4 ** The author disclaims copyright to this source code. In place of
5 ** a legal notice, here is a blessing:
7 ** May you do good and not evil.
8 ** May you find forgiveness for yourself and forgive others.
9 ** May you share freely, never taking more than you give.
11 *************************************************************************
12 ** This file contains C code routines that are called by the parser
13 ** to handle SELECT statements in SQLite.
15 #include "sqliteInt.h"
18 ** Trace output macros
20 #if SELECTTRACE_ENABLED
21 /***/ int sqlite3SelectTrace
= 0;
22 # define SELECTTRACE(K,P,S,X) \
23 if(sqlite3SelectTrace&(K)) \
24 sqlite3DebugPrintf("%*s%s.%p: ",(P)->nSelectIndent*2-2,"",\
28 # define SELECTTRACE(K,P,S,X)
33 ** An instance of the following object is used to record information about
34 ** how to process the DISTINCT keyword, to simplify passing that information
35 ** into the selectInnerLoop() routine.
37 typedef struct DistinctCtx DistinctCtx
;
39 u8 isTnct
; /* True if the DISTINCT keyword is present */
40 u8 eTnctType
; /* One of the WHERE_DISTINCT_* operators */
41 int tabTnct
; /* Ephemeral table used for DISTINCT processing */
42 int addrTnct
; /* Address of OP_OpenEphemeral opcode for tabTnct */
46 ** An instance of the following object is used to record information about
47 ** the ORDER BY (or GROUP BY) clause of query is being coded.
49 typedef struct SortCtx SortCtx
;
51 ExprList
*pOrderBy
; /* The ORDER BY (or GROUP BY clause) */
52 int nOBSat
; /* Number of ORDER BY terms satisfied by indices */
53 int iECursor
; /* Cursor number for the sorter */
54 int regReturn
; /* Register holding block-output return address */
55 int labelBkOut
; /* Start label for the block-output subroutine */
56 int addrSortIndex
; /* Address of the OP_SorterOpen or OP_OpenEphemeral */
57 int labelDone
; /* Jump here when done, ex: LIMIT reached */
58 u8 sortFlags
; /* Zero or more SORTFLAG_* bits */
59 u8 bOrderedInnerLoop
; /* ORDER BY correctly sorts the inner loop */
61 #define SORTFLAG_UseSorter 0x01 /* Use SorterOpen instead of OpenEphemeral */
64 ** Delete all the content of a Select structure. Deallocate the structure
65 ** itself only if bFree is true.
67 static void clearSelect(sqlite3
*db
, Select
*p
, int bFree
){
69 Select
*pPrior
= p
->pPrior
;
70 sqlite3ExprListDelete(db
, p
->pEList
);
71 sqlite3SrcListDelete(db
, p
->pSrc
);
72 sqlite3ExprDelete(db
, p
->pWhere
);
73 sqlite3ExprListDelete(db
, p
->pGroupBy
);
74 sqlite3ExprDelete(db
, p
->pHaving
);
75 sqlite3ExprListDelete(db
, p
->pOrderBy
);
76 sqlite3ExprDelete(db
, p
->pLimit
);
77 sqlite3ExprDelete(db
, p
->pOffset
);
78 if( OK_IF_ALWAYS_TRUE(p
->pWith
) ) sqlite3WithDelete(db
, p
->pWith
);
79 if( bFree
) sqlite3DbFreeNN(db
, p
);
86 ** Initialize a SelectDest structure.
88 void sqlite3SelectDestInit(SelectDest
*pDest
, int eDest
, int iParm
){
89 pDest
->eDest
= (u8
)eDest
;
90 pDest
->iSDParm
= iParm
;
98 ** Allocate a new Select structure and return a pointer to that
101 Select
*sqlite3SelectNew(
102 Parse
*pParse
, /* Parsing context */
103 ExprList
*pEList
, /* which columns to include in the result */
104 SrcList
*pSrc
, /* the FROM clause -- which tables to scan */
105 Expr
*pWhere
, /* the WHERE clause */
106 ExprList
*pGroupBy
, /* the GROUP BY clause */
107 Expr
*pHaving
, /* the HAVING clause */
108 ExprList
*pOrderBy
, /* the ORDER BY clause */
109 u32 selFlags
, /* Flag parameters, such as SF_Distinct */
110 Expr
*pLimit
, /* LIMIT value. NULL means not used */
111 Expr
*pOffset
/* OFFSET value. NULL means no offset */
115 pNew
= sqlite3DbMallocRawNN(pParse
->db
, sizeof(*pNew
) );
117 assert( pParse
->db
->mallocFailed
);
121 pEList
= sqlite3ExprListAppend(pParse
, 0,
122 sqlite3Expr(pParse
->db
,TK_ASTERISK
,0));
124 pNew
->pEList
= pEList
;
125 pNew
->op
= TK_SELECT
;
126 pNew
->selFlags
= selFlags
;
129 #if SELECTTRACE_ENABLED
130 pNew
->zSelName
[0] = 0;
132 pNew
->addrOpenEphm
[0] = -1;
133 pNew
->addrOpenEphm
[1] = -1;
134 pNew
->nSelectRow
= 0;
135 if( pSrc
==0 ) pSrc
= sqlite3DbMallocZero(pParse
->db
, sizeof(*pSrc
));
137 pNew
->pWhere
= pWhere
;
138 pNew
->pGroupBy
= pGroupBy
;
139 pNew
->pHaving
= pHaving
;
140 pNew
->pOrderBy
= pOrderBy
;
143 pNew
->pLimit
= pLimit
;
144 pNew
->pOffset
= pOffset
;
146 assert( pOffset
==0 || pLimit
!=0 || pParse
->nErr
>0
147 || pParse
->db
->mallocFailed
!=0 );
148 if( pParse
->db
->mallocFailed
) {
149 clearSelect(pParse
->db
, pNew
, pNew
!=&standin
);
152 assert( pNew
->pSrc
!=0 || pParse
->nErr
>0 );
154 assert( pNew
!=&standin
);
158 #if SELECTTRACE_ENABLED
160 ** Set the name of a Select object
162 void sqlite3SelectSetName(Select
*p
, const char *zName
){
164 sqlite3_snprintf(sizeof(p
->zSelName
), p
->zSelName
, "%s", zName
);
171 ** Delete the given Select structure and all of its substructures.
173 void sqlite3SelectDelete(sqlite3
*db
, Select
*p
){
174 if( OK_IF_ALWAYS_TRUE(p
) ) clearSelect(db
, p
, 1);
178 ** Return a pointer to the right-most SELECT statement in a compound.
180 static Select
*findRightmost(Select
*p
){
181 while( p
->pNext
) p
= p
->pNext
;
186 ** Given 1 to 3 identifiers preceding the JOIN keyword, determine the
187 ** type of join. Return an integer constant that expresses that type
188 ** in terms of the following bit values:
197 ** A full outer join is the combination of JT_LEFT and JT_RIGHT.
199 ** If an illegal or unsupported join type is seen, then still return
200 ** a join type, but put an error in the pParse structure.
202 int sqlite3JoinType(Parse
*pParse
, Token
*pA
, Token
*pB
, Token
*pC
){
206 /* 0123456789 123456789 123456789 123 */
207 static const char zKeyText
[] = "naturaleftouterightfullinnercross";
208 static const struct {
209 u8 i
; /* Beginning of keyword text in zKeyText[] */
210 u8 nChar
; /* Length of the keyword in characters */
211 u8 code
; /* Join type mask */
213 /* natural */ { 0, 7, JT_NATURAL
},
214 /* left */ { 6, 4, JT_LEFT
|JT_OUTER
},
215 /* outer */ { 10, 5, JT_OUTER
},
216 /* right */ { 14, 5, JT_RIGHT
|JT_OUTER
},
217 /* full */ { 19, 4, JT_LEFT
|JT_RIGHT
|JT_OUTER
},
218 /* inner */ { 23, 5, JT_INNER
},
219 /* cross */ { 28, 5, JT_INNER
|JT_CROSS
},
225 for(i
=0; i
<3 && apAll
[i
]; i
++){
227 for(j
=0; j
<ArraySize(aKeyword
); j
++){
228 if( p
->n
==aKeyword
[j
].nChar
229 && sqlite3StrNICmp((char*)p
->z
, &zKeyText
[aKeyword
[j
].i
], p
->n
)==0 ){
230 jointype
|= aKeyword
[j
].code
;
234 testcase( j
==0 || j
==1 || j
==2 || j
==3 || j
==4 || j
==5 || j
==6 );
235 if( j
>=ArraySize(aKeyword
) ){
236 jointype
|= JT_ERROR
;
241 (jointype
& (JT_INNER
|JT_OUTER
))==(JT_INNER
|JT_OUTER
) ||
242 (jointype
& JT_ERROR
)!=0
244 const char *zSp
= " ";
246 if( pC
==0 ){ zSp
++; }
247 sqlite3ErrorMsg(pParse
, "unknown or unsupported join type: "
248 "%T %T%s%T", pA
, pB
, zSp
, pC
);
250 }else if( (jointype
& JT_OUTER
)!=0
251 && (jointype
& (JT_LEFT
|JT_RIGHT
))!=JT_LEFT
){
252 sqlite3ErrorMsg(pParse
,
253 "RIGHT and FULL OUTER JOINs are not currently supported");
260 ** Return the index of a column in a table. Return -1 if the column
261 ** is not contained in the table.
263 static int columnIndex(Table
*pTab
, const char *zCol
){
265 for(i
=0; i
<pTab
->nCol
; i
++){
266 if( sqlite3StrICmp(pTab
->aCol
[i
].zName
, zCol
)==0 ) return i
;
272 ** Search the first N tables in pSrc, from left to right, looking for a
273 ** table that has a column named zCol.
275 ** When found, set *piTab and *piCol to the table index and column index
276 ** of the matching column and return TRUE.
278 ** If not found, return FALSE.
280 static int tableAndColumnIndex(
281 SrcList
*pSrc
, /* Array of tables to search */
282 int N
, /* Number of tables in pSrc->a[] to search */
283 const char *zCol
, /* Name of the column we are looking for */
284 int *piTab
, /* Write index of pSrc->a[] here */
285 int *piCol
/* Write index of pSrc->a[*piTab].pTab->aCol[] here */
287 int i
; /* For looping over tables in pSrc */
288 int iCol
; /* Index of column matching zCol */
290 assert( (piTab
==0)==(piCol
==0) ); /* Both or neither are NULL */
292 iCol
= columnIndex(pSrc
->a
[i
].pTab
, zCol
);
305 ** This function is used to add terms implied by JOIN syntax to the
306 ** WHERE clause expression of a SELECT statement. The new term, which
307 ** is ANDed with the existing WHERE clause, is of the form:
309 ** (tab1.col1 = tab2.col2)
311 ** where tab1 is the iSrc'th table in SrcList pSrc and tab2 is the
312 ** (iSrc+1)'th. Column col1 is column iColLeft of tab1, and col2 is
313 ** column iColRight of tab2.
315 static void addWhereTerm(
316 Parse
*pParse
, /* Parsing context */
317 SrcList
*pSrc
, /* List of tables in FROM clause */
318 int iLeft
, /* Index of first table to join in pSrc */
319 int iColLeft
, /* Index of column in first table */
320 int iRight
, /* Index of second table in pSrc */
321 int iColRight
, /* Index of column in second table */
322 int isOuterJoin
, /* True if this is an OUTER join */
323 Expr
**ppWhere
/* IN/OUT: The WHERE clause to add to */
325 sqlite3
*db
= pParse
->db
;
330 assert( iLeft
<iRight
);
331 assert( pSrc
->nSrc
>iRight
);
332 assert( pSrc
->a
[iLeft
].pTab
);
333 assert( pSrc
->a
[iRight
].pTab
);
335 pE1
= sqlite3CreateColumnExpr(db
, pSrc
, iLeft
, iColLeft
);
336 pE2
= sqlite3CreateColumnExpr(db
, pSrc
, iRight
, iColRight
);
338 pEq
= sqlite3PExpr(pParse
, TK_EQ
, pE1
, pE2
);
339 if( pEq
&& isOuterJoin
){
340 ExprSetProperty(pEq
, EP_FromJoin
);
341 assert( !ExprHasProperty(pEq
, EP_TokenOnly
|EP_Reduced
) );
342 ExprSetVVAProperty(pEq
, EP_NoReduce
);
343 pEq
->iRightJoinTable
= (i16
)pE2
->iTable
;
345 *ppWhere
= sqlite3ExprAnd(db
, *ppWhere
, pEq
);
349 ** Set the EP_FromJoin property on all terms of the given expression.
350 ** And set the Expr.iRightJoinTable to iTable for every term in the
353 ** The EP_FromJoin property is used on terms of an expression to tell
354 ** the LEFT OUTER JOIN processing logic that this term is part of the
355 ** join restriction specified in the ON or USING clause and not a part
356 ** of the more general WHERE clause. These terms are moved over to the
357 ** WHERE clause during join processing but we need to remember that they
358 ** originated in the ON or USING clause.
360 ** The Expr.iRightJoinTable tells the WHERE clause processing that the
361 ** expression depends on table iRightJoinTable even if that table is not
362 ** explicitly mentioned in the expression. That information is needed
363 ** for cases like this:
365 ** SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.b AND t1.x=5
367 ** The where clause needs to defer the handling of the t1.x=5
368 ** term until after the t2 loop of the join. In that way, a
369 ** NULL t2 row will be inserted whenever t1.x!=5. If we do not
370 ** defer the handling of t1.x=5, it will be processed immediately
371 ** after the t1 loop and rows with t1.x!=5 will never appear in
372 ** the output, which is incorrect.
374 static void setJoinExpr(Expr
*p
, int iTable
){
376 ExprSetProperty(p
, EP_FromJoin
);
377 assert( !ExprHasProperty(p
, EP_TokenOnly
|EP_Reduced
) );
378 ExprSetVVAProperty(p
, EP_NoReduce
);
379 p
->iRightJoinTable
= (i16
)iTable
;
380 if( p
->op
==TK_FUNCTION
&& p
->x
.pList
){
382 for(i
=0; i
<p
->x
.pList
->nExpr
; i
++){
383 setJoinExpr(p
->x
.pList
->a
[i
].pExpr
, iTable
);
386 setJoinExpr(p
->pLeft
, iTable
);
392 ** This routine processes the join information for a SELECT statement.
393 ** ON and USING clauses are converted into extra terms of the WHERE clause.
394 ** NATURAL joins also create extra WHERE clause terms.
396 ** The terms of a FROM clause are contained in the Select.pSrc structure.
397 ** The left most table is the first entry in Select.pSrc. The right-most
398 ** table is the last entry. The join operator is held in the entry to
399 ** the left. Thus entry 0 contains the join operator for the join between
400 ** entries 0 and 1. Any ON or USING clauses associated with the join are
401 ** also attached to the left entry.
403 ** This routine returns the number of errors encountered.
405 static int sqliteProcessJoin(Parse
*pParse
, Select
*p
){
406 SrcList
*pSrc
; /* All tables in the FROM clause */
407 int i
, j
; /* Loop counters */
408 struct SrcList_item
*pLeft
; /* Left table being joined */
409 struct SrcList_item
*pRight
; /* Right table being joined */
414 for(i
=0; i
<pSrc
->nSrc
-1; i
++, pRight
++, pLeft
++){
415 Table
*pRightTab
= pRight
->pTab
;
418 if( NEVER(pLeft
->pTab
==0 || pRightTab
==0) ) continue;
419 isOuter
= (pRight
->fg
.jointype
& JT_OUTER
)!=0;
421 /* When the NATURAL keyword is present, add WHERE clause terms for
422 ** every column that the two tables have in common.
424 if( pRight
->fg
.jointype
& JT_NATURAL
){
425 if( pRight
->pOn
|| pRight
->pUsing
){
426 sqlite3ErrorMsg(pParse
, "a NATURAL join may not have "
427 "an ON or USING clause", 0);
430 for(j
=0; j
<pRightTab
->nCol
; j
++){
431 char *zName
; /* Name of column in the right table */
432 int iLeft
; /* Matching left table */
433 int iLeftCol
; /* Matching column in the left table */
435 zName
= pRightTab
->aCol
[j
].zName
;
436 if( tableAndColumnIndex(pSrc
, i
+1, zName
, &iLeft
, &iLeftCol
) ){
437 addWhereTerm(pParse
, pSrc
, iLeft
, iLeftCol
, i
+1, j
,
438 isOuter
, &p
->pWhere
);
443 /* Disallow both ON and USING clauses in the same join
445 if( pRight
->pOn
&& pRight
->pUsing
){
446 sqlite3ErrorMsg(pParse
, "cannot have both ON and USING "
447 "clauses in the same join");
451 /* Add the ON clause to the end of the WHERE clause, connected by
455 if( isOuter
) setJoinExpr(pRight
->pOn
, pRight
->iCursor
);
456 p
->pWhere
= sqlite3ExprAnd(pParse
->db
, p
->pWhere
, pRight
->pOn
);
460 /* Create extra terms on the WHERE clause for each column named
461 ** in the USING clause. Example: If the two tables to be joined are
462 ** A and B and the USING clause names X, Y, and Z, then add this
463 ** to the WHERE clause: A.X=B.X AND A.Y=B.Y AND A.Z=B.Z
464 ** Report an error if any column mentioned in the USING clause is
465 ** not contained in both tables to be joined.
467 if( pRight
->pUsing
){
468 IdList
*pList
= pRight
->pUsing
;
469 for(j
=0; j
<pList
->nId
; j
++){
470 char *zName
; /* Name of the term in the USING clause */
471 int iLeft
; /* Table on the left with matching column name */
472 int iLeftCol
; /* Column number of matching column on the left */
473 int iRightCol
; /* Column number of matching column on the right */
475 zName
= pList
->a
[j
].zName
;
476 iRightCol
= columnIndex(pRightTab
, zName
);
478 || !tableAndColumnIndex(pSrc
, i
+1, zName
, &iLeft
, &iLeftCol
)
480 sqlite3ErrorMsg(pParse
, "cannot join using column %s - column "
481 "not present in both tables", zName
);
484 addWhereTerm(pParse
, pSrc
, iLeft
, iLeftCol
, i
+1, iRightCol
,
485 isOuter
, &p
->pWhere
);
492 /* Forward reference */
493 static KeyInfo
*keyInfoFromExprList(
494 Parse
*pParse
, /* Parsing context */
495 ExprList
*pList
, /* Form the KeyInfo object from this ExprList */
496 int iStart
, /* Begin with this column of pList */
497 int nExtra
/* Add this many extra columns to the end */
501 ** Generate code that will push the record in registers regData
502 ** through regData+nData-1 onto the sorter.
504 static void pushOntoSorter(
505 Parse
*pParse
, /* Parser context */
506 SortCtx
*pSort
, /* Information about the ORDER BY clause */
507 Select
*pSelect
, /* The whole SELECT statement */
508 int regData
, /* First register holding data to be sorted */
509 int regOrigData
, /* First register holding data before packing */
510 int nData
, /* Number of elements in the data array */
511 int nPrefixReg
/* No. of reg prior to regData available for use */
513 Vdbe
*v
= pParse
->pVdbe
; /* Stmt under construction */
514 int bSeq
= ((pSort
->sortFlags
& SORTFLAG_UseSorter
)==0);
515 int nExpr
= pSort
->pOrderBy
->nExpr
; /* No. of ORDER BY terms */
516 int nBase
= nExpr
+ bSeq
+ nData
; /* Fields in sorter record */
517 int regBase
; /* Regs for sorter record */
518 int regRecord
= ++pParse
->nMem
; /* Assembled sorter record */
519 int nOBSat
= pSort
->nOBSat
; /* ORDER BY terms to skip */
520 int op
; /* Opcode to add sorter record to sorter */
521 int iLimit
; /* LIMIT counter */
523 assert( bSeq
==0 || bSeq
==1 );
524 assert( nData
==1 || regData
==regOrigData
|| regOrigData
==0 );
526 assert( nPrefixReg
==nExpr
+bSeq
);
527 regBase
= regData
- nExpr
- bSeq
;
529 regBase
= pParse
->nMem
+ 1;
530 pParse
->nMem
+= nBase
;
532 assert( pSelect
->iOffset
==0 || pSelect
->iLimit
!=0 );
533 iLimit
= pSelect
->iOffset
? pSelect
->iOffset
+1 : pSelect
->iLimit
;
534 pSort
->labelDone
= sqlite3VdbeMakeLabel(v
);
535 sqlite3ExprCodeExprList(pParse
, pSort
->pOrderBy
, regBase
, regOrigData
,
536 SQLITE_ECEL_DUP
| (regOrigData
? SQLITE_ECEL_REF
: 0));
538 sqlite3VdbeAddOp2(v
, OP_Sequence
, pSort
->iECursor
, regBase
+nExpr
);
540 if( nPrefixReg
==0 && nData
>0 ){
541 sqlite3ExprCodeMove(pParse
, regData
, regBase
+nExpr
+bSeq
, nData
);
543 sqlite3VdbeAddOp3(v
, OP_MakeRecord
, regBase
+nOBSat
, nBase
-nOBSat
, regRecord
);
545 int regPrevKey
; /* The first nOBSat columns of the previous row */
546 int addrFirst
; /* Address of the OP_IfNot opcode */
547 int addrJmp
; /* Address of the OP_Jump opcode */
548 VdbeOp
*pOp
; /* Opcode that opens the sorter */
549 int nKey
; /* Number of sorting key columns, including OP_Sequence */
550 KeyInfo
*pKI
; /* Original KeyInfo on the sorter table */
552 regPrevKey
= pParse
->nMem
+1;
553 pParse
->nMem
+= pSort
->nOBSat
;
554 nKey
= nExpr
- pSort
->nOBSat
+ bSeq
;
556 addrFirst
= sqlite3VdbeAddOp1(v
, OP_IfNot
, regBase
+nExpr
);
558 addrFirst
= sqlite3VdbeAddOp1(v
, OP_SequenceTest
, pSort
->iECursor
);
561 sqlite3VdbeAddOp3(v
, OP_Compare
, regPrevKey
, regBase
, pSort
->nOBSat
);
562 pOp
= sqlite3VdbeGetOp(v
, pSort
->addrSortIndex
);
563 if( pParse
->db
->mallocFailed
) return;
564 pOp
->p2
= nKey
+ nData
;
565 pKI
= pOp
->p4
.pKeyInfo
;
566 memset(pKI
->aSortOrder
, 0, pKI
->nKeyField
); /* Makes OP_Jump testable */
567 sqlite3VdbeChangeP4(v
, -1, (char*)pKI
, P4_KEYINFO
);
568 testcase( pKI
->nAllField
> pKI
->nKeyField
+2 );
569 pOp
->p4
.pKeyInfo
= keyInfoFromExprList(pParse
, pSort
->pOrderBy
, nOBSat
,
570 pKI
->nAllField
-pKI
->nKeyField
-1);
571 addrJmp
= sqlite3VdbeCurrentAddr(v
);
572 sqlite3VdbeAddOp3(v
, OP_Jump
, addrJmp
+1, 0, addrJmp
+1); VdbeCoverage(v
);
573 pSort
->labelBkOut
= sqlite3VdbeMakeLabel(v
);
574 pSort
->regReturn
= ++pParse
->nMem
;
575 sqlite3VdbeAddOp2(v
, OP_Gosub
, pSort
->regReturn
, pSort
->labelBkOut
);
576 sqlite3VdbeAddOp1(v
, OP_ResetSorter
, pSort
->iECursor
);
578 sqlite3VdbeAddOp2(v
, OP_IfNot
, iLimit
, pSort
->labelDone
);
581 sqlite3VdbeJumpHere(v
, addrFirst
);
582 sqlite3ExprCodeMove(pParse
, regBase
, regPrevKey
, pSort
->nOBSat
);
583 sqlite3VdbeJumpHere(v
, addrJmp
);
585 if( pSort
->sortFlags
& SORTFLAG_UseSorter
){
586 op
= OP_SorterInsert
;
590 sqlite3VdbeAddOp4Int(v
, op
, pSort
->iECursor
, regRecord
,
591 regBase
+nOBSat
, nBase
-nOBSat
);
595 /* Fill the sorter until it contains LIMIT+OFFSET entries. (The iLimit
596 ** register is initialized with value of LIMIT+OFFSET.) After the sorter
597 ** fills up, delete the least entry in the sorter after each insert.
598 ** Thus we never hold more than the LIMIT+OFFSET rows in memory at once */
599 addr
= sqlite3VdbeAddOp1(v
, OP_IfNotZero
, iLimit
); VdbeCoverage(v
);
600 sqlite3VdbeAddOp1(v
, OP_Last
, pSort
->iECursor
);
601 if( pSort
->bOrderedInnerLoop
){
603 sqlite3VdbeAddOp3(v
, OP_Column
, pSort
->iECursor
, nExpr
, r1
);
604 VdbeComment((v
, "seq"));
606 sqlite3VdbeAddOp1(v
, OP_Delete
, pSort
->iECursor
);
607 if( pSort
->bOrderedInnerLoop
){
608 /* If the inner loop is driven by an index such that values from
609 ** the same iteration of the inner loop are in sorted order, then
610 ** immediately jump to the next iteration of an inner loop if the
611 ** entry from the current iteration does not fit into the top
612 ** LIMIT+OFFSET entries of the sorter. */
613 int iBrk
= sqlite3VdbeCurrentAddr(v
) + 2;
614 sqlite3VdbeAddOp3(v
, OP_Eq
, regBase
+nExpr
, iBrk
, r1
);
615 sqlite3VdbeChangeP5(v
, SQLITE_NULLEQ
);
618 sqlite3VdbeJumpHere(v
, addr
);
623 ** Add code to implement the OFFSET
625 static void codeOffset(
626 Vdbe
*v
, /* Generate code into this VM */
627 int iOffset
, /* Register holding the offset counter */
628 int iContinue
/* Jump here to skip the current record */
631 sqlite3VdbeAddOp3(v
, OP_IfPos
, iOffset
, iContinue
, 1); VdbeCoverage(v
);
632 VdbeComment((v
, "OFFSET"));
637 ** Add code that will check to make sure the N registers starting at iMem
638 ** form a distinct entry. iTab is a sorting index that holds previously
639 ** seen combinations of the N values. A new entry is made in iTab
640 ** if the current N values are new.
642 ** A jump to addrRepeat is made and the N+1 values are popped from the
643 ** stack if the top N elements are not distinct.
645 static void codeDistinct(
646 Parse
*pParse
, /* Parsing and code generating context */
647 int iTab
, /* A sorting index used to test for distinctness */
648 int addrRepeat
, /* Jump to here if not distinct */
649 int N
, /* Number of elements */
650 int iMem
/* First element */
656 r1
= sqlite3GetTempReg(pParse
);
657 sqlite3VdbeAddOp4Int(v
, OP_Found
, iTab
, addrRepeat
, iMem
, N
); VdbeCoverage(v
);
658 sqlite3VdbeAddOp3(v
, OP_MakeRecord
, iMem
, N
, r1
);
659 sqlite3VdbeAddOp4Int(v
, OP_IdxInsert
, iTab
, r1
, iMem
, N
);
660 sqlite3VdbeChangeP5(v
, OPFLAG_USESEEKRESULT
);
661 sqlite3ReleaseTempReg(pParse
, r1
);
665 ** This routine generates the code for the inside of the inner loop
668 ** If srcTab is negative, then the p->pEList expressions
669 ** are evaluated in order to get the data for this row. If srcTab is
670 ** zero or more, then data is pulled from srcTab and p->pEList is used only
671 ** to get the number of columns and the collation sequence for each column.
673 static void selectInnerLoop(
674 Parse
*pParse
, /* The parser context */
675 Select
*p
, /* The complete select statement being coded */
676 int srcTab
, /* Pull data from this table if non-negative */
677 SortCtx
*pSort
, /* If not NULL, info on how to process ORDER BY */
678 DistinctCtx
*pDistinct
, /* If not NULL, info on how to process DISTINCT */
679 SelectDest
*pDest
, /* How to dispose of the results */
680 int iContinue
, /* Jump here to continue with next row */
681 int iBreak
/* Jump here to break out of the inner loop */
683 Vdbe
*v
= pParse
->pVdbe
;
685 int hasDistinct
; /* True if the DISTINCT keyword is present */
686 int eDest
= pDest
->eDest
; /* How to dispose of results */
687 int iParm
= pDest
->iSDParm
; /* First argument to disposal method */
688 int nResultCol
; /* Number of result columns */
689 int nPrefixReg
= 0; /* Number of extra registers before regResult */
691 /* Usually, regResult is the first cell in an array of memory cells
692 ** containing the current result row. In this case regOrig is set to the
693 ** same value. However, if the results are being sent to the sorter, the
694 ** values for any expressions that are also part of the sort-key are omitted
695 ** from this array. In this case regOrig is set to zero. */
696 int regResult
; /* Start of memory holding current results */
697 int regOrig
; /* Start of memory holding full result (or 0) */
700 assert( p
->pEList
!=0 );
701 hasDistinct
= pDistinct
? pDistinct
->eTnctType
: WHERE_DISTINCT_NOOP
;
702 if( pSort
&& pSort
->pOrderBy
==0 ) pSort
= 0;
703 if( pSort
==0 && !hasDistinct
){
704 assert( iContinue
!=0 );
705 codeOffset(v
, p
->iOffset
, iContinue
);
708 /* Pull the requested columns.
710 nResultCol
= p
->pEList
->nExpr
;
712 if( pDest
->iSdst
==0 ){
714 nPrefixReg
= pSort
->pOrderBy
->nExpr
;
715 if( !(pSort
->sortFlags
& SORTFLAG_UseSorter
) ) nPrefixReg
++;
716 pParse
->nMem
+= nPrefixReg
;
718 pDest
->iSdst
= pParse
->nMem
+1;
719 pParse
->nMem
+= nResultCol
;
720 }else if( pDest
->iSdst
+nResultCol
> pParse
->nMem
){
721 /* This is an error condition that can result, for example, when a SELECT
722 ** on the right-hand side of an INSERT contains more result columns than
723 ** there are columns in the table on the left. The error will be caught
724 ** and reported later. But we need to make sure enough memory is allocated
725 ** to avoid other spurious errors in the meantime. */
726 pParse
->nMem
+= nResultCol
;
728 pDest
->nSdst
= nResultCol
;
729 regOrig
= regResult
= pDest
->iSdst
;
731 for(i
=0; i
<nResultCol
; i
++){
732 sqlite3VdbeAddOp3(v
, OP_Column
, srcTab
, i
, regResult
+i
);
733 VdbeComment((v
, "%s", p
->pEList
->a
[i
].zName
));
735 }else if( eDest
!=SRT_Exists
){
736 /* If the destination is an EXISTS(...) expression, the actual
737 ** values returned by the SELECT are not required.
740 if( eDest
==SRT_Mem
|| eDest
==SRT_Output
|| eDest
==SRT_Coroutine
){
741 ecelFlags
= SQLITE_ECEL_DUP
;
745 if( pSort
&& hasDistinct
==0 && eDest
!=SRT_EphemTab
&& eDest
!=SRT_Table
){
746 /* For each expression in p->pEList that is a copy of an expression in
747 ** the ORDER BY clause (pSort->pOrderBy), set the associated
748 ** iOrderByCol value to one more than the index of the ORDER BY
749 ** expression within the sort-key that pushOntoSorter() will generate.
750 ** This allows the p->pEList field to be omitted from the sorted record,
751 ** saving space and CPU cycles. */
752 ecelFlags
|= (SQLITE_ECEL_OMITREF
|SQLITE_ECEL_REF
);
753 for(i
=pSort
->nOBSat
; i
<pSort
->pOrderBy
->nExpr
; i
++){
755 if( (j
= pSort
->pOrderBy
->a
[i
].u
.x
.iOrderByCol
)>0 ){
756 p
->pEList
->a
[j
-1].u
.x
.iOrderByCol
= i
+1-pSort
->nOBSat
;
760 assert( eDest
==SRT_Set
|| eDest
==SRT_Mem
761 || eDest
==SRT_Coroutine
|| eDest
==SRT_Output
);
763 nResultCol
= sqlite3ExprCodeExprList(pParse
,p
->pEList
,regResult
,
767 /* If the DISTINCT keyword was present on the SELECT statement
768 ** and this row has been seen before, then do not make this row
769 ** part of the result.
