update version and change log for 4.4.2
[sqlcipher.git] / src / insert.c
blob789b3b663450711c901470a2b3fb21e09f9ba6d9
1 /*
2 ** 2001 September 15
3 **
4 ** The author disclaims copyright to this source code. In place of
5 ** a legal notice, here is a blessing:
6 **
7 ** May you do good and not evil.
8 ** May you find forgiveness for yourself and forgive others.
9 ** May you share freely, never taking more than you give.
11 *************************************************************************
12 ** This file contains C code routines that are called by the parser
13 ** to handle INSERT statements in SQLite.
15 #include "sqliteInt.h"
18 ** Generate code that will
20 ** (1) acquire a lock for table pTab then
21 ** (2) open pTab as cursor iCur.
23 ** If pTab is a WITHOUT ROWID table, then it is the PRIMARY KEY index
24 ** for that table that is actually opened.
26 void sqlite3OpenTable(
27 Parse *pParse, /* Generate code into this VDBE */
28 int iCur, /* The cursor number of the table */
29 int iDb, /* The database index in sqlite3.aDb[] */
30 Table *pTab, /* The table to be opened */
31 int opcode /* OP_OpenRead or OP_OpenWrite */
33 Vdbe *v;
34 assert( !IsVirtual(pTab) );
35 v = sqlite3GetVdbe(pParse);
36 assert( opcode==OP_OpenWrite || opcode==OP_OpenRead );
37 sqlite3TableLock(pParse, iDb, pTab->tnum,
38 (opcode==OP_OpenWrite)?1:0, pTab->zName);
39 if( HasRowid(pTab) ){
40 sqlite3VdbeAddOp4Int(v, opcode, iCur, pTab->tnum, iDb, pTab->nNVCol);
41 VdbeComment((v, "%s", pTab->zName));
42 }else{
43 Index *pPk = sqlite3PrimaryKeyIndex(pTab);
44 assert( pPk!=0 );
45 assert( pPk->tnum==pTab->tnum );
46 sqlite3VdbeAddOp3(v, opcode, iCur, pPk->tnum, iDb);
47 sqlite3VdbeSetP4KeyInfo(pParse, pPk);
48 VdbeComment((v, "%s", pTab->zName));
53 ** Return a pointer to the column affinity string associated with index
54 ** pIdx. A column affinity string has one character for each column in
55 ** the table, according to the affinity of the column:
57 ** Character Column affinity
58 ** ------------------------------
59 ** 'A' BLOB
60 ** 'B' TEXT
61 ** 'C' NUMERIC
62 ** 'D' INTEGER
63 ** 'F' REAL
65 ** An extra 'D' is appended to the end of the string to cover the
66 ** rowid that appears as the last column in every index.
68 ** Memory for the buffer containing the column index affinity string
69 ** is managed along with the rest of the Index structure. It will be
70 ** released when sqlite3DeleteIndex() is called.
72 const char *sqlite3IndexAffinityStr(sqlite3 *db, Index *pIdx){
73 if( !pIdx->zColAff ){
74 /* The first time a column affinity string for a particular index is
75 ** required, it is allocated and populated here. It is then stored as
76 ** a member of the Index structure for subsequent use.
78 ** The column affinity string will eventually be deleted by
79 ** sqliteDeleteIndex() when the Index structure itself is cleaned
80 ** up.
82 int n;
83 Table *pTab = pIdx->pTable;
84 pIdx->zColAff = (char *)sqlite3DbMallocRaw(0, pIdx->nColumn+1);
85 if( !pIdx->zColAff ){
86 sqlite3OomFault(db);
87 return 0;
89 for(n=0; n<pIdx->nColumn; n++){
90 i16 x = pIdx->aiColumn[n];
91 char aff;
92 if( x>=0 ){
93 aff = pTab->aCol[x].affinity;
94 }else if( x==XN_ROWID ){
95 aff = SQLITE_AFF_INTEGER;
96 }else{
97 assert( x==XN_EXPR );
98 assert( pIdx->aColExpr!=0 );
99 aff = sqlite3ExprAffinity(pIdx->aColExpr->a[n].pExpr);
101 if( aff<SQLITE_AFF_BLOB ) aff = SQLITE_AFF_BLOB;
102 if( aff>SQLITE_AFF_NUMERIC) aff = SQLITE_AFF_NUMERIC;
103 pIdx->zColAff[n] = aff;
105 pIdx->zColAff[n] = 0;
108 return pIdx->zColAff;
112 ** Compute the affinity string for table pTab, if it has not already been
113 ** computed. As an optimization, omit trailing SQLITE_AFF_BLOB affinities.
115 ** If the affinity exists (if it is no entirely SQLITE_AFF_BLOB values) and
116 ** if iReg>0 then code an OP_Affinity opcode that will set the affinities
117 ** for register iReg and following. Or if affinities exists and iReg==0,
118 ** then just set the P4 operand of the previous opcode (which should be
119 ** an OP_MakeRecord) to the affinity string.
121 ** A column affinity string has one character per column:
123 ** Character Column affinity
124 ** ------------------------------
125 ** 'A' BLOB
126 ** 'B' TEXT
127 ** 'C' NUMERIC
128 ** 'D' INTEGER
129 ** 'E' REAL
131 void sqlite3TableAffinity(Vdbe *v, Table *pTab, int iReg){
132 int i, j;
133 char *zColAff = pTab->zColAff;
134 if( zColAff==0 ){
135 sqlite3 *db = sqlite3VdbeDb(v);
136 zColAff = (char *)sqlite3DbMallocRaw(0, pTab->nCol+1);
137 if( !zColAff ){
138 sqlite3OomFault(db);
139 return;
142 for(i=j=0; i<pTab->nCol; i++){
143 assert( pTab->aCol[i].affinity!=0 );
144 if( (pTab->aCol[i].colFlags & COLFLAG_VIRTUAL)==0 ){
145 zColAff[j++] = pTab->aCol[i].affinity;
149 zColAff[j--] = 0;
150 }while( j>=0 && zColAff[j]<=SQLITE_AFF_BLOB );
151 pTab->zColAff = zColAff;
153 assert( zColAff!=0 );
154 i = sqlite3Strlen30NN(zColAff);
155 if( i ){
156 if( iReg ){
157 sqlite3VdbeAddOp4(v, OP_Affinity, iReg, i, 0, zColAff, i);
158 }else{
159 sqlite3VdbeChangeP4(v, -1, zColAff, i);
165 ** Return non-zero if the table pTab in database iDb or any of its indices
166 ** have been opened at any point in the VDBE program. This is used to see if
167 ** a statement of the form "INSERT INTO <iDb, pTab> SELECT ..." can
168 ** run without using a temporary table for the results of the SELECT.
170 static int readsTable(Parse *p, int iDb, Table *pTab){
171 Vdbe *v = sqlite3GetVdbe(p);
172 int i;
173 int iEnd = sqlite3VdbeCurrentAddr(v);
174 #ifndef SQLITE_OMIT_VIRTUALTABLE
175 VTable *pVTab = IsVirtual(pTab) ? sqlite3GetVTable(p->db, pTab) : 0;
176 #endif
178 for(i=1; i<iEnd; i++){
179 VdbeOp *pOp = sqlite3VdbeGetOp(v, i);
180 assert( pOp!=0 );
181 if( pOp->opcode==OP_OpenRead && pOp->p3==iDb ){
182 Index *pIndex;
183 Pgno tnum = pOp->p2;
184 if( tnum==pTab->tnum ){
185 return 1;
187 for(pIndex=pTab->pIndex; pIndex; pIndex=pIndex->pNext){
188 if( tnum==pIndex->tnum ){
189 return 1;
193 #ifndef SQLITE_OMIT_VIRTUALTABLE
194 if( pOp->opcode==OP_VOpen && pOp->p4.pVtab==pVTab ){
195 assert( pOp->p4.pVtab!=0 );
196 assert( pOp->p4type==P4_VTAB );
197 return 1;
199 #endif
201 return 0;
204 /* This walker callback will compute the union of colFlags flags for all
205 ** referenced columns in a CHECK constraint or generated column expression.
207 static int exprColumnFlagUnion(Walker *pWalker, Expr *pExpr){
208 if( pExpr->op==TK_COLUMN && pExpr->iColumn>=0 ){
209 assert( pExpr->iColumn < pWalker->u.pTab->nCol );
210 pWalker->eCode |= pWalker->u.pTab->aCol[pExpr->iColumn].colFlags;
212 return WRC_Continue;
215 #ifndef SQLITE_OMIT_GENERATED_COLUMNS
217 ** All regular columns for table pTab have been puts into registers
218 ** starting with iRegStore. The registers that correspond to STORED
219 ** or VIRTUAL columns have not yet been initialized. This routine goes
220 ** back and computes the values for those columns based on the previously
221 ** computed normal columns.
223 void sqlite3ComputeGeneratedColumns(
224 Parse *pParse, /* Parsing context */
225 int iRegStore, /* Register holding the first column */
226 Table *pTab /* The table */
228 int i;
229 Walker w;
230 Column *pRedo;
231 int eProgress;
232 VdbeOp *pOp;
234 assert( pTab->tabFlags & TF_HasGenerated );
235 testcase( pTab->tabFlags & TF_HasVirtual );
236 testcase( pTab->tabFlags & TF_HasStored );
238 /* Before computing generated columns, first go through and make sure
239 ** that appropriate affinity has been applied to the regular columns
241 sqlite3TableAffinity(pParse->pVdbe, pTab, iRegStore);
242 if( (pTab->tabFlags & TF_HasStored)!=0
243 && (pOp = sqlite3VdbeGetOp(pParse->pVdbe,-1))->opcode==OP_Affinity
245 /* Change the OP_Affinity argument to '@' (NONE) for all stored
246 ** columns. '@' is the no-op affinity and those columns have not
247 ** yet been computed. */
248 int ii, jj;
249 char *zP4 = pOp->p4.z;
250 assert( zP4!=0 );
251 assert( pOp->p4type==P4_DYNAMIC );
252 for(ii=jj=0; zP4[jj]; ii++){
253 if( pTab->aCol[ii].colFlags & COLFLAG_VIRTUAL ){
254 continue;
256 if( pTab->aCol[ii].colFlags & COLFLAG_STORED ){
257 zP4[jj] = SQLITE_AFF_NONE;
259 jj++;
263 /* Because there can be multiple generated columns that refer to one another,
264 ** this is a two-pass algorithm. On the first pass, mark all generated
265 ** columns as "not available".
267 for(i=0; i<pTab->nCol; i++){
268 if( pTab->aCol[i].colFlags & COLFLAG_GENERATED ){
269 testcase( pTab->aCol[i].colFlags & COLFLAG_VIRTUAL );
270 testcase( pTab->aCol[i].colFlags & COLFLAG_STORED );
271 pTab->aCol[i].colFlags |= COLFLAG_NOTAVAIL;
275 w.u.pTab = pTab;
276 w.xExprCallback = exprColumnFlagUnion;
277 w.xSelectCallback = 0;
278 w.xSelectCallback2 = 0;
280 /* On the second pass, compute the value of each NOT-AVAILABLE column.
281 ** Companion code in the TK_COLUMN case of sqlite3ExprCodeTarget() will
282 ** compute dependencies and mark remove the COLSPAN_NOTAVAIL mark, as
283 ** they are needed.
285 pParse->iSelfTab = -iRegStore;
287 eProgress = 0;
288 pRedo = 0;
289 for(i=0; i<pTab->nCol; i++){
290 Column *pCol = pTab->aCol + i;
291 if( (pCol->colFlags & COLFLAG_NOTAVAIL)!=0 ){
292 int x;
293 pCol->colFlags |= COLFLAG_BUSY;
294 w.eCode = 0;
295 sqlite3WalkExpr(&w, pCol->pDflt);
296 pCol->colFlags &= ~COLFLAG_BUSY;
297 if( w.eCode & COLFLAG_NOTAVAIL ){
298 pRedo = pCol;
299 continue;
301 eProgress = 1;
302 assert( pCol->colFlags & COLFLAG_GENERATED );
303 x = sqlite3TableColumnToStorage(pTab, i) + iRegStore;
304 sqlite3ExprCodeGeneratedColumn(pParse, pCol, x);
305 pCol->colFlags &= ~COLFLAG_NOTAVAIL;
308 }while( pRedo && eProgress );
309 if( pRedo ){
310 sqlite3ErrorMsg(pParse, "generated column loop on \"%s\"", pRedo->zName);
312 pParse->iSelfTab = 0;
314 #endif /* SQLITE_OMIT_GENERATED_COLUMNS */
317 #ifndef SQLITE_OMIT_AUTOINCREMENT
319 ** Locate or create an AutoincInfo structure associated with table pTab
320 ** which is in database iDb. Return the register number for the register
321 ** that holds the maximum rowid. Return zero if pTab is not an AUTOINCREMENT
322 ** table. (Also return zero when doing a VACUUM since we do not want to
323 ** update the AUTOINCREMENT counters during a VACUUM.)
325 ** There is at most one AutoincInfo structure per table even if the
326 ** same table is autoincremented multiple times due to inserts within
327 ** triggers. A new AutoincInfo structure is created if this is the
328 ** first use of table pTab. On 2nd and subsequent uses, the original
329 ** AutoincInfo structure is used.
331 ** Four consecutive registers are allocated:
333 ** (1) The name of the pTab table.
334 ** (2) The maximum ROWID of pTab.
335 ** (3) The rowid in sqlite_sequence of pTab
336 ** (4) The original value of the max ROWID in pTab, or NULL if none
338 ** The 2nd register is the one that is returned. That is all the
339 ** insert routine needs to know about.
341 static int autoIncBegin(
342 Parse *pParse, /* Parsing context */
343 int iDb, /* Index of the database holding pTab */
344 Table *pTab /* The table we are writing to */
346 int memId = 0; /* Register holding maximum rowid */
347 assert( pParse->db->aDb[iDb].pSchema!=0 );
348 if( (pTab->tabFlags & TF_Autoincrement)!=0
349 && (pParse->db->mDbFlags & DBFLAG_Vacuum)==0
351 Parse *pToplevel = sqlite3ParseToplevel(pParse);
352 AutoincInfo *pInfo;
353 Table *pSeqTab = pParse->db->aDb[iDb].pSchema->pSeqTab;
355 /* Verify that the sqlite_sequence table exists and is an ordinary
356 ** rowid table with exactly two columns.
357 ** Ticket d8dc2b3a58cd5dc2918a1d4acb 2018-05-23 */
358 if( pSeqTab==0
359 || !HasRowid(pSeqTab)
360 || IsVirtual(pSeqTab)
361 || pSeqTab->nCol!=2
363 pParse->nErr++;
364 pParse->rc = SQLITE_CORRUPT_SEQUENCE;
365 return 0;
368 pInfo = pToplevel->pAinc;
369 while( pInfo && pInfo->pTab!=pTab ){ pInfo = pInfo->pNext; }
370 if( pInfo==0 ){
371 pInfo = sqlite3DbMallocRawNN(pParse->db, sizeof(*pInfo));
372 if( pInfo==0 ) return 0;
373 pInfo->pNext = pToplevel->pAinc;
374 pToplevel->pAinc = pInfo;
375 pInfo->pTab = pTab;
376 pInfo->iDb = iDb;
377 pToplevel->nMem++; /* Register to hold name of table */
378 pInfo->regCtr = ++pToplevel->nMem; /* Max rowid register */
379 pToplevel->nMem +=2; /* Rowid in sqlite_sequence + orig max val */
381 memId = pInfo->regCtr;
383 return memId;
387 ** This routine generates code that will initialize all of the
388 ** register used by the autoincrement tracker.
