Reactivate query flattening when the result set of the outer query has
[sqlite.git] / src / expr.c
blob0a5dc913f65f481c3ba6637d4bfedace23e58c63
1 /*
2 ** 2001 September 15
3 **
4 ** The author disclaims copyright to this source code. In place of
5 ** a legal notice, here is a blessing:
6 **
7 ** May you do good and not evil.
8 ** May you find forgiveness for yourself and forgive others.
9 ** May you share freely, never taking more than you give.
11 *************************************************************************
12 ** This file contains routines used for analyzing expressions and
13 ** for generating VDBE code that evaluates expressions in SQLite.
15 #include "sqliteInt.h"
17 /* Forward declarations */
18 static void exprCodeBetween(Parse*,Expr*,int,void(*)(Parse*,Expr*,int,int),int);
19 static int exprCodeVector(Parse *pParse, Expr *p, int *piToFree);
22 ** Return the affinity character for a single column of a table.
24 char sqlite3TableColumnAffinity(Table *pTab, int iCol){
25 assert( iCol<pTab->nCol );
26 return iCol>=0 ? pTab->aCol[iCol].affinity : SQLITE_AFF_INTEGER;
30 ** Return the 'affinity' of the expression pExpr if any.
32 ** If pExpr is a column, a reference to a column via an 'AS' alias,
33 ** or a sub-select with a column as the return value, then the
34 ** affinity of that column is returned. Otherwise, 0x00 is returned,
35 ** indicating no affinity for the expression.
37 ** i.e. the WHERE clause expressions in the following statements all
38 ** have an affinity:
40 ** CREATE TABLE t1(a);
41 ** SELECT * FROM t1 WHERE a;
42 ** SELECT a AS b FROM t1 WHERE b;
43 ** SELECT * FROM t1 WHERE (select a from t1);
45 char sqlite3ExprAffinity(Expr *pExpr){
46 int op;
47 pExpr = sqlite3ExprSkipCollate(pExpr);
48 if( pExpr->flags & EP_Generic ) return 0;
49 op = pExpr->op;
50 if( op==TK_SELECT ){
51 assert( pExpr->flags&EP_xIsSelect );
52 return sqlite3ExprAffinity(pExpr->x.pSelect->pEList->a[0].pExpr);
54 if( op==TK_REGISTER ) op = pExpr->op2;
55 #ifndef SQLITE_OMIT_CAST
56 if( op==TK_CAST ){
57 assert( !ExprHasProperty(pExpr, EP_IntValue) );
58 return sqlite3AffinityType(pExpr->u.zToken, 0);
60 #endif
61 if( (op==TK_AGG_COLUMN || op==TK_COLUMN) && pExpr->pTab ){
62 return sqlite3TableColumnAffinity(pExpr->pTab, pExpr->iColumn);
64 if( op==TK_SELECT_COLUMN ){
65 assert( pExpr->pLeft->flags&EP_xIsSelect );
66 return sqlite3ExprAffinity(
67 pExpr->pLeft->x.pSelect->pEList->a[pExpr->iColumn].pExpr
70 return pExpr->affinity;
74 ** Set the collating sequence for expression pExpr to be the collating
75 ** sequence named by pToken. Return a pointer to a new Expr node that
76 ** implements the COLLATE operator.
78 ** If a memory allocation error occurs, that fact is recorded in pParse->db
79 ** and the pExpr parameter is returned unchanged.
81 Expr *sqlite3ExprAddCollateToken(
82 Parse *pParse, /* Parsing context */
83 Expr *pExpr, /* Add the "COLLATE" clause to this expression */
84 const Token *pCollName, /* Name of collating sequence */
85 int dequote /* True to dequote pCollName */
87 if( pCollName->n>0 ){
88 Expr *pNew = sqlite3ExprAlloc(pParse->db, TK_COLLATE, pCollName, dequote);
89 if( pNew ){
90 pNew->pLeft = pExpr;
91 pNew->flags |= EP_Collate|EP_Skip;
92 pExpr = pNew;
95 return pExpr;
97 Expr *sqlite3ExprAddCollateString(Parse *pParse, Expr *pExpr, const char *zC){
98 Token s;
99 assert( zC!=0 );
100 sqlite3TokenInit(&s, (char*)zC);
101 return sqlite3ExprAddCollateToken(pParse, pExpr, &s, 0);
105 ** Skip over any TK_COLLATE operators and any unlikely()
106 ** or likelihood() function at the root of an expression.
108 Expr *sqlite3ExprSkipCollate(Expr *pExpr){
109 while( pExpr && ExprHasProperty(pExpr, EP_Skip) ){
110 if( ExprHasProperty(pExpr, EP_Unlikely) ){
111 assert( !ExprHasProperty(pExpr, EP_xIsSelect) );
112 assert( pExpr->x.pList->nExpr>0 );
113 assert( pExpr->op==TK_FUNCTION );
114 pExpr = pExpr->x.pList->a[0].pExpr;
115 }else{
116 assert( pExpr->op==TK_COLLATE );
117 pExpr = pExpr->pLeft;
120 return pExpr;
124 ** Return the collation sequence for the expression pExpr. If
125 ** there is no defined collating sequence, return NULL.
127 ** See also: sqlite3ExprNNCollSeq()
129 ** The sqlite3ExprNNCollSeq() works the same exact that it returns the
130 ** default collation if pExpr has no defined collation.
132 ** The collating sequence might be determined by a COLLATE operator
133 ** or by the presence of a column with a defined collating sequence.
134 ** COLLATE operators take first precedence. Left operands take
135 ** precedence over right operands.
137 CollSeq *sqlite3ExprCollSeq(Parse *pParse, Expr *pExpr){
138 sqlite3 *db = pParse->db;
139 CollSeq *pColl = 0;
140 Expr *p = pExpr;
141 while( p ){
142 int op = p->op;
143 if( p->flags & EP_Generic ) break;
144 if( op==TK_CAST || op==TK_UPLUS ){
145 p = p->pLeft;
146 continue;
148 if( op==TK_COLLATE || (op==TK_REGISTER && p->op2==TK_COLLATE) ){
149 pColl = sqlite3GetCollSeq(pParse, ENC(db), 0, p->u.zToken);
150 break;
152 if( (op==TK_AGG_COLUMN || op==TK_COLUMN
153 || op==TK_REGISTER || op==TK_TRIGGER)
154 && p->pTab!=0
156 /* op==TK_REGISTER && p->pTab!=0 happens when pExpr was originally
157 ** a TK_COLUMN but was previously evaluated and cached in a register */
158 int j = p->iColumn;
159 if( j>=0 ){
160 const char *zColl = p->pTab->aCol[j].zColl;
161 pColl = sqlite3FindCollSeq(db, ENC(db), zColl, 0);
163 break;
165 if( p->flags & EP_Collate ){
166 if( p->pLeft && (p->pLeft->flags & EP_Collate)!=0 ){
167 p = p->pLeft;
168 }else{
169 Expr *pNext = p->pRight;
170 /* The Expr.x union is never used at the same time as Expr.pRight */
171 assert( p->x.pList==0 || p->pRight==0 );
172 /* p->flags holds EP_Collate and p->pLeft->flags does not. And
173 ** p->x.pSelect cannot. So if p->x.pLeft exists, it must hold at
174 ** least one EP_Collate. Thus the following two ALWAYS. */
175 if( p->x.pList!=0 && ALWAYS(!ExprHasProperty(p, EP_xIsSelect)) ){
176 int i;
177 for(i=0; ALWAYS(i<p->x.pList->nExpr); i++){
178 if( ExprHasProperty(p->x.pList->a[i].pExpr, EP_Collate) ){
179 pNext = p->x.pList->a[i].pExpr;
180 break;
184 p = pNext;
186 }else{
187 break;
190 if( sqlite3CheckCollSeq(pParse, pColl) ){
191 pColl = 0;
193 return pColl;
197 ** Return the collation sequence for the expression pExpr. If
198 ** there is no defined collating sequence, return a pointer to the
199 ** defautl collation sequence.
201 ** See also: sqlite3ExprCollSeq()
203 ** The sqlite3ExprCollSeq() routine works the same except that it
204 ** returns NULL if there is no defined collation.
206 CollSeq *sqlite3ExprNNCollSeq(Parse *pParse, Expr *pExpr){
207 CollSeq *p = sqlite3ExprCollSeq(pParse, pExpr);
208 if( p==0 ) p = pParse->db->pDfltColl;
209 assert( p!=0 );
210 return p;
214 ** Return TRUE if the two expressions have equivalent collating sequences.
216 int sqlite3ExprCollSeqMatch(Parse *pParse, Expr *pE1, Expr *pE2){
217 CollSeq *pColl1 = sqlite3ExprNNCollSeq(pParse, pE1);
218 CollSeq *pColl2 = sqlite3ExprNNCollSeq(pParse, pE2);
219 return sqlite3StrICmp(pColl1->zName, pColl2->zName)==0;
223 ** pExpr is an operand of a comparison operator. aff2 is the
224 ** type affinity of the other operand. This routine returns the
225 ** type affinity that should be used for the comparison operator.
227 char sqlite3CompareAffinity(Expr *pExpr, char aff2){
228 char aff1 = sqlite3ExprAffinity(pExpr);
229 if( aff1 && aff2 ){
230 /* Both sides of the comparison are columns. If one has numeric
231 ** affinity, use that. Otherwise use no affinity.
233 if( sqlite3IsNumericAffinity(aff1) || sqlite3IsNumericAffinity(aff2) ){
234 return SQLITE_AFF_NUMERIC;
235 }else{
236 return SQLITE_AFF_BLOB;
238 }else if( !aff1 && !aff2 ){
239 /* Neither side of the comparison is a column. Compare the
240 ** results directly.
242 return SQLITE_AFF_BLOB;
243 }else{
244 /* One side is a column, the other is not. Use the columns affinity. */
245 assert( aff1==0 || aff2==0 );
246 return (aff1 + aff2);
251 ** pExpr is a comparison operator. Return the type affinity that should
252 ** be applied to both operands prior to doing the comparison.
254 static char comparisonAffinity(Expr *pExpr){
255 char aff;
256 assert( pExpr->op==TK_EQ || pExpr->op==TK_IN || pExpr->op==TK_LT ||
257 pExpr->op==TK_GT || pExpr->op==TK_GE || pExpr->op==TK_LE ||
258 pExpr->op==TK_NE || pExpr->op==TK_IS || pExpr->op==TK_ISNOT );
259 assert( pExpr->pLeft );
260 aff = sqlite3ExprAffinity(pExpr->pLeft);
261 if( pExpr->pRight ){
262 aff = sqlite3CompareAffinity(pExpr->pRight, aff);
263 }else if( ExprHasProperty(pExpr, EP_xIsSelect) ){
264 aff = sqlite3CompareAffinity(pExpr->x.pSelect->pEList->a[0].pExpr, aff);
265 }else if( aff==0 ){
266 aff = SQLITE_AFF_BLOB;
268 return aff;
272 ** pExpr is a comparison expression, eg. '=', '<', IN(...) etc.
273 ** idx_affinity is the affinity of an indexed column. Return true
274 ** if the index with affinity idx_affinity may be used to implement
275 ** the comparison in pExpr.
277 int sqlite3IndexAffinityOk(Expr *pExpr, char idx_affinity){
278 char aff = comparisonAffinity(pExpr);
279 switch( aff ){
280 case SQLITE_AFF_BLOB:
281 return 1;
282 case SQLITE_AFF_TEXT:
283 return idx_affinity==SQLITE_AFF_TEXT;
284 default:
285 return sqlite3IsNumericAffinity(idx_affinity);
290 ** Return the P5 value that should be used for a binary comparison
291 ** opcode (OP_Eq, OP_Ge etc.) used to compare pExpr1 and pExpr2.
293 static u8 binaryCompareP5(Expr *pExpr1, Expr *pExpr2, int jumpIfNull){
294 u8 aff = (char)sqlite3ExprAffinity(pExpr2);
295 aff = (u8)sqlite3CompareAffinity(pExpr1, aff) | (u8)jumpIfNull;
296 return aff;
300 ** Return a pointer to the collation sequence that should be used by
301 ** a binary comparison operator comparing pLeft and pRight.
303 ** If the left hand expression has a collating sequence type, then it is
304 ** used. Otherwise the collation sequence for the right hand expression
305 ** is used, or the default (BINARY) if neither expression has a collating
306 ** type.
308 ** Argument pRight (but not pLeft) may be a null pointer. In this case,
309 ** it is not considered.
311 CollSeq *sqlite3BinaryCompareCollSeq(
312 Parse *pParse,
313 Expr *pLeft,
314 Expr *pRight
316 CollSeq *pColl;
317 assert( pLeft );
318 if( pLeft->flags & EP_Collate ){
319 pColl = sqlite3ExprCollSeq(pParse, pLeft);
320 }else if( pRight && (pRight->flags & EP_Collate)!=0 ){
321 pColl = sqlite3ExprCollSeq(pParse, pRight);
322 }else{
323 pColl = sqlite3ExprCollSeq(pParse, pLeft);
324 if( !pColl ){
325 pColl = sqlite3ExprCollSeq(pParse, pRight);
328 return pColl;
332 ** Generate code for a comparison operator.
334 static int codeCompare(
335 Parse *pParse, /* The parsing (and code generating) context */
336 Expr *pLeft, /* The left operand */
337 Expr *pRight, /* The right operand */
338 int opcode, /* The comparison opcode */
339 int in1, int in2, /* Register holding operands */
340 int dest, /* Jump here if true. */
341 int jumpIfNull /* If true, jump if either operand is NULL */
343 int p5;
344 int addr;
345 CollSeq *p4;
347 p4 = sqlite3BinaryCompareCollSeq(pParse, pLeft, pRight);
348 p5 = binaryCompareP5(pLeft, pRight, jumpIfNull);
349 addr = sqlite3VdbeAddOp4(pParse->pVdbe, opcode, in2, dest, in1,
350 (void*)p4, P4_COLLSEQ);
351 sqlite3VdbeChangeP5(pParse->pVdbe, (u8)p5);
352 return addr;
356 ** Return true if expression pExpr is a vector, or false otherwise.
358 ** A vector is defined as any expression that results in two or more
359 ** columns of result. Every TK_VECTOR node is an vector because the
360 ** parser will not generate a TK_VECTOR with fewer than two entries.
361 ** But a TK_SELECT might be either a vector or a scalar. It is only
362 ** considered a vector if it has two or more result columns.
364 int sqlite3ExprIsVector(Expr *pExpr){
365 return sqlite3ExprVectorSize(pExpr)>1;
369 ** If the expression passed as the only argument is of type TK_VECTOR
370 ** return the number of expressions in the vector. Or, if the expression
371 ** is a sub-select, return the number of columns in the sub-select. For
372 ** any other type of expression, return 1.
374 int sqlite3ExprVectorSize(Expr *pExpr){
375 u8 op = pExpr->op;
376 if( op==TK_REGISTER ) op = pExpr->op2;
377 if( op==TK_VECTOR ){
378 return pExpr->x.pList->nExpr;
379 }else if( op==TK_SELECT ){
380 return pExpr->x.pSelect->pEList->nExpr;
381 }else{
382 return 1;
387 ** Return a pointer to a subexpression of pVector that is the i-th
388 ** column of the vector (numbered starting with 0). The caller must
389 ** ensure that i is within range.
391 ** If pVector is really a scalar (and "scalar" here includes subqueries
392 ** that return a single column!) then return pVector unmodified.
394 ** pVector retains ownership of the returned subexpression.
396 ** If the vector is a (SELECT ...) then the expression returned is
397 ** just the expression for the i-th term of the result set, and may
398 ** not be ready for evaluation because the table cursor has not yet
399 ** been positioned.
401 Expr *sqlite3VectorFieldSubexpr(Expr *pVector, int i){
402 assert( i<sqlite3ExprVectorSize(pVector) );
403 if( sqlite3ExprIsVector(pVector) ){
404 assert( pVector->op2==0 || pVector->op==TK_REGISTER );
405 if( pVector->op==TK_SELECT || pVector->op2==TK_SELECT ){
406 return pVector->x.pSelect->pEList->a[i].pExpr;
407 }else{
408 return pVector->x.pList->a[i].pExpr;
411 return pVector;
415 ** Compute and return a new Expr object which when passed to
416 ** sqlite3ExprCode() will generate all necessary code to compute
417 ** the iField-th column of the vector expression pVector.
419 ** It is ok for pVector to be a scalar (as long as iField==0).
420 ** In that case, this routine works like sqlite3ExprDup().
422 ** The caller owns the returned Expr object and is responsible for
423 ** ensuring that the returned value eventually gets freed.
425 ** The caller retains ownership of pVector. If pVector is a TK_SELECT,
426 ** then the returned object will reference pVector and so pVector must remain
427 ** valid for the life of the returned object. If pVector is a TK_VECTOR
428 ** or a scalar expression, then it can be deleted as soon as this routine
429 ** returns.
431 ** A trick to cause a TK_SELECT pVector to be deleted together with
432 ** the returned Expr object is to attach the pVector to the pRight field
433 ** of the returned TK_SELECT_COLUMN Expr object.
435 Expr *sqlite3ExprForVectorField(
436 Parse *pParse, /* Parsing context */
437 Expr *pVector, /* The vector. List of expressions or a sub-SELECT */
438 int iField /* Which column of the vector to return */
440 Expr *pRet;
441 if( pVector->op==TK_SELECT ){
442 assert( pVector->flags & EP_xIsSelect );
443 /* The TK_SELECT_COLUMN Expr node:
445 ** pLeft: pVector containing TK_SELECT. Not deleted.
446 ** pRight: not used. But recursively deleted.
447 ** iColumn: Index of a column in pVector
448 ** iTable: 0 or the number of columns on the LHS of an assignment
449 ** pLeft->iTable: First in an array of register holding result, or 0
450 ** if the result is not yet computed.
452 ** sqlite3ExprDelete() specifically skips the recursive delete of
453 ** pLeft on TK_SELECT_COLUMN nodes. But pRight is followed, so pVector
454 ** can be attached to pRight to cause this node to take ownership of
455 ** pVector. Typically there will be multiple TK_SELECT_COLUMN nodes
456 ** with the same pLeft pointer to the pVector, but only one of them
457 ** will own the pVector.
459 pRet = sqlite3PExpr(pParse, TK_SELECT_COLUMN, 0, 0);
460 if( pRet ){
461 pRet->iColumn = iField;
462 pRet->pLeft = pVector;
464 assert( pRet==0 || pRet->iTable==0 );
465 }else{
466 if( pVector->op==TK_VECTOR ) pVector = pVector->x.pList->a[iField].pExpr;
467 pRet = sqlite3ExprDup(pParse->db, pVector, 0);
469 return pRet;
473 ** If expression pExpr is of type TK_SELECT, generate code to evaluate
474 ** it. Return the register in which the result is stored (or, if the
475 ** sub-select returns more than one column, the first in an array
476 ** of registers in which the result is stored).
478 ** If pExpr is not a TK_SELECT expression, return 0.
480 static int exprCodeSubselect(Parse *pParse, Expr *pExpr){
481 int reg = 0;
482 #ifndef SQLITE_OMIT_SUBQUERY
483 if( pExpr->op==TK_SELECT ){
484 reg = sqlite3CodeSubselect(pParse, pExpr, 0, 0);
486 #endif
487 return reg;
491 ** Argument pVector points to a vector expression - either a TK_VECTOR
492 ** or TK_SELECT that returns more than one column. This function returns
493 ** the register number of a register that contains the value of
494 ** element iField of the vector.
496 ** If pVector is a TK_SELECT expression, then code for it must have
497 ** already been generated using the exprCodeSubselect() routine. In this
498 ** case parameter regSelect should be the first in an array of registers
499 ** containing the results of the sub-select.
501 ** If pVector is of type TK_VECTOR, then code for the requested field
502 ** is generated. In this case (*pRegFree) may be set to the number of
503 ** a temporary register to be freed by the caller before returning.
505 ** Before returning, output parameter (*ppExpr) is set to point to the
506 ** Expr object corresponding to element iElem of the vector.
508 static int exprVectorRegister(
509 Parse *pParse, /* Parse context */
510 Expr *pVector, /* Vector to extract element from */
511 int iField, /* Field to extract from pVector */
512 int regSelect, /* First in array of registers */
513 Expr **ppExpr, /* OUT: Expression element */
514 int *pRegFree /* OUT: Temp register to free */
516 u8 op = pVector->op;
517 assert( op==TK_VECTOR || op==TK_REGISTER || op==TK_SELECT );
518 if( op==TK_REGISTER ){
519 *ppExpr = sqlite3VectorFieldSubexpr(pVector, iField);
520 return pVector->iTable+iField;
522 if( op==TK_SELECT ){
523 *ppExpr = pVector->x.pSelect->pEList->a[iField].pExpr;
524 return regSelect+iField;
526 *ppExpr = pVector->x.pList->a[iField].pExpr;
527 return sqlite3ExprCodeTemp(pParse, *ppExpr, pRegFree);
531 ** Expression pExpr is a comparison between two vector values. Compute
532 ** the result of the comparison (1, 0, or NULL) and write that
533 ** result into register dest.
535 ** The caller must satisfy the following preconditions:
537 ** if pExpr->op==TK_IS: op==TK_EQ and p5==SQLITE_NULLEQ
538 ** if pExpr->op==TK_ISNOT: op==TK_NE and p5==SQLITE_NULLEQ
539 ** otherwise: op==pExpr->op and p5==0
541 static void codeVectorCompare(
542 Parse *pParse, /* Code generator context */
543 Expr *pExpr, /* The comparison operation */
544 int dest, /* Write results into this register */
545 u8 op, /* Comparison operator */
546 u8 p5 /* SQLITE_NULLEQ or zero */
548 Vdbe *v = pParse->pVdbe;
549 Expr *pLeft = pExpr->pLeft;
550 Expr *pRight = pExpr->pRight;
551 int nLeft = sqlite3ExprVectorSize(pLeft);
552 int i;
553 int regLeft = 0;
554 int regRight = 0;
555 u8 opx = op;
556 int addrDone = sqlite3VdbeMakeLabel(v);
558 if( nLeft!=sqlite3ExprVectorSize(pRight) ){
559 sqlite3ErrorMsg(pParse, "row value misused");
560 return;
562 assert( pExpr->op==TK_EQ || pExpr->op==TK_NE
563 || pExpr->op==TK_IS || pExpr->op==TK_ISNOT
564 || pExpr->op==TK_LT || pExpr->op==TK_GT
565 || pExpr->op==TK_LE || pExpr->op==TK_GE
567 assert( pExpr->op==op || (pExpr->op==TK_IS && op==TK_EQ)
568 || (pExpr->op==TK_ISNOT && op==TK_NE) );
569 assert( p5==0 || pExpr->op!=op );
570 assert( p5==SQLITE_NULLEQ || pExpr->op==op );
572 p5 |= SQLITE_STOREP2;
573 if( opx==TK_LE ) opx = TK_LT;
574 if( opx==TK_GE ) opx = TK_GT;
576 regLeft = exprCodeSubselect(pParse, pLeft);
577 regRight = exprCodeSubselect(pParse, pRight);
579 for(i=0; 1 /*Loop exits by "break"*/; i++){
580 int regFree1 = 0, regFree2 = 0;
581 Expr *pL, *pR;
582 int r1, r2;
583 assert( i>=0 && i<nLeft );
584 if( i>0 ) sqlite3ExprCachePush(pParse);
585 r1 = exprVectorRegister(pParse, pLeft, i, regLeft, &pL, &regFree1);
586 r2 = exprVectorRegister(pParse, pRight, i, regRight, &pR, &regFree2);
587 codeCompare(pParse, pL, pR, opx, r1, r2, dest, p5);
588 testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt);
589 testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le);
590 testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt);
591 testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge);
592 testcase(op==OP_Eq); VdbeCoverageIf(v,op==OP_Eq);
593 testcase(op==OP_Ne); VdbeCoverageIf(v,op==OP_Ne);
594 sqlite3ReleaseTempReg(pParse, regFree1);
595 sqlite3ReleaseTempReg(pParse, regFree2);
596 if( i>0 ) sqlite3ExprCachePop(pParse);
597 if( i==nLeft-1 ){
598 break;
600 if( opx==TK_EQ ){
601 sqlite3VdbeAddOp2(v, OP_IfNot, dest, addrDone); VdbeCoverage(v);
602 p5 |= SQLITE_KEEPNULL;
603 }else if( opx==TK_NE ){
604 sqlite3VdbeAddOp2(v, OP_If, dest, addrDone); VdbeCoverage(v);
605 p5 |= SQLITE_KEEPNULL;
606 }else{
607 assert( op==TK_LT || op==TK_GT || op==TK_LE || op==TK_GE );
608 sqlite3VdbeAddOp2(v, OP_ElseNotEq, 0, addrDone);
609 VdbeCoverageIf(v, op==TK_LT);
610 VdbeCoverageIf(v, op==TK_GT);
611 VdbeCoverageIf(v, op==TK_LE);
612 VdbeCoverageIf(v, op==TK_GE);
613 if( i==nLeft-2 ) opx = op;
616 sqlite3VdbeResolveLabel(v, addrDone);
619 #if SQLITE_MAX_EXPR_DEPTH>0
621 ** Check that argument nHeight is less than or equal to the maximum
622 ** expression depth allowed. If it is not, leave an error message in
623 ** pParse.
625 int sqlite3ExprCheckHeight(Parse *pParse, int nHeight){
626 int rc = SQLITE_OK;
627 int mxHeight = pParse->db->aLimit[SQLITE_LIMIT_EXPR_DEPTH];
628 if( nHeight>mxHeight ){
629 sqlite3ErrorMsg(pParse,
630 "Expression tree is too large (maximum depth %d)", mxHeight
632 rc = SQLITE_ERROR;
634 return rc;
637 /* The following three functions, heightOfExpr(), heightOfExprList()
638 ** and heightOfSelect(), are used to determine the maximum height
639 ** of any expression tree referenced by the structure passed as the
640 ** first argument.
642 ** If this maximum height is greater than the current value pointed
643 ** to by pnHeight, the second parameter, then set *pnHeight to that
644 ** value.
646 static void heightOfExpr(Expr *p, int *pnHeight){
647 if( p ){
648 if( p->nHeight>*pnHeight ){
649 *pnHeight = p->nHeight;
653 static void heightOfExprList(ExprList *p, int *pnHeight){
654 if( p ){
655 int i;
656 for(i=0; i<p->nExpr; i++){
657 heightOfExpr(p->a[i].pExpr, pnHeight);
661 static void heightOfSelect(Select *p, int *pnHeight){
662 if( p ){
663 heightOfExpr(p->pWhere, pnHeight);
664 heightOfExpr(p->pHaving, pnHeight);
665 heightOfExpr(p->pLimit, pnHeight);
666 heightOfExpr(p->pOffset, pnHeight);
667 heightOfExprList(p->pEList, pnHeight);
668 heightOfExprList(p->pGroupBy, pnHeight);
669 heightOfExprList(p->pOrderBy, pnHeight);
670 heightOfSelect(p->pPrior, pnHeight);
675 ** Set the Expr.nHeight variable in the structure passed as an
676 ** argument. An expression with no children, Expr.pList or
677 ** Expr.pSelect member has a height of 1. Any other expression
678 ** has a height equal to the maximum height of any other
679 ** referenced Expr plus one.
681 ** Also propagate EP_Propagate flags up from Expr.x.pList to Expr.flags,
682 ** if appropriate.
684 static void exprSetHeight(Expr *p){
685 int nHeight = 0;
686 heightOfExpr(p->pLeft, &nHeight);
687 heightOfExpr(p->pRight, &nHeight);
688 if( ExprHasProperty(p, EP_xIsSelect) ){
689 heightOfSelect(p->x.pSelect, &nHeight);
690 }else if( p->x.pList ){
691 heightOfExprList(p->x.pList, &nHeight);
692 p->flags |= EP_Propagate & sqlite3ExprListFlags(p->x.pList);
694 p->nHeight = nHeight + 1;
698 ** Set the Expr.nHeight variable using the exprSetHeight() function. If
699 ** the height is greater than the maximum allowed expression depth,
700 ** leave an error in pParse.
702 ** Also propagate all EP_Propagate flags from the Expr.x.pList into
703 ** Expr.flags.
705 void sqlite3ExprSetHeightAndFlags(Parse *pParse, Expr *p){
706 if( pParse->nErr ) return;
707 exprSetHeight(p);
708 sqlite3ExprCheckHeight(pParse, p->nHeight);
712 ** Return the maximum height of any expression tree referenced
713 ** by the select statement passed as an argument.
715 int sqlite3SelectExprHeight(Select *p){
716 int nHeight = 0;
717 heightOfSelect(p, &nHeight);
718 return nHeight;
720 #else /* ABOVE: Height enforcement enabled. BELOW: Height enforcement off */
722 ** Propagate all EP_Propagate flags from the Expr.x.pList into
723 ** Expr.flags.
