4 ** The author disclaims copyright to this source code. In place of
5 ** a legal notice, here is a blessing:
7 ** May you do good and not evil.
8 ** May you find forgiveness for yourself and forgive others.
9 ** May you share freely, never taking more than you give.
11 *************************************************************************
12 ** This file contains C code routines that are called by the parser
13 ** to handle SELECT statements in SQLite.
15 #include "sqliteInt.h"
18 ** Trace output macros
20 #if SELECTTRACE_ENABLED
21 /***/ int sqlite3SelectTrace
= 0;
22 # define SELECTTRACE(K,P,S,X) \
23 if(sqlite3SelectTrace&(K)) \
24 sqlite3DebugPrintf("%*s%s.%p: ",(P)->nSelectIndent*2-2,"",\
28 # define SELECTTRACE(K,P,S,X)
33 ** An instance of the following object is used to record information about
34 ** how to process the DISTINCT keyword, to simplify passing that information
35 ** into the selectInnerLoop() routine.
37 typedef struct DistinctCtx DistinctCtx
;
39 u8 isTnct
; /* True if the DISTINCT keyword is present */
40 u8 eTnctType
; /* One of the WHERE_DISTINCT_* operators */
41 int tabTnct
; /* Ephemeral table used for DISTINCT processing */
42 int addrTnct
; /* Address of OP_OpenEphemeral opcode for tabTnct */
46 ** An instance of the following object is used to record information about
47 ** the ORDER BY (or GROUP BY) clause of query is being coded.
49 typedef struct SortCtx SortCtx
;
51 ExprList
*pOrderBy
; /* The ORDER BY (or GROUP BY clause) */
52 int nOBSat
; /* Number of ORDER BY terms satisfied by indices */
53 int iECursor
; /* Cursor number for the sorter */
54 int regReturn
; /* Register holding block-output return address */
55 int labelBkOut
; /* Start label for the block-output subroutine */
56 int addrSortIndex
; /* Address of the OP_SorterOpen or OP_OpenEphemeral */
57 int labelDone
; /* Jump here when done, ex: LIMIT reached */
58 u8 sortFlags
; /* Zero or more SORTFLAG_* bits */
59 u8 bOrderedInnerLoop
; /* ORDER BY correctly sorts the inner loop */
61 #define SORTFLAG_UseSorter 0x01 /* Use SorterOpen instead of OpenEphemeral */
64 ** Delete all the content of a Select structure. Deallocate the structure
65 ** itself only if bFree is true.
67 static void clearSelect(sqlite3
*db
, Select
*p
, int bFree
){
69 Select
*pPrior
= p
->pPrior
;
70 sqlite3ExprListDelete(db
, p
->pEList
);
71 sqlite3SrcListDelete(db
, p
->pSrc
);
72 sqlite3ExprDelete(db
, p
->pWhere
);
73 sqlite3ExprListDelete(db
, p
->pGroupBy
);
74 sqlite3ExprDelete(db
, p
->pHaving
);
75 sqlite3ExprListDelete(db
, p
->pOrderBy
);
76 sqlite3ExprDelete(db
, p
->pLimit
);
77 sqlite3ExprDelete(db
, p
->pOffset
);
78 if( p
->pWith
) sqlite3WithDelete(db
, p
->pWith
);
79 if( bFree
) sqlite3DbFree(db
, p
);
86 ** Initialize a SelectDest structure.
88 void sqlite3SelectDestInit(SelectDest
*pDest
, int eDest
, int iParm
){
89 pDest
->eDest
= (u8
)eDest
;
90 pDest
->iSDParm
= iParm
;
98 ** Allocate a new Select structure and return a pointer to that
101 Select
*sqlite3SelectNew(
102 Parse
*pParse
, /* Parsing context */
103 ExprList
*pEList
, /* which columns to include in the result */
104 SrcList
*pSrc
, /* the FROM clause -- which tables to scan */
105 Expr
*pWhere
, /* the WHERE clause */
106 ExprList
*pGroupBy
, /* the GROUP BY clause */
107 Expr
*pHaving
, /* the HAVING clause */
108 ExprList
*pOrderBy
, /* the ORDER BY clause */
109 u32 selFlags
, /* Flag parameters, such as SF_Distinct */
110 Expr
*pLimit
, /* LIMIT value. NULL means not used */
111 Expr
*pOffset
/* OFFSET value. NULL means no offset */
115 sqlite3
*db
= pParse
->db
;
116 pNew
= sqlite3DbMallocRawNN(db
, sizeof(*pNew
) );
118 assert( db
->mallocFailed
);
122 pEList
= sqlite3ExprListAppend(pParse
, 0, sqlite3Expr(db
,TK_ASTERISK
,0));
124 pNew
->pEList
= pEList
;
125 pNew
->op
= TK_SELECT
;
126 pNew
->selFlags
= selFlags
;
129 #if SELECTTRACE_ENABLED
130 pNew
->zSelName
[0] = 0;
132 pNew
->addrOpenEphm
[0] = -1;
133 pNew
->addrOpenEphm
[1] = -1;
134 pNew
->nSelectRow
= 0;
135 if( pSrc
==0 ) pSrc
= sqlite3DbMallocZero(db
, sizeof(*pSrc
));
137 pNew
->pWhere
= pWhere
;
138 pNew
->pGroupBy
= pGroupBy
;
139 pNew
->pHaving
= pHaving
;
140 pNew
->pOrderBy
= pOrderBy
;
143 pNew
->pLimit
= pLimit
;
144 pNew
->pOffset
= pOffset
;
146 assert( pOffset
==0 || pLimit
!=0 || pParse
->nErr
>0 || db
->mallocFailed
!=0 );
147 if( db
->mallocFailed
) {
148 clearSelect(db
, pNew
, pNew
!=&standin
);
151 assert( pNew
->pSrc
!=0 || pParse
->nErr
>0 );
153 assert( pNew
!=&standin
);
157 #if SELECTTRACE_ENABLED
159 ** Set the name of a Select object
161 void sqlite3SelectSetName(Select
*p
, const char *zName
){
163 sqlite3_snprintf(sizeof(p
->zSelName
), p
->zSelName
, "%s", zName
);
170 ** Delete the given Select structure and all of its substructures.
172 void sqlite3SelectDelete(sqlite3
*db
, Select
*p
){
173 if( p
) clearSelect(db
, p
, 1);
177 ** Return a pointer to the right-most SELECT statement in a compound.
179 static Select
*findRightmost(Select
*p
){
180 while( p
->pNext
) p
= p
->pNext
;
185 ** Given 1 to 3 identifiers preceding the JOIN keyword, determine the
186 ** type of join. Return an integer constant that expresses that type
187 ** in terms of the following bit values:
196 ** A full outer join is the combination of JT_LEFT and JT_RIGHT.
198 ** If an illegal or unsupported join type is seen, then still return
199 ** a join type, but put an error in the pParse structure.
201 int sqlite3JoinType(Parse
*pParse
, Token
*pA
, Token
*pB
, Token
*pC
){
205 /* 0123456789 123456789 123456789 123 */
206 static const char zKeyText
[] = "naturaleftouterightfullinnercross";
207 static const struct {
208 u8 i
; /* Beginning of keyword text in zKeyText[] */
209 u8 nChar
; /* Length of the keyword in characters */
210 u8 code
; /* Join type mask */
212 /* natural */ { 0, 7, JT_NATURAL
},
213 /* left */ { 6, 4, JT_LEFT
|JT_OUTER
},
214 /* outer */ { 10, 5, JT_OUTER
},
215 /* right */ { 14, 5, JT_RIGHT
|JT_OUTER
},
216 /* full */ { 19, 4, JT_LEFT
|JT_RIGHT
|JT_OUTER
},
217 /* inner */ { 23, 5, JT_INNER
},
218 /* cross */ { 28, 5, JT_INNER
|JT_CROSS
},
224 for(i
=0; i
<3 && apAll
[i
]; i
++){
226 for(j
=0; j
<ArraySize(aKeyword
); j
++){
227 if( p
->n
==aKeyword
[j
].nChar
228 && sqlite3StrNICmp((char*)p
->z
, &zKeyText
[aKeyword
[j
].i
], p
->n
)==0 ){
229 jointype
|= aKeyword
[j
].code
;
233 testcase( j
==0 || j
==1 || j
==2 || j
==3 || j
==4 || j
==5 || j
==6 );
234 if( j
>=ArraySize(aKeyword
) ){
235 jointype
|= JT_ERROR
;
240 (jointype
& (JT_INNER
|JT_OUTER
))==(JT_INNER
|JT_OUTER
) ||
241 (jointype
& JT_ERROR
)!=0
243 const char *zSp
= " ";
245 if( pC
==0 ){ zSp
++; }
246 sqlite3ErrorMsg(pParse
, "unknown or unsupported join type: "
247 "%T %T%s%T", pA
, pB
, zSp
, pC
);
249 }else if( (jointype
& JT_OUTER
)!=0
250 && (jointype
& (JT_LEFT
|JT_RIGHT
))!=JT_LEFT
){
251 sqlite3ErrorMsg(pParse
,
252 "RIGHT and FULL OUTER JOINs are not currently supported");
259 ** Return the index of a column in a table. Return -1 if the column
260 ** is not contained in the table.
262 static int columnIndex(Table
*pTab
, const char *zCol
){
264 for(i
=0; i
<pTab
->nCol
; i
++){
265 if( sqlite3StrICmp(pTab
->aCol
[i
].zName
, zCol
)==0 ) return i
;
271 ** Search the first N tables in pSrc, from left to right, looking for a
272 ** table that has a column named zCol.
274 ** When found, set *piTab and *piCol to the table index and column index
275 ** of the matching column and return TRUE.
277 ** If not found, return FALSE.
279 static int tableAndColumnIndex(
280 SrcList
*pSrc
, /* Array of tables to search */
281 int N
, /* Number of tables in pSrc->a[] to search */
282 const char *zCol
, /* Name of the column we are looking for */
283 int *piTab
, /* Write index of pSrc->a[] here */
284 int *piCol
/* Write index of pSrc->a[*piTab].pTab->aCol[] here */
286 int i
; /* For looping over tables in pSrc */
287 int iCol
; /* Index of column matching zCol */
289 assert( (piTab
==0)==(piCol
==0) ); /* Both or neither are NULL */
291 iCol
= columnIndex(pSrc
->a
[i
].pTab
, zCol
);
304 ** This function is used to add terms implied by JOIN syntax to the
305 ** WHERE clause expression of a SELECT statement. The new term, which
306 ** is ANDed with the existing WHERE clause, is of the form:
308 ** (tab1.col1 = tab2.col2)
310 ** where tab1 is the iSrc'th table in SrcList pSrc and tab2 is the
311 ** (iSrc+1)'th. Column col1 is column iColLeft of tab1, and col2 is
312 ** column iColRight of tab2.
314 static void addWhereTerm(
315 Parse
*pParse
, /* Parsing context */
316 SrcList
*pSrc
, /* List of tables in FROM clause */
317 int iLeft
, /* Index of first table to join in pSrc */
318 int iColLeft
, /* Index of column in first table */
319 int iRight
, /* Index of second table in pSrc */
320 int iColRight
, /* Index of column in second table */
321 int isOuterJoin
, /* True if this is an OUTER join */
322 Expr
**ppWhere
/* IN/OUT: The WHERE clause to add to */
324 sqlite3
*db
= pParse
->db
;
329 assert( iLeft
<iRight
);
330 assert( pSrc
->nSrc
>iRight
);
331 assert( pSrc
->a
[iLeft
].pTab
);
332 assert( pSrc
->a
[iRight
].pTab
);
334 pE1
= sqlite3CreateColumnExpr(db
, pSrc
, iLeft
, iColLeft
);
335 pE2
= sqlite3CreateColumnExpr(db
, pSrc
, iRight
, iColRight
);
337 pEq
= sqlite3PExpr(pParse
, TK_EQ
, pE1
, pE2
, 0);
338 if( pEq
&& isOuterJoin
){
339 ExprSetProperty(pEq
, EP_FromJoin
);
340 assert( !ExprHasProperty(pEq
, EP_TokenOnly
|EP_Reduced
) );
341 ExprSetVVAProperty(pEq
, EP_NoReduce
);
342 pEq
->iRightJoinTable
= (i16
)pE2
->iTable
;
344 *ppWhere
= sqlite3ExprAnd(db
, *ppWhere
, pEq
);
348 ** Set the EP_FromJoin property on all terms of the given expression.
349 ** And set the Expr.iRightJoinTable to iTable for every term in the
352 ** The EP_FromJoin property is used on terms of an expression to tell
353 ** the LEFT OUTER JOIN processing logic that this term is part of the
354 ** join restriction specified in the ON or USING clause and not a part
355 ** of the more general WHERE clause. These terms are moved over to the
356 ** WHERE clause during join processing but we need to remember that they
357 ** originated in the ON or USING clause.
359 ** The Expr.iRightJoinTable tells the WHERE clause processing that the
360 ** expression depends on table iRightJoinTable even if that table is not
361 ** explicitly mentioned in the expression. That information is needed
362 ** for cases like this:
364 ** SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.b AND t1.x=5
366 ** The where clause needs to defer the handling of the t1.x=5
367 ** term until after the t2 loop of the join. In that way, a
368 ** NULL t2 row will be inserted whenever t1.x!=5. If we do not
369 ** defer the handling of t1.x=5, it will be processed immediately
370 ** after the t1 loop and rows with t1.x!=5 will never appear in
371 ** the output, which is incorrect.
373 static void setJoinExpr(Expr
*p
, int iTable
){
375 ExprSetProperty(p
, EP_FromJoin
);
376 assert( !ExprHasProperty(p
, EP_TokenOnly
|EP_Reduced
) );
377 ExprSetVVAProperty(p
, EP_NoReduce
);
378 p
->iRightJoinTable
= (i16
)iTable
;
379 if( p
->op
==TK_FUNCTION
&& p
->x
.pList
){
381 for(i
=0; i
<p
->x
.pList
->nExpr
; i
++){
382 setJoinExpr(p
->x
.pList
->a
[i
].pExpr
, iTable
);
385 setJoinExpr(p
->pLeft
, iTable
);
391 ** This routine processes the join information for a SELECT statement.
392 ** ON and USING clauses are converted into extra terms of the WHERE clause.
393 ** NATURAL joins also create extra WHERE clause terms.
395 ** The terms of a FROM clause are contained in the Select.pSrc structure.
396 ** The left most table is the first entry in Select.pSrc. The right-most
397 ** table is the last entry. The join operator is held in the entry to
398 ** the left. Thus entry 0 contains the join operator for the join between
399 ** entries 0 and 1. Any ON or USING clauses associated with the join are
400 ** also attached to the left entry.
402 ** This routine returns the number of errors encountered.
404 static int sqliteProcessJoin(Parse
*pParse
, Select
*p
){
405 SrcList
*pSrc
; /* All tables in the FROM clause */
406 int i
, j
; /* Loop counters */
407 struct SrcList_item
*pLeft
; /* Left table being joined */
408 struct SrcList_item
*pRight
; /* Right table being joined */
413 for(i
=0; i
<pSrc
->nSrc
-1; i
++, pRight
++, pLeft
++){
414 Table
*pLeftTab
= pLeft
->pTab
;
415 Table
*pRightTab
= pRight
->pTab
;
418 if( NEVER(pLeftTab
==0 || pRightTab
==0) ) continue;
419 isOuter
= (pRight
->fg
.jointype
& JT_OUTER
)!=0;
421 /* When the NATURAL keyword is present, add WHERE clause terms for
422 ** every column that the two tables have in common.
424 if( pRight
->fg
.jointype
& JT_NATURAL
){
425 if( pRight
->pOn
|| pRight
->pUsing
){
426 sqlite3ErrorMsg(pParse
, "a NATURAL join may not have "
427 "an ON or USING clause", 0);
430 for(j
=0; j
<pRightTab
->nCol
; j
++){
431 char *zName
; /* Name of column in the right table */
432 int iLeft
; /* Matching left table */
433 int iLeftCol
; /* Matching column in the left table */
435 zName
= pRightTab
->aCol
[j
].zName
;
436 if( tableAndColumnIndex(pSrc
, i
+1, zName
, &iLeft
, &iLeftCol
) ){
437 addWhereTerm(pParse
, pSrc
, iLeft
, iLeftCol
, i
+1, j
,
438 isOuter
, &p
->pWhere
);
443 /* Disallow both ON and USING clauses in the same join
445 if( pRight
->pOn
&& pRight
->pUsing
){
446 sqlite3ErrorMsg(pParse
, "cannot have both ON and USING "
447 "clauses in the same join");
451 /* Add the ON clause to the end of the WHERE clause, connected by
455 if( isOuter
) setJoinExpr(pRight
->pOn
, pRight
->iCursor
);
456 p
->pWhere
= sqlite3ExprAnd(pParse
->db
, p
->pWhere
, pRight
->pOn
);
460 /* Create extra terms on the WHERE clause for each column named
461 ** in the USING clause. Example: If the two tables to be joined are
462 ** A and B and the USING clause names X, Y, and Z, then add this
463 ** to the WHERE clause: A.X=B.X AND A.Y=B.Y AND A.Z=B.Z
464 ** Report an error if any column mentioned in the USING clause is
465 ** not contained in both tables to be joined.
467 if( pRight
->pUsing
){
468 IdList
*pList
= pRight
->pUsing
;
469 for(j
=0; j
<pList
->nId
; j
++){
470 char *zName
; /* Name of the term in the USING clause */
471 int iLeft
; /* Table on the left with matching column name */
472 int iLeftCol
; /* Column number of matching column on the left */
473 int iRightCol
; /* Column number of matching column on the right */
475 zName
= pList
->a
[j
].zName
;
476 iRightCol
= columnIndex(pRightTab
, zName
);
478 || !tableAndColumnIndex(pSrc
, i
+1, zName
, &iLeft
, &iLeftCol
)
480 sqlite3ErrorMsg(pParse
, "cannot join using column %s - column "
481 "not present in both tables", zName
);
484 addWhereTerm(pParse
, pSrc
, iLeft
, iLeftCol
, i
+1, iRightCol
,
485 isOuter
, &p
->pWhere
);
492 /* Forward reference */
493 static KeyInfo
*keyInfoFromExprList(
494 Parse
*pParse
, /* Parsing context */
495 ExprList
*pList
, /* Form the KeyInfo object from this ExprList */
496 int iStart
, /* Begin with this column of pList */
497 int nExtra
/* Add this many extra columns to the end */
501 ** Generate code that will push the record in registers regData
502 ** through regData+nData-1 onto the sorter.
504 static void pushOntoSorter(
505 Parse
*pParse
, /* Parser context */
506 SortCtx
*pSort
, /* Information about the ORDER BY clause */
507 Select
*pSelect
, /* The whole SELECT statement */
508 int regData
, /* First register holding data to be sorted */
509 int regOrigData
, /* First register holding data before packing */
510 int nData
, /* Number of elements in the data array */
511 int nPrefixReg
/* No. of reg prior to regData available for use */
513 Vdbe
*v
= pParse
->pVdbe
; /* Stmt under construction */
514 int bSeq
= ((pSort
->sortFlags
& SORTFLAG_UseSorter
)==0);
515 int nExpr
= pSort
->pOrderBy
->nExpr
; /* No. of ORDER BY terms */
516 int nBase
= nExpr
+ bSeq
+ nData
; /* Fields in sorter record */
517 int regBase
; /* Regs for sorter record */
518 int regRecord
= ++pParse
->nMem
; /* Assembled sorter record */
519 int nOBSat
= pSort
->nOBSat
; /* ORDER BY terms to skip */
520 int op
; /* Opcode to add sorter record to sorter */
521 int iLimit
; /* LIMIT counter */
523 assert( bSeq
==0 || bSeq
==1 );
524 assert( nData
==1 || regData
==regOrigData
);
526 assert( nPrefixReg
==nExpr
+bSeq
);
527 regBase
= regData
- nExpr
- bSeq
;
529 regBase
= pParse
->nMem
+ 1;
530 pParse
->nMem
+= nBase
;
532 assert( pSelect
->iOffset
==0 || pSelect
->iLimit
!=0 );
533 iLimit
= pSelect
->iOffset
? pSelect
->iOffset
+1 : pSelect
->iLimit
;
534 pSort
->labelDone
= sqlite3VdbeMakeLabel(v
);
535 sqlite3ExprCodeExprList(pParse
, pSort
->pOrderBy
, regBase
, regOrigData
,
536 SQLITE_ECEL_DUP
|SQLITE_ECEL_REF
);
538 sqlite3VdbeAddOp2(v
, OP_Sequence
, pSort
->iECursor
, regBase
+nExpr
);
541 sqlite3ExprCodeMove(pParse
, regData
, regBase
+nExpr
+bSeq
, nData
);
543 sqlite3VdbeAddOp3(v
, OP_MakeRecord
, regBase
+nOBSat
, nBase
-nOBSat
, regRecord
);
545 int regPrevKey
; /* The first nOBSat columns of the previous row */
546 int addrFirst
; /* Address of the OP_IfNot opcode */
547 int addrJmp
; /* Address of the OP_Jump opcode */
548 VdbeOp
*pOp
; /* Opcode that opens the sorter */
549 int nKey
; /* Number of sorting key columns, including OP_Sequence */
550 KeyInfo
*pKI
; /* Original KeyInfo on the sorter table */
552 regPrevKey
= pParse
->nMem
+1;
553 pParse
->nMem
+= pSort
->nOBSat
;
554 nKey
= nExpr
- pSort
->nOBSat
+ bSeq
;
556 addrFirst
= sqlite3VdbeAddOp1(v
, OP_IfNot
, regBase
+nExpr
);
558 addrFirst
= sqlite3VdbeAddOp1(v
, OP_SequenceTest
, pSort
->iECursor
);
561 sqlite3VdbeAddOp3(v
, OP_Compare
, regPrevKey
, regBase
, pSort
->nOBSat
);
562 pOp
= sqlite3VdbeGetOp(v
, pSort
->addrSortIndex
);
563 if( pParse
->db
->mallocFailed
) return;
564 pOp
->p2
= nKey
+ nData
;
565 pKI
= pOp
->p4
.pKeyInfo
;
566 memset(pKI
->aSortOrder
, 0, pKI
->nField
); /* Makes OP_Jump below testable */
567 sqlite3VdbeChangeP4(v
, -1, (char*)pKI
, P4_KEYINFO
);
568 testcase( pKI
->nXField
>2 );
569 pOp
->p4
.pKeyInfo
= keyInfoFromExprList(pParse
, pSort
->pOrderBy
, nOBSat
,
571 addrJmp
= sqlite3VdbeCurrentAddr(v
);
572 sqlite3VdbeAddOp3(v
, OP_Jump
, addrJmp
+1, 0, addrJmp
+1); VdbeCoverage(v
);
573 pSort
->labelBkOut
= sqlite3VdbeMakeLabel(v
);
574 pSort
->regReturn
= ++pParse
->nMem
;
575 sqlite3VdbeAddOp2(v
, OP_Gosub
, pSort
->regReturn
, pSort
->labelBkOut
);
576 sqlite3VdbeAddOp1(v
, OP_ResetSorter
, pSort
->iECursor
);
578 sqlite3VdbeAddOp2(v
, OP_IfNot
, iLimit
, pSort
->labelDone
);
581 sqlite3VdbeJumpHere(v
, addrFirst
);
582 sqlite3ExprCodeMove(pParse
, regBase
, regPrevKey
, pSort
->nOBSat
);
583 sqlite3VdbeJumpHere(v
, addrJmp
);
585 if( pSort
->sortFlags
& SORTFLAG_UseSorter
){
586 op
= OP_SorterInsert
;
590 sqlite3VdbeAddOp2(v
, op
, pSort
->iECursor
, regRecord
);
594 /* Fill the sorter until it contains LIMIT+OFFSET entries. (The iLimit
595 ** register is initialized with value of LIMIT+OFFSET.) After the sorter
596 ** fills up, delete the least entry in the sorter after each insert.
597 ** Thus we never hold more than the LIMIT+OFFSET rows in memory at once */
598 addr
= sqlite3VdbeAddOp3(v
, OP_IfNotZero
, iLimit
, 0, 1); VdbeCoverage(v
);
599 sqlite3VdbeAddOp1(v
, OP_Last
, pSort
->iECursor
);
600 if( pSort
->bOrderedInnerLoop
){
602 sqlite3VdbeAddOp3(v
, OP_Column
, pSort
->iECursor
, nExpr
, r1
);
603 VdbeComment((v
, "seq"));
605 sqlite3VdbeAddOp1(v
, OP_Delete
, pSort
->iECursor
);
606 if( pSort
->bOrderedInnerLoop
){
607 /* If the inner loop is driven by an index such that values from
608 ** the same iteration of the inner loop are in sorted order, then
609 ** immediately jump to the next iteration of an inner loop if the
610 ** entry from the current iteration does not fit into the top
611 ** LIMIT+OFFSET entries of the sorter. */
612 int iBrk
= sqlite3VdbeCurrentAddr(v
) + 2;
613 sqlite3VdbeAddOp3(v
, OP_Eq
, regBase
+nExpr
, iBrk
, r1
);
614 sqlite3VdbeChangeP5(v
, SQLITE_NULLEQ
);
617 sqlite3VdbeJumpHere(v
, addr
);
622 ** Add code to implement the OFFSET
624 static void codeOffset(
625 Vdbe
*v
, /* Generate code into this VM */
626 int iOffset
, /* Register holding the offset counter */
627 int iContinue
/* Jump here to skip the current record */
630 sqlite3VdbeAddOp3(v
, OP_IfPos
, iOffset
, iContinue
, 1); VdbeCoverage(v
);
631 VdbeComment((v
, "OFFSET"));
636 ** Add code that will check to make sure the N registers starting at iMem
637 ** form a distinct entry. iTab is a sorting index that holds previously
638 ** seen combinations of the N values. A new entry is made in iTab
639 ** if the current N values are new.
641 ** A jump to addrRepeat is made and the N+1 values are popped from the
642 ** stack if the top N elements are not distinct.
644 static void codeDistinct(
645 Parse
*pParse
, /* Parsing and code generating context */
646 int iTab
, /* A sorting index used to test for distinctness */
647 int addrRepeat
, /* Jump to here if not distinct */
648 int N
, /* Number of elements */
649 int iMem
/* First element */
655 r1
= sqlite3GetTempReg(pParse
);
656 sqlite3VdbeAddOp4Int(v
, OP_Found
, iTab
, addrRepeat
, iMem
, N
); VdbeCoverage(v
);
657 sqlite3VdbeAddOp3(v
, OP_MakeRecord
, iMem
, N
, r1
);
658 sqlite3VdbeAddOp2(v
, OP_IdxInsert
, iTab
, r1
);
659 sqlite3ReleaseTempReg(pParse
, r1
);
662 #ifndef SQLITE_OMIT_SUBQUERY
664 ** Generate an error message when a SELECT is used within a subexpression
665 ** (example: "a IN (SELECT * FROM table)") but it has more than 1 result
666 ** column. We do this in a subroutine because the error used to occur
667 ** in multiple places. (The error only occurs in one place now, but we
668 ** retain the subroutine to minimize code disruption.)
670 static int checkForMultiColumnSelectError(
671 Parse
*pParse
, /* Parse context. */
672 SelectDest
*pDest
, /* Destination of SELECT results */
673 int nExpr
/* Number of result columns returned by SELECT */
675 int eDest
= pDest
->eDest
;
676 if( nExpr
>1 && (eDest
==SRT_Mem
|| eDest
==SRT_Set
) ){
677 sqlite3ErrorMsg(pParse
, "only a single result allowed for "
678 "a SELECT that is part of an expression");
687 ** This routine generates the code for the inside of the inner loop
690 ** If srcTab is negative, then the pEList expressions
691 ** are evaluated in order to get the data for this row. If srcTab is
692 ** zero or more, then data is pulled from srcTab and pEList is used only
693 ** to get number columns and the datatype for each column.
695 static void selectInnerLoop(
696 Parse
*pParse
, /* The parser context */
697 Select
*p
, /* The complete select statement being coded */
698 ExprList
*pEList
, /* List of values being extracted */
699 int srcTab
, /* Pull data from this table */
700 SortCtx
*pSort
, /* If not NULL, info on how to process ORDER BY */
701 DistinctCtx
*pDistinct
, /* If not NULL, info on how to process DISTINCT */
702 SelectDest
*pDest
, /* How to dispose of the results */
703 int iContinue
, /* Jump here to continue with next row */
704 int iBreak
/* Jump here to break out of the inner loop */
706 Vdbe
*v
= pParse
->pVdbe
;
708 int hasDistinct
; /* True if the DISTINCT keyword is present */
709 int regResult
; /* Start of memory holding result set */
710 int eDest
= pDest
->eDest
; /* How to dispose of results */
711 int iParm
= pDest
->iSDParm
; /* First argument to disposal method */
712 int nResultCol
; /* Number of result columns */
713 int nPrefixReg
= 0; /* Number of extra registers before regResult */
717 hasDistinct
= pDistinct
? pDistinct
->eTnctType
: WHERE_DISTINCT_NOOP
;
718 if( pSort
&& pSort
->pOrderBy
==0 ) pSort
= 0;
719 if( pSort
==0 && !hasDistinct
){
720 assert( iContinue
!=0 );
721 codeOffset(v
, p
->iOffset
, iContinue
);
724 /* Pull the requested columns.
726 nResultCol
= pEList
->nExpr
;
728 if( pDest
->iSdst
==0 ){
730 nPrefixReg
= pSort
->pOrderBy
->nExpr
;
731 if( !(pSort
->sortFlags
& SORTFLAG_UseSorter
) ) nPrefixReg
++;
732 pParse
->nMem
+= nPrefixReg
;
734 pDest
->iSdst
= pParse
->nMem
+1;
735 pParse
->nMem
+= nResultCol
;
736 }else if( pDest
->iSdst
+nResultCol
> pParse
->nMem
){
737 /* This is an error condition that can result, for example, when a SELECT
738 ** on the right-hand side of an INSERT contains more result columns than
739 ** there are columns in the table on the left. The error will be caught
740 ** and reported later. But we need to make sure enough memory is allocated
741 ** to avoid other spurious errors in the meantime. */
742 pParse
->nMem
+= nResultCol
;
744 pDest
->nSdst
= nResultCol
;
745 regResult
= pDest
->iSdst
;
747 for(i
=0; i
<nResultCol
; i
++){
748 sqlite3VdbeAddOp3(v
, OP_Column
, srcTab
, i
, regResult
+i
);
749 VdbeComment((v
, "%s", pEList
->a
[i
].zName
));
751 }else if( eDest
!=SRT_Exists
){
752 /* If the destination is an EXISTS(...) expression, the actual
753 ** values returned by the SELECT are not required.
