Use the SQLITE_TCLAPI macro in several extensions that were missed in the previous...
[sqlite.git] / src / select.c
blobe21ac57dc5aa7b40732fbff9ed6afe322964eb10
1 /*
2 ** 2001 September 15
3 **
4 ** The author disclaims copyright to this source code. In place of
5 ** a legal notice, here is a blessing:
6 **
7 ** May you do good and not evil.
8 ** May you find forgiveness for yourself and forgive others.
9 ** May you share freely, never taking more than you give.
11 *************************************************************************
12 ** This file contains C code routines that are called by the parser
13 ** to handle SELECT statements in SQLite.
15 #include "sqliteInt.h"
18 ** Trace output macros
20 #if SELECTTRACE_ENABLED
21 /***/ int sqlite3SelectTrace = 0;
22 # define SELECTTRACE(K,P,S,X) \
23 if(sqlite3SelectTrace&(K)) \
24 sqlite3DebugPrintf("%*s%s.%p: ",(P)->nSelectIndent*2-2,"",\
25 (S)->zSelName,(S)),\
26 sqlite3DebugPrintf X
27 #else
28 # define SELECTTRACE(K,P,S,X)
29 #endif
33 ** An instance of the following object is used to record information about
34 ** how to process the DISTINCT keyword, to simplify passing that information
35 ** into the selectInnerLoop() routine.
37 typedef struct DistinctCtx DistinctCtx;
38 struct DistinctCtx {
39 u8 isTnct; /* True if the DISTINCT keyword is present */
40 u8 eTnctType; /* One of the WHERE_DISTINCT_* operators */
41 int tabTnct; /* Ephemeral table used for DISTINCT processing */
42 int addrTnct; /* Address of OP_OpenEphemeral opcode for tabTnct */
46 ** An instance of the following object is used to record information about
47 ** the ORDER BY (or GROUP BY) clause of query is being coded.
49 typedef struct SortCtx SortCtx;
50 struct SortCtx {
51 ExprList *pOrderBy; /* The ORDER BY (or GROUP BY clause) */
52 int nOBSat; /* Number of ORDER BY terms satisfied by indices */
53 int iECursor; /* Cursor number for the sorter */
54 int regReturn; /* Register holding block-output return address */
55 int labelBkOut; /* Start label for the block-output subroutine */
56 int addrSortIndex; /* Address of the OP_SorterOpen or OP_OpenEphemeral */
57 int labelDone; /* Jump here when done, ex: LIMIT reached */
58 u8 sortFlags; /* Zero or more SORTFLAG_* bits */
59 u8 bOrderedInnerLoop; /* ORDER BY correctly sorts the inner loop */
61 #define SORTFLAG_UseSorter 0x01 /* Use SorterOpen instead of OpenEphemeral */
64 ** Delete all the content of a Select structure. Deallocate the structure
65 ** itself only if bFree is true.
67 static void clearSelect(sqlite3 *db, Select *p, int bFree){
68 while( p ){
69 Select *pPrior = p->pPrior;
70 sqlite3ExprListDelete(db, p->pEList);
71 sqlite3SrcListDelete(db, p->pSrc);
72 sqlite3ExprDelete(db, p->pWhere);
73 sqlite3ExprListDelete(db, p->pGroupBy);
74 sqlite3ExprDelete(db, p->pHaving);
75 sqlite3ExprListDelete(db, p->pOrderBy);
76 sqlite3ExprDelete(db, p->pLimit);
77 sqlite3ExprDelete(db, p->pOffset);
78 if( p->pWith ) sqlite3WithDelete(db, p->pWith);
79 if( bFree ) sqlite3DbFree(db, p);
80 p = pPrior;
81 bFree = 1;
86 ** Initialize a SelectDest structure.
88 void sqlite3SelectDestInit(SelectDest *pDest, int eDest, int iParm){
89 pDest->eDest = (u8)eDest;
90 pDest->iSDParm = iParm;
91 pDest->affSdst = 0;
92 pDest->iSdst = 0;
93 pDest->nSdst = 0;
98 ** Allocate a new Select structure and return a pointer to that
99 ** structure.
101 Select *sqlite3SelectNew(
102 Parse *pParse, /* Parsing context */
103 ExprList *pEList, /* which columns to include in the result */
104 SrcList *pSrc, /* the FROM clause -- which tables to scan */
105 Expr *pWhere, /* the WHERE clause */
106 ExprList *pGroupBy, /* the GROUP BY clause */
107 Expr *pHaving, /* the HAVING clause */
108 ExprList *pOrderBy, /* the ORDER BY clause */
109 u32 selFlags, /* Flag parameters, such as SF_Distinct */
110 Expr *pLimit, /* LIMIT value. NULL means not used */
111 Expr *pOffset /* OFFSET value. NULL means no offset */
113 Select *pNew;
114 Select standin;
115 sqlite3 *db = pParse->db;
116 pNew = sqlite3DbMallocRawNN(db, sizeof(*pNew) );
117 if( pNew==0 ){
118 assert( db->mallocFailed );
119 pNew = &standin;
121 if( pEList==0 ){
122 pEList = sqlite3ExprListAppend(pParse, 0, sqlite3Expr(db,TK_ASTERISK,0));
124 pNew->pEList = pEList;
125 pNew->op = TK_SELECT;
126 pNew->selFlags = selFlags;
127 pNew->iLimit = 0;
128 pNew->iOffset = 0;
129 #if SELECTTRACE_ENABLED
130 pNew->zSelName[0] = 0;
131 #endif
132 pNew->addrOpenEphm[0] = -1;
133 pNew->addrOpenEphm[1] = -1;
134 pNew->nSelectRow = 0;
135 if( pSrc==0 ) pSrc = sqlite3DbMallocZero(db, sizeof(*pSrc));
136 pNew->pSrc = pSrc;
137 pNew->pWhere = pWhere;
138 pNew->pGroupBy = pGroupBy;
139 pNew->pHaving = pHaving;
140 pNew->pOrderBy = pOrderBy;
141 pNew->pPrior = 0;
142 pNew->pNext = 0;
143 pNew->pLimit = pLimit;
144 pNew->pOffset = pOffset;
145 pNew->pWith = 0;
146 assert( pOffset==0 || pLimit!=0 || pParse->nErr>0 || db->mallocFailed!=0 );
147 if( db->mallocFailed ) {
148 clearSelect(db, pNew, pNew!=&standin);
149 pNew = 0;
150 }else{
151 assert( pNew->pSrc!=0 || pParse->nErr>0 );
153 assert( pNew!=&standin );
154 return pNew;
157 #if SELECTTRACE_ENABLED
159 ** Set the name of a Select object
161 void sqlite3SelectSetName(Select *p, const char *zName){
162 if( p && zName ){
163 sqlite3_snprintf(sizeof(p->zSelName), p->zSelName, "%s", zName);
166 #endif
170 ** Delete the given Select structure and all of its substructures.
172 void sqlite3SelectDelete(sqlite3 *db, Select *p){
173 if( p ) clearSelect(db, p, 1);
177 ** Return a pointer to the right-most SELECT statement in a compound.
179 static Select *findRightmost(Select *p){
180 while( p->pNext ) p = p->pNext;
181 return p;
185 ** Given 1 to 3 identifiers preceding the JOIN keyword, determine the
186 ** type of join. Return an integer constant that expresses that type
187 ** in terms of the following bit values:
189 ** JT_INNER
190 ** JT_CROSS
191 ** JT_OUTER
192 ** JT_NATURAL
193 ** JT_LEFT
194 ** JT_RIGHT
196 ** A full outer join is the combination of JT_LEFT and JT_RIGHT.
198 ** If an illegal or unsupported join type is seen, then still return
199 ** a join type, but put an error in the pParse structure.
201 int sqlite3JoinType(Parse *pParse, Token *pA, Token *pB, Token *pC){
202 int jointype = 0;
203 Token *apAll[3];
204 Token *p;
205 /* 0123456789 123456789 123456789 123 */
206 static const char zKeyText[] = "naturaleftouterightfullinnercross";
207 static const struct {
208 u8 i; /* Beginning of keyword text in zKeyText[] */
209 u8 nChar; /* Length of the keyword in characters */
210 u8 code; /* Join type mask */
211 } aKeyword[] = {
212 /* natural */ { 0, 7, JT_NATURAL },
213 /* left */ { 6, 4, JT_LEFT|JT_OUTER },
214 /* outer */ { 10, 5, JT_OUTER },
215 /* right */ { 14, 5, JT_RIGHT|JT_OUTER },
216 /* full */ { 19, 4, JT_LEFT|JT_RIGHT|JT_OUTER },
217 /* inner */ { 23, 5, JT_INNER },
218 /* cross */ { 28, 5, JT_INNER|JT_CROSS },
220 int i, j;
221 apAll[0] = pA;
222 apAll[1] = pB;
223 apAll[2] = pC;
224 for(i=0; i<3 && apAll[i]; i++){
225 p = apAll[i];
226 for(j=0; j<ArraySize(aKeyword); j++){
227 if( p->n==aKeyword[j].nChar
228 && sqlite3StrNICmp((char*)p->z, &zKeyText[aKeyword[j].i], p->n)==0 ){
229 jointype |= aKeyword[j].code;
230 break;
233 testcase( j==0 || j==1 || j==2 || j==3 || j==4 || j==5 || j==6 );
234 if( j>=ArraySize(aKeyword) ){
235 jointype |= JT_ERROR;
236 break;
240 (jointype & (JT_INNER|JT_OUTER))==(JT_INNER|JT_OUTER) ||
241 (jointype & JT_ERROR)!=0
243 const char *zSp = " ";
244 assert( pB!=0 );
245 if( pC==0 ){ zSp++; }
246 sqlite3ErrorMsg(pParse, "unknown or unsupported join type: "
247 "%T %T%s%T", pA, pB, zSp, pC);
248 jointype = JT_INNER;
249 }else if( (jointype & JT_OUTER)!=0
250 && (jointype & (JT_LEFT|JT_RIGHT))!=JT_LEFT ){
251 sqlite3ErrorMsg(pParse,
252 "RIGHT and FULL OUTER JOINs are not currently supported");
253 jointype = JT_INNER;
255 return jointype;
259 ** Return the index of a column in a table. Return -1 if the column
260 ** is not contained in the table.
262 static int columnIndex(Table *pTab, const char *zCol){
263 int i;
264 for(i=0; i<pTab->nCol; i++){
265 if( sqlite3StrICmp(pTab->aCol[i].zName, zCol)==0 ) return i;
267 return -1;
271 ** Search the first N tables in pSrc, from left to right, looking for a
272 ** table that has a column named zCol.
274 ** When found, set *piTab and *piCol to the table index and column index
275 ** of the matching column and return TRUE.
277 ** If not found, return FALSE.
279 static int tableAndColumnIndex(
280 SrcList *pSrc, /* Array of tables to search */
281 int N, /* Number of tables in pSrc->a[] to search */
282 const char *zCol, /* Name of the column we are looking for */
283 int *piTab, /* Write index of pSrc->a[] here */
284 int *piCol /* Write index of pSrc->a[*piTab].pTab->aCol[] here */
286 int i; /* For looping over tables in pSrc */
287 int iCol; /* Index of column matching zCol */
289 assert( (piTab==0)==(piCol==0) ); /* Both or neither are NULL */
290 for(i=0; i<N; i++){
291 iCol = columnIndex(pSrc->a[i].pTab, zCol);
292 if( iCol>=0 ){
293 if( piTab ){
294 *piTab = i;
295 *piCol = iCol;
297 return 1;
300 return 0;
304 ** This function is used to add terms implied by JOIN syntax to the
305 ** WHERE clause expression of a SELECT statement. The new term, which
306 ** is ANDed with the existing WHERE clause, is of the form:
308 ** (tab1.col1 = tab2.col2)
310 ** where tab1 is the iSrc'th table in SrcList pSrc and tab2 is the
311 ** (iSrc+1)'th. Column col1 is column iColLeft of tab1, and col2 is
312 ** column iColRight of tab2.
314 static void addWhereTerm(
315 Parse *pParse, /* Parsing context */
316 SrcList *pSrc, /* List of tables in FROM clause */
317 int iLeft, /* Index of first table to join in pSrc */
318 int iColLeft, /* Index of column in first table */
319 int iRight, /* Index of second table in pSrc */
320 int iColRight, /* Index of column in second table */
321 int isOuterJoin, /* True if this is an OUTER join */
322 Expr **ppWhere /* IN/OUT: The WHERE clause to add to */
324 sqlite3 *db = pParse->db;
325 Expr *pE1;
326 Expr *pE2;
327 Expr *pEq;
329 assert( iLeft<iRight );
330 assert( pSrc->nSrc>iRight );
331 assert( pSrc->a[iLeft].pTab );
332 assert( pSrc->a[iRight].pTab );
334 pE1 = sqlite3CreateColumnExpr(db, pSrc, iLeft, iColLeft);
335 pE2 = sqlite3CreateColumnExpr(db, pSrc, iRight, iColRight);
337 pEq = sqlite3PExpr(pParse, TK_EQ, pE1, pE2, 0);
338 if( pEq && isOuterJoin ){
339 ExprSetProperty(pEq, EP_FromJoin);
340 assert( !ExprHasProperty(pEq, EP_TokenOnly|EP_Reduced) );
341 ExprSetVVAProperty(pEq, EP_NoReduce);
342 pEq->iRightJoinTable = (i16)pE2->iTable;
344 *ppWhere = sqlite3ExprAnd(db, *ppWhere, pEq);
348 ** Set the EP_FromJoin property on all terms of the given expression.
349 ** And set the Expr.iRightJoinTable to iTable for every term in the
350 ** expression.
352 ** The EP_FromJoin property is used on terms of an expression to tell
353 ** the LEFT OUTER JOIN processing logic that this term is part of the
354 ** join restriction specified in the ON or USING clause and not a part
355 ** of the more general WHERE clause. These terms are moved over to the
356 ** WHERE clause during join processing but we need to remember that they
357 ** originated in the ON or USING clause.
359 ** The Expr.iRightJoinTable tells the WHERE clause processing that the
360 ** expression depends on table iRightJoinTable even if that table is not
361 ** explicitly mentioned in the expression. That information is needed
362 ** for cases like this:
364 ** SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.b AND t1.x=5
366 ** The where clause needs to defer the handling of the t1.x=5
367 ** term until after the t2 loop of the join. In that way, a
368 ** NULL t2 row will be inserted whenever t1.x!=5. If we do not
369 ** defer the handling of t1.x=5, it will be processed immediately
370 ** after the t1 loop and rows with t1.x!=5 will never appear in
371 ** the output, which is incorrect.
373 static void setJoinExpr(Expr *p, int iTable){
374 while( p ){
375 ExprSetProperty(p, EP_FromJoin);
376 assert( !ExprHasProperty(p, EP_TokenOnly|EP_Reduced) );
377 ExprSetVVAProperty(p, EP_NoReduce);
378 p->iRightJoinTable = (i16)iTable;
379 if( p->op==TK_FUNCTION && p->x.pList ){
380 int i;
381 for(i=0; i<p->x.pList->nExpr; i++){
382 setJoinExpr(p->x.pList->a[i].pExpr, iTable);
385 setJoinExpr(p->pLeft, iTable);
386 p = p->pRight;
391 ** This routine processes the join information for a SELECT statement.
392 ** ON and USING clauses are converted into extra terms of the WHERE clause.
393 ** NATURAL joins also create extra WHERE clause terms.
395 ** The terms of a FROM clause are contained in the Select.pSrc structure.
396 ** The left most table is the first entry in Select.pSrc. The right-most
397 ** table is the last entry. The join operator is held in the entry to
398 ** the left. Thus entry 0 contains the join operator for the join between
399 ** entries 0 and 1. Any ON or USING clauses associated with the join are
400 ** also attached to the left entry.
402 ** This routine returns the number of errors encountered.
404 static int sqliteProcessJoin(Parse *pParse, Select *p){
405 SrcList *pSrc; /* All tables in the FROM clause */
406 int i, j; /* Loop counters */
407 struct SrcList_item *pLeft; /* Left table being joined */
408 struct SrcList_item *pRight; /* Right table being joined */
410 pSrc = p->pSrc;
411 pLeft = &pSrc->a[0];
412 pRight = &pLeft[1];
413 for(i=0; i<pSrc->nSrc-1; i++, pRight++, pLeft++){
414 Table *pLeftTab = pLeft->pTab;
415 Table *pRightTab = pRight->pTab;
416 int isOuter;
418 if( NEVER(pLeftTab==0 || pRightTab==0) ) continue;
419 isOuter = (pRight->fg.jointype & JT_OUTER)!=0;
421 /* When the NATURAL keyword is present, add WHERE clause terms for
422 ** every column that the two tables have in common.
424 if( pRight->fg.jointype & JT_NATURAL ){
425 if( pRight->pOn || pRight->pUsing ){
426 sqlite3ErrorMsg(pParse, "a NATURAL join may not have "
427 "an ON or USING clause", 0);
428 return 1;
430 for(j=0; j<pRightTab->nCol; j++){
431 char *zName; /* Name of column in the right table */
432 int iLeft; /* Matching left table */
433 int iLeftCol; /* Matching column in the left table */
435 zName = pRightTab->aCol[j].zName;
436 if( tableAndColumnIndex(pSrc, i+1, zName, &iLeft, &iLeftCol) ){
437 addWhereTerm(pParse, pSrc, iLeft, iLeftCol, i+1, j,
438 isOuter, &p->pWhere);
443 /* Disallow both ON and USING clauses in the same join
445 if( pRight->pOn && pRight->pUsing ){
446 sqlite3ErrorMsg(pParse, "cannot have both ON and USING "
447 "clauses in the same join");
448 return 1;
451 /* Add the ON clause to the end of the WHERE clause, connected by
452 ** an AND operator.
454 if( pRight->pOn ){
455 if( isOuter ) setJoinExpr(pRight->pOn, pRight->iCursor);
456 p->pWhere = sqlite3ExprAnd(pParse->db, p->pWhere, pRight->pOn);
457 pRight->pOn = 0;
460 /* Create extra terms on the WHERE clause for each column named
461 ** in the USING clause. Example: If the two tables to be joined are
462 ** A and B and the USING clause names X, Y, and Z, then add this
463 ** to the WHERE clause: A.X=B.X AND A.Y=B.Y AND A.Z=B.Z
464 ** Report an error if any column mentioned in the USING clause is
465 ** not contained in both tables to be joined.
467 if( pRight->pUsing ){
468 IdList *pList = pRight->pUsing;
469 for(j=0; j<pList->nId; j++){
470 char *zName; /* Name of the term in the USING clause */
471 int iLeft; /* Table on the left with matching column name */
472 int iLeftCol; /* Column number of matching column on the left */
473 int iRightCol; /* Column number of matching column on the right */
475 zName = pList->a[j].zName;
476 iRightCol = columnIndex(pRightTab, zName);
477 if( iRightCol<0
478 || !tableAndColumnIndex(pSrc, i+1, zName, &iLeft, &iLeftCol)
480 sqlite3ErrorMsg(pParse, "cannot join using column %s - column "
481 "not present in both tables", zName);
482 return 1;
484 addWhereTerm(pParse, pSrc, iLeft, iLeftCol, i+1, iRightCol,
485 isOuter, &p->pWhere);
489 return 0;
492 /* Forward reference */
493 static KeyInfo *keyInfoFromExprList(
494 Parse *pParse, /* Parsing context */
495 ExprList *pList, /* Form the KeyInfo object from this ExprList */
496 int iStart, /* Begin with this column of pList */
497 int nExtra /* Add this many extra columns to the end */
501 ** Generate code that will push the record in registers regData
502 ** through regData+nData-1 onto the sorter.
504 static void pushOntoSorter(
505 Parse *pParse, /* Parser context */
506 SortCtx *pSort, /* Information about the ORDER BY clause */
507 Select *pSelect, /* The whole SELECT statement */
508 int regData, /* First register holding data to be sorted */
509 int regOrigData, /* First register holding data before packing */
510 int nData, /* Number of elements in the data array */
511 int nPrefixReg /* No. of reg prior to regData available for use */
513 Vdbe *v = pParse->pVdbe; /* Stmt under construction */
514 int bSeq = ((pSort->sortFlags & SORTFLAG_UseSorter)==0);
515 int nExpr = pSort->pOrderBy->nExpr; /* No. of ORDER BY terms */
516 int nBase = nExpr + bSeq + nData; /* Fields in sorter record */
517 int regBase; /* Regs for sorter record */
518 int regRecord = ++pParse->nMem; /* Assembled sorter record */
519 int nOBSat = pSort->nOBSat; /* ORDER BY terms to skip */
520 int op; /* Opcode to add sorter record to sorter */
521 int iLimit; /* LIMIT counter */
523 assert( bSeq==0 || bSeq==1 );
524 assert( nData==1 || regData==regOrigData );
525 if( nPrefixReg ){
526 assert( nPrefixReg==nExpr+bSeq );
527 regBase = regData - nExpr - bSeq;
528 }else{
529 regBase = pParse->nMem + 1;
530 pParse->nMem += nBase;
532 assert( pSelect->iOffset==0 || pSelect->iLimit!=0 );
533 iLimit = pSelect->iOffset ? pSelect->iOffset+1 : pSelect->iLimit;
534 pSort->labelDone = sqlite3VdbeMakeLabel(v);
535 sqlite3ExprCodeExprList(pParse, pSort->pOrderBy, regBase, regOrigData,
536 SQLITE_ECEL_DUP|SQLITE_ECEL_REF);
537 if( bSeq ){
538 sqlite3VdbeAddOp2(v, OP_Sequence, pSort->iECursor, regBase+nExpr);
540 if( nPrefixReg==0 ){
541 sqlite3ExprCodeMove(pParse, regData, regBase+nExpr+bSeq, nData);
543 sqlite3VdbeAddOp3(v, OP_MakeRecord, regBase+nOBSat, nBase-nOBSat, regRecord);
544 if( nOBSat>0 ){
545 int regPrevKey; /* The first nOBSat columns of the previous row */
546 int addrFirst; /* Address of the OP_IfNot opcode */
547 int addrJmp; /* Address of the OP_Jump opcode */
548 VdbeOp *pOp; /* Opcode that opens the sorter */
549 int nKey; /* Number of sorting key columns, including OP_Sequence */
550 KeyInfo *pKI; /* Original KeyInfo on the sorter table */
552 regPrevKey = pParse->nMem+1;
553 pParse->nMem += pSort->nOBSat;
554 nKey = nExpr - pSort->nOBSat + bSeq;
555 if( bSeq ){
556 addrFirst = sqlite3VdbeAddOp1(v, OP_IfNot, regBase+nExpr);
557 }else{
558 addrFirst = sqlite3VdbeAddOp1(v, OP_SequenceTest, pSort->iECursor);
560 VdbeCoverage(v);
561 sqlite3VdbeAddOp3(v, OP_Compare, regPrevKey, regBase, pSort->nOBSat);
562 pOp = sqlite3VdbeGetOp(v, pSort->addrSortIndex);
563 if( pParse->db->mallocFailed ) return;
564 pOp->p2 = nKey + nData;
565 pKI = pOp->p4.pKeyInfo;
566 memset(pKI->aSortOrder, 0, pKI->nField); /* Makes OP_Jump below testable */
567 sqlite3VdbeChangeP4(v, -1, (char*)pKI, P4_KEYINFO);
568 testcase( pKI->nXField>2 );
569 pOp->p4.pKeyInfo = keyInfoFromExprList(pParse, pSort->pOrderBy, nOBSat,
570 pKI->nXField-1);
571 addrJmp = sqlite3VdbeCurrentAddr(v);
572 sqlite3VdbeAddOp3(v, OP_Jump, addrJmp+1, 0, addrJmp+1); VdbeCoverage(v);
573 pSort->labelBkOut = sqlite3VdbeMakeLabel(v);
574 pSort->regReturn = ++pParse->nMem;
575 sqlite3VdbeAddOp2(v, OP_Gosub, pSort->regReturn, pSort->labelBkOut);
576 sqlite3VdbeAddOp1(v, OP_ResetSorter, pSort->iECursor);
577 if( iLimit ){
578 sqlite3VdbeAddOp2(v, OP_IfNot, iLimit, pSort->labelDone);
579 VdbeCoverage(v);
581 sqlite3VdbeJumpHere(v, addrFirst);
582 sqlite3ExprCodeMove(pParse, regBase, regPrevKey, pSort->nOBSat);
583 sqlite3VdbeJumpHere(v, addrJmp);
585 if( pSort->sortFlags & SORTFLAG_UseSorter ){
586 op = OP_SorterInsert;
587 }else{
588 op = OP_IdxInsert;
590 sqlite3VdbeAddOp2(v, op, pSort->iECursor, regRecord);
591 if( iLimit ){
592 int addr;
593 int r1 = 0;
594 /* Fill the sorter until it contains LIMIT+OFFSET entries. (The iLimit
595 ** register is initialized with value of LIMIT+OFFSET.) After the sorter
596 ** fills up, delete the least entry in the sorter after each insert.
597 ** Thus we never hold more than the LIMIT+OFFSET rows in memory at once */
598 addr = sqlite3VdbeAddOp3(v, OP_IfNotZero, iLimit, 0, 1); VdbeCoverage(v);
599 sqlite3VdbeAddOp1(v, OP_Last, pSort->iECursor);
600 if( pSort->bOrderedInnerLoop ){
601 r1 = ++pParse->nMem;
602 sqlite3VdbeAddOp3(v, OP_Column, pSort->iECursor, nExpr, r1);
603 VdbeComment((v, "seq"));
605 sqlite3VdbeAddOp1(v, OP_Delete, pSort->iECursor);
606 if( pSort->bOrderedInnerLoop ){
607 /* If the inner loop is driven by an index such that values from
608 ** the same iteration of the inner loop are in sorted order, then
609 ** immediately jump to the next iteration of an inner loop if the
610 ** entry from the current iteration does not fit into the top
611 ** LIMIT+OFFSET entries of the sorter. */
612 int iBrk = sqlite3VdbeCurrentAddr(v) + 2;
613 sqlite3VdbeAddOp3(v, OP_Eq, regBase+nExpr, iBrk, r1);
614 sqlite3VdbeChangeP5(v, SQLITE_NULLEQ);
615 VdbeCoverage(v);
617 sqlite3VdbeJumpHere(v, addr);
622 ** Add code to implement the OFFSET
624 static void codeOffset(
625 Vdbe *v, /* Generate code into this VM */
626 int iOffset, /* Register holding the offset counter */
627 int iContinue /* Jump here to skip the current record */
629 if( iOffset>0 ){
630 sqlite3VdbeAddOp3(v, OP_IfPos, iOffset, iContinue, 1); VdbeCoverage(v);
631 VdbeComment((v, "OFFSET"));
636 ** Add code that will check to make sure the N registers starting at iMem
637 ** form a distinct entry. iTab is a sorting index that holds previously
638 ** seen combinations of the N values. A new entry is made in iTab
639 ** if the current N values are new.
641 ** A jump to addrRepeat is made and the N+1 values are popped from the
642 ** stack if the top N elements are not distinct.
644 static void codeDistinct(
645 Parse *pParse, /* Parsing and code generating context */
646 int iTab, /* A sorting index used to test for distinctness */
647 int addrRepeat, /* Jump to here if not distinct */
648 int N, /* Number of elements */
649 int iMem /* First element */
651 Vdbe *v;
652 int r1;
654 v = pParse->pVdbe;
655 r1 = sqlite3GetTempReg(pParse);
656 sqlite3VdbeAddOp4Int(v, OP_Found, iTab, addrRepeat, iMem, N); VdbeCoverage(v);
657 sqlite3VdbeAddOp3(v, OP_MakeRecord, iMem, N, r1);
658 sqlite3VdbeAddOp2(v, OP_IdxInsert, iTab, r1);
659 sqlite3ReleaseTempReg(pParse, r1);
662 #ifndef SQLITE_OMIT_SUBQUERY
664 ** Generate an error message when a SELECT is used within a subexpression
665 ** (example: "a IN (SELECT * FROM table)") but it has more than 1 result
666 ** column. We do this in a subroutine because the error used to occur
667 ** in multiple places. (The error only occurs in one place now, but we
668 ** retain the subroutine to minimize code disruption.)
670 static int checkForMultiColumnSelectError(
671 Parse *pParse, /* Parse context. */
672 SelectDest *pDest, /* Destination of SELECT results */
673 int nExpr /* Number of result columns returned by SELECT */
675 int eDest = pDest->eDest;
676 if( nExpr>1 && (eDest==SRT_Mem || eDest==SRT_Set) ){
677 sqlite3ErrorMsg(pParse, "only a single result allowed for "
678 "a SELECT that is part of an expression");
679 return 1;
680 }else{
681 return 0;
684 #endif
687 ** This routine generates the code for the inside of the inner loop
688 ** of a SELECT.
690 ** If srcTab is negative, then the pEList expressions
691 ** are evaluated in order to get the data for this row. If srcTab is
692 ** zero or more, then data is pulled from srcTab and pEList is used only
693 ** to get number columns and the datatype for each column.
695 static void selectInnerLoop(
696 Parse *pParse, /* The parser context */
697 Select *p, /* The complete select statement being coded */
698 ExprList *pEList, /* List of values being extracted */
699 int srcTab, /* Pull data from this table */
700 SortCtx *pSort, /* If not NULL, info on how to process ORDER BY */
701 DistinctCtx *pDistinct, /* If not NULL, info on how to process DISTINCT */
702 SelectDest *pDest, /* How to dispose of the results */
703 int iContinue, /* Jump here to continue with next row */
704 int iBreak /* Jump here to break out of the inner loop */
706 Vdbe *v = pParse->pVdbe;
707 int i;
708 int hasDistinct; /* True if the DISTINCT keyword is present */
709 int regResult; /* Start of memory holding result set */
710 int eDest = pDest->eDest; /* How to dispose of results */
711 int iParm = pDest->iSDParm; /* First argument to disposal method */
712 int nResultCol; /* Number of result columns */
713 int nPrefixReg = 0; /* Number of extra registers before regResult */
715 assert( v );
716 assert( pEList!=0 );
717 hasDistinct = pDistinct ? pDistinct->eTnctType : WHERE_DISTINCT_NOOP;
718 if( pSort && pSort->pOrderBy==0 ) pSort = 0;
719 if( pSort==0 && !hasDistinct ){
720 assert( iContinue!=0 );
721 codeOffset(v, p->iOffset, iContinue);
724 /* Pull the requested columns.
726 nResultCol = pEList->nExpr;
728 if( pDest->iSdst==0 ){
729 if( pSort ){
730 nPrefixReg = pSort->pOrderBy->nExpr;
731 if( !(pSort->sortFlags & SORTFLAG_UseSorter) ) nPrefixReg++;
732 pParse->nMem += nPrefixReg;
734 pDest->iSdst = pParse->nMem+1;
735 pParse->nMem += nResultCol;
736 }else if( pDest->iSdst+nResultCol > pParse->nMem ){
737 /* This is an error condition that can result, for example, when a SELECT
738 ** on the right-hand side of an INSERT contains more result columns than
739 ** there are columns in the table on the left. The error will be caught
740 ** and reported later. But we need to make sure enough memory is allocated
741 ** to avoid other spurious errors in the meantime. */
742 pParse->nMem += nResultCol;
744 pDest->nSdst = nResultCol;
745 regResult = pDest->iSdst;
746 if( srcTab>=0 ){
747 for(i=0; i<nResultCol; i++){
748 sqlite3VdbeAddOp3(v, OP_Column, srcTab, i, regResult+i);
749 VdbeComment((v, "%s", pEList->a[i].zName));
751 }else if( eDest!=SRT_Exists ){
752 /* If the destination is an EXISTS(...) expression, the actual
753 ** values returned by the SELECT are not required.
