Modify the sqlite3OsFileControl() interface to detect unopened sqlite3_file
[sqlite.git] / src / select.c
blob4a8c3d22f3d1c1513f69892bd65fc229f04fe136
1 /*
2 ** 2001 September 15
3 **
4 ** The author disclaims copyright to this source code. In place of
5 ** a legal notice, here is a blessing:
6 **
7 ** May you do good and not evil.
8 ** May you find forgiveness for yourself and forgive others.
9 ** May you share freely, never taking more than you give.
11 *************************************************************************
12 ** This file contains C code routines that are called by the parser
13 ** to handle SELECT statements in SQLite.
15 #include "sqliteInt.h"
18 ** Trace output macros
20 #if SELECTTRACE_ENABLED
21 /***/ int sqlite3SelectTrace = 0;
22 # define SELECTTRACE(K,P,S,X) \
23 if(sqlite3SelectTrace&(K)) \
24 sqlite3DebugPrintf("%s/%p: ",(S)->zSelName,(S)),\
25 sqlite3DebugPrintf X
26 #else
27 # define SELECTTRACE(K,P,S,X)
28 #endif
32 ** An instance of the following object is used to record information about
33 ** how to process the DISTINCT keyword, to simplify passing that information
34 ** into the selectInnerLoop() routine.
36 typedef struct DistinctCtx DistinctCtx;
37 struct DistinctCtx {
38 u8 isTnct; /* True if the DISTINCT keyword is present */
39 u8 eTnctType; /* One of the WHERE_DISTINCT_* operators */
40 int tabTnct; /* Ephemeral table used for DISTINCT processing */
41 int addrTnct; /* Address of OP_OpenEphemeral opcode for tabTnct */
45 ** An instance of the following object is used to record information about
46 ** the ORDER BY (or GROUP BY) clause of query is being coded.
48 typedef struct SortCtx SortCtx;
49 struct SortCtx {
50 ExprList *pOrderBy; /* The ORDER BY (or GROUP BY clause) */
51 int nOBSat; /* Number of ORDER BY terms satisfied by indices */
52 int iECursor; /* Cursor number for the sorter */
53 int regReturn; /* Register holding block-output return address */
54 int labelBkOut; /* Start label for the block-output subroutine */
55 int addrSortIndex; /* Address of the OP_SorterOpen or OP_OpenEphemeral */
56 int labelDone; /* Jump here when done, ex: LIMIT reached */
57 u8 sortFlags; /* Zero or more SORTFLAG_* bits */
58 u8 bOrderedInnerLoop; /* ORDER BY correctly sorts the inner loop */
60 #define SORTFLAG_UseSorter 0x01 /* Use SorterOpen instead of OpenEphemeral */
63 ** Delete all the content of a Select structure. Deallocate the structure
64 ** itself only if bFree is true.
66 static void clearSelect(sqlite3 *db, Select *p, int bFree){
67 while( p ){
68 Select *pPrior = p->pPrior;
69 sqlite3ExprListDelete(db, p->pEList);
70 sqlite3SrcListDelete(db, p->pSrc);
71 sqlite3ExprDelete(db, p->pWhere);
72 sqlite3ExprListDelete(db, p->pGroupBy);
73 sqlite3ExprDelete(db, p->pHaving);
74 sqlite3ExprListDelete(db, p->pOrderBy);
75 sqlite3ExprDelete(db, p->pLimit);
76 if( OK_IF_ALWAYS_TRUE(p->pWith) ) sqlite3WithDelete(db, p->pWith);
77 if( bFree ) sqlite3DbFreeNN(db, p);
78 p = pPrior;
79 bFree = 1;
84 ** Initialize a SelectDest structure.
86 void sqlite3SelectDestInit(SelectDest *pDest, int eDest, int iParm){
87 pDest->eDest = (u8)eDest;
88 pDest->iSDParm = iParm;
89 pDest->zAffSdst = 0;
90 pDest->iSdst = 0;
91 pDest->nSdst = 0;
96 ** Allocate a new Select structure and return a pointer to that
97 ** structure.
99 Select *sqlite3SelectNew(
100 Parse *pParse, /* Parsing context */
101 ExprList *pEList, /* which columns to include in the result */
102 SrcList *pSrc, /* the FROM clause -- which tables to scan */
103 Expr *pWhere, /* the WHERE clause */
104 ExprList *pGroupBy, /* the GROUP BY clause */
105 Expr *pHaving, /* the HAVING clause */
106 ExprList *pOrderBy, /* the ORDER BY clause */
107 u32 selFlags, /* Flag parameters, such as SF_Distinct */
108 Expr *pLimit /* LIMIT value. NULL means not used */
110 Select *pNew;
111 Select standin;
112 pNew = sqlite3DbMallocRawNN(pParse->db, sizeof(*pNew) );
113 if( pNew==0 ){
114 assert( pParse->db->mallocFailed );
115 pNew = &standin;
117 if( pEList==0 ){
118 pEList = sqlite3ExprListAppend(pParse, 0,
119 sqlite3Expr(pParse->db,TK_ASTERISK,0));
121 pNew->pEList = pEList;
122 pNew->op = TK_SELECT;
123 pNew->selFlags = selFlags;
124 pNew->iLimit = 0;
125 pNew->iOffset = 0;
126 #if SELECTTRACE_ENABLED
127 pNew->zSelName[0] = 0;
128 #endif
129 pNew->addrOpenEphm[0] = -1;
130 pNew->addrOpenEphm[1] = -1;
131 pNew->nSelectRow = 0;
132 if( pSrc==0 ) pSrc = sqlite3DbMallocZero(pParse->db, sizeof(*pSrc));
133 pNew->pSrc = pSrc;
134 pNew->pWhere = pWhere;
135 pNew->pGroupBy = pGroupBy;
136 pNew->pHaving = pHaving;
137 pNew->pOrderBy = pOrderBy;
138 pNew->pPrior = 0;
139 pNew->pNext = 0;
140 pNew->pLimit = pLimit;
141 pNew->pWith = 0;
142 if( pParse->db->mallocFailed ) {
143 clearSelect(pParse->db, pNew, pNew!=&standin);
144 pNew = 0;
145 }else{
146 assert( pNew->pSrc!=0 || pParse->nErr>0 );
148 assert( pNew!=&standin );
149 return pNew;
152 #if SELECTTRACE_ENABLED
154 ** Set the name of a Select object
156 void sqlite3SelectSetName(Select *p, const char *zName){
157 if( p && zName ){
158 sqlite3_snprintf(sizeof(p->zSelName), p->zSelName, "%s", zName);
161 #endif
165 ** Delete the given Select structure and all of its substructures.
167 void sqlite3SelectDelete(sqlite3 *db, Select *p){
168 if( OK_IF_ALWAYS_TRUE(p) ) clearSelect(db, p, 1);
172 ** Return a pointer to the right-most SELECT statement in a compound.
174 static Select *findRightmost(Select *p){
175 while( p->pNext ) p = p->pNext;
176 return p;
180 ** Given 1 to 3 identifiers preceding the JOIN keyword, determine the
181 ** type of join. Return an integer constant that expresses that type
182 ** in terms of the following bit values:
184 ** JT_INNER
185 ** JT_CROSS
186 ** JT_OUTER
187 ** JT_NATURAL
188 ** JT_LEFT
189 ** JT_RIGHT
191 ** A full outer join is the combination of JT_LEFT and JT_RIGHT.
193 ** If an illegal or unsupported join type is seen, then still return
194 ** a join type, but put an error in the pParse structure.
196 int sqlite3JoinType(Parse *pParse, Token *pA, Token *pB, Token *pC){
197 int jointype = 0;
198 Token *apAll[3];
199 Token *p;
200 /* 0123456789 123456789 123456789 123 */
201 static const char zKeyText[] = "naturaleftouterightfullinnercross";
202 static const struct {
203 u8 i; /* Beginning of keyword text in zKeyText[] */
204 u8 nChar; /* Length of the keyword in characters */
205 u8 code; /* Join type mask */
206 } aKeyword[] = {
207 /* natural */ { 0, 7, JT_NATURAL },
208 /* left */ { 6, 4, JT_LEFT|JT_OUTER },
209 /* outer */ { 10, 5, JT_OUTER },
210 /* right */ { 14, 5, JT_RIGHT|JT_OUTER },
211 /* full */ { 19, 4, JT_LEFT|JT_RIGHT|JT_OUTER },
212 /* inner */ { 23, 5, JT_INNER },
213 /* cross */ { 28, 5, JT_INNER|JT_CROSS },
215 int i, j;
216 apAll[0] = pA;
217 apAll[1] = pB;
218 apAll[2] = pC;
219 for(i=0; i<3 && apAll[i]; i++){
220 p = apAll[i];
221 for(j=0; j<ArraySize(aKeyword); j++){
222 if( p->n==aKeyword[j].nChar
223 && sqlite3StrNICmp((char*)p->z, &zKeyText[aKeyword[j].i], p->n)==0 ){
224 jointype |= aKeyword[j].code;
225 break;
228 testcase( j==0 || j==1 || j==2 || j==3 || j==4 || j==5 || j==6 );
229 if( j>=ArraySize(aKeyword) ){
230 jointype |= JT_ERROR;
231 break;
235 (jointype & (JT_INNER|JT_OUTER))==(JT_INNER|JT_OUTER) ||
236 (jointype & JT_ERROR)!=0
238 const char *zSp = " ";
239 assert( pB!=0 );
240 if( pC==0 ){ zSp++; }
241 sqlite3ErrorMsg(pParse, "unknown or unsupported join type: "
242 "%T %T%s%T", pA, pB, zSp, pC);
243 jointype = JT_INNER;
244 }else if( (jointype & JT_OUTER)!=0
245 && (jointype & (JT_LEFT|JT_RIGHT))!=JT_LEFT ){
246 sqlite3ErrorMsg(pParse,
247 "RIGHT and FULL OUTER JOINs are not currently supported");
248 jointype = JT_INNER;
250 return jointype;
254 ** Return the index of a column in a table. Return -1 if the column
255 ** is not contained in the table.
257 static int columnIndex(Table *pTab, const char *zCol){
258 int i;
259 for(i=0; i<pTab->nCol; i++){
260 if( sqlite3StrICmp(pTab->aCol[i].zName, zCol)==0 ) return i;
262 return -1;
266 ** Search the first N tables in pSrc, from left to right, looking for a
267 ** table that has a column named zCol.
269 ** When found, set *piTab and *piCol to the table index and column index
270 ** of the matching column and return TRUE.
272 ** If not found, return FALSE.
274 static int tableAndColumnIndex(
275 SrcList *pSrc, /* Array of tables to search */
276 int N, /* Number of tables in pSrc->a[] to search */
277 const char *zCol, /* Name of the column we are looking for */
278 int *piTab, /* Write index of pSrc->a[] here */
279 int *piCol /* Write index of pSrc->a[*piTab].pTab->aCol[] here */
281 int i; /* For looping over tables in pSrc */
282 int iCol; /* Index of column matching zCol */
284 assert( (piTab==0)==(piCol==0) ); /* Both or neither are NULL */
285 for(i=0; i<N; i++){
286 iCol = columnIndex(pSrc->a[i].pTab, zCol);
287 if( iCol>=0 ){
288 if( piTab ){
289 *piTab = i;
290 *piCol = iCol;
292 return 1;
295 return 0;
299 ** This function is used to add terms implied by JOIN syntax to the
300 ** WHERE clause expression of a SELECT statement. The new term, which
301 ** is ANDed with the existing WHERE clause, is of the form:
303 ** (tab1.col1 = tab2.col2)
305 ** where tab1 is the iSrc'th table in SrcList pSrc and tab2 is the
306 ** (iSrc+1)'th. Column col1 is column iColLeft of tab1, and col2 is
307 ** column iColRight of tab2.
309 static void addWhereTerm(
310 Parse *pParse, /* Parsing context */
311 SrcList *pSrc, /* List of tables in FROM clause */
312 int iLeft, /* Index of first table to join in pSrc */
313 int iColLeft, /* Index of column in first table */
314 int iRight, /* Index of second table in pSrc */
315 int iColRight, /* Index of column in second table */
316 int isOuterJoin, /* True if this is an OUTER join */
317 Expr **ppWhere /* IN/OUT: The WHERE clause to add to */
319 sqlite3 *db = pParse->db;
320 Expr *pE1;
321 Expr *pE2;
322 Expr *pEq;
324 assert( iLeft<iRight );
325 assert( pSrc->nSrc>iRight );
326 assert( pSrc->a[iLeft].pTab );
327 assert( pSrc->a[iRight].pTab );
329 pE1 = sqlite3CreateColumnExpr(db, pSrc, iLeft, iColLeft);
330 pE2 = sqlite3CreateColumnExpr(db, pSrc, iRight, iColRight);
332 pEq = sqlite3PExpr(pParse, TK_EQ, pE1, pE2);
333 if( pEq && isOuterJoin ){
334 ExprSetProperty(pEq, EP_FromJoin);
335 assert( !ExprHasProperty(pEq, EP_TokenOnly|EP_Reduced) );
336 ExprSetVVAProperty(pEq, EP_NoReduce);
337 pEq->iRightJoinTable = (i16)pE2->iTable;
339 *ppWhere = sqlite3ExprAnd(db, *ppWhere, pEq);
343 ** Set the EP_FromJoin property on all terms of the given expression.
344 ** And set the Expr.iRightJoinTable to iTable for every term in the
345 ** expression.
347 ** The EP_FromJoin property is used on terms of an expression to tell
348 ** the LEFT OUTER JOIN processing logic that this term is part of the
349 ** join restriction specified in the ON or USING clause and not a part
350 ** of the more general WHERE clause. These terms are moved over to the
351 ** WHERE clause during join processing but we need to remember that they
352 ** originated in the ON or USING clause.
354 ** The Expr.iRightJoinTable tells the WHERE clause processing that the
355 ** expression depends on table iRightJoinTable even if that table is not
356 ** explicitly mentioned in the expression. That information is needed
357 ** for cases like this:
359 ** SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.b AND t1.x=5
361 ** The where clause needs to defer the handling of the t1.x=5
362 ** term until after the t2 loop of the join. In that way, a
363 ** NULL t2 row will be inserted whenever t1.x!=5. If we do not
364 ** defer the handling of t1.x=5, it will be processed immediately
365 ** after the t1 loop and rows with t1.x!=5 will never appear in
366 ** the output, which is incorrect.
368 static void setJoinExpr(Expr *p, int iTable){
369 while( p ){
370 ExprSetProperty(p, EP_FromJoin);
371 assert( !ExprHasProperty(p, EP_TokenOnly|EP_Reduced) );
372 ExprSetVVAProperty(p, EP_NoReduce);
373 p->iRightJoinTable = (i16)iTable;
374 if( p->op==TK_FUNCTION && p->x.pList ){
375 int i;
376 for(i=0; i<p->x.pList->nExpr; i++){
377 setJoinExpr(p->x.pList->a[i].pExpr, iTable);
380 setJoinExpr(p->pLeft, iTable);
381 p = p->pRight;
385 /* Undo the work of setJoinExpr(). In the expression tree p, convert every
386 ** term that is marked with EP_FromJoin and iRightJoinTable==iTable into
387 ** an ordinary term that omits the EP_FromJoin mark.
389 ** This happens when a LEFT JOIN is simplified into an ordinary JOIN.
391 static void unsetJoinExpr(Expr *p, int iTable){
392 while( p ){
393 if( ExprHasProperty(p, EP_FromJoin)
394 && (iTable<0 || p->iRightJoinTable==iTable) ){
395 ExprClearProperty(p, EP_FromJoin);
397 if( p->op==TK_FUNCTION && p->x.pList ){
398 int i;
399 for(i=0; i<p->x.pList->nExpr; i++){
400 unsetJoinExpr(p->x.pList->a[i].pExpr, iTable);
403 unsetJoinExpr(p->pLeft, iTable);
404 p = p->pRight;
409 ** This routine processes the join information for a SELECT statement.
410 ** ON and USING clauses are converted into extra terms of the WHERE clause.
411 ** NATURAL joins also create extra WHERE clause terms.
413 ** The terms of a FROM clause are contained in the Select.pSrc structure.
414 ** The left most table is the first entry in Select.pSrc. The right-most
415 ** table is the last entry. The join operator is held in the entry to
416 ** the left. Thus entry 0 contains the join operator for the join between
417 ** entries 0 and 1. Any ON or USING clauses associated with the join are
418 ** also attached to the left entry.
420 ** This routine returns the number of errors encountered.
422 static int sqliteProcessJoin(Parse *pParse, Select *p){
423 SrcList *pSrc; /* All tables in the FROM clause */
424 int i, j; /* Loop counters */
425 struct SrcList_item *pLeft; /* Left table being joined */
426 struct SrcList_item *pRight; /* Right table being joined */
428 pSrc = p->pSrc;
429 pLeft = &pSrc->a[0];
430 pRight = &pLeft[1];
431 for(i=0; i<pSrc->nSrc-1; i++, pRight++, pLeft++){
432 Table *pRightTab = pRight->pTab;
433 int isOuter;
435 if( NEVER(pLeft->pTab==0 || pRightTab==0) ) continue;
436 isOuter = (pRight->fg.jointype & JT_OUTER)!=0;
438 /* When the NATURAL keyword is present, add WHERE clause terms for
439 ** every column that the two tables have in common.
441 if( pRight->fg.jointype & JT_NATURAL ){
442 if( pRight->pOn || pRight->pUsing ){
443 sqlite3ErrorMsg(pParse, "a NATURAL join may not have "
444 "an ON or USING clause", 0);
445 return 1;
447 for(j=0; j<pRightTab->nCol; j++){
448 char *zName; /* Name of column in the right table */
449 int iLeft; /* Matching left table */
450 int iLeftCol; /* Matching column in the left table */
452 zName = pRightTab->aCol[j].zName;
453 if( tableAndColumnIndex(pSrc, i+1, zName, &iLeft, &iLeftCol) ){
454 addWhereTerm(pParse, pSrc, iLeft, iLeftCol, i+1, j,
455 isOuter, &p->pWhere);
460 /* Disallow both ON and USING clauses in the same join
462 if( pRight->pOn && pRight->pUsing ){
463 sqlite3ErrorMsg(pParse, "cannot have both ON and USING "
464 "clauses in the same join");
465 return 1;
468 /* Add the ON clause to the end of the WHERE clause, connected by
469 ** an AND operator.
471 if( pRight->pOn ){
472 if( isOuter ) setJoinExpr(pRight->pOn, pRight->iCursor);
473 p->pWhere = sqlite3ExprAnd(pParse->db, p->pWhere, pRight->pOn);
474 pRight->pOn = 0;
477 /* Create extra terms on the WHERE clause for each column named
478 ** in the USING clause. Example: If the two tables to be joined are
479 ** A and B and the USING clause names X, Y, and Z, then add this
480 ** to the WHERE clause: A.X=B.X AND A.Y=B.Y AND A.Z=B.Z
481 ** Report an error if any column mentioned in the USING clause is
482 ** not contained in both tables to be joined.
484 if( pRight->pUsing ){
485 IdList *pList = pRight->pUsing;
486 for(j=0; j<pList->nId; j++){
487 char *zName; /* Name of the term in the USING clause */
488 int iLeft; /* Table on the left with matching column name */
489 int iLeftCol; /* Column number of matching column on the left */
490 int iRightCol; /* Column number of matching column on the right */
492 zName = pList->a[j].zName;
493 iRightCol = columnIndex(pRightTab, zName);
494 if( iRightCol<0
495 || !tableAndColumnIndex(pSrc, i+1, zName, &iLeft, &iLeftCol)
497 sqlite3ErrorMsg(pParse, "cannot join using column %s - column "
498 "not present in both tables", zName);
499 return 1;
501 addWhereTerm(pParse, pSrc, iLeft, iLeftCol, i+1, iRightCol,
502 isOuter, &p->pWhere);
506 return 0;
509 /* Forward reference */
510 static KeyInfo *keyInfoFromExprList(
511 Parse *pParse, /* Parsing context */
512 ExprList *pList, /* Form the KeyInfo object from this ExprList */
513 int iStart, /* Begin with this column of pList */
514 int nExtra /* Add this many extra columns to the end */
518 ** Generate code that will push the record in registers regData
519 ** through regData+nData-1 onto the sorter.
521 static void pushOntoSorter(
522 Parse *pParse, /* Parser context */
523 SortCtx *pSort, /* Information about the ORDER BY clause */
524 Select *pSelect, /* The whole SELECT statement */
525 int regData, /* First register holding data to be sorted */
526 int regOrigData, /* First register holding data before packing */
527 int nData, /* Number of elements in the data array */
528 int nPrefixReg /* No. of reg prior to regData available for use */
530 Vdbe *v = pParse->pVdbe; /* Stmt under construction */
531 int bSeq = ((pSort->sortFlags & SORTFLAG_UseSorter)==0);
532 int nExpr = pSort->pOrderBy->nExpr; /* No. of ORDER BY terms */
533 int nBase = nExpr + bSeq + nData; /* Fields in sorter record */
534 int regBase; /* Regs for sorter record */
535 int regRecord = ++pParse->nMem; /* Assembled sorter record */
536 int nOBSat = pSort->nOBSat; /* ORDER BY terms to skip */
537 int op; /* Opcode to add sorter record to sorter */
538 int iLimit; /* LIMIT counter */
540 assert( bSeq==0 || bSeq==1 );
541 assert( nData==1 || regData==regOrigData || regOrigData==0 );
542 if( nPrefixReg ){
543 assert( nPrefixReg==nExpr+bSeq );
544 regBase = regData - nExpr - bSeq;
545 }else{
546 regBase = pParse->nMem + 1;
547 pParse->nMem += nBase;
549 assert( pSelect->iOffset==0 || pSelect->iLimit!=0 );
550 iLimit = pSelect->iOffset ? pSelect->iOffset+1 : pSelect->iLimit;
551 pSort->labelDone = sqlite3VdbeMakeLabel(v);
552 sqlite3ExprCodeExprList(pParse, pSort->pOrderBy, regBase, regOrigData,
553 SQLITE_ECEL_DUP | (regOrigData? SQLITE_ECEL_REF : 0));
554 if( bSeq ){
555 sqlite3VdbeAddOp2(v, OP_Sequence, pSort->iECursor, regBase+nExpr);
557 if( nPrefixReg==0 && nData>0 ){
558 sqlite3ExprCodeMove(pParse, regData, regBase+nExpr+bSeq, nData);
560 sqlite3VdbeAddOp3(v, OP_MakeRecord, regBase+nOBSat, nBase-nOBSat, regRecord);
561 if( nOBSat>0 ){
562 int regPrevKey; /* The first nOBSat columns of the previous row */
563 int addrFirst; /* Address of the OP_IfNot opcode */
564 int addrJmp; /* Address of the OP_Jump opcode */
565 VdbeOp *pOp; /* Opcode that opens the sorter */
566 int nKey; /* Number of sorting key columns, including OP_Sequence */
567 KeyInfo *pKI; /* Original KeyInfo on the sorter table */
569 regPrevKey = pParse->nMem+1;
570 pParse->nMem += pSort->nOBSat;
571 nKey = nExpr - pSort->nOBSat + bSeq;
572 if( bSeq ){
573 addrFirst = sqlite3VdbeAddOp1(v, OP_IfNot, regBase+nExpr);
574 }else{
575 addrFirst = sqlite3VdbeAddOp1(v, OP_SequenceTest, pSort->iECursor);
577 VdbeCoverage(v);
578 sqlite3VdbeAddOp3(v, OP_Compare, regPrevKey, regBase, pSort->nOBSat);
579 pOp = sqlite3VdbeGetOp(v, pSort->addrSortIndex);
580 if( pParse->db->mallocFailed ) return;
581 pOp->p2 = nKey + nData;
582 pKI = pOp->p4.pKeyInfo;
583 memset(pKI->aSortOrder, 0, pKI->nKeyField); /* Makes OP_Jump testable */
584 sqlite3VdbeChangeP4(v, -1, (char*)pKI, P4_KEYINFO);
585 testcase( pKI->nAllField > pKI->nKeyField+2 );
586 pOp->p4.pKeyInfo = keyInfoFromExprList(pParse, pSort->pOrderBy, nOBSat,
587 pKI->nAllField-pKI->nKeyField-1);
588 addrJmp = sqlite3VdbeCurrentAddr(v);
589 sqlite3VdbeAddOp3(v, OP_Jump, addrJmp+1, 0, addrJmp+1); VdbeCoverage(v);
590 pSort->labelBkOut = sqlite3VdbeMakeLabel(v);
591 pSort->regReturn = ++pParse->nMem;
592 sqlite3VdbeAddOp2(v, OP_Gosub, pSort->regReturn, pSort->labelBkOut);
593 sqlite3VdbeAddOp1(v, OP_ResetSorter, pSort->iECursor);
594 if( iLimit ){
595 sqlite3VdbeAddOp2(v, OP_IfNot, iLimit, pSort->labelDone);
596 VdbeCoverage(v);
598 sqlite3VdbeJumpHere(v, addrFirst);
599 sqlite3ExprCodeMove(pParse, regBase, regPrevKey, pSort->nOBSat);
600 sqlite3VdbeJumpHere(v, addrJmp);
602 if( pSort->sortFlags & SORTFLAG_UseSorter ){
603 op = OP_SorterInsert;
604 }else{
605 op = OP_IdxInsert;
607 sqlite3VdbeAddOp4Int(v, op, pSort->iECursor, regRecord,
608 regBase+nOBSat, nBase-nOBSat);
609 if( iLimit ){
610 int addr;
611 int r1 = 0;
612 /* Fill the sorter until it contains LIMIT+OFFSET entries. (The iLimit
613 ** register is initialized with value of LIMIT+OFFSET.) After the sorter
614 ** fills up, delete the least entry in the sorter after each insert.
615 ** Thus we never hold more than the LIMIT+OFFSET rows in memory at once */
616 addr = sqlite3VdbeAddOp1(v, OP_IfNotZero, iLimit); VdbeCoverage(v);
617 sqlite3VdbeAddOp1(v, OP_Last, pSort->iECursor);
618 if( pSort->bOrderedInnerLoop ){
619 r1 = ++pParse->nMem;
620 sqlite3VdbeAddOp3(v, OP_Column, pSort->iECursor, nExpr, r1);
621 VdbeComment((v, "seq"));
623 sqlite3VdbeAddOp1(v, OP_Delete, pSort->iECursor);
624 if( pSort->bOrderedInnerLoop ){
625 /* If the inner loop is driven by an index such that values from
626 ** the same iteration of the inner loop are in sorted order, then
627 ** immediately jump to the next iteration of an inner loop if the
628 ** entry from the current iteration does not fit into the top
629 ** LIMIT+OFFSET entries of the sorter. */
630 int iBrk = sqlite3VdbeCurrentAddr(v) + 2;
631 sqlite3VdbeAddOp3(v, OP_Eq, regBase+nExpr, iBrk, r1);
632 sqlite3VdbeChangeP5(v, SQLITE_NULLEQ);
633 VdbeCoverage(v);
635 sqlite3VdbeJumpHere(v, addr);
640 ** Add code to implement the OFFSET
642 static void codeOffset(
643 Vdbe *v, /* Generate code into this VM */
644 int iOffset, /* Register holding the offset counter */
645 int iContinue /* Jump here to skip the current record */
647 if( iOffset>0 ){
648 sqlite3VdbeAddOp3(v, OP_IfPos, iOffset, iContinue, 1); VdbeCoverage(v);
649 VdbeComment((v, "OFFSET"));
654 ** Add code that will check to make sure the N registers starting at iMem
655 ** form a distinct entry. iTab is a sorting index that holds previously
656 ** seen combinations of the N values. A new entry is made in iTab
657 ** if the current N values are new.
659 ** A jump to addrRepeat is made and the N+1 values are popped from the
660 ** stack if the top N elements are not distinct.
662 static void codeDistinct(
663 Parse *pParse, /* Parsing and code generating context */
664 int iTab, /* A sorting index used to test for distinctness */
665 int addrRepeat, /* Jump to here if not distinct */
666 int N, /* Number of elements */
667 int iMem /* First element */
669 Vdbe *v;
670 int r1;
672 v = pParse->pVdbe;
673 r1 = sqlite3GetTempReg(pParse);
674 sqlite3VdbeAddOp4Int(v, OP_Found, iTab, addrRepeat, iMem, N); VdbeCoverage(v);
675 sqlite3VdbeAddOp3(v, OP_MakeRecord, iMem, N, r1);
676 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iTab, r1, iMem, N);
677 sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT);
678 sqlite3ReleaseTempReg(pParse, r1);
682 ** This routine generates the code for the inside of the inner loop
683 ** of a SELECT.
685 ** If srcTab is negative, then the p->pEList expressions
686 ** are evaluated in order to get the data for this row. If srcTab is
687 ** zero or more, then data is pulled from srcTab and p->pEList is used only
688 ** to get the number of columns and the collation sequence for each column.
690 static void selectInnerLoop(
691 Parse *pParse, /* The parser context */
692 Select *p, /* The complete select statement being coded */
693 int srcTab, /* Pull data from this table if non-negative */
694 SortCtx *pSort, /* If not NULL, info on how to process ORDER BY */
695 DistinctCtx *pDistinct, /* If not NULL, info on how to process DISTINCT */
696 SelectDest *pDest, /* How to dispose of the results */
697 int iContinue, /* Jump here to continue with next row */
698 int iBreak /* Jump here to break out of the inner loop */
700 Vdbe *v = pParse->pVdbe;
701 int i;
702 int hasDistinct; /* True if the DISTINCT keyword is present */
703 int eDest = pDest->eDest; /* How to dispose of results */
704 int iParm = pDest->iSDParm; /* First argument to disposal method */
705 int nResultCol; /* Number of result columns */
706 int nPrefixReg = 0; /* Number of extra registers before regResult */
708 /* Usually, regResult is the first cell in an array of memory cells
709 ** containing the current result row. In this case regOrig is set to the
710 ** same value. However, if the results are being sent to the sorter, the
711 ** values for any expressions that are also part of the sort-key are omitted
712 ** from this array. In this case regOrig is set to zero. */
713 int regResult; /* Start of memory holding current results */
714 int regOrig; /* Start of memory holding full result (or 0) */
716 assert( v );
717 assert( p->pEList!=0 );
718 hasDistinct = pDistinct ? pDistinct->eTnctType : WHERE_DISTINCT_NOOP;
719 if( pSort && pSort->pOrderBy==0 ) pSort = 0;
720 if( pSort==0 && !hasDistinct ){
721 assert( iContinue!=0 );
722 codeOffset(v, p->iOffset, iContinue);
725 /* Pull the requested columns.
727 nResultCol = p->pEList->nExpr;
729 if( pDest->iSdst==0 ){
730 if( pSort ){
731 nPrefixReg = pSort->pOrderBy->nExpr;
732 if( !(pSort->sortFlags & SORTFLAG_UseSorter) ) nPrefixReg++;
733 pParse->nMem += nPrefixReg;
735 pDest->iSdst = pParse->nMem+1;
736 pParse->nMem += nResultCol;
737 }else if( pDest->iSdst+nResultCol > pParse->nMem ){
738 /* This is an error condition that can result, for example, when a SELECT
739 ** on the right-hand side of an INSERT contains more result columns than
740 ** there are columns in the table on the left. The error will be caught
741 ** and reported later. But we need to make sure enough memory is allocated
742 ** to avoid other spurious errors in the meantime. */
743 pParse->nMem += nResultCol;
745 pDest->nSdst = nResultCol;
746 regOrig = regResult = pDest->iSdst;
747 if( srcTab>=0 ){
748 for(i=0; i<nResultCol; i++){
749 sqlite3VdbeAddOp3(v, OP_Column, srcTab, i, regResult+i);
750 VdbeComment((v, "%s", p->pEList->a[i].zName));
752 }else if( eDest!=SRT_Exists ){
753 /* If the destination is an EXISTS(...) expression, the actual
754 ** values returned by the SELECT are not required.
756 u8 ecelFlags;
757 if( eDest==SRT_Mem || eDest==SRT_Output || eDest==SRT_Coroutine ){
758 ecelFlags = SQLITE_ECEL_DUP;
759 }else{
760 ecelFlags = 0;
762 if( pSort && hasDistinct==0 && eDest!=SRT_EphemTab && eDest!=SRT_Table ){
763 /* For each expression in p->pEList that is a copy of an expression in
764 ** the ORDER BY clause (pSort->pOrderBy), set the associated
765 ** iOrderByCol value to one more than the index of the ORDER BY
766 ** expression within the sort-key that pushOntoSorter() will generate.
767 ** This allows the p->pEList field to be omitted from the sorted record,
768 ** saving space and CPU cycles. */
769 ecelFlags |= (SQLITE_ECEL_OMITREF|SQLITE_ECEL_REF);
770 for(i=pSort->nOBSat; i<pSort->pOrderBy->nExpr; i++){
771 int j;
772 if( (j = pSort->pOrderBy->a[i].u.x.iOrderByCol)>0 ){
773 p->pEList->a[j-1].u.x.iOrderByCol = i+1-pSort->nOBSat;
776 regOrig = 0;
777 assert( eDest==SRT_Set || eDest==SRT_Mem
778 || eDest==SRT_Coroutine || eDest==SRT_Output );
780 nResultCol = sqlite3ExprCodeExprList(pParse,p->pEList,regResult,
781 0,ecelFlags);
784 /* If the DISTINCT keyword was present on the SELECT statement
785 ** and this row has been seen before, then do not make this row
786 ** part of the result.
