Completely disable the skip-ahead-distinct optimization for all but the
[sqlite.git] / src / select.c
blob97eaf21b4d755e3f3d8d62957fb28f0b57462cf7
1 /*
2 ** 2001 September 15
3 **
4 ** The author disclaims copyright to this source code. In place of
5 ** a legal notice, here is a blessing:
6 **
7 ** May you do good and not evil.
8 ** May you find forgiveness for yourself and forgive others.
9 ** May you share freely, never taking more than you give.
11 *************************************************************************
12 ** This file contains C code routines that are called by the parser
13 ** to handle SELECT statements in SQLite.
15 #include "sqliteInt.h"
18 ** Trace output macros
20 #if SELECTTRACE_ENABLED
21 /***/ int sqlite3SelectTrace = 0;
22 # define SELECTTRACE(K,P,S,X) \
23 if(sqlite3SelectTrace&(K)) \
24 sqlite3DebugPrintf("%*s%s.%p: ",(P)->nSelectIndent*2-2,"",\
25 (S)->zSelName,(S)),\
26 sqlite3DebugPrintf X
27 #else
28 # define SELECTTRACE(K,P,S,X)
29 #endif
33 ** An instance of the following object is used to record information about
34 ** how to process the DISTINCT keyword, to simplify passing that information
35 ** into the selectInnerLoop() routine.
37 typedef struct DistinctCtx DistinctCtx;
38 struct DistinctCtx {
39 u8 isTnct; /* True if the DISTINCT keyword is present */
40 u8 eTnctType; /* One of the WHERE_DISTINCT_* operators */
41 int tabTnct; /* Ephemeral table used for DISTINCT processing */
42 int addrTnct; /* Address of OP_OpenEphemeral opcode for tabTnct */
46 ** An instance of the following object is used to record information about
47 ** the ORDER BY (or GROUP BY) clause of query is being coded.
49 typedef struct SortCtx SortCtx;
50 struct SortCtx {
51 ExprList *pOrderBy; /* The ORDER BY (or GROUP BY clause) */
52 int nOBSat; /* Number of ORDER BY terms satisfied by indices */
53 int iECursor; /* Cursor number for the sorter */
54 int regReturn; /* Register holding block-output return address */
55 int labelBkOut; /* Start label for the block-output subroutine */
56 int addrSortIndex; /* Address of the OP_SorterOpen or OP_OpenEphemeral */
57 int labelDone; /* Jump here when done, ex: LIMIT reached */
58 u8 sortFlags; /* Zero or more SORTFLAG_* bits */
59 u8 bOrderedInnerLoop; /* ORDER BY correctly sorts the inner loop */
61 #define SORTFLAG_UseSorter 0x01 /* Use SorterOpen instead of OpenEphemeral */
64 ** Delete all the content of a Select structure. Deallocate the structure
65 ** itself only if bFree is true.
67 static void clearSelect(sqlite3 *db, Select *p, int bFree){
68 while( p ){
69 Select *pPrior = p->pPrior;
70 sqlite3ExprListDelete(db, p->pEList);
71 sqlite3SrcListDelete(db, p->pSrc);
72 sqlite3ExprDelete(db, p->pWhere);
73 sqlite3ExprListDelete(db, p->pGroupBy);
74 sqlite3ExprDelete(db, p->pHaving);
75 sqlite3ExprListDelete(db, p->pOrderBy);
76 sqlite3ExprDelete(db, p->pLimit);
77 if( OK_IF_ALWAYS_TRUE(p->pWith) ) sqlite3WithDelete(db, p->pWith);
78 if( bFree ) sqlite3DbFreeNN(db, p);
79 p = pPrior;
80 bFree = 1;
85 ** Initialize a SelectDest structure.
87 void sqlite3SelectDestInit(SelectDest *pDest, int eDest, int iParm){
88 pDest->eDest = (u8)eDest;
89 pDest->iSDParm = iParm;
90 pDest->zAffSdst = 0;
91 pDest->iSdst = 0;
92 pDest->nSdst = 0;
97 ** Allocate a new Select structure and return a pointer to that
98 ** structure.
100 Select *sqlite3SelectNew(
101 Parse *pParse, /* Parsing context */
102 ExprList *pEList, /* which columns to include in the result */
103 SrcList *pSrc, /* the FROM clause -- which tables to scan */
104 Expr *pWhere, /* the WHERE clause */
105 ExprList *pGroupBy, /* the GROUP BY clause */
106 Expr *pHaving, /* the HAVING clause */
107 ExprList *pOrderBy, /* the ORDER BY clause */
108 u32 selFlags, /* Flag parameters, such as SF_Distinct */
109 Expr *pLimit /* LIMIT value. NULL means not used */
111 Select *pNew;
112 Select standin;
113 pNew = sqlite3DbMallocRawNN(pParse->db, sizeof(*pNew) );
114 if( pNew==0 ){
115 assert( pParse->db->mallocFailed );
116 pNew = &standin;
118 if( pEList==0 ){
119 pEList = sqlite3ExprListAppend(pParse, 0,
120 sqlite3Expr(pParse->db,TK_ASTERISK,0));
122 pNew->pEList = pEList;
123 pNew->op = TK_SELECT;
124 pNew->selFlags = selFlags;
125 pNew->iLimit = 0;
126 pNew->iOffset = 0;
127 #if SELECTTRACE_ENABLED
128 pNew->zSelName[0] = 0;
129 #endif
130 pNew->addrOpenEphm[0] = -1;
131 pNew->addrOpenEphm[1] = -1;
132 pNew->nSelectRow = 0;
133 if( pSrc==0 ) pSrc = sqlite3DbMallocZero(pParse->db, sizeof(*pSrc));
134 pNew->pSrc = pSrc;
135 pNew->pWhere = pWhere;
136 pNew->pGroupBy = pGroupBy;
137 pNew->pHaving = pHaving;
138 pNew->pOrderBy = pOrderBy;
139 pNew->pPrior = 0;
140 pNew->pNext = 0;
141 pNew->pLimit = pLimit;
142 pNew->pWith = 0;
143 if( pParse->db->mallocFailed ) {
144 clearSelect(pParse->db, pNew, pNew!=&standin);
145 pNew = 0;
146 }else{
147 assert( pNew->pSrc!=0 || pParse->nErr>0 );
149 assert( pNew!=&standin );
150 return pNew;
153 #if SELECTTRACE_ENABLED
155 ** Set the name of a Select object
157 void sqlite3SelectSetName(Select *p, const char *zName){
158 if( p && zName ){
159 sqlite3_snprintf(sizeof(p->zSelName), p->zSelName, "%s", zName);
162 #endif
166 ** Delete the given Select structure and all of its substructures.
168 void sqlite3SelectDelete(sqlite3 *db, Select *p){
169 if( OK_IF_ALWAYS_TRUE(p) ) clearSelect(db, p, 1);
173 ** Return a pointer to the right-most SELECT statement in a compound.
175 static Select *findRightmost(Select *p){
176 while( p->pNext ) p = p->pNext;
177 return p;
181 ** Given 1 to 3 identifiers preceding the JOIN keyword, determine the
182 ** type of join. Return an integer constant that expresses that type
183 ** in terms of the following bit values:
185 ** JT_INNER
186 ** JT_CROSS
187 ** JT_OUTER
188 ** JT_NATURAL
189 ** JT_LEFT
190 ** JT_RIGHT
192 ** A full outer join is the combination of JT_LEFT and JT_RIGHT.
194 ** If an illegal or unsupported join type is seen, then still return
195 ** a join type, but put an error in the pParse structure.
197 int sqlite3JoinType(Parse *pParse, Token *pA, Token *pB, Token *pC){
198 int jointype = 0;
199 Token *apAll[3];
200 Token *p;
201 /* 0123456789 123456789 123456789 123 */
202 static const char zKeyText[] = "naturaleftouterightfullinnercross";
203 static const struct {
204 u8 i; /* Beginning of keyword text in zKeyText[] */
205 u8 nChar; /* Length of the keyword in characters */
206 u8 code; /* Join type mask */
207 } aKeyword[] = {
208 /* natural */ { 0, 7, JT_NATURAL },
209 /* left */ { 6, 4, JT_LEFT|JT_OUTER },
210 /* outer */ { 10, 5, JT_OUTER },
211 /* right */ { 14, 5, JT_RIGHT|JT_OUTER },
212 /* full */ { 19, 4, JT_LEFT|JT_RIGHT|JT_OUTER },
213 /* inner */ { 23, 5, JT_INNER },
214 /* cross */ { 28, 5, JT_INNER|JT_CROSS },
216 int i, j;
217 apAll[0] = pA;
218 apAll[1] = pB;
219 apAll[2] = pC;
220 for(i=0; i<3 && apAll[i]; i++){
221 p = apAll[i];
222 for(j=0; j<ArraySize(aKeyword); j++){
223 if( p->n==aKeyword[j].nChar
224 && sqlite3StrNICmp((char*)p->z, &zKeyText[aKeyword[j].i], p->n)==0 ){
225 jointype |= aKeyword[j].code;
226 break;
229 testcase( j==0 || j==1 || j==2 || j==3 || j==4 || j==5 || j==6 );
230 if( j>=ArraySize(aKeyword) ){
231 jointype |= JT_ERROR;
232 break;
236 (jointype & (JT_INNER|JT_OUTER))==(JT_INNER|JT_OUTER) ||
237 (jointype & JT_ERROR)!=0
239 const char *zSp = " ";
240 assert( pB!=0 );
241 if( pC==0 ){ zSp++; }
242 sqlite3ErrorMsg(pParse, "unknown or unsupported join type: "
243 "%T %T%s%T", pA, pB, zSp, pC);
244 jointype = JT_INNER;
245 }else if( (jointype & JT_OUTER)!=0
246 && (jointype & (JT_LEFT|JT_RIGHT))!=JT_LEFT ){
247 sqlite3ErrorMsg(pParse,
248 "RIGHT and FULL OUTER JOINs are not currently supported");
249 jointype = JT_INNER;
251 return jointype;
255 ** Return the index of a column in a table. Return -1 if the column
256 ** is not contained in the table.
258 static int columnIndex(Table *pTab, const char *zCol){
259 int i;
260 for(i=0; i<pTab->nCol; i++){
261 if( sqlite3StrICmp(pTab->aCol[i].zName, zCol)==0 ) return i;
263 return -1;
267 ** Search the first N tables in pSrc, from left to right, looking for a
268 ** table that has a column named zCol.
270 ** When found, set *piTab and *piCol to the table index and column index
271 ** of the matching column and return TRUE.
273 ** If not found, return FALSE.
275 static int tableAndColumnIndex(
276 SrcList *pSrc, /* Array of tables to search */
277 int N, /* Number of tables in pSrc->a[] to search */
278 const char *zCol, /* Name of the column we are looking for */
279 int *piTab, /* Write index of pSrc->a[] here */
280 int *piCol /* Write index of pSrc->a[*piTab].pTab->aCol[] here */
282 int i; /* For looping over tables in pSrc */
283 int iCol; /* Index of column matching zCol */
285 assert( (piTab==0)==(piCol==0) ); /* Both or neither are NULL */
286 for(i=0; i<N; i++){
287 iCol = columnIndex(pSrc->a[i].pTab, zCol);
288 if( iCol>=0 ){
289 if( piTab ){
290 *piTab = i;
291 *piCol = iCol;
293 return 1;
296 return 0;
300 ** This function is used to add terms implied by JOIN syntax to the
301 ** WHERE clause expression of a SELECT statement. The new term, which
302 ** is ANDed with the existing WHERE clause, is of the form:
304 ** (tab1.col1 = tab2.col2)
306 ** where tab1 is the iSrc'th table in SrcList pSrc and tab2 is the
307 ** (iSrc+1)'th. Column col1 is column iColLeft of tab1, and col2 is
308 ** column iColRight of tab2.
310 static void addWhereTerm(
311 Parse *pParse, /* Parsing context */
312 SrcList *pSrc, /* List of tables in FROM clause */
313 int iLeft, /* Index of first table to join in pSrc */
314 int iColLeft, /* Index of column in first table */
315 int iRight, /* Index of second table in pSrc */
316 int iColRight, /* Index of column in second table */
317 int isOuterJoin, /* True if this is an OUTER join */
318 Expr **ppWhere /* IN/OUT: The WHERE clause to add to */
320 sqlite3 *db = pParse->db;
321 Expr *pE1;
322 Expr *pE2;
323 Expr *pEq;
325 assert( iLeft<iRight );
326 assert( pSrc->nSrc>iRight );
327 assert( pSrc->a[iLeft].pTab );
328 assert( pSrc->a[iRight].pTab );
330 pE1 = sqlite3CreateColumnExpr(db, pSrc, iLeft, iColLeft);
331 pE2 = sqlite3CreateColumnExpr(db, pSrc, iRight, iColRight);
333 pEq = sqlite3PExpr(pParse, TK_EQ, pE1, pE2);
334 if( pEq && isOuterJoin ){
335 ExprSetProperty(pEq, EP_FromJoin);
336 assert( !ExprHasProperty(pEq, EP_TokenOnly|EP_Reduced) );
337 ExprSetVVAProperty(pEq, EP_NoReduce);
338 pEq->iRightJoinTable = (i16)pE2->iTable;
340 *ppWhere = sqlite3ExprAnd(db, *ppWhere, pEq);
344 ** Set the EP_FromJoin property on all terms of the given expression.
345 ** And set the Expr.iRightJoinTable to iTable for every term in the
346 ** expression.
348 ** The EP_FromJoin property is used on terms of an expression to tell
349 ** the LEFT OUTER JOIN processing logic that this term is part of the
350 ** join restriction specified in the ON or USING clause and not a part
351 ** of the more general WHERE clause. These terms are moved over to the
352 ** WHERE clause during join processing but we need to remember that they
353 ** originated in the ON or USING clause.
355 ** The Expr.iRightJoinTable tells the WHERE clause processing that the
356 ** expression depends on table iRightJoinTable even if that table is not
357 ** explicitly mentioned in the expression. That information is needed
358 ** for cases like this:
360 ** SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.b AND t1.x=5
362 ** The where clause needs to defer the handling of the t1.x=5
363 ** term until after the t2 loop of the join. In that way, a
364 ** NULL t2 row will be inserted whenever t1.x!=5. If we do not
365 ** defer the handling of t1.x=5, it will be processed immediately
366 ** after the t1 loop and rows with t1.x!=5 will never appear in
367 ** the output, which is incorrect.
369 static void setJoinExpr(Expr *p, int iTable){
370 while( p ){
371 ExprSetProperty(p, EP_FromJoin);
372 assert( !ExprHasProperty(p, EP_TokenOnly|EP_Reduced) );
373 ExprSetVVAProperty(p, EP_NoReduce);
374 p->iRightJoinTable = (i16)iTable;
375 if( p->op==TK_FUNCTION && p->x.pList ){
376 int i;
377 for(i=0; i<p->x.pList->nExpr; i++){
378 setJoinExpr(p->x.pList->a[i].pExpr, iTable);
381 setJoinExpr(p->pLeft, iTable);
382 p = p->pRight;
387 ** This routine processes the join information for a SELECT statement.
388 ** ON and USING clauses are converted into extra terms of the WHERE clause.
389 ** NATURAL joins also create extra WHERE clause terms.
391 ** The terms of a FROM clause are contained in the Select.pSrc structure.
392 ** The left most table is the first entry in Select.pSrc. The right-most
393 ** table is the last entry. The join operator is held in the entry to
394 ** the left. Thus entry 0 contains the join operator for the join between
395 ** entries 0 and 1. Any ON or USING clauses associated with the join are
396 ** also attached to the left entry.
398 ** This routine returns the number of errors encountered.
400 static int sqliteProcessJoin(Parse *pParse, Select *p){
401 SrcList *pSrc; /* All tables in the FROM clause */
402 int i, j; /* Loop counters */
403 struct SrcList_item *pLeft; /* Left table being joined */
404 struct SrcList_item *pRight; /* Right table being joined */
406 pSrc = p->pSrc;
407 pLeft = &pSrc->a[0];
408 pRight = &pLeft[1];
409 for(i=0; i<pSrc->nSrc-1; i++, pRight++, pLeft++){
410 Table *pRightTab = pRight->pTab;
411 int isOuter;
413 if( NEVER(pLeft->pTab==0 || pRightTab==0) ) continue;
414 isOuter = (pRight->fg.jointype & JT_OUTER)!=0;
416 /* When the NATURAL keyword is present, add WHERE clause terms for
417 ** every column that the two tables have in common.
419 if( pRight->fg.jointype & JT_NATURAL ){
420 if( pRight->pOn || pRight->pUsing ){
421 sqlite3ErrorMsg(pParse, "a NATURAL join may not have "
422 "an ON or USING clause", 0);
423 return 1;
425 for(j=0; j<pRightTab->nCol; j++){
426 char *zName; /* Name of column in the right table */
427 int iLeft; /* Matching left table */
428 int iLeftCol; /* Matching column in the left table */
430 zName = pRightTab->aCol[j].zName;
431 if( tableAndColumnIndex(pSrc, i+1, zName, &iLeft, &iLeftCol) ){
432 addWhereTerm(pParse, pSrc, iLeft, iLeftCol, i+1, j,
433 isOuter, &p->pWhere);
438 /* Disallow both ON and USING clauses in the same join
440 if( pRight->pOn && pRight->pUsing ){
441 sqlite3ErrorMsg(pParse, "cannot have both ON and USING "
442 "clauses in the same join");
443 return 1;
446 /* Add the ON clause to the end of the WHERE clause, connected by
447 ** an AND operator.
449 if( pRight->pOn ){
450 if( isOuter ) setJoinExpr(pRight->pOn, pRight->iCursor);
451 p->pWhere = sqlite3ExprAnd(pParse->db, p->pWhere, pRight->pOn);
452 pRight->pOn = 0;
455 /* Create extra terms on the WHERE clause for each column named
456 ** in the USING clause. Example: If the two tables to be joined are
457 ** A and B and the USING clause names X, Y, and Z, then add this
458 ** to the WHERE clause: A.X=B.X AND A.Y=B.Y AND A.Z=B.Z
459 ** Report an error if any column mentioned in the USING clause is
460 ** not contained in both tables to be joined.
462 if( pRight->pUsing ){
463 IdList *pList = pRight->pUsing;
464 for(j=0; j<pList->nId; j++){
465 char *zName; /* Name of the term in the USING clause */
466 int iLeft; /* Table on the left with matching column name */
467 int iLeftCol; /* Column number of matching column on the left */
468 int iRightCol; /* Column number of matching column on the right */
470 zName = pList->a[j].zName;
471 iRightCol = columnIndex(pRightTab, zName);
472 if( iRightCol<0
473 || !tableAndColumnIndex(pSrc, i+1, zName, &iLeft, &iLeftCol)
475 sqlite3ErrorMsg(pParse, "cannot join using column %s - column "
476 "not present in both tables", zName);
477 return 1;
479 addWhereTerm(pParse, pSrc, iLeft, iLeftCol, i+1, iRightCol,
480 isOuter, &p->pWhere);
484 return 0;
487 /* Forward reference */
488 static KeyInfo *keyInfoFromExprList(
489 Parse *pParse, /* Parsing context */
490 ExprList *pList, /* Form the KeyInfo object from this ExprList */
491 int iStart, /* Begin with this column of pList */
492 int nExtra /* Add this many extra columns to the end */
496 ** Generate code that will push the record in registers regData
497 ** through regData+nData-1 onto the sorter.
499 static void pushOntoSorter(
500 Parse *pParse, /* Parser context */
501 SortCtx *pSort, /* Information about the ORDER BY clause */
502 Select *pSelect, /* The whole SELECT statement */
503 int regData, /* First register holding data to be sorted */
504 int regOrigData, /* First register holding data before packing */
505 int nData, /* Number of elements in the data array */
506 int nPrefixReg /* No. of reg prior to regData available for use */
508 Vdbe *v = pParse->pVdbe; /* Stmt under construction */
509 int bSeq = ((pSort->sortFlags & SORTFLAG_UseSorter)==0);
510 int nExpr = pSort->pOrderBy->nExpr; /* No. of ORDER BY terms */
511 int nBase = nExpr + bSeq + nData; /* Fields in sorter record */
512 int regBase; /* Regs for sorter record */
513 int regRecord = ++pParse->nMem; /* Assembled sorter record */
514 int nOBSat = pSort->nOBSat; /* ORDER BY terms to skip */
515 int op; /* Opcode to add sorter record to sorter */
516 int iLimit; /* LIMIT counter */
518 assert( bSeq==0 || bSeq==1 );
519 assert( nData==1 || regData==regOrigData || regOrigData==0 );
520 if( nPrefixReg ){
521 assert( nPrefixReg==nExpr+bSeq );
522 regBase = regData - nExpr - bSeq;
523 }else{
524 regBase = pParse->nMem + 1;
525 pParse->nMem += nBase;
527 assert( pSelect->iOffset==0 || pSelect->iLimit!=0 );
528 iLimit = pSelect->iOffset ? pSelect->iOffset+1 : pSelect->iLimit;
529 pSort->labelDone = sqlite3VdbeMakeLabel(v);
530 sqlite3ExprCodeExprList(pParse, pSort->pOrderBy, regBase, regOrigData,
531 SQLITE_ECEL_DUP | (regOrigData? SQLITE_ECEL_REF : 0));
532 if( bSeq ){
533 sqlite3VdbeAddOp2(v, OP_Sequence, pSort->iECursor, regBase+nExpr);
535 if( nPrefixReg==0 && nData>0 ){
536 sqlite3ExprCodeMove(pParse, regData, regBase+nExpr+bSeq, nData);
538 sqlite3VdbeAddOp3(v, OP_MakeRecord, regBase+nOBSat, nBase-nOBSat, regRecord);
539 if( nOBSat>0 ){
540 int regPrevKey; /* The first nOBSat columns of the previous row */
541 int addrFirst; /* Address of the OP_IfNot opcode */
542 int addrJmp; /* Address of the OP_Jump opcode */
543 VdbeOp *pOp; /* Opcode that opens the sorter */
544 int nKey; /* Number of sorting key columns, including OP_Sequence */
545 KeyInfo *pKI; /* Original KeyInfo on the sorter table */
547 regPrevKey = pParse->nMem+1;
548 pParse->nMem += pSort->nOBSat;
549 nKey = nExpr - pSort->nOBSat + bSeq;
550 if( bSeq ){
551 addrFirst = sqlite3VdbeAddOp1(v, OP_IfNot, regBase+nExpr);
552 }else{
553 addrFirst = sqlite3VdbeAddOp1(v, OP_SequenceTest, pSort->iECursor);
555 VdbeCoverage(v);
556 sqlite3VdbeAddOp3(v, OP_Compare, regPrevKey, regBase, pSort->nOBSat);
557 pOp = sqlite3VdbeGetOp(v, pSort->addrSortIndex);
558 if( pParse->db->mallocFailed ) return;
559 pOp->p2 = nKey + nData;
560 pKI = pOp->p4.pKeyInfo;
561 memset(pKI->aSortOrder, 0, pKI->nKeyField); /* Makes OP_Jump testable */
562 sqlite3VdbeChangeP4(v, -1, (char*)pKI, P4_KEYINFO);
563 testcase( pKI->nAllField > pKI->nKeyField+2 );
564 pOp->p4.pKeyInfo = keyInfoFromExprList(pParse, pSort->pOrderBy, nOBSat,
565 pKI->nAllField-pKI->nKeyField-1);
566 addrJmp = sqlite3VdbeCurrentAddr(v);
567 sqlite3VdbeAddOp3(v, OP_Jump, addrJmp+1, 0, addrJmp+1); VdbeCoverage(v);
568 pSort->labelBkOut = sqlite3VdbeMakeLabel(v);
569 pSort->regReturn = ++pParse->nMem;
570 sqlite3VdbeAddOp2(v, OP_Gosub, pSort->regReturn, pSort->labelBkOut);
571 sqlite3VdbeAddOp1(v, OP_ResetSorter, pSort->iECursor);
572 if( iLimit ){
573 sqlite3VdbeAddOp2(v, OP_IfNot, iLimit, pSort->labelDone);
574 VdbeCoverage(v);
576 sqlite3VdbeJumpHere(v, addrFirst);
577 sqlite3ExprCodeMove(pParse, regBase, regPrevKey, pSort->nOBSat);
578 sqlite3VdbeJumpHere(v, addrJmp);
580 if( pSort->sortFlags & SORTFLAG_UseSorter ){
581 op = OP_SorterInsert;
582 }else{
583 op = OP_IdxInsert;
585 sqlite3VdbeAddOp4Int(v, op, pSort->iECursor, regRecord,
586 regBase+nOBSat, nBase-nOBSat);
587 if( iLimit ){
588 int addr;
589 int r1 = 0;
590 /* Fill the sorter until it contains LIMIT+OFFSET entries. (The iLimit
591 ** register is initialized with value of LIMIT+OFFSET.) After the sorter
592 ** fills up, delete the least entry in the sorter after each insert.
593 ** Thus we never hold more than the LIMIT+OFFSET rows in memory at once */
594 addr = sqlite3VdbeAddOp1(v, OP_IfNotZero, iLimit); VdbeCoverage(v);
595 sqlite3VdbeAddOp1(v, OP_Last, pSort->iECursor);
596 if( pSort->bOrderedInnerLoop ){
597 r1 = ++pParse->nMem;
598 sqlite3VdbeAddOp3(v, OP_Column, pSort->iECursor, nExpr, r1);
599 VdbeComment((v, "seq"));
601 sqlite3VdbeAddOp1(v, OP_Delete, pSort->iECursor);
602 if( pSort->bOrderedInnerLoop ){
603 /* If the inner loop is driven by an index such that values from
604 ** the same iteration of the inner loop are in sorted order, then
605 ** immediately jump to the next iteration of an inner loop if the
606 ** entry from the current iteration does not fit into the top
607 ** LIMIT+OFFSET entries of the sorter. */
608 int iBrk = sqlite3VdbeCurrentAddr(v) + 2;
609 sqlite3VdbeAddOp3(v, OP_Eq, regBase+nExpr, iBrk, r1);
610 sqlite3VdbeChangeP5(v, SQLITE_NULLEQ);
611 VdbeCoverage(v);
613 sqlite3VdbeJumpHere(v, addr);
618 ** Add code to implement the OFFSET
620 static void codeOffset(
621 Vdbe *v, /* Generate code into this VM */
622 int iOffset, /* Register holding the offset counter */
623 int iContinue /* Jump here to skip the current record */
625 if( iOffset>0 ){
626 sqlite3VdbeAddOp3(v, OP_IfPos, iOffset, iContinue, 1); VdbeCoverage(v);
627 VdbeComment((v, "OFFSET"));
632 ** Add code that will check to make sure the N registers starting at iMem
633 ** form a distinct entry. iTab is a sorting index that holds previously
634 ** seen combinations of the N values. A new entry is made in iTab
635 ** if the current N values are new.
637 ** A jump to addrRepeat is made and the N+1 values are popped from the
638 ** stack if the top N elements are not distinct.
640 static void codeDistinct(
641 Parse *pParse, /* Parsing and code generating context */
642 int iTab, /* A sorting index used to test for distinctness */
643 int addrRepeat, /* Jump to here if not distinct */
644 int N, /* Number of elements */
645 int iMem /* First element */
647 Vdbe *v;
648 int r1;
650 v = pParse->pVdbe;
651 r1 = sqlite3GetTempReg(pParse);
652 sqlite3VdbeAddOp4Int(v, OP_Found, iTab, addrRepeat, iMem, N); VdbeCoverage(v);
653 sqlite3VdbeAddOp3(v, OP_MakeRecord, iMem, N, r1);
654 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iTab, r1, iMem, N);
655 sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT);
656 sqlite3ReleaseTempReg(pParse, r1);
660 ** This routine generates the code for the inside of the inner loop
661 ** of a SELECT.
663 ** If srcTab is negative, then the p->pEList expressions
664 ** are evaluated in order to get the data for this row. If srcTab is
665 ** zero or more, then data is pulled from srcTab and p->pEList is used only
666 ** to get the number of columns and the collation sequence for each column.
668 static void selectInnerLoop(
669 Parse *pParse, /* The parser context */
670 Select *p, /* The complete select statement being coded */
671 int srcTab, /* Pull data from this table if non-negative */
672 SortCtx *pSort, /* If not NULL, info on how to process ORDER BY */
673 DistinctCtx *pDistinct, /* If not NULL, info on how to process DISTINCT */
674 SelectDest *pDest, /* How to dispose of the results */
675 int iContinue, /* Jump here to continue with next row */
676 int iBreak /* Jump here to break out of the inner loop */
678 Vdbe *v = pParse->pVdbe;
679 int i;
680 int hasDistinct; /* True if the DISTINCT keyword is present */
681 int eDest = pDest->eDest; /* How to dispose of results */
682 int iParm = pDest->iSDParm; /* First argument to disposal method */
683 int nResultCol; /* Number of result columns */
684 int nPrefixReg = 0; /* Number of extra registers before regResult */
686 /* Usually, regResult is the first cell in an array of memory cells
687 ** containing the current result row. In this case regOrig is set to the
688 ** same value. However, if the results are being sent to the sorter, the
689 ** values for any expressions that are also part of the sort-key are omitted
690 ** from this array. In this case regOrig is set to zero. */
691 int regResult; /* Start of memory holding current results */
692 int regOrig; /* Start of memory holding full result (or 0) */
694 assert( v );
695 assert( p->pEList!=0 );
696 hasDistinct = pDistinct ? pDistinct->eTnctType : WHERE_DISTINCT_NOOP;
697 if( pSort && pSort->pOrderBy==0 ) pSort = 0;
698 if( pSort==0 && !hasDistinct ){
699 assert( iContinue!=0 );
700 codeOffset(v, p->iOffset, iContinue);
703 /* Pull the requested columns.
705 nResultCol = p->pEList->nExpr;
707 if( pDest->iSdst==0 ){
708 if( pSort ){
709 nPrefixReg = pSort->pOrderBy->nExpr;
710 if( !(pSort->sortFlags & SORTFLAG_UseSorter) ) nPrefixReg++;
711 pParse->nMem += nPrefixReg;
713 pDest->iSdst = pParse->nMem+1;
714 pParse->nMem += nResultCol;
715 }else if( pDest->iSdst+nResultCol > pParse->nMem ){
716 /* This is an error condition that can result, for example, when a SELECT
717 ** on the right-hand side of an INSERT contains more result columns than
718 ** there are columns in the table on the left. The error will be caught
719 ** and reported later. But we need to make sure enough memory is allocated
720 ** to avoid other spurious errors in the meantime. */
721 pParse->nMem += nResultCol;
723 pDest->nSdst = nResultCol;
724 regOrig = regResult = pDest->iSdst;
725 if( srcTab>=0 ){
726 for(i=0; i<nResultCol; i++){
727 sqlite3VdbeAddOp3(v, OP_Column, srcTab, i, regResult+i);
728 VdbeComment((v, "%s", p->pEList->a[i].zName));
730 }else if( eDest!=SRT_Exists ){
731 /* If the destination is an EXISTS(...) expression, the actual
732 ** values returned by the SELECT are not required.
734 u8 ecelFlags;
735 if( eDest==SRT_Mem || eDest==SRT_Output || eDest==SRT_Coroutine ){
736 ecelFlags = SQLITE_ECEL_DUP;
737 }else{
738 ecelFlags = 0;
740 if( pSort && hasDistinct==0 && eDest!=SRT_EphemTab && eDest!=SRT_Table ){
741 /* For each expression in p->pEList that is a copy of an expression in
742 ** the ORDER BY clause (pSort->pOrderBy), set the associated
743 ** iOrderByCol value to one more than the index of the ORDER BY
744 ** expression within the sort-key that pushOntoSorter() will generate.
745 ** This allows the p->pEList field to be omitted from the sorted record,
746 ** saving space and CPU cycles. */
747 ecelFlags |= (SQLITE_ECEL_OMITREF|SQLITE_ECEL_REF);
748 for(i=pSort->nOBSat; i<pSort->pOrderBy->nExpr; i++){
749 int j;
750 if( (j = pSort->pOrderBy->a[i].u.x.iOrderByCol)>0 ){
751 p->pEList->a[j-1].u.x.iOrderByCol = i+1-pSort->nOBSat;
754 regOrig = 0;
755 assert( eDest==SRT_Set || eDest==SRT_Mem
756 || eDest==SRT_Coroutine || eDest==SRT_Output );
758 nResultCol = sqlite3ExprCodeExprList(pParse,p->pEList,regResult,
759 0,ecelFlags);
762 /* If the DISTINCT keyword was present on the SELECT statement
763 ** and this row has been seen before, then do not make this row
764 ** part of the result.
766 if( hasDistinct ){
767 switch( pDistinct->eTnctType ){
768 case WHERE_DISTINCT_ORDERED: {
769 VdbeOp *pOp; /* No longer required OpenEphemeral instr. */
770 int iJump; /* Jump destination */
771 int regPrev; /* Previous row content */
773 /* Allocate space for the previous row */
774 regPrev = pParse->nMem+1;
775 pParse->nMem += nResultCol;
777 /* Change the OP_OpenEphemeral coded earlier to an OP_Null
778 ** sets the MEM_Cleared bit on the first register of the
779 ** previous value. This will cause the OP_Ne below to always
780 ** fail on the first iteration of the loop even if the first
781 ** row is all NULLs.
