Fix a problem with using a window-function SELECT as a FROM clause sub-query
[sqlite.git] / src / select.c
blob292844556299165bd98b1e4d69740b019777f724
1 /*
2 ** 2001 September 15
3 **
4 ** The author disclaims copyright to this source code. In place of
5 ** a legal notice, here is a blessing:
6 **
7 ** May you do good and not evil.
8 ** May you find forgiveness for yourself and forgive others.
9 ** May you share freely, never taking more than you give.
11 *************************************************************************
12 ** This file contains C code routines that are called by the parser
13 ** to handle SELECT statements in SQLite.
15 #include "sqliteInt.h"
18 ** Trace output macros
20 #if SELECTTRACE_ENABLED
21 /***/ int sqlite3SelectTrace = 0;
22 # define SELECTTRACE(K,P,S,X) \
23 if(sqlite3SelectTrace&(K)) \
24 sqlite3DebugPrintf("%s/%d/%p: ",(S)->zSelName,(P)->addrExplain,(S)),\
25 sqlite3DebugPrintf X
26 #else
27 # define SELECTTRACE(K,P,S,X)
28 #endif
32 ** An instance of the following object is used to record information about
33 ** how to process the DISTINCT keyword, to simplify passing that information
34 ** into the selectInnerLoop() routine.
36 typedef struct DistinctCtx DistinctCtx;
37 struct DistinctCtx {
38 u8 isTnct; /* True if the DISTINCT keyword is present */
39 u8 eTnctType; /* One of the WHERE_DISTINCT_* operators */
40 int tabTnct; /* Ephemeral table used for DISTINCT processing */
41 int addrTnct; /* Address of OP_OpenEphemeral opcode for tabTnct */
45 ** An instance of the following object is used to record information about
46 ** the ORDER BY (or GROUP BY) clause of query is being coded.
48 ** The aDefer[] array is used by the sorter-references optimization. For
49 ** example, assuming there is no index that can be used for the ORDER BY,
50 ** for the query:
52 ** SELECT a, bigblob FROM t1 ORDER BY a LIMIT 10;
54 ** it may be more efficient to add just the "a" values to the sorter, and
55 ** retrieve the associated "bigblob" values directly from table t1 as the
56 ** 10 smallest "a" values are extracted from the sorter.
58 ** When the sorter-reference optimization is used, there is one entry in the
59 ** aDefer[] array for each database table that may be read as values are
60 ** extracted from the sorter.
62 typedef struct SortCtx SortCtx;
63 struct SortCtx {
64 ExprList *pOrderBy; /* The ORDER BY (or GROUP BY clause) */
65 int nOBSat; /* Number of ORDER BY terms satisfied by indices */
66 int iECursor; /* Cursor number for the sorter */
67 int regReturn; /* Register holding block-output return address */
68 int labelBkOut; /* Start label for the block-output subroutine */
69 int addrSortIndex; /* Address of the OP_SorterOpen or OP_OpenEphemeral */
70 int labelDone; /* Jump here when done, ex: LIMIT reached */
71 u8 sortFlags; /* Zero or more SORTFLAG_* bits */
72 u8 bOrderedInnerLoop; /* ORDER BY correctly sorts the inner loop */
73 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
74 u8 nDefer; /* Number of valid entries in aDefer[] */
75 struct DeferredCsr {
76 Table *pTab; /* Table definition */
77 int iCsr; /* Cursor number for table */
78 int nKey; /* Number of PK columns for table pTab (>=1) */
79 } aDefer[4];
80 #endif
81 struct RowLoadInfo *pDeferredRowLoad; /* Deferred row loading info or NULL */
83 #define SORTFLAG_UseSorter 0x01 /* Use SorterOpen instead of OpenEphemeral */
86 ** Delete all the content of a Select structure. Deallocate the structure
87 ** itself only if bFree is true.
89 static void clearSelect(sqlite3 *db, Select *p, int bFree){
90 while( p ){
91 Select *pPrior = p->pPrior;
92 sqlite3ExprListDelete(db, p->pEList);
93 sqlite3SrcListDelete(db, p->pSrc);
94 sqlite3ExprDelete(db, p->pWhere);
95 sqlite3ExprListDelete(db, p->pGroupBy);
96 sqlite3ExprDelete(db, p->pHaving);
97 sqlite3ExprListDelete(db, p->pOrderBy);
98 sqlite3ExprDelete(db, p->pLimit);
99 #ifndef SQLITE_OMIT_WINDOWFUNC
100 if( OK_IF_ALWAYS_TRUE(p->pWinDefn) ){
101 sqlite3WindowListDelete(db, p->pWinDefn);
103 #endif
104 if( OK_IF_ALWAYS_TRUE(p->pWith) ) sqlite3WithDelete(db, p->pWith);
105 if( bFree ) sqlite3DbFreeNN(db, p);
106 p = pPrior;
107 bFree = 1;
112 ** Initialize a SelectDest structure.
114 void sqlite3SelectDestInit(SelectDest *pDest, int eDest, int iParm){
115 pDest->eDest = (u8)eDest;
116 pDest->iSDParm = iParm;
117 pDest->zAffSdst = 0;
118 pDest->iSdst = 0;
119 pDest->nSdst = 0;
124 ** Allocate a new Select structure and return a pointer to that
125 ** structure.
127 Select *sqlite3SelectNew(
128 Parse *pParse, /* Parsing context */
129 ExprList *pEList, /* which columns to include in the result */
130 SrcList *pSrc, /* the FROM clause -- which tables to scan */
131 Expr *pWhere, /* the WHERE clause */
132 ExprList *pGroupBy, /* the GROUP BY clause */
133 Expr *pHaving, /* the HAVING clause */
134 ExprList *pOrderBy, /* the ORDER BY clause */
135 u32 selFlags, /* Flag parameters, such as SF_Distinct */
136 Expr *pLimit /* LIMIT value. NULL means not used */
138 Select *pNew;
139 Select standin;
140 pNew = sqlite3DbMallocRawNN(pParse->db, sizeof(*pNew) );
141 if( pNew==0 ){
142 assert( pParse->db->mallocFailed );
143 pNew = &standin;
145 if( pEList==0 ){
146 pEList = sqlite3ExprListAppend(pParse, 0,
147 sqlite3Expr(pParse->db,TK_ASTERISK,0));
149 pNew->pEList = pEList;
150 pNew->op = TK_SELECT;
151 pNew->selFlags = selFlags;
152 pNew->iLimit = 0;
153 pNew->iOffset = 0;
154 #if SELECTTRACE_ENABLED
155 pNew->zSelName[0] = 0;
156 #endif
157 pNew->addrOpenEphm[0] = -1;
158 pNew->addrOpenEphm[1] = -1;
159 pNew->nSelectRow = 0;
160 if( pSrc==0 ) pSrc = sqlite3DbMallocZero(pParse->db, sizeof(*pSrc));
161 pNew->pSrc = pSrc;
162 pNew->pWhere = pWhere;
163 pNew->pGroupBy = pGroupBy;
164 pNew->pHaving = pHaving;
165 pNew->pOrderBy = pOrderBy;
166 pNew->pPrior = 0;
167 pNew->pNext = 0;
168 pNew->pLimit = pLimit;
169 pNew->pWith = 0;
170 #ifndef SQLITE_OMIT_WINDOWFUNC
171 pNew->pWin = 0;
172 pNew->pWinDefn = 0;
173 #endif
174 if( pParse->db->mallocFailed ) {
175 clearSelect(pParse->db, pNew, pNew!=&standin);
176 pNew = 0;
177 }else{
178 assert( pNew->pSrc!=0 || pParse->nErr>0 );
180 assert( pNew!=&standin );
181 return pNew;
184 #if SELECTTRACE_ENABLED
186 ** Set the name of a Select object
188 void sqlite3SelectSetName(Select *p, const char *zName){
189 if( p && zName ){
190 sqlite3_snprintf(sizeof(p->zSelName), p->zSelName, "%s", zName);
193 #endif
197 ** Delete the given Select structure and all of its substructures.
199 void sqlite3SelectDelete(sqlite3 *db, Select *p){
200 if( OK_IF_ALWAYS_TRUE(p) ) clearSelect(db, p, 1);
204 ** Return a pointer to the right-most SELECT statement in a compound.
206 static Select *findRightmost(Select *p){
207 while( p->pNext ) p = p->pNext;
208 return p;
212 ** Given 1 to 3 identifiers preceding the JOIN keyword, determine the
213 ** type of join. Return an integer constant that expresses that type
214 ** in terms of the following bit values:
216 ** JT_INNER
217 ** JT_CROSS
218 ** JT_OUTER
219 ** JT_NATURAL
220 ** JT_LEFT
221 ** JT_RIGHT
223 ** A full outer join is the combination of JT_LEFT and JT_RIGHT.
225 ** If an illegal or unsupported join type is seen, then still return
226 ** a join type, but put an error in the pParse structure.
228 int sqlite3JoinType(Parse *pParse, Token *pA, Token *pB, Token *pC){
229 int jointype = 0;
230 Token *apAll[3];
231 Token *p;
232 /* 0123456789 123456789 123456789 123 */
233 static const char zKeyText[] = "naturaleftouterightfullinnercross";
234 static const struct {
235 u8 i; /* Beginning of keyword text in zKeyText[] */
236 u8 nChar; /* Length of the keyword in characters */
237 u8 code; /* Join type mask */
238 } aKeyword[] = {
239 /* natural */ { 0, 7, JT_NATURAL },
240 /* left */ { 6, 4, JT_LEFT|JT_OUTER },
241 /* outer */ { 10, 5, JT_OUTER },
242 /* right */ { 14, 5, JT_RIGHT|JT_OUTER },
243 /* full */ { 19, 4, JT_LEFT|JT_RIGHT|JT_OUTER },
244 /* inner */ { 23, 5, JT_INNER },
245 /* cross */ { 28, 5, JT_INNER|JT_CROSS },
247 int i, j;
248 apAll[0] = pA;
249 apAll[1] = pB;
250 apAll[2] = pC;
251 for(i=0; i<3 && apAll[i]; i++){
252 p = apAll[i];
253 for(j=0; j<ArraySize(aKeyword); j++){
254 if( p->n==aKeyword[j].nChar
255 && sqlite3StrNICmp((char*)p->z, &zKeyText[aKeyword[j].i], p->n)==0 ){
256 jointype |= aKeyword[j].code;
257 break;
260 testcase( j==0 || j==1 || j==2 || j==3 || j==4 || j==5 || j==6 );
261 if( j>=ArraySize(aKeyword) ){
262 jointype |= JT_ERROR;
263 break;
267 (jointype & (JT_INNER|JT_OUTER))==(JT_INNER|JT_OUTER) ||
268 (jointype & JT_ERROR)!=0
270 const char *zSp = " ";
271 assert( pB!=0 );
272 if( pC==0 ){ zSp++; }
273 sqlite3ErrorMsg(pParse, "unknown or unsupported join type: "
274 "%T %T%s%T", pA, pB, zSp, pC);
275 jointype = JT_INNER;
276 }else if( (jointype & JT_OUTER)!=0
277 && (jointype & (JT_LEFT|JT_RIGHT))!=JT_LEFT ){
278 sqlite3ErrorMsg(pParse,
279 "RIGHT and FULL OUTER JOINs are not currently supported");
280 jointype = JT_INNER;
282 return jointype;
286 ** Return the index of a column in a table. Return -1 if the column
287 ** is not contained in the table.
289 static int columnIndex(Table *pTab, const char *zCol){
290 int i;
291 for(i=0; i<pTab->nCol; i++){
292 if( sqlite3StrICmp(pTab->aCol[i].zName, zCol)==0 ) return i;
294 return -1;
298 ** Search the first N tables in pSrc, from left to right, looking for a
299 ** table that has a column named zCol.
301 ** When found, set *piTab and *piCol to the table index and column index
302 ** of the matching column and return TRUE.
304 ** If not found, return FALSE.
306 static int tableAndColumnIndex(
307 SrcList *pSrc, /* Array of tables to search */
308 int N, /* Number of tables in pSrc->a[] to search */
309 const char *zCol, /* Name of the column we are looking for */
310 int *piTab, /* Write index of pSrc->a[] here */
311 int *piCol /* Write index of pSrc->a[*piTab].pTab->aCol[] here */
313 int i; /* For looping over tables in pSrc */
314 int iCol; /* Index of column matching zCol */
316 assert( (piTab==0)==(piCol==0) ); /* Both or neither are NULL */
317 for(i=0; i<N; i++){
318 iCol = columnIndex(pSrc->a[i].pTab, zCol);
319 if( iCol>=0 ){
320 if( piTab ){
321 *piTab = i;
322 *piCol = iCol;
324 return 1;
327 return 0;
331 ** This function is used to add terms implied by JOIN syntax to the
332 ** WHERE clause expression of a SELECT statement. The new term, which
333 ** is ANDed with the existing WHERE clause, is of the form:
335 ** (tab1.col1 = tab2.col2)
337 ** where tab1 is the iSrc'th table in SrcList pSrc and tab2 is the
338 ** (iSrc+1)'th. Column col1 is column iColLeft of tab1, and col2 is
339 ** column iColRight of tab2.
341 static void addWhereTerm(
342 Parse *pParse, /* Parsing context */
343 SrcList *pSrc, /* List of tables in FROM clause */
344 int iLeft, /* Index of first table to join in pSrc */
345 int iColLeft, /* Index of column in first table */
346 int iRight, /* Index of second table in pSrc */
347 int iColRight, /* Index of column in second table */
348 int isOuterJoin, /* True if this is an OUTER join */
349 Expr **ppWhere /* IN/OUT: The WHERE clause to add to */
351 sqlite3 *db = pParse->db;
352 Expr *pE1;
353 Expr *pE2;
354 Expr *pEq;
356 assert( iLeft<iRight );
357 assert( pSrc->nSrc>iRight );
358 assert( pSrc->a[iLeft].pTab );
359 assert( pSrc->a[iRight].pTab );
361 pE1 = sqlite3CreateColumnExpr(db, pSrc, iLeft, iColLeft);
362 pE2 = sqlite3CreateColumnExpr(db, pSrc, iRight, iColRight);
364 pEq = sqlite3PExpr(pParse, TK_EQ, pE1, pE2);
365 if( pEq && isOuterJoin ){
366 ExprSetProperty(pEq, EP_FromJoin);
367 assert( !ExprHasProperty(pEq, EP_TokenOnly|EP_Reduced) );
368 ExprSetVVAProperty(pEq, EP_NoReduce);
369 pEq->iRightJoinTable = (i16)pE2->iTable;
371 *ppWhere = sqlite3ExprAnd(db, *ppWhere, pEq);
375 ** Set the EP_FromJoin property on all terms of the given expression.
376 ** And set the Expr.iRightJoinTable to iTable for every term in the
377 ** expression.
379 ** The EP_FromJoin property is used on terms of an expression to tell
380 ** the LEFT OUTER JOIN processing logic that this term is part of the
381 ** join restriction specified in the ON or USING clause and not a part
382 ** of the more general WHERE clause. These terms are moved over to the
383 ** WHERE clause during join processing but we need to remember that they
384 ** originated in the ON or USING clause.
386 ** The Expr.iRightJoinTable tells the WHERE clause processing that the
387 ** expression depends on table iRightJoinTable even if that table is not
388 ** explicitly mentioned in the expression. That information is needed
389 ** for cases like this:
391 ** SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.b AND t1.x=5
393 ** The where clause needs to defer the handling of the t1.x=5
394 ** term until after the t2 loop of the join. In that way, a
395 ** NULL t2 row will be inserted whenever t1.x!=5. If we do not
396 ** defer the handling of t1.x=5, it will be processed immediately
397 ** after the t1 loop and rows with t1.x!=5 will never appear in
398 ** the output, which is incorrect.
400 static void setJoinExpr(Expr *p, int iTable){
401 while( p ){
402 ExprSetProperty(p, EP_FromJoin);
403 assert( !ExprHasProperty(p, EP_TokenOnly|EP_Reduced) );
404 ExprSetVVAProperty(p, EP_NoReduce);
405 p->iRightJoinTable = (i16)iTable;
406 if( p->op==TK_FUNCTION && p->x.pList ){
407 int i;
408 for(i=0; i<p->x.pList->nExpr; i++){
409 setJoinExpr(p->x.pList->a[i].pExpr, iTable);
412 setJoinExpr(p->pLeft, iTable);
413 p = p->pRight;
417 /* Undo the work of setJoinExpr(). In the expression tree p, convert every
418 ** term that is marked with EP_FromJoin and iRightJoinTable==iTable into
419 ** an ordinary term that omits the EP_FromJoin mark.
421 ** This happens when a LEFT JOIN is simplified into an ordinary JOIN.
423 static void unsetJoinExpr(Expr *p, int iTable){
424 while( p ){
425 if( ExprHasProperty(p, EP_FromJoin)
426 && (iTable<0 || p->iRightJoinTable==iTable) ){
427 ExprClearProperty(p, EP_FromJoin);
429 if( p->op==TK_FUNCTION && p->x.pList ){
430 int i;
431 for(i=0; i<p->x.pList->nExpr; i++){
432 unsetJoinExpr(p->x.pList->a[i].pExpr, iTable);
435 unsetJoinExpr(p->pLeft, iTable);
436 p = p->pRight;
441 ** This routine processes the join information for a SELECT statement.
442 ** ON and USING clauses are converted into extra terms of the WHERE clause.
443 ** NATURAL joins also create extra WHERE clause terms.
445 ** The terms of a FROM clause are contained in the Select.pSrc structure.
446 ** The left most table is the first entry in Select.pSrc. The right-most
447 ** table is the last entry. The join operator is held in the entry to
448 ** the left. Thus entry 0 contains the join operator for the join between
449 ** entries 0 and 1. Any ON or USING clauses associated with the join are
450 ** also attached to the left entry.
452 ** This routine returns the number of errors encountered.
454 static int sqliteProcessJoin(Parse *pParse, Select *p){
455 SrcList *pSrc; /* All tables in the FROM clause */
456 int i, j; /* Loop counters */
457 struct SrcList_item *pLeft; /* Left table being joined */
458 struct SrcList_item *pRight; /* Right table being joined */
460 pSrc = p->pSrc;
461 pLeft = &pSrc->a[0];
462 pRight = &pLeft[1];
463 for(i=0; i<pSrc->nSrc-1; i++, pRight++, pLeft++){
464 Table *pRightTab = pRight->pTab;
465 int isOuter;
467 if( NEVER(pLeft->pTab==0 || pRightTab==0) ) continue;
468 isOuter = (pRight->fg.jointype & JT_OUTER)!=0;
470 /* When the NATURAL keyword is present, add WHERE clause terms for
471 ** every column that the two tables have in common.
473 if( pRight->fg.jointype & JT_NATURAL ){
474 if( pRight->pOn || pRight->pUsing ){
475 sqlite3ErrorMsg(pParse, "a NATURAL join may not have "
476 "an ON or USING clause", 0);
477 return 1;
479 for(j=0; j<pRightTab->nCol; j++){
480 char *zName; /* Name of column in the right table */
481 int iLeft; /* Matching left table */
482 int iLeftCol; /* Matching column in the left table */
484 zName = pRightTab->aCol[j].zName;
485 if( tableAndColumnIndex(pSrc, i+1, zName, &iLeft, &iLeftCol) ){
486 addWhereTerm(pParse, pSrc, iLeft, iLeftCol, i+1, j,
487 isOuter, &p->pWhere);
492 /* Disallow both ON and USING clauses in the same join
494 if( pRight->pOn && pRight->pUsing ){
495 sqlite3ErrorMsg(pParse, "cannot have both ON and USING "
496 "clauses in the same join");
497 return 1;
500 /* Add the ON clause to the end of the WHERE clause, connected by
501 ** an AND operator.
503 if( pRight->pOn ){
504 if( isOuter ) setJoinExpr(pRight->pOn, pRight->iCursor);
505 p->pWhere = sqlite3ExprAnd(pParse->db, p->pWhere, pRight->pOn);
506 pRight->pOn = 0;
509 /* Create extra terms on the WHERE clause for each column named
510 ** in the USING clause. Example: If the two tables to be joined are
511 ** A and B and the USING clause names X, Y, and Z, then add this
512 ** to the WHERE clause: A.X=B.X AND A.Y=B.Y AND A.Z=B.Z
513 ** Report an error if any column mentioned in the USING clause is
514 ** not contained in both tables to be joined.
516 if( pRight->pUsing ){
517 IdList *pList = pRight->pUsing;
518 for(j=0; j<pList->nId; j++){
519 char *zName; /* Name of the term in the USING clause */
520 int iLeft; /* Table on the left with matching column name */
521 int iLeftCol; /* Column number of matching column on the left */
522 int iRightCol; /* Column number of matching column on the right */
524 zName = pList->a[j].zName;
525 iRightCol = columnIndex(pRightTab, zName);
526 if( iRightCol<0
527 || !tableAndColumnIndex(pSrc, i+1, zName, &iLeft, &iLeftCol)
529 sqlite3ErrorMsg(pParse, "cannot join using column %s - column "
530 "not present in both tables", zName);
531 return 1;
533 addWhereTerm(pParse, pSrc, iLeft, iLeftCol, i+1, iRightCol,
534 isOuter, &p->pWhere);
538 return 0;
542 ** An instance of this object holds information (beyond pParse and pSelect)
543 ** needed to load the next result row that is to be added to the sorter.
545 typedef struct RowLoadInfo RowLoadInfo;
546 struct RowLoadInfo {
547 int regResult; /* Store results in array of registers here */
548 u8 ecelFlags; /* Flag argument to ExprCodeExprList() */
549 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
550 ExprList *pExtra; /* Extra columns needed by sorter refs */
551 int regExtraResult; /* Where to load the extra columns */
552 #endif
556 ** This routine does the work of loading query data into an array of
557 ** registers so that it can be added to the sorter.
559 static void innerLoopLoadRow(
560 Parse *pParse, /* Statement under construction */
561 Select *pSelect, /* The query being coded */
562 RowLoadInfo *pInfo /* Info needed to complete the row load */
564 sqlite3ExprCodeExprList(pParse, pSelect->pEList, pInfo->regResult,
565 0, pInfo->ecelFlags);
566 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
567 if( pInfo->pExtra ){
568 sqlite3ExprCodeExprList(pParse, pInfo->pExtra, pInfo->regExtraResult, 0, 0);
569 sqlite3ExprListDelete(pParse->db, pInfo->pExtra);
571 #endif
575 ** Code the OP_MakeRecord instruction that generates the entry to be
576 ** added into the sorter.
578 ** Return the register in which the result is stored.
580 static int makeSorterRecord(
581 Parse *pParse,
582 SortCtx *pSort,
583 Select *pSelect,
584 int regBase,
585 int nBase
587 int nOBSat = pSort->nOBSat;
588 Vdbe *v = pParse->pVdbe;
589 int regOut = ++pParse->nMem;
590 if( pSort->pDeferredRowLoad ){
591 innerLoopLoadRow(pParse, pSelect, pSort->pDeferredRowLoad);
593 sqlite3VdbeAddOp3(v, OP_MakeRecord, regBase+nOBSat, nBase-nOBSat, regOut);
594 return regOut;
598 ** Generate code that will push the record in registers regData
599 ** through regData+nData-1 onto the sorter.
601 static void pushOntoSorter(
602 Parse *pParse, /* Parser context */
603 SortCtx *pSort, /* Information about the ORDER BY clause */
604 Select *pSelect, /* The whole SELECT statement */
605 int regData, /* First register holding data to be sorted */
606 int regOrigData, /* First register holding data before packing */
607 int nData, /* Number of elements in the regData data array */
608 int nPrefixReg /* No. of reg prior to regData available for use */
610 Vdbe *v = pParse->pVdbe; /* Stmt under construction */
611 int bSeq = ((pSort->sortFlags & SORTFLAG_UseSorter)==0);
612 int nExpr = pSort->pOrderBy->nExpr; /* No. of ORDER BY terms */
613 int nBase = nExpr + bSeq + nData; /* Fields in sorter record */
614 int regBase; /* Regs for sorter record */
615 int regRecord = 0; /* Assembled sorter record */
616 int nOBSat = pSort->nOBSat; /* ORDER BY terms to skip */
617 int op; /* Opcode to add sorter record to sorter */
618 int iLimit; /* LIMIT counter */
619 int iSkip = 0; /* End of the sorter insert loop */
621 assert( bSeq==0 || bSeq==1 );
623 /* Three cases:
624 ** (1) The data to be sorted has already been packed into a Record
625 ** by a prior OP_MakeRecord. In this case nData==1 and regData
626 ** will be completely unrelated to regOrigData.
627 ** (2) All output columns are included in the sort record. In that
628 ** case regData==regOrigData.
629 ** (3) Some output columns are omitted from the sort record due to
630 ** the SQLITE_ENABLE_SORTER_REFERENCE optimization, or due to the
631 ** SQLITE_ECEL_OMITREF optimization, or due to the
632 ** SortCtx.pDeferredRowLoad optimiation. In any of these cases
633 ** regOrigData is 0 to prevent this routine from trying to copy
634 ** values that might not yet exist.
636 assert( nData==1 || regData==regOrigData || regOrigData==0 );
638 if( nPrefixReg ){
639 assert( nPrefixReg==nExpr+bSeq );
640 regBase = regData - nPrefixReg;
641 }else{
642 regBase = pParse->nMem + 1;
643 pParse->nMem += nBase;
645 assert( pSelect->iOffset==0 || pSelect->iLimit!=0 );
646 iLimit = pSelect->iOffset ? pSelect->iOffset+1 : pSelect->iLimit;
647 pSort->labelDone = sqlite3VdbeMakeLabel(v);
648 sqlite3ExprCodeExprList(pParse, pSort->pOrderBy, regBase, regOrigData,
649 SQLITE_ECEL_DUP | (regOrigData? SQLITE_ECEL_REF : 0));
650 if( bSeq ){
651 sqlite3VdbeAddOp2(v, OP_Sequence, pSort->iECursor, regBase+nExpr);
653 if( nPrefixReg==0 && nData>0 ){
654 sqlite3ExprCodeMove(pParse, regData, regBase+nExpr+bSeq, nData);
656 if( nOBSat>0 ){
657 int regPrevKey; /* The first nOBSat columns of the previous row */
658 int addrFirst; /* Address of the OP_IfNot opcode */
659 int addrJmp; /* Address of the OP_Jump opcode */
660 VdbeOp *pOp; /* Opcode that opens the sorter */
661 int nKey; /* Number of sorting key columns, including OP_Sequence */
662 KeyInfo *pKI; /* Original KeyInfo on the sorter table */
664 regRecord = makeSorterRecord(pParse, pSort, pSelect, regBase, nBase);
665 regPrevKey = pParse->nMem+1;
666 pParse->nMem += pSort->nOBSat;
667 nKey = nExpr - pSort->nOBSat + bSeq;
668 if( bSeq ){
669 addrFirst = sqlite3VdbeAddOp1(v, OP_IfNot, regBase+nExpr);
670 }else{
671 addrFirst = sqlite3VdbeAddOp1(v, OP_SequenceTest, pSort->iECursor);
673 VdbeCoverage(v);
674 sqlite3VdbeAddOp3(v, OP_Compare, regPrevKey, regBase, pSort->nOBSat);
675 pOp = sqlite3VdbeGetOp(v, pSort->addrSortIndex);
676 if( pParse->db->mallocFailed ) return;
677 pOp->p2 = nKey + nData;
678 pKI = pOp->p4.pKeyInfo;
679 memset(pKI->aSortOrder, 0, pKI->nKeyField); /* Makes OP_Jump testable */
680 sqlite3VdbeChangeP4(v, -1, (char*)pKI, P4_KEYINFO);
681 testcase( pKI->nAllField > pKI->nKeyField+2 );
682 pOp->p4.pKeyInfo = sqlite3KeyInfoFromExprList(pParse,pSort->pOrderBy,nOBSat,
683 pKI->nAllField-pKI->nKeyField-1);
684 addrJmp = sqlite3VdbeCurrentAddr(v);
685 sqlite3VdbeAddOp3(v, OP_Jump, addrJmp+1, 0, addrJmp+1); VdbeCoverage(v);
686 pSort->labelBkOut = sqlite3VdbeMakeLabel(v);
687 pSort->regReturn = ++pParse->nMem;
688 sqlite3VdbeAddOp2(v, OP_Gosub, pSort->regReturn, pSort->labelBkOut);
689 sqlite3VdbeAddOp1(v, OP_ResetSorter, pSort->iECursor);
690 if( iLimit ){
691 sqlite3VdbeAddOp2(v, OP_IfNot, iLimit, pSort->labelDone);
692 VdbeCoverage(v);
694 sqlite3VdbeJumpHere(v, addrFirst);
695 sqlite3ExprCodeMove(pParse, regBase, regPrevKey, pSort->nOBSat);
696 sqlite3VdbeJumpHere(v, addrJmp);
698 if( iLimit ){
699 /* At this point the values for the new sorter entry are stored
700 ** in an array of registers. They need to be composed into a record
701 ** and inserted into the sorter if either (a) there are currently
702 ** less than LIMIT+OFFSET items or (b) the new record is smaller than
703 ** the largest record currently in the sorter. If (b) is true and there
704 ** are already LIMIT+OFFSET items in the sorter, delete the largest
705 ** entry before inserting the new one. This way there are never more
706 ** than LIMIT+OFFSET items in the sorter.
708 ** If the new record does not need to be inserted into the sorter,
709 ** jump to the next iteration of the loop. Or, if the
710 ** pSort->bOrderedInnerLoop flag is set to indicate that the inner
711 ** loop delivers items in sorted order, jump to the next iteration
712 ** of the outer loop.
714 int iCsr = pSort->iECursor;
715 sqlite3VdbeAddOp2(v, OP_IfNotZero, iLimit, sqlite3VdbeCurrentAddr(v)+4);
716 VdbeCoverage(v);
717 sqlite3VdbeAddOp2(v, OP_Last, iCsr, 0);
718 iSkip = sqlite3VdbeAddOp4Int(v, OP_IdxLE,
719 iCsr, 0, regBase+nOBSat, nExpr-nOBSat);
720 VdbeCoverage(v);
721 sqlite3VdbeAddOp1(v, OP_Delete, iCsr);
723 if( regRecord==0 ){
724 regRecord = makeSorterRecord(pParse, pSort, pSelect, regBase, nBase);
726 if( pSort->sortFlags & SORTFLAG_UseSorter ){
727 op = OP_SorterInsert;
728 }else{
729 op = OP_IdxInsert;
731 sqlite3VdbeAddOp4Int(v, op, pSort->iECursor, regRecord,
732 regBase+nOBSat, nBase-nOBSat);
733 if( iSkip ){
734 assert( pSort->bOrderedInnerLoop==0 || pSort->bOrderedInnerLoop==1 );
735 sqlite3VdbeChangeP2(v, iSkip,
736 sqlite3VdbeCurrentAddr(v) + pSort->bOrderedInnerLoop);
741 ** Add code to implement the OFFSET
743 static void codeOffset(
744 Vdbe *v, /* Generate code into this VM */
745 int iOffset, /* Register holding the offset counter */
746 int iContinue /* Jump here to skip the current record */
748 if( iOffset>0 ){
749 sqlite3VdbeAddOp3(v, OP_IfPos, iOffset, iContinue, 1); VdbeCoverage(v);
750 VdbeComment((v, "OFFSET"));
755 ** Add code that will check to make sure the N registers starting at iMem
756 ** form a distinct entry. iTab is a sorting index that holds previously
757 ** seen combinations of the N values. A new entry is made in iTab
758 ** if the current N values are new.
760 ** A jump to addrRepeat is made and the N+1 values are popped from the
761 ** stack if the top N elements are not distinct.
763 static void codeDistinct(
764 Parse *pParse, /* Parsing and code generating context */
765 int iTab, /* A sorting index used to test for distinctness */
766 int addrRepeat, /* Jump to here if not distinct */
767 int N, /* Number of elements */
768 int iMem /* First element */
770 Vdbe *v;
771 int r1;
773 v = pParse->pVdbe;
774 r1 = sqlite3GetTempReg(pParse);
775 sqlite3VdbeAddOp4Int(v, OP_Found, iTab, addrRepeat, iMem, N); VdbeCoverage(v);
776 sqlite3VdbeAddOp3(v, OP_MakeRecord, iMem, N, r1);
777 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iTab, r1, iMem, N);
778 sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT);
779 sqlite3ReleaseTempReg(pParse, r1);
782 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
784 ** This function is called as part of inner-loop generation for a SELECT
785 ** statement with an ORDER BY that is not optimized by an index. It
786 ** determines the expressions, if any, that the sorter-reference
787 ** optimization should be used for. The sorter-reference optimization
788 ** is used for SELECT queries like:
790 ** SELECT a, bigblob FROM t1 ORDER BY a LIMIT 10
792 ** If the optimization is used for expression "bigblob", then instead of
793 ** storing values read from that column in the sorter records, the PK of
794 ** the row from table t1 is stored instead. Then, as records are extracted from
795 ** the sorter to return to the user, the required value of bigblob is
796 ** retrieved directly from table t1. If the values are very large, this
797 ** can be more efficient than storing them directly in the sorter records.
799 ** The ExprList_item.bSorterRef flag is set for each expression in pEList
800 ** for which the sorter-reference optimization should be enabled.
801 ** Additionally, the pSort->aDefer[] array is populated with entries
802 ** for all cursors required to evaluate all selected expressions. Finally.
803 ** output variable (*ppExtra) is set to an expression list containing
804 ** expressions for all extra PK values that should be stored in the
805 ** sorter records.
807 static void selectExprDefer(
808 Parse *pParse, /* Leave any error here */
809 SortCtx *pSort, /* Sorter context */
810 ExprList *pEList, /* Expressions destined for sorter */
811 ExprList **ppExtra /* Expressions to append to sorter record */
813 int i;
814 int nDefer = 0;
815 ExprList *pExtra = 0;
816 for(i=0; i<pEList->nExpr; i++){
817 struct ExprList_item *pItem = &pEList->a[i];
818 if( pItem->u.x.iOrderByCol==0 ){
819 Expr *pExpr = pItem->pExpr;
820 Table *pTab = pExpr->pTab;
821 if( pExpr->op==TK_COLUMN && pExpr->iColumn>=0 && pTab && !IsVirtual(pTab)
822 && (pTab->aCol[pExpr->iColumn].colFlags & COLFLAG_SORTERREF)
824 int j;
825 for(j=0; j<nDefer; j++){
826 if( pSort->aDefer[j].iCsr==pExpr->iTable ) break;
828 if( j==nDefer ){
829 if( nDefer==ArraySize(pSort->aDefer) ){
830 continue;
831 }else{
832 int nKey = 1;
833 int k;
834 Index *pPk = 0;
835 if( !HasRowid(pTab) ){
836 pPk = sqlite3PrimaryKeyIndex(pTab);
837 nKey = pPk->nKeyCol;
839 for(k=0; k<nKey; k++){
840 Expr *pNew = sqlite3PExpr(pParse, TK_COLUMN, 0, 0);
841 if( pNew ){
842 pNew->iTable = pExpr->iTable;
843 pNew->pTab = pExpr->pTab;
844 pNew->iColumn = pPk ? pPk->aiColumn[k] : -1;
845 pExtra = sqlite3ExprListAppend(pParse, pExtra, pNew);
848 pSort->aDefer[nDefer].pTab = pExpr->pTab;
849 pSort->aDefer[nDefer].iCsr = pExpr->iTable;
850 pSort->aDefer[nDefer].nKey = nKey;
851 nDefer++;
854 pItem->bSorterRef = 1;
858 pSort->nDefer = (u8)nDefer;
859 *ppExtra = pExtra;
861 #endif
864 ** This routine generates the code for the inside of the inner loop
865 ** of a SELECT.