725 void sqlite3ExprSetHeightAndFlags(Parse *pParse, Expr *p){
726 if( p && p->x.pList && !ExprHasProperty(p, EP_xIsSelect) ){
727 p->flags |= EP_Propagate & sqlite3ExprListFlags(p->x.pList);
730 #define exprSetHeight(y)
731 #endif /* SQLITE_MAX_EXPR_DEPTH>0 */
734 ** This routine is the core allocator for Expr nodes.
736 ** Construct a new expression node and return a pointer to it. Memory
737 ** for this node and for the pToken argument is a single allocation
738 ** obtained from sqlite3DbMalloc(). The calling function
739 ** is responsible for making sure the node eventually gets freed.
741 ** If dequote is true, then the token (if it exists) is dequoted.
742 ** If dequote is false, no dequoting is performed. The deQuote
743 ** parameter is ignored if pToken is NULL or if the token does not
744 ** appear to be quoted. If the quotes were of the form "..." (double-quotes)
745 ** then the EP_DblQuoted flag is set on the expression node.
747 ** Special case: If op==TK_INTEGER and pToken points to a string that
748 ** can be translated into a 32-bit integer, then the token is not
749 ** stored in u.zToken. Instead, the integer values is written
750 ** into u.iValue and the EP_IntValue flag is set. No extra storage
751 ** is allocated to hold the integer text and the dequote flag is ignored.
753 Expr *sqlite3ExprAlloc(
754 sqlite3 *db, /* Handle for sqlite3DbMallocRawNN() */
755 int op, /* Expression opcode */
756 const Token *pToken, /* Token argument. Might be NULL */
757 int dequote /* True to dequote */
759 Expr *pNew;
760 int nExtra = 0;
761 int iValue = 0;
763 assert( db!=0 );
764 if( pToken ){
765 if( op!=TK_INTEGER || pToken->z==0
766 || sqlite3GetInt32(pToken->z, &iValue)==0 ){
767 nExtra = pToken->n+1;
768 assert( iValue>=0 );
771 pNew = sqlite3DbMallocRawNN(db, sizeof(Expr)+nExtra);
772 if( pNew ){
773 memset(pNew, 0, sizeof(Expr));
774 pNew->op = (u8)op;
775 pNew->iAgg = -1;
776 if( pToken ){
777 if( nExtra==0 ){
778 pNew->flags |= EP_IntValue|EP_Leaf;
779 pNew->u.iValue = iValue;
780 }else{
781 pNew->u.zToken = (char*)&pNew[1];
782 assert( pToken->z!=0 || pToken->n==0 );
783 if( pToken->n ) memcpy(pNew->u.zToken, pToken->z, pToken->n);
784 pNew->u.zToken[pToken->n] = 0;
785 if( dequote && sqlite3Isquote(pNew->u.zToken[0]) ){
786 if( pNew->u.zToken[0]=='"' ) pNew->flags |= EP_DblQuoted;
787 sqlite3Dequote(pNew->u.zToken);
791 #if SQLITE_MAX_EXPR_DEPTH>0
792 pNew->nHeight = 1;
793 #endif
795 return pNew;
799 ** Allocate a new expression node from a zero-terminated token that has
800 ** already been dequoted.
802 Expr *sqlite3Expr(
803 sqlite3 *db, /* Handle for sqlite3DbMallocZero() (may be null) */
804 int op, /* Expression opcode */
805 const char *zToken /* Token argument. Might be NULL */
807 Token x;
808 x.z = zToken;
809 x.n = sqlite3Strlen30(zToken);
810 return sqlite3ExprAlloc(db, op, &x, 0);
814 ** Attach subtrees pLeft and pRight to the Expr node pRoot.
816 ** If pRoot==NULL that means that a memory allocation error has occurred.
817 ** In that case, delete the subtrees pLeft and pRight.
819 void sqlite3ExprAttachSubtrees(
820 sqlite3 *db,
821 Expr *pRoot,
822 Expr *pLeft,
823 Expr *pRight
825 if( pRoot==0 ){
826 assert( db->mallocFailed );
827 sqlite3ExprDelete(db, pLeft);
828 sqlite3ExprDelete(db, pRight);
829 }else{
830 if( pRight ){
831 pRoot->pRight = pRight;
832 pRoot->flags |= EP_Propagate & pRight->flags;
834 if( pLeft ){
835 pRoot->pLeft = pLeft;
836 pRoot->flags |= EP_Propagate & pLeft->flags;
838 exprSetHeight(pRoot);
843 ** Allocate an Expr node which joins as many as two subtrees.
845 ** One or both of the subtrees can be NULL. Return a pointer to the new
846 ** Expr node. Or, if an OOM error occurs, set pParse->db->mallocFailed,
847 ** free the subtrees and return NULL.
849 Expr *sqlite3PExpr(
850 Parse *pParse, /* Parsing context */
851 int op, /* Expression opcode */
852 Expr *pLeft, /* Left operand */
853 Expr *pRight /* Right operand */
855 Expr *p;
856 if( op==TK_AND && pParse->nErr==0 ){
857 /* Take advantage of short-circuit false optimization for AND */
858 p = sqlite3ExprAnd(pParse->db, pLeft, pRight);
859 }else{
860 p = sqlite3DbMallocRawNN(pParse->db, sizeof(Expr));
861 if( p ){
862 memset(p, 0, sizeof(Expr));
863 p->op = op & TKFLG_MASK;
864 p->iAgg = -1;
866 sqlite3ExprAttachSubtrees(pParse->db, p, pLeft, pRight);
868 if( p ) {
869 sqlite3ExprCheckHeight(pParse, p->nHeight);
871 return p;
875 ** Add pSelect to the Expr.x.pSelect field. Or, if pExpr is NULL (due
876 ** do a memory allocation failure) then delete the pSelect object.
878 void sqlite3PExprAddSelect(Parse *pParse, Expr *pExpr, Select *pSelect){
879 if( pExpr ){
880 pExpr->x.pSelect = pSelect;
881 ExprSetProperty(pExpr, EP_xIsSelect|EP_Subquery);
882 sqlite3ExprSetHeightAndFlags(pParse, pExpr);
883 }else{
884 assert( pParse->db->mallocFailed );
885 sqlite3SelectDelete(pParse->db, pSelect);
891 ** If the expression is always either TRUE or FALSE (respectively),
892 ** then return 1. If one cannot determine the truth value of the
893 ** expression at compile-time return 0.
895 ** This is an optimization. If is OK to return 0 here even if
896 ** the expression really is always false or false (a false negative).
897 ** But it is a bug to return 1 if the expression might have different
898 ** boolean values in different circumstances (a false positive.)
900 ** Note that if the expression is part of conditional for a
901 ** LEFT JOIN, then we cannot determine at compile-time whether or not
902 ** is it true or false, so always return 0.
904 static int exprAlwaysTrue(Expr *p){
905 int v = 0;
906 if( ExprHasProperty(p, EP_FromJoin) ) return 0;
907 if( !sqlite3ExprIsInteger(p, &v) ) return 0;
908 return v!=0;
910 static int exprAlwaysFalse(Expr *p){
911 int v = 0;
912 if( ExprHasProperty(p, EP_FromJoin) ) return 0;
913 if( !sqlite3ExprIsInteger(p, &v) ) return 0;
914 return v==0;
918 ** Join two expressions using an AND operator. If either expression is
919 ** NULL, then just return the other expression.
921 ** If one side or the other of the AND is known to be false, then instead
922 ** of returning an AND expression, just return a constant expression with
923 ** a value of false.
925 Expr *sqlite3ExprAnd(sqlite3 *db, Expr *pLeft, Expr *pRight){
926 if( pLeft==0 ){
927 return pRight;
928 }else if( pRight==0 ){
929 return pLeft;
930 }else if( exprAlwaysFalse(pLeft) || exprAlwaysFalse(pRight) ){
931 sqlite3ExprDelete(db, pLeft);
932 sqlite3ExprDelete(db, pRight);
933 return sqlite3ExprAlloc(db, TK_INTEGER, &sqlite3IntTokens[0], 0);
934 }else{
935 Expr *pNew = sqlite3ExprAlloc(db, TK_AND, 0, 0);
936 sqlite3ExprAttachSubtrees(db, pNew, pLeft, pRight);
937 return pNew;
942 ** Construct a new expression node for a function with multiple
943 ** arguments.
945 Expr *sqlite3ExprFunction(Parse *pParse, ExprList *pList, Token *pToken){
946 Expr *pNew;
947 sqlite3 *db = pParse->db;
948 assert( pToken );
949 pNew = sqlite3ExprAlloc(db, TK_FUNCTION, pToken, 1);
950 if( pNew==0 ){
951 sqlite3ExprListDelete(db, pList); /* Avoid memory leak when malloc fails */
952 return 0;
954 pNew->x.pList = pList;
955 ExprSetProperty(pNew, EP_HasFunc);
956 assert( !ExprHasProperty(pNew, EP_xIsSelect) );
957 sqlite3ExprSetHeightAndFlags(pParse, pNew);
958 return pNew;
962 ** Assign a variable number to an expression that encodes a wildcard
963 ** in the original SQL statement.
965 ** Wildcards consisting of a single "?" are assigned the next sequential
966 ** variable number.
968 ** Wildcards of the form "?nnn" are assigned the number "nnn". We make
969 ** sure "nnn" is not too big to avoid a denial of service attack when
970 ** the SQL statement comes from an external source.
972 ** Wildcards of the form ":aaa", "@aaa", or "$aaa" are assigned the same number
973 ** as the previous instance of the same wildcard. Or if this is the first
974 ** instance of the wildcard, the next sequential variable number is
975 ** assigned.
977 void sqlite3ExprAssignVarNumber(Parse *pParse, Expr *pExpr, u32 n){
978 sqlite3 *db = pParse->db;
979 const char *z;
980 ynVar x;
982 if( pExpr==0 ) return;
983 assert( !ExprHasProperty(pExpr, EP_IntValue|EP_Reduced|EP_TokenOnly) );
984 z = pExpr->u.zToken;
985 assert( z!=0 );
986 assert( z[0]!=0 );
987 assert( n==(u32)sqlite3Strlen30(z) );
988 if( z[1]==0 ){
989 /* Wildcard of the form "?". Assign the next variable number */
990 assert( z[0]=='?' );
991 x = (ynVar)(++pParse->nVar);
992 }else{
993 int doAdd = 0;
994 if( z[0]=='?' ){
995 /* Wildcard of the form "?nnn". Convert "nnn" to an integer and
996 ** use it as the variable number */
997 i64 i;
998 int bOk;
999 if( n==2 ){ /*OPTIMIZATION-IF-TRUE*/
1000 i = z[1]-'0'; /* The common case of ?N for a single digit N */
1001 bOk = 1;
1002 }else{
1003 bOk = 0==sqlite3Atoi64(&z[1], &i, n-1, SQLITE_UTF8);
1005 testcase( i==0 );
1006 testcase( i==1 );
1007 testcase( i==db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER]-1 );
1008 testcase( i==db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] );
1009 if( bOk==0 || i<1 || i>db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ){
1010 sqlite3ErrorMsg(pParse, "variable number must be between ?1 and ?%d",
1011 db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER]);
1012 return;
1014 x = (ynVar)i;
1015 if( x>pParse->nVar ){
1016 pParse->nVar = (int)x;
1017 doAdd = 1;
1018 }else if( sqlite3VListNumToName(pParse->pVList, x)==0 ){
1019 doAdd = 1;
1021 }else{
1022 /* Wildcards like ":aaa", "$aaa" or "@aaa". Reuse the same variable
1023 ** number as the prior appearance of the same name, or if the name
1024 ** has never appeared before, reuse the same variable number
1026 x = (ynVar)sqlite3VListNameToNum(pParse->pVList, z, n);
1027 if( x==0 ){
1028 x = (ynVar)(++pParse->nVar);
1029 doAdd = 1;
1032 if( doAdd ){
1033 pParse->pVList = sqlite3VListAdd(db, pParse->pVList, z, n, x);
1036 pExpr->iColumn = x;
1037 if( x>db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ){
1038 sqlite3ErrorMsg(pParse, "too many SQL variables");
1043 ** Recursively delete an expression tree.
1045 static SQLITE_NOINLINE void sqlite3ExprDeleteNN(sqlite3 *db, Expr *p){
1046 assert( p!=0 );
1047 /* Sanity check: Assert that the IntValue is non-negative if it exists */
1048 assert( !ExprHasProperty(p, EP_IntValue) || p->u.iValue>=0 );
1049 #ifdef SQLITE_DEBUG
1050 if( ExprHasProperty(p, EP_Leaf) && !ExprHasProperty(p, EP_TokenOnly) ){
1051 assert( p->pLeft==0 );
1052 assert( p->pRight==0 );
1053 assert( p->x.pSelect==0 );
1055 #endif
1056 if( !ExprHasProperty(p, (EP_TokenOnly|EP_Leaf)) ){
1057 /* The Expr.x union is never used at the same time as Expr.pRight */
1058 assert( p->x.pList==0 || p->pRight==0 );
1059 if( p->pLeft && p->op!=TK_SELECT_COLUMN ) sqlite3ExprDeleteNN(db, p->pLeft);
1060 if( p->pRight ){
1061 sqlite3ExprDeleteNN(db, p->pRight);
1062 }else if( ExprHasProperty(p, EP_xIsSelect) ){
1063 sqlite3SelectDelete(db, p->x.pSelect);
1064 }else{
1065 sqlite3ExprListDelete(db, p->x.pList);
1068 if( ExprHasProperty(p, EP_MemToken) ) sqlite3DbFree(db, p->u.zToken);
1069 if( !ExprHasProperty(p, EP_Static) ){
1070 sqlite3DbFreeNN(db, p);
1073 void sqlite3ExprDelete(sqlite3 *db, Expr *p){
1074 if( p ) sqlite3ExprDeleteNN(db, p);
1078 ** Return the number of bytes allocated for the expression structure
1079 ** passed as the first argument. This is always one of EXPR_FULLSIZE,
1080 ** EXPR_REDUCEDSIZE or EXPR_TOKENONLYSIZE.
1082 static int exprStructSize(Expr *p){
1083 if( ExprHasProperty(p, EP_TokenOnly) ) return EXPR_TOKENONLYSIZE;
1084 if( ExprHasProperty(p, EP_Reduced) ) return EXPR_REDUCEDSIZE;
1085 return EXPR_FULLSIZE;
1089 ** The dupedExpr*Size() routines each return the number of bytes required
1090 ** to store a copy of an expression or expression tree. They differ in
1091 ** how much of the tree is measured.
1093 ** dupedExprStructSize() Size of only the Expr structure
1094 ** dupedExprNodeSize() Size of Expr + space for token
1095 ** dupedExprSize() Expr + token + subtree components
1097 ***************************************************************************
1099 ** The dupedExprStructSize() function returns two values OR-ed together:
1100 ** (1) the space required for a copy of the Expr structure only and
1101 ** (2) the EP_xxx flags that indicate what the structure size should be.
1102 ** The return values is always one of:
1104 ** EXPR_FULLSIZE
1105 ** EXPR_REDUCEDSIZE | EP_Reduced
1106 ** EXPR_TOKENONLYSIZE | EP_TokenOnly
1108 ** The size of the structure can be found by masking the return value
1109 ** of this routine with 0xfff. The flags can be found by masking the
1110 ** return value with EP_Reduced|EP_TokenOnly.
1112 ** Note that with flags==EXPRDUP_REDUCE, this routines works on full-size
1113 ** (unreduced) Expr objects as they or originally constructed by the parser.
1114 ** During expression analysis, extra information is computed and moved into
1115 ** later parts of teh Expr object and that extra information might get chopped
1116 ** off if the expression is reduced. Note also that it does not work to
1117 ** make an EXPRDUP_REDUCE copy of a reduced expression. It is only legal
1118 ** to reduce a pristine expression tree from the parser. The implementation
1119 ** of dupedExprStructSize() contain multiple assert() statements that attempt
1120 ** to enforce this constraint.
1122 static int dupedExprStructSize(Expr *p, int flags){
1123 int nSize;
1124 assert( flags==EXPRDUP_REDUCE || flags==0 ); /* Only one flag value allowed */
1125 assert( EXPR_FULLSIZE<=0xfff );
1126 assert( (0xfff & (EP_Reduced|EP_TokenOnly))==0 );
1127 if( 0==flags || p->op==TK_SELECT_COLUMN ){
1128 nSize = EXPR_FULLSIZE;
1129 }else{
1130 assert( !ExprHasProperty(p, EP_TokenOnly|EP_Reduced) );
1131 assert( !ExprHasProperty(p, EP_FromJoin) );
1132 assert( !ExprHasProperty(p, EP_MemToken) );
1133 assert( !ExprHasProperty(p, EP_NoReduce) );
1134 if( p->pLeft || p->x.pList ){
1135 nSize = EXPR_REDUCEDSIZE | EP_Reduced;
1136 }else{
1137 assert( p->pRight==0 );
1138 nSize = EXPR_TOKENONLYSIZE | EP_TokenOnly;
1141 return nSize;
1145 ** This function returns the space in bytes required to store the copy
1146 ** of the Expr structure and a copy of the Expr.u.zToken string (if that
1147 ** string is defined.)
1149 static int dupedExprNodeSize(Expr *p, int flags){
1150 int nByte = dupedExprStructSize(p, flags) & 0xfff;
1151 if( !ExprHasProperty(p, EP_IntValue) && p->u.zToken ){
1152 nByte += sqlite3Strlen30(p->u.zToken)+1;
1154 return ROUND8(nByte);
1158 ** Return the number of bytes required to create a duplicate of the
1159 ** expression passed as the first argument. The second argument is a
1160 ** mask containing EXPRDUP_XXX flags.
1162 ** The value returned includes space to create a copy of the Expr struct
1163 ** itself and the buffer referred to by Expr.u.zToken, if any.
1165 ** If the EXPRDUP_REDUCE flag is set, then the return value includes
1166 ** space to duplicate all Expr nodes in the tree formed by Expr.pLeft
1167 ** and Expr.pRight variables (but not for any structures pointed to or
1168 ** descended from the Expr.x.pList or Expr.x.pSelect variables).
1170 static int dupedExprSize(Expr *p, int flags){
1171 int nByte = 0;
1172 if( p ){
1173 nByte = dupedExprNodeSize(p, flags);
1174 if( flags&EXPRDUP_REDUCE ){
1175 nByte += dupedExprSize(p->pLeft, flags) + dupedExprSize(p->pRight, flags);
1178 return nByte;
1182 ** This function is similar to sqlite3ExprDup(), except that if pzBuffer
1183 ** is not NULL then *pzBuffer is assumed to point to a buffer large enough
1184 ** to store the copy of expression p, the copies of p->u.zToken
1185 ** (if applicable), and the copies of the p->pLeft and p->pRight expressions,
1186 ** if any. Before returning, *pzBuffer is set to the first byte past the
1187 ** portion of the buffer copied into by this function.
1189 static Expr *exprDup(sqlite3 *db, Expr *p, int dupFlags, u8 **pzBuffer){
1190 Expr *pNew; /* Value to return */
1191 u8 *zAlloc; /* Memory space from which to build Expr object */
1192 u32 staticFlag; /* EP_Static if space not obtained from malloc */
1194 assert( db!=0 );
1195 assert( p );
1196 assert( dupFlags==0 || dupFlags==EXPRDUP_REDUCE );
1197 assert( pzBuffer==0 || dupFlags==EXPRDUP_REDUCE );
1199 /* Figure out where to write the new Expr structure. */
1200 if( pzBuffer ){
1201 zAlloc = *pzBuffer;
1202 staticFlag = EP_Static;
1203 }else{
1204 zAlloc = sqlite3DbMallocRawNN(db, dupedExprSize(p, dupFlags));
1205 staticFlag = 0;
1207 pNew = (Expr *)zAlloc;
1209 if( pNew ){
1210 /* Set nNewSize to the size allocated for the structure pointed to
1211 ** by pNew. This is either EXPR_FULLSIZE, EXPR_REDUCEDSIZE or
1212 ** EXPR_TOKENONLYSIZE. nToken is set to the number of bytes consumed
1213 ** by the copy of the p->u.zToken string (if any).
1215 const unsigned nStructSize = dupedExprStructSize(p, dupFlags);
1216 const int nNewSize = nStructSize & 0xfff;
1217 int nToken;
1218 if( !ExprHasProperty(p, EP_IntValue) && p->u.zToken ){
1219 nToken = sqlite3Strlen30(p->u.zToken) + 1;
1220 }else{
1221 nToken = 0;
1223 if( dupFlags ){
1224 assert( ExprHasProperty(p, EP_Reduced)==0 );
1225 memcpy(zAlloc, p, nNewSize);
1226 }else{
1227 u32 nSize = (u32)exprStructSize(p);
1228 memcpy(zAlloc, p, nSize);
1229 if( nSize<EXPR_FULLSIZE ){
1230 memset(&zAlloc[nSize], 0, EXPR_FULLSIZE-nSize);
1234 /* Set the EP_Reduced, EP_TokenOnly, and EP_Static flags appropriately. */
1235 pNew->flags &= ~(EP_Reduced|EP_TokenOnly|EP_Static|EP_MemToken);
1236 pNew->flags |= nStructSize & (EP_Reduced|EP_TokenOnly);
1237 pNew->flags |= staticFlag;
1239 /* Copy the p->u.zToken string, if any. */
1240 if( nToken ){
1241 char *zToken = pNew->u.zToken = (char*)&zAlloc[nNewSize];
1242 memcpy(zToken, p->u.zToken, nToken);
1245 if( 0==((p->flags|pNew->flags) & (EP_TokenOnly|EP_Leaf)) ){
1246 /* Fill in the pNew->x.pSelect or pNew->x.pList member. */
1247 if( ExprHasProperty(p, EP_xIsSelect) ){
1248 pNew->x.pSelect = sqlite3SelectDup(db, p->x.pSelect, dupFlags);
1249 }else{
1250 pNew->x.pList = sqlite3ExprListDup(db, p->x.pList, dupFlags);
1254 /* Fill in pNew->pLeft and pNew->pRight. */
1255 if( ExprHasProperty(pNew, EP_Reduced|EP_TokenOnly) ){
1256 zAlloc += dupedExprNodeSize(p, dupFlags);
1257 if( !ExprHasProperty(pNew, EP_TokenOnly|EP_Leaf) ){
1258 pNew->pLeft = p->pLeft ?
1259 exprDup(db, p->pLeft, EXPRDUP_REDUCE, &zAlloc) : 0;
1260 pNew->pRight = p->pRight ?
1261 exprDup(db, p->pRight, EXPRDUP_REDUCE, &zAlloc) : 0;
1263 if( pzBuffer ){
1264 *pzBuffer = zAlloc;
1266 }else{
1267 if( !ExprHasProperty(p, EP_TokenOnly|EP_Leaf) ){
1268 if( pNew->op==TK_SELECT_COLUMN ){
1269 pNew->pLeft = p->pLeft;
1270 assert( p->iColumn==0 || p->pRight==0 );
1271 assert( p->pRight==0 || p->pRight==p->pLeft );
1272 }else{
1273 pNew->pLeft = sqlite3ExprDup(db, p->pLeft, 0);
1275 pNew->pRight = sqlite3ExprDup(db, p->pRight, 0);
1279 return pNew;
1283 ** Create and return a deep copy of the object passed as the second
1284 ** argument. If an OOM condition is encountered, NULL is returned
1285 ** and the db->mallocFailed flag set.
1287 #ifndef SQLITE_OMIT_CTE
1288 static With *withDup(sqlite3 *db, With *p){
1289 With *pRet = 0;
1290 if( p ){
1291 int nByte = sizeof(*p) + sizeof(p->a[0]) * (p->nCte-1);
1292 pRet = sqlite3DbMallocZero(db, nByte);
1293 if( pRet ){
1294 int i;
1295 pRet->nCte = p->nCte;
1296 for(i=0; i<p->nCte; i++){
1297 pRet->a[i].pSelect = sqlite3SelectDup(db, p->a[i].pSelect, 0);
1298 pRet->a[i].pCols = sqlite3ExprListDup(db, p->a[i].pCols, 0);
1299 pRet->a[i].zName = sqlite3DbStrDup(db, p->a[i].zName);
1303 return pRet;
1305 #else
1306 # define withDup(x,y) 0
1307 #endif
1310 ** The following group of routines make deep copies of expressions,
1311 ** expression lists, ID lists, and select statements. The copies can
1312 ** be deleted (by being passed to their respective ...Delete() routines)
1313 ** without effecting the originals.
1315 ** The expression list, ID, and source lists return by sqlite3ExprListDup(),
1316 ** sqlite3IdListDup(), and sqlite3SrcListDup() can not be further expanded
1317 ** by subsequent calls to sqlite*ListAppend() routines.
1319 ** Any tables that the SrcList might point to are not duplicated.
1321 ** The flags parameter contains a combination of the EXPRDUP_XXX flags.
1322 ** If the EXPRDUP_REDUCE flag is set, then the structure returned is a
1323 ** truncated version of the usual Expr structure that will be stored as
1324 ** part of the in-memory representation of the database schema.
1326 Expr *sqlite3ExprDup(sqlite3 *db, Expr *p, int flags){
1327 assert( flags==0 || flags==EXPRDUP_REDUCE );
1328 return p ? exprDup(db, p, flags, 0) : 0;
1330 ExprList *sqlite3ExprListDup(sqlite3 *db, ExprList *p, int flags){
1331 ExprList *pNew;
1332 struct ExprList_item *pItem, *pOldItem;
1333 int i;
1334 Expr *pPriorSelectCol = 0;
1335 assert( db!=0 );
1336 if( p==0 ) return 0;
1337 pNew = sqlite3DbMallocRawNN(db, sqlite3DbMallocSize(db, p));
1338 if( pNew==0 ) return 0;
1339 pNew->nExpr = p->nExpr;
1340 pItem = pNew->a;
1341 pOldItem = p->a;
1342 for(i=0; i<p->nExpr; i++, pItem++, pOldItem++){
1343 Expr *pOldExpr = pOldItem->pExpr;
1344 Expr *pNewExpr;
1345 pItem->pExpr = sqlite3ExprDup(db, pOldExpr, flags);
1346 if( pOldExpr
1347 && pOldExpr->op==TK_SELECT_COLUMN
1348 && (pNewExpr = pItem->pExpr)!=0
1350 assert( pNewExpr->iColumn==0 || i>0 );
1351 if( pNewExpr->iColumn==0 ){
1352 assert( pOldExpr->pLeft==pOldExpr->pRight );
1353 pPriorSelectCol = pNewExpr->pLeft = pNewExpr->pRight;
1354 }else{
1355 assert( i>0 );
1356 assert( pItem[-1].pExpr!=0 );
1357 assert( pNewExpr->iColumn==pItem[-1].pExpr->iColumn+1 );
1358 assert( pPriorSelectCol==pItem[-1].pExpr->pLeft );
1359 pNewExpr->pLeft = pPriorSelectCol;
1362 pItem->zName = sqlite3DbStrDup(db, pOldItem->zName);
1363 pItem->zSpan = sqlite3DbStrDup(db, pOldItem->zSpan);
1364 pItem->sortOrder = pOldItem->sortOrder;
1365 pItem->done = 0;
1366 pItem->bSpanIsTab = pOldItem->bSpanIsTab;
1367 pItem->u = pOldItem->u;
1369 return pNew;
1373 ** If cursors, triggers, views and subqueries are all omitted from
1374 ** the build, then none of the following routines, except for
1375 ** sqlite3SelectDup(), can be called. sqlite3SelectDup() is sometimes
1376 ** called with a NULL argument.
