Revert "change compilation / amalgamation order of sqlcipher sources"
[sqlcipher.git] / src / expr.c
bloba51d37a7b700c907f2b8ae2eeb22a6ecdff55c67
1 /*
2 ** 2001 September 15
3 **
4 ** The author disclaims copyright to this source code. In place of
5 ** a legal notice, here is a blessing:
6 **
7 ** May you do good and not evil.
8 ** May you find forgiveness for yourself and forgive others.
9 ** May you share freely, never taking more than you give.
11 *************************************************************************
12 ** This file contains routines used for analyzing expressions and
13 ** for generating VDBE code that evaluates expressions in SQLite.
15 #include "sqliteInt.h"
17 /* Forward declarations */
18 static void exprCodeBetween(Parse*,Expr*,int,void(*)(Parse*,Expr*,int,int),int);
19 static int exprCodeVector(Parse *pParse, Expr *p, int *piToFree);
22 ** Return the affinity character for a single column of a table.
24 char sqlite3TableColumnAffinity(const Table *pTab, int iCol){
25 if( iCol<0 || NEVER(iCol>=pTab->nCol) ) return SQLITE_AFF_INTEGER;
26 return pTab->aCol[iCol].affinity;
30 ** Return the 'affinity' of the expression pExpr if any.
32 ** If pExpr is a column, a reference to a column via an 'AS' alias,
33 ** or a sub-select with a column as the return value, then the
34 ** affinity of that column is returned. Otherwise, 0x00 is returned,
35 ** indicating no affinity for the expression.
37 ** i.e. the WHERE clause expressions in the following statements all
38 ** have an affinity:
40 ** CREATE TABLE t1(a);
41 ** SELECT * FROM t1 WHERE a;
42 ** SELECT a AS b FROM t1 WHERE b;
43 ** SELECT * FROM t1 WHERE (select a from t1);
45 char sqlite3ExprAffinity(const Expr *pExpr){
46 int op;
47 while( ExprHasProperty(pExpr, EP_Skip|EP_IfNullRow) ){
48 assert( pExpr->op==TK_COLLATE
49 || pExpr->op==TK_IF_NULL_ROW
50 || (pExpr->op==TK_REGISTER && pExpr->op2==TK_IF_NULL_ROW) );
51 pExpr = pExpr->pLeft;
52 assert( pExpr!=0 );
54 op = pExpr->op;
55 if( op==TK_REGISTER ) op = pExpr->op2;
56 if( op==TK_COLUMN || op==TK_AGG_COLUMN ){
57 assert( ExprUseYTab(pExpr) );
58 if( pExpr->y.pTab ){
59 return sqlite3TableColumnAffinity(pExpr->y.pTab, pExpr->iColumn);
62 if( op==TK_SELECT ){
63 assert( ExprUseXSelect(pExpr) );
64 assert( pExpr->x.pSelect!=0 );
65 assert( pExpr->x.pSelect->pEList!=0 );
66 assert( pExpr->x.pSelect->pEList->a[0].pExpr!=0 );
67 return sqlite3ExprAffinity(pExpr->x.pSelect->pEList->a[0].pExpr);
69 #ifndef SQLITE_OMIT_CAST
70 if( op==TK_CAST ){
71 assert( !ExprHasProperty(pExpr, EP_IntValue) );
72 return sqlite3AffinityType(pExpr->u.zToken, 0);
74 #endif
75 if( op==TK_SELECT_COLUMN ){
76 assert( pExpr->pLeft!=0 && ExprUseXSelect(pExpr->pLeft) );
77 assert( pExpr->iColumn < pExpr->iTable );
78 assert( pExpr->iTable==pExpr->pLeft->x.pSelect->pEList->nExpr );
79 return sqlite3ExprAffinity(
80 pExpr->pLeft->x.pSelect->pEList->a[pExpr->iColumn].pExpr
83 if( op==TK_VECTOR ){
84 assert( ExprUseXList(pExpr) );
85 return sqlite3ExprAffinity(pExpr->x.pList->a[0].pExpr);
87 return pExpr->affExpr;
91 ** Set the collating sequence for expression pExpr to be the collating
92 ** sequence named by pToken. Return a pointer to a new Expr node that
93 ** implements the COLLATE operator.
95 ** If a memory allocation error occurs, that fact is recorded in pParse->db
96 ** and the pExpr parameter is returned unchanged.
98 Expr *sqlite3ExprAddCollateToken(
99 const Parse *pParse, /* Parsing context */
100 Expr *pExpr, /* Add the "COLLATE" clause to this expression */
101 const Token *pCollName, /* Name of collating sequence */
102 int dequote /* True to dequote pCollName */
104 if( pCollName->n>0 ){
105 Expr *pNew = sqlite3ExprAlloc(pParse->db, TK_COLLATE, pCollName, dequote);
106 if( pNew ){
107 pNew->pLeft = pExpr;
108 pNew->flags |= EP_Collate|EP_Skip;
109 pExpr = pNew;
112 return pExpr;
114 Expr *sqlite3ExprAddCollateString(
115 const Parse *pParse, /* Parsing context */
116 Expr *pExpr, /* Add the "COLLATE" clause to this expression */
117 const char *zC /* The collating sequence name */
119 Token s;
120 assert( zC!=0 );
121 sqlite3TokenInit(&s, (char*)zC);
122 return sqlite3ExprAddCollateToken(pParse, pExpr, &s, 0);
126 ** Skip over any TK_COLLATE operators.
128 Expr *sqlite3ExprSkipCollate(Expr *pExpr){
129 while( pExpr && ExprHasProperty(pExpr, EP_Skip) ){
130 assert( pExpr->op==TK_COLLATE );
131 pExpr = pExpr->pLeft;
133 return pExpr;
137 ** Skip over any TK_COLLATE operators and/or any unlikely()
138 ** or likelihood() or likely() functions at the root of an
139 ** expression.
141 Expr *sqlite3ExprSkipCollateAndLikely(Expr *pExpr){
142 while( pExpr && ExprHasProperty(pExpr, EP_Skip|EP_Unlikely) ){
143 if( ExprHasProperty(pExpr, EP_Unlikely) ){
144 assert( ExprUseXList(pExpr) );
145 assert( pExpr->x.pList->nExpr>0 );
146 assert( pExpr->op==TK_FUNCTION );
147 pExpr = pExpr->x.pList->a[0].pExpr;
148 }else{
149 assert( pExpr->op==TK_COLLATE );
150 pExpr = pExpr->pLeft;
153 return pExpr;
157 ** Return the collation sequence for the expression pExpr. If
158 ** there is no defined collating sequence, return NULL.
160 ** See also: sqlite3ExprNNCollSeq()
162 ** The sqlite3ExprNNCollSeq() works the same exact that it returns the
163 ** default collation if pExpr has no defined collation.
165 ** The collating sequence might be determined by a COLLATE operator
166 ** or by the presence of a column with a defined collating sequence.
167 ** COLLATE operators take first precedence. Left operands take
168 ** precedence over right operands.
170 CollSeq *sqlite3ExprCollSeq(Parse *pParse, const Expr *pExpr){
171 sqlite3 *db = pParse->db;
172 CollSeq *pColl = 0;
173 const Expr *p = pExpr;
174 while( p ){
175 int op = p->op;
176 if( op==TK_REGISTER ) op = p->op2;
177 if( op==TK_AGG_COLUMN || op==TK_COLUMN || op==TK_TRIGGER ){
178 assert( ExprUseYTab(p) );
179 if( p->y.pTab!=0 ){
180 /* op==TK_REGISTER && p->y.pTab!=0 happens when pExpr was originally
181 ** a TK_COLUMN but was previously evaluated and cached in a register */
182 int j = p->iColumn;
183 if( j>=0 ){
184 const char *zColl = sqlite3ColumnColl(&p->y.pTab->aCol[j]);
185 pColl = sqlite3FindCollSeq(db, ENC(db), zColl, 0);
187 break;
190 if( op==TK_CAST || op==TK_UPLUS ){
191 p = p->pLeft;
192 continue;
194 if( op==TK_VECTOR ){
195 assert( ExprUseXList(p) );
196 p = p->x.pList->a[0].pExpr;
197 continue;
199 if( op==TK_COLLATE ){
200 assert( !ExprHasProperty(p, EP_IntValue) );
201 pColl = sqlite3GetCollSeq(pParse, ENC(db), 0, p->u.zToken);
202 break;
204 if( p->flags & EP_Collate ){
205 if( p->pLeft && (p->pLeft->flags & EP_Collate)!=0 ){
206 p = p->pLeft;
207 }else{
208 Expr *pNext = p->pRight;
209 /* The Expr.x union is never used at the same time as Expr.pRight */
210 assert( ExprUseXList(p) );
211 assert( p->x.pList==0 || p->pRight==0 );
212 if( p->x.pList!=0 && !db->mallocFailed ){
213 int i;
214 for(i=0; ALWAYS(i<p->x.pList->nExpr); i++){
215 if( ExprHasProperty(p->x.pList->a[i].pExpr, EP_Collate) ){
216 pNext = p->x.pList->a[i].pExpr;
217 break;
221 p = pNext;
223 }else{
224 break;
227 if( sqlite3CheckCollSeq(pParse, pColl) ){
228 pColl = 0;
230 return pColl;
234 ** Return the collation sequence for the expression pExpr. If
235 ** there is no defined collating sequence, return a pointer to the
236 ** defautl collation sequence.
238 ** See also: sqlite3ExprCollSeq()
240 ** The sqlite3ExprCollSeq() routine works the same except that it
241 ** returns NULL if there is no defined collation.
243 CollSeq *sqlite3ExprNNCollSeq(Parse *pParse, const Expr *pExpr){
244 CollSeq *p = sqlite3ExprCollSeq(pParse, pExpr);
245 if( p==0 ) p = pParse->db->pDfltColl;
246 assert( p!=0 );
247 return p;
251 ** Return TRUE if the two expressions have equivalent collating sequences.
253 int sqlite3ExprCollSeqMatch(Parse *pParse, const Expr *pE1, const Expr *pE2){
254 CollSeq *pColl1 = sqlite3ExprNNCollSeq(pParse, pE1);
255 CollSeq *pColl2 = sqlite3ExprNNCollSeq(pParse, pE2);
256 return sqlite3StrICmp(pColl1->zName, pColl2->zName)==0;
260 ** pExpr is an operand of a comparison operator. aff2 is the
261 ** type affinity of the other operand. This routine returns the
262 ** type affinity that should be used for the comparison operator.
264 char sqlite3CompareAffinity(const Expr *pExpr, char aff2){
265 char aff1 = sqlite3ExprAffinity(pExpr);
266 if( aff1>SQLITE_AFF_NONE && aff2>SQLITE_AFF_NONE ){
267 /* Both sides of the comparison are columns. If one has numeric
268 ** affinity, use that. Otherwise use no affinity.
270 if( sqlite3IsNumericAffinity(aff1) || sqlite3IsNumericAffinity(aff2) ){
271 return SQLITE_AFF_NUMERIC;
272 }else{
273 return SQLITE_AFF_BLOB;
275 }else{
276 /* One side is a column, the other is not. Use the columns affinity. */
277 assert( aff1<=SQLITE_AFF_NONE || aff2<=SQLITE_AFF_NONE );
278 return (aff1<=SQLITE_AFF_NONE ? aff2 : aff1) | SQLITE_AFF_NONE;
283 ** pExpr is a comparison operator. Return the type affinity that should
284 ** be applied to both operands prior to doing the comparison.
286 static char comparisonAffinity(const Expr *pExpr){
287 char aff;
288 assert( pExpr->op==TK_EQ || pExpr->op==TK_IN || pExpr->op==TK_LT ||
289 pExpr->op==TK_GT || pExpr->op==TK_GE || pExpr->op==TK_LE ||
290 pExpr->op==TK_NE || pExpr->op==TK_IS || pExpr->op==TK_ISNOT );
291 assert( pExpr->pLeft );
292 aff = sqlite3ExprAffinity(pExpr->pLeft);
293 if( pExpr->pRight ){
294 aff = sqlite3CompareAffinity(pExpr->pRight, aff);
295 }else if( ExprUseXSelect(pExpr) ){
296 aff = sqlite3CompareAffinity(pExpr->x.pSelect->pEList->a[0].pExpr, aff);
297 }else if( aff==0 ){
298 aff = SQLITE_AFF_BLOB;
300 return aff;
304 ** pExpr is a comparison expression, eg. '=', '<', IN(...) etc.
305 ** idx_affinity is the affinity of an indexed column. Return true
306 ** if the index with affinity idx_affinity may be used to implement
307 ** the comparison in pExpr.
309 int sqlite3IndexAffinityOk(const Expr *pExpr, char idx_affinity){
310 char aff = comparisonAffinity(pExpr);
311 if( aff<SQLITE_AFF_TEXT ){
312 return 1;
314 if( aff==SQLITE_AFF_TEXT ){
315 return idx_affinity==SQLITE_AFF_TEXT;
317 return sqlite3IsNumericAffinity(idx_affinity);
321 ** Return the P5 value that should be used for a binary comparison
322 ** opcode (OP_Eq, OP_Ge etc.) used to compare pExpr1 and pExpr2.
324 static u8 binaryCompareP5(
325 const Expr *pExpr1, /* Left operand */
326 const Expr *pExpr2, /* Right operand */
327 int jumpIfNull /* Extra flags added to P5 */
329 u8 aff = (char)sqlite3ExprAffinity(pExpr2);
330 aff = (u8)sqlite3CompareAffinity(pExpr1, aff) | (u8)jumpIfNull;
331 return aff;
335 ** Return a pointer to the collation sequence that should be used by
336 ** a binary comparison operator comparing pLeft and pRight.
338 ** If the left hand expression has a collating sequence type, then it is
339 ** used. Otherwise the collation sequence for the right hand expression
340 ** is used, or the default (BINARY) if neither expression has a collating
341 ** type.
343 ** Argument pRight (but not pLeft) may be a null pointer. In this case,
344 ** it is not considered.
346 CollSeq *sqlite3BinaryCompareCollSeq(
347 Parse *pParse,
348 const Expr *pLeft,
349 const Expr *pRight
351 CollSeq *pColl;
352 assert( pLeft );
353 if( pLeft->flags & EP_Collate ){
354 pColl = sqlite3ExprCollSeq(pParse, pLeft);
355 }else if( pRight && (pRight->flags & EP_Collate)!=0 ){
356 pColl = sqlite3ExprCollSeq(pParse, pRight);
357 }else{
358 pColl = sqlite3ExprCollSeq(pParse, pLeft);
359 if( !pColl ){
360 pColl = sqlite3ExprCollSeq(pParse, pRight);
363 return pColl;
366 /* Expresssion p is a comparison operator. Return a collation sequence
367 ** appropriate for the comparison operator.
369 ** This is normally just a wrapper around sqlite3BinaryCompareCollSeq().
370 ** However, if the OP_Commuted flag is set, then the order of the operands
371 ** is reversed in the sqlite3BinaryCompareCollSeq() call so that the
372 ** correct collating sequence is found.
374 CollSeq *sqlite3ExprCompareCollSeq(Parse *pParse, const Expr *p){
375 if( ExprHasProperty(p, EP_Commuted) ){
376 return sqlite3BinaryCompareCollSeq(pParse, p->pRight, p->pLeft);
377 }else{
378 return sqlite3BinaryCompareCollSeq(pParse, p->pLeft, p->pRight);
383 ** Generate code for a comparison operator.
385 static int codeCompare(
386 Parse *pParse, /* The parsing (and code generating) context */
387 Expr *pLeft, /* The left operand */
388 Expr *pRight, /* The right operand */
389 int opcode, /* The comparison opcode */
390 int in1, int in2, /* Register holding operands */
391 int dest, /* Jump here if true. */
392 int jumpIfNull, /* If true, jump if either operand is NULL */
393 int isCommuted /* The comparison has been commuted */
395 int p5;
396 int addr;
397 CollSeq *p4;
399 if( pParse->nErr ) return 0;
400 if( isCommuted ){
401 p4 = sqlite3BinaryCompareCollSeq(pParse, pRight, pLeft);
402 }else{
403 p4 = sqlite3BinaryCompareCollSeq(pParse, pLeft, pRight);
405 p5 = binaryCompareP5(pLeft, pRight, jumpIfNull);
406 addr = sqlite3VdbeAddOp4(pParse->pVdbe, opcode, in2, dest, in1,
407 (void*)p4, P4_COLLSEQ);
408 sqlite3VdbeChangeP5(pParse->pVdbe, (u8)p5);
409 return addr;
413 ** Return true if expression pExpr is a vector, or false otherwise.
415 ** A vector is defined as any expression that results in two or more
416 ** columns of result. Every TK_VECTOR node is an vector because the
417 ** parser will not generate a TK_VECTOR with fewer than two entries.
418 ** But a TK_SELECT might be either a vector or a scalar. It is only
419 ** considered a vector if it has two or more result columns.
421 int sqlite3ExprIsVector(const Expr *pExpr){
422 return sqlite3ExprVectorSize(pExpr)>1;
426 ** If the expression passed as the only argument is of type TK_VECTOR
427 ** return the number of expressions in the vector. Or, if the expression
428 ** is a sub-select, return the number of columns in the sub-select. For
429 ** any other type of expression, return 1.
431 int sqlite3ExprVectorSize(const Expr *pExpr){
432 u8 op = pExpr->op;
433 if( op==TK_REGISTER ) op = pExpr->op2;
434 if( op==TK_VECTOR ){
435 assert( ExprUseXList(pExpr) );
436 return pExpr->x.pList->nExpr;
437 }else if( op==TK_SELECT ){
438 assert( ExprUseXSelect(pExpr) );
439 return pExpr->x.pSelect->pEList->nExpr;
440 }else{
441 return 1;
446 ** Return a pointer to a subexpression of pVector that is the i-th
447 ** column of the vector (numbered starting with 0). The caller must
448 ** ensure that i is within range.
450 ** If pVector is really a scalar (and "scalar" here includes subqueries
451 ** that return a single column!) then return pVector unmodified.
453 ** pVector retains ownership of the returned subexpression.
455 ** If the vector is a (SELECT ...) then the expression returned is
456 ** just the expression for the i-th term of the result set, and may
457 ** not be ready for evaluation because the table cursor has not yet
458 ** been positioned.
460 Expr *sqlite3VectorFieldSubexpr(Expr *pVector, int i){
461 assert( i<sqlite3ExprVectorSize(pVector) || pVector->op==TK_ERROR );
462 if( sqlite3ExprIsVector(pVector) ){
463 assert( pVector->op2==0 || pVector->op==TK_REGISTER );
464 if( pVector->op==TK_SELECT || pVector->op2==TK_SELECT ){
465 assert( ExprUseXSelect(pVector) );
466 return pVector->x.pSelect->pEList->a[i].pExpr;
467 }else{
468 assert( ExprUseXList(pVector) );
469 return pVector->x.pList->a[i].pExpr;
472 return pVector;
476 ** Compute and return a new Expr object which when passed to
477 ** sqlite3ExprCode() will generate all necessary code to compute
478 ** the iField-th column of the vector expression pVector.
480 ** It is ok for pVector to be a scalar (as long as iField==0).
481 ** In that case, this routine works like sqlite3ExprDup().
483 ** The caller owns the returned Expr object and is responsible for
484 ** ensuring that the returned value eventually gets freed.
486 ** The caller retains ownership of pVector. If pVector is a TK_SELECT,
487 ** then the returned object will reference pVector and so pVector must remain
488 ** valid for the life of the returned object. If pVector is a TK_VECTOR
489 ** or a scalar expression, then it can be deleted as soon as this routine
490 ** returns.
492 ** A trick to cause a TK_SELECT pVector to be deleted together with
493 ** the returned Expr object is to attach the pVector to the pRight field
494 ** of the returned TK_SELECT_COLUMN Expr object.
496 Expr *sqlite3ExprForVectorField(
497 Parse *pParse, /* Parsing context */
498 Expr *pVector, /* The vector. List of expressions or a sub-SELECT */
499 int iField, /* Which column of the vector to return */
500 int nField /* Total number of columns in the vector */
502 Expr *pRet;
503 if( pVector->op==TK_SELECT ){
504 assert( ExprUseXSelect(pVector) );
505 /* The TK_SELECT_COLUMN Expr node:
507 ** pLeft: pVector containing TK_SELECT. Not deleted.
508 ** pRight: not used. But recursively deleted.
509 ** iColumn: Index of a column in pVector
510 ** iTable: 0 or the number of columns on the LHS of an assignment
511 ** pLeft->iTable: First in an array of register holding result, or 0
512 ** if the result is not yet computed.
514 ** sqlite3ExprDelete() specifically skips the recursive delete of
515 ** pLeft on TK_SELECT_COLUMN nodes. But pRight is followed, so pVector
516 ** can be attached to pRight to cause this node to take ownership of
517 ** pVector. Typically there will be multiple TK_SELECT_COLUMN nodes
518 ** with the same pLeft pointer to the pVector, but only one of them
519 ** will own the pVector.
521 pRet = sqlite3PExpr(pParse, TK_SELECT_COLUMN, 0, 0);
522 if( pRet ){
523 pRet->iTable = nField;
524 pRet->iColumn = iField;
525 pRet->pLeft = pVector;
527 }else{
528 if( pVector->op==TK_VECTOR ){
529 Expr **ppVector;
530 assert( ExprUseXList(pVector) );
531 ppVector = &pVector->x.pList->a[iField].pExpr;
532 pVector = *ppVector;
533 if( IN_RENAME_OBJECT ){
534 /* This must be a vector UPDATE inside a trigger */
535 *ppVector = 0;
536 return pVector;
539 pRet = sqlite3ExprDup(pParse->db, pVector, 0);
541 return pRet;
545 ** If expression pExpr is of type TK_SELECT, generate code to evaluate
546 ** it. Return the register in which the result is stored (or, if the
547 ** sub-select returns more than one column, the first in an array
548 ** of registers in which the result is stored).
550 ** If pExpr is not a TK_SELECT expression, return 0.
552 static int exprCodeSubselect(Parse *pParse, Expr *pExpr){
553 int reg = 0;
554 #ifndef SQLITE_OMIT_SUBQUERY
555 if( pExpr->op==TK_SELECT ){
556 reg = sqlite3CodeSubselect(pParse, pExpr);
558 #endif
559 return reg;
563 ** Argument pVector points to a vector expression - either a TK_VECTOR
564 ** or TK_SELECT that returns more than one column. This function returns
565 ** the register number of a register that contains the value of
566 ** element iField of the vector.
568 ** If pVector is a TK_SELECT expression, then code for it must have
569 ** already been generated using the exprCodeSubselect() routine. In this
570 ** case parameter regSelect should be the first in an array of registers
571 ** containing the results of the sub-select.
573 ** If pVector is of type TK_VECTOR, then code for the requested field
574 ** is generated. In this case (*pRegFree) may be set to the number of
575 ** a temporary register to be freed by the caller before returning.
577 ** Before returning, output parameter (*ppExpr) is set to point to the
578 ** Expr object corresponding to element iElem of the vector.
580 static int exprVectorRegister(
581 Parse *pParse, /* Parse context */
582 Expr *pVector, /* Vector to extract element from */
583 int iField, /* Field to extract from pVector */
584 int regSelect, /* First in array of registers */
585 Expr **ppExpr, /* OUT: Expression element */
586 int *pRegFree /* OUT: Temp register to free */
588 u8 op = pVector->op;
589 assert( op==TK_VECTOR || op==TK_REGISTER || op==TK_SELECT || op==TK_ERROR );
590 if( op==TK_REGISTER ){
591 *ppExpr = sqlite3VectorFieldSubexpr(pVector, iField);
592 return pVector->iTable+iField;
594 if( op==TK_SELECT ){
595 assert( ExprUseXSelect(pVector) );
596 *ppExpr = pVector->x.pSelect->pEList->a[iField].pExpr;
597 return regSelect+iField;
599 if( op==TK_VECTOR ){
600 assert( ExprUseXList(pVector) );
601 *ppExpr = pVector->x.pList->a[iField].pExpr;
602 return sqlite3ExprCodeTemp(pParse, *ppExpr, pRegFree);
604 return 0;
608 ** Expression pExpr is a comparison between two vector values. Compute
609 ** the result of the comparison (1, 0, or NULL) and write that
610 ** result into register dest.
612 ** The caller must satisfy the following preconditions:
614 ** if pExpr->op==TK_IS: op==TK_EQ and p5==SQLITE_NULLEQ
615 ** if pExpr->op==TK_ISNOT: op==TK_NE and p5==SQLITE_NULLEQ
616 ** otherwise: op==pExpr->op and p5==0
618 static void codeVectorCompare(
619 Parse *pParse, /* Code generator context */
620 Expr *pExpr, /* The comparison operation */
621 int dest, /* Write results into this register */
622 u8 op, /* Comparison operator */
623 u8 p5 /* SQLITE_NULLEQ or zero */
625 Vdbe *v = pParse->pVdbe;
626 Expr *pLeft = pExpr->pLeft;
627 Expr *pRight = pExpr->pRight;
628 int nLeft = sqlite3ExprVectorSize(pLeft);
629 int i;
630 int regLeft = 0;
631 int regRight = 0;
632 u8 opx = op;
633 int addrCmp = 0;
634 int addrDone = sqlite3VdbeMakeLabel(pParse);
635 int isCommuted = ExprHasProperty(pExpr,EP_Commuted);
637 assert( !ExprHasVVAProperty(pExpr,EP_Immutable) );
638 if( pParse->nErr ) return;
639 if( nLeft!=sqlite3ExprVectorSize(pRight) ){
640 sqlite3ErrorMsg(pParse, "row value misused");
641 return;
643 assert( pExpr->op==TK_EQ || pExpr->op==TK_NE
644 || pExpr->op==TK_IS || pExpr->op==TK_ISNOT
645 || pExpr->op==TK_LT || pExpr->op==TK_GT
646 || pExpr->op==TK_LE || pExpr->op==TK_GE
648 assert( pExpr->op==op || (pExpr->op==TK_IS && op==TK_EQ)
649 || (pExpr->op==TK_ISNOT && op==TK_NE) );
650 assert( p5==0 || pExpr->op!=op );
651 assert( p5==SQLITE_NULLEQ || pExpr->op==op );
653 if( op==TK_LE ) opx = TK_LT;
654 if( op==TK_GE ) opx = TK_GT;
655 if( op==TK_NE ) opx = TK_EQ;
657 regLeft = exprCodeSubselect(pParse, pLeft);
658 regRight = exprCodeSubselect(pParse, pRight);
660 sqlite3VdbeAddOp2(v, OP_Integer, 1, dest);
661 for(i=0; 1 /*Loop exits by "break"*/; i++){
662 int regFree1 = 0, regFree2 = 0;
663 Expr *pL = 0, *pR = 0;
664 int r1, r2;
665 assert( i>=0 && i<nLeft );
666 if( addrCmp ) sqlite3VdbeJumpHere(v, addrCmp);
667 r1 = exprVectorRegister(pParse, pLeft, i, regLeft, &pL, &regFree1);
668 r2 = exprVectorRegister(pParse, pRight, i, regRight, &pR, &regFree2);
669 addrCmp = sqlite3VdbeCurrentAddr(v);
670 codeCompare(pParse, pL, pR, opx, r1, r2, addrDone, p5, isCommuted);
671 testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt);
672 testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le);
673 testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt);
674 testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge);
675 testcase(op==OP_Eq); VdbeCoverageIf(v,op==OP_Eq);
676 testcase(op==OP_Ne); VdbeCoverageIf(v,op==OP_Ne);
677 sqlite3ReleaseTempReg(pParse, regFree1);
678 sqlite3ReleaseTempReg(pParse, regFree2);
679 if( (opx==TK_LT || opx==TK_GT) && i<nLeft-1 ){
680 addrCmp = sqlite3VdbeAddOp0(v, OP_ElseEq);
681 testcase(opx==TK_LT); VdbeCoverageIf(v,opx==TK_LT);
682 testcase(opx==TK_GT); VdbeCoverageIf(v,opx==TK_GT);
684 if( p5==SQLITE_NULLEQ ){
685 sqlite3VdbeAddOp2(v, OP_Integer, 0, dest);
686 }else{
687 sqlite3VdbeAddOp3(v, OP_ZeroOrNull, r1, dest, r2);
689 if( i==nLeft-1 ){
690 break;
692 if( opx==TK_EQ ){
693 sqlite3VdbeAddOp2(v, OP_NotNull, dest, addrDone); VdbeCoverage(v);
694 }else{
695 assert( op==TK_LT || op==TK_GT || op==TK_LE || op==TK_GE );
696 sqlite3VdbeAddOp2(v, OP_Goto, 0, addrDone);
697 if( i==nLeft-2 ) opx = op;
700 sqlite3VdbeJumpHere(v, addrCmp);
701 sqlite3VdbeResolveLabel(v, addrDone);
702 if( op==TK_NE ){
703 sqlite3VdbeAddOp2(v, OP_Not, dest, dest);
707 #if SQLITE_MAX_EXPR_DEPTH>0
709 ** Check that argument nHeight is less than or equal to the maximum
710 ** expression depth allowed. If it is not, leave an error message in
711 ** pParse.
713 int sqlite3ExprCheckHeight(Parse *pParse, int nHeight){
714 int rc = SQLITE_OK;
715 int mxHeight = pParse->db->aLimit[SQLITE_LIMIT_EXPR_DEPTH];
716 if( nHeight>mxHeight ){
717 sqlite3ErrorMsg(pParse,
718 "Expression tree is too large (maximum depth %d)", mxHeight
720 rc = SQLITE_ERROR;
722 return rc;
725 /* The following three functions, heightOfExpr(), heightOfExprList()
726 ** and heightOfSelect(), are used to determine the maximum height
727 ** of any expression tree referenced by the structure passed as the
728 ** first argument.
730 ** If this maximum height is greater than the current value pointed
731 ** to by pnHeight, the second parameter, then set *pnHeight to that
732 ** value.
734 static void heightOfExpr(const Expr *p, int *pnHeight){
735 if( p ){
736 if( p->nHeight>*pnHeight ){
737 *pnHeight = p->nHeight;
741 static void heightOfExprList(const ExprList *p, int *pnHeight){
742 if( p ){
743 int i;
744 for(i=0; i<p->nExpr; i++){
745 heightOfExpr(p->a[i].pExpr, pnHeight);
749 static void heightOfSelect(const Select *pSelect, int *pnHeight){
750 const Select *p;
751 for(p=pSelect; p; p=p->pPrior){
752 heightOfExpr(p->pWhere, pnHeight);
753 heightOfExpr(p->pHaving, pnHeight);
754 heightOfExpr(p->pLimit, pnHeight);
755 heightOfExprList(p->pEList, pnHeight);
756 heightOfExprList(p->pGroupBy, pnHeight);
757 heightOfExprList(p->pOrderBy, pnHeight);
762 ** Set the Expr.nHeight variable in the structure passed as an
763 ** argument. An expression with no children, Expr.pList or
764 ** Expr.pSelect member has a height of 1. Any other expression
765 ** has a height equal to the maximum height of any other
766 ** referenced Expr plus one.
768 ** Also propagate EP_Propagate flags up from Expr.x.pList to Expr.flags,
769 ** if appropriate.
771 static void exprSetHeight(Expr *p){
772 int nHeight = 0;
773 heightOfExpr(p->pLeft, &nHeight);
774 heightOfExpr(p->pRight, &nHeight);
775 if( ExprUseXSelect(p) ){
776 heightOfSelect(p->x.pSelect, &nHeight);
777 }else if( p->x.pList ){
778 heightOfExprList(p->x.pList, &nHeight);
779 p->flags |= EP_Propagate & sqlite3ExprListFlags(p->x.pList);
781 p->nHeight = nHeight + 1;
785 ** Set the Expr.nHeight variable using the exprSetHeight() function. If
786 ** the height is greater than the maximum allowed expression depth,
787 ** leave an error in pParse.
789 ** Also propagate all EP_Propagate flags from the Expr.x.pList into
790 ** Expr.flags.
792 void sqlite3ExprSetHeightAndFlags(Parse *pParse, Expr *p){
793 if( pParse->nErr ) return;
794 exprSetHeight(p);
795 sqlite3ExprCheckHeight(pParse, p->nHeight);
799 ** Return the maximum height of any expression tree referenced
800 ** by the select statement passed as an argument.
802 int sqlite3SelectExprHeight(const Select *p){
803 int nHeight = 0;
804 heightOfSelect(p, &nHeight);
805 return nHeight;
807 #else /* ABOVE: Height enforcement enabled. BELOW: Height enforcement off */
809 ** Propagate all EP_Propagate flags from the Expr.x.pList into
810 ** Expr.flags.
812 void sqlite3ExprSetHeightAndFlags(Parse *pParse, Expr *p){
813 if( pParse->nErr ) return;
814 if( p && ExprUseXList(p) && p->x.pList ){
815 p->flags |= EP_Propagate & sqlite3ExprListFlags(p->x.pList);
818 #define exprSetHeight(y)
819 #endif /* SQLITE_MAX_EXPR_DEPTH>0 */
822 ** This routine is the core allocator for Expr nodes.
824 ** Construct a new expression node and return a pointer to it. Memory
825 ** for this node and for the pToken argument is a single allocation
826 ** obtained from sqlite3DbMalloc(). The calling function
827 ** is responsible for making sure the node eventually gets freed.
829 ** If dequote is true, then the token (if it exists) is dequoted.
830 ** If dequote is false, no dequoting is performed. The deQuote
831 ** parameter is ignored if pToken is NULL or if the token does not
832 ** appear to be quoted. If the quotes were of the form "..." (double-quotes)
833 ** then the EP_DblQuoted flag is set on the expression node.
835 ** Special case: If op==TK_INTEGER and pToken points to a string that
836 ** can be translated into a 32-bit integer, then the token is not
837 ** stored in u.zToken. Instead, the integer values is written
838 ** into u.iValue and the EP_IntValue flag is set. No extra storage
839 ** is allocated to hold the integer text and the dequote flag is ignored.