788 if( hasDistinct ){
789 switch( pDistinct->eTnctType ){
790 case WHERE_DISTINCT_ORDERED: {
791 VdbeOp *pOp; /* No longer required OpenEphemeral instr. */
792 int iJump; /* Jump destination */
793 int regPrev; /* Previous row content */
795 /* Allocate space for the previous row */
796 regPrev = pParse->nMem+1;
797 pParse->nMem += nResultCol;
799 /* Change the OP_OpenEphemeral coded earlier to an OP_Null
800 ** sets the MEM_Cleared bit on the first register of the
801 ** previous value. This will cause the OP_Ne below to always
802 ** fail on the first iteration of the loop even if the first
803 ** row is all NULLs.
805 sqlite3VdbeChangeToNoop(v, pDistinct->addrTnct);
806 pOp = sqlite3VdbeGetOp(v, pDistinct->addrTnct);
807 pOp->opcode = OP_Null;
808 pOp->p1 = 1;
809 pOp->p2 = regPrev;
811 iJump = sqlite3VdbeCurrentAddr(v) + nResultCol;
812 for(i=0; i<nResultCol; i++){
813 CollSeq *pColl = sqlite3ExprCollSeq(pParse, p->pEList->a[i].pExpr);
814 if( i<nResultCol-1 ){
815 sqlite3VdbeAddOp3(v, OP_Ne, regResult+i, iJump, regPrev+i);
816 VdbeCoverage(v);
817 }else{
818 sqlite3VdbeAddOp3(v, OP_Eq, regResult+i, iContinue, regPrev+i);
819 VdbeCoverage(v);
821 sqlite3VdbeChangeP4(v, -1, (const char *)pColl, P4_COLLSEQ);
822 sqlite3VdbeChangeP5(v, SQLITE_NULLEQ);
824 assert( sqlite3VdbeCurrentAddr(v)==iJump || pParse->db->mallocFailed );
825 sqlite3VdbeAddOp3(v, OP_Copy, regResult, regPrev, nResultCol-1);
826 break;
829 case WHERE_DISTINCT_UNIQUE: {
830 sqlite3VdbeChangeToNoop(v, pDistinct->addrTnct);
831 break;
834 default: {
835 assert( pDistinct->eTnctType==WHERE_DISTINCT_UNORDERED );
836 codeDistinct(pParse, pDistinct->tabTnct, iContinue, nResultCol,
837 regResult);
838 break;
841 if( pSort==0 ){
842 codeOffset(v, p->iOffset, iContinue);
846 switch( eDest ){
847 /* In this mode, write each query result to the key of the temporary
848 ** table iParm.
850 #ifndef SQLITE_OMIT_COMPOUND_SELECT
851 case SRT_Union: {
852 int r1;
853 r1 = sqlite3GetTempReg(pParse);
854 sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nResultCol, r1);
855 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, r1, regResult, nResultCol);
856 sqlite3ReleaseTempReg(pParse, r1);
857 break;
860 /* Construct a record from the query result, but instead of
861 ** saving that record, use it as a key to delete elements from
862 ** the temporary table iParm.
864 case SRT_Except: {
865 sqlite3VdbeAddOp3(v, OP_IdxDelete, iParm, regResult, nResultCol);
866 break;
868 #endif /* SQLITE_OMIT_COMPOUND_SELECT */
870 /* Store the result as data using a unique key.
872 case SRT_Fifo:
873 case SRT_DistFifo:
874 case SRT_Table:
875 case SRT_EphemTab: {
876 int r1 = sqlite3GetTempRange(pParse, nPrefixReg+1);
877 testcase( eDest==SRT_Table );
878 testcase( eDest==SRT_EphemTab );
879 testcase( eDest==SRT_Fifo );
880 testcase( eDest==SRT_DistFifo );
881 sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nResultCol, r1+nPrefixReg);
882 #ifndef SQLITE_OMIT_CTE
883 if( eDest==SRT_DistFifo ){
884 /* If the destination is DistFifo, then cursor (iParm+1) is open
885 ** on an ephemeral index. If the current row is already present
886 ** in the index, do not write it to the output. If not, add the
887 ** current row to the index and proceed with writing it to the
888 ** output table as well. */
889 int addr = sqlite3VdbeCurrentAddr(v) + 4;
890 sqlite3VdbeAddOp4Int(v, OP_Found, iParm+1, addr, r1, 0);
891 VdbeCoverage(v);
892 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm+1, r1,regResult,nResultCol);
893 assert( pSort==0 );
895 #endif
896 if( pSort ){
897 pushOntoSorter(pParse, pSort, p, r1+nPrefixReg,regResult,1,nPrefixReg);
898 }else{
899 int r2 = sqlite3GetTempReg(pParse);
900 sqlite3VdbeAddOp2(v, OP_NewRowid, iParm, r2);
901 sqlite3VdbeAddOp3(v, OP_Insert, iParm, r1, r2);
902 sqlite3VdbeChangeP5(v, OPFLAG_APPEND);
903 sqlite3ReleaseTempReg(pParse, r2);
905 sqlite3ReleaseTempRange(pParse, r1, nPrefixReg+1);
906 break;
909 #ifndef SQLITE_OMIT_SUBQUERY
910 /* If we are creating a set for an "expr IN (SELECT ...)" construct,
911 ** then there should be a single item on the stack. Write this
912 ** item into the set table with bogus data.
914 case SRT_Set: {
915 if( pSort ){
916 /* At first glance you would think we could optimize out the
917 ** ORDER BY in this case since the order of entries in the set
918 ** does not matter. But there might be a LIMIT clause, in which
919 ** case the order does matter */
920 pushOntoSorter(
921 pParse, pSort, p, regResult, regOrig, nResultCol, nPrefixReg);
922 }else{
923 int r1 = sqlite3GetTempReg(pParse);
924 assert( sqlite3Strlen30(pDest->zAffSdst)==nResultCol );
925 sqlite3VdbeAddOp4(v, OP_MakeRecord, regResult, nResultCol,
926 r1, pDest->zAffSdst, nResultCol);
927 sqlite3ExprCacheAffinityChange(pParse, regResult, nResultCol);
928 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, r1, regResult, nResultCol);
929 sqlite3ReleaseTempReg(pParse, r1);
931 break;
934 /* If any row exist in the result set, record that fact and abort.
936 case SRT_Exists: {
937 sqlite3VdbeAddOp2(v, OP_Integer, 1, iParm);
938 /* The LIMIT clause will terminate the loop for us */
939 break;
942 /* If this is a scalar select that is part of an expression, then
943 ** store the results in the appropriate memory cell or array of
944 ** memory cells and break out of the scan loop.
946 case SRT_Mem: {
947 if( pSort ){
948 assert( nResultCol<=pDest->nSdst );
949 pushOntoSorter(
950 pParse, pSort, p, regResult, regOrig, nResultCol, nPrefixReg);
951 }else{
952 assert( nResultCol==pDest->nSdst );
953 assert( regResult==iParm );
954 /* The LIMIT clause will jump out of the loop for us */
956 break;
958 #endif /* #ifndef SQLITE_OMIT_SUBQUERY */
960 case SRT_Coroutine: /* Send data to a co-routine */
961 case SRT_Output: { /* Return the results */
962 testcase( eDest==SRT_Coroutine );
963 testcase( eDest==SRT_Output );
964 if( pSort ){
965 pushOntoSorter(pParse, pSort, p, regResult, regOrig, nResultCol,
966 nPrefixReg);
967 }else if( eDest==SRT_Coroutine ){
968 sqlite3VdbeAddOp1(v, OP_Yield, pDest->iSDParm);
969 }else{
970 sqlite3VdbeAddOp2(v, OP_ResultRow, regResult, nResultCol);
971 sqlite3ExprCacheAffinityChange(pParse, regResult, nResultCol);
973 break;
976 #ifndef SQLITE_OMIT_CTE
977 /* Write the results into a priority queue that is order according to
978 ** pDest->pOrderBy (in pSO). pDest->iSDParm (in iParm) is the cursor for an
979 ** index with pSO->nExpr+2 columns. Build a key using pSO for the first
980 ** pSO->nExpr columns, then make sure all keys are unique by adding a
981 ** final OP_Sequence column. The last column is the record as a blob.
983 case SRT_DistQueue:
984 case SRT_Queue: {
985 int nKey;
986 int r1, r2, r3;
987 int addrTest = 0;
988 ExprList *pSO;
989 pSO = pDest->pOrderBy;
990 assert( pSO );
991 nKey = pSO->nExpr;
992 r1 = sqlite3GetTempReg(pParse);
993 r2 = sqlite3GetTempRange(pParse, nKey+2);
994 r3 = r2+nKey+1;
995 if( eDest==SRT_DistQueue ){
996 /* If the destination is DistQueue, then cursor (iParm+1) is open
997 ** on a second ephemeral index that holds all values every previously
998 ** added to the queue. */
999 addrTest = sqlite3VdbeAddOp4Int(v, OP_Found, iParm+1, 0,
1000 regResult, nResultCol);
1001 VdbeCoverage(v);
1003 sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nResultCol, r3);
1004 if( eDest==SRT_DistQueue ){
1005 sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm+1, r3);
1006 sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT);
1008 for(i=0; i<nKey; i++){
1009 sqlite3VdbeAddOp2(v, OP_SCopy,
1010 regResult + pSO->a[i].u.x.iOrderByCol - 1,
1011 r2+i);
1013 sqlite3VdbeAddOp2(v, OP_Sequence, iParm, r2+nKey);
1014 sqlite3VdbeAddOp3(v, OP_MakeRecord, r2, nKey+2, r1);
1015 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, r1, r2, nKey+2);
1016 if( addrTest ) sqlite3VdbeJumpHere(v, addrTest);
1017 sqlite3ReleaseTempReg(pParse, r1);
1018 sqlite3ReleaseTempRange(pParse, r2, nKey+2);
1019 break;
1021 #endif /* SQLITE_OMIT_CTE */
1025 #if !defined(SQLITE_OMIT_TRIGGER)
1026 /* Discard the results. This is used for SELECT statements inside
1027 ** the body of a TRIGGER. The purpose of such selects is to call
1028 ** user-defined functions that have side effects. We do not care
1029 ** about the actual results of the select.
1031 default: {
1032 assert( eDest==SRT_Discard );
1033 break;
1035 #endif
1038 /* Jump to the end of the loop if the LIMIT is reached. Except, if
1039 ** there is a sorter, in which case the sorter has already limited
1040 ** the output for us.
1042 if( pSort==0 && p->iLimit ){
1043 sqlite3VdbeAddOp2(v, OP_DecrJumpZero, p->iLimit, iBreak); VdbeCoverage(v);
1048 ** Allocate a KeyInfo object sufficient for an index of N key columns and
1049 ** X extra columns.
1051 KeyInfo *sqlite3KeyInfoAlloc(sqlite3 *db, int N, int X){
1052 int nExtra = (N+X)*(sizeof(CollSeq*)+1) - sizeof(CollSeq*);
1053 KeyInfo *p = sqlite3DbMallocRawNN(db, sizeof(KeyInfo) + nExtra);
1054 if( p ){
1055 p->aSortOrder = (u8*)&p->aColl[N+X];
1056 p->nKeyField = (u16)N;
1057 p->nAllField = (u16)(N+X);
1058 p->enc = ENC(db);
1059 p->db = db;
1060 p->nRef = 1;
1061 memset(&p[1], 0, nExtra);
1062 }else{
1063 sqlite3OomFault(db);
1065 return p;
1069 ** Deallocate a KeyInfo object
1071 void sqlite3KeyInfoUnref(KeyInfo *p){
1072 if( p ){
1073 assert( p->nRef>0 );
1074 p->nRef--;
1075 if( p->nRef==0 ) sqlite3DbFreeNN(p->db, p);
1080 ** Make a new pointer to a KeyInfo object
1082 KeyInfo *sqlite3KeyInfoRef(KeyInfo *p){
1083 if( p ){
1084 assert( p->nRef>0 );
1085 p->nRef++;
1087 return p;
1090 #ifdef SQLITE_DEBUG
1092 ** Return TRUE if a KeyInfo object can be change. The KeyInfo object
1093 ** can only be changed if this is just a single reference to the object.
1095 ** This routine is used only inside of assert() statements.
1097 int sqlite3KeyInfoIsWriteable(KeyInfo *p){ return p->nRef==1; }
1098 #endif /* SQLITE_DEBUG */
1101 ** Given an expression list, generate a KeyInfo structure that records
1102 ** the collating sequence for each expression in that expression list.
1104 ** If the ExprList is an ORDER BY or GROUP BY clause then the resulting
1105 ** KeyInfo structure is appropriate for initializing a virtual index to
1106 ** implement that clause. If the ExprList is the result set of a SELECT
1107 ** then the KeyInfo structure is appropriate for initializing a virtual
1108 ** index to implement a DISTINCT test.
1110 ** Space to hold the KeyInfo structure is obtained from malloc. The calling
1111 ** function is responsible for seeing that this structure is eventually
1112 ** freed.
1114 static KeyInfo *keyInfoFromExprList(
1115 Parse *pParse, /* Parsing context */
1116 ExprList *pList, /* Form the KeyInfo object from this ExprList */
1117 int iStart, /* Begin with this column of pList */
1118 int nExtra /* Add this many extra columns to the end */
1120 int nExpr;
1121 KeyInfo *pInfo;
1122 struct ExprList_item *pItem;
1123 sqlite3 *db = pParse->db;
1124 int i;
1126 nExpr = pList->nExpr;
1127 pInfo = sqlite3KeyInfoAlloc(db, nExpr-iStart, nExtra+1);
1128 if( pInfo ){
1129 assert( sqlite3KeyInfoIsWriteable(pInfo) );
1130 for(i=iStart, pItem=pList->a+iStart; i<nExpr; i++, pItem++){
1131 pInfo->aColl[i-iStart] = sqlite3ExprNNCollSeq(pParse, pItem->pExpr);
1132 pInfo->aSortOrder[i-iStart] = pItem->sortOrder;
1135 return pInfo;
1139 ** Name of the connection operator, used for error messages.
1141 static const char *selectOpName(int id){
1142 char *z;
1143 switch( id ){
1144 case TK_ALL: z = "UNION ALL"; break;
1145 case TK_INTERSECT: z = "INTERSECT"; break;
1146 case TK_EXCEPT: z = "EXCEPT"; break;
1147 default: z = "UNION"; break;
1149 return z;
1152 #ifndef SQLITE_OMIT_EXPLAIN
1154 ** Unless an "EXPLAIN QUERY PLAN" command is being processed, this function
1155 ** is a no-op. Otherwise, it adds a single row of output to the EQP result,
1156 ** where the caption is of the form:
1158 ** "USE TEMP B-TREE FOR xxx"
1160 ** where xxx is one of "DISTINCT", "ORDER BY" or "GROUP BY". Exactly which
1161 ** is determined by the zUsage argument.
1163 static void explainTempTable(Parse *pParse, const char *zUsage){
1164 if( pParse->explain==2 ){
1165 Vdbe *v = pParse->pVdbe;
1166 char *zMsg = sqlite3MPrintf(pParse->db, "USE TEMP B-TREE FOR %s", zUsage);
1167 sqlite3VdbeAddOp4(v, OP_Explain, pParse->iSelectId, 0, 0, zMsg, P4_DYNAMIC);
1172 ** Assign expression b to lvalue a. A second, no-op, version of this macro
1173 ** is provided when SQLITE_OMIT_EXPLAIN is defined. This allows the code
1174 ** in sqlite3Select() to assign values to structure member variables that
1175 ** only exist if SQLITE_OMIT_EXPLAIN is not defined without polluting the
1176 ** code with #ifndef directives.
1178 # define explainSetInteger(a, b) a = b
1180 #else
1181 /* No-op versions of the explainXXX() functions and macros. */
1182 # define explainTempTable(y,z)
1183 # define explainSetInteger(y,z)
1184 #endif
1186 #if !defined(SQLITE_OMIT_EXPLAIN) && !defined(SQLITE_OMIT_COMPOUND_SELECT)
1188 ** Unless an "EXPLAIN QUERY PLAN" command is being processed, this function
1189 ** is a no-op. Otherwise, it adds a single row of output to the EQP result,
1190 ** where the caption is of one of the two forms:
1192 ** "COMPOSITE SUBQUERIES iSub1 and iSub2 (op)"
1193 ** "COMPOSITE SUBQUERIES iSub1 and iSub2 USING TEMP B-TREE (op)"
1195 ** where iSub1 and iSub2 are the integers passed as the corresponding
1196 ** function parameters, and op is the text representation of the parameter
1197 ** of the same name. The parameter "op" must be one of TK_UNION, TK_EXCEPT,
1198 ** TK_INTERSECT or TK_ALL. The first form is used if argument bUseTmp is
1199 ** false, or the second form if it is true.
1201 static void explainComposite(
1202 Parse *pParse, /* Parse context */
1203 int op, /* One of TK_UNION, TK_EXCEPT etc. */
1204 int iSub1, /* Subquery id 1 */
1205 int iSub2, /* Subquery id 2 */
1206 int bUseTmp /* True if a temp table was used */
1208 assert( op==TK_UNION || op==TK_EXCEPT || op==TK_INTERSECT || op==TK_ALL );
1209 if( pParse->explain==2 ){
1210 Vdbe *v = pParse->pVdbe;
1211 char *zMsg = sqlite3MPrintf(
1212 pParse->db, "COMPOUND SUBQUERIES %d AND %d %s(%s)", iSub1, iSub2,
1213 bUseTmp?"USING TEMP B-TREE ":"", selectOpName(op)
1215 sqlite3VdbeAddOp4(v, OP_Explain, pParse->iSelectId, 0, 0, zMsg, P4_DYNAMIC);
1218 #else
1219 /* No-op versions of the explainXXX() functions and macros. */
1220 # define explainComposite(v,w,x,y,z)
1221 #endif
1224 ** If the inner loop was generated using a non-null pOrderBy argument,
1225 ** then the results were placed in a sorter. After the loop is terminated
1226 ** we need to run the sorter and output the results. The following
1227 ** routine generates the code needed to do that.
1229 static void generateSortTail(
1230 Parse *pParse, /* Parsing context */
1231 Select *p, /* The SELECT statement */
1232 SortCtx *pSort, /* Information on the ORDER BY clause */
1233 int nColumn, /* Number of columns of data */
1234 SelectDest *pDest /* Write the sorted results here */
1236 Vdbe *v = pParse->pVdbe; /* The prepared statement */
1237 int addrBreak = pSort->labelDone; /* Jump here to exit loop */
1238 int addrContinue = sqlite3VdbeMakeLabel(v); /* Jump here for next cycle */
1239 int addr;
1240 int addrOnce = 0;
1241 int iTab;
1242 ExprList *pOrderBy = pSort->pOrderBy;
1243 int eDest = pDest->eDest;
1244 int iParm = pDest->iSDParm;
1245 int regRow;
1246 int regRowid;
1247 int iCol;
1248 int nKey;
1249 int iSortTab; /* Sorter cursor to read from */
1250 int nSortData; /* Trailing values to read from sorter */
1251 int i;
1252 int bSeq; /* True if sorter record includes seq. no. */
1253 struct ExprList_item *aOutEx = p->pEList->a;
1255 assert( addrBreak<0 );
1256 if( pSort->labelBkOut ){
1257 sqlite3VdbeAddOp2(v, OP_Gosub, pSort->regReturn, pSort->labelBkOut);
1258 sqlite3VdbeGoto(v, addrBreak);
1259 sqlite3VdbeResolveLabel(v, pSort->labelBkOut);
1261 iTab = pSort->iECursor;
1262 if( eDest==SRT_Output || eDest==SRT_Coroutine || eDest==SRT_Mem ){
1263 regRowid = 0;
1264 regRow = pDest->iSdst;
1265 nSortData = nColumn;
1266 }else{
1267 regRowid = sqlite3GetTempReg(pParse);
1268 regRow = sqlite3GetTempRange(pParse, nColumn);
1269 nSortData = nColumn;
1271 nKey = pOrderBy->nExpr - pSort->nOBSat;
1272 if( pSort->sortFlags & SORTFLAG_UseSorter ){
1273 int regSortOut = ++pParse->nMem;
1274 iSortTab = pParse->nTab++;
1275 if( pSort->labelBkOut ){
1276 addrOnce = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v);
1278 sqlite3VdbeAddOp3(v, OP_OpenPseudo, iSortTab, regSortOut, nKey+1+nSortData);
1279 if( addrOnce ) sqlite3VdbeJumpHere(v, addrOnce);
1280 addr = 1 + sqlite3VdbeAddOp2(v, OP_SorterSort, iTab, addrBreak);
1281 VdbeCoverage(v);
1282 codeOffset(v, p->iOffset, addrContinue);
1283 sqlite3VdbeAddOp3(v, OP_SorterData, iTab, regSortOut, iSortTab);
1284 bSeq = 0;
1285 }else{
1286 addr = 1 + sqlite3VdbeAddOp2(v, OP_Sort, iTab, addrBreak); VdbeCoverage(v);
1287 codeOffset(v, p->iOffset, addrContinue);
1288 iSortTab = iTab;
1289 bSeq = 1;
1291 for(i=0, iCol=nKey+bSeq-1; i<nSortData; i++){
1292 if( aOutEx[i].u.x.iOrderByCol==0 ) iCol++;
1294 for(i=nSortData-1; i>=0; i--){
1295 int iRead;
1296 if( aOutEx[i].u.x.iOrderByCol ){
1297 iRead = aOutEx[i].u.x.iOrderByCol-1;
1298 }else{
1299 iRead = iCol--;
1301 sqlite3VdbeAddOp3(v, OP_Column, iSortTab, iRead, regRow+i);
1302 VdbeComment((v, "%s", aOutEx[i].zName ? aOutEx[i].zName : aOutEx[i].zSpan));
1304 switch( eDest ){
1305 case SRT_Table:
1306 case SRT_EphemTab: {
1307 sqlite3VdbeAddOp2(v, OP_NewRowid, iParm, regRowid);
1308 sqlite3VdbeAddOp3(v, OP_Insert, iParm, regRow, regRowid);
1309 sqlite3VdbeChangeP5(v, OPFLAG_APPEND);
1310 break;
1312 #ifndef SQLITE_OMIT_SUBQUERY
1313 case SRT_Set: {
1314 assert( nColumn==sqlite3Strlen30(pDest->zAffSdst) );
1315 sqlite3VdbeAddOp4(v, OP_MakeRecord, regRow, nColumn, regRowid,
1316 pDest->zAffSdst, nColumn);
1317 sqlite3ExprCacheAffinityChange(pParse, regRow, nColumn);
1318 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, regRowid, regRow, nColumn);
1319 break;
1321 case SRT_Mem: {
1322 /* The LIMIT clause will terminate the loop for us */
1323 break;
1325 #endif
1326 default: {
1327 assert( eDest==SRT_Output || eDest==SRT_Coroutine );
1328 testcase( eDest==SRT_Output );
1329 testcase( eDest==SRT_Coroutine );
1330 if( eDest==SRT_Output ){
1331 sqlite3VdbeAddOp2(v, OP_ResultRow, pDest->iSdst, nColumn);
1332 sqlite3ExprCacheAffinityChange(pParse, pDest->iSdst, nColumn);
1333 }else{
1334 sqlite3VdbeAddOp1(v, OP_Yield, pDest->iSDParm);
1336 break;
1339 if( regRowid ){
1340 if( eDest==SRT_Set ){
1341 sqlite3ReleaseTempRange(pParse, regRow, nColumn);
1342 }else{
1343 sqlite3ReleaseTempReg(pParse, regRow);
1345 sqlite3ReleaseTempReg(pParse, regRowid);
1347 /* The bottom of the loop
1349 sqlite3VdbeResolveLabel(v, addrContinue);
1350 if( pSort->sortFlags & SORTFLAG_UseSorter ){
1351 sqlite3VdbeAddOp2(v, OP_SorterNext, iTab, addr); VdbeCoverage(v);
1352 }else{
1353 sqlite3VdbeAddOp2(v, OP_Next, iTab, addr); VdbeCoverage(v);
1355 if( pSort->regReturn ) sqlite3VdbeAddOp1(v, OP_Return, pSort->regReturn);
1356 sqlite3VdbeResolveLabel(v, addrBreak);
1360 ** Return a pointer to a string containing the 'declaration type' of the
1361 ** expression pExpr. The string may be treated as static by the caller.
1363 ** Also try to estimate the size of the returned value and return that
1364 ** result in *pEstWidth.
1366 ** The declaration type is the exact datatype definition extracted from the
1367 ** original CREATE TABLE statement if the expression is a column. The
1368 ** declaration type for a ROWID field is INTEGER. Exactly when an expression
1369 ** is considered a column can be complex in the presence of subqueries. The
1370 ** result-set expression in all of the following SELECT statements is
1371 ** considered a column by this function.
1373 ** SELECT col FROM tbl;
1374 ** SELECT (SELECT col FROM tbl;
1375 ** SELECT (SELECT col FROM tbl);
1376 ** SELECT abc FROM (SELECT col AS abc FROM tbl);
1378 ** The declaration type for any expression other than a column is NULL.
1380 ** This routine has either 3 or 6 parameters depending on whether or not
1381 ** the SQLITE_ENABLE_COLUMN_METADATA compile-time option is used.
1383 #ifdef SQLITE_ENABLE_COLUMN_METADATA
1384 # define columnType(A,B,C,D,E) columnTypeImpl(A,B,C,D,E)
1385 #else /* if !defined(SQLITE_ENABLE_COLUMN_METADATA) */
1386 # define columnType(A,B,C,D,E) columnTypeImpl(A,B)
1387 #endif
1388 static const char *columnTypeImpl(
1389 NameContext *pNC,
1390 #ifndef SQLITE_ENABLE_COLUMN_METADATA
1391 Expr *pExpr
1392 #else
1393 Expr *pExpr,
1394 const char **pzOrigDb,
1395 const char **pzOrigTab,
1396 const char **pzOrigCol
1397 #endif
1399 char const *zType = 0;
1400 int j;
1401 #ifdef SQLITE_ENABLE_COLUMN_METADATA
1402 char const *zOrigDb = 0;
1403 char const *zOrigTab = 0;
1404 char const *zOrigCol = 0;
1405 #endif
1407 assert( pExpr!=0 );
1408 assert( pNC->pSrcList!=0 );
1409 assert( pExpr->op!=TK_AGG_COLUMN ); /* This routine runes before aggregates
1410 ** are processed */
1411 switch( pExpr->op ){
1412 case TK_COLUMN: {
1413 /* The expression is a column. Locate the table the column is being
1414 ** extracted from in NameContext.pSrcList. This table may be real
1415 ** database table or a subquery.
1417 Table *pTab = 0; /* Table structure column is extracted from */
1418 Select *pS = 0; /* Select the column is extracted from */
1419 int iCol = pExpr->iColumn; /* Index of column in pTab */
1420 while( pNC && !pTab ){
1421 SrcList *pTabList = pNC->pSrcList;
1422 for(j=0;j<pTabList->nSrc && pTabList->a[j].iCursor!=pExpr->iTable;j++);
1423 if( j<pTabList->nSrc ){
1424 pTab = pTabList->a[j].pTab;
1425 pS = pTabList->a[j].pSelect;
1426 }else{
1427 pNC = pNC->pNext;
1431 if( pTab==0 ){
1432 /* At one time, code such as "SELECT new.x" within a trigger would
1433 ** cause this condition to run. Since then, we have restructured how
1434 ** trigger code is generated and so this condition is no longer
1435 ** possible. However, it can still be true for statements like
1436 ** the following:
1438 ** CREATE TABLE t1(col INTEGER);
1439 ** SELECT (SELECT t1.col) FROM FROM t1;
1441 ** when columnType() is called on the expression "t1.col" in the
1442 ** sub-select. In this case, set the column type to NULL, even
1443 ** though it should really be "INTEGER".
1445 ** This is not a problem, as the column type of "t1.col" is never
1446 ** used. When columnType() is called on the expression
1447 ** "(SELECT t1.col)", the correct type is returned (see the TK_SELECT
1448 ** branch below. */
1449 break;
1452 assert( pTab && pExpr->pTab==pTab );
1453 if( pS ){
1454 /* The "table" is actually a sub-select or a view in the FROM clause
1455 ** of the SELECT statement. Return the declaration type and origin
1456 ** data for the result-set column of the sub-select.
1458 if( iCol>=0 && iCol<pS->pEList->nExpr ){
1459 /* If iCol is less than zero, then the expression requests the
1460 ** rowid of the sub-select or view. This expression is legal (see
1461 ** test case misc2.2.2) - it always evaluates to NULL.
1463 NameContext sNC;
1464 Expr *p = pS->pEList->a[iCol].pExpr;
1465 sNC.pSrcList = pS->pSrc;
1466 sNC.pNext = pNC;
1467 sNC.pParse = pNC->pParse;
1468 zType = columnType(&sNC, p,&zOrigDb,&zOrigTab,&zOrigCol);
1470 }else{
1471 /* A real table or a CTE table */
1472 assert( !pS );
1473 #ifdef SQLITE_ENABLE_COLUMN_METADATA
1474 if( iCol<0 ) iCol = pTab->iPKey;
1475 assert( iCol==XN_ROWID || (iCol>=0 && iCol<pTab->nCol) );
1476 if( iCol<0 ){
1477 zType = "INTEGER";
1478 zOrigCol = "rowid";
1479 }else{
1480 zOrigCol = pTab->aCol[iCol].zName;
1481 zType = sqlite3ColumnType(&pTab->aCol[iCol],0);
1483 zOrigTab = pTab->zName;
1484 if( pNC->pParse && pTab->pSchema ){
1485 int iDb = sqlite3SchemaToIndex(pNC->pParse->db, pTab->pSchema);
1486 zOrigDb = pNC->pParse->db->aDb[iDb].zDbSName;
1488 #else
1489 assert( iCol==XN_ROWID || (iCol>=0 && iCol<pTab->nCol) );
1490 if( iCol<0 ){
1491 zType = "INTEGER";
1492 }else{
1493 zType = sqlite3ColumnType(&pTab->aCol[iCol],0);
1495 #endif
1497 break;
1499 #ifndef SQLITE_OMIT_SUBQUERY
1500 case TK_SELECT: {
1501 /* The expression is a sub-select. Return the declaration type and
1502 ** origin info for the single column in the result set of the SELECT
1503 ** statement.
1505 NameContext sNC;
1506 Select *pS = pExpr->x.pSelect;
1507 Expr *p = pS->pEList->a[0].pExpr;
1508 assert( ExprHasProperty(pExpr, EP_xIsSelect) );
1509 sNC.pSrcList = pS->pSrc;
1510 sNC.pNext = pNC;
1511 sNC.pParse = pNC->pParse;
1512 zType = columnType(&sNC, p, &zOrigDb, &zOrigTab, &zOrigCol);
1513 break;
1515 #endif
1518 #ifdef SQLITE_ENABLE_COLUMN_METADATA
1519 if( pzOrigDb ){
1520 assert( pzOrigTab && pzOrigCol );
1521 *pzOrigDb = zOrigDb;
1522 *pzOrigTab = zOrigTab;
1523 *pzOrigCol = zOrigCol;
1525 #endif
1526 return zType;
1530 ** Generate code that will tell the VDBE the declaration types of columns
1531 ** in the result set.
1533 static void generateColumnTypes(
1534 Parse *pParse, /* Parser context */
1535 SrcList *pTabList, /* List of tables */
1536 ExprList *pEList /* Expressions defining the result set */
1538 #ifndef SQLITE_OMIT_DECLTYPE
1539 Vdbe *v = pParse->pVdbe;
1540 int i;
1541 NameContext sNC;
1542 sNC.pSrcList = pTabList;
1543 sNC.pParse = pParse;
1544 sNC.pNext = 0;
1545 for(i=0; i<pEList->nExpr; i++){
1546 Expr *p = pEList->a[i].pExpr;
1547 const char *zType;
1548 #ifdef SQLITE_ENABLE_COLUMN_METADATA
1549 const char *zOrigDb = 0;
1550 const char *zOrigTab = 0;
1551 const char *zOrigCol = 0;
1552 zType = columnType(&sNC, p, &zOrigDb, &zOrigTab, &zOrigCol);
1554 /* The vdbe must make its own copy of the column-type and other
1555 ** column specific strings, in case the schema is reset before this
1556 ** virtual machine is deleted.
1558 sqlite3VdbeSetColName(v, i, COLNAME_DATABASE, zOrigDb, SQLITE_TRANSIENT);
1559 sqlite3VdbeSetColName(v, i, COLNAME_TABLE, zOrigTab, SQLITE_TRANSIENT);
1560 sqlite3VdbeSetColName(v, i, COLNAME_COLUMN, zOrigCol, SQLITE_TRANSIENT);
1561 #else
1562 zType = columnType(&sNC, p, 0, 0, 0);
1563 #endif
1564 sqlite3VdbeSetColName(v, i, COLNAME_DECLTYPE, zType, SQLITE_TRANSIENT);
1566 #endif /* !defined(SQLITE_OMIT_DECLTYPE) */
1571 ** Compute the column names for a SELECT statement.
1573 ** The only guarantee that SQLite makes about column names is that if the
1574 ** column has an AS clause assigning it a name, that will be the name used.
1575 ** That is the only documented guarantee. However, countless applications
1576 ** developed over the years have made baseless assumptions about column names
1577 ** and will break if those assumptions changes. Hence, use extreme caution
1578 ** when modifying this routine to avoid breaking legacy.
