Remove the (undocumented) query-planner control that prevents
[sqlite.git] / src / select.c
bloba5f04767bfa19f112b7e987340e6ff113a35d42b
1 /*
2 ** 2001 September 15
3 **
4 ** The author disclaims copyright to this source code. In place of
5 ** a legal notice, here is a blessing:
6 **
7 ** May you do good and not evil.
8 ** May you find forgiveness for yourself and forgive others.
9 ** May you share freely, never taking more than you give.
11 *************************************************************************
12 ** This file contains C code routines that are called by the parser
13 ** to handle SELECT statements in SQLite.
15 #include "sqliteInt.h"
18 ** Trace output macros
20 #if SELECTTRACE_ENABLED
21 /***/ int sqlite3SelectTrace = 0;
22 # define SELECTTRACE(K,P,S,X) \
23 if(sqlite3SelectTrace&(K)) \
24 sqlite3DebugPrintf("%*s%s.%p: ",(P)->nSelectIndent*2-2,"",\
25 (S)->zSelName,(S)),\
26 sqlite3DebugPrintf X
27 #else
28 # define SELECTTRACE(K,P,S,X)
29 #endif
33 ** An instance of the following object is used to record information about
34 ** how to process the DISTINCT keyword, to simplify passing that information
35 ** into the selectInnerLoop() routine.
37 typedef struct DistinctCtx DistinctCtx;
38 struct DistinctCtx {
39 u8 isTnct; /* True if the DISTINCT keyword is present */
40 u8 eTnctType; /* One of the WHERE_DISTINCT_* operators */
41 int tabTnct; /* Ephemeral table used for DISTINCT processing */
42 int addrTnct; /* Address of OP_OpenEphemeral opcode for tabTnct */
46 ** An instance of the following object is used to record information about
47 ** the ORDER BY (or GROUP BY) clause of query is being coded.
49 typedef struct SortCtx SortCtx;
50 struct SortCtx {
51 ExprList *pOrderBy; /* The ORDER BY (or GROUP BY clause) */
52 int nOBSat; /* Number of ORDER BY terms satisfied by indices */
53 int iECursor; /* Cursor number for the sorter */
54 int regReturn; /* Register holding block-output return address */
55 int labelBkOut; /* Start label for the block-output subroutine */
56 int addrSortIndex; /* Address of the OP_SorterOpen or OP_OpenEphemeral */
57 int labelDone; /* Jump here when done, ex: LIMIT reached */
58 u8 sortFlags; /* Zero or more SORTFLAG_* bits */
59 u8 bOrderedInnerLoop; /* ORDER BY correctly sorts the inner loop */
61 #define SORTFLAG_UseSorter 0x01 /* Use SorterOpen instead of OpenEphemeral */
64 ** Delete all the content of a Select structure. Deallocate the structure
65 ** itself only if bFree is true.
67 static void clearSelect(sqlite3 *db, Select *p, int bFree){
68 while( p ){
69 Select *pPrior = p->pPrior;
70 sqlite3ExprListDelete(db, p->pEList);
71 sqlite3SrcListDelete(db, p->pSrc);
72 sqlite3ExprDelete(db, p->pWhere);
73 sqlite3ExprListDelete(db, p->pGroupBy);
74 sqlite3ExprDelete(db, p->pHaving);
75 sqlite3ExprListDelete(db, p->pOrderBy);
76 sqlite3ExprDelete(db, p->pLimit);
77 sqlite3ExprDelete(db, p->pOffset);
78 if( p->pWith ) sqlite3WithDelete(db, p->pWith);
79 if( bFree ) sqlite3DbFreeNN(db, p);
80 p = pPrior;
81 bFree = 1;
86 ** Initialize a SelectDest structure.
88 void sqlite3SelectDestInit(SelectDest *pDest, int eDest, int iParm){
89 pDest->eDest = (u8)eDest;
90 pDest->iSDParm = iParm;
91 pDest->zAffSdst = 0;
92 pDest->iSdst = 0;
93 pDest->nSdst = 0;
98 ** Allocate a new Select structure and return a pointer to that
99 ** structure.
101 Select *sqlite3SelectNew(
102 Parse *pParse, /* Parsing context */
103 ExprList *pEList, /* which columns to include in the result */
104 SrcList *pSrc, /* the FROM clause -- which tables to scan */
105 Expr *pWhere, /* the WHERE clause */
106 ExprList *pGroupBy, /* the GROUP BY clause */
107 Expr *pHaving, /* the HAVING clause */
108 ExprList *pOrderBy, /* the ORDER BY clause */
109 u32 selFlags, /* Flag parameters, such as SF_Distinct */
110 Expr *pLimit, /* LIMIT value. NULL means not used */
111 Expr *pOffset /* OFFSET value. NULL means no offset */
113 Select *pNew;
114 Select standin;
115 pNew = sqlite3DbMallocRawNN(pParse->db, sizeof(*pNew) );
116 if( pNew==0 ){
117 assert( pParse->db->mallocFailed );
118 pNew = &standin;
120 if( pEList==0 ){
121 pEList = sqlite3ExprListAppend(pParse, 0,
122 sqlite3Expr(pParse->db,TK_ASTERISK,0));
124 pNew->pEList = pEList;
125 pNew->op = TK_SELECT;
126 pNew->selFlags = selFlags;
127 pNew->iLimit = 0;
128 pNew->iOffset = 0;
129 #if SELECTTRACE_ENABLED
130 pNew->zSelName[0] = 0;
131 #endif
132 pNew->addrOpenEphm[0] = -1;
133 pNew->addrOpenEphm[1] = -1;
134 pNew->nSelectRow = 0;
135 if( pSrc==0 ) pSrc = sqlite3DbMallocZero(pParse->db, sizeof(*pSrc));
136 pNew->pSrc = pSrc;
137 pNew->pWhere = pWhere;
138 pNew->pGroupBy = pGroupBy;
139 pNew->pHaving = pHaving;
140 pNew->pOrderBy = pOrderBy;
141 pNew->pPrior = 0;
142 pNew->pNext = 0;
143 pNew->pLimit = pLimit;
144 pNew->pOffset = pOffset;
145 pNew->pWith = 0;
146 assert( pOffset==0 || pLimit!=0 || pParse->nErr>0
147 || pParse->db->mallocFailed!=0 );
148 if( pParse->db->mallocFailed ) {
149 clearSelect(pParse->db, pNew, pNew!=&standin);
150 pNew = 0;
151 }else{
152 assert( pNew->pSrc!=0 || pParse->nErr>0 );
154 assert( pNew!=&standin );
155 return pNew;
158 #if SELECTTRACE_ENABLED
160 ** Set the name of a Select object
162 void sqlite3SelectSetName(Select *p, const char *zName){
163 if( p && zName ){
164 sqlite3_snprintf(sizeof(p->zSelName), p->zSelName, "%s", zName);
167 #endif
171 ** Delete the given Select structure and all of its substructures.
173 void sqlite3SelectDelete(sqlite3 *db, Select *p){
174 if( p ) clearSelect(db, p, 1);
178 ** Return a pointer to the right-most SELECT statement in a compound.
180 static Select *findRightmost(Select *p){
181 while( p->pNext ) p = p->pNext;
182 return p;
186 ** Given 1 to 3 identifiers preceding the JOIN keyword, determine the
187 ** type of join. Return an integer constant that expresses that type
188 ** in terms of the following bit values:
190 ** JT_INNER
191 ** JT_CROSS
192 ** JT_OUTER
193 ** JT_NATURAL
194 ** JT_LEFT
195 ** JT_RIGHT
197 ** A full outer join is the combination of JT_LEFT and JT_RIGHT.
199 ** If an illegal or unsupported join type is seen, then still return
200 ** a join type, but put an error in the pParse structure.
202 int sqlite3JoinType(Parse *pParse, Token *pA, Token *pB, Token *pC){
203 int jointype = 0;
204 Token *apAll[3];
205 Token *p;
206 /* 0123456789 123456789 123456789 123 */
207 static const char zKeyText[] = "naturaleftouterightfullinnercross";
208 static const struct {
209 u8 i; /* Beginning of keyword text in zKeyText[] */
210 u8 nChar; /* Length of the keyword in characters */
211 u8 code; /* Join type mask */
212 } aKeyword[] = {
213 /* natural */ { 0, 7, JT_NATURAL },
214 /* left */ { 6, 4, JT_LEFT|JT_OUTER },
215 /* outer */ { 10, 5, JT_OUTER },
216 /* right */ { 14, 5, JT_RIGHT|JT_OUTER },
217 /* full */ { 19, 4, JT_LEFT|JT_RIGHT|JT_OUTER },
218 /* inner */ { 23, 5, JT_INNER },
219 /* cross */ { 28, 5, JT_INNER|JT_CROSS },
221 int i, j;
222 apAll[0] = pA;
223 apAll[1] = pB;
224 apAll[2] = pC;
225 for(i=0; i<3 && apAll[i]; i++){
226 p = apAll[i];
227 for(j=0; j<ArraySize(aKeyword); j++){
228 if( p->n==aKeyword[j].nChar
229 && sqlite3StrNICmp((char*)p->z, &zKeyText[aKeyword[j].i], p->n)==0 ){
230 jointype |= aKeyword[j].code;
231 break;
234 testcase( j==0 || j==1 || j==2 || j==3 || j==4 || j==5 || j==6 );
235 if( j>=ArraySize(aKeyword) ){
236 jointype |= JT_ERROR;
237 break;
241 (jointype & (JT_INNER|JT_OUTER))==(JT_INNER|JT_OUTER) ||
242 (jointype & JT_ERROR)!=0
244 const char *zSp = " ";
245 assert( pB!=0 );
246 if( pC==0 ){ zSp++; }
247 sqlite3ErrorMsg(pParse, "unknown or unsupported join type: "
248 "%T %T%s%T", pA, pB, zSp, pC);
249 jointype = JT_INNER;
250 }else if( (jointype & JT_OUTER)!=0
251 && (jointype & (JT_LEFT|JT_RIGHT))!=JT_LEFT ){
252 sqlite3ErrorMsg(pParse,
253 "RIGHT and FULL OUTER JOINs are not currently supported");
254 jointype = JT_INNER;
256 return jointype;
260 ** Return the index of a column in a table. Return -1 if the column
261 ** is not contained in the table.
263 static int columnIndex(Table *pTab, const char *zCol){
264 int i;
265 for(i=0; i<pTab->nCol; i++){
266 if( sqlite3StrICmp(pTab->aCol[i].zName, zCol)==0 ) return i;
268 return -1;
272 ** Search the first N tables in pSrc, from left to right, looking for a
273 ** table that has a column named zCol.
275 ** When found, set *piTab and *piCol to the table index and column index
276 ** of the matching column and return TRUE.
278 ** If not found, return FALSE.
280 static int tableAndColumnIndex(
281 SrcList *pSrc, /* Array of tables to search */
282 int N, /* Number of tables in pSrc->a[] to search */
283 const char *zCol, /* Name of the column we are looking for */
284 int *piTab, /* Write index of pSrc->a[] here */
285 int *piCol /* Write index of pSrc->a[*piTab].pTab->aCol[] here */
287 int i; /* For looping over tables in pSrc */
288 int iCol; /* Index of column matching zCol */
290 assert( (piTab==0)==(piCol==0) ); /* Both or neither are NULL */
291 for(i=0; i<N; i++){
292 iCol = columnIndex(pSrc->a[i].pTab, zCol);
293 if( iCol>=0 ){
294 if( piTab ){
295 *piTab = i;
296 *piCol = iCol;
298 return 1;
301 return 0;
305 ** This function is used to add terms implied by JOIN syntax to the
306 ** WHERE clause expression of a SELECT statement. The new term, which
307 ** is ANDed with the existing WHERE clause, is of the form:
309 ** (tab1.col1 = tab2.col2)
311 ** where tab1 is the iSrc'th table in SrcList pSrc and tab2 is the
312 ** (iSrc+1)'th. Column col1 is column iColLeft of tab1, and col2 is
313 ** column iColRight of tab2.
315 static void addWhereTerm(
316 Parse *pParse, /* Parsing context */
317 SrcList *pSrc, /* List of tables in FROM clause */
318 int iLeft, /* Index of first table to join in pSrc */
319 int iColLeft, /* Index of column in first table */
320 int iRight, /* Index of second table in pSrc */
321 int iColRight, /* Index of column in second table */
322 int isOuterJoin, /* True if this is an OUTER join */
323 Expr **ppWhere /* IN/OUT: The WHERE clause to add to */
325 sqlite3 *db = pParse->db;
326 Expr *pE1;
327 Expr *pE2;
328 Expr *pEq;
330 assert( iLeft<iRight );
331 assert( pSrc->nSrc>iRight );
332 assert( pSrc->a[iLeft].pTab );
333 assert( pSrc->a[iRight].pTab );
335 pE1 = sqlite3CreateColumnExpr(db, pSrc, iLeft, iColLeft);
336 pE2 = sqlite3CreateColumnExpr(db, pSrc, iRight, iColRight);
338 pEq = sqlite3PExpr(pParse, TK_EQ, pE1, pE2);
339 if( pEq && isOuterJoin ){
340 ExprSetProperty(pEq, EP_FromJoin);
341 assert( !ExprHasProperty(pEq, EP_TokenOnly|EP_Reduced) );
342 ExprSetVVAProperty(pEq, EP_NoReduce);
343 pEq->iRightJoinTable = (i16)pE2->iTable;
345 *ppWhere = sqlite3ExprAnd(db, *ppWhere, pEq);
349 ** Set the EP_FromJoin property on all terms of the given expression.
350 ** And set the Expr.iRightJoinTable to iTable for every term in the
351 ** expression.
353 ** The EP_FromJoin property is used on terms of an expression to tell
354 ** the LEFT OUTER JOIN processing logic that this term is part of the
355 ** join restriction specified in the ON or USING clause and not a part
356 ** of the more general WHERE clause. These terms are moved over to the
357 ** WHERE clause during join processing but we need to remember that they
358 ** originated in the ON or USING clause.
360 ** The Expr.iRightJoinTable tells the WHERE clause processing that the
361 ** expression depends on table iRightJoinTable even if that table is not
362 ** explicitly mentioned in the expression. That information is needed
363 ** for cases like this:
365 ** SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.b AND t1.x=5
367 ** The where clause needs to defer the handling of the t1.x=5
368 ** term until after the t2 loop of the join. In that way, a
369 ** NULL t2 row will be inserted whenever t1.x!=5. If we do not
370 ** defer the handling of t1.x=5, it will be processed immediately
371 ** after the t1 loop and rows with t1.x!=5 will never appear in
372 ** the output, which is incorrect.
374 static void setJoinExpr(Expr *p, int iTable){
375 while( p ){
376 ExprSetProperty(p, EP_FromJoin);
377 assert( !ExprHasProperty(p, EP_TokenOnly|EP_Reduced) );
378 ExprSetVVAProperty(p, EP_NoReduce);
379 p->iRightJoinTable = (i16)iTable;
380 if( p->op==TK_FUNCTION && p->x.pList ){
381 int i;
382 for(i=0; i<p->x.pList->nExpr; i++){
383 setJoinExpr(p->x.pList->a[i].pExpr, iTable);
386 setJoinExpr(p->pLeft, iTable);
387 p = p->pRight;
392 ** This routine processes the join information for a SELECT statement.
393 ** ON and USING clauses are converted into extra terms of the WHERE clause.
394 ** NATURAL joins also create extra WHERE clause terms.
396 ** The terms of a FROM clause are contained in the Select.pSrc structure.
397 ** The left most table is the first entry in Select.pSrc. The right-most
398 ** table is the last entry. The join operator is held in the entry to
399 ** the left. Thus entry 0 contains the join operator for the join between
400 ** entries 0 and 1. Any ON or USING clauses associated with the join are
401 ** also attached to the left entry.
403 ** This routine returns the number of errors encountered.
405 static int sqliteProcessJoin(Parse *pParse, Select *p){
406 SrcList *pSrc; /* All tables in the FROM clause */
407 int i, j; /* Loop counters */
408 struct SrcList_item *pLeft; /* Left table being joined */
409 struct SrcList_item *pRight; /* Right table being joined */
411 pSrc = p->pSrc;
412 pLeft = &pSrc->a[0];
413 pRight = &pLeft[1];
414 for(i=0; i<pSrc->nSrc-1; i++, pRight++, pLeft++){
415 Table *pLeftTab = pLeft->pTab;
416 Table *pRightTab = pRight->pTab;
417 int isOuter;
419 if( NEVER(pLeftTab==0 || pRightTab==0) ) continue;
420 isOuter = (pRight->fg.jointype & JT_OUTER)!=0;
422 /* When the NATURAL keyword is present, add WHERE clause terms for
423 ** every column that the two tables have in common.
425 if( pRight->fg.jointype & JT_NATURAL ){
426 if( pRight->pOn || pRight->pUsing ){
427 sqlite3ErrorMsg(pParse, "a NATURAL join may not have "
428 "an ON or USING clause", 0);
429 return 1;
431 for(j=0; j<pRightTab->nCol; j++){
432 char *zName; /* Name of column in the right table */
433 int iLeft; /* Matching left table */
434 int iLeftCol; /* Matching column in the left table */
436 zName = pRightTab->aCol[j].zName;
437 if( tableAndColumnIndex(pSrc, i+1, zName, &iLeft, &iLeftCol) ){
438 addWhereTerm(pParse, pSrc, iLeft, iLeftCol, i+1, j,
439 isOuter, &p->pWhere);
444 /* Disallow both ON and USING clauses in the same join
446 if( pRight->pOn && pRight->pUsing ){
447 sqlite3ErrorMsg(pParse, "cannot have both ON and USING "
448 "clauses in the same join");
449 return 1;
452 /* Add the ON clause to the end of the WHERE clause, connected by
453 ** an AND operator.
455 if( pRight->pOn ){
456 if( isOuter ) setJoinExpr(pRight->pOn, pRight->iCursor);
457 p->pWhere = sqlite3ExprAnd(pParse->db, p->pWhere, pRight->pOn);
458 pRight->pOn = 0;
461 /* Create extra terms on the WHERE clause for each column named
462 ** in the USING clause. Example: If the two tables to be joined are
463 ** A and B and the USING clause names X, Y, and Z, then add this
464 ** to the WHERE clause: A.X=B.X AND A.Y=B.Y AND A.Z=B.Z
465 ** Report an error if any column mentioned in the USING clause is
466 ** not contained in both tables to be joined.
468 if( pRight->pUsing ){
469 IdList *pList = pRight->pUsing;
470 for(j=0; j<pList->nId; j++){
471 char *zName; /* Name of the term in the USING clause */
472 int iLeft; /* Table on the left with matching column name */
473 int iLeftCol; /* Column number of matching column on the left */
474 int iRightCol; /* Column number of matching column on the right */
476 zName = pList->a[j].zName;
477 iRightCol = columnIndex(pRightTab, zName);
478 if( iRightCol<0
479 || !tableAndColumnIndex(pSrc, i+1, zName, &iLeft, &iLeftCol)
481 sqlite3ErrorMsg(pParse, "cannot join using column %s - column "
482 "not present in both tables", zName);
483 return 1;
485 addWhereTerm(pParse, pSrc, iLeft, iLeftCol, i+1, iRightCol,
486 isOuter, &p->pWhere);
490 return 0;
493 /* Forward reference */
494 static KeyInfo *keyInfoFromExprList(
495 Parse *pParse, /* Parsing context */
496 ExprList *pList, /* Form the KeyInfo object from this ExprList */
497 int iStart, /* Begin with this column of pList */
498 int nExtra /* Add this many extra columns to the end */
502 ** Generate code that will push the record in registers regData
503 ** through regData+nData-1 onto the sorter.
505 static void pushOntoSorter(
506 Parse *pParse, /* Parser context */
507 SortCtx *pSort, /* Information about the ORDER BY clause */
508 Select *pSelect, /* The whole SELECT statement */
509 int regData, /* First register holding data to be sorted */
510 int regOrigData, /* First register holding data before packing */
511 int nData, /* Number of elements in the data array */
512 int nPrefixReg /* No. of reg prior to regData available for use */
514 Vdbe *v = pParse->pVdbe; /* Stmt under construction */
515 int bSeq = ((pSort->sortFlags & SORTFLAG_UseSorter)==0);
516 int nExpr = pSort->pOrderBy->nExpr; /* No. of ORDER BY terms */
517 int nBase = nExpr + bSeq + nData; /* Fields in sorter record */
518 int regBase; /* Regs for sorter record */
519 int regRecord = ++pParse->nMem; /* Assembled sorter record */
520 int nOBSat = pSort->nOBSat; /* ORDER BY terms to skip */
521 int op; /* Opcode to add sorter record to sorter */
522 int iLimit; /* LIMIT counter */
524 assert( bSeq==0 || bSeq==1 );
525 assert( nData==1 || regData==regOrigData || regOrigData==0 );
526 if( nPrefixReg ){
527 assert( nPrefixReg==nExpr+bSeq );
528 regBase = regData - nExpr - bSeq;
529 }else{
530 regBase = pParse->nMem + 1;
531 pParse->nMem += nBase;
533 assert( pSelect->iOffset==0 || pSelect->iLimit!=0 );
534 iLimit = pSelect->iOffset ? pSelect->iOffset+1 : pSelect->iLimit;
535 pSort->labelDone = sqlite3VdbeMakeLabel(v);
536 sqlite3ExprCodeExprList(pParse, pSort->pOrderBy, regBase, regOrigData,
537 SQLITE_ECEL_DUP | (regOrigData? SQLITE_ECEL_REF : 0));
538 if( bSeq ){
539 sqlite3VdbeAddOp2(v, OP_Sequence, pSort->iECursor, regBase+nExpr);
541 if( nPrefixReg==0 && nData>0 ){
542 sqlite3ExprCodeMove(pParse, regData, regBase+nExpr+bSeq, nData);
544 sqlite3VdbeAddOp3(v, OP_MakeRecord, regBase+nOBSat, nBase-nOBSat, regRecord);
545 if( nOBSat>0 ){
546 int regPrevKey; /* The first nOBSat columns of the previous row */
547 int addrFirst; /* Address of the OP_IfNot opcode */
548 int addrJmp; /* Address of the OP_Jump opcode */
549 VdbeOp *pOp; /* Opcode that opens the sorter */
550 int nKey; /* Number of sorting key columns, including OP_Sequence */
551 KeyInfo *pKI; /* Original KeyInfo on the sorter table */
553 regPrevKey = pParse->nMem+1;
554 pParse->nMem += pSort->nOBSat;
555 nKey = nExpr - pSort->nOBSat + bSeq;
556 if( bSeq ){
557 addrFirst = sqlite3VdbeAddOp1(v, OP_IfNot, regBase+nExpr);
558 }else{
559 addrFirst = sqlite3VdbeAddOp1(v, OP_SequenceTest, pSort->iECursor);
561 VdbeCoverage(v);
562 sqlite3VdbeAddOp3(v, OP_Compare, regPrevKey, regBase, pSort->nOBSat);
563 pOp = sqlite3VdbeGetOp(v, pSort->addrSortIndex);
564 if( pParse->db->mallocFailed ) return;
565 pOp->p2 = nKey + nData;
566 pKI = pOp->p4.pKeyInfo;
567 memset(pKI->aSortOrder, 0, pKI->nKeyField); /* Makes OP_Jump testable */
568 sqlite3VdbeChangeP4(v, -1, (char*)pKI, P4_KEYINFO);
569 testcase( pKI->nAllField > pKI->nKeyField+2 );
570 pOp->p4.pKeyInfo = keyInfoFromExprList(pParse, pSort->pOrderBy, nOBSat,
571 pKI->nAllField-pKI->nKeyField-1);
572 addrJmp = sqlite3VdbeCurrentAddr(v);
573 sqlite3VdbeAddOp3(v, OP_Jump, addrJmp+1, 0, addrJmp+1); VdbeCoverage(v);
574 pSort->labelBkOut = sqlite3VdbeMakeLabel(v);
575 pSort->regReturn = ++pParse->nMem;
576 sqlite3VdbeAddOp2(v, OP_Gosub, pSort->regReturn, pSort->labelBkOut);
577 sqlite3VdbeAddOp1(v, OP_ResetSorter, pSort->iECursor);
578 if( iLimit ){
579 sqlite3VdbeAddOp2(v, OP_IfNot, iLimit, pSort->labelDone);
580 VdbeCoverage(v);
582 sqlite3VdbeJumpHere(v, addrFirst);
583 sqlite3ExprCodeMove(pParse, regBase, regPrevKey, pSort->nOBSat);
584 sqlite3VdbeJumpHere(v, addrJmp);
586 if( pSort->sortFlags & SORTFLAG_UseSorter ){
587 op = OP_SorterInsert;
588 }else{
589 op = OP_IdxInsert;
591 sqlite3VdbeAddOp4Int(v, op, pSort->iECursor, regRecord,
592 regBase+nOBSat, nBase-nOBSat);
593 if( iLimit ){
594 int addr;
595 int r1 = 0;
596 /* Fill the sorter until it contains LIMIT+OFFSET entries. (The iLimit
597 ** register is initialized with value of LIMIT+OFFSET.) After the sorter
598 ** fills up, delete the least entry in the sorter after each insert.
599 ** Thus we never hold more than the LIMIT+OFFSET rows in memory at once */
600 addr = sqlite3VdbeAddOp1(v, OP_IfNotZero, iLimit); VdbeCoverage(v);
601 sqlite3VdbeAddOp1(v, OP_Last, pSort->iECursor);
602 if( pSort->bOrderedInnerLoop ){
603 r1 = ++pParse->nMem;
604 sqlite3VdbeAddOp3(v, OP_Column, pSort->iECursor, nExpr, r1);
605 VdbeComment((v, "seq"));
607 sqlite3VdbeAddOp1(v, OP_Delete, pSort->iECursor);
608 if( pSort->bOrderedInnerLoop ){
609 /* If the inner loop is driven by an index such that values from
610 ** the same iteration of the inner loop are in sorted order, then
611 ** immediately jump to the next iteration of an inner loop if the
612 ** entry from the current iteration does not fit into the top
613 ** LIMIT+OFFSET entries of the sorter. */
614 int iBrk = sqlite3VdbeCurrentAddr(v) + 2;
615 sqlite3VdbeAddOp3(v, OP_Eq, regBase+nExpr, iBrk, r1);
616 sqlite3VdbeChangeP5(v, SQLITE_NULLEQ);
617 VdbeCoverage(v);
619 sqlite3VdbeJumpHere(v, addr);
624 ** Add code to implement the OFFSET
626 static void codeOffset(
627 Vdbe *v, /* Generate code into this VM */
628 int iOffset, /* Register holding the offset counter */
629 int iContinue /* Jump here to skip the current record */
631 if( iOffset>0 ){
632 sqlite3VdbeAddOp3(v, OP_IfPos, iOffset, iContinue, 1); VdbeCoverage(v);
633 VdbeComment((v, "OFFSET"));
638 ** Add code that will check to make sure the N registers starting at iMem
639 ** form a distinct entry. iTab is a sorting index that holds previously
640 ** seen combinations of the N values. A new entry is made in iTab
641 ** if the current N values are new.
643 ** A jump to addrRepeat is made and the N+1 values are popped from the
644 ** stack if the top N elements are not distinct.
646 static void codeDistinct(
647 Parse *pParse, /* Parsing and code generating context */
648 int iTab, /* A sorting index used to test for distinctness */
649 int addrRepeat, /* Jump to here if not distinct */
650 int N, /* Number of elements */
651 int iMem /* First element */
653 Vdbe *v;
654 int r1;
656 v = pParse->pVdbe;
657 r1 = sqlite3GetTempReg(pParse);
658 sqlite3VdbeAddOp4Int(v, OP_Found, iTab, addrRepeat, iMem, N); VdbeCoverage(v);
659 sqlite3VdbeAddOp3(v, OP_MakeRecord, iMem, N, r1);
660 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iTab, r1, iMem, N);
661 sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT);
662 sqlite3ReleaseTempReg(pParse, r1);
666 ** This routine generates the code for the inside of the inner loop
667 ** of a SELECT.
669 ** If srcTab is negative, then the p->pEList expressions
670 ** are evaluated in order to get the data for this row. If srcTab is
671 ** zero or more, then data is pulled from srcTab and p->pEList is used only
672 ** to get the number of columns and the collation sequence for each column.
674 static void selectInnerLoop(
675 Parse *pParse, /* The parser context */
676 Select *p, /* The complete select statement being coded */
677 int srcTab, /* Pull data from this table if non-negative */
678 SortCtx *pSort, /* If not NULL, info on how to process ORDER BY */
679 DistinctCtx *pDistinct, /* If not NULL, info on how to process DISTINCT */
680 SelectDest *pDest, /* How to dispose of the results */
681 int iContinue, /* Jump here to continue with next row */
682 int iBreak /* Jump here to break out of the inner loop */
684 Vdbe *v = pParse->pVdbe;
685 int i;
686 int hasDistinct; /* True if the DISTINCT keyword is present */
687 int eDest = pDest->eDest; /* How to dispose of results */
688 int iParm = pDest->iSDParm; /* First argument to disposal method */
689 int nResultCol; /* Number of result columns */
690 int nPrefixReg = 0; /* Number of extra registers before regResult */
692 /* Usually, regResult is the first cell in an array of memory cells
693 ** containing the current result row. In this case regOrig is set to the
694 ** same value. However, if the results are being sent to the sorter, the
695 ** values for any expressions that are also part of the sort-key are omitted
696 ** from this array. In this case regOrig is set to zero. */
697 int regResult; /* Start of memory holding current results */
698 int regOrig; /* Start of memory holding full result (or 0) */
700 assert( v );
701 assert( p->pEList!=0 );
702 hasDistinct = pDistinct ? pDistinct->eTnctType : WHERE_DISTINCT_NOOP;
703 if( pSort && pSort->pOrderBy==0 ) pSort = 0;
704 if( pSort==0 && !hasDistinct ){
705 assert( iContinue!=0 );
706 codeOffset(v, p->iOffset, iContinue);
709 /* Pull the requested columns.
711 nResultCol = p->pEList->nExpr;
713 if( pDest->iSdst==0 ){
714 if( pSort ){
715 nPrefixReg = pSort->pOrderBy->nExpr;
716 if( !(pSort->sortFlags & SORTFLAG_UseSorter) ) nPrefixReg++;
717 pParse->nMem += nPrefixReg;
719 pDest->iSdst = pParse->nMem+1;
720 pParse->nMem += nResultCol;
721 }else if( pDest->iSdst+nResultCol > pParse->nMem ){
722 /* This is an error condition that can result, for example, when a SELECT
723 ** on the right-hand side of an INSERT contains more result columns than
724 ** there are columns in the table on the left. The error will be caught
725 ** and reported later. But we need to make sure enough memory is allocated
726 ** to avoid other spurious errors in the meantime. */
727 pParse->nMem += nResultCol;
729 pDest->nSdst = nResultCol;
730 regOrig = regResult = pDest->iSdst;
731 if( srcTab>=0 ){
732 for(i=0; i<nResultCol; i++){
733 sqlite3VdbeAddOp3(v, OP_Column, srcTab, i, regResult+i);
734 VdbeComment((v, "%s", p->pEList->a[i].zName));
736 }else if( eDest!=SRT_Exists ){
737 /* If the destination is an EXISTS(...) expression, the actual
738 ** values returned by the SELECT are not required.
740 u8 ecelFlags;
741 if( eDest==SRT_Mem || eDest==SRT_Output || eDest==SRT_Coroutine ){
742 ecelFlags = SQLITE_ECEL_DUP;
743 }else{
744 ecelFlags = 0;
746 if( pSort && hasDistinct==0 && eDest!=SRT_EphemTab && eDest!=SRT_Table ){
747 /* For each expression in p->pEList that is a copy of an expression in
748 ** the ORDER BY clause (pSort->pOrderBy), set the associated
749 ** iOrderByCol value to one more than the index of the ORDER BY
750 ** expression within the sort-key that pushOntoSorter() will generate.
751 ** This allows the p->pEList field to be omitted from the sorted record,
752 ** saving space and CPU cycles. */
753 ecelFlags |= (SQLITE_ECEL_OMITREF|SQLITE_ECEL_REF);
754 for(i=pSort->nOBSat; i<pSort->pOrderBy->nExpr; i++){
755 int j;
756 if( (j = pSort->pOrderBy->a[i].u.x.iOrderByCol)>0 ){
757 p->pEList->a[j-1].u.x.iOrderByCol = i+1-pSort->nOBSat;
760 regOrig = 0;
761 assert( eDest==SRT_Set || eDest==SRT_Mem
762 || eDest==SRT_Coroutine || eDest==SRT_Output );
764 nResultCol = sqlite3ExprCodeExprList(pParse,p->pEList,regResult,
765 0,ecelFlags);
768 /* If the DISTINCT keyword was present on the SELECT statement
769 ** and this row has been seen before, then do not make this row
770 ** part of the result.
