4 ** The author disclaims copyright to this source code. In place of
5 ** a legal notice, here is a blessing:
7 ** May you do good and not evil.
8 ** May you find forgiveness for yourself and forgive others.
9 ** May you share freely, never taking more than you give.
11 *************************************************************************
12 ** This file contains C code routines that are called by the parser
13 ** to handle SELECT statements in SQLite.
15 #include "sqliteInt.h"
18 ** Trace output macros
20 #if SELECTTRACE_ENABLED
21 /***/ int sqlite3SelectTrace
= 0;
22 # define SELECTTRACE(K,P,S,X) \
23 if(sqlite3SelectTrace&(K)) \
24 sqlite3DebugPrintf("%*s%s.%p: ",(P)->nSelectIndent*2-2,"",\
28 # define SELECTTRACE(K,P,S,X)
33 ** An instance of the following object is used to record information about
34 ** how to process the DISTINCT keyword, to simplify passing that information
35 ** into the selectInnerLoop() routine.
37 typedef struct DistinctCtx DistinctCtx
;
39 u8 isTnct
; /* True if the DISTINCT keyword is present */
40 u8 eTnctType
; /* One of the WHERE_DISTINCT_* operators */
41 int tabTnct
; /* Ephemeral table used for DISTINCT processing */
42 int addrTnct
; /* Address of OP_OpenEphemeral opcode for tabTnct */
46 ** An instance of the following object is used to record information about
47 ** the ORDER BY (or GROUP BY) clause of query is being coded.
49 typedef struct SortCtx SortCtx
;
51 ExprList
*pOrderBy
; /* The ORDER BY (or GROUP BY clause) */
52 int nOBSat
; /* Number of ORDER BY terms satisfied by indices */
53 int iECursor
; /* Cursor number for the sorter */
54 int regReturn
; /* Register holding block-output return address */
55 int labelBkOut
; /* Start label for the block-output subroutine */
56 int addrSortIndex
; /* Address of the OP_SorterOpen or OP_OpenEphemeral */
57 int labelDone
; /* Jump here when done, ex: LIMIT reached */
58 u8 sortFlags
; /* Zero or more SORTFLAG_* bits */
59 u8 bOrderedInnerLoop
; /* ORDER BY correctly sorts the inner loop */
61 #define SORTFLAG_UseSorter 0x01 /* Use SorterOpen instead of OpenEphemeral */
64 ** Delete all the content of a Select structure. Deallocate the structure
65 ** itself only if bFree is true.
67 static void clearSelect(sqlite3
*db
, Select
*p
, int bFree
){
69 Select
*pPrior
= p
->pPrior
;
70 sqlite3ExprListDelete(db
, p
->pEList
);
71 sqlite3SrcListDelete(db
, p
->pSrc
);
72 sqlite3ExprDelete(db
, p
->pWhere
);
73 sqlite3ExprListDelete(db
, p
->pGroupBy
);
74 sqlite3ExprDelete(db
, p
->pHaving
);
75 sqlite3ExprListDelete(db
, p
->pOrderBy
);
76 sqlite3ExprDelete(db
, p
->pLimit
);
77 sqlite3ExprDelete(db
, p
->pOffset
);
78 if( p
->pWith
) sqlite3WithDelete(db
, p
->pWith
);
79 if( bFree
) sqlite3DbFreeNN(db
, p
);
86 ** Initialize a SelectDest structure.
88 void sqlite3SelectDestInit(SelectDest
*pDest
, int eDest
, int iParm
){
89 pDest
->eDest
= (u8
)eDest
;
90 pDest
->iSDParm
= iParm
;
98 ** Allocate a new Select structure and return a pointer to that
101 Select
*sqlite3SelectNew(
102 Parse
*pParse
, /* Parsing context */
103 ExprList
*pEList
, /* which columns to include in the result */
104 SrcList
*pSrc
, /* the FROM clause -- which tables to scan */
105 Expr
*pWhere
, /* the WHERE clause */
106 ExprList
*pGroupBy
, /* the GROUP BY clause */
107 Expr
*pHaving
, /* the HAVING clause */
108 ExprList
*pOrderBy
, /* the ORDER BY clause */
109 u32 selFlags
, /* Flag parameters, such as SF_Distinct */
110 Expr
*pLimit
, /* LIMIT value. NULL means not used */
111 Expr
*pOffset
/* OFFSET value. NULL means no offset */
115 pNew
= sqlite3DbMallocRawNN(pParse
->db
, sizeof(*pNew
) );
117 assert( pParse
->db
->mallocFailed
);
121 pEList
= sqlite3ExprListAppend(pParse
, 0,
122 sqlite3Expr(pParse
->db
,TK_ASTERISK
,0));
124 pNew
->pEList
= pEList
;
125 pNew
->op
= TK_SELECT
;
126 pNew
->selFlags
= selFlags
;
129 #if SELECTTRACE_ENABLED
130 pNew
->zSelName
[0] = 0;
132 pNew
->addrOpenEphm
[0] = -1;
133 pNew
->addrOpenEphm
[1] = -1;
134 pNew
->nSelectRow
= 0;
135 if( pSrc
==0 ) pSrc
= sqlite3DbMallocZero(pParse
->db
, sizeof(*pSrc
));
137 pNew
->pWhere
= pWhere
;
138 pNew
->pGroupBy
= pGroupBy
;
139 pNew
->pHaving
= pHaving
;
140 pNew
->pOrderBy
= pOrderBy
;
143 pNew
->pLimit
= pLimit
;
144 pNew
->pOffset
= pOffset
;
146 assert( pOffset
==0 || pLimit
!=0 || pParse
->nErr
>0
147 || pParse
->db
->mallocFailed
!=0 );
148 if( pParse
->db
->mallocFailed
) {
149 clearSelect(pParse
->db
, pNew
, pNew
!=&standin
);
152 assert( pNew
->pSrc
!=0 || pParse
->nErr
>0 );
154 assert( pNew
!=&standin
);
158 #if SELECTTRACE_ENABLED
160 ** Set the name of a Select object
162 void sqlite3SelectSetName(Select
*p
, const char *zName
){
164 sqlite3_snprintf(sizeof(p
->zSelName
), p
->zSelName
, "%s", zName
);
171 ** Delete the given Select structure and all of its substructures.
173 void sqlite3SelectDelete(sqlite3
*db
, Select
*p
){
174 if( p
) clearSelect(db
, p
, 1);
178 ** Return a pointer to the right-most SELECT statement in a compound.
180 static Select
*findRightmost(Select
*p
){
181 while( p
->pNext
) p
= p
->pNext
;
186 ** Given 1 to 3 identifiers preceding the JOIN keyword, determine the
187 ** type of join. Return an integer constant that expresses that type
188 ** in terms of the following bit values:
197 ** A full outer join is the combination of JT_LEFT and JT_RIGHT.
199 ** If an illegal or unsupported join type is seen, then still return
200 ** a join type, but put an error in the pParse structure.
202 int sqlite3JoinType(Parse
*pParse
, Token
*pA
, Token
*pB
, Token
*pC
){
206 /* 0123456789 123456789 123456789 123 */
207 static const char zKeyText
[] = "naturaleftouterightfullinnercross";
208 static const struct {
209 u8 i
; /* Beginning of keyword text in zKeyText[] */
210 u8 nChar
; /* Length of the keyword in characters */
211 u8 code
; /* Join type mask */
213 /* natural */ { 0, 7, JT_NATURAL
},
214 /* left */ { 6, 4, JT_LEFT
|JT_OUTER
},
215 /* outer */ { 10, 5, JT_OUTER
},
216 /* right */ { 14, 5, JT_RIGHT
|JT_OUTER
},
217 /* full */ { 19, 4, JT_LEFT
|JT_RIGHT
|JT_OUTER
},
218 /* inner */ { 23, 5, JT_INNER
},
219 /* cross */ { 28, 5, JT_INNER
|JT_CROSS
},
225 for(i
=0; i
<3 && apAll
[i
]; i
++){
227 for(j
=0; j
<ArraySize(aKeyword
); j
++){
228 if( p
->n
==aKeyword
[j
].nChar
229 && sqlite3StrNICmp((char*)p
->z
, &zKeyText
[aKeyword
[j
].i
], p
->n
)==0 ){
230 jointype
|= aKeyword
[j
].code
;
234 testcase( j
==0 || j
==1 || j
==2 || j
==3 || j
==4 || j
==5 || j
==6 );
235 if( j
>=ArraySize(aKeyword
) ){
236 jointype
|= JT_ERROR
;
241 (jointype
& (JT_INNER
|JT_OUTER
))==(JT_INNER
|JT_OUTER
) ||
242 (jointype
& JT_ERROR
)!=0
244 const char *zSp
= " ";
246 if( pC
==0 ){ zSp
++; }
247 sqlite3ErrorMsg(pParse
, "unknown or unsupported join type: "
248 "%T %T%s%T", pA
, pB
, zSp
, pC
);
250 }else if( (jointype
& JT_OUTER
)!=0
251 && (jointype
& (JT_LEFT
|JT_RIGHT
))!=JT_LEFT
){
252 sqlite3ErrorMsg(pParse
,
253 "RIGHT and FULL OUTER JOINs are not currently supported");
260 ** Return the index of a column in a table. Return -1 if the column
261 ** is not contained in the table.
263 static int columnIndex(Table
*pTab
, const char *zCol
){
265 for(i
=0; i
<pTab
->nCol
; i
++){
266 if( sqlite3StrICmp(pTab
->aCol
[i
].zName
, zCol
)==0 ) return i
;
272 ** Search the first N tables in pSrc, from left to right, looking for a
273 ** table that has a column named zCol.
275 ** When found, set *piTab and *piCol to the table index and column index
276 ** of the matching column and return TRUE.
278 ** If not found, return FALSE.
280 static int tableAndColumnIndex(
281 SrcList
*pSrc
, /* Array of tables to search */
282 int N
, /* Number of tables in pSrc->a[] to search */
283 const char *zCol
, /* Name of the column we are looking for */
284 int *piTab
, /* Write index of pSrc->a[] here */
285 int *piCol
/* Write index of pSrc->a[*piTab].pTab->aCol[] here */
287 int i
; /* For looping over tables in pSrc */
288 int iCol
; /* Index of column matching zCol */
290 assert( (piTab
==0)==(piCol
==0) ); /* Both or neither are NULL */
292 iCol
= columnIndex(pSrc
->a
[i
].pTab
, zCol
);
305 ** This function is used to add terms implied by JOIN syntax to the
306 ** WHERE clause expression of a SELECT statement. The new term, which
307 ** is ANDed with the existing WHERE clause, is of the form:
309 ** (tab1.col1 = tab2.col2)
311 ** where tab1 is the iSrc'th table in SrcList pSrc and tab2 is the
312 ** (iSrc+1)'th. Column col1 is column iColLeft of tab1, and col2 is
313 ** column iColRight of tab2.
315 static void addWhereTerm(
316 Parse
*pParse
, /* Parsing context */
317 SrcList
*pSrc
, /* List of tables in FROM clause */
318 int iLeft
, /* Index of first table to join in pSrc */
319 int iColLeft
, /* Index of column in first table */
320 int iRight
, /* Index of second table in pSrc */
321 int iColRight
, /* Index of column in second table */
322 int isOuterJoin
, /* True if this is an OUTER join */
323 Expr
**ppWhere
/* IN/OUT: The WHERE clause to add to */
325 sqlite3
*db
= pParse
->db
;
330 assert( iLeft
<iRight
);
331 assert( pSrc
->nSrc
>iRight
);
332 assert( pSrc
->a
[iLeft
].pTab
);
333 assert( pSrc
->a
[iRight
].pTab
);
335 pE1
= sqlite3CreateColumnExpr(db
, pSrc
, iLeft
, iColLeft
);
336 pE2
= sqlite3CreateColumnExpr(db
, pSrc
, iRight
, iColRight
);
338 pEq
= sqlite3PExpr(pParse
, TK_EQ
, pE1
, pE2
);
339 if( pEq
&& isOuterJoin
){
340 ExprSetProperty(pEq
, EP_FromJoin
);
341 assert( !ExprHasProperty(pEq
, EP_TokenOnly
|EP_Reduced
) );
342 ExprSetVVAProperty(pEq
, EP_NoReduce
);
343 pEq
->iRightJoinTable
= (i16
)pE2
->iTable
;
345 *ppWhere
= sqlite3ExprAnd(db
, *ppWhere
, pEq
);
349 ** Set the EP_FromJoin property on all terms of the given expression.
350 ** And set the Expr.iRightJoinTable to iTable for every term in the
353 ** The EP_FromJoin property is used on terms of an expression to tell
354 ** the LEFT OUTER JOIN processing logic that this term is part of the
355 ** join restriction specified in the ON or USING clause and not a part
356 ** of the more general WHERE clause. These terms are moved over to the
357 ** WHERE clause during join processing but we need to remember that they
358 ** originated in the ON or USING clause.
360 ** The Expr.iRightJoinTable tells the WHERE clause processing that the
361 ** expression depends on table iRightJoinTable even if that table is not
362 ** explicitly mentioned in the expression. That information is needed
363 ** for cases like this:
365 ** SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.b AND t1.x=5
367 ** The where clause needs to defer the handling of the t1.x=5
368 ** term until after the t2 loop of the join. In that way, a
369 ** NULL t2 row will be inserted whenever t1.x!=5. If we do not
370 ** defer the handling of t1.x=5, it will be processed immediately
371 ** after the t1 loop and rows with t1.x!=5 will never appear in
372 ** the output, which is incorrect.
374 static void setJoinExpr(Expr
*p
, int iTable
){
376 ExprSetProperty(p
, EP_FromJoin
);
377 assert( !ExprHasProperty(p
, EP_TokenOnly
|EP_Reduced
) );
378 ExprSetVVAProperty(p
, EP_NoReduce
);
379 p
->iRightJoinTable
= (i16
)iTable
;
380 if( p
->op
==TK_FUNCTION
&& p
->x
.pList
){
382 for(i
=0; i
<p
->x
.pList
->nExpr
; i
++){
383 setJoinExpr(p
->x
.pList
->a
[i
].pExpr
, iTable
);
386 setJoinExpr(p
->pLeft
, iTable
);
392 ** This routine processes the join information for a SELECT statement.
393 ** ON and USING clauses are converted into extra terms of the WHERE clause.
394 ** NATURAL joins also create extra WHERE clause terms.
396 ** The terms of a FROM clause are contained in the Select.pSrc structure.
397 ** The left most table is the first entry in Select.pSrc. The right-most
398 ** table is the last entry. The join operator is held in the entry to
399 ** the left. Thus entry 0 contains the join operator for the join between
400 ** entries 0 and 1. Any ON or USING clauses associated with the join are
401 ** also attached to the left entry.
403 ** This routine returns the number of errors encountered.
405 static int sqliteProcessJoin(Parse
*pParse
, Select
*p
){
406 SrcList
*pSrc
; /* All tables in the FROM clause */
407 int i
, j
; /* Loop counters */
408 struct SrcList_item
*pLeft
; /* Left table being joined */
409 struct SrcList_item
*pRight
; /* Right table being joined */
414 for(i
=0; i
<pSrc
->nSrc
-1; i
++, pRight
++, pLeft
++){
415 Table
*pLeftTab
= pLeft
->pTab
;
416 Table
*pRightTab
= pRight
->pTab
;
419 if( NEVER(pLeftTab
==0 || pRightTab
==0) ) continue;
420 isOuter
= (pRight
->fg
.jointype
& JT_OUTER
)!=0;
422 /* When the NATURAL keyword is present, add WHERE clause terms for
423 ** every column that the two tables have in common.
425 if( pRight
->fg
.jointype
& JT_NATURAL
){
426 if( pRight
->pOn
|| pRight
->pUsing
){
427 sqlite3ErrorMsg(pParse
, "a NATURAL join may not have "
428 "an ON or USING clause", 0);
431 for(j
=0; j
<pRightTab
->nCol
; j
++){
432 char *zName
; /* Name of column in the right table */
433 int iLeft
; /* Matching left table */
434 int iLeftCol
; /* Matching column in the left table */
436 zName
= pRightTab
->aCol
[j
].zName
;
437 if( tableAndColumnIndex(pSrc
, i
+1, zName
, &iLeft
, &iLeftCol
) ){
438 addWhereTerm(pParse
, pSrc
, iLeft
, iLeftCol
, i
+1, j
,
439 isOuter
, &p
->pWhere
);
444 /* Disallow both ON and USING clauses in the same join
446 if( pRight
->pOn
&& pRight
->pUsing
){
447 sqlite3ErrorMsg(pParse
, "cannot have both ON and USING "
448 "clauses in the same join");
452 /* Add the ON clause to the end of the WHERE clause, connected by
456 if( isOuter
) setJoinExpr(pRight
->pOn
, pRight
->iCursor
);
457 p
->pWhere
= sqlite3ExprAnd(pParse
->db
, p
->pWhere
, pRight
->pOn
);
461 /* Create extra terms on the WHERE clause for each column named
462 ** in the USING clause. Example: If the two tables to be joined are
463 ** A and B and the USING clause names X, Y, and Z, then add this
464 ** to the WHERE clause: A.X=B.X AND A.Y=B.Y AND A.Z=B.Z
465 ** Report an error if any column mentioned in the USING clause is
466 ** not contained in both tables to be joined.
468 if( pRight
->pUsing
){
469 IdList
*pList
= pRight
->pUsing
;
470 for(j
=0; j
<pList
->nId
; j
++){
471 char *zName
; /* Name of the term in the USING clause */
472 int iLeft
; /* Table on the left with matching column name */
473 int iLeftCol
; /* Column number of matching column on the left */
474 int iRightCol
; /* Column number of matching column on the right */
476 zName
= pList
->a
[j
].zName
;
477 iRightCol
= columnIndex(pRightTab
, zName
);
479 || !tableAndColumnIndex(pSrc
, i
+1, zName
, &iLeft
, &iLeftCol
)
481 sqlite3ErrorMsg(pParse
, "cannot join using column %s - column "
482 "not present in both tables", zName
);
485 addWhereTerm(pParse
, pSrc
, iLeft
, iLeftCol
, i
+1, iRightCol
,
486 isOuter
, &p
->pWhere
);
493 /* Forward reference */
494 static KeyInfo
*keyInfoFromExprList(
495 Parse
*pParse
, /* Parsing context */
496 ExprList
*pList
, /* Form the KeyInfo object from this ExprList */
497 int iStart
, /* Begin with this column of pList */
498 int nExtra
/* Add this many extra columns to the end */
502 ** Generate code that will push the record in registers regData
503 ** through regData+nData-1 onto the sorter.
505 static void pushOntoSorter(
506 Parse
*pParse
, /* Parser context */
507 SortCtx
*pSort
, /* Information about the ORDER BY clause */
508 Select
*pSelect
, /* The whole SELECT statement */
509 int regData
, /* First register holding data to be sorted */
510 int regOrigData
, /* First register holding data before packing */
511 int nData
, /* Number of elements in the data array */
512 int nPrefixReg
/* No. of reg prior to regData available for use */
514 Vdbe
*v
= pParse
->pVdbe
; /* Stmt under construction */
515 int bSeq
= ((pSort
->sortFlags
& SORTFLAG_UseSorter
)==0);
516 int nExpr
= pSort
->pOrderBy
->nExpr
; /* No. of ORDER BY terms */
517 int nBase
= nExpr
+ bSeq
+ nData
; /* Fields in sorter record */
518 int regBase
; /* Regs for sorter record */
519 int regRecord
= ++pParse
->nMem
; /* Assembled sorter record */
520 int nOBSat
= pSort
->nOBSat
; /* ORDER BY terms to skip */
521 int op
; /* Opcode to add sorter record to sorter */
522 int iLimit
; /* LIMIT counter */
524 assert( bSeq
==0 || bSeq
==1 );
525 assert( nData
==1 || regData
==regOrigData
|| regOrigData
==0 );
527 assert( nPrefixReg
==nExpr
+bSeq
);
528 regBase
= regData
- nExpr
- bSeq
;
530 regBase
= pParse
->nMem
+ 1;
531 pParse
->nMem
+= nBase
;
533 assert( pSelect
->iOffset
==0 || pSelect
->iLimit
!=0 );
534 iLimit
= pSelect
->iOffset
? pSelect
->iOffset
+1 : pSelect
->iLimit
;
535 pSort
->labelDone
= sqlite3VdbeMakeLabel(v
);
536 sqlite3ExprCodeExprList(pParse
, pSort
->pOrderBy
, regBase
, regOrigData
,
537 SQLITE_ECEL_DUP
| (regOrigData
? SQLITE_ECEL_REF
: 0));
539 sqlite3VdbeAddOp2(v
, OP_Sequence
, pSort
->iECursor
, regBase
+nExpr
);
541 if( nPrefixReg
==0 && nData
>0 ){
542 sqlite3ExprCodeMove(pParse
, regData
, regBase
+nExpr
+bSeq
, nData
);
544 sqlite3VdbeAddOp3(v
, OP_MakeRecord
, regBase
+nOBSat
, nBase
-nOBSat
, regRecord
);
546 int regPrevKey
; /* The first nOBSat columns of the previous row */
547 int addrFirst
; /* Address of the OP_IfNot opcode */
548 int addrJmp
; /* Address of the OP_Jump opcode */
549 VdbeOp
*pOp
; /* Opcode that opens the sorter */
550 int nKey
; /* Number of sorting key columns, including OP_Sequence */
551 KeyInfo
*pKI
; /* Original KeyInfo on the sorter table */
553 regPrevKey
= pParse
->nMem
+1;
554 pParse
->nMem
+= pSort
->nOBSat
;
555 nKey
= nExpr
- pSort
->nOBSat
+ bSeq
;
557 addrFirst
= sqlite3VdbeAddOp1(v
, OP_IfNot
, regBase
+nExpr
);
559 addrFirst
= sqlite3VdbeAddOp1(v
, OP_SequenceTest
, pSort
->iECursor
);
562 sqlite3VdbeAddOp3(v
, OP_Compare
, regPrevKey
, regBase
, pSort
->nOBSat
);
563 pOp
= sqlite3VdbeGetOp(v
, pSort
->addrSortIndex
);
564 if( pParse
->db
->mallocFailed
) return;
565 pOp
->p2
= nKey
+ nData
;
566 pKI
= pOp
->p4
.pKeyInfo
;
567 memset(pKI
->aSortOrder
, 0, pKI
->nKeyField
); /* Makes OP_Jump testable */
568 sqlite3VdbeChangeP4(v
, -1, (char*)pKI
, P4_KEYINFO
);
569 testcase( pKI
->nAllField
> pKI
->nKeyField
+2 );
570 pOp
->p4
.pKeyInfo
= keyInfoFromExprList(pParse
, pSort
->pOrderBy
, nOBSat
,
571 pKI
->nAllField
-pKI
->nKeyField
-1);
572 addrJmp
= sqlite3VdbeCurrentAddr(v
);
573 sqlite3VdbeAddOp3(v
, OP_Jump
, addrJmp
+1, 0, addrJmp
+1); VdbeCoverage(v
);
574 pSort
->labelBkOut
= sqlite3VdbeMakeLabel(v
);
575 pSort
->regReturn
= ++pParse
->nMem
;
576 sqlite3VdbeAddOp2(v
, OP_Gosub
, pSort
->regReturn
, pSort
->labelBkOut
);
577 sqlite3VdbeAddOp1(v
, OP_ResetSorter
, pSort
->iECursor
);
579 sqlite3VdbeAddOp2(v
, OP_IfNot
, iLimit
, pSort
->labelDone
);
582 sqlite3VdbeJumpHere(v
, addrFirst
);
583 sqlite3ExprCodeMove(pParse
, regBase
, regPrevKey
, pSort
->nOBSat
);
584 sqlite3VdbeJumpHere(v
, addrJmp
);
586 if( pSort
->sortFlags
& SORTFLAG_UseSorter
){
587 op
= OP_SorterInsert
;
591 sqlite3VdbeAddOp4Int(v
, op
, pSort
->iECursor
, regRecord
,
592 regBase
+nOBSat
, nBase
-nOBSat
);
596 /* Fill the sorter until it contains LIMIT+OFFSET entries. (The iLimit
597 ** register is initialized with value of LIMIT+OFFSET.) After the sorter
598 ** fills up, delete the least entry in the sorter after each insert.
599 ** Thus we never hold more than the LIMIT+OFFSET rows in memory at once */
600 addr
= sqlite3VdbeAddOp1(v
, OP_IfNotZero
, iLimit
); VdbeCoverage(v
);
601 sqlite3VdbeAddOp1(v
, OP_Last
, pSort
->iECursor
);
602 if( pSort
->bOrderedInnerLoop
){
604 sqlite3VdbeAddOp3(v
, OP_Column
, pSort
->iECursor
, nExpr
, r1
);
605 VdbeComment((v
, "seq"));
607 sqlite3VdbeAddOp1(v
, OP_Delete
, pSort
->iECursor
);
608 if( pSort
->bOrderedInnerLoop
){
609 /* If the inner loop is driven by an index such that values from
610 ** the same iteration of the inner loop are in sorted order, then
611 ** immediately jump to the next iteration of an inner loop if the
612 ** entry from the current iteration does not fit into the top
613 ** LIMIT+OFFSET entries of the sorter. */
614 int iBrk
= sqlite3VdbeCurrentAddr(v
) + 2;
615 sqlite3VdbeAddOp3(v
, OP_Eq
, regBase
+nExpr
, iBrk
, r1
);
616 sqlite3VdbeChangeP5(v
, SQLITE_NULLEQ
);
619 sqlite3VdbeJumpHere(v
, addr
);
624 ** Add code to implement the OFFSET
626 static void codeOffset(
627 Vdbe
*v
, /* Generate code into this VM */
628 int iOffset
, /* Register holding the offset counter */
629 int iContinue
/* Jump here to skip the current record */
632 sqlite3VdbeAddOp3(v
, OP_IfPos
, iOffset
, iContinue
, 1); VdbeCoverage(v
);
633 VdbeComment((v
, "OFFSET"));
638 ** Add code that will check to make sure the N registers starting at iMem
639 ** form a distinct entry. iTab is a sorting index that holds previously
640 ** seen combinations of the N values. A new entry is made in iTab
641 ** if the current N values are new.
643 ** A jump to addrRepeat is made and the N+1 values are popped from the
644 ** stack if the top N elements are not distinct.
646 static void codeDistinct(
647 Parse
*pParse
, /* Parsing and code generating context */
648 int iTab
, /* A sorting index used to test for distinctness */
649 int addrRepeat
, /* Jump to here if not distinct */
650 int N
, /* Number of elements */
651 int iMem
/* First element */
657 r1
= sqlite3GetTempReg(pParse
);
658 sqlite3VdbeAddOp4Int(v
, OP_Found
, iTab
, addrRepeat
, iMem
, N
); VdbeCoverage(v
);
659 sqlite3VdbeAddOp3(v
, OP_MakeRecord
, iMem
, N
, r1
);
660 sqlite3VdbeAddOp4Int(v
, OP_IdxInsert
, iTab
, r1
, iMem
, N
);
661 sqlite3VdbeChangeP5(v
, OPFLAG_USESEEKRESULT
);
662 sqlite3ReleaseTempReg(pParse
, r1
);
666 ** This routine generates the code for the inside of the inner loop
669 ** If srcTab is negative, then the p->pEList expressions
670 ** are evaluated in order to get the data for this row. If srcTab is
671 ** zero or more, then data is pulled from srcTab and p->pEList is used only
672 ** to get the number of columns and the collation sequence for each column.
674 static void selectInnerLoop(
675 Parse
*pParse
, /* The parser context */
676 Select
*p
, /* The complete select statement being coded */
677 int srcTab
, /* Pull data from this table if non-negative */
678 SortCtx
*pSort
, /* If not NULL, info on how to process ORDER BY */
679 DistinctCtx
*pDistinct
, /* If not NULL, info on how to process DISTINCT */
680 SelectDest
*pDest
, /* How to dispose of the results */
681 int iContinue
, /* Jump here to continue with next row */
682 int iBreak
/* Jump here to break out of the inner loop */
684 Vdbe
*v
= pParse
->pVdbe
;
686 int hasDistinct
; /* True if the DISTINCT keyword is present */
687 int eDest
= pDest
->eDest
; /* How to dispose of results */
688 int iParm
= pDest
->iSDParm
; /* First argument to disposal method */
689 int nResultCol
; /* Number of result columns */
690 int nPrefixReg
= 0; /* Number of extra registers before regResult */
692 /* Usually, regResult is the first cell in an array of memory cells
693 ** containing the current result row. In this case regOrig is set to the
694 ** same value. However, if the results are being sent to the sorter, the
695 ** values for any expressions that are also part of the sort-key are omitted
696 ** from this array. In this case regOrig is set to zero. */
697 int regResult
; /* Start of memory holding current results */
698 int regOrig
; /* Start of memory holding full result (or 0) */
701 assert( p
->pEList
!=0 );
702 hasDistinct
= pDistinct
? pDistinct
->eTnctType
: WHERE_DISTINCT_NOOP
;
703 if( pSort
&& pSort
->pOrderBy
==0 ) pSort
= 0;
704 if( pSort
==0 && !hasDistinct
){
705 assert( iContinue
!=0 );
706 codeOffset(v
, p
->iOffset
, iContinue
);
709 /* Pull the requested columns.
711 nResultCol
= p
->pEList
->nExpr
;
713 if( pDest
->iSdst
==0 ){
715 nPrefixReg
= pSort
->pOrderBy
->nExpr
;
716 if( !(pSort
->sortFlags
& SORTFLAG_UseSorter
) ) nPrefixReg
++;
717 pParse
->nMem
+= nPrefixReg
;
719 pDest
->iSdst
= pParse
->nMem
+1;
720 pParse
->nMem
+= nResultCol
;
721 }else if( pDest
->iSdst
+nResultCol
> pParse
->nMem
){
722 /* This is an error condition that can result, for example, when a SELECT
723 ** on the right-hand side of an INSERT contains more result columns than
724 ** there are columns in the table on the left. The error will be caught
725 ** and reported later. But we need to make sure enough memory is allocated
726 ** to avoid other spurious errors in the meantime. */
727 pParse
->nMem
+= nResultCol
;
729 pDest
->nSdst
= nResultCol
;
730 regOrig
= regResult
= pDest
->iSdst
;
732 for(i
=0; i
<nResultCol
; i
++){
733 sqlite3VdbeAddOp3(v
, OP_Column
, srcTab
, i
, regResult
+i
);
734 VdbeComment((v
, "%s", p
->pEList
->a
[i
].zName
));
736 }else if( eDest
!=SRT_Exists
){
737 /* If the destination is an EXISTS(...) expression, the actual
738 ** values returned by the SELECT are not required.
741 if( eDest
==SRT_Mem
|| eDest
==SRT_Output
|| eDest
==SRT_Coroutine
){
742 ecelFlags
= SQLITE_ECEL_DUP
;
746 if( pSort
&& hasDistinct
==0 && eDest
!=SRT_EphemTab
&& eDest
!=SRT_Table
){
747 /* For each expression in p->pEList that is a copy of an expression in
748 ** the ORDER BY clause (pSort->pOrderBy), set the associated
749 ** iOrderByCol value to one more than the index of the ORDER BY
750 ** expression within the sort-key that pushOntoSorter() will generate.
751 ** This allows the p->pEList field to be omitted from the sorted record,
752 ** saving space and CPU cycles. */
753 ecelFlags
|= (SQLITE_ECEL_OMITREF
|SQLITE_ECEL_REF
);
754 for(i
=pSort
->nOBSat
; i
<pSort
->pOrderBy
->nExpr
; i
++){
756 if( (j
= pSort
->pOrderBy
->a
[i
].u
.x
.iOrderByCol
)>0 ){
757 p
->pEList
->a
[j
-1].u
.x
.iOrderByCol
= i
+1-pSort
->nOBSat
;
761 assert( eDest
==SRT_Set
|| eDest
==SRT_Mem
762 || eDest
==SRT_Coroutine
|| eDest
==SRT_Output
);
764 nResultCol
= sqlite3ExprCodeExprList(pParse
,p
->pEList
,regResult
,
768 /* If the DISTINCT keyword was present on the SELECT statement
769 ** and this row has been seen before, then do not make this row
770 ** part of the result.
