4 ** The author disclaims copyright to this source code. In place of
5 ** a legal notice, here is a blessing:
7 ** May you do good and not evil.
8 ** May you find forgiveness for yourself and forgive others.
9 ** May you share freely, never taking more than you give.
11 *************************************************************************
12 ** This file contains C code routines that are called by the parser
13 ** to handle SELECT statements in SQLite.
15 #include "sqliteInt.h"
18 ** Trace output macros
20 #if SELECTTRACE_ENABLED
21 /***/ int sqlite3SelectTrace
= 0;
22 # define SELECTTRACE(K,P,S,X) \
23 if(sqlite3SelectTrace&(K)) \
24 sqlite3DebugPrintf("%s/%p: ",(S)->zSelName,(S)),\
27 # define SELECTTRACE(K,P,S,X)
32 ** An instance of the following object is used to record information about
33 ** how to process the DISTINCT keyword, to simplify passing that information
34 ** into the selectInnerLoop() routine.
36 typedef struct DistinctCtx DistinctCtx
;
38 u8 isTnct
; /* True if the DISTINCT keyword is present */
39 u8 eTnctType
; /* One of the WHERE_DISTINCT_* operators */
40 int tabTnct
; /* Ephemeral table used for DISTINCT processing */
41 int addrTnct
; /* Address of OP_OpenEphemeral opcode for tabTnct */
45 ** An instance of the following object is used to record information about
46 ** the ORDER BY (or GROUP BY) clause of query is being coded.
48 typedef struct SortCtx SortCtx
;
50 ExprList
*pOrderBy
; /* The ORDER BY (or GROUP BY clause) */
51 int nOBSat
; /* Number of ORDER BY terms satisfied by indices */
52 int iECursor
; /* Cursor number for the sorter */
53 int regReturn
; /* Register holding block-output return address */
54 int labelBkOut
; /* Start label for the block-output subroutine */
55 int addrSortIndex
; /* Address of the OP_SorterOpen or OP_OpenEphemeral */
56 int labelDone
; /* Jump here when done, ex: LIMIT reached */
57 u8 sortFlags
; /* Zero or more SORTFLAG_* bits */
58 u8 bOrderedInnerLoop
; /* ORDER BY correctly sorts the inner loop */
60 #define SORTFLAG_UseSorter 0x01 /* Use SorterOpen instead of OpenEphemeral */
63 ** Delete all the content of a Select structure. Deallocate the structure
64 ** itself only if bFree is true.
66 static void clearSelect(sqlite3
*db
, Select
*p
, int bFree
){
68 Select
*pPrior
= p
->pPrior
;
69 sqlite3ExprListDelete(db
, p
->pEList
);
70 sqlite3SrcListDelete(db
, p
->pSrc
);
71 sqlite3ExprDelete(db
, p
->pWhere
);
72 sqlite3ExprListDelete(db
, p
->pGroupBy
);
73 sqlite3ExprDelete(db
, p
->pHaving
);
74 sqlite3ExprListDelete(db
, p
->pOrderBy
);
75 sqlite3ExprDelete(db
, p
->pLimit
);
76 if( OK_IF_ALWAYS_TRUE(p
->pWith
) ) sqlite3WithDelete(db
, p
->pWith
);
77 if( bFree
) sqlite3DbFreeNN(db
, p
);
84 ** Initialize a SelectDest structure.
86 void sqlite3SelectDestInit(SelectDest
*pDest
, int eDest
, int iParm
){
87 pDest
->eDest
= (u8
)eDest
;
88 pDest
->iSDParm
= iParm
;
96 ** Allocate a new Select structure and return a pointer to that
99 Select
*sqlite3SelectNew(
100 Parse
*pParse
, /* Parsing context */
101 ExprList
*pEList
, /* which columns to include in the result */
102 SrcList
*pSrc
, /* the FROM clause -- which tables to scan */
103 Expr
*pWhere
, /* the WHERE clause */
104 ExprList
*pGroupBy
, /* the GROUP BY clause */
105 Expr
*pHaving
, /* the HAVING clause */
106 ExprList
*pOrderBy
, /* the ORDER BY clause */
107 u32 selFlags
, /* Flag parameters, such as SF_Distinct */
108 Expr
*pLimit
/* LIMIT value. NULL means not used */
112 pNew
= sqlite3DbMallocRawNN(pParse
->db
, sizeof(*pNew
) );
114 assert( pParse
->db
->mallocFailed
);
118 pEList
= sqlite3ExprListAppend(pParse
, 0,
119 sqlite3Expr(pParse
->db
,TK_ASTERISK
,0));
121 pNew
->pEList
= pEList
;
122 pNew
->op
= TK_SELECT
;
123 pNew
->selFlags
= selFlags
;
126 #if SELECTTRACE_ENABLED
127 pNew
->zSelName
[0] = 0;
129 pNew
->addrOpenEphm
[0] = -1;
130 pNew
->addrOpenEphm
[1] = -1;
131 pNew
->nSelectRow
= 0;
132 if( pSrc
==0 ) pSrc
= sqlite3DbMallocZero(pParse
->db
, sizeof(*pSrc
));
134 pNew
->pWhere
= pWhere
;
135 pNew
->pGroupBy
= pGroupBy
;
136 pNew
->pHaving
= pHaving
;
137 pNew
->pOrderBy
= pOrderBy
;
140 pNew
->pLimit
= pLimit
;
142 if( pParse
->db
->mallocFailed
) {
143 clearSelect(pParse
->db
, pNew
, pNew
!=&standin
);
146 assert( pNew
->pSrc
!=0 || pParse
->nErr
>0 );
148 assert( pNew
!=&standin
);
152 #if SELECTTRACE_ENABLED
154 ** Set the name of a Select object
156 void sqlite3SelectSetName(Select
*p
, const char *zName
){
158 sqlite3_snprintf(sizeof(p
->zSelName
), p
->zSelName
, "%s", zName
);
165 ** Delete the given Select structure and all of its substructures.
167 void sqlite3SelectDelete(sqlite3
*db
, Select
*p
){
168 if( OK_IF_ALWAYS_TRUE(p
) ) clearSelect(db
, p
, 1);
172 ** Return a pointer to the right-most SELECT statement in a compound.
174 static Select
*findRightmost(Select
*p
){
175 while( p
->pNext
) p
= p
->pNext
;
180 ** Given 1 to 3 identifiers preceding the JOIN keyword, determine the
181 ** type of join. Return an integer constant that expresses that type
182 ** in terms of the following bit values:
191 ** A full outer join is the combination of JT_LEFT and JT_RIGHT.
193 ** If an illegal or unsupported join type is seen, then still return
194 ** a join type, but put an error in the pParse structure.
196 int sqlite3JoinType(Parse
*pParse
, Token
*pA
, Token
*pB
, Token
*pC
){
200 /* 0123456789 123456789 123456789 123 */
201 static const char zKeyText
[] = "naturaleftouterightfullinnercross";
202 static const struct {
203 u8 i
; /* Beginning of keyword text in zKeyText[] */
204 u8 nChar
; /* Length of the keyword in characters */
205 u8 code
; /* Join type mask */
207 /* natural */ { 0, 7, JT_NATURAL
},
208 /* left */ { 6, 4, JT_LEFT
|JT_OUTER
},
209 /* outer */ { 10, 5, JT_OUTER
},
210 /* right */ { 14, 5, JT_RIGHT
|JT_OUTER
},
211 /* full */ { 19, 4, JT_LEFT
|JT_RIGHT
|JT_OUTER
},
212 /* inner */ { 23, 5, JT_INNER
},
213 /* cross */ { 28, 5, JT_INNER
|JT_CROSS
},
219 for(i
=0; i
<3 && apAll
[i
]; i
++){
221 for(j
=0; j
<ArraySize(aKeyword
); j
++){
222 if( p
->n
==aKeyword
[j
].nChar
223 && sqlite3StrNICmp((char*)p
->z
, &zKeyText
[aKeyword
[j
].i
], p
->n
)==0 ){
224 jointype
|= aKeyword
[j
].code
;
228 testcase( j
==0 || j
==1 || j
==2 || j
==3 || j
==4 || j
==5 || j
==6 );
229 if( j
>=ArraySize(aKeyword
) ){
230 jointype
|= JT_ERROR
;
235 (jointype
& (JT_INNER
|JT_OUTER
))==(JT_INNER
|JT_OUTER
) ||
236 (jointype
& JT_ERROR
)!=0
238 const char *zSp
= " ";
240 if( pC
==0 ){ zSp
++; }
241 sqlite3ErrorMsg(pParse
, "unknown or unsupported join type: "
242 "%T %T%s%T", pA
, pB
, zSp
, pC
);
244 }else if( (jointype
& JT_OUTER
)!=0
245 && (jointype
& (JT_LEFT
|JT_RIGHT
))!=JT_LEFT
){
246 sqlite3ErrorMsg(pParse
,
247 "RIGHT and FULL OUTER JOINs are not currently supported");
254 ** Return the index of a column in a table. Return -1 if the column
255 ** is not contained in the table.
257 static int columnIndex(Table
*pTab
, const char *zCol
){
259 for(i
=0; i
<pTab
->nCol
; i
++){
260 if( sqlite3StrICmp(pTab
->aCol
[i
].zName
, zCol
)==0 ) return i
;
266 ** Search the first N tables in pSrc, from left to right, looking for a
267 ** table that has a column named zCol.
269 ** When found, set *piTab and *piCol to the table index and column index
270 ** of the matching column and return TRUE.
272 ** If not found, return FALSE.
274 static int tableAndColumnIndex(
275 SrcList
*pSrc
, /* Array of tables to search */
276 int N
, /* Number of tables in pSrc->a[] to search */
277 const char *zCol
, /* Name of the column we are looking for */
278 int *piTab
, /* Write index of pSrc->a[] here */
279 int *piCol
/* Write index of pSrc->a[*piTab].pTab->aCol[] here */
281 int i
; /* For looping over tables in pSrc */
282 int iCol
; /* Index of column matching zCol */
284 assert( (piTab
==0)==(piCol
==0) ); /* Both or neither are NULL */
286 iCol
= columnIndex(pSrc
->a
[i
].pTab
, zCol
);
299 ** This function is used to add terms implied by JOIN syntax to the
300 ** WHERE clause expression of a SELECT statement. The new term, which
301 ** is ANDed with the existing WHERE clause, is of the form:
303 ** (tab1.col1 = tab2.col2)
305 ** where tab1 is the iSrc'th table in SrcList pSrc and tab2 is the
306 ** (iSrc+1)'th. Column col1 is column iColLeft of tab1, and col2 is
307 ** column iColRight of tab2.
309 static void addWhereTerm(
310 Parse
*pParse
, /* Parsing context */
311 SrcList
*pSrc
, /* List of tables in FROM clause */
312 int iLeft
, /* Index of first table to join in pSrc */
313 int iColLeft
, /* Index of column in first table */
314 int iRight
, /* Index of second table in pSrc */
315 int iColRight
, /* Index of column in second table */
316 int isOuterJoin
, /* True if this is an OUTER join */
317 Expr
**ppWhere
/* IN/OUT: The WHERE clause to add to */
319 sqlite3
*db
= pParse
->db
;
324 assert( iLeft
<iRight
);
325 assert( pSrc
->nSrc
>iRight
);
326 assert( pSrc
->a
[iLeft
].pTab
);
327 assert( pSrc
->a
[iRight
].pTab
);
329 pE1
= sqlite3CreateColumnExpr(db
, pSrc
, iLeft
, iColLeft
);
330 pE2
= sqlite3CreateColumnExpr(db
, pSrc
, iRight
, iColRight
);
332 pEq
= sqlite3PExpr(pParse
, TK_EQ
, pE1
, pE2
);
333 if( pEq
&& isOuterJoin
){
334 ExprSetProperty(pEq
, EP_FromJoin
);
335 assert( !ExprHasProperty(pEq
, EP_TokenOnly
|EP_Reduced
) );
336 ExprSetVVAProperty(pEq
, EP_NoReduce
);
337 pEq
->iRightJoinTable
= (i16
)pE2
->iTable
;
339 *ppWhere
= sqlite3ExprAnd(db
, *ppWhere
, pEq
);
343 ** Set the EP_FromJoin property on all terms of the given expression.
344 ** And set the Expr.iRightJoinTable to iTable for every term in the
347 ** The EP_FromJoin property is used on terms of an expression to tell
348 ** the LEFT OUTER JOIN processing logic that this term is part of the
349 ** join restriction specified in the ON or USING clause and not a part
350 ** of the more general WHERE clause. These terms are moved over to the
351 ** WHERE clause during join processing but we need to remember that they
352 ** originated in the ON or USING clause.
354 ** The Expr.iRightJoinTable tells the WHERE clause processing that the
355 ** expression depends on table iRightJoinTable even if that table is not
356 ** explicitly mentioned in the expression. That information is needed
357 ** for cases like this:
359 ** SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.b AND t1.x=5
361 ** The where clause needs to defer the handling of the t1.x=5
362 ** term until after the t2 loop of the join. In that way, a
363 ** NULL t2 row will be inserted whenever t1.x!=5. If we do not
364 ** defer the handling of t1.x=5, it will be processed immediately
365 ** after the t1 loop and rows with t1.x!=5 will never appear in
366 ** the output, which is incorrect.
368 static void setJoinExpr(Expr
*p
, int iTable
){
370 ExprSetProperty(p
, EP_FromJoin
);
371 assert( !ExprHasProperty(p
, EP_TokenOnly
|EP_Reduced
) );
372 ExprSetVVAProperty(p
, EP_NoReduce
);
373 p
->iRightJoinTable
= (i16
)iTable
;
374 if( p
->op
==TK_FUNCTION
&& p
->x
.pList
){
376 for(i
=0; i
<p
->x
.pList
->nExpr
; i
++){
377 setJoinExpr(p
->x
.pList
->a
[i
].pExpr
, iTable
);
380 setJoinExpr(p
->pLeft
, iTable
);
386 ** This routine processes the join information for a SELECT statement.
387 ** ON and USING clauses are converted into extra terms of the WHERE clause.
388 ** NATURAL joins also create extra WHERE clause terms.
390 ** The terms of a FROM clause are contained in the Select.pSrc structure.
391 ** The left most table is the first entry in Select.pSrc. The right-most
392 ** table is the last entry. The join operator is held in the entry to
393 ** the left. Thus entry 0 contains the join operator for the join between
394 ** entries 0 and 1. Any ON or USING clauses associated with the join are
395 ** also attached to the left entry.
397 ** This routine returns the number of errors encountered.
399 static int sqliteProcessJoin(Parse
*pParse
, Select
*p
){
400 SrcList
*pSrc
; /* All tables in the FROM clause */
401 int i
, j
; /* Loop counters */
402 struct SrcList_item
*pLeft
; /* Left table being joined */
403 struct SrcList_item
*pRight
; /* Right table being joined */
408 for(i
=0; i
<pSrc
->nSrc
-1; i
++, pRight
++, pLeft
++){
409 Table
*pRightTab
= pRight
->pTab
;
412 if( NEVER(pLeft
->pTab
==0 || pRightTab
==0) ) continue;
413 isOuter
= (pRight
->fg
.jointype
& JT_OUTER
)!=0;
415 /* When the NATURAL keyword is present, add WHERE clause terms for
416 ** every column that the two tables have in common.
418 if( pRight
->fg
.jointype
& JT_NATURAL
){
419 if( pRight
->pOn
|| pRight
->pUsing
){
420 sqlite3ErrorMsg(pParse
, "a NATURAL join may not have "
421 "an ON or USING clause", 0);
424 for(j
=0; j
<pRightTab
->nCol
; j
++){
425 char *zName
; /* Name of column in the right table */
426 int iLeft
; /* Matching left table */
427 int iLeftCol
; /* Matching column in the left table */
429 zName
= pRightTab
->aCol
[j
].zName
;
430 if( tableAndColumnIndex(pSrc
, i
+1, zName
, &iLeft
, &iLeftCol
) ){
431 addWhereTerm(pParse
, pSrc
, iLeft
, iLeftCol
, i
+1, j
,
432 isOuter
, &p
->pWhere
);
437 /* Disallow both ON and USING clauses in the same join
439 if( pRight
->pOn
&& pRight
->pUsing
){
440 sqlite3ErrorMsg(pParse
, "cannot have both ON and USING "
441 "clauses in the same join");
445 /* Add the ON clause to the end of the WHERE clause, connected by
449 if( isOuter
) setJoinExpr(pRight
->pOn
, pRight
->iCursor
);
450 p
->pWhere
= sqlite3ExprAnd(pParse
->db
, p
->pWhere
, pRight
->pOn
);
454 /* Create extra terms on the WHERE clause for each column named
455 ** in the USING clause. Example: If the two tables to be joined are
456 ** A and B and the USING clause names X, Y, and Z, then add this
457 ** to the WHERE clause: A.X=B.X AND A.Y=B.Y AND A.Z=B.Z
458 ** Report an error if any column mentioned in the USING clause is
459 ** not contained in both tables to be joined.
461 if( pRight
->pUsing
){
462 IdList
*pList
= pRight
->pUsing
;
463 for(j
=0; j
<pList
->nId
; j
++){
464 char *zName
; /* Name of the term in the USING clause */
465 int iLeft
; /* Table on the left with matching column name */
466 int iLeftCol
; /* Column number of matching column on the left */
467 int iRightCol
; /* Column number of matching column on the right */
469 zName
= pList
->a
[j
].zName
;
470 iRightCol
= columnIndex(pRightTab
, zName
);
472 || !tableAndColumnIndex(pSrc
, i
+1, zName
, &iLeft
, &iLeftCol
)
474 sqlite3ErrorMsg(pParse
, "cannot join using column %s - column "
475 "not present in both tables", zName
);
478 addWhereTerm(pParse
, pSrc
, iLeft
, iLeftCol
, i
+1, iRightCol
,
479 isOuter
, &p
->pWhere
);
486 /* Forward reference */
487 static KeyInfo
*keyInfoFromExprList(
488 Parse
*pParse
, /* Parsing context */
489 ExprList
*pList
, /* Form the KeyInfo object from this ExprList */
490 int iStart
, /* Begin with this column of pList */
491 int nExtra
/* Add this many extra columns to the end */
495 ** Generate code that will push the record in registers regData
496 ** through regData+nData-1 onto the sorter.
498 static void pushOntoSorter(
499 Parse
*pParse
, /* Parser context */
500 SortCtx
*pSort
, /* Information about the ORDER BY clause */
501 Select
*pSelect
, /* The whole SELECT statement */
502 int regData
, /* First register holding data to be sorted */
503 int regOrigData
, /* First register holding data before packing */
504 int nData
, /* Number of elements in the data array */
505 int nPrefixReg
/* No. of reg prior to regData available for use */
507 Vdbe
*v
= pParse
->pVdbe
; /* Stmt under construction */
508 int bSeq
= ((pSort
->sortFlags
& SORTFLAG_UseSorter
)==0);
509 int nExpr
= pSort
->pOrderBy
->nExpr
; /* No. of ORDER BY terms */
510 int nBase
= nExpr
+ bSeq
+ nData
; /* Fields in sorter record */
511 int regBase
; /* Regs for sorter record */
512 int regRecord
= ++pParse
->nMem
; /* Assembled sorter record */
513 int nOBSat
= pSort
->nOBSat
; /* ORDER BY terms to skip */
514 int op
; /* Opcode to add sorter record to sorter */
515 int iLimit
; /* LIMIT counter */
517 assert( bSeq
==0 || bSeq
==1 );
518 assert( nData
==1 || regData
==regOrigData
|| regOrigData
==0 );
520 assert( nPrefixReg
==nExpr
+bSeq
);
521 regBase
= regData
- nExpr
- bSeq
;
523 regBase
= pParse
->nMem
+ 1;
524 pParse
->nMem
+= nBase
;
526 assert( pSelect
->iOffset
==0 || pSelect
->iLimit
!=0 );
527 iLimit
= pSelect
->iOffset
? pSelect
->iOffset
+1 : pSelect
->iLimit
;
528 pSort
->labelDone
= sqlite3VdbeMakeLabel(v
);
529 sqlite3ExprCodeExprList(pParse
, pSort
->pOrderBy
, regBase
, regOrigData
,
530 SQLITE_ECEL_DUP
| (regOrigData
? SQLITE_ECEL_REF
: 0));
532 sqlite3VdbeAddOp2(v
, OP_Sequence
, pSort
->iECursor
, regBase
+nExpr
);
534 if( nPrefixReg
==0 && nData
>0 ){
535 sqlite3ExprCodeMove(pParse
, regData
, regBase
+nExpr
+bSeq
, nData
);
537 sqlite3VdbeAddOp3(v
, OP_MakeRecord
, regBase
+nOBSat
, nBase
-nOBSat
, regRecord
);
539 int regPrevKey
; /* The first nOBSat columns of the previous row */
540 int addrFirst
; /* Address of the OP_IfNot opcode */
541 int addrJmp
; /* Address of the OP_Jump opcode */
542 VdbeOp
*pOp
; /* Opcode that opens the sorter */
543 int nKey
; /* Number of sorting key columns, including OP_Sequence */
544 KeyInfo
*pKI
; /* Original KeyInfo on the sorter table */
546 regPrevKey
= pParse
->nMem
+1;
547 pParse
->nMem
+= pSort
->nOBSat
;
548 nKey
= nExpr
- pSort
->nOBSat
+ bSeq
;
550 addrFirst
= sqlite3VdbeAddOp1(v
, OP_IfNot
, regBase
+nExpr
);
552 addrFirst
= sqlite3VdbeAddOp1(v
, OP_SequenceTest
, pSort
->iECursor
);
555 sqlite3VdbeAddOp3(v
, OP_Compare
, regPrevKey
, regBase
, pSort
->nOBSat
);
556 pOp
= sqlite3VdbeGetOp(v
, pSort
->addrSortIndex
);
557 if( pParse
->db
->mallocFailed
) return;
558 pOp
->p2
= nKey
+ nData
;
559 pKI
= pOp
->p4
.pKeyInfo
;
560 memset(pKI
->aSortOrder
, 0, pKI
->nKeyField
); /* Makes OP_Jump testable */
561 sqlite3VdbeChangeP4(v
, -1, (char*)pKI
, P4_KEYINFO
);
562 testcase( pKI
->nAllField
> pKI
->nKeyField
+2 );
563 pOp
->p4
.pKeyInfo
= keyInfoFromExprList(pParse
, pSort
->pOrderBy
, nOBSat
,
564 pKI
->nAllField
-pKI
->nKeyField
-1);
565 addrJmp
= sqlite3VdbeCurrentAddr(v
);
566 sqlite3VdbeAddOp3(v
, OP_Jump
, addrJmp
+1, 0, addrJmp
+1); VdbeCoverage(v
);
567 pSort
->labelBkOut
= sqlite3VdbeMakeLabel(v
);
568 pSort
->regReturn
= ++pParse
->nMem
;
569 sqlite3VdbeAddOp2(v
, OP_Gosub
, pSort
->regReturn
, pSort
->labelBkOut
);
570 sqlite3VdbeAddOp1(v
, OP_ResetSorter
, pSort
->iECursor
);
572 sqlite3VdbeAddOp2(v
, OP_IfNot
, iLimit
, pSort
->labelDone
);
575 sqlite3VdbeJumpHere(v
, addrFirst
);
576 sqlite3ExprCodeMove(pParse
, regBase
, regPrevKey
, pSort
->nOBSat
);
577 sqlite3VdbeJumpHere(v
, addrJmp
);
579 if( pSort
->sortFlags
& SORTFLAG_UseSorter
){
580 op
= OP_SorterInsert
;
584 sqlite3VdbeAddOp4Int(v
, op
, pSort
->iECursor
, regRecord
,
585 regBase
+nOBSat
, nBase
-nOBSat
);
589 /* Fill the sorter until it contains LIMIT+OFFSET entries. (The iLimit
590 ** register is initialized with value of LIMIT+OFFSET.) After the sorter
591 ** fills up, delete the least entry in the sorter after each insert.
592 ** Thus we never hold more than the LIMIT+OFFSET rows in memory at once */
593 addr
= sqlite3VdbeAddOp1(v
, OP_IfNotZero
, iLimit
); VdbeCoverage(v
);
594 sqlite3VdbeAddOp1(v
, OP_Last
, pSort
->iECursor
);
595 if( pSort
->bOrderedInnerLoop
){
597 sqlite3VdbeAddOp3(v
, OP_Column
, pSort
->iECursor
, nExpr
, r1
);
598 VdbeComment((v
, "seq"));
600 sqlite3VdbeAddOp1(v
, OP_Delete
, pSort
->iECursor
);
601 if( pSort
->bOrderedInnerLoop
){
602 /* If the inner loop is driven by an index such that values from
603 ** the same iteration of the inner loop are in sorted order, then
604 ** immediately jump to the next iteration of an inner loop if the
605 ** entry from the current iteration does not fit into the top
606 ** LIMIT+OFFSET entries of the sorter. */
607 int iBrk
= sqlite3VdbeCurrentAddr(v
) + 2;
608 sqlite3VdbeAddOp3(v
, OP_Eq
, regBase
+nExpr
, iBrk
, r1
);
609 sqlite3VdbeChangeP5(v
, SQLITE_NULLEQ
);
612 sqlite3VdbeJumpHere(v
, addr
);
617 ** Add code to implement the OFFSET
619 static void codeOffset(
620 Vdbe
*v
, /* Generate code into this VM */
621 int iOffset
, /* Register holding the offset counter */
622 int iContinue
/* Jump here to skip the current record */
625 sqlite3VdbeAddOp3(v
, OP_IfPos
, iOffset
, iContinue
, 1); VdbeCoverage(v
);
626 VdbeComment((v
, "OFFSET"));
631 ** Add code that will check to make sure the N registers starting at iMem
632 ** form a distinct entry. iTab is a sorting index that holds previously
633 ** seen combinations of the N values. A new entry is made in iTab
634 ** if the current N values are new.
636 ** A jump to addrRepeat is made and the N+1 values are popped from the
637 ** stack if the top N elements are not distinct.
639 static void codeDistinct(
640 Parse
*pParse
, /* Parsing and code generating context */
641 int iTab
, /* A sorting index used to test for distinctness */
642 int addrRepeat
, /* Jump to here if not distinct */
643 int N
, /* Number of elements */
644 int iMem
/* First element */
650 r1
= sqlite3GetTempReg(pParse
);
651 sqlite3VdbeAddOp4Int(v
, OP_Found
, iTab
, addrRepeat
, iMem
, N
); VdbeCoverage(v
);
652 sqlite3VdbeAddOp3(v
, OP_MakeRecord
, iMem
, N
, r1
);
653 sqlite3VdbeAddOp4Int(v
, OP_IdxInsert
, iTab
, r1
, iMem
, N
);
654 sqlite3VdbeChangeP5(v
, OPFLAG_USESEEKRESULT
);
655 sqlite3ReleaseTempReg(pParse
, r1
);
659 ** This routine generates the code for the inside of the inner loop
662 ** If srcTab is negative, then the p->pEList expressions
663 ** are evaluated in order to get the data for this row. If srcTab is
664 ** zero or more, then data is pulled from srcTab and p->pEList is used only
665 ** to get the number of columns and the collation sequence for each column.
667 static void selectInnerLoop(
668 Parse
*pParse
, /* The parser context */
669 Select
*p
, /* The complete select statement being coded */
670 int srcTab
, /* Pull data from this table if non-negative */
671 SortCtx
*pSort
, /* If not NULL, info on how to process ORDER BY */
672 DistinctCtx
*pDistinct
, /* If not NULL, info on how to process DISTINCT */
673 SelectDest
*pDest
, /* How to dispose of the results */
674 int iContinue
, /* Jump here to continue with next row */
675 int iBreak
/* Jump here to break out of the inner loop */
677 Vdbe
*v
= pParse
->pVdbe
;
679 int hasDistinct
; /* True if the DISTINCT keyword is present */
680 int eDest
= pDest
->eDest
; /* How to dispose of results */
681 int iParm
= pDest
->iSDParm
; /* First argument to disposal method */
682 int nResultCol
; /* Number of result columns */
683 int nPrefixReg
= 0; /* Number of extra registers before regResult */
685 /* Usually, regResult is the first cell in an array of memory cells
686 ** containing the current result row. In this case regOrig is set to the
687 ** same value. However, if the results are being sent to the sorter, the
688 ** values for any expressions that are also part of the sort-key are omitted
689 ** from this array. In this case regOrig is set to zero. */
690 int regResult
; /* Start of memory holding current results */
691 int regOrig
; /* Start of memory holding full result (or 0) */
694 assert( p
->pEList
!=0 );
695 hasDistinct
= pDistinct
? pDistinct
->eTnctType
: WHERE_DISTINCT_NOOP
;
696 if( pSort
&& pSort
->pOrderBy
==0 ) pSort
= 0;
697 if( pSort
==0 && !hasDistinct
){
698 assert( iContinue
!=0 );
699 codeOffset(v
, p
->iOffset
, iContinue
);
702 /* Pull the requested columns.
704 nResultCol
= p
->pEList
->nExpr
;
706 if( pDest
->iSdst
==0 ){
708 nPrefixReg
= pSort
->pOrderBy
->nExpr
;
709 if( !(pSort
->sortFlags
& SORTFLAG_UseSorter
) ) nPrefixReg
++;
710 pParse
->nMem
+= nPrefixReg
;
712 pDest
->iSdst
= pParse
->nMem
+1;
713 pParse
->nMem
+= nResultCol
;
714 }else if( pDest
->iSdst
+nResultCol
> pParse
->nMem
){
715 /* This is an error condition that can result, for example, when a SELECT
716 ** on the right-hand side of an INSERT contains more result columns than
717 ** there are columns in the table on the left. The error will be caught
718 ** and reported later. But we need to make sure enough memory is allocated
719 ** to avoid other spurious errors in the meantime. */
720 pParse
->nMem
+= nResultCol
;
722 pDest
->nSdst
= nResultCol
;
723 regOrig
= regResult
= pDest
->iSdst
;
725 for(i
=0; i
<nResultCol
; i
++){
726 sqlite3VdbeAddOp3(v
, OP_Column
, srcTab
, i
, regResult
+i
);
727 VdbeComment((v
, "%s", p
->pEList
->a
[i
].zName
));
729 }else if( eDest
!=SRT_Exists
){
730 /* If the destination is an EXISTS(...) expression, the actual
731 ** values returned by the SELECT are not required.
734 if( eDest
==SRT_Mem
|| eDest
==SRT_Output
|| eDest
==SRT_Coroutine
){
735 ecelFlags
= SQLITE_ECEL_DUP
;
739 if( pSort
&& hasDistinct
==0 && eDest
!=SRT_EphemTab
&& eDest
!=SRT_Table
){
740 /* For each expression in p->pEList that is a copy of an expression in
741 ** the ORDER BY clause (pSort->pOrderBy), set the associated
742 ** iOrderByCol value to one more than the index of the ORDER BY
743 ** expression within the sort-key that pushOntoSorter() will generate.
744 ** This allows the p->pEList field to be omitted from the sorted record,
745 ** saving space and CPU cycles. */
746 ecelFlags
|= (SQLITE_ECEL_OMITREF
|SQLITE_ECEL_REF
);
747 for(i
=pSort
->nOBSat
; i
<pSort
->pOrderBy
->nExpr
; i
++){
749 if( (j
= pSort
->pOrderBy
->a
[i
].u
.x
.iOrderByCol
)>0 ){
750 p
->pEList
->a
[j
-1].u
.x
.iOrderByCol
= i
+1-pSort
->nOBSat
;
754 assert( eDest
==SRT_Set
|| eDest
==SRT_Mem
755 || eDest
==SRT_Coroutine
|| eDest
==SRT_Output
);
757 nResultCol
= sqlite3ExprCodeExprList(pParse
,p
->pEList
,regResult
,
761 /* If the DISTINCT keyword was present on the SELECT statement
762 ** and this row has been seen before, then do not make this row
763 ** part of the result.
