Prevent deep recursions on nested COLLATE operators.
[sqlite.git] / src / expr.c
blob2d4a14c8d0be23d20696b3a47842b891e4118e3a
1 /*
2 ** 2001 September 15
3 **
4 ** The author disclaims copyright to this source code. In place of
5 ** a legal notice, here is a blessing:
6 **
7 ** May you do good and not evil.
8 ** May you find forgiveness for yourself and forgive others.
9 ** May you share freely, never taking more than you give.
11 *************************************************************************
12 ** This file contains routines used for analyzing expressions and
13 ** for generating VDBE code that evaluates expressions in SQLite.
15 #include "sqliteInt.h"
17 /* Forward declarations */
18 static void exprCodeBetween(Parse*,Expr*,int,void(*)(Parse*,Expr*,int,int),int);
19 static int exprCodeVector(Parse *pParse, Expr *p, int *piToFree);
22 ** Return the affinity character for a single column of a table.
24 char sqlite3TableColumnAffinity(Table *pTab, int iCol){
25 assert( iCol<pTab->nCol );
26 return iCol>=0 ? pTab->aCol[iCol].affinity : SQLITE_AFF_INTEGER;
30 ** Return the 'affinity' of the expression pExpr if any.
32 ** If pExpr is a column, a reference to a column via an 'AS' alias,
33 ** or a sub-select with a column as the return value, then the
34 ** affinity of that column is returned. Otherwise, 0x00 is returned,
35 ** indicating no affinity for the expression.
37 ** i.e. the WHERE clause expressions in the following statements all
38 ** have an affinity:
40 ** CREATE TABLE t1(a);
41 ** SELECT * FROM t1 WHERE a;
42 ** SELECT a AS b FROM t1 WHERE b;
43 ** SELECT * FROM t1 WHERE (select a from t1);
45 char sqlite3ExprAffinity(Expr *pExpr){
46 int op;
47 pExpr = sqlite3ExprSkipCollate(pExpr);
48 if( pExpr->flags & EP_Generic ) return 0;
49 op = pExpr->op;
50 if( op==TK_SELECT ){
51 assert( pExpr->flags&EP_xIsSelect );
52 return sqlite3ExprAffinity(pExpr->x.pSelect->pEList->a[0].pExpr);
54 if( op==TK_REGISTER ) op = pExpr->op2;
55 #ifndef SQLITE_OMIT_CAST
56 if( op==TK_CAST ){
57 assert( !ExprHasProperty(pExpr, EP_IntValue) );
58 return sqlite3AffinityType(pExpr->u.zToken, 0);
60 #endif
61 if( (op==TK_AGG_COLUMN || op==TK_COLUMN) && pExpr->pTab ){
62 return sqlite3TableColumnAffinity(pExpr->pTab, pExpr->iColumn);
64 if( op==TK_SELECT_COLUMN ){
65 assert( pExpr->pLeft->flags&EP_xIsSelect );
66 return sqlite3ExprAffinity(
67 pExpr->pLeft->x.pSelect->pEList->a[pExpr->iColumn].pExpr
70 return pExpr->affinity;
74 ** Set the collating sequence for expression pExpr to be the collating
75 ** sequence named by pToken. Return a pointer to a new Expr node that
76 ** implements the COLLATE operator.
78 ** If a memory allocation error occurs, that fact is recorded in pParse->db
79 ** and the pExpr parameter is returned unchanged.
81 Expr *sqlite3ExprAddCollateToken(
82 Parse *pParse, /* Parsing context */
83 Expr *pExpr, /* Add the "COLLATE" clause to this expression */
84 const Token *pCollName, /* Name of collating sequence */
85 int dequote /* True to dequote pCollName */
87 if( pCollName->n>0 ){
88 Expr *pNew = sqlite3ExprAlloc(pParse->db, TK_COLLATE, pCollName, dequote);
89 if( pNew ){
90 pNew->pLeft = pExpr;
91 pNew->flags |= EP_Collate|EP_Skip;
92 pExpr = pNew;
95 return pExpr;
97 Expr *sqlite3ExprAddCollateString(Parse *pParse, Expr *pExpr, const char *zC){
98 Token s;
99 assert( zC!=0 );
100 sqlite3TokenInit(&s, (char*)zC);
101 return sqlite3ExprAddCollateToken(pParse, pExpr, &s, 0);
105 ** Skip over any TK_COLLATE operators and any unlikely()
106 ** or likelihood() function at the root of an expression.
108 Expr *sqlite3ExprSkipCollate(Expr *pExpr){
109 while( pExpr && ExprHasProperty(pExpr, EP_Skip) ){
110 if( ExprHasProperty(pExpr, EP_Unlikely) ){
111 assert( !ExprHasProperty(pExpr, EP_xIsSelect) );
112 assert( pExpr->x.pList->nExpr>0 );
113 assert( pExpr->op==TK_FUNCTION );
114 pExpr = pExpr->x.pList->a[0].pExpr;
115 }else{
116 assert( pExpr->op==TK_COLLATE );
117 pExpr = pExpr->pLeft;
120 return pExpr;
124 ** Return the collation sequence for the expression pExpr. If
125 ** there is no defined collating sequence, return NULL.
127 ** See also: sqlite3ExprNNCollSeq()
129 ** The sqlite3ExprNNCollSeq() works the same exact that it returns the
130 ** default collation if pExpr has no defined collation.
132 ** The collating sequence might be determined by a COLLATE operator
133 ** or by the presence of a column with a defined collating sequence.
134 ** COLLATE operators take first precedence. Left operands take
135 ** precedence over right operands.
137 CollSeq *sqlite3ExprCollSeq(Parse *pParse, Expr *pExpr){
138 sqlite3 *db = pParse->db;
139 CollSeq *pColl = 0;
140 Expr *p = pExpr;
141 while( p ){
142 int op = p->op;
143 if( p->flags & EP_Generic ) break;
144 if( op==TK_CAST || op==TK_UPLUS ){
145 p = p->pLeft;
146 continue;
148 if( op==TK_COLLATE || (op==TK_REGISTER && p->op2==TK_COLLATE) ){
149 pColl = sqlite3GetCollSeq(pParse, ENC(db), 0, p->u.zToken);
150 break;
152 if( (op==TK_AGG_COLUMN || op==TK_COLUMN
153 || op==TK_REGISTER || op==TK_TRIGGER)
154 && p->pTab!=0
156 /* op==TK_REGISTER && p->pTab!=0 happens when pExpr was originally
157 ** a TK_COLUMN but was previously evaluated and cached in a register */
158 int j = p->iColumn;
159 if( j>=0 ){
160 const char *zColl = p->pTab->aCol[j].zColl;
161 pColl = sqlite3FindCollSeq(db, ENC(db), zColl, 0);
163 break;
165 if( p->flags & EP_Collate ){
166 if( p->pLeft && (p->pLeft->flags & EP_Collate)!=0 ){
167 p = p->pLeft;
168 }else{
169 Expr *pNext = p->pRight;
170 /* The Expr.x union is never used at the same time as Expr.pRight */
171 assert( p->x.pList==0 || p->pRight==0 );
172 /* p->flags holds EP_Collate and p->pLeft->flags does not. And
173 ** p->x.pSelect cannot. So if p->x.pLeft exists, it must hold at
174 ** least one EP_Collate. Thus the following two ALWAYS. */
175 if( p->x.pList!=0 && ALWAYS(!ExprHasProperty(p, EP_xIsSelect)) ){
176 int i;
177 for(i=0; ALWAYS(i<p->x.pList->nExpr); i++){
178 if( ExprHasProperty(p->x.pList->a[i].pExpr, EP_Collate) ){
179 pNext = p->x.pList->a[i].pExpr;
180 break;
184 p = pNext;
186 }else{
187 break;
190 if( sqlite3CheckCollSeq(pParse, pColl) ){
191 pColl = 0;
193 return pColl;
197 ** Return the collation sequence for the expression pExpr. If
198 ** there is no defined collating sequence, return a pointer to the
199 ** defautl collation sequence.
201 ** See also: sqlite3ExprCollSeq()
203 ** The sqlite3ExprCollSeq() routine works the same except that it
204 ** returns NULL if there is no defined collation.
206 CollSeq *sqlite3ExprNNCollSeq(Parse *pParse, Expr *pExpr){
207 CollSeq *p = sqlite3ExprCollSeq(pParse, pExpr);
208 if( p==0 ) p = pParse->db->pDfltColl;
209 assert( p!=0 );
210 return p;
214 ** Return TRUE if the two expressions have equivalent collating sequences.
216 int sqlite3ExprCollSeqMatch(Parse *pParse, Expr *pE1, Expr *pE2){
217 CollSeq *pColl1 = sqlite3ExprNNCollSeq(pParse, pE1);
218 CollSeq *pColl2 = sqlite3ExprNNCollSeq(pParse, pE2);
219 return sqlite3StrICmp(pColl1->zName, pColl2->zName)==0;
223 ** pExpr is an operand of a comparison operator. aff2 is the
224 ** type affinity of the other operand. This routine returns the
225 ** type affinity that should be used for the comparison operator.
227 char sqlite3CompareAffinity(Expr *pExpr, char aff2){
228 char aff1 = sqlite3ExprAffinity(pExpr);
229 if( aff1 && aff2 ){
230 /* Both sides of the comparison are columns. If one has numeric
231 ** affinity, use that. Otherwise use no affinity.
233 if( sqlite3IsNumericAffinity(aff1) || sqlite3IsNumericAffinity(aff2) ){
234 return SQLITE_AFF_NUMERIC;
235 }else{
236 return SQLITE_AFF_BLOB;
238 }else if( !aff1 && !aff2 ){
239 /* Neither side of the comparison is a column. Compare the
240 ** results directly.
242 return SQLITE_AFF_BLOB;
243 }else{
244 /* One side is a column, the other is not. Use the columns affinity. */
245 assert( aff1==0 || aff2==0 );
246 return (aff1 + aff2);
251 ** pExpr is a comparison operator. Return the type affinity that should
252 ** be applied to both operands prior to doing the comparison.
254 static char comparisonAffinity(Expr *pExpr){
255 char aff;
256 assert( pExpr->op==TK_EQ || pExpr->op==TK_IN || pExpr->op==TK_LT ||
257 pExpr->op==TK_GT || pExpr->op==TK_GE || pExpr->op==TK_LE ||
258 pExpr->op==TK_NE || pExpr->op==TK_IS || pExpr->op==TK_ISNOT );
259 assert( pExpr->pLeft );
260 aff = sqlite3ExprAffinity(pExpr->pLeft);
261 if( pExpr->pRight ){
262 aff = sqlite3CompareAffinity(pExpr->pRight, aff);
263 }else if( ExprHasProperty(pExpr, EP_xIsSelect) ){
264 aff = sqlite3CompareAffinity(pExpr->x.pSelect->pEList->a[0].pExpr, aff);
265 }else if( aff==0 ){
266 aff = SQLITE_AFF_BLOB;
268 return aff;
272 ** pExpr is a comparison expression, eg. '=', '<', IN(...) etc.
273 ** idx_affinity is the affinity of an indexed column. Return true
274 ** if the index with affinity idx_affinity may be used to implement
275 ** the comparison in pExpr.
277 int sqlite3IndexAffinityOk(Expr *pExpr, char idx_affinity){
278 char aff = comparisonAffinity(pExpr);
279 switch( aff ){
280 case SQLITE_AFF_BLOB:
281 return 1;
282 case SQLITE_AFF_TEXT:
283 return idx_affinity==SQLITE_AFF_TEXT;
284 default:
285 return sqlite3IsNumericAffinity(idx_affinity);
290 ** Return the P5 value that should be used for a binary comparison
291 ** opcode (OP_Eq, OP_Ge etc.) used to compare pExpr1 and pExpr2.
293 static u8 binaryCompareP5(Expr *pExpr1, Expr *pExpr2, int jumpIfNull){
294 u8 aff = (char)sqlite3ExprAffinity(pExpr2);
295 aff = (u8)sqlite3CompareAffinity(pExpr1, aff) | (u8)jumpIfNull;
296 return aff;
300 ** Return a pointer to the collation sequence that should be used by
301 ** a binary comparison operator comparing pLeft and pRight.
303 ** If the left hand expression has a collating sequence type, then it is
304 ** used. Otherwise the collation sequence for the right hand expression
305 ** is used, or the default (BINARY) if neither expression has a collating
306 ** type.
308 ** Argument pRight (but not pLeft) may be a null pointer. In this case,
309 ** it is not considered.
311 CollSeq *sqlite3BinaryCompareCollSeq(
312 Parse *pParse,
313 Expr *pLeft,
314 Expr *pRight
316 CollSeq *pColl;
317 assert( pLeft );
318 if( pLeft->flags & EP_Collate ){
319 pColl = sqlite3ExprCollSeq(pParse, pLeft);
320 }else if( pRight && (pRight->flags & EP_Collate)!=0 ){
321 pColl = sqlite3ExprCollSeq(pParse, pRight);
322 }else{
323 pColl = sqlite3ExprCollSeq(pParse, pLeft);
324 if( !pColl ){
325 pColl = sqlite3ExprCollSeq(pParse, pRight);
328 return pColl;
332 ** Generate code for a comparison operator.
334 static int codeCompare(
335 Parse *pParse, /* The parsing (and code generating) context */
336 Expr *pLeft, /* The left operand */
337 Expr *pRight, /* The right operand */
338 int opcode, /* The comparison opcode */
339 int in1, int in2, /* Register holding operands */
340 int dest, /* Jump here if true. */
341 int jumpIfNull /* If true, jump if either operand is NULL */
343 int p5;
344 int addr;
345 CollSeq *p4;
347 p4 = sqlite3BinaryCompareCollSeq(pParse, pLeft, pRight);
348 p5 = binaryCompareP5(pLeft, pRight, jumpIfNull);
349 addr = sqlite3VdbeAddOp4(pParse->pVdbe, opcode, in2, dest, in1,
350 (void*)p4, P4_COLLSEQ);
351 sqlite3VdbeChangeP5(pParse->pVdbe, (u8)p5);
352 return addr;
356 ** Return true if expression pExpr is a vector, or false otherwise.
358 ** A vector is defined as any expression that results in two or more
359 ** columns of result. Every TK_VECTOR node is an vector because the
360 ** parser will not generate a TK_VECTOR with fewer than two entries.
361 ** But a TK_SELECT might be either a vector or a scalar. It is only
362 ** considered a vector if it has two or more result columns.
364 int sqlite3ExprIsVector(Expr *pExpr){
365 return sqlite3ExprVectorSize(pExpr)>1;
369 ** If the expression passed as the only argument is of type TK_VECTOR
370 ** return the number of expressions in the vector. Or, if the expression
371 ** is a sub-select, return the number of columns in the sub-select. For
372 ** any other type of expression, return 1.
374 int sqlite3ExprVectorSize(Expr *pExpr){
375 u8 op = pExpr->op;
376 if( op==TK_REGISTER ) op = pExpr->op2;
377 if( op==TK_VECTOR ){
378 return pExpr->x.pList->nExpr;
379 }else if( op==TK_SELECT ){
380 return pExpr->x.pSelect->pEList->nExpr;
381 }else{
382 return 1;
387 ** Return a pointer to a subexpression of pVector that is the i-th
388 ** column of the vector (numbered starting with 0). The caller must
389 ** ensure that i is within range.
391 ** If pVector is really a scalar (and "scalar" here includes subqueries
392 ** that return a single column!) then return pVector unmodified.
394 ** pVector retains ownership of the returned subexpression.
396 ** If the vector is a (SELECT ...) then the expression returned is
397 ** just the expression for the i-th term of the result set, and may
398 ** not be ready for evaluation because the table cursor has not yet
399 ** been positioned.
401 Expr *sqlite3VectorFieldSubexpr(Expr *pVector, int i){
402 assert( i<sqlite3ExprVectorSize(pVector) );
403 if( sqlite3ExprIsVector(pVector) ){
404 assert( pVector->op2==0 || pVector->op==TK_REGISTER );
405 if( pVector->op==TK_SELECT || pVector->op2==TK_SELECT ){
406 return pVector->x.pSelect->pEList->a[i].pExpr;
407 }else{
408 return pVector->x.pList->a[i].pExpr;
411 return pVector;
415 ** Compute and return a new Expr object which when passed to
416 ** sqlite3ExprCode() will generate all necessary code to compute
417 ** the iField-th column of the vector expression pVector.
419 ** It is ok for pVector to be a scalar (as long as iField==0).
420 ** In that case, this routine works like sqlite3ExprDup().
422 ** The caller owns the returned Expr object and is responsible for
423 ** ensuring that the returned value eventually gets freed.
425 ** The caller retains ownership of pVector. If pVector is a TK_SELECT,
426 ** then the returned object will reference pVector and so pVector must remain
427 ** valid for the life of the returned object. If pVector is a TK_VECTOR
428 ** or a scalar expression, then it can be deleted as soon as this routine
429 ** returns.
431 ** A trick to cause a TK_SELECT pVector to be deleted together with
432 ** the returned Expr object is to attach the pVector to the pRight field
433 ** of the returned TK_SELECT_COLUMN Expr object.
435 Expr *sqlite3ExprForVectorField(
436 Parse *pParse, /* Parsing context */
437 Expr *pVector, /* The vector. List of expressions or a sub-SELECT */
438 int iField /* Which column of the vector to return */
440 Expr *pRet;
441 if( pVector->op==TK_SELECT ){
442 assert( pVector->flags & EP_xIsSelect );
443 /* The TK_SELECT_COLUMN Expr node:
445 ** pLeft: pVector containing TK_SELECT. Not deleted.
446 ** pRight: not used. But recursively deleted.
447 ** iColumn: Index of a column in pVector
448 ** iTable: 0 or the number of columns on the LHS of an assignment
449 ** pLeft->iTable: First in an array of register holding result, or 0
450 ** if the result is not yet computed.
452 ** sqlite3ExprDelete() specifically skips the recursive delete of
453 ** pLeft on TK_SELECT_COLUMN nodes. But pRight is followed, so pVector
454 ** can be attached to pRight to cause this node to take ownership of
455 ** pVector. Typically there will be multiple TK_SELECT_COLUMN nodes
456 ** with the same pLeft pointer to the pVector, but only one of them
457 ** will own the pVector.
459 pRet = sqlite3PExpr(pParse, TK_SELECT_COLUMN, 0, 0);
460 if( pRet ){
461 pRet->iColumn = iField;
462 pRet->pLeft = pVector;
464 assert( pRet==0 || pRet->iTable==0 );
465 }else{
466 if( pVector->op==TK_VECTOR ) pVector = pVector->x.pList->a[iField].pExpr;
467 pRet = sqlite3ExprDup(pParse->db, pVector, 0);
469 return pRet;
473 ** If expression pExpr is of type TK_SELECT, generate code to evaluate
474 ** it. Return the register in which the result is stored (or, if the
475 ** sub-select returns more than one column, the first in an array
476 ** of registers in which the result is stored).
478 ** If pExpr is not a TK_SELECT expression, return 0.
480 static int exprCodeSubselect(Parse *pParse, Expr *pExpr){
481 int reg = 0;
482 #ifndef SQLITE_OMIT_SUBQUERY
483 if( pExpr->op==TK_SELECT ){
484 reg = sqlite3CodeSubselect(pParse, pExpr, 0, 0);
486 #endif
487 return reg;
491 ** Argument pVector points to a vector expression - either a TK_VECTOR
492 ** or TK_SELECT that returns more than one column. This function returns
493 ** the register number of a register that contains the value of
494 ** element iField of the vector.
496 ** If pVector is a TK_SELECT expression, then code for it must have
497 ** already been generated using the exprCodeSubselect() routine. In this
498 ** case parameter regSelect should be the first in an array of registers
499 ** containing the results of the sub-select.
501 ** If pVector is of type TK_VECTOR, then code for the requested field
502 ** is generated. In this case (*pRegFree) may be set to the number of
503 ** a temporary register to be freed by the caller before returning.
505 ** Before returning, output parameter (*ppExpr) is set to point to the
506 ** Expr object corresponding to element iElem of the vector.
508 static int exprVectorRegister(
509 Parse *pParse, /* Parse context */
510 Expr *pVector, /* Vector to extract element from */
511 int iField, /* Field to extract from pVector */
512 int regSelect, /* First in array of registers */
513 Expr **ppExpr, /* OUT: Expression element */
514 int *pRegFree /* OUT: Temp register to free */
516 u8 op = pVector->op;
517 assert( op==TK_VECTOR || op==TK_REGISTER || op==TK_SELECT );
518 if( op==TK_REGISTER ){
519 *ppExpr = sqlite3VectorFieldSubexpr(pVector, iField);
520 return pVector->iTable+iField;
522 if( op==TK_SELECT ){
523 *ppExpr = pVector->x.pSelect->pEList->a[iField].pExpr;
524 return regSelect+iField;
526 *ppExpr = pVector->x.pList->a[iField].pExpr;
527 return sqlite3ExprCodeTemp(pParse, *ppExpr, pRegFree);
531 ** Expression pExpr is a comparison between two vector values. Compute
532 ** the result of the comparison (1, 0, or NULL) and write that
533 ** result into register dest.
535 ** The caller must satisfy the following preconditions:
537 ** if pExpr->op==TK_IS: op==TK_EQ and p5==SQLITE_NULLEQ
538 ** if pExpr->op==TK_ISNOT: op==TK_NE and p5==SQLITE_NULLEQ
539 ** otherwise: op==pExpr->op and p5==0
541 static void codeVectorCompare(
542 Parse *pParse, /* Code generator context */
543 Expr *pExpr, /* The comparison operation */
544 int dest, /* Write results into this register */
545 u8 op, /* Comparison operator */
546 u8 p5 /* SQLITE_NULLEQ or zero */
548 Vdbe *v = pParse->pVdbe;
549 Expr *pLeft = pExpr->pLeft;
550 Expr *pRight = pExpr->pRight;
551 int nLeft = sqlite3ExprVectorSize(pLeft);
552 int i;
553 int regLeft = 0;
554 int regRight = 0;
555 u8 opx = op;
556 int addrDone = sqlite3VdbeMakeLabel(v);
558 if( nLeft!=sqlite3ExprVectorSize(pRight) ){
559 sqlite3ErrorMsg(pParse, "row value misused");
560 return;
562 assert( pExpr->op==TK_EQ || pExpr->op==TK_NE
563 || pExpr->op==TK_IS || pExpr->op==TK_ISNOT
564 || pExpr->op==TK_LT || pExpr->op==TK_GT
565 || pExpr->op==TK_LE || pExpr->op==TK_GE
567 assert( pExpr->op==op || (pExpr->op==TK_IS && op==TK_EQ)
568 || (pExpr->op==TK_ISNOT && op==TK_NE) );
569 assert( p5==0 || pExpr->op!=op );
570 assert( p5==SQLITE_NULLEQ || pExpr->op==op );
572 p5 |= SQLITE_STOREP2;
573 if( opx==TK_LE ) opx = TK_LT;
574 if( opx==TK_GE ) opx = TK_GT;
576 regLeft = exprCodeSubselect(pParse, pLeft);
577 regRight = exprCodeSubselect(pParse, pRight);
579 for(i=0; 1 /*Loop exits by "break"*/; i++){
580 int regFree1 = 0, regFree2 = 0;
581 Expr *pL, *pR;
582 int r1, r2;
583 assert( i>=0 && i<nLeft );
584 if( i>0 ) sqlite3ExprCachePush(pParse);
585 r1 = exprVectorRegister(pParse, pLeft, i, regLeft, &pL, &regFree1);
586 r2 = exprVectorRegister(pParse, pRight, i, regRight, &pR, &regFree2);
587 codeCompare(pParse, pL, pR, opx, r1, r2, dest, p5);
588 testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt);
589 testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le);
590 testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt);
591 testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge);
592 testcase(op==OP_Eq); VdbeCoverageIf(v,op==OP_Eq);
593 testcase(op==OP_Ne); VdbeCoverageIf(v,op==OP_Ne);
594 sqlite3ReleaseTempReg(pParse, regFree1);
595 sqlite3ReleaseTempReg(pParse, regFree2);
596 if( i>0 ) sqlite3ExprCachePop(pParse);
597 if( i==nLeft-1 ){
598 break;
600 if( opx==TK_EQ ){
601 sqlite3VdbeAddOp2(v, OP_IfNot, dest, addrDone); VdbeCoverage(v);
602 p5 |= SQLITE_KEEPNULL;
603 }else if( opx==TK_NE ){
604 sqlite3VdbeAddOp2(v, OP_If, dest, addrDone); VdbeCoverage(v);
605 p5 |= SQLITE_KEEPNULL;
606 }else{
607 assert( op==TK_LT || op==TK_GT || op==TK_LE || op==TK_GE );
608 sqlite3VdbeAddOp2(v, OP_ElseNotEq, 0, addrDone);
609 VdbeCoverageIf(v, op==TK_LT);
610 VdbeCoverageIf(v, op==TK_GT);
611 VdbeCoverageIf(v, op==TK_LE);
612 VdbeCoverageIf(v, op==TK_GE);
613 if( i==nLeft-2 ) opx = op;
616 sqlite3VdbeResolveLabel(v, addrDone);
619 #if SQLITE_MAX_EXPR_DEPTH>0
621 ** Check that argument nHeight is less than or equal to the maximum
622 ** expression depth allowed. If it is not, leave an error message in
623 ** pParse.
625 int sqlite3ExprCheckHeight(Parse *pParse, int nHeight){
626 int rc = SQLITE_OK;
627 int mxHeight = pParse->db->aLimit[SQLITE_LIMIT_EXPR_DEPTH];
628 if( nHeight>mxHeight ){
629 sqlite3ErrorMsg(pParse,
630 "Expression tree is too large (maximum depth %d)", mxHeight
632 rc = SQLITE_ERROR;
634 return rc;
637 /* The following three functions, heightOfExpr(), heightOfExprList()
638 ** and heightOfSelect(), are used to determine the maximum height
639 ** of any expression tree referenced by the structure passed as the
640 ** first argument.
642 ** If this maximum height is greater than the current value pointed
643 ** to by pnHeight, the second parameter, then set *pnHeight to that
644 ** value.
646 static void heightOfExpr(Expr *p, int *pnHeight){
647 if( p ){
648 if( p->nHeight>*pnHeight ){
649 *pnHeight = p->nHeight;
653 static void heightOfExprList(ExprList *p, int *pnHeight){
654 if( p ){
655 int i;
656 for(i=0; i<p->nExpr; i++){
657 heightOfExpr(p->a[i].pExpr, pnHeight);
661 static void heightOfSelect(Select *pSelect, int *pnHeight){
662 Select *p;
663 for(p=pSelect; p; p=p->pPrior){
664 heightOfExpr(p->pWhere, pnHeight);
665 heightOfExpr(p->pHaving, pnHeight);
666 heightOfExpr(p->pLimit, pnHeight);
667 heightOfExprList(p->pEList, pnHeight);
668 heightOfExprList(p->pGroupBy, pnHeight);
669 heightOfExprList(p->pOrderBy, pnHeight);
674 ** Set the Expr.nHeight variable in the structure passed as an
675 ** argument. An expression with no children, Expr.pList or
676 ** Expr.pSelect member has a height of 1. Any other expression
677 ** has a height equal to the maximum height of any other
678 ** referenced Expr plus one.
680 ** Also propagate EP_Propagate flags up from Expr.x.pList to Expr.flags,
681 ** if appropriate.
683 static void exprSetHeight(Expr *p){
684 int nHeight = 0;
685 heightOfExpr(p->pLeft, &nHeight);
686 heightOfExpr(p->pRight, &nHeight);
687 if( ExprHasProperty(p, EP_xIsSelect) ){
688 heightOfSelect(p->x.pSelect, &nHeight);
689 }else if( p->x.pList ){
690 heightOfExprList(p->x.pList, &nHeight);
691 p->flags |= EP_Propagate & sqlite3ExprListFlags(p->x.pList);
693 p->nHeight = nHeight + 1;
697 ** Set the Expr.nHeight variable using the exprSetHeight() function. If
698 ** the height is greater than the maximum allowed expression depth,
699 ** leave an error in pParse.
701 ** Also propagate all EP_Propagate flags from the Expr.x.pList into
702 ** Expr.flags.
704 void sqlite3ExprSetHeightAndFlags(Parse *pParse, Expr *p){
705 if( pParse->nErr ) return;
706 exprSetHeight(p);
707 sqlite3ExprCheckHeight(pParse, p->nHeight);
711 ** Return the maximum height of any expression tree referenced
712 ** by the select statement passed as an argument.
714 int sqlite3SelectExprHeight(Select *p){
715 int nHeight = 0;
716 heightOfSelect(p, &nHeight);
717 return nHeight;
719 #else /* ABOVE: Height enforcement enabled. BELOW: Height enforcement off */
721 ** Propagate all EP_Propagate flags from the Expr.x.pList into
722 ** Expr.flags.
724 void sqlite3ExprSetHeightAndFlags(Parse *pParse, Expr *p){
725 if( p && p->x.pList && !ExprHasProperty(p, EP_xIsSelect) ){
726 p->flags |= EP_Propagate & sqlite3ExprListFlags(p->x.pList);
729 #define exprSetHeight(y)
730 #endif /* SQLITE_MAX_EXPR_DEPTH>0 */
733 ** This routine is the core allocator for Expr nodes.
735 ** Construct a new expression node and return a pointer to it. Memory
736 ** for this node and for the pToken argument is a single allocation
737 ** obtained from sqlite3DbMalloc(). The calling function
738 ** is responsible for making sure the node eventually gets freed.
740 ** If dequote is true, then the token (if it exists) is dequoted.
741 ** If dequote is false, no dequoting is performed. The deQuote
742 ** parameter is ignored if pToken is NULL or if the token does not
743 ** appear to be quoted. If the quotes were of the form "..." (double-quotes)
744 ** then the EP_DblQuoted flag is set on the expression node.
