4 ** The author disclaims copyright to this source code. In place of
5 ** a legal notice, here is a blessing:
7 ** May you do good and not evil.
8 ** May you find forgiveness for yourself and forgive others.
9 ** May you share freely, never taking more than you give.
11 *************************************************************************
12 ** This file contains C code routines that are called by the parser
13 ** to handle INSERT statements in SQLite.
15 #include "sqliteInt.h"
18 ** Generate code that will
20 ** (1) acquire a lock for table pTab then
21 ** (2) open pTab as cursor iCur.
23 ** If pTab is a WITHOUT ROWID table, then it is the PRIMARY KEY index
24 ** for that table that is actually opened.
26 void sqlite3OpenTable(
27 Parse
*pParse
, /* Generate code into this VDBE */
28 int iCur
, /* The cursor number of the table */
29 int iDb
, /* The database index in sqlite3.aDb[] */
30 Table
*pTab
, /* The table to be opened */
31 int opcode
/* OP_OpenRead or OP_OpenWrite */
34 assert( !IsVirtual(pTab
) );
35 assert( pParse
->pVdbe
!=0 );
37 assert( opcode
==OP_OpenWrite
|| opcode
==OP_OpenRead
);
38 if( !pParse
->db
->noSharedCache
){
39 sqlite3TableLock(pParse
, iDb
, pTab
->tnum
,
40 (opcode
==OP_OpenWrite
)?1:0, pTab
->zName
);
43 sqlite3VdbeAddOp4Int(v
, opcode
, iCur
, pTab
->tnum
, iDb
, pTab
->nNVCol
);
44 VdbeComment((v
, "%s", pTab
->zName
));
46 Index
*pPk
= sqlite3PrimaryKeyIndex(pTab
);
48 assert( pPk
->tnum
==pTab
->tnum
|| CORRUPT_DB
);
49 sqlite3VdbeAddOp3(v
, opcode
, iCur
, pPk
->tnum
, iDb
);
50 sqlite3VdbeSetP4KeyInfo(pParse
, pPk
);
51 VdbeComment((v
, "%s", pTab
->zName
));
56 ** Return a pointer to the column affinity string associated with index
57 ** pIdx. A column affinity string has one character for each column in
58 ** the table, according to the affinity of the column:
60 ** Character Column affinity
61 ** ------------------------------
68 ** An extra 'D' is appended to the end of the string to cover the
69 ** rowid that appears as the last column in every index.
71 ** Memory for the buffer containing the column index affinity string
72 ** is managed along with the rest of the Index structure. It will be
73 ** released when sqlite3DeleteIndex() is called.
75 static SQLITE_NOINLINE
const char *computeIndexAffStr(sqlite3
*db
, Index
*pIdx
){
76 /* The first time a column affinity string for a particular index is
77 ** required, it is allocated and populated here. It is then stored as
78 ** a member of the Index structure for subsequent use.
80 ** The column affinity string will eventually be deleted by
81 ** sqliteDeleteIndex() when the Index structure itself is cleaned
85 Table
*pTab
= pIdx
->pTable
;
86 pIdx
->zColAff
= (char *)sqlite3DbMallocRaw(0, pIdx
->nColumn
+1);
91 for(n
=0; n
<pIdx
->nColumn
; n
++){
92 i16 x
= pIdx
->aiColumn
[n
];
95 aff
= pTab
->aCol
[x
].affinity
;
96 }else if( x
==XN_ROWID
){
97 aff
= SQLITE_AFF_INTEGER
;
100 assert( pIdx
->bHasExpr
);
101 assert( pIdx
->aColExpr
!=0 );
102 aff
= sqlite3ExprAffinity(pIdx
->aColExpr
->a
[n
].pExpr
);
104 if( aff
<SQLITE_AFF_BLOB
) aff
= SQLITE_AFF_BLOB
;
105 if( aff
>SQLITE_AFF_NUMERIC
) aff
= SQLITE_AFF_NUMERIC
;
106 pIdx
->zColAff
[n
] = aff
;
108 pIdx
->zColAff
[n
] = 0;
109 return pIdx
->zColAff
;
111 const char *sqlite3IndexAffinityStr(sqlite3
*db
, Index
*pIdx
){
112 if( !pIdx
->zColAff
) return computeIndexAffStr(db
, pIdx
);
113 return pIdx
->zColAff
;
118 ** Compute an affinity string for a table. Space is obtained
119 ** from sqlite3DbMalloc(). The caller is responsible for freeing
120 ** the space when done.
122 char *sqlite3TableAffinityStr(sqlite3
*db
, const Table
*pTab
){
124 zColAff
= (char *)sqlite3DbMallocRaw(db
, pTab
->nCol
+1);
127 for(i
=j
=0; i
<pTab
->nCol
; i
++){
128 if( (pTab
->aCol
[i
].colFlags
& COLFLAG_VIRTUAL
)==0 ){
129 zColAff
[j
++] = pTab
->aCol
[i
].affinity
;
134 }while( j
>=0 && zColAff
[j
]<=SQLITE_AFF_BLOB
);
140 ** Make changes to the evolving bytecode to do affinity transformations
141 ** of values that are about to be gathered into a row for table pTab.
143 ** For ordinary (legacy, non-strict) tables:
144 ** -----------------------------------------
146 ** Compute the affinity string for table pTab, if it has not already been
147 ** computed. As an optimization, omit trailing SQLITE_AFF_BLOB affinities.
149 ** If the affinity string is empty (because it was all SQLITE_AFF_BLOB entries
150 ** which were then optimized out) then this routine becomes a no-op.
152 ** Otherwise if iReg>0 then code an OP_Affinity opcode that will set the
153 ** affinities for register iReg and following. Or if iReg==0,
154 ** then just set the P4 operand of the previous opcode (which should be
155 ** an OP_MakeRecord) to the affinity string.
157 ** A column affinity string has one character per column:
159 ** Character Column affinity
160 ** --------- ---------------
167 ** For STRICT tables:
168 ** ------------------
170 ** Generate an appropriate OP_TypeCheck opcode that will verify the
171 ** datatypes against the column definitions in pTab. If iReg==0, that
172 ** means an OP_MakeRecord opcode has already been generated and should be
173 ** the last opcode generated. The new OP_TypeCheck needs to be inserted
174 ** before the OP_MakeRecord. The new OP_TypeCheck should use the same
175 ** register set as the OP_MakeRecord. If iReg>0 then register iReg is
176 ** the first of a series of registers that will form the new record.
177 ** Apply the type checking to that array of registers.
179 void sqlite3TableAffinity(Vdbe
*v
, Table
*pTab
, int iReg
){
182 if( pTab
->tabFlags
& TF_Strict
){
184 /* Move the previous opcode (which should be OP_MakeRecord) forward
185 ** by one slot and insert a new OP_TypeCheck where the current
186 ** OP_MakeRecord is found */
188 sqlite3VdbeAppendP4(v
, pTab
, P4_TABLE
);
189 pPrev
= sqlite3VdbeGetLastOp(v
);
191 assert( pPrev
->opcode
==OP_MakeRecord
|| sqlite3VdbeDb(v
)->mallocFailed
);
192 pPrev
->opcode
= OP_TypeCheck
;
193 sqlite3VdbeAddOp3(v
, OP_MakeRecord
, pPrev
->p1
, pPrev
->p2
, pPrev
->p3
);
195 /* Insert an isolated OP_Typecheck */
196 sqlite3VdbeAddOp2(v
, OP_TypeCheck
, iReg
, pTab
->nNVCol
);
197 sqlite3VdbeAppendP4(v
, pTab
, P4_TABLE
);
201 zColAff
= pTab
->zColAff
;
203 zColAff
= sqlite3TableAffinityStr(0, pTab
);
205 sqlite3OomFault(sqlite3VdbeDb(v
));
208 pTab
->zColAff
= zColAff
;
210 assert( zColAff
!=0 );
211 i
= sqlite3Strlen30NN(zColAff
);
214 sqlite3VdbeAddOp4(v
, OP_Affinity
, iReg
, i
, 0, zColAff
, i
);
216 assert( sqlite3VdbeGetLastOp(v
)->opcode
==OP_MakeRecord
217 || sqlite3VdbeDb(v
)->mallocFailed
);
218 sqlite3VdbeChangeP4(v
, -1, zColAff
, i
);
224 ** Return non-zero if the table pTab in database iDb or any of its indices
225 ** have been opened at any point in the VDBE program. This is used to see if
226 ** a statement of the form "INSERT INTO <iDb, pTab> SELECT ..." can
227 ** run without using a temporary table for the results of the SELECT.
229 static int readsTable(Parse
*p
, int iDb
, Table
*pTab
){
230 Vdbe
*v
= sqlite3GetVdbe(p
);
232 int iEnd
= sqlite3VdbeCurrentAddr(v
);
233 #ifndef SQLITE_OMIT_VIRTUALTABLE
234 VTable
*pVTab
= IsVirtual(pTab
) ? sqlite3GetVTable(p
->db
, pTab
) : 0;
237 for(i
=1; i
<iEnd
; i
++){
238 VdbeOp
*pOp
= sqlite3VdbeGetOp(v
, i
);
240 if( pOp
->opcode
==OP_OpenRead
&& pOp
->p3
==iDb
){
243 if( tnum
==pTab
->tnum
){
246 for(pIndex
=pTab
->pIndex
; pIndex
; pIndex
=pIndex
->pNext
){
247 if( tnum
==pIndex
->tnum
){
252 #ifndef SQLITE_OMIT_VIRTUALTABLE
253 if( pOp
->opcode
==OP_VOpen
&& pOp
->p4
.pVtab
==pVTab
){
254 assert( pOp
->p4
.pVtab
!=0 );
255 assert( pOp
->p4type
==P4_VTAB
);
263 /* This walker callback will compute the union of colFlags flags for all
264 ** referenced columns in a CHECK constraint or generated column expression.
266 static int exprColumnFlagUnion(Walker
*pWalker
, Expr
*pExpr
){
267 if( pExpr
->op
==TK_COLUMN
&& pExpr
->iColumn
>=0 ){
268 assert( pExpr
->iColumn
< pWalker
->u
.pTab
->nCol
);
269 pWalker
->eCode
|= pWalker
->u
.pTab
->aCol
[pExpr
->iColumn
].colFlags
;
274 #ifndef SQLITE_OMIT_GENERATED_COLUMNS
276 ** All regular columns for table pTab have been puts into registers
277 ** starting with iRegStore. The registers that correspond to STORED
278 ** or VIRTUAL columns have not yet been initialized. This routine goes
279 ** back and computes the values for those columns based on the previously
280 ** computed normal columns.
282 void sqlite3ComputeGeneratedColumns(
283 Parse
*pParse
, /* Parsing context */
284 int iRegStore
, /* Register holding the first column */
285 Table
*pTab
/* The table */
293 assert( pTab
->tabFlags
& TF_HasGenerated
);
294 testcase( pTab
->tabFlags
& TF_HasVirtual
);
295 testcase( pTab
->tabFlags
& TF_HasStored
);
297 /* Before computing generated columns, first go through and make sure
298 ** that appropriate affinity has been applied to the regular columns
300 sqlite3TableAffinity(pParse
->pVdbe
, pTab
, iRegStore
);
301 if( (pTab
->tabFlags
& TF_HasStored
)!=0 ){
302 pOp
= sqlite3VdbeGetLastOp(pParse
->pVdbe
);
303 if( pOp
->opcode
==OP_Affinity
){
304 /* Change the OP_Affinity argument to '@' (NONE) for all stored
305 ** columns. '@' is the no-op affinity and those columns have not
306 ** yet been computed. */
308 char *zP4
= pOp
->p4
.z
;
310 assert( pOp
->p4type
==P4_DYNAMIC
);
311 for(ii
=jj
=0; zP4
[jj
]; ii
++){
312 if( pTab
->aCol
[ii
].colFlags
& COLFLAG_VIRTUAL
){
315 if( pTab
->aCol
[ii
].colFlags
& COLFLAG_STORED
){
316 zP4
[jj
] = SQLITE_AFF_NONE
;
320 }else if( pOp
->opcode
==OP_TypeCheck
){
321 /* If an OP_TypeCheck was generated because the table is STRICT,
322 ** then set the P3 operand to indicate that generated columns should
328 /* Because there can be multiple generated columns that refer to one another,
329 ** this is a two-pass algorithm. On the first pass, mark all generated
330 ** columns as "not available".
332 for(i
=0; i
<pTab
->nCol
; i
++){
333 if( pTab
->aCol
[i
].colFlags
& COLFLAG_GENERATED
){
334 testcase( pTab
->aCol
[i
].colFlags
& COLFLAG_VIRTUAL
);
335 testcase( pTab
->aCol
[i
].colFlags
& COLFLAG_STORED
);
336 pTab
->aCol
[i
].colFlags
|= COLFLAG_NOTAVAIL
;
341 w
.xExprCallback
= exprColumnFlagUnion
;
342 w
.xSelectCallback
= 0;
343 w
.xSelectCallback2
= 0;
345 /* On the second pass, compute the value of each NOT-AVAILABLE column.
346 ** Companion code in the TK_COLUMN case of sqlite3ExprCodeTarget() will
347 ** compute dependencies and mark remove the COLSPAN_NOTAVAIL mark, as
350 pParse
->iSelfTab
= -iRegStore
;
354 for(i
=0; i
<pTab
->nCol
; i
++){
355 Column
*pCol
= pTab
->aCol
+ i
;
356 if( (pCol
->colFlags
& COLFLAG_NOTAVAIL
)!=0 ){
358 pCol
->colFlags
|= COLFLAG_BUSY
;
360 sqlite3WalkExpr(&w
, sqlite3ColumnExpr(pTab
, pCol
));
361 pCol
->colFlags
&= ~COLFLAG_BUSY
;
362 if( w
.eCode
& COLFLAG_NOTAVAIL
){
367 assert( pCol
->colFlags
& COLFLAG_GENERATED
);
368 x
= sqlite3TableColumnToStorage(pTab
, i
) + iRegStore
;
369 sqlite3ExprCodeGeneratedColumn(pParse
, pTab
, pCol
, x
);
370 pCol
->colFlags
&= ~COLFLAG_NOTAVAIL
;
373 }while( pRedo
&& eProgress
);
375 sqlite3ErrorMsg(pParse
, "generated column loop on \"%s\"", pRedo
->zCnName
);
377 pParse
->iSelfTab
= 0;
379 #endif /* SQLITE_OMIT_GENERATED_COLUMNS */
382 #ifndef SQLITE_OMIT_AUTOINCREMENT
384 ** Locate or create an AutoincInfo structure associated with table pTab
385 ** which is in database iDb. Return the register number for the register
386 ** that holds the maximum rowid. Return zero if pTab is not an AUTOINCREMENT
387 ** table. (Also return zero when doing a VACUUM since we do not want to
388 ** update the AUTOINCREMENT counters during a VACUUM.)
390 ** There is at most one AutoincInfo structure per table even if the
391 ** same table is autoincremented multiple times due to inserts within
392 ** triggers. A new AutoincInfo structure is created if this is the
393 ** first use of table pTab. On 2nd and subsequent uses, the original
394 ** AutoincInfo structure is used.
396 ** Four consecutive registers are allocated:
398 ** (1) The name of the pTab table.
399 ** (2) The maximum ROWID of pTab.
400 ** (3) The rowid in sqlite_sequence of pTab
401 ** (4) The original value of the max ROWID in pTab, or NULL if none
403 ** The 2nd register is the one that is returned. That is all the
404 ** insert routine needs to know about.
406 static int autoIncBegin(
407 Parse
*pParse
, /* Parsing context */
408 int iDb
, /* Index of the database holding pTab */
409 Table
*pTab
/* The table we are writing to */
411 int memId
= 0; /* Register holding maximum rowid */
412 assert( pParse
->db
->aDb
[iDb
].pSchema
!=0 );
413 if( (pTab
->tabFlags
& TF_Autoincrement
)!=0
414 && (pParse
->db
->mDbFlags
& DBFLAG_Vacuum
)==0
416 Parse
*pToplevel
= sqlite3ParseToplevel(pParse
);
418 Table
*pSeqTab
= pParse
->db
->aDb
[iDb
].pSchema
->pSeqTab
;
420 /* Verify that the sqlite_sequence table exists and is an ordinary
421 ** rowid table with exactly two columns.
422 ** Ticket d8dc2b3a58cd5dc2918a1d4acb 2018-05-23 */
424 || !HasRowid(pSeqTab
)
425 || NEVER(IsVirtual(pSeqTab
))
429 pParse
->rc
= SQLITE_CORRUPT_SEQUENCE
;
433 pInfo
= pToplevel
->pAinc
;
434 while( pInfo
&& pInfo
->pTab
!=pTab
){ pInfo
= pInfo
->pNext
; }
436 pInfo
= sqlite3DbMallocRawNN(pParse
->db
, sizeof(*pInfo
));
437 sqlite3ParserAddCleanup(pToplevel
, sqlite3DbFree
, pInfo
);
438 testcase( pParse
->earlyCleanup
);
439 if( pParse
->db
->mallocFailed
) return 0;
440 pInfo
->pNext
= pToplevel
->pAinc
;
441 pToplevel
->pAinc
= pInfo
;
444 pToplevel
->nMem
++; /* Register to hold name of table */
445 pInfo
->regCtr
= ++pToplevel
->nMem
; /* Max rowid register */
446 pToplevel
->nMem
+=2; /* Rowid in sqlite_sequence + orig max val */
448 memId
= pInfo
->regCtr
;
454 ** This routine generates code that will initialize all of the
455 ** register used by the autoincrement tracker.
457 void sqlite3AutoincrementBegin(Parse
*pParse
){
458 AutoincInfo
*p
; /* Information about an AUTOINCREMENT */
459 sqlite3
*db
= pParse
->db
; /* The database connection */
460 Db
*pDb
; /* Database only autoinc table */
461 int memId
; /* Register holding max rowid */
462 Vdbe
*v
= pParse
->pVdbe
; /* VDBE under construction */
464 /* This routine is never called during trigger-generation. It is
465 ** only called from the top-level */
466 assert( pParse
->pTriggerTab
==0 );
467 assert( sqlite3IsToplevel(pParse
) );
469 assert( v
); /* We failed long ago if this is not so */
470 for(p
= pParse
->pAinc
; p
; p
= p
->pNext
){
471 static const int iLn
= VDBE_OFFSET_LINENO(2);
472 static const VdbeOpList autoInc
[] = {
473 /* 0 */ {OP_Null
, 0, 0, 0},
474 /* 1 */ {OP_Rewind
, 0, 10, 0},
475 /* 2 */ {OP_Column
, 0, 0, 0},
476 /* 3 */ {OP_Ne
, 0, 9, 0},
477 /* 4 */ {OP_Rowid
, 0, 0, 0},
478 /* 5 */ {OP_Column
, 0, 1, 0},
479 /* 6 */ {OP_AddImm
, 0, 0, 0},
480 /* 7 */ {OP_Copy
, 0, 0, 0},
481 /* 8 */ {OP_Goto
, 0, 11, 0},
482 /* 9 */ {OP_Next
, 0, 2, 0},
483 /* 10 */ {OP_Integer
, 0, 0, 0},
484 /* 11 */ {OP_Close
, 0, 0, 0}
487 pDb
= &db
->aDb
[p
->iDb
];
489 assert( sqlite3SchemaMutexHeld(db
, 0, pDb
->pSchema
) );
490 sqlite3OpenTable(pParse
, 0, p
->iDb
, pDb
->pSchema
->pSeqTab
, OP_OpenRead
);
491 sqlite3VdbeLoadString(v
, memId
-1, p
->pTab
->zName
);
492 aOp
= sqlite3VdbeAddOpList(v
, ArraySize(autoInc
), autoInc
, iLn
);
499 aOp
[3].p5
= SQLITE_JUMPIFNULL
;
506 if( pParse
->nTab
==0 ) pParse
->nTab
= 1;
511 ** Update the maximum rowid for an autoincrement calculation.
