4 ** The author disclaims copyright to this source code. In place of
5 ** a legal notice, here is a blessing:
7 ** May you do good and not evil.
8 ** May you find forgiveness for yourself and forgive others.
9 ** May you share freely, never taking more than you give.
11 *************************************************************************
12 ** This file contains C code routines that are called by the parser
13 ** to handle SELECT statements in SQLite.
15 #include "sqliteInt.h"
18 ** Trace output macros
20 #if SELECTTRACE_ENABLED
21 /***/ int sqlite3SelectTrace
= 0;
22 # define SELECTTRACE(K,P,S,X) \
23 if(sqlite3SelectTrace&(K)) \
24 sqlite3DebugPrintf("%s/%d/%p: ",(S)->zSelName,(P)->addrExplain,(S)),\
27 # define SELECTTRACE(K,P,S,X)
32 ** An instance of the following object is used to record information about
33 ** how to process the DISTINCT keyword, to simplify passing that information
34 ** into the selectInnerLoop() routine.
36 typedef struct DistinctCtx DistinctCtx
;
38 u8 isTnct
; /* True if the DISTINCT keyword is present */
39 u8 eTnctType
; /* One of the WHERE_DISTINCT_* operators */
40 int tabTnct
; /* Ephemeral table used for DISTINCT processing */
41 int addrTnct
; /* Address of OP_OpenEphemeral opcode for tabTnct */
45 ** An instance of the following object is used to record information about
46 ** the ORDER BY (or GROUP BY) clause of query is being coded.
48 ** The aDefer[] array is used by the sorter-references optimization. For
49 ** example, assuming there is no index that can be used for the ORDER BY,
52 ** SELECT a, bigblob FROM t1 ORDER BY a LIMIT 10;
54 ** it may be more efficient to add just the "a" values to the sorter, and
55 ** retrieve the associated "bigblob" values directly from table t1 as the
56 ** 10 smallest "a" values are extracted from the sorter.
58 ** When the sorter-reference optimization is used, there is one entry in the
59 ** aDefer[] array for each database table that may be read as values are
60 ** extracted from the sorter.
62 typedef struct SortCtx SortCtx
;
64 ExprList
*pOrderBy
; /* The ORDER BY (or GROUP BY clause) */
65 int nOBSat
; /* Number of ORDER BY terms satisfied by indices */
66 int iECursor
; /* Cursor number for the sorter */
67 int regReturn
; /* Register holding block-output return address */
68 int labelBkOut
; /* Start label for the block-output subroutine */
69 int addrSortIndex
; /* Address of the OP_SorterOpen or OP_OpenEphemeral */
70 int labelDone
; /* Jump here when done, ex: LIMIT reached */
71 u8 sortFlags
; /* Zero or more SORTFLAG_* bits */
72 u8 bOrderedInnerLoop
; /* ORDER BY correctly sorts the inner loop */
73 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
74 u8 nDefer
; /* Number of valid entries in aDefer[] */
76 Table
*pTab
; /* Table definition */
77 int iCsr
; /* Cursor number for table */
78 int nKey
; /* Number of PK columns for table pTab (>=1) */
81 struct RowLoadInfo
*pDeferredRowLoad
; /* Deferred row loading info or NULL */
83 #define SORTFLAG_UseSorter 0x01 /* Use SorterOpen instead of OpenEphemeral */
86 ** Delete all the content of a Select structure. Deallocate the structure
87 ** itself only if bFree is true.
89 static void clearSelect(sqlite3
*db
, Select
*p
, int bFree
){
91 Select
*pPrior
= p
->pPrior
;
92 sqlite3ExprListDelete(db
, p
->pEList
);
93 sqlite3SrcListDelete(db
, p
->pSrc
);
94 sqlite3ExprDelete(db
, p
->pWhere
);
95 sqlite3ExprListDelete(db
, p
->pGroupBy
);
96 sqlite3ExprDelete(db
, p
->pHaving
);
97 sqlite3ExprListDelete(db
, p
->pOrderBy
);
98 sqlite3ExprDelete(db
, p
->pLimit
);
99 if( OK_IF_ALWAYS_TRUE(p
->pWith
) ) sqlite3WithDelete(db
, p
->pWith
);
100 if( bFree
) sqlite3DbFreeNN(db
, p
);
107 ** Initialize a SelectDest structure.
109 void sqlite3SelectDestInit(SelectDest
*pDest
, int eDest
, int iParm
){
110 pDest
->eDest
= (u8
)eDest
;
111 pDest
->iSDParm
= iParm
;
119 ** Allocate a new Select structure and return a pointer to that
122 Select
*sqlite3SelectNew(
123 Parse
*pParse
, /* Parsing context */
124 ExprList
*pEList
, /* which columns to include in the result */
125 SrcList
*pSrc
, /* the FROM clause -- which tables to scan */
126 Expr
*pWhere
, /* the WHERE clause */
127 ExprList
*pGroupBy
, /* the GROUP BY clause */
128 Expr
*pHaving
, /* the HAVING clause */
129 ExprList
*pOrderBy
, /* the ORDER BY clause */
130 u32 selFlags
, /* Flag parameters, such as SF_Distinct */
131 Expr
*pLimit
/* LIMIT value. NULL means not used */
135 pNew
= sqlite3DbMallocRawNN(pParse
->db
, sizeof(*pNew
) );
137 assert( pParse
->db
->mallocFailed
);
141 pEList
= sqlite3ExprListAppend(pParse
, 0,
142 sqlite3Expr(pParse
->db
,TK_ASTERISK
,0));
144 pNew
->pEList
= pEList
;
145 pNew
->op
= TK_SELECT
;
146 pNew
->selFlags
= selFlags
;
149 #if SELECTTRACE_ENABLED
150 pNew
->zSelName
[0] = 0;
152 pNew
->addrOpenEphm
[0] = -1;
153 pNew
->addrOpenEphm
[1] = -1;
154 pNew
->nSelectRow
= 0;
155 if( pSrc
==0 ) pSrc
= sqlite3DbMallocZero(pParse
->db
, sizeof(*pSrc
));
157 pNew
->pWhere
= pWhere
;
158 pNew
->pGroupBy
= pGroupBy
;
159 pNew
->pHaving
= pHaving
;
160 pNew
->pOrderBy
= pOrderBy
;
163 pNew
->pLimit
= pLimit
;
165 if( pParse
->db
->mallocFailed
) {
166 clearSelect(pParse
->db
, pNew
, pNew
!=&standin
);
169 assert( pNew
->pSrc
!=0 || pParse
->nErr
>0 );
171 assert( pNew
!=&standin
);
175 #if SELECTTRACE_ENABLED
177 ** Set the name of a Select object
179 void sqlite3SelectSetName(Select
*p
, const char *zName
){
181 sqlite3_snprintf(sizeof(p
->zSelName
), p
->zSelName
, "%s", zName
);
188 ** Delete the given Select structure and all of its substructures.
190 void sqlite3SelectDelete(sqlite3
*db
, Select
*p
){
191 if( OK_IF_ALWAYS_TRUE(p
) ) clearSelect(db
, p
, 1);
195 ** Return a pointer to the right-most SELECT statement in a compound.
197 static Select
*findRightmost(Select
*p
){
198 while( p
->pNext
) p
= p
->pNext
;
203 ** Given 1 to 3 identifiers preceding the JOIN keyword, determine the
204 ** type of join. Return an integer constant that expresses that type
205 ** in terms of the following bit values:
214 ** A full outer join is the combination of JT_LEFT and JT_RIGHT.
216 ** If an illegal or unsupported join type is seen, then still return
217 ** a join type, but put an error in the pParse structure.
219 int sqlite3JoinType(Parse
*pParse
, Token
*pA
, Token
*pB
, Token
*pC
){
223 /* 0123456789 123456789 123456789 123 */
224 static const char zKeyText
[] = "naturaleftouterightfullinnercross";
225 static const struct {
226 u8 i
; /* Beginning of keyword text in zKeyText[] */
227 u8 nChar
; /* Length of the keyword in characters */
228 u8 code
; /* Join type mask */
230 /* natural */ { 0, 7, JT_NATURAL
},
231 /* left */ { 6, 4, JT_LEFT
|JT_OUTER
},
232 /* outer */ { 10, 5, JT_OUTER
},
233 /* right */ { 14, 5, JT_RIGHT
|JT_OUTER
},
234 /* full */ { 19, 4, JT_LEFT
|JT_RIGHT
|JT_OUTER
},
235 /* inner */ { 23, 5, JT_INNER
},
236 /* cross */ { 28, 5, JT_INNER
|JT_CROSS
},
242 for(i
=0; i
<3 && apAll
[i
]; i
++){
244 for(j
=0; j
<ArraySize(aKeyword
); j
++){
245 if( p
->n
==aKeyword
[j
].nChar
246 && sqlite3StrNICmp((char*)p
->z
, &zKeyText
[aKeyword
[j
].i
], p
->n
)==0 ){
247 jointype
|= aKeyword
[j
].code
;
251 testcase( j
==0 || j
==1 || j
==2 || j
==3 || j
==4 || j
==5 || j
==6 );
252 if( j
>=ArraySize(aKeyword
) ){
253 jointype
|= JT_ERROR
;
258 (jointype
& (JT_INNER
|JT_OUTER
))==(JT_INNER
|JT_OUTER
) ||
259 (jointype
& JT_ERROR
)!=0
261 const char *zSp
= " ";
263 if( pC
==0 ){ zSp
++; }
264 sqlite3ErrorMsg(pParse
, "unknown or unsupported join type: "
265 "%T %T%s%T", pA
, pB
, zSp
, pC
);
267 }else if( (jointype
& JT_OUTER
)!=0
268 && (jointype
& (JT_LEFT
|JT_RIGHT
))!=JT_LEFT
){
269 sqlite3ErrorMsg(pParse
,
270 "RIGHT and FULL OUTER JOINs are not currently supported");
277 ** Return the index of a column in a table. Return -1 if the column
278 ** is not contained in the table.
280 static int columnIndex(Table
*pTab
, const char *zCol
){
282 for(i
=0; i
<pTab
->nCol
; i
++){
283 if( sqlite3StrICmp(pTab
->aCol
[i
].zName
, zCol
)==0 ) return i
;
289 ** Search the first N tables in pSrc, from left to right, looking for a
290 ** table that has a column named zCol.
292 ** When found, set *piTab and *piCol to the table index and column index
293 ** of the matching column and return TRUE.
295 ** If not found, return FALSE.
297 static int tableAndColumnIndex(
298 SrcList
*pSrc
, /* Array of tables to search */
299 int N
, /* Number of tables in pSrc->a[] to search */
300 const char *zCol
, /* Name of the column we are looking for */
301 int *piTab
, /* Write index of pSrc->a[] here */
302 int *piCol
/* Write index of pSrc->a[*piTab].pTab->aCol[] here */
304 int i
; /* For looping over tables in pSrc */
305 int iCol
; /* Index of column matching zCol */
307 assert( (piTab
==0)==(piCol
==0) ); /* Both or neither are NULL */
309 iCol
= columnIndex(pSrc
->a
[i
].pTab
, zCol
);
322 ** This function is used to add terms implied by JOIN syntax to the
323 ** WHERE clause expression of a SELECT statement. The new term, which
324 ** is ANDed with the existing WHERE clause, is of the form:
326 ** (tab1.col1 = tab2.col2)
328 ** where tab1 is the iSrc'th table in SrcList pSrc and tab2 is the
329 ** (iSrc+1)'th. Column col1 is column iColLeft of tab1, and col2 is
330 ** column iColRight of tab2.
332 static void addWhereTerm(
333 Parse
*pParse
, /* Parsing context */
334 SrcList
*pSrc
, /* List of tables in FROM clause */
335 int iLeft
, /* Index of first table to join in pSrc */
336 int iColLeft
, /* Index of column in first table */
337 int iRight
, /* Index of second table in pSrc */
338 int iColRight
, /* Index of column in second table */
339 int isOuterJoin
, /* True if this is an OUTER join */
340 Expr
**ppWhere
/* IN/OUT: The WHERE clause to add to */
342 sqlite3
*db
= pParse
->db
;
347 assert( iLeft
<iRight
);
348 assert( pSrc
->nSrc
>iRight
);
349 assert( pSrc
->a
[iLeft
].pTab
);
350 assert( pSrc
->a
[iRight
].pTab
);
352 pE1
= sqlite3CreateColumnExpr(db
, pSrc
, iLeft
, iColLeft
);
353 pE2
= sqlite3CreateColumnExpr(db
, pSrc
, iRight
, iColRight
);
355 pEq
= sqlite3PExpr(pParse
, TK_EQ
, pE1
, pE2
);
356 if( pEq
&& isOuterJoin
){
357 ExprSetProperty(pEq
, EP_FromJoin
);
358 assert( !ExprHasProperty(pEq
, EP_TokenOnly
|EP_Reduced
) );
359 ExprSetVVAProperty(pEq
, EP_NoReduce
);
360 pEq
->iRightJoinTable
= (i16
)pE2
->iTable
;
362 *ppWhere
= sqlite3ExprAnd(db
, *ppWhere
, pEq
);
366 ** Set the EP_FromJoin property on all terms of the given expression.
367 ** And set the Expr.iRightJoinTable to iTable for every term in the
370 ** The EP_FromJoin property is used on terms of an expression to tell
371 ** the LEFT OUTER JOIN processing logic that this term is part of the
372 ** join restriction specified in the ON or USING clause and not a part
373 ** of the more general WHERE clause. These terms are moved over to the
374 ** WHERE clause during join processing but we need to remember that they
375 ** originated in the ON or USING clause.
377 ** The Expr.iRightJoinTable tells the WHERE clause processing that the
378 ** expression depends on table iRightJoinTable even if that table is not
379 ** explicitly mentioned in the expression. That information is needed
380 ** for cases like this:
382 ** SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.b AND t1.x=5
384 ** The where clause needs to defer the handling of the t1.x=5
385 ** term until after the t2 loop of the join. In that way, a
386 ** NULL t2 row will be inserted whenever t1.x!=5. If we do not
387 ** defer the handling of t1.x=5, it will be processed immediately
388 ** after the t1 loop and rows with t1.x!=5 will never appear in
389 ** the output, which is incorrect.
391 static void setJoinExpr(Expr
*p
, int iTable
){
393 ExprSetProperty(p
, EP_FromJoin
);
394 assert( !ExprHasProperty(p
, EP_TokenOnly
|EP_Reduced
) );
395 ExprSetVVAProperty(p
, EP_NoReduce
);
396 p
->iRightJoinTable
= (i16
)iTable
;
397 if( p
->op
==TK_FUNCTION
&& p
->x
.pList
){
399 for(i
=0; i
<p
->x
.pList
->nExpr
; i
++){
400 setJoinExpr(p
->x
.pList
->a
[i
].pExpr
, iTable
);
403 setJoinExpr(p
->pLeft
, iTable
);
408 /* Undo the work of setJoinExpr(). In the expression tree p, convert every
409 ** term that is marked with EP_FromJoin and iRightJoinTable==iTable into
410 ** an ordinary term that omits the EP_FromJoin mark.
412 ** This happens when a LEFT JOIN is simplified into an ordinary JOIN.
414 static void unsetJoinExpr(Expr
*p
, int iTable
){
416 if( ExprHasProperty(p
, EP_FromJoin
)
417 && (iTable
<0 || p
->iRightJoinTable
==iTable
) ){
418 ExprClearProperty(p
, EP_FromJoin
);
420 if( p
->op
==TK_FUNCTION
&& p
->x
.pList
){
422 for(i
=0; i
<p
->x
.pList
->nExpr
; i
++){
423 unsetJoinExpr(p
->x
.pList
->a
[i
].pExpr
, iTable
);
426 unsetJoinExpr(p
->pLeft
, iTable
);
432 ** This routine processes the join information for a SELECT statement.
433 ** ON and USING clauses are converted into extra terms of the WHERE clause.
434 ** NATURAL joins also create extra WHERE clause terms.
436 ** The terms of a FROM clause are contained in the Select.pSrc structure.
437 ** The left most table is the first entry in Select.pSrc. The right-most
438 ** table is the last entry. The join operator is held in the entry to
439 ** the left. Thus entry 0 contains the join operator for the join between
440 ** entries 0 and 1. Any ON or USING clauses associated with the join are
441 ** also attached to the left entry.
443 ** This routine returns the number of errors encountered.
445 static int sqliteProcessJoin(Parse
*pParse
, Select
*p
){
446 SrcList
*pSrc
; /* All tables in the FROM clause */
447 int i
, j
; /* Loop counters */
448 struct SrcList_item
*pLeft
; /* Left table being joined */
449 struct SrcList_item
*pRight
; /* Right table being joined */
454 for(i
=0; i
<pSrc
->nSrc
-1; i
++, pRight
++, pLeft
++){
455 Table
*pRightTab
= pRight
->pTab
;
458 if( NEVER(pLeft
->pTab
==0 || pRightTab
==0) ) continue;
459 isOuter
= (pRight
->fg
.jointype
& JT_OUTER
)!=0;
461 /* When the NATURAL keyword is present, add WHERE clause terms for
462 ** every column that the two tables have in common.
464 if( pRight
->fg
.jointype
& JT_NATURAL
){
465 if( pRight
->pOn
|| pRight
->pUsing
){
466 sqlite3ErrorMsg(pParse
, "a NATURAL join may not have "
467 "an ON or USING clause", 0);
470 for(j
=0; j
<pRightTab
->nCol
; j
++){
471 char *zName
; /* Name of column in the right table */
472 int iLeft
; /* Matching left table */
473 int iLeftCol
; /* Matching column in the left table */
475 zName
= pRightTab
->aCol
[j
].zName
;
476 if( tableAndColumnIndex(pSrc
, i
+1, zName
, &iLeft
, &iLeftCol
) ){
477 addWhereTerm(pParse
, pSrc
, iLeft
, iLeftCol
, i
+1, j
,
478 isOuter
, &p
->pWhere
);
483 /* Disallow both ON and USING clauses in the same join
485 if( pRight
->pOn
&& pRight
->pUsing
){
486 sqlite3ErrorMsg(pParse
, "cannot have both ON and USING "
487 "clauses in the same join");
491 /* Add the ON clause to the end of the WHERE clause, connected by
495 if( isOuter
) setJoinExpr(pRight
->pOn
, pRight
->iCursor
);
496 p
->pWhere
= sqlite3ExprAnd(pParse
->db
, p
->pWhere
, pRight
->pOn
);
500 /* Create extra terms on the WHERE clause for each column named
501 ** in the USING clause. Example: If the two tables to be joined are
502 ** A and B and the USING clause names X, Y, and Z, then add this
503 ** to the WHERE clause: A.X=B.X AND A.Y=B.Y AND A.Z=B.Z
504 ** Report an error if any column mentioned in the USING clause is
505 ** not contained in both tables to be joined.
507 if( pRight
->pUsing
){
508 IdList
*pList
= pRight
->pUsing
;
509 for(j
=0; j
<pList
->nId
; j
++){
510 char *zName
; /* Name of the term in the USING clause */
511 int iLeft
; /* Table on the left with matching column name */
512 int iLeftCol
; /* Column number of matching column on the left */
513 int iRightCol
; /* Column number of matching column on the right */
515 zName
= pList
->a
[j
].zName
;
516 iRightCol
= columnIndex(pRightTab
, zName
);
518 || !tableAndColumnIndex(pSrc
, i
+1, zName
, &iLeft
, &iLeftCol
)
520 sqlite3ErrorMsg(pParse
, "cannot join using column %s - column "
521 "not present in both tables", zName
);
524 addWhereTerm(pParse
, pSrc
, iLeft
, iLeftCol
, i
+1, iRightCol
,
525 isOuter
, &p
->pWhere
);
532 /* Forward reference */
533 static KeyInfo
*keyInfoFromExprList(
534 Parse
*pParse
, /* Parsing context */
535 ExprList
*pList
, /* Form the KeyInfo object from this ExprList */
536 int iStart
, /* Begin with this column of pList */
537 int nExtra
/* Add this many extra columns to the end */
541 ** An instance of this object holds information (beyond pParse and pSelect)
542 ** needed to load the next result row that is to be added to the sorter.
544 typedef struct RowLoadInfo RowLoadInfo
;
546 int regResult
; /* Store results in array of registers here */
547 u8 ecelFlags
; /* Flag argument to ExprCodeExprList() */
548 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
549 ExprList
*pExtra
; /* Extra columns needed by sorter refs */
550 int regExtraResult
; /* Where to load the extra columns */
555 ** This routine does the work of loading query data into an array of
556 ** registers so that it can be added to the sorter.
558 static void innerLoopLoadRow(
559 Parse
*pParse
, /* Statement under construction */
560 Select
*pSelect
, /* The query being coded */
561 RowLoadInfo
*pInfo
/* Info needed to complete the row load */
563 sqlite3ExprCodeExprList(pParse
, pSelect
->pEList
, pInfo
->regResult
,
564 0, pInfo
->ecelFlags
);
565 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
567 sqlite3ExprCodeExprList(pParse
, pInfo
->pExtra
, pInfo
->regExtraResult
, 0, 0);
568 sqlite3ExprListDelete(pParse
->db
, pInfo
->pExtra
);
574 ** Code the OP_MakeRecord instruction that generates the entry to be
575 ** added into the sorter.
577 ** Return the register in which the result is stored.
579 static int makeSorterRecord(
586 int nOBSat
= pSort
->nOBSat
;
587 Vdbe
*v
= pParse
->pVdbe
;
588 int regOut
= ++pParse
->nMem
;
589 if( pSort
->pDeferredRowLoad
){
590 innerLoopLoadRow(pParse
, pSelect
, pSort
->pDeferredRowLoad
);
592 sqlite3VdbeAddOp3(v
, OP_MakeRecord
, regBase
+nOBSat
, nBase
-nOBSat
, regOut
);
597 ** Generate code that will push the record in registers regData
598 ** through regData+nData-1 onto the sorter.
600 static void pushOntoSorter(
601 Parse
*pParse
, /* Parser context */
602 SortCtx
*pSort
, /* Information about the ORDER BY clause */
603 Select
*pSelect
, /* The whole SELECT statement */
604 int regData
, /* First register holding data to be sorted */
605 int regOrigData
, /* First register holding data before packing */
606 int nData
, /* Number of elements in the regData data array */
607 int nPrefixReg
/* No. of reg prior to regData available for use */
609 Vdbe
*v
= pParse
->pVdbe
; /* Stmt under construction */
610 int bSeq
= ((pSort
->sortFlags
& SORTFLAG_UseSorter
)==0);
611 int nExpr
= pSort
->pOrderBy
->nExpr
; /* No. of ORDER BY terms */
612 int nBase
= nExpr
+ bSeq
+ nData
; /* Fields in sorter record */
613 int regBase
; /* Regs for sorter record */
614 int regRecord
= 0; /* Assembled sorter record */
615 int nOBSat
= pSort
->nOBSat
; /* ORDER BY terms to skip */
616 int op
; /* Opcode to add sorter record to sorter */
617 int iLimit
; /* LIMIT counter */
618 int iSkip
= 0; /* End of the sorter insert loop */
620 assert( bSeq
==0 || bSeq
==1 );
623 ** (1) The data to be sorted has already been packed into a Record
624 ** by a prior OP_MakeRecord. In this case nData==1 and regData
625 ** will be completely unrelated to regOrigData.
626 ** (2) All output columns are included in the sort record. In that
627 ** case regData==regOrigData.
628 ** (3) Some output columns are omitted from the sort record due to
629 ** the SQLITE_ENABLE_SORTER_REFERENCE optimization, or due to the
630 ** SQLITE_ECEL_OMITREF optimization, or due to the
631 ** SortCtx.pDeferredRowLoad optimiation. In any of these cases
632 ** regOrigData is 0 to prevent this routine from trying to copy
633 ** values that might not yet exist.
635 assert( nData
==1 || regData
==regOrigData
|| regOrigData
==0 );
638 assert( nPrefixReg
==nExpr
+bSeq
);
639 regBase
= regData
- nPrefixReg
;
641 regBase
= pParse
->nMem
+ 1;
642 pParse
->nMem
+= nBase
;
644 assert( pSelect
->iOffset
==0 || pSelect
->iLimit
!=0 );
645 iLimit
= pSelect
->iOffset
? pSelect
->iOffset
+1 : pSelect
->iLimit
;
646 pSort
->labelDone
= sqlite3VdbeMakeLabel(v
);
647 sqlite3ExprCodeExprList(pParse
, pSort
->pOrderBy
, regBase
, regOrigData
,
648 SQLITE_ECEL_DUP
| (regOrigData
? SQLITE_ECEL_REF
: 0));
650 sqlite3VdbeAddOp2(v
, OP_Sequence
, pSort
->iECursor
, regBase
+nExpr
);
652 if( nPrefixReg
==0 && nData
>0 ){
653 sqlite3ExprCodeMove(pParse
, regData
, regBase
+nExpr
+bSeq
, nData
);
656 int regPrevKey
; /* The first nOBSat columns of the previous row */
657 int addrFirst
; /* Address of the OP_IfNot opcode */
658 int addrJmp
; /* Address of the OP_Jump opcode */
659 VdbeOp
*pOp
; /* Opcode that opens the sorter */
660 int nKey
; /* Number of sorting key columns, including OP_Sequence */
661 KeyInfo
*pKI
; /* Original KeyInfo on the sorter table */
663 regRecord
= makeSorterRecord(pParse
, pSort
, pSelect
, regBase
, nBase
);
664 regPrevKey
= pParse
->nMem
+1;
665 pParse
->nMem
+= pSort
->nOBSat
;
666 nKey
= nExpr
- pSort
->nOBSat
+ bSeq
;
668 addrFirst
= sqlite3VdbeAddOp1(v
, OP_IfNot
, regBase
+nExpr
);
670 addrFirst
= sqlite3VdbeAddOp1(v
, OP_SequenceTest
, pSort
->iECursor
);
673 sqlite3VdbeAddOp3(v
, OP_Compare
, regPrevKey
, regBase
, pSort
->nOBSat
);
674 pOp
= sqlite3VdbeGetOp(v
, pSort
->addrSortIndex
);
675 if( pParse
->db
->mallocFailed
) return;
676 pOp
->p2
= nKey
+ nData
;
677 pKI
= pOp
->p4
.pKeyInfo
;
678 memset(pKI
->aSortOrder
, 0, pKI
->nKeyField
); /* Makes OP_Jump testable */
679 sqlite3VdbeChangeP4(v
, -1, (char*)pKI
, P4_KEYINFO
);
680 testcase( pKI
->nAllField
> pKI
->nKeyField
+2 );
681 pOp
->p4
.pKeyInfo
= keyInfoFromExprList(pParse
, pSort
->pOrderBy
, nOBSat
,
682 pKI
->nAllField
-pKI
->nKeyField
-1);
683 addrJmp
= sqlite3VdbeCurrentAddr(v
);
684 sqlite3VdbeAddOp3(v
, OP_Jump
, addrJmp
+1, 0, addrJmp
+1); VdbeCoverage(v
);
685 pSort
->labelBkOut
= sqlite3VdbeMakeLabel(v
);
686 pSort
->regReturn
= ++pParse
->nMem
;
687 sqlite3VdbeAddOp2(v
, OP_Gosub
, pSort
->regReturn
, pSort
->labelBkOut
);
688 sqlite3VdbeAddOp1(v
, OP_ResetSorter
, pSort
->iECursor
);
690 sqlite3VdbeAddOp2(v
, OP_IfNot
, iLimit
, pSort
->labelDone
);
693 sqlite3VdbeJumpHere(v
, addrFirst
);
694 sqlite3ExprCodeMove(pParse
, regBase
, regPrevKey
, pSort
->nOBSat
);
695 sqlite3VdbeJumpHere(v
, addrJmp
);
698 /* At this point the values for the new sorter entry are stored
699 ** in an array of registers. They need to be composed into a record
700 ** and inserted into the sorter if either (a) there are currently
701 ** less than LIMIT+OFFSET items or (b) the new record is smaller than
702 ** the largest record currently in the sorter. If (b) is true and there
703 ** are already LIMIT+OFFSET items in the sorter, delete the largest
704 ** entry before inserting the new one. This way there are never more
705 ** than LIMIT+OFFSET items in the sorter.
707 ** If the new record does not need to be inserted into the sorter,
708 ** jump to the next iteration of the loop. Or, if the
709 ** pSort->bOrderedInnerLoop flag is set to indicate that the inner
710 ** loop delivers items in sorted order, jump to the next iteration
711 ** of the outer loop.
713 int iCsr
= pSort
->iECursor
;
714 sqlite3VdbeAddOp2(v
, OP_IfNotZero
, iLimit
, sqlite3VdbeCurrentAddr(v
)+4);
716 sqlite3VdbeAddOp2(v
, OP_Last
, iCsr
, 0);
717 iSkip
= sqlite3VdbeAddOp4Int(v
, OP_IdxLE
,
718 iCsr
, 0, regBase
+nOBSat
, nExpr
-nOBSat
);
720 sqlite3VdbeAddOp1(v
, OP_Delete
, iCsr
);
723 regRecord
= makeSorterRecord(pParse
, pSort
, pSelect
, regBase
, nBase
);
725 if( pSort
->sortFlags
& SORTFLAG_UseSorter
){
726 op
= OP_SorterInsert
;
730 sqlite3VdbeAddOp4Int(v
, op
, pSort
->iECursor
, regRecord
,
731 regBase
+nOBSat
, nBase
-nOBSat
);
733 assert( pSort
->bOrderedInnerLoop
==0 || pSort
->bOrderedInnerLoop
==1 );
734 sqlite3VdbeChangeP2(v
, iSkip
,
735 sqlite3VdbeCurrentAddr(v
) + pSort
->bOrderedInnerLoop
);
740 ** Add code to implement the OFFSET
742 static void codeOffset(
743 Vdbe
*v
, /* Generate code into this VM */
744 int iOffset
, /* Register holding the offset counter */
745 int iContinue
/* Jump here to skip the current record */
748 sqlite3VdbeAddOp3(v
, OP_IfPos
, iOffset
, iContinue
, 1); VdbeCoverage(v
);
749 VdbeComment((v
, "OFFSET"));
754 ** Add code that will check to make sure the N registers starting at iMem
755 ** form a distinct entry. iTab is a sorting index that holds previously
756 ** seen combinations of the N values. A new entry is made in iTab
757 ** if the current N values are new.
759 ** A jump to addrRepeat is made and the N+1 values are popped from the
760 ** stack if the top N elements are not distinct.
762 static void codeDistinct(
763 Parse
*pParse
, /* Parsing and code generating context */
764 int iTab
, /* A sorting index used to test for distinctness */
765 int addrRepeat
, /* Jump to here if not distinct */
766 int N
, /* Number of elements */
767 int iMem
/* First element */
773 r1
= sqlite3GetTempReg(pParse
);
774 sqlite3VdbeAddOp4Int(v
, OP_Found
, iTab
, addrRepeat
, iMem
, N
); VdbeCoverage(v
);
775 sqlite3VdbeAddOp3(v
, OP_MakeRecord
, iMem
, N
, r1
);
776 sqlite3VdbeAddOp4Int(v
, OP_IdxInsert
, iTab
, r1
, iMem
, N
);
777 sqlite3VdbeChangeP5(v
, OPFLAG_USESEEKRESULT
);
778 sqlite3ReleaseTempReg(pParse
, r1
);
781 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
783 ** This function is called as part of inner-loop generation for a SELECT
784 ** statement with an ORDER BY that is not optimized by an index. It
785 ** determines the expressions, if any, that the sorter-reference
786 ** optimization should be used for. The sorter-reference optimization
787 ** is used for SELECT queries like:
789 ** SELECT a, bigblob FROM t1 ORDER BY a LIMIT 10
791 ** If the optimization is used for expression "bigblob", then instead of
792 ** storing values read from that column in the sorter records, the PK of
793 ** the row from table t1 is stored instead. Then, as records are extracted from
794 ** the sorter to return to the user, the required value of bigblob is
795 ** retrieved directly from table t1. If the values are very large, this
796 ** can be more efficient than storing them directly in the sorter records.
798 ** The ExprList_item.bSorterRef flag is set for each expression in pEList
799 ** for which the sorter-reference optimization should be enabled.
800 ** Additionally, the pSort->aDefer[] array is populated with entries
801 ** for all cursors required to evaluate all selected expressions. Finally.
802 ** output variable (*ppExtra) is set to an expression list containing
803 ** expressions for all extra PK values that should be stored in the
806 static void selectExprDefer(
807 Parse
*pParse
, /* Leave any error here */
808 SortCtx
*pSort
, /* Sorter context */
809 ExprList
*pEList
, /* Expressions destined for sorter */
810 ExprList
**ppExtra
/* Expressions to append to sorter record */
814 ExprList
*pExtra
= 0;
815 for(i
=0; i
<pEList
->nExpr
; i
++){
816 struct ExprList_item
*pItem
= &pEList
->a
[i
];
817 if( pItem
->u
.x
.iOrderByCol
==0 ){
818 Expr
*pExpr
= pItem
->pExpr
;
819 Table
*pTab
= pExpr
->pTab
;
820 if( pExpr
->op
==TK_COLUMN
&& pTab
&& !IsVirtual(pTab
)
821 && (pTab
->aCol
[pExpr
->iColumn
].colFlags
& COLFLAG_SORTERREF
)
824 for(j
=0; j
<nDefer
; j
++){
825 if( pSort
->aDefer
[j
].iCsr
==pExpr
->iTable
) break;
828 if( nDefer
==ArraySize(pSort
->aDefer
) ){
834 if( !HasRowid(pTab
) ){
835 pPk
= sqlite3PrimaryKeyIndex(pTab
);
838 for(k
=0; k
<nKey
; k
++){
839 Expr
*pNew
= sqlite3PExpr(pParse
, TK_COLUMN
, 0, 0);
841 pNew
->iTable
= pExpr
->iTable
;
842 pNew
->pTab
= pExpr
->pTab
;
843 pNew
->iColumn
= pPk
? pPk
->aiColumn
[k
] : -1;
844 pExtra
= sqlite3ExprListAppend(pParse
, pExtra
, pNew
);
847 pSort
->aDefer
[nDefer
].pTab
= pExpr
->pTab
;
848 pSort
->aDefer
[nDefer
].iCsr
= pExpr
->iTable
;
849 pSort
->aDefer
[nDefer
].nKey
= nKey
;
853 pItem
->bSorterRef
= 1;
857 pSort
->nDefer
= (u8
)nDefer
;
863 ** This routine generates the code for the inside of the inner loop
866 ** If srcTab is negative, then the p->pEList expressions
867 ** are evaluated in order to get the data for this row. If srcTab is
868 ** zero or more, then data is pulled from srcTab and p->pEList is used only
869 ** to get the number of columns and the collation sequence for each column.