756 if( eDest
==SRT_Mem
|| eDest
==SRT_Output
|| eDest
==SRT_Coroutine
){
757 ecelFlags
= SQLITE_ECEL_DUP
;
761 sqlite3ExprCodeExprList(pParse
, pEList
, regResult
, 0, ecelFlags
);
764 /* If the DISTINCT keyword was present on the SELECT statement
765 ** and this row has been seen before, then do not make this row
766 ** part of the result.
769 switch( pDistinct
->eTnctType
){
770 case WHERE_DISTINCT_ORDERED
: {
771 VdbeOp
*pOp
; /* No longer required OpenEphemeral instr. */
772 int iJump
; /* Jump destination */
773 int regPrev
; /* Previous row content */
775 /* Allocate space for the previous row */
776 regPrev
= pParse
->nMem
+1;
777 pParse
->nMem
+= nResultCol
;
779 /* Change the OP_OpenEphemeral coded earlier to an OP_Null
780 ** sets the MEM_Cleared bit on the first register of the
781 ** previous value. This will cause the OP_Ne below to always
782 ** fail on the first iteration of the loop even if the first
785 sqlite3VdbeChangeToNoop(v
, pDistinct
->addrTnct
);
786 pOp
= sqlite3VdbeGetOp(v
, pDistinct
->addrTnct
);
787 pOp
->opcode
= OP_Null
;
791 iJump
= sqlite3VdbeCurrentAddr(v
) + nResultCol
;
792 for(i
=0; i
<nResultCol
; i
++){
793 CollSeq
*pColl
= sqlite3ExprCollSeq(pParse
, pEList
->a
[i
].pExpr
);
794 if( i
<nResultCol
-1 ){
795 sqlite3VdbeAddOp3(v
, OP_Ne
, regResult
+i
, iJump
, regPrev
+i
);
798 sqlite3VdbeAddOp3(v
, OP_Eq
, regResult
+i
, iContinue
, regPrev
+i
);
801 sqlite3VdbeChangeP4(v
, -1, (const char *)pColl
, P4_COLLSEQ
);
802 sqlite3VdbeChangeP5(v
, SQLITE_NULLEQ
);
804 assert( sqlite3VdbeCurrentAddr(v
)==iJump
|| pParse
->db
->mallocFailed
);
805 sqlite3VdbeAddOp3(v
, OP_Copy
, regResult
, regPrev
, nResultCol
-1);
809 case WHERE_DISTINCT_UNIQUE
: {
810 sqlite3VdbeChangeToNoop(v
, pDistinct
->addrTnct
);
815 assert( pDistinct
->eTnctType
==WHERE_DISTINCT_UNORDERED
);
816 codeDistinct(pParse
, pDistinct
->tabTnct
, iContinue
, nResultCol
,
822 codeOffset(v
, p
->iOffset
, iContinue
);
827 /* In this mode, write each query result to the key of the temporary
830 #ifndef SQLITE_OMIT_COMPOUND_SELECT
833 r1
= sqlite3GetTempReg(pParse
);
834 sqlite3VdbeAddOp3(v
, OP_MakeRecord
, regResult
, nResultCol
, r1
);
835 sqlite3VdbeAddOp2(v
, OP_IdxInsert
, iParm
, r1
);
836 sqlite3ReleaseTempReg(pParse
, r1
);
840 /* Construct a record from the query result, but instead of
841 ** saving that record, use it as a key to delete elements from
842 ** the temporary table iParm.
845 sqlite3VdbeAddOp3(v
, OP_IdxDelete
, iParm
, regResult
, nResultCol
);
848 #endif /* SQLITE_OMIT_COMPOUND_SELECT */
850 /* Store the result as data using a unique key.
856 int r1
= sqlite3GetTempRange(pParse
, nPrefixReg
+1);
857 testcase( eDest
==SRT_Table
);
858 testcase( eDest
==SRT_EphemTab
);
859 testcase( eDest
==SRT_Fifo
);
860 testcase( eDest
==SRT_DistFifo
);
861 sqlite3VdbeAddOp3(v
, OP_MakeRecord
, regResult
, nResultCol
, r1
+nPrefixReg
);
862 #ifndef SQLITE_OMIT_CTE
863 if( eDest
==SRT_DistFifo
){
864 /* If the destination is DistFifo, then cursor (iParm+1) is open
865 ** on an ephemeral index. If the current row is already present
866 ** in the index, do not write it to the output. If not, add the
867 ** current row to the index and proceed with writing it to the
868 ** output table as well. */
869 int addr
= sqlite3VdbeCurrentAddr(v
) + 4;
870 sqlite3VdbeAddOp4Int(v
, OP_Found
, iParm
+1, addr
, r1
, 0);
872 sqlite3VdbeAddOp2(v
, OP_IdxInsert
, iParm
+1, r1
);
877 pushOntoSorter(pParse
, pSort
, p
, r1
+nPrefixReg
,regResult
,1,nPrefixReg
);
879 int r2
= sqlite3GetTempReg(pParse
);
880 sqlite3VdbeAddOp2(v
, OP_NewRowid
, iParm
, r2
);
881 sqlite3VdbeAddOp3(v
, OP_Insert
, iParm
, r1
, r2
);
882 sqlite3VdbeChangeP5(v
, OPFLAG_APPEND
);
883 sqlite3ReleaseTempReg(pParse
, r2
);
885 sqlite3ReleaseTempRange(pParse
, r1
, nPrefixReg
+1);
889 #ifndef SQLITE_OMIT_SUBQUERY
890 /* If we are creating a set for an "expr IN (SELECT ...)" construct,
891 ** then there should be a single item on the stack. Write this
892 ** item into the set table with bogus data.
895 assert( nResultCol
==1 );
897 sqlite3CompareAffinity(pEList
->a
[0].pExpr
, pDest
->affSdst
);
899 /* At first glance you would think we could optimize out the
900 ** ORDER BY in this case since the order of entries in the set
901 ** does not matter. But there might be a LIMIT clause, in which
902 ** case the order does matter */
903 pushOntoSorter(pParse
, pSort
, p
, regResult
, regResult
, 1, nPrefixReg
);
905 int r1
= sqlite3GetTempReg(pParse
);
906 sqlite3VdbeAddOp4(v
, OP_MakeRecord
, regResult
,1,r1
, &pDest
->affSdst
, 1);
907 sqlite3ExprCacheAffinityChange(pParse
, regResult
, 1);
908 sqlite3VdbeAddOp2(v
, OP_IdxInsert
, iParm
, r1
);
909 sqlite3ReleaseTempReg(pParse
, r1
);
914 /* If any row exist in the result set, record that fact and abort.
917 sqlite3VdbeAddOp2(v
, OP_Integer
, 1, iParm
);
918 /* The LIMIT clause will terminate the loop for us */
922 /* If this is a scalar select that is part of an expression, then
923 ** store the results in the appropriate memory cell and break out
927 assert( nResultCol
==1 );
929 pushOntoSorter(pParse
, pSort
, p
, regResult
, regResult
, 1, nPrefixReg
);
931 assert( regResult
==iParm
);
932 /* The LIMIT clause will jump out of the loop for us */
936 #endif /* #ifndef SQLITE_OMIT_SUBQUERY */
938 case SRT_Coroutine
: /* Send data to a co-routine */
939 case SRT_Output
: { /* Return the results */
940 testcase( eDest
==SRT_Coroutine
);
941 testcase( eDest
==SRT_Output
);
943 pushOntoSorter(pParse
, pSort
, p
, regResult
, regResult
, nResultCol
,
945 }else if( eDest
==SRT_Coroutine
){
946 sqlite3VdbeAddOp1(v
, OP_Yield
, pDest
->iSDParm
);
948 sqlite3VdbeAddOp2(v
, OP_ResultRow
, regResult
, nResultCol
);
949 sqlite3ExprCacheAffinityChange(pParse
, regResult
, nResultCol
);
954 #ifndef SQLITE_OMIT_CTE
955 /* Write the results into a priority queue that is order according to
956 ** pDest->pOrderBy (in pSO). pDest->iSDParm (in iParm) is the cursor for an
957 ** index with pSO->nExpr+2 columns. Build a key using pSO for the first
958 ** pSO->nExpr columns, then make sure all keys are unique by adding a
959 ** final OP_Sequence column. The last column is the record as a blob.
967 pSO
= pDest
->pOrderBy
;
970 r1
= sqlite3GetTempReg(pParse
);
971 r2
= sqlite3GetTempRange(pParse
, nKey
+2);
973 if( eDest
==SRT_DistQueue
){
974 /* If the destination is DistQueue, then cursor (iParm+1) is open
975 ** on a second ephemeral index that holds all values every previously
976 ** added to the queue. */
977 addrTest
= sqlite3VdbeAddOp4Int(v
, OP_Found
, iParm
+1, 0,
978 regResult
, nResultCol
);
981 sqlite3VdbeAddOp3(v
, OP_MakeRecord
, regResult
, nResultCol
, r3
);
982 if( eDest
==SRT_DistQueue
){
983 sqlite3VdbeAddOp2(v
, OP_IdxInsert
, iParm
+1, r3
);
984 sqlite3VdbeChangeP5(v
, OPFLAG_USESEEKRESULT
);
986 for(i
=0; i
<nKey
; i
++){
987 sqlite3VdbeAddOp2(v
, OP_SCopy
,
988 regResult
+ pSO
->a
[i
].u
.x
.iOrderByCol
- 1,
991 sqlite3VdbeAddOp2(v
, OP_Sequence
, iParm
, r2
+nKey
);
992 sqlite3VdbeAddOp3(v
, OP_MakeRecord
, r2
, nKey
+2, r1
);
993 sqlite3VdbeAddOp2(v
, OP_IdxInsert
, iParm
, r1
);
994 if( addrTest
) sqlite3VdbeJumpHere(v
, addrTest
);
995 sqlite3ReleaseTempReg(pParse
, r1
);
996 sqlite3ReleaseTempRange(pParse
, r2
, nKey
+2);
999 #endif /* SQLITE_OMIT_CTE */
1003 #if !defined(SQLITE_OMIT_TRIGGER)
1004 /* Discard the results. This is used for SELECT statements inside
1005 ** the body of a TRIGGER. The purpose of such selects is to call
1006 ** user-defined functions that have side effects. We do not care
1007 ** about the actual results of the select.
1010 assert( eDest
==SRT_Discard
);
1016 /* Jump to the end of the loop if the LIMIT is reached. Except, if
1017 ** there is a sorter, in which case the sorter has already limited
1018 ** the output for us.
1020 if( pSort
==0 && p
->iLimit
){
1021 sqlite3VdbeAddOp2(v
, OP_DecrJumpZero
, p
->iLimit
, iBreak
); VdbeCoverage(v
);
1026 ** Allocate a KeyInfo object sufficient for an index of N key columns and
1029 KeyInfo
*sqlite3KeyInfoAlloc(sqlite3
*db
, int N
, int X
){
1030 int nExtra
= (N
+X
)*(sizeof(CollSeq
*)+1);
1031 KeyInfo
*p
= sqlite3DbMallocRaw(db
, sizeof(KeyInfo
) + nExtra
);
1033 p
->aSortOrder
= (u8
*)&p
->aColl
[N
+X
];
1035 p
->nXField
= (u16
)X
;
1039 memset(&p
[1], 0, nExtra
);
1041 sqlite3OomFault(db
);
1047 ** Deallocate a KeyInfo object
1049 void sqlite3KeyInfoUnref(KeyInfo
*p
){
1051 assert( p
->nRef
>0 );
1053 if( p
->nRef
==0 ) sqlite3DbFree(p
->db
, p
);
1058 ** Make a new pointer to a KeyInfo object
1060 KeyInfo
*sqlite3KeyInfoRef(KeyInfo
*p
){
1062 assert( p
->nRef
>0 );
1070 ** Return TRUE if a KeyInfo object can be change. The KeyInfo object
1071 ** can only be changed if this is just a single reference to the object.
1073 ** This routine is used only inside of assert() statements.
1075 int sqlite3KeyInfoIsWriteable(KeyInfo
*p
){ return p
->nRef
==1; }
1076 #endif /* SQLITE_DEBUG */
1079 ** Given an expression list, generate a KeyInfo structure that records
1080 ** the collating sequence for each expression in that expression list.
1082 ** If the ExprList is an ORDER BY or GROUP BY clause then the resulting
1083 ** KeyInfo structure is appropriate for initializing a virtual index to
1084 ** implement that clause. If the ExprList is the result set of a SELECT
1085 ** then the KeyInfo structure is appropriate for initializing a virtual
1086 ** index to implement a DISTINCT test.
1088 ** Space to hold the KeyInfo structure is obtained from malloc. The calling
1089 ** function is responsible for seeing that this structure is eventually
1092 static KeyInfo
*keyInfoFromExprList(
1093 Parse
*pParse
, /* Parsing context */
1094 ExprList
*pList
, /* Form the KeyInfo object from this ExprList */
1095 int iStart
, /* Begin with this column of pList */
1096 int nExtra
/* Add this many extra columns to the end */
1100 struct ExprList_item
*pItem
;
1101 sqlite3
*db
= pParse
->db
;
1104 nExpr
= pList
->nExpr
;
1105 pInfo
= sqlite3KeyInfoAlloc(db
, nExpr
-iStart
, nExtra
+1);
1107 assert( sqlite3KeyInfoIsWriteable(pInfo
) );
1108 for(i
=iStart
, pItem
=pList
->a
+iStart
; i
<nExpr
; i
++, pItem
++){
1110 pColl
= sqlite3ExprCollSeq(pParse
, pItem
->pExpr
);
1111 if( !pColl
) pColl
= db
->pDfltColl
;
1112 pInfo
->aColl
[i
-iStart
] = pColl
;
1113 pInfo
->aSortOrder
[i
-iStart
] = pItem
->sortOrder
;
1120 ** Name of the connection operator, used for error messages.
1122 static const char *selectOpName(int id
){
1125 case TK_ALL
: z
= "UNION ALL"; break;
1126 case TK_INTERSECT
: z
= "INTERSECT"; break;
1127 case TK_EXCEPT
: z
= "EXCEPT"; break;
1128 default: z
= "UNION"; break;
1133 #ifndef SQLITE_OMIT_EXPLAIN
1135 ** Unless an "EXPLAIN QUERY PLAN" command is being processed, this function
1136 ** is a no-op. Otherwise, it adds a single row of output to the EQP result,
1137 ** where the caption is of the form:
1139 ** "USE TEMP B-TREE FOR xxx"
1141 ** where xxx is one of "DISTINCT", "ORDER BY" or "GROUP BY". Exactly which
1142 ** is determined by the zUsage argument.
1144 static void explainTempTable(Parse
*pParse
, const char *zUsage
){
1145 if( pParse
->explain
==2 ){
1146 Vdbe
*v
= pParse
->pVdbe
;
1147 char *zMsg
= sqlite3MPrintf(pParse
->db
, "USE TEMP B-TREE FOR %s", zUsage
);
1148 sqlite3VdbeAddOp4(v
, OP_Explain
, pParse
->iSelectId
, 0, 0, zMsg
, P4_DYNAMIC
);
1153 ** Assign expression b to lvalue a. A second, no-op, version of this macro
1154 ** is provided when SQLITE_OMIT_EXPLAIN is defined. This allows the code
1155 ** in sqlite3Select() to assign values to structure member variables that
1156 ** only exist if SQLITE_OMIT_EXPLAIN is not defined without polluting the
1157 ** code with #ifndef directives.
1159 # define explainSetInteger(a, b) a = b
1162 /* No-op versions of the explainXXX() functions and macros. */
1163 # define explainTempTable(y,z)
1164 # define explainSetInteger(y,z)
1167 #if !defined(SQLITE_OMIT_EXPLAIN) && !defined(SQLITE_OMIT_COMPOUND_SELECT)
1169 ** Unless an "EXPLAIN QUERY PLAN" command is being processed, this function
1170 ** is a no-op. Otherwise, it adds a single row of output to the EQP result,
1171 ** where the caption is of one of the two forms:
1173 ** "COMPOSITE SUBQUERIES iSub1 and iSub2 (op)"
1174 ** "COMPOSITE SUBQUERIES iSub1 and iSub2 USING TEMP B-TREE (op)"
1176 ** where iSub1 and iSub2 are the integers passed as the corresponding
1177 ** function parameters, and op is the text representation of the parameter
1178 ** of the same name. The parameter "op" must be one of TK_UNION, TK_EXCEPT,
1179 ** TK_INTERSECT or TK_ALL. The first form is used if argument bUseTmp is
1180 ** false, or the second form if it is true.
1182 static void explainComposite(
1183 Parse
*pParse
, /* Parse context */
1184 int op
, /* One of TK_UNION, TK_EXCEPT etc. */
1185 int iSub1
, /* Subquery id 1 */
1186 int iSub2
, /* Subquery id 2 */
1187 int bUseTmp
/* True if a temp table was used */
1189 assert( op
==TK_UNION
|| op
==TK_EXCEPT
|| op
==TK_INTERSECT
|| op
==TK_ALL
);
1190 if( pParse
->explain
==2 ){
1191 Vdbe
*v
= pParse
->pVdbe
;
1192 char *zMsg
= sqlite3MPrintf(
1193 pParse
->db
, "COMPOUND SUBQUERIES %d AND %d %s(%s)", iSub1
, iSub2
,
1194 bUseTmp
?"USING TEMP B-TREE ":"", selectOpName(op
)
1196 sqlite3VdbeAddOp4(v
, OP_Explain
, pParse
->iSelectId
, 0, 0, zMsg
, P4_DYNAMIC
);
1200 /* No-op versions of the explainXXX() functions and macros. */
1201 # define explainComposite(v,w,x,y,z)
1205 ** If the inner loop was generated using a non-null pOrderBy argument,
1206 ** then the results were placed in a sorter. After the loop is terminated
1207 ** we need to run the sorter and output the results. The following
1208 ** routine generates the code needed to do that.
1210 static void generateSortTail(
1211 Parse
*pParse
, /* Parsing context */
1212 Select
*p
, /* The SELECT statement */
1213 SortCtx
*pSort
, /* Information on the ORDER BY clause */
1214 int nColumn
, /* Number of columns of data */
1215 SelectDest
*pDest
/* Write the sorted results here */
1217 Vdbe
*v
= pParse
->pVdbe
; /* The prepared statement */
1218 int addrBreak
= pSort
->labelDone
; /* Jump here to exit loop */
1219 int addrContinue
= sqlite3VdbeMakeLabel(v
); /* Jump here for next cycle */
1223 ExprList
*pOrderBy
= pSort
->pOrderBy
;
1224 int eDest
= pDest
->eDest
;
1225 int iParm
= pDest
->iSDParm
;
1229 int iSortTab
; /* Sorter cursor to read from */
1230 int nSortData
; /* Trailing values to read from sorter */
1232 int bSeq
; /* True if sorter record includes seq. no. */
1233 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS
1234 struct ExprList_item
*aOutEx
= p
->pEList
->a
;
1237 assert( addrBreak
<0 );
1238 if( pSort
->labelBkOut
){
1239 sqlite3VdbeAddOp2(v
, OP_Gosub
, pSort
->regReturn
, pSort
->labelBkOut
);
1240 sqlite3VdbeGoto(v
, addrBreak
);
1241 sqlite3VdbeResolveLabel(v
, pSort
->labelBkOut
);
1243 iTab
= pSort
->iECursor
;
1244 if( eDest
==SRT_Output
|| eDest
==SRT_Coroutine
){
1246 regRow
= pDest
->iSdst
;
1247 nSortData
= nColumn
;
1249 regRowid
= sqlite3GetTempReg(pParse
);
1250 regRow
= sqlite3GetTempReg(pParse
);
1253 nKey
= pOrderBy
->nExpr
- pSort
->nOBSat
;
1254 if( pSort
->sortFlags
& SORTFLAG_UseSorter
){
1255 int regSortOut
= ++pParse
->nMem
;
1256 iSortTab
= pParse
->nTab
++;
1257 if( pSort
->labelBkOut
){
1258 addrOnce
= sqlite3CodeOnce(pParse
); VdbeCoverage(v
);
1260 sqlite3VdbeAddOp3(v
, OP_OpenPseudo
, iSortTab
, regSortOut
, nKey
+1+nSortData
);
1261 if( addrOnce
) sqlite3VdbeJumpHere(v
, addrOnce
);
1262 addr
= 1 + sqlite3VdbeAddOp2(v
, OP_SorterSort
, iTab
, addrBreak
);
1264 codeOffset(v
, p
->iOffset
, addrContinue
);
1265 sqlite3VdbeAddOp3(v
, OP_SorterData
, iTab
, regSortOut
, iSortTab
);
1268 addr
= 1 + sqlite3VdbeAddOp2(v
, OP_Sort
, iTab
, addrBreak
); VdbeCoverage(v
);
1269 codeOffset(v
, p
->iOffset
, addrContinue
);
1273 for(i
=0; i
<nSortData
; i
++){
1274 sqlite3VdbeAddOp3(v
, OP_Column
, iSortTab
, nKey
+bSeq
+i
, regRow
+i
);
1275 VdbeComment((v
, "%s", aOutEx
[i
].zName
? aOutEx
[i
].zName
: aOutEx
[i
].zSpan
));
1278 case SRT_EphemTab
: {
1279 sqlite3VdbeAddOp2(v
, OP_NewRowid
, iParm
, regRowid
);
1280 sqlite3VdbeAddOp3(v
, OP_Insert
, iParm
, regRow
, regRowid
);
1281 sqlite3VdbeChangeP5(v
, OPFLAG_APPEND
);
1284 #ifndef SQLITE_OMIT_SUBQUERY
1286 assert( nColumn
==1 );
1287 sqlite3VdbeAddOp4(v
, OP_MakeRecord
, regRow
, 1, regRowid
,
1288 &pDest
->affSdst
, 1);
1289 sqlite3ExprCacheAffinityChange(pParse
, regRow
, 1);
1290 sqlite3VdbeAddOp2(v
, OP_IdxInsert
, iParm
, regRowid
);
1294 assert( nColumn
==1 );
1295 sqlite3ExprCodeMove(pParse
, regRow
, iParm
, 1);
1296 /* The LIMIT clause will terminate the loop for us */
1301 assert( eDest
==SRT_Output
|| eDest
==SRT_Coroutine
);
1302 testcase( eDest
==SRT_Output
);
1303 testcase( eDest
==SRT_Coroutine
);
1304 if( eDest
==SRT_Output
){
1305 sqlite3VdbeAddOp2(v
, OP_ResultRow
, pDest
->iSdst
, nColumn
);
1306 sqlite3ExprCacheAffinityChange(pParse
, pDest
->iSdst
, nColumn
);
1308 sqlite3VdbeAddOp1(v
, OP_Yield
, pDest
->iSDParm
);
1314 sqlite3ReleaseTempReg(pParse
, regRow
);
1315 sqlite3ReleaseTempReg(pParse
, regRowid
);
1317 /* The bottom of the loop
1319 sqlite3VdbeResolveLabel(v
, addrContinue
);
1320 if( pSort
->sortFlags
& SORTFLAG_UseSorter
){
1321 sqlite3VdbeAddOp2(v
, OP_SorterNext
, iTab
, addr
); VdbeCoverage(v
);
1323 sqlite3VdbeAddOp2(v
, OP_Next
, iTab
, addr
); VdbeCoverage(v
);
1325 if( pSort
->regReturn
) sqlite3VdbeAddOp1(v
, OP_Return
, pSort
->regReturn
);
1326 sqlite3VdbeResolveLabel(v
, addrBreak
);
1330 ** Return a pointer to a string containing the 'declaration type' of the
1331 ** expression pExpr. The string may be treated as static by the caller.
1333 ** Also try to estimate the size of the returned value and return that
1334 ** result in *pEstWidth.
1336 ** The declaration type is the exact datatype definition extracted from the
1337 ** original CREATE TABLE statement if the expression is a column. The
1338 ** declaration type for a ROWID field is INTEGER. Exactly when an expression
1339 ** is considered a column can be complex in the presence of subqueries. The
1340 ** result-set expression in all of the following SELECT statements is
1341 ** considered a column by this function.
1343 ** SELECT col FROM tbl;
1344 ** SELECT (SELECT col FROM tbl;
1345 ** SELECT (SELECT col FROM tbl);
1346 ** SELECT abc FROM (SELECT col AS abc FROM tbl);
1348 ** The declaration type for any expression other than a column is NULL.
1350 ** This routine has either 3 or 6 parameters depending on whether or not
1351 ** the SQLITE_ENABLE_COLUMN_METADATA compile-time option is used.
1353 #ifdef SQLITE_ENABLE_COLUMN_METADATA
1354 # define columnType(A,B,C,D,E,F) columnTypeImpl(A,B,C,D,E,F)
1355 #else /* if !defined(SQLITE_ENABLE_COLUMN_METADATA) */
1356 # define columnType(A,B,C,D,E,F) columnTypeImpl(A,B,F)
1358 static const char *columnTypeImpl(
1361 #ifdef SQLITE_ENABLE_COLUMN_METADATA
1362 const char **pzOrigDb
,
1363 const char **pzOrigTab
,
1364 const char **pzOrigCol
,
1368 char const *zType
= 0;
1371 #ifdef SQLITE_ENABLE_COLUMN_METADATA
1372 char const *zOrigDb
= 0;
1373 char const *zOrigTab
= 0;
1374 char const *zOrigCol
= 0;
1378 assert( pNC
->pSrcList
!=0 );
1379 switch( pExpr
->op
){
1382 /* The expression is a column. Locate the table the column is being
1383 ** extracted from in NameContext.pSrcList. This table may be real
1384 ** database table or a subquery.
1386 Table
*pTab
= 0; /* Table structure column is extracted from */
1387 Select
*pS
= 0; /* Select the column is extracted from */
1388 int iCol
= pExpr
->iColumn
; /* Index of column in pTab */
1389 testcase( pExpr
->op
==TK_AGG_COLUMN
);
1390 testcase( pExpr
->op
==TK_COLUMN
);
1391 while( pNC
&& !pTab
){
1392 SrcList
*pTabList
= pNC
->pSrcList
;
1393 for(j
=0;j
<pTabList
->nSrc
&& pTabList
->a
[j
].iCursor
!=pExpr
->iTable
;j
++);
1394 if( j
<pTabList
->nSrc
){
1395 pTab
= pTabList
->a
[j
].pTab
;
1396 pS
= pTabList
->a
[j
].pSelect
;
1403 /* At one time, code such as "SELECT new.x" within a trigger would
1404 ** cause this condition to run. Since then, we have restructured how
1405 ** trigger code is generated and so this condition is no longer
1406 ** possible. However, it can still be true for statements like
1409 ** CREATE TABLE t1(col INTEGER);
1410 ** SELECT (SELECT t1.col) FROM FROM t1;
1412 ** when columnType() is called on the expression "t1.col" in the
1413 ** sub-select. In this case, set the column type to NULL, even
1414 ** though it should really be "INTEGER".
1416 ** This is not a problem, as the column type of "t1.col" is never
1417 ** used. When columnType() is called on the expression
1418 ** "(SELECT t1.col)", the correct type is returned (see the TK_SELECT
1423 assert( pTab
&& pExpr
->pTab
==pTab
);
1425 /* The "table" is actually a sub-select or a view in the FROM clause
1426 ** of the SELECT statement. Return the declaration type and origin
1427 ** data for the result-set column of the sub-select.
1429 if( iCol
>=0 && ALWAYS(iCol
<pS
->pEList
->nExpr
) ){
1430 /* If iCol is less than zero, then the expression requests the
1431 ** rowid of the sub-select or view. This expression is legal (see
1432 ** test case misc2.2.2) - it always evaluates to NULL.
1434 ** The ALWAYS() is because iCol>=pS->pEList->nExpr will have been
1435 ** caught already by name resolution.
1438 Expr
*p
= pS
->pEList
->a
[iCol
].pExpr
;
1439 sNC
.pSrcList
= pS
->pSrc
;
1441 sNC
.pParse
= pNC
->pParse
;
1442 zType
= columnType(&sNC
, p
,&zOrigDb
,&zOrigTab
,&zOrigCol
, &estWidth
);
1444 }else if( pTab
->pSchema
){
1447 if( iCol
<0 ) iCol
= pTab
->iPKey
;
1448 assert( iCol
==-1 || (iCol
>=0 && iCol
<pTab
->nCol
) );
1449 #ifdef SQLITE_ENABLE_COLUMN_METADATA
1454 zOrigCol
= pTab
->aCol
[iCol
].zName
;
1455 zType
= sqlite3ColumnType(&pTab
->aCol
[iCol
],0);
1456 estWidth
= pTab
->aCol
[iCol
].szEst
;
1458 zOrigTab
= pTab
->zName
;
1460 int iDb
= sqlite3SchemaToIndex(pNC
->pParse
->db
, pTab
->pSchema
);
1461 zOrigDb
= pNC
->pParse
->db
->aDb
[iDb
].zName
;
1467 zType
= sqlite3ColumnType(&pTab
->aCol
[iCol
],0);
1468 estWidth
= pTab
->aCol
[iCol
].szEst
;
1474 #ifndef SQLITE_OMIT_SUBQUERY
1476 /* The expression is a sub-select. Return the declaration type and
1477 ** origin info for the single column in the result set of the SELECT
1481 Select
*pS
= pExpr
->x
.pSelect
;
1482 Expr
*p
= pS
->pEList
->a
[0].pExpr
;
1483 assert( ExprHasProperty(pExpr
, EP_xIsSelect
) );
1484 sNC
.pSrcList
= pS
->pSrc
;
1486 sNC
.pParse
= pNC
->pParse
;
1487 zType
= columnType(&sNC
, p
, &zOrigDb
, &zOrigTab
, &zOrigCol
, &estWidth
);
1493 #ifdef SQLITE_ENABLE_COLUMN_METADATA
1495 assert( pzOrigTab
&& pzOrigCol
);
1496 *pzOrigDb
= zOrigDb
;
1497 *pzOrigTab
= zOrigTab
;
1498 *pzOrigCol
= zOrigCol
;
1501 if( pEstWidth
) *pEstWidth
= estWidth
;
1506 ** Generate code that will tell the VDBE the declaration types of columns
1507 ** in the result set.
