJoinExpr(). This is used when a LEFT JOIN
436 ** is simplified into an ordinary JOIN, and when an ON expression is
437 ** "pushed down" into the WHERE clause of a subquery.
439 ** Convert every term that is marked with EP_OuterON and w.iJoin==iTable into
440 ** an ordinary term that omits the EP_OuterON mark. Or if iTable<0, then
441 ** just clear every EP_OuterON and EP_InnerON mark from the expression tree.
443 ** If nullable is true, that means that Expr p might evaluate to NULL even
444 ** if it is a reference to a NOT NULL column. This can happen, for example,
445 ** if the table that p references is on the left side of a RIGHT JOIN.
446 ** If nullable is true, then take care to not remove the EP_CanBeNull bit.
447 ** See forum thread https://sqlite.org/forum/forumpost/b40696f50145d21c
449 static void unsetJoinExpr(Expr *p, int iTable, int nullable){
450 while( p ){
451 if( iTable<0 || (ExprHasProperty(p, EP_OuterON) && p->w.iJoin==iTable) ){
452 ExprClearProperty(p, EP_OuterON|EP_InnerON);
453 if( iTable>=0 ) ExprSetProperty(p, EP_InnerON);
455 if( p->op==TK_COLUMN && p->iTable==iTable && !nullable ){
456 ExprClearProperty(p, EP_CanBeNull);
458 if( p->op==TK_FUNCTION ){
459 assert( ExprUseXList(p) );
460 assert( p->pLeft==0 );
461 if( p->x.pList ){
462 int i;
463 for(i=0; i<p->x.pList->nExpr; i++){
464 unsetJoinExpr(p->x.pList->a[i].pExpr, iTable, nullable);
468 unsetJoinExpr(p->pLeft, iTable, nullable);
469 p = p->pRight;
474 ** This routine processes the join information for a SELECT statement.
476 ** * A NATURAL join is converted into a USING join. After that, we
477 ** do not need to be concerned with NATURAL joins and we only have
478 ** think about USING joins.
480 ** * ON and USING clauses result in extra terms being added to the
481 ** WHERE clause to enforce the specified constraints. The extra
482 ** WHERE clause terms will be tagged with EP_OuterON or
483 ** EP_InnerON so that we know that they originated in ON/USING.
485 ** The terms of a FROM clause are contained in the Select.pSrc structure.
486 ** The left most table is the first entry in Select.pSrc. The right-most
487 ** table is the last entry. The join operator is held in the entry to
488 ** the right. Thus entry 1 contains the join operator for the join between
489 ** entries 0 and 1. Any ON or USING clauses associated with the join are
490 ** also attached to the right entry.
492 ** This routine returns the number of errors encountered.
494 static int sqlite3ProcessJoin(Parse *pParse, Select *p){
495 SrcList *pSrc; /* All tables in the FROM clause */
496 int i, j; /* Loop counters */
497 SrcItem *pLeft; /* Left table being joined */
498 SrcItem *pRight; /* Right table being joined */
500 pSrc = p->pSrc;
501 pLeft = &pSrc->a[0];
502 pRight = &pLeft[1];
503 for(i=0; i<pSrc->nSrc-1; i++, pRight++, pLeft++){
504 Table *pRightTab = pRight->pTab;
505 u32 joinType;
507 if( NEVER(pLeft->pTab==0 || pRightTab==0) ) continue;
508 joinType = (pRight->fg.jointype & JT_OUTER)!=0 ? EP_OuterON : EP_InnerON;
510 /* If this is a NATURAL join, synthesize an appropriate USING clause
511 ** to specify which columns should be joined.
513 if( pRight->fg.jointype & JT_NATURAL ){
514 IdList *pUsing = 0;
515 if( pRight->fg.isUsing || pRight->u3.pOn ){
516 sqlite3ErrorMsg(pParse, "a NATURAL join may not have "
517 "an ON or USING clause", 0);
518 return 1;
520 for(j=0; j<pRightTab->nCol; j++){
521 char *zName; /* Name of column in the right table */
523 if( IsHiddenColumn(&pRightTab->aCol[j]) ) continue;
524 zName = pRightTab->aCol[j].zCnName;
525 if( tableAndColumnIndex(pSrc, 0, i, zName, 0, 0, 1) ){
526 pUsing = sqlite3IdListAppend(pParse, pUsing, 0);
527 if( pUsing ){
528 assert( pUsing->nId>0 );
529 assert( pUsing->a[pUsing->nId-1].zName==0 );
530 pUsing->a[pUsing->nId-1].zName = sqlite3DbStrDup(pParse->db, zName);
534 if( pUsing ){
535 pRight->fg.isUsing = 1;
536 pRight->fg.isSynthUsing = 1;
537 pRight->u3.pUsing = pUsing;
539 if( pParse->nErr ) return 1;
542 /* Create extra terms on the WHERE clause for each column named
543 ** in the USING clause. Example: If the two tables to be joined are
544 ** A and B and the USING clause names X, Y, and Z, then add this
545 ** to the WHERE clause: A.X=B.X AND A.Y=B.Y AND A.Z=B.Z
546 ** Report an error if any column mentioned in the USING clause is
547 ** not contained in both tables to be joined.
549 if( pRight->fg.isUsing ){
550 IdList *pList = pRight->u3.pUsing;
551 sqlite3 *db = pParse->db;
552 assert( pList!=0 );
553 for(j=0; j<pList->nId; j++){
554 char *zName; /* Name of the term in the USING clause */
555 int iLeft; /* Table on the left with matching column name */
556 int iLeftCol; /* Column number of matching column on the left */
557 int iRightCol; /* Column number of matching column on the right */
558 Expr *pE1; /* Reference to the column on the LEFT of the join */
559 Expr *pE2; /* Reference to the column on the RIGHT of the join */
560 Expr *pEq; /* Equality constraint. pE1 == pE2 */
562 zName = pList->a[j].zName;
563 iRightCol = sqlite3ColumnIndex(pRightTab, zName);
564 if( iRightCol<0
565 || tableAndColumnIndex(pSrc, 0, i, zName, &iLeft, &iLeftCol,
566 pRight->fg.isSynthUsing)==0
568 sqlite3ErrorMsg(pParse, "cannot join using column %s - column "
569 "not present in both tables", zName);
570 return 1;
572 pE1 = sqlite3CreateColumnExpr(db, pSrc, iLeft, iLeftCol);
573 sqlite3SrcItemColumnUsed(&pSrc->a[iLeft], iLeftCol);
574 if( (pSrc->a[0].fg.jointype & JT_LTORJ)!=0 ){
575 /* This branch runs if the query contains one or more RIGHT or FULL
576 ** JOINs. If only a single table on the left side of this join
577 ** contains the zName column, then this branch is a no-op.
578 ** But if there are two or more tables on the left side
579 ** of the join, construct a coalesce() function that gathers all
580 ** such tables. Raise an error if more than one of those references
581 ** to zName is not also within a prior USING clause.
583 ** We really ought to raise an error if there are two or more
584 ** non-USING references to zName on the left of an INNER or LEFT
585 ** JOIN. But older versions of SQLite do not do that, so we avoid
586 ** adding a new error so as to not break legacy applications.
588 ExprList *pFuncArgs = 0; /* Arguments to the coalesce() */
589 static const Token tkCoalesce = { "coalesce", 8 };
590 while( tableAndColumnIndex(pSrc, iLeft+1, i, zName, &iLeft, &iLeftCol,
591 pRight->fg.isSynthUsing)!=0 ){
592 if( pSrc->a[iLeft].fg.isUsing==0
593 || sqlite3IdListIndex(pSrc->a[iLeft].u3.pUsing, zName)<0
595 sqlite3ErrorMsg(pParse, "ambiguous reference to %s in USING()",
596 zName);
597 break;
599 pFuncArgs = sqlite3ExprListAppend(pParse, pFuncArgs, pE1);
600 pE1 = sqlite3CreateColumnExpr(db, pSrc, iLeft, iLeftCol);
601 sqlite3SrcItemColumnUsed(&pSrc->a[iLeft], iLeftCol);
603 if( pFuncArgs ){
604 pFuncArgs = sqlite3ExprListAppend(pParse, pFuncArgs, pE1);
605 pE1 = sqlite3ExprFunction(pParse, pFuncArgs, &tkCoalesce, 0);
608 pE2 = sqlite3CreateColumnExpr(db, pSrc, i+1, iRightCol);
609 sqlite3SrcItemColumnUsed(pRight, iRightCol);
610 pEq = sqlite3PExpr(pParse, TK_EQ, pE1, pE2);
611 assert( pE2!=0 || pEq==0 );
612 if( pEq ){
613 ExprSetProperty(pEq, joinType);
614 assert( !ExprHasProperty(pEq, EP_TokenOnly|EP_Reduced) );
615 ExprSetVVAProperty(pEq, EP_NoReduce);
616 pEq->w.iJoin = pE2->iTable;
618 p->pWhere = sqlite3ExprAnd(pParse, p->pWhere, pEq);
622 /* Add the ON clause to the end of the WHERE clause, connected by
623 ** an AND operator.
625 else if( pRight->u3.pOn ){
626 sqlite3SetJoinExpr(pRight->u3.pOn, pRight->iCursor, joinType);
627 p->pWhere = sqlite3ExprAnd(pParse, p->pWhere, pRight->u3.pOn);
628 pRight->u3.pOn = 0;
629 pRight->fg.isOn = 1;
632 return 0;
636 ** An instance of this object holds information (beyond pParse and pSelect)
637 ** needed to load the next result row that is to be added to the sorter.
639 typedef struct RowLoadInfo RowLoadInfo;
640 struct RowLoadInfo {
641 int regResult; /* Store results in array of registers here */
642 u8 ecelFlags; /* Flag argument to ExprCodeExprList() */
643 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
644 ExprList *pExtra; /* Extra columns needed by sorter refs */
645 int regExtraResult; /* Where to load the extra columns */
646 #endif
650 ** This routine does the work of loading query data into an array of
651 ** registers so that it can be added to the sorter.
653 static void innerLoopLoadRow(
654 Parse *pParse, /* Statement under construction */
655 Select *pSelect, /* The query being coded */
656 RowLoadInfo *pInfo /* Info needed to complete the row load */
658 sqlite3ExprCodeExprList(pParse, pSelect->pEList, pInfo->regResult,
659 0, pInfo->ecelFlags);
660 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
661 if( pInfo->pExtra ){
662 sqlite3ExprCodeExprList(pParse, pInfo->pExtra, pInfo->regExtraResult, 0, 0);
663 sqlite3ExprListDelete(pParse->db, pInfo->pExtra);
665 #endif
669 ** Code the OP_MakeRecord instruction that generates the entry to be
670 ** added into the sorter.
672 ** Return the register in which the result is stored.
674 static int makeSorterRecord(
675 Parse *pParse,
676 SortCtx *pSort,
677 Select *pSelect,
678 int regBase,
679 int nBase
681 int nOBSat = pSort->nOBSat;
682 Vdbe *v = pParse->pVdbe;
683 int regOut = ++pParse->nMem;
684 if( pSort->pDeferredRowLoad ){
685 innerLoopLoadRow(pParse, pSelect, pSort->pDeferredRowLoad);
687 sqlite3VdbeAddOp3(v, OP_MakeRecord, regBase+nOBSat, nBase-nOBSat, regOut);
688 return regOut;
692 ** Generate code that will push the record in registers regData
693 ** through regData+nData-1 onto the sorter.
695 static void pushOntoSorter(
696 Parse *pParse, /* Parser context */
697 SortCtx *pSort, /* Information about the ORDER BY clause */
698 Select *pSelect, /* The whole SELECT statement */
699 int regData, /* First register holding data to be sorted */
700 int regOrigData, /* First register holding data before packing */
701 int nData, /* Number of elements in the regData data array */
702 int nPrefixReg /* No. of reg prior to regData available for use */
704 Vdbe *v = pParse->pVdbe; /* Stmt under construction */
705 int bSeq = ((pSort->sortFlags & SORTFLAG_UseSorter)==0);
706 int nExpr = pSort->pOrderBy->nExpr; /* No. of ORDER BY terms */
707 int nBase = nExpr + bSeq + nData; /* Fields in sorter record */
708 int regBase; /* Regs for sorter record */
709 int regRecord = 0; /* Assembled sorter record */
710 int nOBSat = pSort->nOBSat; /* ORDER BY terms to skip */
711 int op; /* Opcode to add sorter record to sorter */
712 int iLimit; /* LIMIT counter */
713 int iSkip = 0; /* End of the sorter insert loop */
715 assert( bSeq==0 || bSeq==1 );
717 /* Three cases:
718 ** (1) The data to be sorted has already been packed into a Record
719 ** by a prior OP_MakeRecord. In this case nData==1 and regData
720 ** will be completely unrelated to regOrigData.
721 ** (2) All output columns are included in the sort record. In that
722 ** case regData==regOrigData.
723 ** (3) Some output columns are omitted from the sort record due to
724 ** the SQLITE_ENABLE_SORTER_REFERENCES optimization, or due to the
725 ** SQLITE_ECEL_OMITREF optimization, or due to the
726 ** SortCtx.pDeferredRowLoad optimization. In any of these cases
727 ** regOrigData is 0 to prevent this routine from trying to copy
728 ** values that might not yet exist.
730 assert( nData==1 || regData==regOrigData || regOrigData==0 );
732 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS
733 pSort->addrPush = sqlite3VdbeCurrentAddr(v);
734 #endif
736 if( nPrefixReg ){
737 assert( nPrefixReg==nExpr+bSeq );
738 regBase = regData - nPrefixReg;
739 }else{
740 regBase = pParse->nMem + 1;
741 pParse->nMem += nBase;
743 assert( pSelect->iOffset==0 || pSelect->iLimit!=0 );
744 iLimit = pSelect->iOffset ? pSelect->iOffset+1 : pSelect->iLimit;
745 pSort->labelDone = sqlite3VdbeMakeLabel(pParse);
746 sqlite3ExprCodeExprList(pParse, pSort->pOrderBy, regBase, regOrigData,
747 SQLITE_ECEL_DUP | (regOrigData? SQLITE_ECEL_REF : 0));
748 if( bSeq ){
749 sqlite3VdbeAddOp2(v, OP_Sequence, pSort->iECursor, regBase+nExpr);
751 if( nPrefixReg==0 && nData>0 ){
752 sqlite3ExprCodeMove(pParse, regData, regBase+nExpr+bSeq, nData);
754 if( nOBSat>0 ){
755 int regPrevKey; /* The first nOBSat columns of the previous row */
756 int addrFirst; /* Address of the OP_IfNot opcode */
757 int addrJmp; /* Address of the OP_Jump opcode */
758 VdbeOp *pOp; /* Opcode that opens the sorter */
759 int nKey; /* Number of sorting key columns, including OP_Sequence */
760 KeyInfo *pKI; /* Original KeyInfo on the sorter table */
762 regRecord = makeSorterRecord(pParse, pSort, pSelect, regBase, nBase);
763 regPrevKey = pParse->nMem+1;
764 pParse->nMem += pSort->nOBSat;
765 nKey = nExpr - pSort->nOBSat + bSeq;
766 if( bSeq ){
767 addrFirst = sqlite3VdbeAddOp1(v, OP_IfNot, regBase+nExpr);
768 }else{
769 addrFirst = sqlite3VdbeAddOp1(v, OP_SequenceTest, pSort->iECursor);
771 VdbeCoverage(v);
772 sqlite3VdbeAddOp3(v, OP_Compare, regPrevKey, regBase, pSort->nOBSat);
773 pOp = sqlite3VdbeGetOp(v, pSort->addrSortIndex);
774 if( pParse->db->mallocFailed ) return;
775 pOp->p2 = nKey + nData;
776 pKI = pOp->p4.pKeyInfo;
777 memset(pKI->aSortFlags, 0, pKI->nKeyField); /* Makes OP_Jump testable */
778 sqlite3VdbeChangeP4(v, -1, (char*)pKI, P4_KEYINFO);
779 testcase( pKI->nAllField > pKI->nKeyField+2 );
780 pOp->p4.pKeyInfo = sqlite3KeyInfoFromExprList(pParse,pSort->pOrderBy,nOBSat,
781 pKI->nAllField-pKI->nKeyField-1);
782 pOp = 0; /* Ensure pOp not used after sqlite3VdbeAddOp3() */
783 addrJmp = sqlite3VdbeCurrentAddr(v);
784 sqlite3VdbeAddOp3(v, OP_Jump, addrJmp+1, 0, addrJmp+1); VdbeCoverage(v);
785 pSort->labelBkOut = sqlite3VdbeMakeLabel(pParse);
786 pSort->regReturn = ++pParse->nMem;
787 sqlite3VdbeAddOp2(v, OP_Gosub, pSort->regReturn, pSort->labelBkOut);
788 sqlite3VdbeAddOp1(v, OP_ResetSorter, pSort->iECursor);
789 if( iLimit ){
790 sqlite3VdbeAddOp2(v, OP_IfNot, iLimit, pSort->labelDone);
791 VdbeCoverage(v);
793 sqlite3VdbeJumpHere(v, addrFirst);
794 sqlite3ExprCodeMove(pParse, regBase, regPrevKey, pSort->nOBSat);
795 sqlite3VdbeJumpHere(v, addrJmp);
797 if( iLimit ){
798 /* At this point the values for the new sorter entry are stored
799 ** in an array of registers. They need to be composed into a record
800 ** and inserted into the sorter if either (a) there are currently
801 ** less than LIMIT+OFFSET items or (b) the new record is smaller than
802 ** the largest record currently in the sorter. If (b) is true and there
803 ** are already LIMIT+OFFSET items in the sorter, delete the largest
804 ** entry before inserting the new one. This way there are never more
805 ** than LIMIT+OFFSET items in the sorter.
807 ** If the new record does not need to be inserted into the sorter,
808 ** jump to the next iteration of the loop. If the pSort->labelOBLopt
809 ** value is not zero, then it is a label of where to jump. Otherwise,
810 ** just bypass the row insert logic. See the header comment on the
811 ** sqlite3WhereOrderByLimitOptLabel() function for additional info.
813 int iCsr = pSort->iECursor;
814 sqlite3VdbeAddOp2(v, OP_IfNotZero, iLimit, sqlite3VdbeCurrentAddr(v)+4);
815 VdbeCoverage(v);
816 sqlite3VdbeAddOp2(v, OP_Last, iCsr, 0);
817 iSkip = sqlite3VdbeAddOp4Int(v, OP_IdxLE,
818 iCsr, 0, regBase+nOBSat, nExpr-nOBSat);
819 VdbeCoverage(v);
820 sqlite3VdbeAddOp1(v, OP_Delete, iCsr);
822 if( regRecord==0 ){
823 regRecord = makeSorterRecord(pParse, pSort, pSelect, regBase, nBase);
825 if( pSort->sortFlags & SORTFLAG_UseSorter ){
826 op = OP_SorterInsert;
827 }else{
828 op = OP_IdxInsert;
830 sqlite3VdbeAddOp4Int(v, op, pSort->iECursor, regRecord,
831 regBase+nOBSat, nBase-nOBSat);
832 if( iSkip ){
833 sqlite3VdbeChangeP2(v, iSkip,
834 pSort->labelOBLopt ? pSort->labelOBLopt : sqlite3VdbeCurrentAddr(v));
836 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS
837 pSort->addrPushEnd = sqlite3VdbeCurrentAddr(v)-1;
838 #endif
842 ** Add code to implement the OFFSET
844 static void codeOffset(
845 Vdbe *v, /* Generate code into this VM */
846 int iOffset, /* Register holding the offset counter */
847 int iContinue /* Jump here to skip the current record */
849 if( iOffset>0 ){
850 sqlite3VdbeAddOp3(v, OP_IfPos, iOffset, iContinue, 1); VdbeCoverage(v);
851 VdbeComment((v, "OFFSET"));
856 ** Add code that will check to make sure the array of registers starting at
857 ** iMem form a distinct entry. This is used by both "SELECT DISTINCT ..." and
858 ** distinct aggregates ("SELECT count(DISTINCT <expr>) ..."). Three strategies
859 ** are available. Which is used depends on the value of parameter eTnctType,
860 ** as follows:
862 ** WHERE_DISTINCT_UNORDERED/WHERE_DISTINCT_NOOP:
863 ** Build an ephemeral table that contains all entries seen before and
864 ** skip entries which have been seen before.
866 ** Parameter iTab is the cursor number of an ephemeral table that must
867 ** be opened before the VM code generated by this routine is executed.
868 ** The ephemeral cursor table is queried for a record identical to the
869 ** record formed by the current array of registers. If one is found,
870 ** jump to VM address addrRepeat. Otherwise, insert a new record into
871 ** the ephemeral cursor and proceed.
873 ** The returned value in this case is a copy of parameter iTab.
875 ** WHERE_DISTINCT_ORDERED:
876 ** In this case rows are being delivered sorted order. The ephemeral
877 ** table is not required. Instead, the current set of values
878 ** is compared against previous row. If they match, the new row
879 ** is not distinct and control jumps to VM address addrRepeat. Otherwise,
880 ** the VM program proceeds with processing the new row.
882 ** The returned value in this case is the register number of the first
883 ** in an array of registers used to store the previous result row so that
884 ** it can be compared to the next. The caller must ensure that this
885 ** register is initialized to NULL. (The fixDistinctOpenEph() routine
886 ** will take care of this initialization.)
888 ** WHERE_DISTINCT_UNIQUE:
889 ** In this case it has already been determined that the rows are distinct.
890 ** No special action is required. The return value is zero.
892 ** Parameter pEList is the list of expressions used to generated the
893 ** contents of each row. It is used by this routine to determine (a)
894 ** how many elements there are in the array of registers and (b) the
895 ** collation sequences that should be used for the comparisons if
896 ** eTnctType is WHERE_DISTINCT_ORDERED.
898 static int codeDistinct(
899 Parse *pParse, /* Parsing and code generating context */
900 int eTnctType, /* WHERE_DISTINCT_* value */
901 int iTab, /* A sorting index used to test for distinctness */
902 int addrRepeat, /* Jump to here if not distinct */
903 ExprList *pEList, /* Expression for each element */
904 int regElem /* First element */
906 int iRet = 0;
907 int nResultCol = pEList->nExpr;
908 Vdbe *v = pParse->pVdbe;
910 switch( eTnctType ){
911 case WHERE_DISTINCT_ORDERED: {
912 int i;
913 int iJump; /* Jump destination */
914 int regPrev; /* Previous row content */
916 /* Allocate space for the previous row */
917 iRet = regPrev = pParse->nMem+1;
918 pParse->nMem += nResultCol;
920 iJump = sqlite3VdbeCurrentAddr(v) + nResultCol;
921 for(i=0; i<nResultCol; i++){
922 CollSeq *pColl = sqlite3ExprCollSeq(pParse, pEList->a[i].pExpr);
923 if( i<nResultCol-1 ){
924 sqlite3VdbeAddOp3(v, OP_Ne, regElem+i, iJump, regPrev+i);
925 VdbeCoverage(v);
926 }else{
927 sqlite3VdbeAddOp3(v, OP_Eq, regElem+i, addrRepeat, regPrev+i);
928 VdbeCoverage(v);
930 sqlite3VdbeChangeP4(v, -1, (const char *)pColl, P4_COLLSEQ);
931 sqlite3VdbeChangeP5(v, SQLITE_NULLEQ);
933 assert( sqlite3VdbeCurrentAddr(v)==iJump || pParse->db->mallocFailed );
934 sqlite3VdbeAddOp3(v, OP_Copy, regElem, regPrev, nResultCol-1);
935 break;
938 case WHERE_DISTINCT_UNIQUE: {
939 /* nothing to do */
940 break;
943 default: {
944 int r1 = sqlite3GetTempReg(pParse);
945 sqlite3VdbeAddOp4Int(v, OP_Found, iTab, addrRepeat, regElem, nResultCol);
946 VdbeCoverage(v);
947 sqlite3VdbeAddOp3(v, OP_MakeRecord, regElem, nResultCol, r1);
948 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iTab, r1, regElem, nResultCol);
949 sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT);
950 sqlite3ReleaseTempReg(pParse, r1);
951 iRet = iTab;
952 break;
956 return iRet;
960 ** This routine runs after codeDistinct(). It makes necessary
961 ** adjustments to the OP_OpenEphemeral opcode that the codeDistinct()
962 ** routine made use of. This processing must be done separately since
963 ** sometimes codeDistinct is called before the OP_OpenEphemeral is actually
964 ** laid down.
966 ** WHERE_DISTINCT_NOOP:
967 ** WHERE_DISTINCT_UNORDERED:
969 ** No adjustments necessary. This function is a no-op.
971 ** WHERE_DISTINCT_UNIQUE:
973 ** The ephemeral table is not needed. So change the
974 ** OP_OpenEphemeral opcode into an OP_Noop.
976 ** WHERE_DISTINCT_ORDERED:
978 ** The ephemeral table is not needed. But we do need register
979 ** iVal to be initialized to NULL. So change the OP_OpenEphemeral
980 ** into an OP_Null on the iVal register.
982 static void fixDistinctOpenEph(
983 Parse *pParse, /* Parsing and code generating context */
984 int eTnctType, /* WHERE_DISTINCT_* value */
985 int iVal, /* Value returned by codeDistinct() */
986 int iOpenEphAddr /* Address of OP_OpenEphemeral instruction for iTab */
988 if( pParse->nErr==0
989 && (eTnctType==WHERE_DISTINCT_UNIQUE || eTnctType==WHERE_DISTINCT_ORDERED)
991 Vdbe *v = pParse->pVdbe;
992 sqlite3VdbeChangeToNoop(v, iOpenEphAddr);
993 if( sqlite3VdbeGetOp(v, iOpenEphAddr+1)->opcode==OP_Explain ){
994 sqlite3VdbeChangeToNoop(v, iOpenEphAddr+1);
996 if( eTnctType==WHERE_DISTINCT_ORDERED ){
997 /* Change the OP_OpenEphemeral to an OP_Null that sets the MEM_Cleared
998 ** bit on the first register of the previous value. This will cause the
999 ** OP_Ne added in codeDistinct() to always fail on the first iteration of
1000 ** the loop even if the first row is all NULLs. */
1001 VdbeOp *pOp = sqlite3VdbeGetOp(v, iOpenEphAddr);
1002 pOp->opcode = OP_Null;
1003 pOp->p1 = 1;
1004 pOp->p2 = iVal;
1009 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
1011 ** This function is called as part of inner-loop generation for a SELECT
1012 ** statement with an ORDER BY that is not optimized by an index. It
1013 ** determines the expressions, if any, that the sorter-reference
1014 ** optimization should be used for. The sorter-reference optimization
1015 ** is used for SELECT queries like:
1017 ** SELECT a, bigblob FROM t1 ORDER BY a LIMIT 10
1019 ** If the optimization is used for expression "bigblob", then instead of
1020 ** storing values read from that column in the sorter records, the PK of
1021 ** the row from table t1 is stored instead. Then, as records are extracted from
1022 ** the sorter to return to the user, the required value of bigblob is
1023 ** retrieved directly from table t1. If the values are very large, this
1024 ** can be more efficient than storing them directly in the sorter records.
1026 ** The ExprList_item.fg.bSorterRef flag is set for each expression in pEList
1027 ** for which the sorter-reference optimization should be enabled.
1028 ** Additionally, the pSort->aDefer[] array is populated with entries
1029 ** for all cursors required to evaluate all selected expressions. Finally.
1030 ** output variable (*ppExtra) is set to an expression list containing
1031 ** expressions for all extra PK values that should be stored in the
1032 ** sorter records.
1034 static void selectExprDefer(
1035 Parse *pParse, /* Leave any error here */
1036 SortCtx *pSort, /* Sorter context */
1037 ExprList *pEList, /* Expressions destined for sorter */
1038 ExprList **ppExtra /* Expressions to append to sorter record */
1040 int i;
1041 int nDefer = 0;
1042 ExprList *pExtra = 0;
1043 for(i=0; i<pEList->nExpr; i++){
1044 struct ExprList_item *pItem = &pEList->a[i];
1045 if( pItem->u.x.iOrderByCol==0 ){
1046 Expr *pExpr = pItem->pExpr;
1047 Table *pTab;
1048 if( pExpr->op==TK_COLUMN
1049 && pExpr->iColumn>=0
1050 && ALWAYS( ExprUseYTab(pExpr) )
1051 && (pTab = pExpr->y.pTab)!=0
1052 && IsOrdinaryTable(pTab)
1053 && (pTab->aCol[pExpr->iColumn].colFlags & COLFLAG_SORTERREF)!=0
1055 int j;
1056 for(j=0; j<nDefer; j++){
1057 if( pSort->aDefer[j].iCsr==pExpr->iTable ) break;
1059 if( j==nDefer ){
1060 if( nDefer==ArraySize(pSort->aDefer) ){
1061 continue;
1062 }else{
1063 int nKey = 1;
1064 int k;
1065 Index *pPk = 0;
1066 if( !HasRowid(pTab) ){
1067 pPk = sqlite3PrimaryKeyIndex(pTab);
1068 nKey = pPk->nKeyCol;
1070 for(k=0; k<nKey; k++){
1071 Expr *pNew = sqlite3PExpr(pParse, TK_COLUMN, 0, 0);
1072 if( pNew ){
1073 pNew->iTable = pExpr->iTable;
1074 assert( ExprUseYTab(pNew) );
1075 pNew->y.pTab = pExpr->y.pTab;
1076 pNew->iColumn = pPk ? pPk->aiColumn[k] : -1;
1077 pExtra = sqlite3ExprListAppend(pParse, pExtra, pNew);
1080 pSort->aDefer[nDefer].pTab = pExpr->y.pTab;
1081 pSort->aDefer[nDefer].iCsr = pExpr->iTable;
1082 pSort->aDefer[nDefer].nKey = nKey;
1083 nDefer++;
1086 pItem->fg.bSorterRef = 1;
1090 pSort->nDefer = (u8)nDefer;
1091 *ppExtra = pExtra;
1093 #endif
1096 ** This routine generates the code for the inside of the inner loop
1097 ** of a SELECT.
1099 ** If srcTab is negative, then the p->pEList expressions
1100 ** are evaluated in order to get the data for this row. If srcTab is
1101 ** zero or more, then data is pulled from srcTab and p->pEList is used only
1102 ** to get the number of columns and the collation sequence for each column.
1104 static void selectInnerLoop(
1105 Parse *pParse, /* The parser context */
1106 Select *p, /* The complete select statement being coded */
1107 int srcTab, /* Pull data from this table if non-negative */
1108 SortCtx *pSort, /* If not NULL, info on how to process ORDER BY */
1109 DistinctCtx *pDistinct, /* If not NULL, info on how to process DISTINCT */
1110 SelectDest *pDest, /* How to dispose of the results */
1111 int iContinue, /* Jump here to continue with next row */
1112 int iBreak /* Jump here to break out of the inner loop */
1114 Vdbe *v = pParse->pVdbe;
1115 int i;
1116 int hasDistinct; /* True if the DISTINCT keyword is present */
1117 int eDest = pDest->eDest; /* How to dispose of results */
1118 int iParm = pDest->iSDParm; /* First argument to disposal method */
1119 int nResultCol; /* Number of result columns */
1120 int nPrefixReg = 0; /* Number of extra registers before regResult */
1121 RowLoadInfo sRowLoadInfo; /* Info for deferred row loading */
1123 /* Usually, regResult is the first cell in an array of memory cells
1124 ** containing the current result row. In this case regOrig is set to the
1125 ** same value. However, if the results are being sent to the sorter, the
1126 ** values for any expressions that are also part of the sort-key are omitted
1127 ** from this array. In this case regOrig is set to zero. */
1128 int regResult; /* Start of memory holding current results */
1129 int regOrig; /* Start of memory holding full result (or 0) */
1131 assert( v );
1132 assert( p->pEList!=0 );
1133 hasDistinct = pDistinct ? pDistinct->eTnctType : WHERE_DISTINCT_NOOP;
1134 if( pSort && pSort->pOrderBy==0 ) pSort = 0;
1135 if( pSort==0 && !hasDistinct ){
1136 assert( iContinue!=0 );
1137 codeOffset(v, p->iOffset, iContinue);
1140 /* Pull the requested columns.
1142 nResultCol = p->pEList->nExpr;
1144 if( pDest->iSdst==0 ){
1145 if( pSort ){
1146 nPrefixReg = pSort->pOrderBy->nExpr;
1147 if( !(pSort->sortFlags & SORTFLAG_UseSorter) ) nPrefixReg++;
1148 pParse->nMem += nPrefixReg;
1150 pDest->iSdst = pParse->nMem+1;
1151 pParse->nMem += nResultCol;
1152 }else if( pDest->iSdst+nResultCol > pParse->nMem ){
1153 /* This is an error condition that can result, for example, when a SELECT
1154 ** on the right-hand side of an INSERT contains more result columns than
1155 ** there are columns in the table on the left. The error will be caught
1156 ** and reported later. But we need to make sure enough memory is allocated
1157 ** to avoid other spurious errors in the meantime. */
1158 pParse->nMem += nResultCol;
1160 pDest->nSdst = nResultCol;
1161 regOrig = regResult = pDest->iSdst;
1162 if( srcTab>=0 ){
1163 for(i=0; i<nResultCol; i++){
1164 sqlite3VdbeAddOp3(v, OP_Column, srcTab, i, regResult+i);
1165 VdbeComment((v, "%s", p->pEList->a[i].zEName));
1167 }else if( eDest!=SRT_Exists ){
1168 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
1169 ExprList *pExtra = 0;
1170 #endif
1171 /* If the destination is an EXISTS(...) expression, the actual
1172 ** values returned by the SELECT are not required.
1174 u8 ecelFlags; /* "ecel" is an abbreviation of "ExprCodeExprList" */
1175 ExprList *pEList;
1176 if( eDest==SRT_Mem || eDest==SRT_Output || eDest==SRT_Coroutine ){
1177 ecelFlags = SQLITE_ECEL_DUP;
1178 }else{
1179 ecelFlags = 0;
1181 if( pSort && hasDistinct==0 && eDest!=SRT_EphemTab && eDest!=SRT_Table ){
1182 /* For each expression in p->pEList that is a copy of an expression in
1183 ** the ORDER BY clause (pSort->pOrderBy), set the associated
1184 ** iOrderByCol value to one more than the index of the ORDER BY
1185 ** expression within the sort-key that pushOntoSorter() will generate.
1186 ** This allows the p->pEList field to be omitted from the sorted record,
1187 ** saving space and CPU cycles. */
1188 ecelFlags |= (SQLITE_ECEL_OMITREF|SQLITE_ECEL_REF);
1190 for(i=pSort->nOBSat; i<pSort->pOrderBy->nExpr; i++){
1191 int j;
1192 if( (j = pSort->pOrderBy->a[i].u.x.iOrderByCol)>0 ){
1193 p->pEList->a[j-1].u.x.iOrderByCol = i+1-pSort->nOBSat;
1196 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
1197 selectExprDefer(pParse, pSort, p->pEList, &pExtra);
1198 if( pExtra && pParse->db->mallocFailed==0 ){
1199 /* If there are any extra PK columns to add to the sorter records,
1200 ** allocate extra memory cells and adjust the OpenEphemeral
1201 ** instruction to account for the larger records. This is only
1202 ** required if there are one or more WITHOUT ROWID tables with
1203 ** composite primary keys in the SortCtx.aDefer[] array. */
1204 VdbeOp *pOp = sqlite3VdbeGetOp(v, pSort->addrSortIndex);
1205 pOp->p2 += (pExtra->nExpr - pSort->nDefer);
1206 pOp->p4.pKeyInfo->nAllField += (pExtra->nExpr - pSort->nDefer);
1207 pParse->nMem += pExtra->nExpr;
1209 #endif
1211 /* Adjust nResultCol to account for columns that are omitted
1212 ** from the sorter by the optimizations in this branch */
1213 pEList = p->pEList;
1214 for(i=0; i<pEList->nExpr; i++){
1215 if( pEList->a[i].u.x.iOrderByCol>0
1216 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
1217 || pEList->a[i].fg.bSorterRef
1218 #endif
1220 nResultCol--;
1221 regOrig = 0;
1225 testcase( regOrig );
1226 testcase( eDest==SRT_Set );
1227 testcase( eDest==SRT_Mem );
1228 testcase( eDest==SRT_Coroutine );
1229 testcase( eDest==SRT_Output );
1230 assert( eDest==SRT_Set || eDest==SRT_Mem
1231 || eDest==SRT_Coroutine || eDest==SRT_Output
1232 || eDest==SRT_Upfrom );
1234 sRowLoadInfo.regResult = regResult;
1235 sRowLoadInfo.ecelFlags = ecelFlags;
1236 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
1237 sRowLoadInfo.pExtra = pExtra;
1238 sRowLoadInfo.regExtraResult = regResult + nResultCol;
1239 if( pExtra ) nResultCol += pExtra->nExpr;
1240 #endif
1241 if( p->iLimit
1242 && (ecelFlags & SQLITE_ECEL_OMITREF)!=0
1243 && nPrefixReg>0
1245 assert( pSort!=0 );
1246 assert( hasDistinct==0 );
1247 pSort->pDeferredRowLoad = &sRowLoadInfo;
1248 regOrig = 0;
1249 }else{
1250 innerLoopLoadRow(pParse, p, &sRowLoadInfo);
1254 /* If the DISTINCT keyword was present on the SELECT statement
1255 ** and this row has been seen before, then do not make this row
1256 ** part of the result.
1258 if( hasDistinct ){
1259 int eType = pDistinct->eTnctType;
1260 int iTab = pDistinct->tabTnct;
1261 assert( nResultCol==p->pEList->nExpr );
1262 iTab = codeDistinct(pParse, eType, iTab, iContinue, p->pEList, regResult);
1263 fixDistinctOpenEph(pParse, eType, iTab, pDistinct->addrTnct);
1264 if( pSort==0 ){
1265 codeOffset(v, p->iOffset, iContinue);
1269 switch( eDest ){
1270 /* In this mode, write each query result to the key of the temporary
1271 ** table iParm.
1273 #ifndef SQLITE_OMIT_COMPOUND_SELECT
1274 case SRT_Union: {
1275 int r1;
1276 r1 = sqlite3GetTempReg(pParse);
1277 sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nResultCol, r1);
1278 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, r1, regResult, nResultCol);
1279 sqlite3ReleaseTempReg(pParse, r1);
1280 break;
1283 /* Construct a record from the query result, but instead of
1284 ** saving that record, use it as a key to delete elements from
1285 ** the temporary table iParm.
1287 case SRT_Except: {
1288 sqlite3VdbeAddOp3(v, OP_IdxDelete, iParm, regResult, nResultCol);
1289 break;
1291 #endif /* SQLITE_OMIT_COMPOUND_SELECT */
1293 /* Store the result as data using a unique key.
1295 case SRT_Fifo:
1296 case SRT_DistFifo:
1297 case SRT_Table:
1298 case SRT_EphemTab: {
1299 int r1 = sqlite3GetTempRange(pParse, nPrefixReg+1);
1300 testcase( eDest==SRT_Table );
1301 testcase( eDest==SRT_EphemTab );
1302 testcase( eDest==SRT_Fifo );
1303 testcase( eDest==SRT_DistFifo );
1304 sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nResultCol, r1+nPrefixReg);
1305 #if !defined(SQLITE_ENABLE_NULL_TRIM) && defined(SQLITE_DEBUG)
1306 /* A destination of SRT_Table and a non-zero iSDParm2 parameter means
1307 ** that this is an "UPDATE ... FROM" on a virtual table or view. In this
1308 ** case set the p5 parameter of the OP_MakeRecord to OPFLAG_NOCHNG_MAGIC.
1309 ** This does not affect operation in any way - it just allows MakeRecord
1310 ** to process OPFLAG_NOCHANGE values without an assert() failing. */
1311 if( eDest==SRT_Table && pDest->iSDParm2 ){
1312 sqlite3VdbeChangeP5(v, OPFLAG_NOCHNG_MAGIC);
1314 #endif
1315 #ifndef SQLITE_OMIT_CTE
1316 if( eDest==SRT_DistFifo ){
1317 /* If the destination is DistFifo, then cursor (iParm+1) is open
1318 ** on an ephemeral index. If the current row is already present
1319 ** in the index, do not write it to the output. If not, add the
1320 ** current row to the index and proceed with writing it to the
1321 ** output table as well. */
1322 int addr = sqlite3VdbeCurrentAddr(v) + 4;
1323 sqlite3VdbeAddOp4Int(v, OP_Found, iParm+1, addr, r1, 0);
1324 VdbeCoverage(v);
1325 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm+1, r1,regResult,nResultCol);
1326 assert( pSort==0 );
1328 #endif
1329 if( pSort ){
1330 assert( regResult==regOrig );
1331 pushOntoSorter(pParse, pSort, p, r1+nPrefixReg, regOrig, 1, nPrefixReg);
1332 }else{
1333 int r2 = sqlite3GetTempReg(pParse);
1334 sqlite3VdbeAddOp2(v, OP_NewRowid, iParm, r2);
1335 sqlite3VdbeAddOp3(v, OP_Insert, iParm, r1, r2);
1336 sqlite3VdbeChangeP5(v, OPFLAG_APPEND);
1337 sqlite3ReleaseTempReg(pParse, r2);
1339 sqlite3ReleaseTempRange(pParse, r1, nPrefixReg+1);
1340 break;
1343 case SRT_Upfrom: {
1344 if( pSort ){
1345 pushOntoSorter(
1346 pParse, pSort, p, regResult, regOrig, nResultCol, nPrefixReg);
1347 }else{
1348 int i2 = pDest->iSDParm2;
1349 int r1 = sqlite3GetTempReg(pParse);
1351 /* If the UPDATE FROM join is an aggregate that matches no rows, it
1352 ** might still be trying to return one row, because that is what
1353 ** aggregates do. Don't record that empty row in the output table. */
1354 sqlite3VdbeAddOp2(v, OP_IsNull, regResult, iBreak); VdbeCoverage(v);
1356 sqlite3VdbeAddOp3(v, OP_MakeRecord,
1357 regResult+(i2<0), nResultCol-(i2<0), r1);
1358 if( i2<0 ){
1359 sqlite3VdbeAddOp3(v, OP_Insert, iParm, r1, regResult);
1360 }else{
1361 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, r1, regResult, i2);
1364 break;
1367 #ifndef SQLITE_OMIT_SUBQUERY
1368 /* If we are creating a set for an "expr IN (SELECT ...)" construct,
1369 ** then there should be a single item on the stack. Write this
1370 ** item into the set table with bogus data.
1372 case SRT_Set: {
1373 if( pSort ){
1374 /* At first glance you would think we could optimize out the
1375 ** ORDER BY in this case since the order of entries in the set
1376 ** does not matter. But there might be a LIMIT clause, in which
1377 ** case the order does matter */
1378 pushOntoSorter(
1379 pParse, pSort, p, regResult, regOrig, nResultCol, nPrefixReg);
1380 pDest->iSDParm2 = 0; /* Signal that any Bloom filter is unpopulated */
1381 }else{
1382 int r1 = sqlite3GetTempReg(pParse);
1383 assert( sqlite3Strlen30(pDest->zAffSdst)==nResultCol );
1384 sqlite3VdbeAddOp4(v, OP_MakeRecord, regResult, nResultCol,
1385 r1, pDest->zAffSdst, nResultCol);
1386 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, r1, regResult, nResultCol);
1387 if( pDest->iSDParm2 ){
1388 sqlite3VdbeAddOp4Int(v, OP_FilterAdd, pDest->iSDParm2, 0,
1389 regResult, nResultCol);
1390 ExplainQueryPlan((pParse, 0, "CREATE BLOOM FILTER"));
1392 sqlite3ReleaseTempReg(pParse, r1);
1394 break;
1398 /* If any row exist in the result set, record that fact and abort.
1400 case SRT_Exists: {
1401 sqlite3VdbeAddOp2(v, OP_Integer, 1, iParm);
1402 /* The LIMIT clause will terminate the loop for us */
1403 break;
1406 /* If this is a scalar select that is part of an expression, then
1407 ** store the results in the appropriate memory cell or array of
1408 ** memory cells and break out of the scan loop.
1410 case SRT_Mem: {
1411 if( pSort ){
1412 assert( nResultCol<=pDest->nSdst );
1413 pushOntoSorter(
1414 pParse, pSort, p, regResult, regOrig, nResultCol, nPrefixReg);
1415 }else{
1416 assert( nResultCol==pDest->nSdst );
1417 assert( regResult==iParm );
1418 /* The LIMIT clause will jump out of the loop for us */
1420 break;
1422 #endif /* #ifndef SQLITE_OMIT_SUBQUERY */
1424 case SRT_Coroutine: /* Send data to a co-routine */
1425 case SRT_Output: { /* Return the results */
1426 testcase( eDest==SRT_Coroutine );
1427 testcase( eDest==SRT_Output );
1428 if( pSort ){
1429 pushOntoSorter(pParse, pSort, p, regResult, regOrig, nResultCol,
1430 nPrefixReg);
1431 }else if( eDest==SRT_Coroutine ){
1432 sqlite3VdbeAddOp1(v, OP_Yield, pDest->iSDParm);
1433 }else{
1434 sqlite3VdbeAddOp2(v, OP_ResultRow, regResult, nResultCol);
1436 break;
1439 #ifndef SQLITE_OMIT_CTE
1440 /* Write the results into a priority queue that is order according to
1441 ** pDest->pOrderBy (in pSO). pDest->iSDParm (in iParm) is the cursor for an
1442 ** index with pSO->nExpr+2 columns. Build a key using pSO for the first
1443 ** pSO->nExpr columns, then make sure all keys are unique by adding a
1444 ** final OP_Sequence column. The last column is the record as a blob.