1378 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_TRIGGER) \
1379 || !defined(SQLITE_OMIT_SUBQUERY)
1380 SrcList *sqlite3SrcListDup(sqlite3 *db, SrcList *p, int flags){
1381 SrcList *pNew;
1382 int i;
1383 int nByte;
1384 assert( db!=0 );
1385 if( p==0 ) return 0;
1386 nByte = sizeof(*p) + (p->nSrc>0 ? sizeof(p->a[0]) * (p->nSrc-1) : 0);
1387 pNew = sqlite3DbMallocRawNN(db, nByte );
1388 if( pNew==0 ) return 0;
1389 pNew->nSrc = pNew->nAlloc = p->nSrc;
1390 for(i=0; i<p->nSrc; i++){
1391 struct SrcList_item *pNewItem = &pNew->a[i];
1392 struct SrcList_item *pOldItem = &p->a[i];
1393 Table *pTab;
1394 pNewItem->pSchema = pOldItem->pSchema;
1395 pNewItem->zDatabase = sqlite3DbStrDup(db, pOldItem->zDatabase);
1396 pNewItem->zName = sqlite3DbStrDup(db, pOldItem->zName);
1397 pNewItem->zAlias = sqlite3DbStrDup(db, pOldItem->zAlias);
1398 pNewItem->fg = pOldItem->fg;
1399 pNewItem->iCursor = pOldItem->iCursor;
1400 pNewItem->addrFillSub = pOldItem->addrFillSub;
1401 pNewItem->regReturn = pOldItem->regReturn;
1402 if( pNewItem->fg.isIndexedBy ){
1403 pNewItem->u1.zIndexedBy = sqlite3DbStrDup(db, pOldItem->u1.zIndexedBy);
1405 pNewItem->pIBIndex = pOldItem->pIBIndex;
1406 if( pNewItem->fg.isTabFunc ){
1407 pNewItem->u1.pFuncArg =
1408 sqlite3ExprListDup(db, pOldItem->u1.pFuncArg, flags);
1410 pTab = pNewItem->pTab = pOldItem->pTab;
1411 if( pTab ){
1412 pTab->nTabRef++;
1414 pNewItem->pSelect = sqlite3SelectDup(db, pOldItem->pSelect, flags);
1415 pNewItem->pOn = sqlite3ExprDup(db, pOldItem->pOn, flags);
1416 pNewItem->pUsing = sqlite3IdListDup(db, pOldItem->pUsing);
1417 pNewItem->colUsed = pOldItem->colUsed;
1419 return pNew;
1421 IdList *sqlite3IdListDup(sqlite3 *db, IdList *p){
1422 IdList *pNew;
1423 int i;
1424 assert( db!=0 );
1425 if( p==0 ) return 0;
1426 pNew = sqlite3DbMallocRawNN(db, sizeof(*pNew) );
1427 if( pNew==0 ) return 0;
1428 pNew->nId = p->nId;
1429 pNew->a = sqlite3DbMallocRawNN(db, p->nId*sizeof(p->a[0]) );
1430 if( pNew->a==0 ){
1431 sqlite3DbFreeNN(db, pNew);
1432 return 0;
1434 /* Note that because the size of the allocation for p->a[] is not
1435 ** necessarily a power of two, sqlite3IdListAppend() may not be called
1436 ** on the duplicate created by this function. */
1437 for(i=0; i<p->nId; i++){
1438 struct IdList_item *pNewItem = &pNew->a[i];
1439 struct IdList_item *pOldItem = &p->a[i];
1440 pNewItem->zName = sqlite3DbStrDup(db, pOldItem->zName);
1441 pNewItem->idx = pOldItem->idx;
1443 return pNew;
1445 Select *sqlite3SelectDup(sqlite3 *db, Select *pDup, int flags){
1446 Select *pRet = 0;
1447 Select *pNext = 0;
1448 Select **pp = &pRet;
1449 Select *p;
1451 assert( db!=0 );
1452 for(p=pDup; p; p=p->pPrior){
1453 Select *pNew = sqlite3DbMallocRawNN(db, sizeof(*p) );
1454 if( pNew==0 ) break;
1455 pNew->pEList = sqlite3ExprListDup(db, p->pEList, flags);
1456 pNew->pSrc = sqlite3SrcListDup(db, p->pSrc, flags);
1457 pNew->pWhere = sqlite3ExprDup(db, p->pWhere, flags);
1458 pNew->pGroupBy = sqlite3ExprListDup(db, p->pGroupBy, flags);
1459 pNew->pHaving = sqlite3ExprDup(db, p->pHaving, flags);
1460 pNew->pOrderBy = sqlite3ExprListDup(db, p->pOrderBy, flags);
1461 pNew->op = p->op;
1462 pNew->pNext = pNext;
1463 pNew->pPrior = 0;
1464 pNew->pLimit = sqlite3ExprDup(db, p->pLimit, flags);
1465 pNew->pOffset = sqlite3ExprDup(db, p->pOffset, flags);
1466 pNew->iLimit = 0;
1467 pNew->iOffset = 0;
1468 pNew->selFlags = p->selFlags & ~SF_UsesEphemeral;
1469 pNew->addrOpenEphm[0] = -1;
1470 pNew->addrOpenEphm[1] = -1;
1471 pNew->nSelectRow = p->nSelectRow;
1472 pNew->pWith = withDup(db, p->pWith);
1473 sqlite3SelectSetName(pNew, p->zSelName);
1474 *pp = pNew;
1475 pp = &pNew->pPrior;
1476 pNext = pNew;
1479 return pRet;
1481 #else
1482 Select *sqlite3SelectDup(sqlite3 *db, Select *p, int flags){
1483 assert( p==0 );
1484 return 0;
1486 #endif
1490 ** Add a new element to the end of an expression list. If pList is
1491 ** initially NULL, then create a new expression list.
1493 ** The pList argument must be either NULL or a pointer to an ExprList
1494 ** obtained from a prior call to sqlite3ExprListAppend(). This routine
1495 ** may not be used with an ExprList obtained from sqlite3ExprListDup().
1496 ** Reason: This routine assumes that the number of slots in pList->a[]
1497 ** is a power of two. That is true for sqlite3ExprListAppend() returns
1498 ** but is not necessarily true from the return value of sqlite3ExprListDup().
1500 ** If a memory allocation error occurs, the entire list is freed and
1501 ** NULL is returned. If non-NULL is returned, then it is guaranteed
1502 ** that the new entry was successfully appended.
1504 ExprList *sqlite3ExprListAppend(
1505 Parse *pParse, /* Parsing context */
1506 ExprList *pList, /* List to which to append. Might be NULL */
1507 Expr *pExpr /* Expression to be appended. Might be NULL */
1509 struct ExprList_item *pItem;
1510 sqlite3 *db = pParse->db;
1511 assert( db!=0 );
1512 if( pList==0 ){
1513 pList = sqlite3DbMallocRawNN(db, sizeof(ExprList) );
1514 if( pList==0 ){
1515 goto no_mem;
1517 pList->nExpr = 0;
1518 }else if( (pList->nExpr & (pList->nExpr-1))==0 ){
1519 ExprList *pNew;
1520 pNew = sqlite3DbRealloc(db, pList,
1521 sizeof(*pList)+(2*pList->nExpr - 1)*sizeof(pList->a[0]));
1522 if( pNew==0 ){
1523 goto no_mem;
1525 pList = pNew;
1527 pItem = &pList->a[pList->nExpr++];
1528 assert( offsetof(struct ExprList_item,zName)==sizeof(pItem->pExpr) );
1529 assert( offsetof(struct ExprList_item,pExpr)==0 );
1530 memset(&pItem->zName,0,sizeof(*pItem)-offsetof(struct ExprList_item,zName));
1531 pItem->pExpr = pExpr;
1532 return pList;
1534 no_mem:
1535 /* Avoid leaking memory if malloc has failed. */
1536 sqlite3ExprDelete(db, pExpr);
1537 sqlite3ExprListDelete(db, pList);
1538 return 0;
1542 ** pColumns and pExpr form a vector assignment which is part of the SET
1543 ** clause of an UPDATE statement. Like this:
1545 ** (a,b,c) = (expr1,expr2,expr3)
1546 ** Or: (a,b,c) = (SELECT x,y,z FROM ....)
1548 ** For each term of the vector assignment, append new entries to the
1549 ** expression list pList. In the case of a subquery on the RHS, append
1550 ** TK_SELECT_COLUMN expressions.
1552 ExprList *sqlite3ExprListAppendVector(
1553 Parse *pParse, /* Parsing context */
1554 ExprList *pList, /* List to which to append. Might be NULL */
1555 IdList *pColumns, /* List of names of LHS of the assignment */
1556 Expr *pExpr /* Vector expression to be appended. Might be NULL */
1558 sqlite3 *db = pParse->db;
1559 int n;
1560 int i;
1561 int iFirst = pList ? pList->nExpr : 0;
1562 /* pColumns can only be NULL due to an OOM but an OOM will cause an
1563 ** exit prior to this routine being invoked */
1564 if( NEVER(pColumns==0) ) goto vector_append_error;
1565 if( pExpr==0 ) goto vector_append_error;
1567 /* If the RHS is a vector, then we can immediately check to see that
1568 ** the size of the RHS and LHS match. But if the RHS is a SELECT,
1569 ** wildcards ("*") in the result set of the SELECT must be expanded before
1570 ** we can do the size check, so defer the size check until code generation.
1572 if( pExpr->op!=TK_SELECT && pColumns->nId!=(n=sqlite3ExprVectorSize(pExpr)) ){
1573 sqlite3ErrorMsg(pParse, "%d columns assigned %d values",
1574 pColumns->nId, n);
1575 goto vector_append_error;
1578 for(i=0; i<pColumns->nId; i++){
1579 Expr *pSubExpr = sqlite3ExprForVectorField(pParse, pExpr, i);
1580 pList = sqlite3ExprListAppend(pParse, pList, pSubExpr);
1581 if( pList ){
1582 assert( pList->nExpr==iFirst+i+1 );
1583 pList->a[pList->nExpr-1].zName = pColumns->a[i].zName;
1584 pColumns->a[i].zName = 0;
1588 if( !db->mallocFailed && pExpr->op==TK_SELECT && ALWAYS(pList!=0) ){
1589 Expr *pFirst = pList->a[iFirst].pExpr;
1590 assert( pFirst!=0 );
1591 assert( pFirst->op==TK_SELECT_COLUMN );
1593 /* Store the SELECT statement in pRight so it will be deleted when
1594 ** sqlite3ExprListDelete() is called */
1595 pFirst->pRight = pExpr;
1596 pExpr = 0;
1598 /* Remember the size of the LHS in iTable so that we can check that
1599 ** the RHS and LHS sizes match during code generation. */
1600 pFirst->iTable = pColumns->nId;
1603 vector_append_error:
1604 sqlite3ExprDelete(db, pExpr);
1605 sqlite3IdListDelete(db, pColumns);
1606 return pList;
1610 ** Set the sort order for the last element on the given ExprList.
1612 void sqlite3ExprListSetSortOrder(ExprList *p, int iSortOrder){
1613 if( p==0 ) return;
1614 assert( SQLITE_SO_UNDEFINED<0 && SQLITE_SO_ASC>=0 && SQLITE_SO_DESC>0 );
1615 assert( p->nExpr>0 );
1616 if( iSortOrder<0 ){
1617 assert( p->a[p->nExpr-1].sortOrder==SQLITE_SO_ASC );
1618 return;
1620 p->a[p->nExpr-1].sortOrder = (u8)iSortOrder;
1624 ** Set the ExprList.a[].zName element of the most recently added item
1625 ** on the expression list.
1627 ** pList might be NULL following an OOM error. But pName should never be
1628 ** NULL. If a memory allocation fails, the pParse->db->mallocFailed flag
1629 ** is set.
1631 void sqlite3ExprListSetName(
1632 Parse *pParse, /* Parsing context */
1633 ExprList *pList, /* List to which to add the span. */
1634 Token *pName, /* Name to be added */
1635 int dequote /* True to cause the name to be dequoted */
1637 assert( pList!=0 || pParse->db->mallocFailed!=0 );
1638 if( pList ){
1639 struct ExprList_item *pItem;
1640 assert( pList->nExpr>0 );
1641 pItem = &pList->a[pList->nExpr-1];
1642 assert( pItem->zName==0 );
1643 pItem->zName = sqlite3DbStrNDup(pParse->db, pName->z, pName->n);
1644 if( dequote ) sqlite3Dequote(pItem->zName);
1649 ** Set the ExprList.a[].zSpan element of the most recently added item
1650 ** on the expression list.
1652 ** pList might be NULL following an OOM error. But pSpan should never be
1653 ** NULL. If a memory allocation fails, the pParse->db->mallocFailed flag
1654 ** is set.
1656 void sqlite3ExprListSetSpan(
1657 Parse *pParse, /* Parsing context */
1658 ExprList *pList, /* List to which to add the span. */
1659 ExprSpan *pSpan /* The span to be added */
1661 sqlite3 *db = pParse->db;
1662 assert( pList!=0 || db->mallocFailed!=0 );
1663 if( pList ){
1664 struct ExprList_item *pItem = &pList->a[pList->nExpr-1];
1665 assert( pList->nExpr>0 );
1666 assert( db->mallocFailed || pItem->pExpr==pSpan->pExpr );
1667 sqlite3DbFree(db, pItem->zSpan);
1668 pItem->zSpan = sqlite3DbStrNDup(db, (char*)pSpan->zStart,
1669 (int)(pSpan->zEnd - pSpan->zStart));
1674 ** If the expression list pEList contains more than iLimit elements,
1675 ** leave an error message in pParse.
1677 void sqlite3ExprListCheckLength(
1678 Parse *pParse,
1679 ExprList *pEList,
1680 const char *zObject
1682 int mx = pParse->db->aLimit[SQLITE_LIMIT_COLUMN];
1683 testcase( pEList && pEList->nExpr==mx );
1684 testcase( pEList && pEList->nExpr==mx+1 );
1685 if( pEList && pEList->nExpr>mx ){
1686 sqlite3ErrorMsg(pParse, "too many columns in %s", zObject);
1691 ** Delete an entire expression list.
1693 static SQLITE_NOINLINE void exprListDeleteNN(sqlite3 *db, ExprList *pList){
1694 int i = pList->nExpr;
1695 struct ExprList_item *pItem = pList->a;
1696 assert( pList->nExpr>0 );
1698 sqlite3ExprDelete(db, pItem->pExpr);
1699 sqlite3DbFree(db, pItem->zName);
1700 sqlite3DbFree(db, pItem->zSpan);
1701 pItem++;
1702 }while( --i>0 );
1703 sqlite3DbFreeNN(db, pList);
1705 void sqlite3ExprListDelete(sqlite3 *db, ExprList *pList){
1706 if( pList ) exprListDeleteNN(db, pList);
1710 ** Return the bitwise-OR of all Expr.flags fields in the given
1711 ** ExprList.
1713 u32 sqlite3ExprListFlags(const ExprList *pList){
1714 int i;
1715 u32 m = 0;
1716 assert( pList!=0 );
1717 for(i=0; i<pList->nExpr; i++){
1718 Expr *pExpr = pList->a[i].pExpr;
1719 assert( pExpr!=0 );
1720 m |= pExpr->flags;
1722 return m;
1726 ** This is a SELECT-node callback for the expression walker that
1727 ** always "fails". By "fail" in this case, we mean set
1728 ** pWalker->eCode to zero and abort.
1730 ** This callback is used by multiple expression walkers.
1732 int sqlite3SelectWalkFail(Walker *pWalker, Select *NotUsed){
1733 UNUSED_PARAMETER(NotUsed);
1734 pWalker->eCode = 0;
1735 return WRC_Abort;
1739 ** These routines are Walker callbacks used to check expressions to
1740 ** see if they are "constant" for some definition of constant. The
1741 ** Walker.eCode value determines the type of "constant" we are looking
1742 ** for.
1744 ** These callback routines are used to implement the following:
1746 ** sqlite3ExprIsConstant() pWalker->eCode==1
1747 ** sqlite3ExprIsConstantNotJoin() pWalker->eCode==2
1748 ** sqlite3ExprIsTableConstant() pWalker->eCode==3
1749 ** sqlite3ExprIsConstantOrFunction() pWalker->eCode==4 or 5
1751 ** In all cases, the callbacks set Walker.eCode=0 and abort if the expression
1752 ** is found to not be a constant.
1754 ** The sqlite3ExprIsConstantOrFunction() is used for evaluating expressions
1755 ** in a CREATE TABLE statement. The Walker.eCode value is 5 when parsing
1756 ** an existing schema and 4 when processing a new statement. A bound
1757 ** parameter raises an error for new statements, but is silently converted
1758 ** to NULL for existing schemas. This allows sqlite_master tables that
1759 ** contain a bound parameter because they were generated by older versions
1760 ** of SQLite to be parsed by newer versions of SQLite without raising a
1761 ** malformed schema error.
1763 static int exprNodeIsConstant(Walker *pWalker, Expr *pExpr){
1765 /* If pWalker->eCode is 2 then any term of the expression that comes from
1766 ** the ON or USING clauses of a left join disqualifies the expression
1767 ** from being considered constant. */
1768 if( pWalker->eCode==2 && ExprHasProperty(pExpr, EP_FromJoin) ){
1769 pWalker->eCode = 0;
1770 return WRC_Abort;
1773 switch( pExpr->op ){
1774 /* Consider functions to be constant if all their arguments are constant
1775 ** and either pWalker->eCode==4 or 5 or the function has the
1776 ** SQLITE_FUNC_CONST flag. */
1777 case TK_FUNCTION:
1778 if( pWalker->eCode>=4 || ExprHasProperty(pExpr,EP_ConstFunc) ){
1779 return WRC_Continue;
1780 }else{
1781 pWalker->eCode = 0;
1782 return WRC_Abort;
1784 case TK_ID:
1785 case TK_COLUMN:
1786 case TK_AGG_FUNCTION:
1787 case TK_AGG_COLUMN:
1788 testcase( pExpr->op==TK_ID );
1789 testcase( pExpr->op==TK_COLUMN );
1790 testcase( pExpr->op==TK_AGG_FUNCTION );
1791 testcase( pExpr->op==TK_AGG_COLUMN );
1792 if( pWalker->eCode==3 && pExpr->iTable==pWalker->u.iCur ){
1793 return WRC_Continue;
1795 /* Fall through */
1796 case TK_IF_NULL_ROW:
1797 testcase( pExpr->op==TK_IF_NULL_ROW );
1798 pWalker->eCode = 0;
1799 return WRC_Abort;
1800 case TK_VARIABLE:
1801 if( pWalker->eCode==5 ){
1802 /* Silently convert bound parameters that appear inside of CREATE
1803 ** statements into a NULL when parsing the CREATE statement text out
1804 ** of the sqlite_master table */
1805 pExpr->op = TK_NULL;
1806 }else if( pWalker->eCode==4 ){
1807 /* A bound parameter in a CREATE statement that originates from
1808 ** sqlite3_prepare() causes an error */
1809 pWalker->eCode = 0;
1810 return WRC_Abort;
1812 /* Fall through */
1813 default:
1814 testcase( pExpr->op==TK_SELECT ); /* sqlite3SelectWalkFail will disallow */
1815 testcase( pExpr->op==TK_EXISTS ); /* sqlite3SelectWalkFail will disallow */
1816 return WRC_Continue;
1819 static int exprIsConst(Expr *p, int initFlag, int iCur){
1820 Walker w;
1821 w.eCode = initFlag;
1822 w.xExprCallback = exprNodeIsConstant;
1823 w.xSelectCallback = sqlite3SelectWalkFail;
1824 #ifdef SQLITE_DEBUG
1825 w.xSelectCallback2 = sqlite3SelectWalkAssert2;
1826 #endif
1827 w.u.iCur = iCur;
1828 sqlite3WalkExpr(&w, p);
1829 return w.eCode;
1833 ** Walk an expression tree. Return non-zero if the expression is constant
1834 ** and 0 if it involves variables or function calls.
1836 ** For the purposes of this function, a double-quoted string (ex: "abc")
1837 ** is considered a variable but a single-quoted string (ex: 'abc') is
1838 ** a constant.
1840 int sqlite3ExprIsConstant(Expr *p){
1841 return exprIsConst(p, 1, 0);
1845 ** Walk an expression tree. Return non-zero if the expression is constant
1846 ** that does no originate from the ON or USING clauses of a join.
1847 ** Return 0 if it involves variables or function calls or terms from
1848 ** an ON or USING clause.
1850 int sqlite3ExprIsConstantNotJoin(Expr *p){
1851 return exprIsConst(p, 2, 0);
1855 ** Walk an expression tree. Return non-zero if the expression is constant
1856 ** for any single row of the table with cursor iCur. In other words, the
1857 ** expression must not refer to any non-deterministic function nor any
1858 ** table other than iCur.
1860 int sqlite3ExprIsTableConstant(Expr *p, int iCur){
1861 return exprIsConst(p, 3, iCur);
1866 ** sqlite3WalkExpr() callback used by sqlite3ExprIsConstantOrGroupBy().
1868 static int exprNodeIsConstantOrGroupBy(Walker *pWalker, Expr *pExpr){
1869 ExprList *pGroupBy = pWalker->u.pGroupBy;
1870 int i;
1872 /* Check if pExpr is identical to any GROUP BY term. If so, consider
1873 ** it constant. */
1874 for(i=0; i<pGroupBy->nExpr; i++){
1875 Expr *p = pGroupBy->a[i].pExpr;
1876 if( sqlite3ExprCompare(0, pExpr, p, -1)<2 ){
1877 CollSeq *pColl = sqlite3ExprNNCollSeq(pWalker->pParse, p);
1878 if( sqlite3_stricmp("BINARY", pColl->zName)==0 ){
1879 return WRC_Prune;
1884 /* Check if pExpr is a sub-select. If so, consider it variable. */
1885 if( ExprHasProperty(pExpr, EP_xIsSelect) ){
1886 pWalker->eCode = 0;
1887 return WRC_Abort;
1890 return exprNodeIsConstant(pWalker, pExpr);
1894 ** Walk the expression tree passed as the first argument. Return non-zero
1895 ** if the expression consists entirely of constants or copies of terms
1896 ** in pGroupBy that sort with the BINARY collation sequence.
1898 ** This routine is used to determine if a term of the HAVING clause can
1899 ** be promoted into the WHERE clause. In order for such a promotion to work,
1900 ** the value of the HAVING clause term must be the same for all members of
1901 ** a "group". The requirement that the GROUP BY term must be BINARY
1902 ** assumes that no other collating sequence will have a finer-grained
1903 ** grouping than binary. In other words (A=B COLLATE binary) implies
1904 ** A=B in every other collating sequence. The requirement that the
1905 ** GROUP BY be BINARY is stricter than necessary. It would also work
1906 ** to promote HAVING clauses that use the same alternative collating
1907 ** sequence as the GROUP BY term, but that is much harder to check,
1908 ** alternative collating sequences are uncommon, and this is only an
1909 ** optimization, so we take the easy way out and simply require the
1910 ** GROUP BY to use the BINARY collating sequence.
1912 int sqlite3ExprIsConstantOrGroupBy(Parse *pParse, Expr *p, ExprList *pGroupBy){
1913 Walker w;
1914 w.eCode = 1;
1915 w.xExprCallback = exprNodeIsConstantOrGroupBy;
1916 w.xSelectCallback = 0;
1917 w.u.pGroupBy = pGroupBy;
1918 w.pParse = pParse;
1919 sqlite3WalkExpr(&w, p);
1920 return w.eCode;
1924 ** Walk an expression tree. Return non-zero if the expression is constant
1925 ** or a function call with constant arguments. Return and 0 if there
1926 ** are any variables.
1928 ** For the purposes of this function, a double-quoted string (ex: "abc")
1929 ** is considered a variable but a single-quoted string (ex: 'abc') is
1930 ** a constant.
1932 int sqlite3ExprIsConstantOrFunction(Expr *p, u8 isInit){
1933 assert( isInit==0 || isInit==1 );
1934 return exprIsConst(p, 4+isInit, 0);
1937 #ifdef SQLITE_ENABLE_CURSOR_HINTS
1939 ** Walk an expression tree. Return 1 if the expression contains a
1940 ** subquery of some kind. Return 0 if there are no subqueries.
1942 int sqlite3ExprContainsSubquery(Expr *p){
1943 Walker w;
1944 w.eCode = 1;
1945 w.xExprCallback = sqlite3ExprWalkNoop;
1946 w.xSelectCallback = sqlite3SelectWalkFail;
1947 #ifdef SQLITE_DEBUG
1948 w.xSelectCallback2 = sqlite3SelectWalkAssert2;
1949 #endif
1950 sqlite3WalkExpr(&w, p);
1951 return w.eCode==0;
1953 #endif
1956 ** If the expression p codes a constant integer that is small enough
1957 ** to fit in a 32-bit integer, return 1 and put the value of the integer
1958 ** in *pValue. If the expression is not an integer or if it is too big
1959 ** to fit in a signed 32-bit integer, return 0 and leave *pValue unchanged.
1961 int sqlite3ExprIsInteger(Expr *p, int *pValue){
1962 int rc = 0;
1963 if( p==0 ) return 0; /* Can only happen following on OOM */
1965 /* If an expression is an integer literal that fits in a signed 32-bit
1966 ** integer, then the EP_IntValue flag will have already been set */
1967 assert( p->op!=TK_INTEGER || (p->flags & EP_IntValue)!=0
1968 || sqlite3GetInt32(p->u.zToken, &rc)==0 );
1970 if( p->flags & EP_IntValue ){
1971 *pValue = p->u.iValue;
1972 return 1;
1974 switch( p->op ){
1975 case TK_UPLUS: {
1976 rc = sqlite3ExprIsInteger(p->pLeft, pValue);
1977 break;
1979 case TK_UMINUS: {
1980 int v;
1981 if( sqlite3ExprIsInteger(p->pLeft, &v) ){
1982 assert( v!=(-2147483647-1) );
1983 *pValue = -v;
1984 rc = 1;
1986 break;
1988 default: break;
1990 return rc;
1994 ** Return FALSE if there is no chance that the expression can be NULL.
1996 ** If the expression might be NULL or if the expression is too complex
1997 ** to tell return TRUE.
1999 ** This routine is used as an optimization, to skip OP_IsNull opcodes
2000 ** when we know that a value cannot be NULL. Hence, a false positive
2001 ** (returning TRUE when in fact the expression can never be NULL) might
2002 ** be a small performance hit but is otherwise harmless. On the other
2003 ** hand, a false negative (returning FALSE when the result could be NULL)
2004 ** will likely result in an incorrect answer. So when in doubt, return
2005 ** TRUE.
2007 int sqlite3ExprCanBeNull(const Expr *p){
2008 u8 op;
2009 while( p->op==TK_UPLUS || p->op==TK_UMINUS ){ p = p->pLeft; }
2010 op = p->op;
2011 if( op==TK_REGISTER ) op = p->op2;
2012 switch( op ){
2013 case TK_INTEGER:
2014 case TK_STRING:
2015 case TK_FLOAT:
2016 case TK_BLOB:
2017 return 0;
2018 case TK_COLUMN:
2019 return ExprHasProperty(p, EP_CanBeNull) ||
2020 p->pTab==0 || /* Reference to column of index on expression */
2021 (p->iColumn>=0 && p->pTab->aCol[p->iColumn].notNull==0);
2022 default:
2023 return 1;
2028 ** Return TRUE if the given expression is a constant which would be
2029 ** unchanged by OP_Affinity with the affinity given in the second
2030 ** argument.
2032 ** This routine is used to determine if the OP_Affinity operation
2033 ** can be omitted. When in doubt return FALSE. A false negative
2034 ** is harmless. A false positive, however, can result in the wrong
2035 ** answer.
2037 int sqlite3ExprNeedsNoAffinityChange(const Expr *p, char aff){
2038 u8 op;
2039 if( aff==SQLITE_AFF_BLOB ) return 1;
2040 while( p->op==TK_UPLUS || p->op==TK_UMINUS ){ p = p->pLeft; }
2041 op = p->op;
2042 if( op==TK_REGISTER ) op = p->op2;
2043 switch( op ){
2044 case TK_INTEGER: {
2045 return aff==SQLITE_AFF_INTEGER || aff==SQLITE_AFF_NUMERIC;
2047 case TK_FLOAT: {
2048 return aff==SQLITE_AFF_REAL || aff==SQLITE_AFF_NUMERIC;
2050 case TK_STRING: {
2051 return aff==SQLITE_AFF_TEXT;
2053 case TK_BLOB: {
2054 return 1;
2056 case TK_COLUMN: {
2057 assert( p->iTable>=0 ); /* p cannot be part of a CHECK constraint */
2058 return p->iColumn<0
2059 && (aff==SQLITE_AFF_INTEGER || aff==SQLITE_AFF_NUMERIC);
2061 default: {
2062 return 0;
2068 ** Return TRUE if the given string is a row-id column name.
2070 int sqlite3IsRowid(const char *z){
2071 if( sqlite3StrICmp(z, "_ROWID_")==0 ) return 1;
2072 if( sqlite3StrICmp(z, "ROWID")==0 ) return 1;
2073 if( sqlite3StrICmp(z, "OID")==0 ) return 1;
2074 return 0;
2078 ** pX is the RHS of an IN operator. If pX is a SELECT statement
2079 ** that can be simplified to a direct table access, then return
2080 ** a pointer to the SELECT statement. If pX is not a SELECT statement,
2081 ** or if the SELECT statement needs to be manifested into a transient
2082 ** table, then return NULL.
