Fixes default log output to console for macOS
[sqlcipher.git] / src / expr.c
blob27f89d659dd9380c9e7b98643642efbd6c4bf18d
1 /*
2 ** 2001 September 15
3 **
4 ** The author disclaims copyright to this source code. In place of
5 ** a legal notice, here is a blessing:
6 **
7 ** May you do good and not evil.
8 ** May you find forgiveness for yourself and forgive others.
9 ** May you share freely, never taking more than you give.
11 *************************************************************************
12 ** This file contains routines used for analyzing expressions and
13 ** for generating VDBE code that evaluates expressions in SQLite.
15 #include "sqliteInt.h"
17 /* Forward declarations */
18 static void exprCodeBetween(Parse*,Expr*,int,void(*)(Parse*,Expr*,int,int),int);
19 static int exprCodeVector(Parse *pParse, Expr *p, int *piToFree);
22 ** Return the affinity character for a single column of a table.
24 char sqlite3TableColumnAffinity(const Table *pTab, int iCol){
25 if( iCol<0 || NEVER(iCol>=pTab->nCol) ) return SQLITE_AFF_INTEGER;
26 return pTab->aCol[iCol].affinity;
30 ** Return the 'affinity' of the expression pExpr if any.
32 ** If pExpr is a column, a reference to a column via an 'AS' alias,
33 ** or a sub-select with a column as the return value, then the
34 ** affinity of that column is returned. Otherwise, 0x00 is returned,
35 ** indicating no affinity for the expression.
37 ** i.e. the WHERE clause expressions in the following statements all
38 ** have an affinity:
40 ** CREATE TABLE t1(a);
41 ** SELECT * FROM t1 WHERE a;
42 ** SELECT a AS b FROM t1 WHERE b;
43 ** SELECT * FROM t1 WHERE (select a from t1);
45 char sqlite3ExprAffinity(const Expr *pExpr){
46 int op;
47 op = pExpr->op;
48 while( 1 /* exit-by-break */ ){
49 if( op==TK_COLUMN || (op==TK_AGG_COLUMN && pExpr->y.pTab!=0) ){
50 assert( ExprUseYTab(pExpr) );
51 assert( pExpr->y.pTab!=0 );
52 return sqlite3TableColumnAffinity(pExpr->y.pTab, pExpr->iColumn);
54 if( op==TK_SELECT ){
55 assert( ExprUseXSelect(pExpr) );
56 assert( pExpr->x.pSelect!=0 );
57 assert( pExpr->x.pSelect->pEList!=0 );
58 assert( pExpr->x.pSelect->pEList->a[0].pExpr!=0 );
59 return sqlite3ExprAffinity(pExpr->x.pSelect->pEList->a[0].pExpr);
61 #ifndef SQLITE_OMIT_CAST
62 if( op==TK_CAST ){
63 assert( !ExprHasProperty(pExpr, EP_IntValue) );
64 return sqlite3AffinityType(pExpr->u.zToken, 0);
66 #endif
67 if( op==TK_SELECT_COLUMN ){
68 assert( pExpr->pLeft!=0 && ExprUseXSelect(pExpr->pLeft) );
69 assert( pExpr->iColumn < pExpr->iTable );
70 assert( pExpr->iColumn >= 0 );
71 assert( pExpr->iTable==pExpr->pLeft->x.pSelect->pEList->nExpr );
72 return sqlite3ExprAffinity(
73 pExpr->pLeft->x.pSelect->pEList->a[pExpr->iColumn].pExpr
76 if( op==TK_VECTOR ){
77 assert( ExprUseXList(pExpr) );
78 return sqlite3ExprAffinity(pExpr->x.pList->a[0].pExpr);
80 if( ExprHasProperty(pExpr, EP_Skip|EP_IfNullRow) ){
81 assert( pExpr->op==TK_COLLATE
82 || pExpr->op==TK_IF_NULL_ROW
83 || (pExpr->op==TK_REGISTER && pExpr->op2==TK_IF_NULL_ROW) );
84 pExpr = pExpr->pLeft;
85 op = pExpr->op;
86 continue;
88 if( op!=TK_REGISTER || (op = pExpr->op2)==TK_REGISTER ) break;
90 return pExpr->affExpr;
94 ** Make a guess at all the possible datatypes of the result that could
95 ** be returned by an expression. Return a bitmask indicating the answer:
97 ** 0x01 Numeric
98 ** 0x02 Text
99 ** 0x04 Blob
101 ** If the expression must return NULL, then 0x00 is returned.
103 int sqlite3ExprDataType(const Expr *pExpr){
104 while( pExpr ){
105 switch( pExpr->op ){
106 case TK_COLLATE:
107 case TK_IF_NULL_ROW:
108 case TK_UPLUS: {
109 pExpr = pExpr->pLeft;
110 break;
112 case TK_NULL: {
113 pExpr = 0;
114 break;
116 case TK_STRING: {
117 return 0x02;
119 case TK_BLOB: {
120 return 0x04;
122 case TK_CONCAT: {
123 return 0x06;
125 case TK_VARIABLE:
126 case TK_AGG_FUNCTION:
127 case TK_FUNCTION: {
128 return 0x07;
130 case TK_COLUMN:
131 case TK_AGG_COLUMN:
132 case TK_SELECT:
133 case TK_CAST:
134 case TK_SELECT_COLUMN:
135 case TK_VECTOR: {
136 int aff = sqlite3ExprAffinity(pExpr);
137 if( aff>=SQLITE_AFF_NUMERIC ) return 0x05;
138 if( aff==SQLITE_AFF_TEXT ) return 0x06;
139 return 0x07;
141 case TK_CASE: {
142 int res = 0;
143 int ii;
144 ExprList *pList = pExpr->x.pList;
145 assert( ExprUseXList(pExpr) && pList!=0 );
146 assert( pList->nExpr > 0);
147 for(ii=1; ii<pList->nExpr; ii+=2){
148 res |= sqlite3ExprDataType(pList->a[ii].pExpr);
150 if( pList->nExpr % 2 ){
151 res |= sqlite3ExprDataType(pList->a[pList->nExpr-1].pExpr);
153 return res;
155 default: {
156 return 0x01;
158 } /* End of switch(op) */
159 } /* End of while(pExpr) */
160 return 0x00;
164 ** Set the collating sequence for expression pExpr to be the collating
165 ** sequence named by pToken. Return a pointer to a new Expr node that
166 ** implements the COLLATE operator.
168 ** If a memory allocation error occurs, that fact is recorded in pParse->db
169 ** and the pExpr parameter is returned unchanged.
171 Expr *sqlite3ExprAddCollateToken(
172 const Parse *pParse, /* Parsing context */
173 Expr *pExpr, /* Add the "COLLATE" clause to this expression */
174 const Token *pCollName, /* Name of collating sequence */
175 int dequote /* True to dequote pCollName */
177 if( pCollName->n>0 ){
178 Expr *pNew = sqlite3ExprAlloc(pParse->db, TK_COLLATE, pCollName, dequote);
179 if( pNew ){
180 pNew->pLeft = pExpr;
181 pNew->flags |= EP_Collate|EP_Skip;
182 pExpr = pNew;
185 return pExpr;
187 Expr *sqlite3ExprAddCollateString(
188 const Parse *pParse, /* Parsing context */
189 Expr *pExpr, /* Add the "COLLATE" clause to this expression */
190 const char *zC /* The collating sequence name */
192 Token s;
193 assert( zC!=0 );
194 sqlite3TokenInit(&s, (char*)zC);
195 return sqlite3ExprAddCollateToken(pParse, pExpr, &s, 0);
199 ** Skip over any TK_COLLATE operators.
201 Expr *sqlite3ExprSkipCollate(Expr *pExpr){
202 while( pExpr && ExprHasProperty(pExpr, EP_Skip) ){
203 assert( pExpr->op==TK_COLLATE );
204 pExpr = pExpr->pLeft;
206 return pExpr;
210 ** Skip over any TK_COLLATE operators and/or any unlikely()
211 ** or likelihood() or likely() functions at the root of an
212 ** expression.
214 Expr *sqlite3ExprSkipCollateAndLikely(Expr *pExpr){
215 while( pExpr && ExprHasProperty(pExpr, EP_Skip|EP_Unlikely) ){
216 if( ExprHasProperty(pExpr, EP_Unlikely) ){
217 assert( ExprUseXList(pExpr) );
218 assert( pExpr->x.pList->nExpr>0 );
219 assert( pExpr->op==TK_FUNCTION );
220 pExpr = pExpr->x.pList->a[0].pExpr;
221 }else if( pExpr->op==TK_COLLATE ){
222 pExpr = pExpr->pLeft;
223 }else{
224 break;
227 return pExpr;
231 ** Return the collation sequence for the expression pExpr. If
232 ** there is no defined collating sequence, return NULL.
234 ** See also: sqlite3ExprNNCollSeq()
236 ** The sqlite3ExprNNCollSeq() works the same exact that it returns the
237 ** default collation if pExpr has no defined collation.
239 ** The collating sequence might be determined by a COLLATE operator
240 ** or by the presence of a column with a defined collating sequence.
241 ** COLLATE operators take first precedence. Left operands take
242 ** precedence over right operands.
244 CollSeq *sqlite3ExprCollSeq(Parse *pParse, const Expr *pExpr){
245 sqlite3 *db = pParse->db;
246 CollSeq *pColl = 0;
247 const Expr *p = pExpr;
248 while( p ){
249 int op = p->op;
250 if( op==TK_REGISTER ) op = p->op2;
251 if( (op==TK_AGG_COLUMN && p->y.pTab!=0)
252 || op==TK_COLUMN || op==TK_TRIGGER
254 int j;
255 assert( ExprUseYTab(p) );
256 assert( p->y.pTab!=0 );
257 if( (j = p->iColumn)>=0 ){
258 const char *zColl = sqlite3ColumnColl(&p->y.pTab->aCol[j]);
259 pColl = sqlite3FindCollSeq(db, ENC(db), zColl, 0);
261 break;
263 if( op==TK_CAST || op==TK_UPLUS ){
264 p = p->pLeft;
265 continue;
267 if( op==TK_VECTOR ){
268 assert( ExprUseXList(p) );
269 p = p->x.pList->a[0].pExpr;
270 continue;
272 if( op==TK_COLLATE ){
273 assert( !ExprHasProperty(p, EP_IntValue) );
274 pColl = sqlite3GetCollSeq(pParse, ENC(db), 0, p->u.zToken);
275 break;
277 if( p->flags & EP_Collate ){
278 if( p->pLeft && (p->pLeft->flags & EP_Collate)!=0 ){
279 p = p->pLeft;
280 }else{
281 Expr *pNext = p->pRight;
282 /* The Expr.x union is never used at the same time as Expr.pRight */
283 assert( !ExprUseXList(p) || p->x.pList==0 || p->pRight==0 );
284 if( ExprUseXList(p) && p->x.pList!=0 && !db->mallocFailed ){
285 int i;
286 for(i=0; i<p->x.pList->nExpr; i++){
287 if( ExprHasProperty(p->x.pList->a[i].pExpr, EP_Collate) ){
288 pNext = p->x.pList->a[i].pExpr;
289 break;
293 p = pNext;
295 }else{
296 break;
299 if( sqlite3CheckCollSeq(pParse, pColl) ){
300 pColl = 0;
302 return pColl;
306 ** Return the collation sequence for the expression pExpr. If
307 ** there is no defined collating sequence, return a pointer to the
308 ** default collation sequence.
310 ** See also: sqlite3ExprCollSeq()
312 ** The sqlite3ExprCollSeq() routine works the same except that it
313 ** returns NULL if there is no defined collation.
315 CollSeq *sqlite3ExprNNCollSeq(Parse *pParse, const Expr *pExpr){
316 CollSeq *p = sqlite3ExprCollSeq(pParse, pExpr);
317 if( p==0 ) p = pParse->db->pDfltColl;
318 assert( p!=0 );
319 return p;
323 ** Return TRUE if the two expressions have equivalent collating sequences.
325 int sqlite3ExprCollSeqMatch(Parse *pParse, const Expr *pE1, const Expr *pE2){
326 CollSeq *pColl1 = sqlite3ExprNNCollSeq(pParse, pE1);
327 CollSeq *pColl2 = sqlite3ExprNNCollSeq(pParse, pE2);
328 return sqlite3StrICmp(pColl1->zName, pColl2->zName)==0;
332 ** pExpr is an operand of a comparison operator. aff2 is the
333 ** type affinity of the other operand. This routine returns the
334 ** type affinity that should be used for the comparison operator.
336 char sqlite3CompareAffinity(const Expr *pExpr, char aff2){
337 char aff1 = sqlite3ExprAffinity(pExpr);
338 if( aff1>SQLITE_AFF_NONE && aff2>SQLITE_AFF_NONE ){
339 /* Both sides of the comparison are columns. If one has numeric
340 ** affinity, use that. Otherwise use no affinity.
342 if( sqlite3IsNumericAffinity(aff1) || sqlite3IsNumericAffinity(aff2) ){
343 return SQLITE_AFF_NUMERIC;
344 }else{
345 return SQLITE_AFF_BLOB;
347 }else{
348 /* One side is a column, the other is not. Use the columns affinity. */
349 assert( aff1<=SQLITE_AFF_NONE || aff2<=SQLITE_AFF_NONE );
350 return (aff1<=SQLITE_AFF_NONE ? aff2 : aff1) | SQLITE_AFF_NONE;
355 ** pExpr is a comparison operator. Return the type affinity that should
356 ** be applied to both operands prior to doing the comparison.
358 static char comparisonAffinity(const Expr *pExpr){
359 char aff;
360 assert( pExpr->op==TK_EQ || pExpr->op==TK_IN || pExpr->op==TK_LT ||
361 pExpr->op==TK_GT || pExpr->op==TK_GE || pExpr->op==TK_LE ||
362 pExpr->op==TK_NE || pExpr->op==TK_IS || pExpr->op==TK_ISNOT );
363 assert( pExpr->pLeft );
364 aff = sqlite3ExprAffinity(pExpr->pLeft);
365 if( pExpr->pRight ){
366 aff = sqlite3CompareAffinity(pExpr->pRight, aff);
367 }else if( ExprUseXSelect(pExpr) ){
368 aff = sqlite3CompareAffinity(pExpr->x.pSelect->pEList->a[0].pExpr, aff);
369 }else if( aff==0 ){
370 aff = SQLITE_AFF_BLOB;
372 return aff;
376 ** pExpr is a comparison expression, eg. '=', '<', IN(...) etc.
377 ** idx_affinity is the affinity of an indexed column. Return true
378 ** if the index with affinity idx_affinity may be used to implement
379 ** the comparison in pExpr.
381 int sqlite3IndexAffinityOk(const Expr *pExpr, char idx_affinity){
382 char aff = comparisonAffinity(pExpr);
383 if( aff<SQLITE_AFF_TEXT ){
384 return 1;
386 if( aff==SQLITE_AFF_TEXT ){
387 return idx_affinity==SQLITE_AFF_TEXT;
389 return sqlite3IsNumericAffinity(idx_affinity);
393 ** Return the P5 value that should be used for a binary comparison
394 ** opcode (OP_Eq, OP_Ge etc.) used to compare pExpr1 and pExpr2.
396 static u8 binaryCompareP5(
397 const Expr *pExpr1, /* Left operand */
398 const Expr *pExpr2, /* Right operand */
399 int jumpIfNull /* Extra flags added to P5 */
401 u8 aff = (char)sqlite3ExprAffinity(pExpr2);
402 aff = (u8)sqlite3CompareAffinity(pExpr1, aff) | (u8)jumpIfNull;
403 return aff;
407 ** Return a pointer to the collation sequence that should be used by
408 ** a binary comparison operator comparing pLeft and pRight.
410 ** If the left hand expression has a collating sequence type, then it is
411 ** used. Otherwise the collation sequence for the right hand expression
412 ** is used, or the default (BINARY) if neither expression has a collating
413 ** type.
415 ** Argument pRight (but not pLeft) may be a null pointer. In this case,
416 ** it is not considered.
418 CollSeq *sqlite3BinaryCompareCollSeq(
419 Parse *pParse,
420 const Expr *pLeft,
421 const Expr *pRight
423 CollSeq *pColl;
424 assert( pLeft );
425 if( pLeft->flags & EP_Collate ){
426 pColl = sqlite3ExprCollSeq(pParse, pLeft);
427 }else if( pRight && (pRight->flags & EP_Collate)!=0 ){
428 pColl = sqlite3ExprCollSeq(pParse, pRight);
429 }else{
430 pColl = sqlite3ExprCollSeq(pParse, pLeft);
431 if( !pColl ){
432 pColl = sqlite3ExprCollSeq(pParse, pRight);
435 return pColl;
438 /* Expression p is a comparison operator. Return a collation sequence
439 ** appropriate for the comparison operator.
441 ** This is normally just a wrapper around sqlite3BinaryCompareCollSeq().
442 ** However, if the OP_Commuted flag is set, then the order of the operands
443 ** is reversed in the sqlite3BinaryCompareCollSeq() call so that the
444 ** correct collating sequence is found.
446 CollSeq *sqlite3ExprCompareCollSeq(Parse *pParse, const Expr *p){
447 if( ExprHasProperty(p, EP_Commuted) ){
448 return sqlite3BinaryCompareCollSeq(pParse, p->pRight, p->pLeft);
449 }else{
450 return sqlite3BinaryCompareCollSeq(pParse, p->pLeft, p->pRight);
455 ** Generate code for a comparison operator.
457 static int codeCompare(
458 Parse *pParse, /* The parsing (and code generating) context */
459 Expr *pLeft, /* The left operand */
460 Expr *pRight, /* The right operand */
461 int opcode, /* The comparison opcode */
462 int in1, int in2, /* Register holding operands */
463 int dest, /* Jump here if true. */
464 int jumpIfNull, /* If true, jump if either operand is NULL */
465 int isCommuted /* The comparison has been commuted */
467 int p5;
468 int addr;
469 CollSeq *p4;
471 if( pParse->nErr ) return 0;
472 if( isCommuted ){
473 p4 = sqlite3BinaryCompareCollSeq(pParse, pRight, pLeft);
474 }else{
475 p4 = sqlite3BinaryCompareCollSeq(pParse, pLeft, pRight);
477 p5 = binaryCompareP5(pLeft, pRight, jumpIfNull);
478 addr = sqlite3VdbeAddOp4(pParse->pVdbe, opcode, in2, dest, in1,
479 (void*)p4, P4_COLLSEQ);
480 sqlite3VdbeChangeP5(pParse->pVdbe, (u8)p5);
481 return addr;
485 ** Return true if expression pExpr is a vector, or false otherwise.
