4 ** The author disclaims copyright to this source code. In place of
5 ** a legal notice, here is a blessing:
7 ** May you do good and not evil.
8 ** May you find forgiveness for yourself and forgive others.
9 ** May you share freely, never taking more than you give.
11 *************************************************************************
12 ** This file contains routines used for analyzing expressions and
13 ** for generating VDBE code that evaluates expressions in SQLite.
15 #include "sqliteInt.h"
17 /* Forward declarations */
18 static void exprCodeBetween(Parse
*,Expr
*,int,void(*)(Parse
*,Expr
*,int,int),int);
19 static int exprCodeVector(Parse
*pParse
, Expr
*p
, int *piToFree
);
22 ** Return the affinity character for a single column of a table.
24 char sqlite3TableColumnAffinity(Table
*pTab
, int iCol
){
25 assert( iCol
<pTab
->nCol
);
26 return iCol
>=0 ? pTab
->aCol
[iCol
].affinity
: SQLITE_AFF_INTEGER
;
30 ** Return the 'affinity' of the expression pExpr if any.
32 ** If pExpr is a column, a reference to a column via an 'AS' alias,
33 ** or a sub-select with a column as the return value, then the
34 ** affinity of that column is returned. Otherwise, 0x00 is returned,
35 ** indicating no affinity for the expression.
37 ** i.e. the WHERE clause expressions in the following statements all
40 ** CREATE TABLE t1(a);
41 ** SELECT * FROM t1 WHERE a;
42 ** SELECT a AS b FROM t1 WHERE b;
43 ** SELECT * FROM t1 WHERE (select a from t1);
45 char sqlite3ExprAffinity(Expr
*pExpr
){
47 pExpr
= sqlite3ExprSkipCollate(pExpr
);
48 if( pExpr
->flags
& EP_Generic
) return 0;
51 assert( pExpr
->flags
&EP_xIsSelect
);
52 return sqlite3ExprAffinity(pExpr
->x
.pSelect
->pEList
->a
[0].pExpr
);
54 if( op
==TK_REGISTER
) op
= pExpr
->op2
;
55 #ifndef SQLITE_OMIT_CAST
57 assert( !ExprHasProperty(pExpr
, EP_IntValue
) );
58 return sqlite3AffinityType(pExpr
->u
.zToken
, 0);
61 if( (op
==TK_AGG_COLUMN
|| op
==TK_COLUMN
) && pExpr
->pTab
){
62 return sqlite3TableColumnAffinity(pExpr
->pTab
, pExpr
->iColumn
);
64 if( op
==TK_SELECT_COLUMN
){
65 assert( pExpr
->pLeft
->flags
&EP_xIsSelect
);
66 return sqlite3ExprAffinity(
67 pExpr
->pLeft
->x
.pSelect
->pEList
->a
[pExpr
->iColumn
].pExpr
70 return pExpr
->affinity
;
74 ** Set the collating sequence for expression pExpr to be the collating
75 ** sequence named by pToken. Return a pointer to a new Expr node that
76 ** implements the COLLATE operator.
78 ** If a memory allocation error occurs, that fact is recorded in pParse->db
79 ** and the pExpr parameter is returned unchanged.
81 Expr
*sqlite3ExprAddCollateToken(
82 Parse
*pParse
, /* Parsing context */
83 Expr
*pExpr
, /* Add the "COLLATE" clause to this expression */
84 const Token
*pCollName
, /* Name of collating sequence */
85 int dequote
/* True to dequote pCollName */
88 Expr
*pNew
= sqlite3ExprAlloc(pParse
->db
, TK_COLLATE
, pCollName
, dequote
);
91 pNew
->flags
|= EP_Collate
|EP_Skip
;
97 Expr
*sqlite3ExprAddCollateString(Parse
*pParse
, Expr
*pExpr
, const char *zC
){
100 sqlite3TokenInit(&s
, (char*)zC
);
101 return sqlite3ExprAddCollateToken(pParse
, pExpr
, &s
, 0);
105 ** Skip over any TK_COLLATE operators and any unlikely()
106 ** or likelihood() function at the root of an expression.
108 Expr
*sqlite3ExprSkipCollate(Expr
*pExpr
){
109 while( pExpr
&& ExprHasProperty(pExpr
, EP_Skip
) ){
110 if( ExprHasProperty(pExpr
, EP_Unlikely
) ){
111 assert( !ExprHasProperty(pExpr
, EP_xIsSelect
) );
112 assert( pExpr
->x
.pList
->nExpr
>0 );
113 assert( pExpr
->op
==TK_FUNCTION
);
114 pExpr
= pExpr
->x
.pList
->a
[0].pExpr
;
116 assert( pExpr
->op
==TK_COLLATE
);
117 pExpr
= pExpr
->pLeft
;
124 ** Return the collation sequence for the expression pExpr. If
125 ** there is no defined collating sequence, return NULL.
127 ** See also: sqlite3ExprNNCollSeq()
129 ** The sqlite3ExprNNCollSeq() works the same exact that it returns the
130 ** default collation if pExpr has no defined collation.
132 ** The collating sequence might be determined by a COLLATE operator
133 ** or by the presence of a column with a defined collating sequence.
134 ** COLLATE operators take first precedence. Left operands take
135 ** precedence over right operands.
137 CollSeq
*sqlite3ExprCollSeq(Parse
*pParse
, Expr
*pExpr
){
138 sqlite3
*db
= pParse
->db
;
143 if( p
->flags
& EP_Generic
) break;
144 if( op
==TK_CAST
|| op
==TK_UPLUS
){
148 if( op
==TK_COLLATE
|| (op
==TK_REGISTER
&& p
->op2
==TK_COLLATE
) ){
149 pColl
= sqlite3GetCollSeq(pParse
, ENC(db
), 0, p
->u
.zToken
);
152 if( (op
==TK_AGG_COLUMN
|| op
==TK_COLUMN
153 || op
==TK_REGISTER
|| op
==TK_TRIGGER
)
156 /* op==TK_REGISTER && p->pTab!=0 happens when pExpr was originally
157 ** a TK_COLUMN but was previously evaluated and cached in a register */
160 const char *zColl
= p
->pTab
->aCol
[j
].zColl
;
161 pColl
= sqlite3FindCollSeq(db
, ENC(db
), zColl
, 0);
165 if( p
->flags
& EP_Collate
){
166 if( p
->pLeft
&& (p
->pLeft
->flags
& EP_Collate
)!=0 ){
169 Expr
*pNext
= p
->pRight
;
170 /* The Expr.x union is never used at the same time as Expr.pRight */
171 assert( p
->x
.pList
==0 || p
->pRight
==0 );
172 /* p->flags holds EP_Collate and p->pLeft->flags does not. And
173 ** p->x.pSelect cannot. So if p->x.pLeft exists, it must hold at
174 ** least one EP_Collate. Thus the following two ALWAYS. */
175 if( p
->x
.pList
!=0 && ALWAYS(!ExprHasProperty(p
, EP_xIsSelect
)) ){
177 for(i
=0; ALWAYS(i
<p
->x
.pList
->nExpr
); i
++){
178 if( ExprHasProperty(p
->x
.pList
->a
[i
].pExpr
, EP_Collate
) ){
179 pNext
= p
->x
.pList
->a
[i
].pExpr
;
190 if( sqlite3CheckCollSeq(pParse
, pColl
) ){
197 ** Return the collation sequence for the expression pExpr. If
198 ** there is no defined collating sequence, return a pointer to the
199 ** defautl collation sequence.
201 ** See also: sqlite3ExprCollSeq()
203 ** The sqlite3ExprCollSeq() routine works the same except that it
204 ** returns NULL if there is no defined collation.
206 CollSeq
*sqlite3ExprNNCollSeq(Parse
*pParse
, Expr
*pExpr
){
207 CollSeq
*p
= sqlite3ExprCollSeq(pParse
, pExpr
);
208 if( p
==0 ) p
= pParse
->db
->pDfltColl
;
214 ** Return TRUE if the two expressions have equivalent collating sequences.
216 int sqlite3ExprCollSeqMatch(Parse
*pParse
, Expr
*pE1
, Expr
*pE2
){
217 CollSeq
*pColl1
= sqlite3ExprNNCollSeq(pParse
, pE1
);
218 CollSeq
*pColl2
= sqlite3ExprNNCollSeq(pParse
, pE2
);
219 return sqlite3StrICmp(pColl1
->zName
, pColl2
->zName
)==0;
223 ** pExpr is an operand of a comparison operator. aff2 is the
224 ** type affinity of the other operand. This routine returns the
225 ** type affinity that should be used for the comparison operator.
227 char sqlite3CompareAffinity(Expr
*pExpr
, char aff2
){
228 char aff1
= sqlite3ExprAffinity(pExpr
);
230 /* Both sides of the comparison are columns. If one has numeric
231 ** affinity, use that. Otherwise use no affinity.
233 if( sqlite3IsNumericAffinity(aff1
) || sqlite3IsNumericAffinity(aff2
) ){
234 return SQLITE_AFF_NUMERIC
;
236 return SQLITE_AFF_BLOB
;
238 }else if( !aff1
&& !aff2
){
239 /* Neither side of the comparison is a column. Compare the
242 return SQLITE_AFF_BLOB
;
244 /* One side is a column, the other is not. Use the columns affinity. */
245 assert( aff1
==0 || aff2
==0 );
246 return (aff1
+ aff2
);
251 ** pExpr is a comparison operator. Return the type affinity that should
252 ** be applied to both operands prior to doing the comparison.
254 static char comparisonAffinity(Expr
*pExpr
){
256 assert( pExpr
->op
==TK_EQ
|| pExpr
->op
==TK_IN
|| pExpr
->op
==TK_LT
||
257 pExpr
->op
==TK_GT
|| pExpr
->op
==TK_GE
|| pExpr
->op
==TK_LE
||
258 pExpr
->op
==TK_NE
|| pExpr
->op
==TK_IS
|| pExpr
->op
==TK_ISNOT
);
259 assert( pExpr
->pLeft
);
260 aff
= sqlite3ExprAffinity(pExpr
->pLeft
);
262 aff
= sqlite3CompareAffinity(pExpr
->pRight
, aff
);
263 }else if( ExprHasProperty(pExpr
, EP_xIsSelect
) ){
264 aff
= sqlite3CompareAffinity(pExpr
->x
.pSelect
->pEList
->a
[0].pExpr
, aff
);
266 aff
= SQLITE_AFF_BLOB
;
272 ** pExpr is a comparison expression, eg. '=', '<', IN(...) etc.
273 ** idx_affinity is the affinity of an indexed column. Return true
274 ** if the index with affinity idx_affinity may be used to implement
275 ** the comparison in pExpr.
277 int sqlite3IndexAffinityOk(Expr
*pExpr
, char idx_affinity
){
278 char aff
= comparisonAffinity(pExpr
);
280 case SQLITE_AFF_BLOB
:
282 case SQLITE_AFF_TEXT
:
283 return idx_affinity
==SQLITE_AFF_TEXT
;
285 return sqlite3IsNumericAffinity(idx_affinity
);
290 ** Return the P5 value that should be used for a binary comparison
291 ** opcode (OP_Eq, OP_Ge etc.) used to compare pExpr1 and pExpr2.
293 static u8
binaryCompareP5(Expr
*pExpr1
, Expr
*pExpr2
, int jumpIfNull
){
294 u8 aff
= (char)sqlite3ExprAffinity(pExpr2
);
295 aff
= (u8
)sqlite3CompareAffinity(pExpr1
, aff
) | (u8
)jumpIfNull
;
300 ** Return a pointer to the collation sequence that should be used by
301 ** a binary comparison operator comparing pLeft and pRight.
303 ** If the left hand expression has a collating sequence type, then it is
304 ** used. Otherwise the collation sequence for the right hand expression
305 ** is used, or the default (BINARY) if neither expression has a collating
308 ** Argument pRight (but not pLeft) may be a null pointer. In this case,
309 ** it is not considered.
311 CollSeq
*sqlite3BinaryCompareCollSeq(
318 if( pLeft
->flags
& EP_Collate
){
319 pColl
= sqlite3ExprCollSeq(pParse
, pLeft
);
320 }else if( pRight
&& (pRight
->flags
& EP_Collate
)!=0 ){
321 pColl
= sqlite3ExprCollSeq(pParse
, pRight
);
323 pColl
= sqlite3ExprCollSeq(pParse
, pLeft
);
325 pColl
= sqlite3ExprCollSeq(pParse
, pRight
);
332 ** Generate code for a comparison operator.
334 static int codeCompare(
335 Parse
*pParse
, /* The parsing (and code generating) context */
336 Expr
*pLeft
, /* The left operand */
337 Expr
*pRight
, /* The right operand */
338 int opcode
, /* The comparison opcode */
339 int in1
, int in2
, /* Register holding operands */
340 int dest
, /* Jump here if true. */
341 int jumpIfNull
/* If true, jump if either operand is NULL */
347 p4
= sqlite3BinaryCompareCollSeq(pParse
, pLeft
, pRight
);
348 p5
= binaryCompareP5(pLeft
, pRight
, jumpIfNull
);
349 addr
= sqlite3VdbeAddOp4(pParse
->pVdbe
, opcode
, in2
, dest
, in1
,
350 (void*)p4
, P4_COLLSEQ
);
351 sqlite3VdbeChangeP5(pParse
->pVdbe
, (u8
)p5
);
356 ** Return true if expression pExpr is a vector, or false otherwise.
358 ** A vector is defined as any expression that results in two or more
359 ** columns of result. Every TK_VECTOR node is an vector because the
360 ** parser will not generate a TK_VECTOR with fewer than two entries.
361 ** But a TK_SELECT might be either a vector or a scalar. It is only
362 ** considered a vector if it has two or more result columns.
364 int sqlite3ExprIsVector(Expr
*pExpr
){
365 return sqlite3ExprVectorSize(pExpr
)>1;
369 ** If the expression passed as the only argument is of type TK_VECTOR
370 ** return the number of expressions in the vector. Or, if the expression
371 ** is a sub-select, return the number of columns in the sub-select. For
372 ** any other type of expression, return 1.
374 int sqlite3ExprVectorSize(Expr
*pExpr
){
376 if( op
==TK_REGISTER
) op
= pExpr
->op2
;
378 return pExpr
->x
.pList
->nExpr
;
379 }else if( op
==TK_SELECT
){
380 return pExpr
->x
.pSelect
->pEList
->nExpr
;
387 ** Return a pointer to a subexpression of pVector that is the i-th
388 ** column of the vector (numbered starting with 0). The caller must
389 ** ensure that i is within range.
391 ** If pVector is really a scalar (and "scalar" here includes subqueries
392 ** that return a single column!) then return pVector unmodified.
394 ** pVector retains ownership of the returned subexpression.
396 ** If the vector is a (SELECT ...) then the expression returned is
397 ** just the expression for the i-th term of the result set, and may
398 ** not be ready for evaluation because the table cursor has not yet
401 Expr
*sqlite3VectorFieldSubexpr(Expr
*pVector
, int i
){
402 assert( i
<sqlite3ExprVectorSize(pVector
) );
403 if( sqlite3ExprIsVector(pVector
) ){
404 assert( pVector
->op2
==0 || pVector
->op
==TK_REGISTER
);
405 if( pVector
->op
==TK_SELECT
|| pVector
->op2
==TK_SELECT
){
406 return pVector
->x
.pSelect
->pEList
->a
[i
].pExpr
;
408 return pVector
->x
.pList
->a
[i
].pExpr
;
415 ** Compute and return a new Expr object which when passed to
416 ** sqlite3ExprCode() will generate all necessary code to compute
417 ** the iField-th column of the vector expression pVector.
419 ** It is ok for pVector to be a scalar (as long as iField==0).
420 ** In that case, this routine works like sqlite3ExprDup().
422 ** The caller owns the returned Expr object and is responsible for
423 ** ensuring that the returned value eventually gets freed.
425 ** The caller retains ownership of pVector. If pVector is a TK_SELECT,
426 ** then the returned object will reference pVector and so pVector must remain
427 ** valid for the life of the returned object. If pVector is a TK_VECTOR
428 ** or a scalar expression, then it can be deleted as soon as this routine
431 ** A trick to cause a TK_SELECT pVector to be deleted together with
432 ** the returned Expr object is to attach the pVector to the pRight field
433 ** of the returned TK_SELECT_COLUMN Expr object.
435 Expr
*sqlite3ExprForVectorField(
436 Parse
*pParse
, /* Parsing context */
437 Expr
*pVector
, /* The vector. List of expressions or a sub-SELECT */
438 int iField
/* Which column of the vector to return */
441 if( pVector
->op
==TK_SELECT
){
442 assert( pVector
->flags
& EP_xIsSelect
);
443 /* The TK_SELECT_COLUMN Expr node:
445 ** pLeft: pVector containing TK_SELECT. Not deleted.
446 ** pRight: not used. But recursively deleted.
447 ** iColumn: Index of a column in pVector
448 ** iTable: 0 or the number of columns on the LHS of an assignment
449 ** pLeft->iTable: First in an array of register holding result, or 0
450 ** if the result is not yet computed.
452 ** sqlite3ExprDelete() specifically skips the recursive delete of
453 ** pLeft on TK_SELECT_COLUMN nodes. But pRight is followed, so pVector
454 ** can be attached to pRight to cause this node to take ownership of
455 ** pVector. Typically there will be multiple TK_SELECT_COLUMN nodes
456 ** with the same pLeft pointer to the pVector, but only one of them
457 ** will own the pVector.
459 pRet
= sqlite3PExpr(pParse
, TK_SELECT_COLUMN
, 0, 0);
461 pRet
->iColumn
= iField
;
462 pRet
->pLeft
= pVector
;
464 assert( pRet
==0 || pRet
->iTable
==0 );
466 if( pVector
->op
==TK_VECTOR
) pVector
= pVector
->x
.pList
->a
[iField
].pExpr
;
467 pRet
= sqlite3ExprDup(pParse
->db
, pVector
, 0);
473 ** If expression pExpr is of type TK_SELECT, generate code to evaluate
474 ** it. Return the register in which the result is stored (or, if the
475 ** sub-select returns more than one column, the first in an array
476 ** of registers in which the result is stored).
478 ** If pExpr is not a TK_SELECT expression, return 0.
480 static int exprCodeSubselect(Parse
*pParse
, Expr
*pExpr
){
482 #ifndef SQLITE_OMIT_SUBQUERY
483 if( pExpr
->op
==TK_SELECT
){
484 reg
= sqlite3CodeSubselect(pParse
, pExpr
, 0, 0);
491 ** Argument pVector points to a vector expression - either a TK_VECTOR
492 ** or TK_SELECT that returns more than one column. This function returns
493 ** the register number of a register that contains the value of
494 ** element iField of the vector.
496 ** If pVector is a TK_SELECT expression, then code for it must have
497 ** already been generated using the exprCodeSubselect() routine. In this
498 ** case parameter regSelect should be the first in an array of registers
499 ** containing the results of the sub-select.
501 ** If pVector is of type TK_VECTOR, then code for the requested field
502 ** is generated. In this case (*pRegFree) may be set to the number of
503 ** a temporary register to be freed by the caller before returning.
505 ** Before returning, output parameter (*ppExpr) is set to point to the
506 ** Expr object corresponding to element iElem of the vector.
508 static int exprVectorRegister(
509 Parse
*pParse
, /* Parse context */
510 Expr
*pVector
, /* Vector to extract element from */
511 int iField
, /* Field to extract from pVector */
512 int regSelect
, /* First in array of registers */
513 Expr
**ppExpr
, /* OUT: Expression element */
514 int *pRegFree
/* OUT: Temp register to free */
517 assert( op
==TK_VECTOR
|| op
==TK_REGISTER
|| op
==TK_SELECT
);
518 if( op
==TK_REGISTER
){
519 *ppExpr
= sqlite3VectorFieldSubexpr(pVector
, iField
);
520 return pVector
->iTable
+iField
;
523 *ppExpr
= pVector
->x
.pSelect
->pEList
->a
[iField
].pExpr
;
524 return regSelect
+iField
;
526 *ppExpr
= pVector
->x
.pList
->a
[iField
].pExpr
;
527 return sqlite3ExprCodeTemp(pParse
, *ppExpr
, pRegFree
);
531 ** Expression pExpr is a comparison between two vector values. Compute
532 ** the result of the comparison (1, 0, or NULL) and write that
533 ** result into register dest.
535 ** The caller must satisfy the following preconditions:
537 ** if pExpr->op==TK_IS: op==TK_EQ and p5==SQLITE_NULLEQ
538 ** if pExpr->op==TK_ISNOT: op==TK_NE and p5==SQLITE_NULLEQ
539 ** otherwise: op==pExpr->op and p5==0
541 static void codeVectorCompare(
542 Parse
*pParse
, /* Code generator context */
543 Expr
*pExpr
, /* The comparison operation */
544 int dest
, /* Write results into this register */
545 u8 op
, /* Comparison operator */
546 u8 p5
/* SQLITE_NULLEQ or zero */
548 Vdbe
*v
= pParse
->pVdbe
;
549 Expr
*pLeft
= pExpr
->pLeft
;
550 Expr
*pRight
= pExpr
->pRight
;
551 int nLeft
= sqlite3ExprVectorSize(pLeft
);
556 int addrDone
= sqlite3VdbeMakeLabel(v
);
558 if( nLeft
!=sqlite3ExprVectorSize(pRight
) ){
559 sqlite3ErrorMsg(pParse
, "row value misused");
562 assert( pExpr
->op
==TK_EQ
|| pExpr
->op
==TK_NE
563 || pExpr
->op
==TK_IS
|| pExpr
->op
==TK_ISNOT
564 || pExpr
->op
==TK_LT
|| pExpr
->op
==TK_GT
565 || pExpr
->op
==TK_LE
|| pExpr
->op
==TK_GE
567 assert( pExpr
->op
==op
|| (pExpr
->op
==TK_IS
&& op
==TK_EQ
)
568 || (pExpr
->op
==TK_ISNOT
&& op
==TK_NE
) );
569 assert( p5
==0 || pExpr
->op
!=op
);
570 assert( p5
==SQLITE_NULLEQ
|| pExpr
->op
==op
);
572 p5
|= SQLITE_STOREP2
;
573 if( opx
==TK_LE
) opx
= TK_LT
;
574 if( opx
==TK_GE
) opx
= TK_GT
;
576 regLeft
= exprCodeSubselect(pParse
, pLeft
);
577 regRight
= exprCodeSubselect(pParse
, pRight
);
579 for(i
=0; 1 /*Loop exits by "break"*/; i
++){
580 int regFree1
= 0, regFree2
= 0;
583 assert( i
>=0 && i
<nLeft
);
584 if( i
>0 ) sqlite3ExprCachePush(pParse
);
585 r1
= exprVectorRegister(pParse
, pLeft
, i
, regLeft
, &pL
, ®Free1
);
586 r2
= exprVectorRegister(pParse
, pRight
, i
, regRight
, &pR
, ®Free2
);
587 codeCompare(pParse
, pL
, pR
, opx
, r1
, r2
, dest
, p5
);
588 testcase(op
==OP_Lt
); VdbeCoverageIf(v
,op
==OP_Lt
);
589 testcase(op
==OP_Le
); VdbeCoverageIf(v
,op
==OP_Le
);
590 testcase(op
==OP_Gt
); VdbeCoverageIf(v
,op
==OP_Gt
);
591 testcase(op
==OP_Ge
); VdbeCoverageIf(v
,op
==OP_Ge
);
592 testcase(op
==OP_Eq
); VdbeCoverageIf(v
,op
==OP_Eq
);
593 testcase(op
==OP_Ne
); VdbeCoverageIf(v
,op
==OP_Ne
);
594 sqlite3ReleaseTempReg(pParse
, regFree1
);
595 sqlite3ReleaseTempReg(pParse
, regFree2
);
596 if( i
>0 ) sqlite3ExprCachePop(pParse
);
601 sqlite3VdbeAddOp2(v
, OP_IfNot
, dest
, addrDone
); VdbeCoverage(v
);
602 p5
|= SQLITE_KEEPNULL
;
603 }else if( opx
==TK_NE
){
604 sqlite3VdbeAddOp2(v
, OP_If
, dest
, addrDone
); VdbeCoverage(v
);
605 p5
|= SQLITE_KEEPNULL
;
607 assert( op
==TK_LT
|| op
==TK_GT
|| op
==TK_LE
|| op
==TK_GE
);
608 sqlite3VdbeAddOp2(v
, OP_ElseNotEq
, 0, addrDone
);
609 VdbeCoverageIf(v
, op
==TK_LT
);
610 VdbeCoverageIf(v
, op
==TK_GT
);
611 VdbeCoverageIf(v
, op
==TK_LE
);
612 VdbeCoverageIf(v
, op
==TK_GE
);
613 if( i
==nLeft
-2 ) opx
= op
;
616 sqlite3VdbeResolveLabel(v
, addrDone
);
619 #if SQLITE_MAX_EXPR_DEPTH>0
621 ** Check that argument nHeight is less than or equal to the maximum
622 ** expression depth allowed. If it is not, leave an error message in
625 int sqlite3ExprCheckHeight(Parse
*pParse
, int nHeight
){
627 int mxHeight
= pParse
->db
->aLimit
[SQLITE_LIMIT_EXPR_DEPTH
];
628 if( nHeight
>mxHeight
){
629 sqlite3ErrorMsg(pParse
,
630 "Expression tree is too large (maximum depth %d)", mxHeight
637 /* The following three functions, heightOfExpr(), heightOfExprList()
638 ** and heightOfSelect(), are used to determine the maximum height
639 ** of any expression tree referenced by the structure passed as the
642 ** If this maximum height is greater than the current value pointed
643 ** to by pnHeight, the second parameter, then set *pnHeight to that
646 static void heightOfExpr(Expr
*p
, int *pnHeight
){
648 if( p
->nHeight
>*pnHeight
){
649 *pnHeight
= p
->nHeight
;
653 static void heightOfExprList(ExprList
*p
, int *pnHeight
){
656 for(i
=0; i
<p
->nExpr
; i
++){
657 heightOfExpr(p
->a
[i
].pExpr
, pnHeight
);
661 static void heightOfSelect(Select
*p
, int *pnHeight
){
663 heightOfExpr(p
->pWhere
, pnHeight
);
664 heightOfExpr(p
->pHaving
, pnHeight
);
665 heightOfExpr(p
->pLimit
, pnHeight
);
666 heightOfExpr(p
->pOffset
, pnHeight
);
667 heightOfExprList(p
->pEList
, pnHeight
);
668 heightOfExprList(p
->pGroupBy
, pnHeight
);
669 heightOfExprList(p
->pOrderBy
, pnHeight
);
670 heightOfSelect(p
->pPrior
, pnHeight
);
675 ** Set the Expr.nHeight variable in the structure passed as an
676 ** argument. An expression with no children, Expr.pList or
677 ** Expr.pSelect member has a height of 1. Any other expression
678 ** has a height equal to the maximum height of any other
679 ** referenced Expr plus one.
681 ** Also propagate EP_Propagate flags up from Expr.x.pList to Expr.flags,
684 static void exprSetHeight(Expr
*p
){
686 heightOfExpr(p
->pLeft
, &nHeight
);
687 heightOfExpr(p
->pRight
, &nHeight
);
688 if( ExprHasProperty(p
, EP_xIsSelect
) ){
689 heightOfSelect(p
->x
.pSelect
, &nHeight
);
690 }else if( p
->x
.pList
){
691 heightOfExprList(p
->x
.pList
, &nHeight
);
692 p
->flags
|= EP_Propagate
& sqlite3ExprListFlags(p
->x
.pList
);
694 p
->nHeight
= nHeight
+ 1;
698 ** Set the Expr.nHeight variable using the exprSetHeight() function. If
699 ** the height is greater than the maximum allowed expression depth,
700 ** leave an error in pParse.
702 ** Also propagate all EP_Propagate flags from the Expr.x.pList into
705 void sqlite3ExprSetHeightAndFlags(Parse
*pParse
, Expr
*p
){
706 if( pParse
->nErr
) return;
708 sqlite3ExprCheckHeight(pParse
, p
->nHeight
);
712 ** Return the maximum height of any expression tree referenced
713 ** by the select statement passed as an argument.