1446 case SRT_DistQueue:
1447 case SRT_Queue: {
1448 int nKey;
1449 int r1, r2, r3;
1450 int addrTest = 0;
1451 ExprList *pSO;
1452 pSO = pDest->pOrderBy;
1453 assert( pSO );
1454 nKey = pSO->nExpr;
1455 r1 = sqlite3GetTempReg(pParse);
1456 r2 = sqlite3GetTempRange(pParse, nKey+2);
1457 r3 = r2+nKey+1;
1458 if( eDest==SRT_DistQueue ){
1459 /* If the destination is DistQueue, then cursor (iParm+1) is open
1460 ** on a second ephemeral index that holds all values every previously
1461 ** added to the queue. */
1462 addrTest = sqlite3VdbeAddOp4Int(v, OP_Found, iParm+1, 0,
1463 regResult, nResultCol);
1464 VdbeCoverage(v);
1466 sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nResultCol, r3);
1467 if( eDest==SRT_DistQueue ){
1468 sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm+1, r3);
1469 sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT);
1471 for(i=0; i<nKey; i++){
1472 sqlite3VdbeAddOp2(v, OP_SCopy,
1473 regResult + pSO->a[i].u.x.iOrderByCol - 1,
1474 r2+i);
1476 sqlite3VdbeAddOp2(v, OP_Sequence, iParm, r2+nKey);
1477 sqlite3VdbeAddOp3(v, OP_MakeRecord, r2, nKey+2, r1);
1478 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, r1, r2, nKey+2);
1479 if( addrTest ) sqlite3VdbeJumpHere(v, addrTest);
1480 sqlite3ReleaseTempReg(pParse, r1);
1481 sqlite3ReleaseTempRange(pParse, r2, nKey+2);
1482 break;
1484 #endif /* SQLITE_OMIT_CTE */
1488 #if !defined(SQLITE_OMIT_TRIGGER)
1489 /* Discard the results. This is used for SELECT statements inside
1490 ** the body of a TRIGGER. The purpose of such selects is to call
1491 ** user-defined functions that have side effects. We do not care
1492 ** about the actual results of the select.
1494 default: {
1495 assert( eDest==SRT_Discard );
1496 break;
1498 #endif
1501 /* Jump to the end of the loop if the LIMIT is reached. Except, if
1502 ** there is a sorter, in which case the sorter has already limited
1503 ** the output for us.
1505 if( pSort==0 && p->iLimit ){
1506 sqlite3VdbeAddOp2(v, OP_DecrJumpZero, p->iLimit, iBreak); VdbeCoverage(v);
1511 ** Allocate a KeyInfo object sufficient for an index of N key columns and
1512 ** X extra columns.
1514 KeyInfo *sqlite3KeyInfoAlloc(sqlite3 *db, int N, int X){
1515 int nExtra = (N+X)*(sizeof(CollSeq*)+1) - sizeof(CollSeq*);
1516 KeyInfo *p = sqlite3DbMallocRawNN(db, sizeof(KeyInfo) + nExtra);
1517 if( p ){
1518 p->aSortFlags = (u8*)&p->aColl[N+X];
1519 p->nKeyField = (u16)N;
1520 p->nAllField = (u16)(N+X);
1521 p->enc = ENC(db);
1522 p->db = db;
1523 p->nRef = 1;
1524 memset(&p[1], 0, nExtra);
1525 }else{
1526 return (KeyInfo*)sqlite3OomFault(db);
1528 return p;
1532 ** Deallocate a KeyInfo object
1534 void sqlite3KeyInfoUnref(KeyInfo *p){
1535 if( p ){
1536 assert( p->db!=0 );
1537 assert( p->nRef>0 );
1538 p->nRef--;
1539 if( p->nRef==0 ) sqlite3DbNNFreeNN(p->db, p);
1544 ** Make a new pointer to a KeyInfo object
1546 KeyInfo *sqlite3KeyInfoRef(KeyInfo *p){
1547 if( p ){
1548 assert( p->nRef>0 );
1549 p->nRef++;
1551 return p;
1554 #ifdef SQLITE_DEBUG
1556 ** Return TRUE if a KeyInfo object can be change. The KeyInfo object
1557 ** can only be changed if this is just a single reference to the object.
1559 ** This routine is used only inside of assert() statements.
1561 int sqlite3KeyInfoIsWriteable(KeyInfo *p){ return p->nRef==1; }
1562 #endif /* SQLITE_DEBUG */
1565 ** Given an expression list, generate a KeyInfo structure that records
1566 ** the collating sequence for each expression in that expression list.
1568 ** If the ExprList is an ORDER BY or GROUP BY clause then the resulting
1569 ** KeyInfo structure is appropriate for initializing a virtual index to
1570 ** implement that clause. If the ExprList is the result set of a SELECT
1571 ** then the KeyInfo structure is appropriate for initializing a virtual
1572 ** index to implement a DISTINCT test.
1574 ** Space to hold the KeyInfo structure is obtained from malloc. The calling
1575 ** function is responsible for seeing that this structure is eventually
1576 ** freed.
1578 KeyInfo *sqlite3KeyInfoFromExprList(
1579 Parse *pParse, /* Parsing context */
1580 ExprList *pList, /* Form the KeyInfo object from this ExprList */
1581 int iStart, /* Begin with this column of pList */
1582 int nExtra /* Add this many extra columns to the end */
1584 int nExpr;
1585 KeyInfo *pInfo;
1586 struct ExprList_item *pItem;
1587 sqlite3 *db = pParse->db;
1588 int i;
1590 nExpr = pList->nExpr;
1591 pInfo = sqlite3KeyInfoAlloc(db, nExpr-iStart, nExtra+1);
1592 if( pInfo ){
1593 assert( sqlite3KeyInfoIsWriteable(pInfo) );
1594 for(i=iStart, pItem=pList->a+iStart; i<nExpr; i++, pItem++){
1595 pInfo->aColl[i-iStart] = sqlite3ExprNNCollSeq(pParse, pItem->pExpr);
1596 pInfo->aSortFlags[i-iStart] = pItem->fg.sortFlags;
1599 return pInfo;
1603 ** Name of the connection operator, used for error messages.
1605 const char *sqlite3SelectOpName(int id){
1606 char *z;
1607 switch( id ){
1608 case TK_ALL: z = "UNION ALL"; break;
1609 case TK_INTERSECT: z = "INTERSECT"; break;
1610 case TK_EXCEPT: z = "EXCEPT"; break;
1611 default: z = "UNION"; break;
1613 return z;
1616 #ifndef SQLITE_OMIT_EXPLAIN
1618 ** Unless an "EXPLAIN QUERY PLAN" command is being processed, this function
1619 ** is a no-op. Otherwise, it adds a single row of output to the EQP result,
1620 ** where the caption is of the form:
1622 ** "USE TEMP B-TREE FOR xxx"
1624 ** where xxx is one of "DISTINCT", "ORDER BY" or "GROUP BY". Exactly which
1625 ** is determined by the zUsage argument.
1627 static void explainTempTable(Parse *pParse, const char *zUsage){
1628 ExplainQueryPlan((pParse, 0, "USE TEMP B-TREE FOR %s", zUsage));
1632 ** Assign expression b to lvalue a. A second, no-op, version of this macro
1633 ** is provided when SQLITE_OMIT_EXPLAIN is defined. This allows the code
1634 ** in sqlite3Select() to assign values to structure member variables that
1635 ** only exist if SQLITE_OMIT_EXPLAIN is not defined without polluting the
1636 ** code with #ifndef directives.
1638 # define explainSetInteger(a, b) a = b
1640 #else
1641 /* No-op versions of the explainXXX() functions and macros. */
1642 # define explainTempTable(y,z)
1643 # define explainSetInteger(y,z)
1644 #endif
1648 ** If the inner loop was generated using a non-null pOrderBy argument,
1649 ** then the results were placed in a sorter. After the loop is terminated
1650 ** we need to run the sorter and output the results. The following
1651 ** routine generates the code needed to do that.
1653 static void generateSortTail(
1654 Parse *pParse, /* Parsing context */
1655 Select *p, /* The SELECT statement */
1656 SortCtx *pSort, /* Information on the ORDER BY clause */
1657 int nColumn, /* Number of columns of data */
1658 SelectDest *pDest /* Write the sorted results here */
1660 Vdbe *v = pParse->pVdbe; /* The prepared statement */
1661 int addrBreak = pSort->labelDone; /* Jump here to exit loop */
1662 int addrContinue = sqlite3VdbeMakeLabel(pParse);/* Jump here for next cycle */
1663 int addr; /* Top of output loop. Jump for Next. */
1664 int addrOnce = 0;
1665 int iTab;
1666 ExprList *pOrderBy = pSort->pOrderBy;
1667 int eDest = pDest->eDest;
1668 int iParm = pDest->iSDParm;
1669 int regRow;
1670 int regRowid;
1671 int iCol;
1672 int nKey; /* Number of key columns in sorter record */
1673 int iSortTab; /* Sorter cursor to read from */
1674 int i;
1675 int bSeq; /* True if sorter record includes seq. no. */
1676 int nRefKey = 0;
1677 struct ExprList_item *aOutEx = p->pEList->a;
1678 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS
1679 int addrExplain; /* Address of OP_Explain instruction */
1680 #endif
1682 nKey = pOrderBy->nExpr - pSort->nOBSat;
1683 if( pSort->nOBSat==0 || nKey==1 ){
1684 ExplainQueryPlan2(addrExplain, (pParse, 0,
1685 "USE TEMP B-TREE FOR %sORDER BY", pSort->nOBSat?"LAST TERM OF ":""
1687 }else{
1688 ExplainQueryPlan2(addrExplain, (pParse, 0,
1689 "USE TEMP B-TREE FOR LAST %d TERMS OF ORDER BY", nKey
1692 sqlite3VdbeScanStatusRange(v, addrExplain,pSort->addrPush,pSort->addrPushEnd);
1693 sqlite3VdbeScanStatusCounters(v, addrExplain, addrExplain, pSort->addrPush);
1696 assert( addrBreak<0 );
1697 if( pSort->labelBkOut ){
1698 sqlite3VdbeAddOp2(v, OP_Gosub, pSort->regReturn, pSort->labelBkOut);
1699 sqlite3VdbeGoto(v, addrBreak);
1700 sqlite3VdbeResolveLabel(v, pSort->labelBkOut);
1703 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
1704 /* Open any cursors needed for sorter-reference expressions */
1705 for(i=0; i<pSort->nDefer; i++){
1706 Table *pTab = pSort->aDefer[i].pTab;
1707 int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
1708 sqlite3OpenTable(pParse, pSort->aDefer[i].iCsr, iDb, pTab, OP_OpenRead);
1709 nRefKey = MAX(nRefKey, pSort->aDefer[i].nKey);
1711 #endif
1713 iTab = pSort->iECursor;
1714 if( eDest==SRT_Output || eDest==SRT_Coroutine || eDest==SRT_Mem ){
1715 if( eDest==SRT_Mem && p->iOffset ){
1716 sqlite3VdbeAddOp2(v, OP_Null, 0, pDest->iSdst);
1718 regRowid = 0;
1719 regRow = pDest->iSdst;
1720 }else{
1721 regRowid = sqlite3GetTempReg(pParse);
1722 if( eDest==SRT_EphemTab || eDest==SRT_Table ){
1723 regRow = sqlite3GetTempReg(pParse);
1724 nColumn = 0;
1725 }else{
1726 regRow = sqlite3GetTempRange(pParse, nColumn);
1729 if( pSort->sortFlags & SORTFLAG_UseSorter ){
1730 int regSortOut = ++pParse->nMem;
1731 iSortTab = pParse->nTab++;
1732 if( pSort->labelBkOut ){
1733 addrOnce = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v);
1735 sqlite3VdbeAddOp3(v, OP_OpenPseudo, iSortTab, regSortOut,
1736 nKey+1+nColumn+nRefKey);
1737 if( addrOnce ) sqlite3VdbeJumpHere(v, addrOnce);
1738 addr = 1 + sqlite3VdbeAddOp2(v, OP_SorterSort, iTab, addrBreak);
1739 VdbeCoverage(v);
1740 assert( p->iLimit==0 && p->iOffset==0 );
1741 sqlite3VdbeAddOp3(v, OP_SorterData, iTab, regSortOut, iSortTab);
1742 bSeq = 0;
1743 }else{
1744 addr = 1 + sqlite3VdbeAddOp2(v, OP_Sort, iTab, addrBreak); VdbeCoverage(v);
1745 codeOffset(v, p->iOffset, addrContinue);
1746 iSortTab = iTab;
1747 bSeq = 1;
1748 if( p->iOffset>0 ){
1749 sqlite3VdbeAddOp2(v, OP_AddImm, p->iLimit, -1);
1752 for(i=0, iCol=nKey+bSeq-1; i<nColumn; i++){
1753 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
1754 if( aOutEx[i].fg.bSorterRef ) continue;
1755 #endif
1756 if( aOutEx[i].u.x.iOrderByCol==0 ) iCol++;
1758 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
1759 if( pSort->nDefer ){
1760 int iKey = iCol+1;
1761 int regKey = sqlite3GetTempRange(pParse, nRefKey);
1763 for(i=0; i<pSort->nDefer; i++){
1764 int iCsr = pSort->aDefer[i].iCsr;
1765 Table *pTab = pSort->aDefer[i].pTab;
1766 int nKey = pSort->aDefer[i].nKey;
1768 sqlite3VdbeAddOp1(v, OP_NullRow, iCsr);
1769 if( HasRowid(pTab) ){
1770 sqlite3VdbeAddOp3(v, OP_Column, iSortTab, iKey++, regKey);
1771 sqlite3VdbeAddOp3(v, OP_SeekRowid, iCsr,
1772 sqlite3VdbeCurrentAddr(v)+1, regKey);
1773 }else{
1774 int k;
1775 int iJmp;
1776 assert( sqlite3PrimaryKeyIndex(pTab)->nKeyCol==nKey );
1777 for(k=0; k<nKey; k++){
1778 sqlite3VdbeAddOp3(v, OP_Column, iSortTab, iKey++, regKey+k);
1780 iJmp = sqlite3VdbeCurrentAddr(v);
1781 sqlite3VdbeAddOp4Int(v, OP_SeekGE, iCsr, iJmp+2, regKey, nKey);
1782 sqlite3VdbeAddOp4Int(v, OP_IdxLE, iCsr, iJmp+3, regKey, nKey);
1783 sqlite3VdbeAddOp1(v, OP_NullRow, iCsr);
1786 sqlite3ReleaseTempRange(pParse, regKey, nRefKey);
1788 #endif
1789 for(i=nColumn-1; i>=0; i--){
1790 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
1791 if( aOutEx[i].fg.bSorterRef ){
1792 sqlite3ExprCode(pParse, aOutEx[i].pExpr, regRow+i);
1793 }else
1794 #endif
1796 int iRead;
1797 if( aOutEx[i].u.x.iOrderByCol ){
1798 iRead = aOutEx[i].u.x.iOrderByCol-1;
1799 }else{
1800 iRead = iCol--;
1802 sqlite3VdbeAddOp3(v, OP_Column, iSortTab, iRead, regRow+i);
1803 VdbeComment((v, "%s", aOutEx[i].zEName));
1806 sqlite3VdbeScanStatusRange(v, addrExplain, addrExplain, -1);
1807 switch( eDest ){
1808 case SRT_Table:
1809 case SRT_EphemTab: {
1810 sqlite3VdbeAddOp3(v, OP_Column, iSortTab, nKey+bSeq, regRow);
1811 sqlite3VdbeAddOp2(v, OP_NewRowid, iParm, regRowid);
1812 sqlite3VdbeAddOp3(v, OP_Insert, iParm, regRow, regRowid);
1813 sqlite3VdbeChangeP5(v, OPFLAG_APPEND);
1814 break;
1816 #ifndef SQLITE_OMIT_SUBQUERY
1817 case SRT_Set: {
1818 assert( nColumn==sqlite3Strlen30(pDest->zAffSdst) );
1819 sqlite3VdbeAddOp4(v, OP_MakeRecord, regRow, nColumn, regRowid,
1820 pDest->zAffSdst, nColumn);
1821 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, regRowid, regRow, nColumn);
1822 break;
1824 case SRT_Mem: {
1825 /* The LIMIT clause will terminate the loop for us */
1826 break;
1828 #endif
1829 case SRT_Upfrom: {
1830 int i2 = pDest->iSDParm2;
1831 int r1 = sqlite3GetTempReg(pParse);
1832 sqlite3VdbeAddOp3(v, OP_MakeRecord,regRow+(i2<0),nColumn-(i2<0),r1);
1833 if( i2<0 ){
1834 sqlite3VdbeAddOp3(v, OP_Insert, iParm, r1, regRow);
1835 }else{
1836 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, r1, regRow, i2);
1838 break;
1840 default: {
1841 assert( eDest==SRT_Output || eDest==SRT_Coroutine );
1842 testcase( eDest==SRT_Output );
1843 testcase( eDest==SRT_Coroutine );
1844 if( eDest==SRT_Output ){
1845 sqlite3VdbeAddOp2(v, OP_ResultRow, pDest->iSdst, nColumn);
1846 }else{
1847 sqlite3VdbeAddOp1(v, OP_Yield, pDest->iSDParm);
1849 break;
1852 if( regRowid ){
1853 if( eDest==SRT_Set ){
1854 sqlite3ReleaseTempRange(pParse, regRow, nColumn);
1855 }else{
1856 sqlite3ReleaseTempReg(pParse, regRow);
1858 sqlite3ReleaseTempReg(pParse, regRowid);
1860 /* The bottom of the loop
1862 sqlite3VdbeResolveLabel(v, addrContinue);
1863 if( pSort->sortFlags & SORTFLAG_UseSorter ){
1864 sqlite3VdbeAddOp2(v, OP_SorterNext, iTab, addr); VdbeCoverage(v);
1865 }else{
1866 sqlite3VdbeAddOp2(v, OP_Next, iTab, addr); VdbeCoverage(v);
1868 sqlite3VdbeScanStatusRange(v, addrExplain, sqlite3VdbeCurrentAddr(v)-1, -1);
1869 if( pSort->regReturn ) sqlite3VdbeAddOp1(v, OP_Return, pSort->regReturn);
1870 sqlite3VdbeResolveLabel(v, addrBreak);
1874 ** Return a pointer to a string containing the 'declaration type' of the
1875 ** expression pExpr. The string may be treated as static by the caller.
1877 ** The declaration type is the exact datatype definition extracted from the
1878 ** original CREATE TABLE statement if the expression is a column. The
1879 ** declaration type for a ROWID field is INTEGER. Exactly when an expression
1880 ** is considered a column can be complex in the presence of subqueries. The
1881 ** result-set expression in all of the following SELECT statements is
1882 ** considered a column by this function.
1884 ** SELECT col FROM tbl;
1885 ** SELECT (SELECT col FROM tbl;
1886 ** SELECT (SELECT col FROM tbl);
1887 ** SELECT abc FROM (SELECT col AS abc FROM tbl);
1889 ** The declaration type for any expression other than a column is NULL.
1891 ** This routine has either 3 or 6 parameters depending on whether or not
1892 ** the SQLITE_ENABLE_COLUMN_METADATA compile-time option is used.
1894 #ifdef SQLITE_ENABLE_COLUMN_METADATA
1895 # define columnType(A,B,C,D,E) columnTypeImpl(A,B,C,D,E)
1896 #else /* if !defined(SQLITE_ENABLE_COLUMN_METADATA) */
1897 # define columnType(A,B,C,D,E) columnTypeImpl(A,B)
1898 #endif
1899 static const char *columnTypeImpl(
1900 NameContext *pNC,
1901 #ifndef SQLITE_ENABLE_COLUMN_METADATA
1902 Expr *pExpr
1903 #else
1904 Expr *pExpr,
1905 const char **pzOrigDb,
1906 const char **pzOrigTab,
1907 const char **pzOrigCol
1908 #endif
1910 char const *zType = 0;
1911 int j;
1912 #ifdef SQLITE_ENABLE_COLUMN_METADATA
1913 char const *zOrigDb = 0;
1914 char const *zOrigTab = 0;
1915 char const *zOrigCol = 0;
1916 #endif
1918 assert( pExpr!=0 );
1919 assert( pNC->pSrcList!=0 );
1920 switch( pExpr->op ){
1921 case TK_COLUMN: {
1922 /* The expression is a column. Locate the table the column is being
1923 ** extracted from in NameContext.pSrcList. This table may be real
1924 ** database table or a subquery.
1926 Table *pTab = 0; /* Table structure column is extracted from */
1927 Select *pS = 0; /* Select the column is extracted from */
1928 int iCol = pExpr->iColumn; /* Index of column in pTab */
1929 while( pNC && !pTab ){
1930 SrcList *pTabList = pNC->pSrcList;
1931 for(j=0;j<pTabList->nSrc && pTabList->a[j].iCursor!=pExpr->iTable;j++);
1932 if( j<pTabList->nSrc ){
1933 pTab = pTabList->a[j].pTab;
1934 pS = pTabList->a[j].pSelect;
1935 }else{
1936 pNC = pNC->pNext;
1940 if( pTab==0 ){
1941 /* At one time, code such as "SELECT new.x" within a trigger would
1942 ** cause this condition to run. Since then, we have restructured how
1943 ** trigger code is generated and so this condition is no longer
1944 ** possible. However, it can still be true for statements like
1945 ** the following:
1947 ** CREATE TABLE t1(col INTEGER);
1948 ** SELECT (SELECT t1.col) FROM FROM t1;
1950 ** when columnType() is called on the expression "t1.col" in the
1951 ** sub-select. In this case, set the column type to NULL, even
1952 ** though it should really be "INTEGER".
1954 ** This is not a problem, as the column type of "t1.col" is never
1955 ** used. When columnType() is called on the expression
1956 ** "(SELECT t1.col)", the correct type is returned (see the TK_SELECT
1957 ** branch below. */
1958 break;
1961 assert( pTab && ExprUseYTab(pExpr) && pExpr->y.pTab==pTab );
1962 if( pS ){
1963 /* The "table" is actually a sub-select or a view in the FROM clause
1964 ** of the SELECT statement. Return the declaration type and origin
1965 ** data for the result-set column of the sub-select.
1967 if( iCol<pS->pEList->nExpr
1968 && (!ViewCanHaveRowid || iCol>=0)
1970 /* If iCol is less than zero, then the expression requests the
1971 ** rowid of the sub-select or view. This expression is legal (see
1972 ** test case misc2.2.2) - it always evaluates to NULL.
1974 NameContext sNC;
1975 Expr *p = pS->pEList->a[iCol].pExpr;
1976 sNC.pSrcList = pS->pSrc;
1977 sNC.pNext = pNC;
1978 sNC.pParse = pNC->pParse;
1979 zType = columnType(&sNC, p,&zOrigDb,&zOrigTab,&zOrigCol);
1981 }else{
1982 /* A real table or a CTE table */
1983 assert( !pS );
1984 #ifdef SQLITE_ENABLE_COLUMN_METADATA
1985 if( iCol<0 ) iCol = pTab->iPKey;
1986 assert( iCol==XN_ROWID || (iCol>=0 && iCol<pTab->nCol) );
1987 if( iCol<0 ){
1988 zType = "INTEGER";
1989 zOrigCol = "rowid";
1990 }else{
1991 zOrigCol = pTab->aCol[iCol].zCnName;
1992 zType = sqlite3ColumnType(&pTab->aCol[iCol],0);
1994 zOrigTab = pTab->zName;
1995 if( pNC->pParse && pTab->pSchema ){
1996 int iDb = sqlite3SchemaToIndex(pNC->pParse->db, pTab->pSchema);
1997 zOrigDb = pNC->pParse->db->aDb[iDb].zDbSName;
1999 #else
2000 assert( iCol==XN_ROWID || (iCol>=0 && iCol<pTab->nCol) );
2001 if( iCol<0 ){
2002 zType = "INTEGER";
2003 }else{
2004 zType = sqlite3ColumnType(&pTab->aCol[iCol],0);
2006 #endif
2008 break;
2010 #ifndef SQLITE_OMIT_SUBQUERY
2011 case TK_SELECT: {
2012 /* The expression is a sub-select. Return the declaration type and
2013 ** origin info for the single column in the result set of the SELECT
2014 ** statement.
2016 NameContext sNC;
2017 Select *pS;
2018 Expr *p;
2019 assert( ExprUseXSelect(pExpr) );
2020 pS = pExpr->x.pSelect;
2021 p = pS->pEList->a[0].pExpr;
2022 sNC.pSrcList = pS->pSrc;
2023 sNC.pNext = pNC;
2024 sNC.pParse = pNC->pParse;
2025 zType = columnType(&sNC, p, &zOrigDb, &zOrigTab, &zOrigCol);
2026 break;
2028 #endif
2031 #ifdef SQLITE_ENABLE_COLUMN_METADATA
2032 if( pzOrigDb ){
2033 assert( pzOrigTab && pzOrigCol );
2034 *pzOrigDb = zOrigDb;
2035 *pzOrigTab = zOrigTab;
2036 *pzOrigCol = zOrigCol;
2038 #endif
2039 return zType;
2043 ** Generate code that will tell the VDBE the declaration types of columns
2044 ** in the result set.
2046 static void generateColumnTypes(
2047 Parse *pParse, /* Parser context */
2048 SrcList *pTabList, /* List of tables */
2049 ExprList *pEList /* Expressions defining the result set */
2051 #ifndef SQLITE_OMIT_DECLTYPE
2052 Vdbe *v = pParse->pVdbe;
2053 int i;
2054 NameContext sNC;
2055 sNC.pSrcList = pTabList;
2056 sNC.pParse = pParse;
2057 sNC.pNext = 0;
2058 for(i=0; i<pEList->nExpr; i++){
2059 Expr *p = pEList->a[i].pExpr;
2060 const char *zType;
2061 #ifdef SQLITE_ENABLE_COLUMN_METADATA
2062 const char *zOrigDb = 0;
2063 const char *zOrigTab = 0;
2064 const char *zOrigCol = 0;
2065 zType = columnType(&sNC, p, &zOrigDb, &zOrigTab, &zOrigCol);
2067 /* The vdbe must make its own copy of the column-type and other
2068 ** column specific strings, in case the schema is reset before this
2069 ** virtual machine is deleted.
2071 sqlite3VdbeSetColName(v, i, COLNAME_DATABASE, zOrigDb, SQLITE_TRANSIENT);
2072 sqlite3VdbeSetColName(v, i, COLNAME_TABLE, zOrigTab, SQLITE_TRANSIENT);
2073 sqlite3VdbeSetColName(v, i, COLNAME_COLUMN, zOrigCol, SQLITE_TRANSIENT);
2074 #else
2075 zType = columnType(&sNC, p, 0, 0, 0);
2076 #endif
2077 sqlite3VdbeSetColName(v, i, COLNAME_DECLTYPE, zType, SQLITE_TRANSIENT);
2079 #endif /* !defined(SQLITE_OMIT_DECLTYPE) */
2084 ** Compute the column names for a SELECT statement.
2086 ** The only guarantee that SQLite makes about column names is that if the
2087 ** column has an AS clause assigning it a name, that will be the name used.
2088 ** That is the only documented guarantee. However, countless applications
2089 ** developed over the years have made baseless assumptions about column names
2090 ** and will break if those assumptions changes. Hence, use extreme caution
2091 ** when modifying this routine to avoid breaking legacy.
2093 ** See Also: sqlite3ColumnsFromExprList()
2095 ** The PRAGMA short_column_names and PRAGMA full_column_names settings are
2096 ** deprecated. The default setting is short=ON, full=OFF. 99.9% of all
2097 ** applications should operate this way. Nevertheless, we need to support the
2098 ** other modes for legacy:
2100 ** short=OFF, full=OFF: Column name is the text of the expression has it
2101 ** originally appears in the SELECT statement. In
2102 ** other words, the zSpan of the result expression.
2104 ** short=ON, full=OFF: (This is the default setting). If the result
2105 ** refers directly to a table column, then the
2106 ** result column name is just the table column
2107 ** name: COLUMN. Otherwise use zSpan.
2109 ** full=ON, short=ANY: If the result refers directly to a table column,
2110 ** then the result column name with the table name
2111 ** prefix, ex: TABLE.COLUMN. Otherwise use zSpan.
2113 void sqlite3GenerateColumnNames(
2114 Parse *pParse, /* Parser context */
2115 Select *pSelect /* Generate column names for this SELECT statement */
2117 Vdbe *v = pParse->pVdbe;
2118 int i;
2119 Table *pTab;
2120 SrcList *pTabList;
2121 ExprList *pEList;
2122 sqlite3 *db = pParse->db;
2123 int fullName; /* TABLE.COLUMN if no AS clause and is a direct table ref */
2124 int srcName; /* COLUMN or TABLE.COLUMN if no AS clause and is direct */
2126 if( pParse->colNamesSet ) return;
2127 /* Column names are determined by the left-most term of a compound select */
2128 while( pSelect->pPrior ) pSelect = pSelect->pPrior;
2129 TREETRACE(0x80,pParse,pSelect,("generating column names\n"));
2130 pTabList = pSelect->pSrc;
2131 pEList = pSelect->pEList;
2132 assert( v!=0 );
2133 assert( pTabList!=0 );
2134 pParse->colNamesSet = 1;
2135 fullName = (db->flags & SQLITE_FullColNames)!=0;
2136 srcName = (db->flags & SQLITE_ShortColNames)!=0 || fullName;
2137 sqlite3VdbeSetNumCols(v, pEList->nExpr);
2138 for(i=0; i<pEList->nExpr; i++){
2139 Expr *p = pEList->a[i].pExpr;
2141 assert( p!=0 );
2142 assert( p->op!=TK_AGG_COLUMN ); /* Agg processing has not run yet */
2143 assert( p->op!=TK_COLUMN
2144 || (ExprUseYTab(p) && p->y.pTab!=0) ); /* Covering idx not yet coded */
2145 if( pEList->a[i].zEName && pEList->a[i].fg.eEName==ENAME_NAME ){
2146 /* An AS clause always takes first priority */
2147 char *zName = pEList->a[i].zEName;
2148 sqlite3VdbeSetColName(v, i, COLNAME_NAME, zName, SQLITE_TRANSIENT);
2149 }else if( srcName && p->op==TK_COLUMN ){
2150 char *zCol;
2151 int iCol = p->iColumn;
2152 pTab = p->y.pTab;
2153 assert( pTab!=0 );
2154 if( iCol<0 ) iCol = pTab->iPKey;
2155 assert( iCol==-1 || (iCol>=0 && iCol<pTab->nCol) );
2156 if( iCol<0 ){
2157 zCol = "rowid";
2158 }else{
2159 zCol = pTab->aCol[iCol].zCnName;
2161 if( fullName ){
2162 char *zName = 0;
2163 zName = sqlite3MPrintf(db, "%s.%s", pTab->zName, zCol);
2164 sqlite3VdbeSetColName(v, i, COLNAME_NAME, zName, SQLITE_DYNAMIC);
2165 }else{
2166 sqlite3VdbeSetColName(v, i, COLNAME_NAME, zCol, SQLITE_TRANSIENT);
2168 }else{
2169 const char *z = pEList->a[i].zEName;
2170 z = z==0 ? sqlite3MPrintf(db, "column%d", i+1) : sqlite3DbStrDup(db, z);
2171 sqlite3VdbeSetColName(v, i, COLNAME_NAME, z, SQLITE_DYNAMIC);
2174 generateColumnTypes(pParse, pTabList, pEList);
2178 ** Given an expression list (which is really the list of expressions
2179 ** that form the result set of a SELECT statement) compute appropriate
2180 ** column names for a table that would hold the expression list.
2182 ** All column names will be unique.
2184 ** Only the column names are computed. Column.zType, Column.zColl,
2185 ** and other fields of Column are zeroed.
2187 ** Return SQLITE_OK on success. If a memory allocation error occurs,
2188 ** store NULL in *paCol and 0 in *pnCol and return SQLITE_NOMEM.
2190 ** The only guarantee that SQLite makes about column names is that if the
2191 ** column has an AS clause assigning it a name, that will be the name used.
2192 ** That is the only documented guarantee. However, countless applications
2193 ** developed over the years have made baseless assumptions about column names
2194 ** and will break if those assumptions changes. Hence, use extreme caution
2195 ** when modifying this routine to avoid breaking legacy.
2197 ** See Also: sqlite3GenerateColumnNames()
2199 int sqlite3ColumnsFromExprList(
2200 Parse *pParse, /* Parsing context */
2201 ExprList *pEList, /* Expr list from which to derive column names */
2202 i16 *pnCol, /* Write the number of columns here */
2203 Column **paCol /* Write the new column list here */
2205 sqlite3 *db = pParse->db; /* Database connection */
2206 int i, j; /* Loop counters */
2207 u32 cnt; /* Index added to make the name unique */
2208 Column *aCol, *pCol; /* For looping over result columns */
2209 int nCol; /* Number of columns in the result set */
2210 char *zName; /* Column name */
2211 int nName; /* Size of name in zName[] */
2212 Hash ht; /* Hash table of column names */
2213 Table *pTab;
2215 sqlite3HashInit(&ht);
2216 if( pEList ){
2217 nCol = pEList->nExpr;
2218 aCol = sqlite3DbMallocZero(db, sizeof(aCol[0])*nCol);
2219 testcase( aCol==0 );
2220 if( NEVER(nCol>32767) ) nCol = 32767;
2221 }else{
2222 nCol = 0;
2223 aCol = 0;
2225 assert( nCol==(i16)nCol );
2226 *pnCol = nCol;
2227 *paCol = aCol;
2229 for(i=0, pCol=aCol; i<nCol && !pParse->nErr; i++, pCol++){
2230 struct ExprList_item *pX = &pEList->a[i];
2231 struct ExprList_item *pCollide;
2232 /* Get an appropriate name for the column
2234 if( (zName = pX->zEName)!=0 && pX->fg.eEName==ENAME_NAME ){
2235 /* If the column contains an "AS <name>" phrase, use <name> as the name */
2236 }else{
2237 Expr *pColExpr = sqlite3ExprSkipCollateAndLikely(pX->pExpr);
2238 while( ALWAYS(pColExpr!=0) && pColExpr->op==TK_DOT ){
2239 pColExpr = pColExpr->pRight;
2240 assert( pColExpr!=0 );
2242 if( pColExpr->op==TK_COLUMN
2243 && ALWAYS( ExprUseYTab(pColExpr) )
2244 && ALWAYS( pColExpr->y.pTab!=0 )
2246 /* For columns use the column name name */
2247 int iCol = pColExpr->iColumn;
2248 pTab = pColExpr->y.pTab;
2249 if( iCol<0 ) iCol = pTab->iPKey;
2250 zName = iCol>=0 ? pTab->aCol[iCol].zCnName : "rowid";
2251 }else if( pColExpr->op==TK_ID ){
2252 assert( !ExprHasProperty(pColExpr, EP_IntValue) );
2253 zName = pColExpr->u.zToken;
2254 }else{
2255 /* Use the original text of the column expression as its name */
2256 assert( zName==pX->zEName ); /* pointer comparison intended */
2259 if( zName && !sqlite3IsTrueOrFalse(zName) ){
2260 zName = sqlite3DbStrDup(db, zName);
2261 }else{
2262 zName = sqlite3MPrintf(db,"column%d",i+1);
2265 /* Make sure the column name is unique. If the name is not unique,
2266 ** append an integer to the name so that it becomes unique.
2268 cnt = 0;
2269 while( zName && (pCollide = sqlite3HashFind(&ht, zName))!=0 ){
2270 if( pCollide->fg.bUsingTerm ){
2271 pCol->colFlags |= COLFLAG_NOEXPAND;
2273 nName = sqlite3Strlen30(zName);
2274 if( nName>0 ){
2275 for(j=nName-1; j>0 && sqlite3Isdigit(zName[j]); j--){}
2276 if( zName[j]==':' ) nName = j;
2278 zName = sqlite3MPrintf(db, "%.*z:%u", nName, zName, ++cnt);
2279 sqlite3ProgressCheck(pParse);
2280 if( cnt>3 ){
2281 sqlite3_randomness(sizeof(cnt), &cnt);
2284 pCol->zCnName = zName;
2285 pCol->hName = sqlite3StrIHash(zName);
2286 if( pX->fg.bNoExpand ){
2287 pCol->colFlags |= COLFLAG_NOEXPAND;
2289 sqlite3ColumnPropertiesFromName(0, pCol);
2290 if( zName && sqlite3HashInsert(&ht, zName, pX)==pX ){
2291 sqlite3OomFault(db);
2294 sqlite3HashClear(&ht);
2295 if( pParse->nErr ){
2296 for(j=0; j<i; j++){
2297 sqlite3DbFree(db, aCol[j].zCnName);
2299 sqlite3DbFree(db, aCol);
2300 *paCol = 0;
2301 *pnCol = 0;
2302 return pParse->rc;
2304 return SQLITE_OK;
2308 ** pTab is a transient Table object that represents a subquery of some
2309 ** kind (maybe a parenthesized subquery in the FROM clause of a larger
2310 ** query, or a VIEW, or a CTE). This routine computes type information
2311 ** for that Table object based on the Select object that implements the
2312 ** subquery. For the purposes of this routine, "type information" means:
2314 ** * The datatype name, as it might appear in a CREATE TABLE statement
2315 ** * Which collating sequence to use for the column
2316 ** * The affinity of the column
2318 void sqlite3SubqueryColumnTypes(
2319 Parse *pParse, /* Parsing contexts */
2320 Table *pTab, /* Add column type information to this table */
2321 Select *pSelect, /* SELECT used to determine types and collations */
2322 char aff /* Default affinity. */
2324 sqlite3 *db = pParse->db;
2325 Column *pCol;
2326 CollSeq *pColl;
2327 int i,j;
2328 Expr *p;
2329 struct ExprList_item *a;
2330 NameContext sNC;
2332 assert( pSelect!=0 );
2333 assert( (pSelect->selFlags & SF_Resolved)!=0 );
2334 assert( pTab->nCol==pSelect->pEList->nExpr || pParse->nErr>0 );
2335 assert( aff==SQLITE_AFF_NONE || aff==SQLITE_AFF_BLOB );
2336 if( db->mallocFailed || IN_RENAME_OBJECT ) return;
2337 while( pSelect->pPrior ) pSelect = pSelect->pPrior;
2338 a = pSelect->pEList->a;
2339 memset(&sNC, 0, sizeof(sNC));
2340 sNC.pSrcList = pSelect->pSrc;
2341 for(i=0, pCol=pTab->aCol; i<pTab->nCol; i++, pCol++){
2342 const char *zType;
2343 i64 n;
2344 int m = 0;
2345 Select *pS2 = pSelect;
2346 pTab->tabFlags |= (pCol->colFlags & COLFLAG_NOINSERT);
2347 p = a[i].pExpr;
2348 /* pCol->szEst = ... // Column size est for SELECT tables never used */
2349 pCol->affinity = sqlite3ExprAffinity(p);
2350 while( pCol->affinity<=SQLITE_AFF_NONE && pS2->pNext!=0 ){
2351 m |= sqlite3ExprDataType(pS2->pEList->a[i].pExpr);
2352 pS2 = pS2->pNext;
2353 pCol->affinity = sqlite3ExprAffinity(pS2->pEList->a[i].pExpr);
2355 if( pCol->affinity<=SQLITE_AFF_NONE ){
2356 pCol->affinity = aff;
2358 if( pCol->affinity>=SQLITE_AFF_TEXT && (pS2->pNext || pS2!=pSelect) ){
2359 for(pS2=pS2->pNext; pS2; pS2=pS2->pNext){
2360 m |= sqlite3ExprDataType(pS2->pEList->a[i].pExpr);
2362 if( pCol->affinity==SQLITE_AFF_TEXT && (m&0x01)!=0 ){
2363 pCol->affinity = SQLITE_AFF_BLOB;
2364 }else
2365 if( pCol->affinity>=SQLITE_AFF_NUMERIC && (m&0x02)!=0 ){
2366 pCol->affinity = SQLITE_AFF_BLOB;
2368 if( pCol->affinity>=SQLITE_AFF_NUMERIC && p->op==TK_CAST ){
2369 pCol->affinity = SQLITE_AFF_FLEXNUM;
2372 zType = columnType(&sNC, p, 0, 0, 0);
2373 if( zType==0 || pCol->affinity!=sqlite3AffinityType(zType, 0) ){
2374 if( pCol->affinity==SQLITE_AFF_NUMERIC
2375 || pCol->affinity==SQLITE_AFF_FLEXNUM
2377 zType = "NUM";
2378 }else{
2379 zType = 0;
2380 for(j=1; j<SQLITE_N_STDTYPE; j++){
2381 if( sqlite3StdTypeAffinity[j]==pCol->affinity ){
2382 zType = sqlite3StdType[j];
2383 break;
2388 if( zType ){
2389 const i64 k = sqlite3Strlen30(zType);
2390 n = sqlite3Strlen30(pCol->zCnName);
2391 pCol->zCnName = sqlite3DbReallocOrFree(db, pCol->zCnName, n+k+2);
2392 pCol->colFlags &= ~(COLFLAG_HASTYPE|COLFLAG_HASCOLL);
2393 if( pCol->zCnName ){
2394 memcpy(&pCol->zCnName[n+1], zType, k+1);
2395 pCol->colFlags |= COLFLAG_HASTYPE;
2398 pColl = sqlite3ExprCollSeq(pParse, p);
2399 if( pColl ){
2400 assert( pTab->pIndex==0 );
2401 sqlite3ColumnSetColl(db, pCol, pColl->zName);
2404 pTab->szTabRow = 1; /* Any non-zero value works */
2408 ** Given a SELECT statement, generate a Table structure that describes
2409 ** the result set of that SELECT.
2411 Table *sqlite3ResultSetOfSelect(Parse *pParse, Select *pSelect, char aff){
2412 Table *pTab;
2413 sqlite3 *db = pParse->db;
2414 u64 savedFlags;
2416 savedFlags = db->flags;
2417 db->flags &= ~(u64)SQLITE_FullColNames;
2418 db->flags |= SQLITE_ShortColNames;
2419 sqlite3SelectPrep(pParse, pSelect, 0);
2420 db->flags = savedFlags;
2421 if( pParse->nErr ) return 0;
2422 while( pSelect->pPrior ) pSelect = pSelect->pPrior;
2423 pTab = sqlite3DbMallocZero(db, sizeof(Table) );
2424 if( pTab==0 ){
2425 return 0;
2427 pTab->nTabRef = 1;
2428 pTab->zName = 0;
2429 pTab->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) );
2430 sqlite3ColumnsFromExprList(pParse, pSelect->pEList, &pTab->nCol, &pTab->aCol);
2431 sqlite3SubqueryColumnTypes(pParse, pTab, pSelect, aff);
2432 pTab->iPKey = -1;
2433 if( db->mallocFailed ){
2434 sqlite3DeleteTable(db, pTab);
2435 return 0;
2437 return pTab;
2441 ** Get a VDBE for the given parser context. Create a new one if necessary.
2442 ** If an error occurs, return NULL and leave a message in pParse.
2444 Vdbe *sqlite3GetVdbe(Parse *pParse){
2445 if( pParse->pVdbe ){
2446 return pParse->pVdbe;
2448 if( pParse->pToplevel==0
2449 && OptimizationEnabled(pParse->db,SQLITE_FactorOutConst)
2451 pParse->okConstFactor = 1;
2453 return sqlite3VdbeCreate(pParse);
2458 ** Compute the iLimit and iOffset fields of the SELECT based on the
2459 ** pLimit expressions. pLimit->pLeft and pLimit->pRight hold the expressions
2460 ** that appear in the original SQL statement after the LIMIT and OFFSET
2461 ** keywords. Or NULL if those keywords are omitted. iLimit and iOffset
2462 ** are the integer memory register numbers for counters used to compute
2463 ** the limit and offset. If there is no limit and/or offset, then
2464 ** iLimit and iOffset are negative.
2466 ** This routine changes the values of iLimit and iOffset only if
2467 ** a limit or offset is defined by pLimit->pLeft and pLimit->pRight. iLimit
2468 ** and iOffset should have been preset to appropriate default values (zero)
2469 ** prior to calling this routine.
2471 ** The iOffset register (if it exists) is initialized to the value
2472 ** of the OFFSET. The iLimit register is initialized to LIMIT. Register
2473 ** iOffset+1 is initialized to LIMIT+OFFSET.
2475 ** Only if pLimit->pLeft!=0 do the limit registers get
2476 ** redefined. The UNION ALL operator uses this property to force
2477 ** the reuse of the same limit and offset registers across multiple
2478 ** SELECT statements.
2480 static void computeLimitRegisters(Parse *pParse, Select *p, int iBreak){
2481 Vdbe *v = 0;
2482 int iLimit = 0;
2483 int iOffset;
2484 int n;
2485 Expr *pLimit = p->pLimit;
2487 if( p->iLimit ) return;
2490 ** "LIMIT -1" always shows all rows. There is some
2491 ** controversy about what the correct behavior should be.
2492 ** The current implementation interprets "LIMIT 0" to mean
2493 ** no rows.
2495 if( pLimit ){
2496 assert( pLimit->op==TK_LIMIT );
2497 assert( pLimit->pLeft!=0 );
2498 p->iLimit = iLimit = ++pParse->nMem;
2499 v = sqlite3GetVdbe(pParse);
2500 assert( v!=0 );
2501 if( sqlite3ExprIsInteger(pLimit->pLeft, &n, pParse) ){
2502 sqlite3VdbeAddOp2(v, OP_Integer, n, iLimit);
2503 VdbeComment((v, "LIMIT counter"));
2504 if( n==0 ){
2505 sqlite3VdbeGoto(v, iBreak);
2506 }else if( n>=0 && p->nSelectRow>sqlite3LogEst((u64)n) ){
2507 p->nSelectRow = sqlite3LogEst((u64)n);
2508 p->selFlags |= SF_FixedLimit;
2510 }else{
2511 sqlite3ExprCode(pParse, pLimit->pLeft, iLimit);
2512 sqlite3VdbeAddOp1(v, OP_MustBeInt, iLimit); VdbeCoverage(v);
2513 VdbeComment((v, "LIMIT counter"));
2514 sqlite3VdbeAddOp2(v, OP_IfNot, iLimit, iBreak); VdbeCoverage(v);
2516 if( pLimit->pRight ){
2517 p->iOffset = iOffset = ++pParse->nMem;
2518 pParse->nMem++; /* Allocate an extra register for limit+offset */
2519 sqlite3ExprCode(pParse, pLimit->pRight, iOffset);
2520 sqlite3VdbeAddOp1(v, OP_MustBeInt, iOffset); VdbeCoverage(v);
2521 VdbeComment((v, "OFFSET counter"));
2522 sqlite3VdbeAddOp3(v, OP_OffsetLimit, iLimit, iOffset+1, iOffset);
2523 VdbeComment((v, "LIMIT+OFFSET"));
2528 #ifndef SQLITE_OMIT_COMPOUND_SELECT
2530 ** Return the appropriate collating sequence for the iCol-th column of
2531 ** the result set for the compound-select statement "p". Return NULL if
2532 ** the column has no default collating sequence.