1509 static void generateColumnTypes(
1510 Parse
*pParse
, /* Parser context */
1511 SrcList
*pTabList
, /* List of tables */
1512 ExprList
*pEList
/* Expressions defining the result set */
1514 #ifndef SQLITE_OMIT_DECLTYPE
1515 Vdbe
*v
= pParse
->pVdbe
;
1518 sNC
.pSrcList
= pTabList
;
1519 sNC
.pParse
= pParse
;
1520 for(i
=0; i
<pEList
->nExpr
; i
++){
1521 Expr
*p
= pEList
->a
[i
].pExpr
;
1523 #ifdef SQLITE_ENABLE_COLUMN_METADATA
1524 const char *zOrigDb
= 0;
1525 const char *zOrigTab
= 0;
1526 const char *zOrigCol
= 0;
1527 zType
= columnType(&sNC
, p
, &zOrigDb
, &zOrigTab
, &zOrigCol
, 0);
1529 /* The vdbe must make its own copy of the column-type and other
1530 ** column specific strings, in case the schema is reset before this
1531 ** virtual machine is deleted.
1533 sqlite3VdbeSetColName(v
, i
, COLNAME_DATABASE
, zOrigDb
, SQLITE_TRANSIENT
);
1534 sqlite3VdbeSetColName(v
, i
, COLNAME_TABLE
, zOrigTab
, SQLITE_TRANSIENT
);
1535 sqlite3VdbeSetColName(v
, i
, COLNAME_COLUMN
, zOrigCol
, SQLITE_TRANSIENT
);
1537 zType
= columnType(&sNC
, p
, 0, 0, 0, 0);
1539 sqlite3VdbeSetColName(v
, i
, COLNAME_DECLTYPE
, zType
, SQLITE_TRANSIENT
);
1541 #endif /* !defined(SQLITE_OMIT_DECLTYPE) */
1545 ** Generate code that will tell the VDBE the names of columns
1546 ** in the result set. This information is used to provide the
1547 ** azCol[] values in the callback.
1549 static void generateColumnNames(
1550 Parse
*pParse
, /* Parser context */
1551 SrcList
*pTabList
, /* List of tables */
1552 ExprList
*pEList
/* Expressions defining the result set */
1554 Vdbe
*v
= pParse
->pVdbe
;
1556 sqlite3
*db
= pParse
->db
;
1557 int fullNames
, shortNames
;
1559 #ifndef SQLITE_OMIT_EXPLAIN
1560 /* If this is an EXPLAIN, skip this step */
1561 if( pParse
->explain
){
1566 if( pParse
->colNamesSet
|| db
->mallocFailed
) return;
1568 assert( pTabList
!=0 );
1569 pParse
->colNamesSet
= 1;
1570 fullNames
= (db
->flags
& SQLITE_FullColNames
)!=0;
1571 shortNames
= (db
->flags
& SQLITE_ShortColNames
)!=0;
1572 sqlite3VdbeSetNumCols(v
, pEList
->nExpr
);
1573 for(i
=0; i
<pEList
->nExpr
; i
++){
1575 p
= pEList
->a
[i
].pExpr
;
1576 if( NEVER(p
==0) ) continue;
1577 if( pEList
->a
[i
].zName
){
1578 char *zName
= pEList
->a
[i
].zName
;
1579 sqlite3VdbeSetColName(v
, i
, COLNAME_NAME
, zName
, SQLITE_TRANSIENT
);
1580 }else if( p
->op
==TK_COLUMN
|| p
->op
==TK_AGG_COLUMN
){
1583 int iCol
= p
->iColumn
;
1584 for(j
=0; ALWAYS(j
<pTabList
->nSrc
); j
++){
1585 if( pTabList
->a
[j
].iCursor
==p
->iTable
) break;
1587 assert( j
<pTabList
->nSrc
);
1588 pTab
= pTabList
->a
[j
].pTab
;
1589 if( iCol
<0 ) iCol
= pTab
->iPKey
;
1590 assert( iCol
==-1 || (iCol
>=0 && iCol
<pTab
->nCol
) );
1594 zCol
= pTab
->aCol
[iCol
].zName
;
1596 if( !shortNames
&& !fullNames
){
1597 sqlite3VdbeSetColName(v
, i
, COLNAME_NAME
,
1598 sqlite3DbStrDup(db
, pEList
->a
[i
].zSpan
), SQLITE_DYNAMIC
);
1599 }else if( fullNames
){
1601 zName
= sqlite3MPrintf(db
, "%s.%s", pTab
->zName
, zCol
);
1602 sqlite3VdbeSetColName(v
, i
, COLNAME_NAME
, zName
, SQLITE_DYNAMIC
);
1604 sqlite3VdbeSetColName(v
, i
, COLNAME_NAME
, zCol
, SQLITE_TRANSIENT
);
1607 const char *z
= pEList
->a
[i
].zSpan
;
1608 z
= z
==0 ? sqlite3MPrintf(db
, "column%d", i
+1) : sqlite3DbStrDup(db
, z
);
1609 sqlite3VdbeSetColName(v
, i
, COLNAME_NAME
, z
, SQLITE_DYNAMIC
);
1612 generateColumnTypes(pParse
, pTabList
, pEList
);
1616 ** Given an expression list (which is really the list of expressions
1617 ** that form the result set of a SELECT statement) compute appropriate
1618 ** column names for a table that would hold the expression list.
1620 ** All column names will be unique.
1622 ** Only the column names are computed. Column.zType, Column.zColl,
1623 ** and other fields of Column are zeroed.
1625 ** Return SQLITE_OK on success. If a memory allocation error occurs,
1626 ** store NULL in *paCol and 0 in *pnCol and return SQLITE_NOMEM.
1628 int sqlite3ColumnsFromExprList(
1629 Parse
*pParse
, /* Parsing context */
1630 ExprList
*pEList
, /* Expr list from which to derive column names */
1631 i16
*pnCol
, /* Write the number of columns here */
1632 Column
**paCol
/* Write the new column list here */
1634 sqlite3
*db
= pParse
->db
; /* Database connection */
1635 int i
, j
; /* Loop counters */
1636 u32 cnt
; /* Index added to make the name unique */
1637 Column
*aCol
, *pCol
; /* For looping over result columns */
1638 int nCol
; /* Number of columns in the result set */
1639 Expr
*p
; /* Expression for a single result column */
1640 char *zName
; /* Column name */
1641 int nName
; /* Size of name in zName[] */
1642 Hash ht
; /* Hash table of column names */
1644 sqlite3HashInit(&ht
);
1646 nCol
= pEList
->nExpr
;
1647 aCol
= sqlite3DbMallocZero(db
, sizeof(aCol
[0])*nCol
);
1648 testcase( aCol
==0 );
1653 assert( nCol
==(i16
)nCol
);
1657 for(i
=0, pCol
=aCol
; i
<nCol
&& !db
->mallocFailed
; i
++, pCol
++){
1658 /* Get an appropriate name for the column
1660 p
= sqlite3ExprSkipCollate(pEList
->a
[i
].pExpr
);
1661 if( (zName
= pEList
->a
[i
].zName
)!=0 ){
1662 /* If the column contains an "AS <name>" phrase, use <name> as the name */
1664 Expr
*pColExpr
= p
; /* The expression that is the result column name */
1665 Table
*pTab
; /* Table associated with this expression */
1666 while( pColExpr
->op
==TK_DOT
){
1667 pColExpr
= pColExpr
->pRight
;
1668 assert( pColExpr
!=0 );
1670 if( pColExpr
->op
==TK_COLUMN
&& ALWAYS(pColExpr
->pTab
!=0) ){
1671 /* For columns use the column name name */
1672 int iCol
= pColExpr
->iColumn
;
1673 pTab
= pColExpr
->pTab
;
1674 if( iCol
<0 ) iCol
= pTab
->iPKey
;
1675 zName
= iCol
>=0 ? pTab
->aCol
[iCol
].zName
: "rowid";
1676 }else if( pColExpr
->op
==TK_ID
){
1677 assert( !ExprHasProperty(pColExpr
, EP_IntValue
) );
1678 zName
= pColExpr
->u
.zToken
;
1680 /* Use the original text of the column expression as its name */
1681 zName
= pEList
->a
[i
].zSpan
;
1684 zName
= sqlite3MPrintf(db
, "%s", zName
);
1686 /* Make sure the column name is unique. If the name is not unique,
1687 ** append an integer to the name so that it becomes unique.
1690 while( zName
&& sqlite3HashFind(&ht
, zName
)!=0 ){
1691 nName
= sqlite3Strlen30(zName
);
1693 for(j
=nName
-1; j
>0 && sqlite3Isdigit(zName
[j
]); j
--){}
1694 if( zName
[j
]==':' ) nName
= j
;
1696 zName
= sqlite3MPrintf(db
, "%.*z:%u", nName
, zName
, ++cnt
);
1697 if( cnt
>3 ) sqlite3_randomness(sizeof(cnt
), &cnt
);
1699 pCol
->zName
= zName
;
1700 sqlite3ColumnPropertiesFromName(0, pCol
);
1701 if( zName
&& sqlite3HashInsert(&ht
, zName
, pCol
)==pCol
){
1702 sqlite3OomFault(db
);
1705 sqlite3HashClear(&ht
);
1706 if( db
->mallocFailed
){
1708 sqlite3DbFree(db
, aCol
[j
].zName
);
1710 sqlite3DbFree(db
, aCol
);
1713 return SQLITE_NOMEM_BKPT
;
1719 ** Add type and collation information to a column list based on
1720 ** a SELECT statement.
1722 ** The column list presumably came from selectColumnNamesFromExprList().
1723 ** The column list has only names, not types or collations. This
1724 ** routine goes through and adds the types and collations.
1726 ** This routine requires that all identifiers in the SELECT
1727 ** statement be resolved.
1729 void sqlite3SelectAddColumnTypeAndCollation(
1730 Parse
*pParse
, /* Parsing contexts */
1731 Table
*pTab
, /* Add column type information to this table */
1732 Select
*pSelect
/* SELECT used to determine types and collations */
1734 sqlite3
*db
= pParse
->db
;
1740 struct ExprList_item
*a
;
1743 assert( pSelect
!=0 );
1744 assert( (pSelect
->selFlags
& SF_Resolved
)!=0 );
1745 assert( pTab
->nCol
==pSelect
->pEList
->nExpr
|| db
->mallocFailed
);
1746 if( db
->mallocFailed
) return;
1747 memset(&sNC
, 0, sizeof(sNC
));
1748 sNC
.pSrcList
= pSelect
->pSrc
;
1749 a
= pSelect
->pEList
->a
;
1750 for(i
=0, pCol
=pTab
->aCol
; i
<pTab
->nCol
; i
++, pCol
++){
1754 zType
= columnType(&sNC
, p
, 0, 0, 0, &pCol
->szEst
);
1755 szAll
+= pCol
->szEst
;
1756 pCol
->affinity
= sqlite3ExprAffinity(p
);
1757 if( zType
&& (m
= sqlite3Strlen30(zType
))>0 ){
1758 n
= sqlite3Strlen30(pCol
->zName
);
1759 pCol
->zName
= sqlite3DbReallocOrFree(db
, pCol
->zName
, n
+m
+2);
1761 memcpy(&pCol
->zName
[n
+1], zType
, m
+1);
1762 pCol
->colFlags
|= COLFLAG_HASTYPE
;
1765 if( pCol
->affinity
==0 ) pCol
->affinity
= SQLITE_AFF_BLOB
;
1766 pColl
= sqlite3ExprCollSeq(pParse
, p
);
1767 if( pColl
&& pCol
->zColl
==0 ){
1768 pCol
->zColl
= sqlite3DbStrDup(db
, pColl
->zName
);
1771 pTab
->szTabRow
= sqlite3LogEst(szAll
*4);
1775 ** Given a SELECT statement, generate a Table structure that describes
1776 ** the result set of that SELECT.
1778 Table
*sqlite3ResultSetOfSelect(Parse
*pParse
, Select
*pSelect
){
1780 sqlite3
*db
= pParse
->db
;
1783 savedFlags
= db
->flags
;
1784 db
->flags
&= ~SQLITE_FullColNames
;
1785 db
->flags
|= SQLITE_ShortColNames
;
1786 sqlite3SelectPrep(pParse
, pSelect
, 0);
1787 if( pParse
->nErr
) return 0;
1788 while( pSelect
->pPrior
) pSelect
= pSelect
->pPrior
;
1789 db
->flags
= savedFlags
;
1790 pTab
= sqlite3DbMallocZero(db
, sizeof(Table
) );
1794 /* The sqlite3ResultSetOfSelect() is only used n contexts where lookaside
1796 assert( db
->lookaside
.bDisable
);
1799 pTab
->nRowLogEst
= 200; assert( 200==sqlite3LogEst(1048576) );
1800 sqlite3ColumnsFromExprList(pParse
, pSelect
->pEList
, &pTab
->nCol
, &pTab
->aCol
);
1801 sqlite3SelectAddColumnTypeAndCollation(pParse
, pTab
, pSelect
);
1803 if( db
->mallocFailed
){
1804 sqlite3DeleteTable(db
, pTab
);
1811 ** Get a VDBE for the given parser context. Create a new one if necessary.
1812 ** If an error occurs, return NULL and leave a message in pParse.
1814 static SQLITE_NOINLINE Vdbe
*allocVdbe(Parse
*pParse
){
1815 Vdbe
*v
= pParse
->pVdbe
= sqlite3VdbeCreate(pParse
);
1816 if( v
) sqlite3VdbeAddOp0(v
, OP_Init
);
1817 if( pParse
->pToplevel
==0
1818 && OptimizationEnabled(pParse
->db
,SQLITE_FactorOutConst
)
1820 pParse
->okConstFactor
= 1;
1824 Vdbe
*sqlite3GetVdbe(Parse
*pParse
){
1825 Vdbe
*v
= pParse
->pVdbe
;
1826 return v
? v
: allocVdbe(pParse
);
1831 ** Compute the iLimit and iOffset fields of the SELECT based on the
1832 ** pLimit and pOffset expressions. pLimit and pOffset hold the expressions
1833 ** that appear in the original SQL statement after the LIMIT and OFFSET
1834 ** keywords. Or NULL if those keywords are omitted. iLimit and iOffset
1835 ** are the integer memory register numbers for counters used to compute
1836 ** the limit and offset. If there is no limit and/or offset, then
1837 ** iLimit and iOffset are negative.
1839 ** This routine changes the values of iLimit and iOffset only if
1840 ** a limit or offset is defined by pLimit and pOffset. iLimit and
1841 ** iOffset should have been preset to appropriate default values (zero)
1842 ** prior to calling this routine.
1844 ** The iOffset register (if it exists) is initialized to the value
1845 ** of the OFFSET. The iLimit register is initialized to LIMIT. Register
1846 ** iOffset+1 is initialized to LIMIT+OFFSET.
1848 ** Only if pLimit!=0 or pOffset!=0 do the limit registers get
1849 ** redefined. The UNION ALL operator uses this property to force
1850 ** the reuse of the same limit and offset registers across multiple
1851 ** SELECT statements.
1853 static void computeLimitRegisters(Parse
*pParse
, Select
*p
, int iBreak
){
1858 if( p
->iLimit
) return;
1861 ** "LIMIT -1" always shows all rows. There is some
1862 ** controversy about what the correct behavior should be.
1863 ** The current implementation interprets "LIMIT 0" to mean
1866 sqlite3ExprCacheClear(pParse
);
1867 assert( p
->pOffset
==0 || p
->pLimit
!=0 );
1869 p
->iLimit
= iLimit
= ++pParse
->nMem
;
1870 v
= sqlite3GetVdbe(pParse
);
1872 if( sqlite3ExprIsInteger(p
->pLimit
, &n
) ){
1873 sqlite3VdbeAddOp2(v
, OP_Integer
, n
, iLimit
);
1874 VdbeComment((v
, "LIMIT counter"));
1876 sqlite3VdbeGoto(v
, iBreak
);
1877 }else if( n
>=0 && p
->nSelectRow
>sqlite3LogEst((u64
)n
) ){
1878 p
->nSelectRow
= sqlite3LogEst((u64
)n
);
1879 p
->selFlags
|= SF_FixedLimit
;
1882 sqlite3ExprCode(pParse
, p
->pLimit
, iLimit
);
1883 sqlite3VdbeAddOp1(v
, OP_MustBeInt
, iLimit
); VdbeCoverage(v
);
1884 VdbeComment((v
, "LIMIT counter"));
1885 sqlite3VdbeAddOp2(v
, OP_IfNot
, iLimit
, iBreak
); VdbeCoverage(v
);
1888 p
->iOffset
= iOffset
= ++pParse
->nMem
;
1889 pParse
->nMem
++; /* Allocate an extra register for limit+offset */
1890 sqlite3ExprCode(pParse
, p
->pOffset
, iOffset
);
1891 sqlite3VdbeAddOp1(v
, OP_MustBeInt
, iOffset
); VdbeCoverage(v
);
1892 VdbeComment((v
, "OFFSET counter"));
1893 sqlite3VdbeAddOp3(v
, OP_OffsetLimit
, iLimit
, iOffset
+1, iOffset
);
1894 VdbeComment((v
, "LIMIT+OFFSET"));
1899 #ifndef SQLITE_OMIT_COMPOUND_SELECT
1901 ** Return the appropriate collating sequence for the iCol-th column of
1902 ** the result set for the compound-select statement "p". Return NULL if
1903 ** the column has no default collating sequence.
1905 ** The collating sequence for the compound select is taken from the
1906 ** left-most term of the select that has a collating sequence.
1908 static CollSeq
*multiSelectCollSeq(Parse
*pParse
, Select
*p
, int iCol
){
1911 pRet
= multiSelectCollSeq(pParse
, p
->pPrior
, iCol
);
1916 /* iCol must be less than p->pEList->nExpr. Otherwise an error would
1917 ** have been thrown during name resolution and we would not have gotten
1919 if( pRet
==0 && ALWAYS(iCol
<p
->pEList
->nExpr
) ){
1920 pRet
= sqlite3ExprCollSeq(pParse
, p
->pEList
->a
[iCol
].pExpr
);
1926 ** The select statement passed as the second parameter is a compound SELECT
1927 ** with an ORDER BY clause. This function allocates and returns a KeyInfo
1928 ** structure suitable for implementing the ORDER BY.
1930 ** Space to hold the KeyInfo structure is obtained from malloc. The calling
1931 ** function is responsible for ensuring that this structure is eventually
1934 static KeyInfo
*multiSelectOrderByKeyInfo(Parse
*pParse
, Select
*p
, int nExtra
){
1935 ExprList
*pOrderBy
= p
->pOrderBy
;
1936 int nOrderBy
= p
->pOrderBy
->nExpr
;
1937 sqlite3
*db
= pParse
->db
;
1938 KeyInfo
*pRet
= sqlite3KeyInfoAlloc(db
, nOrderBy
+nExtra
, 1);
1941 for(i
=0; i
<nOrderBy
; i
++){
1942 struct ExprList_item
*pItem
= &pOrderBy
->a
[i
];
1943 Expr
*pTerm
= pItem
->pExpr
;
1946 if( pTerm
->flags
& EP_Collate
){
1947 pColl
= sqlite3ExprCollSeq(pParse
, pTerm
);
1949 pColl
= multiSelectCollSeq(pParse
, p
, pItem
->u
.x
.iOrderByCol
-1);
1950 if( pColl
==0 ) pColl
= db
->pDfltColl
;
1951 pOrderBy
->a
[i
].pExpr
=
1952 sqlite3ExprAddCollateString(pParse
, pTerm
, pColl
->zName
);
1954 assert( sqlite3KeyInfoIsWriteable(pRet
) );
1955 pRet
->aColl
[i
] = pColl
;
1956 pRet
->aSortOrder
[i
] = pOrderBy
->a
[i
].sortOrder
;
1963 #ifndef SQLITE_OMIT_CTE
1965 ** This routine generates VDBE code to compute the content of a WITH RECURSIVE
1966 ** query of the form:
1968 ** <recursive-table> AS (<setup-query> UNION [ALL] <recursive-query>)
1969 ** \___________/ \_______________/
1973 ** There is exactly one reference to the recursive-table in the FROM clause
1974 ** of recursive-query, marked with the SrcList->a[].fg.isRecursive flag.
1976 ** The setup-query runs once to generate an initial set of rows that go
1977 ** into a Queue table. Rows are extracted from the Queue table one by
1978 ** one. Each row extracted from Queue is output to pDest. Then the single
1979 ** extracted row (now in the iCurrent table) becomes the content of the
1980 ** recursive-table for a recursive-query run. The output of the recursive-query
1981 ** is added back into the Queue table. Then another row is extracted from Queue
1982 ** and the iteration continues until the Queue table is empty.
1984 ** If the compound query operator is UNION then no duplicate rows are ever
1985 ** inserted into the Queue table. The iDistinct table keeps a copy of all rows
1986 ** that have ever been inserted into Queue and causes duplicates to be
1987 ** discarded. If the operator is UNION ALL, then duplicates are allowed.
1989 ** If the query has an ORDER BY, then entries in the Queue table are kept in
1990 ** ORDER BY order and the first entry is extracted for each cycle. Without
1991 ** an ORDER BY, the Queue table is just a FIFO.
1993 ** If a LIMIT clause is provided, then the iteration stops after LIMIT rows
1994 ** have been output to pDest. A LIMIT of zero means to output no rows and a
1995 ** negative LIMIT means to output all rows. If there is also an OFFSET clause
1996 ** with a positive value, then the first OFFSET outputs are discarded rather
1997 ** than being sent to pDest. The LIMIT count does not begin until after OFFSET
1998 ** rows have been skipped.
2000 static void generateWithRecursiveQuery(
2001 Parse
*pParse
, /* Parsing context */
2002 Select
*p
, /* The recursive SELECT to be coded */
2003 SelectDest
*pDest
/* What to do with query results */
2005 SrcList
*pSrc
= p
->pSrc
; /* The FROM clause of the recursive query */
2006 int nCol
= p
->pEList
->nExpr
; /* Number of columns in the recursive table */
2007 Vdbe
*v
= pParse
->pVdbe
; /* The prepared statement under construction */
2008 Select
*pSetup
= p
->pPrior
; /* The setup query */
2009 int addrTop
; /* Top of the loop */
2010 int addrCont
, addrBreak
; /* CONTINUE and BREAK addresses */
2011 int iCurrent
= 0; /* The Current table */
2012 int regCurrent
; /* Register holding Current table */
2013 int iQueue
; /* The Queue table */
2014 int iDistinct
= 0; /* To ensure unique results if UNION */
2015 int eDest
= SRT_Fifo
; /* How to write to Queue */
2016 SelectDest destQueue
; /* SelectDest targetting the Queue table */
2017 int i
; /* Loop counter */
2018 int rc
; /* Result code */
2019 ExprList
*pOrderBy
; /* The ORDER BY clause */
2020 Expr
*pLimit
, *pOffset
; /* Saved LIMIT and OFFSET */
2021 int regLimit
, regOffset
; /* Registers used by LIMIT and OFFSET */
2023 /* Obtain authorization to do a recursive query */
2024 if( sqlite3AuthCheck(pParse
, SQLITE_RECURSIVE
, 0, 0, 0) ) return;
2026 /* Process the LIMIT and OFFSET clauses, if they exist */
2027 addrBreak
= sqlite3VdbeMakeLabel(v
);
2028 computeLimitRegisters(pParse
, p
, addrBreak
);
2030 pOffset
= p
->pOffset
;
2031 regLimit
= p
->iLimit
;
2032 regOffset
= p
->iOffset
;
2033 p
->pLimit
= p
->pOffset
= 0;
2034 p
->iLimit
= p
->iOffset
= 0;
2035 pOrderBy
= p
->pOrderBy
;
2037 /* Locate the cursor number of the Current table */
2038 for(i
=0; ALWAYS(i
<pSrc
->nSrc
); i
++){
2039 if( pSrc
->a
[i
].fg
.isRecursive
){
2040 iCurrent
= pSrc
->a
[i
].iCursor
;
2045 /* Allocate cursors numbers for Queue and Distinct. The cursor number for
2046 ** the Distinct table must be exactly one greater than Queue in order
2047 ** for the SRT_DistFifo and SRT_DistQueue destinations to work. */
2048 iQueue
= pParse
->nTab
++;
2049 if( p
->op
==TK_UNION
){
2050 eDest
= pOrderBy
? SRT_DistQueue
: SRT_DistFifo
;
2051 iDistinct
= pParse
->nTab
++;
2053 eDest
= pOrderBy
? SRT_Queue
: SRT_Fifo
;
2055 sqlite3SelectDestInit(&destQueue
, eDest
, iQueue
);
2057 /* Allocate cursors for Current, Queue, and Distinct. */
2058 regCurrent
= ++pParse
->nMem
;
2059 sqlite3VdbeAddOp3(v
, OP_OpenPseudo
, iCurrent
, regCurrent
, nCol
);
2061 KeyInfo
*pKeyInfo
= multiSelectOrderByKeyInfo(pParse
, p
, 1);
2062 sqlite3VdbeAddOp4(v
, OP_OpenEphemeral
, iQueue
, pOrderBy
->nExpr
+2, 0,
2063 (char*)pKeyInfo
, P4_KEYINFO
);
2064 destQueue
.pOrderBy
= pOrderBy
;
2066 sqlite3VdbeAddOp2(v
, OP_OpenEphemeral
, iQueue
, nCol
);
2068 VdbeComment((v
, "Queue table"));
2070 p
->addrOpenEphm
[0] = sqlite3VdbeAddOp2(v
, OP_OpenEphemeral
, iDistinct
, 0);
2071 p
->selFlags
|= SF_UsesEphemeral
;
2074 /* Detach the ORDER BY clause from the compound SELECT */
2077 /* Store the results of the setup-query in Queue. */
2079 rc
= sqlite3Select(pParse
, pSetup
, &destQueue
);
2081 if( rc
) goto end_of_recursive_query
;
2083 /* Find the next row in the Queue and output that row */
2084 addrTop
= sqlite3VdbeAddOp2(v
, OP_Rewind
, iQueue
, addrBreak
); VdbeCoverage(v
);
2086 /* Transfer the next row in Queue over to Current */
2087 sqlite3VdbeAddOp1(v
, OP_NullRow
, iCurrent
); /* To reset column cache */
2089 sqlite3VdbeAddOp3(v
, OP_Column
, iQueue
, pOrderBy
->nExpr
+1, regCurrent
);
2091 sqlite3VdbeAddOp2(v
, OP_RowData
, iQueue
, regCurrent
);
2093 sqlite3VdbeAddOp1(v
, OP_Delete
, iQueue
);
2095 /* Output the single row in Current */
2096 addrCont
= sqlite3VdbeMakeLabel(v
);
2097 codeOffset(v
, regOffset
, addrCont
);
2098 selectInnerLoop(pParse
, p
, p
->pEList
, iCurrent
,
2099 0, 0, pDest
, addrCont
, addrBreak
);
2101 sqlite3VdbeAddOp2(v
, OP_DecrJumpZero
, regLimit
, addrBreak
);
2104 sqlite3VdbeResolveLabel(v
, addrCont
);
2106 /* Execute the recursive SELECT taking the single row in Current as
2107 ** the value for the recursive-table. Store the results in the Queue.
2109 if( p
->selFlags
& SF_Aggregate
){
2110 sqlite3ErrorMsg(pParse
, "recursive aggregate queries not supported");
2113 sqlite3Select(pParse
, p
, &destQueue
);
2114 assert( p
->pPrior
==0 );
2118 /* Keep running the loop until the Queue is empty */
2119 sqlite3VdbeGoto(v
, addrTop
);
2120 sqlite3VdbeResolveLabel(v
, addrBreak
);
2122 end_of_recursive_query
:
2123 sqlite3ExprListDelete(pParse
->db
, p
->pOrderBy
);
2124 p
->pOrderBy
= pOrderBy
;
2126 p
->pOffset
= pOffset
;
2129 #endif /* SQLITE_OMIT_CTE */
2131 /* Forward references */
2132 static int multiSelectOrderBy(
2133 Parse
*pParse
, /* Parsing context */
2134 Select
*p
, /* The right-most of SELECTs to be coded */
2135 SelectDest
*pDest
/* What to do with query results */
2139 ** Handle the special case of a compound-select that originates from a
2140 ** VALUES clause. By handling this as a special case, we avoid deep
2141 ** recursion, and thus do not need to enforce the SQLITE_LIMIT_COMPOUND_SELECT
2142 ** on a VALUES clause.
2144 ** Because the Select object originates from a VALUES clause:
2145 ** (1) It has no LIMIT or OFFSET
2146 ** (2) All terms are UNION ALL
2147 ** (3) There is no ORDER BY clause
2149 static int multiSelectValues(
2150 Parse
*pParse
, /* Parsing context */
2151 Select
*p
, /* The right-most of SELECTs to be coded */
2152 SelectDest
*pDest
/* What to do with query results */
2157 assert( p
->selFlags
& SF_MultiValue
);
2159 assert( p
->selFlags
& SF_Values
);
2160 assert( p
->op
==TK_ALL
|| (p
->op
==TK_SELECT
&& p
->pPrior
==0) );
2161 assert( p
->pLimit
==0 );
2162 assert( p
->pOffset
==0 );
2163 assert( p
->pNext
==0 || p
->pEList
->nExpr
==p
->pNext
->pEList
->nExpr
);
2164 if( p
->pPrior
==0 ) break;
2165 assert( p
->pPrior
->pNext
==p
);
2172 rc
= sqlite3Select(pParse
, p
, pDest
);
2175 p
->nSelectRow
= nRow
;
2182 ** This routine is called to process a compound query form from
2183 ** two or more separate queries using UNION, UNION ALL, EXCEPT, or
2186 ** "p" points to the right-most of the two queries. the query on the
2187 ** left is p->pPrior. The left query could also be a compound query
2188 ** in which case this routine will be called recursively.
2190 ** The results of the total query are to be written into a destination
2191 ** of type eDest with parameter iParm.
2193 ** Example 1: Consider a three-way compound SQL statement.
2195 ** SELECT a FROM t1 UNION SELECT b FROM t2 UNION SELECT c FROM t3
2197 ** This statement is parsed up as follows:
2201 ** `-----> SELECT b FROM t2
2203 ** `------> SELECT a FROM t1
2205 ** The arrows in the diagram above represent the Select.pPrior pointer.
2206 ** So if this routine is called with p equal to the t3 query, then
2207 ** pPrior will be the t2 query. p->op will be TK_UNION in this case.
2209 ** Notice that because of the way SQLite parses compound SELECTs, the
2210 ** individual selects always group from left to right.
2212 static int multiSelect(
2213 Parse
*pParse
, /* Parsing context */
2214 Select
*p
, /* The right-most of SELECTs to be coded */
2215 SelectDest
*pDest
/* What to do with query results */
2217 int rc
= SQLITE_OK
; /* Success code from a subroutine */
2218 Select
*pPrior
; /* Another SELECT immediately to our left */
2219 Vdbe
*v
; /* Generate code to this VDBE */
2220 SelectDest dest
; /* Alternative data destination */
2221 Select
*pDelete
= 0; /* Chain of simple selects to delete */
2222 sqlite3
*db
; /* Database connection */
2223 #ifndef SQLITE_OMIT_EXPLAIN
2224 int iSub1
= 0; /* EQP id of left-hand query */
2225 int iSub2
= 0; /* EQP id of right-hand query */
2228 /* Make sure there is no ORDER BY or LIMIT clause on prior SELECTs. Only
2229 ** the last (right-most) SELECT in the series may have an ORDER BY or LIMIT.