513 ** This routine should be called when the regRowid register holds a
514 ** new rowid that is about to be inserted. If that new rowid is
515 ** larger than the maximum rowid in the memId memory cell, then the
516 ** memory cell is updated.
518 static void autoIncStep(Parse
*pParse
, int memId
, int regRowid
){
520 sqlite3VdbeAddOp2(pParse
->pVdbe
, OP_MemMax
, memId
, regRowid
);
525 ** This routine generates the code needed to write autoincrement
526 ** maximum rowid values back into the sqlite_sequence register.
527 ** Every statement that might do an INSERT into an autoincrement
528 ** table (either directly or through triggers) needs to call this
529 ** routine just before the "exit" code.
531 static SQLITE_NOINLINE
void autoIncrementEnd(Parse
*pParse
){
533 Vdbe
*v
= pParse
->pVdbe
;
534 sqlite3
*db
= pParse
->db
;
537 for(p
= pParse
->pAinc
; p
; p
= p
->pNext
){
538 static const int iLn
= VDBE_OFFSET_LINENO(2);
539 static const VdbeOpList autoIncEnd
[] = {
540 /* 0 */ {OP_NotNull
, 0, 2, 0},
541 /* 1 */ {OP_NewRowid
, 0, 0, 0},
542 /* 2 */ {OP_MakeRecord
, 0, 2, 0},
543 /* 3 */ {OP_Insert
, 0, 0, 0},
544 /* 4 */ {OP_Close
, 0, 0, 0}
547 Db
*pDb
= &db
->aDb
[p
->iDb
];
549 int memId
= p
->regCtr
;
551 iRec
= sqlite3GetTempReg(pParse
);
552 assert( sqlite3SchemaMutexHeld(db
, 0, pDb
->pSchema
) );
553 sqlite3VdbeAddOp3(v
, OP_Le
, memId
+2, sqlite3VdbeCurrentAddr(v
)+7, memId
);
555 sqlite3OpenTable(pParse
, 0, p
->iDb
, pDb
->pSchema
->pSeqTab
, OP_OpenWrite
);
556 aOp
= sqlite3VdbeAddOpList(v
, ArraySize(autoIncEnd
), autoIncEnd
, iLn
);
564 aOp
[3].p5
= OPFLAG_APPEND
;
565 sqlite3ReleaseTempReg(pParse
, iRec
);
568 void sqlite3AutoincrementEnd(Parse
*pParse
){
569 if( pParse
->pAinc
) autoIncrementEnd(pParse
);
573 ** If SQLITE_OMIT_AUTOINCREMENT is defined, then the three routines
574 ** above are all no-ops
576 # define autoIncBegin(A,B,C) (0)
577 # define autoIncStep(A,B,C)
578 #endif /* SQLITE_OMIT_AUTOINCREMENT */
581 ** If argument pVal is a Select object returned by an sqlite3MultiValues()
582 ** that was able to use the co-routine optimization, finish coding the
585 void sqlite3MultiValuesEnd(Parse
*pParse
, Select
*pVal
){
586 if( ALWAYS(pVal
) && pVal
->pSrc
->nSrc
>0 ){
587 SrcItem
*pItem
= &pVal
->pSrc
->a
[0];
588 sqlite3VdbeEndCoroutine(pParse
->pVdbe
, pItem
->regReturn
);
589 sqlite3VdbeJumpHere(pParse
->pVdbe
, pItem
->addrFillSub
- 1);
594 ** Return true if all expressions in the expression-list passed as the
595 ** only argument are constant.
597 static int exprListIsConstant(Parse
*pParse
, ExprList
*pRow
){
599 for(ii
=0; ii
<pRow
->nExpr
; ii
++){
600 if( 0==sqlite3ExprIsConstant(pParse
, pRow
->a
[ii
].pExpr
) ) return 0;
606 ** Return true if all expressions in the expression-list passed as the
607 ** only argument are both constant and have no affinity.
609 static int exprListIsNoAffinity(Parse
*pParse
, ExprList
*pRow
){
611 if( exprListIsConstant(pParse
,pRow
)==0 ) return 0;
612 for(ii
=0; ii
<pRow
->nExpr
; ii
++){
613 Expr
*pExpr
= pRow
->a
[ii
].pExpr
;
614 assert( pExpr
->op
!=TK_RAISE
);
615 assert( pExpr
->affExpr
==0 );
616 if( 0!=sqlite3ExprAffinity(pExpr
) ) return 0;
623 ** This function is called by the parser for the second and subsequent
624 ** rows of a multi-row VALUES clause. Argument pLeft is the part of
625 ** the VALUES clause already parsed, argument pRow is the vector of values
626 ** for the new row. The Select object returned represents the complete
627 ** VALUES clause, including the new row.
629 ** There are two ways in which this may be achieved - by incremental
630 ** coding of a co-routine (the "co-routine" method) or by returning a
631 ** Select object equivalent to the following (the "UNION ALL" method):
633 ** "pLeft UNION ALL SELECT pRow"
635 ** If the VALUES clause contains a lot of rows, this compound Select
636 ** object may consume a lot of memory.
638 ** When the co-routine method is used, each row that will be returned
639 ** by the VALUES clause is coded into part of a co-routine as it is
640 ** passed to this function. The returned Select object is equivalent to:
643 ** Select object to read co-routine
646 ** The co-routine method is used in most cases. Exceptions are:
648 ** a) If the current statement has a WITH clause. This is to avoid
651 ** WITH cte AS ( VALUES('x'), ('y') ... )
652 ** SELECT * FROM cte AS a, cte AS b;
654 ** This will not work, as the co-routine uses a hard-coded register
655 ** for its OP_Yield instructions, and so it is not possible for two
656 ** cursors to iterate through it concurrently.
658 ** b) The schema is currently being parsed (i.e. the VALUES clause is part
659 ** of a schema item like a VIEW or TRIGGER). In this case there is no VM
660 ** being generated when parsing is taking place, and so generating
661 ** a co-routine is not possible.
663 ** c) There are non-constant expressions in the VALUES clause (e.g.
664 ** the VALUES clause is part of a correlated sub-query).
666 ** d) One or more of the values in the first row of the VALUES clause
667 ** has an affinity (i.e. is a CAST expression). This causes problems
668 ** because the complex rules SQLite uses (see function
669 ** sqlite3SubqueryColumnTypes() in select.c) to determine the effective
670 ** affinity of such a column for all rows require access to all values in
671 ** the column simultaneously.
673 Select
*sqlite3MultiValues(Parse
*pParse
, Select
*pLeft
, ExprList
*pRow
){
675 if( pParse
->bHasWith
/* condition (a) above */
676 || pParse
->db
->init
.busy
/* condition (b) above */
677 || exprListIsConstant(pParse
,pRow
)==0 /* condition (c) above */
678 || (pLeft
->pSrc
->nSrc
==0 &&
679 exprListIsNoAffinity(pParse
,pLeft
->pEList
)==0) /* condition (d) above */
682 /* The co-routine method cannot be used. Fall back to UNION ALL. */
684 int f
= SF_Values
| SF_MultiValue
;
685 if( pLeft
->pSrc
->nSrc
){
686 sqlite3MultiValuesEnd(pParse
, pLeft
);
688 }else if( pLeft
->pPrior
){
689 /* In this case set the SF_MultiValue flag only if it was set on pLeft */
690 f
= (f
& pLeft
->selFlags
);
692 pSelect
= sqlite3SelectNew(pParse
, pRow
, 0, 0, 0, 0, 0, f
, 0);
693 pLeft
->selFlags
&= ~SF_MultiValue
;
695 pSelect
->op
= TK_ALL
;
696 pSelect
->pPrior
= pLeft
;
700 SrcItem
*p
= 0; /* SrcItem that reads from co-routine */
702 if( pLeft
->pSrc
->nSrc
==0 ){
703 /* Co-routine has not yet been started and the special Select object
704 ** that accesses the co-routine has not yet been created. This block
705 ** does both those things. */
706 Vdbe
*v
= sqlite3GetVdbe(pParse
);
707 Select
*pRet
= sqlite3SelectNew(pParse
, 0, 0, 0, 0, 0, 0, 0, 0);
709 /* Ensure the database schema has been read. This is to ensure we have
710 ** the correct text encoding. */
711 if( (pParse
->db
->mDbFlags
& DBFLAG_SchemaKnownOk
)==0 ){
712 sqlite3ReadSchema(pParse
);
717 pRet
->pSrc
->nSrc
= 1;
718 pRet
->pPrior
= pLeft
->pPrior
;
719 pRet
->op
= pLeft
->op
;
720 if( pRet
->pPrior
) pRet
->selFlags
|= SF_Values
;
722 pLeft
->op
= TK_SELECT
;
723 assert( pLeft
->pNext
==0 );
724 assert( pRet
->pNext
==0 );
725 p
= &pRet
->pSrc
->a
[0];
727 p
->fg
.viaCoroutine
= 1;
728 p
->addrFillSub
= sqlite3VdbeCurrentAddr(v
) + 1;
729 p
->regReturn
= ++pParse
->nMem
;
732 sqlite3VdbeAddOp3(v
,OP_InitCoroutine
,p
->regReturn
,0,p
->addrFillSub
);
733 sqlite3SelectDestInit(&dest
, SRT_Coroutine
, p
->regReturn
);
735 /* Allocate registers for the output of the co-routine. Do so so
736 ** that there are two unused registers immediately before those
737 ** used by the co-routine. This allows the code in sqlite3Insert()
738 ** to use these registers directly, instead of copying the output
739 ** of the co-routine to a separate array for processing. */
740 dest
.iSdst
= pParse
->nMem
+ 3;
741 dest
.nSdst
= pLeft
->pEList
->nExpr
;
742 pParse
->nMem
+= 2 + dest
.nSdst
;
744 pLeft
->selFlags
|= SF_MultiValue
;
745 sqlite3Select(pParse
, pLeft
, &dest
);
746 p
->regResult
= dest
.iSdst
;
747 assert( pParse
->nErr
|| dest
.iSdst
>0 );
751 p
= &pLeft
->pSrc
->a
[0];
752 assert( !p
->fg
.isTabFunc
&& !p
->fg
.isIndexedBy
);
756 if( pParse
->nErr
==0 ){
758 if( p
->pSelect
->pEList
->nExpr
!=pRow
->nExpr
){
759 sqlite3SelectWrongNumTermsError(pParse
, p
->pSelect
);
761 sqlite3ExprCodeExprList(pParse
, pRow
, p
->regResult
, 0, 0);
762 sqlite3VdbeAddOp1(pParse
->pVdbe
, OP_Yield
, p
->regReturn
);
765 sqlite3ExprListDelete(pParse
->db
, pRow
);
771 /* Forward declaration */
772 static int xferOptimization(
773 Parse
*pParse
, /* Parser context */
774 Table
*pDest
, /* The table we are inserting into */
775 Select
*pSelect
, /* A SELECT statement to use as the data source */
776 int onError
, /* How to handle constraint errors */
777 int iDbDest
/* The database of pDest */
781 ** This routine is called to handle SQL of the following forms:
783 ** insert into TABLE (IDLIST) values(EXPRLIST),(EXPRLIST),...
784 ** insert into TABLE (IDLIST) select
785 ** insert into TABLE (IDLIST) default values
787 ** The IDLIST following the table name is always optional. If omitted,
788 ** then a list of all (non-hidden) columns for the table is substituted.
789 ** The IDLIST appears in the pColumn parameter. pColumn is NULL if IDLIST
792 ** For the pSelect parameter holds the values to be inserted for the
793 ** first two forms shown above. A VALUES clause is really just short-hand
794 ** for a SELECT statement that omits the FROM clause and everything else
795 ** that follows. If the pSelect parameter is NULL, that means that the
796 ** DEFAULT VALUES form of the INSERT statement is intended.
798 ** The code generated follows one of four templates. For a simple
799 ** insert with data coming from a single-row VALUES clause, the code executes
800 ** once straight down through. Pseudo-code follows (we call this
801 ** the "1st template"):
803 ** open write cursor to <table> and its indices
804 ** put VALUES clause expressions into registers
805 ** write the resulting record into <table>
808 ** The three remaining templates assume the statement is of the form
810 ** INSERT INTO <table> SELECT ...
812 ** If the SELECT clause is of the restricted form "SELECT * FROM <table2>" -
813 ** in other words if the SELECT pulls all columns from a single table
814 ** and there is no WHERE or LIMIT or GROUP BY or ORDER BY clauses, and
815 ** if <table2> and <table1> are distinct tables but have identical
816 ** schemas, including all the same indices, then a special optimization
817 ** is invoked that copies raw records from <table2> over to <table1>.
818 ** See the xferOptimization() function for the implementation of this
819 ** template. This is the 2nd template.
821 ** open a write cursor to <table>
822 ** open read cursor on <table2>
823 ** transfer all records in <table2> over to <table>
825 ** foreach index on <table>
826 ** open a write cursor on the <table> index
827 ** open a read cursor on the corresponding <table2> index
828 ** transfer all records from the read to the write cursors
832 ** The 3rd template is for when the second template does not apply
833 ** and the SELECT clause does not read from <table> at any time.
834 ** The generated code follows this template:
838 ** A: setup for the SELECT
839 ** loop over the rows in the SELECT
840 ** load values into registers R..R+n
843 ** cleanup after the SELECT
845 ** B: open write cursor to <table> and its indices
846 ** C: yield X, at EOF goto D
847 ** insert the select result into <table> from R..R+n
851 ** The 4th template is used if the insert statement takes its
852 ** values from a SELECT but the data is being inserted into a table
853 ** that is also read as part of the SELECT. In the third form,
854 ** we have to use an intermediate table to store the results of
855 ** the select. The template is like this:
859 ** A: setup for the SELECT
860 ** loop over the tables in the SELECT
861 ** load value into register R..R+n
864 ** cleanup after the SELECT
866 ** B: open temp table
867 ** L: yield X, at EOF goto M
868 ** insert row from R..R+n into temp table
870 ** M: open write cursor to <table> and its indices
872 ** C: loop over rows of intermediate table
873 ** transfer values form intermediate table into <table>
878 Parse
*pParse
, /* Parser context */
879 SrcList
*pTabList
, /* Name of table into which we are inserting */
880 Select
*pSelect
, /* A SELECT statement to use as the data source */
881 IdList
*pColumn
, /* Column names corresponding to IDLIST, or NULL. */
882 int onError
, /* How to handle constraint errors */
883 Upsert
*pUpsert
/* ON CONFLICT clauses for upsert, or NULL */
885 sqlite3
*db
; /* The main database structure */
886 Table
*pTab
; /* The table to insert into. aka TABLE */
887 int i
, j
; /* Loop counters */
888 Vdbe
*v
; /* Generate code into this virtual machine */
889 Index
*pIdx
; /* For looping over indices of the table */
890 int nColumn
; /* Number of columns in the data */
891 int nHidden
= 0; /* Number of hidden columns if TABLE is virtual */
892 int iDataCur
= 0; /* VDBE cursor that is the main data repository */
893 int iIdxCur
= 0; /* First index cursor */
894 int ipkColumn
= -1; /* Column that is the INTEGER PRIMARY KEY */
895 int endOfLoop
; /* Label for the end of the insertion loop */
896 int srcTab
= 0; /* Data comes from this temporary cursor if >=0 */
897 int addrInsTop
= 0; /* Jump to label "D" */
898 int addrCont
= 0; /* Top of insert loop. Label "C" in templates 3 and 4 */
899 SelectDest dest
; /* Destination for SELECT on rhs of INSERT */
900 int iDb
; /* Index of database holding TABLE */
901 u8 useTempTable
= 0; /* Store SELECT results in intermediate table */
902 u8 appendFlag
= 0; /* True if the insert is likely to be an append */
903 u8 withoutRowid
; /* 0 for normal table. 1 for WITHOUT ROWID table */
904 u8 bIdListInOrder
; /* True if IDLIST is in table order */
905 ExprList
*pList
= 0; /* List of VALUES() to be inserted */
906 int iRegStore
; /* Register in which to store next column */
908 /* Register allocations */
909 int regFromSelect
= 0;/* Base register for data coming from SELECT */
910 int regAutoinc
= 0; /* Register holding the AUTOINCREMENT counter */
911 int regRowCount
= 0; /* Memory cell used for the row counter */
912 int regIns
; /* Block of regs holding rowid+data being inserted */
913 int regRowid
; /* registers holding insert rowid */
914 int regData
; /* register holding first column to insert */
915 int *aRegIdx
= 0; /* One register allocated to each index */
917 #ifndef SQLITE_OMIT_TRIGGER
918 int isView
; /* True if attempting to insert into a view */
919 Trigger
*pTrigger
; /* List of triggers on pTab, if required */
920 int tmask
; /* Mask of trigger times */
924 assert( db
->pParse
==pParse
);
928 assert( db
->mallocFailed
==0 );
929 dest
.iSDParm
= 0; /* Suppress a harmless compiler warning */
931 /* If the Select object is really just a simple VALUES() list with a
932 ** single row (the common case) then keep that one row of values
933 ** and discard the other (unused) parts of the pSelect object
935 if( pSelect
&& (pSelect
->selFlags
& SF_Values
)!=0 && pSelect
->pPrior
==0 ){
936 pList
= pSelect
->pEList
;
938 sqlite3SelectDelete(db
, pSelect
);
942 /* Locate the table into which we will be inserting new information.