773 switch( pDistinct
->eTnctType
){
774 case WHERE_DISTINCT_ORDERED
: {
775 VdbeOp
*pOp
; /* No longer required OpenEphemeral instr. */
776 int iJump
; /* Jump destination */
777 int regPrev
; /* Previous row content */
779 /* Allocate space for the previous row */
780 regPrev
= pParse
->nMem
+1;
781 pParse
->nMem
+= nResultCol
;
783 /* Change the OP_OpenEphemeral coded earlier to an OP_Null
784 ** sets the MEM_Cleared bit on the first register of the
785 ** previous value. This will cause the OP_Ne below to always
786 ** fail on the first iteration of the loop even if the first
789 sqlite3VdbeChangeToNoop(v
, pDistinct
->addrTnct
);
790 pOp
= sqlite3VdbeGetOp(v
, pDistinct
->addrTnct
);
791 pOp
->opcode
= OP_Null
;
795 iJump
= sqlite3VdbeCurrentAddr(v
) + nResultCol
;
796 for(i
=0; i
<nResultCol
; i
++){
797 CollSeq
*pColl
= sqlite3ExprCollSeq(pParse
, p
->pEList
->a
[i
].pExpr
);
798 if( i
<nResultCol
-1 ){
799 sqlite3VdbeAddOp3(v
, OP_Ne
, regResult
+i
, iJump
, regPrev
+i
);
802 sqlite3VdbeAddOp3(v
, OP_Eq
, regResult
+i
, iContinue
, regPrev
+i
);
805 sqlite3VdbeChangeP4(v
, -1, (const char *)pColl
, P4_COLLSEQ
);
806 sqlite3VdbeChangeP5(v
, SQLITE_NULLEQ
);
808 assert( sqlite3VdbeCurrentAddr(v
)==iJump
|| pParse
->db
->mallocFailed
);
809 sqlite3VdbeAddOp3(v
, OP_Copy
, regResult
, regPrev
, nResultCol
-1);
813 case WHERE_DISTINCT_UNIQUE
: {
814 sqlite3VdbeChangeToNoop(v
, pDistinct
->addrTnct
);
819 assert( pDistinct
->eTnctType
==WHERE_DISTINCT_UNORDERED
);
820 codeDistinct(pParse
, pDistinct
->tabTnct
, iContinue
, nResultCol
,
826 codeOffset(v
, p
->iOffset
, iContinue
);
831 /* In this mode, write each query result to the key of the temporary
834 #ifndef SQLITE_OMIT_COMPOUND_SELECT
837 r1
= sqlite3GetTempReg(pParse
);
838 sqlite3VdbeAddOp3(v
, OP_MakeRecord
, regResult
, nResultCol
, r1
);
839 sqlite3VdbeAddOp4Int(v
, OP_IdxInsert
, iParm
, r1
, regResult
, nResultCol
);
840 sqlite3ReleaseTempReg(pParse
, r1
);
844 /* Construct a record from the query result, but instead of
845 ** saving that record, use it as a key to delete elements from
846 ** the temporary table iParm.
849 sqlite3VdbeAddOp3(v
, OP_IdxDelete
, iParm
, regResult
, nResultCol
);
852 #endif /* SQLITE_OMIT_COMPOUND_SELECT */
854 /* Store the result as data using a unique key.
860 int r1
= sqlite3GetTempRange(pParse
, nPrefixReg
+1);
861 testcase( eDest
==SRT_Table
);
862 testcase( eDest
==SRT_EphemTab
);
863 testcase( eDest
==SRT_Fifo
);
864 testcase( eDest
==SRT_DistFifo
);
865 sqlite3VdbeAddOp3(v
, OP_MakeRecord
, regResult
, nResultCol
, r1
+nPrefixReg
);
866 #ifndef SQLITE_OMIT_CTE
867 if( eDest
==SRT_DistFifo
){
868 /* If the destination is DistFifo, then cursor (iParm+1) is open
869 ** on an ephemeral index. If the current row is already present
870 ** in the index, do not write it to the output. If not, add the
871 ** current row to the index and proceed with writing it to the
872 ** output table as well. */
873 int addr
= sqlite3VdbeCurrentAddr(v
) + 4;
874 sqlite3VdbeAddOp4Int(v
, OP_Found
, iParm
+1, addr
, r1
, 0);
876 sqlite3VdbeAddOp4Int(v
, OP_IdxInsert
, iParm
+1, r1
,regResult
,nResultCol
);
881 pushOntoSorter(pParse
, pSort
, p
, r1
+nPrefixReg
,regResult
,1,nPrefixReg
);
883 int r2
= sqlite3GetTempReg(pParse
);
884 sqlite3VdbeAddOp2(v
, OP_NewRowid
, iParm
, r2
);
885 sqlite3VdbeAddOp3(v
, OP_Insert
, iParm
, r1
, r2
);
886 sqlite3VdbeChangeP5(v
, OPFLAG_APPEND
);
887 sqlite3ReleaseTempReg(pParse
, r2
);
889 sqlite3ReleaseTempRange(pParse
, r1
, nPrefixReg
+1);
893 #ifndef SQLITE_OMIT_SUBQUERY
894 /* If we are creating a set for an "expr IN (SELECT ...)" construct,
895 ** then there should be a single item on the stack. Write this
896 ** item into the set table with bogus data.
900 /* At first glance you would think we could optimize out the
901 ** ORDER BY in this case since the order of entries in the set
902 ** does not matter. But there might be a LIMIT clause, in which
903 ** case the order does matter */
905 pParse
, pSort
, p
, regResult
, regOrig
, nResultCol
, nPrefixReg
);
907 int r1
= sqlite3GetTempReg(pParse
);
908 assert( sqlite3Strlen30(pDest
->zAffSdst
)==nResultCol
);
909 sqlite3VdbeAddOp4(v
, OP_MakeRecord
, regResult
, nResultCol
,
910 r1
, pDest
->zAffSdst
, nResultCol
);
911 sqlite3ExprCacheAffinityChange(pParse
, regResult
, nResultCol
);
912 sqlite3VdbeAddOp4Int(v
, OP_IdxInsert
, iParm
, r1
, regResult
, nResultCol
);
913 sqlite3ReleaseTempReg(pParse
, r1
);
918 /* If any row exist in the result set, record that fact and abort.
921 sqlite3VdbeAddOp2(v
, OP_Integer
, 1, iParm
);
922 /* The LIMIT clause will terminate the loop for us */
926 /* If this is a scalar select that is part of an expression, then
927 ** store the results in the appropriate memory cell or array of
928 ** memory cells and break out of the scan loop.
932 assert( nResultCol
<=pDest
->nSdst
);
934 pParse
, pSort
, p
, regResult
, regOrig
, nResultCol
, nPrefixReg
);
936 assert( nResultCol
==pDest
->nSdst
);
937 assert( regResult
==iParm
);
938 /* The LIMIT clause will jump out of the loop for us */
942 #endif /* #ifndef SQLITE_OMIT_SUBQUERY */
944 case SRT_Coroutine
: /* Send data to a co-routine */
945 case SRT_Output
: { /* Return the results */
946 testcase( eDest
==SRT_Coroutine
);
947 testcase( eDest
==SRT_Output
);
949 pushOntoSorter(pParse
, pSort
, p
, regResult
, regOrig
, nResultCol
,
951 }else if( eDest
==SRT_Coroutine
){
952 sqlite3VdbeAddOp1(v
, OP_Yield
, pDest
->iSDParm
);
954 sqlite3VdbeAddOp2(v
, OP_ResultRow
, regResult
, nResultCol
);
955 sqlite3ExprCacheAffinityChange(pParse
, regResult
, nResultCol
);
960 #ifndef SQLITE_OMIT_CTE
961 /* Write the results into a priority queue that is order according to
962 ** pDest->pOrderBy (in pSO). pDest->iSDParm (in iParm) is the cursor for an
963 ** index with pSO->nExpr+2 columns. Build a key using pSO for the first
964 ** pSO->nExpr columns, then make sure all keys are unique by adding a
965 ** final OP_Sequence column. The last column is the record as a blob.
973 pSO
= pDest
->pOrderBy
;
976 r1
= sqlite3GetTempReg(pParse
);
977 r2
= sqlite3GetTempRange(pParse
, nKey
+2);
979 if( eDest
==SRT_DistQueue
){
980 /* If the destination is DistQueue, then cursor (iParm+1) is open
981 ** on a second ephemeral index that holds all values every previously
982 ** added to the queue. */
983 addrTest
= sqlite3VdbeAddOp4Int(v
, OP_Found
, iParm
+1, 0,
984 regResult
, nResultCol
);
987 sqlite3VdbeAddOp3(v
, OP_MakeRecord
, regResult
, nResultCol
, r3
);
988 if( eDest
==SRT_DistQueue
){
989 sqlite3VdbeAddOp2(v
, OP_IdxInsert
, iParm
+1, r3
);
990 sqlite3VdbeChangeP5(v
, OPFLAG_USESEEKRESULT
);
992 for(i
=0; i
<nKey
; i
++){
993 sqlite3VdbeAddOp2(v
, OP_SCopy
,
994 regResult
+ pSO
->a
[i
].u
.x
.iOrderByCol
- 1,
997 sqlite3VdbeAddOp2(v
, OP_Sequence
, iParm
, r2
+nKey
);
998 sqlite3VdbeAddOp3(v
, OP_MakeRecord
, r2
, nKey
+2, r1
);
999 sqlite3VdbeAddOp4Int(v
, OP_IdxInsert
, iParm
, r1
, r2
, nKey
+2);
1000 if( addrTest
) sqlite3VdbeJumpHere(v
, addrTest
);
1001 sqlite3ReleaseTempReg(pParse
, r1
);
1002 sqlite3ReleaseTempRange(pParse
, r2
, nKey
+2);
1005 #endif /* SQLITE_OMIT_CTE */
1009 #if !defined(SQLITE_OMIT_TRIGGER)
1010 /* Discard the results. This is used for SELECT statements inside
1011 ** the body of a TRIGGER. The purpose of such selects is to call
1012 ** user-defined functions that have side effects. We do not care
1013 ** about the actual results of the select.
1016 assert( eDest
==SRT_Discard
);
1022 /* Jump to the end of the loop if the LIMIT is reached. Except, if
1023 ** there is a sorter, in which case the sorter has already limited
1024 ** the output for us.
1026 if( pSort
==0 && p
->iLimit
){
1027 sqlite3VdbeAddOp2(v
, OP_DecrJumpZero
, p
->iLimit
, iBreak
); VdbeCoverage(v
);
1032 ** Allocate a KeyInfo object sufficient for an index of N key columns and
1035 KeyInfo
*sqlite3KeyInfoAlloc(sqlite3
*db
, int N
, int X
){
1036 int nExtra
= (N
+X
)*(sizeof(CollSeq
*)+1) - sizeof(CollSeq
*);
1037 KeyInfo
*p
= sqlite3DbMallocRawNN(db
, sizeof(KeyInfo
) + nExtra
);
1039 p
->aSortOrder
= (u8
*)&p
->aColl
[N
+X
];
1040 p
->nKeyField
= (u16
)N
;
1041 p
->nAllField
= (u16
)(N
+X
);
1045 memset(&p
[1], 0, nExtra
);
1047 sqlite3OomFault(db
);
1053 ** Deallocate a KeyInfo object
1055 void sqlite3KeyInfoUnref(KeyInfo
*p
){
1057 assert( p
->nRef
>0 );
1059 if( p
->nRef
==0 ) sqlite3DbFreeNN(p
->db
, p
);
1064 ** Make a new pointer to a KeyInfo object
1066 KeyInfo
*sqlite3KeyInfoRef(KeyInfo
*p
){
1068 assert( p
->nRef
>0 );
1076 ** Return TRUE if a KeyInfo object can be change. The KeyInfo object
1077 ** can only be changed if this is just a single reference to the object.
1079 ** This routine is used only inside of assert() statements.
1081 int sqlite3KeyInfoIsWriteable(KeyInfo
*p
){ return p
->nRef
==1; }
1082 #endif /* SQLITE_DEBUG */
1085 ** Given an expression list, generate a KeyInfo structure that records
1086 ** the collating sequence for each expression in that expression list.
1088 ** If the ExprList is an ORDER BY or GROUP BY clause then the resulting
1089 ** KeyInfo structure is appropriate for initializing a virtual index to
1090 ** implement that clause. If the ExprList is the result set of a SELECT
1091 ** then the KeyInfo structure is appropriate for initializing a virtual
1092 ** index to implement a DISTINCT test.
1094 ** Space to hold the KeyInfo structure is obtained from malloc. The calling
1095 ** function is responsible for seeing that this structure is eventually
1098 static KeyInfo
*keyInfoFromExprList(
1099 Parse
*pParse
, /* Parsing context */
1100 ExprList
*pList
, /* Form the KeyInfo object from this ExprList */
1101 int iStart
, /* Begin with this column of pList */
1102 int nExtra
/* Add this many extra columns to the end */
1106 struct ExprList_item
*pItem
;
1107 sqlite3
*db
= pParse
->db
;
1110 nExpr
= pList
->nExpr
;
1111 pInfo
= sqlite3KeyInfoAlloc(db
, nExpr
-iStart
, nExtra
+1);
1113 assert( sqlite3KeyInfoIsWriteable(pInfo
) );
1114 for(i
=iStart
, pItem
=pList
->a
+iStart
; i
<nExpr
; i
++, pItem
++){
1115 pInfo
->aColl
[i
-iStart
] = sqlite3ExprNNCollSeq(pParse
, pItem
->pExpr
);
1116 pInfo
->aSortOrder
[i
-iStart
] = pItem
->sortOrder
;
1123 ** Name of the connection operator, used for error messages.
1125 static const char *selectOpName(int id
){
1128 case TK_ALL
: z
= "UNION ALL"; break;
1129 case TK_INTERSECT
: z
= "INTERSECT"; break;
1130 case TK_EXCEPT
: z
= "EXCEPT"; break;
1131 default: z
= "UNION"; break;
1136 #ifndef SQLITE_OMIT_EXPLAIN
1138 ** Unless an "EXPLAIN QUERY PLAN" command is being processed, this function
1139 ** is a no-op. Otherwise, it adds a single row of output to the EQP result,
1140 ** where the caption is of the form:
1142 ** "USE TEMP B-TREE FOR xxx"
1144 ** where xxx is one of "DISTINCT", "ORDER BY" or "GROUP BY". Exactly which
1145 ** is determined by the zUsage argument.
1147 static void explainTempTable(Parse
*pParse
, const char *zUsage
){
1148 if( pParse
->explain
==2 ){
1149 Vdbe
*v
= pParse
->pVdbe
;
1150 char *zMsg
= sqlite3MPrintf(pParse
->db
, "USE TEMP B-TREE FOR %s", zUsage
);
1151 sqlite3VdbeAddOp4(v
, OP_Explain
, pParse
->iSelectId
, 0, 0, zMsg
, P4_DYNAMIC
);
1156 ** Assign expression b to lvalue a. A second, no-op, version of this macro
1157 ** is provided when SQLITE_OMIT_EXPLAIN is defined. This allows the code
1158 ** in sqlite3Select() to assign values to structure member variables that
1159 ** only exist if SQLITE_OMIT_EXPLAIN is not defined without polluting the
1160 ** code with #ifndef directives.
1162 # define explainSetInteger(a, b) a = b
1165 /* No-op versions of the explainXXX() functions and macros. */
1166 # define explainTempTable(y,z)
1167 # define explainSetInteger(y,z)
1170 #if !defined(SQLITE_OMIT_EXPLAIN) && !defined(SQLITE_OMIT_COMPOUND_SELECT)
1172 ** Unless an "EXPLAIN QUERY PLAN" command is being processed, this function
1173 ** is a no-op. Otherwise, it adds a single row of output to the EQP result,
1174 ** where the caption is of one of the two forms:
1176 ** "COMPOSITE SUBQUERIES iSub1 and iSub2 (op)"
1177 ** "COMPOSITE SUBQUERIES iSub1 and iSub2 USING TEMP B-TREE (op)"
1179 ** where iSub1 and iSub2 are the integers passed as the corresponding
1180 ** function parameters, and op is the text representation of the parameter
1181 ** of the same name. The parameter "op" must be one of TK_UNION, TK_EXCEPT,
1182 ** TK_INTERSECT or TK_ALL. The first form is used if argument bUseTmp is
1183 ** false, or the second form if it is true.
1185 static void explainComposite(
1186 Parse
*pParse
, /* Parse context */
1187 int op
, /* One of TK_UNION, TK_EXCEPT etc. */
1188 int iSub1
, /* Subquery id 1 */
1189 int iSub2
, /* Subquery id 2 */
1190 int bUseTmp
/* True if a temp table was used */
1192 assert( op
==TK_UNION
|| op
==TK_EXCEPT
|| op
==TK_INTERSECT
|| op
==TK_ALL
);
1193 if( pParse
->explain
==2 ){
1194 Vdbe
*v
= pParse
->pVdbe
;
1195 char *zMsg
= sqlite3MPrintf(
1196 pParse
->db
, "COMPOUND SUBQUERIES %d AND %d %s(%s)", iSub1
, iSub2
,
1197 bUseTmp
?"USING TEMP B-TREE ":"", selectOpName(op
)
1199 sqlite3VdbeAddOp4(v
, OP_Explain
, pParse
->iSelectId
, 0, 0, zMsg
, P4_DYNAMIC
);
1203 /* No-op versions of the explainXXX() functions and macros. */
1204 # define explainComposite(v,w,x,y,z)
1208 ** If the inner loop was generated using a non-null pOrderBy argument,
1209 ** then the results were placed in a sorter. After the loop is terminated
1210 ** we need to run the sorter and output the results. The following
1211 ** routine generates the code needed to do that.
1213 static void generateSortTail(
1214 Parse
*pParse
, /* Parsing context */
1215 Select
*p
, /* The SELECT statement */
1216 SortCtx
*pSort
, /* Information on the ORDER BY clause */
1217 int nColumn
, /* Number of columns of data */
1218 SelectDest
*pDest
/* Write the sorted results here */
1220 Vdbe
*v
= pParse
->pVdbe
; /* The prepared statement */
1221 int addrBreak
= pSort
->labelDone
; /* Jump here to exit loop */
1222 int addrContinue
= sqlite3VdbeMakeLabel(v
); /* Jump here for next cycle */
1226 ExprList
*pOrderBy
= pSort
->pOrderBy
;
1227 int eDest
= pDest
->eDest
;
1228 int iParm
= pDest
->iSDParm
;
1233 int iSortTab
; /* Sorter cursor to read from */
1234 int nSortData
; /* Trailing values to read from sorter */
1236 int bSeq
; /* True if sorter record includes seq. no. */
1237 struct ExprList_item
*aOutEx
= p
->pEList
->a
;
1239 assert( addrBreak
<0 );
1240 if( pSort
->labelBkOut
){
1241 sqlite3VdbeAddOp2(v
, OP_Gosub
, pSort
->regReturn
, pSort
->labelBkOut
);
1242 sqlite3VdbeGoto(v
, addrBreak
);
1243 sqlite3VdbeResolveLabel(v
, pSort
->labelBkOut
);
1245 iTab
= pSort
->iECursor
;
1246 if( eDest
==SRT_Output
|| eDest
==SRT_Coroutine
|| eDest
==SRT_Mem
){
1248 regRow
= pDest
->iSdst
;
1249 nSortData
= nColumn
;
1251 regRowid
= sqlite3GetTempReg(pParse
);
1252 regRow
= sqlite3GetTempRange(pParse
, nColumn
);
1253 nSortData
= nColumn
;
1255 nKey
= pOrderBy
->nExpr
- pSort
->nOBSat
;
1256 if( pSort
->sortFlags
& SORTFLAG_UseSorter
){
1257 int regSortOut
= ++pParse
->nMem
;
1258 iSortTab
= pParse
->nTab
++;
1259 if( pSort
->labelBkOut
){
1260 addrOnce
= sqlite3VdbeAddOp0(v
, OP_Once
); VdbeCoverage(v
);
1262 sqlite3VdbeAddOp3(v
, OP_OpenPseudo
, iSortTab
, regSortOut
, nKey
+1+nSortData
);
1263 if( addrOnce
) sqlite3VdbeJumpHere(v
, addrOnce
);
1264 addr
= 1 + sqlite3VdbeAddOp2(v
, OP_SorterSort
, iTab
, addrBreak
);
1266 codeOffset(v
, p
->iOffset
, addrContinue
);
1267 sqlite3VdbeAddOp3(v
, OP_SorterData
, iTab
, regSortOut
, iSortTab
);
1270 addr
= 1 + sqlite3VdbeAddOp2(v
, OP_Sort
, iTab
, addrBreak
); VdbeCoverage(v
);
1271 codeOffset(v
, p
->iOffset
, addrContinue
);
1275 for(i
=0, iCol
=nKey
+bSeq
; i
<nSortData
; i
++){
1277 if( aOutEx
[i
].u
.x
.iOrderByCol
){
1278 iRead
= aOutEx
[i
].u
.x
.iOrderByCol
-1;
1282 sqlite3VdbeAddOp3(v
, OP_Column
, iSortTab
, iRead
, regRow
+i
);
1283 VdbeComment((v
, "%s", aOutEx
[i
].zName
? aOutEx
[i
].zName
: aOutEx
[i
].zSpan
));
1287 case SRT_EphemTab
: {
1288 sqlite3VdbeAddOp2(v
, OP_NewRowid
, iParm
, regRowid
);
1289 sqlite3VdbeAddOp3(v
, OP_Insert
, iParm
, regRow
, regRowid
);
1290 sqlite3VdbeChangeP5(v
, OPFLAG_APPEND
);
1293 #ifndef SQLITE_OMIT_SUBQUERY
1295 assert( nColumn
==sqlite3Strlen30(pDest
->zAffSdst
) );
1296 sqlite3VdbeAddOp4(v
, OP_MakeRecord
, regRow
, nColumn
, regRowid
,
1297 pDest
->zAffSdst
, nColumn
);
1298 sqlite3ExprCacheAffinityChange(pParse
, regRow
, nColumn
);
1299 sqlite3VdbeAddOp4Int(v
, OP_IdxInsert
, iParm
, regRowid
, regRow
, nColumn
);
1303 /* The LIMIT clause will terminate the loop for us */
1308 assert( eDest
==SRT_Output
|| eDest
==SRT_Coroutine
);
1309 testcase( eDest
==SRT_Output
);
1310 testcase( eDest
==SRT_Coroutine
);
1311 if( eDest
==SRT_Output
){
1312 sqlite3VdbeAddOp2(v
, OP_ResultRow
, pDest
->iSdst
, nColumn
);
1313 sqlite3ExprCacheAffinityChange(pParse
, pDest
->iSdst
, nColumn
);
1315 sqlite3VdbeAddOp1(v
, OP_Yield
, pDest
->iSDParm
);
1321 if( eDest
==SRT_Set
){
1322 sqlite3ReleaseTempRange(pParse
, regRow
, nColumn
);
1324 sqlite3ReleaseTempReg(pParse
, regRow
);
1326 sqlite3ReleaseTempReg(pParse
, regRowid
);
1328 /* The bottom of the loop
1330 sqlite3VdbeResolveLabel(v
, addrContinue
);
1331 if( pSort
->sortFlags
& SORTFLAG_UseSorter
){
1332 sqlite3VdbeAddOp2(v
, OP_SorterNext
, iTab
, addr
); VdbeCoverage(v
);
1334 sqlite3VdbeAddOp2(v
, OP_Next
, iTab
, addr
); VdbeCoverage(v
);
1336 if( pSort
->regReturn
) sqlite3VdbeAddOp1(v
, OP_Return
, pSort
->regReturn
);
1337 sqlite3VdbeResolveLabel(v
, addrBreak
);
1341 ** Return a pointer to a string containing the 'declaration type' of the
1342 ** expression pExpr. The string may be treated as static by the caller.
1344 ** Also try to estimate the size of the returned value and return that
1345 ** result in *pEstWidth.
1347 ** The declaration type is the exact datatype definition extracted from the
1348 ** original CREATE TABLE statement if the expression is a column. The
1349 ** declaration type for a ROWID field is INTEGER. Exactly when an expression
1350 ** is considered a column can be complex in the presence of subqueries. The
1351 ** result-set expression in all of the following SELECT statements is
1352 ** considered a column by this function.
1354 ** SELECT col FROM tbl;
1355 ** SELECT (SELECT col FROM tbl;
1356 ** SELECT (SELECT col FROM tbl);
1357 ** SELECT abc FROM (SELECT col AS abc FROM tbl);
1359 ** The declaration type for any expression other than a column is NULL.
1361 ** This routine has either 3 or 6 parameters depending on whether or not
1362 ** the SQLITE_ENABLE_COLUMN_METADATA compile-time option is used.
1364 #ifdef SQLITE_ENABLE_COLUMN_METADATA
1365 # define columnType(A,B,C,D,E,F) columnTypeImpl(A,B,C,D,E,F)
1366 #else /* if !defined(SQLITE_ENABLE_COLUMN_METADATA) */
1367 # define columnType(A,B,C,D,E,F) columnTypeImpl(A,B,F)
1369 static const char *columnTypeImpl(
1372 #ifdef SQLITE_ENABLE_COLUMN_METADATA
1373 const char **pzOrigDb
,
1374 const char **pzOrigTab
,
1375 const char **pzOrigCol
,
1379 char const *zType
= 0;
1382 #ifdef SQLITE_ENABLE_COLUMN_METADATA
1383 char const *zOrigDb
= 0;
1384 char const *zOrigTab
= 0;
1385 char const *zOrigCol
= 0;
1389 assert( pNC
->pSrcList
!=0 );
1390 switch( pExpr
->op
){
1393 /* The expression is a column. Locate the table the column is being
1394 ** extracted from in NameContext.pSrcList. This table may be real
1395 ** database table or a subquery.
1397 Table
*pTab
= 0; /* Table structure column is extracted from */
1398 Select
*pS
= 0; /* Select the column is extracted from */
1399 int iCol
= pExpr
->iColumn
; /* Index of column in pTab */
1400 testcase( pExpr
->op
==TK_AGG_COLUMN
);
1401 testcase( pExpr
->op
==TK_COLUMN
);
1402 while( pNC
&& !pTab
){
1403 SrcList
*pTabList
= pNC
->pSrcList
;
1404 for(j
=0;j
<pTabList
->nSrc
&& pTabList
->a
[j
].iCursor
!=pExpr
->iTable
;j
++);
1405 if( j
<pTabList
->nSrc
){
1406 pTab
= pTabList
->a
[j
].pTab
;
1407 pS
= pTabList
->a
[j
].pSelect
;
1414 /* At one time, code such as "SELECT new.x" within a trigger would
1415 ** cause this condition to run. Since then, we have restructured how
1416 ** trigger code is generated and so this condition is no longer
1417 ** possible. However, it can still be true for statements like
1420 ** CREATE TABLE t1(col INTEGER);
1421 ** SELECT (SELECT t1.col) FROM FROM t1;
1423 ** when columnType() is called on the expression "t1.col" in the
1424 ** sub-select. In this case, set the column type to NULL, even
1425 ** though it should really be "INTEGER".
1427 ** This is not a problem, as the column type of "t1.col" is never
1428 ** used. When columnType() is called on the expression
1429 ** "(SELECT t1.col)", the correct type is returned (see the TK_SELECT
1434 assert( pTab
&& pExpr
->pTab
==pTab
);
1436 /* The "table" is actually a sub-select or a view in the FROM clause
1437 ** of the SELECT statement. Return the declaration type and origin
1438 ** data for the result-set column of the sub-select.
1440 if( iCol
>=0 && iCol
<pS
->pEList
->nExpr
){
1441 /* If iCol is less than zero, then the expression requests the
1442 ** rowid of the sub-select or view. This expression is legal (see
1443 ** test case misc2.2.2) - it always evaluates to NULL.
1446 Expr
*p
= pS
->pEList
->a
[iCol
].pExpr
;
1447 sNC
.pSrcList
= pS
->pSrc
;
1449 sNC
.pParse
= pNC
->pParse
;
1450 zType
= columnType(&sNC
, p
,&zOrigDb
,&zOrigTab
,&zOrigCol
, &estWidth
);
1452 }else if( pTab
->pSchema
){
1455 if( iCol
<0 ) iCol
= pTab
->iPKey
;
1456 assert( iCol
==-1 || (iCol
>=0 && iCol
<pTab
->nCol
) );
1457 #ifdef SQLITE_ENABLE_COLUMN_METADATA
1462 zOrigCol
= pTab
->aCol
[iCol
].zName
;
1463 zType
= sqlite3ColumnType(&pTab
->aCol
[iCol
],0);
1464 estWidth
= pTab
->aCol
[iCol
].szEst
;
1466 zOrigTab
= pTab
->zName
;
1468 int iDb
= sqlite3SchemaToIndex(pNC
->pParse
->db
, pTab
->pSchema
);
1469 zOrigDb
= pNC
->pParse
->db
->aDb
[iDb
].zDbSName
;
1475 zType
= sqlite3ColumnType(&pTab
->aCol
[iCol
],0);
1476 estWidth
= pTab
->aCol
[iCol
].szEst
;
1482 #ifndef SQLITE_OMIT_SUBQUERY
1484 /* The expression is a sub-select. Return the declaration type and
1485 ** origin info for the single column in the result set of the SELECT
1489 Select
*pS
= pExpr
->x
.pSelect
;
1490 Expr
*p
= pS
->pEList
->a
[0].pExpr
;
1491 assert( ExprHasProperty(pExpr
, EP_xIsSelect
) );
1492 sNC
.pSrcList
= pS
->pSrc
;
1494 sNC
.pParse
= pNC
->pParse
;
1495 zType
= columnType(&sNC
, p
, &zOrigDb
, &zOrigTab
, &zOrigCol
, &estWidth
);
1501 #ifdef SQLITE_ENABLE_COLUMN_METADATA
1503 assert( pzOrigTab
&& pzOrigCol
);
1504 *pzOrigDb
= zOrigDb
;
1505 *pzOrigTab
= zOrigTab
;
1506 *pzOrigCol
= zOrigCol
;
1509 if( pEstWidth
) *pEstWidth
= estWidth
;
1514 ** Generate code that will tell the VDBE the declaration types of columns
1515 ** in the result set.
1517 static void generateColumnTypes(
1518 Parse
*pParse
, /* Parser context */
1519 SrcList
*pTabList
, /* List of tables */
1520 ExprList
*pEList
/* Expressions defining the result set */
1522 #ifndef SQLITE_OMIT_DECLTYPE
1523 Vdbe
*v
= pParse
->pVdbe
;
1526 sNC
.pSrcList
= pTabList
;
1527 sNC
.pParse
= pParse
;
1529 for(i
=0; i
<pEList
->nExpr
; i
++){
1530 Expr
*p
= pEList
->a
[i
].pExpr
;
1532 #ifdef SQLITE_ENABLE_COLUMN_METADATA
1533 const char *zOrigDb
= 0;
1534 const char *zOrigTab
= 0;
1535 const char *zOrigCol
= 0;
1536 zType
= columnType(&sNC
, p
, &zOrigDb
, &zOrigTab
, &zOrigCol
, 0);
1538 /* The vdbe must make its own copy of the column-type and other
1539 ** column specific strings, in case the schema is reset before this
1540 ** virtual machine is deleted.
1542 sqlite3VdbeSetColName(v
, i
, COLNAME_DATABASE
, zOrigDb
, SQLITE_TRANSIENT
);
1543 sqlite3VdbeSetColName(v
, i
, COLNAME_TABLE
, zOrigTab
, SQLITE_TRANSIENT
);
1544 sqlite3VdbeSetColName(v
, i
, COLNAME_COLUMN
, zOrigCol
, SQLITE_TRANSIENT
);
1546 zType
= columnType(&sNC
, p
, 0, 0, 0, 0);
1548 sqlite3VdbeSetColName(v
, i
, COLNAME_DECLTYPE
, zType
, SQLITE_TRANSIENT
);
1550 #endif /* !defined(SQLITE_OMIT_DECLTYPE) */
1555 ** Compute the column names for a SELECT statement.
1557 ** The only guarantee that SQLite makes about column names is that if the
1558 ** column has an AS clause assigning it a name, that will be the name used.
1559 ** That is the only documented guarantee. However, countless applications
1560 ** developed over the years have made baseless assumptions about column names
1561 ** and will break if those assumptions changes. Hence, use extreme caution
1562 ** when modifying this routine to avoid breaking legacy.