841 Expr *sqlite3ExprAlloc(
842 sqlite3 *db, /* Handle for sqlite3DbMallocRawNN() */
843 int op, /* Expression opcode */
844 const Token *pToken, /* Token argument. Might be NULL */
845 int dequote /* True to dequote */
847 Expr *pNew;
848 int nExtra = 0;
849 int iValue = 0;
851 assert( db!=0 );
852 if( pToken ){
853 if( op!=TK_INTEGER || pToken->z==0
854 || sqlite3GetInt32(pToken->z, &iValue)==0 ){
855 nExtra = pToken->n+1;
856 assert( iValue>=0 );
859 pNew = sqlite3DbMallocRawNN(db, sizeof(Expr)+nExtra);
860 if( pNew ){
861 memset(pNew, 0, sizeof(Expr));
862 pNew->op = (u8)op;
863 pNew->iAgg = -1;
864 if( pToken ){
865 if( nExtra==0 ){
866 pNew->flags |= EP_IntValue|EP_Leaf|(iValue?EP_IsTrue:EP_IsFalse);
867 pNew->u.iValue = iValue;
868 }else{
869 pNew->u.zToken = (char*)&pNew[1];
870 assert( pToken->z!=0 || pToken->n==0 );
871 if( pToken->n ) memcpy(pNew->u.zToken, pToken->z, pToken->n);
872 pNew->u.zToken[pToken->n] = 0;
873 if( dequote && sqlite3Isquote(pNew->u.zToken[0]) ){
874 sqlite3DequoteExpr(pNew);
878 #if SQLITE_MAX_EXPR_DEPTH>0
879 pNew->nHeight = 1;
880 #endif
882 return pNew;
886 ** Allocate a new expression node from a zero-terminated token that has
887 ** already been dequoted.
889 Expr *sqlite3Expr(
890 sqlite3 *db, /* Handle for sqlite3DbMallocZero() (may be null) */
891 int op, /* Expression opcode */
892 const char *zToken /* Token argument. Might be NULL */
894 Token x;
895 x.z = zToken;
896 x.n = sqlite3Strlen30(zToken);
897 return sqlite3ExprAlloc(db, op, &x, 0);
901 ** Attach subtrees pLeft and pRight to the Expr node pRoot.
903 ** If pRoot==NULL that means that a memory allocation error has occurred.
904 ** In that case, delete the subtrees pLeft and pRight.
906 void sqlite3ExprAttachSubtrees(
907 sqlite3 *db,
908 Expr *pRoot,
909 Expr *pLeft,
910 Expr *pRight
912 if( pRoot==0 ){
913 assert( db->mallocFailed );
914 sqlite3ExprDelete(db, pLeft);
915 sqlite3ExprDelete(db, pRight);
916 }else{
917 if( pRight ){
918 pRoot->pRight = pRight;
919 pRoot->flags |= EP_Propagate & pRight->flags;
921 if( pLeft ){
922 pRoot->pLeft = pLeft;
923 pRoot->flags |= EP_Propagate & pLeft->flags;
925 exprSetHeight(pRoot);
930 ** Allocate an Expr node which joins as many as two subtrees.
932 ** One or both of the subtrees can be NULL. Return a pointer to the new
933 ** Expr node. Or, if an OOM error occurs, set pParse->db->mallocFailed,
934 ** free the subtrees and return NULL.
936 Expr *sqlite3PExpr(
937 Parse *pParse, /* Parsing context */
938 int op, /* Expression opcode */
939 Expr *pLeft, /* Left operand */
940 Expr *pRight /* Right operand */
942 Expr *p;
943 p = sqlite3DbMallocRawNN(pParse->db, sizeof(Expr));
944 if( p ){
945 memset(p, 0, sizeof(Expr));
946 p->op = op & 0xff;
947 p->iAgg = -1;
948 sqlite3ExprAttachSubtrees(pParse->db, p, pLeft, pRight);
949 sqlite3ExprCheckHeight(pParse, p->nHeight);
950 }else{
951 sqlite3ExprDelete(pParse->db, pLeft);
952 sqlite3ExprDelete(pParse->db, pRight);
954 return p;
958 ** Add pSelect to the Expr.x.pSelect field. Or, if pExpr is NULL (due
959 ** do a memory allocation failure) then delete the pSelect object.
961 void sqlite3PExprAddSelect(Parse *pParse, Expr *pExpr, Select *pSelect){
962 if( pExpr ){
963 pExpr->x.pSelect = pSelect;
964 ExprSetProperty(pExpr, EP_xIsSelect|EP_Subquery);
965 sqlite3ExprSetHeightAndFlags(pParse, pExpr);
966 }else{
967 assert( pParse->db->mallocFailed );
968 sqlite3SelectDelete(pParse->db, pSelect);
973 ** Expression list pEList is a list of vector values. This function
974 ** converts the contents of pEList to a VALUES(...) Select statement
975 ** returning 1 row for each element of the list. For example, the
976 ** expression list:
978 ** ( (1,2), (3,4) (5,6) )
980 ** is translated to the equivalent of:
982 ** VALUES(1,2), (3,4), (5,6)
984 ** Each of the vector values in pEList must contain exactly nElem terms.
985 ** If a list element that is not a vector or does not contain nElem terms,
986 ** an error message is left in pParse.
988 ** This is used as part of processing IN(...) expressions with a list
989 ** of vectors on the RHS. e.g. "... IN ((1,2), (3,4), (5,6))".
991 Select *sqlite3ExprListToValues(Parse *pParse, int nElem, ExprList *pEList){
992 int ii;
993 Select *pRet = 0;
994 assert( nElem>1 );
995 for(ii=0; ii<pEList->nExpr; ii++){
996 Select *pSel;
997 Expr *pExpr = pEList->a[ii].pExpr;
998 int nExprElem;
999 if( pExpr->op==TK_VECTOR ){
1000 assert( ExprUseXList(pExpr) );
1001 nExprElem = pExpr->x.pList->nExpr;
1002 }else{
1003 nExprElem = 1;
1005 if( nExprElem!=nElem ){
1006 sqlite3ErrorMsg(pParse, "IN(...) element has %d term%s - expected %d",
1007 nExprElem, nExprElem>1?"s":"", nElem
1009 break;
1011 assert( ExprUseXList(pExpr) );
1012 pSel = sqlite3SelectNew(pParse, pExpr->x.pList, 0, 0, 0, 0, 0, SF_Values,0);
1013 pExpr->x.pList = 0;
1014 if( pSel ){
1015 if( pRet ){
1016 pSel->op = TK_ALL;
1017 pSel->pPrior = pRet;
1019 pRet = pSel;
1023 if( pRet && pRet->pPrior ){
1024 pRet->selFlags |= SF_MultiValue;
1026 sqlite3ExprListDelete(pParse->db, pEList);
1027 return pRet;
1031 ** Join two expressions using an AND operator. If either expression is
1032 ** NULL, then just return the other expression.
1034 ** If one side or the other of the AND is known to be false, then instead
1035 ** of returning an AND expression, just return a constant expression with
1036 ** a value of false.
1038 Expr *sqlite3ExprAnd(Parse *pParse, Expr *pLeft, Expr *pRight){
1039 sqlite3 *db = pParse->db;
1040 if( pLeft==0 ){
1041 return pRight;
1042 }else if( pRight==0 ){
1043 return pLeft;
1044 }else if( (ExprAlwaysFalse(pLeft) || ExprAlwaysFalse(pRight))
1045 && !IN_RENAME_OBJECT
1047 sqlite3ExprDeferredDelete(pParse, pLeft);
1048 sqlite3ExprDeferredDelete(pParse, pRight);
1049 return sqlite3Expr(db, TK_INTEGER, "0");
1050 }else{
1051 return sqlite3PExpr(pParse, TK_AND, pLeft, pRight);
1056 ** Construct a new expression node for a function with multiple
1057 ** arguments.
1059 Expr *sqlite3ExprFunction(
1060 Parse *pParse, /* Parsing context */
1061 ExprList *pList, /* Argument list */
1062 const Token *pToken, /* Name of the function */
1063 int eDistinct /* SF_Distinct or SF_ALL or 0 */
1065 Expr *pNew;
1066 sqlite3 *db = pParse->db;
1067 assert( pToken );
1068 pNew = sqlite3ExprAlloc(db, TK_FUNCTION, pToken, 1);
1069 if( pNew==0 ){
1070 sqlite3ExprListDelete(db, pList); /* Avoid memory leak when malloc fails */
1071 return 0;
1073 if( pList
1074 && pList->nExpr > pParse->db->aLimit[SQLITE_LIMIT_FUNCTION_ARG]
1075 && !pParse->nested
1077 sqlite3ErrorMsg(pParse, "too many arguments on function %T", pToken);
1079 pNew->x.pList = pList;
1080 ExprSetProperty(pNew, EP_HasFunc);
1081 assert( ExprUseXList(pNew) );
1082 sqlite3ExprSetHeightAndFlags(pParse, pNew);
1083 if( eDistinct==SF_Distinct ) ExprSetProperty(pNew, EP_Distinct);
1084 return pNew;
1088 ** Check to see if a function is usable according to current access
1089 ** rules:
1091 ** SQLITE_FUNC_DIRECT - Only usable from top-level SQL
1093 ** SQLITE_FUNC_UNSAFE - Usable if TRUSTED_SCHEMA or from
1094 ** top-level SQL
1096 ** If the function is not usable, create an error.
1098 void sqlite3ExprFunctionUsable(
1099 Parse *pParse, /* Parsing and code generating context */
1100 const Expr *pExpr, /* The function invocation */
1101 const FuncDef *pDef /* The function being invoked */
1103 assert( !IN_RENAME_OBJECT );
1104 assert( (pDef->funcFlags & (SQLITE_FUNC_DIRECT|SQLITE_FUNC_UNSAFE))!=0 );
1105 if( ExprHasProperty(pExpr, EP_FromDDL) ){
1106 if( (pDef->funcFlags & SQLITE_FUNC_DIRECT)!=0
1107 || (pParse->db->flags & SQLITE_TrustedSchema)==0
1109 /* Functions prohibited in triggers and views if:
1110 ** (1) tagged with SQLITE_DIRECTONLY
1111 ** (2) not tagged with SQLITE_INNOCUOUS (which means it
1112 ** is tagged with SQLITE_FUNC_UNSAFE) and
1113 ** SQLITE_DBCONFIG_TRUSTED_SCHEMA is off (meaning
1114 ** that the schema is possibly tainted).
1116 sqlite3ErrorMsg(pParse, "unsafe use of %s()", pDef->zName);
1122 ** Assign a variable number to an expression that encodes a wildcard
1123 ** in the original SQL statement.
1125 ** Wildcards consisting of a single "?" are assigned the next sequential
1126 ** variable number.
1128 ** Wildcards of the form "?nnn" are assigned the number "nnn". We make
1129 ** sure "nnn" is not too big to avoid a denial of service attack when
1130 ** the SQL statement comes from an external source.
1132 ** Wildcards of the form ":aaa", "@aaa", or "$aaa" are assigned the same number
1133 ** as the previous instance of the same wildcard. Or if this is the first
1134 ** instance of the wildcard, the next sequential variable number is
1135 ** assigned.
1137 void sqlite3ExprAssignVarNumber(Parse *pParse, Expr *pExpr, u32 n){
1138 sqlite3 *db = pParse->db;
1139 const char *z;
1140 ynVar x;
1142 if( pExpr==0 ) return;
1143 assert( !ExprHasProperty(pExpr, EP_IntValue|EP_Reduced|EP_TokenOnly) );
1144 z = pExpr->u.zToken;
1145 assert( z!=0 );
1146 assert( z[0]!=0 );
1147 assert( n==(u32)sqlite3Strlen30(z) );
1148 if( z[1]==0 ){
1149 /* Wildcard of the form "?". Assign the next variable number */
1150 assert( z[0]=='?' );
1151 x = (ynVar)(++pParse->nVar);
1152 }else{
1153 int doAdd = 0;
1154 if( z[0]=='?' ){
1155 /* Wildcard of the form "?nnn". Convert "nnn" to an integer and
1156 ** use it as the variable number */
1157 i64 i;
1158 int bOk;
1159 if( n==2 ){ /*OPTIMIZATION-IF-TRUE*/
1160 i = z[1]-'0'; /* The common case of ?N for a single digit N */
1161 bOk = 1;
1162 }else{
1163 bOk = 0==sqlite3Atoi64(&z[1], &i, n-1, SQLITE_UTF8);
1165 testcase( i==0 );
1166 testcase( i==1 );
1167 testcase( i==db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER]-1 );
1168 testcase( i==db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] );
1169 if( bOk==0 || i<1 || i>db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ){
1170 sqlite3ErrorMsg(pParse, "variable number must be between ?1 and ?%d",
1171 db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER]);
1172 return;
1174 x = (ynVar)i;
1175 if( x>pParse->nVar ){
1176 pParse->nVar = (int)x;
1177 doAdd = 1;
1178 }else if( sqlite3VListNumToName(pParse->pVList, x)==0 ){
1179 doAdd = 1;
1181 }else{
1182 /* Wildcards like ":aaa", "$aaa" or "@aaa". Reuse the same variable
1183 ** number as the prior appearance of the same name, or if the name
1184 ** has never appeared before, reuse the same variable number
1186 x = (ynVar)sqlite3VListNameToNum(pParse->pVList, z, n);
1187 if( x==0 ){
1188 x = (ynVar)(++pParse->nVar);
1189 doAdd = 1;
1192 if( doAdd ){
1193 pParse->pVList = sqlite3VListAdd(db, pParse->pVList, z, n, x);
1196 pExpr->iColumn = x;
1197 if( x>db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ){
1198 sqlite3ErrorMsg(pParse, "too many SQL variables");
1203 ** Recursively delete an expression tree.
1205 static SQLITE_NOINLINE void sqlite3ExprDeleteNN(sqlite3 *db, Expr *p){
1206 assert( p!=0 );
1207 assert( !ExprUseUValue(p) || p->u.iValue>=0 );
1208 assert( !ExprUseYWin(p) || !ExprUseYSub(p) );
1209 assert( !ExprUseYWin(p) || p->y.pWin!=0 || db->mallocFailed );
1210 assert( p->op!=TK_FUNCTION || !ExprUseYSub(p) );
1211 #ifdef SQLITE_DEBUG
1212 if( ExprHasProperty(p, EP_Leaf) && !ExprHasProperty(p, EP_TokenOnly) ){
1213 assert( p->pLeft==0 );
1214 assert( p->pRight==0 );
1215 assert( !ExprUseXSelect(p) || p->x.pSelect==0 );
1216 assert( !ExprUseXList(p) || p->x.pList==0 );
1218 #endif
1219 if( !ExprHasProperty(p, (EP_TokenOnly|EP_Leaf)) ){
1220 /* The Expr.x union is never used at the same time as Expr.pRight */
1221 assert( (ExprUseXList(p) && p->x.pList==0) || p->pRight==0 );
1222 if( p->pLeft && p->op!=TK_SELECT_COLUMN ) sqlite3ExprDeleteNN(db, p->pLeft);
1223 if( p->pRight ){
1224 assert( !ExprHasProperty(p, EP_WinFunc) );
1225 sqlite3ExprDeleteNN(db, p->pRight);
1226 }else if( ExprUseXSelect(p) ){
1227 assert( !ExprHasProperty(p, EP_WinFunc) );
1228 sqlite3SelectDelete(db, p->x.pSelect);
1229 }else{
1230 sqlite3ExprListDelete(db, p->x.pList);
1231 #ifndef SQLITE_OMIT_WINDOWFUNC
1232 if( ExprHasProperty(p, EP_WinFunc) ){
1233 sqlite3WindowDelete(db, p->y.pWin);
1235 #endif
1238 if( ExprHasProperty(p, EP_MemToken) ){
1239 assert( !ExprHasProperty(p, EP_IntValue) );
1240 sqlite3DbFree(db, p->u.zToken);
1242 if( !ExprHasProperty(p, EP_Static) ){
1243 sqlite3DbFreeNN(db, p);
1246 void sqlite3ExprDelete(sqlite3 *db, Expr *p){
1247 if( p ) sqlite3ExprDeleteNN(db, p);
1252 ** Arrange to cause pExpr to be deleted when the pParse is deleted.
1253 ** This is similar to sqlite3ExprDelete() except that the delete is
1254 ** deferred untilthe pParse is deleted.
1256 ** The pExpr might be deleted immediately on an OOM error.
1258 ** The deferred delete is (currently) implemented by adding the
1259 ** pExpr to the pParse->pConstExpr list with a register number of 0.
1261 void sqlite3ExprDeferredDelete(Parse *pParse, Expr *pExpr){
1262 pParse->pConstExpr =
1263 sqlite3ExprListAppend(pParse, pParse->pConstExpr, pExpr);
1266 /* Invoke sqlite3RenameExprUnmap() and sqlite3ExprDelete() on the
1267 ** expression.
1269 void sqlite3ExprUnmapAndDelete(Parse *pParse, Expr *p){
1270 if( p ){
1271 if( IN_RENAME_OBJECT ){
1272 sqlite3RenameExprUnmap(pParse, p);
1274 sqlite3ExprDeleteNN(pParse->db, p);
1279 ** Return the number of bytes allocated for the expression structure
1280 ** passed as the first argument. This is always one of EXPR_FULLSIZE,
1281 ** EXPR_REDUCEDSIZE or EXPR_TOKENONLYSIZE.
1283 static int exprStructSize(const Expr *p){
1284 if( ExprHasProperty(p, EP_TokenOnly) ) return EXPR_TOKENONLYSIZE;
1285 if( ExprHasProperty(p, EP_Reduced) ) return EXPR_REDUCEDSIZE;
1286 return EXPR_FULLSIZE;
1290 ** The dupedExpr*Size() routines each return the number of bytes required
1291 ** to store a copy of an expression or expression tree. They differ in
1292 ** how much of the tree is measured.
1294 ** dupedExprStructSize() Size of only the Expr structure
1295 ** dupedExprNodeSize() Size of Expr + space for token
1296 ** dupedExprSize() Expr + token + subtree components
1298 ***************************************************************************
1300 ** The dupedExprStructSize() function returns two values OR-ed together:
1301 ** (1) the space required for a copy of the Expr structure only and
1302 ** (2) the EP_xxx flags that indicate what the structure size should be.
1303 ** The return values is always one of:
1305 ** EXPR_FULLSIZE
1306 ** EXPR_REDUCEDSIZE | EP_Reduced
1307 ** EXPR_TOKENONLYSIZE | EP_TokenOnly
1309 ** The size of the structure can be found by masking the return value
1310 ** of this routine with 0xfff. The flags can be found by masking the
1311 ** return value with EP_Reduced|EP_TokenOnly.
1313 ** Note that with flags==EXPRDUP_REDUCE, this routines works on full-size
1314 ** (unreduced) Expr objects as they or originally constructed by the parser.
1315 ** During expression analysis, extra information is computed and moved into
1316 ** later parts of the Expr object and that extra information might get chopped
1317 ** off if the expression is reduced. Note also that it does not work to
1318 ** make an EXPRDUP_REDUCE copy of a reduced expression. It is only legal
1319 ** to reduce a pristine expression tree from the parser. The implementation
1320 ** of dupedExprStructSize() contain multiple assert() statements that attempt
1321 ** to enforce this constraint.
1323 static int dupedExprStructSize(const Expr *p, int flags){
1324 int nSize;
1325 assert( flags==EXPRDUP_REDUCE || flags==0 ); /* Only one flag value allowed */
1326 assert( EXPR_FULLSIZE<=0xfff );
1327 assert( (0xfff & (EP_Reduced|EP_TokenOnly))==0 );
1328 if( 0==flags || p->op==TK_SELECT_COLUMN
1329 #ifndef SQLITE_OMIT_WINDOWFUNC
1330 || ExprHasProperty(p, EP_WinFunc)
1331 #endif
1333 nSize = EXPR_FULLSIZE;
1334 }else{
1335 assert( !ExprHasProperty(p, EP_TokenOnly|EP_Reduced) );
1336 assert( !ExprHasProperty(p, EP_FromJoin) );
1337 assert( !ExprHasProperty(p, EP_MemToken) );
1338 assert( !ExprHasVVAProperty(p, EP_NoReduce) );
1339 if( p->pLeft || p->x.pList ){
1340 nSize = EXPR_REDUCEDSIZE | EP_Reduced;
1341 }else{
1342 assert( p->pRight==0 );
1343 nSize = EXPR_TOKENONLYSIZE | EP_TokenOnly;
1346 return nSize;
1350 ** This function returns the space in bytes required to store the copy
1351 ** of the Expr structure and a copy of the Expr.u.zToken string (if that
1352 ** string is defined.)
1354 static int dupedExprNodeSize(const Expr *p, int flags){
1355 int nByte = dupedExprStructSize(p, flags) & 0xfff;
1356 if( !ExprHasProperty(p, EP_IntValue) && p->u.zToken ){
1357 nByte += sqlite3Strlen30NN(p->u.zToken)+1;
1359 return ROUND8(nByte);
1363 ** Return the number of bytes required to create a duplicate of the
1364 ** expression passed as the first argument. The second argument is a
1365 ** mask containing EXPRDUP_XXX flags.
1367 ** The value returned includes space to create a copy of the Expr struct
1368 ** itself and the buffer referred to by Expr.u.zToken, if any.
1370 ** If the EXPRDUP_REDUCE flag is set, then the return value includes
1371 ** space to duplicate all Expr nodes in the tree formed by Expr.pLeft
1372 ** and Expr.pRight variables (but not for any structures pointed to or
1373 ** descended from the Expr.x.pList or Expr.x.pSelect variables).
1375 static int dupedExprSize(const Expr *p, int flags){
1376 int nByte = 0;
1377 if( p ){
1378 nByte = dupedExprNodeSize(p, flags);
1379 if( flags&EXPRDUP_REDUCE ){
1380 nByte += dupedExprSize(p->pLeft, flags) + dupedExprSize(p->pRight, flags);
1383 return nByte;
1387 ** This function is similar to sqlite3ExprDup(), except that if pzBuffer
1388 ** is not NULL then *pzBuffer is assumed to point to a buffer large enough
1389 ** to store the copy of expression p, the copies of p->u.zToken
1390 ** (if applicable), and the copies of the p->pLeft and p->pRight expressions,
1391 ** if any. Before returning, *pzBuffer is set to the first byte past the
1392 ** portion of the buffer copied into by this function.
1394 static Expr *exprDup(sqlite3 *db, const Expr *p, int dupFlags, u8 **pzBuffer){
1395 Expr *pNew; /* Value to return */
1396 u8 *zAlloc; /* Memory space from which to build Expr object */
1397 u32 staticFlag; /* EP_Static if space not obtained from malloc */
1399 assert( db!=0 );
1400 assert( p );
1401 assert( dupFlags==0 || dupFlags==EXPRDUP_REDUCE );
1402 assert( pzBuffer==0 || dupFlags==EXPRDUP_REDUCE );
1404 /* Figure out where to write the new Expr structure. */
1405 if( pzBuffer ){
1406 zAlloc = *pzBuffer;
1407 staticFlag = EP_Static;
1408 assert( zAlloc!=0 );
1409 }else{
1410 zAlloc = sqlite3DbMallocRawNN(db, dupedExprSize(p, dupFlags));
1411 staticFlag = 0;
1413 pNew = (Expr *)zAlloc;
1415 if( pNew ){
1416 /* Set nNewSize to the size allocated for the structure pointed to
1417 ** by pNew. This is either EXPR_FULLSIZE, EXPR_REDUCEDSIZE or
1418 ** EXPR_TOKENONLYSIZE. nToken is set to the number of bytes consumed
1419 ** by the copy of the p->u.zToken string (if any).
1421 const unsigned nStructSize = dupedExprStructSize(p, dupFlags);
1422 const int nNewSize = nStructSize & 0xfff;
1423 int nToken;
1424 if( !ExprHasProperty(p, EP_IntValue) && p->u.zToken ){
1425 nToken = sqlite3Strlen30(p->u.zToken) + 1;
1426 }else{
1427 nToken = 0;
1429 if( dupFlags ){
1430 assert( ExprHasProperty(p, EP_Reduced)==0 );
1431 memcpy(zAlloc, p, nNewSize);
1432 }else{
1433 u32 nSize = (u32)exprStructSize(p);
1434 memcpy(zAlloc, p, nSize);
1435 if( nSize<EXPR_FULLSIZE ){
1436 memset(&zAlloc[nSize], 0, EXPR_FULLSIZE-nSize);
1440 /* Set the EP_Reduced, EP_TokenOnly, and EP_Static flags appropriately. */
1441 pNew->flags &= ~(EP_Reduced|EP_TokenOnly|EP_Static|EP_MemToken);
1442 pNew->flags |= nStructSize & (EP_Reduced|EP_TokenOnly);
1443 pNew->flags |= staticFlag;
1444 ExprClearVVAProperties(pNew);
1445 if( dupFlags ){
1446 ExprSetVVAProperty(pNew, EP_Immutable);
1449 /* Copy the p->u.zToken string, if any. */
1450 if( nToken ){
1451 char *zToken = pNew->u.zToken = (char*)&zAlloc[nNewSize];
1452 memcpy(zToken, p->u.zToken, nToken);
1455 if( 0==((p->flags|pNew->flags) & (EP_TokenOnly|EP_Leaf)) ){
1456 /* Fill in the pNew->x.pSelect or pNew->x.pList member. */
1457 if( ExprUseXSelect(p) ){
1458 pNew->x.pSelect = sqlite3SelectDup(db, p->x.pSelect, dupFlags);
1459 }else{
1460 pNew->x.pList = sqlite3ExprListDup(db, p->x.pList, dupFlags);
1464 /* Fill in pNew->pLeft and pNew->pRight. */
1465 if( ExprHasProperty(pNew, EP_Reduced|EP_TokenOnly|EP_WinFunc) ){
1466 zAlloc += dupedExprNodeSize(p, dupFlags);
1467 if( !ExprHasProperty(pNew, EP_TokenOnly|EP_Leaf) ){
1468 pNew->pLeft = p->pLeft ?
1469 exprDup(db, p->pLeft, EXPRDUP_REDUCE, &zAlloc) : 0;
1470 pNew->pRight = p->pRight ?
1471 exprDup(db, p->pRight, EXPRDUP_REDUCE, &zAlloc) : 0;
1473 #ifndef SQLITE_OMIT_WINDOWFUNC
1474 if( ExprHasProperty(p, EP_WinFunc) ){
1475 pNew->y.pWin = sqlite3WindowDup(db, pNew, p->y.pWin);
1476 assert( ExprHasProperty(pNew, EP_WinFunc) );
1478 #endif /* SQLITE_OMIT_WINDOWFUNC */
1479 if( pzBuffer ){
1480 *pzBuffer = zAlloc;
1482 }else{
1483 if( !ExprHasProperty(p, EP_TokenOnly|EP_Leaf) ){
1484 if( pNew->op==TK_SELECT_COLUMN ){
1485 pNew->pLeft = p->pLeft;
1486 assert( p->pRight==0 || p->pRight==p->pLeft
1487 || ExprHasProperty(p->pLeft, EP_Subquery) );
1488 }else{
1489 pNew->pLeft = sqlite3ExprDup(db, p->pLeft, 0);
1491 pNew->pRight = sqlite3ExprDup(db, p->pRight, 0);
1495 return pNew;
1499 ** Create and return a deep copy of the object passed as the second
1500 ** argument. If an OOM condition is encountered, NULL is returned
1501 ** and the db->mallocFailed flag set.
1503 #ifndef SQLITE_OMIT_CTE
1504 With *sqlite3WithDup(sqlite3 *db, With *p){
1505 With *pRet = 0;
1506 if( p ){
1507 sqlite3_int64 nByte = sizeof(*p) + sizeof(p->a[0]) * (p->nCte-1);
1508 pRet = sqlite3DbMallocZero(db, nByte);
1509 if( pRet ){
1510 int i;
1511 pRet->nCte = p->nCte;
1512 for(i=0; i<p->nCte; i++){
1513 pRet->a[i].pSelect = sqlite3SelectDup(db, p->a[i].pSelect, 0);
1514 pRet->a[i].pCols = sqlite3ExprListDup(db, p->a[i].pCols, 0);
1515 pRet->a[i].zName = sqlite3DbStrDup(db, p->a[i].zName);
1519 return pRet;
1521 #else
1522 # define sqlite3WithDup(x,y) 0
1523 #endif
1525 #ifndef SQLITE_OMIT_WINDOWFUNC
1527 ** The gatherSelectWindows() procedure and its helper routine
1528 ** gatherSelectWindowsCallback() are used to scan all the expressions
1529 ** an a newly duplicated SELECT statement and gather all of the Window
1530 ** objects found there, assembling them onto the linked list at Select->pWin.
1532 static int gatherSelectWindowsCallback(Walker *pWalker, Expr *pExpr){
1533 if( pExpr->op==TK_FUNCTION && ExprHasProperty(pExpr, EP_WinFunc) ){
1534 Select *pSelect = pWalker->u.pSelect;
1535 Window *pWin = pExpr->y.pWin;
1536 assert( pWin );
1537 assert( IsWindowFunc(pExpr) );
1538 assert( pWin->ppThis==0 );
1539 sqlite3WindowLink(pSelect, pWin);
1541 return WRC_Continue;
1543 static int gatherSelectWindowsSelectCallback(Walker *pWalker, Select *p){
1544 return p==pWalker->u.pSelect ? WRC_Continue : WRC_Prune;
1546 static void gatherSelectWindows(Select *p){
1547 Walker w;
1548 w.xExprCallback = gatherSelectWindowsCallback;
1549 w.xSelectCallback = gatherSelectWindowsSelectCallback;
1550 w.xSelectCallback2 = 0;
1551 w.pParse = 0;
1552 w.u.pSelect = p;
1553 sqlite3WalkSelect(&w, p);
1555 #endif
1559 ** The following group of routines make deep copies of expressions,
1560 ** expression lists, ID lists, and select statements. The copies can
1561 ** be deleted (by being passed to their respective ...Delete() routines)
1562 ** without effecting the originals.
1564 ** The expression list, ID, and source lists return by sqlite3ExprListDup(),
1565 ** sqlite3IdListDup(), and sqlite3SrcListDup() can not be further expanded
1566 ** by subsequent calls to sqlite*ListAppend() routines.
1568 ** Any tables that the SrcList might point to are not duplicated.
1570 ** The flags parameter contains a combination of the EXPRDUP_XXX flags.
1571 ** If the EXPRDUP_REDUCE flag is set, then the structure returned is a
1572 ** truncated version of the usual Expr structure that will be stored as
1573 ** part of the in-memory representation of the database schema.
1575 Expr *sqlite3ExprDup(sqlite3 *db, const Expr *p, int flags){
1576 assert( flags==0 || flags==EXPRDUP_REDUCE );
1577 return p ? exprDup(db, p, flags, 0) : 0;
1579 ExprList *sqlite3ExprListDup(sqlite3 *db, const ExprList *p, int flags){
1580 ExprList *pNew;
1581 struct ExprList_item *pItem;
1582 const struct ExprList_item *pOldItem;
1583 int i;
1584 Expr *pPriorSelectColOld = 0;
1585 Expr *pPriorSelectColNew = 0;
1586 assert( db!=0 );
1587 if( p==0 ) return 0;
1588 pNew = sqlite3DbMallocRawNN(db, sqlite3DbMallocSize(db, p));
1589 if( pNew==0 ) return 0;
1590 pNew->nExpr = p->nExpr;
1591 pNew->nAlloc = p->nAlloc;
1592 pItem = pNew->a;
1593 pOldItem = p->a;
1594 for(i=0; i<p->nExpr; i++, pItem++, pOldItem++){
1595 Expr *pOldExpr = pOldItem->pExpr;
1596 Expr *pNewExpr;
1597 pItem->pExpr = sqlite3ExprDup(db, pOldExpr, flags);
1598 if( pOldExpr
1599 && pOldExpr->op==TK_SELECT_COLUMN
1600 && (pNewExpr = pItem->pExpr)!=0
1602 if( pNewExpr->pRight ){
1603 pPriorSelectColOld = pOldExpr->pRight;
1604 pPriorSelectColNew = pNewExpr->pRight;
1605 pNewExpr->pLeft = pNewExpr->pRight;
1606 }else{
1607 if( pOldExpr->pLeft!=pPriorSelectColOld ){
1608 pPriorSelectColOld = pOldExpr->pLeft;
1609 pPriorSelectColNew = sqlite3ExprDup(db, pPriorSelectColOld, flags);
1610 pNewExpr->pRight = pPriorSelectColNew;
1612 pNewExpr->pLeft = pPriorSelectColNew;
1615 pItem->zEName = sqlite3DbStrDup(db, pOldItem->zEName);
1616 pItem->sortFlags = pOldItem->sortFlags;
1617 pItem->eEName = pOldItem->eEName;
1618 pItem->done = 0;
1619 pItem->bNulls = pOldItem->bNulls;
1620 pItem->bSorterRef = pOldItem->bSorterRef;
1621 pItem->u = pOldItem->u;
1623 return pNew;
1627 ** If cursors, triggers, views and subqueries are all omitted from
1628 ** the build, then none of the following routines, except for
1629 ** sqlite3SelectDup(), can be called. sqlite3SelectDup() is sometimes
1630 ** called with a NULL argument.