867 ** If srcTab is negative, then the p->pEList expressions
868 ** are evaluated in order to get the data for this row. If srcTab is
869 ** zero or more, then data is pulled from srcTab and p->pEList is used only
870 ** to get the number of columns and the collation sequence for each column.
872 static void selectInnerLoop(
873 Parse *pParse, /* The parser context */
874 Select *p, /* The complete select statement being coded */
875 int srcTab, /* Pull data from this table if non-negative */
876 SortCtx *pSort, /* If not NULL, info on how to process ORDER BY */
877 DistinctCtx *pDistinct, /* If not NULL, info on how to process DISTINCT */
878 SelectDest *pDest, /* How to dispose of the results */
879 int iContinue, /* Jump here to continue with next row */
880 int iBreak /* Jump here to break out of the inner loop */
882 Vdbe *v = pParse->pVdbe;
883 int i;
884 int hasDistinct; /* True if the DISTINCT keyword is present */
885 int eDest = pDest->eDest; /* How to dispose of results */
886 int iParm = pDest->iSDParm; /* First argument to disposal method */
887 int nResultCol; /* Number of result columns */
888 int nPrefixReg = 0; /* Number of extra registers before regResult */
889 RowLoadInfo sRowLoadInfo; /* Info for deferred row loading */
891 /* Usually, regResult is the first cell in an array of memory cells
892 ** containing the current result row. In this case regOrig is set to the
893 ** same value. However, if the results are being sent to the sorter, the
894 ** values for any expressions that are also part of the sort-key are omitted
895 ** from this array. In this case regOrig is set to zero. */
896 int regResult; /* Start of memory holding current results */
897 int regOrig; /* Start of memory holding full result (or 0) */
899 assert( v );
900 assert( p->pEList!=0 );
901 hasDistinct = pDistinct ? pDistinct->eTnctType : WHERE_DISTINCT_NOOP;
902 if( pSort && pSort->pOrderBy==0 ) pSort = 0;
903 if( pSort==0 && !hasDistinct ){
904 assert( iContinue!=0 );
905 codeOffset(v, p->iOffset, iContinue);
908 /* Pull the requested columns.
910 nResultCol = p->pEList->nExpr;
912 if( pDest->iSdst==0 ){
913 if( pSort ){
914 nPrefixReg = pSort->pOrderBy->nExpr;
915 if( !(pSort->sortFlags & SORTFLAG_UseSorter) ) nPrefixReg++;
916 pParse->nMem += nPrefixReg;
918 pDest->iSdst = pParse->nMem+1;
919 pParse->nMem += nResultCol;
920 }else if( pDest->iSdst+nResultCol > pParse->nMem ){
921 /* This is an error condition that can result, for example, when a SELECT
922 ** on the right-hand side of an INSERT contains more result columns than
923 ** there are columns in the table on the left. The error will be caught
924 ** and reported later. But we need to make sure enough memory is allocated
925 ** to avoid other spurious errors in the meantime. */
926 pParse->nMem += nResultCol;
928 pDest->nSdst = nResultCol;
929 regOrig = regResult = pDest->iSdst;
930 if( srcTab>=0 ){
931 for(i=0; i<nResultCol; i++){
932 sqlite3VdbeAddOp3(v, OP_Column, srcTab, i, regResult+i);
933 VdbeComment((v, "%s", p->pEList->a[i].zName));
935 }else if( eDest!=SRT_Exists ){
936 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
937 ExprList *pExtra = 0;
938 #endif
939 /* If the destination is an EXISTS(...) expression, the actual
940 ** values returned by the SELECT are not required.
942 u8 ecelFlags; /* "ecel" is an abbreviation of "ExprCodeExprList" */
943 ExprList *pEList;
944 if( eDest==SRT_Mem || eDest==SRT_Output || eDest==SRT_Coroutine ){
945 ecelFlags = SQLITE_ECEL_DUP;
946 }else{
947 ecelFlags = 0;
949 if( pSort && hasDistinct==0 && eDest!=SRT_EphemTab && eDest!=SRT_Table ){
950 /* For each expression in p->pEList that is a copy of an expression in
951 ** the ORDER BY clause (pSort->pOrderBy), set the associated
952 ** iOrderByCol value to one more than the index of the ORDER BY
953 ** expression within the sort-key that pushOntoSorter() will generate.
954 ** This allows the p->pEList field to be omitted from the sorted record,
955 ** saving space and CPU cycles. */
956 ecelFlags |= (SQLITE_ECEL_OMITREF|SQLITE_ECEL_REF);
958 for(i=pSort->nOBSat; i<pSort->pOrderBy->nExpr; i++){
959 int j;
960 if( (j = pSort->pOrderBy->a[i].u.x.iOrderByCol)>0 ){
961 p->pEList->a[j-1].u.x.iOrderByCol = i+1-pSort->nOBSat;
964 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
965 selectExprDefer(pParse, pSort, p->pEList, &pExtra);
966 if( pExtra && pParse->db->mallocFailed==0 ){
967 /* If there are any extra PK columns to add to the sorter records,
968 ** allocate extra memory cells and adjust the OpenEphemeral
969 ** instruction to account for the larger records. This is only
970 ** required if there are one or more WITHOUT ROWID tables with
971 ** composite primary keys in the SortCtx.aDefer[] array. */
972 VdbeOp *pOp = sqlite3VdbeGetOp(v, pSort->addrSortIndex);
973 pOp->p2 += (pExtra->nExpr - pSort->nDefer);
974 pOp->p4.pKeyInfo->nAllField += (pExtra->nExpr - pSort->nDefer);
975 pParse->nMem += pExtra->nExpr;
977 #endif
979 /* Adjust nResultCol to account for columns that are omitted
980 ** from the sorter by the optimizations in this branch */
981 pEList = p->pEList;
982 for(i=0; i<pEList->nExpr; i++){
983 if( pEList->a[i].u.x.iOrderByCol>0
984 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
985 || pEList->a[i].bSorterRef
986 #endif
988 nResultCol--;
989 regOrig = 0;
993 testcase( regOrig );
994 testcase( eDest==SRT_Set );
995 testcase( eDest==SRT_Mem );
996 testcase( eDest==SRT_Coroutine );
997 testcase( eDest==SRT_Output );
998 assert( eDest==SRT_Set || eDest==SRT_Mem
999 || eDest==SRT_Coroutine || eDest==SRT_Output );
1001 sRowLoadInfo.regResult = regResult;
1002 sRowLoadInfo.ecelFlags = ecelFlags;
1003 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
1004 sRowLoadInfo.pExtra = pExtra;
1005 sRowLoadInfo.regExtraResult = regResult + nResultCol;
1006 if( pExtra ) nResultCol += pExtra->nExpr;
1007 #endif
1008 if( p->iLimit
1009 && (ecelFlags & SQLITE_ECEL_OMITREF)!=0
1010 && nPrefixReg>0
1012 assert( pSort!=0 );
1013 assert( hasDistinct==0 );
1014 pSort->pDeferredRowLoad = &sRowLoadInfo;
1015 regOrig = 0;
1016 }else{
1017 innerLoopLoadRow(pParse, p, &sRowLoadInfo);
1021 /* If the DISTINCT keyword was present on the SELECT statement
1022 ** and this row has been seen before, then do not make this row
1023 ** part of the result.
1025 if( hasDistinct ){
1026 switch( pDistinct->eTnctType ){
1027 case WHERE_DISTINCT_ORDERED: {
1028 VdbeOp *pOp; /* No longer required OpenEphemeral instr. */
1029 int iJump; /* Jump destination */
1030 int regPrev; /* Previous row content */
1032 /* Allocate space for the previous row */
1033 regPrev = pParse->nMem+1;
1034 pParse->nMem += nResultCol;
1036 /* Change the OP_OpenEphemeral coded earlier to an OP_Null
1037 ** sets the MEM_Cleared bit on the first register of the
1038 ** previous value. This will cause the OP_Ne below to always
1039 ** fail on the first iteration of the loop even if the first
1040 ** row is all NULLs.
1042 sqlite3VdbeChangeToNoop(v, pDistinct->addrTnct);
1043 pOp = sqlite3VdbeGetOp(v, pDistinct->addrTnct);
1044 pOp->opcode = OP_Null;
1045 pOp->p1 = 1;
1046 pOp->p2 = regPrev;
1048 iJump = sqlite3VdbeCurrentAddr(v) + nResultCol;
1049 for(i=0; i<nResultCol; i++){
1050 CollSeq *pColl = sqlite3ExprCollSeq(pParse, p->pEList->a[i].pExpr);
1051 if( i<nResultCol-1 ){
1052 sqlite3VdbeAddOp3(v, OP_Ne, regResult+i, iJump, regPrev+i);
1053 VdbeCoverage(v);
1054 }else{
1055 sqlite3VdbeAddOp3(v, OP_Eq, regResult+i, iContinue, regPrev+i);
1056 VdbeCoverage(v);
1058 sqlite3VdbeChangeP4(v, -1, (const char *)pColl, P4_COLLSEQ);
1059 sqlite3VdbeChangeP5(v, SQLITE_NULLEQ);
1061 assert( sqlite3VdbeCurrentAddr(v)==iJump || pParse->db->mallocFailed );
1062 sqlite3VdbeAddOp3(v, OP_Copy, regResult, regPrev, nResultCol-1);
1063 break;
1066 case WHERE_DISTINCT_UNIQUE: {
1067 sqlite3VdbeChangeToNoop(v, pDistinct->addrTnct);
1068 break;
1071 default: {
1072 assert( pDistinct->eTnctType==WHERE_DISTINCT_UNORDERED );
1073 codeDistinct(pParse, pDistinct->tabTnct, iContinue, nResultCol,
1074 regResult);
1075 break;
1078 if( pSort==0 ){
1079 codeOffset(v, p->iOffset, iContinue);
1083 switch( eDest ){
1084 /* In this mode, write each query result to the key of the temporary
1085 ** table iParm.
1087 #ifndef SQLITE_OMIT_COMPOUND_SELECT
1088 case SRT_Union: {
1089 int r1;
1090 r1 = sqlite3GetTempReg(pParse);
1091 sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nResultCol, r1);
1092 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, r1, regResult, nResultCol);
1093 sqlite3ReleaseTempReg(pParse, r1);
1094 break;
1097 /* Construct a record from the query result, but instead of
1098 ** saving that record, use it as a key to delete elements from
1099 ** the temporary table iParm.
1101 case SRT_Except: {
1102 sqlite3VdbeAddOp3(v, OP_IdxDelete, iParm, regResult, nResultCol);
1103 break;
1105 #endif /* SQLITE_OMIT_COMPOUND_SELECT */
1107 /* Store the result as data using a unique key.
1109 case SRT_Fifo:
1110 case SRT_DistFifo:
1111 case SRT_Table:
1112 case SRT_EphemTab: {
1113 int r1 = sqlite3GetTempRange(pParse, nPrefixReg+1);
1114 testcase( eDest==SRT_Table );
1115 testcase( eDest==SRT_EphemTab );
1116 testcase( eDest==SRT_Fifo );
1117 testcase( eDest==SRT_DistFifo );
1118 sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nResultCol, r1+nPrefixReg);
1119 #ifndef SQLITE_OMIT_CTE
1120 if( eDest==SRT_DistFifo ){
1121 /* If the destination is DistFifo, then cursor (iParm+1) is open
1122 ** on an ephemeral index. If the current row is already present
1123 ** in the index, do not write it to the output. If not, add the
1124 ** current row to the index and proceed with writing it to the
1125 ** output table as well. */
1126 int addr = sqlite3VdbeCurrentAddr(v) + 4;
1127 sqlite3VdbeAddOp4Int(v, OP_Found, iParm+1, addr, r1, 0);
1128 VdbeCoverage(v);
1129 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm+1, r1,regResult,nResultCol);
1130 assert( pSort==0 );
1132 #endif
1133 if( pSort ){
1134 assert( regResult==regOrig );
1135 pushOntoSorter(pParse, pSort, p, r1+nPrefixReg, regOrig, 1, nPrefixReg);
1136 }else{
1137 int r2 = sqlite3GetTempReg(pParse);
1138 sqlite3VdbeAddOp2(v, OP_NewRowid, iParm, r2);
1139 sqlite3VdbeAddOp3(v, OP_Insert, iParm, r1, r2);
1140 sqlite3VdbeChangeP5(v, OPFLAG_APPEND);
1141 sqlite3ReleaseTempReg(pParse, r2);
1143 sqlite3ReleaseTempRange(pParse, r1, nPrefixReg+1);
1144 break;
1147 #ifndef SQLITE_OMIT_SUBQUERY
1148 /* If we are creating a set for an "expr IN (SELECT ...)" construct,
1149 ** then there should be a single item on the stack. Write this
1150 ** item into the set table with bogus data.
1152 case SRT_Set: {
1153 if( pSort ){
1154 /* At first glance you would think we could optimize out the
1155 ** ORDER BY in this case since the order of entries in the set
1156 ** does not matter. But there might be a LIMIT clause, in which
1157 ** case the order does matter */
1158 pushOntoSorter(
1159 pParse, pSort, p, regResult, regOrig, nResultCol, nPrefixReg);
1160 }else{
1161 int r1 = sqlite3GetTempReg(pParse);
1162 assert( sqlite3Strlen30(pDest->zAffSdst)==nResultCol );
1163 sqlite3VdbeAddOp4(v, OP_MakeRecord, regResult, nResultCol,
1164 r1, pDest->zAffSdst, nResultCol);
1165 sqlite3ExprCacheAffinityChange(pParse, regResult, nResultCol);
1166 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, r1, regResult, nResultCol);
1167 sqlite3ReleaseTempReg(pParse, r1);
1169 break;
1172 /* If any row exist in the result set, record that fact and abort.
1174 case SRT_Exists: {
1175 sqlite3VdbeAddOp2(v, OP_Integer, 1, iParm);
1176 /* The LIMIT clause will terminate the loop for us */
1177 break;
1180 /* If this is a scalar select that is part of an expression, then
1181 ** store the results in the appropriate memory cell or array of
1182 ** memory cells and break out of the scan loop.
1184 case SRT_Mem: {
1185 if( pSort ){
1186 assert( nResultCol<=pDest->nSdst );
1187 pushOntoSorter(
1188 pParse, pSort, p, regResult, regOrig, nResultCol, nPrefixReg);
1189 }else{
1190 assert( nResultCol==pDest->nSdst );
1191 assert( regResult==iParm );
1192 /* The LIMIT clause will jump out of the loop for us */
1194 break;
1196 #endif /* #ifndef SQLITE_OMIT_SUBQUERY */
1198 case SRT_Coroutine: /* Send data to a co-routine */
1199 case SRT_Output: { /* Return the results */
1200 testcase( eDest==SRT_Coroutine );
1201 testcase( eDest==SRT_Output );
1202 if( pSort ){
1203 pushOntoSorter(pParse, pSort, p, regResult, regOrig, nResultCol,
1204 nPrefixReg);
1205 }else if( eDest==SRT_Coroutine ){
1206 sqlite3VdbeAddOp1(v, OP_Yield, pDest->iSDParm);
1207 }else{
1208 sqlite3VdbeAddOp2(v, OP_ResultRow, regResult, nResultCol);
1209 sqlite3ExprCacheAffinityChange(pParse, regResult, nResultCol);
1211 break;
1214 #ifndef SQLITE_OMIT_CTE
1215 /* Write the results into a priority queue that is order according to
1216 ** pDest->pOrderBy (in pSO). pDest->iSDParm (in iParm) is the cursor for an
1217 ** index with pSO->nExpr+2 columns. Build a key using pSO for the first
1218 ** pSO->nExpr columns, then make sure all keys are unique by adding a
1219 ** final OP_Sequence column. The last column is the record as a blob.
1221 case SRT_DistQueue:
1222 case SRT_Queue: {
1223 int nKey;
1224 int r1, r2, r3;
1225 int addrTest = 0;
1226 ExprList *pSO;
1227 pSO = pDest->pOrderBy;
1228 assert( pSO );
1229 nKey = pSO->nExpr;
1230 r1 = sqlite3GetTempReg(pParse);
1231 r2 = sqlite3GetTempRange(pParse, nKey+2);
1232 r3 = r2+nKey+1;
1233 if( eDest==SRT_DistQueue ){
1234 /* If the destination is DistQueue, then cursor (iParm+1) is open
1235 ** on a second ephemeral index that holds all values every previously
1236 ** added to the queue. */
1237 addrTest = sqlite3VdbeAddOp4Int(v, OP_Found, iParm+1, 0,
1238 regResult, nResultCol);
1239 VdbeCoverage(v);
1241 sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nResultCol, r3);
1242 if( eDest==SRT_DistQueue ){
1243 sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm+1, r3);
1244 sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT);
1246 for(i=0; i<nKey; i++){
1247 sqlite3VdbeAddOp2(v, OP_SCopy,
1248 regResult + pSO->a[i].u.x.iOrderByCol - 1,
1249 r2+i);
1251 sqlite3VdbeAddOp2(v, OP_Sequence, iParm, r2+nKey);
1252 sqlite3VdbeAddOp3(v, OP_MakeRecord, r2, nKey+2, r1);
1253 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, r1, r2, nKey+2);
1254 if( addrTest ) sqlite3VdbeJumpHere(v, addrTest);
1255 sqlite3ReleaseTempReg(pParse, r1);
1256 sqlite3ReleaseTempRange(pParse, r2, nKey+2);
1257 break;
1259 #endif /* SQLITE_OMIT_CTE */
1263 #if !defined(SQLITE_OMIT_TRIGGER)
1264 /* Discard the results. This is used for SELECT statements inside
1265 ** the body of a TRIGGER. The purpose of such selects is to call
1266 ** user-defined functions that have side effects. We do not care
1267 ** about the actual results of the select.
1269 default: {
1270 assert( eDest==SRT_Discard );
1271 break;
1273 #endif
1276 /* Jump to the end of the loop if the LIMIT is reached. Except, if
1277 ** there is a sorter, in which case the sorter has already limited
1278 ** the output for us.
1280 if( pSort==0 && p->iLimit ){
1281 sqlite3VdbeAddOp2(v, OP_DecrJumpZero, p->iLimit, iBreak); VdbeCoverage(v);
1286 ** Allocate a KeyInfo object sufficient for an index of N key columns and
1287 ** X extra columns.
1289 KeyInfo *sqlite3KeyInfoAlloc(sqlite3 *db, int N, int X){
1290 int nExtra = (N+X)*(sizeof(CollSeq*)+1) - sizeof(CollSeq*);
1291 KeyInfo *p = sqlite3DbMallocRawNN(db, sizeof(KeyInfo) + nExtra);
1292 if( p ){
1293 p->aSortOrder = (u8*)&p->aColl[N+X];
1294 p->nKeyField = (u16)N;
1295 p->nAllField = (u16)(N+X);
1296 p->enc = ENC(db);
1297 p->db = db;
1298 p->nRef = 1;
1299 memset(&p[1], 0, nExtra);
1300 }else{
1301 sqlite3OomFault(db);
1303 return p;
1307 ** Deallocate a KeyInfo object
1309 void sqlite3KeyInfoUnref(KeyInfo *p){
1310 if( p ){
1311 assert( p->nRef>0 );
1312 p->nRef--;
1313 if( p->nRef==0 ) sqlite3DbFreeNN(p->db, p);
1318 ** Make a new pointer to a KeyInfo object
1320 KeyInfo *sqlite3KeyInfoRef(KeyInfo *p){
1321 if( p ){
1322 assert( p->nRef>0 );
1323 p->nRef++;
1325 return p;
1328 #ifdef SQLITE_DEBUG
1330 ** Return TRUE if a KeyInfo object can be change. The KeyInfo object
1331 ** can only be changed if this is just a single reference to the object.
1333 ** This routine is used only inside of assert() statements.
1335 int sqlite3KeyInfoIsWriteable(KeyInfo *p){ return p->nRef==1; }
1336 #endif /* SQLITE_DEBUG */
1339 ** Given an expression list, generate a KeyInfo structure that records
1340 ** the collating sequence for each expression in that expression list.
1342 ** If the ExprList is an ORDER BY or GROUP BY clause then the resulting
1343 ** KeyInfo structure is appropriate for initializing a virtual index to
1344 ** implement that clause. If the ExprList is the result set of a SELECT
1345 ** then the KeyInfo structure is appropriate for initializing a virtual
1346 ** index to implement a DISTINCT test.
1348 ** Space to hold the KeyInfo structure is obtained from malloc. The calling
1349 ** function is responsible for seeing that this structure is eventually
1350 ** freed.
1352 KeyInfo *sqlite3KeyInfoFromExprList(
1353 Parse *pParse, /* Parsing context */
1354 ExprList *pList, /* Form the KeyInfo object from this ExprList */
1355 int iStart, /* Begin with this column of pList */
1356 int nExtra /* Add this many extra columns to the end */
1358 int nExpr;
1359 KeyInfo *pInfo;
1360 struct ExprList_item *pItem;
1361 sqlite3 *db = pParse->db;
1362 int i;
1364 nExpr = pList->nExpr;
1365 pInfo = sqlite3KeyInfoAlloc(db, nExpr-iStart, nExtra+1);
1366 if( pInfo ){
1367 assert( sqlite3KeyInfoIsWriteable(pInfo) );
1368 for(i=iStart, pItem=pList->a+iStart; i<nExpr; i++, pItem++){
1369 pInfo->aColl[i-iStart] = sqlite3ExprNNCollSeq(pParse, pItem->pExpr);
1370 pInfo->aSortOrder[i-iStart] = pItem->sortOrder;
1373 return pInfo;
1377 ** Name of the connection operator, used for error messages.
1379 static const char *selectOpName(int id){
1380 char *z;
1381 switch( id ){
1382 case TK_ALL: z = "UNION ALL"; break;
1383 case TK_INTERSECT: z = "INTERSECT"; break;
1384 case TK_EXCEPT: z = "EXCEPT"; break;
1385 default: z = "UNION"; break;
1387 return z;
1390 #ifndef SQLITE_OMIT_EXPLAIN
1392 ** Unless an "EXPLAIN QUERY PLAN" command is being processed, this function
1393 ** is a no-op. Otherwise, it adds a single row of output to the EQP result,
1394 ** where the caption is of the form:
1396 ** "USE TEMP B-TREE FOR xxx"
1398 ** where xxx is one of "DISTINCT", "ORDER BY" or "GROUP BY". Exactly which
1399 ** is determined by the zUsage argument.
1401 static void explainTempTable(Parse *pParse, const char *zUsage){
1402 ExplainQueryPlan((pParse, 0, "USE TEMP B-TREE FOR %s", zUsage));
1406 ** Assign expression b to lvalue a. A second, no-op, version of this macro
1407 ** is provided when SQLITE_OMIT_EXPLAIN is defined. This allows the code
1408 ** in sqlite3Select() to assign values to structure member variables that
1409 ** only exist if SQLITE_OMIT_EXPLAIN is not defined without polluting the
1410 ** code with #ifndef directives.
1412 # define explainSetInteger(a, b) a = b
1414 #else
1415 /* No-op versions of the explainXXX() functions and macros. */
1416 # define explainTempTable(y,z)
1417 # define explainSetInteger(y,z)
1418 #endif
1422 ** If the inner loop was generated using a non-null pOrderBy argument,
1423 ** then the results were placed in a sorter. After the loop is terminated
1424 ** we need to run the sorter and output the results. The following
1425 ** routine generates the code needed to do that.
1427 static void generateSortTail(
1428 Parse *pParse, /* Parsing context */
1429 Select *p, /* The SELECT statement */
1430 SortCtx *pSort, /* Information on the ORDER BY clause */
1431 int nColumn, /* Number of columns of data */
1432 SelectDest *pDest /* Write the sorted results here */
1434 Vdbe *v = pParse->pVdbe; /* The prepared statement */
1435 int addrBreak = pSort->labelDone; /* Jump here to exit loop */
1436 int addrContinue = sqlite3VdbeMakeLabel(v); /* Jump here for next cycle */
1437 int addr; /* Top of output loop. Jump for Next. */
1438 int addrOnce = 0;
1439 int iTab;
1440 ExprList *pOrderBy = pSort->pOrderBy;
1441 int eDest = pDest->eDest;
1442 int iParm = pDest->iSDParm;
1443 int regRow;
1444 int regRowid;
1445 int iCol;
1446 int nKey; /* Number of key columns in sorter record */
1447 int iSortTab; /* Sorter cursor to read from */
1448 int i;
1449 int bSeq; /* True if sorter record includes seq. no. */
1450 int nRefKey = 0;
1451 struct ExprList_item *aOutEx = p->pEList->a;
1453 assert( addrBreak<0 );
1454 if( pSort->labelBkOut ){
1455 sqlite3VdbeAddOp2(v, OP_Gosub, pSort->regReturn, pSort->labelBkOut);
1456 sqlite3VdbeGoto(v, addrBreak);
1457 sqlite3VdbeResolveLabel(v, pSort->labelBkOut);
1460 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
1461 /* Open any cursors needed for sorter-reference expressions */
1462 for(i=0; i<pSort->nDefer; i++){
1463 Table *pTab = pSort->aDefer[i].pTab;
1464 int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
1465 sqlite3OpenTable(pParse, pSort->aDefer[i].iCsr, iDb, pTab, OP_OpenRead);
1466 nRefKey = MAX(nRefKey, pSort->aDefer[i].nKey);
1468 #endif
1470 iTab = pSort->iECursor;
1471 if( eDest==SRT_Output || eDest==SRT_Coroutine || eDest==SRT_Mem ){
1472 regRowid = 0;
1473 regRow = pDest->iSdst;
1474 }else{
1475 regRowid = sqlite3GetTempReg(pParse);
1476 regRow = sqlite3GetTempRange(pParse, nColumn);
1478 nKey = pOrderBy->nExpr - pSort->nOBSat;
1479 if( pSort->sortFlags & SORTFLAG_UseSorter ){
1480 int regSortOut = ++pParse->nMem;
1481 iSortTab = pParse->nTab++;
1482 if( pSort->labelBkOut ){
1483 addrOnce = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v);
1485 sqlite3VdbeAddOp3(v, OP_OpenPseudo, iSortTab, regSortOut,
1486 nKey+1+nColumn+nRefKey);
1487 if( addrOnce ) sqlite3VdbeJumpHere(v, addrOnce);
1488 addr = 1 + sqlite3VdbeAddOp2(v, OP_SorterSort, iTab, addrBreak);
1489 VdbeCoverage(v);
1490 codeOffset(v, p->iOffset, addrContinue);
1491 sqlite3VdbeAddOp3(v, OP_SorterData, iTab, regSortOut, iSortTab);
1492 bSeq = 0;
1493 }else{
1494 addr = 1 + sqlite3VdbeAddOp2(v, OP_Sort, iTab, addrBreak); VdbeCoverage(v);
1495 codeOffset(v, p->iOffset, addrContinue);
1496 iSortTab = iTab;
1497 bSeq = 1;
1499 for(i=0, iCol=nKey+bSeq-1; i<nColumn; i++){
1500 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
1501 if( aOutEx[i].bSorterRef ) continue;
1502 #endif
1503 if( aOutEx[i].u.x.iOrderByCol==0 ) iCol++;
1505 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
1506 if( pSort->nDefer ){
1507 int iKey = iCol+1;
1508 int regKey = sqlite3GetTempRange(pParse, nRefKey);
1510 for(i=0; i<pSort->nDefer; i++){
1511 int iCsr = pSort->aDefer[i].iCsr;
1512 Table *pTab = pSort->aDefer[i].pTab;
1513 int nKey = pSort->aDefer[i].nKey;
1515 sqlite3VdbeAddOp1(v, OP_NullRow, iCsr);
1516 if( HasRowid(pTab) ){
1517 sqlite3VdbeAddOp3(v, OP_Column, iSortTab, iKey++, regKey);
1518 sqlite3VdbeAddOp3(v, OP_SeekRowid, iCsr,
1519 sqlite3VdbeCurrentAddr(v)+1, regKey);
1520 }else{
1521 int k;
1522 int iJmp;
1523 assert( sqlite3PrimaryKeyIndex(pTab)->nKeyCol==nKey );
1524 for(k=0; k<nKey; k++){
1525 sqlite3VdbeAddOp3(v, OP_Column, iSortTab, iKey++, regKey+k);
1527 iJmp = sqlite3VdbeCurrentAddr(v);
1528 sqlite3VdbeAddOp4Int(v, OP_SeekGE, iCsr, iJmp+2, regKey, nKey);
1529 sqlite3VdbeAddOp4Int(v, OP_IdxLE, iCsr, iJmp+3, regKey, nKey);
1530 sqlite3VdbeAddOp1(v, OP_NullRow, iCsr);
1533 sqlite3ReleaseTempRange(pParse, regKey, nRefKey);
1535 #endif
1536 for(i=nColumn-1; i>=0; i--){
1537 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
1538 if( aOutEx[i].bSorterRef ){
1539 sqlite3ExprCode(pParse, aOutEx[i].pExpr, regRow+i);
1540 }else
1541 #endif
1543 int iRead;
1544 if( aOutEx[i].u.x.iOrderByCol ){
1545 iRead = aOutEx[i].u.x.iOrderByCol-1;
1546 }else{
1547 iRead = iCol--;
1549 sqlite3VdbeAddOp3(v, OP_Column, iSortTab, iRead, regRow+i);
1550 VdbeComment((v, "%s", aOutEx[i].zName?aOutEx[i].zName : aOutEx[i].zSpan));
1553 switch( eDest ){
1554 case SRT_Table:
1555 case SRT_EphemTab: {
1556 sqlite3VdbeAddOp2(v, OP_NewRowid, iParm, regRowid);
1557 sqlite3VdbeAddOp3(v, OP_Insert, iParm, regRow, regRowid);
1558 sqlite3VdbeChangeP5(v, OPFLAG_APPEND);
1559 break;
1561 #ifndef SQLITE_OMIT_SUBQUERY
1562 case SRT_Set: {
1563 assert( nColumn==sqlite3Strlen30(pDest->zAffSdst) );
1564 sqlite3VdbeAddOp4(v, OP_MakeRecord, regRow, nColumn, regRowid,
1565 pDest->zAffSdst, nColumn);
1566 sqlite3ExprCacheAffinityChange(pParse, regRow, nColumn);
1567 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, regRowid, regRow, nColumn);
1568 break;
1570 case SRT_Mem: {
1571 /* The LIMIT clause will terminate the loop for us */
1572 break;
1574 #endif
1575 default: {
1576 assert( eDest==SRT_Output || eDest==SRT_Coroutine );
1577 testcase( eDest==SRT_Output );
1578 testcase( eDest==SRT_Coroutine );
1579 if( eDest==SRT_Output ){
1580 sqlite3VdbeAddOp2(v, OP_ResultRow, pDest->iSdst, nColumn);
1581 sqlite3ExprCacheAffinityChange(pParse, pDest->iSdst, nColumn);
1582 }else{
1583 sqlite3VdbeAddOp1(v, OP_Yield, pDest->iSDParm);
1585 break;
1588 if( regRowid ){
1589 if( eDest==SRT_Set ){
1590 sqlite3ReleaseTempRange(pParse, regRow, nColumn);
1591 }else{
1592 sqlite3ReleaseTempReg(pParse, regRow);
1594 sqlite3ReleaseTempReg(pParse, regRowid);
1596 /* The bottom of the loop
1598 sqlite3VdbeResolveLabel(v, addrContinue);
1599 if( pSort->sortFlags & SORTFLAG_UseSorter ){
1600 sqlite3VdbeAddOp2(v, OP_SorterNext, iTab, addr); VdbeCoverage(v);
1601 }else{
1602 sqlite3VdbeAddOp2(v, OP_Next, iTab, addr); VdbeCoverage(v);
1604 if( pSort->regReturn ) sqlite3VdbeAddOp1(v, OP_Return, pSort->regReturn);
1605 sqlite3VdbeResolveLabel(v, addrBreak);
1609 ** Return a pointer to a string containing the 'declaration type' of the
1610 ** expression pExpr. The string may be treated as static by the caller.
1612 ** Also try to estimate the size of the returned value and return that
1613 ** result in *pEstWidth.
1615 ** The declaration type is the exact datatype definition extracted from the
1616 ** original CREATE TABLE statement if the expression is a column. The
1617 ** declaration type for a ROWID field is INTEGER. Exactly when an expression
1618 ** is considered a column can be complex in the presence of subqueries. The
1619 ** result-set expression in all of the following SELECT statements is
1620 ** considered a column by this function.
1622 ** SELECT col FROM tbl;
1623 ** SELECT (SELECT col FROM tbl;
1624 ** SELECT (SELECT col FROM tbl);
1625 ** SELECT abc FROM (SELECT col AS abc FROM tbl);
1627 ** The declaration type for any expression other than a column is NULL.
1629 ** This routine has either 3 or 6 parameters depending on whether or not
1630 ** the SQLITE_ENABLE_COLUMN_METADATA compile-time option is used.
1632 #ifdef SQLITE_ENABLE_COLUMN_METADATA
1633 # define columnType(A,B,C,D,E) columnTypeImpl(A,B,C,D,E)
1634 #else /* if !defined(SQLITE_ENABLE_COLUMN_METADATA) */
1635 # define columnType(A,B,C,D,E) columnTypeImpl(A,B)
1636 #endif
1637 static const char *columnTypeImpl(
1638 NameContext *pNC,
1639 #ifndef SQLITE_ENABLE_COLUMN_METADATA
1640 Expr *pExpr
1641 #else
1642 Expr *pExpr,
1643 const char **pzOrigDb,
1644 const char **pzOrigTab,
1645 const char **pzOrigCol
1646 #endif
1648 char const *zType = 0;
1649 int j;
1650 #ifdef SQLITE_ENABLE_COLUMN_METADATA
1651 char const *zOrigDb = 0;
1652 char const *zOrigTab = 0;
1653 char const *zOrigCol = 0;
1654 #endif
1656 assert( pExpr!=0 );
1657 assert( pNC->pSrcList!=0 );
1658 assert( pExpr->op!=TK_AGG_COLUMN ); /* This routine runes before aggregates
1659 ** are processed */
1660 switch( pExpr->op ){
1661 case TK_COLUMN: {
1662 /* The expression is a column. Locate the table the column is being
1663 ** extracted from in NameContext.pSrcList. This table may be real
1664 ** database table or a subquery.
1666 Table *pTab = 0; /* Table structure column is extracted from */
1667 Select *pS = 0; /* Select the column is extracted from */
1668 int iCol = pExpr->iColumn; /* Index of column in pTab */
1669 while( pNC && !pTab ){
1670 SrcList *pTabList = pNC->pSrcList;
1671 for(j=0;j<pTabList->nSrc && pTabList->a[j].iCursor!=pExpr->iTable;j++);
1672 if( j<pTabList->nSrc ){
1673 pTab = pTabList->a[j].pTab;
1674 pS = pTabList->a[j].pSelect;
1675 }else{
1676 pNC = pNC->pNext;
1680 if( pTab==0 ){
1681 /* At one time, code such as "SELECT new.x" within a trigger would
1682 ** cause this condition to run. Since then, we have restructured how
1683 ** trigger code is generated and so this condition is no longer
1684 ** possible. However, it can still be true for statements like
1685 ** the following:
1687 ** CREATE TABLE t1(col INTEGER);
1688 ** SELECT (SELECT t1.col) FROM FROM t1;
1690 ** when columnType() is called on the expression "t1.col" in the
1691 ** sub-select. In this case, set the column type to NULL, even
1692 ** though it should really be "INTEGER".