871 static void selectInnerLoop(
872 Parse
*pParse
, /* The parser context */
873 Select
*p
, /* The complete select statement being coded */
874 int srcTab
, /* Pull data from this table if non-negative */
875 SortCtx
*pSort
, /* If not NULL, info on how to process ORDER BY */
876 DistinctCtx
*pDistinct
, /* If not NULL, info on how to process DISTINCT */
877 SelectDest
*pDest
, /* How to dispose of the results */
878 int iContinue
, /* Jump here to continue with next row */
879 int iBreak
/* Jump here to break out of the inner loop */
881 Vdbe
*v
= pParse
->pVdbe
;
883 int hasDistinct
; /* True if the DISTINCT keyword is present */
884 int eDest
= pDest
->eDest
; /* How to dispose of results */
885 int iParm
= pDest
->iSDParm
; /* First argument to disposal method */
886 int nResultCol
; /* Number of result columns */
887 int nPrefixReg
= 0; /* Number of extra registers before regResult */
888 RowLoadInfo sRowLoadInfo
; /* Info for deferred row loading */
890 /* Usually, regResult is the first cell in an array of memory cells
891 ** containing the current result row. In this case regOrig is set to the
892 ** same value. However, if the results are being sent to the sorter, the
893 ** values for any expressions that are also part of the sort-key are omitted
894 ** from this array. In this case regOrig is set to zero. */
895 int regResult
; /* Start of memory holding current results */
896 int regOrig
; /* Start of memory holding full result (or 0) */
899 assert( p
->pEList
!=0 );
900 hasDistinct
= pDistinct
? pDistinct
->eTnctType
: WHERE_DISTINCT_NOOP
;
901 if( pSort
&& pSort
->pOrderBy
==0 ) pSort
= 0;
902 if( pSort
==0 && !hasDistinct
){
903 assert( iContinue
!=0 );
904 codeOffset(v
, p
->iOffset
, iContinue
);
907 /* Pull the requested columns.
909 nResultCol
= p
->pEList
->nExpr
;
911 if( pDest
->iSdst
==0 ){
913 nPrefixReg
= pSort
->pOrderBy
->nExpr
;
914 if( !(pSort
->sortFlags
& SORTFLAG_UseSorter
) ) nPrefixReg
++;
915 pParse
->nMem
+= nPrefixReg
;
917 pDest
->iSdst
= pParse
->nMem
+1;
918 pParse
->nMem
+= nResultCol
;
919 }else if( pDest
->iSdst
+nResultCol
> pParse
->nMem
){
920 /* This is an error condition that can result, for example, when a SELECT
921 ** on the right-hand side of an INSERT contains more result columns than
922 ** there are columns in the table on the left. The error will be caught
923 ** and reported later. But we need to make sure enough memory is allocated
924 ** to avoid other spurious errors in the meantime. */
925 pParse
->nMem
+= nResultCol
;
927 pDest
->nSdst
= nResultCol
;
928 regOrig
= regResult
= pDest
->iSdst
;
930 for(i
=0; i
<nResultCol
; i
++){
931 sqlite3VdbeAddOp3(v
, OP_Column
, srcTab
, i
, regResult
+i
);
932 VdbeComment((v
, "%s", p
->pEList
->a
[i
].zName
));
934 }else if( eDest
!=SRT_Exists
){
935 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
936 ExprList
*pExtra
= 0;
938 /* If the destination is an EXISTS(...) expression, the actual
939 ** values returned by the SELECT are not required.
941 u8 ecelFlags
; /* "ecel" is an abbreviation of "ExprCodeExprList" */
943 if( eDest
==SRT_Mem
|| eDest
==SRT_Output
|| eDest
==SRT_Coroutine
){
944 ecelFlags
= SQLITE_ECEL_DUP
;
948 if( pSort
&& hasDistinct
==0 && eDest
!=SRT_EphemTab
&& eDest
!=SRT_Table
){
949 /* For each expression in p->pEList that is a copy of an expression in
950 ** the ORDER BY clause (pSort->pOrderBy), set the associated
951 ** iOrderByCol value to one more than the index of the ORDER BY
952 ** expression within the sort-key that pushOntoSorter() will generate.
953 ** This allows the p->pEList field to be omitted from the sorted record,
954 ** saving space and CPU cycles. */
955 ecelFlags
|= (SQLITE_ECEL_OMITREF
|SQLITE_ECEL_REF
);
957 for(i
=pSort
->nOBSat
; i
<pSort
->pOrderBy
->nExpr
; i
++){
959 if( (j
= pSort
->pOrderBy
->a
[i
].u
.x
.iOrderByCol
)>0 ){
960 p
->pEList
->a
[j
-1].u
.x
.iOrderByCol
= i
+1-pSort
->nOBSat
;
963 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
964 selectExprDefer(pParse
, pSort
, p
->pEList
, &pExtra
);
965 if( pExtra
&& pParse
->db
->mallocFailed
==0 ){
966 /* If there are any extra PK columns to add to the sorter records,
967 ** allocate extra memory cells and adjust the OpenEphemeral
968 ** instruction to account for the larger records. This is only
969 ** required if there are one or more WITHOUT ROWID tables with
970 ** composite primary keys in the SortCtx.aDefer[] array. */
971 VdbeOp
*pOp
= sqlite3VdbeGetOp(v
, pSort
->addrSortIndex
);
972 pOp
->p2
+= (pExtra
->nExpr
- pSort
->nDefer
);
973 pOp
->p4
.pKeyInfo
->nAllField
+= (pExtra
->nExpr
- pSort
->nDefer
);
974 pParse
->nMem
+= pExtra
->nExpr
;
978 /* Adjust nResultCol to account for columns that are omitted
979 ** from the sorter by the optimizations in this branch */
981 for(i
=0; i
<pEList
->nExpr
; i
++){
982 if( pEList
->a
[i
].u
.x
.iOrderByCol
>0
983 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
984 || pEList
->a
[i
].bSorterRef
993 testcase( eDest
==SRT_Set
);
994 testcase( eDest
==SRT_Mem
);
995 testcase( eDest
==SRT_Coroutine
);
996 testcase( eDest
==SRT_Output
);
997 assert( eDest
==SRT_Set
|| eDest
==SRT_Mem
998 || eDest
==SRT_Coroutine
|| eDest
==SRT_Output
);
1000 sRowLoadInfo
.regResult
= regResult
;
1001 sRowLoadInfo
.ecelFlags
= ecelFlags
;
1002 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
1003 sRowLoadInfo
.pExtra
= pExtra
;
1004 sRowLoadInfo
.regExtraResult
= regResult
+ nResultCol
;
1005 if( pExtra
) nResultCol
+= pExtra
->nExpr
;
1008 && (ecelFlags
& SQLITE_ECEL_OMITREF
)!=0
1012 assert( hasDistinct
==0 );
1013 pSort
->pDeferredRowLoad
= &sRowLoadInfo
;
1016 innerLoopLoadRow(pParse
, p
, &sRowLoadInfo
);
1020 /* If the DISTINCT keyword was present on the SELECT statement
1021 ** and this row has been seen before, then do not make this row
1022 ** part of the result.
1025 switch( pDistinct
->eTnctType
){
1026 case WHERE_DISTINCT_ORDERED
: {
1027 VdbeOp
*pOp
; /* No longer required OpenEphemeral instr. */
1028 int iJump
; /* Jump destination */
1029 int regPrev
; /* Previous row content */
1031 /* Allocate space for the previous row */
1032 regPrev
= pParse
->nMem
+1;
1033 pParse
->nMem
+= nResultCol
;
1035 /* Change the OP_OpenEphemeral coded earlier to an OP_Null
1036 ** sets the MEM_Cleared bit on the first register of the
1037 ** previous value. This will cause the OP_Ne below to always
1038 ** fail on the first iteration of the loop even if the first
1039 ** row is all NULLs.
1041 sqlite3VdbeChangeToNoop(v
, pDistinct
->addrTnct
);
1042 pOp
= sqlite3VdbeGetOp(v
, pDistinct
->addrTnct
);
1043 pOp
->opcode
= OP_Null
;
1047 iJump
= sqlite3VdbeCurrentAddr(v
) + nResultCol
;
1048 for(i
=0; i
<nResultCol
; i
++){
1049 CollSeq
*pColl
= sqlite3ExprCollSeq(pParse
, p
->pEList
->a
[i
].pExpr
);
1050 if( i
<nResultCol
-1 ){
1051 sqlite3VdbeAddOp3(v
, OP_Ne
, regResult
+i
, iJump
, regPrev
+i
);
1054 sqlite3VdbeAddOp3(v
, OP_Eq
, regResult
+i
, iContinue
, regPrev
+i
);
1057 sqlite3VdbeChangeP4(v
, -1, (const char *)pColl
, P4_COLLSEQ
);
1058 sqlite3VdbeChangeP5(v
, SQLITE_NULLEQ
);
1060 assert( sqlite3VdbeCurrentAddr(v
)==iJump
|| pParse
->db
->mallocFailed
);
1061 sqlite3VdbeAddOp3(v
, OP_Copy
, regResult
, regPrev
, nResultCol
-1);
1065 case WHERE_DISTINCT_UNIQUE
: {
1066 sqlite3VdbeChangeToNoop(v
, pDistinct
->addrTnct
);
1071 assert( pDistinct
->eTnctType
==WHERE_DISTINCT_UNORDERED
);
1072 codeDistinct(pParse
, pDistinct
->tabTnct
, iContinue
, nResultCol
,
1078 codeOffset(v
, p
->iOffset
, iContinue
);
1083 /* In this mode, write each query result to the key of the temporary
1086 #ifndef SQLITE_OMIT_COMPOUND_SELECT
1089 r1
= sqlite3GetTempReg(pParse
);
1090 sqlite3VdbeAddOp3(v
, OP_MakeRecord
, regResult
, nResultCol
, r1
);
1091 sqlite3VdbeAddOp4Int(v
, OP_IdxInsert
, iParm
, r1
, regResult
, nResultCol
);
1092 sqlite3ReleaseTempReg(pParse
, r1
);
1096 /* Construct a record from the query result, but instead of
1097 ** saving that record, use it as a key to delete elements from
1098 ** the temporary table iParm.
1101 sqlite3VdbeAddOp3(v
, OP_IdxDelete
, iParm
, regResult
, nResultCol
);
1104 #endif /* SQLITE_OMIT_COMPOUND_SELECT */
1106 /* Store the result as data using a unique key.
1111 case SRT_EphemTab
: {
1112 int r1
= sqlite3GetTempRange(pParse
, nPrefixReg
+1);
1113 testcase( eDest
==SRT_Table
);
1114 testcase( eDest
==SRT_EphemTab
);
1115 testcase( eDest
==SRT_Fifo
);
1116 testcase( eDest
==SRT_DistFifo
);
1117 sqlite3VdbeAddOp3(v
, OP_MakeRecord
, regResult
, nResultCol
, r1
+nPrefixReg
);
1118 #ifndef SQLITE_OMIT_CTE
1119 if( eDest
==SRT_DistFifo
){
1120 /* If the destination is DistFifo, then cursor (iParm+1) is open
1121 ** on an ephemeral index. If the current row is already present
1122 ** in the index, do not write it to the output. If not, add the
1123 ** current row to the index and proceed with writing it to the
1124 ** output table as well. */
1125 int addr
= sqlite3VdbeCurrentAddr(v
) + 4;
1126 sqlite3VdbeAddOp4Int(v
, OP_Found
, iParm
+1, addr
, r1
, 0);
1128 sqlite3VdbeAddOp4Int(v
, OP_IdxInsert
, iParm
+1, r1
,regResult
,nResultCol
);
1133 assert( regResult
==regOrig
);
1134 pushOntoSorter(pParse
, pSort
, p
, r1
+nPrefixReg
, regOrig
, 1, nPrefixReg
);
1136 int r2
= sqlite3GetTempReg(pParse
);
1137 sqlite3VdbeAddOp2(v
, OP_NewRowid
, iParm
, r2
);
1138 sqlite3VdbeAddOp3(v
, OP_Insert
, iParm
, r1
, r2
);
1139 sqlite3VdbeChangeP5(v
, OPFLAG_APPEND
);
1140 sqlite3ReleaseTempReg(pParse
, r2
);
1142 sqlite3ReleaseTempRange(pParse
, r1
, nPrefixReg
+1);
1146 #ifndef SQLITE_OMIT_SUBQUERY
1147 /* If we are creating a set for an "expr IN (SELECT ...)" construct,
1148 ** then there should be a single item on the stack. Write this
1149 ** item into the set table with bogus data.
1153 /* At first glance you would think we could optimize out the
1154 ** ORDER BY in this case since the order of entries in the set
1155 ** does not matter. But there might be a LIMIT clause, in which
1156 ** case the order does matter */
1158 pParse
, pSort
, p
, regResult
, regOrig
, nResultCol
, nPrefixReg
);
1160 int r1
= sqlite3GetTempReg(pParse
);
1161 assert( sqlite3Strlen30(pDest
->zAffSdst
)==nResultCol
);
1162 sqlite3VdbeAddOp4(v
, OP_MakeRecord
, regResult
, nResultCol
,
1163 r1
, pDest
->zAffSdst
, nResultCol
);
1164 sqlite3ExprCacheAffinityChange(pParse
, regResult
, nResultCol
);
1165 sqlite3VdbeAddOp4Int(v
, OP_IdxInsert
, iParm
, r1
, regResult
, nResultCol
);
1166 sqlite3ReleaseTempReg(pParse
, r1
);
1171 /* If any row exist in the result set, record that fact and abort.
1174 sqlite3VdbeAddOp2(v
, OP_Integer
, 1, iParm
);
1175 /* The LIMIT clause will terminate the loop for us */
1179 /* If this is a scalar select that is part of an expression, then
1180 ** store the results in the appropriate memory cell or array of
1181 ** memory cells and break out of the scan loop.
1185 assert( nResultCol
<=pDest
->nSdst
);
1187 pParse
, pSort
, p
, regResult
, regOrig
, nResultCol
, nPrefixReg
);
1189 assert( nResultCol
==pDest
->nSdst
);
1190 assert( regResult
==iParm
);
1191 /* The LIMIT clause will jump out of the loop for us */
1195 #endif /* #ifndef SQLITE_OMIT_SUBQUERY */
1197 case SRT_Coroutine
: /* Send data to a co-routine */
1198 case SRT_Output
: { /* Return the results */
1199 testcase( eDest
==SRT_Coroutine
);
1200 testcase( eDest
==SRT_Output
);
1202 pushOntoSorter(pParse
, pSort
, p
, regResult
, regOrig
, nResultCol
,
1204 }else if( eDest
==SRT_Coroutine
){
1205 sqlite3VdbeAddOp1(v
, OP_Yield
, pDest
->iSDParm
);
1207 sqlite3VdbeAddOp2(v
, OP_ResultRow
, regResult
, nResultCol
);
1208 sqlite3ExprCacheAffinityChange(pParse
, regResult
, nResultCol
);
1213 #ifndef SQLITE_OMIT_CTE
1214 /* Write the results into a priority queue that is order according to
1215 ** pDest->pOrderBy (in pSO). pDest->iSDParm (in iParm) is the cursor for an
1216 ** index with pSO->nExpr+2 columns. Build a key using pSO for the first
1217 ** pSO->nExpr columns, then make sure all keys are unique by adding a
1218 ** final OP_Sequence column. The last column is the record as a blob.
1226 pSO
= pDest
->pOrderBy
;
1229 r1
= sqlite3GetTempReg(pParse
);
1230 r2
= sqlite3GetTempRange(pParse
, nKey
+2);
1232 if( eDest
==SRT_DistQueue
){
1233 /* If the destination is DistQueue, then cursor (iParm+1) is open
1234 ** on a second ephemeral index that holds all values every previously
1235 ** added to the queue. */
1236 addrTest
= sqlite3VdbeAddOp4Int(v
, OP_Found
, iParm
+1, 0,
1237 regResult
, nResultCol
);
1240 sqlite3VdbeAddOp3(v
, OP_MakeRecord
, regResult
, nResultCol
, r3
);
1241 if( eDest
==SRT_DistQueue
){
1242 sqlite3VdbeAddOp2(v
, OP_IdxInsert
, iParm
+1, r3
);
1243 sqlite3VdbeChangeP5(v
, OPFLAG_USESEEKRESULT
);
1245 for(i
=0; i
<nKey
; i
++){
1246 sqlite3VdbeAddOp2(v
, OP_SCopy
,
1247 regResult
+ pSO
->a
[i
].u
.x
.iOrderByCol
- 1,
1250 sqlite3VdbeAddOp2(v
, OP_Sequence
, iParm
, r2
+nKey
);
1251 sqlite3VdbeAddOp3(v
, OP_MakeRecord
, r2
, nKey
+2, r1
);
1252 sqlite3VdbeAddOp4Int(v
, OP_IdxInsert
, iParm
, r1
, r2
, nKey
+2);
1253 if( addrTest
) sqlite3VdbeJumpHere(v
, addrTest
);
1254 sqlite3ReleaseTempReg(pParse
, r1
);
1255 sqlite3ReleaseTempRange(pParse
, r2
, nKey
+2);
1258 #endif /* SQLITE_OMIT_CTE */
1262 #if !defined(SQLITE_OMIT_TRIGGER)
1263 /* Discard the results. This is used for SELECT statements inside
1264 ** the body of a TRIGGER. The purpose of such selects is to call
1265 ** user-defined functions that have side effects. We do not care
1266 ** about the actual results of the select.
1269 assert( eDest
==SRT_Discard
);
1275 /* Jump to the end of the loop if the LIMIT is reached. Except, if
1276 ** there is a sorter, in which case the sorter has already limited
1277 ** the output for us.
1279 if( pSort
==0 && p
->iLimit
){
1280 sqlite3VdbeAddOp2(v
, OP_DecrJumpZero
, p
->iLimit
, iBreak
); VdbeCoverage(v
);
1285 ** Allocate a KeyInfo object sufficient for an index of N key columns and
1288 KeyInfo
*sqlite3KeyInfoAlloc(sqlite3
*db
, int N
, int X
){
1289 int nExtra
= (N
+X
)*(sizeof(CollSeq
*)+1) - sizeof(CollSeq
*);
1290 KeyInfo
*p
= sqlite3DbMallocRawNN(db
, sizeof(KeyInfo
) + nExtra
);
1292 p
->aSortOrder
= (u8
*)&p
->aColl
[N
+X
];
1293 p
->nKeyField
= (u16
)N
;
1294 p
->nAllField
= (u16
)(N
+X
);
1298 memset(&p
[1], 0, nExtra
);
1300 sqlite3OomFault(db
);
1306 ** Deallocate a KeyInfo object
1308 void sqlite3KeyInfoUnref(KeyInfo
*p
){
1310 assert( p
->nRef
>0 );
1312 if( p
->nRef
==0 ) sqlite3DbFreeNN(p
->db
, p
);
1317 ** Make a new pointer to a KeyInfo object
1319 KeyInfo
*sqlite3KeyInfoRef(KeyInfo
*p
){
1321 assert( p
->nRef
>0 );
1329 ** Return TRUE if a KeyInfo object can be change. The KeyInfo object
1330 ** can only be changed if this is just a single reference to the object.
1332 ** This routine is used only inside of assert() statements.
1334 int sqlite3KeyInfoIsWriteable(KeyInfo
*p
){ return p
->nRef
==1; }
1335 #endif /* SQLITE_DEBUG */
1338 ** Given an expression list, generate a KeyInfo structure that records
1339 ** the collating sequence for each expression in that expression list.
1341 ** If the ExprList is an ORDER BY or GROUP BY clause then the resulting
1342 ** KeyInfo structure is appropriate for initializing a virtual index to
1343 ** implement that clause. If the ExprList is the result set of a SELECT
1344 ** then the KeyInfo structure is appropriate for initializing a virtual
1345 ** index to implement a DISTINCT test.
1347 ** Space to hold the KeyInfo structure is obtained from malloc. The calling
1348 ** function is responsible for seeing that this structure is eventually
1351 static KeyInfo
*keyInfoFromExprList(
1352 Parse
*pParse
, /* Parsing context */
1353 ExprList
*pList
, /* Form the KeyInfo object from this ExprList */
1354 int iStart
, /* Begin with this column of pList */
1355 int nExtra
/* Add this many extra columns to the end */
1359 struct ExprList_item
*pItem
;
1360 sqlite3
*db
= pParse
->db
;
1363 nExpr
= pList
->nExpr
;
1364 pInfo
= sqlite3KeyInfoAlloc(db
, nExpr
-iStart
, nExtra
+1);
1366 assert( sqlite3KeyInfoIsWriteable(pInfo
) );
1367 for(i
=iStart
, pItem
=pList
->a
+iStart
; i
<nExpr
; i
++, pItem
++){
1368 pInfo
->aColl
[i
-iStart
] = sqlite3ExprNNCollSeq(pParse
, pItem
->pExpr
);
1369 pInfo
->aSortOrder
[i
-iStart
] = pItem
->sortOrder
;
1376 ** Name of the connection operator, used for error messages.
1378 static const char *selectOpName(int id
){
1381 case TK_ALL
: z
= "UNION ALL"; break;
1382 case TK_INTERSECT
: z
= "INTERSECT"; break;
1383 case TK_EXCEPT
: z
= "EXCEPT"; break;
1384 default: z
= "UNION"; break;
1389 #ifndef SQLITE_OMIT_EXPLAIN
1391 ** Unless an "EXPLAIN QUERY PLAN" command is being processed, this function
1392 ** is a no-op. Otherwise, it adds a single row of output to the EQP result,
1393 ** where the caption is of the form:
1395 ** "USE TEMP B-TREE FOR xxx"
1397 ** where xxx is one of "DISTINCT", "ORDER BY" or "GROUP BY". Exactly which
1398 ** is determined by the zUsage argument.
1400 static void explainTempTable(Parse
*pParse
, const char *zUsage
){
1401 ExplainQueryPlan((pParse
, 0, "USE TEMP B-TREE FOR %s", zUsage
));
1405 ** Assign expression b to lvalue a. A second, no-op, version of this macro
1406 ** is provided when SQLITE_OMIT_EXPLAIN is defined. This allows the code
1407 ** in sqlite3Select() to assign values to structure member variables that
1408 ** only exist if SQLITE_OMIT_EXPLAIN is not defined without polluting the
1409 ** code with #ifndef directives.
1411 # define explainSetInteger(a, b) a = b
1414 /* No-op versions of the explainXXX() functions and macros. */
1415 # define explainTempTable(y,z)
1416 # define explainSetInteger(y,z)
1421 ** If the inner loop was generated using a non-null pOrderBy argument,
1422 ** then the results were placed in a sorter. After the loop is terminated
1423 ** we need to run the sorter and output the results. The following
1424 ** routine generates the code needed to do that.
1426 static void generateSortTail(
1427 Parse
*pParse
, /* Parsing context */
1428 Select
*p
, /* The SELECT statement */
1429 SortCtx
*pSort
, /* Information on the ORDER BY clause */
1430 int nColumn
, /* Number of columns of data */
1431 SelectDest
*pDest
/* Write the sorted results here */
1433 Vdbe
*v
= pParse
->pVdbe
; /* The prepared statement */
1434 int addrBreak
= pSort
->labelDone
; /* Jump here to exit loop */
1435 int addrContinue
= sqlite3VdbeMakeLabel(v
); /* Jump here for next cycle */
1436 int addr
; /* Top of output loop. Jump for Next. */
1439 ExprList
*pOrderBy
= pSort
->pOrderBy
;
1440 int eDest
= pDest
->eDest
;
1441 int iParm
= pDest
->iSDParm
;
1445 int nKey
; /* Number of key columns in sorter record */
1446 int iSortTab
; /* Sorter cursor to read from */
1448 int bSeq
; /* True if sorter record includes seq. no. */
1450 struct ExprList_item
*aOutEx
= p
->pEList
->a
;
1452 assert( addrBreak
<0 );
1453 if( pSort
->labelBkOut
){
1454 sqlite3VdbeAddOp2(v
, OP_Gosub
, pSort
->regReturn
, pSort
->labelBkOut
);
1455 sqlite3VdbeGoto(v
, addrBreak
);
1456 sqlite3VdbeResolveLabel(v
, pSort
->labelBkOut
);
1459 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
1460 /* Open any cursors needed for sorter-reference expressions */
1461 for(i
=0; i
<pSort
->nDefer
; i
++){
1462 Table
*pTab
= pSort
->aDefer
[i
].pTab
;
1463 int iDb
= sqlite3SchemaToIndex(pParse
->db
, pTab
->pSchema
);
1464 sqlite3OpenTable(pParse
, pSort
->aDefer
[i
].iCsr
, iDb
, pTab
, OP_OpenRead
);
1465 nRefKey
= MAX(nRefKey
, pSort
->aDefer
[i
].nKey
);
1469 iTab
= pSort
->iECursor
;
1470 if( eDest
==SRT_Output
|| eDest
==SRT_Coroutine
|| eDest
==SRT_Mem
){
1472 regRow
= pDest
->iSdst
;
1474 regRowid
= sqlite3GetTempReg(pParse
);
1475 regRow
= sqlite3GetTempRange(pParse
, nColumn
);
1477 nKey
= pOrderBy
->nExpr
- pSort
->nOBSat
;
1478 if( pSort
->sortFlags
& SORTFLAG_UseSorter
){
1479 int regSortOut
= ++pParse
->nMem
;
1480 iSortTab
= pParse
->nTab
++;
1481 if( pSort
->labelBkOut
){
1482 addrOnce
= sqlite3VdbeAddOp0(v
, OP_Once
); VdbeCoverage(v
);
1484 sqlite3VdbeAddOp3(v
, OP_OpenPseudo
, iSortTab
, regSortOut
,
1485 nKey
+1+nColumn
+nRefKey
);
1486 if( addrOnce
) sqlite3VdbeJumpHere(v
, addrOnce
);
1487 addr
= 1 + sqlite3VdbeAddOp2(v
, OP_SorterSort
, iTab
, addrBreak
);
1489 codeOffset(v
, p
->iOffset
, addrContinue
);
1490 sqlite3VdbeAddOp3(v
, OP_SorterData
, iTab
, regSortOut
, iSortTab
);
1493 addr
= 1 + sqlite3VdbeAddOp2(v
, OP_Sort
, iTab
, addrBreak
); VdbeCoverage(v
);
1494 codeOffset(v
, p
->iOffset
, addrContinue
);
1498 for(i
=0, iCol
=nKey
+bSeq
-1; i
<nColumn
; i
++){
1499 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
1500 if( aOutEx
[i
].bSorterRef
) continue;
1502 if( aOutEx
[i
].u
.x
.iOrderByCol
==0 ) iCol
++;
1504 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
1505 if( pSort
->nDefer
){
1507 int regKey
= sqlite3GetTempRange(pParse
, nRefKey
);
1509 for(i
=0; i
<pSort
->nDefer
; i
++){
1510 int iCsr
= pSort
->aDefer
[i
].iCsr
;
1511 Table
*pTab
= pSort
->aDefer
[i
].pTab
;
1512 int nKey
= pSort
->aDefer
[i
].nKey
;
1514 sqlite3VdbeAddOp1(v
, OP_NullRow
, iCsr
);
1515 if( HasRowid(pTab
) ){
1516 sqlite3VdbeAddOp3(v
, OP_Column
, iSortTab
, iKey
++, regKey
);
1517 sqlite3VdbeAddOp3(v
, OP_SeekRowid
, iCsr
,
1518 sqlite3VdbeCurrentAddr(v
)+1, regKey
);
1522 assert( sqlite3PrimaryKeyIndex(pTab
)->nKeyCol
==nKey
);
1523 for(k
=0; k
<nKey
; k
++){
1524 sqlite3VdbeAddOp3(v
, OP_Column
, iSortTab
, iKey
++, regKey
+k
);
1526 iJmp
= sqlite3VdbeCurrentAddr(v
);
1527 sqlite3VdbeAddOp4Int(v
, OP_SeekGE
, iCsr
, iJmp
+2, regKey
, nKey
);
1528 sqlite3VdbeAddOp4Int(v
, OP_IdxLE
, iCsr
, iJmp
+3, regKey
, nKey
);
1529 sqlite3VdbeAddOp1(v
, OP_NullRow
, iCsr
);
1532 sqlite3ReleaseTempRange(pParse
, regKey
, nRefKey
);
1535 for(i
=nColumn
-1; i
>=0; i
--){
1536 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
1537 if( aOutEx
[i
].bSorterRef
){
1538 sqlite3ExprCode(pParse
, aOutEx
[i
].pExpr
, regRow
+i
);
1543 if( aOutEx
[i
].u
.x
.iOrderByCol
){
1544 iRead
= aOutEx
[i
].u
.x
.iOrderByCol
-1;
1548 sqlite3VdbeAddOp3(v
, OP_Column
, iSortTab
, iRead
, regRow
+i
);
1549 VdbeComment((v
, "%s", aOutEx
[i
].zName
?aOutEx
[i
].zName
: aOutEx
[i
].zSpan
));
1554 case SRT_EphemTab
: {
1555 sqlite3VdbeAddOp2(v
, OP_NewRowid
, iParm
, regRowid
);
1556 sqlite3VdbeAddOp3(v
, OP_Insert
, iParm
, regRow
, regRowid
);
1557 sqlite3VdbeChangeP5(v
, OPFLAG_APPEND
);
1560 #ifndef SQLITE_OMIT_SUBQUERY
1562 assert( nColumn
==sqlite3Strlen30(pDest
->zAffSdst
) );
1563 sqlite3VdbeAddOp4(v
, OP_MakeRecord
, regRow
, nColumn
, regRowid
,
1564 pDest
->zAffSdst
, nColumn
);
1565 sqlite3ExprCacheAffinityChange(pParse
, regRow
, nColumn
);
1566 sqlite3VdbeAddOp4Int(v
, OP_IdxInsert
, iParm
, regRowid
, regRow
, nColumn
);
1570 /* The LIMIT clause will terminate the loop for us */
1575 assert( eDest
==SRT_Output
|| eDest
==SRT_Coroutine
);
1576 testcase( eDest
==SRT_Output
);
1577 testcase( eDest
==SRT_Coroutine
);
1578 if( eDest
==SRT_Output
){
1579 sqlite3VdbeAddOp2(v
, OP_ResultRow
, pDest
->iSdst
, nColumn
);
1580 sqlite3ExprCacheAffinityChange(pParse
, pDest
->iSdst
, nColumn
);
1582 sqlite3VdbeAddOp1(v
, OP_Yield
, pDest
->iSDParm
);
1588 if( eDest
==SRT_Set
){
1589 sqlite3ReleaseTempRange(pParse
, regRow
, nColumn
);
1591 sqlite3ReleaseTempReg(pParse
, regRow
);
1593 sqlite3ReleaseTempReg(pParse
, regRowid
);
1595 /* The bottom of the loop
1597 sqlite3VdbeResolveLabel(v
, addrContinue
);
1598 if( pSort
->sortFlags
& SORTFLAG_UseSorter
){
1599 sqlite3VdbeAddOp2(v
, OP_SorterNext
, iTab
, addr
); VdbeCoverage(v
);
1601 sqlite3VdbeAddOp2(v
, OP_Next
, iTab
, addr
); VdbeCoverage(v
);
1603 if( pSort
->regReturn
) sqlite3VdbeAddOp1(v
, OP_Return
, pSort
->regReturn
);
1604 sqlite3VdbeResolveLabel(v
, addrBreak
);
1608 ** Return a pointer to a string containing the 'declaration type' of the
1609 ** expression pExpr. The string may be treated as static by the caller.
1611 ** Also try to estimate the size of the returned value and return that
1612 ** result in *pEstWidth.
1614 ** The declaration type is the exact datatype definition extracted from the
1615 ** original CREATE TABLE statement if the expression is a column. The
1616 ** declaration type for a ROWID field is INTEGER. Exactly when an expression
1617 ** is considered a column can be complex in the presence of subqueries. The
1618 ** result-set expression in all of the following SELECT statements is
1619 ** considered a column by this function.
1621 ** SELECT col FROM tbl;
1622 ** SELECT (SELECT col FROM tbl;
1623 ** SELECT (SELECT col FROM tbl);
1624 ** SELECT abc FROM (SELECT col AS abc FROM tbl);
1626 ** The declaration type for any expression other than a column is NULL.
1628 ** This routine has either 3 or 6 parameters depending on whether or not
1629 ** the SQLITE_ENABLE_COLUMN_METADATA compile-time option is used.
1631 #ifdef SQLITE_ENABLE_COLUMN_METADATA
1632 # define columnType(A,B,C,D,E) columnTypeImpl(A,B,C,D,E)
1633 #else /* if !defined(SQLITE_ENABLE_COLUMN_METADATA) */
1634 # define columnType(A,B,C,D,E) columnTypeImpl(A,B)
1636 static const char *columnTypeImpl(
1638 #ifndef SQLITE_ENABLE_COLUMN_METADATA
1642 const char **pzOrigDb
,
1643 const char **pzOrigTab
,
1644 const char **pzOrigCol
1647 char const *zType
= 0;
1649 #ifdef SQLITE_ENABLE_COLUMN_METADATA
1650 char const *zOrigDb
= 0;
1651 char const *zOrigTab
= 0;
1652 char const *zOrigCol
= 0;
1656 assert( pNC
->pSrcList
!=0 );
1657 assert( pExpr
->op
!=TK_AGG_COLUMN
); /* This routine runes before aggregates
1659 switch( pExpr
->op
){
1661 /* The expression is a column. Locate the table the column is being
1662 ** extracted from in NameContext.pSrcList. This table may be real
1663 ** database table or a subquery.