2084 #ifndef SQLITE_OMIT_SUBQUERY
2085 static Select *isCandidateForInOpt(Expr *pX){
2086 Select *p;
2087 SrcList *pSrc;
2088 ExprList *pEList;
2089 Table *pTab;
2090 int i;
2091 if( !ExprHasProperty(pX, EP_xIsSelect) ) return 0; /* Not a subquery */
2092 if( ExprHasProperty(pX, EP_VarSelect) ) return 0; /* Correlated subq */
2093 p = pX->x.pSelect;
2094 if( p->pPrior ) return 0; /* Not a compound SELECT */
2095 if( p->selFlags & (SF_Distinct|SF_Aggregate) ){
2096 testcase( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct );
2097 testcase( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Aggregate );
2098 return 0; /* No DISTINCT keyword and no aggregate functions */
2100 assert( p->pGroupBy==0 ); /* Has no GROUP BY clause */
2101 if( p->pLimit ) return 0; /* Has no LIMIT clause */
2102 assert( p->pOffset==0 ); /* No LIMIT means no OFFSET */
2103 if( p->pWhere ) return 0; /* Has no WHERE clause */
2104 pSrc = p->pSrc;
2105 assert( pSrc!=0 );
2106 if( pSrc->nSrc!=1 ) return 0; /* Single term in FROM clause */
2107 if( pSrc->a[0].pSelect ) return 0; /* FROM is not a subquery or view */
2108 pTab = pSrc->a[0].pTab;
2109 assert( pTab!=0 );
2110 assert( pTab->pSelect==0 ); /* FROM clause is not a view */
2111 if( IsVirtual(pTab) ) return 0; /* FROM clause not a virtual table */
2112 pEList = p->pEList;
2113 assert( pEList!=0 );
2114 /* All SELECT results must be columns. */
2115 for(i=0; i<pEList->nExpr; i++){
2116 Expr *pRes = pEList->a[i].pExpr;
2117 if( pRes->op!=TK_COLUMN ) return 0;
2118 assert( pRes->iTable==pSrc->a[0].iCursor ); /* Not a correlated subquery */
2120 return p;
2122 #endif /* SQLITE_OMIT_SUBQUERY */
2124 #ifndef SQLITE_OMIT_SUBQUERY
2126 ** Generate code that checks the left-most column of index table iCur to see if
2127 ** it contains any NULL entries. Cause the register at regHasNull to be set
2128 ** to a non-NULL value if iCur contains no NULLs. Cause register regHasNull
2129 ** to be set to NULL if iCur contains one or more NULL values.
2131 static void sqlite3SetHasNullFlag(Vdbe *v, int iCur, int regHasNull){
2132 int addr1;
2133 sqlite3VdbeAddOp2(v, OP_Integer, 0, regHasNull);
2134 addr1 = sqlite3VdbeAddOp1(v, OP_Rewind, iCur); VdbeCoverage(v);
2135 sqlite3VdbeAddOp3(v, OP_Column, iCur, 0, regHasNull);
2136 sqlite3VdbeChangeP5(v, OPFLAG_TYPEOFARG);
2137 VdbeComment((v, "first_entry_in(%d)", iCur));
2138 sqlite3VdbeJumpHere(v, addr1);
2140 #endif
2143 #ifndef SQLITE_OMIT_SUBQUERY
2145 ** The argument is an IN operator with a list (not a subquery) on the
2146 ** right-hand side. Return TRUE if that list is constant.
2148 static int sqlite3InRhsIsConstant(Expr *pIn){
2149 Expr *pLHS;
2150 int res;
2151 assert( !ExprHasProperty(pIn, EP_xIsSelect) );
2152 pLHS = pIn->pLeft;
2153 pIn->pLeft = 0;
2154 res = sqlite3ExprIsConstant(pIn);
2155 pIn->pLeft = pLHS;
2156 return res;
2158 #endif
2161 ** This function is used by the implementation of the IN (...) operator.
2162 ** The pX parameter is the expression on the RHS of the IN operator, which
2163 ** might be either a list of expressions or a subquery.
2165 ** The job of this routine is to find or create a b-tree object that can
2166 ** be used either to test for membership in the RHS set or to iterate through
2167 ** all members of the RHS set, skipping duplicates.
2169 ** A cursor is opened on the b-tree object that is the RHS of the IN operator
2170 ** and pX->iTable is set to the index of that cursor.
2172 ** The returned value of this function indicates the b-tree type, as follows:
2174 ** IN_INDEX_ROWID - The cursor was opened on a database table.
2175 ** IN_INDEX_INDEX_ASC - The cursor was opened on an ascending index.
2176 ** IN_INDEX_INDEX_DESC - The cursor was opened on a descending index.
2177 ** IN_INDEX_EPH - The cursor was opened on a specially created and
2178 ** populated epheremal table.
2179 ** IN_INDEX_NOOP - No cursor was allocated. The IN operator must be
2180 ** implemented as a sequence of comparisons.
2182 ** An existing b-tree might be used if the RHS expression pX is a simple
2183 ** subquery such as:
2185 ** SELECT <column1>, <column2>... FROM <table>
2187 ** If the RHS of the IN operator is a list or a more complex subquery, then
2188 ** an ephemeral table might need to be generated from the RHS and then
2189 ** pX->iTable made to point to the ephemeral table instead of an
2190 ** existing table.
2192 ** The inFlags parameter must contain exactly one of the bits
2193 ** IN_INDEX_MEMBERSHIP or IN_INDEX_LOOP. If inFlags contains
2194 ** IN_INDEX_MEMBERSHIP, then the generated table will be used for a
2195 ** fast membership test. When the IN_INDEX_LOOP bit is set, the
2196 ** IN index will be used to loop over all values of the RHS of the
2197 ** IN operator.
2199 ** When IN_INDEX_LOOP is used (and the b-tree will be used to iterate
2200 ** through the set members) then the b-tree must not contain duplicates.
2201 ** An epheremal table must be used unless the selected columns are guaranteed
2202 ** to be unique - either because it is an INTEGER PRIMARY KEY or due to
2203 ** a UNIQUE constraint or index.
2205 ** When IN_INDEX_MEMBERSHIP is used (and the b-tree will be used
2206 ** for fast set membership tests) then an epheremal table must
2207 ** be used unless <columns> is a single INTEGER PRIMARY KEY column or an
2208 ** index can be found with the specified <columns> as its left-most.
2210 ** If the IN_INDEX_NOOP_OK and IN_INDEX_MEMBERSHIP are both set and
2211 ** if the RHS of the IN operator is a list (not a subquery) then this
2212 ** routine might decide that creating an ephemeral b-tree for membership
2213 ** testing is too expensive and return IN_INDEX_NOOP. In that case, the
2214 ** calling routine should implement the IN operator using a sequence
2215 ** of Eq or Ne comparison operations.
2217 ** When the b-tree is being used for membership tests, the calling function
2218 ** might need to know whether or not the RHS side of the IN operator
2219 ** contains a NULL. If prRhsHasNull is not a NULL pointer and
2220 ** if there is any chance that the (...) might contain a NULL value at
2221 ** runtime, then a register is allocated and the register number written
2222 ** to *prRhsHasNull. If there is no chance that the (...) contains a
2223 ** NULL value, then *prRhsHasNull is left unchanged.
2225 ** If a register is allocated and its location stored in *prRhsHasNull, then
2226 ** the value in that register will be NULL if the b-tree contains one or more
2227 ** NULL values, and it will be some non-NULL value if the b-tree contains no
2228 ** NULL values.
2230 ** If the aiMap parameter is not NULL, it must point to an array containing
2231 ** one element for each column returned by the SELECT statement on the RHS
2232 ** of the IN(...) operator. The i'th entry of the array is populated with the
2233 ** offset of the index column that matches the i'th column returned by the
2234 ** SELECT. For example, if the expression and selected index are:
2236 ** (?,?,?) IN (SELECT a, b, c FROM t1)
2237 ** CREATE INDEX i1 ON t1(b, c, a);
2239 ** then aiMap[] is populated with {2, 0, 1}.
2241 #ifndef SQLITE_OMIT_SUBQUERY
2242 int sqlite3FindInIndex(
2243 Parse *pParse, /* Parsing context */
2244 Expr *pX, /* The right-hand side (RHS) of the IN operator */
2245 u32 inFlags, /* IN_INDEX_LOOP, _MEMBERSHIP, and/or _NOOP_OK */
2246 int *prRhsHasNull, /* Register holding NULL status. See notes */
2247 int *aiMap /* Mapping from Index fields to RHS fields */
2249 Select *p; /* SELECT to the right of IN operator */
2250 int eType = 0; /* Type of RHS table. IN_INDEX_* */
2251 int iTab = pParse->nTab++; /* Cursor of the RHS table */
2252 int mustBeUnique; /* True if RHS must be unique */
2253 Vdbe *v = sqlite3GetVdbe(pParse); /* Virtual machine being coded */
2255 assert( pX->op==TK_IN );
2256 mustBeUnique = (inFlags & IN_INDEX_LOOP)!=0;
2258 /* If the RHS of this IN(...) operator is a SELECT, and if it matters
2259 ** whether or not the SELECT result contains NULL values, check whether
2260 ** or not NULL is actually possible (it may not be, for example, due
2261 ** to NOT NULL constraints in the schema). If no NULL values are possible,
2262 ** set prRhsHasNull to 0 before continuing. */
2263 if( prRhsHasNull && (pX->flags & EP_xIsSelect) ){
2264 int i;
2265 ExprList *pEList = pX->x.pSelect->pEList;
2266 for(i=0; i<pEList->nExpr; i++){
2267 if( sqlite3ExprCanBeNull(pEList->a[i].pExpr) ) break;
2269 if( i==pEList->nExpr ){
2270 prRhsHasNull = 0;
2274 /* Check to see if an existing table or index can be used to
2275 ** satisfy the query. This is preferable to generating a new
2276 ** ephemeral table. */
2277 if( pParse->nErr==0 && (p = isCandidateForInOpt(pX))!=0 ){
2278 sqlite3 *db = pParse->db; /* Database connection */
2279 Table *pTab; /* Table <table>. */
2280 i16 iDb; /* Database idx for pTab */
2281 ExprList *pEList = p->pEList;
2282 int nExpr = pEList->nExpr;
2284 assert( p->pEList!=0 ); /* Because of isCandidateForInOpt(p) */
2285 assert( p->pEList->a[0].pExpr!=0 ); /* Because of isCandidateForInOpt(p) */
2286 assert( p->pSrc!=0 ); /* Because of isCandidateForInOpt(p) */
2287 pTab = p->pSrc->a[0].pTab;
2289 /* Code an OP_Transaction and OP_TableLock for <table>. */
2290 iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
2291 sqlite3CodeVerifySchema(pParse, iDb);
2292 sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName);
2294 assert(v); /* sqlite3GetVdbe() has always been previously called */
2295 if( nExpr==1 && pEList->a[0].pExpr->iColumn<0 ){
2296 /* The "x IN (SELECT rowid FROM table)" case */
2297 int iAddr = sqlite3VdbeAddOp0(v, OP_Once);
2298 VdbeCoverage(v);
2300 sqlite3OpenTable(pParse, iTab, iDb, pTab, OP_OpenRead);
2301 eType = IN_INDEX_ROWID;
2303 sqlite3VdbeJumpHere(v, iAddr);
2304 }else{
2305 Index *pIdx; /* Iterator variable */
2306 int affinity_ok = 1;
2307 int i;
2309 /* Check that the affinity that will be used to perform each
2310 ** comparison is the same as the affinity of each column in table
2311 ** on the RHS of the IN operator. If it not, it is not possible to
2312 ** use any index of the RHS table. */
2313 for(i=0; i<nExpr && affinity_ok; i++){
2314 Expr *pLhs = sqlite3VectorFieldSubexpr(pX->pLeft, i);
2315 int iCol = pEList->a[i].pExpr->iColumn;
2316 char idxaff = sqlite3TableColumnAffinity(pTab,iCol); /* RHS table */
2317 char cmpaff = sqlite3CompareAffinity(pLhs, idxaff);
2318 testcase( cmpaff==SQLITE_AFF_BLOB );
2319 testcase( cmpaff==SQLITE_AFF_TEXT );
2320 switch( cmpaff ){
2321 case SQLITE_AFF_BLOB:
2322 break;
2323 case SQLITE_AFF_TEXT:
2324 /* sqlite3CompareAffinity() only returns TEXT if one side or the
2325 ** other has no affinity and the other side is TEXT. Hence,
2326 ** the only way for cmpaff to be TEXT is for idxaff to be TEXT
2327 ** and for the term on the LHS of the IN to have no affinity. */
2328 assert( idxaff==SQLITE_AFF_TEXT );
2329 break;
2330 default:
2331 affinity_ok = sqlite3IsNumericAffinity(idxaff);
2335 if( affinity_ok ){
2336 /* Search for an existing index that will work for this IN operator */
2337 for(pIdx=pTab->pIndex; pIdx && eType==0; pIdx=pIdx->pNext){
2338 Bitmask colUsed; /* Columns of the index used */
2339 Bitmask mCol; /* Mask for the current column */
2340 if( pIdx->nColumn<nExpr ) continue;
2341 /* Maximum nColumn is BMS-2, not BMS-1, so that we can compute
2342 ** BITMASK(nExpr) without overflowing */
2343 testcase( pIdx->nColumn==BMS-2 );
2344 testcase( pIdx->nColumn==BMS-1 );
2345 if( pIdx->nColumn>=BMS-1 ) continue;
2346 if( mustBeUnique ){
2347 if( pIdx->nKeyCol>nExpr
2348 ||(pIdx->nColumn>nExpr && !IsUniqueIndex(pIdx))
2350 continue; /* This index is not unique over the IN RHS columns */
2354 colUsed = 0; /* Columns of index used so far */
2355 for(i=0; i<nExpr; i++){
2356 Expr *pLhs = sqlite3VectorFieldSubexpr(pX->pLeft, i);
2357 Expr *pRhs = pEList->a[i].pExpr;
2358 CollSeq *pReq = sqlite3BinaryCompareCollSeq(pParse, pLhs, pRhs);
2359 int j;
2361 assert( pReq!=0 || pRhs->iColumn==XN_ROWID || pParse->nErr );
2362 for(j=0; j<nExpr; j++){
2363 if( pIdx->aiColumn[j]!=pRhs->iColumn ) continue;
2364 assert( pIdx->azColl[j] );
2365 if( pReq!=0 && sqlite3StrICmp(pReq->zName, pIdx->azColl[j])!=0 ){
2366 continue;
2368 break;
2370 if( j==nExpr ) break;
2371 mCol = MASKBIT(j);
2372 if( mCol & colUsed ) break; /* Each column used only once */
2373 colUsed |= mCol;
2374 if( aiMap ) aiMap[i] = j;
2377 assert( i==nExpr || colUsed!=(MASKBIT(nExpr)-1) );
2378 if( colUsed==(MASKBIT(nExpr)-1) ){
2379 /* If we reach this point, that means the index pIdx is usable */
2380 int iAddr = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v);
2381 #ifndef SQLITE_OMIT_EXPLAIN
2382 sqlite3VdbeAddOp4(v, OP_Explain, 0, 0, 0,
2383 sqlite3MPrintf(db, "USING INDEX %s FOR IN-OPERATOR",pIdx->zName),
2384 P4_DYNAMIC);
2385 #endif
2386 sqlite3VdbeAddOp3(v, OP_OpenRead, iTab, pIdx->tnum, iDb);
2387 sqlite3VdbeSetP4KeyInfo(pParse, pIdx);
2388 VdbeComment((v, "%s", pIdx->zName));
2389 assert( IN_INDEX_INDEX_DESC == IN_INDEX_INDEX_ASC+1 );
2390 eType = IN_INDEX_INDEX_ASC + pIdx->aSortOrder[0];
2392 if( prRhsHasNull ){
2393 #ifdef SQLITE_ENABLE_COLUMN_USED_MASK
2394 i64 mask = (1<<nExpr)-1;
2395 sqlite3VdbeAddOp4Dup8(v, OP_ColumnsUsed,
2396 iTab, 0, 0, (u8*)&mask, P4_INT64);
2397 #endif
2398 *prRhsHasNull = ++pParse->nMem;
2399 if( nExpr==1 ){
2400 sqlite3SetHasNullFlag(v, iTab, *prRhsHasNull);
2403 sqlite3VdbeJumpHere(v, iAddr);
2405 } /* End loop over indexes */
2406 } /* End if( affinity_ok ) */
2407 } /* End if not an rowid index */
2408 } /* End attempt to optimize using an index */
2410 /* If no preexisting index is available for the IN clause
2411 ** and IN_INDEX_NOOP is an allowed reply
2412 ** and the RHS of the IN operator is a list, not a subquery
2413 ** and the RHS is not constant or has two or fewer terms,
2414 ** then it is not worth creating an ephemeral table to evaluate
2415 ** the IN operator so return IN_INDEX_NOOP.
2417 if( eType==0
2418 && (inFlags & IN_INDEX_NOOP_OK)
2419 && !ExprHasProperty(pX, EP_xIsSelect)
2420 && (!sqlite3InRhsIsConstant(pX) || pX->x.pList->nExpr<=2)
2422 eType = IN_INDEX_NOOP;
2425 if( eType==0 ){
2426 /* Could not find an existing table or index to use as the RHS b-tree.
2427 ** We will have to generate an ephemeral table to do the job.
2429 u32 savedNQueryLoop = pParse->nQueryLoop;
2430 int rMayHaveNull = 0;
2431 eType = IN_INDEX_EPH;
2432 if( inFlags & IN_INDEX_LOOP ){
2433 pParse->nQueryLoop = 0;
2434 if( pX->pLeft->iColumn<0 && !ExprHasProperty(pX, EP_xIsSelect) ){
2435 eType = IN_INDEX_ROWID;
2437 }else if( prRhsHasNull ){
2438 *prRhsHasNull = rMayHaveNull = ++pParse->nMem;
2440 sqlite3CodeSubselect(pParse, pX, rMayHaveNull, eType==IN_INDEX_ROWID);
2441 pParse->nQueryLoop = savedNQueryLoop;
2442 }else{
2443 pX->iTable = iTab;
2446 if( aiMap && eType!=IN_INDEX_INDEX_ASC && eType!=IN_INDEX_INDEX_DESC ){
2447 int i, n;
2448 n = sqlite3ExprVectorSize(pX->pLeft);
2449 for(i=0; i<n; i++) aiMap[i] = i;
2451 return eType;
2453 #endif
2455 #ifndef SQLITE_OMIT_SUBQUERY
2457 ** Argument pExpr is an (?, ?...) IN(...) expression. This
2458 ** function allocates and returns a nul-terminated string containing
2459 ** the affinities to be used for each column of the comparison.
2461 ** It is the responsibility of the caller to ensure that the returned
2462 ** string is eventually freed using sqlite3DbFree().
2464 static char *exprINAffinity(Parse *pParse, Expr *pExpr){
2465 Expr *pLeft = pExpr->pLeft;
2466 int nVal = sqlite3ExprVectorSize(pLeft);
2467 Select *pSelect = (pExpr->flags & EP_xIsSelect) ? pExpr->x.pSelect : 0;
2468 char *zRet;
2470 assert( pExpr->op==TK_IN );
2471 zRet = sqlite3DbMallocRaw(pParse->db, nVal+1);
2472 if( zRet ){
2473 int i;
2474 for(i=0; i<nVal; i++){
2475 Expr *pA = sqlite3VectorFieldSubexpr(pLeft, i);
2476 char a = sqlite3ExprAffinity(pA);
2477 if( pSelect ){
2478 zRet[i] = sqlite3CompareAffinity(pSelect->pEList->a[i].pExpr, a);
2479 }else{
2480 zRet[i] = a;
2483 zRet[nVal] = '\0';
2485 return zRet;
2487 #endif
2489 #ifndef SQLITE_OMIT_SUBQUERY
2491 ** Load the Parse object passed as the first argument with an error
2492 ** message of the form:
2494 ** "sub-select returns N columns - expected M"
2496 void sqlite3SubselectError(Parse *pParse, int nActual, int nExpect){
2497 const char *zFmt = "sub-select returns %d columns - expected %d";
2498 sqlite3ErrorMsg(pParse, zFmt, nActual, nExpect);
2500 #endif
2503 ** Expression pExpr is a vector that has been used in a context where
2504 ** it is not permitted. If pExpr is a sub-select vector, this routine
2505 ** loads the Parse object with a message of the form:
2507 ** "sub-select returns N columns - expected 1"
2509 ** Or, if it is a regular scalar vector:
2511 ** "row value misused"
2513 void sqlite3VectorErrorMsg(Parse *pParse, Expr *pExpr){
2514 #ifndef SQLITE_OMIT_SUBQUERY
2515 if( pExpr->flags & EP_xIsSelect ){
2516 sqlite3SubselectError(pParse, pExpr->x.pSelect->pEList->nExpr, 1);
2517 }else
2518 #endif
2520 sqlite3ErrorMsg(pParse, "row value misused");
2525 ** Generate code for scalar subqueries used as a subquery expression, EXISTS,
2526 ** or IN operators. Examples:
2528 ** (SELECT a FROM b) -- subquery
2529 ** EXISTS (SELECT a FROM b) -- EXISTS subquery
2530 ** x IN (4,5,11) -- IN operator with list on right-hand side
2531 ** x IN (SELECT a FROM b) -- IN operator with subquery on the right
2533 ** The pExpr parameter describes the expression that contains the IN
2534 ** operator or subquery.
2536 ** If parameter isRowid is non-zero, then expression pExpr is guaranteed
2537 ** to be of the form "<rowid> IN (?, ?, ?)", where <rowid> is a reference
2538 ** to some integer key column of a table B-Tree. In this case, use an
2539 ** intkey B-Tree to store the set of IN(...) values instead of the usual
2540 ** (slower) variable length keys B-Tree.
2542 ** If rMayHaveNull is non-zero, that means that the operation is an IN
2543 ** (not a SELECT or EXISTS) and that the RHS might contains NULLs.
2544 ** All this routine does is initialize the register given by rMayHaveNull
2545 ** to NULL. Calling routines will take care of changing this register
2546 ** value to non-NULL if the RHS is NULL-free.
2548 ** For a SELECT or EXISTS operator, return the register that holds the
2549 ** result. For a multi-column SELECT, the result is stored in a contiguous
2550 ** array of registers and the return value is the register of the left-most
2551 ** result column. Return 0 for IN operators or if an error occurs.
2553 #ifndef SQLITE_OMIT_SUBQUERY
2554 int sqlite3CodeSubselect(
2555 Parse *pParse, /* Parsing context */
2556 Expr *pExpr, /* The IN, SELECT, or EXISTS operator */
2557 int rHasNullFlag, /* Register that records whether NULLs exist in RHS */
2558 int isRowid /* If true, LHS of IN operator is a rowid */
2560 int jmpIfDynamic = -1; /* One-time test address */
2561 int rReg = 0; /* Register storing resulting */
2562 Vdbe *v = sqlite3GetVdbe(pParse);
2563 if( NEVER(v==0) ) return 0;
2564 sqlite3ExprCachePush(pParse);
2566 /* The evaluation of the IN/EXISTS/SELECT must be repeated every time it
2567 ** is encountered if any of the following is true:
2569 ** * The right-hand side is a correlated subquery
2570 ** * The right-hand side is an expression list containing variables
2571 ** * We are inside a trigger
2573 ** If all of the above are false, then we can run this code just once
2574 ** save the results, and reuse the same result on subsequent invocations.
2576 if( !ExprHasProperty(pExpr, EP_VarSelect) ){
2577 jmpIfDynamic = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v);
2580 #ifndef SQLITE_OMIT_EXPLAIN
2581 if( pParse->explain==2 ){
2582 char *zMsg = sqlite3MPrintf(pParse->db, "EXECUTE %s%s SUBQUERY %d",
2583 jmpIfDynamic>=0?"":"CORRELATED ",
2584 pExpr->op==TK_IN?"LIST":"SCALAR",
2585 pParse->iNextSelectId
2587 sqlite3VdbeAddOp4(v, OP_Explain, pParse->iSelectId, 0, 0, zMsg, P4_DYNAMIC);
2589 #endif
2591 switch( pExpr->op ){
2592 case TK_IN: {
2593 int addr; /* Address of OP_OpenEphemeral instruction */
2594 Expr *pLeft = pExpr->pLeft; /* the LHS of the IN operator */
2595 KeyInfo *pKeyInfo = 0; /* Key information */
2596 int nVal; /* Size of vector pLeft */
2598 nVal = sqlite3ExprVectorSize(pLeft);
2599 assert( !isRowid || nVal==1 );
2601 /* Whether this is an 'x IN(SELECT...)' or an 'x IN(<exprlist>)'
2602 ** expression it is handled the same way. An ephemeral table is
2603 ** filled with index keys representing the results from the
2604 ** SELECT or the <exprlist>.
2606 ** If the 'x' expression is a column value, or the SELECT...
2607 ** statement returns a column value, then the affinity of that
2608 ** column is used to build the index keys. If both 'x' and the
2609 ** SELECT... statement are columns, then numeric affinity is used
2610 ** if either column has NUMERIC or INTEGER affinity. If neither
2611 ** 'x' nor the SELECT... statement are columns, then numeric affinity
2612 ** is used.
2614 pExpr->iTable = pParse->nTab++;
2615 addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral,
2616 pExpr->iTable, (isRowid?0:nVal));
2617 pKeyInfo = isRowid ? 0 : sqlite3KeyInfoAlloc(pParse->db, nVal, 1);
2619 if( ExprHasProperty(pExpr, EP_xIsSelect) ){
2620 /* Case 1: expr IN (SELECT ...)
2622 ** Generate code to write the results of the select into the temporary
2623 ** table allocated and opened above.
2625 Select *pSelect = pExpr->x.pSelect;
2626 ExprList *pEList = pSelect->pEList;
2628 assert( !isRowid );
2629 /* If the LHS and RHS of the IN operator do not match, that
2630 ** error will have been caught long before we reach this point. */
2631 if( ALWAYS(pEList->nExpr==nVal) ){
2632 SelectDest dest;
2633 int i;
2634 sqlite3SelectDestInit(&dest, SRT_Set, pExpr->iTable);
2635 dest.zAffSdst = exprINAffinity(pParse, pExpr);
2636 pSelect->iLimit = 0;
2637 testcase( pSelect->selFlags & SF_Distinct );
2638 testcase( pKeyInfo==0 ); /* Caused by OOM in sqlite3KeyInfoAlloc() */
2639 if( sqlite3Select(pParse, pSelect, &dest) ){
2640 sqlite3DbFree(pParse->db, dest.zAffSdst);
2641 sqlite3KeyInfoUnref(pKeyInfo);
2642 return 0;
2644 sqlite3DbFree(pParse->db, dest.zAffSdst);
2645 assert( pKeyInfo!=0 ); /* OOM will cause exit after sqlite3Select() */
2646 assert( pEList!=0 );
2647 assert( pEList->nExpr>0 );
2648 assert( sqlite3KeyInfoIsWriteable(pKeyInfo) );
2649 for(i=0; i<nVal; i++){
2650 Expr *p = sqlite3VectorFieldSubexpr(pLeft, i);
2651 pKeyInfo->aColl[i] = sqlite3BinaryCompareCollSeq(
2652 pParse, p, pEList->a[i].pExpr
2656 }else if( ALWAYS(pExpr->x.pList!=0) ){
2657 /* Case 2: expr IN (exprlist)
2659 ** For each expression, build an index key from the evaluation and
2660 ** store it in the temporary table. If <expr> is a column, then use
2661 ** that columns affinity when building index keys. If <expr> is not
2662 ** a column, use numeric affinity.
2664 char affinity; /* Affinity of the LHS of the IN */
2665 int i;
2666 ExprList *pList = pExpr->x.pList;
2667 struct ExprList_item *pItem;
2668 int r1, r2, r3;
2670 affinity = sqlite3ExprAffinity(pLeft);
2671 if( !affinity ){
2672 affinity = SQLITE_AFF_BLOB;
2674 if( pKeyInfo ){
2675 assert( sqlite3KeyInfoIsWriteable(pKeyInfo) );
2676 pKeyInfo->aColl[0] = sqlite3ExprCollSeq(pParse, pExpr->pLeft);
2679 /* Loop through each expression in <exprlist>. */
2680 r1 = sqlite3GetTempReg(pParse);
2681 r2 = sqlite3GetTempReg(pParse);
2682 if( isRowid ) sqlite3VdbeAddOp4(v, OP_Blob, 0, r2, 0, "", P4_STATIC);
2683 for(i=pList->nExpr, pItem=pList->a; i>0; i--, pItem++){
2684 Expr *pE2 = pItem->pExpr;
2685 int iValToIns;
2687 /* If the expression is not constant then we will need to
2688 ** disable the test that was generated above that makes sure
2689 ** this code only executes once. Because for a non-constant
2690 ** expression we need to rerun this code each time.