487 ** A vector is defined as any expression that results in two or more
488 ** columns of result. Every TK_VECTOR node is an vector because the
489 ** parser will not generate a TK_VECTOR with fewer than two entries.
490 ** But a TK_SELECT might be either a vector or a scalar. It is only
491 ** considered a vector if it has two or more result columns.
493 int sqlite3ExprIsVector(const Expr *pExpr){
494 return sqlite3ExprVectorSize(pExpr)>1;
498 ** If the expression passed as the only argument is of type TK_VECTOR
499 ** return the number of expressions in the vector. Or, if the expression
500 ** is a sub-select, return the number of columns in the sub-select. For
501 ** any other type of expression, return 1.
503 int sqlite3ExprVectorSize(const Expr *pExpr){
504 u8 op = pExpr->op;
505 if( op==TK_REGISTER ) op = pExpr->op2;
506 if( op==TK_VECTOR ){
507 assert( ExprUseXList(pExpr) );
508 return pExpr->x.pList->nExpr;
509 }else if( op==TK_SELECT ){
510 assert( ExprUseXSelect(pExpr) );
511 return pExpr->x.pSelect->pEList->nExpr;
512 }else{
513 return 1;
518 ** Return a pointer to a subexpression of pVector that is the i-th
519 ** column of the vector (numbered starting with 0). The caller must
520 ** ensure that i is within range.
522 ** If pVector is really a scalar (and "scalar" here includes subqueries
523 ** that return a single column!) then return pVector unmodified.
525 ** pVector retains ownership of the returned subexpression.
527 ** If the vector is a (SELECT ...) then the expression returned is
528 ** just the expression for the i-th term of the result set, and may
529 ** not be ready for evaluation because the table cursor has not yet
530 ** been positioned.
532 Expr *sqlite3VectorFieldSubexpr(Expr *pVector, int i){
533 assert( i<sqlite3ExprVectorSize(pVector) || pVector->op==TK_ERROR );
534 if( sqlite3ExprIsVector(pVector) ){
535 assert( pVector->op2==0 || pVector->op==TK_REGISTER );
536 if( pVector->op==TK_SELECT || pVector->op2==TK_SELECT ){
537 assert( ExprUseXSelect(pVector) );
538 return pVector->x.pSelect->pEList->a[i].pExpr;
539 }else{
540 assert( ExprUseXList(pVector) );
541 return pVector->x.pList->a[i].pExpr;
544 return pVector;
548 ** Compute and return a new Expr object which when passed to
549 ** sqlite3ExprCode() will generate all necessary code to compute
550 ** the iField-th column of the vector expression pVector.
552 ** It is ok for pVector to be a scalar (as long as iField==0).
553 ** In that case, this routine works like sqlite3ExprDup().
555 ** The caller owns the returned Expr object and is responsible for
556 ** ensuring that the returned value eventually gets freed.
558 ** The caller retains ownership of pVector. If pVector is a TK_SELECT,
559 ** then the returned object will reference pVector and so pVector must remain
560 ** valid for the life of the returned object. If pVector is a TK_VECTOR
561 ** or a scalar expression, then it can be deleted as soon as this routine
562 ** returns.
564 ** A trick to cause a TK_SELECT pVector to be deleted together with
565 ** the returned Expr object is to attach the pVector to the pRight field
566 ** of the returned TK_SELECT_COLUMN Expr object.
568 Expr *sqlite3ExprForVectorField(
569 Parse *pParse, /* Parsing context */
570 Expr *pVector, /* The vector. List of expressions or a sub-SELECT */
571 int iField, /* Which column of the vector to return */
572 int nField /* Total number of columns in the vector */
574 Expr *pRet;
575 if( pVector->op==TK_SELECT ){
576 assert( ExprUseXSelect(pVector) );
577 /* The TK_SELECT_COLUMN Expr node:
579 ** pLeft: pVector containing TK_SELECT. Not deleted.
580 ** pRight: not used. But recursively deleted.
581 ** iColumn: Index of a column in pVector
582 ** iTable: 0 or the number of columns on the LHS of an assignment
583 ** pLeft->iTable: First in an array of register holding result, or 0
584 ** if the result is not yet computed.
586 ** sqlite3ExprDelete() specifically skips the recursive delete of
587 ** pLeft on TK_SELECT_COLUMN nodes. But pRight is followed, so pVector
588 ** can be attached to pRight to cause this node to take ownership of
589 ** pVector. Typically there will be multiple TK_SELECT_COLUMN nodes
590 ** with the same pLeft pointer to the pVector, but only one of them
591 ** will own the pVector.
593 pRet = sqlite3PExpr(pParse, TK_SELECT_COLUMN, 0, 0);
594 if( pRet ){
595 ExprSetProperty(pRet, EP_FullSize);
596 pRet->iTable = nField;
597 pRet->iColumn = iField;
598 pRet->pLeft = pVector;
600 }else{
601 if( pVector->op==TK_VECTOR ){
602 Expr **ppVector;
603 assert( ExprUseXList(pVector) );
604 ppVector = &pVector->x.pList->a[iField].pExpr;
605 pVector = *ppVector;
606 if( IN_RENAME_OBJECT ){
607 /* This must be a vector UPDATE inside a trigger */
608 *ppVector = 0;
609 return pVector;
612 pRet = sqlite3ExprDup(pParse->db, pVector, 0);
614 return pRet;
618 ** If expression pExpr is of type TK_SELECT, generate code to evaluate
619 ** it. Return the register in which the result is stored (or, if the
620 ** sub-select returns more than one column, the first in an array
621 ** of registers in which the result is stored).
623 ** If pExpr is not a TK_SELECT expression, return 0.
625 static int exprCodeSubselect(Parse *pParse, Expr *pExpr){
626 int reg = 0;
627 #ifndef SQLITE_OMIT_SUBQUERY
628 if( pExpr->op==TK_SELECT ){
629 reg = sqlite3CodeSubselect(pParse, pExpr);
631 #endif
632 return reg;
636 ** Argument pVector points to a vector expression - either a TK_VECTOR
637 ** or TK_SELECT that returns more than one column. This function returns
638 ** the register number of a register that contains the value of
639 ** element iField of the vector.
641 ** If pVector is a TK_SELECT expression, then code for it must have
642 ** already been generated using the exprCodeSubselect() routine. In this
643 ** case parameter regSelect should be the first in an array of registers
644 ** containing the results of the sub-select.
646 ** If pVector is of type TK_VECTOR, then code for the requested field
647 ** is generated. In this case (*pRegFree) may be set to the number of
648 ** a temporary register to be freed by the caller before returning.
650 ** Before returning, output parameter (*ppExpr) is set to point to the
651 ** Expr object corresponding to element iElem of the vector.
653 static int exprVectorRegister(
654 Parse *pParse, /* Parse context */
655 Expr *pVector, /* Vector to extract element from */
656 int iField, /* Field to extract from pVector */
657 int regSelect, /* First in array of registers */
658 Expr **ppExpr, /* OUT: Expression element */
659 int *pRegFree /* OUT: Temp register to free */
661 u8 op = pVector->op;
662 assert( op==TK_VECTOR || op==TK_REGISTER || op==TK_SELECT || op==TK_ERROR );
663 if( op==TK_REGISTER ){
664 *ppExpr = sqlite3VectorFieldSubexpr(pVector, iField);
665 return pVector->iTable+iField;
667 if( op==TK_SELECT ){
668 assert( ExprUseXSelect(pVector) );
669 *ppExpr = pVector->x.pSelect->pEList->a[iField].pExpr;
670 return regSelect+iField;
672 if( op==TK_VECTOR ){
673 assert( ExprUseXList(pVector) );
674 *ppExpr = pVector->x.pList->a[iField].pExpr;
675 return sqlite3ExprCodeTemp(pParse, *ppExpr, pRegFree);
677 return 0;
681 ** Expression pExpr is a comparison between two vector values. Compute
682 ** the result of the comparison (1, 0, or NULL) and write that
683 ** result into register dest.
685 ** The caller must satisfy the following preconditions:
687 ** if pExpr->op==TK_IS: op==TK_EQ and p5==SQLITE_NULLEQ
688 ** if pExpr->op==TK_ISNOT: op==TK_NE and p5==SQLITE_NULLEQ
689 ** otherwise: op==pExpr->op and p5==0
691 static void codeVectorCompare(
692 Parse *pParse, /* Code generator context */
693 Expr *pExpr, /* The comparison operation */
694 int dest, /* Write results into this register */
695 u8 op, /* Comparison operator */
696 u8 p5 /* SQLITE_NULLEQ or zero */
698 Vdbe *v = pParse->pVdbe;
699 Expr *pLeft = pExpr->pLeft;
700 Expr *pRight = pExpr->pRight;
701 int nLeft = sqlite3ExprVectorSize(pLeft);
702 int i;
703 int regLeft = 0;
704 int regRight = 0;
705 u8 opx = op;
706 int addrCmp = 0;
707 int addrDone = sqlite3VdbeMakeLabel(pParse);
708 int isCommuted = ExprHasProperty(pExpr,EP_Commuted);
710 assert( !ExprHasVVAProperty(pExpr,EP_Immutable) );
711 if( pParse->nErr ) return;
712 if( nLeft!=sqlite3ExprVectorSize(pRight) ){
713 sqlite3ErrorMsg(pParse, "row value misused");
714 return;
716 assert( pExpr->op==TK_EQ || pExpr->op==TK_NE
717 || pExpr->op==TK_IS || pExpr->op==TK_ISNOT
718 || pExpr->op==TK_LT || pExpr->op==TK_GT
719 || pExpr->op==TK_LE || pExpr->op==TK_GE
721 assert( pExpr->op==op || (pExpr->op==TK_IS && op==TK_EQ)
722 || (pExpr->op==TK_ISNOT && op==TK_NE) );
723 assert( p5==0 || pExpr->op!=op );
724 assert( p5==SQLITE_NULLEQ || pExpr->op==op );
726 if( op==TK_LE ) opx = TK_LT;
727 if( op==TK_GE ) opx = TK_GT;
728 if( op==TK_NE ) opx = TK_EQ;
730 regLeft = exprCodeSubselect(pParse, pLeft);
731 regRight = exprCodeSubselect(pParse, pRight);
733 sqlite3VdbeAddOp2(v, OP_Integer, 1, dest);
734 for(i=0; 1 /*Loop exits by "break"*/; i++){
735 int regFree1 = 0, regFree2 = 0;
736 Expr *pL = 0, *pR = 0;
737 int r1, r2;
738 assert( i>=0 && i<nLeft );
739 if( addrCmp ) sqlite3VdbeJumpHere(v, addrCmp);
740 r1 = exprVectorRegister(pParse, pLeft, i, regLeft, &pL, &regFree1);
741 r2 = exprVectorRegister(pParse, pRight, i, regRight, &pR, &regFree2);
742 addrCmp = sqlite3VdbeCurrentAddr(v);
743 codeCompare(pParse, pL, pR, opx, r1, r2, addrDone, p5, isCommuted);
744 testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt);
745 testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le);
746 testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt);
747 testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge);
748 testcase(op==OP_Eq); VdbeCoverageIf(v,op==OP_Eq);
749 testcase(op==OP_Ne); VdbeCoverageIf(v,op==OP_Ne);
750 sqlite3ReleaseTempReg(pParse, regFree1);
751 sqlite3ReleaseTempReg(pParse, regFree2);
752 if( (opx==TK_LT || opx==TK_GT) && i<nLeft-1 ){
753 addrCmp = sqlite3VdbeAddOp0(v, OP_ElseEq);
754 testcase(opx==TK_LT); VdbeCoverageIf(v,opx==TK_LT);
755 testcase(opx==TK_GT); VdbeCoverageIf(v,opx==TK_GT);
757 if( p5==SQLITE_NULLEQ ){
758 sqlite3VdbeAddOp2(v, OP_Integer, 0, dest);
759 }else{
760 sqlite3VdbeAddOp3(v, OP_ZeroOrNull, r1, dest, r2);
762 if( i==nLeft-1 ){
763 break;
765 if( opx==TK_EQ ){
766 sqlite3VdbeAddOp2(v, OP_NotNull, dest, addrDone); VdbeCoverage(v);
767 }else{
768 assert( op==TK_LT || op==TK_GT || op==TK_LE || op==TK_GE );
769 sqlite3VdbeAddOp2(v, OP_Goto, 0, addrDone);
770 if( i==nLeft-2 ) opx = op;
773 sqlite3VdbeJumpHere(v, addrCmp);
774 sqlite3VdbeResolveLabel(v, addrDone);
775 if( op==TK_NE ){
776 sqlite3VdbeAddOp2(v, OP_Not, dest, dest);
780 #if SQLITE_MAX_EXPR_DEPTH>0
782 ** Check that argument nHeight is less than or equal to the maximum
783 ** expression depth allowed. If it is not, leave an error message in
784 ** pParse.
786 int sqlite3ExprCheckHeight(Parse *pParse, int nHeight){
787 int rc = SQLITE_OK;
788 int mxHeight = pParse->db->aLimit[SQLITE_LIMIT_EXPR_DEPTH];
789 if( nHeight>mxHeight ){
790 sqlite3ErrorMsg(pParse,
791 "Expression tree is too large (maximum depth %d)", mxHeight
793 rc = SQLITE_ERROR;
795 return rc;
798 /* The following three functions, heightOfExpr(), heightOfExprList()
799 ** and heightOfSelect(), are used to determine the maximum height
800 ** of any expression tree referenced by the structure passed as the
801 ** first argument.
803 ** If this maximum height is greater than the current value pointed
804 ** to by pnHeight, the second parameter, then set *pnHeight to that
805 ** value.
807 static void heightOfExpr(const Expr *p, int *pnHeight){
808 if( p ){
809 if( p->nHeight>*pnHeight ){
810 *pnHeight = p->nHeight;
814 static void heightOfExprList(const ExprList *p, int *pnHeight){
815 if( p ){
816 int i;
817 for(i=0; i<p->nExpr; i++){
818 heightOfExpr(p->a[i].pExpr, pnHeight);
822 static void heightOfSelect(const Select *pSelect, int *pnHeight){
823 const Select *p;
824 for(p=pSelect; p; p=p->pPrior){
825 heightOfExpr(p->pWhere, pnHeight);
826 heightOfExpr(p->pHaving, pnHeight);
827 heightOfExpr(p->pLimit, pnHeight);
828 heightOfExprList(p->pEList, pnHeight);
829 heightOfExprList(p->pGroupBy, pnHeight);
830 heightOfExprList(p->pOrderBy, pnHeight);
835 ** Set the Expr.nHeight variable in the structure passed as an
836 ** argument. An expression with no children, Expr.pList or
837 ** Expr.pSelect member has a height of 1. Any other expression
838 ** has a height equal to the maximum height of any other
839 ** referenced Expr plus one.
841 ** Also propagate EP_Propagate flags up from Expr.x.pList to Expr.flags,
842 ** if appropriate.
844 static void exprSetHeight(Expr *p){
845 int nHeight = p->pLeft ? p->pLeft->nHeight : 0;
846 if( NEVER(p->pRight) && p->pRight->nHeight>nHeight ){
847 nHeight = p->pRight->nHeight;
849 if( ExprUseXSelect(p) ){
850 heightOfSelect(p->x.pSelect, &nHeight);
851 }else if( p->x.pList ){
852 heightOfExprList(p->x.pList, &nHeight);
853 p->flags |= EP_Propagate & sqlite3ExprListFlags(p->x.pList);
855 p->nHeight = nHeight + 1;
859 ** Set the Expr.nHeight variable using the exprSetHeight() function. If
860 ** the height is greater than the maximum allowed expression depth,
861 ** leave an error in pParse.
863 ** Also propagate all EP_Propagate flags from the Expr.x.pList into
864 ** Expr.flags.
866 void sqlite3ExprSetHeightAndFlags(Parse *pParse, Expr *p){
867 if( pParse->nErr ) return;
868 exprSetHeight(p);
869 sqlite3ExprCheckHeight(pParse, p->nHeight);
873 ** Return the maximum height of any expression tree referenced
874 ** by the select statement passed as an argument.
876 int sqlite3SelectExprHeight(const Select *p){
877 int nHeight = 0;
878 heightOfSelect(p, &nHeight);
879 return nHeight;
881 #else /* ABOVE: Height enforcement enabled. BELOW: Height enforcement off */
883 ** Propagate all EP_Propagate flags from the Expr.x.pList into
884 ** Expr.flags.
886 void sqlite3ExprSetHeightAndFlags(Parse *pParse, Expr *p){
887 if( pParse->nErr ) return;
888 if( p && ExprUseXList(p) && p->x.pList ){
889 p->flags |= EP_Propagate & sqlite3ExprListFlags(p->x.pList);
892 #define exprSetHeight(y)
893 #endif /* SQLITE_MAX_EXPR_DEPTH>0 */
896 ** Set the error offset for an Expr node, if possible.
898 void sqlite3ExprSetErrorOffset(Expr *pExpr, int iOfst){
899 if( pExpr==0 ) return;
900 if( NEVER(ExprUseWJoin(pExpr)) ) return;
901 pExpr->w.iOfst = iOfst;
905 ** This routine is the core allocator for Expr nodes.
907 ** Construct a new expression node and return a pointer to it. Memory
908 ** for this node and for the pToken argument is a single allocation
909 ** obtained from sqlite3DbMalloc(). The calling function
910 ** is responsible for making sure the node eventually gets freed.
912 ** If dequote is true, then the token (if it exists) is dequoted.
913 ** If dequote is false, no dequoting is performed. The deQuote
914 ** parameter is ignored if pToken is NULL or if the token does not
915 ** appear to be quoted. If the quotes were of the form "..." (double-quotes)
916 ** then the EP_DblQuoted flag is set on the expression node.
918 ** Special case (tag-20240227-a): If op==TK_INTEGER and pToken points to
919 ** a string that can be translated into a 32-bit integer, then the token is
920 ** not stored in u.zToken. Instead, the integer values is written
921 ** into u.iValue and the EP_IntValue flag is set. No extra storage
922 ** is allocated to hold the integer text and the dequote flag is ignored.
923 ** See also tag-20240227-b.