766 switch( pDistinct
->eTnctType
){
767 case WHERE_DISTINCT_ORDERED
: {
768 VdbeOp
*pOp
; /* No longer required OpenEphemeral instr. */
769 int iJump
; /* Jump destination */
770 int regPrev
; /* Previous row content */
772 /* Allocate space for the previous row */
773 regPrev
= pParse
->nMem
+1;
774 pParse
->nMem
+= nResultCol
;
776 /* Change the OP_OpenEphemeral coded earlier to an OP_Null
777 ** sets the MEM_Cleared bit on the first register of the
778 ** previous value. This will cause the OP_Ne below to always
779 ** fail on the first iteration of the loop even if the first
782 sqlite3VdbeChangeToNoop(v
, pDistinct
->addrTnct
);
783 pOp
= sqlite3VdbeGetOp(v
, pDistinct
->addrTnct
);
784 pOp
->opcode
= OP_Null
;
788 iJump
= sqlite3VdbeCurrentAddr(v
) + nResultCol
;
789 for(i
=0; i
<nResultCol
; i
++){
790 CollSeq
*pColl
= sqlite3ExprCollSeq(pParse
, p
->pEList
->a
[i
].pExpr
);
791 if( i
<nResultCol
-1 ){
792 sqlite3VdbeAddOp3(v
, OP_Ne
, regResult
+i
, iJump
, regPrev
+i
);
795 sqlite3VdbeAddOp3(v
, OP_Eq
, regResult
+i
, iContinue
, regPrev
+i
);
798 sqlite3VdbeChangeP4(v
, -1, (const char *)pColl
, P4_COLLSEQ
);
799 sqlite3VdbeChangeP5(v
, SQLITE_NULLEQ
);
801 assert( sqlite3VdbeCurrentAddr(v
)==iJump
|| pParse
->db
->mallocFailed
);
802 sqlite3VdbeAddOp3(v
, OP_Copy
, regResult
, regPrev
, nResultCol
-1);
806 case WHERE_DISTINCT_UNIQUE
: {
807 sqlite3VdbeChangeToNoop(v
, pDistinct
->addrTnct
);
812 assert( pDistinct
->eTnctType
==WHERE_DISTINCT_UNORDERED
);
813 codeDistinct(pParse
, pDistinct
->tabTnct
, iContinue
, nResultCol
,
819 codeOffset(v
, p
->iOffset
, iContinue
);
824 /* In this mode, write each query result to the key of the temporary
827 #ifndef SQLITE_OMIT_COMPOUND_SELECT
830 r1
= sqlite3GetTempReg(pParse
);
831 sqlite3VdbeAddOp3(v
, OP_MakeRecord
, regResult
, nResultCol
, r1
);
832 sqlite3VdbeAddOp4Int(v
, OP_IdxInsert
, iParm
, r1
, regResult
, nResultCol
);
833 sqlite3ReleaseTempReg(pParse
, r1
);
837 /* Construct a record from the query result, but instead of
838 ** saving that record, use it as a key to delete elements from
839 ** the temporary table iParm.
842 sqlite3VdbeAddOp3(v
, OP_IdxDelete
, iParm
, regResult
, nResultCol
);
845 #endif /* SQLITE_OMIT_COMPOUND_SELECT */
847 /* Store the result as data using a unique key.
853 int r1
= sqlite3GetTempRange(pParse
, nPrefixReg
+1);
854 testcase( eDest
==SRT_Table
);
855 testcase( eDest
==SRT_EphemTab
);
856 testcase( eDest
==SRT_Fifo
);
857 testcase( eDest
==SRT_DistFifo
);
858 sqlite3VdbeAddOp3(v
, OP_MakeRecord
, regResult
, nResultCol
, r1
+nPrefixReg
);
859 #ifndef SQLITE_OMIT_CTE
860 if( eDest
==SRT_DistFifo
){
861 /* If the destination is DistFifo, then cursor (iParm+1) is open
862 ** on an ephemeral index. If the current row is already present
863 ** in the index, do not write it to the output. If not, add the
864 ** current row to the index and proceed with writing it to the
865 ** output table as well. */
866 int addr
= sqlite3VdbeCurrentAddr(v
) + 4;
867 sqlite3VdbeAddOp4Int(v
, OP_Found
, iParm
+1, addr
, r1
, 0);
869 sqlite3VdbeAddOp4Int(v
, OP_IdxInsert
, iParm
+1, r1
,regResult
,nResultCol
);
874 pushOntoSorter(pParse
, pSort
, p
, r1
+nPrefixReg
,regResult
,1,nPrefixReg
);
876 int r2
= sqlite3GetTempReg(pParse
);
877 sqlite3VdbeAddOp2(v
, OP_NewRowid
, iParm
, r2
);
878 sqlite3VdbeAddOp3(v
, OP_Insert
, iParm
, r1
, r2
);
879 sqlite3VdbeChangeP5(v
, OPFLAG_APPEND
);
880 sqlite3ReleaseTempReg(pParse
, r2
);
882 sqlite3ReleaseTempRange(pParse
, r1
, nPrefixReg
+1);
886 #ifndef SQLITE_OMIT_SUBQUERY
887 /* If we are creating a set for an "expr IN (SELECT ...)" construct,
888 ** then there should be a single item on the stack. Write this
889 ** item into the set table with bogus data.
893 /* At first glance you would think we could optimize out the
894 ** ORDER BY in this case since the order of entries in the set
895 ** does not matter. But there might be a LIMIT clause, in which
896 ** case the order does matter */
898 pParse
, pSort
, p
, regResult
, regOrig
, nResultCol
, nPrefixReg
);
900 int r1
= sqlite3GetTempReg(pParse
);
901 assert( sqlite3Strlen30(pDest
->zAffSdst
)==nResultCol
);
902 sqlite3VdbeAddOp4(v
, OP_MakeRecord
, regResult
, nResultCol
,
903 r1
, pDest
->zAffSdst
, nResultCol
);
904 sqlite3ExprCacheAffinityChange(pParse
, regResult
, nResultCol
);
905 sqlite3VdbeAddOp4Int(v
, OP_IdxInsert
, iParm
, r1
, regResult
, nResultCol
);
906 sqlite3ReleaseTempReg(pParse
, r1
);
911 /* If any row exist in the result set, record that fact and abort.
914 sqlite3VdbeAddOp2(v
, OP_Integer
, 1, iParm
);
915 /* The LIMIT clause will terminate the loop for us */
919 /* If this is a scalar select that is part of an expression, then
920 ** store the results in the appropriate memory cell or array of
921 ** memory cells and break out of the scan loop.
925 assert( nResultCol
<=pDest
->nSdst
);
927 pParse
, pSort
, p
, regResult
, regOrig
, nResultCol
, nPrefixReg
);
929 assert( nResultCol
==pDest
->nSdst
);
930 assert( regResult
==iParm
);
931 /* The LIMIT clause will jump out of the loop for us */
935 #endif /* #ifndef SQLITE_OMIT_SUBQUERY */
937 case SRT_Coroutine
: /* Send data to a co-routine */
938 case SRT_Output
: { /* Return the results */
939 testcase( eDest
==SRT_Coroutine
);
940 testcase( eDest
==SRT_Output
);
942 pushOntoSorter(pParse
, pSort
, p
, regResult
, regOrig
, nResultCol
,
944 }else if( eDest
==SRT_Coroutine
){
945 sqlite3VdbeAddOp1(v
, OP_Yield
, pDest
->iSDParm
);
947 sqlite3VdbeAddOp2(v
, OP_ResultRow
, regResult
, nResultCol
);
948 sqlite3ExprCacheAffinityChange(pParse
, regResult
, nResultCol
);
953 #ifndef SQLITE_OMIT_CTE
954 /* Write the results into a priority queue that is order according to
955 ** pDest->pOrderBy (in pSO). pDest->iSDParm (in iParm) is the cursor for an
956 ** index with pSO->nExpr+2 columns. Build a key using pSO for the first
957 ** pSO->nExpr columns, then make sure all keys are unique by adding a
958 ** final OP_Sequence column. The last column is the record as a blob.
966 pSO
= pDest
->pOrderBy
;
969 r1
= sqlite3GetTempReg(pParse
);
970 r2
= sqlite3GetTempRange(pParse
, nKey
+2);
972 if( eDest
==SRT_DistQueue
){
973 /* If the destination is DistQueue, then cursor (iParm+1) is open
974 ** on a second ephemeral index that holds all values every previously
975 ** added to the queue. */
976 addrTest
= sqlite3VdbeAddOp4Int(v
, OP_Found
, iParm
+1, 0,
977 regResult
, nResultCol
);
980 sqlite3VdbeAddOp3(v
, OP_MakeRecord
, regResult
, nResultCol
, r3
);
981 if( eDest
==SRT_DistQueue
){
982 sqlite3VdbeAddOp2(v
, OP_IdxInsert
, iParm
+1, r3
);
983 sqlite3VdbeChangeP5(v
, OPFLAG_USESEEKRESULT
);
985 for(i
=0; i
<nKey
; i
++){
986 sqlite3VdbeAddOp2(v
, OP_SCopy
,
987 regResult
+ pSO
->a
[i
].u
.x
.iOrderByCol
- 1,
990 sqlite3VdbeAddOp2(v
, OP_Sequence
, iParm
, r2
+nKey
);
991 sqlite3VdbeAddOp3(v
, OP_MakeRecord
, r2
, nKey
+2, r1
);
992 sqlite3VdbeAddOp4Int(v
, OP_IdxInsert
, iParm
, r1
, r2
, nKey
+2);
993 if( addrTest
) sqlite3VdbeJumpHere(v
, addrTest
);
994 sqlite3ReleaseTempReg(pParse
, r1
);
995 sqlite3ReleaseTempRange(pParse
, r2
, nKey
+2);
998 #endif /* SQLITE_OMIT_CTE */
1002 #if !defined(SQLITE_OMIT_TRIGGER)
1003 /* Discard the results. This is used for SELECT statements inside
1004 ** the body of a TRIGGER. The purpose of such selects is to call
1005 ** user-defined functions that have side effects. We do not care
1006 ** about the actual results of the select.
1009 assert( eDest
==SRT_Discard
);
1015 /* Jump to the end of the loop if the LIMIT is reached. Except, if
1016 ** there is a sorter, in which case the sorter has already limited
1017 ** the output for us.
1019 if( pSort
==0 && p
->iLimit
){
1020 sqlite3VdbeAddOp2(v
, OP_DecrJumpZero
, p
->iLimit
, iBreak
); VdbeCoverage(v
);
1025 ** Allocate a KeyInfo object sufficient for an index of N key columns and
1028 KeyInfo
*sqlite3KeyInfoAlloc(sqlite3
*db
, int N
, int X
){
1029 int nExtra
= (N
+X
)*(sizeof(CollSeq
*)+1) - sizeof(CollSeq
*);
1030 KeyInfo
*p
= sqlite3DbMallocRawNN(db
, sizeof(KeyInfo
) + nExtra
);
1032 p
->aSortOrder
= (u8
*)&p
->aColl
[N
+X
];
1033 p
->nKeyField
= (u16
)N
;
1034 p
->nAllField
= (u16
)(N
+X
);
1038 memset(&p
[1], 0, nExtra
);
1040 sqlite3OomFault(db
);
1046 ** Deallocate a KeyInfo object
1048 void sqlite3KeyInfoUnref(KeyInfo
*p
){
1050 assert( p
->nRef
>0 );
1052 if( p
->nRef
==0 ) sqlite3DbFreeNN(p
->db
, p
);
1057 ** Make a new pointer to a KeyInfo object
1059 KeyInfo
*sqlite3KeyInfoRef(KeyInfo
*p
){
1061 assert( p
->nRef
>0 );
1069 ** Return TRUE if a KeyInfo object can be change. The KeyInfo object
1070 ** can only be changed if this is just a single reference to the object.
1072 ** This routine is used only inside of assert() statements.
1074 int sqlite3KeyInfoIsWriteable(KeyInfo
*p
){ return p
->nRef
==1; }
1075 #endif /* SQLITE_DEBUG */
1078 ** Given an expression list, generate a KeyInfo structure that records
1079 ** the collating sequence for each expression in that expression list.
1081 ** If the ExprList is an ORDER BY or GROUP BY clause then the resulting
1082 ** KeyInfo structure is appropriate for initializing a virtual index to
1083 ** implement that clause. If the ExprList is the result set of a SELECT
1084 ** then the KeyInfo structure is appropriate for initializing a virtual
1085 ** index to implement a DISTINCT test.
1087 ** Space to hold the KeyInfo structure is obtained from malloc. The calling
1088 ** function is responsible for seeing that this structure is eventually
1091 static KeyInfo
*keyInfoFromExprList(
1092 Parse
*pParse
, /* Parsing context */
1093 ExprList
*pList
, /* Form the KeyInfo object from this ExprList */
1094 int iStart
, /* Begin with this column of pList */
1095 int nExtra
/* Add this many extra columns to the end */
1099 struct ExprList_item
*pItem
;
1100 sqlite3
*db
= pParse
->db
;
1103 nExpr
= pList
->nExpr
;
1104 pInfo
= sqlite3KeyInfoAlloc(db
, nExpr
-iStart
, nExtra
+1);
1106 assert( sqlite3KeyInfoIsWriteable(pInfo
) );
1107 for(i
=iStart
, pItem
=pList
->a
+iStart
; i
<nExpr
; i
++, pItem
++){
1108 pInfo
->aColl
[i
-iStart
] = sqlite3ExprNNCollSeq(pParse
, pItem
->pExpr
);
1109 pInfo
->aSortOrder
[i
-iStart
] = pItem
->sortOrder
;
1116 ** Name of the connection operator, used for error messages.
1118 static const char *selectOpName(int id
){
1121 case TK_ALL
: z
= "UNION ALL"; break;
1122 case TK_INTERSECT
: z
= "INTERSECT"; break;
1123 case TK_EXCEPT
: z
= "EXCEPT"; break;
1124 default: z
= "UNION"; break;
1129 #ifndef SQLITE_OMIT_EXPLAIN
1131 ** Unless an "EXPLAIN QUERY PLAN" command is being processed, this function
1132 ** is a no-op. Otherwise, it adds a single row of output to the EQP result,
1133 ** where the caption is of the form:
1135 ** "USE TEMP B-TREE FOR xxx"
1137 ** where xxx is one of "DISTINCT", "ORDER BY" or "GROUP BY". Exactly which
1138 ** is determined by the zUsage argument.
1140 static void explainTempTable(Parse
*pParse
, const char *zUsage
){
1141 if( pParse
->explain
==2 ){
1142 Vdbe
*v
= pParse
->pVdbe
;
1143 char *zMsg
= sqlite3MPrintf(pParse
->db
, "USE TEMP B-TREE FOR %s", zUsage
);
1144 sqlite3VdbeAddOp4(v
, OP_Explain
, pParse
->iSelectId
, 0, 0, zMsg
, P4_DYNAMIC
);
1149 ** Assign expression b to lvalue a. A second, no-op, version of this macro
1150 ** is provided when SQLITE_OMIT_EXPLAIN is defined. This allows the code
1151 ** in sqlite3Select() to assign values to structure member variables that
1152 ** only exist if SQLITE_OMIT_EXPLAIN is not defined without polluting the
1153 ** code with #ifndef directives.
1155 # define explainSetInteger(a, b) a = b
1158 /* No-op versions of the explainXXX() functions and macros. */
1159 # define explainTempTable(y,z)
1160 # define explainSetInteger(y,z)
1163 #if !defined(SQLITE_OMIT_EXPLAIN) && !defined(SQLITE_OMIT_COMPOUND_SELECT)
1165 ** Unless an "EXPLAIN QUERY PLAN" command is being processed, this function
1166 ** is a no-op. Otherwise, it adds a single row of output to the EQP result,
1167 ** where the caption is of one of the two forms:
1169 ** "COMPOSITE SUBQUERIES iSub1 and iSub2 (op)"
1170 ** "COMPOSITE SUBQUERIES iSub1 and iSub2 USING TEMP B-TREE (op)"
1172 ** where iSub1 and iSub2 are the integers passed as the corresponding
1173 ** function parameters, and op is the text representation of the parameter
1174 ** of the same name. The parameter "op" must be one of TK_UNION, TK_EXCEPT,
1175 ** TK_INTERSECT or TK_ALL. The first form is used if argument bUseTmp is
1176 ** false, or the second form if it is true.
1178 static void explainComposite(
1179 Parse
*pParse
, /* Parse context */
1180 int op
, /* One of TK_UNION, TK_EXCEPT etc. */
1181 int iSub1
, /* Subquery id 1 */
1182 int iSub2
, /* Subquery id 2 */
1183 int bUseTmp
/* True if a temp table was used */
1185 assert( op
==TK_UNION
|| op
==TK_EXCEPT
|| op
==TK_INTERSECT
|| op
==TK_ALL
);
1186 if( pParse
->explain
==2 ){
1187 Vdbe
*v
= pParse
->pVdbe
;
1188 char *zMsg
= sqlite3MPrintf(
1189 pParse
->db
, "COMPOUND SUBQUERIES %d AND %d %s(%s)", iSub1
, iSub2
,
1190 bUseTmp
?"USING TEMP B-TREE ":"", selectOpName(op
)
1192 sqlite3VdbeAddOp4(v
, OP_Explain
, pParse
->iSelectId
, 0, 0, zMsg
, P4_DYNAMIC
);
1196 /* No-op versions of the explainXXX() functions and macros. */
1197 # define explainComposite(v,w,x,y,z)
1201 ** If the inner loop was generated using a non-null pOrderBy argument,
1202 ** then the results were placed in a sorter. After the loop is terminated
1203 ** we need to run the sorter and output the results. The following
1204 ** routine generates the code needed to do that.
1206 static void generateSortTail(
1207 Parse
*pParse
, /* Parsing context */
1208 Select
*p
, /* The SELECT statement */
1209 SortCtx
*pSort
, /* Information on the ORDER BY clause */
1210 int nColumn
, /* Number of columns of data */
1211 SelectDest
*pDest
/* Write the sorted results here */
1213 Vdbe
*v
= pParse
->pVdbe
; /* The prepared statement */
1214 int addrBreak
= pSort
->labelDone
; /* Jump here to exit loop */
1215 int addrContinue
= sqlite3VdbeMakeLabel(v
); /* Jump here for next cycle */
1219 ExprList
*pOrderBy
= pSort
->pOrderBy
;
1220 int eDest
= pDest
->eDest
;
1221 int iParm
= pDest
->iSDParm
;
1226 int iSortTab
; /* Sorter cursor to read from */
1227 int nSortData
; /* Trailing values to read from sorter */
1229 int bSeq
; /* True if sorter record includes seq. no. */
1230 struct ExprList_item
*aOutEx
= p
->pEList
->a
;
1232 assert( addrBreak
<0 );
1233 if( pSort
->labelBkOut
){
1234 sqlite3VdbeAddOp2(v
, OP_Gosub
, pSort
->regReturn
, pSort
->labelBkOut
);
1235 sqlite3VdbeGoto(v
, addrBreak
);
1236 sqlite3VdbeResolveLabel(v
, pSort
->labelBkOut
);
1238 iTab
= pSort
->iECursor
;
1239 if( eDest
==SRT_Output
|| eDest
==SRT_Coroutine
|| eDest
==SRT_Mem
){
1241 regRow
= pDest
->iSdst
;
1242 nSortData
= nColumn
;
1244 regRowid
= sqlite3GetTempReg(pParse
);
1245 regRow
= sqlite3GetTempRange(pParse
, nColumn
);
1246 nSortData
= nColumn
;
1248 nKey
= pOrderBy
->nExpr
- pSort
->nOBSat
;
1249 if( pSort
->sortFlags
& SORTFLAG_UseSorter
){
1250 int regSortOut
= ++pParse
->nMem
;
1251 iSortTab
= pParse
->nTab
++;
1252 if( pSort
->labelBkOut
){
1253 addrOnce
= sqlite3VdbeAddOp0(v
, OP_Once
); VdbeCoverage(v
);
1255 sqlite3VdbeAddOp3(v
, OP_OpenPseudo
, iSortTab
, regSortOut
, nKey
+1+nSortData
);
1256 if( addrOnce
) sqlite3VdbeJumpHere(v
, addrOnce
);
1257 addr
= 1 + sqlite3VdbeAddOp2(v
, OP_SorterSort
, iTab
, addrBreak
);
1259 codeOffset(v
, p
->iOffset
, addrContinue
);
1260 sqlite3VdbeAddOp3(v
, OP_SorterData
, iTab
, regSortOut
, iSortTab
);
1263 addr
= 1 + sqlite3VdbeAddOp2(v
, OP_Sort
, iTab
, addrBreak
); VdbeCoverage(v
);
1264 codeOffset(v
, p
->iOffset
, addrContinue
);
1268 for(i
=0, iCol
=nKey
+bSeq
-1; i
<nSortData
; i
++){
1269 if( aOutEx
[i
].u
.x
.iOrderByCol
==0 ) iCol
++;
1271 for(i
=nSortData
-1; i
>=0; i
--){
1273 if( aOutEx
[i
].u
.x
.iOrderByCol
){
1274 iRead
= aOutEx
[i
].u
.x
.iOrderByCol
-1;
1278 sqlite3VdbeAddOp3(v
, OP_Column
, iSortTab
, iRead
, regRow
+i
);
1279 VdbeComment((v
, "%s", aOutEx
[i
].zName
? aOutEx
[i
].zName
: aOutEx
[i
].zSpan
));
1283 case SRT_EphemTab
: {
1284 sqlite3VdbeAddOp2(v
, OP_NewRowid
, iParm
, regRowid
);
1285 sqlite3VdbeAddOp3(v
, OP_Insert
, iParm
, regRow
, regRowid
);
1286 sqlite3VdbeChangeP5(v
, OPFLAG_APPEND
);
1289 #ifndef SQLITE_OMIT_SUBQUERY
1291 assert( nColumn
==sqlite3Strlen30(pDest
->zAffSdst
) );
1292 sqlite3VdbeAddOp4(v
, OP_MakeRecord
, regRow
, nColumn
, regRowid
,
1293 pDest
->zAffSdst
, nColumn
);
1294 sqlite3ExprCacheAffinityChange(pParse
, regRow
, nColumn
);
1295 sqlite3VdbeAddOp4Int(v
, OP_IdxInsert
, iParm
, regRowid
, regRow
, nColumn
);
1299 /* The LIMIT clause will terminate the loop for us */
1304 assert( eDest
==SRT_Output
|| eDest
==SRT_Coroutine
);
1305 testcase( eDest
==SRT_Output
);
1306 testcase( eDest
==SRT_Coroutine
);
1307 if( eDest
==SRT_Output
){
1308 sqlite3VdbeAddOp2(v
, OP_ResultRow
, pDest
->iSdst
, nColumn
);
1309 sqlite3ExprCacheAffinityChange(pParse
, pDest
->iSdst
, nColumn
);
1311 sqlite3VdbeAddOp1(v
, OP_Yield
, pDest
->iSDParm
);
1317 if( eDest
==SRT_Set
){
1318 sqlite3ReleaseTempRange(pParse
, regRow
, nColumn
);
1320 sqlite3ReleaseTempReg(pParse
, regRow
);
1322 sqlite3ReleaseTempReg(pParse
, regRowid
);
1324 /* The bottom of the loop
1326 sqlite3VdbeResolveLabel(v
, addrContinue
);
1327 if( pSort
->sortFlags
& SORTFLAG_UseSorter
){
1328 sqlite3VdbeAddOp2(v
, OP_SorterNext
, iTab
, addr
); VdbeCoverage(v
);
1330 sqlite3VdbeAddOp2(v
, OP_Next
, iTab
, addr
); VdbeCoverage(v
);
1332 if( pSort
->regReturn
) sqlite3VdbeAddOp1(v
, OP_Return
, pSort
->regReturn
);
1333 sqlite3VdbeResolveLabel(v
, addrBreak
);
1337 ** Return a pointer to a string containing the 'declaration type' of the
1338 ** expression pExpr. The string may be treated as static by the caller.
1340 ** Also try to estimate the size of the returned value and return that
1341 ** result in *pEstWidth.
1343 ** The declaration type is the exact datatype definition extracted from the
1344 ** original CREATE TABLE statement if the expression is a column. The
1345 ** declaration type for a ROWID field is INTEGER. Exactly when an expression
1346 ** is considered a column can be complex in the presence of subqueries. The
1347 ** result-set expression in all of the following SELECT statements is
1348 ** considered a column by this function.
1350 ** SELECT col FROM tbl;
1351 ** SELECT (SELECT col FROM tbl;
1352 ** SELECT (SELECT col FROM tbl);
1353 ** SELECT abc FROM (SELECT col AS abc FROM tbl);
1355 ** The declaration type for any expression other than a column is NULL.
1357 ** This routine has either 3 or 6 parameters depending on whether or not
1358 ** the SQLITE_ENABLE_COLUMN_METADATA compile-time option is used.
1360 #ifdef SQLITE_ENABLE_COLUMN_METADATA
1361 # define columnType(A,B,C,D,E) columnTypeImpl(A,B,C,D,E)
1362 #else /* if !defined(SQLITE_ENABLE_COLUMN_METADATA) */
1363 # define columnType(A,B,C,D,E) columnTypeImpl(A,B)
1365 static const char *columnTypeImpl(
1367 #ifndef SQLITE_ENABLE_COLUMN_METADATA
1371 const char **pzOrigDb
,
1372 const char **pzOrigTab
,
1373 const char **pzOrigCol
1376 char const *zType
= 0;
1378 #ifdef SQLITE_ENABLE_COLUMN_METADATA
1379 char const *zOrigDb
= 0;
1380 char const *zOrigTab
= 0;
1381 char const *zOrigCol
= 0;
1385 assert( pNC
->pSrcList
!=0 );
1386 assert( pExpr
->op
!=TK_AGG_COLUMN
); /* This routine runes before aggregates
1388 switch( pExpr
->op
){
1390 /* The expression is a column. Locate the table the column is being
1391 ** extracted from in NameContext.pSrcList. This table may be real
1392 ** database table or a subquery.
1394 Table
*pTab
= 0; /* Table structure column is extracted from */
1395 Select
*pS
= 0; /* Select the column is extracted from */
1396 int iCol
= pExpr
->iColumn
; /* Index of column in pTab */
1397 while( pNC
&& !pTab
){
1398 SrcList
*pTabList
= pNC
->pSrcList
;
1399 for(j
=0;j
<pTabList
->nSrc
&& pTabList
->a
[j
].iCursor
!=pExpr
->iTable
;j
++);
1400 if( j
<pTabList
->nSrc
){
1401 pTab
= pTabList
->a
[j
].pTab
;
1402 pS
= pTabList
->a
[j
].pSelect
;
1409 /* At one time, code such as "SELECT new.x" within a trigger would
1410 ** cause this condition to run. Since then, we have restructured how
1411 ** trigger code is generated and so this condition is no longer
1412 ** possible. However, it can still be true for statements like
1415 ** CREATE TABLE t1(col INTEGER);
1416 ** SELECT (SELECT t1.col) FROM FROM t1;
1418 ** when columnType() is called on the expression "t1.col" in the
1419 ** sub-select. In this case, set the column type to NULL, even
1420 ** though it should really be "INTEGER".
1422 ** This is not a problem, as the column type of "t1.col" is never
1423 ** used. When columnType() is called on the expression
1424 ** "(SELECT t1.col)", the correct type is returned (see the TK_SELECT
1429 assert( pTab
&& pExpr
->pTab
==pTab
);
1431 /* The "table" is actually a sub-select or a view in the FROM clause
1432 ** of the SELECT statement. Return the declaration type and origin
1433 ** data for the result-set column of the sub-select.
1435 if( iCol
>=0 && iCol
<pS
->pEList
->nExpr
){
1436 /* If iCol is less than zero, then the expression requests the
1437 ** rowid of the sub-select or view. This expression is legal (see
1438 ** test case misc2.2.2) - it always evaluates to NULL.
1441 Expr
*p
= pS
->pEList
->a
[iCol
].pExpr
;
1442 sNC
.pSrcList
= pS
->pSrc
;
1444 sNC
.pParse
= pNC
->pParse
;
1445 zType
= columnType(&sNC
, p
,&zOrigDb
,&zOrigTab
,&zOrigCol
);
1448 /* A real table or a CTE table */
1450 #ifdef SQLITE_ENABLE_COLUMN_METADATA
1451 if( iCol
<0 ) iCol
= pTab
->iPKey
;
1452 assert( iCol
==XN_ROWID
|| (iCol
>=0 && iCol
<pTab
->nCol
) );
1457 zOrigCol
= pTab
->aCol
[iCol
].zName
;
1458 zType
= sqlite3ColumnType(&pTab
->aCol
[iCol
],0);
1460 zOrigTab
= pTab
->zName
;
1461 if( pNC
->pParse
&& pTab
->pSchema
){
1462 int iDb
= sqlite3SchemaToIndex(pNC
->pParse
->db
, pTab
->pSchema
);
1463 zOrigDb
= pNC
->pParse
->db
->aDb
[iDb
].zDbSName
;
1466 assert( iCol
==XN_ROWID
|| (iCol
>=0 && iCol
<pTab
->nCol
) );
1470 zType
= sqlite3ColumnType(&pTab
->aCol
[iCol
],0);
1476 #ifndef SQLITE_OMIT_SUBQUERY
1478 /* The expression is a sub-select. Return the declaration type and
1479 ** origin info for the single column in the result set of the SELECT
1483 Select
*pS
= pExpr
->x
.pSelect
;
1484 Expr
*p
= pS
->pEList
->a
[0].pExpr
;
1485 assert( ExprHasProperty(pExpr
, EP_xIsSelect
) );
1486 sNC
.pSrcList
= pS
->pSrc
;
1488 sNC
.pParse
= pNC
->pParse
;
1489 zType
= columnType(&sNC
, p
, &zOrigDb
, &zOrigTab
, &zOrigCol
);
1495 #ifdef SQLITE_ENABLE_COLUMN_METADATA
1497 assert( pzOrigTab
&& pzOrigCol
);
1498 *pzOrigDb
= zOrigDb
;
1499 *pzOrigTab
= zOrigTab
;
1500 *pzOrigCol
= zOrigCol
;
1507 ** Generate code that will tell the VDBE the declaration types of columns
1508 ** in the result set.
1510 static void generateColumnTypes(
1511 Parse
*pParse
, /* Parser context */
1512 SrcList
*pTabList
, /* List of tables */
1513 ExprList
*pEList
/* Expressions defining the result set */
1515 #ifndef SQLITE_OMIT_DECLTYPE
1516 Vdbe
*v
= pParse
->pVdbe
;
1519 sNC
.pSrcList
= pTabList
;
1520 sNC
.pParse
= pParse
;
1522 for(i
=0; i
<pEList
->nExpr
; i
++){
1523 Expr
*p
= pEList
->a
[i
].pExpr
;
1525 #ifdef SQLITE_ENABLE_COLUMN_METADATA
1526 const char *zOrigDb
= 0;
1527 const char *zOrigTab
= 0;
1528 const char *zOrigCol
= 0;
1529 zType
= columnType(&sNC
, p
, &zOrigDb
, &zOrigTab
, &zOrigCol
);
1531 /* The vdbe must make its own copy of the column-type and other
1532 ** column specific strings, in case the schema is reset before this
1533 ** virtual machine is deleted.
1535 sqlite3VdbeSetColName(v
, i
, COLNAME_DATABASE
, zOrigDb
, SQLITE_TRANSIENT
);
1536 sqlite3VdbeSetColName(v
, i
, COLNAME_TABLE
, zOrigTab
, SQLITE_TRANSIENT
);
1537 sqlite3VdbeSetColName(v
, i
, COLNAME_COLUMN
, zOrigCol
, SQLITE_TRANSIENT
);
1539 zType
= columnType(&sNC
, p
, 0, 0, 0);
1541 sqlite3VdbeSetColName(v
, i
, COLNAME_DECLTYPE
, zType
, SQLITE_TRANSIENT
);
1543 #endif /* !defined(SQLITE_OMIT_DECLTYPE) */
1548 ** Compute the column names for a SELECT statement.
1550 ** The only guarantee that SQLite makes about column names is that if the
1551 ** column has an AS clause assigning it a name, that will be the name used.
1552 ** That is the only documented guarantee. However, countless applications
1553 ** developed over the years have made baseless assumptions about column names
1554 ** and will break if those assumptions changes. Hence, use extreme caution
1555 ** when modifying this routine to avoid breaking legacy.
1557 ** See Also: sqlite3ColumnsFromExprList()
1559 ** The PRAGMA short_column_names and PRAGMA full_column_names settings are
1560 ** deprecated. The default setting is short=ON, full=OFF. 99.9% of all
1561 ** applications should operate this way. Nevertheless, we need to support the
1562 ** other modes for legacy:
1564 ** short=OFF, full=OFF: Column name is the text of the expression has it
1565 ** originally appears in the SELECT statement. In
1566 ** other words, the zSpan of the result expression.
1568 ** short=ON, full=OFF: (This is the default setting). If the result
1569 ** refers directly to a table column, then the
1570 ** result column name is just the table column
1571 ** name: COLUMN. Otherwise use zSpan.
1573 ** full=ON, short=ANY: If the result refers directly to a table column,
1574 ** then the result column name with the table name
1575 ** prefix, ex: TABLE.COLUMN. Otherwise use zSpan.
