Add a notice to the user-authentication documentation to say that the
[sqlite.git] / src / expr.c
blobf9b280bbc5762c027952b8574d7e65fd8cc4b40c
1 /*
2 ** 2001 September 15
3 **
4 ** The author disclaims copyright to this source code. In place of
5 ** a legal notice, here is a blessing:
6 **
7 ** May you do good and not evil.
8 ** May you find forgiveness for yourself and forgive others.
9 ** May you share freely, never taking more than you give.
11 *************************************************************************
12 ** This file contains routines used for analyzing expressions and
13 ** for generating VDBE code that evaluates expressions in SQLite.
15 #include "sqliteInt.h"
17 /* Forward declarations */
18 static void exprCodeBetween(Parse*,Expr*,int,void(*)(Parse*,Expr*,int,int),int);
19 static int exprCodeVector(Parse *pParse, Expr *p, int *piToFree);
22 ** Return the affinity character for a single column of a table.
24 char sqlite3TableColumnAffinity(const Table *pTab, int iCol){
25 if( iCol<0 || NEVER(iCol>=pTab->nCol) ) return SQLITE_AFF_INTEGER;
26 return pTab->aCol[iCol].affinity;
30 ** Return the 'affinity' of the expression pExpr if any.
32 ** If pExpr is a column, a reference to a column via an 'AS' alias,
33 ** or a sub-select with a column as the return value, then the
34 ** affinity of that column is returned. Otherwise, 0x00 is returned,
35 ** indicating no affinity for the expression.
37 ** i.e. the WHERE clause expressions in the following statements all
38 ** have an affinity:
40 ** CREATE TABLE t1(a);
41 ** SELECT * FROM t1 WHERE a;
42 ** SELECT a AS b FROM t1 WHERE b;
43 ** SELECT * FROM t1 WHERE (select a from t1);
45 char sqlite3ExprAffinity(const Expr *pExpr){
46 int op;
47 op = pExpr->op;
48 while( 1 /* exit-by-break */ ){
49 if( op==TK_COLUMN || (op==TK_AGG_COLUMN && pExpr->y.pTab!=0) ){
50 assert( ExprUseYTab(pExpr) );
51 assert( pExpr->y.pTab!=0 );
52 return sqlite3TableColumnAffinity(pExpr->y.pTab, pExpr->iColumn);
54 if( op==TK_SELECT ){
55 assert( ExprUseXSelect(pExpr) );
56 assert( pExpr->x.pSelect!=0 );
57 assert( pExpr->x.pSelect->pEList!=0 );
58 assert( pExpr->x.pSelect->pEList->a[0].pExpr!=0 );
59 return sqlite3ExprAffinity(pExpr->x.pSelect->pEList->a[0].pExpr);
61 #ifndef SQLITE_OMIT_CAST
62 if( op==TK_CAST ){
63 assert( !ExprHasProperty(pExpr, EP_IntValue) );
64 return sqlite3AffinityType(pExpr->u.zToken, 0);
66 #endif
67 if( op==TK_SELECT_COLUMN ){
68 assert( pExpr->pLeft!=0 && ExprUseXSelect(pExpr->pLeft) );
69 assert( pExpr->iColumn < pExpr->iTable );
70 assert( pExpr->iColumn >= 0 );
71 assert( pExpr->iTable==pExpr->pLeft->x.pSelect->pEList->nExpr );
72 return sqlite3ExprAffinity(
73 pExpr->pLeft->x.pSelect->pEList->a[pExpr->iColumn].pExpr
76 if( op==TK_VECTOR ){
77 assert( ExprUseXList(pExpr) );
78 return sqlite3ExprAffinity(pExpr->x.pList->a[0].pExpr);
80 if( ExprHasProperty(pExpr, EP_Skip|EP_IfNullRow) ){
81 assert( pExpr->op==TK_COLLATE
82 || pExpr->op==TK_IF_NULL_ROW
83 || (pExpr->op==TK_REGISTER && pExpr->op2==TK_IF_NULL_ROW) );
84 pExpr = pExpr->pLeft;
85 op = pExpr->op;
86 continue;
88 if( op!=TK_REGISTER || (op = pExpr->op2)==TK_REGISTER ) break;
90 return pExpr->affExpr;
94 ** Make a guess at all the possible datatypes of the result that could
95 ** be returned by an expression. Return a bitmask indicating the answer:
97 ** 0x01 Numeric
98 ** 0x02 Text
99 ** 0x04 Blob
101 ** If the expression must return NULL, then 0x00 is returned.
103 int sqlite3ExprDataType(const Expr *pExpr){
104 while( pExpr ){
105 switch( pExpr->op ){
106 case TK_COLLATE:
107 case TK_IF_NULL_ROW:
108 case TK_UPLUS: {
109 pExpr = pExpr->pLeft;
110 break;
112 case TK_NULL: {
113 pExpr = 0;
114 break;
116 case TK_STRING: {
117 return 0x02;
119 case TK_BLOB: {
120 return 0x04;
122 case TK_CONCAT: {
123 return 0x06;
125 case TK_VARIABLE:
126 case TK_AGG_FUNCTION:
127 case TK_FUNCTION: {
128 return 0x07;
130 case TK_COLUMN:
131 case TK_AGG_COLUMN:
132 case TK_SELECT:
133 case TK_CAST:
134 case TK_SELECT_COLUMN:
135 case TK_VECTOR: {
136 int aff = sqlite3ExprAffinity(pExpr);
137 if( aff>=SQLITE_AFF_NUMERIC ) return 0x05;
138 if( aff==SQLITE_AFF_TEXT ) return 0x06;
139 return 0x07;
141 case TK_CASE: {
142 int res = 0;
143 int ii;
144 ExprList *pList = pExpr->x.pList;
145 assert( ExprUseXList(pExpr) && pList!=0 );
146 assert( pList->nExpr > 0);
147 for(ii=1; ii<pList->nExpr; ii+=2){
148 res |= sqlite3ExprDataType(pList->a[ii].pExpr);
150 if( pList->nExpr % 2 ){
151 res |= sqlite3ExprDataType(pList->a[pList->nExpr-1].pExpr);
153 return res;
155 default: {
156 return 0x01;
158 } /* End of switch(op) */
159 } /* End of while(pExpr) */
160 return 0x00;
164 ** Set the collating sequence for expression pExpr to be the collating
165 ** sequence named by pToken. Return a pointer to a new Expr node that
166 ** implements the COLLATE operator.
168 ** If a memory allocation error occurs, that fact is recorded in pParse->db
169 ** and the pExpr parameter is returned unchanged.
171 Expr *sqlite3ExprAddCollateToken(
172 const Parse *pParse, /* Parsing context */
173 Expr *pExpr, /* Add the "COLLATE" clause to this expression */
174 const Token *pCollName, /* Name of collating sequence */
175 int dequote /* True to dequote pCollName */
177 if( pCollName->n>0 ){
178 Expr *pNew = sqlite3ExprAlloc(pParse->db, TK_COLLATE, pCollName, dequote);
179 if( pNew ){
180 pNew->pLeft = pExpr;
181 pNew->flags |= EP_Collate|EP_Skip;
182 pExpr = pNew;
185 return pExpr;
187 Expr *sqlite3ExprAddCollateString(
188 const Parse *pParse, /* Parsing context */
189 Expr *pExpr, /* Add the "COLLATE" clause to this expression */
190 const char *zC /* The collating sequence name */
192 Token s;
193 assert( zC!=0 );
194 sqlite3TokenInit(&s, (char*)zC);
195 return sqlite3ExprAddCollateToken(pParse, pExpr, &s, 0);
199 ** Skip over any TK_COLLATE operators.
201 Expr *sqlite3ExprSkipCollate(Expr *pExpr){
202 while( pExpr && ExprHasProperty(pExpr, EP_Skip) ){
203 assert( pExpr->op==TK_COLLATE );
204 pExpr = pExpr->pLeft;
206 return pExpr;
210 ** Skip over any TK_COLLATE operators and/or any unlikely()
211 ** or likelihood() or likely() functions at the root of an
212 ** expression.
214 Expr *sqlite3ExprSkipCollateAndLikely(Expr *pExpr){
215 while( pExpr && ExprHasProperty(pExpr, EP_Skip|EP_Unlikely) ){
216 if( ExprHasProperty(pExpr, EP_Unlikely) ){
217 assert( ExprUseXList(pExpr) );
218 assert( pExpr->x.pList->nExpr>0 );
219 assert( pExpr->op==TK_FUNCTION );
220 pExpr = pExpr->x.pList->a[0].pExpr;
221 }else{
222 assert( pExpr->op==TK_COLLATE );
223 pExpr = pExpr->pLeft;
226 return pExpr;
230 ** Return the collation sequence for the expression pExpr. If
231 ** there is no defined collating sequence, return NULL.
233 ** See also: sqlite3ExprNNCollSeq()
235 ** The sqlite3ExprNNCollSeq() works the same exact that it returns the
236 ** default collation if pExpr has no defined collation.
238 ** The collating sequence might be determined by a COLLATE operator
239 ** or by the presence of a column with a defined collating sequence.
240 ** COLLATE operators take first precedence. Left operands take
241 ** precedence over right operands.
243 CollSeq *sqlite3ExprCollSeq(Parse *pParse, const Expr *pExpr){
244 sqlite3 *db = pParse->db;
245 CollSeq *pColl = 0;
246 const Expr *p = pExpr;
247 while( p ){
248 int op = p->op;
249 if( op==TK_REGISTER ) op = p->op2;
250 if( (op==TK_AGG_COLUMN && p->y.pTab!=0)
251 || op==TK_COLUMN || op==TK_TRIGGER
253 int j;
254 assert( ExprUseYTab(p) );
255 assert( p->y.pTab!=0 );
256 if( (j = p->iColumn)>=0 ){
257 const char *zColl = sqlite3ColumnColl(&p->y.pTab->aCol[j]);
258 pColl = sqlite3FindCollSeq(db, ENC(db), zColl, 0);
260 break;
262 if( op==TK_CAST || op==TK_UPLUS ){
263 p = p->pLeft;
264 continue;
266 if( op==TK_VECTOR ){
267 assert( ExprUseXList(p) );
268 p = p->x.pList->a[0].pExpr;
269 continue;
271 if( op==TK_COLLATE ){
272 assert( !ExprHasProperty(p, EP_IntValue) );
273 pColl = sqlite3GetCollSeq(pParse, ENC(db), 0, p->u.zToken);
274 break;
276 if( p->flags & EP_Collate ){
277 if( p->pLeft && (p->pLeft->flags & EP_Collate)!=0 ){
278 p = p->pLeft;
279 }else{
280 Expr *pNext = p->pRight;
281 /* The Expr.x union is never used at the same time as Expr.pRight */
282 assert( !ExprUseXList(p) || p->x.pList==0 || p->pRight==0 );
283 if( ExprUseXList(p) && p->x.pList!=0 && !db->mallocFailed ){
284 int i;
285 for(i=0; i<p->x.pList->nExpr; i++){
286 if( ExprHasProperty(p->x.pList->a[i].pExpr, EP_Collate) ){
287 pNext = p->x.pList->a[i].pExpr;
288 break;
292 p = pNext;
294 }else{
295 break;
298 if( sqlite3CheckCollSeq(pParse, pColl) ){
299 pColl = 0;
301 return pColl;
305 ** Return the collation sequence for the expression pExpr. If
306 ** there is no defined collating sequence, return a pointer to the
307 ** default collation sequence.
309 ** See also: sqlite3ExprCollSeq()
311 ** The sqlite3ExprCollSeq() routine works the same except that it
312 ** returns NULL if there is no defined collation.
314 CollSeq *sqlite3ExprNNCollSeq(Parse *pParse, const Expr *pExpr){
315 CollSeq *p = sqlite3ExprCollSeq(pParse, pExpr);
316 if( p==0 ) p = pParse->db->pDfltColl;
317 assert( p!=0 );
318 return p;
322 ** Return TRUE if the two expressions have equivalent collating sequences.
324 int sqlite3ExprCollSeqMatch(Parse *pParse, const Expr *pE1, const Expr *pE2){
325 CollSeq *pColl1 = sqlite3ExprNNCollSeq(pParse, pE1);
326 CollSeq *pColl2 = sqlite3ExprNNCollSeq(pParse, pE2);
327 return sqlite3StrICmp(pColl1->zName, pColl2->zName)==0;
331 ** pExpr is an operand of a comparison operator. aff2 is the
332 ** type affinity of the other operand. This routine returns the
333 ** type affinity that should be used for the comparison operator.
335 char sqlite3CompareAffinity(const Expr *pExpr, char aff2){
336 char aff1 = sqlite3ExprAffinity(pExpr);
337 if( aff1>SQLITE_AFF_NONE && aff2>SQLITE_AFF_NONE ){
338 /* Both sides of the comparison are columns. If one has numeric
339 ** affinity, use that. Otherwise use no affinity.
341 if( sqlite3IsNumericAffinity(aff1) || sqlite3IsNumericAffinity(aff2) ){
342 return SQLITE_AFF_NUMERIC;
343 }else{
344 return SQLITE_AFF_BLOB;
346 }else{
347 /* One side is a column, the other is not. Use the columns affinity. */
348 assert( aff1<=SQLITE_AFF_NONE || aff2<=SQLITE_AFF_NONE );
349 return (aff1<=SQLITE_AFF_NONE ? aff2 : aff1) | SQLITE_AFF_NONE;
354 ** pExpr is a comparison operator. Return the type affinity that should
355 ** be applied to both operands prior to doing the comparison.
357 static char comparisonAffinity(const Expr *pExpr){
358 char aff;
359 assert( pExpr->op==TK_EQ || pExpr->op==TK_IN || pExpr->op==TK_LT ||
360 pExpr->op==TK_GT || pExpr->op==TK_GE || pExpr->op==TK_LE ||
361 pExpr->op==TK_NE || pExpr->op==TK_IS || pExpr->op==TK_ISNOT );
362 assert( pExpr->pLeft );
363 aff = sqlite3ExprAffinity(pExpr->pLeft);
364 if( pExpr->pRight ){
365 aff = sqlite3CompareAffinity(pExpr->pRight, aff);
366 }else if( ExprUseXSelect(pExpr) ){
367 aff = sqlite3CompareAffinity(pExpr->x.pSelect->pEList->a[0].pExpr, aff);
368 }else if( aff==0 ){
369 aff = SQLITE_AFF_BLOB;
371 return aff;
375 ** pExpr is a comparison expression, eg. '=', '<', IN(...) etc.
376 ** idx_affinity is the affinity of an indexed column. Return true
377 ** if the index with affinity idx_affinity may be used to implement
378 ** the comparison in pExpr.
380 int sqlite3IndexAffinityOk(const Expr *pExpr, char idx_affinity){
381 char aff = comparisonAffinity(pExpr);
382 if( aff<SQLITE_AFF_TEXT ){
383 return 1;
385 if( aff==SQLITE_AFF_TEXT ){
386 return idx_affinity==SQLITE_AFF_TEXT;
388 return sqlite3IsNumericAffinity(idx_affinity);
392 ** Return the P5 value that should be used for a binary comparison
393 ** opcode (OP_Eq, OP_Ge etc.) used to compare pExpr1 and pExpr2.
395 static u8 binaryCompareP5(
396 const Expr *pExpr1, /* Left operand */
397 const Expr *pExpr2, /* Right operand */
398 int jumpIfNull /* Extra flags added to P5 */
400 u8 aff = (char)sqlite3ExprAffinity(pExpr2);
401 aff = (u8)sqlite3CompareAffinity(pExpr1, aff) | (u8)jumpIfNull;
402 return aff;
406 ** Return a pointer to the collation sequence that should be used by
407 ** a binary comparison operator comparing pLeft and pRight.
409 ** If the left hand expression has a collating sequence type, then it is
410 ** used. Otherwise the collation sequence for the right hand expression
411 ** is used, or the default (BINARY) if neither expression has a collating
412 ** type.
414 ** Argument pRight (but not pLeft) may be a null pointer. In this case,
415 ** it is not considered.
417 CollSeq *sqlite3BinaryCompareCollSeq(
418 Parse *pParse,
419 const Expr *pLeft,
420 const Expr *pRight
422 CollSeq *pColl;
423 assert( pLeft );
424 if( pLeft->flags & EP_Collate ){
425 pColl = sqlite3ExprCollSeq(pParse, pLeft);
426 }else if( pRight && (pRight->flags & EP_Collate)!=0 ){
427 pColl = sqlite3ExprCollSeq(pParse, pRight);
428 }else{
429 pColl = sqlite3ExprCollSeq(pParse, pLeft);
430 if( !pColl ){
431 pColl = sqlite3ExprCollSeq(pParse, pRight);
434 return pColl;
437 /* Expression p is a comparison operator. Return a collation sequence
438 ** appropriate for the comparison operator.
440 ** This is normally just a wrapper around sqlite3BinaryCompareCollSeq().
441 ** However, if the OP_Commuted flag is set, then the order of the operands
442 ** is reversed in the sqlite3BinaryCompareCollSeq() call so that the
443 ** correct collating sequence is found.
445 CollSeq *sqlite3ExprCompareCollSeq(Parse *pParse, const Expr *p){
446 if( ExprHasProperty(p, EP_Commuted) ){
447 return sqlite3BinaryCompareCollSeq(pParse, p->pRight, p->pLeft);
448 }else{
449 return sqlite3BinaryCompareCollSeq(pParse, p->pLeft, p->pRight);
454 ** Generate code for a comparison operator.
456 static int codeCompare(
457 Parse *pParse, /* The parsing (and code generating) context */
458 Expr *pLeft, /* The left operand */
459 Expr *pRight, /* The right operand */
460 int opcode, /* The comparison opcode */
461 int in1, int in2, /* Register holding operands */
462 int dest, /* Jump here if true. */
463 int jumpIfNull, /* If true, jump if either operand is NULL */
464 int isCommuted /* The comparison has been commuted */
466 int p5;
467 int addr;
468 CollSeq *p4;
470 if( pParse->nErr ) return 0;
471 if( isCommuted ){
472 p4 = sqlite3BinaryCompareCollSeq(pParse, pRight, pLeft);
473 }else{
474 p4 = sqlite3BinaryCompareCollSeq(pParse, pLeft, pRight);
476 p5 = binaryCompareP5(pLeft, pRight, jumpIfNull);
477 addr = sqlite3VdbeAddOp4(pParse->pVdbe, opcode, in2, dest, in1,
478 (void*)p4, P4_COLLSEQ);
479 sqlite3VdbeChangeP5(pParse->pVdbe, (u8)p5);
480 return addr;
484 ** Return true if expression pExpr is a vector, or false otherwise.
486 ** A vector is defined as any expression that results in two or more
487 ** columns of result. Every TK_VECTOR node is an vector because the
488 ** parser will not generate a TK_VECTOR with fewer than two entries.
489 ** But a TK_SELECT might be either a vector or a scalar. It is only
490 ** considered a vector if it has two or more result columns.
492 int sqlite3ExprIsVector(const Expr *pExpr){
493 return sqlite3ExprVectorSize(pExpr)>1;
497 ** If the expression passed as the only argument is of type TK_VECTOR
498 ** return the number of expressions in the vector. Or, if the expression
499 ** is a sub-select, return the number of columns in the sub-select. For
500 ** any other type of expression, return 1.
502 int sqlite3ExprVectorSize(const Expr *pExpr){
503 u8 op = pExpr->op;
504 if( op==TK_REGISTER ) op = pExpr->op2;
505 if( op==TK_VECTOR ){
506 assert( ExprUseXList(pExpr) );
507 return pExpr->x.pList->nExpr;
508 }else if( op==TK_SELECT ){
509 assert( ExprUseXSelect(pExpr) );
510 return pExpr->x.pSelect->pEList->nExpr;
511 }else{
512 return 1;
517 ** Return a pointer to a subexpression of pVector that is the i-th
518 ** column of the vector (numbered starting with 0). The caller must
519 ** ensure that i is within range.
521 ** If pVector is really a scalar (and "scalar" here includes subqueries
522 ** that return a single column!) then return pVector unmodified.
524 ** pVector retains ownership of the returned subexpression.
526 ** If the vector is a (SELECT ...) then the expression returned is
527 ** just the expression for the i-th term of the result set, and may
528 ** not be ready for evaluation because the table cursor has not yet
529 ** been positioned.
531 Expr *sqlite3VectorFieldSubexpr(Expr *pVector, int i){
532 assert( i<sqlite3ExprVectorSize(pVector) || pVector->op==TK_ERROR );
533 if( sqlite3ExprIsVector(pVector) ){
534 assert( pVector->op2==0 || pVector->op==TK_REGISTER );
535 if( pVector->op==TK_SELECT || pVector->op2==TK_SELECT ){
536 assert( ExprUseXSelect(pVector) );
537 return pVector->x.pSelect->pEList->a[i].pExpr;
538 }else{
539 assert( ExprUseXList(pVector) );
540 return pVector->x.pList->a[i].pExpr;
543 return pVector;
547 ** Compute and return a new Expr object which when passed to
548 ** sqlite3ExprCode() will generate all necessary code to compute
549 ** the iField-th column of the vector expression pVector.
551 ** It is ok for pVector to be a scalar (as long as iField==0).
552 ** In that case, this routine works like sqlite3ExprDup().
554 ** The caller owns the returned Expr object and is responsible for
555 ** ensuring that the returned value eventually gets freed.
557 ** The caller retains ownership of pVector. If pVector is a TK_SELECT,
558 ** then the returned object will reference pVector and so pVector must remain
559 ** valid for the life of the returned object. If pVector is a TK_VECTOR
560 ** or a scalar expression, then it can be deleted as soon as this routine
561 ** returns.
563 ** A trick to cause a TK_SELECT pVector to be deleted together with
564 ** the returned Expr object is to attach the pVector to the pRight field
565 ** of the returned TK_SELECT_COLUMN Expr object.
567 Expr *sqlite3ExprForVectorField(
568 Parse *pParse, /* Parsing context */
569 Expr *pVector, /* The vector. List of expressions or a sub-SELECT */
570 int iField, /* Which column of the vector to return */
571 int nField /* Total number of columns in the vector */
573 Expr *pRet;
574 if( pVector->op==TK_SELECT ){
575 assert( ExprUseXSelect(pVector) );
576 /* The TK_SELECT_COLUMN Expr node:
578 ** pLeft: pVector containing TK_SELECT. Not deleted.
579 ** pRight: not used. But recursively deleted.
580 ** iColumn: Index of a column in pVector
581 ** iTable: 0 or the number of columns on the LHS of an assignment
582 ** pLeft->iTable: First in an array of register holding result, or 0
583 ** if the result is not yet computed.
585 ** sqlite3ExprDelete() specifically skips the recursive delete of
586 ** pLeft on TK_SELECT_COLUMN nodes. But pRight is followed, so pVector
587 ** can be attached to pRight to cause this node to take ownership of
588 ** pVector. Typically there will be multiple TK_SELECT_COLUMN nodes
589 ** with the same pLeft pointer to the pVector, but only one of them
590 ** will own the pVector.
592 pRet = sqlite3PExpr(pParse, TK_SELECT_COLUMN, 0, 0);
593 if( pRet ){
594 ExprSetProperty(pRet, EP_FullSize);
595 pRet->iTable = nField;
596 pRet->iColumn = iField;
597 pRet->pLeft = pVector;
599 }else{
600 if( pVector->op==TK_VECTOR ){
601 Expr **ppVector;
602 assert( ExprUseXList(pVector) );
603 ppVector = &pVector->x.pList->a[iField].pExpr;
604 pVector = *ppVector;
605 if( IN_RENAME_OBJECT ){
606 /* This must be a vector UPDATE inside a trigger */
607 *ppVector = 0;
608 return pVector;
611 pRet = sqlite3ExprDup(pParse->db, pVector, 0);
613 return pRet;
617 ** If expression pExpr is of type TK_SELECT, generate code to evaluate
618 ** it. Return the register in which the result is stored (or, if the
619 ** sub-select returns more than one column, the first in an array
620 ** of registers in which the result is stored).
622 ** If pExpr is not a TK_SELECT expression, return 0.
624 static int exprCodeSubselect(Parse *pParse, Expr *pExpr){
625 int reg = 0;
626 #ifndef SQLITE_OMIT_SUBQUERY
627 if( pExpr->op==TK_SELECT ){
628 reg = sqlite3CodeSubselect(pParse, pExpr);
630 #endif
631 return reg;
635 ** Argument pVector points to a vector expression - either a TK_VECTOR
636 ** or TK_SELECT that returns more than one column. This function returns
637 ** the register number of a register that contains the value of
638 ** element iField of the vector.
640 ** If pVector is a TK_SELECT expression, then code for it must have
641 ** already been generated using the exprCodeSubselect() routine. In this
642 ** case parameter regSelect should be the first in an array of registers
643 ** containing the results of the sub-select.
645 ** If pVector is of type TK_VECTOR, then code for the requested field
646 ** is generated. In this case (*pRegFree) may be set to the number of
647 ** a temporary register to be freed by the caller before returning.
649 ** Before returning, output parameter (*ppExpr) is set to point to the
650 ** Expr object corresponding to element iElem of the vector.
652 static int exprVectorRegister(
653 Parse *pParse, /* Parse context */
654 Expr *pVector, /* Vector to extract element from */
655 int iField, /* Field to extract from pVector */
656 int regSelect, /* First in array of registers */
657 Expr **ppExpr, /* OUT: Expression element */
658 int *pRegFree /* OUT: Temp register to free */
660 u8 op = pVector->op;
661 assert( op==TK_VECTOR || op==TK_REGISTER || op==TK_SELECT || op==TK_ERROR );
662 if( op==TK_REGISTER ){
663 *ppExpr = sqlite3VectorFieldSubexpr(pVector, iField);
664 return pVector->iTable+iField;
666 if( op==TK_SELECT ){
667 assert( ExprUseXSelect(pVector) );
668 *ppExpr = pVector->x.pSelect->pEList->a[iField].pExpr;
669 return regSelect+iField;
671 if( op==TK_VECTOR ){
672 assert( ExprUseXList(pVector) );
673 *ppExpr = pVector->x.pList->a[iField].pExpr;
674 return sqlite3ExprCodeTemp(pParse, *ppExpr, pRegFree);
676 return 0;
680 ** Expression pExpr is a comparison between two vector values. Compute
681 ** the result of the comparison (1, 0, or NULL) and write that
682 ** result into register dest.
684 ** The caller must satisfy the following preconditions:
686 ** if pExpr->op==TK_IS: op==TK_EQ and p5==SQLITE_NULLEQ
687 ** if pExpr->op==TK_ISNOT: op==TK_NE and p5==SQLITE_NULLEQ
688 ** otherwise: op==pExpr->op and p5==0
690 static void codeVectorCompare(
691 Parse *pParse, /* Code generator context */
692 Expr *pExpr, /* The comparison operation */
693 int dest, /* Write results into this register */
694 u8 op, /* Comparison operator */
695 u8 p5 /* SQLITE_NULLEQ or zero */
697 Vdbe *v = pParse->pVdbe;
698 Expr *pLeft = pExpr->pLeft;
699 Expr *pRight = pExpr->pRight;
700 int nLeft = sqlite3ExprVectorSize(pLeft);
701 int i;
702 int regLeft = 0;
703 int regRight = 0;
704 u8 opx = op;
705 int addrCmp = 0;
706 int addrDone = sqlite3VdbeMakeLabel(pParse);
707 int isCommuted = ExprHasProperty(pExpr,EP_Commuted);
709 assert( !ExprHasVVAProperty(pExpr,EP_Immutable) );
710 if( pParse->nErr ) return;
711 if( nLeft!=sqlite3ExprVectorSize(pRight) ){
712 sqlite3ErrorMsg(pParse, "row value misused");
713 return;
715 assert( pExpr->op==TK_EQ || pExpr->op==TK_NE
716 || pExpr->op==TK_IS || pExpr->op==TK_ISNOT
717 || pExpr->op==TK_LT || pExpr->op==TK_GT
718 || pExpr->op==TK_LE || pExpr->op==TK_GE
720 assert( pExpr->op==op || (pExpr->op==TK_IS && op==TK_EQ)
721 || (pExpr->op==TK_ISNOT && op==TK_NE) );
722 assert( p5==0 || pExpr->op!=op );
723 assert( p5==SQLITE_NULLEQ || pExpr->op==op );
725 if( op==TK_LE ) opx = TK_LT;
726 if( op==TK_GE ) opx = TK_GT;
727 if( op==TK_NE ) opx = TK_EQ;
729 regLeft = exprCodeSubselect(pParse, pLeft);
730 regRight = exprCodeSubselect(pParse, pRight);
732 sqlite3VdbeAddOp2(v, OP_Integer, 1, dest);
733 for(i=0; 1 /*Loop exits by "break"*/; i++){
734 int regFree1 = 0, regFree2 = 0;
735 Expr *pL = 0, *pR = 0;
736 int r1, r2;
737 assert( i>=0 && i<nLeft );
738 if( addrCmp ) sqlite3VdbeJumpHere(v, addrCmp);
739 r1 = exprVectorRegister(pParse, pLeft, i, regLeft, &pL, &regFree1);
740 r2 = exprVectorRegister(pParse, pRight, i, regRight, &pR, &regFree2);
741 addrCmp = sqlite3VdbeCurrentAddr(v);
742 codeCompare(pParse, pL, pR, opx, r1, r2, addrDone, p5, isCommuted);
743 testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt);
744 testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le);
745 testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt);
746 testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge);
747 testcase(op==OP_Eq); VdbeCoverageIf(v,op==OP_Eq);
748 testcase(op==OP_Ne); VdbeCoverageIf(v,op==OP_Ne);
749 sqlite3ReleaseTempReg(pParse, regFree1);
750 sqlite3ReleaseTempReg(pParse, regFree2);
751 if( (opx==TK_LT || opx==TK_GT) && i<nLeft-1 ){
752 addrCmp = sqlite3VdbeAddOp0(v, OP_ElseEq);
753 testcase(opx==TK_LT); VdbeCoverageIf(v,opx==TK_LT);
754 testcase(opx==TK_GT); VdbeCoverageIf(v,opx==TK_GT);
756 if( p5==SQLITE_NULLEQ ){
757 sqlite3VdbeAddOp2(v, OP_Integer, 0, dest);
758 }else{
759 sqlite3VdbeAddOp3(v, OP_ZeroOrNull, r1, dest, r2);
761 if( i==nLeft-1 ){
762 break;
764 if( opx==TK_EQ ){
765 sqlite3VdbeAddOp2(v, OP_NotNull, dest, addrDone); VdbeCoverage(v);
766 }else{
767 assert( op==TK_LT || op==TK_GT || op==TK_LE || op==TK_GE );
768 sqlite3VdbeAddOp2(v, OP_Goto, 0, addrDone);
769 if( i==nLeft-2 ) opx = op;
772 sqlite3VdbeJumpHere(v, addrCmp);
773 sqlite3VdbeResolveLabel(v, addrDone);
774 if( op==TK_NE ){
775 sqlite3VdbeAddOp2(v, OP_Not, dest, dest);
779 #if SQLITE_MAX_EXPR_DEPTH>0
781 ** Check that argument nHeight is less than or equal to the maximum
782 ** expression depth allowed. If it is not, leave an error message in
783 ** pParse.
785 int sqlite3ExprCheckHeight(Parse *pParse, int nHeight){
786 int rc = SQLITE_OK;
787 int mxHeight = pParse->db->aLimit[SQLITE_LIMIT_EXPR_DEPTH];
788 if( nHeight>mxHeight ){
789 sqlite3ErrorMsg(pParse,
790 "Expression tree is too large (maximum depth %d)", mxHeight
792 rc = SQLITE_ERROR;
794 return rc;
797 /* The following three functions, heightOfExpr(), heightOfExprList()
798 ** and heightOfSelect(), are used to determine the maximum height
799 ** of any expression tree referenced by the structure passed as the
800 ** first argument.
802 ** If this maximum height is greater than the current value pointed
803 ** to by pnHeight, the second parameter, then set *pnHeight to that
804 ** value.
806 static void heightOfExpr(const Expr *p, int *pnHeight){
807 if( p ){
808 if( p->nHeight>*pnHeight ){
809 *pnHeight = p->nHeight;
813 static void heightOfExprList(const ExprList *p, int *pnHeight){
814 if( p ){
815 int i;
816 for(i=0; i<p->nExpr; i++){
817 heightOfExpr(p->a[i].pExpr, pnHeight);
821 static void heightOfSelect(const Select *pSelect, int *pnHeight){
822 const Select *p;
823 for(p=pSelect; p; p=p->pPrior){
824 heightOfExpr(p->pWhere, pnHeight);
825 heightOfExpr(p->pHaving, pnHeight);
826 heightOfExpr(p->pLimit, pnHeight);
827 heightOfExprList(p->pEList, pnHeight);
828 heightOfExprList(p->pGroupBy, pnHeight);
829 heightOfExprList(p->pOrderBy, pnHeight);
834 ** Set the Expr.nHeight variable in the structure passed as an
835 ** argument. An expression with no children, Expr.pList or
836 ** Expr.pSelect member has a height of 1. Any other expression
837 ** has a height equal to the maximum height of any other
838 ** referenced Expr plus one.
840 ** Also propagate EP_Propagate flags up from Expr.x.pList to Expr.flags,
841 ** if appropriate.
843 static void exprSetHeight(Expr *p){
844 int nHeight = p->pLeft ? p->pLeft->nHeight : 0;
845 if( NEVER(p->pRight) && p->pRight->nHeight>nHeight ){
846 nHeight = p->pRight->nHeight;
848 if( ExprUseXSelect(p) ){
849 heightOfSelect(p->x.pSelect, &nHeight);
850 }else if( p->x.pList ){
851 heightOfExprList(p->x.pList, &nHeight);
852 p->flags |= EP_Propagate & sqlite3ExprListFlags(p->x.pList);
854 p->nHeight = nHeight + 1;
858 ** Set the Expr.nHeight variable using the exprSetHeight() function. If
859 ** the height is greater than the maximum allowed expression depth,
860 ** leave an error in pParse.
862 ** Also propagate all EP_Propagate flags from the Expr.x.pList into
863 ** Expr.flags.
865 void sqlite3ExprSetHeightAndFlags(Parse *pParse, Expr *p){
866 if( pParse->nErr ) return;
867 exprSetHeight(p);
868 sqlite3ExprCheckHeight(pParse, p->nHeight);
872 ** Return the maximum height of any expression tree referenced
873 ** by the select statement passed as an argument.
875 int sqlite3SelectExprHeight(const Select *p){
876 int nHeight = 0;
877 heightOfSelect(p, &nHeight);
878 return nHeight;
880 #else /* ABOVE: Height enforcement enabled. BELOW: Height enforcement off */
882 ** Propagate all EP_Propagate flags from the Expr.x.pList into
883 ** Expr.flags.
885 void sqlite3ExprSetHeightAndFlags(Parse *pParse, Expr *p){
886 if( pParse->nErr ) return;
887 if( p && ExprUseXList(p) && p->x.pList ){
888 p->flags |= EP_Propagate & sqlite3ExprListFlags(p->x.pList);
891 #define exprSetHeight(y)
892 #endif /* SQLITE_MAX_EXPR_DEPTH>0 */
895 ** Set the error offset for an Expr node, if possible.
897 void sqlite3ExprSetErrorOffset(Expr *pExpr, int iOfst){
898 if( pExpr==0 ) return;
899 if( NEVER(ExprUseWJoin(pExpr)) ) return;
900 pExpr->w.iOfst = iOfst;
904 ** This routine is the core allocator for Expr nodes.
906 ** Construct a new expression node and return a pointer to it. Memory
907 ** for this node and for the pToken argument is a single allocation
908 ** obtained from sqlite3DbMalloc(). The calling function
909 ** is responsible for making sure the node eventually gets freed.
911 ** If dequote is true, then the token (if it exists) is dequoted.
912 ** If dequote is false, no dequoting is performed. The deQuote
913 ** parameter is ignored if pToken is NULL or if the token does not
914 ** appear to be quoted. If the quotes were of the form "..." (double-quotes)
915 ** then the EP_DblQuoted flag is set on the expression node.
917 ** Special case: If op==TK_INTEGER and pToken points to a string that
918 ** can be translated into a 32-bit integer, then the token is not
919 ** stored in u.zToken. Instead, the integer values is written
920 ** into u.iValue and the EP_IntValue flag is set. No extra storage
921 ** is allocated to hold the integer text and the dequote flag is ignored.
923 Expr *sqlite3ExprAlloc(
924 sqlite3 *db, /* Handle for sqlite3DbMallocRawNN() */
925 int op, /* Expression opcode */
926 const Token *pToken, /* Token argument. Might be NULL */
927 int dequote /* True to dequote */
929 Expr *pNew;
930 int nExtra = 0;
931 int iValue = 0;
933 assert( db!=0 );
934 if( pToken ){
935 if( op!=TK_INTEGER || pToken->z==0
936 || sqlite3GetInt32(pToken->z, &iValue)==0 ){
937 nExtra = pToken->n+1;
938 assert( iValue>=0 );
941 pNew = sqlite3DbMallocRawNN(db, sizeof(Expr)+nExtra);
942 if( pNew ){
943 memset(pNew, 0, sizeof(Expr));
944 pNew->op = (u8)op;
945 pNew->iAgg = -1;
946 if( pToken ){
947 if( nExtra==0 ){
948 pNew->flags |= EP_IntValue|EP_Leaf|(iValue?EP_IsTrue:EP_IsFalse);
949 pNew->u.iValue = iValue;
950 }else{
951 pNew->u.zToken = (char*)&pNew[1];
952 assert( pToken->z!=0 || pToken->n==0 );
953 if( pToken->n ) memcpy(pNew->u.zToken, pToken->z, pToken->n);
954 pNew->u.zToken[pToken->n] = 0;
955 if( dequote && sqlite3Isquote(pNew->u.zToken[0]) ){
956 sqlite3DequoteExpr(pNew);
960 #if SQLITE_MAX_EXPR_DEPTH>0
961 pNew->nHeight = 1;
962 #endif
964 return pNew;
968 ** Allocate a new expression node from a zero-terminated token that has
969 ** already been dequoted.