783 sqlite3VdbeChangeToNoop(v, pDistinct->addrTnct);
784 pOp = sqlite3VdbeGetOp(v, pDistinct->addrTnct);
785 pOp->opcode = OP_Null;
786 pOp->p1 = 1;
787 pOp->p2 = regPrev;
789 iJump = sqlite3VdbeCurrentAddr(v) + nResultCol;
790 for(i=0; i<nResultCol; i++){
791 CollSeq *pColl = sqlite3ExprCollSeq(pParse, p->pEList->a[i].pExpr);
792 if( i<nResultCol-1 ){
793 sqlite3VdbeAddOp3(v, OP_Ne, regResult+i, iJump, regPrev+i);
794 VdbeCoverage(v);
795 }else{
796 sqlite3VdbeAddOp3(v, OP_Eq, regResult+i, iContinue, regPrev+i);
797 VdbeCoverage(v);
799 sqlite3VdbeChangeP4(v, -1, (const char *)pColl, P4_COLLSEQ);
800 sqlite3VdbeChangeP5(v, SQLITE_NULLEQ);
802 assert( sqlite3VdbeCurrentAddr(v)==iJump || pParse->db->mallocFailed );
803 sqlite3VdbeAddOp3(v, OP_Copy, regResult, regPrev, nResultCol-1);
804 break;
807 case WHERE_DISTINCT_UNIQUE: {
808 sqlite3VdbeChangeToNoop(v, pDistinct->addrTnct);
809 break;
812 default: {
813 assert( pDistinct->eTnctType==WHERE_DISTINCT_UNORDERED );
814 codeDistinct(pParse, pDistinct->tabTnct, iContinue, nResultCol,
815 regResult);
816 break;
819 if( pSort==0 ){
820 codeOffset(v, p->iOffset, iContinue);
824 switch( eDest ){
825 /* In this mode, write each query result to the key of the temporary
826 ** table iParm.
828 #ifndef SQLITE_OMIT_COMPOUND_SELECT
829 case SRT_Union: {
830 int r1;
831 r1 = sqlite3GetTempReg(pParse);
832 sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nResultCol, r1);
833 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, r1, regResult, nResultCol);
834 sqlite3ReleaseTempReg(pParse, r1);
835 break;
838 /* Construct a record from the query result, but instead of
839 ** saving that record, use it as a key to delete elements from
840 ** the temporary table iParm.
842 case SRT_Except: {
843 sqlite3VdbeAddOp3(v, OP_IdxDelete, iParm, regResult, nResultCol);
844 break;
846 #endif /* SQLITE_OMIT_COMPOUND_SELECT */
848 /* Store the result as data using a unique key.
850 case SRT_Fifo:
851 case SRT_DistFifo:
852 case SRT_Table:
853 case SRT_EphemTab: {
854 int r1 = sqlite3GetTempRange(pParse, nPrefixReg+1);
855 testcase( eDest==SRT_Table );
856 testcase( eDest==SRT_EphemTab );
857 testcase( eDest==SRT_Fifo );
858 testcase( eDest==SRT_DistFifo );
859 sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nResultCol, r1+nPrefixReg);
860 #ifndef SQLITE_OMIT_CTE
861 if( eDest==SRT_DistFifo ){
862 /* If the destination is DistFifo, then cursor (iParm+1) is open
863 ** on an ephemeral index. If the current row is already present
864 ** in the index, do not write it to the output. If not, add the
865 ** current row to the index and proceed with writing it to the
866 ** output table as well. */
867 int addr = sqlite3VdbeCurrentAddr(v) + 4;
868 sqlite3VdbeAddOp4Int(v, OP_Found, iParm+1, addr, r1, 0);
869 VdbeCoverage(v);
870 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm+1, r1,regResult,nResultCol);
871 assert( pSort==0 );
873 #endif
874 if( pSort ){
875 pushOntoSorter(pParse, pSort, p, r1+nPrefixReg,regResult,1,nPrefixReg);
876 }else{
877 int r2 = sqlite3GetTempReg(pParse);
878 sqlite3VdbeAddOp2(v, OP_NewRowid, iParm, r2);
879 sqlite3VdbeAddOp3(v, OP_Insert, iParm, r1, r2);
880 sqlite3VdbeChangeP5(v, OPFLAG_APPEND);
881 sqlite3ReleaseTempReg(pParse, r2);
883 sqlite3ReleaseTempRange(pParse, r1, nPrefixReg+1);
884 break;
887 #ifndef SQLITE_OMIT_SUBQUERY
888 /* If we are creating a set for an "expr IN (SELECT ...)" construct,
889 ** then there should be a single item on the stack. Write this
890 ** item into the set table with bogus data.
892 case SRT_Set: {
893 if( pSort ){
894 /* At first glance you would think we could optimize out the
895 ** ORDER BY in this case since the order of entries in the set
896 ** does not matter. But there might be a LIMIT clause, in which
897 ** case the order does matter */
898 pushOntoSorter(
899 pParse, pSort, p, regResult, regOrig, nResultCol, nPrefixReg);
900 }else{
901 int r1 = sqlite3GetTempReg(pParse);
902 assert( sqlite3Strlen30(pDest->zAffSdst)==nResultCol );
903 sqlite3VdbeAddOp4(v, OP_MakeRecord, regResult, nResultCol,
904 r1, pDest->zAffSdst, nResultCol);
905 sqlite3ExprCacheAffinityChange(pParse, regResult, nResultCol);
906 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, r1, regResult, nResultCol);
907 sqlite3ReleaseTempReg(pParse, r1);
909 break;
912 /* If any row exist in the result set, record that fact and abort.
914 case SRT_Exists: {
915 sqlite3VdbeAddOp2(v, OP_Integer, 1, iParm);
916 /* The LIMIT clause will terminate the loop for us */
917 break;
920 /* If this is a scalar select that is part of an expression, then
921 ** store the results in the appropriate memory cell or array of
922 ** memory cells and break out of the scan loop.
924 case SRT_Mem: {
925 if( pSort ){
926 assert( nResultCol<=pDest->nSdst );
927 pushOntoSorter(
928 pParse, pSort, p, regResult, regOrig, nResultCol, nPrefixReg);
929 }else{
930 assert( nResultCol==pDest->nSdst );
931 assert( regResult==iParm );
932 /* The LIMIT clause will jump out of the loop for us */
934 break;
936 #endif /* #ifndef SQLITE_OMIT_SUBQUERY */
938 case SRT_Coroutine: /* Send data to a co-routine */
939 case SRT_Output: { /* Return the results */
940 testcase( eDest==SRT_Coroutine );
941 testcase( eDest==SRT_Output );
942 if( pSort ){
943 pushOntoSorter(pParse, pSort, p, regResult, regOrig, nResultCol,
944 nPrefixReg);
945 }else if( eDest==SRT_Coroutine ){
946 sqlite3VdbeAddOp1(v, OP_Yield, pDest->iSDParm);
947 }else{
948 sqlite3VdbeAddOp2(v, OP_ResultRow, regResult, nResultCol);
949 sqlite3ExprCacheAffinityChange(pParse, regResult, nResultCol);
951 break;
954 #ifndef SQLITE_OMIT_CTE
955 /* Write the results into a priority queue that is order according to
956 ** pDest->pOrderBy (in pSO). pDest->iSDParm (in iParm) is the cursor for an
957 ** index with pSO->nExpr+2 columns. Build a key using pSO for the first
958 ** pSO->nExpr columns, then make sure all keys are unique by adding a
959 ** final OP_Sequence column. The last column is the record as a blob.
961 case SRT_DistQueue:
962 case SRT_Queue: {
963 int nKey;
964 int r1, r2, r3;
965 int addrTest = 0;
966 ExprList *pSO;
967 pSO = pDest->pOrderBy;
968 assert( pSO );
969 nKey = pSO->nExpr;
970 r1 = sqlite3GetTempReg(pParse);
971 r2 = sqlite3GetTempRange(pParse, nKey+2);
972 r3 = r2+nKey+1;
973 if( eDest==SRT_DistQueue ){
974 /* If the destination is DistQueue, then cursor (iParm+1) is open
975 ** on a second ephemeral index that holds all values every previously
976 ** added to the queue. */
977 addrTest = sqlite3VdbeAddOp4Int(v, OP_Found, iParm+1, 0,
978 regResult, nResultCol);
979 VdbeCoverage(v);
981 sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nResultCol, r3);
982 if( eDest==SRT_DistQueue ){
983 sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm+1, r3);
984 sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT);
986 for(i=0; i<nKey; i++){
987 sqlite3VdbeAddOp2(v, OP_SCopy,
988 regResult + pSO->a[i].u.x.iOrderByCol - 1,
989 r2+i);
991 sqlite3VdbeAddOp2(v, OP_Sequence, iParm, r2+nKey);
992 sqlite3VdbeAddOp3(v, OP_MakeRecord, r2, nKey+2, r1);
993 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, r1, r2, nKey+2);
994 if( addrTest ) sqlite3VdbeJumpHere(v, addrTest);
995 sqlite3ReleaseTempReg(pParse, r1);
996 sqlite3ReleaseTempRange(pParse, r2, nKey+2);
997 break;
999 #endif /* SQLITE_OMIT_CTE */
1003 #if !defined(SQLITE_OMIT_TRIGGER)
1004 /* Discard the results. This is used for SELECT statements inside
1005 ** the body of a TRIGGER. The purpose of such selects is to call
1006 ** user-defined functions that have side effects. We do not care
1007 ** about the actual results of the select.
1009 default: {
1010 assert( eDest==SRT_Discard );
1011 break;
1013 #endif
1016 /* Jump to the end of the loop if the LIMIT is reached. Except, if
1017 ** there is a sorter, in which case the sorter has already limited
1018 ** the output for us.
1020 if( pSort==0 && p->iLimit ){
1021 sqlite3VdbeAddOp2(v, OP_DecrJumpZero, p->iLimit, iBreak); VdbeCoverage(v);
1026 ** Allocate a KeyInfo object sufficient for an index of N key columns and
1027 ** X extra columns.
1029 KeyInfo *sqlite3KeyInfoAlloc(sqlite3 *db, int N, int X){
1030 int nExtra = (N+X)*(sizeof(CollSeq*)+1) - sizeof(CollSeq*);
1031 KeyInfo *p = sqlite3DbMallocRawNN(db, sizeof(KeyInfo) + nExtra);
1032 if( p ){
1033 p->aSortOrder = (u8*)&p->aColl[N+X];
1034 p->nKeyField = (u16)N;
1035 p->nAllField = (u16)(N+X);
1036 p->enc = ENC(db);
1037 p->db = db;
1038 p->nRef = 1;
1039 memset(&p[1], 0, nExtra);
1040 }else{
1041 sqlite3OomFault(db);
1043 return p;
1047 ** Deallocate a KeyInfo object
1049 void sqlite3KeyInfoUnref(KeyInfo *p){
1050 if( p ){
1051 assert( p->nRef>0 );
1052 p->nRef--;
1053 if( p->nRef==0 ) sqlite3DbFreeNN(p->db, p);
1058 ** Make a new pointer to a KeyInfo object
1060 KeyInfo *sqlite3KeyInfoRef(KeyInfo *p){
1061 if( p ){
1062 assert( p->nRef>0 );
1063 p->nRef++;
1065 return p;
1068 #ifdef SQLITE_DEBUG
1070 ** Return TRUE if a KeyInfo object can be change. The KeyInfo object
1071 ** can only be changed if this is just a single reference to the object.
1073 ** This routine is used only inside of assert() statements.
1075 int sqlite3KeyInfoIsWriteable(KeyInfo *p){ return p->nRef==1; }
1076 #endif /* SQLITE_DEBUG */
1079 ** Given an expression list, generate a KeyInfo structure that records
1080 ** the collating sequence for each expression in that expression list.
1082 ** If the ExprList is an ORDER BY or GROUP BY clause then the resulting
1083 ** KeyInfo structure is appropriate for initializing a virtual index to
1084 ** implement that clause. If the ExprList is the result set of a SELECT
1085 ** then the KeyInfo structure is appropriate for initializing a virtual
1086 ** index to implement a DISTINCT test.
1088 ** Space to hold the KeyInfo structure is obtained from malloc. The calling
1089 ** function is responsible for seeing that this structure is eventually
1090 ** freed.
1092 static KeyInfo *keyInfoFromExprList(
1093 Parse *pParse, /* Parsing context */
1094 ExprList *pList, /* Form the KeyInfo object from this ExprList */
1095 int iStart, /* Begin with this column of pList */
1096 int nExtra /* Add this many extra columns to the end */
1098 int nExpr;
1099 KeyInfo *pInfo;
1100 struct ExprList_item *pItem;
1101 sqlite3 *db = pParse->db;
1102 int i;
1104 nExpr = pList->nExpr;
1105 pInfo = sqlite3KeyInfoAlloc(db, nExpr-iStart, nExtra+1);
1106 if( pInfo ){
1107 assert( sqlite3KeyInfoIsWriteable(pInfo) );
1108 for(i=iStart, pItem=pList->a+iStart; i<nExpr; i++, pItem++){
1109 pInfo->aColl[i-iStart] = sqlite3ExprNNCollSeq(pParse, pItem->pExpr);
1110 pInfo->aSortOrder[i-iStart] = pItem->sortOrder;
1113 return pInfo;
1117 ** Name of the connection operator, used for error messages.
1119 static const char *selectOpName(int id){
1120 char *z;
1121 switch( id ){
1122 case TK_ALL: z = "UNION ALL"; break;
1123 case TK_INTERSECT: z = "INTERSECT"; break;
1124 case TK_EXCEPT: z = "EXCEPT"; break;
1125 default: z = "UNION"; break;
1127 return z;
1130 #ifndef SQLITE_OMIT_EXPLAIN
1132 ** Unless an "EXPLAIN QUERY PLAN" command is being processed, this function
1133 ** is a no-op. Otherwise, it adds a single row of output to the EQP result,
1134 ** where the caption is of the form:
1136 ** "USE TEMP B-TREE FOR xxx"
1138 ** where xxx is one of "DISTINCT", "ORDER BY" or "GROUP BY". Exactly which
1139 ** is determined by the zUsage argument.
1141 static void explainTempTable(Parse *pParse, const char *zUsage){
1142 if( pParse->explain==2 ){
1143 Vdbe *v = pParse->pVdbe;
1144 char *zMsg = sqlite3MPrintf(pParse->db, "USE TEMP B-TREE FOR %s", zUsage);
1145 sqlite3VdbeAddOp4(v, OP_Explain, pParse->iSelectId, 0, 0, zMsg, P4_DYNAMIC);
1150 ** Assign expression b to lvalue a. A second, no-op, version of this macro
1151 ** is provided when SQLITE_OMIT_EXPLAIN is defined. This allows the code
1152 ** in sqlite3Select() to assign values to structure member variables that
1153 ** only exist if SQLITE_OMIT_EXPLAIN is not defined without polluting the
1154 ** code with #ifndef directives.
1156 # define explainSetInteger(a, b) a = b
1158 #else
1159 /* No-op versions of the explainXXX() functions and macros. */
1160 # define explainTempTable(y,z)
1161 # define explainSetInteger(y,z)
1162 #endif
1164 #if !defined(SQLITE_OMIT_EXPLAIN) && !defined(SQLITE_OMIT_COMPOUND_SELECT)
1166 ** Unless an "EXPLAIN QUERY PLAN" command is being processed, this function
1167 ** is a no-op. Otherwise, it adds a single row of output to the EQP result,
1168 ** where the caption is of one of the two forms:
1170 ** "COMPOSITE SUBQUERIES iSub1 and iSub2 (op)"
1171 ** "COMPOSITE SUBQUERIES iSub1 and iSub2 USING TEMP B-TREE (op)"
1173 ** where iSub1 and iSub2 are the integers passed as the corresponding
1174 ** function parameters, and op is the text representation of the parameter
1175 ** of the same name. The parameter "op" must be one of TK_UNION, TK_EXCEPT,
1176 ** TK_INTERSECT or TK_ALL. The first form is used if argument bUseTmp is
1177 ** false, or the second form if it is true.
1179 static void explainComposite(
1180 Parse *pParse, /* Parse context */
1181 int op, /* One of TK_UNION, TK_EXCEPT etc. */
1182 int iSub1, /* Subquery id 1 */
1183 int iSub2, /* Subquery id 2 */
1184 int bUseTmp /* True if a temp table was used */
1186 assert( op==TK_UNION || op==TK_EXCEPT || op==TK_INTERSECT || op==TK_ALL );
1187 if( pParse->explain==2 ){
1188 Vdbe *v = pParse->pVdbe;
1189 char *zMsg = sqlite3MPrintf(
1190 pParse->db, "COMPOUND SUBQUERIES %d AND %d %s(%s)", iSub1, iSub2,
1191 bUseTmp?"USING TEMP B-TREE ":"", selectOpName(op)
1193 sqlite3VdbeAddOp4(v, OP_Explain, pParse->iSelectId, 0, 0, zMsg, P4_DYNAMIC);
1196 #else
1197 /* No-op versions of the explainXXX() functions and macros. */
1198 # define explainComposite(v,w,x,y,z)
1199 #endif
1202 ** If the inner loop was generated using a non-null pOrderBy argument,
1203 ** then the results were placed in a sorter. After the loop is terminated
1204 ** we need to run the sorter and output the results. The following
1205 ** routine generates the code needed to do that.
1207 static void generateSortTail(
1208 Parse *pParse, /* Parsing context */
1209 Select *p, /* The SELECT statement */
1210 SortCtx *pSort, /* Information on the ORDER BY clause */
1211 int nColumn, /* Number of columns of data */
1212 SelectDest *pDest /* Write the sorted results here */
1214 Vdbe *v = pParse->pVdbe; /* The prepared statement */
1215 int addrBreak = pSort->labelDone; /* Jump here to exit loop */
1216 int addrContinue = sqlite3VdbeMakeLabel(v); /* Jump here for next cycle */
1217 int addr;
1218 int addrOnce = 0;
1219 int iTab;
1220 ExprList *pOrderBy = pSort->pOrderBy;
1221 int eDest = pDest->eDest;
1222 int iParm = pDest->iSDParm;
1223 int regRow;
1224 int regRowid;
1225 int iCol;
1226 int nKey;
1227 int iSortTab; /* Sorter cursor to read from */
1228 int nSortData; /* Trailing values to read from sorter */
1229 int i;
1230 int bSeq; /* True if sorter record includes seq. no. */
1231 struct ExprList_item *aOutEx = p->pEList->a;
1233 assert( addrBreak<0 );
1234 if( pSort->labelBkOut ){
1235 sqlite3VdbeAddOp2(v, OP_Gosub, pSort->regReturn, pSort->labelBkOut);
1236 sqlite3VdbeGoto(v, addrBreak);
1237 sqlite3VdbeResolveLabel(v, pSort->labelBkOut);
1239 iTab = pSort->iECursor;
1240 if( eDest==SRT_Output || eDest==SRT_Coroutine || eDest==SRT_Mem ){
1241 regRowid = 0;
1242 regRow = pDest->iSdst;
1243 nSortData = nColumn;
1244 }else{
1245 regRowid = sqlite3GetTempReg(pParse);
1246 regRow = sqlite3GetTempRange(pParse, nColumn);
1247 nSortData = nColumn;
1249 nKey = pOrderBy->nExpr - pSort->nOBSat;
1250 if( pSort->sortFlags & SORTFLAG_UseSorter ){
1251 int regSortOut = ++pParse->nMem;
1252 iSortTab = pParse->nTab++;
1253 if( pSort->labelBkOut ){
1254 addrOnce = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v);
1256 sqlite3VdbeAddOp3(v, OP_OpenPseudo, iSortTab, regSortOut, nKey+1+nSortData);
1257 if( addrOnce ) sqlite3VdbeJumpHere(v, addrOnce);
1258 addr = 1 + sqlite3VdbeAddOp2(v, OP_SorterSort, iTab, addrBreak);
1259 VdbeCoverage(v);
1260 codeOffset(v, p->iOffset, addrContinue);
1261 sqlite3VdbeAddOp3(v, OP_SorterData, iTab, regSortOut, iSortTab);
1262 bSeq = 0;
1263 }else{
1264 addr = 1 + sqlite3VdbeAddOp2(v, OP_Sort, iTab, addrBreak); VdbeCoverage(v);
1265 codeOffset(v, p->iOffset, addrContinue);
1266 iSortTab = iTab;
1267 bSeq = 1;
1269 for(i=0, iCol=nKey+bSeq; i<nSortData; i++){
1270 int iRead;
1271 if( aOutEx[i].u.x.iOrderByCol ){
1272 iRead = aOutEx[i].u.x.iOrderByCol-1;
1273 }else{
1274 iRead = iCol++;
1276 sqlite3VdbeAddOp3(v, OP_Column, iSortTab, iRead, regRow+i);
1277 VdbeComment((v, "%s", aOutEx[i].zName ? aOutEx[i].zName : aOutEx[i].zSpan));
1279 switch( eDest ){
1280 case SRT_Table:
1281 case SRT_EphemTab: {
1282 sqlite3VdbeAddOp2(v, OP_NewRowid, iParm, regRowid);
1283 sqlite3VdbeAddOp3(v, OP_Insert, iParm, regRow, regRowid);
1284 sqlite3VdbeChangeP5(v, OPFLAG_APPEND);
1285 break;
1287 #ifndef SQLITE_OMIT_SUBQUERY
1288 case SRT_Set: {
1289 assert( nColumn==sqlite3Strlen30(pDest->zAffSdst) );
1290 sqlite3VdbeAddOp4(v, OP_MakeRecord, regRow, nColumn, regRowid,
1291 pDest->zAffSdst, nColumn);
1292 sqlite3ExprCacheAffinityChange(pParse, regRow, nColumn);
1293 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, regRowid, regRow, nColumn);
1294 break;
1296 case SRT_Mem: {
1297 /* The LIMIT clause will terminate the loop for us */
1298 break;
1300 #endif
1301 default: {
1302 assert( eDest==SRT_Output || eDest==SRT_Coroutine );
1303 testcase( eDest==SRT_Output );
1304 testcase( eDest==SRT_Coroutine );
1305 if( eDest==SRT_Output ){
1306 sqlite3VdbeAddOp2(v, OP_ResultRow, pDest->iSdst, nColumn);
1307 sqlite3ExprCacheAffinityChange(pParse, pDest->iSdst, nColumn);
1308 }else{
1309 sqlite3VdbeAddOp1(v, OP_Yield, pDest->iSDParm);
1311 break;
1314 if( regRowid ){
1315 if( eDest==SRT_Set ){
1316 sqlite3ReleaseTempRange(pParse, regRow, nColumn);
1317 }else{
1318 sqlite3ReleaseTempReg(pParse, regRow);
1320 sqlite3ReleaseTempReg(pParse, regRowid);
1322 /* The bottom of the loop
1324 sqlite3VdbeResolveLabel(v, addrContinue);
1325 if( pSort->sortFlags & SORTFLAG_UseSorter ){
1326 sqlite3VdbeAddOp2(v, OP_SorterNext, iTab, addr); VdbeCoverage(v);
1327 }else{
1328 sqlite3VdbeAddOp2(v, OP_Next, iTab, addr); VdbeCoverage(v);
1330 if( pSort->regReturn ) sqlite3VdbeAddOp1(v, OP_Return, pSort->regReturn);
1331 sqlite3VdbeResolveLabel(v, addrBreak);
1335 ** Return a pointer to a string containing the 'declaration type' of the
1336 ** expression pExpr. The string may be treated as static by the caller.
1338 ** Also try to estimate the size of the returned value and return that
1339 ** result in *pEstWidth.
1341 ** The declaration type is the exact datatype definition extracted from the
1342 ** original CREATE TABLE statement if the expression is a column. The
1343 ** declaration type for a ROWID field is INTEGER. Exactly when an expression
1344 ** is considered a column can be complex in the presence of subqueries. The
1345 ** result-set expression in all of the following SELECT statements is
1346 ** considered a column by this function.
1348 ** SELECT col FROM tbl;
1349 ** SELECT (SELECT col FROM tbl;
1350 ** SELECT (SELECT col FROM tbl);
1351 ** SELECT abc FROM (SELECT col AS abc FROM tbl);
1353 ** The declaration type for any expression other than a column is NULL.
1355 ** This routine has either 3 or 6 parameters depending on whether or not
1356 ** the SQLITE_ENABLE_COLUMN_METADATA compile-time option is used.
1358 #ifdef SQLITE_ENABLE_COLUMN_METADATA
1359 # define columnType(A,B,C,D,E) columnTypeImpl(A,B,C,D,E)
1360 #else /* if !defined(SQLITE_ENABLE_COLUMN_METADATA) */
1361 # define columnType(A,B,C,D,E) columnTypeImpl(A,B)
1362 #endif
1363 static const char *columnTypeImpl(
1364 NameContext *pNC,
1365 #ifndef SQLITE_ENABLE_COLUMN_METADATA
1366 Expr *pExpr
1367 #else
1368 Expr *pExpr,
1369 const char **pzOrigDb,
1370 const char **pzOrigTab,
1371 const char **pzOrigCol
1372 #endif
1374 char const *zType = 0;
1375 int j;
1376 #ifdef SQLITE_ENABLE_COLUMN_METADATA
1377 char const *zOrigDb = 0;
1378 char const *zOrigTab = 0;
1379 char const *zOrigCol = 0;
1380 #endif
1382 assert( pExpr!=0 );
1383 assert( pNC->pSrcList!=0 );
1384 switch( pExpr->op ){
1385 case TK_AGG_COLUMN:
1386 case TK_COLUMN: {
1387 /* The expression is a column. Locate the table the column is being
1388 ** extracted from in NameContext.pSrcList. This table may be real
1389 ** database table or a subquery.
1391 Table *pTab = 0; /* Table structure column is extracted from */
1392 Select *pS = 0; /* Select the column is extracted from */
1393 int iCol = pExpr->iColumn; /* Index of column in pTab */
1394 testcase( pExpr->op==TK_AGG_COLUMN );
1395 testcase( pExpr->op==TK_COLUMN );
1396 while( pNC && !pTab ){
1397 SrcList *pTabList = pNC->pSrcList;
1398 for(j=0;j<pTabList->nSrc && pTabList->a[j].iCursor!=pExpr->iTable;j++);
1399 if( j<pTabList->nSrc ){
1400 pTab = pTabList->a[j].pTab;
1401 pS = pTabList->a[j].pSelect;
1402 }else{
1403 pNC = pNC->pNext;
1407 if( pTab==0 ){
1408 /* At one time, code such as "SELECT new.x" within a trigger would
1409 ** cause this condition to run. Since then, we have restructured how
1410 ** trigger code is generated and so this condition is no longer
1411 ** possible. However, it can still be true for statements like
1412 ** the following:
1414 ** CREATE TABLE t1(col INTEGER);
1415 ** SELECT (SELECT t1.col) FROM FROM t1;
1417 ** when columnType() is called on the expression "t1.col" in the
1418 ** sub-select. In this case, set the column type to NULL, even
1419 ** though it should really be "INTEGER".
1421 ** This is not a problem, as the column type of "t1.col" is never
1422 ** used. When columnType() is called on the expression
1423 ** "(SELECT t1.col)", the correct type is returned (see the TK_SELECT
1424 ** branch below. */
1425 break;
1428 assert( pTab && pExpr->pTab==pTab );
1429 if( pS ){
1430 /* The "table" is actually a sub-select or a view in the FROM clause
1431 ** of the SELECT statement. Return the declaration type and origin
1432 ** data for the result-set column of the sub-select.
1434 if( iCol>=0 && iCol<pS->pEList->nExpr ){
1435 /* If iCol is less than zero, then the expression requests the
1436 ** rowid of the sub-select or view. This expression is legal (see
1437 ** test case misc2.2.2) - it always evaluates to NULL.
1439 NameContext sNC;
1440 Expr *p = pS->pEList->a[iCol].pExpr;
1441 sNC.pSrcList = pS->pSrc;
1442 sNC.pNext = pNC;
1443 sNC.pParse = pNC->pParse;
1444 zType = columnType(&sNC, p,&zOrigDb,&zOrigTab,&zOrigCol);
1446 }else{
1447 /* A real table or a CTE table */
1448 assert( !pS );
1449 #ifdef SQLITE_ENABLE_COLUMN_METADATA
1450 if( iCol<0 ) iCol = pTab->iPKey;
1451 assert( iCol==XN_ROWID || (iCol>=0 && iCol<pTab->nCol) );
1452 if( iCol<0 ){
1453 zType = "INTEGER";
1454 zOrigCol = "rowid";
1455 }else{
1456 zOrigCol = pTab->aCol[iCol].zName;
1457 zType = sqlite3ColumnType(&pTab->aCol[iCol],0);
1459 zOrigTab = pTab->zName;
1460 if( pNC->pParse && pTab->pSchema ){
1461 int iDb = sqlite3SchemaToIndex(pNC->pParse->db, pTab->pSchema);
1462 zOrigDb = pNC->pParse->db->aDb[iDb].zDbSName;
1464 #else
1465 assert( iCol==XN_ROWID || (iCol>=0 && iCol<pTab->nCol) );
1466 if( iCol<0 ){
1467 zType = "INTEGER";
1468 }else{
1469 zType = sqlite3ColumnType(&pTab->aCol[iCol],0);
1471 #endif
1473 break;
1475 #ifndef SQLITE_OMIT_SUBQUERY
1476 case TK_SELECT: {
1477 /* The expression is a sub-select. Return the declaration type and
1478 ** origin info for the single column in the result set of the SELECT
1479 ** statement.
1481 NameContext sNC;
1482 Select *pS = pExpr->x.pSelect;
1483 Expr *p = pS->pEList->a[0].pExpr;
1484 assert( ExprHasProperty(pExpr, EP_xIsSelect) );
1485 sNC.pSrcList = pS->pSrc;
1486 sNC.pNext = pNC;
1487 sNC.pParse = pNC->pParse;
1488 zType = columnType(&sNC, p, &zOrigDb, &zOrigTab, &zOrigCol);
1489 break;
1491 #endif
1494 #ifdef SQLITE_ENABLE_COLUMN_METADATA
1495 if( pzOrigDb ){
1496 assert( pzOrigTab && pzOrigCol );
1497 *pzOrigDb = zOrigDb;
1498 *pzOrigTab = zOrigTab;
1499 *pzOrigCol = zOrigCol;
1501 #endif
1502 return zType;
1506 ** Generate code that will tell the VDBE the declaration types of columns
1507 ** in the result set.
1509 static void generateColumnTypes(
1510 Parse *pParse, /* Parser context */
1511 SrcList *pTabList, /* List of tables */
1512 ExprList *pEList /* Expressions defining the result set */
1514 #ifndef SQLITE_OMIT_DECLTYPE
1515 Vdbe *v = pParse->pVdbe;
1516 int i;
1517 NameContext sNC;
1518 sNC.pSrcList = pTabList;
1519 sNC.pParse = pParse;
1520 sNC.pNext = 0;
1521 for(i=0; i<pEList->nExpr; i++){
1522 Expr *p = pEList->a[i].pExpr;
1523 const char *zType;
1524 #ifdef SQLITE_ENABLE_COLUMN_METADATA
1525 const char *zOrigDb = 0;
1526 const char *zOrigTab = 0;
1527 const char *zOrigCol = 0;
1528 zType = columnType(&sNC, p, &zOrigDb, &zOrigTab, &zOrigCol);
1530 /* The vdbe must make its own copy of the column-type and other
1531 ** column specific strings, in case the schema is reset before this
1532 ** virtual machine is deleted.
1534 sqlite3VdbeSetColName(v, i, COLNAME_DATABASE, zOrigDb, SQLITE_TRANSIENT);
1535 sqlite3VdbeSetColName(v, i, COLNAME_TABLE, zOrigTab, SQLITE_TRANSIENT);
1536 sqlite3VdbeSetColName(v, i, COLNAME_COLUMN, zOrigCol, SQLITE_TRANSIENT);
1537 #else
1538 zType = columnType(&sNC, p, 0, 0, 0);
1539 #endif
1540 sqlite3VdbeSetColName(v, i, COLNAME_DECLTYPE, zType, SQLITE_TRANSIENT);
1542 #endif /* !defined(SQLITE_OMIT_DECLTYPE) */
1547 ** Compute the column names for a SELECT statement.
1549 ** The only guarantee that SQLite makes about column names is that if the
1550 ** column has an AS clause assigning it a name, that will be the name used.
1551 ** That is the only documented guarantee. However, countless applications
1552 ** developed over the years have made baseless assumptions about column names
1553 ** and will break if those assumptions changes. Hence, use extreme caution
1554 ** when modifying this routine to avoid breaking legacy.
1556 ** See Also: sqlite3ColumnsFromExprList()
1558 ** The PRAGMA short_column_names and PRAGMA full_column_names settings are
1559 ** deprecated. The default setting is short=ON, full=OFF. 99.9% of all
1560 ** applications should operate this way. Nevertheless, we need to support the
1561 ** other modes for legacy:
1563 ** short=OFF, full=OFF: Column name is the text of the expression has it
1564 ** originally appears in the SELECT statement. In
1565 ** other words, the zSpan of the result expression.