925 Expr *sqlite3ExprAlloc(
926 sqlite3 *db, /* Handle for sqlite3DbMallocRawNN() */
927 int op, /* Expression opcode */
928 const Token *pToken, /* Token argument. Might be NULL */
929 int dequote /* True to dequote */
931 Expr *pNew;
932 int nExtra = 0;
933 int iValue = 0;
935 assert( db!=0 );
936 if( pToken ){
937 if( op!=TK_INTEGER || pToken->z==0
938 || sqlite3GetInt32(pToken->z, &iValue)==0 ){
939 nExtra = pToken->n+1; /* tag-20240227-a */
940 assert( iValue>=0 );
943 pNew = sqlite3DbMallocRawNN(db, sizeof(Expr)+nExtra);
944 if( pNew ){
945 memset(pNew, 0, sizeof(Expr));
946 pNew->op = (u8)op;
947 pNew->iAgg = -1;
948 if( pToken ){
949 if( nExtra==0 ){
950 pNew->flags |= EP_IntValue|EP_Leaf|(iValue?EP_IsTrue:EP_IsFalse);
951 pNew->u.iValue = iValue;
952 }else{
953 pNew->u.zToken = (char*)&pNew[1];
954 assert( pToken->z!=0 || pToken->n==0 );
955 if( pToken->n ) memcpy(pNew->u.zToken, pToken->z, pToken->n);
956 pNew->u.zToken[pToken->n] = 0;
957 if( dequote && sqlite3Isquote(pNew->u.zToken[0]) ){
958 sqlite3DequoteExpr(pNew);
962 #if SQLITE_MAX_EXPR_DEPTH>0
963 pNew->nHeight = 1;
964 #endif
966 return pNew;
970 ** Allocate a new expression node from a zero-terminated token that has
971 ** already been dequoted.
973 Expr *sqlite3Expr(
974 sqlite3 *db, /* Handle for sqlite3DbMallocZero() (may be null) */
975 int op, /* Expression opcode */
976 const char *zToken /* Token argument. Might be NULL */
978 Token x;
979 x.z = zToken;
980 x.n = sqlite3Strlen30(zToken);
981 return sqlite3ExprAlloc(db, op, &x, 0);
985 ** Attach subtrees pLeft and pRight to the Expr node pRoot.
987 ** If pRoot==NULL that means that a memory allocation error has occurred.
988 ** In that case, delete the subtrees pLeft and pRight.
990 void sqlite3ExprAttachSubtrees(
991 sqlite3 *db,
992 Expr *pRoot,
993 Expr *pLeft,
994 Expr *pRight
996 if( pRoot==0 ){
997 assert( db->mallocFailed );
998 sqlite3ExprDelete(db, pLeft);
999 sqlite3ExprDelete(db, pRight);
1000 }else{
1001 assert( ExprUseXList(pRoot) );
1002 assert( pRoot->x.pSelect==0 );
1003 if( pRight ){
1004 pRoot->pRight = pRight;
1005 pRoot->flags |= EP_Propagate & pRight->flags;
1006 #if SQLITE_MAX_EXPR_DEPTH>0
1007 pRoot->nHeight = pRight->nHeight+1;
1008 }else{
1009 pRoot->nHeight = 1;
1010 #endif
1012 if( pLeft ){
1013 pRoot->pLeft = pLeft;
1014 pRoot->flags |= EP_Propagate & pLeft->flags;
1015 #if SQLITE_MAX_EXPR_DEPTH>0
1016 if( pLeft->nHeight>=pRoot->nHeight ){
1017 pRoot->nHeight = pLeft->nHeight+1;
1019 #endif
1025 ** Allocate an Expr node which joins as many as two subtrees.
1027 ** One or both of the subtrees can be NULL. Return a pointer to the new
1028 ** Expr node. Or, if an OOM error occurs, set pParse->db->mallocFailed,
1029 ** free the subtrees and return NULL.
1031 Expr *sqlite3PExpr(
1032 Parse *pParse, /* Parsing context */
1033 int op, /* Expression opcode */
1034 Expr *pLeft, /* Left operand */
1035 Expr *pRight /* Right operand */
1037 Expr *p;
1038 p = sqlite3DbMallocRawNN(pParse->db, sizeof(Expr));
1039 if( p ){
1040 memset(p, 0, sizeof(Expr));
1041 p->op = op & 0xff;
1042 p->iAgg = -1;
1043 sqlite3ExprAttachSubtrees(pParse->db, p, pLeft, pRight);
1044 sqlite3ExprCheckHeight(pParse, p->nHeight);
1045 }else{
1046 sqlite3ExprDelete(pParse->db, pLeft);
1047 sqlite3ExprDelete(pParse->db, pRight);
1049 return p;
1053 ** Add pSelect to the Expr.x.pSelect field. Or, if pExpr is NULL (due
1054 ** do a memory allocation failure) then delete the pSelect object.
1056 void sqlite3PExprAddSelect(Parse *pParse, Expr *pExpr, Select *pSelect){
1057 if( pExpr ){
1058 pExpr->x.pSelect = pSelect;
1059 ExprSetProperty(pExpr, EP_xIsSelect|EP_Subquery);
1060 sqlite3ExprSetHeightAndFlags(pParse, pExpr);
1061 }else{
1062 assert( pParse->db->mallocFailed );
1063 sqlite3SelectDelete(pParse->db, pSelect);
1068 ** Expression list pEList is a list of vector values. This function
1069 ** converts the contents of pEList to a VALUES(...) Select statement
1070 ** returning 1 row for each element of the list. For example, the
1071 ** expression list:
1073 ** ( (1,2), (3,4) (5,6) )
1075 ** is translated to the equivalent of:
1077 ** VALUES(1,2), (3,4), (5,6)
1079 ** Each of the vector values in pEList must contain exactly nElem terms.
1080 ** If a list element that is not a vector or does not contain nElem terms,
1081 ** an error message is left in pParse.
1083 ** This is used as part of processing IN(...) expressions with a list
1084 ** of vectors on the RHS. e.g. "... IN ((1,2), (3,4), (5,6))".
1086 Select *sqlite3ExprListToValues(Parse *pParse, int nElem, ExprList *pEList){
1087 int ii;
1088 Select *pRet = 0;
1089 assert( nElem>1 );
1090 for(ii=0; ii<pEList->nExpr; ii++){
1091 Select *pSel;
1092 Expr *pExpr = pEList->a[ii].pExpr;
1093 int nExprElem;
1094 if( pExpr->op==TK_VECTOR ){
1095 assert( ExprUseXList(pExpr) );
1096 nExprElem = pExpr->x.pList->nExpr;
1097 }else{
1098 nExprElem = 1;
1100 if( nExprElem!=nElem ){
1101 sqlite3ErrorMsg(pParse, "IN(...) element has %d term%s - expected %d",
1102 nExprElem, nExprElem>1?"s":"", nElem
1104 break;
1106 assert( ExprUseXList(pExpr) );
1107 pSel = sqlite3SelectNew(pParse, pExpr->x.pList, 0, 0, 0, 0, 0, SF_Values,0);
1108 pExpr->x.pList = 0;
1109 if( pSel ){
1110 if( pRet ){
1111 pSel->op = TK_ALL;
1112 pSel->pPrior = pRet;
1114 pRet = pSel;
1118 if( pRet && pRet->pPrior ){
1119 pRet->selFlags |= SF_MultiValue;
1121 sqlite3ExprListDelete(pParse->db, pEList);
1122 return pRet;
1126 ** Join two expressions using an AND operator. If either expression is
1127 ** NULL, then just return the other expression.
1129 ** If one side or the other of the AND is known to be false, and neither side
1130 ** is part of an ON clause, then instead of returning an AND expression,
1131 ** just return a constant expression with a value of false.
1133 Expr *sqlite3ExprAnd(Parse *pParse, Expr *pLeft, Expr *pRight){
1134 sqlite3 *db = pParse->db;
1135 if( pLeft==0 ){
1136 return pRight;
1137 }else if( pRight==0 ){
1138 return pLeft;
1139 }else{
1140 u32 f = pLeft->flags | pRight->flags;
1141 if( (f&(EP_OuterON|EP_InnerON|EP_IsFalse))==EP_IsFalse
1142 && !IN_RENAME_OBJECT
1144 sqlite3ExprDeferredDelete(pParse, pLeft);
1145 sqlite3ExprDeferredDelete(pParse, pRight);
1146 return sqlite3Expr(db, TK_INTEGER, "0");
1147 }else{
1148 return sqlite3PExpr(pParse, TK_AND, pLeft, pRight);
1154 ** Construct a new expression node for a function with multiple
1155 ** arguments.
1157 Expr *sqlite3ExprFunction(
1158 Parse *pParse, /* Parsing context */
1159 ExprList *pList, /* Argument list */
1160 const Token *pToken, /* Name of the function */
1161 int eDistinct /* SF_Distinct or SF_ALL or 0 */
1163 Expr *pNew;
1164 sqlite3 *db = pParse->db;
1165 assert( pToken );
1166 pNew = sqlite3ExprAlloc(db, TK_FUNCTION, pToken, 1);
1167 if( pNew==0 ){
1168 sqlite3ExprListDelete(db, pList); /* Avoid memory leak when malloc fails */
1169 return 0;
1171 assert( !ExprHasProperty(pNew, EP_InnerON|EP_OuterON) );
1172 pNew->w.iOfst = (int)(pToken->z - pParse->zTail);
1173 if( pList
1174 && pList->nExpr > pParse->db->aLimit[SQLITE_LIMIT_FUNCTION_ARG]
1175 && !pParse->nested
1177 sqlite3ErrorMsg(pParse, "too many arguments on function %T", pToken);
1179 pNew->x.pList = pList;
1180 ExprSetProperty(pNew, EP_HasFunc);
1181 assert( ExprUseXList(pNew) );
1182 sqlite3ExprSetHeightAndFlags(pParse, pNew);
1183 if( eDistinct==SF_Distinct ) ExprSetProperty(pNew, EP_Distinct);
1184 return pNew;
1188 ** Report an error when attempting to use an ORDER BY clause within
1189 ** the arguments of a non-aggregate function.
1191 void sqlite3ExprOrderByAggregateError(Parse *pParse, Expr *p){
1192 sqlite3ErrorMsg(pParse,
1193 "ORDER BY may not be used with non-aggregate %#T()", p
1198 ** Attach an ORDER BY clause to a function call.
1200 ** functionname( arguments ORDER BY sortlist )
1201 ** \_____________________/ \______/
1202 ** pExpr pOrderBy
1204 ** The ORDER BY clause is inserted into a new Expr node of type TK_ORDER
1205 ** and added to the Expr.pLeft field of the parent TK_FUNCTION node.
1207 void sqlite3ExprAddFunctionOrderBy(
1208 Parse *pParse, /* Parsing context */
1209 Expr *pExpr, /* The function call to which ORDER BY is to be added */
1210 ExprList *pOrderBy /* The ORDER BY clause to add */
1212 Expr *pOB;
1213 sqlite3 *db = pParse->db;
1214 if( NEVER(pOrderBy==0) ){
1215 assert( db->mallocFailed );
1216 return;
1218 if( pExpr==0 ){
1219 assert( db->mallocFailed );
1220 sqlite3ExprListDelete(db, pOrderBy);
1221 return;
1223 assert( pExpr->op==TK_FUNCTION );
1224 assert( pExpr->pLeft==0 );
1225 assert( ExprUseXList(pExpr) );
1226 if( pExpr->x.pList==0 || NEVER(pExpr->x.pList->nExpr==0) ){
1227 /* Ignore ORDER BY on zero-argument aggregates */
1228 sqlite3ParserAddCleanup(pParse, sqlite3ExprListDeleteGeneric, pOrderBy);
1229 return;
1231 if( IsWindowFunc(pExpr) ){
1232 sqlite3ExprOrderByAggregateError(pParse, pExpr);
1233 sqlite3ExprListDelete(db, pOrderBy);
1234 return;
1237 pOB = sqlite3ExprAlloc(db, TK_ORDER, 0, 0);
1238 if( pOB==0 ){
1239 sqlite3ExprListDelete(db, pOrderBy);
1240 return;
1242 pOB->x.pList = pOrderBy;
1243 assert( ExprUseXList(pOB) );
1244 pExpr->pLeft = pOB;
1245 ExprSetProperty(pOB, EP_FullSize);
1249 ** Check to see if a function is usable according to current access
1250 ** rules:
1252 ** SQLITE_FUNC_DIRECT - Only usable from top-level SQL
1254 ** SQLITE_FUNC_UNSAFE - Usable if TRUSTED_SCHEMA or from
1255 ** top-level SQL
1257 ** If the function is not usable, create an error.
1259 void sqlite3ExprFunctionUsable(
1260 Parse *pParse, /* Parsing and code generating context */
1261 const Expr *pExpr, /* The function invocation */
1262 const FuncDef *pDef /* The function being invoked */
1264 assert( !IN_RENAME_OBJECT );
1265 assert( (pDef->funcFlags & (SQLITE_FUNC_DIRECT|SQLITE_FUNC_UNSAFE))!=0 );
1266 if( ExprHasProperty(pExpr, EP_FromDDL) ){
1267 if( (pDef->funcFlags & SQLITE_FUNC_DIRECT)!=0
1268 || (pParse->db->flags & SQLITE_TrustedSchema)==0
1270 /* Functions prohibited in triggers and views if:
1271 ** (1) tagged with SQLITE_DIRECTONLY
1272 ** (2) not tagged with SQLITE_INNOCUOUS (which means it
1273 ** is tagged with SQLITE_FUNC_UNSAFE) and
1274 ** SQLITE_DBCONFIG_TRUSTED_SCHEMA is off (meaning
1275 ** that the schema is possibly tainted).
1277 sqlite3ErrorMsg(pParse, "unsafe use of %#T()", pExpr);
1283 ** Assign a variable number to an expression that encodes a wildcard
1284 ** in the original SQL statement.
1286 ** Wildcards consisting of a single "?" are assigned the next sequential
1287 ** variable number.
1289 ** Wildcards of the form "?nnn" are assigned the number "nnn". We make
1290 ** sure "nnn" is not too big to avoid a denial of service attack when
1291 ** the SQL statement comes from an external source.
1293 ** Wildcards of the form ":aaa", "@aaa", or "$aaa" are assigned the same number
1294 ** as the previous instance of the same wildcard. Or if this is the first
1295 ** instance of the wildcard, the next sequential variable number is
1296 ** assigned.
1298 void sqlite3ExprAssignVarNumber(Parse *pParse, Expr *pExpr, u32 n){
1299 sqlite3 *db = pParse->db;
1300 const char *z;
1301 ynVar x;
1303 if( pExpr==0 ) return;
1304 assert( !ExprHasProperty(pExpr, EP_IntValue|EP_Reduced|EP_TokenOnly) );
1305 z = pExpr->u.zToken;
1306 assert( z!=0 );
1307 assert( z[0]!=0 );
1308 assert( n==(u32)sqlite3Strlen30(z) );
1309 if( z[1]==0 ){
1310 /* Wildcard of the form "?". Assign the next variable number */
1311 assert( z[0]=='?' );
1312 x = (ynVar)(++pParse->nVar);
1313 }else{
1314 int doAdd = 0;
1315 if( z[0]=='?' ){
1316 /* Wildcard of the form "?nnn". Convert "nnn" to an integer and
1317 ** use it as the variable number */
1318 i64 i;
1319 int bOk;
1320 if( n==2 ){ /*OPTIMIZATION-IF-TRUE*/
1321 i = z[1]-'0'; /* The common case of ?N for a single digit N */
1322 bOk = 1;
1323 }else{
1324 bOk = 0==sqlite3Atoi64(&z[1], &i, n-1, SQLITE_UTF8);
1326 testcase( i==0 );
1327 testcase( i==1 );
1328 testcase( i==db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER]-1 );
1329 testcase( i==db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] );
1330 if( bOk==0 || i<1 || i>db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ){
1331 sqlite3ErrorMsg(pParse, "variable number must be between ?1 and ?%d",
1332 db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER]);
1333 sqlite3RecordErrorOffsetOfExpr(pParse->db, pExpr);
1334 return;
1336 x = (ynVar)i;
1337 if( x>pParse->nVar ){
1338 pParse->nVar = (int)x;
1339 doAdd = 1;
1340 }else if( sqlite3VListNumToName(pParse->pVList, x)==0 ){
1341 doAdd = 1;
1343 }else{
1344 /* Wildcards like ":aaa", "$aaa" or "@aaa". Reuse the same variable
1345 ** number as the prior appearance of the same name, or if the name
1346 ** has never appeared before, reuse the same variable number
1348 x = (ynVar)sqlite3VListNameToNum(pParse->pVList, z, n);
1349 if( x==0 ){
1350 x = (ynVar)(++pParse->nVar);
1351 doAdd = 1;
1354 if( doAdd ){
1355 pParse->pVList = sqlite3VListAdd(db, pParse->pVList, z, n, x);
1358 pExpr->iColumn = x;
1359 if( x>db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ){
1360 sqlite3ErrorMsg(pParse, "too many SQL variables");
1361 sqlite3RecordErrorOffsetOfExpr(pParse->db, pExpr);
1366 ** Recursively delete an expression tree.