971 Expr *sqlite3Expr(
972 sqlite3 *db, /* Handle for sqlite3DbMallocZero() (may be null) */
973 int op, /* Expression opcode */
974 const char *zToken /* Token argument. Might be NULL */
976 Token x;
977 x.z = zToken;
978 x.n = sqlite3Strlen30(zToken);
979 return sqlite3ExprAlloc(db, op, &x, 0);
983 ** Attach subtrees pLeft and pRight to the Expr node pRoot.
985 ** If pRoot==NULL that means that a memory allocation error has occurred.
986 ** In that case, delete the subtrees pLeft and pRight.
988 void sqlite3ExprAttachSubtrees(
989 sqlite3 *db,
990 Expr *pRoot,
991 Expr *pLeft,
992 Expr *pRight
994 if( pRoot==0 ){
995 assert( db->mallocFailed );
996 sqlite3ExprDelete(db, pLeft);
997 sqlite3ExprDelete(db, pRight);
998 }else{
999 assert( ExprUseXList(pRoot) );
1000 assert( pRoot->x.pSelect==0 );
1001 if( pRight ){
1002 pRoot->pRight = pRight;
1003 pRoot->flags |= EP_Propagate & pRight->flags;
1004 #if SQLITE_MAX_EXPR_DEPTH>0
1005 pRoot->nHeight = pRight->nHeight+1;
1006 }else{
1007 pRoot->nHeight = 1;
1008 #endif
1010 if( pLeft ){
1011 pRoot->pLeft = pLeft;
1012 pRoot->flags |= EP_Propagate & pLeft->flags;
1013 #if SQLITE_MAX_EXPR_DEPTH>0
1014 if( pLeft->nHeight>=pRoot->nHeight ){
1015 pRoot->nHeight = pLeft->nHeight+1;
1017 #endif
1023 ** Allocate an Expr node which joins as many as two subtrees.
1025 ** One or both of the subtrees can be NULL. Return a pointer to the new
1026 ** Expr node. Or, if an OOM error occurs, set pParse->db->mallocFailed,
1027 ** free the subtrees and return NULL.
1029 Expr *sqlite3PExpr(
1030 Parse *pParse, /* Parsing context */
1031 int op, /* Expression opcode */
1032 Expr *pLeft, /* Left operand */
1033 Expr *pRight /* Right operand */
1035 Expr *p;
1036 p = sqlite3DbMallocRawNN(pParse->db, sizeof(Expr));
1037 if( p ){
1038 memset(p, 0, sizeof(Expr));
1039 p->op = op & 0xff;
1040 p->iAgg = -1;
1041 sqlite3ExprAttachSubtrees(pParse->db, p, pLeft, pRight);
1042 sqlite3ExprCheckHeight(pParse, p->nHeight);
1043 }else{
1044 sqlite3ExprDelete(pParse->db, pLeft);
1045 sqlite3ExprDelete(pParse->db, pRight);
1047 return p;
1051 ** Add pSelect to the Expr.x.pSelect field. Or, if pExpr is NULL (due
1052 ** do a memory allocation failure) then delete the pSelect object.
1054 void sqlite3PExprAddSelect(Parse *pParse, Expr *pExpr, Select *pSelect){
1055 if( pExpr ){
1056 pExpr->x.pSelect = pSelect;
1057 ExprSetProperty(pExpr, EP_xIsSelect|EP_Subquery);
1058 sqlite3ExprSetHeightAndFlags(pParse, pExpr);
1059 }else{
1060 assert( pParse->db->mallocFailed );
1061 sqlite3SelectDelete(pParse->db, pSelect);
1066 ** Expression list pEList is a list of vector values. This function
1067 ** converts the contents of pEList to a VALUES(...) Select statement
1068 ** returning 1 row for each element of the list. For example, the
1069 ** expression list:
1071 ** ( (1,2), (3,4) (5,6) )
1073 ** is translated to the equivalent of:
1075 ** VALUES(1,2), (3,4), (5,6)
1077 ** Each of the vector values in pEList must contain exactly nElem terms.
1078 ** If a list element that is not a vector or does not contain nElem terms,
1079 ** an error message is left in pParse.
1081 ** This is used as part of processing IN(...) expressions with a list
1082 ** of vectors on the RHS. e.g. "... IN ((1,2), (3,4), (5,6))".
1084 Select *sqlite3ExprListToValues(Parse *pParse, int nElem, ExprList *pEList){
1085 int ii;
1086 Select *pRet = 0;
1087 assert( nElem>1 );
1088 for(ii=0; ii<pEList->nExpr; ii++){
1089 Select *pSel;
1090 Expr *pExpr = pEList->a[ii].pExpr;
1091 int nExprElem;
1092 if( pExpr->op==TK_VECTOR ){
1093 assert( ExprUseXList(pExpr) );
1094 nExprElem = pExpr->x.pList->nExpr;
1095 }else{
1096 nExprElem = 1;
1098 if( nExprElem!=nElem ){
1099 sqlite3ErrorMsg(pParse, "IN(...) element has %d term%s - expected %d",
1100 nExprElem, nExprElem>1?"s":"", nElem
1102 break;
1104 assert( ExprUseXList(pExpr) );
1105 pSel = sqlite3SelectNew(pParse, pExpr->x.pList, 0, 0, 0, 0, 0, SF_Values,0);
1106 pExpr->x.pList = 0;
1107 if( pSel ){
1108 if( pRet ){
1109 pSel->op = TK_ALL;
1110 pSel->pPrior = pRet;
1112 pRet = pSel;
1116 if( pRet && pRet->pPrior ){
1117 pRet->selFlags |= SF_MultiValue;
1119 sqlite3ExprListDelete(pParse->db, pEList);
1120 return pRet;
1124 ** Join two expressions using an AND operator. If either expression is
1125 ** NULL, then just return the other expression.
1127 ** If one side or the other of the AND is known to be false, and neither side
1128 ** is part of an ON clause, then instead of returning an AND expression,
1129 ** just return a constant expression with a value of false.
1131 Expr *sqlite3ExprAnd(Parse *pParse, Expr *pLeft, Expr *pRight){
1132 sqlite3 *db = pParse->db;
1133 if( pLeft==0 ){
1134 return pRight;
1135 }else if( pRight==0 ){
1136 return pLeft;
1137 }else{
1138 u32 f = pLeft->flags | pRight->flags;
1139 if( (f&(EP_OuterON|EP_InnerON|EP_IsFalse))==EP_IsFalse
1140 && !IN_RENAME_OBJECT
1142 sqlite3ExprDeferredDelete(pParse, pLeft);
1143 sqlite3ExprDeferredDelete(pParse, pRight);
1144 return sqlite3Expr(db, TK_INTEGER, "0");
1145 }else{
1146 return sqlite3PExpr(pParse, TK_AND, pLeft, pRight);
1152 ** Construct a new expression node for a function with multiple
1153 ** arguments.
1155 Expr *sqlite3ExprFunction(
1156 Parse *pParse, /* Parsing context */
1157 ExprList *pList, /* Argument list */
1158 const Token *pToken, /* Name of the function */
1159 int eDistinct /* SF_Distinct or SF_ALL or 0 */
1161 Expr *pNew;
1162 sqlite3 *db = pParse->db;
1163 assert( pToken );
1164 pNew = sqlite3ExprAlloc(db, TK_FUNCTION, pToken, 1);
1165 if( pNew==0 ){
1166 sqlite3ExprListDelete(db, pList); /* Avoid memory leak when malloc fails */
1167 return 0;
1169 assert( !ExprHasProperty(pNew, EP_InnerON|EP_OuterON) );
1170 pNew->w.iOfst = (int)(pToken->z - pParse->zTail);
1171 if( pList
1172 && pList->nExpr > pParse->db->aLimit[SQLITE_LIMIT_FUNCTION_ARG]
1173 && !pParse->nested
1175 sqlite3ErrorMsg(pParse, "too many arguments on function %T", pToken);
1177 pNew->x.pList = pList;
1178 ExprSetProperty(pNew, EP_HasFunc);
1179 assert( ExprUseXList(pNew) );
1180 sqlite3ExprSetHeightAndFlags(pParse, pNew);
1181 if( eDistinct==SF_Distinct ) ExprSetProperty(pNew, EP_Distinct);
1182 return pNew;
1186 ** Report an error when attempting to use an ORDER BY clause within
1187 ** the arguments of a non-aggregate function.
1189 void sqlite3ExprOrderByAggregateError(Parse *pParse, Expr *p){
1190 sqlite3ErrorMsg(pParse,
1191 "ORDER BY may not be used with non-aggregate %#T()", p
1196 ** Attach an ORDER BY clause to a function call.
1198 ** functionname( arguments ORDER BY sortlist )
1199 ** \_____________________/ \______/
1200 ** pExpr pOrderBy
1202 ** The ORDER BY clause is inserted into a new Expr node of type TK_ORDER
1203 ** and added to the Expr.pLeft field of the parent TK_FUNCTION node.
1205 void sqlite3ExprAddFunctionOrderBy(
1206 Parse *pParse, /* Parsing context */
1207 Expr *pExpr, /* The function call to which ORDER BY is to be added */
1208 ExprList *pOrderBy /* The ORDER BY clause to add */
1210 Expr *pOB;
1211 sqlite3 *db = pParse->db;
1212 if( NEVER(pOrderBy==0) ){
1213 assert( db->mallocFailed );
1214 return;
1216 if( pExpr==0 ){
1217 assert( db->mallocFailed );
1218 sqlite3ExprListDelete(db, pOrderBy);
1219 return;
1221 assert( pExpr->op==TK_FUNCTION );
1222 assert( pExpr->pLeft==0 );
1223 assert( ExprUseXList(pExpr) );
1224 if( pExpr->x.pList==0 || NEVER(pExpr->x.pList->nExpr==0) ){
1225 /* Ignore ORDER BY on zero-argument aggregates */
1226 sqlite3ParserAddCleanup(pParse, sqlite3ExprListDeleteGeneric, pOrderBy);
1227 return;
1229 if( IsWindowFunc(pExpr) ){
1230 sqlite3ExprOrderByAggregateError(pParse, pExpr);
1231 sqlite3ExprListDelete(db, pOrderBy);
1232 return;
1235 pOB = sqlite3ExprAlloc(db, TK_ORDER, 0, 0);
1236 if( pOB==0 ){
1237 sqlite3ExprListDelete(db, pOrderBy);
1238 return;
1240 pOB->x.pList = pOrderBy;
1241 assert( ExprUseXList(pOB) );
1242 pExpr->pLeft = pOB;
1243 ExprSetProperty(pOB, EP_FullSize);
1247 ** Check to see if a function is usable according to current access
1248 ** rules:
1250 ** SQLITE_FUNC_DIRECT - Only usable from top-level SQL
1252 ** SQLITE_FUNC_UNSAFE - Usable if TRUSTED_SCHEMA or from
1253 ** top-level SQL
1255 ** If the function is not usable, create an error.
1257 void sqlite3ExprFunctionUsable(
1258 Parse *pParse, /* Parsing and code generating context */
1259 const Expr *pExpr, /* The function invocation */
1260 const FuncDef *pDef /* The function being invoked */
1262 assert( !IN_RENAME_OBJECT );
1263 assert( (pDef->funcFlags & (SQLITE_FUNC_DIRECT|SQLITE_FUNC_UNSAFE))!=0 );
1264 if( ExprHasProperty(pExpr, EP_FromDDL) ){
1265 if( (pDef->funcFlags & SQLITE_FUNC_DIRECT)!=0
1266 || (pParse->db->flags & SQLITE_TrustedSchema)==0
1268 /* Functions prohibited in triggers and views if:
1269 ** (1) tagged with SQLITE_DIRECTONLY
1270 ** (2) not tagged with SQLITE_INNOCUOUS (which means it
1271 ** is tagged with SQLITE_FUNC_UNSAFE) and
1272 ** SQLITE_DBCONFIG_TRUSTED_SCHEMA is off (meaning
1273 ** that the schema is possibly tainted).
1275 sqlite3ErrorMsg(pParse, "unsafe use of %#T()", pExpr);
1281 ** Assign a variable number to an expression that encodes a wildcard
1282 ** in the original SQL statement.
1284 ** Wildcards consisting of a single "?" are assigned the next sequential
1285 ** variable number.
1287 ** Wildcards of the form "?nnn" are assigned the number "nnn". We make
1288 ** sure "nnn" is not too big to avoid a denial of service attack when
1289 ** the SQL statement comes from an external source.
1291 ** Wildcards of the form ":aaa", "@aaa", or "$aaa" are assigned the same number
1292 ** as the previous instance of the same wildcard. Or if this is the first
1293 ** instance of the wildcard, the next sequential variable number is
1294 ** assigned.
1296 void sqlite3ExprAssignVarNumber(Parse *pParse, Expr *pExpr, u32 n){
1297 sqlite3 *db = pParse->db;
1298 const char *z;
1299 ynVar x;
1301 if( pExpr==0 ) return;
1302 assert( !ExprHasProperty(pExpr, EP_IntValue|EP_Reduced|EP_TokenOnly) );
1303 z = pExpr->u.zToken;
1304 assert( z!=0 );
1305 assert( z[0]!=0 );
1306 assert( n==(u32)sqlite3Strlen30(z) );
1307 if( z[1]==0 ){
1308 /* Wildcard of the form "?". Assign the next variable number */
1309 assert( z[0]=='?' );
1310 x = (ynVar)(++pParse->nVar);
1311 }else{
1312 int doAdd = 0;
1313 if( z[0]=='?' ){
1314 /* Wildcard of the form "?nnn". Convert "nnn" to an integer and
1315 ** use it as the variable number */
1316 i64 i;
1317 int bOk;
1318 if( n==2 ){ /*OPTIMIZATION-IF-TRUE*/
1319 i = z[1]-'0'; /* The common case of ?N for a single digit N */
1320 bOk = 1;
1321 }else{
1322 bOk = 0==sqlite3Atoi64(&z[1], &i, n-1, SQLITE_UTF8);
1324 testcase( i==0 );
1325 testcase( i==1 );
1326 testcase( i==db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER]-1 );
1327 testcase( i==db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] );
1328 if( bOk==0 || i<1 || i>db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ){
1329 sqlite3ErrorMsg(pParse, "variable number must be between ?1 and ?%d",
1330 db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER]);
1331 sqlite3RecordErrorOffsetOfExpr(pParse->db, pExpr);
1332 return;
1334 x = (ynVar)i;
1335 if( x>pParse->nVar ){
1336 pParse->nVar = (int)x;
1337 doAdd = 1;
1338 }else if( sqlite3VListNumToName(pParse->pVList, x)==0 ){
1339 doAdd = 1;
1341 }else{
1342 /* Wildcards like ":aaa", "$aaa" or "@aaa". Reuse the same variable
1343 ** number as the prior appearance of the same name, or if the name
1344 ** has never appeared before, reuse the same variable number
1346 x = (ynVar)sqlite3VListNameToNum(pParse->pVList, z, n);
1347 if( x==0 ){
1348 x = (ynVar)(++pParse->nVar);
1349 doAdd = 1;
1352 if( doAdd ){
1353 pParse->pVList = sqlite3VListAdd(db, pParse->pVList, z, n, x);
1356 pExpr->iColumn = x;
1357 if( x>db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ){
1358 sqlite3ErrorMsg(pParse, "too many SQL variables");
1359 sqlite3RecordErrorOffsetOfExpr(pParse->db, pExpr);
1364 ** Recursively delete an expression tree.
1366 static SQLITE_NOINLINE void sqlite3ExprDeleteNN(sqlite3 *db, Expr *p){
1367 assert( p!=0 );
1368 assert( db!=0 );
1369 assert( !ExprUseUValue(p) || p->u.iValue>=0 );
1370 assert( !ExprUseYWin(p) || !ExprUseYSub(p) );
1371 assert( !ExprUseYWin(p) || p->y.pWin!=0 || db->mallocFailed );
1372 assert( p->op!=TK_FUNCTION || !ExprUseYSub(p) );
1373 #ifdef SQLITE_DEBUG
1374 if( ExprHasProperty(p, EP_Leaf) && !ExprHasProperty(p, EP_TokenOnly) ){
1375 assert( p->pLeft==0 );
1376 assert( p->pRight==0 );
1377 assert( !ExprUseXSelect(p) || p->x.pSelect==0 );
1378 assert( !ExprUseXList(p) || p->x.pList==0 );
1380 #endif
1381 if( !ExprHasProperty(p, (EP_TokenOnly|EP_Leaf)) ){
1382 /* The Expr.x union is never used at the same time as Expr.pRight */
1383 assert( (ExprUseXList(p) && p->x.pList==0) || p->pRight==0 );
1384 if( p->pLeft && p->op!=TK_SELECT_COLUMN ) sqlite3ExprDeleteNN(db, p->pLeft);
1385 if( p->pRight ){
1386 assert( !ExprHasProperty(p, EP_WinFunc) );
1387 sqlite3ExprDeleteNN(db, p->pRight);
1388 }else if( ExprUseXSelect(p) ){
1389 assert( !ExprHasProperty(p, EP_WinFunc) );
1390 sqlite3SelectDelete(db, p->x.pSelect);
1391 }else{
1392 sqlite3ExprListDelete(db, p->x.pList);
1393 #ifndef SQLITE_OMIT_WINDOWFUNC
1394 if( ExprHasProperty(p, EP_WinFunc) ){
1395 sqlite3WindowDelete(db, p->y.pWin);
1397 #endif
1400 if( !ExprHasProperty(p, EP_Static) ){
1401 sqlite3DbNNFreeNN(db, p);
1404 void sqlite3ExprDelete(sqlite3 *db, Expr *p){
1405 if( p ) sqlite3ExprDeleteNN(db, p);
1407 void sqlite3ExprDeleteGeneric(sqlite3 *db, void *p){
1408 if( ALWAYS(p) ) sqlite3ExprDeleteNN(db, (Expr*)p);
1412 ** Clear both elements of an OnOrUsing object
1414 void sqlite3ClearOnOrUsing(sqlite3 *db, OnOrUsing *p){
1415 if( p==0 ){
1416 /* Nothing to clear */
1417 }else if( p->pOn ){
1418 sqlite3ExprDeleteNN(db, p->pOn);
1419 }else if( p->pUsing ){
1420 sqlite3IdListDelete(db, p->pUsing);
1425 ** Arrange to cause pExpr to be deleted when the pParse is deleted.
1426 ** This is similar to sqlite3ExprDelete() except that the delete is
1427 ** deferred until the pParse is deleted.
1429 ** The pExpr might be deleted immediately on an OOM error.
1431 ** The deferred delete is (currently) implemented by adding the
1432 ** pExpr to the pParse->pConstExpr list with a register number of 0.
1434 void sqlite3ExprDeferredDelete(Parse *pParse, Expr *pExpr){
1435 sqlite3ParserAddCleanup(pParse, sqlite3ExprDeleteGeneric, pExpr);
1438 /* Invoke sqlite3RenameExprUnmap() and sqlite3ExprDelete() on the
1439 ** expression.
1441 void sqlite3ExprUnmapAndDelete(Parse *pParse, Expr *p){
1442 if( p ){
1443 if( IN_RENAME_OBJECT ){
1444 sqlite3RenameExprUnmap(pParse, p);
1446 sqlite3ExprDeleteNN(pParse->db, p);
1451 ** Return the number of bytes allocated for the expression structure
1452 ** passed as the first argument. This is always one of EXPR_FULLSIZE,
1453 ** EXPR_REDUCEDSIZE or EXPR_TOKENONLYSIZE.
1455 static int exprStructSize(const Expr *p){
1456 if( ExprHasProperty(p, EP_TokenOnly) ) return EXPR_TOKENONLYSIZE;
1457 if( ExprHasProperty(p, EP_Reduced) ) return EXPR_REDUCEDSIZE;
1458 return EXPR_FULLSIZE;
1462 ** The dupedExpr*Size() routines each return the number of bytes required
1463 ** to store a copy of an expression or expression tree. They differ in
1464 ** how much of the tree is measured.
1466 ** dupedExprStructSize() Size of only the Expr structure
1467 ** dupedExprNodeSize() Size of Expr + space for token
1468 ** dupedExprSize() Expr + token + subtree components
1470 ***************************************************************************
1472 ** The dupedExprStructSize() function returns two values OR-ed together:
1473 ** (1) the space required for a copy of the Expr structure only and
1474 ** (2) the EP_xxx flags that indicate what the structure size should be.
1475 ** The return values is always one of:
1477 ** EXPR_FULLSIZE
1478 ** EXPR_REDUCEDSIZE | EP_Reduced
1479 ** EXPR_TOKENONLYSIZE | EP_TokenOnly
1481 ** The size of the structure can be found by masking the return value
1482 ** of this routine with 0xfff. The flags can be found by masking the
1483 ** return value with EP_Reduced|EP_TokenOnly.
1485 ** Note that with flags==EXPRDUP_REDUCE, this routines works on full-size
1486 ** (unreduced) Expr objects as they or originally constructed by the parser.
1487 ** During expression analysis, extra information is computed and moved into
1488 ** later parts of the Expr object and that extra information might get chopped
1489 ** off if the expression is reduced. Note also that it does not work to
1490 ** make an EXPRDUP_REDUCE copy of a reduced expression. It is only legal
1491 ** to reduce a pristine expression tree from the parser. The implementation
1492 ** of dupedExprStructSize() contain multiple assert() statements that attempt
1493 ** to enforce this constraint.
1495 static int dupedExprStructSize(const Expr *p, int flags){
1496 int nSize;
1497 assert( flags==EXPRDUP_REDUCE || flags==0 ); /* Only one flag value allowed */
1498 assert( EXPR_FULLSIZE<=0xfff );
1499 assert( (0xfff & (EP_Reduced|EP_TokenOnly))==0 );
1500 if( 0==flags || ExprHasProperty(p, EP_FullSize) ){
1501 nSize = EXPR_FULLSIZE;
1502 }else{
1503 assert( !ExprHasProperty(p, EP_TokenOnly|EP_Reduced) );
1504 assert( !ExprHasProperty(p, EP_OuterON) );
1505 assert( !ExprHasVVAProperty(p, EP_NoReduce) );
1506 if( p->pLeft || p->x.pList ){
1507 nSize = EXPR_REDUCEDSIZE | EP_Reduced;
1508 }else{
1509 assert( p->pRight==0 );
1510 nSize = EXPR_TOKENONLYSIZE | EP_TokenOnly;
1513 return nSize;
1517 ** This function returns the space in bytes required to store the copy
1518 ** of the Expr structure and a copy of the Expr.u.zToken string (if that
1519 ** string is defined.)
1521 static int dupedExprNodeSize(const Expr *p, int flags){
1522 int nByte = dupedExprStructSize(p, flags) & 0xfff;
1523 if( !ExprHasProperty(p, EP_IntValue) && p->u.zToken ){
1524 nByte += sqlite3Strlen30NN(p->u.zToken)+1;
1526 return ROUND8(nByte);
1530 ** Return the number of bytes required to create a duplicate of the
1531 ** expression passed as the first argument.
1533 ** The value returned includes space to create a copy of the Expr struct
1534 ** itself and the buffer referred to by Expr.u.zToken, if any.
1536 ** The return value includes space to duplicate all Expr nodes in the
1537 ** tree formed by Expr.pLeft and Expr.pRight, but not any other
1538 ** substructure such as Expr.x.pList, Expr.x.pSelect, and Expr.y.pWin.
1540 static int dupedExprSize(const Expr *p){
1541 int nByte;
1542 assert( p!=0 );
1543 nByte = dupedExprNodeSize(p, EXPRDUP_REDUCE);
1544 if( p->pLeft ) nByte += dupedExprSize(p->pLeft);
1545 if( p->pRight ) nByte += dupedExprSize(p->pRight);
1546 assert( nByte==ROUND8(nByte) );
1547 return nByte;
1551 ** An EdupBuf is a memory allocation used to stored multiple Expr objects
1552 ** together with their Expr.zToken content. This is used to help implement
1553 ** compression while doing sqlite3ExprDup(). The top-level Expr does the
1554 ** allocation for itself and many of its decendents, then passes an instance
1555 ** of the structure down into exprDup() so that they decendents can have
1556 ** access to that memory.
1558 typedef struct EdupBuf EdupBuf;
1559 struct EdupBuf {
1560 u8 *zAlloc; /* Memory space available for storage */
1561 #ifdef SQLITE_DEBUG
1562 u8 *zEnd; /* First byte past the end of memory */
1563 #endif
1567 ** This function is similar to sqlite3ExprDup(), except that if pEdupBuf
1568 ** is not NULL then it points to memory that can be used to store a copy
1569 ** of the input Expr p together with its p->u.zToken (if any). pEdupBuf
1570 ** is updated with the new buffer tail prior to returning.
1572 static Expr *exprDup(
1573 sqlite3 *db, /* Database connection (for memory allocation) */
1574 const Expr *p, /* Expr tree to be duplicated */
1575 int dupFlags, /* EXPRDUP_REDUCE for compression. 0 if not */
1576 EdupBuf *pEdupBuf /* Preallocated storage space, or NULL */
1578 Expr *pNew; /* Value to return */
1579 EdupBuf sEdupBuf; /* Memory space from which to build Expr object */
1580 u32 staticFlag; /* EP_Static if space not obtained from malloc */
1581 int nToken = -1; /* Space needed for p->u.zToken. -1 means unknown */
1583 assert( db!=0 );
1584 assert( p );
1585 assert( dupFlags==0 || dupFlags==EXPRDUP_REDUCE );
1586 assert( pEdupBuf==0 || dupFlags==EXPRDUP_REDUCE );
1588 /* Figure out where to write the new Expr structure. */
1589 if( pEdupBuf ){
1590 sEdupBuf.zAlloc = pEdupBuf->zAlloc;
1591 #ifdef SQLITE_DEBUG
1592 sEdupBuf.zEnd = pEdupBuf->zEnd;
1593 #endif
1594 staticFlag = EP_Static;
1595 assert( sEdupBuf.zAlloc!=0 );
1596 assert( dupFlags==EXPRDUP_REDUCE );
1597 }else{
1598 int nAlloc;
1599 if( dupFlags ){
1600 nAlloc = dupedExprSize(p);
1601 }else if( !ExprHasProperty(p, EP_IntValue) && p->u.zToken ){
1602 nToken = sqlite3Strlen30NN(p->u.zToken)+1;
1603 nAlloc = ROUND8(EXPR_FULLSIZE + nToken);
1604 }else{
1605 nToken = 0;
1606 nAlloc = ROUND8(EXPR_FULLSIZE);
1608 assert( nAlloc==ROUND8(nAlloc) );
1609 sEdupBuf.zAlloc = sqlite3DbMallocRawNN(db, nAlloc);
1610 #ifdef SQLITE_DEBUG
1611 sEdupBuf.zEnd = sEdupBuf.zAlloc ? sEdupBuf.zAlloc+nAlloc : 0;
1612 #endif
1614 staticFlag = 0;
1616 pNew = (Expr *)sEdupBuf.zAlloc;
1617 assert( EIGHT_BYTE_ALIGNMENT(pNew) );
1619 if( pNew ){
1620 /* Set nNewSize to the size allocated for the structure pointed to
1621 ** by pNew. This is either EXPR_FULLSIZE, EXPR_REDUCEDSIZE or
1622 ** EXPR_TOKENONLYSIZE. nToken is set to the number of bytes consumed
1623 ** by the copy of the p->u.zToken string (if any).
1625 const unsigned nStructSize = dupedExprStructSize(p, dupFlags);
1626 int nNewSize = nStructSize & 0xfff;
1627 if( nToken<0 ){
1628 if( !ExprHasProperty(p, EP_IntValue) && p->u.zToken ){
1629 nToken = sqlite3Strlen30(p->u.zToken) + 1;
1630 }else{
1631 nToken = 0;
1634 if( dupFlags ){
1635 assert( (int)(sEdupBuf.zEnd - sEdupBuf.zAlloc) >= nNewSize+nToken );
1636 assert( ExprHasProperty(p, EP_Reduced)==0 );
1637 memcpy(sEdupBuf.zAlloc, p, nNewSize);
1638 }else{
1639 u32 nSize = (u32)exprStructSize(p);
1640 assert( (int)(sEdupBuf.zEnd - sEdupBuf.zAlloc) >=
1641 (int)EXPR_FULLSIZE+nToken );
1642 memcpy(sEdupBuf.zAlloc, p, nSize);
1643 if( nSize<EXPR_FULLSIZE ){
1644 memset(&sEdupBuf.zAlloc[nSize], 0, EXPR_FULLSIZE-nSize);
1646 nNewSize = EXPR_FULLSIZE;
1649 /* Set the EP_Reduced, EP_TokenOnly, and EP_Static flags appropriately. */
1650 pNew->flags &= ~(EP_Reduced|EP_TokenOnly|EP_Static);
1651 pNew->flags |= nStructSize & (EP_Reduced|EP_TokenOnly);
1652 pNew->flags |= staticFlag;
1653 ExprClearVVAProperties(pNew);
1654 if( dupFlags ){
1655 ExprSetVVAProperty(pNew, EP_Immutable);
1658 /* Copy the p->u.zToken string, if any. */
1659 assert( nToken>=0 );
1660 if( nToken>0 ){
1661 char *zToken = pNew->u.zToken = (char*)&sEdupBuf.zAlloc[nNewSize];
1662 memcpy(zToken, p->u.zToken, nToken);
1663 nNewSize += nToken;
1665 sEdupBuf.zAlloc += ROUND8(nNewSize);
1667 if( ((p->flags|pNew->flags)&(EP_TokenOnly|EP_Leaf))==0 ){
1669 /* Fill in the pNew->x.pSelect or pNew->x.pList member. */
1670 if( ExprUseXSelect(p) ){
1671 pNew->x.pSelect = sqlite3SelectDup(db, p->x.pSelect, dupFlags);
1672 }else{
1673 pNew->x.pList = sqlite3ExprListDup(db, p->x.pList,
1674 p->op!=TK_ORDER ? dupFlags : 0);
1677 #ifndef SQLITE_OMIT_WINDOWFUNC
1678 if( ExprHasProperty(p, EP_WinFunc) ){
1679 pNew->y.pWin = sqlite3WindowDup(db, pNew, p->y.pWin);
1680 assert( ExprHasProperty(pNew, EP_WinFunc) );
1682 #endif /* SQLITE_OMIT_WINDOWFUNC */
1684 /* Fill in pNew->pLeft and pNew->pRight. */
1685 if( dupFlags ){
1686 if( p->op==TK_SELECT_COLUMN ){
1687 pNew->pLeft = p->pLeft;
1688 assert( p->pRight==0
1689 || p->pRight==p->pLeft
1690 || ExprHasProperty(p->pLeft, EP_Subquery) );
1691 }else{
1692 pNew->pLeft = p->pLeft ?
1693 exprDup(db, p->pLeft, EXPRDUP_REDUCE, &sEdupBuf) : 0;
1695 pNew->pRight = p->pRight ?
1696 exprDup(db, p->pRight, EXPRDUP_REDUCE, &sEdupBuf) : 0;
1697 }else{
1698 if( p->op==TK_SELECT_COLUMN ){
1699 pNew->pLeft = p->pLeft;
1700 assert( p->pRight==0
1701 || p->pRight==p->pLeft
1702 || ExprHasProperty(p->pLeft, EP_Subquery) );
1703 }else{
1704 pNew->pLeft = sqlite3ExprDup(db, p->pLeft, 0);
1706 pNew->pRight = sqlite3ExprDup(db, p->pRight, 0);
1710 if( pEdupBuf ) memcpy(pEdupBuf, &sEdupBuf, sizeof(sEdupBuf));
1711 assert( sEdupBuf.zAlloc <= sEdupBuf.zEnd );
1712 return pNew;
1716 ** Create and return a deep copy of the object passed as the second
1717 ** argument. If an OOM condition is encountered, NULL is returned
1718 ** and the db->mallocFailed flag set.
1720 #ifndef SQLITE_OMIT_CTE
1721 With *sqlite3WithDup(sqlite3 *db, With *p){
1722 With *pRet = 0;
1723 if( p ){
1724 sqlite3_int64 nByte = sizeof(*p) + sizeof(p->a[0]) * (p->nCte-1);
1725 pRet = sqlite3DbMallocZero(db, nByte);
1726 if( pRet ){
1727 int i;
1728 pRet->nCte = p->nCte;
1729 for(i=0; i<p->nCte; i++){
1730 pRet->a[i].pSelect = sqlite3SelectDup(db, p->a[i].pSelect, 0);
1731 pRet->a[i].pCols = sqlite3ExprListDup(db, p->a[i].pCols, 0);
1732 pRet->a[i].zName = sqlite3DbStrDup(db, p->a[i].zName);
1733 pRet->a[i].eM10d = p->a[i].eM10d;
1737 return pRet;
1739 #else
1740 # define sqlite3WithDup(x,y) 0
1741 #endif
1743 #ifndef SQLITE_OMIT_WINDOWFUNC
1745 ** The gatherSelectWindows() procedure and its helper routine
1746 ** gatherSelectWindowsCallback() are used to scan all the expressions
1747 ** an a newly duplicated SELECT statement and gather all of the Window
1748 ** objects found there, assembling them onto the linked list at Select->pWin.
1750 static int gatherSelectWindowsCallback(Walker *pWalker, Expr *pExpr){
1751 if( pExpr->op==TK_FUNCTION && ExprHasProperty(pExpr, EP_WinFunc) ){
1752 Select *pSelect = pWalker->u.pSelect;
1753 Window *pWin = pExpr->y.pWin;
1754 assert( pWin );
1755 assert( IsWindowFunc(pExpr) );
1756 assert( pWin->ppThis==0 );
1757 sqlite3WindowLink(pSelect, pWin);
1759 return WRC_Continue;
1761 static int gatherSelectWindowsSelectCallback(Walker *pWalker, Select *p){
1762 return p==pWalker->u.pSelect ? WRC_Continue : WRC_Prune;
1764 static void gatherSelectWindows(Select *p){
1765 Walker w;
1766 w.xExprCallback = gatherSelectWindowsCallback;
1767 w.xSelectCallback = gatherSelectWindowsSelectCallback;
1768 w.xSelectCallback2 = 0;
1769 w.pParse = 0;
1770 w.u.pSelect = p;
1771 sqlite3WalkSelect(&w, p);
1773 #endif
1777 ** The following group of routines make deep copies of expressions,
1778 ** expression lists, ID lists, and select statements. The copies can
1779 ** be deleted (by being passed to their respective ...Delete() routines)
1780 ** without effecting the originals.
1782 ** The expression list, ID, and source lists return by sqlite3ExprListDup(),
1783 ** sqlite3IdListDup(), and sqlite3SrcListDup() can not be further expanded
1784 ** by subsequent calls to sqlite*ListAppend() routines.
1786 ** Any tables that the SrcList might point to are not duplicated.
1788 ** The flags parameter contains a combination of the EXPRDUP_XXX flags.
1789 ** If the EXPRDUP_REDUCE flag is set, then the structure returned is a
1790 ** truncated version of the usual Expr structure that will be stored as
1791 ** part of the in-memory representation of the database schema.
1793 Expr *sqlite3ExprDup(sqlite3 *db, const Expr *p, int flags){
1794 assert( flags==0 || flags==EXPRDUP_REDUCE );
1795 return p ? exprDup(db, p, flags, 0) : 0;
1797 ExprList *sqlite3ExprListDup(sqlite3 *db, const ExprList *p, int flags){
1798 ExprList *pNew;
1799 struct ExprList_item *pItem;
1800 const struct ExprList_item *pOldItem;
1801 int i;
1802 Expr *pPriorSelectColOld = 0;
1803 Expr *pPriorSelectColNew = 0;
1804 assert( db!=0 );
1805 if( p==0 ) return 0;
1806 pNew = sqlite3DbMallocRawNN(db, sqlite3DbMallocSize(db, p));
1807 if( pNew==0 ) return 0;
1808 pNew->nExpr = p->nExpr;
1809 pNew->nAlloc = p->nAlloc;
1810 pItem = pNew->a;
1811 pOldItem = p->a;
1812 for(i=0; i<p->nExpr; i++, pItem++, pOldItem++){
1813 Expr *pOldExpr = pOldItem->pExpr;
1814 Expr *pNewExpr;
1815 pItem->pExpr = sqlite3ExprDup(db, pOldExpr, flags);
1816 if( pOldExpr
1817 && pOldExpr->op==TK_SELECT_COLUMN
1818 && (pNewExpr = pItem->pExpr)!=0
1820 if( pNewExpr->pRight ){
1821 pPriorSelectColOld = pOldExpr->pRight;
1822 pPriorSelectColNew = pNewExpr->pRight;
1823 pNewExpr->pLeft = pNewExpr->pRight;
1824 }else{
1825 if( pOldExpr->pLeft!=pPriorSelectColOld ){
1826 pPriorSelectColOld = pOldExpr->pLeft;
1827 pPriorSelectColNew = sqlite3ExprDup(db, pPriorSelectColOld, flags);
1828 pNewExpr->pRight = pPriorSelectColNew;
1830 pNewExpr->pLeft = pPriorSelectColNew;
1833 pItem->zEName = sqlite3DbStrDup(db, pOldItem->zEName);
1834 pItem->fg = pOldItem->fg;
1835 pItem->fg.done = 0;
1836 pItem->u = pOldItem->u;
1838 return pNew;
1842 ** If cursors, triggers, views and subqueries are all omitted from
1843 ** the build, then none of the following routines, except for
1844 ** sqlite3SelectDup(), can be called. sqlite3SelectDup() is sometimes
1845 ** called with a NULL argument.