715 int sqlite3SelectExprHeight(Select
*p
){
717 heightOfSelect(p
, &nHeight
);
720 #else /* ABOVE: Height enforcement enabled. BELOW: Height enforcement off */
722 ** Propagate all EP_Propagate flags from the Expr.x.pList into
725 void sqlite3ExprSetHeightAndFlags(Parse
*pParse
, Expr
*p
){
726 if( p
&& p
->x
.pList
&& !ExprHasProperty(p
, EP_xIsSelect
) ){
727 p
->flags
|= EP_Propagate
& sqlite3ExprListFlags(p
->x
.pList
);
730 #define exprSetHeight(y)
731 #endif /* SQLITE_MAX_EXPR_DEPTH>0 */
734 ** This routine is the core allocator for Expr nodes.
736 ** Construct a new expression node and return a pointer to it. Memory
737 ** for this node and for the pToken argument is a single allocation
738 ** obtained from sqlite3DbMalloc(). The calling function
739 ** is responsible for making sure the node eventually gets freed.
741 ** If dequote is true, then the token (if it exists) is dequoted.
742 ** If dequote is false, no dequoting is performed. The deQuote
743 ** parameter is ignored if pToken is NULL or if the token does not
744 ** appear to be quoted. If the quotes were of the form "..." (double-quotes)
745 ** then the EP_DblQuoted flag is set on the expression node.
747 ** Special case: If op==TK_INTEGER and pToken points to a string that
748 ** can be translated into a 32-bit integer, then the token is not
749 ** stored in u.zToken. Instead, the integer values is written
750 ** into u.iValue and the EP_IntValue flag is set. No extra storage
751 ** is allocated to hold the integer text and the dequote flag is ignored.
753 Expr
*sqlite3ExprAlloc(
754 sqlite3
*db
, /* Handle for sqlite3DbMallocRawNN() */
755 int op
, /* Expression opcode */
756 const Token
*pToken
, /* Token argument. Might be NULL */
757 int dequote
/* True to dequote */
765 if( op
!=TK_INTEGER
|| pToken
->z
==0
766 || sqlite3GetInt32(pToken
->z
, &iValue
)==0 ){
767 nExtra
= pToken
->n
+1;
771 pNew
= sqlite3DbMallocRawNN(db
, sizeof(Expr
)+nExtra
);
773 memset(pNew
, 0, sizeof(Expr
));
778 pNew
->flags
|= EP_IntValue
|EP_Leaf
;
779 pNew
->u
.iValue
= iValue
;
781 pNew
->u
.zToken
= (char*)&pNew
[1];
782 assert( pToken
->z
!=0 || pToken
->n
==0 );
783 if( pToken
->n
) memcpy(pNew
->u
.zToken
, pToken
->z
, pToken
->n
);
784 pNew
->u
.zToken
[pToken
->n
] = 0;
785 if( dequote
&& sqlite3Isquote(pNew
->u
.zToken
[0]) ){
786 if( pNew
->u
.zToken
[0]=='"' ) pNew
->flags
|= EP_DblQuoted
;
787 sqlite3Dequote(pNew
->u
.zToken
);
791 #if SQLITE_MAX_EXPR_DEPTH>0
799 ** Allocate a new expression node from a zero-terminated token that has
800 ** already been dequoted.
803 sqlite3
*db
, /* Handle for sqlite3DbMallocZero() (may be null) */
804 int op
, /* Expression opcode */
805 const char *zToken
/* Token argument. Might be NULL */
809 x
.n
= sqlite3Strlen30(zToken
);
810 return sqlite3ExprAlloc(db
, op
, &x
, 0);
814 ** Attach subtrees pLeft and pRight to the Expr node pRoot.
816 ** If pRoot==NULL that means that a memory allocation error has occurred.
817 ** In that case, delete the subtrees pLeft and pRight.
819 void sqlite3ExprAttachSubtrees(
826 assert( db
->mallocFailed
);
827 sqlite3ExprDelete(db
, pLeft
);
828 sqlite3ExprDelete(db
, pRight
);
831 pRoot
->pRight
= pRight
;
832 pRoot
->flags
|= EP_Propagate
& pRight
->flags
;
835 pRoot
->pLeft
= pLeft
;
836 pRoot
->flags
|= EP_Propagate
& pLeft
->flags
;
838 exprSetHeight(pRoot
);
843 ** Allocate an Expr node which joins as many as two subtrees.
845 ** One or both of the subtrees can be NULL. Return a pointer to the new
846 ** Expr node. Or, if an OOM error occurs, set pParse->db->mallocFailed,
847 ** free the subtrees and return NULL.
850 Parse
*pParse
, /* Parsing context */
851 int op
, /* Expression opcode */
852 Expr
*pLeft
, /* Left operand */
853 Expr
*pRight
/* Right operand */
856 if( op
==TK_AND
&& pParse
->nErr
==0 ){
857 /* Take advantage of short-circuit false optimization for AND */
858 p
= sqlite3ExprAnd(pParse
->db
, pLeft
, pRight
);
860 p
= sqlite3DbMallocRawNN(pParse
->db
, sizeof(Expr
));
862 memset(p
, 0, sizeof(Expr
));
863 p
->op
= op
& TKFLG_MASK
;
866 sqlite3ExprAttachSubtrees(pParse
->db
, p
, pLeft
, pRight
);
869 sqlite3ExprCheckHeight(pParse
, p
->nHeight
);
875 ** Add pSelect to the Expr.x.pSelect field. Or, if pExpr is NULL (due
876 ** do a memory allocation failure) then delete the pSelect object.
878 void sqlite3PExprAddSelect(Parse
*pParse
, Expr
*pExpr
, Select
*pSelect
){
880 pExpr
->x
.pSelect
= pSelect
;
881 ExprSetProperty(pExpr
, EP_xIsSelect
|EP_Subquery
);
882 sqlite3ExprSetHeightAndFlags(pParse
, pExpr
);
884 assert( pParse
->db
->mallocFailed
);
885 sqlite3SelectDelete(pParse
->db
, pSelect
);
891 ** If the expression is always either TRUE or FALSE (respectively),
892 ** then return 1. If one cannot determine the truth value of the
893 ** expression at compile-time return 0.
895 ** This is an optimization. If is OK to return 0 here even if
896 ** the expression really is always false or false (a false negative).
897 ** But it is a bug to return 1 if the expression might have different
898 ** boolean values in different circumstances (a false positive.)
900 ** Note that if the expression is part of conditional for a
901 ** LEFT JOIN, then we cannot determine at compile-time whether or not
902 ** is it true or false, so always return 0.
904 static int exprAlwaysTrue(Expr
*p
){
906 if( ExprHasProperty(p
, EP_FromJoin
) ) return 0;
907 if( !sqlite3ExprIsInteger(p
, &v
) ) return 0;
910 static int exprAlwaysFalse(Expr
*p
){
912 if( ExprHasProperty(p
, EP_FromJoin
) ) return 0;
913 if( !sqlite3ExprIsInteger(p
, &v
) ) return 0;
918 ** Join two expressions using an AND operator. If either expression is
919 ** NULL, then just return the other expression.
921 ** If one side or the other of the AND is known to be false, then instead
922 ** of returning an AND expression, just return a constant expression with
925 Expr
*sqlite3ExprAnd(sqlite3
*db
, Expr
*pLeft
, Expr
*pRight
){
928 }else if( pRight
==0 ){
930 }else if( exprAlwaysFalse(pLeft
) || exprAlwaysFalse(pRight
) ){
931 sqlite3ExprDelete(db
, pLeft
);
932 sqlite3ExprDelete(db
, pRight
);
933 return sqlite3ExprAlloc(db
, TK_INTEGER
, &sqlite3IntTokens
[0], 0);
935 Expr
*pNew
= sqlite3ExprAlloc(db
, TK_AND
, 0, 0);
936 sqlite3ExprAttachSubtrees(db
, pNew
, pLeft
, pRight
);
942 ** Construct a new expression node for a function with multiple
945 Expr
*sqlite3ExprFunction(Parse
*pParse
, ExprList
*pList
, Token
*pToken
){
947 sqlite3
*db
= pParse
->db
;
949 pNew
= sqlite3ExprAlloc(db
, TK_FUNCTION
, pToken
, 1);
951 sqlite3ExprListDelete(db
, pList
); /* Avoid memory leak when malloc fails */
954 pNew
->x
.pList
= pList
;
955 assert( !ExprHasProperty(pNew
, EP_xIsSelect
) );
956 sqlite3ExprSetHeightAndFlags(pParse
, pNew
);
961 ** Assign a variable number to an expression that encodes a wildcard
962 ** in the original SQL statement.
964 ** Wildcards consisting of a single "?" are assigned the next sequential
967 ** Wildcards of the form "?nnn" are assigned the number "nnn". We make
968 ** sure "nnn" is not too big to avoid a denial of service attack when
969 ** the SQL statement comes from an external source.
971 ** Wildcards of the form ":aaa", "@aaa", or "$aaa" are assigned the same number
972 ** as the previous instance of the same wildcard. Or if this is the first
973 ** instance of the wildcard, the next sequential variable number is
976 void sqlite3ExprAssignVarNumber(Parse
*pParse
, Expr
*pExpr
, u32 n
){
977 sqlite3
*db
= pParse
->db
;
981 if( pExpr
==0 ) return;
982 assert( !ExprHasProperty(pExpr
, EP_IntValue
|EP_Reduced
|EP_TokenOnly
) );
986 assert( n
==(u32
)sqlite3Strlen30(z
) );
988 /* Wildcard of the form "?". Assign the next variable number */
990 x
= (ynVar
)(++pParse
->nVar
);
994 /* Wildcard of the form "?nnn". Convert "nnn" to an integer and
995 ** use it as the variable number */
998 if( n
==2 ){ /*OPTIMIZATION-IF-TRUE*/
999 i
= z
[1]-'0'; /* The common case of ?N for a single digit N */
1002 bOk
= 0==sqlite3Atoi64(&z
[1], &i
, n
-1, SQLITE_UTF8
);
1006 testcase( i
==db
->aLimit
[SQLITE_LIMIT_VARIABLE_NUMBER
]-1 );
1007 testcase( i
==db
->aLimit
[SQLITE_LIMIT_VARIABLE_NUMBER
] );
1008 if( bOk
==0 || i
<1 || i
>db
->aLimit
[SQLITE_LIMIT_VARIABLE_NUMBER
] ){
1009 sqlite3ErrorMsg(pParse
, "variable number must be between ?1 and ?%d",
1010 db
->aLimit
[SQLITE_LIMIT_VARIABLE_NUMBER
]);
1014 if( x
>pParse
->nVar
){
1015 pParse
->nVar
= (int)x
;
1017 }else if( sqlite3VListNumToName(pParse
->pVList
, x
)==0 ){
1021 /* Wildcards like ":aaa", "$aaa" or "@aaa". Reuse the same variable
1022 ** number as the prior appearance of the same name, or if the name
1023 ** has never appeared before, reuse the same variable number
1025 x
= (ynVar
)sqlite3VListNameToNum(pParse
->pVList
, z
, n
);
1027 x
= (ynVar
)(++pParse
->nVar
);
1032 pParse
->pVList
= sqlite3VListAdd(db
, pParse
->pVList
, z
, n
, x
);
1036 if( x
>db
->aLimit
[SQLITE_LIMIT_VARIABLE_NUMBER
] ){
1037 sqlite3ErrorMsg(pParse
, "too many SQL variables");
1042 ** Recursively delete an expression tree.
1044 static SQLITE_NOINLINE
void sqlite3ExprDeleteNN(sqlite3
*db
, Expr
*p
){
1046 /* Sanity check: Assert that the IntValue is non-negative if it exists */
1047 assert( !ExprHasProperty(p
, EP_IntValue
) || p
->u
.iValue
>=0 );
1049 if( ExprHasProperty(p
, EP_Leaf
) && !ExprHasProperty(p
, EP_TokenOnly
) ){
1050 assert( p
->pLeft
==0 );
1051 assert( p
->pRight
==0 );
1052 assert( p
->x
.pSelect
==0 );
1055 if( !ExprHasProperty(p
, (EP_TokenOnly
|EP_Leaf
)) ){
1056 /* The Expr.x union is never used at the same time as Expr.pRight */
1057 assert( p
->x
.pList
==0 || p
->pRight
==0 );
1058 if( p
->pLeft
&& p
->op
!=TK_SELECT_COLUMN
) sqlite3ExprDeleteNN(db
, p
->pLeft
);
1060 sqlite3ExprDeleteNN(db
, p
->pRight
);
1061 }else if( ExprHasProperty(p
, EP_xIsSelect
) ){
1062 sqlite3SelectDelete(db
, p
->x
.pSelect
);
1064 sqlite3ExprListDelete(db
, p
->x
.pList
);
1067 if( ExprHasProperty(p
, EP_MemToken
) ) sqlite3DbFree(db
, p
->u
.zToken
);
1068 if( !ExprHasProperty(p
, EP_Static
) ){
1069 sqlite3DbFreeNN(db
, p
);
1072 void sqlite3ExprDelete(sqlite3
*db
, Expr
*p
){
1073 if( p
) sqlite3ExprDeleteNN(db
, p
);
1077 ** Return the number of bytes allocated for the expression structure
1078 ** passed as the first argument. This is always one of EXPR_FULLSIZE,
1079 ** EXPR_REDUCEDSIZE or EXPR_TOKENONLYSIZE.
1081 static int exprStructSize(Expr
*p
){
1082 if( ExprHasProperty(p
, EP_TokenOnly
) ) return EXPR_TOKENONLYSIZE
;
1083 if( ExprHasProperty(p
, EP_Reduced
) ) return EXPR_REDUCEDSIZE
;
1084 return EXPR_FULLSIZE
;
1088 ** The dupedExpr*Size() routines each return the number of bytes required
1089 ** to store a copy of an expression or expression tree. They differ in
1090 ** how much of the tree is measured.
1092 ** dupedExprStructSize() Size of only the Expr structure
1093 ** dupedExprNodeSize() Size of Expr + space for token
1094 ** dupedExprSize() Expr + token + subtree components
1096 ***************************************************************************
1098 ** The dupedExprStructSize() function returns two values OR-ed together:
1099 ** (1) the space required for a copy of the Expr structure only and
1100 ** (2) the EP_xxx flags that indicate what the structure size should be.
1101 ** The return values is always one of:
1104 ** EXPR_REDUCEDSIZE | EP_Reduced
1105 ** EXPR_TOKENONLYSIZE | EP_TokenOnly
1107 ** The size of the structure can be found by masking the return value
1108 ** of this routine with 0xfff. The flags can be found by masking the
1109 ** return value with EP_Reduced|EP_TokenOnly.
1111 ** Note that with flags==EXPRDUP_REDUCE, this routines works on full-size
1112 ** (unreduced) Expr objects as they or originally constructed by the parser.
1113 ** During expression analysis, extra information is computed and moved into
1114 ** later parts of teh Expr object and that extra information might get chopped
1115 ** off if the expression is reduced. Note also that it does not work to
1116 ** make an EXPRDUP_REDUCE copy of a reduced expression. It is only legal
1117 ** to reduce a pristine expression tree from the parser. The implementation
1118 ** of dupedExprStructSize() contain multiple assert() statements that attempt
1119 ** to enforce this constraint.
1121 static int dupedExprStructSize(Expr
*p
, int flags
){
1123 assert( flags
==EXPRDUP_REDUCE
|| flags
==0 ); /* Only one flag value allowed */
1124 assert( EXPR_FULLSIZE
<=0xfff );
1125 assert( (0xfff & (EP_Reduced
|EP_TokenOnly
))==0 );
1126 if( 0==flags
|| p
->op
==TK_SELECT_COLUMN
){
1127 nSize
= EXPR_FULLSIZE
;
1129 assert( !ExprHasProperty(p
, EP_TokenOnly
|EP_Reduced
) );
1130 assert( !ExprHasProperty(p
, EP_FromJoin
) );
1131 assert( !ExprHasProperty(p
, EP_MemToken
) );
1132 assert( !ExprHasProperty(p
, EP_NoReduce
) );
1133 if( p
->pLeft
|| p
->x
.pList
){
1134 nSize
= EXPR_REDUCEDSIZE
| EP_Reduced
;
1136 assert( p
->pRight
==0 );
1137 nSize
= EXPR_TOKENONLYSIZE
| EP_TokenOnly
;
1144 ** This function returns the space in bytes required to store the copy
1145 ** of the Expr structure and a copy of the Expr.u.zToken string (if that
1146 ** string is defined.)
1148 static int dupedExprNodeSize(Expr
*p
, int flags
){
1149 int nByte
= dupedExprStructSize(p
, flags
) & 0xfff;
1150 if( !ExprHasProperty(p
, EP_IntValue
) && p
->u
.zToken
){
1151 nByte
+= sqlite3Strlen30(p
->u
.zToken
)+1;
1153 return ROUND8(nByte
);
1157 ** Return the number of bytes required to create a duplicate of the
1158 ** expression passed as the first argument. The second argument is a
1159 ** mask containing EXPRDUP_XXX flags.
1161 ** The value returned includes space to create a copy of the Expr struct
1162 ** itself and the buffer referred to by Expr.u.zToken, if any.
1164 ** If the EXPRDUP_REDUCE flag is set, then the return value includes
1165 ** space to duplicate all Expr nodes in the tree formed by Expr.pLeft
1166 ** and Expr.pRight variables (but not for any structures pointed to or
1167 ** descended from the Expr.x.pList or Expr.x.pSelect variables).
1169 static int dupedExprSize(Expr
*p
, int flags
){
1172 nByte
= dupedExprNodeSize(p
, flags
);
1173 if( flags
&EXPRDUP_REDUCE
){
1174 nByte
+= dupedExprSize(p
->pLeft
, flags
) + dupedExprSize(p
->pRight
, flags
);
1181 ** This function is similar to sqlite3ExprDup(), except that if pzBuffer
1182 ** is not NULL then *pzBuffer is assumed to point to a buffer large enough
1183 ** to store the copy of expression p, the copies of p->u.zToken
1184 ** (if applicable), and the copies of the p->pLeft and p->pRight expressions,
1185 ** if any. Before returning, *pzBuffer is set to the first byte past the
1186 ** portion of the buffer copied into by this function.
1188 static Expr
*exprDup(sqlite3
*db
, Expr
*p
, int dupFlags
, u8
**pzBuffer
){
1189 Expr
*pNew
; /* Value to return */
1190 u8
*zAlloc
; /* Memory space from which to build Expr object */
1191 u32 staticFlag
; /* EP_Static if space not obtained from malloc */
1195 assert( dupFlags
==0 || dupFlags
==EXPRDUP_REDUCE
);
1196 assert( pzBuffer
==0 || dupFlags
==EXPRDUP_REDUCE
);
1198 /* Figure out where to write the new Expr structure. */
1201 staticFlag
= EP_Static
;
1203 zAlloc
= sqlite3DbMallocRawNN(db
, dupedExprSize(p
, dupFlags
));
1206 pNew
= (Expr
*)zAlloc
;
1209 /* Set nNewSize to the size allocated for the structure pointed to
1210 ** by pNew. This is either EXPR_FULLSIZE, EXPR_REDUCEDSIZE or
1211 ** EXPR_TOKENONLYSIZE. nToken is set to the number of bytes consumed
1212 ** by the copy of the p->u.zToken string (if any).
1214 const unsigned nStructSize
= dupedExprStructSize(p
, dupFlags
);
1215 const int nNewSize
= nStructSize
& 0xfff;
1217 if( !ExprHasProperty(p
, EP_IntValue
) && p
->u
.zToken
){
1218 nToken
= sqlite3Strlen30(p
->u
.zToken
) + 1;
1223 assert( ExprHasProperty(p
, EP_Reduced
)==0 );
1224 memcpy(zAlloc
, p
, nNewSize
);
1226 u32 nSize
= (u32
)exprStructSize(p
);
1227 memcpy(zAlloc
, p
, nSize
);
1228 if( nSize
<EXPR_FULLSIZE
){
1229 memset(&zAlloc
[nSize
], 0, EXPR_FULLSIZE
-nSize
);
1233 /* Set the EP_Reduced, EP_TokenOnly, and EP_Static flags appropriately. */
1234 pNew
->flags
&= ~(EP_Reduced
|EP_TokenOnly
|EP_Static
|EP_MemToken
);
1235 pNew
->flags
|= nStructSize
& (EP_Reduced
|EP_TokenOnly
);
1236 pNew
->flags
|= staticFlag
;
1238 /* Copy the p->u.zToken string, if any. */
1240 char *zToken
= pNew
->u
.zToken
= (char*)&zAlloc
[nNewSize
];
1241 memcpy(zToken
, p
->u
.zToken
, nToken
);
1244 if( 0==((p
->flags
|pNew
->flags
) & (EP_TokenOnly
|EP_Leaf
)) ){
1245 /* Fill in the pNew->x.pSelect or pNew->x.pList member. */
1246 if( ExprHasProperty(p
, EP_xIsSelect
) ){
1247 pNew
->x
.pSelect
= sqlite3SelectDup(db
, p
->x
.pSelect
, dupFlags
);
1249 pNew
->x
.pList
= sqlite3ExprListDup(db
, p
->x
.pList
, dupFlags
);
1253 /* Fill in pNew->pLeft and pNew->pRight. */
1254 if( ExprHasProperty(pNew
, EP_Reduced
|EP_TokenOnly
) ){
1255 zAlloc
+= dupedExprNodeSize(p
, dupFlags
);
1256 if( !ExprHasProperty(pNew
, EP_TokenOnly
|EP_Leaf
) ){
1257 pNew
->pLeft
= p
->pLeft
?
1258 exprDup(db
, p
->pLeft
, EXPRDUP_REDUCE
, &zAlloc
) : 0;
1259 pNew
->pRight
= p
->pRight
?
1260 exprDup(db
, p
->pRight
, EXPRDUP_REDUCE
, &zAlloc
) : 0;
1266 if( !ExprHasProperty(p
, EP_TokenOnly
|EP_Leaf
) ){
1267 if( pNew
->op
==TK_SELECT_COLUMN
){
1268 pNew
->pLeft
= p
->pLeft
;
1269 assert( p
->iColumn
==0 || p
->pRight
==0 );
1270 assert( p
->pRight
==0 || p
->pRight
==p
->pLeft
);
1272 pNew
->pLeft
= sqlite3ExprDup(db
, p
->pLeft
, 0);
1274 pNew
->pRight
= sqlite3ExprDup(db
, p
->pRight
, 0);
1282 ** Create and return a deep copy of the object passed as the second
1283 ** argument. If an OOM condition is encountered, NULL is returned
1284 ** and the db->mallocFailed flag set.
1286 #ifndef SQLITE_OMIT_CTE
1287 static With
*withDup(sqlite3
*db
, With
*p
){
1290 int nByte
= sizeof(*p
) + sizeof(p
->a
[0]) * (p
->nCte
-1);
1291 pRet
= sqlite3DbMallocZero(db
, nByte
);
1294 pRet
->nCte
= p
->nCte
;
1295 for(i
=0; i
<p
->nCte
; i
++){
1296 pRet
->a
[i
].pSelect
= sqlite3SelectDup(db
, p
->a
[i
].pSelect
, 0);
1297 pRet
->a
[i
].pCols
= sqlite3ExprListDup(db
, p
->a
[i
].pCols
, 0);
1298 pRet
->a
[i
].zName
= sqlite3DbStrDup(db
, p
->a
[i
].zName
);
1305 # define withDup(x,y) 0
1309 ** The following group of routines make deep copies of expressions,
1310 ** expression lists, ID lists, and select statements. The copies can
1311 ** be deleted (by being passed to their respective ...Delete() routines)
1312 ** without effecting the originals.
1314 ** The expression list, ID, and source lists return by sqlite3ExprListDup(),
1315 ** sqlite3IdListDup(), and sqlite3SrcListDup() can not be further expanded
1316 ** by subsequent calls to sqlite*ListAppend() routines.
1318 ** Any tables that the SrcList might point to are not duplicated.
1320 ** The flags parameter contains a combination of the EXPRDUP_XXX flags.
1321 ** If the EXPRDUP_REDUCE flag is set, then the structure returned is a
1322 ** truncated version of the usual Expr structure that will be stored as
1323 ** part of the in-memory representation of the database schema.
1325 Expr
*sqlite3ExprDup(sqlite3
*db
, Expr
*p
, int flags
){
1326 assert( flags
==0 || flags
==EXPRDUP_REDUCE
);
1327 return p
? exprDup(db
, p
, flags
, 0) : 0;
1329 ExprList
*sqlite3ExprListDup(sqlite3
*db
, ExprList
*p
, int flags
){
1331 struct ExprList_item
*pItem
, *pOldItem
;
1333 Expr
*pPriorSelectCol
= 0;
1335 if( p
==0 ) return 0;
1336 pNew
= sqlite3DbMallocRawNN(db
, sqlite3DbMallocSize(db
, p
));
1337 if( pNew
==0 ) return 0;
1338 pNew
->nExpr
= p
->nExpr
;
1341 for(i
=0; i
<p
->nExpr
; i
++, pItem
++, pOldItem
++){
1342 Expr
*pOldExpr
= pOldItem
->pExpr
;
1344 pItem
->pExpr
= sqlite3ExprDup(db
, pOldExpr
, flags
);
1346 && pOldExpr
->op
==TK_SELECT_COLUMN
1347 && (pNewExpr
= pItem
->pExpr
)!=0
1349 assert( pNewExpr
->iColumn
==0 || i
>0 );
1350 if( pNewExpr
->iColumn
==0 ){
1351 assert( pOldExpr
->pLeft
==pOldExpr
->pRight
);
1352 pPriorSelectCol
= pNewExpr
->pLeft
= pNewExpr
->pRight
;
1355 assert( pItem
[-1].pExpr
!=0 );
1356 assert( pNewExpr
->iColumn
==pItem
[-1].pExpr
->iColumn
+1 );
1357 assert( pPriorSelectCol
==pItem
[-1].pExpr
->pLeft
);
1358 pNewExpr
->pLeft
= pPriorSelectCol
;
1361 pItem
->zName
= sqlite3DbStrDup(db
, pOldItem
->zName
);
1362 pItem
->zSpan
= sqlite3DbStrDup(db
, pOldItem
->zSpan
);
1363 pItem
->sortOrder
= pOldItem
->sortOrder
;
1365 pItem
->bSpanIsTab
= pOldItem
->bSpanIsTab
;
1366 pItem
->u
= pOldItem
->u
;
1372 ** If cursors, triggers, views and subqueries are all omitted from
1373 ** the build, then none of the following routines, except for
1374 ** sqlite3SelectDup(), can be called. sqlite3SelectDup() is sometimes
1375 ** called with a NULL argument.