1694 ** This is not a problem, as the column type of "t1.col" is never
1695 ** used. When columnType() is called on the expression
1696 ** "(SELECT t1.col)", the correct type is returned (see the TK_SELECT
1697 ** branch below. */
1698 break;
1701 assert( pTab && pExpr->pTab==pTab );
1702 if( pS ){
1703 /* The "table" is actually a sub-select or a view in the FROM clause
1704 ** of the SELECT statement. Return the declaration type and origin
1705 ** data for the result-set column of the sub-select.
1707 if( iCol>=0 && iCol<pS->pEList->nExpr ){
1708 /* If iCol is less than zero, then the expression requests the
1709 ** rowid of the sub-select or view. This expression is legal (see
1710 ** test case misc2.2.2) - it always evaluates to NULL.
1712 NameContext sNC;
1713 Expr *p = pS->pEList->a[iCol].pExpr;
1714 sNC.pSrcList = pS->pSrc;
1715 sNC.pNext = pNC;
1716 sNC.pParse = pNC->pParse;
1717 zType = columnType(&sNC, p,&zOrigDb,&zOrigTab,&zOrigCol);
1719 }else{
1720 /* A real table or a CTE table */
1721 assert( !pS );
1722 #ifdef SQLITE_ENABLE_COLUMN_METADATA
1723 if( iCol<0 ) iCol = pTab->iPKey;
1724 assert( iCol==XN_ROWID || (iCol>=0 && iCol<pTab->nCol) );
1725 if( iCol<0 ){
1726 zType = "INTEGER";
1727 zOrigCol = "rowid";
1728 }else{
1729 zOrigCol = pTab->aCol[iCol].zName;
1730 zType = sqlite3ColumnType(&pTab->aCol[iCol],0);
1732 zOrigTab = pTab->zName;
1733 if( pNC->pParse && pTab->pSchema ){
1734 int iDb = sqlite3SchemaToIndex(pNC->pParse->db, pTab->pSchema);
1735 zOrigDb = pNC->pParse->db->aDb[iDb].zDbSName;
1737 #else
1738 assert( iCol==XN_ROWID || (iCol>=0 && iCol<pTab->nCol) );
1739 if( iCol<0 ){
1740 zType = "INTEGER";
1741 }else{
1742 zType = sqlite3ColumnType(&pTab->aCol[iCol],0);
1744 #endif
1746 break;
1748 #ifndef SQLITE_OMIT_SUBQUERY
1749 case TK_SELECT: {
1750 /* The expression is a sub-select. Return the declaration type and
1751 ** origin info for the single column in the result set of the SELECT
1752 ** statement.
1754 NameContext sNC;
1755 Select *pS = pExpr->x.pSelect;
1756 Expr *p = pS->pEList->a[0].pExpr;
1757 assert( ExprHasProperty(pExpr, EP_xIsSelect) );
1758 sNC.pSrcList = pS->pSrc;
1759 sNC.pNext = pNC;
1760 sNC.pParse = pNC->pParse;
1761 zType = columnType(&sNC, p, &zOrigDb, &zOrigTab, &zOrigCol);
1762 break;
1764 #endif
1767 #ifdef SQLITE_ENABLE_COLUMN_METADATA
1768 if( pzOrigDb ){
1769 assert( pzOrigTab && pzOrigCol );
1770 *pzOrigDb = zOrigDb;
1771 *pzOrigTab = zOrigTab;
1772 *pzOrigCol = zOrigCol;
1774 #endif
1775 return zType;
1779 ** Generate code that will tell the VDBE the declaration types of columns
1780 ** in the result set.
1782 static void generateColumnTypes(
1783 Parse *pParse, /* Parser context */
1784 SrcList *pTabList, /* List of tables */
1785 ExprList *pEList /* Expressions defining the result set */
1787 #ifndef SQLITE_OMIT_DECLTYPE
1788 Vdbe *v = pParse->pVdbe;
1789 int i;
1790 NameContext sNC;
1791 sNC.pSrcList = pTabList;
1792 sNC.pParse = pParse;
1793 sNC.pNext = 0;
1794 for(i=0; i<pEList->nExpr; i++){
1795 Expr *p = pEList->a[i].pExpr;
1796 const char *zType;
1797 #ifdef SQLITE_ENABLE_COLUMN_METADATA
1798 const char *zOrigDb = 0;
1799 const char *zOrigTab = 0;
1800 const char *zOrigCol = 0;
1801 zType = columnType(&sNC, p, &zOrigDb, &zOrigTab, &zOrigCol);
1803 /* The vdbe must make its own copy of the column-type and other
1804 ** column specific strings, in case the schema is reset before this
1805 ** virtual machine is deleted.
1807 sqlite3VdbeSetColName(v, i, COLNAME_DATABASE, zOrigDb, SQLITE_TRANSIENT);
1808 sqlite3VdbeSetColName(v, i, COLNAME_TABLE, zOrigTab, SQLITE_TRANSIENT);
1809 sqlite3VdbeSetColName(v, i, COLNAME_COLUMN, zOrigCol, SQLITE_TRANSIENT);
1810 #else
1811 zType = columnType(&sNC, p, 0, 0, 0);
1812 #endif
1813 sqlite3VdbeSetColName(v, i, COLNAME_DECLTYPE, zType, SQLITE_TRANSIENT);
1815 #endif /* !defined(SQLITE_OMIT_DECLTYPE) */
1820 ** Compute the column names for a SELECT statement.
1822 ** The only guarantee that SQLite makes about column names is that if the
1823 ** column has an AS clause assigning it a name, that will be the name used.
1824 ** That is the only documented guarantee. However, countless applications
1825 ** developed over the years have made baseless assumptions about column names
1826 ** and will break if those assumptions changes. Hence, use extreme caution
1827 ** when modifying this routine to avoid breaking legacy.
1829 ** See Also: sqlite3ColumnsFromExprList()
1831 ** The PRAGMA short_column_names and PRAGMA full_column_names settings are
1832 ** deprecated. The default setting is short=ON, full=OFF. 99.9% of all
1833 ** applications should operate this way. Nevertheless, we need to support the
1834 ** other modes for legacy:
1836 ** short=OFF, full=OFF: Column name is the text of the expression has it
1837 ** originally appears in the SELECT statement. In
1838 ** other words, the zSpan of the result expression.
1840 ** short=ON, full=OFF: (This is the default setting). If the result
1841 ** refers directly to a table column, then the
1842 ** result column name is just the table column
1843 ** name: COLUMN. Otherwise use zSpan.
1845 ** full=ON, short=ANY: If the result refers directly to a table column,
1846 ** then the result column name with the table name
1847 ** prefix, ex: TABLE.COLUMN. Otherwise use zSpan.
1849 static void generateColumnNames(
1850 Parse *pParse, /* Parser context */
1851 Select *pSelect /* Generate column names for this SELECT statement */
1853 Vdbe *v = pParse->pVdbe;
1854 int i;
1855 Table *pTab;
1856 SrcList *pTabList;
1857 ExprList *pEList;
1858 sqlite3 *db = pParse->db;
1859 int fullName; /* TABLE.COLUMN if no AS clause and is a direct table ref */
1860 int srcName; /* COLUMN or TABLE.COLUMN if no AS clause and is direct */
1862 #ifndef SQLITE_OMIT_EXPLAIN
1863 /* If this is an EXPLAIN, skip this step */
1864 if( pParse->explain ){
1865 return;
1867 #endif
1869 if( pParse->colNamesSet ) return;
1870 /* Column names are determined by the left-most term of a compound select */
1871 while( pSelect->pPrior ) pSelect = pSelect->pPrior;
1872 SELECTTRACE(1,pParse,pSelect,("generating column names\n"));
1873 pTabList = pSelect->pSrc;
1874 pEList = pSelect->pEList;
1875 assert( v!=0 );
1876 assert( pTabList!=0 );
1877 pParse->colNamesSet = 1;
1878 fullName = (db->flags & SQLITE_FullColNames)!=0;
1879 srcName = (db->flags & SQLITE_ShortColNames)!=0 || fullName;
1880 sqlite3VdbeSetNumCols(v, pEList->nExpr);
1881 for(i=0; i<pEList->nExpr; i++){
1882 Expr *p = pEList->a[i].pExpr;
1884 assert( p!=0 );
1885 assert( p->op!=TK_AGG_COLUMN ); /* Agg processing has not run yet */
1886 assert( p->op!=TK_COLUMN || p->pTab!=0 ); /* Covering idx not yet coded */
1887 if( pEList->a[i].zName ){
1888 /* An AS clause always takes first priority */
1889 char *zName = pEList->a[i].zName;
1890 sqlite3VdbeSetColName(v, i, COLNAME_NAME, zName, SQLITE_TRANSIENT);
1891 }else if( srcName && p->op==TK_COLUMN ){
1892 char *zCol;
1893 int iCol = p->iColumn;
1894 pTab = p->pTab;
1895 assert( pTab!=0 );
1896 if( iCol<0 ) iCol = pTab->iPKey;
1897 assert( iCol==-1 || (iCol>=0 && iCol<pTab->nCol) );
1898 if( iCol<0 ){
1899 zCol = "rowid";
1900 }else{
1901 zCol = pTab->aCol[iCol].zName;
1903 if( fullName ){
1904 char *zName = 0;
1905 zName = sqlite3MPrintf(db, "%s.%s", pTab->zName, zCol);
1906 sqlite3VdbeSetColName(v, i, COLNAME_NAME, zName, SQLITE_DYNAMIC);
1907 }else{
1908 sqlite3VdbeSetColName(v, i, COLNAME_NAME, zCol, SQLITE_TRANSIENT);
1910 }else{
1911 const char *z = pEList->a[i].zSpan;
1912 z = z==0 ? sqlite3MPrintf(db, "column%d", i+1) : sqlite3DbStrDup(db, z);
1913 sqlite3VdbeSetColName(v, i, COLNAME_NAME, z, SQLITE_DYNAMIC);
1916 generateColumnTypes(pParse, pTabList, pEList);
1920 ** Given an expression list (which is really the list of expressions
1921 ** that form the result set of a SELECT statement) compute appropriate
1922 ** column names for a table that would hold the expression list.
1924 ** All column names will be unique.
1926 ** Only the column names are computed. Column.zType, Column.zColl,
1927 ** and other fields of Column are zeroed.
1929 ** Return SQLITE_OK on success. If a memory allocation error occurs,
1930 ** store NULL in *paCol and 0 in *pnCol and return SQLITE_NOMEM.
1932 ** The only guarantee that SQLite makes about column names is that if the
1933 ** column has an AS clause assigning it a name, that will be the name used.
1934 ** That is the only documented guarantee. However, countless applications
1935 ** developed over the years have made baseless assumptions about column names
1936 ** and will break if those assumptions changes. Hence, use extreme caution
1937 ** when modifying this routine to avoid breaking legacy.
1939 ** See Also: generateColumnNames()
1941 int sqlite3ColumnsFromExprList(
1942 Parse *pParse, /* Parsing context */
1943 ExprList *pEList, /* Expr list from which to derive column names */
1944 i16 *pnCol, /* Write the number of columns here */
1945 Column **paCol /* Write the new column list here */
1947 sqlite3 *db = pParse->db; /* Database connection */
1948 int i, j; /* Loop counters */
1949 u32 cnt; /* Index added to make the name unique */
1950 Column *aCol, *pCol; /* For looping over result columns */
1951 int nCol; /* Number of columns in the result set */
1952 char *zName; /* Column name */
1953 int nName; /* Size of name in zName[] */
1954 Hash ht; /* Hash table of column names */
1956 sqlite3HashInit(&ht);
1957 if( pEList ){
1958 nCol = pEList->nExpr;
1959 aCol = sqlite3DbMallocZero(db, sizeof(aCol[0])*nCol);
1960 testcase( aCol==0 );
1961 if( nCol>32767 ) nCol = 32767;
1962 }else{
1963 nCol = 0;
1964 aCol = 0;
1966 assert( nCol==(i16)nCol );
1967 *pnCol = nCol;
1968 *paCol = aCol;
1970 for(i=0, pCol=aCol; i<nCol && !db->mallocFailed; i++, pCol++){
1971 /* Get an appropriate name for the column
1973 if( (zName = pEList->a[i].zName)!=0 ){
1974 /* If the column contains an "AS <name>" phrase, use <name> as the name */
1975 }else{
1976 Expr *pColExpr = sqlite3ExprSkipCollate(pEList->a[i].pExpr);
1977 while( pColExpr->op==TK_DOT ){
1978 pColExpr = pColExpr->pRight;
1979 assert( pColExpr!=0 );
1981 assert( pColExpr->op!=TK_AGG_COLUMN );
1982 if( pColExpr->op==TK_COLUMN ){
1983 /* For columns use the column name name */
1984 int iCol = pColExpr->iColumn;
1985 Table *pTab = pColExpr->pTab;
1986 assert( pTab!=0 );
1987 if( iCol<0 ) iCol = pTab->iPKey;
1988 zName = iCol>=0 ? pTab->aCol[iCol].zName : "rowid";
1989 }else if( pColExpr->op==TK_ID ){
1990 assert( !ExprHasProperty(pColExpr, EP_IntValue) );
1991 zName = pColExpr->u.zToken;
1992 }else{
1993 /* Use the original text of the column expression as its name */
1994 zName = pEList->a[i].zSpan;
1997 if( zName ){
1998 zName = sqlite3DbStrDup(db, zName);
1999 }else{
2000 zName = sqlite3MPrintf(db,"column%d",i+1);
2003 /* Make sure the column name is unique. If the name is not unique,
2004 ** append an integer to the name so that it becomes unique.
2006 cnt = 0;
2007 while( zName && sqlite3HashFind(&ht, zName)!=0 ){
2008 nName = sqlite3Strlen30(zName);
2009 if( nName>0 ){
2010 for(j=nName-1; j>0 && sqlite3Isdigit(zName[j]); j--){}
2011 if( zName[j]==':' ) nName = j;
2013 zName = sqlite3MPrintf(db, "%.*z:%u", nName, zName, ++cnt);
2014 if( cnt>3 ) sqlite3_randomness(sizeof(cnt), &cnt);
2016 pCol->zName = zName;
2017 sqlite3ColumnPropertiesFromName(0, pCol);
2018 if( zName && sqlite3HashInsert(&ht, zName, pCol)==pCol ){
2019 sqlite3OomFault(db);
2022 sqlite3HashClear(&ht);
2023 if( db->mallocFailed ){
2024 for(j=0; j<i; j++){
2025 sqlite3DbFree(db, aCol[j].zName);
2027 sqlite3DbFree(db, aCol);
2028 *paCol = 0;
2029 *pnCol = 0;
2030 return SQLITE_NOMEM_BKPT;
2032 return SQLITE_OK;
2036 ** Add type and collation information to a column list based on
2037 ** a SELECT statement.
2039 ** The column list presumably came from selectColumnNamesFromExprList().
2040 ** The column list has only names, not types or collations. This
2041 ** routine goes through and adds the types and collations.
2043 ** This routine requires that all identifiers in the SELECT
2044 ** statement be resolved.
2046 void sqlite3SelectAddColumnTypeAndCollation(
2047 Parse *pParse, /* Parsing contexts */
2048 Table *pTab, /* Add column type information to this table */
2049 Select *pSelect /* SELECT used to determine types and collations */
2051 sqlite3 *db = pParse->db;
2052 NameContext sNC;
2053 Column *pCol;
2054 CollSeq *pColl;
2055 int i;
2056 Expr *p;
2057 struct ExprList_item *a;
2059 assert( pSelect!=0 );
2060 assert( (pSelect->selFlags & SF_Resolved)!=0 );
2061 assert( pTab->nCol==pSelect->pEList->nExpr || db->mallocFailed );
2062 if( db->mallocFailed ) return;
2063 memset(&sNC, 0, sizeof(sNC));
2064 sNC.pSrcList = pSelect->pSrc;
2065 a = pSelect->pEList->a;
2066 for(i=0, pCol=pTab->aCol; i<pTab->nCol; i++, pCol++){
2067 const char *zType;
2068 int n, m;
2069 p = a[i].pExpr;
2070 zType = columnType(&sNC, p, 0, 0, 0);
2071 /* pCol->szEst = ... // Column size est for SELECT tables never used */
2072 pCol->affinity = sqlite3ExprAffinity(p);
2073 if( zType ){
2074 m = sqlite3Strlen30(zType);
2075 n = sqlite3Strlen30(pCol->zName);
2076 pCol->zName = sqlite3DbReallocOrFree(db, pCol->zName, n+m+2);
2077 if( pCol->zName ){
2078 memcpy(&pCol->zName[n+1], zType, m+1);
2079 pCol->colFlags |= COLFLAG_HASTYPE;
2082 if( pCol->affinity==0 ) pCol->affinity = SQLITE_AFF_BLOB;
2083 pColl = sqlite3ExprCollSeq(pParse, p);
2084 if( pColl && pCol->zColl==0 ){
2085 pCol->zColl = sqlite3DbStrDup(db, pColl->zName);
2088 pTab->szTabRow = 1; /* Any non-zero value works */
2092 ** Given a SELECT statement, generate a Table structure that describes
2093 ** the result set of that SELECT.
2095 Table *sqlite3ResultSetOfSelect(Parse *pParse, Select *pSelect){
2096 Table *pTab;
2097 sqlite3 *db = pParse->db;
2098 int savedFlags;
2100 savedFlags = db->flags;
2101 db->flags &= ~SQLITE_FullColNames;
2102 db->flags |= SQLITE_ShortColNames;
2103 sqlite3SelectPrep(pParse, pSelect, 0);
2104 if( pParse->nErr ) return 0;
2105 while( pSelect->pPrior ) pSelect = pSelect->pPrior;
2106 db->flags = savedFlags;
2107 pTab = sqlite3DbMallocZero(db, sizeof(Table) );
2108 if( pTab==0 ){
2109 return 0;
2111 /* The sqlite3ResultSetOfSelect() is only used n contexts where lookaside
2112 ** is disabled */
2113 assert( db->lookaside.bDisable );
2114 pTab->nTabRef = 1;
2115 pTab->zName = 0;
2116 pTab->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) );
2117 sqlite3ColumnsFromExprList(pParse, pSelect->pEList, &pTab->nCol, &pTab->aCol);
2118 sqlite3SelectAddColumnTypeAndCollation(pParse, pTab, pSelect);
2119 pTab->iPKey = -1;
2120 if( db->mallocFailed ){
2121 sqlite3DeleteTable(db, pTab);
2122 return 0;
2124 return pTab;
2128 ** Get a VDBE for the given parser context. Create a new one if necessary.
2129 ** If an error occurs, return NULL and leave a message in pParse.
2131 Vdbe *sqlite3GetVdbe(Parse *pParse){
2132 if( pParse->pVdbe ){
2133 return pParse->pVdbe;
2135 if( pParse->pToplevel==0
2136 && OptimizationEnabled(pParse->db,SQLITE_FactorOutConst)
2138 pParse->okConstFactor = 1;
2140 return sqlite3VdbeCreate(pParse);
2145 ** Compute the iLimit and iOffset fields of the SELECT based on the
2146 ** pLimit expressions. pLimit->pLeft and pLimit->pRight hold the expressions
2147 ** that appear in the original SQL statement after the LIMIT and OFFSET
2148 ** keywords. Or NULL if those keywords are omitted. iLimit and iOffset
2149 ** are the integer memory register numbers for counters used to compute
2150 ** the limit and offset. If there is no limit and/or offset, then
2151 ** iLimit and iOffset are negative.
2153 ** This routine changes the values of iLimit and iOffset only if
2154 ** a limit or offset is defined by pLimit->pLeft and pLimit->pRight. iLimit
2155 ** and iOffset should have been preset to appropriate default values (zero)
2156 ** prior to calling this routine.
2158 ** The iOffset register (if it exists) is initialized to the value
2159 ** of the OFFSET. The iLimit register is initialized to LIMIT. Register
2160 ** iOffset+1 is initialized to LIMIT+OFFSET.
2162 ** Only if pLimit->pLeft!=0 do the limit registers get
2163 ** redefined. The UNION ALL operator uses this property to force
2164 ** the reuse of the same limit and offset registers across multiple
2165 ** SELECT statements.
2167 static void computeLimitRegisters(Parse *pParse, Select *p, int iBreak){
2168 Vdbe *v = 0;
2169 int iLimit = 0;
2170 int iOffset;
2171 int n;
2172 Expr *pLimit = p->pLimit;
2174 if( p->iLimit ) return;
2177 ** "LIMIT -1" always shows all rows. There is some
2178 ** controversy about what the correct behavior should be.
2179 ** The current implementation interprets "LIMIT 0" to mean
2180 ** no rows.
2182 sqlite3ExprCacheClear(pParse);
2183 if( pLimit ){
2184 assert( pLimit->op==TK_LIMIT );
2185 assert( pLimit->pLeft!=0 );
2186 p->iLimit = iLimit = ++pParse->nMem;
2187 v = sqlite3GetVdbe(pParse);
2188 assert( v!=0 );
2189 if( sqlite3ExprIsInteger(pLimit->pLeft, &n) ){
2190 sqlite3VdbeAddOp2(v, OP_Integer, n, iLimit);
2191 VdbeComment((v, "LIMIT counter"));
2192 if( n==0 ){
2193 sqlite3VdbeGoto(v, iBreak);
2194 }else if( n>=0 && p->nSelectRow>sqlite3LogEst((u64)n) ){
2195 p->nSelectRow = sqlite3LogEst((u64)n);
2196 p->selFlags |= SF_FixedLimit;
2198 }else{
2199 sqlite3ExprCode(pParse, pLimit->pLeft, iLimit);
2200 sqlite3VdbeAddOp1(v, OP_MustBeInt, iLimit); VdbeCoverage(v);
2201 VdbeComment((v, "LIMIT counter"));
2202 sqlite3VdbeAddOp2(v, OP_IfNot, iLimit, iBreak); VdbeCoverage(v);
2204 if( pLimit->pRight ){
2205 p->iOffset = iOffset = ++pParse->nMem;
2206 pParse->nMem++; /* Allocate an extra register for limit+offset */
2207 sqlite3ExprCode(pParse, pLimit->pRight, iOffset);
2208 sqlite3VdbeAddOp1(v, OP_MustBeInt, iOffset); VdbeCoverage(v);
2209 VdbeComment((v, "OFFSET counter"));
2210 sqlite3VdbeAddOp3(v, OP_OffsetLimit, iLimit, iOffset+1, iOffset);
2211 VdbeComment((v, "LIMIT+OFFSET"));
2216 #ifndef SQLITE_OMIT_COMPOUND_SELECT
2218 ** Return the appropriate collating sequence for the iCol-th column of
2219 ** the result set for the compound-select statement "p". Return NULL if
2220 ** the column has no default collating sequence.
2222 ** The collating sequence for the compound select is taken from the
2223 ** left-most term of the select that has a collating sequence.
2225 static CollSeq *multiSelectCollSeq(Parse *pParse, Select *p, int iCol){
2226 CollSeq *pRet;
2227 if( p->pPrior ){
2228 pRet = multiSelectCollSeq(pParse, p->pPrior, iCol);
2229 }else{
2230 pRet = 0;
2232 assert( iCol>=0 );
2233 /* iCol must be less than p->pEList->nExpr. Otherwise an error would
2234 ** have been thrown during name resolution and we would not have gotten
2235 ** this far */
2236 if( pRet==0 && ALWAYS(iCol<p->pEList->nExpr) ){
2237 pRet = sqlite3ExprCollSeq(pParse, p->pEList->a[iCol].pExpr);
2239 return pRet;
2243 ** The select statement passed as the second parameter is a compound SELECT
2244 ** with an ORDER BY clause. This function allocates and returns a KeyInfo
2245 ** structure suitable for implementing the ORDER BY.
2247 ** Space to hold the KeyInfo structure is obtained from malloc. The calling
2248 ** function is responsible for ensuring that this structure is eventually
2249 ** freed.
2251 static KeyInfo *multiSelectOrderByKeyInfo(Parse *pParse, Select *p, int nExtra){
2252 ExprList *pOrderBy = p->pOrderBy;
2253 int nOrderBy = p->pOrderBy->nExpr;
2254 sqlite3 *db = pParse->db;
2255 KeyInfo *pRet = sqlite3KeyInfoAlloc(db, nOrderBy+nExtra, 1);
2256 if( pRet ){
2257 int i;
2258 for(i=0; i<nOrderBy; i++){
2259 struct ExprList_item *pItem = &pOrderBy->a[i];
2260 Expr *pTerm = pItem->pExpr;
2261 CollSeq *pColl;
2263 if( pTerm->flags & EP_Collate ){
2264 pColl = sqlite3ExprCollSeq(pParse, pTerm);
2265 }else{
2266 pColl = multiSelectCollSeq(pParse, p, pItem->u.x.iOrderByCol-1);
2267 if( pColl==0 ) pColl = db->pDfltColl;
2268 pOrderBy->a[i].pExpr =
2269 sqlite3ExprAddCollateString(pParse, pTerm, pColl->zName);
2271 assert( sqlite3KeyInfoIsWriteable(pRet) );
2272 pRet->aColl[i] = pColl;
2273 pRet->aSortOrder[i] = pOrderBy->a[i].sortOrder;
2277 return pRet;
2280 #ifndef SQLITE_OMIT_CTE
2282 ** This routine generates VDBE code to compute the content of a WITH RECURSIVE
2283 ** query of the form:
2285 ** <recursive-table> AS (<setup-query> UNION [ALL] <recursive-query>)
2286 ** \___________/ \_______________/
2287 ** p->pPrior p
2290 ** There is exactly one reference to the recursive-table in the FROM clause
2291 ** of recursive-query, marked with the SrcList->a[].fg.isRecursive flag.
2293 ** The setup-query runs once to generate an initial set of rows that go
2294 ** into a Queue table. Rows are extracted from the Queue table one by
2295 ** one. Each row extracted from Queue is output to pDest. Then the single
2296 ** extracted row (now in the iCurrent table) becomes the content of the
2297 ** recursive-table for a recursive-query run. The output of the recursive-query
2298 ** is added back into the Queue table. Then another row is extracted from Queue
2299 ** and the iteration continues until the Queue table is empty.
2301 ** If the compound query operator is UNION then no duplicate rows are ever
2302 ** inserted into the Queue table. The iDistinct table keeps a copy of all rows
2303 ** that have ever been inserted into Queue and causes duplicates to be
2304 ** discarded. If the operator is UNION ALL, then duplicates are allowed.
2306 ** If the query has an ORDER BY, then entries in the Queue table are kept in
2307 ** ORDER BY order and the first entry is extracted for each cycle. Without
2308 ** an ORDER BY, the Queue table is just a FIFO.
2310 ** If a LIMIT clause is provided, then the iteration stops after LIMIT rows
2311 ** have been output to pDest. A LIMIT of zero means to output no rows and a
2312 ** negative LIMIT means to output all rows. If there is also an OFFSET clause
2313 ** with a positive value, then the first OFFSET outputs are discarded rather
2314 ** than being sent to pDest. The LIMIT count does not begin until after OFFSET
2315 ** rows have been skipped.
2317 static void generateWithRecursiveQuery(
2318 Parse *pParse, /* Parsing context */
2319 Select *p, /* The recursive SELECT to be coded */
2320 SelectDest *pDest /* What to do with query results */
2322 SrcList *pSrc = p->pSrc; /* The FROM clause of the recursive query */
2323 int nCol = p->pEList->nExpr; /* Number of columns in the recursive table */
2324 Vdbe *v = pParse->pVdbe; /* The prepared statement under construction */
2325 Select *pSetup = p->pPrior; /* The setup query */
2326 int addrTop; /* Top of the loop */
2327 int addrCont, addrBreak; /* CONTINUE and BREAK addresses */
2328 int iCurrent = 0; /* The Current table */
2329 int regCurrent; /* Register holding Current table */
2330 int iQueue; /* The Queue table */
2331 int iDistinct = 0; /* To ensure unique results if UNION */
2332 int eDest = SRT_Fifo; /* How to write to Queue */
2333 SelectDest destQueue; /* SelectDest targetting the Queue table */
2334 int i; /* Loop counter */
2335 int rc; /* Result code */
2336 ExprList *pOrderBy; /* The ORDER BY clause */
2337 Expr *pLimit; /* Saved LIMIT and OFFSET */
2338 int regLimit, regOffset; /* Registers used by LIMIT and OFFSET */
2340 /* Obtain authorization to do a recursive query */
2341 if( sqlite3AuthCheck(pParse, SQLITE_RECURSIVE, 0, 0, 0) ) return;
2343 /* Process the LIMIT and OFFSET clauses, if they exist */
2344 addrBreak = sqlite3VdbeMakeLabel(v);
2345 p->nSelectRow = 320; /* 4 billion rows */
2346 computeLimitRegisters(pParse, p, addrBreak);
2347 pLimit = p->pLimit;
2348 regLimit = p->iLimit;
2349 regOffset = p->iOffset;
2350 p->pLimit = 0;
2351 p->iLimit = p->iOffset = 0;
2352 pOrderBy = p->pOrderBy;
2354 /* Locate the cursor number of the Current table */
2355 for(i=0; ALWAYS(i<pSrc->nSrc); i++){
2356 if( pSrc->a[i].fg.isRecursive ){
2357 iCurrent = pSrc->a[i].iCursor;
2358 break;
2362 /* Allocate cursors numbers for Queue and Distinct. The cursor number for
2363 ** the Distinct table must be exactly one greater than Queue in order
2364 ** for the SRT_DistFifo and SRT_DistQueue destinations to work. */
2365 iQueue = pParse->nTab++;
2366 if( p->op==TK_UNION ){
2367 eDest = pOrderBy ? SRT_DistQueue : SRT_DistFifo;
2368 iDistinct = pParse->nTab++;
2369 }else{
2370 eDest = pOrderBy ? SRT_Queue : SRT_Fifo;
2372 sqlite3SelectDestInit(&destQueue, eDest, iQueue);
2374 /* Allocate cursors for Current, Queue, and Distinct. */
2375 regCurrent = ++pParse->nMem;
2376 sqlite3VdbeAddOp3(v, OP_OpenPseudo, iCurrent, regCurrent, nCol);
2377 if( pOrderBy ){
2378 KeyInfo *pKeyInfo = multiSelectOrderByKeyInfo(pParse, p, 1);
2379 sqlite3VdbeAddOp4(v, OP_OpenEphemeral, iQueue, pOrderBy->nExpr+2, 0,
2380 (char*)pKeyInfo, P4_KEYINFO);
2381 destQueue.pOrderBy = pOrderBy;
2382 }else{
2383 sqlite3VdbeAddOp2(v, OP_OpenEphemeral, iQueue, nCol);
2385 VdbeComment((v, "Queue table"));
2386 if( iDistinct ){
2387 p->addrOpenEphm[0] = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, iDistinct, 0);
2388 p->selFlags |= SF_UsesEphemeral;
2391 /* Detach the ORDER BY clause from the compound SELECT */
2392 p->pOrderBy = 0;
2394 /* Store the results of the setup-query in Queue. */
2395 pSetup->pNext = 0;
2396 ExplainQueryPlan((pParse, 1, "SETUP"));
2397 rc = sqlite3Select(pParse, pSetup, &destQueue);
2398 pSetup->pNext = p;
2399 if( rc ) goto end_of_recursive_query;
2401 /* Find the next row in the Queue and output that row */
2402 addrTop = sqlite3VdbeAddOp2(v, OP_Rewind, iQueue, addrBreak); VdbeCoverage(v);
2404 /* Transfer the next row in Queue over to Current */
2405 sqlite3VdbeAddOp1(v, OP_NullRow, iCurrent); /* To reset column cache */
2406 if( pOrderBy ){
2407 sqlite3VdbeAddOp3(v, OP_Column, iQueue, pOrderBy->nExpr+1, regCurrent);
2408 }else{
2409 sqlite3VdbeAddOp2(v, OP_RowData, iQueue, regCurrent);
2411 sqlite3VdbeAddOp1(v, OP_Delete, iQueue);
2413 /* Output the single row in Current */
2414 addrCont = sqlite3VdbeMakeLabel(v);
2415 codeOffset(v, regOffset, addrCont);
2416 selectInnerLoop(pParse, p, iCurrent,
2417 0, 0, pDest, addrCont, addrBreak);
2418 if( regLimit ){
2419 sqlite3VdbeAddOp2(v, OP_DecrJumpZero, regLimit, addrBreak);
2420 VdbeCoverage(v);
2422 sqlite3VdbeResolveLabel(v, addrCont);
2424 /* Execute the recursive SELECT taking the single row in Current as
2425 ** the value for the recursive-table. Store the results in the Queue.
2427 if( p->selFlags & SF_Aggregate ){
2428 sqlite3ErrorMsg(pParse, "recursive aggregate queries not supported");
2429 }else{
2430 p->pPrior = 0;
2431 ExplainQueryPlan((pParse, 1, "RECURSIVE STEP"));
2432 sqlite3Select(pParse, p, &destQueue);
2433 assert( p->pPrior==0 );
2434 p->pPrior = pSetup;
2437 /* Keep running the loop until the Queue is empty */
2438 sqlite3VdbeGoto(v, addrTop);
2439 sqlite3VdbeResolveLabel(v, addrBreak);
2441 end_of_recursive_query:
2442 sqlite3ExprListDelete(pParse->db, p->pOrderBy);
2443 p->pOrderBy = pOrderBy;
2444 p->pLimit = pLimit;
2445 return;
2447 #endif /* SQLITE_OMIT_CTE */
2449 /* Forward references */
2450 static int multiSelectOrderBy(
2451 Parse *pParse, /* Parsing context */
2452 Select *p, /* The right-most of SELECTs to be coded */
2453 SelectDest *pDest /* What to do with query results */
2457 ** Handle the special case of a compound-select that originates from a
2458 ** VALUES clause. By handling this as a special case, we avoid deep
2459 ** recursion, and thus do not need to enforce the SQLITE_LIMIT_COMPOUND_SELECT
2460 ** on a VALUES clause.
2462 ** Because the Select object originates from a VALUES clause:
2463 ** (1) There is no LIMIT or OFFSET or else there is a LIMIT of exactly 1
2464 ** (2) All terms are UNION ALL
2465 ** (3) There is no ORDER BY clause
2467 ** The "LIMIT of exactly 1" case of condition (1) comes about when a VALUES
2468 ** clause occurs within scalar expression (ex: "SELECT (VALUES(1),(2),(3))").
2469 ** The sqlite3CodeSubselect will have added the LIMIT 1 clause in tht case.
2470 ** Since the limit is exactly 1, we only need to evalutes the left-most VALUES.