2534 ** The collating sequence for the compound select is taken from the
2535 ** left-most term of the select that has a collating sequence.
2537 static CollSeq *multiSelectCollSeq(Parse *pParse, Select *p, int iCol){
2538 CollSeq *pRet;
2539 if( p->pPrior ){
2540 pRet = multiSelectCollSeq(pParse, p->pPrior, iCol);
2541 }else{
2542 pRet = 0;
2544 assert( iCol>=0 );
2545 /* iCol must be less than p->pEList->nExpr. Otherwise an error would
2546 ** have been thrown during name resolution and we would not have gotten
2547 ** this far */
2548 if( pRet==0 && ALWAYS(iCol<p->pEList->nExpr) ){
2549 pRet = sqlite3ExprCollSeq(pParse, p->pEList->a[iCol].pExpr);
2551 return pRet;
2555 ** The select statement passed as the second parameter is a compound SELECT
2556 ** with an ORDER BY clause. This function allocates and returns a KeyInfo
2557 ** structure suitable for implementing the ORDER BY.
2559 ** Space to hold the KeyInfo structure is obtained from malloc. The calling
2560 ** function is responsible for ensuring that this structure is eventually
2561 ** freed.
2563 static KeyInfo *multiSelectOrderByKeyInfo(Parse *pParse, Select *p, int nExtra){
2564 ExprList *pOrderBy = p->pOrderBy;
2565 int nOrderBy = ALWAYS(pOrderBy!=0) ? pOrderBy->nExpr : 0;
2566 sqlite3 *db = pParse->db;
2567 KeyInfo *pRet = sqlite3KeyInfoAlloc(db, nOrderBy+nExtra, 1);
2568 if( pRet ){
2569 int i;
2570 for(i=0; i<nOrderBy; i++){
2571 struct ExprList_item *pItem = &pOrderBy->a[i];
2572 Expr *pTerm = pItem->pExpr;
2573 CollSeq *pColl;
2575 if( pTerm->flags & EP_Collate ){
2576 pColl = sqlite3ExprCollSeq(pParse, pTerm);
2577 }else{
2578 pColl = multiSelectCollSeq(pParse, p, pItem->u.x.iOrderByCol-1);
2579 if( pColl==0 ) pColl = db->pDfltColl;
2580 pOrderBy->a[i].pExpr =
2581 sqlite3ExprAddCollateString(pParse, pTerm, pColl->zName);
2583 assert( sqlite3KeyInfoIsWriteable(pRet) );
2584 pRet->aColl[i] = pColl;
2585 pRet->aSortFlags[i] = pOrderBy->a[i].fg.sortFlags;
2589 return pRet;
2592 #ifndef SQLITE_OMIT_CTE
2594 ** This routine generates VDBE code to compute the content of a WITH RECURSIVE
2595 ** query of the form:
2597 ** <recursive-table> AS (<setup-query> UNION [ALL] <recursive-query>)
2598 ** \___________/ \_______________/
2599 ** p->pPrior p
2602 ** There is exactly one reference to the recursive-table in the FROM clause
2603 ** of recursive-query, marked with the SrcList->a[].fg.isRecursive flag.
2605 ** The setup-query runs once to generate an initial set of rows that go
2606 ** into a Queue table. Rows are extracted from the Queue table one by
2607 ** one. Each row extracted from Queue is output to pDest. Then the single
2608 ** extracted row (now in the iCurrent table) becomes the content of the
2609 ** recursive-table for a recursive-query run. The output of the recursive-query
2610 ** is added back into the Queue table. Then another row is extracted from Queue
2611 ** and the iteration continues until the Queue table is empty.
2613 ** If the compound query operator is UNION then no duplicate rows are ever
2614 ** inserted into the Queue table. The iDistinct table keeps a copy of all rows
2615 ** that have ever been inserted into Queue and causes duplicates to be
2616 ** discarded. If the operator is UNION ALL, then duplicates are allowed.
2618 ** If the query has an ORDER BY, then entries in the Queue table are kept in
2619 ** ORDER BY order and the first entry is extracted for each cycle. Without
2620 ** an ORDER BY, the Queue table is just a FIFO.
2622 ** If a LIMIT clause is provided, then the iteration stops after LIMIT rows
2623 ** have been output to pDest. A LIMIT of zero means to output no rows and a
2624 ** negative LIMIT means to output all rows. If there is also an OFFSET clause
2625 ** with a positive value, then the first OFFSET outputs are discarded rather
2626 ** than being sent to pDest. The LIMIT count does not begin until after OFFSET
2627 ** rows have been skipped.
2629 static void generateWithRecursiveQuery(
2630 Parse *pParse, /* Parsing context */
2631 Select *p, /* The recursive SELECT to be coded */
2632 SelectDest *pDest /* What to do with query results */
2634 SrcList *pSrc = p->pSrc; /* The FROM clause of the recursive query */
2635 int nCol = p->pEList->nExpr; /* Number of columns in the recursive table */
2636 Vdbe *v = pParse->pVdbe; /* The prepared statement under construction */
2637 Select *pSetup; /* The setup query */
2638 Select *pFirstRec; /* Left-most recursive term */
2639 int addrTop; /* Top of the loop */
2640 int addrCont, addrBreak; /* CONTINUE and BREAK addresses */
2641 int iCurrent = 0; /* The Current table */
2642 int regCurrent; /* Register holding Current table */
2643 int iQueue; /* The Queue table */
2644 int iDistinct = 0; /* To ensure unique results if UNION */
2645 int eDest = SRT_Fifo; /* How to write to Queue */
2646 SelectDest destQueue; /* SelectDest targeting the Queue table */
2647 int i; /* Loop counter */
2648 int rc; /* Result code */
2649 ExprList *pOrderBy; /* The ORDER BY clause */
2650 Expr *pLimit; /* Saved LIMIT and OFFSET */
2651 int regLimit, regOffset; /* Registers used by LIMIT and OFFSET */
2653 #ifndef SQLITE_OMIT_WINDOWFUNC
2654 if( p->pWin ){
2655 sqlite3ErrorMsg(pParse, "cannot use window functions in recursive queries");
2656 return;
2658 #endif
2660 /* Obtain authorization to do a recursive query */
2661 if( sqlite3AuthCheck(pParse, SQLITE_RECURSIVE, 0, 0, 0) ) return;
2663 /* Process the LIMIT and OFFSET clauses, if they exist */
2664 addrBreak = sqlite3VdbeMakeLabel(pParse);
2665 p->nSelectRow = 320; /* 4 billion rows */
2666 computeLimitRegisters(pParse, p, addrBreak);
2667 pLimit = p->pLimit;
2668 regLimit = p->iLimit;
2669 regOffset = p->iOffset;
2670 p->pLimit = 0;
2671 p->iLimit = p->iOffset = 0;
2672 pOrderBy = p->pOrderBy;
2674 /* Locate the cursor number of the Current table */
2675 for(i=0; ALWAYS(i<pSrc->nSrc); i++){
2676 if( pSrc->a[i].fg.isRecursive ){
2677 iCurrent = pSrc->a[i].iCursor;
2678 break;
2682 /* Allocate cursors numbers for Queue and Distinct. The cursor number for
2683 ** the Distinct table must be exactly one greater than Queue in order
2684 ** for the SRT_DistFifo and SRT_DistQueue destinations to work. */
2685 iQueue = pParse->nTab++;
2686 if( p->op==TK_UNION ){
2687 eDest = pOrderBy ? SRT_DistQueue : SRT_DistFifo;
2688 iDistinct = pParse->nTab++;
2689 }else{
2690 eDest = pOrderBy ? SRT_Queue : SRT_Fifo;
2692 sqlite3SelectDestInit(&destQueue, eDest, iQueue);
2694 /* Allocate cursors for Current, Queue, and Distinct. */
2695 regCurrent = ++pParse->nMem;
2696 sqlite3VdbeAddOp3(v, OP_OpenPseudo, iCurrent, regCurrent, nCol);
2697 if( pOrderBy ){
2698 KeyInfo *pKeyInfo = multiSelectOrderByKeyInfo(pParse, p, 1);
2699 sqlite3VdbeAddOp4(v, OP_OpenEphemeral, iQueue, pOrderBy->nExpr+2, 0,
2700 (char*)pKeyInfo, P4_KEYINFO);
2701 destQueue.pOrderBy = pOrderBy;
2702 }else{
2703 sqlite3VdbeAddOp2(v, OP_OpenEphemeral, iQueue, nCol);
2705 VdbeComment((v, "Queue table"));
2706 if( iDistinct ){
2707 p->addrOpenEphm[0] = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, iDistinct, 0);
2708 p->selFlags |= SF_UsesEphemeral;
2711 /* Detach the ORDER BY clause from the compound SELECT */
2712 p->pOrderBy = 0;
2714 /* Figure out how many elements of the compound SELECT are part of the
2715 ** recursive query. Make sure no recursive elements use aggregate
2716 ** functions. Mark the recursive elements as UNION ALL even if they
2717 ** are really UNION because the distinctness will be enforced by the
2718 ** iDistinct table. pFirstRec is left pointing to the left-most
2719 ** recursive term of the CTE.
2721 for(pFirstRec=p; ALWAYS(pFirstRec!=0); pFirstRec=pFirstRec->pPrior){
2722 if( pFirstRec->selFlags & SF_Aggregate ){
2723 sqlite3ErrorMsg(pParse, "recursive aggregate queries not supported");
2724 goto end_of_recursive_query;
2726 pFirstRec->op = TK_ALL;
2727 if( (pFirstRec->pPrior->selFlags & SF_Recursive)==0 ) break;
2730 /* Store the results of the setup-query in Queue. */
2731 pSetup = pFirstRec->pPrior;
2732 pSetup->pNext = 0;
2733 ExplainQueryPlan((pParse, 1, "SETUP"));
2734 rc = sqlite3Select(pParse, pSetup, &destQueue);
2735 pSetup->pNext = p;
2736 if( rc ) goto end_of_recursive_query;
2738 /* Find the next row in the Queue and output that row */
2739 addrTop = sqlite3VdbeAddOp2(v, OP_Rewind, iQueue, addrBreak); VdbeCoverage(v);
2741 /* Transfer the next row in Queue over to Current */
2742 sqlite3VdbeAddOp1(v, OP_NullRow, iCurrent); /* To reset column cache */
2743 if( pOrderBy ){
2744 sqlite3VdbeAddOp3(v, OP_Column, iQueue, pOrderBy->nExpr+1, regCurrent);
2745 }else{
2746 sqlite3VdbeAddOp2(v, OP_RowData, iQueue, regCurrent);
2748 sqlite3VdbeAddOp1(v, OP_Delete, iQueue);
2750 /* Output the single row in Current */
2751 addrCont = sqlite3VdbeMakeLabel(pParse);
2752 codeOffset(v, regOffset, addrCont);
2753 selectInnerLoop(pParse, p, iCurrent,
2754 0, 0, pDest, addrCont, addrBreak);
2755 if( regLimit ){
2756 sqlite3VdbeAddOp2(v, OP_DecrJumpZero, regLimit, addrBreak);
2757 VdbeCoverage(v);
2759 sqlite3VdbeResolveLabel(v, addrCont);
2761 /* Execute the recursive SELECT taking the single row in Current as
2762 ** the value for the recursive-table. Store the results in the Queue.
2764 pFirstRec->pPrior = 0;
2765 ExplainQueryPlan((pParse, 1, "RECURSIVE STEP"));
2766 sqlite3Select(pParse, p, &destQueue);
2767 assert( pFirstRec->pPrior==0 );
2768 pFirstRec->pPrior = pSetup;
2770 /* Keep running the loop until the Queue is empty */
2771 sqlite3VdbeGoto(v, addrTop);
2772 sqlite3VdbeResolveLabel(v, addrBreak);
2774 end_of_recursive_query:
2775 sqlite3ExprListDelete(pParse->db, p->pOrderBy);
2776 p->pOrderBy = pOrderBy;
2777 p->pLimit = pLimit;
2778 return;
2780 #endif /* SQLITE_OMIT_CTE */
2782 /* Forward references */
2783 static int multiSelectOrderBy(
2784 Parse *pParse, /* Parsing context */
2785 Select *p, /* The right-most of SELECTs to be coded */
2786 SelectDest *pDest /* What to do with query results */
2790 ** Handle the special case of a compound-select that originates from a
2791 ** VALUES clause. By handling this as a special case, we avoid deep
2792 ** recursion, and thus do not need to enforce the SQLITE_LIMIT_COMPOUND_SELECT
2793 ** on a VALUES clause.
2795 ** Because the Select object originates from a VALUES clause:
2796 ** (1) There is no LIMIT or OFFSET or else there is a LIMIT of exactly 1
2797 ** (2) All terms are UNION ALL
2798 ** (3) There is no ORDER BY clause
2800 ** The "LIMIT of exactly 1" case of condition (1) comes about when a VALUES
2801 ** clause occurs within scalar expression (ex: "SELECT (VALUES(1),(2),(3))").
2802 ** The sqlite3CodeSubselect will have added the LIMIT 1 clause in tht case.
2803 ** Since the limit is exactly 1, we only need to evaluate the left-most VALUES.
2805 static int multiSelectValues(
2806 Parse *pParse, /* Parsing context */
2807 Select *p, /* The right-most of SELECTs to be coded */
2808 SelectDest *pDest /* What to do with query results */
2810 int nRow = 1;
2811 int rc = 0;
2812 int bShowAll = p->pLimit==0;
2813 assert( p->selFlags & SF_MultiValue );
2815 assert( p->selFlags & SF_Values );
2816 assert( p->op==TK_ALL || (p->op==TK_SELECT && p->pPrior==0) );
2817 assert( p->pNext==0 || p->pEList->nExpr==p->pNext->pEList->nExpr );
2818 #ifndef SQLITE_OMIT_WINDOWFUNC
2819 if( p->pWin ) return -1;
2820 #endif
2821 if( p->pPrior==0 ) break;
2822 assert( p->pPrior->pNext==p );
2823 p = p->pPrior;
2824 nRow += bShowAll;
2825 }while(1);
2826 ExplainQueryPlan((pParse, 0, "SCAN %d CONSTANT ROW%s", nRow,
2827 nRow==1 ? "" : "S"));
2828 while( p ){
2829 selectInnerLoop(pParse, p, -1, 0, 0, pDest, 1, 1);
2830 if( !bShowAll ) break;
2831 p->nSelectRow = nRow;
2832 p = p->pNext;
2834 return rc;
2838 ** Return true if the SELECT statement which is known to be the recursive
2839 ** part of a recursive CTE still has its anchor terms attached. If the
2840 ** anchor terms have already been removed, then return false.
2842 static int hasAnchor(Select *p){
2843 while( p && (p->selFlags & SF_Recursive)!=0 ){ p = p->pPrior; }
2844 return p!=0;
2848 ** This routine is called to process a compound query form from
2849 ** two or more separate queries using UNION, UNION ALL, EXCEPT, or
2850 ** INTERSECT
2852 ** "p" points to the right-most of the two queries. the query on the
2853 ** left is p->pPrior. The left query could also be a compound query
2854 ** in which case this routine will be called recursively.
2856 ** The results of the total query are to be written into a destination
2857 ** of type eDest with parameter iParm.
2859 ** Example 1: Consider a three-way compound SQL statement.
2861 ** SELECT a FROM t1 UNION SELECT b FROM t2 UNION SELECT c FROM t3
2863 ** This statement is parsed up as follows:
2865 ** SELECT c FROM t3
2866 ** |
2867 ** `-----> SELECT b FROM t2
2868 ** |
2869 ** `------> SELECT a FROM t1
2871 ** The arrows in the diagram above represent the Select.pPrior pointer.
2872 ** So if this routine is called with p equal to the t3 query, then
2873 ** pPrior will be the t2 query. p->op will be TK_UNION in this case.
2875 ** Notice that because of the way SQLite parses compound SELECTs, the
2876 ** individual selects always group from left to right.
2878 static int multiSelect(
2879 Parse *pParse, /* Parsing context */
2880 Select *p, /* The right-most of SELECTs to be coded */
2881 SelectDest *pDest /* What to do with query results */
2883 int rc = SQLITE_OK; /* Success code from a subroutine */
2884 Select *pPrior; /* Another SELECT immediately to our left */
2885 Vdbe *v; /* Generate code to this VDBE */
2886 SelectDest dest; /* Alternative data destination */
2887 Select *pDelete = 0; /* Chain of simple selects to delete */
2888 sqlite3 *db; /* Database connection */
2890 /* Make sure there is no ORDER BY or LIMIT clause on prior SELECTs. Only
2891 ** the last (right-most) SELECT in the series may have an ORDER BY or LIMIT.
2893 assert( p && p->pPrior ); /* Calling function guarantees this much */
2894 assert( (p->selFlags & SF_Recursive)==0 || p->op==TK_ALL || p->op==TK_UNION );
2895 assert( p->selFlags & SF_Compound );
2896 db = pParse->db;
2897 pPrior = p->pPrior;
2898 dest = *pDest;
2899 assert( pPrior->pOrderBy==0 );
2900 assert( pPrior->pLimit==0 );
2902 v = sqlite3GetVdbe(pParse);
2903 assert( v!=0 ); /* The VDBE already created by calling function */
2905 /* Create the destination temporary table if necessary
2907 if( dest.eDest==SRT_EphemTab ){
2908 assert( p->pEList );
2909 sqlite3VdbeAddOp2(v, OP_OpenEphemeral, dest.iSDParm, p->pEList->nExpr);
2910 dest.eDest = SRT_Table;
2913 /* Special handling for a compound-select that originates as a VALUES clause.
2915 if( p->selFlags & SF_MultiValue ){
2916 rc = multiSelectValues(pParse, p, &dest);
2917 if( rc>=0 ) goto multi_select_end;
2918 rc = SQLITE_OK;
2921 /* Make sure all SELECTs in the statement have the same number of elements
2922 ** in their result sets.
2924 assert( p->pEList && pPrior->pEList );
2925 assert( p->pEList->nExpr==pPrior->pEList->nExpr );
2927 #ifndef SQLITE_OMIT_CTE
2928 if( (p->selFlags & SF_Recursive)!=0 && hasAnchor(p) ){
2929 generateWithRecursiveQuery(pParse, p, &dest);
2930 }else
2931 #endif
2933 /* Compound SELECTs that have an ORDER BY clause are handled separately.
2935 if( p->pOrderBy ){
2936 return multiSelectOrderBy(pParse, p, pDest);
2937 }else{
2939 #ifndef SQLITE_OMIT_EXPLAIN
2940 if( pPrior->pPrior==0 ){
2941 ExplainQueryPlan((pParse, 1, "COMPOUND QUERY"));
2942 ExplainQueryPlan((pParse, 1, "LEFT-MOST SUBQUERY"));
2944 #endif
2946 /* Generate code for the left and right SELECT statements.
2948 switch( p->op ){
2949 case TK_ALL: {
2950 int addr = 0;
2951 int nLimit = 0; /* Initialize to suppress harmless compiler warning */
2952 assert( !pPrior->pLimit );
2953 pPrior->iLimit = p->iLimit;
2954 pPrior->iOffset = p->iOffset;
2955 pPrior->pLimit = p->pLimit;
2956 TREETRACE(0x200, pParse, p, ("multiSelect UNION ALL left...\n"));
2957 rc = sqlite3Select(pParse, pPrior, &dest);
2958 pPrior->pLimit = 0;
2959 if( rc ){
2960 goto multi_select_end;
2962 p->pPrior = 0;
2963 p->iLimit = pPrior->iLimit;
2964 p->iOffset = pPrior->iOffset;
2965 if( p->iLimit ){
2966 addr = sqlite3VdbeAddOp1(v, OP_IfNot, p->iLimit); VdbeCoverage(v);
2967 VdbeComment((v, "Jump ahead if LIMIT reached"));
2968 if( p->iOffset ){
2969 sqlite3VdbeAddOp3(v, OP_OffsetLimit,
2970 p->iLimit, p->iOffset+1, p->iOffset);
2973 ExplainQueryPlan((pParse, 1, "UNION ALL"));
2974 TREETRACE(0x200, pParse, p, ("multiSelect UNION ALL right...\n"));
2975 rc = sqlite3Select(pParse, p, &dest);
2976 testcase( rc!=SQLITE_OK );
2977 pDelete = p->pPrior;
2978 p->pPrior = pPrior;
2979 p->nSelectRow = sqlite3LogEstAdd(p->nSelectRow, pPrior->nSelectRow);
2980 if( p->pLimit
2981 && sqlite3ExprIsInteger(p->pLimit->pLeft, &nLimit, pParse)
2982 && nLimit>0 && p->nSelectRow > sqlite3LogEst((u64)nLimit)
2984 p->nSelectRow = sqlite3LogEst((u64)nLimit);
2986 if( addr ){
2987 sqlite3VdbeJumpHere(v, addr);
2989 break;
2991 case TK_EXCEPT:
2992 case TK_UNION: {
2993 int unionTab; /* Cursor number of the temp table holding result */
2994 u8 op = 0; /* One of the SRT_ operations to apply to self */
2995 int priorOp; /* The SRT_ operation to apply to prior selects */
2996 Expr *pLimit; /* Saved values of p->nLimit */
2997 int addr;
2998 SelectDest uniondest;
3000 testcase( p->op==TK_EXCEPT );
3001 testcase( p->op==TK_UNION );
3002 priorOp = SRT_Union;
3003 if( dest.eDest==priorOp ){
3004 /* We can reuse a temporary table generated by a SELECT to our
3005 ** right.
3007 assert( p->pLimit==0 ); /* Not allowed on leftward elements */
3008 unionTab = dest.iSDParm;
3009 }else{
3010 /* We will need to create our own temporary table to hold the
3011 ** intermediate results.
3013 unionTab = pParse->nTab++;
3014 assert( p->pOrderBy==0 );
3015 addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, unionTab, 0);
3016 assert( p->addrOpenEphm[0] == -1 );
3017 p->addrOpenEphm[0] = addr;
3018 findRightmost(p)->selFlags |= SF_UsesEphemeral;
3019 assert( p->pEList );
3023 /* Code the SELECT statements to our left
3025 assert( !pPrior->pOrderBy );
3026 sqlite3SelectDestInit(&uniondest, priorOp, unionTab);
3027 TREETRACE(0x200, pParse, p, ("multiSelect EXCEPT/UNION left...\n"));
3028 rc = sqlite3Select(pParse, pPrior, &uniondest);
3029 if( rc ){
3030 goto multi_select_end;
3033 /* Code the current SELECT statement
3035 if( p->op==TK_EXCEPT ){
3036 op = SRT_Except;
3037 }else{
3038 assert( p->op==TK_UNION );
3039 op = SRT_Union;
3041 p->pPrior = 0;
3042 pLimit = p->pLimit;
3043 p->pLimit = 0;
3044 uniondest.eDest = op;
3045 ExplainQueryPlan((pParse, 1, "%s USING TEMP B-TREE",
3046 sqlite3SelectOpName(p->op)));
3047 TREETRACE(0x200, pParse, p, ("multiSelect EXCEPT/UNION right...\n"));
3048 rc = sqlite3Select(pParse, p, &uniondest);
3049 testcase( rc!=SQLITE_OK );
3050 assert( p->pOrderBy==0 );
3051 pDelete = p->pPrior;
3052 p->pPrior = pPrior;
3053 p->pOrderBy = 0;
3054 if( p->op==TK_UNION ){
3055 p->nSelectRow = sqlite3LogEstAdd(p->nSelectRow, pPrior->nSelectRow);
3057 sqlite3ExprDelete(db, p->pLimit);
3058 p->pLimit = pLimit;
3059 p->iLimit = 0;
3060 p->iOffset = 0;
3062 /* Convert the data in the temporary table into whatever form
3063 ** it is that we currently need.
3065 assert( unionTab==dest.iSDParm || dest.eDest!=priorOp );
3066 assert( p->pEList || db->mallocFailed );
3067 if( dest.eDest!=priorOp && db->mallocFailed==0 ){
3068 int iCont, iBreak, iStart;
3069 iBreak = sqlite3VdbeMakeLabel(pParse);
3070 iCont = sqlite3VdbeMakeLabel(pParse);
3071 computeLimitRegisters(pParse, p, iBreak);
3072 sqlite3VdbeAddOp2(v, OP_Rewind, unionTab, iBreak); VdbeCoverage(v);
3073 iStart = sqlite3VdbeCurrentAddr(v);
3074 selectInnerLoop(pParse, p, unionTab,
3075 0, 0, &dest, iCont, iBreak);
3076 sqlite3VdbeResolveLabel(v, iCont);
3077 sqlite3VdbeAddOp2(v, OP_Next, unionTab, iStart); VdbeCoverage(v);
3078 sqlite3VdbeResolveLabel(v, iBreak);
3079 sqlite3VdbeAddOp2(v, OP_Close, unionTab, 0);
3081 break;
3083 default: assert( p->op==TK_INTERSECT ); {
3084 int tab1, tab2;
3085 int iCont, iBreak, iStart;
3086 Expr *pLimit;
3087 int addr;
3088 SelectDest intersectdest;
3089 int r1;
3091 /* INTERSECT is different from the others since it requires
3092 ** two temporary tables. Hence it has its own case. Begin
3093 ** by allocating the tables we will need.
3095 tab1 = pParse->nTab++;
3096 tab2 = pParse->nTab++;
3097 assert( p->pOrderBy==0 );
3099 addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, tab1, 0);
3100 assert( p->addrOpenEphm[0] == -1 );
3101 p->addrOpenEphm[0] = addr;
3102 findRightmost(p)->selFlags |= SF_UsesEphemeral;
3103 assert( p->pEList );
3105 /* Code the SELECTs to our left into temporary table "tab1".
3107 sqlite3SelectDestInit(&intersectdest, SRT_Union, tab1);
3108 TREETRACE(0x400, pParse, p, ("multiSelect INTERSECT left...\n"));
3109 rc = sqlite3Select(pParse, pPrior, &intersectdest);
3110 if( rc ){
3111 goto multi_select_end;
3114 /* Code the current SELECT into temporary table "tab2"
3116 addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, tab2, 0);
3117 assert( p->addrOpenEphm[1] == -1 );
3118 p->addrOpenEphm[1] = addr;
3119 p->pPrior = 0;
3120 pLimit = p->pLimit;
3121 p->pLimit = 0;
3122 intersectdest.iSDParm = tab2;
3123 ExplainQueryPlan((pParse, 1, "%s USING TEMP B-TREE",
3124 sqlite3SelectOpName(p->op)));
3125 TREETRACE(0x400, pParse, p, ("multiSelect INTERSECT right...\n"));
3126 rc = sqlite3Select(pParse, p, &intersectdest);
3127 testcase( rc!=SQLITE_OK );
3128 pDelete = p->pPrior;
3129 p->pPrior = pPrior;
3130 if( p->nSelectRow>pPrior->nSelectRow ){
3131 p->nSelectRow = pPrior->nSelectRow;
3133 sqlite3ExprDelete(db, p->pLimit);
3134 p->pLimit = pLimit;
3136 /* Generate code to take the intersection of the two temporary
3137 ** tables.
3139 if( rc ) break;
3140 assert( p->pEList );
3141 iBreak = sqlite3VdbeMakeLabel(pParse);
3142 iCont = sqlite3VdbeMakeLabel(pParse);
3143 computeLimitRegisters(pParse, p, iBreak);
3144 sqlite3VdbeAddOp2(v, OP_Rewind, tab1, iBreak); VdbeCoverage(v);
3145 r1 = sqlite3GetTempReg(pParse);
3146 iStart = sqlite3VdbeAddOp2(v, OP_RowData, tab1, r1);
3147 sqlite3VdbeAddOp4Int(v, OP_NotFound, tab2, iCont, r1, 0);
3148 VdbeCoverage(v);
3149 sqlite3ReleaseTempReg(pParse, r1);
3150 selectInnerLoop(pParse, p, tab1,
3151 0, 0, &dest, iCont, iBreak);
3152 sqlite3VdbeResolveLabel(v, iCont);
3153 sqlite3VdbeAddOp2(v, OP_Next, tab1, iStart); VdbeCoverage(v);
3154 sqlite3VdbeResolveLabel(v, iBreak);
3155 sqlite3VdbeAddOp2(v, OP_Close, tab2, 0);
3156 sqlite3VdbeAddOp2(v, OP_Close, tab1, 0);
3157 break;
3161 #ifndef SQLITE_OMIT_EXPLAIN
3162 if( p->pNext==0 ){
3163 ExplainQueryPlanPop(pParse);
3165 #endif
3167 if( pParse->nErr ) goto multi_select_end;
3169 /* Compute collating sequences used by
3170 ** temporary tables needed to implement the compound select.
3171 ** Attach the KeyInfo structure to all temporary tables.
3173 ** This section is run by the right-most SELECT statement only.
3174 ** SELECT statements to the left always skip this part. The right-most
3175 ** SELECT might also skip this part if it has no ORDER BY clause and
3176 ** no temp tables are required.
3178 if( p->selFlags & SF_UsesEphemeral ){
3179 int i; /* Loop counter */
3180 KeyInfo *pKeyInfo; /* Collating sequence for the result set */
3181 Select *pLoop; /* For looping through SELECT statements */
3182 CollSeq **apColl; /* For looping through pKeyInfo->aColl[] */
3183 int nCol; /* Number of columns in result set */
3185 assert( p->pNext==0 );
3186 assert( p->pEList!=0 );
3187 nCol = p->pEList->nExpr;
3188 pKeyInfo = sqlite3KeyInfoAlloc(db, nCol, 1);
3189 if( !pKeyInfo ){
3190 rc = SQLITE_NOMEM_BKPT;
3191 goto multi_select_end;
3193 for(i=0, apColl=pKeyInfo->aColl; i<nCol; i++, apColl++){
3194 *apColl = multiSelectCollSeq(pParse, p, i);
3195 if( 0==*apColl ){
3196 *apColl = db->pDfltColl;
3200 for(pLoop=p; pLoop; pLoop=pLoop->pPrior){
3201 for(i=0; i<2; i++){
3202 int addr = pLoop->addrOpenEphm[i];
3203 if( addr<0 ){
3204 /* If [0] is unused then [1] is also unused. So we can
3205 ** always safely abort as soon as the first unused slot is found */
3206 assert( pLoop->addrOpenEphm[1]<0 );
3207 break;
3209 sqlite3VdbeChangeP2(v, addr, nCol);
3210 sqlite3VdbeChangeP4(v, addr, (char*)sqlite3KeyInfoRef(pKeyInfo),
3211 P4_KEYINFO);
3212 pLoop->addrOpenEphm[i] = -1;
3215 sqlite3KeyInfoUnref(pKeyInfo);
3218 multi_select_end:
3219 pDest->iSdst = dest.iSdst;
3220 pDest->nSdst = dest.nSdst;
3221 if( pDelete ){
3222 sqlite3ParserAddCleanup(pParse, sqlite3SelectDeleteGeneric, pDelete);
3224 return rc;
3226 #endif /* SQLITE_OMIT_COMPOUND_SELECT */
3229 ** Error message for when two or more terms of a compound select have different
3230 ** size result sets.
3232 void sqlite3SelectWrongNumTermsError(Parse *pParse, Select *p){
3233 if( p->selFlags & SF_Values ){
3234 sqlite3ErrorMsg(pParse, "all VALUES must have the same number of terms");
3235 }else{
3236 sqlite3ErrorMsg(pParse, "SELECTs to the left and right of %s"
3237 " do not have the same number of result columns",
3238 sqlite3SelectOpName(p->op));
3243 ** Code an output subroutine for a coroutine implementation of a
3244 ** SELECT statement.
3246 ** The data to be output is contained in pIn->iSdst. There are
3247 ** pIn->nSdst columns to be output. pDest is where the output should
3248 ** be sent.
3250 ** regReturn is the number of the register holding the subroutine
3251 ** return address.
3253 ** If regPrev>0 then it is the first register in a vector that
3254 ** records the previous output. mem[regPrev] is a flag that is false
3255 ** if there has been no previous output. If regPrev>0 then code is
3256 ** generated to suppress duplicates. pKeyInfo is used for comparing
3257 ** keys.
3259 ** If the LIMIT found in p->iLimit is reached, jump immediately to
3260 ** iBreak.
3262 static int generateOutputSubroutine(
3263 Parse *pParse, /* Parsing context */
3264 Select *p, /* The SELECT statement */
3265 SelectDest *pIn, /* Coroutine supplying data */
3266 SelectDest *pDest, /* Where to send the data */
3267 int regReturn, /* The return address register */
3268 int regPrev, /* Previous result register. No uniqueness if 0 */
3269 KeyInfo *pKeyInfo, /* For comparing with previous entry */
3270 int iBreak /* Jump here if we hit the LIMIT */
3272 Vdbe *v = pParse->pVdbe;
3273 int iContinue;
3274 int addr;
3276 addr = sqlite3VdbeCurrentAddr(v);
3277 iContinue = sqlite3VdbeMakeLabel(pParse);
3279 /* Suppress duplicates for UNION, EXCEPT, and INTERSECT
3281 if( regPrev ){
3282 int addr1, addr2;
3283 addr1 = sqlite3VdbeAddOp1(v, OP_IfNot, regPrev); VdbeCoverage(v);
3284 addr2 = sqlite3VdbeAddOp4(v, OP_Compare, pIn->iSdst, regPrev+1, pIn->nSdst,
3285 (char*)sqlite3KeyInfoRef(pKeyInfo), P4_KEYINFO);
3286 sqlite3VdbeAddOp3(v, OP_Jump, addr2+2, iContinue, addr2+2); VdbeCoverage(v);
3287 sqlite3VdbeJumpHere(v, addr1);
3288 sqlite3VdbeAddOp3(v, OP_Copy, pIn->iSdst, regPrev+1, pIn->nSdst-1);
3289 sqlite3VdbeAddOp2(v, OP_Integer, 1, regPrev);
3291 if( pParse->db->mallocFailed ) return 0;
3293 /* Suppress the first OFFSET entries if there is an OFFSET clause
3295 codeOffset(v, p->iOffset, iContinue);
3297 assert( pDest->eDest!=SRT_Exists );
3298 assert( pDest->eDest!=SRT_Table );
3299 switch( pDest->eDest ){
3300 /* Store the result as data using a unique key.
3302 case SRT_EphemTab: {
3303 int r1 = sqlite3GetTempReg(pParse);
3304 int r2 = sqlite3GetTempReg(pParse);
3305 sqlite3VdbeAddOp3(v, OP_MakeRecord, pIn->iSdst, pIn->nSdst, r1);
3306 sqlite3VdbeAddOp2(v, OP_NewRowid, pDest->iSDParm, r2);
3307 sqlite3VdbeAddOp3(v, OP_Insert, pDest->iSDParm, r1, r2);
3308 sqlite3VdbeChangeP5(v, OPFLAG_APPEND);
3309 sqlite3ReleaseTempReg(pParse, r2);
3310 sqlite3ReleaseTempReg(pParse, r1);
3311 break;
3314 #ifndef SQLITE_OMIT_SUBQUERY
3315 /* If we are creating a set for an "expr IN (SELECT ...)".
3317 case SRT_Set: {
3318 int r1;
3319 testcase( pIn->nSdst>1 );
3320 r1 = sqlite3GetTempReg(pParse);
3321 sqlite3VdbeAddOp4(v, OP_MakeRecord, pIn->iSdst, pIn->nSdst,
3322 r1, pDest->zAffSdst, pIn->nSdst);
3323 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, pDest->iSDParm, r1,
3324 pIn->iSdst, pIn->nSdst);
3325 if( pDest->iSDParm2>0 ){
3326 sqlite3VdbeAddOp4Int(v, OP_FilterAdd, pDest->iSDParm2, 0,
3327 pIn->iSdst, pIn->nSdst);
3328 ExplainQueryPlan((pParse, 0, "CREATE BLOOM FILTER"));
3330 sqlite3ReleaseTempReg(pParse, r1);
3331 break;
3334 /* If this is a scalar select that is part of an expression, then
3335 ** store the results in the appropriate memory cell and break out
3336 ** of the scan loop. Note that the select might return multiple columns
3337 ** if it is the RHS of a row-value IN operator.
3339 case SRT_Mem: {
3340 testcase( pIn->nSdst>1 );
3341 sqlite3ExprCodeMove(pParse, pIn->iSdst, pDest->iSDParm, pIn->nSdst);
3342 /* The LIMIT clause will jump out of the loop for us */
3343 break;
3345 #endif /* #ifndef SQLITE_OMIT_SUBQUERY */
3347 /* The results are stored in a sequence of registers
3348 ** starting at pDest->iSdst. Then the co-routine yields.
3350 case SRT_Coroutine: {
3351 if( pDest->iSdst==0 ){
3352 pDest->iSdst = sqlite3GetTempRange(pParse, pIn->nSdst);
3353 pDest->nSdst = pIn->nSdst;
3355 sqlite3ExprCodeMove(pParse, pIn->iSdst, pDest->iSdst, pIn->nSdst);
3356 sqlite3VdbeAddOp1(v, OP_Yield, pDest->iSDParm);
3357 break;
3360 /* If none of the above, then the result destination must be
3361 ** SRT_Output. This routine is never called with any other
3362 ** destination other than the ones handled above or SRT_Output.
3364 ** For SRT_Output, results are stored in a sequence of registers.
3365 ** Then the OP_ResultRow opcode is used to cause sqlite3_step() to
3366 ** return the next row of result.
3368 default: {
3369 assert( pDest->eDest==SRT_Output );
3370 sqlite3VdbeAddOp2(v, OP_ResultRow, pIn->iSdst, pIn->nSdst);
3371 break;
3375 /* Jump to the end of the loop if the LIMIT is reached.
3377 if( p->iLimit ){
3378 sqlite3VdbeAddOp2(v, OP_DecrJumpZero, p->iLimit, iBreak); VdbeCoverage(v);
3381 /* Generate the subroutine return
3383 sqlite3VdbeResolveLabel(v, iContinue);
3384 sqlite3VdbeAddOp1(v, OP_Return, regReturn);
3386 return addr;
3390 ** Alternative compound select code generator for cases when there
3391 ** is an ORDER BY clause.
3393 ** We assume a query of the following form:
3395 ** <selectA> <operator> <selectB> ORDER BY <orderbylist>
3397 ** <operator> is one of UNION ALL, UNION, EXCEPT, or INTERSECT. The idea
3398 ** is to code both <selectA> and <selectB> with the ORDER BY clause as
3399 ** co-routines. Then run the co-routines in parallel and merge the results
3400 ** into the output. In addition to the two coroutines (called selectA and
3401 ** selectB) there are 7 subroutines:
3403 ** outA: Move the output of the selectA coroutine into the output
3404 ** of the compound query.
3406 ** outB: Move the output of the selectB coroutine into the output
3407 ** of the compound query. (Only generated for UNION and
3408 ** UNION ALL. EXCEPT and INSERTSECT never output a row that
3409 ** appears only in B.)
3411 ** AltB: Called when there is data from both coroutines and A<B.
3413 ** AeqB: Called when there is data from both coroutines and A==B.
3415 ** AgtB: Called when there is data from both coroutines and A>B.
3417 ** EofA: Called when data is exhausted from selectA.
3419 ** EofB: Called when data is exhausted from selectB.
3421 ** The implementation of the latter five subroutines depend on which
3422 ** <operator> is used:
3425 ** UNION ALL UNION EXCEPT INTERSECT
3426 ** ------------- ----------------- -------------- -----------------
3427 ** AltB: outA, nextA outA, nextA outA, nextA nextA
3429 ** AeqB: outA, nextA nextA nextA outA, nextA
3431 ** AgtB: outB, nextB outB, nextB nextB nextB
3433 ** EofA: outB, nextB outB, nextB halt halt
3435 ** EofB: outA, nextA outA, nextA outA, nextA halt
3437 ** In the AltB, AeqB, and AgtB subroutines, an EOF on A following nextA
3438 ** causes an immediate jump to EofA and an EOF on B following nextB causes
3439 ** an immediate jump to EofB. Within EofA and EofB, and EOF on entry or
3440 ** following nextX causes a jump to the end of the select processing.
3442 ** Duplicate removal in the UNION, EXCEPT, and INTERSECT cases is handled
3443 ** within the output subroutine. The regPrev register set holds the previously
3444 ** output value. A comparison is made against this value and the output
3445 ** is skipped if the next results would be the same as the previous.
3447 ** The implementation plan is to implement the two coroutines and seven
3448 ** subroutines first, then put the control logic at the bottom. Like this:
3450 ** goto Init
3451 ** coA: coroutine for left query (A)
3452 ** coB: coroutine for right query (B)
3453 ** outA: output one row of A
3454 ** outB: output one row of B (UNION and UNION ALL only)
3455 ** EofA: ...
3456 ** EofB: ...
3457 ** AltB: ...
3458 ** AeqB: ...
3459 ** AgtB: ...
3460 ** Init: initialize coroutine registers
3461 ** yield coA
3462 ** if eof(A) goto EofA
3463 ** yield coB
3464 ** if eof(B) goto EofB
3465 ** Cmpr: Compare A, B
3466 ** Jump AltB, AeqB, AgtB
3467 ** End: ...
3469 ** We call AltB, AeqB, AgtB, EofA, and EofB "subroutines" but they are not
3470 ** actually called using Gosub and they do not Return. EofA and EofB loop
3471 ** until all data is exhausted then jump to the "end" label. AltB, AeqB,
3472 ** and AgtB jump to either L2 or to one of EofA or EofB.
3474 #ifndef SQLITE_OMIT_COMPOUND_SELECT
3475 static int multiSelectOrderBy(
3476 Parse *pParse, /* Parsing context */
3477 Select *p, /* The right-most of SELECTs to be coded */
3478 SelectDest *pDest /* What to do with query results */
3480 int i, j; /* Loop counters */
3481 Select *pPrior; /* Another SELECT immediately to our left */
3482 Select *pSplit; /* Left-most SELECT in the right-hand group */
3483 int nSelect; /* Number of SELECT statements in the compound */
3484 Vdbe *v; /* Generate code to this VDBE */
3485 SelectDest destA; /* Destination for coroutine A */
3486 SelectDest destB; /* Destination for coroutine B */
3487 int regAddrA; /* Address register for select-A coroutine */
3488 int regAddrB; /* Address register for select-B coroutine */
3489 int addrSelectA; /* Address of the select-A coroutine */
3490 int addrSelectB; /* Address of the select-B coroutine */
3491 int regOutA; /* Address register for the output-A subroutine */
3492 int regOutB; /* Address register for the output-B subroutine */
3493 int addrOutA; /* Address of the output-A subroutine */
3494 int addrOutB = 0; /* Address of the output-B subroutine */
3495 int addrEofA; /* Address of the select-A-exhausted subroutine */
3496 int addrEofA_noB; /* Alternate addrEofA if B is uninitialized */
3497 int addrEofB; /* Address of the select-B-exhausted subroutine */
3498 int addrAltB; /* Address of the A<B subroutine */
3499 int addrAeqB; /* Address of the A==B subroutine */
3500 int addrAgtB; /* Address of the A>B subroutine */
3501 int regLimitA; /* Limit register for select-A */
3502 int regLimitB; /* Limit register for select-A */
3503 int regPrev; /* A range of registers to hold previous output */
3504 int savedLimit; /* Saved value of p->iLimit */
3505 int savedOffset; /* Saved value of p->iOffset */
3506 int labelCmpr; /* Label for the start of the merge algorithm */
3507 int labelEnd; /* Label for the end of the overall SELECT stmt */
3508 int addr1; /* Jump instructions that get retargeted */
3509 int op; /* One of TK_ALL, TK_UNION, TK_EXCEPT, TK_INTERSECT */
3510 KeyInfo *pKeyDup = 0; /* Comparison information for duplicate removal */
3511 KeyInfo *pKeyMerge; /* Comparison information for merging rows */
3512 sqlite3 *db; /* Database connection */
3513 ExprList *pOrderBy; /* The ORDER BY clause */
3514 int nOrderBy; /* Number of terms in the ORDER BY clause */
3515 u32 *aPermute; /* Mapping from ORDER BY terms to result set columns */
3517 assert( p->pOrderBy!=0 );
3518 assert( pKeyDup==0 ); /* "Managed" code needs this. Ticket #3382. */
3519 db = pParse->db;
3520 v = pParse->pVdbe;
3521 assert( v!=0 ); /* Already thrown the error if VDBE alloc failed */
3522 labelEnd = sqlite3VdbeMakeLabel(pParse);
3523 labelCmpr = sqlite3VdbeMakeLabel(pParse);
3526 /* Patch up the ORDER BY clause
3528 op = p->op;
3529 assert( p->pPrior->pOrderBy==0 );
3530 pOrderBy = p->pOrderBy;
3531 assert( pOrderBy );
3532 nOrderBy = pOrderBy->nExpr;
3534 /* For operators other than UNION ALL we have to make sure that
3535 ** the ORDER BY clause covers every term of the result set. Add
3536 ** terms to the ORDER BY clause as necessary.
3538 if( op!=TK_ALL ){
3539 for(i=1; db->mallocFailed==0 && i<=p->pEList->nExpr; i++){
3540 struct ExprList_item *pItem;
3541 for(j=0, pItem=pOrderBy->a; j<nOrderBy; j++, pItem++){
3542 assert( pItem!=0 );
3543 assert( pItem->u.x.iOrderByCol>0 );
3544 if( pItem->u.x.iOrderByCol==i ) break;
3546 if( j==nOrderBy ){
3547 Expr *pNew = sqlite3Expr(db, TK_INTEGER, 0);
3548 if( pNew==0 ) return SQLITE_NOMEM_BKPT;
3549 pNew->flags |= EP_IntValue;
3550 pNew->u.iValue = i;
3551 p->pOrderBy = pOrderBy = sqlite3ExprListAppend(pParse, pOrderBy, pNew);
3552 if( pOrderBy ) pOrderBy->a[nOrderBy++].u.x.iOrderByCol = (u16)i;
3557 /* Compute the comparison permutation and keyinfo that is used with
3558 ** the permutation used to determine if the next
3559 ** row of results comes from selectA or selectB. Also add explicit
3560 ** collations to the ORDER BY clause terms so that when the subqueries
3561 ** to the right and the left are evaluated, they use the correct
3562 ** collation.