1564 ** See Also: sqlite3ColumnsFromExprList()
1566 ** The PRAGMA short_column_names and PRAGMA full_column_names settings are
1567 ** deprecated. The default setting is short=ON, full=OFF. 99.9% of all
1568 ** applications should operate this way. Nevertheless, we need to support the
1569 ** other modes for legacy:
1571 ** short=OFF, full=OFF: Column name is the text of the expression has it
1572 ** originally appears in the SELECT statement. In
1573 ** other words, the zSpan of the result expression.
1575 ** short=ON, full=OFF: (This is the default setting). If the result
1576 ** refers directly to a table column, then the
1577 ** result column name is just the table column
1578 ** name: COLUMN. Otherwise use zSpan.
1580 ** full=ON, short=ANY: If the result refers directly to a table column,
1581 ** then the result column name with the table name
1582 ** prefix, ex: TABLE.COLUMN. Otherwise use zSpan.
1584 static void generateColumnNames(
1585 Parse
*pParse
, /* Parser context */
1586 Select
*pSelect
/* Generate column names for this SELECT statement */
1588 Vdbe
*v
= pParse
->pVdbe
;
1593 sqlite3
*db
= pParse
->db
;
1594 int fullName
; /* TABLE.COLUMN if no AS clause and is a direct table ref */
1595 int srcName
; /* COLUMN or TABLE.COLUMN if no AS clause and is direct */
1597 #ifndef SQLITE_OMIT_EXPLAIN
1598 /* If this is an EXPLAIN, skip this step */
1599 if( pParse
->explain
){
1604 if( pParse
->colNamesSet
|| db
->mallocFailed
) return;
1605 /* Column names are determined by the left-most term of a compound select */
1606 while( pSelect
->pPrior
) pSelect
= pSelect
->pPrior
;
1607 pTabList
= pSelect
->pSrc
;
1608 pEList
= pSelect
->pEList
;
1610 assert( pTabList
!=0 );
1611 pParse
->colNamesSet
= 1;
1612 fullName
= (db
->flags
& SQLITE_FullColNames
)!=0;
1613 srcName
= (db
->flags
& SQLITE_ShortColNames
)!=0 || fullName
;
1614 sqlite3VdbeSetNumCols(v
, pEList
->nExpr
);
1615 for(i
=0; i
<pEList
->nExpr
; i
++){
1616 Expr
*p
= pEList
->a
[i
].pExpr
;
1619 assert( p
->op
!=TK_AGG_COLUMN
); /* Agg processing has not run yet */
1620 assert( p
->op
!=TK_COLUMN
|| p
->pTab
!=0 ); /* Covering idx not yet coded */
1621 if( pEList
->a
[i
].zName
){
1622 /* An AS clause always takes first priority */
1623 char *zName
= pEList
->a
[i
].zName
;
1624 sqlite3VdbeSetColName(v
, i
, COLNAME_NAME
, zName
, SQLITE_TRANSIENT
);
1625 }else if( srcName
&& p
->op
==TK_COLUMN
){
1627 int iCol
= p
->iColumn
;
1630 if( iCol
<0 ) iCol
= pTab
->iPKey
;
1631 assert( iCol
==-1 || (iCol
>=0 && iCol
<pTab
->nCol
) );
1635 zCol
= pTab
->aCol
[iCol
].zName
;
1639 zName
= sqlite3MPrintf(db
, "%s.%s", pTab
->zName
, zCol
);
1640 sqlite3VdbeSetColName(v
, i
, COLNAME_NAME
, zName
, SQLITE_DYNAMIC
);
1642 sqlite3VdbeSetColName(v
, i
, COLNAME_NAME
, zCol
, SQLITE_TRANSIENT
);
1645 const char *z
= pEList
->a
[i
].zSpan
;
1646 z
= z
==0 ? sqlite3MPrintf(db
, "column%d", i
+1) : sqlite3DbStrDup(db
, z
);
1647 sqlite3VdbeSetColName(v
, i
, COLNAME_NAME
, z
, SQLITE_DYNAMIC
);
1650 generateColumnTypes(pParse
, pTabList
, pEList
);
1654 ** Given an expression list (which is really the list of expressions
1655 ** that form the result set of a SELECT statement) compute appropriate
1656 ** column names for a table that would hold the expression list.
1658 ** All column names will be unique.
1660 ** Only the column names are computed. Column.zType, Column.zColl,
1661 ** and other fields of Column are zeroed.
1663 ** Return SQLITE_OK on success. If a memory allocation error occurs,
1664 ** store NULL in *paCol and 0 in *pnCol and return SQLITE_NOMEM.
1666 ** The only guarantee that SQLite makes about column names is that if the
1667 ** column has an AS clause assigning it a name, that will be the name used.
1668 ** That is the only documented guarantee. However, countless applications
1669 ** developed over the years have made baseless assumptions about column names
1670 ** and will break if those assumptions changes. Hence, use extreme caution
1671 ** when modifying this routine to avoid breaking legacy.
1673 ** See Also: generateColumnNames()
1675 int sqlite3ColumnsFromExprList(
1676 Parse
*pParse
, /* Parsing context */
1677 ExprList
*pEList
, /* Expr list from which to derive column names */
1678 i16
*pnCol
, /* Write the number of columns here */
1679 Column
**paCol
/* Write the new column list here */
1681 sqlite3
*db
= pParse
->db
; /* Database connection */
1682 int i
, j
; /* Loop counters */
1683 u32 cnt
; /* Index added to make the name unique */
1684 Column
*aCol
, *pCol
; /* For looping over result columns */
1685 int nCol
; /* Number of columns in the result set */
1686 char *zName
; /* Column name */
1687 int nName
; /* Size of name in zName[] */
1688 Hash ht
; /* Hash table of column names */
1690 sqlite3HashInit(&ht
);
1692 nCol
= pEList
->nExpr
;
1693 aCol
= sqlite3DbMallocZero(db
, sizeof(aCol
[0])*nCol
);
1694 testcase( aCol
==0 );
1699 assert( nCol
==(i16
)nCol
);
1703 for(i
=0, pCol
=aCol
; i
<nCol
&& !db
->mallocFailed
; i
++, pCol
++){
1704 /* Get an appropriate name for the column
1706 if( (zName
= pEList
->a
[i
].zName
)!=0 ){
1707 /* If the column contains an "AS <name>" phrase, use <name> as the name */
1709 Expr
*pColExpr
= sqlite3ExprSkipCollate(pEList
->a
[i
].pExpr
);
1710 while( pColExpr
->op
==TK_DOT
){
1711 pColExpr
= pColExpr
->pRight
;
1712 assert( pColExpr
!=0 );
1714 if( (pColExpr
->op
==TK_COLUMN
|| pColExpr
->op
==TK_AGG_COLUMN
)
1715 && pColExpr
->pTab
!=0
1717 /* For columns use the column name name */
1718 int iCol
= pColExpr
->iColumn
;
1719 Table
*pTab
= pColExpr
->pTab
;
1720 if( iCol
<0 ) iCol
= pTab
->iPKey
;
1721 zName
= iCol
>=0 ? pTab
->aCol
[iCol
].zName
: "rowid";
1722 }else if( pColExpr
->op
==TK_ID
){
1723 assert( !ExprHasProperty(pColExpr
, EP_IntValue
) );
1724 zName
= pColExpr
->u
.zToken
;
1726 /* Use the original text of the column expression as its name */
1727 zName
= pEList
->a
[i
].zSpan
;
1731 zName
= sqlite3DbStrDup(db
, zName
);
1733 zName
= sqlite3MPrintf(db
,"column%d",i
+1);
1736 /* Make sure the column name is unique. If the name is not unique,
1737 ** append an integer to the name so that it becomes unique.
1740 while( zName
&& sqlite3HashFind(&ht
, zName
)!=0 ){
1741 nName
= sqlite3Strlen30(zName
);
1743 for(j
=nName
-1; j
>0 && sqlite3Isdigit(zName
[j
]); j
--){}
1744 if( zName
[j
]==':' ) nName
= j
;
1746 zName
= sqlite3MPrintf(db
, "%.*z:%u", nName
, zName
, ++cnt
);
1747 if( cnt
>3 ) sqlite3_randomness(sizeof(cnt
), &cnt
);
1749 pCol
->zName
= zName
;
1750 sqlite3ColumnPropertiesFromName(0, pCol
);
1751 if( zName
&& sqlite3HashInsert(&ht
, zName
, pCol
)==pCol
){
1752 sqlite3OomFault(db
);
1755 sqlite3HashClear(&ht
);
1756 if( db
->mallocFailed
){
1758 sqlite3DbFree(db
, aCol
[j
].zName
);
1760 sqlite3DbFree(db
, aCol
);
1763 return SQLITE_NOMEM_BKPT
;
1769 ** Add type and collation information to a column list based on
1770 ** a SELECT statement.
1772 ** The column list presumably came from selectColumnNamesFromExprList().
1773 ** The column list has only names, not types or collations. This
1774 ** routine goes through and adds the types and collations.
1776 ** This routine requires that all identifiers in the SELECT
1777 ** statement be resolved.
1779 void sqlite3SelectAddColumnTypeAndCollation(
1780 Parse
*pParse
, /* Parsing contexts */
1781 Table
*pTab
, /* Add column type information to this table */
1782 Select
*pSelect
/* SELECT used to determine types and collations */
1784 sqlite3
*db
= pParse
->db
;
1790 struct ExprList_item
*a
;
1793 assert( pSelect
!=0 );
1794 assert( (pSelect
->selFlags
& SF_Resolved
)!=0 );
1795 assert( pTab
->nCol
==pSelect
->pEList
->nExpr
|| db
->mallocFailed
);
1796 if( db
->mallocFailed
) return;
1797 memset(&sNC
, 0, sizeof(sNC
));
1798 sNC
.pSrcList
= pSelect
->pSrc
;
1799 a
= pSelect
->pEList
->a
;
1800 for(i
=0, pCol
=pTab
->aCol
; i
<pTab
->nCol
; i
++, pCol
++){
1804 zType
= columnType(&sNC
, p
, 0, 0, 0, &pCol
->szEst
);
1805 szAll
+= pCol
->szEst
;
1806 pCol
->affinity
= sqlite3ExprAffinity(p
);
1807 if( zType
&& (m
= sqlite3Strlen30(zType
))>0 ){
1808 n
= sqlite3Strlen30(pCol
->zName
);
1809 pCol
->zName
= sqlite3DbReallocOrFree(db
, pCol
->zName
, n
+m
+2);
1811 memcpy(&pCol
->zName
[n
+1], zType
, m
+1);
1812 pCol
->colFlags
|= COLFLAG_HASTYPE
;
1815 if( pCol
->affinity
==0 ) pCol
->affinity
= SQLITE_AFF_BLOB
;
1816 pColl
= sqlite3ExprCollSeq(pParse
, p
);
1817 if( pColl
&& pCol
->zColl
==0 ){
1818 pCol
->zColl
= sqlite3DbStrDup(db
, pColl
->zName
);
1821 pTab
->szTabRow
= sqlite3LogEst(szAll
*4);
1825 ** Given a SELECT statement, generate a Table structure that describes
1826 ** the result set of that SELECT.
1828 Table
*sqlite3ResultSetOfSelect(Parse
*pParse
, Select
*pSelect
){
1830 sqlite3
*db
= pParse
->db
;
1833 savedFlags
= db
->flags
;
1834 db
->flags
&= ~SQLITE_FullColNames
;
1835 db
->flags
|= SQLITE_ShortColNames
;
1836 sqlite3SelectPrep(pParse
, pSelect
, 0);
1837 if( pParse
->nErr
) return 0;
1838 while( pSelect
->pPrior
) pSelect
= pSelect
->pPrior
;
1839 db
->flags
= savedFlags
;
1840 pTab
= sqlite3DbMallocZero(db
, sizeof(Table
) );
1844 /* The sqlite3ResultSetOfSelect() is only used n contexts where lookaside
1846 assert( db
->lookaside
.bDisable
);
1849 pTab
->nRowLogEst
= 200; assert( 200==sqlite3LogEst(1048576) );
1850 sqlite3ColumnsFromExprList(pParse
, pSelect
->pEList
, &pTab
->nCol
, &pTab
->aCol
);
1851 sqlite3SelectAddColumnTypeAndCollation(pParse
, pTab
, pSelect
);
1853 if( db
->mallocFailed
){
1854 sqlite3DeleteTable(db
, pTab
);
1861 ** Get a VDBE for the given parser context. Create a new one if necessary.
1862 ** If an error occurs, return NULL and leave a message in pParse.
1864 Vdbe
*sqlite3GetVdbe(Parse
*pParse
){
1865 if( pParse
->pVdbe
){
1866 return pParse
->pVdbe
;
1868 if( pParse
->pToplevel
==0
1869 && OptimizationEnabled(pParse
->db
,SQLITE_FactorOutConst
)
1871 pParse
->okConstFactor
= 1;
1873 return sqlite3VdbeCreate(pParse
);
1878 ** Compute the iLimit and iOffset fields of the SELECT based on the
1879 ** pLimit and pOffset expressions. pLimit and pOffset hold the expressions
1880 ** that appear in the original SQL statement after the LIMIT and OFFSET
1881 ** keywords. Or NULL if those keywords are omitted. iLimit and iOffset
1882 ** are the integer memory register numbers for counters used to compute
1883 ** the limit and offset. If there is no limit and/or offset, then
1884 ** iLimit and iOffset are negative.
1886 ** This routine changes the values of iLimit and iOffset only if
1887 ** a limit or offset is defined by pLimit and pOffset. iLimit and
1888 ** iOffset should have been preset to appropriate default values (zero)
1889 ** prior to calling this routine.
1891 ** The iOffset register (if it exists) is initialized to the value
1892 ** of the OFFSET. The iLimit register is initialized to LIMIT. Register
1893 ** iOffset+1 is initialized to LIMIT+OFFSET.
1895 ** Only if pLimit!=0 or pOffset!=0 do the limit registers get
1896 ** redefined. The UNION ALL operator uses this property to force
1897 ** the reuse of the same limit and offset registers across multiple
1898 ** SELECT statements.
1900 static void computeLimitRegisters(Parse
*pParse
, Select
*p
, int iBreak
){
1905 if( p
->iLimit
) return;
1908 ** "LIMIT -1" always shows all rows. There is some
1909 ** controversy about what the correct behavior should be.
1910 ** The current implementation interprets "LIMIT 0" to mean
1913 sqlite3ExprCacheClear(pParse
);
1914 assert( p
->pOffset
==0 || p
->pLimit
!=0 );
1916 p
->iLimit
= iLimit
= ++pParse
->nMem
;
1917 v
= sqlite3GetVdbe(pParse
);
1919 if( sqlite3ExprIsInteger(p
->pLimit
, &n
) ){
1920 sqlite3VdbeAddOp2(v
, OP_Integer
, n
, iLimit
);
1921 VdbeComment((v
, "LIMIT counter"));
1923 sqlite3VdbeGoto(v
, iBreak
);
1924 }else if( n
>=0 && p
->nSelectRow
>sqlite3LogEst((u64
)n
) ){
1925 p
->nSelectRow
= sqlite3LogEst((u64
)n
);
1926 p
->selFlags
|= SF_FixedLimit
;
1929 sqlite3ExprCode(pParse
, p
->pLimit
, iLimit
);
1930 sqlite3VdbeAddOp1(v
, OP_MustBeInt
, iLimit
); VdbeCoverage(v
);
1931 VdbeComment((v
, "LIMIT counter"));
1932 sqlite3VdbeAddOp2(v
, OP_IfNot
, iLimit
, iBreak
); VdbeCoverage(v
);
1935 p
->iOffset
= iOffset
= ++pParse
->nMem
;
1936 pParse
->nMem
++; /* Allocate an extra register for limit+offset */
1937 sqlite3ExprCode(pParse
, p
->pOffset
, iOffset
);
1938 sqlite3VdbeAddOp1(v
, OP_MustBeInt
, iOffset
); VdbeCoverage(v
);
1939 VdbeComment((v
, "OFFSET counter"));
1940 sqlite3VdbeAddOp3(v
, OP_OffsetLimit
, iLimit
, iOffset
+1, iOffset
);
1941 VdbeComment((v
, "LIMIT+OFFSET"));
1946 #ifndef SQLITE_OMIT_COMPOUND_SELECT
1948 ** Return the appropriate collating sequence for the iCol-th column of
1949 ** the result set for the compound-select statement "p". Return NULL if
1950 ** the column has no default collating sequence.
1952 ** The collating sequence for the compound select is taken from the
1953 ** left-most term of the select that has a collating sequence.
1955 static CollSeq
*multiSelectCollSeq(Parse
*pParse
, Select
*p
, int iCol
){
1958 pRet
= multiSelectCollSeq(pParse
, p
->pPrior
, iCol
);
1963 /* iCol must be less than p->pEList->nExpr. Otherwise an error would
1964 ** have been thrown during name resolution and we would not have gotten
1966 if( pRet
==0 && ALWAYS(iCol
<p
->pEList
->nExpr
) ){
1967 pRet
= sqlite3ExprCollSeq(pParse
, p
->pEList
->a
[iCol
].pExpr
);
1973 ** The select statement passed as the second parameter is a compound SELECT
1974 ** with an ORDER BY clause. This function allocates and returns a KeyInfo
1975 ** structure suitable for implementing the ORDER BY.
1977 ** Space to hold the KeyInfo structure is obtained from malloc. The calling
1978 ** function is responsible for ensuring that this structure is eventually
1981 static KeyInfo
*multiSelectOrderByKeyInfo(Parse
*pParse
, Select
*p
, int nExtra
){
1982 ExprList
*pOrderBy
= p
->pOrderBy
;
1983 int nOrderBy
= p
->pOrderBy
->nExpr
;
1984 sqlite3
*db
= pParse
->db
;
1985 KeyInfo
*pRet
= sqlite3KeyInfoAlloc(db
, nOrderBy
+nExtra
, 1);
1988 for(i
=0; i
<nOrderBy
; i
++){
1989 struct ExprList_item
*pItem
= &pOrderBy
->a
[i
];
1990 Expr
*pTerm
= pItem
->pExpr
;
1993 if( pTerm
->flags
& EP_Collate
){
1994 pColl
= sqlite3ExprCollSeq(pParse
, pTerm
);
1996 pColl
= multiSelectCollSeq(pParse
, p
, pItem
->u
.x
.iOrderByCol
-1);
1997 if( pColl
==0 ) pColl
= db
->pDfltColl
;
1998 pOrderBy
->a
[i
].pExpr
=
1999 sqlite3ExprAddCollateString(pParse
, pTerm
, pColl
->zName
);
2001 assert( sqlite3KeyInfoIsWriteable(pRet
) );
2002 pRet
->aColl
[i
] = pColl
;
2003 pRet
->aSortOrder
[i
] = pOrderBy
->a
[i
].sortOrder
;
2010 #ifndef SQLITE_OMIT_CTE
2012 ** This routine generates VDBE code to compute the content of a WITH RECURSIVE
2013 ** query of the form:
2015 ** <recursive-table> AS (<setup-query> UNION [ALL] <recursive-query>)
2016 ** \___________/ \_______________/
2020 ** There is exactly one reference to the recursive-table in the FROM clause
2021 ** of recursive-query, marked with the SrcList->a[].fg.isRecursive flag.
2023 ** The setup-query runs once to generate an initial set of rows that go
2024 ** into a Queue table. Rows are extracted from the Queue table one by
2025 ** one. Each row extracted from Queue is output to pDest. Then the single
2026 ** extracted row (now in the iCurrent table) becomes the content of the
2027 ** recursive-table for a recursive-query run. The output of the recursive-query
2028 ** is added back into the Queue table. Then another row is extracted from Queue
2029 ** and the iteration continues until the Queue table is empty.
2031 ** If the compound query operator is UNION then no duplicate rows are ever
2032 ** inserted into the Queue table. The iDistinct table keeps a copy of all rows
2033 ** that have ever been inserted into Queue and causes duplicates to be
2034 ** discarded. If the operator is UNION ALL, then duplicates are allowed.
2036 ** If the query has an ORDER BY, then entries in the Queue table are kept in
2037 ** ORDER BY order and the first entry is extracted for each cycle. Without
2038 ** an ORDER BY, the Queue table is just a FIFO.
2040 ** If a LIMIT clause is provided, then the iteration stops after LIMIT rows
2041 ** have been output to pDest. A LIMIT of zero means to output no rows and a
2042 ** negative LIMIT means to output all rows. If there is also an OFFSET clause
2043 ** with a positive value, then the first OFFSET outputs are discarded rather
2044 ** than being sent to pDest. The LIMIT count does not begin until after OFFSET
2045 ** rows have been skipped.
2047 static void generateWithRecursiveQuery(
2048 Parse
*pParse
, /* Parsing context */
2049 Select
*p
, /* The recursive SELECT to be coded */
2050 SelectDest
*pDest
/* What to do with query results */
2052 SrcList
*pSrc
= p
->pSrc
; /* The FROM clause of the recursive query */
2053 int nCol
= p
->pEList
->nExpr
; /* Number of columns in the recursive table */
2054 Vdbe
*v
= pParse
->pVdbe
; /* The prepared statement under construction */
2055 Select
*pSetup
= p
->pPrior
; /* The setup query */
2056 int addrTop
; /* Top of the loop */
2057 int addrCont
, addrBreak
; /* CONTINUE and BREAK addresses */
2058 int iCurrent
= 0; /* The Current table */
2059 int regCurrent
; /* Register holding Current table */
2060 int iQueue
; /* The Queue table */
2061 int iDistinct
= 0; /* To ensure unique results if UNION */
2062 int eDest
= SRT_Fifo
; /* How to write to Queue */
2063 SelectDest destQueue
; /* SelectDest targetting the Queue table */
2064 int i
; /* Loop counter */
2065 int rc
; /* Result code */
2066 ExprList
*pOrderBy
; /* The ORDER BY clause */
2067 Expr
*pLimit
, *pOffset
; /* Saved LIMIT and OFFSET */
2068 int regLimit
, regOffset
; /* Registers used by LIMIT and OFFSET */
2070 /* Obtain authorization to do a recursive query */
2071 if( sqlite3AuthCheck(pParse
, SQLITE_RECURSIVE
, 0, 0, 0) ) return;
2073 /* Process the LIMIT and OFFSET clauses, if they exist */
2074 addrBreak
= sqlite3VdbeMakeLabel(v
);
2075 p
->nSelectRow
= 320; /* 4 billion rows */
2076 computeLimitRegisters(pParse
, p
, addrBreak
);
2078 pOffset
= p
->pOffset
;
2079 regLimit
= p
->iLimit
;
2080 regOffset
= p
->iOffset
;
2081 p
->pLimit
= p
->pOffset
= 0;
2082 p
->iLimit
= p
->iOffset
= 0;
2083 pOrderBy
= p
->pOrderBy
;
2085 /* Locate the cursor number of the Current table */
2086 for(i
=0; ALWAYS(i
<pSrc
->nSrc
); i
++){
2087 if( pSrc
->a
[i
].fg
.isRecursive
){
2088 iCurrent
= pSrc
->a
[i
].iCursor
;
2093 /* Allocate cursors numbers for Queue and Distinct. The cursor number for
2094 ** the Distinct table must be exactly one greater than Queue in order
2095 ** for the SRT_DistFifo and SRT_DistQueue destinations to work. */
2096 iQueue
= pParse
->nTab
++;
2097 if( p
->op
==TK_UNION
){
2098 eDest
= pOrderBy
? SRT_DistQueue
: SRT_DistFifo
;
2099 iDistinct
= pParse
->nTab
++;
2101 eDest
= pOrderBy
? SRT_Queue
: SRT_Fifo
;
2103 sqlite3SelectDestInit(&destQueue
, eDest
, iQueue
);
2105 /* Allocate cursors for Current, Queue, and Distinct. */
2106 regCurrent
= ++pParse
->nMem
;
2107 sqlite3VdbeAddOp3(v
, OP_OpenPseudo
, iCurrent
, regCurrent
, nCol
);
2109 KeyInfo
*pKeyInfo
= multiSelectOrderByKeyInfo(pParse
, p
, 1);
2110 sqlite3VdbeAddOp4(v
, OP_OpenEphemeral
, iQueue
, pOrderBy
->nExpr
+2, 0,
2111 (char*)pKeyInfo
, P4_KEYINFO
);
2112 destQueue
.pOrderBy
= pOrderBy
;
2114 sqlite3VdbeAddOp2(v
, OP_OpenEphemeral
, iQueue
, nCol
);
2116 VdbeComment((v
, "Queue table"));
2118 p
->addrOpenEphm
[0] = sqlite3VdbeAddOp2(v
, OP_OpenEphemeral
, iDistinct
, 0);
2119 p
->selFlags
|= SF_UsesEphemeral
;
2122 /* Detach the ORDER BY clause from the compound SELECT */
2125 /* Store the results of the setup-query in Queue. */
2127 rc
= sqlite3Select(pParse
, pSetup
, &destQueue
);
2129 if( rc
) goto end_of_recursive_query
;
2131 /* Find the next row in the Queue and output that row */
2132 addrTop
= sqlite3VdbeAddOp2(v
, OP_Rewind
, iQueue
, addrBreak
); VdbeCoverage(v
);
2134 /* Transfer the next row in Queue over to Current */
2135 sqlite3VdbeAddOp1(v
, OP_NullRow
, iCurrent
); /* To reset column cache */
2137 sqlite3VdbeAddOp3(v
, OP_Column
, iQueue
, pOrderBy
->nExpr
+1, regCurrent
);
2139 sqlite3VdbeAddOp2(v
, OP_RowData
, iQueue
, regCurrent
);
2141 sqlite3VdbeAddOp1(v
, OP_Delete
, iQueue
);
2143 /* Output the single row in Current */
2144 addrCont
= sqlite3VdbeMakeLabel(v
);
2145 codeOffset(v
, regOffset
, addrCont
);
2146 selectInnerLoop(pParse
, p
, iCurrent
,
2147 0, 0, pDest
, addrCont
, addrBreak
);
2149 sqlite3VdbeAddOp2(v
, OP_DecrJumpZero
, regLimit
, addrBreak
);
2152 sqlite3VdbeResolveLabel(v
, addrCont
);
2154 /* Execute the recursive SELECT taking the single row in Current as
2155 ** the value for the recursive-table. Store the results in the Queue.
2157 if( p
->selFlags
& SF_Aggregate
){
2158 sqlite3ErrorMsg(pParse
, "recursive aggregate queries not supported");
2161 sqlite3Select(pParse
, p
, &destQueue
);
2162 assert( p
->pPrior
==0 );
2166 /* Keep running the loop until the Queue is empty */
2167 sqlite3VdbeGoto(v
, addrTop
);
2168 sqlite3VdbeResolveLabel(v
, addrBreak
);
2170 end_of_recursive_query
:
2171 sqlite3ExprListDelete(pParse
->db
, p
->pOrderBy
);
2172 p
->pOrderBy
= pOrderBy
;
2174 p
->pOffset
= pOffset
;
2177 #endif /* SQLITE_OMIT_CTE */
2179 /* Forward references */
2180 static int multiSelectOrderBy(
2181 Parse
*pParse
, /* Parsing context */
2182 Select
*p
, /* The right-most of SELECTs to be coded */
2183 SelectDest
*pDest
/* What to do with query results */
2187 ** Handle the special case of a compound-select that originates from a
2188 ** VALUES clause. By handling this as a special case, we avoid deep
2189 ** recursion, and thus do not need to enforce the SQLITE_LIMIT_COMPOUND_SELECT
2190 ** on a VALUES clause.
2192 ** Because the Select object originates from a VALUES clause:
2193 ** (1) It has no LIMIT or OFFSET
2194 ** (2) All terms are UNION ALL
2195 ** (3) There is no ORDER BY clause
2197 static int multiSelectValues(
2198 Parse
*pParse
, /* Parsing context */
2199 Select
*p
, /* The right-most of SELECTs to be coded */
2200 SelectDest
*pDest
/* What to do with query results */
2205 assert( p
->selFlags
& SF_MultiValue
);
2207 assert( p
->selFlags
& SF_Values
);
2208 assert( p
->op
==TK_ALL
|| (p
->op
==TK_SELECT
&& p
->pPrior
==0) );
2209 assert( p
->pLimit
==0 );
2210 assert( p
->pOffset
==0 );
2211 assert( p
->pNext
==0 || p
->pEList
->nExpr
==p
->pNext
->pEList
->nExpr
);
2212 if( p
->pPrior
==0 ) break;
2213 assert( p
->pPrior
->pNext
==p
);
2220 rc
= sqlite3Select(pParse
, p
, pDest
);
2223 p
->nSelectRow
= nRow
;
2230 ** This routine is called to process a compound query form from
2231 ** two or more separate queries using UNION, UNION ALL, EXCEPT, or
2234 ** "p" points to the right-most of the two queries. the query on the
2235 ** left is p->pPrior. The left query could also be a compound query
2236 ** in which case this routine will be called recursively.
2238 ** The results of the total query are to be written into a destination
2239 ** of type eDest with parameter iParm.
2241 ** Example 1: Consider a three-way compound SQL statement.
2243 ** SELECT a FROM t1 UNION SELECT b FROM t2 UNION SELECT c FROM t3
2245 ** This statement is parsed up as follows:
2249 ** `-----> SELECT b FROM t2
2251 ** `------> SELECT a FROM t1
2253 ** The arrows in the diagram above represent the Select.pPrior pointer.
2254 ** So if this routine is called with p equal to the t3 query, then
2255 ** pPrior will be the t2 query. p->op will be TK_UNION in this case.
2257 ** Notice that because of the way SQLite parses compound SELECTs, the
2258 ** individual selects always group from left to right.
2260 static int multiSelect(
2261 Parse
*pParse
, /* Parsing context */
2262 Select
*p
, /* The right-most of SELECTs to be coded */
2263 SelectDest
*pDest
/* What to do with query results */
2265 int rc
= SQLITE_OK
; /* Success code from a subroutine */
2266 Select
*pPrior
; /* Another SELECT immediately to our left */
2267 Vdbe
*v
; /* Generate code to this VDBE */
2268 SelectDest dest
; /* Alternative data destination */
2269 Select
*pDelete
= 0; /* Chain of simple selects to delete */
2270 sqlite3
*db
; /* Database connection */
2271 #ifndef SQLITE_OMIT_EXPLAIN
2272 int iSub1
= 0; /* EQP id of left-hand query */
2273 int iSub2
= 0; /* EQP id of right-hand query */
2276 /* Make sure there is no ORDER BY or LIMIT clause on prior SELECTs. Only
2277 ** the last (right-most) SELECT in the series may have an ORDER BY or LIMIT.
2279 assert( p
&& p
->pPrior
); /* Calling function guarantees this much */
2280 assert( (p
->selFlags
& SF_Recursive
)==0 || p
->op
==TK_ALL
|| p
->op
==TK_UNION
);
2284 if( pPrior
->pOrderBy
|| pPrior
->pLimit
){
2285 sqlite3ErrorMsg(pParse
,"%s clause should come after %s not before",
2286 pPrior
->pOrderBy
!=0 ? "ORDER BY" : "LIMIT", selectOpName(p
->op
));
2288 goto multi_select_end
;
2291 v
= sqlite3GetVdbe(pParse
);
2292 assert( v
!=0 ); /* The VDBE already created by calling function */
2294 /* Create the destination temporary table if necessary
2296 if( dest
.eDest
==SRT_EphemTab
){
2297 assert( p
->pEList
);
2298 sqlite3VdbeAddOp2(v
, OP_OpenEphemeral
, dest
.iSDParm
, p
->pEList
->nExpr
);
2299 dest
.eDest
= SRT_Table
;
2302 /* Special handling for a compound-select that originates as a VALUES clause.
2304 if( p
->selFlags
& SF_MultiValue
){
2305 rc
= multiSelectValues(pParse
, p
, &dest
);
2306 goto multi_select_end
;
2309 /* Make sure all SELECTs in the statement have the same number of elements
2310 ** in their result sets.
2312 assert( p
->pEList
&& pPrior
->pEList
);
2313 assert( p
->pEList
->nExpr
==pPrior
->pEList
->nExpr
);
2315 #ifndef SQLITE_OMIT_CTE
2316 if( p
->selFlags
& SF_Recursive
){
2317 generateWithRecursiveQuery(pParse
, p
, &dest
);
2321 /* Compound SELECTs that have an ORDER BY clause are handled separately.
2324 return multiSelectOrderBy(pParse
, p
, pDest
);
2327 /* Generate code for the left and right SELECT statements.