2472 static int multiSelectValues(
2473 Parse *pParse, /* Parsing context */
2474 Select *p, /* The right-most of SELECTs to be coded */
2475 SelectDest *pDest /* What to do with query results */
2477 int nRow = 1;
2478 int rc = 0;
2479 int bShowAll = p->pLimit==0;
2480 assert( p->selFlags & SF_MultiValue );
2482 assert( p->selFlags & SF_Values );
2483 assert( p->op==TK_ALL || (p->op==TK_SELECT && p->pPrior==0) );
2484 assert( p->pNext==0 || p->pEList->nExpr==p->pNext->pEList->nExpr );
2485 if( p->pPrior==0 ) break;
2486 assert( p->pPrior->pNext==p );
2487 p = p->pPrior;
2488 nRow += bShowAll;
2489 }while(1);
2490 ExplainQueryPlan((pParse, 0, "SCAN %d CONSTANT ROW%s", nRow,
2491 nRow==1 ? "" : "S"));
2492 while( p ){
2493 selectInnerLoop(pParse, p, -1, 0, 0, pDest, 1, 1);
2494 if( !bShowAll ) break;
2495 p->nSelectRow = nRow;
2496 p = p->pNext;
2498 return rc;
2502 ** This routine is called to process a compound query form from
2503 ** two or more separate queries using UNION, UNION ALL, EXCEPT, or
2504 ** INTERSECT
2506 ** "p" points to the right-most of the two queries. the query on the
2507 ** left is p->pPrior. The left query could also be a compound query
2508 ** in which case this routine will be called recursively.
2510 ** The results of the total query are to be written into a destination
2511 ** of type eDest with parameter iParm.
2513 ** Example 1: Consider a three-way compound SQL statement.
2515 ** SELECT a FROM t1 UNION SELECT b FROM t2 UNION SELECT c FROM t3
2517 ** This statement is parsed up as follows:
2519 ** SELECT c FROM t3
2520 ** |
2521 ** `-----> SELECT b FROM t2
2522 ** |
2523 ** `------> SELECT a FROM t1
2525 ** The arrows in the diagram above represent the Select.pPrior pointer.
2526 ** So if this routine is called with p equal to the t3 query, then
2527 ** pPrior will be the t2 query. p->op will be TK_UNION in this case.
2529 ** Notice that because of the way SQLite parses compound SELECTs, the
2530 ** individual selects always group from left to right.
2532 static int multiSelect(
2533 Parse *pParse, /* Parsing context */
2534 Select *p, /* The right-most of SELECTs to be coded */
2535 SelectDest *pDest /* What to do with query results */
2537 int rc = SQLITE_OK; /* Success code from a subroutine */
2538 Select *pPrior; /* Another SELECT immediately to our left */
2539 Vdbe *v; /* Generate code to this VDBE */
2540 SelectDest dest; /* Alternative data destination */
2541 Select *pDelete = 0; /* Chain of simple selects to delete */
2542 sqlite3 *db; /* Database connection */
2544 /* Make sure there is no ORDER BY or LIMIT clause on prior SELECTs. Only
2545 ** the last (right-most) SELECT in the series may have an ORDER BY or LIMIT.
2547 assert( p && p->pPrior ); /* Calling function guarantees this much */
2548 assert( (p->selFlags & SF_Recursive)==0 || p->op==TK_ALL || p->op==TK_UNION );
2549 db = pParse->db;
2550 pPrior = p->pPrior;
2551 dest = *pDest;
2552 if( pPrior->pOrderBy || pPrior->pLimit ){
2553 sqlite3ErrorMsg(pParse,"%s clause should come after %s not before",
2554 pPrior->pOrderBy!=0 ? "ORDER BY" : "LIMIT", selectOpName(p->op));
2555 rc = 1;
2556 goto multi_select_end;
2559 v = sqlite3GetVdbe(pParse);
2560 assert( v!=0 ); /* The VDBE already created by calling function */
2562 /* Create the destination temporary table if necessary
2564 if( dest.eDest==SRT_EphemTab ){
2565 assert( p->pEList );
2566 sqlite3VdbeAddOp2(v, OP_OpenEphemeral, dest.iSDParm, p->pEList->nExpr);
2567 dest.eDest = SRT_Table;
2570 /* Special handling for a compound-select that originates as a VALUES clause.
2572 if( p->selFlags & SF_MultiValue ){
2573 rc = multiSelectValues(pParse, p, &dest);
2574 goto multi_select_end;
2577 /* Make sure all SELECTs in the statement have the same number of elements
2578 ** in their result sets.
2580 assert( p->pEList && pPrior->pEList );
2581 assert( p->pEList->nExpr==pPrior->pEList->nExpr );
2583 #ifndef SQLITE_OMIT_CTE
2584 if( p->selFlags & SF_Recursive ){
2585 generateWithRecursiveQuery(pParse, p, &dest);
2586 }else
2587 #endif
2589 /* Compound SELECTs that have an ORDER BY clause are handled separately.
2591 if( p->pOrderBy ){
2592 return multiSelectOrderBy(pParse, p, pDest);
2593 }else{
2595 #ifndef SQLITE_OMIT_EXPLAIN
2596 if( pPrior->pPrior==0 ){
2597 ExplainQueryPlan((pParse, 1, "COMPOUND QUERY"));
2598 ExplainQueryPlan((pParse, 1, "LEFT-MOST SUBQUERY"));
2600 #endif
2602 /* Generate code for the left and right SELECT statements.
2604 switch( p->op ){
2605 case TK_ALL: {
2606 int addr = 0;
2607 int nLimit;
2608 assert( !pPrior->pLimit );
2609 pPrior->iLimit = p->iLimit;
2610 pPrior->iOffset = p->iOffset;
2611 pPrior->pLimit = p->pLimit;
2612 rc = sqlite3Select(pParse, pPrior, &dest);
2613 p->pLimit = 0;
2614 if( rc ){
2615 goto multi_select_end;
2617 p->pPrior = 0;
2618 p->iLimit = pPrior->iLimit;
2619 p->iOffset = pPrior->iOffset;
2620 if( p->iLimit ){
2621 addr = sqlite3VdbeAddOp1(v, OP_IfNot, p->iLimit); VdbeCoverage(v);
2622 VdbeComment((v, "Jump ahead if LIMIT reached"));
2623 if( p->iOffset ){
2624 sqlite3VdbeAddOp3(v, OP_OffsetLimit,
2625 p->iLimit, p->iOffset+1, p->iOffset);
2628 ExplainQueryPlan((pParse, 1, "UNION ALL"));
2629 rc = sqlite3Select(pParse, p, &dest);
2630 testcase( rc!=SQLITE_OK );
2631 pDelete = p->pPrior;
2632 p->pPrior = pPrior;
2633 p->nSelectRow = sqlite3LogEstAdd(p->nSelectRow, pPrior->nSelectRow);
2634 if( pPrior->pLimit
2635 && sqlite3ExprIsInteger(pPrior->pLimit->pLeft, &nLimit)
2636 && nLimit>0 && p->nSelectRow > sqlite3LogEst((u64)nLimit)
2638 p->nSelectRow = sqlite3LogEst((u64)nLimit);
2640 if( addr ){
2641 sqlite3VdbeJumpHere(v, addr);
2643 break;
2645 case TK_EXCEPT:
2646 case TK_UNION: {
2647 int unionTab; /* Cursor number of the temp table holding result */
2648 u8 op = 0; /* One of the SRT_ operations to apply to self */
2649 int priorOp; /* The SRT_ operation to apply to prior selects */
2650 Expr *pLimit; /* Saved values of p->nLimit */
2651 int addr;
2652 SelectDest uniondest;
2654 testcase( p->op==TK_EXCEPT );
2655 testcase( p->op==TK_UNION );
2656 priorOp = SRT_Union;
2657 if( dest.eDest==priorOp ){
2658 /* We can reuse a temporary table generated by a SELECT to our
2659 ** right.
2661 assert( p->pLimit==0 ); /* Not allowed on leftward elements */
2662 unionTab = dest.iSDParm;
2663 }else{
2664 /* We will need to create our own temporary table to hold the
2665 ** intermediate results.
2667 unionTab = pParse->nTab++;
2668 assert( p->pOrderBy==0 );
2669 addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, unionTab, 0);
2670 assert( p->addrOpenEphm[0] == -1 );
2671 p->addrOpenEphm[0] = addr;
2672 findRightmost(p)->selFlags |= SF_UsesEphemeral;
2673 assert( p->pEList );
2676 /* Code the SELECT statements to our left
2678 assert( !pPrior->pOrderBy );
2679 sqlite3SelectDestInit(&uniondest, priorOp, unionTab);
2680 rc = sqlite3Select(pParse, pPrior, &uniondest);
2681 if( rc ){
2682 goto multi_select_end;
2685 /* Code the current SELECT statement
2687 if( p->op==TK_EXCEPT ){
2688 op = SRT_Except;
2689 }else{
2690 assert( p->op==TK_UNION );
2691 op = SRT_Union;
2693 p->pPrior = 0;
2694 pLimit = p->pLimit;
2695 p->pLimit = 0;
2696 uniondest.eDest = op;
2697 ExplainQueryPlan((pParse, 1, "%s USING TEMP B-TREE",
2698 selectOpName(p->op)));
2699 rc = sqlite3Select(pParse, p, &uniondest);
2700 testcase( rc!=SQLITE_OK );
2701 /* Query flattening in sqlite3Select() might refill p->pOrderBy.
2702 ** Be sure to delete p->pOrderBy, therefore, to avoid a memory leak. */
2703 sqlite3ExprListDelete(db, p->pOrderBy);
2704 pDelete = p->pPrior;
2705 p->pPrior = pPrior;
2706 p->pOrderBy = 0;
2707 if( p->op==TK_UNION ){
2708 p->nSelectRow = sqlite3LogEstAdd(p->nSelectRow, pPrior->nSelectRow);
2710 sqlite3ExprDelete(db, p->pLimit);
2711 p->pLimit = pLimit;
2712 p->iLimit = 0;
2713 p->iOffset = 0;
2715 /* Convert the data in the temporary table into whatever form
2716 ** it is that we currently need.
2718 assert( unionTab==dest.iSDParm || dest.eDest!=priorOp );
2719 if( dest.eDest!=priorOp ){
2720 int iCont, iBreak, iStart;
2721 assert( p->pEList );
2722 iBreak = sqlite3VdbeMakeLabel(v);
2723 iCont = sqlite3VdbeMakeLabel(v);
2724 computeLimitRegisters(pParse, p, iBreak);
2725 sqlite3VdbeAddOp2(v, OP_Rewind, unionTab, iBreak); VdbeCoverage(v);
2726 iStart = sqlite3VdbeCurrentAddr(v);
2727 selectInnerLoop(pParse, p, unionTab,
2728 0, 0, &dest, iCont, iBreak);
2729 sqlite3VdbeResolveLabel(v, iCont);
2730 sqlite3VdbeAddOp2(v, OP_Next, unionTab, iStart); VdbeCoverage(v);
2731 sqlite3VdbeResolveLabel(v, iBreak);
2732 sqlite3VdbeAddOp2(v, OP_Close, unionTab, 0);
2734 break;
2736 default: assert( p->op==TK_INTERSECT ); {
2737 int tab1, tab2;
2738 int iCont, iBreak, iStart;
2739 Expr *pLimit;
2740 int addr;
2741 SelectDest intersectdest;
2742 int r1;
2744 /* INTERSECT is different from the others since it requires
2745 ** two temporary tables. Hence it has its own case. Begin
2746 ** by allocating the tables we will need.
2748 tab1 = pParse->nTab++;
2749 tab2 = pParse->nTab++;
2750 assert( p->pOrderBy==0 );
2752 addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, tab1, 0);
2753 assert( p->addrOpenEphm[0] == -1 );
2754 p->addrOpenEphm[0] = addr;
2755 findRightmost(p)->selFlags |= SF_UsesEphemeral;
2756 assert( p->pEList );
2758 /* Code the SELECTs to our left into temporary table "tab1".
2760 sqlite3SelectDestInit(&intersectdest, SRT_Union, tab1);
2761 rc = sqlite3Select(pParse, pPrior, &intersectdest);
2762 if( rc ){
2763 goto multi_select_end;
2766 /* Code the current SELECT into temporary table "tab2"
2768 addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, tab2, 0);
2769 assert( p->addrOpenEphm[1] == -1 );
2770 p->addrOpenEphm[1] = addr;
2771 p->pPrior = 0;
2772 pLimit = p->pLimit;
2773 p->pLimit = 0;
2774 intersectdest.iSDParm = tab2;
2775 ExplainQueryPlan((pParse, 1, "%s USING TEMP B-TREE",
2776 selectOpName(p->op)));
2777 rc = sqlite3Select(pParse, p, &intersectdest);
2778 testcase( rc!=SQLITE_OK );
2779 pDelete = p->pPrior;
2780 p->pPrior = pPrior;
2781 if( p->nSelectRow>pPrior->nSelectRow ){
2782 p->nSelectRow = pPrior->nSelectRow;
2784 sqlite3ExprDelete(db, p->pLimit);
2785 p->pLimit = pLimit;
2787 /* Generate code to take the intersection of the two temporary
2788 ** tables.
2790 assert( p->pEList );
2791 iBreak = sqlite3VdbeMakeLabel(v);
2792 iCont = sqlite3VdbeMakeLabel(v);
2793 computeLimitRegisters(pParse, p, iBreak);
2794 sqlite3VdbeAddOp2(v, OP_Rewind, tab1, iBreak); VdbeCoverage(v);
2795 r1 = sqlite3GetTempReg(pParse);
2796 iStart = sqlite3VdbeAddOp2(v, OP_RowData, tab1, r1);
2797 sqlite3VdbeAddOp4Int(v, OP_NotFound, tab2, iCont, r1, 0);
2798 VdbeCoverage(v);
2799 sqlite3ReleaseTempReg(pParse, r1);
2800 selectInnerLoop(pParse, p, tab1,
2801 0, 0, &dest, iCont, iBreak);
2802 sqlite3VdbeResolveLabel(v, iCont);
2803 sqlite3VdbeAddOp2(v, OP_Next, tab1, iStart); VdbeCoverage(v);
2804 sqlite3VdbeResolveLabel(v, iBreak);
2805 sqlite3VdbeAddOp2(v, OP_Close, tab2, 0);
2806 sqlite3VdbeAddOp2(v, OP_Close, tab1, 0);
2807 break;
2811 #ifndef SQLITE_OMIT_EXPLAIN
2812 if( p->pNext==0 ){
2813 ExplainQueryPlanPop(pParse);
2815 #endif
2818 /* Compute collating sequences used by
2819 ** temporary tables needed to implement the compound select.
2820 ** Attach the KeyInfo structure to all temporary tables.
2822 ** This section is run by the right-most SELECT statement only.
2823 ** SELECT statements to the left always skip this part. The right-most
2824 ** SELECT might also skip this part if it has no ORDER BY clause and
2825 ** no temp tables are required.
2827 if( p->selFlags & SF_UsesEphemeral ){
2828 int i; /* Loop counter */
2829 KeyInfo *pKeyInfo; /* Collating sequence for the result set */
2830 Select *pLoop; /* For looping through SELECT statements */
2831 CollSeq **apColl; /* For looping through pKeyInfo->aColl[] */
2832 int nCol; /* Number of columns in result set */
2834 assert( p->pNext==0 );
2835 nCol = p->pEList->nExpr;
2836 pKeyInfo = sqlite3KeyInfoAlloc(db, nCol, 1);
2837 if( !pKeyInfo ){
2838 rc = SQLITE_NOMEM_BKPT;
2839 goto multi_select_end;
2841 for(i=0, apColl=pKeyInfo->aColl; i<nCol; i++, apColl++){
2842 *apColl = multiSelectCollSeq(pParse, p, i);
2843 if( 0==*apColl ){
2844 *apColl = db->pDfltColl;
2848 for(pLoop=p; pLoop; pLoop=pLoop->pPrior){
2849 for(i=0; i<2; i++){
2850 int addr = pLoop->addrOpenEphm[i];
2851 if( addr<0 ){
2852 /* If [0] is unused then [1] is also unused. So we can
2853 ** always safely abort as soon as the first unused slot is found */
2854 assert( pLoop->addrOpenEphm[1]<0 );
2855 break;
2857 sqlite3VdbeChangeP2(v, addr, nCol);
2858 sqlite3VdbeChangeP4(v, addr, (char*)sqlite3KeyInfoRef(pKeyInfo),
2859 P4_KEYINFO);
2860 pLoop->addrOpenEphm[i] = -1;
2863 sqlite3KeyInfoUnref(pKeyInfo);
2866 multi_select_end:
2867 pDest->iSdst = dest.iSdst;
2868 pDest->nSdst = dest.nSdst;
2869 sqlite3SelectDelete(db, pDelete);
2870 return rc;
2872 #endif /* SQLITE_OMIT_COMPOUND_SELECT */
2875 ** Error message for when two or more terms of a compound select have different
2876 ** size result sets.
2878 void sqlite3SelectWrongNumTermsError(Parse *pParse, Select *p){
2879 if( p->selFlags & SF_Values ){
2880 sqlite3ErrorMsg(pParse, "all VALUES must have the same number of terms");
2881 }else{
2882 sqlite3ErrorMsg(pParse, "SELECTs to the left and right of %s"
2883 " do not have the same number of result columns", selectOpName(p->op));
2888 ** Code an output subroutine for a coroutine implementation of a
2889 ** SELECT statment.
2891 ** The data to be output is contained in pIn->iSdst. There are
2892 ** pIn->nSdst columns to be output. pDest is where the output should
2893 ** be sent.
2895 ** regReturn is the number of the register holding the subroutine
2896 ** return address.
2898 ** If regPrev>0 then it is the first register in a vector that
2899 ** records the previous output. mem[regPrev] is a flag that is false
2900 ** if there has been no previous output. If regPrev>0 then code is
2901 ** generated to suppress duplicates. pKeyInfo is used for comparing
2902 ** keys.
2904 ** If the LIMIT found in p->iLimit is reached, jump immediately to
2905 ** iBreak.
2907 static int generateOutputSubroutine(
2908 Parse *pParse, /* Parsing context */
2909 Select *p, /* The SELECT statement */
2910 SelectDest *pIn, /* Coroutine supplying data */
2911 SelectDest *pDest, /* Where to send the data */
2912 int regReturn, /* The return address register */
2913 int regPrev, /* Previous result register. No uniqueness if 0 */
2914 KeyInfo *pKeyInfo, /* For comparing with previous entry */
2915 int iBreak /* Jump here if we hit the LIMIT */
2917 Vdbe *v = pParse->pVdbe;
2918 int iContinue;
2919 int addr;
2921 addr = sqlite3VdbeCurrentAddr(v);
2922 iContinue = sqlite3VdbeMakeLabel(v);
2924 /* Suppress duplicates for UNION, EXCEPT, and INTERSECT
2926 if( regPrev ){
2927 int addr1, addr2;
2928 addr1 = sqlite3VdbeAddOp1(v, OP_IfNot, regPrev); VdbeCoverage(v);
2929 addr2 = sqlite3VdbeAddOp4(v, OP_Compare, pIn->iSdst, regPrev+1, pIn->nSdst,
2930 (char*)sqlite3KeyInfoRef(pKeyInfo), P4_KEYINFO);
2931 sqlite3VdbeAddOp3(v, OP_Jump, addr2+2, iContinue, addr2+2); VdbeCoverage(v);
2932 sqlite3VdbeJumpHere(v, addr1);
2933 sqlite3VdbeAddOp3(v, OP_Copy, pIn->iSdst, regPrev+1, pIn->nSdst-1);
2934 sqlite3VdbeAddOp2(v, OP_Integer, 1, regPrev);
2936 if( pParse->db->mallocFailed ) return 0;
2938 /* Suppress the first OFFSET entries if there is an OFFSET clause
2940 codeOffset(v, p->iOffset, iContinue);
2942 assert( pDest->eDest!=SRT_Exists );
2943 assert( pDest->eDest!=SRT_Table );
2944 switch( pDest->eDest ){
2945 /* Store the result as data using a unique key.
2947 case SRT_EphemTab: {
2948 int r1 = sqlite3GetTempReg(pParse);
2949 int r2 = sqlite3GetTempReg(pParse);
2950 sqlite3VdbeAddOp3(v, OP_MakeRecord, pIn->iSdst, pIn->nSdst, r1);
2951 sqlite3VdbeAddOp2(v, OP_NewRowid, pDest->iSDParm, r2);
2952 sqlite3VdbeAddOp3(v, OP_Insert, pDest->iSDParm, r1, r2);
2953 sqlite3VdbeChangeP5(v, OPFLAG_APPEND);
2954 sqlite3ReleaseTempReg(pParse, r2);
2955 sqlite3ReleaseTempReg(pParse, r1);
2956 break;
2959 #ifndef SQLITE_OMIT_SUBQUERY
2960 /* If we are creating a set for an "expr IN (SELECT ...)".
2962 case SRT_Set: {
2963 int r1;
2964 testcase( pIn->nSdst>1 );
2965 r1 = sqlite3GetTempReg(pParse);
2966 sqlite3VdbeAddOp4(v, OP_MakeRecord, pIn->iSdst, pIn->nSdst,
2967 r1, pDest->zAffSdst, pIn->nSdst);
2968 sqlite3ExprCacheAffinityChange(pParse, pIn->iSdst, pIn->nSdst);
2969 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, pDest->iSDParm, r1,
2970 pIn->iSdst, pIn->nSdst);
2971 sqlite3ReleaseTempReg(pParse, r1);
2972 break;
2975 /* If this is a scalar select that is part of an expression, then
2976 ** store the results in the appropriate memory cell and break out
2977 ** of the scan loop.
2979 case SRT_Mem: {
2980 assert( pIn->nSdst==1 || pParse->nErr>0 ); testcase( pIn->nSdst!=1 );
2981 sqlite3ExprCodeMove(pParse, pIn->iSdst, pDest->iSDParm, 1);
2982 /* The LIMIT clause will jump out of the loop for us */
2983 break;
2985 #endif /* #ifndef SQLITE_OMIT_SUBQUERY */
2987 /* The results are stored in a sequence of registers
2988 ** starting at pDest->iSdst. Then the co-routine yields.
2990 case SRT_Coroutine: {
2991 if( pDest->iSdst==0 ){
2992 pDest->iSdst = sqlite3GetTempRange(pParse, pIn->nSdst);
2993 pDest->nSdst = pIn->nSdst;
2995 sqlite3ExprCodeMove(pParse, pIn->iSdst, pDest->iSdst, pIn->nSdst);
2996 sqlite3VdbeAddOp1(v, OP_Yield, pDest->iSDParm);
2997 break;
3000 /* If none of the above, then the result destination must be
3001 ** SRT_Output. This routine is never called with any other
3002 ** destination other than the ones handled above or SRT_Output.
3004 ** For SRT_Output, results are stored in a sequence of registers.
3005 ** Then the OP_ResultRow opcode is used to cause sqlite3_step() to
3006 ** return the next row of result.
3008 default: {
3009 assert( pDest->eDest==SRT_Output );
3010 sqlite3VdbeAddOp2(v, OP_ResultRow, pIn->iSdst, pIn->nSdst);
3011 sqlite3ExprCacheAffinityChange(pParse, pIn->iSdst, pIn->nSdst);
3012 break;
3016 /* Jump to the end of the loop if the LIMIT is reached.
3018 if( p->iLimit ){
3019 sqlite3VdbeAddOp2(v, OP_DecrJumpZero, p->iLimit, iBreak); VdbeCoverage(v);
3022 /* Generate the subroutine return
3024 sqlite3VdbeResolveLabel(v, iContinue);
3025 sqlite3VdbeAddOp1(v, OP_Return, regReturn);
3027 return addr;
3031 ** Alternative compound select code generator for cases when there
3032 ** is an ORDER BY clause.
3034 ** We assume a query of the following form:
3036 ** <selectA> <operator> <selectB> ORDER BY <orderbylist>
3038 ** <operator> is one of UNION ALL, UNION, EXCEPT, or INTERSECT. The idea
3039 ** is to code both <selectA> and <selectB> with the ORDER BY clause as
3040 ** co-routines. Then run the co-routines in parallel and merge the results
3041 ** into the output. In addition to the two coroutines (called selectA and
3042 ** selectB) there are 7 subroutines:
3044 ** outA: Move the output of the selectA coroutine into the output
3045 ** of the compound query.
3047 ** outB: Move the output of the selectB coroutine into the output
3048 ** of the compound query. (Only generated for UNION and
3049 ** UNION ALL. EXCEPT and INSERTSECT never output a row that
3050 ** appears only in B.)
3052 ** AltB: Called when there is data from both coroutines and A<B.
3054 ** AeqB: Called when there is data from both coroutines and A==B.
3056 ** AgtB: Called when there is data from both coroutines and A>B.
3058 ** EofA: Called when data is exhausted from selectA.
3060 ** EofB: Called when data is exhausted from selectB.
3062 ** The implementation of the latter five subroutines depend on which
3063 ** <operator> is used:
3066 ** UNION ALL UNION EXCEPT INTERSECT
3067 ** ------------- ----------------- -------------- -----------------
3068 ** AltB: outA, nextA outA, nextA outA, nextA nextA
3070 ** AeqB: outA, nextA nextA nextA outA, nextA
3072 ** AgtB: outB, nextB outB, nextB nextB nextB
3074 ** EofA: outB, nextB outB, nextB halt halt
3076 ** EofB: outA, nextA outA, nextA outA, nextA halt
3078 ** In the AltB, AeqB, and AgtB subroutines, an EOF on A following nextA
3079 ** causes an immediate jump to EofA and an EOF on B following nextB causes
3080 ** an immediate jump to EofB. Within EofA and EofB, and EOF on entry or
3081 ** following nextX causes a jump to the end of the select processing.
3083 ** Duplicate removal in the UNION, EXCEPT, and INTERSECT cases is handled
3084 ** within the output subroutine. The regPrev register set holds the previously
3085 ** output value. A comparison is made against this value and the output
3086 ** is skipped if the next results would be the same as the previous.
3088 ** The implementation plan is to implement the two coroutines and seven
3089 ** subroutines first, then put the control logic at the bottom. Like this:
3091 ** goto Init
3092 ** coA: coroutine for left query (A)
3093 ** coB: coroutine for right query (B)
3094 ** outA: output one row of A
3095 ** outB: output one row of B (UNION and UNION ALL only)
3096 ** EofA: ...
3097 ** EofB: ...
3098 ** AltB: ...
3099 ** AeqB: ...
3100 ** AgtB: ...
3101 ** Init: initialize coroutine registers
3102 ** yield coA
3103 ** if eof(A) goto EofA
3104 ** yield coB
3105 ** if eof(B) goto EofB
3106 ** Cmpr: Compare A, B
3107 ** Jump AltB, AeqB, AgtB
3108 ** End: ...
3110 ** We call AltB, AeqB, AgtB, EofA, and EofB "subroutines" but they are not
3111 ** actually called using Gosub and they do not Return. EofA and EofB loop
3112 ** until all data is exhausted then jump to the "end" labe. AltB, AeqB,
3113 ** and AgtB jump to either L2 or to one of EofA or EofB.
3115 #ifndef SQLITE_OMIT_COMPOUND_SELECT
3116 static int multiSelectOrderBy(
3117 Parse *pParse, /* Parsing context */
3118 Select *p, /* The right-most of SELECTs to be coded */
3119 SelectDest *pDest /* What to do with query results */
3121 int i, j; /* Loop counters */
3122 Select *pPrior; /* Another SELECT immediately to our left */
3123 Vdbe *v; /* Generate code to this VDBE */
3124 SelectDest destA; /* Destination for coroutine A */
3125 SelectDest destB; /* Destination for coroutine B */
3126 int regAddrA; /* Address register for select-A coroutine */
3127 int regAddrB; /* Address register for select-B coroutine */
3128 int addrSelectA; /* Address of the select-A coroutine */
3129 int addrSelectB; /* Address of the select-B coroutine */
3130 int regOutA; /* Address register for the output-A subroutine */
3131 int regOutB; /* Address register for the output-B subroutine */
3132 int addrOutA; /* Address of the output-A subroutine */
3133 int addrOutB = 0; /* Address of the output-B subroutine */
3134 int addrEofA; /* Address of the select-A-exhausted subroutine */
3135 int addrEofA_noB; /* Alternate addrEofA if B is uninitialized */
3136 int addrEofB; /* Address of the select-B-exhausted subroutine */
3137 int addrAltB; /* Address of the A<B subroutine */
3138 int addrAeqB; /* Address of the A==B subroutine */
3139 int addrAgtB; /* Address of the A>B subroutine */
3140 int regLimitA; /* Limit register for select-A */
3141 int regLimitB; /* Limit register for select-A */
3142 int regPrev; /* A range of registers to hold previous output */
3143 int savedLimit; /* Saved value of p->iLimit */
3144 int savedOffset; /* Saved value of p->iOffset */
3145 int labelCmpr; /* Label for the start of the merge algorithm */
3146 int labelEnd; /* Label for the end of the overall SELECT stmt */
3147 int addr1; /* Jump instructions that get retargetted */
3148 int op; /* One of TK_ALL, TK_UNION, TK_EXCEPT, TK_INTERSECT */
3149 KeyInfo *pKeyDup = 0; /* Comparison information for duplicate removal */
3150 KeyInfo *pKeyMerge; /* Comparison information for merging rows */
3151 sqlite3 *db; /* Database connection */
3152 ExprList *pOrderBy; /* The ORDER BY clause */
3153 int nOrderBy; /* Number of terms in the ORDER BY clause */
3154 int *aPermute; /* Mapping from ORDER BY terms to result set columns */
3156 assert( p->pOrderBy!=0 );
3157 assert( pKeyDup==0 ); /* "Managed" code needs this. Ticket #3382. */
3158 db = pParse->db;
3159 v = pParse->pVdbe;
3160 assert( v!=0 ); /* Already thrown the error if VDBE alloc failed */
3161 labelEnd = sqlite3VdbeMakeLabel(v);
3162 labelCmpr = sqlite3VdbeMakeLabel(v);
3165 /* Patch up the ORDER BY clause
3167 op = p->op;
3168 pPrior = p->pPrior;
3169 assert( pPrior->pOrderBy==0 );
3170 pOrderBy = p->pOrderBy;
3171 assert( pOrderBy );
3172 nOrderBy = pOrderBy->nExpr;
3174 /* For operators other than UNION ALL we have to make sure that
3175 ** the ORDER BY clause covers every term of the result set. Add
3176 ** terms to the ORDER BY clause as necessary.
3178 if( op!=TK_ALL ){
3179 for(i=1; db->mallocFailed==0 && i<=p->pEList->nExpr; i++){
3180 struct ExprList_item *pItem;
3181 for(j=0, pItem=pOrderBy->a; j<nOrderBy; j++, pItem++){
3182 assert( pItem->u.x.iOrderByCol>0 );
3183 if( pItem->u.x.iOrderByCol==i ) break;
3185 if( j==nOrderBy ){
3186 Expr *pNew = sqlite3Expr(db, TK_INTEGER, 0);
3187 if( pNew==0 ) return SQLITE_NOMEM_BKPT;
3188 pNew->flags |= EP_IntValue;
3189 pNew->u.iValue = i;
3190 p->pOrderBy = pOrderBy = sqlite3ExprListAppend(pParse, pOrderBy, pNew);
3191 if( pOrderBy ) pOrderBy->a[nOrderBy++].u.x.iOrderByCol = (u16)i;
3196 /* Compute the comparison permutation and keyinfo that is used with
3197 ** the permutation used to determine if the next
3198 ** row of results comes from selectA or selectB. Also add explicit
3199 ** collations to the ORDER BY clause terms so that when the subqueries
3200 ** to the right and the left are evaluated, they use the correct
3201 ** collation.
3203 aPermute = sqlite3DbMallocRawNN(db, sizeof(int)*(nOrderBy + 1));
3204 if( aPermute ){
3205 struct ExprList_item *pItem;
3206 aPermute[0] = nOrderBy;
3207 for(i=1, pItem=pOrderBy->a; i<=nOrderBy; i++, pItem++){
3208 assert( pItem->u.x.iOrderByCol>0 );
3209 assert( pItem->u.x.iOrderByCol<=p->pEList->nExpr );
3210 aPermute[i] = pItem->u.x.iOrderByCol - 1;
3212 pKeyMerge = multiSelectOrderByKeyInfo(pParse, p, 1);
3213 }else{
3214 pKeyMerge = 0;
3217 /* Reattach the ORDER BY clause to the query.
3219 p->pOrderBy = pOrderBy;
3220 pPrior->pOrderBy = sqlite3ExprListDup(pParse->db, pOrderBy, 0);
3222 /* Allocate a range of temporary registers and the KeyInfo needed
3223 ** for the logic that removes duplicate result rows when the
3224 ** operator is UNION, EXCEPT, or INTERSECT (but not UNION ALL).
3226 if( op==TK_ALL ){
3227 regPrev = 0;
3228 }else{
3229 int nExpr = p->pEList->nExpr;
3230 assert( nOrderBy>=nExpr || db->mallocFailed );
3231 regPrev = pParse->nMem+1;
3232 pParse->nMem += nExpr+1;
3233 sqlite3VdbeAddOp2(v, OP_Integer, 0, regPrev);
3234 pKeyDup = sqlite3KeyInfoAlloc(db, nExpr, 1);
3235 if( pKeyDup ){
3236 assert( sqlite3KeyInfoIsWriteable(pKeyDup) );
3237 for(i=0; i<nExpr; i++){
3238 pKeyDup->aColl[i] = multiSelectCollSeq(pParse, p, i);
3239 pKeyDup->aSortOrder[i] = 0;
3244 /* Separate the left and the right query from one another
3246 p->pPrior = 0;
3247 pPrior->pNext = 0;
3248 sqlite3ResolveOrderGroupBy(pParse, p, p->pOrderBy, "ORDER");
3249 if( pPrior->pPrior==0 ){
3250 sqlite3ResolveOrderGroupBy(pParse, pPrior, pPrior->pOrderBy, "ORDER");
3253 /* Compute the limit registers */
3254 computeLimitRegisters(pParse, p, labelEnd);
3255 if( p->iLimit && op==TK_ALL ){
3256 regLimitA = ++pParse->nMem;
3257 regLimitB = ++pParse->nMem;
3258 sqlite3VdbeAddOp2(v, OP_Copy, p->iOffset ? p->iOffset+1 : p->iLimit,
3259 regLimitA);
3260 sqlite3VdbeAddOp2(v, OP_Copy, regLimitA, regLimitB);
3261 }else{
3262 regLimitA = regLimitB = 0;
3264 sqlite3ExprDelete(db, p->pLimit);
3265 p->pLimit = 0;
3267 regAddrA = ++pParse->nMem;
3268 regAddrB = ++pParse->nMem;
3269 regOutA = ++pParse->nMem;
3270 regOutB = ++pParse->nMem;
3271 sqlite3SelectDestInit(&destA, SRT_Coroutine, regAddrA);
3272 sqlite3SelectDestInit(&destB, SRT_Coroutine, regAddrB);
3274 ExplainQueryPlan((pParse, 1, "MERGE (%s)", selectOpName(p->op)));
3276 /* Generate a coroutine to evaluate the SELECT statement to the
3277 ** left of the compound operator - the "A" select.