1847 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_TRIGGER) \
1848 || !defined(SQLITE_OMIT_SUBQUERY)
1849 SrcList *sqlite3SrcListDup(sqlite3 *db, const SrcList *p, int flags){
1850 SrcList *pNew;
1851 int i;
1852 int nByte;
1853 assert( db!=0 );
1854 if( p==0 ) return 0;
1855 nByte = sizeof(*p) + (p->nSrc>0 ? sizeof(p->a[0]) * (p->nSrc-1) : 0);
1856 pNew = sqlite3DbMallocRawNN(db, nByte );
1857 if( pNew==0 ) return 0;
1858 pNew->nSrc = pNew->nAlloc = p->nSrc;
1859 for(i=0; i<p->nSrc; i++){
1860 SrcItem *pNewItem = &pNew->a[i];
1861 const SrcItem *pOldItem = &p->a[i];
1862 Table *pTab;
1863 pNewItem->pSchema = pOldItem->pSchema;
1864 pNewItem->zDatabase = sqlite3DbStrDup(db, pOldItem->zDatabase);
1865 pNewItem->zName = sqlite3DbStrDup(db, pOldItem->zName);
1866 pNewItem->zAlias = sqlite3DbStrDup(db, pOldItem->zAlias);
1867 pNewItem->fg = pOldItem->fg;
1868 pNewItem->iCursor = pOldItem->iCursor;
1869 pNewItem->addrFillSub = pOldItem->addrFillSub;
1870 pNewItem->regReturn = pOldItem->regReturn;
1871 if( pNewItem->fg.isIndexedBy ){
1872 pNewItem->u1.zIndexedBy = sqlite3DbStrDup(db, pOldItem->u1.zIndexedBy);
1874 pNewItem->u2 = pOldItem->u2;
1875 if( pNewItem->fg.isCte ){
1876 pNewItem->u2.pCteUse->nUse++;
1878 if( pNewItem->fg.isTabFunc ){
1879 pNewItem->u1.pFuncArg =
1880 sqlite3ExprListDup(db, pOldItem->u1.pFuncArg, flags);
1882 pTab = pNewItem->pTab = pOldItem->pTab;
1883 if( pTab ){
1884 pTab->nTabRef++;
1886 pNewItem->pSelect = sqlite3SelectDup(db, pOldItem->pSelect, flags);
1887 if( pOldItem->fg.isUsing ){
1888 assert( pNewItem->fg.isUsing );
1889 pNewItem->u3.pUsing = sqlite3IdListDup(db, pOldItem->u3.pUsing);
1890 }else{
1891 pNewItem->u3.pOn = sqlite3ExprDup(db, pOldItem->u3.pOn, flags);
1893 pNewItem->colUsed = pOldItem->colUsed;
1895 return pNew;
1897 IdList *sqlite3IdListDup(sqlite3 *db, const IdList *p){
1898 IdList *pNew;
1899 int i;
1900 assert( db!=0 );
1901 if( p==0 ) return 0;
1902 assert( p->eU4!=EU4_EXPR );
1903 pNew = sqlite3DbMallocRawNN(db, sizeof(*pNew)+(p->nId-1)*sizeof(p->a[0]) );
1904 if( pNew==0 ) return 0;
1905 pNew->nId = p->nId;
1906 pNew->eU4 = p->eU4;
1907 for(i=0; i<p->nId; i++){
1908 struct IdList_item *pNewItem = &pNew->a[i];
1909 const struct IdList_item *pOldItem = &p->a[i];
1910 pNewItem->zName = sqlite3DbStrDup(db, pOldItem->zName);
1911 pNewItem->u4 = pOldItem->u4;
1913 return pNew;
1915 Select *sqlite3SelectDup(sqlite3 *db, const Select *pDup, int flags){
1916 Select *pRet = 0;
1917 Select *pNext = 0;
1918 Select **pp = &pRet;
1919 const Select *p;
1921 assert( db!=0 );
1922 for(p=pDup; p; p=p->pPrior){
1923 Select *pNew = sqlite3DbMallocRawNN(db, sizeof(*p) );
1924 if( pNew==0 ) break;
1925 pNew->pEList = sqlite3ExprListDup(db, p->pEList, flags);
1926 pNew->pSrc = sqlite3SrcListDup(db, p->pSrc, flags);
1927 pNew->pWhere = sqlite3ExprDup(db, p->pWhere, flags);
1928 pNew->pGroupBy = sqlite3ExprListDup(db, p->pGroupBy, flags);
1929 pNew->pHaving = sqlite3ExprDup(db, p->pHaving, flags);
1930 pNew->pOrderBy = sqlite3ExprListDup(db, p->pOrderBy, flags);
1931 pNew->op = p->op;
1932 pNew->pNext = pNext;
1933 pNew->pPrior = 0;
1934 pNew->pLimit = sqlite3ExprDup(db, p->pLimit, flags);
1935 pNew->iLimit = 0;
1936 pNew->iOffset = 0;
1937 pNew->selFlags = p->selFlags & ~SF_UsesEphemeral;
1938 pNew->addrOpenEphm[0] = -1;
1939 pNew->addrOpenEphm[1] = -1;
1940 pNew->nSelectRow = p->nSelectRow;
1941 pNew->pWith = sqlite3WithDup(db, p->pWith);
1942 #ifndef SQLITE_OMIT_WINDOWFUNC
1943 pNew->pWin = 0;
1944 pNew->pWinDefn = sqlite3WindowListDup(db, p->pWinDefn);
1945 if( p->pWin && db->mallocFailed==0 ) gatherSelectWindows(pNew);
1946 #endif
1947 pNew->selId = p->selId;
1948 if( db->mallocFailed ){
1949 /* Any prior OOM might have left the Select object incomplete.
1950 ** Delete the whole thing rather than allow an incomplete Select
1951 ** to be used by the code generator. */
1952 pNew->pNext = 0;
1953 sqlite3SelectDelete(db, pNew);
1954 break;
1956 *pp = pNew;
1957 pp = &pNew->pPrior;
1958 pNext = pNew;
1961 return pRet;
1963 #else
1964 Select *sqlite3SelectDup(sqlite3 *db, const Select *p, int flags){
1965 assert( p==0 );
1966 return 0;
1968 #endif
1972 ** Add a new element to the end of an expression list. If pList is
1973 ** initially NULL, then create a new expression list.
1975 ** The pList argument must be either NULL or a pointer to an ExprList
1976 ** obtained from a prior call to sqlite3ExprListAppend().
1978 ** If a memory allocation error occurs, the entire list is freed and
1979 ** NULL is returned. If non-NULL is returned, then it is guaranteed
1980 ** that the new entry was successfully appended.
1982 static const struct ExprList_item zeroItem = {0};
1983 SQLITE_NOINLINE ExprList *sqlite3ExprListAppendNew(
1984 sqlite3 *db, /* Database handle. Used for memory allocation */
1985 Expr *pExpr /* Expression to be appended. Might be NULL */
1987 struct ExprList_item *pItem;
1988 ExprList *pList;
1990 pList = sqlite3DbMallocRawNN(db, sizeof(ExprList)+sizeof(pList->a[0])*4 );
1991 if( pList==0 ){
1992 sqlite3ExprDelete(db, pExpr);
1993 return 0;
1995 pList->nAlloc = 4;
1996 pList->nExpr = 1;
1997 pItem = &pList->a[0];
1998 *pItem = zeroItem;
1999 pItem->pExpr = pExpr;
2000 return pList;
2002 SQLITE_NOINLINE ExprList *sqlite3ExprListAppendGrow(
2003 sqlite3 *db, /* Database handle. Used for memory allocation */
2004 ExprList *pList, /* List to which to append. Might be NULL */
2005 Expr *pExpr /* Expression to be appended. Might be NULL */
2007 struct ExprList_item *pItem;
2008 ExprList *pNew;
2009 pList->nAlloc *= 2;
2010 pNew = sqlite3DbRealloc(db, pList,
2011 sizeof(*pList)+(pList->nAlloc-1)*sizeof(pList->a[0]));
2012 if( pNew==0 ){
2013 sqlite3ExprListDelete(db, pList);
2014 sqlite3ExprDelete(db, pExpr);
2015 return 0;
2016 }else{
2017 pList = pNew;
2019 pItem = &pList->a[pList->nExpr++];
2020 *pItem = zeroItem;
2021 pItem->pExpr = pExpr;
2022 return pList;
2024 ExprList *sqlite3ExprListAppend(
2025 Parse *pParse, /* Parsing context */
2026 ExprList *pList, /* List to which to append. Might be NULL */
2027 Expr *pExpr /* Expression to be appended. Might be NULL */
2029 struct ExprList_item *pItem;
2030 if( pList==0 ){
2031 return sqlite3ExprListAppendNew(pParse->db,pExpr);
2033 if( pList->nAlloc<pList->nExpr+1 ){
2034 return sqlite3ExprListAppendGrow(pParse->db,pList,pExpr);
2036 pItem = &pList->a[pList->nExpr++];
2037 *pItem = zeroItem;
2038 pItem->pExpr = pExpr;
2039 return pList;
2043 ** pColumns and pExpr form a vector assignment which is part of the SET
2044 ** clause of an UPDATE statement. Like this:
2046 ** (a,b,c) = (expr1,expr2,expr3)
2047 ** Or: (a,b,c) = (SELECT x,y,z FROM ....)
2049 ** For each term of the vector assignment, append new entries to the
2050 ** expression list pList. In the case of a subquery on the RHS, append
2051 ** TK_SELECT_COLUMN expressions.
2053 ExprList *sqlite3ExprListAppendVector(
2054 Parse *pParse, /* Parsing context */
2055 ExprList *pList, /* List to which to append. Might be NULL */
2056 IdList *pColumns, /* List of names of LHS of the assignment */
2057 Expr *pExpr /* Vector expression to be appended. Might be NULL */
2059 sqlite3 *db = pParse->db;
2060 int n;
2061 int i;
2062 int iFirst = pList ? pList->nExpr : 0;
2063 /* pColumns can only be NULL due to an OOM but an OOM will cause an
2064 ** exit prior to this routine being invoked */
2065 if( NEVER(pColumns==0) ) goto vector_append_error;
2066 if( pExpr==0 ) goto vector_append_error;
2068 /* If the RHS is a vector, then we can immediately check to see that
2069 ** the size of the RHS and LHS match. But if the RHS is a SELECT,
2070 ** wildcards ("*") in the result set of the SELECT must be expanded before
2071 ** we can do the size check, so defer the size check until code generation.
2073 if( pExpr->op!=TK_SELECT && pColumns->nId!=(n=sqlite3ExprVectorSize(pExpr)) ){
2074 sqlite3ErrorMsg(pParse, "%d columns assigned %d values",
2075 pColumns->nId, n);
2076 goto vector_append_error;
2079 for(i=0; i<pColumns->nId; i++){
2080 Expr *pSubExpr = sqlite3ExprForVectorField(pParse, pExpr, i, pColumns->nId);
2081 assert( pSubExpr!=0 || db->mallocFailed );
2082 if( pSubExpr==0 ) continue;
2083 pList = sqlite3ExprListAppend(pParse, pList, pSubExpr);
2084 if( pList ){
2085 assert( pList->nExpr==iFirst+i+1 );
2086 pList->a[pList->nExpr-1].zEName = pColumns->a[i].zName;
2087 pColumns->a[i].zName = 0;
2091 if( !db->mallocFailed && pExpr->op==TK_SELECT && ALWAYS(pList!=0) ){
2092 Expr *pFirst = pList->a[iFirst].pExpr;
2093 assert( pFirst!=0 );
2094 assert( pFirst->op==TK_SELECT_COLUMN );
2096 /* Store the SELECT statement in pRight so it will be deleted when
2097 ** sqlite3ExprListDelete() is called */
2098 pFirst->pRight = pExpr;
2099 pExpr = 0;
2101 /* Remember the size of the LHS in iTable so that we can check that
2102 ** the RHS and LHS sizes match during code generation. */
2103 pFirst->iTable = pColumns->nId;
2106 vector_append_error:
2107 sqlite3ExprUnmapAndDelete(pParse, pExpr);
2108 sqlite3IdListDelete(db, pColumns);
2109 return pList;
2113 ** Set the sort order for the last element on the given ExprList.
2115 void sqlite3ExprListSetSortOrder(ExprList *p, int iSortOrder, int eNulls){
2116 struct ExprList_item *pItem;
2117 if( p==0 ) return;
2118 assert( p->nExpr>0 );
2120 assert( SQLITE_SO_UNDEFINED<0 && SQLITE_SO_ASC==0 && SQLITE_SO_DESC>0 );
2121 assert( iSortOrder==SQLITE_SO_UNDEFINED
2122 || iSortOrder==SQLITE_SO_ASC
2123 || iSortOrder==SQLITE_SO_DESC
2125 assert( eNulls==SQLITE_SO_UNDEFINED
2126 || eNulls==SQLITE_SO_ASC
2127 || eNulls==SQLITE_SO_DESC
2130 pItem = &p->a[p->nExpr-1];
2131 assert( pItem->fg.bNulls==0 );
2132 if( iSortOrder==SQLITE_SO_UNDEFINED ){
2133 iSortOrder = SQLITE_SO_ASC;
2135 pItem->fg.sortFlags = (u8)iSortOrder;
2137 if( eNulls!=SQLITE_SO_UNDEFINED ){
2138 pItem->fg.bNulls = 1;
2139 if( iSortOrder!=eNulls ){
2140 pItem->fg.sortFlags |= KEYINFO_ORDER_BIGNULL;
2146 ** Set the ExprList.a[].zEName element of the most recently added item
2147 ** on the expression list.
2149 ** pList might be NULL following an OOM error. But pName should never be
2150 ** NULL. If a memory allocation fails, the pParse->db->mallocFailed flag
2151 ** is set.
2153 void sqlite3ExprListSetName(
2154 Parse *pParse, /* Parsing context */
2155 ExprList *pList, /* List to which to add the span. */
2156 const Token *pName, /* Name to be added */
2157 int dequote /* True to cause the name to be dequoted */
2159 assert( pList!=0 || pParse->db->mallocFailed!=0 );
2160 assert( pParse->eParseMode!=PARSE_MODE_UNMAP || dequote==0 );
2161 if( pList ){
2162 struct ExprList_item *pItem;
2163 assert( pList->nExpr>0 );
2164 pItem = &pList->a[pList->nExpr-1];
2165 assert( pItem->zEName==0 );
2166 assert( pItem->fg.eEName==ENAME_NAME );
2167 pItem->zEName = sqlite3DbStrNDup(pParse->db, pName->z, pName->n);
2168 if( dequote ){
2169 /* If dequote==0, then pName->z does not point to part of a DDL
2170 ** statement handled by the parser. And so no token need be added
2171 ** to the token-map. */
2172 sqlite3Dequote(pItem->zEName);
2173 if( IN_RENAME_OBJECT ){
2174 sqlite3RenameTokenMap(pParse, (const void*)pItem->zEName, pName);
2181 ** Set the ExprList.a[].zSpan element of the most recently added item
2182 ** on the expression list.
2184 ** pList might be NULL following an OOM error. But pSpan should never be
2185 ** NULL. If a memory allocation fails, the pParse->db->mallocFailed flag
2186 ** is set.
2188 void sqlite3ExprListSetSpan(
2189 Parse *pParse, /* Parsing context */
2190 ExprList *pList, /* List to which to add the span. */
2191 const char *zStart, /* Start of the span */
2192 const char *zEnd /* End of the span */
2194 sqlite3 *db = pParse->db;
2195 assert( pList!=0 || db->mallocFailed!=0 );
2196 if( pList ){
2197 struct ExprList_item *pItem = &pList->a[pList->nExpr-1];
2198 assert( pList->nExpr>0 );
2199 if( pItem->zEName==0 ){
2200 pItem->zEName = sqlite3DbSpanDup(db, zStart, zEnd);
2201 pItem->fg.eEName = ENAME_SPAN;
2207 ** If the expression list pEList contains more than iLimit elements,
2208 ** leave an error message in pParse.
2210 void sqlite3ExprListCheckLength(
2211 Parse *pParse,
2212 ExprList *pEList,
2213 const char *zObject
2215 int mx = pParse->db->aLimit[SQLITE_LIMIT_COLUMN];
2216 testcase( pEList && pEList->nExpr==mx );
2217 testcase( pEList && pEList->nExpr==mx+1 );
2218 if( pEList && pEList->nExpr>mx ){
2219 sqlite3ErrorMsg(pParse, "too many columns in %s", zObject);
2224 ** Delete an entire expression list.
2226 static SQLITE_NOINLINE void exprListDeleteNN(sqlite3 *db, ExprList *pList){
2227 int i = pList->nExpr;
2228 struct ExprList_item *pItem = pList->a;
2229 assert( pList->nExpr>0 );
2230 assert( db!=0 );
2232 sqlite3ExprDelete(db, pItem->pExpr);
2233 if( pItem->zEName ) sqlite3DbNNFreeNN(db, pItem->zEName);
2234 pItem++;
2235 }while( --i>0 );
2236 sqlite3DbNNFreeNN(db, pList);
2238 void sqlite3ExprListDelete(sqlite3 *db, ExprList *pList){
2239 if( pList ) exprListDeleteNN(db, pList);
2241 void sqlite3ExprListDeleteGeneric(sqlite3 *db, void *pList){
2242 if( ALWAYS(pList) ) exprListDeleteNN(db, (ExprList*)pList);
2246 ** Return the bitwise-OR of all Expr.flags fields in the given
2247 ** ExprList.
2249 u32 sqlite3ExprListFlags(const ExprList *pList){
2250 int i;
2251 u32 m = 0;
2252 assert( pList!=0 );
2253 for(i=0; i<pList->nExpr; i++){
2254 Expr *pExpr = pList->a[i].pExpr;
2255 assert( pExpr!=0 );
2256 m |= pExpr->flags;
2258 return m;
2262 ** This is a SELECT-node callback for the expression walker that
2263 ** always "fails". By "fail" in this case, we mean set
2264 ** pWalker->eCode to zero and abort.
2266 ** This callback is used by multiple expression walkers.
2268 int sqlite3SelectWalkFail(Walker *pWalker, Select *NotUsed){
2269 UNUSED_PARAMETER(NotUsed);
2270 pWalker->eCode = 0;
2271 return WRC_Abort;
2275 ** Check the input string to see if it is "true" or "false" (in any case).
2277 ** If the string is.... Return
2278 ** "true" EP_IsTrue
2279 ** "false" EP_IsFalse
2280 ** anything else 0
2282 u32 sqlite3IsTrueOrFalse(const char *zIn){
2283 if( sqlite3StrICmp(zIn, "true")==0 ) return EP_IsTrue;
2284 if( sqlite3StrICmp(zIn, "false")==0 ) return EP_IsFalse;
2285 return 0;
2290 ** If the input expression is an ID with the name "true" or "false"
2291 ** then convert it into an TK_TRUEFALSE term. Return non-zero if
2292 ** the conversion happened, and zero if the expression is unaltered.
2294 int sqlite3ExprIdToTrueFalse(Expr *pExpr){
2295 u32 v;
2296 assert( pExpr->op==TK_ID || pExpr->op==TK_STRING );
2297 if( !ExprHasProperty(pExpr, EP_Quoted|EP_IntValue)
2298 && (v = sqlite3IsTrueOrFalse(pExpr->u.zToken))!=0
2300 pExpr->op = TK_TRUEFALSE;
2301 ExprSetProperty(pExpr, v);
2302 return 1;
2304 return 0;
2308 ** The argument must be a TK_TRUEFALSE Expr node. Return 1 if it is TRUE
2309 ** and 0 if it is FALSE.
2311 int sqlite3ExprTruthValue(const Expr *pExpr){
2312 pExpr = sqlite3ExprSkipCollateAndLikely((Expr*)pExpr);
2313 assert( pExpr->op==TK_TRUEFALSE );
2314 assert( !ExprHasProperty(pExpr, EP_IntValue) );
2315 assert( sqlite3StrICmp(pExpr->u.zToken,"true")==0
2316 || sqlite3StrICmp(pExpr->u.zToken,"false")==0 );
2317 return pExpr->u.zToken[4]==0;
2321 ** If pExpr is an AND or OR expression, try to simplify it by eliminating
2322 ** terms that are always true or false. Return the simplified expression.
2323 ** Or return the original expression if no simplification is possible.
2325 ** Examples:
2327 ** (x<10) AND true => (x<10)
2328 ** (x<10) AND false => false
2329 ** (x<10) AND (y=22 OR false) => (x<10) AND (y=22)
2330 ** (x<10) AND (y=22 OR true) => (x<10)
2331 ** (y=22) OR true => true
2333 Expr *sqlite3ExprSimplifiedAndOr(Expr *pExpr){
2334 assert( pExpr!=0 );
2335 if( pExpr->op==TK_AND || pExpr->op==TK_OR ){
2336 Expr *pRight = sqlite3ExprSimplifiedAndOr(pExpr->pRight);
2337 Expr *pLeft = sqlite3ExprSimplifiedAndOr(pExpr->pLeft);
2338 if( ExprAlwaysTrue(pLeft) || ExprAlwaysFalse(pRight) ){
2339 pExpr = pExpr->op==TK_AND ? pRight : pLeft;
2340 }else if( ExprAlwaysTrue(pRight) || ExprAlwaysFalse(pLeft) ){
2341 pExpr = pExpr->op==TK_AND ? pLeft : pRight;
2344 return pExpr;
2349 ** These routines are Walker callbacks used to check expressions to
2350 ** see if they are "constant" for some definition of constant. The
2351 ** Walker.eCode value determines the type of "constant" we are looking
2352 ** for.
2354 ** These callback routines are used to implement the following:
2356 ** sqlite3ExprIsConstant() pWalker->eCode==1
2357 ** sqlite3ExprIsConstantNotJoin() pWalker->eCode==2
2358 ** sqlite3ExprIsTableConstant() pWalker->eCode==3
2359 ** sqlite3ExprIsConstantOrFunction() pWalker->eCode==4 or 5
2361 ** In all cases, the callbacks set Walker.eCode=0 and abort if the expression
2362 ** is found to not be a constant.
2364 ** The sqlite3ExprIsConstantOrFunction() is used for evaluating DEFAULT
2365 ** expressions in a CREATE TABLE statement. The Walker.eCode value is 5
2366 ** when parsing an existing schema out of the sqlite_schema table and 4
2367 ** when processing a new CREATE TABLE statement. A bound parameter raises
2368 ** an error for new statements, but is silently converted
2369 ** to NULL for existing schemas. This allows sqlite_schema tables that
2370 ** contain a bound parameter because they were generated by older versions
2371 ** of SQLite to be parsed by newer versions of SQLite without raising a
2372 ** malformed schema error.
2374 static int exprNodeIsConstant(Walker *pWalker, Expr *pExpr){
2376 /* If pWalker->eCode is 2 then any term of the expression that comes from
2377 ** the ON or USING clauses of an outer join disqualifies the expression
2378 ** from being considered constant. */
2379 if( pWalker->eCode==2 && ExprHasProperty(pExpr, EP_OuterON) ){
2380 pWalker->eCode = 0;
2381 return WRC_Abort;
2384 switch( pExpr->op ){
2385 /* Consider functions to be constant if all their arguments are constant
2386 ** and either pWalker->eCode==4 or 5 or the function has the
2387 ** SQLITE_FUNC_CONST flag. */
2388 case TK_FUNCTION:
2389 if( (pWalker->eCode>=4 || ExprHasProperty(pExpr,EP_ConstFunc))
2390 && !ExprHasProperty(pExpr, EP_WinFunc)
2392 if( pWalker->eCode==5 ) ExprSetProperty(pExpr, EP_FromDDL);
2393 return WRC_Continue;
2394 }else{
2395 pWalker->eCode = 0;
2396 return WRC_Abort;
2398 case TK_ID:
2399 /* Convert "true" or "false" in a DEFAULT clause into the
2400 ** appropriate TK_TRUEFALSE operator */
2401 if( sqlite3ExprIdToTrueFalse(pExpr) ){
2402 return WRC_Prune;
2404 /* no break */ deliberate_fall_through
2405 case TK_COLUMN:
2406 case TK_AGG_FUNCTION:
2407 case TK_AGG_COLUMN:
2408 testcase( pExpr->op==TK_ID );
2409 testcase( pExpr->op==TK_COLUMN );
2410 testcase( pExpr->op==TK_AGG_FUNCTION );
2411 testcase( pExpr->op==TK_AGG_COLUMN );
2412 if( ExprHasProperty(pExpr, EP_FixedCol) && pWalker->eCode!=2 ){
2413 return WRC_Continue;
2415 if( pWalker->eCode==3 && pExpr->iTable==pWalker->u.iCur ){
2416 return WRC_Continue;
2418 /* no break */ deliberate_fall_through
2419 case TK_IF_NULL_ROW:
2420 case TK_REGISTER:
2421 case TK_DOT:
2422 testcase( pExpr->op==TK_REGISTER );
2423 testcase( pExpr->op==TK_IF_NULL_ROW );
2424 testcase( pExpr->op==TK_DOT );
2425 pWalker->eCode = 0;
2426 return WRC_Abort;
2427 case TK_VARIABLE:
2428 if( pWalker->eCode==5 ){
2429 /* Silently convert bound parameters that appear inside of CREATE
2430 ** statements into a NULL when parsing the CREATE statement text out
2431 ** of the sqlite_schema table */
2432 pExpr->op = TK_NULL;
2433 }else if( pWalker->eCode==4 ){
2434 /* A bound parameter in a CREATE statement that originates from
2435 ** sqlite3_prepare() causes an error */
2436 pWalker->eCode = 0;
2437 return WRC_Abort;
2439 /* no break */ deliberate_fall_through
2440 default:
2441 testcase( pExpr->op==TK_SELECT ); /* sqlite3SelectWalkFail() disallows */
2442 testcase( pExpr->op==TK_EXISTS ); /* sqlite3SelectWalkFail() disallows */
2443 return WRC_Continue;
2446 static int exprIsConst(Expr *p, int initFlag, int iCur){
2447 Walker w;
2448 w.eCode = initFlag;
2449 w.xExprCallback = exprNodeIsConstant;
2450 w.xSelectCallback = sqlite3SelectWalkFail;
2451 #ifdef SQLITE_DEBUG
2452 w.xSelectCallback2 = sqlite3SelectWalkAssert2;
2453 #endif
2454 w.u.iCur = iCur;
2455 sqlite3WalkExpr(&w, p);
2456 return w.eCode;
2460 ** Walk an expression tree. Return non-zero if the expression is constant
2461 ** and 0 if it involves variables or function calls.
2463 ** For the purposes of this function, a double-quoted string (ex: "abc")
2464 ** is considered a variable but a single-quoted string (ex: 'abc') is
2465 ** a constant.
2467 int sqlite3ExprIsConstant(Expr *p){
2468 return exprIsConst(p, 1, 0);
2472 ** Walk an expression tree. Return non-zero if
2474 ** (1) the expression is constant, and
2475 ** (2) the expression does originate in the ON or USING clause
2476 ** of a LEFT JOIN, and
2477 ** (3) the expression does not contain any EP_FixedCol TK_COLUMN
2478 ** operands created by the constant propagation optimization.
2480 ** When this routine returns true, it indicates that the expression
2481 ** can be added to the pParse->pConstExpr list and evaluated once when
2482 ** the prepared statement starts up. See sqlite3ExprCodeRunJustOnce().
2484 int sqlite3ExprIsConstantNotJoin(Expr *p){
2485 return exprIsConst(p, 2, 0);
2489 ** Walk an expression tree. Return non-zero if the expression is constant
2490 ** for any single row of the table with cursor iCur. In other words, the
2491 ** expression must not refer to any non-deterministic function nor any
2492 ** table other than iCur.
2494 int sqlite3ExprIsTableConstant(Expr *p, int iCur){
2495 return exprIsConst(p, 3, iCur);
2499 ** Check pExpr to see if it is an constraint on the single data source
2500 ** pSrc = &pSrcList->a[iSrc]. In other words, check to see if pExpr
2501 ** constrains pSrc but does not depend on any other tables or data
2502 ** sources anywhere else in the query. Return true (non-zero) if pExpr
2503 ** is a constraint on pSrc only.
2505 ** This is an optimization. False negatives will perhaps cause slower
2506 ** queries, but false positives will yield incorrect answers. So when in
2507 ** doubt, return 0.
2509 ** To be an single-source constraint, the following must be true:
2511 ** (1) pExpr cannot refer to any table other than pSrc->iCursor.
2513 ** (2) pExpr cannot use subqueries or non-deterministic functions.
2515 ** (3) pSrc cannot be part of the left operand for a RIGHT JOIN.
2516 ** (Is there some way to relax this constraint?)
2518 ** (4) If pSrc is the right operand of a LEFT JOIN, then...
2519 ** (4a) pExpr must come from an ON clause..
2520 ** (4b) and specifically the ON clause associated with the LEFT JOIN.
2522 ** (5) If pSrc is not the right operand of a LEFT JOIN or the left
2523 ** operand of a RIGHT JOIN, then pExpr must be from the WHERE
2524 ** clause, not an ON clause.
2526 ** (6) Either:
2528 ** (6a) pExpr does not originate in an ON or USING clause, or
2530 ** (6b) The ON or USING clause from which pExpr is derived is
2531 ** not to the left of a RIGHT JOIN (or FULL JOIN).
2533 ** Without this restriction, accepting pExpr as a single-table
2534 ** constraint might move the the ON/USING filter expression
2535 ** from the left side of a RIGHT JOIN over to the right side,
2536 ** which leads to incorrect answers. See also restriction (9)
2537 ** on push-down.
2539 int sqlite3ExprIsSingleTableConstraint(
2540 Expr *pExpr, /* The constraint */
2541 const SrcList *pSrcList, /* Complete FROM clause */
2542 int iSrc /* Which element of pSrcList to use */
2544 const SrcItem *pSrc = &pSrcList->a[iSrc];
2545 if( pSrc->fg.jointype & JT_LTORJ ){
2546 return 0; /* rule (3) */
2548 if( pSrc->fg.jointype & JT_LEFT ){
2549 if( !ExprHasProperty(pExpr, EP_OuterON) ) return 0; /* rule (4a) */
2550 if( pExpr->w.iJoin!=pSrc->iCursor ) return 0; /* rule (4b) */
2551 }else{
2552 if( ExprHasProperty(pExpr, EP_OuterON) ) return 0; /* rule (5) */
2554 if( ExprHasProperty(pExpr, EP_OuterON|EP_InnerON) /* (6a) */
2555 && (pSrcList->a[0].fg.jointype & JT_LTORJ)!=0 /* Fast pre-test of (6b) */
2557 int jj;
2558 for(jj=0; jj<iSrc; jj++){
2559 if( pExpr->w.iJoin==pSrcList->a[jj].iCursor ){
2560 if( (pSrcList->a[jj].fg.jointype & JT_LTORJ)!=0 ){
2561 return 0; /* restriction (6) */
2563 break;
2567 return sqlite3ExprIsTableConstant(pExpr, pSrc->iCursor); /* rules (1), (2) */
2572 ** sqlite3WalkExpr() callback used by sqlite3ExprIsConstantOrGroupBy().
2574 static int exprNodeIsConstantOrGroupBy(Walker *pWalker, Expr *pExpr){
2575 ExprList *pGroupBy = pWalker->u.pGroupBy;
2576 int i;
2578 /* Check if pExpr is identical to any GROUP BY term. If so, consider
2579 ** it constant. */
2580 for(i=0; i<pGroupBy->nExpr; i++){
2581 Expr *p = pGroupBy->a[i].pExpr;
2582 if( sqlite3ExprCompare(0, pExpr, p, -1)<2 ){
2583 CollSeq *pColl = sqlite3ExprNNCollSeq(pWalker->pParse, p);
2584 if( sqlite3IsBinary(pColl) ){
2585 return WRC_Prune;
2590 /* Check if pExpr is a sub-select. If so, consider it variable. */
2591 if( ExprUseXSelect(pExpr) ){
2592 pWalker->eCode = 0;
2593 return WRC_Abort;
2596 return exprNodeIsConstant(pWalker, pExpr);
2600 ** Walk the expression tree passed as the first argument. Return non-zero
2601 ** if the expression consists entirely of constants or copies of terms
2602 ** in pGroupBy that sort with the BINARY collation sequence.
2604 ** This routine is used to determine if a term of the HAVING clause can
2605 ** be promoted into the WHERE clause. In order for such a promotion to work,
2606 ** the value of the HAVING clause term must be the same for all members of
2607 ** a "group". The requirement that the GROUP BY term must be BINARY
2608 ** assumes that no other collating sequence will have a finer-grained
2609 ** grouping than binary. In other words (A=B COLLATE binary) implies
2610 ** A=B in every other collating sequence. The requirement that the
2611 ** GROUP BY be BINARY is stricter than necessary. It would also work
2612 ** to promote HAVING clauses that use the same alternative collating
2613 ** sequence as the GROUP BY term, but that is much harder to check,
2614 ** alternative collating sequences are uncommon, and this is only an
2615 ** optimization, so we take the easy way out and simply require the
2616 ** GROUP BY to use the BINARY collating sequence.
2618 int sqlite3ExprIsConstantOrGroupBy(Parse *pParse, Expr *p, ExprList *pGroupBy){
2619 Walker w;
2620 w.eCode = 1;
2621 w.xExprCallback = exprNodeIsConstantOrGroupBy;
2622 w.xSelectCallback = 0;
2623 w.u.pGroupBy = pGroupBy;
2624 w.pParse = pParse;
2625 sqlite3WalkExpr(&w, p);
2626 return w.eCode;
2630 ** Walk an expression tree for the DEFAULT field of a column definition
2631 ** in a CREATE TABLE statement. Return non-zero if the expression is
2632 ** acceptable for use as a DEFAULT. That is to say, return non-zero if
2633 ** the expression is constant or a function call with constant arguments.
2634 ** Return and 0 if there are any variables.
2636 ** isInit is true when parsing from sqlite_schema. isInit is false when
2637 ** processing a new CREATE TABLE statement. When isInit is true, parameters
2638 ** (such as ? or $abc) in the expression are converted into NULL. When
2639 ** isInit is false, parameters raise an error. Parameters should not be
2640 ** allowed in a CREATE TABLE statement, but some legacy versions of SQLite
2641 ** allowed it, so we need to support it when reading sqlite_schema for
2642 ** backwards compatibility.
2644 ** If isInit is true, set EP_FromDDL on every TK_FUNCTION node.
2646 ** For the purposes of this function, a double-quoted string (ex: "abc")
2647 ** is considered a variable but a single-quoted string (ex: 'abc') is
2648 ** a constant.
2650 int sqlite3ExprIsConstantOrFunction(Expr *p, u8 isInit){
2651 assert( isInit==0 || isInit==1 );
2652 return exprIsConst(p, 4+isInit, 0);
2655 #ifdef SQLITE_ENABLE_CURSOR_HINTS
2657 ** Walk an expression tree. Return 1 if the expression contains a
2658 ** subquery of some kind. Return 0 if there are no subqueries.
2660 int sqlite3ExprContainsSubquery(Expr *p){
2661 Walker w;
2662 w.eCode = 1;
2663 w.xExprCallback = sqlite3ExprWalkNoop;
2664 w.xSelectCallback = sqlite3SelectWalkFail;
2665 #ifdef SQLITE_DEBUG
2666 w.xSelectCallback2 = sqlite3SelectWalkAssert2;
2667 #endif
2668 sqlite3WalkExpr(&w, p);
2669 return w.eCode==0;
2671 #endif
2674 ** If the expression p codes a constant integer that is small enough
2675 ** to fit in a 32-bit integer, return 1 and put the value of the integer
2676 ** in *pValue. If the expression is not an integer or if it is too big
2677 ** to fit in a signed 32-bit integer, return 0 and leave *pValue unchanged.
2679 int sqlite3ExprIsInteger(const Expr *p, int *pValue){
2680 int rc = 0;
2681 if( NEVER(p==0) ) return 0; /* Used to only happen following on OOM */
2683 /* If an expression is an integer literal that fits in a signed 32-bit
2684 ** integer, then the EP_IntValue flag will have already been set */
2685 assert( p->op!=TK_INTEGER || (p->flags & EP_IntValue)!=0
2686 || sqlite3GetInt32(p->u.zToken, &rc)==0 );
2688 if( p->flags & EP_IntValue ){
2689 *pValue = p->u.iValue;
2690 return 1;
2692 switch( p->op ){
2693 case TK_UPLUS: {
2694 rc = sqlite3ExprIsInteger(p->pLeft, pValue);
2695 break;
2697 case TK_UMINUS: {
2698 int v = 0;
2699 if( sqlite3ExprIsInteger(p->pLeft, &v) ){
2700 assert( ((unsigned int)v)!=0x80000000 );
2701 *pValue = -v;
2702 rc = 1;
2704 break;
2706 default: break;
2708 return rc;
2712 ** Return FALSE if there is no chance that the expression can be NULL.
2714 ** If the expression might be NULL or if the expression is too complex
2715 ** to tell return TRUE.
2717 ** This routine is used as an optimization, to skip OP_IsNull opcodes
2718 ** when we know that a value cannot be NULL. Hence, a false positive
2719 ** (returning TRUE when in fact the expression can never be NULL) might
2720 ** be a small performance hit but is otherwise harmless. On the other
2721 ** hand, a false negative (returning FALSE when the result could be NULL)
2722 ** will likely result in an incorrect answer. So when in doubt, return
2723 ** TRUE.
2725 int sqlite3ExprCanBeNull(const Expr *p){
2726 u8 op;
2727 assert( p!=0 );
2728 while( p->op==TK_UPLUS || p->op==TK_UMINUS ){
2729 p = p->pLeft;
2730 assert( p!=0 );
2732 op = p->op;
2733 if( op==TK_REGISTER ) op = p->op2;
2734 switch( op ){
2735 case TK_INTEGER:
2736 case TK_STRING:
2737 case TK_FLOAT:
2738 case TK_BLOB:
2739 return 0;
2740 case TK_COLUMN:
2741 assert( ExprUseYTab(p) );
2742 return ExprHasProperty(p, EP_CanBeNull) ||
2743 NEVER(p->y.pTab==0) || /* Reference to column of index on expr */
2744 (p->iColumn>=0
2745 && p->y.pTab->aCol!=0 /* Possible due to prior error */
2746 && ALWAYS(p->iColumn<p->y.pTab->nCol)
2747 && p->y.pTab->aCol[p->iColumn].notNull==0);
2748 default:
2749 return 1;
2754 ** Return TRUE if the given expression is a constant which would be
2755 ** unchanged by OP_Affinity with the affinity given in the second
2756 ** argument.
2758 ** This routine is used to determine if the OP_Affinity operation
2759 ** can be omitted. When in doubt return FALSE. A false negative
2760 ** is harmless. A false positive, however, can result in the wrong
2761 ** answer.