1377 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_TRIGGER) \
1378 || !defined(SQLITE_OMIT_SUBQUERY)
1379 SrcList
*sqlite3SrcListDup(sqlite3
*db
, SrcList
*p
, int flags
){
1384 if( p
==0 ) return 0;
1385 nByte
= sizeof(*p
) + (p
->nSrc
>0 ? sizeof(p
->a
[0]) * (p
->nSrc
-1) : 0);
1386 pNew
= sqlite3DbMallocRawNN(db
, nByte
);
1387 if( pNew
==0 ) return 0;
1388 pNew
->nSrc
= pNew
->nAlloc
= p
->nSrc
;
1389 for(i
=0; i
<p
->nSrc
; i
++){
1390 struct SrcList_item
*pNewItem
= &pNew
->a
[i
];
1391 struct SrcList_item
*pOldItem
= &p
->a
[i
];
1393 pNewItem
->pSchema
= pOldItem
->pSchema
;
1394 pNewItem
->zDatabase
= sqlite3DbStrDup(db
, pOldItem
->zDatabase
);
1395 pNewItem
->zName
= sqlite3DbStrDup(db
, pOldItem
->zName
);
1396 pNewItem
->zAlias
= sqlite3DbStrDup(db
, pOldItem
->zAlias
);
1397 pNewItem
->fg
= pOldItem
->fg
;
1398 pNewItem
->iCursor
= pOldItem
->iCursor
;
1399 pNewItem
->addrFillSub
= pOldItem
->addrFillSub
;
1400 pNewItem
->regReturn
= pOldItem
->regReturn
;
1401 if( pNewItem
->fg
.isIndexedBy
){
1402 pNewItem
->u1
.zIndexedBy
= sqlite3DbStrDup(db
, pOldItem
->u1
.zIndexedBy
);
1404 pNewItem
->pIBIndex
= pOldItem
->pIBIndex
;
1405 if( pNewItem
->fg
.isTabFunc
){
1406 pNewItem
->u1
.pFuncArg
=
1407 sqlite3ExprListDup(db
, pOldItem
->u1
.pFuncArg
, flags
);
1409 pTab
= pNewItem
->pTab
= pOldItem
->pTab
;
1413 pNewItem
->pSelect
= sqlite3SelectDup(db
, pOldItem
->pSelect
, flags
);
1414 pNewItem
->pOn
= sqlite3ExprDup(db
, pOldItem
->pOn
, flags
);
1415 pNewItem
->pUsing
= sqlite3IdListDup(db
, pOldItem
->pUsing
);
1416 pNewItem
->colUsed
= pOldItem
->colUsed
;
1420 IdList
*sqlite3IdListDup(sqlite3
*db
, IdList
*p
){
1424 if( p
==0 ) return 0;
1425 pNew
= sqlite3DbMallocRawNN(db
, sizeof(*pNew
) );
1426 if( pNew
==0 ) return 0;
1428 pNew
->a
= sqlite3DbMallocRawNN(db
, p
->nId
*sizeof(p
->a
[0]) );
1430 sqlite3DbFreeNN(db
, pNew
);
1433 /* Note that because the size of the allocation for p->a[] is not
1434 ** necessarily a power of two, sqlite3IdListAppend() may not be called
1435 ** on the duplicate created by this function. */
1436 for(i
=0; i
<p
->nId
; i
++){
1437 struct IdList_item
*pNewItem
= &pNew
->a
[i
];
1438 struct IdList_item
*pOldItem
= &p
->a
[i
];
1439 pNewItem
->zName
= sqlite3DbStrDup(db
, pOldItem
->zName
);
1440 pNewItem
->idx
= pOldItem
->idx
;
1444 Select
*sqlite3SelectDup(sqlite3
*db
, Select
*pDup
, int flags
){
1447 Select
**pp
= &pRet
;
1451 for(p
=pDup
; p
; p
=p
->pPrior
){
1452 Select
*pNew
= sqlite3DbMallocRawNN(db
, sizeof(*p
) );
1453 if( pNew
==0 ) break;
1454 pNew
->pEList
= sqlite3ExprListDup(db
, p
->pEList
, flags
);
1455 pNew
->pSrc
= sqlite3SrcListDup(db
, p
->pSrc
, flags
);
1456 pNew
->pWhere
= sqlite3ExprDup(db
, p
->pWhere
, flags
);
1457 pNew
->pGroupBy
= sqlite3ExprListDup(db
, p
->pGroupBy
, flags
);
1458 pNew
->pHaving
= sqlite3ExprDup(db
, p
->pHaving
, flags
);
1459 pNew
->pOrderBy
= sqlite3ExprListDup(db
, p
->pOrderBy
, flags
);
1461 pNew
->pNext
= pNext
;
1463 pNew
->pLimit
= sqlite3ExprDup(db
, p
->pLimit
, flags
);
1464 pNew
->pOffset
= sqlite3ExprDup(db
, p
->pOffset
, flags
);
1467 pNew
->selFlags
= p
->selFlags
& ~SF_UsesEphemeral
;
1468 pNew
->addrOpenEphm
[0] = -1;
1469 pNew
->addrOpenEphm
[1] = -1;
1470 pNew
->nSelectRow
= p
->nSelectRow
;
1471 pNew
->pWith
= withDup(db
, p
->pWith
);
1472 sqlite3SelectSetName(pNew
, p
->zSelName
);
1481 Select
*sqlite3SelectDup(sqlite3
*db
, Select
*p
, int flags
){
1489 ** Add a new element to the end of an expression list. If pList is
1490 ** initially NULL, then create a new expression list.
1492 ** The pList argument must be either NULL or a pointer to an ExprList
1493 ** obtained from a prior call to sqlite3ExprListAppend(). This routine
1494 ** may not be used with an ExprList obtained from sqlite3ExprListDup().
1495 ** Reason: This routine assumes that the number of slots in pList->a[]
1496 ** is a power of two. That is true for sqlite3ExprListAppend() returns
1497 ** but is not necessarily true from the return value of sqlite3ExprListDup().
1499 ** If a memory allocation error occurs, the entire list is freed and
1500 ** NULL is returned. If non-NULL is returned, then it is guaranteed
1501 ** that the new entry was successfully appended.
1503 ExprList
*sqlite3ExprListAppend(
1504 Parse
*pParse
, /* Parsing context */
1505 ExprList
*pList
, /* List to which to append. Might be NULL */
1506 Expr
*pExpr
/* Expression to be appended. Might be NULL */
1508 struct ExprList_item
*pItem
;
1509 sqlite3
*db
= pParse
->db
;
1512 pList
= sqlite3DbMallocRawNN(db
, sizeof(ExprList
) );
1517 }else if( (pList
->nExpr
& (pList
->nExpr
-1))==0 ){
1519 pNew
= sqlite3DbRealloc(db
, pList
,
1520 sizeof(*pList
)+(2*pList
->nExpr
- 1)*sizeof(pList
->a
[0]));
1526 pItem
= &pList
->a
[pList
->nExpr
++];
1527 assert( offsetof(struct ExprList_item
,zName
)==sizeof(pItem
->pExpr
) );
1528 assert( offsetof(struct ExprList_item
,pExpr
)==0 );
1529 memset(&pItem
->zName
,0,sizeof(*pItem
)-offsetof(struct ExprList_item
,zName
));
1530 pItem
->pExpr
= pExpr
;
1534 /* Avoid leaking memory if malloc has failed. */
1535 sqlite3ExprDelete(db
, pExpr
);
1536 sqlite3ExprListDelete(db
, pList
);
1541 ** pColumns and pExpr form a vector assignment which is part of the SET
1542 ** clause of an UPDATE statement. Like this:
1544 ** (a,b,c) = (expr1,expr2,expr3)
1545 ** Or: (a,b,c) = (SELECT x,y,z FROM ....)
1547 ** For each term of the vector assignment, append new entries to the
1548 ** expression list pList. In the case of a subquery on the RHS, append
1549 ** TK_SELECT_COLUMN expressions.
1551 ExprList
*sqlite3ExprListAppendVector(
1552 Parse
*pParse
, /* Parsing context */
1553 ExprList
*pList
, /* List to which to append. Might be NULL */
1554 IdList
*pColumns
, /* List of names of LHS of the assignment */
1555 Expr
*pExpr
/* Vector expression to be appended. Might be NULL */
1557 sqlite3
*db
= pParse
->db
;
1560 int iFirst
= pList
? pList
->nExpr
: 0;
1561 /* pColumns can only be NULL due to an OOM but an OOM will cause an
1562 ** exit prior to this routine being invoked */
1563 if( NEVER(pColumns
==0) ) goto vector_append_error
;
1564 if( pExpr
==0 ) goto vector_append_error
;
1566 /* If the RHS is a vector, then we can immediately check to see that
1567 ** the size of the RHS and LHS match. But if the RHS is a SELECT,
1568 ** wildcards ("*") in the result set of the SELECT must be expanded before
1569 ** we can do the size check, so defer the size check until code generation.
1571 if( pExpr
->op
!=TK_SELECT
&& pColumns
->nId
!=(n
=sqlite3ExprVectorSize(pExpr
)) ){
1572 sqlite3ErrorMsg(pParse
, "%d columns assigned %d values",
1574 goto vector_append_error
;
1577 for(i
=0; i
<pColumns
->nId
; i
++){
1578 Expr
*pSubExpr
= sqlite3ExprForVectorField(pParse
, pExpr
, i
);
1579 pList
= sqlite3ExprListAppend(pParse
, pList
, pSubExpr
);
1581 assert( pList
->nExpr
==iFirst
+i
+1 );
1582 pList
->a
[pList
->nExpr
-1].zName
= pColumns
->a
[i
].zName
;
1583 pColumns
->a
[i
].zName
= 0;
1587 if( !db
->mallocFailed
&& pExpr
->op
==TK_SELECT
&& ALWAYS(pList
!=0) ){
1588 Expr
*pFirst
= pList
->a
[iFirst
].pExpr
;
1589 assert( pFirst
!=0 );
1590 assert( pFirst
->op
==TK_SELECT_COLUMN
);
1592 /* Store the SELECT statement in pRight so it will be deleted when
1593 ** sqlite3ExprListDelete() is called */
1594 pFirst
->pRight
= pExpr
;
1597 /* Remember the size of the LHS in iTable so that we can check that
1598 ** the RHS and LHS sizes match during code generation. */
1599 pFirst
->iTable
= pColumns
->nId
;
1602 vector_append_error
:
1603 sqlite3ExprDelete(db
, pExpr
);
1604 sqlite3IdListDelete(db
, pColumns
);
1609 ** Set the sort order for the last element on the given ExprList.
1611 void sqlite3ExprListSetSortOrder(ExprList
*p
, int iSortOrder
){
1613 assert( SQLITE_SO_UNDEFINED
<0 && SQLITE_SO_ASC
>=0 && SQLITE_SO_DESC
>0 );
1614 assert( p
->nExpr
>0 );
1616 assert( p
->a
[p
->nExpr
-1].sortOrder
==SQLITE_SO_ASC
);
1619 p
->a
[p
->nExpr
-1].sortOrder
= (u8
)iSortOrder
;
1623 ** Set the ExprList.a[].zName element of the most recently added item
1624 ** on the expression list.
1626 ** pList might be NULL following an OOM error. But pName should never be
1627 ** NULL. If a memory allocation fails, the pParse->db->mallocFailed flag
1630 void sqlite3ExprListSetName(
1631 Parse
*pParse
, /* Parsing context */
1632 ExprList
*pList
, /* List to which to add the span. */
1633 Token
*pName
, /* Name to be added */
1634 int dequote
/* True to cause the name to be dequoted */
1636 assert( pList
!=0 || pParse
->db
->mallocFailed
!=0 );
1638 struct ExprList_item
*pItem
;
1639 assert( pList
->nExpr
>0 );
1640 pItem
= &pList
->a
[pList
->nExpr
-1];
1641 assert( pItem
->zName
==0 );
1642 pItem
->zName
= sqlite3DbStrNDup(pParse
->db
, pName
->z
, pName
->n
);
1643 if( dequote
) sqlite3Dequote(pItem
->zName
);
1648 ** Set the ExprList.a[].zSpan element of the most recently added item
1649 ** on the expression list.
1651 ** pList might be NULL following an OOM error. But pSpan should never be
1652 ** NULL. If a memory allocation fails, the pParse->db->mallocFailed flag
1655 void sqlite3ExprListSetSpan(
1656 Parse
*pParse
, /* Parsing context */
1657 ExprList
*pList
, /* List to which to add the span. */
1658 ExprSpan
*pSpan
/* The span to be added */
1660 sqlite3
*db
= pParse
->db
;
1661 assert( pList
!=0 || db
->mallocFailed
!=0 );
1663 struct ExprList_item
*pItem
= &pList
->a
[pList
->nExpr
-1];
1664 assert( pList
->nExpr
>0 );
1665 assert( db
->mallocFailed
|| pItem
->pExpr
==pSpan
->pExpr
);
1666 sqlite3DbFree(db
, pItem
->zSpan
);
1667 pItem
->zSpan
= sqlite3DbStrNDup(db
, (char*)pSpan
->zStart
,
1668 (int)(pSpan
->zEnd
- pSpan
->zStart
));
1673 ** If the expression list pEList contains more than iLimit elements,
1674 ** leave an error message in pParse.
1676 void sqlite3ExprListCheckLength(
1681 int mx
= pParse
->db
->aLimit
[SQLITE_LIMIT_COLUMN
];
1682 testcase( pEList
&& pEList
->nExpr
==mx
);
1683 testcase( pEList
&& pEList
->nExpr
==mx
+1 );
1684 if( pEList
&& pEList
->nExpr
>mx
){
1685 sqlite3ErrorMsg(pParse
, "too many columns in %s", zObject
);
1690 ** Delete an entire expression list.
1692 static SQLITE_NOINLINE
void exprListDeleteNN(sqlite3
*db
, ExprList
*pList
){
1693 int i
= pList
->nExpr
;
1694 struct ExprList_item
*pItem
= pList
->a
;
1695 assert( pList
->nExpr
>0 );
1697 sqlite3ExprDelete(db
, pItem
->pExpr
);
1698 sqlite3DbFree(db
, pItem
->zName
);
1699 sqlite3DbFree(db
, pItem
->zSpan
);
1702 sqlite3DbFreeNN(db
, pList
);
1704 void sqlite3ExprListDelete(sqlite3
*db
, ExprList
*pList
){
1705 if( pList
) exprListDeleteNN(db
, pList
);
1709 ** Return the bitwise-OR of all Expr.flags fields in the given
1712 u32
sqlite3ExprListFlags(const ExprList
*pList
){
1716 for(i
=0; i
<pList
->nExpr
; i
++){
1717 Expr
*pExpr
= pList
->a
[i
].pExpr
;
1726 ** This is a SELECT-node callback for the expression walker that
1727 ** always "fails". By "fail" in this case, we mean set
1728 ** pWalker->eCode to zero and abort.
1730 ** This callback is used by multiple expression walkers.
1732 int sqlite3SelectWalkFail(Walker
*pWalker
, Select
*NotUsed
){
1733 UNUSED_PARAMETER(NotUsed
);
1739 ** These routines are Walker callbacks used to check expressions to
1740 ** see if they are "constant" for some definition of constant. The
1741 ** Walker.eCode value determines the type of "constant" we are looking
1744 ** These callback routines are used to implement the following:
1746 ** sqlite3ExprIsConstant() pWalker->eCode==1
1747 ** sqlite3ExprIsConstantNotJoin() pWalker->eCode==2
1748 ** sqlite3ExprIsTableConstant() pWalker->eCode==3
1749 ** sqlite3ExprIsConstantOrFunction() pWalker->eCode==4 or 5
1751 ** In all cases, the callbacks set Walker.eCode=0 and abort if the expression
1752 ** is found to not be a constant.
1754 ** The sqlite3ExprIsConstantOrFunction() is used for evaluating expressions
1755 ** in a CREATE TABLE statement. The Walker.eCode value is 5 when parsing
1756 ** an existing schema and 4 when processing a new statement. A bound
1757 ** parameter raises an error for new statements, but is silently converted
1758 ** to NULL for existing schemas. This allows sqlite_master tables that
1759 ** contain a bound parameter because they were generated by older versions
1760 ** of SQLite to be parsed by newer versions of SQLite without raising a
1761 ** malformed schema error.
1763 static int exprNodeIsConstant(Walker
*pWalker
, Expr
*pExpr
){
1765 /* If pWalker->eCode is 2 then any term of the expression that comes from
1766 ** the ON or USING clauses of a left join disqualifies the expression
1767 ** from being considered constant. */
1768 if( pWalker
->eCode
==2 && ExprHasProperty(pExpr
, EP_FromJoin
) ){
1773 switch( pExpr
->op
){
1774 /* Consider functions to be constant if all their arguments are constant
1775 ** and either pWalker->eCode==4 or 5 or the function has the
1776 ** SQLITE_FUNC_CONST flag. */
1778 if( pWalker
->eCode
>=4 || ExprHasProperty(pExpr
,EP_ConstFunc
) ){
1779 return WRC_Continue
;
1786 case TK_AGG_FUNCTION
:
1788 testcase( pExpr
->op
==TK_ID
);
1789 testcase( pExpr
->op
==TK_COLUMN
);
1790 testcase( pExpr
->op
==TK_AGG_FUNCTION
);
1791 testcase( pExpr
->op
==TK_AGG_COLUMN
);
1792 if( pWalker
->eCode
==3 && pExpr
->iTable
==pWalker
->u
.iCur
){
1793 return WRC_Continue
;
1796 case TK_IF_NULL_ROW
:
1797 testcase( pExpr
->op
==TK_IF_NULL_ROW
);
1801 if( pWalker
->eCode
==5 ){
1802 /* Silently convert bound parameters that appear inside of CREATE
1803 ** statements into a NULL when parsing the CREATE statement text out
1804 ** of the sqlite_master table */
1805 pExpr
->op
= TK_NULL
;
1806 }else if( pWalker
->eCode
==4 ){
1807 /* A bound parameter in a CREATE statement that originates from
1808 ** sqlite3_prepare() causes an error */
1814 testcase( pExpr
->op
==TK_SELECT
); /* sqlite3SelectWalkFail will disallow */
1815 testcase( pExpr
->op
==TK_EXISTS
); /* sqlite3SelectWalkFail will disallow */
1816 return WRC_Continue
;
1819 static int exprIsConst(Expr
*p
, int initFlag
, int iCur
){
1822 w
.xExprCallback
= exprNodeIsConstant
;
1823 w
.xSelectCallback
= sqlite3SelectWalkFail
;
1825 w
.xSelectCallback2
= sqlite3SelectWalkAssert2
;
1828 sqlite3WalkExpr(&w
, p
);
1833 ** Walk an expression tree. Return non-zero if the expression is constant
1834 ** and 0 if it involves variables or function calls.
1836 ** For the purposes of this function, a double-quoted string (ex: "abc")
1837 ** is considered a variable but a single-quoted string (ex: 'abc') is
1840 int sqlite3ExprIsConstant(Expr
*p
){
1841 return exprIsConst(p
, 1, 0);
1845 ** Walk an expression tree. Return non-zero if the expression is constant
1846 ** that does no originate from the ON or USING clauses of a join.
1847 ** Return 0 if it involves variables or function calls or terms from
1848 ** an ON or USING clause.
1850 int sqlite3ExprIsConstantNotJoin(Expr
*p
){
1851 return exprIsConst(p
, 2, 0);
1855 ** Walk an expression tree. Return non-zero if the expression is constant
1856 ** for any single row of the table with cursor iCur. In other words, the
1857 ** expression must not refer to any non-deterministic function nor any
1858 ** table other than iCur.
1860 int sqlite3ExprIsTableConstant(Expr
*p
, int iCur
){
1861 return exprIsConst(p
, 3, iCur
);
1866 ** sqlite3WalkExpr() callback used by sqlite3ExprIsConstantOrGroupBy().
1868 static int exprNodeIsConstantOrGroupBy(Walker
*pWalker
, Expr
*pExpr
){
1869 ExprList
*pGroupBy
= pWalker
->u
.pGroupBy
;
1872 /* Check if pExpr is identical to any GROUP BY term. If so, consider
1874 for(i
=0; i
<pGroupBy
->nExpr
; i
++){
1875 Expr
*p
= pGroupBy
->a
[i
].pExpr
;
1876 if( sqlite3ExprCompare(0, pExpr
, p
, -1)<2 ){
1877 CollSeq
*pColl
= sqlite3ExprNNCollSeq(pWalker
->pParse
, p
);
1878 if( sqlite3_stricmp("BINARY", pColl
->zName
)==0 ){
1884 /* Check if pExpr is a sub-select. If so, consider it variable. */
1885 if( ExprHasProperty(pExpr
, EP_xIsSelect
) ){
1890 return exprNodeIsConstant(pWalker
, pExpr
);
1894 ** Walk the expression tree passed as the first argument. Return non-zero
1895 ** if the expression consists entirely of constants or copies of terms
1896 ** in pGroupBy that sort with the BINARY collation sequence.
1898 ** This routine is used to determine if a term of the HAVING clause can
1899 ** be promoted into the WHERE clause. In order for such a promotion to work,
1900 ** the value of the HAVING clause term must be the same for all members of
1901 ** a "group". The requirement that the GROUP BY term must be BINARY
1902 ** assumes that no other collating sequence will have a finer-grained
1903 ** grouping than binary. In other words (A=B COLLATE binary) implies
1904 ** A=B in every other collating sequence. The requirement that the
1905 ** GROUP BY be BINARY is stricter than necessary. It would also work
1906 ** to promote HAVING clauses that use the same alternative collating
1907 ** sequence as the GROUP BY term, but that is much harder to check,
1908 ** alternative collating sequences are uncommon, and this is only an
1909 ** optimization, so we take the easy way out and simply require the
1910 ** GROUP BY to use the BINARY collating sequence.
1912 int sqlite3ExprIsConstantOrGroupBy(Parse
*pParse
, Expr
*p
, ExprList
*pGroupBy
){
1915 w
.xExprCallback
= exprNodeIsConstantOrGroupBy
;
1916 w
.xSelectCallback
= 0;
1917 w
.u
.pGroupBy
= pGroupBy
;
1919 sqlite3WalkExpr(&w
, p
);
1924 ** Walk an expression tree. Return non-zero if the expression is constant
1925 ** or a function call with constant arguments. Return and 0 if there
1926 ** are any variables.
1928 ** For the purposes of this function, a double-quoted string (ex: "abc")
1929 ** is considered a variable but a single-quoted string (ex: 'abc') is
1932 int sqlite3ExprIsConstantOrFunction(Expr
*p
, u8 isInit
){
1933 assert( isInit
==0 || isInit
==1 );
1934 return exprIsConst(p
, 4+isInit
, 0);
1937 #ifdef SQLITE_ENABLE_CURSOR_HINTS
1939 ** Walk an expression tree. Return 1 if the expression contains a
1940 ** subquery of some kind. Return 0 if there are no subqueries.
1942 int sqlite3ExprContainsSubquery(Expr
*p
){
1945 w
.xExprCallback
= sqlite3ExprWalkNoop
;
1946 w
.xSelectCallback
= sqlite3SelectWalkFail
;
1948 w
.xSelectCallback2
= sqlite3SelectWalkAssert2
;
1950 sqlite3WalkExpr(&w
, p
);
1956 ** If the expression p codes a constant integer that is small enough
1957 ** to fit in a 32-bit integer, return 1 and put the value of the integer
1958 ** in *pValue. If the expression is not an integer or if it is too big
1959 ** to fit in a signed 32-bit integer, return 0 and leave *pValue unchanged.
1961 int sqlite3ExprIsInteger(Expr
*p
, int *pValue
){
1963 if( p
==0 ) return 0; /* Can only happen following on OOM */
1965 /* If an expression is an integer literal that fits in a signed 32-bit
1966 ** integer, then the EP_IntValue flag will have already been set */
1967 assert( p
->op
!=TK_INTEGER
|| (p
->flags
& EP_IntValue
)!=0
1968 || sqlite3GetInt32(p
->u
.zToken
, &rc
)==0 );
1970 if( p
->flags
& EP_IntValue
){
1971 *pValue
= p
->u
.iValue
;
1976 rc
= sqlite3ExprIsInteger(p
->pLeft
, pValue
);
1981 if( sqlite3ExprIsInteger(p
->pLeft
, &v
) ){
1982 assert( v
!=(-2147483647-1) );
1994 ** Return FALSE if there is no chance that the expression can be NULL.
1996 ** If the expression might be NULL or if the expression is too complex
1997 ** to tell return TRUE.
1999 ** This routine is used as an optimization, to skip OP_IsNull opcodes
2000 ** when we know that a value cannot be NULL. Hence, a false positive
2001 ** (returning TRUE when in fact the expression can never be NULL) might
2002 ** be a small performance hit but is otherwise harmless. On the other
2003 ** hand, a false negative (returning FALSE when the result could be NULL)
2004 ** will likely result in an incorrect answer. So when in doubt, return
2007 int sqlite3ExprCanBeNull(const Expr
*p
){
2009 while( p
->op
==TK_UPLUS
|| p
->op
==TK_UMINUS
){ p
= p
->pLeft
; }
2011 if( op
==TK_REGISTER
) op
= p
->op2
;
2019 return ExprHasProperty(p
, EP_CanBeNull
) ||
2020 p
->pTab
==0 || /* Reference to column of index on expression */
2021 (p
->iColumn
>=0 && p
->pTab
->aCol
[p
->iColumn
].notNull
==0);
2028 ** Return TRUE if the given expression is a constant which would be
2029 ** unchanged by OP_Affinity with the affinity given in the second
2032 ** This routine is used to determine if the OP_Affinity operation
2033 ** can be omitted. When in doubt return FALSE. A false negative
2034 ** is harmless. A false positive, however, can result in the wrong
2037 int sqlite3ExprNeedsNoAffinityChange(const Expr
*p
, char aff
){
2039 if( aff
==SQLITE_AFF_BLOB
) return 1;
2040 while( p
->op
==TK_UPLUS
|| p
->op
==TK_UMINUS
){ p
= p
->pLeft
; }
2042 if( op
==TK_REGISTER
) op
= p
->op2
;
2045 return aff
==SQLITE_AFF_INTEGER
|| aff
==SQLITE_AFF_NUMERIC
;
2048 return aff
==SQLITE_AFF_REAL
|| aff
==SQLITE_AFF_NUMERIC
;
2051 return aff
==SQLITE_AFF_TEXT
;
2057 assert( p
->iTable
>=0 ); /* p cannot be part of a CHECK constraint */
2059 && (aff
==SQLITE_AFF_INTEGER
|| aff
==SQLITE_AFF_NUMERIC
);
2068 ** Return TRUE if the given string is a row-id column name.
2070 int sqlite3IsRowid(const char *z
){
2071 if( sqlite3StrICmp(z
, "_ROWID_")==0 ) return 1;
2072 if( sqlite3StrICmp(z
, "ROWID")==0 ) return 1;
2073 if( sqlite3StrICmp(z
, "OID")==0 ) return 1;
2078 ** pX is the RHS of an IN operator. If pX is a SELECT statement
2079 ** that can be simplified to a direct table access, then return
2080 ** a pointer to the SELECT statement. If pX is not a SELECT statement,
2081 ** or if the SELECT statement needs to be manifested into a transient
2082 ** table, then return NULL.
2084 #ifndef SQLITE_OMIT_SUBQUERY
2085 static Select
*isCandidateForInOpt(Expr
*pX
){
2091 if( !ExprHasProperty(pX
, EP_xIsSelect
) ) return 0; /* Not a subquery */
2092 if( ExprHasProperty(pX
, EP_VarSelect
) ) return 0; /* Correlated subq */
2094 if( p
->pPrior
) return 0; /* Not a compound SELECT */
2095 if( p
->selFlags
& (SF_Distinct
|SF_Aggregate
) ){
2096 testcase( (p
->selFlags
& (SF_Distinct
|SF_Aggregate
))==SF_Distinct
);
2097 testcase( (p
->selFlags
& (SF_Distinct
|SF_Aggregate
))==SF_Aggregate
);
2098 return 0; /* No DISTINCT keyword and no aggregate functions */
2100 assert( p
->pGroupBy
==0 ); /* Has no GROUP BY clause */
2101 if( p
->pLimit
) return 0; /* Has no LIMIT clause */
2102 assert( p
->pOffset
==0 ); /* No LIMIT means no OFFSET */
2103 if( p
->pWhere
) return 0; /* Has no WHERE clause */
2106 if( pSrc
->nSrc
!=1 ) return 0; /* Single term in FROM clause */
2107 if( pSrc
->a
[0].pSelect
) return 0; /* FROM is not a subquery or view */
2108 pTab
= pSrc
->a
[0].pTab
;
2110 assert( pTab
->pSelect
==0 ); /* FROM clause is not a view */
2111 if( IsVirtual(pTab
) ) return 0; /* FROM clause not a virtual table */
2113 assert( pEList
!=0 );
2114 /* All SELECT results must be columns. */
2115 for(i
=0; i
<pEList
->nExpr
; i
++){
2116 Expr
*pRes
= pEList
->a
[i
].pExpr
;
2117 if( pRes
->op
!=TK_COLUMN
) return 0;
2118 assert( pRes
->iTable
==pSrc
->a
[0].iCursor
); /* Not a correlated subquery */
2122 #endif /* SQLITE_OMIT_SUBQUERY */
2124 #ifndef SQLITE_OMIT_SUBQUERY
2126 ** Generate code that checks the left-most column of index table iCur to see if
2127 ** it contains any NULL entries. Cause the register at regHasNull to be set
2128 ** to a non-NULL value if iCur contains no NULLs. Cause register regHasNull
2129 ** to be set to NULL if iCur contains one or more NULL values.