944 assert( pTabList
->nSrc
==1 );
945 pTab
= sqlite3SrcListLookup(pParse
, pTabList
);
949 iDb
= sqlite3SchemaToIndex(db
, pTab
->pSchema
);
950 assert( iDb
<db
->nDb
);
951 if( sqlite3AuthCheck(pParse
, SQLITE_INSERT
, pTab
->zName
, 0,
952 db
->aDb
[iDb
].zDbSName
) ){
955 withoutRowid
= !HasRowid(pTab
);
957 /* Figure out if we have any triggers and if the table being
958 ** inserted into is a view
960 #ifndef SQLITE_OMIT_TRIGGER
961 pTrigger
= sqlite3TriggersExist(pParse
, pTab
, TK_INSERT
, 0, &tmask
);
962 isView
= IsView(pTab
);
968 #ifdef SQLITE_OMIT_VIEW
972 assert( (pTrigger
&& tmask
) || (pTrigger
==0 && tmask
==0) );
974 #if TREETRACE_ENABLED
975 if( sqlite3TreeTrace
& 0x10000 ){
976 sqlite3TreeViewLine(0, "In sqlite3Insert() at %s:%d", __FILE__
, __LINE__
);
977 sqlite3TreeViewInsert(pParse
->pWith
, pTabList
, pColumn
, pSelect
, pList
,
978 onError
, pUpsert
, pTrigger
);
982 /* If pTab is really a view, make sure it has been initialized.
983 ** ViewGetColumnNames() is a no-op if pTab is not a view.
985 if( sqlite3ViewGetColumnNames(pParse
, pTab
) ){
989 /* Cannot insert into a read-only table.
991 if( sqlite3IsReadOnly(pParse
, pTab
, pTrigger
) ){
997 v
= sqlite3GetVdbe(pParse
);
998 if( v
==0 ) goto insert_cleanup
;
999 if( pParse
->nested
==0 ) sqlite3VdbeCountChanges(v
);
1000 sqlite3BeginWriteOperation(pParse
, pSelect
|| pTrigger
, iDb
);
1002 #ifndef SQLITE_OMIT_XFER_OPT
1003 /* If the statement is of the form
1005 ** INSERT INTO <table1> SELECT * FROM <table2>;
1007 ** Then special optimizations can be applied that make the transfer
1008 ** very fast and which reduce fragmentation of indices.
1010 ** This is the 2nd template.
1015 && xferOptimization(pParse
, pTab
, pSelect
, onError
, iDb
)
1017 assert( !pTrigger
);
1021 #endif /* SQLITE_OMIT_XFER_OPT */
1023 /* If this is an AUTOINCREMENT table, look up the sequence number in the
1024 ** sqlite_sequence table and store it in memory cell regAutoinc.
1026 regAutoinc
= autoIncBegin(pParse
, iDb
, pTab
);
1028 /* Allocate a block registers to hold the rowid and the values
1029 ** for all columns of the new row.
1031 regRowid
= regIns
= pParse
->nMem
+1;
1032 pParse
->nMem
+= pTab
->nCol
+ 1;
1033 if( IsVirtual(pTab
) ){
1037 regData
= regRowid
+1;
1039 /* If the INSERT statement included an IDLIST term, then make sure
1040 ** all elements of the IDLIST really are columns of the table and
1041 ** remember the column indices.
1043 ** If the table has an INTEGER PRIMARY KEY column and that column
1044 ** is named in the IDLIST, then record in the ipkColumn variable
1045 ** the index into IDLIST of the primary key column. ipkColumn is
1046 ** the index of the primary key as it appears in IDLIST, not as
1047 ** is appears in the original table. (The index of the INTEGER
1048 ** PRIMARY KEY in the original table is pTab->iPKey.) After this
1049 ** loop, if ipkColumn==(-1), that means that integer primary key
1050 ** is unspecified, and hence the table is either WITHOUT ROWID or
1051 ** it will automatically generated an integer primary key.
1053 ** bIdListInOrder is true if the columns in IDLIST are in storage
1054 ** order. This enables an optimization that avoids shuffling the
1055 ** columns into storage order. False negatives are harmless,
1056 ** but false positives will cause database corruption.
1058 bIdListInOrder
= (pTab
->tabFlags
& (TF_OOOHidden
|TF_HasStored
))==0;
1060 assert( pColumn
->eU4
!=EU4_EXPR
);
1061 pColumn
->eU4
= EU4_IDX
;
1062 for(i
=0; i
<pColumn
->nId
; i
++){
1063 pColumn
->a
[i
].u4
.idx
= -1;
1065 for(i
=0; i
<pColumn
->nId
; i
++){
1066 for(j
=0; j
<pTab
->nCol
; j
++){
1067 if( sqlite3StrICmp(pColumn
->a
[i
].zName
, pTab
->aCol
[j
].zCnName
)==0 ){
1068 pColumn
->a
[i
].u4
.idx
= j
;
1069 if( i
!=j
) bIdListInOrder
= 0;
1070 if( j
==pTab
->iPKey
){
1071 ipkColumn
= i
; assert( !withoutRowid
);
1073 #ifndef SQLITE_OMIT_GENERATED_COLUMNS
1074 if( pTab
->aCol
[j
].colFlags
& (COLFLAG_STORED
|COLFLAG_VIRTUAL
) ){
1075 sqlite3ErrorMsg(pParse
,
1076 "cannot INSERT into generated column \"%s\"",
1077 pTab
->aCol
[j
].zCnName
);
1078 goto insert_cleanup
;
1084 if( j
>=pTab
->nCol
){
1085 if( sqlite3IsRowid(pColumn
->a
[i
].zName
) && !withoutRowid
){
1089 sqlite3ErrorMsg(pParse
, "table %S has no column named %s",
1090 pTabList
->a
, pColumn
->a
[i
].zName
);
1091 pParse
->checkSchema
= 1;
1092 goto insert_cleanup
;
1098 /* Figure out how many columns of data are supplied. If the data
1099 ** is coming from a SELECT statement, then generate a co-routine that
1100 ** produces a single row of the SELECT on each invocation. The
1101 ** co-routine is the common header to the 3rd and 4th templates.
1104 /* Data is coming from a SELECT or from a multi-row VALUES clause.
1105 ** Generate a co-routine to run the SELECT. */
1106 int rc
; /* Result code */
1108 if( pSelect
->pSrc
->nSrc
==1
1109 && pSelect
->pSrc
->a
[0].fg
.viaCoroutine
1110 && pSelect
->pPrior
==0
1112 SrcItem
*pItem
= &pSelect
->pSrc
->a
[0];
1113 dest
.iSDParm
= pItem
->regReturn
;
1114 regFromSelect
= pItem
->regResult
;
1115 nColumn
= pItem
->pSelect
->pEList
->nExpr
;
1116 ExplainQueryPlan((pParse
, 0, "SCAN %S", pItem
));
1117 if( bIdListInOrder
&& nColumn
==pTab
->nCol
){
1118 regData
= regFromSelect
;
1119 regRowid
= regData
- 1;
1120 regIns
= regRowid
- (IsVirtual(pTab
) ? 1 : 0);
1123 int addrTop
; /* Top of the co-routine */
1124 int regYield
= ++pParse
->nMem
;
1125 addrTop
= sqlite3VdbeCurrentAddr(v
) + 1;
1126 sqlite3VdbeAddOp3(v
, OP_InitCoroutine
, regYield
, 0, addrTop
);
1127 sqlite3SelectDestInit(&dest
, SRT_Coroutine
, regYield
);
1128 dest
.iSdst
= bIdListInOrder
? regData
: 0;
1129 dest
.nSdst
= pTab
->nCol
;
1130 rc
= sqlite3Select(pParse
, pSelect
, &dest
);
1131 regFromSelect
= dest
.iSdst
;
1132 assert( db
->pParse
==pParse
);
1133 if( rc
|| pParse
->nErr
) goto insert_cleanup
;
1134 assert( db
->mallocFailed
==0 );
1135 sqlite3VdbeEndCoroutine(v
, regYield
);
1136 sqlite3VdbeJumpHere(v
, addrTop
- 1); /* label B: */
1137 assert( pSelect
->pEList
);
1138 nColumn
= pSelect
->pEList
->nExpr
;
1141 /* Set useTempTable to TRUE if the result of the SELECT statement
1142 ** should be written into a temporary table (template 4). Set to
1143 ** FALSE if each output row of the SELECT can be written directly into
1144 ** the destination table (template 3).
1146 ** A temp table must be used if the table being updated is also one
1147 ** of the tables being read by the SELECT statement. Also use a
1148 ** temp table in the case of row triggers.
1150 if( pTrigger
|| readsTable(pParse
, iDb
, pTab
) ){
1155 /* Invoke the coroutine to extract information from the SELECT
1156 ** and add it to a transient table srcTab. The code generated
1157 ** here is from the 4th template:
1159 ** B: open temp table
1160 ** L: yield X, goto M at EOF
1161 ** insert row from R..R+n into temp table
1165 int regRec
; /* Register to hold packed record */
1166 int regTempRowid
; /* Register to hold temp table ROWID */
1167 int addrL
; /* Label "L" */
1169 srcTab
= pParse
->nTab
++;
1170 regRec
= sqlite3GetTempReg(pParse
);
1171 regTempRowid
= sqlite3GetTempReg(pParse
);
1172 sqlite3VdbeAddOp2(v
, OP_OpenEphemeral
, srcTab
, nColumn
);
1173 addrL
= sqlite3VdbeAddOp1(v
, OP_Yield
, dest
.iSDParm
); VdbeCoverage(v
);
1174 sqlite3VdbeAddOp3(v
, OP_MakeRecord
, regFromSelect
, nColumn
, regRec
);
1175 sqlite3VdbeAddOp2(v
, OP_NewRowid
, srcTab
, regTempRowid
);
1176 sqlite3VdbeAddOp3(v
, OP_Insert
, srcTab
, regRec
, regTempRowid
);
1177 sqlite3VdbeGoto(v
, addrL
);
1178 sqlite3VdbeJumpHere(v
, addrL
);
1179 sqlite3ReleaseTempReg(pParse
, regRec
);
1180 sqlite3ReleaseTempReg(pParse
, regTempRowid
);
1183 /* This is the case if the data for the INSERT is coming from a
1184 ** single-row VALUES clause
1187 memset(&sNC
, 0, sizeof(sNC
));
1188 sNC
.pParse
= pParse
;
1190 assert( useTempTable
==0 );
1192 nColumn
= pList
->nExpr
;
1193 if( sqlite3ResolveExprListNames(&sNC
, pList
) ){
1194 goto insert_cleanup
;
1201 /* If there is no IDLIST term but the table has an integer primary
1202 ** key, the set the ipkColumn variable to the integer primary key
1203 ** column index in the original table definition.
1205 if( pColumn
==0 && nColumn
>0 ){
1206 ipkColumn
= pTab
->iPKey
;
1207 #ifndef SQLITE_OMIT_GENERATED_COLUMNS
1208 if( ipkColumn
>=0 && (pTab
->tabFlags
& TF_HasGenerated
)!=0 ){
1209 testcase( pTab
->tabFlags
& TF_HasVirtual
);
1210 testcase( pTab
->tabFlags
& TF_HasStored
);
1211 for(i
=ipkColumn
-1; i
>=0; i
--){
1212 if( pTab
->aCol
[i
].colFlags
& COLFLAG_GENERATED
){
1213 testcase( pTab
->aCol
[i
].colFlags
& COLFLAG_VIRTUAL
);
1214 testcase( pTab
->aCol
[i
].colFlags
& COLFLAG_STORED
);
1221 /* Make sure the number of columns in the source data matches the number
1222 ** of columns to be inserted into the table.
1224 assert( TF_HasHidden
==COLFLAG_HIDDEN
);
1225 assert( TF_HasGenerated
==COLFLAG_GENERATED
);
1226 assert( COLFLAG_NOINSERT
==(COLFLAG_GENERATED
|COLFLAG_HIDDEN
) );
1227 if( (pTab
->tabFlags
& (TF_HasGenerated
|TF_HasHidden
))!=0 ){
1228 for(i
=0; i
<pTab
->nCol
; i
++){
1229 if( pTab
->aCol
[i
].colFlags
& COLFLAG_NOINSERT
) nHidden
++;
1232 if( nColumn
!=(pTab
->nCol
-nHidden
) ){
1233 sqlite3ErrorMsg(pParse
,
1234 "table %S has %d columns but %d values were supplied",
1235 pTabList
->a
, pTab
->nCol
-nHidden
, nColumn
);
1236 goto insert_cleanup
;
1239 if( pColumn
!=0 && nColumn
!=pColumn
->nId
){
1240 sqlite3ErrorMsg(pParse
, "%d values for %d columns", nColumn
, pColumn
->nId
);
1241 goto insert_cleanup
;
1244 /* Initialize the count of rows to be inserted
1246 if( (db
->flags
& SQLITE_CountRows
)!=0
1248 && !pParse
->pTriggerTab
1249 && !pParse
->bReturning
1251 regRowCount
= ++pParse
->nMem
;
1252 sqlite3VdbeAddOp2(v
, OP_Integer
, 0, regRowCount
);
1255 /* If this is not a view, open the table and and all indices */
1258 nIdx
= sqlite3OpenTableAndIndices(pParse
, pTab
, OP_OpenWrite
, 0, -1, 0,
1259 &iDataCur
, &iIdxCur
);
1260 aRegIdx
= sqlite3DbMallocRawNN(db
, sizeof(int)*(nIdx
+2));
1262 goto insert_cleanup
;
1264 for(i
=0, pIdx
=pTab
->pIndex
; i
<nIdx
; pIdx
=pIdx
->pNext
, i
++){
1266 aRegIdx
[i
] = ++pParse
->nMem
;
1267 pParse
->nMem
+= pIdx
->nColumn
;
1269 aRegIdx
[i
] = ++pParse
->nMem
; /* Register to store the table record */
1271 #ifndef SQLITE_OMIT_UPSERT
1274 if( IsVirtual(pTab
) ){
1275 sqlite3ErrorMsg(pParse
, "UPSERT not implemented for virtual table \"%s\"",
1277 goto insert_cleanup
;
1280 sqlite3ErrorMsg(pParse
, "cannot UPSERT a view");
1281 goto insert_cleanup
;
1283 if( sqlite3HasExplicitNulls(pParse
, pUpsert
->pUpsertTarget
) ){
1284 goto insert_cleanup
;
1286 pTabList
->a
[0].iCursor
= iDataCur
;
1289 pNx
->pUpsertSrc
= pTabList
;
1290 pNx
->regData
= regData
;
1291 pNx
->iDataCur
= iDataCur
;
1292 pNx
->iIdxCur
= iIdxCur
;
1293 if( pNx
->pUpsertTarget
){
1294 if( sqlite3UpsertAnalyzeTarget(pParse
, pTabList
, pNx
, pUpsert
) ){
1295 goto insert_cleanup
;
1298 pNx
= pNx
->pNextUpsert
;
1304 /* This is the top of the main insertion loop */
1306 /* This block codes the top of loop only. The complete loop is the
1307 ** following pseudocode (template 4):
1309 ** rewind temp table, if empty goto D
1310 ** C: loop over rows of intermediate table
1311 ** transfer values form intermediate table into <table>
1315 addrInsTop
= sqlite3VdbeAddOp1(v
, OP_Rewind
, srcTab
); VdbeCoverage(v
);
1316 addrCont
= sqlite3VdbeCurrentAddr(v
);
1317 }else if( pSelect
){
1318 /* This block codes the top of loop only. The complete loop is the
1319 ** following pseudocode (template 3):
1321 ** C: yield X, at EOF goto D
1322 ** insert the select result into <table> from R..R+n
1326 sqlite3VdbeReleaseRegisters(pParse
, regData
, pTab
->nCol
, 0, 0);
1327 addrInsTop
= addrCont
= sqlite3VdbeAddOp1(v
, OP_Yield
, dest
.iSDParm
);
1330 /* tag-20191021-001: If the INTEGER PRIMARY KEY is being generated by the
1331 ** SELECT, go ahead and copy the value into the rowid slot now, so that
1332 ** the value does not get overwritten by a NULL at tag-20191021-002. */
1333 sqlite3VdbeAddOp2(v
, OP_Copy
, regFromSelect
+ipkColumn
, regRowid
);
1337 /* Compute data for ordinary columns of the new entry. Values
1338 ** are written in storage order into registers starting with regData.