755 u8 ecelFlags;
756 if( eDest==SRT_Mem || eDest==SRT_Output || eDest==SRT_Coroutine ){
757 ecelFlags = SQLITE_ECEL_DUP;
758 }else{
759 ecelFlags = 0;
761 sqlite3ExprCodeExprList(pParse, pEList, regResult, 0, ecelFlags);
764 /* If the DISTINCT keyword was present on the SELECT statement
765 ** and this row has been seen before, then do not make this row
766 ** part of the result.
768 if( hasDistinct ){
769 switch( pDistinct->eTnctType ){
770 case WHERE_DISTINCT_ORDERED: {
771 VdbeOp *pOp; /* No longer required OpenEphemeral instr. */
772 int iJump; /* Jump destination */
773 int regPrev; /* Previous row content */
775 /* Allocate space for the previous row */
776 regPrev = pParse->nMem+1;
777 pParse->nMem += nResultCol;
779 /* Change the OP_OpenEphemeral coded earlier to an OP_Null
780 ** sets the MEM_Cleared bit on the first register of the
781 ** previous value. This will cause the OP_Ne below to always
782 ** fail on the first iteration of the loop even if the first
783 ** row is all NULLs.
785 sqlite3VdbeChangeToNoop(v, pDistinct->addrTnct);
786 pOp = sqlite3VdbeGetOp(v, pDistinct->addrTnct);
787 pOp->opcode = OP_Null;
788 pOp->p1 = 1;
789 pOp->p2 = regPrev;
791 iJump = sqlite3VdbeCurrentAddr(v) + nResultCol;
792 for(i=0; i<nResultCol; i++){
793 CollSeq *pColl = sqlite3ExprCollSeq(pParse, pEList->a[i].pExpr);
794 if( i<nResultCol-1 ){
795 sqlite3VdbeAddOp3(v, OP_Ne, regResult+i, iJump, regPrev+i);
796 VdbeCoverage(v);
797 }else{
798 sqlite3VdbeAddOp3(v, OP_Eq, regResult+i, iContinue, regPrev+i);
799 VdbeCoverage(v);
801 sqlite3VdbeChangeP4(v, -1, (const char *)pColl, P4_COLLSEQ);
802 sqlite3VdbeChangeP5(v, SQLITE_NULLEQ);
804 assert( sqlite3VdbeCurrentAddr(v)==iJump || pParse->db->mallocFailed );
805 sqlite3VdbeAddOp3(v, OP_Copy, regResult, regPrev, nResultCol-1);
806 break;
809 case WHERE_DISTINCT_UNIQUE: {
810 sqlite3VdbeChangeToNoop(v, pDistinct->addrTnct);
811 break;
814 default: {
815 assert( pDistinct->eTnctType==WHERE_DISTINCT_UNORDERED );
816 codeDistinct(pParse, pDistinct->tabTnct, iContinue, nResultCol,
817 regResult);
818 break;
821 if( pSort==0 ){
822 codeOffset(v, p->iOffset, iContinue);
826 switch( eDest ){
827 /* In this mode, write each query result to the key of the temporary
828 ** table iParm.
830 #ifndef SQLITE_OMIT_COMPOUND_SELECT
831 case SRT_Union: {
832 int r1;
833 r1 = sqlite3GetTempReg(pParse);
834 sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nResultCol, r1);
835 sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm, r1);
836 sqlite3ReleaseTempReg(pParse, r1);
837 break;
840 /* Construct a record from the query result, but instead of
841 ** saving that record, use it as a key to delete elements from
842 ** the temporary table iParm.
844 case SRT_Except: {
845 sqlite3VdbeAddOp3(v, OP_IdxDelete, iParm, regResult, nResultCol);
846 break;
848 #endif /* SQLITE_OMIT_COMPOUND_SELECT */
850 /* Store the result as data using a unique key.
852 case SRT_Fifo:
853 case SRT_DistFifo:
854 case SRT_Table:
855 case SRT_EphemTab: {
856 int r1 = sqlite3GetTempRange(pParse, nPrefixReg+1);
857 testcase( eDest==SRT_Table );
858 testcase( eDest==SRT_EphemTab );
859 testcase( eDest==SRT_Fifo );
860 testcase( eDest==SRT_DistFifo );
861 sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nResultCol, r1+nPrefixReg);
862 #ifndef SQLITE_OMIT_CTE
863 if( eDest==SRT_DistFifo ){
864 /* If the destination is DistFifo, then cursor (iParm+1) is open
865 ** on an ephemeral index. If the current row is already present
866 ** in the index, do not write it to the output. If not, add the
867 ** current row to the index and proceed with writing it to the
868 ** output table as well. */
869 int addr = sqlite3VdbeCurrentAddr(v) + 4;
870 sqlite3VdbeAddOp4Int(v, OP_Found, iParm+1, addr, r1, 0);
871 VdbeCoverage(v);
872 sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm+1, r1);
873 assert( pSort==0 );
875 #endif
876 if( pSort ){
877 pushOntoSorter(pParse, pSort, p, r1+nPrefixReg,regResult,1,nPrefixReg);
878 }else{
879 int r2 = sqlite3GetTempReg(pParse);
880 sqlite3VdbeAddOp2(v, OP_NewRowid, iParm, r2);
881 sqlite3VdbeAddOp3(v, OP_Insert, iParm, r1, r2);
882 sqlite3VdbeChangeP5(v, OPFLAG_APPEND);
883 sqlite3ReleaseTempReg(pParse, r2);
885 sqlite3ReleaseTempRange(pParse, r1, nPrefixReg+1);
886 break;
889 #ifndef SQLITE_OMIT_SUBQUERY
890 /* If we are creating a set for an "expr IN (SELECT ...)" construct,
891 ** then there should be a single item on the stack. Write this
892 ** item into the set table with bogus data.
894 case SRT_Set: {
895 assert( nResultCol==1 );
896 pDest->affSdst =
897 sqlite3CompareAffinity(pEList->a[0].pExpr, pDest->affSdst);
898 if( pSort ){
899 /* At first glance you would think we could optimize out the
900 ** ORDER BY in this case since the order of entries in the set
901 ** does not matter. But there might be a LIMIT clause, in which
902 ** case the order does matter */
903 pushOntoSorter(pParse, pSort, p, regResult, regResult, 1, nPrefixReg);
904 }else{
905 int r1 = sqlite3GetTempReg(pParse);
906 sqlite3VdbeAddOp4(v, OP_MakeRecord, regResult,1,r1, &pDest->affSdst, 1);
907 sqlite3ExprCacheAffinityChange(pParse, regResult, 1);
908 sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm, r1);
909 sqlite3ReleaseTempReg(pParse, r1);
911 break;
914 /* If any row exist in the result set, record that fact and abort.
916 case SRT_Exists: {
917 sqlite3VdbeAddOp2(v, OP_Integer, 1, iParm);
918 /* The LIMIT clause will terminate the loop for us */
919 break;
922 /* If this is a scalar select that is part of an expression, then
923 ** store the results in the appropriate memory cell and break out
924 ** of the scan loop.
926 case SRT_Mem: {
927 assert( nResultCol==1 );
928 if( pSort ){
929 pushOntoSorter(pParse, pSort, p, regResult, regResult, 1, nPrefixReg);
930 }else{
931 assert( regResult==iParm );
932 /* The LIMIT clause will jump out of the loop for us */
934 break;
936 #endif /* #ifndef SQLITE_OMIT_SUBQUERY */
938 case SRT_Coroutine: /* Send data to a co-routine */
939 case SRT_Output: { /* Return the results */
940 testcase( eDest==SRT_Coroutine );
941 testcase( eDest==SRT_Output );
942 if( pSort ){
943 pushOntoSorter(pParse, pSort, p, regResult, regResult, nResultCol,
944 nPrefixReg);
945 }else if( eDest==SRT_Coroutine ){
946 sqlite3VdbeAddOp1(v, OP_Yield, pDest->iSDParm);
947 }else{
948 sqlite3VdbeAddOp2(v, OP_ResultRow, regResult, nResultCol);
949 sqlite3ExprCacheAffinityChange(pParse, regResult, nResultCol);
951 break;
954 #ifndef SQLITE_OMIT_CTE
955 /* Write the results into a priority queue that is order according to
956 ** pDest->pOrderBy (in pSO). pDest->iSDParm (in iParm) is the cursor for an
957 ** index with pSO->nExpr+2 columns. Build a key using pSO for the first
958 ** pSO->nExpr columns, then make sure all keys are unique by adding a
959 ** final OP_Sequence column. The last column is the record as a blob.
961 case SRT_DistQueue:
962 case SRT_Queue: {
963 int nKey;
964 int r1, r2, r3;
965 int addrTest = 0;
966 ExprList *pSO;
967 pSO = pDest->pOrderBy;
968 assert( pSO );
969 nKey = pSO->nExpr;
970 r1 = sqlite3GetTempReg(pParse);
971 r2 = sqlite3GetTempRange(pParse, nKey+2);
972 r3 = r2+nKey+1;
973 if( eDest==SRT_DistQueue ){
974 /* If the destination is DistQueue, then cursor (iParm+1) is open
975 ** on a second ephemeral index that holds all values every previously
976 ** added to the queue. */
977 addrTest = sqlite3VdbeAddOp4Int(v, OP_Found, iParm+1, 0,
978 regResult, nResultCol);
979 VdbeCoverage(v);
981 sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nResultCol, r3);
982 if( eDest==SRT_DistQueue ){
983 sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm+1, r3);
984 sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT);
986 for(i=0; i<nKey; i++){
987 sqlite3VdbeAddOp2(v, OP_SCopy,
988 regResult + pSO->a[i].u.x.iOrderByCol - 1,
989 r2+i);
991 sqlite3VdbeAddOp2(v, OP_Sequence, iParm, r2+nKey);
992 sqlite3VdbeAddOp3(v, OP_MakeRecord, r2, nKey+2, r1);
993 sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm, r1);
994 if( addrTest ) sqlite3VdbeJumpHere(v, addrTest);
995 sqlite3ReleaseTempReg(pParse, r1);
996 sqlite3ReleaseTempRange(pParse, r2, nKey+2);
997 break;
999 #endif /* SQLITE_OMIT_CTE */
1003 #if !defined(SQLITE_OMIT_TRIGGER)
1004 /* Discard the results. This is used for SELECT statements inside
1005 ** the body of a TRIGGER. The purpose of such selects is to call
1006 ** user-defined functions that have side effects. We do not care
1007 ** about the actual results of the select.
1009 default: {
1010 assert( eDest==SRT_Discard );
1011 break;
1013 #endif
1016 /* Jump to the end of the loop if the LIMIT is reached. Except, if
1017 ** there is a sorter, in which case the sorter has already limited
1018 ** the output for us.
1020 if( pSort==0 && p->iLimit ){
1021 sqlite3VdbeAddOp2(v, OP_DecrJumpZero, p->iLimit, iBreak); VdbeCoverage(v);
1026 ** Allocate a KeyInfo object sufficient for an index of N key columns and
1027 ** X extra columns.
1029 KeyInfo *sqlite3KeyInfoAlloc(sqlite3 *db, int N, int X){
1030 int nExtra = (N+X)*(sizeof(CollSeq*)+1);
1031 KeyInfo *p = sqlite3DbMallocRaw(db, sizeof(KeyInfo) + nExtra);
1032 if( p ){
1033 p->aSortOrder = (u8*)&p->aColl[N+X];
1034 p->nField = (u16)N;
1035 p->nXField = (u16)X;
1036 p->enc = ENC(db);
1037 p->db = db;
1038 p->nRef = 1;
1039 memset(&p[1], 0, nExtra);
1040 }else{
1041 sqlite3OomFault(db);
1043 return p;
1047 ** Deallocate a KeyInfo object
1049 void sqlite3KeyInfoUnref(KeyInfo *p){
1050 if( p ){
1051 assert( p->nRef>0 );
1052 p->nRef--;
1053 if( p->nRef==0 ) sqlite3DbFree(p->db, p);
1058 ** Make a new pointer to a KeyInfo object
1060 KeyInfo *sqlite3KeyInfoRef(KeyInfo *p){
1061 if( p ){
1062 assert( p->nRef>0 );
1063 p->nRef++;
1065 return p;
1068 #ifdef SQLITE_DEBUG
1070 ** Return TRUE if a KeyInfo object can be change. The KeyInfo object
1071 ** can only be changed if this is just a single reference to the object.
1073 ** This routine is used only inside of assert() statements.
1075 int sqlite3KeyInfoIsWriteable(KeyInfo *p){ return p->nRef==1; }
1076 #endif /* SQLITE_DEBUG */
1079 ** Given an expression list, generate a KeyInfo structure that records
1080 ** the collating sequence for each expression in that expression list.
1082 ** If the ExprList is an ORDER BY or GROUP BY clause then the resulting
1083 ** KeyInfo structure is appropriate for initializing a virtual index to
1084 ** implement that clause. If the ExprList is the result set of a SELECT
1085 ** then the KeyInfo structure is appropriate for initializing a virtual
1086 ** index to implement a DISTINCT test.
1088 ** Space to hold the KeyInfo structure is obtained from malloc. The calling
1089 ** function is responsible for seeing that this structure is eventually
1090 ** freed.
1092 static KeyInfo *keyInfoFromExprList(
1093 Parse *pParse, /* Parsing context */
1094 ExprList *pList, /* Form the KeyInfo object from this ExprList */
1095 int iStart, /* Begin with this column of pList */
1096 int nExtra /* Add this many extra columns to the end */
1098 int nExpr;
1099 KeyInfo *pInfo;
1100 struct ExprList_item *pItem;
1101 sqlite3 *db = pParse->db;
1102 int i;
1104 nExpr = pList->nExpr;
1105 pInfo = sqlite3KeyInfoAlloc(db, nExpr-iStart, nExtra+1);
1106 if( pInfo ){
1107 assert( sqlite3KeyInfoIsWriteable(pInfo) );
1108 for(i=iStart, pItem=pList->a+iStart; i<nExpr; i++, pItem++){
1109 CollSeq *pColl;
1110 pColl = sqlite3ExprCollSeq(pParse, pItem->pExpr);
1111 if( !pColl ) pColl = db->pDfltColl;
1112 pInfo->aColl[i-iStart] = pColl;
1113 pInfo->aSortOrder[i-iStart] = pItem->sortOrder;
1116 return pInfo;
1120 ** Name of the connection operator, used for error messages.
1122 static const char *selectOpName(int id){
1123 char *z;
1124 switch( id ){
1125 case TK_ALL: z = "UNION ALL"; break;
1126 case TK_INTERSECT: z = "INTERSECT"; break;
1127 case TK_EXCEPT: z = "EXCEPT"; break;
1128 default: z = "UNION"; break;
1130 return z;
1133 #ifndef SQLITE_OMIT_EXPLAIN
1135 ** Unless an "EXPLAIN QUERY PLAN" command is being processed, this function
1136 ** is a no-op. Otherwise, it adds a single row of output to the EQP result,
1137 ** where the caption is of the form:
1139 ** "USE TEMP B-TREE FOR xxx"
1141 ** where xxx is one of "DISTINCT", "ORDER BY" or "GROUP BY". Exactly which
1142 ** is determined by the zUsage argument.
1144 static void explainTempTable(Parse *pParse, const char *zUsage){
1145 if( pParse->explain==2 ){
1146 Vdbe *v = pParse->pVdbe;
1147 char *zMsg = sqlite3MPrintf(pParse->db, "USE TEMP B-TREE FOR %s", zUsage);
1148 sqlite3VdbeAddOp4(v, OP_Explain, pParse->iSelectId, 0, 0, zMsg, P4_DYNAMIC);
1153 ** Assign expression b to lvalue a. A second, no-op, version of this macro
1154 ** is provided when SQLITE_OMIT_EXPLAIN is defined. This allows the code
1155 ** in sqlite3Select() to assign values to structure member variables that
1156 ** only exist if SQLITE_OMIT_EXPLAIN is not defined without polluting the
1157 ** code with #ifndef directives.
1159 # define explainSetInteger(a, b) a = b
1161 #else
1162 /* No-op versions of the explainXXX() functions and macros. */
1163 # define explainTempTable(y,z)
1164 # define explainSetInteger(y,z)
1165 #endif
1167 #if !defined(SQLITE_OMIT_EXPLAIN) && !defined(SQLITE_OMIT_COMPOUND_SELECT)
1169 ** Unless an "EXPLAIN QUERY PLAN" command is being processed, this function
1170 ** is a no-op. Otherwise, it adds a single row of output to the EQP result,
1171 ** where the caption is of one of the two forms:
1173 ** "COMPOSITE SUBQUERIES iSub1 and iSub2 (op)"
1174 ** "COMPOSITE SUBQUERIES iSub1 and iSub2 USING TEMP B-TREE (op)"
1176 ** where iSub1 and iSub2 are the integers passed as the corresponding
1177 ** function parameters, and op is the text representation of the parameter
1178 ** of the same name. The parameter "op" must be one of TK_UNION, TK_EXCEPT,
1179 ** TK_INTERSECT or TK_ALL. The first form is used if argument bUseTmp is
1180 ** false, or the second form if it is true.
1182 static void explainComposite(
1183 Parse *pParse, /* Parse context */
1184 int op, /* One of TK_UNION, TK_EXCEPT etc. */
1185 int iSub1, /* Subquery id 1 */
1186 int iSub2, /* Subquery id 2 */
1187 int bUseTmp /* True if a temp table was used */
1189 assert( op==TK_UNION || op==TK_EXCEPT || op==TK_INTERSECT || op==TK_ALL );
1190 if( pParse->explain==2 ){
1191 Vdbe *v = pParse->pVdbe;
1192 char *zMsg = sqlite3MPrintf(
1193 pParse->db, "COMPOUND SUBQUERIES %d AND %d %s(%s)", iSub1, iSub2,
1194 bUseTmp?"USING TEMP B-TREE ":"", selectOpName(op)
1196 sqlite3VdbeAddOp4(v, OP_Explain, pParse->iSelectId, 0, 0, zMsg, P4_DYNAMIC);
1199 #else
1200 /* No-op versions of the explainXXX() functions and macros. */
1201 # define explainComposite(v,w,x,y,z)
1202 #endif
1205 ** If the inner loop was generated using a non-null pOrderBy argument,
1206 ** then the results were placed in a sorter. After the loop is terminated
1207 ** we need to run the sorter and output the results. The following
1208 ** routine generates the code needed to do that.
1210 static void generateSortTail(
1211 Parse *pParse, /* Parsing context */
1212 Select *p, /* The SELECT statement */
1213 SortCtx *pSort, /* Information on the ORDER BY clause */
1214 int nColumn, /* Number of columns of data */
1215 SelectDest *pDest /* Write the sorted results here */
1217 Vdbe *v = pParse->pVdbe; /* The prepared statement */
1218 int addrBreak = pSort->labelDone; /* Jump here to exit loop */
1219 int addrContinue = sqlite3VdbeMakeLabel(v); /* Jump here for next cycle */
1220 int addr;
1221 int addrOnce = 0;
1222 int iTab;
1223 ExprList *pOrderBy = pSort->pOrderBy;
1224 int eDest = pDest->eDest;
1225 int iParm = pDest->iSDParm;
1226 int regRow;
1227 int regRowid;
1228 int nKey;
1229 int iSortTab; /* Sorter cursor to read from */
1230 int nSortData; /* Trailing values to read from sorter */
1231 int i;
1232 int bSeq; /* True if sorter record includes seq. no. */
1233 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS
1234 struct ExprList_item *aOutEx = p->pEList->a;
1235 #endif
1237 assert( addrBreak<0 );
1238 if( pSort->labelBkOut ){
1239 sqlite3VdbeAddOp2(v, OP_Gosub, pSort->regReturn, pSort->labelBkOut);
1240 sqlite3VdbeGoto(v, addrBreak);
1241 sqlite3VdbeResolveLabel(v, pSort->labelBkOut);
1243 iTab = pSort->iECursor;
1244 if( eDest==SRT_Output || eDest==SRT_Coroutine ){
1245 regRowid = 0;
1246 regRow = pDest->iSdst;
1247 nSortData = nColumn;
1248 }else{
1249 regRowid = sqlite3GetTempReg(pParse);
1250 regRow = sqlite3GetTempReg(pParse);
1251 nSortData = 1;
1253 nKey = pOrderBy->nExpr - pSort->nOBSat;
1254 if( pSort->sortFlags & SORTFLAG_UseSorter ){
1255 int regSortOut = ++pParse->nMem;
1256 iSortTab = pParse->nTab++;
1257 if( pSort->labelBkOut ){
1258 addrOnce = sqlite3CodeOnce(pParse); VdbeCoverage(v);
1260 sqlite3VdbeAddOp3(v, OP_OpenPseudo, iSortTab, regSortOut, nKey+1+nSortData);
1261 if( addrOnce ) sqlite3VdbeJumpHere(v, addrOnce);
1262 addr = 1 + sqlite3VdbeAddOp2(v, OP_SorterSort, iTab, addrBreak);
1263 VdbeCoverage(v);
1264 codeOffset(v, p->iOffset, addrContinue);
1265 sqlite3VdbeAddOp3(v, OP_SorterData, iTab, regSortOut, iSortTab);
1266 bSeq = 0;
1267 }else{
1268 addr = 1 + sqlite3VdbeAddOp2(v, OP_Sort, iTab, addrBreak); VdbeCoverage(v);
1269 codeOffset(v, p->iOffset, addrContinue);
1270 iSortTab = iTab;
1271 bSeq = 1;
1273 for(i=0; i<nSortData; i++){
1274 sqlite3VdbeAddOp3(v, OP_Column, iSortTab, nKey+bSeq+i, regRow+i);
1275 VdbeComment((v, "%s", aOutEx[i].zName ? aOutEx[i].zName : aOutEx[i].zSpan));
1277 switch( eDest ){
1278 case SRT_EphemTab: {
1279 sqlite3VdbeAddOp2(v, OP_NewRowid, iParm, regRowid);
1280 sqlite3VdbeAddOp3(v, OP_Insert, iParm, regRow, regRowid);
1281 sqlite3VdbeChangeP5(v, OPFLAG_APPEND);
1282 break;
1284 #ifndef SQLITE_OMIT_SUBQUERY
1285 case SRT_Set: {
1286 assert( nColumn==1 );
1287 sqlite3VdbeAddOp4(v, OP_MakeRecord, regRow, 1, regRowid,
1288 &pDest->affSdst, 1);
1289 sqlite3ExprCacheAffinityChange(pParse, regRow, 1);
1290 sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm, regRowid);
1291 break;
1293 case SRT_Mem: {
1294 assert( nColumn==1 );
1295 sqlite3ExprCodeMove(pParse, regRow, iParm, 1);
1296 /* The LIMIT clause will terminate the loop for us */
1297 break;
1299 #endif
1300 default: {
1301 assert( eDest==SRT_Output || eDest==SRT_Coroutine );
1302 testcase( eDest==SRT_Output );
1303 testcase( eDest==SRT_Coroutine );
1304 if( eDest==SRT_Output ){
1305 sqlite3VdbeAddOp2(v, OP_ResultRow, pDest->iSdst, nColumn);
1306 sqlite3ExprCacheAffinityChange(pParse, pDest->iSdst, nColumn);
1307 }else{
1308 sqlite3VdbeAddOp1(v, OP_Yield, pDest->iSDParm);
1310 break;
1313 if( regRowid ){
1314 sqlite3ReleaseTempReg(pParse, regRow);
1315 sqlite3ReleaseTempReg(pParse, regRowid);
1317 /* The bottom of the loop
1319 sqlite3VdbeResolveLabel(v, addrContinue);
1320 if( pSort->sortFlags & SORTFLAG_UseSorter ){
1321 sqlite3VdbeAddOp2(v, OP_SorterNext, iTab, addr); VdbeCoverage(v);
1322 }else{
1323 sqlite3VdbeAddOp2(v, OP_Next, iTab, addr); VdbeCoverage(v);
1325 if( pSort->regReturn ) sqlite3VdbeAddOp1(v, OP_Return, pSort->regReturn);
1326 sqlite3VdbeResolveLabel(v, addrBreak);
1330 ** Return a pointer to a string containing the 'declaration type' of the
1331 ** expression pExpr. The string may be treated as static by the caller.
1333 ** Also try to estimate the size of the returned value and return that
1334 ** result in *pEstWidth.
1336 ** The declaration type is the exact datatype definition extracted from the
1337 ** original CREATE TABLE statement if the expression is a column. The
1338 ** declaration type for a ROWID field is INTEGER. Exactly when an expression
1339 ** is considered a column can be complex in the presence of subqueries. The
1340 ** result-set expression in all of the following SELECT statements is
1341 ** considered a column by this function.
1343 ** SELECT col FROM tbl;
1344 ** SELECT (SELECT col FROM tbl;
1345 ** SELECT (SELECT col FROM tbl);
1346 ** SELECT abc FROM (SELECT col AS abc FROM tbl);
1348 ** The declaration type for any expression other than a column is NULL.
1350 ** This routine has either 3 or 6 parameters depending on whether or not
1351 ** the SQLITE_ENABLE_COLUMN_METADATA compile-time option is used.
1353 #ifdef SQLITE_ENABLE_COLUMN_METADATA
1354 # define columnType(A,B,C,D,E,F) columnTypeImpl(A,B,C,D,E,F)
1355 #else /* if !defined(SQLITE_ENABLE_COLUMN_METADATA) */
1356 # define columnType(A,B,C,D,E,F) columnTypeImpl(A,B,F)
1357 #endif
1358 static const char *columnTypeImpl(
1359 NameContext *pNC,
1360 Expr *pExpr,
1361 #ifdef SQLITE_ENABLE_COLUMN_METADATA
1362 const char **pzOrigDb,
1363 const char **pzOrigTab,
1364 const char **pzOrigCol,
1365 #endif
1366 u8 *pEstWidth
1368 char const *zType = 0;
1369 int j;
1370 u8 estWidth = 1;
1371 #ifdef SQLITE_ENABLE_COLUMN_METADATA
1372 char const *zOrigDb = 0;
1373 char const *zOrigTab = 0;
1374 char const *zOrigCol = 0;
1375 #endif
1377 assert( pExpr!=0 );
1378 assert( pNC->pSrcList!=0 );
1379 switch( pExpr->op ){
1380 case TK_AGG_COLUMN:
1381 case TK_COLUMN: {
1382 /* The expression is a column. Locate the table the column is being
1383 ** extracted from in NameContext.pSrcList. This table may be real
1384 ** database table or a subquery.
1386 Table *pTab = 0; /* Table structure column is extracted from */
1387 Select *pS = 0; /* Select the column is extracted from */
1388 int iCol = pExpr->iColumn; /* Index of column in pTab */
1389 testcase( pExpr->op==TK_AGG_COLUMN );
1390 testcase( pExpr->op==TK_COLUMN );
1391 while( pNC && !pTab ){
1392 SrcList *pTabList = pNC->pSrcList;
1393 for(j=0;j<pTabList->nSrc && pTabList->a[j].iCursor!=pExpr->iTable;j++);
1394 if( j<pTabList->nSrc ){
1395 pTab = pTabList->a[j].pTab;
1396 pS = pTabList->a[j].pSelect;
1397 }else{
1398 pNC = pNC->pNext;
1402 if( pTab==0 ){
1403 /* At one time, code such as "SELECT new.x" within a trigger would
1404 ** cause this condition to run. Since then, we have restructured how
1405 ** trigger code is generated and so this condition is no longer
1406 ** possible. However, it can still be true for statements like
1407 ** the following:
1409 ** CREATE TABLE t1(col INTEGER);
1410 ** SELECT (SELECT t1.col) FROM FROM t1;
1412 ** when columnType() is called on the expression "t1.col" in the
1413 ** sub-select. In this case, set the column type to NULL, even
1414 ** though it should really be "INTEGER".
1416 ** This is not a problem, as the column type of "t1.col" is never
1417 ** used. When columnType() is called on the expression
1418 ** "(SELECT t1.col)", the correct type is returned (see the TK_SELECT
1419 ** branch below. */
1420 break;
1423 assert( pTab && pExpr->pTab==pTab );
1424 if( pS ){
1425 /* The "table" is actually a sub-select or a view in the FROM clause
1426 ** of the SELECT statement. Return the declaration type and origin
1427 ** data for the result-set column of the sub-select.
1429 if( iCol>=0 && ALWAYS(iCol<pS->pEList->nExpr) ){
1430 /* If iCol is less than zero, then the expression requests the
1431 ** rowid of the sub-select or view. This expression is legal (see
1432 ** test case misc2.2.2) - it always evaluates to NULL.
1434 ** The ALWAYS() is because iCol>=pS->pEList->nExpr will have been
1435 ** caught already by name resolution.
1437 NameContext sNC;
1438 Expr *p = pS->pEList->a[iCol].pExpr;
1439 sNC.pSrcList = pS->pSrc;
1440 sNC.pNext = pNC;
1441 sNC.pParse = pNC->pParse;
1442 zType = columnType(&sNC, p,&zOrigDb,&zOrigTab,&zOrigCol, &estWidth);
1444 }else if( pTab->pSchema ){
1445 /* A real table */
1446 assert( !pS );
1447 if( iCol<0 ) iCol = pTab->iPKey;
1448 assert( iCol==-1 || (iCol>=0 && iCol<pTab->nCol) );
1449 #ifdef SQLITE_ENABLE_COLUMN_METADATA
1450 if( iCol<0 ){
1451 zType = "INTEGER";
1452 zOrigCol = "rowid";
1453 }else{
1454 zOrigCol = pTab->aCol[iCol].zName;
1455 zType = sqlite3ColumnType(&pTab->aCol[iCol],0);
1456 estWidth = pTab->aCol[iCol].szEst;
1458 zOrigTab = pTab->zName;
1459 if( pNC->pParse ){
1460 int iDb = sqlite3SchemaToIndex(pNC->pParse->db, pTab->pSchema);
1461 zOrigDb = pNC->pParse->db->aDb[iDb].zName;
1463 #else
1464 if( iCol<0 ){
1465 zType = "INTEGER";
1466 }else{
1467 zType = sqlite3ColumnType(&pTab->aCol[iCol],0);
1468 estWidth = pTab->aCol[iCol].szEst;
1470 #endif
1472 break;
1474 #ifndef SQLITE_OMIT_SUBQUERY
1475 case TK_SELECT: {
1476 /* The expression is a sub-select. Return the declaration type and
1477 ** origin info for the single column in the result set of the SELECT
1478 ** statement.