2333 assert( !pPrior
->pLimit
);
2334 pPrior
->iLimit
= p
->iLimit
;
2335 pPrior
->iOffset
= p
->iOffset
;
2336 pPrior
->pLimit
= p
->pLimit
;
2337 pPrior
->pOffset
= p
->pOffset
;
2338 explainSetInteger(iSub1
, pParse
->iNextSelectId
);
2339 rc
= sqlite3Select(pParse
, pPrior
, &dest
);
2343 goto multi_select_end
;
2346 p
->iLimit
= pPrior
->iLimit
;
2347 p
->iOffset
= pPrior
->iOffset
;
2349 addr
= sqlite3VdbeAddOp1(v
, OP_IfNot
, p
->iLimit
); VdbeCoverage(v
);
2350 VdbeComment((v
, "Jump ahead if LIMIT reached"));
2352 sqlite3VdbeAddOp3(v
, OP_OffsetLimit
,
2353 p
->iLimit
, p
->iOffset
+1, p
->iOffset
);
2356 explainSetInteger(iSub2
, pParse
->iNextSelectId
);
2357 rc
= sqlite3Select(pParse
, p
, &dest
);
2358 testcase( rc
!=SQLITE_OK
);
2359 pDelete
= p
->pPrior
;
2361 p
->nSelectRow
= sqlite3LogEstAdd(p
->nSelectRow
, pPrior
->nSelectRow
);
2363 && sqlite3ExprIsInteger(pPrior
->pLimit
, &nLimit
)
2364 && nLimit
>0 && p
->nSelectRow
> sqlite3LogEst((u64
)nLimit
)
2366 p
->nSelectRow
= sqlite3LogEst((u64
)nLimit
);
2369 sqlite3VdbeJumpHere(v
, addr
);
2375 int unionTab
; /* Cursor number of the temporary table holding result */
2376 u8 op
= 0; /* One of the SRT_ operations to apply to self */
2377 int priorOp
; /* The SRT_ operation to apply to prior selects */
2378 Expr
*pLimit
, *pOffset
; /* Saved values of p->nLimit and p->nOffset */
2380 SelectDest uniondest
;
2382 testcase( p
->op
==TK_EXCEPT
);
2383 testcase( p
->op
==TK_UNION
);
2384 priorOp
= SRT_Union
;
2385 if( dest
.eDest
==priorOp
){
2386 /* We can reuse a temporary table generated by a SELECT to our
2389 assert( p
->pLimit
==0 ); /* Not allowed on leftward elements */
2390 assert( p
->pOffset
==0 ); /* Not allowed on leftward elements */
2391 unionTab
= dest
.iSDParm
;
2393 /* We will need to create our own temporary table to hold the
2394 ** intermediate results.
2396 unionTab
= pParse
->nTab
++;
2397 assert( p
->pOrderBy
==0 );
2398 addr
= sqlite3VdbeAddOp2(v
, OP_OpenEphemeral
, unionTab
, 0);
2399 assert( p
->addrOpenEphm
[0] == -1 );
2400 p
->addrOpenEphm
[0] = addr
;
2401 findRightmost(p
)->selFlags
|= SF_UsesEphemeral
;
2402 assert( p
->pEList
);
2405 /* Code the SELECT statements to our left
2407 assert( !pPrior
->pOrderBy
);
2408 sqlite3SelectDestInit(&uniondest
, priorOp
, unionTab
);
2409 explainSetInteger(iSub1
, pParse
->iNextSelectId
);
2410 rc
= sqlite3Select(pParse
, pPrior
, &uniondest
);
2412 goto multi_select_end
;
2415 /* Code the current SELECT statement
2417 if( p
->op
==TK_EXCEPT
){
2420 assert( p
->op
==TK_UNION
);
2426 pOffset
= p
->pOffset
;
2428 uniondest
.eDest
= op
;
2429 explainSetInteger(iSub2
, pParse
->iNextSelectId
);
2430 rc
= sqlite3Select(pParse
, p
, &uniondest
);
2431 testcase( rc
!=SQLITE_OK
);
2432 /* Query flattening in sqlite3Select() might refill p->pOrderBy.
2433 ** Be sure to delete p->pOrderBy, therefore, to avoid a memory leak. */
2434 sqlite3ExprListDelete(db
, p
->pOrderBy
);
2435 pDelete
= p
->pPrior
;
2438 if( p
->op
==TK_UNION
){
2439 p
->nSelectRow
= sqlite3LogEstAdd(p
->nSelectRow
, pPrior
->nSelectRow
);
2441 sqlite3ExprDelete(db
, p
->pLimit
);
2443 p
->pOffset
= pOffset
;
2447 /* Convert the data in the temporary table into whatever form
2448 ** it is that we currently need.
2450 assert( unionTab
==dest
.iSDParm
|| dest
.eDest
!=priorOp
);
2451 if( dest
.eDest
!=priorOp
){
2452 int iCont
, iBreak
, iStart
;
2453 assert( p
->pEList
);
2454 iBreak
= sqlite3VdbeMakeLabel(v
);
2455 iCont
= sqlite3VdbeMakeLabel(v
);
2456 computeLimitRegisters(pParse
, p
, iBreak
);
2457 sqlite3VdbeAddOp2(v
, OP_Rewind
, unionTab
, iBreak
); VdbeCoverage(v
);
2458 iStart
= sqlite3VdbeCurrentAddr(v
);
2459 selectInnerLoop(pParse
, p
, unionTab
,
2460 0, 0, &dest
, iCont
, iBreak
);
2461 sqlite3VdbeResolveLabel(v
, iCont
);
2462 sqlite3VdbeAddOp2(v
, OP_Next
, unionTab
, iStart
); VdbeCoverage(v
);
2463 sqlite3VdbeResolveLabel(v
, iBreak
);
2464 sqlite3VdbeAddOp2(v
, OP_Close
, unionTab
, 0);
2468 default: assert( p
->op
==TK_INTERSECT
); {
2470 int iCont
, iBreak
, iStart
;
2471 Expr
*pLimit
, *pOffset
;
2473 SelectDest intersectdest
;
2476 /* INTERSECT is different from the others since it requires
2477 ** two temporary tables. Hence it has its own case. Begin
2478 ** by allocating the tables we will need.
2480 tab1
= pParse
->nTab
++;
2481 tab2
= pParse
->nTab
++;
2482 assert( p
->pOrderBy
==0 );
2484 addr
= sqlite3VdbeAddOp2(v
, OP_OpenEphemeral
, tab1
, 0);
2485 assert( p
->addrOpenEphm
[0] == -1 );
2486 p
->addrOpenEphm
[0] = addr
;
2487 findRightmost(p
)->selFlags
|= SF_UsesEphemeral
;
2488 assert( p
->pEList
);
2490 /* Code the SELECTs to our left into temporary table "tab1".
2492 sqlite3SelectDestInit(&intersectdest
, SRT_Union
, tab1
);
2493 explainSetInteger(iSub1
, pParse
->iNextSelectId
);
2494 rc
= sqlite3Select(pParse
, pPrior
, &intersectdest
);
2496 goto multi_select_end
;
2499 /* Code the current SELECT into temporary table "tab2"
2501 addr
= sqlite3VdbeAddOp2(v
, OP_OpenEphemeral
, tab2
, 0);
2502 assert( p
->addrOpenEphm
[1] == -1 );
2503 p
->addrOpenEphm
[1] = addr
;
2507 pOffset
= p
->pOffset
;
2509 intersectdest
.iSDParm
= tab2
;
2510 explainSetInteger(iSub2
, pParse
->iNextSelectId
);
2511 rc
= sqlite3Select(pParse
, p
, &intersectdest
);
2512 testcase( rc
!=SQLITE_OK
);
2513 pDelete
= p
->pPrior
;
2515 if( p
->nSelectRow
>pPrior
->nSelectRow
) p
->nSelectRow
= pPrior
->nSelectRow
;
2516 sqlite3ExprDelete(db
, p
->pLimit
);
2518 p
->pOffset
= pOffset
;
2520 /* Generate code to take the intersection of the two temporary
2523 assert( p
->pEList
);
2524 iBreak
= sqlite3VdbeMakeLabel(v
);
2525 iCont
= sqlite3VdbeMakeLabel(v
);
2526 computeLimitRegisters(pParse
, p
, iBreak
);
2527 sqlite3VdbeAddOp2(v
, OP_Rewind
, tab1
, iBreak
); VdbeCoverage(v
);
2528 r1
= sqlite3GetTempReg(pParse
);
2529 iStart
= sqlite3VdbeAddOp2(v
, OP_RowData
, tab1
, r1
);
2530 sqlite3VdbeAddOp4Int(v
, OP_NotFound
, tab2
, iCont
, r1
, 0); VdbeCoverage(v
);
2531 sqlite3ReleaseTempReg(pParse
, r1
);
2532 selectInnerLoop(pParse
, p
, tab1
,
2533 0, 0, &dest
, iCont
, iBreak
);
2534 sqlite3VdbeResolveLabel(v
, iCont
);
2535 sqlite3VdbeAddOp2(v
, OP_Next
, tab1
, iStart
); VdbeCoverage(v
);
2536 sqlite3VdbeResolveLabel(v
, iBreak
);
2537 sqlite3VdbeAddOp2(v
, OP_Close
, tab2
, 0);
2538 sqlite3VdbeAddOp2(v
, OP_Close
, tab1
, 0);
2543 explainComposite(pParse
, p
->op
, iSub1
, iSub2
, p
->op
!=TK_ALL
);
2545 /* Compute collating sequences used by
2546 ** temporary tables needed to implement the compound select.
2547 ** Attach the KeyInfo structure to all temporary tables.
2549 ** This section is run by the right-most SELECT statement only.
2550 ** SELECT statements to the left always skip this part. The right-most
2551 ** SELECT might also skip this part if it has no ORDER BY clause and
2552 ** no temp tables are required.
2554 if( p
->selFlags
& SF_UsesEphemeral
){
2555 int i
; /* Loop counter */
2556 KeyInfo
*pKeyInfo
; /* Collating sequence for the result set */
2557 Select
*pLoop
; /* For looping through SELECT statements */
2558 CollSeq
**apColl
; /* For looping through pKeyInfo->aColl[] */
2559 int nCol
; /* Number of columns in result set */
2561 assert( p
->pNext
==0 );
2562 nCol
= p
->pEList
->nExpr
;
2563 pKeyInfo
= sqlite3KeyInfoAlloc(db
, nCol
, 1);
2565 rc
= SQLITE_NOMEM_BKPT
;
2566 goto multi_select_end
;
2568 for(i
=0, apColl
=pKeyInfo
->aColl
; i
<nCol
; i
++, apColl
++){
2569 *apColl
= multiSelectCollSeq(pParse
, p
, i
);
2571 *apColl
= db
->pDfltColl
;
2575 for(pLoop
=p
; pLoop
; pLoop
=pLoop
->pPrior
){
2577 int addr
= pLoop
->addrOpenEphm
[i
];
2579 /* If [0] is unused then [1] is also unused. So we can
2580 ** always safely abort as soon as the first unused slot is found */
2581 assert( pLoop
->addrOpenEphm
[1]<0 );
2584 sqlite3VdbeChangeP2(v
, addr
, nCol
);
2585 sqlite3VdbeChangeP4(v
, addr
, (char*)sqlite3KeyInfoRef(pKeyInfo
),
2587 pLoop
->addrOpenEphm
[i
] = -1;
2590 sqlite3KeyInfoUnref(pKeyInfo
);
2594 pDest
->iSdst
= dest
.iSdst
;
2595 pDest
->nSdst
= dest
.nSdst
;
2596 sqlite3SelectDelete(db
, pDelete
);
2599 #endif /* SQLITE_OMIT_COMPOUND_SELECT */
2602 ** Error message for when two or more terms of a compound select have different
2603 ** size result sets.
2605 void sqlite3SelectWrongNumTermsError(Parse
*pParse
, Select
*p
){
2606 if( p
->selFlags
& SF_Values
){
2607 sqlite3ErrorMsg(pParse
, "all VALUES must have the same number of terms");
2609 sqlite3ErrorMsg(pParse
, "SELECTs to the left and right of %s"
2610 " do not have the same number of result columns", selectOpName(p
->op
));
2615 ** Code an output subroutine for a coroutine implementation of a
2618 ** The data to be output is contained in pIn->iSdst. There are
2619 ** pIn->nSdst columns to be output. pDest is where the output should
2622 ** regReturn is the number of the register holding the subroutine
2625 ** If regPrev>0 then it is the first register in a vector that
2626 ** records the previous output. mem[regPrev] is a flag that is false
2627 ** if there has been no previous output. If regPrev>0 then code is
2628 ** generated to suppress duplicates. pKeyInfo is used for comparing
2631 ** If the LIMIT found in p->iLimit is reached, jump immediately to
2634 static int generateOutputSubroutine(
2635 Parse
*pParse
, /* Parsing context */
2636 Select
*p
, /* The SELECT statement */
2637 SelectDest
*pIn
, /* Coroutine supplying data */
2638 SelectDest
*pDest
, /* Where to send the data */
2639 int regReturn
, /* The return address register */
2640 int regPrev
, /* Previous result register. No uniqueness if 0 */
2641 KeyInfo
*pKeyInfo
, /* For comparing with previous entry */
2642 int iBreak
/* Jump here if we hit the LIMIT */
2644 Vdbe
*v
= pParse
->pVdbe
;
2648 addr
= sqlite3VdbeCurrentAddr(v
);
2649 iContinue
= sqlite3VdbeMakeLabel(v
);
2651 /* Suppress duplicates for UNION, EXCEPT, and INTERSECT
2655 addr1
= sqlite3VdbeAddOp1(v
, OP_IfNot
, regPrev
); VdbeCoverage(v
);
2656 addr2
= sqlite3VdbeAddOp4(v
, OP_Compare
, pIn
->iSdst
, regPrev
+1, pIn
->nSdst
,
2657 (char*)sqlite3KeyInfoRef(pKeyInfo
), P4_KEYINFO
);
2658 sqlite3VdbeAddOp3(v
, OP_Jump
, addr2
+2, iContinue
, addr2
+2); VdbeCoverage(v
);
2659 sqlite3VdbeJumpHere(v
, addr1
);
2660 sqlite3VdbeAddOp3(v
, OP_Copy
, pIn
->iSdst
, regPrev
+1, pIn
->nSdst
-1);
2661 sqlite3VdbeAddOp2(v
, OP_Integer
, 1, regPrev
);
2663 if( pParse
->db
->mallocFailed
) return 0;
2665 /* Suppress the first OFFSET entries if there is an OFFSET clause
2667 codeOffset(v
, p
->iOffset
, iContinue
);
2669 assert( pDest
->eDest
!=SRT_Exists
);
2670 assert( pDest
->eDest
!=SRT_Table
);
2671 switch( pDest
->eDest
){
2672 /* Store the result as data using a unique key.
2674 case SRT_EphemTab
: {
2675 int r1
= sqlite3GetTempReg(pParse
);
2676 int r2
= sqlite3GetTempReg(pParse
);
2677 sqlite3VdbeAddOp3(v
, OP_MakeRecord
, pIn
->iSdst
, pIn
->nSdst
, r1
);
2678 sqlite3VdbeAddOp2(v
, OP_NewRowid
, pDest
->iSDParm
, r2
);
2679 sqlite3VdbeAddOp3(v
, OP_Insert
, pDest
->iSDParm
, r1
, r2
);
2680 sqlite3VdbeChangeP5(v
, OPFLAG_APPEND
);
2681 sqlite3ReleaseTempReg(pParse
, r2
);
2682 sqlite3ReleaseTempReg(pParse
, r1
);
2686 #ifndef SQLITE_OMIT_SUBQUERY
2687 /* If we are creating a set for an "expr IN (SELECT ...)".
2691 testcase( pIn
->nSdst
>1 );
2692 r1
= sqlite3GetTempReg(pParse
);
2693 sqlite3VdbeAddOp4(v
, OP_MakeRecord
, pIn
->iSdst
, pIn
->nSdst
,
2694 r1
, pDest
->zAffSdst
, pIn
->nSdst
);
2695 sqlite3ExprCacheAffinityChange(pParse
, pIn
->iSdst
, pIn
->nSdst
);
2696 sqlite3VdbeAddOp4Int(v
, OP_IdxInsert
, pDest
->iSDParm
, r1
,
2697 pIn
->iSdst
, pIn
->nSdst
);
2698 sqlite3ReleaseTempReg(pParse
, r1
);
2702 /* If this is a scalar select that is part of an expression, then
2703 ** store the results in the appropriate memory cell and break out
2704 ** of the scan loop.
2707 assert( pIn
->nSdst
==1 || pParse
->nErr
>0 ); testcase( pIn
->nSdst
!=1 );
2708 sqlite3ExprCodeMove(pParse
, pIn
->iSdst
, pDest
->iSDParm
, 1);
2709 /* The LIMIT clause will jump out of the loop for us */
2712 #endif /* #ifndef SQLITE_OMIT_SUBQUERY */
2714 /* The results are stored in a sequence of registers
2715 ** starting at pDest->iSdst. Then the co-routine yields.
2717 case SRT_Coroutine
: {
2718 if( pDest
->iSdst
==0 ){
2719 pDest
->iSdst
= sqlite3GetTempRange(pParse
, pIn
->nSdst
);
2720 pDest
->nSdst
= pIn
->nSdst
;
2722 sqlite3ExprCodeMove(pParse
, pIn
->iSdst
, pDest
->iSdst
, pIn
->nSdst
);
2723 sqlite3VdbeAddOp1(v
, OP_Yield
, pDest
->iSDParm
);
2727 /* If none of the above, then the result destination must be
2728 ** SRT_Output. This routine is never called with any other
2729 ** destination other than the ones handled above or SRT_Output.
2731 ** For SRT_Output, results are stored in a sequence of registers.
2732 ** Then the OP_ResultRow opcode is used to cause sqlite3_step() to
2733 ** return the next row of result.
2736 assert( pDest
->eDest
==SRT_Output
);
2737 sqlite3VdbeAddOp2(v
, OP_ResultRow
, pIn
->iSdst
, pIn
->nSdst
);
2738 sqlite3ExprCacheAffinityChange(pParse
, pIn
->iSdst
, pIn
->nSdst
);
2743 /* Jump to the end of the loop if the LIMIT is reached.
2746 sqlite3VdbeAddOp2(v
, OP_DecrJumpZero
, p
->iLimit
, iBreak
); VdbeCoverage(v
);
2749 /* Generate the subroutine return
2751 sqlite3VdbeResolveLabel(v
, iContinue
);
2752 sqlite3VdbeAddOp1(v
, OP_Return
, regReturn
);
2758 ** Alternative compound select code generator for cases when there
2759 ** is an ORDER BY clause.
2761 ** We assume a query of the following form:
2763 ** <selectA> <operator> <selectB> ORDER BY <orderbylist>
2765 ** <operator> is one of UNION ALL, UNION, EXCEPT, or INTERSECT. The idea
2766 ** is to code both <selectA> and <selectB> with the ORDER BY clause as
2767 ** co-routines. Then run the co-routines in parallel and merge the results
2768 ** into the output. In addition to the two coroutines (called selectA and
2769 ** selectB) there are 7 subroutines:
2771 ** outA: Move the output of the selectA coroutine into the output
2772 ** of the compound query.
2774 ** outB: Move the output of the selectB coroutine into the output
2775 ** of the compound query. (Only generated for UNION and
2776 ** UNION ALL. EXCEPT and INSERTSECT never output a row that
2777 ** appears only in B.)
2779 ** AltB: Called when there is data from both coroutines and A<B.
2781 ** AeqB: Called when there is data from both coroutines and A==B.
2783 ** AgtB: Called when there is data from both coroutines and A>B.
2785 ** EofA: Called when data is exhausted from selectA.
2787 ** EofB: Called when data is exhausted from selectB.
2789 ** The implementation of the latter five subroutines depend on which
2790 ** <operator> is used:
2793 ** UNION ALL UNION EXCEPT INTERSECT
2794 ** ------------- ----------------- -------------- -----------------
2795 ** AltB: outA, nextA outA, nextA outA, nextA nextA
2797 ** AeqB: outA, nextA nextA nextA outA, nextA
2799 ** AgtB: outB, nextB outB, nextB nextB nextB
2801 ** EofA: outB, nextB outB, nextB halt halt
2803 ** EofB: outA, nextA outA, nextA outA, nextA halt
2805 ** In the AltB, AeqB, and AgtB subroutines, an EOF on A following nextA
2806 ** causes an immediate jump to EofA and an EOF on B following nextB causes
2807 ** an immediate jump to EofB. Within EofA and EofB, and EOF on entry or
2808 ** following nextX causes a jump to the end of the select processing.
2810 ** Duplicate removal in the UNION, EXCEPT, and INTERSECT cases is handled
2811 ** within the output subroutine. The regPrev register set holds the previously
2812 ** output value. A comparison is made against this value and the output
2813 ** is skipped if the next results would be the same as the previous.
2815 ** The implementation plan is to implement the two coroutines and seven
2816 ** subroutines first, then put the control logic at the bottom. Like this:
2819 ** coA: coroutine for left query (A)
2820 ** coB: coroutine for right query (B)
2821 ** outA: output one row of A
2822 ** outB: output one row of B (UNION and UNION ALL only)
2828 ** Init: initialize coroutine registers
2830 ** if eof(A) goto EofA
2832 ** if eof(B) goto EofB
2833 ** Cmpr: Compare A, B
2834 ** Jump AltB, AeqB, AgtB
2837 ** We call AltB, AeqB, AgtB, EofA, and EofB "subroutines" but they are not
2838 ** actually called using Gosub and they do not Return. EofA and EofB loop
2839 ** until all data is exhausted then jump to the "end" labe. AltB, AeqB,
2840 ** and AgtB jump to either L2 or to one of EofA or EofB.
2842 #ifndef SQLITE_OMIT_COMPOUND_SELECT
2843 static int multiSelectOrderBy(
2844 Parse
*pParse
, /* Parsing context */
2845 Select
*p
, /* The right-most of SELECTs to be coded */
2846 SelectDest
*pDest
/* What to do with query results */
2848 int i
, j
; /* Loop counters */
2849 Select
*pPrior
; /* Another SELECT immediately to our left */
2850 Vdbe
*v
; /* Generate code to this VDBE */
2851 SelectDest destA
; /* Destination for coroutine A */
2852 SelectDest destB
; /* Destination for coroutine B */
2853 int regAddrA
; /* Address register for select-A coroutine */
2854 int regAddrB
; /* Address register for select-B coroutine */
2855 int addrSelectA
; /* Address of the select-A coroutine */
2856 int addrSelectB
; /* Address of the select-B coroutine */
2857 int regOutA
; /* Address register for the output-A subroutine */
2858 int regOutB
; /* Address register for the output-B subroutine */
2859 int addrOutA
; /* Address of the output-A subroutine */
2860 int addrOutB
= 0; /* Address of the output-B subroutine */
2861 int addrEofA
; /* Address of the select-A-exhausted subroutine */
2862 int addrEofA_noB
; /* Alternate addrEofA if B is uninitialized */
2863 int addrEofB
; /* Address of the select-B-exhausted subroutine */
2864 int addrAltB
; /* Address of the A<B subroutine */
2865 int addrAeqB
; /* Address of the A==B subroutine */
2866 int addrAgtB
; /* Address of the A>B subroutine */
2867 int regLimitA
; /* Limit register for select-A */
2868 int regLimitB
; /* Limit register for select-A */
2869 int regPrev
; /* A range of registers to hold previous output */
2870 int savedLimit
; /* Saved value of p->iLimit */
2871 int savedOffset
; /* Saved value of p->iOffset */
2872 int labelCmpr
; /* Label for the start of the merge algorithm */
2873 int labelEnd
; /* Label for the end of the overall SELECT stmt */
2874 int addr1
; /* Jump instructions that get retargetted */
2875 int op
; /* One of TK_ALL, TK_UNION, TK_EXCEPT, TK_INTERSECT */
2876 KeyInfo
*pKeyDup
= 0; /* Comparison information for duplicate removal */
2877 KeyInfo
*pKeyMerge
; /* Comparison information for merging rows */
2878 sqlite3
*db
; /* Database connection */
2879 ExprList
*pOrderBy
; /* The ORDER BY clause */
2880 int nOrderBy
; /* Number of terms in the ORDER BY clause */
2881 int *aPermute
; /* Mapping from ORDER BY terms to result set columns */
2882 #ifndef SQLITE_OMIT_EXPLAIN
2883 int iSub1
; /* EQP id of left-hand query */
2884 int iSub2
; /* EQP id of right-hand query */
2887 assert( p
->pOrderBy
!=0 );
2888 assert( pKeyDup
==0 ); /* "Managed" code needs this. Ticket #3382. */
2891 assert( v
!=0 ); /* Already thrown the error if VDBE alloc failed */
2892 labelEnd
= sqlite3VdbeMakeLabel(v
);
2893 labelCmpr
= sqlite3VdbeMakeLabel(v
);
2896 /* Patch up the ORDER BY clause
2900 assert( pPrior
->pOrderBy
==0 );
2901 pOrderBy
= p
->pOrderBy
;
2903 nOrderBy
= pOrderBy
->nExpr
;
2905 /* For operators other than UNION ALL we have to make sure that
2906 ** the ORDER BY clause covers every term of the result set. Add
2907 ** terms to the ORDER BY clause as necessary.
2910 for(i
=1; db
->mallocFailed
==0 && i
<=p
->pEList
->nExpr
; i
++){
2911 struct ExprList_item
*pItem
;
2912 for(j
=0, pItem
=pOrderBy
->a
; j
<nOrderBy
; j
++, pItem
++){
2913 assert( pItem
->u
.x
.iOrderByCol
>0 );
2914 if( pItem
->u
.x
.iOrderByCol
==i
) break;
2917 Expr
*pNew
= sqlite3Expr(db
, TK_INTEGER
, 0);
2918 if( pNew
==0 ) return SQLITE_NOMEM_BKPT
;
2919 pNew
->flags
|= EP_IntValue
;
2921 p
->pOrderBy
= pOrderBy
= sqlite3ExprListAppend(pParse
, pOrderBy
, pNew
);
2922 if( pOrderBy
) pOrderBy
->a
[nOrderBy
++].u
.x
.iOrderByCol
= (u16
)i
;
2927 /* Compute the comparison permutation and keyinfo that is used with
2928 ** the permutation used to determine if the next
2929 ** row of results comes from selectA or selectB. Also add explicit
2930 ** collations to the ORDER BY clause terms so that when the subqueries
2931 ** to the right and the left are evaluated, they use the correct
2934 aPermute
= sqlite3DbMallocRawNN(db
, sizeof(int)*(nOrderBy
+ 1));
2936 struct ExprList_item
*pItem
;
2937 aPermute
[0] = nOrderBy
;
2938 for(i
=1, pItem
=pOrderBy
->a
; i
<=nOrderBy
; i
++, pItem
++){
2939 assert( pItem
->u
.x
.iOrderByCol
>0 );
2940 assert( pItem
->u
.x
.iOrderByCol
<=p
->pEList
->nExpr
);
2941 aPermute
[i
] = pItem
->u
.x
.iOrderByCol
- 1;
2943 pKeyMerge
= multiSelectOrderByKeyInfo(pParse
, p
, 1);
2948 /* Reattach the ORDER BY clause to the query.
2950 p
->pOrderBy
= pOrderBy
;
2951 pPrior
->pOrderBy
= sqlite3ExprListDup(pParse
->db
, pOrderBy
, 0);
2953 /* Allocate a range of temporary registers and the KeyInfo needed
2954 ** for the logic that removes duplicate result rows when the
2955 ** operator is UNION, EXCEPT, or INTERSECT (but not UNION ALL).
2960 int nExpr
= p
->pEList
->nExpr
;
2961 assert( nOrderBy
>=nExpr
|| db
->mallocFailed
);
2962 regPrev
= pParse
->nMem
+1;
2963 pParse
->nMem
+= nExpr
+1;
2964 sqlite3VdbeAddOp2(v
, OP_Integer
, 0, regPrev
);
2965 pKeyDup
= sqlite3KeyInfoAlloc(db
, nExpr
, 1);
2967 assert( sqlite3KeyInfoIsWriteable(pKeyDup
) );
2968 for(i
=0; i
<nExpr
; i
++){
2969 pKeyDup
->aColl
[i
] = multiSelectCollSeq(pParse
, p
, i
);
2970 pKeyDup
->aSortOrder
[i
] = 0;
2975 /* Separate the left and the right query from one another
2979 sqlite3ResolveOrderGroupBy(pParse
, p
, p
->pOrderBy
, "ORDER");
2980 if( pPrior
->pPrior
==0 ){
2981 sqlite3ResolveOrderGroupBy(pParse
, pPrior
, pPrior
->pOrderBy
, "ORDER");
2984 /* Compute the limit registers */
2985 computeLimitRegisters(pParse
, p
, labelEnd
);
2986 if( p
->iLimit
&& op
==TK_ALL
){
2987 regLimitA
= ++pParse
->nMem
;
2988 regLimitB
= ++pParse
->nMem
;
2989 sqlite3VdbeAddOp2(v
, OP_Copy
, p
->iOffset
? p
->iOffset
+1 : p
->iLimit
,
2991 sqlite3VdbeAddOp2(v
, OP_Copy
, regLimitA
, regLimitB
);
2993 regLimitA
= regLimitB
= 0;
2995 sqlite3ExprDelete(db
, p
->pLimit
);
2997 sqlite3ExprDelete(db
, p
->pOffset
);
3000 regAddrA
= ++pParse
->nMem
;
3001 regAddrB
= ++pParse
->nMem
;
3002 regOutA
= ++pParse
->nMem
;
3003 regOutB
= ++pParse
->nMem
;
3004 sqlite3SelectDestInit(&destA
, SRT_Coroutine
, regAddrA
);
3005 sqlite3SelectDestInit(&destB
, SRT_Coroutine
, regAddrB
);
3007 /* Generate a coroutine to evaluate the SELECT statement to the
3008 ** left of the compound operator - the "A" select.
3010 addrSelectA
= sqlite3VdbeCurrentAddr(v
) + 1;
3011 addr1
= sqlite3VdbeAddOp3(v
, OP_InitCoroutine
, regAddrA
, 0, addrSelectA
);
3012 VdbeComment((v
, "left SELECT"));
3013 pPrior
->iLimit
= regLimitA
;
3014 explainSetInteger(iSub1
, pParse
->iNextSelectId
);
3015 sqlite3Select(pParse
, pPrior
, &destA
);
3016 sqlite3VdbeEndCoroutine(v
, regAddrA
);
3017 sqlite3VdbeJumpHere(v
, addr1
);
3019 /* Generate a coroutine to evaluate the SELECT statement on
3020 ** the right - the "B" select
3022 addrSelectB
= sqlite3VdbeCurrentAddr(v
) + 1;
3023 addr1
= sqlite3VdbeAddOp3(v
, OP_InitCoroutine
, regAddrB
, 0, addrSelectB
);
3024 VdbeComment((v
, "right SELECT"));
3025 savedLimit
= p
->iLimit
;
3026 savedOffset
= p
->iOffset
;
3027 p
->iLimit
= regLimitB
;
3029 explainSetInteger(iSub2
, pParse
->iNextSelectId
);
3030 sqlite3Select(pParse
, p
, &destB
);
3031 p
->iLimit
= savedLimit
;
3032 p
->iOffset
= savedOffset
;
3033 sqlite3VdbeEndCoroutine(v
, regAddrB
);
3035 /* Generate a subroutine that outputs the current row of the A
3036 ** select as the next output row of the compound select.
3038 VdbeNoopComment((v
, "Output routine for A"));
3039 addrOutA
= generateOutputSubroutine(pParse
,
3040 p
, &destA
, pDest
, regOutA
,
3041 regPrev
, pKeyDup
, labelEnd
);
3043 /* Generate a subroutine that outputs the current row of the B
3044 ** select as the next output row of the compound select.
3046 if( op
==TK_ALL
|| op
==TK_UNION
){
3047 VdbeNoopComment((v
, "Output routine for B"));
3048 addrOutB
= generateOutputSubroutine(pParse
,
3049 p
, &destB
, pDest
, regOutB
,
3050 regPrev
, pKeyDup
, labelEnd
);
3052 sqlite3KeyInfoUnref(pKeyDup
);
3054 /* Generate a subroutine to run when the results from select A
3055 ** are exhausted and only data in select B remains.