1665 Table
*pTab
= 0; /* Table structure column is extracted from */
1666 Select
*pS
= 0; /* Select the column is extracted from */
1667 int iCol
= pExpr
->iColumn
; /* Index of column in pTab */
1668 while( pNC
&& !pTab
){
1669 SrcList
*pTabList
= pNC
->pSrcList
;
1670 for(j
=0;j
<pTabList
->nSrc
&& pTabList
->a
[j
].iCursor
!=pExpr
->iTable
;j
++);
1671 if( j
<pTabList
->nSrc
){
1672 pTab
= pTabList
->a
[j
].pTab
;
1673 pS
= pTabList
->a
[j
].pSelect
;
1680 /* At one time, code such as "SELECT new.x" within a trigger would
1681 ** cause this condition to run. Since then, we have restructured how
1682 ** trigger code is generated and so this condition is no longer
1683 ** possible. However, it can still be true for statements like
1686 ** CREATE TABLE t1(col INTEGER);
1687 ** SELECT (SELECT t1.col) FROM FROM t1;
1689 ** when columnType() is called on the expression "t1.col" in the
1690 ** sub-select. In this case, set the column type to NULL, even
1691 ** though it should really be "INTEGER".
1693 ** This is not a problem, as the column type of "t1.col" is never
1694 ** used. When columnType() is called on the expression
1695 ** "(SELECT t1.col)", the correct type is returned (see the TK_SELECT
1700 assert( pTab
&& pExpr
->pTab
==pTab
);
1702 /* The "table" is actually a sub-select or a view in the FROM clause
1703 ** of the SELECT statement. Return the declaration type and origin
1704 ** data for the result-set column of the sub-select.
1706 if( iCol
>=0 && iCol
<pS
->pEList
->nExpr
){
1707 /* If iCol is less than zero, then the expression requests the
1708 ** rowid of the sub-select or view. This expression is legal (see
1709 ** test case misc2.2.2) - it always evaluates to NULL.
1712 Expr
*p
= pS
->pEList
->a
[iCol
].pExpr
;
1713 sNC
.pSrcList
= pS
->pSrc
;
1715 sNC
.pParse
= pNC
->pParse
;
1716 zType
= columnType(&sNC
, p
,&zOrigDb
,&zOrigTab
,&zOrigCol
);
1719 /* A real table or a CTE table */
1721 #ifdef SQLITE_ENABLE_COLUMN_METADATA
1722 if( iCol
<0 ) iCol
= pTab
->iPKey
;
1723 assert( iCol
==XN_ROWID
|| (iCol
>=0 && iCol
<pTab
->nCol
) );
1728 zOrigCol
= pTab
->aCol
[iCol
].zName
;
1729 zType
= sqlite3ColumnType(&pTab
->aCol
[iCol
],0);
1731 zOrigTab
= pTab
->zName
;
1732 if( pNC
->pParse
&& pTab
->pSchema
){
1733 int iDb
= sqlite3SchemaToIndex(pNC
->pParse
->db
, pTab
->pSchema
);
1734 zOrigDb
= pNC
->pParse
->db
->aDb
[iDb
].zDbSName
;
1737 assert( iCol
==XN_ROWID
|| (iCol
>=0 && iCol
<pTab
->nCol
) );
1741 zType
= sqlite3ColumnType(&pTab
->aCol
[iCol
],0);
1747 #ifndef SQLITE_OMIT_SUBQUERY
1749 /* The expression is a sub-select. Return the declaration type and
1750 ** origin info for the single column in the result set of the SELECT
1754 Select
*pS
= pExpr
->x
.pSelect
;
1755 Expr
*p
= pS
->pEList
->a
[0].pExpr
;
1756 assert( ExprHasProperty(pExpr
, EP_xIsSelect
) );
1757 sNC
.pSrcList
= pS
->pSrc
;
1759 sNC
.pParse
= pNC
->pParse
;
1760 zType
= columnType(&sNC
, p
, &zOrigDb
, &zOrigTab
, &zOrigCol
);
1766 #ifdef SQLITE_ENABLE_COLUMN_METADATA
1768 assert( pzOrigTab
&& pzOrigCol
);
1769 *pzOrigDb
= zOrigDb
;
1770 *pzOrigTab
= zOrigTab
;
1771 *pzOrigCol
= zOrigCol
;
1778 ** Generate code that will tell the VDBE the declaration types of columns
1779 ** in the result set.
1781 static void generateColumnTypes(
1782 Parse
*pParse
, /* Parser context */
1783 SrcList
*pTabList
, /* List of tables */
1784 ExprList
*pEList
/* Expressions defining the result set */
1786 #ifndef SQLITE_OMIT_DECLTYPE
1787 Vdbe
*v
= pParse
->pVdbe
;
1790 sNC
.pSrcList
= pTabList
;
1791 sNC
.pParse
= pParse
;
1793 for(i
=0; i
<pEList
->nExpr
; i
++){
1794 Expr
*p
= pEList
->a
[i
].pExpr
;
1796 #ifdef SQLITE_ENABLE_COLUMN_METADATA
1797 const char *zOrigDb
= 0;
1798 const char *zOrigTab
= 0;
1799 const char *zOrigCol
= 0;
1800 zType
= columnType(&sNC
, p
, &zOrigDb
, &zOrigTab
, &zOrigCol
);
1802 /* The vdbe must make its own copy of the column-type and other
1803 ** column specific strings, in case the schema is reset before this
1804 ** virtual machine is deleted.
1806 sqlite3VdbeSetColName(v
, i
, COLNAME_DATABASE
, zOrigDb
, SQLITE_TRANSIENT
);
1807 sqlite3VdbeSetColName(v
, i
, COLNAME_TABLE
, zOrigTab
, SQLITE_TRANSIENT
);
1808 sqlite3VdbeSetColName(v
, i
, COLNAME_COLUMN
, zOrigCol
, SQLITE_TRANSIENT
);
1810 zType
= columnType(&sNC
, p
, 0, 0, 0);
1812 sqlite3VdbeSetColName(v
, i
, COLNAME_DECLTYPE
, zType
, SQLITE_TRANSIENT
);
1814 #endif /* !defined(SQLITE_OMIT_DECLTYPE) */
1819 ** Compute the column names for a SELECT statement.
1821 ** The only guarantee that SQLite makes about column names is that if the
1822 ** column has an AS clause assigning it a name, that will be the name used.
1823 ** That is the only documented guarantee. However, countless applications
1824 ** developed over the years have made baseless assumptions about column names
1825 ** and will break if those assumptions changes. Hence, use extreme caution
1826 ** when modifying this routine to avoid breaking legacy.
1828 ** See Also: sqlite3ColumnsFromExprList()
1830 ** The PRAGMA short_column_names and PRAGMA full_column_names settings are
1831 ** deprecated. The default setting is short=ON, full=OFF. 99.9% of all
1832 ** applications should operate this way. Nevertheless, we need to support the
1833 ** other modes for legacy:
1835 ** short=OFF, full=OFF: Column name is the text of the expression has it
1836 ** originally appears in the SELECT statement. In
1837 ** other words, the zSpan of the result expression.
1839 ** short=ON, full=OFF: (This is the default setting). If the result
1840 ** refers directly to a table column, then the
1841 ** result column name is just the table column
1842 ** name: COLUMN. Otherwise use zSpan.
1844 ** full=ON, short=ANY: If the result refers directly to a table column,
1845 ** then the result column name with the table name
1846 ** prefix, ex: TABLE.COLUMN. Otherwise use zSpan.
1848 static void generateColumnNames(
1849 Parse
*pParse
, /* Parser context */
1850 Select
*pSelect
/* Generate column names for this SELECT statement */
1852 Vdbe
*v
= pParse
->pVdbe
;
1857 sqlite3
*db
= pParse
->db
;
1858 int fullName
; /* TABLE.COLUMN if no AS clause and is a direct table ref */
1859 int srcName
; /* COLUMN or TABLE.COLUMN if no AS clause and is direct */
1861 #ifndef SQLITE_OMIT_EXPLAIN
1862 /* If this is an EXPLAIN, skip this step */
1863 if( pParse
->explain
){
1868 if( pParse
->colNamesSet
) return;
1869 /* Column names are determined by the left-most term of a compound select */
1870 while( pSelect
->pPrior
) pSelect
= pSelect
->pPrior
;
1871 SELECTTRACE(1,pParse
,pSelect
,("generating column names\n"));
1872 pTabList
= pSelect
->pSrc
;
1873 pEList
= pSelect
->pEList
;
1875 assert( pTabList
!=0 );
1876 pParse
->colNamesSet
= 1;
1877 fullName
= (db
->flags
& SQLITE_FullColNames
)!=0;
1878 srcName
= (db
->flags
& SQLITE_ShortColNames
)!=0 || fullName
;
1879 sqlite3VdbeSetNumCols(v
, pEList
->nExpr
);
1880 for(i
=0; i
<pEList
->nExpr
; i
++){
1881 Expr
*p
= pEList
->a
[i
].pExpr
;
1884 assert( p
->op
!=TK_AGG_COLUMN
); /* Agg processing has not run yet */
1885 assert( p
->op
!=TK_COLUMN
|| p
->pTab
!=0 ); /* Covering idx not yet coded */
1886 if( pEList
->a
[i
].zName
){
1887 /* An AS clause always takes first priority */
1888 char *zName
= pEList
->a
[i
].zName
;
1889 sqlite3VdbeSetColName(v
, i
, COLNAME_NAME
, zName
, SQLITE_TRANSIENT
);
1890 }else if( srcName
&& p
->op
==TK_COLUMN
){
1892 int iCol
= p
->iColumn
;
1895 if( iCol
<0 ) iCol
= pTab
->iPKey
;
1896 assert( iCol
==-1 || (iCol
>=0 && iCol
<pTab
->nCol
) );
1900 zCol
= pTab
->aCol
[iCol
].zName
;
1904 zName
= sqlite3MPrintf(db
, "%s.%s", pTab
->zName
, zCol
);
1905 sqlite3VdbeSetColName(v
, i
, COLNAME_NAME
, zName
, SQLITE_DYNAMIC
);
1907 sqlite3VdbeSetColName(v
, i
, COLNAME_NAME
, zCol
, SQLITE_TRANSIENT
);
1910 const char *z
= pEList
->a
[i
].zSpan
;
1911 z
= z
==0 ? sqlite3MPrintf(db
, "column%d", i
+1) : sqlite3DbStrDup(db
, z
);
1912 sqlite3VdbeSetColName(v
, i
, COLNAME_NAME
, z
, SQLITE_DYNAMIC
);
1915 generateColumnTypes(pParse
, pTabList
, pEList
);
1919 ** Given an expression list (which is really the list of expressions
1920 ** that form the result set of a SELECT statement) compute appropriate
1921 ** column names for a table that would hold the expression list.
1923 ** All column names will be unique.
1925 ** Only the column names are computed. Column.zType, Column.zColl,
1926 ** and other fields of Column are zeroed.
1928 ** Return SQLITE_OK on success. If a memory allocation error occurs,
1929 ** store NULL in *paCol and 0 in *pnCol and return SQLITE_NOMEM.
1931 ** The only guarantee that SQLite makes about column names is that if the
1932 ** column has an AS clause assigning it a name, that will be the name used.
1933 ** That is the only documented guarantee. However, countless applications
1934 ** developed over the years have made baseless assumptions about column names
1935 ** and will break if those assumptions changes. Hence, use extreme caution
1936 ** when modifying this routine to avoid breaking legacy.
1938 ** See Also: generateColumnNames()
1940 int sqlite3ColumnsFromExprList(
1941 Parse
*pParse
, /* Parsing context */
1942 ExprList
*pEList
, /* Expr list from which to derive column names */
1943 i16
*pnCol
, /* Write the number of columns here */
1944 Column
**paCol
/* Write the new column list here */
1946 sqlite3
*db
= pParse
->db
; /* Database connection */
1947 int i
, j
; /* Loop counters */
1948 u32 cnt
; /* Index added to make the name unique */
1949 Column
*aCol
, *pCol
; /* For looping over result columns */
1950 int nCol
; /* Number of columns in the result set */
1951 char *zName
; /* Column name */
1952 int nName
; /* Size of name in zName[] */
1953 Hash ht
; /* Hash table of column names */
1955 sqlite3HashInit(&ht
);
1957 nCol
= pEList
->nExpr
;
1958 aCol
= sqlite3DbMallocZero(db
, sizeof(aCol
[0])*nCol
);
1959 testcase( aCol
==0 );
1960 if( nCol
>32767 ) nCol
= 32767;
1965 assert( nCol
==(i16
)nCol
);
1969 for(i
=0, pCol
=aCol
; i
<nCol
&& !db
->mallocFailed
; i
++, pCol
++){
1970 /* Get an appropriate name for the column
1972 if( (zName
= pEList
->a
[i
].zName
)!=0 ){
1973 /* If the column contains an "AS <name>" phrase, use <name> as the name */
1975 Expr
*pColExpr
= sqlite3ExprSkipCollate(pEList
->a
[i
].pExpr
);
1976 while( pColExpr
->op
==TK_DOT
){
1977 pColExpr
= pColExpr
->pRight
;
1978 assert( pColExpr
!=0 );
1980 assert( pColExpr
->op
!=TK_AGG_COLUMN
);
1981 if( pColExpr
->op
==TK_COLUMN
){
1982 /* For columns use the column name name */
1983 int iCol
= pColExpr
->iColumn
;
1984 Table
*pTab
= pColExpr
->pTab
;
1986 if( iCol
<0 ) iCol
= pTab
->iPKey
;
1987 zName
= iCol
>=0 ? pTab
->aCol
[iCol
].zName
: "rowid";
1988 }else if( pColExpr
->op
==TK_ID
){
1989 assert( !ExprHasProperty(pColExpr
, EP_IntValue
) );
1990 zName
= pColExpr
->u
.zToken
;
1992 /* Use the original text of the column expression as its name */
1993 zName
= pEList
->a
[i
].zSpan
;
1997 zName
= sqlite3DbStrDup(db
, zName
);
1999 zName
= sqlite3MPrintf(db
,"column%d",i
+1);
2002 /* Make sure the column name is unique. If the name is not unique,
2003 ** append an integer to the name so that it becomes unique.
2006 while( zName
&& sqlite3HashFind(&ht
, zName
)!=0 ){
2007 nName
= sqlite3Strlen30(zName
);
2009 for(j
=nName
-1; j
>0 && sqlite3Isdigit(zName
[j
]); j
--){}
2010 if( zName
[j
]==':' ) nName
= j
;
2012 zName
= sqlite3MPrintf(db
, "%.*z:%u", nName
, zName
, ++cnt
);
2013 if( cnt
>3 ) sqlite3_randomness(sizeof(cnt
), &cnt
);
2015 pCol
->zName
= zName
;
2016 sqlite3ColumnPropertiesFromName(0, pCol
);
2017 if( zName
&& sqlite3HashInsert(&ht
, zName
, pCol
)==pCol
){
2018 sqlite3OomFault(db
);
2021 sqlite3HashClear(&ht
);
2022 if( db
->mallocFailed
){
2024 sqlite3DbFree(db
, aCol
[j
].zName
);
2026 sqlite3DbFree(db
, aCol
);
2029 return SQLITE_NOMEM_BKPT
;
2035 ** Add type and collation information to a column list based on
2036 ** a SELECT statement.
2038 ** The column list presumably came from selectColumnNamesFromExprList().
2039 ** The column list has only names, not types or collations. This
2040 ** routine goes through and adds the types and collations.
2042 ** This routine requires that all identifiers in the SELECT
2043 ** statement be resolved.
2045 void sqlite3SelectAddColumnTypeAndCollation(
2046 Parse
*pParse
, /* Parsing contexts */
2047 Table
*pTab
, /* Add column type information to this table */
2048 Select
*pSelect
/* SELECT used to determine types and collations */
2050 sqlite3
*db
= pParse
->db
;
2056 struct ExprList_item
*a
;
2058 assert( pSelect
!=0 );
2059 assert( (pSelect
->selFlags
& SF_Resolved
)!=0 );
2060 assert( pTab
->nCol
==pSelect
->pEList
->nExpr
|| db
->mallocFailed
);
2061 if( db
->mallocFailed
) return;
2062 memset(&sNC
, 0, sizeof(sNC
));
2063 sNC
.pSrcList
= pSelect
->pSrc
;
2064 a
= pSelect
->pEList
->a
;
2065 for(i
=0, pCol
=pTab
->aCol
; i
<pTab
->nCol
; i
++, pCol
++){
2069 zType
= columnType(&sNC
, p
, 0, 0, 0);
2070 /* pCol->szEst = ... // Column size est for SELECT tables never used */
2071 pCol
->affinity
= sqlite3ExprAffinity(p
);
2073 m
= sqlite3Strlen30(zType
);
2074 n
= sqlite3Strlen30(pCol
->zName
);
2075 pCol
->zName
= sqlite3DbReallocOrFree(db
, pCol
->zName
, n
+m
+2);
2077 memcpy(&pCol
->zName
[n
+1], zType
, m
+1);
2078 pCol
->colFlags
|= COLFLAG_HASTYPE
;
2081 if( pCol
->affinity
==0 ) pCol
->affinity
= SQLITE_AFF_BLOB
;
2082 pColl
= sqlite3ExprCollSeq(pParse
, p
);
2083 if( pColl
&& pCol
->zColl
==0 ){
2084 pCol
->zColl
= sqlite3DbStrDup(db
, pColl
->zName
);
2087 pTab
->szTabRow
= 1; /* Any non-zero value works */
2091 ** Given a SELECT statement, generate a Table structure that describes
2092 ** the result set of that SELECT.
2094 Table
*sqlite3ResultSetOfSelect(Parse
*pParse
, Select
*pSelect
){
2096 sqlite3
*db
= pParse
->db
;
2099 savedFlags
= db
->flags
;
2100 db
->flags
&= ~SQLITE_FullColNames
;
2101 db
->flags
|= SQLITE_ShortColNames
;
2102 sqlite3SelectPrep(pParse
, pSelect
, 0);
2103 if( pParse
->nErr
) return 0;
2104 while( pSelect
->pPrior
) pSelect
= pSelect
->pPrior
;
2105 db
->flags
= savedFlags
;
2106 pTab
= sqlite3DbMallocZero(db
, sizeof(Table
) );
2110 /* The sqlite3ResultSetOfSelect() is only used n contexts where lookaside
2112 assert( db
->lookaside
.bDisable
);
2115 pTab
->nRowLogEst
= 200; assert( 200==sqlite3LogEst(1048576) );
2116 sqlite3ColumnsFromExprList(pParse
, pSelect
->pEList
, &pTab
->nCol
, &pTab
->aCol
);
2117 sqlite3SelectAddColumnTypeAndCollation(pParse
, pTab
, pSelect
);
2119 if( db
->mallocFailed
){
2120 sqlite3DeleteTable(db
, pTab
);
2127 ** Get a VDBE for the given parser context. Create a new one if necessary.
2128 ** If an error occurs, return NULL and leave a message in pParse.
2130 Vdbe
*sqlite3GetVdbe(Parse
*pParse
){
2131 if( pParse
->pVdbe
){
2132 return pParse
->pVdbe
;
2134 if( pParse
->pToplevel
==0
2135 && OptimizationEnabled(pParse
->db
,SQLITE_FactorOutConst
)
2137 pParse
->okConstFactor
= 1;
2139 return sqlite3VdbeCreate(pParse
);
2144 ** Compute the iLimit and iOffset fields of the SELECT based on the
2145 ** pLimit expressions. pLimit->pLeft and pLimit->pRight hold the expressions
2146 ** that appear in the original SQL statement after the LIMIT and OFFSET
2147 ** keywords. Or NULL if those keywords are omitted. iLimit and iOffset
2148 ** are the integer memory register numbers for counters used to compute
2149 ** the limit and offset. If there is no limit and/or offset, then
2150 ** iLimit and iOffset are negative.
2152 ** This routine changes the values of iLimit and iOffset only if
2153 ** a limit or offset is defined by pLimit->pLeft and pLimit->pRight. iLimit
2154 ** and iOffset should have been preset to appropriate default values (zero)
2155 ** prior to calling this routine.
2157 ** The iOffset register (if it exists) is initialized to the value
2158 ** of the OFFSET. The iLimit register is initialized to LIMIT. Register
2159 ** iOffset+1 is initialized to LIMIT+OFFSET.
2161 ** Only if pLimit->pLeft!=0 do the limit registers get
2162 ** redefined. The UNION ALL operator uses this property to force
2163 ** the reuse of the same limit and offset registers across multiple
2164 ** SELECT statements.
2166 static void computeLimitRegisters(Parse
*pParse
, Select
*p
, int iBreak
){
2171 Expr
*pLimit
= p
->pLimit
;
2173 if( p
->iLimit
) return;
2176 ** "LIMIT -1" always shows all rows. There is some
2177 ** controversy about what the correct behavior should be.
2178 ** The current implementation interprets "LIMIT 0" to mean
2181 sqlite3ExprCacheClear(pParse
);
2183 assert( pLimit
->op
==TK_LIMIT
);
2184 assert( pLimit
->pLeft
!=0 );
2185 p
->iLimit
= iLimit
= ++pParse
->nMem
;
2186 v
= sqlite3GetVdbe(pParse
);
2188 if( sqlite3ExprIsInteger(pLimit
->pLeft
, &n
) ){
2189 sqlite3VdbeAddOp2(v
, OP_Integer
, n
, iLimit
);
2190 VdbeComment((v
, "LIMIT counter"));
2192 sqlite3VdbeGoto(v
, iBreak
);
2193 }else if( n
>=0 && p
->nSelectRow
>sqlite3LogEst((u64
)n
) ){
2194 p
->nSelectRow
= sqlite3LogEst((u64
)n
);
2195 p
->selFlags
|= SF_FixedLimit
;
2198 sqlite3ExprCode(pParse
, pLimit
->pLeft
, iLimit
);
2199 sqlite3VdbeAddOp1(v
, OP_MustBeInt
, iLimit
); VdbeCoverage(v
);
2200 VdbeComment((v
, "LIMIT counter"));
2201 sqlite3VdbeAddOp2(v
, OP_IfNot
, iLimit
, iBreak
); VdbeCoverage(v
);
2203 if( pLimit
->pRight
){
2204 p
->iOffset
= iOffset
= ++pParse
->nMem
;
2205 pParse
->nMem
++; /* Allocate an extra register for limit+offset */
2206 sqlite3ExprCode(pParse
, pLimit
->pRight
, iOffset
);
2207 sqlite3VdbeAddOp1(v
, OP_MustBeInt
, iOffset
); VdbeCoverage(v
);
2208 VdbeComment((v
, "OFFSET counter"));
2209 sqlite3VdbeAddOp3(v
, OP_OffsetLimit
, iLimit
, iOffset
+1, iOffset
);
2210 VdbeComment((v
, "LIMIT+OFFSET"));
2215 #ifndef SQLITE_OMIT_COMPOUND_SELECT
2217 ** Return the appropriate collating sequence for the iCol-th column of
2218 ** the result set for the compound-select statement "p". Return NULL if
2219 ** the column has no default collating sequence.
2221 ** The collating sequence for the compound select is taken from the
2222 ** left-most term of the select that has a collating sequence.
2224 static CollSeq
*multiSelectCollSeq(Parse
*pParse
, Select
*p
, int iCol
){
2227 pRet
= multiSelectCollSeq(pParse
, p
->pPrior
, iCol
);
2232 /* iCol must be less than p->pEList->nExpr. Otherwise an error would
2233 ** have been thrown during name resolution and we would not have gotten
2235 if( pRet
==0 && ALWAYS(iCol
<p
->pEList
->nExpr
) ){
2236 pRet
= sqlite3ExprCollSeq(pParse
, p
->pEList
->a
[iCol
].pExpr
);
2242 ** The select statement passed as the second parameter is a compound SELECT
2243 ** with an ORDER BY clause. This function allocates and returns a KeyInfo
2244 ** structure suitable for implementing the ORDER BY.
2246 ** Space to hold the KeyInfo structure is obtained from malloc. The calling
2247 ** function is responsible for ensuring that this structure is eventually
2250 static KeyInfo
*multiSelectOrderByKeyInfo(Parse
*pParse
, Select
*p
, int nExtra
){
2251 ExprList
*pOrderBy
= p
->pOrderBy
;
2252 int nOrderBy
= p
->pOrderBy
->nExpr
;
2253 sqlite3
*db
= pParse
->db
;
2254 KeyInfo
*pRet
= sqlite3KeyInfoAlloc(db
, nOrderBy
+nExtra
, 1);
2257 for(i
=0; i
<nOrderBy
; i
++){
2258 struct ExprList_item
*pItem
= &pOrderBy
->a
[i
];
2259 Expr
*pTerm
= pItem
->pExpr
;
2262 if( pTerm
->flags
& EP_Collate
){
2263 pColl
= sqlite3ExprCollSeq(pParse
, pTerm
);
2265 pColl
= multiSelectCollSeq(pParse
, p
, pItem
->u
.x
.iOrderByCol
-1);
2266 if( pColl
==0 ) pColl
= db
->pDfltColl
;
2267 pOrderBy
->a
[i
].pExpr
=
2268 sqlite3ExprAddCollateString(pParse
, pTerm
, pColl
->zName
);
2270 assert( sqlite3KeyInfoIsWriteable(pRet
) );
2271 pRet
->aColl
[i
] = pColl
;
2272 pRet
->aSortOrder
[i
] = pOrderBy
->a
[i
].sortOrder
;
2279 #ifndef SQLITE_OMIT_CTE
2281 ** This routine generates VDBE code to compute the content of a WITH RECURSIVE
2282 ** query of the form:
2284 ** <recursive-table> AS (<setup-query> UNION [ALL] <recursive-query>)
2285 ** \___________/ \_______________/
2289 ** There is exactly one reference to the recursive-table in the FROM clause
2290 ** of recursive-query, marked with the SrcList->a[].fg.isRecursive flag.
2292 ** The setup-query runs once to generate an initial set of rows that go
2293 ** into a Queue table. Rows are extracted from the Queue table one by
2294 ** one. Each row extracted from Queue is output to pDest. Then the single
2295 ** extracted row (now in the iCurrent table) becomes the content of the
2296 ** recursive-table for a recursive-query run. The output of the recursive-query
2297 ** is added back into the Queue table. Then another row is extracted from Queue
2298 ** and the iteration continues until the Queue table is empty.
2300 ** If the compound query operator is UNION then no duplicate rows are ever
2301 ** inserted into the Queue table. The iDistinct table keeps a copy of all rows
2302 ** that have ever been inserted into Queue and causes duplicates to be
2303 ** discarded. If the operator is UNION ALL, then duplicates are allowed.
2305 ** If the query has an ORDER BY, then entries in the Queue table are kept in
2306 ** ORDER BY order and the first entry is extracted for each cycle. Without
2307 ** an ORDER BY, the Queue table is just a FIFO.
2309 ** If a LIMIT clause is provided, then the iteration stops after LIMIT rows
2310 ** have been output to pDest. A LIMIT of zero means to output no rows and a
2311 ** negative LIMIT means to output all rows. If there is also an OFFSET clause
2312 ** with a positive value, then the first OFFSET outputs are discarded rather
2313 ** than being sent to pDest. The LIMIT count does not begin until after OFFSET
2314 ** rows have been skipped.
2316 static void generateWithRecursiveQuery(
2317 Parse
*pParse
, /* Parsing context */
2318 Select
*p
, /* The recursive SELECT to be coded */
2319 SelectDest
*pDest
/* What to do with query results */
2321 SrcList
*pSrc
= p
->pSrc
; /* The FROM clause of the recursive query */
2322 int nCol
= p
->pEList
->nExpr
; /* Number of columns in the recursive table */
2323 Vdbe
*v
= pParse
->pVdbe
; /* The prepared statement under construction */
2324 Select
*pSetup
= p
->pPrior
; /* The setup query */
2325 int addrTop
; /* Top of the loop */
2326 int addrCont
, addrBreak
; /* CONTINUE and BREAK addresses */
2327 int iCurrent
= 0; /* The Current table */
2328 int regCurrent
; /* Register holding Current table */
2329 int iQueue
; /* The Queue table */
2330 int iDistinct
= 0; /* To ensure unique results if UNION */
2331 int eDest
= SRT_Fifo
; /* How to write to Queue */
2332 SelectDest destQueue
; /* SelectDest targetting the Queue table */
2333 int i
; /* Loop counter */
2334 int rc
; /* Result code */
2335 ExprList
*pOrderBy
; /* The ORDER BY clause */
2336 Expr
*pLimit
; /* Saved LIMIT and OFFSET */
2337 int regLimit
, regOffset
; /* Registers used by LIMIT and OFFSET */
2339 /* Obtain authorization to do a recursive query */
2340 if( sqlite3AuthCheck(pParse
, SQLITE_RECURSIVE
, 0, 0, 0) ) return;
2342 /* Process the LIMIT and OFFSET clauses, if they exist */
2343 addrBreak
= sqlite3VdbeMakeLabel(v
);
2344 p
->nSelectRow
= 320; /* 4 billion rows */
2345 computeLimitRegisters(pParse
, p
, addrBreak
);
2347 regLimit
= p
->iLimit
;
2348 regOffset
= p
->iOffset
;
2350 p
->iLimit
= p
->iOffset
= 0;
2351 pOrderBy
= p
->pOrderBy
;
2353 /* Locate the cursor number of the Current table */
2354 for(i
=0; ALWAYS(i
<pSrc
->nSrc
); i
++){
2355 if( pSrc
->a
[i
].fg
.isRecursive
){
2356 iCurrent
= pSrc
->a
[i
].iCursor
;
2361 /* Allocate cursors numbers for Queue and Distinct. The cursor number for
2362 ** the Distinct table must be exactly one greater than Queue in order
2363 ** for the SRT_DistFifo and SRT_DistQueue destinations to work. */
2364 iQueue
= pParse
->nTab
++;
2365 if( p
->op
==TK_UNION
){
2366 eDest
= pOrderBy
? SRT_DistQueue
: SRT_DistFifo
;
2367 iDistinct
= pParse
->nTab
++;
2369 eDest
= pOrderBy
? SRT_Queue
: SRT_Fifo
;
2371 sqlite3SelectDestInit(&destQueue
, eDest
, iQueue
);
2373 /* Allocate cursors for Current, Queue, and Distinct. */
2374 regCurrent
= ++pParse
->nMem
;
2375 sqlite3VdbeAddOp3(v
, OP_OpenPseudo
, iCurrent
, regCurrent
, nCol
);
2377 KeyInfo
*pKeyInfo
= multiSelectOrderByKeyInfo(pParse
, p
, 1);
2378 sqlite3VdbeAddOp4(v
, OP_OpenEphemeral
, iQueue
, pOrderBy
->nExpr
+2, 0,
2379 (char*)pKeyInfo
, P4_KEYINFO
);
2380 destQueue
.pOrderBy
= pOrderBy
;
2382 sqlite3VdbeAddOp2(v
, OP_OpenEphemeral
, iQueue
, nCol
);
2384 VdbeComment((v
, "Queue table"));
2386 p
->addrOpenEphm
[0] = sqlite3VdbeAddOp2(v
, OP_OpenEphemeral
, iDistinct
, 0);
2387 p
->selFlags
|= SF_UsesEphemeral
;
2390 /* Detach the ORDER BY clause from the compound SELECT */
2393 /* Store the results of the setup-query in Queue. */
2395 ExplainQueryPlan((pParse
, 1, "SETUP"));
2396 rc
= sqlite3Select(pParse
, pSetup
, &destQueue
);
2398 if( rc
) goto end_of_recursive_query
;
2400 /* Find the next row in the Queue and output that row */
2401 addrTop
= sqlite3VdbeAddOp2(v
, OP_Rewind
, iQueue
, addrBreak
); VdbeCoverage(v
);
2403 /* Transfer the next row in Queue over to Current */
2404 sqlite3VdbeAddOp1(v
, OP_NullRow
, iCurrent
); /* To reset column cache */
2406 sqlite3VdbeAddOp3(v
, OP_Column
, iQueue
, pOrderBy
->nExpr
+1, regCurrent
);
2408 sqlite3VdbeAddOp2(v
, OP_RowData
, iQueue
, regCurrent
);
2410 sqlite3VdbeAddOp1(v
, OP_Delete
, iQueue
);
2412 /* Output the single row in Current */
2413 addrCont
= sqlite3VdbeMakeLabel(v
);
2414 codeOffset(v
, regOffset
, addrCont
);
2415 selectInnerLoop(pParse
, p
, iCurrent
,
2416 0, 0, pDest
, addrCont
, addrBreak
);
2418 sqlite3VdbeAddOp2(v
, OP_DecrJumpZero
, regLimit
, addrBreak
);
2421 sqlite3VdbeResolveLabel(v
, addrCont
);
2423 /* Execute the recursive SELECT taking the single row in Current as
2424 ** the value for the recursive-table. Store the results in the Queue.
2426 if( p
->selFlags
& SF_Aggregate
){
2427 sqlite3ErrorMsg(pParse
, "recursive aggregate queries not supported");
2430 ExplainQueryPlan((pParse
, 1, "RECURSIVE STEP"));
2431 sqlite3Select(pParse
, p
, &destQueue
);
2432 assert( p
->pPrior
==0 );
2436 /* Keep running the loop until the Queue is empty */
2437 sqlite3VdbeGoto(v
, addrTop
);
2438 sqlite3VdbeResolveLabel(v
, addrBreak
);
2440 end_of_recursive_query
:
2441 sqlite3ExprListDelete(pParse
->db
, p
->pOrderBy
);
2442 p
->pOrderBy
= pOrderBy
;
2446 #endif /* SQLITE_OMIT_CTE */
2448 /* Forward references */
2449 static int multiSelectOrderBy(
2450 Parse
*pParse
, /* Parsing context */
2451 Select
*p
, /* The right-most of SELECTs to be coded */
2452 SelectDest
*pDest
/* What to do with query results */
2456 ** Handle the special case of a compound-select that originates from a
2457 ** VALUES clause. By handling this as a special case, we avoid deep
2458 ** recursion, and thus do not need to enforce the SQLITE_LIMIT_COMPOUND_SELECT
2459 ** on a VALUES clause.