3564 aPermute = sqlite3DbMallocRawNN(db, sizeof(u32)*(nOrderBy + 1));
3565 if( aPermute ){
3566 struct ExprList_item *pItem;
3567 aPermute[0] = nOrderBy;
3568 for(i=1, pItem=pOrderBy->a; i<=nOrderBy; i++, pItem++){
3569 assert( pItem!=0 );
3570 assert( pItem->u.x.iOrderByCol>0 );
3571 assert( pItem->u.x.iOrderByCol<=p->pEList->nExpr );
3572 aPermute[i] = pItem->u.x.iOrderByCol - 1;
3574 pKeyMerge = multiSelectOrderByKeyInfo(pParse, p, 1);
3575 }else{
3576 pKeyMerge = 0;
3579 /* Allocate a range of temporary registers and the KeyInfo needed
3580 ** for the logic that removes duplicate result rows when the
3581 ** operator is UNION, EXCEPT, or INTERSECT (but not UNION ALL).
3583 if( op==TK_ALL ){
3584 regPrev = 0;
3585 }else{
3586 int nExpr = p->pEList->nExpr;
3587 assert( nOrderBy>=nExpr || db->mallocFailed );
3588 regPrev = pParse->nMem+1;
3589 pParse->nMem += nExpr+1;
3590 sqlite3VdbeAddOp2(v, OP_Integer, 0, regPrev);
3591 pKeyDup = sqlite3KeyInfoAlloc(db, nExpr, 1);
3592 if( pKeyDup ){
3593 assert( sqlite3KeyInfoIsWriteable(pKeyDup) );
3594 for(i=0; i<nExpr; i++){
3595 pKeyDup->aColl[i] = multiSelectCollSeq(pParse, p, i);
3596 pKeyDup->aSortFlags[i] = 0;
3601 /* Separate the left and the right query from one another
3603 nSelect = 1;
3604 if( (op==TK_ALL || op==TK_UNION)
3605 && OptimizationEnabled(db, SQLITE_BalancedMerge)
3607 for(pSplit=p; pSplit->pPrior!=0 && pSplit->op==op; pSplit=pSplit->pPrior){
3608 nSelect++;
3609 assert( pSplit->pPrior->pNext==pSplit );
3612 if( nSelect<=3 ){
3613 pSplit = p;
3614 }else{
3615 pSplit = p;
3616 for(i=2; i<nSelect; i+=2){ pSplit = pSplit->pPrior; }
3618 pPrior = pSplit->pPrior;
3619 assert( pPrior!=0 );
3620 pSplit->pPrior = 0;
3621 pPrior->pNext = 0;
3622 assert( p->pOrderBy == pOrderBy );
3623 assert( pOrderBy!=0 || db->mallocFailed );
3624 pPrior->pOrderBy = sqlite3ExprListDup(pParse->db, pOrderBy, 0);
3625 sqlite3ResolveOrderGroupBy(pParse, p, p->pOrderBy, "ORDER");
3626 sqlite3ResolveOrderGroupBy(pParse, pPrior, pPrior->pOrderBy, "ORDER");
3628 /* Compute the limit registers */
3629 computeLimitRegisters(pParse, p, labelEnd);
3630 if( p->iLimit && op==TK_ALL ){
3631 regLimitA = ++pParse->nMem;
3632 regLimitB = ++pParse->nMem;
3633 sqlite3VdbeAddOp2(v, OP_Copy, p->iOffset ? p->iOffset+1 : p->iLimit,
3634 regLimitA);
3635 sqlite3VdbeAddOp2(v, OP_Copy, regLimitA, regLimitB);
3636 }else{
3637 regLimitA = regLimitB = 0;
3639 sqlite3ExprDelete(db, p->pLimit);
3640 p->pLimit = 0;
3642 regAddrA = ++pParse->nMem;
3643 regAddrB = ++pParse->nMem;
3644 regOutA = ++pParse->nMem;
3645 regOutB = ++pParse->nMem;
3646 sqlite3SelectDestInit(&destA, SRT_Coroutine, regAddrA);
3647 sqlite3SelectDestInit(&destB, SRT_Coroutine, regAddrB);
3649 ExplainQueryPlan((pParse, 1, "MERGE (%s)", sqlite3SelectOpName(p->op)));
3651 /* Generate a coroutine to evaluate the SELECT statement to the
3652 ** left of the compound operator - the "A" select.
3654 addrSelectA = sqlite3VdbeCurrentAddr(v) + 1;
3655 addr1 = sqlite3VdbeAddOp3(v, OP_InitCoroutine, regAddrA, 0, addrSelectA);
3656 VdbeComment((v, "left SELECT"));
3657 pPrior->iLimit = regLimitA;
3658 ExplainQueryPlan((pParse, 1, "LEFT"));
3659 sqlite3Select(pParse, pPrior, &destA);
3660 sqlite3VdbeEndCoroutine(v, regAddrA);
3661 sqlite3VdbeJumpHere(v, addr1);
3663 /* Generate a coroutine to evaluate the SELECT statement on
3664 ** the right - the "B" select
3666 addrSelectB = sqlite3VdbeCurrentAddr(v) + 1;
3667 addr1 = sqlite3VdbeAddOp3(v, OP_InitCoroutine, regAddrB, 0, addrSelectB);
3668 VdbeComment((v, "right SELECT"));
3669 savedLimit = p->iLimit;
3670 savedOffset = p->iOffset;
3671 p->iLimit = regLimitB;
3672 p->iOffset = 0;
3673 ExplainQueryPlan((pParse, 1, "RIGHT"));
3674 sqlite3Select(pParse, p, &destB);
3675 p->iLimit = savedLimit;
3676 p->iOffset = savedOffset;
3677 sqlite3VdbeEndCoroutine(v, regAddrB);
3679 /* Generate a subroutine that outputs the current row of the A
3680 ** select as the next output row of the compound select.
3682 VdbeNoopComment((v, "Output routine for A"));
3683 addrOutA = generateOutputSubroutine(pParse,
3684 p, &destA, pDest, regOutA,
3685 regPrev, pKeyDup, labelEnd);
3687 /* Generate a subroutine that outputs the current row of the B
3688 ** select as the next output row of the compound select.
3690 if( op==TK_ALL || op==TK_UNION ){
3691 VdbeNoopComment((v, "Output routine for B"));
3692 addrOutB = generateOutputSubroutine(pParse,
3693 p, &destB, pDest, regOutB,
3694 regPrev, pKeyDup, labelEnd);
3696 sqlite3KeyInfoUnref(pKeyDup);
3698 /* Generate a subroutine to run when the results from select A
3699 ** are exhausted and only data in select B remains.
3701 if( op==TK_EXCEPT || op==TK_INTERSECT ){
3702 addrEofA_noB = addrEofA = labelEnd;
3703 }else{
3704 VdbeNoopComment((v, "eof-A subroutine"));
3705 addrEofA = sqlite3VdbeAddOp2(v, OP_Gosub, regOutB, addrOutB);
3706 addrEofA_noB = sqlite3VdbeAddOp2(v, OP_Yield, regAddrB, labelEnd);
3707 VdbeCoverage(v);
3708 sqlite3VdbeGoto(v, addrEofA);
3709 p->nSelectRow = sqlite3LogEstAdd(p->nSelectRow, pPrior->nSelectRow);
3712 /* Generate a subroutine to run when the results from select B
3713 ** are exhausted and only data in select A remains.
3715 if( op==TK_INTERSECT ){
3716 addrEofB = addrEofA;
3717 if( p->nSelectRow > pPrior->nSelectRow ) p->nSelectRow = pPrior->nSelectRow;
3718 }else{
3719 VdbeNoopComment((v, "eof-B subroutine"));
3720 addrEofB = sqlite3VdbeAddOp2(v, OP_Gosub, regOutA, addrOutA);
3721 sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, labelEnd); VdbeCoverage(v);
3722 sqlite3VdbeGoto(v, addrEofB);
3725 /* Generate code to handle the case of A<B
3727 VdbeNoopComment((v, "A-lt-B subroutine"));
3728 addrAltB = sqlite3VdbeAddOp2(v, OP_Gosub, regOutA, addrOutA);
3729 sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, addrEofA); VdbeCoverage(v);
3730 sqlite3VdbeGoto(v, labelCmpr);
3732 /* Generate code to handle the case of A==B
3734 if( op==TK_ALL ){
3735 addrAeqB = addrAltB;
3736 }else if( op==TK_INTERSECT ){
3737 addrAeqB = addrAltB;
3738 addrAltB++;
3739 }else{
3740 VdbeNoopComment((v, "A-eq-B subroutine"));
3741 addrAeqB =
3742 sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, addrEofA); VdbeCoverage(v);
3743 sqlite3VdbeGoto(v, labelCmpr);
3746 /* Generate code to handle the case of A>B
3748 VdbeNoopComment((v, "A-gt-B subroutine"));
3749 addrAgtB = sqlite3VdbeCurrentAddr(v);
3750 if( op==TK_ALL || op==TK_UNION ){
3751 sqlite3VdbeAddOp2(v, OP_Gosub, regOutB, addrOutB);
3753 sqlite3VdbeAddOp2(v, OP_Yield, regAddrB, addrEofB); VdbeCoverage(v);
3754 sqlite3VdbeGoto(v, labelCmpr);
3756 /* This code runs once to initialize everything.
3758 sqlite3VdbeJumpHere(v, addr1);
3759 sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, addrEofA_noB); VdbeCoverage(v);
3760 sqlite3VdbeAddOp2(v, OP_Yield, regAddrB, addrEofB); VdbeCoverage(v);
3762 /* Implement the main merge loop
3764 sqlite3VdbeResolveLabel(v, labelCmpr);
3765 sqlite3VdbeAddOp4(v, OP_Permutation, 0, 0, 0, (char*)aPermute, P4_INTARRAY);
3766 sqlite3VdbeAddOp4(v, OP_Compare, destA.iSdst, destB.iSdst, nOrderBy,
3767 (char*)pKeyMerge, P4_KEYINFO);
3768 sqlite3VdbeChangeP5(v, OPFLAG_PERMUTE);
3769 sqlite3VdbeAddOp3(v, OP_Jump, addrAltB, addrAeqB, addrAgtB); VdbeCoverage(v);
3771 /* Jump to the this point in order to terminate the query.
3773 sqlite3VdbeResolveLabel(v, labelEnd);
3775 /* Make arrangements to free the 2nd and subsequent arms of the compound
3776 ** after the parse has finished */
3777 if( pSplit->pPrior ){
3778 sqlite3ParserAddCleanup(pParse, sqlite3SelectDeleteGeneric, pSplit->pPrior);
3780 pSplit->pPrior = pPrior;
3781 pPrior->pNext = pSplit;
3782 sqlite3ExprListDelete(db, pPrior->pOrderBy);
3783 pPrior->pOrderBy = 0;
3785 /*** TBD: Insert subroutine calls to close cursors on incomplete
3786 **** subqueries ****/
3787 ExplainQueryPlanPop(pParse);
3788 return pParse->nErr!=0;
3790 #endif
3792 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
3794 /* An instance of the SubstContext object describes an substitution edit
3795 ** to be performed on a parse tree.
3797 ** All references to columns in table iTable are to be replaced by corresponding
3798 ** expressions in pEList.
3800 ** ## About "isOuterJoin":
3802 ** The isOuterJoin column indicates that the replacement will occur into a
3803 ** position in the parent that NULL-able due to an OUTER JOIN. Either the
3804 ** target slot in the parent is the right operand of a LEFT JOIN, or one of
3805 ** the left operands of a RIGHT JOIN. In either case, we need to potentially
3806 ** bypass the substituted expression with OP_IfNullRow.
3808 ** Suppose the original expression is an integer constant. Even though the table
3809 ** has the nullRow flag set, because the expression is an integer constant,
3810 ** it will not be NULLed out. So instead, we insert an OP_IfNullRow opcode
3811 ** that checks to see if the nullRow flag is set on the table. If the nullRow
3812 ** flag is set, then the value in the register is set to NULL and the original
3813 ** expression is bypassed. If the nullRow flag is not set, then the original
3814 ** expression runs to populate the register.
3816 ** Example where this is needed:
3818 ** CREATE TABLE t1(a INTEGER PRIMARY KEY, b INT);
3819 ** CREATE TABLE t2(x INT UNIQUE);
3821 ** SELECT a,b,m,x FROM t1 LEFT JOIN (SELECT 59 AS m,x FROM t2) ON b=x;
3823 ** When the subquery on the right side of the LEFT JOIN is flattened, we
3824 ** have to add OP_IfNullRow in front of the OP_Integer that implements the
3825 ** "m" value of the subquery so that a NULL will be loaded instead of 59
3826 ** when processing a non-matched row of the left.
3828 typedef struct SubstContext {
3829 Parse *pParse; /* The parsing context */
3830 int iTable; /* Replace references to this table */
3831 int iNewTable; /* New table number */
3832 int isOuterJoin; /* Add TK_IF_NULL_ROW opcodes on each replacement */
3833 ExprList *pEList; /* Replacement expressions */
3834 ExprList *pCList; /* Collation sequences for replacement expr */
3835 } SubstContext;
3837 /* Forward Declarations */
3838 static void substExprList(SubstContext*, ExprList*);
3839 static void substSelect(SubstContext*, Select*, int);
3842 ** Scan through the expression pExpr. Replace every reference to
3843 ** a column in table number iTable with a copy of the iColumn-th
3844 ** entry in pEList. (But leave references to the ROWID column
3845 ** unchanged.)
3847 ** This routine is part of the flattening procedure. A subquery
3848 ** whose result set is defined by pEList appears as entry in the
3849 ** FROM clause of a SELECT such that the VDBE cursor assigned to that
3850 ** FORM clause entry is iTable. This routine makes the necessary
3851 ** changes to pExpr so that it refers directly to the source table
3852 ** of the subquery rather the result set of the subquery.
3854 static Expr *substExpr(
3855 SubstContext *pSubst, /* Description of the substitution */
3856 Expr *pExpr /* Expr in which substitution occurs */
3858 if( pExpr==0 ) return 0;
3859 if( ExprHasProperty(pExpr, EP_OuterON|EP_InnerON)
3860 && pExpr->w.iJoin==pSubst->iTable
3862 testcase( ExprHasProperty(pExpr, EP_InnerON) );
3863 pExpr->w.iJoin = pSubst->iNewTable;
3865 if( pExpr->op==TK_COLUMN
3866 && pExpr->iTable==pSubst->iTable
3867 && !ExprHasProperty(pExpr, EP_FixedCol)
3869 #ifdef SQLITE_ALLOW_ROWID_IN_VIEW
3870 if( pExpr->iColumn<0 ){
3871 pExpr->op = TK_NULL;
3872 }else
3873 #endif
3875 Expr *pNew;
3876 int iColumn;
3877 Expr *pCopy;
3878 Expr ifNullRow;
3879 iColumn = pExpr->iColumn;
3880 assert( iColumn>=0 );
3881 assert( pSubst->pEList!=0 && iColumn<pSubst->pEList->nExpr );
3882 assert( pExpr->pRight==0 );
3883 pCopy = pSubst->pEList->a[iColumn].pExpr;
3884 if( sqlite3ExprIsVector(pCopy) ){
3885 sqlite3VectorErrorMsg(pSubst->pParse, pCopy);
3886 }else{
3887 sqlite3 *db = pSubst->pParse->db;
3888 if( pSubst->isOuterJoin
3889 && (pCopy->op!=TK_COLUMN || pCopy->iTable!=pSubst->iNewTable)
3891 memset(&ifNullRow, 0, sizeof(ifNullRow));
3892 ifNullRow.op = TK_IF_NULL_ROW;
3893 ifNullRow.pLeft = pCopy;
3894 ifNullRow.iTable = pSubst->iNewTable;
3895 ifNullRow.iColumn = -99;
3896 ifNullRow.flags = EP_IfNullRow;
3897 pCopy = &ifNullRow;
3899 testcase( ExprHasProperty(pCopy, EP_Subquery) );
3900 pNew = sqlite3ExprDup(db, pCopy, 0);
3901 if( db->mallocFailed ){
3902 sqlite3ExprDelete(db, pNew);
3903 return pExpr;
3905 if( pSubst->isOuterJoin ){
3906 ExprSetProperty(pNew, EP_CanBeNull);
3908 if( ExprHasProperty(pExpr,EP_OuterON|EP_InnerON) ){
3909 sqlite3SetJoinExpr(pNew, pExpr->w.iJoin,
3910 pExpr->flags & (EP_OuterON|EP_InnerON));
3912 sqlite3ExprDelete(db, pExpr);
3913 pExpr = pNew;
3914 if( pExpr->op==TK_TRUEFALSE ){
3915 pExpr->u.iValue = sqlite3ExprTruthValue(pExpr);
3916 pExpr->op = TK_INTEGER;
3917 ExprSetProperty(pExpr, EP_IntValue);
3920 /* Ensure that the expression now has an implicit collation sequence,
3921 ** just as it did when it was a column of a view or sub-query. */
3923 CollSeq *pNat = sqlite3ExprCollSeq(pSubst->pParse, pExpr);
3924 CollSeq *pColl = sqlite3ExprCollSeq(pSubst->pParse,
3925 pSubst->pCList->a[iColumn].pExpr
3927 if( pNat!=pColl || (pExpr->op!=TK_COLUMN && pExpr->op!=TK_COLLATE) ){
3928 pExpr = sqlite3ExprAddCollateString(pSubst->pParse, pExpr,
3929 (pColl ? pColl->zName : "BINARY")
3933 ExprClearProperty(pExpr, EP_Collate);
3936 }else{
3937 if( pExpr->op==TK_IF_NULL_ROW && pExpr->iTable==pSubst->iTable ){
3938 pExpr->iTable = pSubst->iNewTable;
3940 pExpr->pLeft = substExpr(pSubst, pExpr->pLeft);
3941 pExpr->pRight = substExpr(pSubst, pExpr->pRight);
3942 if( ExprUseXSelect(pExpr) ){
3943 substSelect(pSubst, pExpr->x.pSelect, 1);
3944 }else{
3945 substExprList(pSubst, pExpr->x.pList);
3947 #ifndef SQLITE_OMIT_WINDOWFUNC
3948 if( ExprHasProperty(pExpr, EP_WinFunc) ){
3949 Window *pWin = pExpr->y.pWin;
3950 pWin->pFilter = substExpr(pSubst, pWin->pFilter);
3951 substExprList(pSubst, pWin->pPartition);
3952 substExprList(pSubst, pWin->pOrderBy);
3954 #endif
3956 return pExpr;
3958 static void substExprList(
3959 SubstContext *pSubst, /* Description of the substitution */
3960 ExprList *pList /* List to scan and in which to make substitutes */
3962 int i;
3963 if( pList==0 ) return;
3964 for(i=0; i<pList->nExpr; i++){
3965 pList->a[i].pExpr = substExpr(pSubst, pList->a[i].pExpr);
3968 static void substSelect(
3969 SubstContext *pSubst, /* Description of the substitution */
3970 Select *p, /* SELECT statement in which to make substitutions */
3971 int doPrior /* Do substitutes on p->pPrior too */
3973 SrcList *pSrc;
3974 SrcItem *pItem;
3975 int i;
3976 if( !p ) return;
3978 substExprList(pSubst, p->pEList);
3979 substExprList(pSubst, p->pGroupBy);
3980 substExprList(pSubst, p->pOrderBy);
3981 p->pHaving = substExpr(pSubst, p->pHaving);
3982 p->pWhere = substExpr(pSubst, p->pWhere);
3983 pSrc = p->pSrc;
3984 assert( pSrc!=0 );
3985 for(i=pSrc->nSrc, pItem=pSrc->a; i>0; i--, pItem++){
3986 substSelect(pSubst, pItem->pSelect, 1);
3987 if( pItem->fg.isTabFunc ){
3988 substExprList(pSubst, pItem->u1.pFuncArg);
3991 }while( doPrior && (p = p->pPrior)!=0 );
3993 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */
3995 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
3997 ** pSelect is a SELECT statement and pSrcItem is one item in the FROM
3998 ** clause of that SELECT.
4000 ** This routine scans the entire SELECT statement and recomputes the
4001 ** pSrcItem->colUsed mask.
4003 static int recomputeColumnsUsedExpr(Walker *pWalker, Expr *pExpr){
4004 SrcItem *pItem;
4005 if( pExpr->op!=TK_COLUMN ) return WRC_Continue;
4006 pItem = pWalker->u.pSrcItem;
4007 if( pItem->iCursor!=pExpr->iTable ) return WRC_Continue;
4008 if( pExpr->iColumn<0 ) return WRC_Continue;
4009 pItem->colUsed |= sqlite3ExprColUsed(pExpr);
4010 return WRC_Continue;
4012 static void recomputeColumnsUsed(
4013 Select *pSelect, /* The complete SELECT statement */
4014 SrcItem *pSrcItem /* Which FROM clause item to recompute */
4016 Walker w;
4017 if( NEVER(pSrcItem->pTab==0) ) return;
4018 memset(&w, 0, sizeof(w));
4019 w.xExprCallback = recomputeColumnsUsedExpr;
4020 w.xSelectCallback = sqlite3SelectWalkNoop;
4021 w.u.pSrcItem = pSrcItem;
4022 pSrcItem->colUsed = 0;
4023 sqlite3WalkSelect(&w, pSelect);
4025 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */
4027 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
4029 ** Assign new cursor numbers to each of the items in pSrc. For each
4030 ** new cursor number assigned, set an entry in the aCsrMap[] array
4031 ** to map the old cursor number to the new:
4033 ** aCsrMap[iOld+1] = iNew;
4035 ** The array is guaranteed by the caller to be large enough for all
4036 ** existing cursor numbers in pSrc. aCsrMap[0] is the array size.
4038 ** If pSrc contains any sub-selects, call this routine recursively
4039 ** on the FROM clause of each such sub-select, with iExcept set to -1.
4041 static void srclistRenumberCursors(
4042 Parse *pParse, /* Parse context */
4043 int *aCsrMap, /* Array to store cursor mappings in */
4044 SrcList *pSrc, /* FROM clause to renumber */
4045 int iExcept /* FROM clause item to skip */
4047 int i;
4048 SrcItem *pItem;
4049 for(i=0, pItem=pSrc->a; i<pSrc->nSrc; i++, pItem++){
4050 if( i!=iExcept ){
4051 Select *p;
4052 assert( pItem->iCursor < aCsrMap[0] );
4053 if( !pItem->fg.isRecursive || aCsrMap[pItem->iCursor+1]==0 ){
4054 aCsrMap[pItem->iCursor+1] = pParse->nTab++;
4056 pItem->iCursor = aCsrMap[pItem->iCursor+1];
4057 for(p=pItem->pSelect; p; p=p->pPrior){
4058 srclistRenumberCursors(pParse, aCsrMap, p->pSrc, -1);
4065 ** *piCursor is a cursor number. Change it if it needs to be mapped.
4067 static void renumberCursorDoMapping(Walker *pWalker, int *piCursor){
4068 int *aCsrMap = pWalker->u.aiCol;
4069 int iCsr = *piCursor;
4070 if( iCsr < aCsrMap[0] && aCsrMap[iCsr+1]>0 ){
4071 *piCursor = aCsrMap[iCsr+1];
4076 ** Expression walker callback used by renumberCursors() to update
4077 ** Expr objects to match newly assigned cursor numbers.
4079 static int renumberCursorsCb(Walker *pWalker, Expr *pExpr){
4080 int op = pExpr->op;
4081 if( op==TK_COLUMN || op==TK_IF_NULL_ROW ){
4082 renumberCursorDoMapping(pWalker, &pExpr->iTable);
4084 if( ExprHasProperty(pExpr, EP_OuterON) ){
4085 renumberCursorDoMapping(pWalker, &pExpr->w.iJoin);
4087 return WRC_Continue;
4091 ** Assign a new cursor number to each cursor in the FROM clause (Select.pSrc)
4092 ** of the SELECT statement passed as the second argument, and to each
4093 ** cursor in the FROM clause of any FROM clause sub-selects, recursively.
4094 ** Except, do not assign a new cursor number to the iExcept'th element in
4095 ** the FROM clause of (*p). Update all expressions and other references
4096 ** to refer to the new cursor numbers.
4098 ** Argument aCsrMap is an array that may be used for temporary working
4099 ** space. Two guarantees are made by the caller:
4101 ** * the array is larger than the largest cursor number used within the
4102 ** select statement passed as an argument, and
4104 ** * the array entries for all cursor numbers that do *not* appear in
4105 ** FROM clauses of the select statement as described above are
4106 ** initialized to zero.
4108 static void renumberCursors(
4109 Parse *pParse, /* Parse context */
4110 Select *p, /* Select to renumber cursors within */
4111 int iExcept, /* FROM clause item to skip */
4112 int *aCsrMap /* Working space */
4114 Walker w;
4115 srclistRenumberCursors(pParse, aCsrMap, p->pSrc, iExcept);
4116 memset(&w, 0, sizeof(w));
4117 w.u.aiCol = aCsrMap;
4118 w.xExprCallback = renumberCursorsCb;
4119 w.xSelectCallback = sqlite3SelectWalkNoop;
4120 sqlite3WalkSelect(&w, p);
4122 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */
4125 ** If pSel is not part of a compound SELECT, return a pointer to its
4126 ** expression list. Otherwise, return a pointer to the expression list
4127 ** of the leftmost SELECT in the compound.
4129 static ExprList *findLeftmostExprlist(Select *pSel){
4130 while( pSel->pPrior ){
4131 pSel = pSel->pPrior;
4133 return pSel->pEList;
4137 ** Return true if any of the result-set columns in the compound query
4138 ** have incompatible affinities on one or more arms of the compound.
4140 static int compoundHasDifferentAffinities(Select *p){
4141 int ii;
4142 ExprList *pList;
4143 assert( p!=0 );
4144 assert( p->pEList!=0 );
4145 assert( p->pPrior!=0 );
4146 pList = p->pEList;
4147 for(ii=0; ii<pList->nExpr; ii++){
4148 char aff;
4149 Select *pSub1;
4150 assert( pList->a[ii].pExpr!=0 );
4151 aff = sqlite3ExprAffinity(pList->a[ii].pExpr);
4152 for(pSub1=p->pPrior; pSub1; pSub1=pSub1->pPrior){
4153 assert( pSub1->pEList!=0 );
4154 assert( pSub1->pEList->nExpr>ii );
4155 assert( pSub1->pEList->a[ii].pExpr!=0 );
4156 if( sqlite3ExprAffinity(pSub1->pEList->a[ii].pExpr)!=aff ){
4157 return 1;
4161 return 0;
4164 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
4166 ** This routine attempts to flatten subqueries as a performance optimization.
4167 ** This routine returns 1 if it makes changes and 0 if no flattening occurs.
4169 ** To understand the concept of flattening, consider the following
4170 ** query:
4172 ** SELECT a FROM (SELECT x+y AS a FROM t1 WHERE z<100) WHERE a>5
4174 ** The default way of implementing this query is to execute the
4175 ** subquery first and store the results in a temporary table, then
4176 ** run the outer query on that temporary table. This requires two
4177 ** passes over the data. Furthermore, because the temporary table
4178 ** has no indices, the WHERE clause on the outer query cannot be
4179 ** optimized.
4181 ** This routine attempts to rewrite queries such as the above into
4182 ** a single flat select, like this:
4184 ** SELECT x+y AS a FROM t1 WHERE z<100 AND a>5
4186 ** The code generated for this simplification gives the same result
4187 ** but only has to scan the data once. And because indices might
4188 ** exist on the table t1, a complete scan of the data might be
4189 ** avoided.
4191 ** Flattening is subject to the following constraints:
4193 ** (**) We no longer attempt to flatten aggregate subqueries. Was:
4194 ** The subquery and the outer query cannot both be aggregates.
4196 ** (**) We no longer attempt to flatten aggregate subqueries. Was:
4197 ** (2) If the subquery is an aggregate then
4198 ** (2a) the outer query must not be a join and
4199 ** (2b) the outer query must not use subqueries
4200 ** other than the one FROM-clause subquery that is a candidate
4201 ** for flattening. (This is due to ticket [2f7170d73bf9abf80]
4202 ** from 2015-02-09.)
4204 ** (3) If the subquery is the right operand of a LEFT JOIN then
4205 ** (3a) the subquery may not be a join and
4206 ** (3b) the FROM clause of the subquery may not contain a virtual
4207 ** table and
4208 ** (**) Was: "The outer query may not have a GROUP BY." This case
4209 ** is now managed correctly
4210 ** (3d) the outer query may not be DISTINCT.
4211 ** See also (26) for restrictions on RIGHT JOIN.
4213 ** (4) The subquery can not be DISTINCT.
4215 ** (**) At one point restrictions (4) and (5) defined a subset of DISTINCT
4216 ** sub-queries that were excluded from this optimization. Restriction
4217 ** (4) has since been expanded to exclude all DISTINCT subqueries.
4219 ** (**) We no longer attempt to flatten aggregate subqueries. Was:
4220 ** If the subquery is aggregate, the outer query may not be DISTINCT.
4222 ** (7) The subquery must have a FROM clause. TODO: For subqueries without
4223 ** A FROM clause, consider adding a FROM clause with the special
4224 ** table sqlite_once that consists of a single row containing a
4225 ** single NULL.
4227 ** (8) If the subquery uses LIMIT then the outer query may not be a join.
4229 ** (9) If the subquery uses LIMIT then the outer query may not be aggregate.
4231 ** (**) Restriction (10) was removed from the code on 2005-02-05 but we
4232 ** accidentally carried the comment forward until 2014-09-15. Original
4233 ** constraint: "If the subquery is aggregate then the outer query
4234 ** may not use LIMIT."
4236 ** (11) The subquery and the outer query may not both have ORDER BY clauses.
4238 ** (**) Not implemented. Subsumed into restriction (3). Was previously
4239 ** a separate restriction deriving from ticket #350.
4241 ** (13) The subquery and outer query may not both use LIMIT.
4243 ** (14) The subquery may not use OFFSET.
4245 ** (15) If the outer query is part of a compound select, then the
4246 ** subquery may not use LIMIT.
4247 ** (See ticket #2339 and ticket [02a8e81d44]).
4249 ** (16) If the outer query is aggregate, then the subquery may not
4250 ** use ORDER BY. (Ticket #2942) This used to not matter
4251 ** until we introduced the group_concat() function.
4253 ** (17) If the subquery is a compound select, then
4254 ** (17a) all compound operators must be a UNION ALL, and
4255 ** (17b) no terms within the subquery compound may be aggregate
4256 ** or DISTINCT, and
4257 ** (17c) every term within the subquery compound must have a FROM clause
4258 ** (17d) the outer query may not be
4259 ** (17d1) aggregate, or
4260 ** (17d2) DISTINCT
4261 ** (17e) the subquery may not contain window functions, and
4262 ** (17f) the subquery must not be the RHS of a LEFT JOIN.
4263 ** (17g) either the subquery is the first element of the outer
4264 ** query or there are no RIGHT or FULL JOINs in any arm
4265 ** of the subquery. (This is a duplicate of condition (27b).)
4266 ** (17h) The corresponding result set expressions in all arms of the
4267 ** compound must have the same affinity.
4269 ** The parent and sub-query may contain WHERE clauses. Subject to
4270 ** rules (11), (13) and (14), they may also contain ORDER BY,
4271 ** LIMIT and OFFSET clauses. The subquery cannot use any compound
4272 ** operator other than UNION ALL because all the other compound
4273 ** operators have an implied DISTINCT which is disallowed by
4274 ** restriction (4).
4276 ** Also, each component of the sub-query must return the same number
4277 ** of result columns. This is actually a requirement for any compound
4278 ** SELECT statement, but all the code here does is make sure that no
4279 ** such (illegal) sub-query is flattened. The caller will detect the
4280 ** syntax error and return a detailed message.
4282 ** (18) If the sub-query is a compound select, then all terms of the
4283 ** ORDER BY clause of the parent must be copies of a term returned
4284 ** by the parent query.
4286 ** (19) If the subquery uses LIMIT then the outer query may not
4287 ** have a WHERE clause.
4289 ** (20) If the sub-query is a compound select, then it must not use
4290 ** an ORDER BY clause. Ticket #3773. We could relax this constraint
4291 ** somewhat by saying that the terms of the ORDER BY clause must
4292 ** appear as unmodified result columns in the outer query. But we
4293 ** have other optimizations in mind to deal with that case.
4295 ** (21) If the subquery uses LIMIT then the outer query may not be
4296 ** DISTINCT. (See ticket [752e1646fc]).
4298 ** (22) The subquery may not be a recursive CTE.
4300 ** (23) If the outer query is a recursive CTE, then the sub-query may not be
4301 ** a compound query. This restriction is because transforming the
4302 ** parent to a compound query confuses the code that handles
4303 ** recursive queries in multiSelect().
4305 ** (**) We no longer attempt to flatten aggregate subqueries. Was:
4306 ** The subquery may not be an aggregate that uses the built-in min() or
4307 ** or max() functions. (Without this restriction, a query like:
4308 ** "SELECT x FROM (SELECT max(y), x FROM t1)" would not necessarily
4309 ** return the value X for which Y was maximal.)
4311 ** (25) If either the subquery or the parent query contains a window
4312 ** function in the select list or ORDER BY clause, flattening
4313 ** is not attempted.
4315 ** (26) The subquery may not be the right operand of a RIGHT JOIN.
4316 ** See also (3) for restrictions on LEFT JOIN.
4318 ** (27) The subquery may not contain a FULL or RIGHT JOIN unless it
4319 ** is the first element of the parent query. Two subcases:
4320 ** (27a) the subquery is not a compound query.
4321 ** (27b) the subquery is a compound query and the RIGHT JOIN occurs
4322 ** in any arm of the compound query. (See also (17g).)
4324 ** (28) The subquery is not a MATERIALIZED CTE. (This is handled
4325 ** in the caller before ever reaching this routine.)
4328 ** In this routine, the "p" parameter is a pointer to the outer query.
4329 ** The subquery is p->pSrc->a[iFrom]. isAgg is true if the outer query
4330 ** uses aggregates.
4332 ** If flattening is not attempted, this routine is a no-op and returns 0.
4333 ** If flattening is attempted this routine returns 1.
4335 ** All of the expression analysis must occur on both the outer query and
4336 ** the subquery before this routine runs.
4338 static int flattenSubquery(
4339 Parse *pParse, /* Parsing context */
4340 Select *p, /* The parent or outer SELECT statement */
4341 int iFrom, /* Index in p->pSrc->a[] of the inner subquery */
4342 int isAgg /* True if outer SELECT uses aggregate functions */
4344 const char *zSavedAuthContext = pParse->zAuthContext;
4345 Select *pParent; /* Current UNION ALL term of the other query */
4346 Select *pSub; /* The inner query or "subquery" */
4347 Select *pSub1; /* Pointer to the rightmost select in sub-query */
4348 SrcList *pSrc; /* The FROM clause of the outer query */
4349 SrcList *pSubSrc; /* The FROM clause of the subquery */
4350 int iParent; /* VDBE cursor number of the pSub result set temp table */
4351 int iNewParent = -1;/* Replacement table for iParent */
4352 int isOuterJoin = 0; /* True if pSub is the right side of a LEFT JOIN */
4353 int i; /* Loop counter */
4354 Expr *pWhere; /* The WHERE clause */
4355 SrcItem *pSubitem; /* The subquery */
4356 sqlite3 *db = pParse->db;
4357 Walker w; /* Walker to persist agginfo data */
4358 int *aCsrMap = 0;
4360 /* Check to see if flattening is permitted. Return 0 if not.
4362 assert( p!=0 );
4363 assert( p->pPrior==0 );
4364 if( OptimizationDisabled(db, SQLITE_QueryFlattener) ) return 0;
4365 pSrc = p->pSrc;
4366 assert( pSrc && iFrom>=0 && iFrom<pSrc->nSrc );
4367 pSubitem = &pSrc->a[iFrom];
4368 iParent = pSubitem->iCursor;
4369 pSub = pSubitem->pSelect;
4370 assert( pSub!=0 );
4372 #ifndef SQLITE_OMIT_WINDOWFUNC
4373 if( p->pWin || pSub->pWin ) return 0; /* Restriction (25) */
4374 #endif
4376 pSubSrc = pSub->pSrc;
4377 assert( pSubSrc );
4378 /* Prior to version 3.1.2, when LIMIT and OFFSET had to be simple constants,
4379 ** not arbitrary expressions, we allowed some combining of LIMIT and OFFSET
4380 ** because they could be computed at compile-time. But when LIMIT and OFFSET
4381 ** became arbitrary expressions, we were forced to add restrictions (13)
4382 ** and (14). */
4383 if( pSub->pLimit && p->pLimit ) return 0; /* Restriction (13) */
4384 if( pSub->pLimit && pSub->pLimit->pRight ) return 0; /* Restriction (14) */
4385 if( (p->selFlags & SF_Compound)!=0 && pSub->pLimit ){
4386 return 0; /* Restriction (15) */
4388 if( pSubSrc->nSrc==0 ) return 0; /* Restriction (7) */
4389 if( pSub->selFlags & SF_Distinct ) return 0; /* Restriction (4) */
4390 if( pSub->pLimit && (pSrc->nSrc>1 || isAgg) ){
4391 return 0; /* Restrictions (8)(9) */
4393 if( p->pOrderBy && pSub->pOrderBy ){
4394 return 0; /* Restriction (11) */
4396 if( isAgg && pSub->pOrderBy ) return 0; /* Restriction (16) */
4397 if( pSub->pLimit && p->pWhere ) return 0; /* Restriction (19) */
4398 if( pSub->pLimit && (p->selFlags & SF_Distinct)!=0 ){
4399 return 0; /* Restriction (21) */
4401 if( pSub->selFlags & (SF_Recursive) ){
4402 return 0; /* Restrictions (22) */
4406 ** If the subquery is the right operand of a LEFT JOIN, then the
4407 ** subquery may not be a join itself (3a). Example of why this is not
4408 ** allowed:
4410 ** t1 LEFT OUTER JOIN (t2 JOIN t3)
4412 ** If we flatten the above, we would get
4414 ** (t1 LEFT OUTER JOIN t2) JOIN t3
4416 ** which is not at all the same thing.
4418 ** See also tickets #306, #350, and #3300.
4420 if( (pSubitem->fg.jointype & (JT_OUTER|JT_LTORJ))!=0 ){
4421 if( pSubSrc->nSrc>1 /* (3a) */
4422 || IsVirtual(pSubSrc->a[0].pTab) /* (3b) */
4423 || (p->selFlags & SF_Distinct)!=0 /* (3d) */
4424 || (pSubitem->fg.jointype & JT_RIGHT)!=0 /* (26) */
4426 return 0;
4428 isOuterJoin = 1;
4431 assert( pSubSrc->nSrc>0 ); /* True by restriction (7) */
4432 if( iFrom>0 && (pSubSrc->a[0].fg.jointype & JT_LTORJ)!=0 ){
4433 return 0; /* Restriction (27a) */
4436 /* Condition (28) is blocked by the caller */
4437 assert( !pSubitem->fg.isCte || pSubitem->u2.pCteUse->eM10d!=M10d_Yes );
4439 /* Restriction (17): If the sub-query is a compound SELECT, then it must
4440 ** use only the UNION ALL operator. And none of the simple select queries
4441 ** that make up the compound SELECT are allowed to be aggregate or distinct
4442 ** queries.
4444 if( pSub->pPrior ){
4445 int ii;
4446 if( pSub->pOrderBy ){
4447 return 0; /* Restriction (20) */
4449 if( isAgg || (p->selFlags & SF_Distinct)!=0 || isOuterJoin>0 ){
4450 return 0; /* (17d1), (17d2), or (17f) */
4452 for(pSub1=pSub; pSub1; pSub1=pSub1->pPrior){
4453 testcase( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct );
4454 testcase( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))==SF_Aggregate );
4455 assert( pSub->pSrc!=0 );
4456 assert( (pSub->selFlags & SF_Recursive)==0 );
4457 assert( pSub->pEList->nExpr==pSub1->pEList->nExpr );
4458 if( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))!=0 /* (17b) */
4459 || (pSub1->pPrior && pSub1->op!=TK_ALL) /* (17a) */
4460 || pSub1->pSrc->nSrc<1 /* (17c) */
4461 #ifndef SQLITE_OMIT_WINDOWFUNC
4462 || pSub1->pWin /* (17e) */
4463 #endif
4465 return 0;
4467 if( iFrom>0 && (pSub1->pSrc->a[0].fg.jointype & JT_LTORJ)!=0 ){
4468 /* Without this restriction, the JT_LTORJ flag would end up being
4469 ** omitted on left-hand tables of the right join that is being
4470 ** flattened. */
4471 return 0; /* Restrictions (17g), (27b) */
4473 testcase( pSub1->pSrc->nSrc>1 );
4476 /* Restriction (18). */
4477 if( p->pOrderBy ){
4478 for(ii=0; ii<p->pOrderBy->nExpr; ii++){
4479 if( p->pOrderBy->a[ii].u.x.iOrderByCol==0 ) return 0;
4483 /* Restriction (23) */
4484 if( (p->selFlags & SF_Recursive) ) return 0;
4486 /* Restriction (17h) */
4487 if( compoundHasDifferentAffinities(pSub) ) return 0;
4489 if( pSrc->nSrc>1 ){
4490 if( pParse->nSelect>500 ) return 0;
4491 if( OptimizationDisabled(db, SQLITE_FlttnUnionAll) ) return 0;
4492 aCsrMap = sqlite3DbMallocZero(db, ((i64)pParse->nTab+1)*sizeof(int));
4493 if( aCsrMap ) aCsrMap[0] = pParse->nTab;
4497 /***** If we reach this point, flattening is permitted. *****/
4498 TREETRACE(0x4,pParse,p,("flatten %u.%p from term %d\n",
4499 pSub->selId, pSub, iFrom));
4501 /* Authorize the subquery */
4502 pParse->zAuthContext = pSubitem->zName;
4503 TESTONLY(i =) sqlite3AuthCheck(pParse, SQLITE_SELECT, 0, 0, 0);
4504 testcase( i==SQLITE_DENY );
4505 pParse->zAuthContext = zSavedAuthContext;
4507 /* Delete the transient structures associated with the subquery */
4508 pSub1 = pSubitem->pSelect;
4509 sqlite3DbFree(db, pSubitem->zDatabase);
4510 sqlite3DbFree(db, pSubitem->zName);
4511 sqlite3DbFree(db, pSubitem->zAlias);
4512 pSubitem->zDatabase = 0;
4513 pSubitem->zName = 0;
4514 pSubitem->zAlias = 0;
4515 pSubitem->pSelect = 0;
4516 assert( pSubitem->fg.isUsing!=0 || pSubitem->u3.pOn==0 );
4518 /* If the sub-query is a compound SELECT statement, then (by restrictions
4519 ** 17 and 18 above) it must be a UNION ALL and the parent query must
4520 ** be of the form:
4522 ** SELECT <expr-list> FROM (<sub-query>) <where-clause>
4524 ** followed by any ORDER BY, LIMIT and/or OFFSET clauses. This block
4525 ** creates N-1 copies of the parent query without any ORDER BY, LIMIT or
4526 ** OFFSET clauses and joins them to the left-hand-side of the original
4527 ** using UNION ALL operators. In this case N is the number of simple
4528 ** select statements in the compound sub-query.
4530 ** Example:
4532 ** SELECT a+1 FROM (
4533 ** SELECT x FROM tab
4534 ** UNION ALL
4535 ** SELECT y FROM tab
4536 ** UNION ALL
4537 ** SELECT abs(z*2) FROM tab2
4538 ** ) WHERE a!=5 ORDER BY 1
4540 ** Transformed into:
4542 ** SELECT x+1 FROM tab WHERE x+1!=5
4543 ** UNION ALL
4544 ** SELECT y+1 FROM tab WHERE y+1!=5
4545 ** UNION ALL
4546 ** SELECT abs(z*2)+1 FROM tab2 WHERE abs(z*2)+1!=5
4547 ** ORDER BY 1
4549 ** We call this the "compound-subquery flattening".
4551 for(pSub=pSub->pPrior; pSub; pSub=pSub->pPrior){
4552 Select *pNew;
4553 ExprList *pOrderBy = p->pOrderBy;
4554 Expr *pLimit = p->pLimit;
4555 Select *pPrior = p->pPrior;
4556 Table *pItemTab = pSubitem->pTab;
4557 pSubitem->pTab = 0;
4558 p->pOrderBy = 0;
4559 p->pPrior = 0;
4560 p->pLimit = 0;
4561 pNew = sqlite3SelectDup(db, p, 0);
4562 p->pLimit = pLimit;
4563 p->pOrderBy = pOrderBy;
4564 p->op = TK_ALL;
4565 pSubitem->pTab = pItemTab;
4566 if( pNew==0 ){
4567 p->pPrior = pPrior;
4568 }else{
4569 pNew->selId = ++pParse->nSelect;
4570 if( aCsrMap && ALWAYS(db->mallocFailed==0) ){
4571 renumberCursors(pParse, pNew, iFrom, aCsrMap);
4573 pNew->pPrior = pPrior;
4574 if( pPrior ) pPrior->pNext = pNew;
4575 pNew->pNext = p;
4576 p->pPrior = pNew;
4577 TREETRACE(0x4,pParse,p,("compound-subquery flattener"
4578 " creates %u as peer\n",pNew->selId));
4580 assert( pSubitem->pSelect==0 );
4582 sqlite3DbFree(db, aCsrMap);
4583 if( db->mallocFailed ){
4584 pSubitem->pSelect = pSub1;
4585 return 1;
4588 /* Defer deleting the Table object associated with the
4589 ** subquery until code generation is
4590 ** complete, since there may still exist Expr.pTab entries that
4591 ** refer to the subquery even after flattening. Ticket #3346.