2231 assert( p
&& p
->pPrior
); /* Calling function guarantees this much */
2232 assert( (p
->selFlags
& SF_Recursive
)==0 || p
->op
==TK_ALL
|| p
->op
==TK_UNION
);
2236 if( pPrior
->pOrderBy
){
2237 sqlite3ErrorMsg(pParse
,"ORDER BY clause should come after %s not before",
2238 selectOpName(p
->op
));
2240 goto multi_select_end
;
2242 if( pPrior
->pLimit
){
2243 sqlite3ErrorMsg(pParse
,"LIMIT clause should come after %s not before",
2244 selectOpName(p
->op
));
2246 goto multi_select_end
;
2249 v
= sqlite3GetVdbe(pParse
);
2250 assert( v
!=0 ); /* The VDBE already created by calling function */
2252 /* Create the destination temporary table if necessary
2254 if( dest
.eDest
==SRT_EphemTab
){
2255 assert( p
->pEList
);
2256 sqlite3VdbeAddOp2(v
, OP_OpenEphemeral
, dest
.iSDParm
, p
->pEList
->nExpr
);
2257 dest
.eDest
= SRT_Table
;
2260 /* Special handling for a compound-select that originates as a VALUES clause.
2262 if( p
->selFlags
& SF_MultiValue
){
2263 rc
= multiSelectValues(pParse
, p
, &dest
);
2264 goto multi_select_end
;
2267 /* Make sure all SELECTs in the statement have the same number of elements
2268 ** in their result sets.
2270 assert( p
->pEList
&& pPrior
->pEList
);
2271 assert( p
->pEList
->nExpr
==pPrior
->pEList
->nExpr
);
2273 #ifndef SQLITE_OMIT_CTE
2274 if( p
->selFlags
& SF_Recursive
){
2275 generateWithRecursiveQuery(pParse
, p
, &dest
);
2279 /* Compound SELECTs that have an ORDER BY clause are handled separately.
2282 return multiSelectOrderBy(pParse
, p
, pDest
);
2285 /* Generate code for the left and right SELECT statements.
2291 assert( !pPrior
->pLimit
);
2292 pPrior
->iLimit
= p
->iLimit
;
2293 pPrior
->iOffset
= p
->iOffset
;
2294 pPrior
->pLimit
= p
->pLimit
;
2295 pPrior
->pOffset
= p
->pOffset
;
2296 explainSetInteger(iSub1
, pParse
->iNextSelectId
);
2297 rc
= sqlite3Select(pParse
, pPrior
, &dest
);
2301 goto multi_select_end
;
2304 p
->iLimit
= pPrior
->iLimit
;
2305 p
->iOffset
= pPrior
->iOffset
;
2307 addr
= sqlite3VdbeAddOp1(v
, OP_IfNot
, p
->iLimit
); VdbeCoverage(v
);
2308 VdbeComment((v
, "Jump ahead if LIMIT reached"));
2310 sqlite3VdbeAddOp3(v
, OP_OffsetLimit
,
2311 p
->iLimit
, p
->iOffset
+1, p
->iOffset
);
2314 explainSetInteger(iSub2
, pParse
->iNextSelectId
);
2315 rc
= sqlite3Select(pParse
, p
, &dest
);
2316 testcase( rc
!=SQLITE_OK
);
2317 pDelete
= p
->pPrior
;
2319 p
->nSelectRow
= sqlite3LogEstAdd(p
->nSelectRow
, pPrior
->nSelectRow
);
2321 && sqlite3ExprIsInteger(pPrior
->pLimit
, &nLimit
)
2322 && nLimit
>0 && p
->nSelectRow
> sqlite3LogEst((u64
)nLimit
)
2324 p
->nSelectRow
= sqlite3LogEst((u64
)nLimit
);
2327 sqlite3VdbeJumpHere(v
, addr
);
2333 int unionTab
; /* Cursor number of the temporary table holding result */
2334 u8 op
= 0; /* One of the SRT_ operations to apply to self */
2335 int priorOp
; /* The SRT_ operation to apply to prior selects */
2336 Expr
*pLimit
, *pOffset
; /* Saved values of p->nLimit and p->nOffset */
2338 SelectDest uniondest
;
2340 testcase( p
->op
==TK_EXCEPT
);
2341 testcase( p
->op
==TK_UNION
);
2342 priorOp
= SRT_Union
;
2343 if( dest
.eDest
==priorOp
){
2344 /* We can reuse a temporary table generated by a SELECT to our
2347 assert( p
->pLimit
==0 ); /* Not allowed on leftward elements */
2348 assert( p
->pOffset
==0 ); /* Not allowed on leftward elements */
2349 unionTab
= dest
.iSDParm
;
2351 /* We will need to create our own temporary table to hold the
2352 ** intermediate results.
2354 unionTab
= pParse
->nTab
++;
2355 assert( p
->pOrderBy
==0 );
2356 addr
= sqlite3VdbeAddOp2(v
, OP_OpenEphemeral
, unionTab
, 0);
2357 assert( p
->addrOpenEphm
[0] == -1 );
2358 p
->addrOpenEphm
[0] = addr
;
2359 findRightmost(p
)->selFlags
|= SF_UsesEphemeral
;
2360 assert( p
->pEList
);
2363 /* Code the SELECT statements to our left
2365 assert( !pPrior
->pOrderBy
);
2366 sqlite3SelectDestInit(&uniondest
, priorOp
, unionTab
);
2367 explainSetInteger(iSub1
, pParse
->iNextSelectId
);
2368 rc
= sqlite3Select(pParse
, pPrior
, &uniondest
);
2370 goto multi_select_end
;
2373 /* Code the current SELECT statement
2375 if( p
->op
==TK_EXCEPT
){
2378 assert( p
->op
==TK_UNION
);
2384 pOffset
= p
->pOffset
;
2386 uniondest
.eDest
= op
;
2387 explainSetInteger(iSub2
, pParse
->iNextSelectId
);
2388 rc
= sqlite3Select(pParse
, p
, &uniondest
);
2389 testcase( rc
!=SQLITE_OK
);
2390 /* Query flattening in sqlite3Select() might refill p->pOrderBy.
2391 ** Be sure to delete p->pOrderBy, therefore, to avoid a memory leak. */
2392 sqlite3ExprListDelete(db
, p
->pOrderBy
);
2393 pDelete
= p
->pPrior
;
2396 if( p
->op
==TK_UNION
){
2397 p
->nSelectRow
= sqlite3LogEstAdd(p
->nSelectRow
, pPrior
->nSelectRow
);
2399 sqlite3ExprDelete(db
, p
->pLimit
);
2401 p
->pOffset
= pOffset
;
2405 /* Convert the data in the temporary table into whatever form
2406 ** it is that we currently need.
2408 assert( unionTab
==dest
.iSDParm
|| dest
.eDest
!=priorOp
);
2409 if( dest
.eDest
!=priorOp
){
2410 int iCont
, iBreak
, iStart
;
2411 assert( p
->pEList
);
2412 if( dest
.eDest
==SRT_Output
){
2414 while( pFirst
->pPrior
) pFirst
= pFirst
->pPrior
;
2415 generateColumnNames(pParse
, pFirst
->pSrc
, pFirst
->pEList
);
2417 iBreak
= sqlite3VdbeMakeLabel(v
);
2418 iCont
= sqlite3VdbeMakeLabel(v
);
2419 computeLimitRegisters(pParse
, p
, iBreak
);
2420 sqlite3VdbeAddOp2(v
, OP_Rewind
, unionTab
, iBreak
); VdbeCoverage(v
);
2421 iStart
= sqlite3VdbeCurrentAddr(v
);
2422 selectInnerLoop(pParse
, p
, p
->pEList
, unionTab
,
2423 0, 0, &dest
, iCont
, iBreak
);
2424 sqlite3VdbeResolveLabel(v
, iCont
);
2425 sqlite3VdbeAddOp2(v
, OP_Next
, unionTab
, iStart
); VdbeCoverage(v
);
2426 sqlite3VdbeResolveLabel(v
, iBreak
);
2427 sqlite3VdbeAddOp2(v
, OP_Close
, unionTab
, 0);
2431 default: assert( p
->op
==TK_INTERSECT
); {
2433 int iCont
, iBreak
, iStart
;
2434 Expr
*pLimit
, *pOffset
;
2436 SelectDest intersectdest
;
2439 /* INTERSECT is different from the others since it requires
2440 ** two temporary tables. Hence it has its own case. Begin
2441 ** by allocating the tables we will need.
2443 tab1
= pParse
->nTab
++;
2444 tab2
= pParse
->nTab
++;
2445 assert( p
->pOrderBy
==0 );
2447 addr
= sqlite3VdbeAddOp2(v
, OP_OpenEphemeral
, tab1
, 0);
2448 assert( p
->addrOpenEphm
[0] == -1 );
2449 p
->addrOpenEphm
[0] = addr
;
2450 findRightmost(p
)->selFlags
|= SF_UsesEphemeral
;
2451 assert( p
->pEList
);
2453 /* Code the SELECTs to our left into temporary table "tab1".
2455 sqlite3SelectDestInit(&intersectdest
, SRT_Union
, tab1
);
2456 explainSetInteger(iSub1
, pParse
->iNextSelectId
);
2457 rc
= sqlite3Select(pParse
, pPrior
, &intersectdest
);
2459 goto multi_select_end
;
2462 /* Code the current SELECT into temporary table "tab2"
2464 addr
= sqlite3VdbeAddOp2(v
, OP_OpenEphemeral
, tab2
, 0);
2465 assert( p
->addrOpenEphm
[1] == -1 );
2466 p
->addrOpenEphm
[1] = addr
;
2470 pOffset
= p
->pOffset
;
2472 intersectdest
.iSDParm
= tab2
;
2473 explainSetInteger(iSub2
, pParse
->iNextSelectId
);
2474 rc
= sqlite3Select(pParse
, p
, &intersectdest
);
2475 testcase( rc
!=SQLITE_OK
);
2476 pDelete
= p
->pPrior
;
2478 if( p
->nSelectRow
>pPrior
->nSelectRow
) p
->nSelectRow
= pPrior
->nSelectRow
;
2479 sqlite3ExprDelete(db
, p
->pLimit
);
2481 p
->pOffset
= pOffset
;
2483 /* Generate code to take the intersection of the two temporary
2486 assert( p
->pEList
);
2487 if( dest
.eDest
==SRT_Output
){
2489 while( pFirst
->pPrior
) pFirst
= pFirst
->pPrior
;
2490 generateColumnNames(pParse
, pFirst
->pSrc
, pFirst
->pEList
);
2492 iBreak
= sqlite3VdbeMakeLabel(v
);
2493 iCont
= sqlite3VdbeMakeLabel(v
);
2494 computeLimitRegisters(pParse
, p
, iBreak
);
2495 sqlite3VdbeAddOp2(v
, OP_Rewind
, tab1
, iBreak
); VdbeCoverage(v
);
2496 r1
= sqlite3GetTempReg(pParse
);
2497 iStart
= sqlite3VdbeAddOp2(v
, OP_RowKey
, tab1
, r1
);
2498 sqlite3VdbeAddOp4Int(v
, OP_NotFound
, tab2
, iCont
, r1
, 0); VdbeCoverage(v
);
2499 sqlite3ReleaseTempReg(pParse
, r1
);
2500 selectInnerLoop(pParse
, p
, p
->pEList
, tab1
,
2501 0, 0, &dest
, iCont
, iBreak
);
2502 sqlite3VdbeResolveLabel(v
, iCont
);
2503 sqlite3VdbeAddOp2(v
, OP_Next
, tab1
, iStart
); VdbeCoverage(v
);
2504 sqlite3VdbeResolveLabel(v
, iBreak
);
2505 sqlite3VdbeAddOp2(v
, OP_Close
, tab2
, 0);
2506 sqlite3VdbeAddOp2(v
, OP_Close
, tab1
, 0);
2511 explainComposite(pParse
, p
->op
, iSub1
, iSub2
, p
->op
!=TK_ALL
);
2513 /* Compute collating sequences used by
2514 ** temporary tables needed to implement the compound select.
2515 ** Attach the KeyInfo structure to all temporary tables.
2517 ** This section is run by the right-most SELECT statement only.
2518 ** SELECT statements to the left always skip this part. The right-most
2519 ** SELECT might also skip this part if it has no ORDER BY clause and
2520 ** no temp tables are required.
2522 if( p
->selFlags
& SF_UsesEphemeral
){
2523 int i
; /* Loop counter */
2524 KeyInfo
*pKeyInfo
; /* Collating sequence for the result set */
2525 Select
*pLoop
; /* For looping through SELECT statements */
2526 CollSeq
**apColl
; /* For looping through pKeyInfo->aColl[] */
2527 int nCol
; /* Number of columns in result set */
2529 assert( p
->pNext
==0 );
2530 nCol
= p
->pEList
->nExpr
;
2531 pKeyInfo
= sqlite3KeyInfoAlloc(db
, nCol
, 1);
2533 rc
= SQLITE_NOMEM_BKPT
;
2534 goto multi_select_end
;
2536 for(i
=0, apColl
=pKeyInfo
->aColl
; i
<nCol
; i
++, apColl
++){
2537 *apColl
= multiSelectCollSeq(pParse
, p
, i
);
2539 *apColl
= db
->pDfltColl
;
2543 for(pLoop
=p
; pLoop
; pLoop
=pLoop
->pPrior
){
2545 int addr
= pLoop
->addrOpenEphm
[i
];
2547 /* If [0] is unused then [1] is also unused. So we can
2548 ** always safely abort as soon as the first unused slot is found */
2549 assert( pLoop
->addrOpenEphm
[1]<0 );
2552 sqlite3VdbeChangeP2(v
, addr
, nCol
);
2553 sqlite3VdbeChangeP4(v
, addr
, (char*)sqlite3KeyInfoRef(pKeyInfo
),
2555 pLoop
->addrOpenEphm
[i
] = -1;
2558 sqlite3KeyInfoUnref(pKeyInfo
);
2562 pDest
->iSdst
= dest
.iSdst
;
2563 pDest
->nSdst
= dest
.nSdst
;
2564 sqlite3SelectDelete(db
, pDelete
);
2567 #endif /* SQLITE_OMIT_COMPOUND_SELECT */
2570 ** Error message for when two or more terms of a compound select have different
2571 ** size result sets.
2573 void sqlite3SelectWrongNumTermsError(Parse
*pParse
, Select
*p
){
2574 if( p
->selFlags
& SF_Values
){
2575 sqlite3ErrorMsg(pParse
, "all VALUES must have the same number of terms");
2577 sqlite3ErrorMsg(pParse
, "SELECTs to the left and right of %s"
2578 " do not have the same number of result columns", selectOpName(p
->op
));
2583 ** Code an output subroutine for a coroutine implementation of a
2586 ** The data to be output is contained in pIn->iSdst. There are
2587 ** pIn->nSdst columns to be output. pDest is where the output should
2590 ** regReturn is the number of the register holding the subroutine
2593 ** If regPrev>0 then it is the first register in a vector that
2594 ** records the previous output. mem[regPrev] is a flag that is false
2595 ** if there has been no previous output. If regPrev>0 then code is
2596 ** generated to suppress duplicates. pKeyInfo is used for comparing
2599 ** If the LIMIT found in p->iLimit is reached, jump immediately to
2602 static int generateOutputSubroutine(
2603 Parse
*pParse
, /* Parsing context */
2604 Select
*p
, /* The SELECT statement */
2605 SelectDest
*pIn
, /* Coroutine supplying data */
2606 SelectDest
*pDest
, /* Where to send the data */
2607 int regReturn
, /* The return address register */
2608 int regPrev
, /* Previous result register. No uniqueness if 0 */
2609 KeyInfo
*pKeyInfo
, /* For comparing with previous entry */
2610 int iBreak
/* Jump here if we hit the LIMIT */
2612 Vdbe
*v
= pParse
->pVdbe
;
2616 addr
= sqlite3VdbeCurrentAddr(v
);
2617 iContinue
= sqlite3VdbeMakeLabel(v
);
2619 /* Suppress duplicates for UNION, EXCEPT, and INTERSECT
2623 addr1
= sqlite3VdbeAddOp1(v
, OP_IfNot
, regPrev
); VdbeCoverage(v
);
2624 addr2
= sqlite3VdbeAddOp4(v
, OP_Compare
, pIn
->iSdst
, regPrev
+1, pIn
->nSdst
,
2625 (char*)sqlite3KeyInfoRef(pKeyInfo
), P4_KEYINFO
);
2626 sqlite3VdbeAddOp3(v
, OP_Jump
, addr2
+2, iContinue
, addr2
+2); VdbeCoverage(v
);
2627 sqlite3VdbeJumpHere(v
, addr1
);
2628 sqlite3VdbeAddOp3(v
, OP_Copy
, pIn
->iSdst
, regPrev
+1, pIn
->nSdst
-1);
2629 sqlite3VdbeAddOp2(v
, OP_Integer
, 1, regPrev
);
2631 if( pParse
->db
->mallocFailed
) return 0;
2633 /* Suppress the first OFFSET entries if there is an OFFSET clause
2635 codeOffset(v
, p
->iOffset
, iContinue
);
2637 assert( pDest
->eDest
!=SRT_Exists
);
2638 assert( pDest
->eDest
!=SRT_Table
);
2639 switch( pDest
->eDest
){
2640 /* Store the result as data using a unique key.
2642 case SRT_EphemTab
: {
2643 int r1
= sqlite3GetTempReg(pParse
);
2644 int r2
= sqlite3GetTempReg(pParse
);
2645 sqlite3VdbeAddOp3(v
, OP_MakeRecord
, pIn
->iSdst
, pIn
->nSdst
, r1
);
2646 sqlite3VdbeAddOp2(v
, OP_NewRowid
, pDest
->iSDParm
, r2
);
2647 sqlite3VdbeAddOp3(v
, OP_Insert
, pDest
->iSDParm
, r1
, r2
);
2648 sqlite3VdbeChangeP5(v
, OPFLAG_APPEND
);
2649 sqlite3ReleaseTempReg(pParse
, r2
);
2650 sqlite3ReleaseTempReg(pParse
, r1
);
2654 #ifndef SQLITE_OMIT_SUBQUERY
2655 /* If we are creating a set for an "expr IN (SELECT ...)" construct,
2656 ** then there should be a single item on the stack. Write this
2657 ** item into the set table with bogus data.
2661 assert( pIn
->nSdst
==1 || pParse
->nErr
>0 );
2663 sqlite3CompareAffinity(p
->pEList
->a
[0].pExpr
, pDest
->affSdst
);
2664 r1
= sqlite3GetTempReg(pParse
);
2665 sqlite3VdbeAddOp4(v
, OP_MakeRecord
, pIn
->iSdst
, 1, r1
, &pDest
->affSdst
,1);
2666 sqlite3ExprCacheAffinityChange(pParse
, pIn
->iSdst
, 1);
2667 sqlite3VdbeAddOp2(v
, OP_IdxInsert
, pDest
->iSDParm
, r1
);
2668 sqlite3ReleaseTempReg(pParse
, r1
);
2672 /* If this is a scalar select that is part of an expression, then
2673 ** store the results in the appropriate memory cell and break out
2674 ** of the scan loop.
2677 assert( pIn
->nSdst
==1 || pParse
->nErr
>0 ); testcase( pIn
->nSdst
!=1 );
2678 sqlite3ExprCodeMove(pParse
, pIn
->iSdst
, pDest
->iSDParm
, 1);
2679 /* The LIMIT clause will jump out of the loop for us */
2682 #endif /* #ifndef SQLITE_OMIT_SUBQUERY */
2684 /* The results are stored in a sequence of registers
2685 ** starting at pDest->iSdst. Then the co-routine yields.
2687 case SRT_Coroutine
: {
2688 if( pDest
->iSdst
==0 ){
2689 pDest
->iSdst
= sqlite3GetTempRange(pParse
, pIn
->nSdst
);
2690 pDest
->nSdst
= pIn
->nSdst
;
2692 sqlite3ExprCodeMove(pParse
, pIn
->iSdst
, pDest
->iSdst
, pIn
->nSdst
);
2693 sqlite3VdbeAddOp1(v
, OP_Yield
, pDest
->iSDParm
);
2697 /* If none of the above, then the result destination must be
2698 ** SRT_Output. This routine is never called with any other
2699 ** destination other than the ones handled above or SRT_Output.
2701 ** For SRT_Output, results are stored in a sequence of registers.
2702 ** Then the OP_ResultRow opcode is used to cause sqlite3_step() to
2703 ** return the next row of result.
2706 assert( pDest
->eDest
==SRT_Output
);
2707 sqlite3VdbeAddOp2(v
, OP_ResultRow
, pIn
->iSdst
, pIn
->nSdst
);
2708 sqlite3ExprCacheAffinityChange(pParse
, pIn
->iSdst
, pIn
->nSdst
);
2713 /* Jump to the end of the loop if the LIMIT is reached.
2716 sqlite3VdbeAddOp2(v
, OP_DecrJumpZero
, p
->iLimit
, iBreak
); VdbeCoverage(v
);
2719 /* Generate the subroutine return
2721 sqlite3VdbeResolveLabel(v
, iContinue
);
2722 sqlite3VdbeAddOp1(v
, OP_Return
, regReturn
);
2728 ** Alternative compound select code generator for cases when there
2729 ** is an ORDER BY clause.
2731 ** We assume a query of the following form:
2733 ** <selectA> <operator> <selectB> ORDER BY <orderbylist>
2735 ** <operator> is one of UNION ALL, UNION, EXCEPT, or INTERSECT. The idea
2736 ** is to code both <selectA> and <selectB> with the ORDER BY clause as
2737 ** co-routines. Then run the co-routines in parallel and merge the results
2738 ** into the output. In addition to the two coroutines (called selectA and
2739 ** selectB) there are 7 subroutines:
2741 ** outA: Move the output of the selectA coroutine into the output
2742 ** of the compound query.
2744 ** outB: Move the output of the selectB coroutine into the output
2745 ** of the compound query. (Only generated for UNION and
2746 ** UNION ALL. EXCEPT and INSERTSECT never output a row that
2747 ** appears only in B.)
2749 ** AltB: Called when there is data from both coroutines and A<B.
2751 ** AeqB: Called when there is data from both coroutines and A==B.
2753 ** AgtB: Called when there is data from both coroutines and A>B.
2755 ** EofA: Called when data is exhausted from selectA.
2757 ** EofB: Called when data is exhausted from selectB.
2759 ** The implementation of the latter five subroutines depend on which
2760 ** <operator> is used:
2763 ** UNION ALL UNION EXCEPT INTERSECT
2764 ** ------------- ----------------- -------------- -----------------
2765 ** AltB: outA, nextA outA, nextA outA, nextA nextA
2767 ** AeqB: outA, nextA nextA nextA outA, nextA
2769 ** AgtB: outB, nextB outB, nextB nextB nextB
2771 ** EofA: outB, nextB outB, nextB halt halt
2773 ** EofB: outA, nextA outA, nextA outA, nextA halt
2775 ** In the AltB, AeqB, and AgtB subroutines, an EOF on A following nextA
2776 ** causes an immediate jump to EofA and an EOF on B following nextB causes
2777 ** an immediate jump to EofB. Within EofA and EofB, and EOF on entry or
2778 ** following nextX causes a jump to the end of the select processing.
2780 ** Duplicate removal in the UNION, EXCEPT, and INTERSECT cases is handled
2781 ** within the output subroutine. The regPrev register set holds the previously
2782 ** output value. A comparison is made against this value and the output
2783 ** is skipped if the next results would be the same as the previous.
2785 ** The implementation plan is to implement the two coroutines and seven
2786 ** subroutines first, then put the control logic at the bottom. Like this:
2789 ** coA: coroutine for left query (A)
2790 ** coB: coroutine for right query (B)
2791 ** outA: output one row of A
2792 ** outB: output one row of B (UNION and UNION ALL only)
2798 ** Init: initialize coroutine registers
2800 ** if eof(A) goto EofA
2802 ** if eof(B) goto EofB
2803 ** Cmpr: Compare A, B
2804 ** Jump AltB, AeqB, AgtB
2807 ** We call AltB, AeqB, AgtB, EofA, and EofB "subroutines" but they are not
2808 ** actually called using Gosub and they do not Return. EofA and EofB loop
2809 ** until all data is exhausted then jump to the "end" labe. AltB, AeqB,
2810 ** and AgtB jump to either L2 or to one of EofA or EofB.
2812 #ifndef SQLITE_OMIT_COMPOUND_SELECT
2813 static int multiSelectOrderBy(
2814 Parse
*pParse
, /* Parsing context */
2815 Select
*p
, /* The right-most of SELECTs to be coded */
2816 SelectDest
*pDest
/* What to do with query results */
2818 int i
, j
; /* Loop counters */
2819 Select
*pPrior
; /* Another SELECT immediately to our left */
2820 Vdbe
*v
; /* Generate code to this VDBE */
2821 SelectDest destA
; /* Destination for coroutine A */
2822 SelectDest destB
; /* Destination for coroutine B */
2823 int regAddrA
; /* Address register for select-A coroutine */
2824 int regAddrB
; /* Address register for select-B coroutine */
2825 int addrSelectA
; /* Address of the select-A coroutine */
2826 int addrSelectB
; /* Address of the select-B coroutine */
2827 int regOutA
; /* Address register for the output-A subroutine */
2828 int regOutB
; /* Address register for the output-B subroutine */
2829 int addrOutA
; /* Address of the output-A subroutine */
2830 int addrOutB
= 0; /* Address of the output-B subroutine */
2831 int addrEofA
; /* Address of the select-A-exhausted subroutine */
2832 int addrEofA_noB
; /* Alternate addrEofA if B is uninitialized */
2833 int addrEofB
; /* Address of the select-B-exhausted subroutine */
2834 int addrAltB
; /* Address of the A<B subroutine */
2835 int addrAeqB
; /* Address of the A==B subroutine */
2836 int addrAgtB
; /* Address of the A>B subroutine */
2837 int regLimitA
; /* Limit register for select-A */
2838 int regLimitB
; /* Limit register for select-A */
2839 int regPrev
; /* A range of registers to hold previous output */
2840 int savedLimit
; /* Saved value of p->iLimit */
2841 int savedOffset
; /* Saved value of p->iOffset */
2842 int labelCmpr
; /* Label for the start of the merge algorithm */
2843 int labelEnd
; /* Label for the end of the overall SELECT stmt */
2844 int addr1
; /* Jump instructions that get retargetted */
2845 int op
; /* One of TK_ALL, TK_UNION, TK_EXCEPT, TK_INTERSECT */
2846 KeyInfo
*pKeyDup
= 0; /* Comparison information for duplicate removal */
2847 KeyInfo
*pKeyMerge
; /* Comparison information for merging rows */
2848 sqlite3
*db
; /* Database connection */
2849 ExprList
*pOrderBy
; /* The ORDER BY clause */
2850 int nOrderBy
; /* Number of terms in the ORDER BY clause */
2851 int *aPermute
; /* Mapping from ORDER BY terms to result set columns */
2852 #ifndef SQLITE_OMIT_EXPLAIN
2853 int iSub1
; /* EQP id of left-hand query */
2854 int iSub2
; /* EQP id of right-hand query */
2857 assert( p
->pOrderBy
!=0 );
2858 assert( pKeyDup
==0 ); /* "Managed" code needs this. Ticket #3382. */
2861 assert( v
!=0 ); /* Already thrown the error if VDBE alloc failed */
2862 labelEnd
= sqlite3VdbeMakeLabel(v
);
2863 labelCmpr
= sqlite3VdbeMakeLabel(v
);
2866 /* Patch up the ORDER BY clause
2870 assert( pPrior
->pOrderBy
==0 );
2871 pOrderBy
= p
->pOrderBy
;
2873 nOrderBy
= pOrderBy
->nExpr
;
2875 /* For operators other than UNION ALL we have to make sure that
2876 ** the ORDER BY clause covers every term of the result set. Add
2877 ** terms to the ORDER BY clause as necessary.
2880 for(i
=1; db
->mallocFailed
==0 && i
<=p
->pEList
->nExpr
; i
++){
2881 struct ExprList_item
*pItem
;
2882 for(j
=0, pItem
=pOrderBy
->a
; j
<nOrderBy
; j
++, pItem
++){
2883 assert( pItem
->u
.x
.iOrderByCol
>0 );
2884 if( pItem
->u
.x
.iOrderByCol
==i
) break;
2887 Expr
*pNew
= sqlite3Expr(db
, TK_INTEGER
, 0);
2888 if( pNew
==0 ) return SQLITE_NOMEM_BKPT
;
2889 pNew
->flags
|= EP_IntValue
;
2891 pOrderBy
= sqlite3ExprListAppend(pParse
, pOrderBy
, pNew
);
2892 if( pOrderBy
) pOrderBy
->a
[nOrderBy
++].u
.x
.iOrderByCol
= (u16
)i
;
2897 /* Compute the comparison permutation and keyinfo that is used with
2898 ** the permutation used to determine if the next
2899 ** row of results comes from selectA or selectB. Also add explicit
2900 ** collations to the ORDER BY clause terms so that when the subqueries
2901 ** to the right and the left are evaluated, they use the correct
2904 aPermute
= sqlite3DbMallocRawNN(db
, sizeof(int)*(nOrderBy
+ 1));
2906 struct ExprList_item
*pItem
;
2907 aPermute
[0] = nOrderBy
;
2908 for(i
=1, pItem
=pOrderBy
->a
; i
<=nOrderBy
; i
++, pItem
++){
2909 assert( pItem
->u
.x
.iOrderByCol
>0 );
2910 assert( pItem
->u
.x
.iOrderByCol
<=p
->pEList
->nExpr
);
2911 aPermute
[i
] = pItem
->u
.x
.iOrderByCol
- 1;
2913 pKeyMerge
= multiSelectOrderByKeyInfo(pParse
, p
, 1);
2918 /* Reattach the ORDER BY clause to the query.
2920 p
->pOrderBy
= pOrderBy
;
2921 pPrior
->pOrderBy
= sqlite3ExprListDup(pParse
->db
, pOrderBy
, 0);
2923 /* Allocate a range of temporary registers and the KeyInfo needed
2924 ** for the logic that removes duplicate result rows when the
2925 ** operator is UNION, EXCEPT, or INTERSECT (but not UNION ALL).