772 if( hasDistinct ){
773 switch( pDistinct->eTnctType ){
774 case WHERE_DISTINCT_ORDERED: {
775 VdbeOp *pOp; /* No longer required OpenEphemeral instr. */
776 int iJump; /* Jump destination */
777 int regPrev; /* Previous row content */
779 /* Allocate space for the previous row */
780 regPrev = pParse->nMem+1;
781 pParse->nMem += nResultCol;
783 /* Change the OP_OpenEphemeral coded earlier to an OP_Null
784 ** sets the MEM_Cleared bit on the first register of the
785 ** previous value. This will cause the OP_Ne below to always
786 ** fail on the first iteration of the loop even if the first
787 ** row is all NULLs.
789 sqlite3VdbeChangeToNoop(v, pDistinct->addrTnct);
790 pOp = sqlite3VdbeGetOp(v, pDistinct->addrTnct);
791 pOp->opcode = OP_Null;
792 pOp->p1 = 1;
793 pOp->p2 = regPrev;
795 iJump = sqlite3VdbeCurrentAddr(v) + nResultCol;
796 for(i=0; i<nResultCol; i++){
797 CollSeq *pColl = sqlite3ExprCollSeq(pParse, p->pEList->a[i].pExpr);
798 if( i<nResultCol-1 ){
799 sqlite3VdbeAddOp3(v, OP_Ne, regResult+i, iJump, regPrev+i);
800 VdbeCoverage(v);
801 }else{
802 sqlite3VdbeAddOp3(v, OP_Eq, regResult+i, iContinue, regPrev+i);
803 VdbeCoverage(v);
805 sqlite3VdbeChangeP4(v, -1, (const char *)pColl, P4_COLLSEQ);
806 sqlite3VdbeChangeP5(v, SQLITE_NULLEQ);
808 assert( sqlite3VdbeCurrentAddr(v)==iJump || pParse->db->mallocFailed );
809 sqlite3VdbeAddOp3(v, OP_Copy, regResult, regPrev, nResultCol-1);
810 break;
813 case WHERE_DISTINCT_UNIQUE: {
814 sqlite3VdbeChangeToNoop(v, pDistinct->addrTnct);
815 break;
818 default: {
819 assert( pDistinct->eTnctType==WHERE_DISTINCT_UNORDERED );
820 codeDistinct(pParse, pDistinct->tabTnct, iContinue, nResultCol,
821 regResult);
822 break;
825 if( pSort==0 ){
826 codeOffset(v, p->iOffset, iContinue);
830 switch( eDest ){
831 /* In this mode, write each query result to the key of the temporary
832 ** table iParm.
834 #ifndef SQLITE_OMIT_COMPOUND_SELECT
835 case SRT_Union: {
836 int r1;
837 r1 = sqlite3GetTempReg(pParse);
838 sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nResultCol, r1);
839 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, r1, regResult, nResultCol);
840 sqlite3ReleaseTempReg(pParse, r1);
841 break;
844 /* Construct a record from the query result, but instead of
845 ** saving that record, use it as a key to delete elements from
846 ** the temporary table iParm.
848 case SRT_Except: {
849 sqlite3VdbeAddOp3(v, OP_IdxDelete, iParm, regResult, nResultCol);
850 break;
852 #endif /* SQLITE_OMIT_COMPOUND_SELECT */
854 /* Store the result as data using a unique key.
856 case SRT_Fifo:
857 case SRT_DistFifo:
858 case SRT_Table:
859 case SRT_EphemTab: {
860 int r1 = sqlite3GetTempRange(pParse, nPrefixReg+1);
861 testcase( eDest==SRT_Table );
862 testcase( eDest==SRT_EphemTab );
863 testcase( eDest==SRT_Fifo );
864 testcase( eDest==SRT_DistFifo );
865 sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nResultCol, r1+nPrefixReg);
866 #ifndef SQLITE_OMIT_CTE
867 if( eDest==SRT_DistFifo ){
868 /* If the destination is DistFifo, then cursor (iParm+1) is open
869 ** on an ephemeral index. If the current row is already present
870 ** in the index, do not write it to the output. If not, add the
871 ** current row to the index and proceed with writing it to the
872 ** output table as well. */
873 int addr = sqlite3VdbeCurrentAddr(v) + 4;
874 sqlite3VdbeAddOp4Int(v, OP_Found, iParm+1, addr, r1, 0);
875 VdbeCoverage(v);
876 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm+1, r1,regResult,nResultCol);
877 assert( pSort==0 );
879 #endif
880 if( pSort ){
881 pushOntoSorter(pParse, pSort, p, r1+nPrefixReg,regResult,1,nPrefixReg);
882 }else{
883 int r2 = sqlite3GetTempReg(pParse);
884 sqlite3VdbeAddOp2(v, OP_NewRowid, iParm, r2);
885 sqlite3VdbeAddOp3(v, OP_Insert, iParm, r1, r2);
886 sqlite3VdbeChangeP5(v, OPFLAG_APPEND);
887 sqlite3ReleaseTempReg(pParse, r2);
889 sqlite3ReleaseTempRange(pParse, r1, nPrefixReg+1);
890 break;
893 #ifndef SQLITE_OMIT_SUBQUERY
894 /* If we are creating a set for an "expr IN (SELECT ...)" construct,
895 ** then there should be a single item on the stack. Write this
896 ** item into the set table with bogus data.
898 case SRT_Set: {
899 if( pSort ){
900 /* At first glance you would think we could optimize out the
901 ** ORDER BY in this case since the order of entries in the set
902 ** does not matter. But there might be a LIMIT clause, in which
903 ** case the order does matter */
904 pushOntoSorter(
905 pParse, pSort, p, regResult, regOrig, nResultCol, nPrefixReg);
906 }else{
907 int r1 = sqlite3GetTempReg(pParse);
908 assert( sqlite3Strlen30(pDest->zAffSdst)==nResultCol );
909 sqlite3VdbeAddOp4(v, OP_MakeRecord, regResult, nResultCol,
910 r1, pDest->zAffSdst, nResultCol);
911 sqlite3ExprCacheAffinityChange(pParse, regResult, nResultCol);
912 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, r1, regResult, nResultCol);
913 sqlite3ReleaseTempReg(pParse, r1);
915 break;
918 /* If any row exist in the result set, record that fact and abort.
920 case SRT_Exists: {
921 sqlite3VdbeAddOp2(v, OP_Integer, 1, iParm);
922 /* The LIMIT clause will terminate the loop for us */
923 break;
926 /* If this is a scalar select that is part of an expression, then
927 ** store the results in the appropriate memory cell or array of
928 ** memory cells and break out of the scan loop.
930 case SRT_Mem: {
931 if( pSort ){
932 assert( nResultCol<=pDest->nSdst );
933 pushOntoSorter(
934 pParse, pSort, p, regResult, regOrig, nResultCol, nPrefixReg);
935 }else{
936 assert( nResultCol==pDest->nSdst );
937 assert( regResult==iParm );
938 /* The LIMIT clause will jump out of the loop for us */
940 break;
942 #endif /* #ifndef SQLITE_OMIT_SUBQUERY */
944 case SRT_Coroutine: /* Send data to a co-routine */
945 case SRT_Output: { /* Return the results */
946 testcase( eDest==SRT_Coroutine );
947 testcase( eDest==SRT_Output );
948 if( pSort ){
949 pushOntoSorter(pParse, pSort, p, regResult, regOrig, nResultCol,
950 nPrefixReg);
951 }else if( eDest==SRT_Coroutine ){
952 sqlite3VdbeAddOp1(v, OP_Yield, pDest->iSDParm);
953 }else{
954 sqlite3VdbeAddOp2(v, OP_ResultRow, regResult, nResultCol);
955 sqlite3ExprCacheAffinityChange(pParse, regResult, nResultCol);
957 break;
960 #ifndef SQLITE_OMIT_CTE
961 /* Write the results into a priority queue that is order according to
962 ** pDest->pOrderBy (in pSO). pDest->iSDParm (in iParm) is the cursor for an
963 ** index with pSO->nExpr+2 columns. Build a key using pSO for the first
964 ** pSO->nExpr columns, then make sure all keys are unique by adding a
965 ** final OP_Sequence column. The last column is the record as a blob.
967 case SRT_DistQueue:
968 case SRT_Queue: {
969 int nKey;
970 int r1, r2, r3;
971 int addrTest = 0;
972 ExprList *pSO;
973 pSO = pDest->pOrderBy;
974 assert( pSO );
975 nKey = pSO->nExpr;
976 r1 = sqlite3GetTempReg(pParse);
977 r2 = sqlite3GetTempRange(pParse, nKey+2);
978 r3 = r2+nKey+1;
979 if( eDest==SRT_DistQueue ){
980 /* If the destination is DistQueue, then cursor (iParm+1) is open
981 ** on a second ephemeral index that holds all values every previously
982 ** added to the queue. */
983 addrTest = sqlite3VdbeAddOp4Int(v, OP_Found, iParm+1, 0,
984 regResult, nResultCol);
985 VdbeCoverage(v);
987 sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nResultCol, r3);
988 if( eDest==SRT_DistQueue ){
989 sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm+1, r3);
990 sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT);
992 for(i=0; i<nKey; i++){
993 sqlite3VdbeAddOp2(v, OP_SCopy,
994 regResult + pSO->a[i].u.x.iOrderByCol - 1,
995 r2+i);
997 sqlite3VdbeAddOp2(v, OP_Sequence, iParm, r2+nKey);
998 sqlite3VdbeAddOp3(v, OP_MakeRecord, r2, nKey+2, r1);
999 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, r1, r2, nKey+2);
1000 if( addrTest ) sqlite3VdbeJumpHere(v, addrTest);
1001 sqlite3ReleaseTempReg(pParse, r1);
1002 sqlite3ReleaseTempRange(pParse, r2, nKey+2);
1003 break;
1005 #endif /* SQLITE_OMIT_CTE */
1009 #if !defined(SQLITE_OMIT_TRIGGER)
1010 /* Discard the results. This is used for SELECT statements inside
1011 ** the body of a TRIGGER. The purpose of such selects is to call
1012 ** user-defined functions that have side effects. We do not care
1013 ** about the actual results of the select.
1015 default: {
1016 assert( eDest==SRT_Discard );
1017 break;
1019 #endif
1022 /* Jump to the end of the loop if the LIMIT is reached. Except, if
1023 ** there is a sorter, in which case the sorter has already limited
1024 ** the output for us.
1026 if( pSort==0 && p->iLimit ){
1027 sqlite3VdbeAddOp2(v, OP_DecrJumpZero, p->iLimit, iBreak); VdbeCoverage(v);
1032 ** Allocate a KeyInfo object sufficient for an index of N key columns and
1033 ** X extra columns.
1035 KeyInfo *sqlite3KeyInfoAlloc(sqlite3 *db, int N, int X){
1036 int nExtra = (N+X)*(sizeof(CollSeq*)+1) - sizeof(CollSeq*);
1037 KeyInfo *p = sqlite3DbMallocRawNN(db, sizeof(KeyInfo) + nExtra);
1038 if( p ){
1039 p->aSortOrder = (u8*)&p->aColl[N+X];
1040 p->nKeyField = (u16)N;
1041 p->nAllField = (u16)(N+X);
1042 p->enc = ENC(db);
1043 p->db = db;
1044 p->nRef = 1;
1045 memset(&p[1], 0, nExtra);
1046 }else{
1047 sqlite3OomFault(db);
1049 return p;
1053 ** Deallocate a KeyInfo object
1055 void sqlite3KeyInfoUnref(KeyInfo *p){
1056 if( p ){
1057 assert( p->nRef>0 );
1058 p->nRef--;
1059 if( p->nRef==0 ) sqlite3DbFreeNN(p->db, p);
1064 ** Make a new pointer to a KeyInfo object
1066 KeyInfo *sqlite3KeyInfoRef(KeyInfo *p){
1067 if( p ){
1068 assert( p->nRef>0 );
1069 p->nRef++;
1071 return p;
1074 #ifdef SQLITE_DEBUG
1076 ** Return TRUE if a KeyInfo object can be change. The KeyInfo object
1077 ** can only be changed if this is just a single reference to the object.
1079 ** This routine is used only inside of assert() statements.
1081 int sqlite3KeyInfoIsWriteable(KeyInfo *p){ return p->nRef==1; }
1082 #endif /* SQLITE_DEBUG */
1085 ** Given an expression list, generate a KeyInfo structure that records
1086 ** the collating sequence for each expression in that expression list.
1088 ** If the ExprList is an ORDER BY or GROUP BY clause then the resulting
1089 ** KeyInfo structure is appropriate for initializing a virtual index to
1090 ** implement that clause. If the ExprList is the result set of a SELECT
1091 ** then the KeyInfo structure is appropriate for initializing a virtual
1092 ** index to implement a DISTINCT test.
1094 ** Space to hold the KeyInfo structure is obtained from malloc. The calling
1095 ** function is responsible for seeing that this structure is eventually
1096 ** freed.
1098 static KeyInfo *keyInfoFromExprList(
1099 Parse *pParse, /* Parsing context */
1100 ExprList *pList, /* Form the KeyInfo object from this ExprList */
1101 int iStart, /* Begin with this column of pList */
1102 int nExtra /* Add this many extra columns to the end */
1104 int nExpr;
1105 KeyInfo *pInfo;
1106 struct ExprList_item *pItem;
1107 sqlite3 *db = pParse->db;
1108 int i;
1110 nExpr = pList->nExpr;
1111 pInfo = sqlite3KeyInfoAlloc(db, nExpr-iStart, nExtra+1);
1112 if( pInfo ){
1113 assert( sqlite3KeyInfoIsWriteable(pInfo) );
1114 for(i=iStart, pItem=pList->a+iStart; i<nExpr; i++, pItem++){
1115 pInfo->aColl[i-iStart] = sqlite3ExprNNCollSeq(pParse, pItem->pExpr);
1116 pInfo->aSortOrder[i-iStart] = pItem->sortOrder;
1119 return pInfo;
1123 ** Name of the connection operator, used for error messages.
1125 static const char *selectOpName(int id){
1126 char *z;
1127 switch( id ){
1128 case TK_ALL: z = "UNION ALL"; break;
1129 case TK_INTERSECT: z = "INTERSECT"; break;
1130 case TK_EXCEPT: z = "EXCEPT"; break;
1131 default: z = "UNION"; break;
1133 return z;
1136 #ifndef SQLITE_OMIT_EXPLAIN
1138 ** Unless an "EXPLAIN QUERY PLAN" command is being processed, this function
1139 ** is a no-op. Otherwise, it adds a single row of output to the EQP result,
1140 ** where the caption is of the form:
1142 ** "USE TEMP B-TREE FOR xxx"
1144 ** where xxx is one of "DISTINCT", "ORDER BY" or "GROUP BY". Exactly which
1145 ** is determined by the zUsage argument.
1147 static void explainTempTable(Parse *pParse, const char *zUsage){
1148 if( pParse->explain==2 ){
1149 Vdbe *v = pParse->pVdbe;
1150 char *zMsg = sqlite3MPrintf(pParse->db, "USE TEMP B-TREE FOR %s", zUsage);
1151 sqlite3VdbeAddOp4(v, OP_Explain, pParse->iSelectId, 0, 0, zMsg, P4_DYNAMIC);
1156 ** Assign expression b to lvalue a. A second, no-op, version of this macro
1157 ** is provided when SQLITE_OMIT_EXPLAIN is defined. This allows the code
1158 ** in sqlite3Select() to assign values to structure member variables that
1159 ** only exist if SQLITE_OMIT_EXPLAIN is not defined without polluting the
1160 ** code with #ifndef directives.
1162 # define explainSetInteger(a, b) a = b
1164 #else
1165 /* No-op versions of the explainXXX() functions and macros. */
1166 # define explainTempTable(y,z)
1167 # define explainSetInteger(y,z)
1168 #endif
1170 #if !defined(SQLITE_OMIT_EXPLAIN) && !defined(SQLITE_OMIT_COMPOUND_SELECT)
1172 ** Unless an "EXPLAIN QUERY PLAN" command is being processed, this function
1173 ** is a no-op. Otherwise, it adds a single row of output to the EQP result,
1174 ** where the caption is of one of the two forms:
1176 ** "COMPOSITE SUBQUERIES iSub1 and iSub2 (op)"
1177 ** "COMPOSITE SUBQUERIES iSub1 and iSub2 USING TEMP B-TREE (op)"
1179 ** where iSub1 and iSub2 are the integers passed as the corresponding
1180 ** function parameters, and op is the text representation of the parameter
1181 ** of the same name. The parameter "op" must be one of TK_UNION, TK_EXCEPT,
1182 ** TK_INTERSECT or TK_ALL. The first form is used if argument bUseTmp is
1183 ** false, or the second form if it is true.
1185 static void explainComposite(
1186 Parse *pParse, /* Parse context */
1187 int op, /* One of TK_UNION, TK_EXCEPT etc. */
1188 int iSub1, /* Subquery id 1 */
1189 int iSub2, /* Subquery id 2 */
1190 int bUseTmp /* True if a temp table was used */
1192 assert( op==TK_UNION || op==TK_EXCEPT || op==TK_INTERSECT || op==TK_ALL );
1193 if( pParse->explain==2 ){
1194 Vdbe *v = pParse->pVdbe;
1195 char *zMsg = sqlite3MPrintf(
1196 pParse->db, "COMPOUND SUBQUERIES %d AND %d %s(%s)", iSub1, iSub2,
1197 bUseTmp?"USING TEMP B-TREE ":"", selectOpName(op)
1199 sqlite3VdbeAddOp4(v, OP_Explain, pParse->iSelectId, 0, 0, zMsg, P4_DYNAMIC);
1202 #else
1203 /* No-op versions of the explainXXX() functions and macros. */
1204 # define explainComposite(v,w,x,y,z)
1205 #endif
1208 ** If the inner loop was generated using a non-null pOrderBy argument,
1209 ** then the results were placed in a sorter. After the loop is terminated
1210 ** we need to run the sorter and output the results. The following
1211 ** routine generates the code needed to do that.
1213 static void generateSortTail(
1214 Parse *pParse, /* Parsing context */
1215 Select *p, /* The SELECT statement */
1216 SortCtx *pSort, /* Information on the ORDER BY clause */
1217 int nColumn, /* Number of columns of data */
1218 SelectDest *pDest /* Write the sorted results here */
1220 Vdbe *v = pParse->pVdbe; /* The prepared statement */
1221 int addrBreak = pSort->labelDone; /* Jump here to exit loop */
1222 int addrContinue = sqlite3VdbeMakeLabel(v); /* Jump here for next cycle */
1223 int addr;
1224 int addrOnce = 0;
1225 int iTab;
1226 ExprList *pOrderBy = pSort->pOrderBy;
1227 int eDest = pDest->eDest;
1228 int iParm = pDest->iSDParm;
1229 int regRow;
1230 int regRowid;
1231 int iCol;
1232 int nKey;
1233 int iSortTab; /* Sorter cursor to read from */
1234 int nSortData; /* Trailing values to read from sorter */
1235 int i;
1236 int bSeq; /* True if sorter record includes seq. no. */
1237 struct ExprList_item *aOutEx = p->pEList->a;
1239 assert( addrBreak<0 );
1240 if( pSort->labelBkOut ){
1241 sqlite3VdbeAddOp2(v, OP_Gosub, pSort->regReturn, pSort->labelBkOut);
1242 sqlite3VdbeGoto(v, addrBreak);
1243 sqlite3VdbeResolveLabel(v, pSort->labelBkOut);
1245 iTab = pSort->iECursor;
1246 if( eDest==SRT_Output || eDest==SRT_Coroutine || eDest==SRT_Mem ){
1247 regRowid = 0;
1248 regRow = pDest->iSdst;
1249 nSortData = nColumn;
1250 }else{
1251 regRowid = sqlite3GetTempReg(pParse);
1252 regRow = sqlite3GetTempRange(pParse, nColumn);
1253 nSortData = nColumn;
1255 nKey = pOrderBy->nExpr - pSort->nOBSat;
1256 if( pSort->sortFlags & SORTFLAG_UseSorter ){
1257 int regSortOut = ++pParse->nMem;
1258 iSortTab = pParse->nTab++;
1259 if( pSort->labelBkOut ){
1260 addrOnce = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v);
1262 sqlite3VdbeAddOp3(v, OP_OpenPseudo, iSortTab, regSortOut, nKey+1+nSortData);
1263 if( addrOnce ) sqlite3VdbeJumpHere(v, addrOnce);
1264 addr = 1 + sqlite3VdbeAddOp2(v, OP_SorterSort, iTab, addrBreak);
1265 VdbeCoverage(v);
1266 codeOffset(v, p->iOffset, addrContinue);
1267 sqlite3VdbeAddOp3(v, OP_SorterData, iTab, regSortOut, iSortTab);
1268 bSeq = 0;
1269 }else{
1270 addr = 1 + sqlite3VdbeAddOp2(v, OP_Sort, iTab, addrBreak); VdbeCoverage(v);
1271 codeOffset(v, p->iOffset, addrContinue);
1272 iSortTab = iTab;
1273 bSeq = 1;
1275 for(i=0, iCol=nKey+bSeq; i<nSortData; i++){
1276 int iRead;
1277 if( aOutEx[i].u.x.iOrderByCol ){
1278 iRead = aOutEx[i].u.x.iOrderByCol-1;
1279 }else{
1280 iRead = iCol++;
1282 sqlite3VdbeAddOp3(v, OP_Column, iSortTab, iRead, regRow+i);
1283 VdbeComment((v, "%s", aOutEx[i].zName ? aOutEx[i].zName : aOutEx[i].zSpan));
1285 switch( eDest ){
1286 case SRT_Table:
1287 case SRT_EphemTab: {
1288 sqlite3VdbeAddOp2(v, OP_NewRowid, iParm, regRowid);
1289 sqlite3VdbeAddOp3(v, OP_Insert, iParm, regRow, regRowid);
1290 sqlite3VdbeChangeP5(v, OPFLAG_APPEND);
1291 break;
1293 #ifndef SQLITE_OMIT_SUBQUERY
1294 case SRT_Set: {
1295 assert( nColumn==sqlite3Strlen30(pDest->zAffSdst) );
1296 sqlite3VdbeAddOp4(v, OP_MakeRecord, regRow, nColumn, regRowid,
1297 pDest->zAffSdst, nColumn);
1298 sqlite3ExprCacheAffinityChange(pParse, regRow, nColumn);
1299 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, regRowid, regRow, nColumn);
1300 break;
1302 case SRT_Mem: {
1303 /* The LIMIT clause will terminate the loop for us */
1304 break;
1306 #endif
1307 default: {
1308 assert( eDest==SRT_Output || eDest==SRT_Coroutine );
1309 testcase( eDest==SRT_Output );
1310 testcase( eDest==SRT_Coroutine );
1311 if( eDest==SRT_Output ){
1312 sqlite3VdbeAddOp2(v, OP_ResultRow, pDest->iSdst, nColumn);
1313 sqlite3ExprCacheAffinityChange(pParse, pDest->iSdst, nColumn);
1314 }else{
1315 sqlite3VdbeAddOp1(v, OP_Yield, pDest->iSDParm);
1317 break;
1320 if( regRowid ){
1321 if( eDest==SRT_Set ){
1322 sqlite3ReleaseTempRange(pParse, regRow, nColumn);
1323 }else{
1324 sqlite3ReleaseTempReg(pParse, regRow);
1326 sqlite3ReleaseTempReg(pParse, regRowid);
1328 /* The bottom of the loop
1330 sqlite3VdbeResolveLabel(v, addrContinue);
1331 if( pSort->sortFlags & SORTFLAG_UseSorter ){
1332 sqlite3VdbeAddOp2(v, OP_SorterNext, iTab, addr); VdbeCoverage(v);
1333 }else{
1334 sqlite3VdbeAddOp2(v, OP_Next, iTab, addr); VdbeCoverage(v);
1336 if( pSort->regReturn ) sqlite3VdbeAddOp1(v, OP_Return, pSort->regReturn);
1337 sqlite3VdbeResolveLabel(v, addrBreak);
1341 ** Return a pointer to a string containing the 'declaration type' of the
1342 ** expression pExpr. The string may be treated as static by the caller.
1344 ** Also try to estimate the size of the returned value and return that
1345 ** result in *pEstWidth.
1347 ** The declaration type is the exact datatype definition extracted from the
1348 ** original CREATE TABLE statement if the expression is a column. The
1349 ** declaration type for a ROWID field is INTEGER. Exactly when an expression
1350 ** is considered a column can be complex in the presence of subqueries. The
1351 ** result-set expression in all of the following SELECT statements is
1352 ** considered a column by this function.
1354 ** SELECT col FROM tbl;
1355 ** SELECT (SELECT col FROM tbl;
1356 ** SELECT (SELECT col FROM tbl);
1357 ** SELECT abc FROM (SELECT col AS abc FROM tbl);
1359 ** The declaration type for any expression other than a column is NULL.
1361 ** This routine has either 3 or 6 parameters depending on whether or not
1362 ** the SQLITE_ENABLE_COLUMN_METADATA compile-time option is used.
1364 #ifdef SQLITE_ENABLE_COLUMN_METADATA
1365 # define columnType(A,B,C,D,E,F) columnTypeImpl(A,B,C,D,E,F)
1366 #else /* if !defined(SQLITE_ENABLE_COLUMN_METADATA) */
1367 # define columnType(A,B,C,D,E,F) columnTypeImpl(A,B,F)
1368 #endif
1369 static const char *columnTypeImpl(
1370 NameContext *pNC,
1371 Expr *pExpr,
1372 #ifdef SQLITE_ENABLE_COLUMN_METADATA
1373 const char **pzOrigDb,
1374 const char **pzOrigTab,
1375 const char **pzOrigCol,
1376 #endif
1377 u8 *pEstWidth
1379 char const *zType = 0;
1380 int j;
1381 u8 estWidth = 1;
1382 #ifdef SQLITE_ENABLE_COLUMN_METADATA
1383 char const *zOrigDb = 0;
1384 char const *zOrigTab = 0;
1385 char const *zOrigCol = 0;
1386 #endif
1388 assert( pExpr!=0 );
1389 assert( pNC->pSrcList!=0 );
1390 switch( pExpr->op ){
1391 case TK_AGG_COLUMN:
1392 case TK_COLUMN: {
1393 /* The expression is a column. Locate the table the column is being
1394 ** extracted from in NameContext.pSrcList. This table may be real
1395 ** database table or a subquery.
1397 Table *pTab = 0; /* Table structure column is extracted from */
1398 Select *pS = 0; /* Select the column is extracted from */
1399 int iCol = pExpr->iColumn; /* Index of column in pTab */
1400 testcase( pExpr->op==TK_AGG_COLUMN );
1401 testcase( pExpr->op==TK_COLUMN );
1402 while( pNC && !pTab ){
1403 SrcList *pTabList = pNC->pSrcList;
1404 for(j=0;j<pTabList->nSrc && pTabList->a[j].iCursor!=pExpr->iTable;j++);
1405 if( j<pTabList->nSrc ){
1406 pTab = pTabList->a[j].pTab;
1407 pS = pTabList->a[j].pSelect;
1408 }else{
1409 pNC = pNC->pNext;
1413 if( pTab==0 ){
1414 /* At one time, code such as "SELECT new.x" within a trigger would
1415 ** cause this condition to run. Since then, we have restructured how
1416 ** trigger code is generated and so this condition is no longer
1417 ** possible. However, it can still be true for statements like
1418 ** the following:
1420 ** CREATE TABLE t1(col INTEGER);
1421 ** SELECT (SELECT t1.col) FROM FROM t1;
1423 ** when columnType() is called on the expression "t1.col" in the
1424 ** sub-select. In this case, set the column type to NULL, even
1425 ** though it should really be "INTEGER".
1427 ** This is not a problem, as the column type of "t1.col" is never
1428 ** used. When columnType() is called on the expression
1429 ** "(SELECT t1.col)", the correct type is returned (see the TK_SELECT
1430 ** branch below. */
1431 break;
1434 assert( pTab && pExpr->pTab==pTab );
1435 if( pS ){
1436 /* The "table" is actually a sub-select or a view in the FROM clause
1437 ** of the SELECT statement. Return the declaration type and origin
1438 ** data for the result-set column of the sub-select.
1440 if( iCol>=0 && iCol<pS->pEList->nExpr ){
1441 /* If iCol is less than zero, then the expression requests the
1442 ** rowid of the sub-select or view. This expression is legal (see
1443 ** test case misc2.2.2) - it always evaluates to NULL.
1445 NameContext sNC;
1446 Expr *p = pS->pEList->a[iCol].pExpr;
1447 sNC.pSrcList = pS->pSrc;
1448 sNC.pNext = pNC;
1449 sNC.pParse = pNC->pParse;
1450 zType = columnType(&sNC, p,&zOrigDb,&zOrigTab,&zOrigCol, &estWidth);
1452 }else if( pTab->pSchema ){
1453 /* A real table */
1454 assert( !pS );
1455 if( iCol<0 ) iCol = pTab->iPKey;
1456 assert( iCol==-1 || (iCol>=0 && iCol<pTab->nCol) );
1457 #ifdef SQLITE_ENABLE_COLUMN_METADATA
1458 if( iCol<0 ){
1459 zType = "INTEGER";
1460 zOrigCol = "rowid";
1461 }else{
1462 zOrigCol = pTab->aCol[iCol].zName;
1463 zType = sqlite3ColumnType(&pTab->aCol[iCol],0);
1464 estWidth = pTab->aCol[iCol].szEst;
1466 zOrigTab = pTab->zName;
1467 if( pNC->pParse ){
1468 int iDb = sqlite3SchemaToIndex(pNC->pParse->db, pTab->pSchema);
1469 zOrigDb = pNC->pParse->db->aDb[iDb].zDbSName;
1471 #else
1472 if( iCol<0 ){
1473 zType = "INTEGER";
1474 }else{
1475 zType = sqlite3ColumnType(&pTab->aCol[iCol],0);
1476 estWidth = pTab->aCol[iCol].szEst;
1478 #endif
1480 break;
1482 #ifndef SQLITE_OMIT_SUBQUERY
1483 case TK_SELECT: {
1484 /* The expression is a sub-select. Return the declaration type and
1485 ** origin info for the single column in the result set of the SELECT
1486 ** statement.
1488 NameContext sNC;
1489 Select *pS = pExpr->x.pSelect;
1490 Expr *p = pS->pEList->a[0].pExpr;
1491 assert( ExprHasProperty(pExpr, EP_xIsSelect) );
1492 sNC.pSrcList = pS->pSrc;
1493 sNC.pNext = pNC;
1494 sNC.pParse = pNC->pParse;
1495 zType = columnType(&sNC, p, &zOrigDb, &zOrigTab, &zOrigCol, &estWidth);
1496 break;
1498 #endif
1501 #ifdef SQLITE_ENABLE_COLUMN_METADATA
1502 if( pzOrigDb ){
1503 assert( pzOrigTab && pzOrigCol );
1504 *pzOrigDb = zOrigDb;
1505 *pzOrigTab = zOrigTab;
1506 *pzOrigCol = zOrigCol;
1508 #endif
1509 if( pEstWidth ) *pEstWidth = estWidth;
1510 return zType;
1514 ** Generate code that will tell the VDBE the declaration types of columns
1515 ** in the result set.
1517 static void generateColumnTypes(
1518 Parse *pParse, /* Parser context */
1519 SrcList *pTabList, /* List of tables */
1520 ExprList *pEList /* Expressions defining the result set */
1522 #ifndef SQLITE_OMIT_DECLTYPE
1523 Vdbe *v = pParse->pVdbe;
1524 int i;
1525 NameContext sNC;
1526 sNC.pSrcList = pTabList;
1527 sNC.pParse = pParse;
1528 sNC.pNext = 0;
1529 for(i=0; i<pEList->nExpr; i++){
1530 Expr *p = pEList->a[i].pExpr;
1531 const char *zType;
1532 #ifdef SQLITE_ENABLE_COLUMN_METADATA
1533 const char *zOrigDb = 0;
1534 const char *zOrigTab = 0;
1535 const char *zOrigCol = 0;
1536 zType = columnType(&sNC, p, &zOrigDb, &zOrigTab, &zOrigCol, 0);
1538 /* The vdbe must make its own copy of the column-type and other
1539 ** column specific strings, in case the schema is reset before this
1540 ** virtual machine is deleted.
1542 sqlite3VdbeSetColName(v, i, COLNAME_DATABASE, zOrigDb, SQLITE_TRANSIENT);
1543 sqlite3VdbeSetColName(v, i, COLNAME_TABLE, zOrigTab, SQLITE_TRANSIENT);
1544 sqlite3VdbeSetColName(v, i, COLNAME_COLUMN, zOrigCol, SQLITE_TRANSIENT);
1545 #else
1546 zType = columnType(&sNC, p, 0, 0, 0, 0);
1547 #endif
1548 sqlite3VdbeSetColName(v, i, COLNAME_DECLTYPE, zType, SQLITE_TRANSIENT);
1550 #endif /* !defined(SQLITE_OMIT_DECLTYPE) */
1555 ** Compute the column names for a SELECT statement.
1557 ** The only guarantee that SQLite makes about column names is that if the
1558 ** column has an AS clause assigning it a name, that will be the name used.