4593 ** pSubitem->pTab is always non-NULL by test restrictions and tests above.
4595 if( ALWAYS(pSubitem->pTab!=0) ){
4596 Table *pTabToDel = pSubitem->pTab;
4597 if( pTabToDel->nTabRef==1 ){
4598 Parse *pToplevel = sqlite3ParseToplevel(pParse);
4599 sqlite3ParserAddCleanup(pToplevel, sqlite3DeleteTableGeneric, pTabToDel);
4600 testcase( pToplevel->earlyCleanup );
4601 }else{
4602 pTabToDel->nTabRef--;
4604 pSubitem->pTab = 0;
4607 /* The following loop runs once for each term in a compound-subquery
4608 ** flattening (as described above). If we are doing a different kind
4609 ** of flattening - a flattening other than a compound-subquery flattening -
4610 ** then this loop only runs once.
4612 ** This loop moves all of the FROM elements of the subquery into the
4613 ** the FROM clause of the outer query. Before doing this, remember
4614 ** the cursor number for the original outer query FROM element in
4615 ** iParent. The iParent cursor will never be used. Subsequent code
4616 ** will scan expressions looking for iParent references and replace
4617 ** those references with expressions that resolve to the subquery FROM
4618 ** elements we are now copying in.
4620 pSub = pSub1;
4621 for(pParent=p; pParent; pParent=pParent->pPrior, pSub=pSub->pPrior){
4622 int nSubSrc;
4623 u8 jointype = 0;
4624 u8 ltorj = pSrc->a[iFrom].fg.jointype & JT_LTORJ;
4625 assert( pSub!=0 );
4626 pSubSrc = pSub->pSrc; /* FROM clause of subquery */
4627 nSubSrc = pSubSrc->nSrc; /* Number of terms in subquery FROM clause */
4628 pSrc = pParent->pSrc; /* FROM clause of the outer query */
4630 if( pParent==p ){
4631 jointype = pSubitem->fg.jointype; /* First time through the loop */
4634 /* The subquery uses a single slot of the FROM clause of the outer
4635 ** query. If the subquery has more than one element in its FROM clause,
4636 ** then expand the outer query to make space for it to hold all elements
4637 ** of the subquery.
4639 ** Example:
4641 ** SELECT * FROM tabA, (SELECT * FROM sub1, sub2), tabB;
4643 ** The outer query has 3 slots in its FROM clause. One slot of the
4644 ** outer query (the middle slot) is used by the subquery. The next
4645 ** block of code will expand the outer query FROM clause to 4 slots.
4646 ** The middle slot is expanded to two slots in order to make space
4647 ** for the two elements in the FROM clause of the subquery.
4649 if( nSubSrc>1 ){
4650 pSrc = sqlite3SrcListEnlarge(pParse, pSrc, nSubSrc-1,iFrom+1);
4651 if( pSrc==0 ) break;
4652 pParent->pSrc = pSrc;
4655 /* Transfer the FROM clause terms from the subquery into the
4656 ** outer query.
4658 for(i=0; i<nSubSrc; i++){
4659 SrcItem *pItem = &pSrc->a[i+iFrom];
4660 if( pItem->fg.isUsing ) sqlite3IdListDelete(db, pItem->u3.pUsing);
4661 assert( pItem->fg.isTabFunc==0 );
4662 *pItem = pSubSrc->a[i];
4663 pItem->fg.jointype |= ltorj;
4664 iNewParent = pSubSrc->a[i].iCursor;
4665 memset(&pSubSrc->a[i], 0, sizeof(pSubSrc->a[i]));
4667 pSrc->a[iFrom].fg.jointype &= JT_LTORJ;
4668 pSrc->a[iFrom].fg.jointype |= jointype | ltorj;
4670 /* Now begin substituting subquery result set expressions for
4671 ** references to the iParent in the outer query.
4673 ** Example:
4675 ** SELECT a+5, b*10 FROM (SELECT x*3 AS a, y+10 AS b FROM t1) WHERE a>b;
4676 ** \ \_____________ subquery __________/ /
4677 ** \_____________________ outer query ______________________________/
4679 ** We look at every expression in the outer query and every place we see
4680 ** "a" we substitute "x*3" and every place we see "b" we substitute "y+10".
4682 if( pSub->pOrderBy && (pParent->selFlags & SF_NoopOrderBy)==0 ){
4683 /* At this point, any non-zero iOrderByCol values indicate that the
4684 ** ORDER BY column expression is identical to the iOrderByCol'th
4685 ** expression returned by SELECT statement pSub. Since these values
4686 ** do not necessarily correspond to columns in SELECT statement pParent,
4687 ** zero them before transferring the ORDER BY clause.
4689 ** Not doing this may cause an error if a subsequent call to this
4690 ** function attempts to flatten a compound sub-query into pParent
4691 ** (the only way this can happen is if the compound sub-query is
4692 ** currently part of pSub->pSrc). See ticket [d11a6e908f]. */
4693 ExprList *pOrderBy = pSub->pOrderBy;
4694 for(i=0; i<pOrderBy->nExpr; i++){
4695 pOrderBy->a[i].u.x.iOrderByCol = 0;
4697 assert( pParent->pOrderBy==0 );
4698 pParent->pOrderBy = pOrderBy;
4699 pSub->pOrderBy = 0;
4701 pWhere = pSub->pWhere;
4702 pSub->pWhere = 0;
4703 if( isOuterJoin>0 ){
4704 sqlite3SetJoinExpr(pWhere, iNewParent, EP_OuterON);
4706 if( pWhere ){
4707 if( pParent->pWhere ){
4708 pParent->pWhere = sqlite3PExpr(pParse, TK_AND, pWhere, pParent->pWhere);
4709 }else{
4710 pParent->pWhere = pWhere;
4713 if( db->mallocFailed==0 ){
4714 SubstContext x;
4715 x.pParse = pParse;
4716 x.iTable = iParent;
4717 x.iNewTable = iNewParent;
4718 x.isOuterJoin = isOuterJoin;
4719 x.pEList = pSub->pEList;
4720 x.pCList = findLeftmostExprlist(pSub);
4721 substSelect(&x, pParent, 0);
4724 /* The flattened query is a compound if either the inner or the
4725 ** outer query is a compound. */
4726 pParent->selFlags |= pSub->selFlags & SF_Compound;
4727 assert( (pSub->selFlags & SF_Distinct)==0 ); /* restriction (17b) */
4730 ** SELECT ... FROM (SELECT ... LIMIT a OFFSET b) LIMIT x OFFSET y;
4732 ** One is tempted to try to add a and b to combine the limits. But this
4733 ** does not work if either limit is negative.
4735 if( pSub->pLimit ){
4736 pParent->pLimit = pSub->pLimit;
4737 pSub->pLimit = 0;
4740 /* Recompute the SrcItem.colUsed masks for the flattened
4741 ** tables. */
4742 for(i=0; i<nSubSrc; i++){
4743 recomputeColumnsUsed(pParent, &pSrc->a[i+iFrom]);
4747 /* Finally, delete what is left of the subquery and return success.
4749 sqlite3AggInfoPersistWalkerInit(&w, pParse);
4750 sqlite3WalkSelect(&w,pSub1);
4751 sqlite3SelectDelete(db, pSub1);
4753 #if TREETRACE_ENABLED
4754 if( sqlite3TreeTrace & 0x4 ){
4755 TREETRACE(0x4,pParse,p,("After flattening:\n"));
4756 sqlite3TreeViewSelect(0, p, 0);
4758 #endif
4760 return 1;
4762 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */
4765 ** A structure to keep track of all of the column values that are fixed to
4766 ** a known value due to WHERE clause constraints of the form COLUMN=VALUE.
4768 typedef struct WhereConst WhereConst;
4769 struct WhereConst {
4770 Parse *pParse; /* Parsing context */
4771 u8 *pOomFault; /* Pointer to pParse->db->mallocFailed */
4772 int nConst; /* Number for COLUMN=CONSTANT terms */
4773 int nChng; /* Number of times a constant is propagated */
4774 int bHasAffBlob; /* At least one column in apExpr[] as affinity BLOB */
4775 u32 mExcludeOn; /* Which ON expressions to exclude from considertion.
4776 ** Either EP_OuterON or EP_InnerON|EP_OuterON */
4777 Expr **apExpr; /* [i*2] is COLUMN and [i*2+1] is VALUE */
4781 ** Add a new entry to the pConst object. Except, do not add duplicate
4782 ** pColumn entries. Also, do not add if doing so would not be appropriate.
4784 ** The caller guarantees the pColumn is a column and pValue is a constant.
4785 ** This routine has to do some additional checks before completing the
4786 ** insert.
4788 static void constInsert(
4789 WhereConst *pConst, /* The WhereConst into which we are inserting */
4790 Expr *pColumn, /* The COLUMN part of the constraint */
4791 Expr *pValue, /* The VALUE part of the constraint */
4792 Expr *pExpr /* Overall expression: COLUMN=VALUE or VALUE=COLUMN */
4794 int i;
4795 assert( pColumn->op==TK_COLUMN );
4796 assert( sqlite3ExprIsConstant(pConst->pParse, pValue) );
4798 if( ExprHasProperty(pColumn, EP_FixedCol) ) return;
4799 if( sqlite3ExprAffinity(pValue)!=0 ) return;
4800 if( !sqlite3IsBinary(sqlite3ExprCompareCollSeq(pConst->pParse,pExpr)) ){
4801 return;
4804 /* 2018-10-25 ticket [cf5ed20f]
4805 ** Make sure the same pColumn is not inserted more than once */
4806 for(i=0; i<pConst->nConst; i++){
4807 const Expr *pE2 = pConst->apExpr[i*2];
4808 assert( pE2->op==TK_COLUMN );
4809 if( pE2->iTable==pColumn->iTable
4810 && pE2->iColumn==pColumn->iColumn
4812 return; /* Already present. Return without doing anything. */
4815 if( sqlite3ExprAffinity(pColumn)==SQLITE_AFF_BLOB ){
4816 pConst->bHasAffBlob = 1;
4819 pConst->nConst++;
4820 pConst->apExpr = sqlite3DbReallocOrFree(pConst->pParse->db, pConst->apExpr,
4821 pConst->nConst*2*sizeof(Expr*));
4822 if( pConst->apExpr==0 ){
4823 pConst->nConst = 0;
4824 }else{
4825 pConst->apExpr[pConst->nConst*2-2] = pColumn;
4826 pConst->apExpr[pConst->nConst*2-1] = pValue;
4831 ** Find all terms of COLUMN=VALUE or VALUE=COLUMN in pExpr where VALUE
4832 ** is a constant expression and where the term must be true because it
4833 ** is part of the AND-connected terms of the expression. For each term
4834 ** found, add it to the pConst structure.
4836 static void findConstInWhere(WhereConst *pConst, Expr *pExpr){
4837 Expr *pRight, *pLeft;
4838 if( NEVER(pExpr==0) ) return;
4839 if( ExprHasProperty(pExpr, pConst->mExcludeOn) ){
4840 testcase( ExprHasProperty(pExpr, EP_OuterON) );
4841 testcase( ExprHasProperty(pExpr, EP_InnerON) );
4842 return;
4844 if( pExpr->op==TK_AND ){
4845 findConstInWhere(pConst, pExpr->pRight);
4846 findConstInWhere(pConst, pExpr->pLeft);
4847 return;
4849 if( pExpr->op!=TK_EQ ) return;
4850 pRight = pExpr->pRight;
4851 pLeft = pExpr->pLeft;
4852 assert( pRight!=0 );
4853 assert( pLeft!=0 );
4854 if( pRight->op==TK_COLUMN && sqlite3ExprIsConstant(pConst->pParse, pLeft) ){
4855 constInsert(pConst,pRight,pLeft,pExpr);
4857 if( pLeft->op==TK_COLUMN && sqlite3ExprIsConstant(pConst->pParse, pRight) ){
4858 constInsert(pConst,pLeft,pRight,pExpr);
4863 ** This is a helper function for Walker callback propagateConstantExprRewrite().
4865 ** Argument pExpr is a candidate expression to be replaced by a value. If
4866 ** pExpr is equivalent to one of the columns named in pWalker->u.pConst,
4867 ** then overwrite it with the corresponding value. Except, do not do so
4868 ** if argument bIgnoreAffBlob is non-zero and the affinity of pExpr
4869 ** is SQLITE_AFF_BLOB.
4871 static int propagateConstantExprRewriteOne(
4872 WhereConst *pConst,
4873 Expr *pExpr,
4874 int bIgnoreAffBlob
4876 int i;
4877 if( pConst->pOomFault[0] ) return WRC_Prune;
4878 if( pExpr->op!=TK_COLUMN ) return WRC_Continue;
4879 if( ExprHasProperty(pExpr, EP_FixedCol|pConst->mExcludeOn) ){
4880 testcase( ExprHasProperty(pExpr, EP_FixedCol) );
4881 testcase( ExprHasProperty(pExpr, EP_OuterON) );
4882 testcase( ExprHasProperty(pExpr, EP_InnerON) );
4883 return WRC_Continue;
4885 for(i=0; i<pConst->nConst; i++){
4886 Expr *pColumn = pConst->apExpr[i*2];
4887 if( pColumn==pExpr ) continue;
4888 if( pColumn->iTable!=pExpr->iTable ) continue;
4889 if( pColumn->iColumn!=pExpr->iColumn ) continue;
4890 if( bIgnoreAffBlob && sqlite3ExprAffinity(pColumn)==SQLITE_AFF_BLOB ){
4891 break;
4893 /* A match is found. Add the EP_FixedCol property */
4894 pConst->nChng++;
4895 ExprClearProperty(pExpr, EP_Leaf);
4896 ExprSetProperty(pExpr, EP_FixedCol);
4897 assert( pExpr->pLeft==0 );
4898 pExpr->pLeft = sqlite3ExprDup(pConst->pParse->db, pConst->apExpr[i*2+1], 0);
4899 if( pConst->pParse->db->mallocFailed ) return WRC_Prune;
4900 break;
4902 return WRC_Prune;
4906 ** This is a Walker expression callback. pExpr is a node from the WHERE
4907 ** clause of a SELECT statement. This function examines pExpr to see if
4908 ** any substitutions based on the contents of pWalker->u.pConst should
4909 ** be made to pExpr or its immediate children.
4911 ** A substitution is made if:
4913 ** + pExpr is a column with an affinity other than BLOB that matches
4914 ** one of the columns in pWalker->u.pConst, or
4916 ** + pExpr is a binary comparison operator (=, <=, >=, <, >) that
4917 ** uses an affinity other than TEXT and one of its immediate
4918 ** children is a column that matches one of the columns in
4919 ** pWalker->u.pConst.
4921 static int propagateConstantExprRewrite(Walker *pWalker, Expr *pExpr){
4922 WhereConst *pConst = pWalker->u.pConst;
4923 assert( TK_GT==TK_EQ+1 );
4924 assert( TK_LE==TK_EQ+2 );
4925 assert( TK_LT==TK_EQ+3 );
4926 assert( TK_GE==TK_EQ+4 );
4927 if( pConst->bHasAffBlob ){
4928 if( (pExpr->op>=TK_EQ && pExpr->op<=TK_GE)
4929 || pExpr->op==TK_IS
4931 propagateConstantExprRewriteOne(pConst, pExpr->pLeft, 0);
4932 if( pConst->pOomFault[0] ) return WRC_Prune;
4933 if( sqlite3ExprAffinity(pExpr->pLeft)!=SQLITE_AFF_TEXT ){
4934 propagateConstantExprRewriteOne(pConst, pExpr->pRight, 0);
4938 return propagateConstantExprRewriteOne(pConst, pExpr, pConst->bHasAffBlob);
4942 ** The WHERE-clause constant propagation optimization.
4944 ** If the WHERE clause contains terms of the form COLUMN=CONSTANT or
4945 ** CONSTANT=COLUMN that are top-level AND-connected terms that are not
4946 ** part of a ON clause from a LEFT JOIN, then throughout the query
4947 ** replace all other occurrences of COLUMN with CONSTANT.
4949 ** For example, the query:
4951 ** SELECT * FROM t1, t2, t3 WHERE t1.a=39 AND t2.b=t1.a AND t3.c=t2.b
4953 ** Is transformed into
4955 ** SELECT * FROM t1, t2, t3 WHERE t1.a=39 AND t2.b=39 AND t3.c=39
4957 ** Return true if any transformations where made and false if not.
4959 ** Implementation note: Constant propagation is tricky due to affinity
4960 ** and collating sequence interactions. Consider this example:
4962 ** CREATE TABLE t1(a INT,b TEXT);
4963 ** INSERT INTO t1 VALUES(123,'0123');
4964 ** SELECT * FROM t1 WHERE a=123 AND b=a;
4965 ** SELECT * FROM t1 WHERE a=123 AND b=123;
4967 ** The two SELECT statements above should return different answers. b=a
4968 ** is always true because the comparison uses numeric affinity, but b=123
4969 ** is false because it uses text affinity and '0123' is not the same as '123'.
4970 ** To work around this, the expression tree is not actually changed from
4971 ** "b=a" to "b=123" but rather the "a" in "b=a" is tagged with EP_FixedCol
4972 ** and the "123" value is hung off of the pLeft pointer. Code generator
4973 ** routines know to generate the constant "123" instead of looking up the
4974 ** column value. Also, to avoid collation problems, this optimization is
4975 ** only attempted if the "a=123" term uses the default BINARY collation.
4977 ** 2021-05-25 forum post 6a06202608: Another troublesome case is...
4979 ** CREATE TABLE t1(x);
4980 ** INSERT INTO t1 VALUES(10.0);
4981 ** SELECT 1 FROM t1 WHERE x=10 AND x LIKE 10;
4983 ** The query should return no rows, because the t1.x value is '10.0' not '10'
4984 ** and '10.0' is not LIKE '10'. But if we are not careful, the first WHERE
4985 ** term "x=10" will cause the second WHERE term to become "10 LIKE 10",
4986 ** resulting in a false positive. To avoid this, constant propagation for
4987 ** columns with BLOB affinity is only allowed if the constant is used with
4988 ** operators ==, <=, <, >=, >, or IS in a way that will cause the correct
4989 ** type conversions to occur. See logic associated with the bHasAffBlob flag
4990 ** for details.
4992 static int propagateConstants(
4993 Parse *pParse, /* The parsing context */
4994 Select *p /* The query in which to propagate constants */
4996 WhereConst x;
4997 Walker w;
4998 int nChng = 0;
4999 x.pParse = pParse;
5000 x.pOomFault = &pParse->db->mallocFailed;
5002 x.nConst = 0;
5003 x.nChng = 0;
5004 x.apExpr = 0;
5005 x.bHasAffBlob = 0;
5006 if( ALWAYS(p->pSrc!=0)
5007 && p->pSrc->nSrc>0
5008 && (p->pSrc->a[0].fg.jointype & JT_LTORJ)!=0
5010 /* Do not propagate constants on any ON clause if there is a
5011 ** RIGHT JOIN anywhere in the query */
5012 x.mExcludeOn = EP_InnerON | EP_OuterON;
5013 }else{
5014 /* Do not propagate constants through the ON clause of a LEFT JOIN */
5015 x.mExcludeOn = EP_OuterON;
5017 findConstInWhere(&x, p->pWhere);
5018 if( x.nConst ){
5019 memset(&w, 0, sizeof(w));
5020 w.pParse = pParse;
5021 w.xExprCallback = propagateConstantExprRewrite;
5022 w.xSelectCallback = sqlite3SelectWalkNoop;
5023 w.xSelectCallback2 = 0;
5024 w.walkerDepth = 0;
5025 w.u.pConst = &x;
5026 sqlite3WalkExpr(&w, p->pWhere);
5027 sqlite3DbFree(x.pParse->db, x.apExpr);
5028 nChng += x.nChng;
5030 }while( x.nChng );
5031 return nChng;
5034 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
5035 # if !defined(SQLITE_OMIT_WINDOWFUNC)
5037 ** This function is called to determine whether or not it is safe to
5038 ** push WHERE clause expression pExpr down to FROM clause sub-query
5039 ** pSubq, which contains at least one window function. Return 1
5040 ** if it is safe and the expression should be pushed down, or 0
5041 ** otherwise.
5043 ** It is only safe to push the expression down if it consists only
5044 ** of constants and copies of expressions that appear in the PARTITION
5045 ** BY clause of all window function used by the sub-query. It is safe
5046 ** to filter out entire partitions, but not rows within partitions, as
5047 ** this may change the results of the window functions.
5049 ** At the time this function is called it is guaranteed that
5051 ** * the sub-query uses only one distinct window frame, and
5052 ** * that the window frame has a PARTITION BY clause.
5054 static int pushDownWindowCheck(Parse *pParse, Select *pSubq, Expr *pExpr){
5055 assert( pSubq->pWin->pPartition );
5056 assert( (pSubq->selFlags & SF_MultiPart)==0 );
5057 assert( pSubq->pPrior==0 );
5058 return sqlite3ExprIsConstantOrGroupBy(pParse, pExpr, pSubq->pWin->pPartition);
5060 # endif /* SQLITE_OMIT_WINDOWFUNC */
5061 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */
5063 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
5065 ** Make copies of relevant WHERE clause terms of the outer query into
5066 ** the WHERE clause of subquery. Example:
5068 ** SELECT * FROM (SELECT a AS x, c-d AS y FROM t1) WHERE x=5 AND y=10;
5070 ** Transformed into:
5072 ** SELECT * FROM (SELECT a AS x, c-d AS y FROM t1 WHERE a=5 AND c-d=10)
5073 ** WHERE x=5 AND y=10;
5075 ** The hope is that the terms added to the inner query will make it more
5076 ** efficient.
5078 ** NAME AMBIGUITY
5080 ** This optimization is called the "WHERE-clause push-down optimization"
5081 ** or sometimes the "predicate push-down optimization".
5083 ** Do not confuse this optimization with another unrelated optimization
5084 ** with a similar name: The "MySQL push-down optimization" causes WHERE
5085 ** clause terms that can be evaluated using only the index and without
5086 ** reference to the table are run first, so that if they are false,
5087 ** unnecessary table seeks are avoided.
5089 ** RULES
5091 ** Do not attempt this optimization if:
5093 ** (1) (** This restriction was removed on 2017-09-29. We used to
5094 ** disallow this optimization for aggregate subqueries, but now
5095 ** it is allowed by putting the extra terms on the HAVING clause.
5096 ** The added HAVING clause is pointless if the subquery lacks
5097 ** a GROUP BY clause. But such a HAVING clause is also harmless
5098 ** so there does not appear to be any reason to add extra logic
5099 ** to suppress it. **)
5101 ** (2) The inner query is the recursive part of a common table expression.
5103 ** (3) The inner query has a LIMIT clause (since the changes to the WHERE
5104 ** clause would change the meaning of the LIMIT).
5106 ** (4) The inner query is the right operand of a LEFT JOIN and the
5107 ** expression to be pushed down does not come from the ON clause
5108 ** on that LEFT JOIN.
5110 ** (5) The WHERE clause expression originates in the ON or USING clause
5111 ** of a LEFT JOIN where iCursor is not the right-hand table of that
5112 ** left join. An example:
5114 ** SELECT *
5115 ** FROM (SELECT 1 AS a1 UNION ALL SELECT 2) AS aa
5116 ** JOIN (SELECT 1 AS b2 UNION ALL SELECT 2) AS bb ON (a1=b2)
5117 ** LEFT JOIN (SELECT 8 AS c3 UNION ALL SELECT 9) AS cc ON (b2=2);
5119 ** The correct answer is three rows: (1,1,NULL),(2,2,8),(2,2,9).
5120 ** But if the (b2=2) term were to be pushed down into the bb subquery,
5121 ** then the (1,1,NULL) row would be suppressed.
5123 ** (6) Window functions make things tricky as changes to the WHERE clause
5124 ** of the inner query could change the window over which window
5125 ** functions are calculated. Therefore, do not attempt the optimization
5126 ** if:
5128 ** (6a) The inner query uses multiple incompatible window partitions.
5130 ** (6b) The inner query is a compound and uses window-functions.
5132 ** (6c) The WHERE clause does not consist entirely of constants and
5133 ** copies of expressions found in the PARTITION BY clause of
5134 ** all window-functions used by the sub-query. It is safe to
5135 ** filter out entire partitions, as this does not change the
5136 ** window over which any window-function is calculated.
5138 ** (7) The inner query is a Common Table Expression (CTE) that should
5139 ** be materialized. (This restriction is implemented in the calling
5140 ** routine.)
5142 ** (8) If the subquery is a compound that uses UNION, INTERSECT,
5143 ** or EXCEPT, then all of the result set columns for all arms of
5144 ** the compound must use the BINARY collating sequence.
5146 ** (9) All three of the following are true:
5148 ** (9a) The WHERE clause expression originates in the ON or USING clause
5149 ** of a join (either an INNER or an OUTER join), and
5151 ** (9b) The subquery is to the right of the ON/USING clause
5153 ** (9c) There is a RIGHT JOIN (or FULL JOIN) in between the ON/USING
5154 ** clause and the subquery.
5156 ** Without this restriction, the WHERE-clause push-down optimization
5157 ** might move the ON/USING filter expression from the left side of a
5158 ** RIGHT JOIN over to the right side, which leads to incorrect answers.
5159 ** See also restriction (6) in sqlite3ExprIsSingleTableConstraint().
5161 ** (10) The inner query is not the right-hand table of a RIGHT JOIN.
5163 ** (11) The subquery is not a VALUES clause
5165 ** (12) The WHERE clause is not "rowid ISNULL" or the equivalent. This
5166 ** case only comes up if SQLite is compiled using
5167 ** SQLITE_ALLOW_ROWID_IN_VIEW.
5169 ** Return 0 if no changes are made and non-zero if one or more WHERE clause
5170 ** terms are duplicated into the subquery.
5172 static int pushDownWhereTerms(
5173 Parse *pParse, /* Parse context (for malloc() and error reporting) */
5174 Select *pSubq, /* The subquery whose WHERE clause is to be augmented */
5175 Expr *pWhere, /* The WHERE clause of the outer query */
5176 SrcList *pSrcList, /* The complete from clause of the outer query */
5177 int iSrc /* Which FROM clause term to try to push into */
5179 Expr *pNew;
5180 SrcItem *pSrc; /* The subquery FROM term into which WHERE is pushed */
5181 int nChng = 0;
5182 pSrc = &pSrcList->a[iSrc];
5183 if( pWhere==0 ) return 0;
5184 if( pSubq->selFlags & (SF_Recursive|SF_MultiPart) ){
5185 return 0; /* restrictions (2) and (11) */
5187 if( pSrc->fg.jointype & (JT_LTORJ|JT_RIGHT) ){
5188 return 0; /* restrictions (10) */
5191 if( pSubq->pPrior ){
5192 Select *pSel;
5193 int notUnionAll = 0;
5194 for(pSel=pSubq; pSel; pSel=pSel->pPrior){
5195 u8 op = pSel->op;
5196 assert( op==TK_ALL || op==TK_SELECT
5197 || op==TK_UNION || op==TK_INTERSECT || op==TK_EXCEPT );
5198 if( op!=TK_ALL && op!=TK_SELECT ){
5199 notUnionAll = 1;
5201 #ifndef SQLITE_OMIT_WINDOWFUNC
5202 if( pSel->pWin ) return 0; /* restriction (6b) */
5203 #endif
5205 if( notUnionAll ){
5206 /* If any of the compound arms are connected using UNION, INTERSECT,
5207 ** or EXCEPT, then we must ensure that none of the columns use a
5208 ** non-BINARY collating sequence. */
5209 for(pSel=pSubq; pSel; pSel=pSel->pPrior){
5210 int ii;
5211 const ExprList *pList = pSel->pEList;
5212 assert( pList!=0 );
5213 for(ii=0; ii<pList->nExpr; ii++){
5214 CollSeq *pColl = sqlite3ExprCollSeq(pParse, pList->a[ii].pExpr);
5215 if( !sqlite3IsBinary(pColl) ){
5216 return 0; /* Restriction (8) */
5221 }else{
5222 #ifndef SQLITE_OMIT_WINDOWFUNC
5223 if( pSubq->pWin && pSubq->pWin->pPartition==0 ) return 0;
5224 #endif
5227 #ifdef SQLITE_DEBUG
5228 /* Only the first term of a compound can have a WITH clause. But make
5229 ** sure no other terms are marked SF_Recursive in case something changes
5230 ** in the future.
5233 Select *pX;
5234 for(pX=pSubq; pX; pX=pX->pPrior){
5235 assert( (pX->selFlags & (SF_Recursive))==0 );
5238 #endif
5240 if( pSubq->pLimit!=0 ){
5241 return 0; /* restriction (3) */
5243 while( pWhere->op==TK_AND ){
5244 nChng += pushDownWhereTerms(pParse, pSubq, pWhere->pRight, pSrcList, iSrc);
5245 pWhere = pWhere->pLeft;
5248 #if 0 /* These checks now done by sqlite3ExprIsSingleTableConstraint() */
5249 if( ExprHasProperty(pWhere, EP_OuterON|EP_InnerON) /* (9a) */
5250 && (pSrcList->a[0].fg.jointype & JT_LTORJ)!=0 /* Fast pre-test of (9c) */
5252 int jj;
5253 for(jj=0; jj<iSrc; jj++){
5254 if( pWhere->w.iJoin==pSrcList->a[jj].iCursor ){
5255 /* If we reach this point, both (9a) and (9b) are satisfied.
5256 ** The following loop checks (9c):
5258 for(jj++; jj<iSrc; jj++){
5259 if( (pSrcList->a[jj].fg.jointype & JT_RIGHT)!=0 ){
5260 return 0; /* restriction (9) */
5266 if( isLeftJoin
5267 && (ExprHasProperty(pWhere,EP_OuterON)==0
5268 || pWhere->w.iJoin!=iCursor)
5270 return 0; /* restriction (4) */
5272 if( ExprHasProperty(pWhere,EP_OuterON)
5273 && pWhere->w.iJoin!=iCursor
5275 return 0; /* restriction (5) */
5277 #endif
5279 #ifdef SQLITE_ALLOW_ROWID_IN_VIEW
5280 if( ViewCanHaveRowid && (pWhere->op==TK_ISNULL || pWhere->op==TK_NOTNULL) ){
5281 Expr *pLeft = pWhere->pLeft;
5282 if( ALWAYS(pLeft)
5283 && pLeft->op==TK_COLUMN
5284 && pLeft->iColumn < 0
5286 return 0; /* Restriction (12) */
5289 #endif
5291 if( sqlite3ExprIsSingleTableConstraint(pWhere, pSrcList, iSrc, 1) ){
5292 nChng++;
5293 pSubq->selFlags |= SF_PushDown;
5294 while( pSubq ){
5295 SubstContext x;
5296 pNew = sqlite3ExprDup(pParse->db, pWhere, 0);
5297 unsetJoinExpr(pNew, -1, 1);
5298 x.pParse = pParse;
5299 x.iTable = pSrc->iCursor;
5300 x.iNewTable = pSrc->iCursor;
5301 x.isOuterJoin = 0;
5302 x.pEList = pSubq->pEList;
5303 x.pCList = findLeftmostExprlist(pSubq);
5304 pNew = substExpr(&x, pNew);
5305 #ifndef SQLITE_OMIT_WINDOWFUNC
5306 if( pSubq->pWin && 0==pushDownWindowCheck(pParse, pSubq, pNew) ){
5307 /* Restriction 6c has prevented push-down in this case */
5308 sqlite3ExprDelete(pParse->db, pNew);
5309 nChng--;
5310 break;
5312 #endif
5313 if( pSubq->selFlags & SF_Aggregate ){
5314 pSubq->pHaving = sqlite3ExprAnd(pParse, pSubq->pHaving, pNew);
5315 }else{
5316 pSubq->pWhere = sqlite3ExprAnd(pParse, pSubq->pWhere, pNew);
5318 pSubq = pSubq->pPrior;
5321 return nChng;
5323 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */
5326 ** Check to see if a subquery contains result-set columns that are
5327 ** never used. If it does, change the value of those result-set columns
5328 ** to NULL so that they do not cause unnecessary work to compute.
5330 ** Return the number of column that were changed to NULL.
5332 static int disableUnusedSubqueryResultColumns(SrcItem *pItem){
5333 int nCol;
5334 Select *pSub; /* The subquery to be simplified */
5335 Select *pX; /* For looping over compound elements of pSub */
5336 Table *pTab; /* The table that describes the subquery */
5337 int j; /* Column number */
5338 int nChng = 0; /* Number of columns converted to NULL */
5339 Bitmask colUsed; /* Columns that may not be NULLed out */
5341 assert( pItem!=0 );
5342 if( pItem->fg.isCorrelated || pItem->fg.isCte ){
5343 return 0;
5345 assert( pItem->pTab!=0 );
5346 pTab = pItem->pTab;
5347 assert( pItem->pSelect!=0 );
5348 pSub = pItem->pSelect;
5349 assert( pSub->pEList->nExpr==pTab->nCol );
5350 for(pX=pSub; pX; pX=pX->pPrior){
5351 if( (pX->selFlags & (SF_Distinct|SF_Aggregate))!=0 ){
5352 testcase( pX->selFlags & SF_Distinct );
5353 testcase( pX->selFlags & SF_Aggregate );
5354 return 0;
5356 if( pX->pPrior && pX->op!=TK_ALL ){
5357 /* This optimization does not work for compound subqueries that
5358 ** use UNION, INTERSECT, or EXCEPT. Only UNION ALL is allowed. */
5359 return 0;
5361 #ifndef SQLITE_OMIT_WINDOWFUNC
5362 if( pX->pWin ){
5363 /* This optimization does not work for subqueries that use window
5364 ** functions. */
5365 return 0;
5367 #endif
5369 colUsed = pItem->colUsed;
5370 if( pSub->pOrderBy ){
5371 ExprList *pList = pSub->pOrderBy;
5372 for(j=0; j<pList->nExpr; j++){
5373 u16 iCol = pList->a[j].u.x.iOrderByCol;
5374 if( iCol>0 ){
5375 iCol--;
5376 colUsed |= ((Bitmask)1)<<(iCol>=BMS ? BMS-1 : iCol);
5380 nCol = pTab->nCol;
5381 for(j=0; j<nCol; j++){
5382 Bitmask m = j<BMS-1 ? MASKBIT(j) : TOPBIT;
5383 if( (m & colUsed)!=0 ) continue;
5384 for(pX=pSub; pX; pX=pX->pPrior) {
5385 Expr *pY = pX->pEList->a[j].pExpr;
5386 if( pY->op==TK_NULL ) continue;
5387 pY->op = TK_NULL;
5388 ExprClearProperty(pY, EP_Skip|EP_Unlikely);
5389 pX->selFlags |= SF_PushDown;
5390 nChng++;
5393 return nChng;
5398 ** The pFunc is the only aggregate function in the query. Check to see
5399 ** if the query is a candidate for the min/max optimization.
5401 ** If the query is a candidate for the min/max optimization, then set
5402 ** *ppMinMax to be an ORDER BY clause to be used for the optimization
5403 ** and return either WHERE_ORDERBY_MIN or WHERE_ORDERBY_MAX depending on
5404 ** whether pFunc is a min() or max() function.
5406 ** If the query is not a candidate for the min/max optimization, return
5407 ** WHERE_ORDERBY_NORMAL (which must be zero).
5409 ** This routine must be called after aggregate functions have been
5410 ** located but before their arguments have been subjected to aggregate
5411 ** analysis.
5413 static u8 minMaxQuery(sqlite3 *db, Expr *pFunc, ExprList **ppMinMax){
5414 int eRet = WHERE_ORDERBY_NORMAL; /* Return value */
5415 ExprList *pEList; /* Arguments to agg function */
5416 const char *zFunc; /* Name of aggregate function pFunc */
5417 ExprList *pOrderBy;
5418 u8 sortFlags = 0;
5420 assert( *ppMinMax==0 );
5421 assert( pFunc->op==TK_AGG_FUNCTION );
5422 assert( !IsWindowFunc(pFunc) );
5423 assert( ExprUseXList(pFunc) );
5424 pEList = pFunc->x.pList;
5425 if( pEList==0
5426 || pEList->nExpr!=1
5427 || ExprHasProperty(pFunc, EP_WinFunc)
5428 || OptimizationDisabled(db, SQLITE_MinMaxOpt)
5430 return eRet;
5432 assert( !ExprHasProperty(pFunc, EP_IntValue) );
5433 zFunc = pFunc->u.zToken;
5434 if( sqlite3StrICmp(zFunc, "min")==0 ){
5435 eRet = WHERE_ORDERBY_MIN;
5436 if( sqlite3ExprCanBeNull(pEList->a[0].pExpr) ){
5437 sortFlags = KEYINFO_ORDER_BIGNULL;
5439 }else if( sqlite3StrICmp(zFunc, "max")==0 ){
5440 eRet = WHERE_ORDERBY_MAX;
5441 sortFlags = KEYINFO_ORDER_DESC;
5442 }else{
5443 return eRet;
5445 *ppMinMax = pOrderBy = sqlite3ExprListDup(db, pEList, 0);
5446 assert( pOrderBy!=0 || db->mallocFailed );
5447 if( pOrderBy ) pOrderBy->a[0].fg.sortFlags = sortFlags;
5448 return eRet;
5452 ** The select statement passed as the first argument is an aggregate query.
5453 ** The second argument is the associated aggregate-info object. This
5454 ** function tests if the SELECT is of the form:
5456 ** SELECT count(*) FROM <tbl>
5458 ** where table is a database table, not a sub-select or view. If the query
5459 ** does match this pattern, then a pointer to the Table object representing
5460 ** <tbl> is returned. Otherwise, NULL is returned.
5462 ** This routine checks to see if it is safe to use the count optimization.
5463 ** A correct answer is still obtained (though perhaps more slowly) if
5464 ** this routine returns NULL when it could have returned a table pointer.
5465 ** But returning the pointer when NULL should have been returned can
5466 ** result in incorrect answers and/or crashes. So, when in doubt, return NULL.
5468 static Table *isSimpleCount(Select *p, AggInfo *pAggInfo){
5469 Table *pTab;
5470 Expr *pExpr;
5472 assert( !p->pGroupBy );
5474 if( p->pWhere
5475 || p->pEList->nExpr!=1
5476 || p->pSrc->nSrc!=1
5477 || p->pSrc->a[0].pSelect
5478 || pAggInfo->nFunc!=1
5479 || p->pHaving
5481 return 0;
5483 pTab = p->pSrc->a[0].pTab;
5484 assert( pTab!=0 );
5485 assert( !IsView(pTab) );
5486 if( !IsOrdinaryTable(pTab) ) return 0;
5487 pExpr = p->pEList->a[0].pExpr;
5488 assert( pExpr!=0 );
5489 if( pExpr->op!=TK_AGG_FUNCTION ) return 0;
5490 if( pExpr->pAggInfo!=pAggInfo ) return 0;
5491 if( (pAggInfo->aFunc[0].pFunc->funcFlags&SQLITE_FUNC_COUNT)==0 ) return 0;
5492 assert( pAggInfo->aFunc[0].pFExpr==pExpr );
5493 testcase( ExprHasProperty(pExpr, EP_Distinct) );
5494 testcase( ExprHasProperty(pExpr, EP_WinFunc) );
5495 if( ExprHasProperty(pExpr, EP_Distinct|EP_WinFunc) ) return 0;
5497 return pTab;
5501 ** If the source-list item passed as an argument was augmented with an
5502 ** INDEXED BY clause, then try to locate the specified index. If there
5503 ** was such a clause and the named index cannot be found, return
5504 ** SQLITE_ERROR and leave an error in pParse. Otherwise, populate
5505 ** pFrom->pIndex and return SQLITE_OK.
5507 int sqlite3IndexedByLookup(Parse *pParse, SrcItem *pFrom){
5508 Table *pTab = pFrom->pTab;
5509 char *zIndexedBy = pFrom->u1.zIndexedBy;
5510 Index *pIdx;
5511 assert( pTab!=0 );
5512 assert( pFrom->fg.isIndexedBy!=0 );
5514 for(pIdx=pTab->pIndex;
5515 pIdx && sqlite3StrICmp(pIdx->zName, zIndexedBy);
5516 pIdx=pIdx->pNext
5518 if( !pIdx ){
5519 sqlite3ErrorMsg(pParse, "no such index: %s", zIndexedBy, 0);
5520 pParse->checkSchema = 1;
5521 return SQLITE_ERROR;
5523 assert( pFrom->fg.isCte==0 );
5524 pFrom->u2.pIBIndex = pIdx;
5525 return SQLITE_OK;
5529 ** Detect compound SELECT statements that use an ORDER BY clause with
5530 ** an alternative collating sequence.
5532 ** SELECT ... FROM t1 EXCEPT SELECT ... FROM t2 ORDER BY .. COLLATE ...
5534 ** These are rewritten as a subquery:
5536 ** SELECT * FROM (SELECT ... FROM t1 EXCEPT SELECT ... FROM t2)
5537 ** ORDER BY ... COLLATE ...
5539 ** This transformation is necessary because the multiSelectOrderBy() routine
5540 ** above that generates the code for a compound SELECT with an ORDER BY clause
5541 ** uses a merge algorithm that requires the same collating sequence on the
5542 ** result columns as on the ORDER BY clause. See ticket
5543 ** http://www.sqlite.org/src/info/6709574d2a
5545 ** This transformation is only needed for EXCEPT, INTERSECT, and UNION.
5546 ** The UNION ALL operator works fine with multiSelectOrderBy() even when
5547 ** there are COLLATE terms in the ORDER BY.
5549 static int convertCompoundSelectToSubquery(Walker *pWalker, Select *p){
5550 int i;
5551 Select *pNew;
5552 Select *pX;
5553 sqlite3 *db;
5554 struct ExprList_item *a;
5555 SrcList *pNewSrc;
5556 Parse *pParse;
5557 Token dummy;
5559 if( p->pPrior==0 ) return WRC_Continue;
5560 if( p->pOrderBy==0 ) return WRC_Continue;
5561 for(pX=p; pX && (pX->op==TK_ALL || pX->op==TK_SELECT); pX=pX->pPrior){}
5562 if( pX==0 ) return WRC_Continue;
5563 a = p->pOrderBy->a;
5564 #ifndef SQLITE_OMIT_WINDOWFUNC
5565 /* If iOrderByCol is already non-zero, then it has already been matched
5566 ** to a result column of the SELECT statement. This occurs when the
5567 ** SELECT is rewritten for window-functions processing and then passed
5568 ** to sqlite3SelectPrep() and similar a second time. The rewriting done
5569 ** by this function is not required in this case. */
5570 if( a[0].u.x.iOrderByCol ) return WRC_Continue;
5571 #endif
5572 for(i=p->pOrderBy->nExpr-1; i>=0; i--){
5573 if( a[i].pExpr->flags & EP_Collate ) break;
5575 if( i<0 ) return WRC_Continue;
5577 /* If we reach this point, that means the transformation is required. */
5579 pParse = pWalker->pParse;
5580 db = pParse->db;
5581 pNew = sqlite3DbMallocZero(db, sizeof(*pNew) );
5582 if( pNew==0 ) return WRC_Abort;
5583 memset(&dummy, 0, sizeof(dummy));
5584 pNewSrc = sqlite3SrcListAppendFromTerm(pParse,0,0,0,&dummy,pNew,0);
5585 if( pNewSrc==0 ) return WRC_Abort;
5586 *pNew = *p;
5587 p->pSrc = pNewSrc;
5588 p->pEList = sqlite3ExprListAppend(pParse, 0, sqlite3Expr(db, TK_ASTERISK, 0));
5589 p->op = TK_SELECT;
5590 p->pWhere = 0;
5591 pNew->pGroupBy = 0;
5592 pNew->pHaving = 0;
5593 pNew->pOrderBy = 0;
5594 p->pPrior = 0;
5595 p->pNext = 0;
5596 p->pWith = 0;
5597 #ifndef SQLITE_OMIT_WINDOWFUNC
5598 p->pWinDefn = 0;
5599 #endif
5600 p->selFlags &= ~SF_Compound;
5601 assert( (p->selFlags & SF_Converted)==0 );
5602 p->selFlags |= SF_Converted;
5603 assert( pNew->pPrior!=0 );
5604 pNew->pPrior->pNext = pNew;
5605 pNew->pLimit = 0;
5606 return WRC_Continue;
5610 ** Check to see if the FROM clause term pFrom has table-valued function
5611 ** arguments. If it does, leave an error message in pParse and return
5612 ** non-zero, since pFrom is not allowed to be a table-valued function.
5614 static int cannotBeFunction(Parse *pParse, SrcItem *pFrom){
5615 if( pFrom->fg.isTabFunc ){
5616 sqlite3ErrorMsg(pParse, "'%s' is not a function", pFrom->zName);
5617 return 1;
5619 return 0;
5622 #ifndef SQLITE_OMIT_CTE
5624 ** Argument pWith (which may be NULL) points to a linked list of nested
5625 ** WITH contexts, from inner to outermost. If the table identified by
5626 ** FROM clause element pItem is really a common-table-expression (CTE)
5627 ** then return a pointer to the CTE definition for that table. Otherwise
5628 ** return NULL.
5630 ** If a non-NULL value is returned, set *ppContext to point to the With
5631 ** object that the returned CTE belongs to.
5633 static struct Cte *searchWith(
5634 With *pWith, /* Current innermost WITH clause */
5635 SrcItem *pItem, /* FROM clause element to resolve */
5636 With **ppContext /* OUT: WITH clause return value belongs to */
5638 const char *zName = pItem->zName;
5639 With *p;
5640 assert( pItem->zDatabase==0 );
5641 assert( zName!=0 );
5642 for(p=pWith; p; p=p->pOuter){
5643 int i;
5644 for(i=0; i<p->nCte; i++){
5645 if( sqlite3StrICmp(zName, p->a[i].zName)==0 ){
5646 *ppContext = p;
5647 return &p->a[i];
5650 if( p->bView ) break;
5652 return 0;
5655 /* The code generator maintains a stack of active WITH clauses
5656 ** with the inner-most WITH clause being at the top of the stack.