1577 static void generateColumnNames(
1578 Parse
*pParse
, /* Parser context */
1579 Select
*pSelect
/* Generate column names for this SELECT statement */
1581 Vdbe
*v
= pParse
->pVdbe
;
1586 sqlite3
*db
= pParse
->db
;
1587 int fullName
; /* TABLE.COLUMN if no AS clause and is a direct table ref */
1588 int srcName
; /* COLUMN or TABLE.COLUMN if no AS clause and is direct */
1590 #ifndef SQLITE_OMIT_EXPLAIN
1591 /* If this is an EXPLAIN, skip this step */
1592 if( pParse
->explain
){
1597 if( pParse
->colNamesSet
|| db
->mallocFailed
) return;
1598 /* Column names are determined by the left-most term of a compound select */
1599 while( pSelect
->pPrior
) pSelect
= pSelect
->pPrior
;
1600 SELECTTRACE(1,pParse
,pSelect
,("generating column names\n"));
1601 pTabList
= pSelect
->pSrc
;
1602 pEList
= pSelect
->pEList
;
1604 assert( pTabList
!=0 );
1605 pParse
->colNamesSet
= 1;
1606 fullName
= (db
->flags
& SQLITE_FullColNames
)!=0;
1607 srcName
= (db
->flags
& SQLITE_ShortColNames
)!=0 || fullName
;
1608 sqlite3VdbeSetNumCols(v
, pEList
->nExpr
);
1609 for(i
=0; i
<pEList
->nExpr
; i
++){
1610 Expr
*p
= pEList
->a
[i
].pExpr
;
1613 assert( p
->op
!=TK_AGG_COLUMN
); /* Agg processing has not run yet */
1614 assert( p
->op
!=TK_COLUMN
|| p
->pTab
!=0 ); /* Covering idx not yet coded */
1615 if( pEList
->a
[i
].zName
){
1616 /* An AS clause always takes first priority */
1617 char *zName
= pEList
->a
[i
].zName
;
1618 sqlite3VdbeSetColName(v
, i
, COLNAME_NAME
, zName
, SQLITE_TRANSIENT
);
1619 }else if( srcName
&& p
->op
==TK_COLUMN
){
1621 int iCol
= p
->iColumn
;
1624 if( iCol
<0 ) iCol
= pTab
->iPKey
;
1625 assert( iCol
==-1 || (iCol
>=0 && iCol
<pTab
->nCol
) );
1629 zCol
= pTab
->aCol
[iCol
].zName
;
1633 zName
= sqlite3MPrintf(db
, "%s.%s", pTab
->zName
, zCol
);
1634 sqlite3VdbeSetColName(v
, i
, COLNAME_NAME
, zName
, SQLITE_DYNAMIC
);
1636 sqlite3VdbeSetColName(v
, i
, COLNAME_NAME
, zCol
, SQLITE_TRANSIENT
);
1639 const char *z
= pEList
->a
[i
].zSpan
;
1640 z
= z
==0 ? sqlite3MPrintf(db
, "column%d", i
+1) : sqlite3DbStrDup(db
, z
);
1641 sqlite3VdbeSetColName(v
, i
, COLNAME_NAME
, z
, SQLITE_DYNAMIC
);
1644 generateColumnTypes(pParse
, pTabList
, pEList
);
1648 ** Given an expression list (which is really the list of expressions
1649 ** that form the result set of a SELECT statement) compute appropriate
1650 ** column names for a table that would hold the expression list.
1652 ** All column names will be unique.
1654 ** Only the column names are computed. Column.zType, Column.zColl,
1655 ** and other fields of Column are zeroed.
1657 ** Return SQLITE_OK on success. If a memory allocation error occurs,
1658 ** store NULL in *paCol and 0 in *pnCol and return SQLITE_NOMEM.
1660 ** The only guarantee that SQLite makes about column names is that if the
1661 ** column has an AS clause assigning it a name, that will be the name used.
1662 ** That is the only documented guarantee. However, countless applications
1663 ** developed over the years have made baseless assumptions about column names
1664 ** and will break if those assumptions changes. Hence, use extreme caution
1665 ** when modifying this routine to avoid breaking legacy.
1667 ** See Also: generateColumnNames()
1669 int sqlite3ColumnsFromExprList(
1670 Parse
*pParse
, /* Parsing context */
1671 ExprList
*pEList
, /* Expr list from which to derive column names */
1672 i16
*pnCol
, /* Write the number of columns here */
1673 Column
**paCol
/* Write the new column list here */
1675 sqlite3
*db
= pParse
->db
; /* Database connection */
1676 int i
, j
; /* Loop counters */
1677 u32 cnt
; /* Index added to make the name unique */
1678 Column
*aCol
, *pCol
; /* For looping over result columns */
1679 int nCol
; /* Number of columns in the result set */
1680 char *zName
; /* Column name */
1681 int nName
; /* Size of name in zName[] */
1682 Hash ht
; /* Hash table of column names */
1684 sqlite3HashInit(&ht
);
1686 nCol
= pEList
->nExpr
;
1687 aCol
= sqlite3DbMallocZero(db
, sizeof(aCol
[0])*nCol
);
1688 testcase( aCol
==0 );
1689 if( nCol
>32767 ) nCol
= 32767;
1694 assert( nCol
==(i16
)nCol
);
1698 for(i
=0, pCol
=aCol
; i
<nCol
&& !db
->mallocFailed
; i
++, pCol
++){
1699 /* Get an appropriate name for the column
1701 if( (zName
= pEList
->a
[i
].zName
)!=0 ){
1702 /* If the column contains an "AS <name>" phrase, use <name> as the name */
1704 Expr
*pColExpr
= sqlite3ExprSkipCollate(pEList
->a
[i
].pExpr
);
1705 while( pColExpr
->op
==TK_DOT
){
1706 pColExpr
= pColExpr
->pRight
;
1707 assert( pColExpr
!=0 );
1709 assert( pColExpr
->op
!=TK_AGG_COLUMN
);
1710 if( pColExpr
->op
==TK_COLUMN
){
1711 /* For columns use the column name name */
1712 int iCol
= pColExpr
->iColumn
;
1713 Table
*pTab
= pColExpr
->pTab
;
1715 if( iCol
<0 ) iCol
= pTab
->iPKey
;
1716 zName
= iCol
>=0 ? pTab
->aCol
[iCol
].zName
: "rowid";
1717 }else if( pColExpr
->op
==TK_ID
){
1718 assert( !ExprHasProperty(pColExpr
, EP_IntValue
) );
1719 zName
= pColExpr
->u
.zToken
;
1721 /* Use the original text of the column expression as its name */
1722 zName
= pEList
->a
[i
].zSpan
;
1726 zName
= sqlite3DbStrDup(db
, zName
);
1728 zName
= sqlite3MPrintf(db
,"column%d",i
+1);
1731 /* Make sure the column name is unique. If the name is not unique,
1732 ** append an integer to the name so that it becomes unique.
1735 while( zName
&& sqlite3HashFind(&ht
, zName
)!=0 ){
1736 nName
= sqlite3Strlen30(zName
);
1738 for(j
=nName
-1; j
>0 && sqlite3Isdigit(zName
[j
]); j
--){}
1739 if( zName
[j
]==':' ) nName
= j
;
1741 zName
= sqlite3MPrintf(db
, "%.*z:%u", nName
, zName
, ++cnt
);
1742 if( cnt
>3 ) sqlite3_randomness(sizeof(cnt
), &cnt
);
1744 pCol
->zName
= zName
;
1745 sqlite3ColumnPropertiesFromName(0, pCol
);
1746 if( zName
&& sqlite3HashInsert(&ht
, zName
, pCol
)==pCol
){
1747 sqlite3OomFault(db
);
1750 sqlite3HashClear(&ht
);
1751 if( db
->mallocFailed
){
1753 sqlite3DbFree(db
, aCol
[j
].zName
);
1755 sqlite3DbFree(db
, aCol
);
1758 return SQLITE_NOMEM_BKPT
;
1764 ** Add type and collation information to a column list based on
1765 ** a SELECT statement.
1767 ** The column list presumably came from selectColumnNamesFromExprList().
1768 ** The column list has only names, not types or collations. This
1769 ** routine goes through and adds the types and collations.
1771 ** This routine requires that all identifiers in the SELECT
1772 ** statement be resolved.
1774 void sqlite3SelectAddColumnTypeAndCollation(
1775 Parse
*pParse
, /* Parsing contexts */
1776 Table
*pTab
, /* Add column type information to this table */
1777 Select
*pSelect
/* SELECT used to determine types and collations */
1779 sqlite3
*db
= pParse
->db
;
1785 struct ExprList_item
*a
;
1787 assert( pSelect
!=0 );
1788 assert( (pSelect
->selFlags
& SF_Resolved
)!=0 );
1789 assert( pTab
->nCol
==pSelect
->pEList
->nExpr
|| db
->mallocFailed
);
1790 if( db
->mallocFailed
) return;
1791 memset(&sNC
, 0, sizeof(sNC
));
1792 sNC
.pSrcList
= pSelect
->pSrc
;
1793 a
= pSelect
->pEList
->a
;
1794 for(i
=0, pCol
=pTab
->aCol
; i
<pTab
->nCol
; i
++, pCol
++){
1798 zType
= columnType(&sNC
, p
, 0, 0, 0);
1799 /* pCol->szEst = ... // Column size est for SELECT tables never used */
1800 pCol
->affinity
= sqlite3ExprAffinity(p
);
1802 m
= sqlite3Strlen30(zType
);
1803 n
= sqlite3Strlen30(pCol
->zName
);
1804 pCol
->zName
= sqlite3DbReallocOrFree(db
, pCol
->zName
, n
+m
+2);
1806 memcpy(&pCol
->zName
[n
+1], zType
, m
+1);
1807 pCol
->colFlags
|= COLFLAG_HASTYPE
;
1810 if( pCol
->affinity
==0 ) pCol
->affinity
= SQLITE_AFF_BLOB
;
1811 pColl
= sqlite3ExprCollSeq(pParse
, p
);
1812 if( pColl
&& pCol
->zColl
==0 ){
1813 pCol
->zColl
= sqlite3DbStrDup(db
, pColl
->zName
);
1816 pTab
->szTabRow
= 1; /* Any non-zero value works */
1820 ** Given a SELECT statement, generate a Table structure that describes
1821 ** the result set of that SELECT.
1823 Table
*sqlite3ResultSetOfSelect(Parse
*pParse
, Select
*pSelect
){
1825 sqlite3
*db
= pParse
->db
;
1828 savedFlags
= db
->flags
;
1829 db
->flags
&= ~SQLITE_FullColNames
;
1830 db
->flags
|= SQLITE_ShortColNames
;
1831 sqlite3SelectPrep(pParse
, pSelect
, 0);
1832 if( pParse
->nErr
) return 0;
1833 while( pSelect
->pPrior
) pSelect
= pSelect
->pPrior
;
1834 db
->flags
= savedFlags
;
1835 pTab
= sqlite3DbMallocZero(db
, sizeof(Table
) );
1839 /* The sqlite3ResultSetOfSelect() is only used n contexts where lookaside
1841 assert( db
->lookaside
.bDisable
);
1844 pTab
->nRowLogEst
= 200; assert( 200==sqlite3LogEst(1048576) );
1845 sqlite3ColumnsFromExprList(pParse
, pSelect
->pEList
, &pTab
->nCol
, &pTab
->aCol
);
1846 sqlite3SelectAddColumnTypeAndCollation(pParse
, pTab
, pSelect
);
1848 if( db
->mallocFailed
){
1849 sqlite3DeleteTable(db
, pTab
);
1856 ** Get a VDBE for the given parser context. Create a new one if necessary.
1857 ** If an error occurs, return NULL and leave a message in pParse.
1859 Vdbe
*sqlite3GetVdbe(Parse
*pParse
){
1860 if( pParse
->pVdbe
){
1861 return pParse
->pVdbe
;
1863 if( pParse
->pToplevel
==0
1864 && OptimizationEnabled(pParse
->db
,SQLITE_FactorOutConst
)
1866 pParse
->okConstFactor
= 1;
1868 return sqlite3VdbeCreate(pParse
);
1873 ** Compute the iLimit and iOffset fields of the SELECT based on the
1874 ** pLimit expressions. pLimit->pLeft and pLimit->pRight hold the expressions
1875 ** that appear in the original SQL statement after the LIMIT and OFFSET
1876 ** keywords. Or NULL if those keywords are omitted. iLimit and iOffset
1877 ** are the integer memory register numbers for counters used to compute
1878 ** the limit and offset. If there is no limit and/or offset, then
1879 ** iLimit and iOffset are negative.
1881 ** This routine changes the values of iLimit and iOffset only if
1882 ** a limit or offset is defined by pLimit->pLeft and pLimit->pRight. iLimit
1883 ** and iOffset should have been preset to appropriate default values (zero)
1884 ** prior to calling this routine.
1886 ** The iOffset register (if it exists) is initialized to the value
1887 ** of the OFFSET. The iLimit register is initialized to LIMIT. Register
1888 ** iOffset+1 is initialized to LIMIT+OFFSET.
1890 ** Only if pLimit->pLeft!=0 do the limit registers get
1891 ** redefined. The UNION ALL operator uses this property to force
1892 ** the reuse of the same limit and offset registers across multiple
1893 ** SELECT statements.
1895 static void computeLimitRegisters(Parse
*pParse
, Select
*p
, int iBreak
){
1900 Expr
*pLimit
= p
->pLimit
;
1902 if( p
->iLimit
) return;
1905 ** "LIMIT -1" always shows all rows. There is some
1906 ** controversy about what the correct behavior should be.
1907 ** The current implementation interprets "LIMIT 0" to mean
1910 sqlite3ExprCacheClear(pParse
);
1912 assert( pLimit
->op
==TK_LIMIT
);
1913 assert( pLimit
->pLeft
!=0 );
1914 p
->iLimit
= iLimit
= ++pParse
->nMem
;
1915 v
= sqlite3GetVdbe(pParse
);
1917 if( sqlite3ExprIsInteger(pLimit
->pLeft
, &n
) ){
1918 sqlite3VdbeAddOp2(v
, OP_Integer
, n
, iLimit
);
1919 VdbeComment((v
, "LIMIT counter"));
1921 sqlite3VdbeGoto(v
, iBreak
);
1922 }else if( n
>=0 && p
->nSelectRow
>sqlite3LogEst((u64
)n
) ){
1923 p
->nSelectRow
= sqlite3LogEst((u64
)n
);
1924 p
->selFlags
|= SF_FixedLimit
;
1927 sqlite3ExprCode(pParse
, pLimit
->pLeft
, iLimit
);
1928 sqlite3VdbeAddOp1(v
, OP_MustBeInt
, iLimit
); VdbeCoverage(v
);
1929 VdbeComment((v
, "LIMIT counter"));
1930 sqlite3VdbeAddOp2(v
, OP_IfNot
, iLimit
, iBreak
); VdbeCoverage(v
);
1932 if( pLimit
->pRight
){
1933 p
->iOffset
= iOffset
= ++pParse
->nMem
;
1934 pParse
->nMem
++; /* Allocate an extra register for limit+offset */
1935 sqlite3ExprCode(pParse
, pLimit
->pRight
, iOffset
);
1936 sqlite3VdbeAddOp1(v
, OP_MustBeInt
, iOffset
); VdbeCoverage(v
);
1937 VdbeComment((v
, "OFFSET counter"));
1938 sqlite3VdbeAddOp3(v
, OP_OffsetLimit
, iLimit
, iOffset
+1, iOffset
);
1939 VdbeComment((v
, "LIMIT+OFFSET"));
1944 #ifndef SQLITE_OMIT_COMPOUND_SELECT
1946 ** Return the appropriate collating sequence for the iCol-th column of
1947 ** the result set for the compound-select statement "p". Return NULL if
1948 ** the column has no default collating sequence.
1950 ** The collating sequence for the compound select is taken from the
1951 ** left-most term of the select that has a collating sequence.
1953 static CollSeq
*multiSelectCollSeq(Parse
*pParse
, Select
*p
, int iCol
){
1956 pRet
= multiSelectCollSeq(pParse
, p
->pPrior
, iCol
);
1961 /* iCol must be less than p->pEList->nExpr. Otherwise an error would
1962 ** have been thrown during name resolution and we would not have gotten
1964 if( pRet
==0 && ALWAYS(iCol
<p
->pEList
->nExpr
) ){
1965 pRet
= sqlite3ExprCollSeq(pParse
, p
->pEList
->a
[iCol
].pExpr
);
1971 ** The select statement passed as the second parameter is a compound SELECT
1972 ** with an ORDER BY clause. This function allocates and returns a KeyInfo
1973 ** structure suitable for implementing the ORDER BY.
1975 ** Space to hold the KeyInfo structure is obtained from malloc. The calling
1976 ** function is responsible for ensuring that this structure is eventually
1979 static KeyInfo
*multiSelectOrderByKeyInfo(Parse
*pParse
, Select
*p
, int nExtra
){
1980 ExprList
*pOrderBy
= p
->pOrderBy
;
1981 int nOrderBy
= p
->pOrderBy
->nExpr
;
1982 sqlite3
*db
= pParse
->db
;
1983 KeyInfo
*pRet
= sqlite3KeyInfoAlloc(db
, nOrderBy
+nExtra
, 1);
1986 for(i
=0; i
<nOrderBy
; i
++){
1987 struct ExprList_item
*pItem
= &pOrderBy
->a
[i
];
1988 Expr
*pTerm
= pItem
->pExpr
;
1991 if( pTerm
->flags
& EP_Collate
){
1992 pColl
= sqlite3ExprCollSeq(pParse
, pTerm
);
1994 pColl
= multiSelectCollSeq(pParse
, p
, pItem
->u
.x
.iOrderByCol
-1);
1995 if( pColl
==0 ) pColl
= db
->pDfltColl
;
1996 pOrderBy
->a
[i
].pExpr
=
1997 sqlite3ExprAddCollateString(pParse
, pTerm
, pColl
->zName
);
1999 assert( sqlite3KeyInfoIsWriteable(pRet
) );
2000 pRet
->aColl
[i
] = pColl
;
2001 pRet
->aSortOrder
[i
] = pOrderBy
->a
[i
].sortOrder
;
2008 #ifndef SQLITE_OMIT_CTE
2010 ** This routine generates VDBE code to compute the content of a WITH RECURSIVE
2011 ** query of the form:
2013 ** <recursive-table> AS (<setup-query> UNION [ALL] <recursive-query>)
2014 ** \___________/ \_______________/
2018 ** There is exactly one reference to the recursive-table in the FROM clause
2019 ** of recursive-query, marked with the SrcList->a[].fg.isRecursive flag.
2021 ** The setup-query runs once to generate an initial set of rows that go
2022 ** into a Queue table. Rows are extracted from the Queue table one by
2023 ** one. Each row extracted from Queue is output to pDest. Then the single
2024 ** extracted row (now in the iCurrent table) becomes the content of the
2025 ** recursive-table for a recursive-query run. The output of the recursive-query
2026 ** is added back into the Queue table. Then another row is extracted from Queue
2027 ** and the iteration continues until the Queue table is empty.
2029 ** If the compound query operator is UNION then no duplicate rows are ever
2030 ** inserted into the Queue table. The iDistinct table keeps a copy of all rows
2031 ** that have ever been inserted into Queue and causes duplicates to be
2032 ** discarded. If the operator is UNION ALL, then duplicates are allowed.
2034 ** If the query has an ORDER BY, then entries in the Queue table are kept in
2035 ** ORDER BY order and the first entry is extracted for each cycle. Without
2036 ** an ORDER BY, the Queue table is just a FIFO.
2038 ** If a LIMIT clause is provided, then the iteration stops after LIMIT rows
2039 ** have been output to pDest. A LIMIT of zero means to output no rows and a
2040 ** negative LIMIT means to output all rows. If there is also an OFFSET clause
2041 ** with a positive value, then the first OFFSET outputs are discarded rather
2042 ** than being sent to pDest. The LIMIT count does not begin until after OFFSET
2043 ** rows have been skipped.
2045 static void generateWithRecursiveQuery(
2046 Parse
*pParse
, /* Parsing context */
2047 Select
*p
, /* The recursive SELECT to be coded */
2048 SelectDest
*pDest
/* What to do with query results */
2050 SrcList
*pSrc
= p
->pSrc
; /* The FROM clause of the recursive query */
2051 int nCol
= p
->pEList
->nExpr
; /* Number of columns in the recursive table */
2052 Vdbe
*v
= pParse
->pVdbe
; /* The prepared statement under construction */
2053 Select
*pSetup
= p
->pPrior
; /* The setup query */
2054 int addrTop
; /* Top of the loop */
2055 int addrCont
, addrBreak
; /* CONTINUE and BREAK addresses */
2056 int iCurrent
= 0; /* The Current table */
2057 int regCurrent
; /* Register holding Current table */
2058 int iQueue
; /* The Queue table */
2059 int iDistinct
= 0; /* To ensure unique results if UNION */
2060 int eDest
= SRT_Fifo
; /* How to write to Queue */
2061 SelectDest destQueue
; /* SelectDest targetting the Queue table */
2062 int i
; /* Loop counter */
2063 int rc
; /* Result code */
2064 ExprList
*pOrderBy
; /* The ORDER BY clause */
2065 Expr
*pLimit
; /* Saved LIMIT and OFFSET */
2066 int regLimit
, regOffset
; /* Registers used by LIMIT and OFFSET */
2068 /* Obtain authorization to do a recursive query */
2069 if( sqlite3AuthCheck(pParse
, SQLITE_RECURSIVE
, 0, 0, 0) ) return;
2071 /* Process the LIMIT and OFFSET clauses, if they exist */
2072 addrBreak
= sqlite3VdbeMakeLabel(v
);
2073 p
->nSelectRow
= 320; /* 4 billion rows */
2074 computeLimitRegisters(pParse
, p
, addrBreak
);
2076 regLimit
= p
->iLimit
;
2077 regOffset
= p
->iOffset
;
2079 p
->iLimit
= p
->iOffset
= 0;
2080 pOrderBy
= p
->pOrderBy
;
2082 /* Locate the cursor number of the Current table */
2083 for(i
=0; ALWAYS(i
<pSrc
->nSrc
); i
++){
2084 if( pSrc
->a
[i
].fg
.isRecursive
){
2085 iCurrent
= pSrc
->a
[i
].iCursor
;
2090 /* Allocate cursors numbers for Queue and Distinct. The cursor number for
2091 ** the Distinct table must be exactly one greater than Queue in order
2092 ** for the SRT_DistFifo and SRT_DistQueue destinations to work. */
2093 iQueue
= pParse
->nTab
++;
2094 if( p
->op
==TK_UNION
){
2095 eDest
= pOrderBy
? SRT_DistQueue
: SRT_DistFifo
;
2096 iDistinct
= pParse
->nTab
++;
2098 eDest
= pOrderBy
? SRT_Queue
: SRT_Fifo
;
2100 sqlite3SelectDestInit(&destQueue
, eDest
, iQueue
);
2102 /* Allocate cursors for Current, Queue, and Distinct. */
2103 regCurrent
= ++pParse
->nMem
;
2104 sqlite3VdbeAddOp3(v
, OP_OpenPseudo
, iCurrent
, regCurrent
, nCol
);
2106 KeyInfo
*pKeyInfo
= multiSelectOrderByKeyInfo(pParse
, p
, 1);
2107 sqlite3VdbeAddOp4(v
, OP_OpenEphemeral
, iQueue
, pOrderBy
->nExpr
+2, 0,
2108 (char*)pKeyInfo
, P4_KEYINFO
);
2109 destQueue
.pOrderBy
= pOrderBy
;
2111 sqlite3VdbeAddOp2(v
, OP_OpenEphemeral
, iQueue
, nCol
);
2113 VdbeComment((v
, "Queue table"));
2115 p
->addrOpenEphm
[0] = sqlite3VdbeAddOp2(v
, OP_OpenEphemeral
, iDistinct
, 0);
2116 p
->selFlags
|= SF_UsesEphemeral
;
2119 /* Detach the ORDER BY clause from the compound SELECT */
2122 /* Store the results of the setup-query in Queue. */
2124 rc
= sqlite3Select(pParse
, pSetup
, &destQueue
);
2126 if( rc
) goto end_of_recursive_query
;
2128 /* Find the next row in the Queue and output that row */
2129 addrTop
= sqlite3VdbeAddOp2(v
, OP_Rewind
, iQueue
, addrBreak
); VdbeCoverage(v
);
2131 /* Transfer the next row in Queue over to Current */
2132 sqlite3VdbeAddOp1(v
, OP_NullRow
, iCurrent
); /* To reset column cache */
2134 sqlite3VdbeAddOp3(v
, OP_Column
, iQueue
, pOrderBy
->nExpr
+1, regCurrent
);
2136 sqlite3VdbeAddOp2(v
, OP_RowData
, iQueue
, regCurrent
);
2138 sqlite3VdbeAddOp1(v
, OP_Delete
, iQueue
);
2140 /* Output the single row in Current */
2141 addrCont
= sqlite3VdbeMakeLabel(v
);
2142 codeOffset(v
, regOffset
, addrCont
);
2143 selectInnerLoop(pParse
, p
, iCurrent
,
2144 0, 0, pDest
, addrCont
, addrBreak
);
2146 sqlite3VdbeAddOp2(v
, OP_DecrJumpZero
, regLimit
, addrBreak
);
2149 sqlite3VdbeResolveLabel(v
, addrCont
);
2151 /* Execute the recursive SELECT taking the single row in Current as
2152 ** the value for the recursive-table. Store the results in the Queue.
2154 if( p
->selFlags
& SF_Aggregate
){
2155 sqlite3ErrorMsg(pParse
, "recursive aggregate queries not supported");
2158 sqlite3Select(pParse
, p
, &destQueue
);
2159 assert( p
->pPrior
==0 );
2163 /* Keep running the loop until the Queue is empty */
2164 sqlite3VdbeGoto(v
, addrTop
);
2165 sqlite3VdbeResolveLabel(v
, addrBreak
);
2167 end_of_recursive_query
:
2168 sqlite3ExprListDelete(pParse
->db
, p
->pOrderBy
);
2169 p
->pOrderBy
= pOrderBy
;
2173 #endif /* SQLITE_OMIT_CTE */
2175 /* Forward references */
2176 static int multiSelectOrderBy(
2177 Parse
*pParse
, /* Parsing context */
2178 Select
*p
, /* The right-most of SELECTs to be coded */
2179 SelectDest
*pDest
/* What to do with query results */
2183 ** Handle the special case of a compound-select that originates from a
2184 ** VALUES clause. By handling this as a special case, we avoid deep
2185 ** recursion, and thus do not need to enforce the SQLITE_LIMIT_COMPOUND_SELECT
2186 ** on a VALUES clause.
2188 ** Because the Select object originates from a VALUES clause:
2189 ** (1) There is no LIMIT or OFFSET or else there is a LIMIT of exactly 1
2190 ** (2) All terms are UNION ALL
2191 ** (3) There is no ORDER BY clause
2193 ** The "LIMIT of exactly 1" case of condition (1) comes about when a VALUES
2194 ** clause occurs within scalar expression (ex: "SELECT (VALUES(1),(2),(3))").
2195 ** The sqlite3CodeSubselect will have added the LIMIT 1 clause in tht case.
2196 ** Since the limit is exactly 1, we only need to evalutes the left-most VALUES.
2198 static int multiSelectValues(
2199 Parse
*pParse
, /* Parsing context */
2200 Select
*p
, /* The right-most of SELECTs to be coded */
2201 SelectDest
*pDest
/* What to do with query results */
2204 Select
*pRightmost
= p
;
2207 assert( p
->selFlags
& SF_MultiValue
);
2209 assert( p
->selFlags
& SF_Values
);
2210 assert( p
->op
==TK_ALL
|| (p
->op
==TK_SELECT
&& p
->pPrior
==0) );
2211 assert( p
->pNext
==0 || p
->pEList
->nExpr
==p
->pNext
->pEList
->nExpr
);
2212 if( p
->pPrior
==0 ) break;
2213 assert( p
->pPrior
->pNext
==p
);
2220 rc
= sqlite3Select(pParse
, p
, pDest
);
2222 if( rc
|| pRightmost
->pLimit
) break;
2223 p
->nSelectRow
= nRow
;
2230 ** This routine is called to process a compound query form from
2231 ** two or more separate queries using UNION, UNION ALL, EXCEPT, or
2234 ** "p" points to the right-most of the two queries. the query on the
2235 ** left is p->pPrior. The left query could also be a compound query
2236 ** in which case this routine will be called recursively.
2238 ** The results of the total query are to be written into a destination
2239 ** of type eDest with parameter iParm.
2241 ** Example 1: Consider a three-way compound SQL statement.
2243 ** SELECT a FROM t1 UNION SELECT b FROM t2 UNION SELECT c FROM t3
2245 ** This statement is parsed up as follows:
2249 ** `-----> SELECT b FROM t2
2251 ** `------> SELECT a FROM t1
2253 ** The arrows in the diagram above represent the Select.pPrior pointer.
2254 ** So if this routine is called with p equal to the t3 query, then
2255 ** pPrior will be the t2 query. p->op will be TK_UNION in this case.
2257 ** Notice that because of the way SQLite parses compound SELECTs, the
2258 ** individual selects always group from left to right.
2260 static int multiSelect(
2261 Parse
*pParse
, /* Parsing context */
2262 Select
*p
, /* The right-most of SELECTs to be coded */
2263 SelectDest
*pDest
/* What to do with query results */
2265 int rc
= SQLITE_OK
; /* Success code from a subroutine */
2266 Select
*pPrior
; /* Another SELECT immediately to our left */
2267 Vdbe
*v
; /* Generate code to this VDBE */
2268 SelectDest dest
; /* Alternative data destination */
2269 Select
*pDelete
= 0; /* Chain of simple selects to delete */
2270 sqlite3
*db
; /* Database connection */
2271 #ifndef SQLITE_OMIT_EXPLAIN
2272 int iSub1
= 0; /* EQP id of left-hand query */
2273 int iSub2
= 0; /* EQP id of right-hand query */
2276 /* Make sure there is no ORDER BY or LIMIT clause on prior SELECTs. Only
2277 ** the last (right-most) SELECT in the series may have an ORDER BY or LIMIT.
2279 assert( p
&& p
->pPrior
); /* Calling function guarantees this much */
2280 assert( (p
->selFlags
& SF_Recursive
)==0 || p
->op
==TK_ALL
|| p
->op
==TK_UNION
);
2284 if( pPrior
->pOrderBy
|| pPrior
->pLimit
){
2285 sqlite3ErrorMsg(pParse
,"%s clause should come after %s not before",
2286 pPrior
->pOrderBy
!=0 ? "ORDER BY" : "LIMIT", selectOpName(p
->op
));
2288 goto multi_select_end
;
2291 v
= sqlite3GetVdbe(pParse
);
2292 assert( v
!=0 ); /* The VDBE already created by calling function */
2294 /* Create the destination temporary table if necessary
2296 if( dest
.eDest
==SRT_EphemTab
){
2297 assert( p
->pEList
);
2298 sqlite3VdbeAddOp2(v
, OP_OpenEphemeral
, dest
.iSDParm
, p
->pEList
->nExpr
);
2299 dest
.eDest
= SRT_Table
;
2302 /* Special handling for a compound-select that originates as a VALUES clause.
2304 if( p
->selFlags
& SF_MultiValue
){
2305 rc
= multiSelectValues(pParse
, p
, &dest
);
2306 goto multi_select_end
;
2309 /* Make sure all SELECTs in the statement have the same number of elements
2310 ** in their result sets.
2312 assert( p
->pEList
&& pPrior
->pEList
);
2313 assert( p
->pEList
->nExpr
==pPrior
->pEList
->nExpr
);
2315 #ifndef SQLITE_OMIT_CTE
2316 if( p
->selFlags
& SF_Recursive
){
2317 generateWithRecursiveQuery(pParse
, p
, &dest
);
2321 /* Compound SELECTs that have an ORDER BY clause are handled separately.
2324 return multiSelectOrderBy(pParse
, p
, pDest
);
2327 /* Generate code for the left and right SELECT statements.