1632 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_TRIGGER) \
1633 || !defined(SQLITE_OMIT_SUBQUERY)
1634 SrcList *sqlite3SrcListDup(sqlite3 *db, const SrcList *p, int flags){
1635 SrcList *pNew;
1636 int i;
1637 int nByte;
1638 assert( db!=0 );
1639 if( p==0 ) return 0;
1640 nByte = sizeof(*p) + (p->nSrc>0 ? sizeof(p->a[0]) * (p->nSrc-1) : 0);
1641 pNew = sqlite3DbMallocRawNN(db, nByte );
1642 if( pNew==0 ) return 0;
1643 pNew->nSrc = pNew->nAlloc = p->nSrc;
1644 for(i=0; i<p->nSrc; i++){
1645 SrcItem *pNewItem = &pNew->a[i];
1646 const SrcItem *pOldItem = &p->a[i];
1647 Table *pTab;
1648 pNewItem->pSchema = pOldItem->pSchema;
1649 pNewItem->zDatabase = sqlite3DbStrDup(db, pOldItem->zDatabase);
1650 pNewItem->zName = sqlite3DbStrDup(db, pOldItem->zName);
1651 pNewItem->zAlias = sqlite3DbStrDup(db, pOldItem->zAlias);
1652 pNewItem->fg = pOldItem->fg;
1653 pNewItem->iCursor = pOldItem->iCursor;
1654 pNewItem->addrFillSub = pOldItem->addrFillSub;
1655 pNewItem->regReturn = pOldItem->regReturn;
1656 if( pNewItem->fg.isIndexedBy ){
1657 pNewItem->u1.zIndexedBy = sqlite3DbStrDup(db, pOldItem->u1.zIndexedBy);
1659 pNewItem->u2 = pOldItem->u2;
1660 if( pNewItem->fg.isCte ){
1661 pNewItem->u2.pCteUse->nUse++;
1663 if( pNewItem->fg.isTabFunc ){
1664 pNewItem->u1.pFuncArg =
1665 sqlite3ExprListDup(db, pOldItem->u1.pFuncArg, flags);
1667 pTab = pNewItem->pTab = pOldItem->pTab;
1668 if( pTab ){
1669 pTab->nTabRef++;
1671 pNewItem->pSelect = sqlite3SelectDup(db, pOldItem->pSelect, flags);
1672 pNewItem->pOn = sqlite3ExprDup(db, pOldItem->pOn, flags);
1673 pNewItem->pUsing = sqlite3IdListDup(db, pOldItem->pUsing);
1674 pNewItem->colUsed = pOldItem->colUsed;
1676 return pNew;
1678 IdList *sqlite3IdListDup(sqlite3 *db, const IdList *p){
1679 IdList *pNew;
1680 int i;
1681 assert( db!=0 );
1682 if( p==0 ) return 0;
1683 pNew = sqlite3DbMallocRawNN(db, sizeof(*pNew) );
1684 if( pNew==0 ) return 0;
1685 pNew->nId = p->nId;
1686 pNew->a = sqlite3DbMallocRawNN(db, p->nId*sizeof(p->a[0]) );
1687 if( pNew->a==0 ){
1688 sqlite3DbFreeNN(db, pNew);
1689 return 0;
1691 /* Note that because the size of the allocation for p->a[] is not
1692 ** necessarily a power of two, sqlite3IdListAppend() may not be called
1693 ** on the duplicate created by this function. */
1694 for(i=0; i<p->nId; i++){
1695 struct IdList_item *pNewItem = &pNew->a[i];
1696 struct IdList_item *pOldItem = &p->a[i];
1697 pNewItem->zName = sqlite3DbStrDup(db, pOldItem->zName);
1698 pNewItem->idx = pOldItem->idx;
1700 return pNew;
1702 Select *sqlite3SelectDup(sqlite3 *db, const Select *pDup, int flags){
1703 Select *pRet = 0;
1704 Select *pNext = 0;
1705 Select **pp = &pRet;
1706 const Select *p;
1708 assert( db!=0 );
1709 for(p=pDup; p; p=p->pPrior){
1710 Select *pNew = sqlite3DbMallocRawNN(db, sizeof(*p) );
1711 if( pNew==0 ) break;
1712 pNew->pEList = sqlite3ExprListDup(db, p->pEList, flags);
1713 pNew->pSrc = sqlite3SrcListDup(db, p->pSrc, flags);
1714 pNew->pWhere = sqlite3ExprDup(db, p->pWhere, flags);
1715 pNew->pGroupBy = sqlite3ExprListDup(db, p->pGroupBy, flags);
1716 pNew->pHaving = sqlite3ExprDup(db, p->pHaving, flags);
1717 pNew->pOrderBy = sqlite3ExprListDup(db, p->pOrderBy, flags);
1718 pNew->op = p->op;
1719 pNew->pNext = pNext;
1720 pNew->pPrior = 0;
1721 pNew->pLimit = sqlite3ExprDup(db, p->pLimit, flags);
1722 pNew->iLimit = 0;
1723 pNew->iOffset = 0;
1724 pNew->selFlags = p->selFlags & ~SF_UsesEphemeral;
1725 pNew->addrOpenEphm[0] = -1;
1726 pNew->addrOpenEphm[1] = -1;
1727 pNew->nSelectRow = p->nSelectRow;
1728 pNew->pWith = sqlite3WithDup(db, p->pWith);
1729 #ifndef SQLITE_OMIT_WINDOWFUNC
1730 pNew->pWin = 0;
1731 pNew->pWinDefn = sqlite3WindowListDup(db, p->pWinDefn);
1732 if( p->pWin && db->mallocFailed==0 ) gatherSelectWindows(pNew);
1733 #endif
1734 pNew->selId = p->selId;
1735 if( db->mallocFailed ){
1736 /* Any prior OOM might have left the Select object incomplete.
1737 ** Delete the whole thing rather than allow an incomplete Select
1738 ** to be used by the code generator. */
1739 pNew->pNext = 0;
1740 sqlite3SelectDelete(db, pNew);
1741 break;
1743 *pp = pNew;
1744 pp = &pNew->pPrior;
1745 pNext = pNew;
1748 return pRet;
1750 #else
1751 Select *sqlite3SelectDup(sqlite3 *db, const Select *p, int flags){
1752 assert( p==0 );
1753 return 0;
1755 #endif
1759 ** Add a new element to the end of an expression list. If pList is
1760 ** initially NULL, then create a new expression list.
1762 ** The pList argument must be either NULL or a pointer to an ExprList
1763 ** obtained from a prior call to sqlite3ExprListAppend(). This routine
1764 ** may not be used with an ExprList obtained from sqlite3ExprListDup().
1765 ** Reason: This routine assumes that the number of slots in pList->a[]
1766 ** is a power of two. That is true for sqlite3ExprListAppend() returns
1767 ** but is not necessarily true from the return value of sqlite3ExprListDup().
1769 ** If a memory allocation error occurs, the entire list is freed and
1770 ** NULL is returned. If non-NULL is returned, then it is guaranteed
1771 ** that the new entry was successfully appended.
1773 static const struct ExprList_item zeroItem = {0};
1774 SQLITE_NOINLINE ExprList *sqlite3ExprListAppendNew(
1775 sqlite3 *db, /* Database handle. Used for memory allocation */
1776 Expr *pExpr /* Expression to be appended. Might be NULL */
1778 struct ExprList_item *pItem;
1779 ExprList *pList;
1781 pList = sqlite3DbMallocRawNN(db, sizeof(ExprList)+sizeof(pList->a[0])*4 );
1782 if( pList==0 ){
1783 sqlite3ExprDelete(db, pExpr);
1784 return 0;
1786 pList->nAlloc = 4;
1787 pList->nExpr = 1;
1788 pItem = &pList->a[0];
1789 *pItem = zeroItem;
1790 pItem->pExpr = pExpr;
1791 return pList;
1793 SQLITE_NOINLINE ExprList *sqlite3ExprListAppendGrow(
1794 sqlite3 *db, /* Database handle. Used for memory allocation */
1795 ExprList *pList, /* List to which to append. Might be NULL */
1796 Expr *pExpr /* Expression to be appended. Might be NULL */
1798 struct ExprList_item *pItem;
1799 ExprList *pNew;
1800 pList->nAlloc *= 2;
1801 pNew = sqlite3DbRealloc(db, pList,
1802 sizeof(*pList)+(pList->nAlloc-1)*sizeof(pList->a[0]));
1803 if( pNew==0 ){
1804 sqlite3ExprListDelete(db, pList);
1805 sqlite3ExprDelete(db, pExpr);
1806 return 0;
1807 }else{
1808 pList = pNew;
1810 pItem = &pList->a[pList->nExpr++];
1811 *pItem = zeroItem;
1812 pItem->pExpr = pExpr;
1813 return pList;
1815 ExprList *sqlite3ExprListAppend(
1816 Parse *pParse, /* Parsing context */
1817 ExprList *pList, /* List to which to append. Might be NULL */
1818 Expr *pExpr /* Expression to be appended. Might be NULL */
1820 struct ExprList_item *pItem;
1821 if( pList==0 ){
1822 return sqlite3ExprListAppendNew(pParse->db,pExpr);
1824 if( pList->nAlloc<pList->nExpr+1 ){
1825 return sqlite3ExprListAppendGrow(pParse->db,pList,pExpr);
1827 pItem = &pList->a[pList->nExpr++];
1828 *pItem = zeroItem;
1829 pItem->pExpr = pExpr;
1830 return pList;
1834 ** pColumns and pExpr form a vector assignment which is part of the SET
1835 ** clause of an UPDATE statement. Like this:
1837 ** (a,b,c) = (expr1,expr2,expr3)
1838 ** Or: (a,b,c) = (SELECT x,y,z FROM ....)
1840 ** For each term of the vector assignment, append new entries to the
1841 ** expression list pList. In the case of a subquery on the RHS, append
1842 ** TK_SELECT_COLUMN expressions.
1844 ExprList *sqlite3ExprListAppendVector(
1845 Parse *pParse, /* Parsing context */
1846 ExprList *pList, /* List to which to append. Might be NULL */
1847 IdList *pColumns, /* List of names of LHS of the assignment */
1848 Expr *pExpr /* Vector expression to be appended. Might be NULL */
1850 sqlite3 *db = pParse->db;
1851 int n;
1852 int i;
1853 int iFirst = pList ? pList->nExpr : 0;
1854 /* pColumns can only be NULL due to an OOM but an OOM will cause an
1855 ** exit prior to this routine being invoked */
1856 if( NEVER(pColumns==0) ) goto vector_append_error;
1857 if( pExpr==0 ) goto vector_append_error;
1859 /* If the RHS is a vector, then we can immediately check to see that
1860 ** the size of the RHS and LHS match. But if the RHS is a SELECT,
1861 ** wildcards ("*") in the result set of the SELECT must be expanded before
1862 ** we can do the size check, so defer the size check until code generation.
1864 if( pExpr->op!=TK_SELECT && pColumns->nId!=(n=sqlite3ExprVectorSize(pExpr)) ){
1865 sqlite3ErrorMsg(pParse, "%d columns assigned %d values",
1866 pColumns->nId, n);
1867 goto vector_append_error;
1870 for(i=0; i<pColumns->nId; i++){
1871 Expr *pSubExpr = sqlite3ExprForVectorField(pParse, pExpr, i, pColumns->nId);
1872 assert( pSubExpr!=0 || db->mallocFailed );
1873 if( pSubExpr==0 ) continue;
1874 pList = sqlite3ExprListAppend(pParse, pList, pSubExpr);
1875 if( pList ){
1876 assert( pList->nExpr==iFirst+i+1 );
1877 pList->a[pList->nExpr-1].zEName = pColumns->a[i].zName;
1878 pColumns->a[i].zName = 0;
1882 if( !db->mallocFailed && pExpr->op==TK_SELECT && ALWAYS(pList!=0) ){
1883 Expr *pFirst = pList->a[iFirst].pExpr;
1884 assert( pFirst!=0 );
1885 assert( pFirst->op==TK_SELECT_COLUMN );
1887 /* Store the SELECT statement in pRight so it will be deleted when
1888 ** sqlite3ExprListDelete() is called */
1889 pFirst->pRight = pExpr;
1890 pExpr = 0;
1892 /* Remember the size of the LHS in iTable so that we can check that
1893 ** the RHS and LHS sizes match during code generation. */
1894 pFirst->iTable = pColumns->nId;
1897 vector_append_error:
1898 sqlite3ExprUnmapAndDelete(pParse, pExpr);
1899 sqlite3IdListDelete(db, pColumns);
1900 return pList;
1904 ** Set the sort order for the last element on the given ExprList.
1906 void sqlite3ExprListSetSortOrder(ExprList *p, int iSortOrder, int eNulls){
1907 struct ExprList_item *pItem;
1908 if( p==0 ) return;
1909 assert( p->nExpr>0 );
1911 assert( SQLITE_SO_UNDEFINED<0 && SQLITE_SO_ASC==0 && SQLITE_SO_DESC>0 );
1912 assert( iSortOrder==SQLITE_SO_UNDEFINED
1913 || iSortOrder==SQLITE_SO_ASC
1914 || iSortOrder==SQLITE_SO_DESC
1916 assert( eNulls==SQLITE_SO_UNDEFINED
1917 || eNulls==SQLITE_SO_ASC
1918 || eNulls==SQLITE_SO_DESC
1921 pItem = &p->a[p->nExpr-1];
1922 assert( pItem->bNulls==0 );
1923 if( iSortOrder==SQLITE_SO_UNDEFINED ){
1924 iSortOrder = SQLITE_SO_ASC;
1926 pItem->sortFlags = (u8)iSortOrder;
1928 if( eNulls!=SQLITE_SO_UNDEFINED ){
1929 pItem->bNulls = 1;
1930 if( iSortOrder!=eNulls ){
1931 pItem->sortFlags |= KEYINFO_ORDER_BIGNULL;
1937 ** Set the ExprList.a[].zEName element of the most recently added item
1938 ** on the expression list.
1940 ** pList might be NULL following an OOM error. But pName should never be
1941 ** NULL. If a memory allocation fails, the pParse->db->mallocFailed flag
1942 ** is set.
1944 void sqlite3ExprListSetName(
1945 Parse *pParse, /* Parsing context */
1946 ExprList *pList, /* List to which to add the span. */
1947 const Token *pName, /* Name to be added */
1948 int dequote /* True to cause the name to be dequoted */
1950 assert( pList!=0 || pParse->db->mallocFailed!=0 );
1951 assert( pParse->eParseMode!=PARSE_MODE_UNMAP || dequote==0 );
1952 if( pList ){
1953 struct ExprList_item *pItem;
1954 assert( pList->nExpr>0 );
1955 pItem = &pList->a[pList->nExpr-1];
1956 assert( pItem->zEName==0 );
1957 assert( pItem->eEName==ENAME_NAME );
1958 pItem->zEName = sqlite3DbStrNDup(pParse->db, pName->z, pName->n);
1959 if( dequote ){
1960 /* If dequote==0, then pName->z does not point to part of a DDL
1961 ** statement handled by the parser. And so no token need be added
1962 ** to the token-map. */
1963 sqlite3Dequote(pItem->zEName);
1964 if( IN_RENAME_OBJECT ){
1965 sqlite3RenameTokenMap(pParse, (const void*)pItem->zEName, pName);
1972 ** Set the ExprList.a[].zSpan element of the most recently added item
1973 ** on the expression list.
1975 ** pList might be NULL following an OOM error. But pSpan should never be
1976 ** NULL. If a memory allocation fails, the pParse->db->mallocFailed flag
1977 ** is set.
1979 void sqlite3ExprListSetSpan(
1980 Parse *pParse, /* Parsing context */
1981 ExprList *pList, /* List to which to add the span. */
1982 const char *zStart, /* Start of the span */
1983 const char *zEnd /* End of the span */
1985 sqlite3 *db = pParse->db;
1986 assert( pList!=0 || db->mallocFailed!=0 );
1987 if( pList ){
1988 struct ExprList_item *pItem = &pList->a[pList->nExpr-1];
1989 assert( pList->nExpr>0 );
1990 if( pItem->zEName==0 ){
1991 pItem->zEName = sqlite3DbSpanDup(db, zStart, zEnd);
1992 pItem->eEName = ENAME_SPAN;
1998 ** If the expression list pEList contains more than iLimit elements,
1999 ** leave an error message in pParse.
2001 void sqlite3ExprListCheckLength(
2002 Parse *pParse,
2003 ExprList *pEList,
2004 const char *zObject
2006 int mx = pParse->db->aLimit[SQLITE_LIMIT_COLUMN];
2007 testcase( pEList && pEList->nExpr==mx );
2008 testcase( pEList && pEList->nExpr==mx+1 );
2009 if( pEList && pEList->nExpr>mx ){
2010 sqlite3ErrorMsg(pParse, "too many columns in %s", zObject);
2015 ** Delete an entire expression list.
2017 static SQLITE_NOINLINE void exprListDeleteNN(sqlite3 *db, ExprList *pList){
2018 int i = pList->nExpr;
2019 struct ExprList_item *pItem = pList->a;
2020 assert( pList->nExpr>0 );
2022 sqlite3ExprDelete(db, pItem->pExpr);
2023 sqlite3DbFree(db, pItem->zEName);
2024 pItem++;
2025 }while( --i>0 );
2026 sqlite3DbFreeNN(db, pList);
2028 void sqlite3ExprListDelete(sqlite3 *db, ExprList *pList){
2029 if( pList ) exprListDeleteNN(db, pList);
2033 ** Return the bitwise-OR of all Expr.flags fields in the given
2034 ** ExprList.
2036 u32 sqlite3ExprListFlags(const ExprList *pList){
2037 int i;
2038 u32 m = 0;
2039 assert( pList!=0 );
2040 for(i=0; i<pList->nExpr; i++){
2041 Expr *pExpr = pList->a[i].pExpr;
2042 assert( pExpr!=0 );
2043 m |= pExpr->flags;
2045 return m;
2049 ** This is a SELECT-node callback for the expression walker that
2050 ** always "fails". By "fail" in this case, we mean set
2051 ** pWalker->eCode to zero and abort.
2053 ** This callback is used by multiple expression walkers.
2055 int sqlite3SelectWalkFail(Walker *pWalker, Select *NotUsed){
2056 UNUSED_PARAMETER(NotUsed);
2057 pWalker->eCode = 0;
2058 return WRC_Abort;
2062 ** Check the input string to see if it is "true" or "false" (in any case).
2064 ** If the string is.... Return
2065 ** "true" EP_IsTrue
2066 ** "false" EP_IsFalse
2067 ** anything else 0
2069 u32 sqlite3IsTrueOrFalse(const char *zIn){
2070 if( sqlite3StrICmp(zIn, "true")==0 ) return EP_IsTrue;
2071 if( sqlite3StrICmp(zIn, "false")==0 ) return EP_IsFalse;
2072 return 0;
2077 ** If the input expression is an ID with the name "true" or "false"
2078 ** then convert it into an TK_TRUEFALSE term. Return non-zero if
2079 ** the conversion happened, and zero if the expression is unaltered.
2081 int sqlite3ExprIdToTrueFalse(Expr *pExpr){
2082 u32 v;
2083 assert( pExpr->op==TK_ID || pExpr->op==TK_STRING );
2084 if( !ExprHasProperty(pExpr, EP_Quoted|EP_IntValue)
2085 && (v = sqlite3IsTrueOrFalse(pExpr->u.zToken))!=0
2087 pExpr->op = TK_TRUEFALSE;
2088 ExprSetProperty(pExpr, v);
2089 return 1;
2091 return 0;
2095 ** The argument must be a TK_TRUEFALSE Expr node. Return 1 if it is TRUE
2096 ** and 0 if it is FALSE.
2098 int sqlite3ExprTruthValue(const Expr *pExpr){
2099 pExpr = sqlite3ExprSkipCollate((Expr*)pExpr);
2100 assert( pExpr->op==TK_TRUEFALSE );
2101 assert( !ExprHasProperty(pExpr, EP_IntValue) );
2102 assert( sqlite3StrICmp(pExpr->u.zToken,"true")==0
2103 || sqlite3StrICmp(pExpr->u.zToken,"false")==0 );
2104 return pExpr->u.zToken[4]==0;
2108 ** If pExpr is an AND or OR expression, try to simplify it by eliminating
2109 ** terms that are always true or false. Return the simplified expression.
2110 ** Or return the original expression if no simplification is possible.
2112 ** Examples:
2114 ** (x<10) AND true => (x<10)
2115 ** (x<10) AND false => false
2116 ** (x<10) AND (y=22 OR false) => (x<10) AND (y=22)
2117 ** (x<10) AND (y=22 OR true) => (x<10)
2118 ** (y=22) OR true => true
2120 Expr *sqlite3ExprSimplifiedAndOr(Expr *pExpr){
2121 assert( pExpr!=0 );
2122 if( pExpr->op==TK_AND || pExpr->op==TK_OR ){
2123 Expr *pRight = sqlite3ExprSimplifiedAndOr(pExpr->pRight);
2124 Expr *pLeft = sqlite3ExprSimplifiedAndOr(pExpr->pLeft);
2125 if( ExprAlwaysTrue(pLeft) || ExprAlwaysFalse(pRight) ){
2126 pExpr = pExpr->op==TK_AND ? pRight : pLeft;
2127 }else if( ExprAlwaysTrue(pRight) || ExprAlwaysFalse(pLeft) ){
2128 pExpr = pExpr->op==TK_AND ? pLeft : pRight;
2131 return pExpr;
2136 ** These routines are Walker callbacks used to check expressions to
2137 ** see if they are "constant" for some definition of constant. The
2138 ** Walker.eCode value determines the type of "constant" we are looking
2139 ** for.
2141 ** These callback routines are used to implement the following:
2143 ** sqlite3ExprIsConstant() pWalker->eCode==1
2144 ** sqlite3ExprIsConstantNotJoin() pWalker->eCode==2
2145 ** sqlite3ExprIsTableConstant() pWalker->eCode==3
2146 ** sqlite3ExprIsConstantOrFunction() pWalker->eCode==4 or 5
2148 ** In all cases, the callbacks set Walker.eCode=0 and abort if the expression
2149 ** is found to not be a constant.
2151 ** The sqlite3ExprIsConstantOrFunction() is used for evaluating DEFAULT
2152 ** expressions in a CREATE TABLE statement. The Walker.eCode value is 5
2153 ** when parsing an existing schema out of the sqlite_schema table and 4
2154 ** when processing a new CREATE TABLE statement. A bound parameter raises
2155 ** an error for new statements, but is silently converted
2156 ** to NULL for existing schemas. This allows sqlite_schema tables that
2157 ** contain a bound parameter because they were generated by older versions
2158 ** of SQLite to be parsed by newer versions of SQLite without raising a
2159 ** malformed schema error.
2161 static int exprNodeIsConstant(Walker *pWalker, Expr *pExpr){
2163 /* If pWalker->eCode is 2 then any term of the expression that comes from
2164 ** the ON or USING clauses of a left join disqualifies the expression
2165 ** from being considered constant. */
2166 if( pWalker->eCode==2 && ExprHasProperty(pExpr, EP_FromJoin) ){
2167 pWalker->eCode = 0;
2168 return WRC_Abort;
2171 switch( pExpr->op ){
2172 /* Consider functions to be constant if all their arguments are constant
2173 ** and either pWalker->eCode==4 or 5 or the function has the
2174 ** SQLITE_FUNC_CONST flag. */
2175 case TK_FUNCTION:
2176 if( (pWalker->eCode>=4 || ExprHasProperty(pExpr,EP_ConstFunc))
2177 && !ExprHasProperty(pExpr, EP_WinFunc)
2179 if( pWalker->eCode==5 ) ExprSetProperty(pExpr, EP_FromDDL);
2180 return WRC_Continue;
2181 }else{
2182 pWalker->eCode = 0;
2183 return WRC_Abort;
2185 case TK_ID:
2186 /* Convert "true" or "false" in a DEFAULT clause into the
2187 ** appropriate TK_TRUEFALSE operator */
2188 if( sqlite3ExprIdToTrueFalse(pExpr) ){
2189 return WRC_Prune;
2191 /* no break */ deliberate_fall_through
2192 case TK_COLUMN:
2193 case TK_AGG_FUNCTION:
2194 case TK_AGG_COLUMN:
2195 testcase( pExpr->op==TK_ID );
2196 testcase( pExpr->op==TK_COLUMN );
2197 testcase( pExpr->op==TK_AGG_FUNCTION );
2198 testcase( pExpr->op==TK_AGG_COLUMN );
2199 if( ExprHasProperty(pExpr, EP_FixedCol) && pWalker->eCode!=2 ){
2200 return WRC_Continue;
2202 if( pWalker->eCode==3 && pExpr->iTable==pWalker->u.iCur ){
2203 return WRC_Continue;
2205 /* no break */ deliberate_fall_through
2206 case TK_IF_NULL_ROW:
2207 case TK_REGISTER:
2208 case TK_DOT:
2209 testcase( pExpr->op==TK_REGISTER );
2210 testcase( pExpr->op==TK_IF_NULL_ROW );
2211 testcase( pExpr->op==TK_DOT );
2212 pWalker->eCode = 0;
2213 return WRC_Abort;
2214 case TK_VARIABLE:
2215 if( pWalker->eCode==5 ){
2216 /* Silently convert bound parameters that appear inside of CREATE
2217 ** statements into a NULL when parsing the CREATE statement text out
2218 ** of the sqlite_schema table */
2219 pExpr->op = TK_NULL;
2220 }else if( pWalker->eCode==4 ){
2221 /* A bound parameter in a CREATE statement that originates from
2222 ** sqlite3_prepare() causes an error */
2223 pWalker->eCode = 0;
2224 return WRC_Abort;
2226 /* no break */ deliberate_fall_through
2227 default:
2228 testcase( pExpr->op==TK_SELECT ); /* sqlite3SelectWalkFail() disallows */
2229 testcase( pExpr->op==TK_EXISTS ); /* sqlite3SelectWalkFail() disallows */
2230 return WRC_Continue;
2233 static int exprIsConst(Expr *p, int initFlag, int iCur){
2234 Walker w;
2235 w.eCode = initFlag;
2236 w.xExprCallback = exprNodeIsConstant;
2237 w.xSelectCallback = sqlite3SelectWalkFail;
2238 #ifdef SQLITE_DEBUG
2239 w.xSelectCallback2 = sqlite3SelectWalkAssert2;
2240 #endif
2241 w.u.iCur = iCur;
2242 sqlite3WalkExpr(&w, p);
2243 return w.eCode;
2247 ** Walk an expression tree. Return non-zero if the expression is constant
2248 ** and 0 if it involves variables or function calls.
2250 ** For the purposes of this function, a double-quoted string (ex: "abc")
2251 ** is considered a variable but a single-quoted string (ex: 'abc') is
2252 ** a constant.
2254 int sqlite3ExprIsConstant(Expr *p){
2255 return exprIsConst(p, 1, 0);
2259 ** Walk an expression tree. Return non-zero if
2261 ** (1) the expression is constant, and
2262 ** (2) the expression does originate in the ON or USING clause
2263 ** of a LEFT JOIN, and
2264 ** (3) the expression does not contain any EP_FixedCol TK_COLUMN
2265 ** operands created by the constant propagation optimization.
2267 ** When this routine returns true, it indicates that the expression
2268 ** can be added to the pParse->pConstExpr list and evaluated once when
2269 ** the prepared statement starts up. See sqlite3ExprCodeRunJustOnce().
2271 int sqlite3ExprIsConstantNotJoin(Expr *p){
2272 return exprIsConst(p, 2, 0);
2276 ** Walk an expression tree. Return non-zero if the expression is constant
2277 ** for any single row of the table with cursor iCur. In other words, the
2278 ** expression must not refer to any non-deterministic function nor any
2279 ** table other than iCur.
2281 int sqlite3ExprIsTableConstant(Expr *p, int iCur){
2282 return exprIsConst(p, 3, iCur);
2287 ** sqlite3WalkExpr() callback used by sqlite3ExprIsConstantOrGroupBy().
2289 static int exprNodeIsConstantOrGroupBy(Walker *pWalker, Expr *pExpr){
2290 ExprList *pGroupBy = pWalker->u.pGroupBy;
2291 int i;
2293 /* Check if pExpr is identical to any GROUP BY term. If so, consider
2294 ** it constant. */
2295 for(i=0; i<pGroupBy->nExpr; i++){
2296 Expr *p = pGroupBy->a[i].pExpr;
2297 if( sqlite3ExprCompare(0, pExpr, p, -1)<2 ){
2298 CollSeq *pColl = sqlite3ExprNNCollSeq(pWalker->pParse, p);
2299 if( sqlite3IsBinary(pColl) ){
2300 return WRC_Prune;
2305 /* Check if pExpr is a sub-select. If so, consider it variable. */
2306 if( ExprUseXSelect(pExpr) ){
2307 pWalker->eCode = 0;
2308 return WRC_Abort;
2311 return exprNodeIsConstant(pWalker, pExpr);
2315 ** Walk the expression tree passed as the first argument. Return non-zero
2316 ** if the expression consists entirely of constants or copies of terms
2317 ** in pGroupBy that sort with the BINARY collation sequence.
2319 ** This routine is used to determine if a term of the HAVING clause can
2320 ** be promoted into the WHERE clause. In order for such a promotion to work,
2321 ** the value of the HAVING clause term must be the same for all members of
2322 ** a "group". The requirement that the GROUP BY term must be BINARY
2323 ** assumes that no other collating sequence will have a finer-grained
2324 ** grouping than binary. In other words (A=B COLLATE binary) implies
2325 ** A=B in every other collating sequence. The requirement that the
2326 ** GROUP BY be BINARY is stricter than necessary. It would also work
2327 ** to promote HAVING clauses that use the same alternative collating
2328 ** sequence as the GROUP BY term, but that is much harder to check,
2329 ** alternative collating sequences are uncommon, and this is only an
2330 ** optimization, so we take the easy way out and simply require the
2331 ** GROUP BY to use the BINARY collating sequence.
2333 int sqlite3ExprIsConstantOrGroupBy(Parse *pParse, Expr *p, ExprList *pGroupBy){
2334 Walker w;
2335 w.eCode = 1;
2336 w.xExprCallback = exprNodeIsConstantOrGroupBy;
2337 w.xSelectCallback = 0;
2338 w.u.pGroupBy = pGroupBy;
2339 w.pParse = pParse;
2340 sqlite3WalkExpr(&w, p);
2341 return w.eCode;
2345 ** Walk an expression tree for the DEFAULT field of a column definition
2346 ** in a CREATE TABLE statement. Return non-zero if the expression is
2347 ** acceptable for use as a DEFAULT. That is to say, return non-zero if
2348 ** the expression is constant or a function call with constant arguments.
2349 ** Return and 0 if there are any variables.
2351 ** isInit is true when parsing from sqlite_schema. isInit is false when
2352 ** processing a new CREATE TABLE statement. When isInit is true, parameters
2353 ** (such as ? or $abc) in the expression are converted into NULL. When
2354 ** isInit is false, parameters raise an error. Parameters should not be
2355 ** allowed in a CREATE TABLE statement, but some legacy versions of SQLite
2356 ** allowed it, so we need to support it when reading sqlite_schema for
2357 ** backwards compatibility.
2359 ** If isInit is true, set EP_FromDDL on every TK_FUNCTION node.
2361 ** For the purposes of this function, a double-quoted string (ex: "abc")
2362 ** is considered a variable but a single-quoted string (ex: 'abc') is
2363 ** a constant.
2365 int sqlite3ExprIsConstantOrFunction(Expr *p, u8 isInit){
2366 assert( isInit==0 || isInit==1 );
2367 return exprIsConst(p, 4+isInit, 0);
2370 #ifdef SQLITE_ENABLE_CURSOR_HINTS
2372 ** Walk an expression tree. Return 1 if the expression contains a
2373 ** subquery of some kind. Return 0 if there are no subqueries.
2375 int sqlite3ExprContainsSubquery(Expr *p){
2376 Walker w;
2377 w.eCode = 1;
2378 w.xExprCallback = sqlite3ExprWalkNoop;
2379 w.xSelectCallback = sqlite3SelectWalkFail;
2380 #ifdef SQLITE_DEBUG
2381 w.xSelectCallback2 = sqlite3SelectWalkAssert2;
2382 #endif
2383 sqlite3WalkExpr(&w, p);
2384 return w.eCode==0;
2386 #endif
2389 ** If the expression p codes a constant integer that is small enough
2390 ** to fit in a 32-bit integer, return 1 and put the value of the integer
2391 ** in *pValue. If the expression is not an integer or if it is too big
2392 ** to fit in a signed 32-bit integer, return 0 and leave *pValue unchanged.
2394 int sqlite3ExprIsInteger(const Expr *p, int *pValue){
2395 int rc = 0;
2396 if( NEVER(p==0) ) return 0; /* Used to only happen following on OOM */
2398 /* If an expression is an integer literal that fits in a signed 32-bit
2399 ** integer, then the EP_IntValue flag will have already been set */
2400 assert( p->op!=TK_INTEGER || (p->flags & EP_IntValue)!=0
2401 || sqlite3GetInt32(p->u.zToken, &rc)==0 );
2403 if( p->flags & EP_IntValue ){
2404 *pValue = p->u.iValue;
2405 return 1;
2407 switch( p->op ){
2408 case TK_UPLUS: {
2409 rc = sqlite3ExprIsInteger(p->pLeft, pValue);
2410 break;
2412 case TK_UMINUS: {
2413 int v = 0;
2414 if( sqlite3ExprIsInteger(p->pLeft, &v) ){
2415 assert( ((unsigned int)v)!=0x80000000 );
2416 *pValue = -v;
2417 rc = 1;
2419 break;
2421 default: break;
2423 return rc;
2427 ** Return FALSE if there is no chance that the expression can be NULL.
2429 ** If the expression might be NULL or if the expression is too complex
2430 ** to tell return TRUE.
2432 ** This routine is used as an optimization, to skip OP_IsNull opcodes
2433 ** when we know that a value cannot be NULL. Hence, a false positive
2434 ** (returning TRUE when in fact the expression can never be NULL) might
2435 ** be a small performance hit but is otherwise harmless. On the other
2436 ** hand, a false negative (returning FALSE when the result could be NULL)
2437 ** will likely result in an incorrect answer. So when in doubt, return
2438 ** TRUE.
2440 int sqlite3ExprCanBeNull(const Expr *p){
2441 u8 op;
2442 assert( p!=0 );
2443 while( p->op==TK_UPLUS || p->op==TK_UMINUS ){
2444 p = p->pLeft;
2445 assert( p!=0 );
2447 op = p->op;
2448 if( op==TK_REGISTER ) op = p->op2;
2449 switch( op ){
2450 case TK_INTEGER:
2451 case TK_STRING:
2452 case TK_FLOAT:
2453 case TK_BLOB:
2454 return 0;
2455 case TK_COLUMN:
2456 assert( ExprUseYTab(p) );
2457 return ExprHasProperty(p, EP_CanBeNull) ||
2458 p->y.pTab==0 || /* Reference to column of index on expression */
2459 (p->iColumn>=0
2460 && p->y.pTab->aCol!=0 /* Possible due to prior error */
2461 && p->y.pTab->aCol[p->iColumn].notNull==0);
2462 default:
2463 return 1;
2468 ** Return TRUE if the given expression is a constant which would be
2469 ** unchanged by OP_Affinity with the affinity given in the second
2470 ** argument.
2472 ** This routine is used to determine if the OP_Affinity operation
2473 ** can be omitted. When in doubt return FALSE. A false negative
2474 ** is harmless. A false positive, however, can result in the wrong
2475 ** answer.
2477 int sqlite3ExprNeedsNoAffinityChange(const Expr *p, char aff){
2478 u8 op;
2479 int unaryMinus = 0;
2480 if( aff==SQLITE_AFF_BLOB ) return 1;
2481 while( p->op==TK_UPLUS || p->op==TK_UMINUS ){
2482 if( p->op==TK_UMINUS ) unaryMinus = 1;
2483 p = p->pLeft;
2485 op = p->op;
2486 if( op==TK_REGISTER ) op = p->op2;
2487 switch( op ){
2488 case TK_INTEGER: {
2489 return aff>=SQLITE_AFF_NUMERIC;
2491 case TK_FLOAT: {
2492 return aff>=SQLITE_AFF_NUMERIC;
2494 case TK_STRING: {
2495 return !unaryMinus && aff==SQLITE_AFF_TEXT;
2497 case TK_BLOB: {
2498 return !unaryMinus;
2500 case TK_COLUMN: {
2501 assert( p->iTable>=0 ); /* p cannot be part of a CHECK constraint */
2502 return aff>=SQLITE_AFF_NUMERIC && p->iColumn<0;
2504 default: {
2505 return 0;
2511 ** Return TRUE if the given string is a row-id column name.