746 ** Special case: If op==TK_INTEGER and pToken points to a string that
747 ** can be translated into a 32-bit integer, then the token is not
748 ** stored in u.zToken. Instead, the integer values is written
749 ** into u.iValue and the EP_IntValue flag is set. No extra storage
750 ** is allocated to hold the integer text and the dequote flag is ignored.
752 Expr *sqlite3ExprAlloc(
753 sqlite3 *db, /* Handle for sqlite3DbMallocRawNN() */
754 int op, /* Expression opcode */
755 const Token *pToken, /* Token argument. Might be NULL */
756 int dequote /* True to dequote */
758 Expr *pNew;
759 int nExtra = 0;
760 int iValue = 0;
762 assert( db!=0 );
763 if( pToken ){
764 if( op!=TK_INTEGER || pToken->z==0
765 || sqlite3GetInt32(pToken->z, &iValue)==0 ){
766 nExtra = pToken->n+1;
767 assert( iValue>=0 );
770 pNew = sqlite3DbMallocRawNN(db, sizeof(Expr)+nExtra);
771 if( pNew ){
772 memset(pNew, 0, sizeof(Expr));
773 pNew->op = (u8)op;
774 pNew->iAgg = -1;
775 if( pToken ){
776 if( nExtra==0 ){
777 pNew->flags |= EP_IntValue|EP_Leaf;
778 pNew->u.iValue = iValue;
779 }else{
780 pNew->u.zToken = (char*)&pNew[1];
781 assert( pToken->z!=0 || pToken->n==0 );
782 if( pToken->n ) memcpy(pNew->u.zToken, pToken->z, pToken->n);
783 pNew->u.zToken[pToken->n] = 0;
784 if( dequote && sqlite3Isquote(pNew->u.zToken[0]) ){
785 if( pNew->u.zToken[0]=='"' ) pNew->flags |= EP_DblQuoted;
786 sqlite3Dequote(pNew->u.zToken);
790 #if SQLITE_MAX_EXPR_DEPTH>0
791 pNew->nHeight = 1;
792 #endif
794 return pNew;
798 ** Allocate a new expression node from a zero-terminated token that has
799 ** already been dequoted.
801 Expr *sqlite3Expr(
802 sqlite3 *db, /* Handle for sqlite3DbMallocZero() (may be null) */
803 int op, /* Expression opcode */
804 const char *zToken /* Token argument. Might be NULL */
806 Token x;
807 x.z = zToken;
808 x.n = sqlite3Strlen30(zToken);
809 return sqlite3ExprAlloc(db, op, &x, 0);
813 ** Attach subtrees pLeft and pRight to the Expr node pRoot.
815 ** If pRoot==NULL that means that a memory allocation error has occurred.
816 ** In that case, delete the subtrees pLeft and pRight.
818 void sqlite3ExprAttachSubtrees(
819 sqlite3 *db,
820 Expr *pRoot,
821 Expr *pLeft,
822 Expr *pRight
824 if( pRoot==0 ){
825 assert( db->mallocFailed );
826 sqlite3ExprDelete(db, pLeft);
827 sqlite3ExprDelete(db, pRight);
828 }else{
829 if( pRight ){
830 pRoot->pRight = pRight;
831 pRoot->flags |= EP_Propagate & pRight->flags;
833 if( pLeft ){
834 pRoot->pLeft = pLeft;
835 pRoot->flags |= EP_Propagate & pLeft->flags;
837 exprSetHeight(pRoot);
842 ** Allocate an Expr node which joins as many as two subtrees.
844 ** One or both of the subtrees can be NULL. Return a pointer to the new
845 ** Expr node. Or, if an OOM error occurs, set pParse->db->mallocFailed,
846 ** free the subtrees and return NULL.
848 Expr *sqlite3PExpr(
849 Parse *pParse, /* Parsing context */
850 int op, /* Expression opcode */
851 Expr *pLeft, /* Left operand */
852 Expr *pRight /* Right operand */
854 Expr *p;
855 if( op==TK_AND && pParse->nErr==0 ){
856 /* Take advantage of short-circuit false optimization for AND */
857 p = sqlite3ExprAnd(pParse->db, pLeft, pRight);
858 }else{
859 p = sqlite3DbMallocRawNN(pParse->db, sizeof(Expr));
860 if( p ){
861 memset(p, 0, sizeof(Expr));
862 p->op = op & TKFLG_MASK;
863 p->iAgg = -1;
865 sqlite3ExprAttachSubtrees(pParse->db, p, pLeft, pRight);
867 if( p ) {
868 sqlite3ExprCheckHeight(pParse, p->nHeight);
870 return p;
874 ** Add pSelect to the Expr.x.pSelect field. Or, if pExpr is NULL (due
875 ** do a memory allocation failure) then delete the pSelect object.
877 void sqlite3PExprAddSelect(Parse *pParse, Expr *pExpr, Select *pSelect){
878 if( pExpr ){
879 pExpr->x.pSelect = pSelect;
880 ExprSetProperty(pExpr, EP_xIsSelect|EP_Subquery);
881 sqlite3ExprSetHeightAndFlags(pParse, pExpr);
882 }else{
883 assert( pParse->db->mallocFailed );
884 sqlite3SelectDelete(pParse->db, pSelect);
890 ** If the expression is always either TRUE or FALSE (respectively),
891 ** then return 1. If one cannot determine the truth value of the
892 ** expression at compile-time return 0.
894 ** This is an optimization. If is OK to return 0 here even if
895 ** the expression really is always false or false (a false negative).
896 ** But it is a bug to return 1 if the expression might have different
897 ** boolean values in different circumstances (a false positive.)
899 ** Note that if the expression is part of conditional for a
900 ** LEFT JOIN, then we cannot determine at compile-time whether or not
901 ** is it true or false, so always return 0.
903 static int exprAlwaysTrue(Expr *p){
904 int v = 0;
905 if( ExprHasProperty(p, EP_FromJoin) ) return 0;
906 if( !sqlite3ExprIsInteger(p, &v) ) return 0;
907 return v!=0;
909 static int exprAlwaysFalse(Expr *p){
910 int v = 0;
911 if( ExprHasProperty(p, EP_FromJoin) ) return 0;
912 if( !sqlite3ExprIsInteger(p, &v) ) return 0;
913 return v==0;
917 ** Join two expressions using an AND operator. If either expression is
918 ** NULL, then just return the other expression.
920 ** If one side or the other of the AND is known to be false, then instead
921 ** of returning an AND expression, just return a constant expression with
922 ** a value of false.
924 Expr *sqlite3ExprAnd(sqlite3 *db, Expr *pLeft, Expr *pRight){
925 if( pLeft==0 ){
926 return pRight;
927 }else if( pRight==0 ){
928 return pLeft;
929 }else if( exprAlwaysFalse(pLeft) || exprAlwaysFalse(pRight) ){
930 sqlite3ExprDelete(db, pLeft);
931 sqlite3ExprDelete(db, pRight);
932 return sqlite3ExprAlloc(db, TK_INTEGER, &sqlite3IntTokens[0], 0);
933 }else{
934 Expr *pNew = sqlite3ExprAlloc(db, TK_AND, 0, 0);
935 sqlite3ExprAttachSubtrees(db, pNew, pLeft, pRight);
936 return pNew;
941 ** Construct a new expression node for a function with multiple
942 ** arguments.
944 Expr *sqlite3ExprFunction(Parse *pParse, ExprList *pList, Token *pToken){
945 Expr *pNew;
946 sqlite3 *db = pParse->db;
947 assert( pToken );
948 pNew = sqlite3ExprAlloc(db, TK_FUNCTION, pToken, 1);
949 if( pNew==0 ){
950 sqlite3ExprListDelete(db, pList); /* Avoid memory leak when malloc fails */
951 return 0;
953 pNew->x.pList = pList;
954 ExprSetProperty(pNew, EP_HasFunc);
955 assert( !ExprHasProperty(pNew, EP_xIsSelect) );
956 sqlite3ExprSetHeightAndFlags(pParse, pNew);
957 return pNew;
961 ** Assign a variable number to an expression that encodes a wildcard
962 ** in the original SQL statement.
964 ** Wildcards consisting of a single "?" are assigned the next sequential
965 ** variable number.
967 ** Wildcards of the form "?nnn" are assigned the number "nnn". We make
968 ** sure "nnn" is not too big to avoid a denial of service attack when
969 ** the SQL statement comes from an external source.
971 ** Wildcards of the form ":aaa", "@aaa", or "$aaa" are assigned the same number
972 ** as the previous instance of the same wildcard. Or if this is the first
973 ** instance of the wildcard, the next sequential variable number is
974 ** assigned.
976 void sqlite3ExprAssignVarNumber(Parse *pParse, Expr *pExpr, u32 n){
977 sqlite3 *db = pParse->db;
978 const char *z;
979 ynVar x;
981 if( pExpr==0 ) return;
982 assert( !ExprHasProperty(pExpr, EP_IntValue|EP_Reduced|EP_TokenOnly) );
983 z = pExpr->u.zToken;
984 assert( z!=0 );
985 assert( z[0]!=0 );
986 assert( n==(u32)sqlite3Strlen30(z) );
987 if( z[1]==0 ){
988 /* Wildcard of the form "?". Assign the next variable number */
989 assert( z[0]=='?' );
990 x = (ynVar)(++pParse->nVar);
991 }else{
992 int doAdd = 0;
993 if( z[0]=='?' ){
994 /* Wildcard of the form "?nnn". Convert "nnn" to an integer and
995 ** use it as the variable number */
996 i64 i;
997 int bOk;
998 if( n==2 ){ /*OPTIMIZATION-IF-TRUE*/
999 i = z[1]-'0'; /* The common case of ?N for a single digit N */
1000 bOk = 1;
1001 }else{
1002 bOk = 0==sqlite3Atoi64(&z[1], &i, n-1, SQLITE_UTF8);
1004 testcase( i==0 );
1005 testcase( i==1 );
1006 testcase( i==db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER]-1 );
1007 testcase( i==db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] );
1008 if( bOk==0 || i<1 || i>db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ){
1009 sqlite3ErrorMsg(pParse, "variable number must be between ?1 and ?%d",
1010 db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER]);
1011 return;
1013 x = (ynVar)i;
1014 if( x>pParse->nVar ){
1015 pParse->nVar = (int)x;
1016 doAdd = 1;
1017 }else if( sqlite3VListNumToName(pParse->pVList, x)==0 ){
1018 doAdd = 1;
1020 }else{
1021 /* Wildcards like ":aaa", "$aaa" or "@aaa". Reuse the same variable
1022 ** number as the prior appearance of the same name, or if the name
1023 ** has never appeared before, reuse the same variable number
1025 x = (ynVar)sqlite3VListNameToNum(pParse->pVList, z, n);
1026 if( x==0 ){
1027 x = (ynVar)(++pParse->nVar);
1028 doAdd = 1;
1031 if( doAdd ){
1032 pParse->pVList = sqlite3VListAdd(db, pParse->pVList, z, n, x);
1035 pExpr->iColumn = x;
1036 if( x>db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ){
1037 sqlite3ErrorMsg(pParse, "too many SQL variables");
1042 ** Recursively delete an expression tree.
1044 static SQLITE_NOINLINE void sqlite3ExprDeleteNN(sqlite3 *db, Expr *p){
1045 assert( p!=0 );
1046 /* Sanity check: Assert that the IntValue is non-negative if it exists */
1047 assert( !ExprHasProperty(p, EP_IntValue) || p->u.iValue>=0 );
1048 #ifdef SQLITE_DEBUG
1049 if( ExprHasProperty(p, EP_Leaf) && !ExprHasProperty(p, EP_TokenOnly) ){
1050 assert( p->pLeft==0 );
1051 assert( p->pRight==0 );
1052 assert( p->x.pSelect==0 );
1054 #endif
1055 if( !ExprHasProperty(p, (EP_TokenOnly|EP_Leaf)) ){
1056 /* The Expr.x union is never used at the same time as Expr.pRight */
1057 assert( p->x.pList==0 || p->pRight==0 );
1058 if( p->pLeft && p->op!=TK_SELECT_COLUMN ) sqlite3ExprDeleteNN(db, p->pLeft);
1059 if( p->pRight ){
1060 sqlite3ExprDeleteNN(db, p->pRight);
1061 }else if( ExprHasProperty(p, EP_xIsSelect) ){
1062 sqlite3SelectDelete(db, p->x.pSelect);
1063 }else{
1064 sqlite3ExprListDelete(db, p->x.pList);
1067 if( ExprHasProperty(p, EP_MemToken) ) sqlite3DbFree(db, p->u.zToken);
1068 if( !ExprHasProperty(p, EP_Static) ){
1069 sqlite3DbFreeNN(db, p);
1072 void sqlite3ExprDelete(sqlite3 *db, Expr *p){
1073 if( p ) sqlite3ExprDeleteNN(db, p);
1077 ** Return the number of bytes allocated for the expression structure
1078 ** passed as the first argument. This is always one of EXPR_FULLSIZE,
1079 ** EXPR_REDUCEDSIZE or EXPR_TOKENONLYSIZE.
1081 static int exprStructSize(Expr *p){
1082 if( ExprHasProperty(p, EP_TokenOnly) ) return EXPR_TOKENONLYSIZE;
1083 if( ExprHasProperty(p, EP_Reduced) ) return EXPR_REDUCEDSIZE;
1084 return EXPR_FULLSIZE;
1088 ** The dupedExpr*Size() routines each return the number of bytes required
1089 ** to store a copy of an expression or expression tree. They differ in
1090 ** how much of the tree is measured.
1092 ** dupedExprStructSize() Size of only the Expr structure
1093 ** dupedExprNodeSize() Size of Expr + space for token
1094 ** dupedExprSize() Expr + token + subtree components
1096 ***************************************************************************
1098 ** The dupedExprStructSize() function returns two values OR-ed together:
1099 ** (1) the space required for a copy of the Expr structure only and
1100 ** (2) the EP_xxx flags that indicate what the structure size should be.
1101 ** The return values is always one of:
1103 ** EXPR_FULLSIZE
1104 ** EXPR_REDUCEDSIZE | EP_Reduced
1105 ** EXPR_TOKENONLYSIZE | EP_TokenOnly
1107 ** The size of the structure can be found by masking the return value
1108 ** of this routine with 0xfff. The flags can be found by masking the
1109 ** return value with EP_Reduced|EP_TokenOnly.
1111 ** Note that with flags==EXPRDUP_REDUCE, this routines works on full-size
1112 ** (unreduced) Expr objects as they or originally constructed by the parser.
1113 ** During expression analysis, extra information is computed and moved into
1114 ** later parts of teh Expr object and that extra information might get chopped
1115 ** off if the expression is reduced. Note also that it does not work to
1116 ** make an EXPRDUP_REDUCE copy of a reduced expression. It is only legal
1117 ** to reduce a pristine expression tree from the parser. The implementation
1118 ** of dupedExprStructSize() contain multiple assert() statements that attempt
1119 ** to enforce this constraint.
1121 static int dupedExprStructSize(Expr *p, int flags){
1122 int nSize;
1123 assert( flags==EXPRDUP_REDUCE || flags==0 ); /* Only one flag value allowed */
1124 assert( EXPR_FULLSIZE<=0xfff );
1125 assert( (0xfff & (EP_Reduced|EP_TokenOnly))==0 );
1126 if( 0==flags || p->op==TK_SELECT_COLUMN ){
1127 nSize = EXPR_FULLSIZE;
1128 }else{
1129 assert( !ExprHasProperty(p, EP_TokenOnly|EP_Reduced) );
1130 assert( !ExprHasProperty(p, EP_FromJoin) );
1131 assert( !ExprHasProperty(p, EP_MemToken) );
1132 assert( !ExprHasProperty(p, EP_NoReduce) );
1133 if( p->pLeft || p->x.pList ){
1134 nSize = EXPR_REDUCEDSIZE | EP_Reduced;
1135 }else{
1136 assert( p->pRight==0 );
1137 nSize = EXPR_TOKENONLYSIZE | EP_TokenOnly;
1140 return nSize;
1144 ** This function returns the space in bytes required to store the copy
1145 ** of the Expr structure and a copy of the Expr.u.zToken string (if that
1146 ** string is defined.)
1148 static int dupedExprNodeSize(Expr *p, int flags){
1149 int nByte = dupedExprStructSize(p, flags) & 0xfff;
1150 if( !ExprHasProperty(p, EP_IntValue) && p->u.zToken ){
1151 nByte += sqlite3Strlen30(p->u.zToken)+1;
1153 return ROUND8(nByte);
1157 ** Return the number of bytes required to create a duplicate of the
1158 ** expression passed as the first argument. The second argument is a
1159 ** mask containing EXPRDUP_XXX flags.
1161 ** The value returned includes space to create a copy of the Expr struct
1162 ** itself and the buffer referred to by Expr.u.zToken, if any.
1164 ** If the EXPRDUP_REDUCE flag is set, then the return value includes
1165 ** space to duplicate all Expr nodes in the tree formed by Expr.pLeft
1166 ** and Expr.pRight variables (but not for any structures pointed to or
1167 ** descended from the Expr.x.pList or Expr.x.pSelect variables).
1169 static int dupedExprSize(Expr *p, int flags){
1170 int nByte = 0;
1171 if( p ){
1172 nByte = dupedExprNodeSize(p, flags);
1173 if( flags&EXPRDUP_REDUCE ){
1174 nByte += dupedExprSize(p->pLeft, flags) + dupedExprSize(p->pRight, flags);
1177 return nByte;
1181 ** This function is similar to sqlite3ExprDup(), except that if pzBuffer
1182 ** is not NULL then *pzBuffer is assumed to point to a buffer large enough
1183 ** to store the copy of expression p, the copies of p->u.zToken
1184 ** (if applicable), and the copies of the p->pLeft and p->pRight expressions,
1185 ** if any. Before returning, *pzBuffer is set to the first byte past the
1186 ** portion of the buffer copied into by this function.
1188 static Expr *exprDup(sqlite3 *db, Expr *p, int dupFlags, u8 **pzBuffer){
1189 Expr *pNew; /* Value to return */
1190 u8 *zAlloc; /* Memory space from which to build Expr object */
1191 u32 staticFlag; /* EP_Static if space not obtained from malloc */
1193 assert( db!=0 );
1194 assert( p );
1195 assert( dupFlags==0 || dupFlags==EXPRDUP_REDUCE );
1196 assert( pzBuffer==0 || dupFlags==EXPRDUP_REDUCE );
1198 /* Figure out where to write the new Expr structure. */
1199 if( pzBuffer ){
1200 zAlloc = *pzBuffer;
1201 staticFlag = EP_Static;
1202 }else{
1203 zAlloc = sqlite3DbMallocRawNN(db, dupedExprSize(p, dupFlags));
1204 staticFlag = 0;
1206 pNew = (Expr *)zAlloc;
1208 if( pNew ){
1209 /* Set nNewSize to the size allocated for the structure pointed to
1210 ** by pNew. This is either EXPR_FULLSIZE, EXPR_REDUCEDSIZE or
1211 ** EXPR_TOKENONLYSIZE. nToken is set to the number of bytes consumed
1212 ** by the copy of the p->u.zToken string (if any).
1214 const unsigned nStructSize = dupedExprStructSize(p, dupFlags);
1215 const int nNewSize = nStructSize & 0xfff;
1216 int nToken;
1217 if( !ExprHasProperty(p, EP_IntValue) && p->u.zToken ){
1218 nToken = sqlite3Strlen30(p->u.zToken) + 1;
1219 }else{
1220 nToken = 0;
1222 if( dupFlags ){
1223 assert( ExprHasProperty(p, EP_Reduced)==0 );
1224 memcpy(zAlloc, p, nNewSize);
1225 }else{
1226 u32 nSize = (u32)exprStructSize(p);
1227 memcpy(zAlloc, p, nSize);
1228 if( nSize<EXPR_FULLSIZE ){
1229 memset(&zAlloc[nSize], 0, EXPR_FULLSIZE-nSize);
1233 /* Set the EP_Reduced, EP_TokenOnly, and EP_Static flags appropriately. */
1234 pNew->flags &= ~(EP_Reduced|EP_TokenOnly|EP_Static|EP_MemToken);
1235 pNew->flags |= nStructSize & (EP_Reduced|EP_TokenOnly);
1236 pNew->flags |= staticFlag;
1238 /* Copy the p->u.zToken string, if any. */
1239 if( nToken ){
1240 char *zToken = pNew->u.zToken = (char*)&zAlloc[nNewSize];
1241 memcpy(zToken, p->u.zToken, nToken);
1244 if( 0==((p->flags|pNew->flags) & (EP_TokenOnly|EP_Leaf)) ){
1245 /* Fill in the pNew->x.pSelect or pNew->x.pList member. */
1246 if( ExprHasProperty(p, EP_xIsSelect) ){
1247 pNew->x.pSelect = sqlite3SelectDup(db, p->x.pSelect, dupFlags);
1248 }else{
1249 pNew->x.pList = sqlite3ExprListDup(db, p->x.pList, dupFlags);
1253 /* Fill in pNew->pLeft and pNew->pRight. */
1254 if( ExprHasProperty(pNew, EP_Reduced|EP_TokenOnly) ){
1255 zAlloc += dupedExprNodeSize(p, dupFlags);
1256 if( !ExprHasProperty(pNew, EP_TokenOnly|EP_Leaf) ){
1257 pNew->pLeft = p->pLeft ?
1258 exprDup(db, p->pLeft, EXPRDUP_REDUCE, &zAlloc) : 0;
1259 pNew->pRight = p->pRight ?
1260 exprDup(db, p->pRight, EXPRDUP_REDUCE, &zAlloc) : 0;
1262 if( pzBuffer ){
1263 *pzBuffer = zAlloc;
1265 }else{
1266 if( !ExprHasProperty(p, EP_TokenOnly|EP_Leaf) ){
1267 if( pNew->op==TK_SELECT_COLUMN ){
1268 pNew->pLeft = p->pLeft;
1269 assert( p->iColumn==0 || p->pRight==0 );
1270 assert( p->pRight==0 || p->pRight==p->pLeft );
1271 }else{
1272 pNew->pLeft = sqlite3ExprDup(db, p->pLeft, 0);
1274 pNew->pRight = sqlite3ExprDup(db, p->pRight, 0);
1278 return pNew;
1282 ** Create and return a deep copy of the object passed as the second
1283 ** argument. If an OOM condition is encountered, NULL is returned
1284 ** and the db->mallocFailed flag set.
1286 #ifndef SQLITE_OMIT_CTE
1287 static With *withDup(sqlite3 *db, With *p){
1288 With *pRet = 0;
1289 if( p ){
1290 int nByte = sizeof(*p) + sizeof(p->a[0]) * (p->nCte-1);
1291 pRet = sqlite3DbMallocZero(db, nByte);
1292 if( pRet ){
1293 int i;
1294 pRet->nCte = p->nCte;
1295 for(i=0; i<p->nCte; i++){
1296 pRet->a[i].pSelect = sqlite3SelectDup(db, p->a[i].pSelect, 0);
1297 pRet->a[i].pCols = sqlite3ExprListDup(db, p->a[i].pCols, 0);
1298 pRet->a[i].zName = sqlite3DbStrDup(db, p->a[i].zName);
1302 return pRet;
1304 #else
1305 # define withDup(x,y) 0
1306 #endif
1309 ** The following group of routines make deep copies of expressions,
1310 ** expression lists, ID lists, and select statements. The copies can
1311 ** be deleted (by being passed to their respective ...Delete() routines)
1312 ** without effecting the originals.
1314 ** The expression list, ID, and source lists return by sqlite3ExprListDup(),
1315 ** sqlite3IdListDup(), and sqlite3SrcListDup() can not be further expanded
1316 ** by subsequent calls to sqlite*ListAppend() routines.
1318 ** Any tables that the SrcList might point to are not duplicated.
1320 ** The flags parameter contains a combination of the EXPRDUP_XXX flags.
1321 ** If the EXPRDUP_REDUCE flag is set, then the structure returned is a
1322 ** truncated version of the usual Expr structure that will be stored as
1323 ** part of the in-memory representation of the database schema.
1325 Expr *sqlite3ExprDup(sqlite3 *db, Expr *p, int flags){
1326 assert( flags==0 || flags==EXPRDUP_REDUCE );
1327 return p ? exprDup(db, p, flags, 0) : 0;
1329 ExprList *sqlite3ExprListDup(sqlite3 *db, ExprList *p, int flags){
1330 ExprList *pNew;
1331 struct ExprList_item *pItem, *pOldItem;
1332 int i;
1333 Expr *pPriorSelectCol = 0;
1334 assert( db!=0 );
1335 if( p==0 ) return 0;
1336 pNew = sqlite3DbMallocRawNN(db, sqlite3DbMallocSize(db, p));
1337 if( pNew==0 ) return 0;
1338 pNew->nExpr = p->nExpr;
1339 pItem = pNew->a;
1340 pOldItem = p->a;
1341 for(i=0; i<p->nExpr; i++, pItem++, pOldItem++){
1342 Expr *pOldExpr = pOldItem->pExpr;
1343 Expr *pNewExpr;
1344 pItem->pExpr = sqlite3ExprDup(db, pOldExpr, flags);
1345 if( pOldExpr
1346 && pOldExpr->op==TK_SELECT_COLUMN
1347 && (pNewExpr = pItem->pExpr)!=0
1349 assert( pNewExpr->iColumn==0 || i>0 );
1350 if( pNewExpr->iColumn==0 ){
1351 assert( pOldExpr->pLeft==pOldExpr->pRight );
1352 pPriorSelectCol = pNewExpr->pLeft = pNewExpr->pRight;
1353 }else{
1354 assert( i>0 );
1355 assert( pItem[-1].pExpr!=0 );
1356 assert( pNewExpr->iColumn==pItem[-1].pExpr->iColumn+1 );
1357 assert( pPriorSelectCol==pItem[-1].pExpr->pLeft );
1358 pNewExpr->pLeft = pPriorSelectCol;
1361 pItem->zName = sqlite3DbStrDup(db, pOldItem->zName);
1362 pItem->zSpan = sqlite3DbStrDup(db, pOldItem->zSpan);
1363 pItem->sortOrder = pOldItem->sortOrder;
1364 pItem->done = 0;
1365 pItem->bSpanIsTab = pOldItem->bSpanIsTab;
1366 pItem->bSorterRef = pOldItem->bSorterRef;
1367 pItem->u = pOldItem->u;
1369 return pNew;
1373 ** If cursors, triggers, views and subqueries are all omitted from
1374 ** the build, then none of the following routines, except for
1375 ** sqlite3SelectDup(), can be called. sqlite3SelectDup() is sometimes
1376 ** called with a NULL argument.
1378 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_TRIGGER) \
1379 || !defined(SQLITE_OMIT_SUBQUERY)
1380 SrcList *sqlite3SrcListDup(sqlite3 *db, SrcList *p, int flags){
1381 SrcList *pNew;
1382 int i;
1383 int nByte;
1384 assert( db!=0 );
1385 if( p==0 ) return 0;
1386 nByte = sizeof(*p) + (p->nSrc>0 ? sizeof(p->a[0]) * (p->nSrc-1) : 0);
1387 pNew = sqlite3DbMallocRawNN(db, nByte );
1388 if( pNew==0 ) return 0;
1389 pNew->nSrc = pNew->nAlloc = p->nSrc;
1390 for(i=0; i<p->nSrc; i++){
1391 struct SrcList_item *pNewItem = &pNew->a[i];
1392 struct SrcList_item *pOldItem = &p->a[i];
1393 Table *pTab;
1394 pNewItem->pSchema = pOldItem->pSchema;
1395 pNewItem->zDatabase = sqlite3DbStrDup(db, pOldItem->zDatabase);
1396 pNewItem->zName = sqlite3DbStrDup(db, pOldItem->zName);
1397 pNewItem->zAlias = sqlite3DbStrDup(db, pOldItem->zAlias);
1398 pNewItem->fg = pOldItem->fg;
1399 pNewItem->iCursor = pOldItem->iCursor;
1400 pNewItem->addrFillSub = pOldItem->addrFillSub;
1401 pNewItem->regReturn = pOldItem->regReturn;
1402 if( pNewItem->fg.isIndexedBy ){
1403 pNewItem->u1.zIndexedBy = sqlite3DbStrDup(db, pOldItem->u1.zIndexedBy);
1405 pNewItem->pIBIndex = pOldItem->pIBIndex;
1406 if( pNewItem->fg.isTabFunc ){
1407 pNewItem->u1.pFuncArg =
1408 sqlite3ExprListDup(db, pOldItem->u1.pFuncArg, flags);
1410 pTab = pNewItem->pTab = pOldItem->pTab;
1411 if( pTab ){
1412 pTab->nTabRef++;
1414 pNewItem->pSelect = sqlite3SelectDup(db, pOldItem->pSelect, flags);
1415 pNewItem->pOn = sqlite3ExprDup(db, pOldItem->pOn, flags);
1416 pNewItem->pUsing = sqlite3IdListDup(db, pOldItem->pUsing);
1417 pNewItem->colUsed = pOldItem->colUsed;
1419 return pNew;
1421 IdList *sqlite3IdListDup(sqlite3 *db, IdList *p){
1422 IdList *pNew;
1423 int i;
1424 assert( db!=0 );
1425 if( p==0 ) return 0;
1426 pNew = sqlite3DbMallocRawNN(db, sizeof(*pNew) );
1427 if( pNew==0 ) return 0;
1428 pNew->nId = p->nId;
1429 pNew->a = sqlite3DbMallocRawNN(db, p->nId*sizeof(p->a[0]) );
1430 if( pNew->a==0 ){
1431 sqlite3DbFreeNN(db, pNew);
1432 return 0;
1434 /* Note that because the size of the allocation for p->a[] is not
1435 ** necessarily a power of two, sqlite3IdListAppend() may not be called
1436 ** on the duplicate created by this function. */
1437 for(i=0; i<p->nId; i++){
1438 struct IdList_item *pNewItem = &pNew->a[i];
1439 struct IdList_item *pOldItem = &p->a[i];
1440 pNewItem->zName = sqlite3DbStrDup(db, pOldItem->zName);
1441 pNewItem->idx = pOldItem->idx;
1443 return pNew;
1445 Select *sqlite3SelectDup(sqlite3 *db, Select *pDup, int flags){
1446 Select *pRet = 0;
1447 Select *pNext = 0;
1448 Select **pp = &pRet;
1449 Select *p;
1451 assert( db!=0 );
1452 for(p=pDup; p; p=p->pPrior){
1453 Select *pNew = sqlite3DbMallocRawNN(db, sizeof(*p) );
1454 if( pNew==0 ) break;
1455 pNew->pEList = sqlite3ExprListDup(db, p->pEList, flags);
1456 pNew->pSrc = sqlite3SrcListDup(db, p->pSrc, flags);
1457 pNew->pWhere = sqlite3ExprDup(db, p->pWhere, flags);
1458 pNew->pGroupBy = sqlite3ExprListDup(db, p->pGroupBy, flags);
1459 pNew->pHaving = sqlite3ExprDup(db, p->pHaving, flags);
1460 pNew->pOrderBy = sqlite3ExprListDup(db, p->pOrderBy, flags);
1461 pNew->op = p->op;
1462 pNew->pNext = pNext;
1463 pNew->pPrior = 0;
1464 pNew->pLimit = sqlite3ExprDup(db, p->pLimit, flags);
1465 pNew->iLimit = 0;
1466 pNew->iOffset = 0;
1467 pNew->selFlags = p->selFlags & ~SF_UsesEphemeral;
1468 pNew->addrOpenEphm[0] = -1;
1469 pNew->addrOpenEphm[1] = -1;
1470 pNew->nSelectRow = p->nSelectRow;
1471 pNew->pWith = withDup(db, p->pWith);
1472 sqlite3SelectSetName(pNew, p->zSelName);
1473 *pp = pNew;
1474 pp = &pNew->pPrior;
1475 pNext = pNew;
1478 return pRet;
1480 #else
1481 Select *sqlite3SelectDup(sqlite3 *db, Select *p, int flags){
1482 assert( p==0 );
1483 return 0;
1485 #endif
1489 ** Add a new element to the end of an expression list. If pList is
1490 ** initially NULL, then create a new expression list.