2763 int sqlite3ExprNeedsNoAffinityChange(const Expr *p, char aff){
2764 u8 op;
2765 int unaryMinus = 0;
2766 if( aff==SQLITE_AFF_BLOB ) return 1;
2767 while( p->op==TK_UPLUS || p->op==TK_UMINUS ){
2768 if( p->op==TK_UMINUS ) unaryMinus = 1;
2769 p = p->pLeft;
2771 op = p->op;
2772 if( op==TK_REGISTER ) op = p->op2;
2773 switch( op ){
2774 case TK_INTEGER: {
2775 return aff>=SQLITE_AFF_NUMERIC;
2777 case TK_FLOAT: {
2778 return aff>=SQLITE_AFF_NUMERIC;
2780 case TK_STRING: {
2781 return !unaryMinus && aff==SQLITE_AFF_TEXT;
2783 case TK_BLOB: {
2784 return !unaryMinus;
2786 case TK_COLUMN: {
2787 assert( p->iTable>=0 ); /* p cannot be part of a CHECK constraint */
2788 return aff>=SQLITE_AFF_NUMERIC && p->iColumn<0;
2790 default: {
2791 return 0;
2797 ** Return TRUE if the given string is a row-id column name.
2799 int sqlite3IsRowid(const char *z){
2800 if( sqlite3StrICmp(z, "_ROWID_")==0 ) return 1;
2801 if( sqlite3StrICmp(z, "ROWID")==0 ) return 1;
2802 if( sqlite3StrICmp(z, "OID")==0 ) return 1;
2803 return 0;
2807 ** Return a pointer to a buffer containing a usable rowid alias for table
2808 ** pTab. An alias is usable if there is not an explicit user-defined column
2809 ** of the same name.
2811 const char *sqlite3RowidAlias(Table *pTab){
2812 const char *azOpt[] = {"_ROWID_", "ROWID", "OID"};
2813 int ii;
2814 assert( VisibleRowid(pTab) );
2815 for(ii=0; ii<ArraySize(azOpt); ii++){
2816 int iCol;
2817 for(iCol=0; iCol<pTab->nCol; iCol++){
2818 if( sqlite3_stricmp(azOpt[ii], pTab->aCol[iCol].zCnName)==0 ) break;
2820 if( iCol==pTab->nCol ){
2821 return azOpt[ii];
2824 return 0;
2828 ** pX is the RHS of an IN operator. If pX is a SELECT statement
2829 ** that can be simplified to a direct table access, then return
2830 ** a pointer to the SELECT statement. If pX is not a SELECT statement,
2831 ** or if the SELECT statement needs to be materialized into a transient
2832 ** table, then return NULL.
2834 #ifndef SQLITE_OMIT_SUBQUERY
2835 static Select *isCandidateForInOpt(const Expr *pX){
2836 Select *p;
2837 SrcList *pSrc;
2838 ExprList *pEList;
2839 Table *pTab;
2840 int i;
2841 if( !ExprUseXSelect(pX) ) return 0; /* Not a subquery */
2842 if( ExprHasProperty(pX, EP_VarSelect) ) return 0; /* Correlated subq */
2843 p = pX->x.pSelect;
2844 if( p->pPrior ) return 0; /* Not a compound SELECT */
2845 if( p->selFlags & (SF_Distinct|SF_Aggregate) ){
2846 testcase( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct );
2847 testcase( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Aggregate );
2848 return 0; /* No DISTINCT keyword and no aggregate functions */
2850 assert( p->pGroupBy==0 ); /* Has no GROUP BY clause */
2851 if( p->pLimit ) return 0; /* Has no LIMIT clause */
2852 if( p->pWhere ) return 0; /* Has no WHERE clause */
2853 pSrc = p->pSrc;
2854 assert( pSrc!=0 );
2855 if( pSrc->nSrc!=1 ) return 0; /* Single term in FROM clause */
2856 if( pSrc->a[0].pSelect ) return 0; /* FROM is not a subquery or view */
2857 pTab = pSrc->a[0].pTab;
2858 assert( pTab!=0 );
2859 assert( !IsView(pTab) ); /* FROM clause is not a view */
2860 if( IsVirtual(pTab) ) return 0; /* FROM clause not a virtual table */
2861 pEList = p->pEList;
2862 assert( pEList!=0 );
2863 /* All SELECT results must be columns. */
2864 for(i=0; i<pEList->nExpr; i++){
2865 Expr *pRes = pEList->a[i].pExpr;
2866 if( pRes->op!=TK_COLUMN ) return 0;
2867 assert( pRes->iTable==pSrc->a[0].iCursor ); /* Not a correlated subquery */
2869 return p;
2871 #endif /* SQLITE_OMIT_SUBQUERY */
2873 #ifndef SQLITE_OMIT_SUBQUERY
2875 ** Generate code that checks the left-most column of index table iCur to see if
2876 ** it contains any NULL entries. Cause the register at regHasNull to be set
2877 ** to a non-NULL value if iCur contains no NULLs. Cause register regHasNull
2878 ** to be set to NULL if iCur contains one or more NULL values.
2880 static void sqlite3SetHasNullFlag(Vdbe *v, int iCur, int regHasNull){
2881 int addr1;
2882 sqlite3VdbeAddOp2(v, OP_Integer, 0, regHasNull);
2883 addr1 = sqlite3VdbeAddOp1(v, OP_Rewind, iCur); VdbeCoverage(v);
2884 sqlite3VdbeAddOp3(v, OP_Column, iCur, 0, regHasNull);
2885 sqlite3VdbeChangeP5(v, OPFLAG_TYPEOFARG);
2886 VdbeComment((v, "first_entry_in(%d)", iCur));
2887 sqlite3VdbeJumpHere(v, addr1);
2889 #endif
2892 #ifndef SQLITE_OMIT_SUBQUERY
2894 ** The argument is an IN operator with a list (not a subquery) on the
2895 ** right-hand side. Return TRUE if that list is constant.
2897 static int sqlite3InRhsIsConstant(Expr *pIn){
2898 Expr *pLHS;
2899 int res;
2900 assert( !ExprHasProperty(pIn, EP_xIsSelect) );
2901 pLHS = pIn->pLeft;
2902 pIn->pLeft = 0;
2903 res = sqlite3ExprIsConstant(pIn);
2904 pIn->pLeft = pLHS;
2905 return res;
2907 #endif
2910 ** This function is used by the implementation of the IN (...) operator.
2911 ** The pX parameter is the expression on the RHS of the IN operator, which
2912 ** might be either a list of expressions or a subquery.
2914 ** The job of this routine is to find or create a b-tree object that can
2915 ** be used either to test for membership in the RHS set or to iterate through
2916 ** all members of the RHS set, skipping duplicates.
2918 ** A cursor is opened on the b-tree object that is the RHS of the IN operator
2919 ** and the *piTab parameter is set to the index of that cursor.
2921 ** The returned value of this function indicates the b-tree type, as follows:
2923 ** IN_INDEX_ROWID - The cursor was opened on a database table.
2924 ** IN_INDEX_INDEX_ASC - The cursor was opened on an ascending index.
2925 ** IN_INDEX_INDEX_DESC - The cursor was opened on a descending index.
2926 ** IN_INDEX_EPH - The cursor was opened on a specially created and
2927 ** populated ephemeral table.
2928 ** IN_INDEX_NOOP - No cursor was allocated. The IN operator must be
2929 ** implemented as a sequence of comparisons.
2931 ** An existing b-tree might be used if the RHS expression pX is a simple
2932 ** subquery such as:
2934 ** SELECT <column1>, <column2>... FROM <table>
2936 ** If the RHS of the IN operator is a list or a more complex subquery, then
2937 ** an ephemeral table might need to be generated from the RHS and then
2938 ** pX->iTable made to point to the ephemeral table instead of an
2939 ** existing table. In this case, the creation and initialization of the
2940 ** ephemeral table might be put inside of a subroutine, the EP_Subrtn flag
2941 ** will be set on pX and the pX->y.sub fields will be set to show where
2942 ** the subroutine is coded.
2944 ** The inFlags parameter must contain, at a minimum, one of the bits
2945 ** IN_INDEX_MEMBERSHIP or IN_INDEX_LOOP but not both. If inFlags contains
2946 ** IN_INDEX_MEMBERSHIP, then the generated table will be used for a fast
2947 ** membership test. When the IN_INDEX_LOOP bit is set, the IN index will
2948 ** be used to loop over all values of the RHS of the IN operator.
2950 ** When IN_INDEX_LOOP is used (and the b-tree will be used to iterate
2951 ** through the set members) then the b-tree must not contain duplicates.
2952 ** An ephemeral table will be created unless the selected columns are guaranteed
2953 ** to be unique - either because it is an INTEGER PRIMARY KEY or due to
2954 ** a UNIQUE constraint or index.
2956 ** When IN_INDEX_MEMBERSHIP is used (and the b-tree will be used
2957 ** for fast set membership tests) then an ephemeral table must
2958 ** be used unless <columns> is a single INTEGER PRIMARY KEY column or an
2959 ** index can be found with the specified <columns> as its left-most.
2961 ** If the IN_INDEX_NOOP_OK and IN_INDEX_MEMBERSHIP are both set and
2962 ** if the RHS of the IN operator is a list (not a subquery) then this
2963 ** routine might decide that creating an ephemeral b-tree for membership
2964 ** testing is too expensive and return IN_INDEX_NOOP. In that case, the
2965 ** calling routine should implement the IN operator using a sequence
2966 ** of Eq or Ne comparison operations.
2968 ** When the b-tree is being used for membership tests, the calling function
2969 ** might need to know whether or not the RHS side of the IN operator
2970 ** contains a NULL. If prRhsHasNull is not a NULL pointer and
2971 ** if there is any chance that the (...) might contain a NULL value at
2972 ** runtime, then a register is allocated and the register number written
2973 ** to *prRhsHasNull. If there is no chance that the (...) contains a
2974 ** NULL value, then *prRhsHasNull is left unchanged.
2976 ** If a register is allocated and its location stored in *prRhsHasNull, then
2977 ** the value in that register will be NULL if the b-tree contains one or more
2978 ** NULL values, and it will be some non-NULL value if the b-tree contains no
2979 ** NULL values.
2981 ** If the aiMap parameter is not NULL, it must point to an array containing
2982 ** one element for each column returned by the SELECT statement on the RHS
2983 ** of the IN(...) operator. The i'th entry of the array is populated with the
2984 ** offset of the index column that matches the i'th column returned by the
2985 ** SELECT. For example, if the expression and selected index are:
2987 ** (?,?,?) IN (SELECT a, b, c FROM t1)
2988 ** CREATE INDEX i1 ON t1(b, c, a);
2990 ** then aiMap[] is populated with {2, 0, 1}.
2992 #ifndef SQLITE_OMIT_SUBQUERY
2993 int sqlite3FindInIndex(
2994 Parse *pParse, /* Parsing context */
2995 Expr *pX, /* The IN expression */
2996 u32 inFlags, /* IN_INDEX_LOOP, _MEMBERSHIP, and/or _NOOP_OK */
2997 int *prRhsHasNull, /* Register holding NULL status. See notes */
2998 int *aiMap, /* Mapping from Index fields to RHS fields */
2999 int *piTab /* OUT: index to use */
3001 Select *p; /* SELECT to the right of IN operator */
3002 int eType = 0; /* Type of RHS table. IN_INDEX_* */
3003 int iTab; /* Cursor of the RHS table */
3004 int mustBeUnique; /* True if RHS must be unique */
3005 Vdbe *v = sqlite3GetVdbe(pParse); /* Virtual machine being coded */
3007 assert( pX->op==TK_IN );
3008 mustBeUnique = (inFlags & IN_INDEX_LOOP)!=0;
3009 iTab = pParse->nTab++;
3011 /* If the RHS of this IN(...) operator is a SELECT, and if it matters
3012 ** whether or not the SELECT result contains NULL values, check whether
3013 ** or not NULL is actually possible (it may not be, for example, due
3014 ** to NOT NULL constraints in the schema). If no NULL values are possible,
3015 ** set prRhsHasNull to 0 before continuing. */
3016 if( prRhsHasNull && ExprUseXSelect(pX) ){
3017 int i;
3018 ExprList *pEList = pX->x.pSelect->pEList;
3019 for(i=0; i<pEList->nExpr; i++){
3020 if( sqlite3ExprCanBeNull(pEList->a[i].pExpr) ) break;
3022 if( i==pEList->nExpr ){
3023 prRhsHasNull = 0;
3027 /* Check to see if an existing table or index can be used to
3028 ** satisfy the query. This is preferable to generating a new
3029 ** ephemeral table. */
3030 if( pParse->nErr==0 && (p = isCandidateForInOpt(pX))!=0 ){
3031 sqlite3 *db = pParse->db; /* Database connection */
3032 Table *pTab; /* Table <table>. */
3033 int iDb; /* Database idx for pTab */
3034 ExprList *pEList = p->pEList;
3035 int nExpr = pEList->nExpr;
3037 assert( p->pEList!=0 ); /* Because of isCandidateForInOpt(p) */
3038 assert( p->pEList->a[0].pExpr!=0 ); /* Because of isCandidateForInOpt(p) */
3039 assert( p->pSrc!=0 ); /* Because of isCandidateForInOpt(p) */
3040 pTab = p->pSrc->a[0].pTab;
3042 /* Code an OP_Transaction and OP_TableLock for <table>. */
3043 iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
3044 assert( iDb>=0 && iDb<SQLITE_MAX_DB );
3045 sqlite3CodeVerifySchema(pParse, iDb);
3046 sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName);
3048 assert(v); /* sqlite3GetVdbe() has always been previously called */
3049 if( nExpr==1 && pEList->a[0].pExpr->iColumn<0 ){
3050 /* The "x IN (SELECT rowid FROM table)" case */
3051 int iAddr = sqlite3VdbeAddOp0(v, OP_Once);
3052 VdbeCoverage(v);
3054 sqlite3OpenTable(pParse, iTab, iDb, pTab, OP_OpenRead);
3055 eType = IN_INDEX_ROWID;
3056 ExplainQueryPlan((pParse, 0,
3057 "USING ROWID SEARCH ON TABLE %s FOR IN-OPERATOR",pTab->zName));
3058 sqlite3VdbeJumpHere(v, iAddr);
3059 }else{
3060 Index *pIdx; /* Iterator variable */
3061 int affinity_ok = 1;
3062 int i;
3064 /* Check that the affinity that will be used to perform each
3065 ** comparison is the same as the affinity of each column in table
3066 ** on the RHS of the IN operator. If it not, it is not possible to
3067 ** use any index of the RHS table. */
3068 for(i=0; i<nExpr && affinity_ok; i++){
3069 Expr *pLhs = sqlite3VectorFieldSubexpr(pX->pLeft, i);
3070 int iCol = pEList->a[i].pExpr->iColumn;
3071 char idxaff = sqlite3TableColumnAffinity(pTab,iCol); /* RHS table */
3072 char cmpaff = sqlite3CompareAffinity(pLhs, idxaff);
3073 testcase( cmpaff==SQLITE_AFF_BLOB );
3074 testcase( cmpaff==SQLITE_AFF_TEXT );
3075 switch( cmpaff ){
3076 case SQLITE_AFF_BLOB:
3077 break;
3078 case SQLITE_AFF_TEXT:
3079 /* sqlite3CompareAffinity() only returns TEXT if one side or the
3080 ** other has no affinity and the other side is TEXT. Hence,
3081 ** the only way for cmpaff to be TEXT is for idxaff to be TEXT
3082 ** and for the term on the LHS of the IN to have no affinity. */
3083 assert( idxaff==SQLITE_AFF_TEXT );
3084 break;
3085 default:
3086 affinity_ok = sqlite3IsNumericAffinity(idxaff);
3090 if( affinity_ok ){
3091 /* Search for an existing index that will work for this IN operator */
3092 for(pIdx=pTab->pIndex; pIdx && eType==0; pIdx=pIdx->pNext){
3093 Bitmask colUsed; /* Columns of the index used */
3094 Bitmask mCol; /* Mask for the current column */
3095 if( pIdx->nColumn<nExpr ) continue;
3096 if( pIdx->pPartIdxWhere!=0 ) continue;
3097 /* Maximum nColumn is BMS-2, not BMS-1, so that we can compute
3098 ** BITMASK(nExpr) without overflowing */
3099 testcase( pIdx->nColumn==BMS-2 );
3100 testcase( pIdx->nColumn==BMS-1 );
3101 if( pIdx->nColumn>=BMS-1 ) continue;
3102 if( mustBeUnique ){
3103 if( pIdx->nKeyCol>nExpr
3104 ||(pIdx->nColumn>nExpr && !IsUniqueIndex(pIdx))
3106 continue; /* This index is not unique over the IN RHS columns */
3110 colUsed = 0; /* Columns of index used so far */
3111 for(i=0; i<nExpr; i++){
3112 Expr *pLhs = sqlite3VectorFieldSubexpr(pX->pLeft, i);
3113 Expr *pRhs = pEList->a[i].pExpr;
3114 CollSeq *pReq = sqlite3BinaryCompareCollSeq(pParse, pLhs, pRhs);
3115 int j;
3117 for(j=0; j<nExpr; j++){
3118 if( pIdx->aiColumn[j]!=pRhs->iColumn ) continue;
3119 assert( pIdx->azColl[j] );
3120 if( pReq!=0 && sqlite3StrICmp(pReq->zName, pIdx->azColl[j])!=0 ){
3121 continue;
3123 break;
3125 if( j==nExpr ) break;
3126 mCol = MASKBIT(j);
3127 if( mCol & colUsed ) break; /* Each column used only once */
3128 colUsed |= mCol;
3129 if( aiMap ) aiMap[i] = j;
3132 assert( i==nExpr || colUsed!=(MASKBIT(nExpr)-1) );
3133 if( colUsed==(MASKBIT(nExpr)-1) ){
3134 /* If we reach this point, that means the index pIdx is usable */
3135 int iAddr = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v);
3136 ExplainQueryPlan((pParse, 0,
3137 "USING INDEX %s FOR IN-OPERATOR",pIdx->zName));
3138 sqlite3VdbeAddOp3(v, OP_OpenRead, iTab, pIdx->tnum, iDb);
3139 sqlite3VdbeSetP4KeyInfo(pParse, pIdx);
3140 VdbeComment((v, "%s", pIdx->zName));
3141 assert( IN_INDEX_INDEX_DESC == IN_INDEX_INDEX_ASC+1 );
3142 eType = IN_INDEX_INDEX_ASC + pIdx->aSortOrder[0];
3144 if( prRhsHasNull ){
3145 #ifdef SQLITE_ENABLE_COLUMN_USED_MASK
3146 i64 mask = (1<<nExpr)-1;
3147 sqlite3VdbeAddOp4Dup8(v, OP_ColumnsUsed,
3148 iTab, 0, 0, (u8*)&mask, P4_INT64);
3149 #endif
3150 *prRhsHasNull = ++pParse->nMem;
3151 if( nExpr==1 ){
3152 sqlite3SetHasNullFlag(v, iTab, *prRhsHasNull);
3155 sqlite3VdbeJumpHere(v, iAddr);
3157 } /* End loop over indexes */
3158 } /* End if( affinity_ok ) */
3159 } /* End if not an rowid index */
3160 } /* End attempt to optimize using an index */
3162 /* If no preexisting index is available for the IN clause
3163 ** and IN_INDEX_NOOP is an allowed reply
3164 ** and the RHS of the IN operator is a list, not a subquery
3165 ** and the RHS is not constant or has two or fewer terms,
3166 ** then it is not worth creating an ephemeral table to evaluate
3167 ** the IN operator so return IN_INDEX_NOOP.
3169 if( eType==0
3170 && (inFlags & IN_INDEX_NOOP_OK)
3171 && ExprUseXList(pX)
3172 && (!sqlite3InRhsIsConstant(pX) || pX->x.pList->nExpr<=2)
3174 pParse->nTab--; /* Back out the allocation of the unused cursor */
3175 iTab = -1; /* Cursor is not allocated */
3176 eType = IN_INDEX_NOOP;
3179 if( eType==0 ){
3180 /* Could not find an existing table or index to use as the RHS b-tree.
3181 ** We will have to generate an ephemeral table to do the job.
3183 u32 savedNQueryLoop = pParse->nQueryLoop;
3184 int rMayHaveNull = 0;
3185 eType = IN_INDEX_EPH;
3186 if( inFlags & IN_INDEX_LOOP ){
3187 pParse->nQueryLoop = 0;
3188 }else if( prRhsHasNull ){
3189 *prRhsHasNull = rMayHaveNull = ++pParse->nMem;
3191 assert( pX->op==TK_IN );
3192 sqlite3CodeRhsOfIN(pParse, pX, iTab);
3193 if( rMayHaveNull ){
3194 sqlite3SetHasNullFlag(v, iTab, rMayHaveNull);
3196 pParse->nQueryLoop = savedNQueryLoop;
3199 if( aiMap && eType!=IN_INDEX_INDEX_ASC && eType!=IN_INDEX_INDEX_DESC ){
3200 int i, n;
3201 n = sqlite3ExprVectorSize(pX->pLeft);
3202 for(i=0; i<n; i++) aiMap[i] = i;
3204 *piTab = iTab;
3205 return eType;
3207 #endif
3209 #ifndef SQLITE_OMIT_SUBQUERY
3211 ** Argument pExpr is an (?, ?...) IN(...) expression. This
3212 ** function allocates and returns a nul-terminated string containing
3213 ** the affinities to be used for each column of the comparison.
3215 ** It is the responsibility of the caller to ensure that the returned
3216 ** string is eventually freed using sqlite3DbFree().
3218 static char *exprINAffinity(Parse *pParse, const Expr *pExpr){
3219 Expr *pLeft = pExpr->pLeft;
3220 int nVal = sqlite3ExprVectorSize(pLeft);
3221 Select *pSelect = ExprUseXSelect(pExpr) ? pExpr->x.pSelect : 0;
3222 char *zRet;
3224 assert( pExpr->op==TK_IN );
3225 zRet = sqlite3DbMallocRaw(pParse->db, nVal+1);
3226 if( zRet ){
3227 int i;
3228 for(i=0; i<nVal; i++){
3229 Expr *pA = sqlite3VectorFieldSubexpr(pLeft, i);
3230 char a = sqlite3ExprAffinity(pA);
3231 if( pSelect ){
3232 zRet[i] = sqlite3CompareAffinity(pSelect->pEList->a[i].pExpr, a);
3233 }else{
3234 zRet[i] = a;
3237 zRet[nVal] = '\0';
3239 return zRet;
3241 #endif
3243 #ifndef SQLITE_OMIT_SUBQUERY
3245 ** Load the Parse object passed as the first argument with an error
3246 ** message of the form:
3248 ** "sub-select returns N columns - expected M"
3250 void sqlite3SubselectError(Parse *pParse, int nActual, int nExpect){
3251 if( pParse->nErr==0 ){
3252 const char *zFmt = "sub-select returns %d columns - expected %d";
3253 sqlite3ErrorMsg(pParse, zFmt, nActual, nExpect);
3256 #endif
3259 ** Expression pExpr is a vector that has been used in a context where
3260 ** it is not permitted. If pExpr is a sub-select vector, this routine
3261 ** loads the Parse object with a message of the form:
3263 ** "sub-select returns N columns - expected 1"
3265 ** Or, if it is a regular scalar vector:
3267 ** "row value misused"
3269 void sqlite3VectorErrorMsg(Parse *pParse, Expr *pExpr){
3270 #ifndef SQLITE_OMIT_SUBQUERY
3271 if( ExprUseXSelect(pExpr) ){
3272 sqlite3SubselectError(pParse, pExpr->x.pSelect->pEList->nExpr, 1);
3273 }else
3274 #endif
3276 sqlite3ErrorMsg(pParse, "row value misused");
3280 #ifndef SQLITE_OMIT_SUBQUERY
3282 ** Generate code that will construct an ephemeral table containing all terms
3283 ** in the RHS of an IN operator. The IN operator can be in either of two
3284 ** forms:
3286 ** x IN (4,5,11) -- IN operator with list on right-hand side
3287 ** x IN (SELECT a FROM b) -- IN operator with subquery on the right
3289 ** The pExpr parameter is the IN operator. The cursor number for the
3290 ** constructed ephemeral table is returned. The first time the ephemeral
3291 ** table is computed, the cursor number is also stored in pExpr->iTable,
3292 ** however the cursor number returned might not be the same, as it might
3293 ** have been duplicated using OP_OpenDup.
3295 ** If the LHS expression ("x" in the examples) is a column value, or
3296 ** the SELECT statement returns a column value, then the affinity of that
3297 ** column is used to build the index keys. If both 'x' and the
3298 ** SELECT... statement are columns, then numeric affinity is used
3299 ** if either column has NUMERIC or INTEGER affinity. If neither
3300 ** 'x' nor the SELECT... statement are columns, then numeric affinity
3301 ** is used.
3303 void sqlite3CodeRhsOfIN(
3304 Parse *pParse, /* Parsing context */
3305 Expr *pExpr, /* The IN operator */
3306 int iTab /* Use this cursor number */
3308 int addrOnce = 0; /* Address of the OP_Once instruction at top */
3309 int addr; /* Address of OP_OpenEphemeral instruction */
3310 Expr *pLeft; /* the LHS of the IN operator */
3311 KeyInfo *pKeyInfo = 0; /* Key information */
3312 int nVal; /* Size of vector pLeft */
3313 Vdbe *v; /* The prepared statement under construction */
3315 v = pParse->pVdbe;
3316 assert( v!=0 );
3318 /* The evaluation of the IN must be repeated every time it
3319 ** is encountered if any of the following is true:
3321 ** * The right-hand side is a correlated subquery
3322 ** * The right-hand side is an expression list containing variables
3323 ** * We are inside a trigger
3325 ** If all of the above are false, then we can compute the RHS just once
3326 ** and reuse it many names.
3328 if( !ExprHasProperty(pExpr, EP_VarSelect) && pParse->iSelfTab==0 ){
3329 /* Reuse of the RHS is allowed */
3330 /* If this routine has already been coded, but the previous code
3331 ** might not have been invoked yet, so invoke it now as a subroutine.
3333 if( ExprHasProperty(pExpr, EP_Subrtn) ){
3334 addrOnce = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v);
3335 if( ExprUseXSelect(pExpr) ){
3336 ExplainQueryPlan((pParse, 0, "REUSE LIST SUBQUERY %d",
3337 pExpr->x.pSelect->selId));
3339 assert( ExprUseYSub(pExpr) );
3340 sqlite3VdbeAddOp2(v, OP_Gosub, pExpr->y.sub.regReturn,
3341 pExpr->y.sub.iAddr);
3342 assert( iTab!=pExpr->iTable );
3343 sqlite3VdbeAddOp2(v, OP_OpenDup, iTab, pExpr->iTable);
3344 sqlite3VdbeJumpHere(v, addrOnce);
3345 return;
3348 /* Begin coding the subroutine */
3349 assert( !ExprUseYWin(pExpr) );
3350 ExprSetProperty(pExpr, EP_Subrtn);
3351 assert( !ExprHasProperty(pExpr, EP_TokenOnly|EP_Reduced) );
3352 pExpr->y.sub.regReturn = ++pParse->nMem;
3353 pExpr->y.sub.iAddr =
3354 sqlite3VdbeAddOp2(v, OP_BeginSubrtn, 0, pExpr->y.sub.regReturn) + 1;
3356 addrOnce = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v);
3359 /* Check to see if this is a vector IN operator */
3360 pLeft = pExpr->pLeft;
3361 nVal = sqlite3ExprVectorSize(pLeft);
3363 /* Construct the ephemeral table that will contain the content of
3364 ** RHS of the IN operator.
3366 pExpr->iTable = iTab;
3367 addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pExpr->iTable, nVal);
3368 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS
3369 if( ExprUseXSelect(pExpr) ){
3370 VdbeComment((v, "Result of SELECT %u", pExpr->x.pSelect->selId));
3371 }else{
3372 VdbeComment((v, "RHS of IN operator"));
3374 #endif
3375 pKeyInfo = sqlite3KeyInfoAlloc(pParse->db, nVal, 1);
3377 if( ExprUseXSelect(pExpr) ){
3378 /* Case 1: expr IN (SELECT ...)
3380 ** Generate code to write the results of the select into the temporary
3381 ** table allocated and opened above.
3383 Select *pSelect = pExpr->x.pSelect;
3384 ExprList *pEList = pSelect->pEList;
3386 ExplainQueryPlan((pParse, 1, "%sLIST SUBQUERY %d",
3387 addrOnce?"":"CORRELATED ", pSelect->selId
3389 /* If the LHS and RHS of the IN operator do not match, that
3390 ** error will have been caught long before we reach this point. */
3391 if( ALWAYS(pEList->nExpr==nVal) ){
3392 Select *pCopy;
3393 SelectDest dest;
3394 int i;
3395 int rc;
3396 sqlite3SelectDestInit(&dest, SRT_Set, iTab);
3397 dest.zAffSdst = exprINAffinity(pParse, pExpr);
3398 pSelect->iLimit = 0;
3399 testcase( pSelect->selFlags & SF_Distinct );
3400 testcase( pKeyInfo==0 ); /* Caused by OOM in sqlite3KeyInfoAlloc() */
3401 pCopy = sqlite3SelectDup(pParse->db, pSelect, 0);
3402 rc = pParse->db->mallocFailed ? 1 :sqlite3Select(pParse, pCopy, &dest);
3403 sqlite3SelectDelete(pParse->db, pCopy);
3404 sqlite3DbFree(pParse->db, dest.zAffSdst);
3405 if( rc ){
3406 sqlite3KeyInfoUnref(pKeyInfo);
3407 return;
3409 assert( pKeyInfo!=0 ); /* OOM will cause exit after sqlite3Select() */
3410 assert( pEList!=0 );
3411 assert( pEList->nExpr>0 );
3412 assert( sqlite3KeyInfoIsWriteable(pKeyInfo) );
3413 for(i=0; i<nVal; i++){
3414 Expr *p = sqlite3VectorFieldSubexpr(pLeft, i);
3415 pKeyInfo->aColl[i] = sqlite3BinaryCompareCollSeq(
3416 pParse, p, pEList->a[i].pExpr
3420 }else if( ALWAYS(pExpr->x.pList!=0) ){
3421 /* Case 2: expr IN (exprlist)
3423 ** For each expression, build an index key from the evaluation and
3424 ** store it in the temporary table. If <expr> is a column, then use
3425 ** that columns affinity when building index keys. If <expr> is not
3426 ** a column, use numeric affinity.
3428 char affinity; /* Affinity of the LHS of the IN */
3429 int i;
3430 ExprList *pList = pExpr->x.pList;
3431 struct ExprList_item *pItem;
3432 int r1, r2;
3433 affinity = sqlite3ExprAffinity(pLeft);
3434 if( affinity<=SQLITE_AFF_NONE ){
3435 affinity = SQLITE_AFF_BLOB;
3436 }else if( affinity==SQLITE_AFF_REAL ){
3437 affinity = SQLITE_AFF_NUMERIC;
3439 if( pKeyInfo ){
3440 assert( sqlite3KeyInfoIsWriteable(pKeyInfo) );
3441 pKeyInfo->aColl[0] = sqlite3ExprCollSeq(pParse, pExpr->pLeft);
3444 /* Loop through each expression in <exprlist>. */
3445 r1 = sqlite3GetTempReg(pParse);
3446 r2 = sqlite3GetTempReg(pParse);
3447 for(i=pList->nExpr, pItem=pList->a; i>0; i--, pItem++){
3448 Expr *pE2 = pItem->pExpr;
3450 /* If the expression is not constant then we will need to
3451 ** disable the test that was generated above that makes sure
3452 ** this code only executes once. Because for a non-constant
3453 ** expression we need to rerun this code each time.
3455 if( addrOnce && !sqlite3ExprIsConstant(pE2) ){
3456 sqlite3VdbeChangeToNoop(v, addrOnce-1);
3457 sqlite3VdbeChangeToNoop(v, addrOnce);
3458 ExprClearProperty(pExpr, EP_Subrtn);
3459 addrOnce = 0;
3462 /* Evaluate the expression and insert it into the temp table */
3463 sqlite3ExprCode(pParse, pE2, r1);
3464 sqlite3VdbeAddOp4(v, OP_MakeRecord, r1, 1, r2, &affinity, 1);
3465 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iTab, r2, r1, 1);
3467 sqlite3ReleaseTempReg(pParse, r1);
3468 sqlite3ReleaseTempReg(pParse, r2);
3470 if( pKeyInfo ){
3471 sqlite3VdbeChangeP4(v, addr, (void *)pKeyInfo, P4_KEYINFO);
3473 if( addrOnce ){
3474 sqlite3VdbeAddOp1(v, OP_NullRow, iTab);
3475 sqlite3VdbeJumpHere(v, addrOnce);
3476 /* Subroutine return */
3477 assert( ExprUseYSub(pExpr) );
3478 assert( sqlite3VdbeGetOp(v,pExpr->y.sub.iAddr-1)->opcode==OP_BeginSubrtn
3479 || pParse->nErr );
3480 sqlite3VdbeAddOp3(v, OP_Return, pExpr->y.sub.regReturn,
3481 pExpr->y.sub.iAddr, 1);
3482 VdbeCoverage(v);
3483 sqlite3ClearTempRegCache(pParse);
3486 #endif /* SQLITE_OMIT_SUBQUERY */
3489 ** Generate code for scalar subqueries used as a subquery expression
3490 ** or EXISTS operator:
3492 ** (SELECT a FROM b) -- subquery
3493 ** EXISTS (SELECT a FROM b) -- EXISTS subquery
3495 ** The pExpr parameter is the SELECT or EXISTS operator to be coded.
3497 ** Return the register that holds the result. For a multi-column SELECT,
3498 ** the result is stored in a contiguous array of registers and the
3499 ** return value is the register of the left-most result column.
3500 ** Return 0 if an error occurs.
3502 #ifndef SQLITE_OMIT_SUBQUERY
3503 int sqlite3CodeSubselect(Parse *pParse, Expr *pExpr){
3504 int addrOnce = 0; /* Address of OP_Once at top of subroutine */
3505 int rReg = 0; /* Register storing resulting */
3506 Select *pSel; /* SELECT statement to encode */
3507 SelectDest dest; /* How to deal with SELECT result */
3508 int nReg; /* Registers to allocate */
3509 Expr *pLimit; /* New limit expression */
3510 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS
3511 int addrExplain; /* Address of OP_Explain instruction */
3512 #endif
3514 Vdbe *v = pParse->pVdbe;
3515 assert( v!=0 );
3516 if( pParse->nErr ) return 0;
3517 testcase( pExpr->op==TK_EXISTS );
3518 testcase( pExpr->op==TK_SELECT );
3519 assert( pExpr->op==TK_EXISTS || pExpr->op==TK_SELECT );
3520 assert( ExprUseXSelect(pExpr) );
3521 pSel = pExpr->x.pSelect;
3523 /* If this routine has already been coded, then invoke it as a
3524 ** subroutine. */
3525 if( ExprHasProperty(pExpr, EP_Subrtn) ){
3526 ExplainQueryPlan((pParse, 0, "REUSE SUBQUERY %d", pSel->selId));
3527 assert( ExprUseYSub(pExpr) );
3528 sqlite3VdbeAddOp2(v, OP_Gosub, pExpr->y.sub.regReturn,
3529 pExpr->y.sub.iAddr);
3530 return pExpr->iTable;
3533 /* Begin coding the subroutine */
3534 assert( !ExprUseYWin(pExpr) );
3535 assert( !ExprHasProperty(pExpr, EP_Reduced|EP_TokenOnly) );
3536 ExprSetProperty(pExpr, EP_Subrtn);
3537 pExpr->y.sub.regReturn = ++pParse->nMem;
3538 pExpr->y.sub.iAddr =
3539 sqlite3VdbeAddOp2(v, OP_BeginSubrtn, 0, pExpr->y.sub.regReturn) + 1;
3541 /* The evaluation of the EXISTS/SELECT must be repeated every time it
3542 ** is encountered if any of the following is true:
3544 ** * The right-hand side is a correlated subquery
3545 ** * The right-hand side is an expression list containing variables
3546 ** * We are inside a trigger
3548 ** If all of the above are false, then we can run this code just once
3549 ** save the results, and reuse the same result on subsequent invocations.
3551 if( !ExprHasProperty(pExpr, EP_VarSelect) ){
3552 addrOnce = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v);
3555 /* For a SELECT, generate code to put the values for all columns of
3556 ** the first row into an array of registers and return the index of
3557 ** the first register.
3559 ** If this is an EXISTS, write an integer 0 (not exists) or 1 (exists)
3560 ** into a register and return that register number.
3562 ** In both cases, the query is augmented with "LIMIT 1". Any
3563 ** preexisting limit is discarded in place of the new LIMIT 1.