2513 int sqlite3IsRowid(const char *z){
2514 if( sqlite3StrICmp(z, "_ROWID_")==0 ) return 1;
2515 if( sqlite3StrICmp(z, "ROWID")==0 ) return 1;
2516 if( sqlite3StrICmp(z, "OID")==0 ) return 1;
2517 return 0;
2521 ** pX is the RHS of an IN operator. If pX is a SELECT statement
2522 ** that can be simplified to a direct table access, then return
2523 ** a pointer to the SELECT statement. If pX is not a SELECT statement,
2524 ** or if the SELECT statement needs to be manifested into a transient
2525 ** table, then return NULL.
2527 #ifndef SQLITE_OMIT_SUBQUERY
2528 static Select *isCandidateForInOpt(const Expr *pX){
2529 Select *p;
2530 SrcList *pSrc;
2531 ExprList *pEList;
2532 Table *pTab;
2533 int i;
2534 if( !ExprUseXSelect(pX) ) return 0; /* Not a subquery */
2535 if( ExprHasProperty(pX, EP_VarSelect) ) return 0; /* Correlated subq */
2536 p = pX->x.pSelect;
2537 if( p->pPrior ) return 0; /* Not a compound SELECT */
2538 if( p->selFlags & (SF_Distinct|SF_Aggregate) ){
2539 testcase( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct );
2540 testcase( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Aggregate );
2541 return 0; /* No DISTINCT keyword and no aggregate functions */
2543 assert( p->pGroupBy==0 ); /* Has no GROUP BY clause */
2544 if( p->pLimit ) return 0; /* Has no LIMIT clause */
2545 if( p->pWhere ) return 0; /* Has no WHERE clause */
2546 pSrc = p->pSrc;
2547 assert( pSrc!=0 );
2548 if( pSrc->nSrc!=1 ) return 0; /* Single term in FROM clause */
2549 if( pSrc->a[0].pSelect ) return 0; /* FROM is not a subquery or view */
2550 pTab = pSrc->a[0].pTab;
2551 assert( pTab!=0 );
2552 assert( !IsView(pTab) ); /* FROM clause is not a view */
2553 if( IsVirtual(pTab) ) return 0; /* FROM clause not a virtual table */
2554 pEList = p->pEList;
2555 assert( pEList!=0 );
2556 /* All SELECT results must be columns. */
2557 for(i=0; i<pEList->nExpr; i++){
2558 Expr *pRes = pEList->a[i].pExpr;
2559 if( pRes->op!=TK_COLUMN ) return 0;
2560 assert( pRes->iTable==pSrc->a[0].iCursor ); /* Not a correlated subquery */
2562 return p;
2564 #endif /* SQLITE_OMIT_SUBQUERY */
2566 #ifndef SQLITE_OMIT_SUBQUERY
2568 ** Generate code that checks the left-most column of index table iCur to see if
2569 ** it contains any NULL entries. Cause the register at regHasNull to be set
2570 ** to a non-NULL value if iCur contains no NULLs. Cause register regHasNull
2571 ** to be set to NULL if iCur contains one or more NULL values.
2573 static void sqlite3SetHasNullFlag(Vdbe *v, int iCur, int regHasNull){
2574 int addr1;
2575 sqlite3VdbeAddOp2(v, OP_Integer, 0, regHasNull);
2576 addr1 = sqlite3VdbeAddOp1(v, OP_Rewind, iCur); VdbeCoverage(v);
2577 sqlite3VdbeAddOp3(v, OP_Column, iCur, 0, regHasNull);
2578 sqlite3VdbeChangeP5(v, OPFLAG_TYPEOFARG);
2579 VdbeComment((v, "first_entry_in(%d)", iCur));
2580 sqlite3VdbeJumpHere(v, addr1);
2582 #endif
2585 #ifndef SQLITE_OMIT_SUBQUERY
2587 ** The argument is an IN operator with a list (not a subquery) on the
2588 ** right-hand side. Return TRUE if that list is constant.
2590 static int sqlite3InRhsIsConstant(Expr *pIn){
2591 Expr *pLHS;
2592 int res;
2593 assert( !ExprHasProperty(pIn, EP_xIsSelect) );
2594 pLHS = pIn->pLeft;
2595 pIn->pLeft = 0;
2596 res = sqlite3ExprIsConstant(pIn);
2597 pIn->pLeft = pLHS;
2598 return res;
2600 #endif
2603 ** This function is used by the implementation of the IN (...) operator.
2604 ** The pX parameter is the expression on the RHS of the IN operator, which
2605 ** might be either a list of expressions or a subquery.
2607 ** The job of this routine is to find or create a b-tree object that can
2608 ** be used either to test for membership in the RHS set or to iterate through
2609 ** all members of the RHS set, skipping duplicates.
2611 ** A cursor is opened on the b-tree object that is the RHS of the IN operator
2612 ** and pX->iTable is set to the index of that cursor.
2614 ** The returned value of this function indicates the b-tree type, as follows:
2616 ** IN_INDEX_ROWID - The cursor was opened on a database table.
2617 ** IN_INDEX_INDEX_ASC - The cursor was opened on an ascending index.
2618 ** IN_INDEX_INDEX_DESC - The cursor was opened on a descending index.
2619 ** IN_INDEX_EPH - The cursor was opened on a specially created and
2620 ** populated epheremal table.
2621 ** IN_INDEX_NOOP - No cursor was allocated. The IN operator must be
2622 ** implemented as a sequence of comparisons.
2624 ** An existing b-tree might be used if the RHS expression pX is a simple
2625 ** subquery such as:
2627 ** SELECT <column1>, <column2>... FROM <table>
2629 ** If the RHS of the IN operator is a list or a more complex subquery, then
2630 ** an ephemeral table might need to be generated from the RHS and then
2631 ** pX->iTable made to point to the ephemeral table instead of an
2632 ** existing table.
2634 ** The inFlags parameter must contain, at a minimum, one of the bits
2635 ** IN_INDEX_MEMBERSHIP or IN_INDEX_LOOP but not both. If inFlags contains
2636 ** IN_INDEX_MEMBERSHIP, then the generated table will be used for a fast
2637 ** membership test. When the IN_INDEX_LOOP bit is set, the IN index will
2638 ** be used to loop over all values of the RHS of the IN operator.
2640 ** When IN_INDEX_LOOP is used (and the b-tree will be used to iterate
2641 ** through the set members) then the b-tree must not contain duplicates.
2642 ** An epheremal table will be created unless the selected columns are guaranteed
2643 ** to be unique - either because it is an INTEGER PRIMARY KEY or due to
2644 ** a UNIQUE constraint or index.
2646 ** When IN_INDEX_MEMBERSHIP is used (and the b-tree will be used
2647 ** for fast set membership tests) then an epheremal table must
2648 ** be used unless <columns> is a single INTEGER PRIMARY KEY column or an
2649 ** index can be found with the specified <columns> as its left-most.
2651 ** If the IN_INDEX_NOOP_OK and IN_INDEX_MEMBERSHIP are both set and
2652 ** if the RHS of the IN operator is a list (not a subquery) then this
2653 ** routine might decide that creating an ephemeral b-tree for membership
2654 ** testing is too expensive and return IN_INDEX_NOOP. In that case, the
2655 ** calling routine should implement the IN operator using a sequence
2656 ** of Eq or Ne comparison operations.
2658 ** When the b-tree is being used for membership tests, the calling function
2659 ** might need to know whether or not the RHS side of the IN operator
2660 ** contains a NULL. If prRhsHasNull is not a NULL pointer and
2661 ** if there is any chance that the (...) might contain a NULL value at
2662 ** runtime, then a register is allocated and the register number written
2663 ** to *prRhsHasNull. If there is no chance that the (...) contains a
2664 ** NULL value, then *prRhsHasNull is left unchanged.
2666 ** If a register is allocated and its location stored in *prRhsHasNull, then
2667 ** the value in that register will be NULL if the b-tree contains one or more
2668 ** NULL values, and it will be some non-NULL value if the b-tree contains no
2669 ** NULL values.
2671 ** If the aiMap parameter is not NULL, it must point to an array containing
2672 ** one element for each column returned by the SELECT statement on the RHS
2673 ** of the IN(...) operator. The i'th entry of the array is populated with the
2674 ** offset of the index column that matches the i'th column returned by the
2675 ** SELECT. For example, if the expression and selected index are:
2677 ** (?,?,?) IN (SELECT a, b, c FROM t1)
2678 ** CREATE INDEX i1 ON t1(b, c, a);
2680 ** then aiMap[] is populated with {2, 0, 1}.
2682 #ifndef SQLITE_OMIT_SUBQUERY
2683 int sqlite3FindInIndex(
2684 Parse *pParse, /* Parsing context */
2685 Expr *pX, /* The IN expression */
2686 u32 inFlags, /* IN_INDEX_LOOP, _MEMBERSHIP, and/or _NOOP_OK */
2687 int *prRhsHasNull, /* Register holding NULL status. See notes */
2688 int *aiMap, /* Mapping from Index fields to RHS fields */
2689 int *piTab /* OUT: index to use */
2691 Select *p; /* SELECT to the right of IN operator */
2692 int eType = 0; /* Type of RHS table. IN_INDEX_* */
2693 int iTab = pParse->nTab++; /* Cursor of the RHS table */
2694 int mustBeUnique; /* True if RHS must be unique */
2695 Vdbe *v = sqlite3GetVdbe(pParse); /* Virtual machine being coded */
2697 assert( pX->op==TK_IN );
2698 mustBeUnique = (inFlags & IN_INDEX_LOOP)!=0;
2700 /* If the RHS of this IN(...) operator is a SELECT, and if it matters
2701 ** whether or not the SELECT result contains NULL values, check whether
2702 ** or not NULL is actually possible (it may not be, for example, due
2703 ** to NOT NULL constraints in the schema). If no NULL values are possible,
2704 ** set prRhsHasNull to 0 before continuing. */
2705 if( prRhsHasNull && ExprUseXSelect(pX) ){
2706 int i;
2707 ExprList *pEList = pX->x.pSelect->pEList;
2708 for(i=0; i<pEList->nExpr; i++){
2709 if( sqlite3ExprCanBeNull(pEList->a[i].pExpr) ) break;
2711 if( i==pEList->nExpr ){
2712 prRhsHasNull = 0;
2716 /* Check to see if an existing table or index can be used to
2717 ** satisfy the query. This is preferable to generating a new
2718 ** ephemeral table. */
2719 if( pParse->nErr==0 && (p = isCandidateForInOpt(pX))!=0 ){
2720 sqlite3 *db = pParse->db; /* Database connection */
2721 Table *pTab; /* Table <table>. */
2722 int iDb; /* Database idx for pTab */
2723 ExprList *pEList = p->pEList;
2724 int nExpr = pEList->nExpr;
2726 assert( p->pEList!=0 ); /* Because of isCandidateForInOpt(p) */
2727 assert( p->pEList->a[0].pExpr!=0 ); /* Because of isCandidateForInOpt(p) */
2728 assert( p->pSrc!=0 ); /* Because of isCandidateForInOpt(p) */
2729 pTab = p->pSrc->a[0].pTab;
2731 /* Code an OP_Transaction and OP_TableLock for <table>. */
2732 iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
2733 assert( iDb>=0 && iDb<SQLITE_MAX_DB );
2734 sqlite3CodeVerifySchema(pParse, iDb);
2735 sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName);
2737 assert(v); /* sqlite3GetVdbe() has always been previously called */
2738 if( nExpr==1 && pEList->a[0].pExpr->iColumn<0 ){
2739 /* The "x IN (SELECT rowid FROM table)" case */
2740 int iAddr = sqlite3VdbeAddOp0(v, OP_Once);
2741 VdbeCoverage(v);
2743 sqlite3OpenTable(pParse, iTab, iDb, pTab, OP_OpenRead);
2744 eType = IN_INDEX_ROWID;
2745 ExplainQueryPlan((pParse, 0,
2746 "USING ROWID SEARCH ON TABLE %s FOR IN-OPERATOR",pTab->zName));
2747 sqlite3VdbeJumpHere(v, iAddr);
2748 }else{
2749 Index *pIdx; /* Iterator variable */
2750 int affinity_ok = 1;
2751 int i;
2753 /* Check that the affinity that will be used to perform each
2754 ** comparison is the same as the affinity of each column in table
2755 ** on the RHS of the IN operator. If it not, it is not possible to
2756 ** use any index of the RHS table. */
2757 for(i=0; i<nExpr && affinity_ok; i++){
2758 Expr *pLhs = sqlite3VectorFieldSubexpr(pX->pLeft, i);
2759 int iCol = pEList->a[i].pExpr->iColumn;
2760 char idxaff = sqlite3TableColumnAffinity(pTab,iCol); /* RHS table */
2761 char cmpaff = sqlite3CompareAffinity(pLhs, idxaff);
2762 testcase( cmpaff==SQLITE_AFF_BLOB );
2763 testcase( cmpaff==SQLITE_AFF_TEXT );
2764 switch( cmpaff ){
2765 case SQLITE_AFF_BLOB:
2766 break;
2767 case SQLITE_AFF_TEXT:
2768 /* sqlite3CompareAffinity() only returns TEXT if one side or the
2769 ** other has no affinity and the other side is TEXT. Hence,
2770 ** the only way for cmpaff to be TEXT is for idxaff to be TEXT
2771 ** and for the term on the LHS of the IN to have no affinity. */
2772 assert( idxaff==SQLITE_AFF_TEXT );
2773 break;
2774 default:
2775 affinity_ok = sqlite3IsNumericAffinity(idxaff);
2779 if( affinity_ok ){
2780 /* Search for an existing index that will work for this IN operator */
2781 for(pIdx=pTab->pIndex; pIdx && eType==0; pIdx=pIdx->pNext){
2782 Bitmask colUsed; /* Columns of the index used */
2783 Bitmask mCol; /* Mask for the current column */
2784 if( pIdx->nColumn<nExpr ) continue;
2785 if( pIdx->pPartIdxWhere!=0 ) continue;
2786 /* Maximum nColumn is BMS-2, not BMS-1, so that we can compute
2787 ** BITMASK(nExpr) without overflowing */
2788 testcase( pIdx->nColumn==BMS-2 );
2789 testcase( pIdx->nColumn==BMS-1 );
2790 if( pIdx->nColumn>=BMS-1 ) continue;
2791 if( mustBeUnique ){
2792 if( pIdx->nKeyCol>nExpr
2793 ||(pIdx->nColumn>nExpr && !IsUniqueIndex(pIdx))
2795 continue; /* This index is not unique over the IN RHS columns */
2799 colUsed = 0; /* Columns of index used so far */
2800 for(i=0; i<nExpr; i++){
2801 Expr *pLhs = sqlite3VectorFieldSubexpr(pX->pLeft, i);
2802 Expr *pRhs = pEList->a[i].pExpr;
2803 CollSeq *pReq = sqlite3BinaryCompareCollSeq(pParse, pLhs, pRhs);
2804 int j;
2806 assert( pReq!=0 || pRhs->iColumn==XN_ROWID
2807 || pParse->nErr || db->mallocFailed );
2808 for(j=0; j<nExpr; j++){
2809 if( pIdx->aiColumn[j]!=pRhs->iColumn ) continue;
2810 assert( pIdx->azColl[j] );
2811 if( pReq!=0 && sqlite3StrICmp(pReq->zName, pIdx->azColl[j])!=0 ){
2812 continue;
2814 break;
2816 if( j==nExpr ) break;
2817 mCol = MASKBIT(j);
2818 if( mCol & colUsed ) break; /* Each column used only once */
2819 colUsed |= mCol;
2820 if( aiMap ) aiMap[i] = j;
2823 assert( i==nExpr || colUsed!=(MASKBIT(nExpr)-1) );
2824 if( colUsed==(MASKBIT(nExpr)-1) ){
2825 /* If we reach this point, that means the index pIdx is usable */
2826 int iAddr = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v);
2827 ExplainQueryPlan((pParse, 0,
2828 "USING INDEX %s FOR IN-OPERATOR",pIdx->zName));
2829 sqlite3VdbeAddOp3(v, OP_OpenRead, iTab, pIdx->tnum, iDb);
2830 sqlite3VdbeSetP4KeyInfo(pParse, pIdx);
2831 VdbeComment((v, "%s", pIdx->zName));
2832 assert( IN_INDEX_INDEX_DESC == IN_INDEX_INDEX_ASC+1 );
2833 eType = IN_INDEX_INDEX_ASC + pIdx->aSortOrder[0];
2835 if( prRhsHasNull ){
2836 #ifdef SQLITE_ENABLE_COLUMN_USED_MASK
2837 i64 mask = (1<<nExpr)-1;
2838 sqlite3VdbeAddOp4Dup8(v, OP_ColumnsUsed,
2839 iTab, 0, 0, (u8*)&mask, P4_INT64);
2840 #endif
2841 *prRhsHasNull = ++pParse->nMem;
2842 if( nExpr==1 ){
2843 sqlite3SetHasNullFlag(v, iTab, *prRhsHasNull);
2846 sqlite3VdbeJumpHere(v, iAddr);
2848 } /* End loop over indexes */
2849 } /* End if( affinity_ok ) */
2850 } /* End if not an rowid index */
2851 } /* End attempt to optimize using an index */
2853 /* If no preexisting index is available for the IN clause
2854 ** and IN_INDEX_NOOP is an allowed reply
2855 ** and the RHS of the IN operator is a list, not a subquery
2856 ** and the RHS is not constant or has two or fewer terms,
2857 ** then it is not worth creating an ephemeral table to evaluate
2858 ** the IN operator so return IN_INDEX_NOOP.
2860 if( eType==0
2861 && (inFlags & IN_INDEX_NOOP_OK)
2862 && ExprUseXList(pX)
2863 && (!sqlite3InRhsIsConstant(pX) || pX->x.pList->nExpr<=2)
2865 eType = IN_INDEX_NOOP;
2868 if( eType==0 ){
2869 /* Could not find an existing table or index to use as the RHS b-tree.
2870 ** We will have to generate an ephemeral table to do the job.
2872 u32 savedNQueryLoop = pParse->nQueryLoop;
2873 int rMayHaveNull = 0;
2874 eType = IN_INDEX_EPH;
2875 if( inFlags & IN_INDEX_LOOP ){
2876 pParse->nQueryLoop = 0;
2877 }else if( prRhsHasNull ){
2878 *prRhsHasNull = rMayHaveNull = ++pParse->nMem;
2880 assert( pX->op==TK_IN );
2881 sqlite3CodeRhsOfIN(pParse, pX, iTab);
2882 if( rMayHaveNull ){
2883 sqlite3SetHasNullFlag(v, iTab, rMayHaveNull);
2885 pParse->nQueryLoop = savedNQueryLoop;
2888 if( aiMap && eType!=IN_INDEX_INDEX_ASC && eType!=IN_INDEX_INDEX_DESC ){
2889 int i, n;
2890 n = sqlite3ExprVectorSize(pX->pLeft);
2891 for(i=0; i<n; i++) aiMap[i] = i;
2893 *piTab = iTab;
2894 return eType;
2896 #endif
2898 #ifndef SQLITE_OMIT_SUBQUERY
2900 ** Argument pExpr is an (?, ?...) IN(...) expression. This
2901 ** function allocates and returns a nul-terminated string containing
2902 ** the affinities to be used for each column of the comparison.
2904 ** It is the responsibility of the caller to ensure that the returned
2905 ** string is eventually freed using sqlite3DbFree().
2907 static char *exprINAffinity(Parse *pParse, const Expr *pExpr){
2908 Expr *pLeft = pExpr->pLeft;
2909 int nVal = sqlite3ExprVectorSize(pLeft);
2910 Select *pSelect = ExprUseXSelect(pExpr) ? pExpr->x.pSelect : 0;
2911 char *zRet;
2913 assert( pExpr->op==TK_IN );
2914 zRet = sqlite3DbMallocRaw(pParse->db, nVal+1);
2915 if( zRet ){
2916 int i;
2917 for(i=0; i<nVal; i++){
2918 Expr *pA = sqlite3VectorFieldSubexpr(pLeft, i);
2919 char a = sqlite3ExprAffinity(pA);
2920 if( pSelect ){
2921 zRet[i] = sqlite3CompareAffinity(pSelect->pEList->a[i].pExpr, a);
2922 }else{
2923 zRet[i] = a;
2926 zRet[nVal] = '\0';
2928 return zRet;
2930 #endif
2932 #ifndef SQLITE_OMIT_SUBQUERY
2934 ** Load the Parse object passed as the first argument with an error
2935 ** message of the form:
2937 ** "sub-select returns N columns - expected M"
2939 void sqlite3SubselectError(Parse *pParse, int nActual, int nExpect){
2940 if( pParse->nErr==0 ){
2941 const char *zFmt = "sub-select returns %d columns - expected %d";
2942 sqlite3ErrorMsg(pParse, zFmt, nActual, nExpect);
2945 #endif
2948 ** Expression pExpr is a vector that has been used in a context where
2949 ** it is not permitted. If pExpr is a sub-select vector, this routine
2950 ** loads the Parse object with a message of the form:
2952 ** "sub-select returns N columns - expected 1"
2954 ** Or, if it is a regular scalar vector:
2956 ** "row value misused"
2958 void sqlite3VectorErrorMsg(Parse *pParse, Expr *pExpr){
2959 #ifndef SQLITE_OMIT_SUBQUERY
2960 if( ExprUseXSelect(pExpr) ){
2961 sqlite3SubselectError(pParse, pExpr->x.pSelect->pEList->nExpr, 1);
2962 }else
2963 #endif
2965 sqlite3ErrorMsg(pParse, "row value misused");
2969 #ifndef SQLITE_OMIT_SUBQUERY
2971 ** Generate code that will construct an ephemeral table containing all terms
2972 ** in the RHS of an IN operator. The IN operator can be in either of two
2973 ** forms:
2975 ** x IN (4,5,11) -- IN operator with list on right-hand side
2976 ** x IN (SELECT a FROM b) -- IN operator with subquery on the right
2978 ** The pExpr parameter is the IN operator. The cursor number for the
2979 ** constructed ephermeral table is returned. The first time the ephemeral
2980 ** table is computed, the cursor number is also stored in pExpr->iTable,
2981 ** however the cursor number returned might not be the same, as it might
2982 ** have been duplicated using OP_OpenDup.
2984 ** If the LHS expression ("x" in the examples) is a column value, or
2985 ** the SELECT statement returns a column value, then the affinity of that
2986 ** column is used to build the index keys. If both 'x' and the
2987 ** SELECT... statement are columns, then numeric affinity is used
2988 ** if either column has NUMERIC or INTEGER affinity. If neither
2989 ** 'x' nor the SELECT... statement are columns, then numeric affinity
2990 ** is used.
2992 void sqlite3CodeRhsOfIN(
2993 Parse *pParse, /* Parsing context */
2994 Expr *pExpr, /* The IN operator */
2995 int iTab /* Use this cursor number */
2997 int addrOnce = 0; /* Address of the OP_Once instruction at top */
2998 int addr; /* Address of OP_OpenEphemeral instruction */
2999 Expr *pLeft; /* the LHS of the IN operator */
3000 KeyInfo *pKeyInfo = 0; /* Key information */
3001 int nVal; /* Size of vector pLeft */
3002 Vdbe *v; /* The prepared statement under construction */
3004 v = pParse->pVdbe;
3005 assert( v!=0 );
3007 /* The evaluation of the IN must be repeated every time it
3008 ** is encountered if any of the following is true:
3010 ** * The right-hand side is a correlated subquery
3011 ** * The right-hand side is an expression list containing variables
3012 ** * We are inside a trigger
3014 ** If all of the above are false, then we can compute the RHS just once
3015 ** and reuse it many names.
3017 if( !ExprHasProperty(pExpr, EP_VarSelect) && pParse->iSelfTab==0 ){
3018 /* Reuse of the RHS is allowed */
3019 /* If this routine has already been coded, but the previous code
3020 ** might not have been invoked yet, so invoke it now as a subroutine.
3022 if( ExprHasProperty(pExpr, EP_Subrtn) ){
3023 addrOnce = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v);
3024 if( ExprUseXSelect(pExpr) ){
3025 ExplainQueryPlan((pParse, 0, "REUSE LIST SUBQUERY %d",
3026 pExpr->x.pSelect->selId));
3028 assert( ExprUseYSub(pExpr) );
3029 sqlite3VdbeAddOp2(v, OP_Gosub, pExpr->y.sub.regReturn,
3030 pExpr->y.sub.iAddr);
3031 sqlite3VdbeAddOp2(v, OP_OpenDup, iTab, pExpr->iTable);
3032 sqlite3VdbeJumpHere(v, addrOnce);
3033 return;
3036 /* Begin coding the subroutine */
3037 assert( !ExprUseYWin(pExpr) );
3038 ExprSetProperty(pExpr, EP_Subrtn);
3039 assert( !ExprHasProperty(pExpr, EP_TokenOnly|EP_Reduced) );
3040 pExpr->y.sub.regReturn = ++pParse->nMem;
3041 pExpr->y.sub.iAddr =
3042 sqlite3VdbeAddOp2(v, OP_Integer, 0, pExpr->y.sub.regReturn) + 1;
3043 VdbeComment((v, "return address"));
3045 addrOnce = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v);
3048 /* Check to see if this is a vector IN operator */
3049 pLeft = pExpr->pLeft;
3050 nVal = sqlite3ExprVectorSize(pLeft);
3052 /* Construct the ephemeral table that will contain the content of
3053 ** RHS of the IN operator.
3055 pExpr->iTable = iTab;
3056 addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pExpr->iTable, nVal);
3057 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS
3058 if( ExprUseXSelect(pExpr) ){
3059 VdbeComment((v, "Result of SELECT %u", pExpr->x.pSelect->selId));
3060 }else{
3061 VdbeComment((v, "RHS of IN operator"));
3063 #endif
3064 pKeyInfo = sqlite3KeyInfoAlloc(pParse->db, nVal, 1);
3066 if( ExprUseXSelect(pExpr) ){
3067 /* Case 1: expr IN (SELECT ...)
3069 ** Generate code to write the results of the select into the temporary
3070 ** table allocated and opened above.
3072 Select *pSelect = pExpr->x.pSelect;
3073 ExprList *pEList = pSelect->pEList;
3075 ExplainQueryPlan((pParse, 1, "%sLIST SUBQUERY %d",
3076 addrOnce?"":"CORRELATED ", pSelect->selId
3078 /* If the LHS and RHS of the IN operator do not match, that
3079 ** error will have been caught long before we reach this point. */
3080 if( ALWAYS(pEList->nExpr==nVal) ){
3081 Select *pCopy;
3082 SelectDest dest;
3083 int i;
3084 int rc;
3085 sqlite3SelectDestInit(&dest, SRT_Set, iTab);
3086 dest.zAffSdst = exprINAffinity(pParse, pExpr);
3087 pSelect->iLimit = 0;
3088 testcase( pSelect->selFlags & SF_Distinct );
3089 testcase( pKeyInfo==0 ); /* Caused by OOM in sqlite3KeyInfoAlloc() */
3090 pCopy = sqlite3SelectDup(pParse->db, pSelect, 0);
3091 rc = pParse->db->mallocFailed ? 1 :sqlite3Select(pParse, pCopy, &dest);
3092 sqlite3SelectDelete(pParse->db, pCopy);
3093 sqlite3DbFree(pParse->db, dest.zAffSdst);
3094 if( rc ){
3095 sqlite3KeyInfoUnref(pKeyInfo);
3096 return;
3098 assert( pKeyInfo!=0 ); /* OOM will cause exit after sqlite3Select() */
3099 assert( pEList!=0 );
3100 assert( pEList->nExpr>0 );
3101 assert( sqlite3KeyInfoIsWriteable(pKeyInfo) );
3102 for(i=0; i<nVal; i++){
3103 Expr *p = sqlite3VectorFieldSubexpr(pLeft, i);
3104 pKeyInfo->aColl[i] = sqlite3BinaryCompareCollSeq(
3105 pParse, p, pEList->a[i].pExpr
3109 }else if( ALWAYS(pExpr->x.pList!=0) ){
3110 /* Case 2: expr IN (exprlist)
3112 ** For each expression, build an index key from the evaluation and
3113 ** store it in the temporary table. If <expr> is a column, then use
3114 ** that columns affinity when building index keys. If <expr> is not
3115 ** a column, use numeric affinity.
3117 char affinity; /* Affinity of the LHS of the IN */
3118 int i;
3119 ExprList *pList = pExpr->x.pList;
3120 struct ExprList_item *pItem;
3121 int r1, r2;
3122 affinity = sqlite3ExprAffinity(pLeft);
3123 if( affinity<=SQLITE_AFF_NONE ){
3124 affinity = SQLITE_AFF_BLOB;
3125 }else if( affinity==SQLITE_AFF_REAL ){
3126 affinity = SQLITE_AFF_NUMERIC;
3128 if( pKeyInfo ){
3129 assert( sqlite3KeyInfoIsWriteable(pKeyInfo) );
3130 pKeyInfo->aColl[0] = sqlite3ExprCollSeq(pParse, pExpr->pLeft);
3133 /* Loop through each expression in <exprlist>. */
3134 r1 = sqlite3GetTempReg(pParse);
3135 r2 = sqlite3GetTempReg(pParse);
3136 for(i=pList->nExpr, pItem=pList->a; i>0; i--, pItem++){
3137 Expr *pE2 = pItem->pExpr;
3139 /* If the expression is not constant then we will need to
3140 ** disable the test that was generated above that makes sure
3141 ** this code only executes once. Because for a non-constant
3142 ** expression we need to rerun this code each time.
3144 if( addrOnce && !sqlite3ExprIsConstant(pE2) ){
3145 sqlite3VdbeChangeToNoop(v, addrOnce);
3146 ExprClearProperty(pExpr, EP_Subrtn);
3147 addrOnce = 0;
3150 /* Evaluate the expression and insert it into the temp table */
3151 sqlite3ExprCode(pParse, pE2, r1);
3152 sqlite3VdbeAddOp4(v, OP_MakeRecord, r1, 1, r2, &affinity, 1);
3153 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iTab, r2, r1, 1);
3155 sqlite3ReleaseTempReg(pParse, r1);
3156 sqlite3ReleaseTempReg(pParse, r2);
3158 if( pKeyInfo ){
3159 sqlite3VdbeChangeP4(v, addr, (void *)pKeyInfo, P4_KEYINFO);
3161 if( addrOnce ){
3162 sqlite3VdbeJumpHere(v, addrOnce);
3163 /* Subroutine return */
3164 assert( ExprUseYSub(pExpr) );
3165 sqlite3VdbeAddOp1(v, OP_Return, pExpr->y.sub.regReturn);
3166 sqlite3VdbeChangeP1(v, pExpr->y.sub.iAddr-1, sqlite3VdbeCurrentAddr(v)-1);
3167 sqlite3ClearTempRegCache(pParse);
3170 #endif /* SQLITE_OMIT_SUBQUERY */
3173 ** Generate code for scalar subqueries used as a subquery expression
3174 ** or EXISTS operator:
3176 ** (SELECT a FROM b) -- subquery
3177 ** EXISTS (SELECT a FROM b) -- EXISTS subquery
3179 ** The pExpr parameter is the SELECT or EXISTS operator to be coded.
3181 ** Return the register that holds the result. For a multi-column SELECT,
3182 ** the result is stored in a contiguous array of registers and the
3183 ** return value is the register of the left-most result column.
3184 ** Return 0 if an error occurs.
3186 #ifndef SQLITE_OMIT_SUBQUERY
3187 int sqlite3CodeSubselect(Parse *pParse, Expr *pExpr){
3188 int addrOnce = 0; /* Address of OP_Once at top of subroutine */
3189 int rReg = 0; /* Register storing resulting */
3190 Select *pSel; /* SELECT statement to encode */
3191 SelectDest dest; /* How to deal with SELECT result */
3192 int nReg; /* Registers to allocate */
3193 Expr *pLimit; /* New limit expression */
3195 Vdbe *v = pParse->pVdbe;
3196 assert( v!=0 );
3197 if( pParse->nErr ) return 0;
3198 testcase( pExpr->op==TK_EXISTS );
3199 testcase( pExpr->op==TK_SELECT );
3200 assert( pExpr->op==TK_EXISTS || pExpr->op==TK_SELECT );
3201 assert( ExprUseXSelect(pExpr) );
3202 pSel = pExpr->x.pSelect;
3204 /* If this routine has already been coded, then invoke it as a
3205 ** subroutine. */
3206 if( ExprHasProperty(pExpr, EP_Subrtn) ){
3207 ExplainQueryPlan((pParse, 0, "REUSE SUBQUERY %d", pSel->selId));
3208 assert( ExprUseYSub(pExpr) );
3209 sqlite3VdbeAddOp2(v, OP_Gosub, pExpr->y.sub.regReturn,
3210 pExpr->y.sub.iAddr);
3211 return pExpr->iTable;
3214 /* Begin coding the subroutine */
3215 assert( !ExprUseYWin(pExpr) );
3216 assert( !ExprHasProperty(pExpr, EP_Reduced|EP_TokenOnly) );
3217 ExprSetProperty(pExpr, EP_Subrtn);
3218 pExpr->y.sub.regReturn = ++pParse->nMem;
3219 pExpr->y.sub.iAddr =
3220 sqlite3VdbeAddOp2(v, OP_Integer, 0, pExpr->y.sub.regReturn) + 1;
3221 VdbeComment((v, "return address"));
3224 /* The evaluation of the EXISTS/SELECT must be repeated every time it
3225 ** is encountered if any of the following is true:
3227 ** * The right-hand side is a correlated subquery
3228 ** * The right-hand side is an expression list containing variables
3229 ** * We are inside a trigger
3231 ** If all of the above are false, then we can run this code just once
3232 ** save the results, and reuse the same result on subsequent invocations.
3234 if( !ExprHasProperty(pExpr, EP_VarSelect) ){
3235 addrOnce = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v);
3238 /* For a SELECT, generate code to put the values for all columns of
3239 ** the first row into an array of registers and return the index of
3240 ** the first register.