1480 NameContext sNC;
1481 Select *pS = pExpr->x.pSelect;
1482 Expr *p = pS->pEList->a[0].pExpr;
1483 assert( ExprHasProperty(pExpr, EP_xIsSelect) );
1484 sNC.pSrcList = pS->pSrc;
1485 sNC.pNext = pNC;
1486 sNC.pParse = pNC->pParse;
1487 zType = columnType(&sNC, p, &zOrigDb, &zOrigTab, &zOrigCol, &estWidth);
1488 break;
1490 #endif
1493 #ifdef SQLITE_ENABLE_COLUMN_METADATA
1494 if( pzOrigDb ){
1495 assert( pzOrigTab && pzOrigCol );
1496 *pzOrigDb = zOrigDb;
1497 *pzOrigTab = zOrigTab;
1498 *pzOrigCol = zOrigCol;
1500 #endif
1501 if( pEstWidth ) *pEstWidth = estWidth;
1502 return zType;
1506 ** Generate code that will tell the VDBE the declaration types of columns
1507 ** in the result set.
1509 static void generateColumnTypes(
1510 Parse *pParse, /* Parser context */
1511 SrcList *pTabList, /* List of tables */
1512 ExprList *pEList /* Expressions defining the result set */
1514 #ifndef SQLITE_OMIT_DECLTYPE
1515 Vdbe *v = pParse->pVdbe;
1516 int i;
1517 NameContext sNC;
1518 sNC.pSrcList = pTabList;
1519 sNC.pParse = pParse;
1520 for(i=0; i<pEList->nExpr; i++){
1521 Expr *p = pEList->a[i].pExpr;
1522 const char *zType;
1523 #ifdef SQLITE_ENABLE_COLUMN_METADATA
1524 const char *zOrigDb = 0;
1525 const char *zOrigTab = 0;
1526 const char *zOrigCol = 0;
1527 zType = columnType(&sNC, p, &zOrigDb, &zOrigTab, &zOrigCol, 0);
1529 /* The vdbe must make its own copy of the column-type and other
1530 ** column specific strings, in case the schema is reset before this
1531 ** virtual machine is deleted.
1533 sqlite3VdbeSetColName(v, i, COLNAME_DATABASE, zOrigDb, SQLITE_TRANSIENT);
1534 sqlite3VdbeSetColName(v, i, COLNAME_TABLE, zOrigTab, SQLITE_TRANSIENT);
1535 sqlite3VdbeSetColName(v, i, COLNAME_COLUMN, zOrigCol, SQLITE_TRANSIENT);
1536 #else
1537 zType = columnType(&sNC, p, 0, 0, 0, 0);
1538 #endif
1539 sqlite3VdbeSetColName(v, i, COLNAME_DECLTYPE, zType, SQLITE_TRANSIENT);
1541 #endif /* !defined(SQLITE_OMIT_DECLTYPE) */
1545 ** Generate code that will tell the VDBE the names of columns
1546 ** in the result set. This information is used to provide the
1547 ** azCol[] values in the callback.
1549 static void generateColumnNames(
1550 Parse *pParse, /* Parser context */
1551 SrcList *pTabList, /* List of tables */
1552 ExprList *pEList /* Expressions defining the result set */
1554 Vdbe *v = pParse->pVdbe;
1555 int i, j;
1556 sqlite3 *db = pParse->db;
1557 int fullNames, shortNames;
1559 #ifndef SQLITE_OMIT_EXPLAIN
1560 /* If this is an EXPLAIN, skip this step */
1561 if( pParse->explain ){
1562 return;
1564 #endif
1566 if( pParse->colNamesSet || db->mallocFailed ) return;
1567 assert( v!=0 );
1568 assert( pTabList!=0 );
1569 pParse->colNamesSet = 1;
1570 fullNames = (db->flags & SQLITE_FullColNames)!=0;
1571 shortNames = (db->flags & SQLITE_ShortColNames)!=0;
1572 sqlite3VdbeSetNumCols(v, pEList->nExpr);
1573 for(i=0; i<pEList->nExpr; i++){
1574 Expr *p;
1575 p = pEList->a[i].pExpr;
1576 if( NEVER(p==0) ) continue;
1577 if( pEList->a[i].zName ){
1578 char *zName = pEList->a[i].zName;
1579 sqlite3VdbeSetColName(v, i, COLNAME_NAME, zName, SQLITE_TRANSIENT);
1580 }else if( p->op==TK_COLUMN || p->op==TK_AGG_COLUMN ){
1581 Table *pTab;
1582 char *zCol;
1583 int iCol = p->iColumn;
1584 for(j=0; ALWAYS(j<pTabList->nSrc); j++){
1585 if( pTabList->a[j].iCursor==p->iTable ) break;
1587 assert( j<pTabList->nSrc );
1588 pTab = pTabList->a[j].pTab;
1589 if( iCol<0 ) iCol = pTab->iPKey;
1590 assert( iCol==-1 || (iCol>=0 && iCol<pTab->nCol) );
1591 if( iCol<0 ){
1592 zCol = "rowid";
1593 }else{
1594 zCol = pTab->aCol[iCol].zName;
1596 if( !shortNames && !fullNames ){
1597 sqlite3VdbeSetColName(v, i, COLNAME_NAME,
1598 sqlite3DbStrDup(db, pEList->a[i].zSpan), SQLITE_DYNAMIC);
1599 }else if( fullNames ){
1600 char *zName = 0;
1601 zName = sqlite3MPrintf(db, "%s.%s", pTab->zName, zCol);
1602 sqlite3VdbeSetColName(v, i, COLNAME_NAME, zName, SQLITE_DYNAMIC);
1603 }else{
1604 sqlite3VdbeSetColName(v, i, COLNAME_NAME, zCol, SQLITE_TRANSIENT);
1606 }else{
1607 const char *z = pEList->a[i].zSpan;
1608 z = z==0 ? sqlite3MPrintf(db, "column%d", i+1) : sqlite3DbStrDup(db, z);
1609 sqlite3VdbeSetColName(v, i, COLNAME_NAME, z, SQLITE_DYNAMIC);
1612 generateColumnTypes(pParse, pTabList, pEList);
1616 ** Given an expression list (which is really the list of expressions
1617 ** that form the result set of a SELECT statement) compute appropriate
1618 ** column names for a table that would hold the expression list.
1620 ** All column names will be unique.
1622 ** Only the column names are computed. Column.zType, Column.zColl,
1623 ** and other fields of Column are zeroed.
1625 ** Return SQLITE_OK on success. If a memory allocation error occurs,
1626 ** store NULL in *paCol and 0 in *pnCol and return SQLITE_NOMEM.
1628 int sqlite3ColumnsFromExprList(
1629 Parse *pParse, /* Parsing context */
1630 ExprList *pEList, /* Expr list from which to derive column names */
1631 i16 *pnCol, /* Write the number of columns here */
1632 Column **paCol /* Write the new column list here */
1634 sqlite3 *db = pParse->db; /* Database connection */
1635 int i, j; /* Loop counters */
1636 u32 cnt; /* Index added to make the name unique */
1637 Column *aCol, *pCol; /* For looping over result columns */
1638 int nCol; /* Number of columns in the result set */
1639 Expr *p; /* Expression for a single result column */
1640 char *zName; /* Column name */
1641 int nName; /* Size of name in zName[] */
1642 Hash ht; /* Hash table of column names */
1644 sqlite3HashInit(&ht);
1645 if( pEList ){
1646 nCol = pEList->nExpr;
1647 aCol = sqlite3DbMallocZero(db, sizeof(aCol[0])*nCol);
1648 testcase( aCol==0 );
1649 }else{
1650 nCol = 0;
1651 aCol = 0;
1653 assert( nCol==(i16)nCol );
1654 *pnCol = nCol;
1655 *paCol = aCol;
1657 for(i=0, pCol=aCol; i<nCol && !db->mallocFailed; i++, pCol++){
1658 /* Get an appropriate name for the column
1660 p = sqlite3ExprSkipCollate(pEList->a[i].pExpr);
1661 if( (zName = pEList->a[i].zName)!=0 ){
1662 /* If the column contains an "AS <name>" phrase, use <name> as the name */
1663 }else{
1664 Expr *pColExpr = p; /* The expression that is the result column name */
1665 Table *pTab; /* Table associated with this expression */
1666 while( pColExpr->op==TK_DOT ){
1667 pColExpr = pColExpr->pRight;
1668 assert( pColExpr!=0 );
1670 if( pColExpr->op==TK_COLUMN && ALWAYS(pColExpr->pTab!=0) ){
1671 /* For columns use the column name name */
1672 int iCol = pColExpr->iColumn;
1673 pTab = pColExpr->pTab;
1674 if( iCol<0 ) iCol = pTab->iPKey;
1675 zName = iCol>=0 ? pTab->aCol[iCol].zName : "rowid";
1676 }else if( pColExpr->op==TK_ID ){
1677 assert( !ExprHasProperty(pColExpr, EP_IntValue) );
1678 zName = pColExpr->u.zToken;
1679 }else{
1680 /* Use the original text of the column expression as its name */
1681 zName = pEList->a[i].zSpan;
1684 zName = sqlite3MPrintf(db, "%s", zName);
1686 /* Make sure the column name is unique. If the name is not unique,
1687 ** append an integer to the name so that it becomes unique.
1689 cnt = 0;
1690 while( zName && sqlite3HashFind(&ht, zName)!=0 ){
1691 nName = sqlite3Strlen30(zName);
1692 if( nName>0 ){
1693 for(j=nName-1; j>0 && sqlite3Isdigit(zName[j]); j--){}
1694 if( zName[j]==':' ) nName = j;
1696 zName = sqlite3MPrintf(db, "%.*z:%u", nName, zName, ++cnt);
1697 if( cnt>3 ) sqlite3_randomness(sizeof(cnt), &cnt);
1699 pCol->zName = zName;
1700 sqlite3ColumnPropertiesFromName(0, pCol);
1701 if( zName && sqlite3HashInsert(&ht, zName, pCol)==pCol ){
1702 sqlite3OomFault(db);
1705 sqlite3HashClear(&ht);
1706 if( db->mallocFailed ){
1707 for(j=0; j<i; j++){
1708 sqlite3DbFree(db, aCol[j].zName);
1710 sqlite3DbFree(db, aCol);
1711 *paCol = 0;
1712 *pnCol = 0;
1713 return SQLITE_NOMEM_BKPT;
1715 return SQLITE_OK;
1719 ** Add type and collation information to a column list based on
1720 ** a SELECT statement.
1722 ** The column list presumably came from selectColumnNamesFromExprList().
1723 ** The column list has only names, not types or collations. This
1724 ** routine goes through and adds the types and collations.
1726 ** This routine requires that all identifiers in the SELECT
1727 ** statement be resolved.
1729 void sqlite3SelectAddColumnTypeAndCollation(
1730 Parse *pParse, /* Parsing contexts */
1731 Table *pTab, /* Add column type information to this table */
1732 Select *pSelect /* SELECT used to determine types and collations */
1734 sqlite3 *db = pParse->db;
1735 NameContext sNC;
1736 Column *pCol;
1737 CollSeq *pColl;
1738 int i;
1739 Expr *p;
1740 struct ExprList_item *a;
1741 u64 szAll = 0;
1743 assert( pSelect!=0 );
1744 assert( (pSelect->selFlags & SF_Resolved)!=0 );
1745 assert( pTab->nCol==pSelect->pEList->nExpr || db->mallocFailed );
1746 if( db->mallocFailed ) return;
1747 memset(&sNC, 0, sizeof(sNC));
1748 sNC.pSrcList = pSelect->pSrc;
1749 a = pSelect->pEList->a;
1750 for(i=0, pCol=pTab->aCol; i<pTab->nCol; i++, pCol++){
1751 const char *zType;
1752 int n, m;
1753 p = a[i].pExpr;
1754 zType = columnType(&sNC, p, 0, 0, 0, &pCol->szEst);
1755 szAll += pCol->szEst;
1756 pCol->affinity = sqlite3ExprAffinity(p);
1757 if( zType && (m = sqlite3Strlen30(zType))>0 ){
1758 n = sqlite3Strlen30(pCol->zName);
1759 pCol->zName = sqlite3DbReallocOrFree(db, pCol->zName, n+m+2);
1760 if( pCol->zName ){
1761 memcpy(&pCol->zName[n+1], zType, m+1);
1762 pCol->colFlags |= COLFLAG_HASTYPE;
1765 if( pCol->affinity==0 ) pCol->affinity = SQLITE_AFF_BLOB;
1766 pColl = sqlite3ExprCollSeq(pParse, p);
1767 if( pColl && pCol->zColl==0 ){
1768 pCol->zColl = sqlite3DbStrDup(db, pColl->zName);
1771 pTab->szTabRow = sqlite3LogEst(szAll*4);
1775 ** Given a SELECT statement, generate a Table structure that describes
1776 ** the result set of that SELECT.
1778 Table *sqlite3ResultSetOfSelect(Parse *pParse, Select *pSelect){
1779 Table *pTab;
1780 sqlite3 *db = pParse->db;
1781 int savedFlags;
1783 savedFlags = db->flags;
1784 db->flags &= ~SQLITE_FullColNames;
1785 db->flags |= SQLITE_ShortColNames;
1786 sqlite3SelectPrep(pParse, pSelect, 0);
1787 if( pParse->nErr ) return 0;
1788 while( pSelect->pPrior ) pSelect = pSelect->pPrior;
1789 db->flags = savedFlags;
1790 pTab = sqlite3DbMallocZero(db, sizeof(Table) );
1791 if( pTab==0 ){
1792 return 0;
1794 /* The sqlite3ResultSetOfSelect() is only used n contexts where lookaside
1795 ** is disabled */
1796 assert( db->lookaside.bDisable );
1797 pTab->nRef = 1;
1798 pTab->zName = 0;
1799 pTab->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) );
1800 sqlite3ColumnsFromExprList(pParse, pSelect->pEList, &pTab->nCol, &pTab->aCol);
1801 sqlite3SelectAddColumnTypeAndCollation(pParse, pTab, pSelect);
1802 pTab->iPKey = -1;
1803 if( db->mallocFailed ){
1804 sqlite3DeleteTable(db, pTab);
1805 return 0;
1807 return pTab;
1811 ** Get a VDBE for the given parser context. Create a new one if necessary.
1812 ** If an error occurs, return NULL and leave a message in pParse.
1814 static SQLITE_NOINLINE Vdbe *allocVdbe(Parse *pParse){
1815 Vdbe *v = pParse->pVdbe = sqlite3VdbeCreate(pParse);
1816 if( v ) sqlite3VdbeAddOp0(v, OP_Init);
1817 if( pParse->pToplevel==0
1818 && OptimizationEnabled(pParse->db,SQLITE_FactorOutConst)
1820 pParse->okConstFactor = 1;
1822 return v;
1824 Vdbe *sqlite3GetVdbe(Parse *pParse){
1825 Vdbe *v = pParse->pVdbe;
1826 return v ? v : allocVdbe(pParse);
1831 ** Compute the iLimit and iOffset fields of the SELECT based on the
1832 ** pLimit and pOffset expressions. pLimit and pOffset hold the expressions
1833 ** that appear in the original SQL statement after the LIMIT and OFFSET
1834 ** keywords. Or NULL if those keywords are omitted. iLimit and iOffset
1835 ** are the integer memory register numbers for counters used to compute
1836 ** the limit and offset. If there is no limit and/or offset, then
1837 ** iLimit and iOffset are negative.
1839 ** This routine changes the values of iLimit and iOffset only if
1840 ** a limit or offset is defined by pLimit and pOffset. iLimit and
1841 ** iOffset should have been preset to appropriate default values (zero)
1842 ** prior to calling this routine.
1844 ** The iOffset register (if it exists) is initialized to the value
1845 ** of the OFFSET. The iLimit register is initialized to LIMIT. Register
1846 ** iOffset+1 is initialized to LIMIT+OFFSET.
1848 ** Only if pLimit!=0 or pOffset!=0 do the limit registers get
1849 ** redefined. The UNION ALL operator uses this property to force
1850 ** the reuse of the same limit and offset registers across multiple
1851 ** SELECT statements.
1853 static void computeLimitRegisters(Parse *pParse, Select *p, int iBreak){
1854 Vdbe *v = 0;
1855 int iLimit = 0;
1856 int iOffset;
1857 int n;
1858 if( p->iLimit ) return;
1861 ** "LIMIT -1" always shows all rows. There is some
1862 ** controversy about what the correct behavior should be.
1863 ** The current implementation interprets "LIMIT 0" to mean
1864 ** no rows.
1866 sqlite3ExprCacheClear(pParse);
1867 assert( p->pOffset==0 || p->pLimit!=0 );
1868 if( p->pLimit ){
1869 p->iLimit = iLimit = ++pParse->nMem;
1870 v = sqlite3GetVdbe(pParse);
1871 assert( v!=0 );
1872 if( sqlite3ExprIsInteger(p->pLimit, &n) ){
1873 sqlite3VdbeAddOp2(v, OP_Integer, n, iLimit);
1874 VdbeComment((v, "LIMIT counter"));
1875 if( n==0 ){
1876 sqlite3VdbeGoto(v, iBreak);
1877 }else if( n>=0 && p->nSelectRow>sqlite3LogEst((u64)n) ){
1878 p->nSelectRow = sqlite3LogEst((u64)n);
1879 p->selFlags |= SF_FixedLimit;
1881 }else{
1882 sqlite3ExprCode(pParse, p->pLimit, iLimit);
1883 sqlite3VdbeAddOp1(v, OP_MustBeInt, iLimit); VdbeCoverage(v);
1884 VdbeComment((v, "LIMIT counter"));
1885 sqlite3VdbeAddOp2(v, OP_IfNot, iLimit, iBreak); VdbeCoverage(v);
1887 if( p->pOffset ){
1888 p->iOffset = iOffset = ++pParse->nMem;
1889 pParse->nMem++; /* Allocate an extra register for limit+offset */
1890 sqlite3ExprCode(pParse, p->pOffset, iOffset);
1891 sqlite3VdbeAddOp1(v, OP_MustBeInt, iOffset); VdbeCoverage(v);
1892 VdbeComment((v, "OFFSET counter"));
1893 sqlite3VdbeAddOp3(v, OP_OffsetLimit, iLimit, iOffset+1, iOffset);
1894 VdbeComment((v, "LIMIT+OFFSET"));
1899 #ifndef SQLITE_OMIT_COMPOUND_SELECT
1901 ** Return the appropriate collating sequence for the iCol-th column of
1902 ** the result set for the compound-select statement "p". Return NULL if
1903 ** the column has no default collating sequence.
1905 ** The collating sequence for the compound select is taken from the
1906 ** left-most term of the select that has a collating sequence.
1908 static CollSeq *multiSelectCollSeq(Parse *pParse, Select *p, int iCol){
1909 CollSeq *pRet;
1910 if( p->pPrior ){
1911 pRet = multiSelectCollSeq(pParse, p->pPrior, iCol);
1912 }else{
1913 pRet = 0;
1915 assert( iCol>=0 );
1916 /* iCol must be less than p->pEList->nExpr. Otherwise an error would
1917 ** have been thrown during name resolution and we would not have gotten
1918 ** this far */
1919 if( pRet==0 && ALWAYS(iCol<p->pEList->nExpr) ){
1920 pRet = sqlite3ExprCollSeq(pParse, p->pEList->a[iCol].pExpr);
1922 return pRet;
1926 ** The select statement passed as the second parameter is a compound SELECT
1927 ** with an ORDER BY clause. This function allocates and returns a KeyInfo
1928 ** structure suitable for implementing the ORDER BY.
1930 ** Space to hold the KeyInfo structure is obtained from malloc. The calling
1931 ** function is responsible for ensuring that this structure is eventually
1932 ** freed.
1934 static KeyInfo *multiSelectOrderByKeyInfo(Parse *pParse, Select *p, int nExtra){
1935 ExprList *pOrderBy = p->pOrderBy;
1936 int nOrderBy = p->pOrderBy->nExpr;
1937 sqlite3 *db = pParse->db;
1938 KeyInfo *pRet = sqlite3KeyInfoAlloc(db, nOrderBy+nExtra, 1);
1939 if( pRet ){
1940 int i;
1941 for(i=0; i<nOrderBy; i++){
1942 struct ExprList_item *pItem = &pOrderBy->a[i];
1943 Expr *pTerm = pItem->pExpr;
1944 CollSeq *pColl;
1946 if( pTerm->flags & EP_Collate ){
1947 pColl = sqlite3ExprCollSeq(pParse, pTerm);
1948 }else{
1949 pColl = multiSelectCollSeq(pParse, p, pItem->u.x.iOrderByCol-1);
1950 if( pColl==0 ) pColl = db->pDfltColl;
1951 pOrderBy->a[i].pExpr =
1952 sqlite3ExprAddCollateString(pParse, pTerm, pColl->zName);
1954 assert( sqlite3KeyInfoIsWriteable(pRet) );
1955 pRet->aColl[i] = pColl;
1956 pRet->aSortOrder[i] = pOrderBy->a[i].sortOrder;
1960 return pRet;
1963 #ifndef SQLITE_OMIT_CTE
1965 ** This routine generates VDBE code to compute the content of a WITH RECURSIVE
1966 ** query of the form:
1968 ** <recursive-table> AS (<setup-query> UNION [ALL] <recursive-query>)
1969 ** \___________/ \_______________/
1970 ** p->pPrior p
1973 ** There is exactly one reference to the recursive-table in the FROM clause
1974 ** of recursive-query, marked with the SrcList->a[].fg.isRecursive flag.
1976 ** The setup-query runs once to generate an initial set of rows that go
1977 ** into a Queue table. Rows are extracted from the Queue table one by
1978 ** one. Each row extracted from Queue is output to pDest. Then the single
1979 ** extracted row (now in the iCurrent table) becomes the content of the
1980 ** recursive-table for a recursive-query run. The output of the recursive-query
1981 ** is added back into the Queue table. Then another row is extracted from Queue
1982 ** and the iteration continues until the Queue table is empty.
1984 ** If the compound query operator is UNION then no duplicate rows are ever
1985 ** inserted into the Queue table. The iDistinct table keeps a copy of all rows
1986 ** that have ever been inserted into Queue and causes duplicates to be
1987 ** discarded. If the operator is UNION ALL, then duplicates are allowed.
1989 ** If the query has an ORDER BY, then entries in the Queue table are kept in
1990 ** ORDER BY order and the first entry is extracted for each cycle. Without
1991 ** an ORDER BY, the Queue table is just a FIFO.
1993 ** If a LIMIT clause is provided, then the iteration stops after LIMIT rows
1994 ** have been output to pDest. A LIMIT of zero means to output no rows and a
1995 ** negative LIMIT means to output all rows. If there is also an OFFSET clause
1996 ** with a positive value, then the first OFFSET outputs are discarded rather
1997 ** than being sent to pDest. The LIMIT count does not begin until after OFFSET
1998 ** rows have been skipped.
2000 static void generateWithRecursiveQuery(
2001 Parse *pParse, /* Parsing context */
2002 Select *p, /* The recursive SELECT to be coded */
2003 SelectDest *pDest /* What to do with query results */
2005 SrcList *pSrc = p->pSrc; /* The FROM clause of the recursive query */
2006 int nCol = p->pEList->nExpr; /* Number of columns in the recursive table */
2007 Vdbe *v = pParse->pVdbe; /* The prepared statement under construction */
2008 Select *pSetup = p->pPrior; /* The setup query */
2009 int addrTop; /* Top of the loop */
2010 int addrCont, addrBreak; /* CONTINUE and BREAK addresses */
2011 int iCurrent = 0; /* The Current table */
2012 int regCurrent; /* Register holding Current table */
2013 int iQueue; /* The Queue table */
2014 int iDistinct = 0; /* To ensure unique results if UNION */
2015 int eDest = SRT_Fifo; /* How to write to Queue */
2016 SelectDest destQueue; /* SelectDest targetting the Queue table */
2017 int i; /* Loop counter */
2018 int rc; /* Result code */
2019 ExprList *pOrderBy; /* The ORDER BY clause */
2020 Expr *pLimit, *pOffset; /* Saved LIMIT and OFFSET */
2021 int regLimit, regOffset; /* Registers used by LIMIT and OFFSET */
2023 /* Obtain authorization to do a recursive query */
2024 if( sqlite3AuthCheck(pParse, SQLITE_RECURSIVE, 0, 0, 0) ) return;
2026 /* Process the LIMIT and OFFSET clauses, if they exist */
2027 addrBreak = sqlite3VdbeMakeLabel(v);
2028 computeLimitRegisters(pParse, p, addrBreak);
2029 pLimit = p->pLimit;
2030 pOffset = p->pOffset;
2031 regLimit = p->iLimit;
2032 regOffset = p->iOffset;
2033 p->pLimit = p->pOffset = 0;
2034 p->iLimit = p->iOffset = 0;
2035 pOrderBy = p->pOrderBy;
2037 /* Locate the cursor number of the Current table */
2038 for(i=0; ALWAYS(i<pSrc->nSrc); i++){
2039 if( pSrc->a[i].fg.isRecursive ){
2040 iCurrent = pSrc->a[i].iCursor;
2041 break;
2045 /* Allocate cursors numbers for Queue and Distinct. The cursor number for
2046 ** the Distinct table must be exactly one greater than Queue in order
2047 ** for the SRT_DistFifo and SRT_DistQueue destinations to work. */
2048 iQueue = pParse->nTab++;
2049 if( p->op==TK_UNION ){
2050 eDest = pOrderBy ? SRT_DistQueue : SRT_DistFifo;
2051 iDistinct = pParse->nTab++;
2052 }else{
2053 eDest = pOrderBy ? SRT_Queue : SRT_Fifo;
2055 sqlite3SelectDestInit(&destQueue, eDest, iQueue);
2057 /* Allocate cursors for Current, Queue, and Distinct. */
2058 regCurrent = ++pParse->nMem;
2059 sqlite3VdbeAddOp3(v, OP_OpenPseudo, iCurrent, regCurrent, nCol);
2060 if( pOrderBy ){
2061 KeyInfo *pKeyInfo = multiSelectOrderByKeyInfo(pParse, p, 1);
2062 sqlite3VdbeAddOp4(v, OP_OpenEphemeral, iQueue, pOrderBy->nExpr+2, 0,
2063 (char*)pKeyInfo, P4_KEYINFO);
2064 destQueue.pOrderBy = pOrderBy;
2065 }else{
2066 sqlite3VdbeAddOp2(v, OP_OpenEphemeral, iQueue, nCol);
2068 VdbeComment((v, "Queue table"));
2069 if( iDistinct ){
2070 p->addrOpenEphm[0] = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, iDistinct, 0);
2071 p->selFlags |= SF_UsesEphemeral;
2074 /* Detach the ORDER BY clause from the compound SELECT */
2075 p->pOrderBy = 0;
2077 /* Store the results of the setup-query in Queue. */
2078 pSetup->pNext = 0;
2079 rc = sqlite3Select(pParse, pSetup, &destQueue);
2080 pSetup->pNext = p;
2081 if( rc ) goto end_of_recursive_query;
2083 /* Find the next row in the Queue and output that row */
2084 addrTop = sqlite3VdbeAddOp2(v, OP_Rewind, iQueue, addrBreak); VdbeCoverage(v);
2086 /* Transfer the next row in Queue over to Current */
2087 sqlite3VdbeAddOp1(v, OP_NullRow, iCurrent); /* To reset column cache */
2088 if( pOrderBy ){
2089 sqlite3VdbeAddOp3(v, OP_Column, iQueue, pOrderBy->nExpr+1, regCurrent);
2090 }else{
2091 sqlite3VdbeAddOp2(v, OP_RowData, iQueue, regCurrent);
2093 sqlite3VdbeAddOp1(v, OP_Delete, iQueue);
2095 /* Output the single row in Current */
2096 addrCont = sqlite3VdbeMakeLabel(v);
2097 codeOffset(v, regOffset, addrCont);
2098 selectInnerLoop(pParse, p, p->pEList, iCurrent,
2099 0, 0, pDest, addrCont, addrBreak);
2100 if( regLimit ){
2101 sqlite3VdbeAddOp2(v, OP_DecrJumpZero, regLimit, addrBreak);
2102 VdbeCoverage(v);
2104 sqlite3VdbeResolveLabel(v, addrCont);
2106 /* Execute the recursive SELECT taking the single row in Current as
2107 ** the value for the recursive-table. Store the results in the Queue.
2109 if( p->selFlags & SF_Aggregate ){
2110 sqlite3ErrorMsg(pParse, "recursive aggregate queries not supported");
2111 }else{
2112 p->pPrior = 0;
2113 sqlite3Select(pParse, p, &destQueue);
2114 assert( p->pPrior==0 );
2115 p->pPrior = pSetup;
2118 /* Keep running the loop until the Queue is empty */
2119 sqlite3VdbeGoto(v, addrTop);
2120 sqlite3VdbeResolveLabel(v, addrBreak);
2122 end_of_recursive_query:
2123 sqlite3ExprListDelete(pParse->db, p->pOrderBy);
2124 p->pOrderBy = pOrderBy;
2125 p->pLimit = pLimit;
2126 p->pOffset = pOffset;
2127 return;
2129 #endif /* SQLITE_OMIT_CTE */
2131 /* Forward references */
2132 static int multiSelectOrderBy(
2133 Parse *pParse, /* Parsing context */
2134 Select *p, /* The right-most of SELECTs to be coded */
2135 SelectDest *pDest /* What to do with query results */
2139 ** Handle the special case of a compound-select that originates from a
2140 ** VALUES clause. By handling this as a special case, we avoid deep
2141 ** recursion, and thus do not need to enforce the SQLITE_LIMIT_COMPOUND_SELECT
2142 ** on a VALUES clause.
2144 ** Because the Select object originates from a VALUES clause:
2145 ** (1) It has no LIMIT or OFFSET
2146 ** (2) All terms are UNION ALL
2147 ** (3) There is no ORDER BY clause
2149 static int multiSelectValues(
2150 Parse *pParse, /* Parsing context */
2151 Select *p, /* The right-most of SELECTs to be coded */
2152 SelectDest *pDest /* What to do with query results */
2154 Select *pPrior;
2155 int nRow = 1;
2156 int rc = 0;
2157 assert( p->selFlags & SF_MultiValue );
2159 assert( p->selFlags & SF_Values );
2160 assert( p->op==TK_ALL || (p->op==TK_SELECT && p->pPrior==0) );
2161 assert( p->pLimit==0 );
2162 assert( p->pOffset==0 );
2163 assert( p->pNext==0 || p->pEList->nExpr==p->pNext->pEList->nExpr );
2164 if( p->pPrior==0 ) break;
2165 assert( p->pPrior->pNext==p );
2166 p = p->pPrior;
2167 nRow++;
2168 }while(1);
2169 while( p ){
2170 pPrior = p->pPrior;
2171 p->pPrior = 0;
2172 rc = sqlite3Select(pParse, p, pDest);
2173 p->pPrior = pPrior;
2174 if( rc ) break;
2175 p->nSelectRow = nRow;
2176 p = p->pNext;
2178 return rc;
2182 ** This routine is called to process a compound query form from
2183 ** two or more separate queries using UNION, UNION ALL, EXCEPT, or
2184 ** INTERSECT
2186 ** "p" points to the right-most of the two queries. the query on the
2187 ** left is p->pPrior. The left query could also be a compound query
2188 ** in which case this routine will be called recursively.
2190 ** The results of the total query are to be written into a destination
2191 ** of type eDest with parameter iParm.
2193 ** Example 1: Consider a three-way compound SQL statement.