2131 static void sqlite3SetHasNullFlag(Vdbe
*v
, int iCur
, int regHasNull
){
2133 sqlite3VdbeAddOp2(v
, OP_Integer
, 0, regHasNull
);
2134 addr1
= sqlite3VdbeAddOp1(v
, OP_Rewind
, iCur
); VdbeCoverage(v
);
2135 sqlite3VdbeAddOp3(v
, OP_Column
, iCur
, 0, regHasNull
);
2136 sqlite3VdbeChangeP5(v
, OPFLAG_TYPEOFARG
);
2137 VdbeComment((v
, "first_entry_in(%d)", iCur
));
2138 sqlite3VdbeJumpHere(v
, addr1
);
2143 #ifndef SQLITE_OMIT_SUBQUERY
2145 ** The argument is an IN operator with a list (not a subquery) on the
2146 ** right-hand side. Return TRUE if that list is constant.
2148 static int sqlite3InRhsIsConstant(Expr
*pIn
){
2151 assert( !ExprHasProperty(pIn
, EP_xIsSelect
) );
2154 res
= sqlite3ExprIsConstant(pIn
);
2161 ** This function is used by the implementation of the IN (...) operator.
2162 ** The pX parameter is the expression on the RHS of the IN operator, which
2163 ** might be either a list of expressions or a subquery.
2165 ** The job of this routine is to find or create a b-tree object that can
2166 ** be used either to test for membership in the RHS set or to iterate through
2167 ** all members of the RHS set, skipping duplicates.
2169 ** A cursor is opened on the b-tree object that is the RHS of the IN operator
2170 ** and pX->iTable is set to the index of that cursor.
2172 ** The returned value of this function indicates the b-tree type, as follows:
2174 ** IN_INDEX_ROWID - The cursor was opened on a database table.
2175 ** IN_INDEX_INDEX_ASC - The cursor was opened on an ascending index.
2176 ** IN_INDEX_INDEX_DESC - The cursor was opened on a descending index.
2177 ** IN_INDEX_EPH - The cursor was opened on a specially created and
2178 ** populated epheremal table.
2179 ** IN_INDEX_NOOP - No cursor was allocated. The IN operator must be
2180 ** implemented as a sequence of comparisons.
2182 ** An existing b-tree might be used if the RHS expression pX is a simple
2183 ** subquery such as:
2185 ** SELECT <column1>, <column2>... FROM <table>
2187 ** If the RHS of the IN operator is a list or a more complex subquery, then
2188 ** an ephemeral table might need to be generated from the RHS and then
2189 ** pX->iTable made to point to the ephemeral table instead of an
2192 ** The inFlags parameter must contain exactly one of the bits
2193 ** IN_INDEX_MEMBERSHIP or IN_INDEX_LOOP. If inFlags contains
2194 ** IN_INDEX_MEMBERSHIP, then the generated table will be used for a
2195 ** fast membership test. When the IN_INDEX_LOOP bit is set, the
2196 ** IN index will be used to loop over all values of the RHS of the
2199 ** When IN_INDEX_LOOP is used (and the b-tree will be used to iterate
2200 ** through the set members) then the b-tree must not contain duplicates.
2201 ** An epheremal table must be used unless the selected columns are guaranteed
2202 ** to be unique - either because it is an INTEGER PRIMARY KEY or due to
2203 ** a UNIQUE constraint or index.
2205 ** When IN_INDEX_MEMBERSHIP is used (and the b-tree will be used
2206 ** for fast set membership tests) then an epheremal table must
2207 ** be used unless <columns> is a single INTEGER PRIMARY KEY column or an
2208 ** index can be found with the specified <columns> as its left-most.
2210 ** If the IN_INDEX_NOOP_OK and IN_INDEX_MEMBERSHIP are both set and
2211 ** if the RHS of the IN operator is a list (not a subquery) then this
2212 ** routine might decide that creating an ephemeral b-tree for membership
2213 ** testing is too expensive and return IN_INDEX_NOOP. In that case, the
2214 ** calling routine should implement the IN operator using a sequence
2215 ** of Eq or Ne comparison operations.
2217 ** When the b-tree is being used for membership tests, the calling function
2218 ** might need to know whether or not the RHS side of the IN operator
2219 ** contains a NULL. If prRhsHasNull is not a NULL pointer and
2220 ** if there is any chance that the (...) might contain a NULL value at
2221 ** runtime, then a register is allocated and the register number written
2222 ** to *prRhsHasNull. If there is no chance that the (...) contains a
2223 ** NULL value, then *prRhsHasNull is left unchanged.
2225 ** If a register is allocated and its location stored in *prRhsHasNull, then
2226 ** the value in that register will be NULL if the b-tree contains one or more
2227 ** NULL values, and it will be some non-NULL value if the b-tree contains no
2230 ** If the aiMap parameter is not NULL, it must point to an array containing
2231 ** one element for each column returned by the SELECT statement on the RHS
2232 ** of the IN(...) operator. The i'th entry of the array is populated with the
2233 ** offset of the index column that matches the i'th column returned by the
2234 ** SELECT. For example, if the expression and selected index are:
2236 ** (?,?,?) IN (SELECT a, b, c FROM t1)
2237 ** CREATE INDEX i1 ON t1(b, c, a);
2239 ** then aiMap[] is populated with {2, 0, 1}.
2241 #ifndef SQLITE_OMIT_SUBQUERY
2242 int sqlite3FindInIndex(
2243 Parse
*pParse
, /* Parsing context */
2244 Expr
*pX
, /* The right-hand side (RHS) of the IN operator */
2245 u32 inFlags
, /* IN_INDEX_LOOP, _MEMBERSHIP, and/or _NOOP_OK */
2246 int *prRhsHasNull
, /* Register holding NULL status. See notes */
2247 int *aiMap
/* Mapping from Index fields to RHS fields */
2249 Select
*p
; /* SELECT to the right of IN operator */
2250 int eType
= 0; /* Type of RHS table. IN_INDEX_* */
2251 int iTab
= pParse
->nTab
++; /* Cursor of the RHS table */
2252 int mustBeUnique
; /* True if RHS must be unique */
2253 Vdbe
*v
= sqlite3GetVdbe(pParse
); /* Virtual machine being coded */
2255 assert( pX
->op
==TK_IN
);
2256 mustBeUnique
= (inFlags
& IN_INDEX_LOOP
)!=0;
2258 /* If the RHS of this IN(...) operator is a SELECT, and if it matters
2259 ** whether or not the SELECT result contains NULL values, check whether
2260 ** or not NULL is actually possible (it may not be, for example, due
2261 ** to NOT NULL constraints in the schema). If no NULL values are possible,
2262 ** set prRhsHasNull to 0 before continuing. */
2263 if( prRhsHasNull
&& (pX
->flags
& EP_xIsSelect
) ){
2265 ExprList
*pEList
= pX
->x
.pSelect
->pEList
;
2266 for(i
=0; i
<pEList
->nExpr
; i
++){
2267 if( sqlite3ExprCanBeNull(pEList
->a
[i
].pExpr
) ) break;
2269 if( i
==pEList
->nExpr
){
2274 /* Check to see if an existing table or index can be used to
2275 ** satisfy the query. This is preferable to generating a new
2276 ** ephemeral table. */
2277 if( pParse
->nErr
==0 && (p
= isCandidateForInOpt(pX
))!=0 ){
2278 sqlite3
*db
= pParse
->db
; /* Database connection */
2279 Table
*pTab
; /* Table <table>. */
2280 i16 iDb
; /* Database idx for pTab */
2281 ExprList
*pEList
= p
->pEList
;
2282 int nExpr
= pEList
->nExpr
;
2284 assert( p
->pEList
!=0 ); /* Because of isCandidateForInOpt(p) */
2285 assert( p
->pEList
->a
[0].pExpr
!=0 ); /* Because of isCandidateForInOpt(p) */
2286 assert( p
->pSrc
!=0 ); /* Because of isCandidateForInOpt(p) */
2287 pTab
= p
->pSrc
->a
[0].pTab
;
2289 /* Code an OP_Transaction and OP_TableLock for <table>. */
2290 iDb
= sqlite3SchemaToIndex(db
, pTab
->pSchema
);
2291 sqlite3CodeVerifySchema(pParse
, iDb
);
2292 sqlite3TableLock(pParse
, iDb
, pTab
->tnum
, 0, pTab
->zName
);
2294 assert(v
); /* sqlite3GetVdbe() has always been previously called */
2295 if( nExpr
==1 && pEList
->a
[0].pExpr
->iColumn
<0 ){
2296 /* The "x IN (SELECT rowid FROM table)" case */
2297 int iAddr
= sqlite3VdbeAddOp0(v
, OP_Once
);
2300 sqlite3OpenTable(pParse
, iTab
, iDb
, pTab
, OP_OpenRead
);
2301 eType
= IN_INDEX_ROWID
;
2303 sqlite3VdbeJumpHere(v
, iAddr
);
2305 Index
*pIdx
; /* Iterator variable */
2306 int affinity_ok
= 1;
2309 /* Check that the affinity that will be used to perform each
2310 ** comparison is the same as the affinity of each column in table
2311 ** on the RHS of the IN operator. If it not, it is not possible to
2312 ** use any index of the RHS table. */
2313 for(i
=0; i
<nExpr
&& affinity_ok
; i
++){
2314 Expr
*pLhs
= sqlite3VectorFieldSubexpr(pX
->pLeft
, i
);
2315 int iCol
= pEList
->a
[i
].pExpr
->iColumn
;
2316 char idxaff
= sqlite3TableColumnAffinity(pTab
,iCol
); /* RHS table */
2317 char cmpaff
= sqlite3CompareAffinity(pLhs
, idxaff
);
2318 testcase( cmpaff
==SQLITE_AFF_BLOB
);
2319 testcase( cmpaff
==SQLITE_AFF_TEXT
);
2321 case SQLITE_AFF_BLOB
:
2323 case SQLITE_AFF_TEXT
:
2324 /* sqlite3CompareAffinity() only returns TEXT if one side or the
2325 ** other has no affinity and the other side is TEXT. Hence,
2326 ** the only way for cmpaff to be TEXT is for idxaff to be TEXT
2327 ** and for the term on the LHS of the IN to have no affinity. */
2328 assert( idxaff
==SQLITE_AFF_TEXT
);
2331 affinity_ok
= sqlite3IsNumericAffinity(idxaff
);
2336 /* Search for an existing index that will work for this IN operator */
2337 for(pIdx
=pTab
->pIndex
; pIdx
&& eType
==0; pIdx
=pIdx
->pNext
){
2338 Bitmask colUsed
; /* Columns of the index used */
2339 Bitmask mCol
; /* Mask for the current column */
2340 if( pIdx
->nColumn
<nExpr
) continue;
2341 /* Maximum nColumn is BMS-2, not BMS-1, so that we can compute
2342 ** BITMASK(nExpr) without overflowing */
2343 testcase( pIdx
->nColumn
==BMS
-2 );
2344 testcase( pIdx
->nColumn
==BMS
-1 );
2345 if( pIdx
->nColumn
>=BMS
-1 ) continue;
2347 if( pIdx
->nKeyCol
>nExpr
2348 ||(pIdx
->nColumn
>nExpr
&& !IsUniqueIndex(pIdx
))
2350 continue; /* This index is not unique over the IN RHS columns */
2354 colUsed
= 0; /* Columns of index used so far */
2355 for(i
=0; i
<nExpr
; i
++){
2356 Expr
*pLhs
= sqlite3VectorFieldSubexpr(pX
->pLeft
, i
);
2357 Expr
*pRhs
= pEList
->a
[i
].pExpr
;
2358 CollSeq
*pReq
= sqlite3BinaryCompareCollSeq(pParse
, pLhs
, pRhs
);
2361 assert( pReq
!=0 || pRhs
->iColumn
==XN_ROWID
|| pParse
->nErr
);
2362 for(j
=0; j
<nExpr
; j
++){
2363 if( pIdx
->aiColumn
[j
]!=pRhs
->iColumn
) continue;
2364 assert( pIdx
->azColl
[j
] );
2365 if( pReq
!=0 && sqlite3StrICmp(pReq
->zName
, pIdx
->azColl
[j
])!=0 ){
2370 if( j
==nExpr
) break;
2372 if( mCol
& colUsed
) break; /* Each column used only once */
2374 if( aiMap
) aiMap
[i
] = j
;
2377 assert( i
==nExpr
|| colUsed
!=(MASKBIT(nExpr
)-1) );
2378 if( colUsed
==(MASKBIT(nExpr
)-1) ){
2379 /* If we reach this point, that means the index pIdx is usable */
2380 int iAddr
= sqlite3VdbeAddOp0(v
, OP_Once
); VdbeCoverage(v
);
2381 #ifndef SQLITE_OMIT_EXPLAIN
2382 sqlite3VdbeAddOp4(v
, OP_Explain
, 0, 0, 0,
2383 sqlite3MPrintf(db
, "USING INDEX %s FOR IN-OPERATOR",pIdx
->zName
),
2386 sqlite3VdbeAddOp3(v
, OP_OpenRead
, iTab
, pIdx
->tnum
, iDb
);
2387 sqlite3VdbeSetP4KeyInfo(pParse
, pIdx
);
2388 VdbeComment((v
, "%s", pIdx
->zName
));
2389 assert( IN_INDEX_INDEX_DESC
== IN_INDEX_INDEX_ASC
+1 );
2390 eType
= IN_INDEX_INDEX_ASC
+ pIdx
->aSortOrder
[0];
2393 #ifdef SQLITE_ENABLE_COLUMN_USED_MASK
2394 i64 mask
= (1<<nExpr
)-1;
2395 sqlite3VdbeAddOp4Dup8(v
, OP_ColumnsUsed
,
2396 iTab
, 0, 0, (u8
*)&mask
, P4_INT64
);
2398 *prRhsHasNull
= ++pParse
->nMem
;
2400 sqlite3SetHasNullFlag(v
, iTab
, *prRhsHasNull
);
2403 sqlite3VdbeJumpHere(v
, iAddr
);
2405 } /* End loop over indexes */
2406 } /* End if( affinity_ok ) */
2407 } /* End if not an rowid index */
2408 } /* End attempt to optimize using an index */
2410 /* If no preexisting index is available for the IN clause
2411 ** and IN_INDEX_NOOP is an allowed reply
2412 ** and the RHS of the IN operator is a list, not a subquery
2413 ** and the RHS is not constant or has two or fewer terms,
2414 ** then it is not worth creating an ephemeral table to evaluate
2415 ** the IN operator so return IN_INDEX_NOOP.
2418 && (inFlags
& IN_INDEX_NOOP_OK
)
2419 && !ExprHasProperty(pX
, EP_xIsSelect
)
2420 && (!sqlite3InRhsIsConstant(pX
) || pX
->x
.pList
->nExpr
<=2)
2422 eType
= IN_INDEX_NOOP
;
2426 /* Could not find an existing table or index to use as the RHS b-tree.
2427 ** We will have to generate an ephemeral table to do the job.
2429 u32 savedNQueryLoop
= pParse
->nQueryLoop
;
2430 int rMayHaveNull
= 0;
2431 eType
= IN_INDEX_EPH
;
2432 if( inFlags
& IN_INDEX_LOOP
){
2433 pParse
->nQueryLoop
= 0;
2434 if( pX
->pLeft
->iColumn
<0 && !ExprHasProperty(pX
, EP_xIsSelect
) ){
2435 eType
= IN_INDEX_ROWID
;
2437 }else if( prRhsHasNull
){
2438 *prRhsHasNull
= rMayHaveNull
= ++pParse
->nMem
;
2440 sqlite3CodeSubselect(pParse
, pX
, rMayHaveNull
, eType
==IN_INDEX_ROWID
);
2441 pParse
->nQueryLoop
= savedNQueryLoop
;
2446 if( aiMap
&& eType
!=IN_INDEX_INDEX_ASC
&& eType
!=IN_INDEX_INDEX_DESC
){
2448 n
= sqlite3ExprVectorSize(pX
->pLeft
);
2449 for(i
=0; i
<n
; i
++) aiMap
[i
] = i
;
2455 #ifndef SQLITE_OMIT_SUBQUERY
2457 ** Argument pExpr is an (?, ?...) IN(...) expression. This
2458 ** function allocates and returns a nul-terminated string containing
2459 ** the affinities to be used for each column of the comparison.
2461 ** It is the responsibility of the caller to ensure that the returned
2462 ** string is eventually freed using sqlite3DbFree().
2464 static char *exprINAffinity(Parse
*pParse
, Expr
*pExpr
){
2465 Expr
*pLeft
= pExpr
->pLeft
;
2466 int nVal
= sqlite3ExprVectorSize(pLeft
);
2467 Select
*pSelect
= (pExpr
->flags
& EP_xIsSelect
) ? pExpr
->x
.pSelect
: 0;
2470 assert( pExpr
->op
==TK_IN
);
2471 zRet
= sqlite3DbMallocRaw(pParse
->db
, nVal
+1);
2474 for(i
=0; i
<nVal
; i
++){
2475 Expr
*pA
= sqlite3VectorFieldSubexpr(pLeft
, i
);
2476 char a
= sqlite3ExprAffinity(pA
);
2478 zRet
[i
] = sqlite3CompareAffinity(pSelect
->pEList
->a
[i
].pExpr
, a
);
2489 #ifndef SQLITE_OMIT_SUBQUERY
2491 ** Load the Parse object passed as the first argument with an error
2492 ** message of the form:
2494 ** "sub-select returns N columns - expected M"
2496 void sqlite3SubselectError(Parse
*pParse
, int nActual
, int nExpect
){
2497 const char *zFmt
= "sub-select returns %d columns - expected %d";
2498 sqlite3ErrorMsg(pParse
, zFmt
, nActual
, nExpect
);
2503 ** Expression pExpr is a vector that has been used in a context where
2504 ** it is not permitted. If pExpr is a sub-select vector, this routine
2505 ** loads the Parse object with a message of the form:
2507 ** "sub-select returns N columns - expected 1"
2509 ** Or, if it is a regular scalar vector:
2511 ** "row value misused"
2513 void sqlite3VectorErrorMsg(Parse
*pParse
, Expr
*pExpr
){
2514 #ifndef SQLITE_OMIT_SUBQUERY
2515 if( pExpr
->flags
& EP_xIsSelect
){
2516 sqlite3SubselectError(pParse
, pExpr
->x
.pSelect
->pEList
->nExpr
, 1);
2520 sqlite3ErrorMsg(pParse
, "row value misused");
2525 ** Generate code for scalar subqueries used as a subquery expression, EXISTS,
2526 ** or IN operators. Examples:
2528 ** (SELECT a FROM b) -- subquery
2529 ** EXISTS (SELECT a FROM b) -- EXISTS subquery
2530 ** x IN (4,5,11) -- IN operator with list on right-hand side
2531 ** x IN (SELECT a FROM b) -- IN operator with subquery on the right
2533 ** The pExpr parameter describes the expression that contains the IN
2534 ** operator or subquery.
2536 ** If parameter isRowid is non-zero, then expression pExpr is guaranteed
2537 ** to be of the form "<rowid> IN (?, ?, ?)", where <rowid> is a reference
2538 ** to some integer key column of a table B-Tree. In this case, use an
2539 ** intkey B-Tree to store the set of IN(...) values instead of the usual
2540 ** (slower) variable length keys B-Tree.
2542 ** If rMayHaveNull is non-zero, that means that the operation is an IN
2543 ** (not a SELECT or EXISTS) and that the RHS might contains NULLs.
2544 ** All this routine does is initialize the register given by rMayHaveNull
2545 ** to NULL. Calling routines will take care of changing this register
2546 ** value to non-NULL if the RHS is NULL-free.
2548 ** For a SELECT or EXISTS operator, return the register that holds the
2549 ** result. For a multi-column SELECT, the result is stored in a contiguous
2550 ** array of registers and the return value is the register of the left-most
2551 ** result column. Return 0 for IN operators or if an error occurs.
2553 #ifndef SQLITE_OMIT_SUBQUERY
2554 int sqlite3CodeSubselect(
2555 Parse
*pParse
, /* Parsing context */
2556 Expr
*pExpr
, /* The IN, SELECT, or EXISTS operator */
2557 int rHasNullFlag
, /* Register that records whether NULLs exist in RHS */
2558 int isRowid
/* If true, LHS of IN operator is a rowid */
2560 int jmpIfDynamic
= -1; /* One-time test address */
2561 int rReg
= 0; /* Register storing resulting */
2562 Vdbe
*v
= sqlite3GetVdbe(pParse
);
2563 if( NEVER(v
==0) ) return 0;
2564 sqlite3ExprCachePush(pParse
);
2566 /* The evaluation of the IN/EXISTS/SELECT must be repeated every time it
2567 ** is encountered if any of the following is true:
2569 ** * The right-hand side is a correlated subquery
2570 ** * The right-hand side is an expression list containing variables
2571 ** * We are inside a trigger
2573 ** If all of the above are false, then we can run this code just once
2574 ** save the results, and reuse the same result on subsequent invocations.
2576 if( !ExprHasProperty(pExpr
, EP_VarSelect
) ){
2577 jmpIfDynamic
= sqlite3VdbeAddOp0(v
, OP_Once
); VdbeCoverage(v
);
2580 #ifndef SQLITE_OMIT_EXPLAIN
2581 if( pParse
->explain
==2 ){
2582 char *zMsg
= sqlite3MPrintf(pParse
->db
, "EXECUTE %s%s SUBQUERY %d",
2583 jmpIfDynamic
>=0?"":"CORRELATED ",
2584 pExpr
->op
==TK_IN
?"LIST":"SCALAR",
2585 pParse
->iNextSelectId
2587 sqlite3VdbeAddOp4(v
, OP_Explain
, pParse
->iSelectId
, 0, 0, zMsg
, P4_DYNAMIC
);
2591 switch( pExpr
->op
){
2593 int addr
; /* Address of OP_OpenEphemeral instruction */
2594 Expr
*pLeft
= pExpr
->pLeft
; /* the LHS of the IN operator */
2595 KeyInfo
*pKeyInfo
= 0; /* Key information */
2596 int nVal
; /* Size of vector pLeft */
2598 nVal
= sqlite3ExprVectorSize(pLeft
);
2599 assert( !isRowid
|| nVal
==1 );
2601 /* Whether this is an 'x IN(SELECT...)' or an 'x IN(<exprlist>)'
2602 ** expression it is handled the same way. An ephemeral table is
2603 ** filled with index keys representing the results from the
2604 ** SELECT or the <exprlist>.
2606 ** If the 'x' expression is a column value, or the SELECT...
2607 ** statement returns a column value, then the affinity of that
2608 ** column is used to build the index keys. If both 'x' and the
2609 ** SELECT... statement are columns, then numeric affinity is used
2610 ** if either column has NUMERIC or INTEGER affinity. If neither
2611 ** 'x' nor the SELECT... statement are columns, then numeric affinity
2614 pExpr
->iTable
= pParse
->nTab
++;
2615 addr
= sqlite3VdbeAddOp2(v
, OP_OpenEphemeral
,
2616 pExpr
->iTable
, (isRowid
?0:nVal
));
2617 pKeyInfo
= isRowid
? 0 : sqlite3KeyInfoAlloc(pParse
->db
, nVal
, 1);
2619 if( ExprHasProperty(pExpr
, EP_xIsSelect
) ){
2620 /* Case 1: expr IN (SELECT ...)
2622 ** Generate code to write the results of the select into the temporary
2623 ** table allocated and opened above.
2625 Select
*pSelect
= pExpr
->x
.pSelect
;
2626 ExprList
*pEList
= pSelect
->pEList
;
2629 /* If the LHS and RHS of the IN operator do not match, that
2630 ** error will have been caught long before we reach this point. */
2631 if( ALWAYS(pEList
->nExpr
==nVal
) ){
2634 sqlite3SelectDestInit(&dest
, SRT_Set
, pExpr
->iTable
);
2635 dest
.zAffSdst
= exprINAffinity(pParse
, pExpr
);
2636 pSelect
->iLimit
= 0;
2637 testcase( pSelect
->selFlags
& SF_Distinct
);
2638 testcase( pKeyInfo
==0 ); /* Caused by OOM in sqlite3KeyInfoAlloc() */
2639 if( sqlite3Select(pParse
, pSelect
, &dest
) ){
2640 sqlite3DbFree(pParse
->db
, dest
.zAffSdst
);
2641 sqlite3KeyInfoUnref(pKeyInfo
);
2644 sqlite3DbFree(pParse
->db
, dest
.zAffSdst
);
2645 assert( pKeyInfo
!=0 ); /* OOM will cause exit after sqlite3Select() */
2646 assert( pEList
!=0 );
2647 assert( pEList
->nExpr
>0 );
2648 assert( sqlite3KeyInfoIsWriteable(pKeyInfo
) );
2649 for(i
=0; i
<nVal
; i
++){
2650 Expr
*p
= sqlite3VectorFieldSubexpr(pLeft
, i
);
2651 pKeyInfo
->aColl
[i
] = sqlite3BinaryCompareCollSeq(
2652 pParse
, p
, pEList
->a
[i
].pExpr
2656 }else if( ALWAYS(pExpr
->x
.pList
!=0) ){
2657 /* Case 2: expr IN (exprlist)
2659 ** For each expression, build an index key from the evaluation and
2660 ** store it in the temporary table. If <expr> is a column, then use
2661 ** that columns affinity when building index keys. If <expr> is not
2662 ** a column, use numeric affinity.
2664 char affinity
; /* Affinity of the LHS of the IN */
2666 ExprList
*pList
= pExpr
->x
.pList
;
2667 struct ExprList_item
*pItem
;
2670 affinity
= sqlite3ExprAffinity(pLeft
);
2672 affinity
= SQLITE_AFF_BLOB
;
2675 assert( sqlite3KeyInfoIsWriteable(pKeyInfo
) );
2676 pKeyInfo
->aColl
[0] = sqlite3ExprCollSeq(pParse
, pExpr
->pLeft
);
2679 /* Loop through each expression in <exprlist>. */
2680 r1
= sqlite3GetTempReg(pParse
);
2681 r2
= sqlite3GetTempReg(pParse
);
2682 if( isRowid
) sqlite3VdbeAddOp2(v
, OP_Null
, 0, r2
);
2683 for(i
=pList
->nExpr
, pItem
=pList
->a
; i
>0; i
--, pItem
++){
2684 Expr
*pE2
= pItem
->pExpr
;
2687 /* If the expression is not constant then we will need to
2688 ** disable the test that was generated above that makes sure
2689 ** this code only executes once. Because for a non-constant
2690 ** expression we need to rerun this code each time.
2692 if( jmpIfDynamic
>=0 && !sqlite3ExprIsConstant(pE2
) ){
2693 sqlite3VdbeChangeToNoop(v
, jmpIfDynamic
);
2697 /* Evaluate the expression and insert it into the temp table */
2698 if( isRowid
&& sqlite3ExprIsInteger(pE2
, &iValToIns
) ){
2699 sqlite3VdbeAddOp3(v
, OP_InsertInt
, pExpr
->iTable
, r2
, iValToIns
);
2701 r3
= sqlite3ExprCodeTarget(pParse
, pE2
, r1
);
2703 sqlite3VdbeAddOp2(v
, OP_MustBeInt
, r3
,
2704 sqlite3VdbeCurrentAddr(v
)+2);
2706 sqlite3VdbeAddOp3(v
, OP_Insert
, pExpr
->iTable
, r2
, r3
);
2708 sqlite3VdbeAddOp4(v
, OP_MakeRecord
, r3
, 1, r2
, &affinity
, 1);
2709 sqlite3ExprCacheAffinityChange(pParse
, r3
, 1);
2710 sqlite3VdbeAddOp4Int(v
, OP_IdxInsert
, pExpr
->iTable
, r2
, r3
, 1);
2714 sqlite3ReleaseTempReg(pParse
, r1
);
2715 sqlite3ReleaseTempReg(pParse
, r2
);
2718 sqlite3VdbeChangeP4(v
, addr
, (void *)pKeyInfo
, P4_KEYINFO
);
2726 /* Case 3: (SELECT ... FROM ...)