3565 ExplainQueryPlan2(addrExplain, (pParse, 1, "%sSCALAR SUBQUERY %d",
3566 addrOnce?"":"CORRELATED ", pSel->selId));
3567 sqlite3VdbeScanStatusCounters(v, addrExplain, addrExplain, -1);
3568 nReg = pExpr->op==TK_SELECT ? pSel->pEList->nExpr : 1;
3569 sqlite3SelectDestInit(&dest, 0, pParse->nMem+1);
3570 pParse->nMem += nReg;
3571 if( pExpr->op==TK_SELECT ){
3572 dest.eDest = SRT_Mem;
3573 dest.iSdst = dest.iSDParm;
3574 dest.nSdst = nReg;
3575 sqlite3VdbeAddOp3(v, OP_Null, 0, dest.iSDParm, dest.iSDParm+nReg-1);
3576 VdbeComment((v, "Init subquery result"));
3577 }else{
3578 dest.eDest = SRT_Exists;
3579 sqlite3VdbeAddOp2(v, OP_Integer, 0, dest.iSDParm);
3580 VdbeComment((v, "Init EXISTS result"));
3582 if( pSel->pLimit ){
3583 /* The subquery already has a limit. If the pre-existing limit is X
3584 ** then make the new limit X<>0 so that the new limit is either 1 or 0 */
3585 sqlite3 *db = pParse->db;
3586 pLimit = sqlite3Expr(db, TK_INTEGER, "0");
3587 if( pLimit ){
3588 pLimit->affExpr = SQLITE_AFF_NUMERIC;
3589 pLimit = sqlite3PExpr(pParse, TK_NE,
3590 sqlite3ExprDup(db, pSel->pLimit->pLeft, 0), pLimit);
3592 sqlite3ExprDeferredDelete(pParse, pSel->pLimit->pLeft);
3593 pSel->pLimit->pLeft = pLimit;
3594 }else{
3595 /* If there is no pre-existing limit add a limit of 1 */
3596 pLimit = sqlite3Expr(pParse->db, TK_INTEGER, "1");
3597 pSel->pLimit = sqlite3PExpr(pParse, TK_LIMIT, pLimit, 0);
3599 pSel->iLimit = 0;
3600 if( sqlite3Select(pParse, pSel, &dest) ){
3601 pExpr->op2 = pExpr->op;
3602 pExpr->op = TK_ERROR;
3603 return 0;
3605 pExpr->iTable = rReg = dest.iSDParm;
3606 ExprSetVVAProperty(pExpr, EP_NoReduce);
3607 if( addrOnce ){
3608 sqlite3VdbeJumpHere(v, addrOnce);
3610 sqlite3VdbeScanStatusRange(v, addrExplain, addrExplain, -1);
3612 /* Subroutine return */
3613 assert( ExprUseYSub(pExpr) );
3614 assert( sqlite3VdbeGetOp(v,pExpr->y.sub.iAddr-1)->opcode==OP_BeginSubrtn
3615 || pParse->nErr );
3616 sqlite3VdbeAddOp3(v, OP_Return, pExpr->y.sub.regReturn,
3617 pExpr->y.sub.iAddr, 1);
3618 VdbeCoverage(v);
3619 sqlite3ClearTempRegCache(pParse);
3620 return rReg;
3622 #endif /* SQLITE_OMIT_SUBQUERY */
3624 #ifndef SQLITE_OMIT_SUBQUERY
3626 ** Expr pIn is an IN(...) expression. This function checks that the
3627 ** sub-select on the RHS of the IN() operator has the same number of
3628 ** columns as the vector on the LHS. Or, if the RHS of the IN() is not
3629 ** a sub-query, that the LHS is a vector of size 1.
3631 int sqlite3ExprCheckIN(Parse *pParse, Expr *pIn){
3632 int nVector = sqlite3ExprVectorSize(pIn->pLeft);
3633 if( ExprUseXSelect(pIn) && !pParse->db->mallocFailed ){
3634 if( nVector!=pIn->x.pSelect->pEList->nExpr ){
3635 sqlite3SubselectError(pParse, pIn->x.pSelect->pEList->nExpr, nVector);
3636 return 1;
3638 }else if( nVector!=1 ){
3639 sqlite3VectorErrorMsg(pParse, pIn->pLeft);
3640 return 1;
3642 return 0;
3644 #endif
3646 #ifndef SQLITE_OMIT_SUBQUERY
3648 ** Generate code for an IN expression.
3650 ** x IN (SELECT ...)
3651 ** x IN (value, value, ...)
3653 ** The left-hand side (LHS) is a scalar or vector expression. The
3654 ** right-hand side (RHS) is an array of zero or more scalar values, or a
3655 ** subquery. If the RHS is a subquery, the number of result columns must
3656 ** match the number of columns in the vector on the LHS. If the RHS is
3657 ** a list of values, the LHS must be a scalar.
3659 ** The IN operator is true if the LHS value is contained within the RHS.
3660 ** The result is false if the LHS is definitely not in the RHS. The
3661 ** result is NULL if the presence of the LHS in the RHS cannot be
3662 ** determined due to NULLs.
3664 ** This routine generates code that jumps to destIfFalse if the LHS is not
3665 ** contained within the RHS. If due to NULLs we cannot determine if the LHS
3666 ** is contained in the RHS then jump to destIfNull. If the LHS is contained
3667 ** within the RHS then fall through.
3669 ** See the separate in-operator.md documentation file in the canonical
3670 ** SQLite source tree for additional information.
3672 static void sqlite3ExprCodeIN(
3673 Parse *pParse, /* Parsing and code generating context */
3674 Expr *pExpr, /* The IN expression */
3675 int destIfFalse, /* Jump here if LHS is not contained in the RHS */
3676 int destIfNull /* Jump here if the results are unknown due to NULLs */
3678 int rRhsHasNull = 0; /* Register that is true if RHS contains NULL values */
3679 int eType; /* Type of the RHS */
3680 int rLhs; /* Register(s) holding the LHS values */
3681 int rLhsOrig; /* LHS values prior to reordering by aiMap[] */
3682 Vdbe *v; /* Statement under construction */
3683 int *aiMap = 0; /* Map from vector field to index column */
3684 char *zAff = 0; /* Affinity string for comparisons */
3685 int nVector; /* Size of vectors for this IN operator */
3686 int iDummy; /* Dummy parameter to exprCodeVector() */
3687 Expr *pLeft; /* The LHS of the IN operator */
3688 int i; /* loop counter */
3689 int destStep2; /* Where to jump when NULLs seen in step 2 */
3690 int destStep6 = 0; /* Start of code for Step 6 */
3691 int addrTruthOp; /* Address of opcode that determines the IN is true */
3692 int destNotNull; /* Jump here if a comparison is not true in step 6 */
3693 int addrTop; /* Top of the step-6 loop */
3694 int iTab = 0; /* Index to use */
3695 u8 okConstFactor = pParse->okConstFactor;
3697 assert( !ExprHasVVAProperty(pExpr,EP_Immutable) );
3698 pLeft = pExpr->pLeft;
3699 if( sqlite3ExprCheckIN(pParse, pExpr) ) return;
3700 zAff = exprINAffinity(pParse, pExpr);
3701 nVector = sqlite3ExprVectorSize(pExpr->pLeft);
3702 aiMap = (int*)sqlite3DbMallocZero(
3703 pParse->db, nVector*(sizeof(int) + sizeof(char)) + 1
3705 if( pParse->db->mallocFailed ) goto sqlite3ExprCodeIN_oom_error;
3707 /* Attempt to compute the RHS. After this step, if anything other than
3708 ** IN_INDEX_NOOP is returned, the table opened with cursor iTab
3709 ** contains the values that make up the RHS. If IN_INDEX_NOOP is returned,
3710 ** the RHS has not yet been coded. */
3711 v = pParse->pVdbe;
3712 assert( v!=0 ); /* OOM detected prior to this routine */
3713 VdbeNoopComment((v, "begin IN expr"));
3714 eType = sqlite3FindInIndex(pParse, pExpr,
3715 IN_INDEX_MEMBERSHIP | IN_INDEX_NOOP_OK,
3716 destIfFalse==destIfNull ? 0 : &rRhsHasNull,
3717 aiMap, &iTab);
3719 assert( pParse->nErr || nVector==1 || eType==IN_INDEX_EPH
3720 || eType==IN_INDEX_INDEX_ASC || eType==IN_INDEX_INDEX_DESC
3722 #ifdef SQLITE_DEBUG
3723 /* Confirm that aiMap[] contains nVector integer values between 0 and
3724 ** nVector-1. */
3725 for(i=0; i<nVector; i++){
3726 int j, cnt;
3727 for(cnt=j=0; j<nVector; j++) if( aiMap[j]==i ) cnt++;
3728 assert( cnt==1 );
3730 #endif
3732 /* Code the LHS, the <expr> from "<expr> IN (...)". If the LHS is a
3733 ** vector, then it is stored in an array of nVector registers starting
3734 ** at r1.
3736 ** sqlite3FindInIndex() might have reordered the fields of the LHS vector
3737 ** so that the fields are in the same order as an existing index. The
3738 ** aiMap[] array contains a mapping from the original LHS field order to
3739 ** the field order that matches the RHS index.
3741 ** Avoid factoring the LHS of the IN(...) expression out of the loop,
3742 ** even if it is constant, as OP_Affinity may be used on the register
3743 ** by code generated below. */
3744 assert( pParse->okConstFactor==okConstFactor );
3745 pParse->okConstFactor = 0;
3746 rLhsOrig = exprCodeVector(pParse, pLeft, &iDummy);
3747 pParse->okConstFactor = okConstFactor;
3748 for(i=0; i<nVector && aiMap[i]==i; i++){} /* Are LHS fields reordered? */
3749 if( i==nVector ){
3750 /* LHS fields are not reordered */
3751 rLhs = rLhsOrig;
3752 }else{
3753 /* Need to reorder the LHS fields according to aiMap */
3754 rLhs = sqlite3GetTempRange(pParse, nVector);
3755 for(i=0; i<nVector; i++){
3756 sqlite3VdbeAddOp3(v, OP_Copy, rLhsOrig+i, rLhs+aiMap[i], 0);
3760 /* If sqlite3FindInIndex() did not find or create an index that is
3761 ** suitable for evaluating the IN operator, then evaluate using a
3762 ** sequence of comparisons.
3764 ** This is step (1) in the in-operator.md optimized algorithm.
3766 if( eType==IN_INDEX_NOOP ){
3767 ExprList *pList;
3768 CollSeq *pColl;
3769 int labelOk = sqlite3VdbeMakeLabel(pParse);
3770 int r2, regToFree;
3771 int regCkNull = 0;
3772 int ii;
3773 assert( ExprUseXList(pExpr) );
3774 pList = pExpr->x.pList;
3775 pColl = sqlite3ExprCollSeq(pParse, pExpr->pLeft);
3776 if( destIfNull!=destIfFalse ){
3777 regCkNull = sqlite3GetTempReg(pParse);
3778 sqlite3VdbeAddOp3(v, OP_BitAnd, rLhs, rLhs, regCkNull);
3780 for(ii=0; ii<pList->nExpr; ii++){
3781 r2 = sqlite3ExprCodeTemp(pParse, pList->a[ii].pExpr, &regToFree);
3782 if( regCkNull && sqlite3ExprCanBeNull(pList->a[ii].pExpr) ){
3783 sqlite3VdbeAddOp3(v, OP_BitAnd, regCkNull, r2, regCkNull);
3785 sqlite3ReleaseTempReg(pParse, regToFree);
3786 if( ii<pList->nExpr-1 || destIfNull!=destIfFalse ){
3787 int op = rLhs!=r2 ? OP_Eq : OP_NotNull;
3788 sqlite3VdbeAddOp4(v, op, rLhs, labelOk, r2,
3789 (void*)pColl, P4_COLLSEQ);
3790 VdbeCoverageIf(v, ii<pList->nExpr-1 && op==OP_Eq);
3791 VdbeCoverageIf(v, ii==pList->nExpr-1 && op==OP_Eq);
3792 VdbeCoverageIf(v, ii<pList->nExpr-1 && op==OP_NotNull);
3793 VdbeCoverageIf(v, ii==pList->nExpr-1 && op==OP_NotNull);
3794 sqlite3VdbeChangeP5(v, zAff[0]);
3795 }else{
3796 int op = rLhs!=r2 ? OP_Ne : OP_IsNull;
3797 assert( destIfNull==destIfFalse );
3798 sqlite3VdbeAddOp4(v, op, rLhs, destIfFalse, r2,
3799 (void*)pColl, P4_COLLSEQ);
3800 VdbeCoverageIf(v, op==OP_Ne);
3801 VdbeCoverageIf(v, op==OP_IsNull);
3802 sqlite3VdbeChangeP5(v, zAff[0] | SQLITE_JUMPIFNULL);
3805 if( regCkNull ){
3806 sqlite3VdbeAddOp2(v, OP_IsNull, regCkNull, destIfNull); VdbeCoverage(v);
3807 sqlite3VdbeGoto(v, destIfFalse);
3809 sqlite3VdbeResolveLabel(v, labelOk);
3810 sqlite3ReleaseTempReg(pParse, regCkNull);
3811 goto sqlite3ExprCodeIN_finished;
3814 /* Step 2: Check to see if the LHS contains any NULL columns. If the
3815 ** LHS does contain NULLs then the result must be either FALSE or NULL.
3816 ** We will then skip the binary search of the RHS.
3818 if( destIfNull==destIfFalse ){
3819 destStep2 = destIfFalse;
3820 }else{
3821 destStep2 = destStep6 = sqlite3VdbeMakeLabel(pParse);
3823 for(i=0; i<nVector; i++){
3824 Expr *p = sqlite3VectorFieldSubexpr(pExpr->pLeft, i);
3825 if( pParse->nErr ) goto sqlite3ExprCodeIN_oom_error;
3826 if( sqlite3ExprCanBeNull(p) ){
3827 sqlite3VdbeAddOp2(v, OP_IsNull, rLhs+i, destStep2);
3828 VdbeCoverage(v);
3832 /* Step 3. The LHS is now known to be non-NULL. Do the binary search
3833 ** of the RHS using the LHS as a probe. If found, the result is
3834 ** true.
3836 if( eType==IN_INDEX_ROWID ){
3837 /* In this case, the RHS is the ROWID of table b-tree and so we also
3838 ** know that the RHS is non-NULL. Hence, we combine steps 3 and 4
3839 ** into a single opcode. */
3840 sqlite3VdbeAddOp3(v, OP_SeekRowid, iTab, destIfFalse, rLhs);
3841 VdbeCoverage(v);
3842 addrTruthOp = sqlite3VdbeAddOp0(v, OP_Goto); /* Return True */
3843 }else{
3844 sqlite3VdbeAddOp4(v, OP_Affinity, rLhs, nVector, 0, zAff, nVector);
3845 if( destIfFalse==destIfNull ){
3846 /* Combine Step 3 and Step 5 into a single opcode */
3847 sqlite3VdbeAddOp4Int(v, OP_NotFound, iTab, destIfFalse,
3848 rLhs, nVector); VdbeCoverage(v);
3849 goto sqlite3ExprCodeIN_finished;
3851 /* Ordinary Step 3, for the case where FALSE and NULL are distinct */
3852 addrTruthOp = sqlite3VdbeAddOp4Int(v, OP_Found, iTab, 0,
3853 rLhs, nVector); VdbeCoverage(v);
3856 /* Step 4. If the RHS is known to be non-NULL and we did not find
3857 ** an match on the search above, then the result must be FALSE.
3859 if( rRhsHasNull && nVector==1 ){
3860 sqlite3VdbeAddOp2(v, OP_NotNull, rRhsHasNull, destIfFalse);
3861 VdbeCoverage(v);
3864 /* Step 5. If we do not care about the difference between NULL and
3865 ** FALSE, then just return false.
3867 if( destIfFalse==destIfNull ) sqlite3VdbeGoto(v, destIfFalse);
3869 /* Step 6: Loop through rows of the RHS. Compare each row to the LHS.
3870 ** If any comparison is NULL, then the result is NULL. If all
3871 ** comparisons are FALSE then the final result is FALSE.
3873 ** For a scalar LHS, it is sufficient to check just the first row
3874 ** of the RHS.
3876 if( destStep6 ) sqlite3VdbeResolveLabel(v, destStep6);
3877 addrTop = sqlite3VdbeAddOp2(v, OP_Rewind, iTab, destIfFalse);
3878 VdbeCoverage(v);
3879 if( nVector>1 ){
3880 destNotNull = sqlite3VdbeMakeLabel(pParse);
3881 }else{
3882 /* For nVector==1, combine steps 6 and 7 by immediately returning
3883 ** FALSE if the first comparison is not NULL */
3884 destNotNull = destIfFalse;
3886 for(i=0; i<nVector; i++){
3887 Expr *p;
3888 CollSeq *pColl;
3889 int r3 = sqlite3GetTempReg(pParse);
3890 p = sqlite3VectorFieldSubexpr(pLeft, i);
3891 pColl = sqlite3ExprCollSeq(pParse, p);
3892 sqlite3VdbeAddOp3(v, OP_Column, iTab, i, r3);
3893 sqlite3VdbeAddOp4(v, OP_Ne, rLhs+i, destNotNull, r3,
3894 (void*)pColl, P4_COLLSEQ);
3895 VdbeCoverage(v);
3896 sqlite3ReleaseTempReg(pParse, r3);
3898 sqlite3VdbeAddOp2(v, OP_Goto, 0, destIfNull);
3899 if( nVector>1 ){
3900 sqlite3VdbeResolveLabel(v, destNotNull);
3901 sqlite3VdbeAddOp2(v, OP_Next, iTab, addrTop+1);
3902 VdbeCoverage(v);
3904 /* Step 7: If we reach this point, we know that the result must
3905 ** be false. */
3906 sqlite3VdbeAddOp2(v, OP_Goto, 0, destIfFalse);
3909 /* Jumps here in order to return true. */
3910 sqlite3VdbeJumpHere(v, addrTruthOp);
3912 sqlite3ExprCodeIN_finished:
3913 if( rLhs!=rLhsOrig ) sqlite3ReleaseTempReg(pParse, rLhs);
3914 VdbeComment((v, "end IN expr"));
3915 sqlite3ExprCodeIN_oom_error:
3916 sqlite3DbFree(pParse->db, aiMap);
3917 sqlite3DbFree(pParse->db, zAff);
3919 #endif /* SQLITE_OMIT_SUBQUERY */
3921 #ifndef SQLITE_OMIT_FLOATING_POINT
3923 ** Generate an instruction that will put the floating point
3924 ** value described by z[0..n-1] into register iMem.
3926 ** The z[] string will probably not be zero-terminated. But the
3927 ** z[n] character is guaranteed to be something that does not look
3928 ** like the continuation of the number.
3930 static void codeReal(Vdbe *v, const char *z, int negateFlag, int iMem){
3931 if( ALWAYS(z!=0) ){
3932 double value;
3933 sqlite3AtoF(z, &value, sqlite3Strlen30(z), SQLITE_UTF8);
3934 assert( !sqlite3IsNaN(value) ); /* The new AtoF never returns NaN */
3935 if( negateFlag ) value = -value;
3936 sqlite3VdbeAddOp4Dup8(v, OP_Real, 0, iMem, 0, (u8*)&value, P4_REAL);
3939 #endif
3943 ** Generate an instruction that will put the integer describe by
3944 ** text z[0..n-1] into register iMem.
3946 ** Expr.u.zToken is always UTF8 and zero-terminated.
3948 static void codeInteger(Parse *pParse, Expr *pExpr, int negFlag, int iMem){
3949 Vdbe *v = pParse->pVdbe;
3950 if( pExpr->flags & EP_IntValue ){
3951 int i = pExpr->u.iValue;
3952 assert( i>=0 );
3953 if( negFlag ) i = -i;
3954 sqlite3VdbeAddOp2(v, OP_Integer, i, iMem);
3955 }else{
3956 int c;
3957 i64 value;
3958 const char *z = pExpr->u.zToken;
3959 assert( z!=0 );
3960 c = sqlite3DecOrHexToI64(z, &value);
3961 if( (c==3 && !negFlag) || (c==2) || (negFlag && value==SMALLEST_INT64)){
3962 #ifdef SQLITE_OMIT_FLOATING_POINT
3963 sqlite3ErrorMsg(pParse, "oversized integer: %s%#T", negFlag?"-":"",pExpr);
3964 #else
3965 #ifndef SQLITE_OMIT_HEX_INTEGER
3966 if( sqlite3_strnicmp(z,"0x",2)==0 ){
3967 sqlite3ErrorMsg(pParse, "hex literal too big: %s%#T",
3968 negFlag?"-":"",pExpr);
3969 }else
3970 #endif
3972 codeReal(v, z, negFlag, iMem);
3974 #endif
3975 }else{
3976 if( negFlag ){ value = c==3 ? SMALLEST_INT64 : -value; }
3977 sqlite3VdbeAddOp4Dup8(v, OP_Int64, 0, iMem, 0, (u8*)&value, P4_INT64);
3983 /* Generate code that will load into register regOut a value that is
3984 ** appropriate for the iIdxCol-th column of index pIdx.
3986 void sqlite3ExprCodeLoadIndexColumn(
3987 Parse *pParse, /* The parsing context */
3988 Index *pIdx, /* The index whose column is to be loaded */
3989 int iTabCur, /* Cursor pointing to a table row */
3990 int iIdxCol, /* The column of the index to be loaded */
3991 int regOut /* Store the index column value in this register */
3993 i16 iTabCol = pIdx->aiColumn[iIdxCol];
3994 if( iTabCol==XN_EXPR ){
3995 assert( pIdx->aColExpr );
3996 assert( pIdx->aColExpr->nExpr>iIdxCol );
3997 pParse->iSelfTab = iTabCur + 1;
3998 sqlite3ExprCodeCopy(pParse, pIdx->aColExpr->a[iIdxCol].pExpr, regOut);
3999 pParse->iSelfTab = 0;
4000 }else{
4001 sqlite3ExprCodeGetColumnOfTable(pParse->pVdbe, pIdx->pTable, iTabCur,
4002 iTabCol, regOut);
4006 #ifndef SQLITE_OMIT_GENERATED_COLUMNS
4008 ** Generate code that will compute the value of generated column pCol
4009 ** and store the result in register regOut
4011 void sqlite3ExprCodeGeneratedColumn(
4012 Parse *pParse, /* Parsing context */
4013 Table *pTab, /* Table containing the generated column */
4014 Column *pCol, /* The generated column */
4015 int regOut /* Put the result in this register */
4017 int iAddr;
4018 Vdbe *v = pParse->pVdbe;
4019 int nErr = pParse->nErr;
4020 assert( v!=0 );
4021 assert( pParse->iSelfTab!=0 );
4022 if( pParse->iSelfTab>0 ){
4023 iAddr = sqlite3VdbeAddOp3(v, OP_IfNullRow, pParse->iSelfTab-1, 0, regOut);
4024 }else{
4025 iAddr = 0;
4027 sqlite3ExprCodeCopy(pParse, sqlite3ColumnExpr(pTab,pCol), regOut);
4028 if( pCol->affinity>=SQLITE_AFF_TEXT ){
4029 sqlite3VdbeAddOp4(v, OP_Affinity, regOut, 1, 0, &pCol->affinity, 1);
4031 if( iAddr ) sqlite3VdbeJumpHere(v, iAddr);
4032 if( pParse->nErr>nErr ) pParse->db->errByteOffset = -1;
4034 #endif /* SQLITE_OMIT_GENERATED_COLUMNS */
4037 ** Generate code to extract the value of the iCol-th column of a table.
4039 void sqlite3ExprCodeGetColumnOfTable(
4040 Vdbe *v, /* Parsing context */
4041 Table *pTab, /* The table containing the value */
4042 int iTabCur, /* The table cursor. Or the PK cursor for WITHOUT ROWID */
4043 int iCol, /* Index of the column to extract */
4044 int regOut /* Extract the value into this register */
4046 Column *pCol;
4047 assert( v!=0 );
4048 assert( pTab!=0 );
4049 assert( iCol!=XN_EXPR );
4050 if( iCol<0 || iCol==pTab->iPKey ){
4051 sqlite3VdbeAddOp2(v, OP_Rowid, iTabCur, regOut);
4052 VdbeComment((v, "%s.rowid", pTab->zName));
4053 }else{
4054 int op;
4055 int x;
4056 if( IsVirtual(pTab) ){
4057 op = OP_VColumn;
4058 x = iCol;
4059 #ifndef SQLITE_OMIT_GENERATED_COLUMNS
4060 }else if( (pCol = &pTab->aCol[iCol])->colFlags & COLFLAG_VIRTUAL ){
4061 Parse *pParse = sqlite3VdbeParser(v);
4062 if( pCol->colFlags & COLFLAG_BUSY ){
4063 sqlite3ErrorMsg(pParse, "generated column loop on \"%s\"",
4064 pCol->zCnName);
4065 }else{
4066 int savedSelfTab = pParse->iSelfTab;
4067 pCol->colFlags |= COLFLAG_BUSY;
4068 pParse->iSelfTab = iTabCur+1;
4069 sqlite3ExprCodeGeneratedColumn(pParse, pTab, pCol, regOut);
4070 pParse->iSelfTab = savedSelfTab;
4071 pCol->colFlags &= ~COLFLAG_BUSY;
4073 return;
4074 #endif
4075 }else if( !HasRowid(pTab) ){
4076 testcase( iCol!=sqlite3TableColumnToStorage(pTab, iCol) );
4077 x = sqlite3TableColumnToIndex(sqlite3PrimaryKeyIndex(pTab), iCol);
4078 op = OP_Column;
4079 }else{
4080 x = sqlite3TableColumnToStorage(pTab,iCol);
4081 testcase( x!=iCol );
4082 op = OP_Column;
4084 sqlite3VdbeAddOp3(v, op, iTabCur, x, regOut);
4085 sqlite3ColumnDefault(v, pTab, iCol, regOut);
4090 ** Generate code that will extract the iColumn-th column from
4091 ** table pTab and store the column value in register iReg.
4093 ** There must be an open cursor to pTab in iTable when this routine
4094 ** is called. If iColumn<0 then code is generated that extracts the rowid.
4096 int sqlite3ExprCodeGetColumn(
4097 Parse *pParse, /* Parsing and code generating context */
4098 Table *pTab, /* Description of the table we are reading from */
4099 int iColumn, /* Index of the table column */
4100 int iTable, /* The cursor pointing to the table */
4101 int iReg, /* Store results here */
4102 u8 p5 /* P5 value for OP_Column + FLAGS */
4104 assert( pParse->pVdbe!=0 );
4105 assert( (p5 & (OPFLAG_NOCHNG|OPFLAG_TYPEOFARG|OPFLAG_LENGTHARG))==p5 );
4106 assert( IsVirtual(pTab) || (p5 & OPFLAG_NOCHNG)==0 );
4107 sqlite3ExprCodeGetColumnOfTable(pParse->pVdbe, pTab, iTable, iColumn, iReg);
4108 if( p5 ){
4109 VdbeOp *pOp = sqlite3VdbeGetLastOp(pParse->pVdbe);
4110 if( pOp->opcode==OP_Column ) pOp->p5 = p5;
4111 if( pOp->opcode==OP_VColumn ) pOp->p5 = (p5 & OPFLAG_NOCHNG);
4113 return iReg;
4117 ** Generate code to move content from registers iFrom...iFrom+nReg-1
4118 ** over to iTo..iTo+nReg-1.
4120 void sqlite3ExprCodeMove(Parse *pParse, int iFrom, int iTo, int nReg){
4121 sqlite3VdbeAddOp3(pParse->pVdbe, OP_Move, iFrom, iTo, nReg);
4125 ** Convert a scalar expression node to a TK_REGISTER referencing
4126 ** register iReg. The caller must ensure that iReg already contains
4127 ** the correct value for the expression.
4129 static void exprToRegister(Expr *pExpr, int iReg){
4130 Expr *p = sqlite3ExprSkipCollateAndLikely(pExpr);
4131 if( NEVER(p==0) ) return;
4132 p->op2 = p->op;
4133 p->op = TK_REGISTER;
4134 p->iTable = iReg;
4135 ExprClearProperty(p, EP_Skip);
4139 ** Evaluate an expression (either a vector or a scalar expression) and store
4140 ** the result in contiguous temporary registers. Return the index of
4141 ** the first register used to store the result.
4143 ** If the returned result register is a temporary scalar, then also write
4144 ** that register number into *piFreeable. If the returned result register
4145 ** is not a temporary or if the expression is a vector set *piFreeable
4146 ** to 0.
4148 static int exprCodeVector(Parse *pParse, Expr *p, int *piFreeable){
4149 int iResult;
4150 int nResult = sqlite3ExprVectorSize(p);
4151 if( nResult==1 ){
4152 iResult = sqlite3ExprCodeTemp(pParse, p, piFreeable);
4153 }else{
4154 *piFreeable = 0;
4155 if( p->op==TK_SELECT ){
4156 #if SQLITE_OMIT_SUBQUERY
4157 iResult = 0;
4158 #else
4159 iResult = sqlite3CodeSubselect(pParse, p);
4160 #endif
4161 }else{
4162 int i;
4163 iResult = pParse->nMem+1;
4164 pParse->nMem += nResult;
4165 assert( ExprUseXList(p) );
4166 for(i=0; i<nResult; i++){
4167 sqlite3ExprCodeFactorable(pParse, p->x.pList->a[i].pExpr, i+iResult);
4171 return iResult;
4175 ** If the last opcode is a OP_Copy, then set the do-not-merge flag (p5)
4176 ** so that a subsequent copy will not be merged into this one.
4178 static void setDoNotMergeFlagOnCopy(Vdbe *v){
4179 if( sqlite3VdbeGetLastOp(v)->opcode==OP_Copy ){
4180 sqlite3VdbeChangeP5(v, 1); /* Tag trailing OP_Copy as not mergeable */
4185 ** Generate code to implement special SQL functions that are implemented
4186 ** in-line rather than by using the usual callbacks.
4188 static int exprCodeInlineFunction(
4189 Parse *pParse, /* Parsing context */
4190 ExprList *pFarg, /* List of function arguments */
4191 int iFuncId, /* Function ID. One of the INTFUNC_... values */
4192 int target /* Store function result in this register */
4194 int nFarg;
4195 Vdbe *v = pParse->pVdbe;
4196 assert( v!=0 );
4197 assert( pFarg!=0 );
4198 nFarg = pFarg->nExpr;
4199 assert( nFarg>0 ); /* All in-line functions have at least one argument */
4200 switch( iFuncId ){
4201 case INLINEFUNC_coalesce: {
4202 /* Attempt a direct implementation of the built-in COALESCE() and
4203 ** IFNULL() functions. This avoids unnecessary evaluation of
4204 ** arguments past the first non-NULL argument.
4206 int endCoalesce = sqlite3VdbeMakeLabel(pParse);
4207 int i;
4208 assert( nFarg>=2 );
4209 sqlite3ExprCode(pParse, pFarg->a[0].pExpr, target);
4210 for(i=1; i<nFarg; i++){
4211 sqlite3VdbeAddOp2(v, OP_NotNull, target, endCoalesce);
4212 VdbeCoverage(v);
4213 sqlite3ExprCode(pParse, pFarg->a[i].pExpr, target);
4215 setDoNotMergeFlagOnCopy(v);
4216 sqlite3VdbeResolveLabel(v, endCoalesce);
4217 break;
4219 case INLINEFUNC_iif: {
4220 Expr caseExpr;
4221 memset(&caseExpr, 0, sizeof(caseExpr));
4222 caseExpr.op = TK_CASE;
4223 caseExpr.x.pList = pFarg;
4224 return sqlite3ExprCodeTarget(pParse, &caseExpr, target);
4226 #ifdef SQLITE_ENABLE_OFFSET_SQL_FUNC
4227 case INLINEFUNC_sqlite_offset: {
4228 Expr *pArg = pFarg->a[0].pExpr;
4229 if( pArg->op==TK_COLUMN && pArg->iTable>=0 ){
4230 sqlite3VdbeAddOp3(v, OP_Offset, pArg->iTable, pArg->iColumn, target);
4231 }else{
4232 sqlite3VdbeAddOp2(v, OP_Null, 0, target);
4234 break;
4236 #endif
4237 default: {
4238 /* The UNLIKELY() function is a no-op. The result is the value
4239 ** of the first argument.
4241 assert( nFarg==1 || nFarg==2 );
4242 target = sqlite3ExprCodeTarget(pParse, pFarg->a[0].pExpr, target);
4243 break;
4246 /***********************************************************************
4247 ** Test-only SQL functions that are only usable if enabled
4248 ** via SQLITE_TESTCTRL_INTERNAL_FUNCTIONS
4250 #if !defined(SQLITE_UNTESTABLE)
4251 case INLINEFUNC_expr_compare: {
4252 /* Compare two expressions using sqlite3ExprCompare() */
4253 assert( nFarg==2 );
4254 sqlite3VdbeAddOp2(v, OP_Integer,
4255 sqlite3ExprCompare(0,pFarg->a[0].pExpr, pFarg->a[1].pExpr,-1),
4256 target);
4257 break;
4260 case INLINEFUNC_expr_implies_expr: {
4261 /* Compare two expressions using sqlite3ExprImpliesExpr() */
4262 assert( nFarg==2 );
4263 sqlite3VdbeAddOp2(v, OP_Integer,
4264 sqlite3ExprImpliesExpr(pParse,pFarg->a[0].pExpr, pFarg->a[1].pExpr,-1),
4265 target);
4266 break;
4269 case INLINEFUNC_implies_nonnull_row: {
4270 /* Result of sqlite3ExprImpliesNonNullRow() */
4271 Expr *pA1;
4272 assert( nFarg==2 );
4273 pA1 = pFarg->a[1].pExpr;
4274 if( pA1->op==TK_COLUMN ){
4275 sqlite3VdbeAddOp2(v, OP_Integer,
4276 sqlite3ExprImpliesNonNullRow(pFarg->a[0].pExpr,pA1->iTable,1),
4277 target);
4278 }else{
4279 sqlite3VdbeAddOp2(v, OP_Null, 0, target);
4281 break;
4284 case INLINEFUNC_affinity: {
4285 /* The AFFINITY() function evaluates to a string that describes
4286 ** the type affinity of the argument. This is used for testing of
4287 ** the SQLite type logic.
4289 const char *azAff[] = { "blob", "text", "numeric", "integer",
4290 "real", "flexnum" };
4291 char aff;
4292 assert( nFarg==1 );
4293 aff = sqlite3ExprAffinity(pFarg->a[0].pExpr);
4294 assert( aff<=SQLITE_AFF_NONE
4295 || (aff>=SQLITE_AFF_BLOB && aff<=SQLITE_AFF_FLEXNUM) );
4296 sqlite3VdbeLoadString(v, target,
4297 (aff<=SQLITE_AFF_NONE) ? "none" : azAff[aff-SQLITE_AFF_BLOB]);
4298 break;
4300 #endif /* !defined(SQLITE_UNTESTABLE) */
4302 return target;
4306 ** Check to see if pExpr is one of the indexed expressions on pParse->pIdxEpr.
4307 ** If it is, then resolve the expression by reading from the index and
4308 ** return the register into which the value has been read. If pExpr is
4309 ** not an indexed expression, then return negative.
4311 static SQLITE_NOINLINE int sqlite3IndexedExprLookup(
4312 Parse *pParse, /* The parsing context */
4313 Expr *pExpr, /* The expression to potentially bypass */
4314 int target /* Where to store the result of the expression */
4316 IndexedExpr *p;
4317 Vdbe *v;
4318 for(p=pParse->pIdxEpr; p; p=p->pIENext){
4319 u8 exprAff;
4320 int iDataCur = p->iDataCur;
4321 if( iDataCur<0 ) continue;
4322 if( pParse->iSelfTab ){
4323 if( p->iDataCur!=pParse->iSelfTab-1 ) continue;
4324 iDataCur = -1;
4326 if( sqlite3ExprCompare(0, pExpr, p->pExpr, iDataCur)!=0 ) continue;
4327 assert( p->aff>=SQLITE_AFF_BLOB && p->aff<=SQLITE_AFF_NUMERIC );
4328 exprAff = sqlite3ExprAffinity(pExpr);
4329 if( (exprAff<=SQLITE_AFF_BLOB && p->aff!=SQLITE_AFF_BLOB)
4330 || (exprAff==SQLITE_AFF_TEXT && p->aff!=SQLITE_AFF_TEXT)
4331 || (exprAff>=SQLITE_AFF_NUMERIC && p->aff!=SQLITE_AFF_NUMERIC)
4333 /* Affinity mismatch on a generated column */
4334 continue;
4337 v = pParse->pVdbe;
4338 assert( v!=0 );
4339 if( p->bMaybeNullRow ){
4340 /* If the index is on a NULL row due to an outer join, then we
4341 ** cannot extract the value from the index. The value must be
4342 ** computed using the original expression. */
4343 int addr = sqlite3VdbeCurrentAddr(v);
4344 sqlite3VdbeAddOp3(v, OP_IfNullRow, p->iIdxCur, addr+3, target);
4345 VdbeCoverage(v);
4346 sqlite3VdbeAddOp3(v, OP_Column, p->iIdxCur, p->iIdxCol, target);
4347 VdbeComment((v, "%s expr-column %d", p->zIdxName, p->iIdxCol));
4348 sqlite3VdbeGoto(v, 0);
4349 p = pParse->pIdxEpr;
4350 pParse->pIdxEpr = 0;
4351 sqlite3ExprCode(pParse, pExpr, target);
4352 pParse->pIdxEpr = p;
4353 sqlite3VdbeJumpHere(v, addr+2);
4354 }else{
4355 sqlite3VdbeAddOp3(v, OP_Column, p->iIdxCur, p->iIdxCol, target);
4356 VdbeComment((v, "%s expr-column %d", p->zIdxName, p->iIdxCol));
4358 return target;
4360 return -1; /* Not found */
4365 ** Expresion pExpr is guaranteed to be a TK_COLUMN or equivalent. This
4366 ** function checks the Parse.pIdxPartExpr list to see if this column
4367 ** can be replaced with a constant value. If so, it generates code to
4368 ** put the constant value in a register (ideally, but not necessarily,
4369 ** register iTarget) and returns the register number.
4371 ** Or, if the TK_COLUMN cannot be replaced by a constant, zero is
4372 ** returned.
4374 static int exprPartidxExprLookup(Parse *pParse, Expr *pExpr, int iTarget){
4375 IndexedExpr *p;
4376 for(p=pParse->pIdxPartExpr; p; p=p->pIENext){
4377 if( pExpr->iColumn==p->iIdxCol && pExpr->iTable==p->iDataCur ){
4378 Vdbe *v = pParse->pVdbe;
4379 int addr = 0;
4380 int ret;
4382 if( p->bMaybeNullRow ){
4383 addr = sqlite3VdbeAddOp1(v, OP_IfNullRow, p->iIdxCur);
4385 ret = sqlite3ExprCodeTarget(pParse, p->pExpr, iTarget);
4386 sqlite3VdbeAddOp4(pParse->pVdbe, OP_Affinity, ret, 1, 0,
4387 (const char*)&p->aff, 1);
4388 if( addr ){
4389 sqlite3VdbeJumpHere(v, addr);
4390 sqlite3VdbeChangeP3(v, addr, ret);
4392 return ret;
4395 return 0;
4400 ** Generate code into the current Vdbe to evaluate the given
4401 ** expression. Attempt to store the results in register "target".
4402 ** Return the register where results are stored.
4404 ** With this routine, there is no guarantee that results will
4405 ** be stored in target. The result might be stored in some other
4406 ** register if it is convenient to do so. The calling function
4407 ** must check the return code and move the results to the desired
4408 ** register.