1368 static SQLITE_NOINLINE void sqlite3ExprDeleteNN(sqlite3 *db, Expr *p){
1369 assert( p!=0 );
1370 assert( db!=0 );
1371 exprDeleteRestart:
1372 assert( !ExprUseUValue(p) || p->u.iValue>=0 );
1373 assert( !ExprUseYWin(p) || !ExprUseYSub(p) );
1374 assert( !ExprUseYWin(p) || p->y.pWin!=0 || db->mallocFailed );
1375 assert( p->op!=TK_FUNCTION || !ExprUseYSub(p) );
1376 #ifdef SQLITE_DEBUG
1377 if( ExprHasProperty(p, EP_Leaf) && !ExprHasProperty(p, EP_TokenOnly) ){
1378 assert( p->pLeft==0 );
1379 assert( p->pRight==0 );
1380 assert( !ExprUseXSelect(p) || p->x.pSelect==0 );
1381 assert( !ExprUseXList(p) || p->x.pList==0 );
1383 #endif
1384 if( !ExprHasProperty(p, (EP_TokenOnly|EP_Leaf)) ){
1385 /* The Expr.x union is never used at the same time as Expr.pRight */
1386 assert( (ExprUseXList(p) && p->x.pList==0) || p->pRight==0 );
1387 if( p->pRight ){
1388 assert( !ExprHasProperty(p, EP_WinFunc) );
1389 sqlite3ExprDeleteNN(db, p->pRight);
1390 }else if( ExprUseXSelect(p) ){
1391 assert( !ExprHasProperty(p, EP_WinFunc) );
1392 sqlite3SelectDelete(db, p->x.pSelect);
1393 }else{
1394 sqlite3ExprListDelete(db, p->x.pList);
1395 #ifndef SQLITE_OMIT_WINDOWFUNC
1396 if( ExprHasProperty(p, EP_WinFunc) ){
1397 sqlite3WindowDelete(db, p->y.pWin);
1399 #endif
1401 if( p->pLeft && p->op!=TK_SELECT_COLUMN ){
1402 Expr *pLeft = p->pLeft;
1403 if( !ExprHasProperty(p, EP_Static)
1404 && !ExprHasProperty(pLeft, EP_Static)
1406 /* Avoid unnecessary recursion on unary operators */
1407 sqlite3DbNNFreeNN(db, p);
1408 p = pLeft;
1409 goto exprDeleteRestart;
1410 }else{
1411 sqlite3ExprDeleteNN(db, pLeft);
1415 if( !ExprHasProperty(p, EP_Static) ){
1416 sqlite3DbNNFreeNN(db, p);
1419 void sqlite3ExprDelete(sqlite3 *db, Expr *p){
1420 if( p ) sqlite3ExprDeleteNN(db, p);
1422 void sqlite3ExprDeleteGeneric(sqlite3 *db, void *p){
1423 if( ALWAYS(p) ) sqlite3ExprDeleteNN(db, (Expr*)p);
1427 ** Clear both elements of an OnOrUsing object
1429 void sqlite3ClearOnOrUsing(sqlite3 *db, OnOrUsing *p){
1430 if( p==0 ){
1431 /* Nothing to clear */
1432 }else if( p->pOn ){
1433 sqlite3ExprDeleteNN(db, p->pOn);
1434 }else if( p->pUsing ){
1435 sqlite3IdListDelete(db, p->pUsing);
1440 ** Arrange to cause pExpr to be deleted when the pParse is deleted.
1441 ** This is similar to sqlite3ExprDelete() except that the delete is
1442 ** deferred until the pParse is deleted.
1444 ** The pExpr might be deleted immediately on an OOM error.
1446 ** Return 0 if the delete was successfully deferred. Return non-zero
1447 ** if the delete happened immediately because of an OOM.
1449 int sqlite3ExprDeferredDelete(Parse *pParse, Expr *pExpr){
1450 return 0==sqlite3ParserAddCleanup(pParse, sqlite3ExprDeleteGeneric, pExpr);
1453 /* Invoke sqlite3RenameExprUnmap() and sqlite3ExprDelete() on the
1454 ** expression.
1456 void sqlite3ExprUnmapAndDelete(Parse *pParse, Expr *p){
1457 if( p ){
1458 if( IN_RENAME_OBJECT ){
1459 sqlite3RenameExprUnmap(pParse, p);
1461 sqlite3ExprDeleteNN(pParse->db, p);
1466 ** Return the number of bytes allocated for the expression structure
1467 ** passed as the first argument. This is always one of EXPR_FULLSIZE,
1468 ** EXPR_REDUCEDSIZE or EXPR_TOKENONLYSIZE.
1470 static int exprStructSize(const Expr *p){
1471 if( ExprHasProperty(p, EP_TokenOnly) ) return EXPR_TOKENONLYSIZE;
1472 if( ExprHasProperty(p, EP_Reduced) ) return EXPR_REDUCEDSIZE;
1473 return EXPR_FULLSIZE;
1477 ** The dupedExpr*Size() routines each return the number of bytes required
1478 ** to store a copy of an expression or expression tree. They differ in
1479 ** how much of the tree is measured.
1481 ** dupedExprStructSize() Size of only the Expr structure
1482 ** dupedExprNodeSize() Size of Expr + space for token
1483 ** dupedExprSize() Expr + token + subtree components
1485 ***************************************************************************
1487 ** The dupedExprStructSize() function returns two values OR-ed together:
1488 ** (1) the space required for a copy of the Expr structure only and
1489 ** (2) the EP_xxx flags that indicate what the structure size should be.
1490 ** The return values is always one of:
1492 ** EXPR_FULLSIZE
1493 ** EXPR_REDUCEDSIZE | EP_Reduced
1494 ** EXPR_TOKENONLYSIZE | EP_TokenOnly
1496 ** The size of the structure can be found by masking the return value
1497 ** of this routine with 0xfff. The flags can be found by masking the
1498 ** return value with EP_Reduced|EP_TokenOnly.
1500 ** Note that with flags==EXPRDUP_REDUCE, this routines works on full-size
1501 ** (unreduced) Expr objects as they or originally constructed by the parser.
1502 ** During expression analysis, extra information is computed and moved into
1503 ** later parts of the Expr object and that extra information might get chopped
1504 ** off if the expression is reduced. Note also that it does not work to
1505 ** make an EXPRDUP_REDUCE copy of a reduced expression. It is only legal
1506 ** to reduce a pristine expression tree from the parser. The implementation
1507 ** of dupedExprStructSize() contain multiple assert() statements that attempt
1508 ** to enforce this constraint.
1510 static int dupedExprStructSize(const Expr *p, int flags){
1511 int nSize;
1512 assert( flags==EXPRDUP_REDUCE || flags==0 ); /* Only one flag value allowed */
1513 assert( EXPR_FULLSIZE<=0xfff );
1514 assert( (0xfff & (EP_Reduced|EP_TokenOnly))==0 );
1515 if( 0==flags || ExprHasProperty(p, EP_FullSize) ){
1516 nSize = EXPR_FULLSIZE;
1517 }else{
1518 assert( !ExprHasProperty(p, EP_TokenOnly|EP_Reduced) );
1519 assert( !ExprHasProperty(p, EP_OuterON) );
1520 assert( !ExprHasVVAProperty(p, EP_NoReduce) );
1521 if( p->pLeft || p->x.pList ){
1522 nSize = EXPR_REDUCEDSIZE | EP_Reduced;
1523 }else{
1524 assert( p->pRight==0 );
1525 nSize = EXPR_TOKENONLYSIZE | EP_TokenOnly;
1528 return nSize;
1532 ** This function returns the space in bytes required to store the copy
1533 ** of the Expr structure and a copy of the Expr.u.zToken string (if that
1534 ** string is defined.)
1536 static int dupedExprNodeSize(const Expr *p, int flags){
1537 int nByte = dupedExprStructSize(p, flags) & 0xfff;
1538 if( !ExprHasProperty(p, EP_IntValue) && p->u.zToken ){
1539 nByte += sqlite3Strlen30NN(p->u.zToken)+1;
1541 return ROUND8(nByte);
1545 ** Return the number of bytes required to create a duplicate of the
1546 ** expression passed as the first argument.
1548 ** The value returned includes space to create a copy of the Expr struct
1549 ** itself and the buffer referred to by Expr.u.zToken, if any.
1551 ** The return value includes space to duplicate all Expr nodes in the
1552 ** tree formed by Expr.pLeft and Expr.pRight, but not any other
1553 ** substructure such as Expr.x.pList, Expr.x.pSelect, and Expr.y.pWin.
1555 static int dupedExprSize(const Expr *p){
1556 int nByte;
1557 assert( p!=0 );
1558 nByte = dupedExprNodeSize(p, EXPRDUP_REDUCE);
1559 if( p->pLeft ) nByte += dupedExprSize(p->pLeft);
1560 if( p->pRight ) nByte += dupedExprSize(p->pRight);
1561 assert( nByte==ROUND8(nByte) );
1562 return nByte;
1566 ** An EdupBuf is a memory allocation used to stored multiple Expr objects
1567 ** together with their Expr.zToken content. This is used to help implement
1568 ** compression while doing sqlite3ExprDup(). The top-level Expr does the
1569 ** allocation for itself and many of its decendents, then passes an instance
1570 ** of the structure down into exprDup() so that they decendents can have
1571 ** access to that memory.
1573 typedef struct EdupBuf EdupBuf;
1574 struct EdupBuf {
1575 u8 *zAlloc; /* Memory space available for storage */
1576 #ifdef SQLITE_DEBUG
1577 u8 *zEnd; /* First byte past the end of memory */
1578 #endif
1582 ** This function is similar to sqlite3ExprDup(), except that if pEdupBuf
1583 ** is not NULL then it points to memory that can be used to store a copy
1584 ** of the input Expr p together with its p->u.zToken (if any). pEdupBuf
1585 ** is updated with the new buffer tail prior to returning.
1587 static Expr *exprDup(
1588 sqlite3 *db, /* Database connection (for memory allocation) */
1589 const Expr *p, /* Expr tree to be duplicated */
1590 int dupFlags, /* EXPRDUP_REDUCE for compression. 0 if not */
1591 EdupBuf *pEdupBuf /* Preallocated storage space, or NULL */
1593 Expr *pNew; /* Value to return */
1594 EdupBuf sEdupBuf; /* Memory space from which to build Expr object */
1595 u32 staticFlag; /* EP_Static if space not obtained from malloc */
1596 int nToken = -1; /* Space needed for p->u.zToken. -1 means unknown */
1598 assert( db!=0 );
1599 assert( p );
1600 assert( dupFlags==0 || dupFlags==EXPRDUP_REDUCE );
1601 assert( pEdupBuf==0 || dupFlags==EXPRDUP_REDUCE );
1603 /* Figure out where to write the new Expr structure. */
1604 if( pEdupBuf ){
1605 sEdupBuf.zAlloc = pEdupBuf->zAlloc;
1606 #ifdef SQLITE_DEBUG
1607 sEdupBuf.zEnd = pEdupBuf->zEnd;
1608 #endif
1609 staticFlag = EP_Static;
1610 assert( sEdupBuf.zAlloc!=0 );
1611 assert( dupFlags==EXPRDUP_REDUCE );
1612 }else{
1613 int nAlloc;
1614 if( dupFlags ){
1615 nAlloc = dupedExprSize(p);
1616 }else if( !ExprHasProperty(p, EP_IntValue) && p->u.zToken ){
1617 nToken = sqlite3Strlen30NN(p->u.zToken)+1;
1618 nAlloc = ROUND8(EXPR_FULLSIZE + nToken);
1619 }else{
1620 nToken = 0;
1621 nAlloc = ROUND8(EXPR_FULLSIZE);
1623 assert( nAlloc==ROUND8(nAlloc) );
1624 sEdupBuf.zAlloc = sqlite3DbMallocRawNN(db, nAlloc);
1625 #ifdef SQLITE_DEBUG
1626 sEdupBuf.zEnd = sEdupBuf.zAlloc ? sEdupBuf.zAlloc+nAlloc : 0;
1627 #endif
1629 staticFlag = 0;
1631 pNew = (Expr *)sEdupBuf.zAlloc;
1632 assert( EIGHT_BYTE_ALIGNMENT(pNew) );
1634 if( pNew ){
1635 /* Set nNewSize to the size allocated for the structure pointed to
1636 ** by pNew. This is either EXPR_FULLSIZE, EXPR_REDUCEDSIZE or
1637 ** EXPR_TOKENONLYSIZE. nToken is set to the number of bytes consumed
1638 ** by the copy of the p->u.zToken string (if any).
1640 const unsigned nStructSize = dupedExprStructSize(p, dupFlags);
1641 int nNewSize = nStructSize & 0xfff;
1642 if( nToken<0 ){
1643 if( !ExprHasProperty(p, EP_IntValue) && p->u.zToken ){
1644 nToken = sqlite3Strlen30(p->u.zToken) + 1;
1645 }else{
1646 nToken = 0;
1649 if( dupFlags ){
1650 assert( (int)(sEdupBuf.zEnd - sEdupBuf.zAlloc) >= nNewSize+nToken );
1651 assert( ExprHasProperty(p, EP_Reduced)==0 );
1652 memcpy(sEdupBuf.zAlloc, p, nNewSize);
1653 }else{
1654 u32 nSize = (u32)exprStructSize(p);
1655 assert( (int)(sEdupBuf.zEnd - sEdupBuf.zAlloc) >=
1656 (int)EXPR_FULLSIZE+nToken );
1657 memcpy(sEdupBuf.zAlloc, p, nSize);
1658 if( nSize<EXPR_FULLSIZE ){
1659 memset(&sEdupBuf.zAlloc[nSize], 0, EXPR_FULLSIZE-nSize);
1661 nNewSize = EXPR_FULLSIZE;
1664 /* Set the EP_Reduced, EP_TokenOnly, and EP_Static flags appropriately. */
1665 pNew->flags &= ~(EP_Reduced|EP_TokenOnly|EP_Static);
1666 pNew->flags |= nStructSize & (EP_Reduced|EP_TokenOnly);
1667 pNew->flags |= staticFlag;
1668 ExprClearVVAProperties(pNew);
1669 if( dupFlags ){
1670 ExprSetVVAProperty(pNew, EP_Immutable);
1673 /* Copy the p->u.zToken string, if any. */
1674 assert( nToken>=0 );
1675 if( nToken>0 ){
1676 char *zToken = pNew->u.zToken = (char*)&sEdupBuf.zAlloc[nNewSize];
1677 memcpy(zToken, p->u.zToken, nToken);
1678 nNewSize += nToken;
1680 sEdupBuf.zAlloc += ROUND8(nNewSize);
1682 if( ((p->flags|pNew->flags)&(EP_TokenOnly|EP_Leaf))==0 ){
1684 /* Fill in the pNew->x.pSelect or pNew->x.pList member. */
1685 if( ExprUseXSelect(p) ){
1686 pNew->x.pSelect = sqlite3SelectDup(db, p->x.pSelect, dupFlags);
1687 }else{
1688 pNew->x.pList = sqlite3ExprListDup(db, p->x.pList,
1689 p->op!=TK_ORDER ? dupFlags : 0);
1692 #ifndef SQLITE_OMIT_WINDOWFUNC
1693 if( ExprHasProperty(p, EP_WinFunc) ){
1694 pNew->y.pWin = sqlite3WindowDup(db, pNew, p->y.pWin);
1695 assert( ExprHasProperty(pNew, EP_WinFunc) );
1697 #endif /* SQLITE_OMIT_WINDOWFUNC */
1699 /* Fill in pNew->pLeft and pNew->pRight. */
1700 if( dupFlags ){
1701 if( p->op==TK_SELECT_COLUMN ){
1702 pNew->pLeft = p->pLeft;
1703 assert( p->pRight==0
1704 || p->pRight==p->pLeft
1705 || ExprHasProperty(p->pLeft, EP_Subquery) );
1706 }else{
1707 pNew->pLeft = p->pLeft ?
1708 exprDup(db, p->pLeft, EXPRDUP_REDUCE, &sEdupBuf) : 0;
1710 pNew->pRight = p->pRight ?
1711 exprDup(db, p->pRight, EXPRDUP_REDUCE, &sEdupBuf) : 0;
1712 }else{
1713 if( p->op==TK_SELECT_COLUMN ){
1714 pNew->pLeft = p->pLeft;
1715 assert( p->pRight==0
1716 || p->pRight==p->pLeft
1717 || ExprHasProperty(p->pLeft, EP_Subquery) );
1718 }else{
1719 pNew->pLeft = sqlite3ExprDup(db, p->pLeft, 0);
1721 pNew->pRight = sqlite3ExprDup(db, p->pRight, 0);
1725 if( pEdupBuf ) memcpy(pEdupBuf, &sEdupBuf, sizeof(sEdupBuf));
1726 assert( sEdupBuf.zAlloc <= sEdupBuf.zEnd );
1727 return pNew;
1731 ** Create and return a deep copy of the object passed as the second
1732 ** argument. If an OOM condition is encountered, NULL is returned
1733 ** and the db->mallocFailed flag set.
1735 #ifndef SQLITE_OMIT_CTE
1736 With *sqlite3WithDup(sqlite3 *db, With *p){
1737 With *pRet = 0;
1738 if( p ){
1739 sqlite3_int64 nByte = sizeof(*p) + sizeof(p->a[0]) * (p->nCte-1);
1740 pRet = sqlite3DbMallocZero(db, nByte);
1741 if( pRet ){
1742 int i;
1743 pRet->nCte = p->nCte;
1744 for(i=0; i<p->nCte; i++){
1745 pRet->a[i].pSelect = sqlite3SelectDup(db, p->a[i].pSelect, 0);
1746 pRet->a[i].pCols = sqlite3ExprListDup(db, p->a[i].pCols, 0);
1747 pRet->a[i].zName = sqlite3DbStrDup(db, p->a[i].zName);
1748 pRet->a[i].eM10d = p->a[i].eM10d;
1752 return pRet;
1754 #else
1755 # define sqlite3WithDup(x,y) 0
1756 #endif
1758 #ifndef SQLITE_OMIT_WINDOWFUNC
1760 ** The gatherSelectWindows() procedure and its helper routine
1761 ** gatherSelectWindowsCallback() are used to scan all the expressions
1762 ** an a newly duplicated SELECT statement and gather all of the Window
1763 ** objects found there, assembling them onto the linked list at Select->pWin.
1765 static int gatherSelectWindowsCallback(Walker *pWalker, Expr *pExpr){
1766 if( pExpr->op==TK_FUNCTION && ExprHasProperty(pExpr, EP_WinFunc) ){
1767 Select *pSelect = pWalker->u.pSelect;
1768 Window *pWin = pExpr->y.pWin;
1769 assert( pWin );
1770 assert( IsWindowFunc(pExpr) );
1771 assert( pWin->ppThis==0 );
1772 sqlite3WindowLink(pSelect, pWin);
1774 return WRC_Continue;
1776 static int gatherSelectWindowsSelectCallback(Walker *pWalker, Select *p){
1777 return p==pWalker->u.pSelect ? WRC_Continue : WRC_Prune;
1779 static void gatherSelectWindows(Select *p){
1780 Walker w;
1781 w.xExprCallback = gatherSelectWindowsCallback;
1782 w.xSelectCallback = gatherSelectWindowsSelectCallback;
1783 w.xSelectCallback2 = 0;
1784 w.pParse = 0;
1785 w.u.pSelect = p;
1786 sqlite3WalkSelect(&w, p);
1788 #endif
1792 ** The following group of routines make deep copies of expressions,
1793 ** expression lists, ID lists, and select statements. The copies can
1794 ** be deleted (by being passed to their respective ...Delete() routines)
1795 ** without effecting the originals.