1580 ** See Also: sqlite3ColumnsFromExprList()
1582 ** The PRAGMA short_column_names and PRAGMA full_column_names settings are
1583 ** deprecated. The default setting is short=ON, full=OFF. 99.9% of all
1584 ** applications should operate this way. Nevertheless, we need to support the
1585 ** other modes for legacy:
1587 ** short=OFF, full=OFF: Column name is the text of the expression has it
1588 ** originally appears in the SELECT statement. In
1589 ** other words, the zSpan of the result expression.
1591 ** short=ON, full=OFF: (This is the default setting). If the result
1592 ** refers directly to a table column, then the
1593 ** result column name is just the table column
1594 ** name: COLUMN. Otherwise use zSpan.
1596 ** full=ON, short=ANY: If the result refers directly to a table column,
1597 ** then the result column name with the table name
1598 ** prefix, ex: TABLE.COLUMN. Otherwise use zSpan.
1600 static void generateColumnNames(
1601 Parse *pParse, /* Parser context */
1602 Select *pSelect /* Generate column names for this SELECT statement */
1604 Vdbe *v = pParse->pVdbe;
1605 int i;
1606 Table *pTab;
1607 SrcList *pTabList;
1608 ExprList *pEList;
1609 sqlite3 *db = pParse->db;
1610 int fullName; /* TABLE.COLUMN if no AS clause and is a direct table ref */
1611 int srcName; /* COLUMN or TABLE.COLUMN if no AS clause and is direct */
1613 #ifndef SQLITE_OMIT_EXPLAIN
1614 /* If this is an EXPLAIN, skip this step */
1615 if( pParse->explain ){
1616 return;
1618 #endif
1620 if( pParse->colNamesSet || db->mallocFailed ) return;
1621 /* Column names are determined by the left-most term of a compound select */
1622 while( pSelect->pPrior ) pSelect = pSelect->pPrior;
1623 SELECTTRACE(1,pParse,pSelect,("generating column names\n"));
1624 pTabList = pSelect->pSrc;
1625 pEList = pSelect->pEList;
1626 assert( v!=0 );
1627 assert( pTabList!=0 );
1628 pParse->colNamesSet = 1;
1629 fullName = (db->flags & SQLITE_FullColNames)!=0;
1630 srcName = (db->flags & SQLITE_ShortColNames)!=0 || fullName;
1631 sqlite3VdbeSetNumCols(v, pEList->nExpr);
1632 for(i=0; i<pEList->nExpr; i++){
1633 Expr *p = pEList->a[i].pExpr;
1635 assert( p!=0 );
1636 assert( p->op!=TK_AGG_COLUMN ); /* Agg processing has not run yet */
1637 assert( p->op!=TK_COLUMN || p->pTab!=0 ); /* Covering idx not yet coded */
1638 if( pEList->a[i].zName ){
1639 /* An AS clause always takes first priority */
1640 char *zName = pEList->a[i].zName;
1641 sqlite3VdbeSetColName(v, i, COLNAME_NAME, zName, SQLITE_TRANSIENT);
1642 }else if( srcName && p->op==TK_COLUMN ){
1643 char *zCol;
1644 int iCol = p->iColumn;
1645 pTab = p->pTab;
1646 assert( pTab!=0 );
1647 if( iCol<0 ) iCol = pTab->iPKey;
1648 assert( iCol==-1 || (iCol>=0 && iCol<pTab->nCol) );
1649 if( iCol<0 ){
1650 zCol = "rowid";
1651 }else{
1652 zCol = pTab->aCol[iCol].zName;
1654 if( fullName ){
1655 char *zName = 0;
1656 zName = sqlite3MPrintf(db, "%s.%s", pTab->zName, zCol);
1657 sqlite3VdbeSetColName(v, i, COLNAME_NAME, zName, SQLITE_DYNAMIC);
1658 }else{
1659 sqlite3VdbeSetColName(v, i, COLNAME_NAME, zCol, SQLITE_TRANSIENT);
1661 }else{
1662 const char *z = pEList->a[i].zSpan;
1663 z = z==0 ? sqlite3MPrintf(db, "column%d", i+1) : sqlite3DbStrDup(db, z);
1664 sqlite3VdbeSetColName(v, i, COLNAME_NAME, z, SQLITE_DYNAMIC);
1667 generateColumnTypes(pParse, pTabList, pEList);
1671 ** Given an expression list (which is really the list of expressions
1672 ** that form the result set of a SELECT statement) compute appropriate
1673 ** column names for a table that would hold the expression list.
1675 ** All column names will be unique.
1677 ** Only the column names are computed. Column.zType, Column.zColl,
1678 ** and other fields of Column are zeroed.
1680 ** Return SQLITE_OK on success. If a memory allocation error occurs,
1681 ** store NULL in *paCol and 0 in *pnCol and return SQLITE_NOMEM.
1683 ** The only guarantee that SQLite makes about column names is that if the
1684 ** column has an AS clause assigning it a name, that will be the name used.
1685 ** That is the only documented guarantee. However, countless applications
1686 ** developed over the years have made baseless assumptions about column names
1687 ** and will break if those assumptions changes. Hence, use extreme caution
1688 ** when modifying this routine to avoid breaking legacy.
1690 ** See Also: generateColumnNames()
1692 int sqlite3ColumnsFromExprList(
1693 Parse *pParse, /* Parsing context */
1694 ExprList *pEList, /* Expr list from which to derive column names */
1695 i16 *pnCol, /* Write the number of columns here */
1696 Column **paCol /* Write the new column list here */
1698 sqlite3 *db = pParse->db; /* Database connection */
1699 int i, j; /* Loop counters */
1700 u32 cnt; /* Index added to make the name unique */
1701 Column *aCol, *pCol; /* For looping over result columns */
1702 int nCol; /* Number of columns in the result set */
1703 char *zName; /* Column name */
1704 int nName; /* Size of name in zName[] */
1705 Hash ht; /* Hash table of column names */
1707 sqlite3HashInit(&ht);
1708 if( pEList ){
1709 nCol = pEList->nExpr;
1710 aCol = sqlite3DbMallocZero(db, sizeof(aCol[0])*nCol);
1711 testcase( aCol==0 );
1712 if( nCol>32767 ) nCol = 32767;
1713 }else{
1714 nCol = 0;
1715 aCol = 0;
1717 assert( nCol==(i16)nCol );
1718 *pnCol = nCol;
1719 *paCol = aCol;
1721 for(i=0, pCol=aCol; i<nCol && !db->mallocFailed; i++, pCol++){
1722 /* Get an appropriate name for the column
1724 if( (zName = pEList->a[i].zName)!=0 ){
1725 /* If the column contains an "AS <name>" phrase, use <name> as the name */
1726 }else{
1727 Expr *pColExpr = sqlite3ExprSkipCollate(pEList->a[i].pExpr);
1728 while( pColExpr->op==TK_DOT ){
1729 pColExpr = pColExpr->pRight;
1730 assert( pColExpr!=0 );
1732 assert( pColExpr->op!=TK_AGG_COLUMN );
1733 if( pColExpr->op==TK_COLUMN ){
1734 /* For columns use the column name name */
1735 int iCol = pColExpr->iColumn;
1736 Table *pTab = pColExpr->pTab;
1737 assert( pTab!=0 );
1738 if( iCol<0 ) iCol = pTab->iPKey;
1739 zName = iCol>=0 ? pTab->aCol[iCol].zName : "rowid";
1740 }else if( pColExpr->op==TK_ID ){
1741 assert( !ExprHasProperty(pColExpr, EP_IntValue) );
1742 zName = pColExpr->u.zToken;
1743 }else{
1744 /* Use the original text of the column expression as its name */
1745 zName = pEList->a[i].zSpan;
1748 if( zName ){
1749 zName = sqlite3DbStrDup(db, zName);
1750 }else{
1751 zName = sqlite3MPrintf(db,"column%d",i+1);
1754 /* Make sure the column name is unique. If the name is not unique,
1755 ** append an integer to the name so that it becomes unique.
1757 cnt = 0;
1758 while( zName && sqlite3HashFind(&ht, zName)!=0 ){
1759 nName = sqlite3Strlen30(zName);
1760 if( nName>0 ){
1761 for(j=nName-1; j>0 && sqlite3Isdigit(zName[j]); j--){}
1762 if( zName[j]==':' ) nName = j;
1764 zName = sqlite3MPrintf(db, "%.*z:%u", nName, zName, ++cnt);
1765 if( cnt>3 ) sqlite3_randomness(sizeof(cnt), &cnt);
1767 pCol->zName = zName;
1768 sqlite3ColumnPropertiesFromName(0, pCol);
1769 if( zName && sqlite3HashInsert(&ht, zName, pCol)==pCol ){
1770 sqlite3OomFault(db);
1773 sqlite3HashClear(&ht);
1774 if( db->mallocFailed ){
1775 for(j=0; j<i; j++){
1776 sqlite3DbFree(db, aCol[j].zName);
1778 sqlite3DbFree(db, aCol);
1779 *paCol = 0;
1780 *pnCol = 0;
1781 return SQLITE_NOMEM_BKPT;
1783 return SQLITE_OK;
1787 ** Add type and collation information to a column list based on
1788 ** a SELECT statement.
1790 ** The column list presumably came from selectColumnNamesFromExprList().
1791 ** The column list has only names, not types or collations. This
1792 ** routine goes through and adds the types and collations.
1794 ** This routine requires that all identifiers in the SELECT
1795 ** statement be resolved.
1797 void sqlite3SelectAddColumnTypeAndCollation(
1798 Parse *pParse, /* Parsing contexts */
1799 Table *pTab, /* Add column type information to this table */
1800 Select *pSelect /* SELECT used to determine types and collations */
1802 sqlite3 *db = pParse->db;
1803 NameContext sNC;
1804 Column *pCol;
1805 CollSeq *pColl;
1806 int i;
1807 Expr *p;
1808 struct ExprList_item *a;
1810 assert( pSelect!=0 );
1811 assert( (pSelect->selFlags & SF_Resolved)!=0 );
1812 assert( pTab->nCol==pSelect->pEList->nExpr || db->mallocFailed );
1813 if( db->mallocFailed ) return;
1814 memset(&sNC, 0, sizeof(sNC));
1815 sNC.pSrcList = pSelect->pSrc;
1816 a = pSelect->pEList->a;
1817 for(i=0, pCol=pTab->aCol; i<pTab->nCol; i++, pCol++){
1818 const char *zType;
1819 int n, m;
1820 p = a[i].pExpr;
1821 zType = columnType(&sNC, p, 0, 0, 0);
1822 /* pCol->szEst = ... // Column size est for SELECT tables never used */
1823 pCol->affinity = sqlite3ExprAffinity(p);
1824 if( zType ){
1825 m = sqlite3Strlen30(zType);
1826 n = sqlite3Strlen30(pCol->zName);
1827 pCol->zName = sqlite3DbReallocOrFree(db, pCol->zName, n+m+2);
1828 if( pCol->zName ){
1829 memcpy(&pCol->zName[n+1], zType, m+1);
1830 pCol->colFlags |= COLFLAG_HASTYPE;
1833 if( pCol->affinity==0 ) pCol->affinity = SQLITE_AFF_BLOB;
1834 pColl = sqlite3ExprCollSeq(pParse, p);
1835 if( pColl && pCol->zColl==0 ){
1836 pCol->zColl = sqlite3DbStrDup(db, pColl->zName);
1839 pTab->szTabRow = 1; /* Any non-zero value works */
1843 ** Given a SELECT statement, generate a Table structure that describes
1844 ** the result set of that SELECT.
1846 Table *sqlite3ResultSetOfSelect(Parse *pParse, Select *pSelect){
1847 Table *pTab;
1848 sqlite3 *db = pParse->db;
1849 int savedFlags;
1851 savedFlags = db->flags;
1852 db->flags &= ~SQLITE_FullColNames;
1853 db->flags |= SQLITE_ShortColNames;
1854 sqlite3SelectPrep(pParse, pSelect, 0);
1855 if( pParse->nErr ) return 0;
1856 while( pSelect->pPrior ) pSelect = pSelect->pPrior;
1857 db->flags = savedFlags;
1858 pTab = sqlite3DbMallocZero(db, sizeof(Table) );
1859 if( pTab==0 ){
1860 return 0;
1862 /* The sqlite3ResultSetOfSelect() is only used n contexts where lookaside
1863 ** is disabled */
1864 assert( db->lookaside.bDisable );
1865 pTab->nTabRef = 1;
1866 pTab->zName = 0;
1867 pTab->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) );
1868 sqlite3ColumnsFromExprList(pParse, pSelect->pEList, &pTab->nCol, &pTab->aCol);
1869 sqlite3SelectAddColumnTypeAndCollation(pParse, pTab, pSelect);
1870 pTab->iPKey = -1;
1871 if( db->mallocFailed ){
1872 sqlite3DeleteTable(db, pTab);
1873 return 0;
1875 return pTab;
1879 ** Get a VDBE for the given parser context. Create a new one if necessary.
1880 ** If an error occurs, return NULL and leave a message in pParse.
1882 Vdbe *sqlite3GetVdbe(Parse *pParse){
1883 if( pParse->pVdbe ){
1884 return pParse->pVdbe;
1886 if( pParse->pToplevel==0
1887 && OptimizationEnabled(pParse->db,SQLITE_FactorOutConst)
1889 pParse->okConstFactor = 1;
1891 return sqlite3VdbeCreate(pParse);
1896 ** Compute the iLimit and iOffset fields of the SELECT based on the
1897 ** pLimit expressions. pLimit->pLeft and pLimit->pRight hold the expressions
1898 ** that appear in the original SQL statement after the LIMIT and OFFSET
1899 ** keywords. Or NULL if those keywords are omitted. iLimit and iOffset
1900 ** are the integer memory register numbers for counters used to compute
1901 ** the limit and offset. If there is no limit and/or offset, then
1902 ** iLimit and iOffset are negative.
1904 ** This routine changes the values of iLimit and iOffset only if
1905 ** a limit or offset is defined by pLimit->pLeft and pLimit->pRight. iLimit
1906 ** and iOffset should have been preset to appropriate default values (zero)
1907 ** prior to calling this routine.
1909 ** The iOffset register (if it exists) is initialized to the value
1910 ** of the OFFSET. The iLimit register is initialized to LIMIT. Register
1911 ** iOffset+1 is initialized to LIMIT+OFFSET.
1913 ** Only if pLimit->pLeft!=0 do the limit registers get
1914 ** redefined. The UNION ALL operator uses this property to force
1915 ** the reuse of the same limit and offset registers across multiple
1916 ** SELECT statements.
1918 static void computeLimitRegisters(Parse *pParse, Select *p, int iBreak){
1919 Vdbe *v = 0;
1920 int iLimit = 0;
1921 int iOffset;
1922 int n;
1923 Expr *pLimit = p->pLimit;
1925 if( p->iLimit ) return;
1928 ** "LIMIT -1" always shows all rows. There is some
1929 ** controversy about what the correct behavior should be.
1930 ** The current implementation interprets "LIMIT 0" to mean
1931 ** no rows.
1933 sqlite3ExprCacheClear(pParse);
1934 if( pLimit ){
1935 assert( pLimit->op==TK_LIMIT );
1936 assert( pLimit->pLeft!=0 );
1937 p->iLimit = iLimit = ++pParse->nMem;
1938 v = sqlite3GetVdbe(pParse);
1939 assert( v!=0 );
1940 if( sqlite3ExprIsInteger(pLimit->pLeft, &n) ){
1941 sqlite3VdbeAddOp2(v, OP_Integer, n, iLimit);
1942 VdbeComment((v, "LIMIT counter"));
1943 if( n==0 ){
1944 sqlite3VdbeGoto(v, iBreak);
1945 }else if( n>=0 && p->nSelectRow>sqlite3LogEst((u64)n) ){
1946 p->nSelectRow = sqlite3LogEst((u64)n);
1947 p->selFlags |= SF_FixedLimit;
1949 }else{
1950 sqlite3ExprCode(pParse, pLimit->pLeft, iLimit);
1951 sqlite3VdbeAddOp1(v, OP_MustBeInt, iLimit); VdbeCoverage(v);
1952 VdbeComment((v, "LIMIT counter"));
1953 sqlite3VdbeAddOp2(v, OP_IfNot, iLimit, iBreak); VdbeCoverage(v);
1955 if( pLimit->pRight ){
1956 p->iOffset = iOffset = ++pParse->nMem;
1957 pParse->nMem++; /* Allocate an extra register for limit+offset */
1958 sqlite3ExprCode(pParse, pLimit->pRight, iOffset);
1959 sqlite3VdbeAddOp1(v, OP_MustBeInt, iOffset); VdbeCoverage(v);
1960 VdbeComment((v, "OFFSET counter"));
1961 sqlite3VdbeAddOp3(v, OP_OffsetLimit, iLimit, iOffset+1, iOffset);
1962 VdbeComment((v, "LIMIT+OFFSET"));
1967 #ifndef SQLITE_OMIT_COMPOUND_SELECT
1969 ** Return the appropriate collating sequence for the iCol-th column of
1970 ** the result set for the compound-select statement "p". Return NULL if
1971 ** the column has no default collating sequence.
1973 ** The collating sequence for the compound select is taken from the
1974 ** left-most term of the select that has a collating sequence.
1976 static CollSeq *multiSelectCollSeq(Parse *pParse, Select *p, int iCol){
1977 CollSeq *pRet;
1978 if( p->pPrior ){
1979 pRet = multiSelectCollSeq(pParse, p->pPrior, iCol);
1980 }else{
1981 pRet = 0;
1983 assert( iCol>=0 );
1984 /* iCol must be less than p->pEList->nExpr. Otherwise an error would
1985 ** have been thrown during name resolution and we would not have gotten
1986 ** this far */
1987 if( pRet==0 && ALWAYS(iCol<p->pEList->nExpr) ){
1988 pRet = sqlite3ExprCollSeq(pParse, p->pEList->a[iCol].pExpr);
1990 return pRet;
1994 ** The select statement passed as the second parameter is a compound SELECT
1995 ** with an ORDER BY clause. This function allocates and returns a KeyInfo
1996 ** structure suitable for implementing the ORDER BY.
1998 ** Space to hold the KeyInfo structure is obtained from malloc. The calling
1999 ** function is responsible for ensuring that this structure is eventually
2000 ** freed.
2002 static KeyInfo *multiSelectOrderByKeyInfo(Parse *pParse, Select *p, int nExtra){
2003 ExprList *pOrderBy = p->pOrderBy;
2004 int nOrderBy = p->pOrderBy->nExpr;
2005 sqlite3 *db = pParse->db;
2006 KeyInfo *pRet = sqlite3KeyInfoAlloc(db, nOrderBy+nExtra, 1);
2007 if( pRet ){
2008 int i;
2009 for(i=0; i<nOrderBy; i++){
2010 struct ExprList_item *pItem = &pOrderBy->a[i];
2011 Expr *pTerm = pItem->pExpr;
2012 CollSeq *pColl;
2014 if( pTerm->flags & EP_Collate ){
2015 pColl = sqlite3ExprCollSeq(pParse, pTerm);
2016 }else{
2017 pColl = multiSelectCollSeq(pParse, p, pItem->u.x.iOrderByCol-1);
2018 if( pColl==0 ) pColl = db->pDfltColl;
2019 pOrderBy->a[i].pExpr =
2020 sqlite3ExprAddCollateString(pParse, pTerm, pColl->zName);
2022 assert( sqlite3KeyInfoIsWriteable(pRet) );
2023 pRet->aColl[i] = pColl;
2024 pRet->aSortOrder[i] = pOrderBy->a[i].sortOrder;
2028 return pRet;
2031 #ifndef SQLITE_OMIT_CTE
2033 ** This routine generates VDBE code to compute the content of a WITH RECURSIVE
2034 ** query of the form:
2036 ** <recursive-table> AS (<setup-query> UNION [ALL] <recursive-query>)
2037 ** \___________/ \_______________/
2038 ** p->pPrior p
2041 ** There is exactly one reference to the recursive-table in the FROM clause
2042 ** of recursive-query, marked with the SrcList->a[].fg.isRecursive flag.
2044 ** The setup-query runs once to generate an initial set of rows that go
2045 ** into a Queue table. Rows are extracted from the Queue table one by
2046 ** one. Each row extracted from Queue is output to pDest. Then the single
2047 ** extracted row (now in the iCurrent table) becomes the content of the
2048 ** recursive-table for a recursive-query run. The output of the recursive-query
2049 ** is added back into the Queue table. Then another row is extracted from Queue
2050 ** and the iteration continues until the Queue table is empty.
2052 ** If the compound query operator is UNION then no duplicate rows are ever
2053 ** inserted into the Queue table. The iDistinct table keeps a copy of all rows
2054 ** that have ever been inserted into Queue and causes duplicates to be
2055 ** discarded. If the operator is UNION ALL, then duplicates are allowed.
2057 ** If the query has an ORDER BY, then entries in the Queue table are kept in
2058 ** ORDER BY order and the first entry is extracted for each cycle. Without
2059 ** an ORDER BY, the Queue table is just a FIFO.
2061 ** If a LIMIT clause is provided, then the iteration stops after LIMIT rows
2062 ** have been output to pDest. A LIMIT of zero means to output no rows and a
2063 ** negative LIMIT means to output all rows. If there is also an OFFSET clause
2064 ** with a positive value, then the first OFFSET outputs are discarded rather
2065 ** than being sent to pDest. The LIMIT count does not begin until after OFFSET
2066 ** rows have been skipped.
2068 static void generateWithRecursiveQuery(
2069 Parse *pParse, /* Parsing context */
2070 Select *p, /* The recursive SELECT to be coded */
2071 SelectDest *pDest /* What to do with query results */
2073 SrcList *pSrc = p->pSrc; /* The FROM clause of the recursive query */
2074 int nCol = p->pEList->nExpr; /* Number of columns in the recursive table */
2075 Vdbe *v = pParse->pVdbe; /* The prepared statement under construction */
2076 Select *pSetup = p->pPrior; /* The setup query */
2077 int addrTop; /* Top of the loop */
2078 int addrCont, addrBreak; /* CONTINUE and BREAK addresses */
2079 int iCurrent = 0; /* The Current table */
2080 int regCurrent; /* Register holding Current table */
2081 int iQueue; /* The Queue table */
2082 int iDistinct = 0; /* To ensure unique results if UNION */
2083 int eDest = SRT_Fifo; /* How to write to Queue */
2084 SelectDest destQueue; /* SelectDest targetting the Queue table */
2085 int i; /* Loop counter */
2086 int rc; /* Result code */
2087 ExprList *pOrderBy; /* The ORDER BY clause */
2088 Expr *pLimit; /* Saved LIMIT and OFFSET */
2089 int regLimit, regOffset; /* Registers used by LIMIT and OFFSET */
2091 /* Obtain authorization to do a recursive query */
2092 if( sqlite3AuthCheck(pParse, SQLITE_RECURSIVE, 0, 0, 0) ) return;
2094 /* Process the LIMIT and OFFSET clauses, if they exist */
2095 addrBreak = sqlite3VdbeMakeLabel(v);
2096 p->nSelectRow = 320; /* 4 billion rows */
2097 computeLimitRegisters(pParse, p, addrBreak);
2098 pLimit = p->pLimit;
2099 regLimit = p->iLimit;
2100 regOffset = p->iOffset;
2101 p->pLimit = 0;
2102 p->iLimit = p->iOffset = 0;
2103 pOrderBy = p->pOrderBy;
2105 /* Locate the cursor number of the Current table */
2106 for(i=0; ALWAYS(i<pSrc->nSrc); i++){
2107 if( pSrc->a[i].fg.isRecursive ){
2108 iCurrent = pSrc->a[i].iCursor;
2109 break;
2113 /* Allocate cursors numbers for Queue and Distinct. The cursor number for
2114 ** the Distinct table must be exactly one greater than Queue in order
2115 ** for the SRT_DistFifo and SRT_DistQueue destinations to work. */
2116 iQueue = pParse->nTab++;
2117 if( p->op==TK_UNION ){
2118 eDest = pOrderBy ? SRT_DistQueue : SRT_DistFifo;
2119 iDistinct = pParse->nTab++;
2120 }else{
2121 eDest = pOrderBy ? SRT_Queue : SRT_Fifo;
2123 sqlite3SelectDestInit(&destQueue, eDest, iQueue);
2125 /* Allocate cursors for Current, Queue, and Distinct. */
2126 regCurrent = ++pParse->nMem;
2127 sqlite3VdbeAddOp3(v, OP_OpenPseudo, iCurrent, regCurrent, nCol);
2128 if( pOrderBy ){
2129 KeyInfo *pKeyInfo = multiSelectOrderByKeyInfo(pParse, p, 1);
2130 sqlite3VdbeAddOp4(v, OP_OpenEphemeral, iQueue, pOrderBy->nExpr+2, 0,
2131 (char*)pKeyInfo, P4_KEYINFO);
2132 destQueue.pOrderBy = pOrderBy;
2133 }else{
2134 sqlite3VdbeAddOp2(v, OP_OpenEphemeral, iQueue, nCol);
2136 VdbeComment((v, "Queue table"));
2137 if( iDistinct ){
2138 p->addrOpenEphm[0] = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, iDistinct, 0);
2139 p->selFlags |= SF_UsesEphemeral;
2142 /* Detach the ORDER BY clause from the compound SELECT */
2143 p->pOrderBy = 0;
2145 /* Store the results of the setup-query in Queue. */
2146 pSetup->pNext = 0;
2147 rc = sqlite3Select(pParse, pSetup, &destQueue);
2148 pSetup->pNext = p;
2149 if( rc ) goto end_of_recursive_query;
2151 /* Find the next row in the Queue and output that row */
2152 addrTop = sqlite3VdbeAddOp2(v, OP_Rewind, iQueue, addrBreak); VdbeCoverage(v);
2154 /* Transfer the next row in Queue over to Current */
2155 sqlite3VdbeAddOp1(v, OP_NullRow, iCurrent); /* To reset column cache */
2156 if( pOrderBy ){
2157 sqlite3VdbeAddOp3(v, OP_Column, iQueue, pOrderBy->nExpr+1, regCurrent);
2158 }else{
2159 sqlite3VdbeAddOp2(v, OP_RowData, iQueue, regCurrent);
2161 sqlite3VdbeAddOp1(v, OP_Delete, iQueue);
2163 /* Output the single row in Current */
2164 addrCont = sqlite3VdbeMakeLabel(v);
2165 codeOffset(v, regOffset, addrCont);
2166 selectInnerLoop(pParse, p, iCurrent,
2167 0, 0, pDest, addrCont, addrBreak);
2168 if( regLimit ){
2169 sqlite3VdbeAddOp2(v, OP_DecrJumpZero, regLimit, addrBreak);
2170 VdbeCoverage(v);
2172 sqlite3VdbeResolveLabel(v, addrCont);
2174 /* Execute the recursive SELECT taking the single row in Current as
2175 ** the value for the recursive-table. Store the results in the Queue.
2177 if( p->selFlags & SF_Aggregate ){
2178 sqlite3ErrorMsg(pParse, "recursive aggregate queries not supported");
2179 }else{
2180 p->pPrior = 0;
2181 sqlite3Select(pParse, p, &destQueue);
2182 assert( p->pPrior==0 );
2183 p->pPrior = pSetup;
2186 /* Keep running the loop until the Queue is empty */
2187 sqlite3VdbeGoto(v, addrTop);
2188 sqlite3VdbeResolveLabel(v, addrBreak);
2190 end_of_recursive_query:
2191 sqlite3ExprListDelete(pParse->db, p->pOrderBy);
2192 p->pOrderBy = pOrderBy;
2193 p->pLimit = pLimit;
2194 return;
2196 #endif /* SQLITE_OMIT_CTE */
2198 /* Forward references */
2199 static int multiSelectOrderBy(
2200 Parse *pParse, /* Parsing context */
2201 Select *p, /* The right-most of SELECTs to be coded */
2202 SelectDest *pDest /* What to do with query results */
2206 ** Handle the special case of a compound-select that originates from a
2207 ** VALUES clause. By handling this as a special case, we avoid deep
2208 ** recursion, and thus do not need to enforce the SQLITE_LIMIT_COMPOUND_SELECT
2209 ** on a VALUES clause.
2211 ** Because the Select object originates from a VALUES clause:
2212 ** (1) There is no LIMIT or OFFSET or else there is a LIMIT of exactly 1
2213 ** (2) All terms are UNION ALL
2214 ** (3) There is no ORDER BY clause
2216 ** The "LIMIT of exactly 1" case of condition (1) comes about when a VALUES
2217 ** clause occurs within scalar expression (ex: "SELECT (VALUES(1),(2),(3))").
2218 ** The sqlite3CodeSubselect will have added the LIMIT 1 clause in tht case.
2219 ** Since the limit is exactly 1, we only need to evalutes the left-most VALUES.
2221 static int multiSelectValues(
2222 Parse *pParse, /* Parsing context */
2223 Select *p, /* The right-most of SELECTs to be coded */
2224 SelectDest *pDest /* What to do with query results */
2226 Select *pPrior;
2227 Select *pRightmost = p;
2228 int nRow = 1;
2229 int rc = 0;
2230 assert( p->selFlags & SF_MultiValue );
2232 assert( p->selFlags & SF_Values );
2233 assert( p->op==TK_ALL || (p->op==TK_SELECT && p->pPrior==0) );
2234 assert( p->pNext==0 || p->pEList->nExpr==p->pNext->pEList->nExpr );
2235 if( p->pPrior==0 ) break;
2236 assert( p->pPrior->pNext==p );
2237 p = p->pPrior;
2238 nRow++;
2239 }while(1);
2240 while( p ){
2241 pPrior = p->pPrior;
2242 p->pPrior = 0;
2243 rc = sqlite3Select(pParse, p, pDest);
2244 p->pPrior = pPrior;
2245 if( rc || pRightmost->pLimit ) break;
2246 p->nSelectRow = nRow;
2247 p = p->pNext;
2249 return rc;
2253 ** This routine is called to process a compound query form from
2254 ** two or more separate queries using UNION, UNION ALL, EXCEPT, or
2255 ** INTERSECT
2257 ** "p" points to the right-most of the two queries. the query on the
2258 ** left is p->pPrior. The left query could also be a compound query
2259 ** in which case this routine will be called recursively.
2261 ** The results of the total query are to be written into a destination
2262 ** of type eDest with parameter iParm.
2264 ** Example 1: Consider a three-way compound SQL statement.
2266 ** SELECT a FROM t1 UNION SELECT b FROM t2 UNION SELECT c FROM t3
2268 ** This statement is parsed up as follows:
2270 ** SELECT c FROM t3
2271 ** |
2272 ** `-----> SELECT b FROM t2
2273 ** |
2274 ** `------> SELECT a FROM t1
2276 ** The arrows in the diagram above represent the Select.pPrior pointer.
2277 ** So if this routine is called with p equal to the t3 query, then
2278 ** pPrior will be the t2 query. p->op will be TK_UNION in this case.
2280 ** Notice that because of the way SQLite parses compound SELECTs, the
2281 ** individual selects always group from left to right.
2283 static int multiSelect(
2284 Parse *pParse, /* Parsing context */
2285 Select *p, /* The right-most of SELECTs to be coded */
2286 SelectDest *pDest /* What to do with query results */
2288 int rc = SQLITE_OK; /* Success code from a subroutine */
2289 Select *pPrior; /* Another SELECT immediately to our left */
2290 Vdbe *v; /* Generate code to this VDBE */
2291 SelectDest dest; /* Alternative data destination */
2292 Select *pDelete = 0; /* Chain of simple selects to delete */
2293 sqlite3 *db; /* Database connection */
2294 #ifndef SQLITE_OMIT_EXPLAIN
2295 int iSub1 = 0; /* EQP id of left-hand query */
2296 int iSub2 = 0; /* EQP id of right-hand query */
2297 #endif
2299 /* Make sure there is no ORDER BY or LIMIT clause on prior SELECTs. Only
2300 ** the last (right-most) SELECT in the series may have an ORDER BY or LIMIT.
2302 assert( p && p->pPrior ); /* Calling function guarantees this much */
2303 assert( (p->selFlags & SF_Recursive)==0 || p->op==TK_ALL || p->op==TK_UNION );
2304 db = pParse->db;
2305 pPrior = p->pPrior;
2306 dest = *pDest;
2307 if( pPrior->pOrderBy || pPrior->pLimit ){
2308 sqlite3ErrorMsg(pParse,"%s clause should come after %s not before",
2309 pPrior->pOrderBy!=0 ? "ORDER BY" : "LIMIT", selectOpName(p->op));
2310 rc = 1;
2311 goto multi_select_end;
2314 v = sqlite3GetVdbe(pParse);
2315 assert( v!=0 ); /* The VDBE already created by calling function */
2317 /* Create the destination temporary table if necessary
2319 if( dest.eDest==SRT_EphemTab ){
2320 assert( p->pEList );
2321 sqlite3VdbeAddOp2(v, OP_OpenEphemeral, dest.iSDParm, p->pEList->nExpr);
2322 dest.eDest = SRT_Table;
2325 /* Special handling for a compound-select that originates as a VALUES clause.
2327 if( p->selFlags & SF_MultiValue ){
2328 rc = multiSelectValues(pParse, p, &dest);
2329 goto multi_select_end;
2332 /* Make sure all SELECTs in the statement have the same number of elements
2333 ** in their result sets.
2335 assert( p->pEList && pPrior->pEList );
2336 assert( p->pEList->nExpr==pPrior->pEList->nExpr );
2338 #ifndef SQLITE_OMIT_CTE
2339 if( p->selFlags & SF_Recursive ){
2340 generateWithRecursiveQuery(pParse, p, &dest);
2341 }else
2342 #endif
2344 /* Compound SELECTs that have an ORDER BY clause are handled separately.