2195 ** SELECT a FROM t1 UNION SELECT b FROM t2 UNION SELECT c FROM t3
2197 ** This statement is parsed up as follows:
2199 ** SELECT c FROM t3
2200 ** |
2201 ** `-----> SELECT b FROM t2
2202 ** |
2203 ** `------> SELECT a FROM t1
2205 ** The arrows in the diagram above represent the Select.pPrior pointer.
2206 ** So if this routine is called with p equal to the t3 query, then
2207 ** pPrior will be the t2 query. p->op will be TK_UNION in this case.
2209 ** Notice that because of the way SQLite parses compound SELECTs, the
2210 ** individual selects always group from left to right.
2212 static int multiSelect(
2213 Parse *pParse, /* Parsing context */
2214 Select *p, /* The right-most of SELECTs to be coded */
2215 SelectDest *pDest /* What to do with query results */
2217 int rc = SQLITE_OK; /* Success code from a subroutine */
2218 Select *pPrior; /* Another SELECT immediately to our left */
2219 Vdbe *v; /* Generate code to this VDBE */
2220 SelectDest dest; /* Alternative data destination */
2221 Select *pDelete = 0; /* Chain of simple selects to delete */
2222 sqlite3 *db; /* Database connection */
2223 #ifndef SQLITE_OMIT_EXPLAIN
2224 int iSub1 = 0; /* EQP id of left-hand query */
2225 int iSub2 = 0; /* EQP id of right-hand query */
2226 #endif
2228 /* Make sure there is no ORDER BY or LIMIT clause on prior SELECTs. Only
2229 ** the last (right-most) SELECT in the series may have an ORDER BY or LIMIT.
2231 assert( p && p->pPrior ); /* Calling function guarantees this much */
2232 assert( (p->selFlags & SF_Recursive)==0 || p->op==TK_ALL || p->op==TK_UNION );
2233 db = pParse->db;
2234 pPrior = p->pPrior;
2235 dest = *pDest;
2236 if( pPrior->pOrderBy ){
2237 sqlite3ErrorMsg(pParse,"ORDER BY clause should come after %s not before",
2238 selectOpName(p->op));
2239 rc = 1;
2240 goto multi_select_end;
2242 if( pPrior->pLimit ){
2243 sqlite3ErrorMsg(pParse,"LIMIT clause should come after %s not before",
2244 selectOpName(p->op));
2245 rc = 1;
2246 goto multi_select_end;
2249 v = sqlite3GetVdbe(pParse);
2250 assert( v!=0 ); /* The VDBE already created by calling function */
2252 /* Create the destination temporary table if necessary
2254 if( dest.eDest==SRT_EphemTab ){
2255 assert( p->pEList );
2256 sqlite3VdbeAddOp2(v, OP_OpenEphemeral, dest.iSDParm, p->pEList->nExpr);
2257 dest.eDest = SRT_Table;
2260 /* Special handling for a compound-select that originates as a VALUES clause.
2262 if( p->selFlags & SF_MultiValue ){
2263 rc = multiSelectValues(pParse, p, &dest);
2264 goto multi_select_end;
2267 /* Make sure all SELECTs in the statement have the same number of elements
2268 ** in their result sets.
2270 assert( p->pEList && pPrior->pEList );
2271 assert( p->pEList->nExpr==pPrior->pEList->nExpr );
2273 #ifndef SQLITE_OMIT_CTE
2274 if( p->selFlags & SF_Recursive ){
2275 generateWithRecursiveQuery(pParse, p, &dest);
2276 }else
2277 #endif
2279 /* Compound SELECTs that have an ORDER BY clause are handled separately.
2281 if( p->pOrderBy ){
2282 return multiSelectOrderBy(pParse, p, pDest);
2283 }else
2285 /* Generate code for the left and right SELECT statements.
2287 switch( p->op ){
2288 case TK_ALL: {
2289 int addr = 0;
2290 int nLimit;
2291 assert( !pPrior->pLimit );
2292 pPrior->iLimit = p->iLimit;
2293 pPrior->iOffset = p->iOffset;
2294 pPrior->pLimit = p->pLimit;
2295 pPrior->pOffset = p->pOffset;
2296 explainSetInteger(iSub1, pParse->iNextSelectId);
2297 rc = sqlite3Select(pParse, pPrior, &dest);
2298 p->pLimit = 0;
2299 p->pOffset = 0;
2300 if( rc ){
2301 goto multi_select_end;
2303 p->pPrior = 0;
2304 p->iLimit = pPrior->iLimit;
2305 p->iOffset = pPrior->iOffset;
2306 if( p->iLimit ){
2307 addr = sqlite3VdbeAddOp1(v, OP_IfNot, p->iLimit); VdbeCoverage(v);
2308 VdbeComment((v, "Jump ahead if LIMIT reached"));
2309 if( p->iOffset ){
2310 sqlite3VdbeAddOp3(v, OP_OffsetLimit,
2311 p->iLimit, p->iOffset+1, p->iOffset);
2314 explainSetInteger(iSub2, pParse->iNextSelectId);
2315 rc = sqlite3Select(pParse, p, &dest);
2316 testcase( rc!=SQLITE_OK );
2317 pDelete = p->pPrior;
2318 p->pPrior = pPrior;
2319 p->nSelectRow = sqlite3LogEstAdd(p->nSelectRow, pPrior->nSelectRow);
2320 if( pPrior->pLimit
2321 && sqlite3ExprIsInteger(pPrior->pLimit, &nLimit)
2322 && nLimit>0 && p->nSelectRow > sqlite3LogEst((u64)nLimit)
2324 p->nSelectRow = sqlite3LogEst((u64)nLimit);
2326 if( addr ){
2327 sqlite3VdbeJumpHere(v, addr);
2329 break;
2331 case TK_EXCEPT:
2332 case TK_UNION: {
2333 int unionTab; /* Cursor number of the temporary table holding result */
2334 u8 op = 0; /* One of the SRT_ operations to apply to self */
2335 int priorOp; /* The SRT_ operation to apply to prior selects */
2336 Expr *pLimit, *pOffset; /* Saved values of p->nLimit and p->nOffset */
2337 int addr;
2338 SelectDest uniondest;
2340 testcase( p->op==TK_EXCEPT );
2341 testcase( p->op==TK_UNION );
2342 priorOp = SRT_Union;
2343 if( dest.eDest==priorOp ){
2344 /* We can reuse a temporary table generated by a SELECT to our
2345 ** right.
2347 assert( p->pLimit==0 ); /* Not allowed on leftward elements */
2348 assert( p->pOffset==0 ); /* Not allowed on leftward elements */
2349 unionTab = dest.iSDParm;
2350 }else{
2351 /* We will need to create our own temporary table to hold the
2352 ** intermediate results.
2354 unionTab = pParse->nTab++;
2355 assert( p->pOrderBy==0 );
2356 addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, unionTab, 0);
2357 assert( p->addrOpenEphm[0] == -1 );
2358 p->addrOpenEphm[0] = addr;
2359 findRightmost(p)->selFlags |= SF_UsesEphemeral;
2360 assert( p->pEList );
2363 /* Code the SELECT statements to our left
2365 assert( !pPrior->pOrderBy );
2366 sqlite3SelectDestInit(&uniondest, priorOp, unionTab);
2367 explainSetInteger(iSub1, pParse->iNextSelectId);
2368 rc = sqlite3Select(pParse, pPrior, &uniondest);
2369 if( rc ){
2370 goto multi_select_end;
2373 /* Code the current SELECT statement
2375 if( p->op==TK_EXCEPT ){
2376 op = SRT_Except;
2377 }else{
2378 assert( p->op==TK_UNION );
2379 op = SRT_Union;
2381 p->pPrior = 0;
2382 pLimit = p->pLimit;
2383 p->pLimit = 0;
2384 pOffset = p->pOffset;
2385 p->pOffset = 0;
2386 uniondest.eDest = op;
2387 explainSetInteger(iSub2, pParse->iNextSelectId);
2388 rc = sqlite3Select(pParse, p, &uniondest);
2389 testcase( rc!=SQLITE_OK );
2390 /* Query flattening in sqlite3Select() might refill p->pOrderBy.
2391 ** Be sure to delete p->pOrderBy, therefore, to avoid a memory leak. */
2392 sqlite3ExprListDelete(db, p->pOrderBy);
2393 pDelete = p->pPrior;
2394 p->pPrior = pPrior;
2395 p->pOrderBy = 0;
2396 if( p->op==TK_UNION ){
2397 p->nSelectRow = sqlite3LogEstAdd(p->nSelectRow, pPrior->nSelectRow);
2399 sqlite3ExprDelete(db, p->pLimit);
2400 p->pLimit = pLimit;
2401 p->pOffset = pOffset;
2402 p->iLimit = 0;
2403 p->iOffset = 0;
2405 /* Convert the data in the temporary table into whatever form
2406 ** it is that we currently need.
2408 assert( unionTab==dest.iSDParm || dest.eDest!=priorOp );
2409 if( dest.eDest!=priorOp ){
2410 int iCont, iBreak, iStart;
2411 assert( p->pEList );
2412 if( dest.eDest==SRT_Output ){
2413 Select *pFirst = p;
2414 while( pFirst->pPrior ) pFirst = pFirst->pPrior;
2415 generateColumnNames(pParse, pFirst->pSrc, pFirst->pEList);
2417 iBreak = sqlite3VdbeMakeLabel(v);
2418 iCont = sqlite3VdbeMakeLabel(v);
2419 computeLimitRegisters(pParse, p, iBreak);
2420 sqlite3VdbeAddOp2(v, OP_Rewind, unionTab, iBreak); VdbeCoverage(v);
2421 iStart = sqlite3VdbeCurrentAddr(v);
2422 selectInnerLoop(pParse, p, p->pEList, unionTab,
2423 0, 0, &dest, iCont, iBreak);
2424 sqlite3VdbeResolveLabel(v, iCont);
2425 sqlite3VdbeAddOp2(v, OP_Next, unionTab, iStart); VdbeCoverage(v);
2426 sqlite3VdbeResolveLabel(v, iBreak);
2427 sqlite3VdbeAddOp2(v, OP_Close, unionTab, 0);
2429 break;
2431 default: assert( p->op==TK_INTERSECT ); {
2432 int tab1, tab2;
2433 int iCont, iBreak, iStart;
2434 Expr *pLimit, *pOffset;
2435 int addr;
2436 SelectDest intersectdest;
2437 int r1;
2439 /* INTERSECT is different from the others since it requires
2440 ** two temporary tables. Hence it has its own case. Begin
2441 ** by allocating the tables we will need.
2443 tab1 = pParse->nTab++;
2444 tab2 = pParse->nTab++;
2445 assert( p->pOrderBy==0 );
2447 addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, tab1, 0);
2448 assert( p->addrOpenEphm[0] == -1 );
2449 p->addrOpenEphm[0] = addr;
2450 findRightmost(p)->selFlags |= SF_UsesEphemeral;
2451 assert( p->pEList );
2453 /* Code the SELECTs to our left into temporary table "tab1".
2455 sqlite3SelectDestInit(&intersectdest, SRT_Union, tab1);
2456 explainSetInteger(iSub1, pParse->iNextSelectId);
2457 rc = sqlite3Select(pParse, pPrior, &intersectdest);
2458 if( rc ){
2459 goto multi_select_end;
2462 /* Code the current SELECT into temporary table "tab2"
2464 addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, tab2, 0);
2465 assert( p->addrOpenEphm[1] == -1 );
2466 p->addrOpenEphm[1] = addr;
2467 p->pPrior = 0;
2468 pLimit = p->pLimit;
2469 p->pLimit = 0;
2470 pOffset = p->pOffset;
2471 p->pOffset = 0;
2472 intersectdest.iSDParm = tab2;
2473 explainSetInteger(iSub2, pParse->iNextSelectId);
2474 rc = sqlite3Select(pParse, p, &intersectdest);
2475 testcase( rc!=SQLITE_OK );
2476 pDelete = p->pPrior;
2477 p->pPrior = pPrior;
2478 if( p->nSelectRow>pPrior->nSelectRow ) p->nSelectRow = pPrior->nSelectRow;
2479 sqlite3ExprDelete(db, p->pLimit);
2480 p->pLimit = pLimit;
2481 p->pOffset = pOffset;
2483 /* Generate code to take the intersection of the two temporary
2484 ** tables.
2486 assert( p->pEList );
2487 if( dest.eDest==SRT_Output ){
2488 Select *pFirst = p;
2489 while( pFirst->pPrior ) pFirst = pFirst->pPrior;
2490 generateColumnNames(pParse, pFirst->pSrc, pFirst->pEList);
2492 iBreak = sqlite3VdbeMakeLabel(v);
2493 iCont = sqlite3VdbeMakeLabel(v);
2494 computeLimitRegisters(pParse, p, iBreak);
2495 sqlite3VdbeAddOp2(v, OP_Rewind, tab1, iBreak); VdbeCoverage(v);
2496 r1 = sqlite3GetTempReg(pParse);
2497 iStart = sqlite3VdbeAddOp2(v, OP_RowKey, tab1, r1);
2498 sqlite3VdbeAddOp4Int(v, OP_NotFound, tab2, iCont, r1, 0); VdbeCoverage(v);
2499 sqlite3ReleaseTempReg(pParse, r1);
2500 selectInnerLoop(pParse, p, p->pEList, tab1,
2501 0, 0, &dest, iCont, iBreak);
2502 sqlite3VdbeResolveLabel(v, iCont);
2503 sqlite3VdbeAddOp2(v, OP_Next, tab1, iStart); VdbeCoverage(v);
2504 sqlite3VdbeResolveLabel(v, iBreak);
2505 sqlite3VdbeAddOp2(v, OP_Close, tab2, 0);
2506 sqlite3VdbeAddOp2(v, OP_Close, tab1, 0);
2507 break;
2511 explainComposite(pParse, p->op, iSub1, iSub2, p->op!=TK_ALL);
2513 /* Compute collating sequences used by
2514 ** temporary tables needed to implement the compound select.
2515 ** Attach the KeyInfo structure to all temporary tables.
2517 ** This section is run by the right-most SELECT statement only.
2518 ** SELECT statements to the left always skip this part. The right-most
2519 ** SELECT might also skip this part if it has no ORDER BY clause and
2520 ** no temp tables are required.
2522 if( p->selFlags & SF_UsesEphemeral ){
2523 int i; /* Loop counter */
2524 KeyInfo *pKeyInfo; /* Collating sequence for the result set */
2525 Select *pLoop; /* For looping through SELECT statements */
2526 CollSeq **apColl; /* For looping through pKeyInfo->aColl[] */
2527 int nCol; /* Number of columns in result set */
2529 assert( p->pNext==0 );
2530 nCol = p->pEList->nExpr;
2531 pKeyInfo = sqlite3KeyInfoAlloc(db, nCol, 1);
2532 if( !pKeyInfo ){
2533 rc = SQLITE_NOMEM_BKPT;
2534 goto multi_select_end;
2536 for(i=0, apColl=pKeyInfo->aColl; i<nCol; i++, apColl++){
2537 *apColl = multiSelectCollSeq(pParse, p, i);
2538 if( 0==*apColl ){
2539 *apColl = db->pDfltColl;
2543 for(pLoop=p; pLoop; pLoop=pLoop->pPrior){
2544 for(i=0; i<2; i++){
2545 int addr = pLoop->addrOpenEphm[i];
2546 if( addr<0 ){
2547 /* If [0] is unused then [1] is also unused. So we can
2548 ** always safely abort as soon as the first unused slot is found */
2549 assert( pLoop->addrOpenEphm[1]<0 );
2550 break;
2552 sqlite3VdbeChangeP2(v, addr, nCol);
2553 sqlite3VdbeChangeP4(v, addr, (char*)sqlite3KeyInfoRef(pKeyInfo),
2554 P4_KEYINFO);
2555 pLoop->addrOpenEphm[i] = -1;
2558 sqlite3KeyInfoUnref(pKeyInfo);
2561 multi_select_end:
2562 pDest->iSdst = dest.iSdst;
2563 pDest->nSdst = dest.nSdst;
2564 sqlite3SelectDelete(db, pDelete);
2565 return rc;
2567 #endif /* SQLITE_OMIT_COMPOUND_SELECT */
2570 ** Error message for when two or more terms of a compound select have different
2571 ** size result sets.
2573 void sqlite3SelectWrongNumTermsError(Parse *pParse, Select *p){
2574 if( p->selFlags & SF_Values ){
2575 sqlite3ErrorMsg(pParse, "all VALUES must have the same number of terms");
2576 }else{
2577 sqlite3ErrorMsg(pParse, "SELECTs to the left and right of %s"
2578 " do not have the same number of result columns", selectOpName(p->op));
2583 ** Code an output subroutine for a coroutine implementation of a
2584 ** SELECT statment.
2586 ** The data to be output is contained in pIn->iSdst. There are
2587 ** pIn->nSdst columns to be output. pDest is where the output should
2588 ** be sent.
2590 ** regReturn is the number of the register holding the subroutine
2591 ** return address.
2593 ** If regPrev>0 then it is the first register in a vector that
2594 ** records the previous output. mem[regPrev] is a flag that is false
2595 ** if there has been no previous output. If regPrev>0 then code is
2596 ** generated to suppress duplicates. pKeyInfo is used for comparing
2597 ** keys.
2599 ** If the LIMIT found in p->iLimit is reached, jump immediately to
2600 ** iBreak.
2602 static int generateOutputSubroutine(
2603 Parse *pParse, /* Parsing context */
2604 Select *p, /* The SELECT statement */
2605 SelectDest *pIn, /* Coroutine supplying data */
2606 SelectDest *pDest, /* Where to send the data */
2607 int regReturn, /* The return address register */
2608 int regPrev, /* Previous result register. No uniqueness if 0 */
2609 KeyInfo *pKeyInfo, /* For comparing with previous entry */
2610 int iBreak /* Jump here if we hit the LIMIT */
2612 Vdbe *v = pParse->pVdbe;
2613 int iContinue;
2614 int addr;
2616 addr = sqlite3VdbeCurrentAddr(v);
2617 iContinue = sqlite3VdbeMakeLabel(v);
2619 /* Suppress duplicates for UNION, EXCEPT, and INTERSECT
2621 if( regPrev ){
2622 int addr1, addr2;
2623 addr1 = sqlite3VdbeAddOp1(v, OP_IfNot, regPrev); VdbeCoverage(v);
2624 addr2 = sqlite3VdbeAddOp4(v, OP_Compare, pIn->iSdst, regPrev+1, pIn->nSdst,
2625 (char*)sqlite3KeyInfoRef(pKeyInfo), P4_KEYINFO);
2626 sqlite3VdbeAddOp3(v, OP_Jump, addr2+2, iContinue, addr2+2); VdbeCoverage(v);
2627 sqlite3VdbeJumpHere(v, addr1);
2628 sqlite3VdbeAddOp3(v, OP_Copy, pIn->iSdst, regPrev+1, pIn->nSdst-1);
2629 sqlite3VdbeAddOp2(v, OP_Integer, 1, regPrev);
2631 if( pParse->db->mallocFailed ) return 0;
2633 /* Suppress the first OFFSET entries if there is an OFFSET clause
2635 codeOffset(v, p->iOffset, iContinue);
2637 assert( pDest->eDest!=SRT_Exists );
2638 assert( pDest->eDest!=SRT_Table );
2639 switch( pDest->eDest ){
2640 /* Store the result as data using a unique key.
2642 case SRT_EphemTab: {
2643 int r1 = sqlite3GetTempReg(pParse);
2644 int r2 = sqlite3GetTempReg(pParse);
2645 sqlite3VdbeAddOp3(v, OP_MakeRecord, pIn->iSdst, pIn->nSdst, r1);
2646 sqlite3VdbeAddOp2(v, OP_NewRowid, pDest->iSDParm, r2);
2647 sqlite3VdbeAddOp3(v, OP_Insert, pDest->iSDParm, r1, r2);
2648 sqlite3VdbeChangeP5(v, OPFLAG_APPEND);
2649 sqlite3ReleaseTempReg(pParse, r2);
2650 sqlite3ReleaseTempReg(pParse, r1);
2651 break;
2654 #ifndef SQLITE_OMIT_SUBQUERY
2655 /* If we are creating a set for an "expr IN (SELECT ...)" construct,
2656 ** then there should be a single item on the stack. Write this
2657 ** item into the set table with bogus data.
2659 case SRT_Set: {
2660 int r1;
2661 assert( pIn->nSdst==1 || pParse->nErr>0 );
2662 pDest->affSdst =
2663 sqlite3CompareAffinity(p->pEList->a[0].pExpr, pDest->affSdst);
2664 r1 = sqlite3GetTempReg(pParse);
2665 sqlite3VdbeAddOp4(v, OP_MakeRecord, pIn->iSdst, 1, r1, &pDest->affSdst,1);
2666 sqlite3ExprCacheAffinityChange(pParse, pIn->iSdst, 1);
2667 sqlite3VdbeAddOp2(v, OP_IdxInsert, pDest->iSDParm, r1);
2668 sqlite3ReleaseTempReg(pParse, r1);
2669 break;
2672 /* If this is a scalar select that is part of an expression, then
2673 ** store the results in the appropriate memory cell and break out
2674 ** of the scan loop.
2676 case SRT_Mem: {
2677 assert( pIn->nSdst==1 || pParse->nErr>0 ); testcase( pIn->nSdst!=1 );
2678 sqlite3ExprCodeMove(pParse, pIn->iSdst, pDest->iSDParm, 1);
2679 /* The LIMIT clause will jump out of the loop for us */
2680 break;
2682 #endif /* #ifndef SQLITE_OMIT_SUBQUERY */
2684 /* The results are stored in a sequence of registers
2685 ** starting at pDest->iSdst. Then the co-routine yields.
2687 case SRT_Coroutine: {
2688 if( pDest->iSdst==0 ){
2689 pDest->iSdst = sqlite3GetTempRange(pParse, pIn->nSdst);
2690 pDest->nSdst = pIn->nSdst;
2692 sqlite3ExprCodeMove(pParse, pIn->iSdst, pDest->iSdst, pIn->nSdst);
2693 sqlite3VdbeAddOp1(v, OP_Yield, pDest->iSDParm);
2694 break;
2697 /* If none of the above, then the result destination must be
2698 ** SRT_Output. This routine is never called with any other
2699 ** destination other than the ones handled above or SRT_Output.
2701 ** For SRT_Output, results are stored in a sequence of registers.
2702 ** Then the OP_ResultRow opcode is used to cause sqlite3_step() to
2703 ** return the next row of result.
2705 default: {
2706 assert( pDest->eDest==SRT_Output );
2707 sqlite3VdbeAddOp2(v, OP_ResultRow, pIn->iSdst, pIn->nSdst);
2708 sqlite3ExprCacheAffinityChange(pParse, pIn->iSdst, pIn->nSdst);
2709 break;
2713 /* Jump to the end of the loop if the LIMIT is reached.
2715 if( p->iLimit ){
2716 sqlite3VdbeAddOp2(v, OP_DecrJumpZero, p->iLimit, iBreak); VdbeCoverage(v);
2719 /* Generate the subroutine return
2721 sqlite3VdbeResolveLabel(v, iContinue);
2722 sqlite3VdbeAddOp1(v, OP_Return, regReturn);
2724 return addr;
2728 ** Alternative compound select code generator for cases when there
2729 ** is an ORDER BY clause.
2731 ** We assume a query of the following form:
2733 ** <selectA> <operator> <selectB> ORDER BY <orderbylist>
2735 ** <operator> is one of UNION ALL, UNION, EXCEPT, or INTERSECT. The idea
2736 ** is to code both <selectA> and <selectB> with the ORDER BY clause as
2737 ** co-routines. Then run the co-routines in parallel and merge the results
2738 ** into the output. In addition to the two coroutines (called selectA and
2739 ** selectB) there are 7 subroutines:
2741 ** outA: Move the output of the selectA coroutine into the output
2742 ** of the compound query.
2744 ** outB: Move the output of the selectB coroutine into the output
2745 ** of the compound query. (Only generated for UNION and
2746 ** UNION ALL. EXCEPT and INSERTSECT never output a row that
2747 ** appears only in B.)
2749 ** AltB: Called when there is data from both coroutines and A<B.
2751 ** AeqB: Called when there is data from both coroutines and A==B.
2753 ** AgtB: Called when there is data from both coroutines and A>B.
2755 ** EofA: Called when data is exhausted from selectA.
2757 ** EofB: Called when data is exhausted from selectB.
2759 ** The implementation of the latter five subroutines depend on which
2760 ** <operator> is used:
2763 ** UNION ALL UNION EXCEPT INTERSECT
2764 ** ------------- ----------------- -------------- -----------------
2765 ** AltB: outA, nextA outA, nextA outA, nextA nextA
2767 ** AeqB: outA, nextA nextA nextA outA, nextA
2769 ** AgtB: outB, nextB outB, nextB nextB nextB
2771 ** EofA: outB, nextB outB, nextB halt halt
2773 ** EofB: outA, nextA outA, nextA outA, nextA halt
2775 ** In the AltB, AeqB, and AgtB subroutines, an EOF on A following nextA
2776 ** causes an immediate jump to EofA and an EOF on B following nextB causes
2777 ** an immediate jump to EofB. Within EofA and EofB, and EOF on entry or
2778 ** following nextX causes a jump to the end of the select processing.
2780 ** Duplicate removal in the UNION, EXCEPT, and INTERSECT cases is handled
2781 ** within the output subroutine. The regPrev register set holds the previously
2782 ** output value. A comparison is made against this value and the output
2783 ** is skipped if the next results would be the same as the previous.
2785 ** The implementation plan is to implement the two coroutines and seven
2786 ** subroutines first, then put the control logic at the bottom. Like this:
2788 ** goto Init
2789 ** coA: coroutine for left query (A)
2790 ** coB: coroutine for right query (B)
2791 ** outA: output one row of A
2792 ** outB: output one row of B (UNION and UNION ALL only)
2793 ** EofA: ...
2794 ** EofB: ...
2795 ** AltB: ...
2796 ** AeqB: ...
2797 ** AgtB: ...
2798 ** Init: initialize coroutine registers
2799 ** yield coA
2800 ** if eof(A) goto EofA
2801 ** yield coB
2802 ** if eof(B) goto EofB
2803 ** Cmpr: Compare A, B
2804 ** Jump AltB, AeqB, AgtB
2805 ** End: ...
2807 ** We call AltB, AeqB, AgtB, EofA, and EofB "subroutines" but they are not
2808 ** actually called using Gosub and they do not Return. EofA and EofB loop
2809 ** until all data is exhausted then jump to the "end" labe. AltB, AeqB,
2810 ** and AgtB jump to either L2 or to one of EofA or EofB.
2812 #ifndef SQLITE_OMIT_COMPOUND_SELECT
2813 static int multiSelectOrderBy(
2814 Parse *pParse, /* Parsing context */
2815 Select *p, /* The right-most of SELECTs to be coded */
2816 SelectDest *pDest /* What to do with query results */
2818 int i, j; /* Loop counters */
2819 Select *pPrior; /* Another SELECT immediately to our left */
2820 Vdbe *v; /* Generate code to this VDBE */
2821 SelectDest destA; /* Destination for coroutine A */
2822 SelectDest destB; /* Destination for coroutine B */
2823 int regAddrA; /* Address register for select-A coroutine */
2824 int regAddrB; /* Address register for select-B coroutine */
2825 int addrSelectA; /* Address of the select-A coroutine */
2826 int addrSelectB; /* Address of the select-B coroutine */
2827 int regOutA; /* Address register for the output-A subroutine */
2828 int regOutB; /* Address register for the output-B subroutine */
2829 int addrOutA; /* Address of the output-A subroutine */
2830 int addrOutB = 0; /* Address of the output-B subroutine */
2831 int addrEofA; /* Address of the select-A-exhausted subroutine */
2832 int addrEofA_noB; /* Alternate addrEofA if B is uninitialized */
2833 int addrEofB; /* Address of the select-B-exhausted subroutine */
2834 int addrAltB; /* Address of the A<B subroutine */
2835 int addrAeqB; /* Address of the A==B subroutine */
2836 int addrAgtB; /* Address of the A>B subroutine */
2837 int regLimitA; /* Limit register for select-A */
2838 int regLimitB; /* Limit register for select-A */
2839 int regPrev; /* A range of registers to hold previous output */
2840 int savedLimit; /* Saved value of p->iLimit */
2841 int savedOffset; /* Saved value of p->iOffset */
2842 int labelCmpr; /* Label for the start of the merge algorithm */
2843 int labelEnd; /* Label for the end of the overall SELECT stmt */
2844 int addr1; /* Jump instructions that get retargetted */
2845 int op; /* One of TK_ALL, TK_UNION, TK_EXCEPT, TK_INTERSECT */
2846 KeyInfo *pKeyDup = 0; /* Comparison information for duplicate removal */
2847 KeyInfo *pKeyMerge; /* Comparison information for merging rows */
2848 sqlite3 *db; /* Database connection */
2849 ExprList *pOrderBy; /* The ORDER BY clause */
2850 int nOrderBy; /* Number of terms in the ORDER BY clause */
2851 int *aPermute; /* Mapping from ORDER BY terms to result set columns */
2852 #ifndef SQLITE_OMIT_EXPLAIN
2853 int iSub1; /* EQP id of left-hand query */
2854 int iSub2; /* EQP id of right-hand query */
2855 #endif
2857 assert( p->pOrderBy!=0 );
2858 assert( pKeyDup==0 ); /* "Managed" code needs this. Ticket #3382. */
2859 db = pParse->db;
2860 v = pParse->pVdbe;
2861 assert( v!=0 ); /* Already thrown the error if VDBE alloc failed */
2862 labelEnd = sqlite3VdbeMakeLabel(v);
2863 labelCmpr = sqlite3VdbeMakeLabel(v);
2866 /* Patch up the ORDER BY clause
2868 op = p->op;
2869 pPrior = p->pPrior;
2870 assert( pPrior->pOrderBy==0 );
2871 pOrderBy = p->pOrderBy;
2872 assert( pOrderBy );
2873 nOrderBy = pOrderBy->nExpr;
2875 /* For operators other than UNION ALL we have to make sure that
2876 ** the ORDER BY clause covers every term of the result set. Add
2877 ** terms to the ORDER BY clause as necessary.
2879 if( op!=TK_ALL ){
2880 for(i=1; db->mallocFailed==0 && i<=p->pEList->nExpr; i++){
2881 struct ExprList_item *pItem;
2882 for(j=0, pItem=pOrderBy->a; j<nOrderBy; j++, pItem++){
2883 assert( pItem->u.x.iOrderByCol>0 );
2884 if( pItem->u.x.iOrderByCol==i ) break;
2886 if( j==nOrderBy ){
2887 Expr *pNew = sqlite3Expr(db, TK_INTEGER, 0);
2888 if( pNew==0 ) return SQLITE_NOMEM_BKPT;
2889 pNew->flags |= EP_IntValue;
2890 pNew->u.iValue = i;
2891 pOrderBy = sqlite3ExprListAppend(pParse, pOrderBy, pNew);
2892 if( pOrderBy ) pOrderBy->a[nOrderBy++].u.x.iOrderByCol = (u16)i;
2897 /* Compute the comparison permutation and keyinfo that is used with
2898 ** the permutation used to determine if the next
2899 ** row of results comes from selectA or selectB. Also add explicit
2900 ** collations to the ORDER BY clause terms so that when the subqueries
2901 ** to the right and the left are evaluated, they use the correct
2902 ** collation.