1567 ** short=ON, full=OFF: (This is the default setting). If the result
1568 ** refers directly to a table column, then the
1569 ** result column name is just the table column
1570 ** name: COLUMN. Otherwise use zSpan.
1572 ** full=ON, short=ANY: If the result refers directly to a table column,
1573 ** then the result column name with the table name
1574 ** prefix, ex: TABLE.COLUMN. Otherwise use zSpan.
1576 static void generateColumnNames(
1577 Parse *pParse, /* Parser context */
1578 Select *pSelect /* Generate column names for this SELECT statement */
1580 Vdbe *v = pParse->pVdbe;
1581 int i;
1582 Table *pTab;
1583 SrcList *pTabList;
1584 ExprList *pEList;
1585 sqlite3 *db = pParse->db;
1586 int fullName; /* TABLE.COLUMN if no AS clause and is a direct table ref */
1587 int srcName; /* COLUMN or TABLE.COLUMN if no AS clause and is direct */
1589 #ifndef SQLITE_OMIT_EXPLAIN
1590 /* If this is an EXPLAIN, skip this step */
1591 if( pParse->explain ){
1592 return;
1594 #endif
1596 if( pParse->colNamesSet || db->mallocFailed ) return;
1597 /* Column names are determined by the left-most term of a compound select */
1598 while( pSelect->pPrior ) pSelect = pSelect->pPrior;
1599 pTabList = pSelect->pSrc;
1600 pEList = pSelect->pEList;
1601 assert( v!=0 );
1602 assert( pTabList!=0 );
1603 pParse->colNamesSet = 1;
1604 fullName = (db->flags & SQLITE_FullColNames)!=0;
1605 srcName = (db->flags & SQLITE_ShortColNames)!=0 || fullName;
1606 sqlite3VdbeSetNumCols(v, pEList->nExpr);
1607 for(i=0; i<pEList->nExpr; i++){
1608 Expr *p = pEList->a[i].pExpr;
1610 assert( p!=0 );
1611 assert( p->op!=TK_AGG_COLUMN ); /* Agg processing has not run yet */
1612 assert( p->op!=TK_COLUMN || p->pTab!=0 ); /* Covering idx not yet coded */
1613 if( pEList->a[i].zName ){
1614 /* An AS clause always takes first priority */
1615 char *zName = pEList->a[i].zName;
1616 sqlite3VdbeSetColName(v, i, COLNAME_NAME, zName, SQLITE_TRANSIENT);
1617 }else if( srcName && p->op==TK_COLUMN ){
1618 char *zCol;
1619 int iCol = p->iColumn;
1620 pTab = p->pTab;
1621 assert( pTab!=0 );
1622 if( iCol<0 ) iCol = pTab->iPKey;
1623 assert( iCol==-1 || (iCol>=0 && iCol<pTab->nCol) );
1624 if( iCol<0 ){
1625 zCol = "rowid";
1626 }else{
1627 zCol = pTab->aCol[iCol].zName;
1629 if( fullName ){
1630 char *zName = 0;
1631 zName = sqlite3MPrintf(db, "%s.%s", pTab->zName, zCol);
1632 sqlite3VdbeSetColName(v, i, COLNAME_NAME, zName, SQLITE_DYNAMIC);
1633 }else{
1634 sqlite3VdbeSetColName(v, i, COLNAME_NAME, zCol, SQLITE_TRANSIENT);
1636 }else{
1637 const char *z = pEList->a[i].zSpan;
1638 z = z==0 ? sqlite3MPrintf(db, "column%d", i+1) : sqlite3DbStrDup(db, z);
1639 sqlite3VdbeSetColName(v, i, COLNAME_NAME, z, SQLITE_DYNAMIC);
1642 generateColumnTypes(pParse, pTabList, pEList);
1646 ** Given an expression list (which is really the list of expressions
1647 ** that form the result set of a SELECT statement) compute appropriate
1648 ** column names for a table that would hold the expression list.
1650 ** All column names will be unique.
1652 ** Only the column names are computed. Column.zType, Column.zColl,
1653 ** and other fields of Column are zeroed.
1655 ** Return SQLITE_OK on success. If a memory allocation error occurs,
1656 ** store NULL in *paCol and 0 in *pnCol and return SQLITE_NOMEM.
1658 ** The only guarantee that SQLite makes about column names is that if the
1659 ** column has an AS clause assigning it a name, that will be the name used.
1660 ** That is the only documented guarantee. However, countless applications
1661 ** developed over the years have made baseless assumptions about column names
1662 ** and will break if those assumptions changes. Hence, use extreme caution
1663 ** when modifying this routine to avoid breaking legacy.
1665 ** See Also: generateColumnNames()
1667 int sqlite3ColumnsFromExprList(
1668 Parse *pParse, /* Parsing context */
1669 ExprList *pEList, /* Expr list from which to derive column names */
1670 i16 *pnCol, /* Write the number of columns here */
1671 Column **paCol /* Write the new column list here */
1673 sqlite3 *db = pParse->db; /* Database connection */
1674 int i, j; /* Loop counters */
1675 u32 cnt; /* Index added to make the name unique */
1676 Column *aCol, *pCol; /* For looping over result columns */
1677 int nCol; /* Number of columns in the result set */
1678 char *zName; /* Column name */
1679 int nName; /* Size of name in zName[] */
1680 Hash ht; /* Hash table of column names */
1682 sqlite3HashInit(&ht);
1683 if( pEList ){
1684 nCol = pEList->nExpr;
1685 aCol = sqlite3DbMallocZero(db, sizeof(aCol[0])*nCol);
1686 testcase( aCol==0 );
1687 if( nCol>32767 ) nCol = 32767;
1688 }else{
1689 nCol = 0;
1690 aCol = 0;
1692 assert( nCol==(i16)nCol );
1693 *pnCol = nCol;
1694 *paCol = aCol;
1696 for(i=0, pCol=aCol; i<nCol && !db->mallocFailed; i++, pCol++){
1697 /* Get an appropriate name for the column
1699 if( (zName = pEList->a[i].zName)!=0 ){
1700 /* If the column contains an "AS <name>" phrase, use <name> as the name */
1701 }else{
1702 Expr *pColExpr = sqlite3ExprSkipCollate(pEList->a[i].pExpr);
1703 while( pColExpr->op==TK_DOT ){
1704 pColExpr = pColExpr->pRight;
1705 assert( pColExpr!=0 );
1707 if( (pColExpr->op==TK_COLUMN || pColExpr->op==TK_AGG_COLUMN)
1708 && pColExpr->pTab!=0
1710 /* For columns use the column name name */
1711 int iCol = pColExpr->iColumn;
1712 Table *pTab = pColExpr->pTab;
1713 if( iCol<0 ) iCol = pTab->iPKey;
1714 zName = iCol>=0 ? pTab->aCol[iCol].zName : "rowid";
1715 }else if( pColExpr->op==TK_ID ){
1716 assert( !ExprHasProperty(pColExpr, EP_IntValue) );
1717 zName = pColExpr->u.zToken;
1718 }else{
1719 /* Use the original text of the column expression as its name */
1720 zName = pEList->a[i].zSpan;
1723 if( zName ){
1724 zName = sqlite3DbStrDup(db, zName);
1725 }else{
1726 zName = sqlite3MPrintf(db,"column%d",i+1);
1729 /* Make sure the column name is unique. If the name is not unique,
1730 ** append an integer to the name so that it becomes unique.
1732 cnt = 0;
1733 while( zName && sqlite3HashFind(&ht, zName)!=0 ){
1734 nName = sqlite3Strlen30(zName);
1735 if( nName>0 ){
1736 for(j=nName-1; j>0 && sqlite3Isdigit(zName[j]); j--){}
1737 if( zName[j]==':' ) nName = j;
1739 zName = sqlite3MPrintf(db, "%.*z:%u", nName, zName, ++cnt);
1740 if( cnt>3 ) sqlite3_randomness(sizeof(cnt), &cnt);
1742 pCol->zName = zName;
1743 sqlite3ColumnPropertiesFromName(0, pCol);
1744 if( zName && sqlite3HashInsert(&ht, zName, pCol)==pCol ){
1745 sqlite3OomFault(db);
1748 sqlite3HashClear(&ht);
1749 if( db->mallocFailed ){
1750 for(j=0; j<i; j++){
1751 sqlite3DbFree(db, aCol[j].zName);
1753 sqlite3DbFree(db, aCol);
1754 *paCol = 0;
1755 *pnCol = 0;
1756 return SQLITE_NOMEM_BKPT;
1758 return SQLITE_OK;
1762 ** Add type and collation information to a column list based on
1763 ** a SELECT statement.
1765 ** The column list presumably came from selectColumnNamesFromExprList().
1766 ** The column list has only names, not types or collations. This
1767 ** routine goes through and adds the types and collations.
1769 ** This routine requires that all identifiers in the SELECT
1770 ** statement be resolved.
1772 void sqlite3SelectAddColumnTypeAndCollation(
1773 Parse *pParse, /* Parsing contexts */
1774 Table *pTab, /* Add column type information to this table */
1775 Select *pSelect /* SELECT used to determine types and collations */
1777 sqlite3 *db = pParse->db;
1778 NameContext sNC;
1779 Column *pCol;
1780 CollSeq *pColl;
1781 int i;
1782 Expr *p;
1783 struct ExprList_item *a;
1785 assert( pSelect!=0 );
1786 assert( (pSelect->selFlags & SF_Resolved)!=0 );
1787 assert( pTab->nCol==pSelect->pEList->nExpr || db->mallocFailed );
1788 if( db->mallocFailed ) return;
1789 memset(&sNC, 0, sizeof(sNC));
1790 sNC.pSrcList = pSelect->pSrc;
1791 a = pSelect->pEList->a;
1792 for(i=0, pCol=pTab->aCol; i<pTab->nCol; i++, pCol++){
1793 const char *zType;
1794 int n, m;
1795 p = a[i].pExpr;
1796 zType = columnType(&sNC, p, 0, 0, 0);
1797 /* pCol->szEst = ... // Column size est for SELECT tables never used */
1798 pCol->affinity = sqlite3ExprAffinity(p);
1799 if( zType ){
1800 m = sqlite3Strlen30(zType);
1801 n = sqlite3Strlen30(pCol->zName);
1802 pCol->zName = sqlite3DbReallocOrFree(db, pCol->zName, n+m+2);
1803 if( pCol->zName ){
1804 memcpy(&pCol->zName[n+1], zType, m+1);
1805 pCol->colFlags |= COLFLAG_HASTYPE;
1808 if( pCol->affinity==0 ) pCol->affinity = SQLITE_AFF_BLOB;
1809 pColl = sqlite3ExprCollSeq(pParse, p);
1810 if( pColl && pCol->zColl==0 ){
1811 pCol->zColl = sqlite3DbStrDup(db, pColl->zName);
1814 pTab->szTabRow = 1; /* Any non-zero value works */
1818 ** Given a SELECT statement, generate a Table structure that describes
1819 ** the result set of that SELECT.
1821 Table *sqlite3ResultSetOfSelect(Parse *pParse, Select *pSelect){
1822 Table *pTab;
1823 sqlite3 *db = pParse->db;
1824 int savedFlags;
1826 savedFlags = db->flags;
1827 db->flags &= ~SQLITE_FullColNames;
1828 db->flags |= SQLITE_ShortColNames;
1829 sqlite3SelectPrep(pParse, pSelect, 0);
1830 if( pParse->nErr ) return 0;
1831 while( pSelect->pPrior ) pSelect = pSelect->pPrior;
1832 db->flags = savedFlags;
1833 pTab = sqlite3DbMallocZero(db, sizeof(Table) );
1834 if( pTab==0 ){
1835 return 0;
1837 /* The sqlite3ResultSetOfSelect() is only used n contexts where lookaside
1838 ** is disabled */
1839 assert( db->lookaside.bDisable );
1840 pTab->nTabRef = 1;
1841 pTab->zName = 0;
1842 pTab->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) );
1843 sqlite3ColumnsFromExprList(pParse, pSelect->pEList, &pTab->nCol, &pTab->aCol);
1844 sqlite3SelectAddColumnTypeAndCollation(pParse, pTab, pSelect);
1845 pTab->iPKey = -1;
1846 if( db->mallocFailed ){
1847 sqlite3DeleteTable(db, pTab);
1848 return 0;
1850 return pTab;
1854 ** Get a VDBE for the given parser context. Create a new one if necessary.
1855 ** If an error occurs, return NULL and leave a message in pParse.
1857 Vdbe *sqlite3GetVdbe(Parse *pParse){
1858 if( pParse->pVdbe ){
1859 return pParse->pVdbe;
1861 if( pParse->pToplevel==0
1862 && OptimizationEnabled(pParse->db,SQLITE_FactorOutConst)
1864 pParse->okConstFactor = 1;
1866 return sqlite3VdbeCreate(pParse);
1871 ** Compute the iLimit and iOffset fields of the SELECT based on the
1872 ** pLimit expressions. pLimit->pLeft and pLimit->pRight hold the expressions
1873 ** that appear in the original SQL statement after the LIMIT and OFFSET
1874 ** keywords. Or NULL if those keywords are omitted. iLimit and iOffset
1875 ** are the integer memory register numbers for counters used to compute
1876 ** the limit and offset. If there is no limit and/or offset, then
1877 ** iLimit and iOffset are negative.
1879 ** This routine changes the values of iLimit and iOffset only if
1880 ** a limit or offset is defined by pLimit->pLeft and pLimit->pRight. iLimit
1881 ** and iOffset should have been preset to appropriate default values (zero)
1882 ** prior to calling this routine.
1884 ** The iOffset register (if it exists) is initialized to the value
1885 ** of the OFFSET. The iLimit register is initialized to LIMIT. Register
1886 ** iOffset+1 is initialized to LIMIT+OFFSET.
1888 ** Only if pLimit->pLeft!=0 do the limit registers get
1889 ** redefined. The UNION ALL operator uses this property to force
1890 ** the reuse of the same limit and offset registers across multiple
1891 ** SELECT statements.
1893 static void computeLimitRegisters(Parse *pParse, Select *p, int iBreak){
1894 Vdbe *v = 0;
1895 int iLimit = 0;
1896 int iOffset;
1897 int n;
1898 Expr *pLimit = p->pLimit;
1900 if( p->iLimit ) return;
1903 ** "LIMIT -1" always shows all rows. There is some
1904 ** controversy about what the correct behavior should be.
1905 ** The current implementation interprets "LIMIT 0" to mean
1906 ** no rows.
1908 sqlite3ExprCacheClear(pParse);
1909 if( pLimit ){
1910 assert( pLimit->op==TK_LIMIT );
1911 assert( pLimit->pLeft!=0 );
1912 p->iLimit = iLimit = ++pParse->nMem;
1913 v = sqlite3GetVdbe(pParse);
1914 assert( v!=0 );
1915 if( sqlite3ExprIsInteger(pLimit->pLeft, &n) ){
1916 sqlite3VdbeAddOp2(v, OP_Integer, n, iLimit);
1917 VdbeComment((v, "LIMIT counter"));
1918 if( n==0 ){
1919 sqlite3VdbeGoto(v, iBreak);
1920 }else if( n>=0 && p->nSelectRow>sqlite3LogEst((u64)n) ){
1921 p->nSelectRow = sqlite3LogEst((u64)n);
1922 p->selFlags |= SF_FixedLimit;
1924 }else{
1925 sqlite3ExprCode(pParse, pLimit->pLeft, iLimit);
1926 sqlite3VdbeAddOp1(v, OP_MustBeInt, iLimit); VdbeCoverage(v);
1927 VdbeComment((v, "LIMIT counter"));
1928 sqlite3VdbeAddOp2(v, OP_IfNot, iLimit, iBreak); VdbeCoverage(v);
1930 if( pLimit->pRight ){
1931 p->iOffset = iOffset = ++pParse->nMem;
1932 pParse->nMem++; /* Allocate an extra register for limit+offset */
1933 sqlite3ExprCode(pParse, pLimit->pRight, iOffset);
1934 sqlite3VdbeAddOp1(v, OP_MustBeInt, iOffset); VdbeCoverage(v);
1935 VdbeComment((v, "OFFSET counter"));
1936 sqlite3VdbeAddOp3(v, OP_OffsetLimit, iLimit, iOffset+1, iOffset);
1937 VdbeComment((v, "LIMIT+OFFSET"));
1942 #ifndef SQLITE_OMIT_COMPOUND_SELECT
1944 ** Return the appropriate collating sequence for the iCol-th column of
1945 ** the result set for the compound-select statement "p". Return NULL if
1946 ** the column has no default collating sequence.
1948 ** The collating sequence for the compound select is taken from the
1949 ** left-most term of the select that has a collating sequence.
1951 static CollSeq *multiSelectCollSeq(Parse *pParse, Select *p, int iCol){
1952 CollSeq *pRet;
1953 if( p->pPrior ){
1954 pRet = multiSelectCollSeq(pParse, p->pPrior, iCol);
1955 }else{
1956 pRet = 0;
1958 assert( iCol>=0 );
1959 /* iCol must be less than p->pEList->nExpr. Otherwise an error would
1960 ** have been thrown during name resolution and we would not have gotten
1961 ** this far */
1962 if( pRet==0 && ALWAYS(iCol<p->pEList->nExpr) ){
1963 pRet = sqlite3ExprCollSeq(pParse, p->pEList->a[iCol].pExpr);
1965 return pRet;
1969 ** The select statement passed as the second parameter is a compound SELECT
1970 ** with an ORDER BY clause. This function allocates and returns a KeyInfo
1971 ** structure suitable for implementing the ORDER BY.
1973 ** Space to hold the KeyInfo structure is obtained from malloc. The calling
1974 ** function is responsible for ensuring that this structure is eventually
1975 ** freed.
1977 static KeyInfo *multiSelectOrderByKeyInfo(Parse *pParse, Select *p, int nExtra){
1978 ExprList *pOrderBy = p->pOrderBy;
1979 int nOrderBy = p->pOrderBy->nExpr;
1980 sqlite3 *db = pParse->db;
1981 KeyInfo *pRet = sqlite3KeyInfoAlloc(db, nOrderBy+nExtra, 1);
1982 if( pRet ){
1983 int i;
1984 for(i=0; i<nOrderBy; i++){
1985 struct ExprList_item *pItem = &pOrderBy->a[i];
1986 Expr *pTerm = pItem->pExpr;
1987 CollSeq *pColl;
1989 if( pTerm->flags & EP_Collate ){
1990 pColl = sqlite3ExprCollSeq(pParse, pTerm);
1991 }else{
1992 pColl = multiSelectCollSeq(pParse, p, pItem->u.x.iOrderByCol-1);
1993 if( pColl==0 ) pColl = db->pDfltColl;
1994 pOrderBy->a[i].pExpr =
1995 sqlite3ExprAddCollateString(pParse, pTerm, pColl->zName);
1997 assert( sqlite3KeyInfoIsWriteable(pRet) );
1998 pRet->aColl[i] = pColl;
1999 pRet->aSortOrder[i] = pOrderBy->a[i].sortOrder;
2003 return pRet;
2006 #ifndef SQLITE_OMIT_CTE
2008 ** This routine generates VDBE code to compute the content of a WITH RECURSIVE
2009 ** query of the form:
2011 ** <recursive-table> AS (<setup-query> UNION [ALL] <recursive-query>)
2012 ** \___________/ \_______________/
2013 ** p->pPrior p
2016 ** There is exactly one reference to the recursive-table in the FROM clause
2017 ** of recursive-query, marked with the SrcList->a[].fg.isRecursive flag.
2019 ** The setup-query runs once to generate an initial set of rows that go
2020 ** into a Queue table. Rows are extracted from the Queue table one by
2021 ** one. Each row extracted from Queue is output to pDest. Then the single
2022 ** extracted row (now in the iCurrent table) becomes the content of the
2023 ** recursive-table for a recursive-query run. The output of the recursive-query
2024 ** is added back into the Queue table. Then another row is extracted from Queue
2025 ** and the iteration continues until the Queue table is empty.
2027 ** If the compound query operator is UNION then no duplicate rows are ever
2028 ** inserted into the Queue table. The iDistinct table keeps a copy of all rows
2029 ** that have ever been inserted into Queue and causes duplicates to be
2030 ** discarded. If the operator is UNION ALL, then duplicates are allowed.
2032 ** If the query has an ORDER BY, then entries in the Queue table are kept in
2033 ** ORDER BY order and the first entry is extracted for each cycle. Without
2034 ** an ORDER BY, the Queue table is just a FIFO.
2036 ** If a LIMIT clause is provided, then the iteration stops after LIMIT rows
2037 ** have been output to pDest. A LIMIT of zero means to output no rows and a
2038 ** negative LIMIT means to output all rows. If there is also an OFFSET clause
2039 ** with a positive value, then the first OFFSET outputs are discarded rather
2040 ** than being sent to pDest. The LIMIT count does not begin until after OFFSET
2041 ** rows have been skipped.
2043 static void generateWithRecursiveQuery(
2044 Parse *pParse, /* Parsing context */
2045 Select *p, /* The recursive SELECT to be coded */
2046 SelectDest *pDest /* What to do with query results */
2048 SrcList *pSrc = p->pSrc; /* The FROM clause of the recursive query */
2049 int nCol = p->pEList->nExpr; /* Number of columns in the recursive table */
2050 Vdbe *v = pParse->pVdbe; /* The prepared statement under construction */
2051 Select *pSetup = p->pPrior; /* The setup query */
2052 int addrTop; /* Top of the loop */
2053 int addrCont, addrBreak; /* CONTINUE and BREAK addresses */
2054 int iCurrent = 0; /* The Current table */
2055 int regCurrent; /* Register holding Current table */
2056 int iQueue; /* The Queue table */
2057 int iDistinct = 0; /* To ensure unique results if UNION */
2058 int eDest = SRT_Fifo; /* How to write to Queue */
2059 SelectDest destQueue; /* SelectDest targetting the Queue table */
2060 int i; /* Loop counter */
2061 int rc; /* Result code */
2062 ExprList *pOrderBy; /* The ORDER BY clause */
2063 Expr *pLimit; /* Saved LIMIT and OFFSET */
2064 int regLimit, regOffset; /* Registers used by LIMIT and OFFSET */
2066 /* Obtain authorization to do a recursive query */
2067 if( sqlite3AuthCheck(pParse, SQLITE_RECURSIVE, 0, 0, 0) ) return;
2069 /* Process the LIMIT and OFFSET clauses, if they exist */
2070 addrBreak = sqlite3VdbeMakeLabel(v);
2071 p->nSelectRow = 320; /* 4 billion rows */
2072 computeLimitRegisters(pParse, p, addrBreak);
2073 pLimit = p->pLimit;
2074 regLimit = p->iLimit;
2075 regOffset = p->iOffset;
2076 p->pLimit = 0;
2077 p->iLimit = p->iOffset = 0;
2078 pOrderBy = p->pOrderBy;
2080 /* Locate the cursor number of the Current table */
2081 for(i=0; ALWAYS(i<pSrc->nSrc); i++){
2082 if( pSrc->a[i].fg.isRecursive ){
2083 iCurrent = pSrc->a[i].iCursor;
2084 break;
2088 /* Allocate cursors numbers for Queue and Distinct. The cursor number for
2089 ** the Distinct table must be exactly one greater than Queue in order
2090 ** for the SRT_DistFifo and SRT_DistQueue destinations to work. */
2091 iQueue = pParse->nTab++;
2092 if( p->op==TK_UNION ){
2093 eDest = pOrderBy ? SRT_DistQueue : SRT_DistFifo;
2094 iDistinct = pParse->nTab++;
2095 }else{
2096 eDest = pOrderBy ? SRT_Queue : SRT_Fifo;
2098 sqlite3SelectDestInit(&destQueue, eDest, iQueue);
2100 /* Allocate cursors for Current, Queue, and Distinct. */
2101 regCurrent = ++pParse->nMem;
2102 sqlite3VdbeAddOp3(v, OP_OpenPseudo, iCurrent, regCurrent, nCol);
2103 if( pOrderBy ){
2104 KeyInfo *pKeyInfo = multiSelectOrderByKeyInfo(pParse, p, 1);
2105 sqlite3VdbeAddOp4(v, OP_OpenEphemeral, iQueue, pOrderBy->nExpr+2, 0,
2106 (char*)pKeyInfo, P4_KEYINFO);
2107 destQueue.pOrderBy = pOrderBy;
2108 }else{
2109 sqlite3VdbeAddOp2(v, OP_OpenEphemeral, iQueue, nCol);
2111 VdbeComment((v, "Queue table"));
2112 if( iDistinct ){
2113 p->addrOpenEphm[0] = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, iDistinct, 0);
2114 p->selFlags |= SF_UsesEphemeral;
2117 /* Detach the ORDER BY clause from the compound SELECT */
2118 p->pOrderBy = 0;
2120 /* Store the results of the setup-query in Queue. */
2121 pSetup->pNext = 0;
2122 rc = sqlite3Select(pParse, pSetup, &destQueue);
2123 pSetup->pNext = p;
2124 if( rc ) goto end_of_recursive_query;
2126 /* Find the next row in the Queue and output that row */
2127 addrTop = sqlite3VdbeAddOp2(v, OP_Rewind, iQueue, addrBreak); VdbeCoverage(v);
2129 /* Transfer the next row in Queue over to Current */
2130 sqlite3VdbeAddOp1(v, OP_NullRow, iCurrent); /* To reset column cache */
2131 if( pOrderBy ){
2132 sqlite3VdbeAddOp3(v, OP_Column, iQueue, pOrderBy->nExpr+1, regCurrent);
2133 }else{
2134 sqlite3VdbeAddOp2(v, OP_RowData, iQueue, regCurrent);
2136 sqlite3VdbeAddOp1(v, OP_Delete, iQueue);
2138 /* Output the single row in Current */
2139 addrCont = sqlite3VdbeMakeLabel(v);
2140 codeOffset(v, regOffset, addrCont);
2141 selectInnerLoop(pParse, p, iCurrent,
2142 0, 0, pDest, addrCont, addrBreak);
2143 if( regLimit ){
2144 sqlite3VdbeAddOp2(v, OP_DecrJumpZero, regLimit, addrBreak);
2145 VdbeCoverage(v);
2147 sqlite3VdbeResolveLabel(v, addrCont);
2149 /* Execute the recursive SELECT taking the single row in Current as
2150 ** the value for the recursive-table. Store the results in the Queue.
2152 if( p->selFlags & SF_Aggregate ){
2153 sqlite3ErrorMsg(pParse, "recursive aggregate queries not supported");
2154 }else{
2155 p->pPrior = 0;
2156 sqlite3Select(pParse, p, &destQueue);
2157 assert( p->pPrior==0 );
2158 p->pPrior = pSetup;
2161 /* Keep running the loop until the Queue is empty */
2162 sqlite3VdbeGoto(v, addrTop);
2163 sqlite3VdbeResolveLabel(v, addrBreak);
2165 end_of_recursive_query:
2166 sqlite3ExprListDelete(pParse->db, p->pOrderBy);
2167 p->pOrderBy = pOrderBy;
2168 p->pLimit = pLimit;
2169 return;
2171 #endif /* SQLITE_OMIT_CTE */
2173 /* Forward references */
2174 static int multiSelectOrderBy(
2175 Parse *pParse, /* Parsing context */
2176 Select *p, /* The right-most of SELECTs to be coded */
2177 SelectDest *pDest /* What to do with query results */
2181 ** Handle the special case of a compound-select that originates from a
2182 ** VALUES clause. By handling this as a special case, we avoid deep
2183 ** recursion, and thus do not need to enforce the SQLITE_LIMIT_COMPOUND_SELECT
2184 ** on a VALUES clause.
2186 ** Because the Select object originates from a VALUES clause:
2187 ** (1) It has no LIMIT or OFFSET
2188 ** (2) All terms are UNION ALL
2189 ** (3) There is no ORDER BY clause
2191 static int multiSelectValues(
2192 Parse *pParse, /* Parsing context */
2193 Select *p, /* The right-most of SELECTs to be coded */
2194 SelectDest *pDest /* What to do with query results */
2196 Select *pPrior;
2197 int nRow = 1;
2198 int rc = 0;
2199 assert( p->selFlags & SF_MultiValue );
2201 assert( p->selFlags & SF_Values );
2202 assert( p->op==TK_ALL || (p->op==TK_SELECT && p->pPrior==0) );
2203 assert( p->pLimit==0 );
2204 assert( p->pNext==0 || p->pEList->nExpr==p->pNext->pEList->nExpr );
2205 if( p->pPrior==0 ) break;
2206 assert( p->pPrior->pNext==p );
2207 p = p->pPrior;
2208 nRow++;
2209 }while(1);
2210 while( p ){
2211 pPrior = p->pPrior;
2212 p->pPrior = 0;
2213 rc = sqlite3Select(pParse, p, pDest);
2214 p->pPrior = pPrior;
2215 if( rc ) break;
2216 p->nSelectRow = nRow;
2217 p = p->pNext;
2219 return rc;
2223 ** This routine is called to process a compound query form from
2224 ** two or more separate queries using UNION, UNION ALL, EXCEPT, or
2225 ** INTERSECT
2227 ** "p" points to the right-most of the two queries. the query on the
2228 ** left is p->pPrior. The left query could also be a compound query
2229 ** in which case this routine will be called recursively.
2231 ** The results of the total query are to be written into a destination
2232 ** of type eDest with parameter iParm.
2234 ** Example 1: Consider a three-way compound SQL statement.
2236 ** SELECT a FROM t1 UNION SELECT b FROM t2 UNION SELECT c FROM t3
2238 ** This statement is parsed up as follows:
2240 ** SELECT c FROM t3
2241 ** |
2242 ** `-----> SELECT b FROM t2
2243 ** |
2244 ** `------> SELECT a FROM t1
2246 ** The arrows in the diagram above represent the Select.pPrior pointer.
2247 ** So if this routine is called with p equal to the t3 query, then
2248 ** pPrior will be the t2 query. p->op will be TK_UNION in this case.
2250 ** Notice that because of the way SQLite parses compound SELECTs, the
2251 ** individual selects always group from left to right.
2253 static int multiSelect(
2254 Parse *pParse, /* Parsing context */
2255 Select *p, /* The right-most of SELECTs to be coded */
2256 SelectDest *pDest /* What to do with query results */
2258 int rc = SQLITE_OK; /* Success code from a subroutine */
2259 Select *pPrior; /* Another SELECT immediately to our left */
2260 Vdbe *v; /* Generate code to this VDBE */
2261 SelectDest dest; /* Alternative data destination */
2262 Select *pDelete = 0; /* Chain of simple selects to delete */
2263 sqlite3 *db; /* Database connection */
2264 #ifndef SQLITE_OMIT_EXPLAIN
2265 int iSub1 = 0; /* EQP id of left-hand query */
2266 int iSub2 = 0; /* EQP id of right-hand query */
2267 #endif
2269 /* Make sure there is no ORDER BY or LIMIT clause on prior SELECTs. Only
2270 ** the last (right-most) SELECT in the series may have an ORDER BY or LIMIT.
2272 assert( p && p->pPrior ); /* Calling function guarantees this much */
2273 assert( (p->selFlags & SF_Recursive)==0 || p->op==TK_ALL || p->op==TK_UNION );
2274 db = pParse->db;
2275 pPrior = p->pPrior;
2276 dest = *pDest;
2277 if( pPrior->pOrderBy || pPrior->pLimit ){
2278 sqlite3ErrorMsg(pParse,"%s clause should come after %s not before",
2279 pPrior->pOrderBy!=0 ? "ORDER BY" : "LIMIT", selectOpName(p->op));
2280 rc = 1;
2281 goto multi_select_end;
2284 v = sqlite3GetVdbe(pParse);
2285 assert( v!=0 ); /* The VDBE already created by calling function */
2287 /* Create the destination temporary table if necessary
2289 if( dest.eDest==SRT_EphemTab ){
2290 assert( p->pEList );
2291 sqlite3VdbeAddOp2(v, OP_OpenEphemeral, dest.iSDParm, p->pEList->nExpr);
2292 dest.eDest = SRT_Table;
2295 /* Special handling for a compound-select that originates as a VALUES clause.
2297 if( p->selFlags & SF_MultiValue ){
2298 rc = multiSelectValues(pParse, p, &dest);
2299 goto multi_select_end;
2302 /* Make sure all SELECTs in the statement have the same number of elements
2303 ** in their result sets.
2305 assert( p->pEList && pPrior->pEList );
2306 assert( p->pEList->nExpr==pPrior->pEList->nExpr );
2308 #ifndef SQLITE_OMIT_CTE
2309 if( p->selFlags & SF_Recursive ){
2310 generateWithRecursiveQuery(pParse, p, &dest);
2311 }else
2312 #endif
2314 /* Compound SELECTs that have an ORDER BY clause are handled separately.
2316 if( p->pOrderBy ){
2317 return multiSelectOrderBy(pParse, p, pDest);
2318 }else
2320 /* Generate code for the left and right SELECT statements.