5658 ** This routine pushes the WITH clause passed as the second argument
5659 ** onto the top of the stack. If argument bFree is true, then this
5660 ** WITH clause will never be popped from the stack but should instead
5661 ** be freed along with the Parse object. In other cases, when
5662 ** bFree==0, the With object will be freed along with the SELECT
5663 ** statement with which it is associated.
5665 ** This routine returns a copy of pWith. Or, if bFree is true and
5666 ** the pWith object is destroyed immediately due to an OOM condition,
5667 ** then this routine return NULL.
5669 ** If bFree is true, do not continue to use the pWith pointer after
5670 ** calling this routine, Instead, use only the return value.
5672 With *sqlite3WithPush(Parse *pParse, With *pWith, u8 bFree){
5673 if( pWith ){
5674 if( bFree ){
5675 pWith = (With*)sqlite3ParserAddCleanup(pParse, sqlite3WithDeleteGeneric,
5676 pWith);
5677 if( pWith==0 ) return 0;
5679 if( pParse->nErr==0 ){
5680 assert( pParse->pWith!=pWith );
5681 pWith->pOuter = pParse->pWith;
5682 pParse->pWith = pWith;
5685 return pWith;
5689 ** This function checks if argument pFrom refers to a CTE declared by
5690 ** a WITH clause on the stack currently maintained by the parser (on the
5691 ** pParse->pWith linked list). And if currently processing a CTE
5692 ** CTE expression, through routine checks to see if the reference is
5693 ** a recursive reference to the CTE.
5695 ** If pFrom matches a CTE according to either of these two above, pFrom->pTab
5696 ** and other fields are populated accordingly.
5698 ** Return 0 if no match is found.
5699 ** Return 1 if a match is found.
5700 ** Return 2 if an error condition is detected.
5702 static int resolveFromTermToCte(
5703 Parse *pParse, /* The parsing context */
5704 Walker *pWalker, /* Current tree walker */
5705 SrcItem *pFrom /* The FROM clause term to check */
5707 Cte *pCte; /* Matched CTE (or NULL if no match) */
5708 With *pWith; /* The matching WITH */
5710 assert( pFrom->pTab==0 );
5711 if( pParse->pWith==0 ){
5712 /* There are no WITH clauses in the stack. No match is possible */
5713 return 0;
5715 if( pParse->nErr ){
5716 /* Prior errors might have left pParse->pWith in a goofy state, so
5717 ** go no further. */
5718 return 0;
5720 if( pFrom->zDatabase!=0 ){
5721 /* The FROM term contains a schema qualifier (ex: main.t1) and so
5722 ** it cannot possibly be a CTE reference. */
5723 return 0;
5725 if( pFrom->fg.notCte ){
5726 /* The FROM term is specifically excluded from matching a CTE.
5727 ** (1) It is part of a trigger that used to have zDatabase but had
5728 ** zDatabase removed by sqlite3FixTriggerStep().
5729 ** (2) This is the first term in the FROM clause of an UPDATE.
5731 return 0;
5733 pCte = searchWith(pParse->pWith, pFrom, &pWith);
5734 if( pCte ){
5735 sqlite3 *db = pParse->db;
5736 Table *pTab;
5737 ExprList *pEList;
5738 Select *pSel;
5739 Select *pLeft; /* Left-most SELECT statement */
5740 Select *pRecTerm; /* Left-most recursive term */
5741 int bMayRecursive; /* True if compound joined by UNION [ALL] */
5742 With *pSavedWith; /* Initial value of pParse->pWith */
5743 int iRecTab = -1; /* Cursor for recursive table */
5744 CteUse *pCteUse;
5746 /* If pCte->zCteErr is non-NULL at this point, then this is an illegal
5747 ** recursive reference to CTE pCte. Leave an error in pParse and return
5748 ** early. If pCte->zCteErr is NULL, then this is not a recursive reference.
5749 ** In this case, proceed. */
5750 if( pCte->zCteErr ){
5751 sqlite3ErrorMsg(pParse, pCte->zCteErr, pCte->zName);
5752 return 2;
5754 if( cannotBeFunction(pParse, pFrom) ) return 2;
5756 assert( pFrom->pTab==0 );
5757 pTab = sqlite3DbMallocZero(db, sizeof(Table));
5758 if( pTab==0 ) return 2;
5759 pCteUse = pCte->pUse;
5760 if( pCteUse==0 ){
5761 pCte->pUse = pCteUse = sqlite3DbMallocZero(db, sizeof(pCteUse[0]));
5762 if( pCteUse==0
5763 || sqlite3ParserAddCleanup(pParse,sqlite3DbFree,pCteUse)==0
5765 sqlite3DbFree(db, pTab);
5766 return 2;
5768 pCteUse->eM10d = pCte->eM10d;
5770 pFrom->pTab = pTab;
5771 pTab->nTabRef = 1;
5772 pTab->zName = sqlite3DbStrDup(db, pCte->zName);
5773 pTab->iPKey = -1;
5774 pTab->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) );
5775 pTab->tabFlags |= TF_Ephemeral | TF_NoVisibleRowid;
5776 pFrom->pSelect = sqlite3SelectDup(db, pCte->pSelect, 0);
5777 if( db->mallocFailed ) return 2;
5778 pFrom->pSelect->selFlags |= SF_CopyCte;
5779 assert( pFrom->pSelect );
5780 if( pFrom->fg.isIndexedBy ){
5781 sqlite3ErrorMsg(pParse, "no such index: \"%s\"", pFrom->u1.zIndexedBy);
5782 return 2;
5784 pFrom->fg.isCte = 1;
5785 pFrom->u2.pCteUse = pCteUse;
5786 pCteUse->nUse++;
5788 /* Check if this is a recursive CTE. */
5789 pRecTerm = pSel = pFrom->pSelect;
5790 bMayRecursive = ( pSel->op==TK_ALL || pSel->op==TK_UNION );
5791 while( bMayRecursive && pRecTerm->op==pSel->op ){
5792 int i;
5793 SrcList *pSrc = pRecTerm->pSrc;
5794 assert( pRecTerm->pPrior!=0 );
5795 for(i=0; i<pSrc->nSrc; i++){
5796 SrcItem *pItem = &pSrc->a[i];
5797 if( pItem->zDatabase==0
5798 && pItem->zName!=0
5799 && 0==sqlite3StrICmp(pItem->zName, pCte->zName)
5801 pItem->pTab = pTab;
5802 pTab->nTabRef++;
5803 pItem->fg.isRecursive = 1;
5804 if( pRecTerm->selFlags & SF_Recursive ){
5805 sqlite3ErrorMsg(pParse,
5806 "multiple references to recursive table: %s", pCte->zName
5808 return 2;
5810 pRecTerm->selFlags |= SF_Recursive;
5811 if( iRecTab<0 ) iRecTab = pParse->nTab++;
5812 pItem->iCursor = iRecTab;
5815 if( (pRecTerm->selFlags & SF_Recursive)==0 ) break;
5816 pRecTerm = pRecTerm->pPrior;
5819 pCte->zCteErr = "circular reference: %s";
5820 pSavedWith = pParse->pWith;
5821 pParse->pWith = pWith;
5822 if( pSel->selFlags & SF_Recursive ){
5823 int rc;
5824 assert( pRecTerm!=0 );
5825 assert( (pRecTerm->selFlags & SF_Recursive)==0 );
5826 assert( pRecTerm->pNext!=0 );
5827 assert( (pRecTerm->pNext->selFlags & SF_Recursive)!=0 );
5828 assert( pRecTerm->pWith==0 );
5829 pRecTerm->pWith = pSel->pWith;
5830 rc = sqlite3WalkSelect(pWalker, pRecTerm);
5831 pRecTerm->pWith = 0;
5832 if( rc ){
5833 pParse->pWith = pSavedWith;
5834 return 2;
5836 }else{
5837 if( sqlite3WalkSelect(pWalker, pSel) ){
5838 pParse->pWith = pSavedWith;
5839 return 2;
5842 pParse->pWith = pWith;
5844 for(pLeft=pSel; pLeft->pPrior; pLeft=pLeft->pPrior);
5845 pEList = pLeft->pEList;
5846 if( pCte->pCols ){
5847 if( pEList && pEList->nExpr!=pCte->pCols->nExpr ){
5848 sqlite3ErrorMsg(pParse, "table %s has %d values for %d columns",
5849 pCte->zName, pEList->nExpr, pCte->pCols->nExpr
5851 pParse->pWith = pSavedWith;
5852 return 2;
5854 pEList = pCte->pCols;
5857 sqlite3ColumnsFromExprList(pParse, pEList, &pTab->nCol, &pTab->aCol);
5858 if( bMayRecursive ){
5859 if( pSel->selFlags & SF_Recursive ){
5860 pCte->zCteErr = "multiple recursive references: %s";
5861 }else{
5862 pCte->zCteErr = "recursive reference in a subquery: %s";
5864 sqlite3WalkSelect(pWalker, pSel);
5866 pCte->zCteErr = 0;
5867 pParse->pWith = pSavedWith;
5868 return 1; /* Success */
5870 return 0; /* No match */
5872 #endif
5874 #ifndef SQLITE_OMIT_CTE
5876 ** If the SELECT passed as the second argument has an associated WITH
5877 ** clause, pop it from the stack stored as part of the Parse object.
5879 ** This function is used as the xSelectCallback2() callback by
5880 ** sqlite3SelectExpand() when walking a SELECT tree to resolve table
5881 ** names and other FROM clause elements.
5883 void sqlite3SelectPopWith(Walker *pWalker, Select *p){
5884 Parse *pParse = pWalker->pParse;
5885 if( OK_IF_ALWAYS_TRUE(pParse->pWith) && p->pPrior==0 ){
5886 With *pWith = findRightmost(p)->pWith;
5887 if( pWith!=0 ){
5888 assert( pParse->pWith==pWith || pParse->nErr );
5889 pParse->pWith = pWith->pOuter;
5893 #endif
5896 ** The SrcItem structure passed as the second argument represents a
5897 ** sub-query in the FROM clause of a SELECT statement. This function
5898 ** allocates and populates the SrcItem.pTab object. If successful,
5899 ** SQLITE_OK is returned. Otherwise, if an OOM error is encountered,
5900 ** SQLITE_NOMEM.
5902 int sqlite3ExpandSubquery(Parse *pParse, SrcItem *pFrom){
5903 Select *pSel = pFrom->pSelect;
5904 Table *pTab;
5906 assert( pSel );
5907 pFrom->pTab = pTab = sqlite3DbMallocZero(pParse->db, sizeof(Table));
5908 if( pTab==0 ) return SQLITE_NOMEM;
5909 pTab->nTabRef = 1;
5910 if( pFrom->zAlias ){
5911 pTab->zName = sqlite3DbStrDup(pParse->db, pFrom->zAlias);
5912 }else{
5913 pTab->zName = sqlite3MPrintf(pParse->db, "%!S", pFrom);
5915 while( pSel->pPrior ){ pSel = pSel->pPrior; }
5916 sqlite3ColumnsFromExprList(pParse, pSel->pEList,&pTab->nCol,&pTab->aCol);
5917 pTab->iPKey = -1;
5918 pTab->eTabType = TABTYP_VIEW;
5919 pTab->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) );
5920 #ifndef SQLITE_ALLOW_ROWID_IN_VIEW
5921 /* The usual case - do not allow ROWID on a subquery */
5922 pTab->tabFlags |= TF_Ephemeral | TF_NoVisibleRowid;
5923 #else
5924 /* Legacy compatibility mode */
5925 pTab->tabFlags |= TF_Ephemeral | sqlite3Config.mNoVisibleRowid;
5926 #endif
5927 return pParse->nErr ? SQLITE_ERROR : SQLITE_OK;
5932 ** Check the N SrcItem objects to the right of pBase. (N might be zero!)
5933 ** If any of those SrcItem objects have a USING clause containing zName
5934 ** then return true.
5936 ** If N is zero, or none of the N SrcItem objects to the right of pBase
5937 ** contains a USING clause, or if none of the USING clauses contain zName,
5938 ** then return false.
5940 static int inAnyUsingClause(
5941 const char *zName, /* Name we are looking for */
5942 SrcItem *pBase, /* The base SrcItem. Looking at pBase[1] and following */
5943 int N /* How many SrcItems to check */
5945 while( N>0 ){
5946 N--;
5947 pBase++;
5948 if( pBase->fg.isUsing==0 ) continue;
5949 if( NEVER(pBase->u3.pUsing==0) ) continue;
5950 if( sqlite3IdListIndex(pBase->u3.pUsing, zName)>=0 ) return 1;
5952 return 0;
5957 ** This routine is a Walker callback for "expanding" a SELECT statement.
5958 ** "Expanding" means to do the following:
5960 ** (1) Make sure VDBE cursor numbers have been assigned to every
5961 ** element of the FROM clause.
5963 ** (2) Fill in the pTabList->a[].pTab fields in the SrcList that
5964 ** defines FROM clause. When views appear in the FROM clause,
5965 ** fill pTabList->a[].pSelect with a copy of the SELECT statement
5966 ** that implements the view. A copy is made of the view's SELECT
5967 ** statement so that we can freely modify or delete that statement
5968 ** without worrying about messing up the persistent representation
5969 ** of the view.
5971 ** (3) Add terms to the WHERE clause to accommodate the NATURAL keyword
5972 ** on joins and the ON and USING clause of joins.
5974 ** (4) Scan the list of columns in the result set (pEList) looking
5975 ** for instances of the "*" operator or the TABLE.* operator.
5976 ** If found, expand each "*" to be every column in every table
5977 ** and TABLE.* to be every column in TABLE.
5980 static int selectExpander(Walker *pWalker, Select *p){
5981 Parse *pParse = pWalker->pParse;
5982 int i, j, k, rc;
5983 SrcList *pTabList;
5984 ExprList *pEList;
5985 SrcItem *pFrom;
5986 sqlite3 *db = pParse->db;
5987 Expr *pE, *pRight, *pExpr;
5988 u16 selFlags = p->selFlags;
5989 u32 elistFlags = 0;
5991 p->selFlags |= SF_Expanded;
5992 if( db->mallocFailed ){
5993 return WRC_Abort;
5995 assert( p->pSrc!=0 );
5996 if( (selFlags & SF_Expanded)!=0 ){
5997 return WRC_Prune;
5999 if( pWalker->eCode ){
6000 /* Renumber selId because it has been copied from a view */
6001 p->selId = ++pParse->nSelect;
6003 pTabList = p->pSrc;
6004 pEList = p->pEList;
6005 if( pParse->pWith && (p->selFlags & SF_View) ){
6006 if( p->pWith==0 ){
6007 p->pWith = (With*)sqlite3DbMallocZero(db, sizeof(With));
6008 if( p->pWith==0 ){
6009 return WRC_Abort;
6012 p->pWith->bView = 1;
6014 sqlite3WithPush(pParse, p->pWith, 0);
6016 /* Make sure cursor numbers have been assigned to all entries in
6017 ** the FROM clause of the SELECT statement.
6019 sqlite3SrcListAssignCursors(pParse, pTabList);
6021 /* Look up every table named in the FROM clause of the select. If
6022 ** an entry of the FROM clause is a subquery instead of a table or view,
6023 ** then create a transient table structure to describe the subquery.
6025 for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){
6026 Table *pTab;
6027 assert( pFrom->fg.isRecursive==0 || pFrom->pTab!=0 );
6028 if( pFrom->pTab ) continue;
6029 assert( pFrom->fg.isRecursive==0 );
6030 if( pFrom->zName==0 ){
6031 #ifndef SQLITE_OMIT_SUBQUERY
6032 Select *pSel = pFrom->pSelect;
6033 /* A sub-query in the FROM clause of a SELECT */
6034 assert( pSel!=0 );
6035 assert( pFrom->pTab==0 );
6036 if( sqlite3WalkSelect(pWalker, pSel) ) return WRC_Abort;
6037 if( sqlite3ExpandSubquery(pParse, pFrom) ) return WRC_Abort;
6038 #endif
6039 #ifndef SQLITE_OMIT_CTE
6040 }else if( (rc = resolveFromTermToCte(pParse, pWalker, pFrom))!=0 ){
6041 if( rc>1 ) return WRC_Abort;
6042 pTab = pFrom->pTab;
6043 assert( pTab!=0 );
6044 #endif
6045 }else{
6046 /* An ordinary table or view name in the FROM clause */
6047 assert( pFrom->pTab==0 );
6048 pFrom->pTab = pTab = sqlite3LocateTableItem(pParse, 0, pFrom);
6049 if( pTab==0 ) return WRC_Abort;
6050 if( pTab->nTabRef>=0xffff ){
6051 sqlite3ErrorMsg(pParse, "too many references to \"%s\": max 65535",
6052 pTab->zName);
6053 pFrom->pTab = 0;
6054 return WRC_Abort;
6056 pTab->nTabRef++;
6057 if( !IsVirtual(pTab) && cannotBeFunction(pParse, pFrom) ){
6058 return WRC_Abort;
6060 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE)
6061 if( !IsOrdinaryTable(pTab) ){
6062 i16 nCol;
6063 u8 eCodeOrig = pWalker->eCode;
6064 if( sqlite3ViewGetColumnNames(pParse, pTab) ) return WRC_Abort;
6065 assert( pFrom->pSelect==0 );
6066 if( IsView(pTab) ){
6067 if( (db->flags & SQLITE_EnableView)==0
6068 && pTab->pSchema!=db->aDb[1].pSchema
6070 sqlite3ErrorMsg(pParse, "access to view \"%s\" prohibited",
6071 pTab->zName);
6073 pFrom->pSelect = sqlite3SelectDup(db, pTab->u.view.pSelect, 0);
6075 #ifndef SQLITE_OMIT_VIRTUALTABLE
6076 else if( ALWAYS(IsVirtual(pTab))
6077 && pFrom->fg.fromDDL
6078 && ALWAYS(pTab->u.vtab.p!=0)
6079 && pTab->u.vtab.p->eVtabRisk > ((db->flags & SQLITE_TrustedSchema)!=0)
6081 sqlite3ErrorMsg(pParse, "unsafe use of virtual table \"%s\"",
6082 pTab->zName);
6084 assert( SQLITE_VTABRISK_Normal==1 && SQLITE_VTABRISK_High==2 );
6085 #endif
6086 nCol = pTab->nCol;
6087 pTab->nCol = -1;
6088 pWalker->eCode = 1; /* Turn on Select.selId renumbering */
6089 sqlite3WalkSelect(pWalker, pFrom->pSelect);
6090 pWalker->eCode = eCodeOrig;
6091 pTab->nCol = nCol;
6093 #endif
6096 /* Locate the index named by the INDEXED BY clause, if any. */
6097 if( pFrom->fg.isIndexedBy && sqlite3IndexedByLookup(pParse, pFrom) ){
6098 return WRC_Abort;
6102 /* Process NATURAL keywords, and ON and USING clauses of joins.
6104 assert( db->mallocFailed==0 || pParse->nErr!=0 );
6105 if( pParse->nErr || sqlite3ProcessJoin(pParse, p) ){
6106 return WRC_Abort;
6109 /* For every "*" that occurs in the column list, insert the names of
6110 ** all columns in all tables. And for every TABLE.* insert the names
6111 ** of all columns in TABLE. The parser inserted a special expression
6112 ** with the TK_ASTERISK operator for each "*" that it found in the column
6113 ** list. The following code just has to locate the TK_ASTERISK
6114 ** expressions and expand each one to the list of all columns in
6115 ** all tables.
6117 ** The first loop just checks to see if there are any "*" operators
6118 ** that need expanding.
6120 for(k=0; k<pEList->nExpr; k++){
6121 pE = pEList->a[k].pExpr;
6122 if( pE->op==TK_ASTERISK ) break;
6123 assert( pE->op!=TK_DOT || pE->pRight!=0 );
6124 assert( pE->op!=TK_DOT || (pE->pLeft!=0 && pE->pLeft->op==TK_ID) );
6125 if( pE->op==TK_DOT && pE->pRight->op==TK_ASTERISK ) break;
6126 elistFlags |= pE->flags;
6128 if( k<pEList->nExpr ){
6130 ** If we get here it means the result set contains one or more "*"
6131 ** operators that need to be expanded. Loop through each expression
6132 ** in the result set and expand them one by one.
6134 struct ExprList_item *a = pEList->a;
6135 ExprList *pNew = 0;
6136 int flags = pParse->db->flags;
6137 int longNames = (flags & SQLITE_FullColNames)!=0
6138 && (flags & SQLITE_ShortColNames)==0;
6140 for(k=0; k<pEList->nExpr; k++){
6141 pE = a[k].pExpr;
6142 elistFlags |= pE->flags;
6143 pRight = pE->pRight;
6144 assert( pE->op!=TK_DOT || pRight!=0 );
6145 if( pE->op!=TK_ASTERISK
6146 && (pE->op!=TK_DOT || pRight->op!=TK_ASTERISK)
6148 /* This particular expression does not need to be expanded.
6150 pNew = sqlite3ExprListAppend(pParse, pNew, a[k].pExpr);
6151 if( pNew ){
6152 pNew->a[pNew->nExpr-1].zEName = a[k].zEName;
6153 pNew->a[pNew->nExpr-1].fg.eEName = a[k].fg.eEName;
6154 a[k].zEName = 0;
6156 a[k].pExpr = 0;
6157 }else{
6158 /* This expression is a "*" or a "TABLE.*" and needs to be
6159 ** expanded. */
6160 int tableSeen = 0; /* Set to 1 when TABLE matches */
6161 char *zTName = 0; /* text of name of TABLE */
6162 int iErrOfst;
6163 if( pE->op==TK_DOT ){
6164 assert( (selFlags & SF_NestedFrom)==0 );
6165 assert( pE->pLeft!=0 );
6166 assert( !ExprHasProperty(pE->pLeft, EP_IntValue) );
6167 zTName = pE->pLeft->u.zToken;
6168 assert( ExprUseWOfst(pE->pLeft) );
6169 iErrOfst = pE->pRight->w.iOfst;
6170 }else{
6171 assert( ExprUseWOfst(pE) );
6172 iErrOfst = pE->w.iOfst;
6174 for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){
6175 int nAdd; /* Number of cols including rowid */
6176 Table *pTab = pFrom->pTab; /* Table for this data source */
6177 ExprList *pNestedFrom; /* Result-set of a nested FROM clause */
6178 char *zTabName; /* AS name for this data source */
6179 const char *zSchemaName = 0; /* Schema name for this data source */
6180 int iDb; /* Schema index for this data src */
6181 IdList *pUsing; /* USING clause for pFrom[1] */
6183 if( (zTabName = pFrom->zAlias)==0 ){
6184 zTabName = pTab->zName;
6186 if( db->mallocFailed ) break;
6187 assert( (int)pFrom->fg.isNestedFrom == IsNestedFrom(pFrom->pSelect) );
6188 if( pFrom->fg.isNestedFrom ){
6189 assert( pFrom->pSelect!=0 );
6190 pNestedFrom = pFrom->pSelect->pEList;
6191 assert( pNestedFrom!=0 );
6192 assert( pNestedFrom->nExpr==pTab->nCol );
6193 assert( VisibleRowid(pTab)==0 || ViewCanHaveRowid );
6194 }else{
6195 if( zTName && sqlite3StrICmp(zTName, zTabName)!=0 ){
6196 continue;
6198 pNestedFrom = 0;
6199 iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
6200 zSchemaName = iDb>=0 ? db->aDb[iDb].zDbSName : "*";
6202 if( i+1<pTabList->nSrc
6203 && pFrom[1].fg.isUsing
6204 && (selFlags & SF_NestedFrom)!=0
6206 int ii;
6207 pUsing = pFrom[1].u3.pUsing;
6208 for(ii=0; ii<pUsing->nId; ii++){
6209 const char *zUName = pUsing->a[ii].zName;
6210 pRight = sqlite3Expr(db, TK_ID, zUName);
6211 sqlite3ExprSetErrorOffset(pRight, iErrOfst);
6212 pNew = sqlite3ExprListAppend(pParse, pNew, pRight);
6213 if( pNew ){
6214 struct ExprList_item *pX = &pNew->a[pNew->nExpr-1];
6215 assert( pX->zEName==0 );
6216 pX->zEName = sqlite3MPrintf(db,"..%s", zUName);
6217 pX->fg.eEName = ENAME_TAB;
6218 pX->fg.bUsingTerm = 1;
6221 }else{
6222 pUsing = 0;
6225 nAdd = pTab->nCol;
6226 if( VisibleRowid(pTab) && (selFlags & SF_NestedFrom)!=0 ) nAdd++;
6227 for(j=0; j<nAdd; j++){
6228 const char *zName;
6229 struct ExprList_item *pX; /* Newly added ExprList term */
6231 if( j==pTab->nCol ){
6232 zName = sqlite3RowidAlias(pTab);
6233 if( zName==0 ) continue;
6234 }else{
6235 zName = pTab->aCol[j].zCnName;
6237 /* If pTab is actually an SF_NestedFrom sub-select, do not
6238 ** expand any ENAME_ROWID columns. */
6239 if( pNestedFrom && pNestedFrom->a[j].fg.eEName==ENAME_ROWID ){
6240 continue;
6243 if( zTName
6244 && pNestedFrom
6245 && sqlite3MatchEName(&pNestedFrom->a[j], 0, zTName, 0, 0)==0
6247 continue;
6250 /* If a column is marked as 'hidden', omit it from the expanded
6251 ** result-set list unless the SELECT has the SF_IncludeHidden
6252 ** bit set.
6254 if( (p->selFlags & SF_IncludeHidden)==0
6255 && IsHiddenColumn(&pTab->aCol[j])
6257 continue;
6259 if( (pTab->aCol[j].colFlags & COLFLAG_NOEXPAND)!=0
6260 && zTName==0
6261 && (selFlags & (SF_NestedFrom))==0
6263 continue;
6266 assert( zName );
6267 tableSeen = 1;
6269 if( i>0 && zTName==0 && (selFlags & SF_NestedFrom)==0 ){
6270 if( pFrom->fg.isUsing
6271 && sqlite3IdListIndex(pFrom->u3.pUsing, zName)>=0
6273 /* In a join with a USING clause, omit columns in the
6274 ** using clause from the table on the right. */
6275 continue;
6278 pRight = sqlite3Expr(db, TK_ID, zName);
6279 if( (pTabList->nSrc>1
6280 && ( (pFrom->fg.jointype & JT_LTORJ)==0
6281 || (selFlags & SF_NestedFrom)!=0
6282 || !inAnyUsingClause(zName,pFrom,pTabList->nSrc-i-1)
6285 || IN_RENAME_OBJECT
6287 Expr *pLeft;
6288 pLeft = sqlite3Expr(db, TK_ID, zTabName);
6289 pExpr = sqlite3PExpr(pParse, TK_DOT, pLeft, pRight);
6290 if( IN_RENAME_OBJECT && pE->pLeft ){
6291 sqlite3RenameTokenRemap(pParse, pLeft, pE->pLeft);
6293 if( zSchemaName ){
6294 pLeft = sqlite3Expr(db, TK_ID, zSchemaName);
6295 pExpr = sqlite3PExpr(pParse, TK_DOT, pLeft, pExpr);
6297 }else{
6298 pExpr = pRight;
6300 sqlite3ExprSetErrorOffset(pExpr, iErrOfst);
6301 pNew = sqlite3ExprListAppend(pParse, pNew, pExpr);
6302 if( pNew==0 ){
6303 break; /* OOM */
6305 pX = &pNew->a[pNew->nExpr-1];
6306 assert( pX->zEName==0 );
6307 if( (selFlags & SF_NestedFrom)!=0 && !IN_RENAME_OBJECT ){
6308 if( pNestedFrom && (!ViewCanHaveRowid || j<pNestedFrom->nExpr) ){
6309 assert( j<pNestedFrom->nExpr );
6310 pX->zEName = sqlite3DbStrDup(db, pNestedFrom->a[j].zEName);
6311 testcase( pX->zEName==0 );
6312 }else{
6313 pX->zEName = sqlite3MPrintf(db, "%s.%s.%s",
6314 zSchemaName, zTabName, zName);
6315 testcase( pX->zEName==0 );
6317 pX->fg.eEName = (j==pTab->nCol ? ENAME_ROWID : ENAME_TAB);
6318 if( (pFrom->fg.isUsing
6319 && sqlite3IdListIndex(pFrom->u3.pUsing, zName)>=0)
6320 || (pUsing && sqlite3IdListIndex(pUsing, zName)>=0)
6321 || (j<pTab->nCol && (pTab->aCol[j].colFlags & COLFLAG_NOEXPAND))
6323 pX->fg.bNoExpand = 1;
6325 }else if( longNames ){
6326 pX->zEName = sqlite3MPrintf(db, "%s.%s", zTabName, zName);
6327 pX->fg.eEName = ENAME_NAME;
6328 }else{
6329 pX->zEName = sqlite3DbStrDup(db, zName);
6330 pX->fg.eEName = ENAME_NAME;
6334 if( !tableSeen ){
6335 if( zTName ){
6336 sqlite3ErrorMsg(pParse, "no such table: %s", zTName);
6337 }else{
6338 sqlite3ErrorMsg(pParse, "no tables specified");
6343 sqlite3ExprListDelete(db, pEList);
6344 p->pEList = pNew;
6346 if( p->pEList ){
6347 if( p->pEList->nExpr>db->aLimit[SQLITE_LIMIT_COLUMN] ){
6348 sqlite3ErrorMsg(pParse, "too many columns in result set");
6349 return WRC_Abort;
6351 if( (elistFlags & (EP_HasFunc|EP_Subquery))!=0 ){
6352 p->selFlags |= SF_ComplexResult;
6355 #if TREETRACE_ENABLED
6356 if( sqlite3TreeTrace & 0x8 ){
6357 TREETRACE(0x8,pParse,p,("After result-set wildcard expansion:\n"));
6358 sqlite3TreeViewSelect(0, p, 0);
6360 #endif
6361 return WRC_Continue;
6364 #if SQLITE_DEBUG
6366 ** Always assert. This xSelectCallback2 implementation proves that the
6367 ** xSelectCallback2 is never invoked.
6369 void sqlite3SelectWalkAssert2(Walker *NotUsed, Select *NotUsed2){
6370 UNUSED_PARAMETER2(NotUsed, NotUsed2);
6371 assert( 0 );
6373 #endif
6375 ** This routine "expands" a SELECT statement and all of its subqueries.
6376 ** For additional information on what it means to "expand" a SELECT
6377 ** statement, see the comment on the selectExpand worker callback above.
6379 ** Expanding a SELECT statement is the first step in processing a
6380 ** SELECT statement. The SELECT statement must be expanded before
6381 ** name resolution is performed.
6383 ** If anything goes wrong, an error message is written into pParse.
6384 ** The calling function can detect the problem by looking at pParse->nErr
6385 ** and/or pParse->db->mallocFailed.
6387 static void sqlite3SelectExpand(Parse *pParse, Select *pSelect){
6388 Walker w;
6389 w.xExprCallback = sqlite3ExprWalkNoop;
6390 w.pParse = pParse;
6391 if( OK_IF_ALWAYS_TRUE(pParse->hasCompound) ){
6392 w.xSelectCallback = convertCompoundSelectToSubquery;
6393 w.xSelectCallback2 = 0;
6394 sqlite3WalkSelect(&w, pSelect);
6396 w.xSelectCallback = selectExpander;
6397 w.xSelectCallback2 = sqlite3SelectPopWith;
6398 w.eCode = 0;
6399 sqlite3WalkSelect(&w, pSelect);
6403 #ifndef SQLITE_OMIT_SUBQUERY
6405 ** This is a Walker.xSelectCallback callback for the sqlite3SelectTypeInfo()
6406 ** interface.
6408 ** For each FROM-clause subquery, add Column.zType, Column.zColl, and
6409 ** Column.affinity information to the Table structure that represents
6410 ** the result set of that subquery.
6412 ** The Table structure that represents the result set was constructed
6413 ** by selectExpander() but the type and collation and affinity information
6414 ** was omitted at that point because identifiers had not yet been resolved.
6415 ** This routine is called after identifier resolution.
6417 static void selectAddSubqueryTypeInfo(Walker *pWalker, Select *p){
6418 Parse *pParse;
6419 int i;
6420 SrcList *pTabList;
6421 SrcItem *pFrom;
6423 if( p->selFlags & SF_HasTypeInfo ) return;
6424 p->selFlags |= SF_HasTypeInfo;
6425 pParse = pWalker->pParse;
6426 assert( (p->selFlags & SF_Resolved) );
6427 pTabList = p->pSrc;
6428 for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){
6429 Table *pTab = pFrom->pTab;
6430 assert( pTab!=0 );
6431 if( (pTab->tabFlags & TF_Ephemeral)!=0 ){
6432 /* A sub-query in the FROM clause of a SELECT */
6433 Select *pSel = pFrom->pSelect;
6434 if( pSel ){
6435 sqlite3SubqueryColumnTypes(pParse, pTab, pSel, SQLITE_AFF_NONE);
6440 #endif
6444 ** This routine adds datatype and collating sequence information to
6445 ** the Table structures of all FROM-clause subqueries in a
6446 ** SELECT statement.
6448 ** Use this routine after name resolution.
6450 static void sqlite3SelectAddTypeInfo(Parse *pParse, Select *pSelect){
6451 #ifndef SQLITE_OMIT_SUBQUERY
6452 Walker w;
6453 w.xSelectCallback = sqlite3SelectWalkNoop;
6454 w.xSelectCallback2 = selectAddSubqueryTypeInfo;
6455 w.xExprCallback = sqlite3ExprWalkNoop;
6456 w.pParse = pParse;
6457 sqlite3WalkSelect(&w, pSelect);
6458 #endif
6463 ** This routine sets up a SELECT statement for processing. The
6464 ** following is accomplished:
6466 ** * VDBE Cursor numbers are assigned to all FROM-clause terms.
6467 ** * Ephemeral Table objects are created for all FROM-clause subqueries.
6468 ** * ON and USING clauses are shifted into WHERE statements
6469 ** * Wildcards "*" and "TABLE.*" in result sets are expanded.
6470 ** * Identifiers in expression are matched to tables.
6472 ** This routine acts recursively on all subqueries within the SELECT.
6474 void sqlite3SelectPrep(
6475 Parse *pParse, /* The parser context */
6476 Select *p, /* The SELECT statement being coded. */
6477 NameContext *pOuterNC /* Name context for container */
6479 assert( p!=0 || pParse->db->mallocFailed );
6480 assert( pParse->db->pParse==pParse );
6481 if( pParse->db->mallocFailed ) return;
6482 if( p->selFlags & SF_HasTypeInfo ) return;
6483 sqlite3SelectExpand(pParse, p);
6484 if( pParse->nErr ) return;
6485 sqlite3ResolveSelectNames(pParse, p, pOuterNC);
6486 if( pParse->nErr ) return;
6487 sqlite3SelectAddTypeInfo(pParse, p);
6490 #if TREETRACE_ENABLED
6492 ** Display all information about an AggInfo object
6494 static void printAggInfo(AggInfo *pAggInfo){
6495 int ii;
6496 sqlite3DebugPrintf("AggInfo %d/%p:\n",
6497 pAggInfo->selId, pAggInfo);
6498 for(ii=0; ii<pAggInfo->nColumn; ii++){
6499 struct AggInfo_col *pCol = &pAggInfo->aCol[ii];
6500 sqlite3DebugPrintf(
6501 "agg-column[%d] pTab=%s iTable=%d iColumn=%d iMem=%d"
6502 " iSorterColumn=%d %s\n",
6503 ii, pCol->pTab ? pCol->pTab->zName : "NULL",
6504 pCol->iTable, pCol->iColumn, pAggInfo->iFirstReg+ii,
6505 pCol->iSorterColumn,
6506 ii>=pAggInfo->nAccumulator ? "" : " Accumulator");
6507 sqlite3TreeViewExpr(0, pAggInfo->aCol[ii].pCExpr, 0);
6509 for(ii=0; ii<pAggInfo->nFunc; ii++){
6510 sqlite3DebugPrintf("agg-func[%d]: iMem=%d\n",
6511 ii, pAggInfo->iFirstReg+pAggInfo->nColumn+ii);
6512 sqlite3TreeViewExpr(0, pAggInfo->aFunc[ii].pFExpr, 0);
6515 #endif /* TREETRACE_ENABLED */
6518 ** Analyze the arguments to aggregate functions. Create new pAggInfo->aCol[]
6519 ** entries for columns that are arguments to aggregate functions but which
6520 ** are not otherwise used.
6522 ** The aCol[] entries in AggInfo prior to nAccumulator are columns that
6523 ** are referenced outside of aggregate functions. These might be columns
6524 ** that are part of the GROUP by clause, for example. Other database engines
6525 ** would throw an error if there is a column reference that is not in the
6526 ** GROUP BY clause and that is not part of an aggregate function argument.
6527 ** But SQLite allows this.
6529 ** The aCol[] entries beginning with the aCol[nAccumulator] and following
6530 ** are column references that are used exclusively as arguments to
6531 ** aggregate functions. This routine is responsible for computing
6532 ** (or recomputing) those aCol[] entries.
6534 static void analyzeAggFuncArgs(
6535 AggInfo *pAggInfo,
6536 NameContext *pNC
6538 int i;
6539 assert( pAggInfo!=0 );
6540 assert( pAggInfo->iFirstReg==0 );
6541 pNC->ncFlags |= NC_InAggFunc;
6542 for(i=0; i<pAggInfo->nFunc; i++){
6543 Expr *pExpr = pAggInfo->aFunc[i].pFExpr;
6544 assert( pExpr->op==TK_FUNCTION || pExpr->op==TK_AGG_FUNCTION );
6545 assert( ExprUseXList(pExpr) );
6546 sqlite3ExprAnalyzeAggList(pNC, pExpr->x.pList);
6547 if( pExpr->pLeft ){
6548 assert( pExpr->pLeft->op==TK_ORDER );
6549 assert( ExprUseXList(pExpr->pLeft) );
6550 sqlite3ExprAnalyzeAggList(pNC, pExpr->pLeft->x.pList);
6552 #ifndef SQLITE_OMIT_WINDOWFUNC
6553 assert( !IsWindowFunc(pExpr) );
6554 if( ExprHasProperty(pExpr, EP_WinFunc) ){
6555 sqlite3ExprAnalyzeAggregates(pNC, pExpr->y.pWin->pFilter);
6557 #endif
6559 pNC->ncFlags &= ~NC_InAggFunc;
6563 ** An index on expressions is being used in the inner loop of an
6564 ** aggregate query with a GROUP BY clause. This routine attempts
6565 ** to adjust the AggInfo object to take advantage of index and to
6566 ** perhaps use the index as a covering index.
6569 static void optimizeAggregateUseOfIndexedExpr(
6570 Parse *pParse, /* Parsing context */
6571 Select *pSelect, /* The SELECT statement being processed */
6572 AggInfo *pAggInfo, /* The aggregate info */
6573 NameContext *pNC /* Name context used to resolve agg-func args */
6575 assert( pAggInfo->iFirstReg==0 );
6576 assert( pSelect!=0 );
6577 assert( pSelect->pGroupBy!=0 );
6578 pAggInfo->nColumn = pAggInfo->nAccumulator;
6579 if( ALWAYS(pAggInfo->nSortingColumn>0) ){
6580 int mx = pSelect->pGroupBy->nExpr - 1;
6581 int j, k;
6582 for(j=0; j<pAggInfo->nColumn; j++){
6583 k = pAggInfo->aCol[j].iSorterColumn;
6584 if( k>mx ) mx = k;
6586 pAggInfo->nSortingColumn = mx+1;
6588 analyzeAggFuncArgs(pAggInfo, pNC);
6589 #if TREETRACE_ENABLED
6590 if( sqlite3TreeTrace & 0x20 ){
6591 IndexedExpr *pIEpr;
6592 TREETRACE(0x20, pParse, pSelect,
6593 ("AggInfo (possibly) adjusted for Indexed Exprs\n"));
6594 sqlite3TreeViewSelect(0, pSelect, 0);
6595 for(pIEpr=pParse->pIdxEpr; pIEpr; pIEpr=pIEpr->pIENext){
6596 printf("data-cursor=%d index={%d,%d}\n",
6597 pIEpr->iDataCur, pIEpr->iIdxCur, pIEpr->iIdxCol);
6598 sqlite3TreeViewExpr(0, pIEpr->pExpr, 0);
6600 printAggInfo(pAggInfo);
6602 #else
6603 UNUSED_PARAMETER(pSelect);
6604 UNUSED_PARAMETER(pParse);
6605 #endif
6609 ** Walker callback for aggregateConvertIndexedExprRefToColumn().
6611 static int aggregateIdxEprRefToColCallback(Walker *pWalker, Expr *pExpr){
6612 AggInfo *pAggInfo;
6613 struct AggInfo_col *pCol;
6614 UNUSED_PARAMETER(pWalker);
6615 if( pExpr->pAggInfo==0 ) return WRC_Continue;
6616 if( pExpr->op==TK_AGG_COLUMN ) return WRC_Continue;
6617 if( pExpr->op==TK_AGG_FUNCTION ) return WRC_Continue;
6618 if( pExpr->op==TK_IF_NULL_ROW ) return WRC_Continue;
6619 pAggInfo = pExpr->pAggInfo;
6620 if( NEVER(pExpr->iAgg>=pAggInfo->nColumn) ) return WRC_Continue;
6621 assert( pExpr->iAgg>=0 );
6622 pCol = &pAggInfo->aCol[pExpr->iAgg];
6623 pExpr->op = TK_AGG_COLUMN;
6624 pExpr->iTable = pCol->iTable;
6625 pExpr->iColumn = pCol->iColumn;
6626 ExprClearProperty(pExpr, EP_Skip|EP_Collate|EP_Unlikely);
6627 return WRC_Prune;
6631 ** Convert every pAggInfo->aFunc[].pExpr such that any node within
6632 ** those expressions that has pAppInfo set is changed into a TK_AGG_COLUMN
6633 ** opcode.
6635 static void aggregateConvertIndexedExprRefToColumn(AggInfo *pAggInfo){
6636 int i;
6637 Walker w;
6638 memset(&w, 0, sizeof(w));
6639 w.xExprCallback = aggregateIdxEprRefToColCallback;
6640 for(i=0; i<pAggInfo->nFunc; i++){
6641 sqlite3WalkExpr(&w, pAggInfo->aFunc[i].pFExpr);
6647 ** Allocate a block of registers so that there is one register for each
6648 ** pAggInfo->aCol[] and pAggInfo->aFunc[] entry in pAggInfo. The first
6649 ** register in this block is stored in pAggInfo->iFirstReg.
6651 ** This routine may only be called once for each AggInfo object. Prior
6652 ** to calling this routine:
6654 ** * The aCol[] and aFunc[] arrays may be modified
6655 ** * The AggInfoColumnReg() and AggInfoFuncReg() macros may not be used
6657 ** After calling this routine:
6659 ** * The aCol[] and aFunc[] arrays are fixed
6660 ** * The AggInfoColumnReg() and AggInfoFuncReg() macros may be used
6663 static void assignAggregateRegisters(Parse *pParse, AggInfo *pAggInfo){
6664 assert( pAggInfo!=0 );
6665 assert( pAggInfo->iFirstReg==0 );
6666 pAggInfo->iFirstReg = pParse->nMem + 1;
6667 pParse->nMem += pAggInfo->nColumn + pAggInfo->nFunc;
6671 ** Reset the aggregate accumulator.
6673 ** The aggregate accumulator is a set of memory cells that hold
6674 ** intermediate results while calculating an aggregate. This
6675 ** routine generates code that stores NULLs in all of those memory
6676 ** cells.
6678 static void resetAccumulator(Parse *pParse, AggInfo *pAggInfo){
6679 Vdbe *v = pParse->pVdbe;
6680 int i;
6681 struct AggInfo_func *pFunc;
6682 int nReg = pAggInfo->nFunc + pAggInfo->nColumn;
6683 assert( pAggInfo->iFirstReg>0 );
6684 assert( pParse->db->pParse==pParse );
6685 assert( pParse->db->mallocFailed==0 || pParse->nErr!=0 );
6686 if( nReg==0 ) return;
6687 if( pParse->nErr ) return;
6688 sqlite3VdbeAddOp3(v, OP_Null, 0, pAggInfo->iFirstReg,
6689 pAggInfo->iFirstReg+nReg-1);
6690 for(pFunc=pAggInfo->aFunc, i=0; i<pAggInfo->nFunc; i++, pFunc++){
6691 if( pFunc->iDistinct>=0 ){
6692 Expr *pE = pFunc->pFExpr;
6693 assert( ExprUseXList(pE) );
6694 if( pE->x.pList==0 || pE->x.pList->nExpr!=1 ){
6695 sqlite3ErrorMsg(pParse, "DISTINCT aggregates must have exactly one "
6696 "argument");
6697 pFunc->iDistinct = -1;
6698 }else{
6699 KeyInfo *pKeyInfo = sqlite3KeyInfoFromExprList(pParse, pE->x.pList,0,0);
6700 pFunc->iDistAddr = sqlite3VdbeAddOp4(v, OP_OpenEphemeral,
6701 pFunc->iDistinct, 0, 0, (char*)pKeyInfo, P4_KEYINFO);
6702 ExplainQueryPlan((pParse, 0, "USE TEMP B-TREE FOR %s(DISTINCT)",
6703 pFunc->pFunc->zName));
6706 if( pFunc->iOBTab>=0 ){
6707 ExprList *pOBList;
6708 KeyInfo *pKeyInfo;
6709 int nExtra = 0;
6710 assert( pFunc->pFExpr->pLeft!=0 );
6711 assert( pFunc->pFExpr->pLeft->op==TK_ORDER );
6712 assert( ExprUseXList(pFunc->pFExpr->pLeft) );
6713 assert( pFunc->pFunc!=0 );
6714 pOBList = pFunc->pFExpr->pLeft->x.pList;
6715 if( !pFunc->bOBUnique ){
6716 nExtra++; /* One extra column for the OP_Sequence */
6718 if( pFunc->bOBPayload ){
6719 /* extra columns for the function arguments */
6720 assert( ExprUseXList(pFunc->pFExpr) );
6721 nExtra += pFunc->pFExpr->x.pList->nExpr;
6723 if( pFunc->bUseSubtype ){
6724 nExtra += pFunc->pFExpr->x.pList->nExpr;
6726 pKeyInfo = sqlite3KeyInfoFromExprList(pParse, pOBList, 0, nExtra);
6727 if( !pFunc->bOBUnique && pParse->nErr==0 ){
6728 pKeyInfo->nKeyField++;
6730 sqlite3VdbeAddOp4(v, OP_OpenEphemeral,
6731 pFunc->iOBTab, pOBList->nExpr+nExtra, 0,
6732 (char*)pKeyInfo, P4_KEYINFO);
6733 ExplainQueryPlan((pParse, 0, "USE TEMP B-TREE FOR %s(ORDER BY)",
6734 pFunc->pFunc->zName));
6740 ** Invoke the OP_AggFinalize opcode for every aggregate function
6741 ** in the AggInfo structure.
