4 ** The author disclaims copyright to this source code. In place of
5 ** a legal notice, here is a blessing:
7 ** May you do good and not evil.
8 ** May you find forgiveness for yourself and forgive others.
9 ** May you share freely, never taking more than you give.
11 *************************************************************************
12 ** This file contains routines used for analyzing expressions and
13 ** for generating VDBE code that evaluates expressions in SQLite.
15 #include "sqliteInt.h"
17 /* Forward declarations */
18 static void exprCodeBetween(Parse
*,Expr
*,int,void(*)(Parse
*,Expr
*,int,int),int);
19 static int exprCodeVector(Parse
*pParse
, Expr
*p
, int *piToFree
);
22 ** Return the affinity character for a single column of a table.
24 char sqlite3TableColumnAffinity(const Table
*pTab
, int iCol
){
25 if( iCol
<0 || NEVER(iCol
>=pTab
->nCol
) ) return SQLITE_AFF_INTEGER
;
26 return pTab
->aCol
[iCol
].affinity
;
30 ** Return the 'affinity' of the expression pExpr if any.
32 ** If pExpr is a column, a reference to a column via an 'AS' alias,
33 ** or a sub-select with a column as the return value, then the
34 ** affinity of that column is returned. Otherwise, 0x00 is returned,
35 ** indicating no affinity for the expression.
37 ** i.e. the WHERE clause expressions in the following statements all
40 ** CREATE TABLE t1(a);
41 ** SELECT * FROM t1 WHERE a;
42 ** SELECT a AS b FROM t1 WHERE b;
43 ** SELECT * FROM t1 WHERE (select a from t1);
45 char sqlite3ExprAffinity(const Expr
*pExpr
){
48 while( 1 /* exit-by-break */ ){
49 if( op
==TK_COLUMN
|| (op
==TK_AGG_COLUMN
&& pExpr
->y
.pTab
!=0) ){
50 assert( ExprUseYTab(pExpr
) );
51 assert( pExpr
->y
.pTab
!=0 );
52 return sqlite3TableColumnAffinity(pExpr
->y
.pTab
, pExpr
->iColumn
);
55 assert( ExprUseXSelect(pExpr
) );
56 assert( pExpr
->x
.pSelect
!=0 );
57 assert( pExpr
->x
.pSelect
->pEList
!=0 );
58 assert( pExpr
->x
.pSelect
->pEList
->a
[0].pExpr
!=0 );
59 return sqlite3ExprAffinity(pExpr
->x
.pSelect
->pEList
->a
[0].pExpr
);
61 #ifndef SQLITE_OMIT_CAST
63 assert( !ExprHasProperty(pExpr
, EP_IntValue
) );
64 return sqlite3AffinityType(pExpr
->u
.zToken
, 0);
67 if( op
==TK_SELECT_COLUMN
){
68 assert( pExpr
->pLeft
!=0 && ExprUseXSelect(pExpr
->pLeft
) );
69 assert( pExpr
->iColumn
< pExpr
->iTable
);
70 assert( pExpr
->iColumn
>= 0 );
71 assert( pExpr
->iTable
==pExpr
->pLeft
->x
.pSelect
->pEList
->nExpr
);
72 return sqlite3ExprAffinity(
73 pExpr
->pLeft
->x
.pSelect
->pEList
->a
[pExpr
->iColumn
].pExpr
77 assert( ExprUseXList(pExpr
) );
78 return sqlite3ExprAffinity(pExpr
->x
.pList
->a
[0].pExpr
);
80 if( ExprHasProperty(pExpr
, EP_Skip
|EP_IfNullRow
) ){
81 assert( pExpr
->op
==TK_COLLATE
82 || pExpr
->op
==TK_IF_NULL_ROW
83 || (pExpr
->op
==TK_REGISTER
&& pExpr
->op2
==TK_IF_NULL_ROW
) );
88 if( op
!=TK_REGISTER
) break;
90 if( NEVER( op
==TK_REGISTER
) ) break;
92 return pExpr
->affExpr
;
96 ** Make a guess at all the possible datatypes of the result that could
97 ** be returned by an expression. Return a bitmask indicating the answer:
103 ** If the expression must return NULL, then 0x00 is returned.
105 int sqlite3ExprDataType(const Expr
*pExpr
){
111 pExpr
= pExpr
->pLeft
;
128 case TK_AGG_FUNCTION
:
136 case TK_SELECT_COLUMN
:
138 int aff
= sqlite3ExprAffinity(pExpr
);
139 if( aff
>=SQLITE_AFF_NUMERIC
) return 0x05;
140 if( aff
==SQLITE_AFF_TEXT
) return 0x06;
146 ExprList
*pList
= pExpr
->x
.pList
;
147 assert( ExprUseXList(pExpr
) && pList
!=0 );
148 assert( pList
->nExpr
> 0);
149 for(ii
=1; ii
<pList
->nExpr
; ii
+=2){
150 res
|= sqlite3ExprDataType(pList
->a
[ii
].pExpr
);
152 if( pList
->nExpr
% 2 ){
153 res
|= sqlite3ExprDataType(pList
->a
[pList
->nExpr
-1].pExpr
);
160 } /* End of switch(op) */
161 } /* End of while(pExpr) */
166 ** Set the collating sequence for expression pExpr to be the collating
167 ** sequence named by pToken. Return a pointer to a new Expr node that
168 ** implements the COLLATE operator.
170 ** If a memory allocation error occurs, that fact is recorded in pParse->db
171 ** and the pExpr parameter is returned unchanged.
173 Expr
*sqlite3ExprAddCollateToken(
174 const Parse
*pParse
, /* Parsing context */
175 Expr
*pExpr
, /* Add the "COLLATE" clause to this expression */
176 const Token
*pCollName
, /* Name of collating sequence */
177 int dequote
/* True to dequote pCollName */
179 if( pCollName
->n
>0 ){
180 Expr
*pNew
= sqlite3ExprAlloc(pParse
->db
, TK_COLLATE
, pCollName
, dequote
);
183 pNew
->flags
|= EP_Collate
|EP_Skip
;
189 Expr
*sqlite3ExprAddCollateString(
190 const Parse
*pParse
, /* Parsing context */
191 Expr
*pExpr
, /* Add the "COLLATE" clause to this expression */
192 const char *zC
/* The collating sequence name */
196 sqlite3TokenInit(&s
, (char*)zC
);
197 return sqlite3ExprAddCollateToken(pParse
, pExpr
, &s
, 0);
201 ** Skip over any TK_COLLATE operators.
203 Expr
*sqlite3ExprSkipCollate(Expr
*pExpr
){
204 while( pExpr
&& ExprHasProperty(pExpr
, EP_Skip
) ){
205 assert( pExpr
->op
==TK_COLLATE
);
206 pExpr
= pExpr
->pLeft
;
212 ** Skip over any TK_COLLATE operators and/or any unlikely()
213 ** or likelihood() or likely() functions at the root of an
216 Expr
*sqlite3ExprSkipCollateAndLikely(Expr
*pExpr
){
217 while( pExpr
&& ExprHasProperty(pExpr
, EP_Skip
|EP_Unlikely
) ){
218 if( ExprHasProperty(pExpr
, EP_Unlikely
) ){
219 assert( ExprUseXList(pExpr
) );
220 assert( pExpr
->x
.pList
->nExpr
>0 );
221 assert( pExpr
->op
==TK_FUNCTION
);
222 pExpr
= pExpr
->x
.pList
->a
[0].pExpr
;
223 }else if( pExpr
->op
==TK_COLLATE
){
224 pExpr
= pExpr
->pLeft
;
233 ** Return the collation sequence for the expression pExpr. If
234 ** there is no defined collating sequence, return NULL.
236 ** See also: sqlite3ExprNNCollSeq()
238 ** The sqlite3ExprNNCollSeq() works the same exact that it returns the
239 ** default collation if pExpr has no defined collation.
241 ** The collating sequence might be determined by a COLLATE operator
242 ** or by the presence of a column with a defined collating sequence.
243 ** COLLATE operators take first precedence. Left operands take
244 ** precedence over right operands.
246 CollSeq
*sqlite3ExprCollSeq(Parse
*pParse
, const Expr
*pExpr
){
247 sqlite3
*db
= pParse
->db
;
249 const Expr
*p
= pExpr
;
252 if( op
==TK_REGISTER
) op
= p
->op2
;
253 if( (op
==TK_AGG_COLUMN
&& p
->y
.pTab
!=0)
254 || op
==TK_COLUMN
|| op
==TK_TRIGGER
257 assert( ExprUseYTab(p
) );
258 assert( p
->y
.pTab
!=0 );
259 if( (j
= p
->iColumn
)>=0 ){
260 const char *zColl
= sqlite3ColumnColl(&p
->y
.pTab
->aCol
[j
]);
261 pColl
= sqlite3FindCollSeq(db
, ENC(db
), zColl
, 0);
265 if( op
==TK_CAST
|| op
==TK_UPLUS
){
270 assert( ExprUseXList(p
) );
271 p
= p
->x
.pList
->a
[0].pExpr
;
274 if( op
==TK_COLLATE
){
275 assert( !ExprHasProperty(p
, EP_IntValue
) );
276 pColl
= sqlite3GetCollSeq(pParse
, ENC(db
), 0, p
->u
.zToken
);
279 if( p
->flags
& EP_Collate
){
280 if( p
->pLeft
&& (p
->pLeft
->flags
& EP_Collate
)!=0 ){
283 Expr
*pNext
= p
->pRight
;
284 /* The Expr.x union is never used at the same time as Expr.pRight */
285 assert( !ExprUseXList(p
) || p
->x
.pList
==0 || p
->pRight
==0 );
286 if( ExprUseXList(p
) && p
->x
.pList
!=0 && !db
->mallocFailed
){
288 for(i
=0; i
<p
->x
.pList
->nExpr
; i
++){
289 if( ExprHasProperty(p
->x
.pList
->a
[i
].pExpr
, EP_Collate
) ){
290 pNext
= p
->x
.pList
->a
[i
].pExpr
;
301 if( sqlite3CheckCollSeq(pParse
, pColl
) ){
308 ** Return the collation sequence for the expression pExpr. If
309 ** there is no defined collating sequence, return a pointer to the
310 ** default collation sequence.
312 ** See also: sqlite3ExprCollSeq()
314 ** The sqlite3ExprCollSeq() routine works the same except that it
315 ** returns NULL if there is no defined collation.
317 CollSeq
*sqlite3ExprNNCollSeq(Parse
*pParse
, const Expr
*pExpr
){
318 CollSeq
*p
= sqlite3ExprCollSeq(pParse
, pExpr
);
319 if( p
==0 ) p
= pParse
->db
->pDfltColl
;
325 ** Return TRUE if the two expressions have equivalent collating sequences.
327 int sqlite3ExprCollSeqMatch(Parse
*pParse
, const Expr
*pE1
, const Expr
*pE2
){
328 CollSeq
*pColl1
= sqlite3ExprNNCollSeq(pParse
, pE1
);
329 CollSeq
*pColl2
= sqlite3ExprNNCollSeq(pParse
, pE2
);
330 return sqlite3StrICmp(pColl1
->zName
, pColl2
->zName
)==0;
334 ** pExpr is an operand of a comparison operator. aff2 is the
335 ** type affinity of the other operand. This routine returns the
336 ** type affinity that should be used for the comparison operator.
338 char sqlite3CompareAffinity(const Expr
*pExpr
, char aff2
){
339 char aff1
= sqlite3ExprAffinity(pExpr
);
340 if( aff1
>SQLITE_AFF_NONE
&& aff2
>SQLITE_AFF_NONE
){
341 /* Both sides of the comparison are columns. If one has numeric
342 ** affinity, use that. Otherwise use no affinity.
344 if( sqlite3IsNumericAffinity(aff1
) || sqlite3IsNumericAffinity(aff2
) ){
345 return SQLITE_AFF_NUMERIC
;
347 return SQLITE_AFF_BLOB
;
350 /* One side is a column, the other is not. Use the columns affinity. */
351 assert( aff1
<=SQLITE_AFF_NONE
|| aff2
<=SQLITE_AFF_NONE
);
352 return (aff1
<=SQLITE_AFF_NONE
? aff2
: aff1
) | SQLITE_AFF_NONE
;
357 ** pExpr is a comparison operator. Return the type affinity that should
358 ** be applied to both operands prior to doing the comparison.
360 static char comparisonAffinity(const Expr
*pExpr
){
362 assert( pExpr
->op
==TK_EQ
|| pExpr
->op
==TK_IN
|| pExpr
->op
==TK_LT
||
363 pExpr
->op
==TK_GT
|| pExpr
->op
==TK_GE
|| pExpr
->op
==TK_LE
||
364 pExpr
->op
==TK_NE
|| pExpr
->op
==TK_IS
|| pExpr
->op
==TK_ISNOT
);
365 assert( pExpr
->pLeft
);
366 aff
= sqlite3ExprAffinity(pExpr
->pLeft
);
368 aff
= sqlite3CompareAffinity(pExpr
->pRight
, aff
);
369 }else if( ExprUseXSelect(pExpr
) ){
370 aff
= sqlite3CompareAffinity(pExpr
->x
.pSelect
->pEList
->a
[0].pExpr
, aff
);
372 aff
= SQLITE_AFF_BLOB
;
378 ** pExpr is a comparison expression, eg. '=', '<', IN(...) etc.
379 ** idx_affinity is the affinity of an indexed column. Return true
380 ** if the index with affinity idx_affinity may be used to implement
381 ** the comparison in pExpr.
383 int sqlite3IndexAffinityOk(const Expr
*pExpr
, char idx_affinity
){
384 char aff
= comparisonAffinity(pExpr
);
385 if( aff
<SQLITE_AFF_TEXT
){
388 if( aff
==SQLITE_AFF_TEXT
){
389 return idx_affinity
==SQLITE_AFF_TEXT
;
391 return sqlite3IsNumericAffinity(idx_affinity
);
395 ** Return the P5 value that should be used for a binary comparison
396 ** opcode (OP_Eq, OP_Ge etc.) used to compare pExpr1 and pExpr2.
398 static u8
binaryCompareP5(
399 const Expr
*pExpr1
, /* Left operand */
400 const Expr
*pExpr2
, /* Right operand */
401 int jumpIfNull
/* Extra flags added to P5 */
403 u8 aff
= (char)sqlite3ExprAffinity(pExpr2
);
404 aff
= (u8
)sqlite3CompareAffinity(pExpr1
, aff
) | (u8
)jumpIfNull
;
409 ** Return a pointer to the collation sequence that should be used by
410 ** a binary comparison operator comparing pLeft and pRight.
412 ** If the left hand expression has a collating sequence type, then it is
413 ** used. Otherwise the collation sequence for the right hand expression
414 ** is used, or the default (BINARY) if neither expression has a collating
417 ** Argument pRight (but not pLeft) may be a null pointer. In this case,
418 ** it is not considered.
420 CollSeq
*sqlite3BinaryCompareCollSeq(
427 if( pLeft
->flags
& EP_Collate
){
428 pColl
= sqlite3ExprCollSeq(pParse
, pLeft
);
429 }else if( pRight
&& (pRight
->flags
& EP_Collate
)!=0 ){
430 pColl
= sqlite3ExprCollSeq(pParse
, pRight
);
432 pColl
= sqlite3ExprCollSeq(pParse
, pLeft
);
434 pColl
= sqlite3ExprCollSeq(pParse
, pRight
);
440 /* Expression p is a comparison operator. Return a collation sequence
441 ** appropriate for the comparison operator.
443 ** This is normally just a wrapper around sqlite3BinaryCompareCollSeq().
444 ** However, if the OP_Commuted flag is set, then the order of the operands
445 ** is reversed in the sqlite3BinaryCompareCollSeq() call so that the
446 ** correct collating sequence is found.
448 CollSeq
*sqlite3ExprCompareCollSeq(Parse
*pParse
, const Expr
*p
){
449 if( ExprHasProperty(p
, EP_Commuted
) ){
450 return sqlite3BinaryCompareCollSeq(pParse
, p
->pRight
, p
->pLeft
);
452 return sqlite3BinaryCompareCollSeq(pParse
, p
->pLeft
, p
->pRight
);
457 ** Generate code for a comparison operator.
459 static int codeCompare(
460 Parse
*pParse
, /* The parsing (and code generating) context */
461 Expr
*pLeft
, /* The left operand */
462 Expr
*pRight
, /* The right operand */
463 int opcode
, /* The comparison opcode */
464 int in1
, int in2
, /* Register holding operands */
465 int dest
, /* Jump here if true. */
466 int jumpIfNull
, /* If true, jump if either operand is NULL */
467 int isCommuted
/* The comparison has been commuted */
473 if( pParse
->nErr
) return 0;
475 p4
= sqlite3BinaryCompareCollSeq(pParse
, pRight
, pLeft
);
477 p4
= sqlite3BinaryCompareCollSeq(pParse
, pLeft
, pRight
);
479 p5
= binaryCompareP5(pLeft
, pRight
, jumpIfNull
);
480 addr
= sqlite3VdbeAddOp4(pParse
->pVdbe
, opcode
, in2
, dest
, in1
,
481 (void*)p4
, P4_COLLSEQ
);
482 sqlite3VdbeChangeP5(pParse
->pVdbe
, (u8
)p5
);
487 ** Return true if expression pExpr is a vector, or false otherwise.
489 ** A vector is defined as any expression that results in two or more
490 ** columns of result. Every TK_VECTOR node is an vector because the
491 ** parser will not generate a TK_VECTOR with fewer than two entries.
492 ** But a TK_SELECT might be either a vector or a scalar. It is only
493 ** considered a vector if it has two or more result columns.
495 int sqlite3ExprIsVector(const Expr
*pExpr
){
496 return sqlite3ExprVectorSize(pExpr
)>1;
500 ** If the expression passed as the only argument is of type TK_VECTOR
501 ** return the number of expressions in the vector. Or, if the expression
502 ** is a sub-select, return the number of columns in the sub-select. For
503 ** any other type of expression, return 1.
505 int sqlite3ExprVectorSize(const Expr
*pExpr
){
507 if( op
==TK_REGISTER
) op
= pExpr
->op2
;
509 assert( ExprUseXList(pExpr
) );
510 return pExpr
->x
.pList
->nExpr
;
511 }else if( op
==TK_SELECT
){
512 assert( ExprUseXSelect(pExpr
) );
513 return pExpr
->x
.pSelect
->pEList
->nExpr
;
520 ** Return a pointer to a subexpression of pVector that is the i-th
521 ** column of the vector (numbered starting with 0). The caller must
522 ** ensure that i is within range.
524 ** If pVector is really a scalar (and "scalar" here includes subqueries
525 ** that return a single column!) then return pVector unmodified.
527 ** pVector retains ownership of the returned subexpression.
529 ** If the vector is a (SELECT ...) then the expression returned is
530 ** just the expression for the i-th term of the result set, and may
531 ** not be ready for evaluation because the table cursor has not yet
534 Expr
*sqlite3VectorFieldSubexpr(Expr
*pVector
, int i
){
535 assert( i
<sqlite3ExprVectorSize(pVector
) || pVector
->op
==TK_ERROR
);
536 if( sqlite3ExprIsVector(pVector
) ){
537 assert( pVector
->op2
==0 || pVector
->op
==TK_REGISTER
);
538 if( pVector
->op
==TK_SELECT
|| pVector
->op2
==TK_SELECT
){
539 assert( ExprUseXSelect(pVector
) );
540 return pVector
->x
.pSelect
->pEList
->a
[i
].pExpr
;
542 assert( ExprUseXList(pVector
) );
543 return pVector
->x
.pList
->a
[i
].pExpr
;
550 ** Compute and return a new Expr object which when passed to
551 ** sqlite3ExprCode() will generate all necessary code to compute
552 ** the iField-th column of the vector expression pVector.
554 ** It is ok for pVector to be a scalar (as long as iField==0).
555 ** In that case, this routine works like sqlite3ExprDup().
557 ** The caller owns the returned Expr object and is responsible for
558 ** ensuring that the returned value eventually gets freed.
560 ** The caller retains ownership of pVector. If pVector is a TK_SELECT,
561 ** then the returned object will reference pVector and so pVector must remain
562 ** valid for the life of the returned object. If pVector is a TK_VECTOR
563 ** or a scalar expression, then it can be deleted as soon as this routine
566 ** A trick to cause a TK_SELECT pVector to be deleted together with
567 ** the returned Expr object is to attach the pVector to the pRight field
568 ** of the returned TK_SELECT_COLUMN Expr object.
570 Expr
*sqlite3ExprForVectorField(
571 Parse
*pParse
, /* Parsing context */
572 Expr
*pVector
, /* The vector. List of expressions or a sub-SELECT */
573 int iField
, /* Which column of the vector to return */
574 int nField
/* Total number of columns in the vector */
577 if( pVector
->op
==TK_SELECT
){
578 assert( ExprUseXSelect(pVector
) );
579 /* The TK_SELECT_COLUMN Expr node:
581 ** pLeft: pVector containing TK_SELECT. Not deleted.
582 ** pRight: not used. But recursively deleted.
583 ** iColumn: Index of a column in pVector
584 ** iTable: 0 or the number of columns on the LHS of an assignment
585 ** pLeft->iTable: First in an array of register holding result, or 0
586 ** if the result is not yet computed.
588 ** sqlite3ExprDelete() specifically skips the recursive delete of
589 ** pLeft on TK_SELECT_COLUMN nodes. But pRight is followed, so pVector
590 ** can be attached to pRight to cause this node to take ownership of
591 ** pVector. Typically there will be multiple TK_SELECT_COLUMN nodes
592 ** with the same pLeft pointer to the pVector, but only one of them
593 ** will own the pVector.
595 pRet
= sqlite3PExpr(pParse
, TK_SELECT_COLUMN
, 0, 0);
597 ExprSetProperty(pRet
, EP_FullSize
);
598 pRet
->iTable
= nField
;
599 pRet
->iColumn
= iField
;
600 pRet
->pLeft
= pVector
;
603 if( pVector
->op
==TK_VECTOR
){
605 assert( ExprUseXList(pVector
) );
606 ppVector
= &pVector
->x
.pList
->a
[iField
].pExpr
;
608 if( IN_RENAME_OBJECT
){
609 /* This must be a vector UPDATE inside a trigger */
614 pRet
= sqlite3ExprDup(pParse
->db
, pVector
, 0);
620 ** If expression pExpr is of type TK_SELECT, generate code to evaluate
621 ** it. Return the register in which the result is stored (or, if the
622 ** sub-select returns more than one column, the first in an array
623 ** of registers in which the result is stored).
625 ** If pExpr is not a TK_SELECT expression, return 0.
627 static int exprCodeSubselect(Parse
*pParse
, Expr
*pExpr
){
629 #ifndef SQLITE_OMIT_SUBQUERY
630 if( pExpr
->op
==TK_SELECT
){
631 reg
= sqlite3CodeSubselect(pParse
, pExpr
);
638 ** Argument pVector points to a vector expression - either a TK_VECTOR
639 ** or TK_SELECT that returns more than one column. This function returns
640 ** the register number of a register that contains the value of
641 ** element iField of the vector.
643 ** If pVector is a TK_SELECT expression, then code for it must have
644 ** already been generated using the exprCodeSubselect() routine. In this
645 ** case parameter regSelect should be the first in an array of registers
646 ** containing the results of the sub-select.
648 ** If pVector is of type TK_VECTOR, then code for the requested field
649 ** is generated. In this case (*pRegFree) may be set to the number of
650 ** a temporary register to be freed by the caller before returning.
652 ** Before returning, output parameter (*ppExpr) is set to point to the
653 ** Expr object corresponding to element iElem of the vector.
655 static int exprVectorRegister(
656 Parse
*pParse
, /* Parse context */
657 Expr
*pVector
, /* Vector to extract element from */
658 int iField
, /* Field to extract from pVector */
659 int regSelect
, /* First in array of registers */
660 Expr
**ppExpr
, /* OUT: Expression element */
661 int *pRegFree
/* OUT: Temp register to free */
664 assert( op
==TK_VECTOR
|| op
==TK_REGISTER
|| op
==TK_SELECT
|| op
==TK_ERROR
);
665 if( op
==TK_REGISTER
){
666 *ppExpr
= sqlite3VectorFieldSubexpr(pVector
, iField
);
667 return pVector
->iTable
+iField
;
670 assert( ExprUseXSelect(pVector
) );
671 *ppExpr
= pVector
->x
.pSelect
->pEList
->a
[iField
].pExpr
;
672 return regSelect
+iField
;
675 assert( ExprUseXList(pVector
) );
676 *ppExpr
= pVector
->x
.pList
->a
[iField
].pExpr
;
677 return sqlite3ExprCodeTemp(pParse
, *ppExpr
, pRegFree
);
683 ** Expression pExpr is a comparison between two vector values. Compute
684 ** the result of the comparison (1, 0, or NULL) and write that
685 ** result into register dest.
687 ** The caller must satisfy the following preconditions:
689 ** if pExpr->op==TK_IS: op==TK_EQ and p5==SQLITE_NULLEQ
690 ** if pExpr->op==TK_ISNOT: op==TK_NE and p5==SQLITE_NULLEQ
691 ** otherwise: op==pExpr->op and p5==0
693 static void codeVectorCompare(
694 Parse
*pParse
, /* Code generator context */
695 Expr
*pExpr
, /* The comparison operation */
696 int dest
, /* Write results into this register */
697 u8 op
, /* Comparison operator */
698 u8 p5
/* SQLITE_NULLEQ or zero */
700 Vdbe
*v
= pParse
->pVdbe
;
701 Expr
*pLeft
= pExpr
->pLeft
;
702 Expr
*pRight
= pExpr
->pRight
;
703 int nLeft
= sqlite3ExprVectorSize(pLeft
);
709 int addrDone
= sqlite3VdbeMakeLabel(pParse
);
710 int isCommuted
= ExprHasProperty(pExpr
,EP_Commuted
);
712 assert( !ExprHasVVAProperty(pExpr
,EP_Immutable
) );
713 if( pParse
->nErr
) return;
714 if( nLeft
!=sqlite3ExprVectorSize(pRight
) ){
715 sqlite3ErrorMsg(pParse
, "row value misused");
718 assert( pExpr
->op
==TK_EQ
|| pExpr
->op
==TK_NE
719 || pExpr
->op
==TK_IS
|| pExpr
->op
==TK_ISNOT
720 || pExpr
->op
==TK_LT
|| pExpr
->op
==TK_GT
721 || pExpr
->op
==TK_LE
|| pExpr
->op
==TK_GE
723 assert( pExpr
->op
==op
|| (pExpr
->op
==TK_IS
&& op
==TK_EQ
)
724 || (pExpr
->op
==TK_ISNOT
&& op
==TK_NE
) );
725 assert( p5
==0 || pExpr
->op
!=op
);
726 assert( p5
==SQLITE_NULLEQ
|| pExpr
->op
==op
);
728 if( op
==TK_LE
) opx
= TK_LT
;
729 if( op
==TK_GE
) opx
= TK_GT
;
730 if( op
==TK_NE
) opx
= TK_EQ
;
732 regLeft
= exprCodeSubselect(pParse
, pLeft
);
733 regRight
= exprCodeSubselect(pParse
, pRight
);
735 sqlite3VdbeAddOp2(v
, OP_Integer
, 1, dest
);
736 for(i
=0; 1 /*Loop exits by "break"*/; i
++){
737 int regFree1
= 0, regFree2
= 0;
738 Expr
*pL
= 0, *pR
= 0;
740 assert( i
>=0 && i
<nLeft
);
741 if( addrCmp
) sqlite3VdbeJumpHere(v
, addrCmp
);
742 r1
= exprVectorRegister(pParse
, pLeft
, i
, regLeft
, &pL
, ®Free1
);
743 r2
= exprVectorRegister(pParse
, pRight
, i
, regRight
, &pR
, ®Free2
);
744 addrCmp
= sqlite3VdbeCurrentAddr(v
);
745 codeCompare(pParse
, pL
, pR
, opx
, r1
, r2
, addrDone
, p5
, isCommuted
);
746 testcase(op
==OP_Lt
); VdbeCoverageIf(v
,op
==OP_Lt
);
747 testcase(op
==OP_Le
); VdbeCoverageIf(v
,op
==OP_Le
);
748 testcase(op
==OP_Gt
); VdbeCoverageIf(v
,op
==OP_Gt
);
749 testcase(op
==OP_Ge
); VdbeCoverageIf(v
,op
==OP_Ge
);
750 testcase(op
==OP_Eq
); VdbeCoverageIf(v
,op
==OP_Eq
);
751 testcase(op
==OP_Ne
); VdbeCoverageIf(v
,op
==OP_Ne
);
752 sqlite3ReleaseTempReg(pParse
, regFree1
);
753 sqlite3ReleaseTempReg(pParse
, regFree2
);
754 if( (opx
==TK_LT
|| opx
==TK_GT
) && i
<nLeft
-1 ){
755 addrCmp
= sqlite3VdbeAddOp0(v
, OP_ElseEq
);
756 testcase(opx
==TK_LT
); VdbeCoverageIf(v
,opx
==TK_LT
);
757 testcase(opx
==TK_GT
); VdbeCoverageIf(v
,opx
==TK_GT
);
759 if( p5
==SQLITE_NULLEQ
){
760 sqlite3VdbeAddOp2(v
, OP_Integer
, 0, dest
);
762 sqlite3VdbeAddOp3(v
, OP_ZeroOrNull
, r1
, dest
, r2
);
768 sqlite3VdbeAddOp2(v
, OP_NotNull
, dest
, addrDone
); VdbeCoverage(v
);
770 assert( op
==TK_LT
|| op
==TK_GT
|| op
==TK_LE
|| op
==TK_GE
);
771 sqlite3VdbeAddOp2(v
, OP_Goto
, 0, addrDone
);
772 if( i
==nLeft
-2 ) opx
= op
;
775 sqlite3VdbeJumpHere(v
, addrCmp
);
776 sqlite3VdbeResolveLabel(v
, addrDone
);
778 sqlite3VdbeAddOp2(v
, OP_Not
, dest
, dest
);
782 #if SQLITE_MAX_EXPR_DEPTH>0
784 ** Check that argument nHeight is less than or equal to the maximum
785 ** expression depth allowed. If it is not, leave an error message in
788 int sqlite3ExprCheckHeight(Parse
*pParse
, int nHeight
){
790 int mxHeight
= pParse
->db
->aLimit
[SQLITE_LIMIT_EXPR_DEPTH
];
791 if( nHeight
>mxHeight
){
792 sqlite3ErrorMsg(pParse
,
793 "Expression tree is too large (maximum depth %d)", mxHeight
800 /* The following three functions, heightOfExpr(), heightOfExprList()
801 ** and heightOfSelect(), are used to determine the maximum height
802 ** of any expression tree referenced by the structure passed as the
805 ** If this maximum height is greater than the current value pointed
806 ** to by pnHeight, the second parameter, then set *pnHeight to that
809 static void heightOfExpr(const Expr
*p
, int *pnHeight
){
811 if( p
->nHeight
>*pnHeight
){
812 *pnHeight
= p
->nHeight
;
816 static void heightOfExprList(const ExprList
*p
, int *pnHeight
){
819 for(i
=0; i
<p
->nExpr
; i
++){
820 heightOfExpr(p
->a
[i
].pExpr
, pnHeight
);
824 static void heightOfSelect(const Select
*pSelect
, int *pnHeight
){
826 for(p
=pSelect
; p
; p
=p
->pPrior
){
827 heightOfExpr(p
->pWhere
, pnHeight
);
828 heightOfExpr(p
->pHaving
, pnHeight
);
829 heightOfExpr(p
->pLimit
, pnHeight
);
830 heightOfExprList(p
->pEList
, pnHeight
);
831 heightOfExprList(p
->pGroupBy
, pnHeight
);
832 heightOfExprList(p
->pOrderBy
, pnHeight
);
837 ** Set the Expr.nHeight variable in the structure passed as an
838 ** argument. An expression with no children, Expr.pList or
839 ** Expr.pSelect member has a height of 1. Any other expression
840 ** has a height equal to the maximum height of any other
841 ** referenced Expr plus one.
843 ** Also propagate EP_Propagate flags up from Expr.x.pList to Expr.flags,
846 static void exprSetHeight(Expr
*p
){
847 int nHeight
= p
->pLeft
? p
->pLeft
->nHeight
: 0;
848 if( NEVER(p
->pRight
) && p
->pRight
->nHeight
>nHeight
){
849 nHeight
= p
->pRight
->nHeight
;
851 if( ExprUseXSelect(p
) ){
852 heightOfSelect(p
->x
.pSelect
, &nHeight
);
853 }else if( p
->x
.pList
){
854 heightOfExprList(p
->x
.pList
, &nHeight
);
855 p
->flags
|= EP_Propagate
& sqlite3ExprListFlags(p
->x
.pList
);
857 p
->nHeight
= nHeight
+ 1;
861 ** Set the Expr.nHeight variable using the exprSetHeight() function. If
862 ** the height is greater than the maximum allowed expression depth,
863 ** leave an error in pParse.
865 ** Also propagate all EP_Propagate flags from the Expr.x.pList into
868 void sqlite3ExprSetHeightAndFlags(Parse
*pParse
, Expr
*p
){
869 if( pParse
->nErr
) return;
871 sqlite3ExprCheckHeight(pParse
, p
->nHeight
);
875 ** Return the maximum height of any expression tree referenced
876 ** by the select statement passed as an argument.
878 int sqlite3SelectExprHeight(const Select
*p
){
880 heightOfSelect(p
, &nHeight
);
883 #else /* ABOVE: Height enforcement enabled. BELOW: Height enforcement off */
885 ** Propagate all EP_Propagate flags from the Expr.x.pList into
888 void sqlite3ExprSetHeightAndFlags(Parse
*pParse
, Expr
*p
){
889 if( pParse
->nErr
) return;
890 if( p
&& ExprUseXList(p
) && p
->x
.pList
){
891 p
->flags
|= EP_Propagate
& sqlite3ExprListFlags(p
->x
.pList
);
894 #define exprSetHeight(y)
895 #endif /* SQLITE_MAX_EXPR_DEPTH>0 */
898 ** Set the error offset for an Expr node, if possible.
900 void sqlite3ExprSetErrorOffset(Expr
*pExpr
, int iOfst
){
901 if( pExpr
==0 ) return;
902 if( NEVER(ExprUseWJoin(pExpr
)) ) return;
903 pExpr
->w
.iOfst
= iOfst
;
907 ** This routine is the core allocator for Expr nodes.
909 ** Construct a new expression node and return a pointer to it. Memory
910 ** for this node and for the pToken argument is a single allocation
911 ** obtained from sqlite3DbMalloc(). The calling function
912 ** is responsible for making sure the node eventually gets freed.
914 ** If dequote is true, then the token (if it exists) is dequoted.
915 ** If dequote is false, no dequoting is performed. The deQuote
916 ** parameter is ignored if pToken is NULL or if the token does not
917 ** appear to be quoted. If the quotes were of the form "..." (double-quotes)
918 ** then the EP_DblQuoted flag is set on the expression node.
920 ** Special case (tag-20240227-a): If op==TK_INTEGER and pToken points to
921 ** a string that can be translated into a 32-bit integer, then the token is
922 ** not stored in u.zToken. Instead, the integer values is written
923 ** into u.iValue and the EP_IntValue flag is set. No extra storage
924 ** is allocated to hold the integer text and the dequote flag is ignored.
925 ** See also tag-20240227-b.
927 Expr
*sqlite3ExprAlloc(
928 sqlite3
*db
, /* Handle for sqlite3DbMallocRawNN() */
929 int op
, /* Expression opcode */
930 const Token
*pToken
, /* Token argument. Might be NULL */
931 int dequote
/* True to dequote */
939 if( op
!=TK_INTEGER
|| pToken
->z
==0
940 || sqlite3GetInt32(pToken
->z
, &iValue
)==0 ){
941 nExtra
= pToken
->n
+1; /* tag-20240227-a */
945 pNew
= sqlite3DbMallocRawNN(db
, sizeof(Expr
)+nExtra
);
947 memset(pNew
, 0, sizeof(Expr
));
952 pNew
->flags
|= EP_IntValue
|EP_Leaf
|(iValue
?EP_IsTrue
:EP_IsFalse
);
953 pNew
->u
.iValue
= iValue
;
955 pNew
->u
.zToken
= (char*)&pNew
[1];
956 assert( pToken
->z
!=0 || pToken
->n
==0 );
957 if( pToken
->n
) memcpy(pNew
->u
.zToken
, pToken
->z
, pToken
->n
);
958 pNew
->u
.zToken
[pToken
->n
] = 0;
959 if( dequote
&& sqlite3Isquote(pNew
->u
.zToken
[0]) ){
960 sqlite3DequoteExpr(pNew
);
964 #if SQLITE_MAX_EXPR_DEPTH>0
972 ** Allocate a new expression node from a zero-terminated token that has
973 ** already been dequoted.
976 sqlite3
*db
, /* Handle for sqlite3DbMallocZero() (may be null) */
977 int op
, /* Expression opcode */
978 const char *zToken
/* Token argument. Might be NULL */
982 x
.n
= sqlite3Strlen30(zToken
);
983 return sqlite3ExprAlloc(db
, op
, &x
, 0);
987 ** Attach subtrees pLeft and pRight to the Expr node pRoot.
989 ** If pRoot==NULL that means that a memory allocation error has occurred.
990 ** In that case, delete the subtrees pLeft and pRight.
992 void sqlite3ExprAttachSubtrees(
999 assert( db
->mallocFailed
);
1000 sqlite3ExprDelete(db
, pLeft
);
1001 sqlite3ExprDelete(db
, pRight
);
1003 assert( ExprUseXList(pRoot
) );
1004 assert( pRoot
->x
.pSelect
==0 );
1006 pRoot
->pRight
= pRight
;
1007 pRoot
->flags
|= EP_Propagate
& pRight
->flags
;
1008 #if SQLITE_MAX_EXPR_DEPTH>0
1009 pRoot
->nHeight
= pRight
->nHeight
+1;
1015 pRoot
->pLeft
= pLeft
;
1016 pRoot
->flags
|= EP_Propagate
& pLeft
->flags
;
1017 #if SQLITE_MAX_EXPR_DEPTH>0
1018 if( pLeft
->nHeight
>=pRoot
->nHeight
){
1019 pRoot
->nHeight
= pLeft
->nHeight
+1;
1027 ** Allocate an Expr node which joins as many as two subtrees.
1029 ** One or both of the subtrees can be NULL. Return a pointer to the new
1030 ** Expr node. Or, if an OOM error occurs, set pParse->db->mallocFailed,
1031 ** free the subtrees and return NULL.