1492 ** The pList argument must be either NULL or a pointer to an ExprList
1493 ** obtained from a prior call to sqlite3ExprListAppend(). This routine
1494 ** may not be used with an ExprList obtained from sqlite3ExprListDup().
1495 ** Reason: This routine assumes that the number of slots in pList->a[]
1496 ** is a power of two. That is true for sqlite3ExprListAppend() returns
1497 ** but is not necessarily true from the return value of sqlite3ExprListDup().
1499 ** If a memory allocation error occurs, the entire list is freed and
1500 ** NULL is returned. If non-NULL is returned, then it is guaranteed
1501 ** that the new entry was successfully appended.
1503 ExprList *sqlite3ExprListAppend(
1504 Parse *pParse, /* Parsing context */
1505 ExprList *pList, /* List to which to append. Might be NULL */
1506 Expr *pExpr /* Expression to be appended. Might be NULL */
1508 struct ExprList_item *pItem;
1509 sqlite3 *db = pParse->db;
1510 assert( db!=0 );
1511 if( pList==0 ){
1512 pList = sqlite3DbMallocRawNN(db, sizeof(ExprList) );
1513 if( pList==0 ){
1514 goto no_mem;
1516 pList->nExpr = 0;
1517 }else if( (pList->nExpr & (pList->nExpr-1))==0 ){
1518 ExprList *pNew;
1519 pNew = sqlite3DbRealloc(db, pList,
1520 sizeof(*pList)+(2*pList->nExpr - 1)*sizeof(pList->a[0]));
1521 if( pNew==0 ){
1522 goto no_mem;
1524 pList = pNew;
1526 pItem = &pList->a[pList->nExpr++];
1527 assert( offsetof(struct ExprList_item,zName)==sizeof(pItem->pExpr) );
1528 assert( offsetof(struct ExprList_item,pExpr)==0 );
1529 memset(&pItem->zName,0,sizeof(*pItem)-offsetof(struct ExprList_item,zName));
1530 pItem->pExpr = pExpr;
1531 return pList;
1533 no_mem:
1534 /* Avoid leaking memory if malloc has failed. */
1535 sqlite3ExprDelete(db, pExpr);
1536 sqlite3ExprListDelete(db, pList);
1537 return 0;
1541 ** pColumns and pExpr form a vector assignment which is part of the SET
1542 ** clause of an UPDATE statement. Like this:
1544 ** (a,b,c) = (expr1,expr2,expr3)
1545 ** Or: (a,b,c) = (SELECT x,y,z FROM ....)
1547 ** For each term of the vector assignment, append new entries to the
1548 ** expression list pList. In the case of a subquery on the RHS, append
1549 ** TK_SELECT_COLUMN expressions.
1551 ExprList *sqlite3ExprListAppendVector(
1552 Parse *pParse, /* Parsing context */
1553 ExprList *pList, /* List to which to append. Might be NULL */
1554 IdList *pColumns, /* List of names of LHS of the assignment */
1555 Expr *pExpr /* Vector expression to be appended. Might be NULL */
1557 sqlite3 *db = pParse->db;
1558 int n;
1559 int i;
1560 int iFirst = pList ? pList->nExpr : 0;
1561 /* pColumns can only be NULL due to an OOM but an OOM will cause an
1562 ** exit prior to this routine being invoked */
1563 if( NEVER(pColumns==0) ) goto vector_append_error;
1564 if( pExpr==0 ) goto vector_append_error;
1566 /* If the RHS is a vector, then we can immediately check to see that
1567 ** the size of the RHS and LHS match. But if the RHS is a SELECT,
1568 ** wildcards ("*") in the result set of the SELECT must be expanded before
1569 ** we can do the size check, so defer the size check until code generation.
1571 if( pExpr->op!=TK_SELECT && pColumns->nId!=(n=sqlite3ExprVectorSize(pExpr)) ){
1572 sqlite3ErrorMsg(pParse, "%d columns assigned %d values",
1573 pColumns->nId, n);
1574 goto vector_append_error;
1577 for(i=0; i<pColumns->nId; i++){
1578 Expr *pSubExpr = sqlite3ExprForVectorField(pParse, pExpr, i);
1579 pList = sqlite3ExprListAppend(pParse, pList, pSubExpr);
1580 if( pList ){
1581 assert( pList->nExpr==iFirst+i+1 );
1582 pList->a[pList->nExpr-1].zName = pColumns->a[i].zName;
1583 pColumns->a[i].zName = 0;
1587 if( !db->mallocFailed && pExpr->op==TK_SELECT && ALWAYS(pList!=0) ){
1588 Expr *pFirst = pList->a[iFirst].pExpr;
1589 assert( pFirst!=0 );
1590 assert( pFirst->op==TK_SELECT_COLUMN );
1592 /* Store the SELECT statement in pRight so it will be deleted when
1593 ** sqlite3ExprListDelete() is called */
1594 pFirst->pRight = pExpr;
1595 pExpr = 0;
1597 /* Remember the size of the LHS in iTable so that we can check that
1598 ** the RHS and LHS sizes match during code generation. */
1599 pFirst->iTable = pColumns->nId;
1602 vector_append_error:
1603 sqlite3ExprDelete(db, pExpr);
1604 sqlite3IdListDelete(db, pColumns);
1605 return pList;
1609 ** Set the sort order for the last element on the given ExprList.
1611 void sqlite3ExprListSetSortOrder(ExprList *p, int iSortOrder){
1612 if( p==0 ) return;
1613 assert( SQLITE_SO_UNDEFINED<0 && SQLITE_SO_ASC>=0 && SQLITE_SO_DESC>0 );
1614 assert( p->nExpr>0 );
1615 if( iSortOrder<0 ){
1616 assert( p->a[p->nExpr-1].sortOrder==SQLITE_SO_ASC );
1617 return;
1619 p->a[p->nExpr-1].sortOrder = (u8)iSortOrder;
1623 ** Set the ExprList.a[].zName element of the most recently added item
1624 ** on the expression list.
1626 ** pList might be NULL following an OOM error. But pName should never be
1627 ** NULL. If a memory allocation fails, the pParse->db->mallocFailed flag
1628 ** is set.
1630 void sqlite3ExprListSetName(
1631 Parse *pParse, /* Parsing context */
1632 ExprList *pList, /* List to which to add the span. */
1633 Token *pName, /* Name to be added */
1634 int dequote /* True to cause the name to be dequoted */
1636 assert( pList!=0 || pParse->db->mallocFailed!=0 );
1637 if( pList ){
1638 struct ExprList_item *pItem;
1639 assert( pList->nExpr>0 );
1640 pItem = &pList->a[pList->nExpr-1];
1641 assert( pItem->zName==0 );
1642 pItem->zName = sqlite3DbStrNDup(pParse->db, pName->z, pName->n);
1643 if( dequote ) sqlite3Dequote(pItem->zName);
1648 ** Set the ExprList.a[].zSpan element of the most recently added item
1649 ** on the expression list.
1651 ** pList might be NULL following an OOM error. But pSpan should never be
1652 ** NULL. If a memory allocation fails, the pParse->db->mallocFailed flag
1653 ** is set.
1655 void sqlite3ExprListSetSpan(
1656 Parse *pParse, /* Parsing context */
1657 ExprList *pList, /* List to which to add the span. */
1658 const char *zStart, /* Start of the span */
1659 const char *zEnd /* End of the span */
1661 sqlite3 *db = pParse->db;
1662 assert( pList!=0 || db->mallocFailed!=0 );
1663 if( pList ){
1664 struct ExprList_item *pItem = &pList->a[pList->nExpr-1];
1665 assert( pList->nExpr>0 );
1666 sqlite3DbFree(db, pItem->zSpan);
1667 pItem->zSpan = sqlite3DbSpanDup(db, zStart, zEnd);
1672 ** If the expression list pEList contains more than iLimit elements,
1673 ** leave an error message in pParse.
1675 void sqlite3ExprListCheckLength(
1676 Parse *pParse,
1677 ExprList *pEList,
1678 const char *zObject
1680 int mx = pParse->db->aLimit[SQLITE_LIMIT_COLUMN];
1681 testcase( pEList && pEList->nExpr==mx );
1682 testcase( pEList && pEList->nExpr==mx+1 );
1683 if( pEList && pEList->nExpr>mx ){
1684 sqlite3ErrorMsg(pParse, "too many columns in %s", zObject);
1689 ** Delete an entire expression list.
1691 static SQLITE_NOINLINE void exprListDeleteNN(sqlite3 *db, ExprList *pList){
1692 int i = pList->nExpr;
1693 struct ExprList_item *pItem = pList->a;
1694 assert( pList->nExpr>0 );
1696 sqlite3ExprDelete(db, pItem->pExpr);
1697 sqlite3DbFree(db, pItem->zName);
1698 sqlite3DbFree(db, pItem->zSpan);
1699 pItem++;
1700 }while( --i>0 );
1701 sqlite3DbFreeNN(db, pList);
1703 void sqlite3ExprListDelete(sqlite3 *db, ExprList *pList){
1704 if( pList ) exprListDeleteNN(db, pList);
1708 ** Return the bitwise-OR of all Expr.flags fields in the given
1709 ** ExprList.
1711 u32 sqlite3ExprListFlags(const ExprList *pList){
1712 int i;
1713 u32 m = 0;
1714 assert( pList!=0 );
1715 for(i=0; i<pList->nExpr; i++){
1716 Expr *pExpr = pList->a[i].pExpr;
1717 assert( pExpr!=0 );
1718 m |= pExpr->flags;
1720 return m;
1724 ** This is a SELECT-node callback for the expression walker that
1725 ** always "fails". By "fail" in this case, we mean set
1726 ** pWalker->eCode to zero and abort.
1728 ** This callback is used by multiple expression walkers.
1730 int sqlite3SelectWalkFail(Walker *pWalker, Select *NotUsed){
1731 UNUSED_PARAMETER(NotUsed);
1732 pWalker->eCode = 0;
1733 return WRC_Abort;
1737 ** If the input expression is an ID with the name "true" or "false"
1738 ** then convert it into an TK_TRUEFALSE term. Return non-zero if
1739 ** the conversion happened, and zero if the expression is unaltered.
1741 int sqlite3ExprIdToTrueFalse(Expr *pExpr){
1742 assert( pExpr->op==TK_ID || pExpr->op==TK_STRING );
1743 if( sqlite3StrICmp(pExpr->u.zToken, "true")==0
1744 || sqlite3StrICmp(pExpr->u.zToken, "false")==0
1746 pExpr->op = TK_TRUEFALSE;
1747 return 1;
1749 return 0;
1753 ** The argument must be a TK_TRUEFALSE Expr node. Return 1 if it is TRUE
1754 ** and 0 if it is FALSE.
1756 int sqlite3ExprTruthValue(const Expr *pExpr){
1757 assert( pExpr->op==TK_TRUEFALSE );
1758 assert( sqlite3StrICmp(pExpr->u.zToken,"true")==0
1759 || sqlite3StrICmp(pExpr->u.zToken,"false")==0 );
1760 return pExpr->u.zToken[4]==0;
1765 ** These routines are Walker callbacks used to check expressions to
1766 ** see if they are "constant" for some definition of constant. The
1767 ** Walker.eCode value determines the type of "constant" we are looking
1768 ** for.
1770 ** These callback routines are used to implement the following:
1772 ** sqlite3ExprIsConstant() pWalker->eCode==1
1773 ** sqlite3ExprIsConstantNotJoin() pWalker->eCode==2
1774 ** sqlite3ExprIsTableConstant() pWalker->eCode==3
1775 ** sqlite3ExprIsConstantOrFunction() pWalker->eCode==4 or 5
1777 ** In all cases, the callbacks set Walker.eCode=0 and abort if the expression
1778 ** is found to not be a constant.
1780 ** The sqlite3ExprIsConstantOrFunction() is used for evaluating expressions
1781 ** in a CREATE TABLE statement. The Walker.eCode value is 5 when parsing
1782 ** an existing schema and 4 when processing a new statement. A bound
1783 ** parameter raises an error for new statements, but is silently converted
1784 ** to NULL for existing schemas. This allows sqlite_master tables that
1785 ** contain a bound parameter because they were generated by older versions
1786 ** of SQLite to be parsed by newer versions of SQLite without raising a
1787 ** malformed schema error.
1789 static int exprNodeIsConstant(Walker *pWalker, Expr *pExpr){
1791 /* If pWalker->eCode is 2 then any term of the expression that comes from
1792 ** the ON or USING clauses of a left join disqualifies the expression
1793 ** from being considered constant. */
1794 if( pWalker->eCode==2 && ExprHasProperty(pExpr, EP_FromJoin) ){
1795 pWalker->eCode = 0;
1796 return WRC_Abort;
1799 switch( pExpr->op ){
1800 /* Consider functions to be constant if all their arguments are constant
1801 ** and either pWalker->eCode==4 or 5 or the function has the
1802 ** SQLITE_FUNC_CONST flag. */
1803 case TK_FUNCTION:
1804 if( pWalker->eCode>=4 || ExprHasProperty(pExpr,EP_ConstFunc) ){
1805 return WRC_Continue;
1806 }else{
1807 pWalker->eCode = 0;
1808 return WRC_Abort;
1810 case TK_ID:
1811 /* Convert "true" or "false" in a DEFAULT clause into the
1812 ** appropriate TK_TRUEFALSE operator */
1813 if( sqlite3ExprIdToTrueFalse(pExpr) ){
1814 return WRC_Prune;
1816 /* Fall thru */
1817 case TK_COLUMN:
1818 case TK_AGG_FUNCTION:
1819 case TK_AGG_COLUMN:
1820 testcase( pExpr->op==TK_ID );
1821 testcase( pExpr->op==TK_COLUMN );
1822 testcase( pExpr->op==TK_AGG_FUNCTION );
1823 testcase( pExpr->op==TK_AGG_COLUMN );
1824 if( pWalker->eCode==3 && pExpr->iTable==pWalker->u.iCur ){
1825 return WRC_Continue;
1827 /* Fall through */
1828 case TK_IF_NULL_ROW:
1829 case TK_REGISTER:
1830 testcase( pExpr->op==TK_REGISTER );
1831 testcase( pExpr->op==TK_IF_NULL_ROW );
1832 pWalker->eCode = 0;
1833 return WRC_Abort;
1834 case TK_VARIABLE:
1835 if( pWalker->eCode==5 ){
1836 /* Silently convert bound parameters that appear inside of CREATE
1837 ** statements into a NULL when parsing the CREATE statement text out
1838 ** of the sqlite_master table */
1839 pExpr->op = TK_NULL;
1840 }else if( pWalker->eCode==4 ){
1841 /* A bound parameter in a CREATE statement that originates from
1842 ** sqlite3_prepare() causes an error */
1843 pWalker->eCode = 0;
1844 return WRC_Abort;
1846 /* Fall through */
1847 default:
1848 testcase( pExpr->op==TK_SELECT ); /* sqlite3SelectWalkFail() disallows */
1849 testcase( pExpr->op==TK_EXISTS ); /* sqlite3SelectWalkFail() disallows */
1850 return WRC_Continue;
1853 static int exprIsConst(Expr *p, int initFlag, int iCur){
1854 Walker w;
1855 w.eCode = initFlag;
1856 w.xExprCallback = exprNodeIsConstant;
1857 w.xSelectCallback = sqlite3SelectWalkFail;
1858 #ifdef SQLITE_DEBUG
1859 w.xSelectCallback2 = sqlite3SelectWalkAssert2;
1860 #endif
1861 w.u.iCur = iCur;
1862 sqlite3WalkExpr(&w, p);
1863 return w.eCode;
1867 ** Walk an expression tree. Return non-zero if the expression is constant
1868 ** and 0 if it involves variables or function calls.
1870 ** For the purposes of this function, a double-quoted string (ex: "abc")
1871 ** is considered a variable but a single-quoted string (ex: 'abc') is
1872 ** a constant.
1874 int sqlite3ExprIsConstant(Expr *p){
1875 return exprIsConst(p, 1, 0);
1879 ** Walk an expression tree. Return non-zero if the expression is constant
1880 ** that does no originate from the ON or USING clauses of a join.
1881 ** Return 0 if it involves variables or function calls or terms from
1882 ** an ON or USING clause.
1884 int sqlite3ExprIsConstantNotJoin(Expr *p){
1885 return exprIsConst(p, 2, 0);
1889 ** Walk an expression tree. Return non-zero if the expression is constant
1890 ** for any single row of the table with cursor iCur. In other words, the
1891 ** expression must not refer to any non-deterministic function nor any
1892 ** table other than iCur.
1894 int sqlite3ExprIsTableConstant(Expr *p, int iCur){
1895 return exprIsConst(p, 3, iCur);
1900 ** sqlite3WalkExpr() callback used by sqlite3ExprIsConstantOrGroupBy().
1902 static int exprNodeIsConstantOrGroupBy(Walker *pWalker, Expr *pExpr){
1903 ExprList *pGroupBy = pWalker->u.pGroupBy;
1904 int i;
1906 /* Check if pExpr is identical to any GROUP BY term. If so, consider
1907 ** it constant. */
1908 for(i=0; i<pGroupBy->nExpr; i++){
1909 Expr *p = pGroupBy->a[i].pExpr;
1910 if( sqlite3ExprCompare(0, pExpr, p, -1)<2 ){
1911 CollSeq *pColl = sqlite3ExprNNCollSeq(pWalker->pParse, p);
1912 if( sqlite3_stricmp("BINARY", pColl->zName)==0 ){
1913 return WRC_Prune;
1918 /* Check if pExpr is a sub-select. If so, consider it variable. */
1919 if( ExprHasProperty(pExpr, EP_xIsSelect) ){
1920 pWalker->eCode = 0;
1921 return WRC_Abort;
1924 return exprNodeIsConstant(pWalker, pExpr);
1928 ** Walk the expression tree passed as the first argument. Return non-zero
1929 ** if the expression consists entirely of constants or copies of terms
1930 ** in pGroupBy that sort with the BINARY collation sequence.
1932 ** This routine is used to determine if a term of the HAVING clause can
1933 ** be promoted into the WHERE clause. In order for such a promotion to work,
1934 ** the value of the HAVING clause term must be the same for all members of
1935 ** a "group". The requirement that the GROUP BY term must be BINARY
1936 ** assumes that no other collating sequence will have a finer-grained
1937 ** grouping than binary. In other words (A=B COLLATE binary) implies
1938 ** A=B in every other collating sequence. The requirement that the
1939 ** GROUP BY be BINARY is stricter than necessary. It would also work
1940 ** to promote HAVING clauses that use the same alternative collating
1941 ** sequence as the GROUP BY term, but that is much harder to check,
1942 ** alternative collating sequences are uncommon, and this is only an
1943 ** optimization, so we take the easy way out and simply require the
1944 ** GROUP BY to use the BINARY collating sequence.
1946 int sqlite3ExprIsConstantOrGroupBy(Parse *pParse, Expr *p, ExprList *pGroupBy){
1947 Walker w;
1948 w.eCode = 1;
1949 w.xExprCallback = exprNodeIsConstantOrGroupBy;
1950 w.xSelectCallback = 0;
1951 w.u.pGroupBy = pGroupBy;
1952 w.pParse = pParse;
1953 sqlite3WalkExpr(&w, p);
1954 return w.eCode;
1958 ** Walk an expression tree. Return non-zero if the expression is constant
1959 ** or a function call with constant arguments. Return and 0 if there
1960 ** are any variables.
1962 ** For the purposes of this function, a double-quoted string (ex: "abc")
1963 ** is considered a variable but a single-quoted string (ex: 'abc') is
1964 ** a constant.
1966 int sqlite3ExprIsConstantOrFunction(Expr *p, u8 isInit){
1967 assert( isInit==0 || isInit==1 );
1968 return exprIsConst(p, 4+isInit, 0);
1971 #ifdef SQLITE_ENABLE_CURSOR_HINTS
1973 ** Walk an expression tree. Return 1 if the expression contains a
1974 ** subquery of some kind. Return 0 if there are no subqueries.
1976 int sqlite3ExprContainsSubquery(Expr *p){
1977 Walker w;
1978 w.eCode = 1;
1979 w.xExprCallback = sqlite3ExprWalkNoop;
1980 w.xSelectCallback = sqlite3SelectWalkFail;
1981 #ifdef SQLITE_DEBUG
1982 w.xSelectCallback2 = sqlite3SelectWalkAssert2;
1983 #endif
1984 sqlite3WalkExpr(&w, p);
1985 return w.eCode==0;
1987 #endif
1990 ** If the expression p codes a constant integer that is small enough
1991 ** to fit in a 32-bit integer, return 1 and put the value of the integer
1992 ** in *pValue. If the expression is not an integer or if it is too big
1993 ** to fit in a signed 32-bit integer, return 0 and leave *pValue unchanged.
1995 int sqlite3ExprIsInteger(Expr *p, int *pValue){
1996 int rc = 0;
1997 if( p==0 ) return 0; /* Can only happen following on OOM */
1999 /* If an expression is an integer literal that fits in a signed 32-bit
2000 ** integer, then the EP_IntValue flag will have already been set */
2001 assert( p->op!=TK_INTEGER || (p->flags & EP_IntValue)!=0
2002 || sqlite3GetInt32(p->u.zToken, &rc)==0 );
2004 if( p->flags & EP_IntValue ){
2005 *pValue = p->u.iValue;
2006 return 1;
2008 switch( p->op ){
2009 case TK_UPLUS: {
2010 rc = sqlite3ExprIsInteger(p->pLeft, pValue);
2011 break;
2013 case TK_UMINUS: {
2014 int v;
2015 if( sqlite3ExprIsInteger(p->pLeft, &v) ){
2016 assert( v!=(-2147483647-1) );
2017 *pValue = -v;
2018 rc = 1;
2020 break;
2022 default: break;
2024 return rc;
2028 ** Return FALSE if there is no chance that the expression can be NULL.
2030 ** If the expression might be NULL or if the expression is too complex
2031 ** to tell return TRUE.
2033 ** This routine is used as an optimization, to skip OP_IsNull opcodes
2034 ** when we know that a value cannot be NULL. Hence, a false positive
2035 ** (returning TRUE when in fact the expression can never be NULL) might
2036 ** be a small performance hit but is otherwise harmless. On the other
2037 ** hand, a false negative (returning FALSE when the result could be NULL)
2038 ** will likely result in an incorrect answer. So when in doubt, return
2039 ** TRUE.
2041 int sqlite3ExprCanBeNull(const Expr *p){
2042 u8 op;
2043 while( p->op==TK_UPLUS || p->op==TK_UMINUS ){ p = p->pLeft; }
2044 op = p->op;
2045 if( op==TK_REGISTER ) op = p->op2;
2046 switch( op ){
2047 case TK_INTEGER:
2048 case TK_STRING:
2049 case TK_FLOAT:
2050 case TK_BLOB:
2051 return 0;
2052 case TK_COLUMN:
2053 return ExprHasProperty(p, EP_CanBeNull) ||
2054 p->pTab==0 || /* Reference to column of index on expression */
2055 (p->iColumn>=0 && p->pTab->aCol[p->iColumn].notNull==0);
2056 default:
2057 return 1;
2062 ** Return TRUE if the given expression is a constant which would be
2063 ** unchanged by OP_Affinity with the affinity given in the second
2064 ** argument.
2066 ** This routine is used to determine if the OP_Affinity operation
2067 ** can be omitted. When in doubt return FALSE. A false negative
2068 ** is harmless. A false positive, however, can result in the wrong
2069 ** answer.
2071 int sqlite3ExprNeedsNoAffinityChange(const Expr *p, char aff){
2072 u8 op;
2073 if( aff==SQLITE_AFF_BLOB ) return 1;
2074 while( p->op==TK_UPLUS || p->op==TK_UMINUS ){ p = p->pLeft; }
2075 op = p->op;
2076 if( op==TK_REGISTER ) op = p->op2;
2077 switch( op ){
2078 case TK_INTEGER: {
2079 return aff==SQLITE_AFF_INTEGER || aff==SQLITE_AFF_NUMERIC;
2081 case TK_FLOAT: {
2082 return aff==SQLITE_AFF_REAL || aff==SQLITE_AFF_NUMERIC;
2084 case TK_STRING: {
2085 return aff==SQLITE_AFF_TEXT;
2087 case TK_BLOB: {
2088 return 1;
2090 case TK_COLUMN: {
2091 assert( p->iTable>=0 ); /* p cannot be part of a CHECK constraint */
2092 return p->iColumn<0
2093 && (aff==SQLITE_AFF_INTEGER || aff==SQLITE_AFF_NUMERIC);
2095 default: {
2096 return 0;
2102 ** Return TRUE if the given string is a row-id column name.
2104 int sqlite3IsRowid(const char *z){
2105 if( sqlite3StrICmp(z, "_ROWID_")==0 ) return 1;
2106 if( sqlite3StrICmp(z, "ROWID")==0 ) return 1;
2107 if( sqlite3StrICmp(z, "OID")==0 ) return 1;
2108 return 0;
2112 ** pX is the RHS of an IN operator. If pX is a SELECT statement
2113 ** that can be simplified to a direct table access, then return
2114 ** a pointer to the SELECT statement. If pX is not a SELECT statement,
2115 ** or if the SELECT statement needs to be manifested into a transient
2116 ** table, then return NULL.
2118 #ifndef SQLITE_OMIT_SUBQUERY
2119 static Select *isCandidateForInOpt(Expr *pX){
2120 Select *p;
2121 SrcList *pSrc;
2122 ExprList *pEList;
2123 Table *pTab;
2124 int i;
2125 if( !ExprHasProperty(pX, EP_xIsSelect) ) return 0; /* Not a subquery */
2126 if( ExprHasProperty(pX, EP_VarSelect) ) return 0; /* Correlated subq */
2127 p = pX->x.pSelect;
2128 if( p->pPrior ) return 0; /* Not a compound SELECT */
2129 if( p->selFlags & (SF_Distinct|SF_Aggregate) ){
2130 testcase( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct );
2131 testcase( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Aggregate );
2132 return 0; /* No DISTINCT keyword and no aggregate functions */
2134 assert( p->pGroupBy==0 ); /* Has no GROUP BY clause */
2135 if( p->pLimit ) return 0; /* Has no LIMIT clause */
2136 if( p->pWhere ) return 0; /* Has no WHERE clause */
2137 pSrc = p->pSrc;
2138 assert( pSrc!=0 );
2139 if( pSrc->nSrc!=1 ) return 0; /* Single term in FROM clause */
2140 if( pSrc->a[0].pSelect ) return 0; /* FROM is not a subquery or view */
2141 pTab = pSrc->a[0].pTab;
2142 assert( pTab!=0 );
2143 assert( pTab->pSelect==0 ); /* FROM clause is not a view */
2144 if( IsVirtual(pTab) ) return 0; /* FROM clause not a virtual table */
2145 pEList = p->pEList;
2146 assert( pEList!=0 );
2147 /* All SELECT results must be columns. */
2148 for(i=0; i<pEList->nExpr; i++){
2149 Expr *pRes = pEList->a[i].pExpr;
2150 if( pRes->op!=TK_COLUMN ) return 0;
2151 assert( pRes->iTable==pSrc->a[0].iCursor ); /* Not a correlated subquery */
2153 return p;
2155 #endif /* SQLITE_OMIT_SUBQUERY */
2157 #ifndef SQLITE_OMIT_SUBQUERY
2159 ** Generate code that checks the left-most column of index table iCur to see if
2160 ** it contains any NULL entries. Cause the register at regHasNull to be set
2161 ** to a non-NULL value if iCur contains no NULLs. Cause register regHasNull
2162 ** to be set to NULL if iCur contains one or more NULL values.