2346 if( p->pOrderBy ){
2347 return multiSelectOrderBy(pParse, p, pDest);
2348 }else
2350 /* Generate code for the left and right SELECT statements.
2352 switch( p->op ){
2353 case TK_ALL: {
2354 int addr = 0;
2355 int nLimit;
2356 assert( !pPrior->pLimit );
2357 pPrior->iLimit = p->iLimit;
2358 pPrior->iOffset = p->iOffset;
2359 pPrior->pLimit = p->pLimit;
2360 explainSetInteger(iSub1, pParse->iNextSelectId);
2361 rc = sqlite3Select(pParse, pPrior, &dest);
2362 p->pLimit = 0;
2363 if( rc ){
2364 goto multi_select_end;
2366 p->pPrior = 0;
2367 p->iLimit = pPrior->iLimit;
2368 p->iOffset = pPrior->iOffset;
2369 if( p->iLimit ){
2370 addr = sqlite3VdbeAddOp1(v, OP_IfNot, p->iLimit); VdbeCoverage(v);
2371 VdbeComment((v, "Jump ahead if LIMIT reached"));
2372 if( p->iOffset ){
2373 sqlite3VdbeAddOp3(v, OP_OffsetLimit,
2374 p->iLimit, p->iOffset+1, p->iOffset);
2377 explainSetInteger(iSub2, pParse->iNextSelectId);
2378 rc = sqlite3Select(pParse, p, &dest);
2379 testcase( rc!=SQLITE_OK );
2380 pDelete = p->pPrior;
2381 p->pPrior = pPrior;
2382 p->nSelectRow = sqlite3LogEstAdd(p->nSelectRow, pPrior->nSelectRow);
2383 if( pPrior->pLimit
2384 && sqlite3ExprIsInteger(pPrior->pLimit->pLeft, &nLimit)
2385 && nLimit>0 && p->nSelectRow > sqlite3LogEst((u64)nLimit)
2387 p->nSelectRow = sqlite3LogEst((u64)nLimit);
2389 if( addr ){
2390 sqlite3VdbeJumpHere(v, addr);
2392 break;
2394 case TK_EXCEPT:
2395 case TK_UNION: {
2396 int unionTab; /* Cursor number of the temporary table holding result */
2397 u8 op = 0; /* One of the SRT_ operations to apply to self */
2398 int priorOp; /* The SRT_ operation to apply to prior selects */
2399 Expr *pLimit; /* Saved values of p->nLimit */
2400 int addr;
2401 SelectDest uniondest;
2403 testcase( p->op==TK_EXCEPT );
2404 testcase( p->op==TK_UNION );
2405 priorOp = SRT_Union;
2406 if( dest.eDest==priorOp ){
2407 /* We can reuse a temporary table generated by a SELECT to our
2408 ** right.
2410 assert( p->pLimit==0 ); /* Not allowed on leftward elements */
2411 unionTab = dest.iSDParm;
2412 }else{
2413 /* We will need to create our own temporary table to hold the
2414 ** intermediate results.
2416 unionTab = pParse->nTab++;
2417 assert( p->pOrderBy==0 );
2418 addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, unionTab, 0);
2419 assert( p->addrOpenEphm[0] == -1 );
2420 p->addrOpenEphm[0] = addr;
2421 findRightmost(p)->selFlags |= SF_UsesEphemeral;
2422 assert( p->pEList );
2425 /* Code the SELECT statements to our left
2427 assert( !pPrior->pOrderBy );
2428 sqlite3SelectDestInit(&uniondest, priorOp, unionTab);
2429 explainSetInteger(iSub1, pParse->iNextSelectId);
2430 rc = sqlite3Select(pParse, pPrior, &uniondest);
2431 if( rc ){
2432 goto multi_select_end;
2435 /* Code the current SELECT statement
2437 if( p->op==TK_EXCEPT ){
2438 op = SRT_Except;
2439 }else{
2440 assert( p->op==TK_UNION );
2441 op = SRT_Union;
2443 p->pPrior = 0;
2444 pLimit = p->pLimit;
2445 p->pLimit = 0;
2446 uniondest.eDest = op;
2447 explainSetInteger(iSub2, pParse->iNextSelectId);
2448 rc = sqlite3Select(pParse, p, &uniondest);
2449 testcase( rc!=SQLITE_OK );
2450 /* Query flattening in sqlite3Select() might refill p->pOrderBy.
2451 ** Be sure to delete p->pOrderBy, therefore, to avoid a memory leak. */
2452 sqlite3ExprListDelete(db, p->pOrderBy);
2453 pDelete = p->pPrior;
2454 p->pPrior = pPrior;
2455 p->pOrderBy = 0;
2456 if( p->op==TK_UNION ){
2457 p->nSelectRow = sqlite3LogEstAdd(p->nSelectRow, pPrior->nSelectRow);
2459 sqlite3ExprDelete(db, p->pLimit);
2460 p->pLimit = pLimit;
2461 p->iLimit = 0;
2462 p->iOffset = 0;
2464 /* Convert the data in the temporary table into whatever form
2465 ** it is that we currently need.
2467 assert( unionTab==dest.iSDParm || dest.eDest!=priorOp );
2468 if( dest.eDest!=priorOp ){
2469 int iCont, iBreak, iStart;
2470 assert( p->pEList );
2471 iBreak = sqlite3VdbeMakeLabel(v);
2472 iCont = sqlite3VdbeMakeLabel(v);
2473 computeLimitRegisters(pParse, p, iBreak);
2474 sqlite3VdbeAddOp2(v, OP_Rewind, unionTab, iBreak); VdbeCoverage(v);
2475 iStart = sqlite3VdbeCurrentAddr(v);
2476 selectInnerLoop(pParse, p, unionTab,
2477 0, 0, &dest, iCont, iBreak);
2478 sqlite3VdbeResolveLabel(v, iCont);
2479 sqlite3VdbeAddOp2(v, OP_Next, unionTab, iStart); VdbeCoverage(v);
2480 sqlite3VdbeResolveLabel(v, iBreak);
2481 sqlite3VdbeAddOp2(v, OP_Close, unionTab, 0);
2483 break;
2485 default: assert( p->op==TK_INTERSECT ); {
2486 int tab1, tab2;
2487 int iCont, iBreak, iStart;
2488 Expr *pLimit;
2489 int addr;
2490 SelectDest intersectdest;
2491 int r1;
2493 /* INTERSECT is different from the others since it requires
2494 ** two temporary tables. Hence it has its own case. Begin
2495 ** by allocating the tables we will need.
2497 tab1 = pParse->nTab++;
2498 tab2 = pParse->nTab++;
2499 assert( p->pOrderBy==0 );
2501 addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, tab1, 0);
2502 assert( p->addrOpenEphm[0] == -1 );
2503 p->addrOpenEphm[0] = addr;
2504 findRightmost(p)->selFlags |= SF_UsesEphemeral;
2505 assert( p->pEList );
2507 /* Code the SELECTs to our left into temporary table "tab1".
2509 sqlite3SelectDestInit(&intersectdest, SRT_Union, tab1);
2510 explainSetInteger(iSub1, pParse->iNextSelectId);
2511 rc = sqlite3Select(pParse, pPrior, &intersectdest);
2512 if( rc ){
2513 goto multi_select_end;
2516 /* Code the current SELECT into temporary table "tab2"
2518 addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, tab2, 0);
2519 assert( p->addrOpenEphm[1] == -1 );
2520 p->addrOpenEphm[1] = addr;
2521 p->pPrior = 0;
2522 pLimit = p->pLimit;
2523 p->pLimit = 0;
2524 intersectdest.iSDParm = tab2;
2525 explainSetInteger(iSub2, pParse->iNextSelectId);
2526 rc = sqlite3Select(pParse, p, &intersectdest);
2527 testcase( rc!=SQLITE_OK );
2528 pDelete = p->pPrior;
2529 p->pPrior = pPrior;
2530 if( p->nSelectRow>pPrior->nSelectRow ) p->nSelectRow = pPrior->nSelectRow;
2531 sqlite3ExprDelete(db, p->pLimit);
2532 p->pLimit = pLimit;
2534 /* Generate code to take the intersection of the two temporary
2535 ** tables.
2537 assert( p->pEList );
2538 iBreak = sqlite3VdbeMakeLabel(v);
2539 iCont = sqlite3VdbeMakeLabel(v);
2540 computeLimitRegisters(pParse, p, iBreak);
2541 sqlite3VdbeAddOp2(v, OP_Rewind, tab1, iBreak); VdbeCoverage(v);
2542 r1 = sqlite3GetTempReg(pParse);
2543 iStart = sqlite3VdbeAddOp2(v, OP_RowData, tab1, r1);
2544 sqlite3VdbeAddOp4Int(v, OP_NotFound, tab2, iCont, r1, 0); VdbeCoverage(v);
2545 sqlite3ReleaseTempReg(pParse, r1);
2546 selectInnerLoop(pParse, p, tab1,
2547 0, 0, &dest, iCont, iBreak);
2548 sqlite3VdbeResolveLabel(v, iCont);
2549 sqlite3VdbeAddOp2(v, OP_Next, tab1, iStart); VdbeCoverage(v);
2550 sqlite3VdbeResolveLabel(v, iBreak);
2551 sqlite3VdbeAddOp2(v, OP_Close, tab2, 0);
2552 sqlite3VdbeAddOp2(v, OP_Close, tab1, 0);
2553 break;
2557 explainComposite(pParse, p->op, iSub1, iSub2, p->op!=TK_ALL);
2559 /* Compute collating sequences used by
2560 ** temporary tables needed to implement the compound select.
2561 ** Attach the KeyInfo structure to all temporary tables.
2563 ** This section is run by the right-most SELECT statement only.
2564 ** SELECT statements to the left always skip this part. The right-most
2565 ** SELECT might also skip this part if it has no ORDER BY clause and
2566 ** no temp tables are required.
2568 if( p->selFlags & SF_UsesEphemeral ){
2569 int i; /* Loop counter */
2570 KeyInfo *pKeyInfo; /* Collating sequence for the result set */
2571 Select *pLoop; /* For looping through SELECT statements */
2572 CollSeq **apColl; /* For looping through pKeyInfo->aColl[] */
2573 int nCol; /* Number of columns in result set */
2575 assert( p->pNext==0 );
2576 nCol = p->pEList->nExpr;
2577 pKeyInfo = sqlite3KeyInfoAlloc(db, nCol, 1);
2578 if( !pKeyInfo ){
2579 rc = SQLITE_NOMEM_BKPT;
2580 goto multi_select_end;
2582 for(i=0, apColl=pKeyInfo->aColl; i<nCol; i++, apColl++){
2583 *apColl = multiSelectCollSeq(pParse, p, i);
2584 if( 0==*apColl ){
2585 *apColl = db->pDfltColl;
2589 for(pLoop=p; pLoop; pLoop=pLoop->pPrior){
2590 for(i=0; i<2; i++){
2591 int addr = pLoop->addrOpenEphm[i];
2592 if( addr<0 ){
2593 /* If [0] is unused then [1] is also unused. So we can
2594 ** always safely abort as soon as the first unused slot is found */
2595 assert( pLoop->addrOpenEphm[1]<0 );
2596 break;
2598 sqlite3VdbeChangeP2(v, addr, nCol);
2599 sqlite3VdbeChangeP4(v, addr, (char*)sqlite3KeyInfoRef(pKeyInfo),
2600 P4_KEYINFO);
2601 pLoop->addrOpenEphm[i] = -1;
2604 sqlite3KeyInfoUnref(pKeyInfo);
2607 multi_select_end:
2608 pDest->iSdst = dest.iSdst;
2609 pDest->nSdst = dest.nSdst;
2610 sqlite3SelectDelete(db, pDelete);
2611 return rc;
2613 #endif /* SQLITE_OMIT_COMPOUND_SELECT */
2616 ** Error message for when two or more terms of a compound select have different
2617 ** size result sets.
2619 void sqlite3SelectWrongNumTermsError(Parse *pParse, Select *p){
2620 if( p->selFlags & SF_Values ){
2621 sqlite3ErrorMsg(pParse, "all VALUES must have the same number of terms");
2622 }else{
2623 sqlite3ErrorMsg(pParse, "SELECTs to the left and right of %s"
2624 " do not have the same number of result columns", selectOpName(p->op));
2629 ** Code an output subroutine for a coroutine implementation of a
2630 ** SELECT statment.
2632 ** The data to be output is contained in pIn->iSdst. There are
2633 ** pIn->nSdst columns to be output. pDest is where the output should
2634 ** be sent.
2636 ** regReturn is the number of the register holding the subroutine
2637 ** return address.
2639 ** If regPrev>0 then it is the first register in a vector that
2640 ** records the previous output. mem[regPrev] is a flag that is false
2641 ** if there has been no previous output. If regPrev>0 then code is
2642 ** generated to suppress duplicates. pKeyInfo is used for comparing
2643 ** keys.
2645 ** If the LIMIT found in p->iLimit is reached, jump immediately to
2646 ** iBreak.
2648 static int generateOutputSubroutine(
2649 Parse *pParse, /* Parsing context */
2650 Select *p, /* The SELECT statement */
2651 SelectDest *pIn, /* Coroutine supplying data */
2652 SelectDest *pDest, /* Where to send the data */
2653 int regReturn, /* The return address register */
2654 int regPrev, /* Previous result register. No uniqueness if 0 */
2655 KeyInfo *pKeyInfo, /* For comparing with previous entry */
2656 int iBreak /* Jump here if we hit the LIMIT */
2658 Vdbe *v = pParse->pVdbe;
2659 int iContinue;
2660 int addr;
2662 addr = sqlite3VdbeCurrentAddr(v);
2663 iContinue = sqlite3VdbeMakeLabel(v);
2665 /* Suppress duplicates for UNION, EXCEPT, and INTERSECT
2667 if( regPrev ){
2668 int addr1, addr2;
2669 addr1 = sqlite3VdbeAddOp1(v, OP_IfNot, regPrev); VdbeCoverage(v);
2670 addr2 = sqlite3VdbeAddOp4(v, OP_Compare, pIn->iSdst, regPrev+1, pIn->nSdst,
2671 (char*)sqlite3KeyInfoRef(pKeyInfo), P4_KEYINFO);
2672 sqlite3VdbeAddOp3(v, OP_Jump, addr2+2, iContinue, addr2+2); VdbeCoverage(v);
2673 sqlite3VdbeJumpHere(v, addr1);
2674 sqlite3VdbeAddOp3(v, OP_Copy, pIn->iSdst, regPrev+1, pIn->nSdst-1);
2675 sqlite3VdbeAddOp2(v, OP_Integer, 1, regPrev);
2677 if( pParse->db->mallocFailed ) return 0;
2679 /* Suppress the first OFFSET entries if there is an OFFSET clause
2681 codeOffset(v, p->iOffset, iContinue);
2683 assert( pDest->eDest!=SRT_Exists );
2684 assert( pDest->eDest!=SRT_Table );
2685 switch( pDest->eDest ){
2686 /* Store the result as data using a unique key.
2688 case SRT_EphemTab: {
2689 int r1 = sqlite3GetTempReg(pParse);
2690 int r2 = sqlite3GetTempReg(pParse);
2691 sqlite3VdbeAddOp3(v, OP_MakeRecord, pIn->iSdst, pIn->nSdst, r1);
2692 sqlite3VdbeAddOp2(v, OP_NewRowid, pDest->iSDParm, r2);
2693 sqlite3VdbeAddOp3(v, OP_Insert, pDest->iSDParm, r1, r2);
2694 sqlite3VdbeChangeP5(v, OPFLAG_APPEND);
2695 sqlite3ReleaseTempReg(pParse, r2);
2696 sqlite3ReleaseTempReg(pParse, r1);
2697 break;
2700 #ifndef SQLITE_OMIT_SUBQUERY
2701 /* If we are creating a set for an "expr IN (SELECT ...)".
2703 case SRT_Set: {
2704 int r1;
2705 testcase( pIn->nSdst>1 );
2706 r1 = sqlite3GetTempReg(pParse);
2707 sqlite3VdbeAddOp4(v, OP_MakeRecord, pIn->iSdst, pIn->nSdst,
2708 r1, pDest->zAffSdst, pIn->nSdst);
2709 sqlite3ExprCacheAffinityChange(pParse, pIn->iSdst, pIn->nSdst);
2710 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, pDest->iSDParm, r1,
2711 pIn->iSdst, pIn->nSdst);
2712 sqlite3ReleaseTempReg(pParse, r1);
2713 break;
2716 /* If this is a scalar select that is part of an expression, then
2717 ** store the results in the appropriate memory cell and break out
2718 ** of the scan loop.
2720 case SRT_Mem: {
2721 assert( pIn->nSdst==1 || pParse->nErr>0 ); testcase( pIn->nSdst!=1 );
2722 sqlite3ExprCodeMove(pParse, pIn->iSdst, pDest->iSDParm, 1);
2723 /* The LIMIT clause will jump out of the loop for us */
2724 break;
2726 #endif /* #ifndef SQLITE_OMIT_SUBQUERY */
2728 /* The results are stored in a sequence of registers
2729 ** starting at pDest->iSdst. Then the co-routine yields.
2731 case SRT_Coroutine: {
2732 if( pDest->iSdst==0 ){
2733 pDest->iSdst = sqlite3GetTempRange(pParse, pIn->nSdst);
2734 pDest->nSdst = pIn->nSdst;
2736 sqlite3ExprCodeMove(pParse, pIn->iSdst, pDest->iSdst, pIn->nSdst);
2737 sqlite3VdbeAddOp1(v, OP_Yield, pDest->iSDParm);
2738 break;
2741 /* If none of the above, then the result destination must be
2742 ** SRT_Output. This routine is never called with any other
2743 ** destination other than the ones handled above or SRT_Output.
2745 ** For SRT_Output, results are stored in a sequence of registers.
2746 ** Then the OP_ResultRow opcode is used to cause sqlite3_step() to
2747 ** return the next row of result.
2749 default: {
2750 assert( pDest->eDest==SRT_Output );
2751 sqlite3VdbeAddOp2(v, OP_ResultRow, pIn->iSdst, pIn->nSdst);
2752 sqlite3ExprCacheAffinityChange(pParse, pIn->iSdst, pIn->nSdst);
2753 break;
2757 /* Jump to the end of the loop if the LIMIT is reached.
2759 if( p->iLimit ){
2760 sqlite3VdbeAddOp2(v, OP_DecrJumpZero, p->iLimit, iBreak); VdbeCoverage(v);
2763 /* Generate the subroutine return
2765 sqlite3VdbeResolveLabel(v, iContinue);
2766 sqlite3VdbeAddOp1(v, OP_Return, regReturn);
2768 return addr;
2772 ** Alternative compound select code generator for cases when there
2773 ** is an ORDER BY clause.
2775 ** We assume a query of the following form:
2777 ** <selectA> <operator> <selectB> ORDER BY <orderbylist>
2779 ** <operator> is one of UNION ALL, UNION, EXCEPT, or INTERSECT. The idea
2780 ** is to code both <selectA> and <selectB> with the ORDER BY clause as
2781 ** co-routines. Then run the co-routines in parallel and merge the results
2782 ** into the output. In addition to the two coroutines (called selectA and
2783 ** selectB) there are 7 subroutines:
2785 ** outA: Move the output of the selectA coroutine into the output
2786 ** of the compound query.
2788 ** outB: Move the output of the selectB coroutine into the output
2789 ** of the compound query. (Only generated for UNION and
2790 ** UNION ALL. EXCEPT and INSERTSECT never output a row that
2791 ** appears only in B.)
2793 ** AltB: Called when there is data from both coroutines and A<B.
2795 ** AeqB: Called when there is data from both coroutines and A==B.
2797 ** AgtB: Called when there is data from both coroutines and A>B.
2799 ** EofA: Called when data is exhausted from selectA.
2801 ** EofB: Called when data is exhausted from selectB.
2803 ** The implementation of the latter five subroutines depend on which
2804 ** <operator> is used:
2807 ** UNION ALL UNION EXCEPT INTERSECT
2808 ** ------------- ----------------- -------------- -----------------
2809 ** AltB: outA, nextA outA, nextA outA, nextA nextA
2811 ** AeqB: outA, nextA nextA nextA outA, nextA
2813 ** AgtB: outB, nextB outB, nextB nextB nextB
2815 ** EofA: outB, nextB outB, nextB halt halt
2817 ** EofB: outA, nextA outA, nextA outA, nextA halt
2819 ** In the AltB, AeqB, and AgtB subroutines, an EOF on A following nextA
2820 ** causes an immediate jump to EofA and an EOF on B following nextB causes
2821 ** an immediate jump to EofB. Within EofA and EofB, and EOF on entry or
2822 ** following nextX causes a jump to the end of the select processing.
2824 ** Duplicate removal in the UNION, EXCEPT, and INTERSECT cases is handled
2825 ** within the output subroutine. The regPrev register set holds the previously
2826 ** output value. A comparison is made against this value and the output
2827 ** is skipped if the next results would be the same as the previous.
2829 ** The implementation plan is to implement the two coroutines and seven
2830 ** subroutines first, then put the control logic at the bottom. Like this:
2832 ** goto Init
2833 ** coA: coroutine for left query (A)
2834 ** coB: coroutine for right query (B)
2835 ** outA: output one row of A
2836 ** outB: output one row of B (UNION and UNION ALL only)
2837 ** EofA: ...
2838 ** EofB: ...
2839 ** AltB: ...
2840 ** AeqB: ...
2841 ** AgtB: ...
2842 ** Init: initialize coroutine registers
2843 ** yield coA
2844 ** if eof(A) goto EofA
2845 ** yield coB
2846 ** if eof(B) goto EofB
2847 ** Cmpr: Compare A, B
2848 ** Jump AltB, AeqB, AgtB
2849 ** End: ...
2851 ** We call AltB, AeqB, AgtB, EofA, and EofB "subroutines" but they are not
2852 ** actually called using Gosub and they do not Return. EofA and EofB loop
2853 ** until all data is exhausted then jump to the "end" labe. AltB, AeqB,
2854 ** and AgtB jump to either L2 or to one of EofA or EofB.
2856 #ifndef SQLITE_OMIT_COMPOUND_SELECT
2857 static int multiSelectOrderBy(
2858 Parse *pParse, /* Parsing context */
2859 Select *p, /* The right-most of SELECTs to be coded */
2860 SelectDest *pDest /* What to do with query results */
2862 int i, j; /* Loop counters */
2863 Select *pPrior; /* Another SELECT immediately to our left */
2864 Vdbe *v; /* Generate code to this VDBE */
2865 SelectDest destA; /* Destination for coroutine A */
2866 SelectDest destB; /* Destination for coroutine B */
2867 int regAddrA; /* Address register for select-A coroutine */
2868 int regAddrB; /* Address register for select-B coroutine */
2869 int addrSelectA; /* Address of the select-A coroutine */
2870 int addrSelectB; /* Address of the select-B coroutine */
2871 int regOutA; /* Address register for the output-A subroutine */
2872 int regOutB; /* Address register for the output-B subroutine */
2873 int addrOutA; /* Address of the output-A subroutine */
2874 int addrOutB = 0; /* Address of the output-B subroutine */
2875 int addrEofA; /* Address of the select-A-exhausted subroutine */
2876 int addrEofA_noB; /* Alternate addrEofA if B is uninitialized */
2877 int addrEofB; /* Address of the select-B-exhausted subroutine */
2878 int addrAltB; /* Address of the A<B subroutine */
2879 int addrAeqB; /* Address of the A==B subroutine */
2880 int addrAgtB; /* Address of the A>B subroutine */
2881 int regLimitA; /* Limit register for select-A */
2882 int regLimitB; /* Limit register for select-A */
2883 int regPrev; /* A range of registers to hold previous output */
2884 int savedLimit; /* Saved value of p->iLimit */
2885 int savedOffset; /* Saved value of p->iOffset */
2886 int labelCmpr; /* Label for the start of the merge algorithm */
2887 int labelEnd; /* Label for the end of the overall SELECT stmt */
2888 int addr1; /* Jump instructions that get retargetted */
2889 int op; /* One of TK_ALL, TK_UNION, TK_EXCEPT, TK_INTERSECT */
2890 KeyInfo *pKeyDup = 0; /* Comparison information for duplicate removal */
2891 KeyInfo *pKeyMerge; /* Comparison information for merging rows */
2892 sqlite3 *db; /* Database connection */
2893 ExprList *pOrderBy; /* The ORDER BY clause */
2894 int nOrderBy; /* Number of terms in the ORDER BY clause */
2895 int *aPermute; /* Mapping from ORDER BY terms to result set columns */
2896 #ifndef SQLITE_OMIT_EXPLAIN
2897 int iSub1; /* EQP id of left-hand query */
2898 int iSub2; /* EQP id of right-hand query */
2899 #endif
2901 assert( p->pOrderBy!=0 );
2902 assert( pKeyDup==0 ); /* "Managed" code needs this. Ticket #3382. */
2903 db = pParse->db;
2904 v = pParse->pVdbe;
2905 assert( v!=0 ); /* Already thrown the error if VDBE alloc failed */
2906 labelEnd = sqlite3VdbeMakeLabel(v);
2907 labelCmpr = sqlite3VdbeMakeLabel(v);
2910 /* Patch up the ORDER BY clause
2912 op = p->op;
2913 pPrior = p->pPrior;
2914 assert( pPrior->pOrderBy==0 );
2915 pOrderBy = p->pOrderBy;
2916 assert( pOrderBy );
2917 nOrderBy = pOrderBy->nExpr;
2919 /* For operators other than UNION ALL we have to make sure that
2920 ** the ORDER BY clause covers every term of the result set. Add
2921 ** terms to the ORDER BY clause as necessary.
2923 if( op!=TK_ALL ){
2924 for(i=1; db->mallocFailed==0 && i<=p->pEList->nExpr; i++){
2925 struct ExprList_item *pItem;
2926 for(j=0, pItem=pOrderBy->a; j<nOrderBy; j++, pItem++){
2927 assert( pItem->u.x.iOrderByCol>0 );
2928 if( pItem->u.x.iOrderByCol==i ) break;
2930 if( j==nOrderBy ){
2931 Expr *pNew = sqlite3Expr(db, TK_INTEGER, 0);
2932 if( pNew==0 ) return SQLITE_NOMEM_BKPT;
2933 pNew->flags |= EP_IntValue;
2934 pNew->u.iValue = i;
2935 p->pOrderBy = pOrderBy = sqlite3ExprListAppend(pParse, pOrderBy, pNew);
2936 if( pOrderBy ) pOrderBy->a[nOrderBy++].u.x.iOrderByCol = (u16)i;
2941 /* Compute the comparison permutation and keyinfo that is used with
2942 ** the permutation used to determine if the next
2943 ** row of results comes from selectA or selectB. Also add explicit
2944 ** collations to the ORDER BY clause terms so that when the subqueries
2945 ** to the right and the left are evaluated, they use the correct
2946 ** collation.
2948 aPermute = sqlite3DbMallocRawNN(db, sizeof(int)*(nOrderBy + 1));
2949 if( aPermute ){
2950 struct ExprList_item *pItem;
2951 aPermute[0] = nOrderBy;
2952 for(i=1, pItem=pOrderBy->a; i<=nOrderBy; i++, pItem++){
2953 assert( pItem->u.x.iOrderByCol>0 );
2954 assert( pItem->u.x.iOrderByCol<=p->pEList->nExpr );
2955 aPermute[i] = pItem->u.x.iOrderByCol - 1;
2957 pKeyMerge = multiSelectOrderByKeyInfo(pParse, p, 1);
2958 }else{
2959 pKeyMerge = 0;
2962 /* Reattach the ORDER BY clause to the query.
2964 p->pOrderBy = pOrderBy;
2965 pPrior->pOrderBy = sqlite3ExprListDup(pParse->db, pOrderBy, 0);
2967 /* Allocate a range of temporary registers and the KeyInfo needed
2968 ** for the logic that removes duplicate result rows when the
2969 ** operator is UNION, EXCEPT, or INTERSECT (but not UNION ALL).
2971 if( op==TK_ALL ){
2972 regPrev = 0;
2973 }else{
2974 int nExpr = p->pEList->nExpr;
2975 assert( nOrderBy>=nExpr || db->mallocFailed );
2976 regPrev = pParse->nMem+1;
2977 pParse->nMem += nExpr+1;
2978 sqlite3VdbeAddOp2(v, OP_Integer, 0, regPrev);
2979 pKeyDup = sqlite3KeyInfoAlloc(db, nExpr, 1);
2980 if( pKeyDup ){
2981 assert( sqlite3KeyInfoIsWriteable(pKeyDup) );
2982 for(i=0; i<nExpr; i++){
2983 pKeyDup->aColl[i] = multiSelectCollSeq(pParse, p, i);
2984 pKeyDup->aSortOrder[i] = 0;
2989 /* Separate the left and the right query from one another
2991 p->pPrior = 0;
2992 pPrior->pNext = 0;
2993 sqlite3ResolveOrderGroupBy(pParse, p, p->pOrderBy, "ORDER");
2994 if( pPrior->pPrior==0 ){
2995 sqlite3ResolveOrderGroupBy(pParse, pPrior, pPrior->pOrderBy, "ORDER");
2998 /* Compute the limit registers */
2999 computeLimitRegisters(pParse, p, labelEnd);
3000 if( p->iLimit && op==TK_ALL ){
3001 regLimitA = ++pParse->nMem;
3002 regLimitB = ++pParse->nMem;
3003 sqlite3VdbeAddOp2(v, OP_Copy, p->iOffset ? p->iOffset+1 : p->iLimit,
3004 regLimitA);
3005 sqlite3VdbeAddOp2(v, OP_Copy, regLimitA, regLimitB);
3006 }else{
3007 regLimitA = regLimitB = 0;
3009 sqlite3ExprDelete(db, p->pLimit);
3010 p->pLimit = 0;
3012 regAddrA = ++pParse->nMem;
3013 regAddrB = ++pParse->nMem;
3014 regOutA = ++pParse->nMem;
3015 regOutB = ++pParse->nMem;
3016 sqlite3SelectDestInit(&destA, SRT_Coroutine, regAddrA);
3017 sqlite3SelectDestInit(&destB, SRT_Coroutine, regAddrB);
3019 /* Generate a coroutine to evaluate the SELECT statement to the
3020 ** left of the compound operator - the "A" select.
3022 addrSelectA = sqlite3VdbeCurrentAddr(v) + 1;
3023 addr1 = sqlite3VdbeAddOp3(v, OP_InitCoroutine, regAddrA, 0, addrSelectA);
3024 VdbeComment((v, "left SELECT"));
3025 pPrior->iLimit = regLimitA;
3026 explainSetInteger(iSub1, pParse->iNextSelectId);
3027 sqlite3Select(pParse, pPrior, &destA);
3028 sqlite3VdbeEndCoroutine(v, regAddrA);
3029 sqlite3VdbeJumpHere(v, addr1);
3031 /* Generate a coroutine to evaluate the SELECT statement on
3032 ** the right - the "B" select
3034 addrSelectB = sqlite3VdbeCurrentAddr(v) + 1;
3035 addr1 = sqlite3VdbeAddOp3(v, OP_InitCoroutine, regAddrB, 0, addrSelectB);
3036 VdbeComment((v, "right SELECT"));
3037 savedLimit = p->iLimit;
3038 savedOffset = p->iOffset;
3039 p->iLimit = regLimitB;
3040 p->iOffset = 0;
3041 explainSetInteger(iSub2, pParse->iNextSelectId);
3042 sqlite3Select(pParse, p, &destB);
3043 p->iLimit = savedLimit;
3044 p->iOffset = savedOffset;
3045 sqlite3VdbeEndCoroutine(v, regAddrB);
3047 /* Generate a subroutine that outputs the current row of the A
3048 ** select as the next output row of the compound select.
3050 VdbeNoopComment((v, "Output routine for A"));
3051 addrOutA = generateOutputSubroutine(pParse,
3052 p, &destA, pDest, regOutA,
3053 regPrev, pKeyDup, labelEnd);
3055 /* Generate a subroutine that outputs the current row of the B
3056 ** select as the next output row of the compound select.
3058 if( op==TK_ALL || op==TK_UNION ){
3059 VdbeNoopComment((v, "Output routine for B"));
3060 addrOutB = generateOutputSubroutine(pParse,
3061 p, &destB, pDest, regOutB,
3062 regPrev, pKeyDup, labelEnd);
3064 sqlite3KeyInfoUnref(pKeyDup);
3066 /* Generate a subroutine to run when the results from select A
3067 ** are exhausted and only data in select B remains.
3069 if( op==TK_EXCEPT || op==TK_INTERSECT ){
3070 addrEofA_noB = addrEofA = labelEnd;
3071 }else{
3072 VdbeNoopComment((v, "eof-A subroutine"));
3073 addrEofA = sqlite3VdbeAddOp2(v, OP_Gosub, regOutB, addrOutB);
3074 addrEofA_noB = sqlite3VdbeAddOp2(v, OP_Yield, regAddrB, labelEnd);
3075 VdbeCoverage(v);
3076 sqlite3VdbeGoto(v, addrEofA);
3077 p->nSelectRow = sqlite3LogEstAdd(p->nSelectRow, pPrior->nSelectRow);
3080 /* Generate a subroutine to run when the results from select B
3081 ** are exhausted and only data in select A remains.