772 switch( pDistinct
->eTnctType
){
773 case WHERE_DISTINCT_ORDERED
: {
774 VdbeOp
*pOp
; /* No longer required OpenEphemeral instr. */
775 int iJump
; /* Jump destination */
776 int regPrev
; /* Previous row content */
778 /* Allocate space for the previous row */
779 regPrev
= pParse
->nMem
+1;
780 pParse
->nMem
+= nResultCol
;
782 /* Change the OP_OpenEphemeral coded earlier to an OP_Null
783 ** sets the MEM_Cleared bit on the first register of the
784 ** previous value. This will cause the OP_Ne below to always
785 ** fail on the first iteration of the loop even if the first
788 sqlite3VdbeChangeToNoop(v
, pDistinct
->addrTnct
);
789 pOp
= sqlite3VdbeGetOp(v
, pDistinct
->addrTnct
);
790 pOp
->opcode
= OP_Null
;
794 iJump
= sqlite3VdbeCurrentAddr(v
) + nResultCol
;
795 for(i
=0; i
<nResultCol
; i
++){
796 CollSeq
*pColl
= sqlite3ExprCollSeq(pParse
, p
->pEList
->a
[i
].pExpr
);
797 if( i
<nResultCol
-1 ){
798 sqlite3VdbeAddOp3(v
, OP_Ne
, regResult
+i
, iJump
, regPrev
+i
);
801 sqlite3VdbeAddOp3(v
, OP_Eq
, regResult
+i
, iContinue
, regPrev
+i
);
804 sqlite3VdbeChangeP4(v
, -1, (const char *)pColl
, P4_COLLSEQ
);
805 sqlite3VdbeChangeP5(v
, SQLITE_NULLEQ
);
807 assert( sqlite3VdbeCurrentAddr(v
)==iJump
|| pParse
->db
->mallocFailed
);
808 sqlite3VdbeAddOp3(v
, OP_Copy
, regResult
, regPrev
, nResultCol
-1);
812 case WHERE_DISTINCT_UNIQUE
: {
813 sqlite3VdbeChangeToNoop(v
, pDistinct
->addrTnct
);
818 assert( pDistinct
->eTnctType
==WHERE_DISTINCT_UNORDERED
);
819 codeDistinct(pParse
, pDistinct
->tabTnct
, iContinue
, nResultCol
,
825 codeOffset(v
, p
->iOffset
, iContinue
);
830 /* In this mode, write each query result to the key of the temporary
833 #ifndef SQLITE_OMIT_COMPOUND_SELECT
836 r1
= sqlite3GetTempReg(pParse
);
837 sqlite3VdbeAddOp3(v
, OP_MakeRecord
, regResult
, nResultCol
, r1
);
838 sqlite3VdbeAddOp4Int(v
, OP_IdxInsert
, iParm
, r1
, regResult
, nResultCol
);
839 sqlite3ReleaseTempReg(pParse
, r1
);
843 /* Construct a record from the query result, but instead of
844 ** saving that record, use it as a key to delete elements from
845 ** the temporary table iParm.
848 sqlite3VdbeAddOp3(v
, OP_IdxDelete
, iParm
, regResult
, nResultCol
);
851 #endif /* SQLITE_OMIT_COMPOUND_SELECT */
853 /* Store the result as data using a unique key.
859 int r1
= sqlite3GetTempRange(pParse
, nPrefixReg
+1);
860 testcase( eDest
==SRT_Table
);
861 testcase( eDest
==SRT_EphemTab
);
862 testcase( eDest
==SRT_Fifo
);
863 testcase( eDest
==SRT_DistFifo
);
864 sqlite3VdbeAddOp3(v
, OP_MakeRecord
, regResult
, nResultCol
, r1
+nPrefixReg
);
865 #ifndef SQLITE_OMIT_CTE
866 if( eDest
==SRT_DistFifo
){
867 /* If the destination is DistFifo, then cursor (iParm+1) is open
868 ** on an ephemeral index. If the current row is already present
869 ** in the index, do not write it to the output. If not, add the
870 ** current row to the index and proceed with writing it to the
871 ** output table as well. */
872 int addr
= sqlite3VdbeCurrentAddr(v
) + 4;
873 sqlite3VdbeAddOp4Int(v
, OP_Found
, iParm
+1, addr
, r1
, 0);
875 sqlite3VdbeAddOp4Int(v
, OP_IdxInsert
, iParm
+1, r1
,regResult
,nResultCol
);
880 pushOntoSorter(pParse
, pSort
, p
, r1
+nPrefixReg
,regResult
,1,nPrefixReg
);
882 int r2
= sqlite3GetTempReg(pParse
);
883 sqlite3VdbeAddOp2(v
, OP_NewRowid
, iParm
, r2
);
884 sqlite3VdbeAddOp3(v
, OP_Insert
, iParm
, r1
, r2
);
885 sqlite3VdbeChangeP5(v
, OPFLAG_APPEND
);
886 sqlite3ReleaseTempReg(pParse
, r2
);
888 sqlite3ReleaseTempRange(pParse
, r1
, nPrefixReg
+1);
892 #ifndef SQLITE_OMIT_SUBQUERY
893 /* If we are creating a set for an "expr IN (SELECT ...)" construct,
894 ** then there should be a single item on the stack. Write this
895 ** item into the set table with bogus data.
899 /* At first glance you would think we could optimize out the
900 ** ORDER BY in this case since the order of entries in the set
901 ** does not matter. But there might be a LIMIT clause, in which
902 ** case the order does matter */
904 pParse
, pSort
, p
, regResult
, regOrig
, nResultCol
, nPrefixReg
);
906 int r1
= sqlite3GetTempReg(pParse
);
907 assert( sqlite3Strlen30(pDest
->zAffSdst
)==nResultCol
);
908 sqlite3VdbeAddOp4(v
, OP_MakeRecord
, regResult
, nResultCol
,
909 r1
, pDest
->zAffSdst
, nResultCol
);
910 sqlite3ExprCacheAffinityChange(pParse
, regResult
, nResultCol
);
911 sqlite3VdbeAddOp4Int(v
, OP_IdxInsert
, iParm
, r1
, regResult
, nResultCol
);
912 sqlite3ReleaseTempReg(pParse
, r1
);
917 /* If any row exist in the result set, record that fact and abort.
920 sqlite3VdbeAddOp2(v
, OP_Integer
, 1, iParm
);
921 /* The LIMIT clause will terminate the loop for us */
925 /* If this is a scalar select that is part of an expression, then
926 ** store the results in the appropriate memory cell or array of
927 ** memory cells and break out of the scan loop.
931 assert( nResultCol
<=pDest
->nSdst
);
933 pParse
, pSort
, p
, regResult
, regOrig
, nResultCol
, nPrefixReg
);
935 assert( nResultCol
==pDest
->nSdst
);
936 assert( regResult
==iParm
);
937 /* The LIMIT clause will jump out of the loop for us */
941 #endif /* #ifndef SQLITE_OMIT_SUBQUERY */
943 case SRT_Coroutine
: /* Send data to a co-routine */
944 case SRT_Output
: { /* Return the results */
945 testcase( eDest
==SRT_Coroutine
);
946 testcase( eDest
==SRT_Output
);
948 pushOntoSorter(pParse
, pSort
, p
, regResult
, regOrig
, nResultCol
,
950 }else if( eDest
==SRT_Coroutine
){
951 sqlite3VdbeAddOp1(v
, OP_Yield
, pDest
->iSDParm
);
953 sqlite3VdbeAddOp2(v
, OP_ResultRow
, regResult
, nResultCol
);
954 sqlite3ExprCacheAffinityChange(pParse
, regResult
, nResultCol
);
959 #ifndef SQLITE_OMIT_CTE
960 /* Write the results into a priority queue that is order according to
961 ** pDest->pOrderBy (in pSO). pDest->iSDParm (in iParm) is the cursor for an
962 ** index with pSO->nExpr+2 columns. Build a key using pSO for the first
963 ** pSO->nExpr columns, then make sure all keys are unique by adding a
964 ** final OP_Sequence column. The last column is the record as a blob.
972 pSO
= pDest
->pOrderBy
;
975 r1
= sqlite3GetTempReg(pParse
);
976 r2
= sqlite3GetTempRange(pParse
, nKey
+2);
978 if( eDest
==SRT_DistQueue
){
979 /* If the destination is DistQueue, then cursor (iParm+1) is open
980 ** on a second ephemeral index that holds all values every previously
981 ** added to the queue. */
982 addrTest
= sqlite3VdbeAddOp4Int(v
, OP_Found
, iParm
+1, 0,
983 regResult
, nResultCol
);
986 sqlite3VdbeAddOp3(v
, OP_MakeRecord
, regResult
, nResultCol
, r3
);
987 if( eDest
==SRT_DistQueue
){
988 sqlite3VdbeAddOp2(v
, OP_IdxInsert
, iParm
+1, r3
);
989 sqlite3VdbeChangeP5(v
, OPFLAG_USESEEKRESULT
);
991 for(i
=0; i
<nKey
; i
++){
992 sqlite3VdbeAddOp2(v
, OP_SCopy
,
993 regResult
+ pSO
->a
[i
].u
.x
.iOrderByCol
- 1,
996 sqlite3VdbeAddOp2(v
, OP_Sequence
, iParm
, r2
+nKey
);
997 sqlite3VdbeAddOp3(v
, OP_MakeRecord
, r2
, nKey
+2, r1
);
998 sqlite3VdbeAddOp4Int(v
, OP_IdxInsert
, iParm
, r1
, r2
, nKey
+2);
999 if( addrTest
) sqlite3VdbeJumpHere(v
, addrTest
);
1000 sqlite3ReleaseTempReg(pParse
, r1
);
1001 sqlite3ReleaseTempRange(pParse
, r2
, nKey
+2);
1004 #endif /* SQLITE_OMIT_CTE */
1008 #if !defined(SQLITE_OMIT_TRIGGER)
1009 /* Discard the results. This is used for SELECT statements inside
1010 ** the body of a TRIGGER. The purpose of such selects is to call
1011 ** user-defined functions that have side effects. We do not care
1012 ** about the actual results of the select.
1015 assert( eDest
==SRT_Discard
);
1021 /* Jump to the end of the loop if the LIMIT is reached. Except, if
1022 ** there is a sorter, in which case the sorter has already limited
1023 ** the output for us.
1025 if( pSort
==0 && p
->iLimit
){
1026 sqlite3VdbeAddOp2(v
, OP_DecrJumpZero
, p
->iLimit
, iBreak
); VdbeCoverage(v
);
1031 ** Allocate a KeyInfo object sufficient for an index of N key columns and
1034 KeyInfo
*sqlite3KeyInfoAlloc(sqlite3
*db
, int N
, int X
){
1035 int nExtra
= (N
+X
)*(sizeof(CollSeq
*)+1) - sizeof(CollSeq
*);
1036 KeyInfo
*p
= sqlite3DbMallocRawNN(db
, sizeof(KeyInfo
) + nExtra
);
1038 p
->aSortOrder
= (u8
*)&p
->aColl
[N
+X
];
1039 p
->nKeyField
= (u16
)N
;
1040 p
->nAllField
= (u16
)(N
+X
);
1044 memset(&p
[1], 0, nExtra
);
1046 sqlite3OomFault(db
);
1052 ** Deallocate a KeyInfo object
1054 void sqlite3KeyInfoUnref(KeyInfo
*p
){
1056 assert( p
->nRef
>0 );
1058 if( p
->nRef
==0 ) sqlite3DbFreeNN(p
->db
, p
);
1063 ** Make a new pointer to a KeyInfo object
1065 KeyInfo
*sqlite3KeyInfoRef(KeyInfo
*p
){
1067 assert( p
->nRef
>0 );
1075 ** Return TRUE if a KeyInfo object can be change. The KeyInfo object
1076 ** can only be changed if this is just a single reference to the object.
1078 ** This routine is used only inside of assert() statements.
1080 int sqlite3KeyInfoIsWriteable(KeyInfo
*p
){ return p
->nRef
==1; }
1081 #endif /* SQLITE_DEBUG */
1084 ** Given an expression list, generate a KeyInfo structure that records
1085 ** the collating sequence for each expression in that expression list.
1087 ** If the ExprList is an ORDER BY or GROUP BY clause then the resulting
1088 ** KeyInfo structure is appropriate for initializing a virtual index to
1089 ** implement that clause. If the ExprList is the result set of a SELECT
1090 ** then the KeyInfo structure is appropriate for initializing a virtual
1091 ** index to implement a DISTINCT test.
1093 ** Space to hold the KeyInfo structure is obtained from malloc. The calling
1094 ** function is responsible for seeing that this structure is eventually
1097 static KeyInfo
*keyInfoFromExprList(
1098 Parse
*pParse
, /* Parsing context */
1099 ExprList
*pList
, /* Form the KeyInfo object from this ExprList */
1100 int iStart
, /* Begin with this column of pList */
1101 int nExtra
/* Add this many extra columns to the end */
1105 struct ExprList_item
*pItem
;
1106 sqlite3
*db
= pParse
->db
;
1109 nExpr
= pList
->nExpr
;
1110 pInfo
= sqlite3KeyInfoAlloc(db
, nExpr
-iStart
, nExtra
+1);
1112 assert( sqlite3KeyInfoIsWriteable(pInfo
) );
1113 for(i
=iStart
, pItem
=pList
->a
+iStart
; i
<nExpr
; i
++, pItem
++){
1114 pInfo
->aColl
[i
-iStart
] = sqlite3ExprNNCollSeq(pParse
, pItem
->pExpr
);
1115 pInfo
->aSortOrder
[i
-iStart
] = pItem
->sortOrder
;
1122 ** Name of the connection operator, used for error messages.
1124 static const char *selectOpName(int id
){
1127 case TK_ALL
: z
= "UNION ALL"; break;
1128 case TK_INTERSECT
: z
= "INTERSECT"; break;
1129 case TK_EXCEPT
: z
= "EXCEPT"; break;
1130 default: z
= "UNION"; break;
1135 #ifndef SQLITE_OMIT_EXPLAIN
1137 ** Unless an "EXPLAIN QUERY PLAN" command is being processed, this function
1138 ** is a no-op. Otherwise, it adds a single row of output to the EQP result,
1139 ** where the caption is of the form:
1141 ** "USE TEMP B-TREE FOR xxx"
1143 ** where xxx is one of "DISTINCT", "ORDER BY" or "GROUP BY". Exactly which
1144 ** is determined by the zUsage argument.
1146 static void explainTempTable(Parse
*pParse
, const char *zUsage
){
1147 if( pParse
->explain
==2 ){
1148 Vdbe
*v
= pParse
->pVdbe
;
1149 char *zMsg
= sqlite3MPrintf(pParse
->db
, "USE TEMP B-TREE FOR %s", zUsage
);
1150 sqlite3VdbeAddOp4(v
, OP_Explain
, pParse
->iSelectId
, 0, 0, zMsg
, P4_DYNAMIC
);
1155 ** Assign expression b to lvalue a. A second, no-op, version of this macro
1156 ** is provided when SQLITE_OMIT_EXPLAIN is defined. This allows the code
1157 ** in sqlite3Select() to assign values to structure member variables that
1158 ** only exist if SQLITE_OMIT_EXPLAIN is not defined without polluting the
1159 ** code with #ifndef directives.
1161 # define explainSetInteger(a, b) a = b
1164 /* No-op versions of the explainXXX() functions and macros. */
1165 # define explainTempTable(y,z)
1166 # define explainSetInteger(y,z)
1169 #if !defined(SQLITE_OMIT_EXPLAIN) && !defined(SQLITE_OMIT_COMPOUND_SELECT)
1171 ** Unless an "EXPLAIN QUERY PLAN" command is being processed, this function
1172 ** is a no-op. Otherwise, it adds a single row of output to the EQP result,
1173 ** where the caption is of one of the two forms:
1175 ** "COMPOSITE SUBQUERIES iSub1 and iSub2 (op)"
1176 ** "COMPOSITE SUBQUERIES iSub1 and iSub2 USING TEMP B-TREE (op)"
1178 ** where iSub1 and iSub2 are the integers passed as the corresponding
1179 ** function parameters, and op is the text representation of the parameter
1180 ** of the same name. The parameter "op" must be one of TK_UNION, TK_EXCEPT,
1181 ** TK_INTERSECT or TK_ALL. The first form is used if argument bUseTmp is
1182 ** false, or the second form if it is true.
1184 static void explainComposite(
1185 Parse
*pParse
, /* Parse context */
1186 int op
, /* One of TK_UNION, TK_EXCEPT etc. */
1187 int iSub1
, /* Subquery id 1 */
1188 int iSub2
, /* Subquery id 2 */
1189 int bUseTmp
/* True if a temp table was used */
1191 assert( op
==TK_UNION
|| op
==TK_EXCEPT
|| op
==TK_INTERSECT
|| op
==TK_ALL
);
1192 if( pParse
->explain
==2 ){
1193 Vdbe
*v
= pParse
->pVdbe
;
1194 char *zMsg
= sqlite3MPrintf(
1195 pParse
->db
, "COMPOUND SUBQUERIES %d AND %d %s(%s)", iSub1
, iSub2
,
1196 bUseTmp
?"USING TEMP B-TREE ":"", selectOpName(op
)
1198 sqlite3VdbeAddOp4(v
, OP_Explain
, pParse
->iSelectId
, 0, 0, zMsg
, P4_DYNAMIC
);
1202 /* No-op versions of the explainXXX() functions and macros. */
1203 # define explainComposite(v,w,x,y,z)
1207 ** If the inner loop was generated using a non-null pOrderBy argument,
1208 ** then the results were placed in a sorter. After the loop is terminated
1209 ** we need to run the sorter and output the results. The following
1210 ** routine generates the code needed to do that.
1212 static void generateSortTail(
1213 Parse
*pParse
, /* Parsing context */
1214 Select
*p
, /* The SELECT statement */
1215 SortCtx
*pSort
, /* Information on the ORDER BY clause */
1216 int nColumn
, /* Number of columns of data */
1217 SelectDest
*pDest
/* Write the sorted results here */
1219 Vdbe
*v
= pParse
->pVdbe
; /* The prepared statement */
1220 int addrBreak
= pSort
->labelDone
; /* Jump here to exit loop */
1221 int addrContinue
= sqlite3VdbeMakeLabel(v
); /* Jump here for next cycle */
1225 ExprList
*pOrderBy
= pSort
->pOrderBy
;
1226 int eDest
= pDest
->eDest
;
1227 int iParm
= pDest
->iSDParm
;
1232 int iSortTab
; /* Sorter cursor to read from */
1233 int nSortData
; /* Trailing values to read from sorter */
1235 int bSeq
; /* True if sorter record includes seq. no. */
1236 struct ExprList_item
*aOutEx
= p
->pEList
->a
;
1238 assert( addrBreak
<0 );
1239 if( pSort
->labelBkOut
){
1240 sqlite3VdbeAddOp2(v
, OP_Gosub
, pSort
->regReturn
, pSort
->labelBkOut
);
1241 sqlite3VdbeGoto(v
, addrBreak
);
1242 sqlite3VdbeResolveLabel(v
, pSort
->labelBkOut
);
1244 iTab
= pSort
->iECursor
;
1245 if( eDest
==SRT_Output
|| eDest
==SRT_Coroutine
|| eDest
==SRT_Mem
){
1247 regRow
= pDest
->iSdst
;
1248 nSortData
= nColumn
;
1250 regRowid
= sqlite3GetTempReg(pParse
);
1251 regRow
= sqlite3GetTempRange(pParse
, nColumn
);
1252 nSortData
= nColumn
;
1254 nKey
= pOrderBy
->nExpr
- pSort
->nOBSat
;
1255 if( pSort
->sortFlags
& SORTFLAG_UseSorter
){
1256 int regSortOut
= ++pParse
->nMem
;
1257 iSortTab
= pParse
->nTab
++;
1258 if( pSort
->labelBkOut
){
1259 addrOnce
= sqlite3VdbeAddOp0(v
, OP_Once
); VdbeCoverage(v
);
1261 sqlite3VdbeAddOp3(v
, OP_OpenPseudo
, iSortTab
, regSortOut
, nKey
+1+nSortData
);
1262 if( addrOnce
) sqlite3VdbeJumpHere(v
, addrOnce
);
1263 addr
= 1 + sqlite3VdbeAddOp2(v
, OP_SorterSort
, iTab
, addrBreak
);
1265 codeOffset(v
, p
->iOffset
, addrContinue
);
1266 sqlite3VdbeAddOp3(v
, OP_SorterData
, iTab
, regSortOut
, iSortTab
);
1269 addr
= 1 + sqlite3VdbeAddOp2(v
, OP_Sort
, iTab
, addrBreak
); VdbeCoverage(v
);
1270 codeOffset(v
, p
->iOffset
, addrContinue
);
1274 for(i
=0, iCol
=nKey
+bSeq
; i
<nSortData
; i
++){
1276 if( aOutEx
[i
].u
.x
.iOrderByCol
){
1277 iRead
= aOutEx
[i
].u
.x
.iOrderByCol
-1;
1281 sqlite3VdbeAddOp3(v
, OP_Column
, iSortTab
, iRead
, regRow
+i
);
1282 VdbeComment((v
, "%s", aOutEx
[i
].zName
? aOutEx
[i
].zName
: aOutEx
[i
].zSpan
));
1286 case SRT_EphemTab
: {
1287 sqlite3VdbeAddOp2(v
, OP_NewRowid
, iParm
, regRowid
);
1288 sqlite3VdbeAddOp3(v
, OP_Insert
, iParm
, regRow
, regRowid
);
1289 sqlite3VdbeChangeP5(v
, OPFLAG_APPEND
);
1292 #ifndef SQLITE_OMIT_SUBQUERY
1294 assert( nColumn
==sqlite3Strlen30(pDest
->zAffSdst
) );
1295 sqlite3VdbeAddOp4(v
, OP_MakeRecord
, regRow
, nColumn
, regRowid
,
1296 pDest
->zAffSdst
, nColumn
);
1297 sqlite3ExprCacheAffinityChange(pParse
, regRow
, nColumn
);
1298 sqlite3VdbeAddOp4Int(v
, OP_IdxInsert
, iParm
, regRowid
, regRow
, nColumn
);
1302 /* The LIMIT clause will terminate the loop for us */
1307 assert( eDest
==SRT_Output
|| eDest
==SRT_Coroutine
);
1308 testcase( eDest
==SRT_Output
);
1309 testcase( eDest
==SRT_Coroutine
);
1310 if( eDest
==SRT_Output
){
1311 sqlite3VdbeAddOp2(v
, OP_ResultRow
, pDest
->iSdst
, nColumn
);
1312 sqlite3ExprCacheAffinityChange(pParse
, pDest
->iSdst
, nColumn
);
1314 sqlite3VdbeAddOp1(v
, OP_Yield
, pDest
->iSDParm
);
1320 if( eDest
==SRT_Set
){
1321 sqlite3ReleaseTempRange(pParse
, regRow
, nColumn
);
1323 sqlite3ReleaseTempReg(pParse
, regRow
);
1325 sqlite3ReleaseTempReg(pParse
, regRowid
);
1327 /* The bottom of the loop
1329 sqlite3VdbeResolveLabel(v
, addrContinue
);
1330 if( pSort
->sortFlags
& SORTFLAG_UseSorter
){
1331 sqlite3VdbeAddOp2(v
, OP_SorterNext
, iTab
, addr
); VdbeCoverage(v
);
1333 sqlite3VdbeAddOp2(v
, OP_Next
, iTab
, addr
); VdbeCoverage(v
);
1335 if( pSort
->regReturn
) sqlite3VdbeAddOp1(v
, OP_Return
, pSort
->regReturn
);
1336 sqlite3VdbeResolveLabel(v
, addrBreak
);
1340 ** Return a pointer to a string containing the 'declaration type' of the
1341 ** expression pExpr. The string may be treated as static by the caller.
1343 ** Also try to estimate the size of the returned value and return that
1344 ** result in *pEstWidth.
1346 ** The declaration type is the exact datatype definition extracted from the
1347 ** original CREATE TABLE statement if the expression is a column. The
1348 ** declaration type for a ROWID field is INTEGER. Exactly when an expression
1349 ** is considered a column can be complex in the presence of subqueries. The
1350 ** result-set expression in all of the following SELECT statements is
1351 ** considered a column by this function.
1353 ** SELECT col FROM tbl;
1354 ** SELECT (SELECT col FROM tbl;
1355 ** SELECT (SELECT col FROM tbl);
1356 ** SELECT abc FROM (SELECT col AS abc FROM tbl);
1358 ** The declaration type for any expression other than a column is NULL.
1360 ** This routine has either 3 or 6 parameters depending on whether or not
1361 ** the SQLITE_ENABLE_COLUMN_METADATA compile-time option is used.
1363 #ifdef SQLITE_ENABLE_COLUMN_METADATA
1364 # define columnType(A,B,C,D,E) columnTypeImpl(A,B,C,D,E)
1365 #else /* if !defined(SQLITE_ENABLE_COLUMN_METADATA) */
1366 # define columnType(A,B,C,D,E) columnTypeImpl(A,B)
1368 static const char *columnTypeImpl(
1370 #ifndef SQLITE_ENABLE_COLUMN_METADATA
1374 const char **pzOrigDb
,
1375 const char **pzOrigTab
,
1376 const char **pzOrigCol
1379 char const *zType
= 0;
1381 #ifdef SQLITE_ENABLE_COLUMN_METADATA
1382 char const *zOrigDb
= 0;
1383 char const *zOrigTab
= 0;
1384 char const *zOrigCol
= 0;
1388 assert( pNC
->pSrcList
!=0 );
1389 switch( pExpr
->op
){
1392 /* The expression is a column. Locate the table the column is being
1393 ** extracted from in NameContext.pSrcList. This table may be real
1394 ** database table or a subquery.
1396 Table
*pTab
= 0; /* Table structure column is extracted from */
1397 Select
*pS
= 0; /* Select the column is extracted from */
1398 int iCol
= pExpr
->iColumn
; /* Index of column in pTab */
1399 testcase( pExpr
->op
==TK_AGG_COLUMN
);
1400 testcase( pExpr
->op
==TK_COLUMN
);
1401 while( pNC
&& !pTab
){
1402 SrcList
*pTabList
= pNC
->pSrcList
;
1403 for(j
=0;j
<pTabList
->nSrc
&& pTabList
->a
[j
].iCursor
!=pExpr
->iTable
;j
++);
1404 if( j
<pTabList
->nSrc
){
1405 pTab
= pTabList
->a
[j
].pTab
;
1406 pS
= pTabList
->a
[j
].pSelect
;
1413 /* At one time, code such as "SELECT new.x" within a trigger would
1414 ** cause this condition to run. Since then, we have restructured how
1415 ** trigger code is generated and so this condition is no longer
1416 ** possible. However, it can still be true for statements like
1419 ** CREATE TABLE t1(col INTEGER);
1420 ** SELECT (SELECT t1.col) FROM FROM t1;
1422 ** when columnType() is called on the expression "t1.col" in the
1423 ** sub-select. In this case, set the column type to NULL, even
1424 ** though it should really be "INTEGER".
1426 ** This is not a problem, as the column type of "t1.col" is never
1427 ** used. When columnType() is called on the expression
1428 ** "(SELECT t1.col)", the correct type is returned (see the TK_SELECT
1433 assert( pTab
&& pExpr
->pTab
==pTab
);
1435 /* The "table" is actually a sub-select or a view in the FROM clause
1436 ** of the SELECT statement. Return the declaration type and origin
1437 ** data for the result-set column of the sub-select.
1439 if( iCol
>=0 && iCol
<pS
->pEList
->nExpr
){
1440 /* If iCol is less than zero, then the expression requests the
1441 ** rowid of the sub-select or view. This expression is legal (see
1442 ** test case misc2.2.2) - it always evaluates to NULL.
1445 Expr
*p
= pS
->pEList
->a
[iCol
].pExpr
;
1446 sNC
.pSrcList
= pS
->pSrc
;
1448 sNC
.pParse
= pNC
->pParse
;
1449 zType
= columnType(&sNC
, p
,&zOrigDb
,&zOrigTab
,&zOrigCol
);
1452 /* A real table or a CTE table */
1454 #ifdef SQLITE_ENABLE_COLUMN_METADATA
1455 if( iCol
<0 ) iCol
= pTab
->iPKey
;
1456 assert( iCol
==XN_ROWID
|| (iCol
>=0 && iCol
<pTab
->nCol
) );
1461 zOrigCol
= pTab
->aCol
[iCol
].zName
;
1462 zType
= sqlite3ColumnType(&pTab
->aCol
[iCol
],0);
1464 zOrigTab
= pTab
->zName
;
1465 if( pNC
->pParse
&& pTab
->pSchema
){
1466 int iDb
= sqlite3SchemaToIndex(pNC
->pParse
->db
, pTab
->pSchema
);
1467 zOrigDb
= pNC
->pParse
->db
->aDb
[iDb
].zDbSName
;
1470 assert( iCol
==XN_ROWID
|| (iCol
>=0 && iCol
<pTab
->nCol
) );
1474 zType
= sqlite3ColumnType(&pTab
->aCol
[iCol
],0);
1480 #ifndef SQLITE_OMIT_SUBQUERY
1482 /* The expression is a sub-select. Return the declaration type and
1483 ** origin info for the single column in the result set of the SELECT
1487 Select
*pS
= pExpr
->x
.pSelect
;
1488 Expr
*p
= pS
->pEList
->a
[0].pExpr
;
1489 assert( ExprHasProperty(pExpr
, EP_xIsSelect
) );
1490 sNC
.pSrcList
= pS
->pSrc
;
1492 sNC
.pParse
= pNC
->pParse
;
1493 zType
= columnType(&sNC
, p
, &zOrigDb
, &zOrigTab
, &zOrigCol
);
1499 #ifdef SQLITE_ENABLE_COLUMN_METADATA
1501 assert( pzOrigTab
&& pzOrigCol
);
1502 *pzOrigDb
= zOrigDb
;
1503 *pzOrigTab
= zOrigTab
;
1504 *pzOrigCol
= zOrigCol
;
1511 ** Generate code that will tell the VDBE the declaration types of columns
1512 ** in the result set.
1514 static void generateColumnTypes(
1515 Parse
*pParse
, /* Parser context */
1516 SrcList
*pTabList
, /* List of tables */
1517 ExprList
*pEList
/* Expressions defining the result set */
1519 #ifndef SQLITE_OMIT_DECLTYPE
1520 Vdbe
*v
= pParse
->pVdbe
;
1523 sNC
.pSrcList
= pTabList
;
1524 sNC
.pParse
= pParse
;
1526 for(i
=0; i
<pEList
->nExpr
; i
++){
1527 Expr
*p
= pEList
->a
[i
].pExpr
;
1529 #ifdef SQLITE_ENABLE_COLUMN_METADATA
1530 const char *zOrigDb
= 0;
1531 const char *zOrigTab
= 0;
1532 const char *zOrigCol
= 0;
1533 zType
= columnType(&sNC
, p
, &zOrigDb
, &zOrigTab
, &zOrigCol
);
1535 /* The vdbe must make its own copy of the column-type and other
1536 ** column specific strings, in case the schema is reset before this
1537 ** virtual machine is deleted.
1539 sqlite3VdbeSetColName(v
, i
, COLNAME_DATABASE
, zOrigDb
, SQLITE_TRANSIENT
);
1540 sqlite3VdbeSetColName(v
, i
, COLNAME_TABLE
, zOrigTab
, SQLITE_TRANSIENT
);
1541 sqlite3VdbeSetColName(v
, i
, COLNAME_COLUMN
, zOrigCol
, SQLITE_TRANSIENT
);
1543 zType
= columnType(&sNC
, p
, 0, 0, 0);
1545 sqlite3VdbeSetColName(v
, i
, COLNAME_DECLTYPE
, zType
, SQLITE_TRANSIENT
);
1547 #endif /* !defined(SQLITE_OMIT_DECLTYPE) */
1552 ** Compute the column names for a SELECT statement.
1554 ** The only guarantee that SQLite makes about column names is that if the
1555 ** column has an AS clause assigning it a name, that will be the name used.
1556 ** That is the only documented guarantee. However, countless applications
1557 ** developed over the years have made baseless assumptions about column names
1558 ** and will break if those assumptions changes. Hence, use extreme caution
1559 ** when modifying this routine to avoid breaking legacy.
1561 ** See Also: sqlite3ColumnsFromExprList()
1563 ** The PRAGMA short_column_names and PRAGMA full_column_names settings are
1564 ** deprecated. The default setting is short=ON, full=OFF. 99.9% of all
1565 ** applications should operate this way. Nevertheless, we need to support the
1566 ** other modes for legacy:
1568 ** short=OFF, full=OFF: Column name is the text of the expression has it
1569 ** originally appears in the SELECT statement. In
1570 ** other words, the zSpan of the result expression.