1034 Parse
*pParse
, /* Parsing context */
1035 int op
, /* Expression opcode */
1036 Expr
*pLeft
, /* Left operand */
1037 Expr
*pRight
/* Right operand */
1040 p
= sqlite3DbMallocRawNN(pParse
->db
, sizeof(Expr
));
1042 memset(p
, 0, sizeof(Expr
));
1045 sqlite3ExprAttachSubtrees(pParse
->db
, p
, pLeft
, pRight
);
1046 sqlite3ExprCheckHeight(pParse
, p
->nHeight
);
1048 sqlite3ExprDelete(pParse
->db
, pLeft
);
1049 sqlite3ExprDelete(pParse
->db
, pRight
);
1055 ** Add pSelect to the Expr.x.pSelect field. Or, if pExpr is NULL (due
1056 ** do a memory allocation failure) then delete the pSelect object.
1058 void sqlite3PExprAddSelect(Parse
*pParse
, Expr
*pExpr
, Select
*pSelect
){
1060 pExpr
->x
.pSelect
= pSelect
;
1061 ExprSetProperty(pExpr
, EP_xIsSelect
|EP_Subquery
);
1062 sqlite3ExprSetHeightAndFlags(pParse
, pExpr
);
1064 assert( pParse
->db
->mallocFailed
);
1065 sqlite3SelectDelete(pParse
->db
, pSelect
);
1070 ** Expression list pEList is a list of vector values. This function
1071 ** converts the contents of pEList to a VALUES(...) Select statement
1072 ** returning 1 row for each element of the list. For example, the
1075 ** ( (1,2), (3,4) (5,6) )
1077 ** is translated to the equivalent of:
1079 ** VALUES(1,2), (3,4), (5,6)
1081 ** Each of the vector values in pEList must contain exactly nElem terms.
1082 ** If a list element that is not a vector or does not contain nElem terms,
1083 ** an error message is left in pParse.
1085 ** This is used as part of processing IN(...) expressions with a list
1086 ** of vectors on the RHS. e.g. "... IN ((1,2), (3,4), (5,6))".
1088 Select
*sqlite3ExprListToValues(Parse
*pParse
, int nElem
, ExprList
*pEList
){
1092 for(ii
=0; ii
<pEList
->nExpr
; ii
++){
1094 Expr
*pExpr
= pEList
->a
[ii
].pExpr
;
1096 if( pExpr
->op
==TK_VECTOR
){
1097 assert( ExprUseXList(pExpr
) );
1098 nExprElem
= pExpr
->x
.pList
->nExpr
;
1102 if( nExprElem
!=nElem
){
1103 sqlite3ErrorMsg(pParse
, "IN(...) element has %d term%s - expected %d",
1104 nExprElem
, nExprElem
>1?"s":"", nElem
1108 assert( ExprUseXList(pExpr
) );
1109 pSel
= sqlite3SelectNew(pParse
, pExpr
->x
.pList
, 0, 0, 0, 0, 0, SF_Values
,0);
1114 pSel
->pPrior
= pRet
;
1120 if( pRet
&& pRet
->pPrior
){
1121 pRet
->selFlags
|= SF_MultiValue
;
1123 sqlite3ExprListDelete(pParse
->db
, pEList
);
1128 ** Join two expressions using an AND operator. If either expression is
1129 ** NULL, then just return the other expression.
1131 ** If one side or the other of the AND is known to be false, and neither side
1132 ** is part of an ON clause, then instead of returning an AND expression,
1133 ** just return a constant expression with a value of false.
1135 Expr
*sqlite3ExprAnd(Parse
*pParse
, Expr
*pLeft
, Expr
*pRight
){
1136 sqlite3
*db
= pParse
->db
;
1139 }else if( pRight
==0 ){
1142 u32 f
= pLeft
->flags
| pRight
->flags
;
1143 if( (f
&(EP_OuterON
|EP_InnerON
|EP_IsFalse
))==EP_IsFalse
1144 && !IN_RENAME_OBJECT
1146 sqlite3ExprDeferredDelete(pParse
, pLeft
);
1147 sqlite3ExprDeferredDelete(pParse
, pRight
);
1148 return sqlite3Expr(db
, TK_INTEGER
, "0");
1150 return sqlite3PExpr(pParse
, TK_AND
, pLeft
, pRight
);
1156 ** Construct a new expression node for a function with multiple
1159 Expr
*sqlite3ExprFunction(
1160 Parse
*pParse
, /* Parsing context */
1161 ExprList
*pList
, /* Argument list */
1162 const Token
*pToken
, /* Name of the function */
1163 int eDistinct
/* SF_Distinct or SF_ALL or 0 */
1166 sqlite3
*db
= pParse
->db
;
1168 pNew
= sqlite3ExprAlloc(db
, TK_FUNCTION
, pToken
, 1);
1170 sqlite3ExprListDelete(db
, pList
); /* Avoid memory leak when malloc fails */
1173 assert( !ExprHasProperty(pNew
, EP_InnerON
|EP_OuterON
) );
1174 pNew
->w
.iOfst
= (int)(pToken
->z
- pParse
->zTail
);
1176 && pList
->nExpr
> pParse
->db
->aLimit
[SQLITE_LIMIT_FUNCTION_ARG
]
1179 sqlite3ErrorMsg(pParse
, "too many arguments on function %T", pToken
);
1181 pNew
->x
.pList
= pList
;
1182 ExprSetProperty(pNew
, EP_HasFunc
);
1183 assert( ExprUseXList(pNew
) );
1184 sqlite3ExprSetHeightAndFlags(pParse
, pNew
);
1185 if( eDistinct
==SF_Distinct
) ExprSetProperty(pNew
, EP_Distinct
);
1190 ** Report an error when attempting to use an ORDER BY clause within
1191 ** the arguments of a non-aggregate function.
1193 void sqlite3ExprOrderByAggregateError(Parse
*pParse
, Expr
*p
){
1194 sqlite3ErrorMsg(pParse
,
1195 "ORDER BY may not be used with non-aggregate %#T()", p
1200 ** Attach an ORDER BY clause to a function call.
1202 ** functionname( arguments ORDER BY sortlist )
1203 ** \_____________________/ \______/
1206 ** The ORDER BY clause is inserted into a new Expr node of type TK_ORDER
1207 ** and added to the Expr.pLeft field of the parent TK_FUNCTION node.
1209 void sqlite3ExprAddFunctionOrderBy(
1210 Parse
*pParse
, /* Parsing context */
1211 Expr
*pExpr
, /* The function call to which ORDER BY is to be added */
1212 ExprList
*pOrderBy
/* The ORDER BY clause to add */
1215 sqlite3
*db
= pParse
->db
;
1216 if( NEVER(pOrderBy
==0) ){
1217 assert( db
->mallocFailed
);
1221 assert( db
->mallocFailed
);
1222 sqlite3ExprListDelete(db
, pOrderBy
);
1225 assert( pExpr
->op
==TK_FUNCTION
);
1226 assert( pExpr
->pLeft
==0 );
1227 assert( ExprUseXList(pExpr
) );
1228 if( pExpr
->x
.pList
==0 || NEVER(pExpr
->x
.pList
->nExpr
==0) ){
1229 /* Ignore ORDER BY on zero-argument aggregates */
1230 sqlite3ParserAddCleanup(pParse
, sqlite3ExprListDeleteGeneric
, pOrderBy
);
1233 if( IsWindowFunc(pExpr
) ){
1234 sqlite3ExprOrderByAggregateError(pParse
, pExpr
);
1235 sqlite3ExprListDelete(db
, pOrderBy
);
1239 pOB
= sqlite3ExprAlloc(db
, TK_ORDER
, 0, 0);
1241 sqlite3ExprListDelete(db
, pOrderBy
);
1244 pOB
->x
.pList
= pOrderBy
;
1245 assert( ExprUseXList(pOB
) );
1247 ExprSetProperty(pOB
, EP_FullSize
);
1251 ** Check to see if a function is usable according to current access
1254 ** SQLITE_FUNC_DIRECT - Only usable from top-level SQL
1256 ** SQLITE_FUNC_UNSAFE - Usable if TRUSTED_SCHEMA or from
1259 ** If the function is not usable, create an error.
1261 void sqlite3ExprFunctionUsable(
1262 Parse
*pParse
, /* Parsing and code generating context */
1263 const Expr
*pExpr
, /* The function invocation */
1264 const FuncDef
*pDef
/* The function being invoked */
1266 assert( !IN_RENAME_OBJECT
);
1267 assert( (pDef
->funcFlags
& (SQLITE_FUNC_DIRECT
|SQLITE_FUNC_UNSAFE
))!=0 );
1268 if( ExprHasProperty(pExpr
, EP_FromDDL
) ){
1269 if( (pDef
->funcFlags
& SQLITE_FUNC_DIRECT
)!=0
1270 || (pParse
->db
->flags
& SQLITE_TrustedSchema
)==0
1272 /* Functions prohibited in triggers and views if:
1273 ** (1) tagged with SQLITE_DIRECTONLY
1274 ** (2) not tagged with SQLITE_INNOCUOUS (which means it
1275 ** is tagged with SQLITE_FUNC_UNSAFE) and
1276 ** SQLITE_DBCONFIG_TRUSTED_SCHEMA is off (meaning
1277 ** that the schema is possibly tainted).
1279 sqlite3ErrorMsg(pParse
, "unsafe use of %#T()", pExpr
);
1285 ** Assign a variable number to an expression that encodes a wildcard
1286 ** in the original SQL statement.
1288 ** Wildcards consisting of a single "?" are assigned the next sequential
1291 ** Wildcards of the form "?nnn" are assigned the number "nnn". We make
1292 ** sure "nnn" is not too big to avoid a denial of service attack when
1293 ** the SQL statement comes from an external source.
1295 ** Wildcards of the form ":aaa", "@aaa", or "$aaa" are assigned the same number
1296 ** as the previous instance of the same wildcard. Or if this is the first
1297 ** instance of the wildcard, the next sequential variable number is
1300 void sqlite3ExprAssignVarNumber(Parse
*pParse
, Expr
*pExpr
, u32 n
){
1301 sqlite3
*db
= pParse
->db
;
1305 if( pExpr
==0 ) return;
1306 assert( !ExprHasProperty(pExpr
, EP_IntValue
|EP_Reduced
|EP_TokenOnly
) );
1307 z
= pExpr
->u
.zToken
;
1310 assert( n
==(u32
)sqlite3Strlen30(z
) );
1312 /* Wildcard of the form "?". Assign the next variable number */
1313 assert( z
[0]=='?' );
1314 x
= (ynVar
)(++pParse
->nVar
);
1318 /* Wildcard of the form "?nnn". Convert "nnn" to an integer and
1319 ** use it as the variable number */
1322 if( n
==2 ){ /*OPTIMIZATION-IF-TRUE*/
1323 i
= z
[1]-'0'; /* The common case of ?N for a single digit N */
1326 bOk
= 0==sqlite3Atoi64(&z
[1], &i
, n
-1, SQLITE_UTF8
);
1330 testcase( i
==db
->aLimit
[SQLITE_LIMIT_VARIABLE_NUMBER
]-1 );
1331 testcase( i
==db
->aLimit
[SQLITE_LIMIT_VARIABLE_NUMBER
] );
1332 if( bOk
==0 || i
<1 || i
>db
->aLimit
[SQLITE_LIMIT_VARIABLE_NUMBER
] ){
1333 sqlite3ErrorMsg(pParse
, "variable number must be between ?1 and ?%d",
1334 db
->aLimit
[SQLITE_LIMIT_VARIABLE_NUMBER
]);
1335 sqlite3RecordErrorOffsetOfExpr(pParse
->db
, pExpr
);
1339 if( x
>pParse
->nVar
){
1340 pParse
->nVar
= (int)x
;
1342 }else if( sqlite3VListNumToName(pParse
->pVList
, x
)==0 ){
1346 /* Wildcards like ":aaa", "$aaa" or "@aaa". Reuse the same variable
1347 ** number as the prior appearance of the same name, or if the name
1348 ** has never appeared before, reuse the same variable number
1350 x
= (ynVar
)sqlite3VListNameToNum(pParse
->pVList
, z
, n
);
1352 x
= (ynVar
)(++pParse
->nVar
);
1357 pParse
->pVList
= sqlite3VListAdd(db
, pParse
->pVList
, z
, n
, x
);
1361 if( x
>db
->aLimit
[SQLITE_LIMIT_VARIABLE_NUMBER
] ){
1362 sqlite3ErrorMsg(pParse
, "too many SQL variables");
1363 sqlite3RecordErrorOffsetOfExpr(pParse
->db
, pExpr
);
1368 ** Recursively delete an expression tree.
1370 static SQLITE_NOINLINE
void sqlite3ExprDeleteNN(sqlite3
*db
, Expr
*p
){
1374 assert( !ExprUseUValue(p
) || p
->u
.iValue
>=0 );
1375 assert( !ExprUseYWin(p
) || !ExprUseYSub(p
) );
1376 assert( !ExprUseYWin(p
) || p
->y
.pWin
!=0 || db
->mallocFailed
);
1377 assert( p
->op
!=TK_FUNCTION
|| !ExprUseYSub(p
) );
1379 if( ExprHasProperty(p
, EP_Leaf
) && !ExprHasProperty(p
, EP_TokenOnly
) ){
1380 assert( p
->pLeft
==0 );
1381 assert( p
->pRight
==0 );
1382 assert( !ExprUseXSelect(p
) || p
->x
.pSelect
==0 );
1383 assert( !ExprUseXList(p
) || p
->x
.pList
==0 );
1386 if( !ExprHasProperty(p
, (EP_TokenOnly
|EP_Leaf
)) ){
1387 /* The Expr.x union is never used at the same time as Expr.pRight */
1388 assert( (ExprUseXList(p
) && p
->x
.pList
==0) || p
->pRight
==0 );
1390 assert( !ExprHasProperty(p
, EP_WinFunc
) );
1391 sqlite3ExprDeleteNN(db
, p
->pRight
);
1392 }else if( ExprUseXSelect(p
) ){
1393 assert( !ExprHasProperty(p
, EP_WinFunc
) );
1394 sqlite3SelectDelete(db
, p
->x
.pSelect
);
1396 sqlite3ExprListDelete(db
, p
->x
.pList
);
1397 #ifndef SQLITE_OMIT_WINDOWFUNC
1398 if( ExprHasProperty(p
, EP_WinFunc
) ){
1399 sqlite3WindowDelete(db
, p
->y
.pWin
);
1403 if( p
->pLeft
&& p
->op
!=TK_SELECT_COLUMN
){
1404 Expr
*pLeft
= p
->pLeft
;
1405 if( !ExprHasProperty(p
, EP_Static
)
1406 && !ExprHasProperty(pLeft
, EP_Static
)
1408 /* Avoid unnecessary recursion on unary operators */
1409 sqlite3DbNNFreeNN(db
, p
);
1411 goto exprDeleteRestart
;
1413 sqlite3ExprDeleteNN(db
, pLeft
);
1417 if( !ExprHasProperty(p
, EP_Static
) ){
1418 sqlite3DbNNFreeNN(db
, p
);
1421 void sqlite3ExprDelete(sqlite3
*db
, Expr
*p
){
1422 if( p
) sqlite3ExprDeleteNN(db
, p
);
1424 void sqlite3ExprDeleteGeneric(sqlite3
*db
, void *p
){
1425 if( ALWAYS(p
) ) sqlite3ExprDeleteNN(db
, (Expr
*)p
);
1429 ** Clear both elements of an OnOrUsing object
1431 void sqlite3ClearOnOrUsing(sqlite3
*db
, OnOrUsing
*p
){
1433 /* Nothing to clear */
1435 sqlite3ExprDeleteNN(db
, p
->pOn
);
1436 }else if( p
->pUsing
){
1437 sqlite3IdListDelete(db
, p
->pUsing
);
1442 ** Arrange to cause pExpr to be deleted when the pParse is deleted.
1443 ** This is similar to sqlite3ExprDelete() except that the delete is
1444 ** deferred until the pParse is deleted.
1446 ** The pExpr might be deleted immediately on an OOM error.
1448 ** Return 0 if the delete was successfully deferred. Return non-zero
1449 ** if the delete happened immediately because of an OOM.
1451 int sqlite3ExprDeferredDelete(Parse
*pParse
, Expr
*pExpr
){
1452 return 0==sqlite3ParserAddCleanup(pParse
, sqlite3ExprDeleteGeneric
, pExpr
);
1455 /* Invoke sqlite3RenameExprUnmap() and sqlite3ExprDelete() on the
1458 void sqlite3ExprUnmapAndDelete(Parse
*pParse
, Expr
*p
){
1460 if( IN_RENAME_OBJECT
){
1461 sqlite3RenameExprUnmap(pParse
, p
);
1463 sqlite3ExprDeleteNN(pParse
->db
, p
);
1468 ** Return the number of bytes allocated for the expression structure
1469 ** passed as the first argument. This is always one of EXPR_FULLSIZE,
1470 ** EXPR_REDUCEDSIZE or EXPR_TOKENONLYSIZE.
1472 static int exprStructSize(const Expr
*p
){
1473 if( ExprHasProperty(p
, EP_TokenOnly
) ) return EXPR_TOKENONLYSIZE
;
1474 if( ExprHasProperty(p
, EP_Reduced
) ) return EXPR_REDUCEDSIZE
;
1475 return EXPR_FULLSIZE
;
1479 ** The dupedExpr*Size() routines each return the number of bytes required
1480 ** to store a copy of an expression or expression tree. They differ in
1481 ** how much of the tree is measured.
1483 ** dupedExprStructSize() Size of only the Expr structure
1484 ** dupedExprNodeSize() Size of Expr + space for token
1485 ** dupedExprSize() Expr + token + subtree components
1487 ***************************************************************************
1489 ** The dupedExprStructSize() function returns two values OR-ed together:
1490 ** (1) the space required for a copy of the Expr structure only and
1491 ** (2) the EP_xxx flags that indicate what the structure size should be.
1492 ** The return values is always one of:
1495 ** EXPR_REDUCEDSIZE | EP_Reduced
1496 ** EXPR_TOKENONLYSIZE | EP_TokenOnly
1498 ** The size of the structure can be found by masking the return value
1499 ** of this routine with 0xfff. The flags can be found by masking the
1500 ** return value with EP_Reduced|EP_TokenOnly.
1502 ** Note that with flags==EXPRDUP_REDUCE, this routines works on full-size
1503 ** (unreduced) Expr objects as they or originally constructed by the parser.
1504 ** During expression analysis, extra information is computed and moved into
1505 ** later parts of the Expr object and that extra information might get chopped
1506 ** off if the expression is reduced. Note also that it does not work to
1507 ** make an EXPRDUP_REDUCE copy of a reduced expression. It is only legal
1508 ** to reduce a pristine expression tree from the parser. The implementation
1509 ** of dupedExprStructSize() contain multiple assert() statements that attempt
1510 ** to enforce this constraint.
1512 static int dupedExprStructSize(const Expr
*p
, int flags
){
1514 assert( flags
==EXPRDUP_REDUCE
|| flags
==0 ); /* Only one flag value allowed */
1515 assert( EXPR_FULLSIZE
<=0xfff );
1516 assert( (0xfff & (EP_Reduced
|EP_TokenOnly
))==0 );
1517 if( 0==flags
|| ExprHasProperty(p
, EP_FullSize
) ){
1518 nSize
= EXPR_FULLSIZE
;
1520 assert( !ExprHasProperty(p
, EP_TokenOnly
|EP_Reduced
) );
1521 assert( !ExprHasProperty(p
, EP_OuterON
) );
1522 assert( !ExprHasVVAProperty(p
, EP_NoReduce
) );
1523 if( p
->pLeft
|| p
->x
.pList
){
1524 nSize
= EXPR_REDUCEDSIZE
| EP_Reduced
;
1526 assert( p
->pRight
==0 );
1527 nSize
= EXPR_TOKENONLYSIZE
| EP_TokenOnly
;
1534 ** This function returns the space in bytes required to store the copy
1535 ** of the Expr structure and a copy of the Expr.u.zToken string (if that
1536 ** string is defined.)
1538 static int dupedExprNodeSize(const Expr
*p
, int flags
){
1539 int nByte
= dupedExprStructSize(p
, flags
) & 0xfff;
1540 if( !ExprHasProperty(p
, EP_IntValue
) && p
->u
.zToken
){
1541 nByte
+= sqlite3Strlen30NN(p
->u
.zToken
)+1;
1543 return ROUND8(nByte
);
1547 ** Return the number of bytes required to create a duplicate of the
1548 ** expression passed as the first argument.
1550 ** The value returned includes space to create a copy of the Expr struct
1551 ** itself and the buffer referred to by Expr.u.zToken, if any.
1553 ** The return value includes space to duplicate all Expr nodes in the
1554 ** tree formed by Expr.pLeft and Expr.pRight, but not any other
1555 ** substructure such as Expr.x.pList, Expr.x.pSelect, and Expr.y.pWin.
1557 static int dupedExprSize(const Expr
*p
){
1560 nByte
= dupedExprNodeSize(p
, EXPRDUP_REDUCE
);
1561 if( p
->pLeft
) nByte
+= dupedExprSize(p
->pLeft
);
1562 if( p
->pRight
) nByte
+= dupedExprSize(p
->pRight
);
1563 assert( nByte
==ROUND8(nByte
) );
1568 ** An EdupBuf is a memory allocation used to stored multiple Expr objects
1569 ** together with their Expr.zToken content. This is used to help implement
1570 ** compression while doing sqlite3ExprDup(). The top-level Expr does the
1571 ** allocation for itself and many of its decendents, then passes an instance
1572 ** of the structure down into exprDup() so that they decendents can have
1573 ** access to that memory.
1575 typedef struct EdupBuf EdupBuf
;
1577 u8
*zAlloc
; /* Memory space available for storage */
1579 u8
*zEnd
; /* First byte past the end of memory */
1584 ** This function is similar to sqlite3ExprDup(), except that if pEdupBuf
1585 ** is not NULL then it points to memory that can be used to store a copy
1586 ** of the input Expr p together with its p->u.zToken (if any). pEdupBuf
1587 ** is updated with the new buffer tail prior to returning.
1589 static Expr
*exprDup(
1590 sqlite3
*db
, /* Database connection (for memory allocation) */
1591 const Expr
*p
, /* Expr tree to be duplicated */
1592 int dupFlags
, /* EXPRDUP_REDUCE for compression. 0 if not */
1593 EdupBuf
*pEdupBuf
/* Preallocated storage space, or NULL */
1595 Expr
*pNew
; /* Value to return */
1596 EdupBuf sEdupBuf
; /* Memory space from which to build Expr object */
1597 u32 staticFlag
; /* EP_Static if space not obtained from malloc */
1598 int nToken
= -1; /* Space needed for p->u.zToken. -1 means unknown */
1602 assert( dupFlags
==0 || dupFlags
==EXPRDUP_REDUCE
);
1603 assert( pEdupBuf
==0 || dupFlags
==EXPRDUP_REDUCE
);
1605 /* Figure out where to write the new Expr structure. */
1607 sEdupBuf
.zAlloc
= pEdupBuf
->zAlloc
;
1609 sEdupBuf
.zEnd
= pEdupBuf
->zEnd
;
1611 staticFlag
= EP_Static
;
1612 assert( sEdupBuf
.zAlloc
!=0 );
1613 assert( dupFlags
==EXPRDUP_REDUCE
);
1617 nAlloc
= dupedExprSize(p
);
1618 }else if( !ExprHasProperty(p
, EP_IntValue
) && p
->u
.zToken
){
1619 nToken
= sqlite3Strlen30NN(p
->u
.zToken
)+1;
1620 nAlloc
= ROUND8(EXPR_FULLSIZE
+ nToken
);
1623 nAlloc
= ROUND8(EXPR_FULLSIZE
);
1625 assert( nAlloc
==ROUND8(nAlloc
) );
1626 sEdupBuf
.zAlloc
= sqlite3DbMallocRawNN(db
, nAlloc
);
1628 sEdupBuf
.zEnd
= sEdupBuf
.zAlloc
? sEdupBuf
.zAlloc
+nAlloc
: 0;
1633 pNew
= (Expr
*)sEdupBuf
.zAlloc
;
1634 assert( EIGHT_BYTE_ALIGNMENT(pNew
) );
1637 /* Set nNewSize to the size allocated for the structure pointed to
1638 ** by pNew. This is either EXPR_FULLSIZE, EXPR_REDUCEDSIZE or
1639 ** EXPR_TOKENONLYSIZE. nToken is set to the number of bytes consumed
1640 ** by the copy of the p->u.zToken string (if any).
1642 const unsigned nStructSize
= dupedExprStructSize(p
, dupFlags
);
1643 int nNewSize
= nStructSize
& 0xfff;
1645 if( !ExprHasProperty(p
, EP_IntValue
) && p
->u
.zToken
){
1646 nToken
= sqlite3Strlen30(p
->u
.zToken
) + 1;
1652 assert( (int)(sEdupBuf
.zEnd
- sEdupBuf
.zAlloc
) >= nNewSize
+nToken
);
1653 assert( ExprHasProperty(p
, EP_Reduced
)==0 );
1654 memcpy(sEdupBuf
.zAlloc
, p
, nNewSize
);
1656 u32 nSize
= (u32
)exprStructSize(p
);
1657 assert( (int)(sEdupBuf
.zEnd
- sEdupBuf
.zAlloc
) >=
1658 (int)EXPR_FULLSIZE
+nToken
);
1659 memcpy(sEdupBuf
.zAlloc
, p
, nSize
);
1660 if( nSize
<EXPR_FULLSIZE
){
1661 memset(&sEdupBuf
.zAlloc
[nSize
], 0, EXPR_FULLSIZE
-nSize
);
1663 nNewSize
= EXPR_FULLSIZE
;
1666 /* Set the EP_Reduced, EP_TokenOnly, and EP_Static flags appropriately. */
1667 pNew
->flags
&= ~(EP_Reduced
|EP_TokenOnly
|EP_Static
);
1668 pNew
->flags
|= nStructSize
& (EP_Reduced
|EP_TokenOnly
);
1669 pNew
->flags
|= staticFlag
;
1670 ExprClearVVAProperties(pNew
);
1672 ExprSetVVAProperty(pNew
, EP_Immutable
);
1675 /* Copy the p->u.zToken string, if any. */
1676 assert( nToken
>=0 );
1678 char *zToken
= pNew
->u
.zToken
= (char*)&sEdupBuf
.zAlloc
[nNewSize
];
1679 memcpy(zToken
, p
->u
.zToken
, nToken
);
1682 sEdupBuf
.zAlloc
+= ROUND8(nNewSize
);
1684 if( ((p
->flags
|pNew
->flags
)&(EP_TokenOnly
|EP_Leaf
))==0 ){
1686 /* Fill in the pNew->x.pSelect or pNew->x.pList member. */
1687 if( ExprUseXSelect(p
) ){
1688 pNew
->x
.pSelect
= sqlite3SelectDup(db
, p
->x
.pSelect
, dupFlags
);
1690 pNew
->x
.pList
= sqlite3ExprListDup(db
, p
->x
.pList
,
1691 p
->op
!=TK_ORDER
? dupFlags
: 0);
1694 #ifndef SQLITE_OMIT_WINDOWFUNC
1695 if( ExprHasProperty(p
, EP_WinFunc
) ){
1696 pNew
->y
.pWin
= sqlite3WindowDup(db
, pNew
, p
->y
.pWin
);
1697 assert( ExprHasProperty(pNew
, EP_WinFunc
) );
1699 #endif /* SQLITE_OMIT_WINDOWFUNC */
1701 /* Fill in pNew->pLeft and pNew->pRight. */
1703 if( p
->op
==TK_SELECT_COLUMN
){
1704 pNew
->pLeft
= p
->pLeft
;
1705 assert( p
->pRight
==0
1706 || p
->pRight
==p
->pLeft
1707 || ExprHasProperty(p
->pLeft
, EP_Subquery
) );
1709 pNew
->pLeft
= p
->pLeft
?
1710 exprDup(db
, p
->pLeft
, EXPRDUP_REDUCE
, &sEdupBuf
) : 0;
1712 pNew
->pRight
= p
->pRight
?
1713 exprDup(db
, p
->pRight
, EXPRDUP_REDUCE
, &sEdupBuf
) : 0;
1715 if( p
->op
==TK_SELECT_COLUMN
){
1716 pNew
->pLeft
= p
->pLeft
;
1717 assert( p
->pRight
==0
1718 || p
->pRight
==p
->pLeft
1719 || ExprHasProperty(p
->pLeft
, EP_Subquery
) );
1721 pNew
->pLeft
= sqlite3ExprDup(db
, p
->pLeft
, 0);
1723 pNew
->pRight
= sqlite3ExprDup(db
, p
->pRight
, 0);
1727 if( pEdupBuf
) memcpy(pEdupBuf
, &sEdupBuf
, sizeof(sEdupBuf
));
1728 assert( sEdupBuf
.zAlloc
<= sEdupBuf
.zEnd
);
1733 ** Create and return a deep copy of the object passed as the second
1734 ** argument. If an OOM condition is encountered, NULL is returned
1735 ** and the db->mallocFailed flag set.
1737 #ifndef SQLITE_OMIT_CTE
1738 With
*sqlite3WithDup(sqlite3
*db
, With
*p
){
1741 sqlite3_int64 nByte
= sizeof(*p
) + sizeof(p
->a
[0]) * (p
->nCte
-1);
1742 pRet
= sqlite3DbMallocZero(db
, nByte
);
1745 pRet
->nCte
= p
->nCte
;
1746 for(i
=0; i
<p
->nCte
; i
++){
1747 pRet
->a
[i
].pSelect
= sqlite3SelectDup(db
, p
->a
[i
].pSelect
, 0);
1748 pRet
->a
[i
].pCols
= sqlite3ExprListDup(db
, p
->a
[i
].pCols
, 0);
1749 pRet
->a
[i
].zName
= sqlite3DbStrDup(db
, p
->a
[i
].zName
);
1750 pRet
->a
[i
].eM10d
= p
->a
[i
].eM10d
;
1757 # define sqlite3WithDup(x,y) 0
1760 #ifndef SQLITE_OMIT_WINDOWFUNC
1762 ** The gatherSelectWindows() procedure and its helper routine
1763 ** gatherSelectWindowsCallback() are used to scan all the expressions
1764 ** an a newly duplicated SELECT statement and gather all of the Window
1765 ** objects found there, assembling them onto the linked list at Select->pWin.
1767 static int gatherSelectWindowsCallback(Walker
*pWalker
, Expr
*pExpr
){
1768 if( pExpr
->op
==TK_FUNCTION
&& ExprHasProperty(pExpr
, EP_WinFunc
) ){
1769 Select
*pSelect
= pWalker
->u
.pSelect
;
1770 Window
*pWin
= pExpr
->y
.pWin
;
1772 assert( IsWindowFunc(pExpr
) );
1773 assert( pWin
->ppThis
==0 );
1774 sqlite3WindowLink(pSelect
, pWin
);
1776 return WRC_Continue
;
1778 static int gatherSelectWindowsSelectCallback(Walker
*pWalker
, Select
*p
){
1779 return p
==pWalker
->u
.pSelect
? WRC_Continue
: WRC_Prune
;
1781 static void gatherSelectWindows(Select
*p
){
1783 w
.xExprCallback
= gatherSelectWindowsCallback
;
1784 w
.xSelectCallback
= gatherSelectWindowsSelectCallback
;
1785 w
.xSelectCallback2
= 0;
1788 sqlite3WalkSelect(&w
, p
);
1794 ** The following group of routines make deep copies of expressions,
1795 ** expression lists, ID lists, and select statements. The copies can
1796 ** be deleted (by being passed to their respective ...Delete() routines)
1797 ** without effecting the originals.
1799 ** The expression list, ID, and source lists return by sqlite3ExprListDup(),
1800 ** sqlite3IdListDup(), and sqlite3SrcListDup() can not be further expanded
1801 ** by subsequent calls to sqlite*ListAppend() routines.
1803 ** Any tables that the SrcList might point to are not duplicated.
1805 ** The flags parameter contains a combination of the EXPRDUP_XXX flags.
1806 ** If the EXPRDUP_REDUCE flag is set, then the structure returned is a
1807 ** truncated version of the usual Expr structure that will be stored as
1808 ** part of the in-memory representation of the database schema.
1810 Expr
*sqlite3ExprDup(sqlite3
*db
, const Expr
*p
, int flags
){
1811 assert( flags
==0 || flags
==EXPRDUP_REDUCE
);
1812 return p
? exprDup(db
, p
, flags
, 0) : 0;
1814 ExprList
*sqlite3ExprListDup(sqlite3
*db
, const ExprList
*p
, int flags
){
1816 struct ExprList_item
*pItem
;
1817 const struct ExprList_item
*pOldItem
;
1819 Expr
*pPriorSelectColOld
= 0;
1820 Expr
*pPriorSelectColNew
= 0;
1822 if( p
==0 ) return 0;
1823 pNew
= sqlite3DbMallocRawNN(db
, sqlite3DbMallocSize(db
, p
));
1824 if( pNew
==0 ) return 0;
1825 pNew
->nExpr
= p
->nExpr
;
1826 pNew
->nAlloc
= p
->nAlloc
;
1829 for(i
=0; i
<p
->nExpr
; i
++, pItem
++, pOldItem
++){
1830 Expr
*pOldExpr
= pOldItem
->pExpr
;
1832 pItem
->pExpr
= sqlite3ExprDup(db
, pOldExpr
, flags
);
1834 && pOldExpr
->op
==TK_SELECT_COLUMN
1835 && (pNewExpr
= pItem
->pExpr
)!=0
1837 if( pNewExpr
->pRight
){
1838 pPriorSelectColOld
= pOldExpr
->pRight
;
1839 pPriorSelectColNew
= pNewExpr
->pRight
;
1840 pNewExpr
->pLeft
= pNewExpr
->pRight
;
1842 if( pOldExpr
->pLeft
!=pPriorSelectColOld
){
1843 pPriorSelectColOld
= pOldExpr
->pLeft
;
1844 pPriorSelectColNew
= sqlite3ExprDup(db
, pPriorSelectColOld
, flags
);
1845 pNewExpr
->pRight
= pPriorSelectColNew
;
1847 pNewExpr
->pLeft
= pPriorSelectColNew
;
1850 pItem
->zEName
= sqlite3DbStrDup(db
, pOldItem
->zEName
);
1851 pItem
->fg
= pOldItem
->fg
;
1853 pItem
->u
= pOldItem
->u
;
1859 ** If cursors, triggers, views and subqueries are all omitted from
1860 ** the build, then none of the following routines, except for
1861 ** sqlite3SelectDup(), can be called. sqlite3SelectDup() is sometimes
1862 ** called with a NULL argument.
1864 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_TRIGGER) \
1865 || !defined(SQLITE_OMIT_SUBQUERY)
1866 SrcList
*sqlite3SrcListDup(sqlite3
*db
, const SrcList
*p
, int flags
){
1871 if( p
==0 ) return 0;
1872 nByte
= sizeof(*p
) + (p
->nSrc
>0 ? sizeof(p
->a
[0]) * (p
->nSrc
-1) : 0);
1873 pNew
= sqlite3DbMallocRawNN(db
, nByte
);
1874 if( pNew
==0 ) return 0;
1875 pNew
->nSrc
= pNew
->nAlloc
= p
->nSrc
;
1876 for(i
=0; i
<p
->nSrc
; i
++){
1877 SrcItem
*pNewItem
= &pNew
->a
[i
];
1878 const SrcItem
*pOldItem
= &p
->a
[i
];
1880 pNewItem
->fg
= pOldItem
->fg
;
1881 if( pOldItem
->fg
.isSubquery
){
1882 Subquery
*pNewSubq
= sqlite3DbMallocRaw(db
, sizeof(Subquery
));
1884 assert( db
->mallocFailed
);
1885 pNewItem
->fg
.isSubquery
= 0;
1887 memcpy(pNewSubq
, pOldItem
->u4
.pSubq
, sizeof(*pNewSubq
));
1888 pNewSubq
->pSelect
= sqlite3SelectDup(db
, pNewSubq
->pSelect
, flags
);
1889 if( pNewSubq
->pSelect
==0 ){
1890 sqlite3DbFree(db
, pNewSubq
);
1892 pNewItem
->fg
.isSubquery
= 0;
1895 pNewItem
->u4
.pSubq
= pNewSubq
;
1896 }else if( pOldItem
->fg
.fixedSchema
){
1897 pNewItem
->u4
.pSchema
= pOldItem
->u4
.pSchema
;
1899 pNewItem
->u4
.zDatabase
= sqlite3DbStrDup(db
, pOldItem
->u4
.zDatabase
);
1901 pNewItem
->zName
= sqlite3DbStrDup(db
, pOldItem
->zName
);
1902 pNewItem
->zAlias
= sqlite3DbStrDup(db
, pOldItem
->zAlias
);
1903 pNewItem
->iCursor
= pOldItem
->iCursor
;
1904 if( pNewItem
->fg
.isIndexedBy
){
1905 pNewItem
->u1
.zIndexedBy
= sqlite3DbStrDup(db
, pOldItem
->u1
.zIndexedBy
);
1906 }else if( pNewItem
->fg
.isTabFunc
){
1907 pNewItem
->u1
.pFuncArg
=
1908 sqlite3ExprListDup(db
, pOldItem
->u1
.pFuncArg
, flags
);
1910 pNewItem
->u1
.nRow
= pOldItem
->u1
.nRow
;
1912 pNewItem
->u2
= pOldItem
->u2
;
1913 if( pNewItem
->fg
.isCte
){
1914 pNewItem
->u2
.pCteUse
->nUse
++;
1916 pTab
= pNewItem
->pSTab
= pOldItem
->pSTab
;
1920 if( pOldItem
->fg
.isUsing
){
1921 assert( pNewItem
->fg
.isUsing
);
1922 pNewItem
->u3
.pUsing
= sqlite3IdListDup(db
, pOldItem
->u3
.pUsing
);
1924 pNewItem
->u3
.pOn
= sqlite3ExprDup(db
, pOldItem
->u3
.pOn
, flags
);
1926 pNewItem
->colUsed
= pOldItem
->colUsed
;
1930 IdList
*sqlite3IdListDup(sqlite3
*db
, const IdList
*p
){
1934 if( p
==0 ) return 0;
1935 assert( p
->eU4
!=EU4_EXPR
);
1936 pNew
= sqlite3DbMallocRawNN(db
, sizeof(*pNew
)+(p
->nId
-1)*sizeof(p
->a
[0]) );
1937 if( pNew
==0 ) return 0;
1940 for(i
=0; i
<p
->nId
; i
++){
1941 struct IdList_item
*pNewItem
= &pNew
->a
[i
];
1942 const struct IdList_item
*pOldItem
= &p
->a
[i
];
1943 pNewItem
->zName
= sqlite3DbStrDup(db
, pOldItem
->zName
);
1944 pNewItem
->u4
= pOldItem
->u4
;
1948 Select
*sqlite3SelectDup(sqlite3
*db
, const Select
*pDup
, int flags
){
1951 Select
**pp
= &pRet
;
1955 for(p
=pDup
; p
; p
=p
->pPrior
){
1956 Select
*pNew
= sqlite3DbMallocRawNN(db
, sizeof(*p
) );
1957 if( pNew
==0 ) break;
1958 pNew
->pEList
= sqlite3ExprListDup(db
, p
->pEList
, flags
);
1959 pNew
->pSrc
= sqlite3SrcListDup(db
, p
->pSrc
, flags
);
1960 pNew
->pWhere
= sqlite3ExprDup(db
, p
->pWhere
, flags
);
1961 pNew
->pGroupBy
= sqlite3ExprListDup(db
, p
->pGroupBy
, flags
);
1962 pNew
->pHaving
= sqlite3ExprDup(db
, p
->pHaving
, flags
);
1963 pNew
->pOrderBy
= sqlite3ExprListDup(db
, p
->pOrderBy
, flags
);
1965 pNew
->pNext
= pNext
;
1967 pNew
->pLimit
= sqlite3ExprDup(db
, p
->pLimit
, flags
);
1970 pNew
->selFlags
= p
->selFlags
& ~SF_UsesEphemeral
;
1971 pNew
->addrOpenEphm
[0] = -1;
1972 pNew
->addrOpenEphm
[1] = -1;
1973 pNew
->nSelectRow
= p
->nSelectRow
;
1974 pNew
->pWith
= sqlite3WithDup(db
, p
->pWith
);
1975 #ifndef SQLITE_OMIT_WINDOWFUNC
1977 pNew
->pWinDefn
= sqlite3WindowListDup(db
, p
->pWinDefn
);
1978 if( p
->pWin
&& db
->mallocFailed
==0 ) gatherSelectWindows(pNew
);
1980 pNew
->selId
= p
->selId
;
1981 if( db
->mallocFailed
){
1982 /* Any prior OOM might have left the Select object incomplete.