1559 ** That is the only documented guarantee. However, countless applications
1560 ** developed over the years have made baseless assumptions about column names
1561 ** and will break if those assumptions changes. Hence, use extreme caution
1562 ** when modifying this routine to avoid breaking legacy.
1564 ** See Also: sqlite3ColumnsFromExprList()
1566 ** The PRAGMA short_column_names and PRAGMA full_column_names settings are
1567 ** deprecated. The default setting is short=ON, full=OFF. 99.9% of all
1568 ** applications should operate this way. Nevertheless, we need to support the
1569 ** other modes for legacy:
1571 ** short=OFF, full=OFF: Column name is the text of the expression has it
1572 ** originally appears in the SELECT statement. In
1573 ** other words, the zSpan of the result expression.
1575 ** short=ON, full=OFF: (This is the default setting). If the result
1576 ** refers directly to a table column, then the
1577 ** result column name is just the table column
1578 ** name: COLUMN. Otherwise use zSpan.
1580 ** full=ON, short=ANY: If the result refers directly to a table column,
1581 ** then the result column name with the table name
1582 ** prefix, ex: TABLE.COLUMN. Otherwise use zSpan.
1584 static void generateColumnNames(
1585 Parse *pParse, /* Parser context */
1586 Select *pSelect /* Generate column names for this SELECT statement */
1588 Vdbe *v = pParse->pVdbe;
1589 int i;
1590 Table *pTab;
1591 SrcList *pTabList;
1592 ExprList *pEList;
1593 sqlite3 *db = pParse->db;
1594 int fullName; /* TABLE.COLUMN if no AS clause and is a direct table ref */
1595 int srcName; /* COLUMN or TABLE.COLUMN if no AS clause and is direct */
1597 #ifndef SQLITE_OMIT_EXPLAIN
1598 /* If this is an EXPLAIN, skip this step */
1599 if( pParse->explain ){
1600 return;
1602 #endif
1604 if( pParse->colNamesSet || db->mallocFailed ) return;
1605 /* Column names are determined by the left-most term of a compound select */
1606 while( pSelect->pPrior ) pSelect = pSelect->pPrior;
1607 pTabList = pSelect->pSrc;
1608 pEList = pSelect->pEList;
1609 assert( v!=0 );
1610 assert( pTabList!=0 );
1611 pParse->colNamesSet = 1;
1612 fullName = (db->flags & SQLITE_FullColNames)!=0;
1613 srcName = (db->flags & SQLITE_ShortColNames)!=0 || fullName;
1614 sqlite3VdbeSetNumCols(v, pEList->nExpr);
1615 for(i=0; i<pEList->nExpr; i++){
1616 Expr *p = pEList->a[i].pExpr;
1618 assert( p!=0 );
1619 assert( p->op!=TK_AGG_COLUMN ); /* Agg processing has not run yet */
1620 assert( p->op!=TK_COLUMN || p->pTab!=0 ); /* Covering idx not yet coded */
1621 if( pEList->a[i].zName ){
1622 /* An AS clause always takes first priority */
1623 char *zName = pEList->a[i].zName;
1624 sqlite3VdbeSetColName(v, i, COLNAME_NAME, zName, SQLITE_TRANSIENT);
1625 }else if( srcName && p->op==TK_COLUMN ){
1626 char *zCol;
1627 int iCol = p->iColumn;
1628 pTab = p->pTab;
1629 assert( pTab!=0 );
1630 if( iCol<0 ) iCol = pTab->iPKey;
1631 assert( iCol==-1 || (iCol>=0 && iCol<pTab->nCol) );
1632 if( iCol<0 ){
1633 zCol = "rowid";
1634 }else{
1635 zCol = pTab->aCol[iCol].zName;
1637 if( fullName ){
1638 char *zName = 0;
1639 zName = sqlite3MPrintf(db, "%s.%s", pTab->zName, zCol);
1640 sqlite3VdbeSetColName(v, i, COLNAME_NAME, zName, SQLITE_DYNAMIC);
1641 }else{
1642 sqlite3VdbeSetColName(v, i, COLNAME_NAME, zCol, SQLITE_TRANSIENT);
1644 }else{
1645 const char *z = pEList->a[i].zSpan;
1646 z = z==0 ? sqlite3MPrintf(db, "column%d", i+1) : sqlite3DbStrDup(db, z);
1647 sqlite3VdbeSetColName(v, i, COLNAME_NAME, z, SQLITE_DYNAMIC);
1650 generateColumnTypes(pParse, pTabList, pEList);
1654 ** Given an expression list (which is really the list of expressions
1655 ** that form the result set of a SELECT statement) compute appropriate
1656 ** column names for a table that would hold the expression list.
1658 ** All column names will be unique.
1660 ** Only the column names are computed. Column.zType, Column.zColl,
1661 ** and other fields of Column are zeroed.
1663 ** Return SQLITE_OK on success. If a memory allocation error occurs,
1664 ** store NULL in *paCol and 0 in *pnCol and return SQLITE_NOMEM.
1666 ** The only guarantee that SQLite makes about column names is that if the
1667 ** column has an AS clause assigning it a name, that will be the name used.
1668 ** That is the only documented guarantee. However, countless applications
1669 ** developed over the years have made baseless assumptions about column names
1670 ** and will break if those assumptions changes. Hence, use extreme caution
1671 ** when modifying this routine to avoid breaking legacy.
1673 ** See Also: generateColumnNames()
1675 int sqlite3ColumnsFromExprList(
1676 Parse *pParse, /* Parsing context */
1677 ExprList *pEList, /* Expr list from which to derive column names */
1678 i16 *pnCol, /* Write the number of columns here */
1679 Column **paCol /* Write the new column list here */
1681 sqlite3 *db = pParse->db; /* Database connection */
1682 int i, j; /* Loop counters */
1683 u32 cnt; /* Index added to make the name unique */
1684 Column *aCol, *pCol; /* For looping over result columns */
1685 int nCol; /* Number of columns in the result set */
1686 char *zName; /* Column name */
1687 int nName; /* Size of name in zName[] */
1688 Hash ht; /* Hash table of column names */
1690 sqlite3HashInit(&ht);
1691 if( pEList ){
1692 nCol = pEList->nExpr;
1693 aCol = sqlite3DbMallocZero(db, sizeof(aCol[0])*nCol);
1694 testcase( aCol==0 );
1695 }else{
1696 nCol = 0;
1697 aCol = 0;
1699 assert( nCol==(i16)nCol );
1700 *pnCol = nCol;
1701 *paCol = aCol;
1703 for(i=0, pCol=aCol; i<nCol && !db->mallocFailed; i++, pCol++){
1704 /* Get an appropriate name for the column
1706 if( (zName = pEList->a[i].zName)!=0 ){
1707 /* If the column contains an "AS <name>" phrase, use <name> as the name */
1708 }else{
1709 Expr *pColExpr = sqlite3ExprSkipCollate(pEList->a[i].pExpr);
1710 while( pColExpr->op==TK_DOT ){
1711 pColExpr = pColExpr->pRight;
1712 assert( pColExpr!=0 );
1714 if( (pColExpr->op==TK_COLUMN || pColExpr->op==TK_AGG_COLUMN)
1715 && pColExpr->pTab!=0
1717 /* For columns use the column name name */
1718 int iCol = pColExpr->iColumn;
1719 Table *pTab = pColExpr->pTab;
1720 if( iCol<0 ) iCol = pTab->iPKey;
1721 zName = iCol>=0 ? pTab->aCol[iCol].zName : "rowid";
1722 }else if( pColExpr->op==TK_ID ){
1723 assert( !ExprHasProperty(pColExpr, EP_IntValue) );
1724 zName = pColExpr->u.zToken;
1725 }else{
1726 /* Use the original text of the column expression as its name */
1727 zName = pEList->a[i].zSpan;
1730 if( zName ){
1731 zName = sqlite3DbStrDup(db, zName);
1732 }else{
1733 zName = sqlite3MPrintf(db,"column%d",i+1);
1736 /* Make sure the column name is unique. If the name is not unique,
1737 ** append an integer to the name so that it becomes unique.
1739 cnt = 0;
1740 while( zName && sqlite3HashFind(&ht, zName)!=0 ){
1741 nName = sqlite3Strlen30(zName);
1742 if( nName>0 ){
1743 for(j=nName-1; j>0 && sqlite3Isdigit(zName[j]); j--){}
1744 if( zName[j]==':' ) nName = j;
1746 zName = sqlite3MPrintf(db, "%.*z:%u", nName, zName, ++cnt);
1747 if( cnt>3 ) sqlite3_randomness(sizeof(cnt), &cnt);
1749 pCol->zName = zName;
1750 sqlite3ColumnPropertiesFromName(0, pCol);
1751 if( zName && sqlite3HashInsert(&ht, zName, pCol)==pCol ){
1752 sqlite3OomFault(db);
1755 sqlite3HashClear(&ht);
1756 if( db->mallocFailed ){
1757 for(j=0; j<i; j++){
1758 sqlite3DbFree(db, aCol[j].zName);
1760 sqlite3DbFree(db, aCol);
1761 *paCol = 0;
1762 *pnCol = 0;
1763 return SQLITE_NOMEM_BKPT;
1765 return SQLITE_OK;
1769 ** Add type and collation information to a column list based on
1770 ** a SELECT statement.
1772 ** The column list presumably came from selectColumnNamesFromExprList().
1773 ** The column list has only names, not types or collations. This
1774 ** routine goes through and adds the types and collations.
1776 ** This routine requires that all identifiers in the SELECT
1777 ** statement be resolved.
1779 void sqlite3SelectAddColumnTypeAndCollation(
1780 Parse *pParse, /* Parsing contexts */
1781 Table *pTab, /* Add column type information to this table */
1782 Select *pSelect /* SELECT used to determine types and collations */
1784 sqlite3 *db = pParse->db;
1785 NameContext sNC;
1786 Column *pCol;
1787 CollSeq *pColl;
1788 int i;
1789 Expr *p;
1790 struct ExprList_item *a;
1791 u64 szAll = 0;
1793 assert( pSelect!=0 );
1794 assert( (pSelect->selFlags & SF_Resolved)!=0 );
1795 assert( pTab->nCol==pSelect->pEList->nExpr || db->mallocFailed );
1796 if( db->mallocFailed ) return;
1797 memset(&sNC, 0, sizeof(sNC));
1798 sNC.pSrcList = pSelect->pSrc;
1799 a = pSelect->pEList->a;
1800 for(i=0, pCol=pTab->aCol; i<pTab->nCol; i++, pCol++){
1801 const char *zType;
1802 int n, m;
1803 p = a[i].pExpr;
1804 zType = columnType(&sNC, p, 0, 0, 0, &pCol->szEst);
1805 szAll += pCol->szEst;
1806 pCol->affinity = sqlite3ExprAffinity(p);
1807 if( zType && (m = sqlite3Strlen30(zType))>0 ){
1808 n = sqlite3Strlen30(pCol->zName);
1809 pCol->zName = sqlite3DbReallocOrFree(db, pCol->zName, n+m+2);
1810 if( pCol->zName ){
1811 memcpy(&pCol->zName[n+1], zType, m+1);
1812 pCol->colFlags |= COLFLAG_HASTYPE;
1815 if( pCol->affinity==0 ) pCol->affinity = SQLITE_AFF_BLOB;
1816 pColl = sqlite3ExprCollSeq(pParse, p);
1817 if( pColl && pCol->zColl==0 ){
1818 pCol->zColl = sqlite3DbStrDup(db, pColl->zName);
1821 pTab->szTabRow = sqlite3LogEst(szAll*4);
1825 ** Given a SELECT statement, generate a Table structure that describes
1826 ** the result set of that SELECT.
1828 Table *sqlite3ResultSetOfSelect(Parse *pParse, Select *pSelect){
1829 Table *pTab;
1830 sqlite3 *db = pParse->db;
1831 int savedFlags;
1833 savedFlags = db->flags;
1834 db->flags &= ~SQLITE_FullColNames;
1835 db->flags |= SQLITE_ShortColNames;
1836 sqlite3SelectPrep(pParse, pSelect, 0);
1837 if( pParse->nErr ) return 0;
1838 while( pSelect->pPrior ) pSelect = pSelect->pPrior;
1839 db->flags = savedFlags;
1840 pTab = sqlite3DbMallocZero(db, sizeof(Table) );
1841 if( pTab==0 ){
1842 return 0;
1844 /* The sqlite3ResultSetOfSelect() is only used n contexts where lookaside
1845 ** is disabled */
1846 assert( db->lookaside.bDisable );
1847 pTab->nTabRef = 1;
1848 pTab->zName = 0;
1849 pTab->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) );
1850 sqlite3ColumnsFromExprList(pParse, pSelect->pEList, &pTab->nCol, &pTab->aCol);
1851 sqlite3SelectAddColumnTypeAndCollation(pParse, pTab, pSelect);
1852 pTab->iPKey = -1;
1853 if( db->mallocFailed ){
1854 sqlite3DeleteTable(db, pTab);
1855 return 0;
1857 return pTab;
1861 ** Get a VDBE for the given parser context. Create a new one if necessary.
1862 ** If an error occurs, return NULL and leave a message in pParse.
1864 Vdbe *sqlite3GetVdbe(Parse *pParse){
1865 if( pParse->pVdbe ){
1866 return pParse->pVdbe;
1868 if( pParse->pToplevel==0
1869 && OptimizationEnabled(pParse->db,SQLITE_FactorOutConst)
1871 pParse->okConstFactor = 1;
1873 return sqlite3VdbeCreate(pParse);
1878 ** Compute the iLimit and iOffset fields of the SELECT based on the
1879 ** pLimit and pOffset expressions. pLimit and pOffset hold the expressions
1880 ** that appear in the original SQL statement after the LIMIT and OFFSET
1881 ** keywords. Or NULL if those keywords are omitted. iLimit and iOffset
1882 ** are the integer memory register numbers for counters used to compute
1883 ** the limit and offset. If there is no limit and/or offset, then
1884 ** iLimit and iOffset are negative.
1886 ** This routine changes the values of iLimit and iOffset only if
1887 ** a limit or offset is defined by pLimit and pOffset. iLimit and
1888 ** iOffset should have been preset to appropriate default values (zero)
1889 ** prior to calling this routine.
1891 ** The iOffset register (if it exists) is initialized to the value
1892 ** of the OFFSET. The iLimit register is initialized to LIMIT. Register
1893 ** iOffset+1 is initialized to LIMIT+OFFSET.
1895 ** Only if pLimit!=0 or pOffset!=0 do the limit registers get
1896 ** redefined. The UNION ALL operator uses this property to force
1897 ** the reuse of the same limit and offset registers across multiple
1898 ** SELECT statements.
1900 static void computeLimitRegisters(Parse *pParse, Select *p, int iBreak){
1901 Vdbe *v = 0;
1902 int iLimit = 0;
1903 int iOffset;
1904 int n;
1905 if( p->iLimit ) return;
1908 ** "LIMIT -1" always shows all rows. There is some
1909 ** controversy about what the correct behavior should be.
1910 ** The current implementation interprets "LIMIT 0" to mean
1911 ** no rows.
1913 sqlite3ExprCacheClear(pParse);
1914 assert( p->pOffset==0 || p->pLimit!=0 );
1915 if( p->pLimit ){
1916 p->iLimit = iLimit = ++pParse->nMem;
1917 v = sqlite3GetVdbe(pParse);
1918 assert( v!=0 );
1919 if( sqlite3ExprIsInteger(p->pLimit, &n) ){
1920 sqlite3VdbeAddOp2(v, OP_Integer, n, iLimit);
1921 VdbeComment((v, "LIMIT counter"));
1922 if( n==0 ){
1923 sqlite3VdbeGoto(v, iBreak);
1924 }else if( n>=0 && p->nSelectRow>sqlite3LogEst((u64)n) ){
1925 p->nSelectRow = sqlite3LogEst((u64)n);
1926 p->selFlags |= SF_FixedLimit;
1928 }else{
1929 sqlite3ExprCode(pParse, p->pLimit, iLimit);
1930 sqlite3VdbeAddOp1(v, OP_MustBeInt, iLimit); VdbeCoverage(v);
1931 VdbeComment((v, "LIMIT counter"));
1932 sqlite3VdbeAddOp2(v, OP_IfNot, iLimit, iBreak); VdbeCoverage(v);
1934 if( p->pOffset ){
1935 p->iOffset = iOffset = ++pParse->nMem;
1936 pParse->nMem++; /* Allocate an extra register for limit+offset */
1937 sqlite3ExprCode(pParse, p->pOffset, iOffset);
1938 sqlite3VdbeAddOp1(v, OP_MustBeInt, iOffset); VdbeCoverage(v);
1939 VdbeComment((v, "OFFSET counter"));
1940 sqlite3VdbeAddOp3(v, OP_OffsetLimit, iLimit, iOffset+1, iOffset);
1941 VdbeComment((v, "LIMIT+OFFSET"));
1946 #ifndef SQLITE_OMIT_COMPOUND_SELECT
1948 ** Return the appropriate collating sequence for the iCol-th column of
1949 ** the result set for the compound-select statement "p". Return NULL if
1950 ** the column has no default collating sequence.
1952 ** The collating sequence for the compound select is taken from the
1953 ** left-most term of the select that has a collating sequence.
1955 static CollSeq *multiSelectCollSeq(Parse *pParse, Select *p, int iCol){
1956 CollSeq *pRet;
1957 if( p->pPrior ){
1958 pRet = multiSelectCollSeq(pParse, p->pPrior, iCol);
1959 }else{
1960 pRet = 0;
1962 assert( iCol>=0 );
1963 /* iCol must be less than p->pEList->nExpr. Otherwise an error would
1964 ** have been thrown during name resolution and we would not have gotten
1965 ** this far */
1966 if( pRet==0 && ALWAYS(iCol<p->pEList->nExpr) ){
1967 pRet = sqlite3ExprCollSeq(pParse, p->pEList->a[iCol].pExpr);
1969 return pRet;
1973 ** The select statement passed as the second parameter is a compound SELECT
1974 ** with an ORDER BY clause. This function allocates and returns a KeyInfo
1975 ** structure suitable for implementing the ORDER BY.
1977 ** Space to hold the KeyInfo structure is obtained from malloc. The calling
1978 ** function is responsible for ensuring that this structure is eventually
1979 ** freed.
1981 static KeyInfo *multiSelectOrderByKeyInfo(Parse *pParse, Select *p, int nExtra){
1982 ExprList *pOrderBy = p->pOrderBy;
1983 int nOrderBy = p->pOrderBy->nExpr;
1984 sqlite3 *db = pParse->db;
1985 KeyInfo *pRet = sqlite3KeyInfoAlloc(db, nOrderBy+nExtra, 1);
1986 if( pRet ){
1987 int i;
1988 for(i=0; i<nOrderBy; i++){
1989 struct ExprList_item *pItem = &pOrderBy->a[i];
1990 Expr *pTerm = pItem->pExpr;
1991 CollSeq *pColl;
1993 if( pTerm->flags & EP_Collate ){
1994 pColl = sqlite3ExprCollSeq(pParse, pTerm);
1995 }else{
1996 pColl = multiSelectCollSeq(pParse, p, pItem->u.x.iOrderByCol-1);
1997 if( pColl==0 ) pColl = db->pDfltColl;
1998 pOrderBy->a[i].pExpr =
1999 sqlite3ExprAddCollateString(pParse, pTerm, pColl->zName);
2001 assert( sqlite3KeyInfoIsWriteable(pRet) );
2002 pRet->aColl[i] = pColl;
2003 pRet->aSortOrder[i] = pOrderBy->a[i].sortOrder;
2007 return pRet;
2010 #ifndef SQLITE_OMIT_CTE
2012 ** This routine generates VDBE code to compute the content of a WITH RECURSIVE
2013 ** query of the form:
2015 ** <recursive-table> AS (<setup-query> UNION [ALL] <recursive-query>)
2016 ** \___________/ \_______________/
2017 ** p->pPrior p
2020 ** There is exactly one reference to the recursive-table in the FROM clause
2021 ** of recursive-query, marked with the SrcList->a[].fg.isRecursive flag.
2023 ** The setup-query runs once to generate an initial set of rows that go
2024 ** into a Queue table. Rows are extracted from the Queue table one by
2025 ** one. Each row extracted from Queue is output to pDest. Then the single
2026 ** extracted row (now in the iCurrent table) becomes the content of the
2027 ** recursive-table for a recursive-query run. The output of the recursive-query
2028 ** is added back into the Queue table. Then another row is extracted from Queue
2029 ** and the iteration continues until the Queue table is empty.
2031 ** If the compound query operator is UNION then no duplicate rows are ever
2032 ** inserted into the Queue table. The iDistinct table keeps a copy of all rows
2033 ** that have ever been inserted into Queue and causes duplicates to be
2034 ** discarded. If the operator is UNION ALL, then duplicates are allowed.
2036 ** If the query has an ORDER BY, then entries in the Queue table are kept in
2037 ** ORDER BY order and the first entry is extracted for each cycle. Without
2038 ** an ORDER BY, the Queue table is just a FIFO.
2040 ** If a LIMIT clause is provided, then the iteration stops after LIMIT rows
2041 ** have been output to pDest. A LIMIT of zero means to output no rows and a
2042 ** negative LIMIT means to output all rows. If there is also an OFFSET clause
2043 ** with a positive value, then the first OFFSET outputs are discarded rather
2044 ** than being sent to pDest. The LIMIT count does not begin until after OFFSET
2045 ** rows have been skipped.
2047 static void generateWithRecursiveQuery(
2048 Parse *pParse, /* Parsing context */
2049 Select *p, /* The recursive SELECT to be coded */
2050 SelectDest *pDest /* What to do with query results */
2052 SrcList *pSrc = p->pSrc; /* The FROM clause of the recursive query */
2053 int nCol = p->pEList->nExpr; /* Number of columns in the recursive table */
2054 Vdbe *v = pParse->pVdbe; /* The prepared statement under construction */
2055 Select *pSetup = p->pPrior; /* The setup query */
2056 int addrTop; /* Top of the loop */
2057 int addrCont, addrBreak; /* CONTINUE and BREAK addresses */
2058 int iCurrent = 0; /* The Current table */
2059 int regCurrent; /* Register holding Current table */
2060 int iQueue; /* The Queue table */
2061 int iDistinct = 0; /* To ensure unique results if UNION */
2062 int eDest = SRT_Fifo; /* How to write to Queue */
2063 SelectDest destQueue; /* SelectDest targetting the Queue table */
2064 int i; /* Loop counter */
2065 int rc; /* Result code */
2066 ExprList *pOrderBy; /* The ORDER BY clause */
2067 Expr *pLimit, *pOffset; /* Saved LIMIT and OFFSET */
2068 int regLimit, regOffset; /* Registers used by LIMIT and OFFSET */
2070 /* Obtain authorization to do a recursive query */
2071 if( sqlite3AuthCheck(pParse, SQLITE_RECURSIVE, 0, 0, 0) ) return;
2073 /* Process the LIMIT and OFFSET clauses, if they exist */
2074 addrBreak = sqlite3VdbeMakeLabel(v);
2075 p->nSelectRow = 320; /* 4 billion rows */
2076 computeLimitRegisters(pParse, p, addrBreak);
2077 pLimit = p->pLimit;
2078 pOffset = p->pOffset;
2079 regLimit = p->iLimit;
2080 regOffset = p->iOffset;
2081 p->pLimit = p->pOffset = 0;
2082 p->iLimit = p->iOffset = 0;
2083 pOrderBy = p->pOrderBy;
2085 /* Locate the cursor number of the Current table */
2086 for(i=0; ALWAYS(i<pSrc->nSrc); i++){
2087 if( pSrc->a[i].fg.isRecursive ){
2088 iCurrent = pSrc->a[i].iCursor;
2089 break;
2093 /* Allocate cursors numbers for Queue and Distinct. The cursor number for
2094 ** the Distinct table must be exactly one greater than Queue in order
2095 ** for the SRT_DistFifo and SRT_DistQueue destinations to work. */
2096 iQueue = pParse->nTab++;
2097 if( p->op==TK_UNION ){
2098 eDest = pOrderBy ? SRT_DistQueue : SRT_DistFifo;
2099 iDistinct = pParse->nTab++;
2100 }else{
2101 eDest = pOrderBy ? SRT_Queue : SRT_Fifo;
2103 sqlite3SelectDestInit(&destQueue, eDest, iQueue);
2105 /* Allocate cursors for Current, Queue, and Distinct. */
2106 regCurrent = ++pParse->nMem;
2107 sqlite3VdbeAddOp3(v, OP_OpenPseudo, iCurrent, regCurrent, nCol);
2108 if( pOrderBy ){
2109 KeyInfo *pKeyInfo = multiSelectOrderByKeyInfo(pParse, p, 1);
2110 sqlite3VdbeAddOp4(v, OP_OpenEphemeral, iQueue, pOrderBy->nExpr+2, 0,
2111 (char*)pKeyInfo, P4_KEYINFO);
2112 destQueue.pOrderBy = pOrderBy;
2113 }else{
2114 sqlite3VdbeAddOp2(v, OP_OpenEphemeral, iQueue, nCol);
2116 VdbeComment((v, "Queue table"));
2117 if( iDistinct ){
2118 p->addrOpenEphm[0] = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, iDistinct, 0);
2119 p->selFlags |= SF_UsesEphemeral;
2122 /* Detach the ORDER BY clause from the compound SELECT */
2123 p->pOrderBy = 0;
2125 /* Store the results of the setup-query in Queue. */
2126 pSetup->pNext = 0;
2127 rc = sqlite3Select(pParse, pSetup, &destQueue);
2128 pSetup->pNext = p;
2129 if( rc ) goto end_of_recursive_query;
2131 /* Find the next row in the Queue and output that row */
2132 addrTop = sqlite3VdbeAddOp2(v, OP_Rewind, iQueue, addrBreak); VdbeCoverage(v);
2134 /* Transfer the next row in Queue over to Current */
2135 sqlite3VdbeAddOp1(v, OP_NullRow, iCurrent); /* To reset column cache */
2136 if( pOrderBy ){
2137 sqlite3VdbeAddOp3(v, OP_Column, iQueue, pOrderBy->nExpr+1, regCurrent);
2138 }else{
2139 sqlite3VdbeAddOp2(v, OP_RowData, iQueue, regCurrent);
2141 sqlite3VdbeAddOp1(v, OP_Delete, iQueue);
2143 /* Output the single row in Current */
2144 addrCont = sqlite3VdbeMakeLabel(v);
2145 codeOffset(v, regOffset, addrCont);
2146 selectInnerLoop(pParse, p, iCurrent,
2147 0, 0, pDest, addrCont, addrBreak);
2148 if( regLimit ){
2149 sqlite3VdbeAddOp2(v, OP_DecrJumpZero, regLimit, addrBreak);
2150 VdbeCoverage(v);
2152 sqlite3VdbeResolveLabel(v, addrCont);
2154 /* Execute the recursive SELECT taking the single row in Current as
2155 ** the value for the recursive-table. Store the results in the Queue.
2157 if( p->selFlags & SF_Aggregate ){
2158 sqlite3ErrorMsg(pParse, "recursive aggregate queries not supported");
2159 }else{
2160 p->pPrior = 0;
2161 sqlite3Select(pParse, p, &destQueue);
2162 assert( p->pPrior==0 );
2163 p->pPrior = pSetup;
2166 /* Keep running the loop until the Queue is empty */
2167 sqlite3VdbeGoto(v, addrTop);
2168 sqlite3VdbeResolveLabel(v, addrBreak);
2170 end_of_recursive_query:
2171 sqlite3ExprListDelete(pParse->db, p->pOrderBy);
2172 p->pOrderBy = pOrderBy;
2173 p->pLimit = pLimit;
2174 p->pOffset = pOffset;
2175 return;
2177 #endif /* SQLITE_OMIT_CTE */
2179 /* Forward references */
2180 static int multiSelectOrderBy(
2181 Parse *pParse, /* Parsing context */
2182 Select *p, /* The right-most of SELECTs to be coded */
2183 SelectDest *pDest /* What to do with query results */
2187 ** Handle the special case of a compound-select that originates from a
2188 ** VALUES clause. By handling this as a special case, we avoid deep
2189 ** recursion, and thus do not need to enforce the SQLITE_LIMIT_COMPOUND_SELECT
2190 ** on a VALUES clause.
2192 ** Because the Select object originates from a VALUES clause:
2193 ** (1) It has no LIMIT or OFFSET
2194 ** (2) All terms are UNION ALL
2195 ** (3) There is no ORDER BY clause
2197 static int multiSelectValues(
2198 Parse *pParse, /* Parsing context */
2199 Select *p, /* The right-most of SELECTs to be coded */
2200 SelectDest *pDest /* What to do with query results */
2202 Select *pPrior;
2203 int nRow = 1;
2204 int rc = 0;
2205 assert( p->selFlags & SF_MultiValue );
2207 assert( p->selFlags & SF_Values );
2208 assert( p->op==TK_ALL || (p->op==TK_SELECT && p->pPrior==0) );
2209 assert( p->pLimit==0 );
2210 assert( p->pOffset==0 );
2211 assert( p->pNext==0 || p->pEList->nExpr==p->pNext->pEList->nExpr );
2212 if( p->pPrior==0 ) break;
2213 assert( p->pPrior->pNext==p );
2214 p = p->pPrior;
2215 nRow++;
2216 }while(1);
2217 while( p ){
2218 pPrior = p->pPrior;
2219 p->pPrior = 0;
2220 rc = sqlite3Select(pParse, p, pDest);
2221 p->pPrior = pPrior;
2222 if( rc ) break;
2223 p->nSelectRow = nRow;
2224 p = p->pNext;
2226 return rc;
2230 ** This routine is called to process a compound query form from
2231 ** two or more separate queries using UNION, UNION ALL, EXCEPT, or
2232 ** INTERSECT
2234 ** "p" points to the right-most of the two queries. the query on the
2235 ** left is p->pPrior. The left query could also be a compound query
2236 ** in which case this routine will be called recursively.
2238 ** The results of the total query are to be written into a destination
2239 ** of type eDest with parameter iParm.
2241 ** Example 1: Consider a three-way compound SQL statement.
2243 ** SELECT a FROM t1 UNION SELECT b FROM t2 UNION SELECT c FROM t3
2245 ** This statement is parsed up as follows:
2247 ** SELECT c FROM t3
2248 ** |
2249 ** `-----> SELECT b FROM t2
2250 ** |
2251 ** `------> SELECT a FROM t1
2253 ** The arrows in the diagram above represent the Select.pPrior pointer.
2254 ** So if this routine is called with p equal to the t3 query, then
2255 ** pPrior will be the t2 query. p->op will be TK_UNION in this case.
2257 ** Notice that because of the way SQLite parses compound SELECTs, the
2258 ** individual selects always group from left to right.
2260 static int multiSelect(
2261 Parse *pParse, /* Parsing context */
2262 Select *p, /* The right-most of SELECTs to be coded */
2263 SelectDest *pDest /* What to do with query results */
2265 int rc = SQLITE_OK; /* Success code from a subroutine */
2266 Select *pPrior; /* Another SELECT immediately to our left */
2267 Vdbe *v; /* Generate code to this VDBE */
2268 SelectDest dest; /* Alternative data destination */
2269 Select *pDelete = 0; /* Chain of simple selects to delete */
2270 sqlite3 *db; /* Database connection */
2271 #ifndef SQLITE_OMIT_EXPLAIN
2272 int iSub1 = 0; /* EQP id of left-hand query */
2273 int iSub2 = 0; /* EQP id of right-hand query */
2274 #endif
2276 /* Make sure there is no ORDER BY or LIMIT clause on prior SELECTs. Only
2277 ** the last (right-most) SELECT in the series may have an ORDER BY or LIMIT.
2279 assert( p && p->pPrior ); /* Calling function guarantees this much */
2280 assert( (p->selFlags & SF_Recursive)==0 || p->op==TK_ALL || p->op==TK_UNION );
2281 db = pParse->db;
2282 pPrior = p->pPrior;
2283 dest = *pDest;
2284 if( pPrior->pOrderBy || pPrior->pLimit ){
2285 sqlite3ErrorMsg(pParse,"%s clause should come after %s not before",
2286 pPrior->pOrderBy!=0 ? "ORDER BY" : "LIMIT", selectOpName(p->op));
2287 rc = 1;
2288 goto multi_select_end;
2291 v = sqlite3GetVdbe(pParse);
2292 assert( v!=0 ); /* The VDBE already created by calling function */
2294 /* Create the destination temporary table if necessary
2296 if( dest.eDest==SRT_EphemTab ){
2297 assert( p->pEList );
2298 sqlite3VdbeAddOp2(v, OP_OpenEphemeral, dest.iSDParm, p->pEList->nExpr);
2299 dest.eDest = SRT_Table;
2302 /* Special handling for a compound-select that originates as a VALUES clause.
2304 if( p->selFlags & SF_MultiValue ){
2305 rc = multiSelectValues(pParse, p, &dest);
2306 goto multi_select_end;
2309 /* Make sure all SELECTs in the statement have the same number of elements
2310 ** in their result sets.