1572 ** short=ON, full=OFF: (This is the default setting). If the result
1573 ** refers directly to a table column, then the
1574 ** result column name is just the table column
1575 ** name: COLUMN. Otherwise use zSpan.
1577 ** full=ON, short=ANY: If the result refers directly to a table column,
1578 ** then the result column name with the table name
1579 ** prefix, ex: TABLE.COLUMN. Otherwise use zSpan.
1581 static void generateColumnNames(
1582 Parse
*pParse
, /* Parser context */
1583 Select
*pSelect
/* Generate column names for this SELECT statement */
1585 Vdbe
*v
= pParse
->pVdbe
;
1590 sqlite3
*db
= pParse
->db
;
1591 int fullName
; /* TABLE.COLUMN if no AS clause and is a direct table ref */
1592 int srcName
; /* COLUMN or TABLE.COLUMN if no AS clause and is direct */
1594 #ifndef SQLITE_OMIT_EXPLAIN
1595 /* If this is an EXPLAIN, skip this step */
1596 if( pParse
->explain
){
1601 if( pParse
->colNamesSet
|| db
->mallocFailed
) return;
1602 /* Column names are determined by the left-most term of a compound select */
1603 while( pSelect
->pPrior
) pSelect
= pSelect
->pPrior
;
1604 pTabList
= pSelect
->pSrc
;
1605 pEList
= pSelect
->pEList
;
1607 assert( pTabList
!=0 );
1608 pParse
->colNamesSet
= 1;
1609 fullName
= (db
->flags
& SQLITE_FullColNames
)!=0;
1610 srcName
= (db
->flags
& SQLITE_ShortColNames
)!=0 || fullName
;
1611 sqlite3VdbeSetNumCols(v
, pEList
->nExpr
);
1612 for(i
=0; i
<pEList
->nExpr
; i
++){
1613 Expr
*p
= pEList
->a
[i
].pExpr
;
1616 assert( p
->op
!=TK_AGG_COLUMN
); /* Agg processing has not run yet */
1617 assert( p
->op
!=TK_COLUMN
|| p
->pTab
!=0 ); /* Covering idx not yet coded */
1618 if( pEList
->a
[i
].zName
){
1619 /* An AS clause always takes first priority */
1620 char *zName
= pEList
->a
[i
].zName
;
1621 sqlite3VdbeSetColName(v
, i
, COLNAME_NAME
, zName
, SQLITE_TRANSIENT
);
1622 }else if( srcName
&& p
->op
==TK_COLUMN
){
1624 int iCol
= p
->iColumn
;
1627 if( iCol
<0 ) iCol
= pTab
->iPKey
;
1628 assert( iCol
==-1 || (iCol
>=0 && iCol
<pTab
->nCol
) );
1632 zCol
= pTab
->aCol
[iCol
].zName
;
1636 zName
= sqlite3MPrintf(db
, "%s.%s", pTab
->zName
, zCol
);
1637 sqlite3VdbeSetColName(v
, i
, COLNAME_NAME
, zName
, SQLITE_DYNAMIC
);
1639 sqlite3VdbeSetColName(v
, i
, COLNAME_NAME
, zCol
, SQLITE_TRANSIENT
);
1642 const char *z
= pEList
->a
[i
].zSpan
;
1643 z
= z
==0 ? sqlite3MPrintf(db
, "column%d", i
+1) : sqlite3DbStrDup(db
, z
);
1644 sqlite3VdbeSetColName(v
, i
, COLNAME_NAME
, z
, SQLITE_DYNAMIC
);
1647 generateColumnTypes(pParse
, pTabList
, pEList
);
1651 ** Given an expression list (which is really the list of expressions
1652 ** that form the result set of a SELECT statement) compute appropriate
1653 ** column names for a table that would hold the expression list.
1655 ** All column names will be unique.
1657 ** Only the column names are computed. Column.zType, Column.zColl,
1658 ** and other fields of Column are zeroed.
1660 ** Return SQLITE_OK on success. If a memory allocation error occurs,
1661 ** store NULL in *paCol and 0 in *pnCol and return SQLITE_NOMEM.
1663 ** The only guarantee that SQLite makes about column names is that if the
1664 ** column has an AS clause assigning it a name, that will be the name used.
1665 ** That is the only documented guarantee. However, countless applications
1666 ** developed over the years have made baseless assumptions about column names
1667 ** and will break if those assumptions changes. Hence, use extreme caution
1668 ** when modifying this routine to avoid breaking legacy.
1670 ** See Also: generateColumnNames()
1672 int sqlite3ColumnsFromExprList(
1673 Parse
*pParse
, /* Parsing context */
1674 ExprList
*pEList
, /* Expr list from which to derive column names */
1675 i16
*pnCol
, /* Write the number of columns here */
1676 Column
**paCol
/* Write the new column list here */
1678 sqlite3
*db
= pParse
->db
; /* Database connection */
1679 int i
, j
; /* Loop counters */
1680 u32 cnt
; /* Index added to make the name unique */
1681 Column
*aCol
, *pCol
; /* For looping over result columns */
1682 int nCol
; /* Number of columns in the result set */
1683 char *zName
; /* Column name */
1684 int nName
; /* Size of name in zName[] */
1685 Hash ht
; /* Hash table of column names */
1687 sqlite3HashInit(&ht
);
1689 nCol
= pEList
->nExpr
;
1690 aCol
= sqlite3DbMallocZero(db
, sizeof(aCol
[0])*nCol
);
1691 testcase( aCol
==0 );
1692 if( nCol
>32767 ) nCol
= 32767;
1697 assert( nCol
==(i16
)nCol
);
1701 for(i
=0, pCol
=aCol
; i
<nCol
&& !db
->mallocFailed
; i
++, pCol
++){
1702 /* Get an appropriate name for the column
1704 if( (zName
= pEList
->a
[i
].zName
)!=0 ){
1705 /* If the column contains an "AS <name>" phrase, use <name> as the name */
1707 Expr
*pColExpr
= sqlite3ExprSkipCollate(pEList
->a
[i
].pExpr
);
1708 while( pColExpr
->op
==TK_DOT
){
1709 pColExpr
= pColExpr
->pRight
;
1710 assert( pColExpr
!=0 );
1712 if( (pColExpr
->op
==TK_COLUMN
|| pColExpr
->op
==TK_AGG_COLUMN
)
1713 && pColExpr
->pTab
!=0
1715 /* For columns use the column name name */
1716 int iCol
= pColExpr
->iColumn
;
1717 Table
*pTab
= pColExpr
->pTab
;
1718 if( iCol
<0 ) iCol
= pTab
->iPKey
;
1719 zName
= iCol
>=0 ? pTab
->aCol
[iCol
].zName
: "rowid";
1720 }else if( pColExpr
->op
==TK_ID
){
1721 assert( !ExprHasProperty(pColExpr
, EP_IntValue
) );
1722 zName
= pColExpr
->u
.zToken
;
1724 /* Use the original text of the column expression as its name */
1725 zName
= pEList
->a
[i
].zSpan
;
1729 zName
= sqlite3DbStrDup(db
, zName
);
1731 zName
= sqlite3MPrintf(db
,"column%d",i
+1);
1734 /* Make sure the column name is unique. If the name is not unique,
1735 ** append an integer to the name so that it becomes unique.
1738 while( zName
&& sqlite3HashFind(&ht
, zName
)!=0 ){
1739 nName
= sqlite3Strlen30(zName
);
1741 for(j
=nName
-1; j
>0 && sqlite3Isdigit(zName
[j
]); j
--){}
1742 if( zName
[j
]==':' ) nName
= j
;
1744 zName
= sqlite3MPrintf(db
, "%.*z:%u", nName
, zName
, ++cnt
);
1745 if( cnt
>3 ) sqlite3_randomness(sizeof(cnt
), &cnt
);
1747 pCol
->zName
= zName
;
1748 sqlite3ColumnPropertiesFromName(0, pCol
);
1749 if( zName
&& sqlite3HashInsert(&ht
, zName
, pCol
)==pCol
){
1750 sqlite3OomFault(db
);
1753 sqlite3HashClear(&ht
);
1754 if( db
->mallocFailed
){
1756 sqlite3DbFree(db
, aCol
[j
].zName
);
1758 sqlite3DbFree(db
, aCol
);
1761 return SQLITE_NOMEM_BKPT
;
1767 ** Add type and collation information to a column list based on
1768 ** a SELECT statement.
1770 ** The column list presumably came from selectColumnNamesFromExprList().
1771 ** The column list has only names, not types or collations. This
1772 ** routine goes through and adds the types and collations.
1774 ** This routine requires that all identifiers in the SELECT
1775 ** statement be resolved.
1777 void sqlite3SelectAddColumnTypeAndCollation(
1778 Parse
*pParse
, /* Parsing contexts */
1779 Table
*pTab
, /* Add column type information to this table */
1780 Select
*pSelect
/* SELECT used to determine types and collations */
1782 sqlite3
*db
= pParse
->db
;
1788 struct ExprList_item
*a
;
1790 assert( pSelect
!=0 );
1791 assert( (pSelect
->selFlags
& SF_Resolved
)!=0 );
1792 assert( pTab
->nCol
==pSelect
->pEList
->nExpr
|| db
->mallocFailed
);
1793 if( db
->mallocFailed
) return;
1794 memset(&sNC
, 0, sizeof(sNC
));
1795 sNC
.pSrcList
= pSelect
->pSrc
;
1796 a
= pSelect
->pEList
->a
;
1797 for(i
=0, pCol
=pTab
->aCol
; i
<pTab
->nCol
; i
++, pCol
++){
1801 zType
= columnType(&sNC
, p
, 0, 0, 0);
1802 /* pCol->szEst = ... // Column size est for SELECT tables never used */
1803 pCol
->affinity
= sqlite3ExprAffinity(p
);
1805 m
= sqlite3Strlen30(zType
);
1806 n
= sqlite3Strlen30(pCol
->zName
);
1807 pCol
->zName
= sqlite3DbReallocOrFree(db
, pCol
->zName
, n
+m
+2);
1809 memcpy(&pCol
->zName
[n
+1], zType
, m
+1);
1810 pCol
->colFlags
|= COLFLAG_HASTYPE
;
1813 if( pCol
->affinity
==0 ) pCol
->affinity
= SQLITE_AFF_BLOB
;
1814 pColl
= sqlite3ExprCollSeq(pParse
, p
);
1815 if( pColl
&& pCol
->zColl
==0 ){
1816 pCol
->zColl
= sqlite3DbStrDup(db
, pColl
->zName
);
1819 pTab
->szTabRow
= 1; /* Any non-zero value works */
1823 ** Given a SELECT statement, generate a Table structure that describes
1824 ** the result set of that SELECT.
1826 Table
*sqlite3ResultSetOfSelect(Parse
*pParse
, Select
*pSelect
){
1828 sqlite3
*db
= pParse
->db
;
1831 savedFlags
= db
->flags
;
1832 db
->flags
&= ~SQLITE_FullColNames
;
1833 db
->flags
|= SQLITE_ShortColNames
;
1834 sqlite3SelectPrep(pParse
, pSelect
, 0);
1835 if( pParse
->nErr
) return 0;
1836 while( pSelect
->pPrior
) pSelect
= pSelect
->pPrior
;
1837 db
->flags
= savedFlags
;
1838 pTab
= sqlite3DbMallocZero(db
, sizeof(Table
) );
1842 /* The sqlite3ResultSetOfSelect() is only used n contexts where lookaside
1844 assert( db
->lookaside
.bDisable
);
1847 pTab
->nRowLogEst
= 200; assert( 200==sqlite3LogEst(1048576) );
1848 sqlite3ColumnsFromExprList(pParse
, pSelect
->pEList
, &pTab
->nCol
, &pTab
->aCol
);
1849 sqlite3SelectAddColumnTypeAndCollation(pParse
, pTab
, pSelect
);
1851 if( db
->mallocFailed
){
1852 sqlite3DeleteTable(db
, pTab
);
1859 ** Get a VDBE for the given parser context. Create a new one if necessary.
1860 ** If an error occurs, return NULL and leave a message in pParse.
1862 Vdbe
*sqlite3GetVdbe(Parse
*pParse
){
1863 if( pParse
->pVdbe
){
1864 return pParse
->pVdbe
;
1866 if( pParse
->pToplevel
==0
1867 && OptimizationEnabled(pParse
->db
,SQLITE_FactorOutConst
)
1869 pParse
->okConstFactor
= 1;
1871 return sqlite3VdbeCreate(pParse
);
1876 ** Compute the iLimit and iOffset fields of the SELECT based on the
1877 ** pLimit and pOffset expressions. pLimit and pOffset hold the expressions
1878 ** that appear in the original SQL statement after the LIMIT and OFFSET
1879 ** keywords. Or NULL if those keywords are omitted. iLimit and iOffset
1880 ** are the integer memory register numbers for counters used to compute
1881 ** the limit and offset. If there is no limit and/or offset, then
1882 ** iLimit and iOffset are negative.
1884 ** This routine changes the values of iLimit and iOffset only if
1885 ** a limit or offset is defined by pLimit and pOffset. iLimit and
1886 ** iOffset should have been preset to appropriate default values (zero)
1887 ** prior to calling this routine.
1889 ** The iOffset register (if it exists) is initialized to the value
1890 ** of the OFFSET. The iLimit register is initialized to LIMIT. Register
1891 ** iOffset+1 is initialized to LIMIT+OFFSET.
1893 ** Only if pLimit!=0 or pOffset!=0 do the limit registers get
1894 ** redefined. The UNION ALL operator uses this property to force
1895 ** the reuse of the same limit and offset registers across multiple
1896 ** SELECT statements.
1898 static void computeLimitRegisters(Parse
*pParse
, Select
*p
, int iBreak
){
1903 if( p
->iLimit
) return;
1906 ** "LIMIT -1" always shows all rows. There is some
1907 ** controversy about what the correct behavior should be.
1908 ** The current implementation interprets "LIMIT 0" to mean
1911 sqlite3ExprCacheClear(pParse
);
1912 assert( p
->pOffset
==0 || p
->pLimit
!=0 );
1914 p
->iLimit
= iLimit
= ++pParse
->nMem
;
1915 v
= sqlite3GetVdbe(pParse
);
1917 if( sqlite3ExprIsInteger(p
->pLimit
, &n
) ){
1918 sqlite3VdbeAddOp2(v
, OP_Integer
, n
, iLimit
);
1919 VdbeComment((v
, "LIMIT counter"));
1921 sqlite3VdbeGoto(v
, iBreak
);
1922 }else if( n
>=0 && p
->nSelectRow
>sqlite3LogEst((u64
)n
) ){
1923 p
->nSelectRow
= sqlite3LogEst((u64
)n
);
1924 p
->selFlags
|= SF_FixedLimit
;
1927 sqlite3ExprCode(pParse
, p
->pLimit
, iLimit
);
1928 sqlite3VdbeAddOp1(v
, OP_MustBeInt
, iLimit
); VdbeCoverage(v
);
1929 VdbeComment((v
, "LIMIT counter"));
1930 sqlite3VdbeAddOp2(v
, OP_IfNot
, iLimit
, iBreak
); VdbeCoverage(v
);
1933 p
->iOffset
= iOffset
= ++pParse
->nMem
;
1934 pParse
->nMem
++; /* Allocate an extra register for limit+offset */
1935 sqlite3ExprCode(pParse
, p
->pOffset
, iOffset
);
1936 sqlite3VdbeAddOp1(v
, OP_MustBeInt
, iOffset
); VdbeCoverage(v
);
1937 VdbeComment((v
, "OFFSET counter"));
1938 sqlite3VdbeAddOp3(v
, OP_OffsetLimit
, iLimit
, iOffset
+1, iOffset
);
1939 VdbeComment((v
, "LIMIT+OFFSET"));
1944 #ifndef SQLITE_OMIT_COMPOUND_SELECT
1946 ** Return the appropriate collating sequence for the iCol-th column of
1947 ** the result set for the compound-select statement "p". Return NULL if
1948 ** the column has no default collating sequence.
1950 ** The collating sequence for the compound select is taken from the
1951 ** left-most term of the select that has a collating sequence.
1953 static CollSeq
*multiSelectCollSeq(Parse
*pParse
, Select
*p
, int iCol
){
1956 pRet
= multiSelectCollSeq(pParse
, p
->pPrior
, iCol
);
1961 /* iCol must be less than p->pEList->nExpr. Otherwise an error would
1962 ** have been thrown during name resolution and we would not have gotten
1964 if( pRet
==0 && ALWAYS(iCol
<p
->pEList
->nExpr
) ){
1965 pRet
= sqlite3ExprCollSeq(pParse
, p
->pEList
->a
[iCol
].pExpr
);
1971 ** The select statement passed as the second parameter is a compound SELECT
1972 ** with an ORDER BY clause. This function allocates and returns a KeyInfo
1973 ** structure suitable for implementing the ORDER BY.
1975 ** Space to hold the KeyInfo structure is obtained from malloc. The calling
1976 ** function is responsible for ensuring that this structure is eventually
1979 static KeyInfo
*multiSelectOrderByKeyInfo(Parse
*pParse
, Select
*p
, int nExtra
){
1980 ExprList
*pOrderBy
= p
->pOrderBy
;
1981 int nOrderBy
= p
->pOrderBy
->nExpr
;
1982 sqlite3
*db
= pParse
->db
;
1983 KeyInfo
*pRet
= sqlite3KeyInfoAlloc(db
, nOrderBy
+nExtra
, 1);
1986 for(i
=0; i
<nOrderBy
; i
++){
1987 struct ExprList_item
*pItem
= &pOrderBy
->a
[i
];
1988 Expr
*pTerm
= pItem
->pExpr
;
1991 if( pTerm
->flags
& EP_Collate
){
1992 pColl
= sqlite3ExprCollSeq(pParse
, pTerm
);
1994 pColl
= multiSelectCollSeq(pParse
, p
, pItem
->u
.x
.iOrderByCol
-1);
1995 if( pColl
==0 ) pColl
= db
->pDfltColl
;
1996 pOrderBy
->a
[i
].pExpr
=
1997 sqlite3ExprAddCollateString(pParse
, pTerm
, pColl
->zName
);
1999 assert( sqlite3KeyInfoIsWriteable(pRet
) );
2000 pRet
->aColl
[i
] = pColl
;
2001 pRet
->aSortOrder
[i
] = pOrderBy
->a
[i
].sortOrder
;
2008 #ifndef SQLITE_OMIT_CTE
2010 ** This routine generates VDBE code to compute the content of a WITH RECURSIVE
2011 ** query of the form:
2013 ** <recursive-table> AS (<setup-query> UNION [ALL] <recursive-query>)
2014 ** \___________/ \_______________/
2018 ** There is exactly one reference to the recursive-table in the FROM clause
2019 ** of recursive-query, marked with the SrcList->a[].fg.isRecursive flag.
2021 ** The setup-query runs once to generate an initial set of rows that go
2022 ** into a Queue table. Rows are extracted from the Queue table one by
2023 ** one. Each row extracted from Queue is output to pDest. Then the single
2024 ** extracted row (now in the iCurrent table) becomes the content of the
2025 ** recursive-table for a recursive-query run. The output of the recursive-query
2026 ** is added back into the Queue table. Then another row is extracted from Queue
2027 ** and the iteration continues until the Queue table is empty.
2029 ** If the compound query operator is UNION then no duplicate rows are ever
2030 ** inserted into the Queue table. The iDistinct table keeps a copy of all rows
2031 ** that have ever been inserted into Queue and causes duplicates to be
2032 ** discarded. If the operator is UNION ALL, then duplicates are allowed.
2034 ** If the query has an ORDER BY, then entries in the Queue table are kept in
2035 ** ORDER BY order and the first entry is extracted for each cycle. Without
2036 ** an ORDER BY, the Queue table is just a FIFO.
2038 ** If a LIMIT clause is provided, then the iteration stops after LIMIT rows
2039 ** have been output to pDest. A LIMIT of zero means to output no rows and a
2040 ** negative LIMIT means to output all rows. If there is also an OFFSET clause
2041 ** with a positive value, then the first OFFSET outputs are discarded rather
2042 ** than being sent to pDest. The LIMIT count does not begin until after OFFSET
2043 ** rows have been skipped.
2045 static void generateWithRecursiveQuery(
2046 Parse
*pParse
, /* Parsing context */
2047 Select
*p
, /* The recursive SELECT to be coded */
2048 SelectDest
*pDest
/* What to do with query results */
2050 SrcList
*pSrc
= p
->pSrc
; /* The FROM clause of the recursive query */
2051 int nCol
= p
->pEList
->nExpr
; /* Number of columns in the recursive table */
2052 Vdbe
*v
= pParse
->pVdbe
; /* The prepared statement under construction */
2053 Select
*pSetup
= p
->pPrior
; /* The setup query */
2054 int addrTop
; /* Top of the loop */
2055 int addrCont
, addrBreak
; /* CONTINUE and BREAK addresses */
2056 int iCurrent
= 0; /* The Current table */
2057 int regCurrent
; /* Register holding Current table */
2058 int iQueue
; /* The Queue table */
2059 int iDistinct
= 0; /* To ensure unique results if UNION */
2060 int eDest
= SRT_Fifo
; /* How to write to Queue */
2061 SelectDest destQueue
; /* SelectDest targetting the Queue table */
2062 int i
; /* Loop counter */
2063 int rc
; /* Result code */
2064 ExprList
*pOrderBy
; /* The ORDER BY clause */
2065 Expr
*pLimit
, *pOffset
; /* Saved LIMIT and OFFSET */
2066 int regLimit
, regOffset
; /* Registers used by LIMIT and OFFSET */
2068 /* Obtain authorization to do a recursive query */
2069 if( sqlite3AuthCheck(pParse
, SQLITE_RECURSIVE
, 0, 0, 0) ) return;
2071 /* Process the LIMIT and OFFSET clauses, if they exist */
2072 addrBreak
= sqlite3VdbeMakeLabel(v
);
2073 p
->nSelectRow
= 320; /* 4 billion rows */
2074 computeLimitRegisters(pParse
, p
, addrBreak
);
2076 pOffset
= p
->pOffset
;
2077 regLimit
= p
->iLimit
;
2078 regOffset
= p
->iOffset
;
2079 p
->pLimit
= p
->pOffset
= 0;
2080 p
->iLimit
= p
->iOffset
= 0;
2081 pOrderBy
= p
->pOrderBy
;
2083 /* Locate the cursor number of the Current table */
2084 for(i
=0; ALWAYS(i
<pSrc
->nSrc
); i
++){
2085 if( pSrc
->a
[i
].fg
.isRecursive
){
2086 iCurrent
= pSrc
->a
[i
].iCursor
;
2091 /* Allocate cursors numbers for Queue and Distinct. The cursor number for
2092 ** the Distinct table must be exactly one greater than Queue in order
2093 ** for the SRT_DistFifo and SRT_DistQueue destinations to work. */
2094 iQueue
= pParse
->nTab
++;
2095 if( p
->op
==TK_UNION
){
2096 eDest
= pOrderBy
? SRT_DistQueue
: SRT_DistFifo
;
2097 iDistinct
= pParse
->nTab
++;
2099 eDest
= pOrderBy
? SRT_Queue
: SRT_Fifo
;
2101 sqlite3SelectDestInit(&destQueue
, eDest
, iQueue
);
2103 /* Allocate cursors for Current, Queue, and Distinct. */
2104 regCurrent
= ++pParse
->nMem
;
2105 sqlite3VdbeAddOp3(v
, OP_OpenPseudo
, iCurrent
, regCurrent
, nCol
);
2107 KeyInfo
*pKeyInfo
= multiSelectOrderByKeyInfo(pParse
, p
, 1);
2108 sqlite3VdbeAddOp4(v
, OP_OpenEphemeral
, iQueue
, pOrderBy
->nExpr
+2, 0,
2109 (char*)pKeyInfo
, P4_KEYINFO
);
2110 destQueue
.pOrderBy
= pOrderBy
;
2112 sqlite3VdbeAddOp2(v
, OP_OpenEphemeral
, iQueue
, nCol
);
2114 VdbeComment((v
, "Queue table"));
2116 p
->addrOpenEphm
[0] = sqlite3VdbeAddOp2(v
, OP_OpenEphemeral
, iDistinct
, 0);
2117 p
->selFlags
|= SF_UsesEphemeral
;
2120 /* Detach the ORDER BY clause from the compound SELECT */
2123 /* Store the results of the setup-query in Queue. */
2125 rc
= sqlite3Select(pParse
, pSetup
, &destQueue
);
2127 if( rc
) goto end_of_recursive_query
;
2129 /* Find the next row in the Queue and output that row */
2130 addrTop
= sqlite3VdbeAddOp2(v
, OP_Rewind
, iQueue
, addrBreak
); VdbeCoverage(v
);
2132 /* Transfer the next row in Queue over to Current */
2133 sqlite3VdbeAddOp1(v
, OP_NullRow
, iCurrent
); /* To reset column cache */
2135 sqlite3VdbeAddOp3(v
, OP_Column
, iQueue
, pOrderBy
->nExpr
+1, regCurrent
);
2137 sqlite3VdbeAddOp2(v
, OP_RowData
, iQueue
, regCurrent
);
2139 sqlite3VdbeAddOp1(v
, OP_Delete
, iQueue
);
2141 /* Output the single row in Current */
2142 addrCont
= sqlite3VdbeMakeLabel(v
);
2143 codeOffset(v
, regOffset
, addrCont
);
2144 selectInnerLoop(pParse
, p
, iCurrent
,
2145 0, 0, pDest
, addrCont
, addrBreak
);
2147 sqlite3VdbeAddOp2(v
, OP_DecrJumpZero
, regLimit
, addrBreak
);
2150 sqlite3VdbeResolveLabel(v
, addrCont
);
2152 /* Execute the recursive SELECT taking the single row in Current as
2153 ** the value for the recursive-table. Store the results in the Queue.
2155 if( p
->selFlags
& SF_Aggregate
){
2156 sqlite3ErrorMsg(pParse
, "recursive aggregate queries not supported");
2159 sqlite3Select(pParse
, p
, &destQueue
);
2160 assert( p
->pPrior
==0 );
2164 /* Keep running the loop until the Queue is empty */
2165 sqlite3VdbeGoto(v
, addrTop
);
2166 sqlite3VdbeResolveLabel(v
, addrBreak
);
2168 end_of_recursive_query
:
2169 sqlite3ExprListDelete(pParse
->db
, p
->pOrderBy
);
2170 p
->pOrderBy
= pOrderBy
;
2172 p
->pOffset
= pOffset
;
2175 #endif /* SQLITE_OMIT_CTE */
2177 /* Forward references */
2178 static int multiSelectOrderBy(
2179 Parse
*pParse
, /* Parsing context */
2180 Select
*p
, /* The right-most of SELECTs to be coded */
2181 SelectDest
*pDest
/* What to do with query results */
2185 ** Handle the special case of a compound-select that originates from a
2186 ** VALUES clause. By handling this as a special case, we avoid deep
2187 ** recursion, and thus do not need to enforce the SQLITE_LIMIT_COMPOUND_SELECT
2188 ** on a VALUES clause.
2190 ** Because the Select object originates from a VALUES clause:
2191 ** (1) It has no LIMIT or OFFSET
2192 ** (2) All terms are UNION ALL
2193 ** (3) There is no ORDER BY clause
2195 static int multiSelectValues(
2196 Parse
*pParse
, /* Parsing context */
2197 Select
*p
, /* The right-most of SELECTs to be coded */
2198 SelectDest
*pDest
/* What to do with query results */
2203 assert( p
->selFlags
& SF_MultiValue
);
2205 assert( p
->selFlags
& SF_Values
);
2206 assert( p
->op
==TK_ALL
|| (p
->op
==TK_SELECT
&& p
->pPrior
==0) );
2207 assert( p
->pLimit
==0 );
2208 assert( p
->pOffset
==0 );
2209 assert( p
->pNext
==0 || p
->pEList
->nExpr
==p
->pNext
->pEList
->nExpr
);
2210 if( p
->pPrior
==0 ) break;
2211 assert( p
->pPrior
->pNext
==p
);
2218 rc
= sqlite3Select(pParse
, p
, pDest
);
2221 p
->nSelectRow
= nRow
;
2228 ** This routine is called to process a compound query form from
2229 ** two or more separate queries using UNION, UNION ALL, EXCEPT, or
2232 ** "p" points to the right-most of the two queries. the query on the
2233 ** left is p->pPrior. The left query could also be a compound query
2234 ** in which case this routine will be called recursively.
2236 ** The results of the total query are to be written into a destination
2237 ** of type eDest with parameter iParm.
2239 ** Example 1: Consider a three-way compound SQL statement.
2241 ** SELECT a FROM t1 UNION SELECT b FROM t2 UNION SELECT c FROM t3
2243 ** This statement is parsed up as follows:
2247 ** `-----> SELECT b FROM t2
2249 ** `------> SELECT a FROM t1
2251 ** The arrows in the diagram above represent the Select.pPrior pointer.
2252 ** So if this routine is called with p equal to the t3 query, then
2253 ** pPrior will be the t2 query. p->op will be TK_UNION in this case.
2255 ** Notice that because of the way SQLite parses compound SELECTs, the
2256 ** individual selects always group from left to right.
2258 static int multiSelect(
2259 Parse
*pParse
, /* Parsing context */
2260 Select
*p
, /* The right-most of SELECTs to be coded */
2261 SelectDest
*pDest
/* What to do with query results */
2263 int rc
= SQLITE_OK
; /* Success code from a subroutine */
2264 Select
*pPrior
; /* Another SELECT immediately to our left */
2265 Vdbe
*v
; /* Generate code to this VDBE */
2266 SelectDest dest
; /* Alternative data destination */
2267 Select
*pDelete
= 0; /* Chain of simple selects to delete */
2268 sqlite3
*db
; /* Database connection */
2269 #ifndef SQLITE_OMIT_EXPLAIN
2270 int iSub1
= 0; /* EQP id of left-hand query */
2271 int iSub2
= 0; /* EQP id of right-hand query */
2274 /* Make sure there is no ORDER BY or LIMIT clause on prior SELECTs. Only
2275 ** the last (right-most) SELECT in the series may have an ORDER BY or LIMIT.
2277 assert( p
&& p
->pPrior
); /* Calling function guarantees this much */
2278 assert( (p
->selFlags
& SF_Recursive
)==0 || p
->op
==TK_ALL
|| p
->op
==TK_UNION
);
2282 if( pPrior
->pOrderBy
|| pPrior
->pLimit
){
2283 sqlite3ErrorMsg(pParse
,"%s clause should come after %s not before",
2284 pPrior
->pOrderBy
!=0 ? "ORDER BY" : "LIMIT", selectOpName(p
->op
));
2286 goto multi_select_end
;
2289 v
= sqlite3GetVdbe(pParse
);
2290 assert( v
!=0 ); /* The VDBE already created by calling function */
2292 /* Create the destination temporary table if necessary
2294 if( dest
.eDest
==SRT_EphemTab
){
2295 assert( p
->pEList
);
2296 sqlite3VdbeAddOp2(v
, OP_OpenEphemeral
, dest
.iSDParm
, p
->pEList
->nExpr
);
2297 dest
.eDest
= SRT_Table
;
2300 /* Special handling for a compound-select that originates as a VALUES clause.
2302 if( p
->selFlags
& SF_MultiValue
){
2303 rc
= multiSelectValues(pParse
, p
, &dest
);
2304 goto multi_select_end
;
2307 /* Make sure all SELECTs in the statement have the same number of elements
2308 ** in their result sets.
2310 assert( p
->pEList
&& pPrior
->pEList
);
2311 assert( p
->pEList
->nExpr
==pPrior
->pEList
->nExpr
);
2313 #ifndef SQLITE_OMIT_CTE
2314 if( p
->selFlags
& SF_Recursive
){
2315 generateWithRecursiveQuery(pParse
, p
, &dest
);
2319 /* Compound SELECTs that have an ORDER BY clause are handled separately.
2322 return multiSelectOrderBy(pParse
, p
, pDest
);
2325 /* Generate code for the left and right SELECT statements.