3242 ** If this is an EXISTS, write an integer 0 (not exists) or 1 (exists)
3243 ** into a register and return that register number.
3245 ** In both cases, the query is augmented with "LIMIT 1". Any
3246 ** preexisting limit is discarded in place of the new LIMIT 1.
3248 ExplainQueryPlan((pParse, 1, "%sSCALAR SUBQUERY %d",
3249 addrOnce?"":"CORRELATED ", pSel->selId));
3250 nReg = pExpr->op==TK_SELECT ? pSel->pEList->nExpr : 1;
3251 sqlite3SelectDestInit(&dest, 0, pParse->nMem+1);
3252 pParse->nMem += nReg;
3253 if( pExpr->op==TK_SELECT ){
3254 dest.eDest = SRT_Mem;
3255 dest.iSdst = dest.iSDParm;
3256 dest.nSdst = nReg;
3257 sqlite3VdbeAddOp3(v, OP_Null, 0, dest.iSDParm, dest.iSDParm+nReg-1);
3258 VdbeComment((v, "Init subquery result"));
3259 }else{
3260 dest.eDest = SRT_Exists;
3261 sqlite3VdbeAddOp2(v, OP_Integer, 0, dest.iSDParm);
3262 VdbeComment((v, "Init EXISTS result"));
3264 if( pSel->pLimit ){
3265 /* The subquery already has a limit. If the pre-existing limit is X
3266 ** then make the new limit X<>0 so that the new limit is either 1 or 0 */
3267 sqlite3 *db = pParse->db;
3268 pLimit = sqlite3Expr(db, TK_INTEGER, "0");
3269 if( pLimit ){
3270 pLimit->affExpr = SQLITE_AFF_NUMERIC;
3271 pLimit = sqlite3PExpr(pParse, TK_NE,
3272 sqlite3ExprDup(db, pSel->pLimit->pLeft, 0), pLimit);
3274 sqlite3ExprDelete(db, pSel->pLimit->pLeft);
3275 pSel->pLimit->pLeft = pLimit;
3276 }else{
3277 /* If there is no pre-existing limit add a limit of 1 */
3278 pLimit = sqlite3Expr(pParse->db, TK_INTEGER, "1");
3279 pSel->pLimit = sqlite3PExpr(pParse, TK_LIMIT, pLimit, 0);
3281 pSel->iLimit = 0;
3282 if( sqlite3Select(pParse, pSel, &dest) ){
3283 if( pParse->nErr ){
3284 pExpr->op2 = pExpr->op;
3285 pExpr->op = TK_ERROR;
3287 return 0;
3289 pExpr->iTable = rReg = dest.iSDParm;
3290 ExprSetVVAProperty(pExpr, EP_NoReduce);
3291 if( addrOnce ){
3292 sqlite3VdbeJumpHere(v, addrOnce);
3295 /* Subroutine return */
3296 assert( ExprUseYSub(pExpr) );
3297 sqlite3VdbeAddOp1(v, OP_Return, pExpr->y.sub.regReturn);
3298 sqlite3VdbeChangeP1(v, pExpr->y.sub.iAddr-1, sqlite3VdbeCurrentAddr(v)-1);
3299 sqlite3ClearTempRegCache(pParse);
3300 return rReg;
3302 #endif /* SQLITE_OMIT_SUBQUERY */
3304 #ifndef SQLITE_OMIT_SUBQUERY
3306 ** Expr pIn is an IN(...) expression. This function checks that the
3307 ** sub-select on the RHS of the IN() operator has the same number of
3308 ** columns as the vector on the LHS. Or, if the RHS of the IN() is not
3309 ** a sub-query, that the LHS is a vector of size 1.
3311 int sqlite3ExprCheckIN(Parse *pParse, Expr *pIn){
3312 int nVector = sqlite3ExprVectorSize(pIn->pLeft);
3313 if( ExprUseXSelect(pIn) && !pParse->db->mallocFailed ){
3314 if( nVector!=pIn->x.pSelect->pEList->nExpr ){
3315 sqlite3SubselectError(pParse, pIn->x.pSelect->pEList->nExpr, nVector);
3316 return 1;
3318 }else if( nVector!=1 ){
3319 sqlite3VectorErrorMsg(pParse, pIn->pLeft);
3320 return 1;
3322 return 0;
3324 #endif
3326 #ifndef SQLITE_OMIT_SUBQUERY
3328 ** Generate code for an IN expression.
3330 ** x IN (SELECT ...)
3331 ** x IN (value, value, ...)
3333 ** The left-hand side (LHS) is a scalar or vector expression. The
3334 ** right-hand side (RHS) is an array of zero or more scalar values, or a
3335 ** subquery. If the RHS is a subquery, the number of result columns must
3336 ** match the number of columns in the vector on the LHS. If the RHS is
3337 ** a list of values, the LHS must be a scalar.
3339 ** The IN operator is true if the LHS value is contained within the RHS.
3340 ** The result is false if the LHS is definitely not in the RHS. The
3341 ** result is NULL if the presence of the LHS in the RHS cannot be
3342 ** determined due to NULLs.
3344 ** This routine generates code that jumps to destIfFalse if the LHS is not
3345 ** contained within the RHS. If due to NULLs we cannot determine if the LHS
3346 ** is contained in the RHS then jump to destIfNull. If the LHS is contained
3347 ** within the RHS then fall through.
3349 ** See the separate in-operator.md documentation file in the canonical
3350 ** SQLite source tree for additional information.
3352 static void sqlite3ExprCodeIN(
3353 Parse *pParse, /* Parsing and code generating context */
3354 Expr *pExpr, /* The IN expression */
3355 int destIfFalse, /* Jump here if LHS is not contained in the RHS */
3356 int destIfNull /* Jump here if the results are unknown due to NULLs */
3358 int rRhsHasNull = 0; /* Register that is true if RHS contains NULL values */
3359 int eType; /* Type of the RHS */
3360 int rLhs; /* Register(s) holding the LHS values */
3361 int rLhsOrig; /* LHS values prior to reordering by aiMap[] */
3362 Vdbe *v; /* Statement under construction */
3363 int *aiMap = 0; /* Map from vector field to index column */
3364 char *zAff = 0; /* Affinity string for comparisons */
3365 int nVector; /* Size of vectors for this IN operator */
3366 int iDummy; /* Dummy parameter to exprCodeVector() */
3367 Expr *pLeft; /* The LHS of the IN operator */
3368 int i; /* loop counter */
3369 int destStep2; /* Where to jump when NULLs seen in step 2 */
3370 int destStep6 = 0; /* Start of code for Step 6 */
3371 int addrTruthOp; /* Address of opcode that determines the IN is true */
3372 int destNotNull; /* Jump here if a comparison is not true in step 6 */
3373 int addrTop; /* Top of the step-6 loop */
3374 int iTab = 0; /* Index to use */
3375 u8 okConstFactor = pParse->okConstFactor;
3377 assert( !ExprHasVVAProperty(pExpr,EP_Immutable) );
3378 pLeft = pExpr->pLeft;
3379 if( sqlite3ExprCheckIN(pParse, pExpr) ) return;
3380 zAff = exprINAffinity(pParse, pExpr);
3381 nVector = sqlite3ExprVectorSize(pExpr->pLeft);
3382 aiMap = (int*)sqlite3DbMallocZero(
3383 pParse->db, nVector*(sizeof(int) + sizeof(char)) + 1
3385 if( pParse->db->mallocFailed ) goto sqlite3ExprCodeIN_oom_error;
3387 /* Attempt to compute the RHS. After this step, if anything other than
3388 ** IN_INDEX_NOOP is returned, the table opened with cursor iTab
3389 ** contains the values that make up the RHS. If IN_INDEX_NOOP is returned,
3390 ** the RHS has not yet been coded. */
3391 v = pParse->pVdbe;
3392 assert( v!=0 ); /* OOM detected prior to this routine */
3393 VdbeNoopComment((v, "begin IN expr"));
3394 eType = sqlite3FindInIndex(pParse, pExpr,
3395 IN_INDEX_MEMBERSHIP | IN_INDEX_NOOP_OK,
3396 destIfFalse==destIfNull ? 0 : &rRhsHasNull,
3397 aiMap, &iTab);
3399 assert( pParse->nErr || nVector==1 || eType==IN_INDEX_EPH
3400 || eType==IN_INDEX_INDEX_ASC || eType==IN_INDEX_INDEX_DESC
3402 #ifdef SQLITE_DEBUG
3403 /* Confirm that aiMap[] contains nVector integer values between 0 and
3404 ** nVector-1. */
3405 for(i=0; i<nVector; i++){
3406 int j, cnt;
3407 for(cnt=j=0; j<nVector; j++) if( aiMap[j]==i ) cnt++;
3408 assert( cnt==1 );
3410 #endif
3412 /* Code the LHS, the <expr> from "<expr> IN (...)". If the LHS is a
3413 ** vector, then it is stored in an array of nVector registers starting
3414 ** at r1.
3416 ** sqlite3FindInIndex() might have reordered the fields of the LHS vector
3417 ** so that the fields are in the same order as an existing index. The
3418 ** aiMap[] array contains a mapping from the original LHS field order to
3419 ** the field order that matches the RHS index.
3421 ** Avoid factoring the LHS of the IN(...) expression out of the loop,
3422 ** even if it is constant, as OP_Affinity may be used on the register
3423 ** by code generated below. */
3424 assert( pParse->okConstFactor==okConstFactor );
3425 pParse->okConstFactor = 0;
3426 rLhsOrig = exprCodeVector(pParse, pLeft, &iDummy);
3427 pParse->okConstFactor = okConstFactor;
3428 for(i=0; i<nVector && aiMap[i]==i; i++){} /* Are LHS fields reordered? */
3429 if( i==nVector ){
3430 /* LHS fields are not reordered */
3431 rLhs = rLhsOrig;
3432 }else{
3433 /* Need to reorder the LHS fields according to aiMap */
3434 rLhs = sqlite3GetTempRange(pParse, nVector);
3435 for(i=0; i<nVector; i++){
3436 sqlite3VdbeAddOp3(v, OP_Copy, rLhsOrig+i, rLhs+aiMap[i], 0);
3440 /* If sqlite3FindInIndex() did not find or create an index that is
3441 ** suitable for evaluating the IN operator, then evaluate using a
3442 ** sequence of comparisons.
3444 ** This is step (1) in the in-operator.md optimized algorithm.
3446 if( eType==IN_INDEX_NOOP ){
3447 ExprList *pList;
3448 CollSeq *pColl;
3449 int labelOk = sqlite3VdbeMakeLabel(pParse);
3450 int r2, regToFree;
3451 int regCkNull = 0;
3452 int ii;
3453 assert( ExprUseXList(pExpr) );
3454 pList = pExpr->x.pList;
3455 pColl = sqlite3ExprCollSeq(pParse, pExpr->pLeft);
3456 if( destIfNull!=destIfFalse ){
3457 regCkNull = sqlite3GetTempReg(pParse);
3458 sqlite3VdbeAddOp3(v, OP_BitAnd, rLhs, rLhs, regCkNull);
3460 for(ii=0; ii<pList->nExpr; ii++){
3461 r2 = sqlite3ExprCodeTemp(pParse, pList->a[ii].pExpr, &regToFree);
3462 if( regCkNull && sqlite3ExprCanBeNull(pList->a[ii].pExpr) ){
3463 sqlite3VdbeAddOp3(v, OP_BitAnd, regCkNull, r2, regCkNull);
3465 sqlite3ReleaseTempReg(pParse, regToFree);
3466 if( ii<pList->nExpr-1 || destIfNull!=destIfFalse ){
3467 int op = rLhs!=r2 ? OP_Eq : OP_NotNull;
3468 sqlite3VdbeAddOp4(v, op, rLhs, labelOk, r2,
3469 (void*)pColl, P4_COLLSEQ);
3470 VdbeCoverageIf(v, ii<pList->nExpr-1 && op==OP_Eq);
3471 VdbeCoverageIf(v, ii==pList->nExpr-1 && op==OP_Eq);
3472 VdbeCoverageIf(v, ii<pList->nExpr-1 && op==OP_NotNull);
3473 VdbeCoverageIf(v, ii==pList->nExpr-1 && op==OP_NotNull);
3474 sqlite3VdbeChangeP5(v, zAff[0]);
3475 }else{
3476 int op = rLhs!=r2 ? OP_Ne : OP_IsNull;
3477 assert( destIfNull==destIfFalse );
3478 sqlite3VdbeAddOp4(v, op, rLhs, destIfFalse, r2,
3479 (void*)pColl, P4_COLLSEQ);
3480 VdbeCoverageIf(v, op==OP_Ne);
3481 VdbeCoverageIf(v, op==OP_IsNull);
3482 sqlite3VdbeChangeP5(v, zAff[0] | SQLITE_JUMPIFNULL);
3485 if( regCkNull ){
3486 sqlite3VdbeAddOp2(v, OP_IsNull, regCkNull, destIfNull); VdbeCoverage(v);
3487 sqlite3VdbeGoto(v, destIfFalse);
3489 sqlite3VdbeResolveLabel(v, labelOk);
3490 sqlite3ReleaseTempReg(pParse, regCkNull);
3491 goto sqlite3ExprCodeIN_finished;
3494 /* Step 2: Check to see if the LHS contains any NULL columns. If the
3495 ** LHS does contain NULLs then the result must be either FALSE or NULL.
3496 ** We will then skip the binary search of the RHS.
3498 if( destIfNull==destIfFalse ){
3499 destStep2 = destIfFalse;
3500 }else{
3501 destStep2 = destStep6 = sqlite3VdbeMakeLabel(pParse);
3503 if( pParse->nErr ) goto sqlite3ExprCodeIN_finished;
3504 for(i=0; i<nVector; i++){
3505 Expr *p = sqlite3VectorFieldSubexpr(pExpr->pLeft, i);
3506 if( pParse->db->mallocFailed ) goto sqlite3ExprCodeIN_oom_error;
3507 if( sqlite3ExprCanBeNull(p) ){
3508 sqlite3VdbeAddOp2(v, OP_IsNull, rLhs+i, destStep2);
3509 VdbeCoverage(v);
3513 /* Step 3. The LHS is now known to be non-NULL. Do the binary search
3514 ** of the RHS using the LHS as a probe. If found, the result is
3515 ** true.
3517 if( eType==IN_INDEX_ROWID ){
3518 /* In this case, the RHS is the ROWID of table b-tree and so we also
3519 ** know that the RHS is non-NULL. Hence, we combine steps 3 and 4
3520 ** into a single opcode. */
3521 sqlite3VdbeAddOp3(v, OP_SeekRowid, iTab, destIfFalse, rLhs);
3522 VdbeCoverage(v);
3523 addrTruthOp = sqlite3VdbeAddOp0(v, OP_Goto); /* Return True */
3524 }else{
3525 sqlite3VdbeAddOp4(v, OP_Affinity, rLhs, nVector, 0, zAff, nVector);
3526 if( destIfFalse==destIfNull ){
3527 /* Combine Step 3 and Step 5 into a single opcode */
3528 sqlite3VdbeAddOp4Int(v, OP_NotFound, iTab, destIfFalse,
3529 rLhs, nVector); VdbeCoverage(v);
3530 goto sqlite3ExprCodeIN_finished;
3532 /* Ordinary Step 3, for the case where FALSE and NULL are distinct */
3533 addrTruthOp = sqlite3VdbeAddOp4Int(v, OP_Found, iTab, 0,
3534 rLhs, nVector); VdbeCoverage(v);
3537 /* Step 4. If the RHS is known to be non-NULL and we did not find
3538 ** an match on the search above, then the result must be FALSE.
3540 if( rRhsHasNull && nVector==1 ){
3541 sqlite3VdbeAddOp2(v, OP_NotNull, rRhsHasNull, destIfFalse);
3542 VdbeCoverage(v);
3545 /* Step 5. If we do not care about the difference between NULL and
3546 ** FALSE, then just return false.
3548 if( destIfFalse==destIfNull ) sqlite3VdbeGoto(v, destIfFalse);
3550 /* Step 6: Loop through rows of the RHS. Compare each row to the LHS.
3551 ** If any comparison is NULL, then the result is NULL. If all
3552 ** comparisons are FALSE then the final result is FALSE.
3554 ** For a scalar LHS, it is sufficient to check just the first row
3555 ** of the RHS.
3557 if( destStep6 ) sqlite3VdbeResolveLabel(v, destStep6);
3558 addrTop = sqlite3VdbeAddOp2(v, OP_Rewind, iTab, destIfFalse);
3559 VdbeCoverage(v);
3560 if( nVector>1 ){
3561 destNotNull = sqlite3VdbeMakeLabel(pParse);
3562 }else{
3563 /* For nVector==1, combine steps 6 and 7 by immediately returning
3564 ** FALSE if the first comparison is not NULL */
3565 destNotNull = destIfFalse;
3567 for(i=0; i<nVector; i++){
3568 Expr *p;
3569 CollSeq *pColl;
3570 int r3 = sqlite3GetTempReg(pParse);
3571 p = sqlite3VectorFieldSubexpr(pLeft, i);
3572 pColl = sqlite3ExprCollSeq(pParse, p);
3573 sqlite3VdbeAddOp3(v, OP_Column, iTab, i, r3);
3574 sqlite3VdbeAddOp4(v, OP_Ne, rLhs+i, destNotNull, r3,
3575 (void*)pColl, P4_COLLSEQ);
3576 VdbeCoverage(v);
3577 sqlite3ReleaseTempReg(pParse, r3);
3579 sqlite3VdbeAddOp2(v, OP_Goto, 0, destIfNull);
3580 if( nVector>1 ){
3581 sqlite3VdbeResolveLabel(v, destNotNull);
3582 sqlite3VdbeAddOp2(v, OP_Next, iTab, addrTop+1);
3583 VdbeCoverage(v);
3585 /* Step 7: If we reach this point, we know that the result must
3586 ** be false. */
3587 sqlite3VdbeAddOp2(v, OP_Goto, 0, destIfFalse);
3590 /* Jumps here in order to return true. */
3591 sqlite3VdbeJumpHere(v, addrTruthOp);
3593 sqlite3ExprCodeIN_finished:
3594 if( rLhs!=rLhsOrig ) sqlite3ReleaseTempReg(pParse, rLhs);
3595 VdbeComment((v, "end IN expr"));
3596 sqlite3ExprCodeIN_oom_error:
3597 sqlite3DbFree(pParse->db, aiMap);
3598 sqlite3DbFree(pParse->db, zAff);
3600 #endif /* SQLITE_OMIT_SUBQUERY */
3602 #ifndef SQLITE_OMIT_FLOATING_POINT
3604 ** Generate an instruction that will put the floating point
3605 ** value described by z[0..n-1] into register iMem.
3607 ** The z[] string will probably not be zero-terminated. But the
3608 ** z[n] character is guaranteed to be something that does not look
3609 ** like the continuation of the number.
3611 static void codeReal(Vdbe *v, const char *z, int negateFlag, int iMem){
3612 if( ALWAYS(z!=0) ){
3613 double value;
3614 sqlite3AtoF(z, &value, sqlite3Strlen30(z), SQLITE_UTF8);
3615 assert( !sqlite3IsNaN(value) ); /* The new AtoF never returns NaN */
3616 if( negateFlag ) value = -value;
3617 sqlite3VdbeAddOp4Dup8(v, OP_Real, 0, iMem, 0, (u8*)&value, P4_REAL);
3620 #endif
3624 ** Generate an instruction that will put the integer describe by
3625 ** text z[0..n-1] into register iMem.
3627 ** Expr.u.zToken is always UTF8 and zero-terminated.
3629 static void codeInteger(Parse *pParse, Expr *pExpr, int negFlag, int iMem){
3630 Vdbe *v = pParse->pVdbe;
3631 if( pExpr->flags & EP_IntValue ){
3632 int i = pExpr->u.iValue;
3633 assert( i>=0 );
3634 if( negFlag ) i = -i;
3635 sqlite3VdbeAddOp2(v, OP_Integer, i, iMem);
3636 }else{
3637 int c;
3638 i64 value;
3639 const char *z = pExpr->u.zToken;
3640 assert( z!=0 );
3641 c = sqlite3DecOrHexToI64(z, &value);
3642 if( (c==3 && !negFlag) || (c==2) || (negFlag && value==SMALLEST_INT64)){
3643 #ifdef SQLITE_OMIT_FLOATING_POINT
3644 sqlite3ErrorMsg(pParse, "oversized integer: %s%s", negFlag ? "-" : "", z);
3645 #else
3646 #ifndef SQLITE_OMIT_HEX_INTEGER
3647 if( sqlite3_strnicmp(z,"0x",2)==0 ){
3648 sqlite3ErrorMsg(pParse, "hex literal too big: %s%s", negFlag?"-":"",z);
3649 }else
3650 #endif
3652 codeReal(v, z, negFlag, iMem);
3654 #endif
3655 }else{
3656 if( negFlag ){ value = c==3 ? SMALLEST_INT64 : -value; }
3657 sqlite3VdbeAddOp4Dup8(v, OP_Int64, 0, iMem, 0, (u8*)&value, P4_INT64);
3663 /* Generate code that will load into register regOut a value that is
3664 ** appropriate for the iIdxCol-th column of index pIdx.
3666 void sqlite3ExprCodeLoadIndexColumn(
3667 Parse *pParse, /* The parsing context */
3668 Index *pIdx, /* The index whose column is to be loaded */
3669 int iTabCur, /* Cursor pointing to a table row */
3670 int iIdxCol, /* The column of the index to be loaded */
3671 int regOut /* Store the index column value in this register */
3673 i16 iTabCol = pIdx->aiColumn[iIdxCol];
3674 if( iTabCol==XN_EXPR ){
3675 assert( pIdx->aColExpr );
3676 assert( pIdx->aColExpr->nExpr>iIdxCol );
3677 pParse->iSelfTab = iTabCur + 1;
3678 sqlite3ExprCodeCopy(pParse, pIdx->aColExpr->a[iIdxCol].pExpr, regOut);
3679 pParse->iSelfTab = 0;
3680 }else{
3681 sqlite3ExprCodeGetColumnOfTable(pParse->pVdbe, pIdx->pTable, iTabCur,
3682 iTabCol, regOut);
3686 #ifndef SQLITE_OMIT_GENERATED_COLUMNS
3688 ** Generate code that will compute the value of generated column pCol
3689 ** and store the result in register regOut
3691 void sqlite3ExprCodeGeneratedColumn(
3692 Parse *pParse, /* Parsing context */
3693 Table *pTab, /* Table containing the generated column */
3694 Column *pCol, /* The generated column */
3695 int regOut /* Put the result in this register */
3697 int iAddr;
3698 Vdbe *v = pParse->pVdbe;
3699 assert( v!=0 );
3700 assert( pParse->iSelfTab!=0 );
3701 if( pParse->iSelfTab>0 ){
3702 iAddr = sqlite3VdbeAddOp3(v, OP_IfNullRow, pParse->iSelfTab-1, 0, regOut);
3703 }else{
3704 iAddr = 0;
3706 sqlite3ExprCodeCopy(pParse, sqlite3ColumnExpr(pTab,pCol), regOut);
3707 if( pCol->affinity>=SQLITE_AFF_TEXT ){
3708 sqlite3VdbeAddOp4(v, OP_Affinity, regOut, 1, 0, &pCol->affinity, 1);
3710 if( iAddr ) sqlite3VdbeJumpHere(v, iAddr);
3712 #endif /* SQLITE_OMIT_GENERATED_COLUMNS */
3715 ** Generate code to extract the value of the iCol-th column of a table.
3717 void sqlite3ExprCodeGetColumnOfTable(
3718 Vdbe *v, /* Parsing context */
3719 Table *pTab, /* The table containing the value */
3720 int iTabCur, /* The table cursor. Or the PK cursor for WITHOUT ROWID */
3721 int iCol, /* Index of the column to extract */
3722 int regOut /* Extract the value into this register */
3724 Column *pCol;
3725 assert( v!=0 );
3726 if( pTab==0 ){
3727 sqlite3VdbeAddOp3(v, OP_Column, iTabCur, iCol, regOut);
3728 return;
3730 if( iCol<0 || iCol==pTab->iPKey ){
3731 sqlite3VdbeAddOp2(v, OP_Rowid, iTabCur, regOut);
3732 }else{
3733 int op;
3734 int x;
3735 if( IsVirtual(pTab) ){
3736 op = OP_VColumn;
3737 x = iCol;
3738 #ifndef SQLITE_OMIT_GENERATED_COLUMNS
3739 }else if( (pCol = &pTab->aCol[iCol])->colFlags & COLFLAG_VIRTUAL ){
3740 Parse *pParse = sqlite3VdbeParser(v);
3741 if( pCol->colFlags & COLFLAG_BUSY ){
3742 sqlite3ErrorMsg(pParse, "generated column loop on \"%s\"",
3743 pCol->zCnName);
3744 }else{
3745 int savedSelfTab = pParse->iSelfTab;
3746 pCol->colFlags |= COLFLAG_BUSY;
3747 pParse->iSelfTab = iTabCur+1;
3748 sqlite3ExprCodeGeneratedColumn(pParse, pTab, pCol, regOut);
3749 pParse->iSelfTab = savedSelfTab;
3750 pCol->colFlags &= ~COLFLAG_BUSY;
3752 return;
3753 #endif
3754 }else if( !HasRowid(pTab) ){
3755 testcase( iCol!=sqlite3TableColumnToStorage(pTab, iCol) );
3756 x = sqlite3TableColumnToIndex(sqlite3PrimaryKeyIndex(pTab), iCol);
3757 op = OP_Column;
3758 }else{
3759 x = sqlite3TableColumnToStorage(pTab,iCol);
3760 testcase( x!=iCol );
3761 op = OP_Column;
3763 sqlite3VdbeAddOp3(v, op, iTabCur, x, regOut);
3764 sqlite3ColumnDefault(v, pTab, iCol, regOut);
3769 ** Generate code that will extract the iColumn-th column from
3770 ** table pTab and store the column value in register iReg.
3772 ** There must be an open cursor to pTab in iTable when this routine
3773 ** is called. If iColumn<0 then code is generated that extracts the rowid.
3775 int sqlite3ExprCodeGetColumn(
3776 Parse *pParse, /* Parsing and code generating context */
3777 Table *pTab, /* Description of the table we are reading from */
3778 int iColumn, /* Index of the table column */
3779 int iTable, /* The cursor pointing to the table */
3780 int iReg, /* Store results here */
3781 u8 p5 /* P5 value for OP_Column + FLAGS */
3783 assert( pParse->pVdbe!=0 );
3784 sqlite3ExprCodeGetColumnOfTable(pParse->pVdbe, pTab, iTable, iColumn, iReg);
3785 if( p5 ){
3786 VdbeOp *pOp = sqlite3VdbeGetOp(pParse->pVdbe,-1);
3787 if( pOp->opcode==OP_Column ) pOp->p5 = p5;
3789 return iReg;
3793 ** Generate code to move content from registers iFrom...iFrom+nReg-1
3794 ** over to iTo..iTo+nReg-1.
3796 void sqlite3ExprCodeMove(Parse *pParse, int iFrom, int iTo, int nReg){
3797 sqlite3VdbeAddOp3(pParse->pVdbe, OP_Move, iFrom, iTo, nReg);
3801 ** Convert a scalar expression node to a TK_REGISTER referencing
3802 ** register iReg. The caller must ensure that iReg already contains
3803 ** the correct value for the expression.
3805 static void exprToRegister(Expr *pExpr, int iReg){
3806 Expr *p = sqlite3ExprSkipCollateAndLikely(pExpr);
3807 if( NEVER(p==0) ) return;
3808 p->op2 = p->op;
3809 p->op = TK_REGISTER;
3810 p->iTable = iReg;
3811 ExprClearProperty(p, EP_Skip);
3815 ** Evaluate an expression (either a vector or a scalar expression) and store
3816 ** the result in continguous temporary registers. Return the index of
3817 ** the first register used to store the result.
3819 ** If the returned result register is a temporary scalar, then also write
3820 ** that register number into *piFreeable. If the returned result register
3821 ** is not a temporary or if the expression is a vector set *piFreeable
3822 ** to 0.
3824 static int exprCodeVector(Parse *pParse, Expr *p, int *piFreeable){
3825 int iResult;
3826 int nResult = sqlite3ExprVectorSize(p);
3827 if( nResult==1 ){
3828 iResult = sqlite3ExprCodeTemp(pParse, p, piFreeable);
3829 }else{
3830 *piFreeable = 0;
3831 if( p->op==TK_SELECT ){
3832 #if SQLITE_OMIT_SUBQUERY
3833 iResult = 0;
3834 #else
3835 iResult = sqlite3CodeSubselect(pParse, p);
3836 #endif
3837 }else{
3838 int i;
3839 iResult = pParse->nMem+1;
3840 pParse->nMem += nResult;
3841 assert( ExprUseXList(p) );
3842 for(i=0; i<nResult; i++){
3843 sqlite3ExprCodeFactorable(pParse, p->x.pList->a[i].pExpr, i+iResult);
3847 return iResult;
3851 ** If the last opcode is a OP_Copy, then set the do-not-merge flag (p5)
3852 ** so that a subsequent copy will not be merged into this one.
3854 static void setDoNotMergeFlagOnCopy(Vdbe *v){
3855 if( sqlite3VdbeGetOp(v, -1)->opcode==OP_Copy ){
3856 sqlite3VdbeChangeP5(v, 1); /* Tag trailing OP_Copy as not mergable */
3861 ** Generate code to implement special SQL functions that are implemented
3862 ** in-line rather than by using the usual callbacks.
3864 static int exprCodeInlineFunction(
3865 Parse *pParse, /* Parsing context */
3866 ExprList *pFarg, /* List of function arguments */
3867 int iFuncId, /* Function ID. One of the INTFUNC_... values */
3868 int target /* Store function result in this register */
3870 int nFarg;
3871 Vdbe *v = pParse->pVdbe;
3872 assert( v!=0 );
3873 assert( pFarg!=0 );
3874 nFarg = pFarg->nExpr;
3875 assert( nFarg>0 ); /* All in-line functions have at least one argument */
3876 switch( iFuncId ){
3877 case INLINEFUNC_coalesce: {
3878 /* Attempt a direct implementation of the built-in COALESCE() and
3879 ** IFNULL() functions. This avoids unnecessary evaluation of
3880 ** arguments past the first non-NULL argument.
3882 int endCoalesce = sqlite3VdbeMakeLabel(pParse);
3883 int i;
3884 assert( nFarg>=2 );
3885 sqlite3ExprCode(pParse, pFarg->a[0].pExpr, target);
3886 for(i=1; i<nFarg; i++){
3887 sqlite3VdbeAddOp2(v, OP_NotNull, target, endCoalesce);
3888 VdbeCoverage(v);
3889 sqlite3ExprCode(pParse, pFarg->a[i].pExpr, target);
3891 setDoNotMergeFlagOnCopy(v);
3892 sqlite3VdbeResolveLabel(v, endCoalesce);
3893 break;
3895 case INLINEFUNC_iif: {
3896 Expr caseExpr;
3897 memset(&caseExpr, 0, sizeof(caseExpr));
3898 caseExpr.op = TK_CASE;
3899 caseExpr.x.pList = pFarg;
3900 return sqlite3ExprCodeTarget(pParse, &caseExpr, target);
3903 default: {
3904 /* The UNLIKELY() function is a no-op. The result is the value
3905 ** of the first argument.
3907 assert( nFarg==1 || nFarg==2 );
3908 target = sqlite3ExprCodeTarget(pParse, pFarg->a[0].pExpr, target);
3909 break;
3912 /***********************************************************************
3913 ** Test-only SQL functions that are only usable if enabled
3914 ** via SQLITE_TESTCTRL_INTERNAL_FUNCTIONS
3916 #if !defined(SQLITE_UNTESTABLE)
3917 case INLINEFUNC_expr_compare: {
3918 /* Compare two expressions using sqlite3ExprCompare() */
3919 assert( nFarg==2 );
3920 sqlite3VdbeAddOp2(v, OP_Integer,
3921 sqlite3ExprCompare(0,pFarg->a[0].pExpr, pFarg->a[1].pExpr,-1),
3922 target);
3923 break;
3926 case INLINEFUNC_expr_implies_expr: {
3927 /* Compare two expressions using sqlite3ExprImpliesExpr() */
3928 assert( nFarg==2 );
3929 sqlite3VdbeAddOp2(v, OP_Integer,
3930 sqlite3ExprImpliesExpr(pParse,pFarg->a[0].pExpr, pFarg->a[1].pExpr,-1),
3931 target);
3932 break;
3935 case INLINEFUNC_implies_nonnull_row: {
3936 /* REsult of sqlite3ExprImpliesNonNullRow() */
3937 Expr *pA1;
3938 assert( nFarg==2 );
3939 pA1 = pFarg->a[1].pExpr;
3940 if( pA1->op==TK_COLUMN ){
3941 sqlite3VdbeAddOp2(v, OP_Integer,
3942 sqlite3ExprImpliesNonNullRow(pFarg->a[0].pExpr,pA1->iTable),
3943 target);
3944 }else{
3945 sqlite3VdbeAddOp2(v, OP_Null, 0, target);
3947 break;
3950 case INLINEFUNC_affinity: {
3951 /* The AFFINITY() function evaluates to a string that describes
3952 ** the type affinity of the argument. This is used for testing of
3953 ** the SQLite type logic.
3955 const char *azAff[] = { "blob", "text", "numeric", "integer", "real" };
3956 char aff;
3957 assert( nFarg==1 );
3958 aff = sqlite3ExprAffinity(pFarg->a[0].pExpr);
3959 sqlite3VdbeLoadString(v, target,
3960 (aff<=SQLITE_AFF_NONE) ? "none" : azAff[aff-SQLITE_AFF_BLOB]);
3961 break;
3963 #endif /* !defined(SQLITE_UNTESTABLE) */
3965 return target;
3970 ** Generate code into the current Vdbe to evaluate the given
3971 ** expression. Attempt to store the results in register "target".
3972 ** Return the register where results are stored.
3974 ** With this routine, there is no guarantee that results will
3975 ** be stored in target. The result might be stored in some other
3976 ** register if it is convenient to do so. The calling function
3977 ** must check the return code and move the results to the desired
3978 ** register.