390 void sqlite3AutoincrementBegin(Parse *pParse){
391 AutoincInfo *p; /* Information about an AUTOINCREMENT */
392 sqlite3 *db = pParse->db; /* The database connection */
393 Db *pDb; /* Database only autoinc table */
394 int memId; /* Register holding max rowid */
395 Vdbe *v = pParse->pVdbe; /* VDBE under construction */
397 /* This routine is never called during trigger-generation. It is
398 ** only called from the top-level */
399 assert( pParse->pTriggerTab==0 );
400 assert( sqlite3IsToplevel(pParse) );
402 assert( v ); /* We failed long ago if this is not so */
403 for(p = pParse->pAinc; p; p = p->pNext){
404 static const int iLn = VDBE_OFFSET_LINENO(2);
405 static const VdbeOpList autoInc[] = {
406 /* 0 */ {OP_Null, 0, 0, 0},
407 /* 1 */ {OP_Rewind, 0, 10, 0},
408 /* 2 */ {OP_Column, 0, 0, 0},
409 /* 3 */ {OP_Ne, 0, 9, 0},
410 /* 4 */ {OP_Rowid, 0, 0, 0},
411 /* 5 */ {OP_Column, 0, 1, 0},
412 /* 6 */ {OP_AddImm, 0, 0, 0},
413 /* 7 */ {OP_Copy, 0, 0, 0},
414 /* 8 */ {OP_Goto, 0, 11, 0},
415 /* 9 */ {OP_Next, 0, 2, 0},
416 /* 10 */ {OP_Integer, 0, 0, 0},
417 /* 11 */ {OP_Close, 0, 0, 0}
419 VdbeOp *aOp;
420 pDb = &db->aDb[p->iDb];
421 memId = p->regCtr;
422 assert( sqlite3SchemaMutexHeld(db, 0, pDb->pSchema) );
423 sqlite3OpenTable(pParse, 0, p->iDb, pDb->pSchema->pSeqTab, OP_OpenRead);
424 sqlite3VdbeLoadString(v, memId-1, p->pTab->zName);
425 aOp = sqlite3VdbeAddOpList(v, ArraySize(autoInc), autoInc, iLn);
426 if( aOp==0 ) break;
427 aOp[0].p2 = memId;
428 aOp[0].p3 = memId+2;
429 aOp[2].p3 = memId;
430 aOp[3].p1 = memId-1;
431 aOp[3].p3 = memId;
432 aOp[3].p5 = SQLITE_JUMPIFNULL;
433 aOp[4].p2 = memId+1;
434 aOp[5].p3 = memId;
435 aOp[6].p1 = memId;
436 aOp[7].p2 = memId+2;
437 aOp[7].p1 = memId;
438 aOp[10].p2 = memId;
439 if( pParse->nTab==0 ) pParse->nTab = 1;
444 ** Update the maximum rowid for an autoincrement calculation.
446 ** This routine should be called when the regRowid register holds a
447 ** new rowid that is about to be inserted. If that new rowid is
448 ** larger than the maximum rowid in the memId memory cell, then the
449 ** memory cell is updated.
451 static void autoIncStep(Parse *pParse, int memId, int regRowid){
452 if( memId>0 ){
453 sqlite3VdbeAddOp2(pParse->pVdbe, OP_MemMax, memId, regRowid);
458 ** This routine generates the code needed to write autoincrement
459 ** maximum rowid values back into the sqlite_sequence register.
460 ** Every statement that might do an INSERT into an autoincrement
461 ** table (either directly or through triggers) needs to call this
462 ** routine just before the "exit" code.
464 static SQLITE_NOINLINE void autoIncrementEnd(Parse *pParse){
465 AutoincInfo *p;
466 Vdbe *v = pParse->pVdbe;
467 sqlite3 *db = pParse->db;
469 assert( v );
470 for(p = pParse->pAinc; p; p = p->pNext){
471 static const int iLn = VDBE_OFFSET_LINENO(2);
472 static const VdbeOpList autoIncEnd[] = {
473 /* 0 */ {OP_NotNull, 0, 2, 0},
474 /* 1 */ {OP_NewRowid, 0, 0, 0},
475 /* 2 */ {OP_MakeRecord, 0, 2, 0},
476 /* 3 */ {OP_Insert, 0, 0, 0},
477 /* 4 */ {OP_Close, 0, 0, 0}
479 VdbeOp *aOp;
480 Db *pDb = &db->aDb[p->iDb];
481 int iRec;
482 int memId = p->regCtr;
484 iRec = sqlite3GetTempReg(pParse);
485 assert( sqlite3SchemaMutexHeld(db, 0, pDb->pSchema) );
486 sqlite3VdbeAddOp3(v, OP_Le, memId+2, sqlite3VdbeCurrentAddr(v)+7, memId);
487 VdbeCoverage(v);
488 sqlite3OpenTable(pParse, 0, p->iDb, pDb->pSchema->pSeqTab, OP_OpenWrite);
489 aOp = sqlite3VdbeAddOpList(v, ArraySize(autoIncEnd), autoIncEnd, iLn);
490 if( aOp==0 ) break;
491 aOp[0].p1 = memId+1;
492 aOp[1].p2 = memId+1;
493 aOp[2].p1 = memId-1;
494 aOp[2].p3 = iRec;
495 aOp[3].p2 = iRec;
496 aOp[3].p3 = memId+1;
497 aOp[3].p5 = OPFLAG_APPEND;
498 sqlite3ReleaseTempReg(pParse, iRec);
501 void sqlite3AutoincrementEnd(Parse *pParse){
502 if( pParse->pAinc ) autoIncrementEnd(pParse);
504 #else
506 ** If SQLITE_OMIT_AUTOINCREMENT is defined, then the three routines
507 ** above are all no-ops
509 # define autoIncBegin(A,B,C) (0)
510 # define autoIncStep(A,B,C)
511 #endif /* SQLITE_OMIT_AUTOINCREMENT */
514 /* Forward declaration */
515 static int xferOptimization(
516 Parse *pParse, /* Parser context */
517 Table *pDest, /* The table we are inserting into */
518 Select *pSelect, /* A SELECT statement to use as the data source */
519 int onError, /* How to handle constraint errors */
520 int iDbDest /* The database of pDest */
524 ** This routine is called to handle SQL of the following forms:
526 ** insert into TABLE (IDLIST) values(EXPRLIST),(EXPRLIST),...
527 ** insert into TABLE (IDLIST) select
528 ** insert into TABLE (IDLIST) default values
530 ** The IDLIST following the table name is always optional. If omitted,
531 ** then a list of all (non-hidden) columns for the table is substituted.
532 ** The IDLIST appears in the pColumn parameter. pColumn is NULL if IDLIST
533 ** is omitted.
535 ** For the pSelect parameter holds the values to be inserted for the
536 ** first two forms shown above. A VALUES clause is really just short-hand
537 ** for a SELECT statement that omits the FROM clause and everything else
538 ** that follows. If the pSelect parameter is NULL, that means that the
539 ** DEFAULT VALUES form of the INSERT statement is intended.
541 ** The code generated follows one of four templates. For a simple
542 ** insert with data coming from a single-row VALUES clause, the code executes
543 ** once straight down through. Pseudo-code follows (we call this
544 ** the "1st template"):
546 ** open write cursor to <table> and its indices
547 ** put VALUES clause expressions into registers
548 ** write the resulting record into <table>
549 ** cleanup
551 ** The three remaining templates assume the statement is of the form
553 ** INSERT INTO <table> SELECT ...
555 ** If the SELECT clause is of the restricted form "SELECT * FROM <table2>" -
556 ** in other words if the SELECT pulls all columns from a single table
557 ** and there is no WHERE or LIMIT or GROUP BY or ORDER BY clauses, and
558 ** if <table2> and <table1> are distinct tables but have identical
559 ** schemas, including all the same indices, then a special optimization
560 ** is invoked that copies raw records from <table2> over to <table1>.
561 ** See the xferOptimization() function for the implementation of this
562 ** template. This is the 2nd template.
564 ** open a write cursor to <table>
565 ** open read cursor on <table2>
566 ** transfer all records in <table2> over to <table>
567 ** close cursors
568 ** foreach index on <table>
569 ** open a write cursor on the <table> index
570 ** open a read cursor on the corresponding <table2> index
571 ** transfer all records from the read to the write cursors
572 ** close cursors
573 ** end foreach
575 ** The 3rd template is for when the second template does not apply
576 ** and the SELECT clause does not read from <table> at any time.
577 ** The generated code follows this template:
579 ** X <- A
580 ** goto B
581 ** A: setup for the SELECT
582 ** loop over the rows in the SELECT
583 ** load values into registers R..R+n
584 ** yield X
585 ** end loop
586 ** cleanup after the SELECT
587 ** end-coroutine X
588 ** B: open write cursor to <table> and its indices
589 ** C: yield X, at EOF goto D
590 ** insert the select result into <table> from R..R+n
591 ** goto C
592 ** D: cleanup
594 ** The 4th template is used if the insert statement takes its
595 ** values from a SELECT but the data is being inserted into a table
596 ** that is also read as part of the SELECT. In the third form,
597 ** we have to use an intermediate table to store the results of
598 ** the select. The template is like this:
600 ** X <- A
601 ** goto B
602 ** A: setup for the SELECT
603 ** loop over the tables in the SELECT
604 ** load value into register R..R+n
605 ** yield X
606 ** end loop
607 ** cleanup after the SELECT
608 ** end co-routine R
609 ** B: open temp table
610 ** L: yield X, at EOF goto M
611 ** insert row from R..R+n into temp table
612 ** goto L
613 ** M: open write cursor to <table> and its indices
614 ** rewind temp table
615 ** C: loop over rows of intermediate table
616 ** transfer values form intermediate table into <table>
617 ** end loop
618 ** D: cleanup
620 void sqlite3Insert(
621 Parse *pParse, /* Parser context */
622 SrcList *pTabList, /* Name of table into which we are inserting */
623 Select *pSelect, /* A SELECT statement to use as the data source */
624 IdList *pColumn, /* Column names corresponding to IDLIST, or NULL. */
625 int onError, /* How to handle constraint errors */
626 Upsert *pUpsert /* ON CONFLICT clauses for upsert, or NULL */
628 sqlite3 *db; /* The main database structure */
629 Table *pTab; /* The table to insert into. aka TABLE */
630 int i, j; /* Loop counters */
631 Vdbe *v; /* Generate code into this virtual machine */
632 Index *pIdx; /* For looping over indices of the table */
633 int nColumn; /* Number of columns in the data */
634 int nHidden = 0; /* Number of hidden columns if TABLE is virtual */
635 int iDataCur = 0; /* VDBE cursor that is the main data repository */
636 int iIdxCur = 0; /* First index cursor */
637 int ipkColumn = -1; /* Column that is the INTEGER PRIMARY KEY */
638 int endOfLoop; /* Label for the end of the insertion loop */
639 int srcTab = 0; /* Data comes from this temporary cursor if >=0 */
640 int addrInsTop = 0; /* Jump to label "D" */
641 int addrCont = 0; /* Top of insert loop. Label "C" in templates 3 and 4 */
642 SelectDest dest; /* Destination for SELECT on rhs of INSERT */
643 int iDb; /* Index of database holding TABLE */
644 u8 useTempTable = 0; /* Store SELECT results in intermediate table */
645 u8 appendFlag = 0; /* True if the insert is likely to be an append */
646 u8 withoutRowid; /* 0 for normal table. 1 for WITHOUT ROWID table */
647 u8 bIdListInOrder; /* True if IDLIST is in table order */
648 ExprList *pList = 0; /* List of VALUES() to be inserted */
649 int iRegStore; /* Register in which to store next column */
651 /* Register allocations */
652 int regFromSelect = 0;/* Base register for data coming from SELECT */
653 int regAutoinc = 0; /* Register holding the AUTOINCREMENT counter */
654 int regRowCount = 0; /* Memory cell used for the row counter */
655 int regIns; /* Block of regs holding rowid+data being inserted */
656 int regRowid; /* registers holding insert rowid */
657 int regData; /* register holding first column to insert */
658 int *aRegIdx = 0; /* One register allocated to each index */
660 #ifndef SQLITE_OMIT_TRIGGER
661 int isView; /* True if attempting to insert into a view */
662 Trigger *pTrigger; /* List of triggers on pTab, if required */
663 int tmask; /* Mask of trigger times */
664 #endif
666 db = pParse->db;
667 if( pParse->nErr || db->mallocFailed ){
668 goto insert_cleanup;
670 dest.iSDParm = 0; /* Suppress a harmless compiler warning */
672 /* If the Select object is really just a simple VALUES() list with a
673 ** single row (the common case) then keep that one row of values
674 ** and discard the other (unused) parts of the pSelect object
676 if( pSelect && (pSelect->selFlags & SF_Values)!=0 && pSelect->pPrior==0 ){
677 pList = pSelect->pEList;
678 pSelect->pEList = 0;
679 sqlite3SelectDelete(db, pSelect);
680 pSelect = 0;
683 /* Locate the table into which we will be inserting new information.
685 assert( pTabList->nSrc==1 );
686 pTab = sqlite3SrcListLookup(pParse, pTabList);
687 if( pTab==0 ){
688 goto insert_cleanup;
690 iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
691 assert( iDb<db->nDb );
692 if( sqlite3AuthCheck(pParse, SQLITE_INSERT, pTab->zName, 0,
693 db->aDb[iDb].zDbSName) ){
694 goto insert_cleanup;
696 withoutRowid = !HasRowid(pTab);
698 /* Figure out if we have any triggers and if the table being
699 ** inserted into is a view
701 #ifndef SQLITE_OMIT_TRIGGER
702 pTrigger = sqlite3TriggersExist(pParse, pTab, TK_INSERT, 0, &tmask);
703 isView = pTab->pSelect!=0;
704 #else
705 # define pTrigger 0
706 # define tmask 0
707 # define isView 0
708 #endif
709 #ifdef SQLITE_OMIT_VIEW
710 # undef isView
711 # define isView 0
712 #endif
713 assert( (pTrigger && tmask) || (pTrigger==0 && tmask==0) );
715 /* If pTab is really a view, make sure it has been initialized.
716 ** ViewGetColumnNames() is a no-op if pTab is not a view.
718 if( sqlite3ViewGetColumnNames(pParse, pTab) ){
719 goto insert_cleanup;
722 /* Cannot insert into a read-only table.
724 if( sqlite3IsReadOnly(pParse, pTab, tmask) ){
725 goto insert_cleanup;
728 /* Allocate a VDBE
730 v = sqlite3GetVdbe(pParse);
731 if( v==0 ) goto insert_cleanup;
732 if( pParse->nested==0 ) sqlite3VdbeCountChanges(v);
733 sqlite3BeginWriteOperation(pParse, pSelect || pTrigger, iDb);
735 #ifndef SQLITE_OMIT_XFER_OPT
736 /* If the statement is of the form
738 ** INSERT INTO <table1> SELECT * FROM <table2>;
740 ** Then special optimizations can be applied that make the transfer
741 ** very fast and which reduce fragmentation of indices.
743 ** This is the 2nd template.
745 if( pColumn==0 && xferOptimization(pParse, pTab, pSelect, onError, iDb) ){
746 assert( !pTrigger );
747 assert( pList==0 );
748 goto insert_end;
750 #endif /* SQLITE_OMIT_XFER_OPT */
752 /* If this is an AUTOINCREMENT table, look up the sequence number in the
753 ** sqlite_sequence table and store it in memory cell regAutoinc.
755 regAutoinc = autoIncBegin(pParse, iDb, pTab);
757 /* Allocate a block registers to hold the rowid and the values
758 ** for all columns of the new row.
760 regRowid = regIns = pParse->nMem+1;
761 pParse->nMem += pTab->nCol + 1;
762 if( IsVirtual(pTab) ){
763 regRowid++;
764 pParse->nMem++;
766 regData = regRowid+1;
768 /* If the INSERT statement included an IDLIST term, then make sure
769 ** all elements of the IDLIST really are columns of the table and
770 ** remember the column indices.
772 ** If the table has an INTEGER PRIMARY KEY column and that column
773 ** is named in the IDLIST, then record in the ipkColumn variable
774 ** the index into IDLIST of the primary key column. ipkColumn is
775 ** the index of the primary key as it appears in IDLIST, not as
776 ** is appears in the original table. (The index of the INTEGER
777 ** PRIMARY KEY in the original table is pTab->iPKey.) After this
778 ** loop, if ipkColumn==(-1), that means that integer primary key
779 ** is unspecified, and hence the table is either WITHOUT ROWID or
780 ** it will automatically generated an integer primary key.
782 ** bIdListInOrder is true if the columns in IDLIST are in storage
783 ** order. This enables an optimization that avoids shuffling the
784 ** columns into storage order. False negatives are harmless,
785 ** but false positives will cause database corruption.