2333 assert( !pPrior
->pLimit
);
2334 pPrior
->iLimit
= p
->iLimit
;
2335 pPrior
->iOffset
= p
->iOffset
;
2336 pPrior
->pLimit
= p
->pLimit
;
2337 explainSetInteger(iSub1
, pParse
->iNextSelectId
);
2338 rc
= sqlite3Select(pParse
, pPrior
, &dest
);
2341 goto multi_select_end
;
2344 p
->iLimit
= pPrior
->iLimit
;
2345 p
->iOffset
= pPrior
->iOffset
;
2347 addr
= sqlite3VdbeAddOp1(v
, OP_IfNot
, p
->iLimit
); VdbeCoverage(v
);
2348 VdbeComment((v
, "Jump ahead if LIMIT reached"));
2350 sqlite3VdbeAddOp3(v
, OP_OffsetLimit
,
2351 p
->iLimit
, p
->iOffset
+1, p
->iOffset
);
2354 explainSetInteger(iSub2
, pParse
->iNextSelectId
);
2355 rc
= sqlite3Select(pParse
, p
, &dest
);
2356 testcase( rc
!=SQLITE_OK
);
2357 pDelete
= p
->pPrior
;
2359 p
->nSelectRow
= sqlite3LogEstAdd(p
->nSelectRow
, pPrior
->nSelectRow
);
2361 && sqlite3ExprIsInteger(pPrior
->pLimit
->pLeft
, &nLimit
)
2362 && nLimit
>0 && p
->nSelectRow
> sqlite3LogEst((u64
)nLimit
)
2364 p
->nSelectRow
= sqlite3LogEst((u64
)nLimit
);
2367 sqlite3VdbeJumpHere(v
, addr
);
2373 int unionTab
; /* Cursor number of the temporary table holding result */
2374 u8 op
= 0; /* One of the SRT_ operations to apply to self */
2375 int priorOp
; /* The SRT_ operation to apply to prior selects */
2376 Expr
*pLimit
; /* Saved values of p->nLimit */
2378 SelectDest uniondest
;
2380 testcase( p
->op
==TK_EXCEPT
);
2381 testcase( p
->op
==TK_UNION
);
2382 priorOp
= SRT_Union
;
2383 if( dest
.eDest
==priorOp
){
2384 /* We can reuse a temporary table generated by a SELECT to our
2387 assert( p
->pLimit
==0 ); /* Not allowed on leftward elements */
2388 unionTab
= dest
.iSDParm
;
2390 /* We will need to create our own temporary table to hold the
2391 ** intermediate results.
2393 unionTab
= pParse
->nTab
++;
2394 assert( p
->pOrderBy
==0 );
2395 addr
= sqlite3VdbeAddOp2(v
, OP_OpenEphemeral
, unionTab
, 0);
2396 assert( p
->addrOpenEphm
[0] == -1 );
2397 p
->addrOpenEphm
[0] = addr
;
2398 findRightmost(p
)->selFlags
|= SF_UsesEphemeral
;
2399 assert( p
->pEList
);
2402 /* Code the SELECT statements to our left
2404 assert( !pPrior
->pOrderBy
);
2405 sqlite3SelectDestInit(&uniondest
, priorOp
, unionTab
);
2406 explainSetInteger(iSub1
, pParse
->iNextSelectId
);
2407 rc
= sqlite3Select(pParse
, pPrior
, &uniondest
);
2409 goto multi_select_end
;
2412 /* Code the current SELECT statement
2414 if( p
->op
==TK_EXCEPT
){
2417 assert( p
->op
==TK_UNION
);
2423 uniondest
.eDest
= op
;
2424 explainSetInteger(iSub2
, pParse
->iNextSelectId
);
2425 rc
= sqlite3Select(pParse
, p
, &uniondest
);
2426 testcase( rc
!=SQLITE_OK
);
2427 /* Query flattening in sqlite3Select() might refill p->pOrderBy.
2428 ** Be sure to delete p->pOrderBy, therefore, to avoid a memory leak. */
2429 sqlite3ExprListDelete(db
, p
->pOrderBy
);
2430 pDelete
= p
->pPrior
;
2433 if( p
->op
==TK_UNION
){
2434 p
->nSelectRow
= sqlite3LogEstAdd(p
->nSelectRow
, pPrior
->nSelectRow
);
2436 sqlite3ExprDelete(db
, p
->pLimit
);
2441 /* Convert the data in the temporary table into whatever form
2442 ** it is that we currently need.
2444 assert( unionTab
==dest
.iSDParm
|| dest
.eDest
!=priorOp
);
2445 if( dest
.eDest
!=priorOp
){
2446 int iCont
, iBreak
, iStart
;
2447 assert( p
->pEList
);
2448 iBreak
= sqlite3VdbeMakeLabel(v
);
2449 iCont
= sqlite3VdbeMakeLabel(v
);
2450 computeLimitRegisters(pParse
, p
, iBreak
);
2451 sqlite3VdbeAddOp2(v
, OP_Rewind
, unionTab
, iBreak
); VdbeCoverage(v
);
2452 iStart
= sqlite3VdbeCurrentAddr(v
);
2453 selectInnerLoop(pParse
, p
, unionTab
,
2454 0, 0, &dest
, iCont
, iBreak
);
2455 sqlite3VdbeResolveLabel(v
, iCont
);
2456 sqlite3VdbeAddOp2(v
, OP_Next
, unionTab
, iStart
); VdbeCoverage(v
);
2457 sqlite3VdbeResolveLabel(v
, iBreak
);
2458 sqlite3VdbeAddOp2(v
, OP_Close
, unionTab
, 0);
2462 default: assert( p
->op
==TK_INTERSECT
); {
2464 int iCont
, iBreak
, iStart
;
2467 SelectDest intersectdest
;
2470 /* INTERSECT is different from the others since it requires
2471 ** two temporary tables. Hence it has its own case. Begin
2472 ** by allocating the tables we will need.
2474 tab1
= pParse
->nTab
++;
2475 tab2
= pParse
->nTab
++;
2476 assert( p
->pOrderBy
==0 );
2478 addr
= sqlite3VdbeAddOp2(v
, OP_OpenEphemeral
, tab1
, 0);
2479 assert( p
->addrOpenEphm
[0] == -1 );
2480 p
->addrOpenEphm
[0] = addr
;
2481 findRightmost(p
)->selFlags
|= SF_UsesEphemeral
;
2482 assert( p
->pEList
);
2484 /* Code the SELECTs to our left into temporary table "tab1".
2486 sqlite3SelectDestInit(&intersectdest
, SRT_Union
, tab1
);
2487 explainSetInteger(iSub1
, pParse
->iNextSelectId
);
2488 rc
= sqlite3Select(pParse
, pPrior
, &intersectdest
);
2490 goto multi_select_end
;
2493 /* Code the current SELECT into temporary table "tab2"
2495 addr
= sqlite3VdbeAddOp2(v
, OP_OpenEphemeral
, tab2
, 0);
2496 assert( p
->addrOpenEphm
[1] == -1 );
2497 p
->addrOpenEphm
[1] = addr
;
2501 intersectdest
.iSDParm
= tab2
;
2502 explainSetInteger(iSub2
, pParse
->iNextSelectId
);
2503 rc
= sqlite3Select(pParse
, p
, &intersectdest
);
2504 testcase( rc
!=SQLITE_OK
);
2505 pDelete
= p
->pPrior
;
2507 if( p
->nSelectRow
>pPrior
->nSelectRow
) p
->nSelectRow
= pPrior
->nSelectRow
;
2508 sqlite3ExprDelete(db
, p
->pLimit
);
2511 /* Generate code to take the intersection of the two temporary
2514 assert( p
->pEList
);
2515 iBreak
= sqlite3VdbeMakeLabel(v
);
2516 iCont
= sqlite3VdbeMakeLabel(v
);
2517 computeLimitRegisters(pParse
, p
, iBreak
);
2518 sqlite3VdbeAddOp2(v
, OP_Rewind
, tab1
, iBreak
); VdbeCoverage(v
);
2519 r1
= sqlite3GetTempReg(pParse
);
2520 iStart
= sqlite3VdbeAddOp2(v
, OP_RowData
, tab1
, r1
);
2521 sqlite3VdbeAddOp4Int(v
, OP_NotFound
, tab2
, iCont
, r1
, 0); VdbeCoverage(v
);
2522 sqlite3ReleaseTempReg(pParse
, r1
);
2523 selectInnerLoop(pParse
, p
, tab1
,
2524 0, 0, &dest
, iCont
, iBreak
);
2525 sqlite3VdbeResolveLabel(v
, iCont
);
2526 sqlite3VdbeAddOp2(v
, OP_Next
, tab1
, iStart
); VdbeCoverage(v
);
2527 sqlite3VdbeResolveLabel(v
, iBreak
);
2528 sqlite3VdbeAddOp2(v
, OP_Close
, tab2
, 0);
2529 sqlite3VdbeAddOp2(v
, OP_Close
, tab1
, 0);
2534 explainComposite(pParse
, p
->op
, iSub1
, iSub2
, p
->op
!=TK_ALL
);
2536 /* Compute collating sequences used by
2537 ** temporary tables needed to implement the compound select.
2538 ** Attach the KeyInfo structure to all temporary tables.
2540 ** This section is run by the right-most SELECT statement only.
2541 ** SELECT statements to the left always skip this part. The right-most
2542 ** SELECT might also skip this part if it has no ORDER BY clause and
2543 ** no temp tables are required.
2545 if( p
->selFlags
& SF_UsesEphemeral
){
2546 int i
; /* Loop counter */
2547 KeyInfo
*pKeyInfo
; /* Collating sequence for the result set */
2548 Select
*pLoop
; /* For looping through SELECT statements */
2549 CollSeq
**apColl
; /* For looping through pKeyInfo->aColl[] */
2550 int nCol
; /* Number of columns in result set */
2552 assert( p
->pNext
==0 );
2553 nCol
= p
->pEList
->nExpr
;
2554 pKeyInfo
= sqlite3KeyInfoAlloc(db
, nCol
, 1);
2556 rc
= SQLITE_NOMEM_BKPT
;
2557 goto multi_select_end
;
2559 for(i
=0, apColl
=pKeyInfo
->aColl
; i
<nCol
; i
++, apColl
++){
2560 *apColl
= multiSelectCollSeq(pParse
, p
, i
);
2562 *apColl
= db
->pDfltColl
;
2566 for(pLoop
=p
; pLoop
; pLoop
=pLoop
->pPrior
){
2568 int addr
= pLoop
->addrOpenEphm
[i
];
2570 /* If [0] is unused then [1] is also unused. So we can
2571 ** always safely abort as soon as the first unused slot is found */
2572 assert( pLoop
->addrOpenEphm
[1]<0 );
2575 sqlite3VdbeChangeP2(v
, addr
, nCol
);
2576 sqlite3VdbeChangeP4(v
, addr
, (char*)sqlite3KeyInfoRef(pKeyInfo
),
2578 pLoop
->addrOpenEphm
[i
] = -1;
2581 sqlite3KeyInfoUnref(pKeyInfo
);
2585 pDest
->iSdst
= dest
.iSdst
;
2586 pDest
->nSdst
= dest
.nSdst
;
2587 sqlite3SelectDelete(db
, pDelete
);
2590 #endif /* SQLITE_OMIT_COMPOUND_SELECT */
2593 ** Error message for when two or more terms of a compound select have different
2594 ** size result sets.
2596 void sqlite3SelectWrongNumTermsError(Parse
*pParse
, Select
*p
){
2597 if( p
->selFlags
& SF_Values
){
2598 sqlite3ErrorMsg(pParse
, "all VALUES must have the same number of terms");
2600 sqlite3ErrorMsg(pParse
, "SELECTs to the left and right of %s"
2601 " do not have the same number of result columns", selectOpName(p
->op
));
2606 ** Code an output subroutine for a coroutine implementation of a
2609 ** The data to be output is contained in pIn->iSdst. There are
2610 ** pIn->nSdst columns to be output. pDest is where the output should
2613 ** regReturn is the number of the register holding the subroutine
2616 ** If regPrev>0 then it is the first register in a vector that
2617 ** records the previous output. mem[regPrev] is a flag that is false
2618 ** if there has been no previous output. If regPrev>0 then code is
2619 ** generated to suppress duplicates. pKeyInfo is used for comparing
2622 ** If the LIMIT found in p->iLimit is reached, jump immediately to
2625 static int generateOutputSubroutine(
2626 Parse
*pParse
, /* Parsing context */
2627 Select
*p
, /* The SELECT statement */
2628 SelectDest
*pIn
, /* Coroutine supplying data */
2629 SelectDest
*pDest
, /* Where to send the data */
2630 int regReturn
, /* The return address register */
2631 int regPrev
, /* Previous result register. No uniqueness if 0 */
2632 KeyInfo
*pKeyInfo
, /* For comparing with previous entry */
2633 int iBreak
/* Jump here if we hit the LIMIT */
2635 Vdbe
*v
= pParse
->pVdbe
;
2639 addr
= sqlite3VdbeCurrentAddr(v
);
2640 iContinue
= sqlite3VdbeMakeLabel(v
);
2642 /* Suppress duplicates for UNION, EXCEPT, and INTERSECT
2646 addr1
= sqlite3VdbeAddOp1(v
, OP_IfNot
, regPrev
); VdbeCoverage(v
);
2647 addr2
= sqlite3VdbeAddOp4(v
, OP_Compare
, pIn
->iSdst
, regPrev
+1, pIn
->nSdst
,
2648 (char*)sqlite3KeyInfoRef(pKeyInfo
), P4_KEYINFO
);
2649 sqlite3VdbeAddOp3(v
, OP_Jump
, addr2
+2, iContinue
, addr2
+2); VdbeCoverage(v
);
2650 sqlite3VdbeJumpHere(v
, addr1
);
2651 sqlite3VdbeAddOp3(v
, OP_Copy
, pIn
->iSdst
, regPrev
+1, pIn
->nSdst
-1);
2652 sqlite3VdbeAddOp2(v
, OP_Integer
, 1, regPrev
);
2654 if( pParse
->db
->mallocFailed
) return 0;
2656 /* Suppress the first OFFSET entries if there is an OFFSET clause
2658 codeOffset(v
, p
->iOffset
, iContinue
);
2660 assert( pDest
->eDest
!=SRT_Exists
);
2661 assert( pDest
->eDest
!=SRT_Table
);
2662 switch( pDest
->eDest
){
2663 /* Store the result as data using a unique key.
2665 case SRT_EphemTab
: {
2666 int r1
= sqlite3GetTempReg(pParse
);
2667 int r2
= sqlite3GetTempReg(pParse
);
2668 sqlite3VdbeAddOp3(v
, OP_MakeRecord
, pIn
->iSdst
, pIn
->nSdst
, r1
);
2669 sqlite3VdbeAddOp2(v
, OP_NewRowid
, pDest
->iSDParm
, r2
);
2670 sqlite3VdbeAddOp3(v
, OP_Insert
, pDest
->iSDParm
, r1
, r2
);
2671 sqlite3VdbeChangeP5(v
, OPFLAG_APPEND
);
2672 sqlite3ReleaseTempReg(pParse
, r2
);
2673 sqlite3ReleaseTempReg(pParse
, r1
);
2677 #ifndef SQLITE_OMIT_SUBQUERY
2678 /* If we are creating a set for an "expr IN (SELECT ...)".
2682 testcase( pIn
->nSdst
>1 );
2683 r1
= sqlite3GetTempReg(pParse
);
2684 sqlite3VdbeAddOp4(v
, OP_MakeRecord
, pIn
->iSdst
, pIn
->nSdst
,
2685 r1
, pDest
->zAffSdst
, pIn
->nSdst
);
2686 sqlite3ExprCacheAffinityChange(pParse
, pIn
->iSdst
, pIn
->nSdst
);
2687 sqlite3VdbeAddOp4Int(v
, OP_IdxInsert
, pDest
->iSDParm
, r1
,
2688 pIn
->iSdst
, pIn
->nSdst
);
2689 sqlite3ReleaseTempReg(pParse
, r1
);
2693 /* If this is a scalar select that is part of an expression, then
2694 ** store the results in the appropriate memory cell and break out
2695 ** of the scan loop.
2698 assert( pIn
->nSdst
==1 || pParse
->nErr
>0 ); testcase( pIn
->nSdst
!=1 );
2699 sqlite3ExprCodeMove(pParse
, pIn
->iSdst
, pDest
->iSDParm
, 1);
2700 /* The LIMIT clause will jump out of the loop for us */
2703 #endif /* #ifndef SQLITE_OMIT_SUBQUERY */
2705 /* The results are stored in a sequence of registers
2706 ** starting at pDest->iSdst. Then the co-routine yields.
2708 case SRT_Coroutine
: {
2709 if( pDest
->iSdst
==0 ){
2710 pDest
->iSdst
= sqlite3GetTempRange(pParse
, pIn
->nSdst
);
2711 pDest
->nSdst
= pIn
->nSdst
;
2713 sqlite3ExprCodeMove(pParse
, pIn
->iSdst
, pDest
->iSdst
, pIn
->nSdst
);
2714 sqlite3VdbeAddOp1(v
, OP_Yield
, pDest
->iSDParm
);
2718 /* If none of the above, then the result destination must be
2719 ** SRT_Output. This routine is never called with any other
2720 ** destination other than the ones handled above or SRT_Output.
2722 ** For SRT_Output, results are stored in a sequence of registers.
2723 ** Then the OP_ResultRow opcode is used to cause sqlite3_step() to
2724 ** return the next row of result.
2727 assert( pDest
->eDest
==SRT_Output
);
2728 sqlite3VdbeAddOp2(v
, OP_ResultRow
, pIn
->iSdst
, pIn
->nSdst
);
2729 sqlite3ExprCacheAffinityChange(pParse
, pIn
->iSdst
, pIn
->nSdst
);
2734 /* Jump to the end of the loop if the LIMIT is reached.
2737 sqlite3VdbeAddOp2(v
, OP_DecrJumpZero
, p
->iLimit
, iBreak
); VdbeCoverage(v
);
2740 /* Generate the subroutine return
2742 sqlite3VdbeResolveLabel(v
, iContinue
);
2743 sqlite3VdbeAddOp1(v
, OP_Return
, regReturn
);
2749 ** Alternative compound select code generator for cases when there
2750 ** is an ORDER BY clause.
2752 ** We assume a query of the following form:
2754 ** <selectA> <operator> <selectB> ORDER BY <orderbylist>
2756 ** <operator> is one of UNION ALL, UNION, EXCEPT, or INTERSECT. The idea
2757 ** is to code both <selectA> and <selectB> with the ORDER BY clause as
2758 ** co-routines. Then run the co-routines in parallel and merge the results
2759 ** into the output. In addition to the two coroutines (called selectA and
2760 ** selectB) there are 7 subroutines:
2762 ** outA: Move the output of the selectA coroutine into the output
2763 ** of the compound query.
2765 ** outB: Move the output of the selectB coroutine into the output
2766 ** of the compound query. (Only generated for UNION and
2767 ** UNION ALL. EXCEPT and INSERTSECT never output a row that
2768 ** appears only in B.)
2770 ** AltB: Called when there is data from both coroutines and A<B.
2772 ** AeqB: Called when there is data from both coroutines and A==B.
2774 ** AgtB: Called when there is data from both coroutines and A>B.
2776 ** EofA: Called when data is exhausted from selectA.
2778 ** EofB: Called when data is exhausted from selectB.
2780 ** The implementation of the latter five subroutines depend on which
2781 ** <operator> is used:
2784 ** UNION ALL UNION EXCEPT INTERSECT
2785 ** ------------- ----------------- -------------- -----------------
2786 ** AltB: outA, nextA outA, nextA outA, nextA nextA
2788 ** AeqB: outA, nextA nextA nextA outA, nextA
2790 ** AgtB: outB, nextB outB, nextB nextB nextB
2792 ** EofA: outB, nextB outB, nextB halt halt
2794 ** EofB: outA, nextA outA, nextA outA, nextA halt
2796 ** In the AltB, AeqB, and AgtB subroutines, an EOF on A following nextA
2797 ** causes an immediate jump to EofA and an EOF on B following nextB causes
2798 ** an immediate jump to EofB. Within EofA and EofB, and EOF on entry or
2799 ** following nextX causes a jump to the end of the select processing.
2801 ** Duplicate removal in the UNION, EXCEPT, and INTERSECT cases is handled
2802 ** within the output subroutine. The regPrev register set holds the previously
2803 ** output value. A comparison is made against this value and the output
2804 ** is skipped if the next results would be the same as the previous.
2806 ** The implementation plan is to implement the two coroutines and seven
2807 ** subroutines first, then put the control logic at the bottom. Like this:
2810 ** coA: coroutine for left query (A)
2811 ** coB: coroutine for right query (B)
2812 ** outA: output one row of A
2813 ** outB: output one row of B (UNION and UNION ALL only)
2819 ** Init: initialize coroutine registers
2821 ** if eof(A) goto EofA
2823 ** if eof(B) goto EofB
2824 ** Cmpr: Compare A, B
2825 ** Jump AltB, AeqB, AgtB
2828 ** We call AltB, AeqB, AgtB, EofA, and EofB "subroutines" but they are not
2829 ** actually called using Gosub and they do not Return. EofA and EofB loop
2830 ** until all data is exhausted then jump to the "end" labe. AltB, AeqB,
2831 ** and AgtB jump to either L2 or to one of EofA or EofB.
2833 #ifndef SQLITE_OMIT_COMPOUND_SELECT
2834 static int multiSelectOrderBy(
2835 Parse
*pParse
, /* Parsing context */
2836 Select
*p
, /* The right-most of SELECTs to be coded */
2837 SelectDest
*pDest
/* What to do with query results */
2839 int i
, j
; /* Loop counters */
2840 Select
*pPrior
; /* Another SELECT immediately to our left */
2841 Vdbe
*v
; /* Generate code to this VDBE */
2842 SelectDest destA
; /* Destination for coroutine A */
2843 SelectDest destB
; /* Destination for coroutine B */
2844 int regAddrA
; /* Address register for select-A coroutine */
2845 int regAddrB
; /* Address register for select-B coroutine */
2846 int addrSelectA
; /* Address of the select-A coroutine */
2847 int addrSelectB
; /* Address of the select-B coroutine */
2848 int regOutA
; /* Address register for the output-A subroutine */
2849 int regOutB
; /* Address register for the output-B subroutine */
2850 int addrOutA
; /* Address of the output-A subroutine */
2851 int addrOutB
= 0; /* Address of the output-B subroutine */
2852 int addrEofA
; /* Address of the select-A-exhausted subroutine */
2853 int addrEofA_noB
; /* Alternate addrEofA if B is uninitialized */
2854 int addrEofB
; /* Address of the select-B-exhausted subroutine */
2855 int addrAltB
; /* Address of the A<B subroutine */
2856 int addrAeqB
; /* Address of the A==B subroutine */
2857 int addrAgtB
; /* Address of the A>B subroutine */
2858 int regLimitA
; /* Limit register for select-A */
2859 int regLimitB
; /* Limit register for select-A */
2860 int regPrev
; /* A range of registers to hold previous output */
2861 int savedLimit
; /* Saved value of p->iLimit */
2862 int savedOffset
; /* Saved value of p->iOffset */
2863 int labelCmpr
; /* Label for the start of the merge algorithm */
2864 int labelEnd
; /* Label for the end of the overall SELECT stmt */
2865 int addr1
; /* Jump instructions that get retargetted */
2866 int op
; /* One of TK_ALL, TK_UNION, TK_EXCEPT, TK_INTERSECT */
2867 KeyInfo
*pKeyDup
= 0; /* Comparison information for duplicate removal */
2868 KeyInfo
*pKeyMerge
; /* Comparison information for merging rows */
2869 sqlite3
*db
; /* Database connection */
2870 ExprList
*pOrderBy
; /* The ORDER BY clause */
2871 int nOrderBy
; /* Number of terms in the ORDER BY clause */
2872 int *aPermute
; /* Mapping from ORDER BY terms to result set columns */
2873 #ifndef SQLITE_OMIT_EXPLAIN
2874 int iSub1
; /* EQP id of left-hand query */
2875 int iSub2
; /* EQP id of right-hand query */
2878 assert( p
->pOrderBy
!=0 );
2879 assert( pKeyDup
==0 ); /* "Managed" code needs this. Ticket #3382. */
2882 assert( v
!=0 ); /* Already thrown the error if VDBE alloc failed */
2883 labelEnd
= sqlite3VdbeMakeLabel(v
);
2884 labelCmpr
= sqlite3VdbeMakeLabel(v
);
2887 /* Patch up the ORDER BY clause
2891 assert( pPrior
->pOrderBy
==0 );
2892 pOrderBy
= p
->pOrderBy
;
2894 nOrderBy
= pOrderBy
->nExpr
;
2896 /* For operators other than UNION ALL we have to make sure that
2897 ** the ORDER BY clause covers every term of the result set. Add
2898 ** terms to the ORDER BY clause as necessary.
2901 for(i
=1; db
->mallocFailed
==0 && i
<=p
->pEList
->nExpr
; i
++){
2902 struct ExprList_item
*pItem
;
2903 for(j
=0, pItem
=pOrderBy
->a
; j
<nOrderBy
; j
++, pItem
++){
2904 assert( pItem
->u
.x
.iOrderByCol
>0 );
2905 if( pItem
->u
.x
.iOrderByCol
==i
) break;
2908 Expr
*pNew
= sqlite3Expr(db
, TK_INTEGER
, 0);
2909 if( pNew
==0 ) return SQLITE_NOMEM_BKPT
;
2910 pNew
->flags
|= EP_IntValue
;
2912 p
->pOrderBy
= pOrderBy
= sqlite3ExprListAppend(pParse
, pOrderBy
, pNew
);
2913 if( pOrderBy
) pOrderBy
->a
[nOrderBy
++].u
.x
.iOrderByCol
= (u16
)i
;
2918 /* Compute the comparison permutation and keyinfo that is used with
2919 ** the permutation used to determine if the next
2920 ** row of results comes from selectA or selectB. Also add explicit
2921 ** collations to the ORDER BY clause terms so that when the subqueries
2922 ** to the right and the left are evaluated, they use the correct
2925 aPermute
= sqlite3DbMallocRawNN(db
, sizeof(int)*(nOrderBy
+ 1));
2927 struct ExprList_item
*pItem
;
2928 aPermute
[0] = nOrderBy
;
2929 for(i
=1, pItem
=pOrderBy
->a
; i
<=nOrderBy
; i
++, pItem
++){
2930 assert( pItem
->u
.x
.iOrderByCol
>0 );
2931 assert( pItem
->u
.x
.iOrderByCol
<=p
->pEList
->nExpr
);
2932 aPermute
[i
] = pItem
->u
.x
.iOrderByCol
- 1;
2934 pKeyMerge
= multiSelectOrderByKeyInfo(pParse
, p
, 1);
2939 /* Reattach the ORDER BY clause to the query.
2941 p
->pOrderBy
= pOrderBy
;
2942 pPrior
->pOrderBy
= sqlite3ExprListDup(pParse
->db
, pOrderBy
, 0);
2944 /* Allocate a range of temporary registers and the KeyInfo needed
2945 ** for the logic that removes duplicate result rows when the
2946 ** operator is UNION, EXCEPT, or INTERSECT (but not UNION ALL).
2951 int nExpr
= p
->pEList
->nExpr
;
2952 assert( nOrderBy
>=nExpr
|| db
->mallocFailed
);
2953 regPrev
= pParse
->nMem
+1;
2954 pParse
->nMem
+= nExpr
+1;
2955 sqlite3VdbeAddOp2(v
, OP_Integer
, 0, regPrev
);
2956 pKeyDup
= sqlite3KeyInfoAlloc(db
, nExpr
, 1);
2958 assert( sqlite3KeyInfoIsWriteable(pKeyDup
) );
2959 for(i
=0; i
<nExpr
; i
++){
2960 pKeyDup
->aColl
[i
] = multiSelectCollSeq(pParse
, p
, i
);
2961 pKeyDup
->aSortOrder
[i
] = 0;
2966 /* Separate the left and the right query from one another
2970 sqlite3ResolveOrderGroupBy(pParse
, p
, p
->pOrderBy
, "ORDER");
2971 if( pPrior
->pPrior
==0 ){
2972 sqlite3ResolveOrderGroupBy(pParse
, pPrior
, pPrior
->pOrderBy
, "ORDER");
2975 /* Compute the limit registers */
2976 computeLimitRegisters(pParse
, p
, labelEnd
);
2977 if( p
->iLimit
&& op
==TK_ALL
){
2978 regLimitA
= ++pParse
->nMem
;
2979 regLimitB
= ++pParse
->nMem
;
2980 sqlite3VdbeAddOp2(v
, OP_Copy
, p
->iOffset
? p
->iOffset
+1 : p
->iLimit
,
2982 sqlite3VdbeAddOp2(v
, OP_Copy
, regLimitA
, regLimitB
);
2984 regLimitA
= regLimitB
= 0;
2986 sqlite3ExprDelete(db
, p
->pLimit
);
2989 regAddrA
= ++pParse
->nMem
;
2990 regAddrB
= ++pParse
->nMem
;
2991 regOutA
= ++pParse
->nMem
;
2992 regOutB
= ++pParse
->nMem
;
2993 sqlite3SelectDestInit(&destA
, SRT_Coroutine
, regAddrA
);
2994 sqlite3SelectDestInit(&destB
, SRT_Coroutine
, regAddrB
);
2996 /* Generate a coroutine to evaluate the SELECT statement to the
2997 ** left of the compound operator - the "A" select.
2999 addrSelectA
= sqlite3VdbeCurrentAddr(v
) + 1;
3000 addr1
= sqlite3VdbeAddOp3(v
, OP_InitCoroutine
, regAddrA
, 0, addrSelectA
);
3001 VdbeComment((v
, "left SELECT"));
3002 pPrior
->iLimit
= regLimitA
;
3003 explainSetInteger(iSub1
, pParse
->iNextSelectId
);
3004 sqlite3Select(pParse
, pPrior
, &destA
);
3005 sqlite3VdbeEndCoroutine(v
, regAddrA
);
3006 sqlite3VdbeJumpHere(v
, addr1
);
3008 /* Generate a coroutine to evaluate the SELECT statement on
3009 ** the right - the "B" select
3011 addrSelectB
= sqlite3VdbeCurrentAddr(v
) + 1;
3012 addr1
= sqlite3VdbeAddOp3(v
, OP_InitCoroutine
, regAddrB
, 0, addrSelectB
);
3013 VdbeComment((v
, "right SELECT"));
3014 savedLimit
= p
->iLimit
;
3015 savedOffset
= p
->iOffset
;
3016 p
->iLimit
= regLimitB
;
3018 explainSetInteger(iSub2
, pParse
->iNextSelectId
);
3019 sqlite3Select(pParse
, p
, &destB
);
3020 p
->iLimit
= savedLimit
;
3021 p
->iOffset
= savedOffset
;
3022 sqlite3VdbeEndCoroutine(v
, regAddrB
);
3024 /* Generate a subroutine that outputs the current row of the A
3025 ** select as the next output row of the compound select.
3027 VdbeNoopComment((v
, "Output routine for A"));
3028 addrOutA
= generateOutputSubroutine(pParse
,
3029 p
, &destA
, pDest
, regOutA
,
3030 regPrev
, pKeyDup
, labelEnd
);
3032 /* Generate a subroutine that outputs the current row of the B
3033 ** select as the next output row of the compound select.
3035 if( op
==TK_ALL
|| op
==TK_UNION
){
3036 VdbeNoopComment((v
, "Output routine for B"));
3037 addrOutB
= generateOutputSubroutine(pParse
,
3038 p
, &destB
, pDest
, regOutB
,
3039 regPrev
, pKeyDup
, labelEnd
);
3041 sqlite3KeyInfoUnref(pKeyDup
);
3043 /* Generate a subroutine to run when the results from select A
3044 ** are exhausted and only data in select B remains.
3046 if( op
==TK_EXCEPT
|| op
==TK_INTERSECT
){
3047 addrEofA_noB
= addrEofA
= labelEnd
;
3049 VdbeNoopComment((v
, "eof-A subroutine"));
3050 addrEofA
= sqlite3VdbeAddOp2(v
, OP_Gosub
, regOutB
, addrOutB
);
3051 addrEofA_noB
= sqlite3VdbeAddOp2(v
, OP_Yield
, regAddrB
, labelEnd
);
3053 sqlite3VdbeGoto(v
, addrEofA
);
3054 p
->nSelectRow
= sqlite3LogEstAdd(p
->nSelectRow
, pPrior
->nSelectRow
);
3057 /* Generate a subroutine to run when the results from select B
3058 ** are exhausted and only data in select A remains.