3279 addrSelectA = sqlite3VdbeCurrentAddr(v) + 1;
3280 addr1 = sqlite3VdbeAddOp3(v, OP_InitCoroutine, regAddrA, 0, addrSelectA);
3281 VdbeComment((v, "left SELECT"));
3282 pPrior->iLimit = regLimitA;
3283 ExplainQueryPlan((pParse, 1, "LEFT"));
3284 sqlite3Select(pParse, pPrior, &destA);
3285 sqlite3VdbeEndCoroutine(v, regAddrA);
3286 sqlite3VdbeJumpHere(v, addr1);
3288 /* Generate a coroutine to evaluate the SELECT statement on
3289 ** the right - the "B" select
3291 addrSelectB = sqlite3VdbeCurrentAddr(v) + 1;
3292 addr1 = sqlite3VdbeAddOp3(v, OP_InitCoroutine, regAddrB, 0, addrSelectB);
3293 VdbeComment((v, "right SELECT"));
3294 savedLimit = p->iLimit;
3295 savedOffset = p->iOffset;
3296 p->iLimit = regLimitB;
3297 p->iOffset = 0;
3298 ExplainQueryPlan((pParse, 1, "RIGHT"));
3299 sqlite3Select(pParse, p, &destB);
3300 p->iLimit = savedLimit;
3301 p->iOffset = savedOffset;
3302 sqlite3VdbeEndCoroutine(v, regAddrB);
3304 /* Generate a subroutine that outputs the current row of the A
3305 ** select as the next output row of the compound select.
3307 VdbeNoopComment((v, "Output routine for A"));
3308 addrOutA = generateOutputSubroutine(pParse,
3309 p, &destA, pDest, regOutA,
3310 regPrev, pKeyDup, labelEnd);
3312 /* Generate a subroutine that outputs the current row of the B
3313 ** select as the next output row of the compound select.
3315 if( op==TK_ALL || op==TK_UNION ){
3316 VdbeNoopComment((v, "Output routine for B"));
3317 addrOutB = generateOutputSubroutine(pParse,
3318 p, &destB, pDest, regOutB,
3319 regPrev, pKeyDup, labelEnd);
3321 sqlite3KeyInfoUnref(pKeyDup);
3323 /* Generate a subroutine to run when the results from select A
3324 ** are exhausted and only data in select B remains.
3326 if( op==TK_EXCEPT || op==TK_INTERSECT ){
3327 addrEofA_noB = addrEofA = labelEnd;
3328 }else{
3329 VdbeNoopComment((v, "eof-A subroutine"));
3330 addrEofA = sqlite3VdbeAddOp2(v, OP_Gosub, regOutB, addrOutB);
3331 addrEofA_noB = sqlite3VdbeAddOp2(v, OP_Yield, regAddrB, labelEnd);
3332 VdbeCoverage(v);
3333 sqlite3VdbeGoto(v, addrEofA);
3334 p->nSelectRow = sqlite3LogEstAdd(p->nSelectRow, pPrior->nSelectRow);
3337 /* Generate a subroutine to run when the results from select B
3338 ** are exhausted and only data in select A remains.
3340 if( op==TK_INTERSECT ){
3341 addrEofB = addrEofA;
3342 if( p->nSelectRow > pPrior->nSelectRow ) p->nSelectRow = pPrior->nSelectRow;
3343 }else{
3344 VdbeNoopComment((v, "eof-B subroutine"));
3345 addrEofB = sqlite3VdbeAddOp2(v, OP_Gosub, regOutA, addrOutA);
3346 sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, labelEnd); VdbeCoverage(v);
3347 sqlite3VdbeGoto(v, addrEofB);
3350 /* Generate code to handle the case of A<B
3352 VdbeNoopComment((v, "A-lt-B subroutine"));
3353 addrAltB = sqlite3VdbeAddOp2(v, OP_Gosub, regOutA, addrOutA);
3354 sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, addrEofA); VdbeCoverage(v);
3355 sqlite3VdbeGoto(v, labelCmpr);
3357 /* Generate code to handle the case of A==B
3359 if( op==TK_ALL ){
3360 addrAeqB = addrAltB;
3361 }else if( op==TK_INTERSECT ){
3362 addrAeqB = addrAltB;
3363 addrAltB++;
3364 }else{
3365 VdbeNoopComment((v, "A-eq-B subroutine"));
3366 addrAeqB =
3367 sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, addrEofA); VdbeCoverage(v);
3368 sqlite3VdbeGoto(v, labelCmpr);
3371 /* Generate code to handle the case of A>B
3373 VdbeNoopComment((v, "A-gt-B subroutine"));
3374 addrAgtB = sqlite3VdbeCurrentAddr(v);
3375 if( op==TK_ALL || op==TK_UNION ){
3376 sqlite3VdbeAddOp2(v, OP_Gosub, regOutB, addrOutB);
3378 sqlite3VdbeAddOp2(v, OP_Yield, regAddrB, addrEofB); VdbeCoverage(v);
3379 sqlite3VdbeGoto(v, labelCmpr);
3381 /* This code runs once to initialize everything.
3383 sqlite3VdbeJumpHere(v, addr1);
3384 sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, addrEofA_noB); VdbeCoverage(v);
3385 sqlite3VdbeAddOp2(v, OP_Yield, regAddrB, addrEofB); VdbeCoverage(v);
3387 /* Implement the main merge loop
3389 sqlite3VdbeResolveLabel(v, labelCmpr);
3390 sqlite3VdbeAddOp4(v, OP_Permutation, 0, 0, 0, (char*)aPermute, P4_INTARRAY);
3391 sqlite3VdbeAddOp4(v, OP_Compare, destA.iSdst, destB.iSdst, nOrderBy,
3392 (char*)pKeyMerge, P4_KEYINFO);
3393 sqlite3VdbeChangeP5(v, OPFLAG_PERMUTE);
3394 sqlite3VdbeAddOp3(v, OP_Jump, addrAltB, addrAeqB, addrAgtB); VdbeCoverage(v);
3396 /* Jump to the this point in order to terminate the query.
3398 sqlite3VdbeResolveLabel(v, labelEnd);
3400 /* Reassembly the compound query so that it will be freed correctly
3401 ** by the calling function */
3402 if( p->pPrior ){
3403 sqlite3SelectDelete(db, p->pPrior);
3405 p->pPrior = pPrior;
3406 pPrior->pNext = p;
3408 /*** TBD: Insert subroutine calls to close cursors on incomplete
3409 **** subqueries ****/
3410 ExplainQueryPlanPop(pParse);
3411 return pParse->nErr!=0;
3413 #endif
3415 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
3417 /* An instance of the SubstContext object describes an substitution edit
3418 ** to be performed on a parse tree.
3420 ** All references to columns in table iTable are to be replaced by corresponding
3421 ** expressions in pEList.
3423 typedef struct SubstContext {
3424 Parse *pParse; /* The parsing context */
3425 int iTable; /* Replace references to this table */
3426 int iNewTable; /* New table number */
3427 int isLeftJoin; /* Add TK_IF_NULL_ROW opcodes on each replacement */
3428 ExprList *pEList; /* Replacement expressions */
3429 } SubstContext;
3431 /* Forward Declarations */
3432 static void substExprList(SubstContext*, ExprList*);
3433 static void substSelect(SubstContext*, Select*, int);
3436 ** Scan through the expression pExpr. Replace every reference to
3437 ** a column in table number iTable with a copy of the iColumn-th
3438 ** entry in pEList. (But leave references to the ROWID column
3439 ** unchanged.)
3441 ** This routine is part of the flattening procedure. A subquery
3442 ** whose result set is defined by pEList appears as entry in the
3443 ** FROM clause of a SELECT such that the VDBE cursor assigned to that
3444 ** FORM clause entry is iTable. This routine makes the necessary
3445 ** changes to pExpr so that it refers directly to the source table
3446 ** of the subquery rather the result set of the subquery.
3448 static Expr *substExpr(
3449 SubstContext *pSubst, /* Description of the substitution */
3450 Expr *pExpr /* Expr in which substitution occurs */
3452 if( pExpr==0 ) return 0;
3453 if( ExprHasProperty(pExpr, EP_FromJoin)
3454 && pExpr->iRightJoinTable==pSubst->iTable
3456 pExpr->iRightJoinTable = pSubst->iNewTable;
3458 if( pExpr->op==TK_COLUMN && pExpr->iTable==pSubst->iTable ){
3459 if( pExpr->iColumn<0 ){
3460 pExpr->op = TK_NULL;
3461 }else{
3462 Expr *pNew;
3463 Expr *pCopy = pSubst->pEList->a[pExpr->iColumn].pExpr;
3464 Expr ifNullRow;
3465 assert( pSubst->pEList!=0 && pExpr->iColumn<pSubst->pEList->nExpr );
3466 assert( pExpr->pLeft==0 && pExpr->pRight==0 );
3467 if( sqlite3ExprIsVector(pCopy) ){
3468 sqlite3VectorErrorMsg(pSubst->pParse, pCopy);
3469 }else{
3470 sqlite3 *db = pSubst->pParse->db;
3471 if( pSubst->isLeftJoin && pCopy->op!=TK_COLUMN ){
3472 memset(&ifNullRow, 0, sizeof(ifNullRow));
3473 ifNullRow.op = TK_IF_NULL_ROW;
3474 ifNullRow.pLeft = pCopy;
3475 ifNullRow.iTable = pSubst->iNewTable;
3476 pCopy = &ifNullRow;
3478 pNew = sqlite3ExprDup(db, pCopy, 0);
3479 if( pNew && pSubst->isLeftJoin ){
3480 ExprSetProperty(pNew, EP_CanBeNull);
3482 if( pNew && ExprHasProperty(pExpr,EP_FromJoin) ){
3483 pNew->iRightJoinTable = pExpr->iRightJoinTable;
3484 ExprSetProperty(pNew, EP_FromJoin);
3486 sqlite3ExprDelete(db, pExpr);
3487 pExpr = pNew;
3490 }else{
3491 if( pExpr->op==TK_IF_NULL_ROW && pExpr->iTable==pSubst->iTable ){
3492 pExpr->iTable = pSubst->iNewTable;
3494 pExpr->pLeft = substExpr(pSubst, pExpr->pLeft);
3495 pExpr->pRight = substExpr(pSubst, pExpr->pRight);
3496 if( ExprHasProperty(pExpr, EP_xIsSelect) ){
3497 substSelect(pSubst, pExpr->x.pSelect, 1);
3498 }else{
3499 substExprList(pSubst, pExpr->x.pList);
3502 return pExpr;
3504 static void substExprList(
3505 SubstContext *pSubst, /* Description of the substitution */
3506 ExprList *pList /* List to scan and in which to make substitutes */
3508 int i;
3509 if( pList==0 ) return;
3510 for(i=0; i<pList->nExpr; i++){
3511 pList->a[i].pExpr = substExpr(pSubst, pList->a[i].pExpr);
3514 static void substSelect(
3515 SubstContext *pSubst, /* Description of the substitution */
3516 Select *p, /* SELECT statement in which to make substitutions */
3517 int doPrior /* Do substitutes on p->pPrior too */
3519 SrcList *pSrc;
3520 struct SrcList_item *pItem;
3521 int i;
3522 if( !p ) return;
3524 substExprList(pSubst, p->pEList);
3525 substExprList(pSubst, p->pGroupBy);
3526 substExprList(pSubst, p->pOrderBy);
3527 p->pHaving = substExpr(pSubst, p->pHaving);
3528 p->pWhere = substExpr(pSubst, p->pWhere);
3529 pSrc = p->pSrc;
3530 assert( pSrc!=0 );
3531 for(i=pSrc->nSrc, pItem=pSrc->a; i>0; i--, pItem++){
3532 substSelect(pSubst, pItem->pSelect, 1);
3533 if( pItem->fg.isTabFunc ){
3534 substExprList(pSubst, pItem->u1.pFuncArg);
3537 }while( doPrior && (p = p->pPrior)!=0 );
3539 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */
3541 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
3543 ** This routine attempts to flatten subqueries as a performance optimization.
3544 ** This routine returns 1 if it makes changes and 0 if no flattening occurs.
3546 ** To understand the concept of flattening, consider the following
3547 ** query:
3549 ** SELECT a FROM (SELECT x+y AS a FROM t1 WHERE z<100) WHERE a>5
3551 ** The default way of implementing this query is to execute the
3552 ** subquery first and store the results in a temporary table, then
3553 ** run the outer query on that temporary table. This requires two
3554 ** passes over the data. Furthermore, because the temporary table
3555 ** has no indices, the WHERE clause on the outer query cannot be
3556 ** optimized.
3558 ** This routine attempts to rewrite queries such as the above into
3559 ** a single flat select, like this:
3561 ** SELECT x+y AS a FROM t1 WHERE z<100 AND a>5
3563 ** The code generated for this simplification gives the same result
3564 ** but only has to scan the data once. And because indices might
3565 ** exist on the table t1, a complete scan of the data might be
3566 ** avoided.
3568 ** Flattening is subject to the following constraints:
3570 ** (**) We no longer attempt to flatten aggregate subqueries. Was:
3571 ** The subquery and the outer query cannot both be aggregates.
3573 ** (**) We no longer attempt to flatten aggregate subqueries. Was:
3574 ** (2) If the subquery is an aggregate then
3575 ** (2a) the outer query must not be a join and
3576 ** (2b) the outer query must not use subqueries
3577 ** other than the one FROM-clause subquery that is a candidate
3578 ** for flattening. (This is due to ticket [2f7170d73bf9abf80]
3579 ** from 2015-02-09.)
3581 ** (3) If the subquery is the right operand of a LEFT JOIN then
3582 ** (3a) the subquery may not be a join and
3583 ** (3b) the FROM clause of the subquery may not contain a virtual
3584 ** table and
3585 ** (3c) the outer query may not be an aggregate.
3587 ** (4) The subquery can not be DISTINCT.
3589 ** (**) At one point restrictions (4) and (5) defined a subset of DISTINCT
3590 ** sub-queries that were excluded from this optimization. Restriction
3591 ** (4) has since been expanded to exclude all DISTINCT subqueries.
3593 ** (**) We no longer attempt to flatten aggregate subqueries. Was:
3594 ** If the subquery is aggregate, the outer query may not be DISTINCT.
3596 ** (7) The subquery must have a FROM clause. TODO: For subqueries without
3597 ** A FROM clause, consider adding a FROM clause with the special
3598 ** table sqlite_once that consists of a single row containing a
3599 ** single NULL.
3601 ** (8) If the subquery uses LIMIT then the outer query may not be a join.
3603 ** (9) If the subquery uses LIMIT then the outer query may not be aggregate.
3605 ** (**) Restriction (10) was removed from the code on 2005-02-05 but we
3606 ** accidently carried the comment forward until 2014-09-15. Original
3607 ** constraint: "If the subquery is aggregate then the outer query
3608 ** may not use LIMIT."
3610 ** (11) The subquery and the outer query may not both have ORDER BY clauses.
3612 ** (**) Not implemented. Subsumed into restriction (3). Was previously
3613 ** a separate restriction deriving from ticket #350.
3615 ** (13) The subquery and outer query may not both use LIMIT.
3617 ** (14) The subquery may not use OFFSET.
3619 ** (15) If the outer query is part of a compound select, then the
3620 ** subquery may not use LIMIT.
3621 ** (See ticket #2339 and ticket [02a8e81d44]).
3623 ** (16) If the outer query is aggregate, then the subquery may not
3624 ** use ORDER BY. (Ticket #2942) This used to not matter
3625 ** until we introduced the group_concat() function.
3627 ** (17) If the subquery is a compound select, then
3628 ** (17a) all compound operators must be a UNION ALL, and
3629 ** (17b) no terms within the subquery compound may be aggregate
3630 ** or DISTINCT, and
3631 ** (17c) every term within the subquery compound must have a FROM clause
3632 ** (17d) the outer query may not be
3633 ** (17d1) aggregate, or
3634 ** (17d2) DISTINCT, or
3635 ** (17d3) a join.
3637 ** The parent and sub-query may contain WHERE clauses. Subject to
3638 ** rules (11), (13) and (14), they may also contain ORDER BY,
3639 ** LIMIT and OFFSET clauses. The subquery cannot use any compound
3640 ** operator other than UNION ALL because all the other compound
3641 ** operators have an implied DISTINCT which is disallowed by
3642 ** restriction (4).
3644 ** Also, each component of the sub-query must return the same number
3645 ** of result columns. This is actually a requirement for any compound
3646 ** SELECT statement, but all the code here does is make sure that no
3647 ** such (illegal) sub-query is flattened. The caller will detect the
3648 ** syntax error and return a detailed message.
3650 ** (18) If the sub-query is a compound select, then all terms of the
3651 ** ORDER BY clause of the parent must be simple references to
3652 ** columns of the sub-query.
3654 ** (19) If the subquery uses LIMIT then the outer query may not
3655 ** have a WHERE clause.
3657 ** (20) If the sub-query is a compound select, then it must not use
3658 ** an ORDER BY clause. Ticket #3773. We could relax this constraint
3659 ** somewhat by saying that the terms of the ORDER BY clause must
3660 ** appear as unmodified result columns in the outer query. But we
3661 ** have other optimizations in mind to deal with that case.
3663 ** (21) If the subquery uses LIMIT then the outer query may not be
3664 ** DISTINCT. (See ticket [752e1646fc]).
3666 ** (22) The subquery may not be a recursive CTE.
3668 ** (**) Subsumed into restriction (17d3). Was: If the outer query is
3669 ** a recursive CTE, then the sub-query may not be a compound query.
3670 ** This restriction is because transforming the
3671 ** parent to a compound query confuses the code that handles
3672 ** recursive queries in multiSelect().
3674 ** (**) We no longer attempt to flatten aggregate subqueries. Was:
3675 ** The subquery may not be an aggregate that uses the built-in min() or
3676 ** or max() functions. (Without this restriction, a query like:
3677 ** "SELECT x FROM (SELECT max(y), x FROM t1)" would not necessarily
3678 ** return the value X for which Y was maximal.)
3680 ** (25) If either the subquery or the parent query contains a window
3681 ** function in the select list or ORDER BY clause, flattening
3682 ** is not attempted.
3685 ** In this routine, the "p" parameter is a pointer to the outer query.
3686 ** The subquery is p->pSrc->a[iFrom]. isAgg is true if the outer query
3687 ** uses aggregates.
3689 ** If flattening is not attempted, this routine is a no-op and returns 0.
3690 ** If flattening is attempted this routine returns 1.
3692 ** All of the expression analysis must occur on both the outer query and
3693 ** the subquery before this routine runs.
3695 static int flattenSubquery(
3696 Parse *pParse, /* Parsing context */
3697 Select *p, /* The parent or outer SELECT statement */
3698 int iFrom, /* Index in p->pSrc->a[] of the inner subquery */
3699 int isAgg /* True if outer SELECT uses aggregate functions */
3701 const char *zSavedAuthContext = pParse->zAuthContext;
3702 Select *pParent; /* Current UNION ALL term of the other query */
3703 Select *pSub; /* The inner query or "subquery" */
3704 Select *pSub1; /* Pointer to the rightmost select in sub-query */
3705 SrcList *pSrc; /* The FROM clause of the outer query */
3706 SrcList *pSubSrc; /* The FROM clause of the subquery */
3707 int iParent; /* VDBE cursor number of the pSub result set temp table */
3708 int iNewParent = -1;/* Replacement table for iParent */
3709 int isLeftJoin = 0; /* True if pSub is the right side of a LEFT JOIN */
3710 int i; /* Loop counter */
3711 Expr *pWhere; /* The WHERE clause */
3712 struct SrcList_item *pSubitem; /* The subquery */
3713 sqlite3 *db = pParse->db;
3715 /* Check to see if flattening is permitted. Return 0 if not.
3717 assert( p!=0 );
3718 assert( p->pPrior==0 );
3719 if( OptimizationDisabled(db, SQLITE_QueryFlattener) ) return 0;
3720 pSrc = p->pSrc;
3721 assert( pSrc && iFrom>=0 && iFrom<pSrc->nSrc );
3722 pSubitem = &pSrc->a[iFrom];
3723 iParent = pSubitem->iCursor;
3724 pSub = pSubitem->pSelect;
3725 assert( pSub!=0 );
3727 #ifndef SQLITE_OMIT_WINDOWFUNC
3728 if( p->pWin || pSub->pWin ) return 0; /* Restriction (25) */
3729 #endif
3731 pSubSrc = pSub->pSrc;
3732 assert( pSubSrc );
3733 /* Prior to version 3.1.2, when LIMIT and OFFSET had to be simple constants,
3734 ** not arbitrary expressions, we allowed some combining of LIMIT and OFFSET
3735 ** because they could be computed at compile-time. But when LIMIT and OFFSET
3736 ** became arbitrary expressions, we were forced to add restrictions (13)
3737 ** and (14). */
3738 if( pSub->pLimit && p->pLimit ) return 0; /* Restriction (13) */
3739 if( pSub->pLimit && pSub->pLimit->pRight ) return 0; /* Restriction (14) */
3740 if( (p->selFlags & SF_Compound)!=0 && pSub->pLimit ){
3741 return 0; /* Restriction (15) */
3743 if( pSubSrc->nSrc==0 ) return 0; /* Restriction (7) */
3744 if( pSub->selFlags & SF_Distinct ) return 0; /* Restriction (4) */
3745 if( pSub->pLimit && (pSrc->nSrc>1 || isAgg) ){
3746 return 0; /* Restrictions (8)(9) */
3748 if( p->pOrderBy && pSub->pOrderBy ){
3749 return 0; /* Restriction (11) */
3751 if( isAgg && pSub->pOrderBy ) return 0; /* Restriction (16) */
3752 if( pSub->pLimit && p->pWhere ) return 0; /* Restriction (19) */
3753 if( pSub->pLimit && (p->selFlags & SF_Distinct)!=0 ){
3754 return 0; /* Restriction (21) */
3756 if( pSub->selFlags & (SF_Recursive) ){
3757 return 0; /* Restrictions (22) */
3761 ** If the subquery is the right operand of a LEFT JOIN, then the
3762 ** subquery may not be a join itself (3a). Example of why this is not
3763 ** allowed:
3765 ** t1 LEFT OUTER JOIN (t2 JOIN t3)
3767 ** If we flatten the above, we would get
3769 ** (t1 LEFT OUTER JOIN t2) JOIN t3
3771 ** which is not at all the same thing.
3773 ** If the subquery is the right operand of a LEFT JOIN, then the outer
3774 ** query cannot be an aggregate. (3c) This is an artifact of the way
3775 ** aggregates are processed - there is no mechanism to determine if
3776 ** the LEFT JOIN table should be all-NULL.
3778 ** See also tickets #306, #350, and #3300.
3780 if( (pSubitem->fg.jointype & JT_OUTER)!=0 ){
3781 isLeftJoin = 1;
3782 if( pSubSrc->nSrc>1 || isAgg || IsVirtual(pSubSrc->a[0].pTab) ){
3783 /* (3a) (3c) (3b) */
3784 return 0;
3787 #ifdef SQLITE_EXTRA_IFNULLROW
3788 else if( iFrom>0 && !isAgg ){
3789 /* Setting isLeftJoin to -1 causes OP_IfNullRow opcodes to be generated for
3790 ** every reference to any result column from subquery in a join, even
3791 ** though they are not necessary. This will stress-test the OP_IfNullRow
3792 ** opcode. */
3793 isLeftJoin = -1;
3795 #endif
3797 /* Restriction (17): If the sub-query is a compound SELECT, then it must
3798 ** use only the UNION ALL operator. And none of the simple select queries
3799 ** that make up the compound SELECT are allowed to be aggregate or distinct
3800 ** queries.
3802 if( pSub->pPrior ){
3803 if( pSub->pOrderBy ){
3804 return 0; /* Restriction (20) */
3806 if( isAgg || (p->selFlags & SF_Distinct)!=0 || pSrc->nSrc!=1 ){
3807 return 0; /* (17d1), (17d2), or (17d3) */
3809 for(pSub1=pSub; pSub1; pSub1=pSub1->pPrior){
3810 testcase( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct );
3811 testcase( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))==SF_Aggregate );
3812 assert( pSub->pSrc!=0 );
3813 assert( pSub->pEList->nExpr==pSub1->pEList->nExpr );
3814 if( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))!=0 /* (17b) */
3815 || (pSub1->pPrior && pSub1->op!=TK_ALL) /* (17a) */
3816 || pSub1->pSrc->nSrc<1 /* (17c) */
3818 return 0;
3820 testcase( pSub1->pSrc->nSrc>1 );
3823 /* Restriction (18). */
3824 if( p->pOrderBy ){
3825 int ii;
3826 for(ii=0; ii<p->pOrderBy->nExpr; ii++){
3827 if( p->pOrderBy->a[ii].u.x.iOrderByCol==0 ) return 0;
3832 /* Ex-restriction (23):
3833 ** The only way that the recursive part of a CTE can contain a compound
3834 ** subquery is for the subquery to be one term of a join. But if the
3835 ** subquery is a join, then the flattening has already been stopped by
3836 ** restriction (17d3)
3838 assert( (p->selFlags & SF_Recursive)==0 || pSub->pPrior==0 );
3840 /***** If we reach this point, flattening is permitted. *****/
3841 SELECTTRACE(1,pParse,p,("flatten %s.%p from term %d\n",
3842 pSub->zSelName, pSub, iFrom));
3844 /* Authorize the subquery */
3845 pParse->zAuthContext = pSubitem->zName;
3846 TESTONLY(i =) sqlite3AuthCheck(pParse, SQLITE_SELECT, 0, 0, 0);
3847 testcase( i==SQLITE_DENY );
3848 pParse->zAuthContext = zSavedAuthContext;
3850 /* If the sub-query is a compound SELECT statement, then (by restrictions
3851 ** 17 and 18 above) it must be a UNION ALL and the parent query must
3852 ** be of the form:
3854 ** SELECT <expr-list> FROM (<sub-query>) <where-clause>
3856 ** followed by any ORDER BY, LIMIT and/or OFFSET clauses. This block
3857 ** creates N-1 copies of the parent query without any ORDER BY, LIMIT or
3858 ** OFFSET clauses and joins them to the left-hand-side of the original
3859 ** using UNION ALL operators. In this case N is the number of simple
3860 ** select statements in the compound sub-query.
3862 ** Example:
3864 ** SELECT a+1 FROM (
3865 ** SELECT x FROM tab
3866 ** UNION ALL
3867 ** SELECT y FROM tab
3868 ** UNION ALL
3869 ** SELECT abs(z*2) FROM tab2
3870 ** ) WHERE a!=5 ORDER BY 1
3872 ** Transformed into:
3874 ** SELECT x+1 FROM tab WHERE x+1!=5
3875 ** UNION ALL
3876 ** SELECT y+1 FROM tab WHERE y+1!=5
3877 ** UNION ALL
3878 ** SELECT abs(z*2)+1 FROM tab2 WHERE abs(z*2)+1!=5
3879 ** ORDER BY 1
3881 ** We call this the "compound-subquery flattening".
3883 for(pSub=pSub->pPrior; pSub; pSub=pSub->pPrior){
3884 Select *pNew;
3885 ExprList *pOrderBy = p->pOrderBy;
3886 Expr *pLimit = p->pLimit;
3887 Select *pPrior = p->pPrior;
3888 p->pOrderBy = 0;
3889 p->pSrc = 0;
3890 p->pPrior = 0;
3891 p->pLimit = 0;
3892 pNew = sqlite3SelectDup(db, p, 0);
3893 sqlite3SelectSetName(pNew, pSub->zSelName);
3894 p->pLimit = pLimit;
3895 p->pOrderBy = pOrderBy;
3896 p->pSrc = pSrc;
3897 p->op = TK_ALL;
3898 if( pNew==0 ){
3899 p->pPrior = pPrior;
3900 }else{
3901 pNew->pPrior = pPrior;
3902 if( pPrior ) pPrior->pNext = pNew;
3903 pNew->pNext = p;
3904 p->pPrior = pNew;
3905 SELECTTRACE(2,pParse,p,("compound-subquery flattener"
3906 " creates %s.%p as peer\n",pNew->zSelName, pNew));
3908 if( db->mallocFailed ) return 1;
3911 /* Begin flattening the iFrom-th entry of the FROM clause
3912 ** in the outer query.
3914 pSub = pSub1 = pSubitem->pSelect;
3916 /* Delete the transient table structure associated with the
3917 ** subquery
3919 sqlite3DbFree(db, pSubitem->zDatabase);
3920 sqlite3DbFree(db, pSubitem->zName);
3921 sqlite3DbFree(db, pSubitem->zAlias);
3922 pSubitem->zDatabase = 0;
3923 pSubitem->zName = 0;
3924 pSubitem->zAlias = 0;
3925 pSubitem->pSelect = 0;
3927 /* Defer deleting the Table object associated with the
3928 ** subquery until code generation is
3929 ** complete, since there may still exist Expr.pTab entries that
3930 ** refer to the subquery even after flattening. Ticket #3346.
3932 ** pSubitem->pTab is always non-NULL by test restrictions and tests above.
3934 if( ALWAYS(pSubitem->pTab!=0) ){
3935 Table *pTabToDel = pSubitem->pTab;
3936 if( pTabToDel->nTabRef==1 ){
3937 Parse *pToplevel = sqlite3ParseToplevel(pParse);
3938 pTabToDel->pNextZombie = pToplevel->pZombieTab;
3939 pToplevel->pZombieTab = pTabToDel;
3940 }else{
3941 pTabToDel->nTabRef--;
3943 pSubitem->pTab = 0;
3946 /* The following loop runs once for each term in a compound-subquery
3947 ** flattening (as described above). If we are doing a different kind
3948 ** of flattening - a flattening other than a compound-subquery flattening -
3949 ** then this loop only runs once.
3951 ** This loop moves all of the FROM elements of the subquery into the
3952 ** the FROM clause of the outer query. Before doing this, remember
3953 ** the cursor number for the original outer query FROM element in
3954 ** iParent. The iParent cursor will never be used. Subsequent code
3955 ** will scan expressions looking for iParent references and replace
3956 ** those references with expressions that resolve to the subquery FROM
3957 ** elements we are now copying in.
3959 for(pParent=p; pParent; pParent=pParent->pPrior, pSub=pSub->pPrior){
3960 int nSubSrc;
3961 u8 jointype = 0;
3962 pSubSrc = pSub->pSrc; /* FROM clause of subquery */
3963 nSubSrc = pSubSrc->nSrc; /* Number of terms in subquery FROM clause */
3964 pSrc = pParent->pSrc; /* FROM clause of the outer query */
3966 if( pSrc ){
3967 assert( pParent==p ); /* First time through the loop */
3968 jointype = pSubitem->fg.jointype;
3969 }else{
3970 assert( pParent!=p ); /* 2nd and subsequent times through the loop */
3971 pSrc = pParent->pSrc = sqlite3SrcListAppend(db, 0, 0, 0);
3972 if( pSrc==0 ){
3973 assert( db->mallocFailed );
3974 break;
3978 /* The subquery uses a single slot of the FROM clause of the outer
3979 ** query. If the subquery has more than one element in its FROM clause,
3980 ** then expand the outer query to make space for it to hold all elements
3981 ** of the subquery.
3983 ** Example:
3985 ** SELECT * FROM tabA, (SELECT * FROM sub1, sub2), tabB;
3987 ** The outer query has 3 slots in its FROM clause. One slot of the
3988 ** outer query (the middle slot) is used by the subquery. The next
3989 ** block of code will expand the outer query FROM clause to 4 slots.
3990 ** The middle slot is expanded to two slots in order to make space
3991 ** for the two elements in the FROM clause of the subquery.
3993 if( nSubSrc>1 ){
3994 pParent->pSrc = pSrc = sqlite3SrcListEnlarge(db, pSrc, nSubSrc-1,iFrom+1);
3995 if( db->mallocFailed ){
3996 break;
4000 /* Transfer the FROM clause terms from the subquery into the
4001 ** outer query.
4003 for(i=0; i<nSubSrc; i++){
4004 sqlite3IdListDelete(db, pSrc->a[i+iFrom].pUsing);
4005 assert( pSrc->a[i+iFrom].fg.isTabFunc==0 );
4006 pSrc->a[i+iFrom] = pSubSrc->a[i];
4007 iNewParent = pSubSrc->a[i].iCursor;
4008 memset(&pSubSrc->a[i], 0, sizeof(pSubSrc->a[i]));
4010 pSrc->a[iFrom].fg.jointype = jointype;
4012 /* Now begin substituting subquery result set expressions for
4013 ** references to the iParent in the outer query.
4015 ** Example:
4017 ** SELECT a+5, b*10 FROM (SELECT x*3 AS a, y+10 AS b FROM t1) WHERE a>b;
4018 ** \ \_____________ subquery __________/ /
4019 ** \_____________________ outer query ______________________________/
4021 ** We look at every expression in the outer query and every place we see
4022 ** "a" we substitute "x*3" and every place we see "b" we substitute "y+10".
4024 if( pSub->pOrderBy ){
4025 /* At this point, any non-zero iOrderByCol values indicate that the
4026 ** ORDER BY column expression is identical to the iOrderByCol'th
4027 ** expression returned by SELECT statement pSub. Since these values
4028 ** do not necessarily correspond to columns in SELECT statement pParent,
4029 ** zero them before transfering the ORDER BY clause.
4031 ** Not doing this may cause an error if a subsequent call to this
4032 ** function attempts to flatten a compound sub-query into pParent
4033 ** (the only way this can happen is if the compound sub-query is
4034 ** currently part of pSub->pSrc). See ticket [d11a6e908f]. */
4035 ExprList *pOrderBy = pSub->pOrderBy;
4036 for(i=0; i<pOrderBy->nExpr; i++){
4037 pOrderBy->a[i].u.x.iOrderByCol = 0;
4039 assert( pParent->pOrderBy==0 );
4040 pParent->pOrderBy = pOrderBy;
4041 pSub->pOrderBy = 0;
4043 pWhere = sqlite3ExprDup(db, pSub->pWhere, 0);
4044 if( isLeftJoin>0 ){
4045 setJoinExpr(pWhere, iNewParent);
4047 pParent->pWhere = sqlite3ExprAnd(db, pWhere, pParent->pWhere);
4048 if( db->mallocFailed==0 ){
4049 SubstContext x;
4050 x.pParse = pParse;
4051 x.iTable = iParent;
4052 x.iNewTable = iNewParent;
4053 x.isLeftJoin = isLeftJoin;
4054 x.pEList = pSub->pEList;
4055 substSelect(&x, pParent, 0);
4058 /* The flattened query is distinct if either the inner or the
4059 ** outer query is distinct.
4061 pParent->selFlags |= pSub->selFlags & SF_Distinct;
4064 ** SELECT ... FROM (SELECT ... LIMIT a OFFSET b) LIMIT x OFFSET y;
4066 ** One is tempted to try to add a and b to combine the limits. But this
4067 ** does not work if either limit is negative.
4069 if( pSub->pLimit ){
4070 pParent->pLimit = pSub->pLimit;
4071 pSub->pLimit = 0;
4075 /* Finially, delete what is left of the subquery and return
4076 ** success.
4078 sqlite3SelectDelete(db, pSub1);
4080 #if SELECTTRACE_ENABLED
4081 if( sqlite3SelectTrace & 0x100 ){
4082 SELECTTRACE(0x100,pParse,p,("After flattening:\n"));
4083 sqlite3TreeViewSelect(0, p, 0);
4085 #endif
4087 return 1;
4089 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */
4093 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
4095 ** Make copies of relevant WHERE clause terms of the outer query into
4096 ** the WHERE clause of subquery. Example:
4098 ** SELECT * FROM (SELECT a AS x, c-d AS y FROM t1) WHERE x=5 AND y=10;
4100 ** Transformed into:
4102 ** SELECT * FROM (SELECT a AS x, c-d AS y FROM t1 WHERE a=5 AND c-d=10)
4103 ** WHERE x=5 AND y=10;
4105 ** The hope is that the terms added to the inner query will make it more
4106 ** efficient.