2727 ** or: EXISTS(SELECT ... FROM ...)
2729 ** For a SELECT, generate code to put the values for all columns of
2730 ** the first row into an array of registers and return the index of
2731 ** the first register.
2733 ** If this is an EXISTS, write an integer 0 (not exists) or 1 (exists)
2734 ** into a register and return that register number.
2736 ** In both cases, the query is augmented with "LIMIT 1". Any
2737 ** preexisting limit is discarded in place of the new LIMIT 1.
2739 Select
*pSel
; /* SELECT statement to encode */
2740 SelectDest dest
; /* How to deal with SELECT result */
2741 int nReg
; /* Registers to allocate */
2743 testcase( pExpr
->op
==TK_EXISTS
);
2744 testcase( pExpr
->op
==TK_SELECT
);
2745 assert( pExpr
->op
==TK_EXISTS
|| pExpr
->op
==TK_SELECT
);
2746 assert( ExprHasProperty(pExpr
, EP_xIsSelect
) );
2748 pSel
= pExpr
->x
.pSelect
;
2749 nReg
= pExpr
->op
==TK_SELECT
? pSel
->pEList
->nExpr
: 1;
2750 sqlite3SelectDestInit(&dest
, 0, pParse
->nMem
+1);
2751 pParse
->nMem
+= nReg
;
2752 if( pExpr
->op
==TK_SELECT
){
2753 dest
.eDest
= SRT_Mem
;
2754 dest
.iSdst
= dest
.iSDParm
;
2756 sqlite3VdbeAddOp3(v
, OP_Null
, 0, dest
.iSDParm
, dest
.iSDParm
+nReg
-1);
2757 VdbeComment((v
, "Init subquery result"));
2759 dest
.eDest
= SRT_Exists
;
2760 sqlite3VdbeAddOp2(v
, OP_Integer
, 0, dest
.iSDParm
);
2761 VdbeComment((v
, "Init EXISTS result"));
2763 sqlite3ExprDelete(pParse
->db
, pSel
->pLimit
);
2764 pSel
->pLimit
= sqlite3ExprAlloc(pParse
->db
, TK_INTEGER
,
2765 &sqlite3IntTokens
[1], 0);
2767 pSel
->selFlags
&= ~SF_MultiValue
;
2768 if( sqlite3Select(pParse
, pSel
, &dest
) ){
2771 rReg
= dest
.iSDParm
;
2772 ExprSetVVAProperty(pExpr
, EP_NoReduce
);
2778 sqlite3SetHasNullFlag(v
, pExpr
->iTable
, rHasNullFlag
);
2781 if( jmpIfDynamic
>=0 ){
2782 sqlite3VdbeJumpHere(v
, jmpIfDynamic
);
2784 sqlite3ExprCachePop(pParse
);
2788 #endif /* SQLITE_OMIT_SUBQUERY */
2790 #ifndef SQLITE_OMIT_SUBQUERY
2792 ** Expr pIn is an IN(...) expression. This function checks that the
2793 ** sub-select on the RHS of the IN() operator has the same number of
2794 ** columns as the vector on the LHS. Or, if the RHS of the IN() is not
2795 ** a sub-query, that the LHS is a vector of size 1.
2797 int sqlite3ExprCheckIN(Parse
*pParse
, Expr
*pIn
){
2798 int nVector
= sqlite3ExprVectorSize(pIn
->pLeft
);
2799 if( (pIn
->flags
& EP_xIsSelect
) ){
2800 if( nVector
!=pIn
->x
.pSelect
->pEList
->nExpr
){
2801 sqlite3SubselectError(pParse
, pIn
->x
.pSelect
->pEList
->nExpr
, nVector
);
2804 }else if( nVector
!=1 ){
2805 sqlite3VectorErrorMsg(pParse
, pIn
->pLeft
);
2812 #ifndef SQLITE_OMIT_SUBQUERY
2814 ** Generate code for an IN expression.
2816 ** x IN (SELECT ...)
2817 ** x IN (value, value, ...)
2819 ** The left-hand side (LHS) is a scalar or vector expression. The
2820 ** right-hand side (RHS) is an array of zero or more scalar values, or a
2821 ** subquery. If the RHS is a subquery, the number of result columns must
2822 ** match the number of columns in the vector on the LHS. If the RHS is
2823 ** a list of values, the LHS must be a scalar.
2825 ** The IN operator is true if the LHS value is contained within the RHS.
2826 ** The result is false if the LHS is definitely not in the RHS. The
2827 ** result is NULL if the presence of the LHS in the RHS cannot be
2828 ** determined due to NULLs.
2830 ** This routine generates code that jumps to destIfFalse if the LHS is not
2831 ** contained within the RHS. If due to NULLs we cannot determine if the LHS
2832 ** is contained in the RHS then jump to destIfNull. If the LHS is contained
2833 ** within the RHS then fall through.
2835 ** See the separate in-operator.md documentation file in the canonical
2836 ** SQLite source tree for additional information.
2838 static void sqlite3ExprCodeIN(
2839 Parse
*pParse
, /* Parsing and code generating context */
2840 Expr
*pExpr
, /* The IN expression */
2841 int destIfFalse
, /* Jump here if LHS is not contained in the RHS */
2842 int destIfNull
/* Jump here if the results are unknown due to NULLs */
2844 int rRhsHasNull
= 0; /* Register that is true if RHS contains NULL values */
2845 int eType
; /* Type of the RHS */
2846 int rLhs
; /* Register(s) holding the LHS values */
2847 int rLhsOrig
; /* LHS values prior to reordering by aiMap[] */
2848 Vdbe
*v
; /* Statement under construction */
2849 int *aiMap
= 0; /* Map from vector field to index column */
2850 char *zAff
= 0; /* Affinity string for comparisons */
2851 int nVector
; /* Size of vectors for this IN operator */
2852 int iDummy
; /* Dummy parameter to exprCodeVector() */
2853 Expr
*pLeft
; /* The LHS of the IN operator */
2854 int i
; /* loop counter */
2855 int destStep2
; /* Where to jump when NULLs seen in step 2 */
2856 int destStep6
= 0; /* Start of code for Step 6 */
2857 int addrTruthOp
; /* Address of opcode that determines the IN is true */
2858 int destNotNull
; /* Jump here if a comparison is not true in step 6 */
2859 int addrTop
; /* Top of the step-6 loop */
2861 pLeft
= pExpr
->pLeft
;
2862 if( sqlite3ExprCheckIN(pParse
, pExpr
) ) return;
2863 zAff
= exprINAffinity(pParse
, pExpr
);
2864 nVector
= sqlite3ExprVectorSize(pExpr
->pLeft
);
2865 aiMap
= (int*)sqlite3DbMallocZero(
2866 pParse
->db
, nVector
*(sizeof(int) + sizeof(char)) + 1
2868 if( pParse
->db
->mallocFailed
) goto sqlite3ExprCodeIN_oom_error
;
2870 /* Attempt to compute the RHS. After this step, if anything other than
2871 ** IN_INDEX_NOOP is returned, the table opened ith cursor pExpr->iTable
2872 ** contains the values that make up the RHS. If IN_INDEX_NOOP is returned,
2873 ** the RHS has not yet been coded. */
2875 assert( v
!=0 ); /* OOM detected prior to this routine */
2876 VdbeNoopComment((v
, "begin IN expr"));
2877 eType
= sqlite3FindInIndex(pParse
, pExpr
,
2878 IN_INDEX_MEMBERSHIP
| IN_INDEX_NOOP_OK
,
2879 destIfFalse
==destIfNull
? 0 : &rRhsHasNull
, aiMap
);
2881 assert( pParse
->nErr
|| nVector
==1 || eType
==IN_INDEX_EPH
2882 || eType
==IN_INDEX_INDEX_ASC
|| eType
==IN_INDEX_INDEX_DESC
2885 /* Confirm that aiMap[] contains nVector integer values between 0 and
2887 for(i
=0; i
<nVector
; i
++){
2889 for(cnt
=j
=0; j
<nVector
; j
++) if( aiMap
[j
]==i
) cnt
++;
2894 /* Code the LHS, the <expr> from "<expr> IN (...)". If the LHS is a
2895 ** vector, then it is stored in an array of nVector registers starting
2898 ** sqlite3FindInIndex() might have reordered the fields of the LHS vector
2899 ** so that the fields are in the same order as an existing index. The
2900 ** aiMap[] array contains a mapping from the original LHS field order to
2901 ** the field order that matches the RHS index.
2903 sqlite3ExprCachePush(pParse
);
2904 rLhsOrig
= exprCodeVector(pParse
, pLeft
, &iDummy
);
2905 for(i
=0; i
<nVector
&& aiMap
[i
]==i
; i
++){} /* Are LHS fields reordered? */
2907 /* LHS fields are not reordered */
2910 /* Need to reorder the LHS fields according to aiMap */
2911 rLhs
= sqlite3GetTempRange(pParse
, nVector
);
2912 for(i
=0; i
<nVector
; i
++){
2913 sqlite3VdbeAddOp3(v
, OP_Copy
, rLhsOrig
+i
, rLhs
+aiMap
[i
], 0);
2917 /* If sqlite3FindInIndex() did not find or create an index that is
2918 ** suitable for evaluating the IN operator, then evaluate using a
2919 ** sequence of comparisons.
2921 ** This is step (1) in the in-operator.md optimized algorithm.
2923 if( eType
==IN_INDEX_NOOP
){
2924 ExprList
*pList
= pExpr
->x
.pList
;
2925 CollSeq
*pColl
= sqlite3ExprCollSeq(pParse
, pExpr
->pLeft
);
2926 int labelOk
= sqlite3VdbeMakeLabel(v
);
2930 assert( !ExprHasProperty(pExpr
, EP_xIsSelect
) );
2931 if( destIfNull
!=destIfFalse
){
2932 regCkNull
= sqlite3GetTempReg(pParse
);
2933 sqlite3VdbeAddOp3(v
, OP_BitAnd
, rLhs
, rLhs
, regCkNull
);
2935 for(ii
=0; ii
<pList
->nExpr
; ii
++){
2936 r2
= sqlite3ExprCodeTemp(pParse
, pList
->a
[ii
].pExpr
, ®ToFree
);
2937 if( regCkNull
&& sqlite3ExprCanBeNull(pList
->a
[ii
].pExpr
) ){
2938 sqlite3VdbeAddOp3(v
, OP_BitAnd
, regCkNull
, r2
, regCkNull
);
2940 if( ii
<pList
->nExpr
-1 || destIfNull
!=destIfFalse
){
2941 sqlite3VdbeAddOp4(v
, OP_Eq
, rLhs
, labelOk
, r2
,
2942 (void*)pColl
, P4_COLLSEQ
);
2943 VdbeCoverageIf(v
, ii
<pList
->nExpr
-1);
2944 VdbeCoverageIf(v
, ii
==pList
->nExpr
-1);
2945 sqlite3VdbeChangeP5(v
, zAff
[0]);
2947 assert( destIfNull
==destIfFalse
);
2948 sqlite3VdbeAddOp4(v
, OP_Ne
, rLhs
, destIfFalse
, r2
,
2949 (void*)pColl
, P4_COLLSEQ
); VdbeCoverage(v
);
2950 sqlite3VdbeChangeP5(v
, zAff
[0] | SQLITE_JUMPIFNULL
);
2952 sqlite3ReleaseTempReg(pParse
, regToFree
);
2955 sqlite3VdbeAddOp2(v
, OP_IsNull
, regCkNull
, destIfNull
); VdbeCoverage(v
);
2956 sqlite3VdbeGoto(v
, destIfFalse
);
2958 sqlite3VdbeResolveLabel(v
, labelOk
);
2959 sqlite3ReleaseTempReg(pParse
, regCkNull
);
2960 goto sqlite3ExprCodeIN_finished
;
2963 /* Step 2: Check to see if the LHS contains any NULL columns. If the
2964 ** LHS does contain NULLs then the result must be either FALSE or NULL.
2965 ** We will then skip the binary search of the RHS.
2967 if( destIfNull
==destIfFalse
){
2968 destStep2
= destIfFalse
;
2970 destStep2
= destStep6
= sqlite3VdbeMakeLabel(v
);
2972 for(i
=0; i
<nVector
; i
++){
2973 Expr
*p
= sqlite3VectorFieldSubexpr(pExpr
->pLeft
, i
);
2974 if( sqlite3ExprCanBeNull(p
) ){
2975 sqlite3VdbeAddOp2(v
, OP_IsNull
, rLhs
+i
, destStep2
);
2980 /* Step 3. The LHS is now known to be non-NULL. Do the binary search
2981 ** of the RHS using the LHS as a probe. If found, the result is
2984 if( eType
==IN_INDEX_ROWID
){
2985 /* In this case, the RHS is the ROWID of table b-tree and so we also
2986 ** know that the RHS is non-NULL. Hence, we combine steps 3 and 4
2987 ** into a single opcode. */
2988 sqlite3VdbeAddOp3(v
, OP_SeekRowid
, pExpr
->iTable
, destIfFalse
, rLhs
);
2990 addrTruthOp
= sqlite3VdbeAddOp0(v
, OP_Goto
); /* Return True */
2992 sqlite3VdbeAddOp4(v
, OP_Affinity
, rLhs
, nVector
, 0, zAff
, nVector
);
2993 if( destIfFalse
==destIfNull
){
2994 /* Combine Step 3 and Step 5 into a single opcode */
2995 sqlite3VdbeAddOp4Int(v
, OP_NotFound
, pExpr
->iTable
, destIfFalse
,
2996 rLhs
, nVector
); VdbeCoverage(v
);
2997 goto sqlite3ExprCodeIN_finished
;
2999 /* Ordinary Step 3, for the case where FALSE and NULL are distinct */
3000 addrTruthOp
= sqlite3VdbeAddOp4Int(v
, OP_Found
, pExpr
->iTable
, 0,
3001 rLhs
, nVector
); VdbeCoverage(v
);
3004 /* Step 4. If the RHS is known to be non-NULL and we did not find
3005 ** an match on the search above, then the result must be FALSE.
3007 if( rRhsHasNull
&& nVector
==1 ){
3008 sqlite3VdbeAddOp2(v
, OP_NotNull
, rRhsHasNull
, destIfFalse
);
3012 /* Step 5. If we do not care about the difference between NULL and
3013 ** FALSE, then just return false.
3015 if( destIfFalse
==destIfNull
) sqlite3VdbeGoto(v
, destIfFalse
);
3017 /* Step 6: Loop through rows of the RHS. Compare each row to the LHS.
3018 ** If any comparison is NULL, then the result is NULL. If all
3019 ** comparisons are FALSE then the final result is FALSE.
3021 ** For a scalar LHS, it is sufficient to check just the first row
3024 if( destStep6
) sqlite3VdbeResolveLabel(v
, destStep6
);
3025 addrTop
= sqlite3VdbeAddOp2(v
, OP_Rewind
, pExpr
->iTable
, destIfFalse
);
3028 destNotNull
= sqlite3VdbeMakeLabel(v
);
3030 /* For nVector==1, combine steps 6 and 7 by immediately returning
3031 ** FALSE if the first comparison is not NULL */
3032 destNotNull
= destIfFalse
;
3034 for(i
=0; i
<nVector
; i
++){
3037 int r3
= sqlite3GetTempReg(pParse
);
3038 p
= sqlite3VectorFieldSubexpr(pLeft
, i
);
3039 pColl
= sqlite3ExprCollSeq(pParse
, p
);
3040 sqlite3VdbeAddOp3(v
, OP_Column
, pExpr
->iTable
, i
, r3
);
3041 sqlite3VdbeAddOp4(v
, OP_Ne
, rLhs
+i
, destNotNull
, r3
,
3042 (void*)pColl
, P4_COLLSEQ
);
3044 sqlite3ReleaseTempReg(pParse
, r3
);
3046 sqlite3VdbeAddOp2(v
, OP_Goto
, 0, destIfNull
);
3048 sqlite3VdbeResolveLabel(v
, destNotNull
);
3049 sqlite3VdbeAddOp2(v
, OP_Next
, pExpr
->iTable
, addrTop
+1);
3052 /* Step 7: If we reach this point, we know that the result must
3054 sqlite3VdbeAddOp2(v
, OP_Goto
, 0, destIfFalse
);
3057 /* Jumps here in order to return true. */
3058 sqlite3VdbeJumpHere(v
, addrTruthOp
);
3060 sqlite3ExprCodeIN_finished
:
3061 if( rLhs
!=rLhsOrig
) sqlite3ReleaseTempReg(pParse
, rLhs
);
3062 sqlite3ExprCachePop(pParse
);
3063 VdbeComment((v
, "end IN expr"));
3064 sqlite3ExprCodeIN_oom_error
:
3065 sqlite3DbFree(pParse
->db
, aiMap
);
3066 sqlite3DbFree(pParse
->db
, zAff
);
3068 #endif /* SQLITE_OMIT_SUBQUERY */
3070 #ifndef SQLITE_OMIT_FLOATING_POINT
3072 ** Generate an instruction that will put the floating point
3073 ** value described by z[0..n-1] into register iMem.
3075 ** The z[] string will probably not be zero-terminated. But the
3076 ** z[n] character is guaranteed to be something that does not look
3077 ** like the continuation of the number.
3079 static void codeReal(Vdbe
*v
, const char *z
, int negateFlag
, int iMem
){
3082 sqlite3AtoF(z
, &value
, sqlite3Strlen30(z
), SQLITE_UTF8
);
3083 assert( !sqlite3IsNaN(value
) ); /* The new AtoF never returns NaN */
3084 if( negateFlag
) value
= -value
;
3085 sqlite3VdbeAddOp4Dup8(v
, OP_Real
, 0, iMem
, 0, (u8
*)&value
, P4_REAL
);
3092 ** Generate an instruction that will put the integer describe by
3093 ** text z[0..n-1] into register iMem.
3095 ** Expr.u.zToken is always UTF8 and zero-terminated.
3097 static void codeInteger(Parse
*pParse
, Expr
*pExpr
, int negFlag
, int iMem
){
3098 Vdbe
*v
= pParse
->pVdbe
;
3099 if( pExpr
->flags
& EP_IntValue
){
3100 int i
= pExpr
->u
.iValue
;
3102 if( negFlag
) i
= -i
;
3103 sqlite3VdbeAddOp2(v
, OP_Integer
, i
, iMem
);
3107 const char *z
= pExpr
->u
.zToken
;
3109 c
= sqlite3DecOrHexToI64(z
, &value
);
3110 if( (c
==3 && !negFlag
) || (c
==2) || (negFlag
&& value
==SMALLEST_INT64
)){
3111 #ifdef SQLITE_OMIT_FLOATING_POINT
3112 sqlite3ErrorMsg(pParse
, "oversized integer: %s%s", negFlag
? "-" : "", z
);
3114 #ifndef SQLITE_OMIT_HEX_INTEGER
3115 if( sqlite3_strnicmp(z
,"0x",2)==0 ){
3116 sqlite3ErrorMsg(pParse
, "hex literal too big: %s%s", negFlag
?"-":"",z
);
3120 codeReal(v
, z
, negFlag
, iMem
);
3124 if( negFlag
){ value
= c
==3 ? SMALLEST_INT64
: -value
; }
3125 sqlite3VdbeAddOp4Dup8(v
, OP_Int64
, 0, iMem
, 0, (u8
*)&value
, P4_INT64
);
3131 ** Erase column-cache entry number i
3133 static void cacheEntryClear(Parse
*pParse
, int i
){
3134 if( pParse
->aColCache
[i
].tempReg
){
3135 if( pParse
->nTempReg
<ArraySize(pParse
->aTempReg
) ){
3136 pParse
->aTempReg
[pParse
->nTempReg
++] = pParse
->aColCache
[i
].iReg
;
3139 pParse
->nColCache
--;
3140 if( i
<pParse
->nColCache
){
3141 pParse
->aColCache
[i
] = pParse
->aColCache
[pParse
->nColCache
];
3147 ** Record in the column cache that a particular column from a
3148 ** particular table is stored in a particular register.
3150 void sqlite3ExprCacheStore(Parse
*pParse
, int iTab
, int iCol
, int iReg
){
3154 struct yColCache
*p
;
3156 /* Unless an error has occurred, register numbers are always positive. */
3157 assert( iReg
>0 || pParse
->nErr
|| pParse
->db
->mallocFailed
);
3158 assert( iCol
>=-1 && iCol
<32768 ); /* Finite column numbers */
3160 /* The SQLITE_ColumnCache flag disables the column cache. This is used
3161 ** for testing only - to verify that SQLite always gets the same answer
3162 ** with and without the column cache.
3164 if( OptimizationDisabled(pParse
->db
, SQLITE_ColumnCache
) ) return;
3166 /* First replace any existing entry.
3168 ** Actually, the way the column cache is currently used, we are guaranteed
3169 ** that the object will never already be in cache. Verify this guarantee.
3172 for(i
=0, p
=pParse
->aColCache
; i
<pParse
->nColCache
; i
++, p
++){
3173 assert( p
->iTable
!=iTab
|| p
->iColumn
!=iCol
);
3177 /* If the cache is already full, delete the least recently used entry */
3178 if( pParse
->nColCache
>=SQLITE_N_COLCACHE
){
3179 minLru
= 0x7fffffff;
3181 for(i
=0, p
=pParse
->aColCache
; i
<SQLITE_N_COLCACHE
; i
++, p
++){
3182 if( p
->lru
<minLru
){
3187 p
= &pParse
->aColCache
[idxLru
];
3189 p
= &pParse
->aColCache
[pParse
->nColCache
++];
3192 /* Add the new entry to the end of the cache */
3193 p
->iLevel
= pParse
->iCacheLevel
;
3198 p
->lru
= pParse
->iCacheCnt
++;
3202 ** Indicate that registers between iReg..iReg+nReg-1 are being overwritten.
3203 ** Purge the range of registers from the column cache.
3205 void sqlite3ExprCacheRemove(Parse
*pParse
, int iReg
, int nReg
){
3207 while( i
<pParse
->nColCache
){
3208 struct yColCache
*p
= &pParse
->aColCache
[i
];
3209 if( p
->iReg
>= iReg
&& p
->iReg
< iReg
+nReg
){
3210 cacheEntryClear(pParse
, i
);
3218 ** Remember the current column cache context. Any new entries added
3219 ** added to the column cache after this call are removed when the
3220 ** corresponding pop occurs.
3222 void sqlite3ExprCachePush(Parse
*pParse
){
3223 pParse
->iCacheLevel
++;
3225 if( pParse
->db
->flags
& SQLITE_VdbeAddopTrace
){
3226 printf("PUSH to %d\n", pParse
->iCacheLevel
);
3232 ** Remove from the column cache any entries that were added since the
3233 ** the previous sqlite3ExprCachePush operation. In other words, restore
3234 ** the cache to the state it was in prior the most recent Push.
3236 void sqlite3ExprCachePop(Parse
*pParse
){
3238 assert( pParse
->iCacheLevel
>=1 );
3239 pParse
->iCacheLevel
--;
3241 if( pParse
->db
->flags
& SQLITE_VdbeAddopTrace
){
3242 printf("POP to %d\n", pParse
->iCacheLevel
);
3245 while( i
<pParse
->nColCache
){
3246 if( pParse
->aColCache
[i
].iLevel
>pParse
->iCacheLevel
){
3247 cacheEntryClear(pParse
, i
);
3255 ** When a cached column is reused, make sure that its register is
3256 ** no longer available as a temp register. ticket #3879: that same
3257 ** register might be in the cache in multiple places, so be sure to
3260 static void sqlite3ExprCachePinRegister(Parse
*pParse
, int iReg
){
3262 struct yColCache
*p
;
3263 for(i
=0, p
=pParse
->aColCache
; i
<pParse
->nColCache
; i
++, p
++){
3264 if( p
->iReg
==iReg
){
3270 /* Generate code that will load into register regOut a value that is
3271 ** appropriate for the iIdxCol-th column of index pIdx.
3273 void sqlite3ExprCodeLoadIndexColumn(
3274 Parse
*pParse
, /* The parsing context */
3275 Index
*pIdx
, /* The index whose column is to be loaded */
3276 int iTabCur
, /* Cursor pointing to a table row */
3277 int iIdxCol
, /* The column of the index to be loaded */
3278 int regOut
/* Store the index column value in this register */
3280 i16 iTabCol
= pIdx
->aiColumn
[iIdxCol
];
3281 if( iTabCol
==XN_EXPR
){
3282 assert( pIdx
->aColExpr
);
3283 assert( pIdx
->aColExpr
->nExpr
>iIdxCol
);
3284 pParse
->iSelfTab
= iTabCur
+ 1;
3285 sqlite3ExprCodeCopy(pParse
, pIdx
->aColExpr
->a
[iIdxCol
].pExpr
, regOut
);
3286 pParse
->iSelfTab
= 0;
3288 sqlite3ExprCodeGetColumnOfTable(pParse
->pVdbe
, pIdx
->pTable
, iTabCur
,
3294 ** Generate code to extract the value of the iCol-th column of a table.
3296 void sqlite3ExprCodeGetColumnOfTable(
3297 Vdbe
*v
, /* The VDBE under construction */
3298 Table
*pTab
, /* The table containing the value */
3299 int iTabCur
, /* The table cursor. Or the PK cursor for WITHOUT ROWID */
3300 int iCol
, /* Index of the column to extract */
3301 int regOut
/* Extract the value into this register */
3304 sqlite3VdbeAddOp3(v
, OP_Column
, iTabCur
, iCol
, regOut
);
3307 if( iCol
<0 || iCol
==pTab
->iPKey
){
3308 sqlite3VdbeAddOp2(v
, OP_Rowid
, iTabCur
, regOut
);
3310 int op
= IsVirtual(pTab
) ? OP_VColumn
: OP_Column
;
3312 if( !HasRowid(pTab
) && !IsVirtual(pTab
) ){
3313 x
= sqlite3ColumnOfIndex(sqlite3PrimaryKeyIndex(pTab
), iCol
);
3315 sqlite3VdbeAddOp3(v
, op
, iTabCur
, x
, regOut
);
3318 sqlite3ColumnDefault(v
, pTab
, iCol
, regOut
);
3323 ** Generate code that will extract the iColumn-th column from
3324 ** table pTab and store the column value in a register.
3326 ** An effort is made to store the column value in register iReg. This
3327 ** is not garanteeed for GetColumn() - the result can be stored in
3328 ** any register. But the result is guaranteed to land in register iReg
3329 ** for GetColumnToReg().
3331 ** There must be an open cursor to pTab in iTable when this routine
3332 ** is called. If iColumn<0 then code is generated that extracts the rowid.
3334 int sqlite3ExprCodeGetColumn(
3335 Parse
*pParse
, /* Parsing and code generating context */
3336 Table
*pTab
, /* Description of the table we are reading from */
3337 int iColumn
, /* Index of the table column */
3338 int iTable
, /* The cursor pointing to the table */
3339 int iReg
, /* Store results here */
3340 u8 p5
/* P5 value for OP_Column + FLAGS */
3342 Vdbe
*v
= pParse
->pVdbe
;
3344 struct yColCache
*p
;
3346 for(i
=0, p
=pParse
->aColCache
; i
<pParse
->nColCache
; i
++, p
++){
3347 if( p
->iTable
==iTable
&& p
->iColumn
==iColumn
){
3348 p
->lru
= pParse
->iCacheCnt
++;
3349 sqlite3ExprCachePinRegister(pParse
, p
->iReg
);
3354 sqlite3ExprCodeGetColumnOfTable(v
, pTab
, iTable
, iColumn
, iReg
);
3356 sqlite3VdbeChangeP5(v
, p5
);
3358 sqlite3ExprCacheStore(pParse
, iTable
, iColumn
, iReg
);
3362 void sqlite3ExprCodeGetColumnToReg(
3363 Parse
*pParse
, /* Parsing and code generating context */
3364 Table
*pTab
, /* Description of the table we are reading from */
3365 int iColumn
, /* Index of the table column */
3366 int iTable
, /* The cursor pointing to the table */
3367 int iReg
/* Store results here */
3369 int r1
= sqlite3ExprCodeGetColumn(pParse
, pTab
, iColumn
, iTable
, iReg
, 0);
3370 if( r1
!=iReg
) sqlite3VdbeAddOp2(pParse
->pVdbe
, OP_SCopy
, r1
, iReg
);
3375 ** Clear all column cache entries.