2461 ** Because the Select object originates from a VALUES clause:
2462 ** (1) There is no LIMIT or OFFSET or else there is a LIMIT of exactly 1
2463 ** (2) All terms are UNION ALL
2464 ** (3) There is no ORDER BY clause
2466 ** The "LIMIT of exactly 1" case of condition (1) comes about when a VALUES
2467 ** clause occurs within scalar expression (ex: "SELECT (VALUES(1),(2),(3))").
2468 ** The sqlite3CodeSubselect will have added the LIMIT 1 clause in tht case.
2469 ** Since the limit is exactly 1, we only need to evalutes the left-most VALUES.
2471 static int multiSelectValues(
2472 Parse
*pParse
, /* Parsing context */
2473 Select
*p
, /* The right-most of SELECTs to be coded */
2474 SelectDest
*pDest
/* What to do with query results */
2478 int bShowAll
= p
->pLimit
==0;
2479 assert( p
->selFlags
& SF_MultiValue
);
2481 assert( p
->selFlags
& SF_Values
);
2482 assert( p
->op
==TK_ALL
|| (p
->op
==TK_SELECT
&& p
->pPrior
==0) );
2483 assert( p
->pNext
==0 || p
->pEList
->nExpr
==p
->pNext
->pEList
->nExpr
);
2484 if( p
->pPrior
==0 ) break;
2485 assert( p
->pPrior
->pNext
==p
);
2489 ExplainQueryPlan((pParse
, 0, "SCAN %d CONSTANT ROW%s", nRow
,
2490 nRow
==1 ? "" : "S"));
2492 selectInnerLoop(pParse
, p
, -1, 0, 0, pDest
, 1, 1);
2493 if( !bShowAll
) break;
2494 p
->nSelectRow
= nRow
;
2501 ** This routine is called to process a compound query form from
2502 ** two or more separate queries using UNION, UNION ALL, EXCEPT, or
2505 ** "p" points to the right-most of the two queries. the query on the
2506 ** left is p->pPrior. The left query could also be a compound query
2507 ** in which case this routine will be called recursively.
2509 ** The results of the total query are to be written into a destination
2510 ** of type eDest with parameter iParm.
2512 ** Example 1: Consider a three-way compound SQL statement.
2514 ** SELECT a FROM t1 UNION SELECT b FROM t2 UNION SELECT c FROM t3
2516 ** This statement is parsed up as follows:
2520 ** `-----> SELECT b FROM t2
2522 ** `------> SELECT a FROM t1
2524 ** The arrows in the diagram above represent the Select.pPrior pointer.
2525 ** So if this routine is called with p equal to the t3 query, then
2526 ** pPrior will be the t2 query. p->op will be TK_UNION in this case.
2528 ** Notice that because of the way SQLite parses compound SELECTs, the
2529 ** individual selects always group from left to right.
2531 static int multiSelect(
2532 Parse
*pParse
, /* Parsing context */
2533 Select
*p
, /* The right-most of SELECTs to be coded */
2534 SelectDest
*pDest
/* What to do with query results */
2536 int rc
= SQLITE_OK
; /* Success code from a subroutine */
2537 Select
*pPrior
; /* Another SELECT immediately to our left */
2538 Vdbe
*v
; /* Generate code to this VDBE */
2539 SelectDest dest
; /* Alternative data destination */
2540 Select
*pDelete
= 0; /* Chain of simple selects to delete */
2541 sqlite3
*db
; /* Database connection */
2543 /* Make sure there is no ORDER BY or LIMIT clause on prior SELECTs. Only
2544 ** the last (right-most) SELECT in the series may have an ORDER BY or LIMIT.
2546 assert( p
&& p
->pPrior
); /* Calling function guarantees this much */
2547 assert( (p
->selFlags
& SF_Recursive
)==0 || p
->op
==TK_ALL
|| p
->op
==TK_UNION
);
2551 if( pPrior
->pOrderBy
|| pPrior
->pLimit
){
2552 sqlite3ErrorMsg(pParse
,"%s clause should come after %s not before",
2553 pPrior
->pOrderBy
!=0 ? "ORDER BY" : "LIMIT", selectOpName(p
->op
));
2555 goto multi_select_end
;
2558 v
= sqlite3GetVdbe(pParse
);
2559 assert( v
!=0 ); /* The VDBE already created by calling function */
2561 /* Create the destination temporary table if necessary
2563 if( dest
.eDest
==SRT_EphemTab
){
2564 assert( p
->pEList
);
2565 sqlite3VdbeAddOp2(v
, OP_OpenEphemeral
, dest
.iSDParm
, p
->pEList
->nExpr
);
2566 dest
.eDest
= SRT_Table
;
2569 /* Special handling for a compound-select that originates as a VALUES clause.
2571 if( p
->selFlags
& SF_MultiValue
){
2572 rc
= multiSelectValues(pParse
, p
, &dest
);
2573 goto multi_select_end
;
2576 /* Make sure all SELECTs in the statement have the same number of elements
2577 ** in their result sets.
2579 assert( p
->pEList
&& pPrior
->pEList
);
2580 assert( p
->pEList
->nExpr
==pPrior
->pEList
->nExpr
);
2582 #ifndef SQLITE_OMIT_CTE
2583 if( p
->selFlags
& SF_Recursive
){
2584 generateWithRecursiveQuery(pParse
, p
, &dest
);
2588 /* Compound SELECTs that have an ORDER BY clause are handled separately.
2591 return multiSelectOrderBy(pParse
, p
, pDest
);
2594 #ifndef SQLITE_OMIT_EXPLAIN
2595 if( pPrior
->pPrior
==0 ){
2596 ExplainQueryPlan((pParse
, 1, "COMPOUND QUERY"));
2597 ExplainQueryPlan((pParse
, 1, "LEFT-MOST SUBQUERY"));
2601 /* Generate code for the left and right SELECT statements.
2607 assert( !pPrior
->pLimit
);
2608 pPrior
->iLimit
= p
->iLimit
;
2609 pPrior
->iOffset
= p
->iOffset
;
2610 pPrior
->pLimit
= p
->pLimit
;
2611 rc
= sqlite3Select(pParse
, pPrior
, &dest
);
2614 goto multi_select_end
;
2617 p
->iLimit
= pPrior
->iLimit
;
2618 p
->iOffset
= pPrior
->iOffset
;
2620 addr
= sqlite3VdbeAddOp1(v
, OP_IfNot
, p
->iLimit
); VdbeCoverage(v
);
2621 VdbeComment((v
, "Jump ahead if LIMIT reached"));
2623 sqlite3VdbeAddOp3(v
, OP_OffsetLimit
,
2624 p
->iLimit
, p
->iOffset
+1, p
->iOffset
);
2627 ExplainQueryPlan((pParse
, 1, "UNION ALL"));
2628 rc
= sqlite3Select(pParse
, p
, &dest
);
2629 testcase( rc
!=SQLITE_OK
);
2630 pDelete
= p
->pPrior
;
2632 p
->nSelectRow
= sqlite3LogEstAdd(p
->nSelectRow
, pPrior
->nSelectRow
);
2634 && sqlite3ExprIsInteger(pPrior
->pLimit
->pLeft
, &nLimit
)
2635 && nLimit
>0 && p
->nSelectRow
> sqlite3LogEst((u64
)nLimit
)
2637 p
->nSelectRow
= sqlite3LogEst((u64
)nLimit
);
2640 sqlite3VdbeJumpHere(v
, addr
);
2646 int unionTab
; /* Cursor number of the temp table holding result */
2647 u8 op
= 0; /* One of the SRT_ operations to apply to self */
2648 int priorOp
; /* The SRT_ operation to apply to prior selects */
2649 Expr
*pLimit
; /* Saved values of p->nLimit */
2651 SelectDest uniondest
;
2653 testcase( p
->op
==TK_EXCEPT
);
2654 testcase( p
->op
==TK_UNION
);
2655 priorOp
= SRT_Union
;
2656 if( dest
.eDest
==priorOp
){
2657 /* We can reuse a temporary table generated by a SELECT to our
2660 assert( p
->pLimit
==0 ); /* Not allowed on leftward elements */
2661 unionTab
= dest
.iSDParm
;
2663 /* We will need to create our own temporary table to hold the
2664 ** intermediate results.
2666 unionTab
= pParse
->nTab
++;
2667 assert( p
->pOrderBy
==0 );
2668 addr
= sqlite3VdbeAddOp2(v
, OP_OpenEphemeral
, unionTab
, 0);
2669 assert( p
->addrOpenEphm
[0] == -1 );
2670 p
->addrOpenEphm
[0] = addr
;
2671 findRightmost(p
)->selFlags
|= SF_UsesEphemeral
;
2672 assert( p
->pEList
);
2675 /* Code the SELECT statements to our left
2677 assert( !pPrior
->pOrderBy
);
2678 sqlite3SelectDestInit(&uniondest
, priorOp
, unionTab
);
2679 rc
= sqlite3Select(pParse
, pPrior
, &uniondest
);
2681 goto multi_select_end
;
2684 /* Code the current SELECT statement
2686 if( p
->op
==TK_EXCEPT
){
2689 assert( p
->op
==TK_UNION
);
2695 uniondest
.eDest
= op
;
2696 ExplainQueryPlan((pParse
, 1, "%s USING TEMP B-TREE",
2697 selectOpName(p
->op
)));
2698 rc
= sqlite3Select(pParse
, p
, &uniondest
);
2699 testcase( rc
!=SQLITE_OK
);
2700 /* Query flattening in sqlite3Select() might refill p->pOrderBy.
2701 ** Be sure to delete p->pOrderBy, therefore, to avoid a memory leak. */
2702 sqlite3ExprListDelete(db
, p
->pOrderBy
);
2703 pDelete
= p
->pPrior
;
2706 if( p
->op
==TK_UNION
){
2707 p
->nSelectRow
= sqlite3LogEstAdd(p
->nSelectRow
, pPrior
->nSelectRow
);
2709 sqlite3ExprDelete(db
, p
->pLimit
);
2714 /* Convert the data in the temporary table into whatever form
2715 ** it is that we currently need.
2717 assert( unionTab
==dest
.iSDParm
|| dest
.eDest
!=priorOp
);
2718 if( dest
.eDest
!=priorOp
){
2719 int iCont
, iBreak
, iStart
;
2720 assert( p
->pEList
);
2721 iBreak
= sqlite3VdbeMakeLabel(v
);
2722 iCont
= sqlite3VdbeMakeLabel(v
);
2723 computeLimitRegisters(pParse
, p
, iBreak
);
2724 sqlite3VdbeAddOp2(v
, OP_Rewind
, unionTab
, iBreak
); VdbeCoverage(v
);
2725 iStart
= sqlite3VdbeCurrentAddr(v
);
2726 selectInnerLoop(pParse
, p
, unionTab
,
2727 0, 0, &dest
, iCont
, iBreak
);
2728 sqlite3VdbeResolveLabel(v
, iCont
);
2729 sqlite3VdbeAddOp2(v
, OP_Next
, unionTab
, iStart
); VdbeCoverage(v
);
2730 sqlite3VdbeResolveLabel(v
, iBreak
);
2731 sqlite3VdbeAddOp2(v
, OP_Close
, unionTab
, 0);
2735 default: assert( p
->op
==TK_INTERSECT
); {
2737 int iCont
, iBreak
, iStart
;
2740 SelectDest intersectdest
;
2743 /* INTERSECT is different from the others since it requires
2744 ** two temporary tables. Hence it has its own case. Begin
2745 ** by allocating the tables we will need.
2747 tab1
= pParse
->nTab
++;
2748 tab2
= pParse
->nTab
++;
2749 assert( p
->pOrderBy
==0 );
2751 addr
= sqlite3VdbeAddOp2(v
, OP_OpenEphemeral
, tab1
, 0);
2752 assert( p
->addrOpenEphm
[0] == -1 );
2753 p
->addrOpenEphm
[0] = addr
;
2754 findRightmost(p
)->selFlags
|= SF_UsesEphemeral
;
2755 assert( p
->pEList
);
2757 /* Code the SELECTs to our left into temporary table "tab1".
2759 sqlite3SelectDestInit(&intersectdest
, SRT_Union
, tab1
);
2760 rc
= sqlite3Select(pParse
, pPrior
, &intersectdest
);
2762 goto multi_select_end
;
2765 /* Code the current SELECT into temporary table "tab2"
2767 addr
= sqlite3VdbeAddOp2(v
, OP_OpenEphemeral
, tab2
, 0);
2768 assert( p
->addrOpenEphm
[1] == -1 );
2769 p
->addrOpenEphm
[1] = addr
;
2773 intersectdest
.iSDParm
= tab2
;
2774 ExplainQueryPlan((pParse
, 1, "%s USING TEMP B-TREE",
2775 selectOpName(p
->op
)));
2776 rc
= sqlite3Select(pParse
, p
, &intersectdest
);
2777 testcase( rc
!=SQLITE_OK
);
2778 pDelete
= p
->pPrior
;
2780 if( p
->nSelectRow
>pPrior
->nSelectRow
){
2781 p
->nSelectRow
= pPrior
->nSelectRow
;
2783 sqlite3ExprDelete(db
, p
->pLimit
);
2786 /* Generate code to take the intersection of the two temporary
2789 assert( p
->pEList
);
2790 iBreak
= sqlite3VdbeMakeLabel(v
);
2791 iCont
= sqlite3VdbeMakeLabel(v
);
2792 computeLimitRegisters(pParse
, p
, iBreak
);
2793 sqlite3VdbeAddOp2(v
, OP_Rewind
, tab1
, iBreak
); VdbeCoverage(v
);
2794 r1
= sqlite3GetTempReg(pParse
);
2795 iStart
= sqlite3VdbeAddOp2(v
, OP_RowData
, tab1
, r1
);
2796 sqlite3VdbeAddOp4Int(v
, OP_NotFound
, tab2
, iCont
, r1
, 0);
2798 sqlite3ReleaseTempReg(pParse
, r1
);
2799 selectInnerLoop(pParse
, p
, tab1
,
2800 0, 0, &dest
, iCont
, iBreak
);
2801 sqlite3VdbeResolveLabel(v
, iCont
);
2802 sqlite3VdbeAddOp2(v
, OP_Next
, tab1
, iStart
); VdbeCoverage(v
);
2803 sqlite3VdbeResolveLabel(v
, iBreak
);
2804 sqlite3VdbeAddOp2(v
, OP_Close
, tab2
, 0);
2805 sqlite3VdbeAddOp2(v
, OP_Close
, tab1
, 0);
2810 #ifndef SQLITE_OMIT_EXPLAIN
2812 ExplainQueryPlanPop(pParse
);
2817 /* Compute collating sequences used by
2818 ** temporary tables needed to implement the compound select.
2819 ** Attach the KeyInfo structure to all temporary tables.
2821 ** This section is run by the right-most SELECT statement only.
2822 ** SELECT statements to the left always skip this part. The right-most
2823 ** SELECT might also skip this part if it has no ORDER BY clause and
2824 ** no temp tables are required.
2826 if( p
->selFlags
& SF_UsesEphemeral
){
2827 int i
; /* Loop counter */
2828 KeyInfo
*pKeyInfo
; /* Collating sequence for the result set */
2829 Select
*pLoop
; /* For looping through SELECT statements */
2830 CollSeq
**apColl
; /* For looping through pKeyInfo->aColl[] */
2831 int nCol
; /* Number of columns in result set */
2833 assert( p
->pNext
==0 );
2834 nCol
= p
->pEList
->nExpr
;
2835 pKeyInfo
= sqlite3KeyInfoAlloc(db
, nCol
, 1);
2837 rc
= SQLITE_NOMEM_BKPT
;
2838 goto multi_select_end
;
2840 for(i
=0, apColl
=pKeyInfo
->aColl
; i
<nCol
; i
++, apColl
++){
2841 *apColl
= multiSelectCollSeq(pParse
, p
, i
);
2843 *apColl
= db
->pDfltColl
;
2847 for(pLoop
=p
; pLoop
; pLoop
=pLoop
->pPrior
){
2849 int addr
= pLoop
->addrOpenEphm
[i
];
2851 /* If [0] is unused then [1] is also unused. So we can
2852 ** always safely abort as soon as the first unused slot is found */
2853 assert( pLoop
->addrOpenEphm
[1]<0 );
2856 sqlite3VdbeChangeP2(v
, addr
, nCol
);
2857 sqlite3VdbeChangeP4(v
, addr
, (char*)sqlite3KeyInfoRef(pKeyInfo
),
2859 pLoop
->addrOpenEphm
[i
] = -1;
2862 sqlite3KeyInfoUnref(pKeyInfo
);
2866 pDest
->iSdst
= dest
.iSdst
;
2867 pDest
->nSdst
= dest
.nSdst
;
2868 sqlite3SelectDelete(db
, pDelete
);
2871 #endif /* SQLITE_OMIT_COMPOUND_SELECT */
2874 ** Error message for when two or more terms of a compound select have different
2875 ** size result sets.
2877 void sqlite3SelectWrongNumTermsError(Parse
*pParse
, Select
*p
){
2878 if( p
->selFlags
& SF_Values
){
2879 sqlite3ErrorMsg(pParse
, "all VALUES must have the same number of terms");
2881 sqlite3ErrorMsg(pParse
, "SELECTs to the left and right of %s"
2882 " do not have the same number of result columns", selectOpName(p
->op
));
2887 ** Code an output subroutine for a coroutine implementation of a
2890 ** The data to be output is contained in pIn->iSdst. There are
2891 ** pIn->nSdst columns to be output. pDest is where the output should
2894 ** regReturn is the number of the register holding the subroutine
2897 ** If regPrev>0 then it is the first register in a vector that
2898 ** records the previous output. mem[regPrev] is a flag that is false
2899 ** if there has been no previous output. If regPrev>0 then code is
2900 ** generated to suppress duplicates. pKeyInfo is used for comparing
2903 ** If the LIMIT found in p->iLimit is reached, jump immediately to
2906 static int generateOutputSubroutine(
2907 Parse
*pParse
, /* Parsing context */
2908 Select
*p
, /* The SELECT statement */
2909 SelectDest
*pIn
, /* Coroutine supplying data */
2910 SelectDest
*pDest
, /* Where to send the data */
2911 int regReturn
, /* The return address register */
2912 int regPrev
, /* Previous result register. No uniqueness if 0 */
2913 KeyInfo
*pKeyInfo
, /* For comparing with previous entry */
2914 int iBreak
/* Jump here if we hit the LIMIT */
2916 Vdbe
*v
= pParse
->pVdbe
;
2920 addr
= sqlite3VdbeCurrentAddr(v
);
2921 iContinue
= sqlite3VdbeMakeLabel(v
);
2923 /* Suppress duplicates for UNION, EXCEPT, and INTERSECT
2927 addr1
= sqlite3VdbeAddOp1(v
, OP_IfNot
, regPrev
); VdbeCoverage(v
);
2928 addr2
= sqlite3VdbeAddOp4(v
, OP_Compare
, pIn
->iSdst
, regPrev
+1, pIn
->nSdst
,
2929 (char*)sqlite3KeyInfoRef(pKeyInfo
), P4_KEYINFO
);
2930 sqlite3VdbeAddOp3(v
, OP_Jump
, addr2
+2, iContinue
, addr2
+2); VdbeCoverage(v
);
2931 sqlite3VdbeJumpHere(v
, addr1
);
2932 sqlite3VdbeAddOp3(v
, OP_Copy
, pIn
->iSdst
, regPrev
+1, pIn
->nSdst
-1);
2933 sqlite3VdbeAddOp2(v
, OP_Integer
, 1, regPrev
);
2935 if( pParse
->db
->mallocFailed
) return 0;
2937 /* Suppress the first OFFSET entries if there is an OFFSET clause
2939 codeOffset(v
, p
->iOffset
, iContinue
);
2941 assert( pDest
->eDest
!=SRT_Exists
);
2942 assert( pDest
->eDest
!=SRT_Table
);
2943 switch( pDest
->eDest
){
2944 /* Store the result as data using a unique key.
2946 case SRT_EphemTab
: {
2947 int r1
= sqlite3GetTempReg(pParse
);
2948 int r2
= sqlite3GetTempReg(pParse
);
2949 sqlite3VdbeAddOp3(v
, OP_MakeRecord
, pIn
->iSdst
, pIn
->nSdst
, r1
);
2950 sqlite3VdbeAddOp2(v
, OP_NewRowid
, pDest
->iSDParm
, r2
);
2951 sqlite3VdbeAddOp3(v
, OP_Insert
, pDest
->iSDParm
, r1
, r2
);
2952 sqlite3VdbeChangeP5(v
, OPFLAG_APPEND
);
2953 sqlite3ReleaseTempReg(pParse
, r2
);
2954 sqlite3ReleaseTempReg(pParse
, r1
);
2958 #ifndef SQLITE_OMIT_SUBQUERY
2959 /* If we are creating a set for an "expr IN (SELECT ...)".
2963 testcase( pIn
->nSdst
>1 );
2964 r1
= sqlite3GetTempReg(pParse
);
2965 sqlite3VdbeAddOp4(v
, OP_MakeRecord
, pIn
->iSdst
, pIn
->nSdst
,
2966 r1
, pDest
->zAffSdst
, pIn
->nSdst
);
2967 sqlite3ExprCacheAffinityChange(pParse
, pIn
->iSdst
, pIn
->nSdst
);
2968 sqlite3VdbeAddOp4Int(v
, OP_IdxInsert
, pDest
->iSDParm
, r1
,
2969 pIn
->iSdst
, pIn
->nSdst
);
2970 sqlite3ReleaseTempReg(pParse
, r1
);
2974 /* If this is a scalar select that is part of an expression, then
2975 ** store the results in the appropriate memory cell and break out
2976 ** of the scan loop.
2979 assert( pIn
->nSdst
==1 || pParse
->nErr
>0 ); testcase( pIn
->nSdst
!=1 );
2980 sqlite3ExprCodeMove(pParse
, pIn
->iSdst
, pDest
->iSDParm
, 1);
2981 /* The LIMIT clause will jump out of the loop for us */
2984 #endif /* #ifndef SQLITE_OMIT_SUBQUERY */
2986 /* The results are stored in a sequence of registers
2987 ** starting at pDest->iSdst. Then the co-routine yields.
2989 case SRT_Coroutine
: {
2990 if( pDest
->iSdst
==0 ){
2991 pDest
->iSdst
= sqlite3GetTempRange(pParse
, pIn
->nSdst
);
2992 pDest
->nSdst
= pIn
->nSdst
;
2994 sqlite3ExprCodeMove(pParse
, pIn
->iSdst
, pDest
->iSdst
, pIn
->nSdst
);
2995 sqlite3VdbeAddOp1(v
, OP_Yield
, pDest
->iSDParm
);
2999 /* If none of the above, then the result destination must be
3000 ** SRT_Output. This routine is never called with any other
3001 ** destination other than the ones handled above or SRT_Output.
3003 ** For SRT_Output, results are stored in a sequence of registers.
3004 ** Then the OP_ResultRow opcode is used to cause sqlite3_step() to
3005 ** return the next row of result.
3008 assert( pDest
->eDest
==SRT_Output
);
3009 sqlite3VdbeAddOp2(v
, OP_ResultRow
, pIn
->iSdst
, pIn
->nSdst
);
3010 sqlite3ExprCacheAffinityChange(pParse
, pIn
->iSdst
, pIn
->nSdst
);
3015 /* Jump to the end of the loop if the LIMIT is reached.
3018 sqlite3VdbeAddOp2(v
, OP_DecrJumpZero
, p
->iLimit
, iBreak
); VdbeCoverage(v
);
3021 /* Generate the subroutine return
3023 sqlite3VdbeResolveLabel(v
, iContinue
);
3024 sqlite3VdbeAddOp1(v
, OP_Return
, regReturn
);
3030 ** Alternative compound select code generator for cases when there
3031 ** is an ORDER BY clause.
3033 ** We assume a query of the following form:
3035 ** <selectA> <operator> <selectB> ORDER BY <orderbylist>
3037 ** <operator> is one of UNION ALL, UNION, EXCEPT, or INTERSECT. The idea
3038 ** is to code both <selectA> and <selectB> with the ORDER BY clause as
3039 ** co-routines. Then run the co-routines in parallel and merge the results
3040 ** into the output. In addition to the two coroutines (called selectA and
3041 ** selectB) there are 7 subroutines:
3043 ** outA: Move the output of the selectA coroutine into the output
3044 ** of the compound query.
3046 ** outB: Move the output of the selectB coroutine into the output
3047 ** of the compound query. (Only generated for UNION and
3048 ** UNION ALL. EXCEPT and INSERTSECT never output a row that
3049 ** appears only in B.)
3051 ** AltB: Called when there is data from both coroutines and A<B.
3053 ** AeqB: Called when there is data from both coroutines and A==B.
3055 ** AgtB: Called when there is data from both coroutines and A>B.
3057 ** EofA: Called when data is exhausted from selectA.
3059 ** EofB: Called when data is exhausted from selectB.
3061 ** The implementation of the latter five subroutines depend on which
3062 ** <operator> is used:
3065 ** UNION ALL UNION EXCEPT INTERSECT
3066 ** ------------- ----------------- -------------- -----------------
3067 ** AltB: outA, nextA outA, nextA outA, nextA nextA
3069 ** AeqB: outA, nextA nextA nextA outA, nextA
3071 ** AgtB: outB, nextB outB, nextB nextB nextB
3073 ** EofA: outB, nextB outB, nextB halt halt
3075 ** EofB: outA, nextA outA, nextA outA, nextA halt
3077 ** In the AltB, AeqB, and AgtB subroutines, an EOF on A following nextA
3078 ** causes an immediate jump to EofA and an EOF on B following nextB causes
3079 ** an immediate jump to EofB. Within EofA and EofB, and EOF on entry or
3080 ** following nextX causes a jump to the end of the select processing.
3082 ** Duplicate removal in the UNION, EXCEPT, and INTERSECT cases is handled
3083 ** within the output subroutine. The regPrev register set holds the previously
3084 ** output value. A comparison is made against this value and the output
3085 ** is skipped if the next results would be the same as the previous.
3087 ** The implementation plan is to implement the two coroutines and seven
3088 ** subroutines first, then put the control logic at the bottom. Like this:
3091 ** coA: coroutine for left query (A)
3092 ** coB: coroutine for right query (B)
3093 ** outA: output one row of A
3094 ** outB: output one row of B (UNION and UNION ALL only)
3100 ** Init: initialize coroutine registers
3102 ** if eof(A) goto EofA
3104 ** if eof(B) goto EofB
3105 ** Cmpr: Compare A, B
3106 ** Jump AltB, AeqB, AgtB
3109 ** We call AltB, AeqB, AgtB, EofA, and EofB "subroutines" but they are not
3110 ** actually called using Gosub and they do not Return. EofA and EofB loop
3111 ** until all data is exhausted then jump to the "end" labe. AltB, AeqB,
3112 ** and AgtB jump to either L2 or to one of EofA or EofB.
3114 #ifndef SQLITE_OMIT_COMPOUND_SELECT
3115 static int multiSelectOrderBy(
3116 Parse
*pParse
, /* Parsing context */
3117 Select
*p
, /* The right-most of SELECTs to be coded */
3118 SelectDest
*pDest
/* What to do with query results */
3120 int i
, j
; /* Loop counters */
3121 Select
*pPrior
; /* Another SELECT immediately to our left */
3122 Vdbe
*v
; /* Generate code to this VDBE */
3123 SelectDest destA
; /* Destination for coroutine A */
3124 SelectDest destB
; /* Destination for coroutine B */
3125 int regAddrA
; /* Address register for select-A coroutine */
3126 int regAddrB
; /* Address register for select-B coroutine */
3127 int addrSelectA
; /* Address of the select-A coroutine */
3128 int addrSelectB
; /* Address of the select-B coroutine */
3129 int regOutA
; /* Address register for the output-A subroutine */
3130 int regOutB
; /* Address register for the output-B subroutine */
3131 int addrOutA
; /* Address of the output-A subroutine */
3132 int addrOutB
= 0; /* Address of the output-B subroutine */
3133 int addrEofA
; /* Address of the select-A-exhausted subroutine */
3134 int addrEofA_noB
; /* Alternate addrEofA if B is uninitialized */
3135 int addrEofB
; /* Address of the select-B-exhausted subroutine */
3136 int addrAltB
; /* Address of the A<B subroutine */
3137 int addrAeqB
; /* Address of the A==B subroutine */
3138 int addrAgtB
; /* Address of the A>B subroutine */
3139 int regLimitA
; /* Limit register for select-A */
3140 int regLimitB
; /* Limit register for select-A */
3141 int regPrev
; /* A range of registers to hold previous output */
3142 int savedLimit
; /* Saved value of p->iLimit */
3143 int savedOffset
; /* Saved value of p->iOffset */
3144 int labelCmpr
; /* Label for the start of the merge algorithm */
3145 int labelEnd
; /* Label for the end of the overall SELECT stmt */
3146 int addr1
; /* Jump instructions that get retargetted */
3147 int op
; /* One of TK_ALL, TK_UNION, TK_EXCEPT, TK_INTERSECT */
3148 KeyInfo
*pKeyDup
= 0; /* Comparison information for duplicate removal */
3149 KeyInfo
*pKeyMerge
; /* Comparison information for merging rows */
3150 sqlite3
*db
; /* Database connection */
3151 ExprList
*pOrderBy
; /* The ORDER BY clause */
3152 int nOrderBy
; /* Number of terms in the ORDER BY clause */
3153 int *aPermute
; /* Mapping from ORDER BY terms to result set columns */
3155 assert( p
->pOrderBy
!=0 );
3156 assert( pKeyDup
==0 ); /* "Managed" code needs this. Ticket #3382. */
3159 assert( v
!=0 ); /* Already thrown the error if VDBE alloc failed */
3160 labelEnd
= sqlite3VdbeMakeLabel(v
);
3161 labelCmpr
= sqlite3VdbeMakeLabel(v
);
3164 /* Patch up the ORDER BY clause
3168 assert( pPrior
->pOrderBy
==0 );
3169 pOrderBy
= p
->pOrderBy
;
3171 nOrderBy
= pOrderBy
->nExpr
;
3173 /* For operators other than UNION ALL we have to make sure that
3174 ** the ORDER BY clause covers every term of the result set. Add
3175 ** terms to the ORDER BY clause as necessary.
3178 for(i
=1; db
->mallocFailed
==0 && i
<=p
->pEList
->nExpr
; i
++){
3179 struct ExprList_item
*pItem
;
3180 for(j
=0, pItem
=pOrderBy
->a
; j
<nOrderBy
; j
++, pItem
++){
3181 assert( pItem
->u
.x
.iOrderByCol
>0 );
3182 if( pItem
->u
.x
.iOrderByCol
==i
) break;
3185 Expr
*pNew
= sqlite3Expr(db
, TK_INTEGER
, 0);
3186 if( pNew
==0 ) return SQLITE_NOMEM_BKPT
;
3187 pNew
->flags
|= EP_IntValue
;
3189 p
->pOrderBy
= pOrderBy
= sqlite3ExprListAppend(pParse
, pOrderBy
, pNew
);
3190 if( pOrderBy
) pOrderBy
->a
[nOrderBy
++].u
.x
.iOrderByCol
= (u16
)i
;
3195 /* Compute the comparison permutation and keyinfo that is used with
3196 ** the permutation used to determine if the next
3197 ** row of results comes from selectA or selectB. Also add explicit
3198 ** collations to the ORDER BY clause terms so that when the subqueries
3199 ** to the right and the left are evaluated, they use the correct
3202 aPermute
= sqlite3DbMallocRawNN(db
, sizeof(int)*(nOrderBy
+ 1));
3204 struct ExprList_item
*pItem
;
3205 aPermute
[0] = nOrderBy
;
3206 for(i
=1, pItem
=pOrderBy
->a
; i
<=nOrderBy
; i
++, pItem
++){
3207 assert( pItem
->u
.x
.iOrderByCol
>0 );
3208 assert( pItem
->u
.x
.iOrderByCol
<=p
->pEList
->nExpr
);
3209 aPermute
[i
] = pItem
->u
.x
.iOrderByCol
- 1;
3211 pKeyMerge
= multiSelectOrderByKeyInfo(pParse
, p
, 1);
3216 /* Reattach the ORDER BY clause to the query.
3218 p
->pOrderBy
= pOrderBy
;
3219 pPrior
->pOrderBy
= sqlite3ExprListDup(pParse
->db
, pOrderBy
, 0);
3221 /* Allocate a range of temporary registers and the KeyInfo needed
3222 ** for the logic that removes duplicate result rows when the
3223 ** operator is UNION, EXCEPT, or INTERSECT (but not UNION ALL).
3228 int nExpr
= p
->pEList
->nExpr
;
3229 assert( nOrderBy
>=nExpr
|| db
->mallocFailed
);
3230 regPrev
= pParse
->nMem
+1;
3231 pParse
->nMem
+= nExpr
+1;
3232 sqlite3VdbeAddOp2(v
, OP_Integer
, 0, regPrev
);
3233 pKeyDup
= sqlite3KeyInfoAlloc(db
, nExpr
, 1);
3235 assert( sqlite3KeyInfoIsWriteable(pKeyDup
) );
3236 for(i
=0; i
<nExpr
; i
++){
3237 pKeyDup
->aColl
[i
] = multiSelectCollSeq(pParse
, p
, i
);
3238 pKeyDup
->aSortOrder
[i
] = 0;
3243 /* Separate the left and the right query from one another
3247 sqlite3ResolveOrderGroupBy(pParse
, p
, p
->pOrderBy
, "ORDER");
3248 if( pPrior
->pPrior
==0 ){
3249 sqlite3ResolveOrderGroupBy(pParse
, pPrior
, pPrior
->pOrderBy
, "ORDER");
3252 /* Compute the limit registers */
3253 computeLimitRegisters(pParse
, p
, labelEnd
);
3254 if( p
->iLimit
&& op
==TK_ALL
){
3255 regLimitA
= ++pParse
->nMem
;
3256 regLimitB
= ++pParse
->nMem
;
3257 sqlite3VdbeAddOp2(v
, OP_Copy
, p
->iOffset
? p
->iOffset
+1 : p
->iLimit
,
3259 sqlite3VdbeAddOp2(v
, OP_Copy
, regLimitA
, regLimitB
);
3261 regLimitA
= regLimitB
= 0;
3263 sqlite3ExprDelete(db
, p
->pLimit
);
3266 regAddrA
= ++pParse
->nMem
;
3267 regAddrB
= ++pParse
->nMem
;
3268 regOutA
= ++pParse
->nMem
;
3269 regOutB
= ++pParse
->nMem
;
3270 sqlite3SelectDestInit(&destA
, SRT_Coroutine
, regAddrA
);
3271 sqlite3SelectDestInit(&destB
, SRT_Coroutine
, regAddrB
);
3273 ExplainQueryPlan((pParse
, 1, "MERGE (%s)", selectOpName(p
->op
)));
3275 /* Generate a coroutine to evaluate the SELECT statement to the
3276 ** left of the compound operator - the "A" select.