3980 int sqlite3ExprCodeTarget(Parse *pParse, Expr *pExpr, int target){
3981 Vdbe *v = pParse->pVdbe; /* The VM under construction */
3982 int op; /* The opcode being coded */
3983 int inReg = target; /* Results stored in register inReg */
3984 int regFree1 = 0; /* If non-zero free this temporary register */
3985 int regFree2 = 0; /* If non-zero free this temporary register */
3986 int r1, r2; /* Various register numbers */
3987 Expr tempX; /* Temporary expression node */
3988 int p5 = 0;
3990 assert( target>0 && target<=pParse->nMem );
3991 assert( v!=0 );
3993 expr_code_doover:
3994 if( pExpr==0 ){
3995 op = TK_NULL;
3996 }else{
3997 assert( !ExprHasVVAProperty(pExpr,EP_Immutable) );
3998 op = pExpr->op;
4000 switch( op ){
4001 case TK_AGG_COLUMN: {
4002 AggInfo *pAggInfo = pExpr->pAggInfo;
4003 struct AggInfo_col *pCol;
4004 assert( pAggInfo!=0 );
4005 assert( pExpr->iAgg>=0 && pExpr->iAgg<pAggInfo->nColumn );
4006 pCol = &pAggInfo->aCol[pExpr->iAgg];
4007 if( !pAggInfo->directMode ){
4008 assert( pCol->iMem>0 );
4009 return pCol->iMem;
4010 }else if( pAggInfo->useSortingIdx ){
4011 Table *pTab = pCol->pTab;
4012 sqlite3VdbeAddOp3(v, OP_Column, pAggInfo->sortingIdxPTab,
4013 pCol->iSorterColumn, target);
4014 if( pCol->iColumn<0 ){
4015 VdbeComment((v,"%s.rowid",pTab->zName));
4016 }else{
4017 VdbeComment((v,"%s.%s",
4018 pTab->zName, pTab->aCol[pCol->iColumn].zCnName));
4019 if( pTab->aCol[pCol->iColumn].affinity==SQLITE_AFF_REAL ){
4020 sqlite3VdbeAddOp1(v, OP_RealAffinity, target);
4023 return target;
4025 /* Otherwise, fall thru into the TK_COLUMN case */
4026 /* no break */ deliberate_fall_through
4028 case TK_COLUMN: {
4029 int iTab = pExpr->iTable;
4030 int iReg;
4031 if( ExprHasProperty(pExpr, EP_FixedCol) ){
4032 /* This COLUMN expression is really a constant due to WHERE clause
4033 ** constraints, and that constant is coded by the pExpr->pLeft
4034 ** expresssion. However, make sure the constant has the correct
4035 ** datatype by applying the Affinity of the table column to the
4036 ** constant.
4038 int aff;
4039 iReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft,target);
4040 assert( ExprUseYTab(pExpr) );
4041 if( pExpr->y.pTab ){
4042 aff = sqlite3TableColumnAffinity(pExpr->y.pTab, pExpr->iColumn);
4043 }else{
4044 aff = pExpr->affExpr;
4046 if( aff>SQLITE_AFF_BLOB ){
4047 static const char zAff[] = "B\000C\000D\000E";
4048 assert( SQLITE_AFF_BLOB=='A' );
4049 assert( SQLITE_AFF_TEXT=='B' );
4050 sqlite3VdbeAddOp4(v, OP_Affinity, iReg, 1, 0,
4051 &zAff[(aff-'B')*2], P4_STATIC);
4053 return iReg;
4055 if( iTab<0 ){
4056 if( pParse->iSelfTab<0 ){
4057 /* Other columns in the same row for CHECK constraints or
4058 ** generated columns or for inserting into partial index.
4059 ** The row is unpacked into registers beginning at
4060 ** 0-(pParse->iSelfTab). The rowid (if any) is in a register
4061 ** immediately prior to the first column.
4063 Column *pCol;
4064 Table *pTab;
4065 int iSrc;
4066 int iCol = pExpr->iColumn;
4067 assert( ExprUseYTab(pExpr) );
4068 pTab = pExpr->y.pTab;
4069 assert( pTab!=0 );
4070 assert( iCol>=XN_ROWID );
4071 assert( iCol<pTab->nCol );
4072 if( iCol<0 ){
4073 return -1-pParse->iSelfTab;
4075 pCol = pTab->aCol + iCol;
4076 testcase( iCol!=sqlite3TableColumnToStorage(pTab,iCol) );
4077 iSrc = sqlite3TableColumnToStorage(pTab, iCol) - pParse->iSelfTab;
4078 #ifndef SQLITE_OMIT_GENERATED_COLUMNS
4079 if( pCol->colFlags & COLFLAG_GENERATED ){
4080 if( pCol->colFlags & COLFLAG_BUSY ){
4081 sqlite3ErrorMsg(pParse, "generated column loop on \"%s\"",
4082 pCol->zCnName);
4083 return 0;
4085 pCol->colFlags |= COLFLAG_BUSY;
4086 if( pCol->colFlags & COLFLAG_NOTAVAIL ){
4087 sqlite3ExprCodeGeneratedColumn(pParse, pTab, pCol, iSrc);
4089 pCol->colFlags &= ~(COLFLAG_BUSY|COLFLAG_NOTAVAIL);
4090 return iSrc;
4091 }else
4092 #endif /* SQLITE_OMIT_GENERATED_COLUMNS */
4093 if( pCol->affinity==SQLITE_AFF_REAL ){
4094 sqlite3VdbeAddOp2(v, OP_SCopy, iSrc, target);
4095 sqlite3VdbeAddOp1(v, OP_RealAffinity, target);
4096 return target;
4097 }else{
4098 return iSrc;
4100 }else{
4101 /* Coding an expression that is part of an index where column names
4102 ** in the index refer to the table to which the index belongs */
4103 iTab = pParse->iSelfTab - 1;
4106 assert( ExprUseYTab(pExpr) );
4107 iReg = sqlite3ExprCodeGetColumn(pParse, pExpr->y.pTab,
4108 pExpr->iColumn, iTab, target,
4109 pExpr->op2);
4110 if( pExpr->y.pTab==0 && pExpr->affExpr==SQLITE_AFF_REAL ){
4111 sqlite3VdbeAddOp1(v, OP_RealAffinity, iReg);
4113 return iReg;
4115 case TK_INTEGER: {
4116 codeInteger(pParse, pExpr, 0, target);
4117 return target;
4119 case TK_TRUEFALSE: {
4120 sqlite3VdbeAddOp2(v, OP_Integer, sqlite3ExprTruthValue(pExpr), target);
4121 return target;
4123 #ifndef SQLITE_OMIT_FLOATING_POINT
4124 case TK_FLOAT: {
4125 assert( !ExprHasProperty(pExpr, EP_IntValue) );
4126 codeReal(v, pExpr->u.zToken, 0, target);
4127 return target;
4129 #endif
4130 case TK_STRING: {
4131 assert( !ExprHasProperty(pExpr, EP_IntValue) );
4132 sqlite3VdbeLoadString(v, target, pExpr->u.zToken);
4133 return target;
4135 default: {
4136 /* Make NULL the default case so that if a bug causes an illegal
4137 ** Expr node to be passed into this function, it will be handled
4138 ** sanely and not crash. But keep the assert() to bring the problem
4139 ** to the attention of the developers. */
4140 assert( op==TK_NULL || op==TK_ERROR || pParse->db->mallocFailed );
4141 sqlite3VdbeAddOp2(v, OP_Null, 0, target);
4142 return target;
4144 #ifndef SQLITE_OMIT_BLOB_LITERAL
4145 case TK_BLOB: {
4146 int n;
4147 const char *z;
4148 char *zBlob;
4149 assert( !ExprHasProperty(pExpr, EP_IntValue) );
4150 assert( pExpr->u.zToken[0]=='x' || pExpr->u.zToken[0]=='X' );
4151 assert( pExpr->u.zToken[1]=='\'' );
4152 z = &pExpr->u.zToken[2];
4153 n = sqlite3Strlen30(z) - 1;
4154 assert( z[n]=='\'' );
4155 zBlob = sqlite3HexToBlob(sqlite3VdbeDb(v), z, n);
4156 sqlite3VdbeAddOp4(v, OP_Blob, n/2, target, 0, zBlob, P4_DYNAMIC);
4157 return target;
4159 #endif
4160 case TK_VARIABLE: {
4161 assert( !ExprHasProperty(pExpr, EP_IntValue) );
4162 assert( pExpr->u.zToken!=0 );
4163 assert( pExpr->u.zToken[0]!=0 );
4164 sqlite3VdbeAddOp2(v, OP_Variable, pExpr->iColumn, target);
4165 if( pExpr->u.zToken[1]!=0 ){
4166 const char *z = sqlite3VListNumToName(pParse->pVList, pExpr->iColumn);
4167 assert( pExpr->u.zToken[0]=='?' || (z && !strcmp(pExpr->u.zToken, z)) );
4168 pParse->pVList[0] = 0; /* Indicate VList may no longer be enlarged */
4169 sqlite3VdbeAppendP4(v, (char*)z, P4_STATIC);
4171 return target;
4173 case TK_REGISTER: {
4174 return pExpr->iTable;
4176 #ifndef SQLITE_OMIT_CAST
4177 case TK_CAST: {
4178 /* Expressions of the form: CAST(pLeft AS token) */
4179 inReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft, target);
4180 if( inReg!=target ){
4181 sqlite3VdbeAddOp2(v, OP_SCopy, inReg, target);
4182 inReg = target;
4184 assert( !ExprHasProperty(pExpr, EP_IntValue) );
4185 sqlite3VdbeAddOp2(v, OP_Cast, target,
4186 sqlite3AffinityType(pExpr->u.zToken, 0));
4187 return inReg;
4189 #endif /* SQLITE_OMIT_CAST */
4190 case TK_IS:
4191 case TK_ISNOT:
4192 op = (op==TK_IS) ? TK_EQ : TK_NE;
4193 p5 = SQLITE_NULLEQ;
4194 /* fall-through */
4195 case TK_LT:
4196 case TK_LE:
4197 case TK_GT:
4198 case TK_GE:
4199 case TK_NE:
4200 case TK_EQ: {
4201 Expr *pLeft = pExpr->pLeft;
4202 if( sqlite3ExprIsVector(pLeft) ){
4203 codeVectorCompare(pParse, pExpr, target, op, p5);
4204 }else{
4205 r1 = sqlite3ExprCodeTemp(pParse, pLeft, &regFree1);
4206 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, &regFree2);
4207 sqlite3VdbeAddOp2(v, OP_Integer, 1, inReg);
4208 codeCompare(pParse, pLeft, pExpr->pRight, op, r1, r2,
4209 sqlite3VdbeCurrentAddr(v)+2, p5,
4210 ExprHasProperty(pExpr,EP_Commuted));
4211 assert(TK_LT==OP_Lt); testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt);
4212 assert(TK_LE==OP_Le); testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le);
4213 assert(TK_GT==OP_Gt); testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt);
4214 assert(TK_GE==OP_Ge); testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge);
4215 assert(TK_EQ==OP_Eq); testcase(op==OP_Eq); VdbeCoverageIf(v,op==OP_Eq);
4216 assert(TK_NE==OP_Ne); testcase(op==OP_Ne); VdbeCoverageIf(v,op==OP_Ne);
4217 if( p5==SQLITE_NULLEQ ){
4218 sqlite3VdbeAddOp2(v, OP_Integer, 0, inReg);
4219 }else{
4220 sqlite3VdbeAddOp3(v, OP_ZeroOrNull, r1, inReg, r2);
4222 testcase( regFree1==0 );
4223 testcase( regFree2==0 );
4225 break;
4227 case TK_AND:
4228 case TK_OR:
4229 case TK_PLUS:
4230 case TK_STAR:
4231 case TK_MINUS:
4232 case TK_REM:
4233 case TK_BITAND:
4234 case TK_BITOR:
4235 case TK_SLASH:
4236 case TK_LSHIFT:
4237 case TK_RSHIFT:
4238 case TK_CONCAT: {
4239 assert( TK_AND==OP_And ); testcase( op==TK_AND );
4240 assert( TK_OR==OP_Or ); testcase( op==TK_OR );
4241 assert( TK_PLUS==OP_Add ); testcase( op==TK_PLUS );
4242 assert( TK_MINUS==OP_Subtract ); testcase( op==TK_MINUS );
4243 assert( TK_REM==OP_Remainder ); testcase( op==TK_REM );
4244 assert( TK_BITAND==OP_BitAnd ); testcase( op==TK_BITAND );
4245 assert( TK_BITOR==OP_BitOr ); testcase( op==TK_BITOR );
4246 assert( TK_SLASH==OP_Divide ); testcase( op==TK_SLASH );
4247 assert( TK_LSHIFT==OP_ShiftLeft ); testcase( op==TK_LSHIFT );
4248 assert( TK_RSHIFT==OP_ShiftRight ); testcase( op==TK_RSHIFT );
4249 assert( TK_CONCAT==OP_Concat ); testcase( op==TK_CONCAT );
4250 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
4251 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, &regFree2);
4252 sqlite3VdbeAddOp3(v, op, r2, r1, target);
4253 testcase( regFree1==0 );
4254 testcase( regFree2==0 );
4255 break;
4257 case TK_UMINUS: {
4258 Expr *pLeft = pExpr->pLeft;
4259 assert( pLeft );
4260 if( pLeft->op==TK_INTEGER ){
4261 codeInteger(pParse, pLeft, 1, target);
4262 return target;
4263 #ifndef SQLITE_OMIT_FLOATING_POINT
4264 }else if( pLeft->op==TK_FLOAT ){
4265 assert( !ExprHasProperty(pExpr, EP_IntValue) );
4266 codeReal(v, pLeft->u.zToken, 1, target);
4267 return target;
4268 #endif
4269 }else{
4270 tempX.op = TK_INTEGER;
4271 tempX.flags = EP_IntValue|EP_TokenOnly;
4272 tempX.u.iValue = 0;
4273 ExprClearVVAProperties(&tempX);
4274 r1 = sqlite3ExprCodeTemp(pParse, &tempX, &regFree1);
4275 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree2);
4276 sqlite3VdbeAddOp3(v, OP_Subtract, r2, r1, target);
4277 testcase( regFree2==0 );
4279 break;
4281 case TK_BITNOT:
4282 case TK_NOT: {
4283 assert( TK_BITNOT==OP_BitNot ); testcase( op==TK_BITNOT );
4284 assert( TK_NOT==OP_Not ); testcase( op==TK_NOT );
4285 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
4286 testcase( regFree1==0 );
4287 sqlite3VdbeAddOp2(v, op, r1, inReg);
4288 break;
4290 case TK_TRUTH: {
4291 int isTrue; /* IS TRUE or IS NOT TRUE */
4292 int bNormal; /* IS TRUE or IS FALSE */
4293 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
4294 testcase( regFree1==0 );
4295 isTrue = sqlite3ExprTruthValue(pExpr->pRight);
4296 bNormal = pExpr->op2==TK_IS;
4297 testcase( isTrue && bNormal);
4298 testcase( !isTrue && bNormal);
4299 sqlite3VdbeAddOp4Int(v, OP_IsTrue, r1, inReg, !isTrue, isTrue ^ bNormal);
4300 break;
4302 case TK_ISNULL:
4303 case TK_NOTNULL: {
4304 int addr;
4305 assert( TK_ISNULL==OP_IsNull ); testcase( op==TK_ISNULL );
4306 assert( TK_NOTNULL==OP_NotNull ); testcase( op==TK_NOTNULL );
4307 sqlite3VdbeAddOp2(v, OP_Integer, 1, target);
4308 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
4309 testcase( regFree1==0 );
4310 addr = sqlite3VdbeAddOp1(v, op, r1);
4311 VdbeCoverageIf(v, op==TK_ISNULL);
4312 VdbeCoverageIf(v, op==TK_NOTNULL);
4313 sqlite3VdbeAddOp2(v, OP_Integer, 0, target);
4314 sqlite3VdbeJumpHere(v, addr);
4315 break;
4317 case TK_AGG_FUNCTION: {
4318 AggInfo *pInfo = pExpr->pAggInfo;
4319 if( pInfo==0
4320 || NEVER(pExpr->iAgg<0)
4321 || NEVER(pExpr->iAgg>=pInfo->nFunc)
4323 assert( !ExprHasProperty(pExpr, EP_IntValue) );
4324 sqlite3ErrorMsg(pParse, "misuse of aggregate: %s()", pExpr->u.zToken);
4325 }else{
4326 return pInfo->aFunc[pExpr->iAgg].iMem;
4328 break;
4330 case TK_FUNCTION: {
4331 ExprList *pFarg; /* List of function arguments */
4332 int nFarg; /* Number of function arguments */
4333 FuncDef *pDef; /* The function definition object */
4334 const char *zId; /* The function name */
4335 u32 constMask = 0; /* Mask of function arguments that are constant */
4336 int i; /* Loop counter */
4337 sqlite3 *db = pParse->db; /* The database connection */
4338 u8 enc = ENC(db); /* The text encoding used by this database */
4339 CollSeq *pColl = 0; /* A collating sequence */
4341 #ifndef SQLITE_OMIT_WINDOWFUNC
4342 if( ExprHasProperty(pExpr, EP_WinFunc) ){
4343 return pExpr->y.pWin->regResult;
4345 #endif
4347 if( ConstFactorOk(pParse) && sqlite3ExprIsConstantNotJoin(pExpr) ){
4348 /* SQL functions can be expensive. So try to avoid running them
4349 ** multiple times if we know they always give the same result */
4350 return sqlite3ExprCodeRunJustOnce(pParse, pExpr, -1);
4352 assert( !ExprHasProperty(pExpr, EP_TokenOnly) );
4353 assert( ExprUseXList(pExpr) );
4354 pFarg = pExpr->x.pList;
4355 nFarg = pFarg ? pFarg->nExpr : 0;
4356 assert( !ExprHasProperty(pExpr, EP_IntValue) );
4357 zId = pExpr->u.zToken;
4358 pDef = sqlite3FindFunction(db, zId, nFarg, enc, 0);
4359 #ifdef SQLITE_ENABLE_UNKNOWN_SQL_FUNCTION
4360 if( pDef==0 && pParse->explain ){
4361 pDef = sqlite3FindFunction(db, "unknown", nFarg, enc, 0);
4363 #endif
4364 if( pDef==0 || pDef->xFinalize!=0 ){
4365 sqlite3ErrorMsg(pParse, "unknown function: %s()", zId);
4366 break;
4368 if( pDef->funcFlags & SQLITE_FUNC_INLINE ){
4369 assert( (pDef->funcFlags & SQLITE_FUNC_UNSAFE)==0 );
4370 assert( (pDef->funcFlags & SQLITE_FUNC_DIRECT)==0 );
4371 return exprCodeInlineFunction(pParse, pFarg,
4372 SQLITE_PTR_TO_INT(pDef->pUserData), target);
4373 }else if( pDef->funcFlags & (SQLITE_FUNC_DIRECT|SQLITE_FUNC_UNSAFE) ){
4374 sqlite3ExprFunctionUsable(pParse, pExpr, pDef);
4377 for(i=0; i<nFarg; i++){
4378 if( i<32 && sqlite3ExprIsConstant(pFarg->a[i].pExpr) ){
4379 testcase( i==31 );
4380 constMask |= MASKBIT32(i);
4382 if( (pDef->funcFlags & SQLITE_FUNC_NEEDCOLL)!=0 && !pColl ){
4383 pColl = sqlite3ExprCollSeq(pParse, pFarg->a[i].pExpr);
4386 if( pFarg ){
4387 if( constMask ){
4388 r1 = pParse->nMem+1;
4389 pParse->nMem += nFarg;
4390 }else{
4391 r1 = sqlite3GetTempRange(pParse, nFarg);
4394 /* For length() and typeof() functions with a column argument,
4395 ** set the P5 parameter to the OP_Column opcode to OPFLAG_LENGTHARG
4396 ** or OPFLAG_TYPEOFARG respectively, to avoid unnecessary data
4397 ** loading.
4399 if( (pDef->funcFlags & (SQLITE_FUNC_LENGTH|SQLITE_FUNC_TYPEOF))!=0 ){
4400 u8 exprOp;
4401 assert( nFarg==1 );
4402 assert( pFarg->a[0].pExpr!=0 );
4403 exprOp = pFarg->a[0].pExpr->op;
4404 if( exprOp==TK_COLUMN || exprOp==TK_AGG_COLUMN ){
4405 assert( SQLITE_FUNC_LENGTH==OPFLAG_LENGTHARG );
4406 assert( SQLITE_FUNC_TYPEOF==OPFLAG_TYPEOFARG );
4407 testcase( pDef->funcFlags & OPFLAG_LENGTHARG );
4408 pFarg->a[0].pExpr->op2 =
4409 pDef->funcFlags & (OPFLAG_LENGTHARG|OPFLAG_TYPEOFARG);
4413 sqlite3ExprCodeExprList(pParse, pFarg, r1, 0,
4414 SQLITE_ECEL_DUP|SQLITE_ECEL_FACTOR);
4415 }else{
4416 r1 = 0;
4418 #ifndef SQLITE_OMIT_VIRTUALTABLE
4419 /* Possibly overload the function if the first argument is
4420 ** a virtual table column.
4422 ** For infix functions (LIKE, GLOB, REGEXP, and MATCH) use the
4423 ** second argument, not the first, as the argument to test to
4424 ** see if it is a column in a virtual table. This is done because
4425 ** the left operand of infix functions (the operand we want to
4426 ** control overloading) ends up as the second argument to the
4427 ** function. The expression "A glob B" is equivalent to
4428 ** "glob(B,A). We want to use the A in "A glob B" to test
4429 ** for function overloading. But we use the B term in "glob(B,A)".
4431 if( nFarg>=2 && ExprHasProperty(pExpr, EP_InfixFunc) ){
4432 pDef = sqlite3VtabOverloadFunction(db, pDef, nFarg, pFarg->a[1].pExpr);
4433 }else if( nFarg>0 ){
4434 pDef = sqlite3VtabOverloadFunction(db, pDef, nFarg, pFarg->a[0].pExpr);
4436 #endif
4437 if( pDef->funcFlags & SQLITE_FUNC_NEEDCOLL ){
4438 if( !pColl ) pColl = db->pDfltColl;
4439 sqlite3VdbeAddOp4(v, OP_CollSeq, 0, 0, 0, (char *)pColl, P4_COLLSEQ);
4441 #ifdef SQLITE_ENABLE_OFFSET_SQL_FUNC
4442 if( (pDef->funcFlags & SQLITE_FUNC_OFFSET)!=0 && ALWAYS(pFarg!=0) ){
4443 Expr *pArg = pFarg->a[0].pExpr;
4444 if( pArg->op==TK_COLUMN ){
4445 sqlite3VdbeAddOp3(v, OP_Offset, pArg->iTable, pArg->iColumn, target);
4446 }else{
4447 sqlite3VdbeAddOp2(v, OP_Null, 0, target);
4449 }else
4450 #endif
4452 sqlite3VdbeAddFunctionCall(pParse, constMask, r1, target, nFarg,
4453 pDef, pExpr->op2);
4455 if( nFarg ){
4456 if( constMask==0 ){
4457 sqlite3ReleaseTempRange(pParse, r1, nFarg);
4458 }else{
4459 sqlite3VdbeReleaseRegisters(pParse, r1, nFarg, constMask, 1);
4462 return target;
4464 #ifndef SQLITE_OMIT_SUBQUERY
4465 case TK_EXISTS:
4466 case TK_SELECT: {
4467 int nCol;
4468 testcase( op==TK_EXISTS );
4469 testcase( op==TK_SELECT );
4470 if( pParse->db->mallocFailed ){
4471 return 0;
4472 }else if( op==TK_SELECT
4473 && ALWAYS( ExprUseXSelect(pExpr) )
4474 && (nCol = pExpr->x.pSelect->pEList->nExpr)!=1
4476 sqlite3SubselectError(pParse, nCol, 1);
4477 }else{
4478 return sqlite3CodeSubselect(pParse, pExpr);
4480 break;
4482 case TK_SELECT_COLUMN: {
4483 int n;
4484 if( pExpr->pLeft->iTable==0 ){
4485 pExpr->pLeft->iTable = sqlite3CodeSubselect(pParse, pExpr->pLeft);
4487 assert( pExpr->pLeft->op==TK_SELECT || pExpr->pLeft->op==TK_ERROR );
4488 n = sqlite3ExprVectorSize(pExpr->pLeft);
4489 if( pExpr->iTable!=n ){
4490 sqlite3ErrorMsg(pParse, "%d columns assigned %d values",
4491 pExpr->iTable, n);
4493 return pExpr->pLeft->iTable + pExpr->iColumn;
4495 case TK_IN: {
4496 int destIfFalse = sqlite3VdbeMakeLabel(pParse);
4497 int destIfNull = sqlite3VdbeMakeLabel(pParse);
4498 sqlite3VdbeAddOp2(v, OP_Null, 0, target);
4499 sqlite3ExprCodeIN(pParse, pExpr, destIfFalse, destIfNull);
4500 sqlite3VdbeAddOp2(v, OP_Integer, 1, target);
4501 sqlite3VdbeResolveLabel(v, destIfFalse);
4502 sqlite3VdbeAddOp2(v, OP_AddImm, target, 0);
4503 sqlite3VdbeResolveLabel(v, destIfNull);
4504 return target;
4506 #endif /* SQLITE_OMIT_SUBQUERY */
4510 ** x BETWEEN y AND z
4512 ** This is equivalent to
4514 ** x>=y AND x<=z
4516 ** X is stored in pExpr->pLeft.
4517 ** Y is stored in pExpr->pList->a[0].pExpr.
4518 ** Z is stored in pExpr->pList->a[1].pExpr.
4520 case TK_BETWEEN: {
4521 exprCodeBetween(pParse, pExpr, target, 0, 0);
4522 return target;
4524 case TK_SPAN:
4525 case TK_COLLATE:
4526 case TK_UPLUS: {
4527 pExpr = pExpr->pLeft;
4528 goto expr_code_doover; /* 2018-04-28: Prevent deep recursion. OSSFuzz. */
4531 case TK_TRIGGER: {
4532 /* If the opcode is TK_TRIGGER, then the expression is a reference
4533 ** to a column in the new.* or old.* pseudo-tables available to
4534 ** trigger programs. In this case Expr.iTable is set to 1 for the
4535 ** new.* pseudo-table, or 0 for the old.* pseudo-table. Expr.iColumn
4536 ** is set to the column of the pseudo-table to read, or to -1 to
4537 ** read the rowid field.
4539 ** The expression is implemented using an OP_Param opcode. The p1
4540 ** parameter is set to 0 for an old.rowid reference, or to (i+1)
4541 ** to reference another column of the old.* pseudo-table, where
4542 ** i is the index of the column. For a new.rowid reference, p1 is
4543 ** set to (n+1), where n is the number of columns in each pseudo-table.
4544 ** For a reference to any other column in the new.* pseudo-table, p1
4545 ** is set to (n+2+i), where n and i are as defined previously. For
4546 ** example, if the table on which triggers are being fired is
4547 ** declared as:
4549 ** CREATE TABLE t1(a, b);
4551 ** Then p1 is interpreted as follows:
4553 ** p1==0 -> old.rowid p1==3 -> new.rowid
4554 ** p1==1 -> old.a p1==4 -> new.a
4555 ** p1==2 -> old.b p1==5 -> new.b
4557 Table *pTab;
4558 int iCol;
4559 int p1;
4561 assert( ExprUseYTab(pExpr) );
4562 pTab = pExpr->y.pTab;
4563 iCol = pExpr->iColumn;
4564 p1 = pExpr->iTable * (pTab->nCol+1) + 1
4565 + sqlite3TableColumnToStorage(pTab, iCol);
4567 assert( pExpr->iTable==0 || pExpr->iTable==1 );
4568 assert( iCol>=-1 && iCol<pTab->nCol );
4569 assert( pTab->iPKey<0 || iCol!=pTab->iPKey );
4570 assert( p1>=0 && p1<(pTab->nCol*2+2) );
4572 sqlite3VdbeAddOp2(v, OP_Param, p1, target);
4573 VdbeComment((v, "r[%d]=%s.%s", target,
4574 (pExpr->iTable ? "new" : "old"),
4575 (pExpr->iColumn<0 ? "rowid" : pExpr->y.pTab->aCol[iCol].zCnName)
4578 #ifndef SQLITE_OMIT_FLOATING_POINT
4579 /* If the column has REAL affinity, it may currently be stored as an
4580 ** integer. Use OP_RealAffinity to make sure it is really real.
4582 ** EVIDENCE-OF: R-60985-57662 SQLite will convert the value back to
4583 ** floating point when extracting it from the record. */
4584 if( iCol>=0 && pTab->aCol[iCol].affinity==SQLITE_AFF_REAL ){
4585 sqlite3VdbeAddOp1(v, OP_RealAffinity, target);
4587 #endif
4588 break;
4591 case TK_VECTOR: {
4592 sqlite3ErrorMsg(pParse, "row value misused");
4593 break;
4596 /* TK_IF_NULL_ROW Expr nodes are inserted ahead of expressions
4597 ** that derive from the right-hand table of a LEFT JOIN. The
4598 ** Expr.iTable value is the table number for the right-hand table.
4599 ** The expression is only evaluated if that table is not currently
4600 ** on a LEFT JOIN NULL row.
4602 case TK_IF_NULL_ROW: {
4603 int addrINR;
4604 u8 okConstFactor = pParse->okConstFactor;
4605 addrINR = sqlite3VdbeAddOp1(v, OP_IfNullRow, pExpr->iTable);
4606 /* Temporarily disable factoring of constant expressions, since
4607 ** even though expressions may appear to be constant, they are not
4608 ** really constant because they originate from the right-hand side
4609 ** of a LEFT JOIN. */
4610 pParse->okConstFactor = 0;
4611 inReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft, target);
4612 pParse->okConstFactor = okConstFactor;
4613 sqlite3VdbeJumpHere(v, addrINR);
4614 sqlite3VdbeChangeP3(v, addrINR, inReg);
4615 break;
4619 ** Form A:
4620 ** CASE x WHEN e1 THEN r1 WHEN e2 THEN r2 ... WHEN eN THEN rN ELSE y END
4622 ** Form B:
4623 ** CASE WHEN e1 THEN r1 WHEN e2 THEN r2 ... WHEN eN THEN rN ELSE y END
4625 ** Form A is can be transformed into the equivalent form B as follows:
4626 ** CASE WHEN x=e1 THEN r1 WHEN x=e2 THEN r2 ...
4627 ** WHEN x=eN THEN rN ELSE y END
4629 ** X (if it exists) is in pExpr->pLeft.
4630 ** Y is in the last element of pExpr->x.pList if pExpr->x.pList->nExpr is
4631 ** odd. The Y is also optional. If the number of elements in x.pList
4632 ** is even, then Y is omitted and the "otherwise" result is NULL.
4633 ** Ei is in pExpr->pList->a[i*2] and Ri is pExpr->pList->a[i*2+1].
4635 ** The result of the expression is the Ri for the first matching Ei,
4636 ** or if there is no matching Ei, the ELSE term Y, or if there is
4637 ** no ELSE term, NULL.
4639 case TK_CASE: {
4640 int endLabel; /* GOTO label for end of CASE stmt */
4641 int nextCase; /* GOTO label for next WHEN clause */
4642 int nExpr; /* 2x number of WHEN terms */
4643 int i; /* Loop counter */
4644 ExprList *pEList; /* List of WHEN terms */
4645 struct ExprList_item *aListelem; /* Array of WHEN terms */
4646 Expr opCompare; /* The X==Ei expression */
4647 Expr *pX; /* The X expression */
4648 Expr *pTest = 0; /* X==Ei (form A) or just Ei (form B) */
4649 Expr *pDel = 0;
4650 sqlite3 *db = pParse->db;
4652 assert( ExprUseXList(pExpr) && pExpr->x.pList!=0 );
4653 assert(pExpr->x.pList->nExpr > 0);
4654 pEList = pExpr->x.pList;
4655 aListelem = pEList->a;
4656 nExpr = pEList->nExpr;
4657 endLabel = sqlite3VdbeMakeLabel(pParse);
4658 if( (pX = pExpr->pLeft)!=0 ){
4659 pDel = sqlite3ExprDup(db, pX, 0);
4660 if( db->mallocFailed ){
4661 sqlite3ExprDelete(db, pDel);
4662 break;
4664 testcase( pX->op==TK_COLUMN );
4665 exprToRegister(pDel, exprCodeVector(pParse, pDel, &regFree1));
4666 testcase( regFree1==0 );
4667 memset(&opCompare, 0, sizeof(opCompare));
4668 opCompare.op = TK_EQ;
4669 opCompare.pLeft = pDel;
4670 pTest = &opCompare;
4671 /* Ticket b351d95f9cd5ef17e9d9dbae18f5ca8611190001:
4672 ** The value in regFree1 might get SCopy-ed into the file result.
4673 ** So make sure that the regFree1 register is not reused for other
4674 ** purposes and possibly overwritten. */
4675 regFree1 = 0;
4677 for(i=0; i<nExpr-1; i=i+2){
4678 if( pX ){
4679 assert( pTest!=0 );
4680 opCompare.pRight = aListelem[i].pExpr;
4681 }else{
4682 pTest = aListelem[i].pExpr;
4684 nextCase = sqlite3VdbeMakeLabel(pParse);
4685 testcase( pTest->op==TK_COLUMN );
4686 sqlite3ExprIfFalse(pParse, pTest, nextCase, SQLITE_JUMPIFNULL);
4687 testcase( aListelem[i+1].pExpr->op==TK_COLUMN );
4688 sqlite3ExprCode(pParse, aListelem[i+1].pExpr, target);
4689 sqlite3VdbeGoto(v, endLabel);
4690 sqlite3VdbeResolveLabel(v, nextCase);
4692 if( (nExpr&1)!=0 ){
4693 sqlite3ExprCode(pParse, pEList->a[nExpr-1].pExpr, target);
4694 }else{
4695 sqlite3VdbeAddOp2(v, OP_Null, 0, target);
4697 sqlite3ExprDelete(db, pDel);
4698 setDoNotMergeFlagOnCopy(v);
4699 sqlite3VdbeResolveLabel(v, endLabel);
4700 break;
4702 #ifndef SQLITE_OMIT_TRIGGER
4703 case TK_RAISE: {
4704 assert( pExpr->affExpr==OE_Rollback
4705 || pExpr->affExpr==OE_Abort
4706 || pExpr->affExpr==OE_Fail
4707 || pExpr->affExpr==OE_Ignore
4709 if( !pParse->pTriggerTab && !pParse->nested ){
4710 sqlite3ErrorMsg(pParse,
4711 "RAISE() may only be used within a trigger-program");
4712 return 0;
4714 if( pExpr->affExpr==OE_Abort ){
4715 sqlite3MayAbort(pParse);
4717 assert( !ExprHasProperty(pExpr, EP_IntValue) );
4718 if( pExpr->affExpr==OE_Ignore ){
4719 sqlite3VdbeAddOp4(
4720 v, OP_Halt, SQLITE_OK, OE_Ignore, 0, pExpr->u.zToken,0);
4721 VdbeCoverage(v);
4722 }else{
4723 sqlite3HaltConstraint(pParse,
4724 pParse->pTriggerTab ? SQLITE_CONSTRAINT_TRIGGER : SQLITE_ERROR,
4725 pExpr->affExpr, pExpr->u.zToken, 0, 0);
4728 break;
4730 #endif
4732 sqlite3ReleaseTempReg(pParse, regFree1);
4733 sqlite3ReleaseTempReg(pParse, regFree2);
4734 return inReg;
4738 ** Generate code that will evaluate expression pExpr just one time
4739 ** per prepared statement execution.