3057 if( op
==TK_EXCEPT
|| op
==TK_INTERSECT
){
3058 addrEofA_noB
= addrEofA
= labelEnd
;
3060 VdbeNoopComment((v
, "eof-A subroutine"));
3061 addrEofA
= sqlite3VdbeAddOp2(v
, OP_Gosub
, regOutB
, addrOutB
);
3062 addrEofA_noB
= sqlite3VdbeAddOp2(v
, OP_Yield
, regAddrB
, labelEnd
);
3064 sqlite3VdbeGoto(v
, addrEofA
);
3065 p
->nSelectRow
= sqlite3LogEstAdd(p
->nSelectRow
, pPrior
->nSelectRow
);
3068 /* Generate a subroutine to run when the results from select B
3069 ** are exhausted and only data in select A remains.
3071 if( op
==TK_INTERSECT
){
3072 addrEofB
= addrEofA
;
3073 if( p
->nSelectRow
> pPrior
->nSelectRow
) p
->nSelectRow
= pPrior
->nSelectRow
;
3075 VdbeNoopComment((v
, "eof-B subroutine"));
3076 addrEofB
= sqlite3VdbeAddOp2(v
, OP_Gosub
, regOutA
, addrOutA
);
3077 sqlite3VdbeAddOp2(v
, OP_Yield
, regAddrA
, labelEnd
); VdbeCoverage(v
);
3078 sqlite3VdbeGoto(v
, addrEofB
);
3081 /* Generate code to handle the case of A<B
3083 VdbeNoopComment((v
, "A-lt-B subroutine"));
3084 addrAltB
= sqlite3VdbeAddOp2(v
, OP_Gosub
, regOutA
, addrOutA
);
3085 sqlite3VdbeAddOp2(v
, OP_Yield
, regAddrA
, addrEofA
); VdbeCoverage(v
);
3086 sqlite3VdbeGoto(v
, labelCmpr
);
3088 /* Generate code to handle the case of A==B
3091 addrAeqB
= addrAltB
;
3092 }else if( op
==TK_INTERSECT
){
3093 addrAeqB
= addrAltB
;
3096 VdbeNoopComment((v
, "A-eq-B subroutine"));
3098 sqlite3VdbeAddOp2(v
, OP_Yield
, regAddrA
, addrEofA
); VdbeCoverage(v
);
3099 sqlite3VdbeGoto(v
, labelCmpr
);
3102 /* Generate code to handle the case of A>B
3104 VdbeNoopComment((v
, "A-gt-B subroutine"));
3105 addrAgtB
= sqlite3VdbeCurrentAddr(v
);
3106 if( op
==TK_ALL
|| op
==TK_UNION
){
3107 sqlite3VdbeAddOp2(v
, OP_Gosub
, regOutB
, addrOutB
);
3109 sqlite3VdbeAddOp2(v
, OP_Yield
, regAddrB
, addrEofB
); VdbeCoverage(v
);
3110 sqlite3VdbeGoto(v
, labelCmpr
);
3112 /* This code runs once to initialize everything.
3114 sqlite3VdbeJumpHere(v
, addr1
);
3115 sqlite3VdbeAddOp2(v
, OP_Yield
, regAddrA
, addrEofA_noB
); VdbeCoverage(v
);
3116 sqlite3VdbeAddOp2(v
, OP_Yield
, regAddrB
, addrEofB
); VdbeCoverage(v
);
3118 /* Implement the main merge loop
3120 sqlite3VdbeResolveLabel(v
, labelCmpr
);
3121 sqlite3VdbeAddOp4(v
, OP_Permutation
, 0, 0, 0, (char*)aPermute
, P4_INTARRAY
);
3122 sqlite3VdbeAddOp4(v
, OP_Compare
, destA
.iSdst
, destB
.iSdst
, nOrderBy
,
3123 (char*)pKeyMerge
, P4_KEYINFO
);
3124 sqlite3VdbeChangeP5(v
, OPFLAG_PERMUTE
);
3125 sqlite3VdbeAddOp3(v
, OP_Jump
, addrAltB
, addrAeqB
, addrAgtB
); VdbeCoverage(v
);
3127 /* Jump to the this point in order to terminate the query.
3129 sqlite3VdbeResolveLabel(v
, labelEnd
);
3131 /* Reassembly the compound query so that it will be freed correctly
3132 ** by the calling function */
3134 sqlite3SelectDelete(db
, p
->pPrior
);
3139 /*** TBD: Insert subroutine calls to close cursors on incomplete
3140 **** subqueries ****/
3141 explainComposite(pParse
, p
->op
, iSub1
, iSub2
, 0);
3142 return pParse
->nErr
!=0;
3146 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
3148 /* An instance of the SubstContext object describes an substitution edit
3149 ** to be performed on a parse tree.
3151 ** All references to columns in table iTable are to be replaced by corresponding
3152 ** expressions in pEList.
3154 typedef struct SubstContext
{
3155 Parse
*pParse
; /* The parsing context */
3156 int iTable
; /* Replace references to this table */
3157 int iNewTable
; /* New table number */
3158 int isLeftJoin
; /* Add TK_IF_NULL_ROW opcodes on each replacement */
3159 ExprList
*pEList
; /* Replacement expressions */
3162 /* Forward Declarations */
3163 static void substExprList(SubstContext
*, ExprList
*);
3164 static void substSelect(SubstContext
*, Select
*, int);
3167 ** Scan through the expression pExpr. Replace every reference to
3168 ** a column in table number iTable with a copy of the iColumn-th
3169 ** entry in pEList. (But leave references to the ROWID column
3172 ** This routine is part of the flattening procedure. A subquery
3173 ** whose result set is defined by pEList appears as entry in the
3174 ** FROM clause of a SELECT such that the VDBE cursor assigned to that
3175 ** FORM clause entry is iTable. This routine makes the necessary
3176 ** changes to pExpr so that it refers directly to the source table
3177 ** of the subquery rather the result set of the subquery.
3179 static Expr
*substExpr(
3180 SubstContext
*pSubst
, /* Description of the substitution */
3181 Expr
*pExpr
/* Expr in which substitution occurs */
3183 if( pExpr
==0 ) return 0;
3184 if( ExprHasProperty(pExpr
, EP_FromJoin
)
3185 && pExpr
->iRightJoinTable
==pSubst
->iTable
3187 pExpr
->iRightJoinTable
= pSubst
->iNewTable
;
3189 if( pExpr
->op
==TK_COLUMN
&& pExpr
->iTable
==pSubst
->iTable
){
3190 if( pExpr
->iColumn
<0 ){
3191 pExpr
->op
= TK_NULL
;
3194 Expr
*pCopy
= pSubst
->pEList
->a
[pExpr
->iColumn
].pExpr
;
3196 assert( pSubst
->pEList
!=0 && pExpr
->iColumn
<pSubst
->pEList
->nExpr
);
3197 assert( pExpr
->pLeft
==0 && pExpr
->pRight
==0 );
3198 if( sqlite3ExprIsVector(pCopy
) ){
3199 sqlite3VectorErrorMsg(pSubst
->pParse
, pCopy
);
3201 sqlite3
*db
= pSubst
->pParse
->db
;
3202 if( pSubst
->isLeftJoin
&& pCopy
->op
!=TK_COLUMN
){
3203 memset(&ifNullRow
, 0, sizeof(ifNullRow
));
3204 ifNullRow
.op
= TK_IF_NULL_ROW
;
3205 ifNullRow
.pLeft
= pCopy
;
3206 ifNullRow
.iTable
= pSubst
->iNewTable
;
3209 pNew
= sqlite3ExprDup(db
, pCopy
, 0);
3210 if( pNew
&& pSubst
->isLeftJoin
){
3211 ExprSetProperty(pNew
, EP_CanBeNull
);
3213 if( pNew
&& ExprHasProperty(pExpr
,EP_FromJoin
) ){
3214 pNew
->iRightJoinTable
= pExpr
->iRightJoinTable
;
3215 ExprSetProperty(pNew
, EP_FromJoin
);
3217 sqlite3ExprDelete(db
, pExpr
);
3222 if( pExpr
->op
==TK_IF_NULL_ROW
&& pExpr
->iTable
==pSubst
->iTable
){
3223 pExpr
->iTable
= pSubst
->iNewTable
;
3225 pExpr
->pLeft
= substExpr(pSubst
, pExpr
->pLeft
);
3226 pExpr
->pRight
= substExpr(pSubst
, pExpr
->pRight
);
3227 if( ExprHasProperty(pExpr
, EP_xIsSelect
) ){
3228 substSelect(pSubst
, pExpr
->x
.pSelect
, 1);
3230 substExprList(pSubst
, pExpr
->x
.pList
);
3235 static void substExprList(
3236 SubstContext
*pSubst
, /* Description of the substitution */
3237 ExprList
*pList
/* List to scan and in which to make substitutes */
3240 if( pList
==0 ) return;
3241 for(i
=0; i
<pList
->nExpr
; i
++){
3242 pList
->a
[i
].pExpr
= substExpr(pSubst
, pList
->a
[i
].pExpr
);
3245 static void substSelect(
3246 SubstContext
*pSubst
, /* Description of the substitution */
3247 Select
*p
, /* SELECT statement in which to make substitutions */
3248 int doPrior
/* Do substitutes on p->pPrior too */
3251 struct SrcList_item
*pItem
;
3255 substExprList(pSubst
, p
->pEList
);
3256 substExprList(pSubst
, p
->pGroupBy
);
3257 substExprList(pSubst
, p
->pOrderBy
);
3258 p
->pHaving
= substExpr(pSubst
, p
->pHaving
);
3259 p
->pWhere
= substExpr(pSubst
, p
->pWhere
);
3262 for(i
=pSrc
->nSrc
, pItem
=pSrc
->a
; i
>0; i
--, pItem
++){
3263 substSelect(pSubst
, pItem
->pSelect
, 1);
3264 if( pItem
->fg
.isTabFunc
){
3265 substExprList(pSubst
, pItem
->u1
.pFuncArg
);
3268 }while( doPrior
&& (p
= p
->pPrior
)!=0 );
3270 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */
3272 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
3274 ** This routine attempts to flatten subqueries as a performance optimization.
3275 ** This routine returns 1 if it makes changes and 0 if no flattening occurs.
3277 ** To understand the concept of flattening, consider the following
3280 ** SELECT a FROM (SELECT x+y AS a FROM t1 WHERE z<100) WHERE a>5
3282 ** The default way of implementing this query is to execute the
3283 ** subquery first and store the results in a temporary table, then
3284 ** run the outer query on that temporary table. This requires two
3285 ** passes over the data. Furthermore, because the temporary table
3286 ** has no indices, the WHERE clause on the outer query cannot be
3289 ** This routine attempts to rewrite queries such as the above into
3290 ** a single flat select, like this:
3292 ** SELECT x+y AS a FROM t1 WHERE z<100 AND a>5
3294 ** The code generated for this simplification gives the same result
3295 ** but only has to scan the data once. And because indices might
3296 ** exist on the table t1, a complete scan of the data might be
3299 ** Flattening is only attempted if all of the following are true:
3301 ** (1) The subquery and the outer query do not both use aggregates.
3303 ** (2) The subquery is not an aggregate or (2a) the outer query is not a join
3304 ** and (2b) the outer query does not use subqueries other than the one
3305 ** FROM-clause subquery that is a candidate for flattening. (2b is
3306 ** due to ticket [2f7170d73bf9abf80] from 2015-02-09.)
3308 ** (3) The subquery is not the right operand of a LEFT JOIN
3309 ** or (a) the subquery is not itself a join and (b) the FROM clause
3310 ** of the subquery does not contain a virtual table and (c) the
3311 ** outer query is not an aggregate.
3313 ** (4) The subquery is not DISTINCT.
3315 ** (**) At one point restrictions (4) and (5) defined a subset of DISTINCT
3316 ** sub-queries that were excluded from this optimization. Restriction
3317 ** (4) has since been expanded to exclude all DISTINCT subqueries.
3319 ** (6) The subquery does not use aggregates or the outer query is not
3322 ** (7) The subquery has a FROM clause. TODO: For subqueries without
3323 ** A FROM clause, consider adding a FROM clause with the special
3324 ** table sqlite_once that consists of a single row containing a
3327 ** (8) The subquery does not use LIMIT or the outer query is not a join.
3329 ** (9) The subquery does not use LIMIT or the outer query does not use
3332 ** (**) Restriction (10) was removed from the code on 2005-02-05 but we
3333 ** accidently carried the comment forward until 2014-09-15. Original
3334 ** text: "The subquery does not use aggregates or the outer query
3335 ** does not use LIMIT."
3337 ** (11) The subquery and the outer query do not both have ORDER BY clauses.
3339 ** (**) Not implemented. Subsumed into restriction (3). Was previously
3340 ** a separate restriction deriving from ticket #350.
3342 ** (13) The subquery and outer query do not both use LIMIT.
3344 ** (14) The subquery does not use OFFSET.
3346 ** (15) The outer query is not part of a compound select or the
3347 ** subquery does not have a LIMIT clause.
3348 ** (See ticket #2339 and ticket [02a8e81d44]).
3350 ** (16) The outer query is not an aggregate or the subquery does
3351 ** not contain ORDER BY. (Ticket #2942) This used to not matter
3352 ** until we introduced the group_concat() function.
3354 ** (17) The sub-query is not a compound select, or it is a UNION ALL
3355 ** compound clause made up entirely of non-aggregate queries, and
3356 ** the parent query:
3358 ** * is not itself part of a compound select,
3359 ** * is not an aggregate or DISTINCT query, and
3362 ** The parent and sub-query may contain WHERE clauses. Subject to
3363 ** rules (11), (13) and (14), they may also contain ORDER BY,
3364 ** LIMIT and OFFSET clauses. The subquery cannot use any compound
3365 ** operator other than UNION ALL because all the other compound
3366 ** operators have an implied DISTINCT which is disallowed by
3369 ** Also, each component of the sub-query must return the same number
3370 ** of result columns. This is actually a requirement for any compound
3371 ** SELECT statement, but all the code here does is make sure that no
3372 ** such (illegal) sub-query is flattened. The caller will detect the
3373 ** syntax error and return a detailed message.
3375 ** (18) If the sub-query is a compound select, then all terms of the
3376 ** ORDER by clause of the parent must be simple references to
3377 ** columns of the sub-query.
3379 ** (19) The subquery does not use LIMIT or the outer query does not
3380 ** have a WHERE clause.
3382 ** (20) If the sub-query is a compound select, then it must not use
3383 ** an ORDER BY clause. Ticket #3773. We could relax this constraint
3384 ** somewhat by saying that the terms of the ORDER BY clause must
3385 ** appear as unmodified result columns in the outer query. But we
3386 ** have other optimizations in mind to deal with that case.
3388 ** (21) The subquery does not use LIMIT or the outer query is not
3389 ** DISTINCT. (See ticket [752e1646fc]).
3391 ** (22) The subquery is not a recursive CTE.
3393 ** (23) The parent is not a recursive CTE, or the sub-query is not a
3394 ** compound query. This restriction is because transforming the
3395 ** parent to a compound query confuses the code that handles
3396 ** recursive queries in multiSelect().
3398 ** (24) The subquery is not an aggregate that uses the built-in min() or
3399 ** or max() functions. (Without this restriction, a query like:
3400 ** "SELECT x FROM (SELECT max(y), x FROM t1)" would not necessarily
3401 ** return the value X for which Y was maximal.)
3404 ** In this routine, the "p" parameter is a pointer to the outer query.
3405 ** The subquery is p->pSrc->a[iFrom]. isAgg is true if the outer query
3406 ** uses aggregates and subqueryIsAgg is true if the subquery uses aggregates.
3408 ** If flattening is not attempted, this routine is a no-op and returns 0.
3409 ** If flattening is attempted this routine returns 1.
3411 ** All of the expression analysis must occur on both the outer query and
3412 ** the subquery before this routine runs.
3414 static int flattenSubquery(
3415 Parse
*pParse
, /* Parsing context */
3416 Select
*p
, /* The parent or outer SELECT statement */
3417 int iFrom
, /* Index in p->pSrc->a[] of the inner subquery */
3418 int isAgg
, /* True if outer SELECT uses aggregate functions */
3419 int subqueryIsAgg
/* True if the subquery uses aggregate functions */
3421 const char *zSavedAuthContext
= pParse
->zAuthContext
;
3422 Select
*pParent
; /* Current UNION ALL term of the other query */
3423 Select
*pSub
; /* The inner query or "subquery" */
3424 Select
*pSub1
; /* Pointer to the rightmost select in sub-query */
3425 SrcList
*pSrc
; /* The FROM clause of the outer query */
3426 SrcList
*pSubSrc
; /* The FROM clause of the subquery */
3427 int iParent
; /* VDBE cursor number of the pSub result set temp table */
3428 int iNewParent
= -1;/* Replacement table for iParent */
3429 int isLeftJoin
= 0; /* True if pSub is the right side of a LEFT JOIN */
3430 int i
; /* Loop counter */
3431 Expr
*pWhere
; /* The WHERE clause */
3432 struct SrcList_item
*pSubitem
; /* The subquery */
3433 sqlite3
*db
= pParse
->db
;
3435 /* Check to see if flattening is permitted. Return 0 if not.
3438 assert( p
->pPrior
==0 ); /* Unable to flatten compound queries */
3439 if( OptimizationDisabled(db
, SQLITE_QueryFlattener
) ) return 0;
3441 assert( pSrc
&& iFrom
>=0 && iFrom
<pSrc
->nSrc
);
3442 pSubitem
= &pSrc
->a
[iFrom
];
3443 iParent
= pSubitem
->iCursor
;
3444 pSub
= pSubitem
->pSelect
;
3446 if( subqueryIsAgg
){
3447 if( isAgg
) return 0; /* Restriction (1) */
3448 if( pSrc
->nSrc
>1 ) return 0; /* Restriction (2a) */
3449 if( (p
->pWhere
&& ExprHasProperty(p
->pWhere
,EP_Subquery
))
3450 || (sqlite3ExprListFlags(p
->pEList
) & EP_Subquery
)!=0
3451 || (sqlite3ExprListFlags(p
->pOrderBy
) & EP_Subquery
)!=0
3453 return 0; /* Restriction (2b) */
3457 pSubSrc
= pSub
->pSrc
;
3459 /* Prior to version 3.1.2, when LIMIT and OFFSET had to be simple constants,
3460 ** not arbitrary expressions, we allowed some combining of LIMIT and OFFSET
3461 ** because they could be computed at compile-time. But when LIMIT and OFFSET
3462 ** became arbitrary expressions, we were forced to add restrictions (13)
3464 if( pSub
->pLimit
&& p
->pLimit
) return 0; /* Restriction (13) */
3465 if( pSub
->pOffset
) return 0; /* Restriction (14) */
3466 if( (p
->selFlags
& SF_Compound
)!=0 && pSub
->pLimit
){
3467 return 0; /* Restriction (15) */
3469 if( pSubSrc
->nSrc
==0 ) return 0; /* Restriction (7) */
3470 if( pSub
->selFlags
& SF_Distinct
) return 0; /* Restriction (5) */
3471 if( pSub
->pLimit
&& (pSrc
->nSrc
>1 || isAgg
) ){
3472 return 0; /* Restrictions (8)(9) */
3474 if( (p
->selFlags
& SF_Distinct
)!=0 && subqueryIsAgg
){
3475 return 0; /* Restriction (6) */
3477 if( p
->pOrderBy
&& pSub
->pOrderBy
){
3478 return 0; /* Restriction (11) */
3480 if( isAgg
&& pSub
->pOrderBy
) return 0; /* Restriction (16) */
3481 if( pSub
->pLimit
&& p
->pWhere
) return 0; /* Restriction (19) */
3482 if( pSub
->pLimit
&& (p
->selFlags
& SF_Distinct
)!=0 ){
3483 return 0; /* Restriction (21) */
3485 testcase( pSub
->selFlags
& SF_Recursive
);
3486 testcase( pSub
->selFlags
& SF_MinMaxAgg
);
3487 if( pSub
->selFlags
& (SF_Recursive
|SF_MinMaxAgg
) ){
3488 return 0; /* Restrictions (22) and (24) */
3490 if( (p
->selFlags
& SF_Recursive
) && pSub
->pPrior
){
3491 return 0; /* Restriction (23) */
3495 ** If the subquery is the right operand of a LEFT JOIN, then the
3496 ** subquery may not be a join itself. Example of why this is not allowed:
3498 ** t1 LEFT OUTER JOIN (t2 JOIN t3)
3500 ** If we flatten the above, we would get
3502 ** (t1 LEFT OUTER JOIN t2) JOIN t3
3504 ** which is not at all the same thing.
3506 ** If the subquery is the right operand of a LEFT JOIN, then the outer
3507 ** query cannot be an aggregate. This is an artifact of the way aggregates
3508 ** are processed - there is no mechanism to determine if the LEFT JOIN
3509 ** table should be all-NULL.
3511 ** See also tickets #306, #350, and #3300.
3513 if( (pSubitem
->fg
.jointype
& JT_OUTER
)!=0 ){
3515 if( pSubSrc
->nSrc
>1 || isAgg
|| IsVirtual(pSubSrc
->a
[0].pTab
) ){
3516 return 0; /* Restriction (3) */
3519 #ifdef SQLITE_EXTRA_IFNULLROW
3520 else if( iFrom
>0 && !isAgg
){
3521 /* Setting isLeftJoin to -1 causes OP_IfNullRow opcodes to be generated for
3522 ** every reference to any result column from subquery in a join, even
3523 ** though they are not necessary. This will stress-test the OP_IfNullRow
3529 /* Restriction 17: If the sub-query is a compound SELECT, then it must
3530 ** use only the UNION ALL operator. And none of the simple select queries
3531 ** that make up the compound SELECT are allowed to be aggregate or distinct
3535 if( pSub
->pOrderBy
){
3536 return 0; /* Restriction 20 */
3538 if( isAgg
|| (p
->selFlags
& SF_Distinct
)!=0 || pSrc
->nSrc
!=1 ){
3541 for(pSub1
=pSub
; pSub1
; pSub1
=pSub1
->pPrior
){
3542 testcase( (pSub1
->selFlags
& (SF_Distinct
|SF_Aggregate
))==SF_Distinct
);
3543 testcase( (pSub1
->selFlags
& (SF_Distinct
|SF_Aggregate
))==SF_Aggregate
);
3544 assert( pSub
->pSrc
!=0 );
3545 assert( pSub
->pEList
->nExpr
==pSub1
->pEList
->nExpr
);
3546 if( (pSub1
->selFlags
& (SF_Distinct
|SF_Aggregate
))!=0
3547 || (pSub1
->pPrior
&& pSub1
->op
!=TK_ALL
)
3548 || pSub1
->pSrc
->nSrc
<1
3552 testcase( pSub1
->pSrc
->nSrc
>1 );
3555 /* Restriction 18. */
3558 for(ii
=0; ii
<p
->pOrderBy
->nExpr
; ii
++){
3559 if( p
->pOrderBy
->a
[ii
].u
.x
.iOrderByCol
==0 ) return 0;
3564 /***** If we reach this point, flattening is permitted. *****/
3565 SELECTTRACE(1,pParse
,p
,("flatten %s.%p from term %d\n",
3566 pSub
->zSelName
, pSub
, iFrom
));
3568 /* Authorize the subquery */
3569 pParse
->zAuthContext
= pSubitem
->zName
;
3570 TESTONLY(i
=) sqlite3AuthCheck(pParse
, SQLITE_SELECT
, 0, 0, 0);
3571 testcase( i
==SQLITE_DENY
);
3572 pParse
->zAuthContext
= zSavedAuthContext
;
3574 /* If the sub-query is a compound SELECT statement, then (by restrictions
3575 ** 17 and 18 above) it must be a UNION ALL and the parent query must
3578 ** SELECT <expr-list> FROM (<sub-query>) <where-clause>
3580 ** followed by any ORDER BY, LIMIT and/or OFFSET clauses. This block
3581 ** creates N-1 copies of the parent query without any ORDER BY, LIMIT or
3582 ** OFFSET clauses and joins them to the left-hand-side of the original
3583 ** using UNION ALL operators. In this case N is the number of simple
3584 ** select statements in the compound sub-query.
3588 ** SELECT a+1 FROM (
3589 ** SELECT x FROM tab
3591 ** SELECT y FROM tab
3593 ** SELECT abs(z*2) FROM tab2
3594 ** ) WHERE a!=5 ORDER BY 1
3596 ** Transformed into:
3598 ** SELECT x+1 FROM tab WHERE x+1!=5
3600 ** SELECT y+1 FROM tab WHERE y+1!=5
3602 ** SELECT abs(z*2)+1 FROM tab2 WHERE abs(z*2)+1!=5
3605 ** We call this the "compound-subquery flattening".
3607 for(pSub
=pSub
->pPrior
; pSub
; pSub
=pSub
->pPrior
){
3609 ExprList
*pOrderBy
= p
->pOrderBy
;
3610 Expr
*pLimit
= p
->pLimit
;
3611 Expr
*pOffset
= p
->pOffset
;
3612 Select
*pPrior
= p
->pPrior
;
3618 pNew
= sqlite3SelectDup(db
, p
, 0);
3619 sqlite3SelectSetName(pNew
, pSub
->zSelName
);
3620 p
->pOffset
= pOffset
;
3622 p
->pOrderBy
= pOrderBy
;
3628 pNew
->pPrior
= pPrior
;
3629 if( pPrior
) pPrior
->pNext
= pNew
;
3632 SELECTTRACE(2,pParse
,p
,
3633 ("compound-subquery flattener creates %s.%p as peer\n",
3634 pNew
->zSelName
, pNew
));
3636 if( db
->mallocFailed
) return 1;
3639 /* Begin flattening the iFrom-th entry of the FROM clause
3640 ** in the outer query.
3642 pSub
= pSub1
= pSubitem
->pSelect
;
3644 /* Delete the transient table structure associated with the
3647 sqlite3DbFree(db
, pSubitem
->zDatabase
);
3648 sqlite3DbFree(db
, pSubitem
->zName
);
3649 sqlite3DbFree(db
, pSubitem
->zAlias
);
3650 pSubitem
->zDatabase
= 0;
3651 pSubitem
->zName
= 0;
3652 pSubitem
->zAlias
= 0;
3653 pSubitem
->pSelect
= 0;
3655 /* Defer deleting the Table object associated with the
3656 ** subquery until code generation is
3657 ** complete, since there may still exist Expr.pTab entries that
3658 ** refer to the subquery even after flattening. Ticket #3346.
3660 ** pSubitem->pTab is always non-NULL by test restrictions and tests above.
3662 if( ALWAYS(pSubitem
->pTab
!=0) ){
3663 Table
*pTabToDel
= pSubitem
->pTab
;
3664 if( pTabToDel
->nTabRef
==1 ){
3665 Parse
*pToplevel
= sqlite3ParseToplevel(pParse
);
3666 pTabToDel
->pNextZombie
= pToplevel
->pZombieTab
;
3667 pToplevel
->pZombieTab
= pTabToDel
;
3669 pTabToDel
->nTabRef
--;
3674 /* The following loop runs once for each term in a compound-subquery
3675 ** flattening (as described above). If we are doing a different kind
3676 ** of flattening - a flattening other than a compound-subquery flattening -
3677 ** then this loop only runs once.
3679 ** This loop moves all of the FROM elements of the subquery into the
3680 ** the FROM clause of the outer query. Before doing this, remember
3681 ** the cursor number for the original outer query FROM element in
3682 ** iParent. The iParent cursor will never be used. Subsequent code
3683 ** will scan expressions looking for iParent references and replace
3684 ** those references with expressions that resolve to the subquery FROM
3685 ** elements we are now copying in.
3687 for(pParent
=p
; pParent
; pParent
=pParent
->pPrior
, pSub
=pSub
->pPrior
){
3690 pSubSrc
= pSub
->pSrc
; /* FROM clause of subquery */
3691 nSubSrc
= pSubSrc
->nSrc
; /* Number of terms in subquery FROM clause */
3692 pSrc
= pParent
->pSrc
; /* FROM clause of the outer query */
3695 assert( pParent
==p
); /* First time through the loop */
3696 jointype
= pSubitem
->fg
.jointype
;
3698 assert( pParent
!=p
); /* 2nd and subsequent times through the loop */
3699 pSrc
= pParent
->pSrc
= sqlite3SrcListAppend(db
, 0, 0, 0);
3701 assert( db
->mallocFailed
);
3706 /* The subquery uses a single slot of the FROM clause of the outer
3707 ** query. If the subquery has more than one element in its FROM clause,
3708 ** then expand the outer query to make space for it to hold all elements
3713 ** SELECT * FROM tabA, (SELECT * FROM sub1, sub2), tabB;
3715 ** The outer query has 3 slots in its FROM clause. One slot of the
3716 ** outer query (the middle slot) is used by the subquery. The next
3717 ** block of code will expand the outer query FROM clause to 4 slots.
3718 ** The middle slot is expanded to two slots in order to make space
3719 ** for the two elements in the FROM clause of the subquery.
3722 pParent
->pSrc
= pSrc
= sqlite3SrcListEnlarge(db
, pSrc
, nSubSrc
-1,iFrom
+1);
3723 if( db
->mallocFailed
){
3728 /* Transfer the FROM clause terms from the subquery into the
3731 for(i
=0; i
<nSubSrc
; i
++){
3732 sqlite3IdListDelete(db
, pSrc
->a
[i
+iFrom
].pUsing
);
3733 assert( pSrc
->a
[i
+iFrom
].fg
.isTabFunc
==0 );
3734 pSrc
->a
[i
+iFrom
] = pSubSrc
->a
[i
];
3735 iNewParent
= pSubSrc
->a
[i
].iCursor
;
3736 memset(&pSubSrc
->a
[i
], 0, sizeof(pSubSrc
->a
[i
]));
3738 pSrc
->a
[iFrom
].fg
.jointype
= jointype
;
3740 /* Now begin substituting subquery result set expressions for
3741 ** references to the iParent in the outer query.
3745 ** SELECT a+5, b*10 FROM (SELECT x*3 AS a, y+10 AS b FROM t1) WHERE a>b;
3746 ** \ \_____________ subquery __________/ /
3747 ** \_____________________ outer query ______________________________/
3749 ** We look at every expression in the outer query and every place we see
3750 ** "a" we substitute "x*3" and every place we see "b" we substitute "y+10".
3752 if( pSub
->pOrderBy
){
3753 /* At this point, any non-zero iOrderByCol values indicate that the
3754 ** ORDER BY column expression is identical to the iOrderByCol'th
3755 ** expression returned by SELECT statement pSub. Since these values
3756 ** do not necessarily correspond to columns in SELECT statement pParent,
3757 ** zero them before transfering the ORDER BY clause.
3759 ** Not doing this may cause an error if a subsequent call to this
3760 ** function attempts to flatten a compound sub-query into pParent
3761 ** (the only way this can happen is if the compound sub-query is
3762 ** currently part of pSub->pSrc). See ticket [d11a6e908f]. */
3763 ExprList
*pOrderBy
= pSub
->pOrderBy
;
3764 for(i
=0; i
<pOrderBy
->nExpr
; i
++){
3765 pOrderBy
->a
[i
].u
.x
.iOrderByCol
= 0;
3767 assert( pParent
->pOrderBy
==0 );
3768 assert( pSub
->pPrior
==0 );
3769 pParent
->pOrderBy
= pOrderBy
;
3772 pWhere
= sqlite3ExprDup(db
, pSub
->pWhere
, 0);
3774 setJoinExpr(pWhere
, iNewParent
);
3776 if( subqueryIsAgg
){
3777 assert( pParent
->pHaving
==0 );
3778 pParent
->pHaving
= pParent
->pWhere
;
3779 pParent
->pWhere
= pWhere
;
3780 pParent
->pHaving
= sqlite3ExprAnd(db
,
3781 sqlite3ExprDup(db
, pSub
->pHaving
, 0), pParent
->pHaving
3783 assert( pParent
->pGroupBy
==0 );
3784 pParent
->pGroupBy
= sqlite3ExprListDup(db
, pSub
->pGroupBy
, 0);
3786 pParent
->pWhere
= sqlite3ExprAnd(db
, pWhere
, pParent
->pWhere
);
3788 if( db
->mallocFailed
==0 ){
3792 x
.iNewTable
= iNewParent
;
3793 x
.isLeftJoin
= isLeftJoin
;
3794 x
.pEList
= pSub
->pEList
;
3795 substSelect(&x
, pParent
, 0);
3798 /* The flattened query is distinct if either the inner or the
3799 ** outer query is distinct.