1797 ** The expression list, ID, and source lists return by sqlite3ExprListDup(),
1798 ** sqlite3IdListDup(), and sqlite3SrcListDup() can not be further expanded
1799 ** by subsequent calls to sqlite*ListAppend() routines.
1801 ** Any tables that the SrcList might point to are not duplicated.
1803 ** The flags parameter contains a combination of the EXPRDUP_XXX flags.
1804 ** If the EXPRDUP_REDUCE flag is set, then the structure returned is a
1805 ** truncated version of the usual Expr structure that will be stored as
1806 ** part of the in-memory representation of the database schema.
1808 Expr *sqlite3ExprDup(sqlite3 *db, const Expr *p, int flags){
1809 assert( flags==0 || flags==EXPRDUP_REDUCE );
1810 return p ? exprDup(db, p, flags, 0) : 0;
1812 ExprList *sqlite3ExprListDup(sqlite3 *db, const ExprList *p, int flags){
1813 ExprList *pNew;
1814 struct ExprList_item *pItem;
1815 const struct ExprList_item *pOldItem;
1816 int i;
1817 Expr *pPriorSelectColOld = 0;
1818 Expr *pPriorSelectColNew = 0;
1819 assert( db!=0 );
1820 if( p==0 ) return 0;
1821 pNew = sqlite3DbMallocRawNN(db, sqlite3DbMallocSize(db, p));
1822 if( pNew==0 ) return 0;
1823 pNew->nExpr = p->nExpr;
1824 pNew->nAlloc = p->nAlloc;
1825 pItem = pNew->a;
1826 pOldItem = p->a;
1827 for(i=0; i<p->nExpr; i++, pItem++, pOldItem++){
1828 Expr *pOldExpr = pOldItem->pExpr;
1829 Expr *pNewExpr;
1830 pItem->pExpr = sqlite3ExprDup(db, pOldExpr, flags);
1831 if( pOldExpr
1832 && pOldExpr->op==TK_SELECT_COLUMN
1833 && (pNewExpr = pItem->pExpr)!=0
1835 if( pNewExpr->pRight ){
1836 pPriorSelectColOld = pOldExpr->pRight;
1837 pPriorSelectColNew = pNewExpr->pRight;
1838 pNewExpr->pLeft = pNewExpr->pRight;
1839 }else{
1840 if( pOldExpr->pLeft!=pPriorSelectColOld ){
1841 pPriorSelectColOld = pOldExpr->pLeft;
1842 pPriorSelectColNew = sqlite3ExprDup(db, pPriorSelectColOld, flags);
1843 pNewExpr->pRight = pPriorSelectColNew;
1845 pNewExpr->pLeft = pPriorSelectColNew;
1848 pItem->zEName = sqlite3DbStrDup(db, pOldItem->zEName);
1849 pItem->fg = pOldItem->fg;
1850 pItem->fg.done = 0;
1851 pItem->u = pOldItem->u;
1853 return pNew;
1857 ** If cursors, triggers, views and subqueries are all omitted from
1858 ** the build, then none of the following routines, except for
1859 ** sqlite3SelectDup(), can be called. sqlite3SelectDup() is sometimes
1860 ** called with a NULL argument.
1862 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_TRIGGER) \
1863 || !defined(SQLITE_OMIT_SUBQUERY)
1864 SrcList *sqlite3SrcListDup(sqlite3 *db, const SrcList *p, int flags){
1865 SrcList *pNew;
1866 int i;
1867 int nByte;
1868 assert( db!=0 );
1869 if( p==0 ) return 0;
1870 nByte = sizeof(*p) + (p->nSrc>0 ? sizeof(p->a[0]) * (p->nSrc-1) : 0);
1871 pNew = sqlite3DbMallocRawNN(db, nByte );
1872 if( pNew==0 ) return 0;
1873 pNew->nSrc = pNew->nAlloc = p->nSrc;
1874 for(i=0; i<p->nSrc; i++){
1875 SrcItem *pNewItem = &pNew->a[i];
1876 const SrcItem *pOldItem = &p->a[i];
1877 Table *pTab;
1878 pNewItem->pSchema = pOldItem->pSchema;
1879 pNewItem->zDatabase = sqlite3DbStrDup(db, pOldItem->zDatabase);
1880 pNewItem->zName = sqlite3DbStrDup(db, pOldItem->zName);
1881 pNewItem->zAlias = sqlite3DbStrDup(db, pOldItem->zAlias);
1882 pNewItem->fg = pOldItem->fg;
1883 pNewItem->iCursor = pOldItem->iCursor;
1884 pNewItem->addrFillSub = pOldItem->addrFillSub;
1885 pNewItem->regReturn = pOldItem->regReturn;
1886 pNewItem->regResult = pOldItem->regResult;
1887 if( pNewItem->fg.isIndexedBy ){
1888 pNewItem->u1.zIndexedBy = sqlite3DbStrDup(db, pOldItem->u1.zIndexedBy);
1889 }else if( pNewItem->fg.isTabFunc ){
1890 pNewItem->u1.pFuncArg =
1891 sqlite3ExprListDup(db, pOldItem->u1.pFuncArg, flags);
1892 }else{
1893 pNewItem->u1.nRow = pOldItem->u1.nRow;
1895 pNewItem->u2 = pOldItem->u2;
1896 if( pNewItem->fg.isCte ){
1897 pNewItem->u2.pCteUse->nUse++;
1899 pTab = pNewItem->pTab = pOldItem->pTab;
1900 if( pTab ){
1901 pTab->nTabRef++;
1903 pNewItem->pSelect = sqlite3SelectDup(db, pOldItem->pSelect, flags);
1904 if( pOldItem->fg.isUsing ){
1905 assert( pNewItem->fg.isUsing );
1906 pNewItem->u3.pUsing = sqlite3IdListDup(db, pOldItem->u3.pUsing);
1907 }else{
1908 pNewItem->u3.pOn = sqlite3ExprDup(db, pOldItem->u3.pOn, flags);
1910 pNewItem->colUsed = pOldItem->colUsed;
1912 return pNew;
1914 IdList *sqlite3IdListDup(sqlite3 *db, const IdList *p){
1915 IdList *pNew;
1916 int i;
1917 assert( db!=0 );
1918 if( p==0 ) return 0;
1919 assert( p->eU4!=EU4_EXPR );
1920 pNew = sqlite3DbMallocRawNN(db, sizeof(*pNew)+(p->nId-1)*sizeof(p->a[0]) );
1921 if( pNew==0 ) return 0;
1922 pNew->nId = p->nId;
1923 pNew->eU4 = p->eU4;
1924 for(i=0; i<p->nId; i++){
1925 struct IdList_item *pNewItem = &pNew->a[i];
1926 const struct IdList_item *pOldItem = &p->a[i];
1927 pNewItem->zName = sqlite3DbStrDup(db, pOldItem->zName);
1928 pNewItem->u4 = pOldItem->u4;
1930 return pNew;
1932 Select *sqlite3SelectDup(sqlite3 *db, const Select *pDup, int flags){
1933 Select *pRet = 0;
1934 Select *pNext = 0;
1935 Select **pp = &pRet;
1936 const Select *p;
1938 assert( db!=0 );
1939 for(p=pDup; p; p=p->pPrior){
1940 Select *pNew = sqlite3DbMallocRawNN(db, sizeof(*p) );
1941 if( pNew==0 ) break;
1942 pNew->pEList = sqlite3ExprListDup(db, p->pEList, flags);
1943 pNew->pSrc = sqlite3SrcListDup(db, p->pSrc, flags);
1944 pNew->pWhere = sqlite3ExprDup(db, p->pWhere, flags);
1945 pNew->pGroupBy = sqlite3ExprListDup(db, p->pGroupBy, flags);
1946 pNew->pHaving = sqlite3ExprDup(db, p->pHaving, flags);
1947 pNew->pOrderBy = sqlite3ExprListDup(db, p->pOrderBy, flags);
1948 pNew->op = p->op;
1949 pNew->pNext = pNext;
1950 pNew->pPrior = 0;
1951 pNew->pLimit = sqlite3ExprDup(db, p->pLimit, flags);
1952 pNew->iLimit = 0;
1953 pNew->iOffset = 0;
1954 pNew->selFlags = p->selFlags & ~SF_UsesEphemeral;
1955 pNew->addrOpenEphm[0] = -1;
1956 pNew->addrOpenEphm[1] = -1;
1957 pNew->nSelectRow = p->nSelectRow;
1958 pNew->pWith = sqlite3WithDup(db, p->pWith);
1959 #ifndef SQLITE_OMIT_WINDOWFUNC
1960 pNew->pWin = 0;
1961 pNew->pWinDefn = sqlite3WindowListDup(db, p->pWinDefn);
1962 if( p->pWin && db->mallocFailed==0 ) gatherSelectWindows(pNew);
1963 #endif
1964 pNew->selId = p->selId;
1965 if( db->mallocFailed ){
1966 /* Any prior OOM might have left the Select object incomplete.
1967 ** Delete the whole thing rather than allow an incomplete Select
1968 ** to be used by the code generator. */
1969 pNew->pNext = 0;
1970 sqlite3SelectDelete(db, pNew);
1971 break;
1973 *pp = pNew;
1974 pp = &pNew->pPrior;
1975 pNext = pNew;
1978 return pRet;
1980 #else
1981 Select *sqlite3SelectDup(sqlite3 *db, const Select *p, int flags){
1982 assert( p==0 );
1983 return 0;
1985 #endif
1989 ** Add a new element to the end of an expression list. If pList is
1990 ** initially NULL, then create a new expression list.
1992 ** The pList argument must be either NULL or a pointer to an ExprList
1993 ** obtained from a prior call to sqlite3ExprListAppend().
1995 ** If a memory allocation error occurs, the entire list is freed and
1996 ** NULL is returned. If non-NULL is returned, then it is guaranteed
1997 ** that the new entry was successfully appended.
1999 static const struct ExprList_item zeroItem = {0};
2000 SQLITE_NOINLINE ExprList *sqlite3ExprListAppendNew(
2001 sqlite3 *db, /* Database handle. Used for memory allocation */
2002 Expr *pExpr /* Expression to be appended. Might be NULL */
2004 struct ExprList_item *pItem;
2005 ExprList *pList;
2007 pList = sqlite3DbMallocRawNN(db, sizeof(ExprList)+sizeof(pList->a[0])*4 );
2008 if( pList==0 ){
2009 sqlite3ExprDelete(db, pExpr);
2010 return 0;
2012 pList->nAlloc = 4;
2013 pList->nExpr = 1;
2014 pItem = &pList->a[0];
2015 *pItem = zeroItem;
2016 pItem->pExpr = pExpr;
2017 return pList;
2019 SQLITE_NOINLINE ExprList *sqlite3ExprListAppendGrow(
2020 sqlite3 *db, /* Database handle. Used for memory allocation */
2021 ExprList *pList, /* List to which to append. Might be NULL */
2022 Expr *pExpr /* Expression to be appended. Might be NULL */
2024 struct ExprList_item *pItem;
2025 ExprList *pNew;
2026 pList->nAlloc *= 2;
2027 pNew = sqlite3DbRealloc(db, pList,
2028 sizeof(*pList)+(pList->nAlloc-1)*sizeof(pList->a[0]));
2029 if( pNew==0 ){
2030 sqlite3ExprListDelete(db, pList);
2031 sqlite3ExprDelete(db, pExpr);
2032 return 0;
2033 }else{
2034 pList = pNew;
2036 pItem = &pList->a[pList->nExpr++];
2037 *pItem = zeroItem;
2038 pItem->pExpr = pExpr;
2039 return pList;
2041 ExprList *sqlite3ExprListAppend(
2042 Parse *pParse, /* Parsing context */
2043 ExprList *pList, /* List to which to append. Might be NULL */
2044 Expr *pExpr /* Expression to be appended. Might be NULL */
2046 struct ExprList_item *pItem;
2047 if( pList==0 ){
2048 return sqlite3ExprListAppendNew(pParse->db,pExpr);
2050 if( pList->nAlloc<pList->nExpr+1 ){
2051 return sqlite3ExprListAppendGrow(pParse->db,pList,pExpr);
2053 pItem = &pList->a[pList->nExpr++];
2054 *pItem = zeroItem;
2055 pItem->pExpr = pExpr;
2056 return pList;
2060 ** pColumns and pExpr form a vector assignment which is part of the SET
2061 ** clause of an UPDATE statement. Like this:
2063 ** (a,b,c) = (expr1,expr2,expr3)
2064 ** Or: (a,b,c) = (SELECT x,y,z FROM ....)
2066 ** For each term of the vector assignment, append new entries to the
2067 ** expression list pList. In the case of a subquery on the RHS, append
2068 ** TK_SELECT_COLUMN expressions.
2070 ExprList *sqlite3ExprListAppendVector(
2071 Parse *pParse, /* Parsing context */
2072 ExprList *pList, /* List to which to append. Might be NULL */
2073 IdList *pColumns, /* List of names of LHS of the assignment */
2074 Expr *pExpr /* Vector expression to be appended. Might be NULL */
2076 sqlite3 *db = pParse->db;
2077 int n;
2078 int i;
2079 int iFirst = pList ? pList->nExpr : 0;
2080 /* pColumns can only be NULL due to an OOM but an OOM will cause an
2081 ** exit prior to this routine being invoked */
2082 if( NEVER(pColumns==0) ) goto vector_append_error;
2083 if( pExpr==0 ) goto vector_append_error;
2085 /* If the RHS is a vector, then we can immediately check to see that
2086 ** the size of the RHS and LHS match. But if the RHS is a SELECT,
2087 ** wildcards ("*") in the result set of the SELECT must be expanded before
2088 ** we can do the size check, so defer the size check until code generation.
2090 if( pExpr->op!=TK_SELECT && pColumns->nId!=(n=sqlite3ExprVectorSize(pExpr)) ){
2091 sqlite3ErrorMsg(pParse, "%d columns assigned %d values",
2092 pColumns->nId, n);
2093 goto vector_append_error;
2096 for(i=0; i<pColumns->nId; i++){
2097 Expr *pSubExpr = sqlite3ExprForVectorField(pParse, pExpr, i, pColumns->nId);
2098 assert( pSubExpr!=0 || db->mallocFailed );
2099 if( pSubExpr==0 ) continue;
2100 pList = sqlite3ExprListAppend(pParse, pList, pSubExpr);
2101 if( pList ){
2102 assert( pList->nExpr==iFirst+i+1 );
2103 pList->a[pList->nExpr-1].zEName = pColumns->a[i].zName;
2104 pColumns->a[i].zName = 0;
2108 if( !db->mallocFailed && pExpr->op==TK_SELECT && ALWAYS(pList!=0) ){
2109 Expr *pFirst = pList->a[iFirst].pExpr;
2110 assert( pFirst!=0 );
2111 assert( pFirst->op==TK_SELECT_COLUMN );
2113 /* Store the SELECT statement in pRight so it will be deleted when
2114 ** sqlite3ExprListDelete() is called */
2115 pFirst->pRight = pExpr;
2116 pExpr = 0;
2118 /* Remember the size of the LHS in iTable so that we can check that
2119 ** the RHS and LHS sizes match during code generation. */
2120 pFirst->iTable = pColumns->nId;
2123 vector_append_error:
2124 sqlite3ExprUnmapAndDelete(pParse, pExpr);
2125 sqlite3IdListDelete(db, pColumns);
2126 return pList;
2130 ** Set the sort order for the last element on the given ExprList.
2132 void sqlite3ExprListSetSortOrder(ExprList *p, int iSortOrder, int eNulls){
2133 struct ExprList_item *pItem;
2134 if( p==0 ) return;
2135 assert( p->nExpr>0 );
2137 assert( SQLITE_SO_UNDEFINED<0 && SQLITE_SO_ASC==0 && SQLITE_SO_DESC>0 );
2138 assert( iSortOrder==SQLITE_SO_UNDEFINED
2139 || iSortOrder==SQLITE_SO_ASC
2140 || iSortOrder==SQLITE_SO_DESC
2142 assert( eNulls==SQLITE_SO_UNDEFINED
2143 || eNulls==SQLITE_SO_ASC
2144 || eNulls==SQLITE_SO_DESC
2147 pItem = &p->a[p->nExpr-1];
2148 assert( pItem->fg.bNulls==0 );
2149 if( iSortOrder==SQLITE_SO_UNDEFINED ){
2150 iSortOrder = SQLITE_SO_ASC;
2152 pItem->fg.sortFlags = (u8)iSortOrder;
2154 if( eNulls!=SQLITE_SO_UNDEFINED ){
2155 pItem->fg.bNulls = 1;
2156 if( iSortOrder!=eNulls ){
2157 pItem->fg.sortFlags |= KEYINFO_ORDER_BIGNULL;
2163 ** Set the ExprList.a[].zEName element of the most recently added item
2164 ** on the expression list.
2166 ** pList might be NULL following an OOM error. But pName should never be
2167 ** NULL. If a memory allocation fails, the pParse->db->mallocFailed flag
2168 ** is set.
2170 void sqlite3ExprListSetName(
2171 Parse *pParse, /* Parsing context */
2172 ExprList *pList, /* List to which to add the span. */
2173 const Token *pName, /* Name to be added */
2174 int dequote /* True to cause the name to be dequoted */
2176 assert( pList!=0 || pParse->db->mallocFailed!=0 );
2177 assert( pParse->eParseMode!=PARSE_MODE_UNMAP || dequote==0 );
2178 if( pList ){
2179 struct ExprList_item *pItem;
2180 assert( pList->nExpr>0 );
2181 pItem = &pList->a[pList->nExpr-1];
2182 assert( pItem->zEName==0 );
2183 assert( pItem->fg.eEName==ENAME_NAME );
2184 pItem->zEName = sqlite3DbStrNDup(pParse->db, pName->z, pName->n);
2185 if( dequote ){
2186 /* If dequote==0, then pName->z does not point to part of a DDL
2187 ** statement handled by the parser. And so no token need be added
2188 ** to the token-map. */
2189 sqlite3Dequote(pItem->zEName);
2190 if( IN_RENAME_OBJECT ){
2191 sqlite3RenameTokenMap(pParse, (const void*)pItem->zEName, pName);
2198 ** Set the ExprList.a[].zSpan element of the most recently added item
2199 ** on the expression list.
2201 ** pList might be NULL following an OOM error. But pSpan should never be
2202 ** NULL. If a memory allocation fails, the pParse->db->mallocFailed flag
2203 ** is set.