2164 static void sqlite3SetHasNullFlag(Vdbe *v, int iCur, int regHasNull){
2165 int addr1;
2166 sqlite3VdbeAddOp2(v, OP_Integer, 0, regHasNull);
2167 addr1 = sqlite3VdbeAddOp1(v, OP_Rewind, iCur); VdbeCoverage(v);
2168 sqlite3VdbeAddOp3(v, OP_Column, iCur, 0, regHasNull);
2169 sqlite3VdbeChangeP5(v, OPFLAG_TYPEOFARG);
2170 VdbeComment((v, "first_entry_in(%d)", iCur));
2171 sqlite3VdbeJumpHere(v, addr1);
2173 #endif
2176 #ifndef SQLITE_OMIT_SUBQUERY
2178 ** The argument is an IN operator with a list (not a subquery) on the
2179 ** right-hand side. Return TRUE if that list is constant.
2181 static int sqlite3InRhsIsConstant(Expr *pIn){
2182 Expr *pLHS;
2183 int res;
2184 assert( !ExprHasProperty(pIn, EP_xIsSelect) );
2185 pLHS = pIn->pLeft;
2186 pIn->pLeft = 0;
2187 res = sqlite3ExprIsConstant(pIn);
2188 pIn->pLeft = pLHS;
2189 return res;
2191 #endif
2194 ** This function is used by the implementation of the IN (...) operator.
2195 ** The pX parameter is the expression on the RHS of the IN operator, which
2196 ** might be either a list of expressions or a subquery.
2198 ** The job of this routine is to find or create a b-tree object that can
2199 ** be used either to test for membership in the RHS set or to iterate through
2200 ** all members of the RHS set, skipping duplicates.
2202 ** A cursor is opened on the b-tree object that is the RHS of the IN operator
2203 ** and pX->iTable is set to the index of that cursor.
2205 ** The returned value of this function indicates the b-tree type, as follows:
2207 ** IN_INDEX_ROWID - The cursor was opened on a database table.
2208 ** IN_INDEX_INDEX_ASC - The cursor was opened on an ascending index.
2209 ** IN_INDEX_INDEX_DESC - The cursor was opened on a descending index.
2210 ** IN_INDEX_EPH - The cursor was opened on a specially created and
2211 ** populated epheremal table.
2212 ** IN_INDEX_NOOP - No cursor was allocated. The IN operator must be
2213 ** implemented as a sequence of comparisons.
2215 ** An existing b-tree might be used if the RHS expression pX is a simple
2216 ** subquery such as:
2218 ** SELECT <column1>, <column2>... FROM <table>
2220 ** If the RHS of the IN operator is a list or a more complex subquery, then
2221 ** an ephemeral table might need to be generated from the RHS and then
2222 ** pX->iTable made to point to the ephemeral table instead of an
2223 ** existing table.
2225 ** The inFlags parameter must contain, at a minimum, one of the bits
2226 ** IN_INDEX_MEMBERSHIP or IN_INDEX_LOOP but not both. If inFlags contains
2227 ** IN_INDEX_MEMBERSHIP, then the generated table will be used for a fast
2228 ** membership test. When the IN_INDEX_LOOP bit is set, the IN index will
2229 ** be used to loop over all values of the RHS of the IN operator.
2231 ** When IN_INDEX_LOOP is used (and the b-tree will be used to iterate
2232 ** through the set members) then the b-tree must not contain duplicates.
2233 ** An epheremal table will be created unless the selected columns are guaranteed
2234 ** to be unique - either because it is an INTEGER PRIMARY KEY or due to
2235 ** a UNIQUE constraint or index.
2237 ** When IN_INDEX_MEMBERSHIP is used (and the b-tree will be used
2238 ** for fast set membership tests) then an epheremal table must
2239 ** be used unless <columns> is a single INTEGER PRIMARY KEY column or an
2240 ** index can be found with the specified <columns> as its left-most.
2242 ** If the IN_INDEX_NOOP_OK and IN_INDEX_MEMBERSHIP are both set and
2243 ** if the RHS of the IN operator is a list (not a subquery) then this
2244 ** routine might decide that creating an ephemeral b-tree for membership
2245 ** testing is too expensive and return IN_INDEX_NOOP. In that case, the
2246 ** calling routine should implement the IN operator using a sequence
2247 ** of Eq or Ne comparison operations.
2249 ** When the b-tree is being used for membership tests, the calling function
2250 ** might need to know whether or not the RHS side of the IN operator
2251 ** contains a NULL. If prRhsHasNull is not a NULL pointer and
2252 ** if there is any chance that the (...) might contain a NULL value at
2253 ** runtime, then a register is allocated and the register number written
2254 ** to *prRhsHasNull. If there is no chance that the (...) contains a
2255 ** NULL value, then *prRhsHasNull is left unchanged.
2257 ** If a register is allocated and its location stored in *prRhsHasNull, then
2258 ** the value in that register will be NULL if the b-tree contains one or more
2259 ** NULL values, and it will be some non-NULL value if the b-tree contains no
2260 ** NULL values.
2262 ** If the aiMap parameter is not NULL, it must point to an array containing
2263 ** one element for each column returned by the SELECT statement on the RHS
2264 ** of the IN(...) operator. The i'th entry of the array is populated with the
2265 ** offset of the index column that matches the i'th column returned by the
2266 ** SELECT. For example, if the expression and selected index are:
2268 ** (?,?,?) IN (SELECT a, b, c FROM t1)
2269 ** CREATE INDEX i1 ON t1(b, c, a);
2271 ** then aiMap[] is populated with {2, 0, 1}.
2273 #ifndef SQLITE_OMIT_SUBQUERY
2274 int sqlite3FindInIndex(
2275 Parse *pParse, /* Parsing context */
2276 Expr *pX, /* The right-hand side (RHS) of the IN operator */
2277 u32 inFlags, /* IN_INDEX_LOOP, _MEMBERSHIP, and/or _NOOP_OK */
2278 int *prRhsHasNull, /* Register holding NULL status. See notes */
2279 int *aiMap /* Mapping from Index fields to RHS fields */
2281 Select *p; /* SELECT to the right of IN operator */
2282 int eType = 0; /* Type of RHS table. IN_INDEX_* */
2283 int iTab = pParse->nTab++; /* Cursor of the RHS table */
2284 int mustBeUnique; /* True if RHS must be unique */
2285 Vdbe *v = sqlite3GetVdbe(pParse); /* Virtual machine being coded */
2287 assert( pX->op==TK_IN );
2288 mustBeUnique = (inFlags & IN_INDEX_LOOP)!=0;
2290 /* If the RHS of this IN(...) operator is a SELECT, and if it matters
2291 ** whether or not the SELECT result contains NULL values, check whether
2292 ** or not NULL is actually possible (it may not be, for example, due
2293 ** to NOT NULL constraints in the schema). If no NULL values are possible,
2294 ** set prRhsHasNull to 0 before continuing. */
2295 if( prRhsHasNull && (pX->flags & EP_xIsSelect) ){
2296 int i;
2297 ExprList *pEList = pX->x.pSelect->pEList;
2298 for(i=0; i<pEList->nExpr; i++){
2299 if( sqlite3ExprCanBeNull(pEList->a[i].pExpr) ) break;
2301 if( i==pEList->nExpr ){
2302 prRhsHasNull = 0;
2306 /* Check to see if an existing table or index can be used to
2307 ** satisfy the query. This is preferable to generating a new
2308 ** ephemeral table. */
2309 if( pParse->nErr==0 && (p = isCandidateForInOpt(pX))!=0 ){
2310 sqlite3 *db = pParse->db; /* Database connection */
2311 Table *pTab; /* Table <table>. */
2312 i16 iDb; /* Database idx for pTab */
2313 ExprList *pEList = p->pEList;
2314 int nExpr = pEList->nExpr;
2316 assert( p->pEList!=0 ); /* Because of isCandidateForInOpt(p) */
2317 assert( p->pEList->a[0].pExpr!=0 ); /* Because of isCandidateForInOpt(p) */
2318 assert( p->pSrc!=0 ); /* Because of isCandidateForInOpt(p) */
2319 pTab = p->pSrc->a[0].pTab;
2321 /* Code an OP_Transaction and OP_TableLock for <table>. */
2322 iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
2323 sqlite3CodeVerifySchema(pParse, iDb);
2324 sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName);
2326 assert(v); /* sqlite3GetVdbe() has always been previously called */
2327 if( nExpr==1 && pEList->a[0].pExpr->iColumn<0 ){
2328 /* The "x IN (SELECT rowid FROM table)" case */
2329 int iAddr = sqlite3VdbeAddOp0(v, OP_Once);
2330 VdbeCoverage(v);
2332 sqlite3OpenTable(pParse, iTab, iDb, pTab, OP_OpenRead);
2333 eType = IN_INDEX_ROWID;
2335 sqlite3VdbeJumpHere(v, iAddr);
2336 }else{
2337 Index *pIdx; /* Iterator variable */
2338 int affinity_ok = 1;
2339 int i;
2341 /* Check that the affinity that will be used to perform each
2342 ** comparison is the same as the affinity of each column in table
2343 ** on the RHS of the IN operator. If it not, it is not possible to
2344 ** use any index of the RHS table. */
2345 for(i=0; i<nExpr && affinity_ok; i++){
2346 Expr *pLhs = sqlite3VectorFieldSubexpr(pX->pLeft, i);
2347 int iCol = pEList->a[i].pExpr->iColumn;
2348 char idxaff = sqlite3TableColumnAffinity(pTab,iCol); /* RHS table */
2349 char cmpaff = sqlite3CompareAffinity(pLhs, idxaff);
2350 testcase( cmpaff==SQLITE_AFF_BLOB );
2351 testcase( cmpaff==SQLITE_AFF_TEXT );
2352 switch( cmpaff ){
2353 case SQLITE_AFF_BLOB:
2354 break;
2355 case SQLITE_AFF_TEXT:
2356 /* sqlite3CompareAffinity() only returns TEXT if one side or the
2357 ** other has no affinity and the other side is TEXT. Hence,
2358 ** the only way for cmpaff to be TEXT is for idxaff to be TEXT
2359 ** and for the term on the LHS of the IN to have no affinity. */
2360 assert( idxaff==SQLITE_AFF_TEXT );
2361 break;
2362 default:
2363 affinity_ok = sqlite3IsNumericAffinity(idxaff);
2367 if( affinity_ok ){
2368 /* Search for an existing index that will work for this IN operator */
2369 for(pIdx=pTab->pIndex; pIdx && eType==0; pIdx=pIdx->pNext){
2370 Bitmask colUsed; /* Columns of the index used */
2371 Bitmask mCol; /* Mask for the current column */
2372 if( pIdx->nColumn<nExpr ) continue;
2373 /* Maximum nColumn is BMS-2, not BMS-1, so that we can compute
2374 ** BITMASK(nExpr) without overflowing */
2375 testcase( pIdx->nColumn==BMS-2 );
2376 testcase( pIdx->nColumn==BMS-1 );
2377 if( pIdx->nColumn>=BMS-1 ) continue;
2378 if( mustBeUnique ){
2379 if( pIdx->nKeyCol>nExpr
2380 ||(pIdx->nColumn>nExpr && !IsUniqueIndex(pIdx))
2382 continue; /* This index is not unique over the IN RHS columns */
2386 colUsed = 0; /* Columns of index used so far */
2387 for(i=0; i<nExpr; i++){
2388 Expr *pLhs = sqlite3VectorFieldSubexpr(pX->pLeft, i);
2389 Expr *pRhs = pEList->a[i].pExpr;
2390 CollSeq *pReq = sqlite3BinaryCompareCollSeq(pParse, pLhs, pRhs);
2391 int j;
2393 assert( pReq!=0 || pRhs->iColumn==XN_ROWID || pParse->nErr );
2394 for(j=0; j<nExpr; j++){
2395 if( pIdx->aiColumn[j]!=pRhs->iColumn ) continue;
2396 assert( pIdx->azColl[j] );
2397 if( pReq!=0 && sqlite3StrICmp(pReq->zName, pIdx->azColl[j])!=0 ){
2398 continue;
2400 break;
2402 if( j==nExpr ) break;
2403 mCol = MASKBIT(j);
2404 if( mCol & colUsed ) break; /* Each column used only once */
2405 colUsed |= mCol;
2406 if( aiMap ) aiMap[i] = j;
2409 assert( i==nExpr || colUsed!=(MASKBIT(nExpr)-1) );
2410 if( colUsed==(MASKBIT(nExpr)-1) ){
2411 /* If we reach this point, that means the index pIdx is usable */
2412 int iAddr = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v);
2413 #ifndef SQLITE_OMIT_EXPLAIN
2414 sqlite3VdbeAddOp4(v, OP_Explain, 0, 0, 0,
2415 sqlite3MPrintf(db, "USING INDEX %s FOR IN-OPERATOR",pIdx->zName),
2416 P4_DYNAMIC);
2417 #endif
2418 sqlite3VdbeAddOp3(v, OP_OpenRead, iTab, pIdx->tnum, iDb);
2419 sqlite3VdbeSetP4KeyInfo(pParse, pIdx);
2420 VdbeComment((v, "%s", pIdx->zName));
2421 assert( IN_INDEX_INDEX_DESC == IN_INDEX_INDEX_ASC+1 );
2422 eType = IN_INDEX_INDEX_ASC + pIdx->aSortOrder[0];
2424 if( prRhsHasNull ){
2425 #ifdef SQLITE_ENABLE_COLUMN_USED_MASK
2426 i64 mask = (1<<nExpr)-1;
2427 sqlite3VdbeAddOp4Dup8(v, OP_ColumnsUsed,
2428 iTab, 0, 0, (u8*)&mask, P4_INT64);
2429 #endif
2430 *prRhsHasNull = ++pParse->nMem;
2431 if( nExpr==1 ){
2432 sqlite3SetHasNullFlag(v, iTab, *prRhsHasNull);
2435 sqlite3VdbeJumpHere(v, iAddr);
2437 } /* End loop over indexes */
2438 } /* End if( affinity_ok ) */
2439 } /* End if not an rowid index */
2440 } /* End attempt to optimize using an index */
2442 /* If no preexisting index is available for the IN clause
2443 ** and IN_INDEX_NOOP is an allowed reply
2444 ** and the RHS of the IN operator is a list, not a subquery
2445 ** and the RHS is not constant or has two or fewer terms,
2446 ** then it is not worth creating an ephemeral table to evaluate
2447 ** the IN operator so return IN_INDEX_NOOP.
2449 if( eType==0
2450 && (inFlags & IN_INDEX_NOOP_OK)
2451 && !ExprHasProperty(pX, EP_xIsSelect)
2452 && (!sqlite3InRhsIsConstant(pX) || pX->x.pList->nExpr<=2)
2454 eType = IN_INDEX_NOOP;
2457 if( eType==0 ){
2458 /* Could not find an existing table or index to use as the RHS b-tree.
2459 ** We will have to generate an ephemeral table to do the job.
2461 u32 savedNQueryLoop = pParse->nQueryLoop;
2462 int rMayHaveNull = 0;
2463 eType = IN_INDEX_EPH;
2464 if( inFlags & IN_INDEX_LOOP ){
2465 pParse->nQueryLoop = 0;
2466 if( pX->pLeft->iColumn<0 && !ExprHasProperty(pX, EP_xIsSelect) ){
2467 eType = IN_INDEX_ROWID;
2469 }else if( prRhsHasNull ){
2470 *prRhsHasNull = rMayHaveNull = ++pParse->nMem;
2472 sqlite3CodeSubselect(pParse, pX, rMayHaveNull, eType==IN_INDEX_ROWID);
2473 pParse->nQueryLoop = savedNQueryLoop;
2474 }else{
2475 pX->iTable = iTab;
2478 if( aiMap && eType!=IN_INDEX_INDEX_ASC && eType!=IN_INDEX_INDEX_DESC ){
2479 int i, n;
2480 n = sqlite3ExprVectorSize(pX->pLeft);
2481 for(i=0; i<n; i++) aiMap[i] = i;
2483 return eType;
2485 #endif
2487 #ifndef SQLITE_OMIT_SUBQUERY
2489 ** Argument pExpr is an (?, ?...) IN(...) expression. This
2490 ** function allocates and returns a nul-terminated string containing
2491 ** the affinities to be used for each column of the comparison.
2493 ** It is the responsibility of the caller to ensure that the returned
2494 ** string is eventually freed using sqlite3DbFree().
2496 static char *exprINAffinity(Parse *pParse, Expr *pExpr){
2497 Expr *pLeft = pExpr->pLeft;
2498 int nVal = sqlite3ExprVectorSize(pLeft);
2499 Select *pSelect = (pExpr->flags & EP_xIsSelect) ? pExpr->x.pSelect : 0;
2500 char *zRet;
2502 assert( pExpr->op==TK_IN );
2503 zRet = sqlite3DbMallocRaw(pParse->db, nVal+1);
2504 if( zRet ){
2505 int i;
2506 for(i=0; i<nVal; i++){
2507 Expr *pA = sqlite3VectorFieldSubexpr(pLeft, i);
2508 char a = sqlite3ExprAffinity(pA);
2509 if( pSelect ){
2510 zRet[i] = sqlite3CompareAffinity(pSelect->pEList->a[i].pExpr, a);
2511 }else{
2512 zRet[i] = a;
2515 zRet[nVal] = '\0';
2517 return zRet;
2519 #endif
2521 #ifndef SQLITE_OMIT_SUBQUERY
2523 ** Load the Parse object passed as the first argument with an error
2524 ** message of the form:
2526 ** "sub-select returns N columns - expected M"
2528 void sqlite3SubselectError(Parse *pParse, int nActual, int nExpect){
2529 const char *zFmt = "sub-select returns %d columns - expected %d";
2530 sqlite3ErrorMsg(pParse, zFmt, nActual, nExpect);
2532 #endif
2535 ** Expression pExpr is a vector that has been used in a context where
2536 ** it is not permitted. If pExpr is a sub-select vector, this routine
2537 ** loads the Parse object with a message of the form:
2539 ** "sub-select returns N columns - expected 1"
2541 ** Or, if it is a regular scalar vector:
2543 ** "row value misused"
2545 void sqlite3VectorErrorMsg(Parse *pParse, Expr *pExpr){
2546 #ifndef SQLITE_OMIT_SUBQUERY
2547 if( pExpr->flags & EP_xIsSelect ){
2548 sqlite3SubselectError(pParse, pExpr->x.pSelect->pEList->nExpr, 1);
2549 }else
2550 #endif
2552 sqlite3ErrorMsg(pParse, "row value misused");
2557 ** Generate code for scalar subqueries used as a subquery expression, EXISTS,
2558 ** or IN operators. Examples:
2560 ** (SELECT a FROM b) -- subquery
2561 ** EXISTS (SELECT a FROM b) -- EXISTS subquery
2562 ** x IN (4,5,11) -- IN operator with list on right-hand side
2563 ** x IN (SELECT a FROM b) -- IN operator with subquery on the right
2565 ** The pExpr parameter describes the expression that contains the IN
2566 ** operator or subquery.
2568 ** If parameter isRowid is non-zero, then expression pExpr is guaranteed
2569 ** to be of the form "<rowid> IN (?, ?, ?)", where <rowid> is a reference
2570 ** to some integer key column of a table B-Tree. In this case, use an
2571 ** intkey B-Tree to store the set of IN(...) values instead of the usual
2572 ** (slower) variable length keys B-Tree.
2574 ** If rMayHaveNull is non-zero, that means that the operation is an IN
2575 ** (not a SELECT or EXISTS) and that the RHS might contains NULLs.
2576 ** All this routine does is initialize the register given by rMayHaveNull
2577 ** to NULL. Calling routines will take care of changing this register
2578 ** value to non-NULL if the RHS is NULL-free.
2580 ** For a SELECT or EXISTS operator, return the register that holds the
2581 ** result. For a multi-column SELECT, the result is stored in a contiguous
2582 ** array of registers and the return value is the register of the left-most
2583 ** result column. Return 0 for IN operators or if an error occurs.
2585 #ifndef SQLITE_OMIT_SUBQUERY
2586 int sqlite3CodeSubselect(
2587 Parse *pParse, /* Parsing context */
2588 Expr *pExpr, /* The IN, SELECT, or EXISTS operator */
2589 int rHasNullFlag, /* Register that records whether NULLs exist in RHS */
2590 int isRowid /* If true, LHS of IN operator is a rowid */
2592 int jmpIfDynamic = -1; /* One-time test address */
2593 int rReg = 0; /* Register storing resulting */
2594 Vdbe *v = sqlite3GetVdbe(pParse);
2595 if( NEVER(v==0) ) return 0;
2596 sqlite3ExprCachePush(pParse);
2598 /* The evaluation of the IN/EXISTS/SELECT must be repeated every time it
2599 ** is encountered if any of the following is true:
2601 ** * The right-hand side is a correlated subquery
2602 ** * The right-hand side is an expression list containing variables
2603 ** * We are inside a trigger
2605 ** If all of the above are false, then we can run this code just once
2606 ** save the results, and reuse the same result on subsequent invocations.
2608 if( !ExprHasProperty(pExpr, EP_VarSelect) ){
2609 jmpIfDynamic = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v);
2612 switch( pExpr->op ){
2613 case TK_IN: {
2614 int addr; /* Address of OP_OpenEphemeral instruction */
2615 Expr *pLeft = pExpr->pLeft; /* the LHS of the IN operator */
2616 KeyInfo *pKeyInfo = 0; /* Key information */
2617 int nVal; /* Size of vector pLeft */
2619 nVal = sqlite3ExprVectorSize(pLeft);
2620 assert( !isRowid || nVal==1 );
2622 /* Whether this is an 'x IN(SELECT...)' or an 'x IN(<exprlist>)'
2623 ** expression it is handled the same way. An ephemeral table is
2624 ** filled with index keys representing the results from the
2625 ** SELECT or the <exprlist>.
2627 ** If the 'x' expression is a column value, or the SELECT...
2628 ** statement returns a column value, then the affinity of that
2629 ** column is used to build the index keys. If both 'x' and the
2630 ** SELECT... statement are columns, then numeric affinity is used
2631 ** if either column has NUMERIC or INTEGER affinity. If neither
2632 ** 'x' nor the SELECT... statement are columns, then numeric affinity
2633 ** is used.
2635 pExpr->iTable = pParse->nTab++;
2636 addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral,
2637 pExpr->iTable, (isRowid?0:nVal));
2638 pKeyInfo = isRowid ? 0 : sqlite3KeyInfoAlloc(pParse->db, nVal, 1);
2640 if( ExprHasProperty(pExpr, EP_xIsSelect) ){
2641 /* Case 1: expr IN (SELECT ...)
2643 ** Generate code to write the results of the select into the temporary
2644 ** table allocated and opened above.
2646 Select *pSelect = pExpr->x.pSelect;
2647 ExprList *pEList = pSelect->pEList;
2649 #ifndef SQLITE_OMIT_EXPLAIN
2650 if( pParse->explain==2 ){
2651 char *zMsg = sqlite3MPrintf(pParse->db, "EXECUTE %sLIST SUBQUERY %d",
2652 jmpIfDynamic>=0?"":"CORRELATED ",
2653 pParse->iNextSelectId
2655 sqlite3VdbeAddOp4(v, OP_Explain, pParse->iSelectId, 0, 0, zMsg,
2656 P4_DYNAMIC);
2658 #endif
2660 assert( !isRowid );
2661 /* If the LHS and RHS of the IN operator do not match, that
2662 ** error will have been caught long before we reach this point. */
2663 if( ALWAYS(pEList->nExpr==nVal) ){
2664 SelectDest dest;
2665 int i;
2666 sqlite3SelectDestInit(&dest, SRT_Set, pExpr->iTable);
2667 dest.zAffSdst = exprINAffinity(pParse, pExpr);
2668 pSelect->iLimit = 0;
2669 testcase( pSelect->selFlags & SF_Distinct );
2670 testcase( pKeyInfo==0 ); /* Caused by OOM in sqlite3KeyInfoAlloc() */
2671 if( sqlite3Select(pParse, pSelect, &dest) ){
2672 sqlite3DbFree(pParse->db, dest.zAffSdst);
2673 sqlite3KeyInfoUnref(pKeyInfo);
2674 return 0;
2676 sqlite3DbFree(pParse->db, dest.zAffSdst);
2677 assert( pKeyInfo!=0 ); /* OOM will cause exit after sqlite3Select() */
2678 assert( pEList!=0 );
2679 assert( pEList->nExpr>0 );
2680 assert( sqlite3KeyInfoIsWriteable(pKeyInfo) );
2681 for(i=0; i<nVal; i++){
2682 Expr *p = sqlite3VectorFieldSubexpr(pLeft, i);
2683 pKeyInfo->aColl[i] = sqlite3BinaryCompareCollSeq(
2684 pParse, p, pEList->a[i].pExpr
2688 }else if( ALWAYS(pExpr->x.pList!=0) ){
2689 /* Case 2: expr IN (exprlist)
2691 ** For each expression, build an index key from the evaluation and
2692 ** store it in the temporary table. If <expr> is a column, then use
2693 ** that columns affinity when building index keys. If <expr> is not
2694 ** a column, use numeric affinity.
2696 char affinity; /* Affinity of the LHS of the IN */
2697 int i;
2698 ExprList *pList = pExpr->x.pList;
2699 struct ExprList_item *pItem;
2700 int r1, r2, r3;
2701 affinity = sqlite3ExprAffinity(pLeft);
2702 if( !affinity ){
2703 affinity = SQLITE_AFF_BLOB;
2705 if( pKeyInfo ){
2706 assert( sqlite3KeyInfoIsWriteable(pKeyInfo) );
2707 pKeyInfo->aColl[0] = sqlite3ExprCollSeq(pParse, pExpr->pLeft);
2710 /* Loop through each expression in <exprlist>. */
2711 r1 = sqlite3GetTempReg(pParse);
2712 r2 = sqlite3GetTempReg(pParse);
2713 if( isRowid ) sqlite3VdbeAddOp4(v, OP_Blob, 0, r2, 0, "", P4_STATIC);
2714 for(i=pList->nExpr, pItem=pList->a; i>0; i--, pItem++){
2715 Expr *pE2 = pItem->pExpr;
2716 int iValToIns;
2718 /* If the expression is not constant then we will need to
2719 ** disable the test that was generated above that makes sure
2720 ** this code only executes once. Because for a non-constant
2721 ** expression we need to rerun this code each time.
2723 if( jmpIfDynamic>=0 && !sqlite3ExprIsConstant(pE2) ){
2724 sqlite3VdbeChangeToNoop(v, jmpIfDynamic);
2725 jmpIfDynamic = -1;
2728 /* Evaluate the expression and insert it into the temp table */
2729 if( isRowid && sqlite3ExprIsInteger(pE2, &iValToIns) ){
2730 sqlite3VdbeAddOp3(v, OP_InsertInt, pExpr->iTable, r2, iValToIns);
2731 }else{
2732 r3 = sqlite3ExprCodeTarget(pParse, pE2, r1);
2733 if( isRowid ){
2734 sqlite3VdbeAddOp2(v, OP_MustBeInt, r3,
2735 sqlite3VdbeCurrentAddr(v)+2);
2736 VdbeCoverage(v);
2737 sqlite3VdbeAddOp3(v, OP_Insert, pExpr->iTable, r2, r3);
2738 }else{
2739 sqlite3VdbeAddOp4(v, OP_MakeRecord, r3, 1, r2, &affinity, 1);
2740 sqlite3ExprCacheAffinityChange(pParse, r3, 1);
2741 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, pExpr->iTable, r2, r3, 1);
2745 sqlite3ReleaseTempReg(pParse, r1);
2746 sqlite3ReleaseTempReg(pParse, r2);
2748 if( pKeyInfo ){
2749 sqlite3VdbeChangeP4(v, addr, (void *)pKeyInfo, P4_KEYINFO);
2751 break;
2754 case TK_EXISTS:
2755 case TK_SELECT:
2756 default: {
2757 /* Case 3: (SELECT ... FROM ...)
2758 ** or: EXISTS(SELECT ... FROM ...)
2760 ** For a SELECT, generate code to put the values for all columns of
2761 ** the first row into an array of registers and return the index of
2762 ** the first register.
2764 ** If this is an EXISTS, write an integer 0 (not exists) or 1 (exists)
2765 ** into a register and return that register number.
2767 ** In both cases, the query is augmented with "LIMIT 1". Any
2768 ** preexisting limit is discarded in place of the new LIMIT 1.
2770 Select *pSel; /* SELECT statement to encode */
2771 SelectDest dest; /* How to deal with SELECT result */
2772 int nReg; /* Registers to allocate */
2773 Expr *pLimit; /* New limit expression */
2775 testcase( pExpr->op==TK_EXISTS );
2776 testcase( pExpr->op==TK_SELECT );
2777 assert( pExpr->op==TK_EXISTS || pExpr->op==TK_SELECT );
2778 assert( ExprHasProperty(pExpr, EP_xIsSelect) );
2780 #ifndef SQLITE_OMIT_EXPLAIN
2781 if( pParse->explain==2 ){
2782 char *zMsg = sqlite3MPrintf(pParse->db, "EXECUTE %sSCALAR SUBQUERY %d",
2783 jmpIfDynamic>=0?"":"CORRELATED ",
2784 pParse->iNextSelectId
2786 sqlite3VdbeAddOp4(v, OP_Explain, pParse->iSelectId, 0, 0, zMsg,
2787 P4_DYNAMIC);
2789 #endif
2791 pSel = pExpr->x.pSelect;
2792 nReg = pExpr->op==TK_SELECT ? pSel->pEList->nExpr : 1;
2793 sqlite3SelectDestInit(&dest, 0, pParse->nMem+1);
2794 pParse->nMem += nReg;
2795 if( pExpr->op==TK_SELECT ){
2796 dest.eDest = SRT_Mem;
2797 dest.iSdst = dest.iSDParm;
2798 dest.nSdst = nReg;
2799 sqlite3VdbeAddOp3(v, OP_Null, 0, dest.iSDParm, dest.iSDParm+nReg-1);
2800 VdbeComment((v, "Init subquery result"));
2801 }else{
2802 dest.eDest = SRT_Exists;
2803 sqlite3VdbeAddOp2(v, OP_Integer, 0, dest.iSDParm);
2804 VdbeComment((v, "Init EXISTS result"));
2806 pLimit = sqlite3ExprAlloc(pParse->db, TK_INTEGER,&sqlite3IntTokens[1], 0);
2807 if( pSel->pLimit ){
2808 sqlite3ExprDelete(pParse->db, pSel->pLimit->pLeft);
2809 pSel->pLimit->pLeft = pLimit;
2810 }else{
2811 pSel->pLimit = sqlite3PExpr(pParse, TK_LIMIT, pLimit, 0);
2813 pSel->iLimit = 0;
2814 if( sqlite3Select(pParse, pSel, &dest) ){
2815 return 0;
2817 rReg = dest.iSDParm;
2818 ExprSetVVAProperty(pExpr, EP_NoReduce);
2819 break;
2823 if( rHasNullFlag ){
2824 sqlite3SetHasNullFlag(v, pExpr->iTable, rHasNullFlag);
2827 if( jmpIfDynamic>=0 ){
2828 sqlite3VdbeJumpHere(v, jmpIfDynamic);
2830 sqlite3ExprCachePop(pParse);
2832 return rReg;
2834 #endif /* SQLITE_OMIT_SUBQUERY */
2836 #ifndef SQLITE_OMIT_SUBQUERY
2838 ** Expr pIn is an IN(...) expression. This function checks that the
2839 ** sub-select on the RHS of the IN() operator has the same number of
2840 ** columns as the vector on the LHS. Or, if the RHS of the IN() is not
2841 ** a sub-query, that the LHS is a vector of size 1.