2930 int nExpr
= p
->pEList
->nExpr
;
2931 assert( nOrderBy
>=nExpr
|| db
->mallocFailed
);
2932 regPrev
= pParse
->nMem
+1;
2933 pParse
->nMem
+= nExpr
+1;
2934 sqlite3VdbeAddOp2(v
, OP_Integer
, 0, regPrev
);
2935 pKeyDup
= sqlite3KeyInfoAlloc(db
, nExpr
, 1);
2937 assert( sqlite3KeyInfoIsWriteable(pKeyDup
) );
2938 for(i
=0; i
<nExpr
; i
++){
2939 pKeyDup
->aColl
[i
] = multiSelectCollSeq(pParse
, p
, i
);
2940 pKeyDup
->aSortOrder
[i
] = 0;
2945 /* Separate the left and the right query from one another
2949 sqlite3ResolveOrderGroupBy(pParse
, p
, p
->pOrderBy
, "ORDER");
2950 if( pPrior
->pPrior
==0 ){
2951 sqlite3ResolveOrderGroupBy(pParse
, pPrior
, pPrior
->pOrderBy
, "ORDER");
2954 /* Compute the limit registers */
2955 computeLimitRegisters(pParse
, p
, labelEnd
);
2956 if( p
->iLimit
&& op
==TK_ALL
){
2957 regLimitA
= ++pParse
->nMem
;
2958 regLimitB
= ++pParse
->nMem
;
2959 sqlite3VdbeAddOp2(v
, OP_Copy
, p
->iOffset
? p
->iOffset
+1 : p
->iLimit
,
2961 sqlite3VdbeAddOp2(v
, OP_Copy
, regLimitA
, regLimitB
);
2963 regLimitA
= regLimitB
= 0;
2965 sqlite3ExprDelete(db
, p
->pLimit
);
2967 sqlite3ExprDelete(db
, p
->pOffset
);
2970 regAddrA
= ++pParse
->nMem
;
2971 regAddrB
= ++pParse
->nMem
;
2972 regOutA
= ++pParse
->nMem
;
2973 regOutB
= ++pParse
->nMem
;
2974 sqlite3SelectDestInit(&destA
, SRT_Coroutine
, regAddrA
);
2975 sqlite3SelectDestInit(&destB
, SRT_Coroutine
, regAddrB
);
2977 /* Generate a coroutine to evaluate the SELECT statement to the
2978 ** left of the compound operator - the "A" select.
2980 addrSelectA
= sqlite3VdbeCurrentAddr(v
) + 1;
2981 addr1
= sqlite3VdbeAddOp3(v
, OP_InitCoroutine
, regAddrA
, 0, addrSelectA
);
2982 VdbeComment((v
, "left SELECT"));
2983 pPrior
->iLimit
= regLimitA
;
2984 explainSetInteger(iSub1
, pParse
->iNextSelectId
);
2985 sqlite3Select(pParse
, pPrior
, &destA
);
2986 sqlite3VdbeEndCoroutine(v
, regAddrA
);
2987 sqlite3VdbeJumpHere(v
, addr1
);
2989 /* Generate a coroutine to evaluate the SELECT statement on
2990 ** the right - the "B" select
2992 addrSelectB
= sqlite3VdbeCurrentAddr(v
) + 1;
2993 addr1
= sqlite3VdbeAddOp3(v
, OP_InitCoroutine
, regAddrB
, 0, addrSelectB
);
2994 VdbeComment((v
, "right SELECT"));
2995 savedLimit
= p
->iLimit
;
2996 savedOffset
= p
->iOffset
;
2997 p
->iLimit
= regLimitB
;
2999 explainSetInteger(iSub2
, pParse
->iNextSelectId
);
3000 sqlite3Select(pParse
, p
, &destB
);
3001 p
->iLimit
= savedLimit
;
3002 p
->iOffset
= savedOffset
;
3003 sqlite3VdbeEndCoroutine(v
, regAddrB
);
3005 /* Generate a subroutine that outputs the current row of the A
3006 ** select as the next output row of the compound select.
3008 VdbeNoopComment((v
, "Output routine for A"));
3009 addrOutA
= generateOutputSubroutine(pParse
,
3010 p
, &destA
, pDest
, regOutA
,
3011 regPrev
, pKeyDup
, labelEnd
);
3013 /* Generate a subroutine that outputs the current row of the B
3014 ** select as the next output row of the compound select.
3016 if( op
==TK_ALL
|| op
==TK_UNION
){
3017 VdbeNoopComment((v
, "Output routine for B"));
3018 addrOutB
= generateOutputSubroutine(pParse
,
3019 p
, &destB
, pDest
, regOutB
,
3020 regPrev
, pKeyDup
, labelEnd
);
3022 sqlite3KeyInfoUnref(pKeyDup
);
3024 /* Generate a subroutine to run when the results from select A
3025 ** are exhausted and only data in select B remains.
3027 if( op
==TK_EXCEPT
|| op
==TK_INTERSECT
){
3028 addrEofA_noB
= addrEofA
= labelEnd
;
3030 VdbeNoopComment((v
, "eof-A subroutine"));
3031 addrEofA
= sqlite3VdbeAddOp2(v
, OP_Gosub
, regOutB
, addrOutB
);
3032 addrEofA_noB
= sqlite3VdbeAddOp2(v
, OP_Yield
, regAddrB
, labelEnd
);
3034 sqlite3VdbeGoto(v
, addrEofA
);
3035 p
->nSelectRow
= sqlite3LogEstAdd(p
->nSelectRow
, pPrior
->nSelectRow
);
3038 /* Generate a subroutine to run when the results from select B
3039 ** are exhausted and only data in select A remains.
3041 if( op
==TK_INTERSECT
){
3042 addrEofB
= addrEofA
;
3043 if( p
->nSelectRow
> pPrior
->nSelectRow
) p
->nSelectRow
= pPrior
->nSelectRow
;
3045 VdbeNoopComment((v
, "eof-B subroutine"));
3046 addrEofB
= sqlite3VdbeAddOp2(v
, OP_Gosub
, regOutA
, addrOutA
);
3047 sqlite3VdbeAddOp2(v
, OP_Yield
, regAddrA
, labelEnd
); VdbeCoverage(v
);
3048 sqlite3VdbeGoto(v
, addrEofB
);
3051 /* Generate code to handle the case of A<B
3053 VdbeNoopComment((v
, "A-lt-B subroutine"));
3054 addrAltB
= sqlite3VdbeAddOp2(v
, OP_Gosub
, regOutA
, addrOutA
);
3055 sqlite3VdbeAddOp2(v
, OP_Yield
, regAddrA
, addrEofA
); VdbeCoverage(v
);
3056 sqlite3VdbeGoto(v
, labelCmpr
);
3058 /* Generate code to handle the case of A==B
3061 addrAeqB
= addrAltB
;
3062 }else if( op
==TK_INTERSECT
){
3063 addrAeqB
= addrAltB
;
3066 VdbeNoopComment((v
, "A-eq-B subroutine"));
3068 sqlite3VdbeAddOp2(v
, OP_Yield
, regAddrA
, addrEofA
); VdbeCoverage(v
);
3069 sqlite3VdbeGoto(v
, labelCmpr
);
3072 /* Generate code to handle the case of A>B
3074 VdbeNoopComment((v
, "A-gt-B subroutine"));
3075 addrAgtB
= sqlite3VdbeCurrentAddr(v
);
3076 if( op
==TK_ALL
|| op
==TK_UNION
){
3077 sqlite3VdbeAddOp2(v
, OP_Gosub
, regOutB
, addrOutB
);
3079 sqlite3VdbeAddOp2(v
, OP_Yield
, regAddrB
, addrEofB
); VdbeCoverage(v
);
3080 sqlite3VdbeGoto(v
, labelCmpr
);
3082 /* This code runs once to initialize everything.
3084 sqlite3VdbeJumpHere(v
, addr1
);
3085 sqlite3VdbeAddOp2(v
, OP_Yield
, regAddrA
, addrEofA_noB
); VdbeCoverage(v
);
3086 sqlite3VdbeAddOp2(v
, OP_Yield
, regAddrB
, addrEofB
); VdbeCoverage(v
);
3088 /* Implement the main merge loop
3090 sqlite3VdbeResolveLabel(v
, labelCmpr
);
3091 sqlite3VdbeAddOp4(v
, OP_Permutation
, 0, 0, 0, (char*)aPermute
, P4_INTARRAY
);
3092 sqlite3VdbeAddOp4(v
, OP_Compare
, destA
.iSdst
, destB
.iSdst
, nOrderBy
,
3093 (char*)pKeyMerge
, P4_KEYINFO
);
3094 sqlite3VdbeChangeP5(v
, OPFLAG_PERMUTE
);
3095 sqlite3VdbeAddOp3(v
, OP_Jump
, addrAltB
, addrAeqB
, addrAgtB
); VdbeCoverage(v
);
3097 /* Jump to the this point in order to terminate the query.
3099 sqlite3VdbeResolveLabel(v
, labelEnd
);
3101 /* Set the number of output columns
3103 if( pDest
->eDest
==SRT_Output
){
3104 Select
*pFirst
= pPrior
;
3105 while( pFirst
->pPrior
) pFirst
= pFirst
->pPrior
;
3106 generateColumnNames(pParse
, pFirst
->pSrc
, pFirst
->pEList
);
3109 /* Reassembly the compound query so that it will be freed correctly
3110 ** by the calling function */
3112 sqlite3SelectDelete(db
, p
->pPrior
);
3117 /*** TBD: Insert subroutine calls to close cursors on incomplete
3118 **** subqueries ****/
3119 explainComposite(pParse
, p
->op
, iSub1
, iSub2
, 0);
3120 return pParse
->nErr
!=0;
3124 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
3125 /* Forward Declarations */
3126 static void substExprList(sqlite3
*, ExprList
*, int, ExprList
*);
3127 static void substSelect(sqlite3
*, Select
*, int, ExprList
*, int);
3130 ** Scan through the expression pExpr. Replace every reference to
3131 ** a column in table number iTable with a copy of the iColumn-th
3132 ** entry in pEList. (But leave references to the ROWID column
3135 ** This routine is part of the flattening procedure. A subquery
3136 ** whose result set is defined by pEList appears as entry in the
3137 ** FROM clause of a SELECT such that the VDBE cursor assigned to that
3138 ** FORM clause entry is iTable. This routine make the necessary
3139 ** changes to pExpr so that it refers directly to the source table
3140 ** of the subquery rather the result set of the subquery.
3142 static Expr
*substExpr(
3143 sqlite3
*db
, /* Report malloc errors to this connection */
3144 Expr
*pExpr
, /* Expr in which substitution occurs */
3145 int iTable
, /* Table to be substituted */
3146 ExprList
*pEList
/* Substitute expressions */
3148 if( pExpr
==0 ) return 0;
3149 if( pExpr
->op
==TK_COLUMN
&& pExpr
->iTable
==iTable
){
3150 if( pExpr
->iColumn
<0 ){
3151 pExpr
->op
= TK_NULL
;
3154 assert( pEList
!=0 && pExpr
->iColumn
<pEList
->nExpr
);
3155 assert( pExpr
->pLeft
==0 && pExpr
->pRight
==0 );
3156 pNew
= sqlite3ExprDup(db
, pEList
->a
[pExpr
->iColumn
].pExpr
, 0);
3157 sqlite3ExprDelete(db
, pExpr
);
3161 pExpr
->pLeft
= substExpr(db
, pExpr
->pLeft
, iTable
, pEList
);
3162 pExpr
->pRight
= substExpr(db
, pExpr
->pRight
, iTable
, pEList
);
3163 if( ExprHasProperty(pExpr
, EP_xIsSelect
) ){
3164 substSelect(db
, pExpr
->x
.pSelect
, iTable
, pEList
, 1);
3166 substExprList(db
, pExpr
->x
.pList
, iTable
, pEList
);
3171 static void substExprList(
3172 sqlite3
*db
, /* Report malloc errors here */
3173 ExprList
*pList
, /* List to scan and in which to make substitutes */
3174 int iTable
, /* Table to be substituted */
3175 ExprList
*pEList
/* Substitute values */
3178 if( pList
==0 ) return;
3179 for(i
=0; i
<pList
->nExpr
; i
++){
3180 pList
->a
[i
].pExpr
= substExpr(db
, pList
->a
[i
].pExpr
, iTable
, pEList
);
3183 static void substSelect(
3184 sqlite3
*db
, /* Report malloc errors here */
3185 Select
*p
, /* SELECT statement in which to make substitutions */
3186 int iTable
, /* Table to be replaced */
3187 ExprList
*pEList
, /* Substitute values */
3188 int doPrior
/* Do substitutes on p->pPrior too */
3191 struct SrcList_item
*pItem
;
3195 substExprList(db
, p
->pEList
, iTable
, pEList
);
3196 substExprList(db
, p
->pGroupBy
, iTable
, pEList
);
3197 substExprList(db
, p
->pOrderBy
, iTable
, pEList
);
3198 p
->pHaving
= substExpr(db
, p
->pHaving
, iTable
, pEList
);
3199 p
->pWhere
= substExpr(db
, p
->pWhere
, iTable
, pEList
);
3202 for(i
=pSrc
->nSrc
, pItem
=pSrc
->a
; i
>0; i
--, pItem
++){
3203 substSelect(db
, pItem
->pSelect
, iTable
, pEList
, 1);
3204 if( pItem
->fg
.isTabFunc
){
3205 substExprList(db
, pItem
->u1
.pFuncArg
, iTable
, pEList
);
3208 }while( doPrior
&& (p
= p
->pPrior
)!=0 );
3210 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */
3212 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
3214 ** This routine attempts to flatten subqueries as a performance optimization.
3215 ** This routine returns 1 if it makes changes and 0 if no flattening occurs.
3217 ** To understand the concept of flattening, consider the following
3220 ** SELECT a FROM (SELECT x+y AS a FROM t1 WHERE z<100) WHERE a>5
3222 ** The default way of implementing this query is to execute the
3223 ** subquery first and store the results in a temporary table, then
3224 ** run the outer query on that temporary table. This requires two
3225 ** passes over the data. Furthermore, because the temporary table
3226 ** has no indices, the WHERE clause on the outer query cannot be
3229 ** This routine attempts to rewrite queries such as the above into
3230 ** a single flat select, like this:
3232 ** SELECT x+y AS a FROM t1 WHERE z<100 AND a>5
3234 ** The code generated for this simplification gives the same result
3235 ** but only has to scan the data once. And because indices might
3236 ** exist on the table t1, a complete scan of the data might be
3239 ** Flattening is only attempted if all of the following are true:
3241 ** (1) The subquery and the outer query do not both use aggregates.
3243 ** (2) The subquery is not an aggregate or (2a) the outer query is not a join
3244 ** and (2b) the outer query does not use subqueries other than the one
3245 ** FROM-clause subquery that is a candidate for flattening. (2b is
3246 ** due to ticket [2f7170d73bf9abf80] from 2015-02-09.)
3248 ** (3) The subquery is not the right operand of a left outer join
3249 ** (Originally ticket #306. Strengthened by ticket #3300)
3251 ** (4) The subquery is not DISTINCT.
3253 ** (**) At one point restrictions (4) and (5) defined a subset of DISTINCT
3254 ** sub-queries that were excluded from this optimization. Restriction
3255 ** (4) has since been expanded to exclude all DISTINCT subqueries.
3257 ** (6) The subquery does not use aggregates or the outer query is not
3260 ** (7) The subquery has a FROM clause. TODO: For subqueries without
3261 ** A FROM clause, consider adding a FROM close with the special
3262 ** table sqlite_once that consists of a single row containing a
3265 ** (8) The subquery does not use LIMIT or the outer query is not a join.
3267 ** (9) The subquery does not use LIMIT or the outer query does not use
3270 ** (**) Restriction (10) was removed from the code on 2005-02-05 but we
3271 ** accidently carried the comment forward until 2014-09-15. Original
3272 ** text: "The subquery does not use aggregates or the outer query
3273 ** does not use LIMIT."
3275 ** (11) The subquery and the outer query do not both have ORDER BY clauses.
3277 ** (**) Not implemented. Subsumed into restriction (3). Was previously
3278 ** a separate restriction deriving from ticket #350.
3280 ** (13) The subquery and outer query do not both use LIMIT.
3282 ** (14) The subquery does not use OFFSET.
3284 ** (15) The outer query is not part of a compound select or the
3285 ** subquery does not have a LIMIT clause.
3286 ** (See ticket #2339 and ticket [02a8e81d44]).
3288 ** (16) The outer query is not an aggregate or the subquery does
3289 ** not contain ORDER BY. (Ticket #2942) This used to not matter
3290 ** until we introduced the group_concat() function.
3292 ** (17) The sub-query is not a compound select, or it is a UNION ALL
3293 ** compound clause made up entirely of non-aggregate queries, and
3294 ** the parent query:
3296 ** * is not itself part of a compound select,
3297 ** * is not an aggregate or DISTINCT query, and
3300 ** The parent and sub-query may contain WHERE clauses. Subject to
3301 ** rules (11), (13) and (14), they may also contain ORDER BY,
3302 ** LIMIT and OFFSET clauses. The subquery cannot use any compound
3303 ** operator other than UNION ALL because all the other compound
3304 ** operators have an implied DISTINCT which is disallowed by
3307 ** Also, each component of the sub-query must return the same number
3308 ** of result columns. This is actually a requirement for any compound
3309 ** SELECT statement, but all the code here does is make sure that no
3310 ** such (illegal) sub-query is flattened. The caller will detect the
3311 ** syntax error and return a detailed message.
3313 ** (18) If the sub-query is a compound select, then all terms of the
3314 ** ORDER by clause of the parent must be simple references to
3315 ** columns of the sub-query.
3317 ** (19) The subquery does not use LIMIT or the outer query does not
3318 ** have a WHERE clause.
3320 ** (20) If the sub-query is a compound select, then it must not use
3321 ** an ORDER BY clause. Ticket #3773. We could relax this constraint
3322 ** somewhat by saying that the terms of the ORDER BY clause must
3323 ** appear as unmodified result columns in the outer query. But we
3324 ** have other optimizations in mind to deal with that case.
3326 ** (21) The subquery does not use LIMIT or the outer query is not
3327 ** DISTINCT. (See ticket [752e1646fc]).
3329 ** (22) The subquery is not a recursive CTE.
3331 ** (23) The parent is not a recursive CTE, or the sub-query is not a
3332 ** compound query. This restriction is because transforming the
3333 ** parent to a compound query confuses the code that handles
3334 ** recursive queries in multiSelect().
3336 ** (24) The subquery is not an aggregate that uses the built-in min() or
3337 ** or max() functions. (Without this restriction, a query like:
3338 ** "SELECT x FROM (SELECT max(y), x FROM t1)" would not necessarily
3339 ** return the value X for which Y was maximal.)
3342 ** In this routine, the "p" parameter is a pointer to the outer query.
3343 ** The subquery is p->pSrc->a[iFrom]. isAgg is true if the outer query
3344 ** uses aggregates and subqueryIsAgg is true if the subquery uses aggregates.
3346 ** If flattening is not attempted, this routine is a no-op and returns 0.
3347 ** If flattening is attempted this routine returns 1.
3349 ** All of the expression analysis must occur on both the outer query and
3350 ** the subquery before this routine runs.
3352 static int flattenSubquery(
3353 Parse
*pParse
, /* Parsing context */
3354 Select
*p
, /* The parent or outer SELECT statement */
3355 int iFrom
, /* Index in p->pSrc->a[] of the inner subquery */
3356 int isAgg
, /* True if outer SELECT uses aggregate functions */
3357 int subqueryIsAgg
/* True if the subquery uses aggregate functions */
3359 const char *zSavedAuthContext
= pParse
->zAuthContext
;
3360 Select
*pParent
; /* Current UNION ALL term of the other query */
3361 Select
*pSub
; /* The inner query or "subquery" */
3362 Select
*pSub1
; /* Pointer to the rightmost select in sub-query */
3363 SrcList
*pSrc
; /* The FROM clause of the outer query */
3364 SrcList
*pSubSrc
; /* The FROM clause of the subquery */
3365 ExprList
*pList
; /* The result set of the outer query */
3366 int iParent
; /* VDBE cursor number of the pSub result set temp table */
3367 int i
; /* Loop counter */
3368 Expr
*pWhere
; /* The WHERE clause */
3369 struct SrcList_item
*pSubitem
; /* The subquery */
3370 sqlite3
*db
= pParse
->db
;
3372 /* Check to see if flattening is permitted. Return 0 if not.
3375 assert( p
->pPrior
==0 ); /* Unable to flatten compound queries */
3376 if( OptimizationDisabled(db
, SQLITE_QueryFlattener
) ) return 0;
3378 assert( pSrc
&& iFrom
>=0 && iFrom
<pSrc
->nSrc
);
3379 pSubitem
= &pSrc
->a
[iFrom
];
3380 iParent
= pSubitem
->iCursor
;
3381 pSub
= pSubitem
->pSelect
;
3383 if( subqueryIsAgg
){
3384 if( isAgg
) return 0; /* Restriction (1) */
3385 if( pSrc
->nSrc
>1 ) return 0; /* Restriction (2a) */
3386 if( (p
->pWhere
&& ExprHasProperty(p
->pWhere
,EP_Subquery
))
3387 || (sqlite3ExprListFlags(p
->pEList
) & EP_Subquery
)!=0
3388 || (sqlite3ExprListFlags(p
->pOrderBy
) & EP_Subquery
)!=0
3390 return 0; /* Restriction (2b) */
3394 pSubSrc
= pSub
->pSrc
;
3396 /* Prior to version 3.1.2, when LIMIT and OFFSET had to be simple constants,
3397 ** not arbitrary expressions, we allowed some combining of LIMIT and OFFSET
3398 ** because they could be computed at compile-time. But when LIMIT and OFFSET
3399 ** became arbitrary expressions, we were forced to add restrictions (13)
3401 if( pSub
->pLimit
&& p
->pLimit
) return 0; /* Restriction (13) */
3402 if( pSub
->pOffset
) return 0; /* Restriction (14) */
3403 if( (p
->selFlags
& SF_Compound
)!=0 && pSub
->pLimit
){
3404 return 0; /* Restriction (15) */
3406 if( pSubSrc
->nSrc
==0 ) return 0; /* Restriction (7) */
3407 if( pSub
->selFlags
& SF_Distinct
) return 0; /* Restriction (5) */
3408 if( pSub
->pLimit
&& (pSrc
->nSrc
>1 || isAgg
) ){
3409 return 0; /* Restrictions (8)(9) */
3411 if( (p
->selFlags
& SF_Distinct
)!=0 && subqueryIsAgg
){
3412 return 0; /* Restriction (6) */
3414 if( p
->pOrderBy
&& pSub
->pOrderBy
){
3415 return 0; /* Restriction (11) */
3417 if( isAgg
&& pSub
->pOrderBy
) return 0; /* Restriction (16) */
3418 if( pSub
->pLimit
&& p
->pWhere
) return 0; /* Restriction (19) */
3419 if( pSub
->pLimit
&& (p
->selFlags
& SF_Distinct
)!=0 ){
3420 return 0; /* Restriction (21) */
3422 testcase( pSub
->selFlags
& SF_Recursive
);
3423 testcase( pSub
->selFlags
& SF_MinMaxAgg
);
3424 if( pSub
->selFlags
& (SF_Recursive
|SF_MinMaxAgg
) ){
3425 return 0; /* Restrictions (22) and (24) */
3427 if( (p
->selFlags
& SF_Recursive
) && pSub
->pPrior
){
3428 return 0; /* Restriction (23) */
3431 /* OBSOLETE COMMENT 1:
3432 ** Restriction 3: If the subquery is a join, make sure the subquery is
3433 ** not used as the right operand of an outer join. Examples of why this
3436 ** t1 LEFT OUTER JOIN (t2 JOIN t3)
3438 ** If we flatten the above, we would get
3440 ** (t1 LEFT OUTER JOIN t2) JOIN t3
3442 ** which is not at all the same thing.
3444 ** OBSOLETE COMMENT 2:
3445 ** Restriction 12: If the subquery is the right operand of a left outer
3446 ** join, make sure the subquery has no WHERE clause.
3447 ** An examples of why this is not allowed:
3449 ** t1 LEFT OUTER JOIN (SELECT * FROM t2 WHERE t2.x>0)
3451 ** If we flatten the above, we would get
3453 ** (t1 LEFT OUTER JOIN t2) WHERE t2.x>0
3455 ** But the t2.x>0 test will always fail on a NULL row of t2, which
3456 ** effectively converts the OUTER JOIN into an INNER JOIN.
3458 ** THIS OVERRIDES OBSOLETE COMMENTS 1 AND 2 ABOVE:
3459 ** Ticket #3300 shows that flattening the right term of a LEFT JOIN
3460 ** is fraught with danger. Best to avoid the whole thing. If the
3461 ** subquery is the right term of a LEFT JOIN, then do not flatten.
3463 if( (pSubitem
->fg
.jointype
& JT_OUTER
)!=0 ){
3467 /* Restriction 17: If the sub-query is a compound SELECT, then it must
3468 ** use only the UNION ALL operator. And none of the simple select queries
3469 ** that make up the compound SELECT are allowed to be aggregate or distinct
3473 if( pSub
->pOrderBy
){
3474 return 0; /* Restriction 20 */
3476 if( isAgg
|| (p
->selFlags
& SF_Distinct
)!=0 || pSrc
->nSrc
!=1 ){
3479 for(pSub1
=pSub
; pSub1
; pSub1
=pSub1
->pPrior
){
3480 testcase( (pSub1
->selFlags
& (SF_Distinct
|SF_Aggregate
))==SF_Distinct
);
3481 testcase( (pSub1
->selFlags
& (SF_Distinct
|SF_Aggregate
))==SF_Aggregate
);
3482 assert( pSub
->pSrc
!=0 );
3483 assert( pSub
->pEList
->nExpr
==pSub1
->pEList
->nExpr
);
3484 if( (pSub1
->selFlags
& (SF_Distinct
|SF_Aggregate
))!=0
3485 || (pSub1
->pPrior
&& pSub1
->op
!=TK_ALL
)
3486 || pSub1
->pSrc
->nSrc
<1
3490 testcase( pSub1
->pSrc
->nSrc
>1 );
3493 /* Restriction 18. */
3496 for(ii
=0; ii
<p
->pOrderBy
->nExpr
; ii
++){
3497 if( p
->pOrderBy
->a
[ii
].u
.x
.iOrderByCol
==0 ) return 0;
3502 /***** If we reach this point, flattening is permitted. *****/
3503 SELECTTRACE(1,pParse
,p
,("flatten %s.%p from term %d\n",
3504 pSub
->zSelName
, pSub
, iFrom
));
3506 /* Authorize the subquery */
3507 pParse
->zAuthContext
= pSubitem
->zName
;
3508 TESTONLY(i
=) sqlite3AuthCheck(pParse
, SQLITE_SELECT
, 0, 0, 0);
3509 testcase( i
==SQLITE_DENY
);
3510 pParse
->zAuthContext
= zSavedAuthContext
;
3512 /* If the sub-query is a compound SELECT statement, then (by restrictions
3513 ** 17 and 18 above) it must be a UNION ALL and the parent query must
3516 ** SELECT <expr-list> FROM (<sub-query>) <where-clause>
3518 ** followed by any ORDER BY, LIMIT and/or OFFSET clauses. This block
3519 ** creates N-1 copies of the parent query without any ORDER BY, LIMIT or
3520 ** OFFSET clauses and joins them to the left-hand-side of the original
3521 ** using UNION ALL operators. In this case N is the number of simple
3522 ** select statements in the compound sub-query.
3526 ** SELECT a+1 FROM (
3527 ** SELECT x FROM tab
3529 ** SELECT y FROM tab
3531 ** SELECT abs(z*2) FROM tab2
3532 ** ) WHERE a!=5 ORDER BY 1
3534 ** Transformed into:
3536 ** SELECT x+1 FROM tab WHERE x+1!=5
3538 ** SELECT y+1 FROM tab WHERE y+1!=5
3540 ** SELECT abs(z*2)+1 FROM tab2 WHERE abs(z*2)+1!=5
3543 ** We call this the "compound-subquery flattening".
3545 for(pSub
=pSub
->pPrior
; pSub
; pSub
=pSub
->pPrior
){
3547 ExprList
*pOrderBy
= p
->pOrderBy
;
3548 Expr
*pLimit
= p
->pLimit
;
3549 Expr
*pOffset
= p
->pOffset
;
3550 Select
*pPrior
= p
->pPrior
;
3556 pNew
= sqlite3SelectDup(db
, p
, 0);
3557 sqlite3SelectSetName(pNew
, pSub
->zSelName
);
3558 p
->pOffset
= pOffset
;
3560 p
->pOrderBy
= pOrderBy
;
3566 pNew
->pPrior
= pPrior
;
3567 if( pPrior
) pPrior
->pNext
= pNew
;
3570 SELECTTRACE(2,pParse
,p
,
3571 ("compound-subquery flattener creates %s.%p as peer\n",
3572 pNew
->zSelName
, pNew
));
3574 if( db
->mallocFailed
) return 1;
3577 /* Begin flattening the iFrom-th entry of the FROM clause
3578 ** in the outer query.
3580 pSub
= pSub1
= pSubitem
->pSelect
;
3582 /* Delete the transient table structure associated with the
3585 sqlite3DbFree(db
, pSubitem
->zDatabase
);
3586 sqlite3DbFree(db
, pSubitem
->zName
);
3587 sqlite3DbFree(db
, pSubitem
->zAlias
);
3588 pSubitem
->zDatabase
= 0;
3589 pSubitem
->zName
= 0;
3590 pSubitem
->zAlias
= 0;
3591 pSubitem
->pSelect
= 0;
3593 /* Defer deleting the Table object associated with the
3594 ** subquery until code generation is
3595 ** complete, since there may still exist Expr.pTab entries that
3596 ** refer to the subquery even after flattening. Ticket #3346.
3598 ** pSubitem->pTab is always non-NULL by test restrictions and tests above.
3600 if( ALWAYS(pSubitem
->pTab
!=0) ){
3601 Table
*pTabToDel
= pSubitem
->pTab
;
3602 if( pTabToDel
->nRef
==1 ){
3603 Parse
*pToplevel
= sqlite3ParseToplevel(pParse
);
3604 pTabToDel
->pNextZombie
= pToplevel
->pZombieTab
;
3605 pToplevel
->pZombieTab
= pTabToDel
;
3612 /* The following loop runs once for each term in a compound-subquery
3613 ** flattening (as described above). If we are doing a different kind
3614 ** of flattening - a flattening other than a compound-subquery flattening -
3615 ** then this loop only runs once.