2205 void sqlite3ExprListSetSpan(
2206 Parse *pParse, /* Parsing context */
2207 ExprList *pList, /* List to which to add the span. */
2208 const char *zStart, /* Start of the span */
2209 const char *zEnd /* End of the span */
2211 sqlite3 *db = pParse->db;
2212 assert( pList!=0 || db->mallocFailed!=0 );
2213 if( pList ){
2214 struct ExprList_item *pItem = &pList->a[pList->nExpr-1];
2215 assert( pList->nExpr>0 );
2216 if( pItem->zEName==0 ){
2217 pItem->zEName = sqlite3DbSpanDup(db, zStart, zEnd);
2218 pItem->fg.eEName = ENAME_SPAN;
2224 ** If the expression list pEList contains more than iLimit elements,
2225 ** leave an error message in pParse.
2227 void sqlite3ExprListCheckLength(
2228 Parse *pParse,
2229 ExprList *pEList,
2230 const char *zObject
2232 int mx = pParse->db->aLimit[SQLITE_LIMIT_COLUMN];
2233 testcase( pEList && pEList->nExpr==mx );
2234 testcase( pEList && pEList->nExpr==mx+1 );
2235 if( pEList && pEList->nExpr>mx ){
2236 sqlite3ErrorMsg(pParse, "too many columns in %s", zObject);
2241 ** Delete an entire expression list.
2243 static SQLITE_NOINLINE void exprListDeleteNN(sqlite3 *db, ExprList *pList){
2244 int i = pList->nExpr;
2245 struct ExprList_item *pItem = pList->a;
2246 assert( pList->nExpr>0 );
2247 assert( db!=0 );
2249 sqlite3ExprDelete(db, pItem->pExpr);
2250 if( pItem->zEName ) sqlite3DbNNFreeNN(db, pItem->zEName);
2251 pItem++;
2252 }while( --i>0 );
2253 sqlite3DbNNFreeNN(db, pList);
2255 void sqlite3ExprListDelete(sqlite3 *db, ExprList *pList){
2256 if( pList ) exprListDeleteNN(db, pList);
2258 void sqlite3ExprListDeleteGeneric(sqlite3 *db, void *pList){
2259 if( ALWAYS(pList) ) exprListDeleteNN(db, (ExprList*)pList);
2263 ** Return the bitwise-OR of all Expr.flags fields in the given
2264 ** ExprList.
2266 u32 sqlite3ExprListFlags(const ExprList *pList){
2267 int i;
2268 u32 m = 0;
2269 assert( pList!=0 );
2270 for(i=0; i<pList->nExpr; i++){
2271 Expr *pExpr = pList->a[i].pExpr;
2272 assert( pExpr!=0 );
2273 m |= pExpr->flags;
2275 return m;
2279 ** This is a SELECT-node callback for the expression walker that
2280 ** always "fails". By "fail" in this case, we mean set
2281 ** pWalker->eCode to zero and abort.
2283 ** This callback is used by multiple expression walkers.
2285 int sqlite3SelectWalkFail(Walker *pWalker, Select *NotUsed){
2286 UNUSED_PARAMETER(NotUsed);
2287 pWalker->eCode = 0;
2288 return WRC_Abort;
2292 ** Check the input string to see if it is "true" or "false" (in any case).
2294 ** If the string is.... Return
2295 ** "true" EP_IsTrue
2296 ** "false" EP_IsFalse
2297 ** anything else 0
2299 u32 sqlite3IsTrueOrFalse(const char *zIn){
2300 if( sqlite3StrICmp(zIn, "true")==0 ) return EP_IsTrue;
2301 if( sqlite3StrICmp(zIn, "false")==0 ) return EP_IsFalse;
2302 return 0;
2307 ** If the input expression is an ID with the name "true" or "false"
2308 ** then convert it into an TK_TRUEFALSE term. Return non-zero if
2309 ** the conversion happened, and zero if the expression is unaltered.
2311 int sqlite3ExprIdToTrueFalse(Expr *pExpr){
2312 u32 v;
2313 assert( pExpr->op==TK_ID || pExpr->op==TK_STRING );
2314 if( !ExprHasProperty(pExpr, EP_Quoted|EP_IntValue)
2315 && (v = sqlite3IsTrueOrFalse(pExpr->u.zToken))!=0
2317 pExpr->op = TK_TRUEFALSE;
2318 ExprSetProperty(pExpr, v);
2319 return 1;
2321 return 0;
2325 ** The argument must be a TK_TRUEFALSE Expr node. Return 1 if it is TRUE
2326 ** and 0 if it is FALSE.
2328 int sqlite3ExprTruthValue(const Expr *pExpr){
2329 pExpr = sqlite3ExprSkipCollateAndLikely((Expr*)pExpr);
2330 assert( pExpr->op==TK_TRUEFALSE );
2331 assert( !ExprHasProperty(pExpr, EP_IntValue) );
2332 assert( sqlite3StrICmp(pExpr->u.zToken,"true")==0
2333 || sqlite3StrICmp(pExpr->u.zToken,"false")==0 );
2334 return pExpr->u.zToken[4]==0;
2338 ** If pExpr is an AND or OR expression, try to simplify it by eliminating
2339 ** terms that are always true or false. Return the simplified expression.
2340 ** Or return the original expression if no simplification is possible.
2342 ** Examples:
2344 ** (x<10) AND true => (x<10)
2345 ** (x<10) AND false => false
2346 ** (x<10) AND (y=22 OR false) => (x<10) AND (y=22)
2347 ** (x<10) AND (y=22 OR true) => (x<10)
2348 ** (y=22) OR true => true
2350 Expr *sqlite3ExprSimplifiedAndOr(Expr *pExpr){
2351 assert( pExpr!=0 );
2352 if( pExpr->op==TK_AND || pExpr->op==TK_OR ){
2353 Expr *pRight = sqlite3ExprSimplifiedAndOr(pExpr->pRight);
2354 Expr *pLeft = sqlite3ExprSimplifiedAndOr(pExpr->pLeft);
2355 if( ExprAlwaysTrue(pLeft) || ExprAlwaysFalse(pRight) ){
2356 pExpr = pExpr->op==TK_AND ? pRight : pLeft;
2357 }else if( ExprAlwaysTrue(pRight) || ExprAlwaysFalse(pLeft) ){
2358 pExpr = pExpr->op==TK_AND ? pLeft : pRight;
2361 return pExpr;
2365 ** pExpr is a TK_FUNCTION node. Try to determine whether or not the
2366 ** function is a constant function. A function is constant if all of
2367 ** the following are true:
2369 ** (1) It is a scalar function (not an aggregate or window function)
2370 ** (2) It has either the SQLITE_FUNC_CONSTANT or SQLITE_FUNC_SLOCHNG
2371 ** property.
2372 ** (3) All of its arguments are constants
2374 ** This routine sets pWalker->eCode to 0 if pExpr is not a constant.
2375 ** It makes no changes to pWalker->eCode if pExpr is constant. In
2376 ** every case, it returns WRC_Abort.
2378 ** Called as a service subroutine from exprNodeIsConstant().
2380 static SQLITE_NOINLINE int exprNodeIsConstantFunction(
2381 Walker *pWalker,
2382 Expr *pExpr
2384 int n; /* Number of arguments */
2385 ExprList *pList; /* List of arguments */
2386 FuncDef *pDef; /* The function */
2387 sqlite3 *db; /* The database */
2389 assert( pExpr->op==TK_FUNCTION );
2390 if( ExprHasProperty(pExpr, EP_TokenOnly)
2391 || (pList = pExpr->x.pList)==0
2393 n = 0;
2394 }else{
2395 n = pList->nExpr;
2396 sqlite3WalkExprList(pWalker, pList);
2397 if( pWalker->eCode==0 ) return WRC_Abort;
2399 db = pWalker->pParse->db;
2400 pDef = sqlite3FindFunction(db, pExpr->u.zToken, n, ENC(db), 0);
2401 if( pDef==0
2402 || pDef->xFinalize!=0
2403 || (pDef->funcFlags & (SQLITE_FUNC_CONSTANT|SQLITE_FUNC_SLOCHNG))==0
2404 || ExprHasProperty(pExpr, EP_WinFunc)
2406 pWalker->eCode = 0;
2407 return WRC_Abort;
2409 return WRC_Prune;
2414 ** These routines are Walker callbacks used to check expressions to
2415 ** see if they are "constant" for some definition of constant. The
2416 ** Walker.eCode value determines the type of "constant" we are looking
2417 ** for.
2419 ** These callback routines are used to implement the following:
2421 ** sqlite3ExprIsConstant() pWalker->eCode==1
2422 ** sqlite3ExprIsConstantNotJoin() pWalker->eCode==2
2423 ** sqlite3ExprIsTableConstant() pWalker->eCode==3
2424 ** sqlite3ExprIsConstantOrFunction() pWalker->eCode==4 or 5
2426 ** In all cases, the callbacks set Walker.eCode=0 and abort if the expression
2427 ** is found to not be a constant.
2429 ** The sqlite3ExprIsConstantOrFunction() is used for evaluating DEFAULT
2430 ** expressions in a CREATE TABLE statement. The Walker.eCode value is 5
2431 ** when parsing an existing schema out of the sqlite_schema table and 4
2432 ** when processing a new CREATE TABLE statement. A bound parameter raises
2433 ** an error for new statements, but is silently converted
2434 ** to NULL for existing schemas. This allows sqlite_schema tables that
2435 ** contain a bound parameter because they were generated by older versions
2436 ** of SQLite to be parsed by newer versions of SQLite without raising a
2437 ** malformed schema error.
2439 static int exprNodeIsConstant(Walker *pWalker, Expr *pExpr){
2440 assert( pWalker->eCode>0 );
2442 /* If pWalker->eCode is 2 then any term of the expression that comes from
2443 ** the ON or USING clauses of an outer join disqualifies the expression
2444 ** from being considered constant. */
2445 if( pWalker->eCode==2 && ExprHasProperty(pExpr, EP_OuterON) ){
2446 pWalker->eCode = 0;
2447 return WRC_Abort;
2450 switch( pExpr->op ){
2451 /* Consider functions to be constant if all their arguments are constant
2452 ** and either pWalker->eCode==4 or 5 or the function has the
2453 ** SQLITE_FUNC_CONST flag. */
2454 case TK_FUNCTION:
2455 if( (pWalker->eCode>=4 || ExprHasProperty(pExpr,EP_ConstFunc))
2456 && !ExprHasProperty(pExpr, EP_WinFunc)
2458 if( pWalker->eCode==5 ) ExprSetProperty(pExpr, EP_FromDDL);
2459 return WRC_Continue;
2460 }else if( pWalker->pParse ){
2461 return exprNodeIsConstantFunction(pWalker, pExpr);
2462 }else{
2463 pWalker->eCode = 0;
2464 return WRC_Abort;
2466 case TK_ID:
2467 /* Convert "true" or "false" in a DEFAULT clause into the
2468 ** appropriate TK_TRUEFALSE operator */
2469 if( sqlite3ExprIdToTrueFalse(pExpr) ){
2470 return WRC_Prune;
2472 /* no break */ deliberate_fall_through
2473 case TK_COLUMN:
2474 case TK_AGG_FUNCTION:
2475 case TK_AGG_COLUMN:
2476 testcase( pExpr->op==TK_ID );
2477 testcase( pExpr->op==TK_COLUMN );
2478 testcase( pExpr->op==TK_AGG_FUNCTION );
2479 testcase( pExpr->op==TK_AGG_COLUMN );
2480 if( ExprHasProperty(pExpr, EP_FixedCol) && pWalker->eCode!=2 ){
2481 return WRC_Continue;
2483 if( pWalker->eCode==3 && pExpr->iTable==pWalker->u.iCur ){
2484 return WRC_Continue;
2486 /* no break */ deliberate_fall_through
2487 case TK_IF_NULL_ROW:
2488 case TK_REGISTER:
2489 case TK_DOT:
2490 case TK_RAISE:
2491 testcase( pExpr->op==TK_REGISTER );
2492 testcase( pExpr->op==TK_IF_NULL_ROW );
2493 testcase( pExpr->op==TK_DOT );
2494 testcase( pExpr->op==TK_RAISE );
2495 pWalker->eCode = 0;
2496 return WRC_Abort;
2497 case TK_VARIABLE:
2498 if( pWalker->eCode==5 ){
2499 /* Silently convert bound parameters that appear inside of CREATE
2500 ** statements into a NULL when parsing the CREATE statement text out
2501 ** of the sqlite_schema table */
2502 pExpr->op = TK_NULL;
2503 }else if( pWalker->eCode==4 ){
2504 /* A bound parameter in a CREATE statement that originates from
2505 ** sqlite3_prepare() causes an error */
2506 pWalker->eCode = 0;
2507 return WRC_Abort;
2509 /* no break */ deliberate_fall_through
2510 default:
2511 testcase( pExpr->op==TK_SELECT ); /* sqlite3SelectWalkFail() disallows */
2512 testcase( pExpr->op==TK_EXISTS ); /* sqlite3SelectWalkFail() disallows */
2513 return WRC_Continue;
2516 static int exprIsConst(Parse *pParse, Expr *p, int initFlag){
2517 Walker w;
2518 w.eCode = initFlag;
2519 w.pParse = pParse;
2520 w.xExprCallback = exprNodeIsConstant;
2521 w.xSelectCallback = sqlite3SelectWalkFail;
2522 #ifdef SQLITE_DEBUG
2523 w.xSelectCallback2 = sqlite3SelectWalkAssert2;
2524 #endif
2525 sqlite3WalkExpr(&w, p);
2526 return w.eCode;
2530 ** Walk an expression tree. Return non-zero if the expression is constant
2531 ** and 0 if it involves variables or function calls.
2533 ** For the purposes of this function, a double-quoted string (ex: "abc")
2534 ** is considered a variable but a single-quoted string (ex: 'abc') is
2535 ** a constant.
2537 ** The pParse parameter may be NULL. But if it is NULL, there is no way
2538 ** to determine if function calls are constant or not, and hence all
2539 ** function calls will be considered to be non-constant. If pParse is
2540 ** not NULL, then a function call might be constant, depending on the
2541 ** function and on its parameters.
2543 int sqlite3ExprIsConstant(Parse *pParse, Expr *p){
2544 return exprIsConst(pParse, p, 1);
2548 ** Walk an expression tree. Return non-zero if
2550 ** (1) the expression is constant, and
2551 ** (2) the expression does originate in the ON or USING clause
2552 ** of a LEFT JOIN, and
2553 ** (3) the expression does not contain any EP_FixedCol TK_COLUMN
2554 ** operands created by the constant propagation optimization.
2556 ** When this routine returns true, it indicates that the expression
2557 ** can be added to the pParse->pConstExpr list and evaluated once when
2558 ** the prepared statement starts up. See sqlite3ExprCodeRunJustOnce().
2560 static int sqlite3ExprIsConstantNotJoin(Parse *pParse, Expr *p){
2561 return exprIsConst(pParse, p, 2);
2565 ** This routine examines sub-SELECT statements as an expression is being
2566 ** walked as part of sqlite3ExprIsTableConstant(). Sub-SELECTs are considered
2567 ** constant as long as they are uncorrelated - meaning that they do not
2568 ** contain any terms from outer contexts.
2570 static int exprSelectWalkTableConstant(Walker *pWalker, Select *pSelect){
2571 assert( pSelect!=0 );
2572 assert( pWalker->eCode==3 || pWalker->eCode==0 );
2573 if( (pSelect->selFlags & SF_Correlated)!=0 ){
2574 pWalker->eCode = 0;
2575 return WRC_Abort;
2577 return WRC_Prune;
2581 ** Walk an expression tree. Return non-zero if the expression is constant
2582 ** for any single row of the table with cursor iCur. In other words, the
2583 ** expression must not refer to any non-deterministic function nor any
2584 ** table other than iCur.
2586 ** Consider uncorrelated subqueries to be constants if the bAllowSubq
2587 ** parameter is true.
2589 static int sqlite3ExprIsTableConstant(Expr *p, int iCur, int bAllowSubq){
2590 Walker w;
2591 w.eCode = 3;
2592 w.pParse = 0;
2593 w.xExprCallback = exprNodeIsConstant;
2594 if( bAllowSubq ){
2595 w.xSelectCallback = exprSelectWalkTableConstant;
2596 }else{
2597 w.xSelectCallback = sqlite3SelectWalkFail;
2598 #ifdef SQLITE_DEBUG
2599 w.xSelectCallback2 = sqlite3SelectWalkAssert2;
2600 #endif
2602 w.u.iCur = iCur;
2603 sqlite3WalkExpr(&w, p);
2604 return w.eCode;
2608 ** Check pExpr to see if it is an constraint on the single data source
2609 ** pSrc = &pSrcList->a[iSrc]. In other words, check to see if pExpr
2610 ** constrains pSrc but does not depend on any other tables or data
2611 ** sources anywhere else in the query. Return true (non-zero) if pExpr
2612 ** is a constraint on pSrc only.
2614 ** This is an optimization. False negatives will perhaps cause slower
2615 ** queries, but false positives will yield incorrect answers. So when in
2616 ** doubt, return 0.
2618 ** To be an single-source constraint, the following must be true:
2620 ** (1) pExpr cannot refer to any table other than pSrc->iCursor.
2622 ** (2a) pExpr cannot use subqueries unless the bAllowSubq parameter is
2623 ** true and the subquery is non-correlated
2625 ** (2b) pExpr cannot use non-deterministic functions.
2627 ** (3) pSrc cannot be part of the left operand for a RIGHT JOIN.
2628 ** (Is there some way to relax this constraint?)
2630 ** (4) If pSrc is the right operand of a LEFT JOIN, then...
2631 ** (4a) pExpr must come from an ON clause..
2632 ** (4b) and specifically the ON clause associated with the LEFT JOIN.
2634 ** (5) If pSrc is not the right operand of a LEFT JOIN or the left
2635 ** operand of a RIGHT JOIN, then pExpr must be from the WHERE
2636 ** clause, not an ON clause.
2638 ** (6) Either:
2640 ** (6a) pExpr does not originate in an ON or USING clause, or
2642 ** (6b) The ON or USING clause from which pExpr is derived is
2643 ** not to the left of a RIGHT JOIN (or FULL JOIN).
2645 ** Without this restriction, accepting pExpr as a single-table
2646 ** constraint might move the the ON/USING filter expression
2647 ** from the left side of a RIGHT JOIN over to the right side,
2648 ** which leads to incorrect answers. See also restriction (9)
2649 ** on push-down.