1983 ** Delete the whole thing rather than allow an incomplete Select
1984 ** to be used by the code generator. */
1986 sqlite3SelectDelete(db
, pNew
);
1996 Select
*sqlite3SelectDup(sqlite3
*db
, const Select
*p
, int flags
){
2004 ** Add a new element to the end of an expression list. If pList is
2005 ** initially NULL, then create a new expression list.
2007 ** The pList argument must be either NULL or a pointer to an ExprList
2008 ** obtained from a prior call to sqlite3ExprListAppend().
2010 ** If a memory allocation error occurs, the entire list is freed and
2011 ** NULL is returned. If non-NULL is returned, then it is guaranteed
2012 ** that the new entry was successfully appended.
2014 static const struct ExprList_item zeroItem
= {0};
2015 SQLITE_NOINLINE ExprList
*sqlite3ExprListAppendNew(
2016 sqlite3
*db
, /* Database handle. Used for memory allocation */
2017 Expr
*pExpr
/* Expression to be appended. Might be NULL */
2019 struct ExprList_item
*pItem
;
2022 pList
= sqlite3DbMallocRawNN(db
, sizeof(ExprList
)+sizeof(pList
->a
[0])*4 );
2024 sqlite3ExprDelete(db
, pExpr
);
2029 pItem
= &pList
->a
[0];
2031 pItem
->pExpr
= pExpr
;
2034 SQLITE_NOINLINE ExprList
*sqlite3ExprListAppendGrow(
2035 sqlite3
*db
, /* Database handle. Used for memory allocation */
2036 ExprList
*pList
, /* List to which to append. Might be NULL */
2037 Expr
*pExpr
/* Expression to be appended. Might be NULL */
2039 struct ExprList_item
*pItem
;
2042 pNew
= sqlite3DbRealloc(db
, pList
,
2043 sizeof(*pList
)+(pList
->nAlloc
-1)*sizeof(pList
->a
[0]));
2045 sqlite3ExprListDelete(db
, pList
);
2046 sqlite3ExprDelete(db
, pExpr
);
2051 pItem
= &pList
->a
[pList
->nExpr
++];
2053 pItem
->pExpr
= pExpr
;
2056 ExprList
*sqlite3ExprListAppend(
2057 Parse
*pParse
, /* Parsing context */
2058 ExprList
*pList
, /* List to which to append. Might be NULL */
2059 Expr
*pExpr
/* Expression to be appended. Might be NULL */
2061 struct ExprList_item
*pItem
;
2063 return sqlite3ExprListAppendNew(pParse
->db
,pExpr
);
2065 if( pList
->nAlloc
<pList
->nExpr
+1 ){
2066 return sqlite3ExprListAppendGrow(pParse
->db
,pList
,pExpr
);
2068 pItem
= &pList
->a
[pList
->nExpr
++];
2070 pItem
->pExpr
= pExpr
;
2075 ** pColumns and pExpr form a vector assignment which is part of the SET
2076 ** clause of an UPDATE statement. Like this:
2078 ** (a,b,c) = (expr1,expr2,expr3)
2079 ** Or: (a,b,c) = (SELECT x,y,z FROM ....)
2081 ** For each term of the vector assignment, append new entries to the
2082 ** expression list pList. In the case of a subquery on the RHS, append
2083 ** TK_SELECT_COLUMN expressions.
2085 ExprList
*sqlite3ExprListAppendVector(
2086 Parse
*pParse
, /* Parsing context */
2087 ExprList
*pList
, /* List to which to append. Might be NULL */
2088 IdList
*pColumns
, /* List of names of LHS of the assignment */
2089 Expr
*pExpr
/* Vector expression to be appended. Might be NULL */
2091 sqlite3
*db
= pParse
->db
;
2094 int iFirst
= pList
? pList
->nExpr
: 0;
2095 /* pColumns can only be NULL due to an OOM but an OOM will cause an
2096 ** exit prior to this routine being invoked */
2097 if( NEVER(pColumns
==0) ) goto vector_append_error
;
2098 if( pExpr
==0 ) goto vector_append_error
;
2100 /* If the RHS is a vector, then we can immediately check to see that
2101 ** the size of the RHS and LHS match. But if the RHS is a SELECT,
2102 ** wildcards ("*") in the result set of the SELECT must be expanded before
2103 ** we can do the size check, so defer the size check until code generation.
2105 if( pExpr
->op
!=TK_SELECT
&& pColumns
->nId
!=(n
=sqlite3ExprVectorSize(pExpr
)) ){
2106 sqlite3ErrorMsg(pParse
, "%d columns assigned %d values",
2108 goto vector_append_error
;
2111 for(i
=0; i
<pColumns
->nId
; i
++){
2112 Expr
*pSubExpr
= sqlite3ExprForVectorField(pParse
, pExpr
, i
, pColumns
->nId
);
2113 assert( pSubExpr
!=0 || db
->mallocFailed
);
2114 if( pSubExpr
==0 ) continue;
2115 pList
= sqlite3ExprListAppend(pParse
, pList
, pSubExpr
);
2117 assert( pList
->nExpr
==iFirst
+i
+1 );
2118 pList
->a
[pList
->nExpr
-1].zEName
= pColumns
->a
[i
].zName
;
2119 pColumns
->a
[i
].zName
= 0;
2123 if( !db
->mallocFailed
&& pExpr
->op
==TK_SELECT
&& ALWAYS(pList
!=0) ){
2124 Expr
*pFirst
= pList
->a
[iFirst
].pExpr
;
2125 assert( pFirst
!=0 );
2126 assert( pFirst
->op
==TK_SELECT_COLUMN
);
2128 /* Store the SELECT statement in pRight so it will be deleted when
2129 ** sqlite3ExprListDelete() is called */
2130 pFirst
->pRight
= pExpr
;
2133 /* Remember the size of the LHS in iTable so that we can check that
2134 ** the RHS and LHS sizes match during code generation. */
2135 pFirst
->iTable
= pColumns
->nId
;
2138 vector_append_error
:
2139 sqlite3ExprUnmapAndDelete(pParse
, pExpr
);
2140 sqlite3IdListDelete(db
, pColumns
);
2145 ** Set the sort order for the last element on the given ExprList.
2147 void sqlite3ExprListSetSortOrder(ExprList
*p
, int iSortOrder
, int eNulls
){
2148 struct ExprList_item
*pItem
;
2150 assert( p
->nExpr
>0 );
2152 assert( SQLITE_SO_UNDEFINED
<0 && SQLITE_SO_ASC
==0 && SQLITE_SO_DESC
>0 );
2153 assert( iSortOrder
==SQLITE_SO_UNDEFINED
2154 || iSortOrder
==SQLITE_SO_ASC
2155 || iSortOrder
==SQLITE_SO_DESC
2157 assert( eNulls
==SQLITE_SO_UNDEFINED
2158 || eNulls
==SQLITE_SO_ASC
2159 || eNulls
==SQLITE_SO_DESC
2162 pItem
= &p
->a
[p
->nExpr
-1];
2163 assert( pItem
->fg
.bNulls
==0 );
2164 if( iSortOrder
==SQLITE_SO_UNDEFINED
){
2165 iSortOrder
= SQLITE_SO_ASC
;
2167 pItem
->fg
.sortFlags
= (u8
)iSortOrder
;
2169 if( eNulls
!=SQLITE_SO_UNDEFINED
){
2170 pItem
->fg
.bNulls
= 1;
2171 if( iSortOrder
!=eNulls
){
2172 pItem
->fg
.sortFlags
|= KEYINFO_ORDER_BIGNULL
;
2178 ** Set the ExprList.a[].zEName element of the most recently added item
2179 ** on the expression list.
2181 ** pList might be NULL following an OOM error. But pName should never be
2182 ** NULL. If a memory allocation fails, the pParse->db->mallocFailed flag
2185 void sqlite3ExprListSetName(
2186 Parse
*pParse
, /* Parsing context */
2187 ExprList
*pList
, /* List to which to add the span. */
2188 const Token
*pName
, /* Name to be added */
2189 int dequote
/* True to cause the name to be dequoted */
2191 assert( pList
!=0 || pParse
->db
->mallocFailed
!=0 );
2192 assert( pParse
->eParseMode
!=PARSE_MODE_UNMAP
|| dequote
==0 );
2194 struct ExprList_item
*pItem
;
2195 assert( pList
->nExpr
>0 );
2196 pItem
= &pList
->a
[pList
->nExpr
-1];
2197 assert( pItem
->zEName
==0 );
2198 assert( pItem
->fg
.eEName
==ENAME_NAME
);
2199 pItem
->zEName
= sqlite3DbStrNDup(pParse
->db
, pName
->z
, pName
->n
);
2201 /* If dequote==0, then pName->z does not point to part of a DDL
2202 ** statement handled by the parser. And so no token need be added
2203 ** to the token-map. */
2204 sqlite3Dequote(pItem
->zEName
);
2205 if( IN_RENAME_OBJECT
){
2206 sqlite3RenameTokenMap(pParse
, (const void*)pItem
->zEName
, pName
);
2213 ** Set the ExprList.a[].zSpan element of the most recently added item
2214 ** on the expression list.
2216 ** pList might be NULL following an OOM error. But pSpan should never be
2217 ** NULL. If a memory allocation fails, the pParse->db->mallocFailed flag
2220 void sqlite3ExprListSetSpan(
2221 Parse
*pParse
, /* Parsing context */
2222 ExprList
*pList
, /* List to which to add the span. */
2223 const char *zStart
, /* Start of the span */
2224 const char *zEnd
/* End of the span */
2226 sqlite3
*db
= pParse
->db
;
2227 assert( pList
!=0 || db
->mallocFailed
!=0 );
2229 struct ExprList_item
*pItem
= &pList
->a
[pList
->nExpr
-1];
2230 assert( pList
->nExpr
>0 );
2231 if( pItem
->zEName
==0 ){
2232 pItem
->zEName
= sqlite3DbSpanDup(db
, zStart
, zEnd
);
2233 pItem
->fg
.eEName
= ENAME_SPAN
;
2239 ** If the expression list pEList contains more than iLimit elements,
2240 ** leave an error message in pParse.
2242 void sqlite3ExprListCheckLength(
2247 int mx
= pParse
->db
->aLimit
[SQLITE_LIMIT_COLUMN
];
2248 testcase( pEList
&& pEList
->nExpr
==mx
);
2249 testcase( pEList
&& pEList
->nExpr
==mx
+1 );
2250 if( pEList
&& pEList
->nExpr
>mx
){
2251 sqlite3ErrorMsg(pParse
, "too many columns in %s", zObject
);
2256 ** Delete an entire expression list.
2258 static SQLITE_NOINLINE
void exprListDeleteNN(sqlite3
*db
, ExprList
*pList
){
2259 int i
= pList
->nExpr
;
2260 struct ExprList_item
*pItem
= pList
->a
;
2261 assert( pList
->nExpr
>0 );
2264 sqlite3ExprDelete(db
, pItem
->pExpr
);
2265 if( pItem
->zEName
) sqlite3DbNNFreeNN(db
, pItem
->zEName
);
2268 sqlite3DbNNFreeNN(db
, pList
);
2270 void sqlite3ExprListDelete(sqlite3
*db
, ExprList
*pList
){
2271 if( pList
) exprListDeleteNN(db
, pList
);
2273 void sqlite3ExprListDeleteGeneric(sqlite3
*db
, void *pList
){
2274 if( ALWAYS(pList
) ) exprListDeleteNN(db
, (ExprList
*)pList
);
2278 ** Return the bitwise-OR of all Expr.flags fields in the given
2281 u32
sqlite3ExprListFlags(const ExprList
*pList
){
2285 for(i
=0; i
<pList
->nExpr
; i
++){
2286 Expr
*pExpr
= pList
->a
[i
].pExpr
;
2294 ** This is a SELECT-node callback for the expression walker that
2295 ** always "fails". By "fail" in this case, we mean set
2296 ** pWalker->eCode to zero and abort.
2298 ** This callback is used by multiple expression walkers.
2300 int sqlite3SelectWalkFail(Walker
*pWalker
, Select
*NotUsed
){
2301 UNUSED_PARAMETER(NotUsed
);
2307 ** Check the input string to see if it is "true" or "false" (in any case).
2309 ** If the string is.... Return
2311 ** "false" EP_IsFalse
2314 u32
sqlite3IsTrueOrFalse(const char *zIn
){
2315 if( sqlite3StrICmp(zIn
, "true")==0 ) return EP_IsTrue
;
2316 if( sqlite3StrICmp(zIn
, "false")==0 ) return EP_IsFalse
;
2322 ** If the input expression is an ID with the name "true" or "false"
2323 ** then convert it into an TK_TRUEFALSE term. Return non-zero if
2324 ** the conversion happened, and zero if the expression is unaltered.
2326 int sqlite3ExprIdToTrueFalse(Expr
*pExpr
){
2328 assert( pExpr
->op
==TK_ID
|| pExpr
->op
==TK_STRING
);
2329 if( !ExprHasProperty(pExpr
, EP_Quoted
|EP_IntValue
)
2330 && (v
= sqlite3IsTrueOrFalse(pExpr
->u
.zToken
))!=0
2332 pExpr
->op
= TK_TRUEFALSE
;
2333 ExprSetProperty(pExpr
, v
);
2340 ** The argument must be a TK_TRUEFALSE Expr node. Return 1 if it is TRUE
2341 ** and 0 if it is FALSE.
2343 int sqlite3ExprTruthValue(const Expr
*pExpr
){
2344 pExpr
= sqlite3ExprSkipCollateAndLikely((Expr
*)pExpr
);
2345 assert( pExpr
->op
==TK_TRUEFALSE
);
2346 assert( !ExprHasProperty(pExpr
, EP_IntValue
) );
2347 assert( sqlite3StrICmp(pExpr
->u
.zToken
,"true")==0
2348 || sqlite3StrICmp(pExpr
->u
.zToken
,"false")==0 );
2349 return pExpr
->u
.zToken
[4]==0;
2353 ** If pExpr is an AND or OR expression, try to simplify it by eliminating
2354 ** terms that are always true or false. Return the simplified expression.
2355 ** Or return the original expression if no simplification is possible.
2359 ** (x<10) AND true => (x<10)
2360 ** (x<10) AND false => false
2361 ** (x<10) AND (y=22 OR false) => (x<10) AND (y=22)
2362 ** (x<10) AND (y=22 OR true) => (x<10)
2363 ** (y=22) OR true => true
2365 Expr
*sqlite3ExprSimplifiedAndOr(Expr
*pExpr
){
2367 if( pExpr
->op
==TK_AND
|| pExpr
->op
==TK_OR
){
2368 Expr
*pRight
= sqlite3ExprSimplifiedAndOr(pExpr
->pRight
);
2369 Expr
*pLeft
= sqlite3ExprSimplifiedAndOr(pExpr
->pLeft
);
2370 if( ExprAlwaysTrue(pLeft
) || ExprAlwaysFalse(pRight
) ){
2371 pExpr
= pExpr
->op
==TK_AND
? pRight
: pLeft
;
2372 }else if( ExprAlwaysTrue(pRight
) || ExprAlwaysFalse(pLeft
) ){
2373 pExpr
= pExpr
->op
==TK_AND
? pLeft
: pRight
;
2380 ** pExpr is a TK_FUNCTION node. Try to determine whether or not the
2381 ** function is a constant function. A function is constant if all of
2382 ** the following are true:
2384 ** (1) It is a scalar function (not an aggregate or window function)
2385 ** (2) It has either the SQLITE_FUNC_CONSTANT or SQLITE_FUNC_SLOCHNG
2387 ** (3) All of its arguments are constants
2389 ** This routine sets pWalker->eCode to 0 if pExpr is not a constant.
2390 ** It makes no changes to pWalker->eCode if pExpr is constant. In
2391 ** every case, it returns WRC_Abort.
2393 ** Called as a service subroutine from exprNodeIsConstant().
2395 static SQLITE_NOINLINE
int exprNodeIsConstantFunction(
2399 int n
; /* Number of arguments */
2400 ExprList
*pList
; /* List of arguments */
2401 FuncDef
*pDef
; /* The function */
2402 sqlite3
*db
; /* The database */
2404 assert( pExpr
->op
==TK_FUNCTION
);
2405 if( ExprHasProperty(pExpr
, EP_TokenOnly
)
2406 || (pList
= pExpr
->x
.pList
)==0
2411 sqlite3WalkExprList(pWalker
, pList
);
2412 if( pWalker
->eCode
==0 ) return WRC_Abort
;
2414 db
= pWalker
->pParse
->db
;
2415 pDef
= sqlite3FindFunction(db
, pExpr
->u
.zToken
, n
, ENC(db
), 0);
2417 || pDef
->xFinalize
!=0
2418 || (pDef
->funcFlags
& (SQLITE_FUNC_CONSTANT
|SQLITE_FUNC_SLOCHNG
))==0
2419 || ExprHasProperty(pExpr
, EP_WinFunc
)
2429 ** These routines are Walker callbacks used to check expressions to
2430 ** see if they are "constant" for some definition of constant. The
2431 ** Walker.eCode value determines the type of "constant" we are looking
2434 ** These callback routines are used to implement the following:
2436 ** sqlite3ExprIsConstant() pWalker->eCode==1
2437 ** sqlite3ExprIsConstantNotJoin() pWalker->eCode==2
2438 ** sqlite3ExprIsTableConstant() pWalker->eCode==3
2439 ** sqlite3ExprIsConstantOrFunction() pWalker->eCode==4 or 5
2441 ** In all cases, the callbacks set Walker.eCode=0 and abort if the expression
2442 ** is found to not be a constant.
2444 ** The sqlite3ExprIsConstantOrFunction() is used for evaluating DEFAULT
2445 ** expressions in a CREATE TABLE statement. The Walker.eCode value is 5
2446 ** when parsing an existing schema out of the sqlite_schema table and 4
2447 ** when processing a new CREATE TABLE statement. A bound parameter raises
2448 ** an error for new statements, but is silently converted
2449 ** to NULL for existing schemas. This allows sqlite_schema tables that
2450 ** contain a bound parameter because they were generated by older versions
2451 ** of SQLite to be parsed by newer versions of SQLite without raising a
2452 ** malformed schema error.
2454 static int exprNodeIsConstant(Walker
*pWalker
, Expr
*pExpr
){
2455 assert( pWalker
->eCode
>0 );
2457 /* If pWalker->eCode is 2 then any term of the expression that comes from
2458 ** the ON or USING clauses of an outer join disqualifies the expression
2459 ** from being considered constant. */
2460 if( pWalker
->eCode
==2 && ExprHasProperty(pExpr
, EP_OuterON
) ){
2465 switch( pExpr
->op
){
2466 /* Consider functions to be constant if all their arguments are constant
2467 ** and either pWalker->eCode==4 or 5 or the function has the
2468 ** SQLITE_FUNC_CONST flag. */
2470 if( (pWalker
->eCode
>=4 || ExprHasProperty(pExpr
,EP_ConstFunc
))
2471 && !ExprHasProperty(pExpr
, EP_WinFunc
)
2473 if( pWalker
->eCode
==5 ) ExprSetProperty(pExpr
, EP_FromDDL
);
2474 return WRC_Continue
;
2475 }else if( pWalker
->pParse
){
2476 return exprNodeIsConstantFunction(pWalker
, pExpr
);
2482 /* Convert "true" or "false" in a DEFAULT clause into the
2483 ** appropriate TK_TRUEFALSE operator */
2484 if( sqlite3ExprIdToTrueFalse(pExpr
) ){
2487 /* no break */ deliberate_fall_through
2489 case TK_AGG_FUNCTION
:
2491 testcase( pExpr
->op
==TK_ID
);
2492 testcase( pExpr
->op
==TK_COLUMN
);
2493 testcase( pExpr
->op
==TK_AGG_FUNCTION
);
2494 testcase( pExpr
->op
==TK_AGG_COLUMN
);
2495 if( ExprHasProperty(pExpr
, EP_FixedCol
) && pWalker
->eCode
!=2 ){
2496 return WRC_Continue
;
2498 if( pWalker
->eCode
==3 && pExpr
->iTable
==pWalker
->u
.iCur
){
2499 return WRC_Continue
;
2501 /* no break */ deliberate_fall_through
2502 case TK_IF_NULL_ROW
:
2506 testcase( pExpr
->op
==TK_REGISTER
);
2507 testcase( pExpr
->op
==TK_IF_NULL_ROW
);
2508 testcase( pExpr
->op
==TK_DOT
);
2509 testcase( pExpr
->op
==TK_RAISE
);
2513 if( pWalker
->eCode
==5 ){
2514 /* Silently convert bound parameters that appear inside of CREATE
2515 ** statements into a NULL when parsing the CREATE statement text out
2516 ** of the sqlite_schema table */
2517 pExpr
->op
= TK_NULL
;
2518 }else if( pWalker
->eCode
==4 ){
2519 /* A bound parameter in a CREATE statement that originates from
2520 ** sqlite3_prepare() causes an error */
2524 /* no break */ deliberate_fall_through
2526 testcase( pExpr
->op
==TK_SELECT
); /* sqlite3SelectWalkFail() disallows */
2527 testcase( pExpr
->op
==TK_EXISTS
); /* sqlite3SelectWalkFail() disallows */
2528 return WRC_Continue
;
2531 static int exprIsConst(Parse
*pParse
, Expr
*p
, int initFlag
){
2535 w
.xExprCallback
= exprNodeIsConstant
;
2536 w
.xSelectCallback
= sqlite3SelectWalkFail
;
2538 w
.xSelectCallback2
= sqlite3SelectWalkAssert2
;
2540 sqlite3WalkExpr(&w
, p
);
2545 ** Walk an expression tree. Return non-zero if the expression is constant
2546 ** and 0 if it involves variables or function calls.
2548 ** For the purposes of this function, a double-quoted string (ex: "abc")
2549 ** is considered a variable but a single-quoted string (ex: 'abc') is
2552 ** The pParse parameter may be NULL. But if it is NULL, there is no way
2553 ** to determine if function calls are constant or not, and hence all
2554 ** function calls will be considered to be non-constant. If pParse is
2555 ** not NULL, then a function call might be constant, depending on the
2556 ** function and on its parameters.
2558 int sqlite3ExprIsConstant(Parse
*pParse
, Expr
*p
){
2559 return exprIsConst(pParse
, p
, 1);
2563 ** Walk an expression tree. Return non-zero if
2565 ** (1) the expression is constant, and
2566 ** (2) the expression does originate in the ON or USING clause
2567 ** of a LEFT JOIN, and
2568 ** (3) the expression does not contain any EP_FixedCol TK_COLUMN
2569 ** operands created by the constant propagation optimization.
2571 ** When this routine returns true, it indicates that the expression
2572 ** can be added to the pParse->pConstExpr list and evaluated once when
2573 ** the prepared statement starts up. See sqlite3ExprCodeRunJustOnce().
2575 static int sqlite3ExprIsConstantNotJoin(Parse
*pParse
, Expr
*p
){
2576 return exprIsConst(pParse
, p
, 2);
2580 ** This routine examines sub-SELECT statements as an expression is being
2581 ** walked as part of sqlite3ExprIsTableConstant(). Sub-SELECTs are considered
2582 ** constant as long as they are uncorrelated - meaning that they do not
2583 ** contain any terms from outer contexts.
2585 static int exprSelectWalkTableConstant(Walker
*pWalker
, Select
*pSelect
){
2586 assert( pSelect
!=0 );
2587 assert( pWalker
->eCode
==3 || pWalker
->eCode
==0 );
2588 if( (pSelect
->selFlags
& SF_Correlated
)!=0 ){
2596 ** Walk an expression tree. Return non-zero if the expression is constant
2597 ** for any single row of the table with cursor iCur. In other words, the
2598 ** expression must not refer to any non-deterministic function nor any
2599 ** table other than iCur.
2601 ** Consider uncorrelated subqueries to be constants if the bAllowSubq
2602 ** parameter is true.
2604 static int sqlite3ExprIsTableConstant(Expr
*p
, int iCur
, int bAllowSubq
){
2608 w
.xExprCallback
= exprNodeIsConstant
;
2610 w
.xSelectCallback
= exprSelectWalkTableConstant
;
2612 w
.xSelectCallback
= sqlite3SelectWalkFail
;
2614 w
.xSelectCallback2
= sqlite3SelectWalkAssert2
;
2618 sqlite3WalkExpr(&w
, p
);
2623 ** Check pExpr to see if it is an constraint on the single data source
2624 ** pSrc = &pSrcList->a[iSrc]. In other words, check to see if pExpr
2625 ** constrains pSrc but does not depend on any other tables or data
2626 ** sources anywhere else in the query. Return true (non-zero) if pExpr
2627 ** is a constraint on pSrc only.
2629 ** This is an optimization. False negatives will perhaps cause slower
2630 ** queries, but false positives will yield incorrect answers. So when in
2633 ** To be an single-source constraint, the following must be true:
2635 ** (1) pExpr cannot refer to any table other than pSrc->iCursor.
2637 ** (2a) pExpr cannot use subqueries unless the bAllowSubq parameter is
2638 ** true and the subquery is non-correlated
2640 ** (2b) pExpr cannot use non-deterministic functions.
2642 ** (3) pSrc cannot be part of the left operand for a RIGHT JOIN.
2643 ** (Is there some way to relax this constraint?)
2645 ** (4) If pSrc is the right operand of a LEFT JOIN, then...
2646 ** (4a) pExpr must come from an ON clause..
2647 ** (4b) and specifically the ON clause associated with the LEFT JOIN.
2649 ** (5) If pSrc is not the right operand of a LEFT JOIN or the left
2650 ** operand of a RIGHT JOIN, then pExpr must be from the WHERE
2651 ** clause, not an ON clause.
2655 ** (6a) pExpr does not originate in an ON or USING clause, or
2657 ** (6b) The ON or USING clause from which pExpr is derived is
2658 ** not to the left of a RIGHT JOIN (or FULL JOIN).
2660 ** Without this restriction, accepting pExpr as a single-table
2661 ** constraint might move the the ON/USING filter expression
2662 ** from the left side of a RIGHT JOIN over to the right side,
2663 ** which leads to incorrect answers. See also restriction (9)
2666 int sqlite3ExprIsSingleTableConstraint(
2667 Expr
*pExpr
, /* The constraint */
2668 const SrcList
*pSrcList
, /* Complete FROM clause */
2669 int iSrc
, /* Which element of pSrcList to use */
2670 int bAllowSubq
/* Allow non-correlated subqueries */
2672 const SrcItem
*pSrc
= &pSrcList
->a
[iSrc
];
2673 if( pSrc
->fg
.jointype
& JT_LTORJ
){
2674 return 0; /* rule (3) */
2676 if( pSrc
->fg
.jointype
& JT_LEFT
){
2677 if( !ExprHasProperty(pExpr
, EP_OuterON
) ) return 0; /* rule (4a) */
2678 if( pExpr
->w
.iJoin
!=pSrc
->iCursor
) return 0; /* rule (4b) */
2680 if( ExprHasProperty(pExpr
, EP_OuterON
) ) return 0; /* rule (5) */
2682 if( ExprHasProperty(pExpr
, EP_OuterON
|EP_InnerON
) /* (6a) */
2683 && (pSrcList
->a
[0].fg
.jointype
& JT_LTORJ
)!=0 /* Fast pre-test of (6b) */
2686 for(jj
=0; jj
<iSrc
; jj
++){
2687 if( pExpr
->w
.iJoin
==pSrcList
->a
[jj
].iCursor
){
2688 if( (pSrcList
->a
[jj
].fg
.jointype
& JT_LTORJ
)!=0 ){
2689 return 0; /* restriction (6) */
2695 /* Rules (1), (2a), and (2b) handled by the following: */
2696 return sqlite3ExprIsTableConstant(pExpr
, pSrc
->iCursor
, bAllowSubq
);
2701 ** sqlite3WalkExpr() callback used by sqlite3ExprIsConstantOrGroupBy().
2703 static int exprNodeIsConstantOrGroupBy(Walker
*pWalker
, Expr
*pExpr
){
2704 ExprList
*pGroupBy
= pWalker
->u
.pGroupBy
;
2707 /* Check if pExpr is identical to any GROUP BY term. If so, consider
2709 for(i
=0; i
<pGroupBy
->nExpr
; i
++){
2710 Expr
*p
= pGroupBy
->a
[i
].pExpr
;
2711 if( sqlite3ExprCompare(0, pExpr
, p
, -1)<2 ){
2712 CollSeq
*pColl
= sqlite3ExprNNCollSeq(pWalker
->pParse
, p
);
2713 if( sqlite3IsBinary(pColl
) ){
2719 /* Check if pExpr is a sub-select. If so, consider it variable. */
2720 if( ExprUseXSelect(pExpr
) ){
2725 return exprNodeIsConstant(pWalker
, pExpr
);
2729 ** Walk the expression tree passed as the first argument. Return non-zero
2730 ** if the expression consists entirely of constants or copies of terms
2731 ** in pGroupBy that sort with the BINARY collation sequence.
2733 ** This routine is used to determine if a term of the HAVING clause can
2734 ** be promoted into the WHERE clause. In order for such a promotion to work,
2735 ** the value of the HAVING clause term must be the same for all members of
2736 ** a "group". The requirement that the GROUP BY term must be BINARY
2737 ** assumes that no other collating sequence will have a finer-grained
2738 ** grouping than binary. In other words (A=B COLLATE binary) implies
2739 ** A=B in every other collating sequence. The requirement that the
2740 ** GROUP BY be BINARY is stricter than necessary. It would also work
2741 ** to promote HAVING clauses that use the same alternative collating
2742 ** sequence as the GROUP BY term, but that is much harder to check,
2743 ** alternative collating sequences are uncommon, and this is only an
2744 ** optimization, so we take the easy way out and simply require the
2745 ** GROUP BY to use the BINARY collating sequence.
2747 int sqlite3ExprIsConstantOrGroupBy(Parse
*pParse
, Expr
*p
, ExprList
*pGroupBy
){
2750 w
.xExprCallback
= exprNodeIsConstantOrGroupBy
;
2751 w
.xSelectCallback
= 0;
2752 w
.u
.pGroupBy
= pGroupBy
;
2754 sqlite3WalkExpr(&w
, p
);
2759 ** Walk an expression tree for the DEFAULT field of a column definition
2760 ** in a CREATE TABLE statement. Return non-zero if the expression is
2761 ** acceptable for use as a DEFAULT. That is to say, return non-zero if
2762 ** the expression is constant or a function call with constant arguments.
2763 ** Return and 0 if there are any variables.
2765 ** isInit is true when parsing from sqlite_schema. isInit is false when
2766 ** processing a new CREATE TABLE statement. When isInit is true, parameters
2767 ** (such as ? or $abc) in the expression are converted into NULL. When
2768 ** isInit is false, parameters raise an error. Parameters should not be
2769 ** allowed in a CREATE TABLE statement, but some legacy versions of SQLite
2770 ** allowed it, so we need to support it when reading sqlite_schema for
2771 ** backwards compatibility.
2773 ** If isInit is true, set EP_FromDDL on every TK_FUNCTION node.
2775 ** For the purposes of this function, a double-quoted string (ex: "abc")
2776 ** is considered a variable but a single-quoted string (ex: 'abc') is
2779 int sqlite3ExprIsConstantOrFunction(Expr
*p
, u8 isInit
){
2780 assert( isInit
==0 || isInit
==1 );
2781 return exprIsConst(0, p
, 4+isInit
);
2784 #ifdef SQLITE_ENABLE_CURSOR_HINTS
2786 ** Walk an expression tree. Return 1 if the expression contains a
2787 ** subquery of some kind. Return 0 if there are no subqueries.
2789 int sqlite3ExprContainsSubquery(Expr
*p
){
2792 w
.xExprCallback
= sqlite3ExprWalkNoop
;
2793 w
.xSelectCallback
= sqlite3SelectWalkFail
;
2795 w
.xSelectCallback2
= sqlite3SelectWalkAssert2
;
2797 sqlite3WalkExpr(&w
, p
);
2803 ** If the expression p codes a constant integer that is small enough
2804 ** to fit in a 32-bit integer, return 1 and put the value of the integer
2805 ** in *pValue. If the expression is not an integer or if it is too big
2806 ** to fit in a signed 32-bit integer, return 0 and leave *pValue unchanged.
2808 ** If the pParse pointer is provided, then allow the expression p to be
2809 ** a parameter (TK_VARIABLE) that is bound to an integer.
2810 ** But if pParse is NULL, then p must be a pure integer literal.
2812 int sqlite3ExprIsInteger(const Expr
*p
, int *pValue
, Parse
*pParse
){
2814 if( NEVER(p
==0) ) return 0; /* Used to only happen following on OOM */
2816 /* If an expression is an integer literal that fits in a signed 32-bit
2817 ** integer, then the EP_IntValue flag will have already been set */
2818 assert( p
->op
!=TK_INTEGER
|| (p
->flags
& EP_IntValue
)!=0
2819 || sqlite3GetInt32(p
->u
.zToken
, &rc
)==0 );
2821 if( p
->flags
& EP_IntValue
){
2822 *pValue
= p
->u
.iValue
;
2827 rc
= sqlite3ExprIsInteger(p
->pLeft
, pValue
, 0);
2832 if( sqlite3ExprIsInteger(p
->pLeft
, &v
, 0) ){
2833 assert( ((unsigned int)v
)!=0x80000000 );
2840 sqlite3_value
*pVal
;
2841 if( pParse
==0 ) break;
2842 if( NEVER(pParse
->pVdbe
==0) ) break;
2843 if( (pParse
->db
->flags
& SQLITE_EnableQPSG
)!=0 ) break;
2844 sqlite3VdbeSetVarmask(pParse
->pVdbe
, p
->iColumn
);
2845 pVal
= sqlite3VdbeGetBoundValue(pParse
->pReprepare
, p
->iColumn
,
2848 if( sqlite3_value_type(pVal
)==SQLITE_INTEGER
){
2849 sqlite3_int64 vv
= sqlite3_value_int64(pVal
);
2850 if( vv
== (vv
& 0x7fffffff) ){ /* non-negative numbers only */
2855 sqlite3ValueFree(pVal
);
2865 ** Return FALSE if there is no chance that the expression can be NULL.
2867 ** If the expression might be NULL or if the expression is too complex
2868 ** to tell return TRUE.
2870 ** This routine is used as an optimization, to skip OP_IsNull opcodes
2871 ** when we know that a value cannot be NULL. Hence, a false positive
2872 ** (returning TRUE when in fact the expression can never be NULL) might
2873 ** be a small performance hit but is otherwise harmless. On the other
2874 ** hand, a false negative (returning FALSE when the result could be NULL)
2875 ** will likely result in an incorrect answer. So when in doubt, return
2878 int sqlite3ExprCanBeNull(const Expr
*p
){
2881 while( p
->op
==TK_UPLUS
|| p
->op
==TK_UMINUS
){
2886 if( op
==TK_REGISTER
) op
= p
->op2
;
2894 assert( ExprUseYTab(p
) );
2895 return ExprHasProperty(p
, EP_CanBeNull
)
2896 || NEVER(p
->y
.pTab
==0) /* Reference to column of index on expr */
2897 #ifdef SQLITE_ALLOW_ROWID_IN_VIEW
2898 || (p
->iColumn
==XN_ROWID
&& IsView(p
->y
.pTab
))
2901 && p
->y
.pTab
->aCol
!=0 /* Possible due to prior error */
2902 && ALWAYS(p
->iColumn
<p
->y
.pTab
->nCol
)
2903 && p
->y
.pTab
->aCol
[p
->iColumn
].notNull
==0);
2910 ** Return TRUE if the given expression is a constant which would be
2911 ** unchanged by OP_Affinity with the affinity given in the second
2914 ** This routine is used to determine if the OP_Affinity operation
2915 ** can be omitted. When in doubt return FALSE. A false negative
2916 ** is harmless. A false positive, however, can result in the wrong
2919 int sqlite3ExprNeedsNoAffinityChange(const Expr
*p
, char aff
){
2922 if( aff
==SQLITE_AFF_BLOB
) return 1;
2923 while( p
->op
==TK_UPLUS
|| p
->op
==TK_UMINUS
){
2924 if( p
->op
==TK_UMINUS
) unaryMinus
= 1;
2928 if( op
==TK_REGISTER
) op
= p
->op2
;
2931 return aff
>=SQLITE_AFF_NUMERIC
;
2934 return aff
>=SQLITE_AFF_NUMERIC
;
2937 return !unaryMinus
&& aff
==SQLITE_AFF_TEXT
;
2943 assert( p
->iTable
>=0 ); /* p cannot be part of a CHECK constraint */
2944 return aff
>=SQLITE_AFF_NUMERIC
&& p
->iColumn
<0;
2953 ** Return TRUE if the given string is a row-id column name.
2955 int sqlite3IsRowid(const char *z
){
2956 if( sqlite3StrICmp(z
, "_ROWID_")==0 ) return 1;
2957 if( sqlite3StrICmp(z
, "ROWID")==0 ) return 1;
2958 if( sqlite3StrICmp(z
, "OID")==0 ) return 1;
2963 ** Return a pointer to a buffer containing a usable rowid alias for table
2964 ** pTab. An alias is usable if there is not an explicit user-defined column
2965 ** of the same name.