2692 if( jmpIfDynamic>=0 && !sqlite3ExprIsConstant(pE2) ){
2693 sqlite3VdbeChangeToNoop(v, jmpIfDynamic);
2694 jmpIfDynamic = -1;
2697 /* Evaluate the expression and insert it into the temp table */
2698 if( isRowid && sqlite3ExprIsInteger(pE2, &iValToIns) ){
2699 sqlite3VdbeAddOp3(v, OP_InsertInt, pExpr->iTable, r2, iValToIns);
2700 }else{
2701 r3 = sqlite3ExprCodeTarget(pParse, pE2, r1);
2702 if( isRowid ){
2703 sqlite3VdbeAddOp2(v, OP_MustBeInt, r3,
2704 sqlite3VdbeCurrentAddr(v)+2);
2705 VdbeCoverage(v);
2706 sqlite3VdbeAddOp3(v, OP_Insert, pExpr->iTable, r2, r3);
2707 }else{
2708 sqlite3VdbeAddOp4(v, OP_MakeRecord, r3, 1, r2, &affinity, 1);
2709 sqlite3ExprCacheAffinityChange(pParse, r3, 1);
2710 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, pExpr->iTable, r2, r3, 1);
2714 sqlite3ReleaseTempReg(pParse, r1);
2715 sqlite3ReleaseTempReg(pParse, r2);
2717 if( pKeyInfo ){
2718 sqlite3VdbeChangeP4(v, addr, (void *)pKeyInfo, P4_KEYINFO);
2720 break;
2723 case TK_EXISTS:
2724 case TK_SELECT:
2725 default: {
2726 /* Case 3: (SELECT ... FROM ...)
2727 ** or: EXISTS(SELECT ... FROM ...)
2729 ** For a SELECT, generate code to put the values for all columns of
2730 ** the first row into an array of registers and return the index of
2731 ** the first register.
2733 ** If this is an EXISTS, write an integer 0 (not exists) or 1 (exists)
2734 ** into a register and return that register number.
2736 ** In both cases, the query is augmented with "LIMIT 1". Any
2737 ** preexisting limit is discarded in place of the new LIMIT 1.
2739 Select *pSel; /* SELECT statement to encode */
2740 SelectDest dest; /* How to deal with SELECT result */
2741 int nReg; /* Registers to allocate */
2743 testcase( pExpr->op==TK_EXISTS );
2744 testcase( pExpr->op==TK_SELECT );
2745 assert( pExpr->op==TK_EXISTS || pExpr->op==TK_SELECT );
2746 assert( ExprHasProperty(pExpr, EP_xIsSelect) );
2748 pSel = pExpr->x.pSelect;
2749 nReg = pExpr->op==TK_SELECT ? pSel->pEList->nExpr : 1;
2750 sqlite3SelectDestInit(&dest, 0, pParse->nMem+1);
2751 pParse->nMem += nReg;
2752 if( pExpr->op==TK_SELECT ){
2753 dest.eDest = SRT_Mem;
2754 dest.iSdst = dest.iSDParm;
2755 dest.nSdst = nReg;
2756 sqlite3VdbeAddOp3(v, OP_Null, 0, dest.iSDParm, dest.iSDParm+nReg-1);
2757 VdbeComment((v, "Init subquery result"));
2758 }else{
2759 dest.eDest = SRT_Exists;
2760 sqlite3VdbeAddOp2(v, OP_Integer, 0, dest.iSDParm);
2761 VdbeComment((v, "Init EXISTS result"));
2763 sqlite3ExprDelete(pParse->db, pSel->pLimit);
2764 pSel->pLimit = sqlite3ExprAlloc(pParse->db, TK_INTEGER,
2765 &sqlite3IntTokens[1], 0);
2766 pSel->iLimit = 0;
2767 pSel->selFlags &= ~SF_MultiValue;
2768 if( sqlite3Select(pParse, pSel, &dest) ){
2769 return 0;
2771 rReg = dest.iSDParm;
2772 ExprSetVVAProperty(pExpr, EP_NoReduce);
2773 break;
2777 if( rHasNullFlag ){
2778 sqlite3SetHasNullFlag(v, pExpr->iTable, rHasNullFlag);
2781 if( jmpIfDynamic>=0 ){
2782 sqlite3VdbeJumpHere(v, jmpIfDynamic);
2784 sqlite3ExprCachePop(pParse);
2786 return rReg;
2788 #endif /* SQLITE_OMIT_SUBQUERY */
2790 #ifndef SQLITE_OMIT_SUBQUERY
2792 ** Expr pIn is an IN(...) expression. This function checks that the
2793 ** sub-select on the RHS of the IN() operator has the same number of
2794 ** columns as the vector on the LHS. Or, if the RHS of the IN() is not
2795 ** a sub-query, that the LHS is a vector of size 1.
2797 int sqlite3ExprCheckIN(Parse *pParse, Expr *pIn){
2798 int nVector = sqlite3ExprVectorSize(pIn->pLeft);
2799 if( (pIn->flags & EP_xIsSelect) ){
2800 if( nVector!=pIn->x.pSelect->pEList->nExpr ){
2801 sqlite3SubselectError(pParse, pIn->x.pSelect->pEList->nExpr, nVector);
2802 return 1;
2804 }else if( nVector!=1 ){
2805 sqlite3VectorErrorMsg(pParse, pIn->pLeft);
2806 return 1;
2808 return 0;
2810 #endif
2812 #ifndef SQLITE_OMIT_SUBQUERY
2814 ** Generate code for an IN expression.
2816 ** x IN (SELECT ...)
2817 ** x IN (value, value, ...)
2819 ** The left-hand side (LHS) is a scalar or vector expression. The
2820 ** right-hand side (RHS) is an array of zero or more scalar values, or a
2821 ** subquery. If the RHS is a subquery, the number of result columns must
2822 ** match the number of columns in the vector on the LHS. If the RHS is
2823 ** a list of values, the LHS must be a scalar.
2825 ** The IN operator is true if the LHS value is contained within the RHS.
2826 ** The result is false if the LHS is definitely not in the RHS. The
2827 ** result is NULL if the presence of the LHS in the RHS cannot be
2828 ** determined due to NULLs.
2830 ** This routine generates code that jumps to destIfFalse if the LHS is not
2831 ** contained within the RHS. If due to NULLs we cannot determine if the LHS
2832 ** is contained in the RHS then jump to destIfNull. If the LHS is contained
2833 ** within the RHS then fall through.
2835 ** See the separate in-operator.md documentation file in the canonical
2836 ** SQLite source tree for additional information.
2838 static void sqlite3ExprCodeIN(
2839 Parse *pParse, /* Parsing and code generating context */
2840 Expr *pExpr, /* The IN expression */
2841 int destIfFalse, /* Jump here if LHS is not contained in the RHS */
2842 int destIfNull /* Jump here if the results are unknown due to NULLs */
2844 int rRhsHasNull = 0; /* Register that is true if RHS contains NULL values */
2845 int eType; /* Type of the RHS */
2846 int rLhs; /* Register(s) holding the LHS values */
2847 int rLhsOrig; /* LHS values prior to reordering by aiMap[] */
2848 Vdbe *v; /* Statement under construction */
2849 int *aiMap = 0; /* Map from vector field to index column */
2850 char *zAff = 0; /* Affinity string for comparisons */
2851 int nVector; /* Size of vectors for this IN operator */
2852 int iDummy; /* Dummy parameter to exprCodeVector() */
2853 Expr *pLeft; /* The LHS of the IN operator */
2854 int i; /* loop counter */
2855 int destStep2; /* Where to jump when NULLs seen in step 2 */
2856 int destStep6 = 0; /* Start of code for Step 6 */
2857 int addrTruthOp; /* Address of opcode that determines the IN is true */
2858 int destNotNull; /* Jump here if a comparison is not true in step 6 */
2859 int addrTop; /* Top of the step-6 loop */
2861 pLeft = pExpr->pLeft;
2862 if( sqlite3ExprCheckIN(pParse, pExpr) ) return;
2863 zAff = exprINAffinity(pParse, pExpr);
2864 nVector = sqlite3ExprVectorSize(pExpr->pLeft);
2865 aiMap = (int*)sqlite3DbMallocZero(
2866 pParse->db, nVector*(sizeof(int) + sizeof(char)) + 1
2868 if( pParse->db->mallocFailed ) goto sqlite3ExprCodeIN_oom_error;
2870 /* Attempt to compute the RHS. After this step, if anything other than
2871 ** IN_INDEX_NOOP is returned, the table opened ith cursor pExpr->iTable
2872 ** contains the values that make up the RHS. If IN_INDEX_NOOP is returned,
2873 ** the RHS has not yet been coded. */
2874 v = pParse->pVdbe;
2875 assert( v!=0 ); /* OOM detected prior to this routine */
2876 VdbeNoopComment((v, "begin IN expr"));
2877 eType = sqlite3FindInIndex(pParse, pExpr,
2878 IN_INDEX_MEMBERSHIP | IN_INDEX_NOOP_OK,
2879 destIfFalse==destIfNull ? 0 : &rRhsHasNull, aiMap);
2881 assert( pParse->nErr || nVector==1 || eType==IN_INDEX_EPH
2882 || eType==IN_INDEX_INDEX_ASC || eType==IN_INDEX_INDEX_DESC
2884 #ifdef SQLITE_DEBUG
2885 /* Confirm that aiMap[] contains nVector integer values between 0 and
2886 ** nVector-1. */
2887 for(i=0; i<nVector; i++){
2888 int j, cnt;
2889 for(cnt=j=0; j<nVector; j++) if( aiMap[j]==i ) cnt++;
2890 assert( cnt==1 );
2892 #endif
2894 /* Code the LHS, the <expr> from "<expr> IN (...)". If the LHS is a
2895 ** vector, then it is stored in an array of nVector registers starting
2896 ** at r1.
2898 ** sqlite3FindInIndex() might have reordered the fields of the LHS vector
2899 ** so that the fields are in the same order as an existing index. The
2900 ** aiMap[] array contains a mapping from the original LHS field order to
2901 ** the field order that matches the RHS index.
2903 sqlite3ExprCachePush(pParse);
2904 rLhsOrig = exprCodeVector(pParse, pLeft, &iDummy);
2905 for(i=0; i<nVector && aiMap[i]==i; i++){} /* Are LHS fields reordered? */
2906 if( i==nVector ){
2907 /* LHS fields are not reordered */
2908 rLhs = rLhsOrig;
2909 }else{
2910 /* Need to reorder the LHS fields according to aiMap */
2911 rLhs = sqlite3GetTempRange(pParse, nVector);
2912 for(i=0; i<nVector; i++){
2913 sqlite3VdbeAddOp3(v, OP_Copy, rLhsOrig+i, rLhs+aiMap[i], 0);
2917 /* If sqlite3FindInIndex() did not find or create an index that is
2918 ** suitable for evaluating the IN operator, then evaluate using a
2919 ** sequence of comparisons.
2921 ** This is step (1) in the in-operator.md optimized algorithm.
2923 if( eType==IN_INDEX_NOOP ){
2924 ExprList *pList = pExpr->x.pList;
2925 CollSeq *pColl = sqlite3ExprCollSeq(pParse, pExpr->pLeft);
2926 int labelOk = sqlite3VdbeMakeLabel(v);
2927 int r2, regToFree;
2928 int regCkNull = 0;
2929 int ii;
2930 assert( !ExprHasProperty(pExpr, EP_xIsSelect) );
2931 if( destIfNull!=destIfFalse ){
2932 regCkNull = sqlite3GetTempReg(pParse);
2933 sqlite3VdbeAddOp3(v, OP_BitAnd, rLhs, rLhs, regCkNull);
2935 for(ii=0; ii<pList->nExpr; ii++){
2936 r2 = sqlite3ExprCodeTemp(pParse, pList->a[ii].pExpr, &regToFree);
2937 if( regCkNull && sqlite3ExprCanBeNull(pList->a[ii].pExpr) ){
2938 sqlite3VdbeAddOp3(v, OP_BitAnd, regCkNull, r2, regCkNull);
2940 if( ii<pList->nExpr-1 || destIfNull!=destIfFalse ){
2941 sqlite3VdbeAddOp4(v, OP_Eq, rLhs, labelOk, r2,
2942 (void*)pColl, P4_COLLSEQ);
2943 VdbeCoverageIf(v, ii<pList->nExpr-1);
2944 VdbeCoverageIf(v, ii==pList->nExpr-1);
2945 sqlite3VdbeChangeP5(v, zAff[0]);
2946 }else{
2947 assert( destIfNull==destIfFalse );
2948 sqlite3VdbeAddOp4(v, OP_Ne, rLhs, destIfFalse, r2,
2949 (void*)pColl, P4_COLLSEQ); VdbeCoverage(v);
2950 sqlite3VdbeChangeP5(v, zAff[0] | SQLITE_JUMPIFNULL);
2952 sqlite3ReleaseTempReg(pParse, regToFree);
2954 if( regCkNull ){
2955 sqlite3VdbeAddOp2(v, OP_IsNull, regCkNull, destIfNull); VdbeCoverage(v);
2956 sqlite3VdbeGoto(v, destIfFalse);
2958 sqlite3VdbeResolveLabel(v, labelOk);
2959 sqlite3ReleaseTempReg(pParse, regCkNull);
2960 goto sqlite3ExprCodeIN_finished;
2963 /* Step 2: Check to see if the LHS contains any NULL columns. If the
2964 ** LHS does contain NULLs then the result must be either FALSE or NULL.
2965 ** We will then skip the binary search of the RHS.
2967 if( destIfNull==destIfFalse ){
2968 destStep2 = destIfFalse;
2969 }else{
2970 destStep2 = destStep6 = sqlite3VdbeMakeLabel(v);
2972 for(i=0; i<nVector; i++){
2973 Expr *p = sqlite3VectorFieldSubexpr(pExpr->pLeft, i);
2974 if( sqlite3ExprCanBeNull(p) ){
2975 sqlite3VdbeAddOp2(v, OP_IsNull, rLhs+i, destStep2);
2976 VdbeCoverage(v);
2980 /* Step 3. The LHS is now known to be non-NULL. Do the binary search
2981 ** of the RHS using the LHS as a probe. If found, the result is
2982 ** true.
2984 if( eType==IN_INDEX_ROWID ){
2985 /* In this case, the RHS is the ROWID of table b-tree and so we also
2986 ** know that the RHS is non-NULL. Hence, we combine steps 3 and 4
2987 ** into a single opcode. */
2988 sqlite3VdbeAddOp3(v, OP_SeekRowid, pExpr->iTable, destIfFalse, rLhs);
2989 VdbeCoverage(v);
2990 addrTruthOp = sqlite3VdbeAddOp0(v, OP_Goto); /* Return True */
2991 }else{
2992 sqlite3VdbeAddOp4(v, OP_Affinity, rLhs, nVector, 0, zAff, nVector);
2993 if( destIfFalse==destIfNull ){
2994 /* Combine Step 3 and Step 5 into a single opcode */
2995 sqlite3VdbeAddOp4Int(v, OP_NotFound, pExpr->iTable, destIfFalse,
2996 rLhs, nVector); VdbeCoverage(v);
2997 goto sqlite3ExprCodeIN_finished;
2999 /* Ordinary Step 3, for the case where FALSE and NULL are distinct */
3000 addrTruthOp = sqlite3VdbeAddOp4Int(v, OP_Found, pExpr->iTable, 0,
3001 rLhs, nVector); VdbeCoverage(v);
3004 /* Step 4. If the RHS is known to be non-NULL and we did not find
3005 ** an match on the search above, then the result must be FALSE.
3007 if( rRhsHasNull && nVector==1 ){
3008 sqlite3VdbeAddOp2(v, OP_NotNull, rRhsHasNull, destIfFalse);
3009 VdbeCoverage(v);
3012 /* Step 5. If we do not care about the difference between NULL and
3013 ** FALSE, then just return false.
3015 if( destIfFalse==destIfNull ) sqlite3VdbeGoto(v, destIfFalse);
3017 /* Step 6: Loop through rows of the RHS. Compare each row to the LHS.
3018 ** If any comparison is NULL, then the result is NULL. If all
3019 ** comparisons are FALSE then the final result is FALSE.
3021 ** For a scalar LHS, it is sufficient to check just the first row
3022 ** of the RHS.
3024 if( destStep6 ) sqlite3VdbeResolveLabel(v, destStep6);
3025 addrTop = sqlite3VdbeAddOp2(v, OP_Rewind, pExpr->iTable, destIfFalse);
3026 VdbeCoverage(v);
3027 if( nVector>1 ){
3028 destNotNull = sqlite3VdbeMakeLabel(v);
3029 }else{
3030 /* For nVector==1, combine steps 6 and 7 by immediately returning
3031 ** FALSE if the first comparison is not NULL */
3032 destNotNull = destIfFalse;
3034 for(i=0; i<nVector; i++){
3035 Expr *p;
3036 CollSeq *pColl;
3037 int r3 = sqlite3GetTempReg(pParse);
3038 p = sqlite3VectorFieldSubexpr(pLeft, i);
3039 pColl = sqlite3ExprCollSeq(pParse, p);
3040 sqlite3VdbeAddOp3(v, OP_Column, pExpr->iTable, i, r3);
3041 sqlite3VdbeAddOp4(v, OP_Ne, rLhs+i, destNotNull, r3,
3042 (void*)pColl, P4_COLLSEQ);
3043 VdbeCoverage(v);
3044 sqlite3ReleaseTempReg(pParse, r3);
3046 sqlite3VdbeAddOp2(v, OP_Goto, 0, destIfNull);
3047 if( nVector>1 ){
3048 sqlite3VdbeResolveLabel(v, destNotNull);
3049 sqlite3VdbeAddOp2(v, OP_Next, pExpr->iTable, addrTop+1);
3050 VdbeCoverage(v);
3052 /* Step 7: If we reach this point, we know that the result must
3053 ** be false. */
3054 sqlite3VdbeAddOp2(v, OP_Goto, 0, destIfFalse);
3057 /* Jumps here in order to return true. */
3058 sqlite3VdbeJumpHere(v, addrTruthOp);
3060 sqlite3ExprCodeIN_finished:
3061 if( rLhs!=rLhsOrig ) sqlite3ReleaseTempReg(pParse, rLhs);
3062 sqlite3ExprCachePop(pParse);
3063 VdbeComment((v, "end IN expr"));
3064 sqlite3ExprCodeIN_oom_error:
3065 sqlite3DbFree(pParse->db, aiMap);
3066 sqlite3DbFree(pParse->db, zAff);
3068 #endif /* SQLITE_OMIT_SUBQUERY */
3070 #ifndef SQLITE_OMIT_FLOATING_POINT
3072 ** Generate an instruction that will put the floating point
3073 ** value described by z[0..n-1] into register iMem.
3075 ** The z[] string will probably not be zero-terminated. But the
3076 ** z[n] character is guaranteed to be something that does not look
3077 ** like the continuation of the number.
3079 static void codeReal(Vdbe *v, const char *z, int negateFlag, int iMem){
3080 if( ALWAYS(z!=0) ){
3081 double value;
3082 sqlite3AtoF(z, &value, sqlite3Strlen30(z), SQLITE_UTF8);
3083 assert( !sqlite3IsNaN(value) ); /* The new AtoF never returns NaN */
3084 if( negateFlag ) value = -value;
3085 sqlite3VdbeAddOp4Dup8(v, OP_Real, 0, iMem, 0, (u8*)&value, P4_REAL);
3088 #endif
3092 ** Generate an instruction that will put the integer describe by
3093 ** text z[0..n-1] into register iMem.
3095 ** Expr.u.zToken is always UTF8 and zero-terminated.
3097 static void codeInteger(Parse *pParse, Expr *pExpr, int negFlag, int iMem){
3098 Vdbe *v = pParse->pVdbe;
3099 if( pExpr->flags & EP_IntValue ){
3100 int i = pExpr->u.iValue;
3101 assert( i>=0 );
3102 if( negFlag ) i = -i;
3103 sqlite3VdbeAddOp2(v, OP_Integer, i, iMem);
3104 }else{
3105 int c;
3106 i64 value;
3107 const char *z = pExpr->u.zToken;
3108 assert( z!=0 );
3109 c = sqlite3DecOrHexToI64(z, &value);
3110 if( (c==3 && !negFlag) || (c==2) || (negFlag && value==SMALLEST_INT64)){
3111 #ifdef SQLITE_OMIT_FLOATING_POINT
3112 sqlite3ErrorMsg(pParse, "oversized integer: %s%s", negFlag ? "-" : "", z);
3113 #else
3114 #ifndef SQLITE_OMIT_HEX_INTEGER
3115 if( sqlite3_strnicmp(z,"0x",2)==0 ){
3116 sqlite3ErrorMsg(pParse, "hex literal too big: %s%s", negFlag?"-":"",z);
3117 }else
3118 #endif
3120 codeReal(v, z, negFlag, iMem);
3122 #endif
3123 }else{
3124 if( negFlag ){ value = c==3 ? SMALLEST_INT64 : -value; }
3125 sqlite3VdbeAddOp4Dup8(v, OP_Int64, 0, iMem, 0, (u8*)&value, P4_INT64);
3131 ** Erase column-cache entry number i
3133 static void cacheEntryClear(Parse *pParse, int i){
3134 if( pParse->aColCache[i].tempReg ){
3135 if( pParse->nTempReg<ArraySize(pParse->aTempReg) ){
3136 pParse->aTempReg[pParse->nTempReg++] = pParse->aColCache[i].iReg;
3139 pParse->nColCache--;
3140 if( i<pParse->nColCache ){
3141 pParse->aColCache[i] = pParse->aColCache[pParse->nColCache];
3147 ** Record in the column cache that a particular column from a
3148 ** particular table is stored in a particular register.
3150 void sqlite3ExprCacheStore(Parse *pParse, int iTab, int iCol, int iReg){
3151 int i;
3152 int minLru;
3153 int idxLru;
3154 struct yColCache *p;
3156 /* Unless an error has occurred, register numbers are always positive. */
3157 assert( iReg>0 || pParse->nErr || pParse->db->mallocFailed );
3158 assert( iCol>=-1 && iCol<32768 ); /* Finite column numbers */
3160 /* The SQLITE_ColumnCache flag disables the column cache. This is used
3161 ** for testing only - to verify that SQLite always gets the same answer
3162 ** with and without the column cache.
3164 if( OptimizationDisabled(pParse->db, SQLITE_ColumnCache) ) return;
3166 /* First replace any existing entry.
3168 ** Actually, the way the column cache is currently used, we are guaranteed
3169 ** that the object will never already be in cache. Verify this guarantee.
3171 #ifndef NDEBUG
3172 for(i=0, p=pParse->aColCache; i<pParse->nColCache; i++, p++){
3173 assert( p->iTable!=iTab || p->iColumn!=iCol );
3175 #endif
3177 /* If the cache is already full, delete the least recently used entry */
3178 if( pParse->nColCache>=SQLITE_N_COLCACHE ){
3179 minLru = 0x7fffffff;
3180 idxLru = -1;
3181 for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){
3182 if( p->lru<minLru ){
3183 idxLru = i;
3184 minLru = p->lru;
3187 p = &pParse->aColCache[idxLru];
3188 }else{
3189 p = &pParse->aColCache[pParse->nColCache++];
3192 /* Add the new entry to the end of the cache */
3193 p->iLevel = pParse->iCacheLevel;
3194 p->iTable = iTab;
3195 p->iColumn = iCol;
3196 p->iReg = iReg;
3197 p->tempReg = 0;
3198 p->lru = pParse->iCacheCnt++;
3202 ** Indicate that registers between iReg..iReg+nReg-1 are being overwritten.
3203 ** Purge the range of registers from the column cache.
3205 void sqlite3ExprCacheRemove(Parse *pParse, int iReg, int nReg){
3206 int i = 0;
3207 while( i<pParse->nColCache ){
3208 struct yColCache *p = &pParse->aColCache[i];
3209 if( p->iReg >= iReg && p->iReg < iReg+nReg ){
3210 cacheEntryClear(pParse, i);
3211 }else{
3212 i++;
3218 ** Remember the current column cache context. Any new entries added
3219 ** added to the column cache after this call are removed when the
3220 ** corresponding pop occurs.
3222 void sqlite3ExprCachePush(Parse *pParse){
3223 pParse->iCacheLevel++;
3224 #ifdef SQLITE_DEBUG
3225 if( pParse->db->flags & SQLITE_VdbeAddopTrace ){
3226 printf("PUSH to %d\n", pParse->iCacheLevel);
3228 #endif
3232 ** Remove from the column cache any entries that were added since the
3233 ** the previous sqlite3ExprCachePush operation. In other words, restore
3234 ** the cache to the state it was in prior the most recent Push.
3236 void sqlite3ExprCachePop(Parse *pParse){
3237 int i = 0;
3238 assert( pParse->iCacheLevel>=1 );
3239 pParse->iCacheLevel--;
3240 #ifdef SQLITE_DEBUG
3241 if( pParse->db->flags & SQLITE_VdbeAddopTrace ){
3242 printf("POP to %d\n", pParse->iCacheLevel);
3244 #endif
3245 while( i<pParse->nColCache ){
3246 if( pParse->aColCache[i].iLevel>pParse->iCacheLevel ){
3247 cacheEntryClear(pParse, i);
3248 }else{
3249 i++;
3255 ** When a cached column is reused, make sure that its register is
3256 ** no longer available as a temp register. ticket #3879: that same
3257 ** register might be in the cache in multiple places, so be sure to
3258 ** get them all.
3260 static void sqlite3ExprCachePinRegister(Parse *pParse, int iReg){
3261 int i;
3262 struct yColCache *p;
3263 for(i=0, p=pParse->aColCache; i<pParse->nColCache; i++, p++){
3264 if( p->iReg==iReg ){
3265 p->tempReg = 0;
3270 /* Generate code that will load into register regOut a value that is
3271 ** appropriate for the iIdxCol-th column of index pIdx.
3273 void sqlite3ExprCodeLoadIndexColumn(
3274 Parse *pParse, /* The parsing context */
3275 Index *pIdx, /* The index whose column is to be loaded */
3276 int iTabCur, /* Cursor pointing to a table row */
3277 int iIdxCol, /* The column of the index to be loaded */
3278 int regOut /* Store the index column value in this register */
3280 i16 iTabCol = pIdx->aiColumn[iIdxCol];
3281 if( iTabCol==XN_EXPR ){
3282 assert( pIdx->aColExpr );
3283 assert( pIdx->aColExpr->nExpr>iIdxCol );
3284 pParse->iSelfTab = iTabCur + 1;
3285 sqlite3ExprCodeCopy(pParse, pIdx->aColExpr->a[iIdxCol].pExpr, regOut);
3286 pParse->iSelfTab = 0;
3287 }else{
3288 sqlite3ExprCodeGetColumnOfTable(pParse->pVdbe, pIdx->pTable, iTabCur,
3289 iTabCol, regOut);
3294 ** Generate code to extract the value of the iCol-th column of a table.
3296 void sqlite3ExprCodeGetColumnOfTable(
3297 Vdbe *v, /* The VDBE under construction */
3298 Table *pTab, /* The table containing the value */
3299 int iTabCur, /* The table cursor. Or the PK cursor for WITHOUT ROWID */
3300 int iCol, /* Index of the column to extract */
3301 int regOut /* Extract the value into this register */
3303 if( pTab==0 ){
3304 sqlite3VdbeAddOp3(v, OP_Column, iTabCur, iCol, regOut);
3305 return;
3307 if( iCol<0 || iCol==pTab->iPKey ){
3308 sqlite3VdbeAddOp2(v, OP_Rowid, iTabCur, regOut);
3309 }else{
3310 int op = IsVirtual(pTab) ? OP_VColumn : OP_Column;
3311 int x = iCol;
3312 if( !HasRowid(pTab) && !IsVirtual(pTab) ){
3313 x = sqlite3ColumnOfIndex(sqlite3PrimaryKeyIndex(pTab), iCol);
3315 sqlite3VdbeAddOp3(v, op, iTabCur, x, regOut);
3317 if( iCol>=0 ){
3318 sqlite3ColumnDefault(v, pTab, iCol, regOut);
3323 ** Generate code that will extract the iColumn-th column from
3324 ** table pTab and store the column value in a register.
3326 ** An effort is made to store the column value in register iReg. This
3327 ** is not garanteeed for GetColumn() - the result can be stored in
3328 ** any register. But the result is guaranteed to land in register iReg
3329 ** for GetColumnToReg().
3331 ** There must be an open cursor to pTab in iTable when this routine
3332 ** is called. If iColumn<0 then code is generated that extracts the rowid.