3060 if( op
==TK_INTERSECT
){
3061 addrEofB
= addrEofA
;
3062 if( p
->nSelectRow
> pPrior
->nSelectRow
) p
->nSelectRow
= pPrior
->nSelectRow
;
3064 VdbeNoopComment((v
, "eof-B subroutine"));
3065 addrEofB
= sqlite3VdbeAddOp2(v
, OP_Gosub
, regOutA
, addrOutA
);
3066 sqlite3VdbeAddOp2(v
, OP_Yield
, regAddrA
, labelEnd
); VdbeCoverage(v
);
3067 sqlite3VdbeGoto(v
, addrEofB
);
3070 /* Generate code to handle the case of A<B
3072 VdbeNoopComment((v
, "A-lt-B subroutine"));
3073 addrAltB
= sqlite3VdbeAddOp2(v
, OP_Gosub
, regOutA
, addrOutA
);
3074 sqlite3VdbeAddOp2(v
, OP_Yield
, regAddrA
, addrEofA
); VdbeCoverage(v
);
3075 sqlite3VdbeGoto(v
, labelCmpr
);
3077 /* Generate code to handle the case of A==B
3080 addrAeqB
= addrAltB
;
3081 }else if( op
==TK_INTERSECT
){
3082 addrAeqB
= addrAltB
;
3085 VdbeNoopComment((v
, "A-eq-B subroutine"));
3087 sqlite3VdbeAddOp2(v
, OP_Yield
, regAddrA
, addrEofA
); VdbeCoverage(v
);
3088 sqlite3VdbeGoto(v
, labelCmpr
);
3091 /* Generate code to handle the case of A>B
3093 VdbeNoopComment((v
, "A-gt-B subroutine"));
3094 addrAgtB
= sqlite3VdbeCurrentAddr(v
);
3095 if( op
==TK_ALL
|| op
==TK_UNION
){
3096 sqlite3VdbeAddOp2(v
, OP_Gosub
, regOutB
, addrOutB
);
3098 sqlite3VdbeAddOp2(v
, OP_Yield
, regAddrB
, addrEofB
); VdbeCoverage(v
);
3099 sqlite3VdbeGoto(v
, labelCmpr
);
3101 /* This code runs once to initialize everything.
3103 sqlite3VdbeJumpHere(v
, addr1
);
3104 sqlite3VdbeAddOp2(v
, OP_Yield
, regAddrA
, addrEofA_noB
); VdbeCoverage(v
);
3105 sqlite3VdbeAddOp2(v
, OP_Yield
, regAddrB
, addrEofB
); VdbeCoverage(v
);
3107 /* Implement the main merge loop
3109 sqlite3VdbeResolveLabel(v
, labelCmpr
);
3110 sqlite3VdbeAddOp4(v
, OP_Permutation
, 0, 0, 0, (char*)aPermute
, P4_INTARRAY
);
3111 sqlite3VdbeAddOp4(v
, OP_Compare
, destA
.iSdst
, destB
.iSdst
, nOrderBy
,
3112 (char*)pKeyMerge
, P4_KEYINFO
);
3113 sqlite3VdbeChangeP5(v
, OPFLAG_PERMUTE
);
3114 sqlite3VdbeAddOp3(v
, OP_Jump
, addrAltB
, addrAeqB
, addrAgtB
); VdbeCoverage(v
);
3116 /* Jump to the this point in order to terminate the query.
3118 sqlite3VdbeResolveLabel(v
, labelEnd
);
3120 /* Reassembly the compound query so that it will be freed correctly
3121 ** by the calling function */
3123 sqlite3SelectDelete(db
, p
->pPrior
);
3128 /*** TBD: Insert subroutine calls to close cursors on incomplete
3129 **** subqueries ****/
3130 explainComposite(pParse
, p
->op
, iSub1
, iSub2
, 0);
3131 return pParse
->nErr
!=0;
3135 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
3137 /* An instance of the SubstContext object describes an substitution edit
3138 ** to be performed on a parse tree.
3140 ** All references to columns in table iTable are to be replaced by corresponding
3141 ** expressions in pEList.
3143 typedef struct SubstContext
{
3144 Parse
*pParse
; /* The parsing context */
3145 int iTable
; /* Replace references to this table */
3146 int iNewTable
; /* New table number */
3147 int isLeftJoin
; /* Add TK_IF_NULL_ROW opcodes on each replacement */
3148 ExprList
*pEList
; /* Replacement expressions */
3151 /* Forward Declarations */
3152 static void substExprList(SubstContext
*, ExprList
*);
3153 static void substSelect(SubstContext
*, Select
*, int);
3156 ** Scan through the expression pExpr. Replace every reference to
3157 ** a column in table number iTable with a copy of the iColumn-th
3158 ** entry in pEList. (But leave references to the ROWID column
3161 ** This routine is part of the flattening procedure. A subquery
3162 ** whose result set is defined by pEList appears as entry in the
3163 ** FROM clause of a SELECT such that the VDBE cursor assigned to that
3164 ** FORM clause entry is iTable. This routine makes the necessary
3165 ** changes to pExpr so that it refers directly to the source table
3166 ** of the subquery rather the result set of the subquery.
3168 static Expr
*substExpr(
3169 SubstContext
*pSubst
, /* Description of the substitution */
3170 Expr
*pExpr
/* Expr in which substitution occurs */
3172 if( pExpr
==0 ) return 0;
3173 if( ExprHasProperty(pExpr
, EP_FromJoin
)
3174 && pExpr
->iRightJoinTable
==pSubst
->iTable
3176 pExpr
->iRightJoinTable
= pSubst
->iNewTable
;
3178 if( pExpr
->op
==TK_COLUMN
&& pExpr
->iTable
==pSubst
->iTable
){
3179 if( pExpr
->iColumn
<0 ){
3180 pExpr
->op
= TK_NULL
;
3183 Expr
*pCopy
= pSubst
->pEList
->a
[pExpr
->iColumn
].pExpr
;
3185 assert( pSubst
->pEList
!=0 && pExpr
->iColumn
<pSubst
->pEList
->nExpr
);
3186 assert( pExpr
->pLeft
==0 && pExpr
->pRight
==0 );
3187 if( sqlite3ExprIsVector(pCopy
) ){
3188 sqlite3VectorErrorMsg(pSubst
->pParse
, pCopy
);
3190 sqlite3
*db
= pSubst
->pParse
->db
;
3191 if( pSubst
->isLeftJoin
&& pCopy
->op
!=TK_COLUMN
){
3192 memset(&ifNullRow
, 0, sizeof(ifNullRow
));
3193 ifNullRow
.op
= TK_IF_NULL_ROW
;
3194 ifNullRow
.pLeft
= pCopy
;
3195 ifNullRow
.iTable
= pSubst
->iNewTable
;
3198 pNew
= sqlite3ExprDup(db
, pCopy
, 0);
3199 if( pNew
&& pSubst
->isLeftJoin
){
3200 ExprSetProperty(pNew
, EP_CanBeNull
);
3202 if( pNew
&& ExprHasProperty(pExpr
,EP_FromJoin
) ){
3203 pNew
->iRightJoinTable
= pExpr
->iRightJoinTable
;
3204 ExprSetProperty(pNew
, EP_FromJoin
);
3206 sqlite3ExprDelete(db
, pExpr
);
3211 if( pExpr
->op
==TK_IF_NULL_ROW
&& pExpr
->iTable
==pSubst
->iTable
){
3212 pExpr
->iTable
= pSubst
->iNewTable
;
3214 pExpr
->pLeft
= substExpr(pSubst
, pExpr
->pLeft
);
3215 pExpr
->pRight
= substExpr(pSubst
, pExpr
->pRight
);
3216 if( ExprHasProperty(pExpr
, EP_xIsSelect
) ){
3217 substSelect(pSubst
, pExpr
->x
.pSelect
, 1);
3219 substExprList(pSubst
, pExpr
->x
.pList
);
3224 static void substExprList(
3225 SubstContext
*pSubst
, /* Description of the substitution */
3226 ExprList
*pList
/* List to scan and in which to make substitutes */
3229 if( pList
==0 ) return;
3230 for(i
=0; i
<pList
->nExpr
; i
++){
3231 pList
->a
[i
].pExpr
= substExpr(pSubst
, pList
->a
[i
].pExpr
);
3234 static void substSelect(
3235 SubstContext
*pSubst
, /* Description of the substitution */
3236 Select
*p
, /* SELECT statement in which to make substitutions */
3237 int doPrior
/* Do substitutes on p->pPrior too */
3240 struct SrcList_item
*pItem
;
3244 substExprList(pSubst
, p
->pEList
);
3245 substExprList(pSubst
, p
->pGroupBy
);
3246 substExprList(pSubst
, p
->pOrderBy
);
3247 p
->pHaving
= substExpr(pSubst
, p
->pHaving
);
3248 p
->pWhere
= substExpr(pSubst
, p
->pWhere
);
3251 for(i
=pSrc
->nSrc
, pItem
=pSrc
->a
; i
>0; i
--, pItem
++){
3252 substSelect(pSubst
, pItem
->pSelect
, 1);
3253 if( pItem
->fg
.isTabFunc
){
3254 substExprList(pSubst
, pItem
->u1
.pFuncArg
);
3257 }while( doPrior
&& (p
= p
->pPrior
)!=0 );
3259 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */
3261 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
3263 ** This routine attempts to flatten subqueries as a performance optimization.
3264 ** This routine returns 1 if it makes changes and 0 if no flattening occurs.
3266 ** To understand the concept of flattening, consider the following
3269 ** SELECT a FROM (SELECT x+y AS a FROM t1 WHERE z<100) WHERE a>5
3271 ** The default way of implementing this query is to execute the
3272 ** subquery first and store the results in a temporary table, then
3273 ** run the outer query on that temporary table. This requires two
3274 ** passes over the data. Furthermore, because the temporary table
3275 ** has no indices, the WHERE clause on the outer query cannot be
3278 ** This routine attempts to rewrite queries such as the above into
3279 ** a single flat select, like this:
3281 ** SELECT x+y AS a FROM t1 WHERE z<100 AND a>5
3283 ** The code generated for this simplification gives the same result
3284 ** but only has to scan the data once. And because indices might
3285 ** exist on the table t1, a complete scan of the data might be
3288 ** Flattening is subject to the following constraints:
3290 ** (**) We no longer attempt to flatten aggregate subqueries. Was:
3291 ** The subquery and the outer query cannot both be aggregates.
3293 ** (**) We no longer attempt to flatten aggregate subqueries. Was:
3294 ** (2) If the subquery is an aggregate then
3295 ** (2a) the outer query must not be a join and
3296 ** (2b) the outer query must not use subqueries
3297 ** other than the one FROM-clause subquery that is a candidate
3298 ** for flattening. (This is due to ticket [2f7170d73bf9abf80]
3299 ** from 2015-02-09.)
3301 ** (3) If the subquery is the right operand of a LEFT JOIN then
3302 ** (3a) the subquery may not be a join and
3303 ** (3b) the FROM clause of the subquery may not contain a virtual
3305 ** (3c) the outer query may not be an aggregate.
3307 ** (4) The subquery can not be DISTINCT.
3309 ** (**) At one point restrictions (4) and (5) defined a subset of DISTINCT
3310 ** sub-queries that were excluded from this optimization. Restriction
3311 ** (4) has since been expanded to exclude all DISTINCT subqueries.
3313 ** (**) We no longer attempt to flatten aggregate subqueries. Was:
3314 ** If the subquery is aggregate, the outer query may not be DISTINCT.
3316 ** (7) The subquery must have a FROM clause. TODO: For subqueries without
3317 ** A FROM clause, consider adding a FROM clause with the special
3318 ** table sqlite_once that consists of a single row containing a
3321 ** (8) If the subquery uses LIMIT then the outer query may not be a join.
3323 ** (9) If the subquery uses LIMIT then the outer query may not be aggregate.
3325 ** (**) Restriction (10) was removed from the code on 2005-02-05 but we
3326 ** accidently carried the comment forward until 2014-09-15. Original
3327 ** constraint: "If the subquery is aggregate then the outer query
3328 ** may not use LIMIT."
3330 ** (11) The subquery and the outer query may not both have ORDER BY clauses.
3332 ** (**) Not implemented. Subsumed into restriction (3). Was previously
3333 ** a separate restriction deriving from ticket #350.
3335 ** (13) The subquery and outer query may not both use LIMIT.
3337 ** (14) The subquery may not use OFFSET.
3339 ** (15) If the outer query is part of a compound select, then the
3340 ** subquery may not use LIMIT.
3341 ** (See ticket #2339 and ticket [02a8e81d44]).
3343 ** (16) If the outer query is aggregate, then the subquery may not
3344 ** use ORDER BY. (Ticket #2942) This used to not matter
3345 ** until we introduced the group_concat() function.
3347 ** (17) If the subquery is a compound select, then
3348 ** (17a) all compound operators must be a UNION ALL, and
3349 ** (17b) no terms within the subquery compound may be aggregate
3351 ** (17c) every term within the subquery compound must have a FROM clause
3352 ** (17d) the outer query may not be
3353 ** (17d1) aggregate, or
3354 ** (17d2) DISTINCT, or
3357 ** The parent and sub-query may contain WHERE clauses. Subject to
3358 ** rules (11), (13) and (14), they may also contain ORDER BY,
3359 ** LIMIT and OFFSET clauses. The subquery cannot use any compound
3360 ** operator other than UNION ALL because all the other compound
3361 ** operators have an implied DISTINCT which is disallowed by
3364 ** Also, each component of the sub-query must return the same number
3365 ** of result columns. This is actually a requirement for any compound
3366 ** SELECT statement, but all the code here does is make sure that no
3367 ** such (illegal) sub-query is flattened. The caller will detect the
3368 ** syntax error and return a detailed message.
3370 ** (18) If the sub-query is a compound select, then all terms of the
3371 ** ORDER BY clause of the parent must be simple references to
3372 ** columns of the sub-query.
3374 ** (19) If the subquery uses LIMIT then the outer query may not
3375 ** have a WHERE clause.
3377 ** (20) If the sub-query is a compound select, then it must not use
3378 ** an ORDER BY clause. Ticket #3773. We could relax this constraint
3379 ** somewhat by saying that the terms of the ORDER BY clause must
3380 ** appear as unmodified result columns in the outer query. But we
3381 ** have other optimizations in mind to deal with that case.
3383 ** (21) If the subquery uses LIMIT then the outer query may not be
3384 ** DISTINCT. (See ticket [752e1646fc]).
3386 ** (22) The subquery may not be a recursive CTE.
3388 ** (**) Subsumed into restriction (17d3). Was: If the outer query is
3389 ** a recursive CTE, then the sub-query may not be a compound query.
3390 ** This restriction is because transforming the
3391 ** parent to a compound query confuses the code that handles
3392 ** recursive queries in multiSelect().
3394 ** (**) We no longer attempt to flatten aggregate subqueries. Was:
3395 ** The subquery may not be an aggregate that uses the built-in min() or
3396 ** or max() functions. (Without this restriction, a query like:
3397 ** "SELECT x FROM (SELECT max(y), x FROM t1)" would not necessarily
3398 ** return the value X for which Y was maximal.)
3401 ** In this routine, the "p" parameter is a pointer to the outer query.
3402 ** The subquery is p->pSrc->a[iFrom]. isAgg is true if the outer query
3405 ** If flattening is not attempted, this routine is a no-op and returns 0.
3406 ** If flattening is attempted this routine returns 1.
3408 ** All of the expression analysis must occur on both the outer query and
3409 ** the subquery before this routine runs.
3411 static int flattenSubquery(
3412 Parse
*pParse
, /* Parsing context */
3413 Select
*p
, /* The parent or outer SELECT statement */
3414 int iFrom
, /* Index in p->pSrc->a[] of the inner subquery */
3415 int isAgg
/* True if outer SELECT uses aggregate functions */
3417 const char *zSavedAuthContext
= pParse
->zAuthContext
;
3418 Select
*pParent
; /* Current UNION ALL term of the other query */
3419 Select
*pSub
; /* The inner query or "subquery" */
3420 Select
*pSub1
; /* Pointer to the rightmost select in sub-query */
3421 SrcList
*pSrc
; /* The FROM clause of the outer query */
3422 SrcList
*pSubSrc
; /* The FROM clause of the subquery */
3423 int iParent
; /* VDBE cursor number of the pSub result set temp table */
3424 int iNewParent
= -1;/* Replacement table for iParent */
3425 int isLeftJoin
= 0; /* True if pSub is the right side of a LEFT JOIN */
3426 int i
; /* Loop counter */
3427 Expr
*pWhere
; /* The WHERE clause */
3428 struct SrcList_item
*pSubitem
; /* The subquery */
3429 sqlite3
*db
= pParse
->db
;
3431 /* Check to see if flattening is permitted. Return 0 if not.
3434 assert( p
->pPrior
==0 );
3435 if( OptimizationDisabled(db
, SQLITE_QueryFlattener
) ) return 0;
3437 assert( pSrc
&& iFrom
>=0 && iFrom
<pSrc
->nSrc
);
3438 pSubitem
= &pSrc
->a
[iFrom
];
3439 iParent
= pSubitem
->iCursor
;
3440 pSub
= pSubitem
->pSelect
;
3443 pSubSrc
= pSub
->pSrc
;
3445 /* Prior to version 3.1.2, when LIMIT and OFFSET had to be simple constants,
3446 ** not arbitrary expressions, we allowed some combining of LIMIT and OFFSET
3447 ** because they could be computed at compile-time. But when LIMIT and OFFSET
3448 ** became arbitrary expressions, we were forced to add restrictions (13)
3450 if( pSub
->pLimit
&& p
->pLimit
) return 0; /* Restriction (13) */
3451 if( pSub
->pLimit
&& pSub
->pLimit
->pRight
) return 0; /* Restriction (14) */
3452 if( (p
->selFlags
& SF_Compound
)!=0 && pSub
->pLimit
){
3453 return 0; /* Restriction (15) */
3455 if( pSubSrc
->nSrc
==0 ) return 0; /* Restriction (7) */
3456 if( pSub
->selFlags
& SF_Distinct
) return 0; /* Restriction (4) */
3457 if( pSub
->pLimit
&& (pSrc
->nSrc
>1 || isAgg
) ){
3458 return 0; /* Restrictions (8)(9) */
3460 if( p
->pOrderBy
&& pSub
->pOrderBy
){
3461 return 0; /* Restriction (11) */
3463 if( isAgg
&& pSub
->pOrderBy
) return 0; /* Restriction (16) */
3464 if( pSub
->pLimit
&& p
->pWhere
) return 0; /* Restriction (19) */
3465 if( pSub
->pLimit
&& (p
->selFlags
& SF_Distinct
)!=0 ){
3466 return 0; /* Restriction (21) */
3468 if( pSub
->selFlags
& (SF_Recursive
) ){
3469 return 0; /* Restrictions (22) */
3473 ** If the subquery is the right operand of a LEFT JOIN, then the
3474 ** subquery may not be a join itself (3a). Example of why this is not
3477 ** t1 LEFT OUTER JOIN (t2 JOIN t3)
3479 ** If we flatten the above, we would get
3481 ** (t1 LEFT OUTER JOIN t2) JOIN t3
3483 ** which is not at all the same thing.
3485 ** If the subquery is the right operand of a LEFT JOIN, then the outer
3486 ** query cannot be an aggregate. (3c) This is an artifact of the way
3487 ** aggregates are processed - there is no mechanism to determine if
3488 ** the LEFT JOIN table should be all-NULL.
3490 ** See also tickets #306, #350, and #3300.
3492 if( (pSubitem
->fg
.jointype
& JT_OUTER
)!=0 ){
3494 if( pSubSrc
->nSrc
>1 || isAgg
|| IsVirtual(pSubSrc
->a
[0].pTab
) ){
3495 /* (3a) (3c) (3b) */
3499 #ifdef SQLITE_EXTRA_IFNULLROW
3500 else if( iFrom
>0 && !isAgg
){
3501 /* Setting isLeftJoin to -1 causes OP_IfNullRow opcodes to be generated for
3502 ** every reference to any result column from subquery in a join, even
3503 ** though they are not necessary. This will stress-test the OP_IfNullRow
3509 /* Restriction (17): If the sub-query is a compound SELECT, then it must
3510 ** use only the UNION ALL operator. And none of the simple select queries
3511 ** that make up the compound SELECT are allowed to be aggregate or distinct
3515 if( pSub
->pOrderBy
){
3516 return 0; /* Restriction (20) */
3518 if( isAgg
|| (p
->selFlags
& SF_Distinct
)!=0 || pSrc
->nSrc
!=1 ){
3519 return 0; /* (17d1), (17d2), or (17d3) */
3521 for(pSub1
=pSub
; pSub1
; pSub1
=pSub1
->pPrior
){
3522 testcase( (pSub1
->selFlags
& (SF_Distinct
|SF_Aggregate
))==SF_Distinct
);
3523 testcase( (pSub1
->selFlags
& (SF_Distinct
|SF_Aggregate
))==SF_Aggregate
);
3524 assert( pSub
->pSrc
!=0 );
3525 assert( pSub
->pEList
->nExpr
==pSub1
->pEList
->nExpr
);
3526 if( (pSub1
->selFlags
& (SF_Distinct
|SF_Aggregate
))!=0 /* (17b) */
3527 || (pSub1
->pPrior
&& pSub1
->op
!=TK_ALL
) /* (17a) */
3528 || pSub1
->pSrc
->nSrc
<1 /* (17c) */
3532 testcase( pSub1
->pSrc
->nSrc
>1 );
3535 /* Restriction (18). */
3538 for(ii
=0; ii
<p
->pOrderBy
->nExpr
; ii
++){
3539 if( p
->pOrderBy
->a
[ii
].u
.x
.iOrderByCol
==0 ) return 0;
3544 /* Ex-restriction (23):
3545 ** The only way that the recursive part of a CTE can contain a compound
3546 ** subquery is for the subquery to be one term of a join. But if the
3547 ** subquery is a join, then the flattening has already been stopped by
3548 ** restriction (17d3)
3550 assert( (p
->selFlags
& SF_Recursive
)==0 || pSub
->pPrior
==0 );
3552 /***** If we reach this point, flattening is permitted. *****/
3553 SELECTTRACE(1,pParse
,p
,("flatten %s.%p from term %d\n",
3554 pSub
->zSelName
, pSub
, iFrom
));
3556 /* Authorize the subquery */
3557 pParse
->zAuthContext
= pSubitem
->zName
;
3558 TESTONLY(i
=) sqlite3AuthCheck(pParse
, SQLITE_SELECT
, 0, 0, 0);
3559 testcase( i
==SQLITE_DENY
);
3560 pParse
->zAuthContext
= zSavedAuthContext
;
3562 /* If the sub-query is a compound SELECT statement, then (by restrictions
3563 ** 17 and 18 above) it must be a UNION ALL and the parent query must
3566 ** SELECT <expr-list> FROM (<sub-query>) <where-clause>
3568 ** followed by any ORDER BY, LIMIT and/or OFFSET clauses. This block
3569 ** creates N-1 copies of the parent query without any ORDER BY, LIMIT or
3570 ** OFFSET clauses and joins them to the left-hand-side of the original
3571 ** using UNION ALL operators. In this case N is the number of simple
3572 ** select statements in the compound sub-query.
3576 ** SELECT a+1 FROM (
3577 ** SELECT x FROM tab
3579 ** SELECT y FROM tab
3581 ** SELECT abs(z*2) FROM tab2
3582 ** ) WHERE a!=5 ORDER BY 1
3584 ** Transformed into:
3586 ** SELECT x+1 FROM tab WHERE x+1!=5
3588 ** SELECT y+1 FROM tab WHERE y+1!=5
3590 ** SELECT abs(z*2)+1 FROM tab2 WHERE abs(z*2)+1!=5
3593 ** We call this the "compound-subquery flattening".
3595 for(pSub
=pSub
->pPrior
; pSub
; pSub
=pSub
->pPrior
){
3597 ExprList
*pOrderBy
= p
->pOrderBy
;
3598 Expr
*pLimit
= p
->pLimit
;
3599 Select
*pPrior
= p
->pPrior
;
3604 pNew
= sqlite3SelectDup(db
, p
, 0);
3605 sqlite3SelectSetName(pNew
, pSub
->zSelName
);
3607 p
->pOrderBy
= pOrderBy
;
3613 pNew
->pPrior
= pPrior
;
3614 if( pPrior
) pPrior
->pNext
= pNew
;
3617 SELECTTRACE(2,pParse
,p
,
3618 ("compound-subquery flattener creates %s.%p as peer\n",
3619 pNew
->zSelName
, pNew
));
3621 if( db
->mallocFailed
) return 1;
3624 /* Begin flattening the iFrom-th entry of the FROM clause
3625 ** in the outer query.
3627 pSub
= pSub1
= pSubitem
->pSelect
;
3629 /* Delete the transient table structure associated with the
3632 sqlite3DbFree(db
, pSubitem
->zDatabase
);
3633 sqlite3DbFree(db
, pSubitem
->zName
);
3634 sqlite3DbFree(db
, pSubitem
->zAlias
);
3635 pSubitem
->zDatabase
= 0;
3636 pSubitem
->zName
= 0;
3637 pSubitem
->zAlias
= 0;
3638 pSubitem
->pSelect
= 0;
3640 /* Defer deleting the Table object associated with the
3641 ** subquery until code generation is
3642 ** complete, since there may still exist Expr.pTab entries that
3643 ** refer to the subquery even after flattening. Ticket #3346.
3645 ** pSubitem->pTab is always non-NULL by test restrictions and tests above.
3647 if( ALWAYS(pSubitem
->pTab
!=0) ){
3648 Table
*pTabToDel
= pSubitem
->pTab
;
3649 if( pTabToDel
->nTabRef
==1 ){
3650 Parse
*pToplevel
= sqlite3ParseToplevel(pParse
);
3651 pTabToDel
->pNextZombie
= pToplevel
->pZombieTab
;
3652 pToplevel
->pZombieTab
= pTabToDel
;
3654 pTabToDel
->nTabRef
--;
3659 /* The following loop runs once for each term in a compound-subquery
3660 ** flattening (as described above). If we are doing a different kind
3661 ** of flattening - a flattening other than a compound-subquery flattening -
3662 ** then this loop only runs once.
3664 ** This loop moves all of the FROM elements of the subquery into the
3665 ** the FROM clause of the outer query. Before doing this, remember
3666 ** the cursor number for the original outer query FROM element in
3667 ** iParent. The iParent cursor will never be used. Subsequent code
3668 ** will scan expressions looking for iParent references and replace
3669 ** those references with expressions that resolve to the subquery FROM
3670 ** elements we are now copying in.
3672 for(pParent
=p
; pParent
; pParent
=pParent
->pPrior
, pSub
=pSub
->pPrior
){
3675 pSubSrc
= pSub
->pSrc
; /* FROM clause of subquery */
3676 nSubSrc
= pSubSrc
->nSrc
; /* Number of terms in subquery FROM clause */
3677 pSrc
= pParent
->pSrc
; /* FROM clause of the outer query */
3680 assert( pParent
==p
); /* First time through the loop */
3681 jointype
= pSubitem
->fg
.jointype
;
3683 assert( pParent
!=p
); /* 2nd and subsequent times through the loop */
3684 pSrc
= pParent
->pSrc
= sqlite3SrcListAppend(db
, 0, 0, 0);
3686 assert( db
->mallocFailed
);
3691 /* The subquery uses a single slot of the FROM clause of the outer
3692 ** query. If the subquery has more than one element in its FROM clause,
3693 ** then expand the outer query to make space for it to hold all elements
3698 ** SELECT * FROM tabA, (SELECT * FROM sub1, sub2), tabB;
3700 ** The outer query has 3 slots in its FROM clause. One slot of the
3701 ** outer query (the middle slot) is used by the subquery. The next
3702 ** block of code will expand the outer query FROM clause to 4 slots.
3703 ** The middle slot is expanded to two slots in order to make space
3704 ** for the two elements in the FROM clause of the subquery.
3707 pParent
->pSrc
= pSrc
= sqlite3SrcListEnlarge(db
, pSrc
, nSubSrc
-1,iFrom
+1);
3708 if( db
->mallocFailed
){
3713 /* Transfer the FROM clause terms from the subquery into the
3716 for(i
=0; i
<nSubSrc
; i
++){
3717 sqlite3IdListDelete(db
, pSrc
->a
[i
+iFrom
].pUsing
);
3718 assert( pSrc
->a
[i
+iFrom
].fg
.isTabFunc
==0 );
3719 pSrc
->a
[i
+iFrom
] = pSubSrc
->a
[i
];
3720 iNewParent
= pSubSrc
->a
[i
].iCursor
;
3721 memset(&pSubSrc
->a
[i
], 0, sizeof(pSubSrc
->a
[i
]));
3723 pSrc
->a
[iFrom
].fg
.jointype
= jointype
;
3725 /* Now begin substituting subquery result set expressions for
3726 ** references to the iParent in the outer query.
3730 ** SELECT a+5, b*10 FROM (SELECT x*3 AS a, y+10 AS b FROM t1) WHERE a>b;
3731 ** \ \_____________ subquery __________/ /
3732 ** \_____________________ outer query ______________________________/
3734 ** We look at every expression in the outer query and every place we see
3735 ** "a" we substitute "x*3" and every place we see "b" we substitute "y+10".
3737 if( pSub
->pOrderBy
){
3738 /* At this point, any non-zero iOrderByCol values indicate that the
3739 ** ORDER BY column expression is identical to the iOrderByCol'th
3740 ** expression returned by SELECT statement pSub. Since these values
3741 ** do not necessarily correspond to columns in SELECT statement pParent,
3742 ** zero them before transfering the ORDER BY clause.
3744 ** Not doing this may cause an error if a subsequent call to this
3745 ** function attempts to flatten a compound sub-query into pParent
3746 ** (the only way this can happen is if the compound sub-query is
3747 ** currently part of pSub->pSrc). See ticket [d11a6e908f]. */
3748 ExprList
*pOrderBy
= pSub
->pOrderBy
;
3749 for(i
=0; i
<pOrderBy
->nExpr
; i
++){
3750 pOrderBy
->a
[i
].u
.x
.iOrderByCol
= 0;
3752 assert( pParent
->pOrderBy
==0 );
3753 assert( pSub
->pPrior
==0 );
3754 pParent
->pOrderBy
= pOrderBy
;
3757 pWhere
= sqlite3ExprDup(db
, pSub
->pWhere
, 0);
3759 setJoinExpr(pWhere
, iNewParent
);
3761 pParent
->pWhere
= sqlite3ExprAnd(db
, pWhere
, pParent
->pWhere
);
3762 if( db
->mallocFailed
==0 ){
3766 x
.iNewTable
= iNewParent
;
3767 x
.isLeftJoin
= isLeftJoin
;
3768 x
.pEList
= pSub
->pEList
;
3769 substSelect(&x
, pParent
, 0);
3772 /* The flattened query is distinct if either the inner or the
3773 ** outer query is distinct.
3775 pParent
->selFlags
|= pSub
->selFlags
& SF_Distinct
;
3778 ** SELECT ... FROM (SELECT ... LIMIT a OFFSET b) LIMIT x OFFSET y;
3780 ** One is tempted to try to add a and b to combine the limits. But this
3781 ** does not work if either limit is negative.
3784 pParent
->pLimit
= pSub
->pLimit
;
3789 /* Finially, delete what is left of the subquery and return
3792 sqlite3SelectDelete(db
, pSub1
);
3794 #if SELECTTRACE_ENABLED
3795 if( sqlite3SelectTrace
& 0x100 ){
3796 SELECTTRACE(0x100,pParse
,p
,("After flattening:\n"));
3797 sqlite3TreeViewSelect(0, p
, 0);
3803 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */
3807 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
3809 ** Make copies of relevant WHERE clause terms of the outer query into
3810 ** the WHERE clause of subquery. Example:
3812 ** SELECT * FROM (SELECT a AS x, c-d AS y FROM t1) WHERE x=5 AND y=10;
3814 ** Transformed into:
3816 ** SELECT * FROM (SELECT a AS x, c-d AS y FROM t1 WHERE a=5 AND c-d=10)
3817 ** WHERE x=5 AND y=10;
3819 ** The hope is that the terms added to the inner query will make it more
3822 ** Do not attempt this optimization if:
3824 ** (1) (** This restriction was removed on 2017-09-29. We used to
3825 ** disallow this optimization for aggregate subqueries, but now
3826 ** it is allowed by putting the extra terms on the HAVING clause.
3827 ** The added HAVING clause is pointless if the subquery lacks
3828 ** a GROUP BY clause. But such a HAVING clause is also harmless
3829 ** so there does not appear to be any reason to add extra logic
3830 ** to suppress it. **)
3832 ** (2) The inner query is the recursive part of a common table expression.
3834 ** (3) The inner query has a LIMIT clause (since the changes to the WHERE
3835 ** close would change the meaning of the LIMIT).
3837 ** (4) The inner query is the right operand of a LEFT JOIN. (The caller
3838 ** enforces this restriction since this routine does not have enough
3839 ** information to know.)