2967 const char *sqlite3RowidAlias(Table
*pTab
){
2968 const char *azOpt
[] = {"_ROWID_", "ROWID", "OID"};
2970 assert( VisibleRowid(pTab
) );
2971 for(ii
=0; ii
<ArraySize(azOpt
); ii
++){
2973 for(iCol
=0; iCol
<pTab
->nCol
; iCol
++){
2974 if( sqlite3_stricmp(azOpt
[ii
], pTab
->aCol
[iCol
].zCnName
)==0 ) break;
2976 if( iCol
==pTab
->nCol
){
2984 ** pX is the RHS of an IN operator. If pX is a SELECT statement
2985 ** that can be simplified to a direct table access, then return
2986 ** a pointer to the SELECT statement. If pX is not a SELECT statement,
2987 ** or if the SELECT statement needs to be materialized into a transient
2988 ** table, then return NULL.
2990 #ifndef SQLITE_OMIT_SUBQUERY
2991 static Select
*isCandidateForInOpt(const Expr
*pX
){
2997 if( !ExprUseXSelect(pX
) ) return 0; /* Not a subquery */
2998 if( ExprHasProperty(pX
, EP_VarSelect
) ) return 0; /* Correlated subq */
3000 if( p
->pPrior
) return 0; /* Not a compound SELECT */
3001 if( p
->selFlags
& (SF_Distinct
|SF_Aggregate
) ){
3002 testcase( (p
->selFlags
& (SF_Distinct
|SF_Aggregate
))==SF_Distinct
);
3003 testcase( (p
->selFlags
& (SF_Distinct
|SF_Aggregate
))==SF_Aggregate
);
3004 return 0; /* No DISTINCT keyword and no aggregate functions */
3006 assert( p
->pGroupBy
==0 ); /* Has no GROUP BY clause */
3007 if( p
->pLimit
) return 0; /* Has no LIMIT clause */
3008 if( p
->pWhere
) return 0; /* Has no WHERE clause */
3011 if( pSrc
->nSrc
!=1 ) return 0; /* Single term in FROM clause */
3012 if( pSrc
->a
[0].fg
.isSubquery
) return 0;/* FROM is not a subquery or view */
3013 pTab
= pSrc
->a
[0].pSTab
;
3015 assert( !IsView(pTab
) ); /* FROM clause is not a view */
3016 if( IsVirtual(pTab
) ) return 0; /* FROM clause not a virtual table */
3018 assert( pEList
!=0 );
3019 /* All SELECT results must be columns. */
3020 for(i
=0; i
<pEList
->nExpr
; i
++){
3021 Expr
*pRes
= pEList
->a
[i
].pExpr
;
3022 if( pRes
->op
!=TK_COLUMN
) return 0;
3023 assert( pRes
->iTable
==pSrc
->a
[0].iCursor
); /* Not a correlated subquery */
3027 #endif /* SQLITE_OMIT_SUBQUERY */
3029 #ifndef SQLITE_OMIT_SUBQUERY
3031 ** Generate code that checks the left-most column of index table iCur to see if
3032 ** it contains any NULL entries. Cause the register at regHasNull to be set
3033 ** to a non-NULL value if iCur contains no NULLs. Cause register regHasNull
3034 ** to be set to NULL if iCur contains one or more NULL values.
3036 static void sqlite3SetHasNullFlag(Vdbe
*v
, int iCur
, int regHasNull
){
3038 sqlite3VdbeAddOp2(v
, OP_Integer
, 0, regHasNull
);
3039 addr1
= sqlite3VdbeAddOp1(v
, OP_Rewind
, iCur
); VdbeCoverage(v
);
3040 sqlite3VdbeAddOp3(v
, OP_Column
, iCur
, 0, regHasNull
);
3041 sqlite3VdbeChangeP5(v
, OPFLAG_TYPEOFARG
);
3042 VdbeComment((v
, "first_entry_in(%d)", iCur
));
3043 sqlite3VdbeJumpHere(v
, addr1
);
3048 #ifndef SQLITE_OMIT_SUBQUERY
3050 ** The argument is an IN operator with a list (not a subquery) on the
3051 ** right-hand side. Return TRUE if that list is constant.
3053 static int sqlite3InRhsIsConstant(Parse
*pParse
, Expr
*pIn
){
3056 assert( !ExprHasProperty(pIn
, EP_xIsSelect
) );
3059 res
= sqlite3ExprIsConstant(pParse
, pIn
);
3066 ** This function is used by the implementation of the IN (...) operator.
3067 ** The pX parameter is the expression on the RHS of the IN operator, which
3068 ** might be either a list of expressions or a subquery.
3070 ** The job of this routine is to find or create a b-tree object that can
3071 ** be used either to test for membership in the RHS set or to iterate through
3072 ** all members of the RHS set, skipping duplicates.
3074 ** A cursor is opened on the b-tree object that is the RHS of the IN operator
3075 ** and the *piTab parameter is set to the index of that cursor.
3077 ** The returned value of this function indicates the b-tree type, as follows:
3079 ** IN_INDEX_ROWID - The cursor was opened on a database table.
3080 ** IN_INDEX_INDEX_ASC - The cursor was opened on an ascending index.
3081 ** IN_INDEX_INDEX_DESC - The cursor was opened on a descending index.
3082 ** IN_INDEX_EPH - The cursor was opened on a specially created and
3083 ** populated ephemeral table.
3084 ** IN_INDEX_NOOP - No cursor was allocated. The IN operator must be
3085 ** implemented as a sequence of comparisons.
3087 ** An existing b-tree might be used if the RHS expression pX is a simple
3088 ** subquery such as:
3090 ** SELECT <column1>, <column2>... FROM <table>
3092 ** If the RHS of the IN operator is a list or a more complex subquery, then
3093 ** an ephemeral table might need to be generated from the RHS and then
3094 ** pX->iTable made to point to the ephemeral table instead of an
3095 ** existing table. In this case, the creation and initialization of the
3096 ** ephemeral table might be put inside of a subroutine, the EP_Subrtn flag
3097 ** will be set on pX and the pX->y.sub fields will be set to show where
3098 ** the subroutine is coded.
3100 ** The inFlags parameter must contain, at a minimum, one of the bits
3101 ** IN_INDEX_MEMBERSHIP or IN_INDEX_LOOP but not both. If inFlags contains
3102 ** IN_INDEX_MEMBERSHIP, then the generated table will be used for a fast
3103 ** membership test. When the IN_INDEX_LOOP bit is set, the IN index will
3104 ** be used to loop over all values of the RHS of the IN operator.
3106 ** When IN_INDEX_LOOP is used (and the b-tree will be used to iterate
3107 ** through the set members) then the b-tree must not contain duplicates.
3108 ** An ephemeral table will be created unless the selected columns are guaranteed
3109 ** to be unique - either because it is an INTEGER PRIMARY KEY or due to
3110 ** a UNIQUE constraint or index.
3112 ** When IN_INDEX_MEMBERSHIP is used (and the b-tree will be used
3113 ** for fast set membership tests) then an ephemeral table must
3114 ** be used unless <columns> is a single INTEGER PRIMARY KEY column or an
3115 ** index can be found with the specified <columns> as its left-most.
3117 ** If the IN_INDEX_NOOP_OK and IN_INDEX_MEMBERSHIP are both set and
3118 ** if the RHS of the IN operator is a list (not a subquery) then this
3119 ** routine might decide that creating an ephemeral b-tree for membership
3120 ** testing is too expensive and return IN_INDEX_NOOP. In that case, the
3121 ** calling routine should implement the IN operator using a sequence
3122 ** of Eq or Ne comparison operations.
3124 ** When the b-tree is being used for membership tests, the calling function
3125 ** might need to know whether or not the RHS side of the IN operator
3126 ** contains a NULL. If prRhsHasNull is not a NULL pointer and
3127 ** if there is any chance that the (...) might contain a NULL value at
3128 ** runtime, then a register is allocated and the register number written
3129 ** to *prRhsHasNull. If there is no chance that the (...) contains a
3130 ** NULL value, then *prRhsHasNull is left unchanged.
3132 ** If a register is allocated and its location stored in *prRhsHasNull, then
3133 ** the value in that register will be NULL if the b-tree contains one or more
3134 ** NULL values, and it will be some non-NULL value if the b-tree contains no
3137 ** If the aiMap parameter is not NULL, it must point to an array containing
3138 ** one element for each column returned by the SELECT statement on the RHS
3139 ** of the IN(...) operator. The i'th entry of the array is populated with the
3140 ** offset of the index column that matches the i'th column returned by the
3141 ** SELECT. For example, if the expression and selected index are:
3143 ** (?,?,?) IN (SELECT a, b, c FROM t1)
3144 ** CREATE INDEX i1 ON t1(b, c, a);
3146 ** then aiMap[] is populated with {2, 0, 1}.
3148 #ifndef SQLITE_OMIT_SUBQUERY
3149 int sqlite3FindInIndex(
3150 Parse
*pParse
, /* Parsing context */
3151 Expr
*pX
, /* The IN expression */
3152 u32 inFlags
, /* IN_INDEX_LOOP, _MEMBERSHIP, and/or _NOOP_OK */
3153 int *prRhsHasNull
, /* Register holding NULL status. See notes */
3154 int *aiMap
, /* Mapping from Index fields to RHS fields */
3155 int *piTab
/* OUT: index to use */
3157 Select
*p
; /* SELECT to the right of IN operator */
3158 int eType
= 0; /* Type of RHS table. IN_INDEX_* */
3159 int iTab
; /* Cursor of the RHS table */
3160 int mustBeUnique
; /* True if RHS must be unique */
3161 Vdbe
*v
= sqlite3GetVdbe(pParse
); /* Virtual machine being coded */
3163 assert( pX
->op
==TK_IN
);
3164 mustBeUnique
= (inFlags
& IN_INDEX_LOOP
)!=0;
3165 iTab
= pParse
->nTab
++;
3167 /* If the RHS of this IN(...) operator is a SELECT, and if it matters
3168 ** whether or not the SELECT result contains NULL values, check whether
3169 ** or not NULL is actually possible (it may not be, for example, due
3170 ** to NOT NULL constraints in the schema). If no NULL values are possible,
3171 ** set prRhsHasNull to 0 before continuing. */
3172 if( prRhsHasNull
&& ExprUseXSelect(pX
) ){
3174 ExprList
*pEList
= pX
->x
.pSelect
->pEList
;
3175 for(i
=0; i
<pEList
->nExpr
; i
++){
3176 if( sqlite3ExprCanBeNull(pEList
->a
[i
].pExpr
) ) break;
3178 if( i
==pEList
->nExpr
){
3183 /* Check to see if an existing table or index can be used to
3184 ** satisfy the query. This is preferable to generating a new
3185 ** ephemeral table. */
3186 if( pParse
->nErr
==0 && (p
= isCandidateForInOpt(pX
))!=0 ){
3187 sqlite3
*db
= pParse
->db
; /* Database connection */
3188 Table
*pTab
; /* Table <table>. */
3189 int iDb
; /* Database idx for pTab */
3190 ExprList
*pEList
= p
->pEList
;
3191 int nExpr
= pEList
->nExpr
;
3193 assert( p
->pEList
!=0 ); /* Because of isCandidateForInOpt(p) */
3194 assert( p
->pEList
->a
[0].pExpr
!=0 ); /* Because of isCandidateForInOpt(p) */
3195 assert( p
->pSrc
!=0 ); /* Because of isCandidateForInOpt(p) */
3196 pTab
= p
->pSrc
->a
[0].pSTab
;
3198 /* Code an OP_Transaction and OP_TableLock for <table>. */
3199 iDb
= sqlite3SchemaToIndex(db
, pTab
->pSchema
);
3200 assert( iDb
>=0 && iDb
<SQLITE_MAX_DB
);
3201 sqlite3CodeVerifySchema(pParse
, iDb
);
3202 sqlite3TableLock(pParse
, iDb
, pTab
->tnum
, 0, pTab
->zName
);
3204 assert(v
); /* sqlite3GetVdbe() has always been previously called */
3205 if( nExpr
==1 && pEList
->a
[0].pExpr
->iColumn
<0 ){
3206 /* The "x IN (SELECT rowid FROM table)" case */
3207 int iAddr
= sqlite3VdbeAddOp0(v
, OP_Once
);
3210 sqlite3OpenTable(pParse
, iTab
, iDb
, pTab
, OP_OpenRead
);
3211 eType
= IN_INDEX_ROWID
;
3212 ExplainQueryPlan((pParse
, 0,
3213 "USING ROWID SEARCH ON TABLE %s FOR IN-OPERATOR",pTab
->zName
));
3214 sqlite3VdbeJumpHere(v
, iAddr
);
3216 Index
*pIdx
; /* Iterator variable */
3217 int affinity_ok
= 1;
3220 /* Check that the affinity that will be used to perform each
3221 ** comparison is the same as the affinity of each column in table
3222 ** on the RHS of the IN operator. If it not, it is not possible to
3223 ** use any index of the RHS table. */
3224 for(i
=0; i
<nExpr
&& affinity_ok
; i
++){
3225 Expr
*pLhs
= sqlite3VectorFieldSubexpr(pX
->pLeft
, i
);
3226 int iCol
= pEList
->a
[i
].pExpr
->iColumn
;
3227 char idxaff
= sqlite3TableColumnAffinity(pTab
,iCol
); /* RHS table */
3228 char cmpaff
= sqlite3CompareAffinity(pLhs
, idxaff
);
3229 testcase( cmpaff
==SQLITE_AFF_BLOB
);
3230 testcase( cmpaff
==SQLITE_AFF_TEXT
);
3232 case SQLITE_AFF_BLOB
:
3234 case SQLITE_AFF_TEXT
:
3235 /* sqlite3CompareAffinity() only returns TEXT if one side or the
3236 ** other has no affinity and the other side is TEXT. Hence,
3237 ** the only way for cmpaff to be TEXT is for idxaff to be TEXT
3238 ** and for the term on the LHS of the IN to have no affinity. */
3239 assert( idxaff
==SQLITE_AFF_TEXT
);
3242 affinity_ok
= sqlite3IsNumericAffinity(idxaff
);
3247 /* Search for an existing index that will work for this IN operator */
3248 for(pIdx
=pTab
->pIndex
; pIdx
&& eType
==0; pIdx
=pIdx
->pNext
){
3249 Bitmask colUsed
; /* Columns of the index used */
3250 Bitmask mCol
; /* Mask for the current column */
3251 if( pIdx
->nColumn
<nExpr
) continue;
3252 if( pIdx
->pPartIdxWhere
!=0 ) continue;
3253 /* Maximum nColumn is BMS-2, not BMS-1, so that we can compute
3254 ** BITMASK(nExpr) without overflowing */
3255 testcase( pIdx
->nColumn
==BMS
-2 );
3256 testcase( pIdx
->nColumn
==BMS
-1 );
3257 if( pIdx
->nColumn
>=BMS
-1 ) continue;
3259 if( pIdx
->nKeyCol
>nExpr
3260 ||(pIdx
->nColumn
>nExpr
&& !IsUniqueIndex(pIdx
))
3262 continue; /* This index is not unique over the IN RHS columns */
3266 colUsed
= 0; /* Columns of index used so far */
3267 for(i
=0; i
<nExpr
; i
++){
3268 Expr
*pLhs
= sqlite3VectorFieldSubexpr(pX
->pLeft
, i
);
3269 Expr
*pRhs
= pEList
->a
[i
].pExpr
;
3270 CollSeq
*pReq
= sqlite3BinaryCompareCollSeq(pParse
, pLhs
, pRhs
);
3273 for(j
=0; j
<nExpr
; j
++){
3274 if( pIdx
->aiColumn
[j
]!=pRhs
->iColumn
) continue;
3275 assert( pIdx
->azColl
[j
] );
3276 if( pReq
!=0 && sqlite3StrICmp(pReq
->zName
, pIdx
->azColl
[j
])!=0 ){
3281 if( j
==nExpr
) break;
3283 if( mCol
& colUsed
) break; /* Each column used only once */
3285 if( aiMap
) aiMap
[i
] = j
;
3288 assert( i
==nExpr
|| colUsed
!=(MASKBIT(nExpr
)-1) );
3289 if( colUsed
==(MASKBIT(nExpr
)-1) ){
3290 /* If we reach this point, that means the index pIdx is usable */
3291 int iAddr
= sqlite3VdbeAddOp0(v
, OP_Once
); VdbeCoverage(v
);
3292 ExplainQueryPlan((pParse
, 0,
3293 "USING INDEX %s FOR IN-OPERATOR",pIdx
->zName
));
3294 sqlite3VdbeAddOp3(v
, OP_OpenRead
, iTab
, pIdx
->tnum
, iDb
);
3295 sqlite3VdbeSetP4KeyInfo(pParse
, pIdx
);
3296 VdbeComment((v
, "%s", pIdx
->zName
));
3297 assert( IN_INDEX_INDEX_DESC
== IN_INDEX_INDEX_ASC
+1 );
3298 eType
= IN_INDEX_INDEX_ASC
+ pIdx
->aSortOrder
[0];
3301 #ifdef SQLITE_ENABLE_COLUMN_USED_MASK
3302 i64 mask
= (1<<nExpr
)-1;
3303 sqlite3VdbeAddOp4Dup8(v
, OP_ColumnsUsed
,
3304 iTab
, 0, 0, (u8
*)&mask
, P4_INT64
);
3306 *prRhsHasNull
= ++pParse
->nMem
;
3308 sqlite3SetHasNullFlag(v
, iTab
, *prRhsHasNull
);
3311 sqlite3VdbeJumpHere(v
, iAddr
);
3313 } /* End loop over indexes */
3314 } /* End if( affinity_ok ) */
3315 } /* End if not an rowid index */
3316 } /* End attempt to optimize using an index */
3318 /* If no preexisting index is available for the IN clause
3319 ** and IN_INDEX_NOOP is an allowed reply
3320 ** and the RHS of the IN operator is a list, not a subquery
3321 ** and the RHS is not constant or has two or fewer terms,
3322 ** then it is not worth creating an ephemeral table to evaluate
3323 ** the IN operator so return IN_INDEX_NOOP.
3326 && (inFlags
& IN_INDEX_NOOP_OK
)
3328 && (!sqlite3InRhsIsConstant(pParse
,pX
) || pX
->x
.pList
->nExpr
<=2)
3330 pParse
->nTab
--; /* Back out the allocation of the unused cursor */
3331 iTab
= -1; /* Cursor is not allocated */
3332 eType
= IN_INDEX_NOOP
;
3336 /* Could not find an existing table or index to use as the RHS b-tree.
3337 ** We will have to generate an ephemeral table to do the job.
3339 u32 savedNQueryLoop
= pParse
->nQueryLoop
;
3340 int rMayHaveNull
= 0;
3341 eType
= IN_INDEX_EPH
;
3342 if( inFlags
& IN_INDEX_LOOP
){
3343 pParse
->nQueryLoop
= 0;
3344 }else if( prRhsHasNull
){
3345 *prRhsHasNull
= rMayHaveNull
= ++pParse
->nMem
;
3347 assert( pX
->op
==TK_IN
);
3348 sqlite3CodeRhsOfIN(pParse
, pX
, iTab
);
3350 sqlite3SetHasNullFlag(v
, iTab
, rMayHaveNull
);
3352 pParse
->nQueryLoop
= savedNQueryLoop
;
3355 if( aiMap
&& eType
!=IN_INDEX_INDEX_ASC
&& eType
!=IN_INDEX_INDEX_DESC
){
3357 n
= sqlite3ExprVectorSize(pX
->pLeft
);
3358 for(i
=0; i
<n
; i
++) aiMap
[i
] = i
;
3365 #ifndef SQLITE_OMIT_SUBQUERY
3367 ** Argument pExpr is an (?, ?...) IN(...) expression. This
3368 ** function allocates and returns a nul-terminated string containing
3369 ** the affinities to be used for each column of the comparison.
3371 ** It is the responsibility of the caller to ensure that the returned
3372 ** string is eventually freed using sqlite3DbFree().
3374 static char *exprINAffinity(Parse
*pParse
, const Expr
*pExpr
){
3375 Expr
*pLeft
= pExpr
->pLeft
;
3376 int nVal
= sqlite3ExprVectorSize(pLeft
);
3377 Select
*pSelect
= ExprUseXSelect(pExpr
) ? pExpr
->x
.pSelect
: 0;
3380 assert( pExpr
->op
==TK_IN
);
3381 zRet
= sqlite3DbMallocRaw(pParse
->db
, nVal
+1);
3384 for(i
=0; i
<nVal
; i
++){
3385 Expr
*pA
= sqlite3VectorFieldSubexpr(pLeft
, i
);
3386 char a
= sqlite3ExprAffinity(pA
);
3388 zRet
[i
] = sqlite3CompareAffinity(pSelect
->pEList
->a
[i
].pExpr
, a
);
3399 #ifndef SQLITE_OMIT_SUBQUERY
3401 ** Load the Parse object passed as the first argument with an error
3402 ** message of the form:
3404 ** "sub-select returns N columns - expected M"
3406 void sqlite3SubselectError(Parse
*pParse
, int nActual
, int nExpect
){
3407 if( pParse
->nErr
==0 ){
3408 const char *zFmt
= "sub-select returns %d columns - expected %d";
3409 sqlite3ErrorMsg(pParse
, zFmt
, nActual
, nExpect
);
3415 ** Expression pExpr is a vector that has been used in a context where
3416 ** it is not permitted. If pExpr is a sub-select vector, this routine
3417 ** loads the Parse object with a message of the form:
3419 ** "sub-select returns N columns - expected 1"
3421 ** Or, if it is a regular scalar vector:
3423 ** "row value misused"
3425 void sqlite3VectorErrorMsg(Parse
*pParse
, Expr
*pExpr
){
3426 #ifndef SQLITE_OMIT_SUBQUERY
3427 if( ExprUseXSelect(pExpr
) ){
3428 sqlite3SubselectError(pParse
, pExpr
->x
.pSelect
->pEList
->nExpr
, 1);
3432 sqlite3ErrorMsg(pParse
, "row value misused");
3436 #ifndef SQLITE_OMIT_SUBQUERY
3438 ** Scan all previously generated bytecode looking for an OP_BeginSubrtn
3439 ** that is compatible with pExpr. If found, add the y.sub values
3440 ** to pExpr and return true. If not found, return false.
3442 static int findCompatibleInRhsSubrtn(
3443 Parse
*pParse
, /* Parsing context */
3444 Expr
*pExpr
, /* IN operator with RHS that we want to reuse */
3445 SubrtnSig
*pNewSig
/* Signature for the IN operator */
3451 if( pNewSig
==0 ) return 0;
3452 if( (pParse
->mSubrtnSig
& (1<<(pNewSig
->selId
&7)))==0 ) return 0;
3453 assert( pExpr
->op
==TK_IN
);
3454 assert( !ExprUseYSub(pExpr
) );
3455 assert( ExprUseXSelect(pExpr
) );
3456 assert( pExpr
->x
.pSelect
!=0 );
3457 assert( (pExpr
->x
.pSelect
->selFlags
& SF_All
)==0 );
3460 pOp
= sqlite3VdbeGetOp(v
, 1);
3461 pEnd
= sqlite3VdbeGetLastOp(v
);
3462 for(; pOp
<pEnd
; pOp
++){
3463 if( pOp
->p4type
!=P4_SUBRTNSIG
) continue;
3464 assert( pOp
->opcode
==OP_BeginSubrtn
);
3465 pSig
= pOp
->p4
.pSubrtnSig
;
3467 if( pNewSig
->selId
!=pSig
->selId
) continue;
3468 if( strcmp(pNewSig
->zAff
,pSig
->zAff
)!=0 ) continue;
3469 pExpr
->y
.sub
.iAddr
= pSig
->iAddr
;
3470 pExpr
->y
.sub
.regReturn
= pSig
->regReturn
;
3471 pExpr
->iTable
= pSig
->iTable
;
3472 ExprSetProperty(pExpr
, EP_Subrtn
);
3477 #endif /* SQLITE_OMIT_SUBQUERY */
3479 #ifndef SQLITE_OMIT_SUBQUERY
3481 ** Generate code that will construct an ephemeral table containing all terms
3482 ** in the RHS of an IN operator. The IN operator can be in either of two
3485 ** x IN (4,5,11) -- IN operator with list on right-hand side
3486 ** x IN (SELECT a FROM b) -- IN operator with subquery on the right
3488 ** The pExpr parameter is the IN operator. The cursor number for the
3489 ** constructed ephemeral table is returned. The first time the ephemeral
3490 ** table is computed, the cursor number is also stored in pExpr->iTable,
3491 ** however the cursor number returned might not be the same, as it might
3492 ** have been duplicated using OP_OpenDup.
3494 ** If the LHS expression ("x" in the examples) is a column value, or
3495 ** the SELECT statement returns a column value, then the affinity of that
3496 ** column is used to build the index keys. If both 'x' and the
3497 ** SELECT... statement are columns, then numeric affinity is used
3498 ** if either column has NUMERIC or INTEGER affinity. If neither
3499 ** 'x' nor the SELECT... statement are columns, then numeric affinity
3502 void sqlite3CodeRhsOfIN(
3503 Parse
*pParse
, /* Parsing context */
3504 Expr
*pExpr
, /* The IN operator */
3505 int iTab
/* Use this cursor number */
3507 int addrOnce
= 0; /* Address of the OP_Once instruction at top */
3508 int addr
; /* Address of OP_OpenEphemeral instruction */
3509 Expr
*pLeft
; /* the LHS of the IN operator */
3510 KeyInfo
*pKeyInfo
= 0; /* Key information */
3511 int nVal
; /* Size of vector pLeft */
3512 Vdbe
*v
; /* The prepared statement under construction */
3517 /* The evaluation of the IN must be repeated every time it
3518 ** is encountered if any of the following is true:
3520 ** * The right-hand side is a correlated subquery
3521 ** * The right-hand side is an expression list containing variables
3522 ** * We are inside a trigger
3524 ** If all of the above are false, then we can compute the RHS just once
3525 ** and reuse it many names.
3527 if( !ExprHasProperty(pExpr
, EP_VarSelect
) && pParse
->iSelfTab
==0 ){
3528 /* Reuse of the RHS is allowed
3530 ** Compute a signature for the RHS of the IN operator to facility
3531 ** finding and reusing prior instances of the same IN operator.
3533 SubrtnSig
*pSig
= 0;
3534 assert( !ExprUseXSelect(pExpr
) || pExpr
->x
.pSelect
!=0 );
3535 if( ExprUseXSelect(pExpr
) && (pExpr
->x
.pSelect
->selFlags
& SF_All
)==0 ){
3536 pSig
= sqlite3DbMallocRawNN(pParse
->db
, sizeof(pSig
[0]));
3538 pSig
->selId
= pExpr
->x
.pSelect
->selId
;
3539 pSig
->zAff
= exprINAffinity(pParse
, pExpr
);
3543 /* Check to see if there is a prior materialization of the RHS of
3544 ** this IN operator. If there is, then make use of that prior
3545 ** materialization rather than recomputing it.
3547 if( ExprHasProperty(pExpr
, EP_Subrtn
)
3548 || findCompatibleInRhsSubrtn(pParse
, pExpr
, pSig
)
3550 addrOnce
= sqlite3VdbeAddOp0(v
, OP_Once
); VdbeCoverage(v
);
3551 if( ExprUseXSelect(pExpr
) ){
3552 ExplainQueryPlan((pParse
, 0, "REUSE LIST SUBQUERY %d",
3553 pExpr
->x
.pSelect
->selId
));
3555 assert( ExprUseYSub(pExpr
) );
3556 sqlite3VdbeAddOp2(v
, OP_Gosub
, pExpr
->y
.sub
.regReturn
,
3557 pExpr
->y
.sub
.iAddr
);
3558 assert( iTab
!=pExpr
->iTable
);
3559 sqlite3VdbeAddOp2(v
, OP_OpenDup
, iTab
, pExpr
->iTable
);
3560 sqlite3VdbeJumpHere(v
, addrOnce
);
3562 sqlite3DbFree(pParse
->db
, pSig
->zAff
);
3563 sqlite3DbFree(pParse
->db
, pSig
);
3568 /* Begin coding the subroutine */
3569 assert( !ExprUseYWin(pExpr
) );
3570 ExprSetProperty(pExpr
, EP_Subrtn
);
3571 assert( !ExprHasProperty(pExpr
, EP_TokenOnly
|EP_Reduced
) );
3572 pExpr
->y
.sub
.regReturn
= ++pParse
->nMem
;
3573 pExpr
->y
.sub
.iAddr
=
3574 sqlite3VdbeAddOp2(v
, OP_BeginSubrtn
, 0, pExpr
->y
.sub
.regReturn
) + 1;
3576 pSig
->iAddr
= pExpr
->y
.sub
.iAddr
;
3577 pSig
->regReturn
= pExpr
->y
.sub
.regReturn
;
3578 pSig
->iTable
= iTab
;
3579 pParse
->mSubrtnSig
= 1 << (pSig
->selId
&7);
3580 sqlite3VdbeChangeP4(v
, -1, (const char*)pSig
, P4_SUBRTNSIG
);
3582 addrOnce
= sqlite3VdbeAddOp0(v
, OP_Once
); VdbeCoverage(v
);
3585 /* Check to see if this is a vector IN operator */
3586 pLeft
= pExpr
->pLeft
;
3587 nVal
= sqlite3ExprVectorSize(pLeft
);
3589 /* Construct the ephemeral table that will contain the content of
3590 ** RHS of the IN operator.
3592 pExpr
->iTable
= iTab
;
3593 addr
= sqlite3VdbeAddOp2(v
, OP_OpenEphemeral
, pExpr
->iTable
, nVal
);
3594 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS
3595 if( ExprUseXSelect(pExpr
) ){
3596 VdbeComment((v
, "Result of SELECT %u", pExpr
->x
.pSelect
->selId
));
3598 VdbeComment((v
, "RHS of IN operator"));
3601 pKeyInfo
= sqlite3KeyInfoAlloc(pParse
->db
, nVal
, 1);
3603 if( ExprUseXSelect(pExpr
) ){
3604 /* Case 1: expr IN (SELECT ...)
3606 ** Generate code to write the results of the select into the temporary
3607 ** table allocated and opened above.
3609 Select
*pSelect
= pExpr
->x
.pSelect
;
3610 ExprList
*pEList
= pSelect
->pEList
;
3612 ExplainQueryPlan((pParse
, 1, "%sLIST SUBQUERY %d",
3613 addrOnce
?"":"CORRELATED ", pSelect
->selId
3615 /* If the LHS and RHS of the IN operator do not match, that
3616 ** error will have been caught long before we reach this point. */
3617 if( ALWAYS(pEList
->nExpr
==nVal
) ){
3623 sqlite3SelectDestInit(&dest
, SRT_Set
, iTab
);
3624 dest
.zAffSdst
= exprINAffinity(pParse
, pExpr
);
3625 pSelect
->iLimit
= 0;
3626 if( addrOnce
&& OptimizationEnabled(pParse
->db
, SQLITE_BloomFilter
) ){
3627 int regBloom
= ++pParse
->nMem
;
3628 addrBloom
= sqlite3VdbeAddOp2(v
, OP_Blob
, 10000, regBloom
);
3629 VdbeComment((v
, "Bloom filter"));
3630 dest
.iSDParm2
= regBloom
;
3632 testcase( pSelect
->selFlags
& SF_Distinct
);
3633 testcase( pKeyInfo
==0 ); /* Caused by OOM in sqlite3KeyInfoAlloc() */
3634 pCopy
= sqlite3SelectDup(pParse
->db
, pSelect
, 0);
3635 rc
= pParse
->db
->mallocFailed
? 1 :sqlite3Select(pParse
, pCopy
, &dest
);
3636 sqlite3SelectDelete(pParse
->db
, pCopy
);
3637 sqlite3DbFree(pParse
->db
, dest
.zAffSdst
);
3639 sqlite3VdbeGetOp(v
, addrOnce
)->p3
= dest
.iSDParm2
;
3640 if( dest
.iSDParm2
==0 ){
3641 sqlite3VdbeChangeToNoop(v
, addrBloom
);
3643 sqlite3VdbeGetOp(v
, addrOnce
)->p3
= dest
.iSDParm2
;
3647 sqlite3KeyInfoUnref(pKeyInfo
);
3650 assert( pKeyInfo
!=0 ); /* OOM will cause exit after sqlite3Select() */
3651 assert( pEList
!=0 );
3652 assert( pEList
->nExpr
>0 );
3653 assert( sqlite3KeyInfoIsWriteable(pKeyInfo
) );
3654 for(i
=0; i
<nVal
; i
++){
3655 Expr
*p
= sqlite3VectorFieldSubexpr(pLeft
, i
);
3656 pKeyInfo
->aColl
[i
] = sqlite3BinaryCompareCollSeq(
3657 pParse
, p
, pEList
->a
[i
].pExpr
3661 }else if( ALWAYS(pExpr
->x
.pList
!=0) ){
3662 /* Case 2: expr IN (exprlist)
3664 ** For each expression, build an index key from the evaluation and
3665 ** store it in the temporary table. If <expr> is a column, then use
3666 ** that columns affinity when building index keys. If <expr> is not
3667 ** a column, use numeric affinity.
3669 char affinity
; /* Affinity of the LHS of the IN */
3671 ExprList
*pList
= pExpr
->x
.pList
;
3672 struct ExprList_item
*pItem
;
3674 affinity
= sqlite3ExprAffinity(pLeft
);
3675 if( affinity
<=SQLITE_AFF_NONE
){
3676 affinity
= SQLITE_AFF_BLOB
;
3677 }else if( affinity
==SQLITE_AFF_REAL
){
3678 affinity
= SQLITE_AFF_NUMERIC
;
3681 assert( sqlite3KeyInfoIsWriteable(pKeyInfo
) );
3682 pKeyInfo
->aColl
[0] = sqlite3ExprCollSeq(pParse
, pExpr
->pLeft
);
3685 /* Loop through each expression in <exprlist>. */
3686 r1
= sqlite3GetTempReg(pParse
);
3687 r2
= sqlite3GetTempReg(pParse
);
3688 for(i
=pList
->nExpr
, pItem
=pList
->a
; i
>0; i
--, pItem
++){
3689 Expr
*pE2
= pItem
->pExpr
;
3691 /* If the expression is not constant then we will need to
3692 ** disable the test that was generated above that makes sure
3693 ** this code only executes once. Because for a non-constant
3694 ** expression we need to rerun this code each time.
3696 if( addrOnce
&& !sqlite3ExprIsConstant(pParse
, pE2
) ){
3697 sqlite3VdbeChangeToNoop(v
, addrOnce
-1);
3698 sqlite3VdbeChangeToNoop(v
, addrOnce
);
3699 ExprClearProperty(pExpr
, EP_Subrtn
);
3703 /* Evaluate the expression and insert it into the temp table */
3704 sqlite3ExprCode(pParse
, pE2
, r1
);
3705 sqlite3VdbeAddOp4(v
, OP_MakeRecord
, r1
, 1, r2
, &affinity
, 1);
3706 sqlite3VdbeAddOp4Int(v
, OP_IdxInsert
, iTab
, r2
, r1
, 1);
3708 sqlite3ReleaseTempReg(pParse
, r1
);
3709 sqlite3ReleaseTempReg(pParse
, r2
);
3712 sqlite3VdbeChangeP4(v
, addr
, (void *)pKeyInfo
, P4_KEYINFO
);
3715 sqlite3VdbeAddOp1(v
, OP_NullRow
, iTab
);
3716 sqlite3VdbeJumpHere(v
, addrOnce
);
3717 /* Subroutine return */
3718 assert( ExprUseYSub(pExpr
) );
3719 assert( sqlite3VdbeGetOp(v
,pExpr
->y
.sub
.iAddr
-1)->opcode
==OP_BeginSubrtn
3721 sqlite3VdbeAddOp3(v
, OP_Return
, pExpr
->y
.sub
.regReturn
,
3722 pExpr
->y
.sub
.iAddr
, 1);
3724 sqlite3ClearTempRegCache(pParse
);
3727 #endif /* SQLITE_OMIT_SUBQUERY */
3730 ** Generate code for scalar subqueries used as a subquery expression
3731 ** or EXISTS operator:
3733 ** (SELECT a FROM b) -- subquery
3734 ** EXISTS (SELECT a FROM b) -- EXISTS subquery
3736 ** The pExpr parameter is the SELECT or EXISTS operator to be coded.
3738 ** Return the register that holds the result. For a multi-column SELECT,
3739 ** the result is stored in a contiguous array of registers and the
3740 ** return value is the register of the left-most result column.
3741 ** Return 0 if an error occurs.
3743 #ifndef SQLITE_OMIT_SUBQUERY
3744 int sqlite3CodeSubselect(Parse
*pParse
, Expr
*pExpr
){
3745 int addrOnce
= 0; /* Address of OP_Once at top of subroutine */
3746 int rReg
= 0; /* Register storing resulting */
3747 Select
*pSel
; /* SELECT statement to encode */
3748 SelectDest dest
; /* How to deal with SELECT result */
3749 int nReg
; /* Registers to allocate */
3750 Expr
*pLimit
; /* New limit expression */
3751 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS
3752 int addrExplain
; /* Address of OP_Explain instruction */
3755 Vdbe
*v
= pParse
->pVdbe
;
3757 if( pParse
->nErr
) return 0;
3758 testcase( pExpr
->op
==TK_EXISTS
);
3759 testcase( pExpr
->op
==TK_SELECT
);
3760 assert( pExpr
->op
==TK_EXISTS
|| pExpr
->op
==TK_SELECT
);
3761 assert( ExprUseXSelect(pExpr
) );
3762 pSel
= pExpr
->x
.pSelect
;
3764 /* If this routine has already been coded, then invoke it as a
3766 if( ExprHasProperty(pExpr
, EP_Subrtn
) ){
3767 ExplainQueryPlan((pParse
, 0, "REUSE SUBQUERY %d", pSel
->selId
));
3768 assert( ExprUseYSub(pExpr
) );
3769 sqlite3VdbeAddOp2(v
, OP_Gosub
, pExpr
->y
.sub
.regReturn
,
3770 pExpr
->y
.sub
.iAddr
);
3771 return pExpr
->iTable
;
3774 /* Begin coding the subroutine */
3775 assert( !ExprUseYWin(pExpr
) );
3776 assert( !ExprHasProperty(pExpr
, EP_Reduced
|EP_TokenOnly
) );
3777 ExprSetProperty(pExpr
, EP_Subrtn
);
3778 pExpr
->y
.sub
.regReturn
= ++pParse
->nMem
;
3779 pExpr
->y
.sub
.iAddr
=
3780 sqlite3VdbeAddOp2(v
, OP_BeginSubrtn
, 0, pExpr
->y
.sub
.regReturn
) + 1;
3782 /* The evaluation of the EXISTS/SELECT must be repeated every time it
3783 ** is encountered if any of the following is true:
3785 ** * The right-hand side is a correlated subquery
3786 ** * The right-hand side is an expression list containing variables
3787 ** * We are inside a trigger
3789 ** If all of the above are false, then we can run this code just once
3790 ** save the results, and reuse the same result on subsequent invocations.