2331 assert( !pPrior
->pLimit
);
2332 pPrior
->iLimit
= p
->iLimit
;
2333 pPrior
->iOffset
= p
->iOffset
;
2334 pPrior
->pLimit
= p
->pLimit
;
2335 pPrior
->pOffset
= p
->pOffset
;
2336 explainSetInteger(iSub1
, pParse
->iNextSelectId
);
2337 rc
= sqlite3Select(pParse
, pPrior
, &dest
);
2341 goto multi_select_end
;
2344 p
->iLimit
= pPrior
->iLimit
;
2345 p
->iOffset
= pPrior
->iOffset
;
2347 addr
= sqlite3VdbeAddOp1(v
, OP_IfNot
, p
->iLimit
); VdbeCoverage(v
);
2348 VdbeComment((v
, "Jump ahead if LIMIT reached"));
2350 sqlite3VdbeAddOp3(v
, OP_OffsetLimit
,
2351 p
->iLimit
, p
->iOffset
+1, p
->iOffset
);
2354 explainSetInteger(iSub2
, pParse
->iNextSelectId
);
2355 rc
= sqlite3Select(pParse
, p
, &dest
);
2356 testcase( rc
!=SQLITE_OK
);
2357 pDelete
= p
->pPrior
;
2359 p
->nSelectRow
= sqlite3LogEstAdd(p
->nSelectRow
, pPrior
->nSelectRow
);
2361 && sqlite3ExprIsInteger(pPrior
->pLimit
, &nLimit
)
2362 && nLimit
>0 && p
->nSelectRow
> sqlite3LogEst((u64
)nLimit
)
2364 p
->nSelectRow
= sqlite3LogEst((u64
)nLimit
);
2367 sqlite3VdbeJumpHere(v
, addr
);
2373 int unionTab
; /* Cursor number of the temporary table holding result */
2374 u8 op
= 0; /* One of the SRT_ operations to apply to self */
2375 int priorOp
; /* The SRT_ operation to apply to prior selects */
2376 Expr
*pLimit
, *pOffset
; /* Saved values of p->nLimit and p->nOffset */
2378 SelectDest uniondest
;
2380 testcase( p
->op
==TK_EXCEPT
);
2381 testcase( p
->op
==TK_UNION
);
2382 priorOp
= SRT_Union
;
2383 if( dest
.eDest
==priorOp
){
2384 /* We can reuse a temporary table generated by a SELECT to our
2387 assert( p
->pLimit
==0 ); /* Not allowed on leftward elements */
2388 assert( p
->pOffset
==0 ); /* Not allowed on leftward elements */
2389 unionTab
= dest
.iSDParm
;
2391 /* We will need to create our own temporary table to hold the
2392 ** intermediate results.
2394 unionTab
= pParse
->nTab
++;
2395 assert( p
->pOrderBy
==0 );
2396 addr
= sqlite3VdbeAddOp2(v
, OP_OpenEphemeral
, unionTab
, 0);
2397 assert( p
->addrOpenEphm
[0] == -1 );
2398 p
->addrOpenEphm
[0] = addr
;
2399 findRightmost(p
)->selFlags
|= SF_UsesEphemeral
;
2400 assert( p
->pEList
);
2403 /* Code the SELECT statements to our left
2405 assert( !pPrior
->pOrderBy
);
2406 sqlite3SelectDestInit(&uniondest
, priorOp
, unionTab
);
2407 explainSetInteger(iSub1
, pParse
->iNextSelectId
);
2408 rc
= sqlite3Select(pParse
, pPrior
, &uniondest
);
2410 goto multi_select_end
;
2413 /* Code the current SELECT statement
2415 if( p
->op
==TK_EXCEPT
){
2418 assert( p
->op
==TK_UNION
);
2424 pOffset
= p
->pOffset
;
2426 uniondest
.eDest
= op
;
2427 explainSetInteger(iSub2
, pParse
->iNextSelectId
);
2428 rc
= sqlite3Select(pParse
, p
, &uniondest
);
2429 testcase( rc
!=SQLITE_OK
);
2430 /* Query flattening in sqlite3Select() might refill p->pOrderBy.
2431 ** Be sure to delete p->pOrderBy, therefore, to avoid a memory leak. */
2432 sqlite3ExprListDelete(db
, p
->pOrderBy
);
2433 pDelete
= p
->pPrior
;
2436 if( p
->op
==TK_UNION
){
2437 p
->nSelectRow
= sqlite3LogEstAdd(p
->nSelectRow
, pPrior
->nSelectRow
);
2439 sqlite3ExprDelete(db
, p
->pLimit
);
2441 p
->pOffset
= pOffset
;
2445 /* Convert the data in the temporary table into whatever form
2446 ** it is that we currently need.
2448 assert( unionTab
==dest
.iSDParm
|| dest
.eDest
!=priorOp
);
2449 if( dest
.eDest
!=priorOp
){
2450 int iCont
, iBreak
, iStart
;
2451 assert( p
->pEList
);
2452 iBreak
= sqlite3VdbeMakeLabel(v
);
2453 iCont
= sqlite3VdbeMakeLabel(v
);
2454 computeLimitRegisters(pParse
, p
, iBreak
);
2455 sqlite3VdbeAddOp2(v
, OP_Rewind
, unionTab
, iBreak
); VdbeCoverage(v
);
2456 iStart
= sqlite3VdbeCurrentAddr(v
);
2457 selectInnerLoop(pParse
, p
, unionTab
,
2458 0, 0, &dest
, iCont
, iBreak
);
2459 sqlite3VdbeResolveLabel(v
, iCont
);
2460 sqlite3VdbeAddOp2(v
, OP_Next
, unionTab
, iStart
); VdbeCoverage(v
);
2461 sqlite3VdbeResolveLabel(v
, iBreak
);
2462 sqlite3VdbeAddOp2(v
, OP_Close
, unionTab
, 0);
2466 default: assert( p
->op
==TK_INTERSECT
); {
2468 int iCont
, iBreak
, iStart
;
2469 Expr
*pLimit
, *pOffset
;
2471 SelectDest intersectdest
;
2474 /* INTERSECT is different from the others since it requires
2475 ** two temporary tables. Hence it has its own case. Begin
2476 ** by allocating the tables we will need.
2478 tab1
= pParse
->nTab
++;
2479 tab2
= pParse
->nTab
++;
2480 assert( p
->pOrderBy
==0 );
2482 addr
= sqlite3VdbeAddOp2(v
, OP_OpenEphemeral
, tab1
, 0);
2483 assert( p
->addrOpenEphm
[0] == -1 );
2484 p
->addrOpenEphm
[0] = addr
;
2485 findRightmost(p
)->selFlags
|= SF_UsesEphemeral
;
2486 assert( p
->pEList
);
2488 /* Code the SELECTs to our left into temporary table "tab1".
2490 sqlite3SelectDestInit(&intersectdest
, SRT_Union
, tab1
);
2491 explainSetInteger(iSub1
, pParse
->iNextSelectId
);
2492 rc
= sqlite3Select(pParse
, pPrior
, &intersectdest
);
2494 goto multi_select_end
;
2497 /* Code the current SELECT into temporary table "tab2"
2499 addr
= sqlite3VdbeAddOp2(v
, OP_OpenEphemeral
, tab2
, 0);
2500 assert( p
->addrOpenEphm
[1] == -1 );
2501 p
->addrOpenEphm
[1] = addr
;
2505 pOffset
= p
->pOffset
;
2507 intersectdest
.iSDParm
= tab2
;
2508 explainSetInteger(iSub2
, pParse
->iNextSelectId
);
2509 rc
= sqlite3Select(pParse
, p
, &intersectdest
);
2510 testcase( rc
!=SQLITE_OK
);
2511 pDelete
= p
->pPrior
;
2513 if( p
->nSelectRow
>pPrior
->nSelectRow
) p
->nSelectRow
= pPrior
->nSelectRow
;
2514 sqlite3ExprDelete(db
, p
->pLimit
);
2516 p
->pOffset
= pOffset
;
2518 /* Generate code to take the intersection of the two temporary
2521 assert( p
->pEList
);
2522 iBreak
= sqlite3VdbeMakeLabel(v
);
2523 iCont
= sqlite3VdbeMakeLabel(v
);
2524 computeLimitRegisters(pParse
, p
, iBreak
);
2525 sqlite3VdbeAddOp2(v
, OP_Rewind
, tab1
, iBreak
); VdbeCoverage(v
);
2526 r1
= sqlite3GetTempReg(pParse
);
2527 iStart
= sqlite3VdbeAddOp2(v
, OP_RowData
, tab1
, r1
);
2528 sqlite3VdbeAddOp4Int(v
, OP_NotFound
, tab2
, iCont
, r1
, 0); VdbeCoverage(v
);
2529 sqlite3ReleaseTempReg(pParse
, r1
);
2530 selectInnerLoop(pParse
, p
, tab1
,
2531 0, 0, &dest
, iCont
, iBreak
);
2532 sqlite3VdbeResolveLabel(v
, iCont
);
2533 sqlite3VdbeAddOp2(v
, OP_Next
, tab1
, iStart
); VdbeCoverage(v
);
2534 sqlite3VdbeResolveLabel(v
, iBreak
);
2535 sqlite3VdbeAddOp2(v
, OP_Close
, tab2
, 0);
2536 sqlite3VdbeAddOp2(v
, OP_Close
, tab1
, 0);
2541 explainComposite(pParse
, p
->op
, iSub1
, iSub2
, p
->op
!=TK_ALL
);
2543 /* Compute collating sequences used by
2544 ** temporary tables needed to implement the compound select.
2545 ** Attach the KeyInfo structure to all temporary tables.
2547 ** This section is run by the right-most SELECT statement only.
2548 ** SELECT statements to the left always skip this part. The right-most
2549 ** SELECT might also skip this part if it has no ORDER BY clause and
2550 ** no temp tables are required.
2552 if( p
->selFlags
& SF_UsesEphemeral
){
2553 int i
; /* Loop counter */
2554 KeyInfo
*pKeyInfo
; /* Collating sequence for the result set */
2555 Select
*pLoop
; /* For looping through SELECT statements */
2556 CollSeq
**apColl
; /* For looping through pKeyInfo->aColl[] */
2557 int nCol
; /* Number of columns in result set */
2559 assert( p
->pNext
==0 );
2560 nCol
= p
->pEList
->nExpr
;
2561 pKeyInfo
= sqlite3KeyInfoAlloc(db
, nCol
, 1);
2563 rc
= SQLITE_NOMEM_BKPT
;
2564 goto multi_select_end
;
2566 for(i
=0, apColl
=pKeyInfo
->aColl
; i
<nCol
; i
++, apColl
++){
2567 *apColl
= multiSelectCollSeq(pParse
, p
, i
);
2569 *apColl
= db
->pDfltColl
;
2573 for(pLoop
=p
; pLoop
; pLoop
=pLoop
->pPrior
){
2575 int addr
= pLoop
->addrOpenEphm
[i
];
2577 /* If [0] is unused then [1] is also unused. So we can
2578 ** always safely abort as soon as the first unused slot is found */
2579 assert( pLoop
->addrOpenEphm
[1]<0 );
2582 sqlite3VdbeChangeP2(v
, addr
, nCol
);
2583 sqlite3VdbeChangeP4(v
, addr
, (char*)sqlite3KeyInfoRef(pKeyInfo
),
2585 pLoop
->addrOpenEphm
[i
] = -1;
2588 sqlite3KeyInfoUnref(pKeyInfo
);
2592 pDest
->iSdst
= dest
.iSdst
;
2593 pDest
->nSdst
= dest
.nSdst
;
2594 sqlite3SelectDelete(db
, pDelete
);
2597 #endif /* SQLITE_OMIT_COMPOUND_SELECT */
2600 ** Error message for when two or more terms of a compound select have different
2601 ** size result sets.
2603 void sqlite3SelectWrongNumTermsError(Parse
*pParse
, Select
*p
){
2604 if( p
->selFlags
& SF_Values
){
2605 sqlite3ErrorMsg(pParse
, "all VALUES must have the same number of terms");
2607 sqlite3ErrorMsg(pParse
, "SELECTs to the left and right of %s"
2608 " do not have the same number of result columns", selectOpName(p
->op
));
2613 ** Code an output subroutine for a coroutine implementation of a
2616 ** The data to be output is contained in pIn->iSdst. There are
2617 ** pIn->nSdst columns to be output. pDest is where the output should
2620 ** regReturn is the number of the register holding the subroutine
2623 ** If regPrev>0 then it is the first register in a vector that
2624 ** records the previous output. mem[regPrev] is a flag that is false
2625 ** if there has been no previous output. If regPrev>0 then code is
2626 ** generated to suppress duplicates. pKeyInfo is used for comparing
2629 ** If the LIMIT found in p->iLimit is reached, jump immediately to
2632 static int generateOutputSubroutine(
2633 Parse
*pParse
, /* Parsing context */
2634 Select
*p
, /* The SELECT statement */
2635 SelectDest
*pIn
, /* Coroutine supplying data */
2636 SelectDest
*pDest
, /* Where to send the data */
2637 int regReturn
, /* The return address register */
2638 int regPrev
, /* Previous result register. No uniqueness if 0 */
2639 KeyInfo
*pKeyInfo
, /* For comparing with previous entry */
2640 int iBreak
/* Jump here if we hit the LIMIT */
2642 Vdbe
*v
= pParse
->pVdbe
;
2646 addr
= sqlite3VdbeCurrentAddr(v
);
2647 iContinue
= sqlite3VdbeMakeLabel(v
);
2649 /* Suppress duplicates for UNION, EXCEPT, and INTERSECT
2653 addr1
= sqlite3VdbeAddOp1(v
, OP_IfNot
, regPrev
); VdbeCoverage(v
);
2654 addr2
= sqlite3VdbeAddOp4(v
, OP_Compare
, pIn
->iSdst
, regPrev
+1, pIn
->nSdst
,
2655 (char*)sqlite3KeyInfoRef(pKeyInfo
), P4_KEYINFO
);
2656 sqlite3VdbeAddOp3(v
, OP_Jump
, addr2
+2, iContinue
, addr2
+2); VdbeCoverage(v
);
2657 sqlite3VdbeJumpHere(v
, addr1
);
2658 sqlite3VdbeAddOp3(v
, OP_Copy
, pIn
->iSdst
, regPrev
+1, pIn
->nSdst
-1);
2659 sqlite3VdbeAddOp2(v
, OP_Integer
, 1, regPrev
);
2661 if( pParse
->db
->mallocFailed
) return 0;
2663 /* Suppress the first OFFSET entries if there is an OFFSET clause
2665 codeOffset(v
, p
->iOffset
, iContinue
);
2667 assert( pDest
->eDest
!=SRT_Exists
);
2668 assert( pDest
->eDest
!=SRT_Table
);
2669 switch( pDest
->eDest
){
2670 /* Store the result as data using a unique key.
2672 case SRT_EphemTab
: {
2673 int r1
= sqlite3GetTempReg(pParse
);
2674 int r2
= sqlite3GetTempReg(pParse
);
2675 sqlite3VdbeAddOp3(v
, OP_MakeRecord
, pIn
->iSdst
, pIn
->nSdst
, r1
);
2676 sqlite3VdbeAddOp2(v
, OP_NewRowid
, pDest
->iSDParm
, r2
);
2677 sqlite3VdbeAddOp3(v
, OP_Insert
, pDest
->iSDParm
, r1
, r2
);
2678 sqlite3VdbeChangeP5(v
, OPFLAG_APPEND
);
2679 sqlite3ReleaseTempReg(pParse
, r2
);
2680 sqlite3ReleaseTempReg(pParse
, r1
);
2684 #ifndef SQLITE_OMIT_SUBQUERY
2685 /* If we are creating a set for an "expr IN (SELECT ...)".
2689 testcase( pIn
->nSdst
>1 );
2690 r1
= sqlite3GetTempReg(pParse
);
2691 sqlite3VdbeAddOp4(v
, OP_MakeRecord
, pIn
->iSdst
, pIn
->nSdst
,
2692 r1
, pDest
->zAffSdst
, pIn
->nSdst
);
2693 sqlite3ExprCacheAffinityChange(pParse
, pIn
->iSdst
, pIn
->nSdst
);
2694 sqlite3VdbeAddOp4Int(v
, OP_IdxInsert
, pDest
->iSDParm
, r1
,
2695 pIn
->iSdst
, pIn
->nSdst
);
2696 sqlite3ReleaseTempReg(pParse
, r1
);
2700 /* If this is a scalar select that is part of an expression, then
2701 ** store the results in the appropriate memory cell and break out
2702 ** of the scan loop.
2705 assert( pIn
->nSdst
==1 || pParse
->nErr
>0 ); testcase( pIn
->nSdst
!=1 );
2706 sqlite3ExprCodeMove(pParse
, pIn
->iSdst
, pDest
->iSDParm
, 1);
2707 /* The LIMIT clause will jump out of the loop for us */
2710 #endif /* #ifndef SQLITE_OMIT_SUBQUERY */
2712 /* The results are stored in a sequence of registers
2713 ** starting at pDest->iSdst. Then the co-routine yields.
2715 case SRT_Coroutine
: {
2716 if( pDest
->iSdst
==0 ){
2717 pDest
->iSdst
= sqlite3GetTempRange(pParse
, pIn
->nSdst
);
2718 pDest
->nSdst
= pIn
->nSdst
;
2720 sqlite3ExprCodeMove(pParse
, pIn
->iSdst
, pDest
->iSdst
, pIn
->nSdst
);
2721 sqlite3VdbeAddOp1(v
, OP_Yield
, pDest
->iSDParm
);
2725 /* If none of the above, then the result destination must be
2726 ** SRT_Output. This routine is never called with any other
2727 ** destination other than the ones handled above or SRT_Output.
2729 ** For SRT_Output, results are stored in a sequence of registers.
2730 ** Then the OP_ResultRow opcode is used to cause sqlite3_step() to
2731 ** return the next row of result.
2734 assert( pDest
->eDest
==SRT_Output
);
2735 sqlite3VdbeAddOp2(v
, OP_ResultRow
, pIn
->iSdst
, pIn
->nSdst
);
2736 sqlite3ExprCacheAffinityChange(pParse
, pIn
->iSdst
, pIn
->nSdst
);
2741 /* Jump to the end of the loop if the LIMIT is reached.
2744 sqlite3VdbeAddOp2(v
, OP_DecrJumpZero
, p
->iLimit
, iBreak
); VdbeCoverage(v
);
2747 /* Generate the subroutine return
2749 sqlite3VdbeResolveLabel(v
, iContinue
);
2750 sqlite3VdbeAddOp1(v
, OP_Return
, regReturn
);
2756 ** Alternative compound select code generator for cases when there
2757 ** is an ORDER BY clause.
2759 ** We assume a query of the following form:
2761 ** <selectA> <operator> <selectB> ORDER BY <orderbylist>
2763 ** <operator> is one of UNION ALL, UNION, EXCEPT, or INTERSECT. The idea
2764 ** is to code both <selectA> and <selectB> with the ORDER BY clause as
2765 ** co-routines. Then run the co-routines in parallel and merge the results
2766 ** into the output. In addition to the two coroutines (called selectA and
2767 ** selectB) there are 7 subroutines:
2769 ** outA: Move the output of the selectA coroutine into the output
2770 ** of the compound query.
2772 ** outB: Move the output of the selectB coroutine into the output
2773 ** of the compound query. (Only generated for UNION and
2774 ** UNION ALL. EXCEPT and INSERTSECT never output a row that
2775 ** appears only in B.)
2777 ** AltB: Called when there is data from both coroutines and A<B.
2779 ** AeqB: Called when there is data from both coroutines and A==B.
2781 ** AgtB: Called when there is data from both coroutines and A>B.
2783 ** EofA: Called when data is exhausted from selectA.
2785 ** EofB: Called when data is exhausted from selectB.
2787 ** The implementation of the latter five subroutines depend on which
2788 ** <operator> is used:
2791 ** UNION ALL UNION EXCEPT INTERSECT
2792 ** ------------- ----------------- -------------- -----------------
2793 ** AltB: outA, nextA outA, nextA outA, nextA nextA
2795 ** AeqB: outA, nextA nextA nextA outA, nextA
2797 ** AgtB: outB, nextB outB, nextB nextB nextB
2799 ** EofA: outB, nextB outB, nextB halt halt
2801 ** EofB: outA, nextA outA, nextA outA, nextA halt
2803 ** In the AltB, AeqB, and AgtB subroutines, an EOF on A following nextA
2804 ** causes an immediate jump to EofA and an EOF on B following nextB causes
2805 ** an immediate jump to EofB. Within EofA and EofB, and EOF on entry or
2806 ** following nextX causes a jump to the end of the select processing.
2808 ** Duplicate removal in the UNION, EXCEPT, and INTERSECT cases is handled
2809 ** within the output subroutine. The regPrev register set holds the previously
2810 ** output value. A comparison is made against this value and the output
2811 ** is skipped if the next results would be the same as the previous.
2813 ** The implementation plan is to implement the two coroutines and seven
2814 ** subroutines first, then put the control logic at the bottom. Like this:
2817 ** coA: coroutine for left query (A)
2818 ** coB: coroutine for right query (B)
2819 ** outA: output one row of A
2820 ** outB: output one row of B (UNION and UNION ALL only)
2826 ** Init: initialize coroutine registers
2828 ** if eof(A) goto EofA
2830 ** if eof(B) goto EofB
2831 ** Cmpr: Compare A, B
2832 ** Jump AltB, AeqB, AgtB
2835 ** We call AltB, AeqB, AgtB, EofA, and EofB "subroutines" but they are not
2836 ** actually called using Gosub and they do not Return. EofA and EofB loop
2837 ** until all data is exhausted then jump to the "end" labe. AltB, AeqB,
2838 ** and AgtB jump to either L2 or to one of EofA or EofB.
2840 #ifndef SQLITE_OMIT_COMPOUND_SELECT
2841 static int multiSelectOrderBy(
2842 Parse
*pParse
, /* Parsing context */
2843 Select
*p
, /* The right-most of SELECTs to be coded */
2844 SelectDest
*pDest
/* What to do with query results */
2846 int i
, j
; /* Loop counters */
2847 Select
*pPrior
; /* Another SELECT immediately to our left */
2848 Vdbe
*v
; /* Generate code to this VDBE */
2849 SelectDest destA
; /* Destination for coroutine A */
2850 SelectDest destB
; /* Destination for coroutine B */
2851 int regAddrA
; /* Address register for select-A coroutine */
2852 int regAddrB
; /* Address register for select-B coroutine */
2853 int addrSelectA
; /* Address of the select-A coroutine */
2854 int addrSelectB
; /* Address of the select-B coroutine */
2855 int regOutA
; /* Address register for the output-A subroutine */
2856 int regOutB
; /* Address register for the output-B subroutine */
2857 int addrOutA
; /* Address of the output-A subroutine */
2858 int addrOutB
= 0; /* Address of the output-B subroutine */
2859 int addrEofA
; /* Address of the select-A-exhausted subroutine */
2860 int addrEofA_noB
; /* Alternate addrEofA if B is uninitialized */
2861 int addrEofB
; /* Address of the select-B-exhausted subroutine */
2862 int addrAltB
; /* Address of the A<B subroutine */
2863 int addrAeqB
; /* Address of the A==B subroutine */
2864 int addrAgtB
; /* Address of the A>B subroutine */
2865 int regLimitA
; /* Limit register for select-A */
2866 int regLimitB
; /* Limit register for select-A */
2867 int regPrev
; /* A range of registers to hold previous output */
2868 int savedLimit
; /* Saved value of p->iLimit */
2869 int savedOffset
; /* Saved value of p->iOffset */
2870 int labelCmpr
; /* Label for the start of the merge algorithm */
2871 int labelEnd
; /* Label for the end of the overall SELECT stmt */
2872 int addr1
; /* Jump instructions that get retargetted */
2873 int op
; /* One of TK_ALL, TK_UNION, TK_EXCEPT, TK_INTERSECT */
2874 KeyInfo
*pKeyDup
= 0; /* Comparison information for duplicate removal */
2875 KeyInfo
*pKeyMerge
; /* Comparison information for merging rows */
2876 sqlite3
*db
; /* Database connection */
2877 ExprList
*pOrderBy
; /* The ORDER BY clause */
2878 int nOrderBy
; /* Number of terms in the ORDER BY clause */
2879 int *aPermute
; /* Mapping from ORDER BY terms to result set columns */
2880 #ifndef SQLITE_OMIT_EXPLAIN
2881 int iSub1
; /* EQP id of left-hand query */
2882 int iSub2
; /* EQP id of right-hand query */
2885 assert( p
->pOrderBy
!=0 );
2886 assert( pKeyDup
==0 ); /* "Managed" code needs this. Ticket #3382. */
2889 assert( v
!=0 ); /* Already thrown the error if VDBE alloc failed */
2890 labelEnd
= sqlite3VdbeMakeLabel(v
);
2891 labelCmpr
= sqlite3VdbeMakeLabel(v
);
2894 /* Patch up the ORDER BY clause
2898 assert( pPrior
->pOrderBy
==0 );
2899 pOrderBy
= p
->pOrderBy
;
2901 nOrderBy
= pOrderBy
->nExpr
;
2903 /* For operators other than UNION ALL we have to make sure that
2904 ** the ORDER BY clause covers every term of the result set. Add
2905 ** terms to the ORDER BY clause as necessary.
2908 for(i
=1; db
->mallocFailed
==0 && i
<=p
->pEList
->nExpr
; i
++){
2909 struct ExprList_item
*pItem
;
2910 for(j
=0, pItem
=pOrderBy
->a
; j
<nOrderBy
; j
++, pItem
++){
2911 assert( pItem
->u
.x
.iOrderByCol
>0 );
2912 if( pItem
->u
.x
.iOrderByCol
==i
) break;
2915 Expr
*pNew
= sqlite3Expr(db
, TK_INTEGER
, 0);
2916 if( pNew
==0 ) return SQLITE_NOMEM_BKPT
;
2917 pNew
->flags
|= EP_IntValue
;
2919 p
->pOrderBy
= pOrderBy
= sqlite3ExprListAppend(pParse
, pOrderBy
, pNew
);
2920 if( pOrderBy
) pOrderBy
->a
[nOrderBy
++].u
.x
.iOrderByCol
= (u16
)i
;
2925 /* Compute the comparison permutation and keyinfo that is used with
2926 ** the permutation used to determine if the next
2927 ** row of results comes from selectA or selectB. Also add explicit
2928 ** collations to the ORDER BY clause terms so that when the subqueries
2929 ** to the right and the left are evaluated, they use the correct
2932 aPermute
= sqlite3DbMallocRawNN(db
, sizeof(int)*(nOrderBy
+ 1));
2934 struct ExprList_item
*pItem
;
2935 aPermute
[0] = nOrderBy
;
2936 for(i
=1, pItem
=pOrderBy
->a
; i
<=nOrderBy
; i
++, pItem
++){
2937 assert( pItem
->u
.x
.iOrderByCol
>0 );
2938 assert( pItem
->u
.x
.iOrderByCol
<=p
->pEList
->nExpr
);
2939 aPermute
[i
] = pItem
->u
.x
.iOrderByCol
- 1;
2941 pKeyMerge
= multiSelectOrderByKeyInfo(pParse
, p
, 1);
2946 /* Reattach the ORDER BY clause to the query.
2948 p
->pOrderBy
= pOrderBy
;
2949 pPrior
->pOrderBy
= sqlite3ExprListDup(pParse
->db
, pOrderBy
, 0);
2951 /* Allocate a range of temporary registers and the KeyInfo needed
2952 ** for the logic that removes duplicate result rows when the
2953 ** operator is UNION, EXCEPT, or INTERSECT (but not UNION ALL).
2958 int nExpr
= p
->pEList
->nExpr
;
2959 assert( nOrderBy
>=nExpr
|| db
->mallocFailed
);
2960 regPrev
= pParse
->nMem
+1;
2961 pParse
->nMem
+= nExpr
+1;
2962 sqlite3VdbeAddOp2(v
, OP_Integer
, 0, regPrev
);
2963 pKeyDup
= sqlite3KeyInfoAlloc(db
, nExpr
, 1);
2965 assert( sqlite3KeyInfoIsWriteable(pKeyDup
) );
2966 for(i
=0; i
<nExpr
; i
++){
2967 pKeyDup
->aColl
[i
] = multiSelectCollSeq(pParse
, p
, i
);
2968 pKeyDup
->aSortOrder
[i
] = 0;
2973 /* Separate the left and the right query from one another
2977 sqlite3ResolveOrderGroupBy(pParse
, p
, p
->pOrderBy
, "ORDER");
2978 if( pPrior
->pPrior
==0 ){
2979 sqlite3ResolveOrderGroupBy(pParse
, pPrior
, pPrior
->pOrderBy
, "ORDER");
2982 /* Compute the limit registers */
2983 computeLimitRegisters(pParse
, p
, labelEnd
);
2984 if( p
->iLimit
&& op
==TK_ALL
){
2985 regLimitA
= ++pParse
->nMem
;
2986 regLimitB
= ++pParse
->nMem
;
2987 sqlite3VdbeAddOp2(v
, OP_Copy
, p
->iOffset
? p
->iOffset
+1 : p
->iLimit
,
2989 sqlite3VdbeAddOp2(v
, OP_Copy
, regLimitA
, regLimitB
);
2991 regLimitA
= regLimitB
= 0;
2993 sqlite3ExprDelete(db
, p
->pLimit
);
2995 sqlite3ExprDelete(db
, p
->pOffset
);
2998 regAddrA
= ++pParse
->nMem
;
2999 regAddrB
= ++pParse
->nMem
;
3000 regOutA
= ++pParse
->nMem
;
3001 regOutB
= ++pParse
->nMem
;
3002 sqlite3SelectDestInit(&destA
, SRT_Coroutine
, regAddrA
);
3003 sqlite3SelectDestInit(&destB
, SRT_Coroutine
, regAddrB
);
3005 /* Generate a coroutine to evaluate the SELECT statement to the
3006 ** left of the compound operator - the "A" select.
3008 addrSelectA
= sqlite3VdbeCurrentAddr(v
) + 1;
3009 addr1
= sqlite3VdbeAddOp3(v
, OP_InitCoroutine
, regAddrA
, 0, addrSelectA
);
3010 VdbeComment((v
, "left SELECT"));
3011 pPrior
->iLimit
= regLimitA
;
3012 explainSetInteger(iSub1
, pParse
->iNextSelectId
);
3013 sqlite3Select(pParse
, pPrior
, &destA
);
3014 sqlite3VdbeEndCoroutine(v
, regAddrA
);
3015 sqlite3VdbeJumpHere(v
, addr1
);
3017 /* Generate a coroutine to evaluate the SELECT statement on
3018 ** the right - the "B" select
3020 addrSelectB
= sqlite3VdbeCurrentAddr(v
) + 1;
3021 addr1
= sqlite3VdbeAddOp3(v
, OP_InitCoroutine
, regAddrB
, 0, addrSelectB
);
3022 VdbeComment((v
, "right SELECT"));
3023 savedLimit
= p
->iLimit
;
3024 savedOffset
= p
->iOffset
;
3025 p
->iLimit
= regLimitB
;
3027 explainSetInteger(iSub2
, pParse
->iNextSelectId
);
3028 sqlite3Select(pParse
, p
, &destB
);
3029 p
->iLimit
= savedLimit
;
3030 p
->iOffset
= savedOffset
;
3031 sqlite3VdbeEndCoroutine(v
, regAddrB
);
3033 /* Generate a subroutine that outputs the current row of the A
3034 ** select as the next output row of the compound select.
3036 VdbeNoopComment((v
, "Output routine for A"));
3037 addrOutA
= generateOutputSubroutine(pParse
,
3038 p
, &destA
, pDest
, regOutA
,
3039 regPrev
, pKeyDup
, labelEnd
);
3041 /* Generate a subroutine that outputs the current row of the B
3042 ** select as the next output row of the compound select.
3044 if( op
==TK_ALL
|| op
==TK_UNION
){
3045 VdbeNoopComment((v
, "Output routine for B"));
3046 addrOutB
= generateOutputSubroutine(pParse
,
3047 p
, &destB
, pDest
, regOutB
,
3048 regPrev
, pKeyDup
, labelEnd
);
3050 sqlite3KeyInfoUnref(pKeyDup
);
3052 /* Generate a subroutine to run when the results from select A
3053 ** are exhausted and only data in select B remains.
3055 if( op
==TK_EXCEPT
|| op
==TK_INTERSECT
){
3056 addrEofA_noB
= addrEofA
= labelEnd
;
3058 VdbeNoopComment((v
, "eof-A subroutine"));
3059 addrEofA
= sqlite3VdbeAddOp2(v
, OP_Gosub
, regOutB
, addrOutB
);
3060 addrEofA_noB
= sqlite3VdbeAddOp2(v
, OP_Yield
, regAddrB
, labelEnd
);
3062 sqlite3VdbeGoto(v
, addrEofA
);
3063 p
->nSelectRow
= sqlite3LogEstAdd(p
->nSelectRow
, pPrior
->nSelectRow
);
3066 /* Generate a subroutine to run when the results from select B
3067 ** are exhausted and only data in select A remains.