3083 if( op==TK_INTERSECT ){
3084 addrEofB = addrEofA;
3085 if( p->nSelectRow > pPrior->nSelectRow ) p->nSelectRow = pPrior->nSelectRow;
3086 }else{
3087 VdbeNoopComment((v, "eof-B subroutine"));
3088 addrEofB = sqlite3VdbeAddOp2(v, OP_Gosub, regOutA, addrOutA);
3089 sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, labelEnd); VdbeCoverage(v);
3090 sqlite3VdbeGoto(v, addrEofB);
3093 /* Generate code to handle the case of A<B
3095 VdbeNoopComment((v, "A-lt-B subroutine"));
3096 addrAltB = sqlite3VdbeAddOp2(v, OP_Gosub, regOutA, addrOutA);
3097 sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, addrEofA); VdbeCoverage(v);
3098 sqlite3VdbeGoto(v, labelCmpr);
3100 /* Generate code to handle the case of A==B
3102 if( op==TK_ALL ){
3103 addrAeqB = addrAltB;
3104 }else if( op==TK_INTERSECT ){
3105 addrAeqB = addrAltB;
3106 addrAltB++;
3107 }else{
3108 VdbeNoopComment((v, "A-eq-B subroutine"));
3109 addrAeqB =
3110 sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, addrEofA); VdbeCoverage(v);
3111 sqlite3VdbeGoto(v, labelCmpr);
3114 /* Generate code to handle the case of A>B
3116 VdbeNoopComment((v, "A-gt-B subroutine"));
3117 addrAgtB = sqlite3VdbeCurrentAddr(v);
3118 if( op==TK_ALL || op==TK_UNION ){
3119 sqlite3VdbeAddOp2(v, OP_Gosub, regOutB, addrOutB);
3121 sqlite3VdbeAddOp2(v, OP_Yield, regAddrB, addrEofB); VdbeCoverage(v);
3122 sqlite3VdbeGoto(v, labelCmpr);
3124 /* This code runs once to initialize everything.
3126 sqlite3VdbeJumpHere(v, addr1);
3127 sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, addrEofA_noB); VdbeCoverage(v);
3128 sqlite3VdbeAddOp2(v, OP_Yield, regAddrB, addrEofB); VdbeCoverage(v);
3130 /* Implement the main merge loop
3132 sqlite3VdbeResolveLabel(v, labelCmpr);
3133 sqlite3VdbeAddOp4(v, OP_Permutation, 0, 0, 0, (char*)aPermute, P4_INTARRAY);
3134 sqlite3VdbeAddOp4(v, OP_Compare, destA.iSdst, destB.iSdst, nOrderBy,
3135 (char*)pKeyMerge, P4_KEYINFO);
3136 sqlite3VdbeChangeP5(v, OPFLAG_PERMUTE);
3137 sqlite3VdbeAddOp3(v, OP_Jump, addrAltB, addrAeqB, addrAgtB); VdbeCoverage(v);
3139 /* Jump to the this point in order to terminate the query.
3141 sqlite3VdbeResolveLabel(v, labelEnd);
3143 /* Reassembly the compound query so that it will be freed correctly
3144 ** by the calling function */
3145 if( p->pPrior ){
3146 sqlite3SelectDelete(db, p->pPrior);
3148 p->pPrior = pPrior;
3149 pPrior->pNext = p;
3151 /*** TBD: Insert subroutine calls to close cursors on incomplete
3152 **** subqueries ****/
3153 explainComposite(pParse, p->op, iSub1, iSub2, 0);
3154 return pParse->nErr!=0;
3156 #endif
3158 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
3160 /* An instance of the SubstContext object describes an substitution edit
3161 ** to be performed on a parse tree.
3163 ** All references to columns in table iTable are to be replaced by corresponding
3164 ** expressions in pEList.
3166 typedef struct SubstContext {
3167 Parse *pParse; /* The parsing context */
3168 int iTable; /* Replace references to this table */
3169 int iNewTable; /* New table number */
3170 int isLeftJoin; /* Add TK_IF_NULL_ROW opcodes on each replacement */
3171 ExprList *pEList; /* Replacement expressions */
3172 } SubstContext;
3174 /* Forward Declarations */
3175 static void substExprList(SubstContext*, ExprList*);
3176 static void substSelect(SubstContext*, Select*, int);
3179 ** Scan through the expression pExpr. Replace every reference to
3180 ** a column in table number iTable with a copy of the iColumn-th
3181 ** entry in pEList. (But leave references to the ROWID column
3182 ** unchanged.)
3184 ** This routine is part of the flattening procedure. A subquery
3185 ** whose result set is defined by pEList appears as entry in the
3186 ** FROM clause of a SELECT such that the VDBE cursor assigned to that
3187 ** FORM clause entry is iTable. This routine makes the necessary
3188 ** changes to pExpr so that it refers directly to the source table
3189 ** of the subquery rather the result set of the subquery.
3191 static Expr *substExpr(
3192 SubstContext *pSubst, /* Description of the substitution */
3193 Expr *pExpr /* Expr in which substitution occurs */
3195 if( pExpr==0 ) return 0;
3196 if( ExprHasProperty(pExpr, EP_FromJoin)
3197 && pExpr->iRightJoinTable==pSubst->iTable
3199 pExpr->iRightJoinTable = pSubst->iNewTable;
3201 if( pExpr->op==TK_COLUMN && pExpr->iTable==pSubst->iTable ){
3202 if( pExpr->iColumn<0 ){
3203 pExpr->op = TK_NULL;
3204 }else{
3205 Expr *pNew;
3206 Expr *pCopy = pSubst->pEList->a[pExpr->iColumn].pExpr;
3207 Expr ifNullRow;
3208 assert( pSubst->pEList!=0 && pExpr->iColumn<pSubst->pEList->nExpr );
3209 assert( pExpr->pLeft==0 && pExpr->pRight==0 );
3210 if( sqlite3ExprIsVector(pCopy) ){
3211 sqlite3VectorErrorMsg(pSubst->pParse, pCopy);
3212 }else{
3213 sqlite3 *db = pSubst->pParse->db;
3214 if( pSubst->isLeftJoin && pCopy->op!=TK_COLUMN ){
3215 memset(&ifNullRow, 0, sizeof(ifNullRow));
3216 ifNullRow.op = TK_IF_NULL_ROW;
3217 ifNullRow.pLeft = pCopy;
3218 ifNullRow.iTable = pSubst->iNewTable;
3219 pCopy = &ifNullRow;
3221 pNew = sqlite3ExprDup(db, pCopy, 0);
3222 if( pNew && pSubst->isLeftJoin ){
3223 ExprSetProperty(pNew, EP_CanBeNull);
3225 if( pNew && ExprHasProperty(pExpr,EP_FromJoin) ){
3226 pNew->iRightJoinTable = pExpr->iRightJoinTable;
3227 ExprSetProperty(pNew, EP_FromJoin);
3229 sqlite3ExprDelete(db, pExpr);
3230 pExpr = pNew;
3233 }else{
3234 if( pExpr->op==TK_IF_NULL_ROW && pExpr->iTable==pSubst->iTable ){
3235 pExpr->iTable = pSubst->iNewTable;
3237 pExpr->pLeft = substExpr(pSubst, pExpr->pLeft);
3238 pExpr->pRight = substExpr(pSubst, pExpr->pRight);
3239 if( ExprHasProperty(pExpr, EP_xIsSelect) ){
3240 substSelect(pSubst, pExpr->x.pSelect, 1);
3241 }else{
3242 substExprList(pSubst, pExpr->x.pList);
3245 return pExpr;
3247 static void substExprList(
3248 SubstContext *pSubst, /* Description of the substitution */
3249 ExprList *pList /* List to scan and in which to make substitutes */
3251 int i;
3252 if( pList==0 ) return;
3253 for(i=0; i<pList->nExpr; i++){
3254 pList->a[i].pExpr = substExpr(pSubst, pList->a[i].pExpr);
3257 static void substSelect(
3258 SubstContext *pSubst, /* Description of the substitution */
3259 Select *p, /* SELECT statement in which to make substitutions */
3260 int doPrior /* Do substitutes on p->pPrior too */
3262 SrcList *pSrc;
3263 struct SrcList_item *pItem;
3264 int i;
3265 if( !p ) return;
3267 substExprList(pSubst, p->pEList);
3268 substExprList(pSubst, p->pGroupBy);
3269 substExprList(pSubst, p->pOrderBy);
3270 p->pHaving = substExpr(pSubst, p->pHaving);
3271 p->pWhere = substExpr(pSubst, p->pWhere);
3272 pSrc = p->pSrc;
3273 assert( pSrc!=0 );
3274 for(i=pSrc->nSrc, pItem=pSrc->a; i>0; i--, pItem++){
3275 substSelect(pSubst, pItem->pSelect, 1);
3276 if( pItem->fg.isTabFunc ){
3277 substExprList(pSubst, pItem->u1.pFuncArg);
3280 }while( doPrior && (p = p->pPrior)!=0 );
3282 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */
3284 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
3286 ** This routine attempts to flatten subqueries as a performance optimization.
3287 ** This routine returns 1 if it makes changes and 0 if no flattening occurs.
3289 ** To understand the concept of flattening, consider the following
3290 ** query:
3292 ** SELECT a FROM (SELECT x+y AS a FROM t1 WHERE z<100) WHERE a>5
3294 ** The default way of implementing this query is to execute the
3295 ** subquery first and store the results in a temporary table, then
3296 ** run the outer query on that temporary table. This requires two
3297 ** passes over the data. Furthermore, because the temporary table
3298 ** has no indices, the WHERE clause on the outer query cannot be
3299 ** optimized.
3301 ** This routine attempts to rewrite queries such as the above into
3302 ** a single flat select, like this:
3304 ** SELECT x+y AS a FROM t1 WHERE z<100 AND a>5
3306 ** The code generated for this simplification gives the same result
3307 ** but only has to scan the data once. And because indices might
3308 ** exist on the table t1, a complete scan of the data might be
3309 ** avoided.
3311 ** Flattening is subject to the following constraints:
3313 ** (**) We no longer attempt to flatten aggregate subqueries. Was:
3314 ** The subquery and the outer query cannot both be aggregates.
3316 ** (**) We no longer attempt to flatten aggregate subqueries. Was:
3317 ** (2) If the subquery is an aggregate then
3318 ** (2a) the outer query must not be a join and
3319 ** (2b) the outer query must not use subqueries
3320 ** other than the one FROM-clause subquery that is a candidate
3321 ** for flattening. (This is due to ticket [2f7170d73bf9abf80]
3322 ** from 2015-02-09.)
3324 ** (3) If the subquery is the right operand of a LEFT JOIN then
3325 ** (3a) the subquery may not be a join and
3326 ** (3b) the FROM clause of the subquery may not contain a virtual
3327 ** table and
3328 ** (3c) the outer query may not be an aggregate.
3330 ** (4) The subquery can not be DISTINCT.
3332 ** (**) At one point restrictions (4) and (5) defined a subset of DISTINCT
3333 ** sub-queries that were excluded from this optimization. Restriction
3334 ** (4) has since been expanded to exclude all DISTINCT subqueries.
3336 ** (**) We no longer attempt to flatten aggregate subqueries. Was:
3337 ** If the subquery is aggregate, the outer query may not be DISTINCT.
3339 ** (7) The subquery must have a FROM clause. TODO: For subqueries without
3340 ** A FROM clause, consider adding a FROM clause with the special
3341 ** table sqlite_once that consists of a single row containing a
3342 ** single NULL.
3344 ** (8) If the subquery uses LIMIT then the outer query may not be a join.
3346 ** (9) If the subquery uses LIMIT then the outer query may not be aggregate.
3348 ** (**) Restriction (10) was removed from the code on 2005-02-05 but we
3349 ** accidently carried the comment forward until 2014-09-15. Original
3350 ** constraint: "If the subquery is aggregate then the outer query
3351 ** may not use LIMIT."
3353 ** (11) The subquery and the outer query may not both have ORDER BY clauses.
3355 ** (**) Not implemented. Subsumed into restriction (3). Was previously
3356 ** a separate restriction deriving from ticket #350.
3358 ** (13) The subquery and outer query may not both use LIMIT.
3360 ** (14) The subquery may not use OFFSET.
3362 ** (15) If the outer query is part of a compound select, then the
3363 ** subquery may not use LIMIT.
3364 ** (See ticket #2339 and ticket [02a8e81d44]).
3366 ** (16) If the outer query is aggregate, then the subquery may not
3367 ** use ORDER BY. (Ticket #2942) This used to not matter
3368 ** until we introduced the group_concat() function.
3370 ** (17) If the subquery is a compound select, then
3371 ** (17a) all compound operators must be a UNION ALL, and
3372 ** (17b) no terms within the subquery compound may be aggregate
3373 ** or DISTINCT, and
3374 ** (17c) every term within the subquery compound must have a FROM clause
3375 ** (17d) the outer query may not be
3376 ** (17d1) aggregate, or
3377 ** (17d2) DISTINCT, or
3378 ** (17d3) a join.
3380 ** The parent and sub-query may contain WHERE clauses. Subject to
3381 ** rules (11), (13) and (14), they may also contain ORDER BY,
3382 ** LIMIT and OFFSET clauses. The subquery cannot use any compound
3383 ** operator other than UNION ALL because all the other compound
3384 ** operators have an implied DISTINCT which is disallowed by
3385 ** restriction (4).
3387 ** Also, each component of the sub-query must return the same number
3388 ** of result columns. This is actually a requirement for any compound
3389 ** SELECT statement, but all the code here does is make sure that no
3390 ** such (illegal) sub-query is flattened. The caller will detect the
3391 ** syntax error and return a detailed message.
3393 ** (18) If the sub-query is a compound select, then all terms of the
3394 ** ORDER BY clause of the parent must be simple references to
3395 ** columns of the sub-query.
3397 ** (19) If the subquery uses LIMIT then the outer query may not
3398 ** have a WHERE clause.
3400 ** (20) If the sub-query is a compound select, then it must not use
3401 ** an ORDER BY clause. Ticket #3773. We could relax this constraint
3402 ** somewhat by saying that the terms of the ORDER BY clause must
3403 ** appear as unmodified result columns in the outer query. But we
3404 ** have other optimizations in mind to deal with that case.
3406 ** (21) If the subquery uses LIMIT then the outer query may not be
3407 ** DISTINCT. (See ticket [752e1646fc]).
3409 ** (22) The subquery may not be a recursive CTE.
3411 ** (**) Subsumed into restriction (17d3). Was: If the outer query is
3412 ** a recursive CTE, then the sub-query may not be a compound query.
3413 ** This restriction is because transforming the
3414 ** parent to a compound query confuses the code that handles
3415 ** recursive queries in multiSelect().
3417 ** (**) We no longer attempt to flatten aggregate subqueries. Was:
3418 ** The subquery may not be an aggregate that uses the built-in min() or
3419 ** or max() functions. (Without this restriction, a query like:
3420 ** "SELECT x FROM (SELECT max(y), x FROM t1)" would not necessarily
3421 ** return the value X for which Y was maximal.)
3424 ** In this routine, the "p" parameter is a pointer to the outer query.
3425 ** The subquery is p->pSrc->a[iFrom]. isAgg is true if the outer query
3426 ** uses aggregates.
3428 ** If flattening is not attempted, this routine is a no-op and returns 0.
3429 ** If flattening is attempted this routine returns 1.
3431 ** All of the expression analysis must occur on both the outer query and
3432 ** the subquery before this routine runs.
3434 static int flattenSubquery(
3435 Parse *pParse, /* Parsing context */
3436 Select *p, /* The parent or outer SELECT statement */
3437 int iFrom, /* Index in p->pSrc->a[] of the inner subquery */
3438 int isAgg /* True if outer SELECT uses aggregate functions */
3440 const char *zSavedAuthContext = pParse->zAuthContext;
3441 Select *pParent; /* Current UNION ALL term of the other query */
3442 Select *pSub; /* The inner query or "subquery" */
3443 Select *pSub1; /* Pointer to the rightmost select in sub-query */
3444 SrcList *pSrc; /* The FROM clause of the outer query */
3445 SrcList *pSubSrc; /* The FROM clause of the subquery */
3446 int iParent; /* VDBE cursor number of the pSub result set temp table */
3447 int iNewParent = -1;/* Replacement table for iParent */
3448 int isLeftJoin = 0; /* True if pSub is the right side of a LEFT JOIN */
3449 int i; /* Loop counter */
3450 Expr *pWhere; /* The WHERE clause */
3451 struct SrcList_item *pSubitem; /* The subquery */
3452 sqlite3 *db = pParse->db;
3454 /* Check to see if flattening is permitted. Return 0 if not.
3456 assert( p!=0 );
3457 assert( p->pPrior==0 );
3458 if( OptimizationDisabled(db, SQLITE_QueryFlattener) ) return 0;
3459 pSrc = p->pSrc;
3460 assert( pSrc && iFrom>=0 && iFrom<pSrc->nSrc );
3461 pSubitem = &pSrc->a[iFrom];
3462 iParent = pSubitem->iCursor;
3463 pSub = pSubitem->pSelect;
3464 assert( pSub!=0 );
3466 pSubSrc = pSub->pSrc;
3467 assert( pSubSrc );
3468 /* Prior to version 3.1.2, when LIMIT and OFFSET had to be simple constants,
3469 ** not arbitrary expressions, we allowed some combining of LIMIT and OFFSET
3470 ** because they could be computed at compile-time. But when LIMIT and OFFSET
3471 ** became arbitrary expressions, we were forced to add restrictions (13)
3472 ** and (14). */
3473 if( pSub->pLimit && p->pLimit ) return 0; /* Restriction (13) */
3474 if( pSub->pLimit && pSub->pLimit->pRight ) return 0; /* Restriction (14) */
3475 if( (p->selFlags & SF_Compound)!=0 && pSub->pLimit ){
3476 return 0; /* Restriction (15) */
3478 if( pSubSrc->nSrc==0 ) return 0; /* Restriction (7) */
3479 if( pSub->selFlags & SF_Distinct ) return 0; /* Restriction (4) */
3480 if( pSub->pLimit && (pSrc->nSrc>1 || isAgg) ){
3481 return 0; /* Restrictions (8)(9) */
3483 if( p->pOrderBy && pSub->pOrderBy ){
3484 return 0; /* Restriction (11) */
3486 if( isAgg && pSub->pOrderBy ) return 0; /* Restriction (16) */
3487 if( pSub->pLimit && p->pWhere ) return 0; /* Restriction (19) */
3488 if( pSub->pLimit && (p->selFlags & SF_Distinct)!=0 ){
3489 return 0; /* Restriction (21) */
3491 if( pSub->selFlags & (SF_Recursive) ){
3492 return 0; /* Restrictions (22) */
3496 ** If the subquery is the right operand of a LEFT JOIN, then the
3497 ** subquery may not be a join itself (3a). Example of why this is not
3498 ** allowed:
3500 ** t1 LEFT OUTER JOIN (t2 JOIN t3)
3502 ** If we flatten the above, we would get
3504 ** (t1 LEFT OUTER JOIN t2) JOIN t3
3506 ** which is not at all the same thing.
3508 ** If the subquery is the right operand of a LEFT JOIN, then the outer
3509 ** query cannot be an aggregate. (3c) This is an artifact of the way
3510 ** aggregates are processed - there is no mechanism to determine if
3511 ** the LEFT JOIN table should be all-NULL.
3513 ** See also tickets #306, #350, and #3300.
3515 if( (pSubitem->fg.jointype & JT_OUTER)!=0 ){
3516 isLeftJoin = 1;
3517 if( pSubSrc->nSrc>1 || isAgg || IsVirtual(pSubSrc->a[0].pTab) ){
3518 /* (3a) (3c) (3b) */
3519 return 0;
3522 #ifdef SQLITE_EXTRA_IFNULLROW
3523 else if( iFrom>0 && !isAgg ){
3524 /* Setting isLeftJoin to -1 causes OP_IfNullRow opcodes to be generated for
3525 ** every reference to any result column from subquery in a join, even
3526 ** though they are not necessary. This will stress-test the OP_IfNullRow
3527 ** opcode. */
3528 isLeftJoin = -1;
3530 #endif
3532 /* Restriction (17): If the sub-query is a compound SELECT, then it must
3533 ** use only the UNION ALL operator. And none of the simple select queries
3534 ** that make up the compound SELECT are allowed to be aggregate or distinct
3535 ** queries.
3537 if( pSub->pPrior ){
3538 if( pSub->pOrderBy ){
3539 return 0; /* Restriction (20) */
3541 if( isAgg || (p->selFlags & SF_Distinct)!=0 || pSrc->nSrc!=1 ){
3542 return 0; /* (17d1), (17d2), or (17d3) */
3544 for(pSub1=pSub; pSub1; pSub1=pSub1->pPrior){
3545 testcase( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct );
3546 testcase( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))==SF_Aggregate );
3547 assert( pSub->pSrc!=0 );
3548 assert( pSub->pEList->nExpr==pSub1->pEList->nExpr );
3549 if( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))!=0 /* (17b) */
3550 || (pSub1->pPrior && pSub1->op!=TK_ALL) /* (17a) */
3551 || pSub1->pSrc->nSrc<1 /* (17c) */
3553 return 0;
3555 testcase( pSub1->pSrc->nSrc>1 );
3558 /* Restriction (18). */
3559 if( p->pOrderBy ){
3560 int ii;
3561 for(ii=0; ii<p->pOrderBy->nExpr; ii++){
3562 if( p->pOrderBy->a[ii].u.x.iOrderByCol==0 ) return 0;
3567 /* Ex-restriction (23):
3568 ** The only way that the recursive part of a CTE can contain a compound
3569 ** subquery is for the subquery to be one term of a join. But if the
3570 ** subquery is a join, then the flattening has already been stopped by
3571 ** restriction (17d3)
3573 assert( (p->selFlags & SF_Recursive)==0 || pSub->pPrior==0 );
3575 /***** If we reach this point, flattening is permitted. *****/
3576 SELECTTRACE(1,pParse,p,("flatten %s.%p from term %d\n",
3577 pSub->zSelName, pSub, iFrom));
3579 /* Authorize the subquery */
3580 pParse->zAuthContext = pSubitem->zName;
3581 TESTONLY(i =) sqlite3AuthCheck(pParse, SQLITE_SELECT, 0, 0, 0);
3582 testcase( i==SQLITE_DENY );
3583 pParse->zAuthContext = zSavedAuthContext;
3585 /* If the sub-query is a compound SELECT statement, then (by restrictions
3586 ** 17 and 18 above) it must be a UNION ALL and the parent query must
3587 ** be of the form:
3589 ** SELECT <expr-list> FROM (<sub-query>) <where-clause>
3591 ** followed by any ORDER BY, LIMIT and/or OFFSET clauses. This block
3592 ** creates N-1 copies of the parent query without any ORDER BY, LIMIT or
3593 ** OFFSET clauses and joins them to the left-hand-side of the original
3594 ** using UNION ALL operators. In this case N is the number of simple
3595 ** select statements in the compound sub-query.
3597 ** Example:
3599 ** SELECT a+1 FROM (
3600 ** SELECT x FROM tab
3601 ** UNION ALL
3602 ** SELECT y FROM tab
3603 ** UNION ALL
3604 ** SELECT abs(z*2) FROM tab2
3605 ** ) WHERE a!=5 ORDER BY 1
3607 ** Transformed into:
3609 ** SELECT x+1 FROM tab WHERE x+1!=5
3610 ** UNION ALL
3611 ** SELECT y+1 FROM tab WHERE y+1!=5
3612 ** UNION ALL
3613 ** SELECT abs(z*2)+1 FROM tab2 WHERE abs(z*2)+1!=5
3614 ** ORDER BY 1
3616 ** We call this the "compound-subquery flattening".
3618 for(pSub=pSub->pPrior; pSub; pSub=pSub->pPrior){
3619 Select *pNew;
3620 ExprList *pOrderBy = p->pOrderBy;
3621 Expr *pLimit = p->pLimit;
3622 Select *pPrior = p->pPrior;
3623 p->pOrderBy = 0;
3624 p->pSrc = 0;
3625 p->pPrior = 0;
3626 p->pLimit = 0;
3627 pNew = sqlite3SelectDup(db, p, 0);
3628 sqlite3SelectSetName(pNew, pSub->zSelName);
3629 p->pLimit = pLimit;
3630 p->pOrderBy = pOrderBy;
3631 p->pSrc = pSrc;
3632 p->op = TK_ALL;
3633 if( pNew==0 ){
3634 p->pPrior = pPrior;
3635 }else{
3636 pNew->pPrior = pPrior;
3637 if( pPrior ) pPrior->pNext = pNew;
3638 pNew->pNext = p;
3639 p->pPrior = pNew;
3640 SELECTTRACE(2,pParse,p,
3641 ("compound-subquery flattener creates %s.%p as peer\n",
3642 pNew->zSelName, pNew));
3644 if( db->mallocFailed ) return 1;
3647 /* Begin flattening the iFrom-th entry of the FROM clause
3648 ** in the outer query.
3650 pSub = pSub1 = pSubitem->pSelect;
3652 /* Delete the transient table structure associated with the
3653 ** subquery
3655 sqlite3DbFree(db, pSubitem->zDatabase);
3656 sqlite3DbFree(db, pSubitem->zName);
3657 sqlite3DbFree(db, pSubitem->zAlias);
3658 pSubitem->zDatabase = 0;
3659 pSubitem->zName = 0;
3660 pSubitem->zAlias = 0;
3661 pSubitem->pSelect = 0;
3663 /* Defer deleting the Table object associated with the
3664 ** subquery until code generation is
3665 ** complete, since there may still exist Expr.pTab entries that
3666 ** refer to the subquery even after flattening. Ticket #3346.
3668 ** pSubitem->pTab is always non-NULL by test restrictions and tests above.
3670 if( ALWAYS(pSubitem->pTab!=0) ){
3671 Table *pTabToDel = pSubitem->pTab;
3672 if( pTabToDel->nTabRef==1 ){
3673 Parse *pToplevel = sqlite3ParseToplevel(pParse);
3674 pTabToDel->pNextZombie = pToplevel->pZombieTab;
3675 pToplevel->pZombieTab = pTabToDel;
3676 }else{
3677 pTabToDel->nTabRef--;
3679 pSubitem->pTab = 0;
3682 /* The following loop runs once for each term in a compound-subquery
3683 ** flattening (as described above). If we are doing a different kind
3684 ** of flattening - a flattening other than a compound-subquery flattening -
3685 ** then this loop only runs once.
3687 ** This loop moves all of the FROM elements of the subquery into the
3688 ** the FROM clause of the outer query. Before doing this, remember
3689 ** the cursor number for the original outer query FROM element in
3690 ** iParent. The iParent cursor will never be used. Subsequent code
3691 ** will scan expressions looking for iParent references and replace
3692 ** those references with expressions that resolve to the subquery FROM
3693 ** elements we are now copying in.
3695 for(pParent=p; pParent; pParent=pParent->pPrior, pSub=pSub->pPrior){
3696 int nSubSrc;
3697 u8 jointype = 0;
3698 pSubSrc = pSub->pSrc; /* FROM clause of subquery */
3699 nSubSrc = pSubSrc->nSrc; /* Number of terms in subquery FROM clause */
3700 pSrc = pParent->pSrc; /* FROM clause of the outer query */
3702 if( pSrc ){
3703 assert( pParent==p ); /* First time through the loop */
3704 jointype = pSubitem->fg.jointype;
3705 }else{
3706 assert( pParent!=p ); /* 2nd and subsequent times through the loop */
3707 pSrc = pParent->pSrc = sqlite3SrcListAppend(db, 0, 0, 0);
3708 if( pSrc==0 ){
3709 assert( db->mallocFailed );
3710 break;
3714 /* The subquery uses a single slot of the FROM clause of the outer
3715 ** query. If the subquery has more than one element in its FROM clause,
3716 ** then expand the outer query to make space for it to hold all elements
3717 ** of the subquery.
3719 ** Example:
3721 ** SELECT * FROM tabA, (SELECT * FROM sub1, sub2), tabB;
3723 ** The outer query has 3 slots in its FROM clause. One slot of the
3724 ** outer query (the middle slot) is used by the subquery. The next
3725 ** block of code will expand the outer query FROM clause to 4 slots.
3726 ** The middle slot is expanded to two slots in order to make space
3727 ** for the two elements in the FROM clause of the subquery.
3729 if( nSubSrc>1 ){
3730 pParent->pSrc = pSrc = sqlite3SrcListEnlarge(db, pSrc, nSubSrc-1,iFrom+1);
3731 if( db->mallocFailed ){
3732 break;
3736 /* Transfer the FROM clause terms from the subquery into the
3737 ** outer query.
3739 for(i=0; i<nSubSrc; i++){
3740 sqlite3IdListDelete(db, pSrc->a[i+iFrom].pUsing);
3741 assert( pSrc->a[i+iFrom].fg.isTabFunc==0 );
3742 pSrc->a[i+iFrom] = pSubSrc->a[i];
3743 iNewParent = pSubSrc->a[i].iCursor;
3744 memset(&pSubSrc->a[i], 0, sizeof(pSubSrc->a[i]));
3746 pSrc->a[iFrom].fg.jointype = jointype;
3748 /* Now begin substituting subquery result set expressions for
3749 ** references to the iParent in the outer query.
3751 ** Example:
3753 ** SELECT a+5, b*10 FROM (SELECT x*3 AS a, y+10 AS b FROM t1) WHERE a>b;
3754 ** \ \_____________ subquery __________/ /
3755 ** \_____________________ outer query ______________________________/
3757 ** We look at every expression in the outer query and every place we see
3758 ** "a" we substitute "x*3" and every place we see "b" we substitute "y+10".
3760 if( pSub->pOrderBy ){
3761 /* At this point, any non-zero iOrderByCol values indicate that the
3762 ** ORDER BY column expression is identical to the iOrderByCol'th
3763 ** expression returned by SELECT statement pSub. Since these values
3764 ** do not necessarily correspond to columns in SELECT statement pParent,
3765 ** zero them before transfering the ORDER BY clause.
3767 ** Not doing this may cause an error if a subsequent call to this
3768 ** function attempts to flatten a compound sub-query into pParent
3769 ** (the only way this can happen is if the compound sub-query is
3770 ** currently part of pSub->pSrc). See ticket [d11a6e908f]. */
3771 ExprList *pOrderBy = pSub->pOrderBy;
3772 for(i=0; i<pOrderBy->nExpr; i++){
3773 pOrderBy->a[i].u.x.iOrderByCol = 0;
3775 assert( pParent->pOrderBy==0 );
3776 assert( pSub->pPrior==0 );
3777 pParent->pOrderBy = pOrderBy;
3778 pSub->pOrderBy = 0;
3780 pWhere = sqlite3ExprDup(db, pSub->pWhere, 0);
3781 if( isLeftJoin>0 ){
3782 setJoinExpr(pWhere, iNewParent);
3784 pParent->pWhere = sqlite3ExprAnd(db, pWhere, pParent->pWhere);
3785 if( db->mallocFailed==0 ){
3786 SubstContext x;
3787 x.pParse = pParse;
3788 x.iTable = iParent;
3789 x.iNewTable = iNewParent;
3790 x.isLeftJoin = isLeftJoin;
3791 x.pEList = pSub->pEList;
3792 substSelect(&x, pParent, 0);
3795 /* The flattened query is distinct if either the inner or the
3796 ** outer query is distinct.
3798 pParent->selFlags |= pSub->selFlags & SF_Distinct;
3801 ** SELECT ... FROM (SELECT ... LIMIT a OFFSET b) LIMIT x OFFSET y;
3803 ** One is tempted to try to add a and b to combine the limits. But this
3804 ** does not work if either limit is negative.
3806 if( pSub->pLimit ){
3807 pParent->pLimit = pSub->pLimit;
3808 pSub->pLimit = 0;
3812 /* Finially, delete what is left of the subquery and return
3813 ** success.
3815 sqlite3SelectDelete(db, pSub1);
3817 #if SELECTTRACE_ENABLED
3818 if( sqlite3SelectTrace & 0x100 ){
3819 SELECTTRACE(0x100,pParse,p,("After flattening:\n"));
3820 sqlite3TreeViewSelect(0, p, 0);
3822 #endif
3824 return 1;
3826 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */
3830 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
3832 ** Make copies of relevant WHERE clause terms of the outer query into
3833 ** the WHERE clause of subquery. Example:
3835 ** SELECT * FROM (SELECT a AS x, c-d AS y FROM t1) WHERE x=5 AND y=10;
3837 ** Transformed into:
3839 ** SELECT * FROM (SELECT a AS x, c-d AS y FROM t1 WHERE a=5 AND c-d=10)
3840 ** WHERE x=5 AND y=10;
3842 ** The hope is that the terms added to the inner query will make it more
3843 ** efficient.
3845 ** Do not attempt this optimization if:
3847 ** (1) (** This restriction was removed on 2017-09-29. We used to
3848 ** disallow this optimization for aggregate subqueries, but now
3849 ** it is allowed by putting the extra terms on the HAVING clause.
3850 ** The added HAVING clause is pointless if the subquery lacks
3851 ** a GROUP BY clause. But such a HAVING clause is also harmless
3852 ** so there does not appear to be any reason to add extra logic
3853 ** to suppress it. **)
3855 ** (2) The inner query is the recursive part of a common table expression.
3857 ** (3) The inner query has a LIMIT clause (since the changes to the WHERE
3858 ** close would change the meaning of the LIMIT).
3860 ** (4) The inner query is the right operand of a LEFT JOIN and the
3861 ** expression to be pushed down does not come from the ON clause
3862 ** on that LEFT JOIN.