4410 int sqlite3ExprCodeTarget(Parse *pParse, Expr *pExpr, int target){
4411 Vdbe *v = pParse->pVdbe; /* The VM under construction */
4412 int op; /* The opcode being coded */
4413 int inReg = target; /* Results stored in register inReg */
4414 int regFree1 = 0; /* If non-zero free this temporary register */
4415 int regFree2 = 0; /* If non-zero free this temporary register */
4416 int r1, r2; /* Various register numbers */
4417 Expr tempX; /* Temporary expression node */
4418 int p5 = 0;
4420 assert( target>0 && target<=pParse->nMem );
4421 assert( v!=0 );
4423 expr_code_doover:
4424 if( pExpr==0 ){
4425 op = TK_NULL;
4426 }else if( pParse->pIdxEpr!=0
4427 && !ExprHasProperty(pExpr, EP_Leaf)
4428 && (r1 = sqlite3IndexedExprLookup(pParse, pExpr, target))>=0
4430 return r1;
4431 }else{
4432 assert( !ExprHasVVAProperty(pExpr,EP_Immutable) );
4433 op = pExpr->op;
4435 assert( op!=TK_ORDER );
4436 switch( op ){
4437 case TK_AGG_COLUMN: {
4438 AggInfo *pAggInfo = pExpr->pAggInfo;
4439 struct AggInfo_col *pCol;
4440 assert( pAggInfo!=0 );
4441 assert( pExpr->iAgg>=0 );
4442 if( pExpr->iAgg>=pAggInfo->nColumn ){
4443 /* Happens when the left table of a RIGHT JOIN is null and
4444 ** is using an expression index */
4445 sqlite3VdbeAddOp2(v, OP_Null, 0, target);
4446 #ifdef SQLITE_VDBE_COVERAGE
4447 /* Verify that the OP_Null above is exercised by tests
4448 ** tag-20230325-2 */
4449 sqlite3VdbeAddOp3(v, OP_NotNull, target, 1, 20230325);
4450 VdbeCoverageNeverTaken(v);
4451 #endif
4452 break;
4454 pCol = &pAggInfo->aCol[pExpr->iAgg];
4455 if( !pAggInfo->directMode ){
4456 return AggInfoColumnReg(pAggInfo, pExpr->iAgg);
4457 }else if( pAggInfo->useSortingIdx ){
4458 Table *pTab = pCol->pTab;
4459 sqlite3VdbeAddOp3(v, OP_Column, pAggInfo->sortingIdxPTab,
4460 pCol->iSorterColumn, target);
4461 if( pTab==0 ){
4462 /* No comment added */
4463 }else if( pCol->iColumn<0 ){
4464 VdbeComment((v,"%s.rowid",pTab->zName));
4465 }else{
4466 VdbeComment((v,"%s.%s",
4467 pTab->zName, pTab->aCol[pCol->iColumn].zCnName));
4468 if( pTab->aCol[pCol->iColumn].affinity==SQLITE_AFF_REAL ){
4469 sqlite3VdbeAddOp1(v, OP_RealAffinity, target);
4472 return target;
4473 }else if( pExpr->y.pTab==0 ){
4474 /* This case happens when the argument to an aggregate function
4475 ** is rewritten by aggregateConvertIndexedExprRefToColumn() */
4476 sqlite3VdbeAddOp3(v, OP_Column, pExpr->iTable, pExpr->iColumn, target);
4477 return target;
4479 /* Otherwise, fall thru into the TK_COLUMN case */
4480 /* no break */ deliberate_fall_through
4482 case TK_COLUMN: {
4483 int iTab = pExpr->iTable;
4484 int iReg;
4485 if( ExprHasProperty(pExpr, EP_FixedCol) ){
4486 /* This COLUMN expression is really a constant due to WHERE clause
4487 ** constraints, and that constant is coded by the pExpr->pLeft
4488 ** expression. However, make sure the constant has the correct
4489 ** datatype by applying the Affinity of the table column to the
4490 ** constant.
4492 int aff;
4493 iReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft,target);
4494 assert( ExprUseYTab(pExpr) );
4495 assert( pExpr->y.pTab!=0 );
4496 aff = sqlite3TableColumnAffinity(pExpr->y.pTab, pExpr->iColumn);
4497 if( aff>SQLITE_AFF_BLOB ){
4498 static const char zAff[] = "B\000C\000D\000E\000F";
4499 assert( SQLITE_AFF_BLOB=='A' );
4500 assert( SQLITE_AFF_TEXT=='B' );
4501 sqlite3VdbeAddOp4(v, OP_Affinity, iReg, 1, 0,
4502 &zAff[(aff-'B')*2], P4_STATIC);
4504 return iReg;
4506 if( iTab<0 ){
4507 if( pParse->iSelfTab<0 ){
4508 /* Other columns in the same row for CHECK constraints or
4509 ** generated columns or for inserting into partial index.
4510 ** The row is unpacked into registers beginning at
4511 ** 0-(pParse->iSelfTab). The rowid (if any) is in a register
4512 ** immediately prior to the first column.
4514 Column *pCol;
4515 Table *pTab;
4516 int iSrc;
4517 int iCol = pExpr->iColumn;
4518 assert( ExprUseYTab(pExpr) );
4519 pTab = pExpr->y.pTab;
4520 assert( pTab!=0 );
4521 assert( iCol>=XN_ROWID );
4522 assert( iCol<pTab->nCol );
4523 if( iCol<0 ){
4524 return -1-pParse->iSelfTab;
4526 pCol = pTab->aCol + iCol;
4527 testcase( iCol!=sqlite3TableColumnToStorage(pTab,iCol) );
4528 iSrc = sqlite3TableColumnToStorage(pTab, iCol) - pParse->iSelfTab;
4529 #ifndef SQLITE_OMIT_GENERATED_COLUMNS
4530 if( pCol->colFlags & COLFLAG_GENERATED ){
4531 if( pCol->colFlags & COLFLAG_BUSY ){
4532 sqlite3ErrorMsg(pParse, "generated column loop on \"%s\"",
4533 pCol->zCnName);
4534 return 0;
4536 pCol->colFlags |= COLFLAG_BUSY;
4537 if( pCol->colFlags & COLFLAG_NOTAVAIL ){
4538 sqlite3ExprCodeGeneratedColumn(pParse, pTab, pCol, iSrc);
4540 pCol->colFlags &= ~(COLFLAG_BUSY|COLFLAG_NOTAVAIL);
4541 return iSrc;
4542 }else
4543 #endif /* SQLITE_OMIT_GENERATED_COLUMNS */
4544 if( pCol->affinity==SQLITE_AFF_REAL ){
4545 sqlite3VdbeAddOp2(v, OP_SCopy, iSrc, target);
4546 sqlite3VdbeAddOp1(v, OP_RealAffinity, target);
4547 return target;
4548 }else{
4549 return iSrc;
4551 }else{
4552 /* Coding an expression that is part of an index where column names
4553 ** in the index refer to the table to which the index belongs */
4554 iTab = pParse->iSelfTab - 1;
4557 else if( pParse->pIdxPartExpr
4558 && 0!=(r1 = exprPartidxExprLookup(pParse, pExpr, target))
4560 return r1;
4562 assert( ExprUseYTab(pExpr) );
4563 assert( pExpr->y.pTab!=0 );
4564 iReg = sqlite3ExprCodeGetColumn(pParse, pExpr->y.pTab,
4565 pExpr->iColumn, iTab, target,
4566 pExpr->op2);
4567 return iReg;
4569 case TK_INTEGER: {
4570 codeInteger(pParse, pExpr, 0, target);
4571 return target;
4573 case TK_TRUEFALSE: {
4574 sqlite3VdbeAddOp2(v, OP_Integer, sqlite3ExprTruthValue(pExpr), target);
4575 return target;
4577 #ifndef SQLITE_OMIT_FLOATING_POINT
4578 case TK_FLOAT: {
4579 assert( !ExprHasProperty(pExpr, EP_IntValue) );
4580 codeReal(v, pExpr->u.zToken, 0, target);
4581 return target;
4583 #endif
4584 case TK_STRING: {
4585 assert( !ExprHasProperty(pExpr, EP_IntValue) );
4586 sqlite3VdbeLoadString(v, target, pExpr->u.zToken);
4587 return target;
4589 default: {
4590 /* Make NULL the default case so that if a bug causes an illegal
4591 ** Expr node to be passed into this function, it will be handled
4592 ** sanely and not crash. But keep the assert() to bring the problem
4593 ** to the attention of the developers. */
4594 assert( op==TK_NULL || op==TK_ERROR || pParse->db->mallocFailed );
4595 sqlite3VdbeAddOp2(v, OP_Null, 0, target);
4596 return target;
4598 #ifndef SQLITE_OMIT_BLOB_LITERAL
4599 case TK_BLOB: {
4600 int n;
4601 const char *z;
4602 char *zBlob;
4603 assert( !ExprHasProperty(pExpr, EP_IntValue) );
4604 assert( pExpr->u.zToken[0]=='x' || pExpr->u.zToken[0]=='X' );
4605 assert( pExpr->u.zToken[1]=='\'' );
4606 z = &pExpr->u.zToken[2];
4607 n = sqlite3Strlen30(z) - 1;
4608 assert( z[n]=='\'' );
4609 zBlob = sqlite3HexToBlob(sqlite3VdbeDb(v), z, n);
4610 sqlite3VdbeAddOp4(v, OP_Blob, n/2, target, 0, zBlob, P4_DYNAMIC);
4611 return target;
4613 #endif
4614 case TK_VARIABLE: {
4615 assert( !ExprHasProperty(pExpr, EP_IntValue) );
4616 assert( pExpr->u.zToken!=0 );
4617 assert( pExpr->u.zToken[0]!=0 );
4618 sqlite3VdbeAddOp2(v, OP_Variable, pExpr->iColumn, target);
4619 if( pExpr->u.zToken[1]!=0 ){
4620 const char *z = sqlite3VListNumToName(pParse->pVList, pExpr->iColumn);
4621 assert( pExpr->u.zToken[0]=='?' || (z && !strcmp(pExpr->u.zToken, z)) );
4622 pParse->pVList[0] = 0; /* Indicate VList may no longer be enlarged */
4623 sqlite3VdbeAppendP4(v, (char*)z, P4_STATIC);
4625 return target;
4627 case TK_REGISTER: {
4628 return pExpr->iTable;
4630 #ifndef SQLITE_OMIT_CAST
4631 case TK_CAST: {
4632 /* Expressions of the form: CAST(pLeft AS token) */
4633 sqlite3ExprCode(pParse, pExpr->pLeft, target);
4634 assert( inReg==target );
4635 assert( !ExprHasProperty(pExpr, EP_IntValue) );
4636 sqlite3VdbeAddOp2(v, OP_Cast, target,
4637 sqlite3AffinityType(pExpr->u.zToken, 0));
4638 return inReg;
4640 #endif /* SQLITE_OMIT_CAST */
4641 case TK_IS:
4642 case TK_ISNOT:
4643 op = (op==TK_IS) ? TK_EQ : TK_NE;
4644 p5 = SQLITE_NULLEQ;
4645 /* fall-through */
4646 case TK_LT:
4647 case TK_LE:
4648 case TK_GT:
4649 case TK_GE:
4650 case TK_NE:
4651 case TK_EQ: {
4652 Expr *pLeft = pExpr->pLeft;
4653 if( sqlite3ExprIsVector(pLeft) ){
4654 codeVectorCompare(pParse, pExpr, target, op, p5);
4655 }else{
4656 r1 = sqlite3ExprCodeTemp(pParse, pLeft, &regFree1);
4657 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, &regFree2);
4658 sqlite3VdbeAddOp2(v, OP_Integer, 1, inReg);
4659 codeCompare(pParse, pLeft, pExpr->pRight, op, r1, r2,
4660 sqlite3VdbeCurrentAddr(v)+2, p5,
4661 ExprHasProperty(pExpr,EP_Commuted));
4662 assert(TK_LT==OP_Lt); testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt);
4663 assert(TK_LE==OP_Le); testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le);
4664 assert(TK_GT==OP_Gt); testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt);
4665 assert(TK_GE==OP_Ge); testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge);
4666 assert(TK_EQ==OP_Eq); testcase(op==OP_Eq); VdbeCoverageIf(v,op==OP_Eq);
4667 assert(TK_NE==OP_Ne); testcase(op==OP_Ne); VdbeCoverageIf(v,op==OP_Ne);
4668 if( p5==SQLITE_NULLEQ ){
4669 sqlite3VdbeAddOp2(v, OP_Integer, 0, inReg);
4670 }else{
4671 sqlite3VdbeAddOp3(v, OP_ZeroOrNull, r1, inReg, r2);
4673 testcase( regFree1==0 );
4674 testcase( regFree2==0 );
4676 break;
4678 case TK_AND:
4679 case TK_OR:
4680 case TK_PLUS:
4681 case TK_STAR:
4682 case TK_MINUS:
4683 case TK_REM:
4684 case TK_BITAND:
4685 case TK_BITOR:
4686 case TK_SLASH:
4687 case TK_LSHIFT:
4688 case TK_RSHIFT:
4689 case TK_CONCAT: {
4690 assert( TK_AND==OP_And ); testcase( op==TK_AND );
4691 assert( TK_OR==OP_Or ); testcase( op==TK_OR );
4692 assert( TK_PLUS==OP_Add ); testcase( op==TK_PLUS );
4693 assert( TK_MINUS==OP_Subtract ); testcase( op==TK_MINUS );
4694 assert( TK_REM==OP_Remainder ); testcase( op==TK_REM );
4695 assert( TK_BITAND==OP_BitAnd ); testcase( op==TK_BITAND );
4696 assert( TK_BITOR==OP_BitOr ); testcase( op==TK_BITOR );
4697 assert( TK_SLASH==OP_Divide ); testcase( op==TK_SLASH );
4698 assert( TK_LSHIFT==OP_ShiftLeft ); testcase( op==TK_LSHIFT );
4699 assert( TK_RSHIFT==OP_ShiftRight ); testcase( op==TK_RSHIFT );
4700 assert( TK_CONCAT==OP_Concat ); testcase( op==TK_CONCAT );
4701 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
4702 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, &regFree2);
4703 sqlite3VdbeAddOp3(v, op, r2, r1, target);
4704 testcase( regFree1==0 );
4705 testcase( regFree2==0 );
4706 break;
4708 case TK_UMINUS: {
4709 Expr *pLeft = pExpr->pLeft;
4710 assert( pLeft );
4711 if( pLeft->op==TK_INTEGER ){
4712 codeInteger(pParse, pLeft, 1, target);
4713 return target;
4714 #ifndef SQLITE_OMIT_FLOATING_POINT
4715 }else if( pLeft->op==TK_FLOAT ){
4716 assert( !ExprHasProperty(pExpr, EP_IntValue) );
4717 codeReal(v, pLeft->u.zToken, 1, target);
4718 return target;
4719 #endif
4720 }else{
4721 tempX.op = TK_INTEGER;
4722 tempX.flags = EP_IntValue|EP_TokenOnly;
4723 tempX.u.iValue = 0;
4724 ExprClearVVAProperties(&tempX);
4725 r1 = sqlite3ExprCodeTemp(pParse, &tempX, &regFree1);
4726 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree2);
4727 sqlite3VdbeAddOp3(v, OP_Subtract, r2, r1, target);
4728 testcase( regFree2==0 );
4730 break;
4732 case TK_BITNOT:
4733 case TK_NOT: {
4734 assert( TK_BITNOT==OP_BitNot ); testcase( op==TK_BITNOT );
4735 assert( TK_NOT==OP_Not ); testcase( op==TK_NOT );
4736 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
4737 testcase( regFree1==0 );
4738 sqlite3VdbeAddOp2(v, op, r1, inReg);
4739 break;
4741 case TK_TRUTH: {
4742 int isTrue; /* IS TRUE or IS NOT TRUE */
4743 int bNormal; /* IS TRUE or IS FALSE */
4744 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
4745 testcase( regFree1==0 );
4746 isTrue = sqlite3ExprTruthValue(pExpr->pRight);
4747 bNormal = pExpr->op2==TK_IS;
4748 testcase( isTrue && bNormal);
4749 testcase( !isTrue && bNormal);
4750 sqlite3VdbeAddOp4Int(v, OP_IsTrue, r1, inReg, !isTrue, isTrue ^ bNormal);
4751 break;
4753 case TK_ISNULL:
4754 case TK_NOTNULL: {
4755 int addr;
4756 assert( TK_ISNULL==OP_IsNull ); testcase( op==TK_ISNULL );
4757 assert( TK_NOTNULL==OP_NotNull ); testcase( op==TK_NOTNULL );
4758 sqlite3VdbeAddOp2(v, OP_Integer, 1, target);
4759 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
4760 testcase( regFree1==0 );
4761 addr = sqlite3VdbeAddOp1(v, op, r1);
4762 VdbeCoverageIf(v, op==TK_ISNULL);
4763 VdbeCoverageIf(v, op==TK_NOTNULL);
4764 sqlite3VdbeAddOp2(v, OP_Integer, 0, target);
4765 sqlite3VdbeJumpHere(v, addr);
4766 break;
4768 case TK_AGG_FUNCTION: {
4769 AggInfo *pInfo = pExpr->pAggInfo;
4770 if( pInfo==0
4771 || NEVER(pExpr->iAgg<0)
4772 || NEVER(pExpr->iAgg>=pInfo->nFunc)
4774 assert( !ExprHasProperty(pExpr, EP_IntValue) );
4775 sqlite3ErrorMsg(pParse, "misuse of aggregate: %#T()", pExpr);
4776 }else{
4777 return AggInfoFuncReg(pInfo, pExpr->iAgg);
4779 break;
4781 case TK_FUNCTION: {
4782 ExprList *pFarg; /* List of function arguments */
4783 int nFarg; /* Number of function arguments */
4784 FuncDef *pDef; /* The function definition object */
4785 const char *zId; /* The function name */
4786 u32 constMask = 0; /* Mask of function arguments that are constant */
4787 int i; /* Loop counter */
4788 sqlite3 *db = pParse->db; /* The database connection */
4789 u8 enc = ENC(db); /* The text encoding used by this database */
4790 CollSeq *pColl = 0; /* A collating sequence */
4792 #ifndef SQLITE_OMIT_WINDOWFUNC
4793 if( ExprHasProperty(pExpr, EP_WinFunc) ){
4794 return pExpr->y.pWin->regResult;
4796 #endif
4798 if( ConstFactorOk(pParse) && sqlite3ExprIsConstantNotJoin(pExpr) ){
4799 /* SQL functions can be expensive. So try to avoid running them
4800 ** multiple times if we know they always give the same result */
4801 return sqlite3ExprCodeRunJustOnce(pParse, pExpr, -1);
4803 assert( !ExprHasProperty(pExpr, EP_TokenOnly) );
4804 assert( ExprUseXList(pExpr) );
4805 pFarg = pExpr->x.pList;
4806 nFarg = pFarg ? pFarg->nExpr : 0;
4807 assert( !ExprHasProperty(pExpr, EP_IntValue) );
4808 zId = pExpr->u.zToken;
4809 pDef = sqlite3FindFunction(db, zId, nFarg, enc, 0);
4810 #ifdef SQLITE_ENABLE_UNKNOWN_SQL_FUNCTION
4811 if( pDef==0 && pParse->explain ){
4812 pDef = sqlite3FindFunction(db, "unknown", nFarg, enc, 0);
4814 #endif
4815 if( pDef==0 || pDef->xFinalize!=0 ){
4816 sqlite3ErrorMsg(pParse, "unknown function: %#T()", pExpr);
4817 break;
4819 if( (pDef->funcFlags & SQLITE_FUNC_INLINE)!=0 && ALWAYS(pFarg!=0) ){
4820 assert( (pDef->funcFlags & SQLITE_FUNC_UNSAFE)==0 );
4821 assert( (pDef->funcFlags & SQLITE_FUNC_DIRECT)==0 );
4822 return exprCodeInlineFunction(pParse, pFarg,
4823 SQLITE_PTR_TO_INT(pDef->pUserData), target);
4824 }else if( pDef->funcFlags & (SQLITE_FUNC_DIRECT|SQLITE_FUNC_UNSAFE) ){
4825 sqlite3ExprFunctionUsable(pParse, pExpr, pDef);
4828 for(i=0; i<nFarg; i++){
4829 if( i<32 && sqlite3ExprIsConstant(pFarg->a[i].pExpr) ){
4830 testcase( i==31 );
4831 constMask |= MASKBIT32(i);
4833 if( (pDef->funcFlags & SQLITE_FUNC_NEEDCOLL)!=0 && !pColl ){
4834 pColl = sqlite3ExprCollSeq(pParse, pFarg->a[i].pExpr);
4837 if( pFarg ){
4838 if( constMask ){
4839 r1 = pParse->nMem+1;
4840 pParse->nMem += nFarg;
4841 }else{
4842 r1 = sqlite3GetTempRange(pParse, nFarg);
4845 /* For length() and typeof() and octet_length() functions,
4846 ** set the P5 parameter to the OP_Column opcode to OPFLAG_LENGTHARG
4847 ** or OPFLAG_TYPEOFARG or OPFLAG_BYTELENARG respectively, to avoid
4848 ** unnecessary data loading.
4850 if( (pDef->funcFlags & (SQLITE_FUNC_LENGTH|SQLITE_FUNC_TYPEOF))!=0 ){
4851 u8 exprOp;
4852 assert( nFarg==1 );
4853 assert( pFarg->a[0].pExpr!=0 );
4854 exprOp = pFarg->a[0].pExpr->op;
4855 if( exprOp==TK_COLUMN || exprOp==TK_AGG_COLUMN ){
4856 assert( SQLITE_FUNC_LENGTH==OPFLAG_LENGTHARG );
4857 assert( SQLITE_FUNC_TYPEOF==OPFLAG_TYPEOFARG );
4858 assert( SQLITE_FUNC_BYTELEN==OPFLAG_BYTELENARG );
4859 assert( (OPFLAG_LENGTHARG|OPFLAG_TYPEOFARG)==OPFLAG_BYTELENARG );
4860 testcase( (pDef->funcFlags & OPFLAG_BYTELENARG)==OPFLAG_LENGTHARG );
4861 testcase( (pDef->funcFlags & OPFLAG_BYTELENARG)==OPFLAG_TYPEOFARG );
4862 testcase( (pDef->funcFlags & OPFLAG_BYTELENARG)==OPFLAG_BYTELENARG);
4863 pFarg->a[0].pExpr->op2 = pDef->funcFlags & OPFLAG_BYTELENARG;
4867 sqlite3ExprCodeExprList(pParse, pFarg, r1, 0, SQLITE_ECEL_FACTOR);
4868 }else{
4869 r1 = 0;
4871 #ifndef SQLITE_OMIT_VIRTUALTABLE
4872 /* Possibly overload the function if the first argument is
4873 ** a virtual table column.
4875 ** For infix functions (LIKE, GLOB, REGEXP, and MATCH) use the
4876 ** second argument, not the first, as the argument to test to
4877 ** see if it is a column in a virtual table. This is done because
4878 ** the left operand of infix functions (the operand we want to
4879 ** control overloading) ends up as the second argument to the
4880 ** function. The expression "A glob B" is equivalent to
4881 ** "glob(B,A). We want to use the A in "A glob B" to test
4882 ** for function overloading. But we use the B term in "glob(B,A)".
4884 if( nFarg>=2 && ExprHasProperty(pExpr, EP_InfixFunc) ){
4885 pDef = sqlite3VtabOverloadFunction(db, pDef, nFarg, pFarg->a[1].pExpr);
4886 }else if( nFarg>0 ){
4887 pDef = sqlite3VtabOverloadFunction(db, pDef, nFarg, pFarg->a[0].pExpr);
4889 #endif
4890 if( pDef->funcFlags & SQLITE_FUNC_NEEDCOLL ){
4891 if( !pColl ) pColl = db->pDfltColl;
4892 sqlite3VdbeAddOp4(v, OP_CollSeq, 0, 0, 0, (char *)pColl, P4_COLLSEQ);
4894 sqlite3VdbeAddFunctionCall(pParse, constMask, r1, target, nFarg,
4895 pDef, pExpr->op2);
4896 if( nFarg ){
4897 if( constMask==0 ){
4898 sqlite3ReleaseTempRange(pParse, r1, nFarg);
4899 }else{
4900 sqlite3VdbeReleaseRegisters(pParse, r1, nFarg, constMask, 1);
4903 return target;
4905 #ifndef SQLITE_OMIT_SUBQUERY
4906 case TK_EXISTS:
4907 case TK_SELECT: {
4908 int nCol;
4909 testcase( op==TK_EXISTS );
4910 testcase( op==TK_SELECT );
4911 if( pParse->db->mallocFailed ){
4912 return 0;
4913 }else if( op==TK_SELECT
4914 && ALWAYS( ExprUseXSelect(pExpr) )
4915 && (nCol = pExpr->x.pSelect->pEList->nExpr)!=1
4917 sqlite3SubselectError(pParse, nCol, 1);
4918 }else{
4919 return sqlite3CodeSubselect(pParse, pExpr);
4921 break;
4923 case TK_SELECT_COLUMN: {
4924 int n;
4925 Expr *pLeft = pExpr->pLeft;
4926 if( pLeft->iTable==0 || pParse->withinRJSubrtn > pLeft->op2 ){
4927 pLeft->iTable = sqlite3CodeSubselect(pParse, pLeft);
4928 pLeft->op2 = pParse->withinRJSubrtn;
4930 assert( pLeft->op==TK_SELECT || pLeft->op==TK_ERROR );
4931 n = sqlite3ExprVectorSize(pLeft);
4932 if( pExpr->iTable!=n ){
4933 sqlite3ErrorMsg(pParse, "%d columns assigned %d values",
4934 pExpr->iTable, n);
4936 return pLeft->iTable + pExpr->iColumn;
4938 case TK_IN: {
4939 int destIfFalse = sqlite3VdbeMakeLabel(pParse);
4940 int destIfNull = sqlite3VdbeMakeLabel(pParse);
4941 sqlite3VdbeAddOp2(v, OP_Null, 0, target);
4942 sqlite3ExprCodeIN(pParse, pExpr, destIfFalse, destIfNull);
4943 sqlite3VdbeAddOp2(v, OP_Integer, 1, target);
4944 sqlite3VdbeResolveLabel(v, destIfFalse);
4945 sqlite3VdbeAddOp2(v, OP_AddImm, target, 0);
4946 sqlite3VdbeResolveLabel(v, destIfNull);
4947 return target;
4949 #endif /* SQLITE_OMIT_SUBQUERY */
4953 ** x BETWEEN y AND z
4955 ** This is equivalent to
4957 ** x>=y AND x<=z
4959 ** X is stored in pExpr->pLeft.
4960 ** Y is stored in pExpr->pList->a[0].pExpr.
4961 ** Z is stored in pExpr->pList->a[1].pExpr.
4963 case TK_BETWEEN: {
4964 exprCodeBetween(pParse, pExpr, target, 0, 0);
4965 return target;
4967 case TK_COLLATE: {
4968 if( !ExprHasProperty(pExpr, EP_Collate) ){
4969 /* A TK_COLLATE Expr node without the EP_Collate tag is a so-called
4970 ** "SOFT-COLLATE" that is added to constraints that are pushed down
4971 ** from outer queries into sub-queries by the push-down optimization.
4972 ** Clear subtypes as subtypes may not cross a subquery boundary.
4974 assert( pExpr->pLeft );
4975 sqlite3ExprCode(pParse, pExpr->pLeft, target);
4976 sqlite3VdbeAddOp1(v, OP_ClrSubtype, target);
4977 return target;
4978 }else{
4979 pExpr = pExpr->pLeft;
4980 goto expr_code_doover; /* 2018-04-28: Prevent deep recursion. */
4983 case TK_SPAN:
4984 case TK_UPLUS: {
4985 pExpr = pExpr->pLeft;
4986 goto expr_code_doover; /* 2018-04-28: Prevent deep recursion. OSSFuzz. */
4989 case TK_TRIGGER: {
4990 /* If the opcode is TK_TRIGGER, then the expression is a reference
4991 ** to a column in the new.* or old.* pseudo-tables available to
4992 ** trigger programs. In this case Expr.iTable is set to 1 for the
4993 ** new.* pseudo-table, or 0 for the old.* pseudo-table. Expr.iColumn
4994 ** is set to the column of the pseudo-table to read, or to -1 to
4995 ** read the rowid field.
4997 ** The expression is implemented using an OP_Param opcode. The p1
4998 ** parameter is set to 0 for an old.rowid reference, or to (i+1)
4999 ** to reference another column of the old.* pseudo-table, where
5000 ** i is the index of the column. For a new.rowid reference, p1 is
5001 ** set to (n+1), where n is the number of columns in each pseudo-table.
5002 ** For a reference to any other column in the new.* pseudo-table, p1
5003 ** is set to (n+2+i), where n and i are as defined previously. For
5004 ** example, if the table on which triggers are being fired is
5005 ** declared as:
5007 ** CREATE TABLE t1(a, b);
5009 ** Then p1 is interpreted as follows:
5011 ** p1==0 -> old.rowid p1==3 -> new.rowid
5012 ** p1==1 -> old.a p1==4 -> new.a
5013 ** p1==2 -> old.b p1==5 -> new.b
5015 Table *pTab;
5016 int iCol;
5017 int p1;
5019 assert( ExprUseYTab(pExpr) );
5020 pTab = pExpr->y.pTab;
5021 iCol = pExpr->iColumn;
5022 p1 = pExpr->iTable * (pTab->nCol+1) + 1
5023 + sqlite3TableColumnToStorage(pTab, iCol);
5025 assert( pExpr->iTable==0 || pExpr->iTable==1 );
5026 assert( iCol>=-1 && iCol<pTab->nCol );
5027 assert( pTab->iPKey<0 || iCol!=pTab->iPKey );
5028 assert( p1>=0 && p1<(pTab->nCol*2+2) );
5030 sqlite3VdbeAddOp2(v, OP_Param, p1, target);
5031 VdbeComment((v, "r[%d]=%s.%s", target,
5032 (pExpr->iTable ? "new" : "old"),
5033 (pExpr->iColumn<0 ? "rowid" : pExpr->y.pTab->aCol[iCol].zCnName)
5036 #ifndef SQLITE_OMIT_FLOATING_POINT
5037 /* If the column has REAL affinity, it may currently be stored as an
5038 ** integer. Use OP_RealAffinity to make sure it is really real.
5040 ** EVIDENCE-OF: R-60985-57662 SQLite will convert the value back to
5041 ** floating point when extracting it from the record. */
5042 if( iCol>=0 && pTab->aCol[iCol].affinity==SQLITE_AFF_REAL ){
5043 sqlite3VdbeAddOp1(v, OP_RealAffinity, target);
5045 #endif
5046 break;
5049 case TK_VECTOR: {
5050 sqlite3ErrorMsg(pParse, "row value misused");
5051 break;
5054 /* TK_IF_NULL_ROW Expr nodes are inserted ahead of expressions
5055 ** that derive from the right-hand table of a LEFT JOIN. The
5056 ** Expr.iTable value is the table number for the right-hand table.
5057 ** The expression is only evaluated if that table is not currently
5058 ** on a LEFT JOIN NULL row.
5060 case TK_IF_NULL_ROW: {
5061 int addrINR;
5062 u8 okConstFactor = pParse->okConstFactor;
5063 AggInfo *pAggInfo = pExpr->pAggInfo;
5064 if( pAggInfo ){
5065 assert( pExpr->iAgg>=0 && pExpr->iAgg<pAggInfo->nColumn );
5066 if( !pAggInfo->directMode ){
5067 inReg = AggInfoColumnReg(pAggInfo, pExpr->iAgg);
5068 break;
5070 if( pExpr->pAggInfo->useSortingIdx ){
5071 sqlite3VdbeAddOp3(v, OP_Column, pAggInfo->sortingIdxPTab,
5072 pAggInfo->aCol[pExpr->iAgg].iSorterColumn,
5073 target);
5074 inReg = target;
5075 break;
5078 addrINR = sqlite3VdbeAddOp3(v, OP_IfNullRow, pExpr->iTable, 0, target);
5079 /* The OP_IfNullRow opcode above can overwrite the result register with
5080 ** NULL. So we have to ensure that the result register is not a value
5081 ** that is suppose to be a constant. Two defenses are needed:
5082 ** (1) Temporarily disable factoring of constant expressions
5083 ** (2) Make sure the computed value really is stored in register
5084 ** "target" and not someplace else.
5086 pParse->okConstFactor = 0; /* note (1) above */
5087 sqlite3ExprCode(pParse, pExpr->pLeft, target);
5088 assert( target==inReg );
5089 pParse->okConstFactor = okConstFactor;
5090 sqlite3VdbeJumpHere(v, addrINR);
5091 break;
5095 ** Form A:
5096 ** CASE x WHEN e1 THEN r1 WHEN e2 THEN r2 ... WHEN eN THEN rN ELSE y END
5098 ** Form B:
5099 ** CASE WHEN e1 THEN r1 WHEN e2 THEN r2 ... WHEN eN THEN rN ELSE y END
5101 ** Form A is can be transformed into the equivalent form B as follows:
5102 ** CASE WHEN x=e1 THEN r1 WHEN x=e2 THEN r2 ...
5103 ** WHEN x=eN THEN rN ELSE y END
5105 ** X (if it exists) is in pExpr->pLeft.
5106 ** Y is in the last element of pExpr->x.pList if pExpr->x.pList->nExpr is
5107 ** odd. The Y is also optional. If the number of elements in x.pList
5108 ** is even, then Y is omitted and the "otherwise" result is NULL.
5109 ** Ei is in pExpr->pList->a[i*2] and Ri is pExpr->pList->a[i*2+1].
5111 ** The result of the expression is the Ri for the first matching Ei,
5112 ** or if there is no matching Ei, the ELSE term Y, or if there is
5113 ** no ELSE term, NULL.
5115 case TK_CASE: {
5116 int endLabel; /* GOTO label for end of CASE stmt */
5117 int nextCase; /* GOTO label for next WHEN clause */
5118 int nExpr; /* 2x number of WHEN terms */
5119 int i; /* Loop counter */
5120 ExprList *pEList; /* List of WHEN terms */
5121 struct ExprList_item *aListelem; /* Array of WHEN terms */
5122 Expr opCompare; /* The X==Ei expression */
5123 Expr *pX; /* The X expression */
5124 Expr *pTest = 0; /* X==Ei (form A) or just Ei (form B) */
5125 Expr *pDel = 0;
5126 sqlite3 *db = pParse->db;
5128 assert( ExprUseXList(pExpr) && pExpr->x.pList!=0 );
5129 assert(pExpr->x.pList->nExpr > 0);
5130 pEList = pExpr->x.pList;
5131 aListelem = pEList->a;
5132 nExpr = pEList->nExpr;
5133 endLabel = sqlite3VdbeMakeLabel(pParse);
5134 if( (pX = pExpr->pLeft)!=0 ){
5135 pDel = sqlite3ExprDup(db, pX, 0);
5136 if( db->mallocFailed ){
5137 sqlite3ExprDelete(db, pDel);
5138 break;
5140 testcase( pX->op==TK_COLUMN );
5141 exprToRegister(pDel, exprCodeVector(pParse, pDel, &regFree1));
5142 testcase( regFree1==0 );
5143 memset(&opCompare, 0, sizeof(opCompare));
5144 opCompare.op = TK_EQ;
5145 opCompare.pLeft = pDel;
5146 pTest = &opCompare;
5147 /* Ticket b351d95f9cd5ef17e9d9dbae18f5ca8611190001:
5148 ** The value in regFree1 might get SCopy-ed into the file result.
5149 ** So make sure that the regFree1 register is not reused for other
5150 ** purposes and possibly overwritten. */
5151 regFree1 = 0;
5153 for(i=0; i<nExpr-1; i=i+2){
5154 if( pX ){
5155 assert( pTest!=0 );
5156 opCompare.pRight = aListelem[i].pExpr;
5157 }else{
5158 pTest = aListelem[i].pExpr;
5160 nextCase = sqlite3VdbeMakeLabel(pParse);
5161 testcase( pTest->op==TK_COLUMN );
5162 sqlite3ExprIfFalse(pParse, pTest, nextCase, SQLITE_JUMPIFNULL);
5163 testcase( aListelem[i+1].pExpr->op==TK_COLUMN );
5164 sqlite3ExprCode(pParse, aListelem[i+1].pExpr, target);
5165 sqlite3VdbeGoto(v, endLabel);
5166 sqlite3VdbeResolveLabel(v, nextCase);
5168 if( (nExpr&1)!=0 ){
5169 sqlite3ExprCode(pParse, pEList->a[nExpr-1].pExpr, target);
5170 }else{
5171 sqlite3VdbeAddOp2(v, OP_Null, 0, target);
5173 sqlite3ExprDelete(db, pDel);
5174 setDoNotMergeFlagOnCopy(v);
5175 sqlite3VdbeResolveLabel(v, endLabel);
5176 break;
5178 #ifndef SQLITE_OMIT_TRIGGER
5179 case TK_RAISE: {
5180 assert( pExpr->affExpr==OE_Rollback
5181 || pExpr->affExpr==OE_Abort
5182 || pExpr->affExpr==OE_Fail
5183 || pExpr->affExpr==OE_Ignore
5185 if( !pParse->pTriggerTab && !pParse->nested ){
5186 sqlite3ErrorMsg(pParse,
5187 "RAISE() may only be used within a trigger-program");
5188 return 0;
5190 if( pExpr->affExpr==OE_Abort ){
5191 sqlite3MayAbort(pParse);
5193 assert( !ExprHasProperty(pExpr, EP_IntValue) );
5194 if( pExpr->affExpr==OE_Ignore ){
5195 sqlite3VdbeAddOp4(
5196 v, OP_Halt, SQLITE_OK, OE_Ignore, 0, pExpr->u.zToken,0);
5197 VdbeCoverage(v);
5198 }else{
5199 sqlite3HaltConstraint(pParse,
5200 pParse->pTriggerTab ? SQLITE_CONSTRAINT_TRIGGER : SQLITE_ERROR,
5201 pExpr->affExpr, pExpr->u.zToken, 0, 0);
5204 break;
5206 #endif
5208 sqlite3ReleaseTempReg(pParse, regFree1);
5209 sqlite3ReleaseTempReg(pParse, regFree2);
5210 return inReg;
5214 ** Generate code that will evaluate expression pExpr just one time
5215 ** per prepared statement execution.