3617 ** This loop moves all of the FROM elements of the subquery into the
3618 ** the FROM clause of the outer query. Before doing this, remember
3619 ** the cursor number for the original outer query FROM element in
3620 ** iParent. The iParent cursor will never be used. Subsequent code
3621 ** will scan expressions looking for iParent references and replace
3622 ** those references with expressions that resolve to the subquery FROM
3623 ** elements we are now copying in.
3625 for(pParent
=p
; pParent
; pParent
=pParent
->pPrior
, pSub
=pSub
->pPrior
){
3628 pSubSrc
= pSub
->pSrc
; /* FROM clause of subquery */
3629 nSubSrc
= pSubSrc
->nSrc
; /* Number of terms in subquery FROM clause */
3630 pSrc
= pParent
->pSrc
; /* FROM clause of the outer query */
3633 assert( pParent
==p
); /* First time through the loop */
3634 jointype
= pSubitem
->fg
.jointype
;
3636 assert( pParent
!=p
); /* 2nd and subsequent times through the loop */
3637 pSrc
= pParent
->pSrc
= sqlite3SrcListAppend(db
, 0, 0, 0);
3639 assert( db
->mallocFailed
);
3644 /* The subquery uses a single slot of the FROM clause of the outer
3645 ** query. If the subquery has more than one element in its FROM clause,
3646 ** then expand the outer query to make space for it to hold all elements
3651 ** SELECT * FROM tabA, (SELECT * FROM sub1, sub2), tabB;
3653 ** The outer query has 3 slots in its FROM clause. One slot of the
3654 ** outer query (the middle slot) is used by the subquery. The next
3655 ** block of code will expand the outer query FROM clause to 4 slots.
3656 ** The middle slot is expanded to two slots in order to make space
3657 ** for the two elements in the FROM clause of the subquery.
3660 pParent
->pSrc
= pSrc
= sqlite3SrcListEnlarge(db
, pSrc
, nSubSrc
-1,iFrom
+1);
3661 if( db
->mallocFailed
){
3666 /* Transfer the FROM clause terms from the subquery into the
3669 for(i
=0; i
<nSubSrc
; i
++){
3670 sqlite3IdListDelete(db
, pSrc
->a
[i
+iFrom
].pUsing
);
3671 assert( pSrc
->a
[i
+iFrom
].fg
.isTabFunc
==0 );
3672 pSrc
->a
[i
+iFrom
] = pSubSrc
->a
[i
];
3673 memset(&pSubSrc
->a
[i
], 0, sizeof(pSubSrc
->a
[i
]));
3675 pSrc
->a
[iFrom
].fg
.jointype
= jointype
;
3677 /* Now begin substituting subquery result set expressions for
3678 ** references to the iParent in the outer query.
3682 ** SELECT a+5, b*10 FROM (SELECT x*3 AS a, y+10 AS b FROM t1) WHERE a>b;
3683 ** \ \_____________ subquery __________/ /
3684 ** \_____________________ outer query ______________________________/
3686 ** We look at every expression in the outer query and every place we see
3687 ** "a" we substitute "x*3" and every place we see "b" we substitute "y+10".
3689 pList
= pParent
->pEList
;
3690 for(i
=0; i
<pList
->nExpr
; i
++){
3691 if( pList
->a
[i
].zName
==0 ){
3692 char *zName
= sqlite3DbStrDup(db
, pList
->a
[i
].zSpan
);
3693 sqlite3Dequote(zName
);
3694 pList
->a
[i
].zName
= zName
;
3697 if( pSub
->pOrderBy
){
3698 /* At this point, any non-zero iOrderByCol values indicate that the
3699 ** ORDER BY column expression is identical to the iOrderByCol'th
3700 ** expression returned by SELECT statement pSub. Since these values
3701 ** do not necessarily correspond to columns in SELECT statement pParent,
3702 ** zero them before transfering the ORDER BY clause.
3704 ** Not doing this may cause an error if a subsequent call to this
3705 ** function attempts to flatten a compound sub-query into pParent
3706 ** (the only way this can happen is if the compound sub-query is
3707 ** currently part of pSub->pSrc). See ticket [d11a6e908f]. */
3708 ExprList
*pOrderBy
= pSub
->pOrderBy
;
3709 for(i
=0; i
<pOrderBy
->nExpr
; i
++){
3710 pOrderBy
->a
[i
].u
.x
.iOrderByCol
= 0;
3712 assert( pParent
->pOrderBy
==0 );
3713 assert( pSub
->pPrior
==0 );
3714 pParent
->pOrderBy
= pOrderBy
;
3717 pWhere
= sqlite3ExprDup(db
, pSub
->pWhere
, 0);
3718 if( subqueryIsAgg
){
3719 assert( pParent
->pHaving
==0 );
3720 pParent
->pHaving
= pParent
->pWhere
;
3721 pParent
->pWhere
= pWhere
;
3722 pParent
->pHaving
= sqlite3ExprAnd(db
, pParent
->pHaving
,
3723 sqlite3ExprDup(db
, pSub
->pHaving
, 0));
3724 assert( pParent
->pGroupBy
==0 );
3725 pParent
->pGroupBy
= sqlite3ExprListDup(db
, pSub
->pGroupBy
, 0);
3727 pParent
->pWhere
= sqlite3ExprAnd(db
, pParent
->pWhere
, pWhere
);
3729 substSelect(db
, pParent
, iParent
, pSub
->pEList
, 0);
3731 /* The flattened query is distinct if either the inner or the
3732 ** outer query is distinct.
3734 pParent
->selFlags
|= pSub
->selFlags
& SF_Distinct
;
3737 ** SELECT ... FROM (SELECT ... LIMIT a OFFSET b) LIMIT x OFFSET y;
3739 ** One is tempted to try to add a and b to combine the limits. But this
3740 ** does not work if either limit is negative.
3743 pParent
->pLimit
= pSub
->pLimit
;
3748 /* Finially, delete what is left of the subquery and return
3751 sqlite3SelectDelete(db
, pSub1
);
3753 #if SELECTTRACE_ENABLED
3754 if( sqlite3SelectTrace
& 0x100 ){
3755 SELECTTRACE(0x100,pParse
,p
,("After flattening:\n"));
3756 sqlite3TreeViewSelect(0, p
, 0);
3762 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */
3766 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
3768 ** Make copies of relevant WHERE clause terms of the outer query into
3769 ** the WHERE clause of subquery. Example:
3771 ** SELECT * FROM (SELECT a AS x, c-d AS y FROM t1) WHERE x=5 AND y=10;
3773 ** Transformed into:
3775 ** SELECT * FROM (SELECT a AS x, c-d AS y FROM t1 WHERE a=5 AND c-d=10)
3776 ** WHERE x=5 AND y=10;
3778 ** The hope is that the terms added to the inner query will make it more
3781 ** Do not attempt this optimization if:
3783 ** (1) The inner query is an aggregate. (In that case, we'd really want
3784 ** to copy the outer WHERE-clause terms onto the HAVING clause of the
3785 ** inner query. But they probably won't help there so do not bother.)
3787 ** (2) The inner query is the recursive part of a common table expression.
3789 ** (3) The inner query has a LIMIT clause (since the changes to the WHERE
3790 ** close would change the meaning of the LIMIT).
3792 ** (4) The inner query is the right operand of a LEFT JOIN. (The caller
3793 ** enforces this restriction since this routine does not have enough
3794 ** information to know.)
3796 ** (5) The WHERE clause expression originates in the ON or USING clause
3799 ** Return 0 if no changes are made and non-zero if one or more WHERE clause
3800 ** terms are duplicated into the subquery.
3802 static int pushDownWhereTerms(
3803 sqlite3
*db
, /* The database connection (for malloc()) */
3804 Select
*pSubq
, /* The subquery whose WHERE clause is to be augmented */
3805 Expr
*pWhere
, /* The WHERE clause of the outer query */
3806 int iCursor
/* Cursor number of the subquery */
3810 Select
*pX
; /* For looping over compound SELECTs in pSubq */
3811 if( pWhere
==0 ) return 0;
3812 for(pX
=pSubq
; pX
; pX
=pX
->pPrior
){
3813 if( (pX
->selFlags
& (SF_Aggregate
|SF_Recursive
))!=0 ){
3814 testcase( pX
->selFlags
& SF_Aggregate
);
3815 testcase( pX
->selFlags
& SF_Recursive
);
3816 testcase( pX
!=pSubq
);
3817 return 0; /* restrictions (1) and (2) */
3820 if( pSubq
->pLimit
!=0 ){
3821 return 0; /* restriction (3) */
3823 while( pWhere
->op
==TK_AND
){
3824 nChng
+= pushDownWhereTerms(db
, pSubq
, pWhere
->pRight
, iCursor
);
3825 pWhere
= pWhere
->pLeft
;
3827 if( ExprHasProperty(pWhere
,EP_FromJoin
) ) return 0; /* restriction 5 */
3828 if( sqlite3ExprIsTableConstant(pWhere
, iCursor
) ){
3831 pNew
= sqlite3ExprDup(db
, pWhere
, 0);
3832 pNew
= substExpr(db
, pNew
, iCursor
, pSubq
->pEList
);
3833 pSubq
->pWhere
= sqlite3ExprAnd(db
, pSubq
->pWhere
, pNew
);
3834 pSubq
= pSubq
->pPrior
;
3839 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */
3842 ** Based on the contents of the AggInfo structure indicated by the first
3843 ** argument, this function checks if the following are true:
3845 ** * the query contains just a single aggregate function,
3846 ** * the aggregate function is either min() or max(), and
3847 ** * the argument to the aggregate function is a column value.
3849 ** If all of the above are true, then WHERE_ORDERBY_MIN or WHERE_ORDERBY_MAX
3850 ** is returned as appropriate. Also, *ppMinMax is set to point to the
3851 ** list of arguments passed to the aggregate before returning.
3853 ** Or, if the conditions above are not met, *ppMinMax is set to 0 and
3854 ** WHERE_ORDERBY_NORMAL is returned.
3856 static u8
minMaxQuery(AggInfo
*pAggInfo
, ExprList
**ppMinMax
){
3857 int eRet
= WHERE_ORDERBY_NORMAL
; /* Return value */
3860 if( pAggInfo
->nFunc
==1 ){
3861 Expr
*pExpr
= pAggInfo
->aFunc
[0].pExpr
; /* Aggregate function */
3862 ExprList
*pEList
= pExpr
->x
.pList
; /* Arguments to agg function */
3864 assert( pExpr
->op
==TK_AGG_FUNCTION
);
3865 if( pEList
&& pEList
->nExpr
==1 && pEList
->a
[0].pExpr
->op
==TK_AGG_COLUMN
){
3866 const char *zFunc
= pExpr
->u
.zToken
;
3867 if( sqlite3StrICmp(zFunc
, "min")==0 ){
3868 eRet
= WHERE_ORDERBY_MIN
;
3870 }else if( sqlite3StrICmp(zFunc
, "max")==0 ){
3871 eRet
= WHERE_ORDERBY_MAX
;
3877 assert( *ppMinMax
==0 || (*ppMinMax
)->nExpr
==1 );
3882 ** The select statement passed as the first argument is an aggregate query.
3883 ** The second argument is the associated aggregate-info object. This
3884 ** function tests if the SELECT is of the form:
3886 ** SELECT count(*) FROM <tbl>
3888 ** where table is a database table, not a sub-select or view. If the query
3889 ** does match this pattern, then a pointer to the Table object representing
3890 ** <tbl> is returned. Otherwise, 0 is returned.
3892 static Table
*isSimpleCount(Select
*p
, AggInfo
*pAggInfo
){
3896 assert( !p
->pGroupBy
);
3898 if( p
->pWhere
|| p
->pEList
->nExpr
!=1
3899 || p
->pSrc
->nSrc
!=1 || p
->pSrc
->a
[0].pSelect
3903 pTab
= p
->pSrc
->a
[0].pTab
;
3904 pExpr
= p
->pEList
->a
[0].pExpr
;
3905 assert( pTab
&& !pTab
->pSelect
&& pExpr
);
3907 if( IsVirtual(pTab
) ) return 0;
3908 if( pExpr
->op
!=TK_AGG_FUNCTION
) return 0;
3909 if( NEVER(pAggInfo
->nFunc
==0) ) return 0;
3910 if( (pAggInfo
->aFunc
[0].pFunc
->funcFlags
&SQLITE_FUNC_COUNT
)==0 ) return 0;
3911 if( pExpr
->flags
&EP_Distinct
) return 0;
3917 ** If the source-list item passed as an argument was augmented with an
3918 ** INDEXED BY clause, then try to locate the specified index. If there
3919 ** was such a clause and the named index cannot be found, return
3920 ** SQLITE_ERROR and leave an error in pParse. Otherwise, populate
3921 ** pFrom->pIndex and return SQLITE_OK.
3923 int sqlite3IndexedByLookup(Parse
*pParse
, struct SrcList_item
*pFrom
){
3924 if( pFrom
->pTab
&& pFrom
->fg
.isIndexedBy
){
3925 Table
*pTab
= pFrom
->pTab
;
3926 char *zIndexedBy
= pFrom
->u1
.zIndexedBy
;
3928 for(pIdx
=pTab
->pIndex
;
3929 pIdx
&& sqlite3StrICmp(pIdx
->zName
, zIndexedBy
);
3933 sqlite3ErrorMsg(pParse
, "no such index: %s", zIndexedBy
, 0);
3934 pParse
->checkSchema
= 1;
3935 return SQLITE_ERROR
;
3937 pFrom
->pIBIndex
= pIdx
;
3942 ** Detect compound SELECT statements that use an ORDER BY clause with
3943 ** an alternative collating sequence.
3945 ** SELECT ... FROM t1 EXCEPT SELECT ... FROM t2 ORDER BY .. COLLATE ...
3947 ** These are rewritten as a subquery:
3949 ** SELECT * FROM (SELECT ... FROM t1 EXCEPT SELECT ... FROM t2)
3950 ** ORDER BY ... COLLATE ...
3952 ** This transformation is necessary because the multiSelectOrderBy() routine
3953 ** above that generates the code for a compound SELECT with an ORDER BY clause
3954 ** uses a merge algorithm that requires the same collating sequence on the
3955 ** result columns as on the ORDER BY clause. See ticket
3956 ** http://www.sqlite.org/src/info/6709574d2a
3958 ** This transformation is only needed for EXCEPT, INTERSECT, and UNION.
3959 ** The UNION ALL operator works fine with multiSelectOrderBy() even when
3960 ** there are COLLATE terms in the ORDER BY.
3962 static int convertCompoundSelectToSubquery(Walker
*pWalker
, Select
*p
){
3967 struct ExprList_item
*a
;
3972 if( p
->pPrior
==0 ) return WRC_Continue
;
3973 if( p
->pOrderBy
==0 ) return WRC_Continue
;
3974 for(pX
=p
; pX
&& (pX
->op
==TK_ALL
|| pX
->op
==TK_SELECT
); pX
=pX
->pPrior
){}
3975 if( pX
==0 ) return WRC_Continue
;
3977 for(i
=p
->pOrderBy
->nExpr
-1; i
>=0; i
--){
3978 if( a
[i
].pExpr
->flags
& EP_Collate
) break;
3980 if( i
<0 ) return WRC_Continue
;
3982 /* If we reach this point, that means the transformation is required. */
3984 pParse
= pWalker
->pParse
;
3986 pNew
= sqlite3DbMallocZero(db
, sizeof(*pNew
) );
3987 if( pNew
==0 ) return WRC_Abort
;
3988 memset(&dummy
, 0, sizeof(dummy
));
3989 pNewSrc
= sqlite3SrcListAppendFromTerm(pParse
,0,0,0,&dummy
,pNew
,0,0);
3990 if( pNewSrc
==0 ) return WRC_Abort
;
3993 p
->pEList
= sqlite3ExprListAppend(pParse
, 0, sqlite3Expr(db
, TK_ASTERISK
, 0));
4002 p
->selFlags
&= ~SF_Compound
;
4003 assert( (p
->selFlags
& SF_Converted
)==0 );
4004 p
->selFlags
|= SF_Converted
;
4005 assert( pNew
->pPrior
!=0 );
4006 pNew
->pPrior
->pNext
= pNew
;
4009 return WRC_Continue
;
4013 ** Check to see if the FROM clause term pFrom has table-valued function
4014 ** arguments. If it does, leave an error message in pParse and return
4015 ** non-zero, since pFrom is not allowed to be a table-valued function.
4017 static int cannotBeFunction(Parse
*pParse
, struct SrcList_item
*pFrom
){
4018 if( pFrom
->fg
.isTabFunc
){
4019 sqlite3ErrorMsg(pParse
, "'%s' is not a function", pFrom
->zName
);
4025 #ifndef SQLITE_OMIT_CTE
4027 ** Argument pWith (which may be NULL) points to a linked list of nested
4028 ** WITH contexts, from inner to outermost. If the table identified by
4029 ** FROM clause element pItem is really a common-table-expression (CTE)
4030 ** then return a pointer to the CTE definition for that table. Otherwise
4033 ** If a non-NULL value is returned, set *ppContext to point to the With
4034 ** object that the returned CTE belongs to.
4036 static struct Cte
*searchWith(
4037 With
*pWith
, /* Current innermost WITH clause */
4038 struct SrcList_item
*pItem
, /* FROM clause element to resolve */
4039 With
**ppContext
/* OUT: WITH clause return value belongs to */
4042 if( pItem
->zDatabase
==0 && (zName
= pItem
->zName
)!=0 ){
4044 for(p
=pWith
; p
; p
=p
->pOuter
){
4046 for(i
=0; i
<p
->nCte
; i
++){
4047 if( sqlite3StrICmp(zName
, p
->a
[i
].zName
)==0 ){
4057 /* The code generator maintains a stack of active WITH clauses
4058 ** with the inner-most WITH clause being at the top of the stack.
4060 ** This routine pushes the WITH clause passed as the second argument
4061 ** onto the top of the stack. If argument bFree is true, then this
4062 ** WITH clause will never be popped from the stack. In this case it
4063 ** should be freed along with the Parse object. In other cases, when
4064 ** bFree==0, the With object will be freed along with the SELECT
4065 ** statement with which it is associated.
4067 void sqlite3WithPush(Parse
*pParse
, With
*pWith
, u8 bFree
){
4068 assert( bFree
==0 || (pParse
->pWith
==0 && pParse
->pWithToFree
==0) );
4070 assert( pParse
->pWith
!=pWith
);
4071 pWith
->pOuter
= pParse
->pWith
;
4072 pParse
->pWith
= pWith
;
4073 if( bFree
) pParse
->pWithToFree
= pWith
;
4078 ** This function checks if argument pFrom refers to a CTE declared by
4079 ** a WITH clause on the stack currently maintained by the parser. And,
4080 ** if currently processing a CTE expression, if it is a recursive
4081 ** reference to the current CTE.
4083 ** If pFrom falls into either of the two categories above, pFrom->pTab
4084 ** and other fields are populated accordingly. The caller should check
4085 ** (pFrom->pTab!=0) to determine whether or not a successful match
4088 ** Whether or not a match is found, SQLITE_OK is returned if no error
4089 ** occurs. If an error does occur, an error message is stored in the
4090 ** parser and some error code other than SQLITE_OK returned.
4092 static int withExpand(
4094 struct SrcList_item
*pFrom
4096 Parse
*pParse
= pWalker
->pParse
;
4097 sqlite3
*db
= pParse
->db
;
4098 struct Cte
*pCte
; /* Matched CTE (or NULL if no match) */
4099 With
*pWith
; /* WITH clause that pCte belongs to */
4101 assert( pFrom
->pTab
==0 );
4103 pCte
= searchWith(pParse
->pWith
, pFrom
, &pWith
);
4108 Select
*pLeft
; /* Left-most SELECT statement */
4109 int bMayRecursive
; /* True if compound joined by UNION [ALL] */
4110 With
*pSavedWith
; /* Initial value of pParse->pWith */
4112 /* If pCte->zCteErr is non-NULL at this point, then this is an illegal
4113 ** recursive reference to CTE pCte. Leave an error in pParse and return
4114 ** early. If pCte->zCteErr is NULL, then this is not a recursive reference.
4115 ** In this case, proceed. */
4116 if( pCte
->zCteErr
){
4117 sqlite3ErrorMsg(pParse
, pCte
->zCteErr
, pCte
->zName
);
4118 return SQLITE_ERROR
;
4120 if( cannotBeFunction(pParse
, pFrom
) ) return SQLITE_ERROR
;
4122 assert( pFrom
->pTab
==0 );
4123 pFrom
->pTab
= pTab
= sqlite3DbMallocZero(db
, sizeof(Table
));
4124 if( pTab
==0 ) return WRC_Abort
;
4126 pTab
->zName
= sqlite3DbStrDup(db
, pCte
->zName
);
4128 pTab
->nRowLogEst
= 200; assert( 200==sqlite3LogEst(1048576) );
4129 pTab
->tabFlags
|= TF_Ephemeral
| TF_NoVisibleRowid
;
4130 pFrom
->pSelect
= sqlite3SelectDup(db
, pCte
->pSelect
, 0);
4131 if( db
->mallocFailed
) return SQLITE_NOMEM_BKPT
;
4132 assert( pFrom
->pSelect
);
4134 /* Check if this is a recursive CTE. */
4135 pSel
= pFrom
->pSelect
;
4136 bMayRecursive
= ( pSel
->op
==TK_ALL
|| pSel
->op
==TK_UNION
);
4137 if( bMayRecursive
){
4139 SrcList
*pSrc
= pFrom
->pSelect
->pSrc
;
4140 for(i
=0; i
<pSrc
->nSrc
; i
++){
4141 struct SrcList_item
*pItem
= &pSrc
->a
[i
];
4142 if( pItem
->zDatabase
==0
4144 && 0==sqlite3StrICmp(pItem
->zName
, pCte
->zName
)
4147 pItem
->fg
.isRecursive
= 1;
4149 pSel
->selFlags
|= SF_Recursive
;
4154 /* Only one recursive reference is permitted. */
4157 pParse
, "multiple references to recursive table: %s", pCte
->zName
4159 return SQLITE_ERROR
;
4161 assert( pTab
->nRef
==1 || ((pSel
->selFlags
&SF_Recursive
) && pTab
->nRef
==2 ));
4163 pCte
->zCteErr
= "circular reference: %s";
4164 pSavedWith
= pParse
->pWith
;
4165 pParse
->pWith
= pWith
;
4166 sqlite3WalkSelect(pWalker
, bMayRecursive
? pSel
->pPrior
: pSel
);
4167 pParse
->pWith
= pWith
;
4169 for(pLeft
=pSel
; pLeft
->pPrior
; pLeft
=pLeft
->pPrior
);
4170 pEList
= pLeft
->pEList
;
4172 if( pEList
&& pEList
->nExpr
!=pCte
->pCols
->nExpr
){
4173 sqlite3ErrorMsg(pParse
, "table %s has %d values for %d columns",
4174 pCte
->zName
, pEList
->nExpr
, pCte
->pCols
->nExpr
4176 pParse
->pWith
= pSavedWith
;
4177 return SQLITE_ERROR
;
4179 pEList
= pCte
->pCols
;
4182 sqlite3ColumnsFromExprList(pParse
, pEList
, &pTab
->nCol
, &pTab
->aCol
);
4183 if( bMayRecursive
){
4184 if( pSel
->selFlags
& SF_Recursive
){
4185 pCte
->zCteErr
= "multiple recursive references: %s";
4187 pCte
->zCteErr
= "recursive reference in a subquery: %s";
4189 sqlite3WalkSelect(pWalker
, pSel
);
4192 pParse
->pWith
= pSavedWith
;
4199 #ifndef SQLITE_OMIT_CTE
4201 ** If the SELECT passed as the second argument has an associated WITH
4202 ** clause, pop it from the stack stored as part of the Parse object.
4204 ** This function is used as the xSelectCallback2() callback by
4205 ** sqlite3SelectExpand() when walking a SELECT tree to resolve table
4206 ** names and other FROM clause elements.
4208 static void selectPopWith(Walker
*pWalker
, Select
*p
){
4209 Parse
*pParse
= pWalker
->pParse
;
4210 With
*pWith
= findRightmost(p
)->pWith
;
4212 assert( pParse
->pWith
==pWith
);
4213 pParse
->pWith
= pWith
->pOuter
;
4217 #define selectPopWith 0
4221 ** This routine is a Walker callback for "expanding" a SELECT statement.
4222 ** "Expanding" means to do the following:
4224 ** (1) Make sure VDBE cursor numbers have been assigned to every
4225 ** element of the FROM clause.
4227 ** (2) Fill in the pTabList->a[].pTab fields in the SrcList that
4228 ** defines FROM clause. When views appear in the FROM clause,
4229 ** fill pTabList->a[].pSelect with a copy of the SELECT statement
4230 ** that implements the view. A copy is made of the view's SELECT
4231 ** statement so that we can freely modify or delete that statement
4232 ** without worrying about messing up the persistent representation
4235 ** (3) Add terms to the WHERE clause to accommodate the NATURAL keyword
4236 ** on joins and the ON and USING clause of joins.
4238 ** (4) Scan the list of columns in the result set (pEList) looking
4239 ** for instances of the "*" operator or the TABLE.* operator.
4240 ** If found, expand each "*" to be every column in every table
4241 ** and TABLE.* to be every column in TABLE.
4244 static int selectExpander(Walker
*pWalker
, Select
*p
){
4245 Parse
*pParse
= pWalker
->pParse
;
4249 struct SrcList_item
*pFrom
;
4250 sqlite3
*db
= pParse
->db
;
4251 Expr
*pE
, *pRight
, *pExpr
;
4252 u16 selFlags
= p
->selFlags
;
4254 p
->selFlags
|= SF_Expanded
;
4255 if( db
->mallocFailed
){
4258 if( NEVER(p
->pSrc
==0) || (selFlags
& SF_Expanded
)!=0 ){
4263 if( pWalker
->xSelectCallback2
==selectPopWith
){
4264 sqlite3WithPush(pParse
, findRightmost(p
)->pWith
, 0);
4267 /* Make sure cursor numbers have been assigned to all entries in
4268 ** the FROM clause of the SELECT statement.
4270 sqlite3SrcListAssignCursors(pParse
, pTabList
);
4272 /* Look up every table named in the FROM clause of the select. If
4273 ** an entry of the FROM clause is a subquery instead of a table or view,
4274 ** then create a transient table structure to describe the subquery.
4276 for(i
=0, pFrom
=pTabList
->a
; i
<pTabList
->nSrc
; i
++, pFrom
++){
4278 assert( pFrom
->fg
.isRecursive
==0 || pFrom
->pTab
!=0 );
4279 if( pFrom
->fg
.isRecursive
) continue;
4280 assert( pFrom
->pTab
==0 );
4281 #ifndef SQLITE_OMIT_CTE
4282 if( withExpand(pWalker
, pFrom
) ) return WRC_Abort
;
4283 if( pFrom
->pTab
) {} else
4285 if( pFrom
->zName
==0 ){
4286 #ifndef SQLITE_OMIT_SUBQUERY
4287 Select
*pSel
= pFrom
->pSelect
;
4288 /* A sub-query in the FROM clause of a SELECT */
4290 assert( pFrom
->pTab
==0 );
4291 if( sqlite3WalkSelect(pWalker
, pSel
) ) return WRC_Abort
;
4292 pFrom
->pTab
= pTab
= sqlite3DbMallocZero(db
, sizeof(Table
));
4293 if( pTab
==0 ) return WRC_Abort
;
4295 pTab
->zName
= sqlite3MPrintf(db
, "sqlite_sq_%p", (void*)pTab
);
4296 while( pSel
->pPrior
){ pSel
= pSel
->pPrior
; }
4297 sqlite3ColumnsFromExprList(pParse
, pSel
->pEList
,&pTab
->nCol
,&pTab
->aCol
);
4299 pTab
->nRowLogEst
= 200; assert( 200==sqlite3LogEst(1048576) );
4300 pTab
->tabFlags
|= TF_Ephemeral
;
4303 /* An ordinary table or view name in the FROM clause */
4304 assert( pFrom
->pTab
==0 );
4305 pFrom
->pTab
= pTab
= sqlite3LocateTableItem(pParse
, 0, pFrom
);
4306 if( pTab
==0 ) return WRC_Abort
;
4307 if( pTab
->nRef
==0xffff ){
4308 sqlite3ErrorMsg(pParse
, "too many references to \"%s\": max 65535",
4314 if( !IsVirtual(pTab
) && cannotBeFunction(pParse
, pFrom
) ){
4317 #if !defined(SQLITE_OMIT_VIEW) || !defined (SQLITE_OMIT_VIRTUALTABLE)
4318 if( IsVirtual(pTab
) || pTab
->pSelect
){
4320 if( sqlite3ViewGetColumnNames(pParse
, pTab
) ) return WRC_Abort
;
4321 assert( pFrom
->pSelect
==0 );
4322 pFrom
->pSelect
= sqlite3SelectDup(db
, pTab
->pSelect
, 0);
4323 sqlite3SelectSetName(pFrom
->pSelect
, pTab
->zName
);
4326 sqlite3WalkSelect(pWalker
, pFrom
->pSelect
);
4332 /* Locate the index named by the INDEXED BY clause, if any. */
4333 if( sqlite3IndexedByLookup(pParse
, pFrom
) ){
4338 /* Process NATURAL keywords, and ON and USING clauses of joins.
4340 if( db
->mallocFailed
|| sqliteProcessJoin(pParse
, p
) ){
4344 /* For every "*" that occurs in the column list, insert the names of
4345 ** all columns in all tables. And for every TABLE.* insert the names
4346 ** of all columns in TABLE. The parser inserted a special expression
4347 ** with the TK_ASTERISK operator for each "*" that it found in the column
4348 ** list. The following code just has to locate the TK_ASTERISK
4349 ** expressions and expand each one to the list of all columns in
4352 ** The first loop just checks to see if there are any "*" operators
4353 ** that need expanding.
4355 for(k
=0; k
<pEList
->nExpr
; k
++){
4356 pE
= pEList
->a
[k
].pExpr
;
4357 if( pE
->op
==TK_ASTERISK
) break;
4358 assert( pE
->op
!=TK_DOT
|| pE
->pRight
!=0 );
4359 assert( pE
->op
!=TK_DOT
|| (pE
->pLeft
!=0 && pE
->pLeft
->op
==TK_ID
) );
4360 if( pE
->op
==TK_DOT
&& pE
->pRight
->op
==TK_ASTERISK
) break;
4362 if( k
<pEList
->nExpr
){
4364 ** If we get here it means the result set contains one or more "*"
4365 ** operators that need to be expanded. Loop through each expression
4366 ** in the result set and expand them one by one.