1339 ** Only ordinary columns are computed in this loop. The rowid
1340 ** (if there is one) is computed later and generated columns are
1341 ** computed after the rowid since they might depend on the value
1345 iRegStore
= regData
; assert( regData
==regRowid
+1 );
1346 for(i
=0; i
<pTab
->nCol
; i
++, iRegStore
++){
1349 assert( i
>=nHidden
);
1350 if( i
==pTab
->iPKey
){
1351 /* tag-20191021-002: References to the INTEGER PRIMARY KEY are filled
1352 ** using the rowid. So put a NULL in the IPK slot of the record to avoid
1353 ** using excess space. The file format definition requires this extra
1354 ** NULL - we cannot optimize further by skipping the column completely */
1355 sqlite3VdbeAddOp1(v
, OP_SoftNull
, iRegStore
);
1358 if( ((colFlags
= pTab
->aCol
[i
].colFlags
) & COLFLAG_NOINSERT
)!=0 ){
1360 if( (colFlags
& COLFLAG_VIRTUAL
)!=0 ){
1361 /* Virtual columns do not participate in OP_MakeRecord. So back up
1362 ** iRegStore by one slot to compensate for the iRegStore++ in the
1363 ** outer for() loop */
1366 }else if( (colFlags
& COLFLAG_STORED
)!=0 ){
1367 /* Stored columns are computed later. But if there are BEFORE
1368 ** triggers, the slots used for stored columns will be OP_Copy-ed
1369 ** to a second block of registers, so the register needs to be
1370 ** initialized to NULL to avoid an uninitialized register read */
1371 if( tmask
& TRIGGER_BEFORE
){
1372 sqlite3VdbeAddOp1(v
, OP_SoftNull
, iRegStore
);
1375 }else if( pColumn
==0 ){
1376 /* Hidden columns that are not explicitly named in the INSERT
1377 ** get there default value */
1378 sqlite3ExprCodeFactorable(pParse
,
1379 sqlite3ColumnExpr(pTab
, &pTab
->aCol
[i
]),
1385 assert( pColumn
->eU4
==EU4_IDX
);
1386 for(j
=0; j
<pColumn
->nId
&& pColumn
->a
[j
].u4
.idx
!=i
; j
++){}
1387 if( j
>=pColumn
->nId
){
1388 /* A column not named in the insert column list gets its
1390 sqlite3ExprCodeFactorable(pParse
,
1391 sqlite3ColumnExpr(pTab
, &pTab
->aCol
[i
]),
1396 }else if( nColumn
==0 ){
1397 /* This is INSERT INTO ... DEFAULT VALUES. Load the default value. */
1398 sqlite3ExprCodeFactorable(pParse
,
1399 sqlite3ColumnExpr(pTab
, &pTab
->aCol
[i
]),
1407 sqlite3VdbeAddOp3(v
, OP_Column
, srcTab
, k
, iRegStore
);
1408 }else if( pSelect
){
1409 if( regFromSelect
!=regData
){
1410 sqlite3VdbeAddOp2(v
, OP_SCopy
, regFromSelect
+k
, iRegStore
);
1413 Expr
*pX
= pList
->a
[k
].pExpr
;
1414 int y
= sqlite3ExprCodeTarget(pParse
, pX
, iRegStore
);
1416 sqlite3VdbeAddOp2(v
,
1417 ExprHasProperty(pX
, EP_Subquery
) ? OP_Copy
: OP_SCopy
, y
, iRegStore
);
1423 /* Run the BEFORE and INSTEAD OF triggers, if there are any
1425 endOfLoop
= sqlite3VdbeMakeLabel(pParse
);
1426 if( tmask
& TRIGGER_BEFORE
){
1427 int regCols
= sqlite3GetTempRange(pParse
, pTab
->nCol
+1);
1429 /* build the NEW.* reference row. Note that if there is an INTEGER
1430 ** PRIMARY KEY into which a NULL is being inserted, that NULL will be
1431 ** translated into a unique ID for the row. But on a BEFORE trigger,
1432 ** we do not know what the unique ID will be (because the insert has
1433 ** not happened yet) so we substitute a rowid of -1
1436 sqlite3VdbeAddOp2(v
, OP_Integer
, -1, regCols
);
1439 assert( !withoutRowid
);
1441 sqlite3VdbeAddOp3(v
, OP_Column
, srcTab
, ipkColumn
, regCols
);
1443 assert( pSelect
==0 ); /* Otherwise useTempTable is true */
1444 sqlite3ExprCode(pParse
, pList
->a
[ipkColumn
].pExpr
, regCols
);
1446 addr1
= sqlite3VdbeAddOp1(v
, OP_NotNull
, regCols
); VdbeCoverage(v
);
1447 sqlite3VdbeAddOp2(v
, OP_Integer
, -1, regCols
);
1448 sqlite3VdbeJumpHere(v
, addr1
);
1449 sqlite3VdbeAddOp1(v
, OP_MustBeInt
, regCols
); VdbeCoverage(v
);
1452 /* Copy the new data already generated. */
1453 assert( pTab
->nNVCol
>0 || pParse
->nErr
>0 );
1454 sqlite3VdbeAddOp3(v
, OP_Copy
, regRowid
+1, regCols
+1, pTab
->nNVCol
-1);
1456 #ifndef SQLITE_OMIT_GENERATED_COLUMNS
1457 /* Compute the new value for generated columns after all other
1458 ** columns have already been computed. This must be done after
1459 ** computing the ROWID in case one of the generated columns
1460 ** refers to the ROWID. */
1461 if( pTab
->tabFlags
& TF_HasGenerated
){
1462 testcase( pTab
->tabFlags
& TF_HasVirtual
);
1463 testcase( pTab
->tabFlags
& TF_HasStored
);
1464 sqlite3ComputeGeneratedColumns(pParse
, regCols
+1, pTab
);
1468 /* If this is an INSERT on a view with an INSTEAD OF INSERT trigger,
1469 ** do not attempt any conversions before assembling the record.
1470 ** If this is a real table, attempt conversions as required by the
1471 ** table column affinities.
1474 sqlite3TableAffinity(v
, pTab
, regCols
+1);
1477 /* Fire BEFORE or INSTEAD OF triggers */
1478 sqlite3CodeRowTrigger(pParse
, pTrigger
, TK_INSERT
, 0, TRIGGER_BEFORE
,
1479 pTab
, regCols
-pTab
->nCol
-1, onError
, endOfLoop
);
1481 sqlite3ReleaseTempRange(pParse
, regCols
, pTab
->nCol
+1);
1485 if( IsVirtual(pTab
) ){
1486 /* The row that the VUpdate opcode will delete: none */
1487 sqlite3VdbeAddOp2(v
, OP_Null
, 0, regIns
);
1490 /* Compute the new rowid */
1492 sqlite3VdbeAddOp3(v
, OP_Column
, srcTab
, ipkColumn
, regRowid
);
1493 }else if( pSelect
){
1494 /* Rowid already initialized at tag-20191021-001 */
1496 Expr
*pIpk
= pList
->a
[ipkColumn
].pExpr
;
1497 if( pIpk
->op
==TK_NULL
&& !IsVirtual(pTab
) ){
1498 sqlite3VdbeAddOp3(v
, OP_NewRowid
, iDataCur
, regRowid
, regAutoinc
);
1501 sqlite3ExprCode(pParse
, pList
->a
[ipkColumn
].pExpr
, regRowid
);
1504 /* If the PRIMARY KEY expression is NULL, then use OP_NewRowid
1505 ** to generate a unique primary key value.
1509 if( !IsVirtual(pTab
) ){
1510 addr1
= sqlite3VdbeAddOp1(v
, OP_NotNull
, regRowid
); VdbeCoverage(v
);
1511 sqlite3VdbeAddOp3(v
, OP_NewRowid
, iDataCur
, regRowid
, regAutoinc
);
1512 sqlite3VdbeJumpHere(v
, addr1
);
1514 addr1
= sqlite3VdbeCurrentAddr(v
);
1515 sqlite3VdbeAddOp2(v
, OP_IsNull
, regRowid
, addr1
+2); VdbeCoverage(v
);
1517 sqlite3VdbeAddOp1(v
, OP_MustBeInt
, regRowid
); VdbeCoverage(v
);
1519 }else if( IsVirtual(pTab
) || withoutRowid
){
1520 sqlite3VdbeAddOp2(v
, OP_Null
, 0, regRowid
);
1522 sqlite3VdbeAddOp3(v
, OP_NewRowid
, iDataCur
, regRowid
, regAutoinc
);
1525 autoIncStep(pParse
, regAutoinc
, regRowid
);
1527 #ifndef SQLITE_OMIT_GENERATED_COLUMNS
1528 /* Compute the new value for generated columns after all other
1529 ** columns have already been computed. This must be done after
1530 ** computing the ROWID in case one of the generated columns
1531 ** is derived from the INTEGER PRIMARY KEY. */
1532 if( pTab
->tabFlags
& TF_HasGenerated
){
1533 sqlite3ComputeGeneratedColumns(pParse
, regRowid
+1, pTab
);
1537 /* Generate code to check constraints and generate index keys and
1538 ** do the insertion.
1540 #ifndef SQLITE_OMIT_VIRTUALTABLE
1541 if( IsVirtual(pTab
) ){
1542 const char *pVTab
= (const char *)sqlite3GetVTable(db
, pTab
);
1543 sqlite3VtabMakeWritable(pParse
, pTab
);
1544 sqlite3VdbeAddOp4(v
, OP_VUpdate
, 1, pTab
->nCol
+2, regIns
, pVTab
, P4_VTAB
);
1545 sqlite3VdbeChangeP5(v
, onError
==OE_Default
? OE_Abort
: onError
);
1546 sqlite3MayAbort(pParse
);
1550 int isReplace
= 0;/* Set to true if constraints may cause a replace */
1551 int bUseSeek
; /* True to use OPFLAG_SEEKRESULT */
1552 sqlite3GenerateConstraintChecks(pParse
, pTab
, aRegIdx
, iDataCur
, iIdxCur
,
1553 regIns
, 0, ipkColumn
>=0, onError
, endOfLoop
, &isReplace
, 0, pUpsert
1555 if( db
->flags
& SQLITE_ForeignKeys
){
1556 sqlite3FkCheck(pParse
, pTab
, 0, regIns
, 0, 0);
1559 /* Set the OPFLAG_USESEEKRESULT flag if either (a) there are no REPLACE
1560 ** constraints or (b) there are no triggers and this table is not a
1561 ** parent table in a foreign key constraint. It is safe to set the
1562 ** flag in the second case as if any REPLACE constraint is hit, an
1563 ** OP_Delete or OP_IdxDelete instruction will be executed on each
1564 ** cursor that is disturbed. And these instructions both clear the
1565 ** VdbeCursor.seekResult variable, disabling the OPFLAG_USESEEKRESULT
1566 ** functionality. */
1567 bUseSeek
= (isReplace
==0 || !sqlite3VdbeHasSubProgram(v
));
1568 sqlite3CompleteInsertion(pParse
, pTab
, iDataCur
, iIdxCur
,
1569 regIns
, aRegIdx
, 0, appendFlag
, bUseSeek
1572 #ifdef SQLITE_ALLOW_ROWID_IN_VIEW
1573 }else if( pParse
->bReturning
){
1574 /* If there is a RETURNING clause, populate the rowid register with
1575 ** constant value -1, in case one or more of the returned expressions
1576 ** refer to the "rowid" of the view. */
1577 sqlite3VdbeAddOp2(v
, OP_Integer
, -1, regRowid
);
1581 /* Update the count of rows that are inserted
1584 sqlite3VdbeAddOp2(v
, OP_AddImm
, regRowCount
, 1);
1588 /* Code AFTER triggers */
1589 sqlite3CodeRowTrigger(pParse
, pTrigger
, TK_INSERT
, 0, TRIGGER_AFTER
,
1590 pTab
, regData
-2-pTab
->nCol
, onError
, endOfLoop
);
1593 /* The bottom of the main insertion loop, if the data source
1594 ** is a SELECT statement.
1596 sqlite3VdbeResolveLabel(v
, endOfLoop
);
1598 sqlite3VdbeAddOp2(v
, OP_Next
, srcTab
, addrCont
); VdbeCoverage(v
);
1599 sqlite3VdbeJumpHere(v
, addrInsTop
);
1600 sqlite3VdbeAddOp1(v
, OP_Close
, srcTab
);
1601 }else if( pSelect
){
1602 sqlite3VdbeGoto(v
, addrCont
);
1604 /* If we are jumping back to an OP_Yield that is preceded by an
1605 ** OP_ReleaseReg, set the p5 flag on the OP_Goto so that the
1606 ** OP_ReleaseReg will be included in the loop. */
1607 if( sqlite3VdbeGetOp(v
, addrCont
-1)->opcode
==OP_ReleaseReg
){
1608 assert( sqlite3VdbeGetOp(v
, addrCont
)->opcode
==OP_Yield
);
1609 sqlite3VdbeChangeP5(v
, 1);
1612 sqlite3VdbeJumpHere(v
, addrInsTop
);
1615 #ifndef SQLITE_OMIT_XFER_OPT
1617 #endif /* SQLITE_OMIT_XFER_OPT */
1618 /* Update the sqlite_sequence table by storing the content of the
1619 ** maximum rowid counter values recorded while inserting into
1620 ** autoincrement tables.
1622 if( pParse
->nested
==0 && pParse
->pTriggerTab
==0 ){
1623 sqlite3AutoincrementEnd(pParse
);
1627 ** Return the number of rows inserted. If this routine is
1628 ** generating code because of a call to sqlite3NestedParse(), do not
1629 ** invoke the callback function.
1632 sqlite3CodeChangeCount(v
, regRowCount
, "rows inserted");
1636 sqlite3SrcListDelete(db
, pTabList
);
1637 sqlite3ExprListDelete(db
, pList
);
1638 sqlite3UpsertDelete(db
, pUpsert
);
1639 sqlite3SelectDelete(db
, pSelect
);
1640 sqlite3IdListDelete(db
, pColumn
);
1641 if( aRegIdx
) sqlite3DbNNFreeNN(db
, aRegIdx
);
1644 /* Make sure "isView" and other macros defined above are undefined. Otherwise
1645 ** they may interfere with compilation of other functions in this file
1646 ** (or in another file, if this file becomes part of the amalgamation). */
1658 ** Meanings of bits in of pWalker->eCode for
1659 ** sqlite3ExprReferencesUpdatedColumn()
1661 #define CKCNSTRNT_COLUMN 0x01 /* CHECK constraint uses a changing column */
1662 #define CKCNSTRNT_ROWID 0x02 /* CHECK constraint references the ROWID */
1664 /* This is the Walker callback from sqlite3ExprReferencesUpdatedColumn().
1665 * Set bit 0x01 of pWalker->eCode if pWalker->eCode to 0 and if this
1666 ** expression node references any of the
1667 ** columns that are being modified by an UPDATE statement.
1669 static int checkConstraintExprNode(Walker
*pWalker
, Expr
*pExpr
){
1670 if( pExpr
->op
==TK_COLUMN
){
1671 assert( pExpr
->iColumn
>=0 || pExpr
->iColumn
==-1 );
1672 if( pExpr
->iColumn
>=0 ){
1673 if( pWalker
->u
.aiCol
[pExpr
->iColumn
]>=0 ){
1674 pWalker
->eCode
|= CKCNSTRNT_COLUMN
;
1677 pWalker
->eCode
|= CKCNSTRNT_ROWID
;
1680 return WRC_Continue
;
1684 ** pExpr is a CHECK constraint on a row that is being UPDATE-ed. The
1685 ** only columns that are modified by the UPDATE are those for which
1686 ** aiChng[i]>=0, and also the ROWID is modified if chngRowid is true.
1688 ** Return true if CHECK constraint pExpr uses any of the
1689 ** changing columns (or the rowid if it is changing). In other words,
1690 ** return true if this CHECK constraint must be validated for
1691 ** the new row in the UPDATE statement.
1693 ** 2018-09-15: pExpr might also be an expression for an index-on-expressions.
1694 ** The operation of this routine is the same - return true if an only if
1695 ** the expression uses one or more of columns identified by the second and
1698 int sqlite3ExprReferencesUpdatedColumn(
1699 Expr
*pExpr
, /* The expression to be checked */
1700 int *aiChng
, /* aiChng[x]>=0 if column x changed by the UPDATE */
1701 int chngRowid
/* True if UPDATE changes the rowid */
1704 memset(&w
, 0, sizeof(w
));
1706 w
.xExprCallback
= checkConstraintExprNode
;
1708 sqlite3WalkExpr(&w
, pExpr
);
1710 testcase( (w
.eCode
& CKCNSTRNT_ROWID
)!=0 );
1711 w
.eCode
&= ~CKCNSTRNT_ROWID
;
1713 testcase( w
.eCode
==0 );
1714 testcase( w
.eCode
==CKCNSTRNT_COLUMN
);
1715 testcase( w
.eCode
==CKCNSTRNT_ROWID
);
1716 testcase( w
.eCode
==(CKCNSTRNT_ROWID
|CKCNSTRNT_COLUMN
) );
1721 ** The sqlite3GenerateConstraintChecks() routine usually wants to visit
1722 ** the indexes of a table in the order provided in the Table->pIndex list.
1723 ** However, sometimes (rarely - when there is an upsert) it wants to visit
1724 ** the indexes in a different order. The following data structures accomplish
1727 ** The IndexIterator object is used to walk through all of the indexes
1728 ** of a table in either Index.pNext order, or in some other order established
1729 ** by an array of IndexListTerm objects.
1731 typedef struct IndexListTerm IndexListTerm
;
1732 typedef struct IndexIterator IndexIterator
;
1733 struct IndexIterator
{
1734 int eType
; /* 0 for Index.pNext list. 1 for an array of IndexListTerm */
1735 int i
; /* Index of the current item from the list */
1737 struct { /* Use this object for eType==0: A Index.pNext list */
1738 Index
*pIdx
; /* The current Index */
1740 struct { /* Use this object for eType==1; Array of IndexListTerm */
1741 int nIdx
; /* Size of the array */
1742 IndexListTerm
*aIdx
; /* Array of IndexListTerms */
1747 /* When IndexIterator.eType==1, then each index is an array of instances
1748 ** of the following object
1750 struct IndexListTerm
{
1751 Index
*p
; /* The index */
1752 int ix
; /* Which entry in the original Table.pIndex list is this index*/
1755 /* Return the first index on the list */
1756 static Index
*indexIteratorFirst(IndexIterator
*pIter
, int *pIx
){
1757 assert( pIter
->i
==0 );
1759 *pIx
= pIter
->u
.ax
.aIdx
[0].ix
;
1760 return pIter
->u
.ax
.aIdx
[0].p
;
1763 return pIter
->u
.lx
.pIdx
;
1767 /* Return the next index from the list. Return NULL when out of indexes */
1768 static Index
*indexIteratorNext(IndexIterator
*pIter
, int *pIx
){
1771 if( i
>=pIter
->u
.ax
.nIdx
){
1775 *pIx
= pIter
->u
.ax
.aIdx
[i
].ix
;
1776 return pIter
->u
.ax
.aIdx
[i
].p
;
1779 pIter
->u
.lx
.pIdx
= pIter
->u
.lx
.pIdx
->pNext
;
1780 return pIter
->u
.lx
.pIdx
;
1785 ** Generate code to do constraint checks prior to an INSERT or an UPDATE
1788 ** The regNewData parameter is the first register in a range that contains
1789 ** the data to be inserted or the data after the update. There will be
1790 ** pTab->nCol+1 registers in this range. The first register (the one
1791 ** that regNewData points to) will contain the new rowid, or NULL in the
1792 ** case of a WITHOUT ROWID table. The second register in the range will
1793 ** contain the content of the first table column. The third register will
1794 ** contain the content of the second table column. And so forth.
1796 ** The regOldData parameter is similar to regNewData except that it contains
1797 ** the data prior to an UPDATE rather than afterwards. regOldData is zero
1798 ** for an INSERT. This routine can distinguish between UPDATE and INSERT by
1799 ** checking regOldData for zero.
1801 ** For an UPDATE, the pkChng boolean is true if the true primary key (the
1802 ** rowid for a normal table or the PRIMARY KEY for a WITHOUT ROWID table)
1803 ** might be modified by the UPDATE. If pkChng is false, then the key of
1804 ** the iDataCur content table is guaranteed to be unchanged by the UPDATE.
1806 ** For an INSERT, the pkChng boolean indicates whether or not the rowid
1807 ** was explicitly specified as part of the INSERT statement. If pkChng
1808 ** is zero, it means that the either rowid is computed automatically or
1809 ** that the table is a WITHOUT ROWID table and has no rowid. On an INSERT,
1810 ** pkChng will only be true if the INSERT statement provides an integer
1811 ** value for either the rowid column or its INTEGER PRIMARY KEY alias.
1813 ** The code generated by this routine will store new index entries into
1814 ** registers identified by aRegIdx[]. No index entry is created for
1815 ** indices where aRegIdx[i]==0. The order of indices in aRegIdx[] is
1816 ** the same as the order of indices on the linked list of indices
1819 ** (2019-05-07) The generated code also creates a new record for the
1820 ** main table, if pTab is a rowid table, and stores that record in the
1821 ** register identified by aRegIdx[nIdx] - in other words in the first
1822 ** entry of aRegIdx[] past the last index. It is important that the
1823 ** record be generated during constraint checks to avoid affinity changes
1824 ** to the register content that occur after constraint checks but before
1825 ** the new record is inserted.