3069 if( op
==TK_INTERSECT
){
3070 addrEofB
= addrEofA
;
3071 if( p
->nSelectRow
> pPrior
->nSelectRow
) p
->nSelectRow
= pPrior
->nSelectRow
;
3073 VdbeNoopComment((v
, "eof-B subroutine"));
3074 addrEofB
= sqlite3VdbeAddOp2(v
, OP_Gosub
, regOutA
, addrOutA
);
3075 sqlite3VdbeAddOp2(v
, OP_Yield
, regAddrA
, labelEnd
); VdbeCoverage(v
);
3076 sqlite3VdbeGoto(v
, addrEofB
);
3079 /* Generate code to handle the case of A<B
3081 VdbeNoopComment((v
, "A-lt-B subroutine"));
3082 addrAltB
= sqlite3VdbeAddOp2(v
, OP_Gosub
, regOutA
, addrOutA
);
3083 sqlite3VdbeAddOp2(v
, OP_Yield
, regAddrA
, addrEofA
); VdbeCoverage(v
);
3084 sqlite3VdbeGoto(v
, labelCmpr
);
3086 /* Generate code to handle the case of A==B
3089 addrAeqB
= addrAltB
;
3090 }else if( op
==TK_INTERSECT
){
3091 addrAeqB
= addrAltB
;
3094 VdbeNoopComment((v
, "A-eq-B subroutine"));
3096 sqlite3VdbeAddOp2(v
, OP_Yield
, regAddrA
, addrEofA
); VdbeCoverage(v
);
3097 sqlite3VdbeGoto(v
, labelCmpr
);
3100 /* Generate code to handle the case of A>B
3102 VdbeNoopComment((v
, "A-gt-B subroutine"));
3103 addrAgtB
= sqlite3VdbeCurrentAddr(v
);
3104 if( op
==TK_ALL
|| op
==TK_UNION
){
3105 sqlite3VdbeAddOp2(v
, OP_Gosub
, regOutB
, addrOutB
);
3107 sqlite3VdbeAddOp2(v
, OP_Yield
, regAddrB
, addrEofB
); VdbeCoverage(v
);
3108 sqlite3VdbeGoto(v
, labelCmpr
);
3110 /* This code runs once to initialize everything.
3112 sqlite3VdbeJumpHere(v
, addr1
);
3113 sqlite3VdbeAddOp2(v
, OP_Yield
, regAddrA
, addrEofA_noB
); VdbeCoverage(v
);
3114 sqlite3VdbeAddOp2(v
, OP_Yield
, regAddrB
, addrEofB
); VdbeCoverage(v
);
3116 /* Implement the main merge loop
3118 sqlite3VdbeResolveLabel(v
, labelCmpr
);
3119 sqlite3VdbeAddOp4(v
, OP_Permutation
, 0, 0, 0, (char*)aPermute
, P4_INTARRAY
);
3120 sqlite3VdbeAddOp4(v
, OP_Compare
, destA
.iSdst
, destB
.iSdst
, nOrderBy
,
3121 (char*)pKeyMerge
, P4_KEYINFO
);
3122 sqlite3VdbeChangeP5(v
, OPFLAG_PERMUTE
);
3123 sqlite3VdbeAddOp3(v
, OP_Jump
, addrAltB
, addrAeqB
, addrAgtB
); VdbeCoverage(v
);
3125 /* Jump to the this point in order to terminate the query.
3127 sqlite3VdbeResolveLabel(v
, labelEnd
);
3129 /* Reassembly the compound query so that it will be freed correctly
3130 ** by the calling function */
3132 sqlite3SelectDelete(db
, p
->pPrior
);
3137 /*** TBD: Insert subroutine calls to close cursors on incomplete
3138 **** subqueries ****/
3139 explainComposite(pParse
, p
->op
, iSub1
, iSub2
, 0);
3140 return pParse
->nErr
!=0;
3144 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
3146 /* An instance of the SubstContext object describes an substitution edit
3147 ** to be performed on a parse tree.
3149 ** All references to columns in table iTable are to be replaced by corresponding
3150 ** expressions in pEList.
3152 typedef struct SubstContext
{
3153 Parse
*pParse
; /* The parsing context */
3154 int iTable
; /* Replace references to this table */
3155 int iNewTable
; /* New table number */
3156 int isLeftJoin
; /* Add TK_IF_NULL_ROW opcodes on each replacement */
3157 ExprList
*pEList
; /* Replacement expressions */
3160 /* Forward Declarations */
3161 static void substExprList(SubstContext
*, ExprList
*);
3162 static void substSelect(SubstContext
*, Select
*, int);
3165 ** Scan through the expression pExpr. Replace every reference to
3166 ** a column in table number iTable with a copy of the iColumn-th
3167 ** entry in pEList. (But leave references to the ROWID column
3170 ** This routine is part of the flattening procedure. A subquery
3171 ** whose result set is defined by pEList appears as entry in the
3172 ** FROM clause of a SELECT such that the VDBE cursor assigned to that
3173 ** FORM clause entry is iTable. This routine makes the necessary
3174 ** changes to pExpr so that it refers directly to the source table
3175 ** of the subquery rather the result set of the subquery.
3177 static Expr
*substExpr(
3178 SubstContext
*pSubst
, /* Description of the substitution */
3179 Expr
*pExpr
/* Expr in which substitution occurs */
3181 if( pExpr
==0 ) return 0;
3182 if( ExprHasProperty(pExpr
, EP_FromJoin
)
3183 && pExpr
->iRightJoinTable
==pSubst
->iTable
3185 pExpr
->iRightJoinTable
= pSubst
->iNewTable
;
3187 if( pExpr
->op
==TK_COLUMN
&& pExpr
->iTable
==pSubst
->iTable
){
3188 if( pExpr
->iColumn
<0 ){
3189 pExpr
->op
= TK_NULL
;
3192 Expr
*pCopy
= pSubst
->pEList
->a
[pExpr
->iColumn
].pExpr
;
3194 assert( pSubst
->pEList
!=0 && pExpr
->iColumn
<pSubst
->pEList
->nExpr
);
3195 assert( pExpr
->pLeft
==0 && pExpr
->pRight
==0 );
3196 if( sqlite3ExprIsVector(pCopy
) ){
3197 sqlite3VectorErrorMsg(pSubst
->pParse
, pCopy
);
3199 sqlite3
*db
= pSubst
->pParse
->db
;
3200 if( pSubst
->isLeftJoin
&& pCopy
->op
!=TK_COLUMN
){
3201 memset(&ifNullRow
, 0, sizeof(ifNullRow
));
3202 ifNullRow
.op
= TK_IF_NULL_ROW
;
3203 ifNullRow
.pLeft
= pCopy
;
3204 ifNullRow
.iTable
= pSubst
->iNewTable
;
3207 pNew
= sqlite3ExprDup(db
, pCopy
, 0);
3208 if( pNew
&& pSubst
->isLeftJoin
){
3209 ExprSetProperty(pNew
, EP_CanBeNull
);
3211 if( pNew
&& ExprHasProperty(pExpr
,EP_FromJoin
) ){
3212 pNew
->iRightJoinTable
= pExpr
->iRightJoinTable
;
3213 ExprSetProperty(pNew
, EP_FromJoin
);
3215 sqlite3ExprDelete(db
, pExpr
);
3220 if( pExpr
->op
==TK_IF_NULL_ROW
&& pExpr
->iTable
==pSubst
->iTable
){
3221 pExpr
->iTable
= pSubst
->iNewTable
;
3223 pExpr
->pLeft
= substExpr(pSubst
, pExpr
->pLeft
);
3224 pExpr
->pRight
= substExpr(pSubst
, pExpr
->pRight
);
3225 if( ExprHasProperty(pExpr
, EP_xIsSelect
) ){
3226 substSelect(pSubst
, pExpr
->x
.pSelect
, 1);
3228 substExprList(pSubst
, pExpr
->x
.pList
);
3233 static void substExprList(
3234 SubstContext
*pSubst
, /* Description of the substitution */
3235 ExprList
*pList
/* List to scan and in which to make substitutes */
3238 if( pList
==0 ) return;
3239 for(i
=0; i
<pList
->nExpr
; i
++){
3240 pList
->a
[i
].pExpr
= substExpr(pSubst
, pList
->a
[i
].pExpr
);
3243 static void substSelect(
3244 SubstContext
*pSubst
, /* Description of the substitution */
3245 Select
*p
, /* SELECT statement in which to make substitutions */
3246 int doPrior
/* Do substitutes on p->pPrior too */
3249 struct SrcList_item
*pItem
;
3253 substExprList(pSubst
, p
->pEList
);
3254 substExprList(pSubst
, p
->pGroupBy
);
3255 substExprList(pSubst
, p
->pOrderBy
);
3256 p
->pHaving
= substExpr(pSubst
, p
->pHaving
);
3257 p
->pWhere
= substExpr(pSubst
, p
->pWhere
);
3260 for(i
=pSrc
->nSrc
, pItem
=pSrc
->a
; i
>0; i
--, pItem
++){
3261 substSelect(pSubst
, pItem
->pSelect
, 1);
3262 if( pItem
->fg
.isTabFunc
){
3263 substExprList(pSubst
, pItem
->u1
.pFuncArg
);
3266 }while( doPrior
&& (p
= p
->pPrior
)!=0 );
3268 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */
3270 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
3272 ** This routine attempts to flatten subqueries as a performance optimization.
3273 ** This routine returns 1 if it makes changes and 0 if no flattening occurs.
3275 ** To understand the concept of flattening, consider the following
3278 ** SELECT a FROM (SELECT x+y AS a FROM t1 WHERE z<100) WHERE a>5
3280 ** The default way of implementing this query is to execute the
3281 ** subquery first and store the results in a temporary table, then
3282 ** run the outer query on that temporary table. This requires two
3283 ** passes over the data. Furthermore, because the temporary table
3284 ** has no indices, the WHERE clause on the outer query cannot be
3287 ** This routine attempts to rewrite queries such as the above into
3288 ** a single flat select, like this:
3290 ** SELECT x+y AS a FROM t1 WHERE z<100 AND a>5
3292 ** The code generated for this simplification gives the same result
3293 ** but only has to scan the data once. And because indices might
3294 ** exist on the table t1, a complete scan of the data might be
3297 ** Flattening is subject to the following constraints:
3299 ** (**) We no longer attempt to flatten aggregate subqueries. Was:
3300 ** The subquery and the outer query cannot both be aggregates.
3302 ** (**) We no longer attempt to flatten aggregate subqueries. Was:
3303 ** (2) If the subquery is an aggregate then
3304 ** (2a) the outer query must not be a join and
3305 ** (2b) the outer query must not use subqueries
3306 ** other than the one FROM-clause subquery that is a candidate
3307 ** for flattening. (This is due to ticket [2f7170d73bf9abf80]
3308 ** from 2015-02-09.)
3310 ** (3) If the subquery is the right operand of a LEFT JOIN then
3311 ** (3a) the subquery may not be a join and
3312 ** (3b) the FROM clause of the subquery may not contain a virtual
3314 ** (3c) the outer query may not be an aggregate.
3316 ** (4) The subquery can not be DISTINCT.
3318 ** (**) At one point restrictions (4) and (5) defined a subset of DISTINCT
3319 ** sub-queries that were excluded from this optimization. Restriction
3320 ** (4) has since been expanded to exclude all DISTINCT subqueries.
3322 ** (**) We no longer attempt to flatten aggregate subqueries. Was:
3323 ** If the subquery is aggregate, the outer query may not be DISTINCT.
3325 ** (7) The subquery must have a FROM clause. TODO: For subqueries without
3326 ** A FROM clause, consider adding a FROM clause with the special
3327 ** table sqlite_once that consists of a single row containing a
3330 ** (8) If the subquery uses LIMIT then the outer query may not be a join.
3332 ** (9) If the subquery uses LIMIT then the outer query may not be aggregate.
3334 ** (**) Restriction (10) was removed from the code on 2005-02-05 but we
3335 ** accidently carried the comment forward until 2014-09-15. Original
3336 ** constraint: "If the subquery is aggregate then the outer query
3337 ** may not use LIMIT."
3339 ** (11) The subquery and the outer query may not both have ORDER BY clauses.
3341 ** (**) Not implemented. Subsumed into restriction (3). Was previously
3342 ** a separate restriction deriving from ticket #350.
3344 ** (13) The subquery and outer query may not both use LIMIT.
3346 ** (14) The subquery may not use OFFSET.
3348 ** (15) If the outer query is part of a compound select, then the
3349 ** subquery may not use LIMIT.
3350 ** (See ticket #2339 and ticket [02a8e81d44]).
3352 ** (16) If the outer query is aggregate, then the subquery may not
3353 ** use ORDER BY. (Ticket #2942) This used to not matter
3354 ** until we introduced the group_concat() function.
3356 ** (17) If the subquery is a compound select, then
3357 ** (17a) all compound operators must be a UNION ALL, and
3358 ** (17b) no terms within the subquery compound may be aggregate
3360 ** (17c) every term within the subquery compound must have a FROM clause
3361 ** (17d) the outer query may not be
3362 ** (17d1) aggregate, or
3363 ** (17d2) DISTINCT, or
3366 ** The parent and sub-query may contain WHERE clauses. Subject to
3367 ** rules (11), (13) and (14), they may also contain ORDER BY,
3368 ** LIMIT and OFFSET clauses. The subquery cannot use any compound
3369 ** operator other than UNION ALL because all the other compound
3370 ** operators have an implied DISTINCT which is disallowed by
3373 ** Also, each component of the sub-query must return the same number
3374 ** of result columns. This is actually a requirement for any compound
3375 ** SELECT statement, but all the code here does is make sure that no
3376 ** such (illegal) sub-query is flattened. The caller will detect the
3377 ** syntax error and return a detailed message.
3379 ** (18) If the sub-query is a compound select, then all terms of the
3380 ** ORDER BY clause of the parent must be simple references to
3381 ** columns of the sub-query.
3383 ** (19) If the subquery uses LIMIT then the outer query may not
3384 ** have a WHERE clause.
3386 ** (**) Subsumed into (17d3). Was: If the sub-query is a compound select,
3387 ** then it must not use an ORDER BY clause - Ticket #3773. Because
3388 ** of (17d3), then only way to have a compound subquery is if it is
3389 ** the only term in the FROM clause of the outer query. But if the
3390 ** only term in the FROM clause has an ORDER BY, then it will be
3391 ** implemented as a co-routine and the flattener will never be called.
3393 ** (21) If the subquery uses LIMIT then the outer query may not be
3394 ** DISTINCT. (See ticket [752e1646fc]).
3396 ** (22) The subquery may not be a recursive CTE.
3398 ** (**) Subsumed into restriction (17d3). Was: If the outer query is
3399 ** a recursive CTE, then the sub-query may not be a compound query.
3400 ** This restriction is because transforming the
3401 ** parent to a compound query confuses the code that handles
3402 ** recursive queries in multiSelect().
3404 ** (**) We no longer attempt to flatten aggregate subqueries. Was:
3405 ** The subquery may not be an aggregate that uses the built-in min() or
3406 ** or max() functions. (Without this restriction, a query like:
3407 ** "SELECT x FROM (SELECT max(y), x FROM t1)" would not necessarily
3408 ** return the value X for which Y was maximal.)
3411 ** In this routine, the "p" parameter is a pointer to the outer query.
3412 ** The subquery is p->pSrc->a[iFrom]. isAgg is true if the outer query
3415 ** If flattening is not attempted, this routine is a no-op and returns 0.
3416 ** If flattening is attempted this routine returns 1.
3418 ** All of the expression analysis must occur on both the outer query and
3419 ** the subquery before this routine runs.
3421 static int flattenSubquery(
3422 Parse
*pParse
, /* Parsing context */
3423 Select
*p
, /* The parent or outer SELECT statement */
3424 int iFrom
, /* Index in p->pSrc->a[] of the inner subquery */
3425 int isAgg
/* True if outer SELECT uses aggregate functions */
3427 const char *zSavedAuthContext
= pParse
->zAuthContext
;
3428 Select
*pParent
; /* Current UNION ALL term of the other query */
3429 Select
*pSub
; /* The inner query or "subquery" */
3430 Select
*pSub1
; /* Pointer to the rightmost select in sub-query */
3431 SrcList
*pSrc
; /* The FROM clause of the outer query */
3432 SrcList
*pSubSrc
; /* The FROM clause of the subquery */
3433 int iParent
; /* VDBE cursor number of the pSub result set temp table */
3434 int iNewParent
= -1;/* Replacement table for iParent */
3435 int isLeftJoin
= 0; /* True if pSub is the right side of a LEFT JOIN */
3436 int i
; /* Loop counter */
3437 Expr
*pWhere
; /* The WHERE clause */
3438 struct SrcList_item
*pSubitem
; /* The subquery */
3439 sqlite3
*db
= pParse
->db
;
3441 /* Check to see if flattening is permitted. Return 0 if not.
3444 assert( p
->pPrior
==0 );
3445 if( OptimizationDisabled(db
, SQLITE_QueryFlattener
) ) return 0;
3447 assert( pSrc
&& iFrom
>=0 && iFrom
<pSrc
->nSrc
);
3448 pSubitem
= &pSrc
->a
[iFrom
];
3449 iParent
= pSubitem
->iCursor
;
3450 pSub
= pSubitem
->pSelect
;
3453 pSubSrc
= pSub
->pSrc
;
3455 /* Prior to version 3.1.2, when LIMIT and OFFSET had to be simple constants,
3456 ** not arbitrary expressions, we allowed some combining of LIMIT and OFFSET
3457 ** because they could be computed at compile-time. But when LIMIT and OFFSET
3458 ** became arbitrary expressions, we were forced to add restrictions (13)
3460 if( pSub
->pLimit
&& p
->pLimit
) return 0; /* Restriction (13) */
3461 if( pSub
->pOffset
) return 0; /* Restriction (14) */
3462 if( (p
->selFlags
& SF_Compound
)!=0 && pSub
->pLimit
){
3463 return 0; /* Restriction (15) */
3465 if( pSubSrc
->nSrc
==0 ) return 0; /* Restriction (7) */
3466 if( pSub
->selFlags
& SF_Distinct
) return 0; /* Restriction (4) */
3467 if( pSub
->pLimit
&& (pSrc
->nSrc
>1 || isAgg
) ){
3468 return 0; /* Restrictions (8)(9) */
3470 if( p
->pOrderBy
&& pSub
->pOrderBy
){
3471 return 0; /* Restriction (11) */
3473 if( isAgg
&& pSub
->pOrderBy
) return 0; /* Restriction (16) */
3474 if( pSub
->pLimit
&& p
->pWhere
) return 0; /* Restriction (19) */
3475 if( pSub
->pLimit
&& (p
->selFlags
& SF_Distinct
)!=0 ){
3476 return 0; /* Restriction (21) */
3478 if( pSub
->selFlags
& (SF_Recursive
) ){
3479 return 0; /* Restrictions (22) */
3483 ** If the subquery is the right operand of a LEFT JOIN, then the
3484 ** subquery may not be a join itself (3a). Example of why this is not
3487 ** t1 LEFT OUTER JOIN (t2 JOIN t3)
3489 ** If we flatten the above, we would get
3491 ** (t1 LEFT OUTER JOIN t2) JOIN t3
3493 ** which is not at all the same thing.
3495 ** If the subquery is the right operand of a LEFT JOIN, then the outer
3496 ** query cannot be an aggregate. (3c) This is an artifact of the way
3497 ** aggregates are processed - there is no mechanism to determine if
3498 ** the LEFT JOIN table should be all-NULL.
3500 ** See also tickets #306, #350, and #3300.
3502 if( (pSubitem
->fg
.jointype
& JT_OUTER
)!=0 ){
3504 if( pSubSrc
->nSrc
>1 || isAgg
|| IsVirtual(pSubSrc
->a
[0].pTab
) ){
3505 /* (3a) (3c) (3b) */
3509 #ifdef SQLITE_EXTRA_IFNULLROW
3510 else if( iFrom
>0 && !isAgg
){
3511 /* Setting isLeftJoin to -1 causes OP_IfNullRow opcodes to be generated for
3512 ** every reference to any result column from subquery in a join, even
3513 ** though they are not necessary. This will stress-test the OP_IfNullRow
3519 /* Restriction (17): If the sub-query is a compound SELECT, then it must
3520 ** use only the UNION ALL operator. And none of the simple select queries
3521 ** that make up the compound SELECT are allowed to be aggregate or distinct
3525 if( isAgg
|| (p
->selFlags
& SF_Distinct
)!=0 || pSrc
->nSrc
!=1 ){
3526 return 0; /* (17d1), (17d2), or (17d3) */
3528 for(pSub1
=pSub
; pSub1
; pSub1
=pSub1
->pPrior
){
3529 testcase( (pSub1
->selFlags
& (SF_Distinct
|SF_Aggregate
))==SF_Distinct
);
3530 testcase( (pSub1
->selFlags
& (SF_Distinct
|SF_Aggregate
))==SF_Aggregate
);
3531 assert( pSub
->pSrc
!=0 );
3532 assert( pSub
->pEList
->nExpr
==pSub1
->pEList
->nExpr
);
3533 if( (pSub1
->selFlags
& (SF_Distinct
|SF_Aggregate
))!=0 /* (17b) */
3534 || (pSub1
->pPrior
&& pSub1
->op
!=TK_ALL
) /* (17a) */
3535 || pSub1
->pSrc
->nSrc
<1 /* (17c) */
3539 testcase( pSub1
->pSrc
->nSrc
>1 );
3542 /* Restriction (18). */
3545 for(ii
=0; ii
<p
->pOrderBy
->nExpr
; ii
++){
3546 if( p
->pOrderBy
->a
[ii
].u
.x
.iOrderByCol
==0 ) return 0;
3551 /* Ex-restriction (23):
3552 ** The only way that the recursive part of a CTE can contain a compound
3553 ** subquery is for the subquery to be one term of a join. But if the
3554 ** subquery is a join, then the flattening has already been stopped by
3555 ** restriction (17d3)
3557 assert( (p
->selFlags
& SF_Recursive
)==0 || pSub
->pPrior
==0 );
3559 /* Ex-restriction (20):
3560 ** A compound subquery must be the only term in the FROM clause of the
3561 ** outer query by restriction (17d3). But if that term also has an
3562 ** ORDER BY clause, then the subquery will be implemented by co-routine
3563 ** and so the flattener will never be invoked. Hence, it is not possible
3564 ** for the subquery to be a compound and have an ORDER BY clause.
3566 assert( pSub
->pPrior
==0 || pSub
->pOrderBy
==0 );
3568 /***** If we reach this point, flattening is permitted. *****/
3569 SELECTTRACE(1,pParse
,p
,("flatten %s.%p from term %d\n",
3570 pSub
->zSelName
, pSub
, iFrom
));
3572 /* Authorize the subquery */
3573 pParse
->zAuthContext
= pSubitem
->zName
;
3574 TESTONLY(i
=) sqlite3AuthCheck(pParse
, SQLITE_SELECT
, 0, 0, 0);
3575 testcase( i
==SQLITE_DENY
);
3576 pParse
->zAuthContext
= zSavedAuthContext
;
3578 /* If the sub-query is a compound SELECT statement, then (by restrictions
3579 ** 17 and 18 above) it must be a UNION ALL and the parent query must
3582 ** SELECT <expr-list> FROM (<sub-query>) <where-clause>
3584 ** followed by any ORDER BY, LIMIT and/or OFFSET clauses. This block
3585 ** creates N-1 copies of the parent query without any ORDER BY, LIMIT or
3586 ** OFFSET clauses and joins them to the left-hand-side of the original
3587 ** using UNION ALL operators. In this case N is the number of simple
3588 ** select statements in the compound sub-query.
3592 ** SELECT a+1 FROM (
3593 ** SELECT x FROM tab
3595 ** SELECT y FROM tab
3597 ** SELECT abs(z*2) FROM tab2
3598 ** ) WHERE a!=5 ORDER BY 1
3600 ** Transformed into:
3602 ** SELECT x+1 FROM tab WHERE x+1!=5
3604 ** SELECT y+1 FROM tab WHERE y+1!=5
3606 ** SELECT abs(z*2)+1 FROM tab2 WHERE abs(z*2)+1!=5
3609 ** We call this the "compound-subquery flattening".
3611 for(pSub
=pSub
->pPrior
; pSub
; pSub
=pSub
->pPrior
){
3613 ExprList
*pOrderBy
= p
->pOrderBy
;
3614 Expr
*pLimit
= p
->pLimit
;
3615 Expr
*pOffset
= p
->pOffset
;
3616 Select
*pPrior
= p
->pPrior
;
3622 pNew
= sqlite3SelectDup(db
, p
, 0);
3623 sqlite3SelectSetName(pNew
, pSub
->zSelName
);
3624 p
->pOffset
= pOffset
;
3626 p
->pOrderBy
= pOrderBy
;
3632 pNew
->pPrior
= pPrior
;
3633 if( pPrior
) pPrior
->pNext
= pNew
;
3636 SELECTTRACE(2,pParse
,p
,
3637 ("compound-subquery flattener creates %s.%p as peer\n",
3638 pNew
->zSelName
, pNew
));
3640 if( db
->mallocFailed
) return 1;
3643 /* Begin flattening the iFrom-th entry of the FROM clause
3644 ** in the outer query.
3646 pSub
= pSub1
= pSubitem
->pSelect
;
3648 /* Delete the transient table structure associated with the
3651 sqlite3DbFree(db
, pSubitem
->zDatabase
);
3652 sqlite3DbFree(db
, pSubitem
->zName
);
3653 sqlite3DbFree(db
, pSubitem
->zAlias
);
3654 pSubitem
->zDatabase
= 0;
3655 pSubitem
->zName
= 0;
3656 pSubitem
->zAlias
= 0;
3657 pSubitem
->pSelect
= 0;
3659 /* Defer deleting the Table object associated with the
3660 ** subquery until code generation is
3661 ** complete, since there may still exist Expr.pTab entries that
3662 ** refer to the subquery even after flattening. Ticket #3346.
3664 ** pSubitem->pTab is always non-NULL by test restrictions and tests above.
3666 if( ALWAYS(pSubitem
->pTab
!=0) ){
3667 Table
*pTabToDel
= pSubitem
->pTab
;
3668 if( pTabToDel
->nTabRef
==1 ){
3669 Parse
*pToplevel
= sqlite3ParseToplevel(pParse
);
3670 pTabToDel
->pNextZombie
= pToplevel
->pZombieTab
;
3671 pToplevel
->pZombieTab
= pTabToDel
;
3673 pTabToDel
->nTabRef
--;
3678 /* The following loop runs once for each term in a compound-subquery
3679 ** flattening (as described above). If we are doing a different kind
3680 ** of flattening - a flattening other than a compound-subquery flattening -
3681 ** then this loop only runs once.
3683 ** This loop moves all of the FROM elements of the subquery into the
3684 ** the FROM clause of the outer query. Before doing this, remember
3685 ** the cursor number for the original outer query FROM element in
3686 ** iParent. The iParent cursor will never be used. Subsequent code
3687 ** will scan expressions looking for iParent references and replace
3688 ** those references with expressions that resolve to the subquery FROM
3689 ** elements we are now copying in.
3691 for(pParent
=p
; pParent
; pParent
=pParent
->pPrior
, pSub
=pSub
->pPrior
){
3694 pSubSrc
= pSub
->pSrc
; /* FROM clause of subquery */
3695 nSubSrc
= pSubSrc
->nSrc
; /* Number of terms in subquery FROM clause */
3696 pSrc
= pParent
->pSrc
; /* FROM clause of the outer query */
3699 assert( pParent
==p
); /* First time through the loop */
3700 jointype
= pSubitem
->fg
.jointype
;
3702 assert( pParent
!=p
); /* 2nd and subsequent times through the loop */
3703 pSrc
= pParent
->pSrc
= sqlite3SrcListAppend(db
, 0, 0, 0);
3705 assert( db
->mallocFailed
);
3710 /* The subquery uses a single slot of the FROM clause of the outer
3711 ** query. If the subquery has more than one element in its FROM clause,
3712 ** then expand the outer query to make space for it to hold all elements
3717 ** SELECT * FROM tabA, (SELECT * FROM sub1, sub2), tabB;
3719 ** The outer query has 3 slots in its FROM clause. One slot of the
3720 ** outer query (the middle slot) is used by the subquery. The next
3721 ** block of code will expand the outer query FROM clause to 4 slots.
3722 ** The middle slot is expanded to two slots in order to make space
3723 ** for the two elements in the FROM clause of the subquery.
3726 pParent
->pSrc
= pSrc
= sqlite3SrcListEnlarge(db
, pSrc
, nSubSrc
-1,iFrom
+1);
3727 if( db
->mallocFailed
){
3732 /* Transfer the FROM clause terms from the subquery into the
3735 for(i
=0; i
<nSubSrc
; i
++){
3736 sqlite3IdListDelete(db
, pSrc
->a
[i
+iFrom
].pUsing
);
3737 assert( pSrc
->a
[i
+iFrom
].fg
.isTabFunc
==0 );
3738 pSrc
->a
[i
+iFrom
] = pSubSrc
->a
[i
];
3739 iNewParent
= pSubSrc
->a
[i
].iCursor
;
3740 memset(&pSubSrc
->a
[i
], 0, sizeof(pSubSrc
->a
[i
]));
3742 pSrc
->a
[iFrom
].fg
.jointype
= jointype
;
3744 /* Now begin substituting subquery result set expressions for
3745 ** references to the iParent in the outer query.
3749 ** SELECT a+5, b*10 FROM (SELECT x*3 AS a, y+10 AS b FROM t1) WHERE a>b;
3750 ** \ \_____________ subquery __________/ /
3751 ** \_____________________ outer query ______________________________/
3753 ** We look at every expression in the outer query and every place we see
3754 ** "a" we substitute "x*3" and every place we see "b" we substitute "y+10".
3756 if( pSub
->pOrderBy
){
3757 /* At this point, any non-zero iOrderByCol values indicate that the
3758 ** ORDER BY column expression is identical to the iOrderByCol'th
3759 ** expression returned by SELECT statement pSub. Since these values
3760 ** do not necessarily correspond to columns in SELECT statement pParent,
3761 ** zero them before transfering the ORDER BY clause.
3763 ** Not doing this may cause an error if a subsequent call to this
3764 ** function attempts to flatten a compound sub-query into pParent
3765 ** (the only way this can happen is if the compound sub-query is
3766 ** currently part of pSub->pSrc). See ticket [d11a6e908f]. */
3767 ExprList
*pOrderBy
= pSub
->pOrderBy
;
3768 for(i
=0; i
<pOrderBy
->nExpr
; i
++){
3769 pOrderBy
->a
[i
].u
.x
.iOrderByCol
= 0;
3771 assert( pParent
->pOrderBy
==0 );
3772 assert( pSub
->pPrior
==0 );
3773 pParent
->pOrderBy
= pOrderBy
;
3776 pWhere
= sqlite3ExprDup(db
, pSub
->pWhere
, 0);
3778 setJoinExpr(pWhere
, iNewParent
);
3780 pParent
->pWhere
= sqlite3ExprAnd(db
, pWhere
, pParent
->pWhere
);
3781 if( db
->mallocFailed
==0 ){
3785 x
.iNewTable
= iNewParent
;
3786 x
.isLeftJoin
= isLeftJoin
;
3787 x
.pEList
= pSub
->pEList
;
3788 substSelect(&x
, pParent
, 0);
3791 /* The flattened query is distinct if either the inner or the
3792 ** outer query is distinct.
3794 pParent
->selFlags
|= pSub
->selFlags
& SF_Distinct
;
3797 ** SELECT ... FROM (SELECT ... LIMIT a OFFSET b) LIMIT x OFFSET y;
3799 ** One is tempted to try to add a and b to combine the limits. But this
3800 ** does not work if either limit is negative.
3803 pParent
->pLimit
= pSub
->pLimit
;
3808 /* Finially, delete what is left of the subquery and return
3811 sqlite3SelectDelete(db
, pSub1
);
3813 #if SELECTTRACE_ENABLED
3814 if( sqlite3SelectTrace
& 0x100 ){
3815 SELECTTRACE(0x100,pParse
,p
,("After flattening:\n"));
3816 sqlite3TreeViewSelect(0, p
, 0);
3822 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */
3826 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
3828 ** Make copies of relevant WHERE clause terms of the outer query into
3829 ** the WHERE clause of subquery. Example:
3831 ** SELECT * FROM (SELECT a AS x, c-d AS y FROM t1) WHERE x=5 AND y=10;
3833 ** Transformed into:
3835 ** SELECT * FROM (SELECT a AS x, c-d AS y FROM t1 WHERE a=5 AND c-d=10)
3836 ** WHERE x=5 AND y=10;
3838 ** The hope is that the terms added to the inner query will make it more
3841 ** Do not attempt this optimization if:
3843 ** (1) (** This restriction was removed on 2017-09-29. We used to
3844 ** disallow this optimization for aggregate subqueries, but now
3845 ** it is allowed by putting the extra terms on the HAVING clause.