4741 ** If the expression uses functions (that might throw an exception) then
4742 ** guard them with an OP_Once opcode to ensure that the code is only executed
4743 ** once. If no functions are involved, then factor the code out and put it at
4744 ** the end of the prepared statement in the initialization section.
4746 ** If regDest>=0 then the result is always stored in that register and the
4747 ** result is not reusable. If regDest<0 then this routine is free to
4748 ** store the value whereever it wants. The register where the expression
4749 ** is stored is returned. When regDest<0, two identical expressions might
4750 ** code to the same register, if they do not contain function calls and hence
4751 ** are factored out into the initialization section at the end of the
4752 ** prepared statement.
4754 int sqlite3ExprCodeRunJustOnce(
4755 Parse *pParse, /* Parsing context */
4756 Expr *pExpr, /* The expression to code when the VDBE initializes */
4757 int regDest /* Store the value in this register */
4759 ExprList *p;
4760 assert( ConstFactorOk(pParse) );
4761 p = pParse->pConstExpr;
4762 if( regDest<0 && p ){
4763 struct ExprList_item *pItem;
4764 int i;
4765 for(pItem=p->a, i=p->nExpr; i>0; pItem++, i--){
4766 if( pItem->reusable && sqlite3ExprCompare(0,pItem->pExpr,pExpr,-1)==0 ){
4767 return pItem->u.iConstExprReg;
4771 pExpr = sqlite3ExprDup(pParse->db, pExpr, 0);
4772 if( pExpr!=0 && ExprHasProperty(pExpr, EP_HasFunc) ){
4773 Vdbe *v = pParse->pVdbe;
4774 int addr;
4775 assert( v );
4776 addr = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v);
4777 pParse->okConstFactor = 0;
4778 if( !pParse->db->mallocFailed ){
4779 if( regDest<0 ) regDest = ++pParse->nMem;
4780 sqlite3ExprCode(pParse, pExpr, regDest);
4782 pParse->okConstFactor = 1;
4783 sqlite3ExprDelete(pParse->db, pExpr);
4784 sqlite3VdbeJumpHere(v, addr);
4785 }else{
4786 p = sqlite3ExprListAppend(pParse, p, pExpr);
4787 if( p ){
4788 struct ExprList_item *pItem = &p->a[p->nExpr-1];
4789 pItem->reusable = regDest<0;
4790 if( regDest<0 ) regDest = ++pParse->nMem;
4791 pItem->u.iConstExprReg = regDest;
4793 pParse->pConstExpr = p;
4795 return regDest;
4799 ** Generate code to evaluate an expression and store the results
4800 ** into a register. Return the register number where the results
4801 ** are stored.
4803 ** If the register is a temporary register that can be deallocated,
4804 ** then write its number into *pReg. If the result register is not
4805 ** a temporary, then set *pReg to zero.
4807 ** If pExpr is a constant, then this routine might generate this
4808 ** code to fill the register in the initialization section of the
4809 ** VDBE program, in order to factor it out of the evaluation loop.
4811 int sqlite3ExprCodeTemp(Parse *pParse, Expr *pExpr, int *pReg){
4812 int r2;
4813 pExpr = sqlite3ExprSkipCollateAndLikely(pExpr);
4814 if( ConstFactorOk(pParse)
4815 && ALWAYS(pExpr!=0)
4816 && pExpr->op!=TK_REGISTER
4817 && sqlite3ExprIsConstantNotJoin(pExpr)
4819 *pReg = 0;
4820 r2 = sqlite3ExprCodeRunJustOnce(pParse, pExpr, -1);
4821 }else{
4822 int r1 = sqlite3GetTempReg(pParse);
4823 r2 = sqlite3ExprCodeTarget(pParse, pExpr, r1);
4824 if( r2==r1 ){
4825 *pReg = r1;
4826 }else{
4827 sqlite3ReleaseTempReg(pParse, r1);
4828 *pReg = 0;
4831 return r2;
4835 ** Generate code that will evaluate expression pExpr and store the
4836 ** results in register target. The results are guaranteed to appear
4837 ** in register target.
4839 void sqlite3ExprCode(Parse *pParse, Expr *pExpr, int target){
4840 int inReg;
4842 assert( pExpr==0 || !ExprHasVVAProperty(pExpr,EP_Immutable) );
4843 assert( target>0 && target<=pParse->nMem );
4844 assert( pParse->pVdbe!=0 || pParse->db->mallocFailed );
4845 if( pParse->pVdbe==0 ) return;
4846 inReg = sqlite3ExprCodeTarget(pParse, pExpr, target);
4847 if( inReg!=target ){
4848 u8 op;
4849 if( ALWAYS(pExpr) && ExprHasProperty(pExpr,EP_Subquery) ){
4850 op = OP_Copy;
4851 }else{
4852 op = OP_SCopy;
4854 sqlite3VdbeAddOp2(pParse->pVdbe, op, inReg, target);
4859 ** Make a transient copy of expression pExpr and then code it using
4860 ** sqlite3ExprCode(). This routine works just like sqlite3ExprCode()
4861 ** except that the input expression is guaranteed to be unchanged.
4863 void sqlite3ExprCodeCopy(Parse *pParse, Expr *pExpr, int target){
4864 sqlite3 *db = pParse->db;
4865 pExpr = sqlite3ExprDup(db, pExpr, 0);
4866 if( !db->mallocFailed ) sqlite3ExprCode(pParse, pExpr, target);
4867 sqlite3ExprDelete(db, pExpr);
4871 ** Generate code that will evaluate expression pExpr and store the
4872 ** results in register target. The results are guaranteed to appear
4873 ** in register target. If the expression is constant, then this routine
4874 ** might choose to code the expression at initialization time.
4876 void sqlite3ExprCodeFactorable(Parse *pParse, Expr *pExpr, int target){
4877 if( pParse->okConstFactor && sqlite3ExprIsConstantNotJoin(pExpr) ){
4878 sqlite3ExprCodeRunJustOnce(pParse, pExpr, target);
4879 }else{
4880 sqlite3ExprCodeCopy(pParse, pExpr, target);
4885 ** Generate code that pushes the value of every element of the given
4886 ** expression list into a sequence of registers beginning at target.
4888 ** Return the number of elements evaluated. The number returned will
4889 ** usually be pList->nExpr but might be reduced if SQLITE_ECEL_OMITREF
4890 ** is defined.
4892 ** The SQLITE_ECEL_DUP flag prevents the arguments from being
4893 ** filled using OP_SCopy. OP_Copy must be used instead.
4895 ** The SQLITE_ECEL_FACTOR argument allows constant arguments to be
4896 ** factored out into initialization code.
4898 ** The SQLITE_ECEL_REF flag means that expressions in the list with
4899 ** ExprList.a[].u.x.iOrderByCol>0 have already been evaluated and stored
4900 ** in registers at srcReg, and so the value can be copied from there.
4901 ** If SQLITE_ECEL_OMITREF is also set, then the values with u.x.iOrderByCol>0
4902 ** are simply omitted rather than being copied from srcReg.
4904 int sqlite3ExprCodeExprList(
4905 Parse *pParse, /* Parsing context */
4906 ExprList *pList, /* The expression list to be coded */
4907 int target, /* Where to write results */
4908 int srcReg, /* Source registers if SQLITE_ECEL_REF */
4909 u8 flags /* SQLITE_ECEL_* flags */
4911 struct ExprList_item *pItem;
4912 int i, j, n;
4913 u8 copyOp = (flags & SQLITE_ECEL_DUP) ? OP_Copy : OP_SCopy;
4914 Vdbe *v = pParse->pVdbe;
4915 assert( pList!=0 );
4916 assert( target>0 );
4917 assert( pParse->pVdbe!=0 ); /* Never gets this far otherwise */
4918 n = pList->nExpr;
4919 if( !ConstFactorOk(pParse) ) flags &= ~SQLITE_ECEL_FACTOR;
4920 for(pItem=pList->a, i=0; i<n; i++, pItem++){
4921 Expr *pExpr = pItem->pExpr;
4922 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
4923 if( pItem->bSorterRef ){
4924 i--;
4925 n--;
4926 }else
4927 #endif
4928 if( (flags & SQLITE_ECEL_REF)!=0 && (j = pItem->u.x.iOrderByCol)>0 ){
4929 if( flags & SQLITE_ECEL_OMITREF ){
4930 i--;
4931 n--;
4932 }else{
4933 sqlite3VdbeAddOp2(v, copyOp, j+srcReg-1, target+i);
4935 }else if( (flags & SQLITE_ECEL_FACTOR)!=0
4936 && sqlite3ExprIsConstantNotJoin(pExpr)
4938 sqlite3ExprCodeRunJustOnce(pParse, pExpr, target+i);
4939 }else{
4940 int inReg = sqlite3ExprCodeTarget(pParse, pExpr, target+i);
4941 if( inReg!=target+i ){
4942 VdbeOp *pOp;
4943 if( copyOp==OP_Copy
4944 && (pOp=sqlite3VdbeGetOp(v, -1))->opcode==OP_Copy
4945 && pOp->p1+pOp->p3+1==inReg
4946 && pOp->p2+pOp->p3+1==target+i
4947 && pOp->p5==0 /* The do-not-merge flag must be clear */
4949 pOp->p3++;
4950 }else{
4951 sqlite3VdbeAddOp2(v, copyOp, inReg, target+i);
4956 return n;
4960 ** Generate code for a BETWEEN operator.
4962 ** x BETWEEN y AND z
4964 ** The above is equivalent to
4966 ** x>=y AND x<=z
4968 ** Code it as such, taking care to do the common subexpression
4969 ** elimination of x.
4971 ** The xJumpIf parameter determines details:
4973 ** NULL: Store the boolean result in reg[dest]
4974 ** sqlite3ExprIfTrue: Jump to dest if true
4975 ** sqlite3ExprIfFalse: Jump to dest if false
4977 ** The jumpIfNull parameter is ignored if xJumpIf is NULL.
4979 static void exprCodeBetween(
4980 Parse *pParse, /* Parsing and code generating context */
4981 Expr *pExpr, /* The BETWEEN expression */
4982 int dest, /* Jump destination or storage location */
4983 void (*xJump)(Parse*,Expr*,int,int), /* Action to take */
4984 int jumpIfNull /* Take the jump if the BETWEEN is NULL */
4986 Expr exprAnd; /* The AND operator in x>=y AND x<=z */
4987 Expr compLeft; /* The x>=y term */
4988 Expr compRight; /* The x<=z term */
4989 int regFree1 = 0; /* Temporary use register */
4990 Expr *pDel = 0;
4991 sqlite3 *db = pParse->db;
4993 memset(&compLeft, 0, sizeof(Expr));
4994 memset(&compRight, 0, sizeof(Expr));
4995 memset(&exprAnd, 0, sizeof(Expr));
4997 assert( ExprUseXList(pExpr) );
4998 pDel = sqlite3ExprDup(db, pExpr->pLeft, 0);
4999 if( db->mallocFailed==0 ){
5000 exprAnd.op = TK_AND;
5001 exprAnd.pLeft = &compLeft;
5002 exprAnd.pRight = &compRight;
5003 compLeft.op = TK_GE;
5004 compLeft.pLeft = pDel;
5005 compLeft.pRight = pExpr->x.pList->a[0].pExpr;
5006 compRight.op = TK_LE;
5007 compRight.pLeft = pDel;
5008 compRight.pRight = pExpr->x.pList->a[1].pExpr;
5009 exprToRegister(pDel, exprCodeVector(pParse, pDel, &regFree1));
5010 if( xJump ){
5011 xJump(pParse, &exprAnd, dest, jumpIfNull);
5012 }else{
5013 /* Mark the expression is being from the ON or USING clause of a join
5014 ** so that the sqlite3ExprCodeTarget() routine will not attempt to move
5015 ** it into the Parse.pConstExpr list. We should use a new bit for this,
5016 ** for clarity, but we are out of bits in the Expr.flags field so we
5017 ** have to reuse the EP_FromJoin bit. Bummer. */
5018 pDel->flags |= EP_FromJoin;
5019 sqlite3ExprCodeTarget(pParse, &exprAnd, dest);
5021 sqlite3ReleaseTempReg(pParse, regFree1);
5023 sqlite3ExprDelete(db, pDel);
5025 /* Ensure adequate test coverage */
5026 testcase( xJump==sqlite3ExprIfTrue && jumpIfNull==0 && regFree1==0 );
5027 testcase( xJump==sqlite3ExprIfTrue && jumpIfNull==0 && regFree1!=0 );
5028 testcase( xJump==sqlite3ExprIfTrue && jumpIfNull!=0 && regFree1==0 );
5029 testcase( xJump==sqlite3ExprIfTrue && jumpIfNull!=0 && regFree1!=0 );
5030 testcase( xJump==sqlite3ExprIfFalse && jumpIfNull==0 && regFree1==0 );
5031 testcase( xJump==sqlite3ExprIfFalse && jumpIfNull==0 && regFree1!=0 );
5032 testcase( xJump==sqlite3ExprIfFalse && jumpIfNull!=0 && regFree1==0 );
5033 testcase( xJump==sqlite3ExprIfFalse && jumpIfNull!=0 && regFree1!=0 );
5034 testcase( xJump==0 );
5038 ** Generate code for a boolean expression such that a jump is made
5039 ** to the label "dest" if the expression is true but execution
5040 ** continues straight thru if the expression is false.
5042 ** If the expression evaluates to NULL (neither true nor false), then
5043 ** take the jump if the jumpIfNull flag is SQLITE_JUMPIFNULL.
5045 ** This code depends on the fact that certain token values (ex: TK_EQ)
5046 ** are the same as opcode values (ex: OP_Eq) that implement the corresponding
5047 ** operation. Special comments in vdbe.c and the mkopcodeh.awk script in
5048 ** the make process cause these values to align. Assert()s in the code
5049 ** below verify that the numbers are aligned correctly.
5051 void sqlite3ExprIfTrue(Parse *pParse, Expr *pExpr, int dest, int jumpIfNull){
5052 Vdbe *v = pParse->pVdbe;
5053 int op = 0;
5054 int regFree1 = 0;
5055 int regFree2 = 0;
5056 int r1, r2;
5058 assert( jumpIfNull==SQLITE_JUMPIFNULL || jumpIfNull==0 );
5059 if( NEVER(v==0) ) return; /* Existence of VDBE checked by caller */
5060 if( NEVER(pExpr==0) ) return; /* No way this can happen */
5061 assert( !ExprHasVVAProperty(pExpr, EP_Immutable) );
5062 op = pExpr->op;
5063 switch( op ){
5064 case TK_AND:
5065 case TK_OR: {
5066 Expr *pAlt = sqlite3ExprSimplifiedAndOr(pExpr);
5067 if( pAlt!=pExpr ){
5068 sqlite3ExprIfTrue(pParse, pAlt, dest, jumpIfNull);
5069 }else if( op==TK_AND ){
5070 int d2 = sqlite3VdbeMakeLabel(pParse);
5071 testcase( jumpIfNull==0 );
5072 sqlite3ExprIfFalse(pParse, pExpr->pLeft, d2,
5073 jumpIfNull^SQLITE_JUMPIFNULL);
5074 sqlite3ExprIfTrue(pParse, pExpr->pRight, dest, jumpIfNull);
5075 sqlite3VdbeResolveLabel(v, d2);
5076 }else{
5077 testcase( jumpIfNull==0 );
5078 sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, jumpIfNull);
5079 sqlite3ExprIfTrue(pParse, pExpr->pRight, dest, jumpIfNull);
5081 break;
5083 case TK_NOT: {
5084 testcase( jumpIfNull==0 );
5085 sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, jumpIfNull);
5086 break;
5088 case TK_TRUTH: {
5089 int isNot; /* IS NOT TRUE or IS NOT FALSE */
5090 int isTrue; /* IS TRUE or IS NOT TRUE */
5091 testcase( jumpIfNull==0 );
5092 isNot = pExpr->op2==TK_ISNOT;
5093 isTrue = sqlite3ExprTruthValue(pExpr->pRight);
5094 testcase( isTrue && isNot );
5095 testcase( !isTrue && isNot );
5096 if( isTrue ^ isNot ){
5097 sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest,
5098 isNot ? SQLITE_JUMPIFNULL : 0);
5099 }else{
5100 sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest,
5101 isNot ? SQLITE_JUMPIFNULL : 0);
5103 break;
5105 case TK_IS:
5106 case TK_ISNOT:
5107 testcase( op==TK_IS );
5108 testcase( op==TK_ISNOT );
5109 op = (op==TK_IS) ? TK_EQ : TK_NE;
5110 jumpIfNull = SQLITE_NULLEQ;
5111 /* no break */ deliberate_fall_through
5112 case TK_LT:
5113 case TK_LE:
5114 case TK_GT:
5115 case TK_GE:
5116 case TK_NE:
5117 case TK_EQ: {
5118 if( sqlite3ExprIsVector(pExpr->pLeft) ) goto default_expr;
5119 testcase( jumpIfNull==0 );
5120 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
5121 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, &regFree2);
5122 codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op,
5123 r1, r2, dest, jumpIfNull, ExprHasProperty(pExpr,EP_Commuted));
5124 assert(TK_LT==OP_Lt); testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt);
5125 assert(TK_LE==OP_Le); testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le);
5126 assert(TK_GT==OP_Gt); testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt);
5127 assert(TK_GE==OP_Ge); testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge);
5128 assert(TK_EQ==OP_Eq); testcase(op==OP_Eq);
5129 VdbeCoverageIf(v, op==OP_Eq && jumpIfNull==SQLITE_NULLEQ);
5130 VdbeCoverageIf(v, op==OP_Eq && jumpIfNull!=SQLITE_NULLEQ);
5131 assert(TK_NE==OP_Ne); testcase(op==OP_Ne);
5132 VdbeCoverageIf(v, op==OP_Ne && jumpIfNull==SQLITE_NULLEQ);
5133 VdbeCoverageIf(v, op==OP_Ne && jumpIfNull!=SQLITE_NULLEQ);
5134 testcase( regFree1==0 );
5135 testcase( regFree2==0 );
5136 break;
5138 case TK_ISNULL:
5139 case TK_NOTNULL: {
5140 assert( TK_ISNULL==OP_IsNull ); testcase( op==TK_ISNULL );
5141 assert( TK_NOTNULL==OP_NotNull ); testcase( op==TK_NOTNULL );
5142 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
5143 sqlite3VdbeAddOp2(v, op, r1, dest);
5144 VdbeCoverageIf(v, op==TK_ISNULL);
5145 VdbeCoverageIf(v, op==TK_NOTNULL);
5146 testcase( regFree1==0 );
5147 break;
5149 case TK_BETWEEN: {
5150 testcase( jumpIfNull==0 );
5151 exprCodeBetween(pParse, pExpr, dest, sqlite3ExprIfTrue, jumpIfNull);
5152 break;
5154 #ifndef SQLITE_OMIT_SUBQUERY
5155 case TK_IN: {
5156 int destIfFalse = sqlite3VdbeMakeLabel(pParse);
5157 int destIfNull = jumpIfNull ? dest : destIfFalse;
5158 sqlite3ExprCodeIN(pParse, pExpr, destIfFalse, destIfNull);
5159 sqlite3VdbeGoto(v, dest);
5160 sqlite3VdbeResolveLabel(v, destIfFalse);
5161 break;
5163 #endif
5164 default: {
5165 default_expr:
5166 if( ExprAlwaysTrue(pExpr) ){
5167 sqlite3VdbeGoto(v, dest);
5168 }else if( ExprAlwaysFalse(pExpr) ){
5169 /* No-op */
5170 }else{
5171 r1 = sqlite3ExprCodeTemp(pParse, pExpr, &regFree1);
5172 sqlite3VdbeAddOp3(v, OP_If, r1, dest, jumpIfNull!=0);
5173 VdbeCoverage(v);
5174 testcase( regFree1==0 );
5175 testcase( jumpIfNull==0 );
5177 break;
5180 sqlite3ReleaseTempReg(pParse, regFree1);
5181 sqlite3ReleaseTempReg(pParse, regFree2);
5185 ** Generate code for a boolean expression such that a jump is made
5186 ** to the label "dest" if the expression is false but execution
5187 ** continues straight thru if the expression is true.
5189 ** If the expression evaluates to NULL (neither true nor false) then
5190 ** jump if jumpIfNull is SQLITE_JUMPIFNULL or fall through if jumpIfNull
5191 ** is 0.
5193 void sqlite3ExprIfFalse(Parse *pParse, Expr *pExpr, int dest, int jumpIfNull){
5194 Vdbe *v = pParse->pVdbe;
5195 int op = 0;
5196 int regFree1 = 0;
5197 int regFree2 = 0;
5198 int r1, r2;
5200 assert( jumpIfNull==SQLITE_JUMPIFNULL || jumpIfNull==0 );
5201 if( NEVER(v==0) ) return; /* Existence of VDBE checked by caller */
5202 if( pExpr==0 ) return;
5203 assert( !ExprHasVVAProperty(pExpr,EP_Immutable) );
5205 /* The value of pExpr->op and op are related as follows:
5207 ** pExpr->op op
5208 ** --------- ----------
5209 ** TK_ISNULL OP_NotNull
5210 ** TK_NOTNULL OP_IsNull
5211 ** TK_NE OP_Eq
5212 ** TK_EQ OP_Ne
5213 ** TK_GT OP_Le
5214 ** TK_LE OP_Gt
5215 ** TK_GE OP_Lt
5216 ** TK_LT OP_Ge
5218 ** For other values of pExpr->op, op is undefined and unused.
5219 ** The value of TK_ and OP_ constants are arranged such that we
5220 ** can compute the mapping above using the following expression.
5221 ** Assert()s verify that the computation is correct.
5223 op = ((pExpr->op+(TK_ISNULL&1))^1)-(TK_ISNULL&1);
5225 /* Verify correct alignment of TK_ and OP_ constants
5227 assert( pExpr->op!=TK_ISNULL || op==OP_NotNull );
5228 assert( pExpr->op!=TK_NOTNULL || op==OP_IsNull );
5229 assert( pExpr->op!=TK_NE || op==OP_Eq );
5230 assert( pExpr->op!=TK_EQ || op==OP_Ne );
5231 assert( pExpr->op!=TK_LT || op==OP_Ge );
5232 assert( pExpr->op!=TK_LE || op==OP_Gt );
5233 assert( pExpr->op!=TK_GT || op==OP_Le );
5234 assert( pExpr->op!=TK_GE || op==OP_Lt );
5236 switch( pExpr->op ){
5237 case TK_AND:
5238 case TK_OR: {
5239 Expr *pAlt = sqlite3ExprSimplifiedAndOr(pExpr);
5240 if( pAlt!=pExpr ){
5241 sqlite3ExprIfFalse(pParse, pAlt, dest, jumpIfNull);
5242 }else if( pExpr->op==TK_AND ){
5243 testcase( jumpIfNull==0 );
5244 sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, jumpIfNull);
5245 sqlite3ExprIfFalse(pParse, pExpr->pRight, dest, jumpIfNull);
5246 }else{
5247 int d2 = sqlite3VdbeMakeLabel(pParse);
5248 testcase( jumpIfNull==0 );
5249 sqlite3ExprIfTrue(pParse, pExpr->pLeft, d2,
5250 jumpIfNull^SQLITE_JUMPIFNULL);
5251 sqlite3ExprIfFalse(pParse, pExpr->pRight, dest, jumpIfNull);
5252 sqlite3VdbeResolveLabel(v, d2);
5254 break;
5256 case TK_NOT: {
5257 testcase( jumpIfNull==0 );
5258 sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, jumpIfNull);
5259 break;
5261 case TK_TRUTH: {
5262 int isNot; /* IS NOT TRUE or IS NOT FALSE */
5263 int isTrue; /* IS TRUE or IS NOT TRUE */
5264 testcase( jumpIfNull==0 );
5265 isNot = pExpr->op2==TK_ISNOT;
5266 isTrue = sqlite3ExprTruthValue(pExpr->pRight);
5267 testcase( isTrue && isNot );
5268 testcase( !isTrue && isNot );
5269 if( isTrue ^ isNot ){
5270 /* IS TRUE and IS NOT FALSE */
5271 sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest,
5272 isNot ? 0 : SQLITE_JUMPIFNULL);
5274 }else{
5275 /* IS FALSE and IS NOT TRUE */
5276 sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest,
5277 isNot ? 0 : SQLITE_JUMPIFNULL);
5279 break;
5281 case TK_IS:
5282 case TK_ISNOT:
5283 testcase( pExpr->op==TK_IS );
5284 testcase( pExpr->op==TK_ISNOT );
5285 op = (pExpr->op==TK_IS) ? TK_NE : TK_EQ;
5286 jumpIfNull = SQLITE_NULLEQ;
5287 /* no break */ deliberate_fall_through
5288 case TK_LT:
5289 case TK_LE:
5290 case TK_GT:
5291 case TK_GE:
5292 case TK_NE:
5293 case TK_EQ: {
5294 if( sqlite3ExprIsVector(pExpr->pLeft) ) goto default_expr;
5295 testcase( jumpIfNull==0 );
5296 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
5297 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, &regFree2);
5298 codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op,
5299 r1, r2, dest, jumpIfNull,ExprHasProperty(pExpr,EP_Commuted));
5300 assert(TK_LT==OP_Lt); testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt);
5301 assert(TK_LE==OP_Le); testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le);
5302 assert(TK_GT==OP_Gt); testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt);
5303 assert(TK_GE==OP_Ge); testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge);
5304 assert(TK_EQ==OP_Eq); testcase(op==OP_Eq);
5305 VdbeCoverageIf(v, op==OP_Eq && jumpIfNull!=SQLITE_NULLEQ);
5306 VdbeCoverageIf(v, op==OP_Eq && jumpIfNull==SQLITE_NULLEQ);
5307 assert(TK_NE==OP_Ne); testcase(op==OP_Ne);
5308 VdbeCoverageIf(v, op==OP_Ne && jumpIfNull!=SQLITE_NULLEQ);
5309 VdbeCoverageIf(v, op==OP_Ne && jumpIfNull==SQLITE_NULLEQ);
5310 testcase( regFree1==0 );
5311 testcase( regFree2==0 );
5312 break;
5314 case TK_ISNULL:
5315 case TK_NOTNULL: {
5316 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
5317 sqlite3VdbeAddOp2(v, op, r1, dest);
5318 testcase( op==TK_ISNULL ); VdbeCoverageIf(v, op==TK_ISNULL);
5319 testcase( op==TK_NOTNULL ); VdbeCoverageIf(v, op==TK_NOTNULL);
5320 testcase( regFree1==0 );
5321 break;
5323 case TK_BETWEEN: {
5324 testcase( jumpIfNull==0 );
5325 exprCodeBetween(pParse, pExpr, dest, sqlite3ExprIfFalse, jumpIfNull);
5326 break;
5328 #ifndef SQLITE_OMIT_SUBQUERY
5329 case TK_IN: {
5330 if( jumpIfNull ){
5331 sqlite3ExprCodeIN(pParse, pExpr, dest, dest);
5332 }else{
5333 int destIfNull = sqlite3VdbeMakeLabel(pParse);
5334 sqlite3ExprCodeIN(pParse, pExpr, dest, destIfNull);
5335 sqlite3VdbeResolveLabel(v, destIfNull);
5337 break;
5339 #endif
5340 default: {
5341 default_expr:
5342 if( ExprAlwaysFalse(pExpr) ){
5343 sqlite3VdbeGoto(v, dest);
5344 }else if( ExprAlwaysTrue(pExpr) ){
5345 /* no-op */
5346 }else{
5347 r1 = sqlite3ExprCodeTemp(pParse, pExpr, &regFree1);
5348 sqlite3VdbeAddOp3(v, OP_IfNot, r1, dest, jumpIfNull!=0);
5349 VdbeCoverage(v);
5350 testcase( regFree1==0 );
5351 testcase( jumpIfNull==0 );
5353 break;
5356 sqlite3ReleaseTempReg(pParse, regFree1);
5357 sqlite3ReleaseTempReg(pParse, regFree2);
5361 ** Like sqlite3ExprIfFalse() except that a copy is made of pExpr before
5362 ** code generation, and that copy is deleted after code generation. This
5363 ** ensures that the original pExpr is unchanged.
5365 void sqlite3ExprIfFalseDup(Parse *pParse, Expr *pExpr, int dest,int jumpIfNull){
5366 sqlite3 *db = pParse->db;
5367 Expr *pCopy = sqlite3ExprDup(db, pExpr, 0);
5368 if( db->mallocFailed==0 ){
5369 sqlite3ExprIfFalse(pParse, pCopy, dest, jumpIfNull);
5371 sqlite3ExprDelete(db, pCopy);
5375 ** Expression pVar is guaranteed to be an SQL variable. pExpr may be any
5376 ** type of expression.
5378 ** If pExpr is a simple SQL value - an integer, real, string, blob
5379 ** or NULL value - then the VDBE currently being prepared is configured
5380 ** to re-prepare each time a new value is bound to variable pVar.
5382 ** Additionally, if pExpr is a simple SQL value and the value is the
5383 ** same as that currently bound to variable pVar, non-zero is returned.
5384 ** Otherwise, if the values are not the same or if pExpr is not a simple
5385 ** SQL value, zero is returned.
5387 static int exprCompareVariable(
5388 const Parse *pParse,
5389 const Expr *pVar,
5390 const Expr *pExpr
5392 int res = 0;
5393 int iVar;
5394 sqlite3_value *pL, *pR = 0;
5396 sqlite3ValueFromExpr(pParse->db, pExpr, SQLITE_UTF8, SQLITE_AFF_BLOB, &pR);
5397 if( pR ){
5398 iVar = pVar->iColumn;
5399 sqlite3VdbeSetVarmask(pParse->pVdbe, iVar);
5400 pL = sqlite3VdbeGetBoundValue(pParse->pReprepare, iVar, SQLITE_AFF_BLOB);
5401 if( pL ){
5402 if( sqlite3_value_type(pL)==SQLITE_TEXT ){
5403 sqlite3_value_text(pL); /* Make sure the encoding is UTF-8 */
5405 res = 0==sqlite3MemCompare(pL, pR, 0);
5407 sqlite3ValueFree(pR);
5408 sqlite3ValueFree(pL);
5411 return res;
5415 ** Do a deep comparison of two expression trees. Return 0 if the two
5416 ** expressions are completely identical. Return 1 if they differ only
5417 ** by a COLLATE operator at the top level. Return 2 if there are differences
5418 ** other than the top-level COLLATE operator.
5420 ** If any subelement of pB has Expr.iTable==(-1) then it is allowed
5421 ** to compare equal to an equivalent element in pA with Expr.iTable==iTab.
5423 ** The pA side might be using TK_REGISTER. If that is the case and pB is
5424 ** not using TK_REGISTER but is otherwise equivalent, then still return 0.
5426 ** Sometimes this routine will return 2 even if the two expressions
5427 ** really are equivalent. If we cannot prove that the expressions are
5428 ** identical, we return 2 just to be safe. So if this routine
5429 ** returns 2, then you do not really know for certain if the two
5430 ** expressions are the same. But if you get a 0 or 1 return, then you
5431 ** can be sure the expressions are the same. In the places where
5432 ** this routine is used, it does not hurt to get an extra 2 - that
5433 ** just might result in some slightly slower code. But returning
5434 ** an incorrect 0 or 1 could lead to a malfunction.
5436 ** If pParse is not NULL then TK_VARIABLE terms in pA with bindings in
5437 ** pParse->pReprepare can be matched against literals in pB. The
5438 ** pParse->pVdbe->expmask bitmask is updated for each variable referenced.
5439 ** If pParse is NULL (the normal case) then any TK_VARIABLE term in
5440 ** Argument pParse should normally be NULL. If it is not NULL and pA or
5441 ** pB causes a return value of 2.