3792 if( !ExprHasProperty(pExpr
, EP_VarSelect
) ){
3793 addrOnce
= sqlite3VdbeAddOp0(v
, OP_Once
); VdbeCoverage(v
);
3796 /* For a SELECT, generate code to put the values for all columns of
3797 ** the first row into an array of registers and return the index of
3798 ** the first register.
3800 ** If this is an EXISTS, write an integer 0 (not exists) or 1 (exists)
3801 ** into a register and return that register number.
3803 ** In both cases, the query is augmented with "LIMIT 1". Any
3804 ** preexisting limit is discarded in place of the new LIMIT 1.
3806 ExplainQueryPlan2(addrExplain
, (pParse
, 1, "%sSCALAR SUBQUERY %d",
3807 addrOnce
?"":"CORRELATED ", pSel
->selId
));
3808 sqlite3VdbeScanStatusCounters(v
, addrExplain
, addrExplain
, -1);
3809 nReg
= pExpr
->op
==TK_SELECT
? pSel
->pEList
->nExpr
: 1;
3810 sqlite3SelectDestInit(&dest
, 0, pParse
->nMem
+1);
3811 pParse
->nMem
+= nReg
;
3812 if( pExpr
->op
==TK_SELECT
){
3813 dest
.eDest
= SRT_Mem
;
3814 dest
.iSdst
= dest
.iSDParm
;
3816 sqlite3VdbeAddOp3(v
, OP_Null
, 0, dest
.iSDParm
, dest
.iSDParm
+nReg
-1);
3817 VdbeComment((v
, "Init subquery result"));
3819 dest
.eDest
= SRT_Exists
;
3820 sqlite3VdbeAddOp2(v
, OP_Integer
, 0, dest
.iSDParm
);
3821 VdbeComment((v
, "Init EXISTS result"));
3824 /* The subquery already has a limit. If the pre-existing limit is X
3825 ** then make the new limit X<>0 so that the new limit is either 1 or 0 */
3826 sqlite3
*db
= pParse
->db
;
3827 pLimit
= sqlite3Expr(db
, TK_INTEGER
, "0");
3829 pLimit
->affExpr
= SQLITE_AFF_NUMERIC
;
3830 pLimit
= sqlite3PExpr(pParse
, TK_NE
,
3831 sqlite3ExprDup(db
, pSel
->pLimit
->pLeft
, 0), pLimit
);
3833 sqlite3ExprDeferredDelete(pParse
, pSel
->pLimit
->pLeft
);
3834 pSel
->pLimit
->pLeft
= pLimit
;
3836 /* If there is no pre-existing limit add a limit of 1 */
3837 pLimit
= sqlite3Expr(pParse
->db
, TK_INTEGER
, "1");
3838 pSel
->pLimit
= sqlite3PExpr(pParse
, TK_LIMIT
, pLimit
, 0);
3841 if( sqlite3Select(pParse
, pSel
, &dest
) ){
3842 pExpr
->op2
= pExpr
->op
;
3843 pExpr
->op
= TK_ERROR
;
3846 pExpr
->iTable
= rReg
= dest
.iSDParm
;
3847 ExprSetVVAProperty(pExpr
, EP_NoReduce
);
3849 sqlite3VdbeJumpHere(v
, addrOnce
);
3851 sqlite3VdbeScanStatusRange(v
, addrExplain
, addrExplain
, -1);
3853 /* Subroutine return */
3854 assert( ExprUseYSub(pExpr
) );
3855 assert( sqlite3VdbeGetOp(v
,pExpr
->y
.sub
.iAddr
-1)->opcode
==OP_BeginSubrtn
3857 sqlite3VdbeAddOp3(v
, OP_Return
, pExpr
->y
.sub
.regReturn
,
3858 pExpr
->y
.sub
.iAddr
, 1);
3860 sqlite3ClearTempRegCache(pParse
);
3863 #endif /* SQLITE_OMIT_SUBQUERY */
3865 #ifndef SQLITE_OMIT_SUBQUERY
3867 ** Expr pIn is an IN(...) expression. This function checks that the
3868 ** sub-select on the RHS of the IN() operator has the same number of
3869 ** columns as the vector on the LHS. Or, if the RHS of the IN() is not
3870 ** a sub-query, that the LHS is a vector of size 1.
3872 int sqlite3ExprCheckIN(Parse
*pParse
, Expr
*pIn
){
3873 int nVector
= sqlite3ExprVectorSize(pIn
->pLeft
);
3874 if( ExprUseXSelect(pIn
) && !pParse
->db
->mallocFailed
){
3875 if( nVector
!=pIn
->x
.pSelect
->pEList
->nExpr
){
3876 sqlite3SubselectError(pParse
, pIn
->x
.pSelect
->pEList
->nExpr
, nVector
);
3879 }else if( nVector
!=1 ){
3880 sqlite3VectorErrorMsg(pParse
, pIn
->pLeft
);
3887 #ifndef SQLITE_OMIT_SUBQUERY
3889 ** Generate code for an IN expression.
3891 ** x IN (SELECT ...)
3892 ** x IN (value, value, ...)
3894 ** The left-hand side (LHS) is a scalar or vector expression. The
3895 ** right-hand side (RHS) is an array of zero or more scalar values, or a
3896 ** subquery. If the RHS is a subquery, the number of result columns must
3897 ** match the number of columns in the vector on the LHS. If the RHS is
3898 ** a list of values, the LHS must be a scalar.
3900 ** The IN operator is true if the LHS value is contained within the RHS.
3901 ** The result is false if the LHS is definitely not in the RHS. The
3902 ** result is NULL if the presence of the LHS in the RHS cannot be
3903 ** determined due to NULLs.
3905 ** This routine generates code that jumps to destIfFalse if the LHS is not
3906 ** contained within the RHS. If due to NULLs we cannot determine if the LHS
3907 ** is contained in the RHS then jump to destIfNull. If the LHS is contained
3908 ** within the RHS then fall through.
3910 ** See the separate in-operator.md documentation file in the canonical
3911 ** SQLite source tree for additional information.
3913 static void sqlite3ExprCodeIN(
3914 Parse
*pParse
, /* Parsing and code generating context */
3915 Expr
*pExpr
, /* The IN expression */
3916 int destIfFalse
, /* Jump here if LHS is not contained in the RHS */
3917 int destIfNull
/* Jump here if the results are unknown due to NULLs */
3919 int rRhsHasNull
= 0; /* Register that is true if RHS contains NULL values */
3920 int eType
; /* Type of the RHS */
3921 int rLhs
; /* Register(s) holding the LHS values */
3922 int rLhsOrig
; /* LHS values prior to reordering by aiMap[] */
3923 Vdbe
*v
; /* Statement under construction */
3924 int *aiMap
= 0; /* Map from vector field to index column */
3925 char *zAff
= 0; /* Affinity string for comparisons */
3926 int nVector
; /* Size of vectors for this IN operator */
3927 int iDummy
; /* Dummy parameter to exprCodeVector() */
3928 Expr
*pLeft
; /* The LHS of the IN operator */
3929 int i
; /* loop counter */
3930 int destStep2
; /* Where to jump when NULLs seen in step 2 */
3931 int destStep6
= 0; /* Start of code for Step 6 */
3932 int addrTruthOp
; /* Address of opcode that determines the IN is true */
3933 int destNotNull
; /* Jump here if a comparison is not true in step 6 */
3934 int addrTop
; /* Top of the step-6 loop */
3935 int iTab
= 0; /* Index to use */
3936 u8 okConstFactor
= pParse
->okConstFactor
;
3938 assert( !ExprHasVVAProperty(pExpr
,EP_Immutable
) );
3939 pLeft
= pExpr
->pLeft
;
3940 if( sqlite3ExprCheckIN(pParse
, pExpr
) ) return;
3941 zAff
= exprINAffinity(pParse
, pExpr
);
3942 nVector
= sqlite3ExprVectorSize(pExpr
->pLeft
);
3943 aiMap
= (int*)sqlite3DbMallocZero(pParse
->db
, nVector
*sizeof(int));
3944 if( pParse
->db
->mallocFailed
) goto sqlite3ExprCodeIN_oom_error
;
3946 /* Attempt to compute the RHS. After this step, if anything other than
3947 ** IN_INDEX_NOOP is returned, the table opened with cursor iTab
3948 ** contains the values that make up the RHS. If IN_INDEX_NOOP is returned,
3949 ** the RHS has not yet been coded. */
3951 assert( v
!=0 ); /* OOM detected prior to this routine */
3952 VdbeNoopComment((v
, "begin IN expr"));
3953 eType
= sqlite3FindInIndex(pParse
, pExpr
,
3954 IN_INDEX_MEMBERSHIP
| IN_INDEX_NOOP_OK
,
3955 destIfFalse
==destIfNull
? 0 : &rRhsHasNull
,
3958 assert( pParse
->nErr
|| nVector
==1 || eType
==IN_INDEX_EPH
3959 || eType
==IN_INDEX_INDEX_ASC
|| eType
==IN_INDEX_INDEX_DESC
3962 /* Confirm that aiMap[] contains nVector integer values between 0 and
3964 for(i
=0; i
<nVector
; i
++){
3966 for(cnt
=j
=0; j
<nVector
; j
++) if( aiMap
[j
]==i
) cnt
++;
3971 /* Code the LHS, the <expr> from "<expr> IN (...)". If the LHS is a
3972 ** vector, then it is stored in an array of nVector registers starting
3975 ** sqlite3FindInIndex() might have reordered the fields of the LHS vector
3976 ** so that the fields are in the same order as an existing index. The
3977 ** aiMap[] array contains a mapping from the original LHS field order to
3978 ** the field order that matches the RHS index.
3980 ** Avoid factoring the LHS of the IN(...) expression out of the loop,
3981 ** even if it is constant, as OP_Affinity may be used on the register
3982 ** by code generated below. */
3983 assert( pParse
->okConstFactor
==okConstFactor
);
3984 pParse
->okConstFactor
= 0;
3985 rLhsOrig
= exprCodeVector(pParse
, pLeft
, &iDummy
);
3986 pParse
->okConstFactor
= okConstFactor
;
3987 for(i
=0; i
<nVector
&& aiMap
[i
]==i
; i
++){} /* Are LHS fields reordered? */
3989 /* LHS fields are not reordered */
3992 /* Need to reorder the LHS fields according to aiMap */
3993 rLhs
= sqlite3GetTempRange(pParse
, nVector
);
3994 for(i
=0; i
<nVector
; i
++){
3995 sqlite3VdbeAddOp3(v
, OP_Copy
, rLhsOrig
+i
, rLhs
+aiMap
[i
], 0);
3999 /* If sqlite3FindInIndex() did not find or create an index that is
4000 ** suitable for evaluating the IN operator, then evaluate using a
4001 ** sequence of comparisons.
4003 ** This is step (1) in the in-operator.md optimized algorithm.
4005 if( eType
==IN_INDEX_NOOP
){
4008 int labelOk
= sqlite3VdbeMakeLabel(pParse
);
4012 assert( ExprUseXList(pExpr
) );
4013 pList
= pExpr
->x
.pList
;
4014 pColl
= sqlite3ExprCollSeq(pParse
, pExpr
->pLeft
);
4015 if( destIfNull
!=destIfFalse
){
4016 regCkNull
= sqlite3GetTempReg(pParse
);
4017 sqlite3VdbeAddOp3(v
, OP_BitAnd
, rLhs
, rLhs
, regCkNull
);
4019 for(ii
=0; ii
<pList
->nExpr
; ii
++){
4020 r2
= sqlite3ExprCodeTemp(pParse
, pList
->a
[ii
].pExpr
, ®ToFree
);
4021 if( regCkNull
&& sqlite3ExprCanBeNull(pList
->a
[ii
].pExpr
) ){
4022 sqlite3VdbeAddOp3(v
, OP_BitAnd
, regCkNull
, r2
, regCkNull
);
4024 sqlite3ReleaseTempReg(pParse
, regToFree
);
4025 if( ii
<pList
->nExpr
-1 || destIfNull
!=destIfFalse
){
4026 int op
= rLhs
!=r2
? OP_Eq
: OP_NotNull
;
4027 sqlite3VdbeAddOp4(v
, op
, rLhs
, labelOk
, r2
,
4028 (void*)pColl
, P4_COLLSEQ
);
4029 VdbeCoverageIf(v
, ii
<pList
->nExpr
-1 && op
==OP_Eq
);
4030 VdbeCoverageIf(v
, ii
==pList
->nExpr
-1 && op
==OP_Eq
);
4031 VdbeCoverageIf(v
, ii
<pList
->nExpr
-1 && op
==OP_NotNull
);
4032 VdbeCoverageIf(v
, ii
==pList
->nExpr
-1 && op
==OP_NotNull
);
4033 sqlite3VdbeChangeP5(v
, zAff
[0]);
4035 int op
= rLhs
!=r2
? OP_Ne
: OP_IsNull
;
4036 assert( destIfNull
==destIfFalse
);
4037 sqlite3VdbeAddOp4(v
, op
, rLhs
, destIfFalse
, r2
,
4038 (void*)pColl
, P4_COLLSEQ
);
4039 VdbeCoverageIf(v
, op
==OP_Ne
);
4040 VdbeCoverageIf(v
, op
==OP_IsNull
);
4041 sqlite3VdbeChangeP5(v
, zAff
[0] | SQLITE_JUMPIFNULL
);
4045 sqlite3VdbeAddOp2(v
, OP_IsNull
, regCkNull
, destIfNull
); VdbeCoverage(v
);
4046 sqlite3VdbeGoto(v
, destIfFalse
);
4048 sqlite3VdbeResolveLabel(v
, labelOk
);
4049 sqlite3ReleaseTempReg(pParse
, regCkNull
);
4050 goto sqlite3ExprCodeIN_finished
;
4053 /* Step 2: Check to see if the LHS contains any NULL columns. If the
4054 ** LHS does contain NULLs then the result must be either FALSE or NULL.
4055 ** We will then skip the binary search of the RHS.
4057 if( destIfNull
==destIfFalse
){
4058 destStep2
= destIfFalse
;
4060 destStep2
= destStep6
= sqlite3VdbeMakeLabel(pParse
);
4062 for(i
=0; i
<nVector
; i
++){
4063 Expr
*p
= sqlite3VectorFieldSubexpr(pExpr
->pLeft
, i
);
4064 if( pParse
->nErr
) goto sqlite3ExprCodeIN_oom_error
;
4065 if( sqlite3ExprCanBeNull(p
) ){
4066 sqlite3VdbeAddOp2(v
, OP_IsNull
, rLhs
+i
, destStep2
);
4071 /* Step 3. The LHS is now known to be non-NULL. Do the binary search
4072 ** of the RHS using the LHS as a probe. If found, the result is
4075 if( eType
==IN_INDEX_ROWID
){
4076 /* In this case, the RHS is the ROWID of table b-tree and so we also
4077 ** know that the RHS is non-NULL. Hence, we combine steps 3 and 4
4078 ** into a single opcode. */
4079 sqlite3VdbeAddOp3(v
, OP_SeekRowid
, iTab
, destIfFalse
, rLhs
);
4081 addrTruthOp
= sqlite3VdbeAddOp0(v
, OP_Goto
); /* Return True */
4083 sqlite3VdbeAddOp4(v
, OP_Affinity
, rLhs
, nVector
, 0, zAff
, nVector
);
4084 if( destIfFalse
==destIfNull
){
4085 /* Combine Step 3 and Step 5 into a single opcode */
4086 if( ExprHasProperty(pExpr
, EP_Subrtn
) ){
4087 const VdbeOp
*pOp
= sqlite3VdbeGetOp(v
, pExpr
->y
.sub
.iAddr
);
4088 assert( pOp
->opcode
==OP_Once
|| pParse
->nErr
);
4089 if( pOp
->opcode
==OP_Once
&& pOp
->p3
>0 ){
4090 assert( OptimizationEnabled(pParse
->db
, SQLITE_BloomFilter
) );
4091 sqlite3VdbeAddOp4Int(v
, OP_Filter
, pOp
->p3
, destIfFalse
,
4092 rLhs
, nVector
); VdbeCoverage(v
);
4095 sqlite3VdbeAddOp4Int(v
, OP_NotFound
, iTab
, destIfFalse
,
4096 rLhs
, nVector
); VdbeCoverage(v
);
4097 goto sqlite3ExprCodeIN_finished
;
4099 /* Ordinary Step 3, for the case where FALSE and NULL are distinct */
4100 addrTruthOp
= sqlite3VdbeAddOp4Int(v
, OP_Found
, iTab
, 0,
4101 rLhs
, nVector
); VdbeCoverage(v
);
4104 /* Step 4. If the RHS is known to be non-NULL and we did not find
4105 ** an match on the search above, then the result must be FALSE.
4107 if( rRhsHasNull
&& nVector
==1 ){
4108 sqlite3VdbeAddOp2(v
, OP_NotNull
, rRhsHasNull
, destIfFalse
);
4112 /* Step 5. If we do not care about the difference between NULL and
4113 ** FALSE, then just return false.
4115 if( destIfFalse
==destIfNull
) sqlite3VdbeGoto(v
, destIfFalse
);
4117 /* Step 6: Loop through rows of the RHS. Compare each row to the LHS.
4118 ** If any comparison is NULL, then the result is NULL. If all
4119 ** comparisons are FALSE then the final result is FALSE.
4121 ** For a scalar LHS, it is sufficient to check just the first row
4124 if( destStep6
) sqlite3VdbeResolveLabel(v
, destStep6
);
4125 addrTop
= sqlite3VdbeAddOp2(v
, OP_Rewind
, iTab
, destIfFalse
);
4128 destNotNull
= sqlite3VdbeMakeLabel(pParse
);
4130 /* For nVector==1, combine steps 6 and 7 by immediately returning
4131 ** FALSE if the first comparison is not NULL */
4132 destNotNull
= destIfFalse
;
4134 for(i
=0; i
<nVector
; i
++){
4137 int r3
= sqlite3GetTempReg(pParse
);
4138 p
= sqlite3VectorFieldSubexpr(pLeft
, i
);
4139 pColl
= sqlite3ExprCollSeq(pParse
, p
);
4140 sqlite3VdbeAddOp3(v
, OP_Column
, iTab
, i
, r3
);
4141 sqlite3VdbeAddOp4(v
, OP_Ne
, rLhs
+i
, destNotNull
, r3
,
4142 (void*)pColl
, P4_COLLSEQ
);
4144 sqlite3ReleaseTempReg(pParse
, r3
);
4146 sqlite3VdbeAddOp2(v
, OP_Goto
, 0, destIfNull
);
4148 sqlite3VdbeResolveLabel(v
, destNotNull
);
4149 sqlite3VdbeAddOp2(v
, OP_Next
, iTab
, addrTop
+1);
4152 /* Step 7: If we reach this point, we know that the result must
4154 sqlite3VdbeAddOp2(v
, OP_Goto
, 0, destIfFalse
);
4157 /* Jumps here in order to return true. */
4158 sqlite3VdbeJumpHere(v
, addrTruthOp
);
4160 sqlite3ExprCodeIN_finished
:
4161 if( rLhs
!=rLhsOrig
) sqlite3ReleaseTempReg(pParse
, rLhs
);
4162 VdbeComment((v
, "end IN expr"));
4163 sqlite3ExprCodeIN_oom_error
:
4164 sqlite3DbFree(pParse
->db
, aiMap
);
4165 sqlite3DbFree(pParse
->db
, zAff
);
4167 #endif /* SQLITE_OMIT_SUBQUERY */
4169 #ifndef SQLITE_OMIT_FLOATING_POINT
4171 ** Generate an instruction that will put the floating point
4172 ** value described by z[0..n-1] into register iMem.
4174 ** The z[] string will probably not be zero-terminated. But the
4175 ** z[n] character is guaranteed to be something that does not look
4176 ** like the continuation of the number.
4178 static void codeReal(Vdbe
*v
, const char *z
, int negateFlag
, int iMem
){
4181 sqlite3AtoF(z
, &value
, sqlite3Strlen30(z
), SQLITE_UTF8
);
4182 assert( !sqlite3IsNaN(value
) ); /* The new AtoF never returns NaN */
4183 if( negateFlag
) value
= -value
;
4184 sqlite3VdbeAddOp4Dup8(v
, OP_Real
, 0, iMem
, 0, (u8
*)&value
, P4_REAL
);
4191 ** Generate an instruction that will put the integer describe by
4192 ** text z[0..n-1] into register iMem.
4194 ** Expr.u.zToken is always UTF8 and zero-terminated.
4196 static void codeInteger(Parse
*pParse
, Expr
*pExpr
, int negFlag
, int iMem
){
4197 Vdbe
*v
= pParse
->pVdbe
;
4198 if( pExpr
->flags
& EP_IntValue
){
4199 int i
= pExpr
->u
.iValue
;
4201 if( negFlag
) i
= -i
;
4202 sqlite3VdbeAddOp2(v
, OP_Integer
, i
, iMem
);
4206 const char *z
= pExpr
->u
.zToken
;
4208 c
= sqlite3DecOrHexToI64(z
, &value
);
4209 if( (c
==3 && !negFlag
) || (c
==2) || (negFlag
&& value
==SMALLEST_INT64
)){
4210 #ifdef SQLITE_OMIT_FLOATING_POINT
4211 sqlite3ErrorMsg(pParse
, "oversized integer: %s%#T", negFlag
?"-":"",pExpr
);
4213 #ifndef SQLITE_OMIT_HEX_INTEGER
4214 if( sqlite3_strnicmp(z
,"0x",2)==0 ){
4215 sqlite3ErrorMsg(pParse
, "hex literal too big: %s%#T",
4216 negFlag
?"-":"",pExpr
);
4220 codeReal(v
, z
, negFlag
, iMem
);
4224 if( negFlag
){ value
= c
==3 ? SMALLEST_INT64
: -value
; }
4225 sqlite3VdbeAddOp4Dup8(v
, OP_Int64
, 0, iMem
, 0, (u8
*)&value
, P4_INT64
);
4231 /* Generate code that will load into register regOut a value that is
4232 ** appropriate for the iIdxCol-th column of index pIdx.
4234 void sqlite3ExprCodeLoadIndexColumn(
4235 Parse
*pParse
, /* The parsing context */
4236 Index
*pIdx
, /* The index whose column is to be loaded */
4237 int iTabCur
, /* Cursor pointing to a table row */
4238 int iIdxCol
, /* The column of the index to be loaded */
4239 int regOut
/* Store the index column value in this register */
4241 i16 iTabCol
= pIdx
->aiColumn
[iIdxCol
];
4242 if( iTabCol
==XN_EXPR
){
4243 assert( pIdx
->aColExpr
);
4244 assert( pIdx
->aColExpr
->nExpr
>iIdxCol
);
4245 pParse
->iSelfTab
= iTabCur
+ 1;
4246 sqlite3ExprCodeCopy(pParse
, pIdx
->aColExpr
->a
[iIdxCol
].pExpr
, regOut
);
4247 pParse
->iSelfTab
= 0;
4249 sqlite3ExprCodeGetColumnOfTable(pParse
->pVdbe
, pIdx
->pTable
, iTabCur
,
4254 #ifndef SQLITE_OMIT_GENERATED_COLUMNS
4256 ** Generate code that will compute the value of generated column pCol
4257 ** and store the result in register regOut
4259 void sqlite3ExprCodeGeneratedColumn(
4260 Parse
*pParse
, /* Parsing context */
4261 Table
*pTab
, /* Table containing the generated column */
4262 Column
*pCol
, /* The generated column */
4263 int regOut
/* Put the result in this register */
4266 Vdbe
*v
= pParse
->pVdbe
;
4267 int nErr
= pParse
->nErr
;
4269 assert( pParse
->iSelfTab
!=0 );
4270 if( pParse
->iSelfTab
>0 ){
4271 iAddr
= sqlite3VdbeAddOp3(v
, OP_IfNullRow
, pParse
->iSelfTab
-1, 0, regOut
);
4275 sqlite3ExprCodeCopy(pParse
, sqlite3ColumnExpr(pTab
,pCol
), regOut
);
4276 if( pCol
->affinity
>=SQLITE_AFF_TEXT
){
4277 sqlite3VdbeAddOp4(v
, OP_Affinity
, regOut
, 1, 0, &pCol
->affinity
, 1);
4279 if( iAddr
) sqlite3VdbeJumpHere(v
, iAddr
);
4280 if( pParse
->nErr
>nErr
) pParse
->db
->errByteOffset
= -1;
4282 #endif /* SQLITE_OMIT_GENERATED_COLUMNS */
4285 ** Generate code to extract the value of the iCol-th column of a table.
4287 void sqlite3ExprCodeGetColumnOfTable(
4288 Vdbe
*v
, /* Parsing context */
4289 Table
*pTab
, /* The table containing the value */
4290 int iTabCur
, /* The table cursor. Or the PK cursor for WITHOUT ROWID */
4291 int iCol
, /* Index of the column to extract */
4292 int regOut
/* Extract the value into this register */
4297 assert( iCol
!=XN_EXPR
);
4298 if( iCol
<0 || iCol
==pTab
->iPKey
){
4299 sqlite3VdbeAddOp2(v
, OP_Rowid
, iTabCur
, regOut
);
4300 VdbeComment((v
, "%s.rowid", pTab
->zName
));
4304 if( IsVirtual(pTab
) ){
4307 #ifndef SQLITE_OMIT_GENERATED_COLUMNS
4308 }else if( (pCol
= &pTab
->aCol
[iCol
])->colFlags
& COLFLAG_VIRTUAL
){
4309 Parse
*pParse
= sqlite3VdbeParser(v
);
4310 if( pCol
->colFlags
& COLFLAG_BUSY
){
4311 sqlite3ErrorMsg(pParse
, "generated column loop on \"%s\"",
4314 int savedSelfTab
= pParse
->iSelfTab
;
4315 pCol
->colFlags
|= COLFLAG_BUSY
;
4316 pParse
->iSelfTab
= iTabCur
+1;
4317 sqlite3ExprCodeGeneratedColumn(pParse
, pTab
, pCol
, regOut
);
4318 pParse
->iSelfTab
= savedSelfTab
;
4319 pCol
->colFlags
&= ~COLFLAG_BUSY
;
4323 }else if( !HasRowid(pTab
) ){
4324 testcase( iCol
!=sqlite3TableColumnToStorage(pTab
, iCol
) );
4325 x
= sqlite3TableColumnToIndex(sqlite3PrimaryKeyIndex(pTab
), iCol
);
4328 x
= sqlite3TableColumnToStorage(pTab
,iCol
);
4329 testcase( x
!=iCol
);
4332 sqlite3VdbeAddOp3(v
, op
, iTabCur
, x
, regOut
);
4333 sqlite3ColumnDefault(v
, pTab
, iCol
, regOut
);
4338 ** Generate code that will extract the iColumn-th column from
4339 ** table pTab and store the column value in register iReg.
4341 ** There must be an open cursor to pTab in iTable when this routine
4342 ** is called. If iColumn<0 then code is generated that extracts the rowid.
4344 int sqlite3ExprCodeGetColumn(
4345 Parse
*pParse
, /* Parsing and code generating context */
4346 Table
*pTab
, /* Description of the table we are reading from */
4347 int iColumn
, /* Index of the table column */
4348 int iTable
, /* The cursor pointing to the table */
4349 int iReg
, /* Store results here */
4350 u8 p5
/* P5 value for OP_Column + FLAGS */
4352 assert( pParse
->pVdbe
!=0 );
4353 assert( (p5
& (OPFLAG_NOCHNG
|OPFLAG_TYPEOFARG
|OPFLAG_LENGTHARG
))==p5
);
4354 assert( IsVirtual(pTab
) || (p5
& OPFLAG_NOCHNG
)==0 );
4355 sqlite3ExprCodeGetColumnOfTable(pParse
->pVdbe
, pTab
, iTable
, iColumn
, iReg
);
4357 VdbeOp
*pOp
= sqlite3VdbeGetLastOp(pParse
->pVdbe
);
4358 if( pOp
->opcode
==OP_Column
) pOp
->p5
= p5
;
4359 if( pOp
->opcode
==OP_VColumn
) pOp
->p5
= (p5
& OPFLAG_NOCHNG
);
4365 ** Generate code to move content from registers iFrom...iFrom+nReg-1
4366 ** over to iTo..iTo+nReg-1.
4368 void sqlite3ExprCodeMove(Parse
*pParse
, int iFrom
, int iTo
, int nReg
){
4369 sqlite3VdbeAddOp3(pParse
->pVdbe
, OP_Move
, iFrom
, iTo
, nReg
);
4373 ** Convert a scalar expression node to a TK_REGISTER referencing
4374 ** register iReg. The caller must ensure that iReg already contains
4375 ** the correct value for the expression.
4377 void sqlite3ExprToRegister(Expr
*pExpr
, int iReg
){
4378 Expr
*p
= sqlite3ExprSkipCollateAndLikely(pExpr
);
4379 if( NEVER(p
==0) ) return;
4380 if( p
->op
==TK_REGISTER
){
4381 assert( p
->iTable
==iReg
);
4384 p
->op
= TK_REGISTER
;
4386 ExprClearProperty(p
, EP_Skip
);
4391 ** Evaluate an expression (either a vector or a scalar expression) and store
4392 ** the result in contiguous temporary registers. Return the index of
4393 ** the first register used to store the result.
4395 ** If the returned result register is a temporary scalar, then also write
4396 ** that register number into *piFreeable. If the returned result register
4397 ** is not a temporary or if the expression is a vector set *piFreeable
4400 static int exprCodeVector(Parse
*pParse
, Expr
*p
, int *piFreeable
){
4402 int nResult
= sqlite3ExprVectorSize(p
);
4404 iResult
= sqlite3ExprCodeTemp(pParse
, p
, piFreeable
);
4407 if( p
->op
==TK_SELECT
){
4408 #if SQLITE_OMIT_SUBQUERY
4411 iResult
= sqlite3CodeSubselect(pParse
, p
);
4415 iResult
= pParse
->nMem
+1;
4416 pParse
->nMem
+= nResult
;
4417 assert( ExprUseXList(p
) );
4418 for(i
=0; i
<nResult
; i
++){
4419 sqlite3ExprCodeFactorable(pParse
, p
->x
.pList
->a
[i
].pExpr
, i
+iResult
);
4427 ** If the last opcode is a OP_Copy, then set the do-not-merge flag (p5)
4428 ** so that a subsequent copy will not be merged into this one.
4430 static void setDoNotMergeFlagOnCopy(Vdbe
*v
){
4431 if( sqlite3VdbeGetLastOp(v
)->opcode
==OP_Copy
){
4432 sqlite3VdbeChangeP5(v
, 1); /* Tag trailing OP_Copy as not mergeable */
4437 ** Generate code to implement special SQL functions that are implemented
4438 ** in-line rather than by using the usual callbacks.
4440 static int exprCodeInlineFunction(
4441 Parse
*pParse
, /* Parsing context */
4442 ExprList
*pFarg
, /* List of function arguments */
4443 int iFuncId
, /* Function ID. One of the INTFUNC_... values */
4444 int target
/* Store function result in this register */
4447 Vdbe
*v
= pParse
->pVdbe
;
4450 nFarg
= pFarg
->nExpr
;
4451 assert( nFarg
>0 ); /* All in-line functions have at least one argument */
4453 case INLINEFUNC_coalesce
: {
4454 /* Attempt a direct implementation of the built-in COALESCE() and
4455 ** IFNULL() functions. This avoids unnecessary evaluation of
4456 ** arguments past the first non-NULL argument.
4458 int endCoalesce
= sqlite3VdbeMakeLabel(pParse
);
4461 sqlite3ExprCode(pParse
, pFarg
->a
[0].pExpr
, target
);
4462 for(i
=1; i
<nFarg
; i
++){
4463 sqlite3VdbeAddOp2(v
, OP_NotNull
, target
, endCoalesce
);
4465 sqlite3ExprCode(pParse
, pFarg
->a
[i
].pExpr
, target
);
4467 setDoNotMergeFlagOnCopy(v
);
4468 sqlite3VdbeResolveLabel(v
, endCoalesce
);
4471 case INLINEFUNC_iif
: {
4473 memset(&caseExpr
, 0, sizeof(caseExpr
));
4474 caseExpr
.op
= TK_CASE
;
4475 caseExpr
.x
.pList
= pFarg
;
4476 return sqlite3ExprCodeTarget(pParse
, &caseExpr
, target
);
4478 #ifdef SQLITE_ENABLE_OFFSET_SQL_FUNC
4479 case INLINEFUNC_sqlite_offset
: {
4480 Expr
*pArg
= pFarg
->a
[0].pExpr
;
4481 if( pArg
->op
==TK_COLUMN
&& pArg
->iTable
>=0 ){
4482 sqlite3VdbeAddOp3(v
, OP_Offset
, pArg
->iTable
, pArg
->iColumn
, target
);
4484 sqlite3VdbeAddOp2(v
, OP_Null
, 0, target
);
4490 /* The UNLIKELY() function is a no-op. The result is the value
4491 ** of the first argument.
4493 assert( nFarg
==1 || nFarg
==2 );
4494 target
= sqlite3ExprCodeTarget(pParse
, pFarg
->a
[0].pExpr
, target
);
4498 /***********************************************************************
4499 ** Test-only SQL functions that are only usable if enabled
4500 ** via SQLITE_TESTCTRL_INTERNAL_FUNCTIONS
4502 #if !defined(SQLITE_UNTESTABLE)
4503 case INLINEFUNC_expr_compare
: {
4504 /* Compare two expressions using sqlite3ExprCompare() */
4506 sqlite3VdbeAddOp2(v
, OP_Integer
,
4507 sqlite3ExprCompare(0,pFarg
->a
[0].pExpr
, pFarg
->a
[1].pExpr
,-1),
4512 case INLINEFUNC_expr_implies_expr
: {
4513 /* Compare two expressions using sqlite3ExprImpliesExpr() */
4515 sqlite3VdbeAddOp2(v
, OP_Integer
,
4516 sqlite3ExprImpliesExpr(pParse
,pFarg
->a
[0].pExpr
, pFarg
->a
[1].pExpr
,-1),
4521 case INLINEFUNC_implies_nonnull_row
: {
4522 /* Result of sqlite3ExprImpliesNonNullRow() */
4525 pA1
= pFarg
->a
[1].pExpr
;
4526 if( pA1
->op
==TK_COLUMN
){
4527 sqlite3VdbeAddOp2(v
, OP_Integer
,
4528 sqlite3ExprImpliesNonNullRow(pFarg
->a
[0].pExpr
,pA1
->iTable
,1),
4531 sqlite3VdbeAddOp2(v
, OP_Null
, 0, target
);
4536 case INLINEFUNC_affinity
: {
4537 /* The AFFINITY() function evaluates to a string that describes
4538 ** the type affinity of the argument. This is used for testing of
4539 ** the SQLite type logic.
4541 const char *azAff
[] = { "blob", "text", "numeric", "integer",
4542 "real", "flexnum" };
4545 aff
= sqlite3ExprAffinity(pFarg
->a
[0].pExpr
);
4546 assert( aff
<=SQLITE_AFF_NONE
4547 || (aff
>=SQLITE_AFF_BLOB
&& aff
<=SQLITE_AFF_FLEXNUM
) );
4548 sqlite3VdbeLoadString(v
, target
,
4549 (aff
<=SQLITE_AFF_NONE
) ? "none" : azAff
[aff
-SQLITE_AFF_BLOB
]);
4552 #endif /* !defined(SQLITE_UNTESTABLE) */
4558 ** Expression Node callback for sqlite3ExprCanReturnSubtype().
4560 ** Only a function call is able to return a subtype. So if the node
4561 ** is not a function call, return WRC_Prune immediately.
4563 ** A function call is able to return a subtype if it has the
4564 ** SQLITE_RESULT_SUBTYPE property.
4566 ** Assume that every function is able to pass-through a subtype from
4567 ** one of its argument (using sqlite3_result_value()). Most functions
4568 ** are not this way, but we don't have a mechanism to distinguish those
4569 ** that are from those that are not, so assume they all work this way.
4570 ** That means that if one of its arguments is another function and that
4571 ** other function is able to return a subtype, then this function is
4572 ** able to return a subtype.
4574 static int exprNodeCanReturnSubtype(Walker
*pWalker
, Expr
*pExpr
){
4578 if( pExpr
->op
!=TK_FUNCTION
){
4581 assert( ExprUseXList(pExpr
) );
4582 db
= pWalker
->pParse
->db
;
4583 n
= ALWAYS(pExpr
->x
.pList
) ? pExpr
->x
.pList
->nExpr
: 0;
4584 pDef
= sqlite3FindFunction(db
, pExpr
->u
.zToken
, n
, ENC(db
), 0);
4585 if( NEVER(pDef
==0) || (pDef
->funcFlags
& SQLITE_RESULT_SUBTYPE
)!=0 ){
4589 return WRC_Continue
;
4593 ** Return TRUE if expression pExpr is able to return a subtype.
4595 ** A TRUE return does not guarantee that a subtype will be returned.
4596 ** It only indicates that a subtype return is possible. False positives
4597 ** are acceptable as they only disable an optimization. False negatives,
4598 ** on the other hand, can lead to incorrect answers.
4600 static int sqlite3ExprCanReturnSubtype(Parse
*pParse
, Expr
*pExpr
){
4602 memset(&w
, 0, sizeof(w
));
4604 w
.xExprCallback
= exprNodeCanReturnSubtype
;
4605 sqlite3WalkExpr(&w
, pExpr
);
4611 ** Check to see if pExpr is one of the indexed expressions on pParse->pIdxEpr.
4612 ** If it is, then resolve the expression by reading from the index and
4613 ** return the register into which the value has been read. If pExpr is
4614 ** not an indexed expression, then return negative.