4108 ** Do not attempt this optimization if:
4110 ** (1) (** This restriction was removed on 2017-09-29. We used to
4111 ** disallow this optimization for aggregate subqueries, but now
4112 ** it is allowed by putting the extra terms on the HAVING clause.
4113 ** The added HAVING clause is pointless if the subquery lacks
4114 ** a GROUP BY clause. But such a HAVING clause is also harmless
4115 ** so there does not appear to be any reason to add extra logic
4116 ** to suppress it. **)
4118 ** (2) The inner query is the recursive part of a common table expression.
4120 ** (3) The inner query has a LIMIT clause (since the changes to the WHERE
4121 ** clause would change the meaning of the LIMIT).
4123 ** (4) The inner query is the right operand of a LEFT JOIN and the
4124 ** expression to be pushed down does not come from the ON clause
4125 ** on that LEFT JOIN.
4127 ** (5) The WHERE clause expression originates in the ON or USING clause
4128 ** of a LEFT JOIN where iCursor is not the right-hand table of that
4129 ** left join. An example:
4131 ** SELECT *
4132 ** FROM (SELECT 1 AS a1 UNION ALL SELECT 2) AS aa
4133 ** JOIN (SELECT 1 AS b2 UNION ALL SELECT 2) AS bb ON (a1=b2)
4134 ** LEFT JOIN (SELECT 8 AS c3 UNION ALL SELECT 9) AS cc ON (b2=2);
4136 ** The correct answer is three rows: (1,1,NULL),(2,2,8),(2,2,9).
4137 ** But if the (b2=2) term were to be pushed down into the bb subquery,
4138 ** then the (1,1,NULL) row would be suppressed.
4140 ** (6) The inner query features one or more window-functions (since
4141 ** changes to the WHERE clause of the inner query could change the
4142 ** window over which window functions are calculated).
4144 ** Return 0 if no changes are made and non-zero if one or more WHERE clause
4145 ** terms are duplicated into the subquery.
4147 static int pushDownWhereTerms(
4148 Parse *pParse, /* Parse context (for malloc() and error reporting) */
4149 Select *pSubq, /* The subquery whose WHERE clause is to be augmented */
4150 Expr *pWhere, /* The WHERE clause of the outer query */
4151 int iCursor, /* Cursor number of the subquery */
4152 int isLeftJoin /* True if pSubq is the right term of a LEFT JOIN */
4154 Expr *pNew;
4155 int nChng = 0;
4156 if( pWhere==0 ) return 0;
4157 if( pSubq->selFlags & SF_Recursive ) return 0; /* restriction (2) */
4159 #ifndef SQLITE_OMIT_WINDOWFUNC
4160 if( pSubq->pWin ) return 0;
4161 #endif
4163 #ifdef SQLITE_DEBUG
4164 /* Only the first term of a compound can have a WITH clause. But make
4165 ** sure no other terms are marked SF_Recursive in case something changes
4166 ** in the future.
4169 Select *pX;
4170 for(pX=pSubq; pX; pX=pX->pPrior){
4171 assert( (pX->selFlags & (SF_Recursive))==0 );
4174 #endif
4176 if( pSubq->pLimit!=0 ){
4177 return 0; /* restriction (3) */
4179 while( pWhere->op==TK_AND ){
4180 nChng += pushDownWhereTerms(pParse, pSubq, pWhere->pRight,
4181 iCursor, isLeftJoin);
4182 pWhere = pWhere->pLeft;
4184 if( isLeftJoin
4185 && (ExprHasProperty(pWhere,EP_FromJoin)==0
4186 || pWhere->iRightJoinTable!=iCursor)
4188 return 0; /* restriction (4) */
4190 if( ExprHasProperty(pWhere,EP_FromJoin) && pWhere->iRightJoinTable!=iCursor ){
4191 return 0; /* restriction (5) */
4193 if( sqlite3ExprIsTableConstant(pWhere, iCursor) ){
4194 nChng++;
4195 while( pSubq ){
4196 SubstContext x;
4197 pNew = sqlite3ExprDup(pParse->db, pWhere, 0);
4198 unsetJoinExpr(pNew, -1);
4199 x.pParse = pParse;
4200 x.iTable = iCursor;
4201 x.iNewTable = iCursor;
4202 x.isLeftJoin = 0;
4203 x.pEList = pSubq->pEList;
4204 pNew = substExpr(&x, pNew);
4205 if( pSubq->selFlags & SF_Aggregate ){
4206 pSubq->pHaving = sqlite3ExprAnd(pParse->db, pSubq->pHaving, pNew);
4207 }else{
4208 pSubq->pWhere = sqlite3ExprAnd(pParse->db, pSubq->pWhere, pNew);
4210 pSubq = pSubq->pPrior;
4213 return nChng;
4215 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */
4218 ** The pFunc is the only aggregate function in the query. Check to see
4219 ** if the query is a candidate for the min/max optimization.
4221 ** If the query is a candidate for the min/max optimization, then set
4222 ** *ppMinMax to be an ORDER BY clause to be used for the optimization
4223 ** and return either WHERE_ORDERBY_MIN or WHERE_ORDERBY_MAX depending on
4224 ** whether pFunc is a min() or max() function.
4226 ** If the query is not a candidate for the min/max optimization, return
4227 ** WHERE_ORDERBY_NORMAL (which must be zero).
4229 ** This routine must be called after aggregate functions have been
4230 ** located but before their arguments have been subjected to aggregate
4231 ** analysis.
4233 static u8 minMaxQuery(sqlite3 *db, Expr *pFunc, ExprList **ppMinMax){
4234 int eRet = WHERE_ORDERBY_NORMAL; /* Return value */
4235 ExprList *pEList = pFunc->x.pList; /* Arguments to agg function */
4236 const char *zFunc; /* Name of aggregate function pFunc */
4237 ExprList *pOrderBy;
4238 u8 sortOrder;
4240 assert( *ppMinMax==0 );
4241 assert( pFunc->op==TK_AGG_FUNCTION );
4242 if( pEList==0 || pEList->nExpr!=1 ) return eRet;
4243 zFunc = pFunc->u.zToken;
4244 if( sqlite3StrICmp(zFunc, "min")==0 ){
4245 eRet = WHERE_ORDERBY_MIN;
4246 sortOrder = SQLITE_SO_ASC;
4247 }else if( sqlite3StrICmp(zFunc, "max")==0 ){
4248 eRet = WHERE_ORDERBY_MAX;
4249 sortOrder = SQLITE_SO_DESC;
4250 }else{
4251 return eRet;
4253 *ppMinMax = pOrderBy = sqlite3ExprListDup(db, pEList, 0);
4254 assert( pOrderBy!=0 || db->mallocFailed );
4255 if( pOrderBy ) pOrderBy->a[0].sortOrder = sortOrder;
4256 return eRet;
4260 ** The select statement passed as the first argument is an aggregate query.
4261 ** The second argument is the associated aggregate-info object. This
4262 ** function tests if the SELECT is of the form:
4264 ** SELECT count(*) FROM <tbl>
4266 ** where table is a database table, not a sub-select or view. If the query
4267 ** does match this pattern, then a pointer to the Table object representing
4268 ** <tbl> is returned. Otherwise, 0 is returned.
4270 static Table *isSimpleCount(Select *p, AggInfo *pAggInfo){
4271 Table *pTab;
4272 Expr *pExpr;
4274 assert( !p->pGroupBy );
4276 if( p->pWhere || p->pEList->nExpr!=1
4277 || p->pSrc->nSrc!=1 || p->pSrc->a[0].pSelect
4279 return 0;
4281 pTab = p->pSrc->a[0].pTab;
4282 pExpr = p->pEList->a[0].pExpr;
4283 assert( pTab && !pTab->pSelect && pExpr );
4285 if( IsVirtual(pTab) ) return 0;
4286 if( pExpr->op!=TK_AGG_FUNCTION ) return 0;
4287 if( NEVER(pAggInfo->nFunc==0) ) return 0;
4288 if( (pAggInfo->aFunc[0].pFunc->funcFlags&SQLITE_FUNC_COUNT)==0 ) return 0;
4289 if( pExpr->flags&EP_Distinct ) return 0;
4291 return pTab;
4295 ** If the source-list item passed as an argument was augmented with an
4296 ** INDEXED BY clause, then try to locate the specified index. If there
4297 ** was such a clause and the named index cannot be found, return
4298 ** SQLITE_ERROR and leave an error in pParse. Otherwise, populate
4299 ** pFrom->pIndex and return SQLITE_OK.
4301 int sqlite3IndexedByLookup(Parse *pParse, struct SrcList_item *pFrom){
4302 if( pFrom->pTab && pFrom->fg.isIndexedBy ){
4303 Table *pTab = pFrom->pTab;
4304 char *zIndexedBy = pFrom->u1.zIndexedBy;
4305 Index *pIdx;
4306 for(pIdx=pTab->pIndex;
4307 pIdx && sqlite3StrICmp(pIdx->zName, zIndexedBy);
4308 pIdx=pIdx->pNext
4310 if( !pIdx ){
4311 sqlite3ErrorMsg(pParse, "no such index: %s", zIndexedBy, 0);
4312 pParse->checkSchema = 1;
4313 return SQLITE_ERROR;
4315 pFrom->pIBIndex = pIdx;
4317 return SQLITE_OK;
4320 ** Detect compound SELECT statements that use an ORDER BY clause with
4321 ** an alternative collating sequence.
4323 ** SELECT ... FROM t1 EXCEPT SELECT ... FROM t2 ORDER BY .. COLLATE ...
4325 ** These are rewritten as a subquery:
4327 ** SELECT * FROM (SELECT ... FROM t1 EXCEPT SELECT ... FROM t2)
4328 ** ORDER BY ... COLLATE ...
4330 ** This transformation is necessary because the multiSelectOrderBy() routine
4331 ** above that generates the code for a compound SELECT with an ORDER BY clause
4332 ** uses a merge algorithm that requires the same collating sequence on the
4333 ** result columns as on the ORDER BY clause. See ticket
4334 ** http://www.sqlite.org/src/info/6709574d2a
4336 ** This transformation is only needed for EXCEPT, INTERSECT, and UNION.
4337 ** The UNION ALL operator works fine with multiSelectOrderBy() even when
4338 ** there are COLLATE terms in the ORDER BY.
4340 static int convertCompoundSelectToSubquery(Walker *pWalker, Select *p){
4341 int i;
4342 Select *pNew;
4343 Select *pX;
4344 sqlite3 *db;
4345 struct ExprList_item *a;
4346 SrcList *pNewSrc;
4347 Parse *pParse;
4348 Token dummy;
4350 if( p->pPrior==0 ) return WRC_Continue;
4351 if( p->pOrderBy==0 ) return WRC_Continue;
4352 for(pX=p; pX && (pX->op==TK_ALL || pX->op==TK_SELECT); pX=pX->pPrior){}
4353 if( pX==0 ) return WRC_Continue;
4354 a = p->pOrderBy->a;
4355 for(i=p->pOrderBy->nExpr-1; i>=0; i--){
4356 if( a[i].pExpr->flags & EP_Collate ) break;
4358 if( i<0 ) return WRC_Continue;
4360 /* If we reach this point, that means the transformation is required. */
4362 pParse = pWalker->pParse;
4363 db = pParse->db;
4364 pNew = sqlite3DbMallocZero(db, sizeof(*pNew) );
4365 if( pNew==0 ) return WRC_Abort;
4366 memset(&dummy, 0, sizeof(dummy));
4367 pNewSrc = sqlite3SrcListAppendFromTerm(pParse,0,0,0,&dummy,pNew,0,0);
4368 if( pNewSrc==0 ) return WRC_Abort;
4369 *pNew = *p;
4370 p->pSrc = pNewSrc;
4371 p->pEList = sqlite3ExprListAppend(pParse, 0, sqlite3Expr(db, TK_ASTERISK, 0));
4372 p->op = TK_SELECT;
4373 p->pWhere = 0;
4374 pNew->pGroupBy = 0;
4375 pNew->pHaving = 0;
4376 pNew->pOrderBy = 0;
4377 p->pPrior = 0;
4378 p->pNext = 0;
4379 p->pWith = 0;
4380 p->selFlags &= ~SF_Compound;
4381 assert( (p->selFlags & SF_Converted)==0 );
4382 p->selFlags |= SF_Converted;
4383 assert( pNew->pPrior!=0 );
4384 pNew->pPrior->pNext = pNew;
4385 pNew->pLimit = 0;
4386 return WRC_Continue;
4390 ** Check to see if the FROM clause term pFrom has table-valued function
4391 ** arguments. If it does, leave an error message in pParse and return
4392 ** non-zero, since pFrom is not allowed to be a table-valued function.
4394 static int cannotBeFunction(Parse *pParse, struct SrcList_item *pFrom){
4395 if( pFrom->fg.isTabFunc ){
4396 sqlite3ErrorMsg(pParse, "'%s' is not a function", pFrom->zName);
4397 return 1;
4399 return 0;
4402 #ifndef SQLITE_OMIT_CTE
4404 ** Argument pWith (which may be NULL) points to a linked list of nested
4405 ** WITH contexts, from inner to outermost. If the table identified by
4406 ** FROM clause element pItem is really a common-table-expression (CTE)
4407 ** then return a pointer to the CTE definition for that table. Otherwise
4408 ** return NULL.
4410 ** If a non-NULL value is returned, set *ppContext to point to the With
4411 ** object that the returned CTE belongs to.
4413 static struct Cte *searchWith(
4414 With *pWith, /* Current innermost WITH clause */
4415 struct SrcList_item *pItem, /* FROM clause element to resolve */
4416 With **ppContext /* OUT: WITH clause return value belongs to */
4418 const char *zName;
4419 if( pItem->zDatabase==0 && (zName = pItem->zName)!=0 ){
4420 With *p;
4421 for(p=pWith; p; p=p->pOuter){
4422 int i;
4423 for(i=0; i<p->nCte; i++){
4424 if( sqlite3StrICmp(zName, p->a[i].zName)==0 ){
4425 *ppContext = p;
4426 return &p->a[i];
4431 return 0;
4434 /* The code generator maintains a stack of active WITH clauses
4435 ** with the inner-most WITH clause being at the top of the stack.
4437 ** This routine pushes the WITH clause passed as the second argument
4438 ** onto the top of the stack. If argument bFree is true, then this
4439 ** WITH clause will never be popped from the stack. In this case it
4440 ** should be freed along with the Parse object. In other cases, when
4441 ** bFree==0, the With object will be freed along with the SELECT
4442 ** statement with which it is associated.
4444 void sqlite3WithPush(Parse *pParse, With *pWith, u8 bFree){
4445 assert( bFree==0 || (pParse->pWith==0 && pParse->pWithToFree==0) );
4446 if( pWith ){
4447 assert( pParse->pWith!=pWith );
4448 pWith->pOuter = pParse->pWith;
4449 pParse->pWith = pWith;
4450 if( bFree ) pParse->pWithToFree = pWith;
4455 ** This function checks if argument pFrom refers to a CTE declared by
4456 ** a WITH clause on the stack currently maintained by the parser. And,
4457 ** if currently processing a CTE expression, if it is a recursive
4458 ** reference to the current CTE.
4460 ** If pFrom falls into either of the two categories above, pFrom->pTab
4461 ** and other fields are populated accordingly. The caller should check
4462 ** (pFrom->pTab!=0) to determine whether or not a successful match
4463 ** was found.
4465 ** Whether or not a match is found, SQLITE_OK is returned if no error
4466 ** occurs. If an error does occur, an error message is stored in the
4467 ** parser and some error code other than SQLITE_OK returned.
4469 static int withExpand(
4470 Walker *pWalker,
4471 struct SrcList_item *pFrom
4473 Parse *pParse = pWalker->pParse;
4474 sqlite3 *db = pParse->db;
4475 struct Cte *pCte; /* Matched CTE (or NULL if no match) */
4476 With *pWith; /* WITH clause that pCte belongs to */
4478 assert( pFrom->pTab==0 );
4480 pCte = searchWith(pParse->pWith, pFrom, &pWith);
4481 if( pCte ){
4482 Table *pTab;
4483 ExprList *pEList;
4484 Select *pSel;
4485 Select *pLeft; /* Left-most SELECT statement */
4486 int bMayRecursive; /* True if compound joined by UNION [ALL] */
4487 With *pSavedWith; /* Initial value of pParse->pWith */
4489 /* If pCte->zCteErr is non-NULL at this point, then this is an illegal
4490 ** recursive reference to CTE pCte. Leave an error in pParse and return
4491 ** early. If pCte->zCteErr is NULL, then this is not a recursive reference.
4492 ** In this case, proceed. */
4493 if( pCte->zCteErr ){
4494 sqlite3ErrorMsg(pParse, pCte->zCteErr, pCte->zName);
4495 return SQLITE_ERROR;
4497 if( cannotBeFunction(pParse, pFrom) ) return SQLITE_ERROR;
4499 assert( pFrom->pTab==0 );
4500 pFrom->pTab = pTab = sqlite3DbMallocZero(db, sizeof(Table));
4501 if( pTab==0 ) return WRC_Abort;
4502 pTab->nTabRef = 1;
4503 pTab->zName = sqlite3DbStrDup(db, pCte->zName);
4504 pTab->iPKey = -1;
4505 pTab->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) );
4506 pTab->tabFlags |= TF_Ephemeral | TF_NoVisibleRowid;
4507 pFrom->pSelect = sqlite3SelectDup(db, pCte->pSelect, 0);
4508 if( db->mallocFailed ) return SQLITE_NOMEM_BKPT;
4509 assert( pFrom->pSelect );
4511 /* Check if this is a recursive CTE. */
4512 pSel = pFrom->pSelect;
4513 bMayRecursive = ( pSel->op==TK_ALL || pSel->op==TK_UNION );
4514 if( bMayRecursive ){
4515 int i;
4516 SrcList *pSrc = pFrom->pSelect->pSrc;
4517 for(i=0; i<pSrc->nSrc; i++){
4518 struct SrcList_item *pItem = &pSrc->a[i];
4519 if( pItem->zDatabase==0
4520 && pItem->zName!=0
4521 && 0==sqlite3StrICmp(pItem->zName, pCte->zName)
4523 pItem->pTab = pTab;
4524 pItem->fg.isRecursive = 1;
4525 pTab->nTabRef++;
4526 pSel->selFlags |= SF_Recursive;
4531 /* Only one recursive reference is permitted. */
4532 if( pTab->nTabRef>2 ){
4533 sqlite3ErrorMsg(
4534 pParse, "multiple references to recursive table: %s", pCte->zName
4536 return SQLITE_ERROR;
4538 assert( pTab->nTabRef==1 ||
4539 ((pSel->selFlags&SF_Recursive) && pTab->nTabRef==2 ));
4541 pCte->zCteErr = "circular reference: %s";
4542 pSavedWith = pParse->pWith;
4543 pParse->pWith = pWith;
4544 if( bMayRecursive ){
4545 Select *pPrior = pSel->pPrior;
4546 assert( pPrior->pWith==0 );
4547 pPrior->pWith = pSel->pWith;
4548 sqlite3WalkSelect(pWalker, pPrior);
4549 pPrior->pWith = 0;
4550 }else{
4551 sqlite3WalkSelect(pWalker, pSel);
4553 pParse->pWith = pWith;
4555 for(pLeft=pSel; pLeft->pPrior; pLeft=pLeft->pPrior);
4556 pEList = pLeft->pEList;
4557 if( pCte->pCols ){
4558 if( pEList && pEList->nExpr!=pCte->pCols->nExpr ){
4559 sqlite3ErrorMsg(pParse, "table %s has %d values for %d columns",
4560 pCte->zName, pEList->nExpr, pCte->pCols->nExpr
4562 pParse->pWith = pSavedWith;
4563 return SQLITE_ERROR;
4565 pEList = pCte->pCols;
4568 sqlite3ColumnsFromExprList(pParse, pEList, &pTab->nCol, &pTab->aCol);
4569 if( bMayRecursive ){
4570 if( pSel->selFlags & SF_Recursive ){
4571 pCte->zCteErr = "multiple recursive references: %s";
4572 }else{
4573 pCte->zCteErr = "recursive reference in a subquery: %s";
4575 sqlite3WalkSelect(pWalker, pSel);
4577 pCte->zCteErr = 0;
4578 pParse->pWith = pSavedWith;
4581 return SQLITE_OK;
4583 #endif
4585 #ifndef SQLITE_OMIT_CTE
4587 ** If the SELECT passed as the second argument has an associated WITH
4588 ** clause, pop it from the stack stored as part of the Parse object.
4590 ** This function is used as the xSelectCallback2() callback by
4591 ** sqlite3SelectExpand() when walking a SELECT tree to resolve table
4592 ** names and other FROM clause elements.
4594 static void selectPopWith(Walker *pWalker, Select *p){
4595 Parse *pParse = pWalker->pParse;
4596 if( OK_IF_ALWAYS_TRUE(pParse->pWith) && p->pPrior==0 ){
4597 With *pWith = findRightmost(p)->pWith;
4598 if( pWith!=0 ){
4599 assert( pParse->pWith==pWith );
4600 pParse->pWith = pWith->pOuter;
4604 #else
4605 #define selectPopWith 0
4606 #endif
4609 ** The SrcList_item structure passed as the second argument represents a
4610 ** sub-query in the FROM clause of a SELECT statement. This function
4611 ** allocates and populates the SrcList_item.pTab object. If successful,
4612 ** SQLITE_OK is returned. Otherwise, if an OOM error is encountered,
4613 ** SQLITE_NOMEM.
4615 int sqlite3ExpandSubquery(Parse *pParse, struct SrcList_item *pFrom){
4616 Select *pSel = pFrom->pSelect;
4617 Table *pTab;
4619 assert( pSel );
4620 pFrom->pTab = pTab = sqlite3DbMallocZero(pParse->db, sizeof(Table));
4621 if( pTab==0 ) return SQLITE_NOMEM;
4622 pTab->nTabRef = 1;
4623 if( pFrom->zAlias ){
4624 pTab->zName = sqlite3DbStrDup(pParse->db, pFrom->zAlias);
4625 }else{
4626 pTab->zName = sqlite3MPrintf(pParse->db, "subquery_%p", (void*)pTab);
4628 while( pSel->pPrior ){ pSel = pSel->pPrior; }
4629 sqlite3ColumnsFromExprList(pParse, pSel->pEList,&pTab->nCol,&pTab->aCol);
4630 pTab->iPKey = -1;
4631 pTab->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) );
4632 pTab->tabFlags |= TF_Ephemeral;
4634 return SQLITE_OK;
4638 ** This routine is a Walker callback for "expanding" a SELECT statement.
4639 ** "Expanding" means to do the following:
4641 ** (1) Make sure VDBE cursor numbers have been assigned to every
4642 ** element of the FROM clause.
4644 ** (2) Fill in the pTabList->a[].pTab fields in the SrcList that
4645 ** defines FROM clause. When views appear in the FROM clause,
4646 ** fill pTabList->a[].pSelect with a copy of the SELECT statement
4647 ** that implements the view. A copy is made of the view's SELECT
4648 ** statement so that we can freely modify or delete that statement
4649 ** without worrying about messing up the persistent representation
4650 ** of the view.
4652 ** (3) Add terms to the WHERE clause to accommodate the NATURAL keyword
4653 ** on joins and the ON and USING clause of joins.
4655 ** (4) Scan the list of columns in the result set (pEList) looking
4656 ** for instances of the "*" operator or the TABLE.* operator.
4657 ** If found, expand each "*" to be every column in every table
4658 ** and TABLE.* to be every column in TABLE.
4661 static int selectExpander(Walker *pWalker, Select *p){
4662 Parse *pParse = pWalker->pParse;
4663 int i, j, k;
4664 SrcList *pTabList;
4665 ExprList *pEList;
4666 struct SrcList_item *pFrom;
4667 sqlite3 *db = pParse->db;
4668 Expr *pE, *pRight, *pExpr;
4669 u16 selFlags = p->selFlags;
4670 u32 elistFlags = 0;
4672 p->selFlags |= SF_Expanded;
4673 if( db->mallocFailed ){
4674 return WRC_Abort;
4676 assert( p->pSrc!=0 );
4677 if( (selFlags & SF_Expanded)!=0 ){
4678 return WRC_Prune;
4680 pTabList = p->pSrc;
4681 pEList = p->pEList;
4682 sqlite3WithPush(pParse, p->pWith, 0);
4684 /* Make sure cursor numbers have been assigned to all entries in
4685 ** the FROM clause of the SELECT statement.
4687 sqlite3SrcListAssignCursors(pParse, pTabList);
4689 /* Look up every table named in the FROM clause of the select. If
4690 ** an entry of the FROM clause is a subquery instead of a table or view,
4691 ** then create a transient table structure to describe the subquery.
4693 for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){
4694 Table *pTab;
4695 assert( pFrom->fg.isRecursive==0 || pFrom->pTab!=0 );
4696 if( pFrom->fg.isRecursive ) continue;
4697 assert( pFrom->pTab==0 );
4698 #ifndef SQLITE_OMIT_CTE
4699 if( withExpand(pWalker, pFrom) ) return WRC_Abort;
4700 if( pFrom->pTab ) {} else
4701 #endif
4702 if( pFrom->zName==0 ){
4703 #ifndef SQLITE_OMIT_SUBQUERY
4704 Select *pSel = pFrom->pSelect;
4705 /* A sub-query in the FROM clause of a SELECT */
4706 assert( pSel!=0 );
4707 assert( pFrom->pTab==0 );
4708 if( sqlite3WalkSelect(pWalker, pSel) ) return WRC_Abort;
4709 if( sqlite3ExpandSubquery(pParse, pFrom) ) return WRC_Abort;
4710 #endif
4711 }else{
4712 /* An ordinary table or view name in the FROM clause */
4713 assert( pFrom->pTab==0 );
4714 pFrom->pTab = pTab = sqlite3LocateTableItem(pParse, 0, pFrom);
4715 if( pTab==0 ) return WRC_Abort;
4716 if( pTab->nTabRef>=0xffff ){
4717 sqlite3ErrorMsg(pParse, "too many references to \"%s\": max 65535",
4718 pTab->zName);
4719 pFrom->pTab = 0;
4720 return WRC_Abort;
4722 pTab->nTabRef++;
4723 if( !IsVirtual(pTab) && cannotBeFunction(pParse, pFrom) ){
4724 return WRC_Abort;
4726 #if !defined(SQLITE_OMIT_VIEW) || !defined (SQLITE_OMIT_VIRTUALTABLE)
4727 if( IsVirtual(pTab) || pTab->pSelect ){
4728 i16 nCol;
4729 if( sqlite3ViewGetColumnNames(pParse, pTab) ) return WRC_Abort;
4730 assert( pFrom->pSelect==0 );
4731 pFrom->pSelect = sqlite3SelectDup(db, pTab->pSelect, 0);
4732 sqlite3SelectSetName(pFrom->pSelect, pTab->zName);
4733 nCol = pTab->nCol;
4734 pTab->nCol = -1;
4735 sqlite3WalkSelect(pWalker, pFrom->pSelect);
4736 pTab->nCol = nCol;
4738 #endif
4741 /* Locate the index named by the INDEXED BY clause, if any. */
4742 if( sqlite3IndexedByLookup(pParse, pFrom) ){
4743 return WRC_Abort;
4747 /* Process NATURAL keywords, and ON and USING clauses of joins.
4749 if( db->mallocFailed || sqliteProcessJoin(pParse, p) ){
4750 return WRC_Abort;
4753 /* For every "*" that occurs in the column list, insert the names of
4754 ** all columns in all tables. And for every TABLE.* insert the names
4755 ** of all columns in TABLE. The parser inserted a special expression
4756 ** with the TK_ASTERISK operator for each "*" that it found in the column
4757 ** list. The following code just has to locate the TK_ASTERISK
4758 ** expressions and expand each one to the list of all columns in
4759 ** all tables.
4761 ** The first loop just checks to see if there are any "*" operators
4762 ** that need expanding.
4764 for(k=0; k<pEList->nExpr; k++){
4765 pE = pEList->a[k].pExpr;
4766 if( pE->op==TK_ASTERISK ) break;
4767 assert( pE->op!=TK_DOT || pE->pRight!=0 );
4768 assert( pE->op!=TK_DOT || (pE->pLeft!=0 && pE->pLeft->op==TK_ID) );
4769 if( pE->op==TK_DOT && pE->pRight->op==TK_ASTERISK ) break;
4770 elistFlags |= pE->flags;
4772 if( k<pEList->nExpr ){
4774 ** If we get here it means the result set contains one or more "*"
4775 ** operators that need to be expanded. Loop through each expression
4776 ** in the result set and expand them one by one.
4778 struct ExprList_item *a = pEList->a;
4779 ExprList *pNew = 0;
4780 int flags = pParse->db->flags;
4781 int longNames = (flags & SQLITE_FullColNames)!=0
4782 && (flags & SQLITE_ShortColNames)==0;
4784 for(k=0; k<pEList->nExpr; k++){
4785 pE = a[k].pExpr;
4786 elistFlags |= pE->flags;
4787 pRight = pE->pRight;
4788 assert( pE->op!=TK_DOT || pRight!=0 );
4789 if( pE->op!=TK_ASTERISK
4790 && (pE->op!=TK_DOT || pRight->op!=TK_ASTERISK)
4792 /* This particular expression does not need to be expanded.
4794 pNew = sqlite3ExprListAppend(pParse, pNew, a[k].pExpr);
4795 if( pNew ){
4796 pNew->a[pNew->nExpr-1].zName = a[k].zName;
4797 pNew->a[pNew->nExpr-1].zSpan = a[k].zSpan;
4798 a[k].zName = 0;
4799 a[k].zSpan = 0;
4801 a[k].pExpr = 0;
4802 }else{
4803 /* This expression is a "*" or a "TABLE.*" and needs to be
4804 ** expanded. */
4805 int tableSeen = 0; /* Set to 1 when TABLE matches */
4806 char *zTName = 0; /* text of name of TABLE */
4807 if( pE->op==TK_DOT ){
4808 assert( pE->pLeft!=0 );
4809 assert( !ExprHasProperty(pE->pLeft, EP_IntValue) );
4810 zTName = pE->pLeft->u.zToken;
4812 for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){
4813 Table *pTab = pFrom->pTab;
4814 Select *pSub = pFrom->pSelect;
4815 char *zTabName = pFrom->zAlias;
4816 const char *zSchemaName = 0;
4817 int iDb;
4818 if( zTabName==0 ){
4819 zTabName = pTab->zName;
4821 if( db->mallocFailed ) break;
4822 if( pSub==0 || (pSub->selFlags & SF_NestedFrom)==0 ){
4823 pSub = 0;
4824 if( zTName && sqlite3StrICmp(zTName, zTabName)!=0 ){
4825 continue;
4827 iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
4828 zSchemaName = iDb>=0 ? db->aDb[iDb].zDbSName : "*";
4830 for(j=0; j<pTab->nCol; j++){
4831 char *zName = pTab->aCol[j].zName;
4832 char *zColname; /* The computed column name */
4833 char *zToFree; /* Malloced string that needs to be freed */
4834 Token sColname; /* Computed column name as a token */
4836 assert( zName );
4837 if( zTName && pSub
4838 && sqlite3MatchSpanName(pSub->pEList->a[j].zSpan, 0, zTName, 0)==0
4840 continue;
4843 /* If a column is marked as 'hidden', omit it from the expanded
4844 ** result-set list unless the SELECT has the SF_IncludeHidden
4845 ** bit set.
4847 if( (p->selFlags & SF_IncludeHidden)==0
4848 && IsHiddenColumn(&pTab->aCol[j])
4850 continue;
4852 tableSeen = 1;
4854 if( i>0 && zTName==0 ){
4855 if( (pFrom->fg.jointype & JT_NATURAL)!=0
4856 && tableAndColumnIndex(pTabList, i, zName, 0, 0)
4858 /* In a NATURAL join, omit the join columns from the
4859 ** table to the right of the join */
4860 continue;
4862 if( sqlite3IdListIndex(pFrom->pUsing, zName)>=0 ){
4863 /* In a join with a USING clause, omit columns in the
4864 ** using clause from the table on the right. */
4865 continue;
4868 pRight = sqlite3Expr(db, TK_ID, zName);
4869 zColname = zName;
4870 zToFree = 0;
4871 if( longNames || pTabList->nSrc>1 ){
4872 Expr *pLeft;
4873 pLeft = sqlite3Expr(db, TK_ID, zTabName);
4874 pExpr = sqlite3PExpr(pParse, TK_DOT, pLeft, pRight);
4875 if( zSchemaName ){
4876 pLeft = sqlite3Expr(db, TK_ID, zSchemaName);
4877 pExpr = sqlite3PExpr(pParse, TK_DOT, pLeft, pExpr);
4879 if( longNames ){
4880 zColname = sqlite3MPrintf(db, "%s.%s", zTabName, zName);
4881 zToFree = zColname;
4883 }else{
4884 pExpr = pRight;
4886 pNew = sqlite3ExprListAppend(pParse, pNew, pExpr);
4887 sqlite3TokenInit(&sColname, zColname);
4888 sqlite3ExprListSetName(pParse, pNew, &sColname, 0);
4889 if( pNew && (p->selFlags & SF_NestedFrom)!=0 ){
4890 struct ExprList_item *pX = &pNew->a[pNew->nExpr-1];
4891 if( pSub ){
4892 pX->zSpan = sqlite3DbStrDup(db, pSub->pEList->a[j].zSpan);
4893 testcase( pX->zSpan==0 );
4894 }else{
4895 pX->zSpan = sqlite3MPrintf(db, "%s.%s.%s",
4896 zSchemaName, zTabName, zColname);
4897 testcase( pX->zSpan==0 );
4899 pX->bSpanIsTab = 1;
4901 sqlite3DbFree(db, zToFree);
4904 if( !tableSeen ){
4905 if( zTName ){
4906 sqlite3ErrorMsg(pParse, "no such table: %s", zTName);
4907 }else{
4908 sqlite3ErrorMsg(pParse, "no tables specified");
4913 sqlite3ExprListDelete(db, pEList);
4914 p->pEList = pNew;
4916 if( p->pEList ){
4917 if( p->pEList->nExpr>db->aLimit[SQLITE_LIMIT_COLUMN] ){
4918 sqlite3ErrorMsg(pParse, "too many columns in result set");
4919 return WRC_Abort;
4921 if( (elistFlags & (EP_HasFunc|EP_Subquery))!=0 ){
4922 p->selFlags |= SF_ComplexResult;
4925 return WRC_Continue;
4929 ** No-op routine for the parse-tree walker.
4931 ** When this routine is the Walker.xExprCallback then expression trees
4932 ** are walked without any actions being taken at each node. Presumably,
4933 ** when this routine is used for Walker.xExprCallback then
4934 ** Walker.xSelectCallback is set to do something useful for every
4935 ** subquery in the parser tree.