3278 addrSelectA
= sqlite3VdbeCurrentAddr(v
) + 1;
3279 addr1
= sqlite3VdbeAddOp3(v
, OP_InitCoroutine
, regAddrA
, 0, addrSelectA
);
3280 VdbeComment((v
, "left SELECT"));
3281 pPrior
->iLimit
= regLimitA
;
3282 ExplainQueryPlan((pParse
, 1, "LEFT"));
3283 sqlite3Select(pParse
, pPrior
, &destA
);
3284 sqlite3VdbeEndCoroutine(v
, regAddrA
);
3285 sqlite3VdbeJumpHere(v
, addr1
);
3287 /* Generate a coroutine to evaluate the SELECT statement on
3288 ** the right - the "B" select
3290 addrSelectB
= sqlite3VdbeCurrentAddr(v
) + 1;
3291 addr1
= sqlite3VdbeAddOp3(v
, OP_InitCoroutine
, regAddrB
, 0, addrSelectB
);
3292 VdbeComment((v
, "right SELECT"));
3293 savedLimit
= p
->iLimit
;
3294 savedOffset
= p
->iOffset
;
3295 p
->iLimit
= regLimitB
;
3297 ExplainQueryPlan((pParse
, 1, "RIGHT"));
3298 sqlite3Select(pParse
, p
, &destB
);
3299 p
->iLimit
= savedLimit
;
3300 p
->iOffset
= savedOffset
;
3301 sqlite3VdbeEndCoroutine(v
, regAddrB
);
3303 /* Generate a subroutine that outputs the current row of the A
3304 ** select as the next output row of the compound select.
3306 VdbeNoopComment((v
, "Output routine for A"));
3307 addrOutA
= generateOutputSubroutine(pParse
,
3308 p
, &destA
, pDest
, regOutA
,
3309 regPrev
, pKeyDup
, labelEnd
);
3311 /* Generate a subroutine that outputs the current row of the B
3312 ** select as the next output row of the compound select.
3314 if( op
==TK_ALL
|| op
==TK_UNION
){
3315 VdbeNoopComment((v
, "Output routine for B"));
3316 addrOutB
= generateOutputSubroutine(pParse
,
3317 p
, &destB
, pDest
, regOutB
,
3318 regPrev
, pKeyDup
, labelEnd
);
3320 sqlite3KeyInfoUnref(pKeyDup
);
3322 /* Generate a subroutine to run when the results from select A
3323 ** are exhausted and only data in select B remains.
3325 if( op
==TK_EXCEPT
|| op
==TK_INTERSECT
){
3326 addrEofA_noB
= addrEofA
= labelEnd
;
3328 VdbeNoopComment((v
, "eof-A subroutine"));
3329 addrEofA
= sqlite3VdbeAddOp2(v
, OP_Gosub
, regOutB
, addrOutB
);
3330 addrEofA_noB
= sqlite3VdbeAddOp2(v
, OP_Yield
, regAddrB
, labelEnd
);
3332 sqlite3VdbeGoto(v
, addrEofA
);
3333 p
->nSelectRow
= sqlite3LogEstAdd(p
->nSelectRow
, pPrior
->nSelectRow
);
3336 /* Generate a subroutine to run when the results from select B
3337 ** are exhausted and only data in select A remains.
3339 if( op
==TK_INTERSECT
){
3340 addrEofB
= addrEofA
;
3341 if( p
->nSelectRow
> pPrior
->nSelectRow
) p
->nSelectRow
= pPrior
->nSelectRow
;
3343 VdbeNoopComment((v
, "eof-B subroutine"));
3344 addrEofB
= sqlite3VdbeAddOp2(v
, OP_Gosub
, regOutA
, addrOutA
);
3345 sqlite3VdbeAddOp2(v
, OP_Yield
, regAddrA
, labelEnd
); VdbeCoverage(v
);
3346 sqlite3VdbeGoto(v
, addrEofB
);
3349 /* Generate code to handle the case of A<B
3351 VdbeNoopComment((v
, "A-lt-B subroutine"));
3352 addrAltB
= sqlite3VdbeAddOp2(v
, OP_Gosub
, regOutA
, addrOutA
);
3353 sqlite3VdbeAddOp2(v
, OP_Yield
, regAddrA
, addrEofA
); VdbeCoverage(v
);
3354 sqlite3VdbeGoto(v
, labelCmpr
);
3356 /* Generate code to handle the case of A==B
3359 addrAeqB
= addrAltB
;
3360 }else if( op
==TK_INTERSECT
){
3361 addrAeqB
= addrAltB
;
3364 VdbeNoopComment((v
, "A-eq-B subroutine"));
3366 sqlite3VdbeAddOp2(v
, OP_Yield
, regAddrA
, addrEofA
); VdbeCoverage(v
);
3367 sqlite3VdbeGoto(v
, labelCmpr
);
3370 /* Generate code to handle the case of A>B
3372 VdbeNoopComment((v
, "A-gt-B subroutine"));
3373 addrAgtB
= sqlite3VdbeCurrentAddr(v
);
3374 if( op
==TK_ALL
|| op
==TK_UNION
){
3375 sqlite3VdbeAddOp2(v
, OP_Gosub
, regOutB
, addrOutB
);
3377 sqlite3VdbeAddOp2(v
, OP_Yield
, regAddrB
, addrEofB
); VdbeCoverage(v
);
3378 sqlite3VdbeGoto(v
, labelCmpr
);
3380 /* This code runs once to initialize everything.
3382 sqlite3VdbeJumpHere(v
, addr1
);
3383 sqlite3VdbeAddOp2(v
, OP_Yield
, regAddrA
, addrEofA_noB
); VdbeCoverage(v
);
3384 sqlite3VdbeAddOp2(v
, OP_Yield
, regAddrB
, addrEofB
); VdbeCoverage(v
);
3386 /* Implement the main merge loop
3388 sqlite3VdbeResolveLabel(v
, labelCmpr
);
3389 sqlite3VdbeAddOp4(v
, OP_Permutation
, 0, 0, 0, (char*)aPermute
, P4_INTARRAY
);
3390 sqlite3VdbeAddOp4(v
, OP_Compare
, destA
.iSdst
, destB
.iSdst
, nOrderBy
,
3391 (char*)pKeyMerge
, P4_KEYINFO
);
3392 sqlite3VdbeChangeP5(v
, OPFLAG_PERMUTE
);
3393 sqlite3VdbeAddOp3(v
, OP_Jump
, addrAltB
, addrAeqB
, addrAgtB
); VdbeCoverage(v
);
3395 /* Jump to the this point in order to terminate the query.
3397 sqlite3VdbeResolveLabel(v
, labelEnd
);
3399 /* Reassembly the compound query so that it will be freed correctly
3400 ** by the calling function */
3402 sqlite3SelectDelete(db
, p
->pPrior
);
3407 /*** TBD: Insert subroutine calls to close cursors on incomplete
3408 **** subqueries ****/
3409 ExplainQueryPlanPop(pParse
);
3410 return pParse
->nErr
!=0;
3414 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
3416 /* An instance of the SubstContext object describes an substitution edit
3417 ** to be performed on a parse tree.
3419 ** All references to columns in table iTable are to be replaced by corresponding
3420 ** expressions in pEList.
3422 typedef struct SubstContext
{
3423 Parse
*pParse
; /* The parsing context */
3424 int iTable
; /* Replace references to this table */
3425 int iNewTable
; /* New table number */
3426 int isLeftJoin
; /* Add TK_IF_NULL_ROW opcodes on each replacement */
3427 ExprList
*pEList
; /* Replacement expressions */
3430 /* Forward Declarations */
3431 static void substExprList(SubstContext
*, ExprList
*);
3432 static void substSelect(SubstContext
*, Select
*, int);
3435 ** Scan through the expression pExpr. Replace every reference to
3436 ** a column in table number iTable with a copy of the iColumn-th
3437 ** entry in pEList. (But leave references to the ROWID column
3440 ** This routine is part of the flattening procedure. A subquery
3441 ** whose result set is defined by pEList appears as entry in the
3442 ** FROM clause of a SELECT such that the VDBE cursor assigned to that
3443 ** FORM clause entry is iTable. This routine makes the necessary
3444 ** changes to pExpr so that it refers directly to the source table
3445 ** of the subquery rather the result set of the subquery.
3447 static Expr
*substExpr(
3448 SubstContext
*pSubst
, /* Description of the substitution */
3449 Expr
*pExpr
/* Expr in which substitution occurs */
3451 if( pExpr
==0 ) return 0;
3452 if( ExprHasProperty(pExpr
, EP_FromJoin
)
3453 && pExpr
->iRightJoinTable
==pSubst
->iTable
3455 pExpr
->iRightJoinTable
= pSubst
->iNewTable
;
3457 if( pExpr
->op
==TK_COLUMN
&& pExpr
->iTable
==pSubst
->iTable
){
3458 if( pExpr
->iColumn
<0 ){
3459 pExpr
->op
= TK_NULL
;
3462 Expr
*pCopy
= pSubst
->pEList
->a
[pExpr
->iColumn
].pExpr
;
3464 assert( pSubst
->pEList
!=0 && pExpr
->iColumn
<pSubst
->pEList
->nExpr
);
3465 assert( pExpr
->pLeft
==0 && pExpr
->pRight
==0 );
3466 if( sqlite3ExprIsVector(pCopy
) ){
3467 sqlite3VectorErrorMsg(pSubst
->pParse
, pCopy
);
3469 sqlite3
*db
= pSubst
->pParse
->db
;
3470 if( pSubst
->isLeftJoin
&& pCopy
->op
!=TK_COLUMN
){
3471 memset(&ifNullRow
, 0, sizeof(ifNullRow
));
3472 ifNullRow
.op
= TK_IF_NULL_ROW
;
3473 ifNullRow
.pLeft
= pCopy
;
3474 ifNullRow
.iTable
= pSubst
->iNewTable
;
3477 pNew
= sqlite3ExprDup(db
, pCopy
, 0);
3478 if( pNew
&& pSubst
->isLeftJoin
){
3479 ExprSetProperty(pNew
, EP_CanBeNull
);
3481 if( pNew
&& ExprHasProperty(pExpr
,EP_FromJoin
) ){
3482 pNew
->iRightJoinTable
= pExpr
->iRightJoinTable
;
3483 ExprSetProperty(pNew
, EP_FromJoin
);
3485 sqlite3ExprDelete(db
, pExpr
);
3490 if( pExpr
->op
==TK_IF_NULL_ROW
&& pExpr
->iTable
==pSubst
->iTable
){
3491 pExpr
->iTable
= pSubst
->iNewTable
;
3493 pExpr
->pLeft
= substExpr(pSubst
, pExpr
->pLeft
);
3494 pExpr
->pRight
= substExpr(pSubst
, pExpr
->pRight
);
3495 if( ExprHasProperty(pExpr
, EP_xIsSelect
) ){
3496 substSelect(pSubst
, pExpr
->x
.pSelect
, 1);
3498 substExprList(pSubst
, pExpr
->x
.pList
);
3503 static void substExprList(
3504 SubstContext
*pSubst
, /* Description of the substitution */
3505 ExprList
*pList
/* List to scan and in which to make substitutes */
3508 if( pList
==0 ) return;
3509 for(i
=0; i
<pList
->nExpr
; i
++){
3510 pList
->a
[i
].pExpr
= substExpr(pSubst
, pList
->a
[i
].pExpr
);
3513 static void substSelect(
3514 SubstContext
*pSubst
, /* Description of the substitution */
3515 Select
*p
, /* SELECT statement in which to make substitutions */
3516 int doPrior
/* Do substitutes on p->pPrior too */
3519 struct SrcList_item
*pItem
;
3523 substExprList(pSubst
, p
->pEList
);
3524 substExprList(pSubst
, p
->pGroupBy
);
3525 substExprList(pSubst
, p
->pOrderBy
);
3526 p
->pHaving
= substExpr(pSubst
, p
->pHaving
);
3527 p
->pWhere
= substExpr(pSubst
, p
->pWhere
);
3530 for(i
=pSrc
->nSrc
, pItem
=pSrc
->a
; i
>0; i
--, pItem
++){
3531 substSelect(pSubst
, pItem
->pSelect
, 1);
3532 if( pItem
->fg
.isTabFunc
){
3533 substExprList(pSubst
, pItem
->u1
.pFuncArg
);
3536 }while( doPrior
&& (p
= p
->pPrior
)!=0 );
3538 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */
3540 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
3542 ** This routine attempts to flatten subqueries as a performance optimization.
3543 ** This routine returns 1 if it makes changes and 0 if no flattening occurs.
3545 ** To understand the concept of flattening, consider the following
3548 ** SELECT a FROM (SELECT x+y AS a FROM t1 WHERE z<100) WHERE a>5
3550 ** The default way of implementing this query is to execute the
3551 ** subquery first and store the results in a temporary table, then
3552 ** run the outer query on that temporary table. This requires two
3553 ** passes over the data. Furthermore, because the temporary table
3554 ** has no indices, the WHERE clause on the outer query cannot be
3557 ** This routine attempts to rewrite queries such as the above into
3558 ** a single flat select, like this:
3560 ** SELECT x+y AS a FROM t1 WHERE z<100 AND a>5
3562 ** The code generated for this simplification gives the same result
3563 ** but only has to scan the data once. And because indices might
3564 ** exist on the table t1, a complete scan of the data might be
3567 ** Flattening is subject to the following constraints:
3569 ** (**) We no longer attempt to flatten aggregate subqueries. Was:
3570 ** The subquery and the outer query cannot both be aggregates.
3572 ** (**) We no longer attempt to flatten aggregate subqueries. Was:
3573 ** (2) If the subquery is an aggregate then
3574 ** (2a) the outer query must not be a join and
3575 ** (2b) the outer query must not use subqueries
3576 ** other than the one FROM-clause subquery that is a candidate
3577 ** for flattening. (This is due to ticket [2f7170d73bf9abf80]
3578 ** from 2015-02-09.)
3580 ** (3) If the subquery is the right operand of a LEFT JOIN then
3581 ** (3a) the subquery may not be a join and
3582 ** (3b) the FROM clause of the subquery may not contain a virtual
3584 ** (3c) the outer query may not be an aggregate.
3586 ** (4) The subquery can not be DISTINCT.
3588 ** (**) At one point restrictions (4) and (5) defined a subset of DISTINCT
3589 ** sub-queries that were excluded from this optimization. Restriction
3590 ** (4) has since been expanded to exclude all DISTINCT subqueries.
3592 ** (**) We no longer attempt to flatten aggregate subqueries. Was:
3593 ** If the subquery is aggregate, the outer query may not be DISTINCT.
3595 ** (7) The subquery must have a FROM clause. TODO: For subqueries without
3596 ** A FROM clause, consider adding a FROM clause with the special
3597 ** table sqlite_once that consists of a single row containing a
3600 ** (8) If the subquery uses LIMIT then the outer query may not be a join.
3602 ** (9) If the subquery uses LIMIT then the outer query may not be aggregate.
3604 ** (**) Restriction (10) was removed from the code on 2005-02-05 but we
3605 ** accidently carried the comment forward until 2014-09-15. Original
3606 ** constraint: "If the subquery is aggregate then the outer query
3607 ** may not use LIMIT."
3609 ** (11) The subquery and the outer query may not both have ORDER BY clauses.
3611 ** (**) Not implemented. Subsumed into restriction (3). Was previously
3612 ** a separate restriction deriving from ticket #350.
3614 ** (13) The subquery and outer query may not both use LIMIT.
3616 ** (14) The subquery may not use OFFSET.
3618 ** (15) If the outer query is part of a compound select, then the
3619 ** subquery may not use LIMIT.
3620 ** (See ticket #2339 and ticket [02a8e81d44]).
3622 ** (16) If the outer query is aggregate, then the subquery may not
3623 ** use ORDER BY. (Ticket #2942) This used to not matter
3624 ** until we introduced the group_concat() function.
3626 ** (17) If the subquery is a compound select, then
3627 ** (17a) all compound operators must be a UNION ALL, and
3628 ** (17b) no terms within the subquery compound may be aggregate
3630 ** (17c) every term within the subquery compound must have a FROM clause
3631 ** (17d) the outer query may not be
3632 ** (17d1) aggregate, or
3633 ** (17d2) DISTINCT, or
3636 ** The parent and sub-query may contain WHERE clauses. Subject to
3637 ** rules (11), (13) and (14), they may also contain ORDER BY,
3638 ** LIMIT and OFFSET clauses. The subquery cannot use any compound
3639 ** operator other than UNION ALL because all the other compound
3640 ** operators have an implied DISTINCT which is disallowed by
3643 ** Also, each component of the sub-query must return the same number
3644 ** of result columns. This is actually a requirement for any compound
3645 ** SELECT statement, but all the code here does is make sure that no
3646 ** such (illegal) sub-query is flattened. The caller will detect the
3647 ** syntax error and return a detailed message.
3649 ** (18) If the sub-query is a compound select, then all terms of the
3650 ** ORDER BY clause of the parent must be simple references to
3651 ** columns of the sub-query.
3653 ** (19) If the subquery uses LIMIT then the outer query may not
3654 ** have a WHERE clause.
3656 ** (20) If the sub-query is a compound select, then it must not use
3657 ** an ORDER BY clause. Ticket #3773. We could relax this constraint
3658 ** somewhat by saying that the terms of the ORDER BY clause must
3659 ** appear as unmodified result columns in the outer query. But we
3660 ** have other optimizations in mind to deal with that case.
3662 ** (21) If the subquery uses LIMIT then the outer query may not be
3663 ** DISTINCT. (See ticket [752e1646fc]).
3665 ** (22) The subquery may not be a recursive CTE.
3667 ** (**) Subsumed into restriction (17d3). Was: If the outer query is
3668 ** a recursive CTE, then the sub-query may not be a compound query.
3669 ** This restriction is because transforming the
3670 ** parent to a compound query confuses the code that handles
3671 ** recursive queries in multiSelect().
3673 ** (**) We no longer attempt to flatten aggregate subqueries. Was:
3674 ** The subquery may not be an aggregate that uses the built-in min() or
3675 ** or max() functions. (Without this restriction, a query like:
3676 ** "SELECT x FROM (SELECT max(y), x FROM t1)" would not necessarily
3677 ** return the value X for which Y was maximal.)
3680 ** In this routine, the "p" parameter is a pointer to the outer query.
3681 ** The subquery is p->pSrc->a[iFrom]. isAgg is true if the outer query
3684 ** If flattening is not attempted, this routine is a no-op and returns 0.
3685 ** If flattening is attempted this routine returns 1.
3687 ** All of the expression analysis must occur on both the outer query and
3688 ** the subquery before this routine runs.
3690 static int flattenSubquery(
3691 Parse
*pParse
, /* Parsing context */
3692 Select
*p
, /* The parent or outer SELECT statement */
3693 int iFrom
, /* Index in p->pSrc->a[] of the inner subquery */
3694 int isAgg
/* True if outer SELECT uses aggregate functions */
3696 const char *zSavedAuthContext
= pParse
->zAuthContext
;
3697 Select
*pParent
; /* Current UNION ALL term of the other query */
3698 Select
*pSub
; /* The inner query or "subquery" */
3699 Select
*pSub1
; /* Pointer to the rightmost select in sub-query */
3700 SrcList
*pSrc
; /* The FROM clause of the outer query */
3701 SrcList
*pSubSrc
; /* The FROM clause of the subquery */
3702 int iParent
; /* VDBE cursor number of the pSub result set temp table */
3703 int iNewParent
= -1;/* Replacement table for iParent */
3704 int isLeftJoin
= 0; /* True if pSub is the right side of a LEFT JOIN */
3705 int i
; /* Loop counter */
3706 Expr
*pWhere
; /* The WHERE clause */
3707 struct SrcList_item
*pSubitem
; /* The subquery */
3708 sqlite3
*db
= pParse
->db
;
3710 /* Check to see if flattening is permitted. Return 0 if not.
3713 assert( p
->pPrior
==0 );
3714 if( OptimizationDisabled(db
, SQLITE_QueryFlattener
) ) return 0;
3716 assert( pSrc
&& iFrom
>=0 && iFrom
<pSrc
->nSrc
);
3717 pSubitem
= &pSrc
->a
[iFrom
];
3718 iParent
= pSubitem
->iCursor
;
3719 pSub
= pSubitem
->pSelect
;
3722 pSubSrc
= pSub
->pSrc
;
3724 /* Prior to version 3.1.2, when LIMIT and OFFSET had to be simple constants,
3725 ** not arbitrary expressions, we allowed some combining of LIMIT and OFFSET
3726 ** because they could be computed at compile-time. But when LIMIT and OFFSET
3727 ** became arbitrary expressions, we were forced to add restrictions (13)
3729 if( pSub
->pLimit
&& p
->pLimit
) return 0; /* Restriction (13) */
3730 if( pSub
->pLimit
&& pSub
->pLimit
->pRight
) return 0; /* Restriction (14) */
3731 if( (p
->selFlags
& SF_Compound
)!=0 && pSub
->pLimit
){
3732 return 0; /* Restriction (15) */
3734 if( pSubSrc
->nSrc
==0 ) return 0; /* Restriction (7) */
3735 if( pSub
->selFlags
& SF_Distinct
) return 0; /* Restriction (4) */
3736 if( pSub
->pLimit
&& (pSrc
->nSrc
>1 || isAgg
) ){
3737 return 0; /* Restrictions (8)(9) */
3739 if( p
->pOrderBy
&& pSub
->pOrderBy
){
3740 return 0; /* Restriction (11) */
3742 if( isAgg
&& pSub
->pOrderBy
) return 0; /* Restriction (16) */
3743 if( pSub
->pLimit
&& p
->pWhere
) return 0; /* Restriction (19) */
3744 if( pSub
->pLimit
&& (p
->selFlags
& SF_Distinct
)!=0 ){
3745 return 0; /* Restriction (21) */
3747 if( pSub
->selFlags
& (SF_Recursive
) ){
3748 return 0; /* Restrictions (22) */
3752 ** If the subquery is the right operand of a LEFT JOIN, then the
3753 ** subquery may not be a join itself (3a). Example of why this is not
3756 ** t1 LEFT OUTER JOIN (t2 JOIN t3)
3758 ** If we flatten the above, we would get
3760 ** (t1 LEFT OUTER JOIN t2) JOIN t3
3762 ** which is not at all the same thing.
3764 ** If the subquery is the right operand of a LEFT JOIN, then the outer
3765 ** query cannot be an aggregate. (3c) This is an artifact of the way
3766 ** aggregates are processed - there is no mechanism to determine if
3767 ** the LEFT JOIN table should be all-NULL.
3769 ** See also tickets #306, #350, and #3300.
3771 if( (pSubitem
->fg
.jointype
& JT_OUTER
)!=0 ){
3773 if( pSubSrc
->nSrc
>1 || isAgg
|| IsVirtual(pSubSrc
->a
[0].pTab
) ){
3774 /* (3a) (3c) (3b) */
3778 #ifdef SQLITE_EXTRA_IFNULLROW
3779 else if( iFrom
>0 && !isAgg
){
3780 /* Setting isLeftJoin to -1 causes OP_IfNullRow opcodes to be generated for
3781 ** every reference to any result column from subquery in a join, even
3782 ** though they are not necessary. This will stress-test the OP_IfNullRow
3788 /* Restriction (17): If the sub-query is a compound SELECT, then it must
3789 ** use only the UNION ALL operator. And none of the simple select queries
3790 ** that make up the compound SELECT are allowed to be aggregate or distinct
3794 if( pSub
->pOrderBy
){
3795 return 0; /* Restriction (20) */
3797 if( isAgg
|| (p
->selFlags
& SF_Distinct
)!=0 || pSrc
->nSrc
!=1 ){
3798 return 0; /* (17d1), (17d2), or (17d3) */
3800 for(pSub1
=pSub
; pSub1
; pSub1
=pSub1
->pPrior
){
3801 testcase( (pSub1
->selFlags
& (SF_Distinct
|SF_Aggregate
))==SF_Distinct
);
3802 testcase( (pSub1
->selFlags
& (SF_Distinct
|SF_Aggregate
))==SF_Aggregate
);
3803 assert( pSub
->pSrc
!=0 );
3804 assert( pSub
->pEList
->nExpr
==pSub1
->pEList
->nExpr
);
3805 if( (pSub1
->selFlags
& (SF_Distinct
|SF_Aggregate
))!=0 /* (17b) */
3806 || (pSub1
->pPrior
&& pSub1
->op
!=TK_ALL
) /* (17a) */
3807 || pSub1
->pSrc
->nSrc
<1 /* (17c) */
3811 testcase( pSub1
->pSrc
->nSrc
>1 );
3814 /* Restriction (18). */
3817 for(ii
=0; ii
<p
->pOrderBy
->nExpr
; ii
++){
3818 if( p
->pOrderBy
->a
[ii
].u
.x
.iOrderByCol
==0 ) return 0;
3823 /* Ex-restriction (23):
3824 ** The only way that the recursive part of a CTE can contain a compound
3825 ** subquery is for the subquery to be one term of a join. But if the
3826 ** subquery is a join, then the flattening has already been stopped by
3827 ** restriction (17d3)
3829 assert( (p
->selFlags
& SF_Recursive
)==0 || pSub
->pPrior
==0 );
3831 /***** If we reach this point, flattening is permitted. *****/
3832 SELECTTRACE(1,pParse
,p
,("flatten %s.%p from term %d\n",
3833 pSub
->zSelName
, pSub
, iFrom
));
3835 /* Authorize the subquery */
3836 pParse
->zAuthContext
= pSubitem
->zName
;
3837 TESTONLY(i
=) sqlite3AuthCheck(pParse
, SQLITE_SELECT
, 0, 0, 0);
3838 testcase( i
==SQLITE_DENY
);
3839 pParse
->zAuthContext
= zSavedAuthContext
;
3841 /* If the sub-query is a compound SELECT statement, then (by restrictions
3842 ** 17 and 18 above) it must be a UNION ALL and the parent query must
3845 ** SELECT <expr-list> FROM (<sub-query>) <where-clause>
3847 ** followed by any ORDER BY, LIMIT and/or OFFSET clauses. This block
3848 ** creates N-1 copies of the parent query without any ORDER BY, LIMIT or
3849 ** OFFSET clauses and joins them to the left-hand-side of the original
3850 ** using UNION ALL operators. In this case N is the number of simple
3851 ** select statements in the compound sub-query.
3855 ** SELECT a+1 FROM (
3856 ** SELECT x FROM tab
3858 ** SELECT y FROM tab
3860 ** SELECT abs(z*2) FROM tab2
3861 ** ) WHERE a!=5 ORDER BY 1
3863 ** Transformed into:
3865 ** SELECT x+1 FROM tab WHERE x+1!=5
3867 ** SELECT y+1 FROM tab WHERE y+1!=5
3869 ** SELECT abs(z*2)+1 FROM tab2 WHERE abs(z*2)+1!=5
3872 ** We call this the "compound-subquery flattening".
3874 for(pSub
=pSub
->pPrior
; pSub
; pSub
=pSub
->pPrior
){
3876 ExprList
*pOrderBy
= p
->pOrderBy
;
3877 Expr
*pLimit
= p
->pLimit
;
3878 Select
*pPrior
= p
->pPrior
;
3883 pNew
= sqlite3SelectDup(db
, p
, 0);
3884 sqlite3SelectSetName(pNew
, pSub
->zSelName
);
3886 p
->pOrderBy
= pOrderBy
;
3892 pNew
->pPrior
= pPrior
;
3893 if( pPrior
) pPrior
->pNext
= pNew
;
3896 SELECTTRACE(2,pParse
,p
,("compound-subquery flattener"
3897 " creates %s.%p as peer\n",pNew
->zSelName
, pNew
));
3899 if( db
->mallocFailed
) return 1;
3902 /* Begin flattening the iFrom-th entry of the FROM clause
3903 ** in the outer query.
3905 pSub
= pSub1
= pSubitem
->pSelect
;
3907 /* Delete the transient table structure associated with the
3910 sqlite3DbFree(db
, pSubitem
->zDatabase
);
3911 sqlite3DbFree(db
, pSubitem
->zName
);
3912 sqlite3DbFree(db
, pSubitem
->zAlias
);
3913 pSubitem
->zDatabase
= 0;
3914 pSubitem
->zName
= 0;
3915 pSubitem
->zAlias
= 0;
3916 pSubitem
->pSelect
= 0;
3918 /* Defer deleting the Table object associated with the
3919 ** subquery until code generation is
3920 ** complete, since there may still exist Expr.pTab entries that
3921 ** refer to the subquery even after flattening. Ticket #3346.
3923 ** pSubitem->pTab is always non-NULL by test restrictions and tests above.
3925 if( ALWAYS(pSubitem
->pTab
!=0) ){
3926 Table
*pTabToDel
= pSubitem
->pTab
;
3927 if( pTabToDel
->nTabRef
==1 ){
3928 Parse
*pToplevel
= sqlite3ParseToplevel(pParse
);
3929 pTabToDel
->pNextZombie
= pToplevel
->pZombieTab
;
3930 pToplevel
->pZombieTab
= pTabToDel
;
3932 pTabToDel
->nTabRef
--;
3937 /* The following loop runs once for each term in a compound-subquery
3938 ** flattening (as described above). If we are doing a different kind
3939 ** of flattening - a flattening other than a compound-subquery flattening -
3940 ** then this loop only runs once.
3942 ** This loop moves all of the FROM elements of the subquery into the
3943 ** the FROM clause of the outer query. Before doing this, remember
3944 ** the cursor number for the original outer query FROM element in
3945 ** iParent. The iParent cursor will never be used. Subsequent code
3946 ** will scan expressions looking for iParent references and replace
3947 ** those references with expressions that resolve to the subquery FROM
3948 ** elements we are now copying in.
3950 for(pParent
=p
; pParent
; pParent
=pParent
->pPrior
, pSub
=pSub
->pPrior
){
3953 pSubSrc
= pSub
->pSrc
; /* FROM clause of subquery */
3954 nSubSrc
= pSubSrc
->nSrc
; /* Number of terms in subquery FROM clause */
3955 pSrc
= pParent
->pSrc
; /* FROM clause of the outer query */
3958 assert( pParent
==p
); /* First time through the loop */
3959 jointype
= pSubitem
->fg
.jointype
;
3961 assert( pParent
!=p
); /* 2nd and subsequent times through the loop */
3962 pSrc
= pParent
->pSrc
= sqlite3SrcListAppend(db
, 0, 0, 0);
3964 assert( db
->mallocFailed
);
3969 /* The subquery uses a single slot of the FROM clause of the outer
3970 ** query. If the subquery has more than one element in its FROM clause,
3971 ** then expand the outer query to make space for it to hold all elements
3976 ** SELECT * FROM tabA, (SELECT * FROM sub1, sub2), tabB;
3978 ** The outer query has 3 slots in its FROM clause. One slot of the
3979 ** outer query (the middle slot) is used by the subquery. The next
3980 ** block of code will expand the outer query FROM clause to 4 slots.
3981 ** The middle slot is expanded to two slots in order to make space
3982 ** for the two elements in the FROM clause of the subquery.
3985 pParent
->pSrc
= pSrc
= sqlite3SrcListEnlarge(db
, pSrc
, nSubSrc
-1,iFrom
+1);
3986 if( db
->mallocFailed
){
3991 /* Transfer the FROM clause terms from the subquery into the
3994 for(i
=0; i
<nSubSrc
; i
++){
3995 sqlite3IdListDelete(db
, pSrc
->a
[i
+iFrom
].pUsing
);
3996 assert( pSrc
->a
[i
+iFrom
].fg
.isTabFunc
==0 );
3997 pSrc
->a
[i
+iFrom
] = pSubSrc
->a
[i
];
3998 iNewParent
= pSubSrc
->a
[i
].iCursor
;
3999 memset(&pSubSrc
->a
[i
], 0, sizeof(pSubSrc
->a
[i
]));
4001 pSrc
->a
[iFrom
].fg
.jointype
= jointype
;
4003 /* Now begin substituting subquery result set expressions for
4004 ** references to the iParent in the outer query.
4008 ** SELECT a+5, b*10 FROM (SELECT x*3 AS a, y+10 AS b FROM t1) WHERE a>b;
4009 ** \ \_____________ subquery __________/ /
4010 ** \_____________________ outer query ______________________________/
4012 ** We look at every expression in the outer query and every place we see
4013 ** "a" we substitute "x*3" and every place we see "b" we substitute "y+10".
4015 if( pSub
->pOrderBy
){
4016 /* At this point, any non-zero iOrderByCol values indicate that the
4017 ** ORDER BY column expression is identical to the iOrderByCol'th
4018 ** expression returned by SELECT statement pSub. Since these values
4019 ** do not necessarily correspond to columns in SELECT statement pParent,
4020 ** zero them before transfering the ORDER BY clause.