3334 int sqlite3ExprCodeGetColumn(
3335 Parse *pParse, /* Parsing and code generating context */
3336 Table *pTab, /* Description of the table we are reading from */
3337 int iColumn, /* Index of the table column */
3338 int iTable, /* The cursor pointing to the table */
3339 int iReg, /* Store results here */
3340 u8 p5 /* P5 value for OP_Column + FLAGS */
3342 Vdbe *v = pParse->pVdbe;
3343 int i;
3344 struct yColCache *p;
3346 for(i=0, p=pParse->aColCache; i<pParse->nColCache; i++, p++){
3347 if( p->iTable==iTable && p->iColumn==iColumn ){
3348 p->lru = pParse->iCacheCnt++;
3349 sqlite3ExprCachePinRegister(pParse, p->iReg);
3350 return p->iReg;
3353 assert( v!=0 );
3354 sqlite3ExprCodeGetColumnOfTable(v, pTab, iTable, iColumn, iReg);
3355 if( p5 ){
3356 sqlite3VdbeChangeP5(v, p5);
3357 }else{
3358 sqlite3ExprCacheStore(pParse, iTable, iColumn, iReg);
3360 return iReg;
3362 void sqlite3ExprCodeGetColumnToReg(
3363 Parse *pParse, /* Parsing and code generating context */
3364 Table *pTab, /* Description of the table we are reading from */
3365 int iColumn, /* Index of the table column */
3366 int iTable, /* The cursor pointing to the table */
3367 int iReg /* Store results here */
3369 int r1 = sqlite3ExprCodeGetColumn(pParse, pTab, iColumn, iTable, iReg, 0);
3370 if( r1!=iReg ) sqlite3VdbeAddOp2(pParse->pVdbe, OP_SCopy, r1, iReg);
3375 ** Clear all column cache entries.
3377 void sqlite3ExprCacheClear(Parse *pParse){
3378 int i;
3380 #ifdef SQLITE_DEBUG
3381 if( pParse->db->flags & SQLITE_VdbeAddopTrace ){
3382 printf("CLEAR\n");
3384 #endif
3385 for(i=0; i<pParse->nColCache; i++){
3386 if( pParse->aColCache[i].tempReg
3387 && pParse->nTempReg<ArraySize(pParse->aTempReg)
3389 pParse->aTempReg[pParse->nTempReg++] = pParse->aColCache[i].iReg;
3392 pParse->nColCache = 0;
3396 ** Record the fact that an affinity change has occurred on iCount
3397 ** registers starting with iStart.
3399 void sqlite3ExprCacheAffinityChange(Parse *pParse, int iStart, int iCount){
3400 sqlite3ExprCacheRemove(pParse, iStart, iCount);
3404 ** Generate code to move content from registers iFrom...iFrom+nReg-1
3405 ** over to iTo..iTo+nReg-1. Keep the column cache up-to-date.
3407 void sqlite3ExprCodeMove(Parse *pParse, int iFrom, int iTo, int nReg){
3408 assert( iFrom>=iTo+nReg || iFrom+nReg<=iTo );
3409 sqlite3VdbeAddOp3(pParse->pVdbe, OP_Move, iFrom, iTo, nReg);
3410 sqlite3ExprCacheRemove(pParse, iFrom, nReg);
3413 #if defined(SQLITE_DEBUG) || defined(SQLITE_COVERAGE_TEST)
3415 ** Return true if any register in the range iFrom..iTo (inclusive)
3416 ** is used as part of the column cache.
3418 ** This routine is used within assert() and testcase() macros only
3419 ** and does not appear in a normal build.
3421 static int usedAsColumnCache(Parse *pParse, int iFrom, int iTo){
3422 int i;
3423 struct yColCache *p;
3424 for(i=0, p=pParse->aColCache; i<pParse->nColCache; i++, p++){
3425 int r = p->iReg;
3426 if( r>=iFrom && r<=iTo ) return 1; /*NO_TEST*/
3428 return 0;
3430 #endif /* SQLITE_DEBUG || SQLITE_COVERAGE_TEST */
3434 ** Convert a scalar expression node to a TK_REGISTER referencing
3435 ** register iReg. The caller must ensure that iReg already contains
3436 ** the correct value for the expression.
3438 static void exprToRegister(Expr *p, int iReg){
3439 p->op2 = p->op;
3440 p->op = TK_REGISTER;
3441 p->iTable = iReg;
3442 ExprClearProperty(p, EP_Skip);
3446 ** Evaluate an expression (either a vector or a scalar expression) and store
3447 ** the result in continguous temporary registers. Return the index of
3448 ** the first register used to store the result.
3450 ** If the returned result register is a temporary scalar, then also write
3451 ** that register number into *piFreeable. If the returned result register
3452 ** is not a temporary or if the expression is a vector set *piFreeable
3453 ** to 0.
3455 static int exprCodeVector(Parse *pParse, Expr *p, int *piFreeable){
3456 int iResult;
3457 int nResult = sqlite3ExprVectorSize(p);
3458 if( nResult==1 ){
3459 iResult = sqlite3ExprCodeTemp(pParse, p, piFreeable);
3460 }else{
3461 *piFreeable = 0;
3462 if( p->op==TK_SELECT ){
3463 #if SQLITE_OMIT_SUBQUERY
3464 iResult = 0;
3465 #else
3466 iResult = sqlite3CodeSubselect(pParse, p, 0, 0);
3467 #endif
3468 }else{
3469 int i;
3470 iResult = pParse->nMem+1;
3471 pParse->nMem += nResult;
3472 for(i=0; i<nResult; i++){
3473 sqlite3ExprCodeFactorable(pParse, p->x.pList->a[i].pExpr, i+iResult);
3477 return iResult;
3482 ** Generate code into the current Vdbe to evaluate the given
3483 ** expression. Attempt to store the results in register "target".
3484 ** Return the register where results are stored.
3486 ** With this routine, there is no guarantee that results will
3487 ** be stored in target. The result might be stored in some other
3488 ** register if it is convenient to do so. The calling function
3489 ** must check the return code and move the results to the desired
3490 ** register.
3492 int sqlite3ExprCodeTarget(Parse *pParse, Expr *pExpr, int target){
3493 Vdbe *v = pParse->pVdbe; /* The VM under construction */
3494 int op; /* The opcode being coded */
3495 int inReg = target; /* Results stored in register inReg */
3496 int regFree1 = 0; /* If non-zero free this temporary register */
3497 int regFree2 = 0; /* If non-zero free this temporary register */
3498 int r1, r2; /* Various register numbers */
3499 Expr tempX; /* Temporary expression node */
3500 int p5 = 0;
3502 assert( target>0 && target<=pParse->nMem );
3503 if( v==0 ){
3504 assert( pParse->db->mallocFailed );
3505 return 0;
3508 if( pExpr==0 ){
3509 op = TK_NULL;
3510 }else{
3511 op = pExpr->op;
3513 switch( op ){
3514 case TK_AGG_COLUMN: {
3515 AggInfo *pAggInfo = pExpr->pAggInfo;
3516 struct AggInfo_col *pCol = &pAggInfo->aCol[pExpr->iAgg];
3517 if( !pAggInfo->directMode ){
3518 assert( pCol->iMem>0 );
3519 return pCol->iMem;
3520 }else if( pAggInfo->useSortingIdx ){
3521 sqlite3VdbeAddOp3(v, OP_Column, pAggInfo->sortingIdxPTab,
3522 pCol->iSorterColumn, target);
3523 return target;
3525 /* Otherwise, fall thru into the TK_COLUMN case */
3527 case TK_COLUMN: {
3528 int iTab = pExpr->iTable;
3529 if( iTab<0 ){
3530 if( pParse->iSelfTab<0 ){
3531 /* Generating CHECK constraints or inserting into partial index */
3532 return pExpr->iColumn - pParse->iSelfTab;
3533 }else{
3534 /* Coding an expression that is part of an index where column names
3535 ** in the index refer to the table to which the index belongs */
3536 iTab = pParse->iSelfTab - 1;
3539 return sqlite3ExprCodeGetColumn(pParse, pExpr->pTab,
3540 pExpr->iColumn, iTab, target,
3541 pExpr->op2);
3543 case TK_INTEGER: {
3544 codeInteger(pParse, pExpr, 0, target);
3545 return target;
3547 #ifndef SQLITE_OMIT_FLOATING_POINT
3548 case TK_FLOAT: {
3549 assert( !ExprHasProperty(pExpr, EP_IntValue) );
3550 codeReal(v, pExpr->u.zToken, 0, target);
3551 return target;
3553 #endif
3554 case TK_STRING: {
3555 assert( !ExprHasProperty(pExpr, EP_IntValue) );
3556 sqlite3VdbeLoadString(v, target, pExpr->u.zToken);
3557 return target;
3559 case TK_NULL: {
3560 sqlite3VdbeAddOp2(v, OP_Null, 0, target);
3561 return target;
3563 #ifndef SQLITE_OMIT_BLOB_LITERAL
3564 case TK_BLOB: {
3565 int n;
3566 const char *z;
3567 char *zBlob;
3568 assert( !ExprHasProperty(pExpr, EP_IntValue) );
3569 assert( pExpr->u.zToken[0]=='x' || pExpr->u.zToken[0]=='X' );
3570 assert( pExpr->u.zToken[1]=='\'' );
3571 z = &pExpr->u.zToken[2];
3572 n = sqlite3Strlen30(z) - 1;
3573 assert( z[n]=='\'' );
3574 zBlob = sqlite3HexToBlob(sqlite3VdbeDb(v), z, n);
3575 sqlite3VdbeAddOp4(v, OP_Blob, n/2, target, 0, zBlob, P4_DYNAMIC);
3576 return target;
3578 #endif
3579 case TK_VARIABLE: {
3580 assert( !ExprHasProperty(pExpr, EP_IntValue) );
3581 assert( pExpr->u.zToken!=0 );
3582 assert( pExpr->u.zToken[0]!=0 );
3583 sqlite3VdbeAddOp2(v, OP_Variable, pExpr->iColumn, target);
3584 if( pExpr->u.zToken[1]!=0 ){
3585 const char *z = sqlite3VListNumToName(pParse->pVList, pExpr->iColumn);
3586 assert( pExpr->u.zToken[0]=='?' || strcmp(pExpr->u.zToken, z)==0 );
3587 pParse->pVList[0] = 0; /* Indicate VList may no longer be enlarged */
3588 sqlite3VdbeAppendP4(v, (char*)z, P4_STATIC);
3590 return target;
3592 case TK_REGISTER: {
3593 return pExpr->iTable;
3595 #ifndef SQLITE_OMIT_CAST
3596 case TK_CAST: {
3597 /* Expressions of the form: CAST(pLeft AS token) */
3598 inReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft, target);
3599 if( inReg!=target ){
3600 sqlite3VdbeAddOp2(v, OP_SCopy, inReg, target);
3601 inReg = target;
3603 sqlite3VdbeAddOp2(v, OP_Cast, target,
3604 sqlite3AffinityType(pExpr->u.zToken, 0));
3605 testcase( usedAsColumnCache(pParse, inReg, inReg) );
3606 sqlite3ExprCacheAffinityChange(pParse, inReg, 1);
3607 return inReg;
3609 #endif /* SQLITE_OMIT_CAST */
3610 case TK_IS:
3611 case TK_ISNOT:
3612 op = (op==TK_IS) ? TK_EQ : TK_NE;
3613 p5 = SQLITE_NULLEQ;
3614 /* fall-through */
3615 case TK_LT:
3616 case TK_LE:
3617 case TK_GT:
3618 case TK_GE:
3619 case TK_NE:
3620 case TK_EQ: {
3621 Expr *pLeft = pExpr->pLeft;
3622 if( sqlite3ExprIsVector(pLeft) ){
3623 codeVectorCompare(pParse, pExpr, target, op, p5);
3624 }else{
3625 r1 = sqlite3ExprCodeTemp(pParse, pLeft, &regFree1);
3626 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, &regFree2);
3627 codeCompare(pParse, pLeft, pExpr->pRight, op,
3628 r1, r2, inReg, SQLITE_STOREP2 | p5);
3629 assert(TK_LT==OP_Lt); testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt);
3630 assert(TK_LE==OP_Le); testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le);
3631 assert(TK_GT==OP_Gt); testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt);
3632 assert(TK_GE==OP_Ge); testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge);
3633 assert(TK_EQ==OP_Eq); testcase(op==OP_Eq); VdbeCoverageIf(v,op==OP_Eq);
3634 assert(TK_NE==OP_Ne); testcase(op==OP_Ne); VdbeCoverageIf(v,op==OP_Ne);
3635 testcase( regFree1==0 );
3636 testcase( regFree2==0 );
3638 break;
3640 case TK_AND:
3641 case TK_OR:
3642 case TK_PLUS:
3643 case TK_STAR:
3644 case TK_MINUS:
3645 case TK_REM:
3646 case TK_BITAND:
3647 case TK_BITOR:
3648 case TK_SLASH:
3649 case TK_LSHIFT:
3650 case TK_RSHIFT:
3651 case TK_CONCAT: {
3652 assert( TK_AND==OP_And ); testcase( op==TK_AND );
3653 assert( TK_OR==OP_Or ); testcase( op==TK_OR );
3654 assert( TK_PLUS==OP_Add ); testcase( op==TK_PLUS );
3655 assert( TK_MINUS==OP_Subtract ); testcase( op==TK_MINUS );
3656 assert( TK_REM==OP_Remainder ); testcase( op==TK_REM );
3657 assert( TK_BITAND==OP_BitAnd ); testcase( op==TK_BITAND );
3658 assert( TK_BITOR==OP_BitOr ); testcase( op==TK_BITOR );
3659 assert( TK_SLASH==OP_Divide ); testcase( op==TK_SLASH );
3660 assert( TK_LSHIFT==OP_ShiftLeft ); testcase( op==TK_LSHIFT );
3661 assert( TK_RSHIFT==OP_ShiftRight ); testcase( op==TK_RSHIFT );
3662 assert( TK_CONCAT==OP_Concat ); testcase( op==TK_CONCAT );
3663 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
3664 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, &regFree2);
3665 sqlite3VdbeAddOp3(v, op, r2, r1, target);
3666 testcase( regFree1==0 );
3667 testcase( regFree2==0 );
3668 break;
3670 case TK_UMINUS: {
3671 Expr *pLeft = pExpr->pLeft;
3672 assert( pLeft );
3673 if( pLeft->op==TK_INTEGER ){
3674 codeInteger(pParse, pLeft, 1, target);
3675 return target;
3676 #ifndef SQLITE_OMIT_FLOATING_POINT
3677 }else if( pLeft->op==TK_FLOAT ){
3678 assert( !ExprHasProperty(pExpr, EP_IntValue) );
3679 codeReal(v, pLeft->u.zToken, 1, target);
3680 return target;
3681 #endif
3682 }else{
3683 tempX.op = TK_INTEGER;
3684 tempX.flags = EP_IntValue|EP_TokenOnly;
3685 tempX.u.iValue = 0;
3686 r1 = sqlite3ExprCodeTemp(pParse, &tempX, &regFree1);
3687 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree2);
3688 sqlite3VdbeAddOp3(v, OP_Subtract, r2, r1, target);
3689 testcase( regFree2==0 );
3691 break;
3693 case TK_BITNOT:
3694 case TK_NOT: {
3695 assert( TK_BITNOT==OP_BitNot ); testcase( op==TK_BITNOT );
3696 assert( TK_NOT==OP_Not ); testcase( op==TK_NOT );
3697 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
3698 testcase( regFree1==0 );
3699 sqlite3VdbeAddOp2(v, op, r1, inReg);
3700 break;
3702 case TK_ISNULL:
3703 case TK_NOTNULL: {
3704 int addr;
3705 assert( TK_ISNULL==OP_IsNull ); testcase( op==TK_ISNULL );
3706 assert( TK_NOTNULL==OP_NotNull ); testcase( op==TK_NOTNULL );
3707 sqlite3VdbeAddOp2(v, OP_Integer, 1, target);
3708 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
3709 testcase( regFree1==0 );
3710 addr = sqlite3VdbeAddOp1(v, op, r1);
3711 VdbeCoverageIf(v, op==TK_ISNULL);
3712 VdbeCoverageIf(v, op==TK_NOTNULL);
3713 sqlite3VdbeAddOp2(v, OP_Integer, 0, target);
3714 sqlite3VdbeJumpHere(v, addr);
3715 break;
3717 case TK_AGG_FUNCTION: {
3718 AggInfo *pInfo = pExpr->pAggInfo;
3719 if( pInfo==0 ){
3720 assert( !ExprHasProperty(pExpr, EP_IntValue) );
3721 sqlite3ErrorMsg(pParse, "misuse of aggregate: %s()", pExpr->u.zToken);
3722 }else{
3723 return pInfo->aFunc[pExpr->iAgg].iMem;
3725 break;
3727 case TK_FUNCTION: {
3728 ExprList *pFarg; /* List of function arguments */
3729 int nFarg; /* Number of function arguments */
3730 FuncDef *pDef; /* The function definition object */
3731 const char *zId; /* The function name */
3732 u32 constMask = 0; /* Mask of function arguments that are constant */
3733 int i; /* Loop counter */
3734 sqlite3 *db = pParse->db; /* The database connection */
3735 u8 enc = ENC(db); /* The text encoding used by this database */
3736 CollSeq *pColl = 0; /* A collating sequence */
3738 if( ConstFactorOk(pParse) && sqlite3ExprIsConstantNotJoin(pExpr) ){
3739 /* SQL functions can be expensive. So try to move constant functions
3740 ** out of the inner loop, even if that means an extra OP_Copy. */
3741 return sqlite3ExprCodeAtInit(pParse, pExpr, -1);
3743 assert( !ExprHasProperty(pExpr, EP_xIsSelect) );
3744 if( ExprHasProperty(pExpr, EP_TokenOnly) ){
3745 pFarg = 0;
3746 }else{
3747 pFarg = pExpr->x.pList;
3749 nFarg = pFarg ? pFarg->nExpr : 0;
3750 assert( !ExprHasProperty(pExpr, EP_IntValue) );
3751 zId = pExpr->u.zToken;
3752 pDef = sqlite3FindFunction(db, zId, nFarg, enc, 0);
3753 #ifdef SQLITE_ENABLE_UNKNOWN_SQL_FUNCTION
3754 if( pDef==0 && pParse->explain ){
3755 pDef = sqlite3FindFunction(db, "unknown", nFarg, enc, 0);
3757 #endif
3758 if( pDef==0 || pDef->xFinalize!=0 ){
3759 sqlite3ErrorMsg(pParse, "unknown function: %s()", zId);
3760 break;
3763 /* Attempt a direct implementation of the built-in COALESCE() and
3764 ** IFNULL() functions. This avoids unnecessary evaluation of
3765 ** arguments past the first non-NULL argument.
3767 if( pDef->funcFlags & SQLITE_FUNC_COALESCE ){
3768 int endCoalesce = sqlite3VdbeMakeLabel(v);
3769 assert( nFarg>=2 );
3770 sqlite3ExprCode(pParse, pFarg->a[0].pExpr, target);
3771 for(i=1; i<nFarg; i++){
3772 sqlite3VdbeAddOp2(v, OP_NotNull, target, endCoalesce);
3773 VdbeCoverage(v);
3774 sqlite3ExprCacheRemove(pParse, target, 1);
3775 sqlite3ExprCachePush(pParse);
3776 sqlite3ExprCode(pParse, pFarg->a[i].pExpr, target);
3777 sqlite3ExprCachePop(pParse);
3779 sqlite3VdbeResolveLabel(v, endCoalesce);
3780 break;
3783 /* The UNLIKELY() function is a no-op. The result is the value
3784 ** of the first argument.
3786 if( pDef->funcFlags & SQLITE_FUNC_UNLIKELY ){
3787 assert( nFarg>=1 );
3788 return sqlite3ExprCodeTarget(pParse, pFarg->a[0].pExpr, target);
3791 #ifdef SQLITE_DEBUG
3792 /* The AFFINITY() function evaluates to a string that describes
3793 ** the type affinity of the argument. This is used for testing of
3794 ** the SQLite type logic.
3796 if( pDef->funcFlags & SQLITE_FUNC_AFFINITY ){
3797 const char *azAff[] = { "blob", "text", "numeric", "integer", "real" };
3798 char aff;
3799 assert( nFarg==1 );
3800 aff = sqlite3ExprAffinity(pFarg->a[0].pExpr);
3801 sqlite3VdbeLoadString(v, target,
3802 aff ? azAff[aff-SQLITE_AFF_BLOB] : "none");
3803 return target;
3805 #endif
3807 for(i=0; i<nFarg; i++){
3808 if( i<32 && sqlite3ExprIsConstant(pFarg->a[i].pExpr) ){
3809 testcase( i==31 );
3810 constMask |= MASKBIT32(i);
3812 if( (pDef->funcFlags & SQLITE_FUNC_NEEDCOLL)!=0 && !pColl ){
3813 pColl = sqlite3ExprCollSeq(pParse, pFarg->a[i].pExpr);
3816 if( pFarg ){
3817 if( constMask ){
3818 r1 = pParse->nMem+1;
3819 pParse->nMem += nFarg;
3820 }else{
3821 r1 = sqlite3GetTempRange(pParse, nFarg);
3824 /* For length() and typeof() functions with a column argument,
3825 ** set the P5 parameter to the OP_Column opcode to OPFLAG_LENGTHARG
3826 ** or OPFLAG_TYPEOFARG respectively, to avoid unnecessary data
3827 ** loading.
3829 if( (pDef->funcFlags & (SQLITE_FUNC_LENGTH|SQLITE_FUNC_TYPEOF))!=0 ){
3830 u8 exprOp;
3831 assert( nFarg==1 );
3832 assert( pFarg->a[0].pExpr!=0 );
3833 exprOp = pFarg->a[0].pExpr->op;
3834 if( exprOp==TK_COLUMN || exprOp==TK_AGG_COLUMN ){
3835 assert( SQLITE_FUNC_LENGTH==OPFLAG_LENGTHARG );
3836 assert( SQLITE_FUNC_TYPEOF==OPFLAG_TYPEOFARG );
3837 testcase( pDef->funcFlags & OPFLAG_LENGTHARG );
3838 pFarg->a[0].pExpr->op2 =
3839 pDef->funcFlags & (OPFLAG_LENGTHARG|OPFLAG_TYPEOFARG);
3843 sqlite3ExprCachePush(pParse); /* Ticket 2ea2425d34be */
3844 sqlite3ExprCodeExprList(pParse, pFarg, r1, 0,
3845 SQLITE_ECEL_DUP|SQLITE_ECEL_FACTOR);
3846 sqlite3ExprCachePop(pParse); /* Ticket 2ea2425d34be */
3847 }else{
3848 r1 = 0;
3850 #ifndef SQLITE_OMIT_VIRTUALTABLE
3851 /* Possibly overload the function if the first argument is
3852 ** a virtual table column.
3854 ** For infix functions (LIKE, GLOB, REGEXP, and MATCH) use the
3855 ** second argument, not the first, as the argument to test to
3856 ** see if it is a column in a virtual table. This is done because
3857 ** the left operand of infix functions (the operand we want to
3858 ** control overloading) ends up as the second argument to the
3859 ** function. The expression "A glob B" is equivalent to
3860 ** "glob(B,A). We want to use the A in "A glob B" to test
3861 ** for function overloading. But we use the B term in "glob(B,A)".
3863 if( nFarg>=2 && (pExpr->flags & EP_InfixFunc) ){
3864 pDef = sqlite3VtabOverloadFunction(db, pDef, nFarg, pFarg->a[1].pExpr);
3865 }else if( nFarg>0 ){
3866 pDef = sqlite3VtabOverloadFunction(db, pDef, nFarg, pFarg->a[0].pExpr);
3868 #endif
3869 if( pDef->funcFlags & SQLITE_FUNC_NEEDCOLL ){
3870 if( !pColl ) pColl = db->pDfltColl;
3871 sqlite3VdbeAddOp4(v, OP_CollSeq, 0, 0, 0, (char *)pColl, P4_COLLSEQ);
3873 sqlite3VdbeAddOp4(v, pParse->iSelfTab ? OP_PureFunc0 : OP_Function0,
3874 constMask, r1, target, (char*)pDef, P4_FUNCDEF);
3875 sqlite3VdbeChangeP5(v, (u8)nFarg);
3876 if( nFarg && constMask==0 ){
3877 sqlite3ReleaseTempRange(pParse, r1, nFarg);
3879 return target;
3881 #ifndef SQLITE_OMIT_SUBQUERY
3882 case TK_EXISTS:
3883 case TK_SELECT: {
3884 int nCol;
3885 testcase( op==TK_EXISTS );
3886 testcase( op==TK_SELECT );
3887 if( op==TK_SELECT && (nCol = pExpr->x.pSelect->pEList->nExpr)!=1 ){
3888 sqlite3SubselectError(pParse, nCol, 1);
3889 }else{
3890 return sqlite3CodeSubselect(pParse, pExpr, 0, 0);
3892 break;
3894 case TK_SELECT_COLUMN: {
3895 int n;
3896 if( pExpr->pLeft->iTable==0 ){
3897 pExpr->pLeft->iTable = sqlite3CodeSubselect(pParse, pExpr->pLeft, 0, 0);
3899 assert( pExpr->iTable==0 || pExpr->pLeft->op==TK_SELECT );
3900 if( pExpr->iTable
3901 && pExpr->iTable!=(n = sqlite3ExprVectorSize(pExpr->pLeft))
3903 sqlite3ErrorMsg(pParse, "%d columns assigned %d values",
3904 pExpr->iTable, n);
3906 return pExpr->pLeft->iTable + pExpr->iColumn;
3908 case TK_IN: {
3909 int destIfFalse = sqlite3VdbeMakeLabel(v);
3910 int destIfNull = sqlite3VdbeMakeLabel(v);
3911 sqlite3VdbeAddOp2(v, OP_Null, 0, target);
3912 sqlite3ExprCodeIN(pParse, pExpr, destIfFalse, destIfNull);
3913 sqlite3VdbeAddOp2(v, OP_Integer, 1, target);
3914 sqlite3VdbeResolveLabel(v, destIfFalse);
3915 sqlite3VdbeAddOp2(v, OP_AddImm, target, 0);
3916 sqlite3VdbeResolveLabel(v, destIfNull);
3917 return target;
3919 #endif /* SQLITE_OMIT_SUBQUERY */
3923 ** x BETWEEN y AND z
3925 ** This is equivalent to
3927 ** x>=y AND x<=z
3929 ** X is stored in pExpr->pLeft.
3930 ** Y is stored in pExpr->pList->a[0].pExpr.
3931 ** Z is stored in pExpr->pList->a[1].pExpr.
3933 case TK_BETWEEN: {
3934 exprCodeBetween(pParse, pExpr, target, 0, 0);
3935 return target;
3937 case TK_SPAN:
3938 case TK_COLLATE:
3939 case TK_UPLUS: {
3940 return sqlite3ExprCodeTarget(pParse, pExpr->pLeft, target);
3943 case TK_TRIGGER: {
3944 /* If the opcode is TK_TRIGGER, then the expression is a reference
3945 ** to a column in the new.* or old.* pseudo-tables available to
3946 ** trigger programs. In this case Expr.iTable is set to 1 for the
3947 ** new.* pseudo-table, or 0 for the old.* pseudo-table. Expr.iColumn
3948 ** is set to the column of the pseudo-table to read, or to -1 to
3949 ** read the rowid field.
3951 ** The expression is implemented using an OP_Param opcode. The p1
3952 ** parameter is set to 0 for an old.rowid reference, or to (i+1)
3953 ** to reference another column of the old.* pseudo-table, where
3954 ** i is the index of the column. For a new.rowid reference, p1 is
3955 ** set to (n+1), where n is the number of columns in each pseudo-table.
3956 ** For a reference to any other column in the new.* pseudo-table, p1
3957 ** is set to (n+2+i), where n and i are as defined previously. For
3958 ** example, if the table on which triggers are being fired is
3959 ** declared as:
3961 ** CREATE TABLE t1(a, b);
3963 ** Then p1 is interpreted as follows:
3965 ** p1==0 -> old.rowid p1==3 -> new.rowid
3966 ** p1==1 -> old.a p1==4 -> new.a
3967 ** p1==2 -> old.b p1==5 -> new.b
3969 Table *pTab = pExpr->pTab;
3970 int p1 = pExpr->iTable * (pTab->nCol+1) + 1 + pExpr->iColumn;
3972 assert( pExpr->iTable==0 || pExpr->iTable==1 );
3973 assert( pExpr->iColumn>=-1 && pExpr->iColumn<pTab->nCol );
3974 assert( pTab->iPKey<0 || pExpr->iColumn!=pTab->iPKey );
3975 assert( p1>=0 && p1<(pTab->nCol*2+2) );
3977 sqlite3VdbeAddOp2(v, OP_Param, p1, target);
3978 VdbeComment((v, "%s.%s -> $%d",
3979 (pExpr->iTable ? "new" : "old"),
3980 (pExpr->iColumn<0 ? "rowid" : pExpr->pTab->aCol[pExpr->iColumn].zName),
3981 target
3984 #ifndef SQLITE_OMIT_FLOATING_POINT
3985 /* If the column has REAL affinity, it may currently be stored as an
3986 ** integer. Use OP_RealAffinity to make sure it is really real.