2312 assert( p->pEList && pPrior->pEList );
2313 assert( p->pEList->nExpr==pPrior->pEList->nExpr );
2315 #ifndef SQLITE_OMIT_CTE
2316 if( p->selFlags & SF_Recursive ){
2317 generateWithRecursiveQuery(pParse, p, &dest);
2318 }else
2319 #endif
2321 /* Compound SELECTs that have an ORDER BY clause are handled separately.
2323 if( p->pOrderBy ){
2324 return multiSelectOrderBy(pParse, p, pDest);
2325 }else
2327 /* Generate code for the left and right SELECT statements.
2329 switch( p->op ){
2330 case TK_ALL: {
2331 int addr = 0;
2332 int nLimit;
2333 assert( !pPrior->pLimit );
2334 pPrior->iLimit = p->iLimit;
2335 pPrior->iOffset = p->iOffset;
2336 pPrior->pLimit = p->pLimit;
2337 pPrior->pOffset = p->pOffset;
2338 explainSetInteger(iSub1, pParse->iNextSelectId);
2339 rc = sqlite3Select(pParse, pPrior, &dest);
2340 p->pLimit = 0;
2341 p->pOffset = 0;
2342 if( rc ){
2343 goto multi_select_end;
2345 p->pPrior = 0;
2346 p->iLimit = pPrior->iLimit;
2347 p->iOffset = pPrior->iOffset;
2348 if( p->iLimit ){
2349 addr = sqlite3VdbeAddOp1(v, OP_IfNot, p->iLimit); VdbeCoverage(v);
2350 VdbeComment((v, "Jump ahead if LIMIT reached"));
2351 if( p->iOffset ){
2352 sqlite3VdbeAddOp3(v, OP_OffsetLimit,
2353 p->iLimit, p->iOffset+1, p->iOffset);
2356 explainSetInteger(iSub2, pParse->iNextSelectId);
2357 rc = sqlite3Select(pParse, p, &dest);
2358 testcase( rc!=SQLITE_OK );
2359 pDelete = p->pPrior;
2360 p->pPrior = pPrior;
2361 p->nSelectRow = sqlite3LogEstAdd(p->nSelectRow, pPrior->nSelectRow);
2362 if( pPrior->pLimit
2363 && sqlite3ExprIsInteger(pPrior->pLimit, &nLimit)
2364 && nLimit>0 && p->nSelectRow > sqlite3LogEst((u64)nLimit)
2366 p->nSelectRow = sqlite3LogEst((u64)nLimit);
2368 if( addr ){
2369 sqlite3VdbeJumpHere(v, addr);
2371 break;
2373 case TK_EXCEPT:
2374 case TK_UNION: {
2375 int unionTab; /* Cursor number of the temporary table holding result */
2376 u8 op = 0; /* One of the SRT_ operations to apply to self */
2377 int priorOp; /* The SRT_ operation to apply to prior selects */
2378 Expr *pLimit, *pOffset; /* Saved values of p->nLimit and p->nOffset */
2379 int addr;
2380 SelectDest uniondest;
2382 testcase( p->op==TK_EXCEPT );
2383 testcase( p->op==TK_UNION );
2384 priorOp = SRT_Union;
2385 if( dest.eDest==priorOp ){
2386 /* We can reuse a temporary table generated by a SELECT to our
2387 ** right.
2389 assert( p->pLimit==0 ); /* Not allowed on leftward elements */
2390 assert( p->pOffset==0 ); /* Not allowed on leftward elements */
2391 unionTab = dest.iSDParm;
2392 }else{
2393 /* We will need to create our own temporary table to hold the
2394 ** intermediate results.
2396 unionTab = pParse->nTab++;
2397 assert( p->pOrderBy==0 );
2398 addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, unionTab, 0);
2399 assert( p->addrOpenEphm[0] == -1 );
2400 p->addrOpenEphm[0] = addr;
2401 findRightmost(p)->selFlags |= SF_UsesEphemeral;
2402 assert( p->pEList );
2405 /* Code the SELECT statements to our left
2407 assert( !pPrior->pOrderBy );
2408 sqlite3SelectDestInit(&uniondest, priorOp, unionTab);
2409 explainSetInteger(iSub1, pParse->iNextSelectId);
2410 rc = sqlite3Select(pParse, pPrior, &uniondest);
2411 if( rc ){
2412 goto multi_select_end;
2415 /* Code the current SELECT statement
2417 if( p->op==TK_EXCEPT ){
2418 op = SRT_Except;
2419 }else{
2420 assert( p->op==TK_UNION );
2421 op = SRT_Union;
2423 p->pPrior = 0;
2424 pLimit = p->pLimit;
2425 p->pLimit = 0;
2426 pOffset = p->pOffset;
2427 p->pOffset = 0;
2428 uniondest.eDest = op;
2429 explainSetInteger(iSub2, pParse->iNextSelectId);
2430 rc = sqlite3Select(pParse, p, &uniondest);
2431 testcase( rc!=SQLITE_OK );
2432 /* Query flattening in sqlite3Select() might refill p->pOrderBy.
2433 ** Be sure to delete p->pOrderBy, therefore, to avoid a memory leak. */
2434 sqlite3ExprListDelete(db, p->pOrderBy);
2435 pDelete = p->pPrior;
2436 p->pPrior = pPrior;
2437 p->pOrderBy = 0;
2438 if( p->op==TK_UNION ){
2439 p->nSelectRow = sqlite3LogEstAdd(p->nSelectRow, pPrior->nSelectRow);
2441 sqlite3ExprDelete(db, p->pLimit);
2442 p->pLimit = pLimit;
2443 p->pOffset = pOffset;
2444 p->iLimit = 0;
2445 p->iOffset = 0;
2447 /* Convert the data in the temporary table into whatever form
2448 ** it is that we currently need.
2450 assert( unionTab==dest.iSDParm || dest.eDest!=priorOp );
2451 if( dest.eDest!=priorOp ){
2452 int iCont, iBreak, iStart;
2453 assert( p->pEList );
2454 iBreak = sqlite3VdbeMakeLabel(v);
2455 iCont = sqlite3VdbeMakeLabel(v);
2456 computeLimitRegisters(pParse, p, iBreak);
2457 sqlite3VdbeAddOp2(v, OP_Rewind, unionTab, iBreak); VdbeCoverage(v);
2458 iStart = sqlite3VdbeCurrentAddr(v);
2459 selectInnerLoop(pParse, p, unionTab,
2460 0, 0, &dest, iCont, iBreak);
2461 sqlite3VdbeResolveLabel(v, iCont);
2462 sqlite3VdbeAddOp2(v, OP_Next, unionTab, iStart); VdbeCoverage(v);
2463 sqlite3VdbeResolveLabel(v, iBreak);
2464 sqlite3VdbeAddOp2(v, OP_Close, unionTab, 0);
2466 break;
2468 default: assert( p->op==TK_INTERSECT ); {
2469 int tab1, tab2;
2470 int iCont, iBreak, iStart;
2471 Expr *pLimit, *pOffset;
2472 int addr;
2473 SelectDest intersectdest;
2474 int r1;
2476 /* INTERSECT is different from the others since it requires
2477 ** two temporary tables. Hence it has its own case. Begin
2478 ** by allocating the tables we will need.
2480 tab1 = pParse->nTab++;
2481 tab2 = pParse->nTab++;
2482 assert( p->pOrderBy==0 );
2484 addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, tab1, 0);
2485 assert( p->addrOpenEphm[0] == -1 );
2486 p->addrOpenEphm[0] = addr;
2487 findRightmost(p)->selFlags |= SF_UsesEphemeral;
2488 assert( p->pEList );
2490 /* Code the SELECTs to our left into temporary table "tab1".
2492 sqlite3SelectDestInit(&intersectdest, SRT_Union, tab1);
2493 explainSetInteger(iSub1, pParse->iNextSelectId);
2494 rc = sqlite3Select(pParse, pPrior, &intersectdest);
2495 if( rc ){
2496 goto multi_select_end;
2499 /* Code the current SELECT into temporary table "tab2"
2501 addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, tab2, 0);
2502 assert( p->addrOpenEphm[1] == -1 );
2503 p->addrOpenEphm[1] = addr;
2504 p->pPrior = 0;
2505 pLimit = p->pLimit;
2506 p->pLimit = 0;
2507 pOffset = p->pOffset;
2508 p->pOffset = 0;
2509 intersectdest.iSDParm = tab2;
2510 explainSetInteger(iSub2, pParse->iNextSelectId);
2511 rc = sqlite3Select(pParse, p, &intersectdest);
2512 testcase( rc!=SQLITE_OK );
2513 pDelete = p->pPrior;
2514 p->pPrior = pPrior;
2515 if( p->nSelectRow>pPrior->nSelectRow ) p->nSelectRow = pPrior->nSelectRow;
2516 sqlite3ExprDelete(db, p->pLimit);
2517 p->pLimit = pLimit;
2518 p->pOffset = pOffset;
2520 /* Generate code to take the intersection of the two temporary
2521 ** tables.
2523 assert( p->pEList );
2524 iBreak = sqlite3VdbeMakeLabel(v);
2525 iCont = sqlite3VdbeMakeLabel(v);
2526 computeLimitRegisters(pParse, p, iBreak);
2527 sqlite3VdbeAddOp2(v, OP_Rewind, tab1, iBreak); VdbeCoverage(v);
2528 r1 = sqlite3GetTempReg(pParse);
2529 iStart = sqlite3VdbeAddOp2(v, OP_RowData, tab1, r1);
2530 sqlite3VdbeAddOp4Int(v, OP_NotFound, tab2, iCont, r1, 0); VdbeCoverage(v);
2531 sqlite3ReleaseTempReg(pParse, r1);
2532 selectInnerLoop(pParse, p, tab1,
2533 0, 0, &dest, iCont, iBreak);
2534 sqlite3VdbeResolveLabel(v, iCont);
2535 sqlite3VdbeAddOp2(v, OP_Next, tab1, iStart); VdbeCoverage(v);
2536 sqlite3VdbeResolveLabel(v, iBreak);
2537 sqlite3VdbeAddOp2(v, OP_Close, tab2, 0);
2538 sqlite3VdbeAddOp2(v, OP_Close, tab1, 0);
2539 break;
2543 explainComposite(pParse, p->op, iSub1, iSub2, p->op!=TK_ALL);
2545 /* Compute collating sequences used by
2546 ** temporary tables needed to implement the compound select.
2547 ** Attach the KeyInfo structure to all temporary tables.
2549 ** This section is run by the right-most SELECT statement only.
2550 ** SELECT statements to the left always skip this part. The right-most
2551 ** SELECT might also skip this part if it has no ORDER BY clause and
2552 ** no temp tables are required.
2554 if( p->selFlags & SF_UsesEphemeral ){
2555 int i; /* Loop counter */
2556 KeyInfo *pKeyInfo; /* Collating sequence for the result set */
2557 Select *pLoop; /* For looping through SELECT statements */
2558 CollSeq **apColl; /* For looping through pKeyInfo->aColl[] */
2559 int nCol; /* Number of columns in result set */
2561 assert( p->pNext==0 );
2562 nCol = p->pEList->nExpr;
2563 pKeyInfo = sqlite3KeyInfoAlloc(db, nCol, 1);
2564 if( !pKeyInfo ){
2565 rc = SQLITE_NOMEM_BKPT;
2566 goto multi_select_end;
2568 for(i=0, apColl=pKeyInfo->aColl; i<nCol; i++, apColl++){
2569 *apColl = multiSelectCollSeq(pParse, p, i);
2570 if( 0==*apColl ){
2571 *apColl = db->pDfltColl;
2575 for(pLoop=p; pLoop; pLoop=pLoop->pPrior){
2576 for(i=0; i<2; i++){
2577 int addr = pLoop->addrOpenEphm[i];
2578 if( addr<0 ){
2579 /* If [0] is unused then [1] is also unused. So we can
2580 ** always safely abort as soon as the first unused slot is found */
2581 assert( pLoop->addrOpenEphm[1]<0 );
2582 break;
2584 sqlite3VdbeChangeP2(v, addr, nCol);
2585 sqlite3VdbeChangeP4(v, addr, (char*)sqlite3KeyInfoRef(pKeyInfo),
2586 P4_KEYINFO);
2587 pLoop->addrOpenEphm[i] = -1;
2590 sqlite3KeyInfoUnref(pKeyInfo);
2593 multi_select_end:
2594 pDest->iSdst = dest.iSdst;
2595 pDest->nSdst = dest.nSdst;
2596 sqlite3SelectDelete(db, pDelete);
2597 return rc;
2599 #endif /* SQLITE_OMIT_COMPOUND_SELECT */
2602 ** Error message for when two or more terms of a compound select have different
2603 ** size result sets.
2605 void sqlite3SelectWrongNumTermsError(Parse *pParse, Select *p){
2606 if( p->selFlags & SF_Values ){
2607 sqlite3ErrorMsg(pParse, "all VALUES must have the same number of terms");
2608 }else{
2609 sqlite3ErrorMsg(pParse, "SELECTs to the left and right of %s"
2610 " do not have the same number of result columns", selectOpName(p->op));
2615 ** Code an output subroutine for a coroutine implementation of a
2616 ** SELECT statment.
2618 ** The data to be output is contained in pIn->iSdst. There are
2619 ** pIn->nSdst columns to be output. pDest is where the output should
2620 ** be sent.
2622 ** regReturn is the number of the register holding the subroutine
2623 ** return address.
2625 ** If regPrev>0 then it is the first register in a vector that
2626 ** records the previous output. mem[regPrev] is a flag that is false
2627 ** if there has been no previous output. If regPrev>0 then code is
2628 ** generated to suppress duplicates. pKeyInfo is used for comparing
2629 ** keys.
2631 ** If the LIMIT found in p->iLimit is reached, jump immediately to
2632 ** iBreak.
2634 static int generateOutputSubroutine(
2635 Parse *pParse, /* Parsing context */
2636 Select *p, /* The SELECT statement */
2637 SelectDest *pIn, /* Coroutine supplying data */
2638 SelectDest *pDest, /* Where to send the data */
2639 int regReturn, /* The return address register */
2640 int regPrev, /* Previous result register. No uniqueness if 0 */
2641 KeyInfo *pKeyInfo, /* For comparing with previous entry */
2642 int iBreak /* Jump here if we hit the LIMIT */
2644 Vdbe *v = pParse->pVdbe;
2645 int iContinue;
2646 int addr;
2648 addr = sqlite3VdbeCurrentAddr(v);
2649 iContinue = sqlite3VdbeMakeLabel(v);
2651 /* Suppress duplicates for UNION, EXCEPT, and INTERSECT
2653 if( regPrev ){
2654 int addr1, addr2;
2655 addr1 = sqlite3VdbeAddOp1(v, OP_IfNot, regPrev); VdbeCoverage(v);
2656 addr2 = sqlite3VdbeAddOp4(v, OP_Compare, pIn->iSdst, regPrev+1, pIn->nSdst,
2657 (char*)sqlite3KeyInfoRef(pKeyInfo), P4_KEYINFO);
2658 sqlite3VdbeAddOp3(v, OP_Jump, addr2+2, iContinue, addr2+2); VdbeCoverage(v);
2659 sqlite3VdbeJumpHere(v, addr1);
2660 sqlite3VdbeAddOp3(v, OP_Copy, pIn->iSdst, regPrev+1, pIn->nSdst-1);
2661 sqlite3VdbeAddOp2(v, OP_Integer, 1, regPrev);
2663 if( pParse->db->mallocFailed ) return 0;
2665 /* Suppress the first OFFSET entries if there is an OFFSET clause
2667 codeOffset(v, p->iOffset, iContinue);
2669 assert( pDest->eDest!=SRT_Exists );
2670 assert( pDest->eDest!=SRT_Table );
2671 switch( pDest->eDest ){
2672 /* Store the result as data using a unique key.
2674 case SRT_EphemTab: {
2675 int r1 = sqlite3GetTempReg(pParse);
2676 int r2 = sqlite3GetTempReg(pParse);
2677 sqlite3VdbeAddOp3(v, OP_MakeRecord, pIn->iSdst, pIn->nSdst, r1);
2678 sqlite3VdbeAddOp2(v, OP_NewRowid, pDest->iSDParm, r2);
2679 sqlite3VdbeAddOp3(v, OP_Insert, pDest->iSDParm, r1, r2);
2680 sqlite3VdbeChangeP5(v, OPFLAG_APPEND);
2681 sqlite3ReleaseTempReg(pParse, r2);
2682 sqlite3ReleaseTempReg(pParse, r1);
2683 break;
2686 #ifndef SQLITE_OMIT_SUBQUERY
2687 /* If we are creating a set for an "expr IN (SELECT ...)".
2689 case SRT_Set: {
2690 int r1;
2691 testcase( pIn->nSdst>1 );
2692 r1 = sqlite3GetTempReg(pParse);
2693 sqlite3VdbeAddOp4(v, OP_MakeRecord, pIn->iSdst, pIn->nSdst,
2694 r1, pDest->zAffSdst, pIn->nSdst);
2695 sqlite3ExprCacheAffinityChange(pParse, pIn->iSdst, pIn->nSdst);
2696 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, pDest->iSDParm, r1,
2697 pIn->iSdst, pIn->nSdst);
2698 sqlite3ReleaseTempReg(pParse, r1);
2699 break;
2702 /* If this is a scalar select that is part of an expression, then
2703 ** store the results in the appropriate memory cell and break out
2704 ** of the scan loop.
2706 case SRT_Mem: {
2707 assert( pIn->nSdst==1 || pParse->nErr>0 ); testcase( pIn->nSdst!=1 );
2708 sqlite3ExprCodeMove(pParse, pIn->iSdst, pDest->iSDParm, 1);
2709 /* The LIMIT clause will jump out of the loop for us */
2710 break;
2712 #endif /* #ifndef SQLITE_OMIT_SUBQUERY */
2714 /* The results are stored in a sequence of registers
2715 ** starting at pDest->iSdst. Then the co-routine yields.
2717 case SRT_Coroutine: {
2718 if( pDest->iSdst==0 ){
2719 pDest->iSdst = sqlite3GetTempRange(pParse, pIn->nSdst);
2720 pDest->nSdst = pIn->nSdst;
2722 sqlite3ExprCodeMove(pParse, pIn->iSdst, pDest->iSdst, pIn->nSdst);
2723 sqlite3VdbeAddOp1(v, OP_Yield, pDest->iSDParm);
2724 break;
2727 /* If none of the above, then the result destination must be
2728 ** SRT_Output. This routine is never called with any other
2729 ** destination other than the ones handled above or SRT_Output.
2731 ** For SRT_Output, results are stored in a sequence of registers.
2732 ** Then the OP_ResultRow opcode is used to cause sqlite3_step() to
2733 ** return the next row of result.
2735 default: {
2736 assert( pDest->eDest==SRT_Output );
2737 sqlite3VdbeAddOp2(v, OP_ResultRow, pIn->iSdst, pIn->nSdst);
2738 sqlite3ExprCacheAffinityChange(pParse, pIn->iSdst, pIn->nSdst);
2739 break;
2743 /* Jump to the end of the loop if the LIMIT is reached.
2745 if( p->iLimit ){
2746 sqlite3VdbeAddOp2(v, OP_DecrJumpZero, p->iLimit, iBreak); VdbeCoverage(v);
2749 /* Generate the subroutine return
2751 sqlite3VdbeResolveLabel(v, iContinue);
2752 sqlite3VdbeAddOp1(v, OP_Return, regReturn);
2754 return addr;
2758 ** Alternative compound select code generator for cases when there
2759 ** is an ORDER BY clause.
2761 ** We assume a query of the following form:
2763 ** <selectA> <operator> <selectB> ORDER BY <orderbylist>
2765 ** <operator> is one of UNION ALL, UNION, EXCEPT, or INTERSECT. The idea
2766 ** is to code both <selectA> and <selectB> with the ORDER BY clause as
2767 ** co-routines. Then run the co-routines in parallel and merge the results
2768 ** into the output. In addition to the two coroutines (called selectA and
2769 ** selectB) there are 7 subroutines:
2771 ** outA: Move the output of the selectA coroutine into the output
2772 ** of the compound query.
2774 ** outB: Move the output of the selectB coroutine into the output
2775 ** of the compound query. (Only generated for UNION and
2776 ** UNION ALL. EXCEPT and INSERTSECT never output a row that
2777 ** appears only in B.)
2779 ** AltB: Called when there is data from both coroutines and A<B.
2781 ** AeqB: Called when there is data from both coroutines and A==B.
2783 ** AgtB: Called when there is data from both coroutines and A>B.
2785 ** EofA: Called when data is exhausted from selectA.
2787 ** EofB: Called when data is exhausted from selectB.
2789 ** The implementation of the latter five subroutines depend on which
2790 ** <operator> is used:
2793 ** UNION ALL UNION EXCEPT INTERSECT
2794 ** ------------- ----------------- -------------- -----------------
2795 ** AltB: outA, nextA outA, nextA outA, nextA nextA
2797 ** AeqB: outA, nextA nextA nextA outA, nextA
2799 ** AgtB: outB, nextB outB, nextB nextB nextB
2801 ** EofA: outB, nextB outB, nextB halt halt
2803 ** EofB: outA, nextA outA, nextA outA, nextA halt
2805 ** In the AltB, AeqB, and AgtB subroutines, an EOF on A following nextA
2806 ** causes an immediate jump to EofA and an EOF on B following nextB causes
2807 ** an immediate jump to EofB. Within EofA and EofB, and EOF on entry or
2808 ** following nextX causes a jump to the end of the select processing.
2810 ** Duplicate removal in the UNION, EXCEPT, and INTERSECT cases is handled
2811 ** within the output subroutine. The regPrev register set holds the previously
2812 ** output value. A comparison is made against this value and the output
2813 ** is skipped if the next results would be the same as the previous.
2815 ** The implementation plan is to implement the two coroutines and seven
2816 ** subroutines first, then put the control logic at the bottom. Like this:
2818 ** goto Init
2819 ** coA: coroutine for left query (A)
2820 ** coB: coroutine for right query (B)
2821 ** outA: output one row of A
2822 ** outB: output one row of B (UNION and UNION ALL only)
2823 ** EofA: ...
2824 ** EofB: ...
2825 ** AltB: ...
2826 ** AeqB: ...
2827 ** AgtB: ...
2828 ** Init: initialize coroutine registers
2829 ** yield coA
2830 ** if eof(A) goto EofA
2831 ** yield coB
2832 ** if eof(B) goto EofB
2833 ** Cmpr: Compare A, B
2834 ** Jump AltB, AeqB, AgtB
2835 ** End: ...
2837 ** We call AltB, AeqB, AgtB, EofA, and EofB "subroutines" but they are not
2838 ** actually called using Gosub and they do not Return. EofA and EofB loop
2839 ** until all data is exhausted then jump to the "end" labe. AltB, AeqB,
2840 ** and AgtB jump to either L2 or to one of EofA or EofB.
2842 #ifndef SQLITE_OMIT_COMPOUND_SELECT
2843 static int multiSelectOrderBy(
2844 Parse *pParse, /* Parsing context */
2845 Select *p, /* The right-most of SELECTs to be coded */
2846 SelectDest *pDest /* What to do with query results */
2848 int i, j; /* Loop counters */
2849 Select *pPrior; /* Another SELECT immediately to our left */
2850 Vdbe *v; /* Generate code to this VDBE */
2851 SelectDest destA; /* Destination for coroutine A */
2852 SelectDest destB; /* Destination for coroutine B */
2853 int regAddrA; /* Address register for select-A coroutine */
2854 int regAddrB; /* Address register for select-B coroutine */
2855 int addrSelectA; /* Address of the select-A coroutine */
2856 int addrSelectB; /* Address of the select-B coroutine */
2857 int regOutA; /* Address register for the output-A subroutine */
2858 int regOutB; /* Address register for the output-B subroutine */
2859 int addrOutA; /* Address of the output-A subroutine */
2860 int addrOutB = 0; /* Address of the output-B subroutine */
2861 int addrEofA; /* Address of the select-A-exhausted subroutine */
2862 int addrEofA_noB; /* Alternate addrEofA if B is uninitialized */
2863 int addrEofB; /* Address of the select-B-exhausted subroutine */
2864 int addrAltB; /* Address of the A<B subroutine */
2865 int addrAeqB; /* Address of the A==B subroutine */
2866 int addrAgtB; /* Address of the A>B subroutine */
2867 int regLimitA; /* Limit register for select-A */
2868 int regLimitB; /* Limit register for select-A */
2869 int regPrev; /* A range of registers to hold previous output */
2870 int savedLimit; /* Saved value of p->iLimit */
2871 int savedOffset; /* Saved value of p->iOffset */
2872 int labelCmpr; /* Label for the start of the merge algorithm */
2873 int labelEnd; /* Label for the end of the overall SELECT stmt */
2874 int addr1; /* Jump instructions that get retargetted */
2875 int op; /* One of TK_ALL, TK_UNION, TK_EXCEPT, TK_INTERSECT */
2876 KeyInfo *pKeyDup = 0; /* Comparison information for duplicate removal */
2877 KeyInfo *pKeyMerge; /* Comparison information for merging rows */
2878 sqlite3 *db; /* Database connection */
2879 ExprList *pOrderBy; /* The ORDER BY clause */
2880 int nOrderBy; /* Number of terms in the ORDER BY clause */
2881 int *aPermute; /* Mapping from ORDER BY terms to result set columns */
2882 #ifndef SQLITE_OMIT_EXPLAIN
2883 int iSub1; /* EQP id of left-hand query */
2884 int iSub2; /* EQP id of right-hand query */
2885 #endif
2887 assert( p->pOrderBy!=0 );
2888 assert( pKeyDup==0 ); /* "Managed" code needs this. Ticket #3382. */
2889 db = pParse->db;
2890 v = pParse->pVdbe;
2891 assert( v!=0 ); /* Already thrown the error if VDBE alloc failed */
2892 labelEnd = sqlite3VdbeMakeLabel(v);
2893 labelCmpr = sqlite3VdbeMakeLabel(v);
2896 /* Patch up the ORDER BY clause
2898 op = p->op;
2899 pPrior = p->pPrior;
2900 assert( pPrior->pOrderBy==0 );
2901 pOrderBy = p->pOrderBy;
2902 assert( pOrderBy );
2903 nOrderBy = pOrderBy->nExpr;
2905 /* For operators other than UNION ALL we have to make sure that
2906 ** the ORDER BY clause covers every term of the result set. Add
2907 ** terms to the ORDER BY clause as necessary.
2909 if( op!=TK_ALL ){
2910 for(i=1; db->mallocFailed==0 && i<=p->pEList->nExpr; i++){
2911 struct ExprList_item *pItem;
2912 for(j=0, pItem=pOrderBy->a; j<nOrderBy; j++, pItem++){
2913 assert( pItem->u.x.iOrderByCol>0 );
2914 if( pItem->u.x.iOrderByCol==i ) break;
2916 if( j==nOrderBy ){
2917 Expr *pNew = sqlite3Expr(db, TK_INTEGER, 0);
2918 if( pNew==0 ) return SQLITE_NOMEM_BKPT;
2919 pNew->flags |= EP_IntValue;
2920 pNew->u.iValue = i;
2921 p->pOrderBy = pOrderBy = sqlite3ExprListAppend(pParse, pOrderBy, pNew);
2922 if( pOrderBy ) pOrderBy->a[nOrderBy++].u.x.iOrderByCol = (u16)i;
2927 /* Compute the comparison permutation and keyinfo that is used with
2928 ** the permutation used to determine if the next
2929 ** row of results comes from selectA or selectB. Also add explicit
2930 ** collations to the ORDER BY clause terms so that when the subqueries
2931 ** to the right and the left are evaluated, they use the correct
2932 ** collation.
2934 aPermute = sqlite3DbMallocRawNN(db, sizeof(int)*(nOrderBy + 1));
2935 if( aPermute ){
2936 struct ExprList_item *pItem;
2937 aPermute[0] = nOrderBy;
2938 for(i=1, pItem=pOrderBy->a; i<=nOrderBy; i++, pItem++){
2939 assert( pItem->u.x.iOrderByCol>0 );
2940 assert( pItem->u.x.iOrderByCol<=p->pEList->nExpr );
2941 aPermute[i] = pItem->u.x.iOrderByCol - 1;
2943 pKeyMerge = multiSelectOrderByKeyInfo(pParse, p, 1);
2944 }else{
2945 pKeyMerge = 0;
2948 /* Reattach the ORDER BY clause to the query.
2950 p->pOrderBy = pOrderBy;
2951 pPrior->pOrderBy = sqlite3ExprListDup(pParse->db, pOrderBy, 0);
2953 /* Allocate a range of temporary registers and the KeyInfo needed
2954 ** for the logic that removes duplicate result rows when the
2955 ** operator is UNION, EXCEPT, or INTERSECT (but not UNION ALL).
2957 if( op==TK_ALL ){
2958 regPrev = 0;
2959 }else{
2960 int nExpr = p->pEList->nExpr;
2961 assert( nOrderBy>=nExpr || db->mallocFailed );
2962 regPrev = pParse->nMem+1;
2963 pParse->nMem += nExpr+1;
2964 sqlite3VdbeAddOp2(v, OP_Integer, 0, regPrev);
2965 pKeyDup = sqlite3KeyInfoAlloc(db, nExpr, 1);
2966 if( pKeyDup ){
2967 assert( sqlite3KeyInfoIsWriteable(pKeyDup) );
2968 for(i=0; i<nExpr; i++){
2969 pKeyDup->aColl[i] = multiSelectCollSeq(pParse, p, i);
2970 pKeyDup->aSortOrder[i] = 0;
2975 /* Separate the left and the right query from one another
2977 p->pPrior = 0;
2978 pPrior->pNext = 0;
2979 sqlite3ResolveOrderGroupBy(pParse, p, p->pOrderBy, "ORDER");
2980 if( pPrior->pPrior==0 ){
2981 sqlite3ResolveOrderGroupBy(pParse, pPrior, pPrior->pOrderBy, "ORDER");
2984 /* Compute the limit registers */
2985 computeLimitRegisters(pParse, p, labelEnd);
2986 if( p->iLimit && op==TK_ALL ){
2987 regLimitA = ++pParse->nMem;
2988 regLimitB = ++pParse->nMem;
2989 sqlite3VdbeAddOp2(v, OP_Copy, p->iOffset ? p->iOffset+1 : p->iLimit,
2990 regLimitA);
2991 sqlite3VdbeAddOp2(v, OP_Copy, regLimitA, regLimitB);
2992 }else{
2993 regLimitA = regLimitB = 0;
2995 sqlite3ExprDelete(db, p->pLimit);
2996 p->pLimit = 0;
2997 sqlite3ExprDelete(db, p->pOffset);
2998 p->pOffset = 0;
3000 regAddrA = ++pParse->nMem;
3001 regAddrB = ++pParse->nMem;
3002 regOutA = ++pParse->nMem;
3003 regOutB = ++pParse->nMem;
3004 sqlite3SelectDestInit(&destA, SRT_Coroutine, regAddrA);
3005 sqlite3SelectDestInit(&destB, SRT_Coroutine, regAddrB);
3007 /* Generate a coroutine to evaluate the SELECT statement to the
3008 ** left of the compound operator - the "A" select.
3010 addrSelectA = sqlite3VdbeCurrentAddr(v) + 1;
3011 addr1 = sqlite3VdbeAddOp3(v, OP_InitCoroutine, regAddrA, 0, addrSelectA);
3012 VdbeComment((v, "left SELECT"));
3013 pPrior->iLimit = regLimitA;
3014 explainSetInteger(iSub1, pParse->iNextSelectId);
3015 sqlite3Select(pParse, pPrior, &destA);
3016 sqlite3VdbeEndCoroutine(v, regAddrA);
3017 sqlite3VdbeJumpHere(v, addr1);
3019 /* Generate a coroutine to evaluate the SELECT statement on
3020 ** the right - the "B" select
3022 addrSelectB = sqlite3VdbeCurrentAddr(v) + 1;
3023 addr1 = sqlite3VdbeAddOp3(v, OP_InitCoroutine, regAddrB, 0, addrSelectB);
3024 VdbeComment((v, "right SELECT"));
3025 savedLimit = p->iLimit;
3026 savedOffset = p->iOffset;
3027 p->iLimit = regLimitB;
3028 p->iOffset = 0;
3029 explainSetInteger(iSub2, pParse->iNextSelectId);
3030 sqlite3Select(pParse, p, &destB);
3031 p->iLimit = savedLimit;
3032 p->iOffset = savedOffset;
3033 sqlite3VdbeEndCoroutine(v, regAddrB);
3035 /* Generate a subroutine that outputs the current row of the A
3036 ** select as the next output row of the compound select.
3038 VdbeNoopComment((v, "Output routine for A"));
3039 addrOutA = generateOutputSubroutine(pParse,
3040 p, &destA, pDest, regOutA,
3041 regPrev, pKeyDup, labelEnd);
3043 /* Generate a subroutine that outputs the current row of the B
3044 ** select as the next output row of the compound select.