5217 ** If the expression uses functions (that might throw an exception) then
5218 ** guard them with an OP_Once opcode to ensure that the code is only executed
5219 ** once. If no functions are involved, then factor the code out and put it at
5220 ** the end of the prepared statement in the initialization section.
5222 ** If regDest>0 then the result is always stored in that register and the
5223 ** result is not reusable. If regDest<0 then this routine is free to
5224 ** store the value wherever it wants. The register where the expression
5225 ** is stored is returned. When regDest<0, two identical expressions might
5226 ** code to the same register, if they do not contain function calls and hence
5227 ** are factored out into the initialization section at the end of the
5228 ** prepared statement.
5230 int sqlite3ExprCodeRunJustOnce(
5231 Parse *pParse, /* Parsing context */
5232 Expr *pExpr, /* The expression to code when the VDBE initializes */
5233 int regDest /* Store the value in this register */
5235 ExprList *p;
5236 assert( ConstFactorOk(pParse) );
5237 assert( regDest!=0 );
5238 p = pParse->pConstExpr;
5239 if( regDest<0 && p ){
5240 struct ExprList_item *pItem;
5241 int i;
5242 for(pItem=p->a, i=p->nExpr; i>0; pItem++, i--){
5243 if( pItem->fg.reusable
5244 && sqlite3ExprCompare(0,pItem->pExpr,pExpr,-1)==0
5246 return pItem->u.iConstExprReg;
5250 pExpr = sqlite3ExprDup(pParse->db, pExpr, 0);
5251 if( pExpr!=0 && ExprHasProperty(pExpr, EP_HasFunc) ){
5252 Vdbe *v = pParse->pVdbe;
5253 int addr;
5254 assert( v );
5255 addr = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v);
5256 pParse->okConstFactor = 0;
5257 if( !pParse->db->mallocFailed ){
5258 if( regDest<0 ) regDest = ++pParse->nMem;
5259 sqlite3ExprCode(pParse, pExpr, regDest);
5261 pParse->okConstFactor = 1;
5262 sqlite3ExprDelete(pParse->db, pExpr);
5263 sqlite3VdbeJumpHere(v, addr);
5264 }else{
5265 p = sqlite3ExprListAppend(pParse, p, pExpr);
5266 if( p ){
5267 struct ExprList_item *pItem = &p->a[p->nExpr-1];
5268 pItem->fg.reusable = regDest<0;
5269 if( regDest<0 ) regDest = ++pParse->nMem;
5270 pItem->u.iConstExprReg = regDest;
5272 pParse->pConstExpr = p;
5274 return regDest;
5278 ** Generate code to evaluate an expression and store the results
5279 ** into a register. Return the register number where the results
5280 ** are stored.
5282 ** If the register is a temporary register that can be deallocated,
5283 ** then write its number into *pReg. If the result register is not
5284 ** a temporary, then set *pReg to zero.
5286 ** If pExpr is a constant, then this routine might generate this
5287 ** code to fill the register in the initialization section of the
5288 ** VDBE program, in order to factor it out of the evaluation loop.
5290 int sqlite3ExprCodeTemp(Parse *pParse, Expr *pExpr, int *pReg){
5291 int r2;
5292 pExpr = sqlite3ExprSkipCollateAndLikely(pExpr);
5293 if( ConstFactorOk(pParse)
5294 && ALWAYS(pExpr!=0)
5295 && pExpr->op!=TK_REGISTER
5296 && sqlite3ExprIsConstantNotJoin(pExpr)
5298 *pReg = 0;
5299 r2 = sqlite3ExprCodeRunJustOnce(pParse, pExpr, -1);
5300 }else{
5301 int r1 = sqlite3GetTempReg(pParse);
5302 r2 = sqlite3ExprCodeTarget(pParse, pExpr, r1);
5303 if( r2==r1 ){
5304 *pReg = r1;
5305 }else{
5306 sqlite3ReleaseTempReg(pParse, r1);
5307 *pReg = 0;
5310 return r2;
5314 ** Generate code that will evaluate expression pExpr and store the
5315 ** results in register target. The results are guaranteed to appear
5316 ** in register target.
5318 void sqlite3ExprCode(Parse *pParse, Expr *pExpr, int target){
5319 int inReg;
5321 assert( pExpr==0 || !ExprHasVVAProperty(pExpr,EP_Immutable) );
5322 assert( target>0 && target<=pParse->nMem );
5323 assert( pParse->pVdbe!=0 || pParse->db->mallocFailed );
5324 if( pParse->pVdbe==0 ) return;
5325 inReg = sqlite3ExprCodeTarget(pParse, pExpr, target);
5326 if( inReg!=target ){
5327 u8 op;
5328 Expr *pX = sqlite3ExprSkipCollateAndLikely(pExpr);
5329 testcase( pX!=pExpr );
5330 if( ALWAYS(pX)
5331 && (ExprHasProperty(pX,EP_Subquery) || pX->op==TK_REGISTER)
5333 op = OP_Copy;
5334 }else{
5335 op = OP_SCopy;
5337 sqlite3VdbeAddOp2(pParse->pVdbe, op, inReg, target);
5342 ** Make a transient copy of expression pExpr and then code it using
5343 ** sqlite3ExprCode(). This routine works just like sqlite3ExprCode()
5344 ** except that the input expression is guaranteed to be unchanged.
5346 void sqlite3ExprCodeCopy(Parse *pParse, Expr *pExpr, int target){
5347 sqlite3 *db = pParse->db;
5348 pExpr = sqlite3ExprDup(db, pExpr, 0);
5349 if( !db->mallocFailed ) sqlite3ExprCode(pParse, pExpr, target);
5350 sqlite3ExprDelete(db, pExpr);
5354 ** Generate code that will evaluate expression pExpr and store the
5355 ** results in register target. The results are guaranteed to appear
5356 ** in register target. If the expression is constant, then this routine
5357 ** might choose to code the expression at initialization time.
5359 void sqlite3ExprCodeFactorable(Parse *pParse, Expr *pExpr, int target){
5360 if( pParse->okConstFactor && sqlite3ExprIsConstantNotJoin(pExpr) ){
5361 sqlite3ExprCodeRunJustOnce(pParse, pExpr, target);
5362 }else{
5363 sqlite3ExprCodeCopy(pParse, pExpr, target);
5368 ** Generate code that pushes the value of every element of the given
5369 ** expression list into a sequence of registers beginning at target.
5371 ** Return the number of elements evaluated. The number returned will
5372 ** usually be pList->nExpr but might be reduced if SQLITE_ECEL_OMITREF
5373 ** is defined.
5375 ** The SQLITE_ECEL_DUP flag prevents the arguments from being
5376 ** filled using OP_SCopy. OP_Copy must be used instead.
5378 ** The SQLITE_ECEL_FACTOR argument allows constant arguments to be
5379 ** factored out into initialization code.
5381 ** The SQLITE_ECEL_REF flag means that expressions in the list with
5382 ** ExprList.a[].u.x.iOrderByCol>0 have already been evaluated and stored
5383 ** in registers at srcReg, and so the value can be copied from there.
5384 ** If SQLITE_ECEL_OMITREF is also set, then the values with u.x.iOrderByCol>0
5385 ** are simply omitted rather than being copied from srcReg.
5387 int sqlite3ExprCodeExprList(
5388 Parse *pParse, /* Parsing context */
5389 ExprList *pList, /* The expression list to be coded */
5390 int target, /* Where to write results */
5391 int srcReg, /* Source registers if SQLITE_ECEL_REF */
5392 u8 flags /* SQLITE_ECEL_* flags */
5394 struct ExprList_item *pItem;
5395 int i, j, n;
5396 u8 copyOp = (flags & SQLITE_ECEL_DUP) ? OP_Copy : OP_SCopy;
5397 Vdbe *v = pParse->pVdbe;
5398 assert( pList!=0 );
5399 assert( target>0 );
5400 assert( pParse->pVdbe!=0 ); /* Never gets this far otherwise */
5401 n = pList->nExpr;
5402 if( !ConstFactorOk(pParse) ) flags &= ~SQLITE_ECEL_FACTOR;
5403 for(pItem=pList->a, i=0; i<n; i++, pItem++){
5404 Expr *pExpr = pItem->pExpr;
5405 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
5406 if( pItem->fg.bSorterRef ){
5407 i--;
5408 n--;
5409 }else
5410 #endif
5411 if( (flags & SQLITE_ECEL_REF)!=0 && (j = pItem->u.x.iOrderByCol)>0 ){
5412 if( flags & SQLITE_ECEL_OMITREF ){
5413 i--;
5414 n--;
5415 }else{
5416 sqlite3VdbeAddOp2(v, copyOp, j+srcReg-1, target+i);
5418 }else if( (flags & SQLITE_ECEL_FACTOR)!=0
5419 && sqlite3ExprIsConstantNotJoin(pExpr)
5421 sqlite3ExprCodeRunJustOnce(pParse, pExpr, target+i);
5422 }else{
5423 int inReg = sqlite3ExprCodeTarget(pParse, pExpr, target+i);
5424 if( inReg!=target+i ){
5425 VdbeOp *pOp;
5426 if( copyOp==OP_Copy
5427 && (pOp=sqlite3VdbeGetLastOp(v))->opcode==OP_Copy
5428 && pOp->p1+pOp->p3+1==inReg
5429 && pOp->p2+pOp->p3+1==target+i
5430 && pOp->p5==0 /* The do-not-merge flag must be clear */
5432 pOp->p3++;
5433 }else{
5434 sqlite3VdbeAddOp2(v, copyOp, inReg, target+i);
5439 return n;
5443 ** Generate code for a BETWEEN operator.
5445 ** x BETWEEN y AND z
5447 ** The above is equivalent to
5449 ** x>=y AND x<=z
5451 ** Code it as such, taking care to do the common subexpression
5452 ** elimination of x.
5454 ** The xJumpIf parameter determines details:
5456 ** NULL: Store the boolean result in reg[dest]
5457 ** sqlite3ExprIfTrue: Jump to dest if true
5458 ** sqlite3ExprIfFalse: Jump to dest if false
5460 ** The jumpIfNull parameter is ignored if xJumpIf is NULL.
5462 static void exprCodeBetween(
5463 Parse *pParse, /* Parsing and code generating context */
5464 Expr *pExpr, /* The BETWEEN expression */
5465 int dest, /* Jump destination or storage location */
5466 void (*xJump)(Parse*,Expr*,int,int), /* Action to take */
5467 int jumpIfNull /* Take the jump if the BETWEEN is NULL */
5469 Expr exprAnd; /* The AND operator in x>=y AND x<=z */
5470 Expr compLeft; /* The x>=y term */
5471 Expr compRight; /* The x<=z term */
5472 int regFree1 = 0; /* Temporary use register */
5473 Expr *pDel = 0;
5474 sqlite3 *db = pParse->db;
5476 memset(&compLeft, 0, sizeof(Expr));
5477 memset(&compRight, 0, sizeof(Expr));
5478 memset(&exprAnd, 0, sizeof(Expr));
5480 assert( ExprUseXList(pExpr) );
5481 pDel = sqlite3ExprDup(db, pExpr->pLeft, 0);
5482 if( db->mallocFailed==0 ){
5483 exprAnd.op = TK_AND;
5484 exprAnd.pLeft = &compLeft;
5485 exprAnd.pRight = &compRight;
5486 compLeft.op = TK_GE;
5487 compLeft.pLeft = pDel;
5488 compLeft.pRight = pExpr->x.pList->a[0].pExpr;
5489 compRight.op = TK_LE;
5490 compRight.pLeft = pDel;
5491 compRight.pRight = pExpr->x.pList->a[1].pExpr;
5492 exprToRegister(pDel, exprCodeVector(pParse, pDel, &regFree1));
5493 if( xJump ){
5494 xJump(pParse, &exprAnd, dest, jumpIfNull);
5495 }else{
5496 /* Mark the expression is being from the ON or USING clause of a join
5497 ** so that the sqlite3ExprCodeTarget() routine will not attempt to move
5498 ** it into the Parse.pConstExpr list. We should use a new bit for this,
5499 ** for clarity, but we are out of bits in the Expr.flags field so we
5500 ** have to reuse the EP_OuterON bit. Bummer. */
5501 pDel->flags |= EP_OuterON;
5502 sqlite3ExprCodeTarget(pParse, &exprAnd, dest);
5504 sqlite3ReleaseTempReg(pParse, regFree1);
5506 sqlite3ExprDelete(db, pDel);
5508 /* Ensure adequate test coverage */
5509 testcase( xJump==sqlite3ExprIfTrue && jumpIfNull==0 && regFree1==0 );
5510 testcase( xJump==sqlite3ExprIfTrue && jumpIfNull==0 && regFree1!=0 );
5511 testcase( xJump==sqlite3ExprIfTrue && jumpIfNull!=0 && regFree1==0 );
5512 testcase( xJump==sqlite3ExprIfTrue && jumpIfNull!=0 && regFree1!=0 );
5513 testcase( xJump==sqlite3ExprIfFalse && jumpIfNull==0 && regFree1==0 );
5514 testcase( xJump==sqlite3ExprIfFalse && jumpIfNull==0 && regFree1!=0 );
5515 testcase( xJump==sqlite3ExprIfFalse && jumpIfNull!=0 && regFree1==0 );
5516 testcase( xJump==sqlite3ExprIfFalse && jumpIfNull!=0 && regFree1!=0 );
5517 testcase( xJump==0 );
5521 ** Generate code for a boolean expression such that a jump is made
5522 ** to the label "dest" if the expression is true but execution
5523 ** continues straight thru if the expression is false.
5525 ** If the expression evaluates to NULL (neither true nor false), then
5526 ** take the jump if the jumpIfNull flag is SQLITE_JUMPIFNULL.
5528 ** This code depends on the fact that certain token values (ex: TK_EQ)
5529 ** are the same as opcode values (ex: OP_Eq) that implement the corresponding
5530 ** operation. Special comments in vdbe.c and the mkopcodeh.awk script in
5531 ** the make process cause these values to align. Assert()s in the code
5532 ** below verify that the numbers are aligned correctly.
5534 void sqlite3ExprIfTrue(Parse *pParse, Expr *pExpr, int dest, int jumpIfNull){
5535 Vdbe *v = pParse->pVdbe;
5536 int op = 0;
5537 int regFree1 = 0;
5538 int regFree2 = 0;
5539 int r1, r2;
5541 assert( jumpIfNull==SQLITE_JUMPIFNULL || jumpIfNull==0 );
5542 if( NEVER(v==0) ) return; /* Existence of VDBE checked by caller */
5543 if( NEVER(pExpr==0) ) return; /* No way this can happen */
5544 assert( !ExprHasVVAProperty(pExpr, EP_Immutable) );
5545 op = pExpr->op;
5546 switch( op ){
5547 case TK_AND:
5548 case TK_OR: {
5549 Expr *pAlt = sqlite3ExprSimplifiedAndOr(pExpr);
5550 if( pAlt!=pExpr ){
5551 sqlite3ExprIfTrue(pParse, pAlt, dest, jumpIfNull);
5552 }else if( op==TK_AND ){
5553 int d2 = sqlite3VdbeMakeLabel(pParse);
5554 testcase( jumpIfNull==0 );
5555 sqlite3ExprIfFalse(pParse, pExpr->pLeft, d2,
5556 jumpIfNull^SQLITE_JUMPIFNULL);
5557 sqlite3ExprIfTrue(pParse, pExpr->pRight, dest, jumpIfNull);
5558 sqlite3VdbeResolveLabel(v, d2);
5559 }else{
5560 testcase( jumpIfNull==0 );
5561 sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, jumpIfNull);
5562 sqlite3ExprIfTrue(pParse, pExpr->pRight, dest, jumpIfNull);
5564 break;
5566 case TK_NOT: {
5567 testcase( jumpIfNull==0 );
5568 sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, jumpIfNull);
5569 break;
5571 case TK_TRUTH: {
5572 int isNot; /* IS NOT TRUE or IS NOT FALSE */
5573 int isTrue; /* IS TRUE or IS NOT TRUE */
5574 testcase( jumpIfNull==0 );
5575 isNot = pExpr->op2==TK_ISNOT;
5576 isTrue = sqlite3ExprTruthValue(pExpr->pRight);
5577 testcase( isTrue && isNot );
5578 testcase( !isTrue && isNot );
5579 if( isTrue ^ isNot ){
5580 sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest,
5581 isNot ? SQLITE_JUMPIFNULL : 0);
5582 }else{
5583 sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest,
5584 isNot ? SQLITE_JUMPIFNULL : 0);
5586 break;
5588 case TK_IS:
5589 case TK_ISNOT:
5590 testcase( op==TK_IS );
5591 testcase( op==TK_ISNOT );
5592 op = (op==TK_IS) ? TK_EQ : TK_NE;
5593 jumpIfNull = SQLITE_NULLEQ;
5594 /* no break */ deliberate_fall_through
5595 case TK_LT:
5596 case TK_LE:
5597 case TK_GT:
5598 case TK_GE:
5599 case TK_NE:
5600 case TK_EQ: {
5601 if( sqlite3ExprIsVector(pExpr->pLeft) ) goto default_expr;
5602 testcase( jumpIfNull==0 );
5603 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
5604 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, &regFree2);
5605 codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op,
5606 r1, r2, dest, jumpIfNull, ExprHasProperty(pExpr,EP_Commuted));
5607 assert(TK_LT==OP_Lt); testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt);
5608 assert(TK_LE==OP_Le); testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le);
5609 assert(TK_GT==OP_Gt); testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt);
5610 assert(TK_GE==OP_Ge); testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge);
5611 assert(TK_EQ==OP_Eq); testcase(op==OP_Eq);
5612 VdbeCoverageIf(v, op==OP_Eq && jumpIfNull==SQLITE_NULLEQ);
5613 VdbeCoverageIf(v, op==OP_Eq && jumpIfNull!=SQLITE_NULLEQ);
5614 assert(TK_NE==OP_Ne); testcase(op==OP_Ne);
5615 VdbeCoverageIf(v, op==OP_Ne && jumpIfNull==SQLITE_NULLEQ);
5616 VdbeCoverageIf(v, op==OP_Ne && jumpIfNull!=SQLITE_NULLEQ);
5617 testcase( regFree1==0 );
5618 testcase( regFree2==0 );
5619 break;
5621 case TK_ISNULL:
5622 case TK_NOTNULL: {
5623 assert( TK_ISNULL==OP_IsNull ); testcase( op==TK_ISNULL );
5624 assert( TK_NOTNULL==OP_NotNull ); testcase( op==TK_NOTNULL );
5625 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
5626 sqlite3VdbeTypeofColumn(v, r1);
5627 sqlite3VdbeAddOp2(v, op, r1, dest);
5628 VdbeCoverageIf(v, op==TK_ISNULL);
5629 VdbeCoverageIf(v, op==TK_NOTNULL);
5630 testcase( regFree1==0 );
5631 break;
5633 case TK_BETWEEN: {
5634 testcase( jumpIfNull==0 );
5635 exprCodeBetween(pParse, pExpr, dest, sqlite3ExprIfTrue, jumpIfNull);
5636 break;
5638 #ifndef SQLITE_OMIT_SUBQUERY
5639 case TK_IN: {
5640 int destIfFalse = sqlite3VdbeMakeLabel(pParse);
5641 int destIfNull = jumpIfNull ? dest : destIfFalse;
5642 sqlite3ExprCodeIN(pParse, pExpr, destIfFalse, destIfNull);
5643 sqlite3VdbeGoto(v, dest);
5644 sqlite3VdbeResolveLabel(v, destIfFalse);
5645 break;
5647 #endif
5648 default: {
5649 default_expr:
5650 if( ExprAlwaysTrue(pExpr) ){
5651 sqlite3VdbeGoto(v, dest);
5652 }else if( ExprAlwaysFalse(pExpr) ){
5653 /* No-op */
5654 }else{
5655 r1 = sqlite3ExprCodeTemp(pParse, pExpr, &regFree1);
5656 sqlite3VdbeAddOp3(v, OP_If, r1, dest, jumpIfNull!=0);
5657 VdbeCoverage(v);
5658 testcase( regFree1==0 );
5659 testcase( jumpIfNull==0 );
5661 break;
5664 sqlite3ReleaseTempReg(pParse, regFree1);
5665 sqlite3ReleaseTempReg(pParse, regFree2);
5669 ** Generate code for a boolean expression such that a jump is made
5670 ** to the label "dest" if the expression is false but execution
5671 ** continues straight thru if the expression is true.
5673 ** If the expression evaluates to NULL (neither true nor false) then
5674 ** jump if jumpIfNull is SQLITE_JUMPIFNULL or fall through if jumpIfNull
5675 ** is 0.
5677 void sqlite3ExprIfFalse(Parse *pParse, Expr *pExpr, int dest, int jumpIfNull){
5678 Vdbe *v = pParse->pVdbe;
5679 int op = 0;
5680 int regFree1 = 0;
5681 int regFree2 = 0;
5682 int r1, r2;
5684 assert( jumpIfNull==SQLITE_JUMPIFNULL || jumpIfNull==0 );
5685 if( NEVER(v==0) ) return; /* Existence of VDBE checked by caller */
5686 if( pExpr==0 ) return;
5687 assert( !ExprHasVVAProperty(pExpr,EP_Immutable) );
5689 /* The value of pExpr->op and op are related as follows:
5691 ** pExpr->op op
5692 ** --------- ----------
5693 ** TK_ISNULL OP_NotNull
5694 ** TK_NOTNULL OP_IsNull
5695 ** TK_NE OP_Eq
5696 ** TK_EQ OP_Ne
5697 ** TK_GT OP_Le
5698 ** TK_LE OP_Gt
5699 ** TK_GE OP_Lt
5700 ** TK_LT OP_Ge
5702 ** For other values of pExpr->op, op is undefined and unused.
5703 ** The value of TK_ and OP_ constants are arranged such that we
5704 ** can compute the mapping above using the following expression.
5705 ** Assert()s verify that the computation is correct.
5707 op = ((pExpr->op+(TK_ISNULL&1))^1)-(TK_ISNULL&1);
5709 /* Verify correct alignment of TK_ and OP_ constants
5711 assert( pExpr->op!=TK_ISNULL || op==OP_NotNull );
5712 assert( pExpr->op!=TK_NOTNULL || op==OP_IsNull );
5713 assert( pExpr->op!=TK_NE || op==OP_Eq );
5714 assert( pExpr->op!=TK_EQ || op==OP_Ne );
5715 assert( pExpr->op!=TK_LT || op==OP_Ge );
5716 assert( pExpr->op!=TK_LE || op==OP_Gt );
5717 assert( pExpr->op!=TK_GT || op==OP_Le );
5718 assert( pExpr->op!=TK_GE || op==OP_Lt );
5720 switch( pExpr->op ){
5721 case TK_AND:
5722 case TK_OR: {
5723 Expr *pAlt = sqlite3ExprSimplifiedAndOr(pExpr);
5724 if( pAlt!=pExpr ){
5725 sqlite3ExprIfFalse(pParse, pAlt, dest, jumpIfNull);
5726 }else if( pExpr->op==TK_AND ){
5727 testcase( jumpIfNull==0 );
5728 sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, jumpIfNull);
5729 sqlite3ExprIfFalse(pParse, pExpr->pRight, dest, jumpIfNull);
5730 }else{
5731 int d2 = sqlite3VdbeMakeLabel(pParse);
5732 testcase( jumpIfNull==0 );
5733 sqlite3ExprIfTrue(pParse, pExpr->pLeft, d2,
5734 jumpIfNull^SQLITE_JUMPIFNULL);
5735 sqlite3ExprIfFalse(pParse, pExpr->pRight, dest, jumpIfNull);
5736 sqlite3VdbeResolveLabel(v, d2);
5738 break;
5740 case TK_NOT: {
5741 testcase( jumpIfNull==0 );
5742 sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, jumpIfNull);
5743 break;
5745 case TK_TRUTH: {
5746 int isNot; /* IS NOT TRUE or IS NOT FALSE */
5747 int isTrue; /* IS TRUE or IS NOT TRUE */
5748 testcase( jumpIfNull==0 );
5749 isNot = pExpr->op2==TK_ISNOT;
5750 isTrue = sqlite3ExprTruthValue(pExpr->pRight);
5751 testcase( isTrue && isNot );
5752 testcase( !isTrue && isNot );
5753 if( isTrue ^ isNot ){
5754 /* IS TRUE and IS NOT FALSE */
5755 sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest,
5756 isNot ? 0 : SQLITE_JUMPIFNULL);
5758 }else{
5759 /* IS FALSE and IS NOT TRUE */
5760 sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest,
5761 isNot ? 0 : SQLITE_JUMPIFNULL);
5763 break;
5765 case TK_IS:
5766 case TK_ISNOT:
5767 testcase( pExpr->op==TK_IS );
5768 testcase( pExpr->op==TK_ISNOT );
5769 op = (pExpr->op==TK_IS) ? TK_NE : TK_EQ;
5770 jumpIfNull = SQLITE_NULLEQ;
5771 /* no break */ deliberate_fall_through
5772 case TK_LT:
5773 case TK_LE:
5774 case TK_GT:
5775 case TK_GE:
5776 case TK_NE:
5777 case TK_EQ: {
5778 if( sqlite3ExprIsVector(pExpr->pLeft) ) goto default_expr;
5779 testcase( jumpIfNull==0 );
5780 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
5781 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, &regFree2);
5782 codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op,
5783 r1, r2, dest, jumpIfNull,ExprHasProperty(pExpr,EP_Commuted));
5784 assert(TK_LT==OP_Lt); testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt);
5785 assert(TK_LE==OP_Le); testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le);
5786 assert(TK_GT==OP_Gt); testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt);
5787 assert(TK_GE==OP_Ge); testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge);
5788 assert(TK_EQ==OP_Eq); testcase(op==OP_Eq);
5789 VdbeCoverageIf(v, op==OP_Eq && jumpIfNull!=SQLITE_NULLEQ);
5790 VdbeCoverageIf(v, op==OP_Eq && jumpIfNull==SQLITE_NULLEQ);
5791 assert(TK_NE==OP_Ne); testcase(op==OP_Ne);
5792 VdbeCoverageIf(v, op==OP_Ne && jumpIfNull!=SQLITE_NULLEQ);
5793 VdbeCoverageIf(v, op==OP_Ne && jumpIfNull==SQLITE_NULLEQ);
5794 testcase( regFree1==0 );
5795 testcase( regFree2==0 );
5796 break;
5798 case TK_ISNULL:
5799 case TK_NOTNULL: {
5800 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
5801 sqlite3VdbeTypeofColumn(v, r1);
5802 sqlite3VdbeAddOp2(v, op, r1, dest);
5803 testcase( op==TK_ISNULL ); VdbeCoverageIf(v, op==TK_ISNULL);
5804 testcase( op==TK_NOTNULL ); VdbeCoverageIf(v, op==TK_NOTNULL);
5805 testcase( regFree1==0 );
5806 break;
5808 case TK_BETWEEN: {
5809 testcase( jumpIfNull==0 );
5810 exprCodeBetween(pParse, pExpr, dest, sqlite3ExprIfFalse, jumpIfNull);
5811 break;
5813 #ifndef SQLITE_OMIT_SUBQUERY
5814 case TK_IN: {
5815 if( jumpIfNull ){
5816 sqlite3ExprCodeIN(pParse, pExpr, dest, dest);
5817 }else{
5818 int destIfNull = sqlite3VdbeMakeLabel(pParse);
5819 sqlite3ExprCodeIN(pParse, pExpr, dest, destIfNull);
5820 sqlite3VdbeResolveLabel(v, destIfNull);
5822 break;
5824 #endif
5825 default: {
5826 default_expr:
5827 if( ExprAlwaysFalse(pExpr) ){
5828 sqlite3VdbeGoto(v, dest);
5829 }else if( ExprAlwaysTrue(pExpr) ){
5830 /* no-op */
5831 }else{
5832 r1 = sqlite3ExprCodeTemp(pParse, pExpr, &regFree1);
5833 sqlite3VdbeAddOp3(v, OP_IfNot, r1, dest, jumpIfNull!=0);
5834 VdbeCoverage(v);
5835 testcase( regFree1==0 );
5836 testcase( jumpIfNull==0 );
5838 break;
5841 sqlite3ReleaseTempReg(pParse, regFree1);
5842 sqlite3ReleaseTempReg(pParse, regFree2);
5846 ** Like sqlite3ExprIfFalse() except that a copy is made of pExpr before
5847 ** code generation, and that copy is deleted after code generation. This
5848 ** ensures that the original pExpr is unchanged.
5850 void sqlite3ExprIfFalseDup(Parse *pParse, Expr *pExpr, int dest,int jumpIfNull){
5851 sqlite3 *db = pParse->db;
5852 Expr *pCopy = sqlite3ExprDup(db, pExpr, 0);
5853 if( db->mallocFailed==0 ){
5854 sqlite3ExprIfFalse(pParse, pCopy, dest, jumpIfNull);
5856 sqlite3ExprDelete(db, pCopy);
5860 ** Expression pVar is guaranteed to be an SQL variable. pExpr may be any
5861 ** type of expression.
5863 ** If pExpr is a simple SQL value - an integer, real, string, blob
5864 ** or NULL value - then the VDBE currently being prepared is configured
5865 ** to re-prepare each time a new value is bound to variable pVar.
5867 ** Additionally, if pExpr is a simple SQL value and the value is the
5868 ** same as that currently bound to variable pVar, non-zero is returned.
5869 ** Otherwise, if the values are not the same or if pExpr is not a simple
5870 ** SQL value, zero is returned.
5872 static int exprCompareVariable(
5873 const Parse *pParse,
5874 const Expr *pVar,
5875 const Expr *pExpr
5877 int res = 0;
5878 int iVar;
5879 sqlite3_value *pL, *pR = 0;
5881 sqlite3ValueFromExpr(pParse->db, pExpr, SQLITE_UTF8, SQLITE_AFF_BLOB, &pR);
5882 if( pR ){
5883 iVar = pVar->iColumn;
5884 sqlite3VdbeSetVarmask(pParse->pVdbe, iVar);
5885 pL = sqlite3VdbeGetBoundValue(pParse->pReprepare, iVar, SQLITE_AFF_BLOB);
5886 if( pL ){
5887 if( sqlite3_value_type(pL)==SQLITE_TEXT ){
5888 sqlite3_value_text(pL); /* Make sure the encoding is UTF-8 */
5890 res = 0==sqlite3MemCompare(pL, pR, 0);
5892 sqlite3ValueFree(pR);
5893 sqlite3ValueFree(pL);
5896 return res;
5900 ** Do a deep comparison of two expression trees. Return 0 if the two
5901 ** expressions are completely identical. Return 1 if they differ only
5902 ** by a COLLATE operator at the top level. Return 2 if there are differences
5903 ** other than the top-level COLLATE operator.
5905 ** If any subelement of pB has Expr.iTable==(-1) then it is allowed
5906 ** to compare equal to an equivalent element in pA with Expr.iTable==iTab.
5908 ** The pA side might be using TK_REGISTER. If that is the case and pB is
5909 ** not using TK_REGISTER but is otherwise equivalent, then still return 0.
5911 ** Sometimes this routine will return 2 even if the two expressions
5912 ** really are equivalent. If we cannot prove that the expressions are
5913 ** identical, we return 2 just to be safe. So if this routine
5914 ** returns 2, then you do not really know for certain if the two
5915 ** expressions are the same. But if you get a 0 or 1 return, then you
5916 ** can be sure the expressions are the same. In the places where
5917 ** this routine is used, it does not hurt to get an extra 2 - that
5918 ** just might result in some slightly slower code. But returning
5919 ** an incorrect 0 or 1 could lead to a malfunction.
5921 ** If pParse is not NULL then TK_VARIABLE terms in pA with bindings in
5922 ** pParse->pReprepare can be matched against literals in pB. The
5923 ** pParse->pVdbe->expmask bitmask is updated for each variable referenced.
5924 ** If pParse is NULL (the normal case) then any TK_VARIABLE term in
5925 ** Argument pParse should normally be NULL. If it is not NULL and pA or
5926 ** pB causes a return value of 2.
5928 int sqlite3ExprCompare(
5929 const Parse *pParse,
5930 const Expr *pA,
5931 const Expr *pB,
5932 int iTab
5934 u32 combinedFlags;
5935 if( pA==0 || pB==0 ){
5936 return pB==pA ? 0 : 2;
5938 if( pParse && pA->op==TK_VARIABLE && exprCompareVariable(pParse, pA, pB) ){
5939 return 0;
5941 combinedFlags = pA->flags | pB->flags;
5942 if( combinedFlags & EP_IntValue ){
5943 if( (pA->flags&pB->flags&EP_IntValue)!=0 && pA->u.iValue==pB->u.iValue ){
5944 return 0;
5946 return 2;
5948 if( pA->op!=pB->op || pA->op==TK_RAISE ){
5949 if( pA->op==TK_COLLATE && sqlite3ExprCompare(pParse, pA->pLeft,pB,iTab)<2 ){
5950 return 1;
5952 if( pB->op==TK_COLLATE && sqlite3ExprCompare(pParse, pA,pB->pLeft,iTab)<2 ){
5953 return 1;
5955 if( pA->op==TK_AGG_COLUMN && pB->op==TK_COLUMN
5956 && pB->iTable<0 && pA->iTable==iTab
5958 /* fall through */
5959 }else{
5960 return 2;
5963 assert( !ExprHasProperty(pA, EP_IntValue) );
5964 assert( !ExprHasProperty(pB, EP_IntValue) );
5965 if( pA->u.zToken ){
5966 if( pA->op==TK_FUNCTION || pA->op==TK_AGG_FUNCTION ){
5967 if( sqlite3StrICmp(pA->u.zToken,pB->u.zToken)!=0 ) return 2;
5968 #ifndef SQLITE_OMIT_WINDOWFUNC
5969 assert( pA->op==pB->op );
5970 if( ExprHasProperty(pA,EP_WinFunc)!=ExprHasProperty(pB,EP_WinFunc) ){
5971 return 2;
5973 if( ExprHasProperty(pA,EP_WinFunc) ){
5974 if( sqlite3WindowCompare(pParse, pA->y.pWin, pB->y.pWin, 1)!=0 ){
5975 return 2;
5978 #endif
5979 }else if( pA->op==TK_NULL ){
5980 return 0;
5981 }else if( pA->op==TK_COLLATE ){
5982 if( sqlite3_stricmp(pA->u.zToken,pB->u.zToken)!=0 ) return 2;
5983 }else
5984 if( pB->u.zToken!=0
5985 && pA->op!=TK_COLUMN
5986 && pA->op!=TK_AGG_COLUMN
5987 && strcmp(pA->u.zToken,pB->u.zToken)!=0
5989 return 2;
5992 if( (pA->flags & (EP_Distinct|EP_Commuted))
5993 != (pB->flags & (EP_Distinct|EP_Commuted)) ) return 2;
5994 if( ALWAYS((combinedFlags & EP_TokenOnly)==0) ){
5995 if( combinedFlags & EP_xIsSelect ) return 2;
5996 if( (combinedFlags & EP_FixedCol)==0
5997 && sqlite3ExprCompare(pParse, pA->pLeft, pB->pLeft, iTab) ) return 2;
5998 if( sqlite3ExprCompare(pParse, pA->pRight, pB->pRight, iTab) ) return 2;
5999 if( sqlite3ExprListCompare(pA->x.pList, pB->x.pList, iTab) ) return 2;
6000 if( pA->op!=TK_STRING
6001 && pA->op!=TK_TRUEFALSE
6002 && ALWAYS((combinedFlags & EP_Reduced)==0)
6004 if( pA->iColumn!=pB->iColumn ) return 2;
6005 if( pA->op2!=pB->op2 && pA->op==TK_TRUTH ) return 2;
6006 if( pA->op!=TK_IN && pA->iTable!=pB->iTable && pA->iTable!=iTab ){
6007 return 2;
6011 return 0;
6015 ** Compare two ExprList objects. Return 0 if they are identical, 1
6016 ** if they are certainly different, or 2 if it is not possible to
6017 ** determine if they are identical or not.
6019 ** If any subelement of pB has Expr.iTable==(-1) then it is allowed
6020 ** to compare equal to an equivalent element in pA with Expr.iTable==iTab.
6022 ** This routine might return non-zero for equivalent ExprLists. The
6023 ** only consequence will be disabled optimizations. But this routine
6024 ** must never return 0 if the two ExprList objects are different, or
6025 ** a malfunction will result.
6027 ** Two NULL pointers are considered to be the same. But a NULL pointer
6028 ** always differs from a non-NULL pointer.
6030 int sqlite3ExprListCompare(const ExprList *pA, const ExprList *pB, int iTab){
6031 int i;
6032 if( pA==0 && pB==0 ) return 0;
6033 if( pA==0 || pB==0 ) return 1;
6034 if( pA->nExpr!=pB->nExpr ) return 1;
6035 for(i=0; i<pA->nExpr; i++){
6036 int res;
6037 Expr *pExprA = pA->a[i].pExpr;
6038 Expr *pExprB = pB->a[i].pExpr;
6039 if( pA->a[i].fg.sortFlags!=pB->a[i].fg.sortFlags ) return 1;
6040 if( (res = sqlite3ExprCompare(0, pExprA, pExprB, iTab)) ) return res;
6042 return 0;
6046 ** Like sqlite3ExprCompare() except COLLATE operators at the top-level
6047 ** are ignored.
6049 int sqlite3ExprCompareSkip(Expr *pA,Expr *pB, int iTab){
6050 return sqlite3ExprCompare(0,
6051 sqlite3ExprSkipCollate(pA),
6052 sqlite3ExprSkipCollate(pB),
6053 iTab);
6057 ** Return non-zero if Expr p can only be true if pNN is not NULL.