787 bIdListInOrder = (pTab->tabFlags & (TF_OOOHidden|TF_HasStored))==0;
788 if( pColumn ){
789 for(i=0; i<pColumn->nId; i++){
790 pColumn->a[i].idx = -1;
792 for(i=0; i<pColumn->nId; i++){
793 for(j=0; j<pTab->nCol; j++){
794 if( sqlite3StrICmp(pColumn->a[i].zName, pTab->aCol[j].zName)==0 ){
795 pColumn->a[i].idx = j;
796 if( i!=j ) bIdListInOrder = 0;
797 if( j==pTab->iPKey ){
798 ipkColumn = i; assert( !withoutRowid );
800 #ifndef SQLITE_OMIT_GENERATED_COLUMNS
801 if( pTab->aCol[j].colFlags & (COLFLAG_STORED|COLFLAG_VIRTUAL) ){
802 sqlite3ErrorMsg(pParse,
803 "cannot INSERT into generated column \"%s\"",
804 pTab->aCol[j].zName);
805 goto insert_cleanup;
807 #endif
808 break;
811 if( j>=pTab->nCol ){
812 if( sqlite3IsRowid(pColumn->a[i].zName) && !withoutRowid ){
813 ipkColumn = i;
814 bIdListInOrder = 0;
815 }else{
816 sqlite3ErrorMsg(pParse, "table %S has no column named %s",
817 pTabList, 0, pColumn->a[i].zName);
818 pParse->checkSchema = 1;
819 goto insert_cleanup;
825 /* Figure out how many columns of data are supplied. If the data
826 ** is coming from a SELECT statement, then generate a co-routine that
827 ** produces a single row of the SELECT on each invocation. The
828 ** co-routine is the common header to the 3rd and 4th templates.
830 if( pSelect ){
831 /* Data is coming from a SELECT or from a multi-row VALUES clause.
832 ** Generate a co-routine to run the SELECT. */
833 int regYield; /* Register holding co-routine entry-point */
834 int addrTop; /* Top of the co-routine */
835 int rc; /* Result code */
837 regYield = ++pParse->nMem;
838 addrTop = sqlite3VdbeCurrentAddr(v) + 1;
839 sqlite3VdbeAddOp3(v, OP_InitCoroutine, regYield, 0, addrTop);
840 sqlite3SelectDestInit(&dest, SRT_Coroutine, regYield);
841 dest.iSdst = bIdListInOrder ? regData : 0;
842 dest.nSdst = pTab->nCol;
843 rc = sqlite3Select(pParse, pSelect, &dest);
844 regFromSelect = dest.iSdst;
845 if( rc || db->mallocFailed || pParse->nErr ) goto insert_cleanup;
846 sqlite3VdbeEndCoroutine(v, regYield);
847 sqlite3VdbeJumpHere(v, addrTop - 1); /* label B: */
848 assert( pSelect->pEList );
849 nColumn = pSelect->pEList->nExpr;
851 /* Set useTempTable to TRUE if the result of the SELECT statement
852 ** should be written into a temporary table (template 4). Set to
853 ** FALSE if each output row of the SELECT can be written directly into
854 ** the destination table (template 3).
856 ** A temp table must be used if the table being updated is also one
857 ** of the tables being read by the SELECT statement. Also use a
858 ** temp table in the case of row triggers.
860 if( pTrigger || readsTable(pParse, iDb, pTab) ){
861 useTempTable = 1;
864 if( useTempTable ){
865 /* Invoke the coroutine to extract information from the SELECT
866 ** and add it to a transient table srcTab. The code generated
867 ** here is from the 4th template:
869 ** B: open temp table
870 ** L: yield X, goto M at EOF
871 ** insert row from R..R+n into temp table
872 ** goto L
873 ** M: ...
875 int regRec; /* Register to hold packed record */
876 int regTempRowid; /* Register to hold temp table ROWID */
877 int addrL; /* Label "L" */
879 srcTab = pParse->nTab++;
880 regRec = sqlite3GetTempReg(pParse);
881 regTempRowid = sqlite3GetTempReg(pParse);
882 sqlite3VdbeAddOp2(v, OP_OpenEphemeral, srcTab, nColumn);
883 addrL = sqlite3VdbeAddOp1(v, OP_Yield, dest.iSDParm); VdbeCoverage(v);
884 sqlite3VdbeAddOp3(v, OP_MakeRecord, regFromSelect, nColumn, regRec);
885 sqlite3VdbeAddOp2(v, OP_NewRowid, srcTab, regTempRowid);
886 sqlite3VdbeAddOp3(v, OP_Insert, srcTab, regRec, regTempRowid);
887 sqlite3VdbeGoto(v, addrL);
888 sqlite3VdbeJumpHere(v, addrL);
889 sqlite3ReleaseTempReg(pParse, regRec);
890 sqlite3ReleaseTempReg(pParse, regTempRowid);
892 }else{
893 /* This is the case if the data for the INSERT is coming from a
894 ** single-row VALUES clause
896 NameContext sNC;
897 memset(&sNC, 0, sizeof(sNC));
898 sNC.pParse = pParse;
899 srcTab = -1;
900 assert( useTempTable==0 );
901 if( pList ){
902 nColumn = pList->nExpr;
903 if( sqlite3ResolveExprListNames(&sNC, pList) ){
904 goto insert_cleanup;
906 }else{
907 nColumn = 0;
911 /* If there is no IDLIST term but the table has an integer primary
912 ** key, the set the ipkColumn variable to the integer primary key
913 ** column index in the original table definition.
915 if( pColumn==0 && nColumn>0 ){
916 ipkColumn = pTab->iPKey;
917 #ifndef SQLITE_OMIT_GENERATED_COLUMNS
918 if( ipkColumn>=0 && (pTab->tabFlags & TF_HasGenerated)!=0 ){
919 testcase( pTab->tabFlags & TF_HasVirtual );
920 testcase( pTab->tabFlags & TF_HasStored );
921 for(i=ipkColumn-1; i>=0; i--){
922 if( pTab->aCol[i].colFlags & COLFLAG_GENERATED ){
923 testcase( pTab->aCol[i].colFlags & COLFLAG_VIRTUAL );
924 testcase( pTab->aCol[i].colFlags & COLFLAG_STORED );
925 ipkColumn--;
929 #endif
932 /* Make sure the number of columns in the source data matches the number
933 ** of columns to be inserted into the table.
935 for(i=0; i<pTab->nCol; i++){
936 if( pTab->aCol[i].colFlags & COLFLAG_NOINSERT ) nHidden++;
938 if( pColumn==0 && nColumn && nColumn!=(pTab->nCol-nHidden) ){
939 sqlite3ErrorMsg(pParse,
940 "table %S has %d columns but %d values were supplied",
941 pTabList, 0, pTab->nCol-nHidden, nColumn);
942 goto insert_cleanup;
944 if( pColumn!=0 && nColumn!=pColumn->nId ){
945 sqlite3ErrorMsg(pParse, "%d values for %d columns", nColumn, pColumn->nId);
946 goto insert_cleanup;
949 /* Initialize the count of rows to be inserted
951 if( (db->flags & SQLITE_CountRows)!=0
952 && !pParse->nested
953 && !pParse->pTriggerTab
955 regRowCount = ++pParse->nMem;
956 sqlite3VdbeAddOp2(v, OP_Integer, 0, regRowCount);
959 /* If this is not a view, open the table and and all indices */
960 if( !isView ){
961 int nIdx;
962 nIdx = sqlite3OpenTableAndIndices(pParse, pTab, OP_OpenWrite, 0, -1, 0,
963 &iDataCur, &iIdxCur);
964 aRegIdx = sqlite3DbMallocRawNN(db, sizeof(int)*(nIdx+2));
965 if( aRegIdx==0 ){
966 goto insert_cleanup;
968 for(i=0, pIdx=pTab->pIndex; i<nIdx; pIdx=pIdx->pNext, i++){
969 assert( pIdx );
970 aRegIdx[i] = ++pParse->nMem;
971 pParse->nMem += pIdx->nColumn;
973 aRegIdx[i] = ++pParse->nMem; /* Register to store the table record */
975 #ifndef SQLITE_OMIT_UPSERT
976 if( pUpsert ){
977 if( IsVirtual(pTab) ){
978 sqlite3ErrorMsg(pParse, "UPSERT not implemented for virtual table \"%s\"",
979 pTab->zName);
980 goto insert_cleanup;
982 if( pTab->pSelect ){
983 sqlite3ErrorMsg(pParse, "cannot UPSERT a view");
984 goto insert_cleanup;
986 if( sqlite3HasExplicitNulls(pParse, pUpsert->pUpsertTarget) ){
987 goto insert_cleanup;
989 pTabList->a[0].iCursor = iDataCur;
990 pUpsert->pUpsertSrc = pTabList;
991 pUpsert->regData = regData;
992 pUpsert->iDataCur = iDataCur;
993 pUpsert->iIdxCur = iIdxCur;
994 if( pUpsert->pUpsertTarget ){
995 sqlite3UpsertAnalyzeTarget(pParse, pTabList, pUpsert);
998 #endif
1001 /* This is the top of the main insertion loop */
1002 if( useTempTable ){
1003 /* This block codes the top of loop only. The complete loop is the
1004 ** following pseudocode (template 4):
1006 ** rewind temp table, if empty goto D
1007 ** C: loop over rows of intermediate table
1008 ** transfer values form intermediate table into <table>
1009 ** end loop
1010 ** D: ...
1012 addrInsTop = sqlite3VdbeAddOp1(v, OP_Rewind, srcTab); VdbeCoverage(v);
1013 addrCont = sqlite3VdbeCurrentAddr(v);
1014 }else if( pSelect ){
1015 /* This block codes the top of loop only. The complete loop is the
1016 ** following pseudocode (template 3):
1018 ** C: yield X, at EOF goto D
1019 ** insert the select result into <table> from R..R+n
1020 ** goto C
1021 ** D: ...
1023 sqlite3VdbeReleaseRegisters(pParse, regData, pTab->nCol, 0, 0);
1024 addrInsTop = addrCont = sqlite3VdbeAddOp1(v, OP_Yield, dest.iSDParm);
1025 VdbeCoverage(v);
1026 if( ipkColumn>=0 ){
1027 /* tag-20191021-001: If the INTEGER PRIMARY KEY is being generated by the
1028 ** SELECT, go ahead and copy the value into the rowid slot now, so that
1029 ** the value does not get overwritten by a NULL at tag-20191021-002. */
1030 sqlite3VdbeAddOp2(v, OP_Copy, regFromSelect+ipkColumn, regRowid);
1034 /* Compute data for ordinary columns of the new entry. Values
1035 ** are written in storage order into registers starting with regData.
1036 ** Only ordinary columns are computed in this loop. The rowid
1037 ** (if there is one) is computed later and generated columns are
1038 ** computed after the rowid since they might depend on the value
1039 ** of the rowid.
1041 nHidden = 0;
1042 iRegStore = regData; assert( regData==regRowid+1 );
1043 for(i=0; i<pTab->nCol; i++, iRegStore++){
1044 int k;
1045 u32 colFlags;
1046 assert( i>=nHidden );
1047 if( i==pTab->iPKey ){
1048 /* tag-20191021-002: References to the INTEGER PRIMARY KEY are filled
1049 ** using the rowid. So put a NULL in the IPK slot of the record to avoid
1050 ** using excess space. The file format definition requires this extra
1051 ** NULL - we cannot optimize further by skipping the column completely */
1052 sqlite3VdbeAddOp1(v, OP_SoftNull, iRegStore);
1053 continue;
1055 if( ((colFlags = pTab->aCol[i].colFlags) & COLFLAG_NOINSERT)!=0 ){
1056 nHidden++;
1057 if( (colFlags & COLFLAG_VIRTUAL)!=0 ){
1058 /* Virtual columns do not participate in OP_MakeRecord. So back up
1059 ** iRegStore by one slot to compensate for the iRegStore++ in the
1060 ** outer for() loop */
1061 iRegStore--;
1062 continue;
1063 }else if( (colFlags & COLFLAG_STORED)!=0 ){
1064 /* Stored columns are computed later. But if there are BEFORE
1065 ** triggers, the slots used for stored columns will be OP_Copy-ed
1066 ** to a second block of registers, so the register needs to be
1067 ** initialized to NULL to avoid an uninitialized register read */
1068 if( tmask & TRIGGER_BEFORE ){
1069 sqlite3VdbeAddOp1(v, OP_SoftNull, iRegStore);
1071 continue;
1072 }else if( pColumn==0 ){
1073 /* Hidden columns that are not explicitly named in the INSERT
1074 ** get there default value */
1075 sqlite3ExprCodeFactorable(pParse, pTab->aCol[i].pDflt, iRegStore);
1076 continue;
1079 if( pColumn ){
1080 for(j=0; j<pColumn->nId && pColumn->a[j].idx!=i; j++){}
1081 if( j>=pColumn->nId ){
1082 /* A column not named in the insert column list gets its
1083 ** default value */
1084 sqlite3ExprCodeFactorable(pParse, pTab->aCol[i].pDflt, iRegStore);
1085 continue;
1087 k = j;
1088 }else if( nColumn==0 ){
1089 /* This is INSERT INTO ... DEFAULT VALUES. Load the default value. */
1090 sqlite3ExprCodeFactorable(pParse, pTab->aCol[i].pDflt, iRegStore);
1091 continue;
1092 }else{
1093 k = i - nHidden;
1096 if( useTempTable ){
1097 sqlite3VdbeAddOp3(v, OP_Column, srcTab, k, iRegStore);
1098 }else if( pSelect ){
1099 if( regFromSelect!=regData ){
1100 sqlite3VdbeAddOp2(v, OP_SCopy, regFromSelect+k, iRegStore);
1102 }else{
1103 sqlite3ExprCode(pParse, pList->a[k].pExpr, iRegStore);
1108 /* Run the BEFORE and INSTEAD OF triggers, if there are any
1110 endOfLoop = sqlite3VdbeMakeLabel(pParse);
1111 if( tmask & TRIGGER_BEFORE ){
1112 int regCols = sqlite3GetTempRange(pParse, pTab->nCol+1);
1114 /* build the NEW.* reference row. Note that if there is an INTEGER
1115 ** PRIMARY KEY into which a NULL is being inserted, that NULL will be
1116 ** translated into a unique ID for the row. But on a BEFORE trigger,
1117 ** we do not know what the unique ID will be (because the insert has
1118 ** not happened yet) so we substitute a rowid of -1
1120 if( ipkColumn<0 ){
1121 sqlite3VdbeAddOp2(v, OP_Integer, -1, regCols);
1122 }else{
1123 int addr1;
1124 assert( !withoutRowid );
1125 if( useTempTable ){
1126 sqlite3VdbeAddOp3(v, OP_Column, srcTab, ipkColumn, regCols);
1127 }else{
1128 assert( pSelect==0 ); /* Otherwise useTempTable is true */
1129 sqlite3ExprCode(pParse, pList->a[ipkColumn].pExpr, regCols);
1131 addr1 = sqlite3VdbeAddOp1(v, OP_NotNull, regCols); VdbeCoverage(v);
1132 sqlite3VdbeAddOp2(v, OP_Integer, -1, regCols);
1133 sqlite3VdbeJumpHere(v, addr1);
1134 sqlite3VdbeAddOp1(v, OP_MustBeInt, regCols); VdbeCoverage(v);
1137 /* Cannot have triggers on a virtual table. If it were possible,
1138 ** this block would have to account for hidden column.
1140 assert( !IsVirtual(pTab) );
1142 /* Copy the new data already generated. */
1143 assert( pTab->nNVCol>0 );
1144 sqlite3VdbeAddOp3(v, OP_Copy, regRowid+1, regCols+1, pTab->nNVCol-1);
1146 #ifndef SQLITE_OMIT_GENERATED_COLUMNS
1147 /* Compute the new value for generated columns after all other
1148 ** columns have already been computed. This must be done after
1149 ** computing the ROWID in case one of the generated columns
1150 ** refers to the ROWID. */
1151 if( pTab->tabFlags & TF_HasGenerated ){
1152 testcase( pTab->tabFlags & TF_HasVirtual );
1153 testcase( pTab->tabFlags & TF_HasStored );
1154 sqlite3ComputeGeneratedColumns(pParse, regCols+1, pTab);
1156 #endif
1158 /* If this is an INSERT on a view with an INSTEAD OF INSERT trigger,
1159 ** do not attempt any conversions before assembling the record.
1160 ** If this is a real table, attempt conversions as required by the
1161 ** table column affinities.