3046 if( op==TK_ALL || op==TK_UNION ){
3047 VdbeNoopComment((v, "Output routine for B"));
3048 addrOutB = generateOutputSubroutine(pParse,
3049 p, &destB, pDest, regOutB,
3050 regPrev, pKeyDup, labelEnd);
3052 sqlite3KeyInfoUnref(pKeyDup);
3054 /* Generate a subroutine to run when the results from select A
3055 ** are exhausted and only data in select B remains.
3057 if( op==TK_EXCEPT || op==TK_INTERSECT ){
3058 addrEofA_noB = addrEofA = labelEnd;
3059 }else{
3060 VdbeNoopComment((v, "eof-A subroutine"));
3061 addrEofA = sqlite3VdbeAddOp2(v, OP_Gosub, regOutB, addrOutB);
3062 addrEofA_noB = sqlite3VdbeAddOp2(v, OP_Yield, regAddrB, labelEnd);
3063 VdbeCoverage(v);
3064 sqlite3VdbeGoto(v, addrEofA);
3065 p->nSelectRow = sqlite3LogEstAdd(p->nSelectRow, pPrior->nSelectRow);
3068 /* Generate a subroutine to run when the results from select B
3069 ** are exhausted and only data in select A remains.
3071 if( op==TK_INTERSECT ){
3072 addrEofB = addrEofA;
3073 if( p->nSelectRow > pPrior->nSelectRow ) p->nSelectRow = pPrior->nSelectRow;
3074 }else{
3075 VdbeNoopComment((v, "eof-B subroutine"));
3076 addrEofB = sqlite3VdbeAddOp2(v, OP_Gosub, regOutA, addrOutA);
3077 sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, labelEnd); VdbeCoverage(v);
3078 sqlite3VdbeGoto(v, addrEofB);
3081 /* Generate code to handle the case of A<B
3083 VdbeNoopComment((v, "A-lt-B subroutine"));
3084 addrAltB = sqlite3VdbeAddOp2(v, OP_Gosub, regOutA, addrOutA);
3085 sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, addrEofA); VdbeCoverage(v);
3086 sqlite3VdbeGoto(v, labelCmpr);
3088 /* Generate code to handle the case of A==B
3090 if( op==TK_ALL ){
3091 addrAeqB = addrAltB;
3092 }else if( op==TK_INTERSECT ){
3093 addrAeqB = addrAltB;
3094 addrAltB++;
3095 }else{
3096 VdbeNoopComment((v, "A-eq-B subroutine"));
3097 addrAeqB =
3098 sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, addrEofA); VdbeCoverage(v);
3099 sqlite3VdbeGoto(v, labelCmpr);
3102 /* Generate code to handle the case of A>B
3104 VdbeNoopComment((v, "A-gt-B subroutine"));
3105 addrAgtB = sqlite3VdbeCurrentAddr(v);
3106 if( op==TK_ALL || op==TK_UNION ){
3107 sqlite3VdbeAddOp2(v, OP_Gosub, regOutB, addrOutB);
3109 sqlite3VdbeAddOp2(v, OP_Yield, regAddrB, addrEofB); VdbeCoverage(v);
3110 sqlite3VdbeGoto(v, labelCmpr);
3112 /* This code runs once to initialize everything.
3114 sqlite3VdbeJumpHere(v, addr1);
3115 sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, addrEofA_noB); VdbeCoverage(v);
3116 sqlite3VdbeAddOp2(v, OP_Yield, regAddrB, addrEofB); VdbeCoverage(v);
3118 /* Implement the main merge loop
3120 sqlite3VdbeResolveLabel(v, labelCmpr);
3121 sqlite3VdbeAddOp4(v, OP_Permutation, 0, 0, 0, (char*)aPermute, P4_INTARRAY);
3122 sqlite3VdbeAddOp4(v, OP_Compare, destA.iSdst, destB.iSdst, nOrderBy,
3123 (char*)pKeyMerge, P4_KEYINFO);
3124 sqlite3VdbeChangeP5(v, OPFLAG_PERMUTE);
3125 sqlite3VdbeAddOp3(v, OP_Jump, addrAltB, addrAeqB, addrAgtB); VdbeCoverage(v);
3127 /* Jump to the this point in order to terminate the query.
3129 sqlite3VdbeResolveLabel(v, labelEnd);
3131 /* Reassembly the compound query so that it will be freed correctly
3132 ** by the calling function */
3133 if( p->pPrior ){
3134 sqlite3SelectDelete(db, p->pPrior);
3136 p->pPrior = pPrior;
3137 pPrior->pNext = p;
3139 /*** TBD: Insert subroutine calls to close cursors on incomplete
3140 **** subqueries ****/
3141 explainComposite(pParse, p->op, iSub1, iSub2, 0);
3142 return pParse->nErr!=0;
3144 #endif
3146 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
3148 /* An instance of the SubstContext object describes an substitution edit
3149 ** to be performed on a parse tree.
3151 ** All references to columns in table iTable are to be replaced by corresponding
3152 ** expressions in pEList.
3154 typedef struct SubstContext {
3155 Parse *pParse; /* The parsing context */
3156 int iTable; /* Replace references to this table */
3157 int iNewTable; /* New table number */
3158 int isLeftJoin; /* Add TK_IF_NULL_ROW opcodes on each replacement */
3159 ExprList *pEList; /* Replacement expressions */
3160 } SubstContext;
3162 /* Forward Declarations */
3163 static void substExprList(SubstContext*, ExprList*);
3164 static void substSelect(SubstContext*, Select*, int);
3167 ** Scan through the expression pExpr. Replace every reference to
3168 ** a column in table number iTable with a copy of the iColumn-th
3169 ** entry in pEList. (But leave references to the ROWID column
3170 ** unchanged.)
3172 ** This routine is part of the flattening procedure. A subquery
3173 ** whose result set is defined by pEList appears as entry in the
3174 ** FROM clause of a SELECT such that the VDBE cursor assigned to that
3175 ** FORM clause entry is iTable. This routine makes the necessary
3176 ** changes to pExpr so that it refers directly to the source table
3177 ** of the subquery rather the result set of the subquery.
3179 static Expr *substExpr(
3180 SubstContext *pSubst, /* Description of the substitution */
3181 Expr *pExpr /* Expr in which substitution occurs */
3183 if( pExpr==0 ) return 0;
3184 if( ExprHasProperty(pExpr, EP_FromJoin)
3185 && pExpr->iRightJoinTable==pSubst->iTable
3187 pExpr->iRightJoinTable = pSubst->iNewTable;
3189 if( pExpr->op==TK_COLUMN && pExpr->iTable==pSubst->iTable ){
3190 if( pExpr->iColumn<0 ){
3191 pExpr->op = TK_NULL;
3192 }else{
3193 Expr *pNew;
3194 Expr *pCopy = pSubst->pEList->a[pExpr->iColumn].pExpr;
3195 Expr ifNullRow;
3196 assert( pSubst->pEList!=0 && pExpr->iColumn<pSubst->pEList->nExpr );
3197 assert( pExpr->pLeft==0 && pExpr->pRight==0 );
3198 if( sqlite3ExprIsVector(pCopy) ){
3199 sqlite3VectorErrorMsg(pSubst->pParse, pCopy);
3200 }else{
3201 sqlite3 *db = pSubst->pParse->db;
3202 if( pSubst->isLeftJoin && pCopy->op!=TK_COLUMN ){
3203 memset(&ifNullRow, 0, sizeof(ifNullRow));
3204 ifNullRow.op = TK_IF_NULL_ROW;
3205 ifNullRow.pLeft = pCopy;
3206 ifNullRow.iTable = pSubst->iNewTable;
3207 pCopy = &ifNullRow;
3209 pNew = sqlite3ExprDup(db, pCopy, 0);
3210 if( pNew && pSubst->isLeftJoin ){
3211 ExprSetProperty(pNew, EP_CanBeNull);
3213 if( pNew && ExprHasProperty(pExpr,EP_FromJoin) ){
3214 pNew->iRightJoinTable = pExpr->iRightJoinTable;
3215 ExprSetProperty(pNew, EP_FromJoin);
3217 sqlite3ExprDelete(db, pExpr);
3218 pExpr = pNew;
3221 }else{
3222 if( pExpr->op==TK_IF_NULL_ROW && pExpr->iTable==pSubst->iTable ){
3223 pExpr->iTable = pSubst->iNewTable;
3225 pExpr->pLeft = substExpr(pSubst, pExpr->pLeft);
3226 pExpr->pRight = substExpr(pSubst, pExpr->pRight);
3227 if( ExprHasProperty(pExpr, EP_xIsSelect) ){
3228 substSelect(pSubst, pExpr->x.pSelect, 1);
3229 }else{
3230 substExprList(pSubst, pExpr->x.pList);
3233 return pExpr;
3235 static void substExprList(
3236 SubstContext *pSubst, /* Description of the substitution */
3237 ExprList *pList /* List to scan and in which to make substitutes */
3239 int i;
3240 if( pList==0 ) return;
3241 for(i=0; i<pList->nExpr; i++){
3242 pList->a[i].pExpr = substExpr(pSubst, pList->a[i].pExpr);
3245 static void substSelect(
3246 SubstContext *pSubst, /* Description of the substitution */
3247 Select *p, /* SELECT statement in which to make substitutions */
3248 int doPrior /* Do substitutes on p->pPrior too */
3250 SrcList *pSrc;
3251 struct SrcList_item *pItem;
3252 int i;
3253 if( !p ) return;
3255 substExprList(pSubst, p->pEList);
3256 substExprList(pSubst, p->pGroupBy);
3257 substExprList(pSubst, p->pOrderBy);
3258 p->pHaving = substExpr(pSubst, p->pHaving);
3259 p->pWhere = substExpr(pSubst, p->pWhere);
3260 pSrc = p->pSrc;
3261 assert( pSrc!=0 );
3262 for(i=pSrc->nSrc, pItem=pSrc->a; i>0; i--, pItem++){
3263 substSelect(pSubst, pItem->pSelect, 1);
3264 if( pItem->fg.isTabFunc ){
3265 substExprList(pSubst, pItem->u1.pFuncArg);
3268 }while( doPrior && (p = p->pPrior)!=0 );
3270 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */
3272 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
3274 ** This routine attempts to flatten subqueries as a performance optimization.
3275 ** This routine returns 1 if it makes changes and 0 if no flattening occurs.
3277 ** To understand the concept of flattening, consider the following
3278 ** query:
3280 ** SELECT a FROM (SELECT x+y AS a FROM t1 WHERE z<100) WHERE a>5
3282 ** The default way of implementing this query is to execute the
3283 ** subquery first and store the results in a temporary table, then
3284 ** run the outer query on that temporary table. This requires two
3285 ** passes over the data. Furthermore, because the temporary table
3286 ** has no indices, the WHERE clause on the outer query cannot be
3287 ** optimized.
3289 ** This routine attempts to rewrite queries such as the above into
3290 ** a single flat select, like this:
3292 ** SELECT x+y AS a FROM t1 WHERE z<100 AND a>5
3294 ** The code generated for this simplification gives the same result
3295 ** but only has to scan the data once. And because indices might
3296 ** exist on the table t1, a complete scan of the data might be
3297 ** avoided.
3299 ** Flattening is only attempted if all of the following are true:
3301 ** (1) The subquery and the outer query do not both use aggregates.
3303 ** (2) The subquery is not an aggregate or (2a) the outer query is not a join
3304 ** and (2b) the outer query does not use subqueries other than the one
3305 ** FROM-clause subquery that is a candidate for flattening. (2b is
3306 ** due to ticket [2f7170d73bf9abf80] from 2015-02-09.)
3308 ** (3) The subquery is not the right operand of a LEFT JOIN
3309 ** or (a) the subquery is not itself a join and (b) the FROM clause
3310 ** of the subquery does not contain a virtual table and (c) the
3311 ** outer query is not an aggregate.
3313 ** (4) The subquery is not DISTINCT.
3315 ** (**) At one point restrictions (4) and (5) defined a subset of DISTINCT
3316 ** sub-queries that were excluded from this optimization. Restriction
3317 ** (4) has since been expanded to exclude all DISTINCT subqueries.
3319 ** (6) The subquery does not use aggregates or the outer query is not
3320 ** DISTINCT.
3322 ** (7) The subquery has a FROM clause. TODO: For subqueries without
3323 ** A FROM clause, consider adding a FROM clause with the special
3324 ** table sqlite_once that consists of a single row containing a
3325 ** single NULL.
3327 ** (8) The subquery does not use LIMIT or the outer query is not a join.
3329 ** (9) The subquery does not use LIMIT or the outer query does not use
3330 ** aggregates.
3332 ** (**) Restriction (10) was removed from the code on 2005-02-05 but we
3333 ** accidently carried the comment forward until 2014-09-15. Original
3334 ** text: "The subquery does not use aggregates or the outer query
3335 ** does not use LIMIT."
3337 ** (11) The subquery and the outer query do not both have ORDER BY clauses.
3339 ** (**) Not implemented. Subsumed into restriction (3). Was previously
3340 ** a separate restriction deriving from ticket #350.
3342 ** (13) The subquery and outer query do not both use LIMIT.
3344 ** (14) The subquery does not use OFFSET.
3346 ** (15) The outer query is not part of a compound select or the
3347 ** subquery does not have a LIMIT clause.
3348 ** (See ticket #2339 and ticket [02a8e81d44]).
3350 ** (16) The outer query is not an aggregate or the subquery does
3351 ** not contain ORDER BY. (Ticket #2942) This used to not matter
3352 ** until we introduced the group_concat() function.
3354 ** (17) The sub-query is not a compound select, or it is a UNION ALL
3355 ** compound clause made up entirely of non-aggregate queries, and
3356 ** the parent query:
3358 ** * is not itself part of a compound select,
3359 ** * is not an aggregate or DISTINCT query, and
3360 ** * is not a join
3362 ** The parent and sub-query may contain WHERE clauses. Subject to
3363 ** rules (11), (13) and (14), they may also contain ORDER BY,
3364 ** LIMIT and OFFSET clauses. The subquery cannot use any compound
3365 ** operator other than UNION ALL because all the other compound
3366 ** operators have an implied DISTINCT which is disallowed by
3367 ** restriction (4).
3369 ** Also, each component of the sub-query must return the same number
3370 ** of result columns. This is actually a requirement for any compound
3371 ** SELECT statement, but all the code here does is make sure that no
3372 ** such (illegal) sub-query is flattened. The caller will detect the
3373 ** syntax error and return a detailed message.
3375 ** (18) If the sub-query is a compound select, then all terms of the
3376 ** ORDER by clause of the parent must be simple references to
3377 ** columns of the sub-query.
3379 ** (19) The subquery does not use LIMIT or the outer query does not
3380 ** have a WHERE clause.
3382 ** (20) If the sub-query is a compound select, then it must not use
3383 ** an ORDER BY clause. Ticket #3773. We could relax this constraint
3384 ** somewhat by saying that the terms of the ORDER BY clause must
3385 ** appear as unmodified result columns in the outer query. But we
3386 ** have other optimizations in mind to deal with that case.
3388 ** (21) The subquery does not use LIMIT or the outer query is not
3389 ** DISTINCT. (See ticket [752e1646fc]).
3391 ** (22) The subquery is not a recursive CTE.
3393 ** (23) The parent is not a recursive CTE, or the sub-query is not a
3394 ** compound query. This restriction is because transforming the
3395 ** parent to a compound query confuses the code that handles
3396 ** recursive queries in multiSelect().
3398 ** (24) The subquery is not an aggregate that uses the built-in min() or
3399 ** or max() functions. (Without this restriction, a query like:
3400 ** "SELECT x FROM (SELECT max(y), x FROM t1)" would not necessarily
3401 ** return the value X for which Y was maximal.)
3404 ** In this routine, the "p" parameter is a pointer to the outer query.
3405 ** The subquery is p->pSrc->a[iFrom]. isAgg is true if the outer query
3406 ** uses aggregates and subqueryIsAgg is true if the subquery uses aggregates.
3408 ** If flattening is not attempted, this routine is a no-op and returns 0.
3409 ** If flattening is attempted this routine returns 1.
3411 ** All of the expression analysis must occur on both the outer query and
3412 ** the subquery before this routine runs.
3414 static int flattenSubquery(
3415 Parse *pParse, /* Parsing context */
3416 Select *p, /* The parent or outer SELECT statement */
3417 int iFrom, /* Index in p->pSrc->a[] of the inner subquery */
3418 int isAgg, /* True if outer SELECT uses aggregate functions */
3419 int subqueryIsAgg /* True if the subquery uses aggregate functions */
3421 const char *zSavedAuthContext = pParse->zAuthContext;
3422 Select *pParent; /* Current UNION ALL term of the other query */
3423 Select *pSub; /* The inner query or "subquery" */
3424 Select *pSub1; /* Pointer to the rightmost select in sub-query */
3425 SrcList *pSrc; /* The FROM clause of the outer query */
3426 SrcList *pSubSrc; /* The FROM clause of the subquery */
3427 int iParent; /* VDBE cursor number of the pSub result set temp table */
3428 int iNewParent = -1;/* Replacement table for iParent */
3429 int isLeftJoin = 0; /* True if pSub is the right side of a LEFT JOIN */
3430 int i; /* Loop counter */
3431 Expr *pWhere; /* The WHERE clause */
3432 struct SrcList_item *pSubitem; /* The subquery */
3433 sqlite3 *db = pParse->db;
3435 /* Check to see if flattening is permitted. Return 0 if not.
3437 assert( p!=0 );
3438 assert( p->pPrior==0 ); /* Unable to flatten compound queries */
3439 if( OptimizationDisabled(db, SQLITE_QueryFlattener) ) return 0;
3440 pSrc = p->pSrc;
3441 assert( pSrc && iFrom>=0 && iFrom<pSrc->nSrc );
3442 pSubitem = &pSrc->a[iFrom];
3443 iParent = pSubitem->iCursor;
3444 pSub = pSubitem->pSelect;
3445 assert( pSub!=0 );
3446 if( subqueryIsAgg ){
3447 if( isAgg ) return 0; /* Restriction (1) */
3448 if( pSrc->nSrc>1 ) return 0; /* Restriction (2a) */
3449 if( (p->pWhere && ExprHasProperty(p->pWhere,EP_Subquery))
3450 || (sqlite3ExprListFlags(p->pEList) & EP_Subquery)!=0
3451 || (sqlite3ExprListFlags(p->pOrderBy) & EP_Subquery)!=0
3453 return 0; /* Restriction (2b) */
3457 pSubSrc = pSub->pSrc;
3458 assert( pSubSrc );
3459 /* Prior to version 3.1.2, when LIMIT and OFFSET had to be simple constants,
3460 ** not arbitrary expressions, we allowed some combining of LIMIT and OFFSET
3461 ** because they could be computed at compile-time. But when LIMIT and OFFSET
3462 ** became arbitrary expressions, we were forced to add restrictions (13)
3463 ** and (14). */
3464 if( pSub->pLimit && p->pLimit ) return 0; /* Restriction (13) */
3465 if( pSub->pOffset ) return 0; /* Restriction (14) */
3466 if( (p->selFlags & SF_Compound)!=0 && pSub->pLimit ){
3467 return 0; /* Restriction (15) */
3469 if( pSubSrc->nSrc==0 ) return 0; /* Restriction (7) */
3470 if( pSub->selFlags & SF_Distinct ) return 0; /* Restriction (5) */
3471 if( pSub->pLimit && (pSrc->nSrc>1 || isAgg) ){
3472 return 0; /* Restrictions (8)(9) */
3474 if( (p->selFlags & SF_Distinct)!=0 && subqueryIsAgg ){
3475 return 0; /* Restriction (6) */
3477 if( p->pOrderBy && pSub->pOrderBy ){
3478 return 0; /* Restriction (11) */
3480 if( isAgg && pSub->pOrderBy ) return 0; /* Restriction (16) */
3481 if( pSub->pLimit && p->pWhere ) return 0; /* Restriction (19) */
3482 if( pSub->pLimit && (p->selFlags & SF_Distinct)!=0 ){
3483 return 0; /* Restriction (21) */
3485 testcase( pSub->selFlags & SF_Recursive );
3486 testcase( pSub->selFlags & SF_MinMaxAgg );
3487 if( pSub->selFlags & (SF_Recursive|SF_MinMaxAgg) ){
3488 return 0; /* Restrictions (22) and (24) */
3490 if( (p->selFlags & SF_Recursive) && pSub->pPrior ){
3491 return 0; /* Restriction (23) */
3495 ** If the subquery is the right operand of a LEFT JOIN, then the
3496 ** subquery may not be a join itself. Example of why this is not allowed:
3498 ** t1 LEFT OUTER JOIN (t2 JOIN t3)
3500 ** If we flatten the above, we would get
3502 ** (t1 LEFT OUTER JOIN t2) JOIN t3
3504 ** which is not at all the same thing.
3506 ** If the subquery is the right operand of a LEFT JOIN, then the outer
3507 ** query cannot be an aggregate. This is an artifact of the way aggregates
3508 ** are processed - there is no mechanism to determine if the LEFT JOIN
3509 ** table should be all-NULL.
3511 ** See also tickets #306, #350, and #3300.
3513 if( (pSubitem->fg.jointype & JT_OUTER)!=0 ){
3514 isLeftJoin = 1;
3515 if( pSubSrc->nSrc>1 || isAgg || IsVirtual(pSubSrc->a[0].pTab) ){
3516 return 0; /* Restriction (3) */
3519 #ifdef SQLITE_EXTRA_IFNULLROW
3520 else if( iFrom>0 && !isAgg ){
3521 /* Setting isLeftJoin to -1 causes OP_IfNullRow opcodes to be generated for
3522 ** every reference to any result column from subquery in a join, even
3523 ** though they are not necessary. This will stress-test the OP_IfNullRow
3524 ** opcode. */
3525 isLeftJoin = -1;
3527 #endif
3529 /* Restriction 17: If the sub-query is a compound SELECT, then it must
3530 ** use only the UNION ALL operator. And none of the simple select queries
3531 ** that make up the compound SELECT are allowed to be aggregate or distinct
3532 ** queries.
3534 if( pSub->pPrior ){
3535 if( pSub->pOrderBy ){
3536 return 0; /* Restriction 20 */
3538 if( isAgg || (p->selFlags & SF_Distinct)!=0 || pSrc->nSrc!=1 ){
3539 return 0;
3541 for(pSub1=pSub; pSub1; pSub1=pSub1->pPrior){
3542 testcase( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct );
3543 testcase( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))==SF_Aggregate );
3544 assert( pSub->pSrc!=0 );
3545 assert( pSub->pEList->nExpr==pSub1->pEList->nExpr );
3546 if( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))!=0
3547 || (pSub1->pPrior && pSub1->op!=TK_ALL)
3548 || pSub1->pSrc->nSrc<1
3550 return 0;
3552 testcase( pSub1->pSrc->nSrc>1 );
3555 /* Restriction 18. */
3556 if( p->pOrderBy ){
3557 int ii;
3558 for(ii=0; ii<p->pOrderBy->nExpr; ii++){
3559 if( p->pOrderBy->a[ii].u.x.iOrderByCol==0 ) return 0;
3564 /***** If we reach this point, flattening is permitted. *****/
3565 SELECTTRACE(1,pParse,p,("flatten %s.%p from term %d\n",
3566 pSub->zSelName, pSub, iFrom));
3568 /* Authorize the subquery */
3569 pParse->zAuthContext = pSubitem->zName;
3570 TESTONLY(i =) sqlite3AuthCheck(pParse, SQLITE_SELECT, 0, 0, 0);
3571 testcase( i==SQLITE_DENY );
3572 pParse->zAuthContext = zSavedAuthContext;
3574 /* If the sub-query is a compound SELECT statement, then (by restrictions
3575 ** 17 and 18 above) it must be a UNION ALL and the parent query must
3576 ** be of the form:
3578 ** SELECT <expr-list> FROM (<sub-query>) <where-clause>
3580 ** followed by any ORDER BY, LIMIT and/or OFFSET clauses. This block
3581 ** creates N-1 copies of the parent query without any ORDER BY, LIMIT or
3582 ** OFFSET clauses and joins them to the left-hand-side of the original
3583 ** using UNION ALL operators. In this case N is the number of simple
3584 ** select statements in the compound sub-query.
3586 ** Example:
3588 ** SELECT a+1 FROM (
3589 ** SELECT x FROM tab
3590 ** UNION ALL
3591 ** SELECT y FROM tab
3592 ** UNION ALL
3593 ** SELECT abs(z*2) FROM tab2
3594 ** ) WHERE a!=5 ORDER BY 1
3596 ** Transformed into:
3598 ** SELECT x+1 FROM tab WHERE x+1!=5
3599 ** UNION ALL
3600 ** SELECT y+1 FROM tab WHERE y+1!=5
3601 ** UNION ALL
3602 ** SELECT abs(z*2)+1 FROM tab2 WHERE abs(z*2)+1!=5
3603 ** ORDER BY 1
3605 ** We call this the "compound-subquery flattening".
3607 for(pSub=pSub->pPrior; pSub; pSub=pSub->pPrior){
3608 Select *pNew;
3609 ExprList *pOrderBy = p->pOrderBy;
3610 Expr *pLimit = p->pLimit;
3611 Expr *pOffset = p->pOffset;
3612 Select *pPrior = p->pPrior;
3613 p->pOrderBy = 0;
3614 p->pSrc = 0;
3615 p->pPrior = 0;
3616 p->pLimit = 0;
3617 p->pOffset = 0;
3618 pNew = sqlite3SelectDup(db, p, 0);
3619 sqlite3SelectSetName(pNew, pSub->zSelName);
3620 p->pOffset = pOffset;
3621 p->pLimit = pLimit;
3622 p->pOrderBy = pOrderBy;
3623 p->pSrc = pSrc;
3624 p->op = TK_ALL;
3625 if( pNew==0 ){
3626 p->pPrior = pPrior;
3627 }else{
3628 pNew->pPrior = pPrior;
3629 if( pPrior ) pPrior->pNext = pNew;
3630 pNew->pNext = p;
3631 p->pPrior = pNew;
3632 SELECTTRACE(2,pParse,p,
3633 ("compound-subquery flattener creates %s.%p as peer\n",
3634 pNew->zSelName, pNew));
3636 if( db->mallocFailed ) return 1;
3639 /* Begin flattening the iFrom-th entry of the FROM clause
3640 ** in the outer query.
3642 pSub = pSub1 = pSubitem->pSelect;
3644 /* Delete the transient table structure associated with the
3645 ** subquery
3647 sqlite3DbFree(db, pSubitem->zDatabase);
3648 sqlite3DbFree(db, pSubitem->zName);
3649 sqlite3DbFree(db, pSubitem->zAlias);
3650 pSubitem->zDatabase = 0;
3651 pSubitem->zName = 0;
3652 pSubitem->zAlias = 0;
3653 pSubitem->pSelect = 0;
3655 /* Defer deleting the Table object associated with the
3656 ** subquery until code generation is
3657 ** complete, since there may still exist Expr.pTab entries that
3658 ** refer to the subquery even after flattening. Ticket #3346.
3660 ** pSubitem->pTab is always non-NULL by test restrictions and tests above.
3662 if( ALWAYS(pSubitem->pTab!=0) ){
3663 Table *pTabToDel = pSubitem->pTab;
3664 if( pTabToDel->nTabRef==1 ){
3665 Parse *pToplevel = sqlite3ParseToplevel(pParse);
3666 pTabToDel->pNextZombie = pToplevel->pZombieTab;
3667 pToplevel->pZombieTab = pTabToDel;
3668 }else{
3669 pTabToDel->nTabRef--;
3671 pSubitem->pTab = 0;
3674 /* The following loop runs once for each term in a compound-subquery
3675 ** flattening (as described above). If we are doing a different kind
3676 ** of flattening - a flattening other than a compound-subquery flattening -
3677 ** then this loop only runs once.
3679 ** This loop moves all of the FROM elements of the subquery into the
3680 ** the FROM clause of the outer query. Before doing this, remember
3681 ** the cursor number for the original outer query FROM element in
3682 ** iParent. The iParent cursor will never be used. Subsequent code
3683 ** will scan expressions looking for iParent references and replace
3684 ** those references with expressions that resolve to the subquery FROM
3685 ** elements we are now copying in.
3687 for(pParent=p; pParent; pParent=pParent->pPrior, pSub=pSub->pPrior){
3688 int nSubSrc;
3689 u8 jointype = 0;
3690 pSubSrc = pSub->pSrc; /* FROM clause of subquery */
3691 nSubSrc = pSubSrc->nSrc; /* Number of terms in subquery FROM clause */
3692 pSrc = pParent->pSrc; /* FROM clause of the outer query */
3694 if( pSrc ){
3695 assert( pParent==p ); /* First time through the loop */
3696 jointype = pSubitem->fg.jointype;
3697 }else{
3698 assert( pParent!=p ); /* 2nd and subsequent times through the loop */
3699 pSrc = pParent->pSrc = sqlite3SrcListAppend(db, 0, 0, 0);
3700 if( pSrc==0 ){
3701 assert( db->mallocFailed );
3702 break;
3706 /* The subquery uses a single slot of the FROM clause of the outer
3707 ** query. If the subquery has more than one element in its FROM clause,
3708 ** then expand the outer query to make space for it to hold all elements
3709 ** of the subquery.
3711 ** Example:
3713 ** SELECT * FROM tabA, (SELECT * FROM sub1, sub2), tabB;
3715 ** The outer query has 3 slots in its FROM clause. One slot of the
3716 ** outer query (the middle slot) is used by the subquery. The next
3717 ** block of code will expand the outer query FROM clause to 4 slots.
3718 ** The middle slot is expanded to two slots in order to make space
3719 ** for the two elements in the FROM clause of the subquery.
3721 if( nSubSrc>1 ){
3722 pParent->pSrc = pSrc = sqlite3SrcListEnlarge(db, pSrc, nSubSrc-1,iFrom+1);
3723 if( db->mallocFailed ){
3724 break;
3728 /* Transfer the FROM clause terms from the subquery into the
3729 ** outer query.
3731 for(i=0; i<nSubSrc; i++){
3732 sqlite3IdListDelete(db, pSrc->a[i+iFrom].pUsing);
3733 assert( pSrc->a[i+iFrom].fg.isTabFunc==0 );
3734 pSrc->a[i+iFrom] = pSubSrc->a[i];
3735 iNewParent = pSubSrc->a[i].iCursor;
3736 memset(&pSubSrc->a[i], 0, sizeof(pSubSrc->a[i]));
3738 pSrc->a[iFrom].fg.jointype = jointype;
3740 /* Now begin substituting subquery result set expressions for
3741 ** references to the iParent in the outer query.
3743 ** Example:
3745 ** SELECT a+5, b*10 FROM (SELECT x*3 AS a, y+10 AS b FROM t1) WHERE a>b;
3746 ** \ \_____________ subquery __________/ /
3747 ** \_____________________ outer query ______________________________/
3749 ** We look at every expression in the outer query and every place we see
3750 ** "a" we substitute "x*3" and every place we see "b" we substitute "y+10".
3752 if( pSub->pOrderBy ){
3753 /* At this point, any non-zero iOrderByCol values indicate that the
3754 ** ORDER BY column expression is identical to the iOrderByCol'th
3755 ** expression returned by SELECT statement pSub. Since these values
3756 ** do not necessarily correspond to columns in SELECT statement pParent,
3757 ** zero them before transfering the ORDER BY clause.
3759 ** Not doing this may cause an error if a subsequent call to this
3760 ** function attempts to flatten a compound sub-query into pParent
3761 ** (the only way this can happen is if the compound sub-query is
3762 ** currently part of pSub->pSrc). See ticket [d11a6e908f]. */
3763 ExprList *pOrderBy = pSub->pOrderBy;
3764 for(i=0; i<pOrderBy->nExpr; i++){
3765 pOrderBy->a[i].u.x.iOrderByCol = 0;
3767 assert( pParent->pOrderBy==0 );
3768 assert( pSub->pPrior==0 );
3769 pParent->pOrderBy = pOrderBy;
3770 pSub->pOrderBy = 0;
3772 pWhere = sqlite3ExprDup(db, pSub->pWhere, 0);
3773 if( isLeftJoin>0 ){
3774 setJoinExpr(pWhere, iNewParent);
3776 if( subqueryIsAgg ){
3777 assert( pParent->pHaving==0 );
3778 pParent->pHaving = pParent->pWhere;
3779 pParent->pWhere = pWhere;
3780 pParent->pHaving = sqlite3ExprAnd(db,
3781 sqlite3ExprDup(db, pSub->pHaving, 0), pParent->pHaving
3783 assert( pParent->pGroupBy==0 );
3784 pParent->pGroupBy = sqlite3ExprListDup(db, pSub->pGroupBy, 0);
3785 }else{
3786 pParent->pWhere = sqlite3ExprAnd(db, pWhere, pParent->pWhere);
3788 if( db->mallocFailed==0 ){
3789 SubstContext x;
3790 x.pParse = pParse;
3791 x.iTable = iParent;
3792 x.iNewTable = iNewParent;
3793 x.isLeftJoin = isLeftJoin;
3794 x.pEList = pSub->pEList;
3795 substSelect(&x, pParent, 0);
3798 /* The flattened query is distinct if either the inner or the
3799 ** outer query is distinct.