3988 ** EVIDENCE-OF: R-60985-57662 SQLite will convert the value back to
3989 ** floating point when extracting it from the record. */
3990 if( pExpr->iColumn>=0
3991 && pTab->aCol[pExpr->iColumn].affinity==SQLITE_AFF_REAL
3993 sqlite3VdbeAddOp1(v, OP_RealAffinity, target);
3995 #endif
3996 break;
3999 case TK_VECTOR: {
4000 sqlite3ErrorMsg(pParse, "row value misused");
4001 break;
4004 case TK_IF_NULL_ROW: {
4005 int addrINR;
4006 addrINR = sqlite3VdbeAddOp1(v, OP_IfNullRow, pExpr->iTable);
4007 sqlite3ExprCachePush(pParse);
4008 inReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft, target);
4009 sqlite3ExprCachePop(pParse);
4010 sqlite3VdbeJumpHere(v, addrINR);
4011 sqlite3VdbeChangeP3(v, addrINR, inReg);
4012 break;
4016 ** Form A:
4017 ** CASE x WHEN e1 THEN r1 WHEN e2 THEN r2 ... WHEN eN THEN rN ELSE y END
4019 ** Form B:
4020 ** CASE WHEN e1 THEN r1 WHEN e2 THEN r2 ... WHEN eN THEN rN ELSE y END
4022 ** Form A is can be transformed into the equivalent form B as follows:
4023 ** CASE WHEN x=e1 THEN r1 WHEN x=e2 THEN r2 ...
4024 ** WHEN x=eN THEN rN ELSE y END
4026 ** X (if it exists) is in pExpr->pLeft.
4027 ** Y is in the last element of pExpr->x.pList if pExpr->x.pList->nExpr is
4028 ** odd. The Y is also optional. If the number of elements in x.pList
4029 ** is even, then Y is omitted and the "otherwise" result is NULL.
4030 ** Ei is in pExpr->pList->a[i*2] and Ri is pExpr->pList->a[i*2+1].
4032 ** The result of the expression is the Ri for the first matching Ei,
4033 ** or if there is no matching Ei, the ELSE term Y, or if there is
4034 ** no ELSE term, NULL.
4036 default: assert( op==TK_CASE ); {
4037 int endLabel; /* GOTO label for end of CASE stmt */
4038 int nextCase; /* GOTO label for next WHEN clause */
4039 int nExpr; /* 2x number of WHEN terms */
4040 int i; /* Loop counter */
4041 ExprList *pEList; /* List of WHEN terms */
4042 struct ExprList_item *aListelem; /* Array of WHEN terms */
4043 Expr opCompare; /* The X==Ei expression */
4044 Expr *pX; /* The X expression */
4045 Expr *pTest = 0; /* X==Ei (form A) or just Ei (form B) */
4046 VVA_ONLY( int iCacheLevel = pParse->iCacheLevel; )
4048 assert( !ExprHasProperty(pExpr, EP_xIsSelect) && pExpr->x.pList );
4049 assert(pExpr->x.pList->nExpr > 0);
4050 pEList = pExpr->x.pList;
4051 aListelem = pEList->a;
4052 nExpr = pEList->nExpr;
4053 endLabel = sqlite3VdbeMakeLabel(v);
4054 if( (pX = pExpr->pLeft)!=0 ){
4055 tempX = *pX;
4056 testcase( pX->op==TK_COLUMN );
4057 exprToRegister(&tempX, exprCodeVector(pParse, &tempX, &regFree1));
4058 testcase( regFree1==0 );
4059 memset(&opCompare, 0, sizeof(opCompare));
4060 opCompare.op = TK_EQ;
4061 opCompare.pLeft = &tempX;
4062 pTest = &opCompare;
4063 /* Ticket b351d95f9cd5ef17e9d9dbae18f5ca8611190001:
4064 ** The value in regFree1 might get SCopy-ed into the file result.
4065 ** So make sure that the regFree1 register is not reused for other
4066 ** purposes and possibly overwritten. */
4067 regFree1 = 0;
4069 for(i=0; i<nExpr-1; i=i+2){
4070 sqlite3ExprCachePush(pParse);
4071 if( pX ){
4072 assert( pTest!=0 );
4073 opCompare.pRight = aListelem[i].pExpr;
4074 }else{
4075 pTest = aListelem[i].pExpr;
4077 nextCase = sqlite3VdbeMakeLabel(v);
4078 testcase( pTest->op==TK_COLUMN );
4079 sqlite3ExprIfFalse(pParse, pTest, nextCase, SQLITE_JUMPIFNULL);
4080 testcase( aListelem[i+1].pExpr->op==TK_COLUMN );
4081 sqlite3ExprCode(pParse, aListelem[i+1].pExpr, target);
4082 sqlite3VdbeGoto(v, endLabel);
4083 sqlite3ExprCachePop(pParse);
4084 sqlite3VdbeResolveLabel(v, nextCase);
4086 if( (nExpr&1)!=0 ){
4087 sqlite3ExprCachePush(pParse);
4088 sqlite3ExprCode(pParse, pEList->a[nExpr-1].pExpr, target);
4089 sqlite3ExprCachePop(pParse);
4090 }else{
4091 sqlite3VdbeAddOp2(v, OP_Null, 0, target);
4093 assert( pParse->db->mallocFailed || pParse->nErr>0
4094 || pParse->iCacheLevel==iCacheLevel );
4095 sqlite3VdbeResolveLabel(v, endLabel);
4096 break;
4098 #ifndef SQLITE_OMIT_TRIGGER
4099 case TK_RAISE: {
4100 assert( pExpr->affinity==OE_Rollback
4101 || pExpr->affinity==OE_Abort
4102 || pExpr->affinity==OE_Fail
4103 || pExpr->affinity==OE_Ignore
4105 if( !pParse->pTriggerTab ){
4106 sqlite3ErrorMsg(pParse,
4107 "RAISE() may only be used within a trigger-program");
4108 return 0;
4110 if( pExpr->affinity==OE_Abort ){
4111 sqlite3MayAbort(pParse);
4113 assert( !ExprHasProperty(pExpr, EP_IntValue) );
4114 if( pExpr->affinity==OE_Ignore ){
4115 sqlite3VdbeAddOp4(
4116 v, OP_Halt, SQLITE_OK, OE_Ignore, 0, pExpr->u.zToken,0);
4117 VdbeCoverage(v);
4118 }else{
4119 sqlite3HaltConstraint(pParse, SQLITE_CONSTRAINT_TRIGGER,
4120 pExpr->affinity, pExpr->u.zToken, 0, 0);
4123 break;
4125 #endif
4127 sqlite3ReleaseTempReg(pParse, regFree1);
4128 sqlite3ReleaseTempReg(pParse, regFree2);
4129 return inReg;
4133 ** Factor out the code of the given expression to initialization time.
4135 ** If regDest>=0 then the result is always stored in that register and the
4136 ** result is not reusable. If regDest<0 then this routine is free to
4137 ** store the value whereever it wants. The register where the expression
4138 ** is stored is returned. When regDest<0, two identical expressions will
4139 ** code to the same register.
4141 int sqlite3ExprCodeAtInit(
4142 Parse *pParse, /* Parsing context */
4143 Expr *pExpr, /* The expression to code when the VDBE initializes */
4144 int regDest /* Store the value in this register */
4146 ExprList *p;
4147 assert( ConstFactorOk(pParse) );
4148 p = pParse->pConstExpr;
4149 if( regDest<0 && p ){
4150 struct ExprList_item *pItem;
4151 int i;
4152 for(pItem=p->a, i=p->nExpr; i>0; pItem++, i--){
4153 if( pItem->reusable && sqlite3ExprCompare(0,pItem->pExpr,pExpr,-1)==0 ){
4154 return pItem->u.iConstExprReg;
4158 pExpr = sqlite3ExprDup(pParse->db, pExpr, 0);
4159 p = sqlite3ExprListAppend(pParse, p, pExpr);
4160 if( p ){
4161 struct ExprList_item *pItem = &p->a[p->nExpr-1];
4162 pItem->reusable = regDest<0;
4163 if( regDest<0 ) regDest = ++pParse->nMem;
4164 pItem->u.iConstExprReg = regDest;
4166 pParse->pConstExpr = p;
4167 return regDest;
4171 ** Generate code to evaluate an expression and store the results
4172 ** into a register. Return the register number where the results
4173 ** are stored.
4175 ** If the register is a temporary register that can be deallocated,
4176 ** then write its number into *pReg. If the result register is not
4177 ** a temporary, then set *pReg to zero.
4179 ** If pExpr is a constant, then this routine might generate this
4180 ** code to fill the register in the initialization section of the
4181 ** VDBE program, in order to factor it out of the evaluation loop.
4183 int sqlite3ExprCodeTemp(Parse *pParse, Expr *pExpr, int *pReg){
4184 int r2;
4185 pExpr = sqlite3ExprSkipCollate(pExpr);
4186 if( ConstFactorOk(pParse)
4187 && pExpr->op!=TK_REGISTER
4188 && sqlite3ExprIsConstantNotJoin(pExpr)
4190 *pReg = 0;
4191 r2 = sqlite3ExprCodeAtInit(pParse, pExpr, -1);
4192 }else{
4193 int r1 = sqlite3GetTempReg(pParse);
4194 r2 = sqlite3ExprCodeTarget(pParse, pExpr, r1);
4195 if( r2==r1 ){
4196 *pReg = r1;
4197 }else{
4198 sqlite3ReleaseTempReg(pParse, r1);
4199 *pReg = 0;
4202 return r2;
4206 ** Generate code that will evaluate expression pExpr and store the
4207 ** results in register target. The results are guaranteed to appear
4208 ** in register target.
4210 void sqlite3ExprCode(Parse *pParse, Expr *pExpr, int target){
4211 int inReg;
4213 assert( target>0 && target<=pParse->nMem );
4214 if( pExpr && pExpr->op==TK_REGISTER ){
4215 sqlite3VdbeAddOp2(pParse->pVdbe, OP_Copy, pExpr->iTable, target);
4216 }else{
4217 inReg = sqlite3ExprCodeTarget(pParse, pExpr, target);
4218 assert( pParse->pVdbe!=0 || pParse->db->mallocFailed );
4219 if( inReg!=target && pParse->pVdbe ){
4220 sqlite3VdbeAddOp2(pParse->pVdbe, OP_SCopy, inReg, target);
4226 ** Make a transient copy of expression pExpr and then code it using
4227 ** sqlite3ExprCode(). This routine works just like sqlite3ExprCode()
4228 ** except that the input expression is guaranteed to be unchanged.
4230 void sqlite3ExprCodeCopy(Parse *pParse, Expr *pExpr, int target){
4231 sqlite3 *db = pParse->db;
4232 pExpr = sqlite3ExprDup(db, pExpr, 0);
4233 if( !db->mallocFailed ) sqlite3ExprCode(pParse, pExpr, target);
4234 sqlite3ExprDelete(db, pExpr);
4238 ** Generate code that will evaluate expression pExpr and store the
4239 ** results in register target. The results are guaranteed to appear
4240 ** in register target. If the expression is constant, then this routine
4241 ** might choose to code the expression at initialization time.
4243 void sqlite3ExprCodeFactorable(Parse *pParse, Expr *pExpr, int target){
4244 if( pParse->okConstFactor && sqlite3ExprIsConstant(pExpr) ){
4245 sqlite3ExprCodeAtInit(pParse, pExpr, target);
4246 }else{
4247 sqlite3ExprCode(pParse, pExpr, target);
4252 ** Generate code that evaluates the given expression and puts the result
4253 ** in register target.
4255 ** Also make a copy of the expression results into another "cache" register
4256 ** and modify the expression so that the next time it is evaluated,
4257 ** the result is a copy of the cache register.
4259 ** This routine is used for expressions that are used multiple
4260 ** times. They are evaluated once and the results of the expression
4261 ** are reused.
4263 void sqlite3ExprCodeAndCache(Parse *pParse, Expr *pExpr, int target){
4264 Vdbe *v = pParse->pVdbe;
4265 int iMem;
4267 assert( target>0 );
4268 assert( pExpr->op!=TK_REGISTER );
4269 sqlite3ExprCode(pParse, pExpr, target);
4270 iMem = ++pParse->nMem;
4271 sqlite3VdbeAddOp2(v, OP_Copy, target, iMem);
4272 exprToRegister(pExpr, iMem);
4276 ** Generate code that pushes the value of every element of the given
4277 ** expression list into a sequence of registers beginning at target.
4279 ** Return the number of elements evaluated. The number returned will
4280 ** usually be pList->nExpr but might be reduced if SQLITE_ECEL_OMITREF
4281 ** is defined.
4283 ** The SQLITE_ECEL_DUP flag prevents the arguments from being
4284 ** filled using OP_SCopy. OP_Copy must be used instead.
4286 ** The SQLITE_ECEL_FACTOR argument allows constant arguments to be
4287 ** factored out into initialization code.
4289 ** The SQLITE_ECEL_REF flag means that expressions in the list with
4290 ** ExprList.a[].u.x.iOrderByCol>0 have already been evaluated and stored
4291 ** in registers at srcReg, and so the value can be copied from there.
4292 ** If SQLITE_ECEL_OMITREF is also set, then the values with u.x.iOrderByCol>0
4293 ** are simply omitted rather than being copied from srcReg.
4295 int sqlite3ExprCodeExprList(
4296 Parse *pParse, /* Parsing context */
4297 ExprList *pList, /* The expression list to be coded */
4298 int target, /* Where to write results */
4299 int srcReg, /* Source registers if SQLITE_ECEL_REF */
4300 u8 flags /* SQLITE_ECEL_* flags */
4302 struct ExprList_item *pItem;
4303 int i, j, n;
4304 u8 copyOp = (flags & SQLITE_ECEL_DUP) ? OP_Copy : OP_SCopy;
4305 Vdbe *v = pParse->pVdbe;
4306 assert( pList!=0 );
4307 assert( target>0 );
4308 assert( pParse->pVdbe!=0 ); /* Never gets this far otherwise */
4309 n = pList->nExpr;
4310 if( !ConstFactorOk(pParse) ) flags &= ~SQLITE_ECEL_FACTOR;
4311 for(pItem=pList->a, i=0; i<n; i++, pItem++){
4312 Expr *pExpr = pItem->pExpr;
4313 if( (flags & SQLITE_ECEL_REF)!=0 && (j = pItem->u.x.iOrderByCol)>0 ){
4314 if( flags & SQLITE_ECEL_OMITREF ){
4315 i--;
4316 n--;
4317 }else{
4318 sqlite3VdbeAddOp2(v, copyOp, j+srcReg-1, target+i);
4320 }else if( (flags & SQLITE_ECEL_FACTOR)!=0 && sqlite3ExprIsConstant(pExpr) ){
4321 sqlite3ExprCodeAtInit(pParse, pExpr, target+i);
4322 }else{
4323 int inReg = sqlite3ExprCodeTarget(pParse, pExpr, target+i);
4324 if( inReg!=target+i ){
4325 VdbeOp *pOp;
4326 if( copyOp==OP_Copy
4327 && (pOp=sqlite3VdbeGetOp(v, -1))->opcode==OP_Copy
4328 && pOp->p1+pOp->p3+1==inReg
4329 && pOp->p2+pOp->p3+1==target+i
4331 pOp->p3++;
4332 }else{
4333 sqlite3VdbeAddOp2(v, copyOp, inReg, target+i);
4338 return n;
4342 ** Generate code for a BETWEEN operator.
4344 ** x BETWEEN y AND z
4346 ** The above is equivalent to
4348 ** x>=y AND x<=z
4350 ** Code it as such, taking care to do the common subexpression
4351 ** elimination of x.
4353 ** The xJumpIf parameter determines details:
4355 ** NULL: Store the boolean result in reg[dest]
4356 ** sqlite3ExprIfTrue: Jump to dest if true
4357 ** sqlite3ExprIfFalse: Jump to dest if false
4359 ** The jumpIfNull parameter is ignored if xJumpIf is NULL.
4361 static void exprCodeBetween(
4362 Parse *pParse, /* Parsing and code generating context */
4363 Expr *pExpr, /* The BETWEEN expression */
4364 int dest, /* Jump destination or storage location */
4365 void (*xJump)(Parse*,Expr*,int,int), /* Action to take */
4366 int jumpIfNull /* Take the jump if the BETWEEN is NULL */
4368 Expr exprAnd; /* The AND operator in x>=y AND x<=z */
4369 Expr compLeft; /* The x>=y term */
4370 Expr compRight; /* The x<=z term */
4371 Expr exprX; /* The x subexpression */
4372 int regFree1 = 0; /* Temporary use register */
4375 memset(&compLeft, 0, sizeof(Expr));
4376 memset(&compRight, 0, sizeof(Expr));
4377 memset(&exprAnd, 0, sizeof(Expr));
4379 assert( !ExprHasProperty(pExpr, EP_xIsSelect) );
4380 exprX = *pExpr->pLeft;
4381 exprAnd.op = TK_AND;
4382 exprAnd.pLeft = &compLeft;
4383 exprAnd.pRight = &compRight;
4384 compLeft.op = TK_GE;
4385 compLeft.pLeft = &exprX;
4386 compLeft.pRight = pExpr->x.pList->a[0].pExpr;
4387 compRight.op = TK_LE;
4388 compRight.pLeft = &exprX;
4389 compRight.pRight = pExpr->x.pList->a[1].pExpr;
4390 exprToRegister(&exprX, exprCodeVector(pParse, &exprX, &regFree1));
4391 if( xJump ){
4392 xJump(pParse, &exprAnd, dest, jumpIfNull);
4393 }else{
4394 /* Mark the expression is being from the ON or USING clause of a join
4395 ** so that the sqlite3ExprCodeTarget() routine will not attempt to move
4396 ** it into the Parse.pConstExpr list. We should use a new bit for this,
4397 ** for clarity, but we are out of bits in the Expr.flags field so we
4398 ** have to reuse the EP_FromJoin bit. Bummer. */
4399 exprX.flags |= EP_FromJoin;
4400 sqlite3ExprCodeTarget(pParse, &exprAnd, dest);
4402 sqlite3ReleaseTempReg(pParse, regFree1);
4404 /* Ensure adequate test coverage */
4405 testcase( xJump==sqlite3ExprIfTrue && jumpIfNull==0 && regFree1==0 );
4406 testcase( xJump==sqlite3ExprIfTrue && jumpIfNull==0 && regFree1!=0 );
4407 testcase( xJump==sqlite3ExprIfTrue && jumpIfNull!=0 && regFree1==0 );
4408 testcase( xJump==sqlite3ExprIfTrue && jumpIfNull!=0 && regFree1!=0 );
4409 testcase( xJump==sqlite3ExprIfFalse && jumpIfNull==0 && regFree1==0 );
4410 testcase( xJump==sqlite3ExprIfFalse && jumpIfNull==0 && regFree1!=0 );
4411 testcase( xJump==sqlite3ExprIfFalse && jumpIfNull!=0 && regFree1==0 );
4412 testcase( xJump==sqlite3ExprIfFalse && jumpIfNull!=0 && regFree1!=0 );
4413 testcase( xJump==0 );
4417 ** Generate code for a boolean expression such that a jump is made
4418 ** to the label "dest" if the expression is true but execution
4419 ** continues straight thru if the expression is false.
4421 ** If the expression evaluates to NULL (neither true nor false), then
4422 ** take the jump if the jumpIfNull flag is SQLITE_JUMPIFNULL.
4424 ** This code depends on the fact that certain token values (ex: TK_EQ)
4425 ** are the same as opcode values (ex: OP_Eq) that implement the corresponding
4426 ** operation. Special comments in vdbe.c and the mkopcodeh.awk script in
4427 ** the make process cause these values to align. Assert()s in the code
4428 ** below verify that the numbers are aligned correctly.
4430 void sqlite3ExprIfTrue(Parse *pParse, Expr *pExpr, int dest, int jumpIfNull){
4431 Vdbe *v = pParse->pVdbe;
4432 int op = 0;
4433 int regFree1 = 0;
4434 int regFree2 = 0;
4435 int r1, r2;
4437 assert( jumpIfNull==SQLITE_JUMPIFNULL || jumpIfNull==0 );
4438 if( NEVER(v==0) ) return; /* Existence of VDBE checked by caller */
4439 if( NEVER(pExpr==0) ) return; /* No way this can happen */
4440 op = pExpr->op;
4441 switch( op ){
4442 case TK_AND: {
4443 int d2 = sqlite3VdbeMakeLabel(v);
4444 testcase( jumpIfNull==0 );
4445 sqlite3ExprIfFalse(pParse, pExpr->pLeft, d2,jumpIfNull^SQLITE_JUMPIFNULL);
4446 sqlite3ExprCachePush(pParse);
4447 sqlite3ExprIfTrue(pParse, pExpr->pRight, dest, jumpIfNull);
4448 sqlite3VdbeResolveLabel(v, d2);
4449 sqlite3ExprCachePop(pParse);
4450 break;
4452 case TK_OR: {
4453 testcase( jumpIfNull==0 );
4454 sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, jumpIfNull);
4455 sqlite3ExprCachePush(pParse);
4456 sqlite3ExprIfTrue(pParse, pExpr->pRight, dest, jumpIfNull);
4457 sqlite3ExprCachePop(pParse);
4458 break;
4460 case TK_NOT: {
4461 testcase( jumpIfNull==0 );
4462 sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, jumpIfNull);
4463 break;
4465 case TK_IS:
4466 case TK_ISNOT:
4467 testcase( op==TK_IS );
4468 testcase( op==TK_ISNOT );
4469 op = (op==TK_IS) ? TK_EQ : TK_NE;
4470 jumpIfNull = SQLITE_NULLEQ;
4471 /* Fall thru */
4472 case TK_LT:
4473 case TK_LE:
4474 case TK_GT:
4475 case TK_GE:
4476 case TK_NE:
4477 case TK_EQ: {
4478 if( sqlite3ExprIsVector(pExpr->pLeft) ) goto default_expr;
4479 testcase( jumpIfNull==0 );
4480 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
4481 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, &regFree2);
4482 codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op,
4483 r1, r2, dest, jumpIfNull);
4484 assert(TK_LT==OP_Lt); testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt);
4485 assert(TK_LE==OP_Le); testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le);
4486 assert(TK_GT==OP_Gt); testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt);
4487 assert(TK_GE==OP_Ge); testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge);
4488 assert(TK_EQ==OP_Eq); testcase(op==OP_Eq);
4489 VdbeCoverageIf(v, op==OP_Eq && jumpIfNull==SQLITE_NULLEQ);
4490 VdbeCoverageIf(v, op==OP_Eq && jumpIfNull!=SQLITE_NULLEQ);
4491 assert(TK_NE==OP_Ne); testcase(op==OP_Ne);
4492 VdbeCoverageIf(v, op==OP_Ne && jumpIfNull==SQLITE_NULLEQ);
4493 VdbeCoverageIf(v, op==OP_Ne && jumpIfNull!=SQLITE_NULLEQ);
4494 testcase( regFree1==0 );
4495 testcase( regFree2==0 );
4496 break;
4498 case TK_ISNULL:
4499 case TK_NOTNULL: {
4500 assert( TK_ISNULL==OP_IsNull ); testcase( op==TK_ISNULL );
4501 assert( TK_NOTNULL==OP_NotNull ); testcase( op==TK_NOTNULL );
4502 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
4503 sqlite3VdbeAddOp2(v, op, r1, dest);
4504 VdbeCoverageIf(v, op==TK_ISNULL);
4505 VdbeCoverageIf(v, op==TK_NOTNULL);
4506 testcase( regFree1==0 );
4507 break;
4509 case TK_BETWEEN: {
4510 testcase( jumpIfNull==0 );
4511 exprCodeBetween(pParse, pExpr, dest, sqlite3ExprIfTrue, jumpIfNull);
4512 break;
4514 #ifndef SQLITE_OMIT_SUBQUERY
4515 case TK_IN: {
4516 int destIfFalse = sqlite3VdbeMakeLabel(v);
4517 int destIfNull = jumpIfNull ? dest : destIfFalse;
4518 sqlite3ExprCodeIN(pParse, pExpr, destIfFalse, destIfNull);
4519 sqlite3VdbeGoto(v, dest);
4520 sqlite3VdbeResolveLabel(v, destIfFalse);
4521 break;
4523 #endif
4524 default: {
4525 default_expr:
4526 if( exprAlwaysTrue(pExpr) ){
4527 sqlite3VdbeGoto(v, dest);
4528 }else if( exprAlwaysFalse(pExpr) ){
4529 /* No-op */
4530 }else{
4531 r1 = sqlite3ExprCodeTemp(pParse, pExpr, &regFree1);
4532 sqlite3VdbeAddOp3(v, OP_If, r1, dest, jumpIfNull!=0);
4533 VdbeCoverage(v);
4534 testcase( regFree1==0 );
4535 testcase( jumpIfNull==0 );
4537 break;
4540 sqlite3ReleaseTempReg(pParse, regFree1);
4541 sqlite3ReleaseTempReg(pParse, regFree2);
4545 ** Generate code for a boolean expression such that a jump is made
4546 ** to the label "dest" if the expression is false but execution
4547 ** continues straight thru if the expression is true.
4549 ** If the expression evaluates to NULL (neither true nor false) then
4550 ** jump if jumpIfNull is SQLITE_JUMPIFNULL or fall through if jumpIfNull
4551 ** is 0.
4553 void sqlite3ExprIfFalse(Parse *pParse, Expr *pExpr, int dest, int jumpIfNull){
4554 Vdbe *v = pParse->pVdbe;
4555 int op = 0;
4556 int regFree1 = 0;
4557 int regFree2 = 0;
4558 int r1, r2;
4560 assert( jumpIfNull==SQLITE_JUMPIFNULL || jumpIfNull==0 );
4561 if( NEVER(v==0) ) return; /* Existence of VDBE checked by caller */
4562 if( pExpr==0 ) return;
4564 /* The value of pExpr->op and op are related as follows:
4566 ** pExpr->op op
4567 ** --------- ----------
4568 ** TK_ISNULL OP_NotNull
4569 ** TK_NOTNULL OP_IsNull
4570 ** TK_NE OP_Eq
4571 ** TK_EQ OP_Ne
4572 ** TK_GT OP_Le
4573 ** TK_LE OP_Gt
4574 ** TK_GE OP_Lt
4575 ** TK_LT OP_Ge
4577 ** For other values of pExpr->op, op is undefined and unused.
4578 ** The value of TK_ and OP_ constants are arranged such that we
4579 ** can compute the mapping above using the following expression.
4580 ** Assert()s verify that the computation is correct.