4616 static SQLITE_NOINLINE
int sqlite3IndexedExprLookup(
4617 Parse
*pParse
, /* The parsing context */
4618 Expr
*pExpr
, /* The expression to potentially bypass */
4619 int target
/* Where to store the result of the expression */
4623 for(p
=pParse
->pIdxEpr
; p
; p
=p
->pIENext
){
4625 int iDataCur
= p
->iDataCur
;
4626 if( iDataCur
<0 ) continue;
4627 if( pParse
->iSelfTab
){
4628 if( p
->iDataCur
!=pParse
->iSelfTab
-1 ) continue;
4631 if( sqlite3ExprCompare(0, pExpr
, p
->pExpr
, iDataCur
)!=0 ) continue;
4632 assert( p
->aff
>=SQLITE_AFF_BLOB
&& p
->aff
<=SQLITE_AFF_NUMERIC
);
4633 exprAff
= sqlite3ExprAffinity(pExpr
);
4634 if( (exprAff
<=SQLITE_AFF_BLOB
&& p
->aff
!=SQLITE_AFF_BLOB
)
4635 || (exprAff
==SQLITE_AFF_TEXT
&& p
->aff
!=SQLITE_AFF_TEXT
)
4636 || (exprAff
>=SQLITE_AFF_NUMERIC
&& p
->aff
!=SQLITE_AFF_NUMERIC
)
4638 /* Affinity mismatch on a generated column */
4643 /* Functions that might set a subtype should not be replaced by the
4644 ** value taken from an expression index if they are themselves an
4645 ** argument to another scalar function or aggregate.
4646 ** https://sqlite.org/forum/forumpost/68d284c86b082c3e */
4647 if( ExprHasProperty(pExpr
, EP_SubtArg
)
4648 && sqlite3ExprCanReturnSubtype(pParse
, pExpr
)
4655 if( p
->bMaybeNullRow
){
4656 /* If the index is on a NULL row due to an outer join, then we
4657 ** cannot extract the value from the index. The value must be
4658 ** computed using the original expression. */
4659 int addr
= sqlite3VdbeCurrentAddr(v
);
4660 sqlite3VdbeAddOp3(v
, OP_IfNullRow
, p
->iIdxCur
, addr
+3, target
);
4662 sqlite3VdbeAddOp3(v
, OP_Column
, p
->iIdxCur
, p
->iIdxCol
, target
);
4663 VdbeComment((v
, "%s expr-column %d", p
->zIdxName
, p
->iIdxCol
));
4664 sqlite3VdbeGoto(v
, 0);
4665 p
= pParse
->pIdxEpr
;
4666 pParse
->pIdxEpr
= 0;
4667 sqlite3ExprCode(pParse
, pExpr
, target
);
4668 pParse
->pIdxEpr
= p
;
4669 sqlite3VdbeJumpHere(v
, addr
+2);
4671 sqlite3VdbeAddOp3(v
, OP_Column
, p
->iIdxCur
, p
->iIdxCol
, target
);
4672 VdbeComment((v
, "%s expr-column %d", p
->zIdxName
, p
->iIdxCol
));
4676 return -1; /* Not found */
4681 ** Expresion pExpr is guaranteed to be a TK_COLUMN or equivalent. This
4682 ** function checks the Parse.pIdxPartExpr list to see if this column
4683 ** can be replaced with a constant value. If so, it generates code to
4684 ** put the constant value in a register (ideally, but not necessarily,
4685 ** register iTarget) and returns the register number.
4687 ** Or, if the TK_COLUMN cannot be replaced by a constant, zero is
4690 static int exprPartidxExprLookup(Parse
*pParse
, Expr
*pExpr
, int iTarget
){
4692 for(p
=pParse
->pIdxPartExpr
; p
; p
=p
->pIENext
){
4693 if( pExpr
->iColumn
==p
->iIdxCol
&& pExpr
->iTable
==p
->iDataCur
){
4694 Vdbe
*v
= pParse
->pVdbe
;
4698 if( p
->bMaybeNullRow
){
4699 addr
= sqlite3VdbeAddOp1(v
, OP_IfNullRow
, p
->iIdxCur
);
4701 ret
= sqlite3ExprCodeTarget(pParse
, p
->pExpr
, iTarget
);
4702 sqlite3VdbeAddOp4(pParse
->pVdbe
, OP_Affinity
, ret
, 1, 0,
4703 (const char*)&p
->aff
, 1);
4705 sqlite3VdbeJumpHere(v
, addr
);
4706 sqlite3VdbeChangeP3(v
, addr
, ret
);
4716 ** Generate code into the current Vdbe to evaluate the given
4717 ** expression. Attempt to store the results in register "target".
4718 ** Return the register where results are stored.
4720 ** With this routine, there is no guarantee that results will
4721 ** be stored in target. The result might be stored in some other
4722 ** register if it is convenient to do so. The calling function
4723 ** must check the return code and move the results to the desired
4726 int sqlite3ExprCodeTarget(Parse
*pParse
, Expr
*pExpr
, int target
){
4727 Vdbe
*v
= pParse
->pVdbe
; /* The VM under construction */
4728 int op
; /* The opcode being coded */
4729 int inReg
= target
; /* Results stored in register inReg */
4730 int regFree1
= 0; /* If non-zero free this temporary register */
4731 int regFree2
= 0; /* If non-zero free this temporary register */
4732 int r1
, r2
; /* Various register numbers */
4733 Expr tempX
; /* Temporary expression node */
4736 assert( target
>0 && target
<=pParse
->nMem
);
4742 }else if( pParse
->pIdxEpr
!=0
4743 && !ExprHasProperty(pExpr
, EP_Leaf
)
4744 && (r1
= sqlite3IndexedExprLookup(pParse
, pExpr
, target
))>=0
4748 assert( !ExprHasVVAProperty(pExpr
,EP_Immutable
) );
4751 assert( op
!=TK_ORDER
);
4753 case TK_AGG_COLUMN
: {
4754 AggInfo
*pAggInfo
= pExpr
->pAggInfo
;
4755 struct AggInfo_col
*pCol
;
4756 assert( pAggInfo
!=0 );
4757 assert( pExpr
->iAgg
>=0 );
4758 if( pExpr
->iAgg
>=pAggInfo
->nColumn
){
4759 /* Happens when the left table of a RIGHT JOIN is null and
4760 ** is using an expression index */
4761 sqlite3VdbeAddOp2(v
, OP_Null
, 0, target
);
4762 #ifdef SQLITE_VDBE_COVERAGE
4763 /* Verify that the OP_Null above is exercised by tests
4764 ** tag-20230325-2 */
4765 sqlite3VdbeAddOp3(v
, OP_NotNull
, target
, 1, 20230325);
4766 VdbeCoverageNeverTaken(v
);
4770 pCol
= &pAggInfo
->aCol
[pExpr
->iAgg
];
4771 if( !pAggInfo
->directMode
){
4772 return AggInfoColumnReg(pAggInfo
, pExpr
->iAgg
);
4773 }else if( pAggInfo
->useSortingIdx
){
4774 Table
*pTab
= pCol
->pTab
;
4775 sqlite3VdbeAddOp3(v
, OP_Column
, pAggInfo
->sortingIdxPTab
,
4776 pCol
->iSorterColumn
, target
);
4778 /* No comment added */
4779 }else if( pCol
->iColumn
<0 ){
4780 VdbeComment((v
,"%s.rowid",pTab
->zName
));
4782 VdbeComment((v
,"%s.%s",
4783 pTab
->zName
, pTab
->aCol
[pCol
->iColumn
].zCnName
));
4784 if( pTab
->aCol
[pCol
->iColumn
].affinity
==SQLITE_AFF_REAL
){
4785 sqlite3VdbeAddOp1(v
, OP_RealAffinity
, target
);
4789 }else if( pExpr
->y
.pTab
==0 ){
4790 /* This case happens when the argument to an aggregate function
4791 ** is rewritten by aggregateConvertIndexedExprRefToColumn() */
4792 sqlite3VdbeAddOp3(v
, OP_Column
, pExpr
->iTable
, pExpr
->iColumn
, target
);
4795 /* Otherwise, fall thru into the TK_COLUMN case */
4796 /* no break */ deliberate_fall_through
4799 int iTab
= pExpr
->iTable
;
4801 if( ExprHasProperty(pExpr
, EP_FixedCol
) ){
4802 /* This COLUMN expression is really a constant due to WHERE clause
4803 ** constraints, and that constant is coded by the pExpr->pLeft
4804 ** expression. However, make sure the constant has the correct
4805 ** datatype by applying the Affinity of the table column to the
4809 iReg
= sqlite3ExprCodeTarget(pParse
, pExpr
->pLeft
,target
);
4810 assert( ExprUseYTab(pExpr
) );
4811 assert( pExpr
->y
.pTab
!=0 );
4812 aff
= sqlite3TableColumnAffinity(pExpr
->y
.pTab
, pExpr
->iColumn
);
4813 if( aff
>SQLITE_AFF_BLOB
){
4814 static const char zAff
[] = "B\000C\000D\000E\000F";
4815 assert( SQLITE_AFF_BLOB
=='A' );
4816 assert( SQLITE_AFF_TEXT
=='B' );
4817 sqlite3VdbeAddOp4(v
, OP_Affinity
, iReg
, 1, 0,
4818 &zAff
[(aff
-'B')*2], P4_STATIC
);
4823 if( pParse
->iSelfTab
<0 ){
4824 /* Other columns in the same row for CHECK constraints or
4825 ** generated columns or for inserting into partial index.
4826 ** The row is unpacked into registers beginning at
4827 ** 0-(pParse->iSelfTab). The rowid (if any) is in a register
4828 ** immediately prior to the first column.
4833 int iCol
= pExpr
->iColumn
;
4834 assert( ExprUseYTab(pExpr
) );
4835 pTab
= pExpr
->y
.pTab
;
4837 assert( iCol
>=XN_ROWID
);
4838 assert( iCol
<pTab
->nCol
);
4840 return -1-pParse
->iSelfTab
;
4842 pCol
= pTab
->aCol
+ iCol
;
4843 testcase( iCol
!=sqlite3TableColumnToStorage(pTab
,iCol
) );
4844 iSrc
= sqlite3TableColumnToStorage(pTab
, iCol
) - pParse
->iSelfTab
;
4845 #ifndef SQLITE_OMIT_GENERATED_COLUMNS
4846 if( pCol
->colFlags
& COLFLAG_GENERATED
){
4847 if( pCol
->colFlags
& COLFLAG_BUSY
){
4848 sqlite3ErrorMsg(pParse
, "generated column loop on \"%s\"",
4852 pCol
->colFlags
|= COLFLAG_BUSY
;
4853 if( pCol
->colFlags
& COLFLAG_NOTAVAIL
){
4854 sqlite3ExprCodeGeneratedColumn(pParse
, pTab
, pCol
, iSrc
);
4856 pCol
->colFlags
&= ~(COLFLAG_BUSY
|COLFLAG_NOTAVAIL
);
4859 #endif /* SQLITE_OMIT_GENERATED_COLUMNS */
4860 if( pCol
->affinity
==SQLITE_AFF_REAL
){
4861 sqlite3VdbeAddOp2(v
, OP_SCopy
, iSrc
, target
);
4862 sqlite3VdbeAddOp1(v
, OP_RealAffinity
, target
);
4868 /* Coding an expression that is part of an index where column names
4869 ** in the index refer to the table to which the index belongs */
4870 iTab
= pParse
->iSelfTab
- 1;
4873 else if( pParse
->pIdxPartExpr
4874 && 0!=(r1
= exprPartidxExprLookup(pParse
, pExpr
, target
))
4878 assert( ExprUseYTab(pExpr
) );
4879 assert( pExpr
->y
.pTab
!=0 );
4880 iReg
= sqlite3ExprCodeGetColumn(pParse
, pExpr
->y
.pTab
,
4881 pExpr
->iColumn
, iTab
, target
,
4886 codeInteger(pParse
, pExpr
, 0, target
);
4889 case TK_TRUEFALSE
: {
4890 sqlite3VdbeAddOp2(v
, OP_Integer
, sqlite3ExprTruthValue(pExpr
), target
);
4893 #ifndef SQLITE_OMIT_FLOATING_POINT
4895 assert( !ExprHasProperty(pExpr
, EP_IntValue
) );
4896 codeReal(v
, pExpr
->u
.zToken
, 0, target
);
4901 assert( !ExprHasProperty(pExpr
, EP_IntValue
) );
4902 sqlite3VdbeLoadString(v
, target
, pExpr
->u
.zToken
);
4906 /* Make NULL the default case so that if a bug causes an illegal
4907 ** Expr node to be passed into this function, it will be handled
4908 ** sanely and not crash. But keep the assert() to bring the problem
4909 ** to the attention of the developers. */
4910 assert( op
==TK_NULL
|| op
==TK_ERROR
|| pParse
->db
->mallocFailed
);
4911 sqlite3VdbeAddOp2(v
, OP_Null
, 0, target
);
4914 #ifndef SQLITE_OMIT_BLOB_LITERAL
4919 assert( !ExprHasProperty(pExpr
, EP_IntValue
) );
4920 assert( pExpr
->u
.zToken
[0]=='x' || pExpr
->u
.zToken
[0]=='X' );
4921 assert( pExpr
->u
.zToken
[1]=='\'' );
4922 z
= &pExpr
->u
.zToken
[2];
4923 n
= sqlite3Strlen30(z
) - 1;
4924 assert( z
[n
]=='\'' );
4925 zBlob
= sqlite3HexToBlob(sqlite3VdbeDb(v
), z
, n
);
4926 sqlite3VdbeAddOp4(v
, OP_Blob
, n
/2, target
, 0, zBlob
, P4_DYNAMIC
);
4931 assert( !ExprHasProperty(pExpr
, EP_IntValue
) );
4932 assert( pExpr
->u
.zToken
!=0 );
4933 assert( pExpr
->u
.zToken
[0]!=0 );
4934 sqlite3VdbeAddOp2(v
, OP_Variable
, pExpr
->iColumn
, target
);
4938 return pExpr
->iTable
;
4940 #ifndef SQLITE_OMIT_CAST
4942 /* Expressions of the form: CAST(pLeft AS token) */
4943 sqlite3ExprCode(pParse
, pExpr
->pLeft
, target
);
4944 assert( inReg
==target
);
4945 assert( !ExprHasProperty(pExpr
, EP_IntValue
) );
4946 sqlite3VdbeAddOp2(v
, OP_Cast
, target
,
4947 sqlite3AffinityType(pExpr
->u
.zToken
, 0));
4950 #endif /* SQLITE_OMIT_CAST */
4953 op
= (op
==TK_IS
) ? TK_EQ
: TK_NE
;
4962 Expr
*pLeft
= pExpr
->pLeft
;
4963 if( sqlite3ExprIsVector(pLeft
) ){
4964 codeVectorCompare(pParse
, pExpr
, target
, op
, p5
);
4966 r1
= sqlite3ExprCodeTemp(pParse
, pLeft
, ®Free1
);
4967 r2
= sqlite3ExprCodeTemp(pParse
, pExpr
->pRight
, ®Free2
);
4968 sqlite3VdbeAddOp2(v
, OP_Integer
, 1, inReg
);
4969 codeCompare(pParse
, pLeft
, pExpr
->pRight
, op
, r1
, r2
,
4970 sqlite3VdbeCurrentAddr(v
)+2, p5
,
4971 ExprHasProperty(pExpr
,EP_Commuted
));
4972 assert(TK_LT
==OP_Lt
); testcase(op
==OP_Lt
); VdbeCoverageIf(v
,op
==OP_Lt
);
4973 assert(TK_LE
==OP_Le
); testcase(op
==OP_Le
); VdbeCoverageIf(v
,op
==OP_Le
);
4974 assert(TK_GT
==OP_Gt
); testcase(op
==OP_Gt
); VdbeCoverageIf(v
,op
==OP_Gt
);
4975 assert(TK_GE
==OP_Ge
); testcase(op
==OP_Ge
); VdbeCoverageIf(v
,op
==OP_Ge
);
4976 assert(TK_EQ
==OP_Eq
); testcase(op
==OP_Eq
); VdbeCoverageIf(v
,op
==OP_Eq
);
4977 assert(TK_NE
==OP_Ne
); testcase(op
==OP_Ne
); VdbeCoverageIf(v
,op
==OP_Ne
);
4978 if( p5
==SQLITE_NULLEQ
){
4979 sqlite3VdbeAddOp2(v
, OP_Integer
, 0, inReg
);
4981 sqlite3VdbeAddOp3(v
, OP_ZeroOrNull
, r1
, inReg
, r2
);
4983 testcase( regFree1
==0 );
4984 testcase( regFree2
==0 );
5000 assert( TK_AND
==OP_And
); testcase( op
==TK_AND
);
5001 assert( TK_OR
==OP_Or
); testcase( op
==TK_OR
);
5002 assert( TK_PLUS
==OP_Add
); testcase( op
==TK_PLUS
);
5003 assert( TK_MINUS
==OP_Subtract
); testcase( op
==TK_MINUS
);
5004 assert( TK_REM
==OP_Remainder
); testcase( op
==TK_REM
);
5005 assert( TK_BITAND
==OP_BitAnd
); testcase( op
==TK_BITAND
);
5006 assert( TK_BITOR
==OP_BitOr
); testcase( op
==TK_BITOR
);
5007 assert( TK_SLASH
==OP_Divide
); testcase( op
==TK_SLASH
);
5008 assert( TK_LSHIFT
==OP_ShiftLeft
); testcase( op
==TK_LSHIFT
);
5009 assert( TK_RSHIFT
==OP_ShiftRight
); testcase( op
==TK_RSHIFT
);
5010 assert( TK_CONCAT
==OP_Concat
); testcase( op
==TK_CONCAT
);
5011 r1
= sqlite3ExprCodeTemp(pParse
, pExpr
->pLeft
, ®Free1
);
5012 r2
= sqlite3ExprCodeTemp(pParse
, pExpr
->pRight
, ®Free2
);
5013 sqlite3VdbeAddOp3(v
, op
, r2
, r1
, target
);
5014 testcase( regFree1
==0 );
5015 testcase( regFree2
==0 );
5019 Expr
*pLeft
= pExpr
->pLeft
;
5021 if( pLeft
->op
==TK_INTEGER
){
5022 codeInteger(pParse
, pLeft
, 1, target
);
5024 #ifndef SQLITE_OMIT_FLOATING_POINT
5025 }else if( pLeft
->op
==TK_FLOAT
){
5026 assert( !ExprHasProperty(pExpr
, EP_IntValue
) );
5027 codeReal(v
, pLeft
->u
.zToken
, 1, target
);
5031 tempX
.op
= TK_INTEGER
;
5032 tempX
.flags
= EP_IntValue
|EP_TokenOnly
;
5034 ExprClearVVAProperties(&tempX
);
5035 r1
= sqlite3ExprCodeTemp(pParse
, &tempX
, ®Free1
);
5036 r2
= sqlite3ExprCodeTemp(pParse
, pExpr
->pLeft
, ®Free2
);
5037 sqlite3VdbeAddOp3(v
, OP_Subtract
, r2
, r1
, target
);
5038 testcase( regFree2
==0 );
5044 assert( TK_BITNOT
==OP_BitNot
); testcase( op
==TK_BITNOT
);
5045 assert( TK_NOT
==OP_Not
); testcase( op
==TK_NOT
);
5046 r1
= sqlite3ExprCodeTemp(pParse
, pExpr
->pLeft
, ®Free1
);
5047 testcase( regFree1
==0 );
5048 sqlite3VdbeAddOp2(v
, op
, r1
, inReg
);
5052 int isTrue
; /* IS TRUE or IS NOT TRUE */
5053 int bNormal
; /* IS TRUE or IS FALSE */
5054 r1
= sqlite3ExprCodeTemp(pParse
, pExpr
->pLeft
, ®Free1
);
5055 testcase( regFree1
==0 );
5056 isTrue
= sqlite3ExprTruthValue(pExpr
->pRight
);
5057 bNormal
= pExpr
->op2
==TK_IS
;
5058 testcase( isTrue
&& bNormal
);
5059 testcase( !isTrue
&& bNormal
);
5060 sqlite3VdbeAddOp4Int(v
, OP_IsTrue
, r1
, inReg
, !isTrue
, isTrue
^ bNormal
);
5066 assert( TK_ISNULL
==OP_IsNull
); testcase( op
==TK_ISNULL
);
5067 assert( TK_NOTNULL
==OP_NotNull
); testcase( op
==TK_NOTNULL
);
5068 sqlite3VdbeAddOp2(v
, OP_Integer
, 1, target
);
5069 r1
= sqlite3ExprCodeTemp(pParse
, pExpr
->pLeft
, ®Free1
);
5070 testcase( regFree1
==0 );
5071 addr
= sqlite3VdbeAddOp1(v
, op
, r1
);
5072 VdbeCoverageIf(v
, op
==TK_ISNULL
);
5073 VdbeCoverageIf(v
, op
==TK_NOTNULL
);
5074 sqlite3VdbeAddOp2(v
, OP_Integer
, 0, target
);
5075 sqlite3VdbeJumpHere(v
, addr
);
5078 case TK_AGG_FUNCTION
: {
5079 AggInfo
*pInfo
= pExpr
->pAggInfo
;
5081 || NEVER(pExpr
->iAgg
<0)
5082 || NEVER(pExpr
->iAgg
>=pInfo
->nFunc
)
5084 assert( !ExprHasProperty(pExpr
, EP_IntValue
) );
5085 sqlite3ErrorMsg(pParse
, "misuse of aggregate: %#T()", pExpr
);
5087 return AggInfoFuncReg(pInfo
, pExpr
->iAgg
);
5092 ExprList
*pFarg
; /* List of function arguments */
5093 int nFarg
; /* Number of function arguments */
5094 FuncDef
*pDef
; /* The function definition object */
5095 const char *zId
; /* The function name */
5096 u32 constMask
= 0; /* Mask of function arguments that are constant */
5097 int i
; /* Loop counter */
5098 sqlite3
*db
= pParse
->db
; /* The database connection */
5099 u8 enc
= ENC(db
); /* The text encoding used by this database */
5100 CollSeq
*pColl
= 0; /* A collating sequence */
5102 #ifndef SQLITE_OMIT_WINDOWFUNC
5103 if( ExprHasProperty(pExpr
, EP_WinFunc
) ){
5104 return pExpr
->y
.pWin
->regResult
;
5108 if( ConstFactorOk(pParse
)
5109 && sqlite3ExprIsConstantNotJoin(pParse
,pExpr
)
5111 /* SQL functions can be expensive. So try to avoid running them
5112 ** multiple times if we know they always give the same result */
5113 return sqlite3ExprCodeRunJustOnce(pParse
, pExpr
, -1);
5115 assert( !ExprHasProperty(pExpr
, EP_TokenOnly
) );
5116 assert( ExprUseXList(pExpr
) );
5117 pFarg
= pExpr
->x
.pList
;
5118 nFarg
= pFarg
? pFarg
->nExpr
: 0;
5119 assert( !ExprHasProperty(pExpr
, EP_IntValue
) );
5120 zId
= pExpr
->u
.zToken
;
5121 pDef
= sqlite3FindFunction(db
, zId
, nFarg
, enc
, 0);
5122 #ifdef SQLITE_ENABLE_UNKNOWN_SQL_FUNCTION
5123 if( pDef
==0 && pParse
->explain
){
5124 pDef
= sqlite3FindFunction(db
, "unknown", nFarg
, enc
, 0);
5127 if( pDef
==0 || pDef
->xFinalize
!=0 ){
5128 sqlite3ErrorMsg(pParse
, "unknown function: %#T()", pExpr
);
5131 if( (pDef
->funcFlags
& SQLITE_FUNC_INLINE
)!=0 && ALWAYS(pFarg
!=0) ){
5132 assert( (pDef
->funcFlags
& SQLITE_FUNC_UNSAFE
)==0 );
5133 assert( (pDef
->funcFlags
& SQLITE_FUNC_DIRECT
)==0 );
5134 return exprCodeInlineFunction(pParse
, pFarg
,
5135 SQLITE_PTR_TO_INT(pDef
->pUserData
), target
);
5136 }else if( pDef
->funcFlags
& (SQLITE_FUNC_DIRECT
|SQLITE_FUNC_UNSAFE
) ){
5137 sqlite3ExprFunctionUsable(pParse
, pExpr
, pDef
);
5140 for(i
=0; i
<nFarg
; i
++){
5141 if( i
<32 && sqlite3ExprIsConstant(pParse
, pFarg
->a
[i
].pExpr
) ){
5143 constMask
|= MASKBIT32(i
);
5145 if( (pDef
->funcFlags
& SQLITE_FUNC_NEEDCOLL
)!=0 && !pColl
){
5146 pColl
= sqlite3ExprCollSeq(pParse
, pFarg
->a
[i
].pExpr
);
5151 r1
= pParse
->nMem
+1;
5152 pParse
->nMem
+= nFarg
;
5154 r1
= sqlite3GetTempRange(pParse
, nFarg
);
5157 /* For length() and typeof() and octet_length() functions,
5158 ** set the P5 parameter to the OP_Column opcode to OPFLAG_LENGTHARG
5159 ** or OPFLAG_TYPEOFARG or OPFLAG_BYTELENARG respectively, to avoid
5160 ** unnecessary data loading.
5162 if( (pDef
->funcFlags
& (SQLITE_FUNC_LENGTH
|SQLITE_FUNC_TYPEOF
))!=0 ){
5165 assert( pFarg
->a
[0].pExpr
!=0 );
5166 exprOp
= pFarg
->a
[0].pExpr
->op
;
5167 if( exprOp
==TK_COLUMN
|| exprOp
==TK_AGG_COLUMN
){
5168 assert( SQLITE_FUNC_LENGTH
==OPFLAG_LENGTHARG
);
5169 assert( SQLITE_FUNC_TYPEOF
==OPFLAG_TYPEOFARG
);
5170 assert( SQLITE_FUNC_BYTELEN
==OPFLAG_BYTELENARG
);
5171 assert( (OPFLAG_LENGTHARG
|OPFLAG_TYPEOFARG
)==OPFLAG_BYTELENARG
);
5172 testcase( (pDef
->funcFlags
& OPFLAG_BYTELENARG
)==OPFLAG_LENGTHARG
);
5173 testcase( (pDef
->funcFlags
& OPFLAG_BYTELENARG
)==OPFLAG_TYPEOFARG
);
5174 testcase( (pDef
->funcFlags
& OPFLAG_BYTELENARG
)==OPFLAG_BYTELENARG
);
5175 pFarg
->a
[0].pExpr
->op2
= pDef
->funcFlags
& OPFLAG_BYTELENARG
;
5179 sqlite3ExprCodeExprList(pParse
, pFarg
, r1
, 0, SQLITE_ECEL_FACTOR
);
5183 #ifndef SQLITE_OMIT_VIRTUALTABLE
5184 /* Possibly overload the function if the first argument is
5185 ** a virtual table column.
5187 ** For infix functions (LIKE, GLOB, REGEXP, and MATCH) use the
5188 ** second argument, not the first, as the argument to test to
5189 ** see if it is a column in a virtual table. This is done because
5190 ** the left operand of infix functions (the operand we want to
5191 ** control overloading) ends up as the second argument to the
5192 ** function. The expression "A glob B" is equivalent to
5193 ** "glob(B,A). We want to use the A in "A glob B" to test
5194 ** for function overloading. But we use the B term in "glob(B,A)".
5196 if( nFarg
>=2 && ExprHasProperty(pExpr
, EP_InfixFunc
) ){
5197 pDef
= sqlite3VtabOverloadFunction(db
, pDef
, nFarg
, pFarg
->a
[1].pExpr
);
5198 }else if( nFarg
>0 ){
5199 pDef
= sqlite3VtabOverloadFunction(db
, pDef
, nFarg
, pFarg
->a
[0].pExpr
);
5202 if( pDef
->funcFlags
& SQLITE_FUNC_NEEDCOLL
){
5203 if( !pColl
) pColl
= db
->pDfltColl
;
5204 sqlite3VdbeAddOp4(v
, OP_CollSeq
, 0, 0, 0, (char *)pColl
, P4_COLLSEQ
);
5206 sqlite3VdbeAddFunctionCall(pParse
, constMask
, r1
, target
, nFarg
,
5210 sqlite3ReleaseTempRange(pParse
, r1
, nFarg
);
5212 sqlite3VdbeReleaseRegisters(pParse
, r1
, nFarg
, constMask
, 1);
5217 #ifndef SQLITE_OMIT_SUBQUERY
5221 testcase( op
==TK_EXISTS
);
5222 testcase( op
==TK_SELECT
);
5223 if( pParse
->db
->mallocFailed
){
5225 }else if( op
==TK_SELECT
5226 && ALWAYS( ExprUseXSelect(pExpr
) )
5227 && (nCol
= pExpr
->x
.pSelect
->pEList
->nExpr
)!=1
5229 sqlite3SubselectError(pParse
, nCol
, 1);
5231 return sqlite3CodeSubselect(pParse
, pExpr
);
5235 case TK_SELECT_COLUMN
: {
5237 Expr
*pLeft
= pExpr
->pLeft
;
5238 if( pLeft
->iTable
==0 || pParse
->withinRJSubrtn
> pLeft
->op2
){
5239 pLeft
->iTable
= sqlite3CodeSubselect(pParse
, pLeft
);
5240 pLeft
->op2
= pParse
->withinRJSubrtn
;
5242 assert( pLeft
->op
==TK_SELECT
|| pLeft
->op
==TK_ERROR
);
5243 n
= sqlite3ExprVectorSize(pLeft
);
5244 if( pExpr
->iTable
!=n
){
5245 sqlite3ErrorMsg(pParse
, "%d columns assigned %d values",
5248 return pLeft
->iTable
+ pExpr
->iColumn
;
5251 int destIfFalse
= sqlite3VdbeMakeLabel(pParse
);
5252 int destIfNull
= sqlite3VdbeMakeLabel(pParse
);
5253 sqlite3VdbeAddOp2(v
, OP_Null
, 0, target
);
5254 sqlite3ExprCodeIN(pParse
, pExpr
, destIfFalse
, destIfNull
);
5255 sqlite3VdbeAddOp2(v
, OP_Integer
, 1, target
);
5256 sqlite3VdbeResolveLabel(v
, destIfFalse
);
5257 sqlite3VdbeAddOp2(v
, OP_AddImm
, target
, 0);
5258 sqlite3VdbeResolveLabel(v
, destIfNull
);
5261 #endif /* SQLITE_OMIT_SUBQUERY */
5265 ** x BETWEEN y AND z
5267 ** This is equivalent to
5271 ** X is stored in pExpr->pLeft.
5272 ** Y is stored in pExpr->pList->a[0].pExpr.
5273 ** Z is stored in pExpr->pList->a[1].pExpr.
5276 exprCodeBetween(pParse
, pExpr
, target
, 0, 0);
5280 if( !ExprHasProperty(pExpr
, EP_Collate
) ){
5281 /* A TK_COLLATE Expr node without the EP_Collate tag is a so-called
5282 ** "SOFT-COLLATE" that is added to constraints that are pushed down
5283 ** from outer queries into sub-queries by the WHERE-clause push-down
5284 ** optimization. Clear subtypes as subtypes may not cross a subquery
5287 assert( pExpr
->pLeft
);
5288 sqlite3ExprCode(pParse
, pExpr
->pLeft
, target
);
5289 sqlite3VdbeAddOp1(v
, OP_ClrSubtype
, target
);
5292 pExpr
= pExpr
->pLeft
;
5293 goto expr_code_doover
; /* 2018-04-28: Prevent deep recursion. */
5298 pExpr
= pExpr
->pLeft
;
5299 goto expr_code_doover
; /* 2018-04-28: Prevent deep recursion. OSSFuzz. */
5303 /* If the opcode is TK_TRIGGER, then the expression is a reference
5304 ** to a column in the new.* or old.* pseudo-tables available to
5305 ** trigger programs. In this case Expr.iTable is set to 1 for the
5306 ** new.* pseudo-table, or 0 for the old.* pseudo-table. Expr.iColumn
5307 ** is set to the column of the pseudo-table to read, or to -1 to
5308 ** read the rowid field.
5310 ** The expression is implemented using an OP_Param opcode. The p1
5311 ** parameter is set to 0 for an old.rowid reference, or to (i+1)
5312 ** to reference another column of the old.* pseudo-table, where
5313 ** i is the index of the column. For a new.rowid reference, p1 is
5314 ** set to (n+1), where n is the number of columns in each pseudo-table.
5315 ** For a reference to any other column in the new.* pseudo-table, p1
5316 ** is set to (n+2+i), where n and i are as defined previously. For
5317 ** example, if the table on which triggers are being fired is
5320 ** CREATE TABLE t1(a, b);
5322 ** Then p1 is interpreted as follows:
5324 ** p1==0 -> old.rowid p1==3 -> new.rowid
5325 ** p1==1 -> old.a p1==4 -> new.a
5326 ** p1==2 -> old.b p1==5 -> new.b
5332 assert( ExprUseYTab(pExpr
) );
5333 pTab
= pExpr
->y
.pTab
;
5334 iCol
= pExpr
->iColumn
;
5335 p1
= pExpr
->iTable
* (pTab
->nCol
+1) + 1
5336 + sqlite3TableColumnToStorage(pTab
, iCol
);
5338 assert( pExpr
->iTable
==0 || pExpr
->iTable
==1 );
5339 assert( iCol
>=-1 && iCol
<pTab
->nCol
);
5340 assert( pTab
->iPKey
<0 || iCol
!=pTab
->iPKey
);
5341 assert( p1
>=0 && p1
<(pTab
->nCol
*2+2) );
5343 sqlite3VdbeAddOp2(v
, OP_Param
, p1
, target
);
5344 VdbeComment((v
, "r[%d]=%s.%s", target
,
5345 (pExpr
->iTable
? "new" : "old"),
5346 (pExpr
->iColumn
<0 ? "rowid" : pExpr
->y
.pTab
->aCol
[iCol
].zCnName
)
5349 #ifndef SQLITE_OMIT_FLOATING_POINT
5350 /* If the column has REAL affinity, it may currently be stored as an
5351 ** integer. Use OP_RealAffinity to make sure it is really real.
5353 ** EVIDENCE-OF: R-60985-57662 SQLite will convert the value back to
5354 ** floating point when extracting it from the record. */
5355 if( iCol
>=0 && pTab
->aCol
[iCol
].affinity
==SQLITE_AFF_REAL
){
5356 sqlite3VdbeAddOp1(v
, OP_RealAffinity
, target
);
5363 sqlite3ErrorMsg(pParse
, "row value misused");
5367 /* TK_IF_NULL_ROW Expr nodes are inserted ahead of expressions
5368 ** that derive from the right-hand table of a LEFT JOIN. The
5369 ** Expr.iTable value is the table number for the right-hand table.
5370 ** The expression is only evaluated if that table is not currently
5371 ** on a LEFT JOIN NULL row.
5373 case TK_IF_NULL_ROW
: {
5375 u8 okConstFactor
= pParse
->okConstFactor
;
5376 AggInfo
*pAggInfo
= pExpr
->pAggInfo
;
5378 assert( pExpr
->iAgg
>=0 && pExpr
->iAgg
<pAggInfo
->nColumn
);
5379 if( !pAggInfo
->directMode
){
5380 inReg
= AggInfoColumnReg(pAggInfo
, pExpr
->iAgg
);
5383 if( pExpr
->pAggInfo
->useSortingIdx
){
5384 sqlite3VdbeAddOp3(v
, OP_Column
, pAggInfo
->sortingIdxPTab
,
5385 pAggInfo
->aCol
[pExpr
->iAgg
].iSorterColumn
,
5391 addrINR
= sqlite3VdbeAddOp3(v
, OP_IfNullRow
, pExpr
->iTable
, 0, target
);
5392 /* The OP_IfNullRow opcode above can overwrite the result register with
5393 ** NULL. So we have to ensure that the result register is not a value
5394 ** that is suppose to be a constant. Two defenses are needed:
5395 ** (1) Temporarily disable factoring of constant expressions
5396 ** (2) Make sure the computed value really is stored in register
5397 ** "target" and not someplace else.
5399 pParse
->okConstFactor
= 0; /* note (1) above */
5400 sqlite3ExprCode(pParse
, pExpr
->pLeft
, target
);
5401 assert( target
==inReg
);
5402 pParse
->okConstFactor
= okConstFactor
;
5403 sqlite3VdbeJumpHere(v
, addrINR
);
5409 ** CASE x WHEN e1 THEN r1 WHEN e2 THEN r2 ... WHEN eN THEN rN ELSE y END
5412 ** CASE WHEN e1 THEN r1 WHEN e2 THEN r2 ... WHEN eN THEN rN ELSE y END
5414 ** Form A is can be transformed into the equivalent form B as follows:
5415 ** CASE WHEN x=e1 THEN r1 WHEN x=e2 THEN r2 ...
5416 ** WHEN x=eN THEN rN ELSE y END
5418 ** X (if it exists) is in pExpr->pLeft.
5419 ** Y is in the last element of pExpr->x.pList if pExpr->x.pList->nExpr is
5420 ** odd. The Y is also optional. If the number of elements in x.pList
5421 ** is even, then Y is omitted and the "otherwise" result is NULL.
5422 ** Ei is in pExpr->pList->a[i*2] and Ri is pExpr->pList->a[i*2+1].
5424 ** The result of the expression is the Ri for the first matching Ei,
5425 ** or if there is no matching Ei, the ELSE term Y, or if there is
5426 ** no ELSE term, NULL.
5429 int endLabel
; /* GOTO label for end of CASE stmt */
5430 int nextCase
; /* GOTO label for next WHEN clause */
5431 int nExpr
; /* 2x number of WHEN terms */
5432 int i
; /* Loop counter */
5433 ExprList
*pEList
; /* List of WHEN terms */
5434 struct ExprList_item
*aListelem
; /* Array of WHEN terms */
5435 Expr opCompare
; /* The X==Ei expression */
5436 Expr
*pX
; /* The X expression */
5437 Expr
*pTest
= 0; /* X==Ei (form A) or just Ei (form B) */
5439 sqlite3
*db
= pParse
->db
;
5441 assert( ExprUseXList(pExpr
) && pExpr
->x
.pList
!=0 );
5442 assert(pExpr
->x
.pList
->nExpr
> 0);
5443 pEList
= pExpr
->x
.pList
;
5444 aListelem
= pEList
->a
;
5445 nExpr
= pEList
->nExpr
;
5446 endLabel
= sqlite3VdbeMakeLabel(pParse
);
5447 if( (pX
= pExpr
->pLeft
)!=0 ){
5448 pDel
= sqlite3ExprDup(db
, pX
, 0);
5449 if( db
->mallocFailed
){
5450 sqlite3ExprDelete(db
, pDel
);
5453 testcase( pX
->op
==TK_COLUMN
);
5454 sqlite3ExprToRegister(pDel
, exprCodeVector(pParse
, pDel
, ®Free1
));
5455 testcase( regFree1
==0 );
5456 memset(&opCompare
, 0, sizeof(opCompare
));
5457 opCompare
.op
= TK_EQ
;
5458 opCompare
.pLeft
= pDel
;
5460 /* Ticket b351d95f9cd5ef17e9d9dbae18f5ca8611190001:
5461 ** The value in regFree1 might get SCopy-ed into the file result.