2843 int sqlite3ExprCheckIN(Parse *pParse, Expr *pIn){
2844 int nVector = sqlite3ExprVectorSize(pIn->pLeft);
2845 if( (pIn->flags & EP_xIsSelect) ){
2846 if( nVector!=pIn->x.pSelect->pEList->nExpr ){
2847 sqlite3SubselectError(pParse, pIn->x.pSelect->pEList->nExpr, nVector);
2848 return 1;
2850 }else if( nVector!=1 ){
2851 sqlite3VectorErrorMsg(pParse, pIn->pLeft);
2852 return 1;
2854 return 0;
2856 #endif
2858 #ifndef SQLITE_OMIT_SUBQUERY
2860 ** Generate code for an IN expression.
2862 ** x IN (SELECT ...)
2863 ** x IN (value, value, ...)
2865 ** The left-hand side (LHS) is a scalar or vector expression. The
2866 ** right-hand side (RHS) is an array of zero or more scalar values, or a
2867 ** subquery. If the RHS is a subquery, the number of result columns must
2868 ** match the number of columns in the vector on the LHS. If the RHS is
2869 ** a list of values, the LHS must be a scalar.
2871 ** The IN operator is true if the LHS value is contained within the RHS.
2872 ** The result is false if the LHS is definitely not in the RHS. The
2873 ** result is NULL if the presence of the LHS in the RHS cannot be
2874 ** determined due to NULLs.
2876 ** This routine generates code that jumps to destIfFalse if the LHS is not
2877 ** contained within the RHS. If due to NULLs we cannot determine if the LHS
2878 ** is contained in the RHS then jump to destIfNull. If the LHS is contained
2879 ** within the RHS then fall through.
2881 ** See the separate in-operator.md documentation file in the canonical
2882 ** SQLite source tree for additional information.
2884 static void sqlite3ExprCodeIN(
2885 Parse *pParse, /* Parsing and code generating context */
2886 Expr *pExpr, /* The IN expression */
2887 int destIfFalse, /* Jump here if LHS is not contained in the RHS */
2888 int destIfNull /* Jump here if the results are unknown due to NULLs */
2890 int rRhsHasNull = 0; /* Register that is true if RHS contains NULL values */
2891 int eType; /* Type of the RHS */
2892 int rLhs; /* Register(s) holding the LHS values */
2893 int rLhsOrig; /* LHS values prior to reordering by aiMap[] */
2894 Vdbe *v; /* Statement under construction */
2895 int *aiMap = 0; /* Map from vector field to index column */
2896 char *zAff = 0; /* Affinity string for comparisons */
2897 int nVector; /* Size of vectors for this IN operator */
2898 int iDummy; /* Dummy parameter to exprCodeVector() */
2899 Expr *pLeft; /* The LHS of the IN operator */
2900 int i; /* loop counter */
2901 int destStep2; /* Where to jump when NULLs seen in step 2 */
2902 int destStep6 = 0; /* Start of code for Step 6 */
2903 int addrTruthOp; /* Address of opcode that determines the IN is true */
2904 int destNotNull; /* Jump here if a comparison is not true in step 6 */
2905 int addrTop; /* Top of the step-6 loop */
2907 pLeft = pExpr->pLeft;
2908 if( sqlite3ExprCheckIN(pParse, pExpr) ) return;
2909 zAff = exprINAffinity(pParse, pExpr);
2910 nVector = sqlite3ExprVectorSize(pExpr->pLeft);
2911 aiMap = (int*)sqlite3DbMallocZero(
2912 pParse->db, nVector*(sizeof(int) + sizeof(char)) + 1
2914 if( pParse->db->mallocFailed ) goto sqlite3ExprCodeIN_oom_error;
2916 /* Attempt to compute the RHS. After this step, if anything other than
2917 ** IN_INDEX_NOOP is returned, the table opened ith cursor pExpr->iTable
2918 ** contains the values that make up the RHS. If IN_INDEX_NOOP is returned,
2919 ** the RHS has not yet been coded. */
2920 v = pParse->pVdbe;
2921 assert( v!=0 ); /* OOM detected prior to this routine */
2922 VdbeNoopComment((v, "begin IN expr"));
2923 eType = sqlite3FindInIndex(pParse, pExpr,
2924 IN_INDEX_MEMBERSHIP | IN_INDEX_NOOP_OK,
2925 destIfFalse==destIfNull ? 0 : &rRhsHasNull, aiMap);
2927 assert( pParse->nErr || nVector==1 || eType==IN_INDEX_EPH
2928 || eType==IN_INDEX_INDEX_ASC || eType==IN_INDEX_INDEX_DESC
2930 #ifdef SQLITE_DEBUG
2931 /* Confirm that aiMap[] contains nVector integer values between 0 and
2932 ** nVector-1. */
2933 for(i=0; i<nVector; i++){
2934 int j, cnt;
2935 for(cnt=j=0; j<nVector; j++) if( aiMap[j]==i ) cnt++;
2936 assert( cnt==1 );
2938 #endif
2940 /* Code the LHS, the <expr> from "<expr> IN (...)". If the LHS is a
2941 ** vector, then it is stored in an array of nVector registers starting
2942 ** at r1.
2944 ** sqlite3FindInIndex() might have reordered the fields of the LHS vector
2945 ** so that the fields are in the same order as an existing index. The
2946 ** aiMap[] array contains a mapping from the original LHS field order to
2947 ** the field order that matches the RHS index.
2949 sqlite3ExprCachePush(pParse);
2950 rLhsOrig = exprCodeVector(pParse, pLeft, &iDummy);
2951 for(i=0; i<nVector && aiMap[i]==i; i++){} /* Are LHS fields reordered? */
2952 if( i==nVector ){
2953 /* LHS fields are not reordered */
2954 rLhs = rLhsOrig;
2955 }else{
2956 /* Need to reorder the LHS fields according to aiMap */
2957 rLhs = sqlite3GetTempRange(pParse, nVector);
2958 for(i=0; i<nVector; i++){
2959 sqlite3VdbeAddOp3(v, OP_Copy, rLhsOrig+i, rLhs+aiMap[i], 0);
2963 /* If sqlite3FindInIndex() did not find or create an index that is
2964 ** suitable for evaluating the IN operator, then evaluate using a
2965 ** sequence of comparisons.
2967 ** This is step (1) in the in-operator.md optimized algorithm.
2969 if( eType==IN_INDEX_NOOP ){
2970 ExprList *pList = pExpr->x.pList;
2971 CollSeq *pColl = sqlite3ExprCollSeq(pParse, pExpr->pLeft);
2972 int labelOk = sqlite3VdbeMakeLabel(v);
2973 int r2, regToFree;
2974 int regCkNull = 0;
2975 int ii;
2976 assert( !ExprHasProperty(pExpr, EP_xIsSelect) );
2977 if( destIfNull!=destIfFalse ){
2978 regCkNull = sqlite3GetTempReg(pParse);
2979 sqlite3VdbeAddOp3(v, OP_BitAnd, rLhs, rLhs, regCkNull);
2981 for(ii=0; ii<pList->nExpr; ii++){
2982 r2 = sqlite3ExprCodeTemp(pParse, pList->a[ii].pExpr, &regToFree);
2983 if( regCkNull && sqlite3ExprCanBeNull(pList->a[ii].pExpr) ){
2984 sqlite3VdbeAddOp3(v, OP_BitAnd, regCkNull, r2, regCkNull);
2986 if( ii<pList->nExpr-1 || destIfNull!=destIfFalse ){
2987 sqlite3VdbeAddOp4(v, OP_Eq, rLhs, labelOk, r2,
2988 (void*)pColl, P4_COLLSEQ);
2989 VdbeCoverageIf(v, ii<pList->nExpr-1);
2990 VdbeCoverageIf(v, ii==pList->nExpr-1);
2991 sqlite3VdbeChangeP5(v, zAff[0]);
2992 }else{
2993 assert( destIfNull==destIfFalse );
2994 sqlite3VdbeAddOp4(v, OP_Ne, rLhs, destIfFalse, r2,
2995 (void*)pColl, P4_COLLSEQ); VdbeCoverage(v);
2996 sqlite3VdbeChangeP5(v, zAff[0] | SQLITE_JUMPIFNULL);
2998 sqlite3ReleaseTempReg(pParse, regToFree);
3000 if( regCkNull ){
3001 sqlite3VdbeAddOp2(v, OP_IsNull, regCkNull, destIfNull); VdbeCoverage(v);
3002 sqlite3VdbeGoto(v, destIfFalse);
3004 sqlite3VdbeResolveLabel(v, labelOk);
3005 sqlite3ReleaseTempReg(pParse, regCkNull);
3006 goto sqlite3ExprCodeIN_finished;
3009 /* Step 2: Check to see if the LHS contains any NULL columns. If the
3010 ** LHS does contain NULLs then the result must be either FALSE or NULL.
3011 ** We will then skip the binary search of the RHS.
3013 if( destIfNull==destIfFalse ){
3014 destStep2 = destIfFalse;
3015 }else{
3016 destStep2 = destStep6 = sqlite3VdbeMakeLabel(v);
3018 for(i=0; i<nVector; i++){
3019 Expr *p = sqlite3VectorFieldSubexpr(pExpr->pLeft, i);
3020 if( sqlite3ExprCanBeNull(p) ){
3021 sqlite3VdbeAddOp2(v, OP_IsNull, rLhs+i, destStep2);
3022 VdbeCoverage(v);
3026 /* Step 3. The LHS is now known to be non-NULL. Do the binary search
3027 ** of the RHS using the LHS as a probe. If found, the result is
3028 ** true.
3030 if( eType==IN_INDEX_ROWID ){
3031 /* In this case, the RHS is the ROWID of table b-tree and so we also
3032 ** know that the RHS is non-NULL. Hence, we combine steps 3 and 4
3033 ** into a single opcode. */
3034 sqlite3VdbeAddOp3(v, OP_SeekRowid, pExpr->iTable, destIfFalse, rLhs);
3035 VdbeCoverage(v);
3036 addrTruthOp = sqlite3VdbeAddOp0(v, OP_Goto); /* Return True */
3037 }else{
3038 sqlite3VdbeAddOp4(v, OP_Affinity, rLhs, nVector, 0, zAff, nVector);
3039 if( destIfFalse==destIfNull ){
3040 /* Combine Step 3 and Step 5 into a single opcode */
3041 sqlite3VdbeAddOp4Int(v, OP_NotFound, pExpr->iTable, destIfFalse,
3042 rLhs, nVector); VdbeCoverage(v);
3043 goto sqlite3ExprCodeIN_finished;
3045 /* Ordinary Step 3, for the case where FALSE and NULL are distinct */
3046 addrTruthOp = sqlite3VdbeAddOp4Int(v, OP_Found, pExpr->iTable, 0,
3047 rLhs, nVector); VdbeCoverage(v);
3050 /* Step 4. If the RHS is known to be non-NULL and we did not find
3051 ** an match on the search above, then the result must be FALSE.
3053 if( rRhsHasNull && nVector==1 ){
3054 sqlite3VdbeAddOp2(v, OP_NotNull, rRhsHasNull, destIfFalse);
3055 VdbeCoverage(v);
3058 /* Step 5. If we do not care about the difference between NULL and
3059 ** FALSE, then just return false.
3061 if( destIfFalse==destIfNull ) sqlite3VdbeGoto(v, destIfFalse);
3063 /* Step 6: Loop through rows of the RHS. Compare each row to the LHS.
3064 ** If any comparison is NULL, then the result is NULL. If all
3065 ** comparisons are FALSE then the final result is FALSE.
3067 ** For a scalar LHS, it is sufficient to check just the first row
3068 ** of the RHS.
3070 if( destStep6 ) sqlite3VdbeResolveLabel(v, destStep6);
3071 addrTop = sqlite3VdbeAddOp2(v, OP_Rewind, pExpr->iTable, destIfFalse);
3072 VdbeCoverage(v);
3073 if( nVector>1 ){
3074 destNotNull = sqlite3VdbeMakeLabel(v);
3075 }else{
3076 /* For nVector==1, combine steps 6 and 7 by immediately returning
3077 ** FALSE if the first comparison is not NULL */
3078 destNotNull = destIfFalse;
3080 for(i=0; i<nVector; i++){
3081 Expr *p;
3082 CollSeq *pColl;
3083 int r3 = sqlite3GetTempReg(pParse);
3084 p = sqlite3VectorFieldSubexpr(pLeft, i);
3085 pColl = sqlite3ExprCollSeq(pParse, p);
3086 sqlite3VdbeAddOp3(v, OP_Column, pExpr->iTable, i, r3);
3087 sqlite3VdbeAddOp4(v, OP_Ne, rLhs+i, destNotNull, r3,
3088 (void*)pColl, P4_COLLSEQ);
3089 VdbeCoverage(v);
3090 sqlite3ReleaseTempReg(pParse, r3);
3092 sqlite3VdbeAddOp2(v, OP_Goto, 0, destIfNull);
3093 if( nVector>1 ){
3094 sqlite3VdbeResolveLabel(v, destNotNull);
3095 sqlite3VdbeAddOp2(v, OP_Next, pExpr->iTable, addrTop+1);
3096 VdbeCoverage(v);
3098 /* Step 7: If we reach this point, we know that the result must
3099 ** be false. */
3100 sqlite3VdbeAddOp2(v, OP_Goto, 0, destIfFalse);
3103 /* Jumps here in order to return true. */
3104 sqlite3VdbeJumpHere(v, addrTruthOp);
3106 sqlite3ExprCodeIN_finished:
3107 if( rLhs!=rLhsOrig ) sqlite3ReleaseTempReg(pParse, rLhs);
3108 sqlite3ExprCachePop(pParse);
3109 VdbeComment((v, "end IN expr"));
3110 sqlite3ExprCodeIN_oom_error:
3111 sqlite3DbFree(pParse->db, aiMap);
3112 sqlite3DbFree(pParse->db, zAff);
3114 #endif /* SQLITE_OMIT_SUBQUERY */
3116 #ifndef SQLITE_OMIT_FLOATING_POINT
3118 ** Generate an instruction that will put the floating point
3119 ** value described by z[0..n-1] into register iMem.
3121 ** The z[] string will probably not be zero-terminated. But the
3122 ** z[n] character is guaranteed to be something that does not look
3123 ** like the continuation of the number.
3125 static void codeReal(Vdbe *v, const char *z, int negateFlag, int iMem){
3126 if( ALWAYS(z!=0) ){
3127 double value;
3128 sqlite3AtoF(z, &value, sqlite3Strlen30(z), SQLITE_UTF8);
3129 assert( !sqlite3IsNaN(value) ); /* The new AtoF never returns NaN */
3130 if( negateFlag ) value = -value;
3131 sqlite3VdbeAddOp4Dup8(v, OP_Real, 0, iMem, 0, (u8*)&value, P4_REAL);
3134 #endif
3138 ** Generate an instruction that will put the integer describe by
3139 ** text z[0..n-1] into register iMem.
3141 ** Expr.u.zToken is always UTF8 and zero-terminated.
3143 static void codeInteger(Parse *pParse, Expr *pExpr, int negFlag, int iMem){
3144 Vdbe *v = pParse->pVdbe;
3145 if( pExpr->flags & EP_IntValue ){
3146 int i = pExpr->u.iValue;
3147 assert( i>=0 );
3148 if( negFlag ) i = -i;
3149 sqlite3VdbeAddOp2(v, OP_Integer, i, iMem);
3150 }else{
3151 int c;
3152 i64 value;
3153 const char *z = pExpr->u.zToken;
3154 assert( z!=0 );
3155 c = sqlite3DecOrHexToI64(z, &value);
3156 if( (c==3 && !negFlag) || (c==2) || (negFlag && value==SMALLEST_INT64)){
3157 #ifdef SQLITE_OMIT_FLOATING_POINT
3158 sqlite3ErrorMsg(pParse, "oversized integer: %s%s", negFlag ? "-" : "", z);
3159 #else
3160 #ifndef SQLITE_OMIT_HEX_INTEGER
3161 if( sqlite3_strnicmp(z,"0x",2)==0 ){
3162 sqlite3ErrorMsg(pParse, "hex literal too big: %s%s", negFlag?"-":"",z);
3163 }else
3164 #endif
3166 codeReal(v, z, negFlag, iMem);
3168 #endif
3169 }else{
3170 if( negFlag ){ value = c==3 ? SMALLEST_INT64 : -value; }
3171 sqlite3VdbeAddOp4Dup8(v, OP_Int64, 0, iMem, 0, (u8*)&value, P4_INT64);
3177 ** Erase column-cache entry number i
3179 static void cacheEntryClear(Parse *pParse, int i){
3180 if( pParse->aColCache[i].tempReg ){
3181 if( pParse->nTempReg<ArraySize(pParse->aTempReg) ){
3182 pParse->aTempReg[pParse->nTempReg++] = pParse->aColCache[i].iReg;
3185 pParse->nColCache--;
3186 if( i<pParse->nColCache ){
3187 pParse->aColCache[i] = pParse->aColCache[pParse->nColCache];
3193 ** Record in the column cache that a particular column from a
3194 ** particular table is stored in a particular register.
3196 void sqlite3ExprCacheStore(Parse *pParse, int iTab, int iCol, int iReg){
3197 int i;
3198 int minLru;
3199 int idxLru;
3200 struct yColCache *p;
3202 /* Unless an error has occurred, register numbers are always positive. */
3203 assert( iReg>0 || pParse->nErr || pParse->db->mallocFailed );
3204 assert( iCol>=-1 && iCol<32768 ); /* Finite column numbers */
3206 /* The SQLITE_ColumnCache flag disables the column cache. This is used
3207 ** for testing only - to verify that SQLite always gets the same answer
3208 ** with and without the column cache.
3210 if( OptimizationDisabled(pParse->db, SQLITE_ColumnCache) ) return;
3212 /* First replace any existing entry.
3214 ** Actually, the way the column cache is currently used, we are guaranteed
3215 ** that the object will never already be in cache. Verify this guarantee.
3217 #ifndef NDEBUG
3218 for(i=0, p=pParse->aColCache; i<pParse->nColCache; i++, p++){
3219 assert( p->iTable!=iTab || p->iColumn!=iCol );
3221 #endif
3223 /* If the cache is already full, delete the least recently used entry */
3224 if( pParse->nColCache>=SQLITE_N_COLCACHE ){
3225 minLru = 0x7fffffff;
3226 idxLru = -1;
3227 for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){
3228 if( p->lru<minLru ){
3229 idxLru = i;
3230 minLru = p->lru;
3233 p = &pParse->aColCache[idxLru];
3234 }else{
3235 p = &pParse->aColCache[pParse->nColCache++];
3238 /* Add the new entry to the end of the cache */
3239 p->iLevel = pParse->iCacheLevel;
3240 p->iTable = iTab;
3241 p->iColumn = iCol;
3242 p->iReg = iReg;
3243 p->tempReg = 0;
3244 p->lru = pParse->iCacheCnt++;
3248 ** Indicate that registers between iReg..iReg+nReg-1 are being overwritten.
3249 ** Purge the range of registers from the column cache.
3251 void sqlite3ExprCacheRemove(Parse *pParse, int iReg, int nReg){
3252 int i = 0;
3253 while( i<pParse->nColCache ){
3254 struct yColCache *p = &pParse->aColCache[i];
3255 if( p->iReg >= iReg && p->iReg < iReg+nReg ){
3256 cacheEntryClear(pParse, i);
3257 }else{
3258 i++;
3264 ** Remember the current column cache context. Any new entries added
3265 ** added to the column cache after this call are removed when the
3266 ** corresponding pop occurs.
3268 void sqlite3ExprCachePush(Parse *pParse){
3269 pParse->iCacheLevel++;
3270 #ifdef SQLITE_DEBUG
3271 if( pParse->db->flags & SQLITE_VdbeAddopTrace ){
3272 printf("PUSH to %d\n", pParse->iCacheLevel);
3274 #endif
3278 ** Remove from the column cache any entries that were added since the
3279 ** the previous sqlite3ExprCachePush operation. In other words, restore
3280 ** the cache to the state it was in prior the most recent Push.
3282 void sqlite3ExprCachePop(Parse *pParse){
3283 int i = 0;
3284 assert( pParse->iCacheLevel>=1 );
3285 pParse->iCacheLevel--;
3286 #ifdef SQLITE_DEBUG
3287 if( pParse->db->flags & SQLITE_VdbeAddopTrace ){
3288 printf("POP to %d\n", pParse->iCacheLevel);
3290 #endif
3291 while( i<pParse->nColCache ){
3292 if( pParse->aColCache[i].iLevel>pParse->iCacheLevel ){
3293 cacheEntryClear(pParse, i);
3294 }else{
3295 i++;
3301 ** When a cached column is reused, make sure that its register is
3302 ** no longer available as a temp register. ticket #3879: that same
3303 ** register might be in the cache in multiple places, so be sure to
3304 ** get them all.
3306 static void sqlite3ExprCachePinRegister(Parse *pParse, int iReg){
3307 int i;
3308 struct yColCache *p;
3309 for(i=0, p=pParse->aColCache; i<pParse->nColCache; i++, p++){
3310 if( p->iReg==iReg ){
3311 p->tempReg = 0;
3316 /* Generate code that will load into register regOut a value that is
3317 ** appropriate for the iIdxCol-th column of index pIdx.
3319 void sqlite3ExprCodeLoadIndexColumn(
3320 Parse *pParse, /* The parsing context */
3321 Index *pIdx, /* The index whose column is to be loaded */
3322 int iTabCur, /* Cursor pointing to a table row */
3323 int iIdxCol, /* The column of the index to be loaded */
3324 int regOut /* Store the index column value in this register */
3326 i16 iTabCol = pIdx->aiColumn[iIdxCol];
3327 if( iTabCol==XN_EXPR ){
3328 assert( pIdx->aColExpr );
3329 assert( pIdx->aColExpr->nExpr>iIdxCol );
3330 pParse->iSelfTab = iTabCur + 1;
3331 sqlite3ExprCodeCopy(pParse, pIdx->aColExpr->a[iIdxCol].pExpr, regOut);
3332 pParse->iSelfTab = 0;
3333 }else{
3334 sqlite3ExprCodeGetColumnOfTable(pParse->pVdbe, pIdx->pTable, iTabCur,
3335 iTabCol, regOut);
3340 ** Generate code to extract the value of the iCol-th column of a table.
3342 void sqlite3ExprCodeGetColumnOfTable(
3343 Vdbe *v, /* The VDBE under construction */
3344 Table *pTab, /* The table containing the value */
3345 int iTabCur, /* The table cursor. Or the PK cursor for WITHOUT ROWID */
3346 int iCol, /* Index of the column to extract */
3347 int regOut /* Extract the value into this register */
3349 if( pTab==0 ){
3350 sqlite3VdbeAddOp3(v, OP_Column, iTabCur, iCol, regOut);
3351 return;
3353 if( iCol<0 || iCol==pTab->iPKey ){
3354 sqlite3VdbeAddOp2(v, OP_Rowid, iTabCur, regOut);
3355 }else{
3356 int op = IsVirtual(pTab) ? OP_VColumn : OP_Column;
3357 int x = iCol;
3358 if( !HasRowid(pTab) && !IsVirtual(pTab) ){
3359 x = sqlite3ColumnOfIndex(sqlite3PrimaryKeyIndex(pTab), iCol);
3361 sqlite3VdbeAddOp3(v, op, iTabCur, x, regOut);
3363 if( iCol>=0 ){
3364 sqlite3ColumnDefault(v, pTab, iCol, regOut);
3369 ** Generate code that will extract the iColumn-th column from
3370 ** table pTab and store the column value in a register.
3372 ** An effort is made to store the column value in register iReg. This
3373 ** is not garanteeed for GetColumn() - the result can be stored in
3374 ** any register. But the result is guaranteed to land in register iReg
3375 ** for GetColumnToReg().
3377 ** There must be an open cursor to pTab in iTable when this routine
3378 ** is called. If iColumn<0 then code is generated that extracts the rowid.
3380 int sqlite3ExprCodeGetColumn(
3381 Parse *pParse, /* Parsing and code generating context */
3382 Table *pTab, /* Description of the table we are reading from */
3383 int iColumn, /* Index of the table column */
3384 int iTable, /* The cursor pointing to the table */
3385 int iReg, /* Store results here */
3386 u8 p5 /* P5 value for OP_Column + FLAGS */
3388 Vdbe *v = pParse->pVdbe;
3389 int i;
3390 struct yColCache *p;
3392 for(i=0, p=pParse->aColCache; i<pParse->nColCache; i++, p++){
3393 if( p->iTable==iTable && p->iColumn==iColumn ){
3394 p->lru = pParse->iCacheCnt++;
3395 sqlite3ExprCachePinRegister(pParse, p->iReg);
3396 return p->iReg;
3399 assert( v!=0 );
3400 sqlite3ExprCodeGetColumnOfTable(v, pTab, iTable, iColumn, iReg);
3401 if( p5 ){
3402 sqlite3VdbeChangeP5(v, p5);
3403 }else{
3404 sqlite3ExprCacheStore(pParse, iTable, iColumn, iReg);
3406 return iReg;
3408 void sqlite3ExprCodeGetColumnToReg(
3409 Parse *pParse, /* Parsing and code generating context */
3410 Table *pTab, /* Description of the table we are reading from */
3411 int iColumn, /* Index of the table column */
3412 int iTable, /* The cursor pointing to the table */
3413 int iReg /* Store results here */
3415 int r1 = sqlite3ExprCodeGetColumn(pParse, pTab, iColumn, iTable, iReg, 0);
3416 if( r1!=iReg ) sqlite3VdbeAddOp2(pParse->pVdbe, OP_SCopy, r1, iReg);
3421 ** Clear all column cache entries.
3423 void sqlite3ExprCacheClear(Parse *pParse){
3424 int i;
3426 #ifdef SQLITE_DEBUG
3427 if( pParse->db->flags & SQLITE_VdbeAddopTrace ){
3428 printf("CLEAR\n");
3430 #endif
3431 for(i=0; i<pParse->nColCache; i++){
3432 if( pParse->aColCache[i].tempReg
3433 && pParse->nTempReg<ArraySize(pParse->aTempReg)
3435 pParse->aTempReg[pParse->nTempReg++] = pParse->aColCache[i].iReg;
3438 pParse->nColCache = 0;
3442 ** Record the fact that an affinity change has occurred on iCount
3443 ** registers starting with iStart.
3445 void sqlite3ExprCacheAffinityChange(Parse *pParse, int iStart, int iCount){
3446 sqlite3ExprCacheRemove(pParse, iStart, iCount);
3450 ** Generate code to move content from registers iFrom...iFrom+nReg-1
3451 ** over to iTo..iTo+nReg-1. Keep the column cache up-to-date.
3453 void sqlite3ExprCodeMove(Parse *pParse, int iFrom, int iTo, int nReg){
3454 assert( iFrom>=iTo+nReg || iFrom+nReg<=iTo );
3455 sqlite3VdbeAddOp3(pParse->pVdbe, OP_Move, iFrom, iTo, nReg);
3456 sqlite3ExprCacheRemove(pParse, iFrom, nReg);
3459 #if defined(SQLITE_DEBUG) || defined(SQLITE_COVERAGE_TEST)
3461 ** Return true if any register in the range iFrom..iTo (inclusive)
3462 ** is used as part of the column cache.
3464 ** This routine is used within assert() and testcase() macros only
3465 ** and does not appear in a normal build.
3467 static int usedAsColumnCache(Parse *pParse, int iFrom, int iTo){
3468 int i;
3469 struct yColCache *p;
3470 for(i=0, p=pParse->aColCache; i<pParse->nColCache; i++, p++){
3471 int r = p->iReg;
3472 if( r>=iFrom && r<=iTo ) return 1; /*NO_TEST*/
3474 return 0;
3476 #endif /* SQLITE_DEBUG || SQLITE_COVERAGE_TEST */
3480 ** Convert a scalar expression node to a TK_REGISTER referencing
3481 ** register iReg. The caller must ensure that iReg already contains
3482 ** the correct value for the expression.
3484 static void exprToRegister(Expr *p, int iReg){
3485 p->op2 = p->op;
3486 p->op = TK_REGISTER;
3487 p->iTable = iReg;
3488 ExprClearProperty(p, EP_Skip);
3492 ** Evaluate an expression (either a vector or a scalar expression) and store
3493 ** the result in continguous temporary registers. Return the index of
3494 ** the first register used to store the result.