3841 ** (5) The WHERE clause expression originates in the ON or USING clause
3844 ** Return 0 if no changes are made and non-zero if one or more WHERE clause
3845 ** terms are duplicated into the subquery.
3847 static int pushDownWhereTerms(
3848 Parse
*pParse
, /* Parse context (for malloc() and error reporting) */
3849 Select
*pSubq
, /* The subquery whose WHERE clause is to be augmented */
3850 Expr
*pWhere
, /* The WHERE clause of the outer query */
3851 int iCursor
/* Cursor number of the subquery */
3855 if( pWhere
==0 ) return 0;
3856 if( pSubq
->selFlags
& SF_Recursive
) return 0; /* restriction (2) */
3859 /* Only the first term of a compound can have a WITH clause. But make
3860 ** sure no other terms are marked SF_Recursive in case something changes
3865 for(pX
=pSubq
; pX
; pX
=pX
->pPrior
){
3866 assert( (pX
->selFlags
& (SF_Recursive
))==0 );
3871 if( pSubq
->pLimit
!=0 ){
3872 return 0; /* restriction (3) */
3874 while( pWhere
->op
==TK_AND
){
3875 nChng
+= pushDownWhereTerms(pParse
, pSubq
, pWhere
->pRight
, iCursor
);
3876 pWhere
= pWhere
->pLeft
;
3878 if( ExprHasProperty(pWhere
,EP_FromJoin
) ) return 0; /* restriction (5) */
3879 if( sqlite3ExprIsTableConstant(pWhere
, iCursor
) ){
3883 pNew
= sqlite3ExprDup(pParse
->db
, pWhere
, 0);
3886 x
.iNewTable
= iCursor
;
3888 x
.pEList
= pSubq
->pEList
;
3889 pNew
= substExpr(&x
, pNew
);
3890 if( pSubq
->selFlags
& SF_Aggregate
){
3891 pSubq
->pHaving
= sqlite3ExprAnd(pParse
->db
, pSubq
->pHaving
, pNew
);
3893 pSubq
->pWhere
= sqlite3ExprAnd(pParse
->db
, pSubq
->pWhere
, pNew
);
3895 pSubq
= pSubq
->pPrior
;
3900 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */
3903 ** The pFunc is the only aggregate function in the query. Check to see
3904 ** if the query is a candidate for the min/max optimization.
3906 ** If the query is a candidate for the min/max optimization, then set
3907 ** *ppMinMax to be an ORDER BY clause to be used for the optimization
3908 ** and return either WHERE_ORDERBY_MIN or WHERE_ORDERBY_MAX depending on
3909 ** whether pFunc is a min() or max() function.
3911 ** If the query is not a candidate for the min/max optimization, return
3912 ** WHERE_ORDERBY_NORMAL (which must be zero).
3914 ** This routine must be called after aggregate functions have been
3915 ** located but before their arguments have been subjected to aggregate
3918 static u8
minMaxQuery(sqlite3
*db
, Expr
*pFunc
, ExprList
**ppMinMax
){
3919 int eRet
= WHERE_ORDERBY_NORMAL
; /* Return value */
3920 ExprList
*pEList
= pFunc
->x
.pList
; /* Arguments to agg function */
3921 const char *zFunc
; /* Name of aggregate function pFunc */
3925 assert( *ppMinMax
==0 );
3926 assert( pFunc
->op
==TK_AGG_FUNCTION
);
3927 if( pEList
==0 || pEList
->nExpr
!=1 ) return eRet
;
3928 zFunc
= pFunc
->u
.zToken
;
3929 if( sqlite3StrICmp(zFunc
, "min")==0 ){
3930 eRet
= WHERE_ORDERBY_MIN
;
3931 sortOrder
= SQLITE_SO_ASC
;
3932 }else if( sqlite3StrICmp(zFunc
, "max")==0 ){
3933 eRet
= WHERE_ORDERBY_MAX
;
3934 sortOrder
= SQLITE_SO_DESC
;
3938 *ppMinMax
= pOrderBy
= sqlite3ExprListDup(db
, pEList
, 0);
3939 assert( pOrderBy
!=0 || db
->mallocFailed
);
3940 if( pOrderBy
) pOrderBy
->a
[0].sortOrder
= sortOrder
;
3945 ** The select statement passed as the first argument is an aggregate query.
3946 ** The second argument is the associated aggregate-info object. This
3947 ** function tests if the SELECT is of the form:
3949 ** SELECT count(*) FROM <tbl>
3951 ** where table is a database table, not a sub-select or view. If the query
3952 ** does match this pattern, then a pointer to the Table object representing
3953 ** <tbl> is returned. Otherwise, 0 is returned.
3955 static Table
*isSimpleCount(Select
*p
, AggInfo
*pAggInfo
){
3959 assert( !p
->pGroupBy
);
3961 if( p
->pWhere
|| p
->pEList
->nExpr
!=1
3962 || p
->pSrc
->nSrc
!=1 || p
->pSrc
->a
[0].pSelect
3966 pTab
= p
->pSrc
->a
[0].pTab
;
3967 pExpr
= p
->pEList
->a
[0].pExpr
;
3968 assert( pTab
&& !pTab
->pSelect
&& pExpr
);
3970 if( IsVirtual(pTab
) ) return 0;
3971 if( pExpr
->op
!=TK_AGG_FUNCTION
) return 0;
3972 if( NEVER(pAggInfo
->nFunc
==0) ) return 0;
3973 if( (pAggInfo
->aFunc
[0].pFunc
->funcFlags
&SQLITE_FUNC_COUNT
)==0 ) return 0;
3974 if( pExpr
->flags
&EP_Distinct
) return 0;
3980 ** If the source-list item passed as an argument was augmented with an
3981 ** INDEXED BY clause, then try to locate the specified index. If there
3982 ** was such a clause and the named index cannot be found, return
3983 ** SQLITE_ERROR and leave an error in pParse. Otherwise, populate
3984 ** pFrom->pIndex and return SQLITE_OK.
3986 int sqlite3IndexedByLookup(Parse
*pParse
, struct SrcList_item
*pFrom
){
3987 if( pFrom
->pTab
&& pFrom
->fg
.isIndexedBy
){
3988 Table
*pTab
= pFrom
->pTab
;
3989 char *zIndexedBy
= pFrom
->u1
.zIndexedBy
;
3991 for(pIdx
=pTab
->pIndex
;
3992 pIdx
&& sqlite3StrICmp(pIdx
->zName
, zIndexedBy
);
3996 sqlite3ErrorMsg(pParse
, "no such index: %s", zIndexedBy
, 0);
3997 pParse
->checkSchema
= 1;
3998 return SQLITE_ERROR
;
4000 pFrom
->pIBIndex
= pIdx
;
4005 ** Detect compound SELECT statements that use an ORDER BY clause with
4006 ** an alternative collating sequence.
4008 ** SELECT ... FROM t1 EXCEPT SELECT ... FROM t2 ORDER BY .. COLLATE ...
4010 ** These are rewritten as a subquery:
4012 ** SELECT * FROM (SELECT ... FROM t1 EXCEPT SELECT ... FROM t2)
4013 ** ORDER BY ... COLLATE ...
4015 ** This transformation is necessary because the multiSelectOrderBy() routine
4016 ** above that generates the code for a compound SELECT with an ORDER BY clause
4017 ** uses a merge algorithm that requires the same collating sequence on the
4018 ** result columns as on the ORDER BY clause. See ticket
4019 ** http://www.sqlite.org/src/info/6709574d2a
4021 ** This transformation is only needed for EXCEPT, INTERSECT, and UNION.
4022 ** The UNION ALL operator works fine with multiSelectOrderBy() even when
4023 ** there are COLLATE terms in the ORDER BY.
4025 static int convertCompoundSelectToSubquery(Walker
*pWalker
, Select
*p
){
4030 struct ExprList_item
*a
;
4035 if( p
->pPrior
==0 ) return WRC_Continue
;
4036 if( p
->pOrderBy
==0 ) return WRC_Continue
;
4037 for(pX
=p
; pX
&& (pX
->op
==TK_ALL
|| pX
->op
==TK_SELECT
); pX
=pX
->pPrior
){}
4038 if( pX
==0 ) return WRC_Continue
;
4040 for(i
=p
->pOrderBy
->nExpr
-1; i
>=0; i
--){
4041 if( a
[i
].pExpr
->flags
& EP_Collate
) break;
4043 if( i
<0 ) return WRC_Continue
;
4045 /* If we reach this point, that means the transformation is required. */
4047 pParse
= pWalker
->pParse
;
4049 pNew
= sqlite3DbMallocZero(db
, sizeof(*pNew
) );
4050 if( pNew
==0 ) return WRC_Abort
;
4051 memset(&dummy
, 0, sizeof(dummy
));
4052 pNewSrc
= sqlite3SrcListAppendFromTerm(pParse
,0,0,0,&dummy
,pNew
,0,0);
4053 if( pNewSrc
==0 ) return WRC_Abort
;
4056 p
->pEList
= sqlite3ExprListAppend(pParse
, 0, sqlite3Expr(db
, TK_ASTERISK
, 0));
4065 p
->selFlags
&= ~SF_Compound
;
4066 assert( (p
->selFlags
& SF_Converted
)==0 );
4067 p
->selFlags
|= SF_Converted
;
4068 assert( pNew
->pPrior
!=0 );
4069 pNew
->pPrior
->pNext
= pNew
;
4071 return WRC_Continue
;
4075 ** Check to see if the FROM clause term pFrom has table-valued function
4076 ** arguments. If it does, leave an error message in pParse and return
4077 ** non-zero, since pFrom is not allowed to be a table-valued function.
4079 static int cannotBeFunction(Parse
*pParse
, struct SrcList_item
*pFrom
){
4080 if( pFrom
->fg
.isTabFunc
){
4081 sqlite3ErrorMsg(pParse
, "'%s' is not a function", pFrom
->zName
);
4087 #ifndef SQLITE_OMIT_CTE
4089 ** Argument pWith (which may be NULL) points to a linked list of nested
4090 ** WITH contexts, from inner to outermost. If the table identified by
4091 ** FROM clause element pItem is really a common-table-expression (CTE)
4092 ** then return a pointer to the CTE definition for that table. Otherwise
4095 ** If a non-NULL value is returned, set *ppContext to point to the With
4096 ** object that the returned CTE belongs to.
4098 static struct Cte
*searchWith(
4099 With
*pWith
, /* Current innermost WITH clause */
4100 struct SrcList_item
*pItem
, /* FROM clause element to resolve */
4101 With
**ppContext
/* OUT: WITH clause return value belongs to */
4104 if( pItem
->zDatabase
==0 && (zName
= pItem
->zName
)!=0 ){
4106 for(p
=pWith
; p
; p
=p
->pOuter
){
4108 for(i
=0; i
<p
->nCte
; i
++){
4109 if( sqlite3StrICmp(zName
, p
->a
[i
].zName
)==0 ){
4119 /* The code generator maintains a stack of active WITH clauses
4120 ** with the inner-most WITH clause being at the top of the stack.
4122 ** This routine pushes the WITH clause passed as the second argument
4123 ** onto the top of the stack. If argument bFree is true, then this
4124 ** WITH clause will never be popped from the stack. In this case it
4125 ** should be freed along with the Parse object. In other cases, when
4126 ** bFree==0, the With object will be freed along with the SELECT
4127 ** statement with which it is associated.
4129 void sqlite3WithPush(Parse
*pParse
, With
*pWith
, u8 bFree
){
4130 assert( bFree
==0 || (pParse
->pWith
==0 && pParse
->pWithToFree
==0) );
4132 assert( pParse
->pWith
!=pWith
);
4133 pWith
->pOuter
= pParse
->pWith
;
4134 pParse
->pWith
= pWith
;
4135 if( bFree
) pParse
->pWithToFree
= pWith
;
4140 ** This function checks if argument pFrom refers to a CTE declared by
4141 ** a WITH clause on the stack currently maintained by the parser. And,
4142 ** if currently processing a CTE expression, if it is a recursive
4143 ** reference to the current CTE.
4145 ** If pFrom falls into either of the two categories above, pFrom->pTab
4146 ** and other fields are populated accordingly. The caller should check
4147 ** (pFrom->pTab!=0) to determine whether or not a successful match
4150 ** Whether or not a match is found, SQLITE_OK is returned if no error
4151 ** occurs. If an error does occur, an error message is stored in the
4152 ** parser and some error code other than SQLITE_OK returned.
4154 static int withExpand(
4156 struct SrcList_item
*pFrom
4158 Parse
*pParse
= pWalker
->pParse
;
4159 sqlite3
*db
= pParse
->db
;
4160 struct Cte
*pCte
; /* Matched CTE (or NULL if no match) */
4161 With
*pWith
; /* WITH clause that pCte belongs to */
4163 assert( pFrom
->pTab
==0 );
4165 pCte
= searchWith(pParse
->pWith
, pFrom
, &pWith
);
4170 Select
*pLeft
; /* Left-most SELECT statement */
4171 int bMayRecursive
; /* True if compound joined by UNION [ALL] */
4172 With
*pSavedWith
; /* Initial value of pParse->pWith */
4174 /* If pCte->zCteErr is non-NULL at this point, then this is an illegal
4175 ** recursive reference to CTE pCte. Leave an error in pParse and return
4176 ** early. If pCte->zCteErr is NULL, then this is not a recursive reference.
4177 ** In this case, proceed. */
4178 if( pCte
->zCteErr
){
4179 sqlite3ErrorMsg(pParse
, pCte
->zCteErr
, pCte
->zName
);
4180 return SQLITE_ERROR
;
4182 if( cannotBeFunction(pParse
, pFrom
) ) return SQLITE_ERROR
;
4184 assert( pFrom
->pTab
==0 );
4185 pFrom
->pTab
= pTab
= sqlite3DbMallocZero(db
, sizeof(Table
));
4186 if( pTab
==0 ) return WRC_Abort
;
4188 pTab
->zName
= sqlite3DbStrDup(db
, pCte
->zName
);
4190 pTab
->nRowLogEst
= 200; assert( 200==sqlite3LogEst(1048576) );
4191 pTab
->tabFlags
|= TF_Ephemeral
| TF_NoVisibleRowid
;
4192 pFrom
->pSelect
= sqlite3SelectDup(db
, pCte
->pSelect
, 0);
4193 if( db
->mallocFailed
) return SQLITE_NOMEM_BKPT
;
4194 assert( pFrom
->pSelect
);
4196 /* Check if this is a recursive CTE. */
4197 pSel
= pFrom
->pSelect
;
4198 bMayRecursive
= ( pSel
->op
==TK_ALL
|| pSel
->op
==TK_UNION
);
4199 if( bMayRecursive
){
4201 SrcList
*pSrc
= pFrom
->pSelect
->pSrc
;
4202 for(i
=0; i
<pSrc
->nSrc
; i
++){
4203 struct SrcList_item
*pItem
= &pSrc
->a
[i
];
4204 if( pItem
->zDatabase
==0
4206 && 0==sqlite3StrICmp(pItem
->zName
, pCte
->zName
)
4209 pItem
->fg
.isRecursive
= 1;
4211 pSel
->selFlags
|= SF_Recursive
;
4216 /* Only one recursive reference is permitted. */
4217 if( pTab
->nTabRef
>2 ){
4219 pParse
, "multiple references to recursive table: %s", pCte
->zName
4221 return SQLITE_ERROR
;
4223 assert( pTab
->nTabRef
==1 ||
4224 ((pSel
->selFlags
&SF_Recursive
) && pTab
->nTabRef
==2 ));
4226 pCte
->zCteErr
= "circular reference: %s";
4227 pSavedWith
= pParse
->pWith
;
4228 pParse
->pWith
= pWith
;
4229 if( bMayRecursive
){
4230 Select
*pPrior
= pSel
->pPrior
;
4231 assert( pPrior
->pWith
==0 );
4232 pPrior
->pWith
= pSel
->pWith
;
4233 sqlite3WalkSelect(pWalker
, pPrior
);
4236 sqlite3WalkSelect(pWalker
, pSel
);
4238 pParse
->pWith
= pWith
;
4240 for(pLeft
=pSel
; pLeft
->pPrior
; pLeft
=pLeft
->pPrior
);
4241 pEList
= pLeft
->pEList
;
4243 if( pEList
&& pEList
->nExpr
!=pCte
->pCols
->nExpr
){
4244 sqlite3ErrorMsg(pParse
, "table %s has %d values for %d columns",
4245 pCte
->zName
, pEList
->nExpr
, pCte
->pCols
->nExpr
4247 pParse
->pWith
= pSavedWith
;
4248 return SQLITE_ERROR
;
4250 pEList
= pCte
->pCols
;
4253 sqlite3ColumnsFromExprList(pParse
, pEList
, &pTab
->nCol
, &pTab
->aCol
);
4254 if( bMayRecursive
){
4255 if( pSel
->selFlags
& SF_Recursive
){
4256 pCte
->zCteErr
= "multiple recursive references: %s";
4258 pCte
->zCteErr
= "recursive reference in a subquery: %s";
4260 sqlite3WalkSelect(pWalker
, pSel
);
4263 pParse
->pWith
= pSavedWith
;
4270 #ifndef SQLITE_OMIT_CTE
4272 ** If the SELECT passed as the second argument has an associated WITH
4273 ** clause, pop it from the stack stored as part of the Parse object.
4275 ** This function is used as the xSelectCallback2() callback by
4276 ** sqlite3SelectExpand() when walking a SELECT tree to resolve table
4277 ** names and other FROM clause elements.
4279 static void selectPopWith(Walker
*pWalker
, Select
*p
){
4280 Parse
*pParse
= pWalker
->pParse
;
4281 if( OK_IF_ALWAYS_TRUE(pParse
->pWith
) && p
->pPrior
==0 ){
4282 With
*pWith
= findRightmost(p
)->pWith
;
4284 assert( pParse
->pWith
==pWith
);
4285 pParse
->pWith
= pWith
->pOuter
;
4290 #define selectPopWith 0
4294 ** This routine is a Walker callback for "expanding" a SELECT statement.
4295 ** "Expanding" means to do the following:
4297 ** (1) Make sure VDBE cursor numbers have been assigned to every
4298 ** element of the FROM clause.
4300 ** (2) Fill in the pTabList->a[].pTab fields in the SrcList that
4301 ** defines FROM clause. When views appear in the FROM clause,
4302 ** fill pTabList->a[].pSelect with a copy of the SELECT statement
4303 ** that implements the view. A copy is made of the view's SELECT
4304 ** statement so that we can freely modify or delete that statement
4305 ** without worrying about messing up the persistent representation
4308 ** (3) Add terms to the WHERE clause to accommodate the NATURAL keyword
4309 ** on joins and the ON and USING clause of joins.
4311 ** (4) Scan the list of columns in the result set (pEList) looking
4312 ** for instances of the "*" operator or the TABLE.* operator.
4313 ** If found, expand each "*" to be every column in every table
4314 ** and TABLE.* to be every column in TABLE.
4317 static int selectExpander(Walker
*pWalker
, Select
*p
){
4318 Parse
*pParse
= pWalker
->pParse
;
4322 struct SrcList_item
*pFrom
;
4323 sqlite3
*db
= pParse
->db
;
4324 Expr
*pE
, *pRight
, *pExpr
;
4325 u16 selFlags
= p
->selFlags
;
4328 p
->selFlags
|= SF_Expanded
;
4329 if( db
->mallocFailed
){
4332 assert( p
->pSrc
!=0 );
4333 if( (selFlags
& SF_Expanded
)!=0 ){
4338 if( OK_IF_ALWAYS_TRUE(p
->pWith
) ){
4339 sqlite3WithPush(pParse
, p
->pWith
, 0);
4342 /* Make sure cursor numbers have been assigned to all entries in
4343 ** the FROM clause of the SELECT statement.
4345 sqlite3SrcListAssignCursors(pParse
, pTabList
);
4347 /* Look up every table named in the FROM clause of the select. If
4348 ** an entry of the FROM clause is a subquery instead of a table or view,
4349 ** then create a transient table structure to describe the subquery.
4351 for(i
=0, pFrom
=pTabList
->a
; i
<pTabList
->nSrc
; i
++, pFrom
++){
4353 assert( pFrom
->fg
.isRecursive
==0 || pFrom
->pTab
!=0 );
4354 if( pFrom
->fg
.isRecursive
) continue;
4355 assert( pFrom
->pTab
==0 );
4356 #ifndef SQLITE_OMIT_CTE
4357 if( withExpand(pWalker
, pFrom
) ) return WRC_Abort
;
4358 if( pFrom
->pTab
) {} else
4360 if( pFrom
->zName
==0 ){
4361 #ifndef SQLITE_OMIT_SUBQUERY
4362 Select
*pSel
= pFrom
->pSelect
;
4363 /* A sub-query in the FROM clause of a SELECT */
4365 assert( pFrom
->pTab
==0 );
4366 if( sqlite3WalkSelect(pWalker
, pSel
) ) return WRC_Abort
;
4367 pFrom
->pTab
= pTab
= sqlite3DbMallocZero(db
, sizeof(Table
));
4368 if( pTab
==0 ) return WRC_Abort
;
4370 if( pFrom
->zAlias
){
4371 pTab
->zName
= sqlite3DbStrDup(db
, pFrom
->zAlias
);
4373 pTab
->zName
= sqlite3MPrintf(db
, "subquery_%p", (void*)pTab
);
4375 while( pSel
->pPrior
){ pSel
= pSel
->pPrior
; }
4376 sqlite3ColumnsFromExprList(pParse
, pSel
->pEList
,&pTab
->nCol
,&pTab
->aCol
);
4378 pTab
->nRowLogEst
= 200; assert( 200==sqlite3LogEst(1048576) );
4379 pTab
->tabFlags
|= TF_Ephemeral
;
4382 /* An ordinary table or view name in the FROM clause */
4383 assert( pFrom
->pTab
==0 );
4384 pFrom
->pTab
= pTab
= sqlite3LocateTableItem(pParse
, 0, pFrom
);
4385 if( pTab
==0 ) return WRC_Abort
;
4386 if( pTab
->nTabRef
>=0xffff ){
4387 sqlite3ErrorMsg(pParse
, "too many references to \"%s\": max 65535",
4393 if( !IsVirtual(pTab
) && cannotBeFunction(pParse
, pFrom
) ){
4396 #if !defined(SQLITE_OMIT_VIEW) || !defined (SQLITE_OMIT_VIRTUALTABLE)
4397 if( IsVirtual(pTab
) || pTab
->pSelect
){
4399 if( sqlite3ViewGetColumnNames(pParse
, pTab
) ) return WRC_Abort
;
4400 assert( pFrom
->pSelect
==0 );
4401 pFrom
->pSelect
= sqlite3SelectDup(db
, pTab
->pSelect
, 0);
4402 sqlite3SelectSetName(pFrom
->pSelect
, pTab
->zName
);
4405 sqlite3WalkSelect(pWalker
, pFrom
->pSelect
);
4411 /* Locate the index named by the INDEXED BY clause, if any. */
4412 if( sqlite3IndexedByLookup(pParse
, pFrom
) ){
4417 /* Process NATURAL keywords, and ON and USING clauses of joins.
4419 if( db
->mallocFailed
|| sqliteProcessJoin(pParse
, p
) ){
4423 /* For every "*" that occurs in the column list, insert the names of
4424 ** all columns in all tables. And for every TABLE.* insert the names
4425 ** of all columns in TABLE. The parser inserted a special expression
4426 ** with the TK_ASTERISK operator for each "*" that it found in the column
4427 ** list. The following code just has to locate the TK_ASTERISK
4428 ** expressions and expand each one to the list of all columns in
4431 ** The first loop just checks to see if there are any "*" operators
4432 ** that need expanding.
4434 for(k
=0; k
<pEList
->nExpr
; k
++){
4435 pE
= pEList
->a
[k
].pExpr
;
4436 if( pE
->op
==TK_ASTERISK
) break;
4437 assert( pE
->op
!=TK_DOT
|| pE
->pRight
!=0 );
4438 assert( pE
->op
!=TK_DOT
|| (pE
->pLeft
!=0 && pE
->pLeft
->op
==TK_ID
) );
4439 if( pE
->op
==TK_DOT
&& pE
->pRight
->op
==TK_ASTERISK
) break;
4440 elistFlags
|= pE
->flags
;
4442 if( k
<pEList
->nExpr
){
4444 ** If we get here it means the result set contains one or more "*"
4445 ** operators that need to be expanded. Loop through each expression
4446 ** in the result set and expand them one by one.
4448 struct ExprList_item
*a
= pEList
->a
;
4450 int flags
= pParse
->db
->flags
;
4451 int longNames
= (flags
& SQLITE_FullColNames
)!=0
4452 && (flags
& SQLITE_ShortColNames
)==0;
4454 for(k
=0; k
<pEList
->nExpr
; k
++){
4456 elistFlags
|= pE
->flags
;
4457 pRight
= pE
->pRight
;
4458 assert( pE
->op
!=TK_DOT
|| pRight
!=0 );
4459 if( pE
->op
!=TK_ASTERISK
4460 && (pE
->op
!=TK_DOT
|| pRight
->op
!=TK_ASTERISK
)
4462 /* This particular expression does not need to be expanded.
4464 pNew
= sqlite3ExprListAppend(pParse
, pNew
, a
[k
].pExpr
);
4466 pNew
->a
[pNew
->nExpr
-1].zName
= a
[k
].zName
;
4467 pNew
->a
[pNew
->nExpr
-1].zSpan
= a
[k
].zSpan
;
4473 /* This expression is a "*" or a "TABLE.*" and needs to be
4475 int tableSeen
= 0; /* Set to 1 when TABLE matches */
4476 char *zTName
= 0; /* text of name of TABLE */
4477 if( pE
->op
==TK_DOT
){
4478 assert( pE
->pLeft
!=0 );
4479 assert( !ExprHasProperty(pE
->pLeft
, EP_IntValue
) );
4480 zTName
= pE
->pLeft
->u
.zToken
;
4482 for(i
=0, pFrom
=pTabList
->a
; i
<pTabList
->nSrc
; i
++, pFrom
++){
4483 Table
*pTab
= pFrom
->pTab
;
4484 Select
*pSub
= pFrom
->pSelect
;
4485 char *zTabName
= pFrom
->zAlias
;
4486 const char *zSchemaName
= 0;
4489 zTabName
= pTab
->zName
;
4491 if( db
->mallocFailed
) break;
4492 if( pSub
==0 || (pSub
->selFlags
& SF_NestedFrom
)==0 ){
4494 if( zTName
&& sqlite3StrICmp(zTName
, zTabName
)!=0 ){
4497 iDb
= sqlite3SchemaToIndex(db
, pTab
->pSchema
);
4498 zSchemaName
= iDb
>=0 ? db
->aDb
[iDb
].zDbSName
: "*";
4500 for(j
=0; j
<pTab
->nCol
; j
++){
4501 char *zName
= pTab
->aCol
[j
].zName
;
4502 char *zColname
; /* The computed column name */
4503 char *zToFree
; /* Malloced string that needs to be freed */
4504 Token sColname
; /* Computed column name as a token */
4508 && sqlite3MatchSpanName(pSub
->pEList
->a
[j
].zSpan
, 0, zTName
, 0)==0
4513 /* If a column is marked as 'hidden', omit it from the expanded
4514 ** result-set list unless the SELECT has the SF_IncludeHidden
4517 if( (p
->selFlags
& SF_IncludeHidden
)==0
4518 && IsHiddenColumn(&pTab
->aCol
[j
])
4524 if( i
>0 && zTName
==0 ){
4525 if( (pFrom
->fg
.jointype
& JT_NATURAL
)!=0
4526 && tableAndColumnIndex(pTabList
, i
, zName
, 0, 0)
4528 /* In a NATURAL join, omit the join columns from the
4529 ** table to the right of the join */
4532 if( sqlite3IdListIndex(pFrom
->pUsing
, zName
)>=0 ){
4533 /* In a join with a USING clause, omit columns in the
4534 ** using clause from the table on the right. */
4538 pRight
= sqlite3Expr(db
, TK_ID
, zName
);
4541 if( longNames
|| pTabList
->nSrc
>1 ){
4543 pLeft
= sqlite3Expr(db
, TK_ID
, zTabName
);
4544 pExpr
= sqlite3PExpr(pParse
, TK_DOT
, pLeft
, pRight
);
4546 pLeft
= sqlite3Expr(db
, TK_ID
, zSchemaName
);
4547 pExpr
= sqlite3PExpr(pParse
, TK_DOT
, pLeft
, pExpr
);
4550 zColname
= sqlite3MPrintf(db
, "%s.%s", zTabName
, zName
);
4556 pNew
= sqlite3ExprListAppend(pParse
, pNew
, pExpr
);
4557 sqlite3TokenInit(&sColname
, zColname
);
4558 sqlite3ExprListSetName(pParse
, pNew
, &sColname
, 0);
4559 if( pNew
&& (p
->selFlags
& SF_NestedFrom
)!=0 ){
4560 struct ExprList_item
*pX
= &pNew
->a
[pNew
->nExpr
-1];
4562 pX
->zSpan
= sqlite3DbStrDup(db
, pSub
->pEList
->a
[j
].zSpan
);
4563 testcase( pX
->zSpan
==0 );
4565 pX
->zSpan
= sqlite3MPrintf(db
, "%s.%s.%s",
4566 zSchemaName
, zTabName
, zColname
);
4567 testcase( pX
->zSpan
==0 );
4571 sqlite3DbFree(db
, zToFree
);
4576 sqlite3ErrorMsg(pParse
, "no such table: %s", zTName
);
4578 sqlite3ErrorMsg(pParse
, "no tables specified");
4583 sqlite3ExprListDelete(db
, pEList
);
4587 if( p
->pEList
->nExpr
>db
->aLimit
[SQLITE_LIMIT_COLUMN
] ){
4588 sqlite3ErrorMsg(pParse
, "too many columns in result set");
4591 if( (elistFlags
& (EP_HasFunc
|EP_Subquery
))!=0 ){
4592 p
->selFlags
|= SF_ComplexResult
;
4595 return WRC_Continue
;
4599 ** No-op routine for the parse-tree walker.
4601 ** When this routine is the Walker.xExprCallback then expression trees
4602 ** are walked without any actions being taken at each node. Presumably,
4603 ** when this routine is used for Walker.xExprCallback then
4604 ** Walker.xSelectCallback is set to do something useful for every
4605 ** subquery in the parser tree.
4607 int sqlite3ExprWalkNoop(Walker
*NotUsed
, Expr
*NotUsed2
){
4608 UNUSED_PARAMETER2(NotUsed
, NotUsed2
);
4609 return WRC_Continue
;
4613 ** No-op routine for the parse-tree walker for SELECT statements.
4614 ** subquery in the parser tree.
4616 int sqlite3SelectWalkNoop(Walker
*NotUsed
, Select
*NotUsed2
){
4617 UNUSED_PARAMETER2(NotUsed
, NotUsed2
);
4618 return WRC_Continue
;
4623 ** Always assert. This xSelectCallback2 implementation proves that the
4624 ** xSelectCallback2 is never invoked.
4626 void sqlite3SelectWalkAssert2(Walker
*NotUsed
, Select
*NotUsed2
){
4627 UNUSED_PARAMETER2(NotUsed
, NotUsed2
);
4632 ** This routine "expands" a SELECT statement and all of its subqueries.
4633 ** For additional information on what it means to "expand" a SELECT
4634 ** statement, see the comment on the selectExpand worker callback above.
4636 ** Expanding a SELECT statement is the first step in processing a
4637 ** SELECT statement. The SELECT statement must be expanded before
4638 ** name resolution is performed.
4640 ** If anything goes wrong, an error message is written into pParse.
4641 ** The calling function can detect the problem by looking at pParse->nErr
4642 ** and/or pParse->db->mallocFailed.
4644 static void sqlite3SelectExpand(Parse
*pParse
, Select
*pSelect
){
4646 w
.xExprCallback
= sqlite3ExprWalkNoop
;
4648 if( OK_IF_ALWAYS_TRUE(pParse
->hasCompound
) ){
4649 w
.xSelectCallback
= convertCompoundSelectToSubquery
;
4650 w
.xSelectCallback2
= 0;
4651 sqlite3WalkSelect(&w
, pSelect
);
4653 w
.xSelectCallback
= selectExpander
;
4654 w
.xSelectCallback2
= selectPopWith
;
4655 sqlite3WalkSelect(&w
, pSelect
);
4659 #ifndef SQLITE_OMIT_SUBQUERY
4661 ** This is a Walker.xSelectCallback callback for the sqlite3SelectTypeInfo()
4664 ** For each FROM-clause subquery, add Column.zType and Column.zColl
4665 ** information to the Table structure that represents the result set
4666 ** of that subquery.