3846 ** The added HAVING clause is pointless if the subquery lacks
3847 ** a GROUP BY clause. But such a HAVING clause is also harmless
3848 ** so there does not appear to be any reason to add extra logic
3849 ** to suppress it. **)
3851 ** (2) The inner query is the recursive part of a common table expression.
3853 ** (3) The inner query has a LIMIT clause (since the changes to the WHERE
3854 ** close would change the meaning of the LIMIT).
3856 ** (4) The inner query is the right operand of a LEFT JOIN. (The caller
3857 ** enforces this restriction since this routine does not have enough
3858 ** information to know.)
3860 ** (5) The WHERE clause expression originates in the ON or USING clause
3863 ** Return 0 if no changes are made and non-zero if one or more WHERE clause
3864 ** terms are duplicated into the subquery.
3866 static int pushDownWhereTerms(
3867 Parse
*pParse
, /* Parse context (for malloc() and error reporting) */
3868 Select
*pSubq
, /* The subquery whose WHERE clause is to be augmented */
3869 Expr
*pWhere
, /* The WHERE clause of the outer query */
3870 int iCursor
/* Cursor number of the subquery */
3874 if( pWhere
==0 ) return 0;
3875 if( pSubq
->selFlags
& SF_Recursive
) return 0; /* restriction (2) */
3878 /* Only the first term of a compound can have a WITH clause. But make
3879 ** sure no other terms are marked SF_Recursive in case something changes
3884 for(pX
=pSubq
; pX
; pX
=pX
->pPrior
){
3885 assert( (pX
->selFlags
& (SF_Recursive
))==0 );
3890 if( pSubq
->pLimit
!=0 ){
3891 return 0; /* restriction (3) */
3893 while( pWhere
->op
==TK_AND
){
3894 nChng
+= pushDownWhereTerms(pParse
, pSubq
, pWhere
->pRight
, iCursor
);
3895 pWhere
= pWhere
->pLeft
;
3897 if( ExprHasProperty(pWhere
,EP_FromJoin
) ) return 0; /* restriction (5) */
3898 if( sqlite3ExprIsTableConstant(pWhere
, iCursor
) ){
3902 pNew
= sqlite3ExprDup(pParse
->db
, pWhere
, 0);
3905 x
.iNewTable
= iCursor
;
3907 x
.pEList
= pSubq
->pEList
;
3908 pNew
= substExpr(&x
, pNew
);
3909 if( pSubq
->selFlags
& SF_Aggregate
){
3910 pSubq
->pHaving
= sqlite3ExprAnd(pParse
->db
, pSubq
->pHaving
, pNew
);
3912 pSubq
->pWhere
= sqlite3ExprAnd(pParse
->db
, pSubq
->pWhere
, pNew
);
3914 pSubq
= pSubq
->pPrior
;
3919 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */
3922 ** Based on the contents of the AggInfo structure indicated by the first
3923 ** argument, this function checks if the following are true:
3925 ** * the query contains just a single aggregate function,
3926 ** * the aggregate function is either min() or max(), and
3927 ** * the argument to the aggregate function is a column value.
3929 ** If all of the above are true, then WHERE_ORDERBY_MIN or WHERE_ORDERBY_MAX
3930 ** is returned as appropriate. Also, *ppMinMax is set to point to the
3931 ** list of arguments passed to the aggregate before returning.
3933 ** Or, if the conditions above are not met, *ppMinMax is set to 0 and
3934 ** WHERE_ORDERBY_NORMAL is returned.
3936 static u8
minMaxQuery(AggInfo
*pAggInfo
, ExprList
**ppMinMax
){
3937 int eRet
= WHERE_ORDERBY_NORMAL
; /* Return value */
3940 if( pAggInfo
->nFunc
==1 ){
3941 Expr
*pExpr
= pAggInfo
->aFunc
[0].pExpr
; /* Aggregate function */
3942 ExprList
*pEList
= pExpr
->x
.pList
; /* Arguments to agg function */
3944 assert( pExpr
->op
==TK_AGG_FUNCTION
);
3945 if( pEList
&& pEList
->nExpr
==1 && pEList
->a
[0].pExpr
->op
==TK_AGG_COLUMN
){
3946 const char *zFunc
= pExpr
->u
.zToken
;
3947 if( sqlite3StrICmp(zFunc
, "min")==0 ){
3948 eRet
= WHERE_ORDERBY_MIN
;
3950 }else if( sqlite3StrICmp(zFunc
, "max")==0 ){
3951 eRet
= WHERE_ORDERBY_MAX
;
3957 assert( *ppMinMax
==0 || (*ppMinMax
)->nExpr
==1 );
3962 ** The select statement passed as the first argument is an aggregate query.
3963 ** The second argument is the associated aggregate-info object. This
3964 ** function tests if the SELECT is of the form:
3966 ** SELECT count(*) FROM <tbl>
3968 ** where table is a database table, not a sub-select or view. If the query
3969 ** does match this pattern, then a pointer to the Table object representing
3970 ** <tbl> is returned. Otherwise, 0 is returned.
3972 static Table
*isSimpleCount(Select
*p
, AggInfo
*pAggInfo
){
3976 assert( !p
->pGroupBy
);
3978 if( p
->pWhere
|| p
->pEList
->nExpr
!=1
3979 || p
->pSrc
->nSrc
!=1 || p
->pSrc
->a
[0].pSelect
3983 pTab
= p
->pSrc
->a
[0].pTab
;
3984 pExpr
= p
->pEList
->a
[0].pExpr
;
3985 assert( pTab
&& !pTab
->pSelect
&& pExpr
);
3987 if( IsVirtual(pTab
) ) return 0;
3988 if( pExpr
->op
!=TK_AGG_FUNCTION
) return 0;
3989 if( NEVER(pAggInfo
->nFunc
==0) ) return 0;
3990 if( (pAggInfo
->aFunc
[0].pFunc
->funcFlags
&SQLITE_FUNC_COUNT
)==0 ) return 0;
3991 if( pExpr
->flags
&EP_Distinct
) return 0;
3997 ** If the source-list item passed as an argument was augmented with an
3998 ** INDEXED BY clause, then try to locate the specified index. If there
3999 ** was such a clause and the named index cannot be found, return
4000 ** SQLITE_ERROR and leave an error in pParse. Otherwise, populate
4001 ** pFrom->pIndex and return SQLITE_OK.
4003 int sqlite3IndexedByLookup(Parse
*pParse
, struct SrcList_item
*pFrom
){
4004 if( pFrom
->pTab
&& pFrom
->fg
.isIndexedBy
){
4005 Table
*pTab
= pFrom
->pTab
;
4006 char *zIndexedBy
= pFrom
->u1
.zIndexedBy
;
4008 for(pIdx
=pTab
->pIndex
;
4009 pIdx
&& sqlite3StrICmp(pIdx
->zName
, zIndexedBy
);
4013 sqlite3ErrorMsg(pParse
, "no such index: %s", zIndexedBy
, 0);
4014 pParse
->checkSchema
= 1;
4015 return SQLITE_ERROR
;
4017 pFrom
->pIBIndex
= pIdx
;
4022 ** Detect compound SELECT statements that use an ORDER BY clause with
4023 ** an alternative collating sequence.
4025 ** SELECT ... FROM t1 EXCEPT SELECT ... FROM t2 ORDER BY .. COLLATE ...
4027 ** These are rewritten as a subquery:
4029 ** SELECT * FROM (SELECT ... FROM t1 EXCEPT SELECT ... FROM t2)
4030 ** ORDER BY ... COLLATE ...
4032 ** This transformation is necessary because the multiSelectOrderBy() routine
4033 ** above that generates the code for a compound SELECT with an ORDER BY clause
4034 ** uses a merge algorithm that requires the same collating sequence on the
4035 ** result columns as on the ORDER BY clause. See ticket
4036 ** http://www.sqlite.org/src/info/6709574d2a
4038 ** This transformation is only needed for EXCEPT, INTERSECT, and UNION.
4039 ** The UNION ALL operator works fine with multiSelectOrderBy() even when
4040 ** there are COLLATE terms in the ORDER BY.
4042 static int convertCompoundSelectToSubquery(Walker
*pWalker
, Select
*p
){
4047 struct ExprList_item
*a
;
4052 if( p
->pPrior
==0 ) return WRC_Continue
;
4053 if( p
->pOrderBy
==0 ) return WRC_Continue
;
4054 for(pX
=p
; pX
&& (pX
->op
==TK_ALL
|| pX
->op
==TK_SELECT
); pX
=pX
->pPrior
){}
4055 if( pX
==0 ) return WRC_Continue
;
4057 for(i
=p
->pOrderBy
->nExpr
-1; i
>=0; i
--){
4058 if( a
[i
].pExpr
->flags
& EP_Collate
) break;
4060 if( i
<0 ) return WRC_Continue
;
4062 /* If we reach this point, that means the transformation is required. */
4064 pParse
= pWalker
->pParse
;
4066 pNew
= sqlite3DbMallocZero(db
, sizeof(*pNew
) );
4067 if( pNew
==0 ) return WRC_Abort
;
4068 memset(&dummy
, 0, sizeof(dummy
));
4069 pNewSrc
= sqlite3SrcListAppendFromTerm(pParse
,0,0,0,&dummy
,pNew
,0,0);
4070 if( pNewSrc
==0 ) return WRC_Abort
;
4073 p
->pEList
= sqlite3ExprListAppend(pParse
, 0, sqlite3Expr(db
, TK_ASTERISK
, 0));
4082 p
->selFlags
&= ~SF_Compound
;
4083 assert( (p
->selFlags
& SF_Converted
)==0 );
4084 p
->selFlags
|= SF_Converted
;
4085 assert( pNew
->pPrior
!=0 );
4086 pNew
->pPrior
->pNext
= pNew
;
4089 return WRC_Continue
;
4093 ** Check to see if the FROM clause term pFrom has table-valued function
4094 ** arguments. If it does, leave an error message in pParse and return
4095 ** non-zero, since pFrom is not allowed to be a table-valued function.
4097 static int cannotBeFunction(Parse
*pParse
, struct SrcList_item
*pFrom
){
4098 if( pFrom
->fg
.isTabFunc
){
4099 sqlite3ErrorMsg(pParse
, "'%s' is not a function", pFrom
->zName
);
4105 #ifndef SQLITE_OMIT_CTE
4107 ** Argument pWith (which may be NULL) points to a linked list of nested
4108 ** WITH contexts, from inner to outermost. If the table identified by
4109 ** FROM clause element pItem is really a common-table-expression (CTE)
4110 ** then return a pointer to the CTE definition for that table. Otherwise
4113 ** If a non-NULL value is returned, set *ppContext to point to the With
4114 ** object that the returned CTE belongs to.
4116 static struct Cte
*searchWith(
4117 With
*pWith
, /* Current innermost WITH clause */
4118 struct SrcList_item
*pItem
, /* FROM clause element to resolve */
4119 With
**ppContext
/* OUT: WITH clause return value belongs to */
4122 if( pItem
->zDatabase
==0 && (zName
= pItem
->zName
)!=0 ){
4124 for(p
=pWith
; p
; p
=p
->pOuter
){
4126 for(i
=0; i
<p
->nCte
; i
++){
4127 if( sqlite3StrICmp(zName
, p
->a
[i
].zName
)==0 ){
4137 /* The code generator maintains a stack of active WITH clauses
4138 ** with the inner-most WITH clause being at the top of the stack.
4140 ** This routine pushes the WITH clause passed as the second argument
4141 ** onto the top of the stack. If argument bFree is true, then this
4142 ** WITH clause will never be popped from the stack. In this case it
4143 ** should be freed along with the Parse object. In other cases, when
4144 ** bFree==0, the With object will be freed along with the SELECT
4145 ** statement with which it is associated.
4147 void sqlite3WithPush(Parse
*pParse
, With
*pWith
, u8 bFree
){
4148 assert( bFree
==0 || (pParse
->pWith
==0 && pParse
->pWithToFree
==0) );
4150 assert( pParse
->pWith
!=pWith
);
4151 pWith
->pOuter
= pParse
->pWith
;
4152 pParse
->pWith
= pWith
;
4153 if( bFree
) pParse
->pWithToFree
= pWith
;
4158 ** This function checks if argument pFrom refers to a CTE declared by
4159 ** a WITH clause on the stack currently maintained by the parser. And,
4160 ** if currently processing a CTE expression, if it is a recursive
4161 ** reference to the current CTE.
4163 ** If pFrom falls into either of the two categories above, pFrom->pTab
4164 ** and other fields are populated accordingly. The caller should check
4165 ** (pFrom->pTab!=0) to determine whether or not a successful match
4168 ** Whether or not a match is found, SQLITE_OK is returned if no error
4169 ** occurs. If an error does occur, an error message is stored in the
4170 ** parser and some error code other than SQLITE_OK returned.
4172 static int withExpand(
4174 struct SrcList_item
*pFrom
4176 Parse
*pParse
= pWalker
->pParse
;
4177 sqlite3
*db
= pParse
->db
;
4178 struct Cte
*pCte
; /* Matched CTE (or NULL if no match) */
4179 With
*pWith
; /* WITH clause that pCte belongs to */
4181 assert( pFrom
->pTab
==0 );
4183 pCte
= searchWith(pParse
->pWith
, pFrom
, &pWith
);
4188 Select
*pLeft
; /* Left-most SELECT statement */
4189 int bMayRecursive
; /* True if compound joined by UNION [ALL] */
4190 With
*pSavedWith
; /* Initial value of pParse->pWith */
4192 /* If pCte->zCteErr is non-NULL at this point, then this is an illegal
4193 ** recursive reference to CTE pCte. Leave an error in pParse and return
4194 ** early. If pCte->zCteErr is NULL, then this is not a recursive reference.
4195 ** In this case, proceed. */
4196 if( pCte
->zCteErr
){
4197 sqlite3ErrorMsg(pParse
, pCte
->zCteErr
, pCte
->zName
);
4198 return SQLITE_ERROR
;
4200 if( cannotBeFunction(pParse
, pFrom
) ) return SQLITE_ERROR
;
4202 assert( pFrom
->pTab
==0 );
4203 pFrom
->pTab
= pTab
= sqlite3DbMallocZero(db
, sizeof(Table
));
4204 if( pTab
==0 ) return WRC_Abort
;
4206 pTab
->zName
= sqlite3DbStrDup(db
, pCte
->zName
);
4208 pTab
->nRowLogEst
= 200; assert( 200==sqlite3LogEst(1048576) );
4209 pTab
->tabFlags
|= TF_Ephemeral
| TF_NoVisibleRowid
;
4210 pFrom
->pSelect
= sqlite3SelectDup(db
, pCte
->pSelect
, 0);
4211 if( db
->mallocFailed
) return SQLITE_NOMEM_BKPT
;
4212 assert( pFrom
->pSelect
);
4214 /* Check if this is a recursive CTE. */
4215 pSel
= pFrom
->pSelect
;
4216 bMayRecursive
= ( pSel
->op
==TK_ALL
|| pSel
->op
==TK_UNION
);
4217 if( bMayRecursive
){
4219 SrcList
*pSrc
= pFrom
->pSelect
->pSrc
;
4220 for(i
=0; i
<pSrc
->nSrc
; i
++){
4221 struct SrcList_item
*pItem
= &pSrc
->a
[i
];
4222 if( pItem
->zDatabase
==0
4224 && 0==sqlite3StrICmp(pItem
->zName
, pCte
->zName
)
4227 pItem
->fg
.isRecursive
= 1;
4229 pSel
->selFlags
|= SF_Recursive
;
4234 /* Only one recursive reference is permitted. */
4235 if( pTab
->nTabRef
>2 ){
4237 pParse
, "multiple references to recursive table: %s", pCte
->zName
4239 return SQLITE_ERROR
;
4241 assert( pTab
->nTabRef
==1 ||
4242 ((pSel
->selFlags
&SF_Recursive
) && pTab
->nTabRef
==2 ));
4244 pCte
->zCteErr
= "circular reference: %s";
4245 pSavedWith
= pParse
->pWith
;
4246 pParse
->pWith
= pWith
;
4247 if( bMayRecursive
){
4248 Select
*pPrior
= pSel
->pPrior
;
4249 assert( pPrior
->pWith
==0 );
4250 pPrior
->pWith
= pSel
->pWith
;
4251 sqlite3WalkSelect(pWalker
, pPrior
);
4254 sqlite3WalkSelect(pWalker
, pSel
);
4256 pParse
->pWith
= pWith
;
4258 for(pLeft
=pSel
; pLeft
->pPrior
; pLeft
=pLeft
->pPrior
);
4259 pEList
= pLeft
->pEList
;
4261 if( pEList
&& pEList
->nExpr
!=pCte
->pCols
->nExpr
){
4262 sqlite3ErrorMsg(pParse
, "table %s has %d values for %d columns",
4263 pCte
->zName
, pEList
->nExpr
, pCte
->pCols
->nExpr
4265 pParse
->pWith
= pSavedWith
;
4266 return SQLITE_ERROR
;
4268 pEList
= pCte
->pCols
;
4271 sqlite3ColumnsFromExprList(pParse
, pEList
, &pTab
->nCol
, &pTab
->aCol
);
4272 if( bMayRecursive
){
4273 if( pSel
->selFlags
& SF_Recursive
){
4274 pCte
->zCteErr
= "multiple recursive references: %s";
4276 pCte
->zCteErr
= "recursive reference in a subquery: %s";
4278 sqlite3WalkSelect(pWalker
, pSel
);
4281 pParse
->pWith
= pSavedWith
;
4288 #ifndef SQLITE_OMIT_CTE
4290 ** If the SELECT passed as the second argument has an associated WITH
4291 ** clause, pop it from the stack stored as part of the Parse object.
4293 ** This function is used as the xSelectCallback2() callback by
4294 ** sqlite3SelectExpand() when walking a SELECT tree to resolve table
4295 ** names and other FROM clause elements.
4297 static void selectPopWith(Walker
*pWalker
, Select
*p
){
4298 Parse
*pParse
= pWalker
->pParse
;
4299 if( OK_IF_ALWAYS_TRUE(pParse
->pWith
) && p
->pPrior
==0 ){
4300 With
*pWith
= findRightmost(p
)->pWith
;
4302 assert( pParse
->pWith
==pWith
);
4303 pParse
->pWith
= pWith
->pOuter
;
4308 #define selectPopWith 0
4312 ** This routine is a Walker callback for "expanding" a SELECT statement.
4313 ** "Expanding" means to do the following:
4315 ** (1) Make sure VDBE cursor numbers have been assigned to every
4316 ** element of the FROM clause.
4318 ** (2) Fill in the pTabList->a[].pTab fields in the SrcList that
4319 ** defines FROM clause. When views appear in the FROM clause,
4320 ** fill pTabList->a[].pSelect with a copy of the SELECT statement
4321 ** that implements the view. A copy is made of the view's SELECT
4322 ** statement so that we can freely modify or delete that statement
4323 ** without worrying about messing up the persistent representation
4326 ** (3) Add terms to the WHERE clause to accommodate the NATURAL keyword
4327 ** on joins and the ON and USING clause of joins.
4329 ** (4) Scan the list of columns in the result set (pEList) looking
4330 ** for instances of the "*" operator or the TABLE.* operator.
4331 ** If found, expand each "*" to be every column in every table
4332 ** and TABLE.* to be every column in TABLE.
4335 static int selectExpander(Walker
*pWalker
, Select
*p
){
4336 Parse
*pParse
= pWalker
->pParse
;
4340 struct SrcList_item
*pFrom
;
4341 sqlite3
*db
= pParse
->db
;
4342 Expr
*pE
, *pRight
, *pExpr
;
4343 u16 selFlags
= p
->selFlags
;
4345 p
->selFlags
|= SF_Expanded
;
4346 if( db
->mallocFailed
){
4349 if( NEVER(p
->pSrc
==0) || (selFlags
& SF_Expanded
)!=0 ){
4354 if( OK_IF_ALWAYS_TRUE(p
->pWith
) ){
4355 sqlite3WithPush(pParse
, p
->pWith
, 0);
4358 /* Make sure cursor numbers have been assigned to all entries in
4359 ** the FROM clause of the SELECT statement.
4361 sqlite3SrcListAssignCursors(pParse
, pTabList
);
4363 /* Look up every table named in the FROM clause of the select. If
4364 ** an entry of the FROM clause is a subquery instead of a table or view,
4365 ** then create a transient table structure to describe the subquery.
4367 for(i
=0, pFrom
=pTabList
->a
; i
<pTabList
->nSrc
; i
++, pFrom
++){
4369 assert( pFrom
->fg
.isRecursive
==0 || pFrom
->pTab
!=0 );
4370 if( pFrom
->fg
.isRecursive
) continue;
4371 assert( pFrom
->pTab
==0 );
4372 #ifndef SQLITE_OMIT_CTE
4373 if( withExpand(pWalker
, pFrom
) ) return WRC_Abort
;
4374 if( pFrom
->pTab
) {} else
4376 if( pFrom
->zName
==0 ){
4377 #ifndef SQLITE_OMIT_SUBQUERY
4378 Select
*pSel
= pFrom
->pSelect
;
4379 /* A sub-query in the FROM clause of a SELECT */
4381 assert( pFrom
->pTab
==0 );
4382 if( sqlite3WalkSelect(pWalker
, pSel
) ) return WRC_Abort
;
4383 pFrom
->pTab
= pTab
= sqlite3DbMallocZero(db
, sizeof(Table
));
4384 if( pTab
==0 ) return WRC_Abort
;
4386 if( pFrom
->zAlias
){
4387 pTab
->zName
= sqlite3DbStrDup(db
, pFrom
->zAlias
);
4389 pTab
->zName
= sqlite3MPrintf(db
, "subquery_%p", (void*)pTab
);
4391 while( pSel
->pPrior
){ pSel
= pSel
->pPrior
; }
4392 sqlite3ColumnsFromExprList(pParse
, pSel
->pEList
,&pTab
->nCol
,&pTab
->aCol
);
4394 pTab
->nRowLogEst
= 200; assert( 200==sqlite3LogEst(1048576) );
4395 pTab
->tabFlags
|= TF_Ephemeral
;
4398 /* An ordinary table or view name in the FROM clause */
4399 assert( pFrom
->pTab
==0 );
4400 pFrom
->pTab
= pTab
= sqlite3LocateTableItem(pParse
, 0, pFrom
);
4401 if( pTab
==0 ) return WRC_Abort
;
4402 if( pTab
->nTabRef
>=0xffff ){
4403 sqlite3ErrorMsg(pParse
, "too many references to \"%s\": max 65535",
4409 if( !IsVirtual(pTab
) && cannotBeFunction(pParse
, pFrom
) ){
4412 #if !defined(SQLITE_OMIT_VIEW) || !defined (SQLITE_OMIT_VIRTUALTABLE)
4413 if( IsVirtual(pTab
) || pTab
->pSelect
){
4415 if( sqlite3ViewGetColumnNames(pParse
, pTab
) ) return WRC_Abort
;
4416 assert( pFrom
->pSelect
==0 );
4417 pFrom
->pSelect
= sqlite3SelectDup(db
, pTab
->pSelect
, 0);
4418 sqlite3SelectSetName(pFrom
->pSelect
, pTab
->zName
);
4421 sqlite3WalkSelect(pWalker
, pFrom
->pSelect
);
4427 /* Locate the index named by the INDEXED BY clause, if any. */
4428 if( sqlite3IndexedByLookup(pParse
, pFrom
) ){
4433 /* Process NATURAL keywords, and ON and USING clauses of joins.
4435 if( db
->mallocFailed
|| sqliteProcessJoin(pParse
, p
) ){
4439 /* For every "*" that occurs in the column list, insert the names of
4440 ** all columns in all tables. And for every TABLE.* insert the names
4441 ** of all columns in TABLE. The parser inserted a special expression
4442 ** with the TK_ASTERISK operator for each "*" that it found in the column
4443 ** list. The following code just has to locate the TK_ASTERISK
4444 ** expressions and expand each one to the list of all columns in
4447 ** The first loop just checks to see if there are any "*" operators
4448 ** that need expanding.
4450 for(k
=0; k
<pEList
->nExpr
; k
++){
4451 pE
= pEList
->a
[k
].pExpr
;
4452 if( pE
->op
==TK_ASTERISK
) break;
4453 assert( pE
->op
!=TK_DOT
|| pE
->pRight
!=0 );
4454 assert( pE
->op
!=TK_DOT
|| (pE
->pLeft
!=0 && pE
->pLeft
->op
==TK_ID
) );
4455 if( pE
->op
==TK_DOT
&& pE
->pRight
->op
==TK_ASTERISK
) break;
4457 if( k
<pEList
->nExpr
){
4459 ** If we get here it means the result set contains one or more "*"
4460 ** operators that need to be expanded. Loop through each expression
4461 ** in the result set and expand them one by one.
4463 struct ExprList_item
*a
= pEList
->a
;
4465 int flags
= pParse
->db
->flags
;
4466 int longNames
= (flags
& SQLITE_FullColNames
)!=0
4467 && (flags
& SQLITE_ShortColNames
)==0;
4469 for(k
=0; k
<pEList
->nExpr
; k
++){
4471 pRight
= pE
->pRight
;
4472 assert( pE
->op
!=TK_DOT
|| pRight
!=0 );
4473 if( pE
->op
!=TK_ASTERISK
4474 && (pE
->op
!=TK_DOT
|| pRight
->op
!=TK_ASTERISK
)
4476 /* This particular expression does not need to be expanded.
4478 pNew
= sqlite3ExprListAppend(pParse
, pNew
, a
[k
].pExpr
);
4480 pNew
->a
[pNew
->nExpr
-1].zName
= a
[k
].zName
;
4481 pNew
->a
[pNew
->nExpr
-1].zSpan
= a
[k
].zSpan
;
4487 /* This expression is a "*" or a "TABLE.*" and needs to be
4489 int tableSeen
= 0; /* Set to 1 when TABLE matches */
4490 char *zTName
= 0; /* text of name of TABLE */
4491 if( pE
->op
==TK_DOT
){
4492 assert( pE
->pLeft
!=0 );
4493 assert( !ExprHasProperty(pE
->pLeft
, EP_IntValue
) );
4494 zTName
= pE
->pLeft
->u
.zToken
;
4496 for(i
=0, pFrom
=pTabList
->a
; i
<pTabList
->nSrc
; i
++, pFrom
++){
4497 Table
*pTab
= pFrom
->pTab
;
4498 Select
*pSub
= pFrom
->pSelect
;
4499 char *zTabName
= pFrom
->zAlias
;
4500 const char *zSchemaName
= 0;
4503 zTabName
= pTab
->zName
;
4505 if( db
->mallocFailed
) break;
4506 if( pSub
==0 || (pSub
->selFlags
& SF_NestedFrom
)==0 ){
4508 if( zTName
&& sqlite3StrICmp(zTName
, zTabName
)!=0 ){
4511 iDb
= sqlite3SchemaToIndex(db
, pTab
->pSchema
);
4512 zSchemaName
= iDb
>=0 ? db
->aDb
[iDb
].zDbSName
: "*";
4514 for(j
=0; j
<pTab
->nCol
; j
++){
4515 char *zName
= pTab
->aCol
[j
].zName
;
4516 char *zColname
; /* The computed column name */
4517 char *zToFree
; /* Malloced string that needs to be freed */
4518 Token sColname
; /* Computed column name as a token */
4522 && sqlite3MatchSpanName(pSub
->pEList
->a
[j
].zSpan
, 0, zTName
, 0)==0
4527 /* If a column is marked as 'hidden', omit it from the expanded
4528 ** result-set list unless the SELECT has the SF_IncludeHidden
4531 if( (p
->selFlags
& SF_IncludeHidden
)==0
4532 && IsHiddenColumn(&pTab
->aCol
[j
])
4538 if( i
>0 && zTName
==0 ){
4539 if( (pFrom
->fg
.jointype
& JT_NATURAL
)!=0
4540 && tableAndColumnIndex(pTabList
, i
, zName
, 0, 0)
4542 /* In a NATURAL join, omit the join columns from the
4543 ** table to the right of the join */
4546 if( sqlite3IdListIndex(pFrom
->pUsing
, zName
)>=0 ){
4547 /* In a join with a USING clause, omit columns in the
4548 ** using clause from the table on the right. */
4552 pRight
= sqlite3Expr(db
, TK_ID
, zName
);
4555 if( longNames
|| pTabList
->nSrc
>1 ){
4557 pLeft
= sqlite3Expr(db
, TK_ID
, zTabName
);
4558 pExpr
= sqlite3PExpr(pParse
, TK_DOT
, pLeft
, pRight
);
4560 pLeft
= sqlite3Expr(db
, TK_ID
, zSchemaName
);
4561 pExpr
= sqlite3PExpr(pParse
, TK_DOT
, pLeft
, pExpr
);
4564 zColname
= sqlite3MPrintf(db
, "%s.%s", zTabName
, zName
);
4570 pNew
= sqlite3ExprListAppend(pParse
, pNew
, pExpr
);
4571 sqlite3TokenInit(&sColname
, zColname
);
4572 sqlite3ExprListSetName(pParse
, pNew
, &sColname
, 0);
4573 if( pNew
&& (p
->selFlags
& SF_NestedFrom
)!=0 ){
4574 struct ExprList_item
*pX
= &pNew
->a
[pNew
->nExpr
-1];
4576 pX
->zSpan
= sqlite3DbStrDup(db
, pSub
->pEList
->a
[j
].zSpan
);
4577 testcase( pX
->zSpan
==0 );
4579 pX
->zSpan
= sqlite3MPrintf(db
, "%s.%s.%s",
4580 zSchemaName
, zTabName
, zColname
);
4581 testcase( pX
->zSpan
==0 );
4585 sqlite3DbFree(db
, zToFree
);
4590 sqlite3ErrorMsg(pParse
, "no such table: %s", zTName
);
4592 sqlite3ErrorMsg(pParse
, "no tables specified");
4597 sqlite3ExprListDelete(db
, pEList
);
4600 if( p
->pEList
&& p
->pEList
->nExpr
>db
->aLimit
[SQLITE_LIMIT_COLUMN
] ){
4601 sqlite3ErrorMsg(pParse
, "too many columns in result set");
4604 return WRC_Continue
;
4608 ** No-op routine for the parse-tree walker.
4610 ** When this routine is the Walker.xExprCallback then expression trees
4611 ** are walked without any actions being taken at each node. Presumably,
4612 ** when this routine is used for Walker.xExprCallback then
4613 ** Walker.xSelectCallback is set to do something useful for every
4614 ** subquery in the parser tree.
4616 int sqlite3ExprWalkNoop(Walker
*NotUsed
, Expr
*NotUsed2
){
4617 UNUSED_PARAMETER2(NotUsed
, NotUsed2
);
4618 return WRC_Continue
;
4622 ** No-op routine for the parse-tree walker for SELECT statements.
4623 ** subquery in the parser tree.
4625 int sqlite3SelectWalkNoop(Walker
*NotUsed
, Select
*NotUsed2
){
4626 UNUSED_PARAMETER2(NotUsed
, NotUsed2
);
4627 return WRC_Continue
;
4632 ** Always assert. This xSelectCallback2 implementation proves that the
4633 ** xSelectCallback2 is never invoked.
4635 void sqlite3SelectWalkAssert2(Walker
*NotUsed
, Select
*NotUsed2
){
4636 UNUSED_PARAMETER2(NotUsed
, NotUsed2
);
4641 ** This routine "expands" a SELECT statement and all of its subqueries.
4642 ** For additional information on what it means to "expand" a SELECT
4643 ** statement, see the comment on the selectExpand worker callback above.
4645 ** Expanding a SELECT statement is the first step in processing a
4646 ** SELECT statement. The SELECT statement must be expanded before
4647 ** name resolution is performed.
4649 ** If anything goes wrong, an error message is written into pParse.
4650 ** The calling function can detect the problem by looking at pParse->nErr
4651 ** and/or pParse->db->mallocFailed.