1827 ** The caller must have already opened writeable cursors on the main
1828 ** table and all applicable indices (that is to say, all indices for which
1829 ** aRegIdx[] is not zero). iDataCur is the cursor for the main table when
1830 ** inserting or updating a rowid table, or the cursor for the PRIMARY KEY
1831 ** index when operating on a WITHOUT ROWID table. iIdxCur is the cursor
1832 ** for the first index in the pTab->pIndex list. Cursors for other indices
1833 ** are at iIdxCur+N for the N-th element of the pTab->pIndex list.
1835 ** This routine also generates code to check constraints. NOT NULL,
1836 ** CHECK, and UNIQUE constraints are all checked. If a constraint fails,
1837 ** then the appropriate action is performed. There are five possible
1838 ** actions: ROLLBACK, ABORT, FAIL, REPLACE, and IGNORE.
1840 ** Constraint type Action What Happens
1841 ** --------------- ---------- ----------------------------------------
1842 ** any ROLLBACK The current transaction is rolled back and
1843 ** sqlite3_step() returns immediately with a
1844 ** return code of SQLITE_CONSTRAINT.
1846 ** any ABORT Back out changes from the current command
1847 ** only (do not do a complete rollback) then
1848 ** cause sqlite3_step() to return immediately
1849 ** with SQLITE_CONSTRAINT.
1851 ** any FAIL Sqlite3_step() returns immediately with a
1852 ** return code of SQLITE_CONSTRAINT. The
1853 ** transaction is not rolled back and any
1854 ** changes to prior rows are retained.
1856 ** any IGNORE The attempt in insert or update the current
1857 ** row is skipped, without throwing an error.
1858 ** Processing continues with the next row.
1859 ** (There is an immediate jump to ignoreDest.)
1861 ** NOT NULL REPLACE The NULL value is replace by the default
1862 ** value for that column. If the default value
1863 ** is NULL, the action is the same as ABORT.
1865 ** UNIQUE REPLACE The other row that conflicts with the row
1866 ** being inserted is removed.
1868 ** CHECK REPLACE Illegal. The results in an exception.
1870 ** Which action to take is determined by the overrideError parameter.
1871 ** Or if overrideError==OE_Default, then the pParse->onError parameter
1872 ** is used. Or if pParse->onError==OE_Default then the onError value
1873 ** for the constraint is used.
1875 void sqlite3GenerateConstraintChecks(
1876 Parse
*pParse
, /* The parser context */
1877 Table
*pTab
, /* The table being inserted or updated */
1878 int *aRegIdx
, /* Use register aRegIdx[i] for index i. 0 for unused */
1879 int iDataCur
, /* Canonical data cursor (main table or PK index) */
1880 int iIdxCur
, /* First index cursor */
1881 int regNewData
, /* First register in a range holding values to insert */
1882 int regOldData
, /* Previous content. 0 for INSERTs */
1883 u8 pkChng
, /* Non-zero if the rowid or PRIMARY KEY changed */
1884 u8 overrideError
, /* Override onError to this if not OE_Default */
1885 int ignoreDest
, /* Jump to this label on an OE_Ignore resolution */
1886 int *pbMayReplace
, /* OUT: Set to true if constraint may cause a replace */
1887 int *aiChng
, /* column i is unchanged if aiChng[i]<0 */
1888 Upsert
*pUpsert
/* ON CONFLICT clauses, if any. NULL otherwise */
1890 Vdbe
*v
; /* VDBE under construction */
1891 Index
*pIdx
; /* Pointer to one of the indices */
1892 Index
*pPk
= 0; /* The PRIMARY KEY index for WITHOUT ROWID tables */
1893 sqlite3
*db
; /* Database connection */
1894 int i
; /* loop counter */
1895 int ix
; /* Index loop counter */
1896 int nCol
; /* Number of columns */
1897 int onError
; /* Conflict resolution strategy */
1898 int seenReplace
= 0; /* True if REPLACE is used to resolve INT PK conflict */
1899 int nPkField
; /* Number of fields in PRIMARY KEY. 1 for ROWID tables */
1900 Upsert
*pUpsertClause
= 0; /* The specific ON CONFLICT clause for pIdx */
1901 u8 isUpdate
; /* True if this is an UPDATE operation */
1902 u8 bAffinityDone
= 0; /* True if the OP_Affinity operation has been run */
1903 int upsertIpkReturn
= 0; /* Address of Goto at end of IPK uniqueness check */
1904 int upsertIpkDelay
= 0; /* Address of Goto to bypass initial IPK check */
1905 int ipkTop
= 0; /* Top of the IPK uniqueness check */
1906 int ipkBottom
= 0; /* OP_Goto at the end of the IPK uniqueness check */
1907 /* Variables associated with retesting uniqueness constraints after
1908 ** replace triggers fire have run */
1909 int regTrigCnt
; /* Register used to count replace trigger invocations */
1910 int addrRecheck
= 0; /* Jump here to recheck all uniqueness constraints */
1911 int lblRecheckOk
= 0; /* Each recheck jumps to this label if it passes */
1912 Trigger
*pTrigger
; /* List of DELETE triggers on the table pTab */
1913 int nReplaceTrig
= 0; /* Number of replace triggers coded */
1914 IndexIterator sIdxIter
; /* Index iterator */
1916 isUpdate
= regOldData
!=0;
1920 assert( !IsView(pTab
) ); /* This table is not a VIEW */
1923 /* pPk is the PRIMARY KEY index for WITHOUT ROWID tables and NULL for
1924 ** normal rowid tables. nPkField is the number of key fields in the
1925 ** pPk index or 1 for a rowid table. In other words, nPkField is the
1926 ** number of fields in the true primary key of the table. */
1927 if( HasRowid(pTab
) ){
1931 pPk
= sqlite3PrimaryKeyIndex(pTab
);
1932 nPkField
= pPk
->nKeyCol
;
1935 /* Record that this module has started */
1936 VdbeModuleComment((v
, "BEGIN: GenCnstCks(%d,%d,%d,%d,%d)",
1937 iDataCur
, iIdxCur
, regNewData
, regOldData
, pkChng
));
1939 /* Test all NOT NULL constraints.
1941 if( pTab
->tabFlags
& TF_HasNotNull
){
1942 int b2ndPass
= 0; /* True if currently running 2nd pass */
1943 int nSeenReplace
= 0; /* Number of ON CONFLICT REPLACE operations */
1944 int nGenerated
= 0; /* Number of generated columns with NOT NULL */
1945 while(1){ /* Make 2 passes over columns. Exit loop via "break" */
1946 for(i
=0; i
<nCol
; i
++){
1947 int iReg
; /* Register holding column value */
1948 Column
*pCol
= &pTab
->aCol
[i
]; /* The column to check for NOT NULL */
1949 int isGenerated
; /* non-zero if column is generated */
1950 onError
= pCol
->notNull
;
1951 if( onError
==OE_None
) continue; /* No NOT NULL on this column */
1952 if( i
==pTab
->iPKey
){
1953 continue; /* ROWID is never NULL */
1955 isGenerated
= pCol
->colFlags
& COLFLAG_GENERATED
;
1956 if( isGenerated
&& !b2ndPass
){
1958 continue; /* Generated columns processed on 2nd pass */
1960 if( aiChng
&& aiChng
[i
]<0 && !isGenerated
){
1961 /* Do not check NOT NULL on columns that do not change */
1964 if( overrideError
!=OE_Default
){
1965 onError
= overrideError
;
1966 }else if( onError
==OE_Default
){
1969 if( onError
==OE_Replace
){
1970 if( b2ndPass
/* REPLACE becomes ABORT on the 2nd pass */
1971 || pCol
->iDflt
==0 /* REPLACE is ABORT if no DEFAULT value */
1973 testcase( pCol
->colFlags
& COLFLAG_VIRTUAL
);
1974 testcase( pCol
->colFlags
& COLFLAG_STORED
);
1975 testcase( pCol
->colFlags
& COLFLAG_GENERATED
);
1978 assert( !isGenerated
);
1980 }else if( b2ndPass
&& !isGenerated
){
1983 assert( onError
==OE_Rollback
|| onError
==OE_Abort
|| onError
==OE_Fail
1984 || onError
==OE_Ignore
|| onError
==OE_Replace
);
1985 testcase( i
!=sqlite3TableColumnToStorage(pTab
, i
) );
1986 iReg
= sqlite3TableColumnToStorage(pTab
, i
) + regNewData
+ 1;
1989 int addr1
= sqlite3VdbeAddOp1(v
, OP_NotNull
, iReg
);
1991 assert( (pCol
->colFlags
& COLFLAG_GENERATED
)==0 );
1993 sqlite3ExprCodeCopy(pParse
,
1994 sqlite3ColumnExpr(pTab
, pCol
), iReg
);
1995 sqlite3VdbeJumpHere(v
, addr1
);
1999 sqlite3MayAbort(pParse
);
2000 /* no break */ deliberate_fall_through
2003 char *zMsg
= sqlite3MPrintf(db
, "%s.%s", pTab
->zName
,
2005 testcase( zMsg
==0 && db
->mallocFailed
==0 );
2006 sqlite3VdbeAddOp3(v
, OP_HaltIfNull
, SQLITE_CONSTRAINT_NOTNULL
,
2008 sqlite3VdbeAppendP4(v
, zMsg
, P4_DYNAMIC
);
2009 sqlite3VdbeChangeP5(v
, P5_ConstraintNotNull
);
2014 assert( onError
==OE_Ignore
);
2015 sqlite3VdbeAddOp2(v
, OP_IsNull
, iReg
, ignoreDest
);
2019 } /* end switch(onError) */
2020 } /* end loop i over columns */
2021 if( nGenerated
==0 && nSeenReplace
==0 ){
2022 /* If there are no generated columns with NOT NULL constraints
2023 ** and no NOT NULL ON CONFLICT REPLACE constraints, then a single
2024 ** pass is sufficient */
2027 if( b2ndPass
) break; /* Never need more than 2 passes */
2029 #ifndef SQLITE_OMIT_GENERATED_COLUMNS
2030 if( nSeenReplace
>0 && (pTab
->tabFlags
& TF_HasGenerated
)!=0 ){
2031 /* If any NOT NULL ON CONFLICT REPLACE constraints fired on the
2032 ** first pass, recomputed values for all generated columns, as
2033 ** those values might depend on columns affected by the REPLACE.
2035 sqlite3ComputeGeneratedColumns(pParse
, regNewData
+1, pTab
);
2038 } /* end of 2-pass loop */
2039 } /* end if( has-not-null-constraints ) */
2041 /* Test all CHECK constraints
2043 #ifndef SQLITE_OMIT_CHECK
2044 if( pTab
->pCheck
&& (db
->flags
& SQLITE_IgnoreChecks
)==0 ){
2045 ExprList
*pCheck
= pTab
->pCheck
;
2046 pParse
->iSelfTab
= -(regNewData
+1);
2047 onError
= overrideError
!=OE_Default
? overrideError
: OE_Abort
;
2048 for(i
=0; i
<pCheck
->nExpr
; i
++){
2051 Expr
*pExpr
= pCheck
->a
[i
].pExpr
;
2053 && !sqlite3ExprReferencesUpdatedColumn(pExpr
, aiChng
, pkChng
)
2055 /* The check constraints do not reference any of the columns being
2056 ** updated so there is no point it verifying the check constraint */
2059 if( bAffinityDone
==0 ){
2060 sqlite3TableAffinity(v
, pTab
, regNewData
+1);
2063 allOk
= sqlite3VdbeMakeLabel(pParse
);
2064 sqlite3VdbeVerifyAbortable(v
, onError
);
2065 pCopy
= sqlite3ExprDup(db
, pExpr
, 0);
2066 if( !db
->mallocFailed
){
2067 sqlite3ExprIfTrue(pParse
, pCopy
, allOk
, SQLITE_JUMPIFNULL
);
2069 sqlite3ExprDelete(db
, pCopy
);
2070 if( onError
==OE_Ignore
){
2071 sqlite3VdbeGoto(v
, ignoreDest
);
2073 char *zName
= pCheck
->a
[i
].zEName
;
2074 assert( zName
!=0 || pParse
->db
->mallocFailed
);
2075 if( onError
==OE_Replace
) onError
= OE_Abort
; /* IMP: R-26383-51744 */
2076 sqlite3HaltConstraint(pParse
, SQLITE_CONSTRAINT_CHECK
,
2077 onError
, zName
, P4_TRANSIENT
,
2078 P5_ConstraintCheck
);
2080 sqlite3VdbeResolveLabel(v
, allOk
);
2082 pParse
->iSelfTab
= 0;
2084 #endif /* !defined(SQLITE_OMIT_CHECK) */
2086 /* UNIQUE and PRIMARY KEY constraints should be handled in the following
2090 ** (2) OE_Abort, OE_Fail, OE_Rollback, OE_Ignore
2093 ** OE_Fail and OE_Ignore must happen before any changes are made.
2094 ** OE_Update guarantees that only a single row will change, so it
2095 ** must happen before OE_Replace. Technically, OE_Abort and OE_Rollback
2096 ** could happen in any order, but they are grouped up front for
2099 ** 2018-08-14: Ticket https://www.sqlite.org/src/info/908f001483982c43
2100 ** The order of constraints used to have OE_Update as (2) and OE_Abort
2101 ** and so forth as (1). But apparently PostgreSQL checks the OE_Update
2102 ** constraint before any others, so it had to be moved.
2104 ** Constraint checking code is generated in this order:
2105 ** (A) The rowid constraint
2106 ** (B) Unique index constraints that do not have OE_Replace as their
2107 ** default conflict resolution strategy
2108 ** (C) Unique index that do use OE_Replace by default.
2110 ** The ordering of (2) and (3) is accomplished by making sure the linked
2111 ** list of indexes attached to a table puts all OE_Replace indexes last
2112 ** in the list. See sqlite3CreateIndex() for where that happens.
2116 sIdxIter
.u
.ax
.aIdx
= 0; /* Silence harmless compiler warning */
2117 sIdxIter
.u
.lx
.pIdx
= pTab
->pIndex
;
2119 if( pUpsert
->pUpsertTarget
==0 ){
2120 /* There is just on ON CONFLICT clause and it has no constraint-target */
2121 assert( pUpsert
->pNextUpsert
==0 );
2122 if( pUpsert
->isDoUpdate
==0 ){
2123 /* A single ON CONFLICT DO NOTHING clause, without a constraint-target.
2124 ** Make all unique constraint resolution be OE_Ignore */
2125 overrideError
= OE_Ignore
;
2128 /* A single ON CONFLICT DO UPDATE. Make all resolutions OE_Update */
2129 overrideError
= OE_Update
;
2131 }else if( pTab
->pIndex
!=0 ){
2132 /* Otherwise, we'll need to run the IndexListTerm array version of the
2133 ** iterator to ensure that all of the ON CONFLICT conditions are
2134 ** checked first and in order. */
2139 for(nIdx
=0, pIdx
=pTab
->pIndex
; pIdx
; pIdx
=pIdx
->pNext
, nIdx
++){
2140 assert( aRegIdx
[nIdx
]>0 );
2143 sIdxIter
.u
.ax
.nIdx
= nIdx
;
2144 nByte
= (sizeof(IndexListTerm
)+1)*nIdx
+ nIdx
;
2145 sIdxIter
.u
.ax
.aIdx
= sqlite3DbMallocZero(db
, nByte
);
2146 if( sIdxIter
.u
.ax
.aIdx
==0 ) return; /* OOM */
2147 bUsed
= (u8
*)&sIdxIter
.u
.ax
.aIdx
[nIdx
];
2148 pUpsert
->pToFree
= sIdxIter
.u
.ax
.aIdx
;
2149 for(i
=0, pTerm
=pUpsert
; pTerm
; pTerm
=pTerm
->pNextUpsert
){
2150 if( pTerm
->pUpsertTarget
==0 ) break;
2151 if( pTerm
->pUpsertIdx
==0 ) continue; /* Skip ON CONFLICT for the IPK */
2153 pIdx
= pTab
->pIndex
;
2154 while( ALWAYS(pIdx
!=0) && pIdx
!=pTerm
->pUpsertIdx
){
2158 if( bUsed
[jj
] ) continue; /* Duplicate ON CONFLICT clause ignored */
2160 sIdxIter
.u
.ax
.aIdx
[i
].p
= pIdx
;
2161 sIdxIter
.u
.ax
.aIdx
[i
].ix
= jj
;
2164 for(jj
=0, pIdx
=pTab
->pIndex
; pIdx
; pIdx
=pIdx
->pNext
, jj
++){
2165 if( bUsed
[jj
] ) continue;
2166 sIdxIter
.u
.ax
.aIdx
[i
].p
= pIdx
;
2167 sIdxIter
.u
.ax
.aIdx
[i
].ix
= jj
;
2174 /* Determine if it is possible that triggers (either explicitly coded
2175 ** triggers or FK resolution actions) might run as a result of deletes
2176 ** that happen when OE_Replace conflict resolution occurs. (Call these
2177 ** "replace triggers".) If any replace triggers run, we will need to
2178 ** recheck all of the uniqueness constraints after they have all run.
2179 ** But on the recheck, the resolution is OE_Abort instead of OE_Replace.
2181 ** If replace triggers are a possibility, then
2183 ** (1) Allocate register regTrigCnt and initialize it to zero.
2184 ** That register will count the number of replace triggers that
2185 ** fire. Constraint recheck only occurs if the number is positive.
2186 ** (2) Initialize pTrigger to the list of all DELETE triggers on pTab.
2187 ** (3) Initialize addrRecheck and lblRecheckOk
2189 ** The uniqueness rechecking code will create a series of tests to run
2190 ** in a second pass. The addrRecheck and lblRecheckOk variables are
2191 ** used to link together these tests which are separated from each other
2192 ** in the generate bytecode.
2194 if( (db
->flags
& (SQLITE_RecTriggers
|SQLITE_ForeignKeys
))==0 ){
2195 /* There are not DELETE triggers nor FK constraints. No constraint
2196 ** rechecks are needed. */
2200 if( db
->flags
&SQLITE_RecTriggers
){
2201 pTrigger
= sqlite3TriggersExist(pParse
, pTab
, TK_DELETE
, 0, 0);
2202 regTrigCnt
= pTrigger
!=0 || sqlite3FkRequired(pParse
, pTab
, 0, 0);
2205 regTrigCnt
= sqlite3FkRequired(pParse
, pTab
, 0, 0);
2208 /* Replace triggers might exist. Allocate the counter and
2209 ** initialize it to zero. */
2210 regTrigCnt
= ++pParse
->nMem
;
2211 sqlite3VdbeAddOp2(v
, OP_Integer
, 0, regTrigCnt
);
2212 VdbeComment((v
, "trigger count"));
2213 lblRecheckOk
= sqlite3VdbeMakeLabel(pParse
);
2214 addrRecheck
= lblRecheckOk
;
2218 /* If rowid is changing, make sure the new rowid does not previously
2219 ** exist in the table.