2904 aPermute = sqlite3DbMallocRawNN(db, sizeof(int)*(nOrderBy + 1));
2905 if( aPermute ){
2906 struct ExprList_item *pItem;
2907 aPermute[0] = nOrderBy;
2908 for(i=1, pItem=pOrderBy->a; i<=nOrderBy; i++, pItem++){
2909 assert( pItem->u.x.iOrderByCol>0 );
2910 assert( pItem->u.x.iOrderByCol<=p->pEList->nExpr );
2911 aPermute[i] = pItem->u.x.iOrderByCol - 1;
2913 pKeyMerge = multiSelectOrderByKeyInfo(pParse, p, 1);
2914 }else{
2915 pKeyMerge = 0;
2918 /* Reattach the ORDER BY clause to the query.
2920 p->pOrderBy = pOrderBy;
2921 pPrior->pOrderBy = sqlite3ExprListDup(pParse->db, pOrderBy, 0);
2923 /* Allocate a range of temporary registers and the KeyInfo needed
2924 ** for the logic that removes duplicate result rows when the
2925 ** operator is UNION, EXCEPT, or INTERSECT (but not UNION ALL).
2927 if( op==TK_ALL ){
2928 regPrev = 0;
2929 }else{
2930 int nExpr = p->pEList->nExpr;
2931 assert( nOrderBy>=nExpr || db->mallocFailed );
2932 regPrev = pParse->nMem+1;
2933 pParse->nMem += nExpr+1;
2934 sqlite3VdbeAddOp2(v, OP_Integer, 0, regPrev);
2935 pKeyDup = sqlite3KeyInfoAlloc(db, nExpr, 1);
2936 if( pKeyDup ){
2937 assert( sqlite3KeyInfoIsWriteable(pKeyDup) );
2938 for(i=0; i<nExpr; i++){
2939 pKeyDup->aColl[i] = multiSelectCollSeq(pParse, p, i);
2940 pKeyDup->aSortOrder[i] = 0;
2945 /* Separate the left and the right query from one another
2947 p->pPrior = 0;
2948 pPrior->pNext = 0;
2949 sqlite3ResolveOrderGroupBy(pParse, p, p->pOrderBy, "ORDER");
2950 if( pPrior->pPrior==0 ){
2951 sqlite3ResolveOrderGroupBy(pParse, pPrior, pPrior->pOrderBy, "ORDER");
2954 /* Compute the limit registers */
2955 computeLimitRegisters(pParse, p, labelEnd);
2956 if( p->iLimit && op==TK_ALL ){
2957 regLimitA = ++pParse->nMem;
2958 regLimitB = ++pParse->nMem;
2959 sqlite3VdbeAddOp2(v, OP_Copy, p->iOffset ? p->iOffset+1 : p->iLimit,
2960 regLimitA);
2961 sqlite3VdbeAddOp2(v, OP_Copy, regLimitA, regLimitB);
2962 }else{
2963 regLimitA = regLimitB = 0;
2965 sqlite3ExprDelete(db, p->pLimit);
2966 p->pLimit = 0;
2967 sqlite3ExprDelete(db, p->pOffset);
2968 p->pOffset = 0;
2970 regAddrA = ++pParse->nMem;
2971 regAddrB = ++pParse->nMem;
2972 regOutA = ++pParse->nMem;
2973 regOutB = ++pParse->nMem;
2974 sqlite3SelectDestInit(&destA, SRT_Coroutine, regAddrA);
2975 sqlite3SelectDestInit(&destB, SRT_Coroutine, regAddrB);
2977 /* Generate a coroutine to evaluate the SELECT statement to the
2978 ** left of the compound operator - the "A" select.
2980 addrSelectA = sqlite3VdbeCurrentAddr(v) + 1;
2981 addr1 = sqlite3VdbeAddOp3(v, OP_InitCoroutine, regAddrA, 0, addrSelectA);
2982 VdbeComment((v, "left SELECT"));
2983 pPrior->iLimit = regLimitA;
2984 explainSetInteger(iSub1, pParse->iNextSelectId);
2985 sqlite3Select(pParse, pPrior, &destA);
2986 sqlite3VdbeEndCoroutine(v, regAddrA);
2987 sqlite3VdbeJumpHere(v, addr1);
2989 /* Generate a coroutine to evaluate the SELECT statement on
2990 ** the right - the "B" select
2992 addrSelectB = sqlite3VdbeCurrentAddr(v) + 1;
2993 addr1 = sqlite3VdbeAddOp3(v, OP_InitCoroutine, regAddrB, 0, addrSelectB);
2994 VdbeComment((v, "right SELECT"));
2995 savedLimit = p->iLimit;
2996 savedOffset = p->iOffset;
2997 p->iLimit = regLimitB;
2998 p->iOffset = 0;
2999 explainSetInteger(iSub2, pParse->iNextSelectId);
3000 sqlite3Select(pParse, p, &destB);
3001 p->iLimit = savedLimit;
3002 p->iOffset = savedOffset;
3003 sqlite3VdbeEndCoroutine(v, regAddrB);
3005 /* Generate a subroutine that outputs the current row of the A
3006 ** select as the next output row of the compound select.
3008 VdbeNoopComment((v, "Output routine for A"));
3009 addrOutA = generateOutputSubroutine(pParse,
3010 p, &destA, pDest, regOutA,
3011 regPrev, pKeyDup, labelEnd);
3013 /* Generate a subroutine that outputs the current row of the B
3014 ** select as the next output row of the compound select.
3016 if( op==TK_ALL || op==TK_UNION ){
3017 VdbeNoopComment((v, "Output routine for B"));
3018 addrOutB = generateOutputSubroutine(pParse,
3019 p, &destB, pDest, regOutB,
3020 regPrev, pKeyDup, labelEnd);
3022 sqlite3KeyInfoUnref(pKeyDup);
3024 /* Generate a subroutine to run when the results from select A
3025 ** are exhausted and only data in select B remains.
3027 if( op==TK_EXCEPT || op==TK_INTERSECT ){
3028 addrEofA_noB = addrEofA = labelEnd;
3029 }else{
3030 VdbeNoopComment((v, "eof-A subroutine"));
3031 addrEofA = sqlite3VdbeAddOp2(v, OP_Gosub, regOutB, addrOutB);
3032 addrEofA_noB = sqlite3VdbeAddOp2(v, OP_Yield, regAddrB, labelEnd);
3033 VdbeCoverage(v);
3034 sqlite3VdbeGoto(v, addrEofA);
3035 p->nSelectRow = sqlite3LogEstAdd(p->nSelectRow, pPrior->nSelectRow);
3038 /* Generate a subroutine to run when the results from select B
3039 ** are exhausted and only data in select A remains.
3041 if( op==TK_INTERSECT ){
3042 addrEofB = addrEofA;
3043 if( p->nSelectRow > pPrior->nSelectRow ) p->nSelectRow = pPrior->nSelectRow;
3044 }else{
3045 VdbeNoopComment((v, "eof-B subroutine"));
3046 addrEofB = sqlite3VdbeAddOp2(v, OP_Gosub, regOutA, addrOutA);
3047 sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, labelEnd); VdbeCoverage(v);
3048 sqlite3VdbeGoto(v, addrEofB);
3051 /* Generate code to handle the case of A<B
3053 VdbeNoopComment((v, "A-lt-B subroutine"));
3054 addrAltB = sqlite3VdbeAddOp2(v, OP_Gosub, regOutA, addrOutA);
3055 sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, addrEofA); VdbeCoverage(v);
3056 sqlite3VdbeGoto(v, labelCmpr);
3058 /* Generate code to handle the case of A==B
3060 if( op==TK_ALL ){
3061 addrAeqB = addrAltB;
3062 }else if( op==TK_INTERSECT ){
3063 addrAeqB = addrAltB;
3064 addrAltB++;
3065 }else{
3066 VdbeNoopComment((v, "A-eq-B subroutine"));
3067 addrAeqB =
3068 sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, addrEofA); VdbeCoverage(v);
3069 sqlite3VdbeGoto(v, labelCmpr);
3072 /* Generate code to handle the case of A>B
3074 VdbeNoopComment((v, "A-gt-B subroutine"));
3075 addrAgtB = sqlite3VdbeCurrentAddr(v);
3076 if( op==TK_ALL || op==TK_UNION ){
3077 sqlite3VdbeAddOp2(v, OP_Gosub, regOutB, addrOutB);
3079 sqlite3VdbeAddOp2(v, OP_Yield, regAddrB, addrEofB); VdbeCoverage(v);
3080 sqlite3VdbeGoto(v, labelCmpr);
3082 /* This code runs once to initialize everything.
3084 sqlite3VdbeJumpHere(v, addr1);
3085 sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, addrEofA_noB); VdbeCoverage(v);
3086 sqlite3VdbeAddOp2(v, OP_Yield, regAddrB, addrEofB); VdbeCoverage(v);
3088 /* Implement the main merge loop
3090 sqlite3VdbeResolveLabel(v, labelCmpr);
3091 sqlite3VdbeAddOp4(v, OP_Permutation, 0, 0, 0, (char*)aPermute, P4_INTARRAY);
3092 sqlite3VdbeAddOp4(v, OP_Compare, destA.iSdst, destB.iSdst, nOrderBy,
3093 (char*)pKeyMerge, P4_KEYINFO);
3094 sqlite3VdbeChangeP5(v, OPFLAG_PERMUTE);
3095 sqlite3VdbeAddOp3(v, OP_Jump, addrAltB, addrAeqB, addrAgtB); VdbeCoverage(v);
3097 /* Jump to the this point in order to terminate the query.
3099 sqlite3VdbeResolveLabel(v, labelEnd);
3101 /* Set the number of output columns
3103 if( pDest->eDest==SRT_Output ){
3104 Select *pFirst = pPrior;
3105 while( pFirst->pPrior ) pFirst = pFirst->pPrior;
3106 generateColumnNames(pParse, pFirst->pSrc, pFirst->pEList);
3109 /* Reassembly the compound query so that it will be freed correctly
3110 ** by the calling function */
3111 if( p->pPrior ){
3112 sqlite3SelectDelete(db, p->pPrior);
3114 p->pPrior = pPrior;
3115 pPrior->pNext = p;
3117 /*** TBD: Insert subroutine calls to close cursors on incomplete
3118 **** subqueries ****/
3119 explainComposite(pParse, p->op, iSub1, iSub2, 0);
3120 return pParse->nErr!=0;
3122 #endif
3124 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
3125 /* Forward Declarations */
3126 static void substExprList(sqlite3*, ExprList*, int, ExprList*);
3127 static void substSelect(sqlite3*, Select *, int, ExprList*, int);
3130 ** Scan through the expression pExpr. Replace every reference to
3131 ** a column in table number iTable with a copy of the iColumn-th
3132 ** entry in pEList. (But leave references to the ROWID column
3133 ** unchanged.)
3135 ** This routine is part of the flattening procedure. A subquery
3136 ** whose result set is defined by pEList appears as entry in the
3137 ** FROM clause of a SELECT such that the VDBE cursor assigned to that
3138 ** FORM clause entry is iTable. This routine make the necessary
3139 ** changes to pExpr so that it refers directly to the source table
3140 ** of the subquery rather the result set of the subquery.
3142 static Expr *substExpr(
3143 sqlite3 *db, /* Report malloc errors to this connection */
3144 Expr *pExpr, /* Expr in which substitution occurs */
3145 int iTable, /* Table to be substituted */
3146 ExprList *pEList /* Substitute expressions */
3148 if( pExpr==0 ) return 0;
3149 if( pExpr->op==TK_COLUMN && pExpr->iTable==iTable ){
3150 if( pExpr->iColumn<0 ){
3151 pExpr->op = TK_NULL;
3152 }else{
3153 Expr *pNew;
3154 assert( pEList!=0 && pExpr->iColumn<pEList->nExpr );
3155 assert( pExpr->pLeft==0 && pExpr->pRight==0 );
3156 pNew = sqlite3ExprDup(db, pEList->a[pExpr->iColumn].pExpr, 0);
3157 sqlite3ExprDelete(db, pExpr);
3158 pExpr = pNew;
3160 }else{
3161 pExpr->pLeft = substExpr(db, pExpr->pLeft, iTable, pEList);
3162 pExpr->pRight = substExpr(db, pExpr->pRight, iTable, pEList);
3163 if( ExprHasProperty(pExpr, EP_xIsSelect) ){
3164 substSelect(db, pExpr->x.pSelect, iTable, pEList, 1);
3165 }else{
3166 substExprList(db, pExpr->x.pList, iTable, pEList);
3169 return pExpr;
3171 static void substExprList(
3172 sqlite3 *db, /* Report malloc errors here */
3173 ExprList *pList, /* List to scan and in which to make substitutes */
3174 int iTable, /* Table to be substituted */
3175 ExprList *pEList /* Substitute values */
3177 int i;
3178 if( pList==0 ) return;
3179 for(i=0; i<pList->nExpr; i++){
3180 pList->a[i].pExpr = substExpr(db, pList->a[i].pExpr, iTable, pEList);
3183 static void substSelect(
3184 sqlite3 *db, /* Report malloc errors here */
3185 Select *p, /* SELECT statement in which to make substitutions */
3186 int iTable, /* Table to be replaced */
3187 ExprList *pEList, /* Substitute values */
3188 int doPrior /* Do substitutes on p->pPrior too */
3190 SrcList *pSrc;
3191 struct SrcList_item *pItem;
3192 int i;
3193 if( !p ) return;
3195 substExprList(db, p->pEList, iTable, pEList);
3196 substExprList(db, p->pGroupBy, iTable, pEList);
3197 substExprList(db, p->pOrderBy, iTable, pEList);
3198 p->pHaving = substExpr(db, p->pHaving, iTable, pEList);
3199 p->pWhere = substExpr(db, p->pWhere, iTable, pEList);
3200 pSrc = p->pSrc;
3201 assert( pSrc!=0 );
3202 for(i=pSrc->nSrc, pItem=pSrc->a; i>0; i--, pItem++){
3203 substSelect(db, pItem->pSelect, iTable, pEList, 1);
3204 if( pItem->fg.isTabFunc ){
3205 substExprList(db, pItem->u1.pFuncArg, iTable, pEList);
3208 }while( doPrior && (p = p->pPrior)!=0 );
3210 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */
3212 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
3214 ** This routine attempts to flatten subqueries as a performance optimization.
3215 ** This routine returns 1 if it makes changes and 0 if no flattening occurs.
3217 ** To understand the concept of flattening, consider the following
3218 ** query:
3220 ** SELECT a FROM (SELECT x+y AS a FROM t1 WHERE z<100) WHERE a>5
3222 ** The default way of implementing this query is to execute the
3223 ** subquery first and store the results in a temporary table, then
3224 ** run the outer query on that temporary table. This requires two
3225 ** passes over the data. Furthermore, because the temporary table
3226 ** has no indices, the WHERE clause on the outer query cannot be
3227 ** optimized.
3229 ** This routine attempts to rewrite queries such as the above into
3230 ** a single flat select, like this:
3232 ** SELECT x+y AS a FROM t1 WHERE z<100 AND a>5
3234 ** The code generated for this simplification gives the same result
3235 ** but only has to scan the data once. And because indices might
3236 ** exist on the table t1, a complete scan of the data might be
3237 ** avoided.
3239 ** Flattening is only attempted if all of the following are true:
3241 ** (1) The subquery and the outer query do not both use aggregates.
3243 ** (2) The subquery is not an aggregate or (2a) the outer query is not a join
3244 ** and (2b) the outer query does not use subqueries other than the one
3245 ** FROM-clause subquery that is a candidate for flattening. (2b is
3246 ** due to ticket [2f7170d73bf9abf80] from 2015-02-09.)
3248 ** (3) The subquery is not the right operand of a left outer join
3249 ** (Originally ticket #306. Strengthened by ticket #3300)
3251 ** (4) The subquery is not DISTINCT.
3253 ** (**) At one point restrictions (4) and (5) defined a subset of DISTINCT
3254 ** sub-queries that were excluded from this optimization. Restriction
3255 ** (4) has since been expanded to exclude all DISTINCT subqueries.
3257 ** (6) The subquery does not use aggregates or the outer query is not
3258 ** DISTINCT.
3260 ** (7) The subquery has a FROM clause. TODO: For subqueries without
3261 ** A FROM clause, consider adding a FROM close with the special
3262 ** table sqlite_once that consists of a single row containing a
3263 ** single NULL.
3265 ** (8) The subquery does not use LIMIT or the outer query is not a join.
3267 ** (9) The subquery does not use LIMIT or the outer query does not use
3268 ** aggregates.
3270 ** (**) Restriction (10) was removed from the code on 2005-02-05 but we
3271 ** accidently carried the comment forward until 2014-09-15. Original
3272 ** text: "The subquery does not use aggregates or the outer query
3273 ** does not use LIMIT."
3275 ** (11) The subquery and the outer query do not both have ORDER BY clauses.
3277 ** (**) Not implemented. Subsumed into restriction (3). Was previously
3278 ** a separate restriction deriving from ticket #350.
3280 ** (13) The subquery and outer query do not both use LIMIT.
3282 ** (14) The subquery does not use OFFSET.
3284 ** (15) The outer query is not part of a compound select or the
3285 ** subquery does not have a LIMIT clause.
3286 ** (See ticket #2339 and ticket [02a8e81d44]).
3288 ** (16) The outer query is not an aggregate or the subquery does
3289 ** not contain ORDER BY. (Ticket #2942) This used to not matter
3290 ** until we introduced the group_concat() function.
3292 ** (17) The sub-query is not a compound select, or it is a UNION ALL
3293 ** compound clause made up entirely of non-aggregate queries, and
3294 ** the parent query:
3296 ** * is not itself part of a compound select,
3297 ** * is not an aggregate or DISTINCT query, and
3298 ** * is not a join
3300 ** The parent and sub-query may contain WHERE clauses. Subject to
3301 ** rules (11), (13) and (14), they may also contain ORDER BY,
3302 ** LIMIT and OFFSET clauses. The subquery cannot use any compound
3303 ** operator other than UNION ALL because all the other compound
3304 ** operators have an implied DISTINCT which is disallowed by
3305 ** restriction (4).
3307 ** Also, each component of the sub-query must return the same number
3308 ** of result columns. This is actually a requirement for any compound
3309 ** SELECT statement, but all the code here does is make sure that no
3310 ** such (illegal) sub-query is flattened. The caller will detect the
3311 ** syntax error and return a detailed message.
3313 ** (18) If the sub-query is a compound select, then all terms of the
3314 ** ORDER by clause of the parent must be simple references to
3315 ** columns of the sub-query.
3317 ** (19) The subquery does not use LIMIT or the outer query does not
3318 ** have a WHERE clause.
3320 ** (20) If the sub-query is a compound select, then it must not use
3321 ** an ORDER BY clause. Ticket #3773. We could relax this constraint
3322 ** somewhat by saying that the terms of the ORDER BY clause must
3323 ** appear as unmodified result columns in the outer query. But we
3324 ** have other optimizations in mind to deal with that case.
3326 ** (21) The subquery does not use LIMIT or the outer query is not
3327 ** DISTINCT. (See ticket [752e1646fc]).
3329 ** (22) The subquery is not a recursive CTE.
3331 ** (23) The parent is not a recursive CTE, or the sub-query is not a
3332 ** compound query. This restriction is because transforming the
3333 ** parent to a compound query confuses the code that handles
3334 ** recursive queries in multiSelect().
3336 ** (24) The subquery is not an aggregate that uses the built-in min() or
3337 ** or max() functions. (Without this restriction, a query like:
3338 ** "SELECT x FROM (SELECT max(y), x FROM t1)" would not necessarily
3339 ** return the value X for which Y was maximal.)
3342 ** In this routine, the "p" parameter is a pointer to the outer query.
3343 ** The subquery is p->pSrc->a[iFrom]. isAgg is true if the outer query
3344 ** uses aggregates and subqueryIsAgg is true if the subquery uses aggregates.
3346 ** If flattening is not attempted, this routine is a no-op and returns 0.
3347 ** If flattening is attempted this routine returns 1.
3349 ** All of the expression analysis must occur on both the outer query and
3350 ** the subquery before this routine runs.
3352 static int flattenSubquery(
3353 Parse *pParse, /* Parsing context */
3354 Select *p, /* The parent or outer SELECT statement */
3355 int iFrom, /* Index in p->pSrc->a[] of the inner subquery */
3356 int isAgg, /* True if outer SELECT uses aggregate functions */
3357 int subqueryIsAgg /* True if the subquery uses aggregate functions */
3359 const char *zSavedAuthContext = pParse->zAuthContext;
3360 Select *pParent; /* Current UNION ALL term of the other query */
3361 Select *pSub; /* The inner query or "subquery" */
3362 Select *pSub1; /* Pointer to the rightmost select in sub-query */
3363 SrcList *pSrc; /* The FROM clause of the outer query */
3364 SrcList *pSubSrc; /* The FROM clause of the subquery */
3365 ExprList *pList; /* The result set of the outer query */
3366 int iParent; /* VDBE cursor number of the pSub result set temp table */
3367 int i; /* Loop counter */
3368 Expr *pWhere; /* The WHERE clause */
3369 struct SrcList_item *pSubitem; /* The subquery */
3370 sqlite3 *db = pParse->db;
3372 /* Check to see if flattening is permitted. Return 0 if not.
3374 assert( p!=0 );
3375 assert( p->pPrior==0 ); /* Unable to flatten compound queries */
3376 if( OptimizationDisabled(db, SQLITE_QueryFlattener) ) return 0;
3377 pSrc = p->pSrc;
3378 assert( pSrc && iFrom>=0 && iFrom<pSrc->nSrc );
3379 pSubitem = &pSrc->a[iFrom];
3380 iParent = pSubitem->iCursor;
3381 pSub = pSubitem->pSelect;
3382 assert( pSub!=0 );
3383 if( subqueryIsAgg ){
3384 if( isAgg ) return 0; /* Restriction (1) */
3385 if( pSrc->nSrc>1 ) return 0; /* Restriction (2a) */
3386 if( (p->pWhere && ExprHasProperty(p->pWhere,EP_Subquery))
3387 || (sqlite3ExprListFlags(p->pEList) & EP_Subquery)!=0
3388 || (sqlite3ExprListFlags(p->pOrderBy) & EP_Subquery)!=0
3390 return 0; /* Restriction (2b) */
3394 pSubSrc = pSub->pSrc;
3395 assert( pSubSrc );
3396 /* Prior to version 3.1.2, when LIMIT and OFFSET had to be simple constants,
3397 ** not arbitrary expressions, we allowed some combining of LIMIT and OFFSET
3398 ** because they could be computed at compile-time. But when LIMIT and OFFSET
3399 ** became arbitrary expressions, we were forced to add restrictions (13)
3400 ** and (14). */
3401 if( pSub->pLimit && p->pLimit ) return 0; /* Restriction (13) */
3402 if( pSub->pOffset ) return 0; /* Restriction (14) */
3403 if( (p->selFlags & SF_Compound)!=0 && pSub->pLimit ){
3404 return 0; /* Restriction (15) */
3406 if( pSubSrc->nSrc==0 ) return 0; /* Restriction (7) */
3407 if( pSub->selFlags & SF_Distinct ) return 0; /* Restriction (5) */
3408 if( pSub->pLimit && (pSrc->nSrc>1 || isAgg) ){
3409 return 0; /* Restrictions (8)(9) */
3411 if( (p->selFlags & SF_Distinct)!=0 && subqueryIsAgg ){
3412 return 0; /* Restriction (6) */
3414 if( p->pOrderBy && pSub->pOrderBy ){
3415 return 0; /* Restriction (11) */
3417 if( isAgg && pSub->pOrderBy ) return 0; /* Restriction (16) */
3418 if( pSub->pLimit && p->pWhere ) return 0; /* Restriction (19) */
3419 if( pSub->pLimit && (p->selFlags & SF_Distinct)!=0 ){
3420 return 0; /* Restriction (21) */
3422 testcase( pSub->selFlags & SF_Recursive );
3423 testcase( pSub->selFlags & SF_MinMaxAgg );
3424 if( pSub->selFlags & (SF_Recursive|SF_MinMaxAgg) ){
3425 return 0; /* Restrictions (22) and (24) */
3427 if( (p->selFlags & SF_Recursive) && pSub->pPrior ){
3428 return 0; /* Restriction (23) */
3431 /* OBSOLETE COMMENT 1:
3432 ** Restriction 3: If the subquery is a join, make sure the subquery is
3433 ** not used as the right operand of an outer join. Examples of why this
3434 ** is not allowed:
3436 ** t1 LEFT OUTER JOIN (t2 JOIN t3)
3438 ** If we flatten the above, we would get
3440 ** (t1 LEFT OUTER JOIN t2) JOIN t3
3442 ** which is not at all the same thing.
3444 ** OBSOLETE COMMENT 2:
3445 ** Restriction 12: If the subquery is the right operand of a left outer
3446 ** join, make sure the subquery has no WHERE clause.
3447 ** An examples of why this is not allowed:
3449 ** t1 LEFT OUTER JOIN (SELECT * FROM t2 WHERE t2.x>0)
3451 ** If we flatten the above, we would get
3453 ** (t1 LEFT OUTER JOIN t2) WHERE t2.x>0
3455 ** But the t2.x>0 test will always fail on a NULL row of t2, which
3456 ** effectively converts the OUTER JOIN into an INNER JOIN.
3458 ** THIS OVERRIDES OBSOLETE COMMENTS 1 AND 2 ABOVE:
3459 ** Ticket #3300 shows that flattening the right term of a LEFT JOIN
3460 ** is fraught with danger. Best to avoid the whole thing. If the
3461 ** subquery is the right term of a LEFT JOIN, then do not flatten.
3463 if( (pSubitem->fg.jointype & JT_OUTER)!=0 ){
3464 return 0;
3467 /* Restriction 17: If the sub-query is a compound SELECT, then it must
3468 ** use only the UNION ALL operator. And none of the simple select queries
3469 ** that make up the compound SELECT are allowed to be aggregate or distinct
3470 ** queries.
3472 if( pSub->pPrior ){
3473 if( pSub->pOrderBy ){
3474 return 0; /* Restriction 20 */
3476 if( isAgg || (p->selFlags & SF_Distinct)!=0 || pSrc->nSrc!=1 ){
3477 return 0;
3479 for(pSub1=pSub; pSub1; pSub1=pSub1->pPrior){
3480 testcase( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct );
3481 testcase( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))==SF_Aggregate );
3482 assert( pSub->pSrc!=0 );
3483 assert( pSub->pEList->nExpr==pSub1->pEList->nExpr );
3484 if( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))!=0
3485 || (pSub1->pPrior && pSub1->op!=TK_ALL)
3486 || pSub1->pSrc->nSrc<1
3488 return 0;
3490 testcase( pSub1->pSrc->nSrc>1 );
3493 /* Restriction 18. */
3494 if( p->pOrderBy ){
3495 int ii;
3496 for(ii=0; ii<p->pOrderBy->nExpr; ii++){
3497 if( p->pOrderBy->a[ii].u.x.iOrderByCol==0 ) return 0;
3502 /***** If we reach this point, flattening is permitted. *****/
3503 SELECTTRACE(1,pParse,p,("flatten %s.%p from term %d\n",
3504 pSub->zSelName, pSub, iFrom));
3506 /* Authorize the subquery */
3507 pParse->zAuthContext = pSubitem->zName;
3508 TESTONLY(i =) sqlite3AuthCheck(pParse, SQLITE_SELECT, 0, 0, 0);
3509 testcase( i==SQLITE_DENY );
3510 pParse->zAuthContext = zSavedAuthContext;
3512 /* If the sub-query is a compound SELECT statement, then (by restrictions
3513 ** 17 and 18 above) it must be a UNION ALL and the parent query must
3514 ** be of the form:
3516 ** SELECT <expr-list> FROM (<sub-query>) <where-clause>
3518 ** followed by any ORDER BY, LIMIT and/or OFFSET clauses. This block
3519 ** creates N-1 copies of the parent query without any ORDER BY, LIMIT or
3520 ** OFFSET clauses and joins them to the left-hand-side of the original
3521 ** using UNION ALL operators. In this case N is the number of simple
3522 ** select statements in the compound sub-query.
3524 ** Example:
3526 ** SELECT a+1 FROM (
3527 ** SELECT x FROM tab
3528 ** UNION ALL
3529 ** SELECT y FROM tab
3530 ** UNION ALL
3531 ** SELECT abs(z*2) FROM tab2
3532 ** ) WHERE a!=5 ORDER BY 1
3534 ** Transformed into:
3536 ** SELECT x+1 FROM tab WHERE x+1!=5
3537 ** UNION ALL
3538 ** SELECT y+1 FROM tab WHERE y+1!=5
3539 ** UNION ALL
3540 ** SELECT abs(z*2)+1 FROM tab2 WHERE abs(z*2)+1!=5
3541 ** ORDER BY 1
3543 ** We call this the "compound-subquery flattening".
3545 for(pSub=pSub->pPrior; pSub; pSub=pSub->pPrior){
3546 Select *pNew;
3547 ExprList *pOrderBy = p->pOrderBy;
3548 Expr *pLimit = p->pLimit;
3549 Expr *pOffset = p->pOffset;
3550 Select *pPrior = p->pPrior;
3551 p->pOrderBy = 0;
3552 p->pSrc = 0;
3553 p->pPrior = 0;
3554 p->pLimit = 0;
3555 p->pOffset = 0;
3556 pNew = sqlite3SelectDup(db, p, 0);
3557 sqlite3SelectSetName(pNew, pSub->zSelName);
3558 p->pOffset = pOffset;
3559 p->pLimit = pLimit;
3560 p->pOrderBy = pOrderBy;
3561 p->pSrc = pSrc;
3562 p->op = TK_ALL;
3563 if( pNew==0 ){
3564 p->pPrior = pPrior;
3565 }else{
3566 pNew->pPrior = pPrior;
3567 if( pPrior ) pPrior->pNext = pNew;
3568 pNew->pNext = p;
3569 p->pPrior = pNew;
3570 SELECTTRACE(2,pParse,p,
3571 ("compound-subquery flattener creates %s.%p as peer\n",
3572 pNew->zSelName, pNew));
3574 if( db->mallocFailed ) return 1;
3577 /* Begin flattening the iFrom-th entry of the FROM clause
3578 ** in the outer query.
3580 pSub = pSub1 = pSubitem->pSelect;
3582 /* Delete the transient table structure associated with the
3583 ** subquery
3585 sqlite3DbFree(db, pSubitem->zDatabase);
3586 sqlite3DbFree(db, pSubitem->zName);
3587 sqlite3DbFree(db, pSubitem->zAlias);
3588 pSubitem->zDatabase = 0;
3589 pSubitem->zName = 0;
3590 pSubitem->zAlias = 0;
3591 pSubitem->pSelect = 0;
3593 /* Defer deleting the Table object associated with the
3594 ** subquery until code generation is
3595 ** complete, since there may still exist Expr.pTab entries that
3596 ** refer to the subquery even after flattening. Ticket #3346.
3598 ** pSubitem->pTab is always non-NULL by test restrictions and tests above.