4368 struct ExprList_item
*a
= pEList
->a
;
4370 int flags
= pParse
->db
->flags
;
4371 int longNames
= (flags
& SQLITE_FullColNames
)!=0
4372 && (flags
& SQLITE_ShortColNames
)==0;
4374 for(k
=0; k
<pEList
->nExpr
; k
++){
4376 pRight
= pE
->pRight
;
4377 assert( pE
->op
!=TK_DOT
|| pRight
!=0 );
4378 if( pE
->op
!=TK_ASTERISK
4379 && (pE
->op
!=TK_DOT
|| pRight
->op
!=TK_ASTERISK
)
4381 /* This particular expression does not need to be expanded.
4383 pNew
= sqlite3ExprListAppend(pParse
, pNew
, a
[k
].pExpr
);
4385 pNew
->a
[pNew
->nExpr
-1].zName
= a
[k
].zName
;
4386 pNew
->a
[pNew
->nExpr
-1].zSpan
= a
[k
].zSpan
;
4392 /* This expression is a "*" or a "TABLE.*" and needs to be
4394 int tableSeen
= 0; /* Set to 1 when TABLE matches */
4395 char *zTName
= 0; /* text of name of TABLE */
4396 if( pE
->op
==TK_DOT
){
4397 assert( pE
->pLeft
!=0 );
4398 assert( !ExprHasProperty(pE
->pLeft
, EP_IntValue
) );
4399 zTName
= pE
->pLeft
->u
.zToken
;
4401 for(i
=0, pFrom
=pTabList
->a
; i
<pTabList
->nSrc
; i
++, pFrom
++){
4402 Table
*pTab
= pFrom
->pTab
;
4403 Select
*pSub
= pFrom
->pSelect
;
4404 char *zTabName
= pFrom
->zAlias
;
4405 const char *zSchemaName
= 0;
4408 zTabName
= pTab
->zName
;
4410 if( db
->mallocFailed
) break;
4411 if( pSub
==0 || (pSub
->selFlags
& SF_NestedFrom
)==0 ){
4413 if( zTName
&& sqlite3StrICmp(zTName
, zTabName
)!=0 ){
4416 iDb
= sqlite3SchemaToIndex(db
, pTab
->pSchema
);
4417 zSchemaName
= iDb
>=0 ? db
->aDb
[iDb
].zName
: "*";
4419 for(j
=0; j
<pTab
->nCol
; j
++){
4420 char *zName
= pTab
->aCol
[j
].zName
;
4421 char *zColname
; /* The computed column name */
4422 char *zToFree
; /* Malloced string that needs to be freed */
4423 Token sColname
; /* Computed column name as a token */
4427 && sqlite3MatchSpanName(pSub
->pEList
->a
[j
].zSpan
, 0, zTName
, 0)==0
4432 /* If a column is marked as 'hidden', omit it from the expanded
4433 ** result-set list unless the SELECT has the SF_IncludeHidden
4436 if( (p
->selFlags
& SF_IncludeHidden
)==0
4437 && IsHiddenColumn(&pTab
->aCol
[j
])
4443 if( i
>0 && zTName
==0 ){
4444 if( (pFrom
->fg
.jointype
& JT_NATURAL
)!=0
4445 && tableAndColumnIndex(pTabList
, i
, zName
, 0, 0)
4447 /* In a NATURAL join, omit the join columns from the
4448 ** table to the right of the join */
4451 if( sqlite3IdListIndex(pFrom
->pUsing
, zName
)>=0 ){
4452 /* In a join with a USING clause, omit columns in the
4453 ** using clause from the table on the right. */
4457 pRight
= sqlite3Expr(db
, TK_ID
, zName
);
4460 if( longNames
|| pTabList
->nSrc
>1 ){
4462 pLeft
= sqlite3Expr(db
, TK_ID
, zTabName
);
4463 pExpr
= sqlite3PExpr(pParse
, TK_DOT
, pLeft
, pRight
, 0);
4465 pLeft
= sqlite3Expr(db
, TK_ID
, zSchemaName
);
4466 pExpr
= sqlite3PExpr(pParse
, TK_DOT
, pLeft
, pExpr
, 0);
4469 zColname
= sqlite3MPrintf(db
, "%s.%s", zTabName
, zName
);
4475 pNew
= sqlite3ExprListAppend(pParse
, pNew
, pExpr
);
4476 sqlite3TokenInit(&sColname
, zColname
);
4477 sqlite3ExprListSetName(pParse
, pNew
, &sColname
, 0);
4478 if( pNew
&& (p
->selFlags
& SF_NestedFrom
)!=0 ){
4479 struct ExprList_item
*pX
= &pNew
->a
[pNew
->nExpr
-1];
4481 pX
->zSpan
= sqlite3DbStrDup(db
, pSub
->pEList
->a
[j
].zSpan
);
4482 testcase( pX
->zSpan
==0 );
4484 pX
->zSpan
= sqlite3MPrintf(db
, "%s.%s.%s",
4485 zSchemaName
, zTabName
, zColname
);
4486 testcase( pX
->zSpan
==0 );
4490 sqlite3DbFree(db
, zToFree
);
4495 sqlite3ErrorMsg(pParse
, "no such table: %s", zTName
);
4497 sqlite3ErrorMsg(pParse
, "no tables specified");
4502 sqlite3ExprListDelete(db
, pEList
);
4505 #if SQLITE_MAX_COLUMN
4506 if( p
->pEList
&& p
->pEList
->nExpr
>db
->aLimit
[SQLITE_LIMIT_COLUMN
] ){
4507 sqlite3ErrorMsg(pParse
, "too many columns in result set");
4511 return WRC_Continue
;
4515 ** No-op routine for the parse-tree walker.
4517 ** When this routine is the Walker.xExprCallback then expression trees
4518 ** are walked without any actions being taken at each node. Presumably,
4519 ** when this routine is used for Walker.xExprCallback then
4520 ** Walker.xSelectCallback is set to do something useful for every
4521 ** subquery in the parser tree.
4523 int sqlite3ExprWalkNoop(Walker
*NotUsed
, Expr
*NotUsed2
){
4524 UNUSED_PARAMETER2(NotUsed
, NotUsed2
);
4525 return WRC_Continue
;
4529 ** This routine "expands" a SELECT statement and all of its subqueries.
4530 ** For additional information on what it means to "expand" a SELECT
4531 ** statement, see the comment on the selectExpand worker callback above.
4533 ** Expanding a SELECT statement is the first step in processing a
4534 ** SELECT statement. The SELECT statement must be expanded before
4535 ** name resolution is performed.
4537 ** If anything goes wrong, an error message is written into pParse.
4538 ** The calling function can detect the problem by looking at pParse->nErr
4539 ** and/or pParse->db->mallocFailed.
4541 static void sqlite3SelectExpand(Parse
*pParse
, Select
*pSelect
){
4543 memset(&w
, 0, sizeof(w
));
4544 w
.xExprCallback
= sqlite3ExprWalkNoop
;
4546 if( pParse
->hasCompound
){
4547 w
.xSelectCallback
= convertCompoundSelectToSubquery
;
4548 sqlite3WalkSelect(&w
, pSelect
);
4550 w
.xSelectCallback
= selectExpander
;
4551 if( (pSelect
->selFlags
& SF_MultiValue
)==0 ){
4552 w
.xSelectCallback2
= selectPopWith
;
4554 sqlite3WalkSelect(&w
, pSelect
);
4558 #ifndef SQLITE_OMIT_SUBQUERY
4560 ** This is a Walker.xSelectCallback callback for the sqlite3SelectTypeInfo()
4563 ** For each FROM-clause subquery, add Column.zType and Column.zColl
4564 ** information to the Table structure that represents the result set
4565 ** of that subquery.
4567 ** The Table structure that represents the result set was constructed
4568 ** by selectExpander() but the type and collation information was omitted
4569 ** at that point because identifiers had not yet been resolved. This
4570 ** routine is called after identifier resolution.
4572 static void selectAddSubqueryTypeInfo(Walker
*pWalker
, Select
*p
){
4576 struct SrcList_item
*pFrom
;
4578 assert( p
->selFlags
& SF_Resolved
);
4579 assert( (p
->selFlags
& SF_HasTypeInfo
)==0 );
4580 p
->selFlags
|= SF_HasTypeInfo
;
4581 pParse
= pWalker
->pParse
;
4583 for(i
=0, pFrom
=pTabList
->a
; i
<pTabList
->nSrc
; i
++, pFrom
++){
4584 Table
*pTab
= pFrom
->pTab
;
4586 if( (pTab
->tabFlags
& TF_Ephemeral
)!=0 ){
4587 /* A sub-query in the FROM clause of a SELECT */
4588 Select
*pSel
= pFrom
->pSelect
;
4590 while( pSel
->pPrior
) pSel
= pSel
->pPrior
;
4591 sqlite3SelectAddColumnTypeAndCollation(pParse
, pTab
, pSel
);
4600 ** This routine adds datatype and collating sequence information to
4601 ** the Table structures of all FROM-clause subqueries in a
4602 ** SELECT statement.
4604 ** Use this routine after name resolution.
4606 static void sqlite3SelectAddTypeInfo(Parse
*pParse
, Select
*pSelect
){
4607 #ifndef SQLITE_OMIT_SUBQUERY
4609 memset(&w
, 0, sizeof(w
));
4610 w
.xSelectCallback2
= selectAddSubqueryTypeInfo
;
4611 w
.xExprCallback
= sqlite3ExprWalkNoop
;
4613 sqlite3WalkSelect(&w
, pSelect
);
4619 ** This routine sets up a SELECT statement for processing. The
4620 ** following is accomplished:
4622 ** * VDBE Cursor numbers are assigned to all FROM-clause terms.
4623 ** * Ephemeral Table objects are created for all FROM-clause subqueries.
4624 ** * ON and USING clauses are shifted into WHERE statements
4625 ** * Wildcards "*" and "TABLE.*" in result sets are expanded.
4626 ** * Identifiers in expression are matched to tables.
4628 ** This routine acts recursively on all subqueries within the SELECT.
4630 void sqlite3SelectPrep(
4631 Parse
*pParse
, /* The parser context */
4632 Select
*p
, /* The SELECT statement being coded. */
4633 NameContext
*pOuterNC
/* Name context for container */
4636 if( NEVER(p
==0) ) return;
4638 if( db
->mallocFailed
) return;
4639 if( p
->selFlags
& SF_HasTypeInfo
) return;
4640 sqlite3SelectExpand(pParse
, p
);
4641 if( pParse
->nErr
|| db
->mallocFailed
) return;
4642 sqlite3ResolveSelectNames(pParse
, p
, pOuterNC
);
4643 if( pParse
->nErr
|| db
->mallocFailed
) return;
4644 sqlite3SelectAddTypeInfo(pParse
, p
);
4648 ** Reset the aggregate accumulator.
4650 ** The aggregate accumulator is a set of memory cells that hold
4651 ** intermediate results while calculating an aggregate. This
4652 ** routine generates code that stores NULLs in all of those memory
4655 static void resetAccumulator(Parse
*pParse
, AggInfo
*pAggInfo
){
4656 Vdbe
*v
= pParse
->pVdbe
;
4658 struct AggInfo_func
*pFunc
;
4659 int nReg
= pAggInfo
->nFunc
+ pAggInfo
->nColumn
;
4660 if( nReg
==0 ) return;
4662 /* Verify that all AggInfo registers are within the range specified by
4663 ** AggInfo.mnReg..AggInfo.mxReg */
4664 assert( nReg
==pAggInfo
->mxReg
-pAggInfo
->mnReg
+1 );
4665 for(i
=0; i
<pAggInfo
->nColumn
; i
++){
4666 assert( pAggInfo
->aCol
[i
].iMem
>=pAggInfo
->mnReg
4667 && pAggInfo
->aCol
[i
].iMem
<=pAggInfo
->mxReg
);
4669 for(i
=0; i
<pAggInfo
->nFunc
; i
++){
4670 assert( pAggInfo
->aFunc
[i
].iMem
>=pAggInfo
->mnReg
4671 && pAggInfo
->aFunc
[i
].iMem
<=pAggInfo
->mxReg
);
4674 sqlite3VdbeAddOp3(v
, OP_Null
, 0, pAggInfo
->mnReg
, pAggInfo
->mxReg
);
4675 for(pFunc
=pAggInfo
->aFunc
, i
=0; i
<pAggInfo
->nFunc
; i
++, pFunc
++){
4676 if( pFunc
->iDistinct
>=0 ){
4677 Expr
*pE
= pFunc
->pExpr
;
4678 assert( !ExprHasProperty(pE
, EP_xIsSelect
) );
4679 if( pE
->x
.pList
==0 || pE
->x
.pList
->nExpr
!=1 ){
4680 sqlite3ErrorMsg(pParse
, "DISTINCT aggregates must have exactly one "
4682 pFunc
->iDistinct
= -1;
4684 KeyInfo
*pKeyInfo
= keyInfoFromExprList(pParse
, pE
->x
.pList
, 0, 0);
4685 sqlite3VdbeAddOp4(v
, OP_OpenEphemeral
, pFunc
->iDistinct
, 0, 0,
4686 (char*)pKeyInfo
, P4_KEYINFO
);
4693 ** Invoke the OP_AggFinalize opcode for every aggregate function
4694 ** in the AggInfo structure.
4696 static void finalizeAggFunctions(Parse
*pParse
, AggInfo
*pAggInfo
){
4697 Vdbe
*v
= pParse
->pVdbe
;
4699 struct AggInfo_func
*pF
;
4700 for(i
=0, pF
=pAggInfo
->aFunc
; i
<pAggInfo
->nFunc
; i
++, pF
++){
4701 ExprList
*pList
= pF
->pExpr
->x
.pList
;
4702 assert( !ExprHasProperty(pF
->pExpr
, EP_xIsSelect
) );
4703 sqlite3VdbeAddOp4(v
, OP_AggFinal
, pF
->iMem
, pList
? pList
->nExpr
: 0, 0,
4704 (void*)pF
->pFunc
, P4_FUNCDEF
);
4709 ** Update the accumulator memory cells for an aggregate based on
4710 ** the current cursor position.
4712 static void updateAccumulator(Parse
*pParse
, AggInfo
*pAggInfo
){
4713 Vdbe
*v
= pParse
->pVdbe
;
4716 int addrHitTest
= 0;
4717 struct AggInfo_func
*pF
;
4718 struct AggInfo_col
*pC
;
4720 pAggInfo
->directMode
= 1;
4721 for(i
=0, pF
=pAggInfo
->aFunc
; i
<pAggInfo
->nFunc
; i
++, pF
++){
4725 ExprList
*pList
= pF
->pExpr
->x
.pList
;
4726 assert( !ExprHasProperty(pF
->pExpr
, EP_xIsSelect
) );
4728 nArg
= pList
->nExpr
;
4729 regAgg
= sqlite3GetTempRange(pParse
, nArg
);
4730 sqlite3ExprCodeExprList(pParse
, pList
, regAgg
, 0, SQLITE_ECEL_DUP
);
4735 if( pF
->iDistinct
>=0 ){
4736 addrNext
= sqlite3VdbeMakeLabel(v
);
4737 testcase( nArg
==0 ); /* Error condition */
4738 testcase( nArg
>1 ); /* Also an error */
4739 codeDistinct(pParse
, pF
->iDistinct
, addrNext
, 1, regAgg
);
4741 if( pF
->pFunc
->funcFlags
& SQLITE_FUNC_NEEDCOLL
){
4743 struct ExprList_item
*pItem
;
4745 assert( pList
!=0 ); /* pList!=0 if pF->pFunc has NEEDCOLL */
4746 for(j
=0, pItem
=pList
->a
; !pColl
&& j
<nArg
; j
++, pItem
++){
4747 pColl
= sqlite3ExprCollSeq(pParse
, pItem
->pExpr
);
4750 pColl
= pParse
->db
->pDfltColl
;
4752 if( regHit
==0 && pAggInfo
->nAccumulator
) regHit
= ++pParse
->nMem
;
4753 sqlite3VdbeAddOp4(v
, OP_CollSeq
, regHit
, 0, 0, (char *)pColl
, P4_COLLSEQ
);
4755 sqlite3VdbeAddOp4(v
, OP_AggStep0
, 0, regAgg
, pF
->iMem
,
4756 (void*)pF
->pFunc
, P4_FUNCDEF
);
4757 sqlite3VdbeChangeP5(v
, (u8
)nArg
);
4758 sqlite3ExprCacheAffinityChange(pParse
, regAgg
, nArg
);
4759 sqlite3ReleaseTempRange(pParse
, regAgg
, nArg
);
4761 sqlite3VdbeResolveLabel(v
, addrNext
);
4762 sqlite3ExprCacheClear(pParse
);
4766 /* Before populating the accumulator registers, clear the column cache.
4767 ** Otherwise, if any of the required column values are already present
4768 ** in registers, sqlite3ExprCode() may use OP_SCopy to copy the value
4769 ** to pC->iMem. But by the time the value is used, the original register
4770 ** may have been used, invalidating the underlying buffer holding the
4771 ** text or blob value. See ticket [883034dcb5].
4773 ** Another solution would be to change the OP_SCopy used to copy cached
4774 ** values to an OP_Copy.
4777 addrHitTest
= sqlite3VdbeAddOp1(v
, OP_If
, regHit
); VdbeCoverage(v
);
4779 sqlite3ExprCacheClear(pParse
);
4780 for(i
=0, pC
=pAggInfo
->aCol
; i
<pAggInfo
->nAccumulator
; i
++, pC
++){
4781 sqlite3ExprCode(pParse
, pC
->pExpr
, pC
->iMem
);
4783 pAggInfo
->directMode
= 0;
4784 sqlite3ExprCacheClear(pParse
);
4786 sqlite3VdbeJumpHere(v
, addrHitTest
);
4791 ** Add a single OP_Explain instruction to the VDBE to explain a simple
4792 ** count(*) query ("SELECT count(*) FROM pTab").
4794 #ifndef SQLITE_OMIT_EXPLAIN
4795 static void explainSimpleCount(
4796 Parse
*pParse
, /* Parse context */
4797 Table
*pTab
, /* Table being queried */
4798 Index
*pIdx
/* Index used to optimize scan, or NULL */
4800 if( pParse
->explain
==2 ){
4801 int bCover
= (pIdx
!=0 && (HasRowid(pTab
) || !IsPrimaryKeyIndex(pIdx
)));
4802 char *zEqp
= sqlite3MPrintf(pParse
->db
, "SCAN TABLE %s%s%s",
4804 bCover
? " USING COVERING INDEX " : "",
4805 bCover
? pIdx
->zName
: ""
4808 pParse
->pVdbe
, OP_Explain
, pParse
->iSelectId
, 0, 0, zEqp
, P4_DYNAMIC
4813 # define explainSimpleCount(a,b,c)
4817 ** Generate code for the SELECT statement given in the p argument.
4819 ** The results are returned according to the SelectDest structure.
4820 ** See comments in sqliteInt.h for further information.
4822 ** This routine returns the number of errors. If any errors are
4823 ** encountered, then an appropriate error message is left in
4826 ** This routine does NOT free the Select structure passed in. The
4827 ** calling function needs to do that.
4830 Parse
*pParse
, /* The parser context */
4831 Select
*p
, /* The SELECT statement being coded. */
4832 SelectDest
*pDest
/* What to do with the query results */
4834 int i
, j
; /* Loop counters */
4835 WhereInfo
*pWInfo
; /* Return from sqlite3WhereBegin() */
4836 Vdbe
*v
; /* The virtual machine under construction */
4837 int isAgg
; /* True for select lists like "count(*)" */
4838 ExprList
*pEList
= 0; /* List of columns to extract. */
4839 SrcList
*pTabList
; /* List of tables to select from */
4840 Expr
*pWhere
; /* The WHERE clause. May be NULL */
4841 ExprList
*pGroupBy
; /* The GROUP BY clause. May be NULL */
4842 Expr
*pHaving
; /* The HAVING clause. May be NULL */
4843 int rc
= 1; /* Value to return from this function */
4844 DistinctCtx sDistinct
; /* Info on how to code the DISTINCT keyword */
4845 SortCtx sSort
; /* Info on how to code the ORDER BY clause */
4846 AggInfo sAggInfo
; /* Information used by aggregate queries */
4847 int iEnd
; /* Address of the end of the query */
4848 sqlite3
*db
; /* The database connection */
4850 #ifndef SQLITE_OMIT_EXPLAIN
4851 int iRestoreSelectId
= pParse
->iSelectId
;
4852 pParse
->iSelectId
= pParse
->iNextSelectId
++;
4856 if( p
==0 || db
->mallocFailed
|| pParse
->nErr
){
4859 if( sqlite3AuthCheck(pParse
, SQLITE_SELECT
, 0, 0, 0) ) return 1;
4860 memset(&sAggInfo
, 0, sizeof(sAggInfo
));
4861 #if SELECTTRACE_ENABLED
4862 pParse
->nSelectIndent
++;
4863 SELECTTRACE(1,pParse
,p
, ("begin processing:\n"));
4864 if( sqlite3SelectTrace
& 0x100 ){
4865 sqlite3TreeViewSelect(0, p
, 0);
4869 assert( p
->pOrderBy
==0 || pDest
->eDest
!=SRT_DistFifo
);
4870 assert( p
->pOrderBy
==0 || pDest
->eDest
!=SRT_Fifo
);
4871 assert( p
->pOrderBy
==0 || pDest
->eDest
!=SRT_DistQueue
);
4872 assert( p
->pOrderBy
==0 || pDest
->eDest
!=SRT_Queue
);
4873 if( IgnorableOrderby(pDest
) ){
4874 assert(pDest
->eDest
==SRT_Exists
|| pDest
->eDest
==SRT_Union
||
4875 pDest
->eDest
==SRT_Except
|| pDest
->eDest
==SRT_Discard
||
4876 pDest
->eDest
==SRT_Queue
|| pDest
->eDest
==SRT_DistFifo
||
4877 pDest
->eDest
==SRT_DistQueue
|| pDest
->eDest
==SRT_Fifo
);
4878 /* If ORDER BY makes no difference in the output then neither does
4879 ** DISTINCT so it can be removed too. */
4880 sqlite3ExprListDelete(db
, p
->pOrderBy
);
4882 p
->selFlags
&= ~SF_Distinct
;
4884 sqlite3SelectPrep(pParse
, p
, 0);
4885 memset(&sSort
, 0, sizeof(sSort
));
4886 sSort
.pOrderBy
= p
->pOrderBy
;
4888 if( pParse
->nErr
|| db
->mallocFailed
){
4891 assert( p
->pEList
!=0 );
4892 isAgg
= (p
->selFlags
& SF_Aggregate
)!=0;
4893 #if SELECTTRACE_ENABLED
4894 if( sqlite3SelectTrace
& 0x100 ){
4895 SELECTTRACE(0x100,pParse
,p
, ("after name resolution:\n"));
4896 sqlite3TreeViewSelect(0, p
, 0);
4901 /* If writing to memory or generating a set
4902 ** only a single column may be output.
4904 #ifndef SQLITE_OMIT_SUBQUERY
4905 if( checkForMultiColumnSelectError(pParse
, pDest
, p
->pEList
->nExpr
) ){
4910 /* Try to flatten subqueries in the FROM clause up into the main query
4912 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
4913 for(i
=0; !p
->pPrior
&& i
<pTabList
->nSrc
; i
++){
4914 struct SrcList_item
*pItem
= &pTabList
->a
[i
];
4915 Select
*pSub
= pItem
->pSelect
;
4917 Table
*pTab
= pItem
->pTab
;
4918 if( pSub
==0 ) continue;
4920 /* Catch mismatch in the declared columns of a view and the number of
4921 ** columns in the SELECT on the RHS */
4922 if( pTab
->nCol
!=pSub
->pEList
->nExpr
){
4923 sqlite3ErrorMsg(pParse
, "expected %d columns for '%s' but got %d",
4924 pTab
->nCol
, pTab
->zName
, pSub
->pEList
->nExpr
);
4928 isAggSub
= (pSub
->selFlags
& SF_Aggregate
)!=0;
4929 if( flattenSubquery(pParse
, p
, i
, isAgg
, isAggSub
) ){
4930 /* This subquery can be absorbed into its parent. */
4933 p
->selFlags
|= SF_Aggregate
;
4938 if( db
->mallocFailed
) goto select_end
;
4939 if( !IgnorableOrderby(pDest
) ){
4940 sSort
.pOrderBy
= p
->pOrderBy
;
4945 /* Get a pointer the VDBE under construction, allocating a new VDBE if one
4946 ** does not already exist */
4947 v
= sqlite3GetVdbe(pParse
);
4948 if( v
==0 ) goto select_end
;
4950 #ifndef SQLITE_OMIT_COMPOUND_SELECT
4951 /* Handle compound SELECT statements using the separate multiSelect()
4955 rc
= multiSelect(pParse
, p
, pDest
);
4956 explainSetInteger(pParse
->iSelectId
, iRestoreSelectId
);
4957 #if SELECTTRACE_ENABLED
4958 SELECTTRACE(1,pParse
,p
,("end compound-select processing\n"));
4959 pParse
->nSelectIndent
--;
4965 /* Generate code for all sub-queries in the FROM clause
4967 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
4968 for(i
=0; i
<pTabList
->nSrc
; i
++){
4969 struct SrcList_item
*pItem
= &pTabList
->a
[i
];
4971 Select
*pSub
= pItem
->pSelect
;
4972 if( pSub
==0 ) continue;
4974 /* Sometimes the code for a subquery will be generated more than
4975 ** once, if the subquery is part of the WHERE clause in a LEFT JOIN,
4976 ** for example. In that case, do not regenerate the code to manifest
4977 ** a view or the co-routine to implement a view. The first instance
4978 ** is sufficient, though the subroutine to manifest the view does need
4979 ** to be invoked again. */
4980 if( pItem
->addrFillSub
){
4981 if( pItem
->fg
.viaCoroutine
==0 ){
4982 sqlite3VdbeAddOp2(v
, OP_Gosub
, pItem
->regReturn
, pItem
->addrFillSub
);
4987 /* Increment Parse.nHeight by the height of the largest expression
4988 ** tree referred to by this, the parent select. The child select
4989 ** may contain expression trees of at most
4990 ** (SQLITE_MAX_EXPR_DEPTH-Parse.nHeight) height. This is a bit
4991 ** more conservative than necessary, but much easier than enforcing
4994 pParse
->nHeight
+= sqlite3SelectExprHeight(p
);
4996 /* Make copies of constant WHERE-clause terms in the outer query down
4997 ** inside the subquery. This can help the subquery to run more efficiently.
4999 if( (pItem
->fg
.jointype
& JT_OUTER
)==0
5000 && pushDownWhereTerms(db
, pSub
, p
->pWhere
, pItem
->iCursor
)
5002 #if SELECTTRACE_ENABLED
5003 if( sqlite3SelectTrace
& 0x100 ){
5004 SELECTTRACE(0x100,pParse
,p
,("After WHERE-clause push-down:\n"));
5005 sqlite3TreeViewSelect(0, p
, 0);
5010 /* Generate code to implement the subquery
5012 ** The subquery is implemented as a co-routine if all of these are true:
5013 ** (1) The subquery is guaranteed to be the outer loop (so that it
5014 ** does not need to be computed more than once)
5015 ** (2) The ALL keyword after SELECT is omitted. (Applications are
5016 ** allowed to say "SELECT ALL" instead of just "SELECT" to disable
5017 ** the use of co-routines.)
5018 ** (3) Co-routines are not disabled using sqlite3_test_control()
5019 ** with SQLITE_TESTCTRL_OPTIMIZATIONS.
5021 ** TODO: Are there other reasons beside (1) to use a co-routine
5025 && (pTabList
->nSrc
==1
5026 || (pTabList
->a
[1].fg
.jointype
&(JT_LEFT
|JT_CROSS
))!=0) /* (1) */
5027 && (p
->selFlags
& SF_All
)==0 /* (2) */
5028 && OptimizationEnabled(db
, SQLITE_SubqCoroutine
) /* (3) */
5030 /* Implement a co-routine that will return a single row of the result
5031 ** set on each invocation.
5033 int addrTop
= sqlite3VdbeCurrentAddr(v
)+1;
5034 pItem
->regReturn
= ++pParse
->nMem
;
5035 sqlite3VdbeAddOp3(v
, OP_InitCoroutine
, pItem
->regReturn
, 0, addrTop
);
5036 VdbeComment((v
, "%s", pItem
->pTab
->zName
));
5037 pItem
->addrFillSub
= addrTop
;
5038 sqlite3SelectDestInit(&dest
, SRT_Coroutine
, pItem
->regReturn
);
5039 explainSetInteger(pItem
->iSelectId
, (u8
)pParse
->iNextSelectId
);
5040 sqlite3Select(pParse
, pSub
, &dest
);
5041 pItem
->pTab
->nRowLogEst
= pSub
->nSelectRow
;
5042 pItem
->fg
.viaCoroutine
= 1;
5043 pItem
->regResult
= dest
.iSdst
;
5044 sqlite3VdbeEndCoroutine(v
, pItem
->regReturn
);
5045 sqlite3VdbeJumpHere(v
, addrTop
-1);
5046 sqlite3ClearTempRegCache(pParse
);
5048 /* Generate a subroutine that will fill an ephemeral table with
5049 ** the content of this subquery. pItem->addrFillSub will point
5050 ** to the address of the generated subroutine. pItem->regReturn
5051 ** is a register allocated to hold the subroutine return address
5056 assert( pItem
->addrFillSub
==0 );
5057 pItem
->regReturn
= ++pParse
->nMem
;
5058 topAddr
= sqlite3VdbeAddOp2(v
, OP_Integer
, 0, pItem
->regReturn
);
5059 pItem
->addrFillSub
= topAddr
+1;
5060 if( pItem
->fg
.isCorrelated
==0 ){
5061 /* If the subquery is not correlated and if we are not inside of
5062 ** a trigger, then we only need to compute the value of the subquery
5064 onceAddr
= sqlite3CodeOnce(pParse
); VdbeCoverage(v
);
5065 VdbeComment((v
, "materialize \"%s\"", pItem
->pTab
->zName
));
5067 VdbeNoopComment((v
, "materialize \"%s\"", pItem
->pTab
->zName
));
5069 sqlite3SelectDestInit(&dest
, SRT_EphemTab
, pItem
->iCursor
);
5070 explainSetInteger(pItem
->iSelectId
, (u8
)pParse
->iNextSelectId
);
5071 sqlite3Select(pParse
, pSub
, &dest
);
5072 pItem
->pTab
->nRowLogEst
= pSub
->nSelectRow
;
5073 if( onceAddr
) sqlite3VdbeJumpHere(v
, onceAddr
);
5074 retAddr
= sqlite3VdbeAddOp1(v
, OP_Return
, pItem
->regReturn
);
5075 VdbeComment((v
, "end %s", pItem
->pTab
->zName
));
5076 sqlite3VdbeChangeP1(v
, topAddr
, retAddr
);
5077 sqlite3ClearTempRegCache(pParse
);
5079 if( db
->mallocFailed
) goto select_end
;
5080 pParse
->nHeight
-= sqlite3SelectExprHeight(p
);
5084 /* Various elements of the SELECT copied into local variables for
5088 pGroupBy
= p
->pGroupBy
;
5089 pHaving
= p
->pHaving
;
5090 sDistinct
.isTnct
= (p
->selFlags
& SF_Distinct
)!=0;
5092 #if SELECTTRACE_ENABLED
5093 if( sqlite3SelectTrace
& 0x400 ){
5094 SELECTTRACE(0x400,pParse
,p
,("After all FROM-clause analysis:\n"));
5095 sqlite3TreeViewSelect(0, p
, 0);
5099 /* If the query is DISTINCT with an ORDER BY but is not an aggregate, and
5100 ** if the select-list is the same as the ORDER BY list, then this query
5101 ** can be rewritten as a GROUP BY. In other words, this:
5103 ** SELECT DISTINCT xyz FROM ... ORDER BY xyz
5105 ** is transformed to:
5107 ** SELECT xyz FROM ... GROUP BY xyz ORDER BY xyz
5109 ** The second form is preferred as a single index (or temp-table) may be
5110 ** used for both the ORDER BY and DISTINCT processing. As originally
5111 ** written the query must use a temp-table for at least one of the ORDER
5112 ** BY and DISTINCT, and an index or separate temp-table for the other.