3377 void sqlite3ExprCacheClear(Parse
*pParse
){
3381 if( pParse
->db
->flags
& SQLITE_VdbeAddopTrace
){
3385 for(i
=0; i
<pParse
->nColCache
; i
++){
3386 if( pParse
->aColCache
[i
].tempReg
3387 && pParse
->nTempReg
<ArraySize(pParse
->aTempReg
)
3389 pParse
->aTempReg
[pParse
->nTempReg
++] = pParse
->aColCache
[i
].iReg
;
3392 pParse
->nColCache
= 0;
3396 ** Record the fact that an affinity change has occurred on iCount
3397 ** registers starting with iStart.
3399 void sqlite3ExprCacheAffinityChange(Parse
*pParse
, int iStart
, int iCount
){
3400 sqlite3ExprCacheRemove(pParse
, iStart
, iCount
);
3404 ** Generate code to move content from registers iFrom...iFrom+nReg-1
3405 ** over to iTo..iTo+nReg-1. Keep the column cache up-to-date.
3407 void sqlite3ExprCodeMove(Parse
*pParse
, int iFrom
, int iTo
, int nReg
){
3408 assert( iFrom
>=iTo
+nReg
|| iFrom
+nReg
<=iTo
);
3409 sqlite3VdbeAddOp3(pParse
->pVdbe
, OP_Move
, iFrom
, iTo
, nReg
);
3410 sqlite3ExprCacheRemove(pParse
, iFrom
, nReg
);
3413 #if defined(SQLITE_DEBUG) || defined(SQLITE_COVERAGE_TEST)
3415 ** Return true if any register in the range iFrom..iTo (inclusive)
3416 ** is used as part of the column cache.
3418 ** This routine is used within assert() and testcase() macros only
3419 ** and does not appear in a normal build.
3421 static int usedAsColumnCache(Parse
*pParse
, int iFrom
, int iTo
){
3423 struct yColCache
*p
;
3424 for(i
=0, p
=pParse
->aColCache
; i
<pParse
->nColCache
; i
++, p
++){
3426 if( r
>=iFrom
&& r
<=iTo
) return 1; /*NO_TEST*/
3430 #endif /* SQLITE_DEBUG || SQLITE_COVERAGE_TEST */
3434 ** Convert a scalar expression node to a TK_REGISTER referencing
3435 ** register iReg. The caller must ensure that iReg already contains
3436 ** the correct value for the expression.
3438 static void exprToRegister(Expr
*p
, int iReg
){
3440 p
->op
= TK_REGISTER
;
3442 ExprClearProperty(p
, EP_Skip
);
3446 ** Evaluate an expression (either a vector or a scalar expression) and store
3447 ** the result in continguous temporary registers. Return the index of
3448 ** the first register used to store the result.
3450 ** If the returned result register is a temporary scalar, then also write
3451 ** that register number into *piFreeable. If the returned result register
3452 ** is not a temporary or if the expression is a vector set *piFreeable
3455 static int exprCodeVector(Parse
*pParse
, Expr
*p
, int *piFreeable
){
3457 int nResult
= sqlite3ExprVectorSize(p
);
3459 iResult
= sqlite3ExprCodeTemp(pParse
, p
, piFreeable
);
3462 if( p
->op
==TK_SELECT
){
3463 #if SQLITE_OMIT_SUBQUERY
3466 iResult
= sqlite3CodeSubselect(pParse
, p
, 0, 0);
3470 iResult
= pParse
->nMem
+1;
3471 pParse
->nMem
+= nResult
;
3472 for(i
=0; i
<nResult
; i
++){
3473 sqlite3ExprCodeFactorable(pParse
, p
->x
.pList
->a
[i
].pExpr
, i
+iResult
);
3482 ** Generate code into the current Vdbe to evaluate the given
3483 ** expression. Attempt to store the results in register "target".
3484 ** Return the register where results are stored.
3486 ** With this routine, there is no guarantee that results will
3487 ** be stored in target. The result might be stored in some other
3488 ** register if it is convenient to do so. The calling function
3489 ** must check the return code and move the results to the desired
3492 int sqlite3ExprCodeTarget(Parse
*pParse
, Expr
*pExpr
, int target
){
3493 Vdbe
*v
= pParse
->pVdbe
; /* The VM under construction */
3494 int op
; /* The opcode being coded */
3495 int inReg
= target
; /* Results stored in register inReg */
3496 int regFree1
= 0; /* If non-zero free this temporary register */
3497 int regFree2
= 0; /* If non-zero free this temporary register */
3498 int r1
, r2
; /* Various register numbers */
3499 Expr tempX
; /* Temporary expression node */
3502 assert( target
>0 && target
<=pParse
->nMem
);
3504 assert( pParse
->db
->mallocFailed
);
3514 case TK_AGG_COLUMN
: {
3515 AggInfo
*pAggInfo
= pExpr
->pAggInfo
;
3516 struct AggInfo_col
*pCol
= &pAggInfo
->aCol
[pExpr
->iAgg
];
3517 if( !pAggInfo
->directMode
){
3518 assert( pCol
->iMem
>0 );
3520 }else if( pAggInfo
->useSortingIdx
){
3521 sqlite3VdbeAddOp3(v
, OP_Column
, pAggInfo
->sortingIdxPTab
,
3522 pCol
->iSorterColumn
, target
);
3525 /* Otherwise, fall thru into the TK_COLUMN case */
3528 int iTab
= pExpr
->iTable
;
3530 if( pParse
->iSelfTab
<0 ){
3531 /* Generating CHECK constraints or inserting into partial index */
3532 return pExpr
->iColumn
- pParse
->iSelfTab
;
3534 /* Coding an expression that is part of an index where column names
3535 ** in the index refer to the table to which the index belongs */
3536 iTab
= pParse
->iSelfTab
- 1;
3539 return sqlite3ExprCodeGetColumn(pParse
, pExpr
->pTab
,
3540 pExpr
->iColumn
, iTab
, target
,
3544 codeInteger(pParse
, pExpr
, 0, target
);
3547 #ifndef SQLITE_OMIT_FLOATING_POINT
3549 assert( !ExprHasProperty(pExpr
, EP_IntValue
) );
3550 codeReal(v
, pExpr
->u
.zToken
, 0, target
);
3555 assert( !ExprHasProperty(pExpr
, EP_IntValue
) );
3556 sqlite3VdbeLoadString(v
, target
, pExpr
->u
.zToken
);
3560 sqlite3VdbeAddOp2(v
, OP_Null
, 0, target
);
3563 #ifndef SQLITE_OMIT_BLOB_LITERAL
3568 assert( !ExprHasProperty(pExpr
, EP_IntValue
) );
3569 assert( pExpr
->u
.zToken
[0]=='x' || pExpr
->u
.zToken
[0]=='X' );
3570 assert( pExpr
->u
.zToken
[1]=='\'' );
3571 z
= &pExpr
->u
.zToken
[2];
3572 n
= sqlite3Strlen30(z
) - 1;
3573 assert( z
[n
]=='\'' );
3574 zBlob
= sqlite3HexToBlob(sqlite3VdbeDb(v
), z
, n
);
3575 sqlite3VdbeAddOp4(v
, OP_Blob
, n
/2, target
, 0, zBlob
, P4_DYNAMIC
);
3580 assert( !ExprHasProperty(pExpr
, EP_IntValue
) );
3581 assert( pExpr
->u
.zToken
!=0 );
3582 assert( pExpr
->u
.zToken
[0]!=0 );
3583 sqlite3VdbeAddOp2(v
, OP_Variable
, pExpr
->iColumn
, target
);
3584 if( pExpr
->u
.zToken
[1]!=0 ){
3585 const char *z
= sqlite3VListNumToName(pParse
->pVList
, pExpr
->iColumn
);
3586 assert( pExpr
->u
.zToken
[0]=='?' || strcmp(pExpr
->u
.zToken
, z
)==0 );
3587 pParse
->pVList
[0] = 0; /* Indicate VList may no longer be enlarged */
3588 sqlite3VdbeAppendP4(v
, (char*)z
, P4_STATIC
);
3593 return pExpr
->iTable
;
3595 #ifndef SQLITE_OMIT_CAST
3597 /* Expressions of the form: CAST(pLeft AS token) */
3598 inReg
= sqlite3ExprCodeTarget(pParse
, pExpr
->pLeft
, target
);
3599 if( inReg
!=target
){
3600 sqlite3VdbeAddOp2(v
, OP_SCopy
, inReg
, target
);
3603 sqlite3VdbeAddOp2(v
, OP_Cast
, target
,
3604 sqlite3AffinityType(pExpr
->u
.zToken
, 0));
3605 testcase( usedAsColumnCache(pParse
, inReg
, inReg
) );
3606 sqlite3ExprCacheAffinityChange(pParse
, inReg
, 1);
3609 #endif /* SQLITE_OMIT_CAST */
3612 op
= (op
==TK_IS
) ? TK_EQ
: TK_NE
;
3621 Expr
*pLeft
= pExpr
->pLeft
;
3622 if( sqlite3ExprIsVector(pLeft
) ){
3623 codeVectorCompare(pParse
, pExpr
, target
, op
, p5
);
3625 r1
= sqlite3ExprCodeTemp(pParse
, pLeft
, ®Free1
);
3626 r2
= sqlite3ExprCodeTemp(pParse
, pExpr
->pRight
, ®Free2
);
3627 codeCompare(pParse
, pLeft
, pExpr
->pRight
, op
,
3628 r1
, r2
, inReg
, SQLITE_STOREP2
| p5
);
3629 assert(TK_LT
==OP_Lt
); testcase(op
==OP_Lt
); VdbeCoverageIf(v
,op
==OP_Lt
);
3630 assert(TK_LE
==OP_Le
); testcase(op
==OP_Le
); VdbeCoverageIf(v
,op
==OP_Le
);
3631 assert(TK_GT
==OP_Gt
); testcase(op
==OP_Gt
); VdbeCoverageIf(v
,op
==OP_Gt
);
3632 assert(TK_GE
==OP_Ge
); testcase(op
==OP_Ge
); VdbeCoverageIf(v
,op
==OP_Ge
);
3633 assert(TK_EQ
==OP_Eq
); testcase(op
==OP_Eq
); VdbeCoverageIf(v
,op
==OP_Eq
);
3634 assert(TK_NE
==OP_Ne
); testcase(op
==OP_Ne
); VdbeCoverageIf(v
,op
==OP_Ne
);
3635 testcase( regFree1
==0 );
3636 testcase( regFree2
==0 );
3652 assert( TK_AND
==OP_And
); testcase( op
==TK_AND
);
3653 assert( TK_OR
==OP_Or
); testcase( op
==TK_OR
);
3654 assert( TK_PLUS
==OP_Add
); testcase( op
==TK_PLUS
);
3655 assert( TK_MINUS
==OP_Subtract
); testcase( op
==TK_MINUS
);
3656 assert( TK_REM
==OP_Remainder
); testcase( op
==TK_REM
);
3657 assert( TK_BITAND
==OP_BitAnd
); testcase( op
==TK_BITAND
);
3658 assert( TK_BITOR
==OP_BitOr
); testcase( op
==TK_BITOR
);
3659 assert( TK_SLASH
==OP_Divide
); testcase( op
==TK_SLASH
);
3660 assert( TK_LSHIFT
==OP_ShiftLeft
); testcase( op
==TK_LSHIFT
);
3661 assert( TK_RSHIFT
==OP_ShiftRight
); testcase( op
==TK_RSHIFT
);
3662 assert( TK_CONCAT
==OP_Concat
); testcase( op
==TK_CONCAT
);
3663 r1
= sqlite3ExprCodeTemp(pParse
, pExpr
->pLeft
, ®Free1
);
3664 r2
= sqlite3ExprCodeTemp(pParse
, pExpr
->pRight
, ®Free2
);
3665 sqlite3VdbeAddOp3(v
, op
, r2
, r1
, target
);
3666 testcase( regFree1
==0 );
3667 testcase( regFree2
==0 );
3671 Expr
*pLeft
= pExpr
->pLeft
;
3673 if( pLeft
->op
==TK_INTEGER
){
3674 codeInteger(pParse
, pLeft
, 1, target
);
3676 #ifndef SQLITE_OMIT_FLOATING_POINT
3677 }else if( pLeft
->op
==TK_FLOAT
){
3678 assert( !ExprHasProperty(pExpr
, EP_IntValue
) );
3679 codeReal(v
, pLeft
->u
.zToken
, 1, target
);
3683 tempX
.op
= TK_INTEGER
;
3684 tempX
.flags
= EP_IntValue
|EP_TokenOnly
;
3686 r1
= sqlite3ExprCodeTemp(pParse
, &tempX
, ®Free1
);
3687 r2
= sqlite3ExprCodeTemp(pParse
, pExpr
->pLeft
, ®Free2
);
3688 sqlite3VdbeAddOp3(v
, OP_Subtract
, r2
, r1
, target
);
3689 testcase( regFree2
==0 );
3695 assert( TK_BITNOT
==OP_BitNot
); testcase( op
==TK_BITNOT
);
3696 assert( TK_NOT
==OP_Not
); testcase( op
==TK_NOT
);
3697 r1
= sqlite3ExprCodeTemp(pParse
, pExpr
->pLeft
, ®Free1
);
3698 testcase( regFree1
==0 );
3699 sqlite3VdbeAddOp2(v
, op
, r1
, inReg
);
3705 assert( TK_ISNULL
==OP_IsNull
); testcase( op
==TK_ISNULL
);
3706 assert( TK_NOTNULL
==OP_NotNull
); testcase( op
==TK_NOTNULL
);
3707 sqlite3VdbeAddOp2(v
, OP_Integer
, 1, target
);
3708 r1
= sqlite3ExprCodeTemp(pParse
, pExpr
->pLeft
, ®Free1
);
3709 testcase( regFree1
==0 );
3710 addr
= sqlite3VdbeAddOp1(v
, op
, r1
);
3711 VdbeCoverageIf(v
, op
==TK_ISNULL
);
3712 VdbeCoverageIf(v
, op
==TK_NOTNULL
);
3713 sqlite3VdbeAddOp2(v
, OP_Integer
, 0, target
);
3714 sqlite3VdbeJumpHere(v
, addr
);
3717 case TK_AGG_FUNCTION
: {
3718 AggInfo
*pInfo
= pExpr
->pAggInfo
;
3720 assert( !ExprHasProperty(pExpr
, EP_IntValue
) );
3721 sqlite3ErrorMsg(pParse
, "misuse of aggregate: %s()", pExpr
->u
.zToken
);
3723 return pInfo
->aFunc
[pExpr
->iAgg
].iMem
;
3728 ExprList
*pFarg
; /* List of function arguments */
3729 int nFarg
; /* Number of function arguments */
3730 FuncDef
*pDef
; /* The function definition object */
3731 const char *zId
; /* The function name */
3732 u32 constMask
= 0; /* Mask of function arguments that are constant */
3733 int i
; /* Loop counter */
3734 sqlite3
*db
= pParse
->db
; /* The database connection */
3735 u8 enc
= ENC(db
); /* The text encoding used by this database */
3736 CollSeq
*pColl
= 0; /* A collating sequence */
3738 if( ConstFactorOk(pParse
) && sqlite3ExprIsConstantNotJoin(pExpr
) ){
3739 /* SQL functions can be expensive. So try to move constant functions
3740 ** out of the inner loop, even if that means an extra OP_Copy. */
3741 return sqlite3ExprCodeAtInit(pParse
, pExpr
, -1);
3743 assert( !ExprHasProperty(pExpr
, EP_xIsSelect
) );
3744 if( ExprHasProperty(pExpr
, EP_TokenOnly
) ){
3747 pFarg
= pExpr
->x
.pList
;
3749 nFarg
= pFarg
? pFarg
->nExpr
: 0;
3750 assert( !ExprHasProperty(pExpr
, EP_IntValue
) );
3751 zId
= pExpr
->u
.zToken
;
3752 pDef
= sqlite3FindFunction(db
, zId
, nFarg
, enc
, 0);
3753 #ifdef SQLITE_ENABLE_UNKNOWN_SQL_FUNCTION
3754 if( pDef
==0 && pParse
->explain
){
3755 pDef
= sqlite3FindFunction(db
, "unknown", nFarg
, enc
, 0);
3758 if( pDef
==0 || pDef
->xFinalize
!=0 ){
3759 sqlite3ErrorMsg(pParse
, "unknown function: %s()", zId
);
3763 /* Attempt a direct implementation of the built-in COALESCE() and
3764 ** IFNULL() functions. This avoids unnecessary evaluation of
3765 ** arguments past the first non-NULL argument.
3767 if( pDef
->funcFlags
& SQLITE_FUNC_COALESCE
){
3768 int endCoalesce
= sqlite3VdbeMakeLabel(v
);
3770 sqlite3ExprCode(pParse
, pFarg
->a
[0].pExpr
, target
);
3771 for(i
=1; i
<nFarg
; i
++){
3772 sqlite3VdbeAddOp2(v
, OP_NotNull
, target
, endCoalesce
);
3774 sqlite3ExprCacheRemove(pParse
, target
, 1);
3775 sqlite3ExprCachePush(pParse
);
3776 sqlite3ExprCode(pParse
, pFarg
->a
[i
].pExpr
, target
);
3777 sqlite3ExprCachePop(pParse
);
3779 sqlite3VdbeResolveLabel(v
, endCoalesce
);
3783 /* The UNLIKELY() function is a no-op. The result is the value
3784 ** of the first argument.
3786 if( pDef
->funcFlags
& SQLITE_FUNC_UNLIKELY
){
3788 return sqlite3ExprCodeTarget(pParse
, pFarg
->a
[0].pExpr
, target
);
3792 /* The AFFINITY() function evaluates to a string that describes
3793 ** the type affinity of the argument. This is used for testing of
3794 ** the SQLite type logic.
3796 if( pDef
->funcFlags
& SQLITE_FUNC_AFFINITY
){
3797 const char *azAff
[] = { "blob", "text", "numeric", "integer", "real" };
3800 aff
= sqlite3ExprAffinity(pFarg
->a
[0].pExpr
);
3801 sqlite3VdbeLoadString(v
, target
,
3802 aff
? azAff
[aff
-SQLITE_AFF_BLOB
] : "none");
3807 for(i
=0; i
<nFarg
; i
++){
3808 if( i
<32 && sqlite3ExprIsConstant(pFarg
->a
[i
].pExpr
) ){
3810 constMask
|= MASKBIT32(i
);
3812 if( (pDef
->funcFlags
& SQLITE_FUNC_NEEDCOLL
)!=0 && !pColl
){
3813 pColl
= sqlite3ExprCollSeq(pParse
, pFarg
->a
[i
].pExpr
);
3818 r1
= pParse
->nMem
+1;
3819 pParse
->nMem
+= nFarg
;
3821 r1
= sqlite3GetTempRange(pParse
, nFarg
);
3824 /* For length() and typeof() functions with a column argument,
3825 ** set the P5 parameter to the OP_Column opcode to OPFLAG_LENGTHARG
3826 ** or OPFLAG_TYPEOFARG respectively, to avoid unnecessary data
3829 if( (pDef
->funcFlags
& (SQLITE_FUNC_LENGTH
|SQLITE_FUNC_TYPEOF
))!=0 ){
3832 assert( pFarg
->a
[0].pExpr
!=0 );
3833 exprOp
= pFarg
->a
[0].pExpr
->op
;
3834 if( exprOp
==TK_COLUMN
|| exprOp
==TK_AGG_COLUMN
){
3835 assert( SQLITE_FUNC_LENGTH
==OPFLAG_LENGTHARG
);
3836 assert( SQLITE_FUNC_TYPEOF
==OPFLAG_TYPEOFARG
);
3837 testcase( pDef
->funcFlags
& OPFLAG_LENGTHARG
);
3838 pFarg
->a
[0].pExpr
->op2
=
3839 pDef
->funcFlags
& (OPFLAG_LENGTHARG
|OPFLAG_TYPEOFARG
);
3843 sqlite3ExprCachePush(pParse
); /* Ticket 2ea2425d34be */
3844 sqlite3ExprCodeExprList(pParse
, pFarg
, r1
, 0,
3845 SQLITE_ECEL_DUP
|SQLITE_ECEL_FACTOR
);
3846 sqlite3ExprCachePop(pParse
); /* Ticket 2ea2425d34be */
3850 #ifndef SQLITE_OMIT_VIRTUALTABLE
3851 /* Possibly overload the function if the first argument is
3852 ** a virtual table column.
3854 ** For infix functions (LIKE, GLOB, REGEXP, and MATCH) use the
3855 ** second argument, not the first, as the argument to test to
3856 ** see if it is a column in a virtual table. This is done because
3857 ** the left operand of infix functions (the operand we want to
3858 ** control overloading) ends up as the second argument to the
3859 ** function. The expression "A glob B" is equivalent to
3860 ** "glob(B,A). We want to use the A in "A glob B" to test
3861 ** for function overloading. But we use the B term in "glob(B,A)".
3863 if( nFarg
>=2 && (pExpr
->flags
& EP_InfixFunc
) ){
3864 pDef
= sqlite3VtabOverloadFunction(db
, pDef
, nFarg
, pFarg
->a
[1].pExpr
);
3865 }else if( nFarg
>0 ){
3866 pDef
= sqlite3VtabOverloadFunction(db
, pDef
, nFarg
, pFarg
->a
[0].pExpr
);
3869 if( pDef
->funcFlags
& SQLITE_FUNC_NEEDCOLL
){
3870 if( !pColl
) pColl
= db
->pDfltColl
;
3871 sqlite3VdbeAddOp4(v
, OP_CollSeq
, 0, 0, 0, (char *)pColl
, P4_COLLSEQ
);
3873 sqlite3VdbeAddOp4(v
, pParse
->iSelfTab
? OP_PureFunc0
: OP_Function0
,
3874 constMask
, r1
, target
, (char*)pDef
, P4_FUNCDEF
);
3875 sqlite3VdbeChangeP5(v
, (u8
)nFarg
);
3876 if( nFarg
&& constMask
==0 ){
3877 sqlite3ReleaseTempRange(pParse
, r1
, nFarg
);
3881 #ifndef SQLITE_OMIT_SUBQUERY
3885 testcase( op
==TK_EXISTS
);
3886 testcase( op
==TK_SELECT
);
3887 if( op
==TK_SELECT
&& (nCol
= pExpr
->x
.pSelect
->pEList
->nExpr
)!=1 ){
3888 sqlite3SubselectError(pParse
, nCol
, 1);
3890 return sqlite3CodeSubselect(pParse
, pExpr
, 0, 0);
3894 case TK_SELECT_COLUMN
: {
3896 if( pExpr
->pLeft
->iTable
==0 ){
3897 pExpr
->pLeft
->iTable
= sqlite3CodeSubselect(pParse
, pExpr
->pLeft
, 0, 0);
3899 assert( pExpr
->iTable
==0 || pExpr
->pLeft
->op
==TK_SELECT
);
3901 && pExpr
->iTable
!=(n
= sqlite3ExprVectorSize(pExpr
->pLeft
))
3903 sqlite3ErrorMsg(pParse
, "%d columns assigned %d values",
3906 return pExpr
->pLeft
->iTable
+ pExpr
->iColumn
;
3909 int destIfFalse
= sqlite3VdbeMakeLabel(v
);
3910 int destIfNull
= sqlite3VdbeMakeLabel(v
);
3911 sqlite3VdbeAddOp2(v
, OP_Null
, 0, target
);
3912 sqlite3ExprCodeIN(pParse
, pExpr
, destIfFalse
, destIfNull
);
3913 sqlite3VdbeAddOp2(v
, OP_Integer
, 1, target
);
3914 sqlite3VdbeResolveLabel(v
, destIfFalse
);
3915 sqlite3VdbeAddOp2(v
, OP_AddImm
, target
, 0);
3916 sqlite3VdbeResolveLabel(v
, destIfNull
);
3919 #endif /* SQLITE_OMIT_SUBQUERY */
3923 ** x BETWEEN y AND z
3925 ** This is equivalent to
3929 ** X is stored in pExpr->pLeft.
3930 ** Y is stored in pExpr->pList->a[0].pExpr.
3931 ** Z is stored in pExpr->pList->a[1].pExpr.
3934 exprCodeBetween(pParse
, pExpr
, target
, 0, 0);
3940 return sqlite3ExprCodeTarget(pParse
, pExpr
->pLeft
, target
);
3944 /* If the opcode is TK_TRIGGER, then the expression is a reference
3945 ** to a column in the new.* or old.* pseudo-tables available to
3946 ** trigger programs. In this case Expr.iTable is set to 1 for the
3947 ** new.* pseudo-table, or 0 for the old.* pseudo-table. Expr.iColumn
3948 ** is set to the column of the pseudo-table to read, or to -1 to
3949 ** read the rowid field.
3951 ** The expression is implemented using an OP_Param opcode. The p1
3952 ** parameter is set to 0 for an old.rowid reference, or to (i+1)
3953 ** to reference another column of the old.* pseudo-table, where
3954 ** i is the index of the column. For a new.rowid reference, p1 is
3955 ** set to (n+1), where n is the number of columns in each pseudo-table.
3956 ** For a reference to any other column in the new.* pseudo-table, p1
3957 ** is set to (n+2+i), where n and i are as defined previously. For
3958 ** example, if the table on which triggers are being fired is
3961 ** CREATE TABLE t1(a, b);
3963 ** Then p1 is interpreted as follows:
3965 ** p1==0 -> old.rowid p1==3 -> new.rowid
3966 ** p1==1 -> old.a p1==4 -> new.a
3967 ** p1==2 -> old.b p1==5 -> new.b
3969 Table
*pTab
= pExpr
->pTab
;
3970 int p1
= pExpr
->iTable
* (pTab
->nCol
+1) + 1 + pExpr
->iColumn
;
3972 assert( pExpr
->iTable
==0 || pExpr
->iTable
==1 );
3973 assert( pExpr
->iColumn
>=-1 && pExpr
->iColumn
<pTab
->nCol
);
3974 assert( pTab
->iPKey
<0 || pExpr
->iColumn
!=pTab
->iPKey
);
3975 assert( p1
>=0 && p1
<(pTab
->nCol
*2+2) );
3977 sqlite3VdbeAddOp2(v
, OP_Param
, p1
, target
);
3978 VdbeComment((v
, "%s.%s -> $%d",
3979 (pExpr
->iTable
? "new" : "old"),
3980 (pExpr
->iColumn
<0 ? "rowid" : pExpr
->pTab
->aCol
[pExpr
->iColumn
].zName
),
3984 #ifndef SQLITE_OMIT_FLOATING_POINT
3985 /* If the column has REAL affinity, it may currently be stored as an
3986 ** integer. Use OP_RealAffinity to make sure it is really real.
3988 ** EVIDENCE-OF: R-60985-57662 SQLite will convert the value back to
3989 ** floating point when extracting it from the record. */
3990 if( pExpr
->iColumn
>=0
3991 && pTab
->aCol
[pExpr
->iColumn
].affinity
==SQLITE_AFF_REAL
3993 sqlite3VdbeAddOp1(v
, OP_RealAffinity
, target
);
4000 sqlite3ErrorMsg(pParse
, "row value misused");
4004 case TK_IF_NULL_ROW
: {
4006 addrINR
= sqlite3VdbeAddOp1(v
, OP_IfNullRow
, pExpr
->iTable
);
4007 sqlite3ExprCachePush(pParse
);
4008 inReg
= sqlite3ExprCodeTarget(pParse
, pExpr
->pLeft
, target
);
4009 sqlite3ExprCachePop(pParse
);
4010 sqlite3VdbeJumpHere(v
, addrINR
);
4011 sqlite3VdbeChangeP3(v
, addrINR
, inReg
);
4017 ** CASE x WHEN e1 THEN r1 WHEN e2 THEN r2 ... WHEN eN THEN rN ELSE y END
4020 ** CASE WHEN e1 THEN r1 WHEN e2 THEN r2 ... WHEN eN THEN rN ELSE y END
4022 ** Form A is can be transformed into the equivalent form B as follows:
4023 ** CASE WHEN x=e1 THEN r1 WHEN x=e2 THEN r2 ...