1163 if( !isView ){
1164 sqlite3TableAffinity(v, pTab, regCols+1);
1167 /* Fire BEFORE or INSTEAD OF triggers */
1168 sqlite3CodeRowTrigger(pParse, pTrigger, TK_INSERT, 0, TRIGGER_BEFORE,
1169 pTab, regCols-pTab->nCol-1, onError, endOfLoop);
1171 sqlite3ReleaseTempRange(pParse, regCols, pTab->nCol+1);
1174 if( !isView ){
1175 if( IsVirtual(pTab) ){
1176 /* The row that the VUpdate opcode will delete: none */
1177 sqlite3VdbeAddOp2(v, OP_Null, 0, regIns);
1179 if( ipkColumn>=0 ){
1180 /* Compute the new rowid */
1181 if( useTempTable ){
1182 sqlite3VdbeAddOp3(v, OP_Column, srcTab, ipkColumn, regRowid);
1183 }else if( pSelect ){
1184 /* Rowid already initialized at tag-20191021-001 */
1185 }else{
1186 Expr *pIpk = pList->a[ipkColumn].pExpr;
1187 if( pIpk->op==TK_NULL && !IsVirtual(pTab) ){
1188 sqlite3VdbeAddOp3(v, OP_NewRowid, iDataCur, regRowid, regAutoinc);
1189 appendFlag = 1;
1190 }else{
1191 sqlite3ExprCode(pParse, pList->a[ipkColumn].pExpr, regRowid);
1194 /* If the PRIMARY KEY expression is NULL, then use OP_NewRowid
1195 ** to generate a unique primary key value.
1197 if( !appendFlag ){
1198 int addr1;
1199 if( !IsVirtual(pTab) ){
1200 addr1 = sqlite3VdbeAddOp1(v, OP_NotNull, regRowid); VdbeCoverage(v);
1201 sqlite3VdbeAddOp3(v, OP_NewRowid, iDataCur, regRowid, regAutoinc);
1202 sqlite3VdbeJumpHere(v, addr1);
1203 }else{
1204 addr1 = sqlite3VdbeCurrentAddr(v);
1205 sqlite3VdbeAddOp2(v, OP_IsNull, regRowid, addr1+2); VdbeCoverage(v);
1207 sqlite3VdbeAddOp1(v, OP_MustBeInt, regRowid); VdbeCoverage(v);
1209 }else if( IsVirtual(pTab) || withoutRowid ){
1210 sqlite3VdbeAddOp2(v, OP_Null, 0, regRowid);
1211 }else{
1212 sqlite3VdbeAddOp3(v, OP_NewRowid, iDataCur, regRowid, regAutoinc);
1213 appendFlag = 1;
1215 autoIncStep(pParse, regAutoinc, regRowid);
1217 #ifndef SQLITE_OMIT_GENERATED_COLUMNS
1218 /* Compute the new value for generated columns after all other
1219 ** columns have already been computed. This must be done after
1220 ** computing the ROWID in case one of the generated columns
1221 ** is derived from the INTEGER PRIMARY KEY. */
1222 if( pTab->tabFlags & TF_HasGenerated ){
1223 sqlite3ComputeGeneratedColumns(pParse, regRowid+1, pTab);
1225 #endif
1227 /* Generate code to check constraints and generate index keys and
1228 ** do the insertion.
1230 #ifndef SQLITE_OMIT_VIRTUALTABLE
1231 if( IsVirtual(pTab) ){
1232 const char *pVTab = (const char *)sqlite3GetVTable(db, pTab);
1233 sqlite3VtabMakeWritable(pParse, pTab);
1234 sqlite3VdbeAddOp4(v, OP_VUpdate, 1, pTab->nCol+2, regIns, pVTab, P4_VTAB);
1235 sqlite3VdbeChangeP5(v, onError==OE_Default ? OE_Abort : onError);
1236 sqlite3MayAbort(pParse);
1237 }else
1238 #endif
1240 int isReplace; /* Set to true if constraints may cause a replace */
1241 int bUseSeek; /* True to use OPFLAG_SEEKRESULT */
1242 sqlite3GenerateConstraintChecks(pParse, pTab, aRegIdx, iDataCur, iIdxCur,
1243 regIns, 0, ipkColumn>=0, onError, endOfLoop, &isReplace, 0, pUpsert
1245 sqlite3FkCheck(pParse, pTab, 0, regIns, 0, 0);
1247 /* Set the OPFLAG_USESEEKRESULT flag if either (a) there are no REPLACE
1248 ** constraints or (b) there are no triggers and this table is not a
1249 ** parent table in a foreign key constraint. It is safe to set the
1250 ** flag in the second case as if any REPLACE constraint is hit, an
1251 ** OP_Delete or OP_IdxDelete instruction will be executed on each
1252 ** cursor that is disturbed. And these instructions both clear the
1253 ** VdbeCursor.seekResult variable, disabling the OPFLAG_USESEEKRESULT
1254 ** functionality. */
1255 bUseSeek = (isReplace==0 || !sqlite3VdbeHasSubProgram(v));
1256 sqlite3CompleteInsertion(pParse, pTab, iDataCur, iIdxCur,
1257 regIns, aRegIdx, 0, appendFlag, bUseSeek
1262 /* Update the count of rows that are inserted
1264 if( regRowCount ){
1265 sqlite3VdbeAddOp2(v, OP_AddImm, regRowCount, 1);
1268 if( pTrigger ){
1269 /* Code AFTER triggers */
1270 sqlite3CodeRowTrigger(pParse, pTrigger, TK_INSERT, 0, TRIGGER_AFTER,
1271 pTab, regData-2-pTab->nCol, onError, endOfLoop);
1274 /* The bottom of the main insertion loop, if the data source
1275 ** is a SELECT statement.
1277 sqlite3VdbeResolveLabel(v, endOfLoop);
1278 if( useTempTable ){
1279 sqlite3VdbeAddOp2(v, OP_Next, srcTab, addrCont); VdbeCoverage(v);
1280 sqlite3VdbeJumpHere(v, addrInsTop);
1281 sqlite3VdbeAddOp1(v, OP_Close, srcTab);
1282 }else if( pSelect ){
1283 sqlite3VdbeGoto(v, addrCont);
1284 #ifdef SQLITE_DEBUG
1285 /* If we are jumping back to an OP_Yield that is preceded by an
1286 ** OP_ReleaseReg, set the p5 flag on the OP_Goto so that the
1287 ** OP_ReleaseReg will be included in the loop. */
1288 if( sqlite3VdbeGetOp(v, addrCont-1)->opcode==OP_ReleaseReg ){
1289 assert( sqlite3VdbeGetOp(v, addrCont)->opcode==OP_Yield );
1290 sqlite3VdbeChangeP5(v, 1);
1292 #endif
1293 sqlite3VdbeJumpHere(v, addrInsTop);
1296 insert_end:
1297 /* Update the sqlite_sequence table by storing the content of the
1298 ** maximum rowid counter values recorded while inserting into
1299 ** autoincrement tables.
1301 if( pParse->nested==0 && pParse->pTriggerTab==0 ){
1302 sqlite3AutoincrementEnd(pParse);
1306 ** Return the number of rows inserted. If this routine is
1307 ** generating code because of a call to sqlite3NestedParse(), do not
1308 ** invoke the callback function.
1310 if( regRowCount ){
1311 sqlite3VdbeAddOp2(v, OP_ResultRow, regRowCount, 1);
1312 sqlite3VdbeSetNumCols(v, 1);
1313 sqlite3VdbeSetColName(v, 0, COLNAME_NAME, "rows inserted", SQLITE_STATIC);
1316 insert_cleanup:
1317 sqlite3SrcListDelete(db, pTabList);
1318 sqlite3ExprListDelete(db, pList);
1319 sqlite3UpsertDelete(db, pUpsert);
1320 sqlite3SelectDelete(db, pSelect);
1321 sqlite3IdListDelete(db, pColumn);
1322 sqlite3DbFree(db, aRegIdx);
1325 /* Make sure "isView" and other macros defined above are undefined. Otherwise
1326 ** they may interfere with compilation of other functions in this file
1327 ** (or in another file, if this file becomes part of the amalgamation). */
1328 #ifdef isView
1329 #undef isView
1330 #endif
1331 #ifdef pTrigger
1332 #undef pTrigger
1333 #endif
1334 #ifdef tmask
1335 #undef tmask
1336 #endif
1339 ** Meanings of bits in of pWalker->eCode for
1340 ** sqlite3ExprReferencesUpdatedColumn()
1342 #define CKCNSTRNT_COLUMN 0x01 /* CHECK constraint uses a changing column */
1343 #define CKCNSTRNT_ROWID 0x02 /* CHECK constraint references the ROWID */
1345 /* This is the Walker callback from sqlite3ExprReferencesUpdatedColumn().
1346 * Set bit 0x01 of pWalker->eCode if pWalker->eCode to 0 and if this
1347 ** expression node references any of the
1348 ** columns that are being modifed by an UPDATE statement.
1350 static int checkConstraintExprNode(Walker *pWalker, Expr *pExpr){
1351 if( pExpr->op==TK_COLUMN ){
1352 assert( pExpr->iColumn>=0 || pExpr->iColumn==-1 );
1353 if( pExpr->iColumn>=0 ){
1354 if( pWalker->u.aiCol[pExpr->iColumn]>=0 ){
1355 pWalker->eCode |= CKCNSTRNT_COLUMN;
1357 }else{
1358 pWalker->eCode |= CKCNSTRNT_ROWID;
1361 return WRC_Continue;
1365 ** pExpr is a CHECK constraint on a row that is being UPDATE-ed. The
1366 ** only columns that are modified by the UPDATE are those for which
1367 ** aiChng[i]>=0, and also the ROWID is modified if chngRowid is true.
1369 ** Return true if CHECK constraint pExpr uses any of the
1370 ** changing columns (or the rowid if it is changing). In other words,
1371 ** return true if this CHECK constraint must be validated for
1372 ** the new row in the UPDATE statement.
1374 ** 2018-09-15: pExpr might also be an expression for an index-on-expressions.
1375 ** The operation of this routine is the same - return true if an only if
1376 ** the expression uses one or more of columns identified by the second and
1377 ** third arguments.
1379 int sqlite3ExprReferencesUpdatedColumn(
1380 Expr *pExpr, /* The expression to be checked */
1381 int *aiChng, /* aiChng[x]>=0 if column x changed by the UPDATE */
1382 int chngRowid /* True if UPDATE changes the rowid */
1384 Walker w;
1385 memset(&w, 0, sizeof(w));
1386 w.eCode = 0;
1387 w.xExprCallback = checkConstraintExprNode;
1388 w.u.aiCol = aiChng;
1389 sqlite3WalkExpr(&w, pExpr);
1390 if( !chngRowid ){
1391 testcase( (w.eCode & CKCNSTRNT_ROWID)!=0 );
1392 w.eCode &= ~CKCNSTRNT_ROWID;
1394 testcase( w.eCode==0 );
1395 testcase( w.eCode==CKCNSTRNT_COLUMN );
1396 testcase( w.eCode==CKCNSTRNT_ROWID );
1397 testcase( w.eCode==(CKCNSTRNT_ROWID|CKCNSTRNT_COLUMN) );
1398 return w.eCode!=0;
1402 ** Generate code to do constraint checks prior to an INSERT or an UPDATE
1403 ** on table pTab.
1405 ** The regNewData parameter is the first register in a range that contains
1406 ** the data to be inserted or the data after the update. There will be
1407 ** pTab->nCol+1 registers in this range. The first register (the one
1408 ** that regNewData points to) will contain the new rowid, or NULL in the
1409 ** case of a WITHOUT ROWID table. The second register in the range will
1410 ** contain the content of the first table column. The third register will
1411 ** contain the content of the second table column. And so forth.
1413 ** The regOldData parameter is similar to regNewData except that it contains
1414 ** the data prior to an UPDATE rather than afterwards. regOldData is zero
1415 ** for an INSERT. This routine can distinguish between UPDATE and INSERT by
1416 ** checking regOldData for zero.
1418 ** For an UPDATE, the pkChng boolean is true if the true primary key (the
1419 ** rowid for a normal table or the PRIMARY KEY for a WITHOUT ROWID table)
1420 ** might be modified by the UPDATE. If pkChng is false, then the key of
1421 ** the iDataCur content table is guaranteed to be unchanged by the UPDATE.
1423 ** For an INSERT, the pkChng boolean indicates whether or not the rowid
1424 ** was explicitly specified as part of the INSERT statement. If pkChng
1425 ** is zero, it means that the either rowid is computed automatically or
1426 ** that the table is a WITHOUT ROWID table and has no rowid. On an INSERT,
1427 ** pkChng will only be true if the INSERT statement provides an integer
1428 ** value for either the rowid column or its INTEGER PRIMARY KEY alias.
1430 ** The code generated by this routine will store new index entries into
1431 ** registers identified by aRegIdx[]. No index entry is created for
1432 ** indices where aRegIdx[i]==0. The order of indices in aRegIdx[] is
1433 ** the same as the order of indices on the linked list of indices
1434 ** at pTab->pIndex.
1436 ** (2019-05-07) The generated code also creates a new record for the
1437 ** main table, if pTab is a rowid table, and stores that record in the
1438 ** register identified by aRegIdx[nIdx] - in other words in the first
1439 ** entry of aRegIdx[] past the last index. It is important that the
1440 ** record be generated during constraint checks to avoid affinity changes
1441 ** to the register content that occur after constraint checks but before
1442 ** the new record is inserted.
1444 ** The caller must have already opened writeable cursors on the main
1445 ** table and all applicable indices (that is to say, all indices for which
1446 ** aRegIdx[] is not zero). iDataCur is the cursor for the main table when
1447 ** inserting or updating a rowid table, or the cursor for the PRIMARY KEY
1448 ** index when operating on a WITHOUT ROWID table. iIdxCur is the cursor
1449 ** for the first index in the pTab->pIndex list. Cursors for other indices
1450 ** are at iIdxCur+N for the N-th element of the pTab->pIndex list.
1452 ** This routine also generates code to check constraints. NOT NULL,
1453 ** CHECK, and UNIQUE constraints are all checked. If a constraint fails,
1454 ** then the appropriate action is performed. There are five possible
1455 ** actions: ROLLBACK, ABORT, FAIL, REPLACE, and IGNORE.
1457 ** Constraint type Action What Happens
1458 ** --------------- ---------- ----------------------------------------
1459 ** any ROLLBACK The current transaction is rolled back and
1460 ** sqlite3_step() returns immediately with a
1461 ** return code of SQLITE_CONSTRAINT.
1463 ** any ABORT Back out changes from the current command
1464 ** only (do not do a complete rollback) then
1465 ** cause sqlite3_step() to return immediately
1466 ** with SQLITE_CONSTRAINT.
1468 ** any FAIL Sqlite3_step() returns immediately with a
1469 ** return code of SQLITE_CONSTRAINT. The
1470 ** transaction is not rolled back and any
1471 ** changes to prior rows are retained.
1473 ** any IGNORE The attempt in insert or update the current
1474 ** row is skipped, without throwing an error.
1475 ** Processing continues with the next row.
1476 ** (There is an immediate jump to ignoreDest.)
1478 ** NOT NULL REPLACE The NULL value is replace by the default
1479 ** value for that column. If the default value
1480 ** is NULL, the action is the same as ABORT.
1482 ** UNIQUE REPLACE The other row that conflicts with the row
1483 ** being inserted is removed.
1485 ** CHECK REPLACE Illegal. The results in an exception.
1487 ** Which action to take is determined by the overrideError parameter.
1488 ** Or if overrideError==OE_Default, then the pParse->onError parameter
1489 ** is used. Or if pParse->onError==OE_Default then the onError value
1490 ** for the constraint is used.