3801 pParent
->selFlags
|= pSub
->selFlags
& SF_Distinct
;
3804 ** SELECT ... FROM (SELECT ... LIMIT a OFFSET b) LIMIT x OFFSET y;
3806 ** One is tempted to try to add a and b to combine the limits. But this
3807 ** does not work if either limit is negative.
3810 pParent
->pLimit
= pSub
->pLimit
;
3815 /* Finially, delete what is left of the subquery and return
3818 sqlite3SelectDelete(db
, pSub1
);
3820 #if SELECTTRACE_ENABLED
3821 if( sqlite3SelectTrace
& 0x100 ){
3822 SELECTTRACE(0x100,pParse
,p
,("After flattening:\n"));
3823 sqlite3TreeViewSelect(0, p
, 0);
3829 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */
3833 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
3835 ** Make copies of relevant WHERE clause terms of the outer query into
3836 ** the WHERE clause of subquery. Example:
3838 ** SELECT * FROM (SELECT a AS x, c-d AS y FROM t1) WHERE x=5 AND y=10;
3840 ** Transformed into:
3842 ** SELECT * FROM (SELECT a AS x, c-d AS y FROM t1 WHERE a=5 AND c-d=10)
3843 ** WHERE x=5 AND y=10;
3845 ** The hope is that the terms added to the inner query will make it more
3848 ** Do not attempt this optimization if:
3850 ** (1) The inner query is an aggregate. (In that case, we'd really want
3851 ** to copy the outer WHERE-clause terms onto the HAVING clause of the
3852 ** inner query. But they probably won't help there so do not bother.)
3854 ** (2) The inner query is the recursive part of a common table expression.
3856 ** (3) The inner query has a LIMIT clause (since the changes to the WHERE
3857 ** close would change the meaning of the LIMIT).
3859 ** (4) The inner query is the right operand of a LEFT JOIN. (The caller
3860 ** enforces this restriction since this routine does not have enough
3861 ** information to know.)
3863 ** (5) The WHERE clause expression originates in the ON or USING clause
3866 ** Return 0 if no changes are made and non-zero if one or more WHERE clause
3867 ** terms are duplicated into the subquery.
3869 static int pushDownWhereTerms(
3870 Parse
*pParse
, /* Parse context (for malloc() and error reporting) */
3871 Select
*pSubq
, /* The subquery whose WHERE clause is to be augmented */
3872 Expr
*pWhere
, /* The WHERE clause of the outer query */
3873 int iCursor
/* Cursor number of the subquery */
3877 Select
*pX
; /* For looping over compound SELECTs in pSubq */
3878 if( pWhere
==0 ) return 0;
3879 for(pX
=pSubq
; pX
; pX
=pX
->pPrior
){
3880 if( (pX
->selFlags
& (SF_Aggregate
|SF_Recursive
))!=0 ){
3881 testcase( pX
->selFlags
& SF_Aggregate
);
3882 testcase( pX
->selFlags
& SF_Recursive
);
3883 testcase( pX
!=pSubq
);
3884 return 0; /* restrictions (1) and (2) */
3887 if( pSubq
->pLimit
!=0 ){
3888 return 0; /* restriction (3) */
3890 while( pWhere
->op
==TK_AND
){
3891 nChng
+= pushDownWhereTerms(pParse
, pSubq
, pWhere
->pRight
, iCursor
);
3892 pWhere
= pWhere
->pLeft
;
3894 if( ExprHasProperty(pWhere
,EP_FromJoin
) ) return 0; /* restriction 5 */
3895 if( sqlite3ExprIsTableConstant(pWhere
, iCursor
) ){
3899 pNew
= sqlite3ExprDup(pParse
->db
, pWhere
, 0);
3902 x
.iNewTable
= iCursor
;
3904 x
.pEList
= pSubq
->pEList
;
3905 pNew
= substExpr(&x
, pNew
);
3906 pSubq
->pWhere
= sqlite3ExprAnd(pParse
->db
, pSubq
->pWhere
, pNew
);
3907 pSubq
= pSubq
->pPrior
;
3912 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */
3915 ** Based on the contents of the AggInfo structure indicated by the first
3916 ** argument, this function checks if the following are true:
3918 ** * the query contains just a single aggregate function,
3919 ** * the aggregate function is either min() or max(), and
3920 ** * the argument to the aggregate function is a column value.
3922 ** If all of the above are true, then WHERE_ORDERBY_MIN or WHERE_ORDERBY_MAX
3923 ** is returned as appropriate. Also, *ppMinMax is set to point to the
3924 ** list of arguments passed to the aggregate before returning.
3926 ** Or, if the conditions above are not met, *ppMinMax is set to 0 and
3927 ** WHERE_ORDERBY_NORMAL is returned.
3929 static u8
minMaxQuery(AggInfo
*pAggInfo
, ExprList
**ppMinMax
){
3930 int eRet
= WHERE_ORDERBY_NORMAL
; /* Return value */
3933 if( pAggInfo
->nFunc
==1 ){
3934 Expr
*pExpr
= pAggInfo
->aFunc
[0].pExpr
; /* Aggregate function */
3935 ExprList
*pEList
= pExpr
->x
.pList
; /* Arguments to agg function */
3937 assert( pExpr
->op
==TK_AGG_FUNCTION
);
3938 if( pEList
&& pEList
->nExpr
==1 && pEList
->a
[0].pExpr
->op
==TK_AGG_COLUMN
){
3939 const char *zFunc
= pExpr
->u
.zToken
;
3940 if( sqlite3StrICmp(zFunc
, "min")==0 ){
3941 eRet
= WHERE_ORDERBY_MIN
;
3943 }else if( sqlite3StrICmp(zFunc
, "max")==0 ){
3944 eRet
= WHERE_ORDERBY_MAX
;
3950 assert( *ppMinMax
==0 || (*ppMinMax
)->nExpr
==1 );
3955 ** The select statement passed as the first argument is an aggregate query.
3956 ** The second argument is the associated aggregate-info object. This
3957 ** function tests if the SELECT is of the form:
3959 ** SELECT count(*) FROM <tbl>
3961 ** where table is a database table, not a sub-select or view. If the query
3962 ** does match this pattern, then a pointer to the Table object representing
3963 ** <tbl> is returned. Otherwise, 0 is returned.
3965 static Table
*isSimpleCount(Select
*p
, AggInfo
*pAggInfo
){
3969 assert( !p
->pGroupBy
);
3971 if( p
->pWhere
|| p
->pEList
->nExpr
!=1
3972 || p
->pSrc
->nSrc
!=1 || p
->pSrc
->a
[0].pSelect
3976 pTab
= p
->pSrc
->a
[0].pTab
;
3977 pExpr
= p
->pEList
->a
[0].pExpr
;
3978 assert( pTab
&& !pTab
->pSelect
&& pExpr
);
3980 if( IsVirtual(pTab
) ) return 0;
3981 if( pExpr
->op
!=TK_AGG_FUNCTION
) return 0;
3982 if( NEVER(pAggInfo
->nFunc
==0) ) return 0;
3983 if( (pAggInfo
->aFunc
[0].pFunc
->funcFlags
&SQLITE_FUNC_COUNT
)==0 ) return 0;
3984 if( pExpr
->flags
&EP_Distinct
) return 0;
3990 ** If the source-list item passed as an argument was augmented with an
3991 ** INDEXED BY clause, then try to locate the specified index. If there
3992 ** was such a clause and the named index cannot be found, return
3993 ** SQLITE_ERROR and leave an error in pParse. Otherwise, populate
3994 ** pFrom->pIndex and return SQLITE_OK.
3996 int sqlite3IndexedByLookup(Parse
*pParse
, struct SrcList_item
*pFrom
){
3997 if( pFrom
->pTab
&& pFrom
->fg
.isIndexedBy
){
3998 Table
*pTab
= pFrom
->pTab
;
3999 char *zIndexedBy
= pFrom
->u1
.zIndexedBy
;
4001 for(pIdx
=pTab
->pIndex
;
4002 pIdx
&& sqlite3StrICmp(pIdx
->zName
, zIndexedBy
);
4006 sqlite3ErrorMsg(pParse
, "no such index: %s", zIndexedBy
, 0);
4007 pParse
->checkSchema
= 1;
4008 return SQLITE_ERROR
;
4010 pFrom
->pIBIndex
= pIdx
;
4015 ** Detect compound SELECT statements that use an ORDER BY clause with
4016 ** an alternative collating sequence.
4018 ** SELECT ... FROM t1 EXCEPT SELECT ... FROM t2 ORDER BY .. COLLATE ...
4020 ** These are rewritten as a subquery:
4022 ** SELECT * FROM (SELECT ... FROM t1 EXCEPT SELECT ... FROM t2)
4023 ** ORDER BY ... COLLATE ...
4025 ** This transformation is necessary because the multiSelectOrderBy() routine
4026 ** above that generates the code for a compound SELECT with an ORDER BY clause
4027 ** uses a merge algorithm that requires the same collating sequence on the
4028 ** result columns as on the ORDER BY clause. See ticket
4029 ** http://www.sqlite.org/src/info/6709574d2a
4031 ** This transformation is only needed for EXCEPT, INTERSECT, and UNION.
4032 ** The UNION ALL operator works fine with multiSelectOrderBy() even when
4033 ** there are COLLATE terms in the ORDER BY.
4035 static int convertCompoundSelectToSubquery(Walker
*pWalker
, Select
*p
){
4040 struct ExprList_item
*a
;
4045 if( p
->pPrior
==0 ) return WRC_Continue
;
4046 if( p
->pOrderBy
==0 ) return WRC_Continue
;
4047 for(pX
=p
; pX
&& (pX
->op
==TK_ALL
|| pX
->op
==TK_SELECT
); pX
=pX
->pPrior
){}
4048 if( pX
==0 ) return WRC_Continue
;
4050 for(i
=p
->pOrderBy
->nExpr
-1; i
>=0; i
--){
4051 if( a
[i
].pExpr
->flags
& EP_Collate
) break;
4053 if( i
<0 ) return WRC_Continue
;
4055 /* If we reach this point, that means the transformation is required. */
4057 pParse
= pWalker
->pParse
;
4059 pNew
= sqlite3DbMallocZero(db
, sizeof(*pNew
) );
4060 if( pNew
==0 ) return WRC_Abort
;
4061 memset(&dummy
, 0, sizeof(dummy
));
4062 pNewSrc
= sqlite3SrcListAppendFromTerm(pParse
,0,0,0,&dummy
,pNew
,0,0);
4063 if( pNewSrc
==0 ) return WRC_Abort
;
4066 p
->pEList
= sqlite3ExprListAppend(pParse
, 0, sqlite3Expr(db
, TK_ASTERISK
, 0));
4075 p
->selFlags
&= ~SF_Compound
;
4076 assert( (p
->selFlags
& SF_Converted
)==0 );
4077 p
->selFlags
|= SF_Converted
;
4078 assert( pNew
->pPrior
!=0 );
4079 pNew
->pPrior
->pNext
= pNew
;
4082 return WRC_Continue
;
4086 ** Check to see if the FROM clause term pFrom has table-valued function
4087 ** arguments. If it does, leave an error message in pParse and return
4088 ** non-zero, since pFrom is not allowed to be a table-valued function.
4090 static int cannotBeFunction(Parse
*pParse
, struct SrcList_item
*pFrom
){
4091 if( pFrom
->fg
.isTabFunc
){
4092 sqlite3ErrorMsg(pParse
, "'%s' is not a function", pFrom
->zName
);
4098 #ifndef SQLITE_OMIT_CTE
4100 ** Argument pWith (which may be NULL) points to a linked list of nested
4101 ** WITH contexts, from inner to outermost. If the table identified by
4102 ** FROM clause element pItem is really a common-table-expression (CTE)
4103 ** then return a pointer to the CTE definition for that table. Otherwise
4106 ** If a non-NULL value is returned, set *ppContext to point to the With
4107 ** object that the returned CTE belongs to.
4109 static struct Cte
*searchWith(
4110 With
*pWith
, /* Current innermost WITH clause */
4111 struct SrcList_item
*pItem
, /* FROM clause element to resolve */
4112 With
**ppContext
/* OUT: WITH clause return value belongs to */
4115 if( pItem
->zDatabase
==0 && (zName
= pItem
->zName
)!=0 ){
4117 for(p
=pWith
; p
; p
=p
->pOuter
){
4119 for(i
=0; i
<p
->nCte
; i
++){
4120 if( sqlite3StrICmp(zName
, p
->a
[i
].zName
)==0 ){
4130 /* The code generator maintains a stack of active WITH clauses
4131 ** with the inner-most WITH clause being at the top of the stack.
4133 ** This routine pushes the WITH clause passed as the second argument
4134 ** onto the top of the stack. If argument bFree is true, then this
4135 ** WITH clause will never be popped from the stack. In this case it
4136 ** should be freed along with the Parse object. In other cases, when
4137 ** bFree==0, the With object will be freed along with the SELECT
4138 ** statement with which it is associated.
4140 void sqlite3WithPush(Parse
*pParse
, With
*pWith
, u8 bFree
){
4141 assert( bFree
==0 || (pParse
->pWith
==0 && pParse
->pWithToFree
==0) );
4143 assert( pParse
->pWith
!=pWith
);
4144 pWith
->pOuter
= pParse
->pWith
;
4145 pParse
->pWith
= pWith
;
4146 if( bFree
) pParse
->pWithToFree
= pWith
;
4151 ** This function checks if argument pFrom refers to a CTE declared by
4152 ** a WITH clause on the stack currently maintained by the parser. And,
4153 ** if currently processing a CTE expression, if it is a recursive
4154 ** reference to the current CTE.
4156 ** If pFrom falls into either of the two categories above, pFrom->pTab
4157 ** and other fields are populated accordingly. The caller should check
4158 ** (pFrom->pTab!=0) to determine whether or not a successful match
4161 ** Whether or not a match is found, SQLITE_OK is returned if no error
4162 ** occurs. If an error does occur, an error message is stored in the
4163 ** parser and some error code other than SQLITE_OK returned.
4165 static int withExpand(
4167 struct SrcList_item
*pFrom
4169 Parse
*pParse
= pWalker
->pParse
;
4170 sqlite3
*db
= pParse
->db
;
4171 struct Cte
*pCte
; /* Matched CTE (or NULL if no match) */
4172 With
*pWith
; /* WITH clause that pCte belongs to */
4174 assert( pFrom
->pTab
==0 );
4176 pCte
= searchWith(pParse
->pWith
, pFrom
, &pWith
);
4181 Select
*pLeft
; /* Left-most SELECT statement */
4182 int bMayRecursive
; /* True if compound joined by UNION [ALL] */
4183 With
*pSavedWith
; /* Initial value of pParse->pWith */
4185 /* If pCte->zCteErr is non-NULL at this point, then this is an illegal
4186 ** recursive reference to CTE pCte. Leave an error in pParse and return
4187 ** early. If pCte->zCteErr is NULL, then this is not a recursive reference.
4188 ** In this case, proceed. */
4189 if( pCte
->zCteErr
){
4190 sqlite3ErrorMsg(pParse
, pCte
->zCteErr
, pCte
->zName
);
4191 return SQLITE_ERROR
;
4193 if( cannotBeFunction(pParse
, pFrom
) ) return SQLITE_ERROR
;
4195 assert( pFrom
->pTab
==0 );
4196 pFrom
->pTab
= pTab
= sqlite3DbMallocZero(db
, sizeof(Table
));
4197 if( pTab
==0 ) return WRC_Abort
;
4199 pTab
->zName
= sqlite3DbStrDup(db
, pCte
->zName
);
4201 pTab
->nRowLogEst
= 200; assert( 200==sqlite3LogEst(1048576) );
4202 pTab
->tabFlags
|= TF_Ephemeral
| TF_NoVisibleRowid
;
4203 pFrom
->pSelect
= sqlite3SelectDup(db
, pCte
->pSelect
, 0);
4204 if( db
->mallocFailed
) return SQLITE_NOMEM_BKPT
;
4205 assert( pFrom
->pSelect
);
4207 /* Check if this is a recursive CTE. */
4208 pSel
= pFrom
->pSelect
;
4209 bMayRecursive
= ( pSel
->op
==TK_ALL
|| pSel
->op
==TK_UNION
);
4210 if( bMayRecursive
){
4212 SrcList
*pSrc
= pFrom
->pSelect
->pSrc
;
4213 for(i
=0; i
<pSrc
->nSrc
; i
++){
4214 struct SrcList_item
*pItem
= &pSrc
->a
[i
];
4215 if( pItem
->zDatabase
==0
4217 && 0==sqlite3StrICmp(pItem
->zName
, pCte
->zName
)
4220 pItem
->fg
.isRecursive
= 1;
4222 pSel
->selFlags
|= SF_Recursive
;
4227 /* Only one recursive reference is permitted. */
4228 if( pTab
->nTabRef
>2 ){
4230 pParse
, "multiple references to recursive table: %s", pCte
->zName
4232 return SQLITE_ERROR
;
4234 assert( pTab
->nTabRef
==1 ||
4235 ((pSel
->selFlags
&SF_Recursive
) && pTab
->nTabRef
==2 ));
4237 pCte
->zCteErr
= "circular reference: %s";
4238 pSavedWith
= pParse
->pWith
;
4239 pParse
->pWith
= pWith
;
4240 if( bMayRecursive
){
4241 Select
*pPrior
= pSel
->pPrior
;
4242 assert( pPrior
->pWith
==0 );
4243 pPrior
->pWith
= pSel
->pWith
;
4244 sqlite3WalkSelect(pWalker
, pPrior
);
4247 sqlite3WalkSelect(pWalker
, pSel
);
4249 pParse
->pWith
= pWith
;
4251 for(pLeft
=pSel
; pLeft
->pPrior
; pLeft
=pLeft
->pPrior
);
4252 pEList
= pLeft
->pEList
;
4254 if( pEList
&& pEList
->nExpr
!=pCte
->pCols
->nExpr
){
4255 sqlite3ErrorMsg(pParse
, "table %s has %d values for %d columns",
4256 pCte
->zName
, pEList
->nExpr
, pCte
->pCols
->nExpr
4258 pParse
->pWith
= pSavedWith
;
4259 return SQLITE_ERROR
;
4261 pEList
= pCte
->pCols
;
4264 sqlite3ColumnsFromExprList(pParse
, pEList
, &pTab
->nCol
, &pTab
->aCol
);
4265 if( bMayRecursive
){
4266 if( pSel
->selFlags
& SF_Recursive
){
4267 pCte
->zCteErr
= "multiple recursive references: %s";
4269 pCte
->zCteErr
= "recursive reference in a subquery: %s";
4271 sqlite3WalkSelect(pWalker
, pSel
);
4274 pParse
->pWith
= pSavedWith
;
4281 #ifndef SQLITE_OMIT_CTE
4283 ** If the SELECT passed as the second argument has an associated WITH
4284 ** clause, pop it from the stack stored as part of the Parse object.
4286 ** This function is used as the xSelectCallback2() callback by
4287 ** sqlite3SelectExpand() when walking a SELECT tree to resolve table
4288 ** names and other FROM clause elements.
4290 static void selectPopWith(Walker
*pWalker
, Select
*p
){
4291 Parse
*pParse
= pWalker
->pParse
;
4292 if( pParse
->pWith
&& p
->pPrior
==0 ){
4293 With
*pWith
= findRightmost(p
)->pWith
;
4295 assert( pParse
->pWith
==pWith
);
4296 pParse
->pWith
= pWith
->pOuter
;
4301 #define selectPopWith 0
4305 ** This routine is a Walker callback for "expanding" a SELECT statement.
4306 ** "Expanding" means to do the following:
4308 ** (1) Make sure VDBE cursor numbers have been assigned to every
4309 ** element of the FROM clause.
4311 ** (2) Fill in the pTabList->a[].pTab fields in the SrcList that
4312 ** defines FROM clause. When views appear in the FROM clause,
4313 ** fill pTabList->a[].pSelect with a copy of the SELECT statement
4314 ** that implements the view. A copy is made of the view's SELECT
4315 ** statement so that we can freely modify or delete that statement
4316 ** without worrying about messing up the persistent representation
4319 ** (3) Add terms to the WHERE clause to accommodate the NATURAL keyword
4320 ** on joins and the ON and USING clause of joins.
4322 ** (4) Scan the list of columns in the result set (pEList) looking
4323 ** for instances of the "*" operator or the TABLE.* operator.
4324 ** If found, expand each "*" to be every column in every table
4325 ** and TABLE.* to be every column in TABLE.
4328 static int selectExpander(Walker
*pWalker
, Select
*p
){
4329 Parse
*pParse
= pWalker
->pParse
;
4333 struct SrcList_item
*pFrom
;
4334 sqlite3
*db
= pParse
->db
;
4335 Expr
*pE
, *pRight
, *pExpr
;
4336 u16 selFlags
= p
->selFlags
;
4338 p
->selFlags
|= SF_Expanded
;
4339 if( db
->mallocFailed
){
4342 if( NEVER(p
->pSrc
==0) || (selFlags
& SF_Expanded
)!=0 ){
4348 sqlite3WithPush(pParse
, p
->pWith
, 0);
4351 /* Make sure cursor numbers have been assigned to all entries in
4352 ** the FROM clause of the SELECT statement.
4354 sqlite3SrcListAssignCursors(pParse
, pTabList
);
4356 /* Look up every table named in the FROM clause of the select. If
4357 ** an entry of the FROM clause is a subquery instead of a table or view,
4358 ** then create a transient table structure to describe the subquery.
4360 for(i
=0, pFrom
=pTabList
->a
; i
<pTabList
->nSrc
; i
++, pFrom
++){
4362 assert( pFrom
->fg
.isRecursive
==0 || pFrom
->pTab
!=0 );
4363 if( pFrom
->fg
.isRecursive
) continue;
4364 assert( pFrom
->pTab
==0 );
4365 #ifndef SQLITE_OMIT_CTE
4366 if( withExpand(pWalker
, pFrom
) ) return WRC_Abort
;
4367 if( pFrom
->pTab
) {} else
4369 if( pFrom
->zName
==0 ){
4370 #ifndef SQLITE_OMIT_SUBQUERY
4371 Select
*pSel
= pFrom
->pSelect
;
4372 /* A sub-query in the FROM clause of a SELECT */
4374 assert( pFrom
->pTab
==0 );
4375 if( sqlite3WalkSelect(pWalker
, pSel
) ) return WRC_Abort
;
4376 pFrom
->pTab
= pTab
= sqlite3DbMallocZero(db
, sizeof(Table
));
4377 if( pTab
==0 ) return WRC_Abort
;
4379 pTab
->zName
= sqlite3MPrintf(db
, "sqlite_sq_%p", (void*)pTab
);
4380 while( pSel
->pPrior
){ pSel
= pSel
->pPrior
; }
4381 sqlite3ColumnsFromExprList(pParse
, pSel
->pEList
,&pTab
->nCol
,&pTab
->aCol
);
4383 pTab
->nRowLogEst
= 200; assert( 200==sqlite3LogEst(1048576) );
4384 pTab
->tabFlags
|= TF_Ephemeral
;
4387 /* An ordinary table or view name in the FROM clause */
4388 assert( pFrom
->pTab
==0 );
4389 pFrom
->pTab
= pTab
= sqlite3LocateTableItem(pParse
, 0, pFrom
);
4390 if( pTab
==0 ) return WRC_Abort
;
4391 if( pTab
->nTabRef
>=0xffff ){
4392 sqlite3ErrorMsg(pParse
, "too many references to \"%s\": max 65535",
4398 if( !IsVirtual(pTab
) && cannotBeFunction(pParse
, pFrom
) ){
4401 #if !defined(SQLITE_OMIT_VIEW) || !defined (SQLITE_OMIT_VIRTUALTABLE)
4402 if( IsVirtual(pTab
) || pTab
->pSelect
){
4404 if( sqlite3ViewGetColumnNames(pParse
, pTab
) ) return WRC_Abort
;
4405 assert( pFrom
->pSelect
==0 );
4406 pFrom
->pSelect
= sqlite3SelectDup(db
, pTab
->pSelect
, 0);
4407 sqlite3SelectSetName(pFrom
->pSelect
, pTab
->zName
);
4410 sqlite3WalkSelect(pWalker
, pFrom
->pSelect
);
4416 /* Locate the index named by the INDEXED BY clause, if any. */
4417 if( sqlite3IndexedByLookup(pParse
, pFrom
) ){
4422 /* Process NATURAL keywords, and ON and USING clauses of joins.
4424 if( db
->mallocFailed
|| sqliteProcessJoin(pParse
, p
) ){
4428 /* For every "*" that occurs in the column list, insert the names of
4429 ** all columns in all tables. And for every TABLE.* insert the names
4430 ** of all columns in TABLE. The parser inserted a special expression
4431 ** with the TK_ASTERISK operator for each "*" that it found in the column
4432 ** list. The following code just has to locate the TK_ASTERISK
4433 ** expressions and expand each one to the list of all columns in
4436 ** The first loop just checks to see if there are any "*" operators
4437 ** that need expanding.
4439 for(k
=0; k
<pEList
->nExpr
; k
++){
4440 pE
= pEList
->a
[k
].pExpr
;
4441 if( pE
->op
==TK_ASTERISK
) break;
4442 assert( pE
->op
!=TK_DOT
|| pE
->pRight
!=0 );
4443 assert( pE
->op
!=TK_DOT
|| (pE
->pLeft
!=0 && pE
->pLeft
->op
==TK_ID
) );
4444 if( pE
->op
==TK_DOT
&& pE
->pRight
->op
==TK_ASTERISK
) break;
4446 if( k
<pEList
->nExpr
){
4448 ** If we get here it means the result set contains one or more "*"
4449 ** operators that need to be expanded. Loop through each expression
4450 ** in the result set and expand them one by one.
4452 struct ExprList_item
*a
= pEList
->a
;
4454 int flags
= pParse
->db
->flags
;
4455 int longNames
= (flags
& SQLITE_FullColNames
)!=0
4456 && (flags
& SQLITE_ShortColNames
)==0;
4458 for(k
=0; k
<pEList
->nExpr
; k
++){
4460 pRight
= pE
->pRight
;
4461 assert( pE
->op
!=TK_DOT
|| pRight
!=0 );
4462 if( pE
->op
!=TK_ASTERISK
4463 && (pE
->op
!=TK_DOT
|| pRight
->op
!=TK_ASTERISK
)
4465 /* This particular expression does not need to be expanded.
4467 pNew
= sqlite3ExprListAppend(pParse
, pNew
, a
[k
].pExpr
);
4469 pNew
->a
[pNew
->nExpr
-1].zName
= a
[k
].zName
;
4470 pNew
->a
[pNew
->nExpr
-1].zSpan
= a
[k
].zSpan
;
4476 /* This expression is a "*" or a "TABLE.*" and needs to be
4478 int tableSeen
= 0; /* Set to 1 when TABLE matches */
4479 char *zTName
= 0; /* text of name of TABLE */
4480 if( pE
->op
==TK_DOT
){
4481 assert( pE
->pLeft
!=0 );
4482 assert( !ExprHasProperty(pE
->pLeft
, EP_IntValue
) );
4483 zTName
= pE
->pLeft
->u
.zToken
;
4485 for(i
=0, pFrom
=pTabList
->a
; i
<pTabList
->nSrc
; i
++, pFrom
++){
4486 Table
*pTab
= pFrom
->pTab
;
4487 Select
*pSub
= pFrom
->pSelect
;
4488 char *zTabName
= pFrom
->zAlias
;
4489 const char *zSchemaName
= 0;
4492 zTabName
= pTab
->zName
;
4494 if( db
->mallocFailed
) break;
4495 if( pSub
==0 || (pSub
->selFlags
& SF_NestedFrom
)==0 ){
4497 if( zTName
&& sqlite3StrICmp(zTName
, zTabName
)!=0 ){
4500 iDb
= sqlite3SchemaToIndex(db
, pTab
->pSchema
);
4501 zSchemaName
= iDb
>=0 ? db
->aDb
[iDb
].zDbSName
: "*";
4503 for(j
=0; j
<pTab
->nCol
; j
++){
4504 char *zName
= pTab
->aCol
[j
].zName
;
4505 char *zColname
; /* The computed column name */
4506 char *zToFree
; /* Malloced string that needs to be freed */
4507 Token sColname
; /* Computed column name as a token */
4511 && sqlite3MatchSpanName(pSub
->pEList
->a
[j
].zSpan
, 0, zTName
, 0)==0
4516 /* If a column is marked as 'hidden', omit it from the expanded
4517 ** result-set list unless the SELECT has the SF_IncludeHidden
4520 if( (p
->selFlags
& SF_IncludeHidden
)==0
4521 && IsHiddenColumn(&pTab
->aCol
[j
])
4527 if( i
>0 && zTName
==0 ){
4528 if( (pFrom
->fg
.jointype
& JT_NATURAL
)!=0
4529 && tableAndColumnIndex(pTabList
, i
, zName
, 0, 0)
4531 /* In a NATURAL join, omit the join columns from the
4532 ** table to the right of the join */
4535 if( sqlite3IdListIndex(pFrom
->pUsing
, zName
)>=0 ){
4536 /* In a join with a USING clause, omit columns in the
4537 ** using clause from the table on the right. */
4541 pRight
= sqlite3Expr(db
, TK_ID
, zName
);
4544 if( longNames
|| pTabList
->nSrc
>1 ){
4546 pLeft
= sqlite3Expr(db
, TK_ID
, zTabName
);
4547 pExpr
= sqlite3PExpr(pParse
, TK_DOT
, pLeft
, pRight
);
4549 pLeft
= sqlite3Expr(db
, TK_ID
, zSchemaName
);
4550 pExpr
= sqlite3PExpr(pParse
, TK_DOT
, pLeft
, pExpr
);
4553 zColname
= sqlite3MPrintf(db
, "%s.%s", zTabName
, zName
);
4559 pNew
= sqlite3ExprListAppend(pParse
, pNew
, pExpr
);
4560 sqlite3TokenInit(&sColname
, zColname
);
4561 sqlite3ExprListSetName(pParse
, pNew
, &sColname
, 0);
4562 if( pNew
&& (p
->selFlags
& SF_NestedFrom
)!=0 ){
4563 struct ExprList_item
*pX
= &pNew
->a
[pNew
->nExpr
-1];
4565 pX
->zSpan
= sqlite3DbStrDup(db
, pSub
->pEList
->a
[j
].zSpan
);
4566 testcase( pX
->zSpan
==0 );
4568 pX
->zSpan
= sqlite3MPrintf(db
, "%s.%s.%s",
4569 zSchemaName
, zTabName
, zColname
);
4570 testcase( pX
->zSpan
==0 );
4574 sqlite3DbFree(db
, zToFree
);
4579 sqlite3ErrorMsg(pParse
, "no such table: %s", zTName
);
4581 sqlite3ErrorMsg(pParse
, "no tables specified");
4586 sqlite3ExprListDelete(db
, pEList
);
4589 #if SQLITE_MAX_COLUMN
4590 if( p
->pEList
&& p
->pEList
->nExpr
>db
->aLimit
[SQLITE_LIMIT_COLUMN
] ){
4591 sqlite3ErrorMsg(pParse
, "too many columns in result set");
4595 return WRC_Continue
;
4599 ** No-op routine for the parse-tree walker.
4601 ** When this routine is the Walker.xExprCallback then expression trees
4602 ** are walked without any actions being taken at each node. Presumably,
4603 ** when this routine is used for Walker.xExprCallback then
4604 ** Walker.xSelectCallback is set to do something useful for every
4605 ** subquery in the parser tree.
4607 int sqlite3ExprWalkNoop(Walker
*NotUsed
, Expr
*NotUsed2
){
4608 UNUSED_PARAMETER2(NotUsed
, NotUsed2
);
4609 return WRC_Continue
;
4613 ** No-op routine for the parse-tree walker for SELECT statements.
4614 ** subquery in the parser tree.
4616 int sqlite3SelectWalkNoop(Walker
*NotUsed
, Select
*NotUsed2
){
4617 UNUSED_PARAMETER2(NotUsed
, NotUsed2
);
4618 return WRC_Continue
;
4623 ** Always assert. This xSelectCallback2 implementation proves that the
4624 ** xSelectCallback2 is never invoked.
4626 void sqlite3SelectWalkAssert2(Walker
*NotUsed
, Select
*NotUsed2
){
4627 UNUSED_PARAMETER2(NotUsed
, NotUsed2
);
4632 ** This routine "expands" a SELECT statement and all of its subqueries.