4024 ** WHEN x=eN THEN rN ELSE y END
4026 ** X (if it exists) is in pExpr->pLeft.
4027 ** Y is in the last element of pExpr->x.pList if pExpr->x.pList->nExpr is
4028 ** odd. The Y is also optional. If the number of elements in x.pList
4029 ** is even, then Y is omitted and the "otherwise" result is NULL.
4030 ** Ei is in pExpr->pList->a[i*2] and Ri is pExpr->pList->a[i*2+1].
4032 ** The result of the expression is the Ri for the first matching Ei,
4033 ** or if there is no matching Ei, the ELSE term Y, or if there is
4034 ** no ELSE term, NULL.
4036 default: assert( op
==TK_CASE
); {
4037 int endLabel
; /* GOTO label for end of CASE stmt */
4038 int nextCase
; /* GOTO label for next WHEN clause */
4039 int nExpr
; /* 2x number of WHEN terms */
4040 int i
; /* Loop counter */
4041 ExprList
*pEList
; /* List of WHEN terms */
4042 struct ExprList_item
*aListelem
; /* Array of WHEN terms */
4043 Expr opCompare
; /* The X==Ei expression */
4044 Expr
*pX
; /* The X expression */
4045 Expr
*pTest
= 0; /* X==Ei (form A) or just Ei (form B) */
4046 VVA_ONLY( int iCacheLevel
= pParse
->iCacheLevel
; )
4048 assert( !ExprHasProperty(pExpr
, EP_xIsSelect
) && pExpr
->x
.pList
);
4049 assert(pExpr
->x
.pList
->nExpr
> 0);
4050 pEList
= pExpr
->x
.pList
;
4051 aListelem
= pEList
->a
;
4052 nExpr
= pEList
->nExpr
;
4053 endLabel
= sqlite3VdbeMakeLabel(v
);
4054 if( (pX
= pExpr
->pLeft
)!=0 ){
4056 testcase( pX
->op
==TK_COLUMN
);
4057 exprToRegister(&tempX
, exprCodeVector(pParse
, &tempX
, ®Free1
));
4058 testcase( regFree1
==0 );
4059 memset(&opCompare
, 0, sizeof(opCompare
));
4060 opCompare
.op
= TK_EQ
;
4061 opCompare
.pLeft
= &tempX
;
4063 /* Ticket b351d95f9cd5ef17e9d9dbae18f5ca8611190001:
4064 ** The value in regFree1 might get SCopy-ed into the file result.
4065 ** So make sure that the regFree1 register is not reused for other
4066 ** purposes and possibly overwritten. */
4069 for(i
=0; i
<nExpr
-1; i
=i
+2){
4070 sqlite3ExprCachePush(pParse
);
4073 opCompare
.pRight
= aListelem
[i
].pExpr
;
4075 pTest
= aListelem
[i
].pExpr
;
4077 nextCase
= sqlite3VdbeMakeLabel(v
);
4078 testcase( pTest
->op
==TK_COLUMN
);
4079 sqlite3ExprIfFalse(pParse
, pTest
, nextCase
, SQLITE_JUMPIFNULL
);
4080 testcase( aListelem
[i
+1].pExpr
->op
==TK_COLUMN
);
4081 sqlite3ExprCode(pParse
, aListelem
[i
+1].pExpr
, target
);
4082 sqlite3VdbeGoto(v
, endLabel
);
4083 sqlite3ExprCachePop(pParse
);
4084 sqlite3VdbeResolveLabel(v
, nextCase
);
4087 sqlite3ExprCachePush(pParse
);
4088 sqlite3ExprCode(pParse
, pEList
->a
[nExpr
-1].pExpr
, target
);
4089 sqlite3ExprCachePop(pParse
);
4091 sqlite3VdbeAddOp2(v
, OP_Null
, 0, target
);
4093 assert( pParse
->db
->mallocFailed
|| pParse
->nErr
>0
4094 || pParse
->iCacheLevel
==iCacheLevel
);
4095 sqlite3VdbeResolveLabel(v
, endLabel
);
4098 #ifndef SQLITE_OMIT_TRIGGER
4100 assert( pExpr
->affinity
==OE_Rollback
4101 || pExpr
->affinity
==OE_Abort
4102 || pExpr
->affinity
==OE_Fail
4103 || pExpr
->affinity
==OE_Ignore
4105 if( !pParse
->pTriggerTab
){
4106 sqlite3ErrorMsg(pParse
,
4107 "RAISE() may only be used within a trigger-program");
4110 if( pExpr
->affinity
==OE_Abort
){
4111 sqlite3MayAbort(pParse
);
4113 assert( !ExprHasProperty(pExpr
, EP_IntValue
) );
4114 if( pExpr
->affinity
==OE_Ignore
){
4116 v
, OP_Halt
, SQLITE_OK
, OE_Ignore
, 0, pExpr
->u
.zToken
,0);
4119 sqlite3HaltConstraint(pParse
, SQLITE_CONSTRAINT_TRIGGER
,
4120 pExpr
->affinity
, pExpr
->u
.zToken
, 0, 0);
4127 sqlite3ReleaseTempReg(pParse
, regFree1
);
4128 sqlite3ReleaseTempReg(pParse
, regFree2
);
4133 ** Factor out the code of the given expression to initialization time.
4135 ** If regDest>=0 then the result is always stored in that register and the
4136 ** result is not reusable. If regDest<0 then this routine is free to
4137 ** store the value whereever it wants. The register where the expression
4138 ** is stored is returned. When regDest<0, two identical expressions will
4139 ** code to the same register.
4141 int sqlite3ExprCodeAtInit(
4142 Parse
*pParse
, /* Parsing context */
4143 Expr
*pExpr
, /* The expression to code when the VDBE initializes */
4144 int regDest
/* Store the value in this register */
4147 assert( ConstFactorOk(pParse
) );
4148 p
= pParse
->pConstExpr
;
4149 if( regDest
<0 && p
){
4150 struct ExprList_item
*pItem
;
4152 for(pItem
=p
->a
, i
=p
->nExpr
; i
>0; pItem
++, i
--){
4153 if( pItem
->reusable
&& sqlite3ExprCompare(0,pItem
->pExpr
,pExpr
,-1)==0 ){
4154 return pItem
->u
.iConstExprReg
;
4158 pExpr
= sqlite3ExprDup(pParse
->db
, pExpr
, 0);
4159 p
= sqlite3ExprListAppend(pParse
, p
, pExpr
);
4161 struct ExprList_item
*pItem
= &p
->a
[p
->nExpr
-1];
4162 pItem
->reusable
= regDest
<0;
4163 if( regDest
<0 ) regDest
= ++pParse
->nMem
;
4164 pItem
->u
.iConstExprReg
= regDest
;
4166 pParse
->pConstExpr
= p
;
4171 ** Generate code to evaluate an expression and store the results
4172 ** into a register. Return the register number where the results
4175 ** If the register is a temporary register that can be deallocated,
4176 ** then write its number into *pReg. If the result register is not
4177 ** a temporary, then set *pReg to zero.
4179 ** If pExpr is a constant, then this routine might generate this
4180 ** code to fill the register in the initialization section of the
4181 ** VDBE program, in order to factor it out of the evaluation loop.
4183 int sqlite3ExprCodeTemp(Parse
*pParse
, Expr
*pExpr
, int *pReg
){
4185 pExpr
= sqlite3ExprSkipCollate(pExpr
);
4186 if( ConstFactorOk(pParse
)
4187 && pExpr
->op
!=TK_REGISTER
4188 && sqlite3ExprIsConstantNotJoin(pExpr
)
4191 r2
= sqlite3ExprCodeAtInit(pParse
, pExpr
, -1);
4193 int r1
= sqlite3GetTempReg(pParse
);
4194 r2
= sqlite3ExprCodeTarget(pParse
, pExpr
, r1
);
4198 sqlite3ReleaseTempReg(pParse
, r1
);
4206 ** Generate code that will evaluate expression pExpr and store the
4207 ** results in register target. The results are guaranteed to appear
4208 ** in register target.
4210 void sqlite3ExprCode(Parse
*pParse
, Expr
*pExpr
, int target
){
4213 assert( target
>0 && target
<=pParse
->nMem
);
4214 if( pExpr
&& pExpr
->op
==TK_REGISTER
){
4215 sqlite3VdbeAddOp2(pParse
->pVdbe
, OP_Copy
, pExpr
->iTable
, target
);
4217 inReg
= sqlite3ExprCodeTarget(pParse
, pExpr
, target
);
4218 assert( pParse
->pVdbe
!=0 || pParse
->db
->mallocFailed
);
4219 if( inReg
!=target
&& pParse
->pVdbe
){
4220 sqlite3VdbeAddOp2(pParse
->pVdbe
, OP_SCopy
, inReg
, target
);
4226 ** Make a transient copy of expression pExpr and then code it using
4227 ** sqlite3ExprCode(). This routine works just like sqlite3ExprCode()
4228 ** except that the input expression is guaranteed to be unchanged.
4230 void sqlite3ExprCodeCopy(Parse
*pParse
, Expr
*pExpr
, int target
){
4231 sqlite3
*db
= pParse
->db
;
4232 pExpr
= sqlite3ExprDup(db
, pExpr
, 0);
4233 if( !db
->mallocFailed
) sqlite3ExprCode(pParse
, pExpr
, target
);
4234 sqlite3ExprDelete(db
, pExpr
);
4238 ** Generate code that will evaluate expression pExpr and store the
4239 ** results in register target. The results are guaranteed to appear
4240 ** in register target. If the expression is constant, then this routine
4241 ** might choose to code the expression at initialization time.
4243 void sqlite3ExprCodeFactorable(Parse
*pParse
, Expr
*pExpr
, int target
){
4244 if( pParse
->okConstFactor
&& sqlite3ExprIsConstant(pExpr
) ){
4245 sqlite3ExprCodeAtInit(pParse
, pExpr
, target
);
4247 sqlite3ExprCode(pParse
, pExpr
, target
);
4252 ** Generate code that evaluates the given expression and puts the result
4253 ** in register target.
4255 ** Also make a copy of the expression results into another "cache" register
4256 ** and modify the expression so that the next time it is evaluated,
4257 ** the result is a copy of the cache register.
4259 ** This routine is used for expressions that are used multiple
4260 ** times. They are evaluated once and the results of the expression
4263 void sqlite3ExprCodeAndCache(Parse
*pParse
, Expr
*pExpr
, int target
){
4264 Vdbe
*v
= pParse
->pVdbe
;
4268 assert( pExpr
->op
!=TK_REGISTER
);
4269 sqlite3ExprCode(pParse
, pExpr
, target
);
4270 iMem
= ++pParse
->nMem
;
4271 sqlite3VdbeAddOp2(v
, OP_Copy
, target
, iMem
);
4272 exprToRegister(pExpr
, iMem
);
4276 ** Generate code that pushes the value of every element of the given
4277 ** expression list into a sequence of registers beginning at target.
4279 ** Return the number of elements evaluated. The number returned will
4280 ** usually be pList->nExpr but might be reduced if SQLITE_ECEL_OMITREF
4283 ** The SQLITE_ECEL_DUP flag prevents the arguments from being
4284 ** filled using OP_SCopy. OP_Copy must be used instead.
4286 ** The SQLITE_ECEL_FACTOR argument allows constant arguments to be
4287 ** factored out into initialization code.
4289 ** The SQLITE_ECEL_REF flag means that expressions in the list with
4290 ** ExprList.a[].u.x.iOrderByCol>0 have already been evaluated and stored
4291 ** in registers at srcReg, and so the value can be copied from there.
4292 ** If SQLITE_ECEL_OMITREF is also set, then the values with u.x.iOrderByCol>0
4293 ** are simply omitted rather than being copied from srcReg.
4295 int sqlite3ExprCodeExprList(
4296 Parse
*pParse
, /* Parsing context */
4297 ExprList
*pList
, /* The expression list to be coded */
4298 int target
, /* Where to write results */
4299 int srcReg
, /* Source registers if SQLITE_ECEL_REF */
4300 u8 flags
/* SQLITE_ECEL_* flags */
4302 struct ExprList_item
*pItem
;
4304 u8 copyOp
= (flags
& SQLITE_ECEL_DUP
) ? OP_Copy
: OP_SCopy
;
4305 Vdbe
*v
= pParse
->pVdbe
;
4308 assert( pParse
->pVdbe
!=0 ); /* Never gets this far otherwise */
4310 if( !ConstFactorOk(pParse
) ) flags
&= ~SQLITE_ECEL_FACTOR
;
4311 for(pItem
=pList
->a
, i
=0; i
<n
; i
++, pItem
++){
4312 Expr
*pExpr
= pItem
->pExpr
;
4313 if( (flags
& SQLITE_ECEL_REF
)!=0 && (j
= pItem
->u
.x
.iOrderByCol
)>0 ){
4314 if( flags
& SQLITE_ECEL_OMITREF
){
4318 sqlite3VdbeAddOp2(v
, copyOp
, j
+srcReg
-1, target
+i
);
4320 }else if( (flags
& SQLITE_ECEL_FACTOR
)!=0 && sqlite3ExprIsConstant(pExpr
) ){
4321 sqlite3ExprCodeAtInit(pParse
, pExpr
, target
+i
);
4323 int inReg
= sqlite3ExprCodeTarget(pParse
, pExpr
, target
+i
);
4324 if( inReg
!=target
+i
){
4327 && (pOp
=sqlite3VdbeGetOp(v
, -1))->opcode
==OP_Copy
4328 && pOp
->p1
+pOp
->p3
+1==inReg
4329 && pOp
->p2
+pOp
->p3
+1==target
+i
4333 sqlite3VdbeAddOp2(v
, copyOp
, inReg
, target
+i
);
4342 ** Generate code for a BETWEEN operator.
4344 ** x BETWEEN y AND z
4346 ** The above is equivalent to
4350 ** Code it as such, taking care to do the common subexpression
4351 ** elimination of x.
4353 ** The xJumpIf parameter determines details:
4355 ** NULL: Store the boolean result in reg[dest]
4356 ** sqlite3ExprIfTrue: Jump to dest if true
4357 ** sqlite3ExprIfFalse: Jump to dest if false
4359 ** The jumpIfNull parameter is ignored if xJumpIf is NULL.
4361 static void exprCodeBetween(
4362 Parse
*pParse
, /* Parsing and code generating context */
4363 Expr
*pExpr
, /* The BETWEEN expression */
4364 int dest
, /* Jump destination or storage location */
4365 void (*xJump
)(Parse
*,Expr
*,int,int), /* Action to take */
4366 int jumpIfNull
/* Take the jump if the BETWEEN is NULL */
4368 Expr exprAnd
; /* The AND operator in x>=y AND x<=z */
4369 Expr compLeft
; /* The x>=y term */
4370 Expr compRight
; /* The x<=z term */
4371 Expr exprX
; /* The x subexpression */
4372 int regFree1
= 0; /* Temporary use register */
4375 memset(&compLeft
, 0, sizeof(Expr
));
4376 memset(&compRight
, 0, sizeof(Expr
));
4377 memset(&exprAnd
, 0, sizeof(Expr
));
4379 assert( !ExprHasProperty(pExpr
, EP_xIsSelect
) );
4380 exprX
= *pExpr
->pLeft
;
4381 exprAnd
.op
= TK_AND
;
4382 exprAnd
.pLeft
= &compLeft
;
4383 exprAnd
.pRight
= &compRight
;
4384 compLeft
.op
= TK_GE
;
4385 compLeft
.pLeft
= &exprX
;
4386 compLeft
.pRight
= pExpr
->x
.pList
->a
[0].pExpr
;
4387 compRight
.op
= TK_LE
;
4388 compRight
.pLeft
= &exprX
;
4389 compRight
.pRight
= pExpr
->x
.pList
->a
[1].pExpr
;
4390 exprToRegister(&exprX
, exprCodeVector(pParse
, &exprX
, ®Free1
));
4392 xJump(pParse
, &exprAnd
, dest
, jumpIfNull
);
4394 /* Mark the expression is being from the ON or USING clause of a join
4395 ** so that the sqlite3ExprCodeTarget() routine will not attempt to move
4396 ** it into the Parse.pConstExpr list. We should use a new bit for this,
4397 ** for clarity, but we are out of bits in the Expr.flags field so we
4398 ** have to reuse the EP_FromJoin bit. Bummer. */
4399 exprX
.flags
|= EP_FromJoin
;
4400 sqlite3ExprCodeTarget(pParse
, &exprAnd
, dest
);
4402 sqlite3ReleaseTempReg(pParse
, regFree1
);
4404 /* Ensure adequate test coverage */
4405 testcase( xJump
==sqlite3ExprIfTrue
&& jumpIfNull
==0 && regFree1
==0 );
4406 testcase( xJump
==sqlite3ExprIfTrue
&& jumpIfNull
==0 && regFree1
!=0 );
4407 testcase( xJump
==sqlite3ExprIfTrue
&& jumpIfNull
!=0 && regFree1
==0 );
4408 testcase( xJump
==sqlite3ExprIfTrue
&& jumpIfNull
!=0 && regFree1
!=0 );
4409 testcase( xJump
==sqlite3ExprIfFalse
&& jumpIfNull
==0 && regFree1
==0 );
4410 testcase( xJump
==sqlite3ExprIfFalse
&& jumpIfNull
==0 && regFree1
!=0 );
4411 testcase( xJump
==sqlite3ExprIfFalse
&& jumpIfNull
!=0 && regFree1
==0 );
4412 testcase( xJump
==sqlite3ExprIfFalse
&& jumpIfNull
!=0 && regFree1
!=0 );
4413 testcase( xJump
==0 );
4417 ** Generate code for a boolean expression such that a jump is made
4418 ** to the label "dest" if the expression is true but execution
4419 ** continues straight thru if the expression is false.
4421 ** If the expression evaluates to NULL (neither true nor false), then
4422 ** take the jump if the jumpIfNull flag is SQLITE_JUMPIFNULL.
4424 ** This code depends on the fact that certain token values (ex: TK_EQ)
4425 ** are the same as opcode values (ex: OP_Eq) that implement the corresponding
4426 ** operation. Special comments in vdbe.c and the mkopcodeh.awk script in
4427 ** the make process cause these values to align. Assert()s in the code
4428 ** below verify that the numbers are aligned correctly.
4430 void sqlite3ExprIfTrue(Parse
*pParse
, Expr
*pExpr
, int dest
, int jumpIfNull
){
4431 Vdbe
*v
= pParse
->pVdbe
;
4437 assert( jumpIfNull
==SQLITE_JUMPIFNULL
|| jumpIfNull
==0 );
4438 if( NEVER(v
==0) ) return; /* Existence of VDBE checked by caller */
4439 if( NEVER(pExpr
==0) ) return; /* No way this can happen */
4443 int d2
= sqlite3VdbeMakeLabel(v
);
4444 testcase( jumpIfNull
==0 );
4445 sqlite3ExprIfFalse(pParse
, pExpr
->pLeft
, d2
,jumpIfNull
^SQLITE_JUMPIFNULL
);
4446 sqlite3ExprCachePush(pParse
);
4447 sqlite3ExprIfTrue(pParse
, pExpr
->pRight
, dest
, jumpIfNull
);
4448 sqlite3VdbeResolveLabel(v
, d2
);
4449 sqlite3ExprCachePop(pParse
);
4453 testcase( jumpIfNull
==0 );
4454 sqlite3ExprIfTrue(pParse
, pExpr
->pLeft
, dest
, jumpIfNull
);
4455 sqlite3ExprCachePush(pParse
);
4456 sqlite3ExprIfTrue(pParse
, pExpr
->pRight
, dest
, jumpIfNull
);
4457 sqlite3ExprCachePop(pParse
);
4461 testcase( jumpIfNull
==0 );
4462 sqlite3ExprIfFalse(pParse
, pExpr
->pLeft
, dest
, jumpIfNull
);
4467 testcase( op
==TK_IS
);
4468 testcase( op
==TK_ISNOT
);
4469 op
= (op
==TK_IS
) ? TK_EQ
: TK_NE
;
4470 jumpIfNull
= SQLITE_NULLEQ
;
4478 if( sqlite3ExprIsVector(pExpr
->pLeft
) ) goto default_expr
;
4479 testcase( jumpIfNull
==0 );
4480 r1
= sqlite3ExprCodeTemp(pParse
, pExpr
->pLeft
, ®Free1
);
4481 r2
= sqlite3ExprCodeTemp(pParse
, pExpr
->pRight
, ®Free2
);
4482 codeCompare(pParse
, pExpr
->pLeft
, pExpr
->pRight
, op
,
4483 r1
, r2
, dest
, jumpIfNull
);
4484 assert(TK_LT
==OP_Lt
); testcase(op
==OP_Lt
); VdbeCoverageIf(v
,op
==OP_Lt
);
4485 assert(TK_LE
==OP_Le
); testcase(op
==OP_Le
); VdbeCoverageIf(v
,op
==OP_Le
);
4486 assert(TK_GT
==OP_Gt
); testcase(op
==OP_Gt
); VdbeCoverageIf(v
,op
==OP_Gt
);
4487 assert(TK_GE
==OP_Ge
); testcase(op
==OP_Ge
); VdbeCoverageIf(v
,op
==OP_Ge
);
4488 assert(TK_EQ
==OP_Eq
); testcase(op
==OP_Eq
);
4489 VdbeCoverageIf(v
, op
==OP_Eq
&& jumpIfNull
==SQLITE_NULLEQ
);
4490 VdbeCoverageIf(v
, op
==OP_Eq
&& jumpIfNull
!=SQLITE_NULLEQ
);
4491 assert(TK_NE
==OP_Ne
); testcase(op
==OP_Ne
);
4492 VdbeCoverageIf(v
, op
==OP_Ne
&& jumpIfNull
==SQLITE_NULLEQ
);
4493 VdbeCoverageIf(v
, op
==OP_Ne
&& jumpIfNull
!=SQLITE_NULLEQ
);
4494 testcase( regFree1
==0 );
4495 testcase( regFree2
==0 );
4500 assert( TK_ISNULL
==OP_IsNull
); testcase( op
==TK_ISNULL
);
4501 assert( TK_NOTNULL
==OP_NotNull
); testcase( op
==TK_NOTNULL
);
4502 r1
= sqlite3ExprCodeTemp(pParse
, pExpr
->pLeft
, ®Free1
);
4503 sqlite3VdbeAddOp2(v
, op
, r1
, dest
);
4504 VdbeCoverageIf(v
, op
==TK_ISNULL
);
4505 VdbeCoverageIf(v
, op
==TK_NOTNULL
);
4506 testcase( regFree1
==0 );
4510 testcase( jumpIfNull
==0 );
4511 exprCodeBetween(pParse
, pExpr
, dest
, sqlite3ExprIfTrue
, jumpIfNull
);
4514 #ifndef SQLITE_OMIT_SUBQUERY
4516 int destIfFalse
= sqlite3VdbeMakeLabel(v
);
4517 int destIfNull
= jumpIfNull
? dest
: destIfFalse
;
4518 sqlite3ExprCodeIN(pParse
, pExpr
, destIfFalse
, destIfNull
);
4519 sqlite3VdbeGoto(v
, dest
);
4520 sqlite3VdbeResolveLabel(v
, destIfFalse
);
4526 if( exprAlwaysTrue(pExpr
) ){
4527 sqlite3VdbeGoto(v
, dest
);
4528 }else if( exprAlwaysFalse(pExpr
) ){
4531 r1
= sqlite3ExprCodeTemp(pParse
, pExpr
, ®Free1
);
4532 sqlite3VdbeAddOp3(v
, OP_If
, r1
, dest
, jumpIfNull
!=0);
4534 testcase( regFree1
==0 );
4535 testcase( jumpIfNull
==0 );
4540 sqlite3ReleaseTempReg(pParse
, regFree1
);
4541 sqlite3ReleaseTempReg(pParse
, regFree2
);
4545 ** Generate code for a boolean expression such that a jump is made
4546 ** to the label "dest" if the expression is false but execution
4547 ** continues straight thru if the expression is true.
4549 ** If the expression evaluates to NULL (neither true nor false) then
4550 ** jump if jumpIfNull is SQLITE_JUMPIFNULL or fall through if jumpIfNull
4553 void sqlite3ExprIfFalse(Parse
*pParse
, Expr
*pExpr
, int dest
, int jumpIfNull
){
4554 Vdbe
*v
= pParse
->pVdbe
;
4560 assert( jumpIfNull
==SQLITE_JUMPIFNULL
|| jumpIfNull
==0 );
4561 if( NEVER(v
==0) ) return; /* Existence of VDBE checked by caller */
4562 if( pExpr
==0 ) return;
4564 /* The value of pExpr->op and op are related as follows:
4567 ** --------- ----------
4568 ** TK_ISNULL OP_NotNull
4569 ** TK_NOTNULL OP_IsNull
4577 ** For other values of pExpr->op, op is undefined and unused.
4578 ** The value of TK_ and OP_ constants are arranged such that we
4579 ** can compute the mapping above using the following expression.
4580 ** Assert()s verify that the computation is correct.
4582 op
= ((pExpr
->op
+(TK_ISNULL
&1))^1)-(TK_ISNULL
&1);
4584 /* Verify correct alignment of TK_ and OP_ constants
4586 assert( pExpr
->op
!=TK_ISNULL
|| op
==OP_NotNull
);
4587 assert( pExpr
->op
!=TK_NOTNULL
|| op
==OP_IsNull
);
4588 assert( pExpr
->op
!=TK_NE
|| op
==OP_Eq
);
4589 assert( pExpr
->op
!=TK_EQ
|| op
==OP_Ne
);
4590 assert( pExpr
->op
!=TK_LT
|| op
==OP_Ge
);
4591 assert( pExpr
->op
!=TK_LE
|| op
==OP_Gt
);
4592 assert( pExpr
->op
!=TK_GT
|| op
==OP_Le
);
4593 assert( pExpr
->op
!=TK_GE
|| op
==OP_Lt
);
4595 switch( pExpr
->op
){
4597 testcase( jumpIfNull
==0 );
4598 sqlite3ExprIfFalse(pParse
, pExpr
->pLeft
, dest
, jumpIfNull
);
4599 sqlite3ExprCachePush(pParse
);
4600 sqlite3ExprIfFalse(pParse
, pExpr
->pRight
, dest
, jumpIfNull
);
4601 sqlite3ExprCachePop(pParse
);
4605 int d2
= sqlite3VdbeMakeLabel(v
);
4606 testcase( jumpIfNull
==0 );
4607 sqlite3ExprIfTrue(pParse
, pExpr
->pLeft
, d2
, jumpIfNull
^SQLITE_JUMPIFNULL
);
4608 sqlite3ExprCachePush(pParse
);
4609 sqlite3ExprIfFalse(pParse
, pExpr
->pRight
, dest
, jumpIfNull
);
4610 sqlite3VdbeResolveLabel(v
, d2
);
4611 sqlite3ExprCachePop(pParse
);
4615 testcase( jumpIfNull
==0 );
4616 sqlite3ExprIfTrue(pParse
, pExpr
->pLeft
, dest
, jumpIfNull
);
4621 testcase( pExpr
->op
==TK_IS
);
4622 testcase( pExpr
->op
==TK_ISNOT
);
4623 op
= (pExpr
->op
==TK_IS
) ? TK_NE
: TK_EQ
;
4624 jumpIfNull
= SQLITE_NULLEQ
;
4632 if( sqlite3ExprIsVector(pExpr
->pLeft
) ) goto default_expr
;
4633 testcase( jumpIfNull
==0 );
4634 r1
= sqlite3ExprCodeTemp(pParse
, pExpr
->pLeft
, ®Free1
);
4635 r2
= sqlite3ExprCodeTemp(pParse
, pExpr
->pRight
, ®Free2
);
4636 codeCompare(pParse
, pExpr
->pLeft
, pExpr
->pRight
, op
,
4637 r1
, r2
, dest
, jumpIfNull
);
4638 assert(TK_LT
==OP_Lt
); testcase(op
==OP_Lt
); VdbeCoverageIf(v
,op
==OP_Lt
);
4639 assert(TK_LE
==OP_Le
); testcase(op
==OP_Le
); VdbeCoverageIf(v
,op
==OP_Le
);
4640 assert(TK_GT
==OP_Gt
); testcase(op
==OP_Gt
); VdbeCoverageIf(v
,op
==OP_Gt
);
4641 assert(TK_GE
==OP_Ge
); testcase(op
==OP_Ge
); VdbeCoverageIf(v
,op
==OP_Ge
);
4642 assert(TK_EQ
==OP_Eq
); testcase(op
==OP_Eq
);
4643 VdbeCoverageIf(v
, op
==OP_Eq
&& jumpIfNull
!=SQLITE_NULLEQ
);
4644 VdbeCoverageIf(v
, op
==OP_Eq
&& jumpIfNull
==SQLITE_NULLEQ
);
4645 assert(TK_NE
==OP_Ne
); testcase(op
==OP_Ne
);
4646 VdbeCoverageIf(v
, op
==OP_Ne
&& jumpIfNull
!=SQLITE_NULLEQ
);
4647 VdbeCoverageIf(v
, op
==OP_Ne
&& jumpIfNull
==SQLITE_NULLEQ
);
4648 testcase( regFree1
==0 );
4649 testcase( regFree2
==0 );
4654 r1
= sqlite3ExprCodeTemp(pParse
, pExpr
->pLeft
, ®Free1
);
4655 sqlite3VdbeAddOp2(v
, op
, r1
, dest
);
4656 testcase( op
==TK_ISNULL
); VdbeCoverageIf(v
, op
==TK_ISNULL
);
4657 testcase( op
==TK_NOTNULL
); VdbeCoverageIf(v
, op
==TK_NOTNULL
);
4658 testcase( regFree1
==0 );
4662 testcase( jumpIfNull
==0 );
4663 exprCodeBetween(pParse
, pExpr
, dest
, sqlite3ExprIfFalse
, jumpIfNull
);
4666 #ifndef SQLITE_OMIT_SUBQUERY
4669 sqlite3ExprCodeIN(pParse
, pExpr
, dest
, dest
);
4671 int destIfNull
= sqlite3VdbeMakeLabel(v
);
4672 sqlite3ExprCodeIN(pParse
, pExpr
, dest
, destIfNull
);
4673 sqlite3VdbeResolveLabel(v
, destIfNull
);
4680 if( exprAlwaysFalse(pExpr
) ){
4681 sqlite3VdbeGoto(v
, dest
);
4682 }else if( exprAlwaysTrue(pExpr
) ){
4685 r1
= sqlite3ExprCodeTemp(pParse
, pExpr
, ®Free1
);
4686 sqlite3VdbeAddOp3(v
, OP_IfNot
, r1
, dest
, jumpIfNull
!=0);
4688 testcase( regFree1
==0 );
4689 testcase( jumpIfNull
==0 );
4694 sqlite3ReleaseTempReg(pParse
, regFree1
);
4695 sqlite3ReleaseTempReg(pParse
, regFree2
);
4699 ** Like sqlite3ExprIfFalse() except that a copy is made of pExpr before
4700 ** code generation, and that copy is deleted after code generation. This
4701 ** ensures that the original pExpr is unchanged.