2221 if( pkChng
&& pPk
==0 ){
2222 int addrRowidOk
= sqlite3VdbeMakeLabel(pParse
);
2224 /* Figure out what action to take in case of a rowid collision */
2225 onError
= pTab
->keyConf
;
2226 if( overrideError
!=OE_Default
){
2227 onError
= overrideError
;
2228 }else if( onError
==OE_Default
){
2232 /* figure out whether or not upsert applies in this case */
2234 pUpsertClause
= sqlite3UpsertOfIndex(pUpsert
,0);
2235 if( pUpsertClause
!=0 ){
2236 if( pUpsertClause
->isDoUpdate
==0 ){
2237 onError
= OE_Ignore
; /* DO NOTHING is the same as INSERT OR IGNORE */
2239 onError
= OE_Update
; /* DO UPDATE */
2242 if( pUpsertClause
!=pUpsert
){
2243 /* The first ON CONFLICT clause has a conflict target other than
2244 ** the IPK. We have to jump ahead to that first ON CONFLICT clause
2245 ** and then come back here and deal with the IPK afterwards */
2246 upsertIpkDelay
= sqlite3VdbeAddOp0(v
, OP_Goto
);
2250 /* If the response to a rowid conflict is REPLACE but the response
2251 ** to some other UNIQUE constraint is FAIL or IGNORE, then we need
2252 ** to defer the running of the rowid conflict checking until after
2253 ** the UNIQUE constraints have run.
2255 if( onError
==OE_Replace
/* IPK rule is REPLACE */
2256 && onError
!=overrideError
/* Rules for other constraints are different */
2257 && pTab
->pIndex
/* There exist other constraints */
2258 && !upsertIpkDelay
/* IPK check already deferred by UPSERT */
2260 ipkTop
= sqlite3VdbeAddOp0(v
, OP_Goto
)+1;
2261 VdbeComment((v
, "defer IPK REPLACE until last"));
2265 /* pkChng!=0 does not mean that the rowid has changed, only that
2266 ** it might have changed. Skip the conflict logic below if the rowid
2268 sqlite3VdbeAddOp3(v
, OP_Eq
, regNewData
, addrRowidOk
, regOldData
);
2269 sqlite3VdbeChangeP5(v
, SQLITE_NOTNULL
);
2273 /* Check to see if the new rowid already exists in the table. Skip
2274 ** the following conflict logic if it does not. */
2275 VdbeNoopComment((v
, "uniqueness check for ROWID"));
2276 sqlite3VdbeVerifyAbortable(v
, onError
);
2277 sqlite3VdbeAddOp3(v
, OP_NotExists
, iDataCur
, addrRowidOk
, regNewData
);
2283 /* no break */ deliberate_fall_through
2288 testcase( onError
==OE_Rollback
);
2289 testcase( onError
==OE_Abort
);
2290 testcase( onError
==OE_Fail
);
2291 sqlite3RowidConstraint(pParse
, onError
, pTab
);
2295 /* If there are DELETE triggers on this table and the
2296 ** recursive-triggers flag is set, call GenerateRowDelete() to
2297 ** remove the conflicting row from the table. This will fire
2298 ** the triggers and remove both the table and index b-tree entries.
2300 ** Otherwise, if there are no triggers or the recursive-triggers
2301 ** flag is not set, but the table has one or more indexes, call
2302 ** GenerateRowIndexDelete(). This removes the index b-tree entries
2303 ** only. The table b-tree entry will be replaced by the new entry
2304 ** when it is inserted.
2306 ** If either GenerateRowDelete() or GenerateRowIndexDelete() is called,
2307 ** also invoke MultiWrite() to indicate that this VDBE may require
2308 ** statement rollback (if the statement is aborted after the delete
2309 ** takes place). Earlier versions called sqlite3MultiWrite() regardless,
2310 ** but being more selective here allows statements like:
2312 ** REPLACE INTO t(rowid) VALUES($newrowid)
2314 ** to run without a statement journal if there are no indexes on the
2318 sqlite3MultiWrite(pParse
);
2319 sqlite3GenerateRowDelete(pParse
, pTab
, pTrigger
, iDataCur
, iIdxCur
,
2320 regNewData
, 1, 0, OE_Replace
, 1, -1);
2321 sqlite3VdbeAddOp2(v
, OP_AddImm
, regTrigCnt
, 1); /* incr trigger cnt */
2324 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK
2325 assert( HasRowid(pTab
) );
2326 /* This OP_Delete opcode fires the pre-update-hook only. It does
2327 ** not modify the b-tree. It is more efficient to let the coming
2328 ** OP_Insert replace the existing entry than it is to delete the
2329 ** existing entry and then insert a new one. */
2330 sqlite3VdbeAddOp2(v
, OP_Delete
, iDataCur
, OPFLAG_ISNOOP
);
2331 sqlite3VdbeAppendP4(v
, pTab
, P4_TABLE
);
2332 #endif /* SQLITE_ENABLE_PREUPDATE_HOOK */
2334 sqlite3MultiWrite(pParse
);
2335 sqlite3GenerateRowIndexDelete(pParse
, pTab
, iDataCur
, iIdxCur
,0,-1);
2341 #ifndef SQLITE_OMIT_UPSERT
2343 sqlite3UpsertDoUpdate(pParse
, pUpsert
, pTab
, 0, iDataCur
);
2344 /* no break */ deliberate_fall_through
2348 testcase( onError
==OE_Ignore
);
2349 sqlite3VdbeGoto(v
, ignoreDest
);
2353 sqlite3VdbeResolveLabel(v
, addrRowidOk
);
2354 if( pUpsert
&& pUpsertClause
!=pUpsert
){
2355 upsertIpkReturn
= sqlite3VdbeAddOp0(v
, OP_Goto
);
2357 ipkBottom
= sqlite3VdbeAddOp0(v
, OP_Goto
);
2358 sqlite3VdbeJumpHere(v
, ipkTop
-1);
2362 /* Test all UNIQUE constraints by creating entries for each UNIQUE
2363 ** index and making sure that duplicate entries do not already exist.
2364 ** Compute the revised record entries for indices as we go.
2366 ** This loop also handles the case of the PRIMARY KEY index for a
2367 ** WITHOUT ROWID table.
2369 for(pIdx
= indexIteratorFirst(&sIdxIter
, &ix
);
2371 pIdx
= indexIteratorNext(&sIdxIter
, &ix
)
2373 int regIdx
; /* Range of registers holding content for pIdx */
2374 int regR
; /* Range of registers holding conflicting PK */
2375 int iThisCur
; /* Cursor for this UNIQUE index */
2376 int addrUniqueOk
; /* Jump here if the UNIQUE constraint is satisfied */
2377 int addrConflictCk
; /* First opcode in the conflict check logic */
2379 if( aRegIdx
[ix
]==0 ) continue; /* Skip indices that do not change */
2381 pUpsertClause
= sqlite3UpsertOfIndex(pUpsert
, pIdx
);
2382 if( upsertIpkDelay
&& pUpsertClause
==pUpsert
){
2383 sqlite3VdbeJumpHere(v
, upsertIpkDelay
);
2386 addrUniqueOk
= sqlite3VdbeMakeLabel(pParse
);
2387 if( bAffinityDone
==0 ){
2388 sqlite3TableAffinity(v
, pTab
, regNewData
+1);
2391 VdbeNoopComment((v
, "prep index %s", pIdx
->zName
));
2392 iThisCur
= iIdxCur
+ix
;
2395 /* Skip partial indices for which the WHERE clause is not true */
2396 if( pIdx
->pPartIdxWhere
){
2397 sqlite3VdbeAddOp2(v
, OP_Null
, 0, aRegIdx
[ix
]);
2398 pParse
->iSelfTab
= -(regNewData
+1);
2399 sqlite3ExprIfFalseDup(pParse
, pIdx
->pPartIdxWhere
, addrUniqueOk
,
2401 pParse
->iSelfTab
= 0;
2404 /* Create a record for this index entry as it should appear after
2405 ** the insert or update. Store that record in the aRegIdx[ix] register
2407 regIdx
= aRegIdx
[ix
]+1;
2408 for(i
=0; i
<pIdx
->nColumn
; i
++){
2409 int iField
= pIdx
->aiColumn
[i
];
2411 if( iField
==XN_EXPR
){
2412 pParse
->iSelfTab
= -(regNewData
+1);
2413 sqlite3ExprCodeCopy(pParse
, pIdx
->aColExpr
->a
[i
].pExpr
, regIdx
+i
);
2414 pParse
->iSelfTab
= 0;
2415 VdbeComment((v
, "%s column %d", pIdx
->zName
, i
));
2416 }else if( iField
==XN_ROWID
|| iField
==pTab
->iPKey
){
2418 sqlite3VdbeAddOp2(v
, OP_IntCopy
, x
, regIdx
+i
);
2419 VdbeComment((v
, "rowid"));
2421 testcase( sqlite3TableColumnToStorage(pTab
, iField
)!=iField
);
2422 x
= sqlite3TableColumnToStorage(pTab
, iField
) + regNewData
+ 1;
2423 sqlite3VdbeAddOp2(v
, OP_SCopy
, x
, regIdx
+i
);
2424 VdbeComment((v
, "%s", pTab
->aCol
[iField
].zCnName
));
2427 sqlite3VdbeAddOp3(v
, OP_MakeRecord
, regIdx
, pIdx
->nColumn
, aRegIdx
[ix
]);
2428 VdbeComment((v
, "for %s", pIdx
->zName
));
2429 #ifdef SQLITE_ENABLE_NULL_TRIM
2430 if( pIdx
->idxType
==SQLITE_IDXTYPE_PRIMARYKEY
){
2431 sqlite3SetMakeRecordP5(v
, pIdx
->pTable
);
2434 sqlite3VdbeReleaseRegisters(pParse
, regIdx
, pIdx
->nColumn
, 0, 0);
2436 /* In an UPDATE operation, if this index is the PRIMARY KEY index
2437 ** of a WITHOUT ROWID table and there has been no change the
2438 ** primary key, then no collision is possible. The collision detection
2439 ** logic below can all be skipped. */
2440 if( isUpdate
&& pPk
==pIdx
&& pkChng
==0 ){
2441 sqlite3VdbeResolveLabel(v
, addrUniqueOk
);
2445 /* Find out what action to take in case there is a uniqueness conflict */
2446 onError
= pIdx
->onError
;
2447 if( onError
==OE_None
){
2448 sqlite3VdbeResolveLabel(v
, addrUniqueOk
);
2449 continue; /* pIdx is not a UNIQUE index */
2451 if( overrideError
!=OE_Default
){
2452 onError
= overrideError
;
2453 }else if( onError
==OE_Default
){
2457 /* Figure out if the upsert clause applies to this index */
2458 if( pUpsertClause
){
2459 if( pUpsertClause
->isDoUpdate
==0 ){
2460 onError
= OE_Ignore
; /* DO NOTHING is the same as INSERT OR IGNORE */
2462 onError
= OE_Update
; /* DO UPDATE */
2466 /* Collision detection may be omitted if all of the following are true:
2467 ** (1) The conflict resolution algorithm is REPLACE
2468 ** (2) The table is a WITHOUT ROWID table
2469 ** (3) There are no secondary indexes on the table
2470 ** (4) No delete triggers need to be fired if there is a conflict
2471 ** (5) No FK constraint counters need to be updated if a conflict occurs.
2473 ** This is not possible for ENABLE_PREUPDATE_HOOK builds, as the row
2474 ** must be explicitly deleted in order to ensure any pre-update hook
2476 assert( IsOrdinaryTable(pTab
) );
2477 #ifndef SQLITE_ENABLE_PREUPDATE_HOOK
2478 if( (ix
==0 && pIdx
->pNext
==0) /* Condition 3 */
2479 && pPk
==pIdx
/* Condition 2 */
2480 && onError
==OE_Replace
/* Condition 1 */
2481 && ( 0==(db
->flags
&SQLITE_RecTriggers
) || /* Condition 4 */
2482 0==sqlite3TriggersExist(pParse
, pTab
, TK_DELETE
, 0, 0))
2483 && ( 0==(db
->flags
&SQLITE_ForeignKeys
) || /* Condition 5 */
2484 (0==pTab
->u
.tab
.pFKey
&& 0==sqlite3FkReferences(pTab
)))
2486 sqlite3VdbeResolveLabel(v
, addrUniqueOk
);
2489 #endif /* ifndef SQLITE_ENABLE_PREUPDATE_HOOK */
2491 /* Check to see if the new index entry will be unique */
2492 sqlite3VdbeVerifyAbortable(v
, onError
);
2494 sqlite3VdbeAddOp4Int(v
, OP_NoConflict
, iThisCur
, addrUniqueOk
,
2495 regIdx
, pIdx
->nKeyCol
); VdbeCoverage(v
);
2497 /* Generate code to handle collisions */
2498 regR
= pIdx
==pPk
? regIdx
: sqlite3GetTempRange(pParse
, nPkField
);
2499 if( isUpdate
|| onError
==OE_Replace
){
2500 if( HasRowid(pTab
) ){
2501 sqlite3VdbeAddOp2(v
, OP_IdxRowid
, iThisCur
, regR
);
2502 /* Conflict only if the rowid of the existing index entry
2503 ** is different from old-rowid */
2505 sqlite3VdbeAddOp3(v
, OP_Eq
, regR
, addrUniqueOk
, regOldData
);
2506 sqlite3VdbeChangeP5(v
, SQLITE_NOTNULL
);
2511 /* Extract the PRIMARY KEY from the end of the index entry and
2512 ** store it in registers regR..regR+nPk-1 */
2514 for(i
=0; i
<pPk
->nKeyCol
; i
++){
2515 assert( pPk
->aiColumn
[i
]>=0 );
2516 x
= sqlite3TableColumnToIndex(pIdx
, pPk
->aiColumn
[i
]);
2517 sqlite3VdbeAddOp3(v
, OP_Column
, iThisCur
, x
, regR
+i
);
2518 VdbeComment((v
, "%s.%s", pTab
->zName
,
2519 pTab
->aCol
[pPk
->aiColumn
[i
]].zCnName
));
2523 /* If currently processing the PRIMARY KEY of a WITHOUT ROWID
2524 ** table, only conflict if the new PRIMARY KEY values are actually
2525 ** different from the old. See TH3 withoutrowid04.test.
2527 ** For a UNIQUE index, only conflict if the PRIMARY KEY values
2528 ** of the matched index row are different from the original PRIMARY
2529 ** KEY values of this row before the update. */
2530 int addrJump
= sqlite3VdbeCurrentAddr(v
)+pPk
->nKeyCol
;
2532 int regCmp
= (IsPrimaryKeyIndex(pIdx
) ? regIdx
: regR
);
2534 for(i
=0; i
<pPk
->nKeyCol
; i
++){
2535 char *p4
= (char*)sqlite3LocateCollSeq(pParse
, pPk
->azColl
[i
]);
2536 x
= pPk
->aiColumn
[i
];
2538 if( i
==(pPk
->nKeyCol
-1) ){
2539 addrJump
= addrUniqueOk
;
2542 x
= sqlite3TableColumnToStorage(pTab
, x
);
2543 sqlite3VdbeAddOp4(v
, op
,
2544 regOldData
+1+x
, addrJump
, regCmp
+i
, p4
, P4_COLLSEQ
2546 sqlite3VdbeChangeP5(v
, SQLITE_NOTNULL
);
2547 VdbeCoverageIf(v
, op
==OP_Eq
);
2548 VdbeCoverageIf(v
, op
==OP_Ne
);
2554 /* Generate code that executes if the new index entry is not unique */
2555 assert( onError
==OE_Rollback
|| onError
==OE_Abort
|| onError
==OE_Fail
2556 || onError
==OE_Ignore
|| onError
==OE_Replace
|| onError
==OE_Update
);
2561 testcase( onError
==OE_Rollback
);
2562 testcase( onError
==OE_Abort
);
2563 testcase( onError
==OE_Fail
);
2564 sqlite3UniqueConstraint(pParse
, onError
, pIdx
);
2567 #ifndef SQLITE_OMIT_UPSERT
2569 sqlite3UpsertDoUpdate(pParse
, pUpsert
, pTab
, pIdx
, iIdxCur
+ix
);
2570 /* no break */ deliberate_fall_through
2574 testcase( onError
==OE_Ignore
);
2575 sqlite3VdbeGoto(v
, ignoreDest
);
2579 int nConflictCk
; /* Number of opcodes in conflict check logic */
2581 assert( onError
==OE_Replace
);
2582 nConflictCk
= sqlite3VdbeCurrentAddr(v
) - addrConflictCk
;
2583 assert( nConflictCk
>0 || db
->mallocFailed
);
2584 testcase( nConflictCk
<=0 );
2585 testcase( nConflictCk
>1 );
2587 sqlite3MultiWrite(pParse
);
2590 if( pTrigger
&& isUpdate
){
2591 sqlite3VdbeAddOp1(v
, OP_CursorLock
, iDataCur
);
2593 sqlite3GenerateRowDelete(pParse
, pTab
, pTrigger
, iDataCur
, iIdxCur
,
2594 regR
, nPkField
, 0, OE_Replace
,
2595 (pIdx
==pPk
? ONEPASS_SINGLE
: ONEPASS_OFF
), iThisCur
);
2596 if( pTrigger
&& isUpdate
){
2597 sqlite3VdbeAddOp1(v
, OP_CursorUnlock
, iDataCur
);
2600 int addrBypass
; /* Jump destination to bypass recheck logic */
2602 sqlite3VdbeAddOp2(v
, OP_AddImm
, regTrigCnt
, 1); /* incr trigger cnt */
2603 addrBypass
= sqlite3VdbeAddOp0(v
, OP_Goto
); /* Bypass recheck */
2604 VdbeComment((v
, "bypass recheck"));
2606 /* Here we insert code that will be invoked after all constraint
2607 ** checks have run, if and only if one or more replace triggers
2609 sqlite3VdbeResolveLabel(v
, lblRecheckOk
);
2610 lblRecheckOk
= sqlite3VdbeMakeLabel(pParse
);
2611 if( pIdx
->pPartIdxWhere
){
2612 /* Bypass the recheck if this partial index is not defined
2613 ** for the current row */
2614 sqlite3VdbeAddOp2(v
, OP_IsNull
, regIdx
-1, lblRecheckOk
);
2617 /* Copy the constraint check code from above, except change
2618 ** the constraint-ok jump destination to be the address of
2619 ** the next retest block */
2620 while( nConflictCk
>0 ){
2621 VdbeOp x
; /* Conflict check opcode to copy */
2622 /* The sqlite3VdbeAddOp4() call might reallocate the opcode array.