3496 ** If the returned result register is a temporary scalar, then also write
3497 ** that register number into *piFreeable. If the returned result register
3498 ** is not a temporary or if the expression is a vector set *piFreeable
3499 ** to 0.
3501 static int exprCodeVector(Parse *pParse, Expr *p, int *piFreeable){
3502 int iResult;
3503 int nResult = sqlite3ExprVectorSize(p);
3504 if( nResult==1 ){
3505 iResult = sqlite3ExprCodeTemp(pParse, p, piFreeable);
3506 }else{
3507 *piFreeable = 0;
3508 if( p->op==TK_SELECT ){
3509 #if SQLITE_OMIT_SUBQUERY
3510 iResult = 0;
3511 #else
3512 iResult = sqlite3CodeSubselect(pParse, p, 0, 0);
3513 #endif
3514 }else{
3515 int i;
3516 iResult = pParse->nMem+1;
3517 pParse->nMem += nResult;
3518 for(i=0; i<nResult; i++){
3519 sqlite3ExprCodeFactorable(pParse, p->x.pList->a[i].pExpr, i+iResult);
3523 return iResult;
3528 ** Generate code into the current Vdbe to evaluate the given
3529 ** expression. Attempt to store the results in register "target".
3530 ** Return the register where results are stored.
3532 ** With this routine, there is no guarantee that results will
3533 ** be stored in target. The result might be stored in some other
3534 ** register if it is convenient to do so. The calling function
3535 ** must check the return code and move the results to the desired
3536 ** register.
3538 int sqlite3ExprCodeTarget(Parse *pParse, Expr *pExpr, int target){
3539 Vdbe *v = pParse->pVdbe; /* The VM under construction */
3540 int op; /* The opcode being coded */
3541 int inReg = target; /* Results stored in register inReg */
3542 int regFree1 = 0; /* If non-zero free this temporary register */
3543 int regFree2 = 0; /* If non-zero free this temporary register */
3544 int r1, r2; /* Various register numbers */
3545 Expr tempX; /* Temporary expression node */
3546 int p5 = 0;
3548 assert( target>0 && target<=pParse->nMem );
3549 if( v==0 ){
3550 assert( pParse->db->mallocFailed );
3551 return 0;
3554 expr_code_doover:
3555 if( pExpr==0 ){
3556 op = TK_NULL;
3557 }else{
3558 op = pExpr->op;
3560 switch( op ){
3561 case TK_AGG_COLUMN: {
3562 AggInfo *pAggInfo = pExpr->pAggInfo;
3563 struct AggInfo_col *pCol = &pAggInfo->aCol[pExpr->iAgg];
3564 if( !pAggInfo->directMode ){
3565 assert( pCol->iMem>0 );
3566 return pCol->iMem;
3567 }else if( pAggInfo->useSortingIdx ){
3568 sqlite3VdbeAddOp3(v, OP_Column, pAggInfo->sortingIdxPTab,
3569 pCol->iSorterColumn, target);
3570 return target;
3572 /* Otherwise, fall thru into the TK_COLUMN case */
3574 case TK_COLUMN: {
3575 int iTab = pExpr->iTable;
3576 if( iTab<0 ){
3577 if( pParse->iSelfTab<0 ){
3578 /* Generating CHECK constraints or inserting into partial index */
3579 return pExpr->iColumn - pParse->iSelfTab;
3580 }else{
3581 /* Coding an expression that is part of an index where column names
3582 ** in the index refer to the table to which the index belongs */
3583 iTab = pParse->iSelfTab - 1;
3586 return sqlite3ExprCodeGetColumn(pParse, pExpr->pTab,
3587 pExpr->iColumn, iTab, target,
3588 pExpr->op2);
3590 case TK_INTEGER: {
3591 codeInteger(pParse, pExpr, 0, target);
3592 return target;
3594 case TK_TRUEFALSE: {
3595 sqlite3VdbeAddOp2(v, OP_Integer, sqlite3ExprTruthValue(pExpr), target);
3596 return target;
3598 #ifndef SQLITE_OMIT_FLOATING_POINT
3599 case TK_FLOAT: {
3600 assert( !ExprHasProperty(pExpr, EP_IntValue) );
3601 codeReal(v, pExpr->u.zToken, 0, target);
3602 return target;
3604 #endif
3605 case TK_STRING: {
3606 assert( !ExprHasProperty(pExpr, EP_IntValue) );
3607 sqlite3VdbeLoadString(v, target, pExpr->u.zToken);
3608 return target;
3610 case TK_NULL: {
3611 sqlite3VdbeAddOp2(v, OP_Null, 0, target);
3612 return target;
3614 #ifndef SQLITE_OMIT_BLOB_LITERAL
3615 case TK_BLOB: {
3616 int n;
3617 const char *z;
3618 char *zBlob;
3619 assert( !ExprHasProperty(pExpr, EP_IntValue) );
3620 assert( pExpr->u.zToken[0]=='x' || pExpr->u.zToken[0]=='X' );
3621 assert( pExpr->u.zToken[1]=='\'' );
3622 z = &pExpr->u.zToken[2];
3623 n = sqlite3Strlen30(z) - 1;
3624 assert( z[n]=='\'' );
3625 zBlob = sqlite3HexToBlob(sqlite3VdbeDb(v), z, n);
3626 sqlite3VdbeAddOp4(v, OP_Blob, n/2, target, 0, zBlob, P4_DYNAMIC);
3627 return target;
3629 #endif
3630 case TK_VARIABLE: {
3631 assert( !ExprHasProperty(pExpr, EP_IntValue) );
3632 assert( pExpr->u.zToken!=0 );
3633 assert( pExpr->u.zToken[0]!=0 );
3634 sqlite3VdbeAddOp2(v, OP_Variable, pExpr->iColumn, target);
3635 if( pExpr->u.zToken[1]!=0 ){
3636 const char *z = sqlite3VListNumToName(pParse->pVList, pExpr->iColumn);
3637 assert( pExpr->u.zToken[0]=='?' || strcmp(pExpr->u.zToken, z)==0 );
3638 pParse->pVList[0] = 0; /* Indicate VList may no longer be enlarged */
3639 sqlite3VdbeAppendP4(v, (char*)z, P4_STATIC);
3641 return target;
3643 case TK_REGISTER: {
3644 return pExpr->iTable;
3646 #ifndef SQLITE_OMIT_CAST
3647 case TK_CAST: {
3648 /* Expressions of the form: CAST(pLeft AS token) */
3649 inReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft, target);
3650 if( inReg!=target ){
3651 sqlite3VdbeAddOp2(v, OP_SCopy, inReg, target);
3652 inReg = target;
3654 sqlite3VdbeAddOp2(v, OP_Cast, target,
3655 sqlite3AffinityType(pExpr->u.zToken, 0));
3656 testcase( usedAsColumnCache(pParse, inReg, inReg) );
3657 sqlite3ExprCacheAffinityChange(pParse, inReg, 1);
3658 return inReg;
3660 #endif /* SQLITE_OMIT_CAST */
3661 case TK_IS:
3662 case TK_ISNOT:
3663 op = (op==TK_IS) ? TK_EQ : TK_NE;
3664 p5 = SQLITE_NULLEQ;
3665 /* fall-through */
3666 case TK_LT:
3667 case TK_LE:
3668 case TK_GT:
3669 case TK_GE:
3670 case TK_NE:
3671 case TK_EQ: {
3672 Expr *pLeft = pExpr->pLeft;
3673 if( sqlite3ExprIsVector(pLeft) ){
3674 codeVectorCompare(pParse, pExpr, target, op, p5);
3675 }else{
3676 r1 = sqlite3ExprCodeTemp(pParse, pLeft, &regFree1);
3677 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, &regFree2);
3678 codeCompare(pParse, pLeft, pExpr->pRight, op,
3679 r1, r2, inReg, SQLITE_STOREP2 | p5);
3680 assert(TK_LT==OP_Lt); testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt);
3681 assert(TK_LE==OP_Le); testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le);
3682 assert(TK_GT==OP_Gt); testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt);
3683 assert(TK_GE==OP_Ge); testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge);
3684 assert(TK_EQ==OP_Eq); testcase(op==OP_Eq); VdbeCoverageIf(v,op==OP_Eq);
3685 assert(TK_NE==OP_Ne); testcase(op==OP_Ne); VdbeCoverageIf(v,op==OP_Ne);
3686 testcase( regFree1==0 );
3687 testcase( regFree2==0 );
3689 break;
3691 case TK_AND:
3692 case TK_OR:
3693 case TK_PLUS:
3694 case TK_STAR:
3695 case TK_MINUS:
3696 case TK_REM:
3697 case TK_BITAND:
3698 case TK_BITOR:
3699 case TK_SLASH:
3700 case TK_LSHIFT:
3701 case TK_RSHIFT:
3702 case TK_CONCAT: {
3703 assert( TK_AND==OP_And ); testcase( op==TK_AND );
3704 assert( TK_OR==OP_Or ); testcase( op==TK_OR );
3705 assert( TK_PLUS==OP_Add ); testcase( op==TK_PLUS );
3706 assert( TK_MINUS==OP_Subtract ); testcase( op==TK_MINUS );
3707 assert( TK_REM==OP_Remainder ); testcase( op==TK_REM );
3708 assert( TK_BITAND==OP_BitAnd ); testcase( op==TK_BITAND );
3709 assert( TK_BITOR==OP_BitOr ); testcase( op==TK_BITOR );
3710 assert( TK_SLASH==OP_Divide ); testcase( op==TK_SLASH );
3711 assert( TK_LSHIFT==OP_ShiftLeft ); testcase( op==TK_LSHIFT );
3712 assert( TK_RSHIFT==OP_ShiftRight ); testcase( op==TK_RSHIFT );
3713 assert( TK_CONCAT==OP_Concat ); testcase( op==TK_CONCAT );
3714 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
3715 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, &regFree2);
3716 sqlite3VdbeAddOp3(v, op, r2, r1, target);
3717 testcase( regFree1==0 );
3718 testcase( regFree2==0 );
3719 break;
3721 case TK_UMINUS: {
3722 Expr *pLeft = pExpr->pLeft;
3723 assert( pLeft );
3724 if( pLeft->op==TK_INTEGER ){
3725 codeInteger(pParse, pLeft, 1, target);
3726 return target;
3727 #ifndef SQLITE_OMIT_FLOATING_POINT
3728 }else if( pLeft->op==TK_FLOAT ){
3729 assert( !ExprHasProperty(pExpr, EP_IntValue) );
3730 codeReal(v, pLeft->u.zToken, 1, target);
3731 return target;
3732 #endif
3733 }else{
3734 tempX.op = TK_INTEGER;
3735 tempX.flags = EP_IntValue|EP_TokenOnly;
3736 tempX.u.iValue = 0;
3737 r1 = sqlite3ExprCodeTemp(pParse, &tempX, &regFree1);
3738 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree2);
3739 sqlite3VdbeAddOp3(v, OP_Subtract, r2, r1, target);
3740 testcase( regFree2==0 );
3742 break;
3744 case TK_BITNOT:
3745 case TK_NOT: {
3746 assert( TK_BITNOT==OP_BitNot ); testcase( op==TK_BITNOT );
3747 assert( TK_NOT==OP_Not ); testcase( op==TK_NOT );
3748 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
3749 testcase( regFree1==0 );
3750 sqlite3VdbeAddOp2(v, op, r1, inReg);
3751 break;
3753 case TK_TRUTH: {
3754 int isTrue; /* IS TRUE or IS NOT TRUE */
3755 int bNormal; /* IS TRUE or IS FALSE */
3756 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
3757 testcase( regFree1==0 );
3758 isTrue = sqlite3ExprTruthValue(pExpr->pRight);
3759 bNormal = pExpr->op2==TK_IS;
3760 testcase( isTrue && bNormal);
3761 testcase( !isTrue && bNormal);
3762 sqlite3VdbeAddOp4Int(v, OP_IsTrue, r1, inReg, !isTrue, isTrue ^ bNormal);
3763 break;
3765 case TK_ISNULL:
3766 case TK_NOTNULL: {
3767 int addr;
3768 assert( TK_ISNULL==OP_IsNull ); testcase( op==TK_ISNULL );
3769 assert( TK_NOTNULL==OP_NotNull ); testcase( op==TK_NOTNULL );
3770 sqlite3VdbeAddOp2(v, OP_Integer, 1, target);
3771 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
3772 testcase( regFree1==0 );
3773 addr = sqlite3VdbeAddOp1(v, op, r1);
3774 VdbeCoverageIf(v, op==TK_ISNULL);
3775 VdbeCoverageIf(v, op==TK_NOTNULL);
3776 sqlite3VdbeAddOp2(v, OP_Integer, 0, target);
3777 sqlite3VdbeJumpHere(v, addr);
3778 break;
3780 case TK_AGG_FUNCTION: {
3781 AggInfo *pInfo = pExpr->pAggInfo;
3782 if( pInfo==0 ){
3783 assert( !ExprHasProperty(pExpr, EP_IntValue) );
3784 sqlite3ErrorMsg(pParse, "misuse of aggregate: %s()", pExpr->u.zToken);
3785 }else{
3786 return pInfo->aFunc[pExpr->iAgg].iMem;
3788 break;
3790 case TK_FUNCTION: {
3791 ExprList *pFarg; /* List of function arguments */
3792 int nFarg; /* Number of function arguments */
3793 FuncDef *pDef; /* The function definition object */
3794 const char *zId; /* The function name */
3795 u32 constMask = 0; /* Mask of function arguments that are constant */
3796 int i; /* Loop counter */
3797 sqlite3 *db = pParse->db; /* The database connection */
3798 u8 enc = ENC(db); /* The text encoding used by this database */
3799 CollSeq *pColl = 0; /* A collating sequence */
3801 if( ConstFactorOk(pParse) && sqlite3ExprIsConstantNotJoin(pExpr) ){
3802 /* SQL functions can be expensive. So try to move constant functions
3803 ** out of the inner loop, even if that means an extra OP_Copy. */
3804 return sqlite3ExprCodeAtInit(pParse, pExpr, -1);
3806 assert( !ExprHasProperty(pExpr, EP_xIsSelect) );
3807 if( ExprHasProperty(pExpr, EP_TokenOnly) ){
3808 pFarg = 0;
3809 }else{
3810 pFarg = pExpr->x.pList;
3812 nFarg = pFarg ? pFarg->nExpr : 0;
3813 assert( !ExprHasProperty(pExpr, EP_IntValue) );
3814 zId = pExpr->u.zToken;
3815 pDef = sqlite3FindFunction(db, zId, nFarg, enc, 0);
3816 #ifdef SQLITE_ENABLE_UNKNOWN_SQL_FUNCTION
3817 if( pDef==0 && pParse->explain ){
3818 pDef = sqlite3FindFunction(db, "unknown", nFarg, enc, 0);
3820 #endif
3821 if( pDef==0 || pDef->xFinalize!=0 ){
3822 sqlite3ErrorMsg(pParse, "unknown function: %s()", zId);
3823 break;
3826 /* Attempt a direct implementation of the built-in COALESCE() and
3827 ** IFNULL() functions. This avoids unnecessary evaluation of
3828 ** arguments past the first non-NULL argument.
3830 if( pDef->funcFlags & SQLITE_FUNC_COALESCE ){
3831 int endCoalesce = sqlite3VdbeMakeLabel(v);
3832 assert( nFarg>=2 );
3833 sqlite3ExprCode(pParse, pFarg->a[0].pExpr, target);
3834 for(i=1; i<nFarg; i++){
3835 sqlite3VdbeAddOp2(v, OP_NotNull, target, endCoalesce);
3836 VdbeCoverage(v);
3837 sqlite3ExprCacheRemove(pParse, target, 1);
3838 sqlite3ExprCachePush(pParse);
3839 sqlite3ExprCode(pParse, pFarg->a[i].pExpr, target);
3840 sqlite3ExprCachePop(pParse);
3842 sqlite3VdbeResolveLabel(v, endCoalesce);
3843 break;
3846 /* The UNLIKELY() function is a no-op. The result is the value
3847 ** of the first argument.
3849 if( pDef->funcFlags & SQLITE_FUNC_UNLIKELY ){
3850 assert( nFarg>=1 );
3851 return sqlite3ExprCodeTarget(pParse, pFarg->a[0].pExpr, target);
3854 #ifdef SQLITE_DEBUG
3855 /* The AFFINITY() function evaluates to a string that describes
3856 ** the type affinity of the argument. This is used for testing of
3857 ** the SQLite type logic.
3859 if( pDef->funcFlags & SQLITE_FUNC_AFFINITY ){
3860 const char *azAff[] = { "blob", "text", "numeric", "integer", "real" };
3861 char aff;
3862 assert( nFarg==1 );
3863 aff = sqlite3ExprAffinity(pFarg->a[0].pExpr);
3864 sqlite3VdbeLoadString(v, target,
3865 aff ? azAff[aff-SQLITE_AFF_BLOB] : "none");
3866 return target;
3868 #endif
3870 for(i=0; i<nFarg; i++){
3871 if( i<32 && sqlite3ExprIsConstant(pFarg->a[i].pExpr) ){
3872 testcase( i==31 );
3873 constMask |= MASKBIT32(i);
3875 if( (pDef->funcFlags & SQLITE_FUNC_NEEDCOLL)!=0 && !pColl ){
3876 pColl = sqlite3ExprCollSeq(pParse, pFarg->a[i].pExpr);
3879 if( pFarg ){
3880 if( constMask ){
3881 r1 = pParse->nMem+1;
3882 pParse->nMem += nFarg;
3883 }else{
3884 r1 = sqlite3GetTempRange(pParse, nFarg);
3887 /* For length() and typeof() functions with a column argument,
3888 ** set the P5 parameter to the OP_Column opcode to OPFLAG_LENGTHARG
3889 ** or OPFLAG_TYPEOFARG respectively, to avoid unnecessary data
3890 ** loading.
3892 if( (pDef->funcFlags & (SQLITE_FUNC_LENGTH|SQLITE_FUNC_TYPEOF))!=0 ){
3893 u8 exprOp;
3894 assert( nFarg==1 );
3895 assert( pFarg->a[0].pExpr!=0 );
3896 exprOp = pFarg->a[0].pExpr->op;
3897 if( exprOp==TK_COLUMN || exprOp==TK_AGG_COLUMN ){
3898 assert( SQLITE_FUNC_LENGTH==OPFLAG_LENGTHARG );
3899 assert( SQLITE_FUNC_TYPEOF==OPFLAG_TYPEOFARG );
3900 testcase( pDef->funcFlags & OPFLAG_LENGTHARG );
3901 pFarg->a[0].pExpr->op2 =
3902 pDef->funcFlags & (OPFLAG_LENGTHARG|OPFLAG_TYPEOFARG);
3906 sqlite3ExprCachePush(pParse); /* Ticket 2ea2425d34be */
3907 sqlite3ExprCodeExprList(pParse, pFarg, r1, 0,
3908 SQLITE_ECEL_DUP|SQLITE_ECEL_FACTOR);
3909 sqlite3ExprCachePop(pParse); /* Ticket 2ea2425d34be */
3910 }else{
3911 r1 = 0;
3913 #ifndef SQLITE_OMIT_VIRTUALTABLE
3914 /* Possibly overload the function if the first argument is
3915 ** a virtual table column.
3917 ** For infix functions (LIKE, GLOB, REGEXP, and MATCH) use the
3918 ** second argument, not the first, as the argument to test to
3919 ** see if it is a column in a virtual table. This is done because
3920 ** the left operand of infix functions (the operand we want to
3921 ** control overloading) ends up as the second argument to the
3922 ** function. The expression "A glob B" is equivalent to
3923 ** "glob(B,A). We want to use the A in "A glob B" to test
3924 ** for function overloading. But we use the B term in "glob(B,A)".
3926 if( nFarg>=2 && (pExpr->flags & EP_InfixFunc) ){
3927 pDef = sqlite3VtabOverloadFunction(db, pDef, nFarg, pFarg->a[1].pExpr);
3928 }else if( nFarg>0 ){
3929 pDef = sqlite3VtabOverloadFunction(db, pDef, nFarg, pFarg->a[0].pExpr);
3931 #endif
3932 if( pDef->funcFlags & SQLITE_FUNC_NEEDCOLL ){
3933 if( !pColl ) pColl = db->pDfltColl;
3934 sqlite3VdbeAddOp4(v, OP_CollSeq, 0, 0, 0, (char *)pColl, P4_COLLSEQ);
3936 #ifdef SQLITE_ENABLE_OFFSET_SQL_FUNC
3937 if( pDef->funcFlags & SQLITE_FUNC_OFFSET ){
3938 Expr *pArg = pFarg->a[0].pExpr;
3939 if( pArg->op==TK_COLUMN ){
3940 sqlite3VdbeAddOp3(v, OP_Offset, pArg->iTable, pArg->iColumn, target);
3941 }else{
3942 sqlite3VdbeAddOp2(v, OP_Null, 0, target);
3944 }else
3945 #endif
3947 sqlite3VdbeAddOp4(v, pParse->iSelfTab ? OP_PureFunc0 : OP_Function0,
3948 constMask, r1, target, (char*)pDef, P4_FUNCDEF);
3949 sqlite3VdbeChangeP5(v, (u8)nFarg);
3951 if( nFarg && constMask==0 ){
3952 sqlite3ReleaseTempRange(pParse, r1, nFarg);
3954 return target;
3956 #ifndef SQLITE_OMIT_SUBQUERY
3957 case TK_EXISTS:
3958 case TK_SELECT: {
3959 int nCol;
3960 testcase( op==TK_EXISTS );
3961 testcase( op==TK_SELECT );
3962 if( op==TK_SELECT && (nCol = pExpr->x.pSelect->pEList->nExpr)!=1 ){
3963 sqlite3SubselectError(pParse, nCol, 1);
3964 }else{
3965 return sqlite3CodeSubselect(pParse, pExpr, 0, 0);
3967 break;
3969 case TK_SELECT_COLUMN: {
3970 int n;
3971 if( pExpr->pLeft->iTable==0 ){
3972 pExpr->pLeft->iTable = sqlite3CodeSubselect(pParse, pExpr->pLeft, 0, 0);
3974 assert( pExpr->iTable==0 || pExpr->pLeft->op==TK_SELECT );
3975 if( pExpr->iTable
3976 && pExpr->iTable!=(n = sqlite3ExprVectorSize(pExpr->pLeft))
3978 sqlite3ErrorMsg(pParse, "%d columns assigned %d values",
3979 pExpr->iTable, n);
3981 return pExpr->pLeft->iTable + pExpr->iColumn;
3983 case TK_IN: {
3984 int destIfFalse = sqlite3VdbeMakeLabel(v);
3985 int destIfNull = sqlite3VdbeMakeLabel(v);
3986 sqlite3VdbeAddOp2(v, OP_Null, 0, target);
3987 sqlite3ExprCodeIN(pParse, pExpr, destIfFalse, destIfNull);
3988 sqlite3VdbeAddOp2(v, OP_Integer, 1, target);
3989 sqlite3VdbeResolveLabel(v, destIfFalse);
3990 sqlite3VdbeAddOp2(v, OP_AddImm, target, 0);
3991 sqlite3VdbeResolveLabel(v, destIfNull);
3992 return target;
3994 #endif /* SQLITE_OMIT_SUBQUERY */
3998 ** x BETWEEN y AND z
4000 ** This is equivalent to
4002 ** x>=y AND x<=z
4004 ** X is stored in pExpr->pLeft.
4005 ** Y is stored in pExpr->pList->a[0].pExpr.
4006 ** Z is stored in pExpr->pList->a[1].pExpr.
4008 case TK_BETWEEN: {
4009 exprCodeBetween(pParse, pExpr, target, 0, 0);
4010 return target;
4012 case TK_SPAN:
4013 case TK_COLLATE:
4014 case TK_UPLUS: {
4015 pExpr = pExpr->pLeft;
4016 goto expr_code_doover;
4019 case TK_TRIGGER: {
4020 /* If the opcode is TK_TRIGGER, then the expression is a reference
4021 ** to a column in the new.* or old.* pseudo-tables available to
4022 ** trigger programs. In this case Expr.iTable is set to 1 for the
4023 ** new.* pseudo-table, or 0 for the old.* pseudo-table. Expr.iColumn
4024 ** is set to the column of the pseudo-table to read, or to -1 to
4025 ** read the rowid field.
4027 ** The expression is implemented using an OP_Param opcode. The p1
4028 ** parameter is set to 0 for an old.rowid reference, or to (i+1)
4029 ** to reference another column of the old.* pseudo-table, where
4030 ** i is the index of the column. For a new.rowid reference, p1 is
4031 ** set to (n+1), where n is the number of columns in each pseudo-table.
4032 ** For a reference to any other column in the new.* pseudo-table, p1
4033 ** is set to (n+2+i), where n and i are as defined previously. For
4034 ** example, if the table on which triggers are being fired is
4035 ** declared as:
4037 ** CREATE TABLE t1(a, b);
4039 ** Then p1 is interpreted as follows:
4041 ** p1==0 -> old.rowid p1==3 -> new.rowid
4042 ** p1==1 -> old.a p1==4 -> new.a
4043 ** p1==2 -> old.b p1==5 -> new.b
4045 Table *pTab = pExpr->pTab;
4046 int p1 = pExpr->iTable * (pTab->nCol+1) + 1 + pExpr->iColumn;
4048 assert( pExpr->iTable==0 || pExpr->iTable==1 );
4049 assert( pExpr->iColumn>=-1 && pExpr->iColumn<pTab->nCol );
4050 assert( pTab->iPKey<0 || pExpr->iColumn!=pTab->iPKey );
4051 assert( p1>=0 && p1<(pTab->nCol*2+2) );
4053 sqlite3VdbeAddOp2(v, OP_Param, p1, target);
4054 VdbeComment((v, "r[%d]=%s.%s", target,
4055 (pExpr->iTable ? "new" : "old"),
4056 (pExpr->iColumn<0 ? "rowid" : pExpr->pTab->aCol[pExpr->iColumn].zName)
4059 #ifndef SQLITE_OMIT_FLOATING_POINT
4060 /* If the column has REAL affinity, it may currently be stored as an
4061 ** integer. Use OP_RealAffinity to make sure it is really real.
4063 ** EVIDENCE-OF: R-60985-57662 SQLite will convert the value back to
4064 ** floating point when extracting it from the record. */
4065 if( pExpr->iColumn>=0
4066 && pTab->aCol[pExpr->iColumn].affinity==SQLITE_AFF_REAL
4068 sqlite3VdbeAddOp1(v, OP_RealAffinity, target);
4070 #endif
4071 break;
4074 case TK_VECTOR: {
4075 sqlite3ErrorMsg(pParse, "row value misused");
4076 break;
4079 case TK_IF_NULL_ROW: {
4080 int addrINR;
4081 addrINR = sqlite3VdbeAddOp1(v, OP_IfNullRow, pExpr->iTable);
4082 sqlite3ExprCachePush(pParse);
4083 inReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft, target);
4084 sqlite3ExprCachePop(pParse);
4085 sqlite3VdbeJumpHere(v, addrINR);
4086 sqlite3VdbeChangeP3(v, addrINR, inReg);
4087 break;
4091 ** Form A:
4092 ** CASE x WHEN e1 THEN r1 WHEN e2 THEN r2 ... WHEN eN THEN rN ELSE y END
4094 ** Form B:
4095 ** CASE WHEN e1 THEN r1 WHEN e2 THEN r2 ... WHEN eN THEN rN ELSE y END
4097 ** Form A is can be transformed into the equivalent form B as follows:
4098 ** CASE WHEN x=e1 THEN r1 WHEN x=e2 THEN r2 ...
4099 ** WHEN x=eN THEN rN ELSE y END
4101 ** X (if it exists) is in pExpr->pLeft.
4102 ** Y is in the last element of pExpr->x.pList if pExpr->x.pList->nExpr is
4103 ** odd. The Y is also optional. If the number of elements in x.pList
4104 ** is even, then Y is omitted and the "otherwise" result is NULL.
4105 ** Ei is in pExpr->pList->a[i*2] and Ri is pExpr->pList->a[i*2+1].
4107 ** The result of the expression is the Ri for the first matching Ei,
4108 ** or if there is no matching Ei, the ELSE term Y, or if there is
4109 ** no ELSE term, NULL.
4111 default: assert( op==TK_CASE ); {
4112 int endLabel; /* GOTO label for end of CASE stmt */
4113 int nextCase; /* GOTO label for next WHEN clause */
4114 int nExpr; /* 2x number of WHEN terms */
4115 int i; /* Loop counter */
4116 ExprList *pEList; /* List of WHEN terms */
4117 struct ExprList_item *aListelem; /* Array of WHEN terms */
4118 Expr opCompare; /* The X==Ei expression */
4119 Expr *pX; /* The X expression */
4120 Expr *pTest = 0; /* X==Ei (form A) or just Ei (form B) */
4121 VVA_ONLY( int iCacheLevel = pParse->iCacheLevel; )
4123 assert( !ExprHasProperty(pExpr, EP_xIsSelect) && pExpr->x.pList );
4124 assert(pExpr->x.pList->nExpr > 0);
4125 pEList = pExpr->x.pList;
4126 aListelem = pEList->a;
4127 nExpr = pEList->nExpr;
4128 endLabel = sqlite3VdbeMakeLabel(v);
4129 if( (pX = pExpr->pLeft)!=0 ){
4130 tempX = *pX;
4131 testcase( pX->op==TK_COLUMN );
4132 exprToRegister(&tempX, exprCodeVector(pParse, &tempX, &regFree1));
4133 testcase( regFree1==0 );
4134 memset(&opCompare, 0, sizeof(opCompare));
4135 opCompare.op = TK_EQ;
4136 opCompare.pLeft = &tempX;
4137 pTest = &opCompare;
4138 /* Ticket b351d95f9cd5ef17e9d9dbae18f5ca8611190001:
4139 ** The value in regFree1 might get SCopy-ed into the file result.