3864 ** (5) The WHERE clause expression originates in the ON or USING clause
3865 ** of a LEFT JOIN where iCursor is not the right-hand table of that
3866 ** left join. An example:
3868 ** SELECT *
3869 ** FROM (SELECT 1 AS a1 UNION ALL SELECT 2) AS aa
3870 ** JOIN (SELECT 1 AS b2 UNION ALL SELECT 2) AS bb ON (a1=b2)
3871 ** LEFT JOIN (SELECT 8 AS c3 UNION ALL SELECT 9) AS cc ON (b2=2);
3873 ** The correct answer is three rows: (1,1,NULL),(2,2,8),(2,2,9).
3874 ** But if the (b2=2) term were to be pushed down into the bb subquery,
3875 ** then the (1,1,NULL) row would be suppressed.
3877 ** Return 0 if no changes are made and non-zero if one or more WHERE clause
3878 ** terms are duplicated into the subquery.
3880 static int pushDownWhereTerms(
3881 Parse *pParse, /* Parse context (for malloc() and error reporting) */
3882 Select *pSubq, /* The subquery whose WHERE clause is to be augmented */
3883 Expr *pWhere, /* The WHERE clause of the outer query */
3884 int iCursor, /* Cursor number of the subquery */
3885 int isLeftJoin /* True if pSubq is the right term of a LEFT JOIN */
3887 Expr *pNew;
3888 int nChng = 0;
3889 if( pWhere==0 ) return 0;
3890 if( pSubq->selFlags & SF_Recursive ) return 0; /* restriction (2) */
3892 #ifdef SQLITE_DEBUG
3893 /* Only the first term of a compound can have a WITH clause. But make
3894 ** sure no other terms are marked SF_Recursive in case something changes
3895 ** in the future.
3898 Select *pX;
3899 for(pX=pSubq; pX; pX=pX->pPrior){
3900 assert( (pX->selFlags & (SF_Recursive))==0 );
3903 #endif
3905 if( pSubq->pLimit!=0 ){
3906 return 0; /* restriction (3) */
3908 while( pWhere->op==TK_AND ){
3909 nChng += pushDownWhereTerms(pParse, pSubq, pWhere->pRight,
3910 iCursor, isLeftJoin);
3911 pWhere = pWhere->pLeft;
3913 if( isLeftJoin
3914 && (ExprHasProperty(pWhere,EP_FromJoin)==0
3915 || pWhere->iRightJoinTable!=iCursor)
3917 return 0; /* restriction (4) */
3919 if( ExprHasProperty(pWhere,EP_FromJoin) && pWhere->iRightJoinTable!=iCursor ){
3920 return 0; /* restriction (5) */
3922 if( sqlite3ExprIsTableConstant(pWhere, iCursor) ){
3923 nChng++;
3924 while( pSubq ){
3925 SubstContext x;
3926 pNew = sqlite3ExprDup(pParse->db, pWhere, 0);
3927 unsetJoinExpr(pNew, -1);
3928 x.pParse = pParse;
3929 x.iTable = iCursor;
3930 x.iNewTable = iCursor;
3931 x.isLeftJoin = 0;
3932 x.pEList = pSubq->pEList;
3933 pNew = substExpr(&x, pNew);
3934 if( pSubq->selFlags & SF_Aggregate ){
3935 pSubq->pHaving = sqlite3ExprAnd(pParse->db, pSubq->pHaving, pNew);
3936 }else{
3937 pSubq->pWhere = sqlite3ExprAnd(pParse->db, pSubq->pWhere, pNew);
3939 pSubq = pSubq->pPrior;
3942 return nChng;
3944 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */
3947 ** The pFunc is the only aggregate function in the query. Check to see
3948 ** if the query is a candidate for the min/max optimization.
3950 ** If the query is a candidate for the min/max optimization, then set
3951 ** *ppMinMax to be an ORDER BY clause to be used for the optimization
3952 ** and return either WHERE_ORDERBY_MIN or WHERE_ORDERBY_MAX depending on
3953 ** whether pFunc is a min() or max() function.
3955 ** If the query is not a candidate for the min/max optimization, return
3956 ** WHERE_ORDERBY_NORMAL (which must be zero).
3958 ** This routine must be called after aggregate functions have been
3959 ** located but before their arguments have been subjected to aggregate
3960 ** analysis.
3962 static u8 minMaxQuery(sqlite3 *db, Expr *pFunc, ExprList **ppMinMax){
3963 int eRet = WHERE_ORDERBY_NORMAL; /* Return value */
3964 ExprList *pEList = pFunc->x.pList; /* Arguments to agg function */
3965 const char *zFunc; /* Name of aggregate function pFunc */
3966 ExprList *pOrderBy;
3967 u8 sortOrder;
3969 assert( *ppMinMax==0 );
3970 assert( pFunc->op==TK_AGG_FUNCTION );
3971 if( pEList==0 || pEList->nExpr!=1 ) return eRet;
3972 zFunc = pFunc->u.zToken;
3973 if( sqlite3StrICmp(zFunc, "min")==0 ){
3974 eRet = WHERE_ORDERBY_MIN;
3975 sortOrder = SQLITE_SO_ASC;
3976 }else if( sqlite3StrICmp(zFunc, "max")==0 ){
3977 eRet = WHERE_ORDERBY_MAX;
3978 sortOrder = SQLITE_SO_DESC;
3979 }else{
3980 return eRet;
3982 *ppMinMax = pOrderBy = sqlite3ExprListDup(db, pEList, 0);
3983 assert( pOrderBy!=0 || db->mallocFailed );
3984 if( pOrderBy ) pOrderBy->a[0].sortOrder = sortOrder;
3985 return eRet;
3989 ** The select statement passed as the first argument is an aggregate query.
3990 ** The second argument is the associated aggregate-info object. This
3991 ** function tests if the SELECT is of the form:
3993 ** SELECT count(*) FROM <tbl>
3995 ** where table is a database table, not a sub-select or view. If the query
3996 ** does match this pattern, then a pointer to the Table object representing
3997 ** <tbl> is returned. Otherwise, 0 is returned.
3999 static Table *isSimpleCount(Select *p, AggInfo *pAggInfo){
4000 Table *pTab;
4001 Expr *pExpr;
4003 assert( !p->pGroupBy );
4005 if( p->pWhere || p->pEList->nExpr!=1
4006 || p->pSrc->nSrc!=1 || p->pSrc->a[0].pSelect
4008 return 0;
4010 pTab = p->pSrc->a[0].pTab;
4011 pExpr = p->pEList->a[0].pExpr;
4012 assert( pTab && !pTab->pSelect && pExpr );
4014 if( IsVirtual(pTab) ) return 0;
4015 if( pExpr->op!=TK_AGG_FUNCTION ) return 0;
4016 if( NEVER(pAggInfo->nFunc==0) ) return 0;
4017 if( (pAggInfo->aFunc[0].pFunc->funcFlags&SQLITE_FUNC_COUNT)==0 ) return 0;
4018 if( pExpr->flags&EP_Distinct ) return 0;
4020 return pTab;
4024 ** If the source-list item passed as an argument was augmented with an
4025 ** INDEXED BY clause, then try to locate the specified index. If there
4026 ** was such a clause and the named index cannot be found, return
4027 ** SQLITE_ERROR and leave an error in pParse. Otherwise, populate
4028 ** pFrom->pIndex and return SQLITE_OK.
4030 int sqlite3IndexedByLookup(Parse *pParse, struct SrcList_item *pFrom){
4031 if( pFrom->pTab && pFrom->fg.isIndexedBy ){
4032 Table *pTab = pFrom->pTab;
4033 char *zIndexedBy = pFrom->u1.zIndexedBy;
4034 Index *pIdx;
4035 for(pIdx=pTab->pIndex;
4036 pIdx && sqlite3StrICmp(pIdx->zName, zIndexedBy);
4037 pIdx=pIdx->pNext
4039 if( !pIdx ){
4040 sqlite3ErrorMsg(pParse, "no such index: %s", zIndexedBy, 0);
4041 pParse->checkSchema = 1;
4042 return SQLITE_ERROR;
4044 pFrom->pIBIndex = pIdx;
4046 return SQLITE_OK;
4049 ** Detect compound SELECT statements that use an ORDER BY clause with
4050 ** an alternative collating sequence.
4052 ** SELECT ... FROM t1 EXCEPT SELECT ... FROM t2 ORDER BY .. COLLATE ...
4054 ** These are rewritten as a subquery:
4056 ** SELECT * FROM (SELECT ... FROM t1 EXCEPT SELECT ... FROM t2)
4057 ** ORDER BY ... COLLATE ...
4059 ** This transformation is necessary because the multiSelectOrderBy() routine
4060 ** above that generates the code for a compound SELECT with an ORDER BY clause
4061 ** uses a merge algorithm that requires the same collating sequence on the
4062 ** result columns as on the ORDER BY clause. See ticket
4063 ** http://www.sqlite.org/src/info/6709574d2a
4065 ** This transformation is only needed for EXCEPT, INTERSECT, and UNION.
4066 ** The UNION ALL operator works fine with multiSelectOrderBy() even when
4067 ** there are COLLATE terms in the ORDER BY.
4069 static int convertCompoundSelectToSubquery(Walker *pWalker, Select *p){
4070 int i;
4071 Select *pNew;
4072 Select *pX;
4073 sqlite3 *db;
4074 struct ExprList_item *a;
4075 SrcList *pNewSrc;
4076 Parse *pParse;
4077 Token dummy;
4079 if( p->pPrior==0 ) return WRC_Continue;
4080 if( p->pOrderBy==0 ) return WRC_Continue;
4081 for(pX=p; pX && (pX->op==TK_ALL || pX->op==TK_SELECT); pX=pX->pPrior){}
4082 if( pX==0 ) return WRC_Continue;
4083 a = p->pOrderBy->a;
4084 for(i=p->pOrderBy->nExpr-1; i>=0; i--){
4085 if( a[i].pExpr->flags & EP_Collate ) break;
4087 if( i<0 ) return WRC_Continue;
4089 /* If we reach this point, that means the transformation is required. */
4091 pParse = pWalker->pParse;
4092 db = pParse->db;
4093 pNew = sqlite3DbMallocZero(db, sizeof(*pNew) );
4094 if( pNew==0 ) return WRC_Abort;
4095 memset(&dummy, 0, sizeof(dummy));
4096 pNewSrc = sqlite3SrcListAppendFromTerm(pParse,0,0,0,&dummy,pNew,0,0);
4097 if( pNewSrc==0 ) return WRC_Abort;
4098 *pNew = *p;
4099 p->pSrc = pNewSrc;
4100 p->pEList = sqlite3ExprListAppend(pParse, 0, sqlite3Expr(db, TK_ASTERISK, 0));
4101 p->op = TK_SELECT;
4102 p->pWhere = 0;
4103 pNew->pGroupBy = 0;
4104 pNew->pHaving = 0;
4105 pNew->pOrderBy = 0;
4106 p->pPrior = 0;
4107 p->pNext = 0;
4108 p->pWith = 0;
4109 p->selFlags &= ~SF_Compound;
4110 assert( (p->selFlags & SF_Converted)==0 );
4111 p->selFlags |= SF_Converted;
4112 assert( pNew->pPrior!=0 );
4113 pNew->pPrior->pNext = pNew;
4114 pNew->pLimit = 0;
4115 return WRC_Continue;
4119 ** Check to see if the FROM clause term pFrom has table-valued function
4120 ** arguments. If it does, leave an error message in pParse and return
4121 ** non-zero, since pFrom is not allowed to be a table-valued function.
4123 static int cannotBeFunction(Parse *pParse, struct SrcList_item *pFrom){
4124 if( pFrom->fg.isTabFunc ){
4125 sqlite3ErrorMsg(pParse, "'%s' is not a function", pFrom->zName);
4126 return 1;
4128 return 0;
4131 #ifndef SQLITE_OMIT_CTE
4133 ** Argument pWith (which may be NULL) points to a linked list of nested
4134 ** WITH contexts, from inner to outermost. If the table identified by
4135 ** FROM clause element pItem is really a common-table-expression (CTE)
4136 ** then return a pointer to the CTE definition for that table. Otherwise
4137 ** return NULL.
4139 ** If a non-NULL value is returned, set *ppContext to point to the With
4140 ** object that the returned CTE belongs to.
4142 static struct Cte *searchWith(
4143 With *pWith, /* Current innermost WITH clause */
4144 struct SrcList_item *pItem, /* FROM clause element to resolve */
4145 With **ppContext /* OUT: WITH clause return value belongs to */
4147 const char *zName;
4148 if( pItem->zDatabase==0 && (zName = pItem->zName)!=0 ){
4149 With *p;
4150 for(p=pWith; p; p=p->pOuter){
4151 int i;
4152 for(i=0; i<p->nCte; i++){
4153 if( sqlite3StrICmp(zName, p->a[i].zName)==0 ){
4154 *ppContext = p;
4155 return &p->a[i];
4160 return 0;
4163 /* The code generator maintains a stack of active WITH clauses
4164 ** with the inner-most WITH clause being at the top of the stack.
4166 ** This routine pushes the WITH clause passed as the second argument
4167 ** onto the top of the stack. If argument bFree is true, then this
4168 ** WITH clause will never be popped from the stack. In this case it
4169 ** should be freed along with the Parse object. In other cases, when
4170 ** bFree==0, the With object will be freed along with the SELECT
4171 ** statement with which it is associated.
4173 void sqlite3WithPush(Parse *pParse, With *pWith, u8 bFree){
4174 assert( bFree==0 || (pParse->pWith==0 && pParse->pWithToFree==0) );
4175 if( pWith ){
4176 assert( pParse->pWith!=pWith );
4177 pWith->pOuter = pParse->pWith;
4178 pParse->pWith = pWith;
4179 if( bFree ) pParse->pWithToFree = pWith;
4184 ** This function checks if argument pFrom refers to a CTE declared by
4185 ** a WITH clause on the stack currently maintained by the parser. And,
4186 ** if currently processing a CTE expression, if it is a recursive
4187 ** reference to the current CTE.
4189 ** If pFrom falls into either of the two categories above, pFrom->pTab
4190 ** and other fields are populated accordingly. The caller should check
4191 ** (pFrom->pTab!=0) to determine whether or not a successful match
4192 ** was found.
4194 ** Whether or not a match is found, SQLITE_OK is returned if no error
4195 ** occurs. If an error does occur, an error message is stored in the
4196 ** parser and some error code other than SQLITE_OK returned.
4198 static int withExpand(
4199 Walker *pWalker,
4200 struct SrcList_item *pFrom
4202 Parse *pParse = pWalker->pParse;
4203 sqlite3 *db = pParse->db;
4204 struct Cte *pCte; /* Matched CTE (or NULL if no match) */
4205 With *pWith; /* WITH clause that pCte belongs to */
4207 assert( pFrom->pTab==0 );
4209 pCte = searchWith(pParse->pWith, pFrom, &pWith);
4210 if( pCte ){
4211 Table *pTab;
4212 ExprList *pEList;
4213 Select *pSel;
4214 Select *pLeft; /* Left-most SELECT statement */
4215 int bMayRecursive; /* True if compound joined by UNION [ALL] */
4216 With *pSavedWith; /* Initial value of pParse->pWith */
4218 /* If pCte->zCteErr is non-NULL at this point, then this is an illegal
4219 ** recursive reference to CTE pCte. Leave an error in pParse and return
4220 ** early. If pCte->zCteErr is NULL, then this is not a recursive reference.
4221 ** In this case, proceed. */
4222 if( pCte->zCteErr ){
4223 sqlite3ErrorMsg(pParse, pCte->zCteErr, pCte->zName);
4224 return SQLITE_ERROR;
4226 if( cannotBeFunction(pParse, pFrom) ) return SQLITE_ERROR;
4228 assert( pFrom->pTab==0 );
4229 pFrom->pTab = pTab = sqlite3DbMallocZero(db, sizeof(Table));
4230 if( pTab==0 ) return WRC_Abort;
4231 pTab->nTabRef = 1;
4232 pTab->zName = sqlite3DbStrDup(db, pCte->zName);
4233 pTab->iPKey = -1;
4234 pTab->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) );
4235 pTab->tabFlags |= TF_Ephemeral | TF_NoVisibleRowid;
4236 pFrom->pSelect = sqlite3SelectDup(db, pCte->pSelect, 0);
4237 if( db->mallocFailed ) return SQLITE_NOMEM_BKPT;
4238 assert( pFrom->pSelect );
4240 /* Check if this is a recursive CTE. */
4241 pSel = pFrom->pSelect;
4242 bMayRecursive = ( pSel->op==TK_ALL || pSel->op==TK_UNION );
4243 if( bMayRecursive ){
4244 int i;
4245 SrcList *pSrc = pFrom->pSelect->pSrc;
4246 for(i=0; i<pSrc->nSrc; i++){
4247 struct SrcList_item *pItem = &pSrc->a[i];
4248 if( pItem->zDatabase==0
4249 && pItem->zName!=0
4250 && 0==sqlite3StrICmp(pItem->zName, pCte->zName)
4252 pItem->pTab = pTab;
4253 pItem->fg.isRecursive = 1;
4254 pTab->nTabRef++;
4255 pSel->selFlags |= SF_Recursive;
4260 /* Only one recursive reference is permitted. */
4261 if( pTab->nTabRef>2 ){
4262 sqlite3ErrorMsg(
4263 pParse, "multiple references to recursive table: %s", pCte->zName
4265 return SQLITE_ERROR;
4267 assert( pTab->nTabRef==1 ||
4268 ((pSel->selFlags&SF_Recursive) && pTab->nTabRef==2 ));
4270 pCte->zCteErr = "circular reference: %s";
4271 pSavedWith = pParse->pWith;
4272 pParse->pWith = pWith;
4273 if( bMayRecursive ){
4274 Select *pPrior = pSel->pPrior;
4275 assert( pPrior->pWith==0 );
4276 pPrior->pWith = pSel->pWith;
4277 sqlite3WalkSelect(pWalker, pPrior);
4278 pPrior->pWith = 0;
4279 }else{
4280 sqlite3WalkSelect(pWalker, pSel);
4282 pParse->pWith = pWith;
4284 for(pLeft=pSel; pLeft->pPrior; pLeft=pLeft->pPrior);
4285 pEList = pLeft->pEList;
4286 if( pCte->pCols ){
4287 if( pEList && pEList->nExpr!=pCte->pCols->nExpr ){
4288 sqlite3ErrorMsg(pParse, "table %s has %d values for %d columns",
4289 pCte->zName, pEList->nExpr, pCte->pCols->nExpr
4291 pParse->pWith = pSavedWith;
4292 return SQLITE_ERROR;
4294 pEList = pCte->pCols;
4297 sqlite3ColumnsFromExprList(pParse, pEList, &pTab->nCol, &pTab->aCol);
4298 if( bMayRecursive ){
4299 if( pSel->selFlags & SF_Recursive ){
4300 pCte->zCteErr = "multiple recursive references: %s";
4301 }else{
4302 pCte->zCteErr = "recursive reference in a subquery: %s";
4304 sqlite3WalkSelect(pWalker, pSel);
4306 pCte->zCteErr = 0;
4307 pParse->pWith = pSavedWith;
4310 return SQLITE_OK;
4312 #endif
4314 #ifndef SQLITE_OMIT_CTE
4316 ** If the SELECT passed as the second argument has an associated WITH
4317 ** clause, pop it from the stack stored as part of the Parse object.
4319 ** This function is used as the xSelectCallback2() callback by
4320 ** sqlite3SelectExpand() when walking a SELECT tree to resolve table
4321 ** names and other FROM clause elements.
4323 static void selectPopWith(Walker *pWalker, Select *p){
4324 Parse *pParse = pWalker->pParse;
4325 if( OK_IF_ALWAYS_TRUE(pParse->pWith) && p->pPrior==0 ){
4326 With *pWith = findRightmost(p)->pWith;
4327 if( pWith!=0 ){
4328 assert( pParse->pWith==pWith );
4329 pParse->pWith = pWith->pOuter;
4333 #else
4334 #define selectPopWith 0
4335 #endif
4338 ** This routine is a Walker callback for "expanding" a SELECT statement.
4339 ** "Expanding" means to do the following:
4341 ** (1) Make sure VDBE cursor numbers have been assigned to every
4342 ** element of the FROM clause.
4344 ** (2) Fill in the pTabList->a[].pTab fields in the SrcList that
4345 ** defines FROM clause. When views appear in the FROM clause,
4346 ** fill pTabList->a[].pSelect with a copy of the SELECT statement
4347 ** that implements the view. A copy is made of the view's SELECT
4348 ** statement so that we can freely modify or delete that statement
4349 ** without worrying about messing up the persistent representation
4350 ** of the view.
4352 ** (3) Add terms to the WHERE clause to accommodate the NATURAL keyword
4353 ** on joins and the ON and USING clause of joins.
4355 ** (4) Scan the list of columns in the result set (pEList) looking
4356 ** for instances of the "*" operator or the TABLE.* operator.
4357 ** If found, expand each "*" to be every column in every table
4358 ** and TABLE.* to be every column in TABLE.
4361 static int selectExpander(Walker *pWalker, Select *p){
4362 Parse *pParse = pWalker->pParse;
4363 int i, j, k;
4364 SrcList *pTabList;
4365 ExprList *pEList;
4366 struct SrcList_item *pFrom;
4367 sqlite3 *db = pParse->db;
4368 Expr *pE, *pRight, *pExpr;
4369 u16 selFlags = p->selFlags;
4370 u32 elistFlags = 0;
4372 p->selFlags |= SF_Expanded;
4373 if( db->mallocFailed ){
4374 return WRC_Abort;
4376 assert( p->pSrc!=0 );
4377 if( (selFlags & SF_Expanded)!=0 ){
4378 return WRC_Prune;
4380 pTabList = p->pSrc;
4381 pEList = p->pEList;
4382 if( OK_IF_ALWAYS_TRUE(p->pWith) ){
4383 sqlite3WithPush(pParse, p->pWith, 0);
4386 /* Make sure cursor numbers have been assigned to all entries in
4387 ** the FROM clause of the SELECT statement.
4389 sqlite3SrcListAssignCursors(pParse, pTabList);
4391 /* Look up every table named in the FROM clause of the select. If
4392 ** an entry of the FROM clause is a subquery instead of a table or view,
4393 ** then create a transient table structure to describe the subquery.
4395 for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){
4396 Table *pTab;
4397 assert( pFrom->fg.isRecursive==0 || pFrom->pTab!=0 );
4398 if( pFrom->fg.isRecursive ) continue;
4399 assert( pFrom->pTab==0 );
4400 #ifndef SQLITE_OMIT_CTE
4401 if( withExpand(pWalker, pFrom) ) return WRC_Abort;
4402 if( pFrom->pTab ) {} else
4403 #endif
4404 if( pFrom->zName==0 ){
4405 #ifndef SQLITE_OMIT_SUBQUERY
4406 Select *pSel = pFrom->pSelect;
4407 /* A sub-query in the FROM clause of a SELECT */
4408 assert( pSel!=0 );
4409 assert( pFrom->pTab==0 );
4410 if( sqlite3WalkSelect(pWalker, pSel) ) return WRC_Abort;
4411 pFrom->pTab = pTab = sqlite3DbMallocZero(db, sizeof(Table));
4412 if( pTab==0 ) return WRC_Abort;
4413 pTab->nTabRef = 1;
4414 if( pFrom->zAlias ){
4415 pTab->zName = sqlite3DbStrDup(db, pFrom->zAlias);
4416 }else{
4417 pTab->zName = sqlite3MPrintf(db, "subquery_%p", (void*)pTab);
4419 while( pSel->pPrior ){ pSel = pSel->pPrior; }
4420 sqlite3ColumnsFromExprList(pParse, pSel->pEList,&pTab->nCol,&pTab->aCol);
4421 pTab->iPKey = -1;
4422 pTab->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) );
4423 pTab->tabFlags |= TF_Ephemeral;
4424 #endif
4425 }else{
4426 /* An ordinary table or view name in the FROM clause */
4427 assert( pFrom->pTab==0 );
4428 pFrom->pTab = pTab = sqlite3LocateTableItem(pParse, 0, pFrom);
4429 if( pTab==0 ) return WRC_Abort;
4430 if( pTab->nTabRef>=0xffff ){
4431 sqlite3ErrorMsg(pParse, "too many references to \"%s\": max 65535",
4432 pTab->zName);
4433 pFrom->pTab = 0;
4434 return WRC_Abort;
4436 pTab->nTabRef++;
4437 if( !IsVirtual(pTab) && cannotBeFunction(pParse, pFrom) ){
4438 return WRC_Abort;
4440 #if !defined(SQLITE_OMIT_VIEW) || !defined (SQLITE_OMIT_VIRTUALTABLE)
4441 if( IsVirtual(pTab) || pTab->pSelect ){
4442 i16 nCol;
4443 if( sqlite3ViewGetColumnNames(pParse, pTab) ) return WRC_Abort;
4444 assert( pFrom->pSelect==0 );
4445 pFrom->pSelect = sqlite3SelectDup(db, pTab->pSelect, 0);
4446 sqlite3SelectSetName(pFrom->pSelect, pTab->zName);
4447 nCol = pTab->nCol;
4448 pTab->nCol = -1;
4449 sqlite3WalkSelect(pWalker, pFrom->pSelect);
4450 pTab->nCol = nCol;
4452 #endif
4455 /* Locate the index named by the INDEXED BY clause, if any. */
4456 if( sqlite3IndexedByLookup(pParse, pFrom) ){
4457 return WRC_Abort;
4461 /* Process NATURAL keywords, and ON and USING clauses of joins.
4463 if( db->mallocFailed || sqliteProcessJoin(pParse, p) ){
4464 return WRC_Abort;
4467 /* For every "*" that occurs in the column list, insert the names of
4468 ** all columns in all tables. And for every TABLE.* insert the names
4469 ** of all columns in TABLE. The parser inserted a special expression
4470 ** with the TK_ASTERISK operator for each "*" that it found in the column
4471 ** list. The following code just has to locate the TK_ASTERISK
4472 ** expressions and expand each one to the list of all columns in
4473 ** all tables.
4475 ** The first loop just checks to see if there are any "*" operators
4476 ** that need expanding.
4478 for(k=0; k<pEList->nExpr; k++){
4479 pE = pEList->a[k].pExpr;
4480 if( pE->op==TK_ASTERISK ) break;
4481 assert( pE->op!=TK_DOT || pE->pRight!=0 );
4482 assert( pE->op!=TK_DOT || (pE->pLeft!=0 && pE->pLeft->op==TK_ID) );
4483 if( pE->op==TK_DOT && pE->pRight->op==TK_ASTERISK ) break;
4484 elistFlags |= pE->flags;
4486 if( k<pEList->nExpr ){
4488 ** If we get here it means the result set contains one or more "*"
4489 ** operators that need to be expanded. Loop through each expression
4490 ** in the result set and expand them one by one.
4492 struct ExprList_item *a = pEList->a;
4493 ExprList *pNew = 0;
4494 int flags = pParse->db->flags;
4495 int longNames = (flags & SQLITE_FullColNames)!=0
4496 && (flags & SQLITE_ShortColNames)==0;
4498 for(k=0; k<pEList->nExpr; k++){
4499 pE = a[k].pExpr;
4500 elistFlags |= pE->flags;
4501 pRight = pE->pRight;
4502 assert( pE->op!=TK_DOT || pRight!=0 );
4503 if( pE->op!=TK_ASTERISK
4504 && (pE->op!=TK_DOT || pRight->op!=TK_ASTERISK)
4506 /* This particular expression does not need to be expanded.
4508 pNew = sqlite3ExprListAppend(pParse, pNew, a[k].pExpr);
4509 if( pNew ){
4510 pNew->a[pNew->nExpr-1].zName = a[k].zName;
4511 pNew->a[pNew->nExpr-1].zSpan = a[k].zSpan;
4512 a[k].zName = 0;
4513 a[k].zSpan = 0;
4515 a[k].pExpr = 0;
4516 }else{
4517 /* This expression is a "*" or a "TABLE.*" and needs to be
4518 ** expanded. */
4519 int tableSeen = 0; /* Set to 1 when TABLE matches */
4520 char *zTName = 0; /* text of name of TABLE */
4521 if( pE->op==TK_DOT ){
4522 assert( pE->pLeft!=0 );
4523 assert( !ExprHasProperty(pE->pLeft, EP_IntValue) );
4524 zTName = pE->pLeft->u.zToken;
4526 for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){
4527 Table *pTab = pFrom->pTab;
4528 Select *pSub = pFrom->pSelect;
4529 char *zTabName = pFrom->zAlias;
4530 const char *zSchemaName = 0;
4531 int iDb;
4532 if( zTabName==0 ){
4533 zTabName = pTab->zName;
4535 if( db->mallocFailed ) break;
4536 if( pSub==0 || (pSub->selFlags & SF_NestedFrom)==0 ){
4537 pSub = 0;
4538 if( zTName && sqlite3StrICmp(zTName, zTabName)!=0 ){
4539 continue;
4541 iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
4542 zSchemaName = iDb>=0 ? db->aDb[iDb].zDbSName : "*";
4544 for(j=0; j<pTab->nCol; j++){
4545 char *zName = pTab->aCol[j].zName;
4546 char *zColname; /* The computed column name */
4547 char *zToFree; /* Malloced string that needs to be freed */
4548 Token sColname; /* Computed column name as a token */
4550 assert( zName );
4551 if( zTName && pSub
4552 && sqlite3MatchSpanName(pSub->pEList->a[j].zSpan, 0, zTName, 0)==0
4554 continue;
4557 /* If a column is marked as 'hidden', omit it from the expanded
4558 ** result-set list unless the SELECT has the SF_IncludeHidden
4559 ** bit set.
4561 if( (p->selFlags & SF_IncludeHidden)==0
4562 && IsHiddenColumn(&pTab->aCol[j])
4564 continue;
4566 tableSeen = 1;
4568 if( i>0 && zTName==0 ){
4569 if( (pFrom->fg.jointype & JT_NATURAL)!=0
4570 && tableAndColumnIndex(pTabList, i, zName, 0, 0)
4572 /* In a NATURAL join, omit the join columns from the
4573 ** table to the right of the join */
4574 continue;
4576 if( sqlite3IdListIndex(pFrom->pUsing, zName)>=0 ){
4577 /* In a join with a USING clause, omit columns in the
4578 ** using clause from the table on the right. */
4579 continue;
4582 pRight = sqlite3Expr(db, TK_ID, zName);
4583 zColname = zName;
4584 zToFree = 0;
4585 if( longNames || pTabList->nSrc>1 ){
4586 Expr *pLeft;
4587 pLeft = sqlite3Expr(db, TK_ID, zTabName);
4588 pExpr = sqlite3PExpr(pParse, TK_DOT, pLeft, pRight);
4589 if( zSchemaName ){
4590 pLeft = sqlite3Expr(db, TK_ID, zSchemaName);
4591 pExpr = sqlite3PExpr(pParse, TK_DOT, pLeft, pExpr);
4593 if( longNames ){
4594 zColname = sqlite3MPrintf(db, "%s.%s", zTabName, zName);
4595 zToFree = zColname;
4597 }else{
4598 pExpr = pRight;
4600 pNew = sqlite3ExprListAppend(pParse, pNew, pExpr);
4601 sqlite3TokenInit(&sColname, zColname);
4602 sqlite3ExprListSetName(pParse, pNew, &sColname, 0);
4603 if( pNew && (p->selFlags & SF_NestedFrom)!=0 ){
4604 struct ExprList_item *pX = &pNew->a[pNew->nExpr-1];
4605 if( pSub ){
4606 pX->zSpan = sqlite3DbStrDup(db, pSub->pEList->a[j].zSpan);
4607 testcase( pX->zSpan==0 );
4608 }else{
4609 pX->zSpan = sqlite3MPrintf(db, "%s.%s.%s",
4610 zSchemaName, zTabName, zColname);
4611 testcase( pX->zSpan==0 );
4613 pX->bSpanIsTab = 1;
4615 sqlite3DbFree(db, zToFree);
4618 if( !tableSeen ){
4619 if( zTName ){
4620 sqlite3ErrorMsg(pParse, "no such table: %s", zTName);
4621 }else{
4622 sqlite3ErrorMsg(pParse, "no tables specified");
4627 sqlite3ExprListDelete(db, pEList);
4628 p->pEList = pNew;
4630 if( p->pEList ){
4631 if( p->pEList->nExpr>db->aLimit[SQLITE_LIMIT_COLUMN] ){
4632 sqlite3ErrorMsg(pParse, "too many columns in result set");
4633 return WRC_Abort;
4635 if( (elistFlags & (EP_HasFunc|EP_Subquery))!=0 ){
4636 p->selFlags |= SF_ComplexResult;
4639 return WRC_Continue;
4643 ** No-op routine for the parse-tree walker.
4645 ** When this routine is the Walker.xExprCallback then expression trees
4646 ** are walked without any actions being taken at each node. Presumably,
4647 ** when this routine is used for Walker.xExprCallback then
4648 ** Walker.xSelectCallback is set to do something useful for every
4649 ** subquery in the parser tree.
4651 int sqlite3ExprWalkNoop(Walker *NotUsed, Expr *NotUsed2){
4652 UNUSED_PARAMETER2(NotUsed, NotUsed2);
4653 return WRC_Continue;
4657 ** No-op routine for the parse-tree walker for SELECT statements.
4658 ** subquery in the parser tree.
4660 int sqlite3SelectWalkNoop(Walker *NotUsed, Select *NotUsed2){
4661 UNUSED_PARAMETER2(NotUsed, NotUsed2);
4662 return WRC_Continue;
4665 #if SQLITE_DEBUG
4667 ** Always assert. This xSelectCallback2 implementation proves that the
4668 ** xSelectCallback2 is never invoked.