4582 op = ((pExpr->op+(TK_ISNULL&1))^1)-(TK_ISNULL&1);
4584 /* Verify correct alignment of TK_ and OP_ constants
4586 assert( pExpr->op!=TK_ISNULL || op==OP_NotNull );
4587 assert( pExpr->op!=TK_NOTNULL || op==OP_IsNull );
4588 assert( pExpr->op!=TK_NE || op==OP_Eq );
4589 assert( pExpr->op!=TK_EQ || op==OP_Ne );
4590 assert( pExpr->op!=TK_LT || op==OP_Ge );
4591 assert( pExpr->op!=TK_LE || op==OP_Gt );
4592 assert( pExpr->op!=TK_GT || op==OP_Le );
4593 assert( pExpr->op!=TK_GE || op==OP_Lt );
4595 switch( pExpr->op ){
4596 case TK_AND: {
4597 testcase( jumpIfNull==0 );
4598 sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, jumpIfNull);
4599 sqlite3ExprCachePush(pParse);
4600 sqlite3ExprIfFalse(pParse, pExpr->pRight, dest, jumpIfNull);
4601 sqlite3ExprCachePop(pParse);
4602 break;
4604 case TK_OR: {
4605 int d2 = sqlite3VdbeMakeLabel(v);
4606 testcase( jumpIfNull==0 );
4607 sqlite3ExprIfTrue(pParse, pExpr->pLeft, d2, jumpIfNull^SQLITE_JUMPIFNULL);
4608 sqlite3ExprCachePush(pParse);
4609 sqlite3ExprIfFalse(pParse, pExpr->pRight, dest, jumpIfNull);
4610 sqlite3VdbeResolveLabel(v, d2);
4611 sqlite3ExprCachePop(pParse);
4612 break;
4614 case TK_NOT: {
4615 testcase( jumpIfNull==0 );
4616 sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, jumpIfNull);
4617 break;
4619 case TK_IS:
4620 case TK_ISNOT:
4621 testcase( pExpr->op==TK_IS );
4622 testcase( pExpr->op==TK_ISNOT );
4623 op = (pExpr->op==TK_IS) ? TK_NE : TK_EQ;
4624 jumpIfNull = SQLITE_NULLEQ;
4625 /* Fall thru */
4626 case TK_LT:
4627 case TK_LE:
4628 case TK_GT:
4629 case TK_GE:
4630 case TK_NE:
4631 case TK_EQ: {
4632 if( sqlite3ExprIsVector(pExpr->pLeft) ) goto default_expr;
4633 testcase( jumpIfNull==0 );
4634 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
4635 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, &regFree2);
4636 codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op,
4637 r1, r2, dest, jumpIfNull);
4638 assert(TK_LT==OP_Lt); testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt);
4639 assert(TK_LE==OP_Le); testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le);
4640 assert(TK_GT==OP_Gt); testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt);
4641 assert(TK_GE==OP_Ge); testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge);
4642 assert(TK_EQ==OP_Eq); testcase(op==OP_Eq);
4643 VdbeCoverageIf(v, op==OP_Eq && jumpIfNull!=SQLITE_NULLEQ);
4644 VdbeCoverageIf(v, op==OP_Eq && jumpIfNull==SQLITE_NULLEQ);
4645 assert(TK_NE==OP_Ne); testcase(op==OP_Ne);
4646 VdbeCoverageIf(v, op==OP_Ne && jumpIfNull!=SQLITE_NULLEQ);
4647 VdbeCoverageIf(v, op==OP_Ne && jumpIfNull==SQLITE_NULLEQ);
4648 testcase( regFree1==0 );
4649 testcase( regFree2==0 );
4650 break;
4652 case TK_ISNULL:
4653 case TK_NOTNULL: {
4654 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
4655 sqlite3VdbeAddOp2(v, op, r1, dest);
4656 testcase( op==TK_ISNULL ); VdbeCoverageIf(v, op==TK_ISNULL);
4657 testcase( op==TK_NOTNULL ); VdbeCoverageIf(v, op==TK_NOTNULL);
4658 testcase( regFree1==0 );
4659 break;
4661 case TK_BETWEEN: {
4662 testcase( jumpIfNull==0 );
4663 exprCodeBetween(pParse, pExpr, dest, sqlite3ExprIfFalse, jumpIfNull);
4664 break;
4666 #ifndef SQLITE_OMIT_SUBQUERY
4667 case TK_IN: {
4668 if( jumpIfNull ){
4669 sqlite3ExprCodeIN(pParse, pExpr, dest, dest);
4670 }else{
4671 int destIfNull = sqlite3VdbeMakeLabel(v);
4672 sqlite3ExprCodeIN(pParse, pExpr, dest, destIfNull);
4673 sqlite3VdbeResolveLabel(v, destIfNull);
4675 break;
4677 #endif
4678 default: {
4679 default_expr:
4680 if( exprAlwaysFalse(pExpr) ){
4681 sqlite3VdbeGoto(v, dest);
4682 }else if( exprAlwaysTrue(pExpr) ){
4683 /* no-op */
4684 }else{
4685 r1 = sqlite3ExprCodeTemp(pParse, pExpr, &regFree1);
4686 sqlite3VdbeAddOp3(v, OP_IfNot, r1, dest, jumpIfNull!=0);
4687 VdbeCoverage(v);
4688 testcase( regFree1==0 );
4689 testcase( jumpIfNull==0 );
4691 break;
4694 sqlite3ReleaseTempReg(pParse, regFree1);
4695 sqlite3ReleaseTempReg(pParse, regFree2);
4699 ** Like sqlite3ExprIfFalse() except that a copy is made of pExpr before
4700 ** code generation, and that copy is deleted after code generation. This
4701 ** ensures that the original pExpr is unchanged.
4703 void sqlite3ExprIfFalseDup(Parse *pParse, Expr *pExpr, int dest,int jumpIfNull){
4704 sqlite3 *db = pParse->db;
4705 Expr *pCopy = sqlite3ExprDup(db, pExpr, 0);
4706 if( db->mallocFailed==0 ){
4707 sqlite3ExprIfFalse(pParse, pCopy, dest, jumpIfNull);
4709 sqlite3ExprDelete(db, pCopy);
4713 ** Expression pVar is guaranteed to be an SQL variable. pExpr may be any
4714 ** type of expression.
4716 ** If pExpr is a simple SQL value - an integer, real, string, blob
4717 ** or NULL value - then the VDBE currently being prepared is configured
4718 ** to re-prepare each time a new value is bound to variable pVar.
4720 ** Additionally, if pExpr is a simple SQL value and the value is the
4721 ** same as that currently bound to variable pVar, non-zero is returned.
4722 ** Otherwise, if the values are not the same or if pExpr is not a simple
4723 ** SQL value, zero is returned.
4725 static int exprCompareVariable(Parse *pParse, Expr *pVar, Expr *pExpr){
4726 int res = 0;
4727 int iVar;
4728 sqlite3_value *pL, *pR = 0;
4730 sqlite3ValueFromExpr(pParse->db, pExpr, SQLITE_UTF8, SQLITE_AFF_BLOB, &pR);
4731 if( pR ){
4732 iVar = pVar->iColumn;
4733 sqlite3VdbeSetVarmask(pParse->pVdbe, iVar);
4734 pL = sqlite3VdbeGetBoundValue(pParse->pReprepare, iVar, SQLITE_AFF_BLOB);
4735 if( pL ){
4736 if( sqlite3_value_type(pL)==SQLITE_TEXT ){
4737 sqlite3_value_text(pL); /* Make sure the encoding is UTF-8 */
4739 res = 0==sqlite3MemCompare(pL, pR, 0);
4741 sqlite3ValueFree(pR);
4742 sqlite3ValueFree(pL);
4745 return res;
4749 ** Do a deep comparison of two expression trees. Return 0 if the two
4750 ** expressions are completely identical. Return 1 if they differ only
4751 ** by a COLLATE operator at the top level. Return 2 if there are differences
4752 ** other than the top-level COLLATE operator.
4754 ** If any subelement of pB has Expr.iTable==(-1) then it is allowed
4755 ** to compare equal to an equivalent element in pA with Expr.iTable==iTab.
4757 ** The pA side might be using TK_REGISTER. If that is the case and pB is
4758 ** not using TK_REGISTER but is otherwise equivalent, then still return 0.
4760 ** Sometimes this routine will return 2 even if the two expressions
4761 ** really are equivalent. If we cannot prove that the expressions are
4762 ** identical, we return 2 just to be safe. So if this routine
4763 ** returns 2, then you do not really know for certain if the two
4764 ** expressions are the same. But if you get a 0 or 1 return, then you
4765 ** can be sure the expressions are the same. In the places where
4766 ** this routine is used, it does not hurt to get an extra 2 - that
4767 ** just might result in some slightly slower code. But returning
4768 ** an incorrect 0 or 1 could lead to a malfunction.
4770 ** If pParse is not NULL then TK_VARIABLE terms in pA with bindings in
4771 ** pParse->pReprepare can be matched against literals in pB. The
4772 ** pParse->pVdbe->expmask bitmask is updated for each variable referenced.
4773 ** If pParse is NULL (the normal case) then any TK_VARIABLE term in
4774 ** Argument pParse should normally be NULL. If it is not NULL and pA or
4775 ** pB causes a return value of 2.
4777 int sqlite3ExprCompare(Parse *pParse, Expr *pA, Expr *pB, int iTab){
4778 u32 combinedFlags;
4779 if( pA==0 || pB==0 ){
4780 return pB==pA ? 0 : 2;
4782 if( pParse && pA->op==TK_VARIABLE && exprCompareVariable(pParse, pA, pB) ){
4783 return 0;
4785 combinedFlags = pA->flags | pB->flags;
4786 if( combinedFlags & EP_IntValue ){
4787 if( (pA->flags&pB->flags&EP_IntValue)!=0 && pA->u.iValue==pB->u.iValue ){
4788 return 0;
4790 return 2;
4792 if( pA->op!=pB->op ){
4793 if( pA->op==TK_COLLATE && sqlite3ExprCompare(pParse, pA->pLeft,pB,iTab)<2 ){
4794 return 1;
4796 if( pB->op==TK_COLLATE && sqlite3ExprCompare(pParse, pA,pB->pLeft,iTab)<2 ){
4797 return 1;
4799 return 2;
4801 if( pA->op!=TK_COLUMN && pA->op!=TK_AGG_COLUMN && pA->u.zToken ){
4802 if( pA->op==TK_FUNCTION ){
4803 if( sqlite3StrICmp(pA->u.zToken,pB->u.zToken)!=0 ) return 2;
4804 }else if( strcmp(pA->u.zToken,pB->u.zToken)!=0 ){
4805 return pA->op==TK_COLLATE ? 1 : 2;
4808 if( (pA->flags & EP_Distinct)!=(pB->flags & EP_Distinct) ) return 2;
4809 if( ALWAYS((combinedFlags & EP_TokenOnly)==0) ){
4810 if( combinedFlags & EP_xIsSelect ) return 2;
4811 if( sqlite3ExprCompare(pParse, pA->pLeft, pB->pLeft, iTab) ) return 2;
4812 if( sqlite3ExprCompare(pParse, pA->pRight, pB->pRight, iTab) ) return 2;
4813 if( sqlite3ExprListCompare(pA->x.pList, pB->x.pList, iTab) ) return 2;
4814 if( ALWAYS((combinedFlags & EP_Reduced)==0) && pA->op!=TK_STRING ){
4815 if( pA->iColumn!=pB->iColumn ) return 2;
4816 if( pA->iTable!=pB->iTable
4817 && (pA->iTable!=iTab || NEVER(pB->iTable>=0)) ) return 2;
4820 return 0;
4824 ** Compare two ExprList objects. Return 0 if they are identical and
4825 ** non-zero if they differ in any way.
4827 ** If any subelement of pB has Expr.iTable==(-1) then it is allowed
4828 ** to compare equal to an equivalent element in pA with Expr.iTable==iTab.
4830 ** This routine might return non-zero for equivalent ExprLists. The
4831 ** only consequence will be disabled optimizations. But this routine
4832 ** must never return 0 if the two ExprList objects are different, or
4833 ** a malfunction will result.
4835 ** Two NULL pointers are considered to be the same. But a NULL pointer
4836 ** always differs from a non-NULL pointer.
4838 int sqlite3ExprListCompare(ExprList *pA, ExprList *pB, int iTab){
4839 int i;
4840 if( pA==0 && pB==0 ) return 0;
4841 if( pA==0 || pB==0 ) return 1;
4842 if( pA->nExpr!=pB->nExpr ) return 1;
4843 for(i=0; i<pA->nExpr; i++){
4844 Expr *pExprA = pA->a[i].pExpr;
4845 Expr *pExprB = pB->a[i].pExpr;
4846 if( pA->a[i].sortOrder!=pB->a[i].sortOrder ) return 1;
4847 if( sqlite3ExprCompare(0, pExprA, pExprB, iTab) ) return 1;
4849 return 0;
4853 ** Like sqlite3ExprCompare() except COLLATE operators at the top-level
4854 ** are ignored.
4856 int sqlite3ExprCompareSkip(Expr *pA, Expr *pB, int iTab){
4857 return sqlite3ExprCompare(0,
4858 sqlite3ExprSkipCollate(pA),
4859 sqlite3ExprSkipCollate(pB),
4860 iTab);
4864 ** Return true if we can prove the pE2 will always be true if pE1 is
4865 ** true. Return false if we cannot complete the proof or if pE2 might
4866 ** be false. Examples:
4868 ** pE1: x==5 pE2: x==5 Result: true
4869 ** pE1: x>0 pE2: x==5 Result: false
4870 ** pE1: x=21 pE2: x=21 OR y=43 Result: true
4871 ** pE1: x!=123 pE2: x IS NOT NULL Result: true
4872 ** pE1: x!=?1 pE2: x IS NOT NULL Result: true
4873 ** pE1: x IS NULL pE2: x IS NOT NULL Result: false
4874 ** pE1: x IS ?2 pE2: x IS NOT NULL Reuslt: false
4876 ** When comparing TK_COLUMN nodes between pE1 and pE2, if pE2 has
4877 ** Expr.iTable<0 then assume a table number given by iTab.
4879 ** If pParse is not NULL, then the values of bound variables in pE1 are
4880 ** compared against literal values in pE2 and pParse->pVdbe->expmask is
4881 ** modified to record which bound variables are referenced. If pParse
4882 ** is NULL, then false will be returned if pE1 contains any bound variables.
4884 ** When in doubt, return false. Returning true might give a performance
4885 ** improvement. Returning false might cause a performance reduction, but
4886 ** it will always give the correct answer and is hence always safe.
4888 int sqlite3ExprImpliesExpr(Parse *pParse, Expr *pE1, Expr *pE2, int iTab){
4889 if( sqlite3ExprCompare(pParse, pE1, pE2, iTab)==0 ){
4890 return 1;
4892 if( pE2->op==TK_OR
4893 && (sqlite3ExprImpliesExpr(pParse, pE1, pE2->pLeft, iTab)
4894 || sqlite3ExprImpliesExpr(pParse, pE1, pE2->pRight, iTab) )
4896 return 1;
4898 if( pE2->op==TK_NOTNULL && pE1->op!=TK_ISNULL && pE1->op!=TK_IS ){
4899 Expr *pX = sqlite3ExprSkipCollate(pE1->pLeft);
4900 testcase( pX!=pE1->pLeft );
4901 if( sqlite3ExprCompare(pParse, pX, pE2->pLeft, iTab)==0 ) return 1;
4903 return 0;
4907 ** An instance of the following structure is used by the tree walker
4908 ** to determine if an expression can be evaluated by reference to the
4909 ** index only, without having to do a search for the corresponding
4910 ** table entry. The IdxCover.pIdx field is the index. IdxCover.iCur
4911 ** is the cursor for the table.
4913 struct IdxCover {
4914 Index *pIdx; /* The index to be tested for coverage */
4915 int iCur; /* Cursor number for the table corresponding to the index */
4919 ** Check to see if there are references to columns in table
4920 ** pWalker->u.pIdxCover->iCur can be satisfied using the index
4921 ** pWalker->u.pIdxCover->pIdx.
4923 static int exprIdxCover(Walker *pWalker, Expr *pExpr){
4924 if( pExpr->op==TK_COLUMN
4925 && pExpr->iTable==pWalker->u.pIdxCover->iCur
4926 && sqlite3ColumnOfIndex(pWalker->u.pIdxCover->pIdx, pExpr->iColumn)<0
4928 pWalker->eCode = 1;
4929 return WRC_Abort;
4931 return WRC_Continue;
4935 ** Determine if an index pIdx on table with cursor iCur contains will
4936 ** the expression pExpr. Return true if the index does cover the
4937 ** expression and false if the pExpr expression references table columns
4938 ** that are not found in the index pIdx.
4940 ** An index covering an expression means that the expression can be
4941 ** evaluated using only the index and without having to lookup the
4942 ** corresponding table entry.
4944 int sqlite3ExprCoveredByIndex(
4945 Expr *pExpr, /* The index to be tested */
4946 int iCur, /* The cursor number for the corresponding table */
4947 Index *pIdx /* The index that might be used for coverage */
4949 Walker w;
4950 struct IdxCover xcov;
4951 memset(&w, 0, sizeof(w));
4952 xcov.iCur = iCur;
4953 xcov.pIdx = pIdx;
4954 w.xExprCallback = exprIdxCover;
4955 w.u.pIdxCover = &xcov;
4956 sqlite3WalkExpr(&w, pExpr);
4957 return !w.eCode;
4962 ** An instance of the following structure is used by the tree walker
4963 ** to count references to table columns in the arguments of an
4964 ** aggregate function, in order to implement the
4965 ** sqlite3FunctionThisSrc() routine.
4967 struct SrcCount {
4968 SrcList *pSrc; /* One particular FROM clause in a nested query */
4969 int nThis; /* Number of references to columns in pSrcList */
4970 int nOther; /* Number of references to columns in other FROM clauses */
4974 ** Count the number of references to columns.
4976 static int exprSrcCount(Walker *pWalker, Expr *pExpr){
4977 /* The NEVER() on the second term is because sqlite3FunctionUsesThisSrc()
4978 ** is always called before sqlite3ExprAnalyzeAggregates() and so the
4979 ** TK_COLUMNs have not yet been converted into TK_AGG_COLUMN. If
4980 ** sqlite3FunctionUsesThisSrc() is used differently in the future, the
4981 ** NEVER() will need to be removed. */
4982 if( pExpr->op==TK_COLUMN || NEVER(pExpr->op==TK_AGG_COLUMN) ){
4983 int i;
4984 struct SrcCount *p = pWalker->u.pSrcCount;
4985 SrcList *pSrc = p->pSrc;
4986 int nSrc = pSrc ? pSrc->nSrc : 0;
4987 for(i=0; i<nSrc; i++){
4988 if( pExpr->iTable==pSrc->a[i].iCursor ) break;
4990 if( i<nSrc ){
4991 p->nThis++;
4992 }else{
4993 p->nOther++;
4996 return WRC_Continue;
5000 ** Determine if any of the arguments to the pExpr Function reference
5001 ** pSrcList. Return true if they do. Also return true if the function
5002 ** has no arguments or has only constant arguments. Return false if pExpr
5003 ** references columns but not columns of tables found in pSrcList.
5005 int sqlite3FunctionUsesThisSrc(Expr *pExpr, SrcList *pSrcList){
5006 Walker w;
5007 struct SrcCount cnt;
5008 assert( pExpr->op==TK_AGG_FUNCTION );
5009 w.xExprCallback = exprSrcCount;
5010 w.xSelectCallback = 0;
5011 w.u.pSrcCount = &cnt;
5012 cnt.pSrc = pSrcList;
5013 cnt.nThis = 0;
5014 cnt.nOther = 0;
5015 sqlite3WalkExprList(&w, pExpr->x.pList);
5016 return cnt.nThis>0 || cnt.nOther==0;
5020 ** Add a new element to the pAggInfo->aCol[] array. Return the index of
5021 ** the new element. Return a negative number if malloc fails.
5023 static int addAggInfoColumn(sqlite3 *db, AggInfo *pInfo){
5024 int i;
5025 pInfo->aCol = sqlite3ArrayAllocate(
5027 pInfo->aCol,
5028 sizeof(pInfo->aCol[0]),
5029 &pInfo->nColumn,
5032 return i;
5036 ** Add a new element to the pAggInfo->aFunc[] array. Return the index of
5037 ** the new element. Return a negative number if malloc fails.
5039 static int addAggInfoFunc(sqlite3 *db, AggInfo *pInfo){
5040 int i;
5041 pInfo->aFunc = sqlite3ArrayAllocate(
5042 db,
5043 pInfo->aFunc,
5044 sizeof(pInfo->aFunc[0]),
5045 &pInfo->nFunc,
5048 return i;
5052 ** This is the xExprCallback for a tree walker. It is used to
5053 ** implement sqlite3ExprAnalyzeAggregates(). See sqlite3ExprAnalyzeAggregates
5054 ** for additional information.
5056 static int analyzeAggregate(Walker *pWalker, Expr *pExpr){
5057 int i;
5058 NameContext *pNC = pWalker->u.pNC;
5059 Parse *pParse = pNC->pParse;
5060 SrcList *pSrcList = pNC->pSrcList;
5061 AggInfo *pAggInfo = pNC->pAggInfo;
5063 switch( pExpr->op ){
5064 case TK_AGG_COLUMN:
5065 case TK_COLUMN: {
5066 testcase( pExpr->op==TK_AGG_COLUMN );
5067 testcase( pExpr->op==TK_COLUMN );
5068 /* Check to see if the column is in one of the tables in the FROM
5069 ** clause of the aggregate query */
5070 if( ALWAYS(pSrcList!=0) ){
5071 struct SrcList_item *pItem = pSrcList->a;
5072 for(i=0; i<pSrcList->nSrc; i++, pItem++){
5073 struct AggInfo_col *pCol;
5074 assert( !ExprHasProperty(pExpr, EP_TokenOnly|EP_Reduced) );
5075 if( pExpr->iTable==pItem->iCursor ){
5076 /* If we reach this point, it means that pExpr refers to a table
5077 ** that is in the FROM clause of the aggregate query.
5079 ** Make an entry for the column in pAggInfo->aCol[] if there
5080 ** is not an entry there already.
5082 int k;
5083 pCol = pAggInfo->aCol;
5084 for(k=0; k<pAggInfo->nColumn; k++, pCol++){
5085 if( pCol->iTable==pExpr->iTable &&
5086 pCol->iColumn==pExpr->iColumn ){
5087 break;
5090 if( (k>=pAggInfo->nColumn)
5091 && (k = addAggInfoColumn(pParse->db, pAggInfo))>=0
5093 pCol = &pAggInfo->aCol[k];
5094 pCol->pTab = pExpr->pTab;
5095 pCol->iTable = pExpr->iTable;
5096 pCol->iColumn = pExpr->iColumn;
5097 pCol->iMem = ++pParse->nMem;
5098 pCol->iSorterColumn = -1;
5099 pCol->pExpr = pExpr;
5100 if( pAggInfo->pGroupBy ){
5101 int j, n;
5102 ExprList *pGB = pAggInfo->pGroupBy;
5103 struct ExprList_item *pTerm = pGB->a;
5104 n = pGB->nExpr;
5105 for(j=0; j<n; j++, pTerm++){
5106 Expr *pE = pTerm->pExpr;
5107 if( pE->op==TK_COLUMN && pE->iTable==pExpr->iTable &&
5108 pE->iColumn==pExpr->iColumn ){
5109 pCol->iSorterColumn = j;
5110 break;
5114 if( pCol->iSorterColumn<0 ){
5115 pCol->iSorterColumn = pAggInfo->nSortingColumn++;
5118 /* There is now an entry for pExpr in pAggInfo->aCol[] (either
5119 ** because it was there before or because we just created it).
5120 ** Convert the pExpr to be a TK_AGG_COLUMN referring to that
5121 ** pAggInfo->aCol[] entry.
5123 ExprSetVVAProperty(pExpr, EP_NoReduce);
5124 pExpr->pAggInfo = pAggInfo;
5125 pExpr->op = TK_AGG_COLUMN;
5126 pExpr->iAgg = (i16)k;
5127 break;
5128 } /* endif pExpr->iTable==pItem->iCursor */
5129 } /* end loop over pSrcList */
5131 return WRC_Prune;
5133 case TK_AGG_FUNCTION: {
5134 if( (pNC->ncFlags & NC_InAggFunc)==0
5135 && pWalker->walkerDepth==pExpr->op2
5137 /* Check to see if pExpr is a duplicate of another aggregate
5138 ** function that is already in the pAggInfo structure
5140 struct AggInfo_func *pItem = pAggInfo->aFunc;
5141 for(i=0; i<pAggInfo->nFunc; i++, pItem++){
5142 if( sqlite3ExprCompare(0, pItem->pExpr, pExpr, -1)==0 ){
5143 break;
5146 if( i>=pAggInfo->nFunc ){
5147 /* pExpr is original. Make a new entry in pAggInfo->aFunc[]
5149 u8 enc = ENC(pParse->db);
5150 i = addAggInfoFunc(pParse->db, pAggInfo);
5151 if( i>=0 ){
5152 assert( !ExprHasProperty(pExpr, EP_xIsSelect) );
5153 pItem = &pAggInfo->aFunc[i];
5154 pItem->pExpr = pExpr;
5155 pItem->iMem = ++pParse->nMem;
5156 assert( !ExprHasProperty(pExpr, EP_IntValue) );
5157 pItem->pFunc = sqlite3FindFunction(pParse->db,
5158 pExpr->u.zToken,
5159 pExpr->x.pList ? pExpr->x.pList->nExpr : 0, enc, 0);
5160 if( pExpr->flags & EP_Distinct ){
5161 pItem->iDistinct = pParse->nTab++;
5162 }else{
5163 pItem->iDistinct = -1;
5167 /* Make pExpr point to the appropriate pAggInfo->aFunc[] entry
5169 assert( !ExprHasProperty(pExpr, EP_TokenOnly|EP_Reduced) );
5170 ExprSetVVAProperty(pExpr, EP_NoReduce);
5171 pExpr->iAgg = (i16)i;
5172 pExpr->pAggInfo = pAggInfo;
5173 return WRC_Prune;
5174 }else{
5175 return WRC_Continue;
5179 return WRC_Continue;
5181 static int analyzeAggregatesInSelect(Walker *pWalker, Select *pSelect){
5182 UNUSED_PARAMETER(pSelect);
5183 pWalker->walkerDepth++;
5184 return WRC_Continue;
5186 static void analyzeAggregatesInSelectEnd(Walker *pWalker, Select *pSelect){
5187 UNUSED_PARAMETER(pSelect);
5188 pWalker->walkerDepth--;
5192 ** Analyze the pExpr expression looking for aggregate functions and
5193 ** for variables that need to be added to AggInfo object that pNC->pAggInfo
5194 ** points to. Additional entries are made on the AggInfo object as
5195 ** necessary.
5197 ** This routine should only be called after the expression has been
5198 ** analyzed by sqlite3ResolveExprNames().
5200 void sqlite3ExprAnalyzeAggregates(NameContext *pNC, Expr *pExpr){
5201 Walker w;
5202 w.xExprCallback = analyzeAggregate;
5203 w.xSelectCallback = analyzeAggregatesInSelect;
5204 w.xSelectCallback2 = analyzeAggregatesInSelectEnd;
5205 w.walkerDepth = 0;
5206 w.u.pNC = pNC;
5207 assert( pNC->pSrcList!=0 );
5208 sqlite3WalkExpr(&w, pExpr);
5212 ** Call sqlite3ExprAnalyzeAggregates() for every expression in an
5213 ** expression list. Return the number of errors.
5215 ** If an error is found, the analysis is cut short.
5217 void sqlite3ExprAnalyzeAggList(NameContext *pNC, ExprList *pList){
5218 struct ExprList_item *pItem;
5219 int i;
5220 if( pList ){
5221 for(pItem=pList->a, i=0; i<pList->nExpr; i++, pItem++){
5222 sqlite3ExprAnalyzeAggregates(pNC, pItem->pExpr);
5228 ** Allocate a single new register for use to hold some intermediate result.
5230 int sqlite3GetTempReg(Parse *pParse){
5231 if( pParse->nTempReg==0 ){
5232 return ++pParse->nMem;
5234 return pParse->aTempReg[--pParse->nTempReg];
5238 ** Deallocate a register, making available for reuse for some other
5239 ** purpose.
5241 ** If a register is currently being used by the column cache, then
5242 ** the deallocation is deferred until the column cache line that uses
5243 ** the register becomes stale.
5245 void sqlite3ReleaseTempReg(Parse *pParse, int iReg){
5246 if( iReg && pParse->nTempReg<ArraySize(pParse->aTempReg) ){
5247 int i;
5248 struct yColCache *p;
5249 for(i=0, p=pParse->aColCache; i<pParse->nColCache; i++, p++){
5250 if( p->iReg==iReg ){
5251 p->tempReg = 1;
5252 return;
5255 pParse->aTempReg[pParse->nTempReg++] = iReg;
5260 ** Allocate or deallocate a block of nReg consecutive registers.
5262 int sqlite3GetTempRange(Parse *pParse, int nReg){
5263 int i, n;
5264 if( nReg==1 ) return sqlite3GetTempReg(pParse);
5265 i = pParse->iRangeReg;
5266 n = pParse->nRangeReg;
5267 if( nReg<=n ){
5268 assert( !usedAsColumnCache(pParse, i, i+n-1) );
5269 pParse->iRangeReg += nReg;
5270 pParse->nRangeReg -= nReg;
5271 }else{
5272 i = pParse->nMem+1;
5273 pParse->nMem += nReg;
5275 return i;
5277 void sqlite3ReleaseTempRange(Parse *pParse, int iReg, int nReg){
5278 if( nReg==1 ){
5279 sqlite3ReleaseTempReg(pParse, iReg);
5280 return;
5282 sqlite3ExprCacheRemove(pParse, iReg, nReg);
5283 if( nReg>pParse->nRangeReg ){
5284 pParse->nRangeReg = nReg;
5285 pParse->iRangeReg = iReg;
5290 ** Mark all temporary registers as being unavailable for reuse.
5292 void sqlite3ClearTempRegCache(Parse *pParse){
5293 pParse->nTempReg = 0;
5294 pParse->nRangeReg = 0;
5298 ** Validate that no temporary register falls within the range of
5299 ** iFirst..iLast, inclusive. This routine is only call from within assert()
5300 ** statements.
5302 #ifdef SQLITE_DEBUG
5303 int sqlite3NoTempsInRange(Parse *pParse, int iFirst, int iLast){
5304 int i;
5305 if( pParse->nRangeReg>0
5306 && pParse->iRangeReg+pParse->nRangeReg > iFirst
5307 && pParse->iRangeReg <= iLast
5309 return 0;
5311 for(i=0; i<pParse->nTempReg; i++){
5312 if( pParse->aTempReg[i]>=iFirst && pParse->aTempReg[i]<=iLast ){
5313 return 0;
5316 return 1;
5318 #endif /* SQLITE_DEBUG */