1492 void sqlite3GenerateConstraintChecks(
1493 Parse *pParse, /* The parser context */
1494 Table *pTab, /* The table being inserted or updated */
1495 int *aRegIdx, /* Use register aRegIdx[i] for index i. 0 for unused */
1496 int iDataCur, /* Canonical data cursor (main table or PK index) */
1497 int iIdxCur, /* First index cursor */
1498 int regNewData, /* First register in a range holding values to insert */
1499 int regOldData, /* Previous content. 0 for INSERTs */
1500 u8 pkChng, /* Non-zero if the rowid or PRIMARY KEY changed */
1501 u8 overrideError, /* Override onError to this if not OE_Default */
1502 int ignoreDest, /* Jump to this label on an OE_Ignore resolution */
1503 int *pbMayReplace, /* OUT: Set to true if constraint may cause a replace */
1504 int *aiChng, /* column i is unchanged if aiChng[i]<0 */
1505 Upsert *pUpsert /* ON CONFLICT clauses, if any. NULL otherwise */
1507 Vdbe *v; /* VDBE under constrution */
1508 Index *pIdx; /* Pointer to one of the indices */
1509 Index *pPk = 0; /* The PRIMARY KEY index */
1510 sqlite3 *db; /* Database connection */
1511 int i; /* loop counter */
1512 int ix; /* Index loop counter */
1513 int nCol; /* Number of columns */
1514 int onError; /* Conflict resolution strategy */
1515 int seenReplace = 0; /* True if REPLACE is used to resolve INT PK conflict */
1516 int nPkField; /* Number of fields in PRIMARY KEY. 1 for ROWID tables */
1517 Index *pUpIdx = 0; /* Index to which to apply the upsert */
1518 u8 isUpdate; /* True if this is an UPDATE operation */
1519 u8 bAffinityDone = 0; /* True if the OP_Affinity operation has been run */
1520 int upsertBypass = 0; /* Address of Goto to bypass upsert subroutine */
1521 int upsertJump = 0; /* Address of Goto that jumps into upsert subroutine */
1522 int ipkTop = 0; /* Top of the IPK uniqueness check */
1523 int ipkBottom = 0; /* OP_Goto at the end of the IPK uniqueness check */
1524 /* Variables associated with retesting uniqueness constraints after
1525 ** replace triggers fire have run */
1526 int regTrigCnt; /* Register used to count replace trigger invocations */
1527 int addrRecheck = 0; /* Jump here to recheck all uniqueness constraints */
1528 int lblRecheckOk = 0; /* Each recheck jumps to this label if it passes */
1529 Trigger *pTrigger; /* List of DELETE triggers on the table pTab */
1530 int nReplaceTrig = 0; /* Number of replace triggers coded */
1532 isUpdate = regOldData!=0;
1533 db = pParse->db;
1534 v = sqlite3GetVdbe(pParse);
1535 assert( v!=0 );
1536 assert( pTab->pSelect==0 ); /* This table is not a VIEW */
1537 nCol = pTab->nCol;
1539 /* pPk is the PRIMARY KEY index for WITHOUT ROWID tables and NULL for
1540 ** normal rowid tables. nPkField is the number of key fields in the
1541 ** pPk index or 1 for a rowid table. In other words, nPkField is the
1542 ** number of fields in the true primary key of the table. */
1543 if( HasRowid(pTab) ){
1544 pPk = 0;
1545 nPkField = 1;
1546 }else{
1547 pPk = sqlite3PrimaryKeyIndex(pTab);
1548 nPkField = pPk->nKeyCol;
1551 /* Record that this module has started */
1552 VdbeModuleComment((v, "BEGIN: GenCnstCks(%d,%d,%d,%d,%d)",
1553 iDataCur, iIdxCur, regNewData, regOldData, pkChng));
1555 /* Test all NOT NULL constraints.
1557 if( pTab->tabFlags & TF_HasNotNull ){
1558 int b2ndPass = 0; /* True if currently running 2nd pass */
1559 int nSeenReplace = 0; /* Number of ON CONFLICT REPLACE operations */
1560 int nGenerated = 0; /* Number of generated columns with NOT NULL */
1561 while(1){ /* Make 2 passes over columns. Exit loop via "break" */
1562 for(i=0; i<nCol; i++){
1563 int iReg; /* Register holding column value */
1564 Column *pCol = &pTab->aCol[i]; /* The column to check for NOT NULL */
1565 int isGenerated; /* non-zero if column is generated */
1566 onError = pCol->notNull;
1567 if( onError==OE_None ) continue; /* No NOT NULL on this column */
1568 if( i==pTab->iPKey ){
1569 continue; /* ROWID is never NULL */
1571 isGenerated = pCol->colFlags & COLFLAG_GENERATED;
1572 if( isGenerated && !b2ndPass ){
1573 nGenerated++;
1574 continue; /* Generated columns processed on 2nd pass */
1576 if( aiChng && aiChng[i]<0 && !isGenerated ){
1577 /* Do not check NOT NULL on columns that do not change */
1578 continue;
1580 if( overrideError!=OE_Default ){
1581 onError = overrideError;
1582 }else if( onError==OE_Default ){
1583 onError = OE_Abort;
1585 if( onError==OE_Replace ){
1586 if( b2ndPass /* REPLACE becomes ABORT on the 2nd pass */
1587 || pCol->pDflt==0 /* REPLACE is ABORT if no DEFAULT value */
1589 testcase( pCol->colFlags & COLFLAG_VIRTUAL );
1590 testcase( pCol->colFlags & COLFLAG_STORED );
1591 testcase( pCol->colFlags & COLFLAG_GENERATED );
1592 onError = OE_Abort;
1593 }else{
1594 assert( !isGenerated );
1596 }else if( b2ndPass && !isGenerated ){
1597 continue;
1599 assert( onError==OE_Rollback || onError==OE_Abort || onError==OE_Fail
1600 || onError==OE_Ignore || onError==OE_Replace );
1601 testcase( i!=sqlite3TableColumnToStorage(pTab, i) );
1602 iReg = sqlite3TableColumnToStorage(pTab, i) + regNewData + 1;
1603 switch( onError ){
1604 case OE_Replace: {
1605 int addr1 = sqlite3VdbeAddOp1(v, OP_NotNull, iReg);
1606 VdbeCoverage(v);
1607 assert( (pCol->colFlags & COLFLAG_GENERATED)==0 );
1608 nSeenReplace++;
1609 sqlite3ExprCodeCopy(pParse, pCol->pDflt, iReg);
1610 sqlite3VdbeJumpHere(v, addr1);
1611 break;
1613 case OE_Abort:
1614 sqlite3MayAbort(pParse);
1615 /* no break */ deliberate_fall_through
1616 case OE_Rollback:
1617 case OE_Fail: {
1618 char *zMsg = sqlite3MPrintf(db, "%s.%s", pTab->zName,
1619 pCol->zName);
1620 sqlite3VdbeAddOp3(v, OP_HaltIfNull, SQLITE_CONSTRAINT_NOTNULL,
1621 onError, iReg);
1622 sqlite3VdbeAppendP4(v, zMsg, P4_DYNAMIC);
1623 sqlite3VdbeChangeP5(v, P5_ConstraintNotNull);
1624 VdbeCoverage(v);
1625 break;
1627 default: {
1628 assert( onError==OE_Ignore );
1629 sqlite3VdbeAddOp2(v, OP_IsNull, iReg, ignoreDest);
1630 VdbeCoverage(v);
1631 break;
1633 } /* end switch(onError) */
1634 } /* end loop i over columns */
1635 if( nGenerated==0 && nSeenReplace==0 ){
1636 /* If there are no generated columns with NOT NULL constraints
1637 ** and no NOT NULL ON CONFLICT REPLACE constraints, then a single
1638 ** pass is sufficient */
1639 break;
1641 if( b2ndPass ) break; /* Never need more than 2 passes */
1642 b2ndPass = 1;
1643 #ifndef SQLITE_OMIT_GENERATED_COLUMNS
1644 if( nSeenReplace>0 && (pTab->tabFlags & TF_HasGenerated)!=0 ){
1645 /* If any NOT NULL ON CONFLICT REPLACE constraints fired on the
1646 ** first pass, recomputed values for all generated columns, as
1647 ** those values might depend on columns affected by the REPLACE.
1649 sqlite3ComputeGeneratedColumns(pParse, regNewData+1, pTab);
1651 #endif
1652 } /* end of 2-pass loop */
1653 } /* end if( has-not-null-constraints ) */
1655 /* Test all CHECK constraints
1657 #ifndef SQLITE_OMIT_CHECK
1658 if( pTab->pCheck && (db->flags & SQLITE_IgnoreChecks)==0 ){
1659 ExprList *pCheck = pTab->pCheck;
1660 pParse->iSelfTab = -(regNewData+1);
1661 onError = overrideError!=OE_Default ? overrideError : OE_Abort;
1662 for(i=0; i<pCheck->nExpr; i++){
1663 int allOk;
1664 Expr *pCopy;
1665 Expr *pExpr = pCheck->a[i].pExpr;
1666 if( aiChng
1667 && !sqlite3ExprReferencesUpdatedColumn(pExpr, aiChng, pkChng)
1669 /* The check constraints do not reference any of the columns being
1670 ** updated so there is no point it verifying the check constraint */
1671 continue;
1673 if( bAffinityDone==0 ){
1674 sqlite3TableAffinity(v, pTab, regNewData+1);
1675 bAffinityDone = 1;
1677 allOk = sqlite3VdbeMakeLabel(pParse);
1678 sqlite3VdbeVerifyAbortable(v, onError);
1679 pCopy = sqlite3ExprDup(db, pExpr, 0);
1680 if( !db->mallocFailed ){
1681 sqlite3ExprIfTrue(pParse, pCopy, allOk, SQLITE_JUMPIFNULL);
1683 sqlite3ExprDelete(db, pCopy);
1684 if( onError==OE_Ignore ){
1685 sqlite3VdbeGoto(v, ignoreDest);
1686 }else{
1687 char *zName = pCheck->a[i].zEName;
1688 if( zName==0 ) zName = pTab->zName;
1689 if( onError==OE_Replace ) onError = OE_Abort; /* IMP: R-26383-51744 */
1690 sqlite3HaltConstraint(pParse, SQLITE_CONSTRAINT_CHECK,
1691 onError, zName, P4_TRANSIENT,
1692 P5_ConstraintCheck);
1694 sqlite3VdbeResolveLabel(v, allOk);
1696 pParse->iSelfTab = 0;
1698 #endif /* !defined(SQLITE_OMIT_CHECK) */
1700 /* UNIQUE and PRIMARY KEY constraints should be handled in the following
1701 ** order:
1703 ** (1) OE_Update
1704 ** (2) OE_Abort, OE_Fail, OE_Rollback, OE_Ignore
1705 ** (3) OE_Replace
1707 ** OE_Fail and OE_Ignore must happen before any changes are made.
1708 ** OE_Update guarantees that only a single row will change, so it
1709 ** must happen before OE_Replace. Technically, OE_Abort and OE_Rollback
1710 ** could happen in any order, but they are grouped up front for
1711 ** convenience.
1713 ** 2018-08-14: Ticket https://www.sqlite.org/src/info/908f001483982c43
1714 ** The order of constraints used to have OE_Update as (2) and OE_Abort
1715 ** and so forth as (1). But apparently PostgreSQL checks the OE_Update
1716 ** constraint before any others, so it had to be moved.
1718 ** Constraint checking code is generated in this order:
1719 ** (A) The rowid constraint
1720 ** (B) Unique index constraints that do not have OE_Replace as their
1721 ** default conflict resolution strategy
1722 ** (C) Unique index that do use OE_Replace by default.
1724 ** The ordering of (2) and (3) is accomplished by making sure the linked
1725 ** list of indexes attached to a table puts all OE_Replace indexes last
1726 ** in the list. See sqlite3CreateIndex() for where that happens.
1729 if( pUpsert ){
1730 if( pUpsert->pUpsertTarget==0 ){
1731 /* An ON CONFLICT DO NOTHING clause, without a constraint-target.
1732 ** Make all unique constraint resolution be OE_Ignore */
1733 assert( pUpsert->pUpsertSet==0 );
1734 overrideError = OE_Ignore;
1735 pUpsert = 0;
1736 }else if( (pUpIdx = pUpsert->pUpsertIdx)!=0 ){
1737 /* If the constraint-target uniqueness check must be run first.
1738 ** Jump to that uniqueness check now */
1739 upsertJump = sqlite3VdbeAddOp0(v, OP_Goto);
1740 VdbeComment((v, "UPSERT constraint goes first"));
1744 /* Determine if it is possible that triggers (either explicitly coded
1745 ** triggers or FK resolution actions) might run as a result of deletes
1746 ** that happen when OE_Replace conflict resolution occurs. (Call these
1747 ** "replace triggers".) If any replace triggers run, we will need to
1748 ** recheck all of the uniqueness constraints after they have all run.
1749 ** But on the recheck, the resolution is OE_Abort instead of OE_Replace.
1751 ** If replace triggers are a possibility, then
1753 ** (1) Allocate register regTrigCnt and initialize it to zero.
1754 ** That register will count the number of replace triggers that
1755 ** fire. Constraint recheck only occurs if the number is positive.
1756 ** (2) Initialize pTrigger to the list of all DELETE triggers on pTab.
1757 ** (3) Initialize addrRecheck and lblRecheckOk
1759 ** The uniqueness rechecking code will create a series of tests to run
1760 ** in a second pass. The addrRecheck and lblRecheckOk variables are
1761 ** used to link together these tests which are separated from each other
1762 ** in the generate bytecode.
1764 if( (db->flags & (SQLITE_RecTriggers|SQLITE_ForeignKeys))==0 ){
1765 /* There are not DELETE triggers nor FK constraints. No constraint
1766 ** rechecks are needed. */
1767 pTrigger = 0;
1768 regTrigCnt = 0;
1769 }else{
1770 if( db->flags&SQLITE_RecTriggers ){
1771 pTrigger = sqlite3TriggersExist(pParse, pTab, TK_DELETE, 0, 0);
1772 regTrigCnt = pTrigger!=0 || sqlite3FkRequired(pParse, pTab, 0, 0);
1773 }else{
1774 pTrigger = 0;
1775 regTrigCnt = sqlite3FkRequired(pParse, pTab, 0, 0);
1777 if( regTrigCnt ){
1778 /* Replace triggers might exist. Allocate the counter and
1779 ** initialize it to zero. */
1780 regTrigCnt = ++pParse->nMem;
1781 sqlite3VdbeAddOp2(v, OP_Integer, 0, regTrigCnt);
1782 VdbeComment((v, "trigger count"));
1783 lblRecheckOk = sqlite3VdbeMakeLabel(pParse);
1784 addrRecheck = lblRecheckOk;
1788 /* If rowid is changing, make sure the new rowid does not previously
1789 ** exist in the table.
1791 if( pkChng && pPk==0 ){
1792 int addrRowidOk = sqlite3VdbeMakeLabel(pParse);
1794 /* Figure out what action to take in case of a rowid collision */
1795 onError = pTab->keyConf;
1796 if( overrideError!=OE_Default ){
1797 onError = overrideError;
1798 }else if( onError==OE_Default ){
1799 onError = OE_Abort;
1802 /* figure out whether or not upsert applies in this case */
1803 if( pUpsert && pUpsert->pUpsertIdx==0 ){
1804 if( pUpsert->pUpsertSet==0 ){
1805 onError = OE_Ignore; /* DO NOTHING is the same as INSERT OR IGNORE */
1806 }else{
1807 onError = OE_Update; /* DO UPDATE */
1811 /* If the response to a rowid conflict is REPLACE but the response
1812 ** to some other UNIQUE constraint is FAIL or IGNORE, then we need
1813 ** to defer the running of the rowid conflict checking until after
1814 ** the UNIQUE constraints have run.
1816 if( onError==OE_Replace /* IPK rule is REPLACE */
1817 && onError!=overrideError /* Rules for other contraints are different */
1818 && pTab->pIndex /* There exist other constraints */
1820 ipkTop = sqlite3VdbeAddOp0(v, OP_Goto)+1;
1821 VdbeComment((v, "defer IPK REPLACE until last"));
1824 if( isUpdate ){
1825 /* pkChng!=0 does not mean that the rowid has changed, only that
1826 ** it might have changed. Skip the conflict logic below if the rowid
1827 ** is unchanged. */
1828 sqlite3VdbeAddOp3(v, OP_Eq, regNewData, addrRowidOk, regOldData);
1829 sqlite3VdbeChangeP5(v, SQLITE_NOTNULL);
1830 VdbeCoverage(v);
1833 /* Check to see if the new rowid already exists in the table. Skip
1834 ** the following conflict logic if it does not. */
1835 VdbeNoopComment((v, "uniqueness check for ROWID"));
1836 sqlite3VdbeVerifyAbortable(v, onError);
1837 sqlite3VdbeAddOp3(v, OP_NotExists, iDataCur, addrRowidOk, regNewData);
1838 VdbeCoverage(v);
1840 switch( onError ){
1841 default: {
1842 onError = OE_Abort;
1843 /* no break */ deliberate_fall_through
1845 case OE_Rollback:
1846 case OE_Abort:
1847 case OE_Fail: {
1848 testcase( onError==OE_Rollback );
1849 testcase( onError==OE_Abort );
1850 testcase( onError==OE_Fail );
1851 sqlite3RowidConstraint(pParse, onError, pTab);
1852 break;
1854 case OE_Replace: {
1855 /* If there are DELETE triggers on this table and the
1856 ** recursive-triggers flag is set, call GenerateRowDelete() to
1857 ** remove the conflicting row from the table. This will fire
1858 ** the triggers and remove both the table and index b-tree entries.
1860 ** Otherwise, if there are no triggers or the recursive-triggers
1861 ** flag is not set, but the table has one or more indexes, call
1862 ** GenerateRowIndexDelete(). This removes the index b-tree entries
1863 ** only. The table b-tree entry will be replaced by the new entry
1864 ** when it is inserted.