3600 if( ALWAYS(pSubitem->pTab!=0) ){
3601 Table *pTabToDel = pSubitem->pTab;
3602 if( pTabToDel->nRef==1 ){
3603 Parse *pToplevel = sqlite3ParseToplevel(pParse);
3604 pTabToDel->pNextZombie = pToplevel->pZombieTab;
3605 pToplevel->pZombieTab = pTabToDel;
3606 }else{
3607 pTabToDel->nRef--;
3609 pSubitem->pTab = 0;
3612 /* The following loop runs once for each term in a compound-subquery
3613 ** flattening (as described above). If we are doing a different kind
3614 ** of flattening - a flattening other than a compound-subquery flattening -
3615 ** then this loop only runs once.
3617 ** This loop moves all of the FROM elements of the subquery into the
3618 ** the FROM clause of the outer query. Before doing this, remember
3619 ** the cursor number for the original outer query FROM element in
3620 ** iParent. The iParent cursor will never be used. Subsequent code
3621 ** will scan expressions looking for iParent references and replace
3622 ** those references with expressions that resolve to the subquery FROM
3623 ** elements we are now copying in.
3625 for(pParent=p; pParent; pParent=pParent->pPrior, pSub=pSub->pPrior){
3626 int nSubSrc;
3627 u8 jointype = 0;
3628 pSubSrc = pSub->pSrc; /* FROM clause of subquery */
3629 nSubSrc = pSubSrc->nSrc; /* Number of terms in subquery FROM clause */
3630 pSrc = pParent->pSrc; /* FROM clause of the outer query */
3632 if( pSrc ){
3633 assert( pParent==p ); /* First time through the loop */
3634 jointype = pSubitem->fg.jointype;
3635 }else{
3636 assert( pParent!=p ); /* 2nd and subsequent times through the loop */
3637 pSrc = pParent->pSrc = sqlite3SrcListAppend(db, 0, 0, 0);
3638 if( pSrc==0 ){
3639 assert( db->mallocFailed );
3640 break;
3644 /* The subquery uses a single slot of the FROM clause of the outer
3645 ** query. If the subquery has more than one element in its FROM clause,
3646 ** then expand the outer query to make space for it to hold all elements
3647 ** of the subquery.
3649 ** Example:
3651 ** SELECT * FROM tabA, (SELECT * FROM sub1, sub2), tabB;
3653 ** The outer query has 3 slots in its FROM clause. One slot of the
3654 ** outer query (the middle slot) is used by the subquery. The next
3655 ** block of code will expand the outer query FROM clause to 4 slots.
3656 ** The middle slot is expanded to two slots in order to make space
3657 ** for the two elements in the FROM clause of the subquery.
3659 if( nSubSrc>1 ){
3660 pParent->pSrc = pSrc = sqlite3SrcListEnlarge(db, pSrc, nSubSrc-1,iFrom+1);
3661 if( db->mallocFailed ){
3662 break;
3666 /* Transfer the FROM clause terms from the subquery into the
3667 ** outer query.
3669 for(i=0; i<nSubSrc; i++){
3670 sqlite3IdListDelete(db, pSrc->a[i+iFrom].pUsing);
3671 assert( pSrc->a[i+iFrom].fg.isTabFunc==0 );
3672 pSrc->a[i+iFrom] = pSubSrc->a[i];
3673 memset(&pSubSrc->a[i], 0, sizeof(pSubSrc->a[i]));
3675 pSrc->a[iFrom].fg.jointype = jointype;
3677 /* Now begin substituting subquery result set expressions for
3678 ** references to the iParent in the outer query.
3680 ** Example:
3682 ** SELECT a+5, b*10 FROM (SELECT x*3 AS a, y+10 AS b FROM t1) WHERE a>b;
3683 ** \ \_____________ subquery __________/ /
3684 ** \_____________________ outer query ______________________________/
3686 ** We look at every expression in the outer query and every place we see
3687 ** "a" we substitute "x*3" and every place we see "b" we substitute "y+10".
3689 pList = pParent->pEList;
3690 for(i=0; i<pList->nExpr; i++){
3691 if( pList->a[i].zName==0 ){
3692 char *zName = sqlite3DbStrDup(db, pList->a[i].zSpan);
3693 sqlite3Dequote(zName);
3694 pList->a[i].zName = zName;
3697 if( pSub->pOrderBy ){
3698 /* At this point, any non-zero iOrderByCol values indicate that the
3699 ** ORDER BY column expression is identical to the iOrderByCol'th
3700 ** expression returned by SELECT statement pSub. Since these values
3701 ** do not necessarily correspond to columns in SELECT statement pParent,
3702 ** zero them before transfering the ORDER BY clause.
3704 ** Not doing this may cause an error if a subsequent call to this
3705 ** function attempts to flatten a compound sub-query into pParent
3706 ** (the only way this can happen is if the compound sub-query is
3707 ** currently part of pSub->pSrc). See ticket [d11a6e908f]. */
3708 ExprList *pOrderBy = pSub->pOrderBy;
3709 for(i=0; i<pOrderBy->nExpr; i++){
3710 pOrderBy->a[i].u.x.iOrderByCol = 0;
3712 assert( pParent->pOrderBy==0 );
3713 assert( pSub->pPrior==0 );
3714 pParent->pOrderBy = pOrderBy;
3715 pSub->pOrderBy = 0;
3717 pWhere = sqlite3ExprDup(db, pSub->pWhere, 0);
3718 if( subqueryIsAgg ){
3719 assert( pParent->pHaving==0 );
3720 pParent->pHaving = pParent->pWhere;
3721 pParent->pWhere = pWhere;
3722 pParent->pHaving = sqlite3ExprAnd(db, pParent->pHaving,
3723 sqlite3ExprDup(db, pSub->pHaving, 0));
3724 assert( pParent->pGroupBy==0 );
3725 pParent->pGroupBy = sqlite3ExprListDup(db, pSub->pGroupBy, 0);
3726 }else{
3727 pParent->pWhere = sqlite3ExprAnd(db, pParent->pWhere, pWhere);
3729 substSelect(db, pParent, iParent, pSub->pEList, 0);
3731 /* The flattened query is distinct if either the inner or the
3732 ** outer query is distinct.
3734 pParent->selFlags |= pSub->selFlags & SF_Distinct;
3737 ** SELECT ... FROM (SELECT ... LIMIT a OFFSET b) LIMIT x OFFSET y;
3739 ** One is tempted to try to add a and b to combine the limits. But this
3740 ** does not work if either limit is negative.
3742 if( pSub->pLimit ){
3743 pParent->pLimit = pSub->pLimit;
3744 pSub->pLimit = 0;
3748 /* Finially, delete what is left of the subquery and return
3749 ** success.
3751 sqlite3SelectDelete(db, pSub1);
3753 #if SELECTTRACE_ENABLED
3754 if( sqlite3SelectTrace & 0x100 ){
3755 SELECTTRACE(0x100,pParse,p,("After flattening:\n"));
3756 sqlite3TreeViewSelect(0, p, 0);
3758 #endif
3760 return 1;
3762 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */
3766 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
3768 ** Make copies of relevant WHERE clause terms of the outer query into
3769 ** the WHERE clause of subquery. Example:
3771 ** SELECT * FROM (SELECT a AS x, c-d AS y FROM t1) WHERE x=5 AND y=10;
3773 ** Transformed into:
3775 ** SELECT * FROM (SELECT a AS x, c-d AS y FROM t1 WHERE a=5 AND c-d=10)
3776 ** WHERE x=5 AND y=10;
3778 ** The hope is that the terms added to the inner query will make it more
3779 ** efficient.
3781 ** Do not attempt this optimization if:
3783 ** (1) The inner query is an aggregate. (In that case, we'd really want
3784 ** to copy the outer WHERE-clause terms onto the HAVING clause of the
3785 ** inner query. But they probably won't help there so do not bother.)
3787 ** (2) The inner query is the recursive part of a common table expression.
3789 ** (3) The inner query has a LIMIT clause (since the changes to the WHERE
3790 ** close would change the meaning of the LIMIT).
3792 ** (4) The inner query is the right operand of a LEFT JOIN. (The caller
3793 ** enforces this restriction since this routine does not have enough
3794 ** information to know.)
3796 ** (5) The WHERE clause expression originates in the ON or USING clause
3797 ** of a LEFT JOIN.
3799 ** Return 0 if no changes are made and non-zero if one or more WHERE clause
3800 ** terms are duplicated into the subquery.
3802 static int pushDownWhereTerms(
3803 sqlite3 *db, /* The database connection (for malloc()) */
3804 Select *pSubq, /* The subquery whose WHERE clause is to be augmented */
3805 Expr *pWhere, /* The WHERE clause of the outer query */
3806 int iCursor /* Cursor number of the subquery */
3808 Expr *pNew;
3809 int nChng = 0;
3810 Select *pX; /* For looping over compound SELECTs in pSubq */
3811 if( pWhere==0 ) return 0;
3812 for(pX=pSubq; pX; pX=pX->pPrior){
3813 if( (pX->selFlags & (SF_Aggregate|SF_Recursive))!=0 ){
3814 testcase( pX->selFlags & SF_Aggregate );
3815 testcase( pX->selFlags & SF_Recursive );
3816 testcase( pX!=pSubq );
3817 return 0; /* restrictions (1) and (2) */
3820 if( pSubq->pLimit!=0 ){
3821 return 0; /* restriction (3) */
3823 while( pWhere->op==TK_AND ){
3824 nChng += pushDownWhereTerms(db, pSubq, pWhere->pRight, iCursor);
3825 pWhere = pWhere->pLeft;
3827 if( ExprHasProperty(pWhere,EP_FromJoin) ) return 0; /* restriction 5 */
3828 if( sqlite3ExprIsTableConstant(pWhere, iCursor) ){
3829 nChng++;
3830 while( pSubq ){
3831 pNew = sqlite3ExprDup(db, pWhere, 0);
3832 pNew = substExpr(db, pNew, iCursor, pSubq->pEList);
3833 pSubq->pWhere = sqlite3ExprAnd(db, pSubq->pWhere, pNew);
3834 pSubq = pSubq->pPrior;
3837 return nChng;
3839 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */
3842 ** Based on the contents of the AggInfo structure indicated by the first
3843 ** argument, this function checks if the following are true:
3845 ** * the query contains just a single aggregate function,
3846 ** * the aggregate function is either min() or max(), and
3847 ** * the argument to the aggregate function is a column value.
3849 ** If all of the above are true, then WHERE_ORDERBY_MIN or WHERE_ORDERBY_MAX
3850 ** is returned as appropriate. Also, *ppMinMax is set to point to the
3851 ** list of arguments passed to the aggregate before returning.
3853 ** Or, if the conditions above are not met, *ppMinMax is set to 0 and
3854 ** WHERE_ORDERBY_NORMAL is returned.
3856 static u8 minMaxQuery(AggInfo *pAggInfo, ExprList **ppMinMax){
3857 int eRet = WHERE_ORDERBY_NORMAL; /* Return value */
3859 *ppMinMax = 0;
3860 if( pAggInfo->nFunc==1 ){
3861 Expr *pExpr = pAggInfo->aFunc[0].pExpr; /* Aggregate function */
3862 ExprList *pEList = pExpr->x.pList; /* Arguments to agg function */
3864 assert( pExpr->op==TK_AGG_FUNCTION );
3865 if( pEList && pEList->nExpr==1 && pEList->a[0].pExpr->op==TK_AGG_COLUMN ){
3866 const char *zFunc = pExpr->u.zToken;
3867 if( sqlite3StrICmp(zFunc, "min")==0 ){
3868 eRet = WHERE_ORDERBY_MIN;
3869 *ppMinMax = pEList;
3870 }else if( sqlite3StrICmp(zFunc, "max")==0 ){
3871 eRet = WHERE_ORDERBY_MAX;
3872 *ppMinMax = pEList;
3877 assert( *ppMinMax==0 || (*ppMinMax)->nExpr==1 );
3878 return eRet;
3882 ** The select statement passed as the first argument is an aggregate query.
3883 ** The second argument is the associated aggregate-info object. This
3884 ** function tests if the SELECT is of the form:
3886 ** SELECT count(*) FROM <tbl>
3888 ** where table is a database table, not a sub-select or view. If the query
3889 ** does match this pattern, then a pointer to the Table object representing
3890 ** <tbl> is returned. Otherwise, 0 is returned.
3892 static Table *isSimpleCount(Select *p, AggInfo *pAggInfo){
3893 Table *pTab;
3894 Expr *pExpr;
3896 assert( !p->pGroupBy );
3898 if( p->pWhere || p->pEList->nExpr!=1
3899 || p->pSrc->nSrc!=1 || p->pSrc->a[0].pSelect
3901 return 0;
3903 pTab = p->pSrc->a[0].pTab;
3904 pExpr = p->pEList->a[0].pExpr;
3905 assert( pTab && !pTab->pSelect && pExpr );
3907 if( IsVirtual(pTab) ) return 0;
3908 if( pExpr->op!=TK_AGG_FUNCTION ) return 0;
3909 if( NEVER(pAggInfo->nFunc==0) ) return 0;
3910 if( (pAggInfo->aFunc[0].pFunc->funcFlags&SQLITE_FUNC_COUNT)==0 ) return 0;
3911 if( pExpr->flags&EP_Distinct ) return 0;
3913 return pTab;
3917 ** If the source-list item passed as an argument was augmented with an
3918 ** INDEXED BY clause, then try to locate the specified index. If there
3919 ** was such a clause and the named index cannot be found, return
3920 ** SQLITE_ERROR and leave an error in pParse. Otherwise, populate
3921 ** pFrom->pIndex and return SQLITE_OK.
3923 int sqlite3IndexedByLookup(Parse *pParse, struct SrcList_item *pFrom){
3924 if( pFrom->pTab && pFrom->fg.isIndexedBy ){
3925 Table *pTab = pFrom->pTab;
3926 char *zIndexedBy = pFrom->u1.zIndexedBy;
3927 Index *pIdx;
3928 for(pIdx=pTab->pIndex;
3929 pIdx && sqlite3StrICmp(pIdx->zName, zIndexedBy);
3930 pIdx=pIdx->pNext
3932 if( !pIdx ){
3933 sqlite3ErrorMsg(pParse, "no such index: %s", zIndexedBy, 0);
3934 pParse->checkSchema = 1;
3935 return SQLITE_ERROR;
3937 pFrom->pIBIndex = pIdx;
3939 return SQLITE_OK;
3942 ** Detect compound SELECT statements that use an ORDER BY clause with
3943 ** an alternative collating sequence.
3945 ** SELECT ... FROM t1 EXCEPT SELECT ... FROM t2 ORDER BY .. COLLATE ...
3947 ** These are rewritten as a subquery:
3949 ** SELECT * FROM (SELECT ... FROM t1 EXCEPT SELECT ... FROM t2)
3950 ** ORDER BY ... COLLATE ...
3952 ** This transformation is necessary because the multiSelectOrderBy() routine
3953 ** above that generates the code for a compound SELECT with an ORDER BY clause
3954 ** uses a merge algorithm that requires the same collating sequence on the
3955 ** result columns as on the ORDER BY clause. See ticket
3956 ** http://www.sqlite.org/src/info/6709574d2a
3958 ** This transformation is only needed for EXCEPT, INTERSECT, and UNION.
3959 ** The UNION ALL operator works fine with multiSelectOrderBy() even when
3960 ** there are COLLATE terms in the ORDER BY.
3962 static int convertCompoundSelectToSubquery(Walker *pWalker, Select *p){
3963 int i;
3964 Select *pNew;
3965 Select *pX;
3966 sqlite3 *db;
3967 struct ExprList_item *a;
3968 SrcList *pNewSrc;
3969 Parse *pParse;
3970 Token dummy;
3972 if( p->pPrior==0 ) return WRC_Continue;
3973 if( p->pOrderBy==0 ) return WRC_Continue;
3974 for(pX=p; pX && (pX->op==TK_ALL || pX->op==TK_SELECT); pX=pX->pPrior){}
3975 if( pX==0 ) return WRC_Continue;
3976 a = p->pOrderBy->a;
3977 for(i=p->pOrderBy->nExpr-1; i>=0; i--){
3978 if( a[i].pExpr->flags & EP_Collate ) break;
3980 if( i<0 ) return WRC_Continue;
3982 /* If we reach this point, that means the transformation is required. */
3984 pParse = pWalker->pParse;
3985 db = pParse->db;
3986 pNew = sqlite3DbMallocZero(db, sizeof(*pNew) );
3987 if( pNew==0 ) return WRC_Abort;
3988 memset(&dummy, 0, sizeof(dummy));
3989 pNewSrc = sqlite3SrcListAppendFromTerm(pParse,0,0,0,&dummy,pNew,0,0);
3990 if( pNewSrc==0 ) return WRC_Abort;
3991 *pNew = *p;
3992 p->pSrc = pNewSrc;
3993 p->pEList = sqlite3ExprListAppend(pParse, 0, sqlite3Expr(db, TK_ASTERISK, 0));
3994 p->op = TK_SELECT;
3995 p->pWhere = 0;
3996 pNew->pGroupBy = 0;
3997 pNew->pHaving = 0;
3998 pNew->pOrderBy = 0;
3999 p->pPrior = 0;
4000 p->pNext = 0;
4001 p->pWith = 0;
4002 p->selFlags &= ~SF_Compound;
4003 assert( (p->selFlags & SF_Converted)==0 );
4004 p->selFlags |= SF_Converted;
4005 assert( pNew->pPrior!=0 );
4006 pNew->pPrior->pNext = pNew;
4007 pNew->pLimit = 0;
4008 pNew->pOffset = 0;
4009 return WRC_Continue;
4013 ** Check to see if the FROM clause term pFrom has table-valued function
4014 ** arguments. If it does, leave an error message in pParse and return
4015 ** non-zero, since pFrom is not allowed to be a table-valued function.
4017 static int cannotBeFunction(Parse *pParse, struct SrcList_item *pFrom){
4018 if( pFrom->fg.isTabFunc ){
4019 sqlite3ErrorMsg(pParse, "'%s' is not a function", pFrom->zName);
4020 return 1;
4022 return 0;
4025 #ifndef SQLITE_OMIT_CTE
4027 ** Argument pWith (which may be NULL) points to a linked list of nested
4028 ** WITH contexts, from inner to outermost. If the table identified by
4029 ** FROM clause element pItem is really a common-table-expression (CTE)
4030 ** then return a pointer to the CTE definition for that table. Otherwise
4031 ** return NULL.
4033 ** If a non-NULL value is returned, set *ppContext to point to the With
4034 ** object that the returned CTE belongs to.
4036 static struct Cte *searchWith(
4037 With *pWith, /* Current innermost WITH clause */
4038 struct SrcList_item *pItem, /* FROM clause element to resolve */
4039 With **ppContext /* OUT: WITH clause return value belongs to */
4041 const char *zName;
4042 if( pItem->zDatabase==0 && (zName = pItem->zName)!=0 ){
4043 With *p;
4044 for(p=pWith; p; p=p->pOuter){
4045 int i;
4046 for(i=0; i<p->nCte; i++){
4047 if( sqlite3StrICmp(zName, p->a[i].zName)==0 ){
4048 *ppContext = p;
4049 return &p->a[i];
4054 return 0;
4057 /* The code generator maintains a stack of active WITH clauses
4058 ** with the inner-most WITH clause being at the top of the stack.
4060 ** This routine pushes the WITH clause passed as the second argument
4061 ** onto the top of the stack. If argument bFree is true, then this
4062 ** WITH clause will never be popped from the stack. In this case it
4063 ** should be freed along with the Parse object. In other cases, when
4064 ** bFree==0, the With object will be freed along with the SELECT
4065 ** statement with which it is associated.
4067 void sqlite3WithPush(Parse *pParse, With *pWith, u8 bFree){
4068 assert( bFree==0 || (pParse->pWith==0 && pParse->pWithToFree==0) );
4069 if( pWith ){
4070 assert( pParse->pWith!=pWith );
4071 pWith->pOuter = pParse->pWith;
4072 pParse->pWith = pWith;
4073 if( bFree ) pParse->pWithToFree = pWith;
4078 ** This function checks if argument pFrom refers to a CTE declared by
4079 ** a WITH clause on the stack currently maintained by the parser. And,
4080 ** if currently processing a CTE expression, if it is a recursive
4081 ** reference to the current CTE.
4083 ** If pFrom falls into either of the two categories above, pFrom->pTab
4084 ** and other fields are populated accordingly. The caller should check
4085 ** (pFrom->pTab!=0) to determine whether or not a successful match
4086 ** was found.
4088 ** Whether or not a match is found, SQLITE_OK is returned if no error
4089 ** occurs. If an error does occur, an error message is stored in the
4090 ** parser and some error code other than SQLITE_OK returned.
4092 static int withExpand(
4093 Walker *pWalker,
4094 struct SrcList_item *pFrom
4096 Parse *pParse = pWalker->pParse;
4097 sqlite3 *db = pParse->db;
4098 struct Cte *pCte; /* Matched CTE (or NULL if no match) */
4099 With *pWith; /* WITH clause that pCte belongs to */
4101 assert( pFrom->pTab==0 );
4103 pCte = searchWith(pParse->pWith, pFrom, &pWith);
4104 if( pCte ){
4105 Table *pTab;
4106 ExprList *pEList;
4107 Select *pSel;
4108 Select *pLeft; /* Left-most SELECT statement */
4109 int bMayRecursive; /* True if compound joined by UNION [ALL] */
4110 With *pSavedWith; /* Initial value of pParse->pWith */
4112 /* If pCte->zCteErr is non-NULL at this point, then this is an illegal
4113 ** recursive reference to CTE pCte. Leave an error in pParse and return
4114 ** early. If pCte->zCteErr is NULL, then this is not a recursive reference.
4115 ** In this case, proceed. */
4116 if( pCte->zCteErr ){
4117 sqlite3ErrorMsg(pParse, pCte->zCteErr, pCte->zName);
4118 return SQLITE_ERROR;
4120 if( cannotBeFunction(pParse, pFrom) ) return SQLITE_ERROR;
4122 assert( pFrom->pTab==0 );
4123 pFrom->pTab = pTab = sqlite3DbMallocZero(db, sizeof(Table));
4124 if( pTab==0 ) return WRC_Abort;
4125 pTab->nRef = 1;
4126 pTab->zName = sqlite3DbStrDup(db, pCte->zName);
4127 pTab->iPKey = -1;
4128 pTab->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) );
4129 pTab->tabFlags |= TF_Ephemeral | TF_NoVisibleRowid;
4130 pFrom->pSelect = sqlite3SelectDup(db, pCte->pSelect, 0);
4131 if( db->mallocFailed ) return SQLITE_NOMEM_BKPT;
4132 assert( pFrom->pSelect );
4134 /* Check if this is a recursive CTE. */
4135 pSel = pFrom->pSelect;
4136 bMayRecursive = ( pSel->op==TK_ALL || pSel->op==TK_UNION );
4137 if( bMayRecursive ){
4138 int i;
4139 SrcList *pSrc = pFrom->pSelect->pSrc;
4140 for(i=0; i<pSrc->nSrc; i++){
4141 struct SrcList_item *pItem = &pSrc->a[i];
4142 if( pItem->zDatabase==0
4143 && pItem->zName!=0
4144 && 0==sqlite3StrICmp(pItem->zName, pCte->zName)
4146 pItem->pTab = pTab;
4147 pItem->fg.isRecursive = 1;
4148 pTab->nRef++;
4149 pSel->selFlags |= SF_Recursive;
4154 /* Only one recursive reference is permitted. */
4155 if( pTab->nRef>2 ){
4156 sqlite3ErrorMsg(
4157 pParse, "multiple references to recursive table: %s", pCte->zName
4159 return SQLITE_ERROR;
4161 assert( pTab->nRef==1 || ((pSel->selFlags&SF_Recursive) && pTab->nRef==2 ));
4163 pCte->zCteErr = "circular reference: %s";
4164 pSavedWith = pParse->pWith;
4165 pParse->pWith = pWith;
4166 sqlite3WalkSelect(pWalker, bMayRecursive ? pSel->pPrior : pSel);
4167 pParse->pWith = pWith;
4169 for(pLeft=pSel; pLeft->pPrior; pLeft=pLeft->pPrior);
4170 pEList = pLeft->pEList;
4171 if( pCte->pCols ){
4172 if( pEList && pEList->nExpr!=pCte->pCols->nExpr ){
4173 sqlite3ErrorMsg(pParse, "table %s has %d values for %d columns",
4174 pCte->zName, pEList->nExpr, pCte->pCols->nExpr
4176 pParse->pWith = pSavedWith;
4177 return SQLITE_ERROR;
4179 pEList = pCte->pCols;
4182 sqlite3ColumnsFromExprList(pParse, pEList, &pTab->nCol, &pTab->aCol);
4183 if( bMayRecursive ){
4184 if( pSel->selFlags & SF_Recursive ){
4185 pCte->zCteErr = "multiple recursive references: %s";
4186 }else{
4187 pCte->zCteErr = "recursive reference in a subquery: %s";
4189 sqlite3WalkSelect(pWalker, pSel);
4191 pCte->zCteErr = 0;
4192 pParse->pWith = pSavedWith;
4195 return SQLITE_OK;
4197 #endif
4199 #ifndef SQLITE_OMIT_CTE
4201 ** If the SELECT passed as the second argument has an associated WITH
4202 ** clause, pop it from the stack stored as part of the Parse object.
4204 ** This function is used as the xSelectCallback2() callback by
4205 ** sqlite3SelectExpand() when walking a SELECT tree to resolve table
4206 ** names and other FROM clause elements.
4208 static void selectPopWith(Walker *pWalker, Select *p){
4209 Parse *pParse = pWalker->pParse;
4210 With *pWith = findRightmost(p)->pWith;
4211 if( pWith!=0 ){
4212 assert( pParse->pWith==pWith );
4213 pParse->pWith = pWith->pOuter;
4216 #else
4217 #define selectPopWith 0
4218 #endif
4221 ** This routine is a Walker callback for "expanding" a SELECT statement.
4222 ** "Expanding" means to do the following:
4224 ** (1) Make sure VDBE cursor numbers have been assigned to every
4225 ** element of the FROM clause.
4227 ** (2) Fill in the pTabList->a[].pTab fields in the SrcList that
4228 ** defines FROM clause. When views appear in the FROM clause,
4229 ** fill pTabList->a[].pSelect with a copy of the SELECT statement
4230 ** that implements the view. A copy is made of the view's SELECT
4231 ** statement so that we can freely modify or delete that statement
4232 ** without worrying about messing up the persistent representation
4233 ** of the view.
4235 ** (3) Add terms to the WHERE clause to accommodate the NATURAL keyword
4236 ** on joins and the ON and USING clause of joins.
4238 ** (4) Scan the list of columns in the result set (pEList) looking
4239 ** for instances of the "*" operator or the TABLE.* operator.
4240 ** If found, expand each "*" to be every column in every table
4241 ** and TABLE.* to be every column in TABLE.
4244 static int selectExpander(Walker *pWalker, Select *p){
4245 Parse *pParse = pWalker->pParse;
4246 int i, j, k;
4247 SrcList *pTabList;
4248 ExprList *pEList;
4249 struct SrcList_item *pFrom;
4250 sqlite3 *db = pParse->db;
4251 Expr *pE, *pRight, *pExpr;
4252 u16 selFlags = p->selFlags;
4254 p->selFlags |= SF_Expanded;
4255 if( db->mallocFailed ){
4256 return WRC_Abort;
4258 if( NEVER(p->pSrc==0) || (selFlags & SF_Expanded)!=0 ){
4259 return WRC_Prune;
4261 pTabList = p->pSrc;
4262 pEList = p->pEList;
4263 if( pWalker->xSelectCallback2==selectPopWith ){
4264 sqlite3WithPush(pParse, findRightmost(p)->pWith, 0);
4267 /* Make sure cursor numbers have been assigned to all entries in
4268 ** the FROM clause of the SELECT statement.
4270 sqlite3SrcListAssignCursors(pParse, pTabList);
4272 /* Look up every table named in the FROM clause of the select. If
4273 ** an entry of the FROM clause is a subquery instead of a table or view,
4274 ** then create a transient table structure to describe the subquery.
4276 for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){
4277 Table *pTab;
4278 assert( pFrom->fg.isRecursive==0 || pFrom->pTab!=0 );
4279 if( pFrom->fg.isRecursive ) continue;
4280 assert( pFrom->pTab==0 );
4281 #ifndef SQLITE_OMIT_CTE
4282 if( withExpand(pWalker, pFrom) ) return WRC_Abort;
4283 if( pFrom->pTab ) {} else
4284 #endif
4285 if( pFrom->zName==0 ){
4286 #ifndef SQLITE_OMIT_SUBQUERY
4287 Select *pSel = pFrom->pSelect;
4288 /* A sub-query in the FROM clause of a SELECT */
4289 assert( pSel!=0 );
4290 assert( pFrom->pTab==0 );
4291 if( sqlite3WalkSelect(pWalker, pSel) ) return WRC_Abort;
4292 pFrom->pTab = pTab = sqlite3DbMallocZero(db, sizeof(Table));
4293 if( pTab==0 ) return WRC_Abort;
4294 pTab->nRef = 1;
4295 pTab->zName = sqlite3MPrintf(db, "sqlite_sq_%p", (void*)pTab);
4296 while( pSel->pPrior ){ pSel = pSel->pPrior; }
4297 sqlite3ColumnsFromExprList(pParse, pSel->pEList,&pTab->nCol,&pTab->aCol);
4298 pTab->iPKey = -1;
4299 pTab->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) );
4300 pTab->tabFlags |= TF_Ephemeral;
4301 #endif
4302 }else{
4303 /* An ordinary table or view name in the FROM clause */
4304 assert( pFrom->pTab==0 );
4305 pFrom->pTab = pTab = sqlite3LocateTableItem(pParse, 0, pFrom);
4306 if( pTab==0 ) return WRC_Abort;
4307 if( pTab->nRef==0xffff ){
4308 sqlite3ErrorMsg(pParse, "too many references to \"%s\": max 65535",
4309 pTab->zName);
4310 pFrom->pTab = 0;
4311 return WRC_Abort;
4313 pTab->nRef++;
4314 if( !IsVirtual(pTab) && cannotBeFunction(pParse, pFrom) ){
4315 return WRC_Abort;
4317 #if !defined(SQLITE_OMIT_VIEW) || !defined (SQLITE_OMIT_VIRTUALTABLE)
4318 if( IsVirtual(pTab) || pTab->pSelect ){
4319 i16 nCol;
4320 if( sqlite3ViewGetColumnNames(pParse, pTab) ) return WRC_Abort;
4321 assert( pFrom->pSelect==0 );
4322 pFrom->pSelect = sqlite3SelectDup(db, pTab->pSelect, 0);
4323 sqlite3SelectSetName(pFrom->pSelect, pTab->zName);
4324 nCol = pTab->nCol;
4325 pTab->nCol = -1;
4326 sqlite3WalkSelect(pWalker, pFrom->pSelect);
4327 pTab->nCol = nCol;
4329 #endif
4332 /* Locate the index named by the INDEXED BY clause, if any. */
4333 if( sqlite3IndexedByLookup(pParse, pFrom) ){
4334 return WRC_Abort;
4338 /* Process NATURAL keywords, and ON and USING clauses of joins.