5114 if( (p
->selFlags
& (SF_Distinct
|SF_Aggregate
))==SF_Distinct
5115 && sqlite3ExprListCompare(sSort
.pOrderBy
, pEList
, -1)==0
5117 p
->selFlags
&= ~SF_Distinct
;
5118 pGroupBy
= p
->pGroupBy
= sqlite3ExprListDup(db
, pEList
, 0);
5119 /* Notice that even thought SF_Distinct has been cleared from p->selFlags,
5120 ** the sDistinct.isTnct is still set. Hence, isTnct represents the
5121 ** original setting of the SF_Distinct flag, not the current setting */
5122 assert( sDistinct
.isTnct
);
5124 #if SELECTTRACE_ENABLED
5125 if( sqlite3SelectTrace
& 0x400 ){
5126 SELECTTRACE(0x400,pParse
,p
,("Transform DISTINCT into GROUP BY:\n"));
5127 sqlite3TreeViewSelect(0, p
, 0);
5132 /* If there is an ORDER BY clause, then create an ephemeral index to
5133 ** do the sorting. But this sorting ephemeral index might end up
5134 ** being unused if the data can be extracted in pre-sorted order.
5135 ** If that is the case, then the OP_OpenEphemeral instruction will be
5136 ** changed to an OP_Noop once we figure out that the sorting index is
5137 ** not needed. The sSort.addrSortIndex variable is used to facilitate
5140 if( sSort
.pOrderBy
){
5142 pKeyInfo
= keyInfoFromExprList(pParse
, sSort
.pOrderBy
, 0, pEList
->nExpr
);
5143 sSort
.iECursor
= pParse
->nTab
++;
5144 sSort
.addrSortIndex
=
5145 sqlite3VdbeAddOp4(v
, OP_OpenEphemeral
,
5146 sSort
.iECursor
, sSort
.pOrderBy
->nExpr
+1+pEList
->nExpr
, 0,
5147 (char*)pKeyInfo
, P4_KEYINFO
5150 sSort
.addrSortIndex
= -1;
5153 /* If the output is destined for a temporary table, open that table.
5155 if( pDest
->eDest
==SRT_EphemTab
){
5156 sqlite3VdbeAddOp2(v
, OP_OpenEphemeral
, pDest
->iSDParm
, pEList
->nExpr
);
5161 iEnd
= sqlite3VdbeMakeLabel(v
);
5162 p
->nSelectRow
= 320; /* 4 billion rows */
5163 computeLimitRegisters(pParse
, p
, iEnd
);
5164 if( p
->iLimit
==0 && sSort
.addrSortIndex
>=0 ){
5165 sqlite3VdbeChangeOpcode(v
, sSort
.addrSortIndex
, OP_SorterOpen
);
5166 sSort
.sortFlags
|= SORTFLAG_UseSorter
;
5169 /* Open an ephemeral index to use for the distinct set.
5171 if( p
->selFlags
& SF_Distinct
){
5172 sDistinct
.tabTnct
= pParse
->nTab
++;
5173 sDistinct
.addrTnct
= sqlite3VdbeAddOp4(v
, OP_OpenEphemeral
,
5174 sDistinct
.tabTnct
, 0, 0,
5175 (char*)keyInfoFromExprList(pParse
, p
->pEList
,0,0),
5177 sqlite3VdbeChangeP5(v
, BTREE_UNORDERED
);
5178 sDistinct
.eTnctType
= WHERE_DISTINCT_UNORDERED
;
5180 sDistinct
.eTnctType
= WHERE_DISTINCT_NOOP
;
5183 if( !isAgg
&& pGroupBy
==0 ){
5184 /* No aggregate functions and no GROUP BY clause */
5185 u16 wctrlFlags
= (sDistinct
.isTnct
? WHERE_WANT_DISTINCT
: 0);
5186 assert( WHERE_USE_LIMIT
==SF_FixedLimit
);
5187 wctrlFlags
|= p
->selFlags
& SF_FixedLimit
;
5189 /* Begin the database scan. */
5190 pWInfo
= sqlite3WhereBegin(pParse
, pTabList
, pWhere
, sSort
.pOrderBy
,
5191 p
->pEList
, wctrlFlags
, p
->nSelectRow
);
5192 if( pWInfo
==0 ) goto select_end
;
5193 if( sqlite3WhereOutputRowCount(pWInfo
) < p
->nSelectRow
){
5194 p
->nSelectRow
= sqlite3WhereOutputRowCount(pWInfo
);
5196 if( sDistinct
.isTnct
&& sqlite3WhereIsDistinct(pWInfo
) ){
5197 sDistinct
.eTnctType
= sqlite3WhereIsDistinct(pWInfo
);
5199 if( sSort
.pOrderBy
){
5200 sSort
.nOBSat
= sqlite3WhereIsOrdered(pWInfo
);
5201 sSort
.bOrderedInnerLoop
= sqlite3WhereOrderedInnerLoop(pWInfo
);
5202 if( sSort
.nOBSat
==sSort
.pOrderBy
->nExpr
){
5207 /* If sorting index that was created by a prior OP_OpenEphemeral
5208 ** instruction ended up not being needed, then change the OP_OpenEphemeral
5211 if( sSort
.addrSortIndex
>=0 && sSort
.pOrderBy
==0 ){
5212 sqlite3VdbeChangeToNoop(v
, sSort
.addrSortIndex
);
5215 /* Use the standard inner loop. */
5216 selectInnerLoop(pParse
, p
, pEList
, -1, &sSort
, &sDistinct
, pDest
,
5217 sqlite3WhereContinueLabel(pWInfo
),
5218 sqlite3WhereBreakLabel(pWInfo
));
5220 /* End the database scan loop.
5222 sqlite3WhereEnd(pWInfo
);
5224 /* This case when there exist aggregate functions or a GROUP BY clause
5226 NameContext sNC
; /* Name context for processing aggregate information */
5227 int iAMem
; /* First Mem address for storing current GROUP BY */
5228 int iBMem
; /* First Mem address for previous GROUP BY */
5229 int iUseFlag
; /* Mem address holding flag indicating that at least
5230 ** one row of the input to the aggregator has been
5232 int iAbortFlag
; /* Mem address which causes query abort if positive */
5233 int groupBySort
; /* Rows come from source in GROUP BY order */
5234 int addrEnd
; /* End of processing for this SELECT */
5235 int sortPTab
= 0; /* Pseudotable used to decode sorting results */
5236 int sortOut
= 0; /* Output register from the sorter */
5237 int orderByGrp
= 0; /* True if the GROUP BY and ORDER BY are the same */
5239 /* Remove any and all aliases between the result set and the
5243 int k
; /* Loop counter */
5244 struct ExprList_item
*pItem
; /* For looping over expression in a list */
5246 for(k
=p
->pEList
->nExpr
, pItem
=p
->pEList
->a
; k
>0; k
--, pItem
++){
5247 pItem
->u
.x
.iAlias
= 0;
5249 for(k
=pGroupBy
->nExpr
, pItem
=pGroupBy
->a
; k
>0; k
--, pItem
++){
5250 pItem
->u
.x
.iAlias
= 0;
5252 assert( 66==sqlite3LogEst(100) );
5253 if( p
->nSelectRow
>66 ) p
->nSelectRow
= 66;
5255 assert( 0==sqlite3LogEst(1) );
5259 /* If there is both a GROUP BY and an ORDER BY clause and they are
5260 ** identical, then it may be possible to disable the ORDER BY clause
5261 ** on the grounds that the GROUP BY will cause elements to come out
5262 ** in the correct order. It also may not - the GROUP BY might use a
5263 ** database index that causes rows to be grouped together as required
5264 ** but not actually sorted. Either way, record the fact that the
5265 ** ORDER BY and GROUP BY clauses are the same by setting the orderByGrp
5267 if( sqlite3ExprListCompare(pGroupBy
, sSort
.pOrderBy
, -1)==0 ){
5271 /* Create a label to jump to when we want to abort the query */
5272 addrEnd
= sqlite3VdbeMakeLabel(v
);
5274 /* Convert TK_COLUMN nodes into TK_AGG_COLUMN and make entries in
5275 ** sAggInfo for all TK_AGG_FUNCTION nodes in expressions of the
5276 ** SELECT statement.
5278 memset(&sNC
, 0, sizeof(sNC
));
5279 sNC
.pParse
= pParse
;
5280 sNC
.pSrcList
= pTabList
;
5281 sNC
.pAggInfo
= &sAggInfo
;
5282 sAggInfo
.mnReg
= pParse
->nMem
+1;
5283 sAggInfo
.nSortingColumn
= pGroupBy
? pGroupBy
->nExpr
: 0;
5284 sAggInfo
.pGroupBy
= pGroupBy
;
5285 sqlite3ExprAnalyzeAggList(&sNC
, pEList
);
5286 sqlite3ExprAnalyzeAggList(&sNC
, sSort
.pOrderBy
);
5288 sqlite3ExprAnalyzeAggregates(&sNC
, pHaving
);
5290 sAggInfo
.nAccumulator
= sAggInfo
.nColumn
;
5291 for(i
=0; i
<sAggInfo
.nFunc
; i
++){
5292 assert( !ExprHasProperty(sAggInfo
.aFunc
[i
].pExpr
, EP_xIsSelect
) );
5293 sNC
.ncFlags
|= NC_InAggFunc
;
5294 sqlite3ExprAnalyzeAggList(&sNC
, sAggInfo
.aFunc
[i
].pExpr
->x
.pList
);
5295 sNC
.ncFlags
&= ~NC_InAggFunc
;
5297 sAggInfo
.mxReg
= pParse
->nMem
;
5298 if( db
->mallocFailed
) goto select_end
;
5300 /* Processing for aggregates with GROUP BY is very different and
5301 ** much more complex than aggregates without a GROUP BY.
5304 KeyInfo
*pKeyInfo
; /* Keying information for the group by clause */
5305 int addr1
; /* A-vs-B comparision jump */
5306 int addrOutputRow
; /* Start of subroutine that outputs a result row */
5307 int regOutputRow
; /* Return address register for output subroutine */
5308 int addrSetAbort
; /* Set the abort flag and return */
5309 int addrTopOfLoop
; /* Top of the input loop */
5310 int addrSortingIdx
; /* The OP_OpenEphemeral for the sorting index */
5311 int addrReset
; /* Subroutine for resetting the accumulator */
5312 int regReset
; /* Return address register for reset subroutine */
5314 /* If there is a GROUP BY clause we might need a sorting index to
5315 ** implement it. Allocate that sorting index now. If it turns out
5316 ** that we do not need it after all, the OP_SorterOpen instruction
5317 ** will be converted into a Noop.
5319 sAggInfo
.sortingIdx
= pParse
->nTab
++;
5320 pKeyInfo
= keyInfoFromExprList(pParse
, pGroupBy
, 0, sAggInfo
.nColumn
);
5321 addrSortingIdx
= sqlite3VdbeAddOp4(v
, OP_SorterOpen
,
5322 sAggInfo
.sortingIdx
, sAggInfo
.nSortingColumn
,
5323 0, (char*)pKeyInfo
, P4_KEYINFO
);
5325 /* Initialize memory locations used by GROUP BY aggregate processing
5327 iUseFlag
= ++pParse
->nMem
;
5328 iAbortFlag
= ++pParse
->nMem
;
5329 regOutputRow
= ++pParse
->nMem
;
5330 addrOutputRow
= sqlite3VdbeMakeLabel(v
);
5331 regReset
= ++pParse
->nMem
;
5332 addrReset
= sqlite3VdbeMakeLabel(v
);
5333 iAMem
= pParse
->nMem
+ 1;
5334 pParse
->nMem
+= pGroupBy
->nExpr
;
5335 iBMem
= pParse
->nMem
+ 1;
5336 pParse
->nMem
+= pGroupBy
->nExpr
;
5337 sqlite3VdbeAddOp2(v
, OP_Integer
, 0, iAbortFlag
);
5338 VdbeComment((v
, "clear abort flag"));
5339 sqlite3VdbeAddOp2(v
, OP_Integer
, 0, iUseFlag
);
5340 VdbeComment((v
, "indicate accumulator empty"));
5341 sqlite3VdbeAddOp3(v
, OP_Null
, 0, iAMem
, iAMem
+pGroupBy
->nExpr
-1);
5343 /* Begin a loop that will extract all source rows in GROUP BY order.
5344 ** This might involve two separate loops with an OP_Sort in between, or
5345 ** it might be a single loop that uses an index to extract information
5346 ** in the right order to begin with.
5348 sqlite3VdbeAddOp2(v
, OP_Gosub
, regReset
, addrReset
);
5349 pWInfo
= sqlite3WhereBegin(pParse
, pTabList
, pWhere
, pGroupBy
, 0,
5350 WHERE_GROUPBY
| (orderByGrp
? WHERE_SORTBYGROUP
: 0), 0
5352 if( pWInfo
==0 ) goto select_end
;
5353 if( sqlite3WhereIsOrdered(pWInfo
)==pGroupBy
->nExpr
){
5354 /* The optimizer is able to deliver rows in group by order so
5355 ** we do not have to sort. The OP_OpenEphemeral table will be
5356 ** cancelled later because we still need to use the pKeyInfo
5360 /* Rows are coming out in undetermined order. We have to push
5361 ** each row into a sorting index, terminate the first loop,
5362 ** then loop over the sorting index in order to get the output
5370 explainTempTable(pParse
,
5371 (sDistinct
.isTnct
&& (p
->selFlags
&SF_Distinct
)==0) ?
5372 "DISTINCT" : "GROUP BY");
5375 nGroupBy
= pGroupBy
->nExpr
;
5378 for(i
=0; i
<sAggInfo
.nColumn
; i
++){
5379 if( sAggInfo
.aCol
[i
].iSorterColumn
>=j
){
5384 regBase
= sqlite3GetTempRange(pParse
, nCol
);
5385 sqlite3ExprCacheClear(pParse
);
5386 sqlite3ExprCodeExprList(pParse
, pGroupBy
, regBase
, 0, 0);
5388 for(i
=0; i
<sAggInfo
.nColumn
; i
++){
5389 struct AggInfo_col
*pCol
= &sAggInfo
.aCol
[i
];
5390 if( pCol
->iSorterColumn
>=j
){
5391 int r1
= j
+ regBase
;
5392 sqlite3ExprCodeGetColumnToReg(pParse
,
5393 pCol
->pTab
, pCol
->iColumn
, pCol
->iTable
, r1
);
5397 regRecord
= sqlite3GetTempReg(pParse
);
5398 sqlite3VdbeAddOp3(v
, OP_MakeRecord
, regBase
, nCol
, regRecord
);
5399 sqlite3VdbeAddOp2(v
, OP_SorterInsert
, sAggInfo
.sortingIdx
, regRecord
);
5400 sqlite3ReleaseTempReg(pParse
, regRecord
);
5401 sqlite3ReleaseTempRange(pParse
, regBase
, nCol
);
5402 sqlite3WhereEnd(pWInfo
);
5403 sAggInfo
.sortingIdxPTab
= sortPTab
= pParse
->nTab
++;
5404 sortOut
= sqlite3GetTempReg(pParse
);
5405 sqlite3VdbeAddOp3(v
, OP_OpenPseudo
, sortPTab
, sortOut
, nCol
);
5406 sqlite3VdbeAddOp2(v
, OP_SorterSort
, sAggInfo
.sortingIdx
, addrEnd
);
5407 VdbeComment((v
, "GROUP BY sort")); VdbeCoverage(v
);
5408 sAggInfo
.useSortingIdx
= 1;
5409 sqlite3ExprCacheClear(pParse
);
5413 /* If the index or temporary table used by the GROUP BY sort
5414 ** will naturally deliver rows in the order required by the ORDER BY
5415 ** clause, cancel the ephemeral table open coded earlier.
5417 ** This is an optimization - the correct answer should result regardless.
5418 ** Use the SQLITE_GroupByOrder flag with SQLITE_TESTCTRL_OPTIMIZER to
5419 ** disable this optimization for testing purposes. */
5420 if( orderByGrp
&& OptimizationEnabled(db
, SQLITE_GroupByOrder
)
5421 && (groupBySort
|| sqlite3WhereIsSorted(pWInfo
))
5424 sqlite3VdbeChangeToNoop(v
, sSort
.addrSortIndex
);
5427 /* Evaluate the current GROUP BY terms and store in b0, b1, b2...
5428 ** (b0 is memory location iBMem+0, b1 is iBMem+1, and so forth)
5429 ** Then compare the current GROUP BY terms against the GROUP BY terms
5430 ** from the previous row currently stored in a0, a1, a2...
5432 addrTopOfLoop
= sqlite3VdbeCurrentAddr(v
);
5433 sqlite3ExprCacheClear(pParse
);
5435 sqlite3VdbeAddOp3(v
, OP_SorterData
, sAggInfo
.sortingIdx
,
5438 for(j
=0; j
<pGroupBy
->nExpr
; j
++){
5440 sqlite3VdbeAddOp3(v
, OP_Column
, sortPTab
, j
, iBMem
+j
);
5442 sAggInfo
.directMode
= 1;
5443 sqlite3ExprCode(pParse
, pGroupBy
->a
[j
].pExpr
, iBMem
+j
);
5446 sqlite3VdbeAddOp4(v
, OP_Compare
, iAMem
, iBMem
, pGroupBy
->nExpr
,
5447 (char*)sqlite3KeyInfoRef(pKeyInfo
), P4_KEYINFO
);
5448 addr1
= sqlite3VdbeCurrentAddr(v
);
5449 sqlite3VdbeAddOp3(v
, OP_Jump
, addr1
+1, 0, addr1
+1); VdbeCoverage(v
);
5451 /* Generate code that runs whenever the GROUP BY changes.
5452 ** Changes in the GROUP BY are detected by the previous code
5453 ** block. If there were no changes, this block is skipped.
5455 ** This code copies current group by terms in b0,b1,b2,...
5456 ** over to a0,a1,a2. It then calls the output subroutine
5457 ** and resets the aggregate accumulator registers in preparation
5458 ** for the next GROUP BY batch.
5460 sqlite3ExprCodeMove(pParse
, iBMem
, iAMem
, pGroupBy
->nExpr
);
5461 sqlite3VdbeAddOp2(v
, OP_Gosub
, regOutputRow
, addrOutputRow
);
5462 VdbeComment((v
, "output one row"));
5463 sqlite3VdbeAddOp2(v
, OP_IfPos
, iAbortFlag
, addrEnd
); VdbeCoverage(v
);
5464 VdbeComment((v
, "check abort flag"));
5465 sqlite3VdbeAddOp2(v
, OP_Gosub
, regReset
, addrReset
);
5466 VdbeComment((v
, "reset accumulator"));
5468 /* Update the aggregate accumulators based on the content of
5471 sqlite3VdbeJumpHere(v
, addr1
);
5472 updateAccumulator(pParse
, &sAggInfo
);
5473 sqlite3VdbeAddOp2(v
, OP_Integer
, 1, iUseFlag
);
5474 VdbeComment((v
, "indicate data in accumulator"));
5479 sqlite3VdbeAddOp2(v
, OP_SorterNext
, sAggInfo
.sortingIdx
, addrTopOfLoop
);
5482 sqlite3WhereEnd(pWInfo
);
5483 sqlite3VdbeChangeToNoop(v
, addrSortingIdx
);
5486 /* Output the final row of result
5488 sqlite3VdbeAddOp2(v
, OP_Gosub
, regOutputRow
, addrOutputRow
);
5489 VdbeComment((v
, "output final row"));
5491 /* Jump over the subroutines
5493 sqlite3VdbeGoto(v
, addrEnd
);
5495 /* Generate a subroutine that outputs a single row of the result
5496 ** set. This subroutine first looks at the iUseFlag. If iUseFlag
5497 ** is less than or equal to zero, the subroutine is a no-op. If
5498 ** the processing calls for the query to abort, this subroutine
5499 ** increments the iAbortFlag memory location before returning in
5500 ** order to signal the caller to abort.
5502 addrSetAbort
= sqlite3VdbeCurrentAddr(v
);
5503 sqlite3VdbeAddOp2(v
, OP_Integer
, 1, iAbortFlag
);
5504 VdbeComment((v
, "set abort flag"));
5505 sqlite3VdbeAddOp1(v
, OP_Return
, regOutputRow
);
5506 sqlite3VdbeResolveLabel(v
, addrOutputRow
);
5507 addrOutputRow
= sqlite3VdbeCurrentAddr(v
);
5508 sqlite3VdbeAddOp2(v
, OP_IfPos
, iUseFlag
, addrOutputRow
+2);
5510 VdbeComment((v
, "Groupby result generator entry point"));
5511 sqlite3VdbeAddOp1(v
, OP_Return
, regOutputRow
);
5512 finalizeAggFunctions(pParse
, &sAggInfo
);
5513 sqlite3ExprIfFalse(pParse
, pHaving
, addrOutputRow
+1, SQLITE_JUMPIFNULL
);
5514 selectInnerLoop(pParse
, p
, p
->pEList
, -1, &sSort
,
5516 addrOutputRow
+1, addrSetAbort
);
5517 sqlite3VdbeAddOp1(v
, OP_Return
, regOutputRow
);
5518 VdbeComment((v
, "end groupby result generator"));
5520 /* Generate a subroutine that will reset the group-by accumulator
5522 sqlite3VdbeResolveLabel(v
, addrReset
);
5523 resetAccumulator(pParse
, &sAggInfo
);
5524 sqlite3VdbeAddOp1(v
, OP_Return
, regReset
);
5526 } /* endif pGroupBy. Begin aggregate queries without GROUP BY: */
5529 #ifndef SQLITE_OMIT_BTREECOUNT
5531 if( (pTab
= isSimpleCount(p
, &sAggInfo
))!=0 ){
5532 /* If isSimpleCount() returns a pointer to a Table structure, then
5533 ** the SQL statement is of the form:
5535 ** SELECT count(*) FROM <tbl>
5537 ** where the Table structure returned represents table <tbl>.
5539 ** This statement is so common that it is optimized specially. The
5540 ** OP_Count instruction is executed either on the intkey table that
5541 ** contains the data for table <tbl> or on one of its indexes. It
5542 ** is better to execute the op on an index, as indexes are almost
5543 ** always spread across less pages than their corresponding tables.
5545 const int iDb
= sqlite3SchemaToIndex(pParse
->db
, pTab
->pSchema
);
5546 const int iCsr
= pParse
->nTab
++; /* Cursor to scan b-tree */
5547 Index
*pIdx
; /* Iterator variable */
5548 KeyInfo
*pKeyInfo
= 0; /* Keyinfo for scanned index */
5549 Index
*pBest
= 0; /* Best index found so far */
5550 int iRoot
= pTab
->tnum
; /* Root page of scanned b-tree */
5552 sqlite3CodeVerifySchema(pParse
, iDb
);
5553 sqlite3TableLock(pParse
, iDb
, pTab
->tnum
, 0, pTab
->zName
);
5555 /* Search for the index that has the lowest scan cost.
5557 ** (2011-04-15) Do not do a full scan of an unordered index.
5559 ** (2013-10-03) Do not count the entries in a partial index.
5561 ** In practice the KeyInfo structure will not be used. It is only
5562 ** passed to keep OP_OpenRead happy.
5564 if( !HasRowid(pTab
) ) pBest
= sqlite3PrimaryKeyIndex(pTab
);
5565 for(pIdx
=pTab
->pIndex
; pIdx
; pIdx
=pIdx
->pNext
){
5566 if( pIdx
->bUnordered
==0
5567 && pIdx
->szIdxRow
<pTab
->szTabRow
5568 && pIdx
->pPartIdxWhere
==0
5569 && (!pBest
|| pIdx
->szIdxRow
<pBest
->szIdxRow
)
5575 iRoot
= pBest
->tnum
;
5576 pKeyInfo
= sqlite3KeyInfoOfIndex(pParse
, pBest
);
5579 /* Open a read-only cursor, execute the OP_Count, close the cursor. */
5580 sqlite3VdbeAddOp4Int(v
, OP_OpenRead
, iCsr
, iRoot
, iDb
, 1);
5582 sqlite3VdbeChangeP4(v
, -1, (char *)pKeyInfo
, P4_KEYINFO
);
5584 sqlite3VdbeAddOp2(v
, OP_Count
, iCsr
, sAggInfo
.aFunc
[0].iMem
);
5585 sqlite3VdbeAddOp1(v
, OP_Close
, iCsr
);
5586 explainSimpleCount(pParse
, pTab
, pBest
);
5588 #endif /* SQLITE_OMIT_BTREECOUNT */
5590 /* Check if the query is of one of the following forms:
5592 ** SELECT min(x) FROM ...
5593 ** SELECT max(x) FROM ...
5595 ** If it is, then ask the code in where.c to attempt to sort results
5596 ** as if there was an "ORDER ON x" or "ORDER ON x DESC" clause.
5597 ** If where.c is able to produce results sorted in this order, then
5598 ** add vdbe code to break out of the processing loop after the
5599 ** first iteration (since the first iteration of the loop is
5600 ** guaranteed to operate on the row with the minimum or maximum
5601 ** value of x, the only row required).
5603 ** A special flag must be passed to sqlite3WhereBegin() to slightly
5604 ** modify behavior as follows:
5606 ** + If the query is a "SELECT min(x)", then the loop coded by
5607 ** where.c should not iterate over any values with a NULL value
5610 ** + The optimizer code in where.c (the thing that decides which
5611 ** index or indices to use) should place a different priority on
5612 ** satisfying the 'ORDER BY' clause than it does in other cases.
5613 ** Refer to code and comments in where.c for details.
5615 ExprList
*pMinMax
= 0;
5616 u8 flag
= WHERE_ORDERBY_NORMAL
;
5618 assert( p
->pGroupBy
==0 );
5620 if( p
->pHaving
==0 ){
5621 flag
= minMaxQuery(&sAggInfo
, &pMinMax
);
5623 assert( flag
==0 || (pMinMax
!=0 && pMinMax
->nExpr
==1) );
5626 pMinMax
= sqlite3ExprListDup(db
, pMinMax
, 0);
5628 assert( db
->mallocFailed
|| pMinMax
!=0 );
5629 if( !db
->mallocFailed
){
5630 pMinMax
->a
[0].sortOrder
= flag
!=WHERE_ORDERBY_MIN
?1:0;
5631 pMinMax
->a
[0].pExpr
->op
= TK_COLUMN
;
5635 /* This case runs if the aggregate has no GROUP BY clause. The
5636 ** processing is much simpler since there is only a single row
5639 resetAccumulator(pParse
, &sAggInfo
);
5640 pWInfo
= sqlite3WhereBegin(pParse
, pTabList
, pWhere
, pMinMax
,0,flag
,0);
5642 sqlite3ExprListDelete(db
, pDel
);
5645 updateAccumulator(pParse
, &sAggInfo
);
5646 assert( pMinMax
==0 || pMinMax
->nExpr
==1 );
5647 if( sqlite3WhereIsOrdered(pWInfo
)>0 ){
5648 sqlite3VdbeGoto(v
, sqlite3WhereBreakLabel(pWInfo
));
5649 VdbeComment((v
, "%s() by index",
5650 (flag
==WHERE_ORDERBY_MIN
?"min":"max")));
5652 sqlite3WhereEnd(pWInfo
);
5653 finalizeAggFunctions(pParse
, &sAggInfo
);
5657 sqlite3ExprIfFalse(pParse
, pHaving
, addrEnd
, SQLITE_JUMPIFNULL
);
5658 selectInnerLoop(pParse
, p
, p
->pEList
, -1, 0, 0,
5659 pDest
, addrEnd
, addrEnd
);
5660 sqlite3ExprListDelete(db
, pDel
);
5662 sqlite3VdbeResolveLabel(v
, addrEnd
);
5664 } /* endif aggregate query */
5666 if( sDistinct
.eTnctType
==WHERE_DISTINCT_UNORDERED
){
5667 explainTempTable(pParse
, "DISTINCT");
5670 /* If there is an ORDER BY clause, then we need to sort the results
5671 ** and send them to the callback one by one.
5673 if( sSort
.pOrderBy
){
5674 explainTempTable(pParse
,
5675 sSort
.nOBSat
>0 ? "RIGHT PART OF ORDER BY":"ORDER BY");
5676 generateSortTail(pParse
, p
, &sSort
, pEList
->nExpr
, pDest
);
5679 /* Jump here to skip this query
5681 sqlite3VdbeResolveLabel(v
, iEnd
);
5683 /* The SELECT has been coded. If there is an error in the Parse structure,
5684 ** set the return code to 1. Otherwise 0. */
5685 rc
= (pParse
->nErr
>0);
5687 /* Control jumps to here if an error is encountered above, or upon
5688 ** successful coding of the SELECT.
5691 explainSetInteger(pParse
->iSelectId
, iRestoreSelectId
);
5693 /* Identify column names if results of the SELECT are to be output.
5695 if( rc
==SQLITE_OK
&& pDest
->eDest
==SRT_Output
){
5696 generateColumnNames(pParse
, pTabList
, pEList
);
5699 sqlite3DbFree(db
, sAggInfo
.aCol
);
5700 sqlite3DbFree(db
, sAggInfo
.aFunc
);
5701 #if SELECTTRACE_ENABLED
5702 SELECTTRACE(1,pParse
,p
,("end processing\n"));
5703 pParse
->nSelectIndent
--;