4653 static void sqlite3SelectExpand(Parse
*pParse
, Select
*pSelect
){
4655 w
.xExprCallback
= sqlite3ExprWalkNoop
;
4657 if( OK_IF_ALWAYS_TRUE(pParse
->hasCompound
) ){
4658 w
.xSelectCallback
= convertCompoundSelectToSubquery
;
4659 w
.xSelectCallback2
= 0;
4660 sqlite3WalkSelect(&w
, pSelect
);
4662 w
.xSelectCallback
= selectExpander
;
4663 w
.xSelectCallback2
= selectPopWith
;
4664 sqlite3WalkSelect(&w
, pSelect
);
4668 #ifndef SQLITE_OMIT_SUBQUERY
4670 ** This is a Walker.xSelectCallback callback for the sqlite3SelectTypeInfo()
4673 ** For each FROM-clause subquery, add Column.zType and Column.zColl
4674 ** information to the Table structure that represents the result set
4675 ** of that subquery.
4677 ** The Table structure that represents the result set was constructed
4678 ** by selectExpander() but the type and collation information was omitted
4679 ** at that point because identifiers had not yet been resolved. This
4680 ** routine is called after identifier resolution.
4682 static void selectAddSubqueryTypeInfo(Walker
*pWalker
, Select
*p
){
4686 struct SrcList_item
*pFrom
;
4688 assert( p
->selFlags
& SF_Resolved
);
4689 assert( (p
->selFlags
& SF_HasTypeInfo
)==0 );
4690 p
->selFlags
|= SF_HasTypeInfo
;
4691 pParse
= pWalker
->pParse
;
4693 for(i
=0, pFrom
=pTabList
->a
; i
<pTabList
->nSrc
; i
++, pFrom
++){
4694 Table
*pTab
= pFrom
->pTab
;
4696 if( (pTab
->tabFlags
& TF_Ephemeral
)!=0 ){
4697 /* A sub-query in the FROM clause of a SELECT */
4698 Select
*pSel
= pFrom
->pSelect
;
4700 while( pSel
->pPrior
) pSel
= pSel
->pPrior
;
4701 sqlite3SelectAddColumnTypeAndCollation(pParse
, pTab
, pSel
);
4710 ** This routine adds datatype and collating sequence information to
4711 ** the Table structures of all FROM-clause subqueries in a
4712 ** SELECT statement.
4714 ** Use this routine after name resolution.
4716 static void sqlite3SelectAddTypeInfo(Parse
*pParse
, Select
*pSelect
){
4717 #ifndef SQLITE_OMIT_SUBQUERY
4719 w
.xSelectCallback
= sqlite3SelectWalkNoop
;
4720 w
.xSelectCallback2
= selectAddSubqueryTypeInfo
;
4721 w
.xExprCallback
= sqlite3ExprWalkNoop
;
4723 sqlite3WalkSelect(&w
, pSelect
);
4729 ** This routine sets up a SELECT statement for processing. The
4730 ** following is accomplished:
4732 ** * VDBE Cursor numbers are assigned to all FROM-clause terms.
4733 ** * Ephemeral Table objects are created for all FROM-clause subqueries.
4734 ** * ON and USING clauses are shifted into WHERE statements
4735 ** * Wildcards "*" and "TABLE.*" in result sets are expanded.
4736 ** * Identifiers in expression are matched to tables.
4738 ** This routine acts recursively on all subqueries within the SELECT.
4740 void sqlite3SelectPrep(
4741 Parse
*pParse
, /* The parser context */
4742 Select
*p
, /* The SELECT statement being coded. */
4743 NameContext
*pOuterNC
/* Name context for container */
4745 assert( p
!=0 || pParse
->db
->mallocFailed
);
4746 if( pParse
->db
->mallocFailed
) return;
4747 if( p
->selFlags
& SF_HasTypeInfo
) return;
4748 sqlite3SelectExpand(pParse
, p
);
4749 if( pParse
->nErr
|| pParse
->db
->mallocFailed
) return;
4750 sqlite3ResolveSelectNames(pParse
, p
, pOuterNC
);
4751 if( pParse
->nErr
|| pParse
->db
->mallocFailed
) return;
4752 sqlite3SelectAddTypeInfo(pParse
, p
);
4756 ** Reset the aggregate accumulator.
4758 ** The aggregate accumulator is a set of memory cells that hold
4759 ** intermediate results while calculating an aggregate. This
4760 ** routine generates code that stores NULLs in all of those memory
4763 static void resetAccumulator(Parse
*pParse
, AggInfo
*pAggInfo
){
4764 Vdbe
*v
= pParse
->pVdbe
;
4766 struct AggInfo_func
*pFunc
;
4767 int nReg
= pAggInfo
->nFunc
+ pAggInfo
->nColumn
;
4768 if( nReg
==0 ) return;
4770 /* Verify that all AggInfo registers are within the range specified by
4771 ** AggInfo.mnReg..AggInfo.mxReg */
4772 assert( nReg
==pAggInfo
->mxReg
-pAggInfo
->mnReg
+1 );
4773 for(i
=0; i
<pAggInfo
->nColumn
; i
++){
4774 assert( pAggInfo
->aCol
[i
].iMem
>=pAggInfo
->mnReg
4775 && pAggInfo
->aCol
[i
].iMem
<=pAggInfo
->mxReg
);
4777 for(i
=0; i
<pAggInfo
->nFunc
; i
++){
4778 assert( pAggInfo
->aFunc
[i
].iMem
>=pAggInfo
->mnReg
4779 && pAggInfo
->aFunc
[i
].iMem
<=pAggInfo
->mxReg
);
4782 sqlite3VdbeAddOp3(v
, OP_Null
, 0, pAggInfo
->mnReg
, pAggInfo
->mxReg
);
4783 for(pFunc
=pAggInfo
->aFunc
, i
=0; i
<pAggInfo
->nFunc
; i
++, pFunc
++){
4784 if( pFunc
->iDistinct
>=0 ){
4785 Expr
*pE
= pFunc
->pExpr
;
4786 assert( !ExprHasProperty(pE
, EP_xIsSelect
) );
4787 if( pE
->x
.pList
==0 || pE
->x
.pList
->nExpr
!=1 ){
4788 sqlite3ErrorMsg(pParse
, "DISTINCT aggregates must have exactly one "
4790 pFunc
->iDistinct
= -1;
4792 KeyInfo
*pKeyInfo
= keyInfoFromExprList(pParse
, pE
->x
.pList
, 0, 0);
4793 sqlite3VdbeAddOp4(v
, OP_OpenEphemeral
, pFunc
->iDistinct
, 0, 0,
4794 (char*)pKeyInfo
, P4_KEYINFO
);
4801 ** Invoke the OP_AggFinalize opcode for every aggregate function
4802 ** in the AggInfo structure.
4804 static void finalizeAggFunctions(Parse
*pParse
, AggInfo
*pAggInfo
){
4805 Vdbe
*v
= pParse
->pVdbe
;
4807 struct AggInfo_func
*pF
;
4808 for(i
=0, pF
=pAggInfo
->aFunc
; i
<pAggInfo
->nFunc
; i
++, pF
++){
4809 ExprList
*pList
= pF
->pExpr
->x
.pList
;
4810 assert( !ExprHasProperty(pF
->pExpr
, EP_xIsSelect
) );
4811 sqlite3VdbeAddOp2(v
, OP_AggFinal
, pF
->iMem
, pList
? pList
->nExpr
: 0);
4812 sqlite3VdbeAppendP4(v
, pF
->pFunc
, P4_FUNCDEF
);
4817 ** Update the accumulator memory cells for an aggregate based on
4818 ** the current cursor position.
4820 static void updateAccumulator(Parse
*pParse
, AggInfo
*pAggInfo
){
4821 Vdbe
*v
= pParse
->pVdbe
;
4824 int addrHitTest
= 0;
4825 struct AggInfo_func
*pF
;
4826 struct AggInfo_col
*pC
;
4828 pAggInfo
->directMode
= 1;
4829 for(i
=0, pF
=pAggInfo
->aFunc
; i
<pAggInfo
->nFunc
; i
++, pF
++){
4833 ExprList
*pList
= pF
->pExpr
->x
.pList
;
4834 assert( !ExprHasProperty(pF
->pExpr
, EP_xIsSelect
) );
4836 nArg
= pList
->nExpr
;
4837 regAgg
= sqlite3GetTempRange(pParse
, nArg
);
4838 sqlite3ExprCodeExprList(pParse
, pList
, regAgg
, 0, SQLITE_ECEL_DUP
);
4843 if( pF
->iDistinct
>=0 ){
4844 addrNext
= sqlite3VdbeMakeLabel(v
);
4845 testcase( nArg
==0 ); /* Error condition */
4846 testcase( nArg
>1 ); /* Also an error */
4847 codeDistinct(pParse
, pF
->iDistinct
, addrNext
, 1, regAgg
);
4849 if( pF
->pFunc
->funcFlags
& SQLITE_FUNC_NEEDCOLL
){
4851 struct ExprList_item
*pItem
;
4853 assert( pList
!=0 ); /* pList!=0 if pF->pFunc has NEEDCOLL */
4854 for(j
=0, pItem
=pList
->a
; !pColl
&& j
<nArg
; j
++, pItem
++){
4855 pColl
= sqlite3ExprCollSeq(pParse
, pItem
->pExpr
);
4858 pColl
= pParse
->db
->pDfltColl
;
4860 if( regHit
==0 && pAggInfo
->nAccumulator
) regHit
= ++pParse
->nMem
;
4861 sqlite3VdbeAddOp4(v
, OP_CollSeq
, regHit
, 0, 0, (char *)pColl
, P4_COLLSEQ
);
4863 sqlite3VdbeAddOp3(v
, OP_AggStep0
, 0, regAgg
, pF
->iMem
);
4864 sqlite3VdbeAppendP4(v
, pF
->pFunc
, P4_FUNCDEF
);
4865 sqlite3VdbeChangeP5(v
, (u8
)nArg
);
4866 sqlite3ExprCacheAffinityChange(pParse
, regAgg
, nArg
);
4867 sqlite3ReleaseTempRange(pParse
, regAgg
, nArg
);
4869 sqlite3VdbeResolveLabel(v
, addrNext
);
4870 sqlite3ExprCacheClear(pParse
);
4874 /* Before populating the accumulator registers, clear the column cache.
4875 ** Otherwise, if any of the required column values are already present
4876 ** in registers, sqlite3ExprCode() may use OP_SCopy to copy the value
4877 ** to pC->iMem. But by the time the value is used, the original register
4878 ** may have been used, invalidating the underlying buffer holding the
4879 ** text or blob value. See ticket [883034dcb5].
4881 ** Another solution would be to change the OP_SCopy used to copy cached
4882 ** values to an OP_Copy.
4885 addrHitTest
= sqlite3VdbeAddOp1(v
, OP_If
, regHit
); VdbeCoverage(v
);
4887 sqlite3ExprCacheClear(pParse
);
4888 for(i
=0, pC
=pAggInfo
->aCol
; i
<pAggInfo
->nAccumulator
; i
++, pC
++){
4889 sqlite3ExprCode(pParse
, pC
->pExpr
, pC
->iMem
);
4891 pAggInfo
->directMode
= 0;
4892 sqlite3ExprCacheClear(pParse
);
4894 sqlite3VdbeJumpHere(v
, addrHitTest
);
4899 ** Add a single OP_Explain instruction to the VDBE to explain a simple
4900 ** count(*) query ("SELECT count(*) FROM pTab").
4902 #ifndef SQLITE_OMIT_EXPLAIN
4903 static void explainSimpleCount(
4904 Parse
*pParse
, /* Parse context */
4905 Table
*pTab
, /* Table being queried */
4906 Index
*pIdx
/* Index used to optimize scan, or NULL */
4908 if( pParse
->explain
==2 ){
4909 int bCover
= (pIdx
!=0 && (HasRowid(pTab
) || !IsPrimaryKeyIndex(pIdx
)));
4910 char *zEqp
= sqlite3MPrintf(pParse
->db
, "SCAN TABLE %s%s%s",
4912 bCover
? " USING COVERING INDEX " : "",
4913 bCover
? pIdx
->zName
: ""
4916 pParse
->pVdbe
, OP_Explain
, pParse
->iSelectId
, 0, 0, zEqp
, P4_DYNAMIC
4921 # define explainSimpleCount(a,b,c)
4925 ** Context object for havingToWhereExprCb().
4927 struct HavingToWhereCtx
{
4933 ** sqlite3WalkExpr() callback used by havingToWhere().
4935 ** If the node passed to the callback is a TK_AND node, return
4936 ** WRC_Continue to tell sqlite3WalkExpr() to iterate through child nodes.
4938 ** Otherwise, return WRC_Prune. In this case, also check if the
4939 ** sub-expression matches the criteria for being moved to the WHERE
4940 ** clause. If so, add it to the WHERE clause and replace the sub-expression
4941 ** within the HAVING expression with a constant "1".
4943 static int havingToWhereExprCb(Walker
*pWalker
, Expr
*pExpr
){
4944 if( pExpr
->op
!=TK_AND
){
4945 struct HavingToWhereCtx
*p
= pWalker
->u
.pHavingCtx
;
4946 if( sqlite3ExprIsConstantOrGroupBy(pWalker
->pParse
, pExpr
, p
->pGroupBy
) ){
4947 sqlite3
*db
= pWalker
->pParse
->db
;
4948 Expr
*pNew
= sqlite3ExprAlloc(db
, TK_INTEGER
, &sqlite3IntTokens
[1], 0);
4950 Expr
*pWhere
= *(p
->ppWhere
);
4951 SWAP(Expr
, *pNew
, *pExpr
);
4952 pNew
= sqlite3ExprAnd(db
, pWhere
, pNew
);
4953 *(p
->ppWhere
) = pNew
;
4958 return WRC_Continue
;
4962 ** Transfer eligible terms from the HAVING clause of a query, which is
4963 ** processed after grouping, to the WHERE clause, which is processed before
4964 ** grouping. For example, the query:
4966 ** SELECT * FROM <tables> WHERE a=? GROUP BY b HAVING b=? AND c=?
4968 ** can be rewritten as:
4970 ** SELECT * FROM <tables> WHERE a=? AND b=? GROUP BY b HAVING c=?
4972 ** A term of the HAVING expression is eligible for transfer if it consists
4973 ** entirely of constants and expressions that are also GROUP BY terms that
4974 ** use the "BINARY" collation sequence.
4976 static void havingToWhere(
4982 struct HavingToWhereCtx sCtx
;
4985 sCtx
.ppWhere
= ppWhere
;
4986 sCtx
.pGroupBy
= pGroupBy
;
4988 memset(&sWalker
, 0, sizeof(sWalker
));
4989 sWalker
.pParse
= pParse
;
4990 sWalker
.xExprCallback
= havingToWhereExprCb
;
4991 sWalker
.u
.pHavingCtx
= &sCtx
;
4992 sqlite3WalkExpr(&sWalker
, pHaving
);
4996 ** Check to see if the pThis entry of pTabList is a self-join of a prior view.
4997 ** If it is, then return the SrcList_item for the prior view. If it is not,
5000 static struct SrcList_item
*isSelfJoinView(
5001 SrcList
*pTabList
, /* Search for self-joins in this FROM clause */
5002 struct SrcList_item
*pThis
/* Search for prior reference to this subquery */
5004 struct SrcList_item
*pItem
;
5005 for(pItem
= pTabList
->a
; pItem
<pThis
; pItem
++){
5006 if( pItem
->pSelect
==0 ) continue;
5007 if( pItem
->fg
.viaCoroutine
) continue;
5008 if( pItem
->zName
==0 ) continue;
5009 if( sqlite3_stricmp(pItem
->zDatabase
, pThis
->zDatabase
)!=0 ) continue;
5010 if( sqlite3_stricmp(pItem
->zName
, pThis
->zName
)!=0 ) continue;
5011 if( sqlite3ExprCompare(0,
5012 pThis
->pSelect
->pWhere
, pItem
->pSelect
->pWhere
, -1)
5014 /* The view was modified by some other optimization such as
5015 ** pushDownWhereTerms() */
5023 #ifdef SQLITE_COUNTOFVIEW_OPTIMIZATION
5025 ** Attempt to transform a query of the form
5027 ** SELECT count(*) FROM (SELECT x FROM t1 UNION ALL SELECT y FROM t2)
5031 ** SELECT (SELECT count(*) FROM t1)+(SELECT count(*) FROM t2)
5033 ** The transformation only works if all of the following are true:
5035 ** * The subquery is a UNION ALL of two or more terms
5036 ** * There is no WHERE or GROUP BY or HAVING clauses on the subqueries
5037 ** * The outer query is a simple count(*)
5039 ** Return TRUE if the optimization is undertaken.
5041 static int countOfViewOptimization(Parse
*pParse
, Select
*p
){
5042 Select
*pSub
, *pPrior
;
5046 if( (p
->selFlags
& SF_Aggregate
)==0 ) return 0; /* This is an aggregate */
5047 if( p
->pEList
->nExpr
!=1 ) return 0; /* Single result column */
5048 pExpr
= p
->pEList
->a
[0].pExpr
;
5049 if( pExpr
->op
!=TK_AGG_FUNCTION
) return 0; /* Result is an aggregate */
5050 if( sqlite3_stricmp(pExpr
->u
.zToken
,"count") ) return 0; /* Is count() */
5051 if( pExpr
->x
.pList
!=0 ) return 0; /* Must be count(*) */
5052 if( p
->pSrc
->nSrc
!=1 ) return 0; /* One table in FROM */
5053 pSub
= p
->pSrc
->a
[0].pSelect
;
5054 if( pSub
==0 ) return 0; /* The FROM is a subquery */
5055 if( pSub
->pPrior
==0 ) return 0; /* Must be a compound ry */
5057 if( pSub
->op
!=TK_ALL
&& pSub
->pPrior
) return 0; /* Must be UNION ALL */
5058 if( pSub
->pWhere
) return 0; /* No WHERE clause */
5059 if( pSub
->selFlags
& SF_Aggregate
) return 0; /* Not an aggregate */
5060 pSub
= pSub
->pPrior
; /* Repeat over compound */
5063 /* If we reach this point then it is OK to perform the transformation */
5068 pSub
= p
->pSrc
->a
[0].pSelect
;
5069 p
->pSrc
->a
[0].pSelect
= 0;
5070 sqlite3SrcListDelete(db
, p
->pSrc
);
5071 p
->pSrc
= sqlite3DbMallocZero(pParse
->db
, sizeof(*p
->pSrc
));
5074 pPrior
= pSub
->pPrior
;
5077 pSub
->selFlags
|= SF_Aggregate
;
5078 pSub
->selFlags
&= ~SF_Compound
;
5079 pSub
->nSelectRow
= 0;
5080 sqlite3ExprListDelete(db
, pSub
->pEList
);
5081 pTerm
= pPrior
? sqlite3ExprDup(db
, pCount
, 0) : pCount
;
5082 pSub
->pEList
= sqlite3ExprListAppend(pParse
, 0, pTerm
);
5083 pTerm
= sqlite3PExpr(pParse
, TK_SELECT
, 0, 0);
5084 sqlite3PExprAddSelect(pParse
, pTerm
, pSub
);
5088 pExpr
= sqlite3PExpr(pParse
, TK_PLUS
, pTerm
, pExpr
);
5092 p
->pEList
->a
[0].pExpr
= pExpr
;
5093 p
->selFlags
&= ~SF_Aggregate
;
5095 #if SELECTTRACE_ENABLED
5096 if( sqlite3SelectTrace
& 0x400 ){
5097 SELECTTRACE(0x400,pParse
,p
,("After count-of-view optimization:\n"));
5098 sqlite3TreeViewSelect(0, p
, 0);
5103 #endif /* SQLITE_COUNTOFVIEW_OPTIMIZATION */
5106 ** Generate code for the SELECT statement given in the p argument.
5108 ** The results are returned according to the SelectDest structure.
5109 ** See comments in sqliteInt.h for further information.
5111 ** This routine returns the number of errors. If any errors are
5112 ** encountered, then an appropriate error message is left in
5115 ** This routine does NOT free the Select structure passed in. The
5116 ** calling function needs to do that.
5119 Parse
*pParse
, /* The parser context */
5120 Select
*p
, /* The SELECT statement being coded. */
5121 SelectDest
*pDest
/* What to do with the query results */
5123 int i
, j
; /* Loop counters */
5124 WhereInfo
*pWInfo
; /* Return from sqlite3WhereBegin() */
5125 Vdbe
*v
; /* The virtual machine under construction */
5126 int isAgg
; /* True for select lists like "count(*)" */
5127 ExprList
*pEList
= 0; /* List of columns to extract. */
5128 SrcList
*pTabList
; /* List of tables to select from */
5129 Expr
*pWhere
; /* The WHERE clause. May be NULL */
5130 ExprList
*pGroupBy
; /* The GROUP BY clause. May be NULL */
5131 Expr
*pHaving
; /* The HAVING clause. May be NULL */
5132 int rc
= 1; /* Value to return from this function */
5133 DistinctCtx sDistinct
; /* Info on how to code the DISTINCT keyword */
5134 SortCtx sSort
; /* Info on how to code the ORDER BY clause */
5135 AggInfo sAggInfo
; /* Information used by aggregate queries */
5136 int iEnd
; /* Address of the end of the query */
5137 sqlite3
*db
; /* The database connection */
5139 #ifndef SQLITE_OMIT_EXPLAIN
5140 int iRestoreSelectId
= pParse
->iSelectId
;
5141 pParse
->iSelectId
= pParse
->iNextSelectId
++;
5145 if( p
==0 || db
->mallocFailed
|| pParse
->nErr
){
5148 if( sqlite3AuthCheck(pParse
, SQLITE_SELECT
, 0, 0, 0) ) return 1;
5149 memset(&sAggInfo
, 0, sizeof(sAggInfo
));
5150 #if SELECTTRACE_ENABLED
5151 pParse
->nSelectIndent
++;
5152 SELECTTRACE(1,pParse
,p
, ("begin processing:\n"));
5153 if( sqlite3SelectTrace
& 0x100 ){
5154 sqlite3TreeViewSelect(0, p
, 0);
5158 assert( p
->pOrderBy
==0 || pDest
->eDest
!=SRT_DistFifo
);
5159 assert( p
->pOrderBy
==0 || pDest
->eDest
!=SRT_Fifo
);
5160 assert( p
->pOrderBy
==0 || pDest
->eDest
!=SRT_DistQueue
);
5161 assert( p
->pOrderBy
==0 || pDest
->eDest
!=SRT_Queue
);
5162 if( IgnorableOrderby(pDest
) ){
5163 assert(pDest
->eDest
==SRT_Exists
|| pDest
->eDest
==SRT_Union
||
5164 pDest
->eDest
==SRT_Except
|| pDest
->eDest
==SRT_Discard
||
5165 pDest
->eDest
==SRT_Queue
|| pDest
->eDest
==SRT_DistFifo
||
5166 pDest
->eDest
==SRT_DistQueue
|| pDest
->eDest
==SRT_Fifo
);
5167 /* If ORDER BY makes no difference in the output then neither does
5168 ** DISTINCT so it can be removed too. */
5169 sqlite3ExprListDelete(db
, p
->pOrderBy
);
5171 p
->selFlags
&= ~SF_Distinct
;
5173 sqlite3SelectPrep(pParse
, p
, 0);
5174 memset(&sSort
, 0, sizeof(sSort
));
5175 sSort
.pOrderBy
= p
->pOrderBy
;
5177 if( pParse
->nErr
|| db
->mallocFailed
){
5180 assert( p
->pEList
!=0 );
5181 isAgg
= (p
->selFlags
& SF_Aggregate
)!=0;
5182 #if SELECTTRACE_ENABLED
5183 if( sqlite3SelectTrace
& 0x100 ){
5184 SELECTTRACE(0x100,pParse
,p
, ("after name resolution:\n"));
5185 sqlite3TreeViewSelect(0, p
, 0);
5189 /* Get a pointer the VDBE under construction, allocating a new VDBE if one
5190 ** does not already exist */
5191 v
= sqlite3GetVdbe(pParse
);
5192 if( v
==0 ) goto select_end
;
5193 if( pDest
->eDest
==SRT_Output
){
5194 generateColumnNames(pParse
, p
);
5197 /* Try to flatten subqueries in the FROM clause up into the main query
5199 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
5200 for(i
=0; !p
->pPrior
&& i
<pTabList
->nSrc
; i
++){
5201 struct SrcList_item
*pItem
= &pTabList
->a
[i
];
5202 Select
*pSub
= pItem
->pSelect
;
5203 Table
*pTab
= pItem
->pTab
;
5204 if( pSub
==0 ) continue;
5206 /* Catch mismatch in the declared columns of a view and the number of
5207 ** columns in the SELECT on the RHS */
5208 if( pTab
->nCol
!=pSub
->pEList
->nExpr
){
5209 sqlite3ErrorMsg(pParse
, "expected %d columns for '%s' but got %d",
5210 pTab
->nCol
, pTab
->zName
, pSub
->pEList
->nExpr
);
5214 /* Do not try to flatten an aggregate subquery.
5216 ** Flattening an aggregate subquery is only possible if the outer query
5217 ** is not a join. But if the outer query is not a join, then the subquery
5218 ** will be implemented as a co-routine and there is no advantage to
5219 ** flattening in that case.
5221 if( (pSub
->selFlags
& SF_Aggregate
)!=0 ) continue;
5222 assert( pSub
->pGroupBy
==0 );
5224 /* If the subquery contains an ORDER BY clause and if
5225 ** it will be implemented as a co-routine, then do not flatten. This
5226 ** restriction allows SQL constructs like this:
5228 ** SELECT expensive_function(x)
5229 ** FROM (SELECT x FROM tab ORDER BY y LIMIT 10);
5231 ** The expensive_function() is only computed on the 10 rows that
5232 ** are output, rather than every row of the table.
5234 if( pSub
->pOrderBy
!=0
5236 && (pTabList
->nSrc
==1
5237 || (pTabList
->a
[1].fg
.jointype
&(JT_LEFT
|JT_CROSS
))!=0)
5242 if( flattenSubquery(pParse
, p
, i
, isAgg
) ){
5243 /* This subquery can be absorbed into its parent. */
5247 if( db
->mallocFailed
) goto select_end
;
5248 if( !IgnorableOrderby(pDest
) ){
5249 sSort
.pOrderBy
= p
->pOrderBy
;
5254 #ifndef SQLITE_OMIT_COMPOUND_SELECT
5255 /* Handle compound SELECT statements using the separate multiSelect()
5259 rc
= multiSelect(pParse
, p
, pDest
);
5260 explainSetInteger(pParse
->iSelectId
, iRestoreSelectId
);
5261 #if SELECTTRACE_ENABLED
5262 SELECTTRACE(1,pParse
,p
,("end compound-select processing\n"));
5263 pParse
->nSelectIndent
--;
5269 /* For each term in the FROM clause, do two things:
5270 ** (1) Authorized unreferenced tables
5271 ** (2) Generate code for all sub-queries
5273 for(i
=0; i
<pTabList
->nSrc
; i
++){
5274 struct SrcList_item
*pItem
= &pTabList
->a
[i
];
5277 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
5278 const char *zSavedAuthContext
;
5281 /* Issue SQLITE_READ authorizations with a fake column name for any
5282 ** tables that are referenced but from which no values are extracted.
5283 ** Examples of where these kinds of null SQLITE_READ authorizations
5286 ** SELECT count(*) FROM t1; -- SQLITE_READ t1.""
5287 ** SELECT t1.* FROM t1, t2; -- SQLITE_READ t2.""
5289 ** The fake column name is an empty string. It is possible for a table to
5290 ** have a column named by the empty string, in which case there is no way to
5291 ** distinguish between an unreferenced table and an actual reference to the
5292 ** "" column. The original design was for the fake column name to be a NULL,
5293 ** which would be unambiguous. But legacy authorization callbacks might
5294 ** assume the column name is non-NULL and segfault. The use of an empty
5295 ** string for the fake column name seems safer.
5297 if( pItem
->colUsed
==0 ){
5298 sqlite3AuthCheck(pParse
, SQLITE_READ
, pItem
->zName
, "", pItem
->zDatabase
);
5301 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
5302 /* Generate code for all sub-queries in the FROM clause
5304 pSub
= pItem
->pSelect
;
5305 if( pSub
==0 ) continue;
5307 /* Sometimes the code for a subquery will be generated more than
5308 ** once, if the subquery is part of the WHERE clause in a LEFT JOIN,
5309 ** for example. In that case, do not regenerate the code to manifest
5310 ** a view or the co-routine to implement a view. The first instance
5311 ** is sufficient, though the subroutine to manifest the view does need
5312 ** to be invoked again. */
5313 if( pItem
->addrFillSub
){
5314 if( pItem
->fg
.viaCoroutine
==0 ){
5315 /* The subroutine that manifests the view might be a one-time routine,
5316 ** or it might need to be rerun on each iteration because it
5317 ** encodes a correlated subquery. */
5318 testcase( sqlite3VdbeGetOp(v
, pItem
->addrFillSub
)->opcode
==OP_Once
);
5319 sqlite3VdbeAddOp2(v
, OP_Gosub
, pItem
->regReturn
, pItem
->addrFillSub
);
5324 /* Increment Parse.nHeight by the height of the largest expression
5325 ** tree referred to by this, the parent select. The child select
5326 ** may contain expression trees of at most
5327 ** (SQLITE_MAX_EXPR_DEPTH-Parse.nHeight) height. This is a bit
5328 ** more conservative than necessary, but much easier than enforcing
5331 pParse
->nHeight
+= sqlite3SelectExprHeight(p
);
5333 /* Make copies of constant WHERE-clause terms in the outer query down
5334 ** inside the subquery. This can help the subquery to run more efficiently.
5336 if( (pItem
->fg
.jointype
& JT_OUTER
)==0
5337 && pushDownWhereTerms(pParse
, pSub
, p
->pWhere
, pItem
->iCursor
)
5339 #if SELECTTRACE_ENABLED
5340 if( sqlite3SelectTrace
& 0x100 ){
5341 SELECTTRACE(0x100,pParse
,p
,("After WHERE-clause push-down:\n"));
5342 sqlite3TreeViewSelect(0, p
, 0);
5347 zSavedAuthContext
= pParse
->zAuthContext
;
5348 pParse
->zAuthContext
= pItem
->zName
;
5350 /* Generate code to implement the subquery
5352 ** The subquery is implemented as a co-routine if the subquery is
5353 ** guaranteed to be the outer loop (so that it does not need to be
5354 ** computed more than once)
5356 ** TODO: Are there other reasons beside (1) to use a co-routine
5360 && (pTabList
->nSrc
==1
5361 || (pTabList
->a
[1].fg
.jointype
&(JT_LEFT
|JT_CROSS
))!=0) /* (1) */
5363 /* Implement a co-routine that will return a single row of the result
5364 ** set on each invocation.