6743 static void finalizeAggFunctions(Parse *pParse, AggInfo *pAggInfo){
6744 Vdbe *v = pParse->pVdbe;
6745 int i;
6746 struct AggInfo_func *pF;
6747 for(i=0, pF=pAggInfo->aFunc; i<pAggInfo->nFunc; i++, pF++){
6748 ExprList *pList;
6749 assert( ExprUseXList(pF->pFExpr) );
6750 pList = pF->pFExpr->x.pList;
6751 if( pF->iOBTab>=0 ){
6752 /* For an ORDER BY aggregate, calls to OP_AggStep were deferred. Inputs
6753 ** were stored in emphermal table pF->iOBTab. Here, we extract those
6754 ** inputs (in ORDER BY order) and make all calls to OP_AggStep
6755 ** before doing the OP_AggFinal call. */
6756 int iTop; /* Start of loop for extracting columns */
6757 int nArg; /* Number of columns to extract */
6758 int nKey; /* Key columns to be skipped */
6759 int regAgg; /* Extract into this array */
6760 int j; /* Loop counter */
6762 assert( pF->pFunc!=0 );
6763 nArg = pList->nExpr;
6764 regAgg = sqlite3GetTempRange(pParse, nArg);
6766 if( pF->bOBPayload==0 ){
6767 nKey = 0;
6768 }else{
6769 assert( pF->pFExpr->pLeft!=0 );
6770 assert( ExprUseXList(pF->pFExpr->pLeft) );
6771 assert( pF->pFExpr->pLeft->x.pList!=0 );
6772 nKey = pF->pFExpr->pLeft->x.pList->nExpr;
6773 if( ALWAYS(!pF->bOBUnique) ) nKey++;
6775 iTop = sqlite3VdbeAddOp1(v, OP_Rewind, pF->iOBTab); VdbeCoverage(v);
6776 for(j=nArg-1; j>=0; j--){
6777 sqlite3VdbeAddOp3(v, OP_Column, pF->iOBTab, nKey+j, regAgg+j);
6779 if( pF->bUseSubtype ){
6780 int regSubtype = sqlite3GetTempReg(pParse);
6781 int iBaseCol = nKey + nArg + (pF->bOBPayload==0 && pF->bOBUnique==0);
6782 for(j=nArg-1; j>=0; j--){
6783 sqlite3VdbeAddOp3(v, OP_Column, pF->iOBTab, iBaseCol+j, regSubtype);
6784 sqlite3VdbeAddOp2(v, OP_SetSubtype, regSubtype, regAgg+j);
6786 sqlite3ReleaseTempReg(pParse, regSubtype);
6788 sqlite3VdbeAddOp3(v, OP_AggStep, 0, regAgg, AggInfoFuncReg(pAggInfo,i));
6789 sqlite3VdbeAppendP4(v, pF->pFunc, P4_FUNCDEF);
6790 sqlite3VdbeChangeP5(v, (u8)nArg);
6791 sqlite3VdbeAddOp2(v, OP_Next, pF->iOBTab, iTop+1); VdbeCoverage(v);
6792 sqlite3VdbeJumpHere(v, iTop);
6793 sqlite3ReleaseTempRange(pParse, regAgg, nArg);
6795 sqlite3VdbeAddOp2(v, OP_AggFinal, AggInfoFuncReg(pAggInfo,i),
6796 pList ? pList->nExpr : 0);
6797 sqlite3VdbeAppendP4(v, pF->pFunc, P4_FUNCDEF);
6802 ** Generate code that will update the accumulator memory cells for an
6803 ** aggregate based on the current cursor position.
6805 ** If regAcc is non-zero and there are no min() or max() aggregates
6806 ** in pAggInfo, then only populate the pAggInfo->nAccumulator accumulator
6807 ** registers if register regAcc contains 0. The caller will take care
6808 ** of setting and clearing regAcc.
6810 ** For an ORDER BY aggregate, the actual accumulator memory cell update
6811 ** is deferred until after all input rows have been received, so that they
6812 ** can be run in the requested order. In that case, instead of invoking
6813 ** OP_AggStep to update the accumulator, just add the arguments that would
6814 ** have been passed into OP_AggStep into the sorting ephemeral table
6815 ** (along with the appropriate sort key).
6817 static void updateAccumulator(
6818 Parse *pParse,
6819 int regAcc,
6820 AggInfo *pAggInfo,
6821 int eDistinctType
6823 Vdbe *v = pParse->pVdbe;
6824 int i;
6825 int regHit = 0;
6826 int addrHitTest = 0;
6827 struct AggInfo_func *pF;
6828 struct AggInfo_col *pC;
6830 assert( pAggInfo->iFirstReg>0 );
6831 if( pParse->nErr ) return;
6832 pAggInfo->directMode = 1;
6833 for(i=0, pF=pAggInfo->aFunc; i<pAggInfo->nFunc; i++, pF++){
6834 int nArg;
6835 int addrNext = 0;
6836 int regAgg;
6837 int regAggSz = 0;
6838 int regDistinct = 0;
6839 ExprList *pList;
6840 assert( ExprUseXList(pF->pFExpr) );
6841 assert( !IsWindowFunc(pF->pFExpr) );
6842 assert( pF->pFunc!=0 );
6843 pList = pF->pFExpr->x.pList;
6844 if( ExprHasProperty(pF->pFExpr, EP_WinFunc) ){
6845 Expr *pFilter = pF->pFExpr->y.pWin->pFilter;
6846 if( pAggInfo->nAccumulator
6847 && (pF->pFunc->funcFlags & SQLITE_FUNC_NEEDCOLL)
6848 && regAcc
6850 /* If regAcc==0, there there exists some min() or max() function
6851 ** without a FILTER clause that will ensure the magnet registers
6852 ** are populated. */
6853 if( regHit==0 ) regHit = ++pParse->nMem;
6854 /* If this is the first row of the group (regAcc contains 0), clear the
6855 ** "magnet" register regHit so that the accumulator registers
6856 ** are populated if the FILTER clause jumps over the the
6857 ** invocation of min() or max() altogether. Or, if this is not
6858 ** the first row (regAcc contains 1), set the magnet register so that
6859 ** the accumulators are not populated unless the min()/max() is invoked
6860 ** and indicates that they should be. */
6861 sqlite3VdbeAddOp2(v, OP_Copy, regAcc, regHit);
6863 addrNext = sqlite3VdbeMakeLabel(pParse);
6864 sqlite3ExprIfFalse(pParse, pFilter, addrNext, SQLITE_JUMPIFNULL);
6866 if( pF->iOBTab>=0 ){
6867 /* Instead of invoking AggStep, we must push the arguments that would
6868 ** have been passed to AggStep onto the sorting table. */
6869 int jj; /* Registered used so far in building the record */
6870 ExprList *pOBList; /* The ORDER BY clause */
6871 assert( pList!=0 );
6872 nArg = pList->nExpr;
6873 assert( nArg>0 );
6874 assert( pF->pFExpr->pLeft!=0 );
6875 assert( pF->pFExpr->pLeft->op==TK_ORDER );
6876 assert( ExprUseXList(pF->pFExpr->pLeft) );
6877 pOBList = pF->pFExpr->pLeft->x.pList;
6878 assert( pOBList!=0 );
6879 assert( pOBList->nExpr>0 );
6880 regAggSz = pOBList->nExpr;
6881 if( !pF->bOBUnique ){
6882 regAggSz++; /* One register for OP_Sequence */
6884 if( pF->bOBPayload ){
6885 regAggSz += nArg;
6887 if( pF->bUseSubtype ){
6888 regAggSz += nArg;
6890 regAggSz++; /* One extra register to hold result of MakeRecord */
6891 regAgg = sqlite3GetTempRange(pParse, regAggSz);
6892 regDistinct = regAgg;
6893 sqlite3ExprCodeExprList(pParse, pOBList, regAgg, 0, SQLITE_ECEL_DUP);
6894 jj = pOBList->nExpr;
6895 if( !pF->bOBUnique ){
6896 sqlite3VdbeAddOp2(v, OP_Sequence, pF->iOBTab, regAgg+jj);
6897 jj++;
6899 if( pF->bOBPayload ){
6900 regDistinct = regAgg+jj;
6901 sqlite3ExprCodeExprList(pParse, pList, regDistinct, 0, SQLITE_ECEL_DUP);
6902 jj += nArg;
6904 if( pF->bUseSubtype ){
6905 int kk;
6906 int regBase = pF->bOBPayload ? regDistinct : regAgg;
6907 for(kk=0; kk<nArg; kk++, jj++){
6908 sqlite3VdbeAddOp2(v, OP_GetSubtype, regBase+kk, regAgg+jj);
6911 }else if( pList ){
6912 nArg = pList->nExpr;
6913 regAgg = sqlite3GetTempRange(pParse, nArg);
6914 regDistinct = regAgg;
6915 sqlite3ExprCodeExprList(pParse, pList, regAgg, 0, SQLITE_ECEL_DUP);
6916 }else{
6917 nArg = 0;
6918 regAgg = 0;
6920 if( pF->iDistinct>=0 && pList ){
6921 if( addrNext==0 ){
6922 addrNext = sqlite3VdbeMakeLabel(pParse);
6924 pF->iDistinct = codeDistinct(pParse, eDistinctType,
6925 pF->iDistinct, addrNext, pList, regDistinct);
6927 if( pF->iOBTab>=0 ){
6928 /* Insert a new record into the ORDER BY table */
6929 sqlite3VdbeAddOp3(v, OP_MakeRecord, regAgg, regAggSz-1,
6930 regAgg+regAggSz-1);
6931 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, pF->iOBTab, regAgg+regAggSz-1,
6932 regAgg, regAggSz-1);
6933 sqlite3ReleaseTempRange(pParse, regAgg, regAggSz);
6934 }else{
6935 /* Invoke the AggStep function */
6936 if( pF->pFunc->funcFlags & SQLITE_FUNC_NEEDCOLL ){
6937 CollSeq *pColl = 0;
6938 struct ExprList_item *pItem;
6939 int j;
6940 assert( pList!=0 ); /* pList!=0 if pF->pFunc has NEEDCOLL */
6941 for(j=0, pItem=pList->a; !pColl && j<nArg; j++, pItem++){
6942 pColl = sqlite3ExprCollSeq(pParse, pItem->pExpr);
6944 if( !pColl ){
6945 pColl = pParse->db->pDfltColl;
6947 if( regHit==0 && pAggInfo->nAccumulator ) regHit = ++pParse->nMem;
6948 sqlite3VdbeAddOp4(v, OP_CollSeq, regHit, 0, 0,
6949 (char *)pColl, P4_COLLSEQ);
6951 sqlite3VdbeAddOp3(v, OP_AggStep, 0, regAgg, AggInfoFuncReg(pAggInfo,i));
6952 sqlite3VdbeAppendP4(v, pF->pFunc, P4_FUNCDEF);
6953 sqlite3VdbeChangeP5(v, (u8)nArg);
6954 sqlite3ReleaseTempRange(pParse, regAgg, nArg);
6956 if( addrNext ){
6957 sqlite3VdbeResolveLabel(v, addrNext);
6960 if( regHit==0 && pAggInfo->nAccumulator ){
6961 regHit = regAcc;
6963 if( regHit ){
6964 addrHitTest = sqlite3VdbeAddOp1(v, OP_If, regHit); VdbeCoverage(v);
6966 for(i=0, pC=pAggInfo->aCol; i<pAggInfo->nAccumulator; i++, pC++){
6967 sqlite3ExprCode(pParse, pC->pCExpr, AggInfoColumnReg(pAggInfo,i));
6970 pAggInfo->directMode = 0;
6971 if( addrHitTest ){
6972 sqlite3VdbeJumpHereOrPopInst(v, addrHitTest);
6977 ** Add a single OP_Explain instruction to the VDBE to explain a simple
6978 ** count(*) query ("SELECT count(*) FROM pTab").
6980 #ifndef SQLITE_OMIT_EXPLAIN
6981 static void explainSimpleCount(
6982 Parse *pParse, /* Parse context */
6983 Table *pTab, /* Table being queried */
6984 Index *pIdx /* Index used to optimize scan, or NULL */
6986 if( pParse->explain==2 ){
6987 int bCover = (pIdx!=0 && (HasRowid(pTab) || !IsPrimaryKeyIndex(pIdx)));
6988 sqlite3VdbeExplain(pParse, 0, "SCAN %s%s%s",
6989 pTab->zName,
6990 bCover ? " USING COVERING INDEX " : "",
6991 bCover ? pIdx->zName : ""
6995 #else
6996 # define explainSimpleCount(a,b,c)
6997 #endif
7000 ** sqlite3WalkExpr() callback used by havingToWhere().
7002 ** If the node passed to the callback is a TK_AND node, return
7003 ** WRC_Continue to tell sqlite3WalkExpr() to iterate through child nodes.
7005 ** Otherwise, return WRC_Prune. In this case, also check if the
7006 ** sub-expression matches the criteria for being moved to the WHERE
7007 ** clause. If so, add it to the WHERE clause and replace the sub-expression
7008 ** within the HAVING expression with a constant "1".
7010 static int havingToWhereExprCb(Walker *pWalker, Expr *pExpr){
7011 if( pExpr->op!=TK_AND ){
7012 Select *pS = pWalker->u.pSelect;
7013 /* This routine is called before the HAVING clause of the current
7014 ** SELECT is analyzed for aggregates. So if pExpr->pAggInfo is set
7015 ** here, it indicates that the expression is a correlated reference to a
7016 ** column from an outer aggregate query, or an aggregate function that
7017 ** belongs to an outer query. Do not move the expression to the WHERE
7018 ** clause in this obscure case, as doing so may corrupt the outer Select
7019 ** statements AggInfo structure. */
7020 if( sqlite3ExprIsConstantOrGroupBy(pWalker->pParse, pExpr, pS->pGroupBy)
7021 && ExprAlwaysFalse(pExpr)==0
7022 && pExpr->pAggInfo==0
7024 sqlite3 *db = pWalker->pParse->db;
7025 Expr *pNew = sqlite3Expr(db, TK_INTEGER, "1");
7026 if( pNew ){
7027 Expr *pWhere = pS->pWhere;
7028 SWAP(Expr, *pNew, *pExpr);
7029 pNew = sqlite3ExprAnd(pWalker->pParse, pWhere, pNew);
7030 pS->pWhere = pNew;
7031 pWalker->eCode = 1;
7034 return WRC_Prune;
7036 return WRC_Continue;
7040 ** Transfer eligible terms from the HAVING clause of a query, which is
7041 ** processed after grouping, to the WHERE clause, which is processed before
7042 ** grouping. For example, the query:
7044 ** SELECT * FROM <tables> WHERE a=? GROUP BY b HAVING b=? AND c=?
7046 ** can be rewritten as:
7048 ** SELECT * FROM <tables> WHERE a=? AND b=? GROUP BY b HAVING c=?
7050 ** A term of the HAVING expression is eligible for transfer if it consists
7051 ** entirely of constants and expressions that are also GROUP BY terms that
7052 ** use the "BINARY" collation sequence.
7054 static void havingToWhere(Parse *pParse, Select *p){
7055 Walker sWalker;
7056 memset(&sWalker, 0, sizeof(sWalker));
7057 sWalker.pParse = pParse;
7058 sWalker.xExprCallback = havingToWhereExprCb;
7059 sWalker.u.pSelect = p;
7060 sqlite3WalkExpr(&sWalker, p->pHaving);
7061 #if TREETRACE_ENABLED
7062 if( sWalker.eCode && (sqlite3TreeTrace & 0x100)!=0 ){
7063 TREETRACE(0x100,pParse,p,("Move HAVING terms into WHERE:\n"));
7064 sqlite3TreeViewSelect(0, p, 0);
7066 #endif
7070 ** Check to see if the pThis entry of pTabList is a self-join of another view.
7071 ** Search FROM-clause entries in the range of iFirst..iEnd, including iFirst
7072 ** but stopping before iEnd.
7074 ** If pThis is a self-join, then return the SrcItem for the first other
7075 ** instance of that view found. If pThis is not a self-join then return 0.
7077 static SrcItem *isSelfJoinView(
7078 SrcList *pTabList, /* Search for self-joins in this FROM clause */
7079 SrcItem *pThis, /* Search for prior reference to this subquery */
7080 int iFirst, int iEnd /* Range of FROM-clause entries to search. */
7082 SrcItem *pItem;
7083 assert( pThis->pSelect!=0 );
7084 if( pThis->pSelect->selFlags & SF_PushDown ) return 0;
7085 while( iFirst<iEnd ){
7086 Select *pS1;
7087 pItem = &pTabList->a[iFirst++];
7088 if( pItem->pSelect==0 ) continue;
7089 if( pItem->fg.viaCoroutine ) continue;
7090 if( pItem->zName==0 ) continue;
7091 assert( pItem->pTab!=0 );
7092 assert( pThis->pTab!=0 );
7093 if( pItem->pTab->pSchema!=pThis->pTab->pSchema ) continue;
7094 if( sqlite3_stricmp(pItem->zName, pThis->zName)!=0 ) continue;
7095 pS1 = pItem->pSelect;
7096 if( pItem->pTab->pSchema==0 && pThis->pSelect->selId!=pS1->selId ){
7097 /* The query flattener left two different CTE tables with identical
7098 ** names in the same FROM clause. */
7099 continue;
7101 if( pItem->pSelect->selFlags & SF_PushDown ){
7102 /* The view was modified by some other optimization such as
7103 ** pushDownWhereTerms() */
7104 continue;
7106 return pItem;
7108 return 0;
7112 ** Deallocate a single AggInfo object
7114 static void agginfoFree(sqlite3 *db, void *pArg){
7115 AggInfo *p = (AggInfo*)pArg;
7116 sqlite3DbFree(db, p->aCol);
7117 sqlite3DbFree(db, p->aFunc);
7118 sqlite3DbFreeNN(db, p);
7122 ** Attempt to transform a query of the form
7124 ** SELECT count(*) FROM (SELECT x FROM t1 UNION ALL SELECT y FROM t2)
7126 ** Into this:
7128 ** SELECT (SELECT count(*) FROM t1)+(SELECT count(*) FROM t2)
7130 ** The transformation only works if all of the following are true:
7132 ** * The subquery is a UNION ALL of two or more terms
7133 ** * The subquery does not have a LIMIT clause
7134 ** * There is no WHERE or GROUP BY or HAVING clauses on the subqueries
7135 ** * The outer query is a simple count(*) with no WHERE clause or other
7136 ** extraneous syntax.
7138 ** Return TRUE if the optimization is undertaken.
7140 static int countOfViewOptimization(Parse *pParse, Select *p){
7141 Select *pSub, *pPrior;
7142 Expr *pExpr;
7143 Expr *pCount;
7144 sqlite3 *db;
7145 if( (p->selFlags & SF_Aggregate)==0 ) return 0; /* This is an aggregate */
7146 if( p->pEList->nExpr!=1 ) return 0; /* Single result column */
7147 if( p->pWhere ) return 0;
7148 if( p->pHaving ) return 0;
7149 if( p->pGroupBy ) return 0;
7150 if( p->pOrderBy ) return 0;
7151 pExpr = p->pEList->a[0].pExpr;
7152 if( pExpr->op!=TK_AGG_FUNCTION ) return 0; /* Result is an aggregate */
7153 assert( ExprUseUToken(pExpr) );
7154 if( sqlite3_stricmp(pExpr->u.zToken,"count") ) return 0; /* Is count() */
7155 assert( ExprUseXList(pExpr) );
7156 if( pExpr->x.pList!=0 ) return 0; /* Must be count(*) */
7157 if( p->pSrc->nSrc!=1 ) return 0; /* One table in FROM */
7158 if( ExprHasProperty(pExpr, EP_WinFunc) ) return 0;/* Not a window function */
7159 pSub = p->pSrc->a[0].pSelect;
7160 if( pSub==0 ) return 0; /* The FROM is a subquery */
7161 if( pSub->pPrior==0 ) return 0; /* Must be a compound */
7162 if( pSub->selFlags & SF_CopyCte ) return 0; /* Not a CTE */
7164 if( pSub->op!=TK_ALL && pSub->pPrior ) return 0; /* Must be UNION ALL */
7165 if( pSub->pWhere ) return 0; /* No WHERE clause */
7166 if( pSub->pLimit ) return 0; /* No LIMIT clause */
7167 if( pSub->selFlags & SF_Aggregate ) return 0; /* Not an aggregate */
7168 assert( pSub->pHaving==0 ); /* Due to the previous */
7169 pSub = pSub->pPrior; /* Repeat over compound */
7170 }while( pSub );
7172 /* If we reach this point then it is OK to perform the transformation */
7174 db = pParse->db;
7175 pCount = pExpr;
7176 pExpr = 0;
7177 pSub = p->pSrc->a[0].pSelect;
7178 p->pSrc->a[0].pSelect = 0;
7179 sqlite3SrcListDelete(db, p->pSrc);
7180 p->pSrc = sqlite3DbMallocZero(pParse->db, sizeof(*p->pSrc));
7181 while( pSub ){
7182 Expr *pTerm;
7183 pPrior = pSub->pPrior;
7184 pSub->pPrior = 0;
7185 pSub->pNext = 0;
7186 pSub->selFlags |= SF_Aggregate;
7187 pSub->selFlags &= ~SF_Compound;
7188 pSub->nSelectRow = 0;
7189 sqlite3ParserAddCleanup(pParse, sqlite3ExprListDeleteGeneric, pSub->pEList);
7190 pTerm = pPrior ? sqlite3ExprDup(db, pCount, 0) : pCount;
7191 pSub->pEList = sqlite3ExprListAppend(pParse, 0, pTerm);
7192 pTerm = sqlite3PExpr(pParse, TK_SELECT, 0, 0);
7193 sqlite3PExprAddSelect(pParse, pTerm, pSub);
7194 if( pExpr==0 ){
7195 pExpr = pTerm;
7196 }else{
7197 pExpr = sqlite3PExpr(pParse, TK_PLUS, pTerm, pExpr);
7199 pSub = pPrior;
7201 p->pEList->a[0].pExpr = pExpr;
7202 p->selFlags &= ~SF_Aggregate;
7204 #if TREETRACE_ENABLED
7205 if( sqlite3TreeTrace & 0x200 ){
7206 TREETRACE(0x200,pParse,p,("After count-of-view optimization:\n"));
7207 sqlite3TreeViewSelect(0, p, 0);
7209 #endif
7210 return 1;
7214 ** If any term of pSrc, or any SF_NestedFrom sub-query, is not the same
7215 ** as pSrcItem but has the same alias as p0, then return true.
7216 ** Otherwise return false.
7218 static int sameSrcAlias(SrcItem *p0, SrcList *pSrc){
7219 int i;
7220 for(i=0; i<pSrc->nSrc; i++){
7221 SrcItem *p1 = &pSrc->a[i];
7222 if( p1==p0 ) continue;
7223 if( p0->pTab==p1->pTab && 0==sqlite3_stricmp(p0->zAlias, p1->zAlias) ){
7224 return 1;
7226 if( p1->pSelect
7227 && (p1->pSelect->selFlags & SF_NestedFrom)!=0
7228 && sameSrcAlias(p0, p1->pSelect->pSrc)
7230 return 1;
7233 return 0;
7237 ** Return TRUE (non-zero) if the i-th entry in the pTabList SrcList can
7238 ** be implemented as a co-routine. The i-th entry is guaranteed to be
7239 ** a subquery.
7241 ** The subquery is implemented as a co-routine if all of the following are
7242 ** true:
7244 ** (1) The subquery will likely be implemented in the outer loop of
7245 ** the query. This will be the case if any one of the following
7246 ** conditions hold:
7247 ** (a) The subquery is the only term in the FROM clause
7248 ** (b) The subquery is the left-most term and a CROSS JOIN or similar
7249 ** requires it to be the outer loop
7250 ** (c) All of the following are true:
7251 ** (i) The subquery is the left-most subquery in the FROM clause
7252 ** (ii) There is nothing that would prevent the subquery from
7253 ** being used as the outer loop if the sqlite3WhereBegin()
7254 ** routine nominates it to that position.
7255 ** (iii) The query is not a UPDATE ... FROM
7256 ** (2) The subquery is not a CTE that should be materialized because
7257 ** (a) the AS MATERIALIZED keyword is used, or
7258 ** (b) the CTE is used multiple times and does not have the
7259 ** NOT MATERIALIZED keyword
7260 ** (3) The subquery is not part of a left operand for a RIGHT JOIN
7261 ** (4) The SQLITE_Coroutine optimization disable flag is not set
7262 ** (5) The subquery is not self-joined
7264 static int fromClauseTermCanBeCoroutine(
7265 Parse *pParse, /* Parsing context */
7266 SrcList *pTabList, /* FROM clause */
7267 int i, /* Which term of the FROM clause holds the subquery */
7268 int selFlags /* Flags on the SELECT statement */
7270 SrcItem *pItem = &pTabList->a[i];
7271 if( pItem->fg.isCte ){
7272 const CteUse *pCteUse = pItem->u2.pCteUse;
7273 if( pCteUse->eM10d==M10d_Yes ) return 0; /* (2a) */
7274 if( pCteUse->nUse>=2 && pCteUse->eM10d!=M10d_No ) return 0; /* (2b) */
7276 if( pTabList->a[0].fg.jointype & JT_LTORJ ) return 0; /* (3) */
7277 if( OptimizationDisabled(pParse->db, SQLITE_Coroutines) ) return 0; /* (4) */
7278 if( isSelfJoinView(pTabList, pItem, i+1, pTabList->nSrc)!=0 ){
7279 return 0; /* (5) */
7281 if( i==0 ){
7282 if( pTabList->nSrc==1 ) return 1; /* (1a) */
7283 if( pTabList->a[1].fg.jointype & JT_CROSS ) return 1; /* (1b) */
7284 if( selFlags & SF_UpdateFrom ) return 0; /* (1c-iii) */
7285 return 1;
7287 if( selFlags & SF_UpdateFrom ) return 0; /* (1c-iii) */
7288 while( 1 /*exit-by-break*/ ){
7289 if( pItem->fg.jointype & (JT_OUTER|JT_CROSS) ) return 0; /* (1c-ii) */
7290 if( i==0 ) break;
7291 i--;
7292 pItem--;
7293 if( pItem->pSelect!=0 ) return 0; /* (1c-i) */
7295 return 1;
7299 ** Generate code for the SELECT statement given in the p argument.
7301 ** The results are returned according to the SelectDest structure.
7302 ** See comments in sqliteInt.h for further information.
7304 ** This routine returns the number of errors. If any errors are
7305 ** encountered, then an appropriate error message is left in
7306 ** pParse->zErrMsg.
7308 ** This routine does NOT free the Select structure passed in. The
7309 ** calling function needs to do that.
7311 int sqlite3Select(
7312 Parse *pParse, /* The parser context */
7313 Select *p, /* The SELECT statement being coded. */
7314 SelectDest *pDest /* What to do with the query results */
7316 int i, j; /* Loop counters */
7317 WhereInfo *pWInfo; /* Return from sqlite3WhereBegin() */
7318 Vdbe *v; /* The virtual machine under construction */
7319 int isAgg; /* True for select lists like "count(*)" */
7320 ExprList *pEList = 0; /* List of columns to extract. */
7321 SrcList *pTabList; /* List of tables to select from */
7322 Expr *pWhere; /* The WHERE clause. May be NULL */
7323 ExprList *pGroupBy; /* The GROUP BY clause. May be NULL */
7324 Expr *pHaving; /* The HAVING clause. May be NULL */
7325 AggInfo *pAggInfo = 0; /* Aggregate information */
7326 int rc = 1; /* Value to return from this function */
7327 DistinctCtx sDistinct; /* Info on how to code the DISTINCT keyword */
7328 SortCtx sSort; /* Info on how to code the ORDER BY clause */
7329 int iEnd; /* Address of the end of the query */
7330 sqlite3 *db; /* The database connection */
7331 ExprList *pMinMaxOrderBy = 0; /* Added ORDER BY for min/max queries */
7332 u8 minMaxFlag; /* Flag for min/max queries */
7334 db = pParse->db;
7335 assert( pParse==db->pParse );
7336 v = sqlite3GetVdbe(pParse);
7337 if( p==0 || pParse->nErr ){
7338 return 1;
7340 assert( db->mallocFailed==0 );
7341 if( sqlite3AuthCheck(pParse, SQLITE_SELECT, 0, 0, 0) ) return 1;
7342 #if TREETRACE_ENABLED
7343 TREETRACE(0x1,pParse,p, ("begin processing:\n", pParse->addrExplain));
7344 if( sqlite3TreeTrace & 0x10000 ){
7345 if( (sqlite3TreeTrace & 0x10001)==0x10000 ){
7346 sqlite3TreeViewLine(0, "In sqlite3Select() at %s:%d",
7347 __FILE__, __LINE__);
7349 sqlite3ShowSelect(p);
7351 #endif
7353 assert( p->pOrderBy==0 || pDest->eDest!=SRT_DistFifo );
7354 assert( p->pOrderBy==0 || pDest->eDest!=SRT_Fifo );
7355 assert( p->pOrderBy==0 || pDest->eDest!=SRT_DistQueue );
7356 assert( p->pOrderBy==0 || pDest->eDest!=SRT_Queue );
7357 if( IgnorableDistinct(pDest) ){
7358 assert(pDest->eDest==SRT_Exists || pDest->eDest==SRT_Union ||
7359 pDest->eDest==SRT_Except || pDest->eDest==SRT_Discard ||
7360 pDest->eDest==SRT_DistQueue || pDest->eDest==SRT_DistFifo );
7361 /* All of these destinations are also able to ignore the ORDER BY clause */
7362 if( p->pOrderBy ){
7363 #if TREETRACE_ENABLED
7364 TREETRACE(0x800,pParse,p, ("dropping superfluous ORDER BY:\n"));
7365 if( sqlite3TreeTrace & 0x800 ){
7366 sqlite3TreeViewExprList(0, p->pOrderBy, 0, "ORDERBY");
7368 #endif
7369 sqlite3ParserAddCleanup(pParse, sqlite3ExprListDeleteGeneric,
7370 p->pOrderBy);
7371 testcase( pParse->earlyCleanup );
7372 p->pOrderBy = 0;
7374 p->selFlags &= ~SF_Distinct;
7375 p->selFlags |= SF_NoopOrderBy;
7377 sqlite3SelectPrep(pParse, p, 0);
7378 if( pParse->nErr ){
7379 goto select_end;
7381 assert( db->mallocFailed==0 );
7382 assert( p->pEList!=0 );
7383 #if TREETRACE_ENABLED
7384 if( sqlite3TreeTrace & 0x10 ){
7385 TREETRACE(0x10,pParse,p, ("after name resolution:\n"));
7386 sqlite3TreeViewSelect(0, p, 0);
7388 #endif
7390 /* If the SF_UFSrcCheck flag is set, then this function is being called
7391 ** as part of populating the temp table for an UPDATE...FROM statement.
7392 ** In this case, it is an error if the target object (pSrc->a[0]) name
7393 ** or alias is duplicated within FROM clause (pSrc->a[1..n]).
7395 ** Postgres disallows this case too. The reason is that some other
7396 ** systems handle this case differently, and not all the same way,
7397 ** which is just confusing. To avoid this, we follow PG's lead and
7398 ** disallow it altogether. */
7399 if( p->selFlags & SF_UFSrcCheck ){
7400 SrcItem *p0 = &p->pSrc->a[0];
7401 if( sameSrcAlias(p0, p->pSrc) ){
7402 sqlite3ErrorMsg(pParse,
7403 "target object/alias may not appear in FROM clause: %s",
7404 p0->zAlias ? p0->zAlias : p0->pTab->zName
7406 goto select_end;
7409 /* Clear the SF_UFSrcCheck flag. The check has already been performed,
7410 ** and leaving this flag set can cause errors if a compound sub-query
7411 ** in p->pSrc is flattened into this query and this function called
7412 ** again as part of compound SELECT processing. */
7413 p->selFlags &= ~SF_UFSrcCheck;
7416 if( pDest->eDest==SRT_Output ){
7417 sqlite3GenerateColumnNames(pParse, p);
7420 #ifndef SQLITE_OMIT_WINDOWFUNC
7421 if( sqlite3WindowRewrite(pParse, p) ){
7422 assert( pParse->nErr );
7423 goto select_end;
7425 #if TREETRACE_ENABLED
7426 if( p->pWin && (sqlite3TreeTrace & 0x40)!=0 ){
7427 TREETRACE(0x40,pParse,p, ("after window rewrite:\n"));
7428 sqlite3TreeViewSelect(0, p, 0);
7430 #endif
7431 #endif /* SQLITE_OMIT_WINDOWFUNC */
7432 pTabList = p->pSrc;
7433 isAgg = (p->selFlags & SF_Aggregate)!=0;
7434 memset(&sSort, 0, sizeof(sSort));
7435 sSort.pOrderBy = p->pOrderBy;
7437 /* Try to do various optimizations (flattening subqueries, and strength
7438 ** reduction of join operators) in the FROM clause up into the main query
7440 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
7441 for(i=0; !p->pPrior && i<pTabList->nSrc; i++){
7442 SrcItem *pItem = &pTabList->a[i];
7443 Select *pSub = pItem->pSelect;
7444 Table *pTab = pItem->pTab;
7446 /* The expander should have already created transient Table objects
7447 ** even for FROM clause elements such as subqueries that do not correspond
7448 ** to a real table */
7449 assert( pTab!=0 );
7451 /* Try to simplify joins:
7453 ** LEFT JOIN -> JOIN
7454 ** RIGHT JOIN -> JOIN
7455 ** FULL JOIN -> RIGHT JOIN
7457 ** If terms of the i-th table are used in the WHERE clause in such a
7458 ** way that the i-th table cannot be the NULL row of a join, then
7459 ** perform the appropriate simplification. This is called
7460 ** "OUTER JOIN strength reduction" in the SQLite documentation.
7462 if( (pItem->fg.jointype & (JT_LEFT|JT_LTORJ))!=0
7463 && sqlite3ExprImpliesNonNullRow(p->pWhere, pItem->iCursor,
7464 pItem->fg.jointype & JT_LTORJ)
7465 && OptimizationEnabled(db, SQLITE_SimplifyJoin)
7467 if( pItem->fg.jointype & JT_LEFT ){
7468 if( pItem->fg.jointype & JT_RIGHT ){
7469 TREETRACE(0x1000,pParse,p,
7470 ("FULL-JOIN simplifies to RIGHT-JOIN on term %d\n",i));
7471 pItem->fg.jointype &= ~JT_LEFT;
7472 }else{
7473 TREETRACE(0x1000,pParse,p,
7474 ("LEFT-JOIN simplifies to JOIN on term %d\n",i));
7475 pItem->fg.jointype &= ~(JT_LEFT|JT_OUTER);
7476 unsetJoinExpr(p->pWhere, pItem->iCursor, 0);
7479 if( pItem->fg.jointype & JT_LTORJ ){
7480 for(j=i+1; j<pTabList->nSrc; j++){
7481 SrcItem *pI2 = &pTabList->a[j];
7482 if( pI2->fg.jointype & JT_RIGHT ){
7483 if( pI2->fg.jointype & JT_LEFT ){
7484 TREETRACE(0x1000,pParse,p,
7485 ("FULL-JOIN simplifies to LEFT-JOIN on term %d\n",j));
7486 pI2->fg.jointype &= ~JT_RIGHT;
7487 }else{
7488 TREETRACE(0x1000,pParse,p,
7489 ("RIGHT-JOIN simplifies to JOIN on term %d\n",j));
7490 pI2->fg.jointype &= ~(JT_RIGHT|JT_OUTER);
7491 unsetJoinExpr(p->pWhere, pI2->iCursor, 1);
7495 for(j=pTabList->nSrc-1; j>=0; j--){
7496 pTabList->a[j].fg.jointype &= ~JT_LTORJ;
7497 if( pTabList->a[j].fg.jointype & JT_RIGHT ) break;
7502 /* No further action if this term of the FROM clause is not a subquery */
7503 if( pSub==0 ) continue;
7505 /* Catch mismatch in the declared columns of a view and the number of
7506 ** columns in the SELECT on the RHS */
7507 if( pTab->nCol!=pSub->pEList->nExpr ){
7508 sqlite3ErrorMsg(pParse, "expected %d columns for '%s' but got %d",
7509 pTab->nCol, pTab->zName, pSub->pEList->nExpr);
7510 goto select_end;
7513 /* Do not attempt the usual optimizations (flattening and ORDER BY
7514 ** elimination) on a MATERIALIZED common table expression because
7515 ** a MATERIALIZED common table expression is an optimization fence.
7517 if( pItem->fg.isCte && pItem->u2.pCteUse->eM10d==M10d_Yes ){
7518 continue;
7521 /* Do not try to flatten an aggregate subquery.
7523 ** Flattening an aggregate subquery is only possible if the outer query
7524 ** is not a join. But if the outer query is not a join, then the subquery
7525 ** will be implemented as a co-routine and there is no advantage to
7526 ** flattening in that case.
7528 if( (pSub->selFlags & SF_Aggregate)!=0 ) continue;
7529 assert( pSub->pGroupBy==0 );
7531 /* If a FROM-clause subquery has an ORDER BY clause that is not
7532 ** really doing anything, then delete it now so that it does not
7533 ** interfere with query flattening. See the discussion at
7534 ** https://sqlite.org/forum/forumpost/2d76f2bcf65d256a
7536 ** Beware of these cases where the ORDER BY clause may not be safely
7537 ** omitted:
7539 ** (1) There is also a LIMIT clause
7540 ** (2) The subquery was added to help with window-function
7541 ** processing
7542 ** (3) The subquery is in the FROM clause of an UPDATE
7543 ** (4) The outer query uses an aggregate function other than
7544 ** the built-in count(), min(), or max().
7545 ** (5) The ORDER BY isn't going to accomplish anything because
7546 ** one of:
7547 ** (a) The outer query has a different ORDER BY clause
7548 ** (b) The subquery is part of a join
7549 ** See forum post 062d576715d277c8
7550 ** (6) The subquery is not a recursive CTE. ORDER BY has a different
7551 ** meaning for recursive CTEs and this optimization does not
7552 ** apply.
7554 ** Also retain the ORDER BY if the OmitOrderBy optimization is disabled.
7556 if( pSub->pOrderBy!=0
7557 && (p->pOrderBy!=0 || pTabList->nSrc>1) /* Condition (5) */
7558 && pSub->pLimit==0 /* Condition (1) */
7559 && (pSub->selFlags & (SF_OrderByReqd|SF_Recursive))==0 /* (2) and (6) */
7560 && (p->selFlags & SF_OrderByReqd)==0 /* Condition (3) and (4) */
7561 && OptimizationEnabled(db, SQLITE_OmitOrderBy)
7563 TREETRACE(0x800,pParse,p,
7564 ("omit superfluous ORDER BY on %r FROM-clause subquery\n",i+1));
7565 sqlite3ParserAddCleanup(pParse, sqlite3ExprListDeleteGeneric,
7566 pSub->pOrderBy);
7567 pSub->pOrderBy = 0;
7570 /* If the outer query contains a "complex" result set (that is,
7571 ** if the result set of the outer query uses functions or subqueries)
7572 ** and if the subquery contains an ORDER BY clause and if
7573 ** it will be implemented as a co-routine, then do not flatten. This
7574 ** restriction allows SQL constructs like this:
7576 ** SELECT expensive_function(x)
7577 ** FROM (SELECT x FROM tab ORDER BY y LIMIT 10);
7579 ** The expensive_function() is only computed on the 10 rows that
7580 ** are output, rather than every row of the table.
7582 ** The requirement that the outer query have a complex result set
7583 ** means that flattening does occur on simpler SQL constraints without
7584 ** the expensive_function() like:
7586 ** SELECT x FROM (SELECT x FROM tab ORDER BY y LIMIT 10);
7588 if( pSub->pOrderBy!=0
7589 && i==0
7590 && (p->selFlags & SF_ComplexResult)!=0
7591 && (pTabList->nSrc==1
7592 || (pTabList->a[1].fg.jointype&(JT_OUTER|JT_CROSS))!=0)
7594 continue;
7597 if( flattenSubquery(pParse, p, i, isAgg) ){
7598 if( pParse->nErr ) goto select_end;
7599 /* This subquery can be absorbed into its parent. */
7600 i = -1;
7602 pTabList = p->pSrc;
7603 if( db->mallocFailed ) goto select_end;
7604 if( !IgnorableOrderby(pDest) ){
7605 sSort.pOrderBy = p->pOrderBy;
7608 #endif
7610 #ifndef SQLITE_OMIT_COMPOUND_SELECT
7611 /* Handle compound SELECT statements using the separate multiSelect()
7612 ** procedure.
7614 if( p->pPrior ){
7615 rc = multiSelect(pParse, p, pDest);
7616 #if TREETRACE_ENABLED
7617 TREETRACE(0x400,pParse,p,("end compound-select processing\n"));
7618 if( (sqlite3TreeTrace & 0x400)!=0 && ExplainQueryPlanParent(pParse)==0 ){
7619 sqlite3TreeViewSelect(0, p, 0);
7621 #endif
7622 if( p->pNext==0 ) ExplainQueryPlanPop(pParse);
7623 return rc;
7625 #endif
7627 /* Do the WHERE-clause constant propagation optimization if this is
7628 ** a join. No need to speed time on this operation for non-join queries
7629 ** as the equivalent optimization will be handled by query planner in
7630 ** sqlite3WhereBegin().
7632 if( p->pWhere!=0
7633 && p->pWhere->op==TK_AND
7634 && OptimizationEnabled(db, SQLITE_PropagateConst)
7635 && propagateConstants(pParse, p)
7637 #if TREETRACE_ENABLED
7638 if( sqlite3TreeTrace & 0x2000 ){
7639 TREETRACE(0x2000,pParse,p,("After constant propagation:\n"));
7640 sqlite3TreeViewSelect(0, p, 0);
7642 #endif
7643 }else{
7644 TREETRACE(0x2000,pParse,p,("Constant propagation not helpful\n"));
7647 if( OptimizationEnabled(db, SQLITE_QueryFlattener|SQLITE_CountOfView)
7648 && countOfViewOptimization(pParse, p)
7650 if( db->mallocFailed ) goto select_end;
7651 pTabList = p->pSrc;
7654 /* For each term in the FROM clause, do two things:
7655 ** (1) Authorized unreferenced tables
7656 ** (2) Generate code for all sub-queries
7658 for(i=0; i<pTabList->nSrc; i++){
7659 SrcItem *pItem = &pTabList->a[i];
7660 SrcItem *pPrior;
7661 SelectDest dest;
7662 Select *pSub;
7663 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
7664 const char *zSavedAuthContext;
7665 #endif
7667 /* Issue SQLITE_READ authorizations with a fake column name for any
7668 ** tables that are referenced but from which no values are extracted.
7669 ** Examples of where these kinds of null SQLITE_READ authorizations
7670 ** would occur:
7672 ** SELECT count(*) FROM t1; -- SQLITE_READ t1.""
7673 ** SELECT t1.* FROM t1, t2; -- SQLITE_READ t2.""
7675 ** The fake column name is an empty string. It is possible for a table to
7676 ** have a column named by the empty string, in which case there is no way to
7677 ** distinguish between an unreferenced table and an actual reference to the
7678 ** "" column. The original design was for the fake column name to be a NULL,
7679 ** which would be unambiguous. But legacy authorization callbacks might
7680 ** assume the column name is non-NULL and segfault. The use of an empty
7681 ** string for the fake column name seems safer.
7683 if( pItem->colUsed==0 && pItem->zName!=0 ){
7684 sqlite3AuthCheck(pParse, SQLITE_READ, pItem->zName, "", pItem->zDatabase);
7687 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
7688 /* Generate code for all sub-queries in the FROM clause
7690 pSub = pItem->pSelect;
7691 if( pSub==0 || pItem->addrFillSub!=0 ) continue;
7693 /* The code for a subquery should only be generated once. */
7694 assert( pItem->addrFillSub==0 );
7696 /* Increment Parse.nHeight by the height of the largest expression
7697 ** tree referred to by this, the parent select. The child select
7698 ** may contain expression trees of at most
7699 ** (SQLITE_MAX_EXPR_DEPTH-Parse.nHeight) height. This is a bit
7700 ** more conservative than necessary, but much easier than enforcing
7701 ** an exact limit.
7703 pParse->nHeight += sqlite3SelectExprHeight(p);
7705 /* Make copies of constant WHERE-clause terms in the outer query down
7706 ** inside the subquery. This can help the subquery to run more efficiently.
7708 if( OptimizationEnabled(db, SQLITE_PushDown)
7709 && (pItem->fg.isCte==0
7710 || (pItem->u2.pCteUse->eM10d!=M10d_Yes && pItem->u2.pCteUse->nUse<2))
7711 && pushDownWhereTerms(pParse, pSub, p->pWhere, pTabList, i)
7713 #if TREETRACE_ENABLED
7714 if( sqlite3TreeTrace & 0x4000 ){
7715 TREETRACE(0x4000,pParse,p,
7716 ("After WHERE-clause push-down into subquery %d:\n", pSub->selId));
7717 sqlite3TreeViewSelect(0, p, 0);
7719 #endif
7720 assert( pItem->pSelect && (pItem->pSelect->selFlags & SF_PushDown)!=0 );
7721 }else{
7722 TREETRACE(0x4000,pParse,p,("WHERE-lcause push-down not possible\n"));
7725 /* Convert unused result columns of the subquery into simple NULL
7726 ** expressions, to avoid unneeded searching and computation.