2651 int sqlite3ExprIsSingleTableConstraint(
2652 Expr *pExpr, /* The constraint */
2653 const SrcList *pSrcList, /* Complete FROM clause */
2654 int iSrc, /* Which element of pSrcList to use */
2655 int bAllowSubq /* Allow non-correlated subqueries */
2657 const SrcItem *pSrc = &pSrcList->a[iSrc];
2658 if( pSrc->fg.jointype & JT_LTORJ ){
2659 return 0; /* rule (3) */
2661 if( pSrc->fg.jointype & JT_LEFT ){
2662 if( !ExprHasProperty(pExpr, EP_OuterON) ) return 0; /* rule (4a) */
2663 if( pExpr->w.iJoin!=pSrc->iCursor ) return 0; /* rule (4b) */
2664 }else{
2665 if( ExprHasProperty(pExpr, EP_OuterON) ) return 0; /* rule (5) */
2667 if( ExprHasProperty(pExpr, EP_OuterON|EP_InnerON) /* (6a) */
2668 && (pSrcList->a[0].fg.jointype & JT_LTORJ)!=0 /* Fast pre-test of (6b) */
2670 int jj;
2671 for(jj=0; jj<iSrc; jj++){
2672 if( pExpr->w.iJoin==pSrcList->a[jj].iCursor ){
2673 if( (pSrcList->a[jj].fg.jointype & JT_LTORJ)!=0 ){
2674 return 0; /* restriction (6) */
2676 break;
2680 /* Rules (1), (2a), and (2b) handled by the following: */
2681 return sqlite3ExprIsTableConstant(pExpr, pSrc->iCursor, bAllowSubq);
2686 ** sqlite3WalkExpr() callback used by sqlite3ExprIsConstantOrGroupBy().
2688 static int exprNodeIsConstantOrGroupBy(Walker *pWalker, Expr *pExpr){
2689 ExprList *pGroupBy = pWalker->u.pGroupBy;
2690 int i;
2692 /* Check if pExpr is identical to any GROUP BY term. If so, consider
2693 ** it constant. */
2694 for(i=0; i<pGroupBy->nExpr; i++){
2695 Expr *p = pGroupBy->a[i].pExpr;
2696 if( sqlite3ExprCompare(0, pExpr, p, -1)<2 ){
2697 CollSeq *pColl = sqlite3ExprNNCollSeq(pWalker->pParse, p);
2698 if( sqlite3IsBinary(pColl) ){
2699 return WRC_Prune;
2704 /* Check if pExpr is a sub-select. If so, consider it variable. */
2705 if( ExprUseXSelect(pExpr) ){
2706 pWalker->eCode = 0;
2707 return WRC_Abort;
2710 return exprNodeIsConstant(pWalker, pExpr);
2714 ** Walk the expression tree passed as the first argument. Return non-zero
2715 ** if the expression consists entirely of constants or copies of terms
2716 ** in pGroupBy that sort with the BINARY collation sequence.
2718 ** This routine is used to determine if a term of the HAVING clause can
2719 ** be promoted into the WHERE clause. In order for such a promotion to work,
2720 ** the value of the HAVING clause term must be the same for all members of
2721 ** a "group". The requirement that the GROUP BY term must be BINARY
2722 ** assumes that no other collating sequence will have a finer-grained
2723 ** grouping than binary. In other words (A=B COLLATE binary) implies
2724 ** A=B in every other collating sequence. The requirement that the
2725 ** GROUP BY be BINARY is stricter than necessary. It would also work
2726 ** to promote HAVING clauses that use the same alternative collating
2727 ** sequence as the GROUP BY term, but that is much harder to check,
2728 ** alternative collating sequences are uncommon, and this is only an
2729 ** optimization, so we take the easy way out and simply require the
2730 ** GROUP BY to use the BINARY collating sequence.
2732 int sqlite3ExprIsConstantOrGroupBy(Parse *pParse, Expr *p, ExprList *pGroupBy){
2733 Walker w;
2734 w.eCode = 1;
2735 w.xExprCallback = exprNodeIsConstantOrGroupBy;
2736 w.xSelectCallback = 0;
2737 w.u.pGroupBy = pGroupBy;
2738 w.pParse = pParse;
2739 sqlite3WalkExpr(&w, p);
2740 return w.eCode;
2744 ** Walk an expression tree for the DEFAULT field of a column definition
2745 ** in a CREATE TABLE statement. Return non-zero if the expression is
2746 ** acceptable for use as a DEFAULT. That is to say, return non-zero if
2747 ** the expression is constant or a function call with constant arguments.
2748 ** Return and 0 if there are any variables.
2750 ** isInit is true when parsing from sqlite_schema. isInit is false when
2751 ** processing a new CREATE TABLE statement. When isInit is true, parameters
2752 ** (such as ? or $abc) in the expression are converted into NULL. When
2753 ** isInit is false, parameters raise an error. Parameters should not be
2754 ** allowed in a CREATE TABLE statement, but some legacy versions of SQLite
2755 ** allowed it, so we need to support it when reading sqlite_schema for
2756 ** backwards compatibility.
2758 ** If isInit is true, set EP_FromDDL on every TK_FUNCTION node.
2760 ** For the purposes of this function, a double-quoted string (ex: "abc")
2761 ** is considered a variable but a single-quoted string (ex: 'abc') is
2762 ** a constant.
2764 int sqlite3ExprIsConstantOrFunction(Expr *p, u8 isInit){
2765 assert( isInit==0 || isInit==1 );
2766 return exprIsConst(0, p, 4+isInit);
2769 #ifdef SQLITE_ENABLE_CURSOR_HINTS
2771 ** Walk an expression tree. Return 1 if the expression contains a
2772 ** subquery of some kind. Return 0 if there are no subqueries.
2774 int sqlite3ExprContainsSubquery(Expr *p){
2775 Walker w;
2776 w.eCode = 1;
2777 w.xExprCallback = sqlite3ExprWalkNoop;
2778 w.xSelectCallback = sqlite3SelectWalkFail;
2779 #ifdef SQLITE_DEBUG
2780 w.xSelectCallback2 = sqlite3SelectWalkAssert2;
2781 #endif
2782 sqlite3WalkExpr(&w, p);
2783 return w.eCode==0;
2785 #endif
2788 ** If the expression p codes a constant integer that is small enough
2789 ** to fit in a 32-bit integer, return 1 and put the value of the integer
2790 ** in *pValue. If the expression is not an integer or if it is too big
2791 ** to fit in a signed 32-bit integer, return 0 and leave *pValue unchanged.
2793 int sqlite3ExprIsInteger(const Expr *p, int *pValue){
2794 int rc = 0;
2795 if( NEVER(p==0) ) return 0; /* Used to only happen following on OOM */
2797 /* If an expression is an integer literal that fits in a signed 32-bit
2798 ** integer, then the EP_IntValue flag will have already been set */
2799 assert( p->op!=TK_INTEGER || (p->flags & EP_IntValue)!=0
2800 || sqlite3GetInt32(p->u.zToken, &rc)==0 );
2802 if( p->flags & EP_IntValue ){
2803 *pValue = p->u.iValue;
2804 return 1;
2806 switch( p->op ){
2807 case TK_UPLUS: {
2808 rc = sqlite3ExprIsInteger(p->pLeft, pValue);
2809 break;
2811 case TK_UMINUS: {
2812 int v = 0;
2813 if( sqlite3ExprIsInteger(p->pLeft, &v) ){
2814 assert( ((unsigned int)v)!=0x80000000 );
2815 *pValue = -v;
2816 rc = 1;
2818 break;
2820 default: break;
2822 return rc;
2826 ** Return FALSE if there is no chance that the expression can be NULL.
2828 ** If the expression might be NULL or if the expression is too complex
2829 ** to tell return TRUE.
2831 ** This routine is used as an optimization, to skip OP_IsNull opcodes
2832 ** when we know that a value cannot be NULL. Hence, a false positive
2833 ** (returning TRUE when in fact the expression can never be NULL) might
2834 ** be a small performance hit but is otherwise harmless. On the other
2835 ** hand, a false negative (returning FALSE when the result could be NULL)
2836 ** will likely result in an incorrect answer. So when in doubt, return
2837 ** TRUE.
2839 int sqlite3ExprCanBeNull(const Expr *p){
2840 u8 op;
2841 assert( p!=0 );
2842 while( p->op==TK_UPLUS || p->op==TK_UMINUS ){
2843 p = p->pLeft;
2844 assert( p!=0 );
2846 op = p->op;
2847 if( op==TK_REGISTER ) op = p->op2;
2848 switch( op ){
2849 case TK_INTEGER:
2850 case TK_STRING:
2851 case TK_FLOAT:
2852 case TK_BLOB:
2853 return 0;
2854 case TK_COLUMN:
2855 assert( ExprUseYTab(p) );
2856 return ExprHasProperty(p, EP_CanBeNull)
2857 || NEVER(p->y.pTab==0) /* Reference to column of index on expr */
2858 #ifdef SQLITE_ALLOW_ROWID_IN_VIEW
2859 || (p->iColumn==XN_ROWID && IsView(p->y.pTab))
2860 #endif
2861 || (p->iColumn>=0
2862 && p->y.pTab->aCol!=0 /* Possible due to prior error */
2863 && ALWAYS(p->iColumn<p->y.pTab->nCol)
2864 && p->y.pTab->aCol[p->iColumn].notNull==0);
2865 default:
2866 return 1;
2871 ** Return TRUE if the given expression is a constant which would be
2872 ** unchanged by OP_Affinity with the affinity given in the second
2873 ** argument.
2875 ** This routine is used to determine if the OP_Affinity operation
2876 ** can be omitted. When in doubt return FALSE. A false negative
2877 ** is harmless. A false positive, however, can result in the wrong
2878 ** answer.
2880 int sqlite3ExprNeedsNoAffinityChange(const Expr *p, char aff){
2881 u8 op;
2882 int unaryMinus = 0;
2883 if( aff==SQLITE_AFF_BLOB ) return 1;
2884 while( p->op==TK_UPLUS || p->op==TK_UMINUS ){
2885 if( p->op==TK_UMINUS ) unaryMinus = 1;
2886 p = p->pLeft;
2888 op = p->op;
2889 if( op==TK_REGISTER ) op = p->op2;
2890 switch( op ){
2891 case TK_INTEGER: {
2892 return aff>=SQLITE_AFF_NUMERIC;
2894 case TK_FLOAT: {
2895 return aff>=SQLITE_AFF_NUMERIC;
2897 case TK_STRING: {
2898 return !unaryMinus && aff==SQLITE_AFF_TEXT;
2900 case TK_BLOB: {
2901 return !unaryMinus;
2903 case TK_COLUMN: {
2904 assert( p->iTable>=0 ); /* p cannot be part of a CHECK constraint */
2905 return aff>=SQLITE_AFF_NUMERIC && p->iColumn<0;
2907 default: {
2908 return 0;
2914 ** Return TRUE if the given string is a row-id column name.
2916 int sqlite3IsRowid(const char *z){
2917 if( sqlite3StrICmp(z, "_ROWID_")==0 ) return 1;
2918 if( sqlite3StrICmp(z, "ROWID")==0 ) return 1;
2919 if( sqlite3StrICmp(z, "OID")==0 ) return 1;
2920 return 0;
2924 ** Return a pointer to a buffer containing a usable rowid alias for table
2925 ** pTab. An alias is usable if there is not an explicit user-defined column
2926 ** of the same name.
2928 const char *sqlite3RowidAlias(Table *pTab){
2929 const char *azOpt[] = {"_ROWID_", "ROWID", "OID"};
2930 int ii;
2931 assert( VisibleRowid(pTab) );
2932 for(ii=0; ii<ArraySize(azOpt); ii++){
2933 int iCol;
2934 for(iCol=0; iCol<pTab->nCol; iCol++){
2935 if( sqlite3_stricmp(azOpt[ii], pTab->aCol[iCol].zCnName)==0 ) break;
2937 if( iCol==pTab->nCol ){
2938 return azOpt[ii];
2941 return 0;
2945 ** pX is the RHS of an IN operator. If pX is a SELECT statement
2946 ** that can be simplified to a direct table access, then return
2947 ** a pointer to the SELECT statement. If pX is not a SELECT statement,
2948 ** or if the SELECT statement needs to be materialized into a transient
2949 ** table, then return NULL.
2951 #ifndef SQLITE_OMIT_SUBQUERY
2952 static Select *isCandidateForInOpt(const Expr *pX){
2953 Select *p;
2954 SrcList *pSrc;
2955 ExprList *pEList;
2956 Table *pTab;
2957 int i;
2958 if( !ExprUseXSelect(pX) ) return 0; /* Not a subquery */
2959 if( ExprHasProperty(pX, EP_VarSelect) ) return 0; /* Correlated subq */
2960 p = pX->x.pSelect;
2961 if( p->pPrior ) return 0; /* Not a compound SELECT */
2962 if( p->selFlags & (SF_Distinct|SF_Aggregate) ){
2963 testcase( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct );
2964 testcase( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Aggregate );
2965 return 0; /* No DISTINCT keyword and no aggregate functions */
2967 assert( p->pGroupBy==0 ); /* Has no GROUP BY clause */
2968 if( p->pLimit ) return 0; /* Has no LIMIT clause */
2969 if( p->pWhere ) return 0; /* Has no WHERE clause */
2970 pSrc = p->pSrc;
2971 assert( pSrc!=0 );
2972 if( pSrc->nSrc!=1 ) return 0; /* Single term in FROM clause */
2973 if( pSrc->a[0].pSelect ) return 0; /* FROM is not a subquery or view */
2974 pTab = pSrc->a[0].pTab;
2975 assert( pTab!=0 );
2976 assert( !IsView(pTab) ); /* FROM clause is not a view */
2977 if( IsVirtual(pTab) ) return 0; /* FROM clause not a virtual table */
2978 pEList = p->pEList;
2979 assert( pEList!=0 );
2980 /* All SELECT results must be columns. */
2981 for(i=0; i<pEList->nExpr; i++){
2982 Expr *pRes = pEList->a[i].pExpr;
2983 if( pRes->op!=TK_COLUMN ) return 0;
2984 assert( pRes->iTable==pSrc->a[0].iCursor ); /* Not a correlated subquery */
2986 return p;
2988 #endif /* SQLITE_OMIT_SUBQUERY */
2990 #ifndef SQLITE_OMIT_SUBQUERY
2992 ** Generate code that checks the left-most column of index table iCur to see if
2993 ** it contains any NULL entries. Cause the register at regHasNull to be set
2994 ** to a non-NULL value if iCur contains no NULLs. Cause register regHasNull
2995 ** to be set to NULL if iCur contains one or more NULL values.
2997 static void sqlite3SetHasNullFlag(Vdbe *v, int iCur, int regHasNull){
2998 int addr1;
2999 sqlite3VdbeAddOp2(v, OP_Integer, 0, regHasNull);
3000 addr1 = sqlite3VdbeAddOp1(v, OP_Rewind, iCur); VdbeCoverage(v);
3001 sqlite3VdbeAddOp3(v, OP_Column, iCur, 0, regHasNull);
3002 sqlite3VdbeChangeP5(v, OPFLAG_TYPEOFARG);
3003 VdbeComment((v, "first_entry_in(%d)", iCur));
3004 sqlite3VdbeJumpHere(v, addr1);
3006 #endif
3009 #ifndef SQLITE_OMIT_SUBQUERY
3011 ** The argument is an IN operator with a list (not a subquery) on the
3012 ** right-hand side. Return TRUE if that list is constant.
3014 static int sqlite3InRhsIsConstant(Parse *pParse, Expr *pIn){
3015 Expr *pLHS;
3016 int res;
3017 assert( !ExprHasProperty(pIn, EP_xIsSelect) );
3018 pLHS = pIn->pLeft;
3019 pIn->pLeft = 0;
3020 res = sqlite3ExprIsConstant(pParse, pIn);
3021 pIn->pLeft = pLHS;
3022 return res;
3024 #endif
3027 ** This function is used by the implementation of the IN (...) operator.
3028 ** The pX parameter is the expression on the RHS of the IN operator, which
3029 ** might be either a list of expressions or a subquery.
3031 ** The job of this routine is to find or create a b-tree object that can
3032 ** be used either to test for membership in the RHS set or to iterate through
3033 ** all members of the RHS set, skipping duplicates.
3035 ** A cursor is opened on the b-tree object that is the RHS of the IN operator
3036 ** and the *piTab parameter is set to the index of that cursor.
3038 ** The returned value of this function indicates the b-tree type, as follows:
3040 ** IN_INDEX_ROWID - The cursor was opened on a database table.
3041 ** IN_INDEX_INDEX_ASC - The cursor was opened on an ascending index.
3042 ** IN_INDEX_INDEX_DESC - The cursor was opened on a descending index.
3043 ** IN_INDEX_EPH - The cursor was opened on a specially created and
3044 ** populated ephemeral table.
3045 ** IN_INDEX_NOOP - No cursor was allocated. The IN operator must be
3046 ** implemented as a sequence of comparisons.
3048 ** An existing b-tree might be used if the RHS expression pX is a simple
3049 ** subquery such as:
3051 ** SELECT <column1>, <column2>... FROM <table>
3053 ** If the RHS of the IN operator is a list or a more complex subquery, then
3054 ** an ephemeral table might need to be generated from the RHS and then
3055 ** pX->iTable made to point to the ephemeral table instead of an
3056 ** existing table. In this case, the creation and initialization of the
3057 ** ephemeral table might be put inside of a subroutine, the EP_Subrtn flag
3058 ** will be set on pX and the pX->y.sub fields will be set to show where
3059 ** the subroutine is coded.
3061 ** The inFlags parameter must contain, at a minimum, one of the bits
3062 ** IN_INDEX_MEMBERSHIP or IN_INDEX_LOOP but not both. If inFlags contains
3063 ** IN_INDEX_MEMBERSHIP, then the generated table will be used for a fast
3064 ** membership test. When the IN_INDEX_LOOP bit is set, the IN index will
3065 ** be used to loop over all values of the RHS of the IN operator.
3067 ** When IN_INDEX_LOOP is used (and the b-tree will be used to iterate
3068 ** through the set members) then the b-tree must not contain duplicates.
3069 ** An ephemeral table will be created unless the selected columns are guaranteed
3070 ** to be unique - either because it is an INTEGER PRIMARY KEY or due to
3071 ** a UNIQUE constraint or index.