2623 ** Hence, make a complete copy of the opcode, rather than using
2624 ** a pointer to the opcode. */
2625 x
= *sqlite3VdbeGetOp(v
, addrConflictCk
);
2626 if( x
.opcode
!=OP_IdxRowid
){
2627 int p2
; /* New P2 value for copied conflict check opcode */
2629 if( sqlite3OpcodeProperty
[x
.opcode
]&OPFLG_JUMP
){
2634 zP4
= x
.p4type
==P4_INT32
? SQLITE_INT_TO_PTR(x
.p4
.i
) : x
.p4
.z
;
2635 sqlite3VdbeAddOp4(v
, x
.opcode
, x
.p1
, p2
, x
.p3
, zP4
, x
.p4type
);
2636 sqlite3VdbeChangeP5(v
, x
.p5
);
2637 VdbeCoverageIf(v
, p2
!=x
.p2
);
2642 /* If the retest fails, issue an abort */
2643 sqlite3UniqueConstraint(pParse
, OE_Abort
, pIdx
);
2645 sqlite3VdbeJumpHere(v
, addrBypass
); /* Terminate the recheck bypass */
2651 sqlite3VdbeResolveLabel(v
, addrUniqueOk
);
2652 if( regR
!=regIdx
) sqlite3ReleaseTempRange(pParse
, regR
, nPkField
);
2655 && sqlite3UpsertNextIsIPK(pUpsertClause
)
2657 sqlite3VdbeGoto(v
, upsertIpkDelay
+1);
2658 sqlite3VdbeJumpHere(v
, upsertIpkReturn
);
2659 upsertIpkReturn
= 0;
2663 /* If the IPK constraint is a REPLACE, run it last */
2665 sqlite3VdbeGoto(v
, ipkTop
);
2666 VdbeComment((v
, "Do IPK REPLACE"));
2667 assert( ipkBottom
>0 );
2668 sqlite3VdbeJumpHere(v
, ipkBottom
);
2671 /* Recheck all uniqueness constraints after replace triggers have run */
2672 testcase( regTrigCnt
!=0 && nReplaceTrig
==0 );
2673 assert( regTrigCnt
!=0 || nReplaceTrig
==0 );
2675 sqlite3VdbeAddOp2(v
, OP_IfNot
, regTrigCnt
, lblRecheckOk
);VdbeCoverage(v
);
2678 sqlite3VdbeAddOp3(v
, OP_Eq
, regNewData
, addrRecheck
, regOldData
);
2679 sqlite3VdbeChangeP5(v
, SQLITE_NOTNULL
);
2682 sqlite3VdbeAddOp3(v
, OP_NotExists
, iDataCur
, addrRecheck
, regNewData
);
2684 sqlite3RowidConstraint(pParse
, OE_Abort
, pTab
);
2686 sqlite3VdbeGoto(v
, addrRecheck
);
2688 sqlite3VdbeResolveLabel(v
, lblRecheckOk
);
2691 /* Generate the table record */
2692 if( HasRowid(pTab
) ){
2693 int regRec
= aRegIdx
[ix
];
2694 sqlite3VdbeAddOp3(v
, OP_MakeRecord
, regNewData
+1, pTab
->nNVCol
, regRec
);
2695 sqlite3SetMakeRecordP5(v
, pTab
);
2696 if( !bAffinityDone
){
2697 sqlite3TableAffinity(v
, pTab
, 0);
2701 *pbMayReplace
= seenReplace
;
2702 VdbeModuleComment((v
, "END: GenCnstCks(%d)", seenReplace
));
2705 #ifdef SQLITE_ENABLE_NULL_TRIM
2707 ** Change the P5 operand on the last opcode (which should be an OP_MakeRecord)
2708 ** to be the number of columns in table pTab that must not be NULL-trimmed.
2710 ** Or if no columns of pTab may be NULL-trimmed, leave P5 at zero.
2712 void sqlite3SetMakeRecordP5(Vdbe
*v
, Table
*pTab
){
2715 /* Records with omitted columns are only allowed for schema format
2716 ** version 2 and later (SQLite version 3.1.4, 2005-02-20). */
2717 if( pTab
->pSchema
->file_format
<2 ) return;
2719 for(i
=pTab
->nCol
-1; i
>0; i
--){
2720 if( pTab
->aCol
[i
].iDflt
!=0 ) break;
2721 if( pTab
->aCol
[i
].colFlags
& COLFLAG_PRIMKEY
) break;
2723 sqlite3VdbeChangeP5(v
, i
+1);
2728 ** Table pTab is a WITHOUT ROWID table that is being written to. The cursor
2729 ** number is iCur, and register regData contains the new record for the
2730 ** PK index. This function adds code to invoke the pre-update hook,
2731 ** if one is registered.
2733 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK
2734 static void codeWithoutRowidPreupdate(
2735 Parse
*pParse
, /* Parse context */
2736 Table
*pTab
, /* Table being updated */
2737 int iCur
, /* Cursor number for table */
2738 int regData
/* Data containing new record */
2740 Vdbe
*v
= pParse
->pVdbe
;
2741 int r
= sqlite3GetTempReg(pParse
);
2742 assert( !HasRowid(pTab
) );
2743 assert( 0==(pParse
->db
->mDbFlags
& DBFLAG_Vacuum
) || CORRUPT_DB
);
2744 sqlite3VdbeAddOp2(v
, OP_Integer
, 0, r
);
2745 sqlite3VdbeAddOp4(v
, OP_Insert
, iCur
, regData
, r
, (char*)pTab
, P4_TABLE
);
2746 sqlite3VdbeChangeP5(v
, OPFLAG_ISNOOP
);
2747 sqlite3ReleaseTempReg(pParse
, r
);
2750 # define codeWithoutRowidPreupdate(a,b,c,d)
2754 ** This routine generates code to finish the INSERT or UPDATE operation
2755 ** that was started by a prior call to sqlite3GenerateConstraintChecks.
2756 ** A consecutive range of registers starting at regNewData contains the
2757 ** rowid and the content to be inserted.
2759 ** The arguments to this routine should be the same as the first six
2760 ** arguments to sqlite3GenerateConstraintChecks.
2762 void sqlite3CompleteInsertion(
2763 Parse
*pParse
, /* The parser context */
2764 Table
*pTab
, /* the table into which we are inserting */
2765 int iDataCur
, /* Cursor of the canonical data source */
2766 int iIdxCur
, /* First index cursor */
2767 int regNewData
, /* Range of content */
2768 int *aRegIdx
, /* Register used by each index. 0 for unused indices */
2769 int update_flags
, /* True for UPDATE, False for INSERT */
2770 int appendBias
, /* True if this is likely to be an append */
2771 int useSeekResult
/* True to set the USESEEKRESULT flag on OP_[Idx]Insert */
2773 Vdbe
*v
; /* Prepared statements under construction */
2774 Index
*pIdx
; /* An index being inserted or updated */
2775 u8 pik_flags
; /* flag values passed to the btree insert */
2776 int i
; /* Loop counter */
2778 assert( update_flags
==0
2779 || update_flags
==OPFLAG_ISUPDATE
2780 || update_flags
==(OPFLAG_ISUPDATE
|OPFLAG_SAVEPOSITION
)
2785 assert( !IsView(pTab
) ); /* This table is not a VIEW */
2786 for(i
=0, pIdx
=pTab
->pIndex
; pIdx
; pIdx
=pIdx
->pNext
, i
++){
2787 /* All REPLACE indexes are at the end of the list */
2788 assert( pIdx
->onError
!=OE_Replace
2790 || pIdx
->pNext
->onError
==OE_Replace
);
2791 if( aRegIdx
[i
]==0 ) continue;
2792 if( pIdx
->pPartIdxWhere
){
2793 sqlite3VdbeAddOp2(v
, OP_IsNull
, aRegIdx
[i
], sqlite3VdbeCurrentAddr(v
)+2);
2796 pik_flags
= (useSeekResult
? OPFLAG_USESEEKRESULT
: 0);
2797 if( IsPrimaryKeyIndex(pIdx
) && !HasRowid(pTab
) ){
2798 pik_flags
|= OPFLAG_NCHANGE
;
2799 pik_flags
|= (update_flags
& OPFLAG_SAVEPOSITION
);
2800 if( update_flags
==0 ){
2801 codeWithoutRowidPreupdate(pParse
, pTab
, iIdxCur
+i
, aRegIdx
[i
]);
2804 sqlite3VdbeAddOp4Int(v
, OP_IdxInsert
, iIdxCur
+i
, aRegIdx
[i
],
2806 pIdx
->uniqNotNull
? pIdx
->nKeyCol
: pIdx
->nColumn
);
2807 sqlite3VdbeChangeP5(v
, pik_flags
);
2809 if( !HasRowid(pTab
) ) return;
2810 if( pParse
->nested
){
2813 pik_flags
= OPFLAG_NCHANGE
;
2814 pik_flags
|= (update_flags
?update_flags
:OPFLAG_LASTROWID
);
2817 pik_flags
|= OPFLAG_APPEND
;
2819 if( useSeekResult
){
2820 pik_flags
|= OPFLAG_USESEEKRESULT
;
2822 sqlite3VdbeAddOp3(v
, OP_Insert
, iDataCur
, aRegIdx
[i
], regNewData
);
2823 if( !pParse
->nested
){
2824 sqlite3VdbeAppendP4(v
, pTab
, P4_TABLE
);
2826 sqlite3VdbeChangeP5(v
, pik_flags
);
2830 ** Allocate cursors for the pTab table and all its indices and generate
2831 ** code to open and initialized those cursors.
2833 ** The cursor for the object that contains the complete data (normally
2834 ** the table itself, but the PRIMARY KEY index in the case of a WITHOUT
2835 ** ROWID table) is returned in *piDataCur. The first index cursor is
2836 ** returned in *piIdxCur. The number of indices is returned.
2838 ** Use iBase as the first cursor (either the *piDataCur for rowid tables
2839 ** or the first index for WITHOUT ROWID tables) if it is non-negative.
2840 ** If iBase is negative, then allocate the next available cursor.
2842 ** For a rowid table, *piDataCur will be exactly one less than *piIdxCur.
2843 ** For a WITHOUT ROWID table, *piDataCur will be somewhere in the range
2844 ** of *piIdxCurs, depending on where the PRIMARY KEY index appears on the
2845 ** pTab->pIndex list.
2847 ** If pTab is a virtual table, then this routine is a no-op and the
2848 ** *piDataCur and *piIdxCur values are left uninitialized.
2850 int sqlite3OpenTableAndIndices(
2851 Parse
*pParse
, /* Parsing context */
2852 Table
*pTab
, /* Table to be opened */
2853 int op
, /* OP_OpenRead or OP_OpenWrite */
2854 u8 p5
, /* P5 value for OP_Open* opcodes (except on WITHOUT ROWID) */
2855 int iBase
, /* Use this for the table cursor, if there is one */
2856 u8
*aToOpen
, /* If not NULL: boolean for each table and index */
2857 int *piDataCur
, /* Write the database source cursor number here */
2858 int *piIdxCur
/* Write the first index cursor number here */
2866 assert( op
==OP_OpenRead
|| op
==OP_OpenWrite
);
2867 assert( op
==OP_OpenWrite
|| p5
==0 );
2868 assert( piDataCur
!=0 );
2869 assert( piIdxCur
!=0 );
2870 if( IsVirtual(pTab
) ){
2871 /* This routine is a no-op for virtual tables. Leave the output
2872 ** variables *piDataCur and *piIdxCur set to illegal cursor numbers
2873 ** for improved error detection. */
2874 *piDataCur
= *piIdxCur
= -999;
2877 iDb
= sqlite3SchemaToIndex(pParse
->db
, pTab
->pSchema
);
2880 if( iBase
<0 ) iBase
= pParse
->nTab
;
2882 *piDataCur
= iDataCur
;
2883 if( HasRowid(pTab
) && (aToOpen
==0 || aToOpen
[0]) ){
2884 sqlite3OpenTable(pParse
, iDataCur
, iDb
, pTab
, op
);
2885 }else if( pParse
->db
->noSharedCache
==0 ){
2886 sqlite3TableLock(pParse
, iDb
, pTab
->tnum
, op
==OP_OpenWrite
, pTab
->zName
);
2889 for(i
=0, pIdx
=pTab
->pIndex
; pIdx
; pIdx
=pIdx
->pNext
, i
++){
2890 int iIdxCur
= iBase
++;
2891 assert( pIdx
->pSchema
==pTab
->pSchema
);
2892 if( IsPrimaryKeyIndex(pIdx
) && !HasRowid(pTab
) ){
2893 *piDataCur
= iIdxCur
;
2896 if( aToOpen
==0 || aToOpen
[i
+1] ){
2897 sqlite3VdbeAddOp3(v
, op
, iIdxCur
, pIdx
->tnum
, iDb
);
2898 sqlite3VdbeSetP4KeyInfo(pParse
, pIdx
);
2899 sqlite3VdbeChangeP5(v
, p5
);
2900 VdbeComment((v
, "%s", pIdx
->zName
));
2903 if( iBase
>pParse
->nTab
) pParse
->nTab
= iBase
;
2910 ** The following global variable is incremented whenever the
2911 ** transfer optimization is used. This is used for testing
2912 ** purposes only - to make sure the transfer optimization really
2913 ** is happening when it is supposed to.
2915 int sqlite3_xferopt_count
;
2916 #endif /* SQLITE_TEST */
2919 #ifndef SQLITE_OMIT_XFER_OPT
2921 ** Check to see if index pSrc is compatible as a source of data
2922 ** for index pDest in an insert transfer optimization. The rules
2923 ** for a compatible index:
2925 ** * The index is over the same set of columns
2926 ** * The same DESC and ASC markings occurs on all columns
2927 ** * The same onError processing (OE_Abort, OE_Ignore, etc)
2928 ** * The same collating sequence on each column
2929 ** * The index has the exact same WHERE clause
2931 static int xferCompatibleIndex(Index
*pDest
, Index
*pSrc
){
2933 assert( pDest
&& pSrc
);
2934 assert( pDest
->pTable
!=pSrc
->pTable
);
2935 if( pDest
->nKeyCol
!=pSrc
->nKeyCol
|| pDest
->nColumn
!=pSrc
->nColumn
){
2936 return 0; /* Different number of columns */
2938 if( pDest
->onError
!=pSrc
->onError
){
2939 return 0; /* Different conflict resolution strategies */
2941 for(i
=0; i
<pSrc
->nKeyCol
; i
++){
2942 if( pSrc
->aiColumn
[i
]!=pDest
->aiColumn
[i
] ){
2943 return 0; /* Different columns indexed */
2945 if( pSrc
->aiColumn
[i
]==XN_EXPR
){
2946 assert( pSrc
->aColExpr
!=0 && pDest
->aColExpr
!=0 );
2947 if( sqlite3ExprCompare(0, pSrc
->aColExpr
->a
[i
].pExpr
,
2948 pDest
->aColExpr
->a
[i
].pExpr
, -1)!=0 ){
2949 return 0; /* Different expressions in the index */
2952 if( pSrc
->aSortOrder
[i
]!=pDest
->aSortOrder
[i
] ){
2953 return 0; /* Different sort orders */
2955 if( sqlite3_stricmp(pSrc
->azColl
[i
],pDest
->azColl
[i
])!=0 ){
2956 return 0; /* Different collating sequences */
2959 if( sqlite3ExprCompare(0, pSrc
->pPartIdxWhere
, pDest
->pPartIdxWhere
, -1) ){
2960 return 0; /* Different WHERE clauses */
2963 /* If no test above fails then the indices must be compatible */
2968 ** Attempt the transfer optimization on INSERTs of the form
2970 ** INSERT INTO tab1 SELECT * FROM tab2;
2972 ** The xfer optimization transfers raw records from tab2 over to tab1.
2973 ** Columns are not decoded and reassembled, which greatly improves
2974 ** performance. Raw index records are transferred in the same way.
2976 ** The xfer optimization is only attempted if tab1 and tab2 are compatible.
2977 ** There are lots of rules for determining compatibility - see comments
2978 ** embedded in the code for details.
2980 ** This routine returns TRUE if the optimization is guaranteed to be used.
2981 ** Sometimes the xfer optimization will only work if the destination table
2982 ** is empty - a factor that can only be determined at run-time. In that
2983 ** case, this routine generates code for the xfer optimization but also
2984 ** does a test to see if the destination table is empty and jumps over the
2985 ** xfer optimization code if the test fails. In that case, this routine
2986 ** returns FALSE so that the caller will know to go ahead and generate
2987 ** an unoptimized transfer. This routine also returns FALSE if there
2988 ** is no chance that the xfer optimization can be applied.
2990 ** This optimization is particularly useful at making VACUUM run faster.
2992 static int xferOptimization(
2993 Parse
*pParse
, /* Parser context */
2994 Table
*pDest
, /* The table we are inserting into */
2995 Select
*pSelect
, /* A SELECT statement to use as the data source */
2996 int onError
, /* How to handle constraint errors */
2997 int iDbDest
/* The database of pDest */
2999 sqlite3
*db
= pParse
->db
;
3000 ExprList
*pEList
; /* The result set of the SELECT */
3001 Table
*pSrc
; /* The table in the FROM clause of SELECT */
3002 Index
*pSrcIdx
, *pDestIdx
; /* Source and destination indices */
3003 SrcItem
*pItem
; /* An element of pSelect->pSrc */
3004 int i
; /* Loop counter */
3005 int iDbSrc
; /* The database of pSrc */
3006 int iSrc
, iDest
; /* Cursors from source and destination */
3007 int addr1
, addr2
; /* Loop addresses */
3008 int emptyDestTest
= 0; /* Address of test for empty pDest */
3009 int emptySrcTest
= 0; /* Address of test for empty pSrc */
3010 Vdbe
*v
; /* The VDBE we are building */
3011 int regAutoinc
; /* Memory register used by AUTOINC */
3012 int destHasUniqueIdx
= 0; /* True if pDest has a UNIQUE index */
3013 int regData
, regRowid
; /* Registers holding data and rowid */
3015 assert( pSelect
!=0 );
3016 if( pParse
->pWith
|| pSelect
->pWith
){
3017 /* Do not attempt to process this query if there are an WITH clauses
3018 ** attached to it. Proceeding may generate a false "no such table: xxx"
3019 ** error if pSelect reads from a CTE named "xxx". */
3022 #ifndef SQLITE_OMIT_VIRTUALTABLE
3023 if( IsVirtual(pDest
) ){
3024 return 0; /* tab1 must not be a virtual table */
3027 if( onError
==OE_Default
){
3028 if( pDest
->iPKey
>=0 ) onError
= pDest
->keyConf
;
3029 if( onError
==OE_Default
) onError
= OE_Abort
;
3031 assert(pSelect
->pSrc
); /* allocated even if there is no FROM clause */
3032 if( pSelect
->pSrc
->nSrc
!=1 ){
3033 return 0; /* FROM clause must have exactly one term */
3035 if( pSelect
->pSrc
->a
[0].pSelect
){
3036 return 0; /* FROM clause cannot contain a subquery */
3038 if( pSelect
->pWhere
){
3039 return 0; /* SELECT may not have a WHERE clause */
3041 if( pSelect
->pOrderBy
){
3042 return 0; /* SELECT may not have an ORDER BY clause */
3044 /* Do not need to test for a HAVING clause. If HAVING is present but
3045 ** there is no ORDER BY, we will get an error. */
3046 if( pSelect
->pGroupBy
){
3047 return 0; /* SELECT may not have a GROUP BY clause */
3049 if( pSelect
->pLimit
){
3050 return 0; /* SELECT may not have a LIMIT clause */
3052 if( pSelect
->pPrior
){
3053 return 0; /* SELECT may not be a compound query */
3055 if( pSelect
->selFlags
& SF_Distinct
){
3056 return 0; /* SELECT may not be DISTINCT */
3058 pEList
= pSelect
->pEList
;
3059 assert( pEList
!=0 );
3060 if( pEList
->nExpr
!=1 ){
3061 return 0; /* The result set must have exactly one column */
3063 assert( pEList
->a
[0].pExpr
);
3064 if( pEList
->a
[0].pExpr
->op
!=TK_ASTERISK
){
3065 return 0; /* The result set must be the special operator "*" */
3068 /* At this point we have established that the statement is of the
3069 ** correct syntactic form to participate in this optimization. Now
3070 ** we have to check the semantics.