1866 ** If either GenerateRowDelete() or GenerateRowIndexDelete() is called,
1867 ** also invoke MultiWrite() to indicate that this VDBE may require
1868 ** statement rollback (if the statement is aborted after the delete
1869 ** takes place). Earlier versions called sqlite3MultiWrite() regardless,
1870 ** but being more selective here allows statements like:
1872 ** REPLACE INTO t(rowid) VALUES($newrowid)
1874 ** to run without a statement journal if there are no indexes on the
1875 ** table.
1877 if( regTrigCnt ){
1878 sqlite3MultiWrite(pParse);
1879 sqlite3GenerateRowDelete(pParse, pTab, pTrigger, iDataCur, iIdxCur,
1880 regNewData, 1, 0, OE_Replace, 1, -1);
1881 sqlite3VdbeAddOp2(v, OP_AddImm, regTrigCnt, 1); /* incr trigger cnt */
1882 nReplaceTrig++;
1883 }else{
1884 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK
1885 assert( HasRowid(pTab) );
1886 /* This OP_Delete opcode fires the pre-update-hook only. It does
1887 ** not modify the b-tree. It is more efficient to let the coming
1888 ** OP_Insert replace the existing entry than it is to delete the
1889 ** existing entry and then insert a new one. */
1890 sqlite3VdbeAddOp2(v, OP_Delete, iDataCur, OPFLAG_ISNOOP);
1891 sqlite3VdbeAppendP4(v, pTab, P4_TABLE);
1892 #endif /* SQLITE_ENABLE_PREUPDATE_HOOK */
1893 if( pTab->pIndex ){
1894 sqlite3MultiWrite(pParse);
1895 sqlite3GenerateRowIndexDelete(pParse, pTab, iDataCur, iIdxCur,0,-1);
1898 seenReplace = 1;
1899 break;
1901 #ifndef SQLITE_OMIT_UPSERT
1902 case OE_Update: {
1903 sqlite3UpsertDoUpdate(pParse, pUpsert, pTab, 0, iDataCur);
1904 /* no break */ deliberate_fall_through
1906 #endif
1907 case OE_Ignore: {
1908 testcase( onError==OE_Ignore );
1909 sqlite3VdbeGoto(v, ignoreDest);
1910 break;
1913 sqlite3VdbeResolveLabel(v, addrRowidOk);
1914 if( ipkTop ){
1915 ipkBottom = sqlite3VdbeAddOp0(v, OP_Goto);
1916 sqlite3VdbeJumpHere(v, ipkTop-1);
1920 /* Test all UNIQUE constraints by creating entries for each UNIQUE
1921 ** index and making sure that duplicate entries do not already exist.
1922 ** Compute the revised record entries for indices as we go.
1924 ** This loop also handles the case of the PRIMARY KEY index for a
1925 ** WITHOUT ROWID table.
1927 for(ix=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, ix++){
1928 int regIdx; /* Range of registers hold conent for pIdx */
1929 int regR; /* Range of registers holding conflicting PK */
1930 int iThisCur; /* Cursor for this UNIQUE index */
1931 int addrUniqueOk; /* Jump here if the UNIQUE constraint is satisfied */
1932 int addrConflictCk; /* First opcode in the conflict check logic */
1934 if( aRegIdx[ix]==0 ) continue; /* Skip indices that do not change */
1935 if( pUpIdx==pIdx ){
1936 addrUniqueOk = upsertJump+1;
1937 upsertBypass = sqlite3VdbeGoto(v, 0);
1938 VdbeComment((v, "Skip upsert subroutine"));
1939 sqlite3VdbeJumpHere(v, upsertJump);
1940 }else{
1941 addrUniqueOk = sqlite3VdbeMakeLabel(pParse);
1943 if( bAffinityDone==0 && (pUpIdx==0 || pUpIdx==pIdx) ){
1944 sqlite3TableAffinity(v, pTab, regNewData+1);
1945 bAffinityDone = 1;
1947 VdbeNoopComment((v, "prep index %s", pIdx->zName));
1948 iThisCur = iIdxCur+ix;
1951 /* Skip partial indices for which the WHERE clause is not true */
1952 if( pIdx->pPartIdxWhere ){
1953 sqlite3VdbeAddOp2(v, OP_Null, 0, aRegIdx[ix]);
1954 pParse->iSelfTab = -(regNewData+1);
1955 sqlite3ExprIfFalseDup(pParse, pIdx->pPartIdxWhere, addrUniqueOk,
1956 SQLITE_JUMPIFNULL);
1957 pParse->iSelfTab = 0;
1960 /* Create a record for this index entry as it should appear after
1961 ** the insert or update. Store that record in the aRegIdx[ix] register
1963 regIdx = aRegIdx[ix]+1;
1964 for(i=0; i<pIdx->nColumn; i++){
1965 int iField = pIdx->aiColumn[i];
1966 int x;
1967 if( iField==XN_EXPR ){
1968 pParse->iSelfTab = -(regNewData+1);
1969 sqlite3ExprCodeCopy(pParse, pIdx->aColExpr->a[i].pExpr, regIdx+i);
1970 pParse->iSelfTab = 0;
1971 VdbeComment((v, "%s column %d", pIdx->zName, i));
1972 }else if( iField==XN_ROWID || iField==pTab->iPKey ){
1973 x = regNewData;
1974 sqlite3VdbeAddOp2(v, OP_IntCopy, x, regIdx+i);
1975 VdbeComment((v, "rowid"));
1976 }else{
1977 testcase( sqlite3TableColumnToStorage(pTab, iField)!=iField );
1978 x = sqlite3TableColumnToStorage(pTab, iField) + regNewData + 1;
1979 sqlite3VdbeAddOp2(v, OP_SCopy, x, regIdx+i);
1980 VdbeComment((v, "%s", pTab->aCol[iField].zName));
1983 sqlite3VdbeAddOp3(v, OP_MakeRecord, regIdx, pIdx->nColumn, aRegIdx[ix]);
1984 VdbeComment((v, "for %s", pIdx->zName));
1985 #ifdef SQLITE_ENABLE_NULL_TRIM
1986 if( pIdx->idxType==SQLITE_IDXTYPE_PRIMARYKEY ){
1987 sqlite3SetMakeRecordP5(v, pIdx->pTable);
1989 #endif
1990 sqlite3VdbeReleaseRegisters(pParse, regIdx, pIdx->nColumn, 0, 0);
1992 /* In an UPDATE operation, if this index is the PRIMARY KEY index
1993 ** of a WITHOUT ROWID table and there has been no change the
1994 ** primary key, then no collision is possible. The collision detection
1995 ** logic below can all be skipped. */
1996 if( isUpdate && pPk==pIdx && pkChng==0 ){
1997 sqlite3VdbeResolveLabel(v, addrUniqueOk);
1998 continue;
2001 /* Find out what action to take in case there is a uniqueness conflict */
2002 onError = pIdx->onError;
2003 if( onError==OE_None ){
2004 sqlite3VdbeResolveLabel(v, addrUniqueOk);
2005 continue; /* pIdx is not a UNIQUE index */
2007 if( overrideError!=OE_Default ){
2008 onError = overrideError;
2009 }else if( onError==OE_Default ){
2010 onError = OE_Abort;
2013 /* Figure out if the upsert clause applies to this index */
2014 if( pUpIdx==pIdx ){
2015 if( pUpsert->pUpsertSet==0 ){
2016 onError = OE_Ignore; /* DO NOTHING is the same as INSERT OR IGNORE */
2017 }else{
2018 onError = OE_Update; /* DO UPDATE */
2022 /* Collision detection may be omitted if all of the following are true:
2023 ** (1) The conflict resolution algorithm is REPLACE
2024 ** (2) The table is a WITHOUT ROWID table
2025 ** (3) There are no secondary indexes on the table
2026 ** (4) No delete triggers need to be fired if there is a conflict
2027 ** (5) No FK constraint counters need to be updated if a conflict occurs.
2029 ** This is not possible for ENABLE_PREUPDATE_HOOK builds, as the row
2030 ** must be explicitly deleted in order to ensure any pre-update hook
2031 ** is invoked. */
2032 #ifndef SQLITE_ENABLE_PREUPDATE_HOOK
2033 if( (ix==0 && pIdx->pNext==0) /* Condition 3 */
2034 && pPk==pIdx /* Condition 2 */
2035 && onError==OE_Replace /* Condition 1 */
2036 && ( 0==(db->flags&SQLITE_RecTriggers) || /* Condition 4 */
2037 0==sqlite3TriggersExist(pParse, pTab, TK_DELETE, 0, 0))
2038 && ( 0==(db->flags&SQLITE_ForeignKeys) || /* Condition 5 */
2039 (0==pTab->pFKey && 0==sqlite3FkReferences(pTab)))
2041 sqlite3VdbeResolveLabel(v, addrUniqueOk);
2042 continue;
2044 #endif /* ifndef SQLITE_ENABLE_PREUPDATE_HOOK */
2046 /* Check to see if the new index entry will be unique */
2047 sqlite3VdbeVerifyAbortable(v, onError);
2048 addrConflictCk =
2049 sqlite3VdbeAddOp4Int(v, OP_NoConflict, iThisCur, addrUniqueOk,
2050 regIdx, pIdx->nKeyCol); VdbeCoverage(v);
2052 /* Generate code to handle collisions */
2053 regR = (pIdx==pPk) ? regIdx : sqlite3GetTempRange(pParse, nPkField);
2054 if( isUpdate || onError==OE_Replace ){
2055 if( HasRowid(pTab) ){
2056 sqlite3VdbeAddOp2(v, OP_IdxRowid, iThisCur, regR);
2057 /* Conflict only if the rowid of the existing index entry
2058 ** is different from old-rowid */
2059 if( isUpdate ){
2060 sqlite3VdbeAddOp3(v, OP_Eq, regR, addrUniqueOk, regOldData);
2061 sqlite3VdbeChangeP5(v, SQLITE_NOTNULL);
2062 VdbeCoverage(v);
2064 }else{
2065 int x;
2066 /* Extract the PRIMARY KEY from the end of the index entry and
2067 ** store it in registers regR..regR+nPk-1 */
2068 if( pIdx!=pPk ){
2069 for(i=0; i<pPk->nKeyCol; i++){
2070 assert( pPk->aiColumn[i]>=0 );
2071 x = sqlite3TableColumnToIndex(pIdx, pPk->aiColumn[i]);
2072 sqlite3VdbeAddOp3(v, OP_Column, iThisCur, x, regR+i);
2073 VdbeComment((v, "%s.%s", pTab->zName,
2074 pTab->aCol[pPk->aiColumn[i]].zName));
2077 if( isUpdate ){
2078 /* If currently processing the PRIMARY KEY of a WITHOUT ROWID
2079 ** table, only conflict if the new PRIMARY KEY values are actually
2080 ** different from the old.
2082 ** For a UNIQUE index, only conflict if the PRIMARY KEY values
2083 ** of the matched index row are different from the original PRIMARY
2084 ** KEY values of this row before the update. */
2085 int addrJump = sqlite3VdbeCurrentAddr(v)+pPk->nKeyCol;
2086 int op = OP_Ne;
2087 int regCmp = (IsPrimaryKeyIndex(pIdx) ? regIdx : regR);
2089 for(i=0; i<pPk->nKeyCol; i++){
2090 char *p4 = (char*)sqlite3LocateCollSeq(pParse, pPk->azColl[i]);
2091 x = pPk->aiColumn[i];
2092 assert( x>=0 );
2093 if( i==(pPk->nKeyCol-1) ){
2094 addrJump = addrUniqueOk;
2095 op = OP_Eq;
2097 x = sqlite3TableColumnToStorage(pTab, x);
2098 sqlite3VdbeAddOp4(v, op,
2099 regOldData+1+x, addrJump, regCmp+i, p4, P4_COLLSEQ
2101 sqlite3VdbeChangeP5(v, SQLITE_NOTNULL);
2102 VdbeCoverageIf(v, op==OP_Eq);
2103 VdbeCoverageIf(v, op==OP_Ne);
2109 /* Generate code that executes if the new index entry is not unique */
2110 assert( onError==OE_Rollback || onError==OE_Abort || onError==OE_Fail
2111 || onError==OE_Ignore || onError==OE_Replace || onError==OE_Update );
2112 switch( onError ){
2113 case OE_Rollback:
2114 case OE_Abort:
2115 case OE_Fail: {
2116 testcase( onError==OE_Rollback );
2117 testcase( onError==OE_Abort );
2118 testcase( onError==OE_Fail );
2119 sqlite3UniqueConstraint(pParse, onError, pIdx);
2120 break;
2122 #ifndef SQLITE_OMIT_UPSERT
2123 case OE_Update: {
2124 sqlite3UpsertDoUpdate(pParse, pUpsert, pTab, pIdx, iIdxCur+ix);
2125 /* no break */ deliberate_fall_through
2127 #endif
2128 case OE_Ignore: {
2129 testcase( onError==OE_Ignore );
2130 sqlite3VdbeGoto(v, ignoreDest);
2131 break;
2133 default: {
2134 int nConflictCk; /* Number of opcodes in conflict check logic */
2136 assert( onError==OE_Replace );
2137 nConflictCk = sqlite3VdbeCurrentAddr(v) - addrConflictCk;
2138 assert( nConflictCk>0 );
2139 testcase( nConflictCk>1 );
2140 if( regTrigCnt ){
2141 sqlite3MultiWrite(pParse);
2142 nReplaceTrig++;
2144 if( pTrigger && isUpdate ){
2145 sqlite3VdbeAddOp1(v, OP_CursorLock, iDataCur);
2147 sqlite3GenerateRowDelete(pParse, pTab, pTrigger, iDataCur, iIdxCur,
2148 regR, nPkField, 0, OE_Replace,
2149 (pIdx==pPk ? ONEPASS_SINGLE : ONEPASS_OFF), iThisCur);
2150 if( pTrigger && isUpdate ){
2151 sqlite3VdbeAddOp1(v, OP_CursorUnlock, iDataCur);
2153 if( regTrigCnt ){
2154 int addrBypass; /* Jump destination to bypass recheck logic */
2156 sqlite3VdbeAddOp2(v, OP_AddImm, regTrigCnt, 1); /* incr trigger cnt */
2157 addrBypass = sqlite3VdbeAddOp0(v, OP_Goto); /* Bypass recheck */
2158 VdbeComment((v, "bypass recheck"));
2160 /* Here we insert code that will be invoked after all constraint
2161 ** checks have run, if and only if one or more replace triggers
2162 ** fired. */
2163 sqlite3VdbeResolveLabel(v, lblRecheckOk);
2164 lblRecheckOk = sqlite3VdbeMakeLabel(pParse);
2165 if( pIdx->pPartIdxWhere ){
2166 /* Bypass the recheck if this partial index is not defined
2167 ** for the current row */
2168 sqlite3VdbeAddOp2(v, OP_IsNull, regIdx-1, lblRecheckOk);
2169 VdbeCoverage(v);
2171 /* Copy the constraint check code from above, except change
2172 ** the constraint-ok jump destination to be the address of
2173 ** the next retest block */
2174 while( nConflictCk>0 ){
2175 VdbeOp x; /* Conflict check opcode to copy */
2176 /* The sqlite3VdbeAddOp4() call might reallocate the opcode array.