5366 int addrTop
= sqlite3VdbeCurrentAddr(v
)+1;
5368 pItem
->regReturn
= ++pParse
->nMem
;
5369 sqlite3VdbeAddOp3(v
, OP_InitCoroutine
, pItem
->regReturn
, 0, addrTop
);
5370 VdbeComment((v
, "%s", pItem
->pTab
->zName
));
5371 pItem
->addrFillSub
= addrTop
;
5372 sqlite3SelectDestInit(&dest
, SRT_Coroutine
, pItem
->regReturn
);
5373 explainSetInteger(pItem
->iSelectId
, (u8
)pParse
->iNextSelectId
);
5374 sqlite3Select(pParse
, pSub
, &dest
);
5375 pItem
->pTab
->nRowLogEst
= pSub
->nSelectRow
;
5376 pItem
->fg
.viaCoroutine
= 1;
5377 pItem
->regResult
= dest
.iSdst
;
5378 sqlite3VdbeEndCoroutine(v
, pItem
->regReturn
);
5379 sqlite3VdbeJumpHere(v
, addrTop
-1);
5380 sqlite3ClearTempRegCache(pParse
);
5382 /* Generate a subroutine that will fill an ephemeral table with
5383 ** the content of this subquery. pItem->addrFillSub will point
5384 ** to the address of the generated subroutine. pItem->regReturn
5385 ** is a register allocated to hold the subroutine return address
5390 struct SrcList_item
*pPrior
;
5392 assert( pItem
->addrFillSub
==0 );
5393 pItem
->regReturn
= ++pParse
->nMem
;
5394 topAddr
= sqlite3VdbeAddOp2(v
, OP_Integer
, 0, pItem
->regReturn
);
5395 pItem
->addrFillSub
= topAddr
+1;
5396 if( pItem
->fg
.isCorrelated
==0 ){
5397 /* If the subquery is not correlated and if we are not inside of
5398 ** a trigger, then we only need to compute the value of the subquery
5400 onceAddr
= sqlite3VdbeAddOp0(v
, OP_Once
); VdbeCoverage(v
);
5401 VdbeComment((v
, "materialize \"%s\"", pItem
->pTab
->zName
));
5403 VdbeNoopComment((v
, "materialize \"%s\"", pItem
->pTab
->zName
));
5405 pPrior
= isSelfJoinView(pTabList
, pItem
);
5407 sqlite3VdbeAddOp2(v
, OP_OpenDup
, pItem
->iCursor
, pPrior
->iCursor
);
5408 explainSetInteger(pItem
->iSelectId
, pPrior
->iSelectId
);
5409 assert( pPrior
->pSelect
!=0 );
5410 pSub
->nSelectRow
= pPrior
->pSelect
->nSelectRow
;
5412 sqlite3SelectDestInit(&dest
, SRT_EphemTab
, pItem
->iCursor
);
5413 explainSetInteger(pItem
->iSelectId
, (u8
)pParse
->iNextSelectId
);
5414 sqlite3Select(pParse
, pSub
, &dest
);
5416 pItem
->pTab
->nRowLogEst
= pSub
->nSelectRow
;
5417 if( onceAddr
) sqlite3VdbeJumpHere(v
, onceAddr
);
5418 retAddr
= sqlite3VdbeAddOp1(v
, OP_Return
, pItem
->regReturn
);
5419 VdbeComment((v
, "end %s", pItem
->pTab
->zName
));
5420 sqlite3VdbeChangeP1(v
, topAddr
, retAddr
);
5421 sqlite3ClearTempRegCache(pParse
);
5423 if( db
->mallocFailed
) goto select_end
;
5424 pParse
->nHeight
-= sqlite3SelectExprHeight(p
);
5425 pParse
->zAuthContext
= zSavedAuthContext
;
5429 /* Various elements of the SELECT copied into local variables for
5433 pGroupBy
= p
->pGroupBy
;
5434 pHaving
= p
->pHaving
;
5435 sDistinct
.isTnct
= (p
->selFlags
& SF_Distinct
)!=0;
5437 #if SELECTTRACE_ENABLED
5438 if( sqlite3SelectTrace
& 0x400 ){
5439 SELECTTRACE(0x400,pParse
,p
,("After all FROM-clause analysis:\n"));
5440 sqlite3TreeViewSelect(0, p
, 0);
5444 #ifdef SQLITE_COUNTOFVIEW_OPTIMIZATION
5445 if( OptimizationEnabled(db
, SQLITE_QueryFlattener
|SQLITE_CountOfView
)
5446 && countOfViewOptimization(pParse
, p
)
5448 if( db
->mallocFailed
) goto select_end
;
5454 /* If the query is DISTINCT with an ORDER BY but is not an aggregate, and
5455 ** if the select-list is the same as the ORDER BY list, then this query
5456 ** can be rewritten as a GROUP BY. In other words, this:
5458 ** SELECT DISTINCT xyz FROM ... ORDER BY xyz
5460 ** is transformed to:
5462 ** SELECT xyz FROM ... GROUP BY xyz ORDER BY xyz
5464 ** The second form is preferred as a single index (or temp-table) may be
5465 ** used for both the ORDER BY and DISTINCT processing. As originally
5466 ** written the query must use a temp-table for at least one of the ORDER
5467 ** BY and DISTINCT, and an index or separate temp-table for the other.
5469 if( (p
->selFlags
& (SF_Distinct
|SF_Aggregate
))==SF_Distinct
5470 && sqlite3ExprListCompare(sSort
.pOrderBy
, pEList
, -1)==0
5472 p
->selFlags
&= ~SF_Distinct
;
5473 pGroupBy
= p
->pGroupBy
= sqlite3ExprListDup(db
, pEList
, 0);
5474 /* Notice that even thought SF_Distinct has been cleared from p->selFlags,
5475 ** the sDistinct.isTnct is still set. Hence, isTnct represents the
5476 ** original setting of the SF_Distinct flag, not the current setting */
5477 assert( sDistinct
.isTnct
);
5479 #if SELECTTRACE_ENABLED
5480 if( sqlite3SelectTrace
& 0x400 ){
5481 SELECTTRACE(0x400,pParse
,p
,("Transform DISTINCT into GROUP BY:\n"));
5482 sqlite3TreeViewSelect(0, p
, 0);
5487 /* If there is an ORDER BY clause, then create an ephemeral index to
5488 ** do the sorting. But this sorting ephemeral index might end up
5489 ** being unused if the data can be extracted in pre-sorted order.
5490 ** If that is the case, then the OP_OpenEphemeral instruction will be
5491 ** changed to an OP_Noop once we figure out that the sorting index is
5492 ** not needed. The sSort.addrSortIndex variable is used to facilitate
5495 if( sSort
.pOrderBy
){
5497 pKeyInfo
= keyInfoFromExprList(pParse
, sSort
.pOrderBy
, 0, pEList
->nExpr
);
5498 sSort
.iECursor
= pParse
->nTab
++;
5499 sSort
.addrSortIndex
=
5500 sqlite3VdbeAddOp4(v
, OP_OpenEphemeral
,
5501 sSort
.iECursor
, sSort
.pOrderBy
->nExpr
+1+pEList
->nExpr
, 0,
5502 (char*)pKeyInfo
, P4_KEYINFO
5505 sSort
.addrSortIndex
= -1;
5508 /* If the output is destined for a temporary table, open that table.
5510 if( pDest
->eDest
==SRT_EphemTab
){
5511 sqlite3VdbeAddOp2(v
, OP_OpenEphemeral
, pDest
->iSDParm
, pEList
->nExpr
);
5516 iEnd
= sqlite3VdbeMakeLabel(v
);
5517 if( (p
->selFlags
& SF_FixedLimit
)==0 ){
5518 p
->nSelectRow
= 320; /* 4 billion rows */
5520 computeLimitRegisters(pParse
, p
, iEnd
);
5521 if( p
->iLimit
==0 && sSort
.addrSortIndex
>=0 ){
5522 sqlite3VdbeChangeOpcode(v
, sSort
.addrSortIndex
, OP_SorterOpen
);
5523 sSort
.sortFlags
|= SORTFLAG_UseSorter
;
5526 /* Open an ephemeral index to use for the distinct set.
5528 if( p
->selFlags
& SF_Distinct
){
5529 sDistinct
.tabTnct
= pParse
->nTab
++;
5530 sDistinct
.addrTnct
= sqlite3VdbeAddOp4(v
, OP_OpenEphemeral
,
5531 sDistinct
.tabTnct
, 0, 0,
5532 (char*)keyInfoFromExprList(pParse
, p
->pEList
,0,0),
5534 sqlite3VdbeChangeP5(v
, BTREE_UNORDERED
);
5535 sDistinct
.eTnctType
= WHERE_DISTINCT_UNORDERED
;
5537 sDistinct
.eTnctType
= WHERE_DISTINCT_NOOP
;
5540 if( !isAgg
&& pGroupBy
==0 ){
5541 /* No aggregate functions and no GROUP BY clause */
5542 u16 wctrlFlags
= (sDistinct
.isTnct
? WHERE_WANT_DISTINCT
: 0);
5543 assert( WHERE_USE_LIMIT
==SF_FixedLimit
);
5544 wctrlFlags
|= p
->selFlags
& SF_FixedLimit
;
5546 /* Begin the database scan. */
5547 pWInfo
= sqlite3WhereBegin(pParse
, pTabList
, pWhere
, sSort
.pOrderBy
,
5548 p
->pEList
, wctrlFlags
, p
->nSelectRow
);
5549 if( pWInfo
==0 ) goto select_end
;
5550 if( sqlite3WhereOutputRowCount(pWInfo
) < p
->nSelectRow
){
5551 p
->nSelectRow
= sqlite3WhereOutputRowCount(pWInfo
);
5553 if( sDistinct
.isTnct
&& sqlite3WhereIsDistinct(pWInfo
) ){
5554 sDistinct
.eTnctType
= sqlite3WhereIsDistinct(pWInfo
);
5556 if( sSort
.pOrderBy
){
5557 sSort
.nOBSat
= sqlite3WhereIsOrdered(pWInfo
);
5558 sSort
.bOrderedInnerLoop
= sqlite3WhereOrderedInnerLoop(pWInfo
);
5559 if( sSort
.nOBSat
==sSort
.pOrderBy
->nExpr
){
5564 /* If sorting index that was created by a prior OP_OpenEphemeral
5565 ** instruction ended up not being needed, then change the OP_OpenEphemeral
5568 if( sSort
.addrSortIndex
>=0 && sSort
.pOrderBy
==0 ){
5569 sqlite3VdbeChangeToNoop(v
, sSort
.addrSortIndex
);
5572 /* Use the standard inner loop. */
5573 assert( p
->pEList
==pEList
);
5574 selectInnerLoop(pParse
, p
, -1, &sSort
, &sDistinct
, pDest
,
5575 sqlite3WhereContinueLabel(pWInfo
),
5576 sqlite3WhereBreakLabel(pWInfo
));
5578 /* End the database scan loop.
5580 sqlite3WhereEnd(pWInfo
);
5582 /* This case when there exist aggregate functions or a GROUP BY clause
5584 NameContext sNC
; /* Name context for processing aggregate information */
5585 int iAMem
; /* First Mem address for storing current GROUP BY */
5586 int iBMem
; /* First Mem address for previous GROUP BY */
5587 int iUseFlag
; /* Mem address holding flag indicating that at least
5588 ** one row of the input to the aggregator has been
5590 int iAbortFlag
; /* Mem address which causes query abort if positive */
5591 int groupBySort
; /* Rows come from source in GROUP BY order */
5592 int addrEnd
; /* End of processing for this SELECT */
5593 int sortPTab
= 0; /* Pseudotable used to decode sorting results */
5594 int sortOut
= 0; /* Output register from the sorter */
5595 int orderByGrp
= 0; /* True if the GROUP BY and ORDER BY are the same */
5597 /* Remove any and all aliases between the result set and the
5601 int k
; /* Loop counter */
5602 struct ExprList_item
*pItem
; /* For looping over expression in a list */
5604 for(k
=p
->pEList
->nExpr
, pItem
=p
->pEList
->a
; k
>0; k
--, pItem
++){
5605 pItem
->u
.x
.iAlias
= 0;
5607 for(k
=pGroupBy
->nExpr
, pItem
=pGroupBy
->a
; k
>0; k
--, pItem
++){
5608 pItem
->u
.x
.iAlias
= 0;
5610 assert( 66==sqlite3LogEst(100) );
5611 if( p
->nSelectRow
>66 ) p
->nSelectRow
= 66;
5613 assert( 0==sqlite3LogEst(1) );
5617 /* If there is both a GROUP BY and an ORDER BY clause and they are
5618 ** identical, then it may be possible to disable the ORDER BY clause
5619 ** on the grounds that the GROUP BY will cause elements to come out
5620 ** in the correct order. It also may not - the GROUP BY might use a
5621 ** database index that causes rows to be grouped together as required
5622 ** but not actually sorted. Either way, record the fact that the
5623 ** ORDER BY and GROUP BY clauses are the same by setting the orderByGrp
5625 if( sqlite3ExprListCompare(pGroupBy
, sSort
.pOrderBy
, -1)==0 ){
5629 /* Create a label to jump to when we want to abort the query */
5630 addrEnd
= sqlite3VdbeMakeLabel(v
);
5632 /* Convert TK_COLUMN nodes into TK_AGG_COLUMN and make entries in
5633 ** sAggInfo for all TK_AGG_FUNCTION nodes in expressions of the
5634 ** SELECT statement.
5636 memset(&sNC
, 0, sizeof(sNC
));
5637 sNC
.pParse
= pParse
;
5638 sNC
.pSrcList
= pTabList
;
5639 sNC
.pAggInfo
= &sAggInfo
;
5640 sAggInfo
.mnReg
= pParse
->nMem
+1;
5641 sAggInfo
.nSortingColumn
= pGroupBy
? pGroupBy
->nExpr
: 0;
5642 sAggInfo
.pGroupBy
= pGroupBy
;
5643 sqlite3ExprAnalyzeAggList(&sNC
, pEList
);
5644 sqlite3ExprAnalyzeAggList(&sNC
, sSort
.pOrderBy
);
5647 assert( pWhere
==p
->pWhere
);
5648 havingToWhere(pParse
, pGroupBy
, pHaving
, &p
->pWhere
);
5651 sqlite3ExprAnalyzeAggregates(&sNC
, pHaving
);
5653 sAggInfo
.nAccumulator
= sAggInfo
.nColumn
;
5654 for(i
=0; i
<sAggInfo
.nFunc
; i
++){
5655 assert( !ExprHasProperty(sAggInfo
.aFunc
[i
].pExpr
, EP_xIsSelect
) );
5656 sNC
.ncFlags
|= NC_InAggFunc
;
5657 sqlite3ExprAnalyzeAggList(&sNC
, sAggInfo
.aFunc
[i
].pExpr
->x
.pList
);
5658 sNC
.ncFlags
&= ~NC_InAggFunc
;
5660 sAggInfo
.mxReg
= pParse
->nMem
;
5661 if( db
->mallocFailed
) goto select_end
;
5663 /* Processing for aggregates with GROUP BY is very different and
5664 ** much more complex than aggregates without a GROUP BY.
5667 KeyInfo
*pKeyInfo
; /* Keying information for the group by clause */
5668 int addr1
; /* A-vs-B comparision jump */
5669 int addrOutputRow
; /* Start of subroutine that outputs a result row */
5670 int regOutputRow
; /* Return address register for output subroutine */
5671 int addrSetAbort
; /* Set the abort flag and return */
5672 int addrTopOfLoop
; /* Top of the input loop */
5673 int addrSortingIdx
; /* The OP_OpenEphemeral for the sorting index */
5674 int addrReset
; /* Subroutine for resetting the accumulator */
5675 int regReset
; /* Return address register for reset subroutine */
5677 /* If there is a GROUP BY clause we might need a sorting index to
5678 ** implement it. Allocate that sorting index now. If it turns out
5679 ** that we do not need it after all, the OP_SorterOpen instruction
5680 ** will be converted into a Noop.
5682 sAggInfo
.sortingIdx
= pParse
->nTab
++;
5683 pKeyInfo
= keyInfoFromExprList(pParse
, pGroupBy
, 0, sAggInfo
.nColumn
);
5684 addrSortingIdx
= sqlite3VdbeAddOp4(v
, OP_SorterOpen
,
5685 sAggInfo
.sortingIdx
, sAggInfo
.nSortingColumn
,
5686 0, (char*)pKeyInfo
, P4_KEYINFO
);
5688 /* Initialize memory locations used by GROUP BY aggregate processing
5690 iUseFlag
= ++pParse
->nMem
;
5691 iAbortFlag
= ++pParse
->nMem
;
5692 regOutputRow
= ++pParse
->nMem
;
5693 addrOutputRow
= sqlite3VdbeMakeLabel(v
);
5694 regReset
= ++pParse
->nMem
;
5695 addrReset
= sqlite3VdbeMakeLabel(v
);
5696 iAMem
= pParse
->nMem
+ 1;
5697 pParse
->nMem
+= pGroupBy
->nExpr
;
5698 iBMem
= pParse
->nMem
+ 1;
5699 pParse
->nMem
+= pGroupBy
->nExpr
;
5700 sqlite3VdbeAddOp2(v
, OP_Integer
, 0, iAbortFlag
);
5701 VdbeComment((v
, "clear abort flag"));
5702 sqlite3VdbeAddOp2(v
, OP_Integer
, 0, iUseFlag
);
5703 VdbeComment((v
, "indicate accumulator empty"));
5704 sqlite3VdbeAddOp3(v
, OP_Null
, 0, iAMem
, iAMem
+pGroupBy
->nExpr
-1);
5706 /* Begin a loop that will extract all source rows in GROUP BY order.
5707 ** This might involve two separate loops with an OP_Sort in between, or
5708 ** it might be a single loop that uses an index to extract information
5709 ** in the right order to begin with.
5711 sqlite3VdbeAddOp2(v
, OP_Gosub
, regReset
, addrReset
);
5712 pWInfo
= sqlite3WhereBegin(pParse
, pTabList
, pWhere
, pGroupBy
, 0,
5713 WHERE_GROUPBY
| (orderByGrp
? WHERE_SORTBYGROUP
: 0), 0
5715 if( pWInfo
==0 ) goto select_end
;
5716 if( sqlite3WhereIsOrdered(pWInfo
)==pGroupBy
->nExpr
){
5717 /* The optimizer is able to deliver rows in group by order so
5718 ** we do not have to sort. The OP_OpenEphemeral table will be
5719 ** cancelled later because we still need to use the pKeyInfo
5723 /* Rows are coming out in undetermined order. We have to push
5724 ** each row into a sorting index, terminate the first loop,
5725 ** then loop over the sorting index in order to get the output
5733 explainTempTable(pParse
,
5734 (sDistinct
.isTnct
&& (p
->selFlags
&SF_Distinct
)==0) ?
5735 "DISTINCT" : "GROUP BY");
5738 nGroupBy
= pGroupBy
->nExpr
;
5741 for(i
=0; i
<sAggInfo
.nColumn
; i
++){
5742 if( sAggInfo
.aCol
[i
].iSorterColumn
>=j
){
5747 regBase
= sqlite3GetTempRange(pParse
, nCol
);
5748 sqlite3ExprCacheClear(pParse
);
5749 sqlite3ExprCodeExprList(pParse
, pGroupBy
, regBase
, 0, 0);
5751 for(i
=0; i
<sAggInfo
.nColumn
; i
++){
5752 struct AggInfo_col
*pCol
= &sAggInfo
.aCol
[i
];
5753 if( pCol
->iSorterColumn
>=j
){
5754 int r1
= j
+ regBase
;
5755 sqlite3ExprCodeGetColumnToReg(pParse
,
5756 pCol
->pTab
, pCol
->iColumn
, pCol
->iTable
, r1
);
5760 regRecord
= sqlite3GetTempReg(pParse
);
5761 sqlite3VdbeAddOp3(v
, OP_MakeRecord
, regBase
, nCol
, regRecord
);
5762 sqlite3VdbeAddOp2(v
, OP_SorterInsert
, sAggInfo
.sortingIdx
, regRecord
);
5763 sqlite3ReleaseTempReg(pParse
, regRecord
);
5764 sqlite3ReleaseTempRange(pParse
, regBase
, nCol
);
5765 sqlite3WhereEnd(pWInfo
);
5766 sAggInfo
.sortingIdxPTab
= sortPTab
= pParse
->nTab
++;
5767 sortOut
= sqlite3GetTempReg(pParse
);
5768 sqlite3VdbeAddOp3(v
, OP_OpenPseudo
, sortPTab
, sortOut
, nCol
);
5769 sqlite3VdbeAddOp2(v
, OP_SorterSort
, sAggInfo
.sortingIdx
, addrEnd
);
5770 VdbeComment((v
, "GROUP BY sort")); VdbeCoverage(v
);
5771 sAggInfo
.useSortingIdx
= 1;
5772 sqlite3ExprCacheClear(pParse
);
5776 /* If the index or temporary table used by the GROUP BY sort
5777 ** will naturally deliver rows in the order required by the ORDER BY
5778 ** clause, cancel the ephemeral table open coded earlier.
5780 ** This is an optimization - the correct answer should result regardless.
5781 ** Use the SQLITE_GroupByOrder flag with SQLITE_TESTCTRL_OPTIMIZER to
5782 ** disable this optimization for testing purposes. */
5783 if( orderByGrp
&& OptimizationEnabled(db
, SQLITE_GroupByOrder
)
5784 && (groupBySort
|| sqlite3WhereIsSorted(pWInfo
))
5787 sqlite3VdbeChangeToNoop(v
, sSort
.addrSortIndex
);
5790 /* Evaluate the current GROUP BY terms and store in b0, b1, b2...
5791 ** (b0 is memory location iBMem+0, b1 is iBMem+1, and so forth)
5792 ** Then compare the current GROUP BY terms against the GROUP BY terms
5793 ** from the previous row currently stored in a0, a1, a2...
5795 addrTopOfLoop
= sqlite3VdbeCurrentAddr(v
);
5796 sqlite3ExprCacheClear(pParse
);
5798 sqlite3VdbeAddOp3(v
, OP_SorterData
, sAggInfo
.sortingIdx
,
5801 for(j
=0; j
<pGroupBy
->nExpr
; j
++){
5803 sqlite3VdbeAddOp3(v
, OP_Column
, sortPTab
, j
, iBMem
+j
);
5805 sAggInfo
.directMode
= 1;
5806 sqlite3ExprCode(pParse
, pGroupBy
->a
[j
].pExpr
, iBMem
+j
);
5809 sqlite3VdbeAddOp4(v
, OP_Compare
, iAMem
, iBMem
, pGroupBy
->nExpr
,
5810 (char*)sqlite3KeyInfoRef(pKeyInfo
), P4_KEYINFO
);
5811 addr1
= sqlite3VdbeCurrentAddr(v
);
5812 sqlite3VdbeAddOp3(v
, OP_Jump
, addr1
+1, 0, addr1
+1); VdbeCoverage(v
);
5814 /* Generate code that runs whenever the GROUP BY changes.
5815 ** Changes in the GROUP BY are detected by the previous code
5816 ** block. If there were no changes, this block is skipped.
5818 ** This code copies current group by terms in b0,b1,b2,...
5819 ** over to a0,a1,a2. It then calls the output subroutine
5820 ** and resets the aggregate accumulator registers in preparation
5821 ** for the next GROUP BY batch.
5823 sqlite3ExprCodeMove(pParse
, iBMem
, iAMem
, pGroupBy
->nExpr
);
5824 sqlite3VdbeAddOp2(v
, OP_Gosub
, regOutputRow
, addrOutputRow
);
5825 VdbeComment((v
, "output one row"));
5826 sqlite3VdbeAddOp2(v
, OP_IfPos
, iAbortFlag
, addrEnd
); VdbeCoverage(v
);
5827 VdbeComment((v
, "check abort flag"));
5828 sqlite3VdbeAddOp2(v
, OP_Gosub
, regReset
, addrReset
);
5829 VdbeComment((v
, "reset accumulator"));
5831 /* Update the aggregate accumulators based on the content of
5834 sqlite3VdbeJumpHere(v
, addr1
);
5835 updateAccumulator(pParse
, &sAggInfo
);
5836 sqlite3VdbeAddOp2(v
, OP_Integer
, 1, iUseFlag
);
5837 VdbeComment((v
, "indicate data in accumulator"));
5842 sqlite3VdbeAddOp2(v
, OP_SorterNext
, sAggInfo
.sortingIdx
, addrTopOfLoop
);
5845 sqlite3WhereEnd(pWInfo
);
5846 sqlite3VdbeChangeToNoop(v
, addrSortingIdx
);
5849 /* Output the final row of result
5851 sqlite3VdbeAddOp2(v
, OP_Gosub
, regOutputRow
, addrOutputRow
);
5852 VdbeComment((v
, "output final row"));
5854 /* Jump over the subroutines
5856 sqlite3VdbeGoto(v
, addrEnd
);
5858 /* Generate a subroutine that outputs a single row of the result
5859 ** set. This subroutine first looks at the iUseFlag. If iUseFlag
5860 ** is less than or equal to zero, the subroutine is a no-op. If
5861 ** the processing calls for the query to abort, this subroutine
5862 ** increments the iAbortFlag memory location before returning in
5863 ** order to signal the caller to abort.
5865 addrSetAbort
= sqlite3VdbeCurrentAddr(v
);
5866 sqlite3VdbeAddOp2(v
, OP_Integer
, 1, iAbortFlag
);
5867 VdbeComment((v
, "set abort flag"));
5868 sqlite3VdbeAddOp1(v
, OP_Return
, regOutputRow
);
5869 sqlite3VdbeResolveLabel(v
, addrOutputRow
);
5870 addrOutputRow
= sqlite3VdbeCurrentAddr(v
);
5871 sqlite3VdbeAddOp2(v
, OP_IfPos
, iUseFlag
, addrOutputRow
+2);
5873 VdbeComment((v
, "Groupby result generator entry point"));
5874 sqlite3VdbeAddOp1(v
, OP_Return
, regOutputRow
);
5875 finalizeAggFunctions(pParse
, &sAggInfo
);
5876 sqlite3ExprIfFalse(pParse
, pHaving
, addrOutputRow
+1, SQLITE_JUMPIFNULL
);
5877 selectInnerLoop(pParse
, p
, -1, &sSort
,
5879 addrOutputRow
+1, addrSetAbort
);
5880 sqlite3VdbeAddOp1(v
, OP_Return
, regOutputRow
);
5881 VdbeComment((v
, "end groupby result generator"));
5883 /* Generate a subroutine that will reset the group-by accumulator
5885 sqlite3VdbeResolveLabel(v
, addrReset
);
5886 resetAccumulator(pParse
, &sAggInfo
);
5887 sqlite3VdbeAddOp1(v
, OP_Return
, regReset
);
5889 } /* endif pGroupBy. Begin aggregate queries without GROUP BY: */
5892 #ifndef SQLITE_OMIT_BTREECOUNT
5894 if( (pTab
= isSimpleCount(p
, &sAggInfo
))!=0 ){
5895 /* If isSimpleCount() returns a pointer to a Table structure, then
5896 ** the SQL statement is of the form:
5898 ** SELECT count(*) FROM <tbl>
5900 ** where the Table structure returned represents table <tbl>.
5902 ** This statement is so common that it is optimized specially. The
5903 ** OP_Count instruction is executed either on the intkey table that
5904 ** contains the data for table <tbl> or on one of its indexes. It
5905 ** is better to execute the op on an index, as indexes are almost
5906 ** always spread across less pages than their corresponding tables.
5908 const int iDb
= sqlite3SchemaToIndex(pParse
->db
, pTab
->pSchema
);
5909 const int iCsr
= pParse
->nTab
++; /* Cursor to scan b-tree */
5910 Index
*pIdx
; /* Iterator variable */
5911 KeyInfo
*pKeyInfo
= 0; /* Keyinfo for scanned index */
5912 Index
*pBest
= 0; /* Best index found so far */
5913 int iRoot
= pTab
->tnum
; /* Root page of scanned b-tree */
5915 sqlite3CodeVerifySchema(pParse
, iDb
);
5916 sqlite3TableLock(pParse
, iDb
, pTab
->tnum
, 0, pTab
->zName
);
5918 /* Search for the index that has the lowest scan cost.
5920 ** (2011-04-15) Do not do a full scan of an unordered index.
5922 ** (2013-10-03) Do not count the entries in a partial index.
5924 ** In practice the KeyInfo structure will not be used. It is only
5925 ** passed to keep OP_OpenRead happy.
5927 if( !HasRowid(pTab
) ) pBest
= sqlite3PrimaryKeyIndex(pTab
);
5928 for(pIdx
=pTab
->pIndex
; pIdx
; pIdx
=pIdx
->pNext
){
5929 if( pIdx
->bUnordered
==0
5930 && pIdx
->szIdxRow
<pTab
->szTabRow
5931 && pIdx
->pPartIdxWhere
==0
5932 && (!pBest
|| pIdx
->szIdxRow
<pBest
->szIdxRow
)
5938 iRoot
= pBest
->tnum
;
5939 pKeyInfo
= sqlite3KeyInfoOfIndex(pParse
, pBest
);
5942 /* Open a read-only cursor, execute the OP_Count, close the cursor. */
5943 sqlite3VdbeAddOp4Int(v
, OP_OpenRead
, iCsr
, iRoot
, iDb
, 1);
5945 sqlite3VdbeChangeP4(v
, -1, (char *)pKeyInfo
, P4_KEYINFO
);
5947 sqlite3VdbeAddOp2(v
, OP_Count
, iCsr
, sAggInfo
.aFunc
[0].iMem
);
5948 sqlite3VdbeAddOp1(v
, OP_Close
, iCsr
);
5949 explainSimpleCount(pParse
, pTab
, pBest
);
5951 #endif /* SQLITE_OMIT_BTREECOUNT */
5953 /* Check if the query is of one of the following forms:
5955 ** SELECT min(x) FROM ...
5956 ** SELECT max(x) FROM ...
5958 ** If it is, then ask the code in where.c to attempt to sort results
5959 ** as if there was an "ORDER ON x" or "ORDER ON x DESC" clause.
5960 ** If where.c is able to produce results sorted in this order, then
5961 ** add vdbe code to break out of the processing loop after the
5962 ** first iteration (since the first iteration of the loop is
5963 ** guaranteed to operate on the row with the minimum or maximum
5964 ** value of x, the only row required).
5966 ** A special flag must be passed to sqlite3WhereBegin() to slightly
5967 ** modify behavior as follows:
5969 ** + If the query is a "SELECT min(x)", then the loop coded by
5970 ** where.c should not iterate over any values with a NULL value
5973 ** + The optimizer code in where.c (the thing that decides which
5974 ** index or indices to use) should place a different priority on
5975 ** satisfying the 'ORDER BY' clause than it does in other cases.
5976 ** Refer to code and comments in where.c for details.
5978 ExprList
*pMinMax
= 0;
5979 u8 flag
= WHERE_ORDERBY_NORMAL
;
5981 assert( p
->pGroupBy
==0 );
5983 if( p
->pHaving
==0 ){
5984 flag
= minMaxQuery(&sAggInfo
, &pMinMax
);
5986 assert( flag
==0 || (pMinMax
!=0 && pMinMax
->nExpr
==1) );
5989 pMinMax
= sqlite3ExprListDup(db
, pMinMax
, 0);
5991 assert( db
->mallocFailed
|| pMinMax
!=0 );
5992 if( !db
->mallocFailed
){
5993 pMinMax
->a
[0].sortOrder
= flag
!=WHERE_ORDERBY_MIN
?1:0;
5994 pMinMax
->a
[0].pExpr
->op
= TK_COLUMN
;
5998 /* This case runs if the aggregate has no GROUP BY clause. The
5999 ** processing is much simpler since there is only a single row
6002 resetAccumulator(pParse
, &sAggInfo
);
6003 pWInfo
= sqlite3WhereBegin(pParse
, pTabList
, pWhere
, pMinMax
, 0,flag
,0);
6005 sqlite3ExprListDelete(db
, pDel
);
6008 updateAccumulator(pParse
, &sAggInfo
);
6009 assert( pMinMax
==0 || pMinMax
->nExpr
==1 );
6010 if( sqlite3WhereIsOrdered(pWInfo
)>0 ){
6011 sqlite3VdbeGoto(v
, sqlite3WhereBreakLabel(pWInfo
));
6012 VdbeComment((v
, "%s() by index",
6013 (flag
==WHERE_ORDERBY_MIN
?"min":"max")));
6015 sqlite3WhereEnd(pWInfo
);
6016 finalizeAggFunctions(pParse
, &sAggInfo
);
6020 sqlite3ExprIfFalse(pParse
, pHaving
, addrEnd
, SQLITE_JUMPIFNULL
);
6021 selectInnerLoop(pParse
, p
, -1, 0, 0,
6022 pDest
, addrEnd
, addrEnd
);
6023 sqlite3ExprListDelete(db
, pDel
);
6025 sqlite3VdbeResolveLabel(v
, addrEnd
);
6027 } /* endif aggregate query */
6029 if( sDistinct
.eTnctType
==WHERE_DISTINCT_UNORDERED
){
6030 explainTempTable(pParse
, "DISTINCT");
6033 /* If there is an ORDER BY clause, then we need to sort the results
6034 ** and send them to the callback one by one.
6036 if( sSort
.pOrderBy
){
6037 explainTempTable(pParse
,
6038 sSort
.nOBSat
>0 ? "RIGHT PART OF ORDER BY":"ORDER BY");
6039 generateSortTail(pParse
, p
, &sSort
, pEList
->nExpr
, pDest
);
6042 /* Jump here to skip this query
6044 sqlite3VdbeResolveLabel(v
, iEnd
);
6046 /* The SELECT has been coded. If there is an error in the Parse structure,
6047 ** set the return code to 1. Otherwise 0. */
6048 rc
= (pParse
->nErr
>0);
6050 /* Control jumps to here if an error is encountered above, or upon
6051 ** successful coding of the SELECT.
6054 explainSetInteger(pParse
->iSelectId
, iRestoreSelectId
);
6056 sqlite3DbFree(db
, sAggInfo
.aCol
);
6057 sqlite3DbFree(db
, sAggInfo
.aFunc
);
6058 #if SELECTTRACE_ENABLED
6059 SELECTTRACE(1,pParse
,p
,("end processing\n"));
6060 pParse
->nSelectIndent
--;