4670 void sqlite3SelectWalkAssert2(Walker *NotUsed, Select *NotUsed2){
4671 UNUSED_PARAMETER2(NotUsed, NotUsed2);
4672 assert( 0 );
4674 #endif
4676 ** This routine "expands" a SELECT statement and all of its subqueries.
4677 ** For additional information on what it means to "expand" a SELECT
4678 ** statement, see the comment on the selectExpand worker callback above.
4680 ** Expanding a SELECT statement is the first step in processing a
4681 ** SELECT statement. The SELECT statement must be expanded before
4682 ** name resolution is performed.
4684 ** If anything goes wrong, an error message is written into pParse.
4685 ** The calling function can detect the problem by looking at pParse->nErr
4686 ** and/or pParse->db->mallocFailed.
4688 static void sqlite3SelectExpand(Parse *pParse, Select *pSelect){
4689 Walker w;
4690 w.xExprCallback = sqlite3ExprWalkNoop;
4691 w.pParse = pParse;
4692 if( OK_IF_ALWAYS_TRUE(pParse->hasCompound) ){
4693 w.xSelectCallback = convertCompoundSelectToSubquery;
4694 w.xSelectCallback2 = 0;
4695 sqlite3WalkSelect(&w, pSelect);
4697 w.xSelectCallback = selectExpander;
4698 w.xSelectCallback2 = selectPopWith;
4699 sqlite3WalkSelect(&w, pSelect);
4703 #ifndef SQLITE_OMIT_SUBQUERY
4705 ** This is a Walker.xSelectCallback callback for the sqlite3SelectTypeInfo()
4706 ** interface.
4708 ** For each FROM-clause subquery, add Column.zType and Column.zColl
4709 ** information to the Table structure that represents the result set
4710 ** of that subquery.
4712 ** The Table structure that represents the result set was constructed
4713 ** by selectExpander() but the type and collation information was omitted
4714 ** at that point because identifiers had not yet been resolved. This
4715 ** routine is called after identifier resolution.
4717 static void selectAddSubqueryTypeInfo(Walker *pWalker, Select *p){
4718 Parse *pParse;
4719 int i;
4720 SrcList *pTabList;
4721 struct SrcList_item *pFrom;
4723 assert( p->selFlags & SF_Resolved );
4724 assert( (p->selFlags & SF_HasTypeInfo)==0 );
4725 p->selFlags |= SF_HasTypeInfo;
4726 pParse = pWalker->pParse;
4727 pTabList = p->pSrc;
4728 for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){
4729 Table *pTab = pFrom->pTab;
4730 assert( pTab!=0 );
4731 if( (pTab->tabFlags & TF_Ephemeral)!=0 ){
4732 /* A sub-query in the FROM clause of a SELECT */
4733 Select *pSel = pFrom->pSelect;
4734 if( pSel ){
4735 while( pSel->pPrior ) pSel = pSel->pPrior;
4736 sqlite3SelectAddColumnTypeAndCollation(pParse, pTab, pSel);
4741 #endif
4745 ** This routine adds datatype and collating sequence information to
4746 ** the Table structures of all FROM-clause subqueries in a
4747 ** SELECT statement.
4749 ** Use this routine after name resolution.
4751 static void sqlite3SelectAddTypeInfo(Parse *pParse, Select *pSelect){
4752 #ifndef SQLITE_OMIT_SUBQUERY
4753 Walker w;
4754 w.xSelectCallback = sqlite3SelectWalkNoop;
4755 w.xSelectCallback2 = selectAddSubqueryTypeInfo;
4756 w.xExprCallback = sqlite3ExprWalkNoop;
4757 w.pParse = pParse;
4758 sqlite3WalkSelect(&w, pSelect);
4759 #endif
4764 ** This routine sets up a SELECT statement for processing. The
4765 ** following is accomplished:
4767 ** * VDBE Cursor numbers are assigned to all FROM-clause terms.
4768 ** * Ephemeral Table objects are created for all FROM-clause subqueries.
4769 ** * ON and USING clauses are shifted into WHERE statements
4770 ** * Wildcards "*" and "TABLE.*" in result sets are expanded.
4771 ** * Identifiers in expression are matched to tables.
4773 ** This routine acts recursively on all subqueries within the SELECT.
4775 void sqlite3SelectPrep(
4776 Parse *pParse, /* The parser context */
4777 Select *p, /* The SELECT statement being coded. */
4778 NameContext *pOuterNC /* Name context for container */
4780 assert( p!=0 || pParse->db->mallocFailed );
4781 if( pParse->db->mallocFailed ) return;
4782 if( p->selFlags & SF_HasTypeInfo ) return;
4783 sqlite3SelectExpand(pParse, p);
4784 if( pParse->nErr || pParse->db->mallocFailed ) return;
4785 sqlite3ResolveSelectNames(pParse, p, pOuterNC);
4786 if( pParse->nErr || pParse->db->mallocFailed ) return;
4787 sqlite3SelectAddTypeInfo(pParse, p);
4791 ** Reset the aggregate accumulator.
4793 ** The aggregate accumulator is a set of memory cells that hold
4794 ** intermediate results while calculating an aggregate. This
4795 ** routine generates code that stores NULLs in all of those memory
4796 ** cells.
4798 static void resetAccumulator(Parse *pParse, AggInfo *pAggInfo){
4799 Vdbe *v = pParse->pVdbe;
4800 int i;
4801 struct AggInfo_func *pFunc;
4802 int nReg = pAggInfo->nFunc + pAggInfo->nColumn;
4803 if( nReg==0 ) return;
4804 #ifdef SQLITE_DEBUG
4805 /* Verify that all AggInfo registers are within the range specified by
4806 ** AggInfo.mnReg..AggInfo.mxReg */
4807 assert( nReg==pAggInfo->mxReg-pAggInfo->mnReg+1 );
4808 for(i=0; i<pAggInfo->nColumn; i++){
4809 assert( pAggInfo->aCol[i].iMem>=pAggInfo->mnReg
4810 && pAggInfo->aCol[i].iMem<=pAggInfo->mxReg );
4812 for(i=0; i<pAggInfo->nFunc; i++){
4813 assert( pAggInfo->aFunc[i].iMem>=pAggInfo->mnReg
4814 && pAggInfo->aFunc[i].iMem<=pAggInfo->mxReg );
4816 #endif
4817 sqlite3VdbeAddOp3(v, OP_Null, 0, pAggInfo->mnReg, pAggInfo->mxReg);
4818 for(pFunc=pAggInfo->aFunc, i=0; i<pAggInfo->nFunc; i++, pFunc++){
4819 if( pFunc->iDistinct>=0 ){
4820 Expr *pE = pFunc->pExpr;
4821 assert( !ExprHasProperty(pE, EP_xIsSelect) );
4822 if( pE->x.pList==0 || pE->x.pList->nExpr!=1 ){
4823 sqlite3ErrorMsg(pParse, "DISTINCT aggregates must have exactly one "
4824 "argument");
4825 pFunc->iDistinct = -1;
4826 }else{
4827 KeyInfo *pKeyInfo = keyInfoFromExprList(pParse, pE->x.pList, 0, 0);
4828 sqlite3VdbeAddOp4(v, OP_OpenEphemeral, pFunc->iDistinct, 0, 0,
4829 (char*)pKeyInfo, P4_KEYINFO);
4836 ** Invoke the OP_AggFinalize opcode for every aggregate function
4837 ** in the AggInfo structure.
4839 static void finalizeAggFunctions(Parse *pParse, AggInfo *pAggInfo){
4840 Vdbe *v = pParse->pVdbe;
4841 int i;
4842 struct AggInfo_func *pF;
4843 for(i=0, pF=pAggInfo->aFunc; i<pAggInfo->nFunc; i++, pF++){
4844 ExprList *pList = pF->pExpr->x.pList;
4845 assert( !ExprHasProperty(pF->pExpr, EP_xIsSelect) );
4846 sqlite3VdbeAddOp2(v, OP_AggFinal, pF->iMem, pList ? pList->nExpr : 0);
4847 sqlite3VdbeAppendP4(v, pF->pFunc, P4_FUNCDEF);
4852 ** Update the accumulator memory cells for an aggregate based on
4853 ** the current cursor position.
4855 static void updateAccumulator(Parse *pParse, AggInfo *pAggInfo){
4856 Vdbe *v = pParse->pVdbe;
4857 int i;
4858 int regHit = 0;
4859 int addrHitTest = 0;
4860 struct AggInfo_func *pF;
4861 struct AggInfo_col *pC;
4863 pAggInfo->directMode = 1;
4864 for(i=0, pF=pAggInfo->aFunc; i<pAggInfo->nFunc; i++, pF++){
4865 int nArg;
4866 int addrNext = 0;
4867 int regAgg;
4868 ExprList *pList = pF->pExpr->x.pList;
4869 assert( !ExprHasProperty(pF->pExpr, EP_xIsSelect) );
4870 if( pList ){
4871 nArg = pList->nExpr;
4872 regAgg = sqlite3GetTempRange(pParse, nArg);
4873 sqlite3ExprCodeExprList(pParse, pList, regAgg, 0, SQLITE_ECEL_DUP);
4874 }else{
4875 nArg = 0;
4876 regAgg = 0;
4878 if( pF->iDistinct>=0 ){
4879 addrNext = sqlite3VdbeMakeLabel(v);
4880 testcase( nArg==0 ); /* Error condition */
4881 testcase( nArg>1 ); /* Also an error */
4882 codeDistinct(pParse, pF->iDistinct, addrNext, 1, regAgg);
4884 if( pF->pFunc->funcFlags & SQLITE_FUNC_NEEDCOLL ){
4885 CollSeq *pColl = 0;
4886 struct ExprList_item *pItem;
4887 int j;
4888 assert( pList!=0 ); /* pList!=0 if pF->pFunc has NEEDCOLL */
4889 for(j=0, pItem=pList->a; !pColl && j<nArg; j++, pItem++){
4890 pColl = sqlite3ExprCollSeq(pParse, pItem->pExpr);
4892 if( !pColl ){
4893 pColl = pParse->db->pDfltColl;
4895 if( regHit==0 && pAggInfo->nAccumulator ) regHit = ++pParse->nMem;
4896 sqlite3VdbeAddOp4(v, OP_CollSeq, regHit, 0, 0, (char *)pColl, P4_COLLSEQ);
4898 sqlite3VdbeAddOp3(v, OP_AggStep0, 0, regAgg, pF->iMem);
4899 sqlite3VdbeAppendP4(v, pF->pFunc, P4_FUNCDEF);
4900 sqlite3VdbeChangeP5(v, (u8)nArg);
4901 sqlite3ExprCacheAffinityChange(pParse, regAgg, nArg);
4902 sqlite3ReleaseTempRange(pParse, regAgg, nArg);
4903 if( addrNext ){
4904 sqlite3VdbeResolveLabel(v, addrNext);
4905 sqlite3ExprCacheClear(pParse);
4909 /* Before populating the accumulator registers, clear the column cache.
4910 ** Otherwise, if any of the required column values are already present
4911 ** in registers, sqlite3ExprCode() may use OP_SCopy to copy the value
4912 ** to pC->iMem. But by the time the value is used, the original register
4913 ** may have been used, invalidating the underlying buffer holding the
4914 ** text or blob value. See ticket [883034dcb5].
4916 ** Another solution would be to change the OP_SCopy used to copy cached
4917 ** values to an OP_Copy.
4919 if( regHit ){
4920 addrHitTest = sqlite3VdbeAddOp1(v, OP_If, regHit); VdbeCoverage(v);
4922 sqlite3ExprCacheClear(pParse);
4923 for(i=0, pC=pAggInfo->aCol; i<pAggInfo->nAccumulator; i++, pC++){
4924 sqlite3ExprCode(pParse, pC->pExpr, pC->iMem);
4926 pAggInfo->directMode = 0;
4927 sqlite3ExprCacheClear(pParse);
4928 if( addrHitTest ){
4929 sqlite3VdbeJumpHere(v, addrHitTest);
4934 ** Add a single OP_Explain instruction to the VDBE to explain a simple
4935 ** count(*) query ("SELECT count(*) FROM pTab").
4937 #ifndef SQLITE_OMIT_EXPLAIN
4938 static void explainSimpleCount(
4939 Parse *pParse, /* Parse context */
4940 Table *pTab, /* Table being queried */
4941 Index *pIdx /* Index used to optimize scan, or NULL */
4943 if( pParse->explain==2 ){
4944 int bCover = (pIdx!=0 && (HasRowid(pTab) || !IsPrimaryKeyIndex(pIdx)));
4945 char *zEqp = sqlite3MPrintf(pParse->db, "SCAN TABLE %s%s%s",
4946 pTab->zName,
4947 bCover ? " USING COVERING INDEX " : "",
4948 bCover ? pIdx->zName : ""
4950 sqlite3VdbeAddOp4(
4951 pParse->pVdbe, OP_Explain, pParse->iSelectId, 0, 0, zEqp, P4_DYNAMIC
4955 #else
4956 # define explainSimpleCount(a,b,c)
4957 #endif
4960 ** sqlite3WalkExpr() callback used by havingToWhere().
4962 ** If the node passed to the callback is a TK_AND node, return
4963 ** WRC_Continue to tell sqlite3WalkExpr() to iterate through child nodes.
4965 ** Otherwise, return WRC_Prune. In this case, also check if the
4966 ** sub-expression matches the criteria for being moved to the WHERE
4967 ** clause. If so, add it to the WHERE clause and replace the sub-expression
4968 ** within the HAVING expression with a constant "1".
4970 static int havingToWhereExprCb(Walker *pWalker, Expr *pExpr){
4971 if( pExpr->op!=TK_AND ){
4972 Select *pS = pWalker->u.pSelect;
4973 if( sqlite3ExprIsConstantOrGroupBy(pWalker->pParse, pExpr, pS->pGroupBy) ){
4974 sqlite3 *db = pWalker->pParse->db;
4975 Expr *pNew = sqlite3ExprAlloc(db, TK_INTEGER, &sqlite3IntTokens[1], 0);
4976 if( pNew ){
4977 Expr *pWhere = pS->pWhere;
4978 SWAP(Expr, *pNew, *pExpr);
4979 pNew = sqlite3ExprAnd(db, pWhere, pNew);
4980 pS->pWhere = pNew;
4981 pWalker->eCode = 1;
4984 return WRC_Prune;
4986 return WRC_Continue;
4990 ** Transfer eligible terms from the HAVING clause of a query, which is
4991 ** processed after grouping, to the WHERE clause, which is processed before
4992 ** grouping. For example, the query:
4994 ** SELECT * FROM <tables> WHERE a=? GROUP BY b HAVING b=? AND c=?
4996 ** can be rewritten as:
4998 ** SELECT * FROM <tables> WHERE a=? AND b=? GROUP BY b HAVING c=?
5000 ** A term of the HAVING expression is eligible for transfer if it consists
5001 ** entirely of constants and expressions that are also GROUP BY terms that
5002 ** use the "BINARY" collation sequence.
5004 static void havingToWhere(Parse *pParse, Select *p){
5005 Walker sWalker;
5006 memset(&sWalker, 0, sizeof(sWalker));
5007 sWalker.pParse = pParse;
5008 sWalker.xExprCallback = havingToWhereExprCb;
5009 sWalker.u.pSelect = p;
5010 sqlite3WalkExpr(&sWalker, p->pHaving);
5011 #if SELECTTRACE_ENABLED
5012 if( sWalker.eCode && (sqlite3SelectTrace & 0x100)!=0 ){
5013 SELECTTRACE(0x100,pParse,p,("Move HAVING terms into WHERE:\n"));
5014 sqlite3TreeViewSelect(0, p, 0);
5016 #endif
5020 ** Check to see if the pThis entry of pTabList is a self-join of a prior view.
5021 ** If it is, then return the SrcList_item for the prior view. If it is not,
5022 ** then return 0.
5024 static struct SrcList_item *isSelfJoinView(
5025 SrcList *pTabList, /* Search for self-joins in this FROM clause */
5026 struct SrcList_item *pThis /* Search for prior reference to this subquery */
5028 struct SrcList_item *pItem;
5029 for(pItem = pTabList->a; pItem<pThis; pItem++){
5030 if( pItem->pSelect==0 ) continue;
5031 if( pItem->fg.viaCoroutine ) continue;
5032 if( pItem->zName==0 ) continue;
5033 if( sqlite3_stricmp(pItem->zDatabase, pThis->zDatabase)!=0 ) continue;
5034 if( sqlite3_stricmp(pItem->zName, pThis->zName)!=0 ) continue;
5035 if( sqlite3ExprCompare(0,
5036 pThis->pSelect->pWhere, pItem->pSelect->pWhere, -1)
5038 /* The view was modified by some other optimization such as
5039 ** pushDownWhereTerms() */
5040 continue;
5042 return pItem;
5044 return 0;
5047 #ifdef SQLITE_COUNTOFVIEW_OPTIMIZATION
5049 ** Attempt to transform a query of the form
5051 ** SELECT count(*) FROM (SELECT x FROM t1 UNION ALL SELECT y FROM t2)
5053 ** Into this:
5055 ** SELECT (SELECT count(*) FROM t1)+(SELECT count(*) FROM t2)
5057 ** The transformation only works if all of the following are true:
5059 ** * The subquery is a UNION ALL of two or more terms
5060 ** * There is no WHERE or GROUP BY or HAVING clauses on the subqueries
5061 ** * The outer query is a simple count(*)
5063 ** Return TRUE if the optimization is undertaken.
5065 static int countOfViewOptimization(Parse *pParse, Select *p){
5066 Select *pSub, *pPrior;
5067 Expr *pExpr;
5068 Expr *pCount;
5069 sqlite3 *db;
5070 if( (p->selFlags & SF_Aggregate)==0 ) return 0; /* This is an aggregate */
5071 if( p->pEList->nExpr!=1 ) return 0; /* Single result column */
5072 pExpr = p->pEList->a[0].pExpr;
5073 if( pExpr->op!=TK_AGG_FUNCTION ) return 0; /* Result is an aggregate */
5074 if( sqlite3_stricmp(pExpr->u.zToken,"count") ) return 0; /* Is count() */
5075 if( pExpr->x.pList!=0 ) return 0; /* Must be count(*) */
5076 if( p->pSrc->nSrc!=1 ) return 0; /* One table in FROM */
5077 pSub = p->pSrc->a[0].pSelect;
5078 if( pSub==0 ) return 0; /* The FROM is a subquery */
5079 if( pSub->pPrior==0 ) return 0; /* Must be a compound ry */
5081 if( pSub->op!=TK_ALL && pSub->pPrior ) return 0; /* Must be UNION ALL */
5082 if( pSub->pWhere ) return 0; /* No WHERE clause */
5083 if( pSub->selFlags & SF_Aggregate ) return 0; /* Not an aggregate */
5084 pSub = pSub->pPrior; /* Repeat over compound */
5085 }while( pSub );
5087 /* If we reach this point then it is OK to perform the transformation */
5089 db = pParse->db;
5090 pCount = pExpr;
5091 pExpr = 0;
5092 pSub = p->pSrc->a[0].pSelect;
5093 p->pSrc->a[0].pSelect = 0;
5094 sqlite3SrcListDelete(db, p->pSrc);
5095 p->pSrc = sqlite3DbMallocZero(pParse->db, sizeof(*p->pSrc));
5096 while( pSub ){
5097 Expr *pTerm;
5098 pPrior = pSub->pPrior;
5099 pSub->pPrior = 0;
5100 pSub->pNext = 0;
5101 pSub->selFlags |= SF_Aggregate;
5102 pSub->selFlags &= ~SF_Compound;
5103 pSub->nSelectRow = 0;
5104 sqlite3ExprListDelete(db, pSub->pEList);
5105 pTerm = pPrior ? sqlite3ExprDup(db, pCount, 0) : pCount;
5106 pSub->pEList = sqlite3ExprListAppend(pParse, 0, pTerm);
5107 pTerm = sqlite3PExpr(pParse, TK_SELECT, 0, 0);
5108 sqlite3PExprAddSelect(pParse, pTerm, pSub);
5109 if( pExpr==0 ){
5110 pExpr = pTerm;
5111 }else{
5112 pExpr = sqlite3PExpr(pParse, TK_PLUS, pTerm, pExpr);
5114 pSub = pPrior;
5116 p->pEList->a[0].pExpr = pExpr;
5117 p->selFlags &= ~SF_Aggregate;
5119 #if SELECTTRACE_ENABLED
5120 if( sqlite3SelectTrace & 0x400 ){
5121 SELECTTRACE(0x400,pParse,p,("After count-of-view optimization:\n"));
5122 sqlite3TreeViewSelect(0, p, 0);
5124 #endif
5125 return 1;
5127 #endif /* SQLITE_COUNTOFVIEW_OPTIMIZATION */
5130 ** Generate code for the SELECT statement given in the p argument.
5132 ** The results are returned according to the SelectDest structure.
5133 ** See comments in sqliteInt.h for further information.
5135 ** This routine returns the number of errors. If any errors are
5136 ** encountered, then an appropriate error message is left in
5137 ** pParse->zErrMsg.
5139 ** This routine does NOT free the Select structure passed in. The
5140 ** calling function needs to do that.
5142 int sqlite3Select(
5143 Parse *pParse, /* The parser context */
5144 Select *p, /* The SELECT statement being coded. */
5145 SelectDest *pDest /* What to do with the query results */
5147 int i, j; /* Loop counters */
5148 WhereInfo *pWInfo; /* Return from sqlite3WhereBegin() */
5149 Vdbe *v; /* The virtual machine under construction */
5150 int isAgg; /* True for select lists like "count(*)" */
5151 ExprList *pEList = 0; /* List of columns to extract. */
5152 SrcList *pTabList; /* List of tables to select from */
5153 Expr *pWhere; /* The WHERE clause. May be NULL */
5154 ExprList *pGroupBy; /* The GROUP BY clause. May be NULL */
5155 Expr *pHaving; /* The HAVING clause. May be NULL */
5156 int rc = 1; /* Value to return from this function */
5157 DistinctCtx sDistinct; /* Info on how to code the DISTINCT keyword */
5158 SortCtx sSort; /* Info on how to code the ORDER BY clause */
5159 AggInfo sAggInfo; /* Information used by aggregate queries */
5160 int iEnd; /* Address of the end of the query */
5161 sqlite3 *db; /* The database connection */
5162 ExprList *pMinMaxOrderBy = 0; /* Added ORDER BY for min/max queries */
5163 u8 minMaxFlag; /* Flag for min/max queries */
5165 #ifndef SQLITE_OMIT_EXPLAIN
5166 int iRestoreSelectId = pParse->iSelectId;
5167 pParse->iSelectId = pParse->iNextSelectId++;
5168 #endif
5170 db = pParse->db;
5171 if( p==0 || db->mallocFailed || pParse->nErr ){
5172 return 1;
5174 if( sqlite3AuthCheck(pParse, SQLITE_SELECT, 0, 0, 0) ) return 1;
5175 memset(&sAggInfo, 0, sizeof(sAggInfo));
5176 #if SELECTTRACE_ENABLED
5177 SELECTTRACE(1,pParse,p, ("begin processing:\n"));
5178 if( sqlite3SelectTrace & 0x100 ){
5179 sqlite3TreeViewSelect(0, p, 0);
5181 #endif
5183 assert( p->pOrderBy==0 || pDest->eDest!=SRT_DistFifo );
5184 assert( p->pOrderBy==0 || pDest->eDest!=SRT_Fifo );
5185 assert( p->pOrderBy==0 || pDest->eDest!=SRT_DistQueue );
5186 assert( p->pOrderBy==0 || pDest->eDest!=SRT_Queue );
5187 if( IgnorableOrderby(pDest) ){
5188 assert(pDest->eDest==SRT_Exists || pDest->eDest==SRT_Union ||
5189 pDest->eDest==SRT_Except || pDest->eDest==SRT_Discard ||
5190 pDest->eDest==SRT_Queue || pDest->eDest==SRT_DistFifo ||
5191 pDest->eDest==SRT_DistQueue || pDest->eDest==SRT_Fifo);
5192 /* If ORDER BY makes no difference in the output then neither does
5193 ** DISTINCT so it can be removed too. */
5194 sqlite3ExprListDelete(db, p->pOrderBy);
5195 p->pOrderBy = 0;
5196 p->selFlags &= ~SF_Distinct;
5198 sqlite3SelectPrep(pParse, p, 0);
5199 memset(&sSort, 0, sizeof(sSort));
5200 sSort.pOrderBy = p->pOrderBy;
5201 pTabList = p->pSrc;
5202 if( pParse->nErr || db->mallocFailed ){
5203 goto select_end;
5205 assert( p->pEList!=0 );
5206 isAgg = (p->selFlags & SF_Aggregate)!=0;
5207 #if SELECTTRACE_ENABLED
5208 if( sqlite3SelectTrace & 0x100 ){
5209 SELECTTRACE(0x100,pParse,p, ("after name resolution:\n"));
5210 sqlite3TreeViewSelect(0, p, 0);
5212 #endif
5214 /* Get a pointer the VDBE under construction, allocating a new VDBE if one
5215 ** does not already exist */
5216 v = sqlite3GetVdbe(pParse);
5217 if( v==0 ) goto select_end;
5218 if( pDest->eDest==SRT_Output ){
5219 generateColumnNames(pParse, p);
5222 /* Try to various optimizations (flattening subqueries, and strength
5223 ** reduction of join operators) in the FROM clause up into the main query
5225 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
5226 for(i=0; !p->pPrior && i<pTabList->nSrc; i++){
5227 struct SrcList_item *pItem = &pTabList->a[i];
5228 Select *pSub = pItem->pSelect;
5229 Table *pTab = pItem->pTab;
5231 /* Convert LEFT JOIN into JOIN if there are terms of the right table
5232 ** of the LEFT JOIN used in the WHERE clause.
5234 if( (pItem->fg.jointype & JT_LEFT)!=0
5235 && sqlite3ExprImpliesNonNullRow(p->pWhere, pItem->iCursor)
5236 && OptimizationEnabled(db, SQLITE_SimplifyJoin)
5238 SELECTTRACE(0x100,pParse,p,
5239 ("LEFT-JOIN simplifies to JOIN on term %d\n",i));
5240 pItem->fg.jointype &= ~(JT_LEFT|JT_OUTER);
5241 unsetJoinExpr(p->pWhere, pItem->iCursor);
5244 /* No futher action if this term of the FROM clause is no a subquery */
5245 if( pSub==0 ) continue;
5247 /* Catch mismatch in the declared columns of a view and the number of
5248 ** columns in the SELECT on the RHS */
5249 if( pTab->nCol!=pSub->pEList->nExpr ){
5250 sqlite3ErrorMsg(pParse, "expected %d columns for '%s' but got %d",
5251 pTab->nCol, pTab->zName, pSub->pEList->nExpr);
5252 goto select_end;
5255 /* Do not try to flatten an aggregate subquery.
5257 ** Flattening an aggregate subquery is only possible if the outer query
5258 ** is not a join. But if the outer query is not a join, then the subquery
5259 ** will be implemented as a co-routine and there is no advantage to
5260 ** flattening in that case.
5262 if( (pSub->selFlags & SF_Aggregate)!=0 ) continue;
5263 assert( pSub->pGroupBy==0 );
5265 /* If the outer query contains a "complex" result set (that is,
5266 ** if the result set of the outer query uses functions or subqueries)
5267 ** and if the subquery contains an ORDER BY clause and if
5268 ** it will be implemented as a co-routine, then do not flatten. This
5269 ** restriction allows SQL constructs like this:
5271 ** SELECT expensive_function(x)
5272 ** FROM (SELECT x FROM tab ORDER BY y LIMIT 10);
5274 ** The expensive_function() is only computed on the 10 rows that
5275 ** are output, rather than every row of the table.
5277 ** The requirement that the outer query have a complex result set
5278 ** means that flattening does occur on simpler SQL constraints without
5279 ** the expensive_function() like:
5281 ** SELECT x FROM (SELECT x FROM tab ORDER BY y LIMIT 10);
5283 if( pSub->pOrderBy!=0
5284 && i==0
5285 && (p->selFlags & SF_ComplexResult)!=0
5286 && (pTabList->nSrc==1
5287 || (pTabList->a[1].fg.jointype&(JT_LEFT|JT_CROSS))!=0)
5289 continue;
5292 if( flattenSubquery(pParse, p, i, isAgg) ){
5293 /* This subquery can be absorbed into its parent. */
5294 i = -1;
5296 pTabList = p->pSrc;
5297 if( db->mallocFailed ) goto select_end;
5298 if( !IgnorableOrderby(pDest) ){
5299 sSort.pOrderBy = p->pOrderBy;
5302 #endif
5304 #ifndef SQLITE_OMIT_COMPOUND_SELECT
5305 /* Handle compound SELECT statements using the separate multiSelect()
5306 ** procedure.
5308 if( p->pPrior ){
5309 rc = multiSelect(pParse, p, pDest);
5310 explainSetInteger(pParse->iSelectId, iRestoreSelectId);
5311 #if SELECTTRACE_ENABLED
5312 SELECTTRACE(1,pParse,p,("end compound-select processing\n"));
5313 #endif
5314 return rc;
5316 #endif
5318 /* For each term in the FROM clause, do two things:
5319 ** (1) Authorized unreferenced tables
5320 ** (2) Generate code for all sub-queries
5322 for(i=0; i<pTabList->nSrc; i++){
5323 struct SrcList_item *pItem = &pTabList->a[i];
5324 SelectDest dest;
5325 Select *pSub;
5326 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
5327 const char *zSavedAuthContext;
5328 #endif
5330 /* Issue SQLITE_READ authorizations with a fake column name for any
5331 ** tables that are referenced but from which no values are extracted.
5332 ** Examples of where these kinds of null SQLITE_READ authorizations
5333 ** would occur:
5335 ** SELECT count(*) FROM t1; -- SQLITE_READ t1.""
5336 ** SELECT t1.* FROM t1, t2; -- SQLITE_READ t2.""
5338 ** The fake column name is an empty string. It is possible for a table to
5339 ** have a column named by the empty string, in which case there is no way to
5340 ** distinguish between an unreferenced table and an actual reference to the
5341 ** "" column. The original design was for the fake column name to be a NULL,
5342 ** which would be unambiguous. But legacy authorization callbacks might
5343 ** assume the column name is non-NULL and segfault. The use of an empty
5344 ** string for the fake column name seems safer.
5346 if( pItem->colUsed==0 ){
5347 sqlite3AuthCheck(pParse, SQLITE_READ, pItem->zName, "", pItem->zDatabase);
5350 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
5351 /* Generate code for all sub-queries in the FROM clause
5353 pSub = pItem->pSelect;
5354 if( pSub==0 ) continue;
5356 /* Sometimes the code for a subquery will be generated more than
5357 ** once, if the subquery is part of the WHERE clause in a LEFT JOIN,
5358 ** for example. In that case, do not regenerate the code to manifest
5359 ** a view or the co-routine to implement a view. The first instance
5360 ** is sufficient, though the subroutine to manifest the view does need
5361 ** to be invoked again. */
5362 if( pItem->addrFillSub ){
5363 if( pItem->fg.viaCoroutine==0 ){
5364 /* The subroutine that manifests the view might be a one-time routine,
5365 ** or it might need to be rerun on each iteration because it
5366 ** encodes a correlated subquery. */
5367 testcase( sqlite3VdbeGetOp(v, pItem->addrFillSub)->opcode==OP_Once );
5368 sqlite3VdbeAddOp2(v, OP_Gosub, pItem->regReturn, pItem->addrFillSub);
5370 continue;
5373 /* Increment Parse.nHeight by the height of the largest expression
5374 ** tree referred to by this, the parent select. The child select
5375 ** may contain expression trees of at most
5376 ** (SQLITE_MAX_EXPR_DEPTH-Parse.nHeight) height. This is a bit
5377 ** more conservative than necessary, but much easier than enforcing
5378 ** an exact limit.
5380 pParse->nHeight += sqlite3SelectExprHeight(p);
5382 /* Make copies of constant WHERE-clause terms in the outer query down
5383 ** inside the subquery. This can help the subquery to run more efficiently.
5385 if( OptimizationEnabled(db, SQLITE_PushDown)
5386 && pushDownWhereTerms(pParse, pSub, p->pWhere, pItem->iCursor,
5387 (pItem->fg.jointype & JT_OUTER)!=0)
5389 #if SELECTTRACE_ENABLED
5390 if( sqlite3SelectTrace & 0x100 ){
5391 SELECTTRACE(0x100,pParse,p,("After WHERE-clause push-down:\n"));
5392 sqlite3TreeViewSelect(0, p, 0);
5394 #endif
5395 }else{
5396 SELECTTRACE(0x100,pParse,p,("Push-down not possible\n"));
5399 zSavedAuthContext = pParse->zAuthContext;
5400 pParse->zAuthContext = pItem->zName;
5402 /* Generate code to implement the subquery
5404 ** The subquery is implemented as a co-routine if the subquery is
5405 ** guaranteed to be the outer loop (so that it does not need to be
5406 ** computed more than once)
5408 ** TODO: Are there other reasons beside (1) to use a co-routine
5409 ** implementation?
5411 if( i==0
5412 && (pTabList->nSrc==1
5413 || (pTabList->a[1].fg.jointype&(JT_LEFT|JT_CROSS))!=0) /* (1) */
5415 /* Implement a co-routine that will return a single row of the result
5416 ** set on each invocation.