2177 ** Hence, make a complete copy of the opcode, rather than using
2178 ** a pointer to the opcode. */
2179 x = *sqlite3VdbeGetOp(v, addrConflictCk);
2180 if( x.opcode!=OP_IdxRowid ){
2181 int p2; /* New P2 value for copied conflict check opcode */
2182 const char *zP4;
2183 if( sqlite3OpcodeProperty[x.opcode]&OPFLG_JUMP ){
2184 p2 = lblRecheckOk;
2185 }else{
2186 p2 = x.p2;
2188 zP4 = x.p4type==P4_INT32 ? SQLITE_INT_TO_PTR(x.p4.i) : x.p4.z;
2189 sqlite3VdbeAddOp4(v, x.opcode, x.p1, p2, x.p3, zP4, x.p4type);
2190 sqlite3VdbeChangeP5(v, x.p5);
2191 VdbeCoverageIf(v, p2!=x.p2);
2193 nConflictCk--;
2194 addrConflictCk++;
2196 /* If the retest fails, issue an abort */
2197 sqlite3UniqueConstraint(pParse, OE_Abort, pIdx);
2199 sqlite3VdbeJumpHere(v, addrBypass); /* Terminate the recheck bypass */
2201 seenReplace = 1;
2202 break;
2205 if( pUpIdx==pIdx ){
2206 sqlite3VdbeGoto(v, upsertJump+1);
2207 sqlite3VdbeJumpHere(v, upsertBypass);
2208 }else{
2209 sqlite3VdbeResolveLabel(v, addrUniqueOk);
2211 if( regR!=regIdx ) sqlite3ReleaseTempRange(pParse, regR, nPkField);
2214 /* If the IPK constraint is a REPLACE, run it last */
2215 if( ipkTop ){
2216 sqlite3VdbeGoto(v, ipkTop);
2217 VdbeComment((v, "Do IPK REPLACE"));
2218 sqlite3VdbeJumpHere(v, ipkBottom);
2221 /* Recheck all uniqueness constraints after replace triggers have run */
2222 testcase( regTrigCnt!=0 && nReplaceTrig==0 );
2223 assert( regTrigCnt!=0 || nReplaceTrig==0 );
2224 if( nReplaceTrig ){
2225 sqlite3VdbeAddOp2(v, OP_IfNot, regTrigCnt, lblRecheckOk);VdbeCoverage(v);
2226 if( !pPk ){
2227 if( isUpdate ){
2228 sqlite3VdbeAddOp3(v, OP_Eq, regNewData, addrRecheck, regOldData);
2229 sqlite3VdbeChangeP5(v, SQLITE_NOTNULL);
2230 VdbeCoverage(v);
2232 sqlite3VdbeAddOp3(v, OP_NotExists, iDataCur, addrRecheck, regNewData);
2233 VdbeCoverage(v);
2234 sqlite3RowidConstraint(pParse, OE_Abort, pTab);
2235 }else{
2236 sqlite3VdbeGoto(v, addrRecheck);
2238 sqlite3VdbeResolveLabel(v, lblRecheckOk);
2241 /* Generate the table record */
2242 if( HasRowid(pTab) ){
2243 int regRec = aRegIdx[ix];
2244 sqlite3VdbeAddOp3(v, OP_MakeRecord, regNewData+1, pTab->nNVCol, regRec);
2245 sqlite3SetMakeRecordP5(v, pTab);
2246 if( !bAffinityDone ){
2247 sqlite3TableAffinity(v, pTab, 0);
2251 *pbMayReplace = seenReplace;
2252 VdbeModuleComment((v, "END: GenCnstCks(%d)", seenReplace));
2255 #ifdef SQLITE_ENABLE_NULL_TRIM
2257 ** Change the P5 operand on the last opcode (which should be an OP_MakeRecord)
2258 ** to be the number of columns in table pTab that must not be NULL-trimmed.
2260 ** Or if no columns of pTab may be NULL-trimmed, leave P5 at zero.
2262 void sqlite3SetMakeRecordP5(Vdbe *v, Table *pTab){
2263 u16 i;
2265 /* Records with omitted columns are only allowed for schema format
2266 ** version 2 and later (SQLite version 3.1.4, 2005-02-20). */
2267 if( pTab->pSchema->file_format<2 ) return;
2269 for(i=pTab->nCol-1; i>0; i--){
2270 if( pTab->aCol[i].pDflt!=0 ) break;
2271 if( pTab->aCol[i].colFlags & COLFLAG_PRIMKEY ) break;
2273 sqlite3VdbeChangeP5(v, i+1);
2275 #endif
2278 ** This routine generates code to finish the INSERT or UPDATE operation
2279 ** that was started by a prior call to sqlite3GenerateConstraintChecks.
2280 ** A consecutive range of registers starting at regNewData contains the
2281 ** rowid and the content to be inserted.
2283 ** The arguments to this routine should be the same as the first six
2284 ** arguments to sqlite3GenerateConstraintChecks.
2286 void sqlite3CompleteInsertion(
2287 Parse *pParse, /* The parser context */
2288 Table *pTab, /* the table into which we are inserting */
2289 int iDataCur, /* Cursor of the canonical data source */
2290 int iIdxCur, /* First index cursor */
2291 int regNewData, /* Range of content */
2292 int *aRegIdx, /* Register used by each index. 0 for unused indices */
2293 int update_flags, /* True for UPDATE, False for INSERT */
2294 int appendBias, /* True if this is likely to be an append */
2295 int useSeekResult /* True to set the USESEEKRESULT flag on OP_[Idx]Insert */
2297 Vdbe *v; /* Prepared statements under construction */
2298 Index *pIdx; /* An index being inserted or updated */
2299 u8 pik_flags; /* flag values passed to the btree insert */
2300 int i; /* Loop counter */
2302 assert( update_flags==0
2303 || update_flags==OPFLAG_ISUPDATE
2304 || update_flags==(OPFLAG_ISUPDATE|OPFLAG_SAVEPOSITION)
2307 v = sqlite3GetVdbe(pParse);
2308 assert( v!=0 );
2309 assert( pTab->pSelect==0 ); /* This table is not a VIEW */
2310 for(i=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, i++){
2311 /* All REPLACE indexes are at the end of the list */
2312 assert( pIdx->onError!=OE_Replace
2313 || pIdx->pNext==0
2314 || pIdx->pNext->onError==OE_Replace );
2315 if( aRegIdx[i]==0 ) continue;
2316 if( pIdx->pPartIdxWhere ){
2317 sqlite3VdbeAddOp2(v, OP_IsNull, aRegIdx[i], sqlite3VdbeCurrentAddr(v)+2);
2318 VdbeCoverage(v);
2320 pik_flags = (useSeekResult ? OPFLAG_USESEEKRESULT : 0);
2321 if( IsPrimaryKeyIndex(pIdx) && !HasRowid(pTab) ){
2322 assert( pParse->nested==0 );
2323 pik_flags |= OPFLAG_NCHANGE;
2324 pik_flags |= (update_flags & OPFLAG_SAVEPOSITION);
2325 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK
2326 if( update_flags==0 ){
2327 int r = sqlite3GetTempReg(pParse);
2328 sqlite3VdbeAddOp2(v, OP_Integer, 0, r);
2329 sqlite3VdbeAddOp4(v, OP_Insert,
2330 iIdxCur+i, aRegIdx[i], r, (char*)pTab, P4_TABLE
2332 sqlite3VdbeChangeP5(v, OPFLAG_ISNOOP);
2333 sqlite3ReleaseTempReg(pParse, r);
2335 #endif
2337 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iIdxCur+i, aRegIdx[i],
2338 aRegIdx[i]+1,
2339 pIdx->uniqNotNull ? pIdx->nKeyCol: pIdx->nColumn);
2340 sqlite3VdbeChangeP5(v, pik_flags);
2342 if( !HasRowid(pTab) ) return;
2343 if( pParse->nested ){
2344 pik_flags = 0;
2345 }else{
2346 pik_flags = OPFLAG_NCHANGE;
2347 pik_flags |= (update_flags?update_flags:OPFLAG_LASTROWID);
2349 if( appendBias ){
2350 pik_flags |= OPFLAG_APPEND;
2352 if( useSeekResult ){
2353 pik_flags |= OPFLAG_USESEEKRESULT;
2355 sqlite3VdbeAddOp3(v, OP_Insert, iDataCur, aRegIdx[i], regNewData);
2356 if( !pParse->nested ){
2357 sqlite3VdbeAppendP4(v, pTab, P4_TABLE);
2359 sqlite3VdbeChangeP5(v, pik_flags);
2363 ** Allocate cursors for the pTab table and all its indices and generate
2364 ** code to open and initialized those cursors.
2366 ** The cursor for the object that contains the complete data (normally
2367 ** the table itself, but the PRIMARY KEY index in the case of a WITHOUT
2368 ** ROWID table) is returned in *piDataCur. The first index cursor is
2369 ** returned in *piIdxCur. The number of indices is returned.
2371 ** Use iBase as the first cursor (either the *piDataCur for rowid tables
2372 ** or the first index for WITHOUT ROWID tables) if it is non-negative.
2373 ** If iBase is negative, then allocate the next available cursor.
2375 ** For a rowid table, *piDataCur will be exactly one less than *piIdxCur.
2376 ** For a WITHOUT ROWID table, *piDataCur will be somewhere in the range
2377 ** of *piIdxCurs, depending on where the PRIMARY KEY index appears on the
2378 ** pTab->pIndex list.
2380 ** If pTab is a virtual table, then this routine is a no-op and the
2381 ** *piDataCur and *piIdxCur values are left uninitialized.
2383 int sqlite3OpenTableAndIndices(
2384 Parse *pParse, /* Parsing context */
2385 Table *pTab, /* Table to be opened */
2386 int op, /* OP_OpenRead or OP_OpenWrite */
2387 u8 p5, /* P5 value for OP_Open* opcodes (except on WITHOUT ROWID) */
2388 int iBase, /* Use this for the table cursor, if there is one */
2389 u8 *aToOpen, /* If not NULL: boolean for each table and index */
2390 int *piDataCur, /* Write the database source cursor number here */
2391 int *piIdxCur /* Write the first index cursor number here */
2393 int i;
2394 int iDb;
2395 int iDataCur;
2396 Index *pIdx;
2397 Vdbe *v;
2399 assert( op==OP_OpenRead || op==OP_OpenWrite );
2400 assert( op==OP_OpenWrite || p5==0 );
2401 if( IsVirtual(pTab) ){
2402 /* This routine is a no-op for virtual tables. Leave the output
2403 ** variables *piDataCur and *piIdxCur uninitialized so that valgrind
2404 ** can detect if they are used by mistake in the caller. */
2405 return 0;
2407 iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
2408 v = sqlite3GetVdbe(pParse);
2409 assert( v!=0 );
2410 if( iBase<0 ) iBase = pParse->nTab;
2411 iDataCur = iBase++;
2412 if( piDataCur ) *piDataCur = iDataCur;
2413 if( HasRowid(pTab) && (aToOpen==0 || aToOpen[0]) ){
2414 sqlite3OpenTable(pParse, iDataCur, iDb, pTab, op);
2415 }else{
2416 sqlite3TableLock(pParse, iDb, pTab->tnum, op==OP_OpenWrite, pTab->zName);
2418 if( piIdxCur ) *piIdxCur = iBase;
2419 for(i=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, i++){
2420 int iIdxCur = iBase++;
2421 assert( pIdx->pSchema==pTab->pSchema );
2422 if( IsPrimaryKeyIndex(pIdx) && !HasRowid(pTab) ){
2423 if( piDataCur ) *piDataCur = iIdxCur;
2424 p5 = 0;
2426 if( aToOpen==0 || aToOpen[i+1] ){
2427 sqlite3VdbeAddOp3(v, op, iIdxCur, pIdx->tnum, iDb);
2428 sqlite3VdbeSetP4KeyInfo(pParse, pIdx);
2429 sqlite3VdbeChangeP5(v, p5);
2430 VdbeComment((v, "%s", pIdx->zName));
2433 if( iBase>pParse->nTab ) pParse->nTab = iBase;
2434 return i;
2438 #ifdef SQLITE_TEST
2440 ** The following global variable is incremented whenever the
2441 ** transfer optimization is used. This is used for testing
2442 ** purposes only - to make sure the transfer optimization really
2443 ** is happening when it is supposed to.
2445 int sqlite3_xferopt_count;
2446 #endif /* SQLITE_TEST */
2449 #ifndef SQLITE_OMIT_XFER_OPT
2451 ** Check to see if index pSrc is compatible as a source of data
2452 ** for index pDest in an insert transfer optimization. The rules
2453 ** for a compatible index:
2455 ** * The index is over the same set of columns
2456 ** * The same DESC and ASC markings occurs on all columns
2457 ** * The same onError processing (OE_Abort, OE_Ignore, etc)
2458 ** * The same collating sequence on each column
2459 ** * The index has the exact same WHERE clause
2461 static int xferCompatibleIndex(Index *pDest, Index *pSrc){
2462 int i;
2463 assert( pDest && pSrc );
2464 assert( pDest->pTable!=pSrc->pTable );
2465 if( pDest->nKeyCol!=pSrc->nKeyCol || pDest->nColumn!=pSrc->nColumn ){
2466 return 0; /* Different number of columns */
2468 if( pDest->onError!=pSrc->onError ){
2469 return 0; /* Different conflict resolution strategies */
2471 for(i=0; i<pSrc->nKeyCol; i++){
2472 if( pSrc->aiColumn[i]!=pDest->aiColumn[i] ){
2473 return 0; /* Different columns indexed */
2475 if( pSrc->aiColumn[i]==XN_EXPR ){
2476 assert( pSrc->aColExpr!=0 && pDest->aColExpr!=0 );
2477 if( sqlite3ExprCompare(0, pSrc->aColExpr->a[i].pExpr,
2478 pDest->aColExpr->a[i].pExpr, -1)!=0 ){
2479 return 0; /* Different expressions in the index */
2482 if( pSrc->aSortOrder[i]!=pDest->aSortOrder[i] ){
2483 return 0; /* Different sort orders */
2485 if( sqlite3_stricmp(pSrc->azColl[i],pDest->azColl[i])!=0 ){
2486 return 0; /* Different collating sequences */
2489 if( sqlite3ExprCompare(0, pSrc->pPartIdxWhere, pDest->pPartIdxWhere, -1) ){
2490 return 0; /* Different WHERE clauses */
2493 /* If no test above fails then the indices must be compatible */
2494 return 1;
2498 ** Attempt the transfer optimization on INSERTs of the form
2500 ** INSERT INTO tab1 SELECT * FROM tab2;
2502 ** The xfer optimization transfers raw records from tab2 over to tab1.
2503 ** Columns are not decoded and reassembled, which greatly improves
2504 ** performance. Raw index records are transferred in the same way.
2506 ** The xfer optimization is only attempted if tab1 and tab2 are compatible.
2507 ** There are lots of rules for determining compatibility - see comments
2508 ** embedded in the code for details.
2510 ** This routine returns TRUE if the optimization is guaranteed to be used.
2511 ** Sometimes the xfer optimization will only work if the destination table
2512 ** is empty - a factor that can only be determined at run-time. In that
2513 ** case, this routine generates code for the xfer optimization but also
2514 ** does a test to see if the destination table is empty and jumps over the
2515 ** xfer optimization code if the test fails. In that case, this routine
2516 ** returns FALSE so that the caller will know to go ahead and generate
2517 ** an unoptimized transfer. This routine also returns FALSE if there
2518 ** is no chance that the xfer optimization can be applied.
2520 ** This optimization is particularly useful at making VACUUM run faster.
2522 static int xferOptimization(
2523 Parse *pParse, /* Parser context */
2524 Table *pDest, /* The table we are inserting into */
2525 Select *pSelect, /* A SELECT statement to use as the data source */
2526 int onError, /* How to handle constraint errors */
2527 int iDbDest /* The database of pDest */
2529 sqlite3 *db = pParse->db;
2530 ExprList *pEList; /* The result set of the SELECT */
2531 Table *pSrc; /* The table in the FROM clause of SELECT */
2532 Index *pSrcIdx, *pDestIdx; /* Source and destination indices */
2533 struct SrcList_item *pItem; /* An element of pSelect->pSrc */
2534 int i; /* Loop counter */
2535 int iDbSrc; /* The database of pSrc */
2536 int iSrc, iDest; /* Cursors from source and destination */
2537 int addr1, addr2; /* Loop addresses */
2538 int emptyDestTest = 0; /* Address of test for empty pDest */
2539 int emptySrcTest = 0; /* Address of test for empty pSrc */
2540 Vdbe *v; /* The VDBE we are building */
2541 int regAutoinc; /* Memory register used by AUTOINC */
2542 int destHasUniqueIdx = 0; /* True if pDest has a UNIQUE index */
2543 int regData, regRowid; /* Registers holding data and rowid */
2545 if( pSelect==0 ){
2546 return 0; /* Must be of the form INSERT INTO ... SELECT ... */
2548 if( pParse->pWith || pSelect->pWith ){
2549 /* Do not attempt to process this query if there are an WITH clauses
2550 ** attached to it. Proceeding may generate a false "no such table: xxx"
2551 ** error if pSelect reads from a CTE named "xxx". */
2552 return 0;
2554 if( sqlite3TriggerList(pParse, pDest) ){
2555 return 0; /* tab1 must not have triggers */
2557 #ifndef SQLITE_OMIT_VIRTUALTABLE
2558 if( IsVirtual(pDest) ){
2559 return 0; /* tab1 must not be a virtual table */
2561 #endif
2562 if( onError==OE_Default ){
2563 if( pDest->iPKey>=0 ) onError = pDest->keyConf;
2564 if( onError==OE_Default ) onError = OE_Abort;
2566 assert(pSelect->pSrc); /* allocated even if there is no FROM clause */
2567 if( pSelect->pSrc->nSrc!=1 ){
2568 return 0; /* FROM clause must have exactly one term */
2570 if( pSelect->pSrc->a[0].pSelect ){
2571 return 0; /* FROM clause cannot contain a subquery */
2573 if( pSelect->pWhere ){
2574 return 0; /* SELECT may not have a WHERE clause */
2576 if( pSelect->pOrderBy ){
2577 return 0; /* SELECT may not have an ORDER BY clause */
2579 /* Do not need to test for a HAVING clause. If HAVING is present but
2580 ** there is no ORDER BY, we will get an error. */
2581 if( pSelect->pGroupBy ){
2582 return 0; /* SELECT may not have a GROUP BY clause */
2584 if( pSelect->pLimit ){
2585 return 0; /* SELECT may not have a LIMIT clause */
2587 if( pSelect->pPrior ){
2588 return 0; /* SELECT may not be a compound query */
2590 if( pSelect->selFlags & SF_Distinct ){
2591 return 0; /* SELECT may not be DISTINCT */
2593 pEList = pSelect->pEList;
2594 assert( pEList!=0 );
2595 if( pEList->nExpr!=1 ){
2596 return 0; /* The result set must have exactly one column */
2598 assert( pEList->a[0].pExpr );
2599 if( pEList->a[0].pExpr->op!=TK_ASTERISK ){
2600 return 0; /* The result set must be the special operator "*" */
2603 /* At this point we have established that the statement is of the
2604 ** correct syntactic form to participate in this optimization. Now
2605 ** we have to check the semantics.