4340 if( db->mallocFailed || sqliteProcessJoin(pParse, p) ){
4341 return WRC_Abort;
4344 /* For every "*" that occurs in the column list, insert the names of
4345 ** all columns in all tables. And for every TABLE.* insert the names
4346 ** of all columns in TABLE. The parser inserted a special expression
4347 ** with the TK_ASTERISK operator for each "*" that it found in the column
4348 ** list. The following code just has to locate the TK_ASTERISK
4349 ** expressions and expand each one to the list of all columns in
4350 ** all tables.
4352 ** The first loop just checks to see if there are any "*" operators
4353 ** that need expanding.
4355 for(k=0; k<pEList->nExpr; k++){
4356 pE = pEList->a[k].pExpr;
4357 if( pE->op==TK_ASTERISK ) break;
4358 assert( pE->op!=TK_DOT || pE->pRight!=0 );
4359 assert( pE->op!=TK_DOT || (pE->pLeft!=0 && pE->pLeft->op==TK_ID) );
4360 if( pE->op==TK_DOT && pE->pRight->op==TK_ASTERISK ) break;
4362 if( k<pEList->nExpr ){
4364 ** If we get here it means the result set contains one or more "*"
4365 ** operators that need to be expanded. Loop through each expression
4366 ** in the result set and expand them one by one.
4368 struct ExprList_item *a = pEList->a;
4369 ExprList *pNew = 0;
4370 int flags = pParse->db->flags;
4371 int longNames = (flags & SQLITE_FullColNames)!=0
4372 && (flags & SQLITE_ShortColNames)==0;
4374 for(k=0; k<pEList->nExpr; k++){
4375 pE = a[k].pExpr;
4376 pRight = pE->pRight;
4377 assert( pE->op!=TK_DOT || pRight!=0 );
4378 if( pE->op!=TK_ASTERISK
4379 && (pE->op!=TK_DOT || pRight->op!=TK_ASTERISK)
4381 /* This particular expression does not need to be expanded.
4383 pNew = sqlite3ExprListAppend(pParse, pNew, a[k].pExpr);
4384 if( pNew ){
4385 pNew->a[pNew->nExpr-1].zName = a[k].zName;
4386 pNew->a[pNew->nExpr-1].zSpan = a[k].zSpan;
4387 a[k].zName = 0;
4388 a[k].zSpan = 0;
4390 a[k].pExpr = 0;
4391 }else{
4392 /* This expression is a "*" or a "TABLE.*" and needs to be
4393 ** expanded. */
4394 int tableSeen = 0; /* Set to 1 when TABLE matches */
4395 char *zTName = 0; /* text of name of TABLE */
4396 if( pE->op==TK_DOT ){
4397 assert( pE->pLeft!=0 );
4398 assert( !ExprHasProperty(pE->pLeft, EP_IntValue) );
4399 zTName = pE->pLeft->u.zToken;
4401 for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){
4402 Table *pTab = pFrom->pTab;
4403 Select *pSub = pFrom->pSelect;
4404 char *zTabName = pFrom->zAlias;
4405 const char *zSchemaName = 0;
4406 int iDb;
4407 if( zTabName==0 ){
4408 zTabName = pTab->zName;
4410 if( db->mallocFailed ) break;
4411 if( pSub==0 || (pSub->selFlags & SF_NestedFrom)==0 ){
4412 pSub = 0;
4413 if( zTName && sqlite3StrICmp(zTName, zTabName)!=0 ){
4414 continue;
4416 iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
4417 zSchemaName = iDb>=0 ? db->aDb[iDb].zName : "*";
4419 for(j=0; j<pTab->nCol; j++){
4420 char *zName = pTab->aCol[j].zName;
4421 char *zColname; /* The computed column name */
4422 char *zToFree; /* Malloced string that needs to be freed */
4423 Token sColname; /* Computed column name as a token */
4425 assert( zName );
4426 if( zTName && pSub
4427 && sqlite3MatchSpanName(pSub->pEList->a[j].zSpan, 0, zTName, 0)==0
4429 continue;
4432 /* If a column is marked as 'hidden', omit it from the expanded
4433 ** result-set list unless the SELECT has the SF_IncludeHidden
4434 ** bit set.
4436 if( (p->selFlags & SF_IncludeHidden)==0
4437 && IsHiddenColumn(&pTab->aCol[j])
4439 continue;
4441 tableSeen = 1;
4443 if( i>0 && zTName==0 ){
4444 if( (pFrom->fg.jointype & JT_NATURAL)!=0
4445 && tableAndColumnIndex(pTabList, i, zName, 0, 0)
4447 /* In a NATURAL join, omit the join columns from the
4448 ** table to the right of the join */
4449 continue;
4451 if( sqlite3IdListIndex(pFrom->pUsing, zName)>=0 ){
4452 /* In a join with a USING clause, omit columns in the
4453 ** using clause from the table on the right. */
4454 continue;
4457 pRight = sqlite3Expr(db, TK_ID, zName);
4458 zColname = zName;
4459 zToFree = 0;
4460 if( longNames || pTabList->nSrc>1 ){
4461 Expr *pLeft;
4462 pLeft = sqlite3Expr(db, TK_ID, zTabName);
4463 pExpr = sqlite3PExpr(pParse, TK_DOT, pLeft, pRight, 0);
4464 if( zSchemaName ){
4465 pLeft = sqlite3Expr(db, TK_ID, zSchemaName);
4466 pExpr = sqlite3PExpr(pParse, TK_DOT, pLeft, pExpr, 0);
4468 if( longNames ){
4469 zColname = sqlite3MPrintf(db, "%s.%s", zTabName, zName);
4470 zToFree = zColname;
4472 }else{
4473 pExpr = pRight;
4475 pNew = sqlite3ExprListAppend(pParse, pNew, pExpr);
4476 sqlite3TokenInit(&sColname, zColname);
4477 sqlite3ExprListSetName(pParse, pNew, &sColname, 0);
4478 if( pNew && (p->selFlags & SF_NestedFrom)!=0 ){
4479 struct ExprList_item *pX = &pNew->a[pNew->nExpr-1];
4480 if( pSub ){
4481 pX->zSpan = sqlite3DbStrDup(db, pSub->pEList->a[j].zSpan);
4482 testcase( pX->zSpan==0 );
4483 }else{
4484 pX->zSpan = sqlite3MPrintf(db, "%s.%s.%s",
4485 zSchemaName, zTabName, zColname);
4486 testcase( pX->zSpan==0 );
4488 pX->bSpanIsTab = 1;
4490 sqlite3DbFree(db, zToFree);
4493 if( !tableSeen ){
4494 if( zTName ){
4495 sqlite3ErrorMsg(pParse, "no such table: %s", zTName);
4496 }else{
4497 sqlite3ErrorMsg(pParse, "no tables specified");
4502 sqlite3ExprListDelete(db, pEList);
4503 p->pEList = pNew;
4505 #if SQLITE_MAX_COLUMN
4506 if( p->pEList && p->pEList->nExpr>db->aLimit[SQLITE_LIMIT_COLUMN] ){
4507 sqlite3ErrorMsg(pParse, "too many columns in result set");
4508 return WRC_Abort;
4510 #endif
4511 return WRC_Continue;
4515 ** No-op routine for the parse-tree walker.
4517 ** When this routine is the Walker.xExprCallback then expression trees
4518 ** are walked without any actions being taken at each node. Presumably,
4519 ** when this routine is used for Walker.xExprCallback then
4520 ** Walker.xSelectCallback is set to do something useful for every
4521 ** subquery in the parser tree.
4523 int sqlite3ExprWalkNoop(Walker *NotUsed, Expr *NotUsed2){
4524 UNUSED_PARAMETER2(NotUsed, NotUsed2);
4525 return WRC_Continue;
4529 ** This routine "expands" a SELECT statement and all of its subqueries.
4530 ** For additional information on what it means to "expand" a SELECT
4531 ** statement, see the comment on the selectExpand worker callback above.
4533 ** Expanding a SELECT statement is the first step in processing a
4534 ** SELECT statement. The SELECT statement must be expanded before
4535 ** name resolution is performed.
4537 ** If anything goes wrong, an error message is written into pParse.
4538 ** The calling function can detect the problem by looking at pParse->nErr
4539 ** and/or pParse->db->mallocFailed.
4541 static void sqlite3SelectExpand(Parse *pParse, Select *pSelect){
4542 Walker w;
4543 memset(&w, 0, sizeof(w));
4544 w.xExprCallback = sqlite3ExprWalkNoop;
4545 w.pParse = pParse;
4546 if( pParse->hasCompound ){
4547 w.xSelectCallback = convertCompoundSelectToSubquery;
4548 sqlite3WalkSelect(&w, pSelect);
4550 w.xSelectCallback = selectExpander;
4551 if( (pSelect->selFlags & SF_MultiValue)==0 ){
4552 w.xSelectCallback2 = selectPopWith;
4554 sqlite3WalkSelect(&w, pSelect);
4558 #ifndef SQLITE_OMIT_SUBQUERY
4560 ** This is a Walker.xSelectCallback callback for the sqlite3SelectTypeInfo()
4561 ** interface.
4563 ** For each FROM-clause subquery, add Column.zType and Column.zColl
4564 ** information to the Table structure that represents the result set
4565 ** of that subquery.
4567 ** The Table structure that represents the result set was constructed
4568 ** by selectExpander() but the type and collation information was omitted
4569 ** at that point because identifiers had not yet been resolved. This
4570 ** routine is called after identifier resolution.
4572 static void selectAddSubqueryTypeInfo(Walker *pWalker, Select *p){
4573 Parse *pParse;
4574 int i;
4575 SrcList *pTabList;
4576 struct SrcList_item *pFrom;
4578 assert( p->selFlags & SF_Resolved );
4579 assert( (p->selFlags & SF_HasTypeInfo)==0 );
4580 p->selFlags |= SF_HasTypeInfo;
4581 pParse = pWalker->pParse;
4582 pTabList = p->pSrc;
4583 for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){
4584 Table *pTab = pFrom->pTab;
4585 assert( pTab!=0 );
4586 if( (pTab->tabFlags & TF_Ephemeral)!=0 ){
4587 /* A sub-query in the FROM clause of a SELECT */
4588 Select *pSel = pFrom->pSelect;
4589 if( pSel ){
4590 while( pSel->pPrior ) pSel = pSel->pPrior;
4591 sqlite3SelectAddColumnTypeAndCollation(pParse, pTab, pSel);
4596 #endif
4600 ** This routine adds datatype and collating sequence information to
4601 ** the Table structures of all FROM-clause subqueries in a
4602 ** SELECT statement.
4604 ** Use this routine after name resolution.
4606 static void sqlite3SelectAddTypeInfo(Parse *pParse, Select *pSelect){
4607 #ifndef SQLITE_OMIT_SUBQUERY
4608 Walker w;
4609 memset(&w, 0, sizeof(w));
4610 w.xSelectCallback2 = selectAddSubqueryTypeInfo;
4611 w.xExprCallback = sqlite3ExprWalkNoop;
4612 w.pParse = pParse;
4613 sqlite3WalkSelect(&w, pSelect);
4614 #endif
4619 ** This routine sets up a SELECT statement for processing. The
4620 ** following is accomplished:
4622 ** * VDBE Cursor numbers are assigned to all FROM-clause terms.
4623 ** * Ephemeral Table objects are created for all FROM-clause subqueries.
4624 ** * ON and USING clauses are shifted into WHERE statements
4625 ** * Wildcards "*" and "TABLE.*" in result sets are expanded.
4626 ** * Identifiers in expression are matched to tables.
4628 ** This routine acts recursively on all subqueries within the SELECT.
4630 void sqlite3SelectPrep(
4631 Parse *pParse, /* The parser context */
4632 Select *p, /* The SELECT statement being coded. */
4633 NameContext *pOuterNC /* Name context for container */
4635 sqlite3 *db;
4636 if( NEVER(p==0) ) return;
4637 db = pParse->db;
4638 if( db->mallocFailed ) return;
4639 if( p->selFlags & SF_HasTypeInfo ) return;
4640 sqlite3SelectExpand(pParse, p);
4641 if( pParse->nErr || db->mallocFailed ) return;
4642 sqlite3ResolveSelectNames(pParse, p, pOuterNC);
4643 if( pParse->nErr || db->mallocFailed ) return;
4644 sqlite3SelectAddTypeInfo(pParse, p);
4648 ** Reset the aggregate accumulator.
4650 ** The aggregate accumulator is a set of memory cells that hold
4651 ** intermediate results while calculating an aggregate. This
4652 ** routine generates code that stores NULLs in all of those memory
4653 ** cells.
4655 static void resetAccumulator(Parse *pParse, AggInfo *pAggInfo){
4656 Vdbe *v = pParse->pVdbe;
4657 int i;
4658 struct AggInfo_func *pFunc;
4659 int nReg = pAggInfo->nFunc + pAggInfo->nColumn;
4660 if( nReg==0 ) return;
4661 #ifdef SQLITE_DEBUG
4662 /* Verify that all AggInfo registers are within the range specified by
4663 ** AggInfo.mnReg..AggInfo.mxReg */
4664 assert( nReg==pAggInfo->mxReg-pAggInfo->mnReg+1 );
4665 for(i=0; i<pAggInfo->nColumn; i++){
4666 assert( pAggInfo->aCol[i].iMem>=pAggInfo->mnReg
4667 && pAggInfo->aCol[i].iMem<=pAggInfo->mxReg );
4669 for(i=0; i<pAggInfo->nFunc; i++){
4670 assert( pAggInfo->aFunc[i].iMem>=pAggInfo->mnReg
4671 && pAggInfo->aFunc[i].iMem<=pAggInfo->mxReg );
4673 #endif
4674 sqlite3VdbeAddOp3(v, OP_Null, 0, pAggInfo->mnReg, pAggInfo->mxReg);
4675 for(pFunc=pAggInfo->aFunc, i=0; i<pAggInfo->nFunc; i++, pFunc++){
4676 if( pFunc->iDistinct>=0 ){
4677 Expr *pE = pFunc->pExpr;
4678 assert( !ExprHasProperty(pE, EP_xIsSelect) );
4679 if( pE->x.pList==0 || pE->x.pList->nExpr!=1 ){
4680 sqlite3ErrorMsg(pParse, "DISTINCT aggregates must have exactly one "
4681 "argument");
4682 pFunc->iDistinct = -1;
4683 }else{
4684 KeyInfo *pKeyInfo = keyInfoFromExprList(pParse, pE->x.pList, 0, 0);
4685 sqlite3VdbeAddOp4(v, OP_OpenEphemeral, pFunc->iDistinct, 0, 0,
4686 (char*)pKeyInfo, P4_KEYINFO);
4693 ** Invoke the OP_AggFinalize opcode for every aggregate function
4694 ** in the AggInfo structure.
4696 static void finalizeAggFunctions(Parse *pParse, AggInfo *pAggInfo){
4697 Vdbe *v = pParse->pVdbe;
4698 int i;
4699 struct AggInfo_func *pF;
4700 for(i=0, pF=pAggInfo->aFunc; i<pAggInfo->nFunc; i++, pF++){
4701 ExprList *pList = pF->pExpr->x.pList;
4702 assert( !ExprHasProperty(pF->pExpr, EP_xIsSelect) );
4703 sqlite3VdbeAddOp4(v, OP_AggFinal, pF->iMem, pList ? pList->nExpr : 0, 0,
4704 (void*)pF->pFunc, P4_FUNCDEF);
4709 ** Update the accumulator memory cells for an aggregate based on
4710 ** the current cursor position.
4712 static void updateAccumulator(Parse *pParse, AggInfo *pAggInfo){
4713 Vdbe *v = pParse->pVdbe;
4714 int i;
4715 int regHit = 0;
4716 int addrHitTest = 0;
4717 struct AggInfo_func *pF;
4718 struct AggInfo_col *pC;
4720 pAggInfo->directMode = 1;
4721 for(i=0, pF=pAggInfo->aFunc; i<pAggInfo->nFunc; i++, pF++){
4722 int nArg;
4723 int addrNext = 0;
4724 int regAgg;
4725 ExprList *pList = pF->pExpr->x.pList;
4726 assert( !ExprHasProperty(pF->pExpr, EP_xIsSelect) );
4727 if( pList ){
4728 nArg = pList->nExpr;
4729 regAgg = sqlite3GetTempRange(pParse, nArg);
4730 sqlite3ExprCodeExprList(pParse, pList, regAgg, 0, SQLITE_ECEL_DUP);
4731 }else{
4732 nArg = 0;
4733 regAgg = 0;
4735 if( pF->iDistinct>=0 ){
4736 addrNext = sqlite3VdbeMakeLabel(v);
4737 testcase( nArg==0 ); /* Error condition */
4738 testcase( nArg>1 ); /* Also an error */
4739 codeDistinct(pParse, pF->iDistinct, addrNext, 1, regAgg);
4741 if( pF->pFunc->funcFlags & SQLITE_FUNC_NEEDCOLL ){
4742 CollSeq *pColl = 0;
4743 struct ExprList_item *pItem;
4744 int j;
4745 assert( pList!=0 ); /* pList!=0 if pF->pFunc has NEEDCOLL */
4746 for(j=0, pItem=pList->a; !pColl && j<nArg; j++, pItem++){
4747 pColl = sqlite3ExprCollSeq(pParse, pItem->pExpr);
4749 if( !pColl ){
4750 pColl = pParse->db->pDfltColl;
4752 if( regHit==0 && pAggInfo->nAccumulator ) regHit = ++pParse->nMem;
4753 sqlite3VdbeAddOp4(v, OP_CollSeq, regHit, 0, 0, (char *)pColl, P4_COLLSEQ);
4755 sqlite3VdbeAddOp4(v, OP_AggStep0, 0, regAgg, pF->iMem,
4756 (void*)pF->pFunc, P4_FUNCDEF);
4757 sqlite3VdbeChangeP5(v, (u8)nArg);
4758 sqlite3ExprCacheAffinityChange(pParse, regAgg, nArg);
4759 sqlite3ReleaseTempRange(pParse, regAgg, nArg);
4760 if( addrNext ){
4761 sqlite3VdbeResolveLabel(v, addrNext);
4762 sqlite3ExprCacheClear(pParse);
4766 /* Before populating the accumulator registers, clear the column cache.
4767 ** Otherwise, if any of the required column values are already present
4768 ** in registers, sqlite3ExprCode() may use OP_SCopy to copy the value
4769 ** to pC->iMem. But by the time the value is used, the original register
4770 ** may have been used, invalidating the underlying buffer holding the
4771 ** text or blob value. See ticket [883034dcb5].
4773 ** Another solution would be to change the OP_SCopy used to copy cached
4774 ** values to an OP_Copy.
4776 if( regHit ){
4777 addrHitTest = sqlite3VdbeAddOp1(v, OP_If, regHit); VdbeCoverage(v);
4779 sqlite3ExprCacheClear(pParse);
4780 for(i=0, pC=pAggInfo->aCol; i<pAggInfo->nAccumulator; i++, pC++){
4781 sqlite3ExprCode(pParse, pC->pExpr, pC->iMem);
4783 pAggInfo->directMode = 0;
4784 sqlite3ExprCacheClear(pParse);
4785 if( addrHitTest ){
4786 sqlite3VdbeJumpHere(v, addrHitTest);
4791 ** Add a single OP_Explain instruction to the VDBE to explain a simple
4792 ** count(*) query ("SELECT count(*) FROM pTab").
4794 #ifndef SQLITE_OMIT_EXPLAIN
4795 static void explainSimpleCount(
4796 Parse *pParse, /* Parse context */
4797 Table *pTab, /* Table being queried */
4798 Index *pIdx /* Index used to optimize scan, or NULL */
4800 if( pParse->explain==2 ){
4801 int bCover = (pIdx!=0 && (HasRowid(pTab) || !IsPrimaryKeyIndex(pIdx)));
4802 char *zEqp = sqlite3MPrintf(pParse->db, "SCAN TABLE %s%s%s",
4803 pTab->zName,
4804 bCover ? " USING COVERING INDEX " : "",
4805 bCover ? pIdx->zName : ""
4807 sqlite3VdbeAddOp4(
4808 pParse->pVdbe, OP_Explain, pParse->iSelectId, 0, 0, zEqp, P4_DYNAMIC
4812 #else
4813 # define explainSimpleCount(a,b,c)
4814 #endif
4817 ** Generate code for the SELECT statement given in the p argument.
4819 ** The results are returned according to the SelectDest structure.
4820 ** See comments in sqliteInt.h for further information.
4822 ** This routine returns the number of errors. If any errors are
4823 ** encountered, then an appropriate error message is left in
4824 ** pParse->zErrMsg.
4826 ** This routine does NOT free the Select structure passed in. The
4827 ** calling function needs to do that.
4829 int sqlite3Select(
4830 Parse *pParse, /* The parser context */
4831 Select *p, /* The SELECT statement being coded. */
4832 SelectDest *pDest /* What to do with the query results */
4834 int i, j; /* Loop counters */
4835 WhereInfo *pWInfo; /* Return from sqlite3WhereBegin() */
4836 Vdbe *v; /* The virtual machine under construction */
4837 int isAgg; /* True for select lists like "count(*)" */
4838 ExprList *pEList = 0; /* List of columns to extract. */
4839 SrcList *pTabList; /* List of tables to select from */
4840 Expr *pWhere; /* The WHERE clause. May be NULL */
4841 ExprList *pGroupBy; /* The GROUP BY clause. May be NULL */
4842 Expr *pHaving; /* The HAVING clause. May be NULL */
4843 int rc = 1; /* Value to return from this function */
4844 DistinctCtx sDistinct; /* Info on how to code the DISTINCT keyword */
4845 SortCtx sSort; /* Info on how to code the ORDER BY clause */
4846 AggInfo sAggInfo; /* Information used by aggregate queries */
4847 int iEnd; /* Address of the end of the query */
4848 sqlite3 *db; /* The database connection */
4850 #ifndef SQLITE_OMIT_EXPLAIN
4851 int iRestoreSelectId = pParse->iSelectId;
4852 pParse->iSelectId = pParse->iNextSelectId++;
4853 #endif
4855 db = pParse->db;
4856 if( p==0 || db->mallocFailed || pParse->nErr ){
4857 return 1;
4859 if( sqlite3AuthCheck(pParse, SQLITE_SELECT, 0, 0, 0) ) return 1;
4860 memset(&sAggInfo, 0, sizeof(sAggInfo));
4861 #if SELECTTRACE_ENABLED
4862 pParse->nSelectIndent++;
4863 SELECTTRACE(1,pParse,p, ("begin processing:\n"));
4864 if( sqlite3SelectTrace & 0x100 ){
4865 sqlite3TreeViewSelect(0, p, 0);
4867 #endif
4869 assert( p->pOrderBy==0 || pDest->eDest!=SRT_DistFifo );
4870 assert( p->pOrderBy==0 || pDest->eDest!=SRT_Fifo );
4871 assert( p->pOrderBy==0 || pDest->eDest!=SRT_DistQueue );
4872 assert( p->pOrderBy==0 || pDest->eDest!=SRT_Queue );
4873 if( IgnorableOrderby(pDest) ){
4874 assert(pDest->eDest==SRT_Exists || pDest->eDest==SRT_Union ||
4875 pDest->eDest==SRT_Except || pDest->eDest==SRT_Discard ||
4876 pDest->eDest==SRT_Queue || pDest->eDest==SRT_DistFifo ||
4877 pDest->eDest==SRT_DistQueue || pDest->eDest==SRT_Fifo);
4878 /* If ORDER BY makes no difference in the output then neither does
4879 ** DISTINCT so it can be removed too. */
4880 sqlite3ExprListDelete(db, p->pOrderBy);
4881 p->pOrderBy = 0;
4882 p->selFlags &= ~SF_Distinct;
4884 sqlite3SelectPrep(pParse, p, 0);
4885 memset(&sSort, 0, sizeof(sSort));
4886 sSort.pOrderBy = p->pOrderBy;
4887 pTabList = p->pSrc;
4888 if( pParse->nErr || db->mallocFailed ){
4889 goto select_end;
4891 assert( p->pEList!=0 );
4892 isAgg = (p->selFlags & SF_Aggregate)!=0;
4893 #if SELECTTRACE_ENABLED
4894 if( sqlite3SelectTrace & 0x100 ){
4895 SELECTTRACE(0x100,pParse,p, ("after name resolution:\n"));
4896 sqlite3TreeViewSelect(0, p, 0);
4898 #endif
4901 /* If writing to memory or generating a set
4902 ** only a single column may be output.
4904 #ifndef SQLITE_OMIT_SUBQUERY
4905 if( checkForMultiColumnSelectError(pParse, pDest, p->pEList->nExpr) ){
4906 goto select_end;
4908 #endif
4910 /* Try to flatten subqueries in the FROM clause up into the main query
4912 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
4913 for(i=0; !p->pPrior && i<pTabList->nSrc; i++){
4914 struct SrcList_item *pItem = &pTabList->a[i];
4915 Select *pSub = pItem->pSelect;
4916 int isAggSub;
4917 Table *pTab = pItem->pTab;
4918 if( pSub==0 ) continue;
4920 /* Catch mismatch in the declared columns of a view and the number of
4921 ** columns in the SELECT on the RHS */
4922 if( pTab->nCol!=pSub->pEList->nExpr ){
4923 sqlite3ErrorMsg(pParse, "expected %d columns for '%s' but got %d",
4924 pTab->nCol, pTab->zName, pSub->pEList->nExpr);
4925 goto select_end;
4928 isAggSub = (pSub->selFlags & SF_Aggregate)!=0;
4929 if( flattenSubquery(pParse, p, i, isAgg, isAggSub) ){
4930 /* This subquery can be absorbed into its parent. */
4931 if( isAggSub ){
4932 isAgg = 1;
4933 p->selFlags |= SF_Aggregate;
4935 i = -1;
4937 pTabList = p->pSrc;
4938 if( db->mallocFailed ) goto select_end;
4939 if( !IgnorableOrderby(pDest) ){
4940 sSort.pOrderBy = p->pOrderBy;
4943 #endif
4945 /* Get a pointer the VDBE under construction, allocating a new VDBE if one
4946 ** does not already exist */
4947 v = sqlite3GetVdbe(pParse);
4948 if( v==0 ) goto select_end;
4950 #ifndef SQLITE_OMIT_COMPOUND_SELECT
4951 /* Handle compound SELECT statements using the separate multiSelect()
4952 ** procedure.
4954 if( p->pPrior ){
4955 rc = multiSelect(pParse, p, pDest);
4956 explainSetInteger(pParse->iSelectId, iRestoreSelectId);
4957 #if SELECTTRACE_ENABLED
4958 SELECTTRACE(1,pParse,p,("end compound-select processing\n"));
4959 pParse->nSelectIndent--;
4960 #endif
4961 return rc;
4963 #endif
4965 /* Generate code for all sub-queries in the FROM clause
4967 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
4968 for(i=0; i<pTabList->nSrc; i++){
4969 struct SrcList_item *pItem = &pTabList->a[i];
4970 SelectDest dest;
4971 Select *pSub = pItem->pSelect;
4972 if( pSub==0 ) continue;
4974 /* Sometimes the code for a subquery will be generated more than
4975 ** once, if the subquery is part of the WHERE clause in a LEFT JOIN,
4976 ** for example. In that case, do not regenerate the code to manifest
4977 ** a view or the co-routine to implement a view. The first instance
4978 ** is sufficient, though the subroutine to manifest the view does need
4979 ** to be invoked again. */
4980 if( pItem->addrFillSub ){
4981 if( pItem->fg.viaCoroutine==0 ){
4982 sqlite3VdbeAddOp2(v, OP_Gosub, pItem->regReturn, pItem->addrFillSub);
4984 continue;
4987 /* Increment Parse.nHeight by the height of the largest expression
4988 ** tree referred to by this, the parent select. The child select
4989 ** may contain expression trees of at most
4990 ** (SQLITE_MAX_EXPR_DEPTH-Parse.nHeight) height. This is a bit
4991 ** more conservative than necessary, but much easier than enforcing
4992 ** an exact limit.
4994 pParse->nHeight += sqlite3SelectExprHeight(p);
4996 /* Make copies of constant WHERE-clause terms in the outer query down
4997 ** inside the subquery. This can help the subquery to run more efficiently.
4999 if( (pItem->fg.jointype & JT_OUTER)==0
5000 && pushDownWhereTerms(db, pSub, p->pWhere, pItem->iCursor)
5002 #if SELECTTRACE_ENABLED
5003 if( sqlite3SelectTrace & 0x100 ){
5004 SELECTTRACE(0x100,pParse,p,("After WHERE-clause push-down:\n"));
5005 sqlite3TreeViewSelect(0, p, 0);
5007 #endif
5010 /* Generate code to implement the subquery
5012 ** The subquery is implemented as a co-routine if all of these are true:
5013 ** (1) The subquery is guaranteed to be the outer loop (so that it
5014 ** does not need to be computed more than once)
5015 ** (2) The ALL keyword after SELECT is omitted. (Applications are
5016 ** allowed to say "SELECT ALL" instead of just "SELECT" to disable
5017 ** the use of co-routines.)
5018 ** (3) Co-routines are not disabled using sqlite3_test_control()
5019 ** with SQLITE_TESTCTRL_OPTIMIZATIONS.
5021 ** TODO: Are there other reasons beside (1) to use a co-routine
5022 ** implementation?
5024 if( i==0
5025 && (pTabList->nSrc==1
5026 || (pTabList->a[1].fg.jointype&(JT_LEFT|JT_CROSS))!=0) /* (1) */
5027 && (p->selFlags & SF_All)==0 /* (2) */
5028 && OptimizationEnabled(db, SQLITE_SubqCoroutine) /* (3) */
5030 /* Implement a co-routine that will return a single row of the result
5031 ** set on each invocation.