3072 pItem
= pSelect
->pSrc
->a
;
3073 pSrc
= sqlite3LocateTableItem(pParse
, 0, pItem
);
3075 return 0; /* FROM clause does not contain a real table */
3077 if( pSrc
->tnum
==pDest
->tnum
&& pSrc
->pSchema
==pDest
->pSchema
){
3078 testcase( pSrc
!=pDest
); /* Possible due to bad sqlite_schema.rootpage */
3079 return 0; /* tab1 and tab2 may not be the same table */
3081 if( HasRowid(pDest
)!=HasRowid(pSrc
) ){
3082 return 0; /* source and destination must both be WITHOUT ROWID or not */
3084 if( !IsOrdinaryTable(pSrc
) ){
3085 return 0; /* tab2 may not be a view or virtual table */
3087 if( pDest
->nCol
!=pSrc
->nCol
){
3088 return 0; /* Number of columns must be the same in tab1 and tab2 */
3090 if( pDest
->iPKey
!=pSrc
->iPKey
){
3091 return 0; /* Both tables must have the same INTEGER PRIMARY KEY */
3093 if( (pDest
->tabFlags
& TF_Strict
)!=0 && (pSrc
->tabFlags
& TF_Strict
)==0 ){
3094 return 0; /* Cannot feed from a non-strict into a strict table */
3096 for(i
=0; i
<pDest
->nCol
; i
++){
3097 Column
*pDestCol
= &pDest
->aCol
[i
];
3098 Column
*pSrcCol
= &pSrc
->aCol
[i
];
3099 #ifdef SQLITE_ENABLE_HIDDEN_COLUMNS
3100 if( (db
->mDbFlags
& DBFLAG_Vacuum
)==0
3101 && (pDestCol
->colFlags
| pSrcCol
->colFlags
) & COLFLAG_HIDDEN
3103 return 0; /* Neither table may have __hidden__ columns */
3106 #ifndef SQLITE_OMIT_GENERATED_COLUMNS
3107 /* Even if tables t1 and t2 have identical schemas, if they contain
3108 ** generated columns, then this statement is semantically incorrect:
3110 ** INSERT INTO t2 SELECT * FROM t1;
3112 ** The reason is that generated column values are returned by the
3113 ** the SELECT statement on the right but the INSERT statement on the
3114 ** left wants them to be omitted.
3116 ** Nevertheless, this is a useful notational shorthand to tell SQLite
3117 ** to do a bulk transfer all of the content from t1 over to t2.
3119 ** We could, in theory, disable this (except for internal use by the
3120 ** VACUUM command where it is actually needed). But why do that? It
3121 ** seems harmless enough, and provides a useful service.
3123 if( (pDestCol
->colFlags
& COLFLAG_GENERATED
) !=
3124 (pSrcCol
->colFlags
& COLFLAG_GENERATED
) ){
3125 return 0; /* Both columns have the same generated-column type */
3127 /* But the transfer is only allowed if both the source and destination
3128 ** tables have the exact same expressions for generated columns.
3129 ** This requirement could be relaxed for VIRTUAL columns, I suppose.
3131 if( (pDestCol
->colFlags
& COLFLAG_GENERATED
)!=0 ){
3132 if( sqlite3ExprCompare(0,
3133 sqlite3ColumnExpr(pSrc
, pSrcCol
),
3134 sqlite3ColumnExpr(pDest
, pDestCol
), -1)!=0 ){
3135 testcase( pDestCol
->colFlags
& COLFLAG_VIRTUAL
);
3136 testcase( pDestCol
->colFlags
& COLFLAG_STORED
);
3137 return 0; /* Different generator expressions */
3141 if( pDestCol
->affinity
!=pSrcCol
->affinity
){
3142 return 0; /* Affinity must be the same on all columns */
3144 if( sqlite3_stricmp(sqlite3ColumnColl(pDestCol
),
3145 sqlite3ColumnColl(pSrcCol
))!=0 ){
3146 return 0; /* Collating sequence must be the same on all columns */
3148 if( pDestCol
->notNull
&& !pSrcCol
->notNull
){
3149 return 0; /* tab2 must be NOT NULL if tab1 is */
3151 /* Default values for second and subsequent columns need to match. */
3152 if( (pDestCol
->colFlags
& COLFLAG_GENERATED
)==0 && i
>0 ){
3153 Expr
*pDestExpr
= sqlite3ColumnExpr(pDest
, pDestCol
);
3154 Expr
*pSrcExpr
= sqlite3ColumnExpr(pSrc
, pSrcCol
);
3155 assert( pDestExpr
==0 || pDestExpr
->op
==TK_SPAN
);
3156 assert( pDestExpr
==0 || !ExprHasProperty(pDestExpr
, EP_IntValue
) );
3157 assert( pSrcExpr
==0 || pSrcExpr
->op
==TK_SPAN
);
3158 assert( pSrcExpr
==0 || !ExprHasProperty(pSrcExpr
, EP_IntValue
) );
3159 if( (pDestExpr
==0)!=(pSrcExpr
==0)
3160 || (pDestExpr
!=0 && strcmp(pDestExpr
->u
.zToken
,
3161 pSrcExpr
->u
.zToken
)!=0)
3163 return 0; /* Default values must be the same for all columns */
3167 for(pDestIdx
=pDest
->pIndex
; pDestIdx
; pDestIdx
=pDestIdx
->pNext
){
3168 if( IsUniqueIndex(pDestIdx
) ){
3169 destHasUniqueIdx
= 1;
3171 for(pSrcIdx
=pSrc
->pIndex
; pSrcIdx
; pSrcIdx
=pSrcIdx
->pNext
){
3172 if( xferCompatibleIndex(pDestIdx
, pSrcIdx
) ) break;
3175 return 0; /* pDestIdx has no corresponding index in pSrc */
3177 if( pSrcIdx
->tnum
==pDestIdx
->tnum
&& pSrc
->pSchema
==pDest
->pSchema
3178 && sqlite3FaultSim(411)==SQLITE_OK
){
3179 /* The sqlite3FaultSim() call allows this corruption test to be
3180 ** bypassed during testing, in order to exercise other corruption tests
3181 ** further downstream. */
3182 return 0; /* Corrupt schema - two indexes on the same btree */
3185 #ifndef SQLITE_OMIT_CHECK
3187 && (db
->mDbFlags
& DBFLAG_Vacuum
)==0
3188 && sqlite3ExprListCompare(pSrc
->pCheck
,pDest
->pCheck
,-1)
3190 return 0; /* Tables have different CHECK constraints. Ticket #2252 */
3193 #ifndef SQLITE_OMIT_FOREIGN_KEY
3194 /* Disallow the transfer optimization if the destination table contains
3195 ** any foreign key constraints. This is more restrictive than necessary.
3196 ** But the main beneficiary of the transfer optimization is the VACUUM
3197 ** command, and the VACUUM command disables foreign key constraints. So
3198 ** the extra complication to make this rule less restrictive is probably
3199 ** not worth the effort. Ticket [6284df89debdfa61db8073e062908af0c9b6118e]
3201 assert( IsOrdinaryTable(pDest
) );
3202 if( (db
->flags
& SQLITE_ForeignKeys
)!=0 && pDest
->u
.tab
.pFKey
!=0 ){
3206 if( (db
->flags
& SQLITE_CountRows
)!=0 ){
3207 return 0; /* xfer opt does not play well with PRAGMA count_changes */
3210 /* If we get this far, it means that the xfer optimization is at
3211 ** least a possibility, though it might only work if the destination
3212 ** table (tab1) is initially empty.
3215 sqlite3_xferopt_count
++;
3217 iDbSrc
= sqlite3SchemaToIndex(db
, pSrc
->pSchema
);
3218 v
= sqlite3GetVdbe(pParse
);
3219 sqlite3CodeVerifySchema(pParse
, iDbSrc
);
3220 iSrc
= pParse
->nTab
++;
3221 iDest
= pParse
->nTab
++;
3222 regAutoinc
= autoIncBegin(pParse
, iDbDest
, pDest
);
3223 regData
= sqlite3GetTempReg(pParse
);
3224 sqlite3VdbeAddOp2(v
, OP_Null
, 0, regData
);
3225 regRowid
= sqlite3GetTempReg(pParse
);
3226 sqlite3OpenTable(pParse
, iDest
, iDbDest
, pDest
, OP_OpenWrite
);
3227 assert( HasRowid(pDest
) || destHasUniqueIdx
);
3228 if( (db
->mDbFlags
& DBFLAG_Vacuum
)==0 && (
3229 (pDest
->iPKey
<0 && pDest
->pIndex
!=0) /* (1) */
3230 || destHasUniqueIdx
/* (2) */
3231 || (onError
!=OE_Abort
&& onError
!=OE_Rollback
) /* (3) */
3233 /* In some circumstances, we are able to run the xfer optimization
3234 ** only if the destination table is initially empty. Unless the
3235 ** DBFLAG_Vacuum flag is set, this block generates code to make
3236 ** that determination. If DBFLAG_Vacuum is set, then the destination
3237 ** table is always empty.
3239 ** Conditions under which the destination must be empty:
3241 ** (1) There is no INTEGER PRIMARY KEY but there are indices.
3242 ** (If the destination is not initially empty, the rowid fields
3243 ** of index entries might need to change.)
3245 ** (2) The destination has a unique index. (The xfer optimization
3246 ** is unable to test uniqueness.)
3248 ** (3) onError is something other than OE_Abort and OE_Rollback.
3250 addr1
= sqlite3VdbeAddOp2(v
, OP_Rewind
, iDest
, 0); VdbeCoverage(v
);
3251 emptyDestTest
= sqlite3VdbeAddOp0(v
, OP_Goto
);
3252 sqlite3VdbeJumpHere(v
, addr1
);
3254 if( HasRowid(pSrc
) ){
3256 sqlite3OpenTable(pParse
, iSrc
, iDbSrc
, pSrc
, OP_OpenRead
);
3257 emptySrcTest
= sqlite3VdbeAddOp2(v
, OP_Rewind
, iSrc
, 0); VdbeCoverage(v
);
3258 if( pDest
->iPKey
>=0 ){
3259 addr1
= sqlite3VdbeAddOp2(v
, OP_Rowid
, iSrc
, regRowid
);
3260 if( (db
->mDbFlags
& DBFLAG_Vacuum
)==0 ){
3261 sqlite3VdbeVerifyAbortable(v
, onError
);
3262 addr2
= sqlite3VdbeAddOp3(v
, OP_NotExists
, iDest
, 0, regRowid
);
3264 sqlite3RowidConstraint(pParse
, onError
, pDest
);
3265 sqlite3VdbeJumpHere(v
, addr2
);
3267 autoIncStep(pParse
, regAutoinc
, regRowid
);
3268 }else if( pDest
->pIndex
==0 && !(db
->mDbFlags
& DBFLAG_VacuumInto
) ){
3269 addr1
= sqlite3VdbeAddOp2(v
, OP_NewRowid
, iDest
, regRowid
);
3271 addr1
= sqlite3VdbeAddOp2(v
, OP_Rowid
, iSrc
, regRowid
);
3272 assert( (pDest
->tabFlags
& TF_Autoincrement
)==0 );
3275 if( db
->mDbFlags
& DBFLAG_Vacuum
){
3276 sqlite3VdbeAddOp1(v
, OP_SeekEnd
, iDest
);
3277 insFlags
= OPFLAG_APPEND
|OPFLAG_USESEEKRESULT
|OPFLAG_PREFORMAT
;
3279 insFlags
= OPFLAG_NCHANGE
|OPFLAG_LASTROWID
|OPFLAG_APPEND
|OPFLAG_PREFORMAT
;
3281 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK
3282 if( (db
->mDbFlags
& DBFLAG_Vacuum
)==0 ){
3283 sqlite3VdbeAddOp3(v
, OP_RowData
, iSrc
, regData
, 1);
3284 insFlags
&= ~OPFLAG_PREFORMAT
;
3288 sqlite3VdbeAddOp3(v
, OP_RowCell
, iDest
, iSrc
, regRowid
);
3290 sqlite3VdbeAddOp3(v
, OP_Insert
, iDest
, regData
, regRowid
);
3291 if( (db
->mDbFlags
& DBFLAG_Vacuum
)==0 ){
3292 sqlite3VdbeChangeP4(v
, -1, (char*)pDest
, P4_TABLE
);
3294 sqlite3VdbeChangeP5(v
, insFlags
);
3296 sqlite3VdbeAddOp2(v
, OP_Next
, iSrc
, addr1
); VdbeCoverage(v
);
3297 sqlite3VdbeAddOp2(v
, OP_Close
, iSrc
, 0);
3298 sqlite3VdbeAddOp2(v
, OP_Close
, iDest
, 0);
3300 sqlite3TableLock(pParse
, iDbDest
, pDest
->tnum
, 1, pDest
->zName
);
3301 sqlite3TableLock(pParse
, iDbSrc
, pSrc
->tnum
, 0, pSrc
->zName
);
3303 for(pDestIdx
=pDest
->pIndex
; pDestIdx
; pDestIdx
=pDestIdx
->pNext
){
3305 for(pSrcIdx
=pSrc
->pIndex
; ALWAYS(pSrcIdx
); pSrcIdx
=pSrcIdx
->pNext
){
3306 if( xferCompatibleIndex(pDestIdx
, pSrcIdx
) ) break;
3309 sqlite3VdbeAddOp3(v
, OP_OpenRead
, iSrc
, pSrcIdx
->tnum
, iDbSrc
);
3310 sqlite3VdbeSetP4KeyInfo(pParse
, pSrcIdx
);
3311 VdbeComment((v
, "%s", pSrcIdx
->zName
));
3312 sqlite3VdbeAddOp3(v
, OP_OpenWrite
, iDest
, pDestIdx
->tnum
, iDbDest
);
3313 sqlite3VdbeSetP4KeyInfo(pParse
, pDestIdx
);
3314 sqlite3VdbeChangeP5(v
, OPFLAG_BULKCSR
);
3315 VdbeComment((v
, "%s", pDestIdx
->zName
));
3316 addr1
= sqlite3VdbeAddOp2(v
, OP_Rewind
, iSrc
, 0); VdbeCoverage(v
);
3317 if( db
->mDbFlags
& DBFLAG_Vacuum
){
3318 /* This INSERT command is part of a VACUUM operation, which guarantees
3319 ** that the destination table is empty. If all indexed columns use
3320 ** collation sequence BINARY, then it can also be assumed that the
3321 ** index will be populated by inserting keys in strictly sorted
3322 ** order. In this case, instead of seeking within the b-tree as part
3323 ** of every OP_IdxInsert opcode, an OP_SeekEnd is added before the
3324 ** OP_IdxInsert to seek to the point within the b-tree where each key
3325 ** should be inserted. This is faster.
3327 ** If any of the indexed columns use a collation sequence other than
3328 ** BINARY, this optimization is disabled. This is because the user
3329 ** might change the definition of a collation sequence and then run
3330 ** a VACUUM command. In that case keys may not be written in strictly
3332 for(i
=0; i
<pSrcIdx
->nColumn
; i
++){
3333 const char *zColl
= pSrcIdx
->azColl
[i
];
3334 if( sqlite3_stricmp(sqlite3StrBINARY
, zColl
) ) break;
3336 if( i
==pSrcIdx
->nColumn
){
3337 idxInsFlags
= OPFLAG_USESEEKRESULT
|OPFLAG_PREFORMAT
;
3338 sqlite3VdbeAddOp1(v
, OP_SeekEnd
, iDest
);
3339 sqlite3VdbeAddOp2(v
, OP_RowCell
, iDest
, iSrc
);
3341 }else if( !HasRowid(pSrc
) && pDestIdx
->idxType
==SQLITE_IDXTYPE_PRIMARYKEY
){
3342 idxInsFlags
|= OPFLAG_NCHANGE
;
3344 if( idxInsFlags
!=(OPFLAG_USESEEKRESULT
|OPFLAG_PREFORMAT
) ){
3345 sqlite3VdbeAddOp3(v
, OP_RowData
, iSrc
, regData
, 1);
3346 if( (db
->mDbFlags
& DBFLAG_Vacuum
)==0
3348 && IsPrimaryKeyIndex(pDestIdx
)
3350 codeWithoutRowidPreupdate(pParse
, pDest
, iDest
, regData
);
3353 sqlite3VdbeAddOp2(v
, OP_IdxInsert
, iDest
, regData
);
3354 sqlite3VdbeChangeP5(v
, idxInsFlags
|OPFLAG_APPEND
);
3355 sqlite3VdbeAddOp2(v
, OP_Next
, iSrc
, addr1
+1); VdbeCoverage(v
);
3356 sqlite3VdbeJumpHere(v
, addr1
);
3357 sqlite3VdbeAddOp2(v
, OP_Close
, iSrc
, 0);
3358 sqlite3VdbeAddOp2(v
, OP_Close
, iDest
, 0);
3360 if( emptySrcTest
) sqlite3VdbeJumpHere(v
, emptySrcTest
);
3361 sqlite3ReleaseTempReg(pParse
, regRowid
);
3362 sqlite3ReleaseTempReg(pParse
, regData
);
3363 if( emptyDestTest
){
3364 sqlite3AutoincrementEnd(pParse
);
3365 sqlite3VdbeAddOp2(v
, OP_Halt
, SQLITE_OK
, 0);
3366 sqlite3VdbeJumpHere(v
, emptyDestTest
);
3367 sqlite3VdbeAddOp2(v
, OP_Close
, iDest
, 0);
3373 #endif /* SQLITE_OMIT_XFER_OPT */