4140 ** So make sure that the regFree1 register is not reused for other
4141 ** purposes and possibly overwritten. */
4142 regFree1 = 0;
4144 for(i=0; i<nExpr-1; i=i+2){
4145 sqlite3ExprCachePush(pParse);
4146 if( pX ){
4147 assert( pTest!=0 );
4148 opCompare.pRight = aListelem[i].pExpr;
4149 }else{
4150 pTest = aListelem[i].pExpr;
4152 nextCase = sqlite3VdbeMakeLabel(v);
4153 testcase( pTest->op==TK_COLUMN );
4154 sqlite3ExprIfFalse(pParse, pTest, nextCase, SQLITE_JUMPIFNULL);
4155 testcase( aListelem[i+1].pExpr->op==TK_COLUMN );
4156 sqlite3ExprCode(pParse, aListelem[i+1].pExpr, target);
4157 sqlite3VdbeGoto(v, endLabel);
4158 sqlite3ExprCachePop(pParse);
4159 sqlite3VdbeResolveLabel(v, nextCase);
4161 if( (nExpr&1)!=0 ){
4162 sqlite3ExprCachePush(pParse);
4163 sqlite3ExprCode(pParse, pEList->a[nExpr-1].pExpr, target);
4164 sqlite3ExprCachePop(pParse);
4165 }else{
4166 sqlite3VdbeAddOp2(v, OP_Null, 0, target);
4168 assert( pParse->db->mallocFailed || pParse->nErr>0
4169 || pParse->iCacheLevel==iCacheLevel );
4170 sqlite3VdbeResolveLabel(v, endLabel);
4171 break;
4173 #ifndef SQLITE_OMIT_TRIGGER
4174 case TK_RAISE: {
4175 assert( pExpr->affinity==OE_Rollback
4176 || pExpr->affinity==OE_Abort
4177 || pExpr->affinity==OE_Fail
4178 || pExpr->affinity==OE_Ignore
4180 if( !pParse->pTriggerTab ){
4181 sqlite3ErrorMsg(pParse,
4182 "RAISE() may only be used within a trigger-program");
4183 return 0;
4185 if( pExpr->affinity==OE_Abort ){
4186 sqlite3MayAbort(pParse);
4188 assert( !ExprHasProperty(pExpr, EP_IntValue) );
4189 if( pExpr->affinity==OE_Ignore ){
4190 sqlite3VdbeAddOp4(
4191 v, OP_Halt, SQLITE_OK, OE_Ignore, 0, pExpr->u.zToken,0);
4192 VdbeCoverage(v);
4193 }else{
4194 sqlite3HaltConstraint(pParse, SQLITE_CONSTRAINT_TRIGGER,
4195 pExpr->affinity, pExpr->u.zToken, 0, 0);
4198 break;
4200 #endif
4202 sqlite3ReleaseTempReg(pParse, regFree1);
4203 sqlite3ReleaseTempReg(pParse, regFree2);
4204 return inReg;
4208 ** Factor out the code of the given expression to initialization time.
4210 ** If regDest>=0 then the result is always stored in that register and the
4211 ** result is not reusable. If regDest<0 then this routine is free to
4212 ** store the value whereever it wants. The register where the expression
4213 ** is stored is returned. When regDest<0, two identical expressions will
4214 ** code to the same register.
4216 int sqlite3ExprCodeAtInit(
4217 Parse *pParse, /* Parsing context */
4218 Expr *pExpr, /* The expression to code when the VDBE initializes */
4219 int regDest /* Store the value in this register */
4221 ExprList *p;
4222 assert( ConstFactorOk(pParse) );
4223 p = pParse->pConstExpr;
4224 if( regDest<0 && p ){
4225 struct ExprList_item *pItem;
4226 int i;
4227 for(pItem=p->a, i=p->nExpr; i>0; pItem++, i--){
4228 if( pItem->reusable && sqlite3ExprCompare(0,pItem->pExpr,pExpr,-1)==0 ){
4229 return pItem->u.iConstExprReg;
4233 pExpr = sqlite3ExprDup(pParse->db, pExpr, 0);
4234 p = sqlite3ExprListAppend(pParse, p, pExpr);
4235 if( p ){
4236 struct ExprList_item *pItem = &p->a[p->nExpr-1];
4237 pItem->reusable = regDest<0;
4238 if( regDest<0 ) regDest = ++pParse->nMem;
4239 pItem->u.iConstExprReg = regDest;
4241 pParse->pConstExpr = p;
4242 return regDest;
4246 ** Generate code to evaluate an expression and store the results
4247 ** into a register. Return the register number where the results
4248 ** are stored.
4250 ** If the register is a temporary register that can be deallocated,
4251 ** then write its number into *pReg. If the result register is not
4252 ** a temporary, then set *pReg to zero.
4254 ** If pExpr is a constant, then this routine might generate this
4255 ** code to fill the register in the initialization section of the
4256 ** VDBE program, in order to factor it out of the evaluation loop.
4258 int sqlite3ExprCodeTemp(Parse *pParse, Expr *pExpr, int *pReg){
4259 int r2;
4260 pExpr = sqlite3ExprSkipCollate(pExpr);
4261 if( ConstFactorOk(pParse)
4262 && pExpr->op!=TK_REGISTER
4263 && sqlite3ExprIsConstantNotJoin(pExpr)
4265 *pReg = 0;
4266 r2 = sqlite3ExprCodeAtInit(pParse, pExpr, -1);
4267 }else{
4268 int r1 = sqlite3GetTempReg(pParse);
4269 r2 = sqlite3ExprCodeTarget(pParse, pExpr, r1);
4270 if( r2==r1 ){
4271 *pReg = r1;
4272 }else{
4273 sqlite3ReleaseTempReg(pParse, r1);
4274 *pReg = 0;
4277 return r2;
4281 ** Generate code that will evaluate expression pExpr and store the
4282 ** results in register target. The results are guaranteed to appear
4283 ** in register target.
4285 void sqlite3ExprCode(Parse *pParse, Expr *pExpr, int target){
4286 int inReg;
4288 assert( target>0 && target<=pParse->nMem );
4289 if( pExpr && pExpr->op==TK_REGISTER ){
4290 sqlite3VdbeAddOp2(pParse->pVdbe, OP_Copy, pExpr->iTable, target);
4291 }else{
4292 inReg = sqlite3ExprCodeTarget(pParse, pExpr, target);
4293 assert( pParse->pVdbe!=0 || pParse->db->mallocFailed );
4294 if( inReg!=target && pParse->pVdbe ){
4295 sqlite3VdbeAddOp2(pParse->pVdbe, OP_SCopy, inReg, target);
4301 ** Make a transient copy of expression pExpr and then code it using
4302 ** sqlite3ExprCode(). This routine works just like sqlite3ExprCode()
4303 ** except that the input expression is guaranteed to be unchanged.
4305 void sqlite3ExprCodeCopy(Parse *pParse, Expr *pExpr, int target){
4306 sqlite3 *db = pParse->db;
4307 pExpr = sqlite3ExprDup(db, pExpr, 0);
4308 if( !db->mallocFailed ) sqlite3ExprCode(pParse, pExpr, target);
4309 sqlite3ExprDelete(db, pExpr);
4313 ** Generate code that will evaluate expression pExpr and store the
4314 ** results in register target. The results are guaranteed to appear
4315 ** in register target. If the expression is constant, then this routine
4316 ** might choose to code the expression at initialization time.
4318 void sqlite3ExprCodeFactorable(Parse *pParse, Expr *pExpr, int target){
4319 if( pParse->okConstFactor && sqlite3ExprIsConstant(pExpr) ){
4320 sqlite3ExprCodeAtInit(pParse, pExpr, target);
4321 }else{
4322 sqlite3ExprCode(pParse, pExpr, target);
4327 ** Generate code that evaluates the given expression and puts the result
4328 ** in register target.
4330 ** Also make a copy of the expression results into another "cache" register
4331 ** and modify the expression so that the next time it is evaluated,
4332 ** the result is a copy of the cache register.
4334 ** This routine is used for expressions that are used multiple
4335 ** times. They are evaluated once and the results of the expression
4336 ** are reused.
4338 void sqlite3ExprCodeAndCache(Parse *pParse, Expr *pExpr, int target){
4339 Vdbe *v = pParse->pVdbe;
4340 int iMem;
4342 assert( target>0 );
4343 assert( pExpr->op!=TK_REGISTER );
4344 sqlite3ExprCode(pParse, pExpr, target);
4345 iMem = ++pParse->nMem;
4346 sqlite3VdbeAddOp2(v, OP_Copy, target, iMem);
4347 exprToRegister(pExpr, iMem);
4351 ** Generate code that pushes the value of every element of the given
4352 ** expression list into a sequence of registers beginning at target.
4354 ** Return the number of elements evaluated. The number returned will
4355 ** usually be pList->nExpr but might be reduced if SQLITE_ECEL_OMITREF
4356 ** is defined.
4358 ** The SQLITE_ECEL_DUP flag prevents the arguments from being
4359 ** filled using OP_SCopy. OP_Copy must be used instead.
4361 ** The SQLITE_ECEL_FACTOR argument allows constant arguments to be
4362 ** factored out into initialization code.
4364 ** The SQLITE_ECEL_REF flag means that expressions in the list with
4365 ** ExprList.a[].u.x.iOrderByCol>0 have already been evaluated and stored
4366 ** in registers at srcReg, and so the value can be copied from there.
4367 ** If SQLITE_ECEL_OMITREF is also set, then the values with u.x.iOrderByCol>0
4368 ** are simply omitted rather than being copied from srcReg.
4370 int sqlite3ExprCodeExprList(
4371 Parse *pParse, /* Parsing context */
4372 ExprList *pList, /* The expression list to be coded */
4373 int target, /* Where to write results */
4374 int srcReg, /* Source registers if SQLITE_ECEL_REF */
4375 u8 flags /* SQLITE_ECEL_* flags */
4377 struct ExprList_item *pItem;
4378 int i, j, n;
4379 u8 copyOp = (flags & SQLITE_ECEL_DUP) ? OP_Copy : OP_SCopy;
4380 Vdbe *v = pParse->pVdbe;
4381 assert( pList!=0 );
4382 assert( target>0 );
4383 assert( pParse->pVdbe!=0 ); /* Never gets this far otherwise */
4384 n = pList->nExpr;
4385 if( !ConstFactorOk(pParse) ) flags &= ~SQLITE_ECEL_FACTOR;
4386 for(pItem=pList->a, i=0; i<n; i++, pItem++){
4387 Expr *pExpr = pItem->pExpr;
4388 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
4389 if( pItem->bSorterRef ){
4390 i--;
4391 n--;
4392 }else
4393 #endif
4394 if( (flags & SQLITE_ECEL_REF)!=0 && (j = pItem->u.x.iOrderByCol)>0 ){
4395 if( flags & SQLITE_ECEL_OMITREF ){
4396 i--;
4397 n--;
4398 }else{
4399 sqlite3VdbeAddOp2(v, copyOp, j+srcReg-1, target+i);
4401 }else if( (flags & SQLITE_ECEL_FACTOR)!=0 && sqlite3ExprIsConstant(pExpr) ){
4402 sqlite3ExprCodeAtInit(pParse, pExpr, target+i);
4403 }else{
4404 int inReg = sqlite3ExprCodeTarget(pParse, pExpr, target+i);
4405 if( inReg!=target+i ){
4406 VdbeOp *pOp;
4407 if( copyOp==OP_Copy
4408 && (pOp=sqlite3VdbeGetOp(v, -1))->opcode==OP_Copy
4409 && pOp->p1+pOp->p3+1==inReg
4410 && pOp->p2+pOp->p3+1==target+i
4412 pOp->p3++;
4413 }else{
4414 sqlite3VdbeAddOp2(v, copyOp, inReg, target+i);
4419 return n;
4423 ** Generate code for a BETWEEN operator.
4425 ** x BETWEEN y AND z
4427 ** The above is equivalent to
4429 ** x>=y AND x<=z
4431 ** Code it as such, taking care to do the common subexpression
4432 ** elimination of x.
4434 ** The xJumpIf parameter determines details:
4436 ** NULL: Store the boolean result in reg[dest]
4437 ** sqlite3ExprIfTrue: Jump to dest if true
4438 ** sqlite3ExprIfFalse: Jump to dest if false
4440 ** The jumpIfNull parameter is ignored if xJumpIf is NULL.
4442 static void exprCodeBetween(
4443 Parse *pParse, /* Parsing and code generating context */
4444 Expr *pExpr, /* The BETWEEN expression */
4445 int dest, /* Jump destination or storage location */
4446 void (*xJump)(Parse*,Expr*,int,int), /* Action to take */
4447 int jumpIfNull /* Take the jump if the BETWEEN is NULL */
4449 Expr exprAnd; /* The AND operator in x>=y AND x<=z */
4450 Expr compLeft; /* The x>=y term */
4451 Expr compRight; /* The x<=z term */
4452 Expr exprX; /* The x subexpression */
4453 int regFree1 = 0; /* Temporary use register */
4456 memset(&compLeft, 0, sizeof(Expr));
4457 memset(&compRight, 0, sizeof(Expr));
4458 memset(&exprAnd, 0, sizeof(Expr));
4460 assert( !ExprHasProperty(pExpr, EP_xIsSelect) );
4461 exprX = *pExpr->pLeft;
4462 exprAnd.op = TK_AND;
4463 exprAnd.pLeft = &compLeft;
4464 exprAnd.pRight = &compRight;
4465 compLeft.op = TK_GE;
4466 compLeft.pLeft = &exprX;
4467 compLeft.pRight = pExpr->x.pList->a[0].pExpr;
4468 compRight.op = TK_LE;
4469 compRight.pLeft = &exprX;
4470 compRight.pRight = pExpr->x.pList->a[1].pExpr;
4471 exprToRegister(&exprX, exprCodeVector(pParse, &exprX, &regFree1));
4472 if( xJump ){
4473 xJump(pParse, &exprAnd, dest, jumpIfNull);
4474 }else{
4475 /* Mark the expression is being from the ON or USING clause of a join
4476 ** so that the sqlite3ExprCodeTarget() routine will not attempt to move
4477 ** it into the Parse.pConstExpr list. We should use a new bit for this,
4478 ** for clarity, but we are out of bits in the Expr.flags field so we
4479 ** have to reuse the EP_FromJoin bit. Bummer. */
4480 exprX.flags |= EP_FromJoin;
4481 sqlite3ExprCodeTarget(pParse, &exprAnd, dest);
4483 sqlite3ReleaseTempReg(pParse, regFree1);
4485 /* Ensure adequate test coverage */
4486 testcase( xJump==sqlite3ExprIfTrue && jumpIfNull==0 && regFree1==0 );
4487 testcase( xJump==sqlite3ExprIfTrue && jumpIfNull==0 && regFree1!=0 );
4488 testcase( xJump==sqlite3ExprIfTrue && jumpIfNull!=0 && regFree1==0 );
4489 testcase( xJump==sqlite3ExprIfTrue && jumpIfNull!=0 && regFree1!=0 );
4490 testcase( xJump==sqlite3ExprIfFalse && jumpIfNull==0 && regFree1==0 );
4491 testcase( xJump==sqlite3ExprIfFalse && jumpIfNull==0 && regFree1!=0 );
4492 testcase( xJump==sqlite3ExprIfFalse && jumpIfNull!=0 && regFree1==0 );
4493 testcase( xJump==sqlite3ExprIfFalse && jumpIfNull!=0 && regFree1!=0 );
4494 testcase( xJump==0 );
4498 ** Generate code for a boolean expression such that a jump is made
4499 ** to the label "dest" if the expression is true but execution
4500 ** continues straight thru if the expression is false.
4502 ** If the expression evaluates to NULL (neither true nor false), then
4503 ** take the jump if the jumpIfNull flag is SQLITE_JUMPIFNULL.
4505 ** This code depends on the fact that certain token values (ex: TK_EQ)
4506 ** are the same as opcode values (ex: OP_Eq) that implement the corresponding
4507 ** operation. Special comments in vdbe.c and the mkopcodeh.awk script in
4508 ** the make process cause these values to align. Assert()s in the code
4509 ** below verify that the numbers are aligned correctly.
4511 void sqlite3ExprIfTrue(Parse *pParse, Expr *pExpr, int dest, int jumpIfNull){
4512 Vdbe *v = pParse->pVdbe;
4513 int op = 0;
4514 int regFree1 = 0;
4515 int regFree2 = 0;
4516 int r1, r2;
4518 assert( jumpIfNull==SQLITE_JUMPIFNULL || jumpIfNull==0 );
4519 if( NEVER(v==0) ) return; /* Existence of VDBE checked by caller */
4520 if( NEVER(pExpr==0) ) return; /* No way this can happen */
4521 op = pExpr->op;
4522 switch( op ){
4523 case TK_AND: {
4524 int d2 = sqlite3VdbeMakeLabel(v);
4525 testcase( jumpIfNull==0 );
4526 sqlite3ExprIfFalse(pParse, pExpr->pLeft, d2,jumpIfNull^SQLITE_JUMPIFNULL);
4527 sqlite3ExprCachePush(pParse);
4528 sqlite3ExprIfTrue(pParse, pExpr->pRight, dest, jumpIfNull);
4529 sqlite3VdbeResolveLabel(v, d2);
4530 sqlite3ExprCachePop(pParse);
4531 break;
4533 case TK_OR: {
4534 testcase( jumpIfNull==0 );
4535 sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, jumpIfNull);
4536 sqlite3ExprCachePush(pParse);
4537 sqlite3ExprIfTrue(pParse, pExpr->pRight, dest, jumpIfNull);
4538 sqlite3ExprCachePop(pParse);
4539 break;
4541 case TK_NOT: {
4542 testcase( jumpIfNull==0 );
4543 sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, jumpIfNull);
4544 break;
4546 case TK_TRUTH: {
4547 int isNot; /* IS NOT TRUE or IS NOT FALSE */
4548 int isTrue; /* IS TRUE or IS NOT TRUE */
4549 testcase( jumpIfNull==0 );
4550 isNot = pExpr->op2==TK_ISNOT;
4551 isTrue = sqlite3ExprTruthValue(pExpr->pRight);
4552 testcase( isTrue && isNot );
4553 testcase( !isTrue && isNot );
4554 if( isTrue ^ isNot ){
4555 sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest,
4556 isNot ? SQLITE_JUMPIFNULL : 0);
4557 }else{
4558 sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest,
4559 isNot ? SQLITE_JUMPIFNULL : 0);
4561 break;
4563 case TK_IS:
4564 case TK_ISNOT:
4565 testcase( op==TK_IS );
4566 testcase( op==TK_ISNOT );
4567 op = (op==TK_IS) ? TK_EQ : TK_NE;
4568 jumpIfNull = SQLITE_NULLEQ;
4569 /* Fall thru */
4570 case TK_LT:
4571 case TK_LE:
4572 case TK_GT:
4573 case TK_GE:
4574 case TK_NE:
4575 case TK_EQ: {
4576 if( sqlite3ExprIsVector(pExpr->pLeft) ) goto default_expr;
4577 testcase( jumpIfNull==0 );
4578 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
4579 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, &regFree2);
4580 codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op,
4581 r1, r2, dest, jumpIfNull);
4582 assert(TK_LT==OP_Lt); testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt);
4583 assert(TK_LE==OP_Le); testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le);
4584 assert(TK_GT==OP_Gt); testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt);
4585 assert(TK_GE==OP_Ge); testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge);
4586 assert(TK_EQ==OP_Eq); testcase(op==OP_Eq);
4587 VdbeCoverageIf(v, op==OP_Eq && jumpIfNull==SQLITE_NULLEQ);
4588 VdbeCoverageIf(v, op==OP_Eq && jumpIfNull!=SQLITE_NULLEQ);
4589 assert(TK_NE==OP_Ne); testcase(op==OP_Ne);
4590 VdbeCoverageIf(v, op==OP_Ne && jumpIfNull==SQLITE_NULLEQ);
4591 VdbeCoverageIf(v, op==OP_Ne && jumpIfNull!=SQLITE_NULLEQ);
4592 testcase( regFree1==0 );
4593 testcase( regFree2==0 );
4594 break;
4596 case TK_ISNULL:
4597 case TK_NOTNULL: {
4598 assert( TK_ISNULL==OP_IsNull ); testcase( op==TK_ISNULL );
4599 assert( TK_NOTNULL==OP_NotNull ); testcase( op==TK_NOTNULL );
4600 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
4601 sqlite3VdbeAddOp2(v, op, r1, dest);
4602 VdbeCoverageIf(v, op==TK_ISNULL);
4603 VdbeCoverageIf(v, op==TK_NOTNULL);
4604 testcase( regFree1==0 );
4605 break;
4607 case TK_BETWEEN: {
4608 testcase( jumpIfNull==0 );
4609 exprCodeBetween(pParse, pExpr, dest, sqlite3ExprIfTrue, jumpIfNull);
4610 break;
4612 #ifndef SQLITE_OMIT_SUBQUERY
4613 case TK_IN: {
4614 int destIfFalse = sqlite3VdbeMakeLabel(v);
4615 int destIfNull = jumpIfNull ? dest : destIfFalse;
4616 sqlite3ExprCodeIN(pParse, pExpr, destIfFalse, destIfNull);
4617 sqlite3VdbeGoto(v, dest);
4618 sqlite3VdbeResolveLabel(v, destIfFalse);
4619 break;
4621 #endif
4622 default: {
4623 default_expr:
4624 if( exprAlwaysTrue(pExpr) ){
4625 sqlite3VdbeGoto(v, dest);
4626 }else if( exprAlwaysFalse(pExpr) ){
4627 /* No-op */
4628 }else{
4629 r1 = sqlite3ExprCodeTemp(pParse, pExpr, &regFree1);
4630 sqlite3VdbeAddOp3(v, OP_If, r1, dest, jumpIfNull!=0);
4631 VdbeCoverage(v);
4632 testcase( regFree1==0 );
4633 testcase( jumpIfNull==0 );
4635 break;
4638 sqlite3ReleaseTempReg(pParse, regFree1);
4639 sqlite3ReleaseTempReg(pParse, regFree2);
4643 ** Generate code for a boolean expression such that a jump is made
4644 ** to the label "dest" if the expression is false but execution
4645 ** continues straight thru if the expression is true.
4647 ** If the expression evaluates to NULL (neither true nor false) then
4648 ** jump if jumpIfNull is SQLITE_JUMPIFNULL or fall through if jumpIfNull
4649 ** is 0.
4651 void sqlite3ExprIfFalse(Parse *pParse, Expr *pExpr, int dest, int jumpIfNull){
4652 Vdbe *v = pParse->pVdbe;
4653 int op = 0;
4654 int regFree1 = 0;
4655 int regFree2 = 0;
4656 int r1, r2;
4658 assert( jumpIfNull==SQLITE_JUMPIFNULL || jumpIfNull==0 );
4659 if( NEVER(v==0) ) return; /* Existence of VDBE checked by caller */
4660 if( pExpr==0 ) return;
4662 /* The value of pExpr->op and op are related as follows:
4664 ** pExpr->op op
4665 ** --------- ----------
4666 ** TK_ISNULL OP_NotNull
4667 ** TK_NOTNULL OP_IsNull
4668 ** TK_NE OP_Eq
4669 ** TK_EQ OP_Ne
4670 ** TK_GT OP_Le
4671 ** TK_LE OP_Gt
4672 ** TK_GE OP_Lt
4673 ** TK_LT OP_Ge
4675 ** For other values of pExpr->op, op is undefined and unused.
4676 ** The value of TK_ and OP_ constants are arranged such that we
4677 ** can compute the mapping above using the following expression.
4678 ** Assert()s verify that the computation is correct.
4680 op = ((pExpr->op+(TK_ISNULL&1))^1)-(TK_ISNULL&1);
4682 /* Verify correct alignment of TK_ and OP_ constants
4684 assert( pExpr->op!=TK_ISNULL || op==OP_NotNull );
4685 assert( pExpr->op!=TK_NOTNULL || op==OP_IsNull );
4686 assert( pExpr->op!=TK_NE || op==OP_Eq );
4687 assert( pExpr->op!=TK_EQ || op==OP_Ne );
4688 assert( pExpr->op!=TK_LT || op==OP_Ge );
4689 assert( pExpr->op!=TK_LE || op==OP_Gt );
4690 assert( pExpr->op!=TK_GT || op==OP_Le );
4691 assert( pExpr->op!=TK_GE || op==OP_Lt );
4693 switch( pExpr->op ){
4694 case TK_AND: {
4695 testcase( jumpIfNull==0 );
4696 sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, jumpIfNull);
4697 sqlite3ExprCachePush(pParse);
4698 sqlite3ExprIfFalse(pParse, pExpr->pRight, dest, jumpIfNull);
4699 sqlite3ExprCachePop(pParse);
4700 break;
4702 case TK_OR: {
4703 int d2 = sqlite3VdbeMakeLabel(v);
4704 testcase( jumpIfNull==0 );
4705 sqlite3ExprIfTrue(pParse, pExpr->pLeft, d2, jumpIfNull^SQLITE_JUMPIFNULL);
4706 sqlite3ExprCachePush(pParse);
4707 sqlite3ExprIfFalse(pParse, pExpr->pRight, dest, jumpIfNull);
4708 sqlite3VdbeResolveLabel(v, d2);
4709 sqlite3ExprCachePop(pParse);
4710 break;
4712 case TK_NOT: {
4713 testcase( jumpIfNull==0 );
4714 sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, jumpIfNull);
4715 break;
4717 case TK_TRUTH: {
4718 int isNot; /* IS NOT TRUE or IS NOT FALSE */
4719 int isTrue; /* IS TRUE or IS NOT TRUE */
4720 testcase( jumpIfNull==0 );
4721 isNot = pExpr->op2==TK_ISNOT;
4722 isTrue = sqlite3ExprTruthValue(pExpr->pRight);
4723 testcase( isTrue && isNot );
4724 testcase( !isTrue && isNot );
4725 if( isTrue ^ isNot ){
4726 /* IS TRUE and IS NOT FALSE */
4727 sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest,
4728 isNot ? 0 : SQLITE_JUMPIFNULL);
4730 }else{
4731 /* IS FALSE and IS NOT TRUE */
4732 sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest,
4733 isNot ? 0 : SQLITE_JUMPIFNULL);
4735 break;
4737 case TK_IS:
4738 case TK_ISNOT:
4739 testcase( pExpr->op==TK_IS );
4740 testcase( pExpr->op==TK_ISNOT );
4741 op = (pExpr->op==TK_IS) ? TK_NE : TK_EQ;
4742 jumpIfNull = SQLITE_NULLEQ;
4743 /* Fall thru */
4744 case TK_LT:
4745 case TK_LE:
4746 case TK_GT:
4747 case TK_GE:
4748 case TK_NE:
4749 case TK_EQ: {
4750 if( sqlite3ExprIsVector(pExpr->pLeft) ) goto default_expr;
4751 testcase( jumpIfNull==0 );
4752 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
4753 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, &regFree2);
4754 codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op,
4755 r1, r2, dest, jumpIfNull);
4756 assert(TK_LT==OP_Lt); testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt);
4757 assert(TK_LE==OP_Le); testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le);
4758 assert(TK_GT==OP_Gt); testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt);
4759 assert(TK_GE==OP_Ge); testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge);
4760 assert(TK_EQ==OP_Eq); testcase(op==OP_Eq);
4761 VdbeCoverageIf(v, op==OP_Eq && jumpIfNull!=SQLITE_NULLEQ);
4762 VdbeCoverageIf(v, op==OP_Eq && jumpIfNull==SQLITE_NULLEQ);
4763 assert(TK_NE==OP_Ne); testcase(op==OP_Ne);
4764 VdbeCoverageIf(v, op==OP_Ne && jumpIfNull!=SQLITE_NULLEQ);
4765 VdbeCoverageIf(v, op==OP_Ne && jumpIfNull==SQLITE_NULLEQ);
4766 testcase( regFree1==0 );
4767 testcase( regFree2==0 );
4768 break;
4770 case TK_ISNULL:
4771 case TK_NOTNULL: {
4772 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
4773 sqlite3VdbeAddOp2(v, op, r1, dest);
4774 testcase( op==TK_ISNULL ); VdbeCoverageIf(v, op==TK_ISNULL);
4775 testcase( op==TK_NOTNULL ); VdbeCoverageIf(v, op==TK_NOTNULL);
4776 testcase( regFree1==0 );
4777 break;
4779 case TK_BETWEEN: {
4780 testcase( jumpIfNull==0 );
4781 exprCodeBetween(pParse, pExpr, dest, sqlite3ExprIfFalse, jumpIfNull);
4782 break;
4784 #ifndef SQLITE_OMIT_SUBQUERY
4785 case TK_IN: {
4786 if( jumpIfNull ){
4787 sqlite3ExprCodeIN(pParse, pExpr, dest, dest);
4788 }else{
4789 int destIfNull = sqlite3VdbeMakeLabel(v);
4790 sqlite3ExprCodeIN(pParse, pExpr, dest, destIfNull);
4791 sqlite3VdbeResolveLabel(v, destIfNull);
4793 break;
4795 #endif
4796 default: {
4797 default_expr:
4798 if( exprAlwaysFalse(pExpr) ){
4799 sqlite3VdbeGoto(v, dest);
4800 }else if( exprAlwaysTrue(pExpr) ){
4801 /* no-op */
4802 }else{
4803 r1 = sqlite3ExprCodeTemp(pParse, pExpr, &regFree1);
4804 sqlite3VdbeAddOp3(v, OP_IfNot, r1, dest, jumpIfNull!=0);
4805 VdbeCoverage(v);
4806 testcase( regFree1==0 );
4807 testcase( jumpIfNull==0 );
4809 break;
4812 sqlite3ReleaseTempReg(pParse, regFree1);
4813 sqlite3ReleaseTempReg(pParse, regFree2);
4817 ** Like sqlite3ExprIfFalse() except that a copy is made of pExpr before
4818 ** code generation, and that copy is deleted after code generation. This
4819 ** ensures that the original pExpr is unchanged.