2322 switch( p->op ){
2323 case TK_ALL: {
2324 int addr = 0;
2325 int nLimit;
2326 assert( !pPrior->pLimit );
2327 pPrior->iLimit = p->iLimit;
2328 pPrior->iOffset = p->iOffset;
2329 pPrior->pLimit = p->pLimit;
2330 explainSetInteger(iSub1, pParse->iNextSelectId);
2331 rc = sqlite3Select(pParse, pPrior, &dest);
2332 p->pLimit = 0;
2333 if( rc ){
2334 goto multi_select_end;
2336 p->pPrior = 0;
2337 p->iLimit = pPrior->iLimit;
2338 p->iOffset = pPrior->iOffset;
2339 if( p->iLimit ){
2340 addr = sqlite3VdbeAddOp1(v, OP_IfNot, p->iLimit); VdbeCoverage(v);
2341 VdbeComment((v, "Jump ahead if LIMIT reached"));
2342 if( p->iOffset ){
2343 sqlite3VdbeAddOp3(v, OP_OffsetLimit,
2344 p->iLimit, p->iOffset+1, p->iOffset);
2347 explainSetInteger(iSub2, pParse->iNextSelectId);
2348 rc = sqlite3Select(pParse, p, &dest);
2349 testcase( rc!=SQLITE_OK );
2350 pDelete = p->pPrior;
2351 p->pPrior = pPrior;
2352 p->nSelectRow = sqlite3LogEstAdd(p->nSelectRow, pPrior->nSelectRow);
2353 if( pPrior->pLimit
2354 && sqlite3ExprIsInteger(pPrior->pLimit->pLeft, &nLimit)
2355 && nLimit>0 && p->nSelectRow > sqlite3LogEst((u64)nLimit)
2357 p->nSelectRow = sqlite3LogEst((u64)nLimit);
2359 if( addr ){
2360 sqlite3VdbeJumpHere(v, addr);
2362 break;
2364 case TK_EXCEPT:
2365 case TK_UNION: {
2366 int unionTab; /* Cursor number of the temporary table holding result */
2367 u8 op = 0; /* One of the SRT_ operations to apply to self */
2368 int priorOp; /* The SRT_ operation to apply to prior selects */
2369 Expr *pLimit; /* Saved values of p->nLimit */
2370 int addr;
2371 SelectDest uniondest;
2373 testcase( p->op==TK_EXCEPT );
2374 testcase( p->op==TK_UNION );
2375 priorOp = SRT_Union;
2376 if( dest.eDest==priorOp ){
2377 /* We can reuse a temporary table generated by a SELECT to our
2378 ** right.
2380 assert( p->pLimit==0 ); /* Not allowed on leftward elements */
2381 unionTab = dest.iSDParm;
2382 }else{
2383 /* We will need to create our own temporary table to hold the
2384 ** intermediate results.
2386 unionTab = pParse->nTab++;
2387 assert( p->pOrderBy==0 );
2388 addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, unionTab, 0);
2389 assert( p->addrOpenEphm[0] == -1 );
2390 p->addrOpenEphm[0] = addr;
2391 findRightmost(p)->selFlags |= SF_UsesEphemeral;
2392 assert( p->pEList );
2395 /* Code the SELECT statements to our left
2397 assert( !pPrior->pOrderBy );
2398 sqlite3SelectDestInit(&uniondest, priorOp, unionTab);
2399 explainSetInteger(iSub1, pParse->iNextSelectId);
2400 rc = sqlite3Select(pParse, pPrior, &uniondest);
2401 if( rc ){
2402 goto multi_select_end;
2405 /* Code the current SELECT statement
2407 if( p->op==TK_EXCEPT ){
2408 op = SRT_Except;
2409 }else{
2410 assert( p->op==TK_UNION );
2411 op = SRT_Union;
2413 p->pPrior = 0;
2414 pLimit = p->pLimit;
2415 p->pLimit = 0;
2416 uniondest.eDest = op;
2417 explainSetInteger(iSub2, pParse->iNextSelectId);
2418 rc = sqlite3Select(pParse, p, &uniondest);
2419 testcase( rc!=SQLITE_OK );
2420 /* Query flattening in sqlite3Select() might refill p->pOrderBy.
2421 ** Be sure to delete p->pOrderBy, therefore, to avoid a memory leak. */
2422 sqlite3ExprListDelete(db, p->pOrderBy);
2423 pDelete = p->pPrior;
2424 p->pPrior = pPrior;
2425 p->pOrderBy = 0;
2426 if( p->op==TK_UNION ){
2427 p->nSelectRow = sqlite3LogEstAdd(p->nSelectRow, pPrior->nSelectRow);
2429 sqlite3ExprDelete(db, p->pLimit);
2430 p->pLimit = pLimit;
2431 p->iLimit = 0;
2432 p->iOffset = 0;
2434 /* Convert the data in the temporary table into whatever form
2435 ** it is that we currently need.
2437 assert( unionTab==dest.iSDParm || dest.eDest!=priorOp );
2438 if( dest.eDest!=priorOp ){
2439 int iCont, iBreak, iStart;
2440 assert( p->pEList );
2441 iBreak = sqlite3VdbeMakeLabel(v);
2442 iCont = sqlite3VdbeMakeLabel(v);
2443 computeLimitRegisters(pParse, p, iBreak);
2444 sqlite3VdbeAddOp2(v, OP_Rewind, unionTab, iBreak); VdbeCoverage(v);
2445 iStart = sqlite3VdbeCurrentAddr(v);
2446 selectInnerLoop(pParse, p, unionTab,
2447 0, 0, &dest, iCont, iBreak);
2448 sqlite3VdbeResolveLabel(v, iCont);
2449 sqlite3VdbeAddOp2(v, OP_Next, unionTab, iStart); VdbeCoverage(v);
2450 sqlite3VdbeResolveLabel(v, iBreak);
2451 sqlite3VdbeAddOp2(v, OP_Close, unionTab, 0);
2453 break;
2455 default: assert( p->op==TK_INTERSECT ); {
2456 int tab1, tab2;
2457 int iCont, iBreak, iStart;
2458 Expr *pLimit;
2459 int addr;
2460 SelectDest intersectdest;
2461 int r1;
2463 /* INTERSECT is different from the others since it requires
2464 ** two temporary tables. Hence it has its own case. Begin
2465 ** by allocating the tables we will need.
2467 tab1 = pParse->nTab++;
2468 tab2 = pParse->nTab++;
2469 assert( p->pOrderBy==0 );
2471 addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, tab1, 0);
2472 assert( p->addrOpenEphm[0] == -1 );
2473 p->addrOpenEphm[0] = addr;
2474 findRightmost(p)->selFlags |= SF_UsesEphemeral;
2475 assert( p->pEList );
2477 /* Code the SELECTs to our left into temporary table "tab1".
2479 sqlite3SelectDestInit(&intersectdest, SRT_Union, tab1);
2480 explainSetInteger(iSub1, pParse->iNextSelectId);
2481 rc = sqlite3Select(pParse, pPrior, &intersectdest);
2482 if( rc ){
2483 goto multi_select_end;
2486 /* Code the current SELECT into temporary table "tab2"
2488 addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, tab2, 0);
2489 assert( p->addrOpenEphm[1] == -1 );
2490 p->addrOpenEphm[1] = addr;
2491 p->pPrior = 0;
2492 pLimit = p->pLimit;
2493 p->pLimit = 0;
2494 intersectdest.iSDParm = tab2;
2495 explainSetInteger(iSub2, pParse->iNextSelectId);
2496 rc = sqlite3Select(pParse, p, &intersectdest);
2497 testcase( rc!=SQLITE_OK );
2498 pDelete = p->pPrior;
2499 p->pPrior = pPrior;
2500 if( p->nSelectRow>pPrior->nSelectRow ) p->nSelectRow = pPrior->nSelectRow;
2501 sqlite3ExprDelete(db, p->pLimit);
2502 p->pLimit = pLimit;
2504 /* Generate code to take the intersection of the two temporary
2505 ** tables.
2507 assert( p->pEList );
2508 iBreak = sqlite3VdbeMakeLabel(v);
2509 iCont = sqlite3VdbeMakeLabel(v);
2510 computeLimitRegisters(pParse, p, iBreak);
2511 sqlite3VdbeAddOp2(v, OP_Rewind, tab1, iBreak); VdbeCoverage(v);
2512 r1 = sqlite3GetTempReg(pParse);
2513 iStart = sqlite3VdbeAddOp2(v, OP_RowData, tab1, r1);
2514 sqlite3VdbeAddOp4Int(v, OP_NotFound, tab2, iCont, r1, 0); VdbeCoverage(v);
2515 sqlite3ReleaseTempReg(pParse, r1);
2516 selectInnerLoop(pParse, p, tab1,
2517 0, 0, &dest, iCont, iBreak);
2518 sqlite3VdbeResolveLabel(v, iCont);
2519 sqlite3VdbeAddOp2(v, OP_Next, tab1, iStart); VdbeCoverage(v);
2520 sqlite3VdbeResolveLabel(v, iBreak);
2521 sqlite3VdbeAddOp2(v, OP_Close, tab2, 0);
2522 sqlite3VdbeAddOp2(v, OP_Close, tab1, 0);
2523 break;
2527 explainComposite(pParse, p->op, iSub1, iSub2, p->op!=TK_ALL);
2529 /* Compute collating sequences used by
2530 ** temporary tables needed to implement the compound select.
2531 ** Attach the KeyInfo structure to all temporary tables.
2533 ** This section is run by the right-most SELECT statement only.
2534 ** SELECT statements to the left always skip this part. The right-most
2535 ** SELECT might also skip this part if it has no ORDER BY clause and
2536 ** no temp tables are required.
2538 if( p->selFlags & SF_UsesEphemeral ){
2539 int i; /* Loop counter */
2540 KeyInfo *pKeyInfo; /* Collating sequence for the result set */
2541 Select *pLoop; /* For looping through SELECT statements */
2542 CollSeq **apColl; /* For looping through pKeyInfo->aColl[] */
2543 int nCol; /* Number of columns in result set */
2545 assert( p->pNext==0 );
2546 nCol = p->pEList->nExpr;
2547 pKeyInfo = sqlite3KeyInfoAlloc(db, nCol, 1);
2548 if( !pKeyInfo ){
2549 rc = SQLITE_NOMEM_BKPT;
2550 goto multi_select_end;
2552 for(i=0, apColl=pKeyInfo->aColl; i<nCol; i++, apColl++){
2553 *apColl = multiSelectCollSeq(pParse, p, i);
2554 if( 0==*apColl ){
2555 *apColl = db->pDfltColl;
2559 for(pLoop=p; pLoop; pLoop=pLoop->pPrior){
2560 for(i=0; i<2; i++){
2561 int addr = pLoop->addrOpenEphm[i];
2562 if( addr<0 ){
2563 /* If [0] is unused then [1] is also unused. So we can
2564 ** always safely abort as soon as the first unused slot is found */
2565 assert( pLoop->addrOpenEphm[1]<0 );
2566 break;
2568 sqlite3VdbeChangeP2(v, addr, nCol);
2569 sqlite3VdbeChangeP4(v, addr, (char*)sqlite3KeyInfoRef(pKeyInfo),
2570 P4_KEYINFO);
2571 pLoop->addrOpenEphm[i] = -1;
2574 sqlite3KeyInfoUnref(pKeyInfo);
2577 multi_select_end:
2578 pDest->iSdst = dest.iSdst;
2579 pDest->nSdst = dest.nSdst;
2580 sqlite3SelectDelete(db, pDelete);
2581 return rc;
2583 #endif /* SQLITE_OMIT_COMPOUND_SELECT */
2586 ** Error message for when two or more terms of a compound select have different
2587 ** size result sets.
2589 void sqlite3SelectWrongNumTermsError(Parse *pParse, Select *p){
2590 if( p->selFlags & SF_Values ){
2591 sqlite3ErrorMsg(pParse, "all VALUES must have the same number of terms");
2592 }else{
2593 sqlite3ErrorMsg(pParse, "SELECTs to the left and right of %s"
2594 " do not have the same number of result columns", selectOpName(p->op));
2599 ** Code an output subroutine for a coroutine implementation of a
2600 ** SELECT statment.
2602 ** The data to be output is contained in pIn->iSdst. There are
2603 ** pIn->nSdst columns to be output. pDest is where the output should
2604 ** be sent.
2606 ** regReturn is the number of the register holding the subroutine
2607 ** return address.
2609 ** If regPrev>0 then it is the first register in a vector that
2610 ** records the previous output. mem[regPrev] is a flag that is false
2611 ** if there has been no previous output. If regPrev>0 then code is
2612 ** generated to suppress duplicates. pKeyInfo is used for comparing
2613 ** keys.
2615 ** If the LIMIT found in p->iLimit is reached, jump immediately to
2616 ** iBreak.
2618 static int generateOutputSubroutine(
2619 Parse *pParse, /* Parsing context */
2620 Select *p, /* The SELECT statement */
2621 SelectDest *pIn, /* Coroutine supplying data */
2622 SelectDest *pDest, /* Where to send the data */
2623 int regReturn, /* The return address register */
2624 int regPrev, /* Previous result register. No uniqueness if 0 */
2625 KeyInfo *pKeyInfo, /* For comparing with previous entry */
2626 int iBreak /* Jump here if we hit the LIMIT */
2628 Vdbe *v = pParse->pVdbe;
2629 int iContinue;
2630 int addr;
2632 addr = sqlite3VdbeCurrentAddr(v);
2633 iContinue = sqlite3VdbeMakeLabel(v);
2635 /* Suppress duplicates for UNION, EXCEPT, and INTERSECT
2637 if( regPrev ){
2638 int addr1, addr2;
2639 addr1 = sqlite3VdbeAddOp1(v, OP_IfNot, regPrev); VdbeCoverage(v);
2640 addr2 = sqlite3VdbeAddOp4(v, OP_Compare, pIn->iSdst, regPrev+1, pIn->nSdst,
2641 (char*)sqlite3KeyInfoRef(pKeyInfo), P4_KEYINFO);
2642 sqlite3VdbeAddOp3(v, OP_Jump, addr2+2, iContinue, addr2+2); VdbeCoverage(v);
2643 sqlite3VdbeJumpHere(v, addr1);
2644 sqlite3VdbeAddOp3(v, OP_Copy, pIn->iSdst, regPrev+1, pIn->nSdst-1);
2645 sqlite3VdbeAddOp2(v, OP_Integer, 1, regPrev);
2647 if( pParse->db->mallocFailed ) return 0;
2649 /* Suppress the first OFFSET entries if there is an OFFSET clause
2651 codeOffset(v, p->iOffset, iContinue);
2653 assert( pDest->eDest!=SRT_Exists );
2654 assert( pDest->eDest!=SRT_Table );
2655 switch( pDest->eDest ){
2656 /* Store the result as data using a unique key.
2658 case SRT_EphemTab: {
2659 int r1 = sqlite3GetTempReg(pParse);
2660 int r2 = sqlite3GetTempReg(pParse);
2661 sqlite3VdbeAddOp3(v, OP_MakeRecord, pIn->iSdst, pIn->nSdst, r1);
2662 sqlite3VdbeAddOp2(v, OP_NewRowid, pDest->iSDParm, r2);
2663 sqlite3VdbeAddOp3(v, OP_Insert, pDest->iSDParm, r1, r2);
2664 sqlite3VdbeChangeP5(v, OPFLAG_APPEND);
2665 sqlite3ReleaseTempReg(pParse, r2);
2666 sqlite3ReleaseTempReg(pParse, r1);
2667 break;
2670 #ifndef SQLITE_OMIT_SUBQUERY
2671 /* If we are creating a set for an "expr IN (SELECT ...)".
2673 case SRT_Set: {
2674 int r1;
2675 testcase( pIn->nSdst>1 );
2676 r1 = sqlite3GetTempReg(pParse);
2677 sqlite3VdbeAddOp4(v, OP_MakeRecord, pIn->iSdst, pIn->nSdst,
2678 r1, pDest->zAffSdst, pIn->nSdst);
2679 sqlite3ExprCacheAffinityChange(pParse, pIn->iSdst, pIn->nSdst);
2680 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, pDest->iSDParm, r1,
2681 pIn->iSdst, pIn->nSdst);
2682 sqlite3ReleaseTempReg(pParse, r1);
2683 break;
2686 /* If this is a scalar select that is part of an expression, then
2687 ** store the results in the appropriate memory cell and break out
2688 ** of the scan loop.
2690 case SRT_Mem: {
2691 assert( pIn->nSdst==1 || pParse->nErr>0 ); testcase( pIn->nSdst!=1 );
2692 sqlite3ExprCodeMove(pParse, pIn->iSdst, pDest->iSDParm, 1);
2693 /* The LIMIT clause will jump out of the loop for us */
2694 break;
2696 #endif /* #ifndef SQLITE_OMIT_SUBQUERY */
2698 /* The results are stored in a sequence of registers
2699 ** starting at pDest->iSdst. Then the co-routine yields.
2701 case SRT_Coroutine: {
2702 if( pDest->iSdst==0 ){
2703 pDest->iSdst = sqlite3GetTempRange(pParse, pIn->nSdst);
2704 pDest->nSdst = pIn->nSdst;
2706 sqlite3ExprCodeMove(pParse, pIn->iSdst, pDest->iSdst, pIn->nSdst);
2707 sqlite3VdbeAddOp1(v, OP_Yield, pDest->iSDParm);
2708 break;
2711 /* If none of the above, then the result destination must be
2712 ** SRT_Output. This routine is never called with any other
2713 ** destination other than the ones handled above or SRT_Output.
2715 ** For SRT_Output, results are stored in a sequence of registers.
2716 ** Then the OP_ResultRow opcode is used to cause sqlite3_step() to
2717 ** return the next row of result.
2719 default: {
2720 assert( pDest->eDest==SRT_Output );
2721 sqlite3VdbeAddOp2(v, OP_ResultRow, pIn->iSdst, pIn->nSdst);
2722 sqlite3ExprCacheAffinityChange(pParse, pIn->iSdst, pIn->nSdst);
2723 break;
2727 /* Jump to the end of the loop if the LIMIT is reached.
2729 if( p->iLimit ){
2730 sqlite3VdbeAddOp2(v, OP_DecrJumpZero, p->iLimit, iBreak); VdbeCoverage(v);
2733 /* Generate the subroutine return
2735 sqlite3VdbeResolveLabel(v, iContinue);
2736 sqlite3VdbeAddOp1(v, OP_Return, regReturn);
2738 return addr;
2742 ** Alternative compound select code generator for cases when there
2743 ** is an ORDER BY clause.
2745 ** We assume a query of the following form:
2747 ** <selectA> <operator> <selectB> ORDER BY <orderbylist>
2749 ** <operator> is one of UNION ALL, UNION, EXCEPT, or INTERSECT. The idea
2750 ** is to code both <selectA> and <selectB> with the ORDER BY clause as
2751 ** co-routines. Then run the co-routines in parallel and merge the results
2752 ** into the output. In addition to the two coroutines (called selectA and
2753 ** selectB) there are 7 subroutines:
2755 ** outA: Move the output of the selectA coroutine into the output
2756 ** of the compound query.
2758 ** outB: Move the output of the selectB coroutine into the output
2759 ** of the compound query. (Only generated for UNION and
2760 ** UNION ALL. EXCEPT and INSERTSECT never output a row that
2761 ** appears only in B.)
2763 ** AltB: Called when there is data from both coroutines and A<B.
2765 ** AeqB: Called when there is data from both coroutines and A==B.
2767 ** AgtB: Called when there is data from both coroutines and A>B.
2769 ** EofA: Called when data is exhausted from selectA.
2771 ** EofB: Called when data is exhausted from selectB.
2773 ** The implementation of the latter five subroutines depend on which
2774 ** <operator> is used:
2777 ** UNION ALL UNION EXCEPT INTERSECT
2778 ** ------------- ----------------- -------------- -----------------
2779 ** AltB: outA, nextA outA, nextA outA, nextA nextA
2781 ** AeqB: outA, nextA nextA nextA outA, nextA
2783 ** AgtB: outB, nextB outB, nextB nextB nextB
2785 ** EofA: outB, nextB outB, nextB halt halt
2787 ** EofB: outA, nextA outA, nextA outA, nextA halt
2789 ** In the AltB, AeqB, and AgtB subroutines, an EOF on A following nextA
2790 ** causes an immediate jump to EofA and an EOF on B following nextB causes
2791 ** an immediate jump to EofB. Within EofA and EofB, and EOF on entry or
2792 ** following nextX causes a jump to the end of the select processing.
2794 ** Duplicate removal in the UNION, EXCEPT, and INTERSECT cases is handled
2795 ** within the output subroutine. The regPrev register set holds the previously
2796 ** output value. A comparison is made against this value and the output
2797 ** is skipped if the next results would be the same as the previous.
2799 ** The implementation plan is to implement the two coroutines and seven
2800 ** subroutines first, then put the control logic at the bottom. Like this:
2802 ** goto Init
2803 ** coA: coroutine for left query (A)
2804 ** coB: coroutine for right query (B)
2805 ** outA: output one row of A
2806 ** outB: output one row of B (UNION and UNION ALL only)
2807 ** EofA: ...
2808 ** EofB: ...
2809 ** AltB: ...
2810 ** AeqB: ...
2811 ** AgtB: ...
2812 ** Init: initialize coroutine registers
2813 ** yield coA
2814 ** if eof(A) goto EofA
2815 ** yield coB
2816 ** if eof(B) goto EofB
2817 ** Cmpr: Compare A, B
2818 ** Jump AltB, AeqB, AgtB
2819 ** End: ...
2821 ** We call AltB, AeqB, AgtB, EofA, and EofB "subroutines" but they are not
2822 ** actually called using Gosub and they do not Return. EofA and EofB loop
2823 ** until all data is exhausted then jump to the "end" labe. AltB, AeqB,
2824 ** and AgtB jump to either L2 or to one of EofA or EofB.
2826 #ifndef SQLITE_OMIT_COMPOUND_SELECT
2827 static int multiSelectOrderBy(
2828 Parse *pParse, /* Parsing context */
2829 Select *p, /* The right-most of SELECTs to be coded */
2830 SelectDest *pDest /* What to do with query results */
2832 int i, j; /* Loop counters */
2833 Select *pPrior; /* Another SELECT immediately to our left */
2834 Vdbe *v; /* Generate code to this VDBE */
2835 SelectDest destA; /* Destination for coroutine A */
2836 SelectDest destB; /* Destination for coroutine B */
2837 int regAddrA; /* Address register for select-A coroutine */
2838 int regAddrB; /* Address register for select-B coroutine */
2839 int addrSelectA; /* Address of the select-A coroutine */
2840 int addrSelectB; /* Address of the select-B coroutine */
2841 int regOutA; /* Address register for the output-A subroutine */
2842 int regOutB; /* Address register for the output-B subroutine */
2843 int addrOutA; /* Address of the output-A subroutine */
2844 int addrOutB = 0; /* Address of the output-B subroutine */
2845 int addrEofA; /* Address of the select-A-exhausted subroutine */
2846 int addrEofA_noB; /* Alternate addrEofA if B is uninitialized */
2847 int addrEofB; /* Address of the select-B-exhausted subroutine */
2848 int addrAltB; /* Address of the A<B subroutine */
2849 int addrAeqB; /* Address of the A==B subroutine */
2850 int addrAgtB; /* Address of the A>B subroutine */
2851 int regLimitA; /* Limit register for select-A */
2852 int regLimitB; /* Limit register for select-A */
2853 int regPrev; /* A range of registers to hold previous output */
2854 int savedLimit; /* Saved value of p->iLimit */
2855 int savedOffset; /* Saved value of p->iOffset */
2856 int labelCmpr; /* Label for the start of the merge algorithm */
2857 int labelEnd; /* Label for the end of the overall SELECT stmt */
2858 int addr1; /* Jump instructions that get retargetted */
2859 int op; /* One of TK_ALL, TK_UNION, TK_EXCEPT, TK_INTERSECT */
2860 KeyInfo *pKeyDup = 0; /* Comparison information for duplicate removal */
2861 KeyInfo *pKeyMerge; /* Comparison information for merging rows */
2862 sqlite3 *db; /* Database connection */
2863 ExprList *pOrderBy; /* The ORDER BY clause */
2864 int nOrderBy; /* Number of terms in the ORDER BY clause */
2865 int *aPermute; /* Mapping from ORDER BY terms to result set columns */
2866 #ifndef SQLITE_OMIT_EXPLAIN
2867 int iSub1; /* EQP id of left-hand query */
2868 int iSub2; /* EQP id of right-hand query */
2869 #endif
2871 assert( p->pOrderBy!=0 );
2872 assert( pKeyDup==0 ); /* "Managed" code needs this. Ticket #3382. */
2873 db = pParse->db;
2874 v = pParse->pVdbe;
2875 assert( v!=0 ); /* Already thrown the error if VDBE alloc failed */
2876 labelEnd = sqlite3VdbeMakeLabel(v);
2877 labelCmpr = sqlite3VdbeMakeLabel(v);
2880 /* Patch up the ORDER BY clause
2882 op = p->op;
2883 pPrior = p->pPrior;
2884 assert( pPrior->pOrderBy==0 );
2885 pOrderBy = p->pOrderBy;
2886 assert( pOrderBy );
2887 nOrderBy = pOrderBy->nExpr;
2889 /* For operators other than UNION ALL we have to make sure that
2890 ** the ORDER BY clause covers every term of the result set. Add
2891 ** terms to the ORDER BY clause as necessary.
2893 if( op!=TK_ALL ){
2894 for(i=1; db->mallocFailed==0 && i<=p->pEList->nExpr; i++){
2895 struct ExprList_item *pItem;
2896 for(j=0, pItem=pOrderBy->a; j<nOrderBy; j++, pItem++){
2897 assert( pItem->u.x.iOrderByCol>0 );
2898 if( pItem->u.x.iOrderByCol==i ) break;
2900 if( j==nOrderBy ){
2901 Expr *pNew = sqlite3Expr(db, TK_INTEGER, 0);
2902 if( pNew==0 ) return SQLITE_NOMEM_BKPT;
2903 pNew->flags |= EP_IntValue;
2904 pNew->u.iValue = i;
2905 p->pOrderBy = pOrderBy = sqlite3ExprListAppend(pParse, pOrderBy, pNew);
2906 if( pOrderBy ) pOrderBy->a[nOrderBy++].u.x.iOrderByCol = (u16)i;
2911 /* Compute the comparison permutation and keyinfo that is used with
2912 ** the permutation used to determine if the next
2913 ** row of results comes from selectA or selectB. Also add explicit
2914 ** collations to the ORDER BY clause terms so that when the subqueries
2915 ** to the right and the left are evaluated, they use the correct
2916 ** collation.
2918 aPermute = sqlite3DbMallocRawNN(db, sizeof(int)*(nOrderBy + 1));
2919 if( aPermute ){
2920 struct ExprList_item *pItem;
2921 aPermute[0] = nOrderBy;
2922 for(i=1, pItem=pOrderBy->a; i<=nOrderBy; i++, pItem++){
2923 assert( pItem->u.x.iOrderByCol>0 );
2924 assert( pItem->u.x.iOrderByCol<=p->pEList->nExpr );
2925 aPermute[i] = pItem->u.x.iOrderByCol - 1;
2927 pKeyMerge = multiSelectOrderByKeyInfo(pParse, p, 1);
2928 }else{
2929 pKeyMerge = 0;
2932 /* Reattach the ORDER BY clause to the query.
2934 p->pOrderBy = pOrderBy;
2935 pPrior->pOrderBy = sqlite3ExprListDup(pParse->db, pOrderBy, 0);
2937 /* Allocate a range of temporary registers and the KeyInfo needed
2938 ** for the logic that removes duplicate result rows when the
2939 ** operator is UNION, EXCEPT, or INTERSECT (but not UNION ALL).
2941 if( op==TK_ALL ){
2942 regPrev = 0;
2943 }else{
2944 int nExpr = p->pEList->nExpr;
2945 assert( nOrderBy>=nExpr || db->mallocFailed );
2946 regPrev = pParse->nMem+1;
2947 pParse->nMem += nExpr+1;
2948 sqlite3VdbeAddOp2(v, OP_Integer, 0, regPrev);
2949 pKeyDup = sqlite3KeyInfoAlloc(db, nExpr, 1);
2950 if( pKeyDup ){
2951 assert( sqlite3KeyInfoIsWriteable(pKeyDup) );
2952 for(i=0; i<nExpr; i++){
2953 pKeyDup->aColl[i] = multiSelectCollSeq(pParse, p, i);
2954 pKeyDup->aSortOrder[i] = 0;
2959 /* Separate the left and the right query from one another
2961 p->pPrior = 0;
2962 pPrior->pNext = 0;
2963 sqlite3ResolveOrderGroupBy(pParse, p, p->pOrderBy, "ORDER");
2964 if( pPrior->pPrior==0 ){
2965 sqlite3ResolveOrderGroupBy(pParse, pPrior, pPrior->pOrderBy, "ORDER");
2968 /* Compute the limit registers */
2969 computeLimitRegisters(pParse, p, labelEnd);
2970 if( p->iLimit && op==TK_ALL ){
2971 regLimitA = ++pParse->nMem;
2972 regLimitB = ++pParse->nMem;
2973 sqlite3VdbeAddOp2(v, OP_Copy, p->iOffset ? p->iOffset+1 : p->iLimit,
2974 regLimitA);
2975 sqlite3VdbeAddOp2(v, OP_Copy, regLimitA, regLimitB);
2976 }else{
2977 regLimitA = regLimitB = 0;
2979 sqlite3ExprDelete(db, p->pLimit);
2980 p->pLimit = 0;
2982 regAddrA = ++pParse->nMem;
2983 regAddrB = ++pParse->nMem;
2984 regOutA = ++pParse->nMem;
2985 regOutB = ++pParse->nMem;
2986 sqlite3SelectDestInit(&destA, SRT_Coroutine, regAddrA);
2987 sqlite3SelectDestInit(&destB, SRT_Coroutine, regAddrB);
2989 /* Generate a coroutine to evaluate the SELECT statement to the
2990 ** left of the compound operator - the "A" select.
2992 addrSelectA = sqlite3VdbeCurrentAddr(v) + 1;
2993 addr1 = sqlite3VdbeAddOp3(v, OP_InitCoroutine, regAddrA, 0, addrSelectA);
2994 VdbeComment((v, "left SELECT"));
2995 pPrior->iLimit = regLimitA;
2996 explainSetInteger(iSub1, pParse->iNextSelectId);
2997 sqlite3Select(pParse, pPrior, &destA);
2998 sqlite3VdbeEndCoroutine(v, regAddrA);
2999 sqlite3VdbeJumpHere(v, addr1);
3001 /* Generate a coroutine to evaluate the SELECT statement on
3002 ** the right - the "B" select
3004 addrSelectB = sqlite3VdbeCurrentAddr(v) + 1;
3005 addr1 = sqlite3VdbeAddOp3(v, OP_InitCoroutine, regAddrB, 0, addrSelectB);
3006 VdbeComment((v, "right SELECT"));
3007 savedLimit = p->iLimit;
3008 savedOffset = p->iOffset;
3009 p->iLimit = regLimitB;
3010 p->iOffset = 0;
3011 explainSetInteger(iSub2, pParse->iNextSelectId);
3012 sqlite3Select(pParse, p, &destB);
3013 p->iLimit = savedLimit;
3014 p->iOffset = savedOffset;
3015 sqlite3VdbeEndCoroutine(v, regAddrB);
3017 /* Generate a subroutine that outputs the current row of the A
3018 ** select as the next output row of the compound select.
3020 VdbeNoopComment((v, "Output routine for A"));
3021 addrOutA = generateOutputSubroutine(pParse,
3022 p, &destA, pDest, regOutA,
3023 regPrev, pKeyDup, labelEnd);
3025 /* Generate a subroutine that outputs the current row of the B
3026 ** select as the next output row of the compound select.
3028 if( op==TK_ALL || op==TK_UNION ){
3029 VdbeNoopComment((v, "Output routine for B"));
3030 addrOutB = generateOutputSubroutine(pParse,
3031 p, &destB, pDest, regOutB,
3032 regPrev, pKeyDup, labelEnd);
3034 sqlite3KeyInfoUnref(pKeyDup);
3036 /* Generate a subroutine to run when the results from select A
3037 ** are exhausted and only data in select B remains.
3039 if( op==TK_EXCEPT || op==TK_INTERSECT ){
3040 addrEofA_noB = addrEofA = labelEnd;
3041 }else{
3042 VdbeNoopComment((v, "eof-A subroutine"));
3043 addrEofA = sqlite3VdbeAddOp2(v, OP_Gosub, regOutB, addrOutB);
3044 addrEofA_noB = sqlite3VdbeAddOp2(v, OP_Yield, regAddrB, labelEnd);
3045 VdbeCoverage(v);
3046 sqlite3VdbeGoto(v, addrEofA);
3047 p->nSelectRow = sqlite3LogEstAdd(p->nSelectRow, pPrior->nSelectRow);
3050 /* Generate a subroutine to run when the results from select B
3051 ** are exhausted and only data in select A remains.