3801 pParent->selFlags |= pSub->selFlags & SF_Distinct;
3804 ** SELECT ... FROM (SELECT ... LIMIT a OFFSET b) LIMIT x OFFSET y;
3806 ** One is tempted to try to add a and b to combine the limits. But this
3807 ** does not work if either limit is negative.
3809 if( pSub->pLimit ){
3810 pParent->pLimit = pSub->pLimit;
3811 pSub->pLimit = 0;
3815 /* Finially, delete what is left of the subquery and return
3816 ** success.
3818 sqlite3SelectDelete(db, pSub1);
3820 #if SELECTTRACE_ENABLED
3821 if( sqlite3SelectTrace & 0x100 ){
3822 SELECTTRACE(0x100,pParse,p,("After flattening:\n"));
3823 sqlite3TreeViewSelect(0, p, 0);
3825 #endif
3827 return 1;
3829 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */
3833 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
3835 ** Make copies of relevant WHERE clause terms of the outer query into
3836 ** the WHERE clause of subquery. Example:
3838 ** SELECT * FROM (SELECT a AS x, c-d AS y FROM t1) WHERE x=5 AND y=10;
3840 ** Transformed into:
3842 ** SELECT * FROM (SELECT a AS x, c-d AS y FROM t1 WHERE a=5 AND c-d=10)
3843 ** WHERE x=5 AND y=10;
3845 ** The hope is that the terms added to the inner query will make it more
3846 ** efficient.
3848 ** Do not attempt this optimization if:
3850 ** (1) The inner query is an aggregate. (In that case, we'd really want
3851 ** to copy the outer WHERE-clause terms onto the HAVING clause of the
3852 ** inner query. But they probably won't help there so do not bother.)
3854 ** (2) The inner query is the recursive part of a common table expression.
3856 ** (3) The inner query has a LIMIT clause (since the changes to the WHERE
3857 ** close would change the meaning of the LIMIT).
3859 ** (4) The inner query is the right operand of a LEFT JOIN. (The caller
3860 ** enforces this restriction since this routine does not have enough
3861 ** information to know.)
3863 ** (5) The WHERE clause expression originates in the ON or USING clause
3864 ** of a LEFT JOIN.
3866 ** Return 0 if no changes are made and non-zero if one or more WHERE clause
3867 ** terms are duplicated into the subquery.
3869 static int pushDownWhereTerms(
3870 Parse *pParse, /* Parse context (for malloc() and error reporting) */
3871 Select *pSubq, /* The subquery whose WHERE clause is to be augmented */
3872 Expr *pWhere, /* The WHERE clause of the outer query */
3873 int iCursor /* Cursor number of the subquery */
3875 Expr *pNew;
3876 int nChng = 0;
3877 Select *pX; /* For looping over compound SELECTs in pSubq */
3878 if( pWhere==0 ) return 0;
3879 for(pX=pSubq; pX; pX=pX->pPrior){
3880 if( (pX->selFlags & (SF_Aggregate|SF_Recursive))!=0 ){
3881 testcase( pX->selFlags & SF_Aggregate );
3882 testcase( pX->selFlags & SF_Recursive );
3883 testcase( pX!=pSubq );
3884 return 0; /* restrictions (1) and (2) */
3887 if( pSubq->pLimit!=0 ){
3888 return 0; /* restriction (3) */
3890 while( pWhere->op==TK_AND ){
3891 nChng += pushDownWhereTerms(pParse, pSubq, pWhere->pRight, iCursor);
3892 pWhere = pWhere->pLeft;
3894 if( ExprHasProperty(pWhere,EP_FromJoin) ) return 0; /* restriction 5 */
3895 if( sqlite3ExprIsTableConstant(pWhere, iCursor) ){
3896 nChng++;
3897 while( pSubq ){
3898 SubstContext x;
3899 pNew = sqlite3ExprDup(pParse->db, pWhere, 0);
3900 x.pParse = pParse;
3901 x.iTable = iCursor;
3902 x.iNewTable = iCursor;
3903 x.isLeftJoin = 0;
3904 x.pEList = pSubq->pEList;
3905 pNew = substExpr(&x, pNew);
3906 pSubq->pWhere = sqlite3ExprAnd(pParse->db, pSubq->pWhere, pNew);
3907 pSubq = pSubq->pPrior;
3910 return nChng;
3912 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */
3915 ** Based on the contents of the AggInfo structure indicated by the first
3916 ** argument, this function checks if the following are true:
3918 ** * the query contains just a single aggregate function,
3919 ** * the aggregate function is either min() or max(), and
3920 ** * the argument to the aggregate function is a column value.
3922 ** If all of the above are true, then WHERE_ORDERBY_MIN or WHERE_ORDERBY_MAX
3923 ** is returned as appropriate. Also, *ppMinMax is set to point to the
3924 ** list of arguments passed to the aggregate before returning.
3926 ** Or, if the conditions above are not met, *ppMinMax is set to 0 and
3927 ** WHERE_ORDERBY_NORMAL is returned.
3929 static u8 minMaxQuery(AggInfo *pAggInfo, ExprList **ppMinMax){
3930 int eRet = WHERE_ORDERBY_NORMAL; /* Return value */
3932 *ppMinMax = 0;
3933 if( pAggInfo->nFunc==1 ){
3934 Expr *pExpr = pAggInfo->aFunc[0].pExpr; /* Aggregate function */
3935 ExprList *pEList = pExpr->x.pList; /* Arguments to agg function */
3937 assert( pExpr->op==TK_AGG_FUNCTION );
3938 if( pEList && pEList->nExpr==1 && pEList->a[0].pExpr->op==TK_AGG_COLUMN ){
3939 const char *zFunc = pExpr->u.zToken;
3940 if( sqlite3StrICmp(zFunc, "min")==0 ){
3941 eRet = WHERE_ORDERBY_MIN;
3942 *ppMinMax = pEList;
3943 }else if( sqlite3StrICmp(zFunc, "max")==0 ){
3944 eRet = WHERE_ORDERBY_MAX;
3945 *ppMinMax = pEList;
3950 assert( *ppMinMax==0 || (*ppMinMax)->nExpr==1 );
3951 return eRet;
3955 ** The select statement passed as the first argument is an aggregate query.
3956 ** The second argument is the associated aggregate-info object. This
3957 ** function tests if the SELECT is of the form:
3959 ** SELECT count(*) FROM <tbl>
3961 ** where table is a database table, not a sub-select or view. If the query
3962 ** does match this pattern, then a pointer to the Table object representing
3963 ** <tbl> is returned. Otherwise, 0 is returned.
3965 static Table *isSimpleCount(Select *p, AggInfo *pAggInfo){
3966 Table *pTab;
3967 Expr *pExpr;
3969 assert( !p->pGroupBy );
3971 if( p->pWhere || p->pEList->nExpr!=1
3972 || p->pSrc->nSrc!=1 || p->pSrc->a[0].pSelect
3974 return 0;
3976 pTab = p->pSrc->a[0].pTab;
3977 pExpr = p->pEList->a[0].pExpr;
3978 assert( pTab && !pTab->pSelect && pExpr );
3980 if( IsVirtual(pTab) ) return 0;
3981 if( pExpr->op!=TK_AGG_FUNCTION ) return 0;
3982 if( NEVER(pAggInfo->nFunc==0) ) return 0;
3983 if( (pAggInfo->aFunc[0].pFunc->funcFlags&SQLITE_FUNC_COUNT)==0 ) return 0;
3984 if( pExpr->flags&EP_Distinct ) return 0;
3986 return pTab;
3990 ** If the source-list item passed as an argument was augmented with an
3991 ** INDEXED BY clause, then try to locate the specified index. If there
3992 ** was such a clause and the named index cannot be found, return
3993 ** SQLITE_ERROR and leave an error in pParse. Otherwise, populate
3994 ** pFrom->pIndex and return SQLITE_OK.
3996 int sqlite3IndexedByLookup(Parse *pParse, struct SrcList_item *pFrom){
3997 if( pFrom->pTab && pFrom->fg.isIndexedBy ){
3998 Table *pTab = pFrom->pTab;
3999 char *zIndexedBy = pFrom->u1.zIndexedBy;
4000 Index *pIdx;
4001 for(pIdx=pTab->pIndex;
4002 pIdx && sqlite3StrICmp(pIdx->zName, zIndexedBy);
4003 pIdx=pIdx->pNext
4005 if( !pIdx ){
4006 sqlite3ErrorMsg(pParse, "no such index: %s", zIndexedBy, 0);
4007 pParse->checkSchema = 1;
4008 return SQLITE_ERROR;
4010 pFrom->pIBIndex = pIdx;
4012 return SQLITE_OK;
4015 ** Detect compound SELECT statements that use an ORDER BY clause with
4016 ** an alternative collating sequence.
4018 ** SELECT ... FROM t1 EXCEPT SELECT ... FROM t2 ORDER BY .. COLLATE ...
4020 ** These are rewritten as a subquery:
4022 ** SELECT * FROM (SELECT ... FROM t1 EXCEPT SELECT ... FROM t2)
4023 ** ORDER BY ... COLLATE ...
4025 ** This transformation is necessary because the multiSelectOrderBy() routine
4026 ** above that generates the code for a compound SELECT with an ORDER BY clause
4027 ** uses a merge algorithm that requires the same collating sequence on the
4028 ** result columns as on the ORDER BY clause. See ticket
4029 ** http://www.sqlite.org/src/info/6709574d2a
4031 ** This transformation is only needed for EXCEPT, INTERSECT, and UNION.
4032 ** The UNION ALL operator works fine with multiSelectOrderBy() even when
4033 ** there are COLLATE terms in the ORDER BY.
4035 static int convertCompoundSelectToSubquery(Walker *pWalker, Select *p){
4036 int i;
4037 Select *pNew;
4038 Select *pX;
4039 sqlite3 *db;
4040 struct ExprList_item *a;
4041 SrcList *pNewSrc;
4042 Parse *pParse;
4043 Token dummy;
4045 if( p->pPrior==0 ) return WRC_Continue;
4046 if( p->pOrderBy==0 ) return WRC_Continue;
4047 for(pX=p; pX && (pX->op==TK_ALL || pX->op==TK_SELECT); pX=pX->pPrior){}
4048 if( pX==0 ) return WRC_Continue;
4049 a = p->pOrderBy->a;
4050 for(i=p->pOrderBy->nExpr-1; i>=0; i--){
4051 if( a[i].pExpr->flags & EP_Collate ) break;
4053 if( i<0 ) return WRC_Continue;
4055 /* If we reach this point, that means the transformation is required. */
4057 pParse = pWalker->pParse;
4058 db = pParse->db;
4059 pNew = sqlite3DbMallocZero(db, sizeof(*pNew) );
4060 if( pNew==0 ) return WRC_Abort;
4061 memset(&dummy, 0, sizeof(dummy));
4062 pNewSrc = sqlite3SrcListAppendFromTerm(pParse,0,0,0,&dummy,pNew,0,0);
4063 if( pNewSrc==0 ) return WRC_Abort;
4064 *pNew = *p;
4065 p->pSrc = pNewSrc;
4066 p->pEList = sqlite3ExprListAppend(pParse, 0, sqlite3Expr(db, TK_ASTERISK, 0));
4067 p->op = TK_SELECT;
4068 p->pWhere = 0;
4069 pNew->pGroupBy = 0;
4070 pNew->pHaving = 0;
4071 pNew->pOrderBy = 0;
4072 p->pPrior = 0;
4073 p->pNext = 0;
4074 p->pWith = 0;
4075 p->selFlags &= ~SF_Compound;
4076 assert( (p->selFlags & SF_Converted)==0 );
4077 p->selFlags |= SF_Converted;
4078 assert( pNew->pPrior!=0 );
4079 pNew->pPrior->pNext = pNew;
4080 pNew->pLimit = 0;
4081 pNew->pOffset = 0;
4082 return WRC_Continue;
4086 ** Check to see if the FROM clause term pFrom has table-valued function
4087 ** arguments. If it does, leave an error message in pParse and return
4088 ** non-zero, since pFrom is not allowed to be a table-valued function.
4090 static int cannotBeFunction(Parse *pParse, struct SrcList_item *pFrom){
4091 if( pFrom->fg.isTabFunc ){
4092 sqlite3ErrorMsg(pParse, "'%s' is not a function", pFrom->zName);
4093 return 1;
4095 return 0;
4098 #ifndef SQLITE_OMIT_CTE
4100 ** Argument pWith (which may be NULL) points to a linked list of nested
4101 ** WITH contexts, from inner to outermost. If the table identified by
4102 ** FROM clause element pItem is really a common-table-expression (CTE)
4103 ** then return a pointer to the CTE definition for that table. Otherwise
4104 ** return NULL.
4106 ** If a non-NULL value is returned, set *ppContext to point to the With
4107 ** object that the returned CTE belongs to.
4109 static struct Cte *searchWith(
4110 With *pWith, /* Current innermost WITH clause */
4111 struct SrcList_item *pItem, /* FROM clause element to resolve */
4112 With **ppContext /* OUT: WITH clause return value belongs to */
4114 const char *zName;
4115 if( pItem->zDatabase==0 && (zName = pItem->zName)!=0 ){
4116 With *p;
4117 for(p=pWith; p; p=p->pOuter){
4118 int i;
4119 for(i=0; i<p->nCte; i++){
4120 if( sqlite3StrICmp(zName, p->a[i].zName)==0 ){
4121 *ppContext = p;
4122 return &p->a[i];
4127 return 0;
4130 /* The code generator maintains a stack of active WITH clauses
4131 ** with the inner-most WITH clause being at the top of the stack.
4133 ** This routine pushes the WITH clause passed as the second argument
4134 ** onto the top of the stack. If argument bFree is true, then this
4135 ** WITH clause will never be popped from the stack. In this case it
4136 ** should be freed along with the Parse object. In other cases, when
4137 ** bFree==0, the With object will be freed along with the SELECT
4138 ** statement with which it is associated.
4140 void sqlite3WithPush(Parse *pParse, With *pWith, u8 bFree){
4141 assert( bFree==0 || (pParse->pWith==0 && pParse->pWithToFree==0) );
4142 if( pWith ){
4143 assert( pParse->pWith!=pWith );
4144 pWith->pOuter = pParse->pWith;
4145 pParse->pWith = pWith;
4146 if( bFree ) pParse->pWithToFree = pWith;
4151 ** This function checks if argument pFrom refers to a CTE declared by
4152 ** a WITH clause on the stack currently maintained by the parser. And,
4153 ** if currently processing a CTE expression, if it is a recursive
4154 ** reference to the current CTE.
4156 ** If pFrom falls into either of the two categories above, pFrom->pTab
4157 ** and other fields are populated accordingly. The caller should check
4158 ** (pFrom->pTab!=0) to determine whether or not a successful match
4159 ** was found.
4161 ** Whether or not a match is found, SQLITE_OK is returned if no error
4162 ** occurs. If an error does occur, an error message is stored in the
4163 ** parser and some error code other than SQLITE_OK returned.
4165 static int withExpand(
4166 Walker *pWalker,
4167 struct SrcList_item *pFrom
4169 Parse *pParse = pWalker->pParse;
4170 sqlite3 *db = pParse->db;
4171 struct Cte *pCte; /* Matched CTE (or NULL if no match) */
4172 With *pWith; /* WITH clause that pCte belongs to */
4174 assert( pFrom->pTab==0 );
4176 pCte = searchWith(pParse->pWith, pFrom, &pWith);
4177 if( pCte ){
4178 Table *pTab;
4179 ExprList *pEList;
4180 Select *pSel;
4181 Select *pLeft; /* Left-most SELECT statement */
4182 int bMayRecursive; /* True if compound joined by UNION [ALL] */
4183 With *pSavedWith; /* Initial value of pParse->pWith */
4185 /* If pCte->zCteErr is non-NULL at this point, then this is an illegal
4186 ** recursive reference to CTE pCte. Leave an error in pParse and return
4187 ** early. If pCte->zCteErr is NULL, then this is not a recursive reference.
4188 ** In this case, proceed. */
4189 if( pCte->zCteErr ){
4190 sqlite3ErrorMsg(pParse, pCte->zCteErr, pCte->zName);
4191 return SQLITE_ERROR;
4193 if( cannotBeFunction(pParse, pFrom) ) return SQLITE_ERROR;
4195 assert( pFrom->pTab==0 );
4196 pFrom->pTab = pTab = sqlite3DbMallocZero(db, sizeof(Table));
4197 if( pTab==0 ) return WRC_Abort;
4198 pTab->nTabRef = 1;
4199 pTab->zName = sqlite3DbStrDup(db, pCte->zName);
4200 pTab->iPKey = -1;
4201 pTab->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) );
4202 pTab->tabFlags |= TF_Ephemeral | TF_NoVisibleRowid;
4203 pFrom->pSelect = sqlite3SelectDup(db, pCte->pSelect, 0);
4204 if( db->mallocFailed ) return SQLITE_NOMEM_BKPT;
4205 assert( pFrom->pSelect );
4207 /* Check if this is a recursive CTE. */
4208 pSel = pFrom->pSelect;
4209 bMayRecursive = ( pSel->op==TK_ALL || pSel->op==TK_UNION );
4210 if( bMayRecursive ){
4211 int i;
4212 SrcList *pSrc = pFrom->pSelect->pSrc;
4213 for(i=0; i<pSrc->nSrc; i++){
4214 struct SrcList_item *pItem = &pSrc->a[i];
4215 if( pItem->zDatabase==0
4216 && pItem->zName!=0
4217 && 0==sqlite3StrICmp(pItem->zName, pCte->zName)
4219 pItem->pTab = pTab;
4220 pItem->fg.isRecursive = 1;
4221 pTab->nTabRef++;
4222 pSel->selFlags |= SF_Recursive;
4227 /* Only one recursive reference is permitted. */
4228 if( pTab->nTabRef>2 ){
4229 sqlite3ErrorMsg(
4230 pParse, "multiple references to recursive table: %s", pCte->zName
4232 return SQLITE_ERROR;
4234 assert( pTab->nTabRef==1 ||
4235 ((pSel->selFlags&SF_Recursive) && pTab->nTabRef==2 ));
4237 pCte->zCteErr = "circular reference: %s";
4238 pSavedWith = pParse->pWith;
4239 pParse->pWith = pWith;
4240 if( bMayRecursive ){
4241 Select *pPrior = pSel->pPrior;
4242 assert( pPrior->pWith==0 );
4243 pPrior->pWith = pSel->pWith;
4244 sqlite3WalkSelect(pWalker, pPrior);
4245 pPrior->pWith = 0;
4246 }else{
4247 sqlite3WalkSelect(pWalker, pSel);
4249 pParse->pWith = pWith;
4251 for(pLeft=pSel; pLeft->pPrior; pLeft=pLeft->pPrior);
4252 pEList = pLeft->pEList;
4253 if( pCte->pCols ){
4254 if( pEList && pEList->nExpr!=pCte->pCols->nExpr ){
4255 sqlite3ErrorMsg(pParse, "table %s has %d values for %d columns",
4256 pCte->zName, pEList->nExpr, pCte->pCols->nExpr
4258 pParse->pWith = pSavedWith;
4259 return SQLITE_ERROR;
4261 pEList = pCte->pCols;
4264 sqlite3ColumnsFromExprList(pParse, pEList, &pTab->nCol, &pTab->aCol);
4265 if( bMayRecursive ){
4266 if( pSel->selFlags & SF_Recursive ){
4267 pCte->zCteErr = "multiple recursive references: %s";
4268 }else{
4269 pCte->zCteErr = "recursive reference in a subquery: %s";
4271 sqlite3WalkSelect(pWalker, pSel);
4273 pCte->zCteErr = 0;
4274 pParse->pWith = pSavedWith;
4277 return SQLITE_OK;
4279 #endif
4281 #ifndef SQLITE_OMIT_CTE
4283 ** If the SELECT passed as the second argument has an associated WITH
4284 ** clause, pop it from the stack stored as part of the Parse object.
4286 ** This function is used as the xSelectCallback2() callback by
4287 ** sqlite3SelectExpand() when walking a SELECT tree to resolve table
4288 ** names and other FROM clause elements.
4290 static void selectPopWith(Walker *pWalker, Select *p){
4291 Parse *pParse = pWalker->pParse;
4292 if( pParse->pWith && p->pPrior==0 ){
4293 With *pWith = findRightmost(p)->pWith;
4294 if( pWith!=0 ){
4295 assert( pParse->pWith==pWith );
4296 pParse->pWith = pWith->pOuter;
4300 #else
4301 #define selectPopWith 0
4302 #endif
4305 ** This routine is a Walker callback for "expanding" a SELECT statement.
4306 ** "Expanding" means to do the following:
4308 ** (1) Make sure VDBE cursor numbers have been assigned to every
4309 ** element of the FROM clause.
4311 ** (2) Fill in the pTabList->a[].pTab fields in the SrcList that
4312 ** defines FROM clause. When views appear in the FROM clause,
4313 ** fill pTabList->a[].pSelect with a copy of the SELECT statement
4314 ** that implements the view. A copy is made of the view's SELECT
4315 ** statement so that we can freely modify or delete that statement
4316 ** without worrying about messing up the persistent representation
4317 ** of the view.
4319 ** (3) Add terms to the WHERE clause to accommodate the NATURAL keyword
4320 ** on joins and the ON and USING clause of joins.
4322 ** (4) Scan the list of columns in the result set (pEList) looking
4323 ** for instances of the "*" operator or the TABLE.* operator.
4324 ** If found, expand each "*" to be every column in every table
4325 ** and TABLE.* to be every column in TABLE.
4328 static int selectExpander(Walker *pWalker, Select *p){
4329 Parse *pParse = pWalker->pParse;
4330 int i, j, k;
4331 SrcList *pTabList;
4332 ExprList *pEList;
4333 struct SrcList_item *pFrom;
4334 sqlite3 *db = pParse->db;
4335 Expr *pE, *pRight, *pExpr;
4336 u16 selFlags = p->selFlags;
4338 p->selFlags |= SF_Expanded;
4339 if( db->mallocFailed ){
4340 return WRC_Abort;
4342 if( NEVER(p->pSrc==0) || (selFlags & SF_Expanded)!=0 ){
4343 return WRC_Prune;
4345 pTabList = p->pSrc;
4346 pEList = p->pEList;
4347 if( p->pWith ){
4348 sqlite3WithPush(pParse, p->pWith, 0);
4351 /* Make sure cursor numbers have been assigned to all entries in
4352 ** the FROM clause of the SELECT statement.
4354 sqlite3SrcListAssignCursors(pParse, pTabList);
4356 /* Look up every table named in the FROM clause of the select. If
4357 ** an entry of the FROM clause is a subquery instead of a table or view,
4358 ** then create a transient table structure to describe the subquery.
4360 for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){
4361 Table *pTab;
4362 assert( pFrom->fg.isRecursive==0 || pFrom->pTab!=0 );
4363 if( pFrom->fg.isRecursive ) continue;
4364 assert( pFrom->pTab==0 );
4365 #ifndef SQLITE_OMIT_CTE
4366 if( withExpand(pWalker, pFrom) ) return WRC_Abort;
4367 if( pFrom->pTab ) {} else
4368 #endif
4369 if( pFrom->zName==0 ){
4370 #ifndef SQLITE_OMIT_SUBQUERY
4371 Select *pSel = pFrom->pSelect;
4372 /* A sub-query in the FROM clause of a SELECT */
4373 assert( pSel!=0 );
4374 assert( pFrom->pTab==0 );
4375 if( sqlite3WalkSelect(pWalker, pSel) ) return WRC_Abort;
4376 pFrom->pTab = pTab = sqlite3DbMallocZero(db, sizeof(Table));
4377 if( pTab==0 ) return WRC_Abort;
4378 pTab->nTabRef = 1;
4379 pTab->zName = sqlite3MPrintf(db, "sqlite_sq_%p", (void*)pTab);
4380 while( pSel->pPrior ){ pSel = pSel->pPrior; }
4381 sqlite3ColumnsFromExprList(pParse, pSel->pEList,&pTab->nCol,&pTab->aCol);
4382 pTab->iPKey = -1;
4383 pTab->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) );
4384 pTab->tabFlags |= TF_Ephemeral;
4385 #endif
4386 }else{
4387 /* An ordinary table or view name in the FROM clause */
4388 assert( pFrom->pTab==0 );
4389 pFrom->pTab = pTab = sqlite3LocateTableItem(pParse, 0, pFrom);
4390 if( pTab==0 ) return WRC_Abort;
4391 if( pTab->nTabRef>=0xffff ){
4392 sqlite3ErrorMsg(pParse, "too many references to \"%s\": max 65535",
4393 pTab->zName);
4394 pFrom->pTab = 0;
4395 return WRC_Abort;
4397 pTab->nTabRef++;
4398 if( !IsVirtual(pTab) && cannotBeFunction(pParse, pFrom) ){
4399 return WRC_Abort;
4401 #if !defined(SQLITE_OMIT_VIEW) || !defined (SQLITE_OMIT_VIRTUALTABLE)
4402 if( IsVirtual(pTab) || pTab->pSelect ){
4403 i16 nCol;
4404 if( sqlite3ViewGetColumnNames(pParse, pTab) ) return WRC_Abort;
4405 assert( pFrom->pSelect==0 );
4406 pFrom->pSelect = sqlite3SelectDup(db, pTab->pSelect, 0);
4407 sqlite3SelectSetName(pFrom->pSelect, pTab->zName);
4408 nCol = pTab->nCol;
4409 pTab->nCol = -1;
4410 sqlite3WalkSelect(pWalker, pFrom->pSelect);
4411 pTab->nCol = nCol;
4413 #endif
4416 /* Locate the index named by the INDEXED BY clause, if any. */
4417 if( sqlite3IndexedByLookup(pParse, pFrom) ){
4418 return WRC_Abort;
4422 /* Process NATURAL keywords, and ON and USING clauses of joins.
4424 if( db->mallocFailed || sqliteProcessJoin(pParse, p) ){
4425 return WRC_Abort;
4428 /* For every "*" that occurs in the column list, insert the names of
4429 ** all columns in all tables. And for every TABLE.* insert the names
4430 ** of all columns in TABLE. The parser inserted a special expression
4431 ** with the TK_ASTERISK operator for each "*" that it found in the column
4432 ** list. The following code just has to locate the TK_ASTERISK
4433 ** expressions and expand each one to the list of all columns in
4434 ** all tables.
4436 ** The first loop just checks to see if there are any "*" operators
4437 ** that need expanding.
4439 for(k=0; k<pEList->nExpr; k++){
4440 pE = pEList->a[k].pExpr;
4441 if( pE->op==TK_ASTERISK ) break;
4442 assert( pE->op!=TK_DOT || pE->pRight!=0 );
4443 assert( pE->op!=TK_DOT || (pE->pLeft!=0 && pE->pLeft->op==TK_ID) );
4444 if( pE->op==TK_DOT && pE->pRight->op==TK_ASTERISK ) break;
4446 if( k<pEList->nExpr ){
4448 ** If we get here it means the result set contains one or more "*"
4449 ** operators that need to be expanded. Loop through each expression
4450 ** in the result set and expand them one by one.
4452 struct ExprList_item *a = pEList->a;
4453 ExprList *pNew = 0;
4454 int flags = pParse->db->flags;
4455 int longNames = (flags & SQLITE_FullColNames)!=0
4456 && (flags & SQLITE_ShortColNames)==0;
4458 for(k=0; k<pEList->nExpr; k++){
4459 pE = a[k].pExpr;
4460 pRight = pE->pRight;
4461 assert( pE->op!=TK_DOT || pRight!=0 );
4462 if( pE->op!=TK_ASTERISK
4463 && (pE->op!=TK_DOT || pRight->op!=TK_ASTERISK)
4465 /* This particular expression does not need to be expanded.
4467 pNew = sqlite3ExprListAppend(pParse, pNew, a[k].pExpr);
4468 if( pNew ){
4469 pNew->a[pNew->nExpr-1].zName = a[k].zName;
4470 pNew->a[pNew->nExpr-1].zSpan = a[k].zSpan;
4471 a[k].zName = 0;
4472 a[k].zSpan = 0;
4474 a[k].pExpr = 0;
4475 }else{
4476 /* This expression is a "*" or a "TABLE.*" and needs to be
4477 ** expanded. */
4478 int tableSeen = 0; /* Set to 1 when TABLE matches */
4479 char *zTName = 0; /* text of name of TABLE */
4480 if( pE->op==TK_DOT ){
4481 assert( pE->pLeft!=0 );
4482 assert( !ExprHasProperty(pE->pLeft, EP_IntValue) );
4483 zTName = pE->pLeft->u.zToken;
4485 for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){
4486 Table *pTab = pFrom->pTab;
4487 Select *pSub = pFrom->pSelect;
4488 char *zTabName = pFrom->zAlias;
4489 const char *zSchemaName = 0;
4490 int iDb;
4491 if( zTabName==0 ){
4492 zTabName = pTab->zName;
4494 if( db->mallocFailed ) break;
4495 if( pSub==0 || (pSub->selFlags & SF_NestedFrom)==0 ){
4496 pSub = 0;
4497 if( zTName && sqlite3StrICmp(zTName, zTabName)!=0 ){
4498 continue;
4500 iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
4501 zSchemaName = iDb>=0 ? db->aDb[iDb].zDbSName : "*";
4503 for(j=0; j<pTab->nCol; j++){
4504 char *zName = pTab->aCol[j].zName;
4505 char *zColname; /* The computed column name */
4506 char *zToFree; /* Malloced string that needs to be freed */
4507 Token sColname; /* Computed column name as a token */
4509 assert( zName );
4510 if( zTName && pSub
4511 && sqlite3MatchSpanName(pSub->pEList->a[j].zSpan, 0, zTName, 0)==0
4513 continue;
4516 /* If a column is marked as 'hidden', omit it from the expanded
4517 ** result-set list unless the SELECT has the SF_IncludeHidden
4518 ** bit set.
4520 if( (p->selFlags & SF_IncludeHidden)==0
4521 && IsHiddenColumn(&pTab->aCol[j])
4523 continue;
4525 tableSeen = 1;
4527 if( i>0 && zTName==0 ){
4528 if( (pFrom->fg.jointype & JT_NATURAL)!=0
4529 && tableAndColumnIndex(pTabList, i, zName, 0, 0)
4531 /* In a NATURAL join, omit the join columns from the
4532 ** table to the right of the join */
4533 continue;
4535 if( sqlite3IdListIndex(pFrom->pUsing, zName)>=0 ){
4536 /* In a join with a USING clause, omit columns in the
4537 ** using clause from the table on the right. */
4538 continue;
4541 pRight = sqlite3Expr(db, TK_ID, zName);
4542 zColname = zName;
4543 zToFree = 0;
4544 if( longNames || pTabList->nSrc>1 ){
4545 Expr *pLeft;
4546 pLeft = sqlite3Expr(db, TK_ID, zTabName);
4547 pExpr = sqlite3PExpr(pParse, TK_DOT, pLeft, pRight);
4548 if( zSchemaName ){
4549 pLeft = sqlite3Expr(db, TK_ID, zSchemaName);
4550 pExpr = sqlite3PExpr(pParse, TK_DOT, pLeft, pExpr);
4552 if( longNames ){
4553 zColname = sqlite3MPrintf(db, "%s.%s", zTabName, zName);
4554 zToFree = zColname;
4556 }else{
4557 pExpr = pRight;
4559 pNew = sqlite3ExprListAppend(pParse, pNew, pExpr);
4560 sqlite3TokenInit(&sColname, zColname);
4561 sqlite3ExprListSetName(pParse, pNew, &sColname, 0);
4562 if( pNew && (p->selFlags & SF_NestedFrom)!=0 ){
4563 struct ExprList_item *pX = &pNew->a[pNew->nExpr-1];
4564 if( pSub ){
4565 pX->zSpan = sqlite3DbStrDup(db, pSub->pEList->a[j].zSpan);
4566 testcase( pX->zSpan==0 );
4567 }else{
4568 pX->zSpan = sqlite3MPrintf(db, "%s.%s.%s",
4569 zSchemaName, zTabName, zColname);
4570 testcase( pX->zSpan==0 );
4572 pX->bSpanIsTab = 1;
4574 sqlite3DbFree(db, zToFree);
4577 if( !tableSeen ){
4578 if( zTName ){
4579 sqlite3ErrorMsg(pParse, "no such table: %s", zTName);
4580 }else{
4581 sqlite3ErrorMsg(pParse, "no tables specified");
4586 sqlite3ExprListDelete(db, pEList);
4587 p->pEList = pNew;
4589 #if SQLITE_MAX_COLUMN
4590 if( p->pEList && p->pEList->nExpr>db->aLimit[SQLITE_LIMIT_COLUMN] ){
4591 sqlite3ErrorMsg(pParse, "too many columns in result set");
4592 return WRC_Abort;
4594 #endif
4595 return WRC_Continue;
4599 ** No-op routine for the parse-tree walker.