4633 ** For additional information on what it means to "expand" a SELECT
4634 ** statement, see the comment on the selectExpand worker callback above.
4636 ** Expanding a SELECT statement is the first step in processing a
4637 ** SELECT statement. The SELECT statement must be expanded before
4638 ** name resolution is performed.
4640 ** If anything goes wrong, an error message is written into pParse.
4641 ** The calling function can detect the problem by looking at pParse->nErr
4642 ** and/or pParse->db->mallocFailed.
4644 static void sqlite3SelectExpand(Parse
*pParse
, Select
*pSelect
){
4646 w
.xExprCallback
= sqlite3ExprWalkNoop
;
4648 if( pParse
->hasCompound
){
4649 w
.xSelectCallback
= convertCompoundSelectToSubquery
;
4650 w
.xSelectCallback2
= 0;
4651 sqlite3WalkSelect(&w
, pSelect
);
4653 w
.xSelectCallback
= selectExpander
;
4654 w
.xSelectCallback2
= selectPopWith
;
4655 sqlite3WalkSelect(&w
, pSelect
);
4659 #ifndef SQLITE_OMIT_SUBQUERY
4661 ** This is a Walker.xSelectCallback callback for the sqlite3SelectTypeInfo()
4664 ** For each FROM-clause subquery, add Column.zType and Column.zColl
4665 ** information to the Table structure that represents the result set
4666 ** of that subquery.
4668 ** The Table structure that represents the result set was constructed
4669 ** by selectExpander() but the type and collation information was omitted
4670 ** at that point because identifiers had not yet been resolved. This
4671 ** routine is called after identifier resolution.
4673 static void selectAddSubqueryTypeInfo(Walker
*pWalker
, Select
*p
){
4677 struct SrcList_item
*pFrom
;
4679 assert( p
->selFlags
& SF_Resolved
);
4680 assert( (p
->selFlags
& SF_HasTypeInfo
)==0 );
4681 p
->selFlags
|= SF_HasTypeInfo
;
4682 pParse
= pWalker
->pParse
;
4684 for(i
=0, pFrom
=pTabList
->a
; i
<pTabList
->nSrc
; i
++, pFrom
++){
4685 Table
*pTab
= pFrom
->pTab
;
4687 if( (pTab
->tabFlags
& TF_Ephemeral
)!=0 ){
4688 /* A sub-query in the FROM clause of a SELECT */
4689 Select
*pSel
= pFrom
->pSelect
;
4691 while( pSel
->pPrior
) pSel
= pSel
->pPrior
;
4692 sqlite3SelectAddColumnTypeAndCollation(pParse
, pTab
, pSel
);
4701 ** This routine adds datatype and collating sequence information to
4702 ** the Table structures of all FROM-clause subqueries in a
4703 ** SELECT statement.
4705 ** Use this routine after name resolution.
4707 static void sqlite3SelectAddTypeInfo(Parse
*pParse
, Select
*pSelect
){
4708 #ifndef SQLITE_OMIT_SUBQUERY
4710 w
.xSelectCallback
= sqlite3SelectWalkNoop
;
4711 w
.xSelectCallback2
= selectAddSubqueryTypeInfo
;
4712 w
.xExprCallback
= sqlite3ExprWalkNoop
;
4714 sqlite3WalkSelect(&w
, pSelect
);
4720 ** This routine sets up a SELECT statement for processing. The
4721 ** following is accomplished:
4723 ** * VDBE Cursor numbers are assigned to all FROM-clause terms.
4724 ** * Ephemeral Table objects are created for all FROM-clause subqueries.
4725 ** * ON and USING clauses are shifted into WHERE statements
4726 ** * Wildcards "*" and "TABLE.*" in result sets are expanded.
4727 ** * Identifiers in expression are matched to tables.
4729 ** This routine acts recursively on all subqueries within the SELECT.
4731 void sqlite3SelectPrep(
4732 Parse
*pParse
, /* The parser context */
4733 Select
*p
, /* The SELECT statement being coded. */
4734 NameContext
*pOuterNC
/* Name context for container */
4737 if( NEVER(p
==0) ) return;
4739 if( db
->mallocFailed
) return;
4740 if( p
->selFlags
& SF_HasTypeInfo
) return;
4741 sqlite3SelectExpand(pParse
, p
);
4742 if( pParse
->nErr
|| db
->mallocFailed
) return;
4743 sqlite3ResolveSelectNames(pParse
, p
, pOuterNC
);
4744 if( pParse
->nErr
|| db
->mallocFailed
) return;
4745 sqlite3SelectAddTypeInfo(pParse
, p
);
4749 ** Reset the aggregate accumulator.
4751 ** The aggregate accumulator is a set of memory cells that hold
4752 ** intermediate results while calculating an aggregate. This
4753 ** routine generates code that stores NULLs in all of those memory
4756 static void resetAccumulator(Parse
*pParse
, AggInfo
*pAggInfo
){
4757 Vdbe
*v
= pParse
->pVdbe
;
4759 struct AggInfo_func
*pFunc
;
4760 int nReg
= pAggInfo
->nFunc
+ pAggInfo
->nColumn
;
4761 if( nReg
==0 ) return;
4763 /* Verify that all AggInfo registers are within the range specified by
4764 ** AggInfo.mnReg..AggInfo.mxReg */
4765 assert( nReg
==pAggInfo
->mxReg
-pAggInfo
->mnReg
+1 );
4766 for(i
=0; i
<pAggInfo
->nColumn
; i
++){
4767 assert( pAggInfo
->aCol
[i
].iMem
>=pAggInfo
->mnReg
4768 && pAggInfo
->aCol
[i
].iMem
<=pAggInfo
->mxReg
);
4770 for(i
=0; i
<pAggInfo
->nFunc
; i
++){
4771 assert( pAggInfo
->aFunc
[i
].iMem
>=pAggInfo
->mnReg
4772 && pAggInfo
->aFunc
[i
].iMem
<=pAggInfo
->mxReg
);
4775 sqlite3VdbeAddOp3(v
, OP_Null
, 0, pAggInfo
->mnReg
, pAggInfo
->mxReg
);
4776 for(pFunc
=pAggInfo
->aFunc
, i
=0; i
<pAggInfo
->nFunc
; i
++, pFunc
++){
4777 if( pFunc
->iDistinct
>=0 ){
4778 Expr
*pE
= pFunc
->pExpr
;
4779 assert( !ExprHasProperty(pE
, EP_xIsSelect
) );
4780 if( pE
->x
.pList
==0 || pE
->x
.pList
->nExpr
!=1 ){
4781 sqlite3ErrorMsg(pParse
, "DISTINCT aggregates must have exactly one "
4783 pFunc
->iDistinct
= -1;
4785 KeyInfo
*pKeyInfo
= keyInfoFromExprList(pParse
, pE
->x
.pList
, 0, 0);
4786 sqlite3VdbeAddOp4(v
, OP_OpenEphemeral
, pFunc
->iDistinct
, 0, 0,
4787 (char*)pKeyInfo
, P4_KEYINFO
);
4794 ** Invoke the OP_AggFinalize opcode for every aggregate function
4795 ** in the AggInfo structure.
4797 static void finalizeAggFunctions(Parse
*pParse
, AggInfo
*pAggInfo
){
4798 Vdbe
*v
= pParse
->pVdbe
;
4800 struct AggInfo_func
*pF
;
4801 for(i
=0, pF
=pAggInfo
->aFunc
; i
<pAggInfo
->nFunc
; i
++, pF
++){
4802 ExprList
*pList
= pF
->pExpr
->x
.pList
;
4803 assert( !ExprHasProperty(pF
->pExpr
, EP_xIsSelect
) );
4804 sqlite3VdbeAddOp2(v
, OP_AggFinal
, pF
->iMem
, pList
? pList
->nExpr
: 0);
4805 sqlite3VdbeAppendP4(v
, pF
->pFunc
, P4_FUNCDEF
);
4810 ** Update the accumulator memory cells for an aggregate based on
4811 ** the current cursor position.
4813 static void updateAccumulator(Parse
*pParse
, AggInfo
*pAggInfo
){
4814 Vdbe
*v
= pParse
->pVdbe
;
4817 int addrHitTest
= 0;
4818 struct AggInfo_func
*pF
;
4819 struct AggInfo_col
*pC
;
4821 pAggInfo
->directMode
= 1;
4822 for(i
=0, pF
=pAggInfo
->aFunc
; i
<pAggInfo
->nFunc
; i
++, pF
++){
4826 ExprList
*pList
= pF
->pExpr
->x
.pList
;
4827 assert( !ExprHasProperty(pF
->pExpr
, EP_xIsSelect
) );
4829 nArg
= pList
->nExpr
;
4830 regAgg
= sqlite3GetTempRange(pParse
, nArg
);
4831 sqlite3ExprCodeExprList(pParse
, pList
, regAgg
, 0, SQLITE_ECEL_DUP
);
4836 if( pF
->iDistinct
>=0 ){
4837 addrNext
= sqlite3VdbeMakeLabel(v
);
4838 testcase( nArg
==0 ); /* Error condition */
4839 testcase( nArg
>1 ); /* Also an error */
4840 codeDistinct(pParse
, pF
->iDistinct
, addrNext
, 1, regAgg
);
4842 if( pF
->pFunc
->funcFlags
& SQLITE_FUNC_NEEDCOLL
){
4844 struct ExprList_item
*pItem
;
4846 assert( pList
!=0 ); /* pList!=0 if pF->pFunc has NEEDCOLL */
4847 for(j
=0, pItem
=pList
->a
; !pColl
&& j
<nArg
; j
++, pItem
++){
4848 pColl
= sqlite3ExprCollSeq(pParse
, pItem
->pExpr
);
4851 pColl
= pParse
->db
->pDfltColl
;
4853 if( regHit
==0 && pAggInfo
->nAccumulator
) regHit
= ++pParse
->nMem
;
4854 sqlite3VdbeAddOp4(v
, OP_CollSeq
, regHit
, 0, 0, (char *)pColl
, P4_COLLSEQ
);
4856 sqlite3VdbeAddOp3(v
, OP_AggStep0
, 0, regAgg
, pF
->iMem
);
4857 sqlite3VdbeAppendP4(v
, pF
->pFunc
, P4_FUNCDEF
);
4858 sqlite3VdbeChangeP5(v
, (u8
)nArg
);
4859 sqlite3ExprCacheAffinityChange(pParse
, regAgg
, nArg
);
4860 sqlite3ReleaseTempRange(pParse
, regAgg
, nArg
);
4862 sqlite3VdbeResolveLabel(v
, addrNext
);
4863 sqlite3ExprCacheClear(pParse
);
4867 /* Before populating the accumulator registers, clear the column cache.
4868 ** Otherwise, if any of the required column values are already present
4869 ** in registers, sqlite3ExprCode() may use OP_SCopy to copy the value
4870 ** to pC->iMem. But by the time the value is used, the original register
4871 ** may have been used, invalidating the underlying buffer holding the
4872 ** text or blob value. See ticket [883034dcb5].
4874 ** Another solution would be to change the OP_SCopy used to copy cached
4875 ** values to an OP_Copy.
4878 addrHitTest
= sqlite3VdbeAddOp1(v
, OP_If
, regHit
); VdbeCoverage(v
);
4880 sqlite3ExprCacheClear(pParse
);
4881 for(i
=0, pC
=pAggInfo
->aCol
; i
<pAggInfo
->nAccumulator
; i
++, pC
++){
4882 sqlite3ExprCode(pParse
, pC
->pExpr
, pC
->iMem
);
4884 pAggInfo
->directMode
= 0;
4885 sqlite3ExprCacheClear(pParse
);
4887 sqlite3VdbeJumpHere(v
, addrHitTest
);
4892 ** Add a single OP_Explain instruction to the VDBE to explain a simple
4893 ** count(*) query ("SELECT count(*) FROM pTab").
4895 #ifndef SQLITE_OMIT_EXPLAIN
4896 static void explainSimpleCount(
4897 Parse
*pParse
, /* Parse context */
4898 Table
*pTab
, /* Table being queried */
4899 Index
*pIdx
/* Index used to optimize scan, or NULL */
4901 if( pParse
->explain
==2 ){
4902 int bCover
= (pIdx
!=0 && (HasRowid(pTab
) || !IsPrimaryKeyIndex(pIdx
)));
4903 char *zEqp
= sqlite3MPrintf(pParse
->db
, "SCAN TABLE %s%s%s",
4905 bCover
? " USING COVERING INDEX " : "",
4906 bCover
? pIdx
->zName
: ""
4909 pParse
->pVdbe
, OP_Explain
, pParse
->iSelectId
, 0, 0, zEqp
, P4_DYNAMIC
4914 # define explainSimpleCount(a,b,c)
4918 ** Context object for havingToWhereExprCb().
4920 struct HavingToWhereCtx
{
4926 ** sqlite3WalkExpr() callback used by havingToWhere().
4928 ** If the node passed to the callback is a TK_AND node, return
4929 ** WRC_Continue to tell sqlite3WalkExpr() to iterate through child nodes.
4931 ** Otherwise, return WRC_Prune. In this case, also check if the
4932 ** sub-expression matches the criteria for being moved to the WHERE
4933 ** clause. If so, add it to the WHERE clause and replace the sub-expression
4934 ** within the HAVING expression with a constant "1".
4936 static int havingToWhereExprCb(Walker
*pWalker
, Expr
*pExpr
){
4937 if( pExpr
->op
!=TK_AND
){
4938 struct HavingToWhereCtx
*p
= pWalker
->u
.pHavingCtx
;
4939 if( sqlite3ExprIsConstantOrGroupBy(pWalker
->pParse
, pExpr
, p
->pGroupBy
) ){
4940 sqlite3
*db
= pWalker
->pParse
->db
;
4941 Expr
*pNew
= sqlite3ExprAlloc(db
, TK_INTEGER
, &sqlite3IntTokens
[1], 0);
4943 Expr
*pWhere
= *(p
->ppWhere
);
4944 SWAP(Expr
, *pNew
, *pExpr
);
4945 pNew
= sqlite3ExprAnd(db
, pWhere
, pNew
);
4946 *(p
->ppWhere
) = pNew
;
4951 return WRC_Continue
;
4955 ** Transfer eligible terms from the HAVING clause of a query, which is
4956 ** processed after grouping, to the WHERE clause, which is processed before
4957 ** grouping. For example, the query:
4959 ** SELECT * FROM <tables> WHERE a=? GROUP BY b HAVING b=? AND c=?
4961 ** can be rewritten as:
4963 ** SELECT * FROM <tables> WHERE a=? AND b=? GROUP BY b HAVING c=?
4965 ** A term of the HAVING expression is eligible for transfer if it consists
4966 ** entirely of constants and expressions that are also GROUP BY terms that
4967 ** use the "BINARY" collation sequence.
4969 static void havingToWhere(
4975 struct HavingToWhereCtx sCtx
;
4978 sCtx
.ppWhere
= ppWhere
;
4979 sCtx
.pGroupBy
= pGroupBy
;
4981 memset(&sWalker
, 0, sizeof(sWalker
));
4982 sWalker
.pParse
= pParse
;
4983 sWalker
.xExprCallback
= havingToWhereExprCb
;
4984 sWalker
.u
.pHavingCtx
= &sCtx
;
4985 sqlite3WalkExpr(&sWalker
, pHaving
);
4989 ** Check to see if the pThis entry of pTabList is a self-join of a prior view.
4990 ** If it is, then return the SrcList_item for the prior view. If it is not,
4993 static struct SrcList_item
*isSelfJoinView(
4994 SrcList
*pTabList
, /* Search for self-joins in this FROM clause */
4995 struct SrcList_item
*pThis
/* Search for prior reference to this subquery */
4997 struct SrcList_item
*pItem
;
4998 for(pItem
= pTabList
->a
; pItem
<pThis
; pItem
++){
4999 if( pItem
->pSelect
==0 ) continue;
5000 if( pItem
->fg
.viaCoroutine
) continue;
5001 if( pItem
->zName
==0 ) continue;
5002 if( sqlite3_stricmp(pItem
->zDatabase
, pThis
->zDatabase
)!=0 ) continue;
5003 if( sqlite3_stricmp(pItem
->zName
, pThis
->zName
)!=0 ) continue;
5004 if( sqlite3ExprCompare(0,
5005 pThis
->pSelect
->pWhere
, pItem
->pSelect
->pWhere
, -1)
5007 /* The view was modified by some other optimization such as
5008 ** pushDownWhereTerms() */
5016 #ifdef SQLITE_COUNTOFVIEW_OPTIMIZATION
5018 ** Attempt to transform a query of the form
5020 ** SELECT count(*) FROM (SELECT x FROM t1 UNION ALL SELECT y FROM t2)
5024 ** SELECT (SELECT count(*) FROM t1)+(SELECT count(*) FROM t2)
5026 ** The transformation only works if all of the following are true:
5028 ** * The subquery is a UNION ALL of two or more terms
5029 ** * There is no WHERE or GROUP BY or HAVING clauses on the subqueries
5030 ** * The outer query is a simple count(*)
5032 ** Return TRUE if the optimization is undertaken.
5034 static int countOfViewOptimization(Parse
*pParse
, Select
*p
){
5035 Select
*pSub
, *pPrior
;
5039 if( (p
->selFlags
& SF_Aggregate
)==0 ) return 0; /* This is an aggregate */
5040 if( p
->pEList
->nExpr
!=1 ) return 0; /* Single result column */
5041 pExpr
= p
->pEList
->a
[0].pExpr
;
5042 if( pExpr
->op
!=TK_AGG_FUNCTION
) return 0; /* Result is an aggregate */
5043 if( sqlite3_stricmp(pExpr
->u
.zToken
,"count") ) return 0; /* Is count() */
5044 if( pExpr
->x
.pList
!=0 ) return 0; /* Must be count(*) */
5045 if( p
->pSrc
->nSrc
!=1 ) return 0; /* One table in FROM */
5046 pSub
= p
->pSrc
->a
[0].pSelect
;
5047 if( pSub
==0 ) return 0; /* The FROM is a subquery */
5048 if( pSub
->pPrior
==0 ) return 0; /* Must be a compound ry */
5050 if( pSub
->op
!=TK_ALL
&& pSub
->pPrior
) return 0; /* Must be UNION ALL */
5051 if( pSub
->pWhere
) return 0; /* No WHERE clause */
5052 if( pSub
->selFlags
& SF_Aggregate
) return 0; /* Not an aggregate */
5053 pSub
= pSub
->pPrior
; /* Repeat over compound */
5056 /* If we reach this point then it is OK to perform the transformation */
5061 pSub
= p
->pSrc
->a
[0].pSelect
;
5062 p
->pSrc
->a
[0].pSelect
= 0;
5063 sqlite3SrcListDelete(db
, p
->pSrc
);
5064 p
->pSrc
= sqlite3DbMallocZero(pParse
->db
, sizeof(*p
->pSrc
));
5067 pPrior
= pSub
->pPrior
;
5070 pSub
->selFlags
|= SF_Aggregate
;
5071 pSub
->selFlags
&= ~SF_Compound
;
5072 pSub
->nSelectRow
= 0;
5073 sqlite3ExprListDelete(db
, pSub
->pEList
);
5074 pTerm
= pPrior
? sqlite3ExprDup(db
, pCount
, 0) : pCount
;
5075 pSub
->pEList
= sqlite3ExprListAppend(pParse
, 0, pTerm
);
5076 pTerm
= sqlite3PExpr(pParse
, TK_SELECT
, 0, 0);
5077 sqlite3PExprAddSelect(pParse
, pTerm
, pSub
);
5081 pExpr
= sqlite3PExpr(pParse
, TK_PLUS
, pTerm
, pExpr
);
5085 p
->pEList
->a
[0].pExpr
= pExpr
;
5086 p
->selFlags
&= ~SF_Aggregate
;
5088 #if SELECTTRACE_ENABLED
5089 if( sqlite3SelectTrace
& 0x400 ){
5090 SELECTTRACE(0x400,pParse
,p
,("After count-of-view optimization:\n"));
5091 sqlite3TreeViewSelect(0, p
, 0);
5096 #endif /* SQLITE_COUNTOFVIEW_OPTIMIZATION */
5099 ** Generate code for the SELECT statement given in the p argument.
5101 ** The results are returned according to the SelectDest structure.
5102 ** See comments in sqliteInt.h for further information.
5104 ** This routine returns the number of errors. If any errors are
5105 ** encountered, then an appropriate error message is left in
5108 ** This routine does NOT free the Select structure passed in. The
5109 ** calling function needs to do that.
5112 Parse
*pParse
, /* The parser context */
5113 Select
*p
, /* The SELECT statement being coded. */
5114 SelectDest
*pDest
/* What to do with the query results */
5116 int i
, j
; /* Loop counters */
5117 WhereInfo
*pWInfo
; /* Return from sqlite3WhereBegin() */
5118 Vdbe
*v
; /* The virtual machine under construction */
5119 int isAgg
; /* True for select lists like "count(*)" */
5120 ExprList
*pEList
= 0; /* List of columns to extract. */
5121 SrcList
*pTabList
; /* List of tables to select from */
5122 Expr
*pWhere
; /* The WHERE clause. May be NULL */
5123 ExprList
*pGroupBy
; /* The GROUP BY clause. May be NULL */
5124 Expr
*pHaving
; /* The HAVING clause. May be NULL */
5125 int rc
= 1; /* Value to return from this function */
5126 DistinctCtx sDistinct
; /* Info on how to code the DISTINCT keyword */
5127 SortCtx sSort
; /* Info on how to code the ORDER BY clause */
5128 AggInfo sAggInfo
; /* Information used by aggregate queries */
5129 int iEnd
; /* Address of the end of the query */
5130 sqlite3
*db
; /* The database connection */
5132 #ifndef SQLITE_OMIT_EXPLAIN
5133 int iRestoreSelectId
= pParse
->iSelectId
;
5134 pParse
->iSelectId
= pParse
->iNextSelectId
++;
5138 if( p
==0 || db
->mallocFailed
|| pParse
->nErr
){
5141 if( sqlite3AuthCheck(pParse
, SQLITE_SELECT
, 0, 0, 0) ) return 1;
5142 memset(&sAggInfo
, 0, sizeof(sAggInfo
));
5143 #if SELECTTRACE_ENABLED
5144 pParse
->nSelectIndent
++;
5145 SELECTTRACE(1,pParse
,p
, ("begin processing:\n"));
5146 if( sqlite3SelectTrace
& 0x100 ){
5147 sqlite3TreeViewSelect(0, p
, 0);
5151 assert( p
->pOrderBy
==0 || pDest
->eDest
!=SRT_DistFifo
);
5152 assert( p
->pOrderBy
==0 || pDest
->eDest
!=SRT_Fifo
);
5153 assert( p
->pOrderBy
==0 || pDest
->eDest
!=SRT_DistQueue
);
5154 assert( p
->pOrderBy
==0 || pDest
->eDest
!=SRT_Queue
);
5155 if( IgnorableOrderby(pDest
) ){
5156 assert(pDest
->eDest
==SRT_Exists
|| pDest
->eDest
==SRT_Union
||
5157 pDest
->eDest
==SRT_Except
|| pDest
->eDest
==SRT_Discard
||
5158 pDest
->eDest
==SRT_Queue
|| pDest
->eDest
==SRT_DistFifo
||
5159 pDest
->eDest
==SRT_DistQueue
|| pDest
->eDest
==SRT_Fifo
);
5160 /* If ORDER BY makes no difference in the output then neither does
5161 ** DISTINCT so it can be removed too. */
5162 sqlite3ExprListDelete(db
, p
->pOrderBy
);
5164 p
->selFlags
&= ~SF_Distinct
;
5166 sqlite3SelectPrep(pParse
, p
, 0);
5167 memset(&sSort
, 0, sizeof(sSort
));
5168 sSort
.pOrderBy
= p
->pOrderBy
;
5170 if( pParse
->nErr
|| db
->mallocFailed
){
5173 assert( p
->pEList
!=0 );
5174 isAgg
= (p
->selFlags
& SF_Aggregate
)!=0;
5175 #if SELECTTRACE_ENABLED
5176 if( sqlite3SelectTrace
& 0x100 ){
5177 SELECTTRACE(0x100,pParse
,p
, ("after name resolution:\n"));
5178 sqlite3TreeViewSelect(0, p
, 0);
5182 /* Get a pointer the VDBE under construction, allocating a new VDBE if one
5183 ** does not already exist */
5184 v
= sqlite3GetVdbe(pParse
);
5185 if( v
==0 ) goto select_end
;
5186 if( pDest
->eDest
==SRT_Output
){
5187 generateColumnNames(pParse
, p
);
5190 /* Try to flatten subqueries in the FROM clause up into the main query
5192 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
5193 for(i
=0; !p
->pPrior
&& i
<pTabList
->nSrc
; i
++){
5194 struct SrcList_item
*pItem
= &pTabList
->a
[i
];
5195 Select
*pSub
= pItem
->pSelect
;
5197 Table
*pTab
= pItem
->pTab
;
5198 if( pSub
==0 ) continue;
5200 /* Catch mismatch in the declared columns of a view and the number of
5201 ** columns in the SELECT on the RHS */
5202 if( pTab
->nCol
!=pSub
->pEList
->nExpr
){
5203 sqlite3ErrorMsg(pParse
, "expected %d columns for '%s' but got %d",
5204 pTab
->nCol
, pTab
->zName
, pSub
->pEList
->nExpr
);
5208 isAggSub
= (pSub
->selFlags
& SF_Aggregate
)!=0;
5209 if( flattenSubquery(pParse
, p
, i
, isAgg
, isAggSub
) ){
5210 /* This subquery can be absorbed into its parent. */
5213 p
->selFlags
|= SF_Aggregate
;
5218 if( db
->mallocFailed
) goto select_end
;
5219 if( !IgnorableOrderby(pDest
) ){
5220 sSort
.pOrderBy
= p
->pOrderBy
;
5225 #ifndef SQLITE_OMIT_COMPOUND_SELECT
5226 /* Handle compound SELECT statements using the separate multiSelect()
5230 rc
= multiSelect(pParse
, p
, pDest
);
5231 explainSetInteger(pParse
->iSelectId
, iRestoreSelectId
);
5232 #if SELECTTRACE_ENABLED
5233 SELECTTRACE(1,pParse
,p
,("end compound-select processing\n"));
5234 pParse
->nSelectIndent
--;
5240 /* For each term in the FROM clause, do two things:
5241 ** (1) Authorized unreferenced tables
5242 ** (2) Generate code for all sub-queries
5244 for(i
=0; i
<pTabList
->nSrc
; i
++){
5245 struct SrcList_item
*pItem
= &pTabList
->a
[i
];
5249 /* Issue SQLITE_READ authorizations with a fake column name for any
5250 ** tables that are referenced but from which no values are extracted.
5251 ** Examples of where these kinds of null SQLITE_READ authorizations
5254 ** SELECT count(*) FROM t1; -- SQLITE_READ t1.""
5255 ** SELECT t1.* FROM t1, t2; -- SQLITE_READ t2.""
5257 ** The fake column name is an empty string. It is possible for a table to
5258 ** have a column named by the empty string, in which case there is no way to
5259 ** distinguish between an unreferenced table and an actual reference to the
5260 ** "" column. The original design was for the fake column name to be a NULL,
5261 ** which would be unambiguous. But legacy authorization callbacks might
5262 ** assume the column name is non-NULL and segfault. The use of an empty
5263 ** string for the fake column name seems safer.
5265 if( pItem
->colUsed
==0 ){
5266 sqlite3AuthCheck(pParse
, SQLITE_READ
, pItem
->zName
, "", pItem
->zDatabase
);
5269 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
5270 /* Generate code for all sub-queries in the FROM clause
5272 pSub
= pItem
->pSelect
;
5273 if( pSub
==0 ) continue;
5275 /* Sometimes the code for a subquery will be generated more than
5276 ** once, if the subquery is part of the WHERE clause in a LEFT JOIN,
5277 ** for example. In that case, do not regenerate the code to manifest
5278 ** a view or the co-routine to implement a view. The first instance
5279 ** is sufficient, though the subroutine to manifest the view does need
5280 ** to be invoked again. */
5281 if( pItem
->addrFillSub
){
5282 if( pItem
->fg
.viaCoroutine
==0 ){
5283 /* The subroutine that manifests the view might be a one-time routine,
5284 ** or it might need to be rerun on each iteration because it
5285 ** encodes a correlated subquery. */
5286 testcase( sqlite3VdbeGetOp(v
, pItem
->addrFillSub
)->opcode
==OP_Once
);
5287 sqlite3VdbeAddOp2(v
, OP_Gosub
, pItem
->regReturn
, pItem
->addrFillSub
);
5292 /* Increment Parse.nHeight by the height of the largest expression
5293 ** tree referred to by this, the parent select. The child select
5294 ** may contain expression trees of at most
5295 ** (SQLITE_MAX_EXPR_DEPTH-Parse.nHeight) height. This is a bit
5296 ** more conservative than necessary, but much easier than enforcing
5299 pParse
->nHeight
+= sqlite3SelectExprHeight(p
);
5301 /* Make copies of constant WHERE-clause terms in the outer query down
5302 ** inside the subquery. This can help the subquery to run more efficiently.
5304 if( (pItem
->fg
.jointype
& JT_OUTER
)==0
5305 && pushDownWhereTerms(pParse
, pSub
, p
->pWhere
, pItem
->iCursor
)
5307 #if SELECTTRACE_ENABLED
5308 if( sqlite3SelectTrace
& 0x100 ){
5309 SELECTTRACE(0x100,pParse
,p
,("After WHERE-clause push-down:\n"));
5310 sqlite3TreeViewSelect(0, p
, 0);
5315 /* Generate code to implement the subquery
5317 ** The subquery is implemented as a co-routine if all of these are true:
5318 ** (1) The subquery is guaranteed to be the outer loop (so that it
5319 ** does not need to be computed more than once)
5320 ** (2) REMOVED (2017-09-28): The ALL keyword after SELECT is omitted.
5321 ** (3) Co-routines are not disabled using sqlite3_test_control()
5322 ** with SQLITE_TESTCTRL_OPTIMIZATIONS.
5324 ** TODO: Are there other reasons beside (1) to use a co-routine
5328 && (pTabList
->nSrc
==1
5329 || (pTabList
->a
[1].fg
.jointype
&(JT_LEFT
|JT_CROSS
))!=0) /* (1) */
5330 /*** constraint removed: && (p->selFlags & SF_All)==0 (2) */
5331 && OptimizationEnabled(db
, SQLITE_SubqCoroutine
) /* (3) */
5333 /* Implement a co-routine that will return a single row of the result
5334 ** set on each invocation.