5418 int addrTop = sqlite3VdbeCurrentAddr(v)+1;
5420 pItem->regReturn = ++pParse->nMem;
5421 sqlite3VdbeAddOp3(v, OP_InitCoroutine, pItem->regReturn, 0, addrTop);
5422 VdbeComment((v, "%s", pItem->pTab->zName));
5423 pItem->addrFillSub = addrTop;
5424 sqlite3SelectDestInit(&dest, SRT_Coroutine, pItem->regReturn);
5425 explainSetInteger(pItem->iSelectId, (u8)pParse->iNextSelectId);
5426 sqlite3Select(pParse, pSub, &dest);
5427 pItem->pTab->nRowLogEst = pSub->nSelectRow;
5428 pItem->fg.viaCoroutine = 1;
5429 pItem->regResult = dest.iSdst;
5430 sqlite3VdbeEndCoroutine(v, pItem->regReturn);
5431 sqlite3VdbeJumpHere(v, addrTop-1);
5432 sqlite3ClearTempRegCache(pParse);
5433 }else{
5434 /* Generate a subroutine that will fill an ephemeral table with
5435 ** the content of this subquery. pItem->addrFillSub will point
5436 ** to the address of the generated subroutine. pItem->regReturn
5437 ** is a register allocated to hold the subroutine return address
5439 int topAddr;
5440 int onceAddr = 0;
5441 int retAddr;
5442 struct SrcList_item *pPrior;
5444 assert( pItem->addrFillSub==0 );
5445 pItem->regReturn = ++pParse->nMem;
5446 topAddr = sqlite3VdbeAddOp2(v, OP_Integer, 0, pItem->regReturn);
5447 pItem->addrFillSub = topAddr+1;
5448 if( pItem->fg.isCorrelated==0 ){
5449 /* If the subquery is not correlated and if we are not inside of
5450 ** a trigger, then we only need to compute the value of the subquery
5451 ** once. */
5452 onceAddr = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v);
5453 VdbeComment((v, "materialize \"%s\"", pItem->pTab->zName));
5454 }else{
5455 VdbeNoopComment((v, "materialize \"%s\"", pItem->pTab->zName));
5457 pPrior = isSelfJoinView(pTabList, pItem);
5458 if( pPrior ){
5459 sqlite3VdbeAddOp2(v, OP_OpenDup, pItem->iCursor, pPrior->iCursor);
5460 explainSetInteger(pItem->iSelectId, pPrior->iSelectId);
5461 assert( pPrior->pSelect!=0 );
5462 pSub->nSelectRow = pPrior->pSelect->nSelectRow;
5463 }else{
5464 sqlite3SelectDestInit(&dest, SRT_EphemTab, pItem->iCursor);
5465 explainSetInteger(pItem->iSelectId, (u8)pParse->iNextSelectId);
5466 sqlite3Select(pParse, pSub, &dest);
5468 pItem->pTab->nRowLogEst = pSub->nSelectRow;
5469 if( onceAddr ) sqlite3VdbeJumpHere(v, onceAddr);
5470 retAddr = sqlite3VdbeAddOp1(v, OP_Return, pItem->regReturn);
5471 VdbeComment((v, "end %s", pItem->pTab->zName));
5472 sqlite3VdbeChangeP1(v, topAddr, retAddr);
5473 sqlite3ClearTempRegCache(pParse);
5475 if( db->mallocFailed ) goto select_end;
5476 pParse->nHeight -= sqlite3SelectExprHeight(p);
5477 pParse->zAuthContext = zSavedAuthContext;
5478 #endif
5481 /* Various elements of the SELECT copied into local variables for
5482 ** convenience */
5483 pEList = p->pEList;
5484 pWhere = p->pWhere;
5485 pGroupBy = p->pGroupBy;
5486 pHaving = p->pHaving;
5487 sDistinct.isTnct = (p->selFlags & SF_Distinct)!=0;
5489 #if SELECTTRACE_ENABLED
5490 if( sqlite3SelectTrace & 0x400 ){
5491 SELECTTRACE(0x400,pParse,p,("After all FROM-clause analysis:\n"));
5492 sqlite3TreeViewSelect(0, p, 0);
5494 #endif
5496 #ifdef SQLITE_COUNTOFVIEW_OPTIMIZATION
5497 if( OptimizationEnabled(db, SQLITE_QueryFlattener|SQLITE_CountOfView)
5498 && countOfViewOptimization(pParse, p)
5500 if( db->mallocFailed ) goto select_end;
5501 pEList = p->pEList;
5502 pTabList = p->pSrc;
5504 #endif
5506 /* If the query is DISTINCT with an ORDER BY but is not an aggregate, and
5507 ** if the select-list is the same as the ORDER BY list, then this query
5508 ** can be rewritten as a GROUP BY. In other words, this:
5510 ** SELECT DISTINCT xyz FROM ... ORDER BY xyz
5512 ** is transformed to:
5514 ** SELECT xyz FROM ... GROUP BY xyz ORDER BY xyz
5516 ** The second form is preferred as a single index (or temp-table) may be
5517 ** used for both the ORDER BY and DISTINCT processing. As originally
5518 ** written the query must use a temp-table for at least one of the ORDER
5519 ** BY and DISTINCT, and an index or separate temp-table for the other.
5521 if( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct
5522 && sqlite3ExprListCompare(sSort.pOrderBy, pEList, -1)==0
5524 p->selFlags &= ~SF_Distinct;
5525 pGroupBy = p->pGroupBy = sqlite3ExprListDup(db, pEList, 0);
5526 /* Notice that even thought SF_Distinct has been cleared from p->selFlags,
5527 ** the sDistinct.isTnct is still set. Hence, isTnct represents the
5528 ** original setting of the SF_Distinct flag, not the current setting */
5529 assert( sDistinct.isTnct );
5531 #if SELECTTRACE_ENABLED
5532 if( sqlite3SelectTrace & 0x400 ){
5533 SELECTTRACE(0x400,pParse,p,("Transform DISTINCT into GROUP BY:\n"));
5534 sqlite3TreeViewSelect(0, p, 0);
5536 #endif
5539 /* If there is an ORDER BY clause, then create an ephemeral index to
5540 ** do the sorting. But this sorting ephemeral index might end up
5541 ** being unused if the data can be extracted in pre-sorted order.
5542 ** If that is the case, then the OP_OpenEphemeral instruction will be
5543 ** changed to an OP_Noop once we figure out that the sorting index is
5544 ** not needed. The sSort.addrSortIndex variable is used to facilitate
5545 ** that change.
5547 if( sSort.pOrderBy ){
5548 KeyInfo *pKeyInfo;
5549 pKeyInfo = keyInfoFromExprList(pParse, sSort.pOrderBy, 0, pEList->nExpr);
5550 sSort.iECursor = pParse->nTab++;
5551 sSort.addrSortIndex =
5552 sqlite3VdbeAddOp4(v, OP_OpenEphemeral,
5553 sSort.iECursor, sSort.pOrderBy->nExpr+1+pEList->nExpr, 0,
5554 (char*)pKeyInfo, P4_KEYINFO
5556 }else{
5557 sSort.addrSortIndex = -1;
5560 /* If the output is destined for a temporary table, open that table.
5562 if( pDest->eDest==SRT_EphemTab ){
5563 sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pDest->iSDParm, pEList->nExpr);
5566 /* Set the limiter.
5568 iEnd = sqlite3VdbeMakeLabel(v);
5569 if( (p->selFlags & SF_FixedLimit)==0 ){
5570 p->nSelectRow = 320; /* 4 billion rows */
5572 computeLimitRegisters(pParse, p, iEnd);
5573 if( p->iLimit==0 && sSort.addrSortIndex>=0 ){
5574 sqlite3VdbeChangeOpcode(v, sSort.addrSortIndex, OP_SorterOpen);
5575 sSort.sortFlags |= SORTFLAG_UseSorter;
5578 /* Open an ephemeral index to use for the distinct set.
5580 if( p->selFlags & SF_Distinct ){
5581 sDistinct.tabTnct = pParse->nTab++;
5582 sDistinct.addrTnct = sqlite3VdbeAddOp4(v, OP_OpenEphemeral,
5583 sDistinct.tabTnct, 0, 0,
5584 (char*)keyInfoFromExprList(pParse, p->pEList,0,0),
5585 P4_KEYINFO);
5586 sqlite3VdbeChangeP5(v, BTREE_UNORDERED);
5587 sDistinct.eTnctType = WHERE_DISTINCT_UNORDERED;
5588 }else{
5589 sDistinct.eTnctType = WHERE_DISTINCT_NOOP;
5592 if( !isAgg && pGroupBy==0 ){
5593 /* No aggregate functions and no GROUP BY clause */
5594 u16 wctrlFlags = (sDistinct.isTnct ? WHERE_WANT_DISTINCT : 0);
5595 assert( WHERE_USE_LIMIT==SF_FixedLimit );
5596 wctrlFlags |= p->selFlags & SF_FixedLimit;
5598 /* Begin the database scan. */
5599 SELECTTRACE(1,pParse,p,("WhereBegin\n"));
5600 pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, sSort.pOrderBy,
5601 p->pEList, wctrlFlags, p->nSelectRow);
5602 if( pWInfo==0 ) goto select_end;
5603 if( sqlite3WhereOutputRowCount(pWInfo) < p->nSelectRow ){
5604 p->nSelectRow = sqlite3WhereOutputRowCount(pWInfo);
5606 if( sDistinct.isTnct && sqlite3WhereIsDistinct(pWInfo) ){
5607 sDistinct.eTnctType = sqlite3WhereIsDistinct(pWInfo);
5609 if( sSort.pOrderBy ){
5610 sSort.nOBSat = sqlite3WhereIsOrdered(pWInfo);
5611 sSort.bOrderedInnerLoop = sqlite3WhereOrderedInnerLoop(pWInfo);
5612 if( sSort.nOBSat==sSort.pOrderBy->nExpr ){
5613 sSort.pOrderBy = 0;
5617 /* If sorting index that was created by a prior OP_OpenEphemeral
5618 ** instruction ended up not being needed, then change the OP_OpenEphemeral
5619 ** into an OP_Noop.
5621 if( sSort.addrSortIndex>=0 && sSort.pOrderBy==0 ){
5622 sqlite3VdbeChangeToNoop(v, sSort.addrSortIndex);
5625 /* Use the standard inner loop. */
5626 assert( p->pEList==pEList );
5627 selectInnerLoop(pParse, p, -1, &sSort, &sDistinct, pDest,
5628 sqlite3WhereContinueLabel(pWInfo),
5629 sqlite3WhereBreakLabel(pWInfo));
5631 /* End the database scan loop.
5633 sqlite3WhereEnd(pWInfo);
5634 }else{
5635 /* This case when there exist aggregate functions or a GROUP BY clause
5636 ** or both */
5637 NameContext sNC; /* Name context for processing aggregate information */
5638 int iAMem; /* First Mem address for storing current GROUP BY */
5639 int iBMem; /* First Mem address for previous GROUP BY */
5640 int iUseFlag; /* Mem address holding flag indicating that at least
5641 ** one row of the input to the aggregator has been
5642 ** processed */
5643 int iAbortFlag; /* Mem address which causes query abort if positive */
5644 int groupBySort; /* Rows come from source in GROUP BY order */
5645 int addrEnd; /* End of processing for this SELECT */
5646 int sortPTab = 0; /* Pseudotable used to decode sorting results */
5647 int sortOut = 0; /* Output register from the sorter */
5648 int orderByGrp = 0; /* True if the GROUP BY and ORDER BY are the same */
5650 /* Remove any and all aliases between the result set and the
5651 ** GROUP BY clause.
5653 if( pGroupBy ){
5654 int k; /* Loop counter */
5655 struct ExprList_item *pItem; /* For looping over expression in a list */
5657 for(k=p->pEList->nExpr, pItem=p->pEList->a; k>0; k--, pItem++){
5658 pItem->u.x.iAlias = 0;
5660 for(k=pGroupBy->nExpr, pItem=pGroupBy->a; k>0; k--, pItem++){
5661 pItem->u.x.iAlias = 0;
5663 assert( 66==sqlite3LogEst(100) );
5664 if( p->nSelectRow>66 ) p->nSelectRow = 66;
5665 }else{
5666 assert( 0==sqlite3LogEst(1) );
5667 p->nSelectRow = 0;
5670 /* If there is both a GROUP BY and an ORDER BY clause and they are
5671 ** identical, then it may be possible to disable the ORDER BY clause
5672 ** on the grounds that the GROUP BY will cause elements to come out
5673 ** in the correct order. It also may not - the GROUP BY might use a
5674 ** database index that causes rows to be grouped together as required
5675 ** but not actually sorted. Either way, record the fact that the
5676 ** ORDER BY and GROUP BY clauses are the same by setting the orderByGrp
5677 ** variable. */
5678 if( sqlite3ExprListCompare(pGroupBy, sSort.pOrderBy, -1)==0 ){
5679 orderByGrp = 1;
5682 /* Create a label to jump to when we want to abort the query */
5683 addrEnd = sqlite3VdbeMakeLabel(v);
5685 /* Convert TK_COLUMN nodes into TK_AGG_COLUMN and make entries in
5686 ** sAggInfo for all TK_AGG_FUNCTION nodes in expressions of the
5687 ** SELECT statement.
5689 memset(&sNC, 0, sizeof(sNC));
5690 sNC.pParse = pParse;
5691 sNC.pSrcList = pTabList;
5692 sNC.pAggInfo = &sAggInfo;
5693 sAggInfo.mnReg = pParse->nMem+1;
5694 sAggInfo.nSortingColumn = pGroupBy ? pGroupBy->nExpr : 0;
5695 sAggInfo.pGroupBy = pGroupBy;
5696 sqlite3ExprAnalyzeAggList(&sNC, pEList);
5697 sqlite3ExprAnalyzeAggList(&sNC, sSort.pOrderBy);
5698 if( pHaving ){
5699 if( pGroupBy ){
5700 assert( pWhere==p->pWhere );
5701 assert( pHaving==p->pHaving );
5702 assert( pGroupBy==p->pGroupBy );
5703 havingToWhere(pParse, p);
5704 pWhere = p->pWhere;
5706 sqlite3ExprAnalyzeAggregates(&sNC, pHaving);
5708 sAggInfo.nAccumulator = sAggInfo.nColumn;
5709 if( p->pGroupBy==0 && p->pHaving==0 && sAggInfo.nFunc==1 ){
5710 minMaxFlag = minMaxQuery(db, sAggInfo.aFunc[0].pExpr, &pMinMaxOrderBy);
5711 }else{
5712 minMaxFlag = WHERE_ORDERBY_NORMAL;
5714 for(i=0; i<sAggInfo.nFunc; i++){
5715 assert( !ExprHasProperty(sAggInfo.aFunc[i].pExpr, EP_xIsSelect) );
5716 sNC.ncFlags |= NC_InAggFunc;
5717 sqlite3ExprAnalyzeAggList(&sNC, sAggInfo.aFunc[i].pExpr->x.pList);
5718 sNC.ncFlags &= ~NC_InAggFunc;
5720 sAggInfo.mxReg = pParse->nMem;
5721 if( db->mallocFailed ) goto select_end;
5722 #if SELECTTRACE_ENABLED
5723 if( sqlite3SelectTrace & 0x400 ){
5724 int ii;
5725 SELECTTRACE(0x400,pParse,p,("After aggregate analysis:\n"));
5726 sqlite3TreeViewSelect(0, p, 0);
5727 for(ii=0; ii<sAggInfo.nColumn; ii++){
5728 sqlite3DebugPrintf("agg-column[%d] iMem=%d\n",
5729 ii, sAggInfo.aCol[ii].iMem);
5730 sqlite3TreeViewExpr(0, sAggInfo.aCol[ii].pExpr, 0);
5732 for(ii=0; ii<sAggInfo.nFunc; ii++){
5733 sqlite3DebugPrintf("agg-func[%d]: iMem=%d\n",
5734 ii, sAggInfo.aFunc[ii].iMem);
5735 sqlite3TreeViewExpr(0, sAggInfo.aFunc[ii].pExpr, 0);
5738 #endif
5741 /* Processing for aggregates with GROUP BY is very different and
5742 ** much more complex than aggregates without a GROUP BY.
5744 if( pGroupBy ){
5745 KeyInfo *pKeyInfo; /* Keying information for the group by clause */
5746 int addr1; /* A-vs-B comparision jump */
5747 int addrOutputRow; /* Start of subroutine that outputs a result row */
5748 int regOutputRow; /* Return address register for output subroutine */
5749 int addrSetAbort; /* Set the abort flag and return */
5750 int addrTopOfLoop; /* Top of the input loop */
5751 int addrSortingIdx; /* The OP_OpenEphemeral for the sorting index */
5752 int addrReset; /* Subroutine for resetting the accumulator */
5753 int regReset; /* Return address register for reset subroutine */
5755 /* If there is a GROUP BY clause we might need a sorting index to
5756 ** implement it. Allocate that sorting index now. If it turns out
5757 ** that we do not need it after all, the OP_SorterOpen instruction
5758 ** will be converted into a Noop.
5760 sAggInfo.sortingIdx = pParse->nTab++;
5761 pKeyInfo = keyInfoFromExprList(pParse, pGroupBy, 0, sAggInfo.nColumn);
5762 addrSortingIdx = sqlite3VdbeAddOp4(v, OP_SorterOpen,
5763 sAggInfo.sortingIdx, sAggInfo.nSortingColumn,
5764 0, (char*)pKeyInfo, P4_KEYINFO);
5766 /* Initialize memory locations used by GROUP BY aggregate processing
5768 iUseFlag = ++pParse->nMem;
5769 iAbortFlag = ++pParse->nMem;
5770 regOutputRow = ++pParse->nMem;
5771 addrOutputRow = sqlite3VdbeMakeLabel(v);
5772 regReset = ++pParse->nMem;
5773 addrReset = sqlite3VdbeMakeLabel(v);
5774 iAMem = pParse->nMem + 1;
5775 pParse->nMem += pGroupBy->nExpr;
5776 iBMem = pParse->nMem + 1;
5777 pParse->nMem += pGroupBy->nExpr;
5778 sqlite3VdbeAddOp2(v, OP_Integer, 0, iAbortFlag);
5779 VdbeComment((v, "clear abort flag"));
5780 sqlite3VdbeAddOp2(v, OP_Integer, 0, iUseFlag);
5781 VdbeComment((v, "indicate accumulator empty"));
5782 sqlite3VdbeAddOp3(v, OP_Null, 0, iAMem, iAMem+pGroupBy->nExpr-1);
5784 /* Begin a loop that will extract all source rows in GROUP BY order.
5785 ** This might involve two separate loops with an OP_Sort in between, or
5786 ** it might be a single loop that uses an index to extract information
5787 ** in the right order to begin with.
5789 sqlite3VdbeAddOp2(v, OP_Gosub, regReset, addrReset);
5790 SELECTTRACE(1,pParse,p,("WhereBegin\n"));
5791 pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, pGroupBy, 0,
5792 WHERE_GROUPBY | (orderByGrp ? WHERE_SORTBYGROUP : 0), 0
5794 if( pWInfo==0 ) goto select_end;
5795 if( sqlite3WhereIsOrdered(pWInfo)==pGroupBy->nExpr ){
5796 /* The optimizer is able to deliver rows in group by order so
5797 ** we do not have to sort. The OP_OpenEphemeral table will be
5798 ** cancelled later because we still need to use the pKeyInfo
5800 groupBySort = 0;
5801 }else{
5802 /* Rows are coming out in undetermined order. We have to push
5803 ** each row into a sorting index, terminate the first loop,
5804 ** then loop over the sorting index in order to get the output
5805 ** in sorted order
5807 int regBase;
5808 int regRecord;
5809 int nCol;
5810 int nGroupBy;
5812 explainTempTable(pParse,
5813 (sDistinct.isTnct && (p->selFlags&SF_Distinct)==0) ?
5814 "DISTINCT" : "GROUP BY");
5816 groupBySort = 1;
5817 nGroupBy = pGroupBy->nExpr;
5818 nCol = nGroupBy;
5819 j = nGroupBy;
5820 for(i=0; i<sAggInfo.nColumn; i++){
5821 if( sAggInfo.aCol[i].iSorterColumn>=j ){
5822 nCol++;
5823 j++;
5826 regBase = sqlite3GetTempRange(pParse, nCol);
5827 sqlite3ExprCacheClear(pParse);
5828 sqlite3ExprCodeExprList(pParse, pGroupBy, regBase, 0, 0);
5829 j = nGroupBy;
5830 for(i=0; i<sAggInfo.nColumn; i++){
5831 struct AggInfo_col *pCol = &sAggInfo.aCol[i];
5832 if( pCol->iSorterColumn>=j ){
5833 int r1 = j + regBase;
5834 sqlite3ExprCodeGetColumnToReg(pParse,
5835 pCol->pTab, pCol->iColumn, pCol->iTable, r1);
5836 j++;
5839 regRecord = sqlite3GetTempReg(pParse);
5840 sqlite3VdbeAddOp3(v, OP_MakeRecord, regBase, nCol, regRecord);
5841 sqlite3VdbeAddOp2(v, OP_SorterInsert, sAggInfo.sortingIdx, regRecord);
5842 sqlite3ReleaseTempReg(pParse, regRecord);
5843 sqlite3ReleaseTempRange(pParse, regBase, nCol);
5844 sqlite3WhereEnd(pWInfo);
5845 sAggInfo.sortingIdxPTab = sortPTab = pParse->nTab++;
5846 sortOut = sqlite3GetTempReg(pParse);
5847 sqlite3VdbeAddOp3(v, OP_OpenPseudo, sortPTab, sortOut, nCol);
5848 sqlite3VdbeAddOp2(v, OP_SorterSort, sAggInfo.sortingIdx, addrEnd);
5849 VdbeComment((v, "GROUP BY sort")); VdbeCoverage(v);
5850 sAggInfo.useSortingIdx = 1;
5851 sqlite3ExprCacheClear(pParse);
5855 /* If the index or temporary table used by the GROUP BY sort
5856 ** will naturally deliver rows in the order required by the ORDER BY
5857 ** clause, cancel the ephemeral table open coded earlier.
5859 ** This is an optimization - the correct answer should result regardless.
5860 ** Use the SQLITE_GroupByOrder flag with SQLITE_TESTCTRL_OPTIMIZER to
5861 ** disable this optimization for testing purposes. */
5862 if( orderByGrp && OptimizationEnabled(db, SQLITE_GroupByOrder)
5863 && (groupBySort || sqlite3WhereIsSorted(pWInfo))
5865 sSort.pOrderBy = 0;
5866 sqlite3VdbeChangeToNoop(v, sSort.addrSortIndex);
5869 /* Evaluate the current GROUP BY terms and store in b0, b1, b2...
5870 ** (b0 is memory location iBMem+0, b1 is iBMem+1, and so forth)
5871 ** Then compare the current GROUP BY terms against the GROUP BY terms
5872 ** from the previous row currently stored in a0, a1, a2...
5874 addrTopOfLoop = sqlite3VdbeCurrentAddr(v);
5875 sqlite3ExprCacheClear(pParse);
5876 if( groupBySort ){
5877 sqlite3VdbeAddOp3(v, OP_SorterData, sAggInfo.sortingIdx,
5878 sortOut, sortPTab);
5880 for(j=0; j<pGroupBy->nExpr; j++){
5881 if( groupBySort ){
5882 sqlite3VdbeAddOp3(v, OP_Column, sortPTab, j, iBMem+j);
5883 }else{
5884 sAggInfo.directMode = 1;
5885 sqlite3ExprCode(pParse, pGroupBy->a[j].pExpr, iBMem+j);
5888 sqlite3VdbeAddOp4(v, OP_Compare, iAMem, iBMem, pGroupBy->nExpr,
5889 (char*)sqlite3KeyInfoRef(pKeyInfo), P4_KEYINFO);
5890 addr1 = sqlite3VdbeCurrentAddr(v);
5891 sqlite3VdbeAddOp3(v, OP_Jump, addr1+1, 0, addr1+1); VdbeCoverage(v);
5893 /* Generate code that runs whenever the GROUP BY changes.
5894 ** Changes in the GROUP BY are detected by the previous code
5895 ** block. If there were no changes, this block is skipped.
5897 ** This code copies current group by terms in b0,b1,b2,...
5898 ** over to a0,a1,a2. It then calls the output subroutine
5899 ** and resets the aggregate accumulator registers in preparation
5900 ** for the next GROUP BY batch.
5902 sqlite3ExprCodeMove(pParse, iBMem, iAMem, pGroupBy->nExpr);
5903 sqlite3VdbeAddOp2(v, OP_Gosub, regOutputRow, addrOutputRow);
5904 VdbeComment((v, "output one row"));
5905 sqlite3VdbeAddOp2(v, OP_IfPos, iAbortFlag, addrEnd); VdbeCoverage(v);
5906 VdbeComment((v, "check abort flag"));
5907 sqlite3VdbeAddOp2(v, OP_Gosub, regReset, addrReset);
5908 VdbeComment((v, "reset accumulator"));
5910 /* Update the aggregate accumulators based on the content of
5911 ** the current row
5913 sqlite3VdbeJumpHere(v, addr1);
5914 updateAccumulator(pParse, &sAggInfo);
5915 sqlite3VdbeAddOp2(v, OP_Integer, 1, iUseFlag);
5916 VdbeComment((v, "indicate data in accumulator"));
5918 /* End of the loop
5920 if( groupBySort ){
5921 sqlite3VdbeAddOp2(v, OP_SorterNext, sAggInfo.sortingIdx, addrTopOfLoop);
5922 VdbeCoverage(v);
5923 }else{
5924 sqlite3WhereEnd(pWInfo);
5925 sqlite3VdbeChangeToNoop(v, addrSortingIdx);
5928 /* Output the final row of result
5930 sqlite3VdbeAddOp2(v, OP_Gosub, regOutputRow, addrOutputRow);
5931 VdbeComment((v, "output final row"));
5933 /* Jump over the subroutines
5935 sqlite3VdbeGoto(v, addrEnd);
5937 /* Generate a subroutine that outputs a single row of the result
5938 ** set. This subroutine first looks at the iUseFlag. If iUseFlag
5939 ** is less than or equal to zero, the subroutine is a no-op. If
5940 ** the processing calls for the query to abort, this subroutine
5941 ** increments the iAbortFlag memory location before returning in
5942 ** order to signal the caller to abort.
5944 addrSetAbort = sqlite3VdbeCurrentAddr(v);
5945 sqlite3VdbeAddOp2(v, OP_Integer, 1, iAbortFlag);
5946 VdbeComment((v, "set abort flag"));
5947 sqlite3VdbeAddOp1(v, OP_Return, regOutputRow);
5948 sqlite3VdbeResolveLabel(v, addrOutputRow);
5949 addrOutputRow = sqlite3VdbeCurrentAddr(v);
5950 sqlite3VdbeAddOp2(v, OP_IfPos, iUseFlag, addrOutputRow+2);
5951 VdbeCoverage(v);
5952 VdbeComment((v, "Groupby result generator entry point"));
5953 sqlite3VdbeAddOp1(v, OP_Return, regOutputRow);
5954 finalizeAggFunctions(pParse, &sAggInfo);
5955 sqlite3ExprIfFalse(pParse, pHaving, addrOutputRow+1, SQLITE_JUMPIFNULL);
5956 selectInnerLoop(pParse, p, -1, &sSort,
5957 &sDistinct, pDest,
5958 addrOutputRow+1, addrSetAbort);
5959 sqlite3VdbeAddOp1(v, OP_Return, regOutputRow);
5960 VdbeComment((v, "end groupby result generator"));
5962 /* Generate a subroutine that will reset the group-by accumulator
5964 sqlite3VdbeResolveLabel(v, addrReset);
5965 resetAccumulator(pParse, &sAggInfo);
5966 sqlite3VdbeAddOp1(v, OP_Return, regReset);
5968 } /* endif pGroupBy. Begin aggregate queries without GROUP BY: */
5969 else {
5970 #ifndef SQLITE_OMIT_BTREECOUNT
5971 Table *pTab;
5972 if( (pTab = isSimpleCount(p, &sAggInfo))!=0 ){
5973 /* If isSimpleCount() returns a pointer to a Table structure, then
5974 ** the SQL statement is of the form:
5976 ** SELECT count(*) FROM <tbl>
5978 ** where the Table structure returned represents table <tbl>.
5980 ** This statement is so common that it is optimized specially. The
5981 ** OP_Count instruction is executed either on the intkey table that
5982 ** contains the data for table <tbl> or on one of its indexes. It
5983 ** is better to execute the op on an index, as indexes are almost
5984 ** always spread across less pages than their corresponding tables.
5986 const int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
5987 const int iCsr = pParse->nTab++; /* Cursor to scan b-tree */
5988 Index *pIdx; /* Iterator variable */
5989 KeyInfo *pKeyInfo = 0; /* Keyinfo for scanned index */
5990 Index *pBest = 0; /* Best index found so far */
5991 int iRoot = pTab->tnum; /* Root page of scanned b-tree */
5993 sqlite3CodeVerifySchema(pParse, iDb);
5994 sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName);
5996 /* Search for the index that has the lowest scan cost.
5998 ** (2011-04-15) Do not do a full scan of an unordered index.
6000 ** (2013-10-03) Do not count the entries in a partial index.
6002 ** In practice the KeyInfo structure will not be used. It is only
6003 ** passed to keep OP_OpenRead happy.
6005 if( !HasRowid(pTab) ) pBest = sqlite3PrimaryKeyIndex(pTab);
6006 for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
6007 if( pIdx->bUnordered==0
6008 && pIdx->szIdxRow<pTab->szTabRow
6009 && pIdx->pPartIdxWhere==0
6010 && (!pBest || pIdx->szIdxRow<pBest->szIdxRow)
6012 pBest = pIdx;
6015 if( pBest ){
6016 iRoot = pBest->tnum;
6017 pKeyInfo = sqlite3KeyInfoOfIndex(pParse, pBest);
6020 /* Open a read-only cursor, execute the OP_Count, close the cursor. */
6021 sqlite3VdbeAddOp4Int(v, OP_OpenRead, iCsr, iRoot, iDb, 1);
6022 if( pKeyInfo ){
6023 sqlite3VdbeChangeP4(v, -1, (char *)pKeyInfo, P4_KEYINFO);
6025 sqlite3VdbeAddOp2(v, OP_Count, iCsr, sAggInfo.aFunc[0].iMem);
6026 sqlite3VdbeAddOp1(v, OP_Close, iCsr);
6027 explainSimpleCount(pParse, pTab, pBest);
6028 }else
6029 #endif /* SQLITE_OMIT_BTREECOUNT */
6031 /* This case runs if the aggregate has no GROUP BY clause. The
6032 ** processing is much simpler since there is only a single row
6033 ** of output.
6035 assert( p->pGroupBy==0 );
6036 resetAccumulator(pParse, &sAggInfo);
6038 /* If this query is a candidate for the min/max optimization, then
6039 ** minMaxFlag will have been previously set to either
6040 ** WHERE_ORDERBY_MIN or WHERE_ORDERBY_MAX and pMinMaxOrderBy will
6041 ** be an appropriate ORDER BY expression for the optimization.
6043 assert( minMaxFlag==WHERE_ORDERBY_NORMAL || pMinMaxOrderBy!=0 );
6044 assert( pMinMaxOrderBy==0 || pMinMaxOrderBy->nExpr==1 );
6046 SELECTTRACE(1,pParse,p,("WhereBegin\n"));
6047 pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, pMinMaxOrderBy,
6048 0, minMaxFlag, 0);
6049 if( pWInfo==0 ){
6050 goto select_end;
6052 updateAccumulator(pParse, &sAggInfo);
6053 if( sqlite3WhereIsOrdered(pWInfo)>0 ){
6054 sqlite3VdbeGoto(v, sqlite3WhereBreakLabel(pWInfo));
6055 VdbeComment((v, "%s() by index",
6056 (minMaxFlag==WHERE_ORDERBY_MIN?"min":"max")));
6058 sqlite3WhereEnd(pWInfo);
6059 finalizeAggFunctions(pParse, &sAggInfo);
6062 sSort.pOrderBy = 0;
6063 sqlite3ExprIfFalse(pParse, pHaving, addrEnd, SQLITE_JUMPIFNULL);
6064 selectInnerLoop(pParse, p, -1, 0, 0,
6065 pDest, addrEnd, addrEnd);
6067 sqlite3VdbeResolveLabel(v, addrEnd);
6069 } /* endif aggregate query */
6071 if( sDistinct.eTnctType==WHERE_DISTINCT_UNORDERED ){
6072 explainTempTable(pParse, "DISTINCT");
6075 /* If there is an ORDER BY clause, then we need to sort the results
6076 ** and send them to the callback one by one.
6078 if( sSort.pOrderBy ){
6079 explainTempTable(pParse,
6080 sSort.nOBSat>0 ? "RIGHT PART OF ORDER BY":"ORDER BY");
6081 generateSortTail(pParse, p, &sSort, pEList->nExpr, pDest);
6084 /* Jump here to skip this query
6086 sqlite3VdbeResolveLabel(v, iEnd);
6088 /* The SELECT has been coded. If there is an error in the Parse structure,
6089 ** set the return code to 1. Otherwise 0. */
6090 rc = (pParse->nErr>0);
6092 /* Control jumps to here if an error is encountered above, or upon
6093 ** successful coding of the SELECT.
6095 select_end:
6096 explainSetInteger(pParse->iSelectId, iRestoreSelectId);
6097 sqlite3ExprListDelete(db, pMinMaxOrderBy);
6098 sqlite3DbFree(db, sAggInfo.aCol);
6099 sqlite3DbFree(db, sAggInfo.aFunc);
6100 #if SELECTTRACE_ENABLED
6101 SELECTTRACE(1,pParse,p,("end processing\n"));
6102 #endif
6103 return rc;