4022 ** Not doing this may cause an error if a subsequent call to this
4023 ** function attempts to flatten a compound sub-query into pParent
4024 ** (the only way this can happen is if the compound sub-query is
4025 ** currently part of pSub->pSrc). See ticket [d11a6e908f]. */
4026 ExprList
*pOrderBy
= pSub
->pOrderBy
;
4027 for(i
=0; i
<pOrderBy
->nExpr
; i
++){
4028 pOrderBy
->a
[i
].u
.x
.iOrderByCol
= 0;
4030 assert( pParent
->pOrderBy
==0 );
4031 pParent
->pOrderBy
= pOrderBy
;
4034 pWhere
= sqlite3ExprDup(db
, pSub
->pWhere
, 0);
4036 setJoinExpr(pWhere
, iNewParent
);
4038 pParent
->pWhere
= sqlite3ExprAnd(db
, pWhere
, pParent
->pWhere
);
4039 if( db
->mallocFailed
==0 ){
4043 x
.iNewTable
= iNewParent
;
4044 x
.isLeftJoin
= isLeftJoin
;
4045 x
.pEList
= pSub
->pEList
;
4046 substSelect(&x
, pParent
, 0);
4049 /* The flattened query is distinct if either the inner or the
4050 ** outer query is distinct.
4052 pParent
->selFlags
|= pSub
->selFlags
& SF_Distinct
;
4055 ** SELECT ... FROM (SELECT ... LIMIT a OFFSET b) LIMIT x OFFSET y;
4057 ** One is tempted to try to add a and b to combine the limits. But this
4058 ** does not work if either limit is negative.
4061 pParent
->pLimit
= pSub
->pLimit
;
4066 /* Finially, delete what is left of the subquery and return
4069 sqlite3SelectDelete(db
, pSub1
);
4071 #if SELECTTRACE_ENABLED
4072 if( sqlite3SelectTrace
& 0x100 ){
4073 SELECTTRACE(0x100,pParse
,p
,("After flattening:\n"));
4074 sqlite3TreeViewSelect(0, p
, 0);
4080 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */
4084 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
4086 ** Make copies of relevant WHERE clause terms of the outer query into
4087 ** the WHERE clause of subquery. Example:
4089 ** SELECT * FROM (SELECT a AS x, c-d AS y FROM t1) WHERE x=5 AND y=10;
4091 ** Transformed into:
4093 ** SELECT * FROM (SELECT a AS x, c-d AS y FROM t1 WHERE a=5 AND c-d=10)
4094 ** WHERE x=5 AND y=10;
4096 ** The hope is that the terms added to the inner query will make it more
4099 ** Do not attempt this optimization if:
4101 ** (1) (** This restriction was removed on 2017-09-29. We used to
4102 ** disallow this optimization for aggregate subqueries, but now
4103 ** it is allowed by putting the extra terms on the HAVING clause.
4104 ** The added HAVING clause is pointless if the subquery lacks
4105 ** a GROUP BY clause. But such a HAVING clause is also harmless
4106 ** so there does not appear to be any reason to add extra logic
4107 ** to suppress it. **)
4109 ** (2) The inner query is the recursive part of a common table expression.
4111 ** (3) The inner query has a LIMIT clause (since the changes to the WHERE
4112 ** close would change the meaning of the LIMIT).
4114 ** (4) The inner query is the right operand of a LEFT JOIN and the
4115 ** expression to be pushed down does not come from the ON clause
4116 ** on that LEFT JOIN.
4118 ** (5) The WHERE clause expression originates in the ON or USING clause
4119 ** of a LEFT JOIN where iCursor is not the right-hand table of that
4120 ** left join. An example:
4123 ** FROM (SELECT 1 AS a1 UNION ALL SELECT 2) AS aa
4124 ** JOIN (SELECT 1 AS b2 UNION ALL SELECT 2) AS bb ON (a1=b2)
4125 ** LEFT JOIN (SELECT 8 AS c3 UNION ALL SELECT 9) AS cc ON (b2=2);
4127 ** The correct answer is three rows: (1,1,NULL),(2,2,8),(2,2,9).
4128 ** But if the (b2=2) term were to be pushed down into the bb subquery,
4129 ** then the (1,1,NULL) row would be suppressed.
4131 ** Return 0 if no changes are made and non-zero if one or more WHERE clause
4132 ** terms are duplicated into the subquery.
4134 static int pushDownWhereTerms(
4135 Parse
*pParse
, /* Parse context (for malloc() and error reporting) */
4136 Select
*pSubq
, /* The subquery whose WHERE clause is to be augmented */
4137 Expr
*pWhere
, /* The WHERE clause of the outer query */
4138 int iCursor
, /* Cursor number of the subquery */
4139 int isLeftJoin
/* True if pSubq is the right term of a LEFT JOIN */
4143 if( pWhere
==0 ) return 0;
4144 if( pSubq
->selFlags
& SF_Recursive
) return 0; /* restriction (2) */
4147 /* Only the first term of a compound can have a WITH clause. But make
4148 ** sure no other terms are marked SF_Recursive in case something changes
4153 for(pX
=pSubq
; pX
; pX
=pX
->pPrior
){
4154 assert( (pX
->selFlags
& (SF_Recursive
))==0 );
4159 if( pSubq
->pLimit
!=0 ){
4160 return 0; /* restriction (3) */
4162 while( pWhere
->op
==TK_AND
){
4163 nChng
+= pushDownWhereTerms(pParse
, pSubq
, pWhere
->pRight
,
4164 iCursor
, isLeftJoin
);
4165 pWhere
= pWhere
->pLeft
;
4168 && (ExprHasProperty(pWhere
,EP_FromJoin
)==0
4169 || pWhere
->iRightJoinTable
!=iCursor
)
4171 return 0; /* restriction (4) */
4173 if( ExprHasProperty(pWhere
,EP_FromJoin
) && pWhere
->iRightJoinTable
!=iCursor
){
4174 return 0; /* restriction (5) */
4176 if( sqlite3ExprIsTableConstant(pWhere
, iCursor
) ){
4180 pNew
= sqlite3ExprDup(pParse
->db
, pWhere
, 0);
4181 unsetJoinExpr(pNew
, -1);
4184 x
.iNewTable
= iCursor
;
4186 x
.pEList
= pSubq
->pEList
;
4187 pNew
= substExpr(&x
, pNew
);
4188 if( pSubq
->selFlags
& SF_Aggregate
){
4189 pSubq
->pHaving
= sqlite3ExprAnd(pParse
->db
, pSubq
->pHaving
, pNew
);
4191 pSubq
->pWhere
= sqlite3ExprAnd(pParse
->db
, pSubq
->pWhere
, pNew
);
4193 pSubq
= pSubq
->pPrior
;
4198 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */
4201 ** The pFunc is the only aggregate function in the query. Check to see
4202 ** if the query is a candidate for the min/max optimization.
4204 ** If the query is a candidate for the min/max optimization, then set
4205 ** *ppMinMax to be an ORDER BY clause to be used for the optimization
4206 ** and return either WHERE_ORDERBY_MIN or WHERE_ORDERBY_MAX depending on
4207 ** whether pFunc is a min() or max() function.
4209 ** If the query is not a candidate for the min/max optimization, return
4210 ** WHERE_ORDERBY_NORMAL (which must be zero).
4212 ** This routine must be called after aggregate functions have been
4213 ** located but before their arguments have been subjected to aggregate
4216 static u8
minMaxQuery(sqlite3
*db
, Expr
*pFunc
, ExprList
**ppMinMax
){
4217 int eRet
= WHERE_ORDERBY_NORMAL
; /* Return value */
4218 ExprList
*pEList
= pFunc
->x
.pList
; /* Arguments to agg function */
4219 const char *zFunc
; /* Name of aggregate function pFunc */
4223 assert( *ppMinMax
==0 );
4224 assert( pFunc
->op
==TK_AGG_FUNCTION
);
4225 if( pEList
==0 || pEList
->nExpr
!=1 ) return eRet
;
4226 zFunc
= pFunc
->u
.zToken
;
4227 if( sqlite3StrICmp(zFunc
, "min")==0 ){
4228 eRet
= WHERE_ORDERBY_MIN
;
4229 sortOrder
= SQLITE_SO_ASC
;
4230 }else if( sqlite3StrICmp(zFunc
, "max")==0 ){
4231 eRet
= WHERE_ORDERBY_MAX
;
4232 sortOrder
= SQLITE_SO_DESC
;
4236 *ppMinMax
= pOrderBy
= sqlite3ExprListDup(db
, pEList
, 0);
4237 assert( pOrderBy
!=0 || db
->mallocFailed
);
4238 if( pOrderBy
) pOrderBy
->a
[0].sortOrder
= sortOrder
;
4243 ** The select statement passed as the first argument is an aggregate query.
4244 ** The second argument is the associated aggregate-info object. This
4245 ** function tests if the SELECT is of the form:
4247 ** SELECT count(*) FROM <tbl>
4249 ** where table is a database table, not a sub-select or view. If the query
4250 ** does match this pattern, then a pointer to the Table object representing
4251 ** <tbl> is returned. Otherwise, 0 is returned.
4253 static Table
*isSimpleCount(Select
*p
, AggInfo
*pAggInfo
){
4257 assert( !p
->pGroupBy
);
4259 if( p
->pWhere
|| p
->pEList
->nExpr
!=1
4260 || p
->pSrc
->nSrc
!=1 || p
->pSrc
->a
[0].pSelect
4264 pTab
= p
->pSrc
->a
[0].pTab
;
4265 pExpr
= p
->pEList
->a
[0].pExpr
;
4266 assert( pTab
&& !pTab
->pSelect
&& pExpr
);
4268 if( IsVirtual(pTab
) ) return 0;
4269 if( pExpr
->op
!=TK_AGG_FUNCTION
) return 0;
4270 if( NEVER(pAggInfo
->nFunc
==0) ) return 0;
4271 if( (pAggInfo
->aFunc
[0].pFunc
->funcFlags
&SQLITE_FUNC_COUNT
)==0 ) return 0;
4272 if( pExpr
->flags
&EP_Distinct
) return 0;
4278 ** If the source-list item passed as an argument was augmented with an
4279 ** INDEXED BY clause, then try to locate the specified index. If there
4280 ** was such a clause and the named index cannot be found, return
4281 ** SQLITE_ERROR and leave an error in pParse. Otherwise, populate
4282 ** pFrom->pIndex and return SQLITE_OK.
4284 int sqlite3IndexedByLookup(Parse
*pParse
, struct SrcList_item
*pFrom
){
4285 if( pFrom
->pTab
&& pFrom
->fg
.isIndexedBy
){
4286 Table
*pTab
= pFrom
->pTab
;
4287 char *zIndexedBy
= pFrom
->u1
.zIndexedBy
;
4289 for(pIdx
=pTab
->pIndex
;
4290 pIdx
&& sqlite3StrICmp(pIdx
->zName
, zIndexedBy
);
4294 sqlite3ErrorMsg(pParse
, "no such index: %s", zIndexedBy
, 0);
4295 pParse
->checkSchema
= 1;
4296 return SQLITE_ERROR
;
4298 pFrom
->pIBIndex
= pIdx
;
4303 ** Detect compound SELECT statements that use an ORDER BY clause with
4304 ** an alternative collating sequence.
4306 ** SELECT ... FROM t1 EXCEPT SELECT ... FROM t2 ORDER BY .. COLLATE ...
4308 ** These are rewritten as a subquery:
4310 ** SELECT * FROM (SELECT ... FROM t1 EXCEPT SELECT ... FROM t2)
4311 ** ORDER BY ... COLLATE ...
4313 ** This transformation is necessary because the multiSelectOrderBy() routine
4314 ** above that generates the code for a compound SELECT with an ORDER BY clause
4315 ** uses a merge algorithm that requires the same collating sequence on the
4316 ** result columns as on the ORDER BY clause. See ticket
4317 ** http://www.sqlite.org/src/info/6709574d2a
4319 ** This transformation is only needed for EXCEPT, INTERSECT, and UNION.
4320 ** The UNION ALL operator works fine with multiSelectOrderBy() even when
4321 ** there are COLLATE terms in the ORDER BY.
4323 static int convertCompoundSelectToSubquery(Walker
*pWalker
, Select
*p
){
4328 struct ExprList_item
*a
;
4333 if( p
->pPrior
==0 ) return WRC_Continue
;
4334 if( p
->pOrderBy
==0 ) return WRC_Continue
;
4335 for(pX
=p
; pX
&& (pX
->op
==TK_ALL
|| pX
->op
==TK_SELECT
); pX
=pX
->pPrior
){}
4336 if( pX
==0 ) return WRC_Continue
;
4338 for(i
=p
->pOrderBy
->nExpr
-1; i
>=0; i
--){
4339 if( a
[i
].pExpr
->flags
& EP_Collate
) break;
4341 if( i
<0 ) return WRC_Continue
;
4343 /* If we reach this point, that means the transformation is required. */
4345 pParse
= pWalker
->pParse
;
4347 pNew
= sqlite3DbMallocZero(db
, sizeof(*pNew
) );
4348 if( pNew
==0 ) return WRC_Abort
;
4349 memset(&dummy
, 0, sizeof(dummy
));
4350 pNewSrc
= sqlite3SrcListAppendFromTerm(pParse
,0,0,0,&dummy
,pNew
,0,0);
4351 if( pNewSrc
==0 ) return WRC_Abort
;
4354 p
->pEList
= sqlite3ExprListAppend(pParse
, 0, sqlite3Expr(db
, TK_ASTERISK
, 0));
4363 p
->selFlags
&= ~SF_Compound
;
4364 assert( (p
->selFlags
& SF_Converted
)==0 );
4365 p
->selFlags
|= SF_Converted
;
4366 assert( pNew
->pPrior
!=0 );
4367 pNew
->pPrior
->pNext
= pNew
;
4369 return WRC_Continue
;
4373 ** Check to see if the FROM clause term pFrom has table-valued function
4374 ** arguments. If it does, leave an error message in pParse and return
4375 ** non-zero, since pFrom is not allowed to be a table-valued function.
4377 static int cannotBeFunction(Parse
*pParse
, struct SrcList_item
*pFrom
){
4378 if( pFrom
->fg
.isTabFunc
){
4379 sqlite3ErrorMsg(pParse
, "'%s' is not a function", pFrom
->zName
);
4385 #ifndef SQLITE_OMIT_CTE
4387 ** Argument pWith (which may be NULL) points to a linked list of nested
4388 ** WITH contexts, from inner to outermost. If the table identified by
4389 ** FROM clause element pItem is really a common-table-expression (CTE)
4390 ** then return a pointer to the CTE definition for that table. Otherwise
4393 ** If a non-NULL value is returned, set *ppContext to point to the With
4394 ** object that the returned CTE belongs to.
4396 static struct Cte
*searchWith(
4397 With
*pWith
, /* Current innermost WITH clause */
4398 struct SrcList_item
*pItem
, /* FROM clause element to resolve */
4399 With
**ppContext
/* OUT: WITH clause return value belongs to */
4402 if( pItem
->zDatabase
==0 && (zName
= pItem
->zName
)!=0 ){
4404 for(p
=pWith
; p
; p
=p
->pOuter
){
4406 for(i
=0; i
<p
->nCte
; i
++){
4407 if( sqlite3StrICmp(zName
, p
->a
[i
].zName
)==0 ){
4417 /* The code generator maintains a stack of active WITH clauses
4418 ** with the inner-most WITH clause being at the top of the stack.
4420 ** This routine pushes the WITH clause passed as the second argument
4421 ** onto the top of the stack. If argument bFree is true, then this
4422 ** WITH clause will never be popped from the stack. In this case it
4423 ** should be freed along with the Parse object. In other cases, when
4424 ** bFree==0, the With object will be freed along with the SELECT
4425 ** statement with which it is associated.
4427 void sqlite3WithPush(Parse
*pParse
, With
*pWith
, u8 bFree
){
4428 assert( bFree
==0 || (pParse
->pWith
==0 && pParse
->pWithToFree
==0) );
4430 assert( pParse
->pWith
!=pWith
);
4431 pWith
->pOuter
= pParse
->pWith
;
4432 pParse
->pWith
= pWith
;
4433 if( bFree
) pParse
->pWithToFree
= pWith
;
4438 ** This function checks if argument pFrom refers to a CTE declared by
4439 ** a WITH clause on the stack currently maintained by the parser. And,
4440 ** if currently processing a CTE expression, if it is a recursive
4441 ** reference to the current CTE.
4443 ** If pFrom falls into either of the two categories above, pFrom->pTab
4444 ** and other fields are populated accordingly. The caller should check
4445 ** (pFrom->pTab!=0) to determine whether or not a successful match
4448 ** Whether or not a match is found, SQLITE_OK is returned if no error
4449 ** occurs. If an error does occur, an error message is stored in the
4450 ** parser and some error code other than SQLITE_OK returned.
4452 static int withExpand(
4454 struct SrcList_item
*pFrom
4456 Parse
*pParse
= pWalker
->pParse
;
4457 sqlite3
*db
= pParse
->db
;
4458 struct Cte
*pCte
; /* Matched CTE (or NULL if no match) */
4459 With
*pWith
; /* WITH clause that pCte belongs to */
4461 assert( pFrom
->pTab
==0 );
4463 pCte
= searchWith(pParse
->pWith
, pFrom
, &pWith
);
4468 Select
*pLeft
; /* Left-most SELECT statement */
4469 int bMayRecursive
; /* True if compound joined by UNION [ALL] */
4470 With
*pSavedWith
; /* Initial value of pParse->pWith */
4472 /* If pCte->zCteErr is non-NULL at this point, then this is an illegal
4473 ** recursive reference to CTE pCte. Leave an error in pParse and return
4474 ** early. If pCte->zCteErr is NULL, then this is not a recursive reference.
4475 ** In this case, proceed. */
4476 if( pCte
->zCteErr
){
4477 sqlite3ErrorMsg(pParse
, pCte
->zCteErr
, pCte
->zName
);
4478 return SQLITE_ERROR
;
4480 if( cannotBeFunction(pParse
, pFrom
) ) return SQLITE_ERROR
;
4482 assert( pFrom
->pTab
==0 );
4483 pFrom
->pTab
= pTab
= sqlite3DbMallocZero(db
, sizeof(Table
));
4484 if( pTab
==0 ) return WRC_Abort
;
4486 pTab
->zName
= sqlite3DbStrDup(db
, pCte
->zName
);
4488 pTab
->nRowLogEst
= 200; assert( 200==sqlite3LogEst(1048576) );
4489 pTab
->tabFlags
|= TF_Ephemeral
| TF_NoVisibleRowid
;
4490 pFrom
->pSelect
= sqlite3SelectDup(db
, pCte
->pSelect
, 0);
4491 if( db
->mallocFailed
) return SQLITE_NOMEM_BKPT
;
4492 assert( pFrom
->pSelect
);
4494 /* Check if this is a recursive CTE. */
4495 pSel
= pFrom
->pSelect
;
4496 bMayRecursive
= ( pSel
->op
==TK_ALL
|| pSel
->op
==TK_UNION
);
4497 if( bMayRecursive
){
4499 SrcList
*pSrc
= pFrom
->pSelect
->pSrc
;
4500 for(i
=0; i
<pSrc
->nSrc
; i
++){
4501 struct SrcList_item
*pItem
= &pSrc
->a
[i
];
4502 if( pItem
->zDatabase
==0
4504 && 0==sqlite3StrICmp(pItem
->zName
, pCte
->zName
)
4507 pItem
->fg
.isRecursive
= 1;
4509 pSel
->selFlags
|= SF_Recursive
;
4514 /* Only one recursive reference is permitted. */
4515 if( pTab
->nTabRef
>2 ){
4517 pParse
, "multiple references to recursive table: %s", pCte
->zName
4519 return SQLITE_ERROR
;
4521 assert( pTab
->nTabRef
==1 ||
4522 ((pSel
->selFlags
&SF_Recursive
) && pTab
->nTabRef
==2 ));
4524 pCte
->zCteErr
= "circular reference: %s";
4525 pSavedWith
= pParse
->pWith
;
4526 pParse
->pWith
= pWith
;
4527 if( bMayRecursive
){
4528 Select
*pPrior
= pSel
->pPrior
;
4529 assert( pPrior
->pWith
==0 );
4530 pPrior
->pWith
= pSel
->pWith
;
4531 sqlite3WalkSelect(pWalker
, pPrior
);
4534 sqlite3WalkSelect(pWalker
, pSel
);
4536 pParse
->pWith
= pWith
;
4538 for(pLeft
=pSel
; pLeft
->pPrior
; pLeft
=pLeft
->pPrior
);
4539 pEList
= pLeft
->pEList
;
4541 if( pEList
&& pEList
->nExpr
!=pCte
->pCols
->nExpr
){
4542 sqlite3ErrorMsg(pParse
, "table %s has %d values for %d columns",
4543 pCte
->zName
, pEList
->nExpr
, pCte
->pCols
->nExpr
4545 pParse
->pWith
= pSavedWith
;
4546 return SQLITE_ERROR
;
4548 pEList
= pCte
->pCols
;
4551 sqlite3ColumnsFromExprList(pParse
, pEList
, &pTab
->nCol
, &pTab
->aCol
);
4552 if( bMayRecursive
){
4553 if( pSel
->selFlags
& SF_Recursive
){
4554 pCte
->zCteErr
= "multiple recursive references: %s";
4556 pCte
->zCteErr
= "recursive reference in a subquery: %s";
4558 sqlite3WalkSelect(pWalker
, pSel
);
4561 pParse
->pWith
= pSavedWith
;
4568 #ifndef SQLITE_OMIT_CTE
4570 ** If the SELECT passed as the second argument has an associated WITH
4571 ** clause, pop it from the stack stored as part of the Parse object.
4573 ** This function is used as the xSelectCallback2() callback by
4574 ** sqlite3SelectExpand() when walking a SELECT tree to resolve table
4575 ** names and other FROM clause elements.
4577 static void selectPopWith(Walker
*pWalker
, Select
*p
){
4578 Parse
*pParse
= pWalker
->pParse
;
4579 if( OK_IF_ALWAYS_TRUE(pParse
->pWith
) && p
->pPrior
==0 ){
4580 With
*pWith
= findRightmost(p
)->pWith
;
4582 assert( pParse
->pWith
==pWith
);
4583 pParse
->pWith
= pWith
->pOuter
;
4588 #define selectPopWith 0
4592 ** This routine is a Walker callback for "expanding" a SELECT statement.
4593 ** "Expanding" means to do the following:
4595 ** (1) Make sure VDBE cursor numbers have been assigned to every
4596 ** element of the FROM clause.
4598 ** (2) Fill in the pTabList->a[].pTab fields in the SrcList that
4599 ** defines FROM clause. When views appear in the FROM clause,
4600 ** fill pTabList->a[].pSelect with a copy of the SELECT statement
4601 ** that implements the view. A copy is made of the view's SELECT
4602 ** statement so that we can freely modify or delete that statement
4603 ** without worrying about messing up the persistent representation
4606 ** (3) Add terms to the WHERE clause to accommodate the NATURAL keyword
4607 ** on joins and the ON and USING clause of joins.
4609 ** (4) Scan the list of columns in the result set (pEList) looking
4610 ** for instances of the "*" operator or the TABLE.* operator.
4611 ** If found, expand each "*" to be every column in every table
4612 ** and TABLE.* to be every column in TABLE.
4615 static int selectExpander(Walker
*pWalker
, Select
*p
){
4616 Parse
*pParse
= pWalker
->pParse
;
4620 struct SrcList_item
*pFrom
;
4621 sqlite3
*db
= pParse
->db
;
4622 Expr
*pE
, *pRight
, *pExpr
;
4623 u16 selFlags
= p
->selFlags
;
4626 p
->selFlags
|= SF_Expanded
;
4627 if( db
->mallocFailed
){
4630 assert( p
->pSrc
!=0 );
4631 if( (selFlags
& SF_Expanded
)!=0 ){
4636 sqlite3WithPush(pParse
, p
->pWith
, 0);
4638 /* Make sure cursor numbers have been assigned to all entries in
4639 ** the FROM clause of the SELECT statement.
4641 sqlite3SrcListAssignCursors(pParse
, pTabList
);
4643 /* Look up every table named in the FROM clause of the select. If
4644 ** an entry of the FROM clause is a subquery instead of a table or view,
4645 ** then create a transient table structure to describe the subquery.
4647 for(i
=0, pFrom
=pTabList
->a
; i
<pTabList
->nSrc
; i
++, pFrom
++){
4649 assert( pFrom
->fg
.isRecursive
==0 || pFrom
->pTab
!=0 );
4650 if( pFrom
->fg
.isRecursive
) continue;
4651 assert( pFrom
->pTab
==0 );
4652 #ifndef SQLITE_OMIT_CTE
4653 if( withExpand(pWalker
, pFrom
) ) return WRC_Abort
;
4654 if( pFrom
->pTab
) {} else
4656 if( pFrom
->zName
==0 ){
4657 #ifndef SQLITE_OMIT_SUBQUERY
4658 Select
*pSel
= pFrom
->pSelect
;
4659 /* A sub-query in the FROM clause of a SELECT */
4661 assert( pFrom
->pTab
==0 );
4662 if( sqlite3WalkSelect(pWalker
, pSel
) ) return WRC_Abort
;
4663 pFrom
->pTab
= pTab
= sqlite3DbMallocZero(db
, sizeof(Table
));
4664 if( pTab
==0 ) return WRC_Abort
;
4666 if( pFrom
->zAlias
){
4667 pTab
->zName
= sqlite3DbStrDup(db
, pFrom
->zAlias
);
4669 pTab
->zName
= sqlite3MPrintf(db
, "subquery_%p", (void*)pTab
);
4671 while( pSel
->pPrior
){ pSel
= pSel
->pPrior
; }
4672 sqlite3ColumnsFromExprList(pParse
, pSel
->pEList
,&pTab
->nCol
,&pTab
->aCol
);
4674 pTab
->nRowLogEst
= 200; assert( 200==sqlite3LogEst(1048576) );
4675 pTab
->tabFlags
|= TF_Ephemeral
;
4678 /* An ordinary table or view name in the FROM clause */
4679 assert( pFrom
->pTab
==0 );
4680 pFrom
->pTab
= pTab
= sqlite3LocateTableItem(pParse
, 0, pFrom
);
4681 if( pTab
==0 ) return WRC_Abort
;
4682 if( pTab
->nTabRef
>=0xffff ){
4683 sqlite3ErrorMsg(pParse
, "too many references to \"%s\": max 65535",
4689 if( !IsVirtual(pTab
) && cannotBeFunction(pParse
, pFrom
) ){
4692 #if !defined(SQLITE_OMIT_VIEW) || !defined (SQLITE_OMIT_VIRTUALTABLE)
4693 if( IsVirtual(pTab
) || pTab
->pSelect
){
4695 if( sqlite3ViewGetColumnNames(pParse
, pTab
) ) return WRC_Abort
;
4696 assert( pFrom
->pSelect
==0 );
4697 pFrom
->pSelect
= sqlite3SelectDup(db
, pTab
->pSelect
, 0);
4698 sqlite3SelectSetName(pFrom
->pSelect
, pTab
->zName
);
4701 sqlite3WalkSelect(pWalker
, pFrom
->pSelect
);
4707 /* Locate the index named by the INDEXED BY clause, if any. */
4708 if( sqlite3IndexedByLookup(pParse
, pFrom
) ){
4713 /* Process NATURAL keywords, and ON and USING clauses of joins.
4715 if( db
->mallocFailed
|| sqliteProcessJoin(pParse
, p
) ){
4719 /* For every "*" that occurs in the column list, insert the names of
4720 ** all columns in all tables. And for every TABLE.* insert the names
4721 ** of all columns in TABLE. The parser inserted a special expression
4722 ** with the TK_ASTERISK operator for each "*" that it found in the column
4723 ** list. The following code just has to locate the TK_ASTERISK
4724 ** expressions and expand each one to the list of all columns in
4727 ** The first loop just checks to see if there are any "*" operators
4728 ** that need expanding.
4730 for(k
=0; k
<pEList
->nExpr
; k
++){
4731 pE
= pEList
->a
[k
].pExpr
;
4732 if( pE
->op
==TK_ASTERISK
) break;
4733 assert( pE
->op
!=TK_DOT
|| pE
->pRight
!=0 );
4734 assert( pE
->op
!=TK_DOT
|| (pE
->pLeft
!=0 && pE
->pLeft
->op
==TK_ID
) );
4735 if( pE
->op
==TK_DOT
&& pE
->pRight
->op
==TK_ASTERISK
) break;
4736 elistFlags
|= pE
->flags
;
4738 if( k
<pEList
->nExpr
){
4740 ** If we get here it means the result set contains one or more "*"
4741 ** operators that need to be expanded. Loop through each expression
4742 ** in the result set and expand them one by one.
4744 struct ExprList_item
*a
= pEList
->a
;
4746 int flags
= pParse
->db
->flags
;
4747 int longNames
= (flags
& SQLITE_FullColNames
)!=0
4748 && (flags
& SQLITE_ShortColNames
)==0;
4750 for(k
=0; k
<pEList
->nExpr
; k
++){
4752 elistFlags
|= pE
->flags
;
4753 pRight
= pE
->pRight
;
4754 assert( pE
->op
!=TK_DOT
|| pRight
!=0 );
4755 if( pE
->op
!=TK_ASTERISK
4756 && (pE
->op
!=TK_DOT
|| pRight
->op
!=TK_ASTERISK
)
4758 /* This particular expression does not need to be expanded.
4760 pNew
= sqlite3ExprListAppend(pParse
, pNew
, a
[k
].pExpr
);
4762 pNew
->a
[pNew
->nExpr
-1].zName
= a
[k
].zName
;
4763 pNew
->a
[pNew
->nExpr
-1].zSpan
= a
[k
].zSpan
;
4769 /* This expression is a "*" or a "TABLE.*" and needs to be
4771 int tableSeen
= 0; /* Set to 1 when TABLE matches */
4772 char *zTName
= 0; /* text of name of TABLE */
4773 if( pE
->op
==TK_DOT
){
4774 assert( pE
->pLeft
!=0 );
4775 assert( !ExprHasProperty(pE
->pLeft
, EP_IntValue
) );
4776 zTName
= pE
->pLeft
->u
.zToken
;
4778 for(i
=0, pFrom
=pTabList
->a
; i
<pTabList
->nSrc
; i
++, pFrom
++){
4779 Table
*pTab
= pFrom
->pTab
;
4780 Select
*pSub
= pFrom
->pSelect
;
4781 char *zTabName
= pFrom
->zAlias
;
4782 const char *zSchemaName
= 0;
4785 zTabName
= pTab
->zName
;
4787 if( db
->mallocFailed
) break;
4788 if( pSub
==0 || (pSub
->selFlags
& SF_NestedFrom
)==0 ){
4790 if( zTName
&& sqlite3StrICmp(zTName
, zTabName
)!=0 ){
4793 iDb
= sqlite3SchemaToIndex(db
, pTab
->pSchema
);
4794 zSchemaName
= iDb
>=0 ? db
->aDb
[iDb
].zDbSName
: "*";
4796 for(j
=0; j
<pTab
->nCol
; j
++){
4797 char *zName
= pTab
->aCol
[j
].zName
;
4798 char *zColname
; /* The computed column name */
4799 char *zToFree
; /* Malloced string that needs to be freed */
4800 Token sColname
; /* Computed column name as a token */
4804 && sqlite3MatchSpanName(pSub
->pEList
->a
[j
].zSpan
, 0, zTName
, 0)==0
4809 /* If a column is marked as 'hidden', omit it from the expanded
4810 ** result-set list unless the SELECT has the SF_IncludeHidden
4813 if( (p
->selFlags
& SF_IncludeHidden
)==0
4814 && IsHiddenColumn(&pTab
->aCol
[j
])
4820 if( i
>0 && zTName
==0 ){
4821 if( (pFrom
->fg
.jointype
& JT_NATURAL
)!=0
4822 && tableAndColumnIndex(pTabList
, i
, zName
, 0, 0)
4824 /* In a NATURAL join, omit the join columns from the
4825 ** table to the right of the join */
4828 if( sqlite3IdListIndex(pFrom
->pUsing
, zName
)>=0 ){
4829 /* In a join with a USING clause, omit columns in the
4830 ** using clause from the table on the right. */
4834 pRight
= sqlite3Expr(db
, TK_ID
, zName
);
4837 if( longNames
|| pTabList
->nSrc
>1 ){
4839 pLeft
= sqlite3Expr(db
, TK_ID
, zTabName
);
4840 pExpr
= sqlite3PExpr(pParse
, TK_DOT
, pLeft
, pRight
);
4842 pLeft
= sqlite3Expr(db
, TK_ID
, zSchemaName
);
4843 pExpr
= sqlite3PExpr(pParse
, TK_DOT
, pLeft
, pExpr
);
4846 zColname
= sqlite3MPrintf(db
, "%s.%s", zTabName
, zName
);
4852 pNew
= sqlite3ExprListAppend(pParse
, pNew
, pExpr
);
4853 sqlite3TokenInit(&sColname
, zColname
);
4854 sqlite3ExprListSetName(pParse
, pNew
, &sColname
, 0);
4855 if( pNew
&& (p
->selFlags
& SF_NestedFrom
)!=0 ){
4856 struct ExprList_item
*pX
= &pNew
->a
[pNew
->nExpr
-1];
4858 pX
->zSpan
= sqlite3DbStrDup(db
, pSub
->pEList
->a
[j
].zSpan
);
4859 testcase( pX
->zSpan
==0 );
4861 pX
->zSpan
= sqlite3MPrintf(db
, "%s.%s.%s",
4862 zSchemaName
, zTabName
, zColname
);
4863 testcase( pX
->zSpan
==0 );
4867 sqlite3DbFree(db
, zToFree
);
4872 sqlite3ErrorMsg(pParse
, "no such table: %s", zTName
);
4874 sqlite3ErrorMsg(pParse
, "no tables specified");
4879 sqlite3ExprListDelete(db
, pEList
);
4883 if( p
->pEList
->nExpr
>db
->aLimit
[SQLITE_LIMIT_COLUMN
] ){
4884 sqlite3ErrorMsg(pParse
, "too many columns in result set");
4887 if( (elistFlags
& (EP_HasFunc
|EP_Subquery
))!=0 ){
4888 p
->selFlags
|= SF_ComplexResult
;
4891 return WRC_Continue
;
4895 ** No-op routine for the parse-tree walker.
4897 ** When this routine is the Walker.xExprCallback then expression trees
4898 ** are walked without any actions being taken at each node. Presumably,
4899 ** when this routine is used for Walker.xExprCallback then
4900 ** Walker.xSelectCallback is set to do something useful for every
4901 ** subquery in the parser tree.