5336 int addrTop
= sqlite3VdbeCurrentAddr(v
)+1;
5337 pItem
->regReturn
= ++pParse
->nMem
;
5338 sqlite3VdbeAddOp3(v
, OP_InitCoroutine
, pItem
->regReturn
, 0, addrTop
);
5339 VdbeComment((v
, "%s", pItem
->pTab
->zName
));
5340 pItem
->addrFillSub
= addrTop
;
5341 sqlite3SelectDestInit(&dest
, SRT_Coroutine
, pItem
->regReturn
);
5342 explainSetInteger(pItem
->iSelectId
, (u8
)pParse
->iNextSelectId
);
5343 sqlite3Select(pParse
, pSub
, &dest
);
5344 pItem
->pTab
->nRowLogEst
= pSub
->nSelectRow
;
5345 pItem
->fg
.viaCoroutine
= 1;
5346 pItem
->regResult
= dest
.iSdst
;
5347 sqlite3VdbeEndCoroutine(v
, pItem
->regReturn
);
5348 sqlite3VdbeJumpHere(v
, addrTop
-1);
5349 sqlite3ClearTempRegCache(pParse
);
5351 /* Generate a subroutine that will fill an ephemeral table with
5352 ** the content of this subquery. pItem->addrFillSub will point
5353 ** to the address of the generated subroutine. pItem->regReturn
5354 ** is a register allocated to hold the subroutine return address
5359 struct SrcList_item
*pPrior
;
5361 assert( pItem
->addrFillSub
==0 );
5362 pItem
->regReturn
= ++pParse
->nMem
;
5363 topAddr
= sqlite3VdbeAddOp2(v
, OP_Integer
, 0, pItem
->regReturn
);
5364 pItem
->addrFillSub
= topAddr
+1;
5365 if( pItem
->fg
.isCorrelated
==0 ){
5366 /* If the subquery is not correlated and if we are not inside of
5367 ** a trigger, then we only need to compute the value of the subquery
5369 onceAddr
= sqlite3VdbeAddOp0(v
, OP_Once
); VdbeCoverage(v
);
5370 VdbeComment((v
, "materialize \"%s\"", pItem
->pTab
->zName
));
5372 VdbeNoopComment((v
, "materialize \"%s\"", pItem
->pTab
->zName
));
5374 pPrior
= isSelfJoinView(pTabList
, pItem
);
5376 sqlite3VdbeAddOp2(v
, OP_OpenDup
, pItem
->iCursor
, pPrior
->iCursor
);
5377 explainSetInteger(pItem
->iSelectId
, pPrior
->iSelectId
);
5378 assert( pPrior
->pSelect
!=0 );
5379 pSub
->nSelectRow
= pPrior
->pSelect
->nSelectRow
;
5381 sqlite3SelectDestInit(&dest
, SRT_EphemTab
, pItem
->iCursor
);
5382 explainSetInteger(pItem
->iSelectId
, (u8
)pParse
->iNextSelectId
);
5383 sqlite3Select(pParse
, pSub
, &dest
);
5385 pItem
->pTab
->nRowLogEst
= pSub
->nSelectRow
;
5386 if( onceAddr
) sqlite3VdbeJumpHere(v
, onceAddr
);
5387 retAddr
= sqlite3VdbeAddOp1(v
, OP_Return
, pItem
->regReturn
);
5388 VdbeComment((v
, "end %s", pItem
->pTab
->zName
));
5389 sqlite3VdbeChangeP1(v
, topAddr
, retAddr
);
5390 sqlite3ClearTempRegCache(pParse
);
5392 if( db
->mallocFailed
) goto select_end
;
5393 pParse
->nHeight
-= sqlite3SelectExprHeight(p
);
5397 /* Various elements of the SELECT copied into local variables for
5401 pGroupBy
= p
->pGroupBy
;
5402 pHaving
= p
->pHaving
;
5403 sDistinct
.isTnct
= (p
->selFlags
& SF_Distinct
)!=0;
5405 #if SELECTTRACE_ENABLED
5406 if( sqlite3SelectTrace
& 0x400 ){
5407 SELECTTRACE(0x400,pParse
,p
,("After all FROM-clause analysis:\n"));
5408 sqlite3TreeViewSelect(0, p
, 0);
5412 #ifdef SQLITE_COUNTOFVIEW_OPTIMIZATION
5413 if( OptimizationEnabled(db
, SQLITE_QueryFlattener
|SQLITE_CountOfView
)
5414 && countOfViewOptimization(pParse
, p
)
5416 if( db
->mallocFailed
) goto select_end
;
5422 /* If the query is DISTINCT with an ORDER BY but is not an aggregate, and
5423 ** if the select-list is the same as the ORDER BY list, then this query
5424 ** can be rewritten as a GROUP BY. In other words, this:
5426 ** SELECT DISTINCT xyz FROM ... ORDER BY xyz
5428 ** is transformed to:
5430 ** SELECT xyz FROM ... GROUP BY xyz ORDER BY xyz
5432 ** The second form is preferred as a single index (or temp-table) may be
5433 ** used for both the ORDER BY and DISTINCT processing. As originally
5434 ** written the query must use a temp-table for at least one of the ORDER
5435 ** BY and DISTINCT, and an index or separate temp-table for the other.
5437 if( (p
->selFlags
& (SF_Distinct
|SF_Aggregate
))==SF_Distinct
5438 && sqlite3ExprListCompare(sSort
.pOrderBy
, pEList
, -1)==0
5440 p
->selFlags
&= ~SF_Distinct
;
5441 pGroupBy
= p
->pGroupBy
= sqlite3ExprListDup(db
, pEList
, 0);
5442 /* Notice that even thought SF_Distinct has been cleared from p->selFlags,
5443 ** the sDistinct.isTnct is still set. Hence, isTnct represents the
5444 ** original setting of the SF_Distinct flag, not the current setting */
5445 assert( sDistinct
.isTnct
);
5447 #if SELECTTRACE_ENABLED
5448 if( sqlite3SelectTrace
& 0x400 ){
5449 SELECTTRACE(0x400,pParse
,p
,("Transform DISTINCT into GROUP BY:\n"));
5450 sqlite3TreeViewSelect(0, p
, 0);
5455 /* If there is an ORDER BY clause, then create an ephemeral index to
5456 ** do the sorting. But this sorting ephemeral index might end up
5457 ** being unused if the data can be extracted in pre-sorted order.
5458 ** If that is the case, then the OP_OpenEphemeral instruction will be
5459 ** changed to an OP_Noop once we figure out that the sorting index is
5460 ** not needed. The sSort.addrSortIndex variable is used to facilitate
5463 if( sSort
.pOrderBy
){
5465 pKeyInfo
= keyInfoFromExprList(pParse
, sSort
.pOrderBy
, 0, pEList
->nExpr
);
5466 sSort
.iECursor
= pParse
->nTab
++;
5467 sSort
.addrSortIndex
=
5468 sqlite3VdbeAddOp4(v
, OP_OpenEphemeral
,
5469 sSort
.iECursor
, sSort
.pOrderBy
->nExpr
+1+pEList
->nExpr
, 0,
5470 (char*)pKeyInfo
, P4_KEYINFO
5473 sSort
.addrSortIndex
= -1;
5476 /* If the output is destined for a temporary table, open that table.
5478 if( pDest
->eDest
==SRT_EphemTab
){
5479 sqlite3VdbeAddOp2(v
, OP_OpenEphemeral
, pDest
->iSDParm
, pEList
->nExpr
);
5484 iEnd
= sqlite3VdbeMakeLabel(v
);
5485 if( (p
->selFlags
& SF_FixedLimit
)==0 ){
5486 p
->nSelectRow
= 320; /* 4 billion rows */
5488 computeLimitRegisters(pParse
, p
, iEnd
);
5489 if( p
->iLimit
==0 && sSort
.addrSortIndex
>=0 ){
5490 sqlite3VdbeChangeOpcode(v
, sSort
.addrSortIndex
, OP_SorterOpen
);
5491 sSort
.sortFlags
|= SORTFLAG_UseSorter
;
5494 /* Open an ephemeral index to use for the distinct set.
5496 if( p
->selFlags
& SF_Distinct
){
5497 sDistinct
.tabTnct
= pParse
->nTab
++;
5498 sDistinct
.addrTnct
= sqlite3VdbeAddOp4(v
, OP_OpenEphemeral
,
5499 sDistinct
.tabTnct
, 0, 0,
5500 (char*)keyInfoFromExprList(pParse
, p
->pEList
,0,0),
5502 sqlite3VdbeChangeP5(v
, BTREE_UNORDERED
);
5503 sDistinct
.eTnctType
= WHERE_DISTINCT_UNORDERED
;
5505 sDistinct
.eTnctType
= WHERE_DISTINCT_NOOP
;
5508 if( !isAgg
&& pGroupBy
==0 ){
5509 /* No aggregate functions and no GROUP BY clause */
5510 u16 wctrlFlags
= (sDistinct
.isTnct
? WHERE_WANT_DISTINCT
: 0);
5511 assert( WHERE_USE_LIMIT
==SF_FixedLimit
);
5512 wctrlFlags
|= p
->selFlags
& SF_FixedLimit
;
5514 /* Begin the database scan. */
5515 pWInfo
= sqlite3WhereBegin(pParse
, pTabList
, pWhere
, sSort
.pOrderBy
,
5516 p
->pEList
, wctrlFlags
, p
->nSelectRow
);
5517 if( pWInfo
==0 ) goto select_end
;
5518 if( sqlite3WhereOutputRowCount(pWInfo
) < p
->nSelectRow
){
5519 p
->nSelectRow
= sqlite3WhereOutputRowCount(pWInfo
);
5521 if( sDistinct
.isTnct
&& sqlite3WhereIsDistinct(pWInfo
) ){
5522 sDistinct
.eTnctType
= sqlite3WhereIsDistinct(pWInfo
);
5524 if( sSort
.pOrderBy
){
5525 sSort
.nOBSat
= sqlite3WhereIsOrdered(pWInfo
);
5526 sSort
.bOrderedInnerLoop
= sqlite3WhereOrderedInnerLoop(pWInfo
);
5527 if( sSort
.nOBSat
==sSort
.pOrderBy
->nExpr
){
5532 /* If sorting index that was created by a prior OP_OpenEphemeral
5533 ** instruction ended up not being needed, then change the OP_OpenEphemeral
5536 if( sSort
.addrSortIndex
>=0 && sSort
.pOrderBy
==0 ){
5537 sqlite3VdbeChangeToNoop(v
, sSort
.addrSortIndex
);
5540 /* Use the standard inner loop. */
5541 assert( p
->pEList
==pEList
);
5542 selectInnerLoop(pParse
, p
, -1, &sSort
, &sDistinct
, pDest
,
5543 sqlite3WhereContinueLabel(pWInfo
),
5544 sqlite3WhereBreakLabel(pWInfo
));
5546 /* End the database scan loop.
5548 sqlite3WhereEnd(pWInfo
);
5550 /* This case when there exist aggregate functions or a GROUP BY clause
5552 NameContext sNC
; /* Name context for processing aggregate information */
5553 int iAMem
; /* First Mem address for storing current GROUP BY */
5554 int iBMem
; /* First Mem address for previous GROUP BY */
5555 int iUseFlag
; /* Mem address holding flag indicating that at least
5556 ** one row of the input to the aggregator has been
5558 int iAbortFlag
; /* Mem address which causes query abort if positive */
5559 int groupBySort
; /* Rows come from source in GROUP BY order */
5560 int addrEnd
; /* End of processing for this SELECT */
5561 int sortPTab
= 0; /* Pseudotable used to decode sorting results */
5562 int sortOut
= 0; /* Output register from the sorter */
5563 int orderByGrp
= 0; /* True if the GROUP BY and ORDER BY are the same */
5565 /* Remove any and all aliases between the result set and the
5569 int k
; /* Loop counter */
5570 struct ExprList_item
*pItem
; /* For looping over expression in a list */
5572 for(k
=p
->pEList
->nExpr
, pItem
=p
->pEList
->a
; k
>0; k
--, pItem
++){
5573 pItem
->u
.x
.iAlias
= 0;
5575 for(k
=pGroupBy
->nExpr
, pItem
=pGroupBy
->a
; k
>0; k
--, pItem
++){
5576 pItem
->u
.x
.iAlias
= 0;
5578 assert( 66==sqlite3LogEst(100) );
5579 if( p
->nSelectRow
>66 ) p
->nSelectRow
= 66;
5581 assert( 0==sqlite3LogEst(1) );
5585 /* If there is both a GROUP BY and an ORDER BY clause and they are
5586 ** identical, then it may be possible to disable the ORDER BY clause
5587 ** on the grounds that the GROUP BY will cause elements to come out
5588 ** in the correct order. It also may not - the GROUP BY might use a
5589 ** database index that causes rows to be grouped together as required
5590 ** but not actually sorted. Either way, record the fact that the
5591 ** ORDER BY and GROUP BY clauses are the same by setting the orderByGrp
5593 if( sqlite3ExprListCompare(pGroupBy
, sSort
.pOrderBy
, -1)==0 ){
5597 /* Create a label to jump to when we want to abort the query */
5598 addrEnd
= sqlite3VdbeMakeLabel(v
);
5600 /* Convert TK_COLUMN nodes into TK_AGG_COLUMN and make entries in
5601 ** sAggInfo for all TK_AGG_FUNCTION nodes in expressions of the
5602 ** SELECT statement.
5604 memset(&sNC
, 0, sizeof(sNC
));
5605 sNC
.pParse
= pParse
;
5606 sNC
.pSrcList
= pTabList
;
5607 sNC
.pAggInfo
= &sAggInfo
;
5608 sAggInfo
.mnReg
= pParse
->nMem
+1;
5609 sAggInfo
.nSortingColumn
= pGroupBy
? pGroupBy
->nExpr
: 0;
5610 sAggInfo
.pGroupBy
= pGroupBy
;
5611 sqlite3ExprAnalyzeAggList(&sNC
, pEList
);
5612 sqlite3ExprAnalyzeAggList(&sNC
, sSort
.pOrderBy
);
5615 assert( pWhere
==p
->pWhere
);
5616 havingToWhere(pParse
, pGroupBy
, pHaving
, &p
->pWhere
);
5619 sqlite3ExprAnalyzeAggregates(&sNC
, pHaving
);
5621 sAggInfo
.nAccumulator
= sAggInfo
.nColumn
;
5622 for(i
=0; i
<sAggInfo
.nFunc
; i
++){
5623 assert( !ExprHasProperty(sAggInfo
.aFunc
[i
].pExpr
, EP_xIsSelect
) );
5624 sNC
.ncFlags
|= NC_InAggFunc
;
5625 sqlite3ExprAnalyzeAggList(&sNC
, sAggInfo
.aFunc
[i
].pExpr
->x
.pList
);
5626 sNC
.ncFlags
&= ~NC_InAggFunc
;
5628 sAggInfo
.mxReg
= pParse
->nMem
;
5629 if( db
->mallocFailed
) goto select_end
;
5631 /* Processing for aggregates with GROUP BY is very different and
5632 ** much more complex than aggregates without a GROUP BY.
5635 KeyInfo
*pKeyInfo
; /* Keying information for the group by clause */
5636 int addr1
; /* A-vs-B comparision jump */
5637 int addrOutputRow
; /* Start of subroutine that outputs a result row */
5638 int regOutputRow
; /* Return address register for output subroutine */
5639 int addrSetAbort
; /* Set the abort flag and return */
5640 int addrTopOfLoop
; /* Top of the input loop */
5641 int addrSortingIdx
; /* The OP_OpenEphemeral for the sorting index */
5642 int addrReset
; /* Subroutine for resetting the accumulator */
5643 int regReset
; /* Return address register for reset subroutine */
5645 /* If there is a GROUP BY clause we might need a sorting index to
5646 ** implement it. Allocate that sorting index now. If it turns out
5647 ** that we do not need it after all, the OP_SorterOpen instruction
5648 ** will be converted into a Noop.
5650 sAggInfo
.sortingIdx
= pParse
->nTab
++;
5651 pKeyInfo
= keyInfoFromExprList(pParse
, pGroupBy
, 0, sAggInfo
.nColumn
);
5652 addrSortingIdx
= sqlite3VdbeAddOp4(v
, OP_SorterOpen
,
5653 sAggInfo
.sortingIdx
, sAggInfo
.nSortingColumn
,
5654 0, (char*)pKeyInfo
, P4_KEYINFO
);
5656 /* Initialize memory locations used by GROUP BY aggregate processing
5658 iUseFlag
= ++pParse
->nMem
;
5659 iAbortFlag
= ++pParse
->nMem
;
5660 regOutputRow
= ++pParse
->nMem
;
5661 addrOutputRow
= sqlite3VdbeMakeLabel(v
);
5662 regReset
= ++pParse
->nMem
;
5663 addrReset
= sqlite3VdbeMakeLabel(v
);
5664 iAMem
= pParse
->nMem
+ 1;
5665 pParse
->nMem
+= pGroupBy
->nExpr
;
5666 iBMem
= pParse
->nMem
+ 1;
5667 pParse
->nMem
+= pGroupBy
->nExpr
;
5668 sqlite3VdbeAddOp2(v
, OP_Integer
, 0, iAbortFlag
);
5669 VdbeComment((v
, "clear abort flag"));
5670 sqlite3VdbeAddOp2(v
, OP_Integer
, 0, iUseFlag
);
5671 VdbeComment((v
, "indicate accumulator empty"));
5672 sqlite3VdbeAddOp3(v
, OP_Null
, 0, iAMem
, iAMem
+pGroupBy
->nExpr
-1);
5674 /* Begin a loop that will extract all source rows in GROUP BY order.
5675 ** This might involve two separate loops with an OP_Sort in between, or
5676 ** it might be a single loop that uses an index to extract information
5677 ** in the right order to begin with.
5679 sqlite3VdbeAddOp2(v
, OP_Gosub
, regReset
, addrReset
);
5680 pWInfo
= sqlite3WhereBegin(pParse
, pTabList
, pWhere
, pGroupBy
, 0,
5681 WHERE_GROUPBY
| (orderByGrp
? WHERE_SORTBYGROUP
: 0), 0
5683 if( pWInfo
==0 ) goto select_end
;
5684 if( sqlite3WhereIsOrdered(pWInfo
)==pGroupBy
->nExpr
){
5685 /* The optimizer is able to deliver rows in group by order so
5686 ** we do not have to sort. The OP_OpenEphemeral table will be
5687 ** cancelled later because we still need to use the pKeyInfo
5691 /* Rows are coming out in undetermined order. We have to push
5692 ** each row into a sorting index, terminate the first loop,
5693 ** then loop over the sorting index in order to get the output
5701 explainTempTable(pParse
,
5702 (sDistinct
.isTnct
&& (p
->selFlags
&SF_Distinct
)==0) ?
5703 "DISTINCT" : "GROUP BY");
5706 nGroupBy
= pGroupBy
->nExpr
;
5709 for(i
=0; i
<sAggInfo
.nColumn
; i
++){
5710 if( sAggInfo
.aCol
[i
].iSorterColumn
>=j
){
5715 regBase
= sqlite3GetTempRange(pParse
, nCol
);
5716 sqlite3ExprCacheClear(pParse
);
5717 sqlite3ExprCodeExprList(pParse
, pGroupBy
, regBase
, 0, 0);
5719 for(i
=0; i
<sAggInfo
.nColumn
; i
++){
5720 struct AggInfo_col
*pCol
= &sAggInfo
.aCol
[i
];
5721 if( pCol
->iSorterColumn
>=j
){
5722 int r1
= j
+ regBase
;
5723 sqlite3ExprCodeGetColumnToReg(pParse
,
5724 pCol
->pTab
, pCol
->iColumn
, pCol
->iTable
, r1
);
5728 regRecord
= sqlite3GetTempReg(pParse
);
5729 sqlite3VdbeAddOp3(v
, OP_MakeRecord
, regBase
, nCol
, regRecord
);
5730 sqlite3VdbeAddOp2(v
, OP_SorterInsert
, sAggInfo
.sortingIdx
, regRecord
);
5731 sqlite3ReleaseTempReg(pParse
, regRecord
);
5732 sqlite3ReleaseTempRange(pParse
, regBase
, nCol
);
5733 sqlite3WhereEnd(pWInfo
);
5734 sAggInfo
.sortingIdxPTab
= sortPTab
= pParse
->nTab
++;
5735 sortOut
= sqlite3GetTempReg(pParse
);
5736 sqlite3VdbeAddOp3(v
, OP_OpenPseudo
, sortPTab
, sortOut
, nCol
);
5737 sqlite3VdbeAddOp2(v
, OP_SorterSort
, sAggInfo
.sortingIdx
, addrEnd
);
5738 VdbeComment((v
, "GROUP BY sort")); VdbeCoverage(v
);
5739 sAggInfo
.useSortingIdx
= 1;
5740 sqlite3ExprCacheClear(pParse
);
5744 /* If the index or temporary table used by the GROUP BY sort
5745 ** will naturally deliver rows in the order required by the ORDER BY
5746 ** clause, cancel the ephemeral table open coded earlier.
5748 ** This is an optimization - the correct answer should result regardless.
5749 ** Use the SQLITE_GroupByOrder flag with SQLITE_TESTCTRL_OPTIMIZER to
5750 ** disable this optimization for testing purposes. */
5751 if( orderByGrp
&& OptimizationEnabled(db
, SQLITE_GroupByOrder
)
5752 && (groupBySort
|| sqlite3WhereIsSorted(pWInfo
))
5755 sqlite3VdbeChangeToNoop(v
, sSort
.addrSortIndex
);
5758 /* Evaluate the current GROUP BY terms and store in b0, b1, b2...
5759 ** (b0 is memory location iBMem+0, b1 is iBMem+1, and so forth)
5760 ** Then compare the current GROUP BY terms against the GROUP BY terms
5761 ** from the previous row currently stored in a0, a1, a2...
5763 addrTopOfLoop
= sqlite3VdbeCurrentAddr(v
);
5764 sqlite3ExprCacheClear(pParse
);
5766 sqlite3VdbeAddOp3(v
, OP_SorterData
, sAggInfo
.sortingIdx
,
5769 for(j
=0; j
<pGroupBy
->nExpr
; j
++){
5771 sqlite3VdbeAddOp3(v
, OP_Column
, sortPTab
, j
, iBMem
+j
);
5773 sAggInfo
.directMode
= 1;
5774 sqlite3ExprCode(pParse
, pGroupBy
->a
[j
].pExpr
, iBMem
+j
);
5777 sqlite3VdbeAddOp4(v
, OP_Compare
, iAMem
, iBMem
, pGroupBy
->nExpr
,
5778 (char*)sqlite3KeyInfoRef(pKeyInfo
), P4_KEYINFO
);
5779 addr1
= sqlite3VdbeCurrentAddr(v
);
5780 sqlite3VdbeAddOp3(v
, OP_Jump
, addr1
+1, 0, addr1
+1); VdbeCoverage(v
);
5782 /* Generate code that runs whenever the GROUP BY changes.
5783 ** Changes in the GROUP BY are detected by the previous code
5784 ** block. If there were no changes, this block is skipped.
5786 ** This code copies current group by terms in b0,b1,b2,...
5787 ** over to a0,a1,a2. It then calls the output subroutine
5788 ** and resets the aggregate accumulator registers in preparation
5789 ** for the next GROUP BY batch.
5791 sqlite3ExprCodeMove(pParse
, iBMem
, iAMem
, pGroupBy
->nExpr
);
5792 sqlite3VdbeAddOp2(v
, OP_Gosub
, regOutputRow
, addrOutputRow
);
5793 VdbeComment((v
, "output one row"));
5794 sqlite3VdbeAddOp2(v
, OP_IfPos
, iAbortFlag
, addrEnd
); VdbeCoverage(v
);
5795 VdbeComment((v
, "check abort flag"));
5796 sqlite3VdbeAddOp2(v
, OP_Gosub
, regReset
, addrReset
);
5797 VdbeComment((v
, "reset accumulator"));
5799 /* Update the aggregate accumulators based on the content of
5802 sqlite3VdbeJumpHere(v
, addr1
);
5803 updateAccumulator(pParse
, &sAggInfo
);
5804 sqlite3VdbeAddOp2(v
, OP_Integer
, 1, iUseFlag
);
5805 VdbeComment((v
, "indicate data in accumulator"));
5810 sqlite3VdbeAddOp2(v
, OP_SorterNext
, sAggInfo
.sortingIdx
, addrTopOfLoop
);
5813 sqlite3WhereEnd(pWInfo
);
5814 sqlite3VdbeChangeToNoop(v
, addrSortingIdx
);
5817 /* Output the final row of result
5819 sqlite3VdbeAddOp2(v
, OP_Gosub
, regOutputRow
, addrOutputRow
);
5820 VdbeComment((v
, "output final row"));
5822 /* Jump over the subroutines
5824 sqlite3VdbeGoto(v
, addrEnd
);
5826 /* Generate a subroutine that outputs a single row of the result
5827 ** set. This subroutine first looks at the iUseFlag. If iUseFlag
5828 ** is less than or equal to zero, the subroutine is a no-op. If
5829 ** the processing calls for the query to abort, this subroutine
5830 ** increments the iAbortFlag memory location before returning in
5831 ** order to signal the caller to abort.
5833 addrSetAbort
= sqlite3VdbeCurrentAddr(v
);
5834 sqlite3VdbeAddOp2(v
, OP_Integer
, 1, iAbortFlag
);
5835 VdbeComment((v
, "set abort flag"));
5836 sqlite3VdbeAddOp1(v
, OP_Return
, regOutputRow
);
5837 sqlite3VdbeResolveLabel(v
, addrOutputRow
);
5838 addrOutputRow
= sqlite3VdbeCurrentAddr(v
);
5839 sqlite3VdbeAddOp2(v
, OP_IfPos
, iUseFlag
, addrOutputRow
+2);
5841 VdbeComment((v
, "Groupby result generator entry point"));
5842 sqlite3VdbeAddOp1(v
, OP_Return
, regOutputRow
);
5843 finalizeAggFunctions(pParse
, &sAggInfo
);
5844 sqlite3ExprIfFalse(pParse
, pHaving
, addrOutputRow
+1, SQLITE_JUMPIFNULL
);
5845 selectInnerLoop(pParse
, p
, -1, &sSort
,
5847 addrOutputRow
+1, addrSetAbort
);
5848 sqlite3VdbeAddOp1(v
, OP_Return
, regOutputRow
);
5849 VdbeComment((v
, "end groupby result generator"));
5851 /* Generate a subroutine that will reset the group-by accumulator
5853 sqlite3VdbeResolveLabel(v
, addrReset
);
5854 resetAccumulator(pParse
, &sAggInfo
);
5855 sqlite3VdbeAddOp1(v
, OP_Return
, regReset
);
5857 } /* endif pGroupBy. Begin aggregate queries without GROUP BY: */
5860 #ifndef SQLITE_OMIT_BTREECOUNT
5862 if( (pTab
= isSimpleCount(p
, &sAggInfo
))!=0 ){
5863 /* If isSimpleCount() returns a pointer to a Table structure, then
5864 ** the SQL statement is of the form:
5866 ** SELECT count(*) FROM <tbl>
5868 ** where the Table structure returned represents table <tbl>.
5870 ** This statement is so common that it is optimized specially. The
5871 ** OP_Count instruction is executed either on the intkey table that
5872 ** contains the data for table <tbl> or on one of its indexes. It
5873 ** is better to execute the op on an index, as indexes are almost
5874 ** always spread across less pages than their corresponding tables.
5876 const int iDb
= sqlite3SchemaToIndex(pParse
->db
, pTab
->pSchema
);
5877 const int iCsr
= pParse
->nTab
++; /* Cursor to scan b-tree */
5878 Index
*pIdx
; /* Iterator variable */
5879 KeyInfo
*pKeyInfo
= 0; /* Keyinfo for scanned index */
5880 Index
*pBest
= 0; /* Best index found so far */
5881 int iRoot
= pTab
->tnum
; /* Root page of scanned b-tree */
5883 sqlite3CodeVerifySchema(pParse
, iDb
);
5884 sqlite3TableLock(pParse
, iDb
, pTab
->tnum
, 0, pTab
->zName
);
5886 /* Search for the index that has the lowest scan cost.
5888 ** (2011-04-15) Do not do a full scan of an unordered index.
5890 ** (2013-10-03) Do not count the entries in a partial index.
5892 ** In practice the KeyInfo structure will not be used. It is only
5893 ** passed to keep OP_OpenRead happy.
5895 if( !HasRowid(pTab
) ) pBest
= sqlite3PrimaryKeyIndex(pTab
);
5896 for(pIdx
=pTab
->pIndex
; pIdx
; pIdx
=pIdx
->pNext
){
5897 if( pIdx
->bUnordered
==0
5898 && pIdx
->szIdxRow
<pTab
->szTabRow
5899 && pIdx
->pPartIdxWhere
==0
5900 && (!pBest
|| pIdx
->szIdxRow
<pBest
->szIdxRow
)
5906 iRoot
= pBest
->tnum
;
5907 pKeyInfo
= sqlite3KeyInfoOfIndex(pParse
, pBest
);
5910 /* Open a read-only cursor, execute the OP_Count, close the cursor. */
5911 sqlite3VdbeAddOp4Int(v
, OP_OpenRead
, iCsr
, iRoot
, iDb
, 1);
5913 sqlite3VdbeChangeP4(v
, -1, (char *)pKeyInfo
, P4_KEYINFO
);
5915 sqlite3VdbeAddOp2(v
, OP_Count
, iCsr
, sAggInfo
.aFunc
[0].iMem
);
5916 sqlite3VdbeAddOp1(v
, OP_Close
, iCsr
);
5917 explainSimpleCount(pParse
, pTab
, pBest
);
5919 #endif /* SQLITE_OMIT_BTREECOUNT */
5921 /* Check if the query is of one of the following forms:
5923 ** SELECT min(x) FROM ...
5924 ** SELECT max(x) FROM ...
5926 ** If it is, then ask the code in where.c to attempt to sort results
5927 ** as if there was an "ORDER ON x" or "ORDER ON x DESC" clause.
5928 ** If where.c is able to produce results sorted in this order, then
5929 ** add vdbe code to break out of the processing loop after the
5930 ** first iteration (since the first iteration of the loop is
5931 ** guaranteed to operate on the row with the minimum or maximum
5932 ** value of x, the only row required).
5934 ** A special flag must be passed to sqlite3WhereBegin() to slightly
5935 ** modify behavior as follows:
5937 ** + If the query is a "SELECT min(x)", then the loop coded by
5938 ** where.c should not iterate over any values with a NULL value
5941 ** + The optimizer code in where.c (the thing that decides which
5942 ** index or indices to use) should place a different priority on
5943 ** satisfying the 'ORDER BY' clause than it does in other cases.
5944 ** Refer to code and comments in where.c for details.
5946 ExprList
*pMinMax
= 0;
5947 u8 flag
= WHERE_ORDERBY_NORMAL
;
5949 assert( p
->pGroupBy
==0 );
5951 if( p
->pHaving
==0 ){
5952 flag
= minMaxQuery(&sAggInfo
, &pMinMax
);
5954 assert( flag
==0 || (pMinMax
!=0 && pMinMax
->nExpr
==1) );
5957 pMinMax
= sqlite3ExprListDup(db
, pMinMax
, 0);
5959 assert( db
->mallocFailed
|| pMinMax
!=0 );
5960 if( !db
->mallocFailed
){
5961 pMinMax
->a
[0].sortOrder
= flag
!=WHERE_ORDERBY_MIN
?1:0;
5962 pMinMax
->a
[0].pExpr
->op
= TK_COLUMN
;
5966 /* This case runs if the aggregate has no GROUP BY clause. The
5967 ** processing is much simpler since there is only a single row
5970 resetAccumulator(pParse
, &sAggInfo
);
5971 pWInfo
= sqlite3WhereBegin(pParse
, pTabList
, pWhere
, pMinMax
, 0,flag
,0);
5973 sqlite3ExprListDelete(db
, pDel
);
5976 updateAccumulator(pParse
, &sAggInfo
);
5977 assert( pMinMax
==0 || pMinMax
->nExpr
==1 );
5978 if( sqlite3WhereIsOrdered(pWInfo
)>0 ){
5979 sqlite3VdbeGoto(v
, sqlite3WhereBreakLabel(pWInfo
));
5980 VdbeComment((v
, "%s() by index",
5981 (flag
==WHERE_ORDERBY_MIN
?"min":"max")));
5983 sqlite3WhereEnd(pWInfo
);
5984 finalizeAggFunctions(pParse
, &sAggInfo
);
5988 sqlite3ExprIfFalse(pParse
, pHaving
, addrEnd
, SQLITE_JUMPIFNULL
);
5989 selectInnerLoop(pParse
, p
, -1, 0, 0,
5990 pDest
, addrEnd
, addrEnd
);
5991 sqlite3ExprListDelete(db
, pDel
);
5993 sqlite3VdbeResolveLabel(v
, addrEnd
);
5995 } /* endif aggregate query */
5997 if( sDistinct
.eTnctType
==WHERE_DISTINCT_UNORDERED
){
5998 explainTempTable(pParse
, "DISTINCT");
6001 /* If there is an ORDER BY clause, then we need to sort the results
6002 ** and send them to the callback one by one.
6004 if( sSort
.pOrderBy
){
6005 explainTempTable(pParse
,
6006 sSort
.nOBSat
>0 ? "RIGHT PART OF ORDER BY":"ORDER BY");
6007 generateSortTail(pParse
, p
, &sSort
, pEList
->nExpr
, pDest
);
6010 /* Jump here to skip this query
6012 sqlite3VdbeResolveLabel(v
, iEnd
);
6014 /* The SELECT has been coded. If there is an error in the Parse structure,
6015 ** set the return code to 1. Otherwise 0. */
6016 rc
= (pParse
->nErr
>0);
6018 /* Control jumps to here if an error is encountered above, or upon
6019 ** successful coding of the SELECT.
6022 explainSetInteger(pParse
->iSelectId
, iRestoreSelectId
);
6024 sqlite3DbFree(db
, sAggInfo
.aCol
);
6025 sqlite3DbFree(db
, sAggInfo
.aFunc
);
6026 #if SELECTTRACE_ENABLED
6027 SELECTTRACE(1,pParse
,p
,("end processing\n"));
6028 pParse
->nSelectIndent
--;