3053 if( op==TK_INTERSECT ){
3054 addrEofB = addrEofA;
3055 if( p->nSelectRow > pPrior->nSelectRow ) p->nSelectRow = pPrior->nSelectRow;
3056 }else{
3057 VdbeNoopComment((v, "eof-B subroutine"));
3058 addrEofB = sqlite3VdbeAddOp2(v, OP_Gosub, regOutA, addrOutA);
3059 sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, labelEnd); VdbeCoverage(v);
3060 sqlite3VdbeGoto(v, addrEofB);
3063 /* Generate code to handle the case of A<B
3065 VdbeNoopComment((v, "A-lt-B subroutine"));
3066 addrAltB = sqlite3VdbeAddOp2(v, OP_Gosub, regOutA, addrOutA);
3067 sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, addrEofA); VdbeCoverage(v);
3068 sqlite3VdbeGoto(v, labelCmpr);
3070 /* Generate code to handle the case of A==B
3072 if( op==TK_ALL ){
3073 addrAeqB = addrAltB;
3074 }else if( op==TK_INTERSECT ){
3075 addrAeqB = addrAltB;
3076 addrAltB++;
3077 }else{
3078 VdbeNoopComment((v, "A-eq-B subroutine"));
3079 addrAeqB =
3080 sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, addrEofA); VdbeCoverage(v);
3081 sqlite3VdbeGoto(v, labelCmpr);
3084 /* Generate code to handle the case of A>B
3086 VdbeNoopComment((v, "A-gt-B subroutine"));
3087 addrAgtB = sqlite3VdbeCurrentAddr(v);
3088 if( op==TK_ALL || op==TK_UNION ){
3089 sqlite3VdbeAddOp2(v, OP_Gosub, regOutB, addrOutB);
3091 sqlite3VdbeAddOp2(v, OP_Yield, regAddrB, addrEofB); VdbeCoverage(v);
3092 sqlite3VdbeGoto(v, labelCmpr);
3094 /* This code runs once to initialize everything.
3096 sqlite3VdbeJumpHere(v, addr1);
3097 sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, addrEofA_noB); VdbeCoverage(v);
3098 sqlite3VdbeAddOp2(v, OP_Yield, regAddrB, addrEofB); VdbeCoverage(v);
3100 /* Implement the main merge loop
3102 sqlite3VdbeResolveLabel(v, labelCmpr);
3103 sqlite3VdbeAddOp4(v, OP_Permutation, 0, 0, 0, (char*)aPermute, P4_INTARRAY);
3104 sqlite3VdbeAddOp4(v, OP_Compare, destA.iSdst, destB.iSdst, nOrderBy,
3105 (char*)pKeyMerge, P4_KEYINFO);
3106 sqlite3VdbeChangeP5(v, OPFLAG_PERMUTE);
3107 sqlite3VdbeAddOp3(v, OP_Jump, addrAltB, addrAeqB, addrAgtB); VdbeCoverage(v);
3109 /* Jump to the this point in order to terminate the query.
3111 sqlite3VdbeResolveLabel(v, labelEnd);
3113 /* Reassembly the compound query so that it will be freed correctly
3114 ** by the calling function */
3115 if( p->pPrior ){
3116 sqlite3SelectDelete(db, p->pPrior);
3118 p->pPrior = pPrior;
3119 pPrior->pNext = p;
3121 /*** TBD: Insert subroutine calls to close cursors on incomplete
3122 **** subqueries ****/
3123 explainComposite(pParse, p->op, iSub1, iSub2, 0);
3124 return pParse->nErr!=0;
3126 #endif
3128 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
3130 /* An instance of the SubstContext object describes an substitution edit
3131 ** to be performed on a parse tree.
3133 ** All references to columns in table iTable are to be replaced by corresponding
3134 ** expressions in pEList.
3136 typedef struct SubstContext {
3137 Parse *pParse; /* The parsing context */
3138 int iTable; /* Replace references to this table */
3139 int iNewTable; /* New table number */
3140 int isLeftJoin; /* Add TK_IF_NULL_ROW opcodes on each replacement */
3141 ExprList *pEList; /* Replacement expressions */
3142 } SubstContext;
3144 /* Forward Declarations */
3145 static void substExprList(SubstContext*, ExprList*);
3146 static void substSelect(SubstContext*, Select*, int);
3149 ** Scan through the expression pExpr. Replace every reference to
3150 ** a column in table number iTable with a copy of the iColumn-th
3151 ** entry in pEList. (But leave references to the ROWID column
3152 ** unchanged.)
3154 ** This routine is part of the flattening procedure. A subquery
3155 ** whose result set is defined by pEList appears as entry in the
3156 ** FROM clause of a SELECT such that the VDBE cursor assigned to that
3157 ** FORM clause entry is iTable. This routine makes the necessary
3158 ** changes to pExpr so that it refers directly to the source table
3159 ** of the subquery rather the result set of the subquery.
3161 static Expr *substExpr(
3162 SubstContext *pSubst, /* Description of the substitution */
3163 Expr *pExpr /* Expr in which substitution occurs */
3165 if( pExpr==0 ) return 0;
3166 if( ExprHasProperty(pExpr, EP_FromJoin)
3167 && pExpr->iRightJoinTable==pSubst->iTable
3169 pExpr->iRightJoinTable = pSubst->iNewTable;
3171 if( pExpr->op==TK_COLUMN && pExpr->iTable==pSubst->iTable ){
3172 if( pExpr->iColumn<0 ){
3173 pExpr->op = TK_NULL;
3174 }else{
3175 Expr *pNew;
3176 Expr *pCopy = pSubst->pEList->a[pExpr->iColumn].pExpr;
3177 Expr ifNullRow;
3178 assert( pSubst->pEList!=0 && pExpr->iColumn<pSubst->pEList->nExpr );
3179 assert( pExpr->pLeft==0 && pExpr->pRight==0 );
3180 if( sqlite3ExprIsVector(pCopy) ){
3181 sqlite3VectorErrorMsg(pSubst->pParse, pCopy);
3182 }else{
3183 sqlite3 *db = pSubst->pParse->db;
3184 if( pSubst->isLeftJoin && pCopy->op!=TK_COLUMN ){
3185 memset(&ifNullRow, 0, sizeof(ifNullRow));
3186 ifNullRow.op = TK_IF_NULL_ROW;
3187 ifNullRow.pLeft = pCopy;
3188 ifNullRow.iTable = pSubst->iNewTable;
3189 pCopy = &ifNullRow;
3191 pNew = sqlite3ExprDup(db, pCopy, 0);
3192 if( pNew && pSubst->isLeftJoin ){
3193 ExprSetProperty(pNew, EP_CanBeNull);
3195 if( pNew && ExprHasProperty(pExpr,EP_FromJoin) ){
3196 pNew->iRightJoinTable = pExpr->iRightJoinTable;
3197 ExprSetProperty(pNew, EP_FromJoin);
3199 sqlite3ExprDelete(db, pExpr);
3200 pExpr = pNew;
3203 }else{
3204 if( pExpr->op==TK_IF_NULL_ROW && pExpr->iTable==pSubst->iTable ){
3205 pExpr->iTable = pSubst->iNewTable;
3207 pExpr->pLeft = substExpr(pSubst, pExpr->pLeft);
3208 pExpr->pRight = substExpr(pSubst, pExpr->pRight);
3209 if( ExprHasProperty(pExpr, EP_xIsSelect) ){
3210 substSelect(pSubst, pExpr->x.pSelect, 1);
3211 }else{
3212 substExprList(pSubst, pExpr->x.pList);
3215 return pExpr;
3217 static void substExprList(
3218 SubstContext *pSubst, /* Description of the substitution */
3219 ExprList *pList /* List to scan and in which to make substitutes */
3221 int i;
3222 if( pList==0 ) return;
3223 for(i=0; i<pList->nExpr; i++){
3224 pList->a[i].pExpr = substExpr(pSubst, pList->a[i].pExpr);
3227 static void substSelect(
3228 SubstContext *pSubst, /* Description of the substitution */
3229 Select *p, /* SELECT statement in which to make substitutions */
3230 int doPrior /* Do substitutes on p->pPrior too */
3232 SrcList *pSrc;
3233 struct SrcList_item *pItem;
3234 int i;
3235 if( !p ) return;
3237 substExprList(pSubst, p->pEList);
3238 substExprList(pSubst, p->pGroupBy);
3239 substExprList(pSubst, p->pOrderBy);
3240 p->pHaving = substExpr(pSubst, p->pHaving);
3241 p->pWhere = substExpr(pSubst, p->pWhere);
3242 pSrc = p->pSrc;
3243 assert( pSrc!=0 );
3244 for(i=pSrc->nSrc, pItem=pSrc->a; i>0; i--, pItem++){
3245 substSelect(pSubst, pItem->pSelect, 1);
3246 if( pItem->fg.isTabFunc ){
3247 substExprList(pSubst, pItem->u1.pFuncArg);
3250 }while( doPrior && (p = p->pPrior)!=0 );
3252 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */
3254 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
3256 ** This routine attempts to flatten subqueries as a performance optimization.
3257 ** This routine returns 1 if it makes changes and 0 if no flattening occurs.
3259 ** To understand the concept of flattening, consider the following
3260 ** query:
3262 ** SELECT a FROM (SELECT x+y AS a FROM t1 WHERE z<100) WHERE a>5
3264 ** The default way of implementing this query is to execute the
3265 ** subquery first and store the results in a temporary table, then
3266 ** run the outer query on that temporary table. This requires two
3267 ** passes over the data. Furthermore, because the temporary table
3268 ** has no indices, the WHERE clause on the outer query cannot be
3269 ** optimized.
3271 ** This routine attempts to rewrite queries such as the above into
3272 ** a single flat select, like this:
3274 ** SELECT x+y AS a FROM t1 WHERE z<100 AND a>5
3276 ** The code generated for this simplification gives the same result
3277 ** but only has to scan the data once. And because indices might
3278 ** exist on the table t1, a complete scan of the data might be
3279 ** avoided.
3281 ** Flattening is subject to the following constraints:
3283 ** (**) We no longer attempt to flatten aggregate subqueries. Was:
3284 ** The subquery and the outer query cannot both be aggregates.
3286 ** (**) We no longer attempt to flatten aggregate subqueries. Was:
3287 ** (2) If the subquery is an aggregate then
3288 ** (2a) the outer query must not be a join and
3289 ** (2b) the outer query must not use subqueries
3290 ** other than the one FROM-clause subquery that is a candidate
3291 ** for flattening. (This is due to ticket [2f7170d73bf9abf80]
3292 ** from 2015-02-09.)
3294 ** (3) If the subquery is the right operand of a LEFT JOIN then
3295 ** (3a) the subquery may not be a join and
3296 ** (3b) the FROM clause of the subquery may not contain a virtual
3297 ** table and
3298 ** (3c) the outer query may not be an aggregate.
3300 ** (4) The subquery can not be DISTINCT.
3302 ** (**) At one point restrictions (4) and (5) defined a subset of DISTINCT
3303 ** sub-queries that were excluded from this optimization. Restriction
3304 ** (4) has since been expanded to exclude all DISTINCT subqueries.
3306 ** (**) We no longer attempt to flatten aggregate subqueries. Was:
3307 ** If the subquery is aggregate, the outer query may not be DISTINCT.
3309 ** (7) The subquery must have a FROM clause. TODO: For subqueries without
3310 ** A FROM clause, consider adding a FROM clause with the special
3311 ** table sqlite_once that consists of a single row containing a
3312 ** single NULL.
3314 ** (8) If the subquery uses LIMIT then the outer query may not be a join.
3316 ** (9) If the subquery uses LIMIT then the outer query may not be aggregate.
3318 ** (**) Restriction (10) was removed from the code on 2005-02-05 but we
3319 ** accidently carried the comment forward until 2014-09-15. Original
3320 ** constraint: "If the subquery is aggregate then the outer query
3321 ** may not use LIMIT."
3323 ** (11) The subquery and the outer query may not both have ORDER BY clauses.
3325 ** (**) Not implemented. Subsumed into restriction (3). Was previously
3326 ** a separate restriction deriving from ticket #350.
3328 ** (13) The subquery and outer query may not both use LIMIT.
3330 ** (14) The subquery may not use OFFSET.
3332 ** (15) If the outer query is part of a compound select, then the
3333 ** subquery may not use LIMIT.
3334 ** (See ticket #2339 and ticket [02a8e81d44]).
3336 ** (16) If the outer query is aggregate, then the subquery may not
3337 ** use ORDER BY. (Ticket #2942) This used to not matter
3338 ** until we introduced the group_concat() function.
3340 ** (17) If the subquery is a compound select, then
3341 ** (17a) all compound operators must be a UNION ALL, and
3342 ** (17b) no terms within the subquery compound may be aggregate
3343 ** or DISTINCT, and
3344 ** (17c) every term within the subquery compound must have a FROM clause
3345 ** (17d) the outer query may not be
3346 ** (17d1) aggregate, or
3347 ** (17d2) DISTINCT, or
3348 ** (17d3) a join.
3350 ** The parent and sub-query may contain WHERE clauses. Subject to
3351 ** rules (11), (13) and (14), they may also contain ORDER BY,
3352 ** LIMIT and OFFSET clauses. The subquery cannot use any compound
3353 ** operator other than UNION ALL because all the other compound
3354 ** operators have an implied DISTINCT which is disallowed by
3355 ** restriction (4).
3357 ** Also, each component of the sub-query must return the same number
3358 ** of result columns. This is actually a requirement for any compound
3359 ** SELECT statement, but all the code here does is make sure that no
3360 ** such (illegal) sub-query is flattened. The caller will detect the
3361 ** syntax error and return a detailed message.
3363 ** (18) If the sub-query is a compound select, then all terms of the
3364 ** ORDER BY clause of the parent must be simple references to
3365 ** columns of the sub-query.
3367 ** (19) If the subquery uses LIMIT then the outer query may not
3368 ** have a WHERE clause.
3370 ** (20) If the sub-query is a compound select, then it must not use
3371 ** an ORDER BY clause. Ticket #3773. We could relax this constraint
3372 ** somewhat by saying that the terms of the ORDER BY clause must
3373 ** appear as unmodified result columns in the outer query. But we
3374 ** have other optimizations in mind to deal with that case.
3376 ** (21) If the subquery uses LIMIT then the outer query may not be
3377 ** DISTINCT. (See ticket [752e1646fc]).
3379 ** (22) The subquery may not be a recursive CTE.
3381 ** (**) Subsumed into restriction (17d3). Was: If the outer query is
3382 ** a recursive CTE, then the sub-query may not be a compound query.
3383 ** This restriction is because transforming the
3384 ** parent to a compound query confuses the code that handles
3385 ** recursive queries in multiSelect().
3387 ** (**) We no longer attempt to flatten aggregate subqueries. Was:
3388 ** The subquery may not be an aggregate that uses the built-in min() or
3389 ** or max() functions. (Without this restriction, a query like:
3390 ** "SELECT x FROM (SELECT max(y), x FROM t1)" would not necessarily
3391 ** return the value X for which Y was maximal.)
3394 ** In this routine, the "p" parameter is a pointer to the outer query.
3395 ** The subquery is p->pSrc->a[iFrom]. isAgg is true if the outer query
3396 ** uses aggregates.
3398 ** If flattening is not attempted, this routine is a no-op and returns 0.
3399 ** If flattening is attempted this routine returns 1.
3401 ** All of the expression analysis must occur on both the outer query and
3402 ** the subquery before this routine runs.
3404 static int flattenSubquery(
3405 Parse *pParse, /* Parsing context */
3406 Select *p, /* The parent or outer SELECT statement */
3407 int iFrom, /* Index in p->pSrc->a[] of the inner subquery */
3408 int isAgg /* True if outer SELECT uses aggregate functions */
3410 const char *zSavedAuthContext = pParse->zAuthContext;
3411 Select *pParent; /* Current UNION ALL term of the other query */
3412 Select *pSub; /* The inner query or "subquery" */
3413 Select *pSub1; /* Pointer to the rightmost select in sub-query */
3414 SrcList *pSrc; /* The FROM clause of the outer query */
3415 SrcList *pSubSrc; /* The FROM clause of the subquery */
3416 int iParent; /* VDBE cursor number of the pSub result set temp table */
3417 int iNewParent = -1;/* Replacement table for iParent */
3418 int isLeftJoin = 0; /* True if pSub is the right side of a LEFT JOIN */
3419 int i; /* Loop counter */
3420 Expr *pWhere; /* The WHERE clause */
3421 struct SrcList_item *pSubitem; /* The subquery */
3422 sqlite3 *db = pParse->db;
3424 /* Check to see if flattening is permitted. Return 0 if not.
3426 assert( p!=0 );
3427 assert( p->pPrior==0 );
3428 if( OptimizationDisabled(db, SQLITE_QueryFlattener) ) return 0;
3429 pSrc = p->pSrc;
3430 assert( pSrc && iFrom>=0 && iFrom<pSrc->nSrc );
3431 pSubitem = &pSrc->a[iFrom];
3432 iParent = pSubitem->iCursor;
3433 pSub = pSubitem->pSelect;
3434 assert( pSub!=0 );
3436 pSubSrc = pSub->pSrc;
3437 assert( pSubSrc );
3438 /* Prior to version 3.1.2, when LIMIT and OFFSET had to be simple constants,
3439 ** not arbitrary expressions, we allowed some combining of LIMIT and OFFSET
3440 ** because they could be computed at compile-time. But when LIMIT and OFFSET
3441 ** became arbitrary expressions, we were forced to add restrictions (13)
3442 ** and (14). */
3443 if( pSub->pLimit && p->pLimit ) return 0; /* Restriction (13) */
3444 if( pSub->pLimit && pSub->pLimit->pRight ) return 0; /* Restriction (14) */
3445 if( (p->selFlags & SF_Compound)!=0 && pSub->pLimit ){
3446 return 0; /* Restriction (15) */
3448 if( pSubSrc->nSrc==0 ) return 0; /* Restriction (7) */
3449 if( pSub->selFlags & SF_Distinct ) return 0; /* Restriction (4) */
3450 if( pSub->pLimit && (pSrc->nSrc>1 || isAgg) ){
3451 return 0; /* Restrictions (8)(9) */
3453 if( p->pOrderBy && pSub->pOrderBy ){
3454 return 0; /* Restriction (11) */
3456 if( isAgg && pSub->pOrderBy ) return 0; /* Restriction (16) */
3457 if( pSub->pLimit && p->pWhere ) return 0; /* Restriction (19) */
3458 if( pSub->pLimit && (p->selFlags & SF_Distinct)!=0 ){
3459 return 0; /* Restriction (21) */
3461 if( pSub->selFlags & (SF_Recursive) ){
3462 return 0; /* Restrictions (22) */
3466 ** If the subquery is the right operand of a LEFT JOIN, then the
3467 ** subquery may not be a join itself (3a). Example of why this is not
3468 ** allowed:
3470 ** t1 LEFT OUTER JOIN (t2 JOIN t3)
3472 ** If we flatten the above, we would get
3474 ** (t1 LEFT OUTER JOIN t2) JOIN t3
3476 ** which is not at all the same thing.
3478 ** If the subquery is the right operand of a LEFT JOIN, then the outer
3479 ** query cannot be an aggregate. (3c) This is an artifact of the way
3480 ** aggregates are processed - there is no mechanism to determine if
3481 ** the LEFT JOIN table should be all-NULL.
3483 ** See also tickets #306, #350, and #3300.
3485 if( (pSubitem->fg.jointype & JT_OUTER)!=0 ){
3486 isLeftJoin = 1;
3487 if( pSubSrc->nSrc>1 || isAgg || IsVirtual(pSubSrc->a[0].pTab) ){
3488 /* (3a) (3c) (3b) */
3489 return 0;
3492 #ifdef SQLITE_EXTRA_IFNULLROW
3493 else if( iFrom>0 && !isAgg ){
3494 /* Setting isLeftJoin to -1 causes OP_IfNullRow opcodes to be generated for
3495 ** every reference to any result column from subquery in a join, even
3496 ** though they are not necessary. This will stress-test the OP_IfNullRow
3497 ** opcode. */
3498 isLeftJoin = -1;
3500 #endif
3502 /* Restriction (17): If the sub-query is a compound SELECT, then it must
3503 ** use only the UNION ALL operator. And none of the simple select queries
3504 ** that make up the compound SELECT are allowed to be aggregate or distinct
3505 ** queries.
3507 if( pSub->pPrior ){
3508 if( pSub->pOrderBy ){
3509 return 0; /* Restriction (20) */
3511 if( isAgg || (p->selFlags & SF_Distinct)!=0 || pSrc->nSrc!=1 ){
3512 return 0; /* (17d1), (17d2), or (17d3) */
3514 for(pSub1=pSub; pSub1; pSub1=pSub1->pPrior){
3515 testcase( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct );
3516 testcase( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))==SF_Aggregate );
3517 assert( pSub->pSrc!=0 );
3518 assert( pSub->pEList->nExpr==pSub1->pEList->nExpr );
3519 if( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))!=0 /* (17b) */
3520 || (pSub1->pPrior && pSub1->op!=TK_ALL) /* (17a) */
3521 || pSub1->pSrc->nSrc<1 /* (17c) */
3523 return 0;
3525 testcase( pSub1->pSrc->nSrc>1 );
3528 /* Restriction (18). */
3529 if( p->pOrderBy ){
3530 int ii;
3531 for(ii=0; ii<p->pOrderBy->nExpr; ii++){
3532 if( p->pOrderBy->a[ii].u.x.iOrderByCol==0 ) return 0;
3537 /* Ex-restriction (23):
3538 ** The only way that the recursive part of a CTE can contain a compound
3539 ** subquery is for the subquery to be one term of a join. But if the
3540 ** subquery is a join, then the flattening has already been stopped by
3541 ** restriction (17d3)
3543 assert( (p->selFlags & SF_Recursive)==0 || pSub->pPrior==0 );
3545 /***** If we reach this point, flattening is permitted. *****/
3546 SELECTTRACE(1,pParse,p,("flatten %s.%p from term %d\n",
3547 pSub->zSelName, pSub, iFrom));
3549 /* Authorize the subquery */
3550 pParse->zAuthContext = pSubitem->zName;
3551 TESTONLY(i =) sqlite3AuthCheck(pParse, SQLITE_SELECT, 0, 0, 0);
3552 testcase( i==SQLITE_DENY );
3553 pParse->zAuthContext = zSavedAuthContext;
3555 /* If the sub-query is a compound SELECT statement, then (by restrictions
3556 ** 17 and 18 above) it must be a UNION ALL and the parent query must
3557 ** be of the form:
3559 ** SELECT <expr-list> FROM (<sub-query>) <where-clause>
3561 ** followed by any ORDER BY, LIMIT and/or OFFSET clauses. This block
3562 ** creates N-1 copies of the parent query without any ORDER BY, LIMIT or
3563 ** OFFSET clauses and joins them to the left-hand-side of the original
3564 ** using UNION ALL operators. In this case N is the number of simple
3565 ** select statements in the compound sub-query.
3567 ** Example:
3569 ** SELECT a+1 FROM (
3570 ** SELECT x FROM tab
3571 ** UNION ALL
3572 ** SELECT y FROM tab
3573 ** UNION ALL
3574 ** SELECT abs(z*2) FROM tab2
3575 ** ) WHERE a!=5 ORDER BY 1
3577 ** Transformed into:
3579 ** SELECT x+1 FROM tab WHERE x+1!=5
3580 ** UNION ALL
3581 ** SELECT y+1 FROM tab WHERE y+1!=5
3582 ** UNION ALL
3583 ** SELECT abs(z*2)+1 FROM tab2 WHERE abs(z*2)+1!=5
3584 ** ORDER BY 1
3586 ** We call this the "compound-subquery flattening".
3588 for(pSub=pSub->pPrior; pSub; pSub=pSub->pPrior){
3589 Select *pNew;
3590 ExprList *pOrderBy = p->pOrderBy;
3591 Expr *pLimit = p->pLimit;
3592 Select *pPrior = p->pPrior;
3593 p->pOrderBy = 0;
3594 p->pSrc = 0;
3595 p->pPrior = 0;
3596 p->pLimit = 0;
3597 pNew = sqlite3SelectDup(db, p, 0);
3598 sqlite3SelectSetName(pNew, pSub->zSelName);
3599 p->pLimit = pLimit;
3600 p->pOrderBy = pOrderBy;
3601 p->pSrc = pSrc;
3602 p->op = TK_ALL;
3603 if( pNew==0 ){
3604 p->pPrior = pPrior;
3605 }else{
3606 pNew->pPrior = pPrior;
3607 if( pPrior ) pPrior->pNext = pNew;
3608 pNew->pNext = p;
3609 p->pPrior = pNew;
3610 SELECTTRACE(2,pParse,p,
3611 ("compound-subquery flattener creates %s.%p as peer\n",
3612 pNew->zSelName, pNew));
3614 if( db->mallocFailed ) return 1;
3617 /* Begin flattening the iFrom-th entry of the FROM clause
3618 ** in the outer query.
3620 pSub = pSub1 = pSubitem->pSelect;
3622 /* Delete the transient table structure associated with the
3623 ** subquery
3625 sqlite3DbFree(db, pSubitem->zDatabase);
3626 sqlite3DbFree(db, pSubitem->zName);
3627 sqlite3DbFree(db, pSubitem->zAlias);
3628 pSubitem->zDatabase = 0;
3629 pSubitem->zName = 0;
3630 pSubitem->zAlias = 0;
3631 pSubitem->pSelect = 0;
3633 /* Defer deleting the Table object associated with the
3634 ** subquery until code generation is
3635 ** complete, since there may still exist Expr.pTab entries that
3636 ** refer to the subquery even after flattening. Ticket #3346.
3638 ** pSubitem->pTab is always non-NULL by test restrictions and tests above.
3640 if( ALWAYS(pSubitem->pTab!=0) ){
3641 Table *pTabToDel = pSubitem->pTab;
3642 if( pTabToDel->nTabRef==1 ){
3643 Parse *pToplevel = sqlite3ParseToplevel(pParse);
3644 pTabToDel->pNextZombie = pToplevel->pZombieTab;
3645 pToplevel->pZombieTab = pTabToDel;
3646 }else{
3647 pTabToDel->nTabRef--;
3649 pSubitem->pTab = 0;
3652 /* The following loop runs once for each term in a compound-subquery
3653 ** flattening (as described above). If we are doing a different kind
3654 ** of flattening - a flattening other than a compound-subquery flattening -
3655 ** then this loop only runs once.
3657 ** This loop moves all of the FROM elements of the subquery into the
3658 ** the FROM clause of the outer query. Before doing this, remember
3659 ** the cursor number for the original outer query FROM element in
3660 ** iParent. The iParent cursor will never be used. Subsequent code
3661 ** will scan expressions looking for iParent references and replace
3662 ** those references with expressions that resolve to the subquery FROM
3663 ** elements we are now copying in.
3665 for(pParent=p; pParent; pParent=pParent->pPrior, pSub=pSub->pPrior){
3666 int nSubSrc;
3667 u8 jointype = 0;
3668 pSubSrc = pSub->pSrc; /* FROM clause of subquery */
3669 nSubSrc = pSubSrc->nSrc; /* Number of terms in subquery FROM clause */
3670 pSrc = pParent->pSrc; /* FROM clause of the outer query */
3672 if( pSrc ){
3673 assert( pParent==p ); /* First time through the loop */
3674 jointype = pSubitem->fg.jointype;
3675 }else{
3676 assert( pParent!=p ); /* 2nd and subsequent times through the loop */
3677 pSrc = pParent->pSrc = sqlite3SrcListAppend(db, 0, 0, 0);
3678 if( pSrc==0 ){
3679 assert( db->mallocFailed );
3680 break;
3684 /* The subquery uses a single slot of the FROM clause of the outer
3685 ** query. If the subquery has more than one element in its FROM clause,
3686 ** then expand the outer query to make space for it to hold all elements
3687 ** of the subquery.
3689 ** Example:
3691 ** SELECT * FROM tabA, (SELECT * FROM sub1, sub2), tabB;
3693 ** The outer query has 3 slots in its FROM clause. One slot of the
3694 ** outer query (the middle slot) is used by the subquery. The next
3695 ** block of code will expand the outer query FROM clause to 4 slots.
3696 ** The middle slot is expanded to two slots in order to make space
3697 ** for the two elements in the FROM clause of the subquery.
3699 if( nSubSrc>1 ){
3700 pParent->pSrc = pSrc = sqlite3SrcListEnlarge(db, pSrc, nSubSrc-1,iFrom+1);
3701 if( db->mallocFailed ){
3702 break;
3706 /* Transfer the FROM clause terms from the subquery into the
3707 ** outer query.
3709 for(i=0; i<nSubSrc; i++){
3710 sqlite3IdListDelete(db, pSrc->a[i+iFrom].pUsing);
3711 assert( pSrc->a[i+iFrom].fg.isTabFunc==0 );
3712 pSrc->a[i+iFrom] = pSubSrc->a[i];
3713 iNewParent = pSubSrc->a[i].iCursor;
3714 memset(&pSubSrc->a[i], 0, sizeof(pSubSrc->a[i]));
3716 pSrc->a[iFrom].fg.jointype = jointype;
3718 /* Now begin substituting subquery result set expressions for
3719 ** references to the iParent in the outer query.
3721 ** Example:
3723 ** SELECT a+5, b*10 FROM (SELECT x*3 AS a, y+10 AS b FROM t1) WHERE a>b;
3724 ** \ \_____________ subquery __________/ /
3725 ** \_____________________ outer query ______________________________/
3727 ** We look at every expression in the outer query and every place we see
3728 ** "a" we substitute "x*3" and every place we see "b" we substitute "y+10".
3730 if( pSub->pOrderBy ){
3731 /* At this point, any non-zero iOrderByCol values indicate that the
3732 ** ORDER BY column expression is identical to the iOrderByCol'th
3733 ** expression returned by SELECT statement pSub. Since these values
3734 ** do not necessarily correspond to columns in SELECT statement pParent,
3735 ** zero them before transfering the ORDER BY clause.
3737 ** Not doing this may cause an error if a subsequent call to this
3738 ** function attempts to flatten a compound sub-query into pParent
3739 ** (the only way this can happen is if the compound sub-query is
3740 ** currently part of pSub->pSrc). See ticket [d11a6e908f]. */
3741 ExprList *pOrderBy = pSub->pOrderBy;
3742 for(i=0; i<pOrderBy->nExpr; i++){
3743 pOrderBy->a[i].u.x.iOrderByCol = 0;
3745 assert( pParent->pOrderBy==0 );
3746 assert( pSub->pPrior==0 );
3747 pParent->pOrderBy = pOrderBy;
3748 pSub->pOrderBy = 0;
3750 pWhere = sqlite3ExprDup(db, pSub->pWhere, 0);
3751 if( isLeftJoin>0 ){
3752 setJoinExpr(pWhere, iNewParent);
3754 pParent->pWhere = sqlite3ExprAnd(db, pWhere, pParent->pWhere);
3755 if( db->mallocFailed==0 ){
3756 SubstContext x;
3757 x.pParse = pParse;
3758 x.iTable = iParent;
3759 x.iNewTable = iNewParent;
3760 x.isLeftJoin = isLeftJoin;
3761 x.pEList = pSub->pEList;
3762 substSelect(&x, pParent, 0);
3765 /* The flattened query is distinct if either the inner or the
3766 ** outer query is distinct.
3768 pParent->selFlags |= pSub->selFlags & SF_Distinct;
3771 ** SELECT ... FROM (SELECT ... LIMIT a OFFSET b) LIMIT x OFFSET y;
3773 ** One is tempted to try to add a and b to combine the limits. But this
3774 ** does not work if either limit is negative.
3776 if( pSub->pLimit ){
3777 pParent->pLimit = pSub->pLimit;
3778 pSub->pLimit = 0;
3782 /* Finially, delete what is left of the subquery and return
3783 ** success.
3785 sqlite3SelectDelete(db, pSub1);
3787 #if SELECTTRACE_ENABLED
3788 if( sqlite3SelectTrace & 0x100 ){
3789 SELECTTRACE(0x100,pParse,p,("After flattening:\n"));
3790 sqlite3TreeViewSelect(0, p, 0);
3792 #endif
3794 return 1;
3796 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */
3800 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
3802 ** Make copies of relevant WHERE clause terms of the outer query into
3803 ** the WHERE clause of subquery. Example:
3805 ** SELECT * FROM (SELECT a AS x, c-d AS y FROM t1) WHERE x=5 AND y=10;
3807 ** Transformed into:
3809 ** SELECT * FROM (SELECT a AS x, c-d AS y FROM t1 WHERE a=5 AND c-d=10)
3810 ** WHERE x=5 AND y=10;
3812 ** The hope is that the terms added to the inner query will make it more
3813 ** efficient.
3815 ** Do not attempt this optimization if:
3817 ** (1) (** This restriction was removed on 2017-09-29. We used to
3818 ** disallow this optimization for aggregate subqueries, but now
3819 ** it is allowed by putting the extra terms on the HAVING clause.