4937 int sqlite3ExprWalkNoop(Walker *NotUsed, Expr *NotUsed2){
4938 UNUSED_PARAMETER2(NotUsed, NotUsed2);
4939 return WRC_Continue;
4943 ** No-op routine for the parse-tree walker for SELECT statements.
4944 ** subquery in the parser tree.
4946 int sqlite3SelectWalkNoop(Walker *NotUsed, Select *NotUsed2){
4947 UNUSED_PARAMETER2(NotUsed, NotUsed2);
4948 return WRC_Continue;
4951 #if SQLITE_DEBUG
4953 ** Always assert. This xSelectCallback2 implementation proves that the
4954 ** xSelectCallback2 is never invoked.
4956 void sqlite3SelectWalkAssert2(Walker *NotUsed, Select *NotUsed2){
4957 UNUSED_PARAMETER2(NotUsed, NotUsed2);
4958 assert( 0 );
4960 #endif
4962 ** This routine "expands" a SELECT statement and all of its subqueries.
4963 ** For additional information on what it means to "expand" a SELECT
4964 ** statement, see the comment on the selectExpand worker callback above.
4966 ** Expanding a SELECT statement is the first step in processing a
4967 ** SELECT statement. The SELECT statement must be expanded before
4968 ** name resolution is performed.
4970 ** If anything goes wrong, an error message is written into pParse.
4971 ** The calling function can detect the problem by looking at pParse->nErr
4972 ** and/or pParse->db->mallocFailed.
4974 static void sqlite3SelectExpand(Parse *pParse, Select *pSelect){
4975 Walker w;
4976 w.xExprCallback = sqlite3ExprWalkNoop;
4977 w.pParse = pParse;
4978 if( OK_IF_ALWAYS_TRUE(pParse->hasCompound) ){
4979 w.xSelectCallback = convertCompoundSelectToSubquery;
4980 w.xSelectCallback2 = 0;
4981 sqlite3WalkSelect(&w, pSelect);
4983 w.xSelectCallback = selectExpander;
4984 w.xSelectCallback2 = selectPopWith;
4985 sqlite3WalkSelect(&w, pSelect);
4989 #ifndef SQLITE_OMIT_SUBQUERY
4991 ** This is a Walker.xSelectCallback callback for the sqlite3SelectTypeInfo()
4992 ** interface.
4994 ** For each FROM-clause subquery, add Column.zType and Column.zColl
4995 ** information to the Table structure that represents the result set
4996 ** of that subquery.
4998 ** The Table structure that represents the result set was constructed
4999 ** by selectExpander() but the type and collation information was omitted
5000 ** at that point because identifiers had not yet been resolved. This
5001 ** routine is called after identifier resolution.
5003 static void selectAddSubqueryTypeInfo(Walker *pWalker, Select *p){
5004 Parse *pParse;
5005 int i;
5006 SrcList *pTabList;
5007 struct SrcList_item *pFrom;
5009 assert( p->selFlags & SF_Resolved );
5010 if( p->selFlags & SF_HasTypeInfo ) return;
5011 p->selFlags |= SF_HasTypeInfo;
5012 pParse = pWalker->pParse;
5013 pTabList = p->pSrc;
5014 for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){
5015 Table *pTab = pFrom->pTab;
5016 assert( pTab!=0 );
5017 if( (pTab->tabFlags & TF_Ephemeral)!=0 ){
5018 /* A sub-query in the FROM clause of a SELECT */
5019 Select *pSel = pFrom->pSelect;
5020 if( pSel ){
5021 while( pSel->pPrior ) pSel = pSel->pPrior;
5022 sqlite3SelectAddColumnTypeAndCollation(pParse, pTab, pSel);
5027 #endif
5031 ** This routine adds datatype and collating sequence information to
5032 ** the Table structures of all FROM-clause subqueries in a
5033 ** SELECT statement.
5035 ** Use this routine after name resolution.
5037 static void sqlite3SelectAddTypeInfo(Parse *pParse, Select *pSelect){
5038 #ifndef SQLITE_OMIT_SUBQUERY
5039 Walker w;
5040 w.xSelectCallback = sqlite3SelectWalkNoop;
5041 w.xSelectCallback2 = selectAddSubqueryTypeInfo;
5042 w.xExprCallback = sqlite3ExprWalkNoop;
5043 w.pParse = pParse;
5044 sqlite3WalkSelect(&w, pSelect);
5045 #endif
5050 ** This routine sets up a SELECT statement for processing. The
5051 ** following is accomplished:
5053 ** * VDBE Cursor numbers are assigned to all FROM-clause terms.
5054 ** * Ephemeral Table objects are created for all FROM-clause subqueries.
5055 ** * ON and USING clauses are shifted into WHERE statements
5056 ** * Wildcards "*" and "TABLE.*" in result sets are expanded.
5057 ** * Identifiers in expression are matched to tables.
5059 ** This routine acts recursively on all subqueries within the SELECT.
5061 void sqlite3SelectPrep(
5062 Parse *pParse, /* The parser context */
5063 Select *p, /* The SELECT statement being coded. */
5064 NameContext *pOuterNC /* Name context for container */
5066 assert( p!=0 || pParse->db->mallocFailed );
5067 if( pParse->db->mallocFailed ) return;
5068 if( p->selFlags & SF_HasTypeInfo ) return;
5069 sqlite3SelectExpand(pParse, p);
5070 if( pParse->nErr || pParse->db->mallocFailed ) return;
5071 sqlite3ResolveSelectNames(pParse, p, pOuterNC);
5072 if( pParse->nErr || pParse->db->mallocFailed ) return;
5073 sqlite3SelectAddTypeInfo(pParse, p);
5077 ** Reset the aggregate accumulator.
5079 ** The aggregate accumulator is a set of memory cells that hold
5080 ** intermediate results while calculating an aggregate. This
5081 ** routine generates code that stores NULLs in all of those memory
5082 ** cells.
5084 static void resetAccumulator(Parse *pParse, AggInfo *pAggInfo){
5085 Vdbe *v = pParse->pVdbe;
5086 int i;
5087 struct AggInfo_func *pFunc;
5088 int nReg = pAggInfo->nFunc + pAggInfo->nColumn;
5089 if( nReg==0 ) return;
5090 #ifdef SQLITE_DEBUG
5091 /* Verify that all AggInfo registers are within the range specified by
5092 ** AggInfo.mnReg..AggInfo.mxReg */
5093 assert( nReg==pAggInfo->mxReg-pAggInfo->mnReg+1 );
5094 for(i=0; i<pAggInfo->nColumn; i++){
5095 assert( pAggInfo->aCol[i].iMem>=pAggInfo->mnReg
5096 && pAggInfo->aCol[i].iMem<=pAggInfo->mxReg );
5098 for(i=0; i<pAggInfo->nFunc; i++){
5099 assert( pAggInfo->aFunc[i].iMem>=pAggInfo->mnReg
5100 && pAggInfo->aFunc[i].iMem<=pAggInfo->mxReg );
5102 #endif
5103 sqlite3VdbeAddOp3(v, OP_Null, 0, pAggInfo->mnReg, pAggInfo->mxReg);
5104 for(pFunc=pAggInfo->aFunc, i=0; i<pAggInfo->nFunc; i++, pFunc++){
5105 if( pFunc->iDistinct>=0 ){
5106 Expr *pE = pFunc->pExpr;
5107 assert( !ExprHasProperty(pE, EP_xIsSelect) );
5108 if( pE->x.pList==0 || pE->x.pList->nExpr!=1 ){
5109 sqlite3ErrorMsg(pParse, "DISTINCT aggregates must have exactly one "
5110 "argument");
5111 pFunc->iDistinct = -1;
5112 }else{
5113 KeyInfo *pKeyInfo = sqlite3KeyInfoFromExprList(pParse, pE->x.pList,0,0);
5114 sqlite3VdbeAddOp4(v, OP_OpenEphemeral, pFunc->iDistinct, 0, 0,
5115 (char*)pKeyInfo, P4_KEYINFO);
5122 ** Invoke the OP_AggFinalize opcode for every aggregate function
5123 ** in the AggInfo structure.
5125 static void finalizeAggFunctions(Parse *pParse, AggInfo *pAggInfo){
5126 Vdbe *v = pParse->pVdbe;
5127 int i;
5128 struct AggInfo_func *pF;
5129 for(i=0, pF=pAggInfo->aFunc; i<pAggInfo->nFunc; i++, pF++){
5130 ExprList *pList = pF->pExpr->x.pList;
5131 assert( !ExprHasProperty(pF->pExpr, EP_xIsSelect) );
5132 sqlite3VdbeAddOp2(v, OP_AggFinal, pF->iMem, pList ? pList->nExpr : 0);
5133 sqlite3VdbeAppendP4(v, pF->pFunc, P4_FUNCDEF);
5139 ** Update the accumulator memory cells for an aggregate based on
5140 ** the current cursor position.
5142 ** If regAcc is non-zero and there are no min() or max() aggregates
5143 ** in pAggInfo, then only populate the pAggInfo->nAccumulator accumulator
5144 ** registers i register regAcc contains 0. The caller will take care
5145 ** of setting and clearing regAcc.
5147 static void updateAccumulator(Parse *pParse, int regAcc, AggInfo *pAggInfo){
5148 Vdbe *v = pParse->pVdbe;
5149 int i;
5150 int regHit = 0;
5151 int addrHitTest = 0;
5152 struct AggInfo_func *pF;
5153 struct AggInfo_col *pC;
5155 pAggInfo->directMode = 1;
5156 for(i=0, pF=pAggInfo->aFunc; i<pAggInfo->nFunc; i++, pF++){
5157 int nArg;
5158 int addrNext = 0;
5159 int regAgg;
5160 ExprList *pList = pF->pExpr->x.pList;
5161 assert( !ExprHasProperty(pF->pExpr, EP_xIsSelect) );
5162 if( pList ){
5163 nArg = pList->nExpr;
5164 regAgg = sqlite3GetTempRange(pParse, nArg);
5165 sqlite3ExprCodeExprList(pParse, pList, regAgg, 0, SQLITE_ECEL_DUP);
5166 }else{
5167 nArg = 0;
5168 regAgg = 0;
5170 if( pF->iDistinct>=0 ){
5171 addrNext = sqlite3VdbeMakeLabel(v);
5172 testcase( nArg==0 ); /* Error condition */
5173 testcase( nArg>1 ); /* Also an error */
5174 codeDistinct(pParse, pF->iDistinct, addrNext, 1, regAgg);
5176 if( pF->pFunc->funcFlags & SQLITE_FUNC_NEEDCOLL ){
5177 CollSeq *pColl = 0;
5178 struct ExprList_item *pItem;
5179 int j;
5180 assert( pList!=0 ); /* pList!=0 if pF->pFunc has NEEDCOLL */
5181 for(j=0, pItem=pList->a; !pColl && j<nArg; j++, pItem++){
5182 pColl = sqlite3ExprCollSeq(pParse, pItem->pExpr);
5184 if( !pColl ){
5185 pColl = pParse->db->pDfltColl;
5187 if( regHit==0 && pAggInfo->nAccumulator ) regHit = ++pParse->nMem;
5188 sqlite3VdbeAddOp4(v, OP_CollSeq, regHit, 0, 0, (char *)pColl, P4_COLLSEQ);
5190 sqlite3VdbeAddOp3(v, OP_AggStep0, 0, regAgg, pF->iMem);
5191 sqlite3VdbeAppendP4(v, pF->pFunc, P4_FUNCDEF);
5192 sqlite3VdbeChangeP5(v, (u8)nArg);
5193 sqlite3ExprCacheAffinityChange(pParse, regAgg, nArg);
5194 sqlite3ReleaseTempRange(pParse, regAgg, nArg);
5195 if( addrNext ){
5196 sqlite3VdbeResolveLabel(v, addrNext);
5197 sqlite3ExprCacheClear(pParse);
5201 /* Before populating the accumulator registers, clear the column cache.
5202 ** Otherwise, if any of the required column values are already present
5203 ** in registers, sqlite3ExprCode() may use OP_SCopy to copy the value
5204 ** to pC->iMem. But by the time the value is used, the original register
5205 ** may have been used, invalidating the underlying buffer holding the
5206 ** text or blob value. See ticket [883034dcb5].
5208 ** Another solution would be to change the OP_SCopy used to copy cached
5209 ** values to an OP_Copy.
5211 if( regHit==0 && pAggInfo->nAccumulator ){
5212 regHit = regAcc;
5214 if( regHit ){
5215 addrHitTest = sqlite3VdbeAddOp1(v, OP_If, regHit); VdbeCoverage(v);
5217 sqlite3ExprCacheClear(pParse);
5218 for(i=0, pC=pAggInfo->aCol; i<pAggInfo->nAccumulator; i++, pC++){
5219 sqlite3ExprCode(pParse, pC->pExpr, pC->iMem);
5221 pAggInfo->directMode = 0;
5222 sqlite3ExprCacheClear(pParse);
5223 if( addrHitTest ){
5224 sqlite3VdbeJumpHere(v, addrHitTest);
5229 ** Add a single OP_Explain instruction to the VDBE to explain a simple
5230 ** count(*) query ("SELECT count(*) FROM pTab").
5232 #ifndef SQLITE_OMIT_EXPLAIN
5233 static void explainSimpleCount(
5234 Parse *pParse, /* Parse context */
5235 Table *pTab, /* Table being queried */
5236 Index *pIdx /* Index used to optimize scan, or NULL */
5238 if( pParse->explain==2 ){
5239 int bCover = (pIdx!=0 && (HasRowid(pTab) || !IsPrimaryKeyIndex(pIdx)));
5240 sqlite3VdbeExplain(pParse, 0, "SCAN TABLE %s%s%s",
5241 pTab->zName,
5242 bCover ? " USING COVERING INDEX " : "",
5243 bCover ? pIdx->zName : ""
5247 #else
5248 # define explainSimpleCount(a,b,c)
5249 #endif
5252 ** sqlite3WalkExpr() callback used by havingToWhere().
5254 ** If the node passed to the callback is a TK_AND node, return
5255 ** WRC_Continue to tell sqlite3WalkExpr() to iterate through child nodes.
5257 ** Otherwise, return WRC_Prune. In this case, also check if the
5258 ** sub-expression matches the criteria for being moved to the WHERE
5259 ** clause. If so, add it to the WHERE clause and replace the sub-expression
5260 ** within the HAVING expression with a constant "1".
5262 static int havingToWhereExprCb(Walker *pWalker, Expr *pExpr){
5263 if( pExpr->op!=TK_AND ){
5264 Select *pS = pWalker->u.pSelect;
5265 if( sqlite3ExprIsConstantOrGroupBy(pWalker->pParse, pExpr, pS->pGroupBy) ){
5266 sqlite3 *db = pWalker->pParse->db;
5267 Expr *pNew = sqlite3ExprAlloc(db, TK_INTEGER, &sqlite3IntTokens[1], 0);
5268 if( pNew ){
5269 Expr *pWhere = pS->pWhere;
5270 SWAP(Expr, *pNew, *pExpr);
5271 pNew = sqlite3ExprAnd(db, pWhere, pNew);
5272 pS->pWhere = pNew;
5273 pWalker->eCode = 1;
5276 return WRC_Prune;
5278 return WRC_Continue;
5282 ** Transfer eligible terms from the HAVING clause of a query, which is
5283 ** processed after grouping, to the WHERE clause, which is processed before
5284 ** grouping. For example, the query:
5286 ** SELECT * FROM <tables> WHERE a=? GROUP BY b HAVING b=? AND c=?
5288 ** can be rewritten as:
5290 ** SELECT * FROM <tables> WHERE a=? AND b=? GROUP BY b HAVING c=?
5292 ** A term of the HAVING expression is eligible for transfer if it consists
5293 ** entirely of constants and expressions that are also GROUP BY terms that
5294 ** use the "BINARY" collation sequence.
5296 static void havingToWhere(Parse *pParse, Select *p){
5297 Walker sWalker;
5298 memset(&sWalker, 0, sizeof(sWalker));
5299 sWalker.pParse = pParse;
5300 sWalker.xExprCallback = havingToWhereExprCb;
5301 sWalker.u.pSelect = p;
5302 sqlite3WalkExpr(&sWalker, p->pHaving);
5303 #if SELECTTRACE_ENABLED
5304 if( sWalker.eCode && (sqlite3SelectTrace & 0x100)!=0 ){
5305 SELECTTRACE(0x100,pParse,p,("Move HAVING terms into WHERE:\n"));
5306 sqlite3TreeViewSelect(0, p, 0);
5308 #endif
5312 ** Check to see if the pThis entry of pTabList is a self-join of a prior view.
5313 ** If it is, then return the SrcList_item for the prior view. If it is not,
5314 ** then return 0.
5316 static struct SrcList_item *isSelfJoinView(
5317 SrcList *pTabList, /* Search for self-joins in this FROM clause */
5318 struct SrcList_item *pThis /* Search for prior reference to this subquery */
5320 struct SrcList_item *pItem;
5321 for(pItem = pTabList->a; pItem<pThis; pItem++){
5322 if( pItem->pSelect==0 ) continue;
5323 if( pItem->fg.viaCoroutine ) continue;
5324 if( pItem->zName==0 ) continue;
5325 if( sqlite3_stricmp(pItem->zDatabase, pThis->zDatabase)!=0 ) continue;
5326 if( sqlite3_stricmp(pItem->zName, pThis->zName)!=0 ) continue;
5327 if( sqlite3ExprCompare(0,
5328 pThis->pSelect->pWhere, pItem->pSelect->pWhere, -1)
5330 /* The view was modified by some other optimization such as
5331 ** pushDownWhereTerms() */
5332 continue;
5334 return pItem;
5336 return 0;
5339 #ifdef SQLITE_COUNTOFVIEW_OPTIMIZATION
5341 ** Attempt to transform a query of the form
5343 ** SELECT count(*) FROM (SELECT x FROM t1 UNION ALL SELECT y FROM t2)
5345 ** Into this:
5347 ** SELECT (SELECT count(*) FROM t1)+(SELECT count(*) FROM t2)
5349 ** The transformation only works if all of the following are true:
5351 ** * The subquery is a UNION ALL of two or more terms
5352 ** * There is no WHERE or GROUP BY or HAVING clauses on the subqueries
5353 ** * The outer query is a simple count(*)
5355 ** Return TRUE if the optimization is undertaken.
5357 static int countOfViewOptimization(Parse *pParse, Select *p){
5358 Select *pSub, *pPrior;
5359 Expr *pExpr;
5360 Expr *pCount;
5361 sqlite3 *db;
5362 if( (p->selFlags & SF_Aggregate)==0 ) return 0; /* This is an aggregate */
5363 if( p->pEList->nExpr!=1 ) return 0; /* Single result column */
5364 pExpr = p->pEList->a[0].pExpr;
5365 if( pExpr->op!=TK_AGG_FUNCTION ) return 0; /* Result is an aggregate */
5366 if( sqlite3_stricmp(pExpr->u.zToken,"count") ) return 0; /* Is count() */
5367 if( pExpr->x.pList!=0 ) return 0; /* Must be count(*) */
5368 if( p->pSrc->nSrc!=1 ) return 0; /* One table in FROM */
5369 pSub = p->pSrc->a[0].pSelect;
5370 if( pSub==0 ) return 0; /* The FROM is a subquery */
5371 if( pSub->pPrior==0 ) return 0; /* Must be a compound ry */
5373 if( pSub->op!=TK_ALL && pSub->pPrior ) return 0; /* Must be UNION ALL */
5374 if( pSub->pWhere ) return 0; /* No WHERE clause */
5375 if( pSub->selFlags & SF_Aggregate ) return 0; /* Not an aggregate */
5376 pSub = pSub->pPrior; /* Repeat over compound */
5377 }while( pSub );
5379 /* If we reach this point then it is OK to perform the transformation */
5381 db = pParse->db;
5382 pCount = pExpr;
5383 pExpr = 0;
5384 pSub = p->pSrc->a[0].pSelect;
5385 p->pSrc->a[0].pSelect = 0;
5386 sqlite3SrcListDelete(db, p->pSrc);
5387 p->pSrc = sqlite3DbMallocZero(pParse->db, sizeof(*p->pSrc));
5388 while( pSub ){
5389 Expr *pTerm;
5390 pPrior = pSub->pPrior;
5391 pSub->pPrior = 0;
5392 pSub->pNext = 0;
5393 pSub->selFlags |= SF_Aggregate;
5394 pSub->selFlags &= ~SF_Compound;
5395 pSub->nSelectRow = 0;
5396 sqlite3ExprListDelete(db, pSub->pEList);
5397 pTerm = pPrior ? sqlite3ExprDup(db, pCount, 0) : pCount;
5398 pSub->pEList = sqlite3ExprListAppend(pParse, 0, pTerm);
5399 pTerm = sqlite3PExpr(pParse, TK_SELECT, 0, 0);
5400 sqlite3PExprAddSelect(pParse, pTerm, pSub);
5401 if( pExpr==0 ){
5402 pExpr = pTerm;
5403 }else{
5404 pExpr = sqlite3PExpr(pParse, TK_PLUS, pTerm, pExpr);
5406 pSub = pPrior;
5408 p->pEList->a[0].pExpr = pExpr;
5409 p->selFlags &= ~SF_Aggregate;
5411 #if SELECTTRACE_ENABLED
5412 if( sqlite3SelectTrace & 0x400 ){
5413 SELECTTRACE(0x400,pParse,p,("After count-of-view optimization:\n"));
5414 sqlite3TreeViewSelect(0, p, 0);
5416 #endif
5417 return 1;
5419 #endif /* SQLITE_COUNTOFVIEW_OPTIMIZATION */
5422 ** Generate code for the SELECT statement given in the p argument.
5424 ** The results are returned according to the SelectDest structure.
5425 ** See comments in sqliteInt.h for further information.
5427 ** This routine returns the number of errors. If any errors are
5428 ** encountered, then an appropriate error message is left in
5429 ** pParse->zErrMsg.
5431 ** This routine does NOT free the Select structure passed in. The
5432 ** calling function needs to do that.
5434 int sqlite3Select(
5435 Parse *pParse, /* The parser context */
5436 Select *p, /* The SELECT statement being coded. */
5437 SelectDest *pDest /* What to do with the query results */
5439 int i, j; /* Loop counters */
5440 WhereInfo *pWInfo; /* Return from sqlite3WhereBegin() */
5441 Vdbe *v; /* The virtual machine under construction */
5442 int isAgg; /* True for select lists like "count(*)" */
5443 ExprList *pEList = 0; /* List of columns to extract. */
5444 SrcList *pTabList; /* List of tables to select from */
5445 Expr *pWhere; /* The WHERE clause. May be NULL */
5446 ExprList *pGroupBy; /* The GROUP BY clause. May be NULL */
5447 Expr *pHaving; /* The HAVING clause. May be NULL */
5448 int rc = 1; /* Value to return from this function */
5449 DistinctCtx sDistinct; /* Info on how to code the DISTINCT keyword */
5450 SortCtx sSort; /* Info on how to code the ORDER BY clause */
5451 AggInfo sAggInfo; /* Information used by aggregate queries */
5452 int iEnd; /* Address of the end of the query */
5453 sqlite3 *db; /* The database connection */
5454 ExprList *pMinMaxOrderBy = 0; /* Added ORDER BY for min/max queries */
5455 u8 minMaxFlag; /* Flag for min/max queries */
5457 db = pParse->db;
5458 v = sqlite3GetVdbe(pParse);
5459 if( p==0 || db->mallocFailed || pParse->nErr ){
5460 return 1;
5462 if( sqlite3AuthCheck(pParse, SQLITE_SELECT, 0, 0, 0) ) return 1;
5463 memset(&sAggInfo, 0, sizeof(sAggInfo));
5464 #if SELECTTRACE_ENABLED
5465 SELECTTRACE(1,pParse,p, ("begin processing:\n", pParse->addrExplain));
5466 if( sqlite3SelectTrace & 0x100 ){
5467 sqlite3TreeViewSelect(0, p, 0);
5469 #endif
5471 assert( p->pOrderBy==0 || pDest->eDest!=SRT_DistFifo );
5472 assert( p->pOrderBy==0 || pDest->eDest!=SRT_Fifo );
5473 assert( p->pOrderBy==0 || pDest->eDest!=SRT_DistQueue );
5474 assert( p->pOrderBy==0 || pDest->eDest!=SRT_Queue );
5475 if( IgnorableOrderby(pDest) ){
5476 assert(pDest->eDest==SRT_Exists || pDest->eDest==SRT_Union ||
5477 pDest->eDest==SRT_Except || pDest->eDest==SRT_Discard ||
5478 pDest->eDest==SRT_Queue || pDest->eDest==SRT_DistFifo ||
5479 pDest->eDest==SRT_DistQueue || pDest->eDest==SRT_Fifo);
5480 /* If ORDER BY makes no difference in the output then neither does
5481 ** DISTINCT so it can be removed too. */
5482 sqlite3ExprListDelete(db, p->pOrderBy);
5483 p->pOrderBy = 0;
5484 p->selFlags &= ~SF_Distinct;
5486 sqlite3SelectPrep(pParse, p, 0);
5487 memset(&sSort, 0, sizeof(sSort));
5488 sSort.pOrderBy = p->pOrderBy;
5489 if( pParse->nErr || db->mallocFailed ){
5490 goto select_end;
5492 assert( p->pEList!=0 );
5493 #if SELECTTRACE_ENABLED
5494 if( sqlite3SelectTrace & 0x104 ){
5495 SELECTTRACE(0x104,pParse,p, ("after name resolution:\n"));
5496 sqlite3TreeViewSelect(0, p, 0);
5498 #endif
5500 if( pDest->eDest==SRT_Output ){
5501 generateColumnNames(pParse, p);
5504 #ifndef SQLITE_OMIT_WINDOWFUNC
5505 if( sqlite3WindowRewrite(pParse, p) ){
5506 goto select_end;
5508 #if SELECTTRACE_ENABLED
5509 if( sqlite3SelectTrace & 0x108 ){
5510 SELECTTRACE(0x104,pParse,p, ("after window rewrite:\n"));
5511 sqlite3TreeViewSelect(0, p, 0);
5513 #endif
5514 #endif /* SQLITE_OMIT_WINDOWFUNC */
5515 pTabList = p->pSrc;
5516 isAgg = (p->selFlags & SF_Aggregate)!=0;
5518 /* Try to various optimizations (flattening subqueries, and strength
5519 ** reduction of join operators) in the FROM clause up into the main query
5521 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
5522 for(i=0; !p->pPrior && i<pTabList->nSrc; i++){
5523 struct SrcList_item *pItem = &pTabList->a[i];
5524 Select *pSub = pItem->pSelect;
5525 Table *pTab = pItem->pTab;
5527 /* Convert LEFT JOIN into JOIN if there are terms of the right table
5528 ** of the LEFT JOIN used in the WHERE clause.
5530 if( (pItem->fg.jointype & JT_LEFT)!=0
5531 && sqlite3ExprImpliesNonNullRow(p->pWhere, pItem->iCursor)
5532 && OptimizationEnabled(db, SQLITE_SimplifyJoin)
5534 SELECTTRACE(0x100,pParse,p,
5535 ("LEFT-JOIN simplifies to JOIN on term %d\n",i));
5536 pItem->fg.jointype &= ~(JT_LEFT|JT_OUTER);
5537 unsetJoinExpr(p->pWhere, pItem->iCursor);
5540 /* No futher action if this term of the FROM clause is no a subquery */
5541 if( pSub==0 ) continue;
5543 /* Catch mismatch in the declared columns of a view and the number of
5544 ** columns in the SELECT on the RHS */
5545 if( pTab->nCol!=pSub->pEList->nExpr ){
5546 sqlite3ErrorMsg(pParse, "expected %d columns for '%s' but got %d",
5547 pTab->nCol, pTab->zName, pSub->pEList->nExpr);
5548 goto select_end;
5551 /* Do not try to flatten an aggregate subquery.
5553 ** Flattening an aggregate subquery is only possible if the outer query
5554 ** is not a join. But if the outer query is not a join, then the subquery
5555 ** will be implemented as a co-routine and there is no advantage to
5556 ** flattening in that case.
5558 if( (pSub->selFlags & SF_Aggregate)!=0 ) continue;
5559 assert( pSub->pGroupBy==0 );
5561 /* If the outer query contains a "complex" result set (that is,
5562 ** if the result set of the outer query uses functions or subqueries)
5563 ** and if the subquery contains an ORDER BY clause and if
5564 ** it will be implemented as a co-routine, then do not flatten. This
5565 ** restriction allows SQL constructs like this:
5567 ** SELECT expensive_function(x)
5568 ** FROM (SELECT x FROM tab ORDER BY y LIMIT 10);
5570 ** The expensive_function() is only computed on the 10 rows that
5571 ** are output, rather than every row of the table.
5573 ** The requirement that the outer query have a complex result set
5574 ** means that flattening does occur on simpler SQL constraints without
5575 ** the expensive_function() like:
5577 ** SELECT x FROM (SELECT x FROM tab ORDER BY y LIMIT 10);
5579 if( pSub->pOrderBy!=0
5580 && i==0
5581 && (p->selFlags & SF_ComplexResult)!=0
5582 && (pTabList->nSrc==1
5583 || (pTabList->a[1].fg.jointype&(JT_LEFT|JT_CROSS))!=0)
5585 continue;
5588 if( flattenSubquery(pParse, p, i, isAgg) ){
5589 /* This subquery can be absorbed into its parent. */
5590 i = -1;
5592 pTabList = p->pSrc;
5593 if( db->mallocFailed ) goto select_end;
5594 if( !IgnorableOrderby(pDest) ){
5595 sSort.pOrderBy = p->pOrderBy;
5598 #endif
5600 #ifndef SQLITE_OMIT_COMPOUND_SELECT
5601 /* Handle compound SELECT statements using the separate multiSelect()
5602 ** procedure.
5604 if( p->pPrior ){
5605 rc = multiSelect(pParse, p, pDest);
5606 #if SELECTTRACE_ENABLED
5607 SELECTTRACE(0x1,pParse,p,("end compound-select processing\n"));
5608 if( (sqlite3SelectTrace & 0x2000)!=0 && ExplainQueryPlanParent(pParse)==0 ){
5609 sqlite3TreeViewSelect(0, p, 0);
5611 #endif
5612 if( p->pNext==0 ) ExplainQueryPlanPop(pParse);
5613 return rc;
5615 #endif
5617 /* For each term in the FROM clause, do two things:
5618 ** (1) Authorized unreferenced tables
5619 ** (2) Generate code for all sub-queries
5621 for(i=0; i<pTabList->nSrc; i++){
5622 struct SrcList_item *pItem = &pTabList->a[i];
5623 SelectDest dest;
5624 Select *pSub;
5625 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
5626 const char *zSavedAuthContext;
5627 #endif
5629 /* Issue SQLITE_READ authorizations with a fake column name for any
5630 ** tables that are referenced but from which no values are extracted.
5631 ** Examples of where these kinds of null SQLITE_READ authorizations
5632 ** would occur:
5634 ** SELECT count(*) FROM t1; -- SQLITE_READ t1.""
5635 ** SELECT t1.* FROM t1, t2; -- SQLITE_READ t2.""
5637 ** The fake column name is an empty string. It is possible for a table to
5638 ** have a column named by the empty string, in which case there is no way to
5639 ** distinguish between an unreferenced table and an actual reference to the
5640 ** "" column. The original design was for the fake column name to be a NULL,
5641 ** which would be unambiguous. But legacy authorization callbacks might
5642 ** assume the column name is non-NULL and segfault. The use of an empty
5643 ** string for the fake column name seems safer.
5645 if( pItem->colUsed==0 ){
5646 sqlite3AuthCheck(pParse, SQLITE_READ, pItem->zName, "", pItem->zDatabase);
5649 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
5650 /* Generate code for all sub-queries in the FROM clause
5652 pSub = pItem->pSelect;
5653 if( pSub==0 ) continue;
5655 /* Sometimes the code for a subquery will be generated more than
5656 ** once, if the subquery is part of the WHERE clause in a LEFT JOIN,
5657 ** for example. In that case, do not regenerate the code to manifest
5658 ** a view or the co-routine to implement a view. The first instance
5659 ** is sufficient, though the subroutine to manifest the view does need
5660 ** to be invoked again. */
5661 if( pItem->addrFillSub ){
5662 if( pItem->fg.viaCoroutine==0 ){
5663 /* The subroutine that manifests the view might be a one-time routine,
5664 ** or it might need to be rerun on each iteration because it
5665 ** encodes a correlated subquery. */
5666 testcase( sqlite3VdbeGetOp(v, pItem->addrFillSub)->opcode==OP_Once );
5667 sqlite3VdbeAddOp2(v, OP_Gosub, pItem->regReturn, pItem->addrFillSub);
5669 continue;
5672 /* Increment Parse.nHeight by the height of the largest expression
5673 ** tree referred to by this, the parent select. The child select
5674 ** may contain expression trees of at most
5675 ** (SQLITE_MAX_EXPR_DEPTH-Parse.nHeight) height. This is a bit
5676 ** more conservative than necessary, but much easier than enforcing
5677 ** an exact limit.
5679 pParse->nHeight += sqlite3SelectExprHeight(p);
5681 /* Make copies of constant WHERE-clause terms in the outer query down
5682 ** inside the subquery. This can help the subquery to run more efficiently.
5684 if( OptimizationEnabled(db, SQLITE_PushDown)
5685 && pushDownWhereTerms(pParse, pSub, p->pWhere, pItem->iCursor,
5686 (pItem->fg.jointype & JT_OUTER)!=0)
5688 #if SELECTTRACE_ENABLED
5689 if( sqlite3SelectTrace & 0x100 ){
5690 SELECTTRACE(0x100,pParse,p,("After WHERE-clause push-down:\n"));
5691 sqlite3TreeViewSelect(0, p, 0);
5693 #endif
5694 }else{
5695 SELECTTRACE(0x100,pParse,p,("Push-down not possible\n"));
5698 zSavedAuthContext = pParse->zAuthContext;
5699 pParse->zAuthContext = pItem->zName;
5701 /* Generate code to implement the subquery
5703 ** The subquery is implemented as a co-routine if the subquery is
5704 ** guaranteed to be the outer loop (so that it does not need to be
5705 ** computed more than once)
5707 ** TODO: Are there other reasons beside (1) to use a co-routine
5708 ** implementation?
5710 if( i==0
5711 && (pTabList->nSrc==1
5712 || (pTabList->a[1].fg.jointype&(JT_LEFT|JT_CROSS))!=0) /* (1) */
5714 /* Implement a co-routine that will return a single row of the result
5715 ** set on each invocation.