6059 ** Or if seenNot is true, return non-zero if Expr p can only be
6060 ** non-NULL if pNN is not NULL
6062 static int exprImpliesNotNull(
6063 const Parse *pParse,/* Parsing context */
6064 const Expr *p, /* The expression to be checked */
6065 const Expr *pNN, /* The expression that is NOT NULL */
6066 int iTab, /* Table being evaluated */
6067 int seenNot /* Return true only if p can be any non-NULL value */
6069 assert( p );
6070 assert( pNN );
6071 if( sqlite3ExprCompare(pParse, p, pNN, iTab)==0 ){
6072 return pNN->op!=TK_NULL;
6074 switch( p->op ){
6075 case TK_IN: {
6076 if( seenNot && ExprHasProperty(p, EP_xIsSelect) ) return 0;
6077 assert( ExprUseXSelect(p) || (p->x.pList!=0 && p->x.pList->nExpr>0) );
6078 return exprImpliesNotNull(pParse, p->pLeft, pNN, iTab, 1);
6080 case TK_BETWEEN: {
6081 ExprList *pList;
6082 assert( ExprUseXList(p) );
6083 pList = p->x.pList;
6084 assert( pList!=0 );
6085 assert( pList->nExpr==2 );
6086 if( seenNot ) return 0;
6087 if( exprImpliesNotNull(pParse, pList->a[0].pExpr, pNN, iTab, 1)
6088 || exprImpliesNotNull(pParse, pList->a[1].pExpr, pNN, iTab, 1)
6090 return 1;
6092 return exprImpliesNotNull(pParse, p->pLeft, pNN, iTab, 1);
6094 case TK_EQ:
6095 case TK_NE:
6096 case TK_LT:
6097 case TK_LE:
6098 case TK_GT:
6099 case TK_GE:
6100 case TK_PLUS:
6101 case TK_MINUS:
6102 case TK_BITOR:
6103 case TK_LSHIFT:
6104 case TK_RSHIFT:
6105 case TK_CONCAT:
6106 seenNot = 1;
6107 /* no break */ deliberate_fall_through
6108 case TK_STAR:
6109 case TK_REM:
6110 case TK_BITAND:
6111 case TK_SLASH: {
6112 if( exprImpliesNotNull(pParse, p->pRight, pNN, iTab, seenNot) ) return 1;
6113 /* no break */ deliberate_fall_through
6115 case TK_SPAN:
6116 case TK_COLLATE:
6117 case TK_UPLUS:
6118 case TK_UMINUS: {
6119 return exprImpliesNotNull(pParse, p->pLeft, pNN, iTab, seenNot);
6121 case TK_TRUTH: {
6122 if( seenNot ) return 0;
6123 if( p->op2!=TK_IS ) return 0;
6124 return exprImpliesNotNull(pParse, p->pLeft, pNN, iTab, 1);
6126 case TK_BITNOT:
6127 case TK_NOT: {
6128 return exprImpliesNotNull(pParse, p->pLeft, pNN, iTab, 1);
6131 return 0;
6135 ** Return true if we can prove the pE2 will always be true if pE1 is
6136 ** true. Return false if we cannot complete the proof or if pE2 might
6137 ** be false. Examples:
6139 ** pE1: x==5 pE2: x==5 Result: true
6140 ** pE1: x>0 pE2: x==5 Result: false
6141 ** pE1: x=21 pE2: x=21 OR y=43 Result: true
6142 ** pE1: x!=123 pE2: x IS NOT NULL Result: true
6143 ** pE1: x!=?1 pE2: x IS NOT NULL Result: true
6144 ** pE1: x IS NULL pE2: x IS NOT NULL Result: false
6145 ** pE1: x IS ?2 pE2: x IS NOT NULL Result: false
6147 ** When comparing TK_COLUMN nodes between pE1 and pE2, if pE2 has
6148 ** Expr.iTable<0 then assume a table number given by iTab.
6150 ** If pParse is not NULL, then the values of bound variables in pE1 are
6151 ** compared against literal values in pE2 and pParse->pVdbe->expmask is
6152 ** modified to record which bound variables are referenced. If pParse
6153 ** is NULL, then false will be returned if pE1 contains any bound variables.
6155 ** When in doubt, return false. Returning true might give a performance
6156 ** improvement. Returning false might cause a performance reduction, but
6157 ** it will always give the correct answer and is hence always safe.
6159 int sqlite3ExprImpliesExpr(
6160 const Parse *pParse,
6161 const Expr *pE1,
6162 const Expr *pE2,
6163 int iTab
6165 if( sqlite3ExprCompare(pParse, pE1, pE2, iTab)==0 ){
6166 return 1;
6168 if( pE2->op==TK_OR
6169 && (sqlite3ExprImpliesExpr(pParse, pE1, pE2->pLeft, iTab)
6170 || sqlite3ExprImpliesExpr(pParse, pE1, pE2->pRight, iTab) )
6172 return 1;
6174 if( pE2->op==TK_NOTNULL
6175 && exprImpliesNotNull(pParse, pE1, pE2->pLeft, iTab, 0)
6177 return 1;
6179 return 0;
6182 /* This is a helper function to impliesNotNullRow(). In this routine,
6183 ** set pWalker->eCode to one only if *both* of the input expressions
6184 ** separately have the implies-not-null-row property.
6186 static void bothImplyNotNullRow(Walker *pWalker, Expr *pE1, Expr *pE2){
6187 if( pWalker->eCode==0 ){
6188 sqlite3WalkExpr(pWalker, pE1);
6189 if( pWalker->eCode ){
6190 pWalker->eCode = 0;
6191 sqlite3WalkExpr(pWalker, pE2);
6197 ** This is the Expr node callback for sqlite3ExprImpliesNonNullRow().
6198 ** If the expression node requires that the table at pWalker->iCur
6199 ** have one or more non-NULL column, then set pWalker->eCode to 1 and abort.
6201 ** pWalker->mWFlags is non-zero if this inquiry is being undertaking on
6202 ** behalf of a RIGHT JOIN (or FULL JOIN). That makes a difference when
6203 ** evaluating terms in the ON clause of an inner join.
6205 ** This routine controls an optimization. False positives (setting
6206 ** pWalker->eCode to 1 when it should not be) are deadly, but false-negatives
6207 ** (never setting pWalker->eCode) is a harmless missed optimization.
6209 static int impliesNotNullRow(Walker *pWalker, Expr *pExpr){
6210 testcase( pExpr->op==TK_AGG_COLUMN );
6211 testcase( pExpr->op==TK_AGG_FUNCTION );
6212 if( ExprHasProperty(pExpr, EP_OuterON) ) return WRC_Prune;
6213 if( ExprHasProperty(pExpr, EP_InnerON) && pWalker->mWFlags ){
6214 /* If iCur is used in an inner-join ON clause to the left of a
6215 ** RIGHT JOIN, that does *not* mean that the table must be non-null.
6216 ** But it is difficult to check for that condition precisely.
6217 ** To keep things simple, any use of iCur from any inner-join is
6218 ** ignored while attempting to simplify a RIGHT JOIN. */
6219 return WRC_Prune;
6221 switch( pExpr->op ){
6222 case TK_ISNOT:
6223 case TK_ISNULL:
6224 case TK_NOTNULL:
6225 case TK_IS:
6226 case TK_VECTOR:
6227 case TK_FUNCTION:
6228 case TK_TRUTH:
6229 case TK_CASE:
6230 testcase( pExpr->op==TK_ISNOT );
6231 testcase( pExpr->op==TK_ISNULL );
6232 testcase( pExpr->op==TK_NOTNULL );
6233 testcase( pExpr->op==TK_IS );
6234 testcase( pExpr->op==TK_VECTOR );
6235 testcase( pExpr->op==TK_FUNCTION );
6236 testcase( pExpr->op==TK_TRUTH );
6237 testcase( pExpr->op==TK_CASE );
6238 return WRC_Prune;
6240 case TK_COLUMN:
6241 if( pWalker->u.iCur==pExpr->iTable ){
6242 pWalker->eCode = 1;
6243 return WRC_Abort;
6245 return WRC_Prune;
6247 case TK_OR:
6248 case TK_AND:
6249 /* Both sides of an AND or OR must separately imply non-null-row.
6250 ** Consider these cases:
6251 ** 1. NOT (x AND y)
6252 ** 2. x OR y
6253 ** If only one of x or y is non-null-row, then the overall expression
6254 ** can be true if the other arm is false (case 1) or true (case 2).
6256 testcase( pExpr->op==TK_OR );
6257 testcase( pExpr->op==TK_AND );
6258 bothImplyNotNullRow(pWalker, pExpr->pLeft, pExpr->pRight);
6259 return WRC_Prune;
6261 case TK_IN:
6262 /* Beware of "x NOT IN ()" and "x NOT IN (SELECT 1 WHERE false)",
6263 ** both of which can be true. But apart from these cases, if
6264 ** the left-hand side of the IN is NULL then the IN itself will be
6265 ** NULL. */
6266 if( ExprUseXList(pExpr) && ALWAYS(pExpr->x.pList->nExpr>0) ){
6267 sqlite3WalkExpr(pWalker, pExpr->pLeft);
6269 return WRC_Prune;
6271 case TK_BETWEEN:
6272 /* In "x NOT BETWEEN y AND z" either x must be non-null-row or else
6273 ** both y and z must be non-null row */
6274 assert( ExprUseXList(pExpr) );
6275 assert( pExpr->x.pList->nExpr==2 );
6276 sqlite3WalkExpr(pWalker, pExpr->pLeft);
6277 bothImplyNotNullRow(pWalker, pExpr->x.pList->a[0].pExpr,
6278 pExpr->x.pList->a[1].pExpr);
6279 return WRC_Prune;
6281 /* Virtual tables are allowed to use constraints like x=NULL. So
6282 ** a term of the form x=y does not prove that y is not null if x
6283 ** is the column of a virtual table */
6284 case TK_EQ:
6285 case TK_NE:
6286 case TK_LT:
6287 case TK_LE:
6288 case TK_GT:
6289 case TK_GE: {
6290 Expr *pLeft = pExpr->pLeft;
6291 Expr *pRight = pExpr->pRight;
6292 testcase( pExpr->op==TK_EQ );
6293 testcase( pExpr->op==TK_NE );
6294 testcase( pExpr->op==TK_LT );
6295 testcase( pExpr->op==TK_LE );
6296 testcase( pExpr->op==TK_GT );
6297 testcase( pExpr->op==TK_GE );
6298 /* The y.pTab=0 assignment in wherecode.c always happens after the
6299 ** impliesNotNullRow() test */
6300 assert( pLeft->op!=TK_COLUMN || ExprUseYTab(pLeft) );
6301 assert( pRight->op!=TK_COLUMN || ExprUseYTab(pRight) );
6302 if( (pLeft->op==TK_COLUMN
6303 && ALWAYS(pLeft->y.pTab!=0)
6304 && IsVirtual(pLeft->y.pTab))
6305 || (pRight->op==TK_COLUMN
6306 && ALWAYS(pRight->y.pTab!=0)
6307 && IsVirtual(pRight->y.pTab))
6309 return WRC_Prune;
6311 /* no break */ deliberate_fall_through
6313 default:
6314 return WRC_Continue;
6319 ** Return true (non-zero) if expression p can only be true if at least
6320 ** one column of table iTab is non-null. In other words, return true
6321 ** if expression p will always be NULL or false if every column of iTab
6322 ** is NULL.
6324 ** False negatives are acceptable. In other words, it is ok to return
6325 ** zero even if expression p will never be true of every column of iTab
6326 ** is NULL. A false negative is merely a missed optimization opportunity.
6328 ** False positives are not allowed, however. A false positive may result
6329 ** in an incorrect answer.
6331 ** Terms of p that are marked with EP_OuterON (and hence that come from
6332 ** the ON or USING clauses of OUTER JOINS) are excluded from the analysis.
6334 ** This routine is used to check if a LEFT JOIN can be converted into
6335 ** an ordinary JOIN. The p argument is the WHERE clause. If the WHERE
6336 ** clause requires that some column of the right table of the LEFT JOIN
6337 ** be non-NULL, then the LEFT JOIN can be safely converted into an
6338 ** ordinary join.
6340 int sqlite3ExprImpliesNonNullRow(Expr *p, int iTab, int isRJ){
6341 Walker w;
6342 p = sqlite3ExprSkipCollateAndLikely(p);
6343 if( p==0 ) return 0;
6344 if( p->op==TK_NOTNULL ){
6345 p = p->pLeft;
6346 }else{
6347 while( p->op==TK_AND ){
6348 if( sqlite3ExprImpliesNonNullRow(p->pLeft, iTab, isRJ) ) return 1;
6349 p = p->pRight;
6352 w.xExprCallback = impliesNotNullRow;
6353 w.xSelectCallback = 0;
6354 w.xSelectCallback2 = 0;
6355 w.eCode = 0;
6356 w.mWFlags = isRJ!=0;
6357 w.u.iCur = iTab;
6358 sqlite3WalkExpr(&w, p);
6359 return w.eCode;
6363 ** An instance of the following structure is used by the tree walker
6364 ** to determine if an expression can be evaluated by reference to the
6365 ** index only, without having to do a search for the corresponding
6366 ** table entry. The IdxCover.pIdx field is the index. IdxCover.iCur
6367 ** is the cursor for the table.
6369 struct IdxCover {
6370 Index *pIdx; /* The index to be tested for coverage */
6371 int iCur; /* Cursor number for the table corresponding to the index */
6375 ** Check to see if there are references to columns in table
6376 ** pWalker->u.pIdxCover->iCur can be satisfied using the index
6377 ** pWalker->u.pIdxCover->pIdx.
6379 static int exprIdxCover(Walker *pWalker, Expr *pExpr){
6380 if( pExpr->op==TK_COLUMN
6381 && pExpr->iTable==pWalker->u.pIdxCover->iCur
6382 && sqlite3TableColumnToIndex(pWalker->u.pIdxCover->pIdx, pExpr->iColumn)<0
6384 pWalker->eCode = 1;
6385 return WRC_Abort;
6387 return WRC_Continue;
6391 ** Determine if an index pIdx on table with cursor iCur contains will
6392 ** the expression pExpr. Return true if the index does cover the
6393 ** expression and false if the pExpr expression references table columns
6394 ** that are not found in the index pIdx.
6396 ** An index covering an expression means that the expression can be
6397 ** evaluated using only the index and without having to lookup the
6398 ** corresponding table entry.
6400 int sqlite3ExprCoveredByIndex(
6401 Expr *pExpr, /* The index to be tested */
6402 int iCur, /* The cursor number for the corresponding table */
6403 Index *pIdx /* The index that might be used for coverage */
6405 Walker w;
6406 struct IdxCover xcov;
6407 memset(&w, 0, sizeof(w));
6408 xcov.iCur = iCur;
6409 xcov.pIdx = pIdx;
6410 w.xExprCallback = exprIdxCover;
6411 w.u.pIdxCover = &xcov;
6412 sqlite3WalkExpr(&w, pExpr);
6413 return !w.eCode;
6417 /* Structure used to pass information throughout the Walker in order to
6418 ** implement sqlite3ReferencesSrcList().
6420 struct RefSrcList {
6421 sqlite3 *db; /* Database connection used for sqlite3DbRealloc() */
6422 SrcList *pRef; /* Looking for references to these tables */
6423 i64 nExclude; /* Number of tables to exclude from the search */
6424 int *aiExclude; /* Cursor IDs for tables to exclude from the search */
6428 ** Walker SELECT callbacks for sqlite3ReferencesSrcList().
6430 ** When entering a new subquery on the pExpr argument, add all FROM clause
6431 ** entries for that subquery to the exclude list.
6433 ** When leaving the subquery, remove those entries from the exclude list.
6435 static int selectRefEnter(Walker *pWalker, Select *pSelect){
6436 struct RefSrcList *p = pWalker->u.pRefSrcList;
6437 SrcList *pSrc = pSelect->pSrc;
6438 i64 i, j;
6439 int *piNew;
6440 if( pSrc->nSrc==0 ) return WRC_Continue;
6441 j = p->nExclude;
6442 p->nExclude += pSrc->nSrc;
6443 piNew = sqlite3DbRealloc(p->db, p->aiExclude, p->nExclude*sizeof(int));
6444 if( piNew==0 ){
6445 p->nExclude = 0;
6446 return WRC_Abort;
6447 }else{
6448 p->aiExclude = piNew;
6450 for(i=0; i<pSrc->nSrc; i++, j++){
6451 p->aiExclude[j] = pSrc->a[i].iCursor;
6453 return WRC_Continue;
6455 static void selectRefLeave(Walker *pWalker, Select *pSelect){
6456 struct RefSrcList *p = pWalker->u.pRefSrcList;
6457 SrcList *pSrc = pSelect->pSrc;
6458 if( p->nExclude ){
6459 assert( p->nExclude>=pSrc->nSrc );
6460 p->nExclude -= pSrc->nSrc;
6464 /* This is the Walker EXPR callback for sqlite3ReferencesSrcList().
6466 ** Set the 0x01 bit of pWalker->eCode if there is a reference to any
6467 ** of the tables shown in RefSrcList.pRef.
6469 ** Set the 0x02 bit of pWalker->eCode if there is a reference to a
6470 ** table is in neither RefSrcList.pRef nor RefSrcList.aiExclude.
6472 static int exprRefToSrcList(Walker *pWalker, Expr *pExpr){
6473 if( pExpr->op==TK_COLUMN
6474 || pExpr->op==TK_AGG_COLUMN
6476 int i;
6477 struct RefSrcList *p = pWalker->u.pRefSrcList;
6478 SrcList *pSrc = p->pRef;
6479 int nSrc = pSrc ? pSrc->nSrc : 0;
6480 for(i=0; i<nSrc; i++){
6481 if( pExpr->iTable==pSrc->a[i].iCursor ){
6482 pWalker->eCode |= 1;
6483 return WRC_Continue;
6486 for(i=0; i<p->nExclude && p->aiExclude[i]!=pExpr->iTable; i++){}
6487 if( i>=p->nExclude ){
6488 pWalker->eCode |= 2;
6491 return WRC_Continue;
6495 ** Check to see if pExpr references any tables in pSrcList.
6496 ** Possible return values:
6498 ** 1 pExpr does references a table in pSrcList.
6500 ** 0 pExpr references some table that is not defined in either
6501 ** pSrcList or in subqueries of pExpr itself.
6503 ** -1 pExpr only references no tables at all, or it only
6504 ** references tables defined in subqueries of pExpr itself.
6506 ** As currently used, pExpr is always an aggregate function call. That
6507 ** fact is exploited for efficiency.
6509 int sqlite3ReferencesSrcList(Parse *pParse, Expr *pExpr, SrcList *pSrcList){
6510 Walker w;
6511 struct RefSrcList x;
6512 assert( pParse->db!=0 );
6513 memset(&w, 0, sizeof(w));
6514 memset(&x, 0, sizeof(x));
6515 w.xExprCallback = exprRefToSrcList;
6516 w.xSelectCallback = selectRefEnter;
6517 w.xSelectCallback2 = selectRefLeave;
6518 w.u.pRefSrcList = &x;
6519 x.db = pParse->db;
6520 x.pRef = pSrcList;
6521 assert( pExpr->op==TK_AGG_FUNCTION );
6522 assert( ExprUseXList(pExpr) );
6523 sqlite3WalkExprList(&w, pExpr->x.pList);
6524 if( pExpr->pLeft ){
6525 assert( pExpr->pLeft->op==TK_ORDER );
6526 assert( ExprUseXList(pExpr->pLeft) );
6527 assert( pExpr->pLeft->x.pList!=0 );
6528 sqlite3WalkExprList(&w, pExpr->pLeft->x.pList);
6530 #ifndef SQLITE_OMIT_WINDOWFUNC
6531 if( ExprHasProperty(pExpr, EP_WinFunc) ){
6532 sqlite3WalkExpr(&w, pExpr->y.pWin->pFilter);
6534 #endif
6535 if( x.aiExclude ) sqlite3DbNNFreeNN(pParse->db, x.aiExclude);
6536 if( w.eCode & 0x01 ){
6537 return 1;
6538 }else if( w.eCode ){
6539 return 0;
6540 }else{
6541 return -1;
6546 ** This is a Walker expression node callback.
6548 ** For Expr nodes that contain pAggInfo pointers, make sure the AggInfo
6549 ** object that is referenced does not refer directly to the Expr. If
6550 ** it does, make a copy. This is done because the pExpr argument is
6551 ** subject to change.
6553 ** The copy is scheduled for deletion using the sqlite3ExprDeferredDelete()
6554 ** which builds on the sqlite3ParserAddCleanup() mechanism.
6556 static int agginfoPersistExprCb(Walker *pWalker, Expr *pExpr){
6557 if( ALWAYS(!ExprHasProperty(pExpr, EP_TokenOnly|EP_Reduced))
6558 && pExpr->pAggInfo!=0
6560 AggInfo *pAggInfo = pExpr->pAggInfo;
6561 int iAgg = pExpr->iAgg;
6562 Parse *pParse = pWalker->pParse;
6563 sqlite3 *db = pParse->db;
6564 assert( iAgg>=0 );
6565 if( pExpr->op!=TK_AGG_FUNCTION ){
6566 if( iAgg<pAggInfo->nColumn
6567 && pAggInfo->aCol[iAgg].pCExpr==pExpr
6569 pExpr = sqlite3ExprDup(db, pExpr, 0);
6570 if( pExpr ){
6571 pAggInfo->aCol[iAgg].pCExpr = pExpr;
6572 sqlite3ExprDeferredDelete(pParse, pExpr);
6575 }else{
6576 assert( pExpr->op==TK_AGG_FUNCTION );
6577 if( ALWAYS(iAgg<pAggInfo->nFunc)
6578 && pAggInfo->aFunc[iAgg].pFExpr==pExpr
6580 pExpr = sqlite3ExprDup(db, pExpr, 0);
6581 if( pExpr ){
6582 pAggInfo->aFunc[iAgg].pFExpr = pExpr;
6583 sqlite3ExprDeferredDelete(pParse, pExpr);
6588 return WRC_Continue;
6592 ** Initialize a Walker object so that will persist AggInfo entries referenced
6593 ** by the tree that is walked.
6595 void sqlite3AggInfoPersistWalkerInit(Walker *pWalker, Parse *pParse){
6596 memset(pWalker, 0, sizeof(*pWalker));
6597 pWalker->pParse = pParse;
6598 pWalker->xExprCallback = agginfoPersistExprCb;
6599 pWalker->xSelectCallback = sqlite3SelectWalkNoop;
6603 ** Add a new element to the pAggInfo->aCol[] array. Return the index of
6604 ** the new element. Return a negative number if malloc fails.
6606 static int addAggInfoColumn(sqlite3 *db, AggInfo *pInfo){
6607 int i;
6608 pInfo->aCol = sqlite3ArrayAllocate(
6610 pInfo->aCol,
6611 sizeof(pInfo->aCol[0]),
6612 &pInfo->nColumn,
6615 return i;
6619 ** Add a new element to the pAggInfo->aFunc[] array. Return the index of
6620 ** the new element. Return a negative number if malloc fails.
6622 static int addAggInfoFunc(sqlite3 *db, AggInfo *pInfo){
6623 int i;
6624 pInfo->aFunc = sqlite3ArrayAllocate(
6626 pInfo->aFunc,
6627 sizeof(pInfo->aFunc[0]),
6628 &pInfo->nFunc,
6631 return i;
6635 ** Search the AggInfo object for an aCol[] entry that has iTable and iColumn.
6636 ** Return the index in aCol[] of the entry that describes that column.
6638 ** If no prior entry is found, create a new one and return -1. The
6639 ** new column will have an index of pAggInfo->nColumn-1.
6641 static void findOrCreateAggInfoColumn(
6642 Parse *pParse, /* Parsing context */
6643 AggInfo *pAggInfo, /* The AggInfo object to search and/or modify */
6644 Expr *pExpr /* Expr describing the column to find or insert */
6646 struct AggInfo_col *pCol;
6647 int k;
6649 assert( pAggInfo->iFirstReg==0 );
6650 pCol = pAggInfo->aCol;
6651 for(k=0; k<pAggInfo->nColumn; k++, pCol++){
6652 if( pCol->pCExpr==pExpr ) return;
6653 if( pCol->iTable==pExpr->iTable
6654 && pCol->iColumn==pExpr->iColumn
6655 && pExpr->op!=TK_IF_NULL_ROW
6657 goto fix_up_expr;
6660 k = addAggInfoColumn(pParse->db, pAggInfo);
6661 if( k<0 ){
6662 /* OOM on resize */
6663 assert( pParse->db->mallocFailed );
6664 return;
6666 pCol = &pAggInfo->aCol[k];
6667 assert( ExprUseYTab(pExpr) );
6668 pCol->pTab = pExpr->y.pTab;
6669 pCol->iTable = pExpr->iTable;
6670 pCol->iColumn = pExpr->iColumn;
6671 pCol->iSorterColumn = -1;
6672 pCol->pCExpr = pExpr;
6673 if( pAggInfo->pGroupBy && pExpr->op!=TK_IF_NULL_ROW ){
6674 int j, n;
6675 ExprList *pGB = pAggInfo->pGroupBy;
6676 struct ExprList_item *pTerm = pGB->a;
6677 n = pGB->nExpr;
6678 for(j=0; j<n; j++, pTerm++){
6679 Expr *pE = pTerm->pExpr;
6680 if( pE->op==TK_COLUMN
6681 && pE->iTable==pExpr->iTable
6682 && pE->iColumn==pExpr->iColumn
6684 pCol->iSorterColumn = j;
6685 break;
6689 if( pCol->iSorterColumn<0 ){
6690 pCol->iSorterColumn = pAggInfo->nSortingColumn++;
6692 fix_up_expr:
6693 ExprSetVVAProperty(pExpr, EP_NoReduce);
6694 assert( pExpr->pAggInfo==0 || pExpr->pAggInfo==pAggInfo );
6695 pExpr->pAggInfo = pAggInfo;
6696 if( pExpr->op==TK_COLUMN ){
6697 pExpr->op = TK_AGG_COLUMN;
6699 pExpr->iAgg = (i16)k;
6703 ** This is the xExprCallback for a tree walker. It is used to
6704 ** implement sqlite3ExprAnalyzeAggregates(). See sqlite3ExprAnalyzeAggregates
6705 ** for additional information.
6707 static int analyzeAggregate(Walker *pWalker, Expr *pExpr){
6708 int i;
6709 NameContext *pNC = pWalker->u.pNC;
6710 Parse *pParse = pNC->pParse;
6711 SrcList *pSrcList = pNC->pSrcList;
6712 AggInfo *pAggInfo = pNC->uNC.pAggInfo;
6714 assert( pNC->ncFlags & NC_UAggInfo );
6715 assert( pAggInfo->iFirstReg==0 );
6716 switch( pExpr->op ){
6717 default: {
6718 IndexedExpr *pIEpr;
6719 Expr tmp;
6720 assert( pParse->iSelfTab==0 );
6721 if( (pNC->ncFlags & NC_InAggFunc)==0 ) break;
6722 if( pParse->pIdxEpr==0 ) break;
6723 for(pIEpr=pParse->pIdxEpr; pIEpr; pIEpr=pIEpr->pIENext){
6724 int iDataCur = pIEpr->iDataCur;
6725 if( iDataCur<0 ) continue;
6726 if( sqlite3ExprCompare(0, pExpr, pIEpr->pExpr, iDataCur)==0 ) break;
6728 if( pIEpr==0 ) break;
6729 if( NEVER(!ExprUseYTab(pExpr)) ) break;
6730 for(i=0; i<pSrcList->nSrc; i++){
6731 if( pSrcList->a[0].iCursor==pIEpr->iDataCur ) break;
6733 if( i>=pSrcList->nSrc ) break;
6734 if( NEVER(pExpr->pAggInfo!=0) ) break; /* Resolved by outer context */
6735 if( pParse->nErr ){ return WRC_Abort; }
6737 /* If we reach this point, it means that expression pExpr can be
6738 ** translated into a reference to an index column as described by
6739 ** pIEpr.
6741 memset(&tmp, 0, sizeof(tmp));
6742 tmp.op = TK_AGG_COLUMN;
6743 tmp.iTable = pIEpr->iIdxCur;
6744 tmp.iColumn = pIEpr->iIdxCol;
6745 findOrCreateAggInfoColumn(pParse, pAggInfo, &tmp);
6746 if( pParse->nErr ){ return WRC_Abort; }
6747 assert( pAggInfo->aCol!=0 );
6748 assert( tmp.iAgg<pAggInfo->nColumn );
6749 pAggInfo->aCol[tmp.iAgg].pCExpr = pExpr;
6750 pExpr->pAggInfo = pAggInfo;
6751 pExpr->iAgg = tmp.iAgg;
6752 return WRC_Prune;
6754 case TK_IF_NULL_ROW:
6755 case TK_AGG_COLUMN:
6756 case TK_COLUMN: {
6757 testcase( pExpr->op==TK_AGG_COLUMN );
6758 testcase( pExpr->op==TK_COLUMN );
6759 testcase( pExpr->op==TK_IF_NULL_ROW );
6760 /* Check to see if the column is in one of the tables in the FROM
6761 ** clause of the aggregate query */
6762 if( ALWAYS(pSrcList!=0) ){
6763 SrcItem *pItem = pSrcList->a;
6764 for(i=0; i<pSrcList->nSrc; i++, pItem++){
6765 assert( !ExprHasProperty(pExpr, EP_TokenOnly|EP_Reduced) );
6766 if( pExpr->iTable==pItem->iCursor ){
6767 findOrCreateAggInfoColumn(pParse, pAggInfo, pExpr);
6768 break;
6769 } /* endif pExpr->iTable==pItem->iCursor */
6770 } /* end loop over pSrcList */
6772 return WRC_Continue;
6774 case TK_AGG_FUNCTION: {
6775 if( (pNC->ncFlags & NC_InAggFunc)==0
6776 && pWalker->walkerDepth==pExpr->op2
6777 && pExpr->pAggInfo==0
6779 /* Check to see if pExpr is a duplicate of another aggregate
6780 ** function that is already in the pAggInfo structure
6782 struct AggInfo_func *pItem = pAggInfo->aFunc;
6783 for(i=0; i<pAggInfo->nFunc; i++, pItem++){
6784 if( NEVER(pItem->pFExpr==pExpr) ) break;
6785 if( sqlite3ExprCompare(0, pItem->pFExpr, pExpr, -1)==0 ){
6786 break;
6789 if( i>=pAggInfo->nFunc ){
6790 /* pExpr is original. Make a new entry in pAggInfo->aFunc[]
6792 u8 enc = ENC(pParse->db);
6793 i = addAggInfoFunc(pParse->db, pAggInfo);
6794 if( i>=0 ){
6795 int nArg;
6796 assert( !ExprHasProperty(pExpr, EP_xIsSelect) );
6797 pItem = &pAggInfo->aFunc[i];
6798 pItem->pFExpr = pExpr;
6799 assert( ExprUseUToken(pExpr) );
6800 nArg = pExpr->x.pList ? pExpr->x.pList->nExpr : 0;
6801 pItem->pFunc = sqlite3FindFunction(pParse->db,
6802 pExpr->u.zToken, nArg, enc, 0);
6803 assert( pItem->bOBUnique==0 );
6804 if( pExpr->pLeft
6805 && (pItem->pFunc->funcFlags & SQLITE_FUNC_NEEDCOLL)==0
6807 /* The NEEDCOLL test above causes any ORDER BY clause on
6808 ** aggregate min() or max() to be ignored. */
6809 ExprList *pOBList;
6810 assert( nArg>0 );
6811 assert( pExpr->pLeft->op==TK_ORDER );
6812 assert( ExprUseXList(pExpr->pLeft) );
6813 pItem->iOBTab = pParse->nTab++;
6814 pOBList = pExpr->pLeft->x.pList;
6815 assert( pOBList->nExpr>0 );
6816 assert( pItem->bOBUnique==0 );
6817 if( pOBList->nExpr==1
6818 && nArg==1
6819 && sqlite3ExprCompare(0,pOBList->a[0].pExpr,
6820 pExpr->x.pList->a[0].pExpr,0)==0
6822 pItem->bOBPayload = 0;
6823 pItem->bOBUnique = ExprHasProperty(pExpr, EP_Distinct);
6824 }else{
6825 pItem->bOBPayload = 1;
6827 pItem->bUseSubtype =
6828 (pItem->pFunc->funcFlags & SQLITE_SUBTYPE)!=0;
6829 }else{
6830 pItem->iOBTab = -1;
6832 if( ExprHasProperty(pExpr, EP_Distinct) && !pItem->bOBUnique ){
6833 pItem->iDistinct = pParse->nTab++;
6834 }else{
6835 pItem->iDistinct = -1;
6839 /* Make pExpr point to the appropriate pAggInfo->aFunc[] entry
6841 assert( !ExprHasProperty(pExpr, EP_TokenOnly|EP_Reduced) );
6842 ExprSetVVAProperty(pExpr, EP_NoReduce);
6843 pExpr->iAgg = (i16)i;
6844 pExpr->pAggInfo = pAggInfo;
6845 return WRC_Prune;
6846 }else{
6847 return WRC_Continue;
6851 return WRC_Continue;
6855 ** Analyze the pExpr expression looking for aggregate functions and
6856 ** for variables that need to be added to AggInfo object that pNC->pAggInfo
6857 ** points to. Additional entries are made on the AggInfo object as
6858 ** necessary.
6860 ** This routine should only be called after the expression has been
6861 ** analyzed by sqlite3ResolveExprNames().
6863 void sqlite3ExprAnalyzeAggregates(NameContext *pNC, Expr *pExpr){
6864 Walker w;
6865 w.xExprCallback = analyzeAggregate;
6866 w.xSelectCallback = sqlite3WalkerDepthIncrease;
6867 w.xSelectCallback2 = sqlite3WalkerDepthDecrease;
6868 w.walkerDepth = 0;
6869 w.u.pNC = pNC;
6870 w.pParse = 0;
6871 assert( pNC->pSrcList!=0 );
6872 sqlite3WalkExpr(&w, pExpr);
6876 ** Call sqlite3ExprAnalyzeAggregates() for every expression in an
6877 ** expression list. Return the number of errors.
6879 ** If an error is found, the analysis is cut short.
6881 void sqlite3ExprAnalyzeAggList(NameContext *pNC, ExprList *pList){
6882 struct ExprList_item *pItem;
6883 int i;
6884 if( pList ){
6885 for(pItem=pList->a, i=0; i<pList->nExpr; i++, pItem++){
6886 sqlite3ExprAnalyzeAggregates(pNC, pItem->pExpr);
6892 ** Allocate a single new register for use to hold some intermediate result.
6894 int sqlite3GetTempReg(Parse *pParse){
6895 if( pParse->nTempReg==0 ){
6896 return ++pParse->nMem;
6898 return pParse->aTempReg[--pParse->nTempReg];
6902 ** Deallocate a register, making available for reuse for some other
6903 ** purpose.
6905 void sqlite3ReleaseTempReg(Parse *pParse, int iReg){
6906 if( iReg ){
6907 sqlite3VdbeReleaseRegisters(pParse, iReg, 1, 0, 0);
6908 if( pParse->nTempReg<ArraySize(pParse->aTempReg) ){
6909 pParse->aTempReg[pParse->nTempReg++] = iReg;
6915 ** Allocate or deallocate a block of nReg consecutive registers.
6917 int sqlite3GetTempRange(Parse *pParse, int nReg){
6918 int i, n;
6919 if( nReg==1 ) return sqlite3GetTempReg(pParse);
6920 i = pParse->iRangeReg;
6921 n = pParse->nRangeReg;
6922 if( nReg<=n ){
6923 pParse->iRangeReg += nReg;
6924 pParse->nRangeReg -= nReg;
6925 }else{
6926 i = pParse->nMem+1;
6927 pParse->nMem += nReg;
6929 return i;
6931 void sqlite3ReleaseTempRange(Parse *pParse, int iReg, int nReg){
6932 if( nReg==1 ){
6933 sqlite3ReleaseTempReg(pParse, iReg);
6934 return;
6936 sqlite3VdbeReleaseRegisters(pParse, iReg, nReg, 0, 0);
6937 if( nReg>pParse->nRangeReg ){
6938 pParse->nRangeReg = nReg;
6939 pParse->iRangeReg = iReg;
6944 ** Mark all temporary registers as being unavailable for reuse.
6946 ** Always invoke this procedure after coding a subroutine or co-routine
6947 ** that might be invoked from other parts of the code, to ensure that
6948 ** the sub/co-routine does not use registers in common with the code that
6949 ** invokes the sub/co-routine.
6951 void sqlite3ClearTempRegCache(Parse *pParse){
6952 pParse->nTempReg = 0;
6953 pParse->nRangeReg = 0;
6957 ** Make sure sufficient registers have been allocated so that
6958 ** iReg is a valid register number.
6960 void sqlite3TouchRegister(Parse *pParse, int iReg){
6961 if( pParse->nMem<iReg ) pParse->nMem = iReg;
6964 #if defined(SQLITE_ENABLE_STAT4) || defined(SQLITE_DEBUG)
6966 ** Return the latest reusable register in the set of all registers.
6967 ** The value returned is no less than iMin. If any register iMin or
6968 ** greater is in permanent use, then return one more than that last
6969 ** permanent register.
6971 int sqlite3FirstAvailableRegister(Parse *pParse, int iMin){
6972 const ExprList *pList = pParse->pConstExpr;
6973 if( pList ){
6974 int i;
6975 for(i=0; i<pList->nExpr; i++){
6976 if( pList->a[i].u.iConstExprReg>=iMin ){
6977 iMin = pList->a[i].u.iConstExprReg + 1;
6981 pParse->nTempReg = 0;
6982 pParse->nRangeReg = 0;
6983 return iMin;
6985 #endif /* SQLITE_ENABLE_STAT4 || SQLITE_DEBUG */
6988 ** Validate that no temporary register falls within the range of
6989 ** iFirst..iLast, inclusive. This routine is only call from within assert()
6990 ** statements.
6992 #ifdef SQLITE_DEBUG
6993 int sqlite3NoTempsInRange(Parse *pParse, int iFirst, int iLast){
6994 int i;
6995 if( pParse->nRangeReg>0
6996 && pParse->iRangeReg+pParse->nRangeReg > iFirst
6997 && pParse->iRangeReg <= iLast
6999 return 0;
7001 for(i=0; i<pParse->nTempReg; i++){
7002 if( pParse->aTempReg[i]>=iFirst && pParse->aTempReg[i]<=iLast ){
7003 return 0;
7006 if( pParse->pConstExpr ){
7007 ExprList *pList = pParse->pConstExpr;
7008 for(i=0; i<pList->nExpr; i++){
7009 int iReg = pList->a[i].u.iConstExprReg;
7010 if( iReg==0 ) continue;
7011 if( iReg>=iFirst && iReg<=iLast ) return 0;
7014 return 1;
7016 #endif /* SQLITE_DEBUG */