3820 ** The added HAVING clause is pointless if the subquery lacks
3821 ** a GROUP BY clause. But such a HAVING clause is also harmless
3822 ** so there does not appear to be any reason to add extra logic
3823 ** to suppress it. **)
3825 ** (2) The inner query is the recursive part of a common table expression.
3827 ** (3) The inner query has a LIMIT clause (since the changes to the WHERE
3828 ** close would change the meaning of the LIMIT).
3830 ** (4) The inner query is the right operand of a LEFT JOIN. (The caller
3831 ** enforces this restriction since this routine does not have enough
3832 ** information to know.)
3834 ** (5) The WHERE clause expression originates in the ON or USING clause
3835 ** of a LEFT JOIN.
3837 ** Return 0 if no changes are made and non-zero if one or more WHERE clause
3838 ** terms are duplicated into the subquery.
3840 static int pushDownWhereTerms(
3841 Parse *pParse, /* Parse context (for malloc() and error reporting) */
3842 Select *pSubq, /* The subquery whose WHERE clause is to be augmented */
3843 Expr *pWhere, /* The WHERE clause of the outer query */
3844 int iCursor /* Cursor number of the subquery */
3846 Expr *pNew;
3847 int nChng = 0;
3848 if( pWhere==0 ) return 0;
3849 if( pSubq->selFlags & SF_Recursive ) return 0; /* restriction (2) */
3851 #ifdef SQLITE_DEBUG
3852 /* Only the first term of a compound can have a WITH clause. But make
3853 ** sure no other terms are marked SF_Recursive in case something changes
3854 ** in the future.
3857 Select *pX;
3858 for(pX=pSubq; pX; pX=pX->pPrior){
3859 assert( (pX->selFlags & (SF_Recursive))==0 );
3862 #endif
3864 if( pSubq->pLimit!=0 ){
3865 return 0; /* restriction (3) */
3867 while( pWhere->op==TK_AND ){
3868 nChng += pushDownWhereTerms(pParse, pSubq, pWhere->pRight, iCursor);
3869 pWhere = pWhere->pLeft;
3871 if( ExprHasProperty(pWhere,EP_FromJoin) ) return 0; /* restriction (5) */
3872 if( sqlite3ExprIsTableConstant(pWhere, iCursor) ){
3873 nChng++;
3874 while( pSubq ){
3875 SubstContext x;
3876 pNew = sqlite3ExprDup(pParse->db, pWhere, 0);
3877 x.pParse = pParse;
3878 x.iTable = iCursor;
3879 x.iNewTable = iCursor;
3880 x.isLeftJoin = 0;
3881 x.pEList = pSubq->pEList;
3882 pNew = substExpr(&x, pNew);
3883 if( pSubq->selFlags & SF_Aggregate ){
3884 pSubq->pHaving = sqlite3ExprAnd(pParse->db, pSubq->pHaving, pNew);
3885 }else{
3886 pSubq->pWhere = sqlite3ExprAnd(pParse->db, pSubq->pWhere, pNew);
3888 pSubq = pSubq->pPrior;
3891 return nChng;
3893 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */
3896 ** The pFunc is the only aggregate function in the query. Check to see
3897 ** if the query is a candidate for the min/max optimization.
3899 ** If the query is a candidate for the min/max optimization, then set
3900 ** *ppMinMax to be an ORDER BY clause to be used for the optimization
3901 ** and return either WHERE_ORDERBY_MIN or WHERE_ORDERBY_MAX depending on
3902 ** whether pFunc is a min() or max() function.
3904 ** If the query is not a candidate for the min/max optimization, return
3905 ** WHERE_ORDERBY_NORMAL (which must be zero).
3907 ** This routine must be called after aggregate functions have been
3908 ** located but before their arguments have been subjected to aggregate
3909 ** analysis.
3911 static u8 minMaxQuery(sqlite3 *db, Expr *pFunc, ExprList **ppMinMax){
3912 int eRet = WHERE_ORDERBY_NORMAL; /* Return value */
3913 ExprList *pEList = pFunc->x.pList; /* Arguments to agg function */
3914 const char *zFunc; /* Name of aggregate function pFunc */
3915 ExprList *pOrderBy;
3916 u8 sortOrder;
3918 assert( *ppMinMax==0 );
3919 assert( pFunc->op==TK_AGG_FUNCTION );
3920 if( pEList==0 || pEList->nExpr!=1 ) return eRet;
3921 zFunc = pFunc->u.zToken;
3922 if( sqlite3StrICmp(zFunc, "min")==0 ){
3923 eRet = WHERE_ORDERBY_MIN;
3924 sortOrder = SQLITE_SO_ASC;
3925 }else if( sqlite3StrICmp(zFunc, "max")==0 ){
3926 eRet = WHERE_ORDERBY_MAX;
3927 sortOrder = SQLITE_SO_DESC;
3928 }else{
3929 return eRet;
3931 *ppMinMax = pOrderBy = sqlite3ExprListDup(db, pEList, 0);
3932 assert( pOrderBy!=0 || db->mallocFailed );
3933 if( pOrderBy ) pOrderBy->a[0].sortOrder = sortOrder;
3934 return eRet;
3938 ** The select statement passed as the first argument is an aggregate query.
3939 ** The second argument is the associated aggregate-info object. This
3940 ** function tests if the SELECT is of the form:
3942 ** SELECT count(*) FROM <tbl>
3944 ** where table is a database table, not a sub-select or view. If the query
3945 ** does match this pattern, then a pointer to the Table object representing
3946 ** <tbl> is returned. Otherwise, 0 is returned.
3948 static Table *isSimpleCount(Select *p, AggInfo *pAggInfo){
3949 Table *pTab;
3950 Expr *pExpr;
3952 assert( !p->pGroupBy );
3954 if( p->pWhere || p->pEList->nExpr!=1
3955 || p->pSrc->nSrc!=1 || p->pSrc->a[0].pSelect
3957 return 0;
3959 pTab = p->pSrc->a[0].pTab;
3960 pExpr = p->pEList->a[0].pExpr;
3961 assert( pTab && !pTab->pSelect && pExpr );
3963 if( IsVirtual(pTab) ) return 0;
3964 if( pExpr->op!=TK_AGG_FUNCTION ) return 0;
3965 if( NEVER(pAggInfo->nFunc==0) ) return 0;
3966 if( (pAggInfo->aFunc[0].pFunc->funcFlags&SQLITE_FUNC_COUNT)==0 ) return 0;
3967 if( pExpr->flags&EP_Distinct ) return 0;
3969 return pTab;
3973 ** If the source-list item passed as an argument was augmented with an
3974 ** INDEXED BY clause, then try to locate the specified index. If there
3975 ** was such a clause and the named index cannot be found, return
3976 ** SQLITE_ERROR and leave an error in pParse. Otherwise, populate
3977 ** pFrom->pIndex and return SQLITE_OK.
3979 int sqlite3IndexedByLookup(Parse *pParse, struct SrcList_item *pFrom){
3980 if( pFrom->pTab && pFrom->fg.isIndexedBy ){
3981 Table *pTab = pFrom->pTab;
3982 char *zIndexedBy = pFrom->u1.zIndexedBy;
3983 Index *pIdx;
3984 for(pIdx=pTab->pIndex;
3985 pIdx && sqlite3StrICmp(pIdx->zName, zIndexedBy);
3986 pIdx=pIdx->pNext
3988 if( !pIdx ){
3989 sqlite3ErrorMsg(pParse, "no such index: %s", zIndexedBy, 0);
3990 pParse->checkSchema = 1;
3991 return SQLITE_ERROR;
3993 pFrom->pIBIndex = pIdx;
3995 return SQLITE_OK;
3998 ** Detect compound SELECT statements that use an ORDER BY clause with
3999 ** an alternative collating sequence.
4001 ** SELECT ... FROM t1 EXCEPT SELECT ... FROM t2 ORDER BY .. COLLATE ...
4003 ** These are rewritten as a subquery:
4005 ** SELECT * FROM (SELECT ... FROM t1 EXCEPT SELECT ... FROM t2)
4006 ** ORDER BY ... COLLATE ...
4008 ** This transformation is necessary because the multiSelectOrderBy() routine
4009 ** above that generates the code for a compound SELECT with an ORDER BY clause
4010 ** uses a merge algorithm that requires the same collating sequence on the
4011 ** result columns as on the ORDER BY clause. See ticket
4012 ** http://www.sqlite.org/src/info/6709574d2a
4014 ** This transformation is only needed for EXCEPT, INTERSECT, and UNION.
4015 ** The UNION ALL operator works fine with multiSelectOrderBy() even when
4016 ** there are COLLATE terms in the ORDER BY.
4018 static int convertCompoundSelectToSubquery(Walker *pWalker, Select *p){
4019 int i;
4020 Select *pNew;
4021 Select *pX;
4022 sqlite3 *db;
4023 struct ExprList_item *a;
4024 SrcList *pNewSrc;
4025 Parse *pParse;
4026 Token dummy;
4028 if( p->pPrior==0 ) return WRC_Continue;
4029 if( p->pOrderBy==0 ) return WRC_Continue;
4030 for(pX=p; pX && (pX->op==TK_ALL || pX->op==TK_SELECT); pX=pX->pPrior){}
4031 if( pX==0 ) return WRC_Continue;
4032 a = p->pOrderBy->a;
4033 for(i=p->pOrderBy->nExpr-1; i>=0; i--){
4034 if( a[i].pExpr->flags & EP_Collate ) break;
4036 if( i<0 ) return WRC_Continue;
4038 /* If we reach this point, that means the transformation is required. */
4040 pParse = pWalker->pParse;
4041 db = pParse->db;
4042 pNew = sqlite3DbMallocZero(db, sizeof(*pNew) );
4043 if( pNew==0 ) return WRC_Abort;
4044 memset(&dummy, 0, sizeof(dummy));
4045 pNewSrc = sqlite3SrcListAppendFromTerm(pParse,0,0,0,&dummy,pNew,0,0);
4046 if( pNewSrc==0 ) return WRC_Abort;
4047 *pNew = *p;
4048 p->pSrc = pNewSrc;
4049 p->pEList = sqlite3ExprListAppend(pParse, 0, sqlite3Expr(db, TK_ASTERISK, 0));
4050 p->op = TK_SELECT;
4051 p->pWhere = 0;
4052 pNew->pGroupBy = 0;
4053 pNew->pHaving = 0;
4054 pNew->pOrderBy = 0;
4055 p->pPrior = 0;
4056 p->pNext = 0;
4057 p->pWith = 0;
4058 p->selFlags &= ~SF_Compound;
4059 assert( (p->selFlags & SF_Converted)==0 );
4060 p->selFlags |= SF_Converted;
4061 assert( pNew->pPrior!=0 );
4062 pNew->pPrior->pNext = pNew;
4063 pNew->pLimit = 0;
4064 return WRC_Continue;
4068 ** Check to see if the FROM clause term pFrom has table-valued function
4069 ** arguments. If it does, leave an error message in pParse and return
4070 ** non-zero, since pFrom is not allowed to be a table-valued function.
4072 static int cannotBeFunction(Parse *pParse, struct SrcList_item *pFrom){
4073 if( pFrom->fg.isTabFunc ){
4074 sqlite3ErrorMsg(pParse, "'%s' is not a function", pFrom->zName);
4075 return 1;
4077 return 0;
4080 #ifndef SQLITE_OMIT_CTE
4082 ** Argument pWith (which may be NULL) points to a linked list of nested
4083 ** WITH contexts, from inner to outermost. If the table identified by
4084 ** FROM clause element pItem is really a common-table-expression (CTE)
4085 ** then return a pointer to the CTE definition for that table. Otherwise
4086 ** return NULL.
4088 ** If a non-NULL value is returned, set *ppContext to point to the With
4089 ** object that the returned CTE belongs to.
4091 static struct Cte *searchWith(
4092 With *pWith, /* Current innermost WITH clause */
4093 struct SrcList_item *pItem, /* FROM clause element to resolve */
4094 With **ppContext /* OUT: WITH clause return value belongs to */
4096 const char *zName;
4097 if( pItem->zDatabase==0 && (zName = pItem->zName)!=0 ){
4098 With *p;
4099 for(p=pWith; p; p=p->pOuter){
4100 int i;
4101 for(i=0; i<p->nCte; i++){
4102 if( sqlite3StrICmp(zName, p->a[i].zName)==0 ){
4103 *ppContext = p;
4104 return &p->a[i];
4109 return 0;
4112 /* The code generator maintains a stack of active WITH clauses
4113 ** with the inner-most WITH clause being at the top of the stack.
4115 ** This routine pushes the WITH clause passed as the second argument
4116 ** onto the top of the stack. If argument bFree is true, then this
4117 ** WITH clause will never be popped from the stack. In this case it
4118 ** should be freed along with the Parse object. In other cases, when
4119 ** bFree==0, the With object will be freed along with the SELECT
4120 ** statement with which it is associated.
4122 void sqlite3WithPush(Parse *pParse, With *pWith, u8 bFree){
4123 assert( bFree==0 || (pParse->pWith==0 && pParse->pWithToFree==0) );
4124 if( pWith ){
4125 assert( pParse->pWith!=pWith );
4126 pWith->pOuter = pParse->pWith;
4127 pParse->pWith = pWith;
4128 if( bFree ) pParse->pWithToFree = pWith;
4133 ** This function checks if argument pFrom refers to a CTE declared by
4134 ** a WITH clause on the stack currently maintained by the parser. And,
4135 ** if currently processing a CTE expression, if it is a recursive
4136 ** reference to the current CTE.
4138 ** If pFrom falls into either of the two categories above, pFrom->pTab
4139 ** and other fields are populated accordingly. The caller should check
4140 ** (pFrom->pTab!=0) to determine whether or not a successful match
4141 ** was found.
4143 ** Whether or not a match is found, SQLITE_OK is returned if no error
4144 ** occurs. If an error does occur, an error message is stored in the
4145 ** parser and some error code other than SQLITE_OK returned.
4147 static int withExpand(
4148 Walker *pWalker,
4149 struct SrcList_item *pFrom
4151 Parse *pParse = pWalker->pParse;
4152 sqlite3 *db = pParse->db;
4153 struct Cte *pCte; /* Matched CTE (or NULL if no match) */
4154 With *pWith; /* WITH clause that pCte belongs to */
4156 assert( pFrom->pTab==0 );
4158 pCte = searchWith(pParse->pWith, pFrom, &pWith);
4159 if( pCte ){
4160 Table *pTab;
4161 ExprList *pEList;
4162 Select *pSel;
4163 Select *pLeft; /* Left-most SELECT statement */
4164 int bMayRecursive; /* True if compound joined by UNION [ALL] */
4165 With *pSavedWith; /* Initial value of pParse->pWith */
4167 /* If pCte->zCteErr is non-NULL at this point, then this is an illegal
4168 ** recursive reference to CTE pCte. Leave an error in pParse and return
4169 ** early. If pCte->zCteErr is NULL, then this is not a recursive reference.
4170 ** In this case, proceed. */
4171 if( pCte->zCteErr ){
4172 sqlite3ErrorMsg(pParse, pCte->zCteErr, pCte->zName);
4173 return SQLITE_ERROR;
4175 if( cannotBeFunction(pParse, pFrom) ) return SQLITE_ERROR;
4177 assert( pFrom->pTab==0 );
4178 pFrom->pTab = pTab = sqlite3DbMallocZero(db, sizeof(Table));
4179 if( pTab==0 ) return WRC_Abort;
4180 pTab->nTabRef = 1;
4181 pTab->zName = sqlite3DbStrDup(db, pCte->zName);
4182 pTab->iPKey = -1;
4183 pTab->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) );
4184 pTab->tabFlags |= TF_Ephemeral | TF_NoVisibleRowid;
4185 pFrom->pSelect = sqlite3SelectDup(db, pCte->pSelect, 0);
4186 if( db->mallocFailed ) return SQLITE_NOMEM_BKPT;
4187 assert( pFrom->pSelect );
4189 /* Check if this is a recursive CTE. */
4190 pSel = pFrom->pSelect;
4191 bMayRecursive = ( pSel->op==TK_ALL || pSel->op==TK_UNION );
4192 if( bMayRecursive ){
4193 int i;
4194 SrcList *pSrc = pFrom->pSelect->pSrc;
4195 for(i=0; i<pSrc->nSrc; i++){
4196 struct SrcList_item *pItem = &pSrc->a[i];
4197 if( pItem->zDatabase==0
4198 && pItem->zName!=0
4199 && 0==sqlite3StrICmp(pItem->zName, pCte->zName)
4201 pItem->pTab = pTab;
4202 pItem->fg.isRecursive = 1;
4203 pTab->nTabRef++;
4204 pSel->selFlags |= SF_Recursive;
4209 /* Only one recursive reference is permitted. */
4210 if( pTab->nTabRef>2 ){
4211 sqlite3ErrorMsg(
4212 pParse, "multiple references to recursive table: %s", pCte->zName
4214 return SQLITE_ERROR;
4216 assert( pTab->nTabRef==1 ||
4217 ((pSel->selFlags&SF_Recursive) && pTab->nTabRef==2 ));
4219 pCte->zCteErr = "circular reference: %s";
4220 pSavedWith = pParse->pWith;
4221 pParse->pWith = pWith;
4222 if( bMayRecursive ){
4223 Select *pPrior = pSel->pPrior;
4224 assert( pPrior->pWith==0 );
4225 pPrior->pWith = pSel->pWith;
4226 sqlite3WalkSelect(pWalker, pPrior);
4227 pPrior->pWith = 0;
4228 }else{
4229 sqlite3WalkSelect(pWalker, pSel);
4231 pParse->pWith = pWith;
4233 for(pLeft=pSel; pLeft->pPrior; pLeft=pLeft->pPrior);
4234 pEList = pLeft->pEList;
4235 if( pCte->pCols ){
4236 if( pEList && pEList->nExpr!=pCte->pCols->nExpr ){
4237 sqlite3ErrorMsg(pParse, "table %s has %d values for %d columns",
4238 pCte->zName, pEList->nExpr, pCte->pCols->nExpr
4240 pParse->pWith = pSavedWith;
4241 return SQLITE_ERROR;
4243 pEList = pCte->pCols;
4246 sqlite3ColumnsFromExprList(pParse, pEList, &pTab->nCol, &pTab->aCol);
4247 if( bMayRecursive ){
4248 if( pSel->selFlags & SF_Recursive ){
4249 pCte->zCteErr = "multiple recursive references: %s";
4250 }else{
4251 pCte->zCteErr = "recursive reference in a subquery: %s";
4253 sqlite3WalkSelect(pWalker, pSel);
4255 pCte->zCteErr = 0;
4256 pParse->pWith = pSavedWith;
4259 return SQLITE_OK;
4261 #endif
4263 #ifndef SQLITE_OMIT_CTE
4265 ** If the SELECT passed as the second argument has an associated WITH
4266 ** clause, pop it from the stack stored as part of the Parse object.
4268 ** This function is used as the xSelectCallback2() callback by
4269 ** sqlite3SelectExpand() when walking a SELECT tree to resolve table
4270 ** names and other FROM clause elements.
4272 static void selectPopWith(Walker *pWalker, Select *p){
4273 Parse *pParse = pWalker->pParse;
4274 if( OK_IF_ALWAYS_TRUE(pParse->pWith) && p->pPrior==0 ){
4275 With *pWith = findRightmost(p)->pWith;
4276 if( pWith!=0 ){
4277 assert( pParse->pWith==pWith );
4278 pParse->pWith = pWith->pOuter;
4282 #else
4283 #define selectPopWith 0
4284 #endif
4287 ** This routine is a Walker callback for "expanding" a SELECT statement.
4288 ** "Expanding" means to do the following:
4290 ** (1) Make sure VDBE cursor numbers have been assigned to every
4291 ** element of the FROM clause.
4293 ** (2) Fill in the pTabList->a[].pTab fields in the SrcList that
4294 ** defines FROM clause. When views appear in the FROM clause,
4295 ** fill pTabList->a[].pSelect with a copy of the SELECT statement
4296 ** that implements the view. A copy is made of the view's SELECT
4297 ** statement so that we can freely modify or delete that statement
4298 ** without worrying about messing up the persistent representation
4299 ** of the view.
4301 ** (3) Add terms to the WHERE clause to accommodate the NATURAL keyword
4302 ** on joins and the ON and USING clause of joins.
4304 ** (4) Scan the list of columns in the result set (pEList) looking
4305 ** for instances of the "*" operator or the TABLE.* operator.
4306 ** If found, expand each "*" to be every column in every table
4307 ** and TABLE.* to be every column in TABLE.
4310 static int selectExpander(Walker *pWalker, Select *p){
4311 Parse *pParse = pWalker->pParse;
4312 int i, j, k;
4313 SrcList *pTabList;
4314 ExprList *pEList;
4315 struct SrcList_item *pFrom;
4316 sqlite3 *db = pParse->db;
4317 Expr *pE, *pRight, *pExpr;
4318 u16 selFlags = p->selFlags;
4319 u32 elistFlags = 0;
4321 p->selFlags |= SF_Expanded;
4322 if( db->mallocFailed ){
4323 return WRC_Abort;
4325 assert( p->pSrc!=0 );
4326 if( (selFlags & SF_Expanded)!=0 ){
4327 return WRC_Prune;
4329 pTabList = p->pSrc;
4330 pEList = p->pEList;
4331 if( OK_IF_ALWAYS_TRUE(p->pWith) ){
4332 sqlite3WithPush(pParse, p->pWith, 0);
4335 /* Make sure cursor numbers have been assigned to all entries in
4336 ** the FROM clause of the SELECT statement.
4338 sqlite3SrcListAssignCursors(pParse, pTabList);
4340 /* Look up every table named in the FROM clause of the select. If
4341 ** an entry of the FROM clause is a subquery instead of a table or view,
4342 ** then create a transient table structure to describe the subquery.
4344 for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){
4345 Table *pTab;
4346 assert( pFrom->fg.isRecursive==0 || pFrom->pTab!=0 );
4347 if( pFrom->fg.isRecursive ) continue;
4348 assert( pFrom->pTab==0 );
4349 #ifndef SQLITE_OMIT_CTE
4350 if( withExpand(pWalker, pFrom) ) return WRC_Abort;
4351 if( pFrom->pTab ) {} else
4352 #endif
4353 if( pFrom->zName==0 ){
4354 #ifndef SQLITE_OMIT_SUBQUERY
4355 Select *pSel = pFrom->pSelect;
4356 /* A sub-query in the FROM clause of a SELECT */
4357 assert( pSel!=0 );
4358 assert( pFrom->pTab==0 );
4359 if( sqlite3WalkSelect(pWalker, pSel) ) return WRC_Abort;
4360 pFrom->pTab = pTab = sqlite3DbMallocZero(db, sizeof(Table));
4361 if( pTab==0 ) return WRC_Abort;
4362 pTab->nTabRef = 1;
4363 if( pFrom->zAlias ){
4364 pTab->zName = sqlite3DbStrDup(db, pFrom->zAlias);
4365 }else{
4366 pTab->zName = sqlite3MPrintf(db, "subquery_%p", (void*)pTab);
4368 while( pSel->pPrior ){ pSel = pSel->pPrior; }
4369 sqlite3ColumnsFromExprList(pParse, pSel->pEList,&pTab->nCol,&pTab->aCol);
4370 pTab->iPKey = -1;
4371 pTab->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) );
4372 pTab->tabFlags |= TF_Ephemeral;
4373 #endif
4374 }else{
4375 /* An ordinary table or view name in the FROM clause */
4376 assert( pFrom->pTab==0 );
4377 pFrom->pTab = pTab = sqlite3LocateTableItem(pParse, 0, pFrom);
4378 if( pTab==0 ) return WRC_Abort;
4379 if( pTab->nTabRef>=0xffff ){
4380 sqlite3ErrorMsg(pParse, "too many references to \"%s\": max 65535",
4381 pTab->zName);
4382 pFrom->pTab = 0;
4383 return WRC_Abort;
4385 pTab->nTabRef++;
4386 if( !IsVirtual(pTab) && cannotBeFunction(pParse, pFrom) ){
4387 return WRC_Abort;
4389 #if !defined(SQLITE_OMIT_VIEW) || !defined (SQLITE_OMIT_VIRTUALTABLE)
4390 if( IsVirtual(pTab) || pTab->pSelect ){
4391 i16 nCol;
4392 if( sqlite3ViewGetColumnNames(pParse, pTab) ) return WRC_Abort;
4393 assert( pFrom->pSelect==0 );
4394 pFrom->pSelect = sqlite3SelectDup(db, pTab->pSelect, 0);
4395 sqlite3SelectSetName(pFrom->pSelect, pTab->zName);
4396 nCol = pTab->nCol;
4397 pTab->nCol = -1;
4398 sqlite3WalkSelect(pWalker, pFrom->pSelect);
4399 pTab->nCol = nCol;
4401 #endif
4404 /* Locate the index named by the INDEXED BY clause, if any. */
4405 if( sqlite3IndexedByLookup(pParse, pFrom) ){
4406 return WRC_Abort;
4410 /* Process NATURAL keywords, and ON and USING clauses of joins.
4412 if( db->mallocFailed || sqliteProcessJoin(pParse, p) ){
4413 return WRC_Abort;
4416 /* For every "*" that occurs in the column list, insert the names of
4417 ** all columns in all tables. And for every TABLE.* insert the names
4418 ** of all columns in TABLE. The parser inserted a special expression
4419 ** with the TK_ASTERISK operator for each "*" that it found in the column
4420 ** list. The following code just has to locate the TK_ASTERISK
4421 ** expressions and expand each one to the list of all columns in
4422 ** all tables.
4424 ** The first loop just checks to see if there are any "*" operators
4425 ** that need expanding.
4427 for(k=0; k<pEList->nExpr; k++){
4428 pE = pEList->a[k].pExpr;
4429 if( pE->op==TK_ASTERISK ) break;
4430 assert( pE->op!=TK_DOT || pE->pRight!=0 );
4431 assert( pE->op!=TK_DOT || (pE->pLeft!=0 && pE->pLeft->op==TK_ID) );
4432 if( pE->op==TK_DOT && pE->pRight->op==TK_ASTERISK ) break;
4433 elistFlags |= pE->flags;
4435 if( k<pEList->nExpr ){
4437 ** If we get here it means the result set contains one or more "*"
4438 ** operators that need to be expanded. Loop through each expression
4439 ** in the result set and expand them one by one.
4441 struct ExprList_item *a = pEList->a;
4442 ExprList *pNew = 0;
4443 int flags = pParse->db->flags;
4444 int longNames = (flags & SQLITE_FullColNames)!=0
4445 && (flags & SQLITE_ShortColNames)==0;
4447 for(k=0; k<pEList->nExpr; k++){
4448 pE = a[k].pExpr;
4449 elistFlags |= pE->flags;
4450 pRight = pE->pRight;
4451 assert( pE->op!=TK_DOT || pRight!=0 );
4452 if( pE->op!=TK_ASTERISK
4453 && (pE->op!=TK_DOT || pRight->op!=TK_ASTERISK)
4455 /* This particular expression does not need to be expanded.
4457 pNew = sqlite3ExprListAppend(pParse, pNew, a[k].pExpr);
4458 if( pNew ){
4459 pNew->a[pNew->nExpr-1].zName = a[k].zName;
4460 pNew->a[pNew->nExpr-1].zSpan = a[k].zSpan;
4461 a[k].zName = 0;
4462 a[k].zSpan = 0;
4464 a[k].pExpr = 0;
4465 }else{
4466 /* This expression is a "*" or a "TABLE.*" and needs to be
4467 ** expanded. */
4468 int tableSeen = 0; /* Set to 1 when TABLE matches */
4469 char *zTName = 0; /* text of name of TABLE */
4470 if( pE->op==TK_DOT ){
4471 assert( pE->pLeft!=0 );
4472 assert( !ExprHasProperty(pE->pLeft, EP_IntValue) );
4473 zTName = pE->pLeft->u.zToken;
4475 for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){
4476 Table *pTab = pFrom->pTab;
4477 Select *pSub = pFrom->pSelect;
4478 char *zTabName = pFrom->zAlias;
4479 const char *zSchemaName = 0;
4480 int iDb;
4481 if( zTabName==0 ){
4482 zTabName = pTab->zName;
4484 if( db->mallocFailed ) break;
4485 if( pSub==0 || (pSub->selFlags & SF_NestedFrom)==0 ){
4486 pSub = 0;
4487 if( zTName && sqlite3StrICmp(zTName, zTabName)!=0 ){
4488 continue;
4490 iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
4491 zSchemaName = iDb>=0 ? db->aDb[iDb].zDbSName : "*";
4493 for(j=0; j<pTab->nCol; j++){
4494 char *zName = pTab->aCol[j].zName;
4495 char *zColname; /* The computed column name */
4496 char *zToFree; /* Malloced string that needs to be freed */
4497 Token sColname; /* Computed column name as a token */
4499 assert( zName );
4500 if( zTName && pSub
4501 && sqlite3MatchSpanName(pSub->pEList->a[j].zSpan, 0, zTName, 0)==0
4503 continue;
4506 /* If a column is marked as 'hidden', omit it from the expanded
4507 ** result-set list unless the SELECT has the SF_IncludeHidden
4508 ** bit set.
4510 if( (p->selFlags & SF_IncludeHidden)==0
4511 && IsHiddenColumn(&pTab->aCol[j])
4513 continue;
4515 tableSeen = 1;
4517 if( i>0 && zTName==0 ){
4518 if( (pFrom->fg.jointype & JT_NATURAL)!=0
4519 && tableAndColumnIndex(pTabList, i, zName, 0, 0)
4521 /* In a NATURAL join, omit the join columns from the
4522 ** table to the right of the join */
4523 continue;
4525 if( sqlite3IdListIndex(pFrom->pUsing, zName)>=0 ){
4526 /* In a join with a USING clause, omit columns in the
4527 ** using clause from the table on the right. */
4528 continue;
4531 pRight = sqlite3Expr(db, TK_ID, zName);
4532 zColname = zName;
4533 zToFree = 0;
4534 if( longNames || pTabList->nSrc>1 ){
4535 Expr *pLeft;
4536 pLeft = sqlite3Expr(db, TK_ID, zTabName);
4537 pExpr = sqlite3PExpr(pParse, TK_DOT, pLeft, pRight);
4538 if( zSchemaName ){
4539 pLeft = sqlite3Expr(db, TK_ID, zSchemaName);
4540 pExpr = sqlite3PExpr(pParse, TK_DOT, pLeft, pExpr);
4542 if( longNames ){
4543 zColname = sqlite3MPrintf(db, "%s.%s", zTabName, zName);
4544 zToFree = zColname;
4546 }else{
4547 pExpr = pRight;
4549 pNew = sqlite3ExprListAppend(pParse, pNew, pExpr);
4550 sqlite3TokenInit(&sColname, zColname);
4551 sqlite3ExprListSetName(pParse, pNew, &sColname, 0);
4552 if( pNew && (p->selFlags & SF_NestedFrom)!=0 ){
4553 struct ExprList_item *pX = &pNew->a[pNew->nExpr-1];
4554 if( pSub ){
4555 pX->zSpan = sqlite3DbStrDup(db, pSub->pEList->a[j].zSpan);
4556 testcase( pX->zSpan==0 );
4557 }else{
4558 pX->zSpan = sqlite3MPrintf(db, "%s.%s.%s",
4559 zSchemaName, zTabName, zColname);
4560 testcase( pX->zSpan==0 );
4562 pX->bSpanIsTab = 1;
4564 sqlite3DbFree(db, zToFree);
4567 if( !tableSeen ){
4568 if( zTName ){
4569 sqlite3ErrorMsg(pParse, "no such table: %s", zTName);
4570 }else{
4571 sqlite3ErrorMsg(pParse, "no tables specified");
4576 sqlite3ExprListDelete(db, pEList);
4577 p->pEList = pNew;
4579 if( p->pEList ){
4580 if( p->pEList->nExpr>db->aLimit[SQLITE_LIMIT_COLUMN] ){
4581 sqlite3ErrorMsg(pParse, "too many columns in result set");
4582 return WRC_Abort;
4584 if( (elistFlags & (EP_HasFunc|EP_Subquery))!=0 ){
4585 p->selFlags |= SF_ComplexResult;
4588 return WRC_Continue;
4592 ** No-op routine for the parse-tree walker.
4594 ** When this routine is the Walker.xExprCallback then expression trees
4595 ** are walked without any actions being taken at each node. Presumably,
4596 ** when this routine is used for Walker.xExprCallback then
4597 ** Walker.xSelectCallback is set to do something useful for every
4598 ** subquery in the parser tree.
4600 int sqlite3ExprWalkNoop(Walker *NotUsed, Expr *NotUsed2){
4601 UNUSED_PARAMETER2(NotUsed, NotUsed2);
4602 return WRC_Continue;
4606 ** No-op routine for the parse-tree walker for SELECT statements.
4607 ** subquery in the parser tree.
4609 int sqlite3SelectWalkNoop(Walker *NotUsed, Select *NotUsed2){
4610 UNUSED_PARAMETER2(NotUsed, NotUsed2);
4611 return WRC_Continue;
4614 #if SQLITE_DEBUG
4616 ** Always assert. This xSelectCallback2 implementation proves that the
4617 ** xSelectCallback2 is never invoked.