5443 int sqlite3ExprCompare(
5444 const Parse *pParse,
5445 const Expr *pA,
5446 const Expr *pB,
5447 int iTab
5449 u32 combinedFlags;
5450 if( pA==0 || pB==0 ){
5451 return pB==pA ? 0 : 2;
5453 if( pParse && pA->op==TK_VARIABLE && exprCompareVariable(pParse, pA, pB) ){
5454 return 0;
5456 combinedFlags = pA->flags | pB->flags;
5457 if( combinedFlags & EP_IntValue ){
5458 if( (pA->flags&pB->flags&EP_IntValue)!=0 && pA->u.iValue==pB->u.iValue ){
5459 return 0;
5461 return 2;
5463 if( pA->op!=pB->op || pA->op==TK_RAISE ){
5464 if( pA->op==TK_COLLATE && sqlite3ExprCompare(pParse, pA->pLeft,pB,iTab)<2 ){
5465 return 1;
5467 if( pB->op==TK_COLLATE && sqlite3ExprCompare(pParse, pA,pB->pLeft,iTab)<2 ){
5468 return 1;
5470 return 2;
5472 assert( !ExprHasProperty(pA, EP_IntValue) );
5473 assert( !ExprHasProperty(pB, EP_IntValue) );
5474 if( pA->u.zToken ){
5475 if( pA->op==TK_FUNCTION || pA->op==TK_AGG_FUNCTION ){
5476 if( sqlite3StrICmp(pA->u.zToken,pB->u.zToken)!=0 ) return 2;
5477 #ifndef SQLITE_OMIT_WINDOWFUNC
5478 assert( pA->op==pB->op );
5479 if( ExprHasProperty(pA,EP_WinFunc)!=ExprHasProperty(pB,EP_WinFunc) ){
5480 return 2;
5482 if( ExprHasProperty(pA,EP_WinFunc) ){
5483 if( sqlite3WindowCompare(pParse, pA->y.pWin, pB->y.pWin, 1)!=0 ){
5484 return 2;
5487 #endif
5488 }else if( pA->op==TK_NULL ){
5489 return 0;
5490 }else if( pA->op==TK_COLLATE ){
5491 if( sqlite3_stricmp(pA->u.zToken,pB->u.zToken)!=0 ) return 2;
5492 }else
5493 if( pB->u.zToken!=0
5494 && pA->op!=TK_COLUMN
5495 && pA->op!=TK_AGG_COLUMN
5496 && strcmp(pA->u.zToken,pB->u.zToken)!=0
5498 return 2;
5501 if( (pA->flags & (EP_Distinct|EP_Commuted))
5502 != (pB->flags & (EP_Distinct|EP_Commuted)) ) return 2;
5503 if( ALWAYS((combinedFlags & EP_TokenOnly)==0) ){
5504 if( combinedFlags & EP_xIsSelect ) return 2;
5505 if( (combinedFlags & EP_FixedCol)==0
5506 && sqlite3ExprCompare(pParse, pA->pLeft, pB->pLeft, iTab) ) return 2;
5507 if( sqlite3ExprCompare(pParse, pA->pRight, pB->pRight, iTab) ) return 2;
5508 if( sqlite3ExprListCompare(pA->x.pList, pB->x.pList, iTab) ) return 2;
5509 if( pA->op!=TK_STRING
5510 && pA->op!=TK_TRUEFALSE
5511 && ALWAYS((combinedFlags & EP_Reduced)==0)
5513 if( pA->iColumn!=pB->iColumn ) return 2;
5514 if( pA->op2!=pB->op2 && pA->op==TK_TRUTH ) return 2;
5515 if( pA->op!=TK_IN && pA->iTable!=pB->iTable && pA->iTable!=iTab ){
5516 return 2;
5520 return 0;
5524 ** Compare two ExprList objects. Return 0 if they are identical, 1
5525 ** if they are certainly different, or 2 if it is not possible to
5526 ** determine if they are identical or not.
5528 ** If any subelement of pB has Expr.iTable==(-1) then it is allowed
5529 ** to compare equal to an equivalent element in pA with Expr.iTable==iTab.
5531 ** This routine might return non-zero for equivalent ExprLists. The
5532 ** only consequence will be disabled optimizations. But this routine
5533 ** must never return 0 if the two ExprList objects are different, or
5534 ** a malfunction will result.
5536 ** Two NULL pointers are considered to be the same. But a NULL pointer
5537 ** always differs from a non-NULL pointer.
5539 int sqlite3ExprListCompare(const ExprList *pA, const ExprList *pB, int iTab){
5540 int i;
5541 if( pA==0 && pB==0 ) return 0;
5542 if( pA==0 || pB==0 ) return 1;
5543 if( pA->nExpr!=pB->nExpr ) return 1;
5544 for(i=0; i<pA->nExpr; i++){
5545 int res;
5546 Expr *pExprA = pA->a[i].pExpr;
5547 Expr *pExprB = pB->a[i].pExpr;
5548 if( pA->a[i].sortFlags!=pB->a[i].sortFlags ) return 1;
5549 if( (res = sqlite3ExprCompare(0, pExprA, pExprB, iTab)) ) return res;
5551 return 0;
5555 ** Like sqlite3ExprCompare() except COLLATE operators at the top-level
5556 ** are ignored.
5558 int sqlite3ExprCompareSkip(Expr *pA,Expr *pB, int iTab){
5559 return sqlite3ExprCompare(0,
5560 sqlite3ExprSkipCollateAndLikely(pA),
5561 sqlite3ExprSkipCollateAndLikely(pB),
5562 iTab);
5566 ** Return non-zero if Expr p can only be true if pNN is not NULL.
5568 ** Or if seenNot is true, return non-zero if Expr p can only be
5569 ** non-NULL if pNN is not NULL
5571 static int exprImpliesNotNull(
5572 const Parse *pParse,/* Parsing context */
5573 const Expr *p, /* The expression to be checked */
5574 const Expr *pNN, /* The expression that is NOT NULL */
5575 int iTab, /* Table being evaluated */
5576 int seenNot /* Return true only if p can be any non-NULL value */
5578 assert( p );
5579 assert( pNN );
5580 if( sqlite3ExprCompare(pParse, p, pNN, iTab)==0 ){
5581 return pNN->op!=TK_NULL;
5583 switch( p->op ){
5584 case TK_IN: {
5585 if( seenNot && ExprHasProperty(p, EP_xIsSelect) ) return 0;
5586 assert( ExprUseXSelect(p) || (p->x.pList!=0 && p->x.pList->nExpr>0) );
5587 return exprImpliesNotNull(pParse, p->pLeft, pNN, iTab, 1);
5589 case TK_BETWEEN: {
5590 ExprList *pList;
5591 assert( ExprUseXList(p) );
5592 pList = p->x.pList;
5593 assert( pList!=0 );
5594 assert( pList->nExpr==2 );
5595 if( seenNot ) return 0;
5596 if( exprImpliesNotNull(pParse, pList->a[0].pExpr, pNN, iTab, 1)
5597 || exprImpliesNotNull(pParse, pList->a[1].pExpr, pNN, iTab, 1)
5599 return 1;
5601 return exprImpliesNotNull(pParse, p->pLeft, pNN, iTab, 1);
5603 case TK_EQ:
5604 case TK_NE:
5605 case TK_LT:
5606 case TK_LE:
5607 case TK_GT:
5608 case TK_GE:
5609 case TK_PLUS:
5610 case TK_MINUS:
5611 case TK_BITOR:
5612 case TK_LSHIFT:
5613 case TK_RSHIFT:
5614 case TK_CONCAT:
5615 seenNot = 1;
5616 /* no break */ deliberate_fall_through
5617 case TK_STAR:
5618 case TK_REM:
5619 case TK_BITAND:
5620 case TK_SLASH: {
5621 if( exprImpliesNotNull(pParse, p->pRight, pNN, iTab, seenNot) ) return 1;
5622 /* no break */ deliberate_fall_through
5624 case TK_SPAN:
5625 case TK_COLLATE:
5626 case TK_UPLUS:
5627 case TK_UMINUS: {
5628 return exprImpliesNotNull(pParse, p->pLeft, pNN, iTab, seenNot);
5630 case TK_TRUTH: {
5631 if( seenNot ) return 0;
5632 if( p->op2!=TK_IS ) return 0;
5633 return exprImpliesNotNull(pParse, p->pLeft, pNN, iTab, 1);
5635 case TK_BITNOT:
5636 case TK_NOT: {
5637 return exprImpliesNotNull(pParse, p->pLeft, pNN, iTab, 1);
5640 return 0;
5644 ** Return true if we can prove the pE2 will always be true if pE1 is
5645 ** true. Return false if we cannot complete the proof or if pE2 might
5646 ** be false. Examples:
5648 ** pE1: x==5 pE2: x==5 Result: true
5649 ** pE1: x>0 pE2: x==5 Result: false
5650 ** pE1: x=21 pE2: x=21 OR y=43 Result: true
5651 ** pE1: x!=123 pE2: x IS NOT NULL Result: true
5652 ** pE1: x!=?1 pE2: x IS NOT NULL Result: true
5653 ** pE1: x IS NULL pE2: x IS NOT NULL Result: false
5654 ** pE1: x IS ?2 pE2: x IS NOT NULL Reuslt: false
5656 ** When comparing TK_COLUMN nodes between pE1 and pE2, if pE2 has
5657 ** Expr.iTable<0 then assume a table number given by iTab.
5659 ** If pParse is not NULL, then the values of bound variables in pE1 are
5660 ** compared against literal values in pE2 and pParse->pVdbe->expmask is
5661 ** modified to record which bound variables are referenced. If pParse
5662 ** is NULL, then false will be returned if pE1 contains any bound variables.
5664 ** When in doubt, return false. Returning true might give a performance
5665 ** improvement. Returning false might cause a performance reduction, but
5666 ** it will always give the correct answer and is hence always safe.
5668 int sqlite3ExprImpliesExpr(
5669 const Parse *pParse,
5670 const Expr *pE1,
5671 const Expr *pE2,
5672 int iTab
5674 if( sqlite3ExprCompare(pParse, pE1, pE2, iTab)==0 ){
5675 return 1;
5677 if( pE2->op==TK_OR
5678 && (sqlite3ExprImpliesExpr(pParse, pE1, pE2->pLeft, iTab)
5679 || sqlite3ExprImpliesExpr(pParse, pE1, pE2->pRight, iTab) )
5681 return 1;
5683 if( pE2->op==TK_NOTNULL
5684 && exprImpliesNotNull(pParse, pE1, pE2->pLeft, iTab, 0)
5686 return 1;
5688 return 0;
5692 ** This is the Expr node callback for sqlite3ExprImpliesNonNullRow().
5693 ** If the expression node requires that the table at pWalker->iCur
5694 ** have one or more non-NULL column, then set pWalker->eCode to 1 and abort.
5696 ** This routine controls an optimization. False positives (setting
5697 ** pWalker->eCode to 1 when it should not be) are deadly, but false-negatives
5698 ** (never setting pWalker->eCode) is a harmless missed optimization.
5700 static int impliesNotNullRow(Walker *pWalker, Expr *pExpr){
5701 testcase( pExpr->op==TK_AGG_COLUMN );
5702 testcase( pExpr->op==TK_AGG_FUNCTION );
5703 if( ExprHasProperty(pExpr, EP_FromJoin) ) return WRC_Prune;
5704 switch( pExpr->op ){
5705 case TK_ISNOT:
5706 case TK_ISNULL:
5707 case TK_NOTNULL:
5708 case TK_IS:
5709 case TK_OR:
5710 case TK_VECTOR:
5711 case TK_CASE:
5712 case TK_IN:
5713 case TK_FUNCTION:
5714 case TK_TRUTH:
5715 testcase( pExpr->op==TK_ISNOT );
5716 testcase( pExpr->op==TK_ISNULL );
5717 testcase( pExpr->op==TK_NOTNULL );
5718 testcase( pExpr->op==TK_IS );
5719 testcase( pExpr->op==TK_OR );
5720 testcase( pExpr->op==TK_VECTOR );
5721 testcase( pExpr->op==TK_CASE );
5722 testcase( pExpr->op==TK_IN );
5723 testcase( pExpr->op==TK_FUNCTION );
5724 testcase( pExpr->op==TK_TRUTH );
5725 return WRC_Prune;
5726 case TK_COLUMN:
5727 if( pWalker->u.iCur==pExpr->iTable ){
5728 pWalker->eCode = 1;
5729 return WRC_Abort;
5731 return WRC_Prune;
5733 case TK_AND:
5734 if( pWalker->eCode==0 ){
5735 sqlite3WalkExpr(pWalker, pExpr->pLeft);
5736 if( pWalker->eCode ){
5737 pWalker->eCode = 0;
5738 sqlite3WalkExpr(pWalker, pExpr->pRight);
5741 return WRC_Prune;
5743 case TK_BETWEEN:
5744 if( sqlite3WalkExpr(pWalker, pExpr->pLeft)==WRC_Abort ){
5745 assert( pWalker->eCode );
5746 return WRC_Abort;
5748 return WRC_Prune;
5750 /* Virtual tables are allowed to use constraints like x=NULL. So
5751 ** a term of the form x=y does not prove that y is not null if x
5752 ** is the column of a virtual table */
5753 case TK_EQ:
5754 case TK_NE:
5755 case TK_LT:
5756 case TK_LE:
5757 case TK_GT:
5758 case TK_GE: {
5759 Expr *pLeft = pExpr->pLeft;
5760 Expr *pRight = pExpr->pRight;
5761 testcase( pExpr->op==TK_EQ );
5762 testcase( pExpr->op==TK_NE );
5763 testcase( pExpr->op==TK_LT );
5764 testcase( pExpr->op==TK_LE );
5765 testcase( pExpr->op==TK_GT );
5766 testcase( pExpr->op==TK_GE );
5767 /* The y.pTab=0 assignment in wherecode.c always happens after the
5768 ** impliesNotNullRow() test */
5769 assert( pLeft->op!=TK_COLUMN || ExprUseYTab(pLeft) );
5770 assert( pRight->op!=TK_COLUMN || ExprUseYTab(pRight) );
5771 if( (pLeft->op==TK_COLUMN
5772 && pLeft->y.pTab!=0
5773 && IsVirtual(pLeft->y.pTab))
5774 || (pRight->op==TK_COLUMN
5775 && pRight->y.pTab!=0
5776 && IsVirtual(pRight->y.pTab))
5778 return WRC_Prune;
5780 /* no break */ deliberate_fall_through
5782 default:
5783 return WRC_Continue;
5788 ** Return true (non-zero) if expression p can only be true if at least
5789 ** one column of table iTab is non-null. In other words, return true
5790 ** if expression p will always be NULL or false if every column of iTab
5791 ** is NULL.
5793 ** False negatives are acceptable. In other words, it is ok to return
5794 ** zero even if expression p will never be true of every column of iTab
5795 ** is NULL. A false negative is merely a missed optimization opportunity.
5797 ** False positives are not allowed, however. A false positive may result
5798 ** in an incorrect answer.
5800 ** Terms of p that are marked with EP_FromJoin (and hence that come from
5801 ** the ON or USING clauses of LEFT JOINS) are excluded from the analysis.
5803 ** This routine is used to check if a LEFT JOIN can be converted into
5804 ** an ordinary JOIN. The p argument is the WHERE clause. If the WHERE
5805 ** clause requires that some column of the right table of the LEFT JOIN
5806 ** be non-NULL, then the LEFT JOIN can be safely converted into an
5807 ** ordinary join.
5809 int sqlite3ExprImpliesNonNullRow(Expr *p, int iTab){
5810 Walker w;
5811 p = sqlite3ExprSkipCollateAndLikely(p);
5812 if( p==0 ) return 0;
5813 if( p->op==TK_NOTNULL ){
5814 p = p->pLeft;
5815 }else{
5816 while( p->op==TK_AND ){
5817 if( sqlite3ExprImpliesNonNullRow(p->pLeft, iTab) ) return 1;
5818 p = p->pRight;
5821 w.xExprCallback = impliesNotNullRow;
5822 w.xSelectCallback = 0;
5823 w.xSelectCallback2 = 0;
5824 w.eCode = 0;
5825 w.u.iCur = iTab;
5826 sqlite3WalkExpr(&w, p);
5827 return w.eCode;
5831 ** An instance of the following structure is used by the tree walker
5832 ** to determine if an expression can be evaluated by reference to the
5833 ** index only, without having to do a search for the corresponding
5834 ** table entry. The IdxCover.pIdx field is the index. IdxCover.iCur
5835 ** is the cursor for the table.
5837 struct IdxCover {
5838 Index *pIdx; /* The index to be tested for coverage */
5839 int iCur; /* Cursor number for the table corresponding to the index */
5843 ** Check to see if there are references to columns in table
5844 ** pWalker->u.pIdxCover->iCur can be satisfied using the index
5845 ** pWalker->u.pIdxCover->pIdx.
5847 static int exprIdxCover(Walker *pWalker, Expr *pExpr){
5848 if( pExpr->op==TK_COLUMN
5849 && pExpr->iTable==pWalker->u.pIdxCover->iCur
5850 && sqlite3TableColumnToIndex(pWalker->u.pIdxCover->pIdx, pExpr->iColumn)<0
5852 pWalker->eCode = 1;
5853 return WRC_Abort;
5855 return WRC_Continue;
5859 ** Determine if an index pIdx on table with cursor iCur contains will
5860 ** the expression pExpr. Return true if the index does cover the
5861 ** expression and false if the pExpr expression references table columns
5862 ** that are not found in the index pIdx.
5864 ** An index covering an expression means that the expression can be
5865 ** evaluated using only the index and without having to lookup the
5866 ** corresponding table entry.
5868 int sqlite3ExprCoveredByIndex(
5869 Expr *pExpr, /* The index to be tested */
5870 int iCur, /* The cursor number for the corresponding table */
5871 Index *pIdx /* The index that might be used for coverage */
5873 Walker w;
5874 struct IdxCover xcov;
5875 memset(&w, 0, sizeof(w));
5876 xcov.iCur = iCur;
5877 xcov.pIdx = pIdx;
5878 w.xExprCallback = exprIdxCover;
5879 w.u.pIdxCover = &xcov;
5880 sqlite3WalkExpr(&w, pExpr);
5881 return !w.eCode;
5885 /* Structure used to pass information throught the Walker in order to
5886 ** implement sqlite3ReferencesSrcList().
5888 struct RefSrcList {
5889 sqlite3 *db; /* Database connection used for sqlite3DbRealloc() */
5890 SrcList *pRef; /* Looking for references to these tables */
5891 i64 nExclude; /* Number of tables to exclude from the search */
5892 int *aiExclude; /* Cursor IDs for tables to exclude from the search */
5896 ** Walker SELECT callbacks for sqlite3ReferencesSrcList().
5898 ** When entering a new subquery on the pExpr argument, add all FROM clause
5899 ** entries for that subquery to the exclude list.
5901 ** When leaving the subquery, remove those entries from the exclude list.
5903 static int selectRefEnter(Walker *pWalker, Select *pSelect){
5904 struct RefSrcList *p = pWalker->u.pRefSrcList;
5905 SrcList *pSrc = pSelect->pSrc;
5906 i64 i, j;
5907 int *piNew;
5908 if( pSrc->nSrc==0 ) return WRC_Continue;
5909 j = p->nExclude;
5910 p->nExclude += pSrc->nSrc;
5911 piNew = sqlite3DbRealloc(p->db, p->aiExclude, p->nExclude*sizeof(int));
5912 if( piNew==0 ){
5913 p->nExclude = 0;
5914 return WRC_Abort;
5915 }else{
5916 p->aiExclude = piNew;
5918 for(i=0; i<pSrc->nSrc; i++, j++){
5919 p->aiExclude[j] = pSrc->a[i].iCursor;
5921 return WRC_Continue;
5923 static void selectRefLeave(Walker *pWalker, Select *pSelect){
5924 struct RefSrcList *p = pWalker->u.pRefSrcList;
5925 SrcList *pSrc = pSelect->pSrc;
5926 if( p->nExclude ){
5927 assert( p->nExclude>=pSrc->nSrc );
5928 p->nExclude -= pSrc->nSrc;
5932 /* This is the Walker EXPR callback for sqlite3ReferencesSrcList().
5934 ** Set the 0x01 bit of pWalker->eCode if there is a reference to any
5935 ** of the tables shown in RefSrcList.pRef.
5937 ** Set the 0x02 bit of pWalker->eCode if there is a reference to a
5938 ** table is in neither RefSrcList.pRef nor RefSrcList.aiExclude.
5940 static int exprRefToSrcList(Walker *pWalker, Expr *pExpr){
5941 if( pExpr->op==TK_COLUMN
5942 || pExpr->op==TK_AGG_COLUMN
5944 int i;
5945 struct RefSrcList *p = pWalker->u.pRefSrcList;
5946 SrcList *pSrc = p->pRef;
5947 int nSrc = pSrc ? pSrc->nSrc : 0;
5948 for(i=0; i<nSrc; i++){
5949 if( pExpr->iTable==pSrc->a[i].iCursor ){
5950 pWalker->eCode |= 1;
5951 return WRC_Continue;
5954 for(i=0; i<p->nExclude && p->aiExclude[i]!=pExpr->iTable; i++){}
5955 if( i>=p->nExclude ){
5956 pWalker->eCode |= 2;
5959 return WRC_Continue;
5963 ** Check to see if pExpr references any tables in pSrcList.
5964 ** Possible return values:
5966 ** 1 pExpr does references a table in pSrcList.
5968 ** 0 pExpr references some table that is not defined in either
5969 ** pSrcList or in subqueries of pExpr itself.
5971 ** -1 pExpr only references no tables at all, or it only
5972 ** references tables defined in subqueries of pExpr itself.
5974 ** As currently used, pExpr is always an aggregate function call. That
5975 ** fact is exploited for efficiency.
5977 int sqlite3ReferencesSrcList(Parse *pParse, Expr *pExpr, SrcList *pSrcList){
5978 Walker w;
5979 struct RefSrcList x;
5980 memset(&w, 0, sizeof(w));
5981 memset(&x, 0, sizeof(x));
5982 w.xExprCallback = exprRefToSrcList;
5983 w.xSelectCallback = selectRefEnter;
5984 w.xSelectCallback2 = selectRefLeave;
5985 w.u.pRefSrcList = &x;
5986 x.db = pParse->db;
5987 x.pRef = pSrcList;
5988 assert( pExpr->op==TK_AGG_FUNCTION );
5989 assert( ExprUseXList(pExpr) );
5990 sqlite3WalkExprList(&w, pExpr->x.pList);
5991 #ifndef SQLITE_OMIT_WINDOWFUNC
5992 if( ExprHasProperty(pExpr, EP_WinFunc) ){
5993 sqlite3WalkExpr(&w, pExpr->y.pWin->pFilter);
5995 #endif
5996 sqlite3DbFree(pParse->db, x.aiExclude);
5997 if( w.eCode & 0x01 ){
5998 return 1;
5999 }else if( w.eCode ){
6000 return 0;
6001 }else{
6002 return -1;
6007 ** This is a Walker expression node callback.
6009 ** For Expr nodes that contain pAggInfo pointers, make sure the AggInfo
6010 ** object that is referenced does not refer directly to the Expr. If
6011 ** it does, make a copy. This is done because the pExpr argument is
6012 ** subject to change.
6014 ** The copy is stored on pParse->pConstExpr with a register number of 0.
6015 ** This will cause the expression to be deleted automatically when the
6016 ** Parse object is destroyed, but the zero register number means that it
6017 ** will not generate any code in the preamble.
6019 static int agginfoPersistExprCb(Walker *pWalker, Expr *pExpr){
6020 if( ALWAYS(!ExprHasProperty(pExpr, EP_TokenOnly|EP_Reduced))
6021 && pExpr->pAggInfo!=0
6023 AggInfo *pAggInfo = pExpr->pAggInfo;
6024 int iAgg = pExpr->iAgg;
6025 Parse *pParse = pWalker->pParse;
6026 sqlite3 *db = pParse->db;
6027 assert( pExpr->op==TK_AGG_COLUMN || pExpr->op==TK_AGG_FUNCTION );
6028 if( pExpr->op==TK_AGG_COLUMN ){
6029 assert( iAgg>=0 && iAgg<pAggInfo->nColumn );
6030 if( pAggInfo->aCol[iAgg].pCExpr==pExpr ){
6031 pExpr = sqlite3ExprDup(db, pExpr, 0);
6032 if( pExpr ){
6033 pAggInfo->aCol[iAgg].pCExpr = pExpr;
6034 sqlite3ExprDeferredDelete(pParse, pExpr);
6037 }else{
6038 assert( iAgg>=0 && iAgg<pAggInfo->nFunc );
6039 if( pAggInfo->aFunc[iAgg].pFExpr==pExpr ){
6040 pExpr = sqlite3ExprDup(db, pExpr, 0);
6041 if( pExpr ){
6042 pAggInfo->aFunc[iAgg].pFExpr = pExpr;
6043 sqlite3ExprDeferredDelete(pParse, pExpr);
6048 return WRC_Continue;
6052 ** Initialize a Walker object so that will persist AggInfo entries referenced
6053 ** by the tree that is walked.
6055 void sqlite3AggInfoPersistWalkerInit(Walker *pWalker, Parse *pParse){
6056 memset(pWalker, 0, sizeof(*pWalker));
6057 pWalker->pParse = pParse;
6058 pWalker->xExprCallback = agginfoPersistExprCb;
6059 pWalker->xSelectCallback = sqlite3SelectWalkNoop;
6063 ** Add a new element to the pAggInfo->aCol[] array. Return the index of
6064 ** the new element. Return a negative number if malloc fails.
6066 static int addAggInfoColumn(sqlite3 *db, AggInfo *pInfo){
6067 int i;
6068 pInfo->aCol = sqlite3ArrayAllocate(
6070 pInfo->aCol,
6071 sizeof(pInfo->aCol[0]),
6072 &pInfo->nColumn,
6075 return i;
6079 ** Add a new element to the pAggInfo->aFunc[] array. Return the index of
6080 ** the new element. Return a negative number if malloc fails.
6082 static int addAggInfoFunc(sqlite3 *db, AggInfo *pInfo){
6083 int i;
6084 pInfo->aFunc = sqlite3ArrayAllocate(
6085 db,
6086 pInfo->aFunc,
6087 sizeof(pInfo->aFunc[0]),
6088 &pInfo->nFunc,
6091 return i;
6095 ** This is the xExprCallback for a tree walker. It is used to
6096 ** implement sqlite3ExprAnalyzeAggregates(). See sqlite3ExprAnalyzeAggregates
6097 ** for additional information.
6099 static int analyzeAggregate(Walker *pWalker, Expr *pExpr){
6100 int i;
6101 NameContext *pNC = pWalker->u.pNC;
6102 Parse *pParse = pNC->pParse;
6103 SrcList *pSrcList = pNC->pSrcList;
6104 AggInfo *pAggInfo = pNC->uNC.pAggInfo;
6106 assert( pNC->ncFlags & NC_UAggInfo );
6107 switch( pExpr->op ){
6108 case TK_AGG_COLUMN:
6109 case TK_COLUMN: {
6110 testcase( pExpr->op==TK_AGG_COLUMN );
6111 testcase( pExpr->op==TK_COLUMN );
6112 /* Check to see if the column is in one of the tables in the FROM
6113 ** clause of the aggregate query */
6114 if( ALWAYS(pSrcList!=0) ){
6115 SrcItem *pItem = pSrcList->a;
6116 for(i=0; i<pSrcList->nSrc; i++, pItem++){
6117 struct AggInfo_col *pCol;
6118 assert( !ExprHasProperty(pExpr, EP_TokenOnly|EP_Reduced) );
6119 if( pExpr->iTable==pItem->iCursor ){
6120 /* If we reach this point, it means that pExpr refers to a table
6121 ** that is in the FROM clause of the aggregate query.
6123 ** Make an entry for the column in pAggInfo->aCol[] if there
6124 ** is not an entry there already.
6126 int k;
6127 pCol = pAggInfo->aCol;
6128 for(k=0; k<pAggInfo->nColumn; k++, pCol++){
6129 if( pCol->iTable==pExpr->iTable &&
6130 pCol->iColumn==pExpr->iColumn ){
6131 break;
6134 if( (k>=pAggInfo->nColumn)
6135 && (k = addAggInfoColumn(pParse->db, pAggInfo))>=0
6137 pCol = &pAggInfo->aCol[k];
6138 assert( ExprUseYTab(pExpr) );
6139 pCol->pTab = pExpr->y.pTab;
6140 pCol->iTable = pExpr->iTable;
6141 pCol->iColumn = pExpr->iColumn;
6142 pCol->iMem = ++pParse->nMem;
6143 pCol->iSorterColumn = -1;
6144 pCol->pCExpr = pExpr;
6145 if( pAggInfo->pGroupBy ){
6146 int j, n;
6147 ExprList *pGB = pAggInfo->pGroupBy;
6148 struct ExprList_item *pTerm = pGB->a;
6149 n = pGB->nExpr;
6150 for(j=0; j<n; j++, pTerm++){
6151 Expr *pE = pTerm->pExpr;
6152 if( pE->op==TK_COLUMN && pE->iTable==pExpr->iTable &&
6153 pE->iColumn==pExpr->iColumn ){
6154 pCol->iSorterColumn = j;
6155 break;
6159 if( pCol->iSorterColumn<0 ){
6160 pCol->iSorterColumn = pAggInfo->nSortingColumn++;
6163 /* There is now an entry for pExpr in pAggInfo->aCol[] (either
6164 ** because it was there before or because we just created it).
6165 ** Convert the pExpr to be a TK_AGG_COLUMN referring to that
6166 ** pAggInfo->aCol[] entry.
6168 ExprSetVVAProperty(pExpr, EP_NoReduce);
6169 pExpr->pAggInfo = pAggInfo;
6170 pExpr->op = TK_AGG_COLUMN;
6171 pExpr->iAgg = (i16)k;
6172 break;
6173 } /* endif pExpr->iTable==pItem->iCursor */
6174 } /* end loop over pSrcList */
6176 return WRC_Prune;
6178 case TK_AGG_FUNCTION: {
6179 if( (pNC->ncFlags & NC_InAggFunc)==0
6180 && pWalker->walkerDepth==pExpr->op2
6182 /* Check to see if pExpr is a duplicate of another aggregate
6183 ** function that is already in the pAggInfo structure
6185 struct AggInfo_func *pItem = pAggInfo->aFunc;
6186 for(i=0; i<pAggInfo->nFunc; i++, pItem++){
6187 if( pItem->pFExpr==pExpr ) break;
6188 if( sqlite3ExprCompare(0, pItem->pFExpr, pExpr, -1)==0 ){
6189 break;
6192 if( i>=pAggInfo->nFunc ){
6193 /* pExpr is original. Make a new entry in pAggInfo->aFunc[]
6195 u8 enc = ENC(pParse->db);
6196 i = addAggInfoFunc(pParse->db, pAggInfo);
6197 if( i>=0 ){
6198 assert( !ExprHasProperty(pExpr, EP_xIsSelect) );
6199 pItem = &pAggInfo->aFunc[i];
6200 pItem->pFExpr = pExpr;
6201 pItem->iMem = ++pParse->nMem;
6202 assert( ExprUseUToken(pExpr) );
6203 pItem->pFunc = sqlite3FindFunction(pParse->db,
6204 pExpr->u.zToken,
6205 pExpr->x.pList ? pExpr->x.pList->nExpr : 0, enc, 0);
6206 if( pExpr->flags & EP_Distinct ){
6207 pItem->iDistinct = pParse->nTab++;
6208 }else{
6209 pItem->iDistinct = -1;
6213 /* Make pExpr point to the appropriate pAggInfo->aFunc[] entry
6215 assert( !ExprHasProperty(pExpr, EP_TokenOnly|EP_Reduced) );
6216 ExprSetVVAProperty(pExpr, EP_NoReduce);
6217 pExpr->iAgg = (i16)i;
6218 pExpr->pAggInfo = pAggInfo;
6219 return WRC_Prune;
6220 }else{
6221 return WRC_Continue;
6225 return WRC_Continue;
6229 ** Analyze the pExpr expression looking for aggregate functions and
6230 ** for variables that need to be added to AggInfo object that pNC->pAggInfo
6231 ** points to. Additional entries are made on the AggInfo object as
6232 ** necessary.
6234 ** This routine should only be called after the expression has been
6235 ** analyzed by sqlite3ResolveExprNames().
6237 void sqlite3ExprAnalyzeAggregates(NameContext *pNC, Expr *pExpr){
6238 Walker w;
6239 w.xExprCallback = analyzeAggregate;
6240 w.xSelectCallback = sqlite3WalkerDepthIncrease;
6241 w.xSelectCallback2 = sqlite3WalkerDepthDecrease;
6242 w.walkerDepth = 0;
6243 w.u.pNC = pNC;
6244 w.pParse = 0;
6245 assert( pNC->pSrcList!=0 );
6246 sqlite3WalkExpr(&w, pExpr);
6250 ** Call sqlite3ExprAnalyzeAggregates() for every expression in an
6251 ** expression list. Return the number of errors.
6253 ** If an error is found, the analysis is cut short.
6255 void sqlite3ExprAnalyzeAggList(NameContext *pNC, ExprList *pList){
6256 struct ExprList_item *pItem;
6257 int i;
6258 if( pList ){
6259 for(pItem=pList->a, i=0; i<pList->nExpr; i++, pItem++){
6260 sqlite3ExprAnalyzeAggregates(pNC, pItem->pExpr);
6266 ** Allocate a single new register for use to hold some intermediate result.
6268 int sqlite3GetTempReg(Parse *pParse){
6269 if( pParse->nTempReg==0 ){
6270 return ++pParse->nMem;
6272 return pParse->aTempReg[--pParse->nTempReg];
6276 ** Deallocate a register, making available for reuse for some other
6277 ** purpose.
6279 void sqlite3ReleaseTempReg(Parse *pParse, int iReg){
6280 if( iReg ){
6281 sqlite3VdbeReleaseRegisters(pParse, iReg, 1, 0, 0);
6282 if( pParse->nTempReg<ArraySize(pParse->aTempReg) ){
6283 pParse->aTempReg[pParse->nTempReg++] = iReg;
6289 ** Allocate or deallocate a block of nReg consecutive registers.
6291 int sqlite3GetTempRange(Parse *pParse, int nReg){
6292 int i, n;
6293 if( nReg==1 ) return sqlite3GetTempReg(pParse);
6294 i = pParse->iRangeReg;
6295 n = pParse->nRangeReg;
6296 if( nReg<=n ){
6297 pParse->iRangeReg += nReg;
6298 pParse->nRangeReg -= nReg;
6299 }else{
6300 i = pParse->nMem+1;
6301 pParse->nMem += nReg;
6303 return i;
6305 void sqlite3ReleaseTempRange(Parse *pParse, int iReg, int nReg){
6306 if( nReg==1 ){
6307 sqlite3ReleaseTempReg(pParse, iReg);
6308 return;
6310 sqlite3VdbeReleaseRegisters(pParse, iReg, nReg, 0, 0);
6311 if( nReg>pParse->nRangeReg ){
6312 pParse->nRangeReg = nReg;
6313 pParse->iRangeReg = iReg;
6318 ** Mark all temporary registers as being unavailable for reuse.
6320 ** Always invoke this procedure after coding a subroutine or co-routine
6321 ** that might be invoked from other parts of the code, to ensure that
6322 ** the sub/co-routine does not use registers in common with the code that
6323 ** invokes the sub/co-routine.
6325 void sqlite3ClearTempRegCache(Parse *pParse){
6326 pParse->nTempReg = 0;
6327 pParse->nRangeReg = 0;
6331 ** Validate that no temporary register falls within the range of
6332 ** iFirst..iLast, inclusive. This routine is only call from within assert()
6333 ** statements.
6335 #ifdef SQLITE_DEBUG
6336 int sqlite3NoTempsInRange(Parse *pParse, int iFirst, int iLast){
6337 int i;
6338 if( pParse->nRangeReg>0
6339 && pParse->iRangeReg+pParse->nRangeReg > iFirst
6340 && pParse->iRangeReg <= iLast
6342 return 0;
6344 for(i=0; i<pParse->nTempReg; i++){
6345 if( pParse->aTempReg[i]>=iFirst && pParse->aTempReg[i]<=iLast ){
6346 return 0;
6349 return 1;
6351 #endif /* SQLITE_DEBUG */