2607 pItem = pSelect->pSrc->a;
2608 pSrc = sqlite3LocateTableItem(pParse, 0, pItem);
2609 if( pSrc==0 ){
2610 return 0; /* FROM clause does not contain a real table */
2612 if( pSrc->tnum==pDest->tnum && pSrc->pSchema==pDest->pSchema ){
2613 testcase( pSrc!=pDest ); /* Possible due to bad sqlite_schema.rootpage */
2614 return 0; /* tab1 and tab2 may not be the same table */
2616 if( HasRowid(pDest)!=HasRowid(pSrc) ){
2617 return 0; /* source and destination must both be WITHOUT ROWID or not */
2619 #ifndef SQLITE_OMIT_VIRTUALTABLE
2620 if( IsVirtual(pSrc) ){
2621 return 0; /* tab2 must not be a virtual table */
2623 #endif
2624 if( pSrc->pSelect ){
2625 return 0; /* tab2 may not be a view */
2627 if( pDest->nCol!=pSrc->nCol ){
2628 return 0; /* Number of columns must be the same in tab1 and tab2 */
2630 if( pDest->iPKey!=pSrc->iPKey ){
2631 return 0; /* Both tables must have the same INTEGER PRIMARY KEY */
2633 for(i=0; i<pDest->nCol; i++){
2634 Column *pDestCol = &pDest->aCol[i];
2635 Column *pSrcCol = &pSrc->aCol[i];
2636 #ifdef SQLITE_ENABLE_HIDDEN_COLUMNS
2637 if( (db->mDbFlags & DBFLAG_Vacuum)==0
2638 && (pDestCol->colFlags | pSrcCol->colFlags) & COLFLAG_HIDDEN
2640 return 0; /* Neither table may have __hidden__ columns */
2642 #endif
2643 #ifndef SQLITE_OMIT_GENERATED_COLUMNS
2644 /* Even if tables t1 and t2 have identical schemas, if they contain
2645 ** generated columns, then this statement is semantically incorrect:
2647 ** INSERT INTO t2 SELECT * FROM t1;
2649 ** The reason is that generated column values are returned by the
2650 ** the SELECT statement on the right but the INSERT statement on the
2651 ** left wants them to be omitted.
2653 ** Nevertheless, this is a useful notational shorthand to tell SQLite
2654 ** to do a bulk transfer all of the content from t1 over to t2.
2656 ** We could, in theory, disable this (except for internal use by the
2657 ** VACUUM command where it is actually needed). But why do that? It
2658 ** seems harmless enough, and provides a useful service.
2660 if( (pDestCol->colFlags & COLFLAG_GENERATED) !=
2661 (pSrcCol->colFlags & COLFLAG_GENERATED) ){
2662 return 0; /* Both columns have the same generated-column type */
2664 /* But the transfer is only allowed if both the source and destination
2665 ** tables have the exact same expressions for generated columns.
2666 ** This requirement could be relaxed for VIRTUAL columns, I suppose.
2668 if( (pDestCol->colFlags & COLFLAG_GENERATED)!=0 ){
2669 if( sqlite3ExprCompare(0, pSrcCol->pDflt, pDestCol->pDflt, -1)!=0 ){
2670 testcase( pDestCol->colFlags & COLFLAG_VIRTUAL );
2671 testcase( pDestCol->colFlags & COLFLAG_STORED );
2672 return 0; /* Different generator expressions */
2675 #endif
2676 if( pDestCol->affinity!=pSrcCol->affinity ){
2677 return 0; /* Affinity must be the same on all columns */
2679 if( sqlite3_stricmp(pDestCol->zColl, pSrcCol->zColl)!=0 ){
2680 return 0; /* Collating sequence must be the same on all columns */
2682 if( pDestCol->notNull && !pSrcCol->notNull ){
2683 return 0; /* tab2 must be NOT NULL if tab1 is */
2685 /* Default values for second and subsequent columns need to match. */
2686 if( (pDestCol->colFlags & COLFLAG_GENERATED)==0 && i>0 ){
2687 assert( pDestCol->pDflt==0 || pDestCol->pDflt->op==TK_SPAN );
2688 assert( pSrcCol->pDflt==0 || pSrcCol->pDflt->op==TK_SPAN );
2689 if( (pDestCol->pDflt==0)!=(pSrcCol->pDflt==0)
2690 || (pDestCol->pDflt && strcmp(pDestCol->pDflt->u.zToken,
2691 pSrcCol->pDflt->u.zToken)!=0)
2693 return 0; /* Default values must be the same for all columns */
2697 for(pDestIdx=pDest->pIndex; pDestIdx; pDestIdx=pDestIdx->pNext){
2698 if( IsUniqueIndex(pDestIdx) ){
2699 destHasUniqueIdx = 1;
2701 for(pSrcIdx=pSrc->pIndex; pSrcIdx; pSrcIdx=pSrcIdx->pNext){
2702 if( xferCompatibleIndex(pDestIdx, pSrcIdx) ) break;
2704 if( pSrcIdx==0 ){
2705 return 0; /* pDestIdx has no corresponding index in pSrc */
2707 if( pSrcIdx->tnum==pDestIdx->tnum && pSrc->pSchema==pDest->pSchema
2708 && sqlite3FaultSim(411)==SQLITE_OK ){
2709 /* The sqlite3FaultSim() call allows this corruption test to be
2710 ** bypassed during testing, in order to exercise other corruption tests
2711 ** further downstream. */
2712 return 0; /* Corrupt schema - two indexes on the same btree */
2715 #ifndef SQLITE_OMIT_CHECK
2716 if( pDest->pCheck && sqlite3ExprListCompare(pSrc->pCheck,pDest->pCheck,-1) ){
2717 return 0; /* Tables have different CHECK constraints. Ticket #2252 */
2719 #endif
2720 #ifndef SQLITE_OMIT_FOREIGN_KEY
2721 /* Disallow the transfer optimization if the destination table constains
2722 ** any foreign key constraints. This is more restrictive than necessary.
2723 ** But the main beneficiary of the transfer optimization is the VACUUM
2724 ** command, and the VACUUM command disables foreign key constraints. So
2725 ** the extra complication to make this rule less restrictive is probably
2726 ** not worth the effort. Ticket [6284df89debdfa61db8073e062908af0c9b6118e]
2728 if( (db->flags & SQLITE_ForeignKeys)!=0 && pDest->pFKey!=0 ){
2729 return 0;
2731 #endif
2732 if( (db->flags & SQLITE_CountRows)!=0 ){
2733 return 0; /* xfer opt does not play well with PRAGMA count_changes */
2736 /* If we get this far, it means that the xfer optimization is at
2737 ** least a possibility, though it might only work if the destination
2738 ** table (tab1) is initially empty.
2740 #ifdef SQLITE_TEST
2741 sqlite3_xferopt_count++;
2742 #endif
2743 iDbSrc = sqlite3SchemaToIndex(db, pSrc->pSchema);
2744 v = sqlite3GetVdbe(pParse);
2745 sqlite3CodeVerifySchema(pParse, iDbSrc);
2746 iSrc = pParse->nTab++;
2747 iDest = pParse->nTab++;
2748 regAutoinc = autoIncBegin(pParse, iDbDest, pDest);
2749 regData = sqlite3GetTempReg(pParse);
2750 regRowid = sqlite3GetTempReg(pParse);
2751 sqlite3OpenTable(pParse, iDest, iDbDest, pDest, OP_OpenWrite);
2752 assert( HasRowid(pDest) || destHasUniqueIdx );
2753 if( (db->mDbFlags & DBFLAG_Vacuum)==0 && (
2754 (pDest->iPKey<0 && pDest->pIndex!=0) /* (1) */
2755 || destHasUniqueIdx /* (2) */
2756 || (onError!=OE_Abort && onError!=OE_Rollback) /* (3) */
2758 /* In some circumstances, we are able to run the xfer optimization
2759 ** only if the destination table is initially empty. Unless the
2760 ** DBFLAG_Vacuum flag is set, this block generates code to make
2761 ** that determination. If DBFLAG_Vacuum is set, then the destination
2762 ** table is always empty.
2764 ** Conditions under which the destination must be empty:
2766 ** (1) There is no INTEGER PRIMARY KEY but there are indices.
2767 ** (If the destination is not initially empty, the rowid fields
2768 ** of index entries might need to change.)
2770 ** (2) The destination has a unique index. (The xfer optimization
2771 ** is unable to test uniqueness.)
2773 ** (3) onError is something other than OE_Abort and OE_Rollback.
2775 addr1 = sqlite3VdbeAddOp2(v, OP_Rewind, iDest, 0); VdbeCoverage(v);
2776 emptyDestTest = sqlite3VdbeAddOp0(v, OP_Goto);
2777 sqlite3VdbeJumpHere(v, addr1);
2779 if( HasRowid(pSrc) ){
2780 u8 insFlags;
2781 sqlite3OpenTable(pParse, iSrc, iDbSrc, pSrc, OP_OpenRead);
2782 emptySrcTest = sqlite3VdbeAddOp2(v, OP_Rewind, iSrc, 0); VdbeCoverage(v);
2783 if( pDest->iPKey>=0 ){
2784 addr1 = sqlite3VdbeAddOp2(v, OP_Rowid, iSrc, regRowid);
2785 sqlite3VdbeVerifyAbortable(v, onError);
2786 addr2 = sqlite3VdbeAddOp3(v, OP_NotExists, iDest, 0, regRowid);
2787 VdbeCoverage(v);
2788 sqlite3RowidConstraint(pParse, onError, pDest);
2789 sqlite3VdbeJumpHere(v, addr2);
2790 autoIncStep(pParse, regAutoinc, regRowid);
2791 }else if( pDest->pIndex==0 && !(db->mDbFlags & DBFLAG_VacuumInto) ){
2792 addr1 = sqlite3VdbeAddOp2(v, OP_NewRowid, iDest, regRowid);
2793 }else{
2794 addr1 = sqlite3VdbeAddOp2(v, OP_Rowid, iSrc, regRowid);
2795 assert( (pDest->tabFlags & TF_Autoincrement)==0 );
2797 if( db->mDbFlags & DBFLAG_Vacuum ){
2798 sqlite3VdbeAddOp1(v, OP_SeekEnd, iDest);
2799 insFlags = OPFLAG_APPEND|OPFLAG_USESEEKRESULT;
2800 }else{
2801 insFlags = OPFLAG_NCHANGE|OPFLAG_LASTROWID|OPFLAG_APPEND;
2803 sqlite3VdbeAddOp3(v, OP_RowData, iSrc, regData, 1);
2804 sqlite3VdbeAddOp4(v, OP_Insert, iDest, regData, regRowid,
2805 (char*)pDest, P4_TABLE);
2806 sqlite3VdbeChangeP5(v, insFlags);
2807 sqlite3VdbeAddOp2(v, OP_Next, iSrc, addr1); VdbeCoverage(v);
2808 sqlite3VdbeAddOp2(v, OP_Close, iSrc, 0);
2809 sqlite3VdbeAddOp2(v, OP_Close, iDest, 0);
2810 }else{
2811 sqlite3TableLock(pParse, iDbDest, pDest->tnum, 1, pDest->zName);
2812 sqlite3TableLock(pParse, iDbSrc, pSrc->tnum, 0, pSrc->zName);
2814 for(pDestIdx=pDest->pIndex; pDestIdx; pDestIdx=pDestIdx->pNext){
2815 u8 idxInsFlags = 0;
2816 for(pSrcIdx=pSrc->pIndex; ALWAYS(pSrcIdx); pSrcIdx=pSrcIdx->pNext){
2817 if( xferCompatibleIndex(pDestIdx, pSrcIdx) ) break;
2819 assert( pSrcIdx );
2820 sqlite3VdbeAddOp3(v, OP_OpenRead, iSrc, pSrcIdx->tnum, iDbSrc);
2821 sqlite3VdbeSetP4KeyInfo(pParse, pSrcIdx);
2822 VdbeComment((v, "%s", pSrcIdx->zName));
2823 sqlite3VdbeAddOp3(v, OP_OpenWrite, iDest, pDestIdx->tnum, iDbDest);
2824 sqlite3VdbeSetP4KeyInfo(pParse, pDestIdx);
2825 sqlite3VdbeChangeP5(v, OPFLAG_BULKCSR);
2826 VdbeComment((v, "%s", pDestIdx->zName));
2827 addr1 = sqlite3VdbeAddOp2(v, OP_Rewind, iSrc, 0); VdbeCoverage(v);
2828 if( db->mDbFlags & DBFLAG_Vacuum ){
2829 /* This INSERT command is part of a VACUUM operation, which guarantees
2830 ** that the destination table is empty. If all indexed columns use
2831 ** collation sequence BINARY, then it can also be assumed that the
2832 ** index will be populated by inserting keys in strictly sorted
2833 ** order. In this case, instead of seeking within the b-tree as part
2834 ** of every OP_IdxInsert opcode, an OP_SeekEnd is added before the
2835 ** OP_IdxInsert to seek to the point within the b-tree where each key
2836 ** should be inserted. This is faster.
2838 ** If any of the indexed columns use a collation sequence other than
2839 ** BINARY, this optimization is disabled. This is because the user
2840 ** might change the definition of a collation sequence and then run
2841 ** a VACUUM command. In that case keys may not be written in strictly
2842 ** sorted order. */
2843 for(i=0; i<pSrcIdx->nColumn; i++){
2844 const char *zColl = pSrcIdx->azColl[i];
2845 if( sqlite3_stricmp(sqlite3StrBINARY, zColl) ) break;
2847 if( i==pSrcIdx->nColumn ){
2848 idxInsFlags = OPFLAG_USESEEKRESULT;
2849 sqlite3VdbeAddOp1(v, OP_SeekEnd, iDest);
2851 }else if( !HasRowid(pSrc) && pDestIdx->idxType==SQLITE_IDXTYPE_PRIMARYKEY ){
2852 idxInsFlags |= OPFLAG_NCHANGE;
2854 sqlite3VdbeAddOp3(v, OP_RowData, iSrc, regData, 1);
2855 sqlite3VdbeAddOp2(v, OP_IdxInsert, iDest, regData);
2856 sqlite3VdbeChangeP5(v, idxInsFlags|OPFLAG_APPEND);
2857 sqlite3VdbeAddOp2(v, OP_Next, iSrc, addr1+1); VdbeCoverage(v);
2858 sqlite3VdbeJumpHere(v, addr1);
2859 sqlite3VdbeAddOp2(v, OP_Close, iSrc, 0);
2860 sqlite3VdbeAddOp2(v, OP_Close, iDest, 0);
2862 if( emptySrcTest ) sqlite3VdbeJumpHere(v, emptySrcTest);
2863 sqlite3ReleaseTempReg(pParse, regRowid);
2864 sqlite3ReleaseTempReg(pParse, regData);
2865 if( emptyDestTest ){
2866 sqlite3AutoincrementEnd(pParse);
2867 sqlite3VdbeAddOp2(v, OP_Halt, SQLITE_OK, 0);
2868 sqlite3VdbeJumpHere(v, emptyDestTest);
2869 sqlite3VdbeAddOp2(v, OP_Close, iDest, 0);
2870 return 0;
2871 }else{
2872 return 1;
2875 #endif /* SQLITE_OMIT_XFER_OPT */