5462 ** So make sure that the regFree1 register is not reused for other
5463 ** purposes and possibly overwritten. */
5466 for(i
=0; i
<nExpr
-1; i
=i
+2){
5469 opCompare
.pRight
= aListelem
[i
].pExpr
;
5471 pTest
= aListelem
[i
].pExpr
;
5473 nextCase
= sqlite3VdbeMakeLabel(pParse
);
5474 testcase( pTest
->op
==TK_COLUMN
);
5475 sqlite3ExprIfFalse(pParse
, pTest
, nextCase
, SQLITE_JUMPIFNULL
);
5476 testcase( aListelem
[i
+1].pExpr
->op
==TK_COLUMN
);
5477 sqlite3ExprCode(pParse
, aListelem
[i
+1].pExpr
, target
);
5478 sqlite3VdbeGoto(v
, endLabel
);
5479 sqlite3VdbeResolveLabel(v
, nextCase
);
5482 sqlite3ExprCode(pParse
, pEList
->a
[nExpr
-1].pExpr
, target
);
5484 sqlite3VdbeAddOp2(v
, OP_Null
, 0, target
);
5486 sqlite3ExprDelete(db
, pDel
);
5487 setDoNotMergeFlagOnCopy(v
);
5488 sqlite3VdbeResolveLabel(v
, endLabel
);
5491 #ifndef SQLITE_OMIT_TRIGGER
5493 assert( pExpr
->affExpr
==OE_Rollback
5494 || pExpr
->affExpr
==OE_Abort
5495 || pExpr
->affExpr
==OE_Fail
5496 || pExpr
->affExpr
==OE_Ignore
5498 if( !pParse
->pTriggerTab
&& !pParse
->nested
){
5499 sqlite3ErrorMsg(pParse
,
5500 "RAISE() may only be used within a trigger-program");
5503 if( pExpr
->affExpr
==OE_Abort
){
5504 sqlite3MayAbort(pParse
);
5506 assert( !ExprHasProperty(pExpr
, EP_IntValue
) );
5507 if( pExpr
->affExpr
==OE_Ignore
){
5508 sqlite3VdbeAddOp2(v
, OP_Halt
, SQLITE_OK
, OE_Ignore
);
5511 r1
= sqlite3ExprCodeTemp(pParse
, pExpr
->pLeft
, ®Free1
);
5512 sqlite3VdbeAddOp3(v
, OP_Halt
,
5513 pParse
->pTriggerTab
? SQLITE_CONSTRAINT_TRIGGER
: SQLITE_ERROR
,
5514 pExpr
->affExpr
, r1
);
5520 sqlite3ReleaseTempReg(pParse
, regFree1
);
5521 sqlite3ReleaseTempReg(pParse
, regFree2
);
5526 ** Generate code that will evaluate expression pExpr just one time
5527 ** per prepared statement execution.
5529 ** If the expression uses functions (that might throw an exception) then
5530 ** guard them with an OP_Once opcode to ensure that the code is only executed
5531 ** once. If no functions are involved, then factor the code out and put it at
5532 ** the end of the prepared statement in the initialization section.
5534 ** If regDest>0 then the result is always stored in that register and the
5535 ** result is not reusable. If regDest<0 then this routine is free to
5536 ** store the value wherever it wants. The register where the expression
5537 ** is stored is returned. When regDest<0, two identical expressions might
5538 ** code to the same register, if they do not contain function calls and hence
5539 ** are factored out into the initialization section at the end of the
5540 ** prepared statement.
5542 int sqlite3ExprCodeRunJustOnce(
5543 Parse
*pParse
, /* Parsing context */
5544 Expr
*pExpr
, /* The expression to code when the VDBE initializes */
5545 int regDest
/* Store the value in this register */
5548 assert( ConstFactorOk(pParse
) );
5549 assert( regDest
!=0 );
5550 p
= pParse
->pConstExpr
;
5551 if( regDest
<0 && p
){
5552 struct ExprList_item
*pItem
;
5554 for(pItem
=p
->a
, i
=p
->nExpr
; i
>0; pItem
++, i
--){
5555 if( pItem
->fg
.reusable
5556 && sqlite3ExprCompare(0,pItem
->pExpr
,pExpr
,-1)==0
5558 return pItem
->u
.iConstExprReg
;
5562 pExpr
= sqlite3ExprDup(pParse
->db
, pExpr
, 0);
5563 if( pExpr
!=0 && ExprHasProperty(pExpr
, EP_HasFunc
) ){
5564 Vdbe
*v
= pParse
->pVdbe
;
5567 addr
= sqlite3VdbeAddOp0(v
, OP_Once
); VdbeCoverage(v
);
5568 pParse
->okConstFactor
= 0;
5569 if( !pParse
->db
->mallocFailed
){
5570 if( regDest
<0 ) regDest
= ++pParse
->nMem
;
5571 sqlite3ExprCode(pParse
, pExpr
, regDest
);
5573 pParse
->okConstFactor
= 1;
5574 sqlite3ExprDelete(pParse
->db
, pExpr
);
5575 sqlite3VdbeJumpHere(v
, addr
);
5577 p
= sqlite3ExprListAppend(pParse
, p
, pExpr
);
5579 struct ExprList_item
*pItem
= &p
->a
[p
->nExpr
-1];
5580 pItem
->fg
.reusable
= regDest
<0;
5581 if( regDest
<0 ) regDest
= ++pParse
->nMem
;
5582 pItem
->u
.iConstExprReg
= regDest
;
5584 pParse
->pConstExpr
= p
;
5590 ** Generate code to evaluate an expression and store the results
5591 ** into a register. Return the register number where the results
5594 ** If the register is a temporary register that can be deallocated,
5595 ** then write its number into *pReg. If the result register is not
5596 ** a temporary, then set *pReg to zero.
5598 ** If pExpr is a constant, then this routine might generate this
5599 ** code to fill the register in the initialization section of the
5600 ** VDBE program, in order to factor it out of the evaluation loop.
5602 int sqlite3ExprCodeTemp(Parse
*pParse
, Expr
*pExpr
, int *pReg
){
5604 pExpr
= sqlite3ExprSkipCollateAndLikely(pExpr
);
5605 if( ConstFactorOk(pParse
)
5607 && pExpr
->op
!=TK_REGISTER
5608 && sqlite3ExprIsConstantNotJoin(pParse
, pExpr
)
5611 r2
= sqlite3ExprCodeRunJustOnce(pParse
, pExpr
, -1);
5613 int r1
= sqlite3GetTempReg(pParse
);
5614 r2
= sqlite3ExprCodeTarget(pParse
, pExpr
, r1
);
5618 sqlite3ReleaseTempReg(pParse
, r1
);
5626 ** Generate code that will evaluate expression pExpr and store the
5627 ** results in register target. The results are guaranteed to appear
5628 ** in register target.
5630 void sqlite3ExprCode(Parse
*pParse
, Expr
*pExpr
, int target
){
5633 assert( pExpr
==0 || !ExprHasVVAProperty(pExpr
,EP_Immutable
) );
5634 assert( target
>0 && target
<=pParse
->nMem
);
5635 assert( pParse
->pVdbe
!=0 || pParse
->db
->mallocFailed
);
5636 if( pParse
->pVdbe
==0 ) return;
5637 inReg
= sqlite3ExprCodeTarget(pParse
, pExpr
, target
);
5638 if( inReg
!=target
){
5640 Expr
*pX
= sqlite3ExprSkipCollateAndLikely(pExpr
);
5641 testcase( pX
!=pExpr
);
5643 && (ExprHasProperty(pX
,EP_Subquery
) || pX
->op
==TK_REGISTER
)
5649 sqlite3VdbeAddOp2(pParse
->pVdbe
, op
, inReg
, target
);
5654 ** Make a transient copy of expression pExpr and then code it using
5655 ** sqlite3ExprCode(). This routine works just like sqlite3ExprCode()
5656 ** except that the input expression is guaranteed to be unchanged.
5658 void sqlite3ExprCodeCopy(Parse
*pParse
, Expr
*pExpr
, int target
){
5659 sqlite3
*db
= pParse
->db
;
5660 pExpr
= sqlite3ExprDup(db
, pExpr
, 0);
5661 if( !db
->mallocFailed
) sqlite3ExprCode(pParse
, pExpr
, target
);
5662 sqlite3ExprDelete(db
, pExpr
);
5666 ** Generate code that will evaluate expression pExpr and store the
5667 ** results in register target. The results are guaranteed to appear
5668 ** in register target. If the expression is constant, then this routine
5669 ** might choose to code the expression at initialization time.
5671 void sqlite3ExprCodeFactorable(Parse
*pParse
, Expr
*pExpr
, int target
){
5672 if( pParse
->okConstFactor
&& sqlite3ExprIsConstantNotJoin(pParse
,pExpr
) ){
5673 sqlite3ExprCodeRunJustOnce(pParse
, pExpr
, target
);
5675 sqlite3ExprCodeCopy(pParse
, pExpr
, target
);
5680 ** Generate code that pushes the value of every element of the given
5681 ** expression list into a sequence of registers beginning at target.
5683 ** Return the number of elements evaluated. The number returned will
5684 ** usually be pList->nExpr but might be reduced if SQLITE_ECEL_OMITREF
5687 ** The SQLITE_ECEL_DUP flag prevents the arguments from being
5688 ** filled using OP_SCopy. OP_Copy must be used instead.
5690 ** The SQLITE_ECEL_FACTOR argument allows constant arguments to be
5691 ** factored out into initialization code.
5693 ** The SQLITE_ECEL_REF flag means that expressions in the list with
5694 ** ExprList.a[].u.x.iOrderByCol>0 have already been evaluated and stored
5695 ** in registers at srcReg, and so the value can be copied from there.
5696 ** If SQLITE_ECEL_OMITREF is also set, then the values with u.x.iOrderByCol>0
5697 ** are simply omitted rather than being copied from srcReg.
5699 int sqlite3ExprCodeExprList(
5700 Parse
*pParse
, /* Parsing context */
5701 ExprList
*pList
, /* The expression list to be coded */
5702 int target
, /* Where to write results */
5703 int srcReg
, /* Source registers if SQLITE_ECEL_REF */
5704 u8 flags
/* SQLITE_ECEL_* flags */
5706 struct ExprList_item
*pItem
;
5708 u8 copyOp
= (flags
& SQLITE_ECEL_DUP
) ? OP_Copy
: OP_SCopy
;
5709 Vdbe
*v
= pParse
->pVdbe
;
5712 assert( pParse
->pVdbe
!=0 ); /* Never gets this far otherwise */
5714 if( !ConstFactorOk(pParse
) ) flags
&= ~SQLITE_ECEL_FACTOR
;
5715 for(pItem
=pList
->a
, i
=0; i
<n
; i
++, pItem
++){
5716 Expr
*pExpr
= pItem
->pExpr
;
5717 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
5718 if( pItem
->fg
.bSorterRef
){
5723 if( (flags
& SQLITE_ECEL_REF
)!=0 && (j
= pItem
->u
.x
.iOrderByCol
)>0 ){
5724 if( flags
& SQLITE_ECEL_OMITREF
){
5728 sqlite3VdbeAddOp2(v
, copyOp
, j
+srcReg
-1, target
+i
);
5730 }else if( (flags
& SQLITE_ECEL_FACTOR
)!=0
5731 && sqlite3ExprIsConstantNotJoin(pParse
,pExpr
)
5733 sqlite3ExprCodeRunJustOnce(pParse
, pExpr
, target
+i
);
5735 int inReg
= sqlite3ExprCodeTarget(pParse
, pExpr
, target
+i
);
5736 if( inReg
!=target
+i
){
5739 && (pOp
=sqlite3VdbeGetLastOp(v
))->opcode
==OP_Copy
5740 && pOp
->p1
+pOp
->p3
+1==inReg
5741 && pOp
->p2
+pOp
->p3
+1==target
+i
5742 && pOp
->p5
==0 /* The do-not-merge flag must be clear */
5746 sqlite3VdbeAddOp2(v
, copyOp
, inReg
, target
+i
);
5755 ** Generate code for a BETWEEN operator.
5757 ** x BETWEEN y AND z
5759 ** The above is equivalent to
5763 ** Code it as such, taking care to do the common subexpression
5764 ** elimination of x.
5766 ** The xJumpIf parameter determines details:
5768 ** NULL: Store the boolean result in reg[dest]
5769 ** sqlite3ExprIfTrue: Jump to dest if true
5770 ** sqlite3ExprIfFalse: Jump to dest if false
5772 ** The jumpIfNull parameter is ignored if xJumpIf is NULL.
5774 static void exprCodeBetween(
5775 Parse
*pParse
, /* Parsing and code generating context */
5776 Expr
*pExpr
, /* The BETWEEN expression */
5777 int dest
, /* Jump destination or storage location */
5778 void (*xJump
)(Parse
*,Expr
*,int,int), /* Action to take */
5779 int jumpIfNull
/* Take the jump if the BETWEEN is NULL */
5781 Expr exprAnd
; /* The AND operator in x>=y AND x<=z */
5782 Expr compLeft
; /* The x>=y term */
5783 Expr compRight
; /* The x<=z term */
5784 int regFree1
= 0; /* Temporary use register */
5786 sqlite3
*db
= pParse
->db
;
5788 memset(&compLeft
, 0, sizeof(Expr
));
5789 memset(&compRight
, 0, sizeof(Expr
));
5790 memset(&exprAnd
, 0, sizeof(Expr
));
5792 assert( ExprUseXList(pExpr
) );
5793 pDel
= sqlite3ExprDup(db
, pExpr
->pLeft
, 0);
5794 if( db
->mallocFailed
==0 ){
5795 exprAnd
.op
= TK_AND
;
5796 exprAnd
.pLeft
= &compLeft
;
5797 exprAnd
.pRight
= &compRight
;
5798 compLeft
.op
= TK_GE
;
5799 compLeft
.pLeft
= pDel
;
5800 compLeft
.pRight
= pExpr
->x
.pList
->a
[0].pExpr
;
5801 compRight
.op
= TK_LE
;
5802 compRight
.pLeft
= pDel
;
5803 compRight
.pRight
= pExpr
->x
.pList
->a
[1].pExpr
;
5804 sqlite3ExprToRegister(pDel
, exprCodeVector(pParse
, pDel
, ®Free1
));
5806 xJump(pParse
, &exprAnd
, dest
, jumpIfNull
);
5808 /* Mark the expression is being from the ON or USING clause of a join
5809 ** so that the sqlite3ExprCodeTarget() routine will not attempt to move
5810 ** it into the Parse.pConstExpr list. We should use a new bit for this,
5811 ** for clarity, but we are out of bits in the Expr.flags field so we
5812 ** have to reuse the EP_OuterON bit. Bummer. */
5813 pDel
->flags
|= EP_OuterON
;
5814 sqlite3ExprCodeTarget(pParse
, &exprAnd
, dest
);
5816 sqlite3ReleaseTempReg(pParse
, regFree1
);
5818 sqlite3ExprDelete(db
, pDel
);
5820 /* Ensure adequate test coverage */
5821 testcase( xJump
==sqlite3ExprIfTrue
&& jumpIfNull
==0 && regFree1
==0 );
5822 testcase( xJump
==sqlite3ExprIfTrue
&& jumpIfNull
==0 && regFree1
!=0 );
5823 testcase( xJump
==sqlite3ExprIfTrue
&& jumpIfNull
!=0 && regFree1
==0 );
5824 testcase( xJump
==sqlite3ExprIfTrue
&& jumpIfNull
!=0 && regFree1
!=0 );
5825 testcase( xJump
==sqlite3ExprIfFalse
&& jumpIfNull
==0 && regFree1
==0 );
5826 testcase( xJump
==sqlite3ExprIfFalse
&& jumpIfNull
==0 && regFree1
!=0 );
5827 testcase( xJump
==sqlite3ExprIfFalse
&& jumpIfNull
!=0 && regFree1
==0 );
5828 testcase( xJump
==sqlite3ExprIfFalse
&& jumpIfNull
!=0 && regFree1
!=0 );
5829 testcase( xJump
==0 );
5833 ** Generate code for a boolean expression such that a jump is made
5834 ** to the label "dest" if the expression is true but execution
5835 ** continues straight thru if the expression is false.
5837 ** If the expression evaluates to NULL (neither true nor false), then
5838 ** take the jump if the jumpIfNull flag is SQLITE_JUMPIFNULL.
5840 ** This code depends on the fact that certain token values (ex: TK_EQ)
5841 ** are the same as opcode values (ex: OP_Eq) that implement the corresponding
5842 ** operation. Special comments in vdbe.c and the mkopcodeh.awk script in
5843 ** the make process cause these values to align. Assert()s in the code
5844 ** below verify that the numbers are aligned correctly.
5846 void sqlite3ExprIfTrue(Parse
*pParse
, Expr
*pExpr
, int dest
, int jumpIfNull
){
5847 Vdbe
*v
= pParse
->pVdbe
;
5853 assert( jumpIfNull
==SQLITE_JUMPIFNULL
|| jumpIfNull
==0 );
5854 if( NEVER(v
==0) ) return; /* Existence of VDBE checked by caller */
5855 if( NEVER(pExpr
==0) ) return; /* No way this can happen */
5856 assert( !ExprHasVVAProperty(pExpr
, EP_Immutable
) );
5861 Expr
*pAlt
= sqlite3ExprSimplifiedAndOr(pExpr
);
5863 sqlite3ExprIfTrue(pParse
, pAlt
, dest
, jumpIfNull
);
5864 }else if( op
==TK_AND
){
5865 int d2
= sqlite3VdbeMakeLabel(pParse
);
5866 testcase( jumpIfNull
==0 );
5867 sqlite3ExprIfFalse(pParse
, pExpr
->pLeft
, d2
,
5868 jumpIfNull
^SQLITE_JUMPIFNULL
);
5869 sqlite3ExprIfTrue(pParse
, pExpr
->pRight
, dest
, jumpIfNull
);
5870 sqlite3VdbeResolveLabel(v
, d2
);
5872 testcase( jumpIfNull
==0 );
5873 sqlite3ExprIfTrue(pParse
, pExpr
->pLeft
, dest
, jumpIfNull
);
5874 sqlite3ExprIfTrue(pParse
, pExpr
->pRight
, dest
, jumpIfNull
);
5879 testcase( jumpIfNull
==0 );
5880 sqlite3ExprIfFalse(pParse
, pExpr
->pLeft
, dest
, jumpIfNull
);
5884 int isNot
; /* IS NOT TRUE or IS NOT FALSE */
5885 int isTrue
; /* IS TRUE or IS NOT TRUE */
5886 testcase( jumpIfNull
==0 );
5887 isNot
= pExpr
->op2
==TK_ISNOT
;
5888 isTrue
= sqlite3ExprTruthValue(pExpr
->pRight
);
5889 testcase( isTrue
&& isNot
);
5890 testcase( !isTrue
&& isNot
);
5891 if( isTrue
^ isNot
){
5892 sqlite3ExprIfTrue(pParse
, pExpr
->pLeft
, dest
,
5893 isNot
? SQLITE_JUMPIFNULL
: 0);
5895 sqlite3ExprIfFalse(pParse
, pExpr
->pLeft
, dest
,
5896 isNot
? SQLITE_JUMPIFNULL
: 0);
5902 testcase( op
==TK_IS
);
5903 testcase( op
==TK_ISNOT
);
5904 op
= (op
==TK_IS
) ? TK_EQ
: TK_NE
;
5905 jumpIfNull
= SQLITE_NULLEQ
;
5906 /* no break */ deliberate_fall_through
5913 if( sqlite3ExprIsVector(pExpr
->pLeft
) ) goto default_expr
;
5914 testcase( jumpIfNull
==0 );
5915 r1
= sqlite3ExprCodeTemp(pParse
, pExpr
->pLeft
, ®Free1
);
5916 r2
= sqlite3ExprCodeTemp(pParse
, pExpr
->pRight
, ®Free2
);
5917 codeCompare(pParse
, pExpr
->pLeft
, pExpr
->pRight
, op
,
5918 r1
, r2
, dest
, jumpIfNull
, ExprHasProperty(pExpr
,EP_Commuted
));
5919 assert(TK_LT
==OP_Lt
); testcase(op
==OP_Lt
); VdbeCoverageIf(v
,op
==OP_Lt
);
5920 assert(TK_LE
==OP_Le
); testcase(op
==OP_Le
); VdbeCoverageIf(v
,op
==OP_Le
);
5921 assert(TK_GT
==OP_Gt
); testcase(op
==OP_Gt
); VdbeCoverageIf(v
,op
==OP_Gt
);
5922 assert(TK_GE
==OP_Ge
); testcase(op
==OP_Ge
); VdbeCoverageIf(v
,op
==OP_Ge
);
5923 assert(TK_EQ
==OP_Eq
); testcase(op
==OP_Eq
);
5924 VdbeCoverageIf(v
, op
==OP_Eq
&& jumpIfNull
==SQLITE_NULLEQ
);
5925 VdbeCoverageIf(v
, op
==OP_Eq
&& jumpIfNull
!=SQLITE_NULLEQ
);
5926 assert(TK_NE
==OP_Ne
); testcase(op
==OP_Ne
);
5927 VdbeCoverageIf(v
, op
==OP_Ne
&& jumpIfNull
==SQLITE_NULLEQ
);
5928 VdbeCoverageIf(v
, op
==OP_Ne
&& jumpIfNull
!=SQLITE_NULLEQ
);
5929 testcase( regFree1
==0 );
5930 testcase( regFree2
==0 );
5935 assert( TK_ISNULL
==OP_IsNull
); testcase( op
==TK_ISNULL
);
5936 assert( TK_NOTNULL
==OP_NotNull
); testcase( op
==TK_NOTNULL
);
5937 r1
= sqlite3ExprCodeTemp(pParse
, pExpr
->pLeft
, ®Free1
);
5938 sqlite3VdbeTypeofColumn(v
, r1
);
5939 sqlite3VdbeAddOp2(v
, op
, r1
, dest
);
5940 VdbeCoverageIf(v
, op
==TK_ISNULL
);
5941 VdbeCoverageIf(v
, op
==TK_NOTNULL
);
5942 testcase( regFree1
==0 );
5946 testcase( jumpIfNull
==0 );
5947 exprCodeBetween(pParse
, pExpr
, dest
, sqlite3ExprIfTrue
, jumpIfNull
);
5950 #ifndef SQLITE_OMIT_SUBQUERY
5952 int destIfFalse
= sqlite3VdbeMakeLabel(pParse
);
5953 int destIfNull
= jumpIfNull
? dest
: destIfFalse
;
5954 sqlite3ExprCodeIN(pParse
, pExpr
, destIfFalse
, destIfNull
);
5955 sqlite3VdbeGoto(v
, dest
);
5956 sqlite3VdbeResolveLabel(v
, destIfFalse
);
5962 if( ExprAlwaysTrue(pExpr
) ){
5963 sqlite3VdbeGoto(v
, dest
);
5964 }else if( ExprAlwaysFalse(pExpr
) ){
5967 r1
= sqlite3ExprCodeTemp(pParse
, pExpr
, ®Free1
);
5968 sqlite3VdbeAddOp3(v
, OP_If
, r1
, dest
, jumpIfNull
!=0);
5970 testcase( regFree1
==0 );
5971 testcase( jumpIfNull
==0 );
5976 sqlite3ReleaseTempReg(pParse
, regFree1
);
5977 sqlite3ReleaseTempReg(pParse
, regFree2
);
5981 ** Generate code for a boolean expression such that a jump is made
5982 ** to the label "dest" if the expression is false but execution
5983 ** continues straight thru if the expression is true.
5985 ** If the expression evaluates to NULL (neither true nor false) then
5986 ** jump if jumpIfNull is SQLITE_JUMPIFNULL or fall through if jumpIfNull
5989 void sqlite3ExprIfFalse(Parse
*pParse
, Expr
*pExpr
, int dest
, int jumpIfNull
){
5990 Vdbe
*v
= pParse
->pVdbe
;
5996 assert( jumpIfNull
==SQLITE_JUMPIFNULL
|| jumpIfNull
==0 );
5997 if( NEVER(v
==0) ) return; /* Existence of VDBE checked by caller */
5998 if( pExpr
==0 ) return;
5999 assert( !ExprHasVVAProperty(pExpr
,EP_Immutable
) );
6001 /* The value of pExpr->op and op are related as follows:
6004 ** --------- ----------
6005 ** TK_ISNULL OP_NotNull
6006 ** TK_NOTNULL OP_IsNull
6014 ** For other values of pExpr->op, op is undefined and unused.
6015 ** The value of TK_ and OP_ constants are arranged such that we
6016 ** can compute the mapping above using the following expression.
6017 ** Assert()s verify that the computation is correct.
6019 op
= ((pExpr
->op
+(TK_ISNULL
&1))^1)-(TK_ISNULL
&1);
6021 /* Verify correct alignment of TK_ and OP_ constants
6023 assert( pExpr
->op
!=TK_ISNULL
|| op
==OP_NotNull
);
6024 assert( pExpr
->op
!=TK_NOTNULL
|| op
==OP_IsNull
);
6025 assert( pExpr
->op
!=TK_NE
|| op
==OP_Eq
);
6026 assert( pExpr
->op
!=TK_EQ
|| op
==OP_Ne
);
6027 assert( pExpr
->op
!=TK_LT
|| op
==OP_Ge
);
6028 assert( pExpr
->op
!=TK_LE
|| op
==OP_Gt
);
6029 assert( pExpr
->op
!=TK_GT
|| op
==OP_Le
);
6030 assert( pExpr
->op
!=TK_GE
|| op
==OP_Lt
);
6032 switch( pExpr
->op
){
6035 Expr
*pAlt
= sqlite3ExprSimplifiedAndOr(pExpr
);
6037 sqlite3ExprIfFalse(pParse
, pAlt
, dest
, jumpIfNull
);
6038 }else if( pExpr
->op
==TK_AND
){
6039 testcase( jumpIfNull
==0 );
6040 sqlite3ExprIfFalse(pParse
, pExpr
->pLeft
, dest
, jumpIfNull
);
6041 sqlite3ExprIfFalse(pParse
, pExpr
->pRight
, dest
, jumpIfNull
);
6043 int d2
= sqlite3VdbeMakeLabel(pParse
);
6044 testcase( jumpIfNull
==0 );
6045 sqlite3ExprIfTrue(pParse
, pExpr
->pLeft
, d2
,
6046 jumpIfNull
^SQLITE_JUMPIFNULL
);
6047 sqlite3ExprIfFalse(pParse
, pExpr
->pRight
, dest
, jumpIfNull
);
6048 sqlite3VdbeResolveLabel(v
, d2
);
6053 testcase( jumpIfNull
==0 );
6054 sqlite3ExprIfTrue(pParse
, pExpr
->pLeft
, dest
, jumpIfNull
);
6058 int isNot
; /* IS NOT TRUE or IS NOT FALSE */
6059 int isTrue
; /* IS TRUE or IS NOT TRUE */
6060 testcase( jumpIfNull
==0 );
6061 isNot
= pExpr
->op2
==TK_ISNOT
;
6062 isTrue
= sqlite3ExprTruthValue(pExpr
->pRight
);
6063 testcase( isTrue
&& isNot
);
6064 testcase( !isTrue
&& isNot
);
6065 if( isTrue
^ isNot
){
6066 /* IS TRUE and IS NOT FALSE */
6067 sqlite3ExprIfFalse(pParse
, pExpr
->pLeft
, dest
,
6068 isNot
? 0 : SQLITE_JUMPIFNULL
);
6071 /* IS FALSE and IS NOT TRUE */
6072 sqlite3ExprIfTrue(pParse
, pExpr
->pLeft
, dest
,
6073 isNot
? 0 : SQLITE_JUMPIFNULL
);
6079 testcase( pExpr
->op
==TK_IS
);
6080 testcase( pExpr
->op
==TK_ISNOT
);
6081 op
= (pExpr
->op
==TK_IS
) ? TK_NE
: TK_EQ
;
6082 jumpIfNull
= SQLITE_NULLEQ
;
6083 /* no break */ deliberate_fall_through
6090 if( sqlite3ExprIsVector(pExpr
->pLeft
) ) goto default_expr
;
6091 testcase( jumpIfNull
==0 );
6092 r1
= sqlite3ExprCodeTemp(pParse
, pExpr
->pLeft
, ®Free1
);
6093 r2
= sqlite3ExprCodeTemp(pParse
, pExpr
->pRight
, ®Free2
);
6094 codeCompare(pParse
, pExpr
->pLeft
, pExpr
->pRight
, op
,
6095 r1
, r2
, dest
, jumpIfNull
,ExprHasProperty(pExpr
,EP_Commuted
));
6096 assert(TK_LT
==OP_Lt
); testcase(op
==OP_Lt
); VdbeCoverageIf(v
,op
==OP_Lt
);
6097 assert(TK_LE
==OP_Le
); testcase(op
==OP_Le
); VdbeCoverageIf(v
,op
==OP_Le
);
6098 assert(TK_GT
==OP_Gt
); testcase(op
==OP_Gt
); VdbeCoverageIf(v
,op
==OP_Gt
);
6099 assert(TK_GE
==OP_Ge
); testcase(op
==OP_Ge
); VdbeCoverageIf(v
,op
==OP_Ge
);
6100 assert(TK_EQ
==OP_Eq
); testcase(op
==OP_Eq
);
6101 VdbeCoverageIf(v
, op
==OP_Eq
&& jumpIfNull
!=SQLITE_NULLEQ
);
6102 VdbeCoverageIf(v
, op
==OP_Eq
&& jumpIfNull
==SQLITE_NULLEQ
);
6103 assert(TK_NE
==OP_Ne
); testcase(op
==OP_Ne
);
6104 VdbeCoverageIf(v
, op
==OP_Ne
&& jumpIfNull
!=SQLITE_NULLEQ
);
6105 VdbeCoverageIf(v
, op
==OP_Ne
&& jumpIfNull
==SQLITE_NULLEQ
);
6106 testcase( regFree1
==0 );
6107 testcase( regFree2
==0 );
6112 r1
= sqlite3ExprCodeTemp(pParse
, pExpr
->pLeft
, ®Free1
);
6113 sqlite3VdbeTypeofColumn(v
, r1
);
6114 sqlite3VdbeAddOp2(v
, op
, r1
, dest
);
6115 testcase( op
==TK_ISNULL
); VdbeCoverageIf(v
, op
==TK_ISNULL
);
6116 testcase( op
==TK_NOTNULL
); VdbeCoverageIf(v
, op
==TK_NOTNULL
);
6117 testcase( regFree1
==0 );
6121 testcase( jumpIfNull
==0 );
6122 exprCodeBetween(pParse
, pExpr
, dest
, sqlite3ExprIfFalse
, jumpIfNull
);
6125 #ifndef SQLITE_OMIT_SUBQUERY
6128 sqlite3ExprCodeIN(pParse
, pExpr
, dest
, dest
);
6130 int destIfNull
= sqlite3VdbeMakeLabel(pParse
);
6131 sqlite3ExprCodeIN(pParse
, pExpr
, dest
, destIfNull
);
6132 sqlite3VdbeResolveLabel(v
, destIfNull
);
6139 if( ExprAlwaysFalse(pExpr
) ){
6140 sqlite3VdbeGoto(v
, dest
);
6141 }else if( ExprAlwaysTrue(pExpr
) ){
6144 r1
= sqlite3ExprCodeTemp(pParse
, pExpr
, ®Free1
);
6145 sqlite3VdbeAddOp3(v
, OP_IfNot
, r1
, dest
, jumpIfNull
!=0);
6147 testcase( regFree1
==0 );
6148 testcase( jumpIfNull
==0 );
6153 sqlite3ReleaseTempReg(pParse
, regFree1
);
6154 sqlite3ReleaseTempReg(pParse
, regFree2
);
6158 ** Like sqlite3ExprIfFalse() except that a copy is made of pExpr before
6159 ** code generation, and that copy is deleted after code generation. This
6160 ** ensures that the original pExpr is unchanged.
6162 void sqlite3ExprIfFalseDup(Parse
*pParse
, Expr
*pExpr
, int dest
,int jumpIfNull
){
6163 sqlite3
*db
= pParse
->db
;
6164 Expr
*pCopy
= sqlite3ExprDup(db
, pExpr
, 0);
6165 if( db
->mallocFailed
==0 ){
6166 sqlite3ExprIfFalse(pParse
, pCopy
, dest
, jumpIfNull
);
6168 sqlite3ExprDelete(db
, pCopy
);
6172 ** Expression pVar is guaranteed to be an SQL variable. pExpr may be any
6173 ** type of expression.
6175 ** If pExpr is a simple SQL value - an integer, real, string, blob
6176 ** or NULL value - then the VDBE currently being prepared is configured
6177 ** to re-prepare each time a new value is bound to variable pVar.
6179 ** Additionally, if pExpr is a simple SQL value and the value is the
6180 ** same as that currently bound to variable pVar, non-zero is returned.
6181 ** Otherwise, if the values are not the same or if pExpr is not a simple
6182 ** SQL value, zero is returned.
6184 static int exprCompareVariable(
6185 const Parse
*pParse
,
6191 sqlite3_value
*pL
, *pR
= 0;
6193 sqlite3ValueFromExpr(pParse
->db
, pExpr
, SQLITE_UTF8
, SQLITE_AFF_BLOB
, &pR
);
6195 iVar
= pVar
->iColumn
;
6196 sqlite3VdbeSetVarmask(pParse
->pVdbe
, iVar
);
6197 pL
= sqlite3VdbeGetBoundValue(pParse
->pReprepare
, iVar
, SQLITE_AFF_BLOB
);
6199 if( sqlite3_value_type(pL
)==SQLITE_TEXT
){
6200 sqlite3_value_text(pL
); /* Make sure the encoding is UTF-8 */
6202 res
= 0==sqlite3MemCompare(pL
, pR
, 0);
6204 sqlite3ValueFree(pR
);
6205 sqlite3ValueFree(pL
);
6212 ** Do a deep comparison of two expression trees. Return 0 if the two
6213 ** expressions are completely identical. Return 1 if they differ only
6214 ** by a COLLATE operator at the top level. Return 2 if there are differences
6215 ** other than the top-level COLLATE operator.
6217 ** If any subelement of pB has Expr.iTable==(-1) then it is allowed
6218 ** to compare equal to an equivalent element in pA with Expr.iTable==iTab.
6220 ** The pA side might be using TK_REGISTER. If that is the case and pB is
6221 ** not using TK_REGISTER but is otherwise equivalent, then still return 0.
6223 ** Sometimes this routine will return 2 even if the two expressions
6224 ** really are equivalent. If we cannot prove that the expressions are
6225 ** identical, we return 2 just to be safe. So if this routine
6226 ** returns 2, then you do not really know for certain if the two
6227 ** expressions are the same. But if you get a 0 or 1 return, then you
6228 ** can be sure the expressions are the same. In the places where
6229 ** this routine is used, it does not hurt to get an extra 2 - that
6230 ** just might result in some slightly slower code. But returning
6231 ** an incorrect 0 or 1 could lead to a malfunction.
6233 ** If pParse is not NULL then TK_VARIABLE terms in pA with bindings in
6234 ** pParse->pReprepare can be matched against literals in pB. The
6235 ** pParse->pVdbe->expmask bitmask is updated for each variable referenced.
6236 ** If pParse is NULL (the normal case) then any TK_VARIABLE term in
6237 ** Argument pParse should normally be NULL. If it is not NULL and pA or
6238 ** pB causes a return value of 2.
6240 int sqlite3ExprCompare(
6241 const Parse
*pParse
,
6247 if( pA
==0 || pB
==0 ){
6248 return pB
==pA
? 0 : 2;
6250 if( pParse
&& pA
->op
==TK_VARIABLE
&& exprCompareVariable(pParse
, pA
, pB
) ){
6253 combinedFlags
= pA
->flags
| pB
->flags
;
6254 if( combinedFlags
& EP_IntValue
){
6255 if( (pA
->flags
&pB
->flags
&EP_IntValue
)!=0 && pA
->u
.iValue
==pB
->u
.iValue
){
6260 if( pA
->op
!=pB
->op
|| pA
->op
==TK_RAISE
){
6261 if( pA
->op
==TK_COLLATE
&& sqlite3ExprCompare(pParse
, pA
->pLeft
,pB
,iTab
)<2 ){
6264 if( pB
->op
==TK_COLLATE
&& sqlite3ExprCompare(pParse
, pA
,pB
->pLeft
,iTab
)<2 ){
6267 if( pA
->op
==TK_AGG_COLUMN
&& pB
->op
==TK_COLUMN
6268 && pB
->iTable
<0 && pA
->iTable
==iTab
6275 assert( !ExprHasProperty(pA
, EP_IntValue
) );
6276 assert( !ExprHasProperty(pB
, EP_IntValue
) );
6278 if( pA
->op
==TK_FUNCTION
|| pA
->op
==TK_AGG_FUNCTION
){
6279 if( sqlite3StrICmp(pA
->u
.zToken
,pB
->u
.zToken
)!=0 ) return 2;
6280 #ifndef SQLITE_OMIT_WINDOWFUNC
6281 assert( pA
->op
==pB
->op
);
6282 if( ExprHasProperty(pA
,EP_WinFunc
)!=ExprHasProperty(pB
,EP_WinFunc
) ){
6285 if( ExprHasProperty(pA
,EP_WinFunc
) ){
6286 if( sqlite3WindowCompare(pParse
, pA
->y
.pWin
, pB
->y
.pWin
, 1)!=0 ){
6291 }else if( pA
->op
==TK_NULL
){
6293 }else if( pA
->op
==TK_COLLATE
){
6294 if( sqlite3_stricmp(pA
->u
.zToken
,pB
->u
.zToken
)!=0 ) return 2;
6297 && pA
->op
!=TK_COLUMN
6298 && pA
->op
!=TK_AGG_COLUMN
6299 && strcmp(pA
->u
.zToken
,pB
->u
.zToken
)!=0
6304 if( (pA
->flags
& (EP_Distinct
|EP_Commuted
))
6305 != (pB
->flags
& (EP_Distinct
|EP_Commuted
)) ) return 2;
6306 if( ALWAYS((combinedFlags
& EP_TokenOnly
)==0) ){
6307 if( combinedFlags
& EP_xIsSelect
) return 2;
6308 if( (combinedFlags
& EP_FixedCol
)==0
6309 && sqlite3ExprCompare(pParse
, pA
->pLeft
, pB
->pLeft
, iTab
) ) return 2;
6310 if( sqlite3ExprCompare(pParse
, pA
->pRight
, pB
->pRight
, iTab
) ) return 2;
6311 if( sqlite3ExprListCompare(pA
->x
.pList
, pB
->x
.pList
, iTab
) ) return 2;
6312 if( pA
->op
!=TK_STRING
6313 && pA
->op
!=TK_TRUEFALSE
6314 && ALWAYS((combinedFlags
& EP_Reduced
)==0)
6316 if( pA
->iColumn
!=pB
->iColumn
) return 2;
6317 if( pA
->op2
!=pB
->op2
&& pA
->op
==TK_TRUTH
) return 2;
6318 if( pA
->op
!=TK_IN
&& pA
->iTable
!=pB
->iTable
&& pA
->iTable
!=iTab
){
6327 ** Compare two ExprList objects. Return 0 if they are identical, 1
6328 ** if they are certainly different, or 2 if it is not possible to
6329 ** determine if they are identical or not.