4903 int sqlite3ExprWalkNoop(Walker
*NotUsed
, Expr
*NotUsed2
){
4904 UNUSED_PARAMETER2(NotUsed
, NotUsed2
);
4905 return WRC_Continue
;
4909 ** No-op routine for the parse-tree walker for SELECT statements.
4910 ** subquery in the parser tree.
4912 int sqlite3SelectWalkNoop(Walker
*NotUsed
, Select
*NotUsed2
){
4913 UNUSED_PARAMETER2(NotUsed
, NotUsed2
);
4914 return WRC_Continue
;
4919 ** Always assert. This xSelectCallback2 implementation proves that the
4920 ** xSelectCallback2 is never invoked.
4922 void sqlite3SelectWalkAssert2(Walker
*NotUsed
, Select
*NotUsed2
){
4923 UNUSED_PARAMETER2(NotUsed
, NotUsed2
);
4928 ** This routine "expands" a SELECT statement and all of its subqueries.
4929 ** For additional information on what it means to "expand" a SELECT
4930 ** statement, see the comment on the selectExpand worker callback above.
4932 ** Expanding a SELECT statement is the first step in processing a
4933 ** SELECT statement. The SELECT statement must be expanded before
4934 ** name resolution is performed.
4936 ** If anything goes wrong, an error message is written into pParse.
4937 ** The calling function can detect the problem by looking at pParse->nErr
4938 ** and/or pParse->db->mallocFailed.
4940 static void sqlite3SelectExpand(Parse
*pParse
, Select
*pSelect
){
4942 w
.xExprCallback
= sqlite3ExprWalkNoop
;
4944 if( OK_IF_ALWAYS_TRUE(pParse
->hasCompound
) ){
4945 w
.xSelectCallback
= convertCompoundSelectToSubquery
;
4946 w
.xSelectCallback2
= 0;
4947 sqlite3WalkSelect(&w
, pSelect
);
4949 w
.xSelectCallback
= selectExpander
;
4950 w
.xSelectCallback2
= selectPopWith
;
4951 sqlite3WalkSelect(&w
, pSelect
);
4955 #ifndef SQLITE_OMIT_SUBQUERY
4957 ** This is a Walker.xSelectCallback callback for the sqlite3SelectTypeInfo()
4960 ** For each FROM-clause subquery, add Column.zType and Column.zColl
4961 ** information to the Table structure that represents the result set
4962 ** of that subquery.
4964 ** The Table structure that represents the result set was constructed
4965 ** by selectExpander() but the type and collation information was omitted
4966 ** at that point because identifiers had not yet been resolved. This
4967 ** routine is called after identifier resolution.
4969 static void selectAddSubqueryTypeInfo(Walker
*pWalker
, Select
*p
){
4973 struct SrcList_item
*pFrom
;
4975 assert( p
->selFlags
& SF_Resolved
);
4976 assert( (p
->selFlags
& SF_HasTypeInfo
)==0 );
4977 p
->selFlags
|= SF_HasTypeInfo
;
4978 pParse
= pWalker
->pParse
;
4980 for(i
=0, pFrom
=pTabList
->a
; i
<pTabList
->nSrc
; i
++, pFrom
++){
4981 Table
*pTab
= pFrom
->pTab
;
4983 if( (pTab
->tabFlags
& TF_Ephemeral
)!=0 ){
4984 /* A sub-query in the FROM clause of a SELECT */
4985 Select
*pSel
= pFrom
->pSelect
;
4987 while( pSel
->pPrior
) pSel
= pSel
->pPrior
;
4988 sqlite3SelectAddColumnTypeAndCollation(pParse
, pTab
, pSel
);
4997 ** This routine adds datatype and collating sequence information to
4998 ** the Table structures of all FROM-clause subqueries in a
4999 ** SELECT statement.
5001 ** Use this routine after name resolution.
5003 static void sqlite3SelectAddTypeInfo(Parse
*pParse
, Select
*pSelect
){
5004 #ifndef SQLITE_OMIT_SUBQUERY
5006 w
.xSelectCallback
= sqlite3SelectWalkNoop
;
5007 w
.xSelectCallback2
= selectAddSubqueryTypeInfo
;
5008 w
.xExprCallback
= sqlite3ExprWalkNoop
;
5010 sqlite3WalkSelect(&w
, pSelect
);
5016 ** This routine sets up a SELECT statement for processing. The
5017 ** following is accomplished:
5019 ** * VDBE Cursor numbers are assigned to all FROM-clause terms.
5020 ** * Ephemeral Table objects are created for all FROM-clause subqueries.
5021 ** * ON and USING clauses are shifted into WHERE statements
5022 ** * Wildcards "*" and "TABLE.*" in result sets are expanded.
5023 ** * Identifiers in expression are matched to tables.
5025 ** This routine acts recursively on all subqueries within the SELECT.
5027 void sqlite3SelectPrep(
5028 Parse
*pParse
, /* The parser context */
5029 Select
*p
, /* The SELECT statement being coded. */
5030 NameContext
*pOuterNC
/* Name context for container */
5032 assert( p
!=0 || pParse
->db
->mallocFailed
);
5033 if( pParse
->db
->mallocFailed
) return;
5034 if( p
->selFlags
& SF_HasTypeInfo
) return;
5035 sqlite3SelectExpand(pParse
, p
);
5036 if( pParse
->nErr
|| pParse
->db
->mallocFailed
) return;
5037 sqlite3ResolveSelectNames(pParse
, p
, pOuterNC
);
5038 if( pParse
->nErr
|| pParse
->db
->mallocFailed
) return;
5039 sqlite3SelectAddTypeInfo(pParse
, p
);
5043 ** Reset the aggregate accumulator.
5045 ** The aggregate accumulator is a set of memory cells that hold
5046 ** intermediate results while calculating an aggregate. This
5047 ** routine generates code that stores NULLs in all of those memory
5050 static void resetAccumulator(Parse
*pParse
, AggInfo
*pAggInfo
){
5051 Vdbe
*v
= pParse
->pVdbe
;
5053 struct AggInfo_func
*pFunc
;
5054 int nReg
= pAggInfo
->nFunc
+ pAggInfo
->nColumn
;
5055 if( nReg
==0 ) return;
5057 /* Verify that all AggInfo registers are within the range specified by
5058 ** AggInfo.mnReg..AggInfo.mxReg */
5059 assert( nReg
==pAggInfo
->mxReg
-pAggInfo
->mnReg
+1 );
5060 for(i
=0; i
<pAggInfo
->nColumn
; i
++){
5061 assert( pAggInfo
->aCol
[i
].iMem
>=pAggInfo
->mnReg
5062 && pAggInfo
->aCol
[i
].iMem
<=pAggInfo
->mxReg
);
5064 for(i
=0; i
<pAggInfo
->nFunc
; i
++){
5065 assert( pAggInfo
->aFunc
[i
].iMem
>=pAggInfo
->mnReg
5066 && pAggInfo
->aFunc
[i
].iMem
<=pAggInfo
->mxReg
);
5069 sqlite3VdbeAddOp3(v
, OP_Null
, 0, pAggInfo
->mnReg
, pAggInfo
->mxReg
);
5070 for(pFunc
=pAggInfo
->aFunc
, i
=0; i
<pAggInfo
->nFunc
; i
++, pFunc
++){
5071 if( pFunc
->iDistinct
>=0 ){
5072 Expr
*pE
= pFunc
->pExpr
;
5073 assert( !ExprHasProperty(pE
, EP_xIsSelect
) );
5074 if( pE
->x
.pList
==0 || pE
->x
.pList
->nExpr
!=1 ){
5075 sqlite3ErrorMsg(pParse
, "DISTINCT aggregates must have exactly one "
5077 pFunc
->iDistinct
= -1;
5079 KeyInfo
*pKeyInfo
= keyInfoFromExprList(pParse
, pE
->x
.pList
, 0, 0);
5080 sqlite3VdbeAddOp4(v
, OP_OpenEphemeral
, pFunc
->iDistinct
, 0, 0,
5081 (char*)pKeyInfo
, P4_KEYINFO
);
5088 ** Invoke the OP_AggFinalize opcode for every aggregate function
5089 ** in the AggInfo structure.
5091 static void finalizeAggFunctions(Parse
*pParse
, AggInfo
*pAggInfo
){
5092 Vdbe
*v
= pParse
->pVdbe
;
5094 struct AggInfo_func
*pF
;
5095 for(i
=0, pF
=pAggInfo
->aFunc
; i
<pAggInfo
->nFunc
; i
++, pF
++){
5096 ExprList
*pList
= pF
->pExpr
->x
.pList
;
5097 assert( !ExprHasProperty(pF
->pExpr
, EP_xIsSelect
) );
5098 sqlite3VdbeAddOp2(v
, OP_AggFinal
, pF
->iMem
, pList
? pList
->nExpr
: 0);
5099 sqlite3VdbeAppendP4(v
, pF
->pFunc
, P4_FUNCDEF
);
5104 ** Update the accumulator memory cells for an aggregate based on
5105 ** the current cursor position.
5107 static void updateAccumulator(Parse
*pParse
, AggInfo
*pAggInfo
){
5108 Vdbe
*v
= pParse
->pVdbe
;
5111 int addrHitTest
= 0;
5112 struct AggInfo_func
*pF
;
5113 struct AggInfo_col
*pC
;
5115 pAggInfo
->directMode
= 1;
5116 for(i
=0, pF
=pAggInfo
->aFunc
; i
<pAggInfo
->nFunc
; i
++, pF
++){
5120 ExprList
*pList
= pF
->pExpr
->x
.pList
;
5121 assert( !ExprHasProperty(pF
->pExpr
, EP_xIsSelect
) );
5123 nArg
= pList
->nExpr
;
5124 regAgg
= sqlite3GetTempRange(pParse
, nArg
);
5125 sqlite3ExprCodeExprList(pParse
, pList
, regAgg
, 0, SQLITE_ECEL_DUP
);
5130 if( pF
->iDistinct
>=0 ){
5131 addrNext
= sqlite3VdbeMakeLabel(v
);
5132 testcase( nArg
==0 ); /* Error condition */
5133 testcase( nArg
>1 ); /* Also an error */
5134 codeDistinct(pParse
, pF
->iDistinct
, addrNext
, 1, regAgg
);
5136 if( pF
->pFunc
->funcFlags
& SQLITE_FUNC_NEEDCOLL
){
5138 struct ExprList_item
*pItem
;
5140 assert( pList
!=0 ); /* pList!=0 if pF->pFunc has NEEDCOLL */
5141 for(j
=0, pItem
=pList
->a
; !pColl
&& j
<nArg
; j
++, pItem
++){
5142 pColl
= sqlite3ExprCollSeq(pParse
, pItem
->pExpr
);
5145 pColl
= pParse
->db
->pDfltColl
;
5147 if( regHit
==0 && pAggInfo
->nAccumulator
) regHit
= ++pParse
->nMem
;
5148 sqlite3VdbeAddOp4(v
, OP_CollSeq
, regHit
, 0, 0, (char *)pColl
, P4_COLLSEQ
);
5150 sqlite3VdbeAddOp3(v
, OP_AggStep0
, 0, regAgg
, pF
->iMem
);
5151 sqlite3VdbeAppendP4(v
, pF
->pFunc
, P4_FUNCDEF
);
5152 sqlite3VdbeChangeP5(v
, (u8
)nArg
);
5153 sqlite3ExprCacheAffinityChange(pParse
, regAgg
, nArg
);
5154 sqlite3ReleaseTempRange(pParse
, regAgg
, nArg
);
5156 sqlite3VdbeResolveLabel(v
, addrNext
);
5157 sqlite3ExprCacheClear(pParse
);
5161 /* Before populating the accumulator registers, clear the column cache.
5162 ** Otherwise, if any of the required column values are already present
5163 ** in registers, sqlite3ExprCode() may use OP_SCopy to copy the value
5164 ** to pC->iMem. But by the time the value is used, the original register
5165 ** may have been used, invalidating the underlying buffer holding the
5166 ** text or blob value. See ticket [883034dcb5].
5168 ** Another solution would be to change the OP_SCopy used to copy cached
5169 ** values to an OP_Copy.
5172 addrHitTest
= sqlite3VdbeAddOp1(v
, OP_If
, regHit
); VdbeCoverage(v
);
5174 sqlite3ExprCacheClear(pParse
);
5175 for(i
=0, pC
=pAggInfo
->aCol
; i
<pAggInfo
->nAccumulator
; i
++, pC
++){
5176 sqlite3ExprCode(pParse
, pC
->pExpr
, pC
->iMem
);
5178 pAggInfo
->directMode
= 0;
5179 sqlite3ExprCacheClear(pParse
);
5181 sqlite3VdbeJumpHere(v
, addrHitTest
);
5186 ** Add a single OP_Explain instruction to the VDBE to explain a simple
5187 ** count(*) query ("SELECT count(*) FROM pTab").
5189 #ifndef SQLITE_OMIT_EXPLAIN
5190 static void explainSimpleCount(
5191 Parse
*pParse
, /* Parse context */
5192 Table
*pTab
, /* Table being queried */
5193 Index
*pIdx
/* Index used to optimize scan, or NULL */
5195 if( pParse
->explain
==2 ){
5196 int bCover
= (pIdx
!=0 && (HasRowid(pTab
) || !IsPrimaryKeyIndex(pIdx
)));
5197 sqlite3VdbeExplain(pParse
, 0, "SCAN TABLE %s%s%s",
5199 bCover
? " USING COVERING INDEX " : "",
5200 bCover
? pIdx
->zName
: ""
5205 # define explainSimpleCount(a,b,c)
5209 ** sqlite3WalkExpr() callback used by havingToWhere().
5211 ** If the node passed to the callback is a TK_AND node, return
5212 ** WRC_Continue to tell sqlite3WalkExpr() to iterate through child nodes.
5214 ** Otherwise, return WRC_Prune. In this case, also check if the
5215 ** sub-expression matches the criteria for being moved to the WHERE
5216 ** clause. If so, add it to the WHERE clause and replace the sub-expression
5217 ** within the HAVING expression with a constant "1".
5219 static int havingToWhereExprCb(Walker
*pWalker
, Expr
*pExpr
){
5220 if( pExpr
->op
!=TK_AND
){
5221 Select
*pS
= pWalker
->u
.pSelect
;
5222 if( sqlite3ExprIsConstantOrGroupBy(pWalker
->pParse
, pExpr
, pS
->pGroupBy
) ){
5223 sqlite3
*db
= pWalker
->pParse
->db
;
5224 Expr
*pNew
= sqlite3ExprAlloc(db
, TK_INTEGER
, &sqlite3IntTokens
[1], 0);
5226 Expr
*pWhere
= pS
->pWhere
;
5227 SWAP(Expr
, *pNew
, *pExpr
);
5228 pNew
= sqlite3ExprAnd(db
, pWhere
, pNew
);
5235 return WRC_Continue
;
5239 ** Transfer eligible terms from the HAVING clause of a query, which is
5240 ** processed after grouping, to the WHERE clause, which is processed before
5241 ** grouping. For example, the query:
5243 ** SELECT * FROM <tables> WHERE a=? GROUP BY b HAVING b=? AND c=?
5245 ** can be rewritten as:
5247 ** SELECT * FROM <tables> WHERE a=? AND b=? GROUP BY b HAVING c=?
5249 ** A term of the HAVING expression is eligible for transfer if it consists
5250 ** entirely of constants and expressions that are also GROUP BY terms that
5251 ** use the "BINARY" collation sequence.
5253 static void havingToWhere(Parse
*pParse
, Select
*p
){
5255 memset(&sWalker
, 0, sizeof(sWalker
));
5256 sWalker
.pParse
= pParse
;
5257 sWalker
.xExprCallback
= havingToWhereExprCb
;
5258 sWalker
.u
.pSelect
= p
;
5259 sqlite3WalkExpr(&sWalker
, p
->pHaving
);
5260 #if SELECTTRACE_ENABLED
5261 if( sWalker
.eCode
&& (sqlite3SelectTrace
& 0x100)!=0 ){
5262 SELECTTRACE(0x100,pParse
,p
,("Move HAVING terms into WHERE:\n"));
5263 sqlite3TreeViewSelect(0, p
, 0);
5269 ** Check to see if the pThis entry of pTabList is a self-join of a prior view.
5270 ** If it is, then return the SrcList_item for the prior view. If it is not,
5273 static struct SrcList_item
*isSelfJoinView(
5274 SrcList
*pTabList
, /* Search for self-joins in this FROM clause */
5275 struct SrcList_item
*pThis
/* Search for prior reference to this subquery */
5277 struct SrcList_item
*pItem
;
5278 for(pItem
= pTabList
->a
; pItem
<pThis
; pItem
++){
5279 if( pItem
->pSelect
==0 ) continue;
5280 if( pItem
->fg
.viaCoroutine
) continue;
5281 if( pItem
->zName
==0 ) continue;
5282 if( sqlite3_stricmp(pItem
->zDatabase
, pThis
->zDatabase
)!=0 ) continue;
5283 if( sqlite3_stricmp(pItem
->zName
, pThis
->zName
)!=0 ) continue;
5284 if( sqlite3ExprCompare(0,
5285 pThis
->pSelect
->pWhere
, pItem
->pSelect
->pWhere
, -1)
5287 /* The view was modified by some other optimization such as
5288 ** pushDownWhereTerms() */
5296 #ifdef SQLITE_COUNTOFVIEW_OPTIMIZATION
5298 ** Attempt to transform a query of the form
5300 ** SELECT count(*) FROM (SELECT x FROM t1 UNION ALL SELECT y FROM t2)
5304 ** SELECT (SELECT count(*) FROM t1)+(SELECT count(*) FROM t2)
5306 ** The transformation only works if all of the following are true:
5308 ** * The subquery is a UNION ALL of two or more terms
5309 ** * There is no WHERE or GROUP BY or HAVING clauses on the subqueries
5310 ** * The outer query is a simple count(*)
5312 ** Return TRUE if the optimization is undertaken.
5314 static int countOfViewOptimization(Parse
*pParse
, Select
*p
){
5315 Select
*pSub
, *pPrior
;
5319 if( (p
->selFlags
& SF_Aggregate
)==0 ) return 0; /* This is an aggregate */
5320 if( p
->pEList
->nExpr
!=1 ) return 0; /* Single result column */
5321 pExpr
= p
->pEList
->a
[0].pExpr
;
5322 if( pExpr
->op
!=TK_AGG_FUNCTION
) return 0; /* Result is an aggregate */
5323 if( sqlite3_stricmp(pExpr
->u
.zToken
,"count") ) return 0; /* Is count() */
5324 if( pExpr
->x
.pList
!=0 ) return 0; /* Must be count(*) */
5325 if( p
->pSrc
->nSrc
!=1 ) return 0; /* One table in FROM */
5326 pSub
= p
->pSrc
->a
[0].pSelect
;
5327 if( pSub
==0 ) return 0; /* The FROM is a subquery */
5328 if( pSub
->pPrior
==0 ) return 0; /* Must be a compound ry */
5330 if( pSub
->op
!=TK_ALL
&& pSub
->pPrior
) return 0; /* Must be UNION ALL */
5331 if( pSub
->pWhere
) return 0; /* No WHERE clause */
5332 if( pSub
->selFlags
& SF_Aggregate
) return 0; /* Not an aggregate */
5333 pSub
= pSub
->pPrior
; /* Repeat over compound */
5336 /* If we reach this point then it is OK to perform the transformation */
5341 pSub
= p
->pSrc
->a
[0].pSelect
;
5342 p
->pSrc
->a
[0].pSelect
= 0;
5343 sqlite3SrcListDelete(db
, p
->pSrc
);
5344 p
->pSrc
= sqlite3DbMallocZero(pParse
->db
, sizeof(*p
->pSrc
));
5347 pPrior
= pSub
->pPrior
;
5350 pSub
->selFlags
|= SF_Aggregate
;
5351 pSub
->selFlags
&= ~SF_Compound
;
5352 pSub
->nSelectRow
= 0;
5353 sqlite3ExprListDelete(db
, pSub
->pEList
);
5354 pTerm
= pPrior
? sqlite3ExprDup(db
, pCount
, 0) : pCount
;
5355 pSub
->pEList
= sqlite3ExprListAppend(pParse
, 0, pTerm
);
5356 pTerm
= sqlite3PExpr(pParse
, TK_SELECT
, 0, 0);
5357 sqlite3PExprAddSelect(pParse
, pTerm
, pSub
);
5361 pExpr
= sqlite3PExpr(pParse
, TK_PLUS
, pTerm
, pExpr
);
5365 p
->pEList
->a
[0].pExpr
= pExpr
;
5366 p
->selFlags
&= ~SF_Aggregate
;
5368 #if SELECTTRACE_ENABLED
5369 if( sqlite3SelectTrace
& 0x400 ){
5370 SELECTTRACE(0x400,pParse
,p
,("After count-of-view optimization:\n"));
5371 sqlite3TreeViewSelect(0, p
, 0);
5376 #endif /* SQLITE_COUNTOFVIEW_OPTIMIZATION */
5379 ** Generate code for the SELECT statement given in the p argument.
5381 ** The results are returned according to the SelectDest structure.
5382 ** See comments in sqliteInt.h for further information.
5384 ** This routine returns the number of errors. If any errors are
5385 ** encountered, then an appropriate error message is left in
5388 ** This routine does NOT free the Select structure passed in. The
5389 ** calling function needs to do that.
5392 Parse
*pParse
, /* The parser context */
5393 Select
*p
, /* The SELECT statement being coded. */
5394 SelectDest
*pDest
/* What to do with the query results */
5396 int i
, j
; /* Loop counters */
5397 WhereInfo
*pWInfo
; /* Return from sqlite3WhereBegin() */
5398 Vdbe
*v
; /* The virtual machine under construction */
5399 int isAgg
; /* True for select lists like "count(*)" */
5400 ExprList
*pEList
= 0; /* List of columns to extract. */
5401 SrcList
*pTabList
; /* List of tables to select from */
5402 Expr
*pWhere
; /* The WHERE clause. May be NULL */
5403 ExprList
*pGroupBy
; /* The GROUP BY clause. May be NULL */
5404 Expr
*pHaving
; /* The HAVING clause. May be NULL */
5405 int rc
= 1; /* Value to return from this function */
5406 DistinctCtx sDistinct
; /* Info on how to code the DISTINCT keyword */
5407 SortCtx sSort
; /* Info on how to code the ORDER BY clause */
5408 AggInfo sAggInfo
; /* Information used by aggregate queries */
5409 int iEnd
; /* Address of the end of the query */
5410 sqlite3
*db
; /* The database connection */
5411 ExprList
*pMinMaxOrderBy
= 0; /* Added ORDER BY for min/max queries */
5412 u8 minMaxFlag
; /* Flag for min/max queries */
5415 v
= sqlite3GetVdbe(pParse
);
5416 if( p
==0 || db
->mallocFailed
|| pParse
->nErr
){
5419 if( sqlite3AuthCheck(pParse
, SQLITE_SELECT
, 0, 0, 0) ) return 1;
5420 memset(&sAggInfo
, 0, sizeof(sAggInfo
));
5421 #if SELECTTRACE_ENABLED
5422 SELECTTRACE(1,pParse
,p
, ("begin processing:\n", pParse
->addrExplain
));
5423 if( sqlite3SelectTrace
& 0x100 ){
5424 sqlite3TreeViewSelect(0, p
, 0);
5428 assert( p
->pOrderBy
==0 || pDest
->eDest
!=SRT_DistFifo
);
5429 assert( p
->pOrderBy
==0 || pDest
->eDest
!=SRT_Fifo
);
5430 assert( p
->pOrderBy
==0 || pDest
->eDest
!=SRT_DistQueue
);
5431 assert( p
->pOrderBy
==0 || pDest
->eDest
!=SRT_Queue
);
5432 if( IgnorableOrderby(pDest
) ){
5433 assert(pDest
->eDest
==SRT_Exists
|| pDest
->eDest
==SRT_Union
||
5434 pDest
->eDest
==SRT_Except
|| pDest
->eDest
==SRT_Discard
||
5435 pDest
->eDest
==SRT_Queue
|| pDest
->eDest
==SRT_DistFifo
||
5436 pDest
->eDest
==SRT_DistQueue
|| pDest
->eDest
==SRT_Fifo
);
5437 /* If ORDER BY makes no difference in the output then neither does
5438 ** DISTINCT so it can be removed too. */
5439 sqlite3ExprListDelete(db
, p
->pOrderBy
);
5441 p
->selFlags
&= ~SF_Distinct
;
5443 sqlite3SelectPrep(pParse
, p
, 0);
5444 memset(&sSort
, 0, sizeof(sSort
));
5445 sSort
.pOrderBy
= p
->pOrderBy
;
5447 if( pParse
->nErr
|| db
->mallocFailed
){
5450 assert( p
->pEList
!=0 );
5451 isAgg
= (p
->selFlags
& SF_Aggregate
)!=0;
5452 #if SELECTTRACE_ENABLED
5453 if( sqlite3SelectTrace
& 0x104 ){
5454 SELECTTRACE(0x104,pParse
,p
, ("after name resolution:\n"));
5455 sqlite3TreeViewSelect(0, p
, 0);
5459 if( pDest
->eDest
==SRT_Output
){
5460 generateColumnNames(pParse
, p
);
5463 /* Try to various optimizations (flattening subqueries, and strength
5464 ** reduction of join operators) in the FROM clause up into the main query
5466 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
5467 for(i
=0; !p
->pPrior
&& i
<pTabList
->nSrc
; i
++){
5468 struct SrcList_item
*pItem
= &pTabList
->a
[i
];
5469 Select
*pSub
= pItem
->pSelect
;
5470 Table
*pTab
= pItem
->pTab
;
5472 /* Convert LEFT JOIN into JOIN if there are terms of the right table
5473 ** of the LEFT JOIN used in the WHERE clause.
5475 if( (pItem
->fg
.jointype
& JT_LEFT
)!=0
5476 && sqlite3ExprImpliesNonNullRow(p
->pWhere
, pItem
->iCursor
)
5477 && OptimizationEnabled(db
, SQLITE_SimplifyJoin
)
5479 SELECTTRACE(0x100,pParse
,p
,
5480 ("LEFT-JOIN simplifies to JOIN on term %d\n",i
));
5481 pItem
->fg
.jointype
&= ~(JT_LEFT
|JT_OUTER
);
5482 unsetJoinExpr(p
->pWhere
, pItem
->iCursor
);
5485 /* No futher action if this term of the FROM clause is no a subquery */
5486 if( pSub
==0 ) continue;
5488 /* Catch mismatch in the declared columns of a view and the number of
5489 ** columns in the SELECT on the RHS */
5490 if( pTab
->nCol
!=pSub
->pEList
->nExpr
){
5491 sqlite3ErrorMsg(pParse
, "expected %d columns for '%s' but got %d",
5492 pTab
->nCol
, pTab
->zName
, pSub
->pEList
->nExpr
);
5496 /* Do not try to flatten an aggregate subquery.
5498 ** Flattening an aggregate subquery is only possible if the outer query
5499 ** is not a join. But if the outer query is not a join, then the subquery
5500 ** will be implemented as a co-routine and there is no advantage to
5501 ** flattening in that case.
5503 if( (pSub
->selFlags
& SF_Aggregate
)!=0 ) continue;
5504 assert( pSub
->pGroupBy
==0 );
5506 /* If the outer query contains a "complex" result set (that is,
5507 ** if the result set of the outer query uses functions or subqueries)
5508 ** and if the subquery contains an ORDER BY clause and if
5509 ** it will be implemented as a co-routine, then do not flatten. This
5510 ** restriction allows SQL constructs like this:
5512 ** SELECT expensive_function(x)
5513 ** FROM (SELECT x FROM tab ORDER BY y LIMIT 10);
5515 ** The expensive_function() is only computed on the 10 rows that
5516 ** are output, rather than every row of the table.
5518 ** The requirement that the outer query have a complex result set
5519 ** means that flattening does occur on simpler SQL constraints without
5520 ** the expensive_function() like:
5522 ** SELECT x FROM (SELECT x FROM tab ORDER BY y LIMIT 10);
5524 if( pSub
->pOrderBy
!=0
5526 && (p
->selFlags
& SF_ComplexResult
)!=0
5527 && (pTabList
->nSrc
==1
5528 || (pTabList
->a
[1].fg
.jointype
&(JT_LEFT
|JT_CROSS
))!=0)
5533 if( flattenSubquery(pParse
, p
, i
, isAgg
) ){
5534 /* This subquery can be absorbed into its parent. */
5538 if( db
->mallocFailed
) goto select_end
;
5539 if( !IgnorableOrderby(pDest
) ){
5540 sSort
.pOrderBy
= p
->pOrderBy
;
5545 #ifndef SQLITE_OMIT_COMPOUND_SELECT
5546 /* Handle compound SELECT statements using the separate multiSelect()
5550 rc
= multiSelect(pParse
, p
, pDest
);
5551 #if SELECTTRACE_ENABLED
5552 SELECTTRACE(0x1,pParse
,p
,("end compound-select processing\n"));
5553 if( (sqlite3SelectTrace
& 0x2000)!=0 && ExplainQueryPlanParent(pParse
)==0 ){
5554 sqlite3TreeViewSelect(0, p
, 0);
5557 if( p
->pNext
==0 ) ExplainQueryPlanPop(pParse
);
5562 /* For each term in the FROM clause, do two things:
5563 ** (1) Authorized unreferenced tables
5564 ** (2) Generate code for all sub-queries
5566 for(i
=0; i
<pTabList
->nSrc
; i
++){
5567 struct SrcList_item
*pItem
= &pTabList
->a
[i
];
5570 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
5571 const char *zSavedAuthContext
;
5574 /* Issue SQLITE_READ authorizations with a fake column name for any
5575 ** tables that are referenced but from which no values are extracted.
5576 ** Examples of where these kinds of null SQLITE_READ authorizations
5579 ** SELECT count(*) FROM t1; -- SQLITE_READ t1.""
5580 ** SELECT t1.* FROM t1, t2; -- SQLITE_READ t2.""
5582 ** The fake column name is an empty string. It is possible for a table to
5583 ** have a column named by the empty string, in which case there is no way to
5584 ** distinguish between an unreferenced table and an actual reference to the
5585 ** "" column. The original design was for the fake column name to be a NULL,
5586 ** which would be unambiguous. But legacy authorization callbacks might
5587 ** assume the column name is non-NULL and segfault. The use of an empty
5588 ** string for the fake column name seems safer.
5590 if( pItem
->colUsed
==0 ){
5591 sqlite3AuthCheck(pParse
, SQLITE_READ
, pItem
->zName
, "", pItem
->zDatabase
);
5594 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
5595 /* Generate code for all sub-queries in the FROM clause
5597 pSub
= pItem
->pSelect
;
5598 if( pSub
==0 ) continue;
5600 /* Sometimes the code for a subquery will be generated more than
5601 ** once, if the subquery is part of the WHERE clause in a LEFT JOIN,
5602 ** for example. In that case, do not regenerate the code to manifest
5603 ** a view or the co-routine to implement a view. The first instance
5604 ** is sufficient, though the subroutine to manifest the view does need
5605 ** to be invoked again. */
5606 if( pItem
->addrFillSub
){
5607 if( pItem
->fg
.viaCoroutine
==0 ){
5608 /* The subroutine that manifests the view might be a one-time routine,
5609 ** or it might need to be rerun on each iteration because it
5610 ** encodes a correlated subquery. */
5611 testcase( sqlite3VdbeGetOp(v
, pItem
->addrFillSub
)->opcode
==OP_Once
);
5612 sqlite3VdbeAddOp2(v
, OP_Gosub
, pItem
->regReturn
, pItem
->addrFillSub
);
5617 /* Increment Parse.nHeight by the height of the largest expression
5618 ** tree referred to by this, the parent select. The child select
5619 ** may contain expression trees of at most
5620 ** (SQLITE_MAX_EXPR_DEPTH-Parse.nHeight) height. This is a bit
5621 ** more conservative than necessary, but much easier than enforcing
5624 pParse
->nHeight
+= sqlite3SelectExprHeight(p
);
5626 /* Make copies of constant WHERE-clause terms in the outer query down
5627 ** inside the subquery. This can help the subquery to run more efficiently.
5629 if( OptimizationEnabled(db
, SQLITE_PushDown
)
5630 && pushDownWhereTerms(pParse
, pSub
, p
->pWhere
, pItem
->iCursor
,
5631 (pItem
->fg
.jointype
& JT_OUTER
)!=0)
5633 #if SELECTTRACE_ENABLED
5634 if( sqlite3SelectTrace
& 0x100 ){
5635 SELECTTRACE(0x100,pParse
,p
,("After WHERE-clause push-down:\n"));
5636 sqlite3TreeViewSelect(0, p
, 0);
5640 SELECTTRACE(0x100,pParse
,p
,("Push-down not possible\n"));
5643 zSavedAuthContext
= pParse
->zAuthContext
;
5644 pParse
->zAuthContext
= pItem
->zName
;
5646 /* Generate code to implement the subquery
5648 ** The subquery is implemented as a co-routine if the subquery is
5649 ** guaranteed to be the outer loop (so that it does not need to be
5650 ** computed more than once)
5652 ** TODO: Are there other reasons beside (1) to use a co-routine
5656 && (pTabList
->nSrc
==1
5657 || (pTabList
->a
[1].fg
.jointype
&(JT_LEFT
|JT_CROSS
))!=0) /* (1) */
5659 /* Implement a co-routine that will return a single row of the result
5660 ** set on each invocation.