4601 ** When this routine is the Walker.xExprCallback then expression trees
4602 ** are walked without any actions being taken at each node. Presumably,
4603 ** when this routine is used for Walker.xExprCallback then
4604 ** Walker.xSelectCallback is set to do something useful for every
4605 ** subquery in the parser tree.
4607 int sqlite3ExprWalkNoop(Walker *NotUsed, Expr *NotUsed2){
4608 UNUSED_PARAMETER2(NotUsed, NotUsed2);
4609 return WRC_Continue;
4613 ** No-op routine for the parse-tree walker for SELECT statements.
4614 ** subquery in the parser tree.
4616 int sqlite3SelectWalkNoop(Walker *NotUsed, Select *NotUsed2){
4617 UNUSED_PARAMETER2(NotUsed, NotUsed2);
4618 return WRC_Continue;
4621 #if SQLITE_DEBUG
4623 ** Always assert. This xSelectCallback2 implementation proves that the
4624 ** xSelectCallback2 is never invoked.
4626 void sqlite3SelectWalkAssert2(Walker *NotUsed, Select *NotUsed2){
4627 UNUSED_PARAMETER2(NotUsed, NotUsed2);
4628 assert( 0 );
4630 #endif
4632 ** This routine "expands" a SELECT statement and all of its subqueries.
4633 ** For additional information on what it means to "expand" a SELECT
4634 ** statement, see the comment on the selectExpand worker callback above.
4636 ** Expanding a SELECT statement is the first step in processing a
4637 ** SELECT statement. The SELECT statement must be expanded before
4638 ** name resolution is performed.
4640 ** If anything goes wrong, an error message is written into pParse.
4641 ** The calling function can detect the problem by looking at pParse->nErr
4642 ** and/or pParse->db->mallocFailed.
4644 static void sqlite3SelectExpand(Parse *pParse, Select *pSelect){
4645 Walker w;
4646 w.xExprCallback = sqlite3ExprWalkNoop;
4647 w.pParse = pParse;
4648 if( pParse->hasCompound ){
4649 w.xSelectCallback = convertCompoundSelectToSubquery;
4650 w.xSelectCallback2 = 0;
4651 sqlite3WalkSelect(&w, pSelect);
4653 w.xSelectCallback = selectExpander;
4654 w.xSelectCallback2 = selectPopWith;
4655 sqlite3WalkSelect(&w, pSelect);
4659 #ifndef SQLITE_OMIT_SUBQUERY
4661 ** This is a Walker.xSelectCallback callback for the sqlite3SelectTypeInfo()
4662 ** interface.
4664 ** For each FROM-clause subquery, add Column.zType and Column.zColl
4665 ** information to the Table structure that represents the result set
4666 ** of that subquery.
4668 ** The Table structure that represents the result set was constructed
4669 ** by selectExpander() but the type and collation information was omitted
4670 ** at that point because identifiers had not yet been resolved. This
4671 ** routine is called after identifier resolution.
4673 static void selectAddSubqueryTypeInfo(Walker *pWalker, Select *p){
4674 Parse *pParse;
4675 int i;
4676 SrcList *pTabList;
4677 struct SrcList_item *pFrom;
4679 assert( p->selFlags & SF_Resolved );
4680 assert( (p->selFlags & SF_HasTypeInfo)==0 );
4681 p->selFlags |= SF_HasTypeInfo;
4682 pParse = pWalker->pParse;
4683 pTabList = p->pSrc;
4684 for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){
4685 Table *pTab = pFrom->pTab;
4686 assert( pTab!=0 );
4687 if( (pTab->tabFlags & TF_Ephemeral)!=0 ){
4688 /* A sub-query in the FROM clause of a SELECT */
4689 Select *pSel = pFrom->pSelect;
4690 if( pSel ){
4691 while( pSel->pPrior ) pSel = pSel->pPrior;
4692 sqlite3SelectAddColumnTypeAndCollation(pParse, pTab, pSel);
4697 #endif
4701 ** This routine adds datatype and collating sequence information to
4702 ** the Table structures of all FROM-clause subqueries in a
4703 ** SELECT statement.
4705 ** Use this routine after name resolution.
4707 static void sqlite3SelectAddTypeInfo(Parse *pParse, Select *pSelect){
4708 #ifndef SQLITE_OMIT_SUBQUERY
4709 Walker w;
4710 w.xSelectCallback = sqlite3SelectWalkNoop;
4711 w.xSelectCallback2 = selectAddSubqueryTypeInfo;
4712 w.xExprCallback = sqlite3ExprWalkNoop;
4713 w.pParse = pParse;
4714 sqlite3WalkSelect(&w, pSelect);
4715 #endif
4720 ** This routine sets up a SELECT statement for processing. The
4721 ** following is accomplished:
4723 ** * VDBE Cursor numbers are assigned to all FROM-clause terms.
4724 ** * Ephemeral Table objects are created for all FROM-clause subqueries.
4725 ** * ON and USING clauses are shifted into WHERE statements
4726 ** * Wildcards "*" and "TABLE.*" in result sets are expanded.
4727 ** * Identifiers in expression are matched to tables.
4729 ** This routine acts recursively on all subqueries within the SELECT.
4731 void sqlite3SelectPrep(
4732 Parse *pParse, /* The parser context */
4733 Select *p, /* The SELECT statement being coded. */
4734 NameContext *pOuterNC /* Name context for container */
4736 sqlite3 *db;
4737 if( NEVER(p==0) ) return;
4738 db = pParse->db;
4739 if( db->mallocFailed ) return;
4740 if( p->selFlags & SF_HasTypeInfo ) return;
4741 sqlite3SelectExpand(pParse, p);
4742 if( pParse->nErr || db->mallocFailed ) return;
4743 sqlite3ResolveSelectNames(pParse, p, pOuterNC);
4744 if( pParse->nErr || db->mallocFailed ) return;
4745 sqlite3SelectAddTypeInfo(pParse, p);
4749 ** Reset the aggregate accumulator.
4751 ** The aggregate accumulator is a set of memory cells that hold
4752 ** intermediate results while calculating an aggregate. This
4753 ** routine generates code that stores NULLs in all of those memory
4754 ** cells.
4756 static void resetAccumulator(Parse *pParse, AggInfo *pAggInfo){
4757 Vdbe *v = pParse->pVdbe;
4758 int i;
4759 struct AggInfo_func *pFunc;
4760 int nReg = pAggInfo->nFunc + pAggInfo->nColumn;
4761 if( nReg==0 ) return;
4762 #ifdef SQLITE_DEBUG
4763 /* Verify that all AggInfo registers are within the range specified by
4764 ** AggInfo.mnReg..AggInfo.mxReg */
4765 assert( nReg==pAggInfo->mxReg-pAggInfo->mnReg+1 );
4766 for(i=0; i<pAggInfo->nColumn; i++){
4767 assert( pAggInfo->aCol[i].iMem>=pAggInfo->mnReg
4768 && pAggInfo->aCol[i].iMem<=pAggInfo->mxReg );
4770 for(i=0; i<pAggInfo->nFunc; i++){
4771 assert( pAggInfo->aFunc[i].iMem>=pAggInfo->mnReg
4772 && pAggInfo->aFunc[i].iMem<=pAggInfo->mxReg );
4774 #endif
4775 sqlite3VdbeAddOp3(v, OP_Null, 0, pAggInfo->mnReg, pAggInfo->mxReg);
4776 for(pFunc=pAggInfo->aFunc, i=0; i<pAggInfo->nFunc; i++, pFunc++){
4777 if( pFunc->iDistinct>=0 ){
4778 Expr *pE = pFunc->pExpr;
4779 assert( !ExprHasProperty(pE, EP_xIsSelect) );
4780 if( pE->x.pList==0 || pE->x.pList->nExpr!=1 ){
4781 sqlite3ErrorMsg(pParse, "DISTINCT aggregates must have exactly one "
4782 "argument");
4783 pFunc->iDistinct = -1;
4784 }else{
4785 KeyInfo *pKeyInfo = keyInfoFromExprList(pParse, pE->x.pList, 0, 0);
4786 sqlite3VdbeAddOp4(v, OP_OpenEphemeral, pFunc->iDistinct, 0, 0,
4787 (char*)pKeyInfo, P4_KEYINFO);
4794 ** Invoke the OP_AggFinalize opcode for every aggregate function
4795 ** in the AggInfo structure.
4797 static void finalizeAggFunctions(Parse *pParse, AggInfo *pAggInfo){
4798 Vdbe *v = pParse->pVdbe;
4799 int i;
4800 struct AggInfo_func *pF;
4801 for(i=0, pF=pAggInfo->aFunc; i<pAggInfo->nFunc; i++, pF++){
4802 ExprList *pList = pF->pExpr->x.pList;
4803 assert( !ExprHasProperty(pF->pExpr, EP_xIsSelect) );
4804 sqlite3VdbeAddOp2(v, OP_AggFinal, pF->iMem, pList ? pList->nExpr : 0);
4805 sqlite3VdbeAppendP4(v, pF->pFunc, P4_FUNCDEF);
4810 ** Update the accumulator memory cells for an aggregate based on
4811 ** the current cursor position.
4813 static void updateAccumulator(Parse *pParse, AggInfo *pAggInfo){
4814 Vdbe *v = pParse->pVdbe;
4815 int i;
4816 int regHit = 0;
4817 int addrHitTest = 0;
4818 struct AggInfo_func *pF;
4819 struct AggInfo_col *pC;
4821 pAggInfo->directMode = 1;
4822 for(i=0, pF=pAggInfo->aFunc; i<pAggInfo->nFunc; i++, pF++){
4823 int nArg;
4824 int addrNext = 0;
4825 int regAgg;
4826 ExprList *pList = pF->pExpr->x.pList;
4827 assert( !ExprHasProperty(pF->pExpr, EP_xIsSelect) );
4828 if( pList ){
4829 nArg = pList->nExpr;
4830 regAgg = sqlite3GetTempRange(pParse, nArg);
4831 sqlite3ExprCodeExprList(pParse, pList, regAgg, 0, SQLITE_ECEL_DUP);
4832 }else{
4833 nArg = 0;
4834 regAgg = 0;
4836 if( pF->iDistinct>=0 ){
4837 addrNext = sqlite3VdbeMakeLabel(v);
4838 testcase( nArg==0 ); /* Error condition */
4839 testcase( nArg>1 ); /* Also an error */
4840 codeDistinct(pParse, pF->iDistinct, addrNext, 1, regAgg);
4842 if( pF->pFunc->funcFlags & SQLITE_FUNC_NEEDCOLL ){
4843 CollSeq *pColl = 0;
4844 struct ExprList_item *pItem;
4845 int j;
4846 assert( pList!=0 ); /* pList!=0 if pF->pFunc has NEEDCOLL */
4847 for(j=0, pItem=pList->a; !pColl && j<nArg; j++, pItem++){
4848 pColl = sqlite3ExprCollSeq(pParse, pItem->pExpr);
4850 if( !pColl ){
4851 pColl = pParse->db->pDfltColl;
4853 if( regHit==0 && pAggInfo->nAccumulator ) regHit = ++pParse->nMem;
4854 sqlite3VdbeAddOp4(v, OP_CollSeq, regHit, 0, 0, (char *)pColl, P4_COLLSEQ);
4856 sqlite3VdbeAddOp3(v, OP_AggStep0, 0, regAgg, pF->iMem);
4857 sqlite3VdbeAppendP4(v, pF->pFunc, P4_FUNCDEF);
4858 sqlite3VdbeChangeP5(v, (u8)nArg);
4859 sqlite3ExprCacheAffinityChange(pParse, regAgg, nArg);
4860 sqlite3ReleaseTempRange(pParse, regAgg, nArg);
4861 if( addrNext ){
4862 sqlite3VdbeResolveLabel(v, addrNext);
4863 sqlite3ExprCacheClear(pParse);
4867 /* Before populating the accumulator registers, clear the column cache.
4868 ** Otherwise, if any of the required column values are already present
4869 ** in registers, sqlite3ExprCode() may use OP_SCopy to copy the value
4870 ** to pC->iMem. But by the time the value is used, the original register
4871 ** may have been used, invalidating the underlying buffer holding the
4872 ** text or blob value. See ticket [883034dcb5].
4874 ** Another solution would be to change the OP_SCopy used to copy cached
4875 ** values to an OP_Copy.
4877 if( regHit ){
4878 addrHitTest = sqlite3VdbeAddOp1(v, OP_If, regHit); VdbeCoverage(v);
4880 sqlite3ExprCacheClear(pParse);
4881 for(i=0, pC=pAggInfo->aCol; i<pAggInfo->nAccumulator; i++, pC++){
4882 sqlite3ExprCode(pParse, pC->pExpr, pC->iMem);
4884 pAggInfo->directMode = 0;
4885 sqlite3ExprCacheClear(pParse);
4886 if( addrHitTest ){
4887 sqlite3VdbeJumpHere(v, addrHitTest);
4892 ** Add a single OP_Explain instruction to the VDBE to explain a simple
4893 ** count(*) query ("SELECT count(*) FROM pTab").
4895 #ifndef SQLITE_OMIT_EXPLAIN
4896 static void explainSimpleCount(
4897 Parse *pParse, /* Parse context */
4898 Table *pTab, /* Table being queried */
4899 Index *pIdx /* Index used to optimize scan, or NULL */
4901 if( pParse->explain==2 ){
4902 int bCover = (pIdx!=0 && (HasRowid(pTab) || !IsPrimaryKeyIndex(pIdx)));
4903 char *zEqp = sqlite3MPrintf(pParse->db, "SCAN TABLE %s%s%s",
4904 pTab->zName,
4905 bCover ? " USING COVERING INDEX " : "",
4906 bCover ? pIdx->zName : ""
4908 sqlite3VdbeAddOp4(
4909 pParse->pVdbe, OP_Explain, pParse->iSelectId, 0, 0, zEqp, P4_DYNAMIC
4913 #else
4914 # define explainSimpleCount(a,b,c)
4915 #endif
4918 ** Context object for havingToWhereExprCb().
4920 struct HavingToWhereCtx {
4921 Expr **ppWhere;
4922 ExprList *pGroupBy;
4926 ** sqlite3WalkExpr() callback used by havingToWhere().
4928 ** If the node passed to the callback is a TK_AND node, return
4929 ** WRC_Continue to tell sqlite3WalkExpr() to iterate through child nodes.
4931 ** Otherwise, return WRC_Prune. In this case, also check if the
4932 ** sub-expression matches the criteria for being moved to the WHERE
4933 ** clause. If so, add it to the WHERE clause and replace the sub-expression
4934 ** within the HAVING expression with a constant "1".
4936 static int havingToWhereExprCb(Walker *pWalker, Expr *pExpr){
4937 if( pExpr->op!=TK_AND ){
4938 struct HavingToWhereCtx *p = pWalker->u.pHavingCtx;
4939 if( sqlite3ExprIsConstantOrGroupBy(pWalker->pParse, pExpr, p->pGroupBy) ){
4940 sqlite3 *db = pWalker->pParse->db;
4941 Expr *pNew = sqlite3ExprAlloc(db, TK_INTEGER, &sqlite3IntTokens[1], 0);
4942 if( pNew ){
4943 Expr *pWhere = *(p->ppWhere);
4944 SWAP(Expr, *pNew, *pExpr);
4945 pNew = sqlite3ExprAnd(db, pWhere, pNew);
4946 *(p->ppWhere) = pNew;
4949 return WRC_Prune;
4951 return WRC_Continue;
4955 ** Transfer eligible terms from the HAVING clause of a query, which is
4956 ** processed after grouping, to the WHERE clause, which is processed before
4957 ** grouping. For example, the query:
4959 ** SELECT * FROM <tables> WHERE a=? GROUP BY b HAVING b=? AND c=?
4961 ** can be rewritten as:
4963 ** SELECT * FROM <tables> WHERE a=? AND b=? GROUP BY b HAVING c=?
4965 ** A term of the HAVING expression is eligible for transfer if it consists
4966 ** entirely of constants and expressions that are also GROUP BY terms that
4967 ** use the "BINARY" collation sequence.
4969 static void havingToWhere(
4970 Parse *pParse,
4971 ExprList *pGroupBy,
4972 Expr *pHaving,
4973 Expr **ppWhere
4975 struct HavingToWhereCtx sCtx;
4976 Walker sWalker;
4978 sCtx.ppWhere = ppWhere;
4979 sCtx.pGroupBy = pGroupBy;
4981 memset(&sWalker, 0, sizeof(sWalker));
4982 sWalker.pParse = pParse;
4983 sWalker.xExprCallback = havingToWhereExprCb;
4984 sWalker.u.pHavingCtx = &sCtx;
4985 sqlite3WalkExpr(&sWalker, pHaving);
4989 ** Check to see if the pThis entry of pTabList is a self-join of a prior view.
4990 ** If it is, then return the SrcList_item for the prior view. If it is not,
4991 ** then return 0.
4993 static struct SrcList_item *isSelfJoinView(
4994 SrcList *pTabList, /* Search for self-joins in this FROM clause */
4995 struct SrcList_item *pThis /* Search for prior reference to this subquery */
4997 struct SrcList_item *pItem;
4998 for(pItem = pTabList->a; pItem<pThis; pItem++){
4999 if( pItem->pSelect==0 ) continue;
5000 if( pItem->fg.viaCoroutine ) continue;
5001 if( pItem->zName==0 ) continue;
5002 if( sqlite3_stricmp(pItem->zDatabase, pThis->zDatabase)!=0 ) continue;
5003 if( sqlite3_stricmp(pItem->zName, pThis->zName)!=0 ) continue;
5004 if( sqlite3ExprCompare(0,
5005 pThis->pSelect->pWhere, pItem->pSelect->pWhere, -1)
5007 /* The view was modified by some other optimization such as
5008 ** pushDownWhereTerms() */
5009 continue;
5011 return pItem;
5013 return 0;
5016 #ifdef SQLITE_COUNTOFVIEW_OPTIMIZATION
5018 ** Attempt to transform a query of the form
5020 ** SELECT count(*) FROM (SELECT x FROM t1 UNION ALL SELECT y FROM t2)
5022 ** Into this:
5024 ** SELECT (SELECT count(*) FROM t1)+(SELECT count(*) FROM t2)
5026 ** The transformation only works if all of the following are true:
5028 ** * The subquery is a UNION ALL of two or more terms
5029 ** * There is no WHERE or GROUP BY or HAVING clauses on the subqueries
5030 ** * The outer query is a simple count(*)
5032 ** Return TRUE if the optimization is undertaken.
5034 static int countOfViewOptimization(Parse *pParse, Select *p){
5035 Select *pSub, *pPrior;
5036 Expr *pExpr;
5037 Expr *pCount;
5038 sqlite3 *db;
5039 if( (p->selFlags & SF_Aggregate)==0 ) return 0; /* This is an aggregate */
5040 if( p->pEList->nExpr!=1 ) return 0; /* Single result column */
5041 pExpr = p->pEList->a[0].pExpr;
5042 if( pExpr->op!=TK_AGG_FUNCTION ) return 0; /* Result is an aggregate */
5043 if( sqlite3_stricmp(pExpr->u.zToken,"count") ) return 0; /* Is count() */
5044 if( pExpr->x.pList!=0 ) return 0; /* Must be count(*) */
5045 if( p->pSrc->nSrc!=1 ) return 0; /* One table in FROM */
5046 pSub = p->pSrc->a[0].pSelect;
5047 if( pSub==0 ) return 0; /* The FROM is a subquery */
5048 if( pSub->pPrior==0 ) return 0; /* Must be a compound ry */
5050 if( pSub->op!=TK_ALL && pSub->pPrior ) return 0; /* Must be UNION ALL */
5051 if( pSub->pWhere ) return 0; /* No WHERE clause */
5052 if( pSub->selFlags & SF_Aggregate ) return 0; /* Not an aggregate */
5053 pSub = pSub->pPrior; /* Repeat over compound */
5054 }while( pSub );
5056 /* If we reach this point then it is OK to perform the transformation */
5058 db = pParse->db;
5059 pCount = pExpr;
5060 pExpr = 0;
5061 pSub = p->pSrc->a[0].pSelect;
5062 p->pSrc->a[0].pSelect = 0;
5063 sqlite3SrcListDelete(db, p->pSrc);
5064 p->pSrc = sqlite3DbMallocZero(pParse->db, sizeof(*p->pSrc));
5065 while( pSub ){
5066 Expr *pTerm;
5067 pPrior = pSub->pPrior;
5068 pSub->pPrior = 0;
5069 pSub->pNext = 0;
5070 pSub->selFlags |= SF_Aggregate;
5071 pSub->selFlags &= ~SF_Compound;
5072 pSub->nSelectRow = 0;
5073 sqlite3ExprListDelete(db, pSub->pEList);
5074 pTerm = pPrior ? sqlite3ExprDup(db, pCount, 0) : pCount;
5075 pSub->pEList = sqlite3ExprListAppend(pParse, 0, pTerm);
5076 pTerm = sqlite3PExpr(pParse, TK_SELECT, 0, 0);
5077 sqlite3PExprAddSelect(pParse, pTerm, pSub);
5078 if( pExpr==0 ){
5079 pExpr = pTerm;
5080 }else{
5081 pExpr = sqlite3PExpr(pParse, TK_PLUS, pTerm, pExpr);
5083 pSub = pPrior;
5085 p->pEList->a[0].pExpr = pExpr;
5086 p->selFlags &= ~SF_Aggregate;
5088 #if SELECTTRACE_ENABLED
5089 if( sqlite3SelectTrace & 0x400 ){
5090 SELECTTRACE(0x400,pParse,p,("After count-of-view optimization:\n"));
5091 sqlite3TreeViewSelect(0, p, 0);
5093 #endif
5094 return 1;
5096 #endif /* SQLITE_COUNTOFVIEW_OPTIMIZATION */
5099 ** Generate code for the SELECT statement given in the p argument.
5101 ** The results are returned according to the SelectDest structure.
5102 ** See comments in sqliteInt.h for further information.
5104 ** This routine returns the number of errors. If any errors are
5105 ** encountered, then an appropriate error message is left in
5106 ** pParse->zErrMsg.
5108 ** This routine does NOT free the Select structure passed in. The
5109 ** calling function needs to do that.
5111 int sqlite3Select(
5112 Parse *pParse, /* The parser context */
5113 Select *p, /* The SELECT statement being coded. */
5114 SelectDest *pDest /* What to do with the query results */
5116 int i, j; /* Loop counters */
5117 WhereInfo *pWInfo; /* Return from sqlite3WhereBegin() */
5118 Vdbe *v; /* The virtual machine under construction */
5119 int isAgg; /* True for select lists like "count(*)" */
5120 ExprList *pEList = 0; /* List of columns to extract. */
5121 SrcList *pTabList; /* List of tables to select from */
5122 Expr *pWhere; /* The WHERE clause. May be NULL */
5123 ExprList *pGroupBy; /* The GROUP BY clause. May be NULL */
5124 Expr *pHaving; /* The HAVING clause. May be NULL */
5125 int rc = 1; /* Value to return from this function */
5126 DistinctCtx sDistinct; /* Info on how to code the DISTINCT keyword */
5127 SortCtx sSort; /* Info on how to code the ORDER BY clause */
5128 AggInfo sAggInfo; /* Information used by aggregate queries */
5129 int iEnd; /* Address of the end of the query */
5130 sqlite3 *db; /* The database connection */
5132 #ifndef SQLITE_OMIT_EXPLAIN
5133 int iRestoreSelectId = pParse->iSelectId;
5134 pParse->iSelectId = pParse->iNextSelectId++;
5135 #endif
5137 db = pParse->db;
5138 if( p==0 || db->mallocFailed || pParse->nErr ){
5139 return 1;
5141 if( sqlite3AuthCheck(pParse, SQLITE_SELECT, 0, 0, 0) ) return 1;
5142 memset(&sAggInfo, 0, sizeof(sAggInfo));
5143 #if SELECTTRACE_ENABLED
5144 pParse->nSelectIndent++;
5145 SELECTTRACE(1,pParse,p, ("begin processing:\n"));
5146 if( sqlite3SelectTrace & 0x100 ){
5147 sqlite3TreeViewSelect(0, p, 0);
5149 #endif
5151 assert( p->pOrderBy==0 || pDest->eDest!=SRT_DistFifo );
5152 assert( p->pOrderBy==0 || pDest->eDest!=SRT_Fifo );
5153 assert( p->pOrderBy==0 || pDest->eDest!=SRT_DistQueue );
5154 assert( p->pOrderBy==0 || pDest->eDest!=SRT_Queue );
5155 if( IgnorableOrderby(pDest) ){
5156 assert(pDest->eDest==SRT_Exists || pDest->eDest==SRT_Union ||
5157 pDest->eDest==SRT_Except || pDest->eDest==SRT_Discard ||
5158 pDest->eDest==SRT_Queue || pDest->eDest==SRT_DistFifo ||
5159 pDest->eDest==SRT_DistQueue || pDest->eDest==SRT_Fifo);
5160 /* If ORDER BY makes no difference in the output then neither does
5161 ** DISTINCT so it can be removed too. */
5162 sqlite3ExprListDelete(db, p->pOrderBy);
5163 p->pOrderBy = 0;
5164 p->selFlags &= ~SF_Distinct;
5166 sqlite3SelectPrep(pParse, p, 0);
5167 memset(&sSort, 0, sizeof(sSort));
5168 sSort.pOrderBy = p->pOrderBy;
5169 pTabList = p->pSrc;
5170 if( pParse->nErr || db->mallocFailed ){
5171 goto select_end;
5173 assert( p->pEList!=0 );
5174 isAgg = (p->selFlags & SF_Aggregate)!=0;
5175 #if SELECTTRACE_ENABLED
5176 if( sqlite3SelectTrace & 0x100 ){
5177 SELECTTRACE(0x100,pParse,p, ("after name resolution:\n"));
5178 sqlite3TreeViewSelect(0, p, 0);
5180 #endif
5182 /* Get a pointer the VDBE under construction, allocating a new VDBE if one
5183 ** does not already exist */
5184 v = sqlite3GetVdbe(pParse);
5185 if( v==0 ) goto select_end;
5186 if( pDest->eDest==SRT_Output ){
5187 generateColumnNames(pParse, p);
5190 /* Try to flatten subqueries in the FROM clause up into the main query
5192 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
5193 for(i=0; !p->pPrior && i<pTabList->nSrc; i++){
5194 struct SrcList_item *pItem = &pTabList->a[i];
5195 Select *pSub = pItem->pSelect;
5196 int isAggSub;
5197 Table *pTab = pItem->pTab;
5198 if( pSub==0 ) continue;
5200 /* Catch mismatch in the declared columns of a view and the number of
5201 ** columns in the SELECT on the RHS */
5202 if( pTab->nCol!=pSub->pEList->nExpr ){
5203 sqlite3ErrorMsg(pParse, "expected %d columns for '%s' but got %d",
5204 pTab->nCol, pTab->zName, pSub->pEList->nExpr);
5205 goto select_end;
5208 isAggSub = (pSub->selFlags & SF_Aggregate)!=0;
5209 if( flattenSubquery(pParse, p, i, isAgg, isAggSub) ){
5210 /* This subquery can be absorbed into its parent. */
5211 if( isAggSub ){
5212 isAgg = 1;
5213 p->selFlags |= SF_Aggregate;
5215 i = -1;
5217 pTabList = p->pSrc;
5218 if( db->mallocFailed ) goto select_end;
5219 if( !IgnorableOrderby(pDest) ){
5220 sSort.pOrderBy = p->pOrderBy;
5223 #endif
5225 #ifndef SQLITE_OMIT_COMPOUND_SELECT
5226 /* Handle compound SELECT statements using the separate multiSelect()
5227 ** procedure.
5229 if( p->pPrior ){
5230 rc = multiSelect(pParse, p, pDest);
5231 explainSetInteger(pParse->iSelectId, iRestoreSelectId);
5232 #if SELECTTRACE_ENABLED
5233 SELECTTRACE(1,pParse,p,("end compound-select processing\n"));
5234 pParse->nSelectIndent--;
5235 #endif
5236 return rc;
5238 #endif
5240 /* For each term in the FROM clause, do two things:
5241 ** (1) Authorized unreferenced tables
5242 ** (2) Generate code for all sub-queries
5244 for(i=0; i<pTabList->nSrc; i++){
5245 struct SrcList_item *pItem = &pTabList->a[i];
5246 SelectDest dest;
5247 Select *pSub;
5249 /* Issue SQLITE_READ authorizations with a fake column name for any
5250 ** tables that are referenced but from which no values are extracted.
5251 ** Examples of where these kinds of null SQLITE_READ authorizations
5252 ** would occur:
5254 ** SELECT count(*) FROM t1; -- SQLITE_READ t1.""
5255 ** SELECT t1.* FROM t1, t2; -- SQLITE_READ t2.""
5257 ** The fake column name is an empty string. It is possible for a table to
5258 ** have a column named by the empty string, in which case there is no way to
5259 ** distinguish between an unreferenced table and an actual reference to the
5260 ** "" column. The original design was for the fake column name to be a NULL,
5261 ** which would be unambiguous. But legacy authorization callbacks might
5262 ** assume the column name is non-NULL and segfault. The use of an empty
5263 ** string for the fake column name seems safer.
5265 if( pItem->colUsed==0 ){
5266 sqlite3AuthCheck(pParse, SQLITE_READ, pItem->zName, "", pItem->zDatabase);
5269 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
5270 /* Generate code for all sub-queries in the FROM clause
5272 pSub = pItem->pSelect;
5273 if( pSub==0 ) continue;
5275 /* Sometimes the code for a subquery will be generated more than
5276 ** once, if the subquery is part of the WHERE clause in a LEFT JOIN,
5277 ** for example. In that case, do not regenerate the code to manifest
5278 ** a view or the co-routine to implement a view. The first instance
5279 ** is sufficient, though the subroutine to manifest the view does need
5280 ** to be invoked again. */
5281 if( pItem->addrFillSub ){
5282 if( pItem->fg.viaCoroutine==0 ){
5283 /* The subroutine that manifests the view might be a one-time routine,
5284 ** or it might need to be rerun on each iteration because it
5285 ** encodes a correlated subquery. */
5286 testcase( sqlite3VdbeGetOp(v, pItem->addrFillSub)->opcode==OP_Once );
5287 sqlite3VdbeAddOp2(v, OP_Gosub, pItem->regReturn, pItem->addrFillSub);
5289 continue;
5292 /* Increment Parse.nHeight by the height of the largest expression
5293 ** tree referred to by this, the parent select. The child select
5294 ** may contain expression trees of at most
5295 ** (SQLITE_MAX_EXPR_DEPTH-Parse.nHeight) height. This is a bit
5296 ** more conservative than necessary, but much easier than enforcing
5297 ** an exact limit.
5299 pParse->nHeight += sqlite3SelectExprHeight(p);
5301 /* Make copies of constant WHERE-clause terms in the outer query down
5302 ** inside the subquery. This can help the subquery to run more efficiently.
5304 if( (pItem->fg.jointype & JT_OUTER)==0
5305 && pushDownWhereTerms(pParse, pSub, p->pWhere, pItem->iCursor)
5307 #if SELECTTRACE_ENABLED
5308 if( sqlite3SelectTrace & 0x100 ){
5309 SELECTTRACE(0x100,pParse,p,("After WHERE-clause push-down:\n"));
5310 sqlite3TreeViewSelect(0, p, 0);
5312 #endif
5315 /* Generate code to implement the subquery
5317 ** The subquery is implemented as a co-routine if all of these are true:
5318 ** (1) The subquery is guaranteed to be the outer loop (so that it
5319 ** does not need to be computed more than once)
5320 ** (2) REMOVED (2017-09-28): The ALL keyword after SELECT is omitted.
5321 ** (3) Co-routines are not disabled using sqlite3_test_control()
5322 ** with SQLITE_TESTCTRL_OPTIMIZATIONS.
5324 ** TODO: Are there other reasons beside (1) to use a co-routine
5325 ** implementation?
5327 if( i==0
5328 && (pTabList->nSrc==1
5329 || (pTabList->a[1].fg.jointype&(JT_LEFT|JT_CROSS))!=0) /* (1) */
5330 /*** constraint removed: && (p->selFlags & SF_All)==0 (2) */
5331 && OptimizationEnabled(db, SQLITE_SubqCoroutine) /* (3) */
5333 /* Implement a co-routine that will return a single row of the result
5334 ** set on each invocation.