5717 int addrTop = sqlite3VdbeCurrentAddr(v)+1;
5719 pItem->regReturn = ++pParse->nMem;
5720 sqlite3VdbeAddOp3(v, OP_InitCoroutine, pItem->regReturn, 0, addrTop);
5721 VdbeComment((v, "%s", pItem->pTab->zName));
5722 pItem->addrFillSub = addrTop;
5723 sqlite3SelectDestInit(&dest, SRT_Coroutine, pItem->regReturn);
5724 ExplainQueryPlan((pParse, 1, "CO-ROUTINE 0x%p", pSub));
5725 sqlite3Select(pParse, pSub, &dest);
5726 pItem->pTab->nRowLogEst = pSub->nSelectRow;
5727 pItem->fg.viaCoroutine = 1;
5728 pItem->regResult = dest.iSdst;
5729 sqlite3VdbeEndCoroutine(v, pItem->regReturn);
5730 sqlite3VdbeJumpHere(v, addrTop-1);
5731 sqlite3ClearTempRegCache(pParse);
5732 }else{
5733 /* Generate a subroutine that will fill an ephemeral table with
5734 ** the content of this subquery. pItem->addrFillSub will point
5735 ** to the address of the generated subroutine. pItem->regReturn
5736 ** is a register allocated to hold the subroutine return address
5738 int topAddr;
5739 int onceAddr = 0;
5740 int retAddr;
5741 struct SrcList_item *pPrior;
5743 assert( pItem->addrFillSub==0 );
5744 pItem->regReturn = ++pParse->nMem;
5745 topAddr = sqlite3VdbeAddOp2(v, OP_Integer, 0, pItem->regReturn);
5746 pItem->addrFillSub = topAddr+1;
5747 if( pItem->fg.isCorrelated==0 ){
5748 /* If the subquery is not correlated and if we are not inside of
5749 ** a trigger, then we only need to compute the value of the subquery
5750 ** once. */
5751 onceAddr = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v);
5752 VdbeComment((v, "materialize \"%s\"", pItem->pTab->zName));
5753 }else{
5754 VdbeNoopComment((v, "materialize \"%s\"", pItem->pTab->zName));
5756 pPrior = isSelfJoinView(pTabList, pItem);
5757 if( pPrior ){
5758 sqlite3VdbeAddOp2(v, OP_OpenDup, pItem->iCursor, pPrior->iCursor);
5759 assert( pPrior->pSelect!=0 );
5760 pSub->nSelectRow = pPrior->pSelect->nSelectRow;
5761 }else{
5762 sqlite3SelectDestInit(&dest, SRT_EphemTab, pItem->iCursor);
5763 ExplainQueryPlan((pParse, 1, "MATERIALIZE 0x%p", pSub));
5764 sqlite3Select(pParse, pSub, &dest);
5766 pItem->pTab->nRowLogEst = pSub->nSelectRow;
5767 if( onceAddr ) sqlite3VdbeJumpHere(v, onceAddr);
5768 retAddr = sqlite3VdbeAddOp1(v, OP_Return, pItem->regReturn);
5769 VdbeComment((v, "end %s", pItem->pTab->zName));
5770 sqlite3VdbeChangeP1(v, topAddr, retAddr);
5771 sqlite3ClearTempRegCache(pParse);
5773 if( db->mallocFailed ) goto select_end;
5774 pParse->nHeight -= sqlite3SelectExprHeight(p);
5775 pParse->zAuthContext = zSavedAuthContext;
5776 #endif
5779 /* Various elements of the SELECT copied into local variables for
5780 ** convenience */
5781 pEList = p->pEList;
5782 pWhere = p->pWhere;
5783 pGroupBy = p->pGroupBy;
5784 pHaving = p->pHaving;
5785 sDistinct.isTnct = (p->selFlags & SF_Distinct)!=0;
5787 #if SELECTTRACE_ENABLED
5788 if( sqlite3SelectTrace & 0x400 ){
5789 SELECTTRACE(0x400,pParse,p,("After all FROM-clause analysis:\n"));
5790 sqlite3TreeViewSelect(0, p, 0);
5792 #endif
5794 #ifdef SQLITE_COUNTOFVIEW_OPTIMIZATION
5795 if( OptimizationEnabled(db, SQLITE_QueryFlattener|SQLITE_CountOfView)
5796 && countOfViewOptimization(pParse, p)
5798 if( db->mallocFailed ) goto select_end;
5799 pEList = p->pEList;
5800 pTabList = p->pSrc;
5802 #endif
5804 /* If the query is DISTINCT with an ORDER BY but is not an aggregate, and
5805 ** if the select-list is the same as the ORDER BY list, then this query
5806 ** can be rewritten as a GROUP BY. In other words, this:
5808 ** SELECT DISTINCT xyz FROM ... ORDER BY xyz
5810 ** is transformed to:
5812 ** SELECT xyz FROM ... GROUP BY xyz ORDER BY xyz
5814 ** The second form is preferred as a single index (or temp-table) may be
5815 ** used for both the ORDER BY and DISTINCT processing. As originally
5816 ** written the query must use a temp-table for at least one of the ORDER
5817 ** BY and DISTINCT, and an index or separate temp-table for the other.
5819 if( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct
5820 && sqlite3ExprListCompare(sSort.pOrderBy, pEList, -1)==0
5822 p->selFlags &= ~SF_Distinct;
5823 pGroupBy = p->pGroupBy = sqlite3ExprListDup(db, pEList, 0);
5824 /* Notice that even thought SF_Distinct has been cleared from p->selFlags,
5825 ** the sDistinct.isTnct is still set. Hence, isTnct represents the
5826 ** original setting of the SF_Distinct flag, not the current setting */
5827 assert( sDistinct.isTnct );
5829 #if SELECTTRACE_ENABLED
5830 if( sqlite3SelectTrace & 0x400 ){
5831 SELECTTRACE(0x400,pParse,p,("Transform DISTINCT into GROUP BY:\n"));
5832 sqlite3TreeViewSelect(0, p, 0);
5834 #endif
5837 /* If there is an ORDER BY clause, then create an ephemeral index to
5838 ** do the sorting. But this sorting ephemeral index might end up
5839 ** being unused if the data can be extracted in pre-sorted order.
5840 ** If that is the case, then the OP_OpenEphemeral instruction will be
5841 ** changed to an OP_Noop once we figure out that the sorting index is
5842 ** not needed. The sSort.addrSortIndex variable is used to facilitate
5843 ** that change.
5845 if( sSort.pOrderBy ){
5846 KeyInfo *pKeyInfo;
5847 pKeyInfo = sqlite3KeyInfoFromExprList(
5848 pParse, sSort.pOrderBy, 0, pEList->nExpr);
5849 sSort.iECursor = pParse->nTab++;
5850 sSort.addrSortIndex =
5851 sqlite3VdbeAddOp4(v, OP_OpenEphemeral,
5852 sSort.iECursor, sSort.pOrderBy->nExpr+1+pEList->nExpr, 0,
5853 (char*)pKeyInfo, P4_KEYINFO
5855 }else{
5856 sSort.addrSortIndex = -1;
5859 /* If the output is destined for a temporary table, open that table.
5861 if( pDest->eDest==SRT_EphemTab ){
5862 sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pDest->iSDParm, pEList->nExpr);
5865 /* Set the limiter.
5867 iEnd = sqlite3VdbeMakeLabel(v);
5868 if( (p->selFlags & SF_FixedLimit)==0 ){
5869 p->nSelectRow = 320; /* 4 billion rows */
5871 computeLimitRegisters(pParse, p, iEnd);
5872 if( p->iLimit==0 && sSort.addrSortIndex>=0 ){
5873 sqlite3VdbeChangeOpcode(v, sSort.addrSortIndex, OP_SorterOpen);
5874 sSort.sortFlags |= SORTFLAG_UseSorter;
5877 /* Open an ephemeral index to use for the distinct set.
5879 if( p->selFlags & SF_Distinct ){
5880 sDistinct.tabTnct = pParse->nTab++;
5881 sDistinct.addrTnct = sqlite3VdbeAddOp4(v, OP_OpenEphemeral,
5882 sDistinct.tabTnct, 0, 0,
5883 (char*)sqlite3KeyInfoFromExprList(pParse, p->pEList,0,0),
5884 P4_KEYINFO);
5885 sqlite3VdbeChangeP5(v, BTREE_UNORDERED);
5886 sDistinct.eTnctType = WHERE_DISTINCT_UNORDERED;
5887 }else{
5888 sDistinct.eTnctType = WHERE_DISTINCT_NOOP;
5891 if( !isAgg && pGroupBy==0 ){
5892 /* No aggregate functions and no GROUP BY clause */
5893 u16 wctrlFlags = (sDistinct.isTnct ? WHERE_WANT_DISTINCT : 0)
5894 | (p->selFlags & SF_FixedLimit);
5895 #ifndef SQLITE_OMIT_WINDOWFUNC
5896 Window *pWin = p->pWin; /* Master window object (or NULL) */
5897 if( pWin ){
5898 sqlite3WindowCodeInit(pParse, pWin);
5900 #endif
5901 assert( WHERE_USE_LIMIT==SF_FixedLimit );
5904 /* Begin the database scan. */
5905 SELECTTRACE(1,pParse,p,("WhereBegin\n"));
5906 pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, sSort.pOrderBy,
5907 p->pEList, wctrlFlags, p->nSelectRow);
5908 if( pWInfo==0 ) goto select_end;
5909 if( sqlite3WhereOutputRowCount(pWInfo) < p->nSelectRow ){
5910 p->nSelectRow = sqlite3WhereOutputRowCount(pWInfo);
5912 if( sDistinct.isTnct && sqlite3WhereIsDistinct(pWInfo) ){
5913 sDistinct.eTnctType = sqlite3WhereIsDistinct(pWInfo);
5915 if( sSort.pOrderBy ){
5916 sSort.nOBSat = sqlite3WhereIsOrdered(pWInfo);
5917 sSort.bOrderedInnerLoop = sqlite3WhereOrderedInnerLoop(pWInfo);
5918 if( sSort.nOBSat==sSort.pOrderBy->nExpr ){
5919 sSort.pOrderBy = 0;
5923 /* If sorting index that was created by a prior OP_OpenEphemeral
5924 ** instruction ended up not being needed, then change the OP_OpenEphemeral
5925 ** into an OP_Noop.
5927 if( sSort.addrSortIndex>=0 && sSort.pOrderBy==0 ){
5928 sqlite3VdbeChangeToNoop(v, sSort.addrSortIndex);
5931 assert( p->pEList==pEList );
5932 #ifndef SQLITE_OMIT_WINDOWFUNC
5933 if( pWin ){
5934 int addrGosub = sqlite3VdbeMakeLabel(v);
5935 int iCont = sqlite3VdbeMakeLabel(v);
5936 int regGosub = ++pParse->nMem;
5937 int addr = 0;
5939 sqlite3WindowCodeStep(pParse, p, pWInfo, regGosub, addrGosub);
5941 addr = sqlite3VdbeAddOp0(v, OP_Goto);
5942 sqlite3VdbeResolveLabel(v, addrGosub);
5943 selectInnerLoop(pParse, p, -1, &sSort, &sDistinct, pDest, iCont, 0);
5944 sqlite3VdbeResolveLabel(v, iCont);
5945 sqlite3VdbeAddOp1(v, OP_Return, regGosub);
5946 sqlite3VdbeJumpHere(v, addr);
5948 }else
5949 #endif /* SQLITE_OMIT_WINDOWFUNC */
5951 /* Use the standard inner loop. */
5952 selectInnerLoop(pParse, p, -1, &sSort, &sDistinct, pDest,
5953 sqlite3WhereContinueLabel(pWInfo),
5954 sqlite3WhereBreakLabel(pWInfo));
5956 /* End the database scan loop.
5958 sqlite3WhereEnd(pWInfo);
5960 }else{
5961 /* This case when there exist aggregate functions or a GROUP BY clause
5962 ** or both */
5963 NameContext sNC; /* Name context for processing aggregate information */
5964 int iAMem; /* First Mem address for storing current GROUP BY */
5965 int iBMem; /* First Mem address for previous GROUP BY */
5966 int iUseFlag; /* Mem address holding flag indicating that at least
5967 ** one row of the input to the aggregator has been
5968 ** processed */
5969 int iAbortFlag; /* Mem address which causes query abort if positive */
5970 int groupBySort; /* Rows come from source in GROUP BY order */
5971 int addrEnd; /* End of processing for this SELECT */
5972 int sortPTab = 0; /* Pseudotable used to decode sorting results */
5973 int sortOut = 0; /* Output register from the sorter */
5974 int orderByGrp = 0; /* True if the GROUP BY and ORDER BY are the same */
5976 /* Remove any and all aliases between the result set and the
5977 ** GROUP BY clause.
5979 if( pGroupBy ){
5980 int k; /* Loop counter */
5981 struct ExprList_item *pItem; /* For looping over expression in a list */
5983 for(k=p->pEList->nExpr, pItem=p->pEList->a; k>0; k--, pItem++){
5984 pItem->u.x.iAlias = 0;
5986 for(k=pGroupBy->nExpr, pItem=pGroupBy->a; k>0; k--, pItem++){
5987 pItem->u.x.iAlias = 0;
5989 assert( 66==sqlite3LogEst(100) );
5990 if( p->nSelectRow>66 ) p->nSelectRow = 66;
5991 }else{
5992 assert( 0==sqlite3LogEst(1) );
5993 p->nSelectRow = 0;
5996 /* If there is both a GROUP BY and an ORDER BY clause and they are
5997 ** identical, then it may be possible to disable the ORDER BY clause
5998 ** on the grounds that the GROUP BY will cause elements to come out
5999 ** in the correct order. It also may not - the GROUP BY might use a
6000 ** database index that causes rows to be grouped together as required
6001 ** but not actually sorted. Either way, record the fact that the
6002 ** ORDER BY and GROUP BY clauses are the same by setting the orderByGrp
6003 ** variable. */
6004 if( sqlite3ExprListCompare(pGroupBy, sSort.pOrderBy, -1)==0 ){
6005 orderByGrp = 1;
6008 /* Create a label to jump to when we want to abort the query */
6009 addrEnd = sqlite3VdbeMakeLabel(v);
6011 /* Convert TK_COLUMN nodes into TK_AGG_COLUMN and make entries in
6012 ** sAggInfo for all TK_AGG_FUNCTION nodes in expressions of the
6013 ** SELECT statement.
6015 memset(&sNC, 0, sizeof(sNC));
6016 sNC.pParse = pParse;
6017 sNC.pSrcList = pTabList;
6018 sNC.uNC.pAggInfo = &sAggInfo;
6019 VVA_ONLY( sNC.ncFlags = NC_UAggInfo; )
6020 sAggInfo.mnReg = pParse->nMem+1;
6021 sAggInfo.nSortingColumn = pGroupBy ? pGroupBy->nExpr : 0;
6022 sAggInfo.pGroupBy = pGroupBy;
6023 sqlite3ExprAnalyzeAggList(&sNC, pEList);
6024 sqlite3ExprAnalyzeAggList(&sNC, sSort.pOrderBy);
6025 if( pHaving ){
6026 if( pGroupBy ){
6027 assert( pWhere==p->pWhere );
6028 assert( pHaving==p->pHaving );
6029 assert( pGroupBy==p->pGroupBy );
6030 havingToWhere(pParse, p);
6031 pWhere = p->pWhere;
6033 sqlite3ExprAnalyzeAggregates(&sNC, pHaving);
6035 sAggInfo.nAccumulator = sAggInfo.nColumn;
6036 if( p->pGroupBy==0 && p->pHaving==0 && sAggInfo.nFunc==1 ){
6037 minMaxFlag = minMaxQuery(db, sAggInfo.aFunc[0].pExpr, &pMinMaxOrderBy);
6038 }else{
6039 minMaxFlag = WHERE_ORDERBY_NORMAL;
6041 for(i=0; i<sAggInfo.nFunc; i++){
6042 assert( !ExprHasProperty(sAggInfo.aFunc[i].pExpr, EP_xIsSelect) );
6043 sNC.ncFlags |= NC_InAggFunc;
6044 sqlite3ExprAnalyzeAggList(&sNC, sAggInfo.aFunc[i].pExpr->x.pList);
6045 sNC.ncFlags &= ~NC_InAggFunc;
6047 sAggInfo.mxReg = pParse->nMem;
6048 if( db->mallocFailed ) goto select_end;
6049 #if SELECTTRACE_ENABLED
6050 if( sqlite3SelectTrace & 0x400 ){
6051 int ii;
6052 SELECTTRACE(0x400,pParse,p,("After aggregate analysis:\n"));
6053 sqlite3TreeViewSelect(0, p, 0);
6054 for(ii=0; ii<sAggInfo.nColumn; ii++){
6055 sqlite3DebugPrintf("agg-column[%d] iMem=%d\n",
6056 ii, sAggInfo.aCol[ii].iMem);
6057 sqlite3TreeViewExpr(0, sAggInfo.aCol[ii].pExpr, 0);
6059 for(ii=0; ii<sAggInfo.nFunc; ii++){
6060 sqlite3DebugPrintf("agg-func[%d]: iMem=%d\n",
6061 ii, sAggInfo.aFunc[ii].iMem);
6062 sqlite3TreeViewExpr(0, sAggInfo.aFunc[ii].pExpr, 0);
6065 #endif
6068 /* Processing for aggregates with GROUP BY is very different and
6069 ** much more complex than aggregates without a GROUP BY.
6071 if( pGroupBy ){
6072 KeyInfo *pKeyInfo; /* Keying information for the group by clause */
6073 int addr1; /* A-vs-B comparision jump */
6074 int addrOutputRow; /* Start of subroutine that outputs a result row */
6075 int regOutputRow; /* Return address register for output subroutine */
6076 int addrSetAbort; /* Set the abort flag and return */
6077 int addrTopOfLoop; /* Top of the input loop */
6078 int addrSortingIdx; /* The OP_OpenEphemeral for the sorting index */
6079 int addrReset; /* Subroutine for resetting the accumulator */
6080 int regReset; /* Return address register for reset subroutine */
6082 /* If there is a GROUP BY clause we might need a sorting index to
6083 ** implement it. Allocate that sorting index now. If it turns out
6084 ** that we do not need it after all, the OP_SorterOpen instruction
6085 ** will be converted into a Noop.
6087 sAggInfo.sortingIdx = pParse->nTab++;
6088 pKeyInfo = sqlite3KeyInfoFromExprList(pParse,pGroupBy,0,sAggInfo.nColumn);
6089 addrSortingIdx = sqlite3VdbeAddOp4(v, OP_SorterOpen,
6090 sAggInfo.sortingIdx, sAggInfo.nSortingColumn,
6091 0, (char*)pKeyInfo, P4_KEYINFO);
6093 /* Initialize memory locations used by GROUP BY aggregate processing
6095 iUseFlag = ++pParse->nMem;
6096 iAbortFlag = ++pParse->nMem;
6097 regOutputRow = ++pParse->nMem;
6098 addrOutputRow = sqlite3VdbeMakeLabel(v);
6099 regReset = ++pParse->nMem;
6100 addrReset = sqlite3VdbeMakeLabel(v);
6101 iAMem = pParse->nMem + 1;
6102 pParse->nMem += pGroupBy->nExpr;
6103 iBMem = pParse->nMem + 1;
6104 pParse->nMem += pGroupBy->nExpr;
6105 sqlite3VdbeAddOp2(v, OP_Integer, 0, iAbortFlag);
6106 VdbeComment((v, "clear abort flag"));
6107 sqlite3VdbeAddOp3(v, OP_Null, 0, iAMem, iAMem+pGroupBy->nExpr-1);
6109 /* Begin a loop that will extract all source rows in GROUP BY order.
6110 ** This might involve two separate loops with an OP_Sort in between, or
6111 ** it might be a single loop that uses an index to extract information
6112 ** in the right order to begin with.
6114 sqlite3VdbeAddOp2(v, OP_Gosub, regReset, addrReset);
6115 SELECTTRACE(1,pParse,p,("WhereBegin\n"));
6116 pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, pGroupBy, 0,
6117 WHERE_GROUPBY | (orderByGrp ? WHERE_SORTBYGROUP : 0), 0
6119 if( pWInfo==0 ) goto select_end;
6120 if( sqlite3WhereIsOrdered(pWInfo)==pGroupBy->nExpr ){
6121 /* The optimizer is able to deliver rows in group by order so
6122 ** we do not have to sort. The OP_OpenEphemeral table will be
6123 ** cancelled later because we still need to use the pKeyInfo
6125 groupBySort = 0;
6126 }else{
6127 /* Rows are coming out in undetermined order. We have to push
6128 ** each row into a sorting index, terminate the first loop,
6129 ** then loop over the sorting index in order to get the output
6130 ** in sorted order
6132 int regBase;
6133 int regRecord;
6134 int nCol;
6135 int nGroupBy;
6137 explainTempTable(pParse,
6138 (sDistinct.isTnct && (p->selFlags&SF_Distinct)==0) ?
6139 "DISTINCT" : "GROUP BY");
6141 groupBySort = 1;
6142 nGroupBy = pGroupBy->nExpr;
6143 nCol = nGroupBy;
6144 j = nGroupBy;
6145 for(i=0; i<sAggInfo.nColumn; i++){
6146 if( sAggInfo.aCol[i].iSorterColumn>=j ){
6147 nCol++;
6148 j++;
6151 regBase = sqlite3GetTempRange(pParse, nCol);
6152 sqlite3ExprCacheClear(pParse);
6153 sqlite3ExprCodeExprList(pParse, pGroupBy, regBase, 0, 0);
6154 j = nGroupBy;
6155 for(i=0; i<sAggInfo.nColumn; i++){
6156 struct AggInfo_col *pCol = &sAggInfo.aCol[i];
6157 if( pCol->iSorterColumn>=j ){
6158 int r1 = j + regBase;
6159 sqlite3ExprCodeGetColumnToReg(pParse,
6160 pCol->pTab, pCol->iColumn, pCol->iTable, r1);
6161 j++;
6164 regRecord = sqlite3GetTempReg(pParse);
6165 sqlite3VdbeAddOp3(v, OP_MakeRecord, regBase, nCol, regRecord);
6166 sqlite3VdbeAddOp2(v, OP_SorterInsert, sAggInfo.sortingIdx, regRecord);
6167 sqlite3ReleaseTempReg(pParse, regRecord);
6168 sqlite3ReleaseTempRange(pParse, regBase, nCol);
6169 sqlite3WhereEnd(pWInfo);
6170 sAggInfo.sortingIdxPTab = sortPTab = pParse->nTab++;
6171 sortOut = sqlite3GetTempReg(pParse);
6172 sqlite3VdbeAddOp3(v, OP_OpenPseudo, sortPTab, sortOut, nCol);
6173 sqlite3VdbeAddOp2(v, OP_SorterSort, sAggInfo.sortingIdx, addrEnd);
6174 VdbeComment((v, "GROUP BY sort")); VdbeCoverage(v);
6175 sAggInfo.useSortingIdx = 1;
6176 sqlite3ExprCacheClear(pParse);
6180 /* If the index or temporary table used by the GROUP BY sort
6181 ** will naturally deliver rows in the order required by the ORDER BY
6182 ** clause, cancel the ephemeral table open coded earlier.
6184 ** This is an optimization - the correct answer should result regardless.
6185 ** Use the SQLITE_GroupByOrder flag with SQLITE_TESTCTRL_OPTIMIZER to
6186 ** disable this optimization for testing purposes. */
6187 if( orderByGrp && OptimizationEnabled(db, SQLITE_GroupByOrder)
6188 && (groupBySort || sqlite3WhereIsSorted(pWInfo))
6190 sSort.pOrderBy = 0;
6191 sqlite3VdbeChangeToNoop(v, sSort.addrSortIndex);
6194 /* Evaluate the current GROUP BY terms and store in b0, b1, b2...
6195 ** (b0 is memory location iBMem+0, b1 is iBMem+1, and so forth)
6196 ** Then compare the current GROUP BY terms against the GROUP BY terms
6197 ** from the previous row currently stored in a0, a1, a2...
6199 addrTopOfLoop = sqlite3VdbeCurrentAddr(v);
6200 sqlite3ExprCacheClear(pParse);
6201 if( groupBySort ){
6202 sqlite3VdbeAddOp3(v, OP_SorterData, sAggInfo.sortingIdx,
6203 sortOut, sortPTab);
6205 for(j=0; j<pGroupBy->nExpr; j++){
6206 if( groupBySort ){
6207 sqlite3VdbeAddOp3(v, OP_Column, sortPTab, j, iBMem+j);
6208 }else{
6209 sAggInfo.directMode = 1;
6210 sqlite3ExprCode(pParse, pGroupBy->a[j].pExpr, iBMem+j);
6213 sqlite3VdbeAddOp4(v, OP_Compare, iAMem, iBMem, pGroupBy->nExpr,
6214 (char*)sqlite3KeyInfoRef(pKeyInfo), P4_KEYINFO);
6215 addr1 = sqlite3VdbeCurrentAddr(v);
6216 sqlite3VdbeAddOp3(v, OP_Jump, addr1+1, 0, addr1+1); VdbeCoverage(v);
6218 /* Generate code that runs whenever the GROUP BY changes.
6219 ** Changes in the GROUP BY are detected by the previous code
6220 ** block. If there were no changes, this block is skipped.
6222 ** This code copies current group by terms in b0,b1,b2,...
6223 ** over to a0,a1,a2. It then calls the output subroutine
6224 ** and resets the aggregate accumulator registers in preparation
6225 ** for the next GROUP BY batch.
6227 sqlite3ExprCodeMove(pParse, iBMem, iAMem, pGroupBy->nExpr);
6228 sqlite3VdbeAddOp2(v, OP_Gosub, regOutputRow, addrOutputRow);
6229 VdbeComment((v, "output one row"));
6230 sqlite3VdbeAddOp2(v, OP_IfPos, iAbortFlag, addrEnd); VdbeCoverage(v);
6231 VdbeComment((v, "check abort flag"));
6232 sqlite3VdbeAddOp2(v, OP_Gosub, regReset, addrReset);
6233 VdbeComment((v, "reset accumulator"));
6235 /* Update the aggregate accumulators based on the content of
6236 ** the current row
6238 sqlite3VdbeJumpHere(v, addr1);
6239 updateAccumulator(pParse, iUseFlag, &sAggInfo);
6240 sqlite3VdbeAddOp2(v, OP_Integer, 1, iUseFlag);
6241 VdbeComment((v, "indicate data in accumulator"));
6243 /* End of the loop
6245 if( groupBySort ){
6246 sqlite3VdbeAddOp2(v, OP_SorterNext, sAggInfo.sortingIdx, addrTopOfLoop);
6247 VdbeCoverage(v);
6248 }else{
6249 sqlite3WhereEnd(pWInfo);
6250 sqlite3VdbeChangeToNoop(v, addrSortingIdx);
6253 /* Output the final row of result
6255 sqlite3VdbeAddOp2(v, OP_Gosub, regOutputRow, addrOutputRow);
6256 VdbeComment((v, "output final row"));
6258 /* Jump over the subroutines
6260 sqlite3VdbeGoto(v, addrEnd);
6262 /* Generate a subroutine that outputs a single row of the result
6263 ** set. This subroutine first looks at the iUseFlag. If iUseFlag
6264 ** is less than or equal to zero, the subroutine is a no-op. If
6265 ** the processing calls for the query to abort, this subroutine
6266 ** increments the iAbortFlag memory location before returning in
6267 ** order to signal the caller to abort.
6269 addrSetAbort = sqlite3VdbeCurrentAddr(v);
6270 sqlite3VdbeAddOp2(v, OP_Integer, 1, iAbortFlag);
6271 VdbeComment((v, "set abort flag"));
6272 sqlite3VdbeAddOp1(v, OP_Return, regOutputRow);
6273 sqlite3VdbeResolveLabel(v, addrOutputRow);
6274 addrOutputRow = sqlite3VdbeCurrentAddr(v);
6275 sqlite3VdbeAddOp2(v, OP_IfPos, iUseFlag, addrOutputRow+2);
6276 VdbeCoverage(v);
6277 VdbeComment((v, "Groupby result generator entry point"));
6278 sqlite3VdbeAddOp1(v, OP_Return, regOutputRow);
6279 finalizeAggFunctions(pParse, &sAggInfo);
6280 sqlite3ExprIfFalse(pParse, pHaving, addrOutputRow+1, SQLITE_JUMPIFNULL);
6281 selectInnerLoop(pParse, p, -1, &sSort,
6282 &sDistinct, pDest,
6283 addrOutputRow+1, addrSetAbort);
6284 sqlite3VdbeAddOp1(v, OP_Return, regOutputRow);
6285 VdbeComment((v, "end groupby result generator"));
6287 /* Generate a subroutine that will reset the group-by accumulator
6289 sqlite3VdbeResolveLabel(v, addrReset);
6290 resetAccumulator(pParse, &sAggInfo);
6291 sqlite3VdbeAddOp2(v, OP_Integer, 0, iUseFlag);
6292 VdbeComment((v, "indicate accumulator empty"));
6293 sqlite3VdbeAddOp1(v, OP_Return, regReset);
6295 } /* endif pGroupBy. Begin aggregate queries without GROUP BY: */
6296 else {
6297 #ifndef SQLITE_OMIT_BTREECOUNT
6298 Table *pTab;
6299 if( (pTab = isSimpleCount(p, &sAggInfo))!=0 ){
6300 /* If isSimpleCount() returns a pointer to a Table structure, then
6301 ** the SQL statement is of the form:
6303 ** SELECT count(*) FROM <tbl>
6305 ** where the Table structure returned represents table <tbl>.
6307 ** This statement is so common that it is optimized specially. The
6308 ** OP_Count instruction is executed either on the intkey table that
6309 ** contains the data for table <tbl> or on one of its indexes. It
6310 ** is better to execute the op on an index, as indexes are almost
6311 ** always spread across less pages than their corresponding tables.
6313 const int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
6314 const int iCsr = pParse->nTab++; /* Cursor to scan b-tree */
6315 Index *pIdx; /* Iterator variable */
6316 KeyInfo *pKeyInfo = 0; /* Keyinfo for scanned index */
6317 Index *pBest = 0; /* Best index found so far */
6318 int iRoot = pTab->tnum; /* Root page of scanned b-tree */
6320 sqlite3CodeVerifySchema(pParse, iDb);
6321 sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName);
6323 /* Search for the index that has the lowest scan cost.
6325 ** (2011-04-15) Do not do a full scan of an unordered index.
6327 ** (2013-10-03) Do not count the entries in a partial index.
6329 ** In practice the KeyInfo structure will not be used. It is only
6330 ** passed to keep OP_OpenRead happy.
6332 if( !HasRowid(pTab) ) pBest = sqlite3PrimaryKeyIndex(pTab);
6333 for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
6334 if( pIdx->bUnordered==0
6335 && pIdx->szIdxRow<pTab->szTabRow
6336 && pIdx->pPartIdxWhere==0
6337 && (!pBest || pIdx->szIdxRow<pBest->szIdxRow)
6339 pBest = pIdx;
6342 if( pBest ){
6343 iRoot = pBest->tnum;
6344 pKeyInfo = sqlite3KeyInfoOfIndex(pParse, pBest);
6347 /* Open a read-only cursor, execute the OP_Count, close the cursor. */
6348 sqlite3VdbeAddOp4Int(v, OP_OpenRead, iCsr, iRoot, iDb, 1);
6349 if( pKeyInfo ){
6350 sqlite3VdbeChangeP4(v, -1, (char *)pKeyInfo, P4_KEYINFO);
6352 sqlite3VdbeAddOp2(v, OP_Count, iCsr, sAggInfo.aFunc[0].iMem);
6353 sqlite3VdbeAddOp1(v, OP_Close, iCsr);
6354 explainSimpleCount(pParse, pTab, pBest);
6355 }else
6356 #endif /* SQLITE_OMIT_BTREECOUNT */
6358 int regAcc = 0; /* "populate accumulators" flag */
6360 /* If there are accumulator registers but no min() or max() functions,
6361 ** allocate register regAcc. Register regAcc will contain 0 the first
6362 ** time the inner loop runs, and 1 thereafter. The code generated
6363 ** by updateAccumulator() only updates the accumulator registers if
6364 ** regAcc contains 0. */
6365 if( sAggInfo.nAccumulator ){
6366 for(i=0; i<sAggInfo.nFunc; i++){
6367 if( sAggInfo.aFunc[i].pFunc->funcFlags&SQLITE_FUNC_NEEDCOLL ) break;
6369 if( i==sAggInfo.nFunc ){
6370 regAcc = ++pParse->nMem;
6371 sqlite3VdbeAddOp2(v, OP_Integer, 0, regAcc);
6375 /* This case runs if the aggregate has no GROUP BY clause. The
6376 ** processing is much simpler since there is only a single row
6377 ** of output.
6379 assert( p->pGroupBy==0 );
6380 resetAccumulator(pParse, &sAggInfo);
6382 /* If this query is a candidate for the min/max optimization, then
6383 ** minMaxFlag will have been previously set to either
6384 ** WHERE_ORDERBY_MIN or WHERE_ORDERBY_MAX and pMinMaxOrderBy will
6385 ** be an appropriate ORDER BY expression for the optimization.
6387 assert( minMaxFlag==WHERE_ORDERBY_NORMAL || pMinMaxOrderBy!=0 );
6388 assert( pMinMaxOrderBy==0 || pMinMaxOrderBy->nExpr==1 );
6390 SELECTTRACE(1,pParse,p,("WhereBegin\n"));
6391 pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, pMinMaxOrderBy,
6392 0, minMaxFlag, 0);
6393 if( pWInfo==0 ){
6394 goto select_end;
6396 updateAccumulator(pParse, regAcc, &sAggInfo);
6397 if( regAcc ) sqlite3VdbeAddOp2(v, OP_Integer, 1, regAcc);
6398 if( sqlite3WhereIsOrdered(pWInfo)>0 ){
6399 sqlite3VdbeGoto(v, sqlite3WhereBreakLabel(pWInfo));
6400 VdbeComment((v, "%s() by index",
6401 (minMaxFlag==WHERE_ORDERBY_MIN?"min":"max")));
6403 sqlite3WhereEnd(pWInfo);
6404 finalizeAggFunctions(pParse, &sAggInfo);
6407 sSort.pOrderBy = 0;
6408 sqlite3ExprIfFalse(pParse, pHaving, addrEnd, SQLITE_JUMPIFNULL);
6409 selectInnerLoop(pParse, p, -1, 0, 0,
6410 pDest, addrEnd, addrEnd);
6412 sqlite3VdbeResolveLabel(v, addrEnd);
6414 } /* endif aggregate query */
6416 if( sDistinct.eTnctType==WHERE_DISTINCT_UNORDERED ){
6417 explainTempTable(pParse, "DISTINCT");
6420 /* If there is an ORDER BY clause, then we need to sort the results
6421 ** and send them to the callback one by one.
6423 if( sSort.pOrderBy ){
6424 explainTempTable(pParse,
6425 sSort.nOBSat>0 ? "RIGHT PART OF ORDER BY":"ORDER BY");
6426 assert( p->pEList==pEList );
6427 generateSortTail(pParse, p, &sSort, pEList->nExpr, pDest);
6430 /* Jump here to skip this query
6432 sqlite3VdbeResolveLabel(v, iEnd);
6434 /* The SELECT has been coded. If there is an error in the Parse structure,
6435 ** set the return code to 1. Otherwise 0. */
6436 rc = (pParse->nErr>0);
6438 /* Control jumps to here if an error is encountered above, or upon
6439 ** successful coding of the SELECT.
6441 select_end:
6442 sqlite3ExprListDelete(db, pMinMaxOrderBy);
6443 sqlite3DbFree(db, sAggInfo.aCol);
6444 sqlite3DbFree(db, sAggInfo.aFunc);
6445 #if SELECTTRACE_ENABLED
6446 SELECTTRACE(0x1,pParse,p,("end processing\n"));
6447 if( (sqlite3SelectTrace & 0x2000)!=0 && ExplainQueryPlanParent(pParse)==0 ){
6448 sqlite3TreeViewSelect(0, p, 0);
6450 #endif
6451 ExplainQueryPlanPop(pParse);
6452 return rc;