5662 int addrTop
= sqlite3VdbeCurrentAddr(v
)+1;
5664 pItem
->regReturn
= ++pParse
->nMem
;
5665 sqlite3VdbeAddOp3(v
, OP_InitCoroutine
, pItem
->regReturn
, 0, addrTop
);
5666 VdbeComment((v
, "%s", pItem
->pTab
->zName
));
5667 pItem
->addrFillSub
= addrTop
;
5668 sqlite3SelectDestInit(&dest
, SRT_Coroutine
, pItem
->regReturn
);
5669 ExplainQueryPlan((pParse
, 1, "CO-ROUTINE 0x%p", pSub
));
5670 sqlite3Select(pParse
, pSub
, &dest
);
5671 pItem
->pTab
->nRowLogEst
= pSub
->nSelectRow
;
5672 pItem
->fg
.viaCoroutine
= 1;
5673 pItem
->regResult
= dest
.iSdst
;
5674 sqlite3VdbeEndCoroutine(v
, pItem
->regReturn
);
5675 sqlite3VdbeJumpHere(v
, addrTop
-1);
5676 sqlite3ClearTempRegCache(pParse
);
5678 /* Generate a subroutine that will fill an ephemeral table with
5679 ** the content of this subquery. pItem->addrFillSub will point
5680 ** to the address of the generated subroutine. pItem->regReturn
5681 ** is a register allocated to hold the subroutine return address
5686 struct SrcList_item
*pPrior
;
5688 assert( pItem
->addrFillSub
==0 );
5689 pItem
->regReturn
= ++pParse
->nMem
;
5690 topAddr
= sqlite3VdbeAddOp2(v
, OP_Integer
, 0, pItem
->regReturn
);
5691 pItem
->addrFillSub
= topAddr
+1;
5692 if( pItem
->fg
.isCorrelated
==0 ){
5693 /* If the subquery is not correlated and if we are not inside of
5694 ** a trigger, then we only need to compute the value of the subquery
5696 onceAddr
= sqlite3VdbeAddOp0(v
, OP_Once
); VdbeCoverage(v
);
5697 VdbeComment((v
, "materialize \"%s\"", pItem
->pTab
->zName
));
5699 VdbeNoopComment((v
, "materialize \"%s\"", pItem
->pTab
->zName
));
5701 pPrior
= isSelfJoinView(pTabList
, pItem
);
5703 sqlite3VdbeAddOp2(v
, OP_OpenDup
, pItem
->iCursor
, pPrior
->iCursor
);
5704 assert( pPrior
->pSelect
!=0 );
5705 pSub
->nSelectRow
= pPrior
->pSelect
->nSelectRow
;
5707 sqlite3SelectDestInit(&dest
, SRT_EphemTab
, pItem
->iCursor
);
5708 ExplainQueryPlan((pParse
, 1, "MATERIALIZE 0x%p", pSub
));
5709 sqlite3Select(pParse
, pSub
, &dest
);
5711 pItem
->pTab
->nRowLogEst
= pSub
->nSelectRow
;
5712 if( onceAddr
) sqlite3VdbeJumpHere(v
, onceAddr
);
5713 retAddr
= sqlite3VdbeAddOp1(v
, OP_Return
, pItem
->regReturn
);
5714 VdbeComment((v
, "end %s", pItem
->pTab
->zName
));
5715 sqlite3VdbeChangeP1(v
, topAddr
, retAddr
);
5716 sqlite3ClearTempRegCache(pParse
);
5718 if( db
->mallocFailed
) goto select_end
;
5719 pParse
->nHeight
-= sqlite3SelectExprHeight(p
);
5720 pParse
->zAuthContext
= zSavedAuthContext
;
5724 /* Various elements of the SELECT copied into local variables for
5728 pGroupBy
= p
->pGroupBy
;
5729 pHaving
= p
->pHaving
;
5730 sDistinct
.isTnct
= (p
->selFlags
& SF_Distinct
)!=0;
5732 #if SELECTTRACE_ENABLED
5733 if( sqlite3SelectTrace
& 0x400 ){
5734 SELECTTRACE(0x400,pParse
,p
,("After all FROM-clause analysis:\n"));
5735 sqlite3TreeViewSelect(0, p
, 0);
5739 #ifdef SQLITE_COUNTOFVIEW_OPTIMIZATION
5740 if( OptimizationEnabled(db
, SQLITE_QueryFlattener
|SQLITE_CountOfView
)
5741 && countOfViewOptimization(pParse
, p
)
5743 if( db
->mallocFailed
) goto select_end
;
5749 /* If the query is DISTINCT with an ORDER BY but is not an aggregate, and
5750 ** if the select-list is the same as the ORDER BY list, then this query
5751 ** can be rewritten as a GROUP BY. In other words, this:
5753 ** SELECT DISTINCT xyz FROM ... ORDER BY xyz
5755 ** is transformed to:
5757 ** SELECT xyz FROM ... GROUP BY xyz ORDER BY xyz
5759 ** The second form is preferred as a single index (or temp-table) may be
5760 ** used for both the ORDER BY and DISTINCT processing. As originally
5761 ** written the query must use a temp-table for at least one of the ORDER
5762 ** BY and DISTINCT, and an index or separate temp-table for the other.
5764 if( (p
->selFlags
& (SF_Distinct
|SF_Aggregate
))==SF_Distinct
5765 && sqlite3ExprListCompare(sSort
.pOrderBy
, pEList
, -1)==0
5767 p
->selFlags
&= ~SF_Distinct
;
5768 pGroupBy
= p
->pGroupBy
= sqlite3ExprListDup(db
, pEList
, 0);
5769 /* Notice that even thought SF_Distinct has been cleared from p->selFlags,
5770 ** the sDistinct.isTnct is still set. Hence, isTnct represents the
5771 ** original setting of the SF_Distinct flag, not the current setting */
5772 assert( sDistinct
.isTnct
);
5774 #if SELECTTRACE_ENABLED
5775 if( sqlite3SelectTrace
& 0x400 ){
5776 SELECTTRACE(0x400,pParse
,p
,("Transform DISTINCT into GROUP BY:\n"));
5777 sqlite3TreeViewSelect(0, p
, 0);
5782 /* If there is an ORDER BY clause, then create an ephemeral index to
5783 ** do the sorting. But this sorting ephemeral index might end up
5784 ** being unused if the data can be extracted in pre-sorted order.
5785 ** If that is the case, then the OP_OpenEphemeral instruction will be
5786 ** changed to an OP_Noop once we figure out that the sorting index is
5787 ** not needed. The sSort.addrSortIndex variable is used to facilitate
5790 if( sSort
.pOrderBy
){
5792 pKeyInfo
= keyInfoFromExprList(pParse
, sSort
.pOrderBy
, 0, pEList
->nExpr
);
5793 sSort
.iECursor
= pParse
->nTab
++;
5794 sSort
.addrSortIndex
=
5795 sqlite3VdbeAddOp4(v
, OP_OpenEphemeral
,
5796 sSort
.iECursor
, sSort
.pOrderBy
->nExpr
+1+pEList
->nExpr
, 0,
5797 (char*)pKeyInfo
, P4_KEYINFO
5800 sSort
.addrSortIndex
= -1;
5803 /* If the output is destined for a temporary table, open that table.
5805 if( pDest
->eDest
==SRT_EphemTab
){
5806 sqlite3VdbeAddOp2(v
, OP_OpenEphemeral
, pDest
->iSDParm
, pEList
->nExpr
);
5811 iEnd
= sqlite3VdbeMakeLabel(v
);
5812 if( (p
->selFlags
& SF_FixedLimit
)==0 ){
5813 p
->nSelectRow
= 320; /* 4 billion rows */
5815 computeLimitRegisters(pParse
, p
, iEnd
);
5816 if( p
->iLimit
==0 && sSort
.addrSortIndex
>=0 ){
5817 sqlite3VdbeChangeOpcode(v
, sSort
.addrSortIndex
, OP_SorterOpen
);
5818 sSort
.sortFlags
|= SORTFLAG_UseSorter
;
5821 /* Open an ephemeral index to use for the distinct set.
5823 if( p
->selFlags
& SF_Distinct
){
5824 sDistinct
.tabTnct
= pParse
->nTab
++;
5825 sDistinct
.addrTnct
= sqlite3VdbeAddOp4(v
, OP_OpenEphemeral
,
5826 sDistinct
.tabTnct
, 0, 0,
5827 (char*)keyInfoFromExprList(pParse
, p
->pEList
,0,0),
5829 sqlite3VdbeChangeP5(v
, BTREE_UNORDERED
);
5830 sDistinct
.eTnctType
= WHERE_DISTINCT_UNORDERED
;
5832 sDistinct
.eTnctType
= WHERE_DISTINCT_NOOP
;
5835 if( !isAgg
&& pGroupBy
==0 ){
5836 /* No aggregate functions and no GROUP BY clause */
5837 u16 wctrlFlags
= (sDistinct
.isTnct
? WHERE_WANT_DISTINCT
: 0);
5838 assert( WHERE_USE_LIMIT
==SF_FixedLimit
);
5839 wctrlFlags
|= p
->selFlags
& SF_FixedLimit
;
5841 /* Begin the database scan. */
5842 SELECTTRACE(1,pParse
,p
,("WhereBegin\n"));
5843 pWInfo
= sqlite3WhereBegin(pParse
, pTabList
, pWhere
, sSort
.pOrderBy
,
5844 p
->pEList
, wctrlFlags
, p
->nSelectRow
);
5845 if( pWInfo
==0 ) goto select_end
;
5846 if( sqlite3WhereOutputRowCount(pWInfo
) < p
->nSelectRow
){
5847 p
->nSelectRow
= sqlite3WhereOutputRowCount(pWInfo
);
5849 if( sDistinct
.isTnct
&& sqlite3WhereIsDistinct(pWInfo
) ){
5850 sDistinct
.eTnctType
= sqlite3WhereIsDistinct(pWInfo
);
5852 if( sSort
.pOrderBy
){
5853 sSort
.nOBSat
= sqlite3WhereIsOrdered(pWInfo
);
5854 sSort
.bOrderedInnerLoop
= sqlite3WhereOrderedInnerLoop(pWInfo
);
5855 if( sSort
.nOBSat
==sSort
.pOrderBy
->nExpr
){
5860 /* If sorting index that was created by a prior OP_OpenEphemeral
5861 ** instruction ended up not being needed, then change the OP_OpenEphemeral
5864 if( sSort
.addrSortIndex
>=0 && sSort
.pOrderBy
==0 ){
5865 sqlite3VdbeChangeToNoop(v
, sSort
.addrSortIndex
);
5868 /* Use the standard inner loop. */
5869 assert( p
->pEList
==pEList
);
5870 selectInnerLoop(pParse
, p
, -1, &sSort
, &sDistinct
, pDest
,
5871 sqlite3WhereContinueLabel(pWInfo
),
5872 sqlite3WhereBreakLabel(pWInfo
));
5874 /* End the database scan loop.
5876 sqlite3WhereEnd(pWInfo
);
5878 /* This case when there exist aggregate functions or a GROUP BY clause
5880 NameContext sNC
; /* Name context for processing aggregate information */
5881 int iAMem
; /* First Mem address for storing current GROUP BY */
5882 int iBMem
; /* First Mem address for previous GROUP BY */
5883 int iUseFlag
; /* Mem address holding flag indicating that at least
5884 ** one row of the input to the aggregator has been
5886 int iAbortFlag
; /* Mem address which causes query abort if positive */
5887 int groupBySort
; /* Rows come from source in GROUP BY order */
5888 int addrEnd
; /* End of processing for this SELECT */
5889 int sortPTab
= 0; /* Pseudotable used to decode sorting results */
5890 int sortOut
= 0; /* Output register from the sorter */
5891 int orderByGrp
= 0; /* True if the GROUP BY and ORDER BY are the same */
5893 /* Remove any and all aliases between the result set and the
5897 int k
; /* Loop counter */
5898 struct ExprList_item
*pItem
; /* For looping over expression in a list */
5900 for(k
=p
->pEList
->nExpr
, pItem
=p
->pEList
->a
; k
>0; k
--, pItem
++){
5901 pItem
->u
.x
.iAlias
= 0;
5903 for(k
=pGroupBy
->nExpr
, pItem
=pGroupBy
->a
; k
>0; k
--, pItem
++){
5904 pItem
->u
.x
.iAlias
= 0;
5906 assert( 66==sqlite3LogEst(100) );
5907 if( p
->nSelectRow
>66 ) p
->nSelectRow
= 66;
5909 assert( 0==sqlite3LogEst(1) );
5913 /* If there is both a GROUP BY and an ORDER BY clause and they are
5914 ** identical, then it may be possible to disable the ORDER BY clause
5915 ** on the grounds that the GROUP BY will cause elements to come out
5916 ** in the correct order. It also may not - the GROUP BY might use a
5917 ** database index that causes rows to be grouped together as required
5918 ** but not actually sorted. Either way, record the fact that the
5919 ** ORDER BY and GROUP BY clauses are the same by setting the orderByGrp
5921 if( sqlite3ExprListCompare(pGroupBy
, sSort
.pOrderBy
, -1)==0 ){
5925 /* Create a label to jump to when we want to abort the query */
5926 addrEnd
= sqlite3VdbeMakeLabel(v
);
5928 /* Convert TK_COLUMN nodes into TK_AGG_COLUMN and make entries in
5929 ** sAggInfo for all TK_AGG_FUNCTION nodes in expressions of the
5930 ** SELECT statement.
5932 memset(&sNC
, 0, sizeof(sNC
));
5933 sNC
.pParse
= pParse
;
5934 sNC
.pSrcList
= pTabList
;
5935 sNC
.uNC
.pAggInfo
= &sAggInfo
;
5936 VVA_ONLY( sNC
.ncFlags
= NC_UAggInfo
; )
5937 sAggInfo
.mnReg
= pParse
->nMem
+1;
5938 sAggInfo
.nSortingColumn
= pGroupBy
? pGroupBy
->nExpr
: 0;
5939 sAggInfo
.pGroupBy
= pGroupBy
;
5940 sqlite3ExprAnalyzeAggList(&sNC
, pEList
);
5941 sqlite3ExprAnalyzeAggList(&sNC
, sSort
.pOrderBy
);
5944 assert( pWhere
==p
->pWhere
);
5945 assert( pHaving
==p
->pHaving
);
5946 assert( pGroupBy
==p
->pGroupBy
);
5947 havingToWhere(pParse
, p
);
5950 sqlite3ExprAnalyzeAggregates(&sNC
, pHaving
);
5952 sAggInfo
.nAccumulator
= sAggInfo
.nColumn
;
5953 if( p
->pGroupBy
==0 && p
->pHaving
==0 && sAggInfo
.nFunc
==1 ){
5954 minMaxFlag
= minMaxQuery(db
, sAggInfo
.aFunc
[0].pExpr
, &pMinMaxOrderBy
);
5956 minMaxFlag
= WHERE_ORDERBY_NORMAL
;
5958 for(i
=0; i
<sAggInfo
.nFunc
; i
++){
5959 assert( !ExprHasProperty(sAggInfo
.aFunc
[i
].pExpr
, EP_xIsSelect
) );
5960 sNC
.ncFlags
|= NC_InAggFunc
;
5961 sqlite3ExprAnalyzeAggList(&sNC
, sAggInfo
.aFunc
[i
].pExpr
->x
.pList
);
5962 sNC
.ncFlags
&= ~NC_InAggFunc
;
5964 sAggInfo
.mxReg
= pParse
->nMem
;
5965 if( db
->mallocFailed
) goto select_end
;
5966 #if SELECTTRACE_ENABLED
5967 if( sqlite3SelectTrace
& 0x400 ){
5969 SELECTTRACE(0x400,pParse
,p
,("After aggregate analysis:\n"));
5970 sqlite3TreeViewSelect(0, p
, 0);
5971 for(ii
=0; ii
<sAggInfo
.nColumn
; ii
++){
5972 sqlite3DebugPrintf("agg-column[%d] iMem=%d\n",
5973 ii
, sAggInfo
.aCol
[ii
].iMem
);
5974 sqlite3TreeViewExpr(0, sAggInfo
.aCol
[ii
].pExpr
, 0);
5976 for(ii
=0; ii
<sAggInfo
.nFunc
; ii
++){
5977 sqlite3DebugPrintf("agg-func[%d]: iMem=%d\n",
5978 ii
, sAggInfo
.aFunc
[ii
].iMem
);
5979 sqlite3TreeViewExpr(0, sAggInfo
.aFunc
[ii
].pExpr
, 0);
5985 /* Processing for aggregates with GROUP BY is very different and
5986 ** much more complex than aggregates without a GROUP BY.
5989 KeyInfo
*pKeyInfo
; /* Keying information for the group by clause */
5990 int addr1
; /* A-vs-B comparision jump */
5991 int addrOutputRow
; /* Start of subroutine that outputs a result row */
5992 int regOutputRow
; /* Return address register for output subroutine */
5993 int addrSetAbort
; /* Set the abort flag and return */
5994 int addrTopOfLoop
; /* Top of the input loop */
5995 int addrSortingIdx
; /* The OP_OpenEphemeral for the sorting index */
5996 int addrReset
; /* Subroutine for resetting the accumulator */
5997 int regReset
; /* Return address register for reset subroutine */
5999 /* If there is a GROUP BY clause we might need a sorting index to
6000 ** implement it. Allocate that sorting index now. If it turns out
6001 ** that we do not need it after all, the OP_SorterOpen instruction
6002 ** will be converted into a Noop.
6004 sAggInfo
.sortingIdx
= pParse
->nTab
++;
6005 pKeyInfo
= keyInfoFromExprList(pParse
, pGroupBy
, 0, sAggInfo
.nColumn
);
6006 addrSortingIdx
= sqlite3VdbeAddOp4(v
, OP_SorterOpen
,
6007 sAggInfo
.sortingIdx
, sAggInfo
.nSortingColumn
,
6008 0, (char*)pKeyInfo
, P4_KEYINFO
);
6010 /* Initialize memory locations used by GROUP BY aggregate processing
6012 iUseFlag
= ++pParse
->nMem
;
6013 iAbortFlag
= ++pParse
->nMem
;
6014 regOutputRow
= ++pParse
->nMem
;
6015 addrOutputRow
= sqlite3VdbeMakeLabel(v
);
6016 regReset
= ++pParse
->nMem
;
6017 addrReset
= sqlite3VdbeMakeLabel(v
);
6018 iAMem
= pParse
->nMem
+ 1;
6019 pParse
->nMem
+= pGroupBy
->nExpr
;
6020 iBMem
= pParse
->nMem
+ 1;
6021 pParse
->nMem
+= pGroupBy
->nExpr
;
6022 sqlite3VdbeAddOp2(v
, OP_Integer
, 0, iAbortFlag
);
6023 VdbeComment((v
, "clear abort flag"));
6024 sqlite3VdbeAddOp2(v
, OP_Integer
, 0, iUseFlag
);
6025 VdbeComment((v
, "indicate accumulator empty"));
6026 sqlite3VdbeAddOp3(v
, OP_Null
, 0, iAMem
, iAMem
+pGroupBy
->nExpr
-1);
6028 /* Begin a loop that will extract all source rows in GROUP BY order.
6029 ** This might involve two separate loops with an OP_Sort in between, or
6030 ** it might be a single loop that uses an index to extract information
6031 ** in the right order to begin with.
6033 sqlite3VdbeAddOp2(v
, OP_Gosub
, regReset
, addrReset
);
6034 SELECTTRACE(1,pParse
,p
,("WhereBegin\n"));
6035 pWInfo
= sqlite3WhereBegin(pParse
, pTabList
, pWhere
, pGroupBy
, 0,
6036 WHERE_GROUPBY
| (orderByGrp
? WHERE_SORTBYGROUP
: 0), 0
6038 if( pWInfo
==0 ) goto select_end
;
6039 if( sqlite3WhereIsOrdered(pWInfo
)==pGroupBy
->nExpr
){
6040 /* The optimizer is able to deliver rows in group by order so
6041 ** we do not have to sort. The OP_OpenEphemeral table will be
6042 ** cancelled later because we still need to use the pKeyInfo
6046 /* Rows are coming out in undetermined order. We have to push
6047 ** each row into a sorting index, terminate the first loop,
6048 ** then loop over the sorting index in order to get the output
6056 explainTempTable(pParse
,
6057 (sDistinct
.isTnct
&& (p
->selFlags
&SF_Distinct
)==0) ?
6058 "DISTINCT" : "GROUP BY");
6061 nGroupBy
= pGroupBy
->nExpr
;
6064 for(i
=0; i
<sAggInfo
.nColumn
; i
++){
6065 if( sAggInfo
.aCol
[i
].iSorterColumn
>=j
){
6070 regBase
= sqlite3GetTempRange(pParse
, nCol
);
6071 sqlite3ExprCacheClear(pParse
);
6072 sqlite3ExprCodeExprList(pParse
, pGroupBy
, regBase
, 0, 0);
6074 for(i
=0; i
<sAggInfo
.nColumn
; i
++){
6075 struct AggInfo_col
*pCol
= &sAggInfo
.aCol
[i
];
6076 if( pCol
->iSorterColumn
>=j
){
6077 int r1
= j
+ regBase
;
6078 sqlite3ExprCodeGetColumnToReg(pParse
,
6079 pCol
->pTab
, pCol
->iColumn
, pCol
->iTable
, r1
);
6083 regRecord
= sqlite3GetTempReg(pParse
);
6084 sqlite3VdbeAddOp3(v
, OP_MakeRecord
, regBase
, nCol
, regRecord
);
6085 sqlite3VdbeAddOp2(v
, OP_SorterInsert
, sAggInfo
.sortingIdx
, regRecord
);
6086 sqlite3ReleaseTempReg(pParse
, regRecord
);
6087 sqlite3ReleaseTempRange(pParse
, regBase
, nCol
);
6088 sqlite3WhereEnd(pWInfo
);
6089 sAggInfo
.sortingIdxPTab
= sortPTab
= pParse
->nTab
++;
6090 sortOut
= sqlite3GetTempReg(pParse
);
6091 sqlite3VdbeAddOp3(v
, OP_OpenPseudo
, sortPTab
, sortOut
, nCol
);
6092 sqlite3VdbeAddOp2(v
, OP_SorterSort
, sAggInfo
.sortingIdx
, addrEnd
);
6093 VdbeComment((v
, "GROUP BY sort")); VdbeCoverage(v
);
6094 sAggInfo
.useSortingIdx
= 1;
6095 sqlite3ExprCacheClear(pParse
);
6099 /* If the index or temporary table used by the GROUP BY sort
6100 ** will naturally deliver rows in the order required by the ORDER BY
6101 ** clause, cancel the ephemeral table open coded earlier.
6103 ** This is an optimization - the correct answer should result regardless.
6104 ** Use the SQLITE_GroupByOrder flag with SQLITE_TESTCTRL_OPTIMIZER to
6105 ** disable this optimization for testing purposes. */
6106 if( orderByGrp
&& OptimizationEnabled(db
, SQLITE_GroupByOrder
)
6107 && (groupBySort
|| sqlite3WhereIsSorted(pWInfo
))
6110 sqlite3VdbeChangeToNoop(v
, sSort
.addrSortIndex
);
6113 /* Evaluate the current GROUP BY terms and store in b0, b1, b2...
6114 ** (b0 is memory location iBMem+0, b1 is iBMem+1, and so forth)
6115 ** Then compare the current GROUP BY terms against the GROUP BY terms
6116 ** from the previous row currently stored in a0, a1, a2...
6118 addrTopOfLoop
= sqlite3VdbeCurrentAddr(v
);
6119 sqlite3ExprCacheClear(pParse
);
6121 sqlite3VdbeAddOp3(v
, OP_SorterData
, sAggInfo
.sortingIdx
,
6124 for(j
=0; j
<pGroupBy
->nExpr
; j
++){
6126 sqlite3VdbeAddOp3(v
, OP_Column
, sortPTab
, j
, iBMem
+j
);
6128 sAggInfo
.directMode
= 1;
6129 sqlite3ExprCode(pParse
, pGroupBy
->a
[j
].pExpr
, iBMem
+j
);
6132 sqlite3VdbeAddOp4(v
, OP_Compare
, iAMem
, iBMem
, pGroupBy
->nExpr
,
6133 (char*)sqlite3KeyInfoRef(pKeyInfo
), P4_KEYINFO
);
6134 addr1
= sqlite3VdbeCurrentAddr(v
);
6135 sqlite3VdbeAddOp3(v
, OP_Jump
, addr1
+1, 0, addr1
+1); VdbeCoverage(v
);
6137 /* Generate code that runs whenever the GROUP BY changes.
6138 ** Changes in the GROUP BY are detected by the previous code
6139 ** block. If there were no changes, this block is skipped.
6141 ** This code copies current group by terms in b0,b1,b2,...
6142 ** over to a0,a1,a2. It then calls the output subroutine
6143 ** and resets the aggregate accumulator registers in preparation
6144 ** for the next GROUP BY batch.
6146 sqlite3ExprCodeMove(pParse
, iBMem
, iAMem
, pGroupBy
->nExpr
);
6147 sqlite3VdbeAddOp2(v
, OP_Gosub
, regOutputRow
, addrOutputRow
);
6148 VdbeComment((v
, "output one row"));
6149 sqlite3VdbeAddOp2(v
, OP_IfPos
, iAbortFlag
, addrEnd
); VdbeCoverage(v
);
6150 VdbeComment((v
, "check abort flag"));
6151 sqlite3VdbeAddOp2(v
, OP_Gosub
, regReset
, addrReset
);
6152 VdbeComment((v
, "reset accumulator"));
6154 /* Update the aggregate accumulators based on the content of
6157 sqlite3VdbeJumpHere(v
, addr1
);
6158 updateAccumulator(pParse
, &sAggInfo
);
6159 sqlite3VdbeAddOp2(v
, OP_Integer
, 1, iUseFlag
);
6160 VdbeComment((v
, "indicate data in accumulator"));
6165 sqlite3VdbeAddOp2(v
, OP_SorterNext
, sAggInfo
.sortingIdx
, addrTopOfLoop
);
6168 sqlite3WhereEnd(pWInfo
);
6169 sqlite3VdbeChangeToNoop(v
, addrSortingIdx
);
6172 /* Output the final row of result
6174 sqlite3VdbeAddOp2(v
, OP_Gosub
, regOutputRow
, addrOutputRow
);
6175 VdbeComment((v
, "output final row"));
6177 /* Jump over the subroutines
6179 sqlite3VdbeGoto(v
, addrEnd
);
6181 /* Generate a subroutine that outputs a single row of the result
6182 ** set. This subroutine first looks at the iUseFlag. If iUseFlag
6183 ** is less than or equal to zero, the subroutine is a no-op. If
6184 ** the processing calls for the query to abort, this subroutine
6185 ** increments the iAbortFlag memory location before returning in
6186 ** order to signal the caller to abort.
6188 addrSetAbort
= sqlite3VdbeCurrentAddr(v
);
6189 sqlite3VdbeAddOp2(v
, OP_Integer
, 1, iAbortFlag
);
6190 VdbeComment((v
, "set abort flag"));
6191 sqlite3VdbeAddOp1(v
, OP_Return
, regOutputRow
);
6192 sqlite3VdbeResolveLabel(v
, addrOutputRow
);
6193 addrOutputRow
= sqlite3VdbeCurrentAddr(v
);
6194 sqlite3VdbeAddOp2(v
, OP_IfPos
, iUseFlag
, addrOutputRow
+2);
6196 VdbeComment((v
, "Groupby result generator entry point"));
6197 sqlite3VdbeAddOp1(v
, OP_Return
, regOutputRow
);
6198 finalizeAggFunctions(pParse
, &sAggInfo
);
6199 sqlite3ExprIfFalse(pParse
, pHaving
, addrOutputRow
+1, SQLITE_JUMPIFNULL
);
6200 selectInnerLoop(pParse
, p
, -1, &sSort
,
6202 addrOutputRow
+1, addrSetAbort
);
6203 sqlite3VdbeAddOp1(v
, OP_Return
, regOutputRow
);
6204 VdbeComment((v
, "end groupby result generator"));
6206 /* Generate a subroutine that will reset the group-by accumulator
6208 sqlite3VdbeResolveLabel(v
, addrReset
);
6209 resetAccumulator(pParse
, &sAggInfo
);
6210 sqlite3VdbeAddOp1(v
, OP_Return
, regReset
);
6212 } /* endif pGroupBy. Begin aggregate queries without GROUP BY: */
6214 #ifndef SQLITE_OMIT_BTREECOUNT
6216 if( (pTab
= isSimpleCount(p
, &sAggInfo
))!=0 ){
6217 /* If isSimpleCount() returns a pointer to a Table structure, then
6218 ** the SQL statement is of the form:
6220 ** SELECT count(*) FROM <tbl>
6222 ** where the Table structure returned represents table <tbl>.
6224 ** This statement is so common that it is optimized specially. The
6225 ** OP_Count instruction is executed either on the intkey table that
6226 ** contains the data for table <tbl> or on one of its indexes. It
6227 ** is better to execute the op on an index, as indexes are almost
6228 ** always spread across less pages than their corresponding tables.
6230 const int iDb
= sqlite3SchemaToIndex(pParse
->db
, pTab
->pSchema
);
6231 const int iCsr
= pParse
->nTab
++; /* Cursor to scan b-tree */
6232 Index
*pIdx
; /* Iterator variable */
6233 KeyInfo
*pKeyInfo
= 0; /* Keyinfo for scanned index */
6234 Index
*pBest
= 0; /* Best index found so far */
6235 int iRoot
= pTab
->tnum
; /* Root page of scanned b-tree */
6237 sqlite3CodeVerifySchema(pParse
, iDb
);
6238 sqlite3TableLock(pParse
, iDb
, pTab
->tnum
, 0, pTab
->zName
);
6240 /* Search for the index that has the lowest scan cost.
6242 ** (2011-04-15) Do not do a full scan of an unordered index.
6244 ** (2013-10-03) Do not count the entries in a partial index.
6246 ** In practice the KeyInfo structure will not be used. It is only
6247 ** passed to keep OP_OpenRead happy.
6249 if( !HasRowid(pTab
) ) pBest
= sqlite3PrimaryKeyIndex(pTab
);
6250 for(pIdx
=pTab
->pIndex
; pIdx
; pIdx
=pIdx
->pNext
){
6251 if( pIdx
->bUnordered
==0
6252 && pIdx
->szIdxRow
<pTab
->szTabRow
6253 && pIdx
->pPartIdxWhere
==0
6254 && (!pBest
|| pIdx
->szIdxRow
<pBest
->szIdxRow
)
6260 iRoot
= pBest
->tnum
;
6261 pKeyInfo
= sqlite3KeyInfoOfIndex(pParse
, pBest
);
6264 /* Open a read-only cursor, execute the OP_Count, close the cursor. */
6265 sqlite3VdbeAddOp4Int(v
, OP_OpenRead
, iCsr
, iRoot
, iDb
, 1);
6267 sqlite3VdbeChangeP4(v
, -1, (char *)pKeyInfo
, P4_KEYINFO
);
6269 sqlite3VdbeAddOp2(v
, OP_Count
, iCsr
, sAggInfo
.aFunc
[0].iMem
);
6270 sqlite3VdbeAddOp1(v
, OP_Close
, iCsr
);
6271 explainSimpleCount(pParse
, pTab
, pBest
);
6273 #endif /* SQLITE_OMIT_BTREECOUNT */
6275 /* This case runs if the aggregate has no GROUP BY clause. The
6276 ** processing is much simpler since there is only a single row
6279 assert( p
->pGroupBy
==0 );
6280 resetAccumulator(pParse
, &sAggInfo
);
6282 /* If this query is a candidate for the min/max optimization, then
6283 ** minMaxFlag will have been previously set to either
6284 ** WHERE_ORDERBY_MIN or WHERE_ORDERBY_MAX and pMinMaxOrderBy will
6285 ** be an appropriate ORDER BY expression for the optimization.
6287 assert( minMaxFlag
==WHERE_ORDERBY_NORMAL
|| pMinMaxOrderBy
!=0 );
6288 assert( pMinMaxOrderBy
==0 || pMinMaxOrderBy
->nExpr
==1 );
6290 SELECTTRACE(1,pParse
,p
,("WhereBegin\n"));
6291 pWInfo
= sqlite3WhereBegin(pParse
, pTabList
, pWhere
, pMinMaxOrderBy
,
6296 updateAccumulator(pParse
, &sAggInfo
);
6297 if( sqlite3WhereIsOrdered(pWInfo
)>0 ){
6298 sqlite3VdbeGoto(v
, sqlite3WhereBreakLabel(pWInfo
));
6299 VdbeComment((v
, "%s() by index",
6300 (minMaxFlag
==WHERE_ORDERBY_MIN
?"min":"max")));
6302 sqlite3WhereEnd(pWInfo
);
6303 finalizeAggFunctions(pParse
, &sAggInfo
);
6307 sqlite3ExprIfFalse(pParse
, pHaving
, addrEnd
, SQLITE_JUMPIFNULL
);
6308 selectInnerLoop(pParse
, p
, -1, 0, 0,
6309 pDest
, addrEnd
, addrEnd
);
6311 sqlite3VdbeResolveLabel(v
, addrEnd
);
6313 } /* endif aggregate query */
6315 if( sDistinct
.eTnctType
==WHERE_DISTINCT_UNORDERED
){
6316 explainTempTable(pParse
, "DISTINCT");
6319 /* If there is an ORDER BY clause, then we need to sort the results
6320 ** and send them to the callback one by one.
6322 if( sSort
.pOrderBy
){
6323 explainTempTable(pParse
,
6324 sSort
.nOBSat
>0 ? "RIGHT PART OF ORDER BY":"ORDER BY");
6325 assert( p
->pEList
==pEList
);
6326 generateSortTail(pParse
, p
, &sSort
, pEList
->nExpr
, pDest
);
6329 /* Jump here to skip this query
6331 sqlite3VdbeResolveLabel(v
, iEnd
);
6333 /* The SELECT has been coded. If there is an error in the Parse structure,
6334 ** set the return code to 1. Otherwise 0. */
6335 rc
= (pParse
->nErr
>0);
6337 /* Control jumps to here if an error is encountered above, or upon
6338 ** successful coding of the SELECT.
6341 sqlite3ExprListDelete(db
, pMinMaxOrderBy
);
6342 sqlite3DbFree(db
, sAggInfo
.aCol
);
6343 sqlite3DbFree(db
, sAggInfo
.aFunc
);
6344 #if SELECTTRACE_ENABLED
6345 SELECTTRACE(0x1,pParse
,p
,("end processing\n"));
6346 if( (sqlite3SelectTrace
& 0x2000)!=0 && ExplainQueryPlanParent(pParse
)==0 ){
6347 sqlite3TreeViewSelect(0, p
, 0);
6350 ExplainQueryPlanPop(pParse
);