4619 void sqlite3SelectWalkAssert2(Walker *NotUsed, Select *NotUsed2){
4620 UNUSED_PARAMETER2(NotUsed, NotUsed2);
4621 assert( 0 );
4623 #endif
4625 ** This routine "expands" a SELECT statement and all of its subqueries.
4626 ** For additional information on what it means to "expand" a SELECT
4627 ** statement, see the comment on the selectExpand worker callback above.
4629 ** Expanding a SELECT statement is the first step in processing a
4630 ** SELECT statement. The SELECT statement must be expanded before
4631 ** name resolution is performed.
4633 ** If anything goes wrong, an error message is written into pParse.
4634 ** The calling function can detect the problem by looking at pParse->nErr
4635 ** and/or pParse->db->mallocFailed.
4637 static void sqlite3SelectExpand(Parse *pParse, Select *pSelect){
4638 Walker w;
4639 w.xExprCallback = sqlite3ExprWalkNoop;
4640 w.pParse = pParse;
4641 if( OK_IF_ALWAYS_TRUE(pParse->hasCompound) ){
4642 w.xSelectCallback = convertCompoundSelectToSubquery;
4643 w.xSelectCallback2 = 0;
4644 sqlite3WalkSelect(&w, pSelect);
4646 w.xSelectCallback = selectExpander;
4647 w.xSelectCallback2 = selectPopWith;
4648 sqlite3WalkSelect(&w, pSelect);
4652 #ifndef SQLITE_OMIT_SUBQUERY
4654 ** This is a Walker.xSelectCallback callback for the sqlite3SelectTypeInfo()
4655 ** interface.
4657 ** For each FROM-clause subquery, add Column.zType and Column.zColl
4658 ** information to the Table structure that represents the result set
4659 ** of that subquery.
4661 ** The Table structure that represents the result set was constructed
4662 ** by selectExpander() but the type and collation information was omitted
4663 ** at that point because identifiers had not yet been resolved. This
4664 ** routine is called after identifier resolution.
4666 static void selectAddSubqueryTypeInfo(Walker *pWalker, Select *p){
4667 Parse *pParse;
4668 int i;
4669 SrcList *pTabList;
4670 struct SrcList_item *pFrom;
4672 assert( p->selFlags & SF_Resolved );
4673 assert( (p->selFlags & SF_HasTypeInfo)==0 );
4674 p->selFlags |= SF_HasTypeInfo;
4675 pParse = pWalker->pParse;
4676 pTabList = p->pSrc;
4677 for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){
4678 Table *pTab = pFrom->pTab;
4679 assert( pTab!=0 );
4680 if( (pTab->tabFlags & TF_Ephemeral)!=0 ){
4681 /* A sub-query in the FROM clause of a SELECT */
4682 Select *pSel = pFrom->pSelect;
4683 if( pSel ){
4684 while( pSel->pPrior ) pSel = pSel->pPrior;
4685 sqlite3SelectAddColumnTypeAndCollation(pParse, pTab, pSel);
4690 #endif
4694 ** This routine adds datatype and collating sequence information to
4695 ** the Table structures of all FROM-clause subqueries in a
4696 ** SELECT statement.
4698 ** Use this routine after name resolution.
4700 static void sqlite3SelectAddTypeInfo(Parse *pParse, Select *pSelect){
4701 #ifndef SQLITE_OMIT_SUBQUERY
4702 Walker w;
4703 w.xSelectCallback = sqlite3SelectWalkNoop;
4704 w.xSelectCallback2 = selectAddSubqueryTypeInfo;
4705 w.xExprCallback = sqlite3ExprWalkNoop;
4706 w.pParse = pParse;
4707 sqlite3WalkSelect(&w, pSelect);
4708 #endif
4713 ** This routine sets up a SELECT statement for processing. The
4714 ** following is accomplished:
4716 ** * VDBE Cursor numbers are assigned to all FROM-clause terms.
4717 ** * Ephemeral Table objects are created for all FROM-clause subqueries.
4718 ** * ON and USING clauses are shifted into WHERE statements
4719 ** * Wildcards "*" and "TABLE.*" in result sets are expanded.
4720 ** * Identifiers in expression are matched to tables.
4722 ** This routine acts recursively on all subqueries within the SELECT.
4724 void sqlite3SelectPrep(
4725 Parse *pParse, /* The parser context */
4726 Select *p, /* The SELECT statement being coded. */
4727 NameContext *pOuterNC /* Name context for container */
4729 assert( p!=0 || pParse->db->mallocFailed );
4730 if( pParse->db->mallocFailed ) return;
4731 if( p->selFlags & SF_HasTypeInfo ) return;
4732 sqlite3SelectExpand(pParse, p);
4733 if( pParse->nErr || pParse->db->mallocFailed ) return;
4734 sqlite3ResolveSelectNames(pParse, p, pOuterNC);
4735 if( pParse->nErr || pParse->db->mallocFailed ) return;
4736 sqlite3SelectAddTypeInfo(pParse, p);
4740 ** Reset the aggregate accumulator.
4742 ** The aggregate accumulator is a set of memory cells that hold
4743 ** intermediate results while calculating an aggregate. This
4744 ** routine generates code that stores NULLs in all of those memory
4745 ** cells.
4747 static void resetAccumulator(Parse *pParse, AggInfo *pAggInfo){
4748 Vdbe *v = pParse->pVdbe;
4749 int i;
4750 struct AggInfo_func *pFunc;
4751 int nReg = pAggInfo->nFunc + pAggInfo->nColumn;
4752 if( nReg==0 ) return;
4753 #ifdef SQLITE_DEBUG
4754 /* Verify that all AggInfo registers are within the range specified by
4755 ** AggInfo.mnReg..AggInfo.mxReg */
4756 assert( nReg==pAggInfo->mxReg-pAggInfo->mnReg+1 );
4757 for(i=0; i<pAggInfo->nColumn; i++){
4758 assert( pAggInfo->aCol[i].iMem>=pAggInfo->mnReg
4759 && pAggInfo->aCol[i].iMem<=pAggInfo->mxReg );
4761 for(i=0; i<pAggInfo->nFunc; i++){
4762 assert( pAggInfo->aFunc[i].iMem>=pAggInfo->mnReg
4763 && pAggInfo->aFunc[i].iMem<=pAggInfo->mxReg );
4765 #endif
4766 sqlite3VdbeAddOp3(v, OP_Null, 0, pAggInfo->mnReg, pAggInfo->mxReg);
4767 for(pFunc=pAggInfo->aFunc, i=0; i<pAggInfo->nFunc; i++, pFunc++){
4768 if( pFunc->iDistinct>=0 ){
4769 Expr *pE = pFunc->pExpr;
4770 assert( !ExprHasProperty(pE, EP_xIsSelect) );
4771 if( pE->x.pList==0 || pE->x.pList->nExpr!=1 ){
4772 sqlite3ErrorMsg(pParse, "DISTINCT aggregates must have exactly one "
4773 "argument");
4774 pFunc->iDistinct = -1;
4775 }else{
4776 KeyInfo *pKeyInfo = keyInfoFromExprList(pParse, pE->x.pList, 0, 0);
4777 sqlite3VdbeAddOp4(v, OP_OpenEphemeral, pFunc->iDistinct, 0, 0,
4778 (char*)pKeyInfo, P4_KEYINFO);
4785 ** Invoke the OP_AggFinalize opcode for every aggregate function
4786 ** in the AggInfo structure.
4788 static void finalizeAggFunctions(Parse *pParse, AggInfo *pAggInfo){
4789 Vdbe *v = pParse->pVdbe;
4790 int i;
4791 struct AggInfo_func *pF;
4792 for(i=0, pF=pAggInfo->aFunc; i<pAggInfo->nFunc; i++, pF++){
4793 ExprList *pList = pF->pExpr->x.pList;
4794 assert( !ExprHasProperty(pF->pExpr, EP_xIsSelect) );
4795 sqlite3VdbeAddOp2(v, OP_AggFinal, pF->iMem, pList ? pList->nExpr : 0);
4796 sqlite3VdbeAppendP4(v, pF->pFunc, P4_FUNCDEF);
4801 ** Update the accumulator memory cells for an aggregate based on
4802 ** the current cursor position.
4804 static void updateAccumulator(Parse *pParse, AggInfo *pAggInfo){
4805 Vdbe *v = pParse->pVdbe;
4806 int i;
4807 int regHit = 0;
4808 int addrHitTest = 0;
4809 struct AggInfo_func *pF;
4810 struct AggInfo_col *pC;
4812 pAggInfo->directMode = 1;
4813 for(i=0, pF=pAggInfo->aFunc; i<pAggInfo->nFunc; i++, pF++){
4814 int nArg;
4815 int addrNext = 0;
4816 int regAgg;
4817 ExprList *pList = pF->pExpr->x.pList;
4818 assert( !ExprHasProperty(pF->pExpr, EP_xIsSelect) );
4819 if( pList ){
4820 nArg = pList->nExpr;
4821 regAgg = sqlite3GetTempRange(pParse, nArg);
4822 sqlite3ExprCodeExprList(pParse, pList, regAgg, 0, SQLITE_ECEL_DUP);
4823 }else{
4824 nArg = 0;
4825 regAgg = 0;
4827 if( pF->iDistinct>=0 ){
4828 addrNext = sqlite3VdbeMakeLabel(v);
4829 testcase( nArg==0 ); /* Error condition */
4830 testcase( nArg>1 ); /* Also an error */
4831 codeDistinct(pParse, pF->iDistinct, addrNext, 1, regAgg);
4833 if( pF->pFunc->funcFlags & SQLITE_FUNC_NEEDCOLL ){
4834 CollSeq *pColl = 0;
4835 struct ExprList_item *pItem;
4836 int j;
4837 assert( pList!=0 ); /* pList!=0 if pF->pFunc has NEEDCOLL */
4838 for(j=0, pItem=pList->a; !pColl && j<nArg; j++, pItem++){
4839 pColl = sqlite3ExprCollSeq(pParse, pItem->pExpr);
4841 if( !pColl ){
4842 pColl = pParse->db->pDfltColl;
4844 if( regHit==0 && pAggInfo->nAccumulator ) regHit = ++pParse->nMem;
4845 sqlite3VdbeAddOp4(v, OP_CollSeq, regHit, 0, 0, (char *)pColl, P4_COLLSEQ);
4847 sqlite3VdbeAddOp3(v, OP_AggStep0, 0, regAgg, pF->iMem);
4848 sqlite3VdbeAppendP4(v, pF->pFunc, P4_FUNCDEF);
4849 sqlite3VdbeChangeP5(v, (u8)nArg);
4850 sqlite3ExprCacheAffinityChange(pParse, regAgg, nArg);
4851 sqlite3ReleaseTempRange(pParse, regAgg, nArg);
4852 if( addrNext ){
4853 sqlite3VdbeResolveLabel(v, addrNext);
4854 sqlite3ExprCacheClear(pParse);
4858 /* Before populating the accumulator registers, clear the column cache.
4859 ** Otherwise, if any of the required column values are already present
4860 ** in registers, sqlite3ExprCode() may use OP_SCopy to copy the value
4861 ** to pC->iMem. But by the time the value is used, the original register
4862 ** may have been used, invalidating the underlying buffer holding the
4863 ** text or blob value. See ticket [883034dcb5].
4865 ** Another solution would be to change the OP_SCopy used to copy cached
4866 ** values to an OP_Copy.
4868 if( regHit ){
4869 addrHitTest = sqlite3VdbeAddOp1(v, OP_If, regHit); VdbeCoverage(v);
4871 sqlite3ExprCacheClear(pParse);
4872 for(i=0, pC=pAggInfo->aCol; i<pAggInfo->nAccumulator; i++, pC++){
4873 sqlite3ExprCode(pParse, pC->pExpr, pC->iMem);
4875 pAggInfo->directMode = 0;
4876 sqlite3ExprCacheClear(pParse);
4877 if( addrHitTest ){
4878 sqlite3VdbeJumpHere(v, addrHitTest);
4883 ** Add a single OP_Explain instruction to the VDBE to explain a simple
4884 ** count(*) query ("SELECT count(*) FROM pTab").
4886 #ifndef SQLITE_OMIT_EXPLAIN
4887 static void explainSimpleCount(
4888 Parse *pParse, /* Parse context */
4889 Table *pTab, /* Table being queried */
4890 Index *pIdx /* Index used to optimize scan, or NULL */
4892 if( pParse->explain==2 ){
4893 int bCover = (pIdx!=0 && (HasRowid(pTab) || !IsPrimaryKeyIndex(pIdx)));
4894 char *zEqp = sqlite3MPrintf(pParse->db, "SCAN TABLE %s%s%s",
4895 pTab->zName,
4896 bCover ? " USING COVERING INDEX " : "",
4897 bCover ? pIdx->zName : ""
4899 sqlite3VdbeAddOp4(
4900 pParse->pVdbe, OP_Explain, pParse->iSelectId, 0, 0, zEqp, P4_DYNAMIC
4904 #else
4905 # define explainSimpleCount(a,b,c)
4906 #endif
4909 ** Context object for havingToWhereExprCb().
4911 struct HavingToWhereCtx {
4912 Expr **ppWhere;
4913 ExprList *pGroupBy;
4917 ** sqlite3WalkExpr() callback used by havingToWhere().
4919 ** If the node passed to the callback is a TK_AND node, return
4920 ** WRC_Continue to tell sqlite3WalkExpr() to iterate through child nodes.
4922 ** Otherwise, return WRC_Prune. In this case, also check if the
4923 ** sub-expression matches the criteria for being moved to the WHERE
4924 ** clause. If so, add it to the WHERE clause and replace the sub-expression
4925 ** within the HAVING expression with a constant "1".
4927 static int havingToWhereExprCb(Walker *pWalker, Expr *pExpr){
4928 if( pExpr->op!=TK_AND ){
4929 struct HavingToWhereCtx *p = pWalker->u.pHavingCtx;
4930 if( sqlite3ExprIsConstantOrGroupBy(pWalker->pParse, pExpr, p->pGroupBy) ){
4931 sqlite3 *db = pWalker->pParse->db;
4932 Expr *pNew = sqlite3ExprAlloc(db, TK_INTEGER, &sqlite3IntTokens[1], 0);
4933 if( pNew ){
4934 Expr *pWhere = *(p->ppWhere);
4935 SWAP(Expr, *pNew, *pExpr);
4936 pNew = sqlite3ExprAnd(db, pWhere, pNew);
4937 *(p->ppWhere) = pNew;
4940 return WRC_Prune;
4942 return WRC_Continue;
4946 ** Transfer eligible terms from the HAVING clause of a query, which is
4947 ** processed after grouping, to the WHERE clause, which is processed before
4948 ** grouping. For example, the query:
4950 ** SELECT * FROM <tables> WHERE a=? GROUP BY b HAVING b=? AND c=?
4952 ** can be rewritten as:
4954 ** SELECT * FROM <tables> WHERE a=? AND b=? GROUP BY b HAVING c=?
4956 ** A term of the HAVING expression is eligible for transfer if it consists
4957 ** entirely of constants and expressions that are also GROUP BY terms that
4958 ** use the "BINARY" collation sequence.
4960 static void havingToWhere(
4961 Parse *pParse,
4962 ExprList *pGroupBy,
4963 Expr *pHaving,
4964 Expr **ppWhere
4966 struct HavingToWhereCtx sCtx;
4967 Walker sWalker;
4969 sCtx.ppWhere = ppWhere;
4970 sCtx.pGroupBy = pGroupBy;
4972 memset(&sWalker, 0, sizeof(sWalker));
4973 sWalker.pParse = pParse;
4974 sWalker.xExprCallback = havingToWhereExprCb;
4975 sWalker.u.pHavingCtx = &sCtx;
4976 sqlite3WalkExpr(&sWalker, pHaving);
4980 ** Check to see if the pThis entry of pTabList is a self-join of a prior view.
4981 ** If it is, then return the SrcList_item for the prior view. If it is not,
4982 ** then return 0.
4984 static struct SrcList_item *isSelfJoinView(
4985 SrcList *pTabList, /* Search for self-joins in this FROM clause */
4986 struct SrcList_item *pThis /* Search for prior reference to this subquery */
4988 struct SrcList_item *pItem;
4989 for(pItem = pTabList->a; pItem<pThis; pItem++){
4990 if( pItem->pSelect==0 ) continue;
4991 if( pItem->fg.viaCoroutine ) continue;
4992 if( pItem->zName==0 ) continue;
4993 if( sqlite3_stricmp(pItem->zDatabase, pThis->zDatabase)!=0 ) continue;
4994 if( sqlite3_stricmp(pItem->zName, pThis->zName)!=0 ) continue;
4995 if( sqlite3ExprCompare(0,
4996 pThis->pSelect->pWhere, pItem->pSelect->pWhere, -1)
4998 /* The view was modified by some other optimization such as
4999 ** pushDownWhereTerms() */
5000 continue;
5002 return pItem;
5004 return 0;
5007 #ifdef SQLITE_COUNTOFVIEW_OPTIMIZATION
5009 ** Attempt to transform a query of the form
5011 ** SELECT count(*) FROM (SELECT x FROM t1 UNION ALL SELECT y FROM t2)
5013 ** Into this:
5015 ** SELECT (SELECT count(*) FROM t1)+(SELECT count(*) FROM t2)
5017 ** The transformation only works if all of the following are true:
5019 ** * The subquery is a UNION ALL of two or more terms
5020 ** * There is no WHERE or GROUP BY or HAVING clauses on the subqueries
5021 ** * The outer query is a simple count(*)
5023 ** Return TRUE if the optimization is undertaken.
5025 static int countOfViewOptimization(Parse *pParse, Select *p){
5026 Select *pSub, *pPrior;
5027 Expr *pExpr;
5028 Expr *pCount;
5029 sqlite3 *db;
5030 if( (p->selFlags & SF_Aggregate)==0 ) return 0; /* This is an aggregate */
5031 if( p->pEList->nExpr!=1 ) return 0; /* Single result column */
5032 pExpr = p->pEList->a[0].pExpr;
5033 if( pExpr->op!=TK_AGG_FUNCTION ) return 0; /* Result is an aggregate */
5034 if( sqlite3_stricmp(pExpr->u.zToken,"count") ) return 0; /* Is count() */
5035 if( pExpr->x.pList!=0 ) return 0; /* Must be count(*) */
5036 if( p->pSrc->nSrc!=1 ) return 0; /* One table in FROM */
5037 pSub = p->pSrc->a[0].pSelect;
5038 if( pSub==0 ) return 0; /* The FROM is a subquery */
5039 if( pSub->pPrior==0 ) return 0; /* Must be a compound ry */
5041 if( pSub->op!=TK_ALL && pSub->pPrior ) return 0; /* Must be UNION ALL */
5042 if( pSub->pWhere ) return 0; /* No WHERE clause */
5043 if( pSub->selFlags & SF_Aggregate ) return 0; /* Not an aggregate */
5044 pSub = pSub->pPrior; /* Repeat over compound */
5045 }while( pSub );
5047 /* If we reach this point then it is OK to perform the transformation */
5049 db = pParse->db;
5050 pCount = pExpr;
5051 pExpr = 0;
5052 pSub = p->pSrc->a[0].pSelect;
5053 p->pSrc->a[0].pSelect = 0;
5054 sqlite3SrcListDelete(db, p->pSrc);
5055 p->pSrc = sqlite3DbMallocZero(pParse->db, sizeof(*p->pSrc));
5056 while( pSub ){
5057 Expr *pTerm;
5058 pPrior = pSub->pPrior;
5059 pSub->pPrior = 0;
5060 pSub->pNext = 0;
5061 pSub->selFlags |= SF_Aggregate;
5062 pSub->selFlags &= ~SF_Compound;
5063 pSub->nSelectRow = 0;
5064 sqlite3ExprListDelete(db, pSub->pEList);
5065 pTerm = pPrior ? sqlite3ExprDup(db, pCount, 0) : pCount;
5066 pSub->pEList = sqlite3ExprListAppend(pParse, 0, pTerm);
5067 pTerm = sqlite3PExpr(pParse, TK_SELECT, 0, 0);
5068 sqlite3PExprAddSelect(pParse, pTerm, pSub);
5069 if( pExpr==0 ){
5070 pExpr = pTerm;
5071 }else{
5072 pExpr = sqlite3PExpr(pParse, TK_PLUS, pTerm, pExpr);
5074 pSub = pPrior;
5076 p->pEList->a[0].pExpr = pExpr;
5077 p->selFlags &= ~SF_Aggregate;
5079 #if SELECTTRACE_ENABLED
5080 if( sqlite3SelectTrace & 0x400 ){
5081 SELECTTRACE(0x400,pParse,p,("After count-of-view optimization:\n"));
5082 sqlite3TreeViewSelect(0, p, 0);
5084 #endif
5085 return 1;
5087 #endif /* SQLITE_COUNTOFVIEW_OPTIMIZATION */
5090 ** Generate code for the SELECT statement given in the p argument.
5092 ** The results are returned according to the SelectDest structure.
5093 ** See comments in sqliteInt.h for further information.
5095 ** This routine returns the number of errors. If any errors are
5096 ** encountered, then an appropriate error message is left in
5097 ** pParse->zErrMsg.
5099 ** This routine does NOT free the Select structure passed in. The
5100 ** calling function needs to do that.
5102 int sqlite3Select(
5103 Parse *pParse, /* The parser context */
5104 Select *p, /* The SELECT statement being coded. */
5105 SelectDest *pDest /* What to do with the query results */
5107 int i, j; /* Loop counters */
5108 WhereInfo *pWInfo; /* Return from sqlite3WhereBegin() */
5109 Vdbe *v; /* The virtual machine under construction */
5110 int isAgg; /* True for select lists like "count(*)" */
5111 ExprList *pEList = 0; /* List of columns to extract. */
5112 SrcList *pTabList; /* List of tables to select from */
5113 Expr *pWhere; /* The WHERE clause. May be NULL */
5114 ExprList *pGroupBy; /* The GROUP BY clause. May be NULL */
5115 Expr *pHaving; /* The HAVING clause. May be NULL */
5116 int rc = 1; /* Value to return from this function */
5117 DistinctCtx sDistinct; /* Info on how to code the DISTINCT keyword */
5118 SortCtx sSort; /* Info on how to code the ORDER BY clause */
5119 AggInfo sAggInfo; /* Information used by aggregate queries */
5120 int iEnd; /* Address of the end of the query */
5121 sqlite3 *db; /* The database connection */
5122 ExprList *pMinMaxOrderBy = 0; /* Added ORDER BY for min/max queries */
5123 u8 minMaxFlag; /* Flag for min/max queries */
5125 #ifndef SQLITE_OMIT_EXPLAIN
5126 int iRestoreSelectId = pParse->iSelectId;
5127 pParse->iSelectId = pParse->iNextSelectId++;
5128 #endif
5130 db = pParse->db;
5131 if( p==0 || db->mallocFailed || pParse->nErr ){
5132 return 1;
5134 if( sqlite3AuthCheck(pParse, SQLITE_SELECT, 0, 0, 0) ) return 1;
5135 memset(&sAggInfo, 0, sizeof(sAggInfo));
5136 #if SELECTTRACE_ENABLED
5137 pParse->nSelectIndent++;
5138 SELECTTRACE(1,pParse,p, ("begin processing:\n"));
5139 if( sqlite3SelectTrace & 0x100 ){
5140 sqlite3TreeViewSelect(0, p, 0);
5142 #endif
5144 assert( p->pOrderBy==0 || pDest->eDest!=SRT_DistFifo );
5145 assert( p->pOrderBy==0 || pDest->eDest!=SRT_Fifo );
5146 assert( p->pOrderBy==0 || pDest->eDest!=SRT_DistQueue );
5147 assert( p->pOrderBy==0 || pDest->eDest!=SRT_Queue );
5148 if( IgnorableOrderby(pDest) ){
5149 assert(pDest->eDest==SRT_Exists || pDest->eDest==SRT_Union ||
5150 pDest->eDest==SRT_Except || pDest->eDest==SRT_Discard ||
5151 pDest->eDest==SRT_Queue || pDest->eDest==SRT_DistFifo ||
5152 pDest->eDest==SRT_DistQueue || pDest->eDest==SRT_Fifo);
5153 /* If ORDER BY makes no difference in the output then neither does
5154 ** DISTINCT so it can be removed too. */
5155 sqlite3ExprListDelete(db, p->pOrderBy);
5156 p->pOrderBy = 0;
5157 p->selFlags &= ~SF_Distinct;
5159 sqlite3SelectPrep(pParse, p, 0);
5160 memset(&sSort, 0, sizeof(sSort));
5161 sSort.pOrderBy = p->pOrderBy;
5162 pTabList = p->pSrc;
5163 if( pParse->nErr || db->mallocFailed ){
5164 goto select_end;
5166 assert( p->pEList!=0 );
5167 isAgg = (p->selFlags & SF_Aggregate)!=0;
5168 #if SELECTTRACE_ENABLED
5169 if( sqlite3SelectTrace & 0x100 ){
5170 SELECTTRACE(0x100,pParse,p, ("after name resolution:\n"));
5171 sqlite3TreeViewSelect(0, p, 0);
5173 #endif
5175 /* Get a pointer the VDBE under construction, allocating a new VDBE if one
5176 ** does not already exist */
5177 v = sqlite3GetVdbe(pParse);
5178 if( v==0 ) goto select_end;
5179 if( pDest->eDest==SRT_Output ){
5180 generateColumnNames(pParse, p);
5183 /* Try to flatten subqueries in the FROM clause up into the main query
5185 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
5186 for(i=0; !p->pPrior && i<pTabList->nSrc; i++){
5187 struct SrcList_item *pItem = &pTabList->a[i];
5188 Select *pSub = pItem->pSelect;
5189 Table *pTab = pItem->pTab;
5190 if( pSub==0 ) continue;
5192 /* Catch mismatch in the declared columns of a view and the number of
5193 ** columns in the SELECT on the RHS */
5194 if( pTab->nCol!=pSub->pEList->nExpr ){
5195 sqlite3ErrorMsg(pParse, "expected %d columns for '%s' but got %d",
5196 pTab->nCol, pTab->zName, pSub->pEList->nExpr);
5197 goto select_end;
5200 /* Do not try to flatten an aggregate subquery.
5202 ** Flattening an aggregate subquery is only possible if the outer query
5203 ** is not a join. But if the outer query is not a join, then the subquery
5204 ** will be implemented as a co-routine and there is no advantage to
5205 ** flattening in that case.
5207 if( (pSub->selFlags & SF_Aggregate)!=0 ) continue;
5208 assert( pSub->pGroupBy==0 );
5210 /* If the outer query contains a "complex" result set (that is,
5211 ** if the result set of the outer query uses functions or subqueries)
5212 ** and if the subquery contains an ORDER BY clause and if
5213 ** it will be implemented as a co-routine, then do not flatten. This
5214 ** restriction allows SQL constructs like this:
5216 ** SELECT expensive_function(x)
5217 ** FROM (SELECT x FROM tab ORDER BY y LIMIT 10);
5219 ** The expensive_function() is only computed on the 10 rows that
5220 ** are output, rather than every row of the table.
5222 ** The requirement that the outer query have a complex result set
5223 ** means that flattening does occur on simpler SQL constraints without
5224 ** the expensive_function() like:
5226 ** SELECT x FROM (SELECT x FROM tab ORDER BY y LIMIT 10);
5228 if( pSub->pOrderBy!=0
5229 && i==0
5230 && (p->selFlags & SF_ComplexResult)!=0
5231 && (pTabList->nSrc==1
5232 || (pTabList->a[1].fg.jointype&(JT_LEFT|JT_CROSS))!=0)
5234 continue;
5237 if( flattenSubquery(pParse, p, i, isAgg) ){
5238 /* This subquery can be absorbed into its parent. */
5239 i = -1;
5241 pTabList = p->pSrc;
5242 if( db->mallocFailed ) goto select_end;
5243 if( !IgnorableOrderby(pDest) ){
5244 sSort.pOrderBy = p->pOrderBy;
5247 #endif
5249 #ifndef SQLITE_OMIT_COMPOUND_SELECT
5250 /* Handle compound SELECT statements using the separate multiSelect()
5251 ** procedure.
5253 if( p->pPrior ){
5254 rc = multiSelect(pParse, p, pDest);
5255 explainSetInteger(pParse->iSelectId, iRestoreSelectId);
5256 #if SELECTTRACE_ENABLED
5257 SELECTTRACE(1,pParse,p,("end compound-select processing\n"));
5258 pParse->nSelectIndent--;
5259 #endif
5260 return rc;
5262 #endif
5264 /* For each term in the FROM clause, do two things:
5265 ** (1) Authorized unreferenced tables
5266 ** (2) Generate code for all sub-queries
5268 for(i=0; i<pTabList->nSrc; i++){
5269 struct SrcList_item *pItem = &pTabList->a[i];
5270 SelectDest dest;
5271 Select *pSub;
5272 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
5273 const char *zSavedAuthContext;
5274 #endif
5276 /* Issue SQLITE_READ authorizations with a fake column name for any
5277 ** tables that are referenced but from which no values are extracted.
5278 ** Examples of where these kinds of null SQLITE_READ authorizations
5279 ** would occur:
5281 ** SELECT count(*) FROM t1; -- SQLITE_READ t1.""
5282 ** SELECT t1.* FROM t1, t2; -- SQLITE_READ t2.""
5284 ** The fake column name is an empty string. It is possible for a table to
5285 ** have a column named by the empty string, in which case there is no way to
5286 ** distinguish between an unreferenced table and an actual reference to the
5287 ** "" column. The original design was for the fake column name to be a NULL,
5288 ** which would be unambiguous. But legacy authorization callbacks might
5289 ** assume the column name is non-NULL and segfault. The use of an empty
5290 ** string for the fake column name seems safer.
5292 if( pItem->colUsed==0 ){
5293 sqlite3AuthCheck(pParse, SQLITE_READ, pItem->zName, "", pItem->zDatabase);
5296 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
5297 /* Generate code for all sub-queries in the FROM clause
5299 pSub = pItem->pSelect;
5300 if( pSub==0 ) continue;
5302 /* Sometimes the code for a subquery will be generated more than
5303 ** once, if the subquery is part of the WHERE clause in a LEFT JOIN,
5304 ** for example. In that case, do not regenerate the code to manifest
5305 ** a view or the co-routine to implement a view. The first instance
5306 ** is sufficient, though the subroutine to manifest the view does need
5307 ** to be invoked again. */
5308 if( pItem->addrFillSub ){
5309 if( pItem->fg.viaCoroutine==0 ){
5310 /* The subroutine that manifests the view might be a one-time routine,
5311 ** or it might need to be rerun on each iteration because it
5312 ** encodes a correlated subquery. */
5313 testcase( sqlite3VdbeGetOp(v, pItem->addrFillSub)->opcode==OP_Once );
5314 sqlite3VdbeAddOp2(v, OP_Gosub, pItem->regReturn, pItem->addrFillSub);
5316 continue;
5319 /* Increment Parse.nHeight by the height of the largest expression
5320 ** tree referred to by this, the parent select. The child select
5321 ** may contain expression trees of at most
5322 ** (SQLITE_MAX_EXPR_DEPTH-Parse.nHeight) height. This is a bit
5323 ** more conservative than necessary, but much easier than enforcing
5324 ** an exact limit.
5326 pParse->nHeight += sqlite3SelectExprHeight(p);
5328 /* Make copies of constant WHERE-clause terms in the outer query down
5329 ** inside the subquery. This can help the subquery to run more efficiently.
5331 if( (pItem->fg.jointype & JT_OUTER)==0
5332 && pushDownWhereTerms(pParse, pSub, p->pWhere, pItem->iCursor)
5334 #if SELECTTRACE_ENABLED
5335 if( sqlite3SelectTrace & 0x100 ){
5336 SELECTTRACE(0x100,pParse,p,("After WHERE-clause push-down:\n"));
5337 sqlite3TreeViewSelect(0, p, 0);
5339 #endif
5342 zSavedAuthContext = pParse->zAuthContext;
5343 pParse->zAuthContext = pItem->zName;
5345 /* Generate code to implement the subquery
5347 ** The subquery is implemented as a co-routine if the subquery is
5348 ** guaranteed to be the outer loop (so that it does not need to be
5349 ** computed more than once)
5351 ** TODO: Are there other reasons beside (1) to use a co-routine
5352 ** implementation?
5354 if( i==0
5355 && (pTabList->nSrc==1
5356 || (pTabList->a[1].fg.jointype&(JT_LEFT|JT_CROSS))!=0) /* (1) */
5358 /* Implement a co-routine that will return a single row of the result
5359 ** set on each invocation.