4668 ** The Table structure that represents the result set was constructed
4669 ** by selectExpander() but the type and collation information was omitted
4670 ** at that point because identifiers had not yet been resolved. This
4671 ** routine is called after identifier resolution.
4673 static void selectAddSubqueryTypeInfo(Walker
*pWalker
, Select
*p
){
4677 struct SrcList_item
*pFrom
;
4679 assert( p
->selFlags
& SF_Resolved
);
4680 assert( (p
->selFlags
& SF_HasTypeInfo
)==0 );
4681 p
->selFlags
|= SF_HasTypeInfo
;
4682 pParse
= pWalker
->pParse
;
4684 for(i
=0, pFrom
=pTabList
->a
; i
<pTabList
->nSrc
; i
++, pFrom
++){
4685 Table
*pTab
= pFrom
->pTab
;
4687 if( (pTab
->tabFlags
& TF_Ephemeral
)!=0 ){
4688 /* A sub-query in the FROM clause of a SELECT */
4689 Select
*pSel
= pFrom
->pSelect
;
4691 while( pSel
->pPrior
) pSel
= pSel
->pPrior
;
4692 sqlite3SelectAddColumnTypeAndCollation(pParse
, pTab
, pSel
);
4701 ** This routine adds datatype and collating sequence information to
4702 ** the Table structures of all FROM-clause subqueries in a
4703 ** SELECT statement.
4705 ** Use this routine after name resolution.
4707 static void sqlite3SelectAddTypeInfo(Parse
*pParse
, Select
*pSelect
){
4708 #ifndef SQLITE_OMIT_SUBQUERY
4710 w
.xSelectCallback
= sqlite3SelectWalkNoop
;
4711 w
.xSelectCallback2
= selectAddSubqueryTypeInfo
;
4712 w
.xExprCallback
= sqlite3ExprWalkNoop
;
4714 sqlite3WalkSelect(&w
, pSelect
);
4720 ** This routine sets up a SELECT statement for processing. The
4721 ** following is accomplished:
4723 ** * VDBE Cursor numbers are assigned to all FROM-clause terms.
4724 ** * Ephemeral Table objects are created for all FROM-clause subqueries.
4725 ** * ON and USING clauses are shifted into WHERE statements
4726 ** * Wildcards "*" and "TABLE.*" in result sets are expanded.
4727 ** * Identifiers in expression are matched to tables.
4729 ** This routine acts recursively on all subqueries within the SELECT.
4731 void sqlite3SelectPrep(
4732 Parse
*pParse
, /* The parser context */
4733 Select
*p
, /* The SELECT statement being coded. */
4734 NameContext
*pOuterNC
/* Name context for container */
4736 assert( p
!=0 || pParse
->db
->mallocFailed
);
4737 if( pParse
->db
->mallocFailed
) return;
4738 if( p
->selFlags
& SF_HasTypeInfo
) return;
4739 sqlite3SelectExpand(pParse
, p
);
4740 if( pParse
->nErr
|| pParse
->db
->mallocFailed
) return;
4741 sqlite3ResolveSelectNames(pParse
, p
, pOuterNC
);
4742 if( pParse
->nErr
|| pParse
->db
->mallocFailed
) return;
4743 sqlite3SelectAddTypeInfo(pParse
, p
);
4747 ** Reset the aggregate accumulator.
4749 ** The aggregate accumulator is a set of memory cells that hold
4750 ** intermediate results while calculating an aggregate. This
4751 ** routine generates code that stores NULLs in all of those memory
4754 static void resetAccumulator(Parse
*pParse
, AggInfo
*pAggInfo
){
4755 Vdbe
*v
= pParse
->pVdbe
;
4757 struct AggInfo_func
*pFunc
;
4758 int nReg
= pAggInfo
->nFunc
+ pAggInfo
->nColumn
;
4759 if( nReg
==0 ) return;
4761 /* Verify that all AggInfo registers are within the range specified by
4762 ** AggInfo.mnReg..AggInfo.mxReg */
4763 assert( nReg
==pAggInfo
->mxReg
-pAggInfo
->mnReg
+1 );
4764 for(i
=0; i
<pAggInfo
->nColumn
; i
++){
4765 assert( pAggInfo
->aCol
[i
].iMem
>=pAggInfo
->mnReg
4766 && pAggInfo
->aCol
[i
].iMem
<=pAggInfo
->mxReg
);
4768 for(i
=0; i
<pAggInfo
->nFunc
; i
++){
4769 assert( pAggInfo
->aFunc
[i
].iMem
>=pAggInfo
->mnReg
4770 && pAggInfo
->aFunc
[i
].iMem
<=pAggInfo
->mxReg
);
4773 sqlite3VdbeAddOp3(v
, OP_Null
, 0, pAggInfo
->mnReg
, pAggInfo
->mxReg
);
4774 for(pFunc
=pAggInfo
->aFunc
, i
=0; i
<pAggInfo
->nFunc
; i
++, pFunc
++){
4775 if( pFunc
->iDistinct
>=0 ){
4776 Expr
*pE
= pFunc
->pExpr
;
4777 assert( !ExprHasProperty(pE
, EP_xIsSelect
) );
4778 if( pE
->x
.pList
==0 || pE
->x
.pList
->nExpr
!=1 ){
4779 sqlite3ErrorMsg(pParse
, "DISTINCT aggregates must have exactly one "
4781 pFunc
->iDistinct
= -1;
4783 KeyInfo
*pKeyInfo
= keyInfoFromExprList(pParse
, pE
->x
.pList
, 0, 0);
4784 sqlite3VdbeAddOp4(v
, OP_OpenEphemeral
, pFunc
->iDistinct
, 0, 0,
4785 (char*)pKeyInfo
, P4_KEYINFO
);
4792 ** Invoke the OP_AggFinalize opcode for every aggregate function
4793 ** in the AggInfo structure.
4795 static void finalizeAggFunctions(Parse
*pParse
, AggInfo
*pAggInfo
){
4796 Vdbe
*v
= pParse
->pVdbe
;
4798 struct AggInfo_func
*pF
;
4799 for(i
=0, pF
=pAggInfo
->aFunc
; i
<pAggInfo
->nFunc
; i
++, pF
++){
4800 ExprList
*pList
= pF
->pExpr
->x
.pList
;
4801 assert( !ExprHasProperty(pF
->pExpr
, EP_xIsSelect
) );
4802 sqlite3VdbeAddOp2(v
, OP_AggFinal
, pF
->iMem
, pList
? pList
->nExpr
: 0);
4803 sqlite3VdbeAppendP4(v
, pF
->pFunc
, P4_FUNCDEF
);
4808 ** Update the accumulator memory cells for an aggregate based on
4809 ** the current cursor position.
4811 static void updateAccumulator(Parse
*pParse
, AggInfo
*pAggInfo
){
4812 Vdbe
*v
= pParse
->pVdbe
;
4815 int addrHitTest
= 0;
4816 struct AggInfo_func
*pF
;
4817 struct AggInfo_col
*pC
;
4819 pAggInfo
->directMode
= 1;
4820 for(i
=0, pF
=pAggInfo
->aFunc
; i
<pAggInfo
->nFunc
; i
++, pF
++){
4824 ExprList
*pList
= pF
->pExpr
->x
.pList
;
4825 assert( !ExprHasProperty(pF
->pExpr
, EP_xIsSelect
) );
4827 nArg
= pList
->nExpr
;
4828 regAgg
= sqlite3GetTempRange(pParse
, nArg
);
4829 sqlite3ExprCodeExprList(pParse
, pList
, regAgg
, 0, SQLITE_ECEL_DUP
);
4834 if( pF
->iDistinct
>=0 ){
4835 addrNext
= sqlite3VdbeMakeLabel(v
);
4836 testcase( nArg
==0 ); /* Error condition */
4837 testcase( nArg
>1 ); /* Also an error */
4838 codeDistinct(pParse
, pF
->iDistinct
, addrNext
, 1, regAgg
);
4840 if( pF
->pFunc
->funcFlags
& SQLITE_FUNC_NEEDCOLL
){
4842 struct ExprList_item
*pItem
;
4844 assert( pList
!=0 ); /* pList!=0 if pF->pFunc has NEEDCOLL */
4845 for(j
=0, pItem
=pList
->a
; !pColl
&& j
<nArg
; j
++, pItem
++){
4846 pColl
= sqlite3ExprCollSeq(pParse
, pItem
->pExpr
);
4849 pColl
= pParse
->db
->pDfltColl
;
4851 if( regHit
==0 && pAggInfo
->nAccumulator
) regHit
= ++pParse
->nMem
;
4852 sqlite3VdbeAddOp4(v
, OP_CollSeq
, regHit
, 0, 0, (char *)pColl
, P4_COLLSEQ
);
4854 sqlite3VdbeAddOp3(v
, OP_AggStep0
, 0, regAgg
, pF
->iMem
);
4855 sqlite3VdbeAppendP4(v
, pF
->pFunc
, P4_FUNCDEF
);
4856 sqlite3VdbeChangeP5(v
, (u8
)nArg
);
4857 sqlite3ExprCacheAffinityChange(pParse
, regAgg
, nArg
);
4858 sqlite3ReleaseTempRange(pParse
, regAgg
, nArg
);
4860 sqlite3VdbeResolveLabel(v
, addrNext
);
4861 sqlite3ExprCacheClear(pParse
);
4865 /* Before populating the accumulator registers, clear the column cache.
4866 ** Otherwise, if any of the required column values are already present
4867 ** in registers, sqlite3ExprCode() may use OP_SCopy to copy the value
4868 ** to pC->iMem. But by the time the value is used, the original register
4869 ** may have been used, invalidating the underlying buffer holding the
4870 ** text or blob value. See ticket [883034dcb5].
4872 ** Another solution would be to change the OP_SCopy used to copy cached
4873 ** values to an OP_Copy.
4876 addrHitTest
= sqlite3VdbeAddOp1(v
, OP_If
, regHit
); VdbeCoverage(v
);
4878 sqlite3ExprCacheClear(pParse
);
4879 for(i
=0, pC
=pAggInfo
->aCol
; i
<pAggInfo
->nAccumulator
; i
++, pC
++){
4880 sqlite3ExprCode(pParse
, pC
->pExpr
, pC
->iMem
);
4882 pAggInfo
->directMode
= 0;
4883 sqlite3ExprCacheClear(pParse
);
4885 sqlite3VdbeJumpHere(v
, addrHitTest
);
4890 ** Add a single OP_Explain instruction to the VDBE to explain a simple
4891 ** count(*) query ("SELECT count(*) FROM pTab").
4893 #ifndef SQLITE_OMIT_EXPLAIN
4894 static void explainSimpleCount(
4895 Parse
*pParse
, /* Parse context */
4896 Table
*pTab
, /* Table being queried */
4897 Index
*pIdx
/* Index used to optimize scan, or NULL */
4899 if( pParse
->explain
==2 ){
4900 int bCover
= (pIdx
!=0 && (HasRowid(pTab
) || !IsPrimaryKeyIndex(pIdx
)));
4901 char *zEqp
= sqlite3MPrintf(pParse
->db
, "SCAN TABLE %s%s%s",
4903 bCover
? " USING COVERING INDEX " : "",
4904 bCover
? pIdx
->zName
: ""
4907 pParse
->pVdbe
, OP_Explain
, pParse
->iSelectId
, 0, 0, zEqp
, P4_DYNAMIC
4912 # define explainSimpleCount(a,b,c)
4916 ** Context object for havingToWhereExprCb().
4918 struct HavingToWhereCtx
{
4924 ** sqlite3WalkExpr() callback used by havingToWhere().
4926 ** If the node passed to the callback is a TK_AND node, return
4927 ** WRC_Continue to tell sqlite3WalkExpr() to iterate through child nodes.
4929 ** Otherwise, return WRC_Prune. In this case, also check if the
4930 ** sub-expression matches the criteria for being moved to the WHERE
4931 ** clause. If so, add it to the WHERE clause and replace the sub-expression
4932 ** within the HAVING expression with a constant "1".
4934 static int havingToWhereExprCb(Walker
*pWalker
, Expr
*pExpr
){
4935 if( pExpr
->op
!=TK_AND
){
4936 struct HavingToWhereCtx
*p
= pWalker
->u
.pHavingCtx
;
4937 if( sqlite3ExprIsConstantOrGroupBy(pWalker
->pParse
, pExpr
, p
->pGroupBy
) ){
4938 sqlite3
*db
= pWalker
->pParse
->db
;
4939 Expr
*pNew
= sqlite3ExprAlloc(db
, TK_INTEGER
, &sqlite3IntTokens
[1], 0);
4941 Expr
*pWhere
= *(p
->ppWhere
);
4942 SWAP(Expr
, *pNew
, *pExpr
);
4943 pNew
= sqlite3ExprAnd(db
, pWhere
, pNew
);
4944 *(p
->ppWhere
) = pNew
;
4949 return WRC_Continue
;
4953 ** Transfer eligible terms from the HAVING clause of a query, which is
4954 ** processed after grouping, to the WHERE clause, which is processed before
4955 ** grouping. For example, the query:
4957 ** SELECT * FROM <tables> WHERE a=? GROUP BY b HAVING b=? AND c=?
4959 ** can be rewritten as:
4961 ** SELECT * FROM <tables> WHERE a=? AND b=? GROUP BY b HAVING c=?
4963 ** A term of the HAVING expression is eligible for transfer if it consists
4964 ** entirely of constants and expressions that are also GROUP BY terms that
4965 ** use the "BINARY" collation sequence.
4967 static void havingToWhere(
4973 struct HavingToWhereCtx sCtx
;
4976 sCtx
.ppWhere
= ppWhere
;
4977 sCtx
.pGroupBy
= pGroupBy
;
4979 memset(&sWalker
, 0, sizeof(sWalker
));
4980 sWalker
.pParse
= pParse
;
4981 sWalker
.xExprCallback
= havingToWhereExprCb
;
4982 sWalker
.u
.pHavingCtx
= &sCtx
;
4983 sqlite3WalkExpr(&sWalker
, pHaving
);
4987 ** Check to see if the pThis entry of pTabList is a self-join of a prior view.
4988 ** If it is, then return the SrcList_item for the prior view. If it is not,
4991 static struct SrcList_item
*isSelfJoinView(
4992 SrcList
*pTabList
, /* Search for self-joins in this FROM clause */
4993 struct SrcList_item
*pThis
/* Search for prior reference to this subquery */
4995 struct SrcList_item
*pItem
;
4996 for(pItem
= pTabList
->a
; pItem
<pThis
; pItem
++){
4997 if( pItem
->pSelect
==0 ) continue;
4998 if( pItem
->fg
.viaCoroutine
) continue;
4999 if( pItem
->zName
==0 ) continue;
5000 if( sqlite3_stricmp(pItem
->zDatabase
, pThis
->zDatabase
)!=0 ) continue;
5001 if( sqlite3_stricmp(pItem
->zName
, pThis
->zName
)!=0 ) continue;
5002 if( sqlite3ExprCompare(0,
5003 pThis
->pSelect
->pWhere
, pItem
->pSelect
->pWhere
, -1)
5005 /* The view was modified by some other optimization such as
5006 ** pushDownWhereTerms() */
5014 #ifdef SQLITE_COUNTOFVIEW_OPTIMIZATION
5016 ** Attempt to transform a query of the form
5018 ** SELECT count(*) FROM (SELECT x FROM t1 UNION ALL SELECT y FROM t2)
5022 ** SELECT (SELECT count(*) FROM t1)+(SELECT count(*) FROM t2)
5024 ** The transformation only works if all of the following are true:
5026 ** * The subquery is a UNION ALL of two or more terms
5027 ** * There is no WHERE or GROUP BY or HAVING clauses on the subqueries
5028 ** * The outer query is a simple count(*)
5030 ** Return TRUE if the optimization is undertaken.
5032 static int countOfViewOptimization(Parse
*pParse
, Select
*p
){
5033 Select
*pSub
, *pPrior
;
5037 if( (p
->selFlags
& SF_Aggregate
)==0 ) return 0; /* This is an aggregate */
5038 if( p
->pEList
->nExpr
!=1 ) return 0; /* Single result column */
5039 pExpr
= p
->pEList
->a
[0].pExpr
;
5040 if( pExpr
->op
!=TK_AGG_FUNCTION
) return 0; /* Result is an aggregate */
5041 if( sqlite3_stricmp(pExpr
->u
.zToken
,"count") ) return 0; /* Is count() */
5042 if( pExpr
->x
.pList
!=0 ) return 0; /* Must be count(*) */
5043 if( p
->pSrc
->nSrc
!=1 ) return 0; /* One table in FROM */
5044 pSub
= p
->pSrc
->a
[0].pSelect
;
5045 if( pSub
==0 ) return 0; /* The FROM is a subquery */
5046 if( pSub
->pPrior
==0 ) return 0; /* Must be a compound ry */
5048 if( pSub
->op
!=TK_ALL
&& pSub
->pPrior
) return 0; /* Must be UNION ALL */
5049 if( pSub
->pWhere
) return 0; /* No WHERE clause */
5050 if( pSub
->selFlags
& SF_Aggregate
) return 0; /* Not an aggregate */
5051 pSub
= pSub
->pPrior
; /* Repeat over compound */
5054 /* If we reach this point then it is OK to perform the transformation */
5059 pSub
= p
->pSrc
->a
[0].pSelect
;
5060 p
->pSrc
->a
[0].pSelect
= 0;
5061 sqlite3SrcListDelete(db
, p
->pSrc
);
5062 p
->pSrc
= sqlite3DbMallocZero(pParse
->db
, sizeof(*p
->pSrc
));
5065 pPrior
= pSub
->pPrior
;
5068 pSub
->selFlags
|= SF_Aggregate
;
5069 pSub
->selFlags
&= ~SF_Compound
;
5070 pSub
->nSelectRow
= 0;
5071 sqlite3ExprListDelete(db
, pSub
->pEList
);
5072 pTerm
= pPrior
? sqlite3ExprDup(db
, pCount
, 0) : pCount
;
5073 pSub
->pEList
= sqlite3ExprListAppend(pParse
, 0, pTerm
);
5074 pTerm
= sqlite3PExpr(pParse
, TK_SELECT
, 0, 0);
5075 sqlite3PExprAddSelect(pParse
, pTerm
, pSub
);
5079 pExpr
= sqlite3PExpr(pParse
, TK_PLUS
, pTerm
, pExpr
);
5083 p
->pEList
->a
[0].pExpr
= pExpr
;
5084 p
->selFlags
&= ~SF_Aggregate
;
5086 #if SELECTTRACE_ENABLED
5087 if( sqlite3SelectTrace
& 0x400 ){
5088 SELECTTRACE(0x400,pParse
,p
,("After count-of-view optimization:\n"));
5089 sqlite3TreeViewSelect(0, p
, 0);
5094 #endif /* SQLITE_COUNTOFVIEW_OPTIMIZATION */
5097 ** Generate code for the SELECT statement given in the p argument.
5099 ** The results are returned according to the SelectDest structure.
5100 ** See comments in sqliteInt.h for further information.
5102 ** This routine returns the number of errors. If any errors are
5103 ** encountered, then an appropriate error message is left in
5106 ** This routine does NOT free the Select structure passed in. The
5107 ** calling function needs to do that.
5110 Parse
*pParse
, /* The parser context */
5111 Select
*p
, /* The SELECT statement being coded. */
5112 SelectDest
*pDest
/* What to do with the query results */
5114 int i
, j
; /* Loop counters */
5115 WhereInfo
*pWInfo
; /* Return from sqlite3WhereBegin() */
5116 Vdbe
*v
; /* The virtual machine under construction */
5117 int isAgg
; /* True for select lists like "count(*)" */
5118 ExprList
*pEList
= 0; /* List of columns to extract. */
5119 SrcList
*pTabList
; /* List of tables to select from */
5120 Expr
*pWhere
; /* The WHERE clause. May be NULL */
5121 ExprList
*pGroupBy
; /* The GROUP BY clause. May be NULL */
5122 Expr
*pHaving
; /* The HAVING clause. May be NULL */
5123 int rc
= 1; /* Value to return from this function */
5124 DistinctCtx sDistinct
; /* Info on how to code the DISTINCT keyword */
5125 SortCtx sSort
; /* Info on how to code the ORDER BY clause */
5126 AggInfo sAggInfo
; /* Information used by aggregate queries */
5127 int iEnd
; /* Address of the end of the query */
5128 sqlite3
*db
; /* The database connection */
5129 ExprList
*pMinMaxOrderBy
= 0; /* Added ORDER BY for min/max queries */
5130 u8 minMaxFlag
; /* Flag for min/max queries */
5132 #ifndef SQLITE_OMIT_EXPLAIN
5133 int iRestoreSelectId
= pParse
->iSelectId
;
5134 pParse
->iSelectId
= pParse
->iNextSelectId
++;
5138 if( p
==0 || db
->mallocFailed
|| pParse
->nErr
){
5141 if( sqlite3AuthCheck(pParse
, SQLITE_SELECT
, 0, 0, 0) ) return 1;
5142 memset(&sAggInfo
, 0, sizeof(sAggInfo
));
5143 #if SELECTTRACE_ENABLED
5144 SELECTTRACE(1,pParse
,p
, ("begin processing:\n"));
5145 if( sqlite3SelectTrace
& 0x100 ){
5146 sqlite3TreeViewSelect(0, p
, 0);
5150 assert( p
->pOrderBy
==0 || pDest
->eDest
!=SRT_DistFifo
);
5151 assert( p
->pOrderBy
==0 || pDest
->eDest
!=SRT_Fifo
);
5152 assert( p
->pOrderBy
==0 || pDest
->eDest
!=SRT_DistQueue
);
5153 assert( p
->pOrderBy
==0 || pDest
->eDest
!=SRT_Queue
);
5154 if( IgnorableOrderby(pDest
) ){
5155 assert(pDest
->eDest
==SRT_Exists
|| pDest
->eDest
==SRT_Union
||
5156 pDest
->eDest
==SRT_Except
|| pDest
->eDest
==SRT_Discard
||
5157 pDest
->eDest
==SRT_Queue
|| pDest
->eDest
==SRT_DistFifo
||
5158 pDest
->eDest
==SRT_DistQueue
|| pDest
->eDest
==SRT_Fifo
);
5159 /* If ORDER BY makes no difference in the output then neither does
5160 ** DISTINCT so it can be removed too. */
5161 sqlite3ExprListDelete(db
, p
->pOrderBy
);
5163 p
->selFlags
&= ~SF_Distinct
;
5165 sqlite3SelectPrep(pParse
, p
, 0);
5166 memset(&sSort
, 0, sizeof(sSort
));
5167 sSort
.pOrderBy
= p
->pOrderBy
;
5169 if( pParse
->nErr
|| db
->mallocFailed
){
5172 assert( p
->pEList
!=0 );
5173 isAgg
= (p
->selFlags
& SF_Aggregate
)!=0;
5174 #if SELECTTRACE_ENABLED
5175 if( sqlite3SelectTrace
& 0x100 ){
5176 SELECTTRACE(0x100,pParse
,p
, ("after name resolution:\n"));
5177 sqlite3TreeViewSelect(0, p
, 0);
5181 /* Get a pointer the VDBE under construction, allocating a new VDBE if one
5182 ** does not already exist */
5183 v
= sqlite3GetVdbe(pParse
);
5184 if( v
==0 ) goto select_end
;
5185 if( pDest
->eDest
==SRT_Output
){
5186 generateColumnNames(pParse
, p
);
5189 /* Try to flatten subqueries in the FROM clause up into the main query
5191 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
5192 for(i
=0; !p
->pPrior
&& i
<pTabList
->nSrc
; i
++){
5193 struct SrcList_item
*pItem
= &pTabList
->a
[i
];
5194 Select
*pSub
= pItem
->pSelect
;
5195 Table
*pTab
= pItem
->pTab
;
5196 if( pSub
==0 ) continue;
5198 /* Catch mismatch in the declared columns of a view and the number of
5199 ** columns in the SELECT on the RHS */
5200 if( pTab
->nCol
!=pSub
->pEList
->nExpr
){
5201 sqlite3ErrorMsg(pParse
, "expected %d columns for '%s' but got %d",
5202 pTab
->nCol
, pTab
->zName
, pSub
->pEList
->nExpr
);
5206 /* Do not try to flatten an aggregate subquery.
5208 ** Flattening an aggregate subquery is only possible if the outer query
5209 ** is not a join. But if the outer query is not a join, then the subquery
5210 ** will be implemented as a co-routine and there is no advantage to
5211 ** flattening in that case.
5213 if( (pSub
->selFlags
& SF_Aggregate
)!=0 ) continue;
5214 assert( pSub
->pGroupBy
==0 );
5216 /* If the outer query contains a "complex" result set (that is,
5217 ** if the result set of the outer query uses functions or subqueries)
5218 ** and if the subquery contains an ORDER BY clause and if
5219 ** it will be implemented as a co-routine, then do not flatten. This
5220 ** restriction allows SQL constructs like this:
5222 ** SELECT expensive_function(x)
5223 ** FROM (SELECT x FROM tab ORDER BY y LIMIT 10);
5225 ** The expensive_function() is only computed on the 10 rows that
5226 ** are output, rather than every row of the table.
5228 ** The requirement that the outer query have a complex result set
5229 ** means that flattening does occur on simpler SQL constraints without
5230 ** the expensive_function() like:
5232 ** SELECT x FROM (SELECT x FROM tab ORDER BY y LIMIT 10);
5234 if( pSub
->pOrderBy
!=0
5236 && (p
->selFlags
& SF_ComplexResult
)!=0
5237 && (pTabList
->nSrc
==1
5238 || (pTabList
->a
[1].fg
.jointype
&(JT_LEFT
|JT_CROSS
))!=0)
5243 if( flattenSubquery(pParse
, p
, i
, isAgg
) ){
5244 /* This subquery can be absorbed into its parent. */
5248 if( db
->mallocFailed
) goto select_end
;
5249 if( !IgnorableOrderby(pDest
) ){
5250 sSort
.pOrderBy
= p
->pOrderBy
;
5255 #ifndef SQLITE_OMIT_COMPOUND_SELECT
5256 /* Handle compound SELECT statements using the separate multiSelect()
5260 rc
= multiSelect(pParse
, p
, pDest
);
5261 explainSetInteger(pParse
->iSelectId
, iRestoreSelectId
);
5262 #if SELECTTRACE_ENABLED
5263 SELECTTRACE(1,pParse
,p
,("end compound-select processing\n"));
5269 /* For each term in the FROM clause, do two things:
5270 ** (1) Authorized unreferenced tables
5271 ** (2) Generate code for all sub-queries
5273 for(i
=0; i
<pTabList
->nSrc
; i
++){
5274 struct SrcList_item
*pItem
= &pTabList
->a
[i
];
5277 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
5278 const char *zSavedAuthContext
;
5281 /* Issue SQLITE_READ authorizations with a fake column name for any
5282 ** tables that are referenced but from which no values are extracted.
5283 ** Examples of where these kinds of null SQLITE_READ authorizations
5286 ** SELECT count(*) FROM t1; -- SQLITE_READ t1.""
5287 ** SELECT t1.* FROM t1, t2; -- SQLITE_READ t2.""
5289 ** The fake column name is an empty string. It is possible for a table to
5290 ** have a column named by the empty string, in which case there is no way to
5291 ** distinguish between an unreferenced table and an actual reference to the
5292 ** "" column. The original design was for the fake column name to be a NULL,
5293 ** which would be unambiguous. But legacy authorization callbacks might
5294 ** assume the column name is non-NULL and segfault. The use of an empty
5295 ** string for the fake column name seems safer.
5297 if( pItem
->colUsed
==0 ){
5298 sqlite3AuthCheck(pParse
, SQLITE_READ
, pItem
->zName
, "", pItem
->zDatabase
);
5301 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
5302 /* Generate code for all sub-queries in the FROM clause
5304 pSub
= pItem
->pSelect
;
5305 if( pSub
==0 ) continue;
5307 /* Sometimes the code for a subquery will be generated more than
5308 ** once, if the subquery is part of the WHERE clause in a LEFT JOIN,
5309 ** for example. In that case, do not regenerate the code to manifest
5310 ** a view or the co-routine to implement a view. The first instance
5311 ** is sufficient, though the subroutine to manifest the view does need
5312 ** to be invoked again. */
5313 if( pItem
->addrFillSub
){
5314 if( pItem
->fg
.viaCoroutine
==0 ){
5315 /* The subroutine that manifests the view might be a one-time routine,
5316 ** or it might need to be rerun on each iteration because it
5317 ** encodes a correlated subquery. */
5318 testcase( sqlite3VdbeGetOp(v
, pItem
->addrFillSub
)->opcode
==OP_Once
);
5319 sqlite3VdbeAddOp2(v
, OP_Gosub
, pItem
->regReturn
, pItem
->addrFillSub
);
5324 /* Increment Parse.nHeight by the height of the largest expression
5325 ** tree referred to by this, the parent select. The child select
5326 ** may contain expression trees of at most
5327 ** (SQLITE_MAX_EXPR_DEPTH-Parse.nHeight) height. This is a bit
5328 ** more conservative than necessary, but much easier than enforcing
5331 pParse
->nHeight
+= sqlite3SelectExprHeight(p
);
5333 /* Make copies of constant WHERE-clause terms in the outer query down
5334 ** inside the subquery. This can help the subquery to run more efficiently.
5336 if( (pItem
->fg
.jointype
& JT_OUTER
)==0
5337 && OptimizationEnabled(db
, SQLITE_PushDown
)
5338 && pushDownWhereTerms(pParse
, pSub
, p
->pWhere
, pItem
->iCursor
)
5340 #if SELECTTRACE_ENABLED
5341 if( sqlite3SelectTrace
& 0x100 ){
5342 SELECTTRACE(0x100,pParse
,p
,("After WHERE-clause push-down:\n"));
5343 sqlite3TreeViewSelect(0, p
, 0);
5347 SELECTTRACE(0x100,pParse
,p
,("Push-down not possible\n"));
5350 zSavedAuthContext
= pParse
->zAuthContext
;
5351 pParse
->zAuthContext
= pItem
->zName
;
5353 /* Generate code to implement the subquery
5355 ** The subquery is implemented as a co-routine if the subquery is
5356 ** guaranteed to be the outer loop (so that it does not need to be
5357 ** computed more than once)
5359 ** TODO: Are there other reasons beside (1) to use a co-routine
5363 && (pTabList
->nSrc
==1
5364 || (pTabList
->a
[1].fg
.jointype
&(JT_LEFT
|JT_CROSS
))!=0) /* (1) */
5366 /* Implement a co-routine that will return a single row of the result
5367 ** set on each invocation.