5033 int addrTop = sqlite3VdbeCurrentAddr(v)+1;
5034 pItem->regReturn = ++pParse->nMem;
5035 sqlite3VdbeAddOp3(v, OP_InitCoroutine, pItem->regReturn, 0, addrTop);
5036 VdbeComment((v, "%s", pItem->pTab->zName));
5037 pItem->addrFillSub = addrTop;
5038 sqlite3SelectDestInit(&dest, SRT_Coroutine, pItem->regReturn);
5039 explainSetInteger(pItem->iSelectId, (u8)pParse->iNextSelectId);
5040 sqlite3Select(pParse, pSub, &dest);
5041 pItem->pTab->nRowLogEst = pSub->nSelectRow;
5042 pItem->fg.viaCoroutine = 1;
5043 pItem->regResult = dest.iSdst;
5044 sqlite3VdbeEndCoroutine(v, pItem->regReturn);
5045 sqlite3VdbeJumpHere(v, addrTop-1);
5046 sqlite3ClearTempRegCache(pParse);
5047 }else{
5048 /* Generate a subroutine that will fill an ephemeral table with
5049 ** the content of this subquery. pItem->addrFillSub will point
5050 ** to the address of the generated subroutine. pItem->regReturn
5051 ** is a register allocated to hold the subroutine return address
5053 int topAddr;
5054 int onceAddr = 0;
5055 int retAddr;
5056 assert( pItem->addrFillSub==0 );
5057 pItem->regReturn = ++pParse->nMem;
5058 topAddr = sqlite3VdbeAddOp2(v, OP_Integer, 0, pItem->regReturn);
5059 pItem->addrFillSub = topAddr+1;
5060 if( pItem->fg.isCorrelated==0 ){
5061 /* If the subquery is not correlated and if we are not inside of
5062 ** a trigger, then we only need to compute the value of the subquery
5063 ** once. */
5064 onceAddr = sqlite3CodeOnce(pParse); VdbeCoverage(v);
5065 VdbeComment((v, "materialize \"%s\"", pItem->pTab->zName));
5066 }else{
5067 VdbeNoopComment((v, "materialize \"%s\"", pItem->pTab->zName));
5069 sqlite3SelectDestInit(&dest, SRT_EphemTab, pItem->iCursor);
5070 explainSetInteger(pItem->iSelectId, (u8)pParse->iNextSelectId);
5071 sqlite3Select(pParse, pSub, &dest);
5072 pItem->pTab->nRowLogEst = pSub->nSelectRow;
5073 if( onceAddr ) sqlite3VdbeJumpHere(v, onceAddr);
5074 retAddr = sqlite3VdbeAddOp1(v, OP_Return, pItem->regReturn);
5075 VdbeComment((v, "end %s", pItem->pTab->zName));
5076 sqlite3VdbeChangeP1(v, topAddr, retAddr);
5077 sqlite3ClearTempRegCache(pParse);
5079 if( db->mallocFailed ) goto select_end;
5080 pParse->nHeight -= sqlite3SelectExprHeight(p);
5082 #endif
5084 /* Various elements of the SELECT copied into local variables for
5085 ** convenience */
5086 pEList = p->pEList;
5087 pWhere = p->pWhere;
5088 pGroupBy = p->pGroupBy;
5089 pHaving = p->pHaving;
5090 sDistinct.isTnct = (p->selFlags & SF_Distinct)!=0;
5092 #if SELECTTRACE_ENABLED
5093 if( sqlite3SelectTrace & 0x400 ){
5094 SELECTTRACE(0x400,pParse,p,("After all FROM-clause analysis:\n"));
5095 sqlite3TreeViewSelect(0, p, 0);
5097 #endif
5099 /* If the query is DISTINCT with an ORDER BY but is not an aggregate, and
5100 ** if the select-list is the same as the ORDER BY list, then this query
5101 ** can be rewritten as a GROUP BY. In other words, this:
5103 ** SELECT DISTINCT xyz FROM ... ORDER BY xyz
5105 ** is transformed to:
5107 ** SELECT xyz FROM ... GROUP BY xyz ORDER BY xyz
5109 ** The second form is preferred as a single index (or temp-table) may be
5110 ** used for both the ORDER BY and DISTINCT processing. As originally
5111 ** written the query must use a temp-table for at least one of the ORDER
5112 ** BY and DISTINCT, and an index or separate temp-table for the other.
5114 if( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct
5115 && sqlite3ExprListCompare(sSort.pOrderBy, pEList, -1)==0
5117 p->selFlags &= ~SF_Distinct;
5118 pGroupBy = p->pGroupBy = sqlite3ExprListDup(db, pEList, 0);
5119 /* Notice that even thought SF_Distinct has been cleared from p->selFlags,
5120 ** the sDistinct.isTnct is still set. Hence, isTnct represents the
5121 ** original setting of the SF_Distinct flag, not the current setting */
5122 assert( sDistinct.isTnct );
5124 #if SELECTTRACE_ENABLED
5125 if( sqlite3SelectTrace & 0x400 ){
5126 SELECTTRACE(0x400,pParse,p,("Transform DISTINCT into GROUP BY:\n"));
5127 sqlite3TreeViewSelect(0, p, 0);
5129 #endif
5132 /* If there is an ORDER BY clause, then create an ephemeral index to
5133 ** do the sorting. But this sorting ephemeral index might end up
5134 ** being unused if the data can be extracted in pre-sorted order.
5135 ** If that is the case, then the OP_OpenEphemeral instruction will be
5136 ** changed to an OP_Noop once we figure out that the sorting index is
5137 ** not needed. The sSort.addrSortIndex variable is used to facilitate
5138 ** that change.
5140 if( sSort.pOrderBy ){
5141 KeyInfo *pKeyInfo;
5142 pKeyInfo = keyInfoFromExprList(pParse, sSort.pOrderBy, 0, pEList->nExpr);
5143 sSort.iECursor = pParse->nTab++;
5144 sSort.addrSortIndex =
5145 sqlite3VdbeAddOp4(v, OP_OpenEphemeral,
5146 sSort.iECursor, sSort.pOrderBy->nExpr+1+pEList->nExpr, 0,
5147 (char*)pKeyInfo, P4_KEYINFO
5149 }else{
5150 sSort.addrSortIndex = -1;
5153 /* If the output is destined for a temporary table, open that table.
5155 if( pDest->eDest==SRT_EphemTab ){
5156 sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pDest->iSDParm, pEList->nExpr);
5159 /* Set the limiter.
5161 iEnd = sqlite3VdbeMakeLabel(v);
5162 p->nSelectRow = 320; /* 4 billion rows */
5163 computeLimitRegisters(pParse, p, iEnd);
5164 if( p->iLimit==0 && sSort.addrSortIndex>=0 ){
5165 sqlite3VdbeChangeOpcode(v, sSort.addrSortIndex, OP_SorterOpen);
5166 sSort.sortFlags |= SORTFLAG_UseSorter;
5169 /* Open an ephemeral index to use for the distinct set.
5171 if( p->selFlags & SF_Distinct ){
5172 sDistinct.tabTnct = pParse->nTab++;
5173 sDistinct.addrTnct = sqlite3VdbeAddOp4(v, OP_OpenEphemeral,
5174 sDistinct.tabTnct, 0, 0,
5175 (char*)keyInfoFromExprList(pParse, p->pEList,0,0),
5176 P4_KEYINFO);
5177 sqlite3VdbeChangeP5(v, BTREE_UNORDERED);
5178 sDistinct.eTnctType = WHERE_DISTINCT_UNORDERED;
5179 }else{
5180 sDistinct.eTnctType = WHERE_DISTINCT_NOOP;
5183 if( !isAgg && pGroupBy==0 ){
5184 /* No aggregate functions and no GROUP BY clause */
5185 u16 wctrlFlags = (sDistinct.isTnct ? WHERE_WANT_DISTINCT : 0);
5186 assert( WHERE_USE_LIMIT==SF_FixedLimit );
5187 wctrlFlags |= p->selFlags & SF_FixedLimit;
5189 /* Begin the database scan. */
5190 pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, sSort.pOrderBy,
5191 p->pEList, wctrlFlags, p->nSelectRow);
5192 if( pWInfo==0 ) goto select_end;
5193 if( sqlite3WhereOutputRowCount(pWInfo) < p->nSelectRow ){
5194 p->nSelectRow = sqlite3WhereOutputRowCount(pWInfo);
5196 if( sDistinct.isTnct && sqlite3WhereIsDistinct(pWInfo) ){
5197 sDistinct.eTnctType = sqlite3WhereIsDistinct(pWInfo);
5199 if( sSort.pOrderBy ){
5200 sSort.nOBSat = sqlite3WhereIsOrdered(pWInfo);
5201 sSort.bOrderedInnerLoop = sqlite3WhereOrderedInnerLoop(pWInfo);
5202 if( sSort.nOBSat==sSort.pOrderBy->nExpr ){
5203 sSort.pOrderBy = 0;
5207 /* If sorting index that was created by a prior OP_OpenEphemeral
5208 ** instruction ended up not being needed, then change the OP_OpenEphemeral
5209 ** into an OP_Noop.
5211 if( sSort.addrSortIndex>=0 && sSort.pOrderBy==0 ){
5212 sqlite3VdbeChangeToNoop(v, sSort.addrSortIndex);
5215 /* Use the standard inner loop. */
5216 selectInnerLoop(pParse, p, pEList, -1, &sSort, &sDistinct, pDest,
5217 sqlite3WhereContinueLabel(pWInfo),
5218 sqlite3WhereBreakLabel(pWInfo));
5220 /* End the database scan loop.
5222 sqlite3WhereEnd(pWInfo);
5223 }else{
5224 /* This case when there exist aggregate functions or a GROUP BY clause
5225 ** or both */
5226 NameContext sNC; /* Name context for processing aggregate information */
5227 int iAMem; /* First Mem address for storing current GROUP BY */
5228 int iBMem; /* First Mem address for previous GROUP BY */
5229 int iUseFlag; /* Mem address holding flag indicating that at least
5230 ** one row of the input to the aggregator has been
5231 ** processed */
5232 int iAbortFlag; /* Mem address which causes query abort if positive */
5233 int groupBySort; /* Rows come from source in GROUP BY order */
5234 int addrEnd; /* End of processing for this SELECT */
5235 int sortPTab = 0; /* Pseudotable used to decode sorting results */
5236 int sortOut = 0; /* Output register from the sorter */
5237 int orderByGrp = 0; /* True if the GROUP BY and ORDER BY are the same */
5239 /* Remove any and all aliases between the result set and the
5240 ** GROUP BY clause.
5242 if( pGroupBy ){
5243 int k; /* Loop counter */
5244 struct ExprList_item *pItem; /* For looping over expression in a list */
5246 for(k=p->pEList->nExpr, pItem=p->pEList->a; k>0; k--, pItem++){
5247 pItem->u.x.iAlias = 0;
5249 for(k=pGroupBy->nExpr, pItem=pGroupBy->a; k>0; k--, pItem++){
5250 pItem->u.x.iAlias = 0;
5252 assert( 66==sqlite3LogEst(100) );
5253 if( p->nSelectRow>66 ) p->nSelectRow = 66;
5254 }else{
5255 assert( 0==sqlite3LogEst(1) );
5256 p->nSelectRow = 0;
5259 /* If there is both a GROUP BY and an ORDER BY clause and they are
5260 ** identical, then it may be possible to disable the ORDER BY clause
5261 ** on the grounds that the GROUP BY will cause elements to come out
5262 ** in the correct order. It also may not - the GROUP BY might use a
5263 ** database index that causes rows to be grouped together as required
5264 ** but not actually sorted. Either way, record the fact that the
5265 ** ORDER BY and GROUP BY clauses are the same by setting the orderByGrp
5266 ** variable. */
5267 if( sqlite3ExprListCompare(pGroupBy, sSort.pOrderBy, -1)==0 ){
5268 orderByGrp = 1;
5271 /* Create a label to jump to when we want to abort the query */
5272 addrEnd = sqlite3VdbeMakeLabel(v);
5274 /* Convert TK_COLUMN nodes into TK_AGG_COLUMN and make entries in
5275 ** sAggInfo for all TK_AGG_FUNCTION nodes in expressions of the
5276 ** SELECT statement.
5278 memset(&sNC, 0, sizeof(sNC));
5279 sNC.pParse = pParse;
5280 sNC.pSrcList = pTabList;
5281 sNC.pAggInfo = &sAggInfo;
5282 sAggInfo.mnReg = pParse->nMem+1;
5283 sAggInfo.nSortingColumn = pGroupBy ? pGroupBy->nExpr : 0;
5284 sAggInfo.pGroupBy = pGroupBy;
5285 sqlite3ExprAnalyzeAggList(&sNC, pEList);
5286 sqlite3ExprAnalyzeAggList(&sNC, sSort.pOrderBy);
5287 if( pHaving ){
5288 sqlite3ExprAnalyzeAggregates(&sNC, pHaving);
5290 sAggInfo.nAccumulator = sAggInfo.nColumn;
5291 for(i=0; i<sAggInfo.nFunc; i++){
5292 assert( !ExprHasProperty(sAggInfo.aFunc[i].pExpr, EP_xIsSelect) );
5293 sNC.ncFlags |= NC_InAggFunc;
5294 sqlite3ExprAnalyzeAggList(&sNC, sAggInfo.aFunc[i].pExpr->x.pList);
5295 sNC.ncFlags &= ~NC_InAggFunc;
5297 sAggInfo.mxReg = pParse->nMem;
5298 if( db->mallocFailed ) goto select_end;
5300 /* Processing for aggregates with GROUP BY is very different and
5301 ** much more complex than aggregates without a GROUP BY.
5303 if( pGroupBy ){
5304 KeyInfo *pKeyInfo; /* Keying information for the group by clause */
5305 int addr1; /* A-vs-B comparision jump */
5306 int addrOutputRow; /* Start of subroutine that outputs a result row */
5307 int regOutputRow; /* Return address register for output subroutine */
5308 int addrSetAbort; /* Set the abort flag and return */
5309 int addrTopOfLoop; /* Top of the input loop */
5310 int addrSortingIdx; /* The OP_OpenEphemeral for the sorting index */
5311 int addrReset; /* Subroutine for resetting the accumulator */
5312 int regReset; /* Return address register for reset subroutine */
5314 /* If there is a GROUP BY clause we might need a sorting index to
5315 ** implement it. Allocate that sorting index now. If it turns out
5316 ** that we do not need it after all, the OP_SorterOpen instruction
5317 ** will be converted into a Noop.
5319 sAggInfo.sortingIdx = pParse->nTab++;
5320 pKeyInfo = keyInfoFromExprList(pParse, pGroupBy, 0, sAggInfo.nColumn);
5321 addrSortingIdx = sqlite3VdbeAddOp4(v, OP_SorterOpen,
5322 sAggInfo.sortingIdx, sAggInfo.nSortingColumn,
5323 0, (char*)pKeyInfo, P4_KEYINFO);
5325 /* Initialize memory locations used by GROUP BY aggregate processing
5327 iUseFlag = ++pParse->nMem;
5328 iAbortFlag = ++pParse->nMem;
5329 regOutputRow = ++pParse->nMem;
5330 addrOutputRow = sqlite3VdbeMakeLabel(v);
5331 regReset = ++pParse->nMem;
5332 addrReset = sqlite3VdbeMakeLabel(v);
5333 iAMem = pParse->nMem + 1;
5334 pParse->nMem += pGroupBy->nExpr;
5335 iBMem = pParse->nMem + 1;
5336 pParse->nMem += pGroupBy->nExpr;
5337 sqlite3VdbeAddOp2(v, OP_Integer, 0, iAbortFlag);
5338 VdbeComment((v, "clear abort flag"));
5339 sqlite3VdbeAddOp2(v, OP_Integer, 0, iUseFlag);
5340 VdbeComment((v, "indicate accumulator empty"));
5341 sqlite3VdbeAddOp3(v, OP_Null, 0, iAMem, iAMem+pGroupBy->nExpr-1);
5343 /* Begin a loop that will extract all source rows in GROUP BY order.
5344 ** This might involve two separate loops with an OP_Sort in between, or
5345 ** it might be a single loop that uses an index to extract information
5346 ** in the right order to begin with.
5348 sqlite3VdbeAddOp2(v, OP_Gosub, regReset, addrReset);
5349 pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, pGroupBy, 0,
5350 WHERE_GROUPBY | (orderByGrp ? WHERE_SORTBYGROUP : 0), 0
5352 if( pWInfo==0 ) goto select_end;
5353 if( sqlite3WhereIsOrdered(pWInfo)==pGroupBy->nExpr ){
5354 /* The optimizer is able to deliver rows in group by order so
5355 ** we do not have to sort. The OP_OpenEphemeral table will be
5356 ** cancelled later because we still need to use the pKeyInfo
5358 groupBySort = 0;
5359 }else{
5360 /* Rows are coming out in undetermined order. We have to push
5361 ** each row into a sorting index, terminate the first loop,
5362 ** then loop over the sorting index in order to get the output
5363 ** in sorted order
5365 int regBase;
5366 int regRecord;
5367 int nCol;
5368 int nGroupBy;
5370 explainTempTable(pParse,
5371 (sDistinct.isTnct && (p->selFlags&SF_Distinct)==0) ?
5372 "DISTINCT" : "GROUP BY");
5374 groupBySort = 1;
5375 nGroupBy = pGroupBy->nExpr;
5376 nCol = nGroupBy;
5377 j = nGroupBy;
5378 for(i=0; i<sAggInfo.nColumn; i++){
5379 if( sAggInfo.aCol[i].iSorterColumn>=j ){
5380 nCol++;
5381 j++;
5384 regBase = sqlite3GetTempRange(pParse, nCol);
5385 sqlite3ExprCacheClear(pParse);
5386 sqlite3ExprCodeExprList(pParse, pGroupBy, regBase, 0, 0);
5387 j = nGroupBy;
5388 for(i=0; i<sAggInfo.nColumn; i++){
5389 struct AggInfo_col *pCol = &sAggInfo.aCol[i];
5390 if( pCol->iSorterColumn>=j ){
5391 int r1 = j + regBase;
5392 sqlite3ExprCodeGetColumnToReg(pParse,
5393 pCol->pTab, pCol->iColumn, pCol->iTable, r1);
5394 j++;
5397 regRecord = sqlite3GetTempReg(pParse);
5398 sqlite3VdbeAddOp3(v, OP_MakeRecord, regBase, nCol, regRecord);
5399 sqlite3VdbeAddOp2(v, OP_SorterInsert, sAggInfo.sortingIdx, regRecord);
5400 sqlite3ReleaseTempReg(pParse, regRecord);
5401 sqlite3ReleaseTempRange(pParse, regBase, nCol);
5402 sqlite3WhereEnd(pWInfo);
5403 sAggInfo.sortingIdxPTab = sortPTab = pParse->nTab++;
5404 sortOut = sqlite3GetTempReg(pParse);
5405 sqlite3VdbeAddOp3(v, OP_OpenPseudo, sortPTab, sortOut, nCol);
5406 sqlite3VdbeAddOp2(v, OP_SorterSort, sAggInfo.sortingIdx, addrEnd);
5407 VdbeComment((v, "GROUP BY sort")); VdbeCoverage(v);
5408 sAggInfo.useSortingIdx = 1;
5409 sqlite3ExprCacheClear(pParse);
5413 /* If the index or temporary table used by the GROUP BY sort
5414 ** will naturally deliver rows in the order required by the ORDER BY
5415 ** clause, cancel the ephemeral table open coded earlier.
5417 ** This is an optimization - the correct answer should result regardless.
5418 ** Use the SQLITE_GroupByOrder flag with SQLITE_TESTCTRL_OPTIMIZER to
5419 ** disable this optimization for testing purposes. */
5420 if( orderByGrp && OptimizationEnabled(db, SQLITE_GroupByOrder)
5421 && (groupBySort || sqlite3WhereIsSorted(pWInfo))
5423 sSort.pOrderBy = 0;
5424 sqlite3VdbeChangeToNoop(v, sSort.addrSortIndex);
5427 /* Evaluate the current GROUP BY terms and store in b0, b1, b2...
5428 ** (b0 is memory location iBMem+0, b1 is iBMem+1, and so forth)
5429 ** Then compare the current GROUP BY terms against the GROUP BY terms
5430 ** from the previous row currently stored in a0, a1, a2...
5432 addrTopOfLoop = sqlite3VdbeCurrentAddr(v);
5433 sqlite3ExprCacheClear(pParse);
5434 if( groupBySort ){
5435 sqlite3VdbeAddOp3(v, OP_SorterData, sAggInfo.sortingIdx,
5436 sortOut, sortPTab);
5438 for(j=0; j<pGroupBy->nExpr; j++){
5439 if( groupBySort ){
5440 sqlite3VdbeAddOp3(v, OP_Column, sortPTab, j, iBMem+j);
5441 }else{
5442 sAggInfo.directMode = 1;
5443 sqlite3ExprCode(pParse, pGroupBy->a[j].pExpr, iBMem+j);
5446 sqlite3VdbeAddOp4(v, OP_Compare, iAMem, iBMem, pGroupBy->nExpr,
5447 (char*)sqlite3KeyInfoRef(pKeyInfo), P4_KEYINFO);
5448 addr1 = sqlite3VdbeCurrentAddr(v);
5449 sqlite3VdbeAddOp3(v, OP_Jump, addr1+1, 0, addr1+1); VdbeCoverage(v);
5451 /* Generate code that runs whenever the GROUP BY changes.
5452 ** Changes in the GROUP BY are detected by the previous code
5453 ** block. If there were no changes, this block is skipped.
5455 ** This code copies current group by terms in b0,b1,b2,...
5456 ** over to a0,a1,a2. It then calls the output subroutine
5457 ** and resets the aggregate accumulator registers in preparation
5458 ** for the next GROUP BY batch.
5460 sqlite3ExprCodeMove(pParse, iBMem, iAMem, pGroupBy->nExpr);
5461 sqlite3VdbeAddOp2(v, OP_Gosub, regOutputRow, addrOutputRow);
5462 VdbeComment((v, "output one row"));
5463 sqlite3VdbeAddOp2(v, OP_IfPos, iAbortFlag, addrEnd); VdbeCoverage(v);
5464 VdbeComment((v, "check abort flag"));
5465 sqlite3VdbeAddOp2(v, OP_Gosub, regReset, addrReset);
5466 VdbeComment((v, "reset accumulator"));
5468 /* Update the aggregate accumulators based on the content of
5469 ** the current row
5471 sqlite3VdbeJumpHere(v, addr1);
5472 updateAccumulator(pParse, &sAggInfo);
5473 sqlite3VdbeAddOp2(v, OP_Integer, 1, iUseFlag);
5474 VdbeComment((v, "indicate data in accumulator"));
5476 /* End of the loop
5478 if( groupBySort ){
5479 sqlite3VdbeAddOp2(v, OP_SorterNext, sAggInfo.sortingIdx, addrTopOfLoop);
5480 VdbeCoverage(v);
5481 }else{
5482 sqlite3WhereEnd(pWInfo);
5483 sqlite3VdbeChangeToNoop(v, addrSortingIdx);
5486 /* Output the final row of result
5488 sqlite3VdbeAddOp2(v, OP_Gosub, regOutputRow, addrOutputRow);
5489 VdbeComment((v, "output final row"));
5491 /* Jump over the subroutines
5493 sqlite3VdbeGoto(v, addrEnd);
5495 /* Generate a subroutine that outputs a single row of the result
5496 ** set. This subroutine first looks at the iUseFlag. If iUseFlag
5497 ** is less than or equal to zero, the subroutine is a no-op. If
5498 ** the processing calls for the query to abort, this subroutine
5499 ** increments the iAbortFlag memory location before returning in
5500 ** order to signal the caller to abort.
5502 addrSetAbort = sqlite3VdbeCurrentAddr(v);
5503 sqlite3VdbeAddOp2(v, OP_Integer, 1, iAbortFlag);
5504 VdbeComment((v, "set abort flag"));
5505 sqlite3VdbeAddOp1(v, OP_Return, regOutputRow);
5506 sqlite3VdbeResolveLabel(v, addrOutputRow);
5507 addrOutputRow = sqlite3VdbeCurrentAddr(v);
5508 sqlite3VdbeAddOp2(v, OP_IfPos, iUseFlag, addrOutputRow+2);
5509 VdbeCoverage(v);
5510 VdbeComment((v, "Groupby result generator entry point"));
5511 sqlite3VdbeAddOp1(v, OP_Return, regOutputRow);
5512 finalizeAggFunctions(pParse, &sAggInfo);
5513 sqlite3ExprIfFalse(pParse, pHaving, addrOutputRow+1, SQLITE_JUMPIFNULL);
5514 selectInnerLoop(pParse, p, p->pEList, -1, &sSort,
5515 &sDistinct, pDest,
5516 addrOutputRow+1, addrSetAbort);
5517 sqlite3VdbeAddOp1(v, OP_Return, regOutputRow);
5518 VdbeComment((v, "end groupby result generator"));
5520 /* Generate a subroutine that will reset the group-by accumulator
5522 sqlite3VdbeResolveLabel(v, addrReset);
5523 resetAccumulator(pParse, &sAggInfo);
5524 sqlite3VdbeAddOp1(v, OP_Return, regReset);
5526 } /* endif pGroupBy. Begin aggregate queries without GROUP BY: */
5527 else {
5528 ExprList *pDel = 0;
5529 #ifndef SQLITE_OMIT_BTREECOUNT
5530 Table *pTab;
5531 if( (pTab = isSimpleCount(p, &sAggInfo))!=0 ){
5532 /* If isSimpleCount() returns a pointer to a Table structure, then
5533 ** the SQL statement is of the form:
5535 ** SELECT count(*) FROM <tbl>
5537 ** where the Table structure returned represents table <tbl>.
5539 ** This statement is so common that it is optimized specially. The
5540 ** OP_Count instruction is executed either on the intkey table that
5541 ** contains the data for table <tbl> or on one of its indexes. It
5542 ** is better to execute the op on an index, as indexes are almost
5543 ** always spread across less pages than their corresponding tables.
5545 const int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
5546 const int iCsr = pParse->nTab++; /* Cursor to scan b-tree */
5547 Index *pIdx; /* Iterator variable */
5548 KeyInfo *pKeyInfo = 0; /* Keyinfo for scanned index */
5549 Index *pBest = 0; /* Best index found so far */
5550 int iRoot = pTab->tnum; /* Root page of scanned b-tree */
5552 sqlite3CodeVerifySchema(pParse, iDb);
5553 sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName);
5555 /* Search for the index that has the lowest scan cost.
5557 ** (2011-04-15) Do not do a full scan of an unordered index.
5559 ** (2013-10-03) Do not count the entries in a partial index.
5561 ** In practice the KeyInfo structure will not be used. It is only
5562 ** passed to keep OP_OpenRead happy.
5564 if( !HasRowid(pTab) ) pBest = sqlite3PrimaryKeyIndex(pTab);
5565 for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
5566 if( pIdx->bUnordered==0
5567 && pIdx->szIdxRow<pTab->szTabRow
5568 && pIdx->pPartIdxWhere==0
5569 && (!pBest || pIdx->szIdxRow<pBest->szIdxRow)
5571 pBest = pIdx;
5574 if( pBest ){
5575 iRoot = pBest->tnum;
5576 pKeyInfo = sqlite3KeyInfoOfIndex(pParse, pBest);
5579 /* Open a read-only cursor, execute the OP_Count, close the cursor. */
5580 sqlite3VdbeAddOp4Int(v, OP_OpenRead, iCsr, iRoot, iDb, 1);
5581 if( pKeyInfo ){
5582 sqlite3VdbeChangeP4(v, -1, (char *)pKeyInfo, P4_KEYINFO);
5584 sqlite3VdbeAddOp2(v, OP_Count, iCsr, sAggInfo.aFunc[0].iMem);
5585 sqlite3VdbeAddOp1(v, OP_Close, iCsr);
5586 explainSimpleCount(pParse, pTab, pBest);
5587 }else
5588 #endif /* SQLITE_OMIT_BTREECOUNT */
5590 /* Check if the query is of one of the following forms:
5592 ** SELECT min(x) FROM ...
5593 ** SELECT max(x) FROM ...
5595 ** If it is, then ask the code in where.c to attempt to sort results
5596 ** as if there was an "ORDER ON x" or "ORDER ON x DESC" clause.
5597 ** If where.c is able to produce results sorted in this order, then
5598 ** add vdbe code to break out of the processing loop after the
5599 ** first iteration (since the first iteration of the loop is
5600 ** guaranteed to operate on the row with the minimum or maximum
5601 ** value of x, the only row required).
5603 ** A special flag must be passed to sqlite3WhereBegin() to slightly
5604 ** modify behavior as follows:
5606 ** + If the query is a "SELECT min(x)", then the loop coded by
5607 ** where.c should not iterate over any values with a NULL value
5608 ** for x.
5610 ** + The optimizer code in where.c (the thing that decides which
5611 ** index or indices to use) should place a different priority on
5612 ** satisfying the 'ORDER BY' clause than it does in other cases.
5613 ** Refer to code and comments in where.c for details.
5615 ExprList *pMinMax = 0;
5616 u8 flag = WHERE_ORDERBY_NORMAL;
5618 assert( p->pGroupBy==0 );
5619 assert( flag==0 );
5620 if( p->pHaving==0 ){
5621 flag = minMaxQuery(&sAggInfo, &pMinMax);
5623 assert( flag==0 || (pMinMax!=0 && pMinMax->nExpr==1) );
5625 if( flag ){
5626 pMinMax = sqlite3ExprListDup(db, pMinMax, 0);
5627 pDel = pMinMax;
5628 assert( db->mallocFailed || pMinMax!=0 );
5629 if( !db->mallocFailed ){
5630 pMinMax->a[0].sortOrder = flag!=WHERE_ORDERBY_MIN ?1:0;
5631 pMinMax->a[0].pExpr->op = TK_COLUMN;
5635 /* This case runs if the aggregate has no GROUP BY clause. The
5636 ** processing is much simpler since there is only a single row
5637 ** of output.
5639 resetAccumulator(pParse, &sAggInfo);
5640 pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, pMinMax,0,flag,0);
5641 if( pWInfo==0 ){
5642 sqlite3ExprListDelete(db, pDel);
5643 goto select_end;
5645 updateAccumulator(pParse, &sAggInfo);
5646 assert( pMinMax==0 || pMinMax->nExpr==1 );
5647 if( sqlite3WhereIsOrdered(pWInfo)>0 ){
5648 sqlite3VdbeGoto(v, sqlite3WhereBreakLabel(pWInfo));
5649 VdbeComment((v, "%s() by index",
5650 (flag==WHERE_ORDERBY_MIN?"min":"max")));
5652 sqlite3WhereEnd(pWInfo);
5653 finalizeAggFunctions(pParse, &sAggInfo);
5656 sSort.pOrderBy = 0;
5657 sqlite3ExprIfFalse(pParse, pHaving, addrEnd, SQLITE_JUMPIFNULL);
5658 selectInnerLoop(pParse, p, p->pEList, -1, 0, 0,
5659 pDest, addrEnd, addrEnd);
5660 sqlite3ExprListDelete(db, pDel);
5662 sqlite3VdbeResolveLabel(v, addrEnd);
5664 } /* endif aggregate query */
5666 if( sDistinct.eTnctType==WHERE_DISTINCT_UNORDERED ){
5667 explainTempTable(pParse, "DISTINCT");
5670 /* If there is an ORDER BY clause, then we need to sort the results
5671 ** and send them to the callback one by one.
5673 if( sSort.pOrderBy ){
5674 explainTempTable(pParse,
5675 sSort.nOBSat>0 ? "RIGHT PART OF ORDER BY":"ORDER BY");
5676 generateSortTail(pParse, p, &sSort, pEList->nExpr, pDest);
5679 /* Jump here to skip this query
5681 sqlite3VdbeResolveLabel(v, iEnd);
5683 /* The SELECT has been coded. If there is an error in the Parse structure,
5684 ** set the return code to 1. Otherwise 0. */
5685 rc = (pParse->nErr>0);
5687 /* Control jumps to here if an error is encountered above, or upon
5688 ** successful coding of the SELECT.
5690 select_end:
5691 explainSetInteger(pParse->iSelectId, iRestoreSelectId);
5693 /* Identify column names if results of the SELECT are to be output.
5695 if( rc==SQLITE_OK && pDest->eDest==SRT_Output ){
5696 generateColumnNames(pParse, pTabList, pEList);
5699 sqlite3DbFree(db, sAggInfo.aCol);
5700 sqlite3DbFree(db, sAggInfo.aFunc);
5701 #if SELECTTRACE_ENABLED
5702 SELECTTRACE(1,pParse,p,("end processing\n"));
5703 pParse->nSelectIndent--;
5704 #endif
5705 return rc;