6331 ** If any subelement of pB has Expr.iTable==(-1) then it is allowed
6332 ** to compare equal to an equivalent element in pA with Expr.iTable==iTab.
6334 ** This routine might return non-zero for equivalent ExprLists. The
6335 ** only consequence will be disabled optimizations. But this routine
6336 ** must never return 0 if the two ExprList objects are different, or
6337 ** a malfunction will result.
6339 ** Two NULL pointers are considered to be the same. But a NULL pointer
6340 ** always differs from a non-NULL pointer.
6342 int sqlite3ExprListCompare(const ExprList
*pA
, const ExprList
*pB
, int iTab
){
6344 if( pA
==0 && pB
==0 ) return 0;
6345 if( pA
==0 || pB
==0 ) return 1;
6346 if( pA
->nExpr
!=pB
->nExpr
) return 1;
6347 for(i
=0; i
<pA
->nExpr
; i
++){
6349 Expr
*pExprA
= pA
->a
[i
].pExpr
;
6350 Expr
*pExprB
= pB
->a
[i
].pExpr
;
6351 if( pA
->a
[i
].fg
.sortFlags
!=pB
->a
[i
].fg
.sortFlags
) return 1;
6352 if( (res
= sqlite3ExprCompare(0, pExprA
, pExprB
, iTab
)) ) return res
;
6358 ** Like sqlite3ExprCompare() except COLLATE operators at the top-level
6361 int sqlite3ExprCompareSkip(Expr
*pA
,Expr
*pB
, int iTab
){
6362 return sqlite3ExprCompare(0,
6363 sqlite3ExprSkipCollate(pA
),
6364 sqlite3ExprSkipCollate(pB
),
6369 ** Return non-zero if Expr p can only be true if pNN is not NULL.
6371 ** Or if seenNot is true, return non-zero if Expr p can only be
6372 ** non-NULL if pNN is not NULL
6374 static int exprImpliesNotNull(
6375 const Parse
*pParse
,/* Parsing context */
6376 const Expr
*p
, /* The expression to be checked */
6377 const Expr
*pNN
, /* The expression that is NOT NULL */
6378 int iTab
, /* Table being evaluated */
6379 int seenNot
/* Return true only if p can be any non-NULL value */
6383 if( sqlite3ExprCompare(pParse
, p
, pNN
, iTab
)==0 ){
6384 return pNN
->op
!=TK_NULL
;
6388 if( seenNot
&& ExprHasProperty(p
, EP_xIsSelect
) ) return 0;
6389 assert( ExprUseXSelect(p
) || (p
->x
.pList
!=0 && p
->x
.pList
->nExpr
>0) );
6390 return exprImpliesNotNull(pParse
, p
->pLeft
, pNN
, iTab
, 1);
6394 assert( ExprUseXList(p
) );
6397 assert( pList
->nExpr
==2 );
6398 if( seenNot
) return 0;
6399 if( exprImpliesNotNull(pParse
, pList
->a
[0].pExpr
, pNN
, iTab
, 1)
6400 || exprImpliesNotNull(pParse
, pList
->a
[1].pExpr
, pNN
, iTab
, 1)
6404 return exprImpliesNotNull(pParse
, p
->pLeft
, pNN
, iTab
, 1);
6419 /* no break */ deliberate_fall_through
6424 if( exprImpliesNotNull(pParse
, p
->pRight
, pNN
, iTab
, seenNot
) ) return 1;
6425 /* no break */ deliberate_fall_through
6431 return exprImpliesNotNull(pParse
, p
->pLeft
, pNN
, iTab
, seenNot
);
6434 if( seenNot
) return 0;
6435 if( p
->op2
!=TK_IS
) return 0;
6436 return exprImpliesNotNull(pParse
, p
->pLeft
, pNN
, iTab
, 1);
6440 return exprImpliesNotNull(pParse
, p
->pLeft
, pNN
, iTab
, 1);
6447 ** Return true if we can prove the pE2 will always be true if pE1 is
6448 ** true. Return false if we cannot complete the proof or if pE2 might
6449 ** be false. Examples:
6451 ** pE1: x==5 pE2: x==5 Result: true
6452 ** pE1: x>0 pE2: x==5 Result: false
6453 ** pE1: x=21 pE2: x=21 OR y=43 Result: true
6454 ** pE1: x!=123 pE2: x IS NOT NULL Result: true
6455 ** pE1: x!=?1 pE2: x IS NOT NULL Result: true
6456 ** pE1: x IS NULL pE2: x IS NOT NULL Result: false
6457 ** pE1: x IS ?2 pE2: x IS NOT NULL Result: false
6459 ** When comparing TK_COLUMN nodes between pE1 and pE2, if pE2 has
6460 ** Expr.iTable<0 then assume a table number given by iTab.
6462 ** If pParse is not NULL, then the values of bound variables in pE1 are
6463 ** compared against literal values in pE2 and pParse->pVdbe->expmask is
6464 ** modified to record which bound variables are referenced. If pParse
6465 ** is NULL, then false will be returned if pE1 contains any bound variables.
6467 ** When in doubt, return false. Returning true might give a performance
6468 ** improvement. Returning false might cause a performance reduction, but
6469 ** it will always give the correct answer and is hence always safe.
6471 int sqlite3ExprImpliesExpr(
6472 const Parse
*pParse
,
6477 if( sqlite3ExprCompare(pParse
, pE1
, pE2
, iTab
)==0 ){
6481 && (sqlite3ExprImpliesExpr(pParse
, pE1
, pE2
->pLeft
, iTab
)
6482 || sqlite3ExprImpliesExpr(pParse
, pE1
, pE2
->pRight
, iTab
) )
6486 if( pE2
->op
==TK_NOTNULL
6487 && exprImpliesNotNull(pParse
, pE1
, pE2
->pLeft
, iTab
, 0)
6494 /* This is a helper function to impliesNotNullRow(). In this routine,
6495 ** set pWalker->eCode to one only if *both* of the input expressions
6496 ** separately have the implies-not-null-row property.
6498 static void bothImplyNotNullRow(Walker
*pWalker
, Expr
*pE1
, Expr
*pE2
){
6499 if( pWalker
->eCode
==0 ){
6500 sqlite3WalkExpr(pWalker
, pE1
);
6501 if( pWalker
->eCode
){
6503 sqlite3WalkExpr(pWalker
, pE2
);
6509 ** This is the Expr node callback for sqlite3ExprImpliesNonNullRow().
6510 ** If the expression node requires that the table at pWalker->iCur
6511 ** have one or more non-NULL column, then set pWalker->eCode to 1 and abort.
6513 ** pWalker->mWFlags is non-zero if this inquiry is being undertaking on
6514 ** behalf of a RIGHT JOIN (or FULL JOIN). That makes a difference when
6515 ** evaluating terms in the ON clause of an inner join.
6517 ** This routine controls an optimization. False positives (setting
6518 ** pWalker->eCode to 1 when it should not be) are deadly, but false-negatives
6519 ** (never setting pWalker->eCode) is a harmless missed optimization.
6521 static int impliesNotNullRow(Walker
*pWalker
, Expr
*pExpr
){
6522 testcase( pExpr
->op
==TK_AGG_COLUMN
);
6523 testcase( pExpr
->op
==TK_AGG_FUNCTION
);
6524 if( ExprHasProperty(pExpr
, EP_OuterON
) ) return WRC_Prune
;
6525 if( ExprHasProperty(pExpr
, EP_InnerON
) && pWalker
->mWFlags
){
6526 /* If iCur is used in an inner-join ON clause to the left of a
6527 ** RIGHT JOIN, that does *not* mean that the table must be non-null.
6528 ** But it is difficult to check for that condition precisely.
6529 ** To keep things simple, any use of iCur from any inner-join is
6530 ** ignored while attempting to simplify a RIGHT JOIN. */
6533 switch( pExpr
->op
){
6542 testcase( pExpr
->op
==TK_ISNOT
);
6543 testcase( pExpr
->op
==TK_ISNULL
);
6544 testcase( pExpr
->op
==TK_NOTNULL
);
6545 testcase( pExpr
->op
==TK_IS
);
6546 testcase( pExpr
->op
==TK_VECTOR
);
6547 testcase( pExpr
->op
==TK_FUNCTION
);
6548 testcase( pExpr
->op
==TK_TRUTH
);
6549 testcase( pExpr
->op
==TK_CASE
);
6553 if( pWalker
->u
.iCur
==pExpr
->iTable
){
6561 /* Both sides of an AND or OR must separately imply non-null-row.
6562 ** Consider these cases:
6565 ** If only one of x or y is non-null-row, then the overall expression
6566 ** can be true if the other arm is false (case 1) or true (case 2).
6568 testcase( pExpr
->op
==TK_OR
);
6569 testcase( pExpr
->op
==TK_AND
);
6570 bothImplyNotNullRow(pWalker
, pExpr
->pLeft
, pExpr
->pRight
);
6574 /* Beware of "x NOT IN ()" and "x NOT IN (SELECT 1 WHERE false)",
6575 ** both of which can be true. But apart from these cases, if
6576 ** the left-hand side of the IN is NULL then the IN itself will be
6578 if( ExprUseXList(pExpr
) && ALWAYS(pExpr
->x
.pList
->nExpr
>0) ){
6579 sqlite3WalkExpr(pWalker
, pExpr
->pLeft
);
6584 /* In "x NOT BETWEEN y AND z" either x must be non-null-row or else
6585 ** both y and z must be non-null row */
6586 assert( ExprUseXList(pExpr
) );
6587 assert( pExpr
->x
.pList
->nExpr
==2 );
6588 sqlite3WalkExpr(pWalker
, pExpr
->pLeft
);
6589 bothImplyNotNullRow(pWalker
, pExpr
->x
.pList
->a
[0].pExpr
,
6590 pExpr
->x
.pList
->a
[1].pExpr
);
6593 /* Virtual tables are allowed to use constraints like x=NULL. So
6594 ** a term of the form x=y does not prove that y is not null if x
6595 ** is the column of a virtual table */
6602 Expr
*pLeft
= pExpr
->pLeft
;
6603 Expr
*pRight
= pExpr
->pRight
;
6604 testcase( pExpr
->op
==TK_EQ
);
6605 testcase( pExpr
->op
==TK_NE
);
6606 testcase( pExpr
->op
==TK_LT
);
6607 testcase( pExpr
->op
==TK_LE
);
6608 testcase( pExpr
->op
==TK_GT
);
6609 testcase( pExpr
->op
==TK_GE
);
6610 /* The y.pTab=0 assignment in wherecode.c always happens after the
6611 ** impliesNotNullRow() test */
6612 assert( pLeft
->op
!=TK_COLUMN
|| ExprUseYTab(pLeft
) );
6613 assert( pRight
->op
!=TK_COLUMN
|| ExprUseYTab(pRight
) );
6614 if( (pLeft
->op
==TK_COLUMN
6615 && ALWAYS(pLeft
->y
.pTab
!=0)
6616 && IsVirtual(pLeft
->y
.pTab
))
6617 || (pRight
->op
==TK_COLUMN
6618 && ALWAYS(pRight
->y
.pTab
!=0)
6619 && IsVirtual(pRight
->y
.pTab
))
6623 /* no break */ deliberate_fall_through
6626 return WRC_Continue
;
6631 ** Return true (non-zero) if expression p can only be true if at least
6632 ** one column of table iTab is non-null. In other words, return true
6633 ** if expression p will always be NULL or false if every column of iTab
6636 ** False negatives are acceptable. In other words, it is ok to return
6637 ** zero even if expression p will never be true of every column of iTab
6638 ** is NULL. A false negative is merely a missed optimization opportunity.
6640 ** False positives are not allowed, however. A false positive may result
6641 ** in an incorrect answer.
6643 ** Terms of p that are marked with EP_OuterON (and hence that come from
6644 ** the ON or USING clauses of OUTER JOINS) are excluded from the analysis.
6646 ** This routine is used to check if a LEFT JOIN can be converted into
6647 ** an ordinary JOIN. The p argument is the WHERE clause. If the WHERE
6648 ** clause requires that some column of the right table of the LEFT JOIN
6649 ** be non-NULL, then the LEFT JOIN can be safely converted into an
6652 int sqlite3ExprImpliesNonNullRow(Expr
*p
, int iTab
, int isRJ
){
6654 p
= sqlite3ExprSkipCollateAndLikely(p
);
6655 if( p
==0 ) return 0;
6656 if( p
->op
==TK_NOTNULL
){
6659 while( p
->op
==TK_AND
){
6660 if( sqlite3ExprImpliesNonNullRow(p
->pLeft
, iTab
, isRJ
) ) return 1;
6664 w
.xExprCallback
= impliesNotNullRow
;
6665 w
.xSelectCallback
= 0;
6666 w
.xSelectCallback2
= 0;
6668 w
.mWFlags
= isRJ
!=0;
6670 sqlite3WalkExpr(&w
, p
);
6675 ** An instance of the following structure is used by the tree walker
6676 ** to determine if an expression can be evaluated by reference to the
6677 ** index only, without having to do a search for the corresponding
6678 ** table entry. The IdxCover.pIdx field is the index. IdxCover.iCur
6679 ** is the cursor for the table.
6682 Index
*pIdx
; /* The index to be tested for coverage */
6683 int iCur
; /* Cursor number for the table corresponding to the index */
6687 ** Check to see if there are references to columns in table
6688 ** pWalker->u.pIdxCover->iCur can be satisfied using the index
6689 ** pWalker->u.pIdxCover->pIdx.
6691 static int exprIdxCover(Walker
*pWalker
, Expr
*pExpr
){
6692 if( pExpr
->op
==TK_COLUMN
6693 && pExpr
->iTable
==pWalker
->u
.pIdxCover
->iCur
6694 && sqlite3TableColumnToIndex(pWalker
->u
.pIdxCover
->pIdx
, pExpr
->iColumn
)<0
6699 return WRC_Continue
;
6703 ** Determine if an index pIdx on table with cursor iCur contains will
6704 ** the expression pExpr. Return true if the index does cover the
6705 ** expression and false if the pExpr expression references table columns
6706 ** that are not found in the index pIdx.
6708 ** An index covering an expression means that the expression can be
6709 ** evaluated using only the index and without having to lookup the
6710 ** corresponding table entry.
6712 int sqlite3ExprCoveredByIndex(
6713 Expr
*pExpr
, /* The index to be tested */
6714 int iCur
, /* The cursor number for the corresponding table */
6715 Index
*pIdx
/* The index that might be used for coverage */
6718 struct IdxCover xcov
;
6719 memset(&w
, 0, sizeof(w
));
6722 w
.xExprCallback
= exprIdxCover
;
6723 w
.u
.pIdxCover
= &xcov
;
6724 sqlite3WalkExpr(&w
, pExpr
);
6729 /* Structure used to pass information throughout the Walker in order to
6730 ** implement sqlite3ReferencesSrcList().
6733 sqlite3
*db
; /* Database connection used for sqlite3DbRealloc() */
6734 SrcList
*pRef
; /* Looking for references to these tables */
6735 i64 nExclude
; /* Number of tables to exclude from the search */
6736 int *aiExclude
; /* Cursor IDs for tables to exclude from the search */
6740 ** Walker SELECT callbacks for sqlite3ReferencesSrcList().
6742 ** When entering a new subquery on the pExpr argument, add all FROM clause
6743 ** entries for that subquery to the exclude list.
6745 ** When leaving the subquery, remove those entries from the exclude list.
6747 static int selectRefEnter(Walker
*pWalker
, Select
*pSelect
){
6748 struct RefSrcList
*p
= pWalker
->u
.pRefSrcList
;
6749 SrcList
*pSrc
= pSelect
->pSrc
;
6752 if( pSrc
->nSrc
==0 ) return WRC_Continue
;
6754 p
->nExclude
+= pSrc
->nSrc
;
6755 piNew
= sqlite3DbRealloc(p
->db
, p
->aiExclude
, p
->nExclude
*sizeof(int));
6760 p
->aiExclude
= piNew
;
6762 for(i
=0; i
<pSrc
->nSrc
; i
++, j
++){
6763 p
->aiExclude
[j
] = pSrc
->a
[i
].iCursor
;
6765 return WRC_Continue
;
6767 static void selectRefLeave(Walker
*pWalker
, Select
*pSelect
){
6768 struct RefSrcList
*p
= pWalker
->u
.pRefSrcList
;
6769 SrcList
*pSrc
= pSelect
->pSrc
;
6771 assert( p
->nExclude
>=pSrc
->nSrc
);
6772 p
->nExclude
-= pSrc
->nSrc
;
6776 /* This is the Walker EXPR callback for sqlite3ReferencesSrcList().
6778 ** Set the 0x01 bit of pWalker->eCode if there is a reference to any
6779 ** of the tables shown in RefSrcList.pRef.
6781 ** Set the 0x02 bit of pWalker->eCode if there is a reference to a
6782 ** table is in neither RefSrcList.pRef nor RefSrcList.aiExclude.
6784 static int exprRefToSrcList(Walker
*pWalker
, Expr
*pExpr
){
6785 if( pExpr
->op
==TK_COLUMN
6786 || pExpr
->op
==TK_AGG_COLUMN
6789 struct RefSrcList
*p
= pWalker
->u
.pRefSrcList
;
6790 SrcList
*pSrc
= p
->pRef
;
6791 int nSrc
= pSrc
? pSrc
->nSrc
: 0;
6792 for(i
=0; i
<nSrc
; i
++){
6793 if( pExpr
->iTable
==pSrc
->a
[i
].iCursor
){
6794 pWalker
->eCode
|= 1;
6795 return WRC_Continue
;
6798 for(i
=0; i
<p
->nExclude
&& p
->aiExclude
[i
]!=pExpr
->iTable
; i
++){}
6799 if( i
>=p
->nExclude
){
6800 pWalker
->eCode
|= 2;
6803 return WRC_Continue
;
6807 ** Check to see if pExpr references any tables in pSrcList.
6808 ** Possible return values:
6810 ** 1 pExpr does references a table in pSrcList.
6812 ** 0 pExpr references some table that is not defined in either
6813 ** pSrcList or in subqueries of pExpr itself.
6815 ** -1 pExpr only references no tables at all, or it only
6816 ** references tables defined in subqueries of pExpr itself.
6818 ** As currently used, pExpr is always an aggregate function call. That
6819 ** fact is exploited for efficiency.
6821 int sqlite3ReferencesSrcList(Parse
*pParse
, Expr
*pExpr
, SrcList
*pSrcList
){
6823 struct RefSrcList x
;
6824 assert( pParse
->db
!=0 );
6825 memset(&w
, 0, sizeof(w
));
6826 memset(&x
, 0, sizeof(x
));
6827 w
.xExprCallback
= exprRefToSrcList
;
6828 w
.xSelectCallback
= selectRefEnter
;
6829 w
.xSelectCallback2
= selectRefLeave
;
6830 w
.u
.pRefSrcList
= &x
;
6833 assert( pExpr
->op
==TK_AGG_FUNCTION
);
6834 assert( ExprUseXList(pExpr
) );
6835 sqlite3WalkExprList(&w
, pExpr
->x
.pList
);
6837 assert( pExpr
->pLeft
->op
==TK_ORDER
);
6838 assert( ExprUseXList(pExpr
->pLeft
) );
6839 assert( pExpr
->pLeft
->x
.pList
!=0 );
6840 sqlite3WalkExprList(&w
, pExpr
->pLeft
->x
.pList
);
6842 #ifndef SQLITE_OMIT_WINDOWFUNC
6843 if( ExprHasProperty(pExpr
, EP_WinFunc
) ){
6844 sqlite3WalkExpr(&w
, pExpr
->y
.pWin
->pFilter
);
6847 if( x
.aiExclude
) sqlite3DbNNFreeNN(pParse
->db
, x
.aiExclude
);
6848 if( w
.eCode
& 0x01 ){
6850 }else if( w
.eCode
){
6858 ** This is a Walker expression node callback.
6860 ** For Expr nodes that contain pAggInfo pointers, make sure the AggInfo
6861 ** object that is referenced does not refer directly to the Expr. If
6862 ** it does, make a copy. This is done because the pExpr argument is
6863 ** subject to change.
6865 ** The copy is scheduled for deletion using the sqlite3ExprDeferredDelete()
6866 ** which builds on the sqlite3ParserAddCleanup() mechanism.
6868 static int agginfoPersistExprCb(Walker
*pWalker
, Expr
*pExpr
){
6869 if( ALWAYS(!ExprHasProperty(pExpr
, EP_TokenOnly
|EP_Reduced
))
6870 && pExpr
->pAggInfo
!=0
6872 AggInfo
*pAggInfo
= pExpr
->pAggInfo
;
6873 int iAgg
= pExpr
->iAgg
;
6874 Parse
*pParse
= pWalker
->pParse
;
6875 sqlite3
*db
= pParse
->db
;
6877 if( pExpr
->op
!=TK_AGG_FUNCTION
){
6878 if( iAgg
<pAggInfo
->nColumn
6879 && pAggInfo
->aCol
[iAgg
].pCExpr
==pExpr
6881 pExpr
= sqlite3ExprDup(db
, pExpr
, 0);
6882 if( pExpr
&& !sqlite3ExprDeferredDelete(pParse
, pExpr
) ){
6883 pAggInfo
->aCol
[iAgg
].pCExpr
= pExpr
;
6887 assert( pExpr
->op
==TK_AGG_FUNCTION
);
6888 if( ALWAYS(iAgg
<pAggInfo
->nFunc
)
6889 && pAggInfo
->aFunc
[iAgg
].pFExpr
==pExpr
6891 pExpr
= sqlite3ExprDup(db
, pExpr
, 0);
6892 if( pExpr
&& !sqlite3ExprDeferredDelete(pParse
, pExpr
) ){
6893 pAggInfo
->aFunc
[iAgg
].pFExpr
= pExpr
;
6898 return WRC_Continue
;
6902 ** Initialize a Walker object so that will persist AggInfo entries referenced
6903 ** by the tree that is walked.
6905 void sqlite3AggInfoPersistWalkerInit(Walker
*pWalker
, Parse
*pParse
){
6906 memset(pWalker
, 0, sizeof(*pWalker
));
6907 pWalker
->pParse
= pParse
;
6908 pWalker
->xExprCallback
= agginfoPersistExprCb
;
6909 pWalker
->xSelectCallback
= sqlite3SelectWalkNoop
;
6913 ** Add a new element to the pAggInfo->aCol[] array. Return the index of
6914 ** the new element. Return a negative number if malloc fails.
6916 static int addAggInfoColumn(sqlite3
*db
, AggInfo
*pInfo
){
6918 pInfo
->aCol
= sqlite3ArrayAllocate(
6921 sizeof(pInfo
->aCol
[0]),
6929 ** Add a new element to the pAggInfo->aFunc[] array. Return the index of
6930 ** the new element. Return a negative number if malloc fails.
6932 static int addAggInfoFunc(sqlite3
*db
, AggInfo
*pInfo
){
6934 pInfo
->aFunc
= sqlite3ArrayAllocate(
6937 sizeof(pInfo
->aFunc
[0]),
6945 ** Search the AggInfo object for an aCol[] entry that has iTable and iColumn.
6946 ** Return the index in aCol[] of the entry that describes that column.
6948 ** If no prior entry is found, create a new one and return -1. The
6949 ** new column will have an index of pAggInfo->nColumn-1.
6951 static void findOrCreateAggInfoColumn(
6952 Parse
*pParse
, /* Parsing context */
6953 AggInfo
*pAggInfo
, /* The AggInfo object to search and/or modify */
6954 Expr
*pExpr
/* Expr describing the column to find or insert */
6956 struct AggInfo_col
*pCol
;
6959 assert( pAggInfo
->iFirstReg
==0 );
6960 pCol
= pAggInfo
->aCol
;
6961 for(k
=0; k
<pAggInfo
->nColumn
; k
++, pCol
++){
6962 if( pCol
->pCExpr
==pExpr
) return;
6963 if( pCol
->iTable
==pExpr
->iTable
6964 && pCol
->iColumn
==pExpr
->iColumn
6965 && pExpr
->op
!=TK_IF_NULL_ROW
6970 k
= addAggInfoColumn(pParse
->db
, pAggInfo
);
6973 assert( pParse
->db
->mallocFailed
);
6976 pCol
= &pAggInfo
->aCol
[k
];
6977 assert( ExprUseYTab(pExpr
) );
6978 pCol
->pTab
= pExpr
->y
.pTab
;
6979 pCol
->iTable
= pExpr
->iTable
;
6980 pCol
->iColumn
= pExpr
->iColumn
;
6981 pCol
->iSorterColumn
= -1;
6982 pCol
->pCExpr
= pExpr
;
6983 if( pAggInfo
->pGroupBy
&& pExpr
->op
!=TK_IF_NULL_ROW
){
6985 ExprList
*pGB
= pAggInfo
->pGroupBy
;
6986 struct ExprList_item
*pTerm
= pGB
->a
;
6988 for(j
=0; j
<n
; j
++, pTerm
++){
6989 Expr
*pE
= pTerm
->pExpr
;
6990 if( pE
->op
==TK_COLUMN
6991 && pE
->iTable
==pExpr
->iTable
6992 && pE
->iColumn
==pExpr
->iColumn
6994 pCol
->iSorterColumn
= j
;
6999 if( pCol
->iSorterColumn
<0 ){
7000 pCol
->iSorterColumn
= pAggInfo
->nSortingColumn
++;
7003 ExprSetVVAProperty(pExpr
, EP_NoReduce
);
7004 assert( pExpr
->pAggInfo
==0 || pExpr
->pAggInfo
==pAggInfo
);
7005 pExpr
->pAggInfo
= pAggInfo
;
7006 if( pExpr
->op
==TK_COLUMN
){
7007 pExpr
->op
= TK_AGG_COLUMN
;
7009 pExpr
->iAgg
= (i16
)k
;
7013 ** This is the xExprCallback for a tree walker. It is used to
7014 ** implement sqlite3ExprAnalyzeAggregates(). See sqlite3ExprAnalyzeAggregates
7015 ** for additional information.
7017 static int analyzeAggregate(Walker
*pWalker
, Expr
*pExpr
){
7019 NameContext
*pNC
= pWalker
->u
.pNC
;
7020 Parse
*pParse
= pNC
->pParse
;
7021 SrcList
*pSrcList
= pNC
->pSrcList
;
7022 AggInfo
*pAggInfo
= pNC
->uNC
.pAggInfo
;
7024 assert( pNC
->ncFlags
& NC_UAggInfo
);
7025 assert( pAggInfo
->iFirstReg
==0 );
7026 switch( pExpr
->op
){
7030 assert( pParse
->iSelfTab
==0 );
7031 if( (pNC
->ncFlags
& NC_InAggFunc
)==0 ) break;
7032 if( pParse
->pIdxEpr
==0 ) break;
7033 for(pIEpr
=pParse
->pIdxEpr
; pIEpr
; pIEpr
=pIEpr
->pIENext
){
7034 int iDataCur
= pIEpr
->iDataCur
;
7035 if( iDataCur
<0 ) continue;
7036 if( sqlite3ExprCompare(0, pExpr
, pIEpr
->pExpr
, iDataCur
)==0 ) break;
7038 if( pIEpr
==0 ) break;
7039 if( NEVER(!ExprUseYTab(pExpr
)) ) break;
7040 for(i
=0; i
<pSrcList
->nSrc
; i
++){
7041 if( pSrcList
->a
[0].iCursor
==pIEpr
->iDataCur
) break;
7043 if( i
>=pSrcList
->nSrc
) break;
7044 if( NEVER(pExpr
->pAggInfo
!=0) ) break; /* Resolved by outer context */
7045 if( pParse
->nErr
){ return WRC_Abort
; }
7047 /* If we reach this point, it means that expression pExpr can be
7048 ** translated into a reference to an index column as described by
7051 memset(&tmp
, 0, sizeof(tmp
));
7052 tmp
.op
= TK_AGG_COLUMN
;
7053 tmp
.iTable
= pIEpr
->iIdxCur
;
7054 tmp
.iColumn
= pIEpr
->iIdxCol
;
7055 findOrCreateAggInfoColumn(pParse
, pAggInfo
, &tmp
);
7056 if( pParse
->nErr
){ return WRC_Abort
; }
7057 assert( pAggInfo
->aCol
!=0 );
7058 assert( tmp
.iAgg
<pAggInfo
->nColumn
);
7059 pAggInfo
->aCol
[tmp
.iAgg
].pCExpr
= pExpr
;
7060 pExpr
->pAggInfo
= pAggInfo
;
7061 pExpr
->iAgg
= tmp
.iAgg
;
7064 case TK_IF_NULL_ROW
:
7067 testcase( pExpr
->op
==TK_AGG_COLUMN
);
7068 testcase( pExpr
->op
==TK_COLUMN
);
7069 testcase( pExpr
->op
==TK_IF_NULL_ROW
);
7070 /* Check to see if the column is in one of the tables in the FROM
7071 ** clause of the aggregate query */
7072 if( ALWAYS(pSrcList
!=0) ){
7073 SrcItem
*pItem
= pSrcList
->a
;
7074 for(i
=0; i
<pSrcList
->nSrc
; i
++, pItem
++){
7075 assert( !ExprHasProperty(pExpr
, EP_TokenOnly
|EP_Reduced
) );
7076 if( pExpr
->iTable
==pItem
->iCursor
){
7077 findOrCreateAggInfoColumn(pParse
, pAggInfo
, pExpr
);
7079 } /* endif pExpr->iTable==pItem->iCursor */
7080 } /* end loop over pSrcList */
7082 return WRC_Continue
;
7084 case TK_AGG_FUNCTION
: {
7085 if( (pNC
->ncFlags
& NC_InAggFunc
)==0
7086 && pWalker
->walkerDepth
==pExpr
->op2
7087 && pExpr
->pAggInfo
==0
7089 /* Check to see if pExpr is a duplicate of another aggregate
7090 ** function that is already in the pAggInfo structure
7092 struct AggInfo_func
*pItem
= pAggInfo
->aFunc
;
7093 for(i
=0; i
<pAggInfo
->nFunc
; i
++, pItem
++){
7094 if( NEVER(pItem
->pFExpr
==pExpr
) ) break;
7095 if( sqlite3ExprCompare(0, pItem
->pFExpr
, pExpr
, -1)==0 ){
7099 if( i
>=pAggInfo
->nFunc
){
7100 /* pExpr is original. Make a new entry in pAggInfo->aFunc[]
7102 u8 enc
= ENC(pParse
->db
);
7103 i
= addAggInfoFunc(pParse
->db
, pAggInfo
);
7106 assert( !ExprHasProperty(pExpr
, EP_xIsSelect
) );
7107 pItem
= &pAggInfo
->aFunc
[i
];
7108 pItem
->pFExpr
= pExpr
;
7109 assert( ExprUseUToken(pExpr
) );
7110 nArg
= pExpr
->x
.pList
? pExpr
->x
.pList
->nExpr
: 0;
7111 pItem
->pFunc
= sqlite3FindFunction(pParse
->db
,
7112 pExpr
->u
.zToken
, nArg
, enc
, 0);
7113 assert( pItem
->bOBUnique
==0 );
7115 && (pItem
->pFunc
->funcFlags
& SQLITE_FUNC_NEEDCOLL
)==0
7117 /* The NEEDCOLL test above causes any ORDER BY clause on
7118 ** aggregate min() or max() to be ignored. */
7121 assert( pExpr
->pLeft
->op
==TK_ORDER
);
7122 assert( ExprUseXList(pExpr
->pLeft
) );
7123 pItem
->iOBTab
= pParse
->nTab
++;
7124 pOBList
= pExpr
->pLeft
->x
.pList
;
7125 assert( pOBList
->nExpr
>0 );
7126 assert( pItem
->bOBUnique
==0 );
7127 if( pOBList
->nExpr
==1
7129 && sqlite3ExprCompare(0,pOBList
->a
[0].pExpr
,
7130 pExpr
->x
.pList
->a
[0].pExpr
,0)==0
7132 pItem
->bOBPayload
= 0;
7133 pItem
->bOBUnique
= ExprHasProperty(pExpr
, EP_Distinct
);
7135 pItem
->bOBPayload
= 1;
7137 pItem
->bUseSubtype
=
7138 (pItem
->pFunc
->funcFlags
& SQLITE_SUBTYPE
)!=0;
7142 if( ExprHasProperty(pExpr
, EP_Distinct
) && !pItem
->bOBUnique
){
7143 pItem
->iDistinct
= pParse
->nTab
++;
7145 pItem
->iDistinct
= -1;
7149 /* Make pExpr point to the appropriate pAggInfo->aFunc[] entry
7151 assert( !ExprHasProperty(pExpr
, EP_TokenOnly
|EP_Reduced
) );
7152 ExprSetVVAProperty(pExpr
, EP_NoReduce
);
7153 pExpr
->iAgg
= (i16
)i
;
7154 pExpr
->pAggInfo
= pAggInfo
;
7157 return WRC_Continue
;
7161 return WRC_Continue
;
7165 ** Analyze the pExpr expression looking for aggregate functions and
7166 ** for variables that need to be added to AggInfo object that pNC->pAggInfo
7167 ** points to. Additional entries are made on the AggInfo object as
7170 ** This routine should only be called after the expression has been
7171 ** analyzed by sqlite3ResolveExprNames().
7173 void sqlite3ExprAnalyzeAggregates(NameContext
*pNC
, Expr
*pExpr
){
7175 w
.xExprCallback
= analyzeAggregate
;
7176 w
.xSelectCallback
= sqlite3WalkerDepthIncrease
;
7177 w
.xSelectCallback2
= sqlite3WalkerDepthDecrease
;
7181 assert( pNC
->pSrcList
!=0 );
7182 sqlite3WalkExpr(&w
, pExpr
);
7186 ** Call sqlite3ExprAnalyzeAggregates() for every expression in an
7187 ** expression list. Return the number of errors.
7189 ** If an error is found, the analysis is cut short.
7191 void sqlite3ExprAnalyzeAggList(NameContext
*pNC
, ExprList
*pList
){
7192 struct ExprList_item
*pItem
;
7195 for(pItem
=pList
->a
, i
=0; i
<pList
->nExpr
; i
++, pItem
++){
7196 sqlite3ExprAnalyzeAggregates(pNC
, pItem
->pExpr
);
7202 ** Allocate a single new register for use to hold some intermediate result.
7204 int sqlite3GetTempReg(Parse
*pParse
){
7205 if( pParse
->nTempReg
==0 ){
7206 return ++pParse
->nMem
;
7208 return pParse
->aTempReg
[--pParse
->nTempReg
];
7212 ** Deallocate a register, making available for reuse for some other
7215 void sqlite3ReleaseTempReg(Parse
*pParse
, int iReg
){
7217 sqlite3VdbeReleaseRegisters(pParse
, iReg
, 1, 0, 0);
7218 if( pParse
->nTempReg
<ArraySize(pParse
->aTempReg
) ){
7219 pParse
->aTempReg
[pParse
->nTempReg
++] = iReg
;
7225 ** Allocate or deallocate a block of nReg consecutive registers.
7227 int sqlite3GetTempRange(Parse
*pParse
, int nReg
){
7229 if( nReg
==1 ) return sqlite3GetTempReg(pParse
);
7230 i
= pParse
->iRangeReg
;
7231 n
= pParse
->nRangeReg
;
7233 pParse
->iRangeReg
+= nReg
;
7234 pParse
->nRangeReg
-= nReg
;
7237 pParse
->nMem
+= nReg
;
7241 void sqlite3ReleaseTempRange(Parse
*pParse
, int iReg
, int nReg
){
7243 sqlite3ReleaseTempReg(pParse
, iReg
);
7246 sqlite3VdbeReleaseRegisters(pParse
, iReg
, nReg
, 0, 0);
7247 if( nReg
>pParse
->nRangeReg
){
7248 pParse
->nRangeReg
= nReg
;
7249 pParse
->iRangeReg
= iReg
;
7254 ** Mark all temporary registers as being unavailable for reuse.
7256 ** Always invoke this procedure after coding a subroutine or co-routine
7257 ** that might be invoked from other parts of the code, to ensure that
7258 ** the sub/co-routine does not use registers in common with the code that
7259 ** invokes the sub/co-routine.
7261 void sqlite3ClearTempRegCache(Parse
*pParse
){
7262 pParse
->nTempReg
= 0;
7263 pParse
->nRangeReg
= 0;
7267 ** Make sure sufficient registers have been allocated so that
7268 ** iReg is a valid register number.
7270 void sqlite3TouchRegister(Parse
*pParse
, int iReg
){
7271 if( pParse
->nMem
<iReg
) pParse
->nMem
= iReg
;
7274 #if defined(SQLITE_ENABLE_STAT4) || defined(SQLITE_DEBUG)
7276 ** Return the latest reusable register in the set of all registers.
7277 ** The value returned is no less than iMin. If any register iMin or
7278 ** greater is in permanent use, then return one more than that last
7279 ** permanent register.
7281 int sqlite3FirstAvailableRegister(Parse
*pParse
, int iMin
){
7282 const ExprList
*pList
= pParse
->pConstExpr
;
7285 for(i
=0; i
<pList
->nExpr
; i
++){
7286 if( pList
->a
[i
].u
.iConstExprReg
>=iMin
){
7287 iMin
= pList
->a
[i
].u
.iConstExprReg
+ 1;
7291 pParse
->nTempReg
= 0;
7292 pParse
->nRangeReg
= 0;
7295 #endif /* SQLITE_ENABLE_STAT4 || SQLITE_DEBUG */
7298 ** Validate that no temporary register falls within the range of
7299 ** iFirst..iLast, inclusive. This routine is only call from within assert()
7303 int sqlite3NoTempsInRange(Parse
*pParse
, int iFirst
, int iLast
){
7305 if( pParse
->nRangeReg
>0
7306 && pParse
->iRangeReg
+pParse
->nRangeReg
> iFirst
7307 && pParse
->iRangeReg
<= iLast
7311 for(i
=0; i
<pParse
->nTempReg
; i
++){
7312 if( pParse
->aTempReg
[i
]>=iFirst
&& pParse
->aTempReg
[i
]<=iLast
){
7316 if( pParse
->pConstExpr
){
7317 ExprList
*pList
= pParse
->pConstExpr
;
7318 for(i
=0; i
<pList
->nExpr
; i
++){
7319 int iReg
= pList
->a
[i
].u
.iConstExprReg
;
7320 if( iReg
==0 ) continue;
7321 if( iReg
>=iFirst
&& iReg
<=iLast
) return 0;
7326 #endif /* SQLITE_DEBUG */