4703 void sqlite3ExprIfFalseDup(Parse
*pParse
, Expr
*pExpr
, int dest
,int jumpIfNull
){
4704 sqlite3
*db
= pParse
->db
;
4705 Expr
*pCopy
= sqlite3ExprDup(db
, pExpr
, 0);
4706 if( db
->mallocFailed
==0 ){
4707 sqlite3ExprIfFalse(pParse
, pCopy
, dest
, jumpIfNull
);
4709 sqlite3ExprDelete(db
, pCopy
);
4713 ** Expression pVar is guaranteed to be an SQL variable. pExpr may be any
4714 ** type of expression.
4716 ** If pExpr is a simple SQL value - an integer, real, string, blob
4717 ** or NULL value - then the VDBE currently being prepared is configured
4718 ** to re-prepare each time a new value is bound to variable pVar.
4720 ** Additionally, if pExpr is a simple SQL value and the value is the
4721 ** same as that currently bound to variable pVar, non-zero is returned.
4722 ** Otherwise, if the values are not the same or if pExpr is not a simple
4723 ** SQL value, zero is returned.
4725 static int exprCompareVariable(Parse
*pParse
, Expr
*pVar
, Expr
*pExpr
){
4728 sqlite3_value
*pL
, *pR
= 0;
4730 sqlite3ValueFromExpr(pParse
->db
, pExpr
, SQLITE_UTF8
, SQLITE_AFF_BLOB
, &pR
);
4732 iVar
= pVar
->iColumn
;
4733 sqlite3VdbeSetVarmask(pParse
->pVdbe
, iVar
);
4734 pL
= sqlite3VdbeGetBoundValue(pParse
->pReprepare
, iVar
, SQLITE_AFF_BLOB
);
4736 if( sqlite3_value_type(pL
)==SQLITE_TEXT
){
4737 sqlite3_value_text(pL
); /* Make sure the encoding is UTF-8 */
4739 res
= 0==sqlite3MemCompare(pL
, pR
, 0);
4741 sqlite3ValueFree(pR
);
4742 sqlite3ValueFree(pL
);
4749 ** Do a deep comparison of two expression trees. Return 0 if the two
4750 ** expressions are completely identical. Return 1 if they differ only
4751 ** by a COLLATE operator at the top level. Return 2 if there are differences
4752 ** other than the top-level COLLATE operator.
4754 ** If any subelement of pB has Expr.iTable==(-1) then it is allowed
4755 ** to compare equal to an equivalent element in pA with Expr.iTable==iTab.
4757 ** The pA side might be using TK_REGISTER. If that is the case and pB is
4758 ** not using TK_REGISTER but is otherwise equivalent, then still return 0.
4760 ** Sometimes this routine will return 2 even if the two expressions
4761 ** really are equivalent. If we cannot prove that the expressions are
4762 ** identical, we return 2 just to be safe. So if this routine
4763 ** returns 2, then you do not really know for certain if the two
4764 ** expressions are the same. But if you get a 0 or 1 return, then you
4765 ** can be sure the expressions are the same. In the places where
4766 ** this routine is used, it does not hurt to get an extra 2 - that
4767 ** just might result in some slightly slower code. But returning
4768 ** an incorrect 0 or 1 could lead to a malfunction.
4770 ** If pParse is not NULL then TK_VARIABLE terms in pA with bindings in
4771 ** pParse->pReprepare can be matched against literals in pB. The
4772 ** pParse->pVdbe->expmask bitmask is updated for each variable referenced.
4773 ** If pParse is NULL (the normal case) then any TK_VARIABLE term in
4774 ** Argument pParse should normally be NULL. If it is not NULL and pA or
4775 ** pB causes a return value of 2.
4777 int sqlite3ExprCompare(Parse
*pParse
, Expr
*pA
, Expr
*pB
, int iTab
){
4779 if( pA
==0 || pB
==0 ){
4780 return pB
==pA
? 0 : 2;
4782 if( pParse
&& pA
->op
==TK_VARIABLE
&& exprCompareVariable(pParse
, pA
, pB
) ){
4785 combinedFlags
= pA
->flags
| pB
->flags
;
4786 if( combinedFlags
& EP_IntValue
){
4787 if( (pA
->flags
&pB
->flags
&EP_IntValue
)!=0 && pA
->u
.iValue
==pB
->u
.iValue
){
4792 if( pA
->op
!=pB
->op
){
4793 if( pA
->op
==TK_COLLATE
&& sqlite3ExprCompare(pParse
, pA
->pLeft
,pB
,iTab
)<2 ){
4796 if( pB
->op
==TK_COLLATE
&& sqlite3ExprCompare(pParse
, pA
,pB
->pLeft
,iTab
)<2 ){
4801 if( pA
->op
!=TK_COLUMN
&& pA
->op
!=TK_AGG_COLUMN
&& pA
->u
.zToken
){
4802 if( pA
->op
==TK_FUNCTION
){
4803 if( sqlite3StrICmp(pA
->u
.zToken
,pB
->u
.zToken
)!=0 ) return 2;
4804 }else if( strcmp(pA
->u
.zToken
,pB
->u
.zToken
)!=0 ){
4805 return pA
->op
==TK_COLLATE
? 1 : 2;
4808 if( (pA
->flags
& EP_Distinct
)!=(pB
->flags
& EP_Distinct
) ) return 2;
4809 if( ALWAYS((combinedFlags
& EP_TokenOnly
)==0) ){
4810 if( combinedFlags
& EP_xIsSelect
) return 2;
4811 if( sqlite3ExprCompare(pParse
, pA
->pLeft
, pB
->pLeft
, iTab
) ) return 2;
4812 if( sqlite3ExprCompare(pParse
, pA
->pRight
, pB
->pRight
, iTab
) ) return 2;
4813 if( sqlite3ExprListCompare(pA
->x
.pList
, pB
->x
.pList
, iTab
) ) return 2;
4814 if( ALWAYS((combinedFlags
& EP_Reduced
)==0) && pA
->op
!=TK_STRING
){
4815 if( pA
->iColumn
!=pB
->iColumn
) return 2;
4816 if( pA
->iTable
!=pB
->iTable
4817 && (pA
->iTable
!=iTab
|| NEVER(pB
->iTable
>=0)) ) return 2;
4824 ** Compare two ExprList objects. Return 0 if they are identical and
4825 ** non-zero if they differ in any way.
4827 ** If any subelement of pB has Expr.iTable==(-1) then it is allowed
4828 ** to compare equal to an equivalent element in pA with Expr.iTable==iTab.
4830 ** This routine might return non-zero for equivalent ExprLists. The
4831 ** only consequence will be disabled optimizations. But this routine
4832 ** must never return 0 if the two ExprList objects are different, or
4833 ** a malfunction will result.
4835 ** Two NULL pointers are considered to be the same. But a NULL pointer
4836 ** always differs from a non-NULL pointer.
4838 int sqlite3ExprListCompare(ExprList
*pA
, ExprList
*pB
, int iTab
){
4840 if( pA
==0 && pB
==0 ) return 0;
4841 if( pA
==0 || pB
==0 ) return 1;
4842 if( pA
->nExpr
!=pB
->nExpr
) return 1;
4843 for(i
=0; i
<pA
->nExpr
; i
++){
4844 Expr
*pExprA
= pA
->a
[i
].pExpr
;
4845 Expr
*pExprB
= pB
->a
[i
].pExpr
;
4846 if( pA
->a
[i
].sortOrder
!=pB
->a
[i
].sortOrder
) return 1;
4847 if( sqlite3ExprCompare(0, pExprA
, pExprB
, iTab
) ) return 1;
4853 ** Like sqlite3ExprCompare() except COLLATE operators at the top-level
4856 int sqlite3ExprCompareSkip(Expr
*pA
, Expr
*pB
, int iTab
){
4857 return sqlite3ExprCompare(0,
4858 sqlite3ExprSkipCollate(pA
),
4859 sqlite3ExprSkipCollate(pB
),
4864 ** Return true if we can prove the pE2 will always be true if pE1 is
4865 ** true. Return false if we cannot complete the proof or if pE2 might
4866 ** be false. Examples:
4868 ** pE1: x==5 pE2: x==5 Result: true
4869 ** pE1: x>0 pE2: x==5 Result: false
4870 ** pE1: x=21 pE2: x=21 OR y=43 Result: true
4871 ** pE1: x!=123 pE2: x IS NOT NULL Result: true
4872 ** pE1: x!=?1 pE2: x IS NOT NULL Result: true
4873 ** pE1: x IS NULL pE2: x IS NOT NULL Result: false
4874 ** pE1: x IS ?2 pE2: x IS NOT NULL Reuslt: false
4876 ** When comparing TK_COLUMN nodes between pE1 and pE2, if pE2 has
4877 ** Expr.iTable<0 then assume a table number given by iTab.
4879 ** If pParse is not NULL, then the values of bound variables in pE1 are
4880 ** compared against literal values in pE2 and pParse->pVdbe->expmask is
4881 ** modified to record which bound variables are referenced. If pParse
4882 ** is NULL, then false will be returned if pE1 contains any bound variables.
4884 ** When in doubt, return false. Returning true might give a performance
4885 ** improvement. Returning false might cause a performance reduction, but
4886 ** it will always give the correct answer and is hence always safe.
4888 int sqlite3ExprImpliesExpr(Parse
*pParse
, Expr
*pE1
, Expr
*pE2
, int iTab
){
4889 if( sqlite3ExprCompare(pParse
, pE1
, pE2
, iTab
)==0 ){
4893 && (sqlite3ExprImpliesExpr(pParse
, pE1
, pE2
->pLeft
, iTab
)
4894 || sqlite3ExprImpliesExpr(pParse
, pE1
, pE2
->pRight
, iTab
) )
4898 if( pE2
->op
==TK_NOTNULL
&& pE1
->op
!=TK_ISNULL
&& pE1
->op
!=TK_IS
){
4899 Expr
*pX
= sqlite3ExprSkipCollate(pE1
->pLeft
);
4900 testcase( pX
!=pE1
->pLeft
);
4901 if( sqlite3ExprCompare(pParse
, pX
, pE2
->pLeft
, iTab
)==0 ) return 1;
4907 ** An instance of the following structure is used by the tree walker
4908 ** to determine if an expression can be evaluated by reference to the
4909 ** index only, without having to do a search for the corresponding
4910 ** table entry. The IdxCover.pIdx field is the index. IdxCover.iCur
4911 ** is the cursor for the table.
4914 Index
*pIdx
; /* The index to be tested for coverage */
4915 int iCur
; /* Cursor number for the table corresponding to the index */
4919 ** Check to see if there are references to columns in table
4920 ** pWalker->u.pIdxCover->iCur can be satisfied using the index
4921 ** pWalker->u.pIdxCover->pIdx.
4923 static int exprIdxCover(Walker
*pWalker
, Expr
*pExpr
){
4924 if( pExpr
->op
==TK_COLUMN
4925 && pExpr
->iTable
==pWalker
->u
.pIdxCover
->iCur
4926 && sqlite3ColumnOfIndex(pWalker
->u
.pIdxCover
->pIdx
, pExpr
->iColumn
)<0
4931 return WRC_Continue
;
4935 ** Determine if an index pIdx on table with cursor iCur contains will
4936 ** the expression pExpr. Return true if the index does cover the
4937 ** expression and false if the pExpr expression references table columns
4938 ** that are not found in the index pIdx.
4940 ** An index covering an expression means that the expression can be
4941 ** evaluated using only the index and without having to lookup the
4942 ** corresponding table entry.
4944 int sqlite3ExprCoveredByIndex(
4945 Expr
*pExpr
, /* The index to be tested */
4946 int iCur
, /* The cursor number for the corresponding table */
4947 Index
*pIdx
/* The index that might be used for coverage */
4950 struct IdxCover xcov
;
4951 memset(&w
, 0, sizeof(w
));
4954 w
.xExprCallback
= exprIdxCover
;
4955 w
.u
.pIdxCover
= &xcov
;
4956 sqlite3WalkExpr(&w
, pExpr
);
4962 ** An instance of the following structure is used by the tree walker
4963 ** to count references to table columns in the arguments of an
4964 ** aggregate function, in order to implement the
4965 ** sqlite3FunctionThisSrc() routine.
4968 SrcList
*pSrc
; /* One particular FROM clause in a nested query */
4969 int nThis
; /* Number of references to columns in pSrcList */
4970 int nOther
; /* Number of references to columns in other FROM clauses */
4974 ** Count the number of references to columns.
4976 static int exprSrcCount(Walker
*pWalker
, Expr
*pExpr
){
4977 /* The NEVER() on the second term is because sqlite3FunctionUsesThisSrc()
4978 ** is always called before sqlite3ExprAnalyzeAggregates() and so the
4979 ** TK_COLUMNs have not yet been converted into TK_AGG_COLUMN. If
4980 ** sqlite3FunctionUsesThisSrc() is used differently in the future, the
4981 ** NEVER() will need to be removed. */
4982 if( pExpr
->op
==TK_COLUMN
|| NEVER(pExpr
->op
==TK_AGG_COLUMN
) ){
4984 struct SrcCount
*p
= pWalker
->u
.pSrcCount
;
4985 SrcList
*pSrc
= p
->pSrc
;
4986 int nSrc
= pSrc
? pSrc
->nSrc
: 0;
4987 for(i
=0; i
<nSrc
; i
++){
4988 if( pExpr
->iTable
==pSrc
->a
[i
].iCursor
) break;
4996 return WRC_Continue
;
5000 ** Determine if any of the arguments to the pExpr Function reference
5001 ** pSrcList. Return true if they do. Also return true if the function
5002 ** has no arguments or has only constant arguments. Return false if pExpr
5003 ** references columns but not columns of tables found in pSrcList.
5005 int sqlite3FunctionUsesThisSrc(Expr
*pExpr
, SrcList
*pSrcList
){
5007 struct SrcCount cnt
;
5008 assert( pExpr
->op
==TK_AGG_FUNCTION
);
5009 w
.xExprCallback
= exprSrcCount
;
5010 w
.xSelectCallback
= 0;
5011 w
.u
.pSrcCount
= &cnt
;
5012 cnt
.pSrc
= pSrcList
;
5015 sqlite3WalkExprList(&w
, pExpr
->x
.pList
);
5016 return cnt
.nThis
>0 || cnt
.nOther
==0;
5020 ** Add a new element to the pAggInfo->aCol[] array. Return the index of
5021 ** the new element. Return a negative number if malloc fails.
5023 static int addAggInfoColumn(sqlite3
*db
, AggInfo
*pInfo
){
5025 pInfo
->aCol
= sqlite3ArrayAllocate(
5028 sizeof(pInfo
->aCol
[0]),
5036 ** Add a new element to the pAggInfo->aFunc[] array. Return the index of
5037 ** the new element. Return a negative number if malloc fails.
5039 static int addAggInfoFunc(sqlite3
*db
, AggInfo
*pInfo
){
5041 pInfo
->aFunc
= sqlite3ArrayAllocate(
5044 sizeof(pInfo
->aFunc
[0]),
5052 ** This is the xExprCallback for a tree walker. It is used to
5053 ** implement sqlite3ExprAnalyzeAggregates(). See sqlite3ExprAnalyzeAggregates
5054 ** for additional information.
5056 static int analyzeAggregate(Walker
*pWalker
, Expr
*pExpr
){
5058 NameContext
*pNC
= pWalker
->u
.pNC
;
5059 Parse
*pParse
= pNC
->pParse
;
5060 SrcList
*pSrcList
= pNC
->pSrcList
;
5061 AggInfo
*pAggInfo
= pNC
->pAggInfo
;
5063 switch( pExpr
->op
){
5066 testcase( pExpr
->op
==TK_AGG_COLUMN
);
5067 testcase( pExpr
->op
==TK_COLUMN
);
5068 /* Check to see if the column is in one of the tables in the FROM
5069 ** clause of the aggregate query */
5070 if( ALWAYS(pSrcList
!=0) ){
5071 struct SrcList_item
*pItem
= pSrcList
->a
;
5072 for(i
=0; i
<pSrcList
->nSrc
; i
++, pItem
++){
5073 struct AggInfo_col
*pCol
;
5074 assert( !ExprHasProperty(pExpr
, EP_TokenOnly
|EP_Reduced
) );
5075 if( pExpr
->iTable
==pItem
->iCursor
){
5076 /* If we reach this point, it means that pExpr refers to a table
5077 ** that is in the FROM clause of the aggregate query.
5079 ** Make an entry for the column in pAggInfo->aCol[] if there
5080 ** is not an entry there already.
5083 pCol
= pAggInfo
->aCol
;
5084 for(k
=0; k
<pAggInfo
->nColumn
; k
++, pCol
++){
5085 if( pCol
->iTable
==pExpr
->iTable
&&
5086 pCol
->iColumn
==pExpr
->iColumn
){
5090 if( (k
>=pAggInfo
->nColumn
)
5091 && (k
= addAggInfoColumn(pParse
->db
, pAggInfo
))>=0
5093 pCol
= &pAggInfo
->aCol
[k
];
5094 pCol
->pTab
= pExpr
->pTab
;
5095 pCol
->iTable
= pExpr
->iTable
;
5096 pCol
->iColumn
= pExpr
->iColumn
;
5097 pCol
->iMem
= ++pParse
->nMem
;
5098 pCol
->iSorterColumn
= -1;
5099 pCol
->pExpr
= pExpr
;
5100 if( pAggInfo
->pGroupBy
){
5102 ExprList
*pGB
= pAggInfo
->pGroupBy
;
5103 struct ExprList_item
*pTerm
= pGB
->a
;
5105 for(j
=0; j
<n
; j
++, pTerm
++){
5106 Expr
*pE
= pTerm
->pExpr
;
5107 if( pE
->op
==TK_COLUMN
&& pE
->iTable
==pExpr
->iTable
&&
5108 pE
->iColumn
==pExpr
->iColumn
){
5109 pCol
->iSorterColumn
= j
;
5114 if( pCol
->iSorterColumn
<0 ){
5115 pCol
->iSorterColumn
= pAggInfo
->nSortingColumn
++;
5118 /* There is now an entry for pExpr in pAggInfo->aCol[] (either
5119 ** because it was there before or because we just created it).
5120 ** Convert the pExpr to be a TK_AGG_COLUMN referring to that
5121 ** pAggInfo->aCol[] entry.
5123 ExprSetVVAProperty(pExpr
, EP_NoReduce
);
5124 pExpr
->pAggInfo
= pAggInfo
;
5125 pExpr
->op
= TK_AGG_COLUMN
;
5126 pExpr
->iAgg
= (i16
)k
;
5128 } /* endif pExpr->iTable==pItem->iCursor */
5129 } /* end loop over pSrcList */
5133 case TK_AGG_FUNCTION
: {
5134 if( (pNC
->ncFlags
& NC_InAggFunc
)==0
5135 && pWalker
->walkerDepth
==pExpr
->op2
5137 /* Check to see if pExpr is a duplicate of another aggregate
5138 ** function that is already in the pAggInfo structure
5140 struct AggInfo_func
*pItem
= pAggInfo
->aFunc
;
5141 for(i
=0; i
<pAggInfo
->nFunc
; i
++, pItem
++){
5142 if( sqlite3ExprCompare(0, pItem
->pExpr
, pExpr
, -1)==0 ){
5146 if( i
>=pAggInfo
->nFunc
){
5147 /* pExpr is original. Make a new entry in pAggInfo->aFunc[]
5149 u8 enc
= ENC(pParse
->db
);
5150 i
= addAggInfoFunc(pParse
->db
, pAggInfo
);
5152 assert( !ExprHasProperty(pExpr
, EP_xIsSelect
) );
5153 pItem
= &pAggInfo
->aFunc
[i
];
5154 pItem
->pExpr
= pExpr
;
5155 pItem
->iMem
= ++pParse
->nMem
;
5156 assert( !ExprHasProperty(pExpr
, EP_IntValue
) );
5157 pItem
->pFunc
= sqlite3FindFunction(pParse
->db
,
5159 pExpr
->x
.pList
? pExpr
->x
.pList
->nExpr
: 0, enc
, 0);
5160 if( pExpr
->flags
& EP_Distinct
){
5161 pItem
->iDistinct
= pParse
->nTab
++;
5163 pItem
->iDistinct
= -1;
5167 /* Make pExpr point to the appropriate pAggInfo->aFunc[] entry
5169 assert( !ExprHasProperty(pExpr
, EP_TokenOnly
|EP_Reduced
) );
5170 ExprSetVVAProperty(pExpr
, EP_NoReduce
);
5171 pExpr
->iAgg
= (i16
)i
;
5172 pExpr
->pAggInfo
= pAggInfo
;
5175 return WRC_Continue
;
5179 return WRC_Continue
;
5181 static int analyzeAggregatesInSelect(Walker
*pWalker
, Select
*pSelect
){
5182 UNUSED_PARAMETER(pSelect
);
5183 pWalker
->walkerDepth
++;
5184 return WRC_Continue
;
5186 static void analyzeAggregatesInSelectEnd(Walker
*pWalker
, Select
*pSelect
){
5187 UNUSED_PARAMETER(pSelect
);
5188 pWalker
->walkerDepth
--;
5192 ** Analyze the pExpr expression looking for aggregate functions and
5193 ** for variables that need to be added to AggInfo object that pNC->pAggInfo
5194 ** points to. Additional entries are made on the AggInfo object as
5197 ** This routine should only be called after the expression has been
5198 ** analyzed by sqlite3ResolveExprNames().
5200 void sqlite3ExprAnalyzeAggregates(NameContext
*pNC
, Expr
*pExpr
){
5202 w
.xExprCallback
= analyzeAggregate
;
5203 w
.xSelectCallback
= analyzeAggregatesInSelect
;
5204 w
.xSelectCallback2
= analyzeAggregatesInSelectEnd
;
5207 assert( pNC
->pSrcList
!=0 );
5208 sqlite3WalkExpr(&w
, pExpr
);
5212 ** Call sqlite3ExprAnalyzeAggregates() for every expression in an
5213 ** expression list. Return the number of errors.
5215 ** If an error is found, the analysis is cut short.
5217 void sqlite3ExprAnalyzeAggList(NameContext
*pNC
, ExprList
*pList
){
5218 struct ExprList_item
*pItem
;
5221 for(pItem
=pList
->a
, i
=0; i
<pList
->nExpr
; i
++, pItem
++){
5222 sqlite3ExprAnalyzeAggregates(pNC
, pItem
->pExpr
);
5228 ** Allocate a single new register for use to hold some intermediate result.
5230 int sqlite3GetTempReg(Parse
*pParse
){
5231 if( pParse
->nTempReg
==0 ){
5232 return ++pParse
->nMem
;
5234 return pParse
->aTempReg
[--pParse
->nTempReg
];
5238 ** Deallocate a register, making available for reuse for some other
5241 ** If a register is currently being used by the column cache, then
5242 ** the deallocation is deferred until the column cache line that uses
5243 ** the register becomes stale.
5245 void sqlite3ReleaseTempReg(Parse
*pParse
, int iReg
){
5246 if( iReg
&& pParse
->nTempReg
<ArraySize(pParse
->aTempReg
) ){
5248 struct yColCache
*p
;
5249 for(i
=0, p
=pParse
->aColCache
; i
<pParse
->nColCache
; i
++, p
++){
5250 if( p
->iReg
==iReg
){
5255 pParse
->aTempReg
[pParse
->nTempReg
++] = iReg
;
5260 ** Allocate or deallocate a block of nReg consecutive registers.
5262 int sqlite3GetTempRange(Parse
*pParse
, int nReg
){
5264 if( nReg
==1 ) return sqlite3GetTempReg(pParse
);
5265 i
= pParse
->iRangeReg
;
5266 n
= pParse
->nRangeReg
;
5268 assert( !usedAsColumnCache(pParse
, i
, i
+n
-1) );
5269 pParse
->iRangeReg
+= nReg
;
5270 pParse
->nRangeReg
-= nReg
;
5273 pParse
->nMem
+= nReg
;
5277 void sqlite3ReleaseTempRange(Parse
*pParse
, int iReg
, int nReg
){
5279 sqlite3ReleaseTempReg(pParse
, iReg
);
5282 sqlite3ExprCacheRemove(pParse
, iReg
, nReg
);
5283 if( nReg
>pParse
->nRangeReg
){
5284 pParse
->nRangeReg
= nReg
;
5285 pParse
->iRangeReg
= iReg
;
5290 ** Mark all temporary registers as being unavailable for reuse.
5292 void sqlite3ClearTempRegCache(Parse
*pParse
){
5293 pParse
->nTempReg
= 0;
5294 pParse
->nRangeReg
= 0;
5298 ** Validate that no temporary register falls within the range of
5299 ** iFirst..iLast, inclusive. This routine is only call from within assert()
5303 int sqlite3NoTempsInRange(Parse
*pParse
, int iFirst
, int iLast
){
5305 if( pParse
->nRangeReg
>0
5306 && pParse
->iRangeReg
+pParse
->nRangeReg
> iFirst
5307 && pParse
->iRangeReg
<= iLast
5311 for(i
=0; i
<pParse
->nTempReg
; i
++){
5312 if( pParse
->aTempReg
[i
]>=iFirst
&& pParse
->aTempReg
[i
]<=iLast
){
5318 #endif /* SQLITE_DEBUG */