5361 int addrTop = sqlite3VdbeCurrentAddr(v)+1;
5363 pItem->regReturn = ++pParse->nMem;
5364 sqlite3VdbeAddOp3(v, OP_InitCoroutine, pItem->regReturn, 0, addrTop);
5365 VdbeComment((v, "%s", pItem->pTab->zName));
5366 pItem->addrFillSub = addrTop;
5367 sqlite3SelectDestInit(&dest, SRT_Coroutine, pItem->regReturn);
5368 explainSetInteger(pItem->iSelectId, (u8)pParse->iNextSelectId);
5369 sqlite3Select(pParse, pSub, &dest);
5370 pItem->pTab->nRowLogEst = pSub->nSelectRow;
5371 pItem->fg.viaCoroutine = 1;
5372 pItem->regResult = dest.iSdst;
5373 sqlite3VdbeEndCoroutine(v, pItem->regReturn);
5374 sqlite3VdbeJumpHere(v, addrTop-1);
5375 sqlite3ClearTempRegCache(pParse);
5376 }else{
5377 /* Generate a subroutine that will fill an ephemeral table with
5378 ** the content of this subquery. pItem->addrFillSub will point
5379 ** to the address of the generated subroutine. pItem->regReturn
5380 ** is a register allocated to hold the subroutine return address
5382 int topAddr;
5383 int onceAddr = 0;
5384 int retAddr;
5385 struct SrcList_item *pPrior;
5387 assert( pItem->addrFillSub==0 );
5388 pItem->regReturn = ++pParse->nMem;
5389 topAddr = sqlite3VdbeAddOp2(v, OP_Integer, 0, pItem->regReturn);
5390 pItem->addrFillSub = topAddr+1;
5391 if( pItem->fg.isCorrelated==0 ){
5392 /* If the subquery is not correlated and if we are not inside of
5393 ** a trigger, then we only need to compute the value of the subquery
5394 ** once. */
5395 onceAddr = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v);
5396 VdbeComment((v, "materialize \"%s\"", pItem->pTab->zName));
5397 }else{
5398 VdbeNoopComment((v, "materialize \"%s\"", pItem->pTab->zName));
5400 pPrior = isSelfJoinView(pTabList, pItem);
5401 if( pPrior ){
5402 sqlite3VdbeAddOp2(v, OP_OpenDup, pItem->iCursor, pPrior->iCursor);
5403 explainSetInteger(pItem->iSelectId, pPrior->iSelectId);
5404 assert( pPrior->pSelect!=0 );
5405 pSub->nSelectRow = pPrior->pSelect->nSelectRow;
5406 }else{
5407 sqlite3SelectDestInit(&dest, SRT_EphemTab, pItem->iCursor);
5408 explainSetInteger(pItem->iSelectId, (u8)pParse->iNextSelectId);
5409 sqlite3Select(pParse, pSub, &dest);
5411 pItem->pTab->nRowLogEst = pSub->nSelectRow;
5412 if( onceAddr ) sqlite3VdbeJumpHere(v, onceAddr);
5413 retAddr = sqlite3VdbeAddOp1(v, OP_Return, pItem->regReturn);
5414 VdbeComment((v, "end %s", pItem->pTab->zName));
5415 sqlite3VdbeChangeP1(v, topAddr, retAddr);
5416 sqlite3ClearTempRegCache(pParse);
5418 if( db->mallocFailed ) goto select_end;
5419 pParse->nHeight -= sqlite3SelectExprHeight(p);
5420 pParse->zAuthContext = zSavedAuthContext;
5421 #endif
5424 /* Various elements of the SELECT copied into local variables for
5425 ** convenience */
5426 pEList = p->pEList;
5427 pWhere = p->pWhere;
5428 pGroupBy = p->pGroupBy;
5429 pHaving = p->pHaving;
5430 sDistinct.isTnct = (p->selFlags & SF_Distinct)!=0;
5432 #if SELECTTRACE_ENABLED
5433 if( sqlite3SelectTrace & 0x400 ){
5434 SELECTTRACE(0x400,pParse,p,("After all FROM-clause analysis:\n"));
5435 sqlite3TreeViewSelect(0, p, 0);
5437 #endif
5439 #ifdef SQLITE_COUNTOFVIEW_OPTIMIZATION
5440 if( OptimizationEnabled(db, SQLITE_QueryFlattener|SQLITE_CountOfView)
5441 && countOfViewOptimization(pParse, p)
5443 if( db->mallocFailed ) goto select_end;
5444 pEList = p->pEList;
5445 pTabList = p->pSrc;
5447 #endif
5449 /* If the query is DISTINCT with an ORDER BY but is not an aggregate, and
5450 ** if the select-list is the same as the ORDER BY list, then this query
5451 ** can be rewritten as a GROUP BY. In other words, this:
5453 ** SELECT DISTINCT xyz FROM ... ORDER BY xyz
5455 ** is transformed to:
5457 ** SELECT xyz FROM ... GROUP BY xyz ORDER BY xyz
5459 ** The second form is preferred as a single index (or temp-table) may be
5460 ** used for both the ORDER BY and DISTINCT processing. As originally
5461 ** written the query must use a temp-table for at least one of the ORDER
5462 ** BY and DISTINCT, and an index or separate temp-table for the other.
5464 if( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct
5465 && sqlite3ExprListCompare(sSort.pOrderBy, pEList, -1)==0
5467 p->selFlags &= ~SF_Distinct;
5468 pGroupBy = p->pGroupBy = sqlite3ExprListDup(db, pEList, 0);
5469 /* Notice that even thought SF_Distinct has been cleared from p->selFlags,
5470 ** the sDistinct.isTnct is still set. Hence, isTnct represents the
5471 ** original setting of the SF_Distinct flag, not the current setting */
5472 assert( sDistinct.isTnct );
5474 #if SELECTTRACE_ENABLED
5475 if( sqlite3SelectTrace & 0x400 ){
5476 SELECTTRACE(0x400,pParse,p,("Transform DISTINCT into GROUP BY:\n"));
5477 sqlite3TreeViewSelect(0, p, 0);
5479 #endif
5482 /* If there is an ORDER BY clause, then create an ephemeral index to
5483 ** do the sorting. But this sorting ephemeral index might end up
5484 ** being unused if the data can be extracted in pre-sorted order.
5485 ** If that is the case, then the OP_OpenEphemeral instruction will be
5486 ** changed to an OP_Noop once we figure out that the sorting index is
5487 ** not needed. The sSort.addrSortIndex variable is used to facilitate
5488 ** that change.
5490 if( sSort.pOrderBy ){
5491 KeyInfo *pKeyInfo;
5492 pKeyInfo = keyInfoFromExprList(pParse, sSort.pOrderBy, 0, pEList->nExpr);
5493 sSort.iECursor = pParse->nTab++;
5494 sSort.addrSortIndex =
5495 sqlite3VdbeAddOp4(v, OP_OpenEphemeral,
5496 sSort.iECursor, sSort.pOrderBy->nExpr+1+pEList->nExpr, 0,
5497 (char*)pKeyInfo, P4_KEYINFO
5499 }else{
5500 sSort.addrSortIndex = -1;
5503 /* If the output is destined for a temporary table, open that table.
5505 if( pDest->eDest==SRT_EphemTab ){
5506 sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pDest->iSDParm, pEList->nExpr);
5509 /* Set the limiter.
5511 iEnd = sqlite3VdbeMakeLabel(v);
5512 if( (p->selFlags & SF_FixedLimit)==0 ){
5513 p->nSelectRow = 320; /* 4 billion rows */
5515 computeLimitRegisters(pParse, p, iEnd);
5516 if( p->iLimit==0 && sSort.addrSortIndex>=0 ){
5517 sqlite3VdbeChangeOpcode(v, sSort.addrSortIndex, OP_SorterOpen);
5518 sSort.sortFlags |= SORTFLAG_UseSorter;
5521 /* Open an ephemeral index to use for the distinct set.
5523 if( p->selFlags & SF_Distinct ){
5524 sDistinct.tabTnct = pParse->nTab++;
5525 sDistinct.addrTnct = sqlite3VdbeAddOp4(v, OP_OpenEphemeral,
5526 sDistinct.tabTnct, 0, 0,
5527 (char*)keyInfoFromExprList(pParse, p->pEList,0,0),
5528 P4_KEYINFO);
5529 sqlite3VdbeChangeP5(v, BTREE_UNORDERED);
5530 sDistinct.eTnctType = WHERE_DISTINCT_UNORDERED;
5531 }else{
5532 sDistinct.eTnctType = WHERE_DISTINCT_NOOP;
5535 if( !isAgg && pGroupBy==0 ){
5536 /* No aggregate functions and no GROUP BY clause */
5537 u16 wctrlFlags = (sDistinct.isTnct ? WHERE_WANT_DISTINCT : 0);
5538 assert( WHERE_USE_LIMIT==SF_FixedLimit );
5539 wctrlFlags |= p->selFlags & SF_FixedLimit;
5541 /* Begin the database scan. */
5542 pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, sSort.pOrderBy,
5543 p->pEList, wctrlFlags, p->nSelectRow);
5544 if( pWInfo==0 ) goto select_end;
5545 if( sqlite3WhereOutputRowCount(pWInfo) < p->nSelectRow ){
5546 p->nSelectRow = sqlite3WhereOutputRowCount(pWInfo);
5548 if( sDistinct.isTnct && sqlite3WhereIsDistinct(pWInfo) ){
5549 sDistinct.eTnctType = sqlite3WhereIsDistinct(pWInfo);
5551 if( sSort.pOrderBy ){
5552 sSort.nOBSat = sqlite3WhereIsOrdered(pWInfo);
5553 sSort.bOrderedInnerLoop = sqlite3WhereOrderedInnerLoop(pWInfo);
5554 if( sSort.nOBSat==sSort.pOrderBy->nExpr ){
5555 sSort.pOrderBy = 0;
5559 /* If sorting index that was created by a prior OP_OpenEphemeral
5560 ** instruction ended up not being needed, then change the OP_OpenEphemeral
5561 ** into an OP_Noop.
5563 if( sSort.addrSortIndex>=0 && sSort.pOrderBy==0 ){
5564 sqlite3VdbeChangeToNoop(v, sSort.addrSortIndex);
5567 /* Use the standard inner loop. */
5568 assert( p->pEList==pEList );
5569 selectInnerLoop(pParse, p, -1, &sSort, &sDistinct, pDest,
5570 sqlite3WhereContinueLabel(pWInfo),
5571 sqlite3WhereBreakLabel(pWInfo));
5573 /* End the database scan loop.
5575 sqlite3WhereEnd(pWInfo);
5576 }else{
5577 /* This case when there exist aggregate functions or a GROUP BY clause
5578 ** or both */
5579 NameContext sNC; /* Name context for processing aggregate information */
5580 int iAMem; /* First Mem address for storing current GROUP BY */
5581 int iBMem; /* First Mem address for previous GROUP BY */
5582 int iUseFlag; /* Mem address holding flag indicating that at least
5583 ** one row of the input to the aggregator has been
5584 ** processed */
5585 int iAbortFlag; /* Mem address which causes query abort if positive */
5586 int groupBySort; /* Rows come from source in GROUP BY order */
5587 int addrEnd; /* End of processing for this SELECT */
5588 int sortPTab = 0; /* Pseudotable used to decode sorting results */
5589 int sortOut = 0; /* Output register from the sorter */
5590 int orderByGrp = 0; /* True if the GROUP BY and ORDER BY are the same */
5592 /* Remove any and all aliases between the result set and the
5593 ** GROUP BY clause.
5595 if( pGroupBy ){
5596 int k; /* Loop counter */
5597 struct ExprList_item *pItem; /* For looping over expression in a list */
5599 for(k=p->pEList->nExpr, pItem=p->pEList->a; k>0; k--, pItem++){
5600 pItem->u.x.iAlias = 0;
5602 for(k=pGroupBy->nExpr, pItem=pGroupBy->a; k>0; k--, pItem++){
5603 pItem->u.x.iAlias = 0;
5605 assert( 66==sqlite3LogEst(100) );
5606 if( p->nSelectRow>66 ) p->nSelectRow = 66;
5607 }else{
5608 assert( 0==sqlite3LogEst(1) );
5609 p->nSelectRow = 0;
5612 /* If there is both a GROUP BY and an ORDER BY clause and they are
5613 ** identical, then it may be possible to disable the ORDER BY clause
5614 ** on the grounds that the GROUP BY will cause elements to come out
5615 ** in the correct order. It also may not - the GROUP BY might use a
5616 ** database index that causes rows to be grouped together as required
5617 ** but not actually sorted. Either way, record the fact that the
5618 ** ORDER BY and GROUP BY clauses are the same by setting the orderByGrp
5619 ** variable. */
5620 if( sqlite3ExprListCompare(pGroupBy, sSort.pOrderBy, -1)==0 ){
5621 orderByGrp = 1;
5624 /* Create a label to jump to when we want to abort the query */
5625 addrEnd = sqlite3VdbeMakeLabel(v);
5627 /* Convert TK_COLUMN nodes into TK_AGG_COLUMN and make entries in
5628 ** sAggInfo for all TK_AGG_FUNCTION nodes in expressions of the
5629 ** SELECT statement.
5631 memset(&sNC, 0, sizeof(sNC));
5632 sNC.pParse = pParse;
5633 sNC.pSrcList = pTabList;
5634 sNC.pAggInfo = &sAggInfo;
5635 sAggInfo.mnReg = pParse->nMem+1;
5636 sAggInfo.nSortingColumn = pGroupBy ? pGroupBy->nExpr : 0;
5637 sAggInfo.pGroupBy = pGroupBy;
5638 sqlite3ExprAnalyzeAggList(&sNC, pEList);
5639 sqlite3ExprAnalyzeAggList(&sNC, sSort.pOrderBy);
5640 if( pHaving ){
5641 if( pGroupBy ){
5642 assert( pWhere==p->pWhere );
5643 havingToWhere(pParse, pGroupBy, pHaving, &p->pWhere);
5644 pWhere = p->pWhere;
5646 sqlite3ExprAnalyzeAggregates(&sNC, pHaving);
5648 sAggInfo.nAccumulator = sAggInfo.nColumn;
5649 if( p->pGroupBy==0 && p->pHaving==0 && sAggInfo.nFunc==1 ){
5650 minMaxFlag = minMaxQuery(db, sAggInfo.aFunc[0].pExpr, &pMinMaxOrderBy);
5651 }else{
5652 minMaxFlag = WHERE_ORDERBY_NORMAL;
5654 for(i=0; i<sAggInfo.nFunc; i++){
5655 assert( !ExprHasProperty(sAggInfo.aFunc[i].pExpr, EP_xIsSelect) );
5656 sNC.ncFlags |= NC_InAggFunc;
5657 sqlite3ExprAnalyzeAggList(&sNC, sAggInfo.aFunc[i].pExpr->x.pList);
5658 sNC.ncFlags &= ~NC_InAggFunc;
5660 sAggInfo.mxReg = pParse->nMem;
5661 if( db->mallocFailed ) goto select_end;
5662 #if SELECTTRACE_ENABLED
5663 if( sqlite3SelectTrace & 0x400 ){
5664 int ii;
5665 SELECTTRACE(0x400,pParse,p,("After aggregate analysis:\n"));
5666 sqlite3TreeViewSelect(0, p, 0);
5667 for(ii=0; ii<sAggInfo.nColumn; ii++){
5668 sqlite3DebugPrintf("agg-column[%d] iMem=%d\n",
5669 ii, sAggInfo.aCol[ii].iMem);
5670 sqlite3TreeViewExpr(0, sAggInfo.aCol[ii].pExpr, 0);
5672 for(ii=0; ii<sAggInfo.nFunc; ii++){
5673 sqlite3DebugPrintf("agg-func[%d]: iMem=%d\n",
5674 ii, sAggInfo.aFunc[ii].iMem);
5675 sqlite3TreeViewExpr(0, sAggInfo.aFunc[ii].pExpr, 0);
5678 #endif
5681 /* Processing for aggregates with GROUP BY is very different and
5682 ** much more complex than aggregates without a GROUP BY.
5684 if( pGroupBy ){
5685 KeyInfo *pKeyInfo; /* Keying information for the group by clause */
5686 int addr1; /* A-vs-B comparision jump */
5687 int addrOutputRow; /* Start of subroutine that outputs a result row */
5688 int regOutputRow; /* Return address register for output subroutine */
5689 int addrSetAbort; /* Set the abort flag and return */
5690 int addrTopOfLoop; /* Top of the input loop */
5691 int addrSortingIdx; /* The OP_OpenEphemeral for the sorting index */
5692 int addrReset; /* Subroutine for resetting the accumulator */
5693 int regReset; /* Return address register for reset subroutine */
5695 /* If there is a GROUP BY clause we might need a sorting index to
5696 ** implement it. Allocate that sorting index now. If it turns out
5697 ** that we do not need it after all, the OP_SorterOpen instruction
5698 ** will be converted into a Noop.
5700 sAggInfo.sortingIdx = pParse->nTab++;
5701 pKeyInfo = keyInfoFromExprList(pParse, pGroupBy, 0, sAggInfo.nColumn);
5702 addrSortingIdx = sqlite3VdbeAddOp4(v, OP_SorterOpen,
5703 sAggInfo.sortingIdx, sAggInfo.nSortingColumn,
5704 0, (char*)pKeyInfo, P4_KEYINFO);
5706 /* Initialize memory locations used by GROUP BY aggregate processing
5708 iUseFlag = ++pParse->nMem;
5709 iAbortFlag = ++pParse->nMem;
5710 regOutputRow = ++pParse->nMem;
5711 addrOutputRow = sqlite3VdbeMakeLabel(v);
5712 regReset = ++pParse->nMem;
5713 addrReset = sqlite3VdbeMakeLabel(v);
5714 iAMem = pParse->nMem + 1;
5715 pParse->nMem += pGroupBy->nExpr;
5716 iBMem = pParse->nMem + 1;
5717 pParse->nMem += pGroupBy->nExpr;
5718 sqlite3VdbeAddOp2(v, OP_Integer, 0, iAbortFlag);
5719 VdbeComment((v, "clear abort flag"));
5720 sqlite3VdbeAddOp2(v, OP_Integer, 0, iUseFlag);
5721 VdbeComment((v, "indicate accumulator empty"));
5722 sqlite3VdbeAddOp3(v, OP_Null, 0, iAMem, iAMem+pGroupBy->nExpr-1);
5724 /* Begin a loop that will extract all source rows in GROUP BY order.
5725 ** This might involve two separate loops with an OP_Sort in between, or
5726 ** it might be a single loop that uses an index to extract information
5727 ** in the right order to begin with.
5729 sqlite3VdbeAddOp2(v, OP_Gosub, regReset, addrReset);
5730 pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, pGroupBy, 0,
5731 WHERE_GROUPBY | (orderByGrp ? WHERE_SORTBYGROUP : 0), 0
5733 if( pWInfo==0 ) goto select_end;
5734 if( sqlite3WhereIsOrdered(pWInfo)==pGroupBy->nExpr ){
5735 /* The optimizer is able to deliver rows in group by order so
5736 ** we do not have to sort. The OP_OpenEphemeral table will be
5737 ** cancelled later because we still need to use the pKeyInfo
5739 groupBySort = 0;
5740 }else{
5741 /* Rows are coming out in undetermined order. We have to push
5742 ** each row into a sorting index, terminate the first loop,
5743 ** then loop over the sorting index in order to get the output
5744 ** in sorted order
5746 int regBase;
5747 int regRecord;
5748 int nCol;
5749 int nGroupBy;
5751 explainTempTable(pParse,
5752 (sDistinct.isTnct && (p->selFlags&SF_Distinct)==0) ?
5753 "DISTINCT" : "GROUP BY");
5755 groupBySort = 1;
5756 nGroupBy = pGroupBy->nExpr;
5757 nCol = nGroupBy;
5758 j = nGroupBy;
5759 for(i=0; i<sAggInfo.nColumn; i++){
5760 if( sAggInfo.aCol[i].iSorterColumn>=j ){
5761 nCol++;
5762 j++;
5765 regBase = sqlite3GetTempRange(pParse, nCol);
5766 sqlite3ExprCacheClear(pParse);
5767 sqlite3ExprCodeExprList(pParse, pGroupBy, regBase, 0, 0);
5768 j = nGroupBy;
5769 for(i=0; i<sAggInfo.nColumn; i++){
5770 struct AggInfo_col *pCol = &sAggInfo.aCol[i];
5771 if( pCol->iSorterColumn>=j ){
5772 int r1 = j + regBase;
5773 sqlite3ExprCodeGetColumnToReg(pParse,
5774 pCol->pTab, pCol->iColumn, pCol->iTable, r1);
5775 j++;
5778 regRecord = sqlite3GetTempReg(pParse);
5779 sqlite3VdbeAddOp3(v, OP_MakeRecord, regBase, nCol, regRecord);
5780 sqlite3VdbeAddOp2(v, OP_SorterInsert, sAggInfo.sortingIdx, regRecord);
5781 sqlite3ReleaseTempReg(pParse, regRecord);
5782 sqlite3ReleaseTempRange(pParse, regBase, nCol);
5783 sqlite3WhereEnd(pWInfo);
5784 sAggInfo.sortingIdxPTab = sortPTab = pParse->nTab++;
5785 sortOut = sqlite3GetTempReg(pParse);
5786 sqlite3VdbeAddOp3(v, OP_OpenPseudo, sortPTab, sortOut, nCol);
5787 sqlite3VdbeAddOp2(v, OP_SorterSort, sAggInfo.sortingIdx, addrEnd);
5788 VdbeComment((v, "GROUP BY sort")); VdbeCoverage(v);
5789 sAggInfo.useSortingIdx = 1;
5790 sqlite3ExprCacheClear(pParse);
5794 /* If the index or temporary table used by the GROUP BY sort
5795 ** will naturally deliver rows in the order required by the ORDER BY
5796 ** clause, cancel the ephemeral table open coded earlier.
5798 ** This is an optimization - the correct answer should result regardless.
5799 ** Use the SQLITE_GroupByOrder flag with SQLITE_TESTCTRL_OPTIMIZER to
5800 ** disable this optimization for testing purposes. */
5801 if( orderByGrp && OptimizationEnabled(db, SQLITE_GroupByOrder)
5802 && (groupBySort || sqlite3WhereIsSorted(pWInfo))
5804 sSort.pOrderBy = 0;
5805 sqlite3VdbeChangeToNoop(v, sSort.addrSortIndex);
5808 /* Evaluate the current GROUP BY terms and store in b0, b1, b2...
5809 ** (b0 is memory location iBMem+0, b1 is iBMem+1, and so forth)
5810 ** Then compare the current GROUP BY terms against the GROUP BY terms
5811 ** from the previous row currently stored in a0, a1, a2...
5813 addrTopOfLoop = sqlite3VdbeCurrentAddr(v);
5814 sqlite3ExprCacheClear(pParse);
5815 if( groupBySort ){
5816 sqlite3VdbeAddOp3(v, OP_SorterData, sAggInfo.sortingIdx,
5817 sortOut, sortPTab);
5819 for(j=0; j<pGroupBy->nExpr; j++){
5820 if( groupBySort ){
5821 sqlite3VdbeAddOp3(v, OP_Column, sortPTab, j, iBMem+j);
5822 }else{
5823 sAggInfo.directMode = 1;
5824 sqlite3ExprCode(pParse, pGroupBy->a[j].pExpr, iBMem+j);
5827 sqlite3VdbeAddOp4(v, OP_Compare, iAMem, iBMem, pGroupBy->nExpr,
5828 (char*)sqlite3KeyInfoRef(pKeyInfo), P4_KEYINFO);
5829 addr1 = sqlite3VdbeCurrentAddr(v);
5830 sqlite3VdbeAddOp3(v, OP_Jump, addr1+1, 0, addr1+1); VdbeCoverage(v);
5832 /* Generate code that runs whenever the GROUP BY changes.
5833 ** Changes in the GROUP BY are detected by the previous code
5834 ** block. If there were no changes, this block is skipped.
5836 ** This code copies current group by terms in b0,b1,b2,...
5837 ** over to a0,a1,a2. It then calls the output subroutine
5838 ** and resets the aggregate accumulator registers in preparation
5839 ** for the next GROUP BY batch.
5841 sqlite3ExprCodeMove(pParse, iBMem, iAMem, pGroupBy->nExpr);
5842 sqlite3VdbeAddOp2(v, OP_Gosub, regOutputRow, addrOutputRow);
5843 VdbeComment((v, "output one row"));
5844 sqlite3VdbeAddOp2(v, OP_IfPos, iAbortFlag, addrEnd); VdbeCoverage(v);
5845 VdbeComment((v, "check abort flag"));
5846 sqlite3VdbeAddOp2(v, OP_Gosub, regReset, addrReset);
5847 VdbeComment((v, "reset accumulator"));
5849 /* Update the aggregate accumulators based on the content of
5850 ** the current row
5852 sqlite3VdbeJumpHere(v, addr1);
5853 updateAccumulator(pParse, &sAggInfo);
5854 sqlite3VdbeAddOp2(v, OP_Integer, 1, iUseFlag);
5855 VdbeComment((v, "indicate data in accumulator"));
5857 /* End of the loop
5859 if( groupBySort ){
5860 sqlite3VdbeAddOp2(v, OP_SorterNext, sAggInfo.sortingIdx, addrTopOfLoop);
5861 VdbeCoverage(v);
5862 }else{
5863 sqlite3WhereEnd(pWInfo);
5864 sqlite3VdbeChangeToNoop(v, addrSortingIdx);
5867 /* Output the final row of result
5869 sqlite3VdbeAddOp2(v, OP_Gosub, regOutputRow, addrOutputRow);
5870 VdbeComment((v, "output final row"));
5872 /* Jump over the subroutines
5874 sqlite3VdbeGoto(v, addrEnd);
5876 /* Generate a subroutine that outputs a single row of the result
5877 ** set. This subroutine first looks at the iUseFlag. If iUseFlag
5878 ** is less than or equal to zero, the subroutine is a no-op. If
5879 ** the processing calls for the query to abort, this subroutine
5880 ** increments the iAbortFlag memory location before returning in
5881 ** order to signal the caller to abort.
5883 addrSetAbort = sqlite3VdbeCurrentAddr(v);
5884 sqlite3VdbeAddOp2(v, OP_Integer, 1, iAbortFlag);
5885 VdbeComment((v, "set abort flag"));
5886 sqlite3VdbeAddOp1(v, OP_Return, regOutputRow);
5887 sqlite3VdbeResolveLabel(v, addrOutputRow);
5888 addrOutputRow = sqlite3VdbeCurrentAddr(v);
5889 sqlite3VdbeAddOp2(v, OP_IfPos, iUseFlag, addrOutputRow+2);
5890 VdbeCoverage(v);
5891 VdbeComment((v, "Groupby result generator entry point"));
5892 sqlite3VdbeAddOp1(v, OP_Return, regOutputRow);
5893 finalizeAggFunctions(pParse, &sAggInfo);
5894 sqlite3ExprIfFalse(pParse, pHaving, addrOutputRow+1, SQLITE_JUMPIFNULL);
5895 selectInnerLoop(pParse, p, -1, &sSort,
5896 &sDistinct, pDest,
5897 addrOutputRow+1, addrSetAbort);
5898 sqlite3VdbeAddOp1(v, OP_Return, regOutputRow);
5899 VdbeComment((v, "end groupby result generator"));
5901 /* Generate a subroutine that will reset the group-by accumulator
5903 sqlite3VdbeResolveLabel(v, addrReset);
5904 resetAccumulator(pParse, &sAggInfo);
5905 sqlite3VdbeAddOp1(v, OP_Return, regReset);
5907 } /* endif pGroupBy. Begin aggregate queries without GROUP BY: */
5908 else {
5909 #ifndef SQLITE_OMIT_BTREECOUNT
5910 Table *pTab;
5911 if( (pTab = isSimpleCount(p, &sAggInfo))!=0 ){
5912 /* If isSimpleCount() returns a pointer to a Table structure, then
5913 ** the SQL statement is of the form:
5915 ** SELECT count(*) FROM <tbl>
5917 ** where the Table structure returned represents table <tbl>.
5919 ** This statement is so common that it is optimized specially. The
5920 ** OP_Count instruction is executed either on the intkey table that
5921 ** contains the data for table <tbl> or on one of its indexes. It
5922 ** is better to execute the op on an index, as indexes are almost
5923 ** always spread across less pages than their corresponding tables.
5925 const int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
5926 const int iCsr = pParse->nTab++; /* Cursor to scan b-tree */
5927 Index *pIdx; /* Iterator variable */
5928 KeyInfo *pKeyInfo = 0; /* Keyinfo for scanned index */
5929 Index *pBest = 0; /* Best index found so far */
5930 int iRoot = pTab->tnum; /* Root page of scanned b-tree */
5932 sqlite3CodeVerifySchema(pParse, iDb);
5933 sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName);
5935 /* Search for the index that has the lowest scan cost.
5937 ** (2011-04-15) Do not do a full scan of an unordered index.
5939 ** (2013-10-03) Do not count the entries in a partial index.
5941 ** In practice the KeyInfo structure will not be used. It is only
5942 ** passed to keep OP_OpenRead happy.
5944 if( !HasRowid(pTab) ) pBest = sqlite3PrimaryKeyIndex(pTab);
5945 for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
5946 if( pIdx->bUnordered==0
5947 && pIdx->szIdxRow<pTab->szTabRow
5948 && pIdx->pPartIdxWhere==0
5949 && (!pBest || pIdx->szIdxRow<pBest->szIdxRow)
5951 pBest = pIdx;
5954 if( pBest ){
5955 iRoot = pBest->tnum;
5956 pKeyInfo = sqlite3KeyInfoOfIndex(pParse, pBest);
5959 /* Open a read-only cursor, execute the OP_Count, close the cursor. */
5960 sqlite3VdbeAddOp4Int(v, OP_OpenRead, iCsr, iRoot, iDb, 1);
5961 if( pKeyInfo ){
5962 sqlite3VdbeChangeP4(v, -1, (char *)pKeyInfo, P4_KEYINFO);
5964 sqlite3VdbeAddOp2(v, OP_Count, iCsr, sAggInfo.aFunc[0].iMem);
5965 sqlite3VdbeAddOp1(v, OP_Close, iCsr);
5966 explainSimpleCount(pParse, pTab, pBest);
5967 }else
5968 #endif /* SQLITE_OMIT_BTREECOUNT */
5970 /* This case runs if the aggregate has no GROUP BY clause. The
5971 ** processing is much simpler since there is only a single row
5972 ** of output.
5974 assert( p->pGroupBy==0 );
5975 resetAccumulator(pParse, &sAggInfo);
5977 /* If this query is a candidate for the min/max optimization, then
5978 ** minMaxFlag will have been previously set to either
5979 ** WHERE_ORDERBY_MIN or WHERE_ORDERBY_MAX and pMinMaxOrderBy will
5980 ** be an appropriate ORDER BY expression for the optimization.
5982 assert( minMaxFlag==WHERE_ORDERBY_NORMAL || pMinMaxOrderBy!=0 );
5983 assert( pMinMaxOrderBy==0 || pMinMaxOrderBy->nExpr==1 );
5985 pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, pMinMaxOrderBy,
5986 0, minMaxFlag, 0);
5987 if( pWInfo==0 ){
5988 goto select_end;
5990 updateAccumulator(pParse, &sAggInfo);
5991 if( sqlite3WhereIsOrdered(pWInfo)>0 ){
5992 sqlite3VdbeGoto(v, sqlite3WhereBreakLabel(pWInfo));
5993 VdbeComment((v, "%s() by index",
5994 (minMaxFlag==WHERE_ORDERBY_MIN?"min":"max")));
5996 sqlite3WhereEnd(pWInfo);
5997 finalizeAggFunctions(pParse, &sAggInfo);
6000 sSort.pOrderBy = 0;
6001 sqlite3ExprIfFalse(pParse, pHaving, addrEnd, SQLITE_JUMPIFNULL);
6002 selectInnerLoop(pParse, p, -1, 0, 0,
6003 pDest, addrEnd, addrEnd);
6005 sqlite3VdbeResolveLabel(v, addrEnd);
6007 } /* endif aggregate query */
6009 if( sDistinct.eTnctType==WHERE_DISTINCT_UNORDERED ){
6010 explainTempTable(pParse, "DISTINCT");
6013 /* If there is an ORDER BY clause, then we need to sort the results
6014 ** and send them to the callback one by one.
6016 if( sSort.pOrderBy ){
6017 explainTempTable(pParse,
6018 sSort.nOBSat>0 ? "RIGHT PART OF ORDER BY":"ORDER BY");
6019 generateSortTail(pParse, p, &sSort, pEList->nExpr, pDest);
6022 /* Jump here to skip this query
6024 sqlite3VdbeResolveLabel(v, iEnd);
6026 /* The SELECT has been coded. If there is an error in the Parse structure,
6027 ** set the return code to 1. Otherwise 0. */
6028 rc = (pParse->nErr>0);
6030 /* Control jumps to here if an error is encountered above, or upon
6031 ** successful coding of the SELECT.
6033 select_end:
6034 explainSetInteger(pParse->iSelectId, iRestoreSelectId);
6035 sqlite3ExprListDelete(db, pMinMaxOrderBy);
6036 sqlite3DbFree(db, sAggInfo.aCol);
6037 sqlite3DbFree(db, sAggInfo.aFunc);
6038 #if SELECTTRACE_ENABLED
6039 SELECTTRACE(1,pParse,p,("end processing\n"));
6040 pParse->nSelectIndent--;
6041 #endif
6042 return rc;