4821 void sqlite3ExprIfFalseDup(Parse *pParse, Expr *pExpr, int dest,int jumpIfNull){
4822 sqlite3 *db = pParse->db;
4823 Expr *pCopy = sqlite3ExprDup(db, pExpr, 0);
4824 if( db->mallocFailed==0 ){
4825 sqlite3ExprIfFalse(pParse, pCopy, dest, jumpIfNull);
4827 sqlite3ExprDelete(db, pCopy);
4831 ** Expression pVar is guaranteed to be an SQL variable. pExpr may be any
4832 ** type of expression.
4834 ** If pExpr is a simple SQL value - an integer, real, string, blob
4835 ** or NULL value - then the VDBE currently being prepared is configured
4836 ** to re-prepare each time a new value is bound to variable pVar.
4838 ** Additionally, if pExpr is a simple SQL value and the value is the
4839 ** same as that currently bound to variable pVar, non-zero is returned.
4840 ** Otherwise, if the values are not the same or if pExpr is not a simple
4841 ** SQL value, zero is returned.
4843 static int exprCompareVariable(Parse *pParse, Expr *pVar, Expr *pExpr){
4844 int res = 0;
4845 int iVar;
4846 sqlite3_value *pL, *pR = 0;
4848 sqlite3ValueFromExpr(pParse->db, pExpr, SQLITE_UTF8, SQLITE_AFF_BLOB, &pR);
4849 if( pR ){
4850 iVar = pVar->iColumn;
4851 sqlite3VdbeSetVarmask(pParse->pVdbe, iVar);
4852 pL = sqlite3VdbeGetBoundValue(pParse->pReprepare, iVar, SQLITE_AFF_BLOB);
4853 if( pL ){
4854 if( sqlite3_value_type(pL)==SQLITE_TEXT ){
4855 sqlite3_value_text(pL); /* Make sure the encoding is UTF-8 */
4857 res = 0==sqlite3MemCompare(pL, pR, 0);
4859 sqlite3ValueFree(pR);
4860 sqlite3ValueFree(pL);
4863 return res;
4867 ** Do a deep comparison of two expression trees. Return 0 if the two
4868 ** expressions are completely identical. Return 1 if they differ only
4869 ** by a COLLATE operator at the top level. Return 2 if there are differences
4870 ** other than the top-level COLLATE operator.
4872 ** If any subelement of pB has Expr.iTable==(-1) then it is allowed
4873 ** to compare equal to an equivalent element in pA with Expr.iTable==iTab.
4875 ** The pA side might be using TK_REGISTER. If that is the case and pB is
4876 ** not using TK_REGISTER but is otherwise equivalent, then still return 0.
4878 ** Sometimes this routine will return 2 even if the two expressions
4879 ** really are equivalent. If we cannot prove that the expressions are
4880 ** identical, we return 2 just to be safe. So if this routine
4881 ** returns 2, then you do not really know for certain if the two
4882 ** expressions are the same. But if you get a 0 or 1 return, then you
4883 ** can be sure the expressions are the same. In the places where
4884 ** this routine is used, it does not hurt to get an extra 2 - that
4885 ** just might result in some slightly slower code. But returning
4886 ** an incorrect 0 or 1 could lead to a malfunction.
4888 ** If pParse is not NULL then TK_VARIABLE terms in pA with bindings in
4889 ** pParse->pReprepare can be matched against literals in pB. The
4890 ** pParse->pVdbe->expmask bitmask is updated for each variable referenced.
4891 ** If pParse is NULL (the normal case) then any TK_VARIABLE term in
4892 ** Argument pParse should normally be NULL. If it is not NULL and pA or
4893 ** pB causes a return value of 2.
4895 int sqlite3ExprCompare(Parse *pParse, Expr *pA, Expr *pB, int iTab){
4896 u32 combinedFlags;
4897 if( pA==0 || pB==0 ){
4898 return pB==pA ? 0 : 2;
4900 if( pParse && pA->op==TK_VARIABLE && exprCompareVariable(pParse, pA, pB) ){
4901 return 0;
4903 combinedFlags = pA->flags | pB->flags;
4904 if( combinedFlags & EP_IntValue ){
4905 if( (pA->flags&pB->flags&EP_IntValue)!=0 && pA->u.iValue==pB->u.iValue ){
4906 return 0;
4908 return 2;
4910 if( pA->op!=pB->op ){
4911 if( pA->op==TK_COLLATE && sqlite3ExprCompare(pParse, pA->pLeft,pB,iTab)<2 ){
4912 return 1;
4914 if( pB->op==TK_COLLATE && sqlite3ExprCompare(pParse, pA,pB->pLeft,iTab)<2 ){
4915 return 1;
4917 return 2;
4919 if( pA->op!=TK_COLUMN && pA->op!=TK_AGG_COLUMN && pA->u.zToken ){
4920 if( pA->op==TK_FUNCTION ){
4921 if( sqlite3StrICmp(pA->u.zToken,pB->u.zToken)!=0 ) return 2;
4922 }else if( pA->op==TK_COLLATE ){
4923 if( sqlite3_stricmp(pA->u.zToken,pB->u.zToken)!=0 ) return 2;
4924 }else if( strcmp(pA->u.zToken,pB->u.zToken)!=0 ){
4925 return 2;
4928 if( (pA->flags & EP_Distinct)!=(pB->flags & EP_Distinct) ) return 2;
4929 if( ALWAYS((combinedFlags & EP_TokenOnly)==0) ){
4930 if( combinedFlags & EP_xIsSelect ) return 2;
4931 if( sqlite3ExprCompare(pParse, pA->pLeft, pB->pLeft, iTab) ) return 2;
4932 if( sqlite3ExprCompare(pParse, pA->pRight, pB->pRight, iTab) ) return 2;
4933 if( sqlite3ExprListCompare(pA->x.pList, pB->x.pList, iTab) ) return 2;
4934 assert( (combinedFlags & EP_Reduced)==0 );
4935 if( pA->op!=TK_STRING && pA->op!=TK_TRUEFALSE ){
4936 if( pA->iColumn!=pB->iColumn ) return 2;
4937 if( pA->iTable!=pB->iTable
4938 && (pA->iTable!=iTab || NEVER(pB->iTable>=0)) ) return 2;
4941 return 0;
4945 ** Compare two ExprList objects. Return 0 if they are identical and
4946 ** non-zero if they differ in any way.
4948 ** If any subelement of pB has Expr.iTable==(-1) then it is allowed
4949 ** to compare equal to an equivalent element in pA with Expr.iTable==iTab.
4951 ** This routine might return non-zero for equivalent ExprLists. The
4952 ** only consequence will be disabled optimizations. But this routine
4953 ** must never return 0 if the two ExprList objects are different, or
4954 ** a malfunction will result.
4956 ** Two NULL pointers are considered to be the same. But a NULL pointer
4957 ** always differs from a non-NULL pointer.
4959 int sqlite3ExprListCompare(ExprList *pA, ExprList *pB, int iTab){
4960 int i;
4961 if( pA==0 && pB==0 ) return 0;
4962 if( pA==0 || pB==0 ) return 1;
4963 if( pA->nExpr!=pB->nExpr ) return 1;
4964 for(i=0; i<pA->nExpr; i++){
4965 Expr *pExprA = pA->a[i].pExpr;
4966 Expr *pExprB = pB->a[i].pExpr;
4967 if( pA->a[i].sortOrder!=pB->a[i].sortOrder ) return 1;
4968 if( sqlite3ExprCompare(0, pExprA, pExprB, iTab) ) return 1;
4970 return 0;
4974 ** Like sqlite3ExprCompare() except COLLATE operators at the top-level
4975 ** are ignored.
4977 int sqlite3ExprCompareSkip(Expr *pA, Expr *pB, int iTab){
4978 return sqlite3ExprCompare(0,
4979 sqlite3ExprSkipCollate(pA),
4980 sqlite3ExprSkipCollate(pB),
4981 iTab);
4985 ** Return true if we can prove the pE2 will always be true if pE1 is
4986 ** true. Return false if we cannot complete the proof or if pE2 might
4987 ** be false. Examples:
4989 ** pE1: x==5 pE2: x==5 Result: true
4990 ** pE1: x>0 pE2: x==5 Result: false
4991 ** pE1: x=21 pE2: x=21 OR y=43 Result: true
4992 ** pE1: x!=123 pE2: x IS NOT NULL Result: true
4993 ** pE1: x!=?1 pE2: x IS NOT NULL Result: true
4994 ** pE1: x IS NULL pE2: x IS NOT NULL Result: false
4995 ** pE1: x IS ?2 pE2: x IS NOT NULL Reuslt: false
4997 ** When comparing TK_COLUMN nodes between pE1 and pE2, if pE2 has
4998 ** Expr.iTable<0 then assume a table number given by iTab.
5000 ** If pParse is not NULL, then the values of bound variables in pE1 are
5001 ** compared against literal values in pE2 and pParse->pVdbe->expmask is
5002 ** modified to record which bound variables are referenced. If pParse
5003 ** is NULL, then false will be returned if pE1 contains any bound variables.
5005 ** When in doubt, return false. Returning true might give a performance
5006 ** improvement. Returning false might cause a performance reduction, but
5007 ** it will always give the correct answer and is hence always safe.
5009 int sqlite3ExprImpliesExpr(Parse *pParse, Expr *pE1, Expr *pE2, int iTab){
5010 if( sqlite3ExprCompare(pParse, pE1, pE2, iTab)==0 ){
5011 return 1;
5013 if( pE2->op==TK_OR
5014 && (sqlite3ExprImpliesExpr(pParse, pE1, pE2->pLeft, iTab)
5015 || sqlite3ExprImpliesExpr(pParse, pE1, pE2->pRight, iTab) )
5017 return 1;
5019 if( pE2->op==TK_NOTNULL && pE1->op!=TK_ISNULL && pE1->op!=TK_IS ){
5020 Expr *pX = sqlite3ExprSkipCollate(pE1->pLeft);
5021 testcase( pX!=pE1->pLeft );
5022 if( sqlite3ExprCompare(pParse, pX, pE2->pLeft, iTab)==0 ) return 1;
5024 return 0;
5028 ** This is the Expr node callback for sqlite3ExprImpliesNotNullRow().
5029 ** If the expression node requires that the table at pWalker->iCur
5030 ** have a non-NULL column, then set pWalker->eCode to 1 and abort.
5032 static int impliesNotNullRow(Walker *pWalker, Expr *pExpr){
5033 /* This routine is only called for WHERE clause expressions and so it
5034 ** cannot have any TK_AGG_COLUMN entries because those are only found
5035 ** in HAVING clauses. We can get a TK_AGG_FUNCTION in a WHERE clause,
5036 ** but that is an illegal construct and the query will be rejected at
5037 ** a later stage of processing, so the TK_AGG_FUNCTION case does not
5038 ** need to be considered here. */
5039 assert( pExpr->op!=TK_AGG_COLUMN );
5040 testcase( pExpr->op==TK_AGG_FUNCTION );
5042 if( ExprHasProperty(pExpr, EP_FromJoin) ) return WRC_Prune;
5043 switch( pExpr->op ){
5044 case TK_ISNOT:
5045 case TK_NOT:
5046 case TK_ISNULL:
5047 case TK_IS:
5048 case TK_OR:
5049 case TK_CASE:
5050 case TK_IN:
5051 case TK_FUNCTION:
5052 testcase( pExpr->op==TK_ISNOT );
5053 testcase( pExpr->op==TK_NOT );
5054 testcase( pExpr->op==TK_ISNULL );
5055 testcase( pExpr->op==TK_IS );
5056 testcase( pExpr->op==TK_OR );
5057 testcase( pExpr->op==TK_CASE );
5058 testcase( pExpr->op==TK_IN );
5059 testcase( pExpr->op==TK_FUNCTION );
5060 return WRC_Prune;
5061 case TK_COLUMN:
5062 if( pWalker->u.iCur==pExpr->iTable ){
5063 pWalker->eCode = 1;
5064 return WRC_Abort;
5066 return WRC_Prune;
5068 /* Virtual tables are allowed to use constraints like x=NULL. So
5069 ** a term of the form x=y does not prove that y is not null if x
5070 ** is the column of a virtual table */
5071 case TK_EQ:
5072 case TK_NE:
5073 case TK_LT:
5074 case TK_LE:
5075 case TK_GT:
5076 case TK_GE:
5077 testcase( pExpr->op==TK_EQ );
5078 testcase( pExpr->op==TK_NE );
5079 testcase( pExpr->op==TK_LT );
5080 testcase( pExpr->op==TK_LE );
5081 testcase( pExpr->op==TK_GT );
5082 testcase( pExpr->op==TK_GE );
5083 if( (pExpr->pLeft->op==TK_COLUMN && IsVirtual(pExpr->pLeft->pTab))
5084 || (pExpr->pRight->op==TK_COLUMN && IsVirtual(pExpr->pRight->pTab))
5086 return WRC_Prune;
5088 default:
5089 return WRC_Continue;
5094 ** Return true (non-zero) if expression p can only be true if at least
5095 ** one column of table iTab is non-null. In other words, return true
5096 ** if expression p will always be NULL or false if every column of iTab
5097 ** is NULL.
5099 ** False negatives are acceptable. In other words, it is ok to return
5100 ** zero even if expression p will never be true of every column of iTab
5101 ** is NULL. A false negative is merely a missed optimization opportunity.
5103 ** False positives are not allowed, however. A false positive may result
5104 ** in an incorrect answer.
5106 ** Terms of p that are marked with EP_FromJoin (and hence that come from
5107 ** the ON or USING clauses of LEFT JOINS) are excluded from the analysis.
5109 ** This routine is used to check if a LEFT JOIN can be converted into
5110 ** an ordinary JOIN. The p argument is the WHERE clause. If the WHERE
5111 ** clause requires that some column of the right table of the LEFT JOIN
5112 ** be non-NULL, then the LEFT JOIN can be safely converted into an
5113 ** ordinary join.
5115 int sqlite3ExprImpliesNonNullRow(Expr *p, int iTab){
5116 Walker w;
5117 w.xExprCallback = impliesNotNullRow;
5118 w.xSelectCallback = 0;
5119 w.xSelectCallback2 = 0;
5120 w.eCode = 0;
5121 w.u.iCur = iTab;
5122 sqlite3WalkExpr(&w, p);
5123 return w.eCode;
5127 ** An instance of the following structure is used by the tree walker
5128 ** to determine if an expression can be evaluated by reference to the
5129 ** index only, without having to do a search for the corresponding
5130 ** table entry. The IdxCover.pIdx field is the index. IdxCover.iCur
5131 ** is the cursor for the table.
5133 struct IdxCover {
5134 Index *pIdx; /* The index to be tested for coverage */
5135 int iCur; /* Cursor number for the table corresponding to the index */
5139 ** Check to see if there are references to columns in table
5140 ** pWalker->u.pIdxCover->iCur can be satisfied using the index
5141 ** pWalker->u.pIdxCover->pIdx.
5143 static int exprIdxCover(Walker *pWalker, Expr *pExpr){
5144 if( pExpr->op==TK_COLUMN
5145 && pExpr->iTable==pWalker->u.pIdxCover->iCur
5146 && sqlite3ColumnOfIndex(pWalker->u.pIdxCover->pIdx, pExpr->iColumn)<0
5148 pWalker->eCode = 1;
5149 return WRC_Abort;
5151 return WRC_Continue;
5155 ** Determine if an index pIdx on table with cursor iCur contains will
5156 ** the expression pExpr. Return true if the index does cover the
5157 ** expression and false if the pExpr expression references table columns
5158 ** that are not found in the index pIdx.
5160 ** An index covering an expression means that the expression can be
5161 ** evaluated using only the index and without having to lookup the
5162 ** corresponding table entry.
5164 int sqlite3ExprCoveredByIndex(
5165 Expr *pExpr, /* The index to be tested */
5166 int iCur, /* The cursor number for the corresponding table */
5167 Index *pIdx /* The index that might be used for coverage */
5169 Walker w;
5170 struct IdxCover xcov;
5171 memset(&w, 0, sizeof(w));
5172 xcov.iCur = iCur;
5173 xcov.pIdx = pIdx;
5174 w.xExprCallback = exprIdxCover;
5175 w.u.pIdxCover = &xcov;
5176 sqlite3WalkExpr(&w, pExpr);
5177 return !w.eCode;
5182 ** An instance of the following structure is used by the tree walker
5183 ** to count references to table columns in the arguments of an
5184 ** aggregate function, in order to implement the
5185 ** sqlite3FunctionThisSrc() routine.
5187 struct SrcCount {
5188 SrcList *pSrc; /* One particular FROM clause in a nested query */
5189 int nThis; /* Number of references to columns in pSrcList */
5190 int nOther; /* Number of references to columns in other FROM clauses */
5194 ** Count the number of references to columns.
5196 static int exprSrcCount(Walker *pWalker, Expr *pExpr){
5197 /* The NEVER() on the second term is because sqlite3FunctionUsesThisSrc()
5198 ** is always called before sqlite3ExprAnalyzeAggregates() and so the
5199 ** TK_COLUMNs have not yet been converted into TK_AGG_COLUMN. If
5200 ** sqlite3FunctionUsesThisSrc() is used differently in the future, the
5201 ** NEVER() will need to be removed. */
5202 if( pExpr->op==TK_COLUMN || NEVER(pExpr->op==TK_AGG_COLUMN) ){
5203 int i;
5204 struct SrcCount *p = pWalker->u.pSrcCount;
5205 SrcList *pSrc = p->pSrc;
5206 int nSrc = pSrc ? pSrc->nSrc : 0;
5207 for(i=0; i<nSrc; i++){
5208 if( pExpr->iTable==pSrc->a[i].iCursor ) break;
5210 if( i<nSrc ){
5211 p->nThis++;
5212 }else{
5213 p->nOther++;
5216 return WRC_Continue;
5220 ** Determine if any of the arguments to the pExpr Function reference
5221 ** pSrcList. Return true if they do. Also return true if the function
5222 ** has no arguments or has only constant arguments. Return false if pExpr
5223 ** references columns but not columns of tables found in pSrcList.
5225 int sqlite3FunctionUsesThisSrc(Expr *pExpr, SrcList *pSrcList){
5226 Walker w;
5227 struct SrcCount cnt;
5228 assert( pExpr->op==TK_AGG_FUNCTION );
5229 w.xExprCallback = exprSrcCount;
5230 w.xSelectCallback = 0;
5231 w.u.pSrcCount = &cnt;
5232 cnt.pSrc = pSrcList;
5233 cnt.nThis = 0;
5234 cnt.nOther = 0;
5235 sqlite3WalkExprList(&w, pExpr->x.pList);
5236 return cnt.nThis>0 || cnt.nOther==0;
5240 ** Add a new element to the pAggInfo->aCol[] array. Return the index of
5241 ** the new element. Return a negative number if malloc fails.
5243 static int addAggInfoColumn(sqlite3 *db, AggInfo *pInfo){
5244 int i;
5245 pInfo->aCol = sqlite3ArrayAllocate(
5247 pInfo->aCol,
5248 sizeof(pInfo->aCol[0]),
5249 &pInfo->nColumn,
5252 return i;
5256 ** Add a new element to the pAggInfo->aFunc[] array. Return the index of
5257 ** the new element. Return a negative number if malloc fails.
5259 static int addAggInfoFunc(sqlite3 *db, AggInfo *pInfo){
5260 int i;
5261 pInfo->aFunc = sqlite3ArrayAllocate(
5262 db,
5263 pInfo->aFunc,
5264 sizeof(pInfo->aFunc[0]),
5265 &pInfo->nFunc,
5268 return i;
5272 ** This is the xExprCallback for a tree walker. It is used to
5273 ** implement sqlite3ExprAnalyzeAggregates(). See sqlite3ExprAnalyzeAggregates
5274 ** for additional information.
5276 static int analyzeAggregate(Walker *pWalker, Expr *pExpr){
5277 int i;
5278 NameContext *pNC = pWalker->u.pNC;
5279 Parse *pParse = pNC->pParse;
5280 SrcList *pSrcList = pNC->pSrcList;
5281 AggInfo *pAggInfo = pNC->uNC.pAggInfo;
5283 assert( pNC->ncFlags & NC_UAggInfo );
5284 switch( pExpr->op ){
5285 case TK_AGG_COLUMN:
5286 case TK_COLUMN: {
5287 testcase( pExpr->op==TK_AGG_COLUMN );
5288 testcase( pExpr->op==TK_COLUMN );
5289 /* Check to see if the column is in one of the tables in the FROM
5290 ** clause of the aggregate query */
5291 if( ALWAYS(pSrcList!=0) ){
5292 struct SrcList_item *pItem = pSrcList->a;
5293 for(i=0; i<pSrcList->nSrc; i++, pItem++){
5294 struct AggInfo_col *pCol;
5295 assert( !ExprHasProperty(pExpr, EP_TokenOnly|EP_Reduced) );
5296 if( pExpr->iTable==pItem->iCursor ){
5297 /* If we reach this point, it means that pExpr refers to a table
5298 ** that is in the FROM clause of the aggregate query.
5300 ** Make an entry for the column in pAggInfo->aCol[] if there
5301 ** is not an entry there already.
5303 int k;
5304 pCol = pAggInfo->aCol;
5305 for(k=0; k<pAggInfo->nColumn; k++, pCol++){
5306 if( pCol->iTable==pExpr->iTable &&
5307 pCol->iColumn==pExpr->iColumn ){
5308 break;
5311 if( (k>=pAggInfo->nColumn)
5312 && (k = addAggInfoColumn(pParse->db, pAggInfo))>=0
5314 pCol = &pAggInfo->aCol[k];
5315 pCol->pTab = pExpr->pTab;
5316 pCol->iTable = pExpr->iTable;
5317 pCol->iColumn = pExpr->iColumn;
5318 pCol->iMem = ++pParse->nMem;
5319 pCol->iSorterColumn = -1;
5320 pCol->pExpr = pExpr;
5321 if( pAggInfo->pGroupBy ){
5322 int j, n;
5323 ExprList *pGB = pAggInfo->pGroupBy;
5324 struct ExprList_item *pTerm = pGB->a;
5325 n = pGB->nExpr;
5326 for(j=0; j<n; j++, pTerm++){
5327 Expr *pE = pTerm->pExpr;
5328 if( pE->op==TK_COLUMN && pE->iTable==pExpr->iTable &&
5329 pE->iColumn==pExpr->iColumn ){
5330 pCol->iSorterColumn = j;
5331 break;
5335 if( pCol->iSorterColumn<0 ){
5336 pCol->iSorterColumn = pAggInfo->nSortingColumn++;
5339 /* There is now an entry for pExpr in pAggInfo->aCol[] (either
5340 ** because it was there before or because we just created it).
5341 ** Convert the pExpr to be a TK_AGG_COLUMN referring to that
5342 ** pAggInfo->aCol[] entry.
5344 ExprSetVVAProperty(pExpr, EP_NoReduce);
5345 pExpr->pAggInfo = pAggInfo;
5346 pExpr->op = TK_AGG_COLUMN;
5347 pExpr->iAgg = (i16)k;
5348 break;
5349 } /* endif pExpr->iTable==pItem->iCursor */
5350 } /* end loop over pSrcList */
5352 return WRC_Prune;
5354 case TK_AGG_FUNCTION: {
5355 if( (pNC->ncFlags & NC_InAggFunc)==0
5356 && pWalker->walkerDepth==pExpr->op2
5358 /* Check to see if pExpr is a duplicate of another aggregate
5359 ** function that is already in the pAggInfo structure
5361 struct AggInfo_func *pItem = pAggInfo->aFunc;
5362 for(i=0; i<pAggInfo->nFunc; i++, pItem++){
5363 if( sqlite3ExprCompare(0, pItem->pExpr, pExpr, -1)==0 ){
5364 break;
5367 if( i>=pAggInfo->nFunc ){
5368 /* pExpr is original. Make a new entry in pAggInfo->aFunc[]
5370 u8 enc = ENC(pParse->db);
5371 i = addAggInfoFunc(pParse->db, pAggInfo);
5372 if( i>=0 ){
5373 assert( !ExprHasProperty(pExpr, EP_xIsSelect) );
5374 pItem = &pAggInfo->aFunc[i];
5375 pItem->pExpr = pExpr;
5376 pItem->iMem = ++pParse->nMem;
5377 assert( !ExprHasProperty(pExpr, EP_IntValue) );
5378 pItem->pFunc = sqlite3FindFunction(pParse->db,
5379 pExpr->u.zToken,
5380 pExpr->x.pList ? pExpr->x.pList->nExpr : 0, enc, 0);
5381 if( pExpr->flags & EP_Distinct ){
5382 pItem->iDistinct = pParse->nTab++;
5383 }else{
5384 pItem->iDistinct = -1;
5388 /* Make pExpr point to the appropriate pAggInfo->aFunc[] entry
5390 assert( !ExprHasProperty(pExpr, EP_TokenOnly|EP_Reduced) );
5391 ExprSetVVAProperty(pExpr, EP_NoReduce);
5392 pExpr->iAgg = (i16)i;
5393 pExpr->pAggInfo = pAggInfo;
5394 return WRC_Prune;
5395 }else{
5396 return WRC_Continue;
5400 return WRC_Continue;
5402 static int analyzeAggregatesInSelect(Walker *pWalker, Select *pSelect){
5403 UNUSED_PARAMETER(pSelect);
5404 pWalker->walkerDepth++;
5405 return WRC_Continue;
5407 static void analyzeAggregatesInSelectEnd(Walker *pWalker, Select *pSelect){
5408 UNUSED_PARAMETER(pSelect);
5409 pWalker->walkerDepth--;
5413 ** Analyze the pExpr expression looking for aggregate functions and
5414 ** for variables that need to be added to AggInfo object that pNC->pAggInfo
5415 ** points to. Additional entries are made on the AggInfo object as
5416 ** necessary.
5418 ** This routine should only be called after the expression has been
5419 ** analyzed by sqlite3ResolveExprNames().
5421 void sqlite3ExprAnalyzeAggregates(NameContext *pNC, Expr *pExpr){
5422 Walker w;
5423 w.xExprCallback = analyzeAggregate;
5424 w.xSelectCallback = analyzeAggregatesInSelect;
5425 w.xSelectCallback2 = analyzeAggregatesInSelectEnd;
5426 w.walkerDepth = 0;
5427 w.u.pNC = pNC;
5428 assert( pNC->pSrcList!=0 );
5429 sqlite3WalkExpr(&w, pExpr);
5433 ** Call sqlite3ExprAnalyzeAggregates() for every expression in an
5434 ** expression list. Return the number of errors.
5436 ** If an error is found, the analysis is cut short.
5438 void sqlite3ExprAnalyzeAggList(NameContext *pNC, ExprList *pList){
5439 struct ExprList_item *pItem;
5440 int i;
5441 if( pList ){
5442 for(pItem=pList->a, i=0; i<pList->nExpr; i++, pItem++){
5443 sqlite3ExprAnalyzeAggregates(pNC, pItem->pExpr);
5449 ** Allocate a single new register for use to hold some intermediate result.
5451 int sqlite3GetTempReg(Parse *pParse){
5452 if( pParse->nTempReg==0 ){
5453 return ++pParse->nMem;
5455 return pParse->aTempReg[--pParse->nTempReg];
5459 ** Deallocate a register, making available for reuse for some other
5460 ** purpose.
5462 ** If a register is currently being used by the column cache, then
5463 ** the deallocation is deferred until the column cache line that uses
5464 ** the register becomes stale.
5466 void sqlite3ReleaseTempReg(Parse *pParse, int iReg){
5467 if( iReg && pParse->nTempReg<ArraySize(pParse->aTempReg) ){
5468 int i;
5469 struct yColCache *p;
5470 for(i=0, p=pParse->aColCache; i<pParse->nColCache; i++, p++){
5471 if( p->iReg==iReg ){
5472 p->tempReg = 1;
5473 return;
5476 pParse->aTempReg[pParse->nTempReg++] = iReg;
5481 ** Allocate or deallocate a block of nReg consecutive registers.
5483 int sqlite3GetTempRange(Parse *pParse, int nReg){
5484 int i, n;
5485 if( nReg==1 ) return sqlite3GetTempReg(pParse);
5486 i = pParse->iRangeReg;
5487 n = pParse->nRangeReg;
5488 if( nReg<=n ){
5489 assert( !usedAsColumnCache(pParse, i, i+n-1) );
5490 pParse->iRangeReg += nReg;
5491 pParse->nRangeReg -= nReg;
5492 }else{
5493 i = pParse->nMem+1;
5494 pParse->nMem += nReg;
5496 return i;
5498 void sqlite3ReleaseTempRange(Parse *pParse, int iReg, int nReg){
5499 if( nReg==1 ){
5500 sqlite3ReleaseTempReg(pParse, iReg);
5501 return;
5503 sqlite3ExprCacheRemove(pParse, iReg, nReg);
5504 if( nReg>pParse->nRangeReg ){
5505 pParse->nRangeReg = nReg;
5506 pParse->iRangeReg = iReg;
5511 ** Mark all temporary registers as being unavailable for reuse.
5513 void sqlite3ClearTempRegCache(Parse *pParse){
5514 pParse->nTempReg = 0;
5515 pParse->nRangeReg = 0;
5519 ** Validate that no temporary register falls within the range of
5520 ** iFirst..iLast, inclusive. This routine is only call from within assert()
5521 ** statements.
5523 #ifdef SQLITE_DEBUG
5524 int sqlite3NoTempsInRange(Parse *pParse, int iFirst, int iLast){
5525 int i;
5526 if( pParse->nRangeReg>0
5527 && pParse->iRangeReg+pParse->nRangeReg > iFirst
5528 && pParse->iRangeReg <= iLast
5530 return 0;
5532 for(i=0; i<pParse->nTempReg; i++){
5533 if( pParse->aTempReg[i]>=iFirst && pParse->aTempReg[i]<=iLast ){
5534 return 0;
5537 return 1;
5539 #endif /* SQLITE_DEBUG */