5336 int addrTop = sqlite3VdbeCurrentAddr(v)+1;
5337 pItem->regReturn = ++pParse->nMem;
5338 sqlite3VdbeAddOp3(v, OP_InitCoroutine, pItem->regReturn, 0, addrTop);
5339 VdbeComment((v, "%s", pItem->pTab->zName));
5340 pItem->addrFillSub = addrTop;
5341 sqlite3SelectDestInit(&dest, SRT_Coroutine, pItem->regReturn);
5342 explainSetInteger(pItem->iSelectId, (u8)pParse->iNextSelectId);
5343 sqlite3Select(pParse, pSub, &dest);
5344 pItem->pTab->nRowLogEst = pSub->nSelectRow;
5345 pItem->fg.viaCoroutine = 1;
5346 pItem->regResult = dest.iSdst;
5347 sqlite3VdbeEndCoroutine(v, pItem->regReturn);
5348 sqlite3VdbeJumpHere(v, addrTop-1);
5349 sqlite3ClearTempRegCache(pParse);
5350 }else{
5351 /* Generate a subroutine that will fill an ephemeral table with
5352 ** the content of this subquery. pItem->addrFillSub will point
5353 ** to the address of the generated subroutine. pItem->regReturn
5354 ** is a register allocated to hold the subroutine return address
5356 int topAddr;
5357 int onceAddr = 0;
5358 int retAddr;
5359 struct SrcList_item *pPrior;
5361 assert( pItem->addrFillSub==0 );
5362 pItem->regReturn = ++pParse->nMem;
5363 topAddr = sqlite3VdbeAddOp2(v, OP_Integer, 0, pItem->regReturn);
5364 pItem->addrFillSub = topAddr+1;
5365 if( pItem->fg.isCorrelated==0 ){
5366 /* If the subquery is not correlated and if we are not inside of
5367 ** a trigger, then we only need to compute the value of the subquery
5368 ** once. */
5369 onceAddr = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v);
5370 VdbeComment((v, "materialize \"%s\"", pItem->pTab->zName));
5371 }else{
5372 VdbeNoopComment((v, "materialize \"%s\"", pItem->pTab->zName));
5374 pPrior = isSelfJoinView(pTabList, pItem);
5375 if( pPrior ){
5376 sqlite3VdbeAddOp2(v, OP_OpenDup, pItem->iCursor, pPrior->iCursor);
5377 explainSetInteger(pItem->iSelectId, pPrior->iSelectId);
5378 assert( pPrior->pSelect!=0 );
5379 pSub->nSelectRow = pPrior->pSelect->nSelectRow;
5380 }else{
5381 sqlite3SelectDestInit(&dest, SRT_EphemTab, pItem->iCursor);
5382 explainSetInteger(pItem->iSelectId, (u8)pParse->iNextSelectId);
5383 sqlite3Select(pParse, pSub, &dest);
5385 pItem->pTab->nRowLogEst = pSub->nSelectRow;
5386 if( onceAddr ) sqlite3VdbeJumpHere(v, onceAddr);
5387 retAddr = sqlite3VdbeAddOp1(v, OP_Return, pItem->regReturn);
5388 VdbeComment((v, "end %s", pItem->pTab->zName));
5389 sqlite3VdbeChangeP1(v, topAddr, retAddr);
5390 sqlite3ClearTempRegCache(pParse);
5392 if( db->mallocFailed ) goto select_end;
5393 pParse->nHeight -= sqlite3SelectExprHeight(p);
5394 #endif
5397 /* Various elements of the SELECT copied into local variables for
5398 ** convenience */
5399 pEList = p->pEList;
5400 pWhere = p->pWhere;
5401 pGroupBy = p->pGroupBy;
5402 pHaving = p->pHaving;
5403 sDistinct.isTnct = (p->selFlags & SF_Distinct)!=0;
5405 #if SELECTTRACE_ENABLED
5406 if( sqlite3SelectTrace & 0x400 ){
5407 SELECTTRACE(0x400,pParse,p,("After all FROM-clause analysis:\n"));
5408 sqlite3TreeViewSelect(0, p, 0);
5410 #endif
5412 #ifdef SQLITE_COUNTOFVIEW_OPTIMIZATION
5413 if( OptimizationEnabled(db, SQLITE_QueryFlattener|SQLITE_CountOfView)
5414 && countOfViewOptimization(pParse, p)
5416 if( db->mallocFailed ) goto select_end;
5417 pEList = p->pEList;
5418 pTabList = p->pSrc;
5420 #endif
5422 /* If the query is DISTINCT with an ORDER BY but is not an aggregate, and
5423 ** if the select-list is the same as the ORDER BY list, then this query
5424 ** can be rewritten as a GROUP BY. In other words, this:
5426 ** SELECT DISTINCT xyz FROM ... ORDER BY xyz
5428 ** is transformed to:
5430 ** SELECT xyz FROM ... GROUP BY xyz ORDER BY xyz
5432 ** The second form is preferred as a single index (or temp-table) may be
5433 ** used for both the ORDER BY and DISTINCT processing. As originally
5434 ** written the query must use a temp-table for at least one of the ORDER
5435 ** BY and DISTINCT, and an index or separate temp-table for the other.
5437 if( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct
5438 && sqlite3ExprListCompare(sSort.pOrderBy, pEList, -1)==0
5440 p->selFlags &= ~SF_Distinct;
5441 pGroupBy = p->pGroupBy = sqlite3ExprListDup(db, pEList, 0);
5442 /* Notice that even thought SF_Distinct has been cleared from p->selFlags,
5443 ** the sDistinct.isTnct is still set. Hence, isTnct represents the
5444 ** original setting of the SF_Distinct flag, not the current setting */
5445 assert( sDistinct.isTnct );
5447 #if SELECTTRACE_ENABLED
5448 if( sqlite3SelectTrace & 0x400 ){
5449 SELECTTRACE(0x400,pParse,p,("Transform DISTINCT into GROUP BY:\n"));
5450 sqlite3TreeViewSelect(0, p, 0);
5452 #endif
5455 /* If there is an ORDER BY clause, then create an ephemeral index to
5456 ** do the sorting. But this sorting ephemeral index might end up
5457 ** being unused if the data can be extracted in pre-sorted order.
5458 ** If that is the case, then the OP_OpenEphemeral instruction will be
5459 ** changed to an OP_Noop once we figure out that the sorting index is
5460 ** not needed. The sSort.addrSortIndex variable is used to facilitate
5461 ** that change.
5463 if( sSort.pOrderBy ){
5464 KeyInfo *pKeyInfo;
5465 pKeyInfo = keyInfoFromExprList(pParse, sSort.pOrderBy, 0, pEList->nExpr);
5466 sSort.iECursor = pParse->nTab++;
5467 sSort.addrSortIndex =
5468 sqlite3VdbeAddOp4(v, OP_OpenEphemeral,
5469 sSort.iECursor, sSort.pOrderBy->nExpr+1+pEList->nExpr, 0,
5470 (char*)pKeyInfo, P4_KEYINFO
5472 }else{
5473 sSort.addrSortIndex = -1;
5476 /* If the output is destined for a temporary table, open that table.
5478 if( pDest->eDest==SRT_EphemTab ){
5479 sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pDest->iSDParm, pEList->nExpr);
5482 /* Set the limiter.
5484 iEnd = sqlite3VdbeMakeLabel(v);
5485 if( (p->selFlags & SF_FixedLimit)==0 ){
5486 p->nSelectRow = 320; /* 4 billion rows */
5488 computeLimitRegisters(pParse, p, iEnd);
5489 if( p->iLimit==0 && sSort.addrSortIndex>=0 ){
5490 sqlite3VdbeChangeOpcode(v, sSort.addrSortIndex, OP_SorterOpen);
5491 sSort.sortFlags |= SORTFLAG_UseSorter;
5494 /* Open an ephemeral index to use for the distinct set.
5496 if( p->selFlags & SF_Distinct ){
5497 sDistinct.tabTnct = pParse->nTab++;
5498 sDistinct.addrTnct = sqlite3VdbeAddOp4(v, OP_OpenEphemeral,
5499 sDistinct.tabTnct, 0, 0,
5500 (char*)keyInfoFromExprList(pParse, p->pEList,0,0),
5501 P4_KEYINFO);
5502 sqlite3VdbeChangeP5(v, BTREE_UNORDERED);
5503 sDistinct.eTnctType = WHERE_DISTINCT_UNORDERED;
5504 }else{
5505 sDistinct.eTnctType = WHERE_DISTINCT_NOOP;
5508 if( !isAgg && pGroupBy==0 ){
5509 /* No aggregate functions and no GROUP BY clause */
5510 u16 wctrlFlags = (sDistinct.isTnct ? WHERE_WANT_DISTINCT : 0);
5511 assert( WHERE_USE_LIMIT==SF_FixedLimit );
5512 wctrlFlags |= p->selFlags & SF_FixedLimit;
5514 /* Begin the database scan. */
5515 pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, sSort.pOrderBy,
5516 p->pEList, wctrlFlags, p->nSelectRow);
5517 if( pWInfo==0 ) goto select_end;
5518 if( sqlite3WhereOutputRowCount(pWInfo) < p->nSelectRow ){
5519 p->nSelectRow = sqlite3WhereOutputRowCount(pWInfo);
5521 if( sDistinct.isTnct && sqlite3WhereIsDistinct(pWInfo) ){
5522 sDistinct.eTnctType = sqlite3WhereIsDistinct(pWInfo);
5524 if( sSort.pOrderBy ){
5525 sSort.nOBSat = sqlite3WhereIsOrdered(pWInfo);
5526 sSort.bOrderedInnerLoop = sqlite3WhereOrderedInnerLoop(pWInfo);
5527 if( sSort.nOBSat==sSort.pOrderBy->nExpr ){
5528 sSort.pOrderBy = 0;
5532 /* If sorting index that was created by a prior OP_OpenEphemeral
5533 ** instruction ended up not being needed, then change the OP_OpenEphemeral
5534 ** into an OP_Noop.
5536 if( sSort.addrSortIndex>=0 && sSort.pOrderBy==0 ){
5537 sqlite3VdbeChangeToNoop(v, sSort.addrSortIndex);
5540 /* Use the standard inner loop. */
5541 assert( p->pEList==pEList );
5542 selectInnerLoop(pParse, p, -1, &sSort, &sDistinct, pDest,
5543 sqlite3WhereContinueLabel(pWInfo),
5544 sqlite3WhereBreakLabel(pWInfo));
5546 /* End the database scan loop.
5548 sqlite3WhereEnd(pWInfo);
5549 }else{
5550 /* This case when there exist aggregate functions or a GROUP BY clause
5551 ** or both */
5552 NameContext sNC; /* Name context for processing aggregate information */
5553 int iAMem; /* First Mem address for storing current GROUP BY */
5554 int iBMem; /* First Mem address for previous GROUP BY */
5555 int iUseFlag; /* Mem address holding flag indicating that at least
5556 ** one row of the input to the aggregator has been
5557 ** processed */
5558 int iAbortFlag; /* Mem address which causes query abort if positive */
5559 int groupBySort; /* Rows come from source in GROUP BY order */
5560 int addrEnd; /* End of processing for this SELECT */
5561 int sortPTab = 0; /* Pseudotable used to decode sorting results */
5562 int sortOut = 0; /* Output register from the sorter */
5563 int orderByGrp = 0; /* True if the GROUP BY and ORDER BY are the same */
5565 /* Remove any and all aliases between the result set and the
5566 ** GROUP BY clause.
5568 if( pGroupBy ){
5569 int k; /* Loop counter */
5570 struct ExprList_item *pItem; /* For looping over expression in a list */
5572 for(k=p->pEList->nExpr, pItem=p->pEList->a; k>0; k--, pItem++){
5573 pItem->u.x.iAlias = 0;
5575 for(k=pGroupBy->nExpr, pItem=pGroupBy->a; k>0; k--, pItem++){
5576 pItem->u.x.iAlias = 0;
5578 assert( 66==sqlite3LogEst(100) );
5579 if( p->nSelectRow>66 ) p->nSelectRow = 66;
5580 }else{
5581 assert( 0==sqlite3LogEst(1) );
5582 p->nSelectRow = 0;
5585 /* If there is both a GROUP BY and an ORDER BY clause and they are
5586 ** identical, then it may be possible to disable the ORDER BY clause
5587 ** on the grounds that the GROUP BY will cause elements to come out
5588 ** in the correct order. It also may not - the GROUP BY might use a
5589 ** database index that causes rows to be grouped together as required
5590 ** but not actually sorted. Either way, record the fact that the
5591 ** ORDER BY and GROUP BY clauses are the same by setting the orderByGrp
5592 ** variable. */
5593 if( sqlite3ExprListCompare(pGroupBy, sSort.pOrderBy, -1)==0 ){
5594 orderByGrp = 1;
5597 /* Create a label to jump to when we want to abort the query */
5598 addrEnd = sqlite3VdbeMakeLabel(v);
5600 /* Convert TK_COLUMN nodes into TK_AGG_COLUMN and make entries in
5601 ** sAggInfo for all TK_AGG_FUNCTION nodes in expressions of the
5602 ** SELECT statement.
5604 memset(&sNC, 0, sizeof(sNC));
5605 sNC.pParse = pParse;
5606 sNC.pSrcList = pTabList;
5607 sNC.pAggInfo = &sAggInfo;
5608 sAggInfo.mnReg = pParse->nMem+1;
5609 sAggInfo.nSortingColumn = pGroupBy ? pGroupBy->nExpr : 0;
5610 sAggInfo.pGroupBy = pGroupBy;
5611 sqlite3ExprAnalyzeAggList(&sNC, pEList);
5612 sqlite3ExprAnalyzeAggList(&sNC, sSort.pOrderBy);
5613 if( pHaving ){
5614 if( pGroupBy ){
5615 assert( pWhere==p->pWhere );
5616 havingToWhere(pParse, pGroupBy, pHaving, &p->pWhere);
5617 pWhere = p->pWhere;
5619 sqlite3ExprAnalyzeAggregates(&sNC, pHaving);
5621 sAggInfo.nAccumulator = sAggInfo.nColumn;
5622 for(i=0; i<sAggInfo.nFunc; i++){
5623 assert( !ExprHasProperty(sAggInfo.aFunc[i].pExpr, EP_xIsSelect) );
5624 sNC.ncFlags |= NC_InAggFunc;
5625 sqlite3ExprAnalyzeAggList(&sNC, sAggInfo.aFunc[i].pExpr->x.pList);
5626 sNC.ncFlags &= ~NC_InAggFunc;
5628 sAggInfo.mxReg = pParse->nMem;
5629 if( db->mallocFailed ) goto select_end;
5631 /* Processing for aggregates with GROUP BY is very different and
5632 ** much more complex than aggregates without a GROUP BY.
5634 if( pGroupBy ){
5635 KeyInfo *pKeyInfo; /* Keying information for the group by clause */
5636 int addr1; /* A-vs-B comparision jump */
5637 int addrOutputRow; /* Start of subroutine that outputs a result row */
5638 int regOutputRow; /* Return address register for output subroutine */
5639 int addrSetAbort; /* Set the abort flag and return */
5640 int addrTopOfLoop; /* Top of the input loop */
5641 int addrSortingIdx; /* The OP_OpenEphemeral for the sorting index */
5642 int addrReset; /* Subroutine for resetting the accumulator */
5643 int regReset; /* Return address register for reset subroutine */
5645 /* If there is a GROUP BY clause we might need a sorting index to
5646 ** implement it. Allocate that sorting index now. If it turns out
5647 ** that we do not need it after all, the OP_SorterOpen instruction
5648 ** will be converted into a Noop.
5650 sAggInfo.sortingIdx = pParse->nTab++;
5651 pKeyInfo = keyInfoFromExprList(pParse, pGroupBy, 0, sAggInfo.nColumn);
5652 addrSortingIdx = sqlite3VdbeAddOp4(v, OP_SorterOpen,
5653 sAggInfo.sortingIdx, sAggInfo.nSortingColumn,
5654 0, (char*)pKeyInfo, P4_KEYINFO);
5656 /* Initialize memory locations used by GROUP BY aggregate processing
5658 iUseFlag = ++pParse->nMem;
5659 iAbortFlag = ++pParse->nMem;
5660 regOutputRow = ++pParse->nMem;
5661 addrOutputRow = sqlite3VdbeMakeLabel(v);
5662 regReset = ++pParse->nMem;
5663 addrReset = sqlite3VdbeMakeLabel(v);
5664 iAMem = pParse->nMem + 1;
5665 pParse->nMem += pGroupBy->nExpr;
5666 iBMem = pParse->nMem + 1;
5667 pParse->nMem += pGroupBy->nExpr;
5668 sqlite3VdbeAddOp2(v, OP_Integer, 0, iAbortFlag);
5669 VdbeComment((v, "clear abort flag"));
5670 sqlite3VdbeAddOp2(v, OP_Integer, 0, iUseFlag);
5671 VdbeComment((v, "indicate accumulator empty"));
5672 sqlite3VdbeAddOp3(v, OP_Null, 0, iAMem, iAMem+pGroupBy->nExpr-1);
5674 /* Begin a loop that will extract all source rows in GROUP BY order.
5675 ** This might involve two separate loops with an OP_Sort in between, or
5676 ** it might be a single loop that uses an index to extract information
5677 ** in the right order to begin with.
5679 sqlite3VdbeAddOp2(v, OP_Gosub, regReset, addrReset);
5680 pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, pGroupBy, 0,
5681 WHERE_GROUPBY | (orderByGrp ? WHERE_SORTBYGROUP : 0), 0
5683 if( pWInfo==0 ) goto select_end;
5684 if( sqlite3WhereIsOrdered(pWInfo)==pGroupBy->nExpr ){
5685 /* The optimizer is able to deliver rows in group by order so
5686 ** we do not have to sort. The OP_OpenEphemeral table will be
5687 ** cancelled later because we still need to use the pKeyInfo
5689 groupBySort = 0;
5690 }else{
5691 /* Rows are coming out in undetermined order. We have to push
5692 ** each row into a sorting index, terminate the first loop,
5693 ** then loop over the sorting index in order to get the output
5694 ** in sorted order
5696 int regBase;
5697 int regRecord;
5698 int nCol;
5699 int nGroupBy;
5701 explainTempTable(pParse,
5702 (sDistinct.isTnct && (p->selFlags&SF_Distinct)==0) ?
5703 "DISTINCT" : "GROUP BY");
5705 groupBySort = 1;
5706 nGroupBy = pGroupBy->nExpr;
5707 nCol = nGroupBy;
5708 j = nGroupBy;
5709 for(i=0; i<sAggInfo.nColumn; i++){
5710 if( sAggInfo.aCol[i].iSorterColumn>=j ){
5711 nCol++;
5712 j++;
5715 regBase = sqlite3GetTempRange(pParse, nCol);
5716 sqlite3ExprCacheClear(pParse);
5717 sqlite3ExprCodeExprList(pParse, pGroupBy, regBase, 0, 0);
5718 j = nGroupBy;
5719 for(i=0; i<sAggInfo.nColumn; i++){
5720 struct AggInfo_col *pCol = &sAggInfo.aCol[i];
5721 if( pCol->iSorterColumn>=j ){
5722 int r1 = j + regBase;
5723 sqlite3ExprCodeGetColumnToReg(pParse,
5724 pCol->pTab, pCol->iColumn, pCol->iTable, r1);
5725 j++;
5728 regRecord = sqlite3GetTempReg(pParse);
5729 sqlite3VdbeAddOp3(v, OP_MakeRecord, regBase, nCol, regRecord);
5730 sqlite3VdbeAddOp2(v, OP_SorterInsert, sAggInfo.sortingIdx, regRecord);
5731 sqlite3ReleaseTempReg(pParse, regRecord);
5732 sqlite3ReleaseTempRange(pParse, regBase, nCol);
5733 sqlite3WhereEnd(pWInfo);
5734 sAggInfo.sortingIdxPTab = sortPTab = pParse->nTab++;
5735 sortOut = sqlite3GetTempReg(pParse);
5736 sqlite3VdbeAddOp3(v, OP_OpenPseudo, sortPTab, sortOut, nCol);
5737 sqlite3VdbeAddOp2(v, OP_SorterSort, sAggInfo.sortingIdx, addrEnd);
5738 VdbeComment((v, "GROUP BY sort")); VdbeCoverage(v);
5739 sAggInfo.useSortingIdx = 1;
5740 sqlite3ExprCacheClear(pParse);
5744 /* If the index or temporary table used by the GROUP BY sort
5745 ** will naturally deliver rows in the order required by the ORDER BY
5746 ** clause, cancel the ephemeral table open coded earlier.
5748 ** This is an optimization - the correct answer should result regardless.
5749 ** Use the SQLITE_GroupByOrder flag with SQLITE_TESTCTRL_OPTIMIZER to
5750 ** disable this optimization for testing purposes. */
5751 if( orderByGrp && OptimizationEnabled(db, SQLITE_GroupByOrder)
5752 && (groupBySort || sqlite3WhereIsSorted(pWInfo))
5754 sSort.pOrderBy = 0;
5755 sqlite3VdbeChangeToNoop(v, sSort.addrSortIndex);
5758 /* Evaluate the current GROUP BY terms and store in b0, b1, b2...
5759 ** (b0 is memory location iBMem+0, b1 is iBMem+1, and so forth)
5760 ** Then compare the current GROUP BY terms against the GROUP BY terms
5761 ** from the previous row currently stored in a0, a1, a2...
5763 addrTopOfLoop = sqlite3VdbeCurrentAddr(v);
5764 sqlite3ExprCacheClear(pParse);
5765 if( groupBySort ){
5766 sqlite3VdbeAddOp3(v, OP_SorterData, sAggInfo.sortingIdx,
5767 sortOut, sortPTab);
5769 for(j=0; j<pGroupBy->nExpr; j++){
5770 if( groupBySort ){
5771 sqlite3VdbeAddOp3(v, OP_Column, sortPTab, j, iBMem+j);
5772 }else{
5773 sAggInfo.directMode = 1;
5774 sqlite3ExprCode(pParse, pGroupBy->a[j].pExpr, iBMem+j);
5777 sqlite3VdbeAddOp4(v, OP_Compare, iAMem, iBMem, pGroupBy->nExpr,
5778 (char*)sqlite3KeyInfoRef(pKeyInfo), P4_KEYINFO);
5779 addr1 = sqlite3VdbeCurrentAddr(v);
5780 sqlite3VdbeAddOp3(v, OP_Jump, addr1+1, 0, addr1+1); VdbeCoverage(v);
5782 /* Generate code that runs whenever the GROUP BY changes.
5783 ** Changes in the GROUP BY are detected by the previous code
5784 ** block. If there were no changes, this block is skipped.
5786 ** This code copies current group by terms in b0,b1,b2,...
5787 ** over to a0,a1,a2. It then calls the output subroutine
5788 ** and resets the aggregate accumulator registers in preparation
5789 ** for the next GROUP BY batch.
5791 sqlite3ExprCodeMove(pParse, iBMem, iAMem, pGroupBy->nExpr);
5792 sqlite3VdbeAddOp2(v, OP_Gosub, regOutputRow, addrOutputRow);
5793 VdbeComment((v, "output one row"));
5794 sqlite3VdbeAddOp2(v, OP_IfPos, iAbortFlag, addrEnd); VdbeCoverage(v);
5795 VdbeComment((v, "check abort flag"));
5796 sqlite3VdbeAddOp2(v, OP_Gosub, regReset, addrReset);
5797 VdbeComment((v, "reset accumulator"));
5799 /* Update the aggregate accumulators based on the content of
5800 ** the current row
5802 sqlite3VdbeJumpHere(v, addr1);
5803 updateAccumulator(pParse, &sAggInfo);
5804 sqlite3VdbeAddOp2(v, OP_Integer, 1, iUseFlag);
5805 VdbeComment((v, "indicate data in accumulator"));
5807 /* End of the loop
5809 if( groupBySort ){
5810 sqlite3VdbeAddOp2(v, OP_SorterNext, sAggInfo.sortingIdx, addrTopOfLoop);
5811 VdbeCoverage(v);
5812 }else{
5813 sqlite3WhereEnd(pWInfo);
5814 sqlite3VdbeChangeToNoop(v, addrSortingIdx);
5817 /* Output the final row of result
5819 sqlite3VdbeAddOp2(v, OP_Gosub, regOutputRow, addrOutputRow);
5820 VdbeComment((v, "output final row"));
5822 /* Jump over the subroutines
5824 sqlite3VdbeGoto(v, addrEnd);
5826 /* Generate a subroutine that outputs a single row of the result
5827 ** set. This subroutine first looks at the iUseFlag. If iUseFlag
5828 ** is less than or equal to zero, the subroutine is a no-op. If
5829 ** the processing calls for the query to abort, this subroutine
5830 ** increments the iAbortFlag memory location before returning in
5831 ** order to signal the caller to abort.
5833 addrSetAbort = sqlite3VdbeCurrentAddr(v);
5834 sqlite3VdbeAddOp2(v, OP_Integer, 1, iAbortFlag);
5835 VdbeComment((v, "set abort flag"));
5836 sqlite3VdbeAddOp1(v, OP_Return, regOutputRow);
5837 sqlite3VdbeResolveLabel(v, addrOutputRow);
5838 addrOutputRow = sqlite3VdbeCurrentAddr(v);
5839 sqlite3VdbeAddOp2(v, OP_IfPos, iUseFlag, addrOutputRow+2);
5840 VdbeCoverage(v);
5841 VdbeComment((v, "Groupby result generator entry point"));
5842 sqlite3VdbeAddOp1(v, OP_Return, regOutputRow);
5843 finalizeAggFunctions(pParse, &sAggInfo);
5844 sqlite3ExprIfFalse(pParse, pHaving, addrOutputRow+1, SQLITE_JUMPIFNULL);
5845 selectInnerLoop(pParse, p, -1, &sSort,
5846 &sDistinct, pDest,
5847 addrOutputRow+1, addrSetAbort);
5848 sqlite3VdbeAddOp1(v, OP_Return, regOutputRow);
5849 VdbeComment((v, "end groupby result generator"));
5851 /* Generate a subroutine that will reset the group-by accumulator
5853 sqlite3VdbeResolveLabel(v, addrReset);
5854 resetAccumulator(pParse, &sAggInfo);
5855 sqlite3VdbeAddOp1(v, OP_Return, regReset);
5857 } /* endif pGroupBy. Begin aggregate queries without GROUP BY: */
5858 else {
5859 ExprList *pDel = 0;
5860 #ifndef SQLITE_OMIT_BTREECOUNT
5861 Table *pTab;
5862 if( (pTab = isSimpleCount(p, &sAggInfo))!=0 ){
5863 /* If isSimpleCount() returns a pointer to a Table structure, then
5864 ** the SQL statement is of the form:
5866 ** SELECT count(*) FROM <tbl>
5868 ** where the Table structure returned represents table <tbl>.
5870 ** This statement is so common that it is optimized specially. The
5871 ** OP_Count instruction is executed either on the intkey table that
5872 ** contains the data for table <tbl> or on one of its indexes. It
5873 ** is better to execute the op on an index, as indexes are almost
5874 ** always spread across less pages than their corresponding tables.
5876 const int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
5877 const int iCsr = pParse->nTab++; /* Cursor to scan b-tree */
5878 Index *pIdx; /* Iterator variable */
5879 KeyInfo *pKeyInfo = 0; /* Keyinfo for scanned index */
5880 Index *pBest = 0; /* Best index found so far */
5881 int iRoot = pTab->tnum; /* Root page of scanned b-tree */
5883 sqlite3CodeVerifySchema(pParse, iDb);
5884 sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName);
5886 /* Search for the index that has the lowest scan cost.
5888 ** (2011-04-15) Do not do a full scan of an unordered index.
5890 ** (2013-10-03) Do not count the entries in a partial index.
5892 ** In practice the KeyInfo structure will not be used. It is only
5893 ** passed to keep OP_OpenRead happy.
5895 if( !HasRowid(pTab) ) pBest = sqlite3PrimaryKeyIndex(pTab);
5896 for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
5897 if( pIdx->bUnordered==0
5898 && pIdx->szIdxRow<pTab->szTabRow
5899 && pIdx->pPartIdxWhere==0
5900 && (!pBest || pIdx->szIdxRow<pBest->szIdxRow)
5902 pBest = pIdx;
5905 if( pBest ){
5906 iRoot = pBest->tnum;
5907 pKeyInfo = sqlite3KeyInfoOfIndex(pParse, pBest);
5910 /* Open a read-only cursor, execute the OP_Count, close the cursor. */
5911 sqlite3VdbeAddOp4Int(v, OP_OpenRead, iCsr, iRoot, iDb, 1);
5912 if( pKeyInfo ){
5913 sqlite3VdbeChangeP4(v, -1, (char *)pKeyInfo, P4_KEYINFO);
5915 sqlite3VdbeAddOp2(v, OP_Count, iCsr, sAggInfo.aFunc[0].iMem);
5916 sqlite3VdbeAddOp1(v, OP_Close, iCsr);
5917 explainSimpleCount(pParse, pTab, pBest);
5918 }else
5919 #endif /* SQLITE_OMIT_BTREECOUNT */
5921 /* Check if the query is of one of the following forms:
5923 ** SELECT min(x) FROM ...
5924 ** SELECT max(x) FROM ...
5926 ** If it is, then ask the code in where.c to attempt to sort results
5927 ** as if there was an "ORDER ON x" or "ORDER ON x DESC" clause.
5928 ** If where.c is able to produce results sorted in this order, then
5929 ** add vdbe code to break out of the processing loop after the
5930 ** first iteration (since the first iteration of the loop is
5931 ** guaranteed to operate on the row with the minimum or maximum
5932 ** value of x, the only row required).
5934 ** A special flag must be passed to sqlite3WhereBegin() to slightly
5935 ** modify behavior as follows:
5937 ** + If the query is a "SELECT min(x)", then the loop coded by
5938 ** where.c should not iterate over any values with a NULL value
5939 ** for x.
5941 ** + The optimizer code in where.c (the thing that decides which
5942 ** index or indices to use) should place a different priority on
5943 ** satisfying the 'ORDER BY' clause than it does in other cases.
5944 ** Refer to code and comments in where.c for details.
5946 ExprList *pMinMax = 0;
5947 u8 flag = WHERE_ORDERBY_NORMAL;
5949 assert( p->pGroupBy==0 );
5950 assert( flag==0 );
5951 if( p->pHaving==0 ){
5952 flag = minMaxQuery(&sAggInfo, &pMinMax);
5954 assert( flag==0 || (pMinMax!=0 && pMinMax->nExpr==1) );
5956 if( flag ){
5957 pMinMax = sqlite3ExprListDup(db, pMinMax, 0);
5958 pDel = pMinMax;
5959 assert( db->mallocFailed || pMinMax!=0 );
5960 if( !db->mallocFailed ){
5961 pMinMax->a[0].sortOrder = flag!=WHERE_ORDERBY_MIN ?1:0;
5962 pMinMax->a[0].pExpr->op = TK_COLUMN;
5966 /* This case runs if the aggregate has no GROUP BY clause. The
5967 ** processing is much simpler since there is only a single row
5968 ** of output.
5970 resetAccumulator(pParse, &sAggInfo);
5971 pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, pMinMax, 0,flag,0);
5972 if( pWInfo==0 ){
5973 sqlite3ExprListDelete(db, pDel);
5974 goto select_end;
5976 updateAccumulator(pParse, &sAggInfo);
5977 assert( pMinMax==0 || pMinMax->nExpr==1 );
5978 if( sqlite3WhereIsOrdered(pWInfo)>0 ){
5979 sqlite3VdbeGoto(v, sqlite3WhereBreakLabel(pWInfo));
5980 VdbeComment((v, "%s() by index",
5981 (flag==WHERE_ORDERBY_MIN?"min":"max")));
5983 sqlite3WhereEnd(pWInfo);
5984 finalizeAggFunctions(pParse, &sAggInfo);
5987 sSort.pOrderBy = 0;
5988 sqlite3ExprIfFalse(pParse, pHaving, addrEnd, SQLITE_JUMPIFNULL);
5989 selectInnerLoop(pParse, p, -1, 0, 0,
5990 pDest, addrEnd, addrEnd);
5991 sqlite3ExprListDelete(db, pDel);
5993 sqlite3VdbeResolveLabel(v, addrEnd);
5995 } /* endif aggregate query */
5997 if( sDistinct.eTnctType==WHERE_DISTINCT_UNORDERED ){
5998 explainTempTable(pParse, "DISTINCT");
6001 /* If there is an ORDER BY clause, then we need to sort the results
6002 ** and send them to the callback one by one.
6004 if( sSort.pOrderBy ){
6005 explainTempTable(pParse,
6006 sSort.nOBSat>0 ? "RIGHT PART OF ORDER BY":"ORDER BY");
6007 generateSortTail(pParse, p, &sSort, pEList->nExpr, pDest);
6010 /* Jump here to skip this query
6012 sqlite3VdbeResolveLabel(v, iEnd);
6014 /* The SELECT has been coded. If there is an error in the Parse structure,
6015 ** set the return code to 1. Otherwise 0. */
6016 rc = (pParse->nErr>0);
6018 /* Control jumps to here if an error is encountered above, or upon
6019 ** successful coding of the SELECT.
6021 select_end:
6022 explainSetInteger(pParse->iSelectId, iRestoreSelectId);
6024 sqlite3DbFree(db, sAggInfo.aCol);
6025 sqlite3DbFree(db, sAggInfo.aFunc);
6026 #if SELECTTRACE_ENABLED
6027 SELECTTRACE(1,pParse,p,("end processing\n"));
6028 pParse->nSelectIndent--;
6029 #endif
6030 return rc;