5369 int addrTop
= sqlite3VdbeCurrentAddr(v
)+1;
5371 pItem
->regReturn
= ++pParse
->nMem
;
5372 sqlite3VdbeAddOp3(v
, OP_InitCoroutine
, pItem
->regReturn
, 0, addrTop
);
5373 VdbeComment((v
, "%s", pItem
->pTab
->zName
));
5374 pItem
->addrFillSub
= addrTop
;
5375 sqlite3SelectDestInit(&dest
, SRT_Coroutine
, pItem
->regReturn
);
5376 explainSetInteger(pItem
->iSelectId
, (u8
)pParse
->iNextSelectId
);
5377 sqlite3Select(pParse
, pSub
, &dest
);
5378 pItem
->pTab
->nRowLogEst
= pSub
->nSelectRow
;
5379 pItem
->fg
.viaCoroutine
= 1;
5380 pItem
->regResult
= dest
.iSdst
;
5381 sqlite3VdbeEndCoroutine(v
, pItem
->regReturn
);
5382 sqlite3VdbeJumpHere(v
, addrTop
-1);
5383 sqlite3ClearTempRegCache(pParse
);
5385 /* Generate a subroutine that will fill an ephemeral table with
5386 ** the content of this subquery. pItem->addrFillSub will point
5387 ** to the address of the generated subroutine. pItem->regReturn
5388 ** is a register allocated to hold the subroutine return address
5393 struct SrcList_item
*pPrior
;
5395 assert( pItem
->addrFillSub
==0 );
5396 pItem
->regReturn
= ++pParse
->nMem
;
5397 topAddr
= sqlite3VdbeAddOp2(v
, OP_Integer
, 0, pItem
->regReturn
);
5398 pItem
->addrFillSub
= topAddr
+1;
5399 if( pItem
->fg
.isCorrelated
==0 ){
5400 /* If the subquery is not correlated and if we are not inside of
5401 ** a trigger, then we only need to compute the value of the subquery
5403 onceAddr
= sqlite3VdbeAddOp0(v
, OP_Once
); VdbeCoverage(v
);
5404 VdbeComment((v
, "materialize \"%s\"", pItem
->pTab
->zName
));
5406 VdbeNoopComment((v
, "materialize \"%s\"", pItem
->pTab
->zName
));
5408 pPrior
= isSelfJoinView(pTabList
, pItem
);
5410 sqlite3VdbeAddOp2(v
, OP_OpenDup
, pItem
->iCursor
, pPrior
->iCursor
);
5411 explainSetInteger(pItem
->iSelectId
, pPrior
->iSelectId
);
5412 assert( pPrior
->pSelect
!=0 );
5413 pSub
->nSelectRow
= pPrior
->pSelect
->nSelectRow
;
5415 sqlite3SelectDestInit(&dest
, SRT_EphemTab
, pItem
->iCursor
);
5416 explainSetInteger(pItem
->iSelectId
, (u8
)pParse
->iNextSelectId
);
5417 sqlite3Select(pParse
, pSub
, &dest
);
5419 pItem
->pTab
->nRowLogEst
= pSub
->nSelectRow
;
5420 if( onceAddr
) sqlite3VdbeJumpHere(v
, onceAddr
);
5421 retAddr
= sqlite3VdbeAddOp1(v
, OP_Return
, pItem
->regReturn
);
5422 VdbeComment((v
, "end %s", pItem
->pTab
->zName
));
5423 sqlite3VdbeChangeP1(v
, topAddr
, retAddr
);
5424 sqlite3ClearTempRegCache(pParse
);
5426 if( db
->mallocFailed
) goto select_end
;
5427 pParse
->nHeight
-= sqlite3SelectExprHeight(p
);
5428 pParse
->zAuthContext
= zSavedAuthContext
;
5432 /* Various elements of the SELECT copied into local variables for
5436 pGroupBy
= p
->pGroupBy
;
5437 pHaving
= p
->pHaving
;
5438 sDistinct
.isTnct
= (p
->selFlags
& SF_Distinct
)!=0;
5440 #if SELECTTRACE_ENABLED
5441 if( sqlite3SelectTrace
& 0x400 ){
5442 SELECTTRACE(0x400,pParse
,p
,("After all FROM-clause analysis:\n"));
5443 sqlite3TreeViewSelect(0, p
, 0);
5447 #ifdef SQLITE_COUNTOFVIEW_OPTIMIZATION
5448 if( OptimizationEnabled(db
, SQLITE_QueryFlattener
|SQLITE_CountOfView
)
5449 && countOfViewOptimization(pParse
, p
)
5451 if( db
->mallocFailed
) goto select_end
;
5457 /* If the query is DISTINCT with an ORDER BY but is not an aggregate, and
5458 ** if the select-list is the same as the ORDER BY list, then this query
5459 ** can be rewritten as a GROUP BY. In other words, this:
5461 ** SELECT DISTINCT xyz FROM ... ORDER BY xyz
5463 ** is transformed to:
5465 ** SELECT xyz FROM ... GROUP BY xyz ORDER BY xyz
5467 ** The second form is preferred as a single index (or temp-table) may be
5468 ** used for both the ORDER BY and DISTINCT processing. As originally
5469 ** written the query must use a temp-table for at least one of the ORDER
5470 ** BY and DISTINCT, and an index or separate temp-table for the other.
5472 if( (p
->selFlags
& (SF_Distinct
|SF_Aggregate
))==SF_Distinct
5473 && sqlite3ExprListCompare(sSort
.pOrderBy
, pEList
, -1)==0
5475 p
->selFlags
&= ~SF_Distinct
;
5476 pGroupBy
= p
->pGroupBy
= sqlite3ExprListDup(db
, pEList
, 0);
5477 /* Notice that even thought SF_Distinct has been cleared from p->selFlags,
5478 ** the sDistinct.isTnct is still set. Hence, isTnct represents the
5479 ** original setting of the SF_Distinct flag, not the current setting */
5480 assert( sDistinct
.isTnct
);
5482 #if SELECTTRACE_ENABLED
5483 if( sqlite3SelectTrace
& 0x400 ){
5484 SELECTTRACE(0x400,pParse
,p
,("Transform DISTINCT into GROUP BY:\n"));
5485 sqlite3TreeViewSelect(0, p
, 0);
5490 /* If there is an ORDER BY clause, then create an ephemeral index to
5491 ** do the sorting. But this sorting ephemeral index might end up
5492 ** being unused if the data can be extracted in pre-sorted order.
5493 ** If that is the case, then the OP_OpenEphemeral instruction will be
5494 ** changed to an OP_Noop once we figure out that the sorting index is
5495 ** not needed. The sSort.addrSortIndex variable is used to facilitate
5498 if( sSort
.pOrderBy
){
5500 pKeyInfo
= keyInfoFromExprList(pParse
, sSort
.pOrderBy
, 0, pEList
->nExpr
);
5501 sSort
.iECursor
= pParse
->nTab
++;
5502 sSort
.addrSortIndex
=
5503 sqlite3VdbeAddOp4(v
, OP_OpenEphemeral
,
5504 sSort
.iECursor
, sSort
.pOrderBy
->nExpr
+1+pEList
->nExpr
, 0,
5505 (char*)pKeyInfo
, P4_KEYINFO
5508 sSort
.addrSortIndex
= -1;
5511 /* If the output is destined for a temporary table, open that table.
5513 if( pDest
->eDest
==SRT_EphemTab
){
5514 sqlite3VdbeAddOp2(v
, OP_OpenEphemeral
, pDest
->iSDParm
, pEList
->nExpr
);
5519 iEnd
= sqlite3VdbeMakeLabel(v
);
5520 if( (p
->selFlags
& SF_FixedLimit
)==0 ){
5521 p
->nSelectRow
= 320; /* 4 billion rows */
5523 computeLimitRegisters(pParse
, p
, iEnd
);
5524 if( p
->iLimit
==0 && sSort
.addrSortIndex
>=0 ){
5525 sqlite3VdbeChangeOpcode(v
, sSort
.addrSortIndex
, OP_SorterOpen
);
5526 sSort
.sortFlags
|= SORTFLAG_UseSorter
;
5529 /* Open an ephemeral index to use for the distinct set.
5531 if( p
->selFlags
& SF_Distinct
){
5532 sDistinct
.tabTnct
= pParse
->nTab
++;
5533 sDistinct
.addrTnct
= sqlite3VdbeAddOp4(v
, OP_OpenEphemeral
,
5534 sDistinct
.tabTnct
, 0, 0,
5535 (char*)keyInfoFromExprList(pParse
, p
->pEList
,0,0),
5537 sqlite3VdbeChangeP5(v
, BTREE_UNORDERED
);
5538 sDistinct
.eTnctType
= WHERE_DISTINCT_UNORDERED
;
5540 sDistinct
.eTnctType
= WHERE_DISTINCT_NOOP
;
5543 if( !isAgg
&& pGroupBy
==0 ){
5544 /* No aggregate functions and no GROUP BY clause */
5545 u16 wctrlFlags
= (sDistinct
.isTnct
? WHERE_WANT_DISTINCT
: 0);
5546 assert( WHERE_USE_LIMIT
==SF_FixedLimit
);
5547 wctrlFlags
|= p
->selFlags
& SF_FixedLimit
;
5549 /* Begin the database scan. */
5550 SELECTTRACE(1,pParse
,p
,("WhereBegin\n"));
5551 pWInfo
= sqlite3WhereBegin(pParse
, pTabList
, pWhere
, sSort
.pOrderBy
,
5552 p
->pEList
, wctrlFlags
, p
->nSelectRow
);
5553 if( pWInfo
==0 ) goto select_end
;
5554 if( sqlite3WhereOutputRowCount(pWInfo
) < p
->nSelectRow
){
5555 p
->nSelectRow
= sqlite3WhereOutputRowCount(pWInfo
);
5557 if( sDistinct
.isTnct
&& sqlite3WhereIsDistinct(pWInfo
) ){
5558 sDistinct
.eTnctType
= sqlite3WhereIsDistinct(pWInfo
);
5560 if( sSort
.pOrderBy
){
5561 sSort
.nOBSat
= sqlite3WhereIsOrdered(pWInfo
);
5562 sSort
.bOrderedInnerLoop
= sqlite3WhereOrderedInnerLoop(pWInfo
);
5563 if( sSort
.nOBSat
==sSort
.pOrderBy
->nExpr
){
5568 /* If sorting index that was created by a prior OP_OpenEphemeral
5569 ** instruction ended up not being needed, then change the OP_OpenEphemeral
5572 if( sSort
.addrSortIndex
>=0 && sSort
.pOrderBy
==0 ){
5573 sqlite3VdbeChangeToNoop(v
, sSort
.addrSortIndex
);
5576 /* Use the standard inner loop. */
5577 assert( p
->pEList
==pEList
);
5578 selectInnerLoop(pParse
, p
, -1, &sSort
, &sDistinct
, pDest
,
5579 sqlite3WhereContinueLabel(pWInfo
),
5580 sqlite3WhereBreakLabel(pWInfo
));
5582 /* End the database scan loop.
5584 sqlite3WhereEnd(pWInfo
);
5586 /* This case when there exist aggregate functions or a GROUP BY clause
5588 NameContext sNC
; /* Name context for processing aggregate information */
5589 int iAMem
; /* First Mem address for storing current GROUP BY */
5590 int iBMem
; /* First Mem address for previous GROUP BY */
5591 int iUseFlag
; /* Mem address holding flag indicating that at least
5592 ** one row of the input to the aggregator has been
5594 int iAbortFlag
; /* Mem address which causes query abort if positive */
5595 int groupBySort
; /* Rows come from source in GROUP BY order */
5596 int addrEnd
; /* End of processing for this SELECT */
5597 int sortPTab
= 0; /* Pseudotable used to decode sorting results */
5598 int sortOut
= 0; /* Output register from the sorter */
5599 int orderByGrp
= 0; /* True if the GROUP BY and ORDER BY are the same */
5601 /* Remove any and all aliases between the result set and the
5605 int k
; /* Loop counter */
5606 struct ExprList_item
*pItem
; /* For looping over expression in a list */
5608 for(k
=p
->pEList
->nExpr
, pItem
=p
->pEList
->a
; k
>0; k
--, pItem
++){
5609 pItem
->u
.x
.iAlias
= 0;
5611 for(k
=pGroupBy
->nExpr
, pItem
=pGroupBy
->a
; k
>0; k
--, pItem
++){
5612 pItem
->u
.x
.iAlias
= 0;
5614 assert( 66==sqlite3LogEst(100) );
5615 if( p
->nSelectRow
>66 ) p
->nSelectRow
= 66;
5617 assert( 0==sqlite3LogEst(1) );
5621 /* If there is both a GROUP BY and an ORDER BY clause and they are
5622 ** identical, then it may be possible to disable the ORDER BY clause
5623 ** on the grounds that the GROUP BY will cause elements to come out
5624 ** in the correct order. It also may not - the GROUP BY might use a
5625 ** database index that causes rows to be grouped together as required
5626 ** but not actually sorted. Either way, record the fact that the
5627 ** ORDER BY and GROUP BY clauses are the same by setting the orderByGrp
5629 if( sqlite3ExprListCompare(pGroupBy
, sSort
.pOrderBy
, -1)==0 ){
5633 /* Create a label to jump to when we want to abort the query */
5634 addrEnd
= sqlite3VdbeMakeLabel(v
);
5636 /* Convert TK_COLUMN nodes into TK_AGG_COLUMN and make entries in
5637 ** sAggInfo for all TK_AGG_FUNCTION nodes in expressions of the
5638 ** SELECT statement.
5640 memset(&sNC
, 0, sizeof(sNC
));
5641 sNC
.pParse
= pParse
;
5642 sNC
.pSrcList
= pTabList
;
5643 sNC
.pAggInfo
= &sAggInfo
;
5644 sAggInfo
.mnReg
= pParse
->nMem
+1;
5645 sAggInfo
.nSortingColumn
= pGroupBy
? pGroupBy
->nExpr
: 0;
5646 sAggInfo
.pGroupBy
= pGroupBy
;
5647 sqlite3ExprAnalyzeAggList(&sNC
, pEList
);
5648 sqlite3ExprAnalyzeAggList(&sNC
, sSort
.pOrderBy
);
5651 assert( pWhere
==p
->pWhere
);
5652 havingToWhere(pParse
, pGroupBy
, pHaving
, &p
->pWhere
);
5655 sqlite3ExprAnalyzeAggregates(&sNC
, pHaving
);
5657 sAggInfo
.nAccumulator
= sAggInfo
.nColumn
;
5658 if( p
->pGroupBy
==0 && p
->pHaving
==0 && sAggInfo
.nFunc
==1 ){
5659 minMaxFlag
= minMaxQuery(db
, sAggInfo
.aFunc
[0].pExpr
, &pMinMaxOrderBy
);
5661 minMaxFlag
= WHERE_ORDERBY_NORMAL
;
5663 for(i
=0; i
<sAggInfo
.nFunc
; i
++){
5664 assert( !ExprHasProperty(sAggInfo
.aFunc
[i
].pExpr
, EP_xIsSelect
) );
5665 sNC
.ncFlags
|= NC_InAggFunc
;
5666 sqlite3ExprAnalyzeAggList(&sNC
, sAggInfo
.aFunc
[i
].pExpr
->x
.pList
);
5667 sNC
.ncFlags
&= ~NC_InAggFunc
;
5669 sAggInfo
.mxReg
= pParse
->nMem
;
5670 if( db
->mallocFailed
) goto select_end
;
5671 #if SELECTTRACE_ENABLED
5672 if( sqlite3SelectTrace
& 0x400 ){
5674 SELECTTRACE(0x400,pParse
,p
,("After aggregate analysis:\n"));
5675 sqlite3TreeViewSelect(0, p
, 0);
5676 for(ii
=0; ii
<sAggInfo
.nColumn
; ii
++){
5677 sqlite3DebugPrintf("agg-column[%d] iMem=%d\n",
5678 ii
, sAggInfo
.aCol
[ii
].iMem
);
5679 sqlite3TreeViewExpr(0, sAggInfo
.aCol
[ii
].pExpr
, 0);
5681 for(ii
=0; ii
<sAggInfo
.nFunc
; ii
++){
5682 sqlite3DebugPrintf("agg-func[%d]: iMem=%d\n",
5683 ii
, sAggInfo
.aFunc
[ii
].iMem
);
5684 sqlite3TreeViewExpr(0, sAggInfo
.aFunc
[ii
].pExpr
, 0);
5690 /* Processing for aggregates with GROUP BY is very different and
5691 ** much more complex than aggregates without a GROUP BY.
5694 KeyInfo
*pKeyInfo
; /* Keying information for the group by clause */
5695 int addr1
; /* A-vs-B comparision jump */
5696 int addrOutputRow
; /* Start of subroutine that outputs a result row */
5697 int regOutputRow
; /* Return address register for output subroutine */
5698 int addrSetAbort
; /* Set the abort flag and return */
5699 int addrTopOfLoop
; /* Top of the input loop */
5700 int addrSortingIdx
; /* The OP_OpenEphemeral for the sorting index */
5701 int addrReset
; /* Subroutine for resetting the accumulator */
5702 int regReset
; /* Return address register for reset subroutine */
5704 /* If there is a GROUP BY clause we might need a sorting index to
5705 ** implement it. Allocate that sorting index now. If it turns out
5706 ** that we do not need it after all, the OP_SorterOpen instruction
5707 ** will be converted into a Noop.
5709 sAggInfo
.sortingIdx
= pParse
->nTab
++;
5710 pKeyInfo
= keyInfoFromExprList(pParse
, pGroupBy
, 0, sAggInfo
.nColumn
);
5711 addrSortingIdx
= sqlite3VdbeAddOp4(v
, OP_SorterOpen
,
5712 sAggInfo
.sortingIdx
, sAggInfo
.nSortingColumn
,
5713 0, (char*)pKeyInfo
, P4_KEYINFO
);
5715 /* Initialize memory locations used by GROUP BY aggregate processing
5717 iUseFlag
= ++pParse
->nMem
;
5718 iAbortFlag
= ++pParse
->nMem
;
5719 regOutputRow
= ++pParse
->nMem
;
5720 addrOutputRow
= sqlite3VdbeMakeLabel(v
);
5721 regReset
= ++pParse
->nMem
;
5722 addrReset
= sqlite3VdbeMakeLabel(v
);
5723 iAMem
= pParse
->nMem
+ 1;
5724 pParse
->nMem
+= pGroupBy
->nExpr
;
5725 iBMem
= pParse
->nMem
+ 1;
5726 pParse
->nMem
+= pGroupBy
->nExpr
;
5727 sqlite3VdbeAddOp2(v
, OP_Integer
, 0, iAbortFlag
);
5728 VdbeComment((v
, "clear abort flag"));
5729 sqlite3VdbeAddOp2(v
, OP_Integer
, 0, iUseFlag
);
5730 VdbeComment((v
, "indicate accumulator empty"));
5731 sqlite3VdbeAddOp3(v
, OP_Null
, 0, iAMem
, iAMem
+pGroupBy
->nExpr
-1);
5733 /* Begin a loop that will extract all source rows in GROUP BY order.
5734 ** This might involve two separate loops with an OP_Sort in between, or
5735 ** it might be a single loop that uses an index to extract information
5736 ** in the right order to begin with.
5738 sqlite3VdbeAddOp2(v
, OP_Gosub
, regReset
, addrReset
);
5739 SELECTTRACE(1,pParse
,p
,("WhereBegin\n"));
5740 pWInfo
= sqlite3WhereBegin(pParse
, pTabList
, pWhere
, pGroupBy
, 0,
5741 WHERE_GROUPBY
| (orderByGrp
? WHERE_SORTBYGROUP
: 0), 0
5743 if( pWInfo
==0 ) goto select_end
;
5744 if( sqlite3WhereIsOrdered(pWInfo
)==pGroupBy
->nExpr
){
5745 /* The optimizer is able to deliver rows in group by order so
5746 ** we do not have to sort. The OP_OpenEphemeral table will be
5747 ** cancelled later because we still need to use the pKeyInfo
5751 /* Rows are coming out in undetermined order. We have to push
5752 ** each row into a sorting index, terminate the first loop,
5753 ** then loop over the sorting index in order to get the output
5761 explainTempTable(pParse
,
5762 (sDistinct
.isTnct
&& (p
->selFlags
&SF_Distinct
)==0) ?
5763 "DISTINCT" : "GROUP BY");
5766 nGroupBy
= pGroupBy
->nExpr
;
5769 for(i
=0; i
<sAggInfo
.nColumn
; i
++){
5770 if( sAggInfo
.aCol
[i
].iSorterColumn
>=j
){
5775 regBase
= sqlite3GetTempRange(pParse
, nCol
);
5776 sqlite3ExprCacheClear(pParse
);
5777 sqlite3ExprCodeExprList(pParse
, pGroupBy
, regBase
, 0, 0);
5779 for(i
=0; i
<sAggInfo
.nColumn
; i
++){
5780 struct AggInfo_col
*pCol
= &sAggInfo
.aCol
[i
];
5781 if( pCol
->iSorterColumn
>=j
){
5782 int r1
= j
+ regBase
;
5783 sqlite3ExprCodeGetColumnToReg(pParse
,
5784 pCol
->pTab
, pCol
->iColumn
, pCol
->iTable
, r1
);
5788 regRecord
= sqlite3GetTempReg(pParse
);
5789 sqlite3VdbeAddOp3(v
, OP_MakeRecord
, regBase
, nCol
, regRecord
);
5790 sqlite3VdbeAddOp2(v
, OP_SorterInsert
, sAggInfo
.sortingIdx
, regRecord
);
5791 sqlite3ReleaseTempReg(pParse
, regRecord
);
5792 sqlite3ReleaseTempRange(pParse
, regBase
, nCol
);
5793 sqlite3WhereEnd(pWInfo
);
5794 sAggInfo
.sortingIdxPTab
= sortPTab
= pParse
->nTab
++;
5795 sortOut
= sqlite3GetTempReg(pParse
);
5796 sqlite3VdbeAddOp3(v
, OP_OpenPseudo
, sortPTab
, sortOut
, nCol
);
5797 sqlite3VdbeAddOp2(v
, OP_SorterSort
, sAggInfo
.sortingIdx
, addrEnd
);
5798 VdbeComment((v
, "GROUP BY sort")); VdbeCoverage(v
);
5799 sAggInfo
.useSortingIdx
= 1;
5800 sqlite3ExprCacheClear(pParse
);
5804 /* If the index or temporary table used by the GROUP BY sort
5805 ** will naturally deliver rows in the order required by the ORDER BY
5806 ** clause, cancel the ephemeral table open coded earlier.
5808 ** This is an optimization - the correct answer should result regardless.
5809 ** Use the SQLITE_GroupByOrder flag with SQLITE_TESTCTRL_OPTIMIZER to
5810 ** disable this optimization for testing purposes. */
5811 if( orderByGrp
&& OptimizationEnabled(db
, SQLITE_GroupByOrder
)
5812 && (groupBySort
|| sqlite3WhereIsSorted(pWInfo
))
5815 sqlite3VdbeChangeToNoop(v
, sSort
.addrSortIndex
);
5818 /* Evaluate the current GROUP BY terms and store in b0, b1, b2...
5819 ** (b0 is memory location iBMem+0, b1 is iBMem+1, and so forth)
5820 ** Then compare the current GROUP BY terms against the GROUP BY terms
5821 ** from the previous row currently stored in a0, a1, a2...
5823 addrTopOfLoop
= sqlite3VdbeCurrentAddr(v
);
5824 sqlite3ExprCacheClear(pParse
);
5826 sqlite3VdbeAddOp3(v
, OP_SorterData
, sAggInfo
.sortingIdx
,
5829 for(j
=0; j
<pGroupBy
->nExpr
; j
++){
5831 sqlite3VdbeAddOp3(v
, OP_Column
, sortPTab
, j
, iBMem
+j
);
5833 sAggInfo
.directMode
= 1;
5834 sqlite3ExprCode(pParse
, pGroupBy
->a
[j
].pExpr
, iBMem
+j
);
5837 sqlite3VdbeAddOp4(v
, OP_Compare
, iAMem
, iBMem
, pGroupBy
->nExpr
,
5838 (char*)sqlite3KeyInfoRef(pKeyInfo
), P4_KEYINFO
);
5839 addr1
= sqlite3VdbeCurrentAddr(v
);
5840 sqlite3VdbeAddOp3(v
, OP_Jump
, addr1
+1, 0, addr1
+1); VdbeCoverage(v
);
5842 /* Generate code that runs whenever the GROUP BY changes.
5843 ** Changes in the GROUP BY are detected by the previous code
5844 ** block. If there were no changes, this block is skipped.
5846 ** This code copies current group by terms in b0,b1,b2,...
5847 ** over to a0,a1,a2. It then calls the output subroutine
5848 ** and resets the aggregate accumulator registers in preparation
5849 ** for the next GROUP BY batch.
5851 sqlite3ExprCodeMove(pParse
, iBMem
, iAMem
, pGroupBy
->nExpr
);
5852 sqlite3VdbeAddOp2(v
, OP_Gosub
, regOutputRow
, addrOutputRow
);
5853 VdbeComment((v
, "output one row"));
5854 sqlite3VdbeAddOp2(v
, OP_IfPos
, iAbortFlag
, addrEnd
); VdbeCoverage(v
);
5855 VdbeComment((v
, "check abort flag"));
5856 sqlite3VdbeAddOp2(v
, OP_Gosub
, regReset
, addrReset
);
5857 VdbeComment((v
, "reset accumulator"));
5859 /* Update the aggregate accumulators based on the content of
5862 sqlite3VdbeJumpHere(v
, addr1
);
5863 updateAccumulator(pParse
, &sAggInfo
);
5864 sqlite3VdbeAddOp2(v
, OP_Integer
, 1, iUseFlag
);
5865 VdbeComment((v
, "indicate data in accumulator"));
5870 sqlite3VdbeAddOp2(v
, OP_SorterNext
, sAggInfo
.sortingIdx
, addrTopOfLoop
);
5873 sqlite3WhereEnd(pWInfo
);
5874 sqlite3VdbeChangeToNoop(v
, addrSortingIdx
);
5877 /* Output the final row of result
5879 sqlite3VdbeAddOp2(v
, OP_Gosub
, regOutputRow
, addrOutputRow
);
5880 VdbeComment((v
, "output final row"));
5882 /* Jump over the subroutines
5884 sqlite3VdbeGoto(v
, addrEnd
);
5886 /* Generate a subroutine that outputs a single row of the result
5887 ** set. This subroutine first looks at the iUseFlag. If iUseFlag
5888 ** is less than or equal to zero, the subroutine is a no-op. If
5889 ** the processing calls for the query to abort, this subroutine
5890 ** increments the iAbortFlag memory location before returning in
5891 ** order to signal the caller to abort.
5893 addrSetAbort
= sqlite3VdbeCurrentAddr(v
);
5894 sqlite3VdbeAddOp2(v
, OP_Integer
, 1, iAbortFlag
);
5895 VdbeComment((v
, "set abort flag"));
5896 sqlite3VdbeAddOp1(v
, OP_Return
, regOutputRow
);
5897 sqlite3VdbeResolveLabel(v
, addrOutputRow
);
5898 addrOutputRow
= sqlite3VdbeCurrentAddr(v
);
5899 sqlite3VdbeAddOp2(v
, OP_IfPos
, iUseFlag
, addrOutputRow
+2);
5901 VdbeComment((v
, "Groupby result generator entry point"));
5902 sqlite3VdbeAddOp1(v
, OP_Return
, regOutputRow
);
5903 finalizeAggFunctions(pParse
, &sAggInfo
);
5904 sqlite3ExprIfFalse(pParse
, pHaving
, addrOutputRow
+1, SQLITE_JUMPIFNULL
);
5905 selectInnerLoop(pParse
, p
, -1, &sSort
,
5907 addrOutputRow
+1, addrSetAbort
);
5908 sqlite3VdbeAddOp1(v
, OP_Return
, regOutputRow
);
5909 VdbeComment((v
, "end groupby result generator"));
5911 /* Generate a subroutine that will reset the group-by accumulator
5913 sqlite3VdbeResolveLabel(v
, addrReset
);
5914 resetAccumulator(pParse
, &sAggInfo
);
5915 sqlite3VdbeAddOp1(v
, OP_Return
, regReset
);
5917 } /* endif pGroupBy. Begin aggregate queries without GROUP BY: */
5919 #ifndef SQLITE_OMIT_BTREECOUNT
5921 if( (pTab
= isSimpleCount(p
, &sAggInfo
))!=0 ){
5922 /* If isSimpleCount() returns a pointer to a Table structure, then
5923 ** the SQL statement is of the form:
5925 ** SELECT count(*) FROM <tbl>
5927 ** where the Table structure returned represents table <tbl>.
5929 ** This statement is so common that it is optimized specially. The
5930 ** OP_Count instruction is executed either on the intkey table that
5931 ** contains the data for table <tbl> or on one of its indexes. It
5932 ** is better to execute the op on an index, as indexes are almost
5933 ** always spread across less pages than their corresponding tables.
5935 const int iDb
= sqlite3SchemaToIndex(pParse
->db
, pTab
->pSchema
);
5936 const int iCsr
= pParse
->nTab
++; /* Cursor to scan b-tree */
5937 Index
*pIdx
; /* Iterator variable */
5938 KeyInfo
*pKeyInfo
= 0; /* Keyinfo for scanned index */
5939 Index
*pBest
= 0; /* Best index found so far */
5940 int iRoot
= pTab
->tnum
; /* Root page of scanned b-tree */
5942 sqlite3CodeVerifySchema(pParse
, iDb
);
5943 sqlite3TableLock(pParse
, iDb
, pTab
->tnum
, 0, pTab
->zName
);
5945 /* Search for the index that has the lowest scan cost.
5947 ** (2011-04-15) Do not do a full scan of an unordered index.
5949 ** (2013-10-03) Do not count the entries in a partial index.
5951 ** In practice the KeyInfo structure will not be used. It is only
5952 ** passed to keep OP_OpenRead happy.
5954 if( !HasRowid(pTab
) ) pBest
= sqlite3PrimaryKeyIndex(pTab
);
5955 for(pIdx
=pTab
->pIndex
; pIdx
; pIdx
=pIdx
->pNext
){
5956 if( pIdx
->bUnordered
==0
5957 && pIdx
->szIdxRow
<pTab
->szTabRow
5958 && pIdx
->pPartIdxWhere
==0
5959 && (!pBest
|| pIdx
->szIdxRow
<pBest
->szIdxRow
)
5965 iRoot
= pBest
->tnum
;
5966 pKeyInfo
= sqlite3KeyInfoOfIndex(pParse
, pBest
);
5969 /* Open a read-only cursor, execute the OP_Count, close the cursor. */
5970 sqlite3VdbeAddOp4Int(v
, OP_OpenRead
, iCsr
, iRoot
, iDb
, 1);
5972 sqlite3VdbeChangeP4(v
, -1, (char *)pKeyInfo
, P4_KEYINFO
);
5974 sqlite3VdbeAddOp2(v
, OP_Count
, iCsr
, sAggInfo
.aFunc
[0].iMem
);
5975 sqlite3VdbeAddOp1(v
, OP_Close
, iCsr
);
5976 explainSimpleCount(pParse
, pTab
, pBest
);
5978 #endif /* SQLITE_OMIT_BTREECOUNT */
5980 /* This case runs if the aggregate has no GROUP BY clause. The
5981 ** processing is much simpler since there is only a single row
5984 assert( p
->pGroupBy
==0 );
5985 resetAccumulator(pParse
, &sAggInfo
);
5987 /* If this query is a candidate for the min/max optimization, then
5988 ** minMaxFlag will have been previously set to either
5989 ** WHERE_ORDERBY_MIN or WHERE_ORDERBY_MAX and pMinMaxOrderBy will
5990 ** be an appropriate ORDER BY expression for the optimization.
5992 assert( minMaxFlag
==WHERE_ORDERBY_NORMAL
|| pMinMaxOrderBy
!=0 );
5993 assert( pMinMaxOrderBy
==0 || pMinMaxOrderBy
->nExpr
==1 );
5995 SELECTTRACE(1,pParse
,p
,("WhereBegin\n"));
5996 pWInfo
= sqlite3WhereBegin(pParse
, pTabList
, pWhere
, pMinMaxOrderBy
,
6001 updateAccumulator(pParse
, &sAggInfo
);
6002 if( sqlite3WhereIsOrdered(pWInfo
)>0 ){
6003 sqlite3VdbeGoto(v
, sqlite3WhereBreakLabel(pWInfo
));
6004 VdbeComment((v
, "%s() by index",
6005 (minMaxFlag
==WHERE_ORDERBY_MIN
?"min":"max")));
6007 sqlite3WhereEnd(pWInfo
);
6008 finalizeAggFunctions(pParse
, &sAggInfo
);
6012 sqlite3ExprIfFalse(pParse
, pHaving
, addrEnd
, SQLITE_JUMPIFNULL
);
6013 selectInnerLoop(pParse
, p
, -1, 0, 0,
6014 pDest
, addrEnd
, addrEnd
);
6016 sqlite3VdbeResolveLabel(v
, addrEnd
);
6018 } /* endif aggregate query */
6020 if( sDistinct
.eTnctType
==WHERE_DISTINCT_UNORDERED
){
6021 explainTempTable(pParse
, "DISTINCT");
6024 /* If there is an ORDER BY clause, then we need to sort the results
6025 ** and send them to the callback one by one.
6027 if( sSort
.pOrderBy
){
6028 explainTempTable(pParse
,
6029 sSort
.nOBSat
>0 ? "RIGHT PART OF ORDER BY":"ORDER BY");
6030 generateSortTail(pParse
, p
, &sSort
, pEList
->nExpr
, pDest
);
6033 /* Jump here to skip this query
6035 sqlite3VdbeResolveLabel(v
, iEnd
);
6037 /* The SELECT has been coded. If there is an error in the Parse structure,
6038 ** set the return code to 1. Otherwise 0. */
6039 rc
= (pParse
->nErr
>0);
6041 /* Control jumps to here if an error is encountered above, or upon
6042 ** successful coding of the SELECT.
6045 explainSetInteger(pParse
->iSelectId
, iRestoreSelectId
);
6046 sqlite3ExprListDelete(db
, pMinMaxOrderBy
);
6047 sqlite3DbFree(db
, sAggInfo
.aCol
);
6048 sqlite3DbFree(db
, sAggInfo
.aFunc
);
6049 #if SELECTTRACE_ENABLED
6050 SELECTTRACE(1,pParse
,p
,("end processing\n"));