7728 if( OptimizationEnabled(db, SQLITE_NullUnusedCols)
7729 && disableUnusedSubqueryResultColumns(pItem)
7731 #if TREETRACE_ENABLED
7732 if( sqlite3TreeTrace & 0x4000 ){
7733 TREETRACE(0x4000,pParse,p,
7734 ("Change unused result columns to NULL for subquery %d:\n",
7735 pSub->selId));
7736 sqlite3TreeViewSelect(0, p, 0);
7738 #endif
7741 zSavedAuthContext = pParse->zAuthContext;
7742 pParse->zAuthContext = pItem->zName;
7744 /* Generate code to implement the subquery
7746 if( fromClauseTermCanBeCoroutine(pParse, pTabList, i, p->selFlags) ){
7747 /* Implement a co-routine that will return a single row of the result
7748 ** set on each invocation.
7750 int addrTop = sqlite3VdbeCurrentAddr(v)+1;
7752 pItem->regReturn = ++pParse->nMem;
7753 sqlite3VdbeAddOp3(v, OP_InitCoroutine, pItem->regReturn, 0, addrTop);
7754 VdbeComment((v, "%!S", pItem));
7755 pItem->addrFillSub = addrTop;
7756 sqlite3SelectDestInit(&dest, SRT_Coroutine, pItem->regReturn);
7757 ExplainQueryPlan((pParse, 1, "CO-ROUTINE %!S", pItem));
7758 sqlite3Select(pParse, pSub, &dest);
7759 pItem->pTab->nRowLogEst = pSub->nSelectRow;
7760 pItem->fg.viaCoroutine = 1;
7761 pItem->regResult = dest.iSdst;
7762 sqlite3VdbeEndCoroutine(v, pItem->regReturn);
7763 sqlite3VdbeJumpHere(v, addrTop-1);
7764 sqlite3ClearTempRegCache(pParse);
7765 }else if( pItem->fg.isCte && pItem->u2.pCteUse->addrM9e>0 ){
7766 /* This is a CTE for which materialization code has already been
7767 ** generated. Invoke the subroutine to compute the materialization,
7768 ** the make the pItem->iCursor be a copy of the ephemeral table that
7769 ** holds the result of the materialization. */
7770 CteUse *pCteUse = pItem->u2.pCteUse;
7771 sqlite3VdbeAddOp2(v, OP_Gosub, pCteUse->regRtn, pCteUse->addrM9e);
7772 if( pItem->iCursor!=pCteUse->iCur ){
7773 sqlite3VdbeAddOp2(v, OP_OpenDup, pItem->iCursor, pCteUse->iCur);
7774 VdbeComment((v, "%!S", pItem));
7776 pSub->nSelectRow = pCteUse->nRowEst;
7777 }else if( (pPrior = isSelfJoinView(pTabList, pItem, 0, i))!=0 ){
7778 /* This view has already been materialized by a prior entry in
7779 ** this same FROM clause. Reuse it. */
7780 if( pPrior->addrFillSub ){
7781 sqlite3VdbeAddOp2(v, OP_Gosub, pPrior->regReturn, pPrior->addrFillSub);
7783 sqlite3VdbeAddOp2(v, OP_OpenDup, pItem->iCursor, pPrior->iCursor);
7784 pSub->nSelectRow = pPrior->pSelect->nSelectRow;
7785 }else{
7786 /* Materialize the view. If the view is not correlated, generate a
7787 ** subroutine to do the materialization so that subsequent uses of
7788 ** the same view can reuse the materialization. */
7789 int topAddr;
7790 int onceAddr = 0;
7791 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS
7792 int addrExplain;
7793 #endif
7795 pItem->regReturn = ++pParse->nMem;
7796 topAddr = sqlite3VdbeAddOp0(v, OP_Goto);
7797 pItem->addrFillSub = topAddr+1;
7798 pItem->fg.isMaterialized = 1;
7799 if( pItem->fg.isCorrelated==0 ){
7800 /* If the subquery is not correlated and if we are not inside of
7801 ** a trigger, then we only need to compute the value of the subquery
7802 ** once. */
7803 onceAddr = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v);
7804 VdbeComment((v, "materialize %!S", pItem));
7805 }else{
7806 VdbeNoopComment((v, "materialize %!S", pItem));
7808 sqlite3SelectDestInit(&dest, SRT_EphemTab, pItem->iCursor);
7810 ExplainQueryPlan2(addrExplain, (pParse, 1, "MATERIALIZE %!S", pItem));
7811 sqlite3Select(pParse, pSub, &dest);
7812 pItem->pTab->nRowLogEst = pSub->nSelectRow;
7813 if( onceAddr ) sqlite3VdbeJumpHere(v, onceAddr);
7814 sqlite3VdbeAddOp2(v, OP_Return, pItem->regReturn, topAddr+1);
7815 VdbeComment((v, "end %!S", pItem));
7816 sqlite3VdbeScanStatusRange(v, addrExplain, addrExplain, -1);
7817 sqlite3VdbeJumpHere(v, topAddr);
7818 sqlite3ClearTempRegCache(pParse);
7819 if( pItem->fg.isCte && pItem->fg.isCorrelated==0 ){
7820 CteUse *pCteUse = pItem->u2.pCteUse;
7821 pCteUse->addrM9e = pItem->addrFillSub;
7822 pCteUse->regRtn = pItem->regReturn;
7823 pCteUse->iCur = pItem->iCursor;
7824 pCteUse->nRowEst = pSub->nSelectRow;
7827 if( db->mallocFailed ) goto select_end;
7828 pParse->nHeight -= sqlite3SelectExprHeight(p);
7829 pParse->zAuthContext = zSavedAuthContext;
7830 #endif
7833 /* Various elements of the SELECT copied into local variables for
7834 ** convenience */
7835 pEList = p->pEList;
7836 pWhere = p->pWhere;
7837 pGroupBy = p->pGroupBy;
7838 pHaving = p->pHaving;
7839 sDistinct.isTnct = (p->selFlags & SF_Distinct)!=0;
7841 #if TREETRACE_ENABLED
7842 if( sqlite3TreeTrace & 0x8000 ){
7843 TREETRACE(0x8000,pParse,p,("After all FROM-clause analysis:\n"));
7844 sqlite3TreeViewSelect(0, p, 0);
7846 #endif
7848 /* If the query is DISTINCT with an ORDER BY but is not an aggregate, and
7849 ** if the select-list is the same as the ORDER BY list, then this query
7850 ** can be rewritten as a GROUP BY. In other words, this:
7852 ** SELECT DISTINCT xyz FROM ... ORDER BY xyz
7854 ** is transformed to:
7856 ** SELECT xyz FROM ... GROUP BY xyz ORDER BY xyz
7858 ** The second form is preferred as a single index (or temp-table) may be
7859 ** used for both the ORDER BY and DISTINCT processing. As originally
7860 ** written the query must use a temp-table for at least one of the ORDER
7861 ** BY and DISTINCT, and an index or separate temp-table for the other.
7863 if( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct
7864 && sqlite3ExprListCompare(sSort.pOrderBy, pEList, -1)==0
7865 && OptimizationEnabled(db, SQLITE_GroupByOrder)
7866 #ifndef SQLITE_OMIT_WINDOWFUNC
7867 && p->pWin==0
7868 #endif
7870 p->selFlags &= ~SF_Distinct;
7871 pGroupBy = p->pGroupBy = sqlite3ExprListDup(db, pEList, 0);
7872 if( pGroupBy ){
7873 for(i=0; i<pGroupBy->nExpr; i++){
7874 pGroupBy->a[i].u.x.iOrderByCol = i+1;
7877 p->selFlags |= SF_Aggregate;
7878 /* Notice that even thought SF_Distinct has been cleared from p->selFlags,
7879 ** the sDistinct.isTnct is still set. Hence, isTnct represents the
7880 ** original setting of the SF_Distinct flag, not the current setting */
7881 assert( sDistinct.isTnct );
7882 sDistinct.isTnct = 2;
7884 #if TREETRACE_ENABLED
7885 if( sqlite3TreeTrace & 0x20000 ){
7886 TREETRACE(0x20000,pParse,p,("Transform DISTINCT into GROUP BY:\n"));
7887 sqlite3TreeViewSelect(0, p, 0);
7889 #endif
7892 /* If there is an ORDER BY clause, then create an ephemeral index to
7893 ** do the sorting. But this sorting ephemeral index might end up
7894 ** being unused if the data can be extracted in pre-sorted order.
7895 ** If that is the case, then the OP_OpenEphemeral instruction will be
7896 ** changed to an OP_Noop once we figure out that the sorting index is
7897 ** not needed. The sSort.addrSortIndex variable is used to facilitate
7898 ** that change.
7900 if( sSort.pOrderBy ){
7901 KeyInfo *pKeyInfo;
7902 pKeyInfo = sqlite3KeyInfoFromExprList(
7903 pParse, sSort.pOrderBy, 0, pEList->nExpr);
7904 sSort.iECursor = pParse->nTab++;
7905 sSort.addrSortIndex =
7906 sqlite3VdbeAddOp4(v, OP_OpenEphemeral,
7907 sSort.iECursor, sSort.pOrderBy->nExpr+1+pEList->nExpr, 0,
7908 (char*)pKeyInfo, P4_KEYINFO
7910 }else{
7911 sSort.addrSortIndex = -1;
7914 /* If the output is destined for a temporary table, open that table.
7916 if( pDest->eDest==SRT_EphemTab ){
7917 sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pDest->iSDParm, pEList->nExpr);
7918 if( p->selFlags & SF_NestedFrom ){
7919 /* Delete or NULL-out result columns that will never be used */
7920 int ii;
7921 for(ii=pEList->nExpr-1; ii>0 && pEList->a[ii].fg.bUsed==0; ii--){
7922 sqlite3ExprDelete(db, pEList->a[ii].pExpr);
7923 sqlite3DbFree(db, pEList->a[ii].zEName);
7924 pEList->nExpr--;
7926 for(ii=0; ii<pEList->nExpr; ii++){
7927 if( pEList->a[ii].fg.bUsed==0 ) pEList->a[ii].pExpr->op = TK_NULL;
7932 /* Set the limiter.
7934 iEnd = sqlite3VdbeMakeLabel(pParse);
7935 if( (p->selFlags & SF_FixedLimit)==0 ){
7936 p->nSelectRow = 320; /* 4 billion rows */
7938 if( p->pLimit ) computeLimitRegisters(pParse, p, iEnd);
7939 if( p->iLimit==0 && sSort.addrSortIndex>=0 ){
7940 sqlite3VdbeChangeOpcode(v, sSort.addrSortIndex, OP_SorterOpen);
7941 sSort.sortFlags |= SORTFLAG_UseSorter;
7944 /* Open an ephemeral index to use for the distinct set.
7946 if( p->selFlags & SF_Distinct ){
7947 sDistinct.tabTnct = pParse->nTab++;
7948 sDistinct.addrTnct = sqlite3VdbeAddOp4(v, OP_OpenEphemeral,
7949 sDistinct.tabTnct, 0, 0,
7950 (char*)sqlite3KeyInfoFromExprList(pParse, p->pEList,0,0),
7951 P4_KEYINFO);
7952 sqlite3VdbeChangeP5(v, BTREE_UNORDERED);
7953 sDistinct.eTnctType = WHERE_DISTINCT_UNORDERED;
7954 }else{
7955 sDistinct.eTnctType = WHERE_DISTINCT_NOOP;
7958 if( !isAgg && pGroupBy==0 ){
7959 /* No aggregate functions and no GROUP BY clause */
7960 u16 wctrlFlags = (sDistinct.isTnct ? WHERE_WANT_DISTINCT : 0)
7961 | (p->selFlags & SF_FixedLimit);
7962 #ifndef SQLITE_OMIT_WINDOWFUNC
7963 Window *pWin = p->pWin; /* Main window object (or NULL) */
7964 if( pWin ){
7965 sqlite3WindowCodeInit(pParse, p);
7967 #endif
7968 assert( WHERE_USE_LIMIT==SF_FixedLimit );
7971 /* Begin the database scan. */
7972 TREETRACE(0x2,pParse,p,("WhereBegin\n"));
7973 pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, sSort.pOrderBy,
7974 p->pEList, p, wctrlFlags, p->nSelectRow);
7975 if( pWInfo==0 ) goto select_end;
7976 if( sqlite3WhereOutputRowCount(pWInfo) < p->nSelectRow ){
7977 p->nSelectRow = sqlite3WhereOutputRowCount(pWInfo);
7979 if( sDistinct.isTnct && sqlite3WhereIsDistinct(pWInfo) ){
7980 sDistinct.eTnctType = sqlite3WhereIsDistinct(pWInfo);
7982 if( sSort.pOrderBy ){
7983 sSort.nOBSat = sqlite3WhereIsOrdered(pWInfo);
7984 sSort.labelOBLopt = sqlite3WhereOrderByLimitOptLabel(pWInfo);
7985 if( sSort.nOBSat==sSort.pOrderBy->nExpr ){
7986 sSort.pOrderBy = 0;
7989 TREETRACE(0x2,pParse,p,("WhereBegin returns\n"));
7991 /* If sorting index that was created by a prior OP_OpenEphemeral
7992 ** instruction ended up not being needed, then change the OP_OpenEphemeral
7993 ** into an OP_Noop.
7995 if( sSort.addrSortIndex>=0 && sSort.pOrderBy==0 ){
7996 sqlite3VdbeChangeToNoop(v, sSort.addrSortIndex);
7999 assert( p->pEList==pEList );
8000 #ifndef SQLITE_OMIT_WINDOWFUNC
8001 if( pWin ){
8002 int addrGosub = sqlite3VdbeMakeLabel(pParse);
8003 int iCont = sqlite3VdbeMakeLabel(pParse);
8004 int iBreak = sqlite3VdbeMakeLabel(pParse);
8005 int regGosub = ++pParse->nMem;
8007 sqlite3WindowCodeStep(pParse, p, pWInfo, regGosub, addrGosub);
8009 sqlite3VdbeAddOp2(v, OP_Goto, 0, iBreak);
8010 sqlite3VdbeResolveLabel(v, addrGosub);
8011 VdbeNoopComment((v, "inner-loop subroutine"));
8012 sSort.labelOBLopt = 0;
8013 selectInnerLoop(pParse, p, -1, &sSort, &sDistinct, pDest, iCont, iBreak);
8014 sqlite3VdbeResolveLabel(v, iCont);
8015 sqlite3VdbeAddOp1(v, OP_Return, regGosub);
8016 VdbeComment((v, "end inner-loop subroutine"));
8017 sqlite3VdbeResolveLabel(v, iBreak);
8018 }else
8019 #endif /* SQLITE_OMIT_WINDOWFUNC */
8021 /* Use the standard inner loop. */
8022 selectInnerLoop(pParse, p, -1, &sSort, &sDistinct, pDest,
8023 sqlite3WhereContinueLabel(pWInfo),
8024 sqlite3WhereBreakLabel(pWInfo));
8026 /* End the database scan loop.
8028 TREETRACE(0x2,pParse,p,("WhereEnd\n"));
8029 sqlite3WhereEnd(pWInfo);
8031 }else{
8032 /* This case when there exist aggregate functions or a GROUP BY clause
8033 ** or both */
8034 NameContext sNC; /* Name context for processing aggregate information */
8035 int iAMem; /* First Mem address for storing current GROUP BY */
8036 int iBMem; /* First Mem address for previous GROUP BY */
8037 int iUseFlag; /* Mem address holding flag indicating that at least
8038 ** one row of the input to the aggregator has been
8039 ** processed */
8040 int iAbortFlag; /* Mem address which causes query abort if positive */
8041 int groupBySort; /* Rows come from source in GROUP BY order */
8042 int addrEnd; /* End of processing for this SELECT */
8043 int sortPTab = 0; /* Pseudotable used to decode sorting results */
8044 int sortOut = 0; /* Output register from the sorter */
8045 int orderByGrp = 0; /* True if the GROUP BY and ORDER BY are the same */
8047 /* Remove any and all aliases between the result set and the
8048 ** GROUP BY clause.
8050 if( pGroupBy ){
8051 int k; /* Loop counter */
8052 struct ExprList_item *pItem; /* For looping over expression in a list */
8054 for(k=p->pEList->nExpr, pItem=p->pEList->a; k>0; k--, pItem++){
8055 pItem->u.x.iAlias = 0;
8057 for(k=pGroupBy->nExpr, pItem=pGroupBy->a; k>0; k--, pItem++){
8058 pItem->u.x.iAlias = 0;
8060 assert( 66==sqlite3LogEst(100) );
8061 if( p->nSelectRow>66 ) p->nSelectRow = 66;
8063 /* If there is both a GROUP BY and an ORDER BY clause and they are
8064 ** identical, then it may be possible to disable the ORDER BY clause
8065 ** on the grounds that the GROUP BY will cause elements to come out
8066 ** in the correct order. It also may not - the GROUP BY might use a
8067 ** database index that causes rows to be grouped together as required
8068 ** but not actually sorted. Either way, record the fact that the
8069 ** ORDER BY and GROUP BY clauses are the same by setting the orderByGrp
8070 ** variable. */
8071 if( sSort.pOrderBy && pGroupBy->nExpr==sSort.pOrderBy->nExpr ){
8072 int ii;
8073 /* The GROUP BY processing doesn't care whether rows are delivered in
8074 ** ASC or DESC order - only that each group is returned contiguously.
8075 ** So set the ASC/DESC flags in the GROUP BY to match those in the
8076 ** ORDER BY to maximize the chances of rows being delivered in an
8077 ** order that makes the ORDER BY redundant. */
8078 for(ii=0; ii<pGroupBy->nExpr; ii++){
8079 u8 sortFlags;
8080 sortFlags = sSort.pOrderBy->a[ii].fg.sortFlags & KEYINFO_ORDER_DESC;
8081 pGroupBy->a[ii].fg.sortFlags = sortFlags;
8083 if( sqlite3ExprListCompare(pGroupBy, sSort.pOrderBy, -1)==0 ){
8084 orderByGrp = 1;
8087 }else{
8088 assert( 0==sqlite3LogEst(1) );
8089 p->nSelectRow = 0;
8092 /* Create a label to jump to when we want to abort the query */
8093 addrEnd = sqlite3VdbeMakeLabel(pParse);
8095 /* Convert TK_COLUMN nodes into TK_AGG_COLUMN and make entries in
8096 ** sAggInfo for all TK_AGG_FUNCTION nodes in expressions of the
8097 ** SELECT statement.
8099 pAggInfo = sqlite3DbMallocZero(db, sizeof(*pAggInfo) );
8100 if( pAggInfo ){
8101 sqlite3ParserAddCleanup(pParse, agginfoFree, pAggInfo);
8102 testcase( pParse->earlyCleanup );
8104 if( db->mallocFailed ){
8105 goto select_end;
8107 pAggInfo->selId = p->selId;
8108 #ifdef SQLITE_DEBUG
8109 pAggInfo->pSelect = p;
8110 #endif
8111 memset(&sNC, 0, sizeof(sNC));
8112 sNC.pParse = pParse;
8113 sNC.pSrcList = pTabList;
8114 sNC.uNC.pAggInfo = pAggInfo;
8115 VVA_ONLY( sNC.ncFlags = NC_UAggInfo; )
8116 pAggInfo->nSortingColumn = pGroupBy ? pGroupBy->nExpr : 0;
8117 pAggInfo->pGroupBy = pGroupBy;
8118 sqlite3ExprAnalyzeAggList(&sNC, pEList);
8119 sqlite3ExprAnalyzeAggList(&sNC, sSort.pOrderBy);
8120 if( pHaving ){
8121 if( pGroupBy ){
8122 assert( pWhere==p->pWhere );
8123 assert( pHaving==p->pHaving );
8124 assert( pGroupBy==p->pGroupBy );
8125 havingToWhere(pParse, p);
8126 pWhere = p->pWhere;
8128 sqlite3ExprAnalyzeAggregates(&sNC, pHaving);
8130 pAggInfo->nAccumulator = pAggInfo->nColumn;
8131 if( p->pGroupBy==0 && p->pHaving==0 && pAggInfo->nFunc==1 ){
8132 minMaxFlag = minMaxQuery(db, pAggInfo->aFunc[0].pFExpr, &pMinMaxOrderBy);
8133 }else{
8134 minMaxFlag = WHERE_ORDERBY_NORMAL;
8136 analyzeAggFuncArgs(pAggInfo, &sNC);
8137 if( db->mallocFailed ) goto select_end;
8138 #if TREETRACE_ENABLED
8139 if( sqlite3TreeTrace & 0x20 ){
8140 TREETRACE(0x20,pParse,p,("After aggregate analysis %p:\n", pAggInfo));
8141 sqlite3TreeViewSelect(0, p, 0);
8142 if( minMaxFlag ){
8143 sqlite3DebugPrintf("MIN/MAX Optimization (0x%02x) adds:\n", minMaxFlag);
8144 sqlite3TreeViewExprList(0, pMinMaxOrderBy, 0, "ORDERBY");
8146 printAggInfo(pAggInfo);
8148 #endif
8151 /* Processing for aggregates with GROUP BY is very different and
8152 ** much more complex than aggregates without a GROUP BY.
8154 if( pGroupBy ){
8155 KeyInfo *pKeyInfo; /* Keying information for the group by clause */
8156 int addr1; /* A-vs-B comparison jump */
8157 int addrOutputRow; /* Start of subroutine that outputs a result row */
8158 int regOutputRow; /* Return address register for output subroutine */
8159 int addrSetAbort; /* Set the abort flag and return */
8160 int addrTopOfLoop; /* Top of the input loop */
8161 int addrSortingIdx; /* The OP_OpenEphemeral for the sorting index */
8162 int addrReset; /* Subroutine for resetting the accumulator */
8163 int regReset; /* Return address register for reset subroutine */
8164 ExprList *pDistinct = 0;
8165 u16 distFlag = 0;
8166 int eDist = WHERE_DISTINCT_NOOP;
8168 if( pAggInfo->nFunc==1
8169 && pAggInfo->aFunc[0].iDistinct>=0
8170 && ALWAYS(pAggInfo->aFunc[0].pFExpr!=0)
8171 && ALWAYS(ExprUseXList(pAggInfo->aFunc[0].pFExpr))
8172 && pAggInfo->aFunc[0].pFExpr->x.pList!=0
8174 Expr *pExpr = pAggInfo->aFunc[0].pFExpr->x.pList->a[0].pExpr;
8175 pExpr = sqlite3ExprDup(db, pExpr, 0);
8176 pDistinct = sqlite3ExprListDup(db, pGroupBy, 0);
8177 pDistinct = sqlite3ExprListAppend(pParse, pDistinct, pExpr);
8178 distFlag = pDistinct ? (WHERE_WANT_DISTINCT|WHERE_AGG_DISTINCT) : 0;
8181 /* If there is a GROUP BY clause we might need a sorting index to
8182 ** implement it. Allocate that sorting index now. If it turns out
8183 ** that we do not need it after all, the OP_SorterOpen instruction
8184 ** will be converted into a Noop.
8186 pAggInfo->sortingIdx = pParse->nTab++;
8187 pKeyInfo = sqlite3KeyInfoFromExprList(pParse, pGroupBy,
8188 0, pAggInfo->nColumn);
8189 addrSortingIdx = sqlite3VdbeAddOp4(v, OP_SorterOpen,
8190 pAggInfo->sortingIdx, pAggInfo->nSortingColumn,
8191 0, (char*)pKeyInfo, P4_KEYINFO);
8193 /* Initialize memory locations used by GROUP BY aggregate processing
8195 iUseFlag = ++pParse->nMem;
8196 iAbortFlag = ++pParse->nMem;
8197 regOutputRow = ++pParse->nMem;
8198 addrOutputRow = sqlite3VdbeMakeLabel(pParse);
8199 regReset = ++pParse->nMem;
8200 addrReset = sqlite3VdbeMakeLabel(pParse);
8201 iAMem = pParse->nMem + 1;
8202 pParse->nMem += pGroupBy->nExpr;
8203 iBMem = pParse->nMem + 1;
8204 pParse->nMem += pGroupBy->nExpr;
8205 sqlite3VdbeAddOp2(v, OP_Integer, 0, iAbortFlag);
8206 VdbeComment((v, "clear abort flag"));
8207 sqlite3VdbeAddOp3(v, OP_Null, 0, iAMem, iAMem+pGroupBy->nExpr-1);
8209 /* Begin a loop that will extract all source rows in GROUP BY order.
8210 ** This might involve two separate loops with an OP_Sort in between, or
8211 ** it might be a single loop that uses an index to extract information
8212 ** in the right order to begin with.
8214 sqlite3VdbeAddOp2(v, OP_Gosub, regReset, addrReset);
8215 TREETRACE(0x2,pParse,p,("WhereBegin\n"));
8216 pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, pGroupBy, pDistinct,
8217 p, (sDistinct.isTnct==2 ? WHERE_DISTINCTBY : WHERE_GROUPBY)
8218 | (orderByGrp ? WHERE_SORTBYGROUP : 0) | distFlag, 0
8220 if( pWInfo==0 ){
8221 sqlite3ExprListDelete(db, pDistinct);
8222 goto select_end;
8224 if( pParse->pIdxEpr ){
8225 optimizeAggregateUseOfIndexedExpr(pParse, p, pAggInfo, &sNC);
8227 assignAggregateRegisters(pParse, pAggInfo);
8228 eDist = sqlite3WhereIsDistinct(pWInfo);
8229 TREETRACE(0x2,pParse,p,("WhereBegin returns\n"));
8230 if( sqlite3WhereIsOrdered(pWInfo)==pGroupBy->nExpr ){
8231 /* The optimizer is able to deliver rows in group by order so
8232 ** we do not have to sort. The OP_OpenEphemeral table will be
8233 ** cancelled later because we still need to use the pKeyInfo
8235 groupBySort = 0;
8236 }else{
8237 /* Rows are coming out in undetermined order. We have to push
8238 ** each row into a sorting index, terminate the first loop,
8239 ** then loop over the sorting index in order to get the output
8240 ** in sorted order
8242 int regBase;
8243 int regRecord;
8244 int nCol;
8245 int nGroupBy;
8247 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS
8248 int addrExp; /* Address of OP_Explain instruction */
8249 #endif
8250 ExplainQueryPlan2(addrExp, (pParse, 0, "USE TEMP B-TREE FOR %s",
8251 (sDistinct.isTnct && (p->selFlags&SF_Distinct)==0) ?
8252 "DISTINCT" : "GROUP BY"
8255 groupBySort = 1;
8256 nGroupBy = pGroupBy->nExpr;
8257 nCol = nGroupBy;
8258 j = nGroupBy;
8259 for(i=0; i<pAggInfo->nColumn; i++){
8260 if( pAggInfo->aCol[i].iSorterColumn>=j ){
8261 nCol++;
8262 j++;
8265 regBase = sqlite3GetTempRange(pParse, nCol);
8266 sqlite3ExprCodeExprList(pParse, pGroupBy, regBase, 0, 0);
8267 j = nGroupBy;
8268 pAggInfo->directMode = 1;
8269 for(i=0; i<pAggInfo->nColumn; i++){
8270 struct AggInfo_col *pCol = &pAggInfo->aCol[i];
8271 if( pCol->iSorterColumn>=j ){
8272 sqlite3ExprCode(pParse, pCol->pCExpr, j + regBase);
8273 j++;
8276 pAggInfo->directMode = 0;
8277 regRecord = sqlite3GetTempReg(pParse);
8278 sqlite3VdbeScanStatusCounters(v, addrExp, 0, sqlite3VdbeCurrentAddr(v));
8279 sqlite3VdbeAddOp3(v, OP_MakeRecord, regBase, nCol, regRecord);
8280 sqlite3VdbeAddOp2(v, OP_SorterInsert, pAggInfo->sortingIdx, regRecord);
8281 sqlite3VdbeScanStatusRange(v, addrExp, sqlite3VdbeCurrentAddr(v)-2, -1);
8282 sqlite3ReleaseTempReg(pParse, regRecord);
8283 sqlite3ReleaseTempRange(pParse, regBase, nCol);
8284 TREETRACE(0x2,pParse,p,("WhereEnd\n"));
8285 sqlite3WhereEnd(pWInfo);
8286 pAggInfo->sortingIdxPTab = sortPTab = pParse->nTab++;
8287 sortOut = sqlite3GetTempReg(pParse);
8288 sqlite3VdbeScanStatusCounters(v, addrExp, sqlite3VdbeCurrentAddr(v), 0);
8289 sqlite3VdbeAddOp3(v, OP_OpenPseudo, sortPTab, sortOut, nCol);
8290 sqlite3VdbeAddOp2(v, OP_SorterSort, pAggInfo->sortingIdx, addrEnd);
8291 VdbeComment((v, "GROUP BY sort")); VdbeCoverage(v);
8292 pAggInfo->useSortingIdx = 1;
8293 sqlite3VdbeScanStatusRange(v, addrExp, -1, sortPTab);
8294 sqlite3VdbeScanStatusRange(v, addrExp, -1, pAggInfo->sortingIdx);
8297 /* If there are entries in pAgggInfo->aFunc[] that contain subexpressions
8298 ** that are indexed (and that were previously identified and tagged
8299 ** in optimizeAggregateUseOfIndexedExpr()) then those subexpressions
8300 ** must now be converted into a TK_AGG_COLUMN node so that the value
8301 ** is correctly pulled from the index rather than being recomputed. */
8302 if( pParse->pIdxEpr ){
8303 aggregateConvertIndexedExprRefToColumn(pAggInfo);
8304 #if TREETRACE_ENABLED
8305 if( sqlite3TreeTrace & 0x20 ){
8306 TREETRACE(0x20, pParse, p,
8307 ("AggInfo function expressions converted to reference index\n"));
8308 sqlite3TreeViewSelect(0, p, 0);
8309 printAggInfo(pAggInfo);
8311 #endif
8314 /* If the index or temporary table used by the GROUP BY sort
8315 ** will naturally deliver rows in the order required by the ORDER BY
8316 ** clause, cancel the ephemeral table open coded earlier.
8318 ** This is an optimization - the correct answer should result regardless.
8319 ** Use the SQLITE_GroupByOrder flag with SQLITE_TESTCTRL_OPTIMIZER to
8320 ** disable this optimization for testing purposes. */
8321 if( orderByGrp && OptimizationEnabled(db, SQLITE_GroupByOrder)
8322 && (groupBySort || sqlite3WhereIsSorted(pWInfo))
8324 sSort.pOrderBy = 0;
8325 sqlite3VdbeChangeToNoop(v, sSort.addrSortIndex);
8328 /* Evaluate the current GROUP BY terms and store in b0, b1, b2...
8329 ** (b0 is memory location iBMem+0, b1 is iBMem+1, and so forth)
8330 ** Then compare the current GROUP BY terms against the GROUP BY terms
8331 ** from the previous row currently stored in a0, a1, a2...
8333 addrTopOfLoop = sqlite3VdbeCurrentAddr(v);
8334 if( groupBySort ){
8335 sqlite3VdbeAddOp3(v, OP_SorterData, pAggInfo->sortingIdx,
8336 sortOut, sortPTab);
8338 for(j=0; j<pGroupBy->nExpr; j++){
8339 int iOrderByCol = pGroupBy->a[j].u.x.iOrderByCol;
8341 if( groupBySort ){
8342 sqlite3VdbeAddOp3(v, OP_Column, sortPTab, j, iBMem+j);
8343 }else{
8344 pAggInfo->directMode = 1;
8345 sqlite3ExprCode(pParse, pGroupBy->a[j].pExpr, iBMem+j);
8348 if( iOrderByCol ){
8349 Expr *pX = p->pEList->a[iOrderByCol-1].pExpr;
8350 Expr *pBase = sqlite3ExprSkipCollateAndLikely(pX);
8351 if( ALWAYS(pBase!=0)
8352 && pBase->op!=TK_AGG_COLUMN
8353 && pBase->op!=TK_REGISTER
8355 sqlite3ExprToRegister(pX, iAMem+j);
8359 sqlite3VdbeAddOp4(v, OP_Compare, iAMem, iBMem, pGroupBy->nExpr,
8360 (char*)sqlite3KeyInfoRef(pKeyInfo), P4_KEYINFO);
8361 addr1 = sqlite3VdbeCurrentAddr(v);
8362 sqlite3VdbeAddOp3(v, OP_Jump, addr1+1, 0, addr1+1); VdbeCoverage(v);
8364 /* Generate code that runs whenever the GROUP BY changes.
8365 ** Changes in the GROUP BY are detected by the previous code
8366 ** block. If there were no changes, this block is skipped.
8368 ** This code copies current group by terms in b0,b1,b2,...
8369 ** over to a0,a1,a2. It then calls the output subroutine
8370 ** and resets the aggregate accumulator registers in preparation
8371 ** for the next GROUP BY batch.
8373 sqlite3VdbeAddOp2(v, OP_Gosub, regOutputRow, addrOutputRow);
8374 VdbeComment((v, "output one row"));
8375 sqlite3ExprCodeMove(pParse, iBMem, iAMem, pGroupBy->nExpr);
8376 sqlite3VdbeAddOp2(v, OP_IfPos, iAbortFlag, addrEnd); VdbeCoverage(v);
8377 VdbeComment((v, "check abort flag"));
8378 sqlite3VdbeAddOp2(v, OP_Gosub, regReset, addrReset);
8379 VdbeComment((v, "reset accumulator"));
8381 /* Update the aggregate accumulators based on the content of
8382 ** the current row
8384 sqlite3VdbeJumpHere(v, addr1);
8385 updateAccumulator(pParse, iUseFlag, pAggInfo, eDist);
8386 sqlite3VdbeAddOp2(v, OP_Integer, 1, iUseFlag);
8387 VdbeComment((v, "indicate data in accumulator"));
8389 /* End of the loop
8391 if( groupBySort ){
8392 sqlite3VdbeAddOp2(v, OP_SorterNext, pAggInfo->sortingIdx,addrTopOfLoop);
8393 VdbeCoverage(v);
8394 }else{
8395 TREETRACE(0x2,pParse,p,("WhereEnd\n"));
8396 sqlite3WhereEnd(pWInfo);
8397 sqlite3VdbeChangeToNoop(v, addrSortingIdx);
8399 sqlite3ExprListDelete(db, pDistinct);
8401 /* Output the final row of result
8403 sqlite3VdbeAddOp2(v, OP_Gosub, regOutputRow, addrOutputRow);
8404 VdbeComment((v, "output final row"));
8406 /* Jump over the subroutines
8408 sqlite3VdbeGoto(v, addrEnd);
8410 /* Generate a subroutine that outputs a single row of the result
8411 ** set. This subroutine first looks at the iUseFlag. If iUseFlag
8412 ** is less than or equal to zero, the subroutine is a no-op. If
8413 ** the processing calls for the query to abort, this subroutine
8414 ** increments the iAbortFlag memory location before returning in
8415 ** order to signal the caller to abort.
8417 addrSetAbort = sqlite3VdbeCurrentAddr(v);
8418 sqlite3VdbeAddOp2(v, OP_Integer, 1, iAbortFlag);
8419 VdbeComment((v, "set abort flag"));
8420 sqlite3VdbeAddOp1(v, OP_Return, regOutputRow);
8421 sqlite3VdbeResolveLabel(v, addrOutputRow);
8422 addrOutputRow = sqlite3VdbeCurrentAddr(v);
8423 sqlite3VdbeAddOp2(v, OP_IfPos, iUseFlag, addrOutputRow+2);
8424 VdbeCoverage(v);
8425 VdbeComment((v, "Groupby result generator entry point"));
8426 sqlite3VdbeAddOp1(v, OP_Return, regOutputRow);
8427 finalizeAggFunctions(pParse, pAggInfo);
8428 sqlite3ExprIfFalse(pParse, pHaving, addrOutputRow+1, SQLITE_JUMPIFNULL);
8429 selectInnerLoop(pParse, p, -1, &sSort,
8430 &sDistinct, pDest,
8431 addrOutputRow+1, addrSetAbort);
8432 sqlite3VdbeAddOp1(v, OP_Return, regOutputRow);
8433 VdbeComment((v, "end groupby result generator"));
8435 /* Generate a subroutine that will reset the group-by accumulator
8437 sqlite3VdbeResolveLabel(v, addrReset);
8438 resetAccumulator(pParse, pAggInfo);
8439 sqlite3VdbeAddOp2(v, OP_Integer, 0, iUseFlag);
8440 VdbeComment((v, "indicate accumulator empty"));
8441 sqlite3VdbeAddOp1(v, OP_Return, regReset);
8443 if( distFlag!=0 && eDist!=WHERE_DISTINCT_NOOP ){
8444 struct AggInfo_func *pF = &pAggInfo->aFunc[0];
8445 fixDistinctOpenEph(pParse, eDist, pF->iDistinct, pF->iDistAddr);
8447 } /* endif pGroupBy. Begin aggregate queries without GROUP BY: */
8448 else {
8449 Table *pTab;
8450 if( (pTab = isSimpleCount(p, pAggInfo))!=0 ){
8451 /* If isSimpleCount() returns a pointer to a Table structure, then
8452 ** the SQL statement is of the form:
8454 ** SELECT count(*) FROM <tbl>
8456 ** where the Table structure returned represents table <tbl>.
8458 ** This statement is so common that it is optimized specially. The
8459 ** OP_Count instruction is executed either on the intkey table that
8460 ** contains the data for table <tbl> or on one of its indexes. It
8461 ** is better to execute the op on an index, as indexes are almost
8462 ** always spread across less pages than their corresponding tables.
8464 const int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
8465 const int iCsr = pParse->nTab++; /* Cursor to scan b-tree */
8466 Index *pIdx; /* Iterator variable */
8467 KeyInfo *pKeyInfo = 0; /* Keyinfo for scanned index */
8468 Index *pBest = 0; /* Best index found so far */
8469 Pgno iRoot = pTab->tnum; /* Root page of scanned b-tree */
8471 sqlite3CodeVerifySchema(pParse, iDb);
8472 sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName);
8474 /* Search for the index that has the lowest scan cost.
8476 ** (2011-04-15) Do not do a full scan of an unordered index.
8478 ** (2013-10-03) Do not count the entries in a partial index.
8480 ** In practice the KeyInfo structure will not be used. It is only
8481 ** passed to keep OP_OpenRead happy.
8483 if( !HasRowid(pTab) ) pBest = sqlite3PrimaryKeyIndex(pTab);
8484 if( !p->pSrc->a[0].fg.notIndexed ){
8485 for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
8486 if( pIdx->bUnordered==0
8487 && pIdx->szIdxRow<pTab->szTabRow
8488 && pIdx->pPartIdxWhere==0
8489 && (!pBest || pIdx->szIdxRow<pBest->szIdxRow)
8491 pBest = pIdx;
8495 if( pBest ){
8496 iRoot = pBest->tnum;
8497 pKeyInfo = sqlite3KeyInfoOfIndex(pParse, pBest);
8500 /* Open a read-only cursor, execute the OP_Count, close the cursor. */
8501 sqlite3VdbeAddOp4Int(v, OP_OpenRead, iCsr, (int)iRoot, iDb, 1);
8502 if( pKeyInfo ){
8503 sqlite3VdbeChangeP4(v, -1, (char *)pKeyInfo, P4_KEYINFO);
8505 assignAggregateRegisters(pParse, pAggInfo);
8506 sqlite3VdbeAddOp2(v, OP_Count, iCsr, AggInfoFuncReg(pAggInfo,0));
8507 sqlite3VdbeAddOp1(v, OP_Close, iCsr);
8508 explainSimpleCount(pParse, pTab, pBest);
8509 }else{
8510 int regAcc = 0; /* "populate accumulators" flag */
8511 ExprList *pDistinct = 0;
8512 u16 distFlag = 0;
8513 int eDist;
8515 /* If there are accumulator registers but no min() or max() functions
8516 ** without FILTER clauses, allocate register regAcc. Register regAcc
8517 ** will contain 0 the first time the inner loop runs, and 1 thereafter.
8518 ** The code generated by updateAccumulator() uses this to ensure
8519 ** that the accumulator registers are (a) updated only once if
8520 ** there are no min() or max functions or (b) always updated for the
8521 ** first row visited by the aggregate, so that they are updated at
8522 ** least once even if the FILTER clause means the min() or max()
8523 ** function visits zero rows. */
8524 if( pAggInfo->nAccumulator ){
8525 for(i=0; i<pAggInfo->nFunc; i++){
8526 if( ExprHasProperty(pAggInfo->aFunc[i].pFExpr, EP_WinFunc) ){
8527 continue;
8529 if( pAggInfo->aFunc[i].pFunc->funcFlags&SQLITE_FUNC_NEEDCOLL ){
8530 break;
8533 if( i==pAggInfo->nFunc ){
8534 regAcc = ++pParse->nMem;
8535 sqlite3VdbeAddOp2(v, OP_Integer, 0, regAcc);
8537 }else if( pAggInfo->nFunc==1 && pAggInfo->aFunc[0].iDistinct>=0 ){
8538 assert( ExprUseXList(pAggInfo->aFunc[0].pFExpr) );
8539 pDistinct = pAggInfo->aFunc[0].pFExpr->x.pList;
8540 distFlag = pDistinct ? (WHERE_WANT_DISTINCT|WHERE_AGG_DISTINCT) : 0;
8542 assignAggregateRegisters(pParse, pAggInfo);
8544 /* This case runs if the aggregate has no GROUP BY clause. The
8545 ** processing is much simpler since there is only a single row
8546 ** of output.
8548 assert( p->pGroupBy==0 );
8549 resetAccumulator(pParse, pAggInfo);
8551 /* If this query is a candidate for the min/max optimization, then
8552 ** minMaxFlag will have been previously set to either
8553 ** WHERE_ORDERBY_MIN or WHERE_ORDERBY_MAX and pMinMaxOrderBy will
8554 ** be an appropriate ORDER BY expression for the optimization.
8556 assert( minMaxFlag==WHERE_ORDERBY_NORMAL || pMinMaxOrderBy!=0 );
8557 assert( pMinMaxOrderBy==0 || pMinMaxOrderBy->nExpr==1 );
8559 TREETRACE(0x2,pParse,p,("WhereBegin\n"));
8560 pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, pMinMaxOrderBy,
8561 pDistinct, p, minMaxFlag|distFlag, 0);
8562 if( pWInfo==0 ){
8563 goto select_end;
8565 TREETRACE(0x2,pParse,p,("WhereBegin returns\n"));
8566 eDist = sqlite3WhereIsDistinct(pWInfo);
8567 updateAccumulator(pParse, regAcc, pAggInfo, eDist);
8568 if( eDist!=WHERE_DISTINCT_NOOP ){
8569 struct AggInfo_func *pF = pAggInfo->aFunc;
8570 if( pF ){
8571 fixDistinctOpenEph(pParse, eDist, pF->iDistinct, pF->iDistAddr);
8575 if( regAcc ) sqlite3VdbeAddOp2(v, OP_Integer, 1, regAcc);
8576 if( minMaxFlag ){
8577 sqlite3WhereMinMaxOptEarlyOut(v, pWInfo);
8579 TREETRACE(0x2,pParse,p,("WhereEnd\n"));
8580 sqlite3WhereEnd(pWInfo);
8581 finalizeAggFunctions(pParse, pAggInfo);
8584 sSort.pOrderBy = 0;
8585 sqlite3ExprIfFalse(pParse, pHaving, addrEnd, SQLITE_JUMPIFNULL);
8586 selectInnerLoop(pParse, p, -1, 0, 0,
8587 pDest, addrEnd, addrEnd);
8589 sqlite3VdbeResolveLabel(v, addrEnd);
8591 } /* endif aggregate query */
8593 if( sDistinct.eTnctType==WHERE_DISTINCT_UNORDERED ){
8594 explainTempTable(pParse, "DISTINCT");
8597 /* If there is an ORDER BY clause, then we need to sort the results
8598 ** and send them to the callback one by one.
8600 if( sSort.pOrderBy ){
8601 assert( p->pEList==pEList );
8602 generateSortTail(pParse, p, &sSort, pEList->nExpr, pDest);
8605 /* Jump here to skip this query
8607 sqlite3VdbeResolveLabel(v, iEnd);
8609 /* The SELECT has been coded. If there is an error in the Parse structure,
8610 ** set the return code to 1. Otherwise 0. */
8611 rc = (pParse->nErr>0);
8613 /* Control jumps to here if an error is encountered above, or upon
8614 ** successful coding of the SELECT.
8616 select_end:
8617 assert( db->mallocFailed==0 || db->mallocFailed==1 );
8618 assert( db->mallocFailed==0 || pParse->nErr!=0 );
8619 sqlite3ExprListDelete(db, pMinMaxOrderBy);
8620 #ifdef SQLITE_DEBUG
8621 if( pAggInfo && !db->mallocFailed ){
8622 #if TREETRACE_ENABLED
8623 if( sqlite3TreeTrace & 0x20 ){
8624 TREETRACE(0x20,pParse,p,("Finished with AggInfo\n"));
8625 printAggInfo(pAggInfo);
8627 #endif
8628 for(i=0; i<pAggInfo->nColumn; i++){
8629 Expr *pExpr = pAggInfo->aCol[i].pCExpr;
8630 if( pExpr==0 ) continue;
8631 assert( pExpr->pAggInfo==pAggInfo );
8632 assert( pExpr->iAgg==i );
8634 for(i=0; i<pAggInfo->nFunc; i++){
8635 Expr *pExpr = pAggInfo->aFunc[i].pFExpr;
8636 assert( pExpr!=0 );
8637 assert( pExpr->pAggInfo==pAggInfo );
8638 assert( pExpr->iAgg==i );
8641 #endif
8643 #if TREETRACE_ENABLED
8644 TREETRACE(0x1,pParse,p,("end processing\n"));
8645 if( (sqlite3TreeTrace & 0x40000)!=0 && ExplainQueryPlanParent(pParse)==0 ){
8646 sqlite3TreeViewSelect(0, p, 0);
8648 #endif
8649 ExplainQueryPlanPop(pParse);
8650 return rc;