3073 ** When IN_INDEX_MEMBERSHIP is used (and the b-tree will be used
3074 ** for fast set membership tests) then an ephemeral table must
3075 ** be used unless <columns> is a single INTEGER PRIMARY KEY column or an
3076 ** index can be found with the specified <columns> as its left-most.
3078 ** If the IN_INDEX_NOOP_OK and IN_INDEX_MEMBERSHIP are both set and
3079 ** if the RHS of the IN operator is a list (not a subquery) then this
3080 ** routine might decide that creating an ephemeral b-tree for membership
3081 ** testing is too expensive and return IN_INDEX_NOOP. In that case, the
3082 ** calling routine should implement the IN operator using a sequence
3083 ** of Eq or Ne comparison operations.
3085 ** When the b-tree is being used for membership tests, the calling function
3086 ** might need to know whether or not the RHS side of the IN operator
3087 ** contains a NULL. If prRhsHasNull is not a NULL pointer and
3088 ** if there is any chance that the (...) might contain a NULL value at
3089 ** runtime, then a register is allocated and the register number written
3090 ** to *prRhsHasNull. If there is no chance that the (...) contains a
3091 ** NULL value, then *prRhsHasNull is left unchanged.
3093 ** If a register is allocated and its location stored in *prRhsHasNull, then
3094 ** the value in that register will be NULL if the b-tree contains one or more
3095 ** NULL values, and it will be some non-NULL value if the b-tree contains no
3096 ** NULL values.
3098 ** If the aiMap parameter is not NULL, it must point to an array containing
3099 ** one element for each column returned by the SELECT statement on the RHS
3100 ** of the IN(...) operator. The i'th entry of the array is populated with the
3101 ** offset of the index column that matches the i'th column returned by the
3102 ** SELECT. For example, if the expression and selected index are:
3104 ** (?,?,?) IN (SELECT a, b, c FROM t1)
3105 ** CREATE INDEX i1 ON t1(b, c, a);
3107 ** then aiMap[] is populated with {2, 0, 1}.
3109 #ifndef SQLITE_OMIT_SUBQUERY
3110 int sqlite3FindInIndex(
3111 Parse *pParse, /* Parsing context */
3112 Expr *pX, /* The IN expression */
3113 u32 inFlags, /* IN_INDEX_LOOP, _MEMBERSHIP, and/or _NOOP_OK */
3114 int *prRhsHasNull, /* Register holding NULL status. See notes */
3115 int *aiMap, /* Mapping from Index fields to RHS fields */
3116 int *piTab /* OUT: index to use */
3118 Select *p; /* SELECT to the right of IN operator */
3119 int eType = 0; /* Type of RHS table. IN_INDEX_* */
3120 int iTab; /* Cursor of the RHS table */
3121 int mustBeUnique; /* True if RHS must be unique */
3122 Vdbe *v = sqlite3GetVdbe(pParse); /* Virtual machine being coded */
3124 assert( pX->op==TK_IN );
3125 mustBeUnique = (inFlags & IN_INDEX_LOOP)!=0;
3126 iTab = pParse->nTab++;
3128 /* If the RHS of this IN(...) operator is a SELECT, and if it matters
3129 ** whether or not the SELECT result contains NULL values, check whether
3130 ** or not NULL is actually possible (it may not be, for example, due
3131 ** to NOT NULL constraints in the schema). If no NULL values are possible,
3132 ** set prRhsHasNull to 0 before continuing. */
3133 if( prRhsHasNull && ExprUseXSelect(pX) ){
3134 int i;
3135 ExprList *pEList = pX->x.pSelect->pEList;
3136 for(i=0; i<pEList->nExpr; i++){
3137 if( sqlite3ExprCanBeNull(pEList->a[i].pExpr) ) break;
3139 if( i==pEList->nExpr ){
3140 prRhsHasNull = 0;
3144 /* Check to see if an existing table or index can be used to
3145 ** satisfy the query. This is preferable to generating a new
3146 ** ephemeral table. */
3147 if( pParse->nErr==0 && (p = isCandidateForInOpt(pX))!=0 ){
3148 sqlite3 *db = pParse->db; /* Database connection */
3149 Table *pTab; /* Table <table>. */
3150 int iDb; /* Database idx for pTab */
3151 ExprList *pEList = p->pEList;
3152 int nExpr = pEList->nExpr;
3154 assert( p->pEList!=0 ); /* Because of isCandidateForInOpt(p) */
3155 assert( p->pEList->a[0].pExpr!=0 ); /* Because of isCandidateForInOpt(p) */
3156 assert( p->pSrc!=0 ); /* Because of isCandidateForInOpt(p) */
3157 pTab = p->pSrc->a[0].pTab;
3159 /* Code an OP_Transaction and OP_TableLock for <table>. */
3160 iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
3161 assert( iDb>=0 && iDb<SQLITE_MAX_DB );
3162 sqlite3CodeVerifySchema(pParse, iDb);
3163 sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName);
3165 assert(v); /* sqlite3GetVdbe() has always been previously called */
3166 if( nExpr==1 && pEList->a[0].pExpr->iColumn<0 ){
3167 /* The "x IN (SELECT rowid FROM table)" case */
3168 int iAddr = sqlite3VdbeAddOp0(v, OP_Once);
3169 VdbeCoverage(v);
3171 sqlite3OpenTable(pParse, iTab, iDb, pTab, OP_OpenRead);
3172 eType = IN_INDEX_ROWID;
3173 ExplainQueryPlan((pParse, 0,
3174 "USING ROWID SEARCH ON TABLE %s FOR IN-OPERATOR",pTab->zName));
3175 sqlite3VdbeJumpHere(v, iAddr);
3176 }else{
3177 Index *pIdx; /* Iterator variable */
3178 int affinity_ok = 1;
3179 int i;
3181 /* Check that the affinity that will be used to perform each
3182 ** comparison is the same as the affinity of each column in table
3183 ** on the RHS of the IN operator. If it not, it is not possible to
3184 ** use any index of the RHS table. */
3185 for(i=0; i<nExpr && affinity_ok; i++){
3186 Expr *pLhs = sqlite3VectorFieldSubexpr(pX->pLeft, i);
3187 int iCol = pEList->a[i].pExpr->iColumn;
3188 char idxaff = sqlite3TableColumnAffinity(pTab,iCol); /* RHS table */
3189 char cmpaff = sqlite3CompareAffinity(pLhs, idxaff);
3190 testcase( cmpaff==SQLITE_AFF_BLOB );
3191 testcase( cmpaff==SQLITE_AFF_TEXT );
3192 switch( cmpaff ){
3193 case SQLITE_AFF_BLOB:
3194 break;
3195 case SQLITE_AFF_TEXT:
3196 /* sqlite3CompareAffinity() only returns TEXT if one side or the
3197 ** other has no affinity and the other side is TEXT. Hence,
3198 ** the only way for cmpaff to be TEXT is for idxaff to be TEXT
3199 ** and for the term on the LHS of the IN to have no affinity. */
3200 assert( idxaff==SQLITE_AFF_TEXT );
3201 break;
3202 default:
3203 affinity_ok = sqlite3IsNumericAffinity(idxaff);
3207 if( affinity_ok ){
3208 /* Search for an existing index that will work for this IN operator */
3209 for(pIdx=pTab->pIndex; pIdx && eType==0; pIdx=pIdx->pNext){
3210 Bitmask colUsed; /* Columns of the index used */
3211 Bitmask mCol; /* Mask for the current column */
3212 if( pIdx->nColumn<nExpr ) continue;
3213 if( pIdx->pPartIdxWhere!=0 ) continue;
3214 /* Maximum nColumn is BMS-2, not BMS-1, so that we can compute
3215 ** BITMASK(nExpr) without overflowing */
3216 testcase( pIdx->nColumn==BMS-2 );
3217 testcase( pIdx->nColumn==BMS-1 );
3218 if( pIdx->nColumn>=BMS-1 ) continue;
3219 if( mustBeUnique ){
3220 if( pIdx->nKeyCol>nExpr
3221 ||(pIdx->nColumn>nExpr && !IsUniqueIndex(pIdx))
3223 continue; /* This index is not unique over the IN RHS columns */
3227 colUsed = 0; /* Columns of index used so far */
3228 for(i=0; i<nExpr; i++){
3229 Expr *pLhs = sqlite3VectorFieldSubexpr(pX->pLeft, i);
3230 Expr *pRhs = pEList->a[i].pExpr;
3231 CollSeq *pReq = sqlite3BinaryCompareCollSeq(pParse, pLhs, pRhs);
3232 int j;
3234 for(j=0; j<nExpr; j++){
3235 if( pIdx->aiColumn[j]!=pRhs->iColumn ) continue;
3236 assert( pIdx->azColl[j] );
3237 if( pReq!=0 && sqlite3StrICmp(pReq->zName, pIdx->azColl[j])!=0 ){
3238 continue;
3240 break;
3242 if( j==nExpr ) break;
3243 mCol = MASKBIT(j);
3244 if( mCol & colUsed ) break; /* Each column used only once */
3245 colUsed |= mCol;
3246 if( aiMap ) aiMap[i] = j;
3249 assert( i==nExpr || colUsed!=(MASKBIT(nExpr)-1) );
3250 if( colUsed==(MASKBIT(nExpr)-1) ){
3251 /* If we reach this point, that means the index pIdx is usable */
3252 int iAddr = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v);
3253 ExplainQueryPlan((pParse, 0,
3254 "USING INDEX %s FOR IN-OPERATOR",pIdx->zName));
3255 sqlite3VdbeAddOp3(v, OP_OpenRead, iTab, pIdx->tnum, iDb);
3256 sqlite3VdbeSetP4KeyInfo(pParse, pIdx);
3257 VdbeComment((v, "%s", pIdx->zName));
3258 assert( IN_INDEX_INDEX_DESC == IN_INDEX_INDEX_ASC+1 );
3259 eType = IN_INDEX_INDEX_ASC + pIdx->aSortOrder[0];
3261 if( prRhsHasNull ){
3262 #ifdef SQLITE_ENABLE_COLUMN_USED_MASK
3263 i64 mask = (1<<nExpr)-1;
3264 sqlite3VdbeAddOp4Dup8(v, OP_ColumnsUsed,
3265 iTab, 0, 0, (u8*)&mask, P4_INT64);
3266 #endif
3267 *prRhsHasNull = ++pParse->nMem;
3268 if( nExpr==1 ){
3269 sqlite3SetHasNullFlag(v, iTab, *prRhsHasNull);
3272 sqlite3VdbeJumpHere(v, iAddr);
3274 } /* End loop over indexes */
3275 } /* End if( affinity_ok ) */
3276 } /* End if not an rowid index */
3277 } /* End attempt to optimize using an index */
3279 /* If no preexisting index is available for the IN clause
3280 ** and IN_INDEX_NOOP is an allowed reply
3281 ** and the RHS of the IN operator is a list, not a subquery
3282 ** and the RHS is not constant or has two or fewer terms,
3283 ** then it is not worth creating an ephemeral table to evaluate
3284 ** the IN operator so return IN_INDEX_NOOP.
3286 if( eType==0
3287 && (inFlags & IN_INDEX_NOOP_OK)
3288 && ExprUseXList(pX)
3289 && (!sqlite3InRhsIsConstant(pParse,pX) || pX->x.pList->nExpr<=2)
3291 pParse->nTab--; /* Back out the allocation of the unused cursor */
3292 iTab = -1; /* Cursor is not allocated */
3293 eType = IN_INDEX_NOOP;
3296 if( eType==0 ){
3297 /* Could not find an existing table or index to use as the RHS b-tree.
3298 ** We will have to generate an ephemeral table to do the job.
3300 u32 savedNQueryLoop = pParse->nQueryLoop;
3301 int rMayHaveNull = 0;
3302 eType = IN_INDEX_EPH;
3303 if( inFlags & IN_INDEX_LOOP ){
3304 pParse->nQueryLoop = 0;
3305 }else if( prRhsHasNull ){
3306 *prRhsHasNull = rMayHaveNull = ++pParse->nMem;
3308 assert( pX->op==TK_IN );
3309 sqlite3CodeRhsOfIN(pParse, pX, iTab);
3310 if( rMayHaveNull ){
3311 sqlite3SetHasNullFlag(v, iTab, rMayHaveNull);
3313 pParse->nQueryLoop = savedNQueryLoop;
3316 if( aiMap && eType!=IN_INDEX_INDEX_ASC && eType!=IN_INDEX_INDEX_DESC ){
3317 int i, n;
3318 n = sqlite3ExprVectorSize(pX->pLeft);
3319 for(i=0; i<n; i++) aiMap[i] = i;
3321 *piTab = iTab;
3322 return eType;
3324 #endif
3326 #ifndef SQLITE_OMIT_SUBQUERY
3328 ** Argument pExpr is an (?, ?...) IN(...) expression. This
3329 ** function allocates and returns a nul-terminated string containing
3330 ** the affinities to be used for each column of the comparison.
3332 ** It is the responsibility of the caller to ensure that the returned
3333 ** string is eventually freed using sqlite3DbFree().
3335 static char *exprINAffinity(Parse *pParse, const Expr *pExpr){
3336 Expr *pLeft = pExpr->pLeft;
3337 int nVal = sqlite3ExprVectorSize(pLeft);
3338 Select *pSelect = ExprUseXSelect(pExpr) ? pExpr->x.pSelect : 0;
3339 char *zRet;
3341 assert( pExpr->op==TK_IN );
3342 zRet = sqlite3DbMallocRaw(pParse->db, nVal+1);
3343 if( zRet ){
3344 int i;
3345 for(i=0; i<nVal; i++){
3346 Expr *pA = sqlite3VectorFieldSubexpr(pLeft, i);
3347 char a = sqlite3ExprAffinity(pA);
3348 if( pSelect ){
3349 zRet[i] = sqlite3CompareAffinity(pSelect->pEList->a[i].pExpr, a);
3350 }else{
3351 zRet[i] = a;
3354 zRet[nVal] = '\0';
3356 return zRet;
3358 #endif
3360 #ifndef SQLITE_OMIT_SUBQUERY
3362 ** Load the Parse object passed as the first argument with an error
3363 ** message of the form:
3365 ** "sub-select returns N columns - expected M"
3367 void sqlite3SubselectError(Parse *pParse, int nActual, int nExpect){
3368 if( pParse->nErr==0 ){
3369 const char *zFmt = "sub-select returns %d columns - expected %d";
3370 sqlite3ErrorMsg(pParse, zFmt, nActual, nExpect);
3373 #endif
3376 ** Expression pExpr is a vector that has been used in a context where
3377 ** it is not permitted. If pExpr is a sub-select vector, this routine
3378 ** loads the Parse object with a message of the form:
3380 ** "sub-select returns N columns - expected 1"
3382 ** Or, if it is a regular scalar vector:
3384 ** "row value misused"
3386 void sqlite3VectorErrorMsg(Parse *pParse, Expr *pExpr){
3387 #ifndef SQLITE_OMIT_SUBQUERY
3388 if( ExprUseXSelect(pExpr) ){
3389 sqlite3SubselectError(pParse, pExpr->x.pSelect->pEList->nExpr, 1);
3390 }else
3391 #endif
3393 sqlite3ErrorMsg(pParse, "row value misused");
3397 #ifndef SQLITE_OMIT_SUBQUERY
3399 ** Generate code that will construct an ephemeral table containing all terms
3400 ** in the RHS of an IN operator. The IN operator can be in either of two
3401 ** forms:
3403 ** x IN (4,5,11) -- IN operator with list on right-hand side
3404 ** x IN (SELECT a FROM b) -- IN operator with subquery on the right
3406 ** The pExpr parameter is the IN operator. The cursor number for the
3407 ** constructed ephemeral table is returned. The first time the ephemeral
3408 ** table is computed, the cursor number is also stored in pExpr->iTable,
3409 ** however the cursor number returned might not be the same, as it might
3410 ** have been duplicated using OP_OpenDup.
3412 ** If the LHS expression ("x" in the examples) is a column value, or
3413 ** the SELECT statement returns a column value, then the affinity of that
3414 ** column is used to build the index keys. If both 'x' and the
3415 ** SELECT... statement are columns, then numeric affinity is used
3416 ** if either column has NUMERIC or INTEGER affinity. If neither
3417 ** 'x' nor the SELECT... statement are columns, then numeric affinity
3418 ** is used.
3420 void sqlite3CodeRhsOfIN(
3421 Parse *pParse, /* Parsing context */
3422 Expr *pExpr, /* The IN operator */
3423 int iTab /* Use this cursor number */
3425 int addrOnce = 0; /* Address of the OP_Once instruction at top */
3426 int addr; /* Address of OP_OpenEphemeral instruction */
3427 Expr *pLeft; /* the LHS of the IN operator */
3428 KeyInfo *pKeyInfo = 0; /* Key information */
3429 int nVal; /* Size of vector pLeft */
3430 Vdbe *v; /* The prepared statement under construction */
3432 v = pParse->pVdbe;
3433 assert( v!=0 );
3435 /* The evaluation of the IN must be repeated every time it
3436 ** is encountered if any of the following is true:
3438 ** * The right-hand side is a correlated subquery
3439 ** * The right-hand side is an expression list containing variables
3440 ** * We are inside a trigger
3442 ** If all of the above are false, then we can compute the RHS just once
3443 ** and reuse it many names.
3445 if( !ExprHasProperty(pExpr, EP_VarSelect) && pParse->iSelfTab==0 ){
3446 /* Reuse of the RHS is allowed */
3447 /* If this routine has already been coded, but the previous code
3448 ** might not have been invoked yet, so invoke it now as a subroutine.
3450 if( ExprHasProperty(pExpr, EP_Subrtn) ){
3451 addrOnce = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v);
3452 if( ExprUseXSelect(pExpr) ){
3453 ExplainQueryPlan((pParse, 0, "REUSE LIST SUBQUERY %d",
3454 pExpr->x.pSelect->selId));
3456 assert( ExprUseYSub(pExpr) );
3457 sqlite3VdbeAddOp2(v, OP_Gosub, pExpr->y.sub.regReturn,
3458 pExpr->y.sub.iAddr);
3459 assert( iTab!=pExpr->iTable );
3460 sqlite3VdbeAddOp2(v, OP_OpenDup, iTab, pExpr->iTable);
3461 sqlite3VdbeJumpHere(v, addrOnce);
3462 return;
3465 /* Begin coding the subroutine */
3466 assert( !ExprUseYWin(pExpr) );
3467 ExprSetProperty(pExpr, EP_Subrtn);
3468 assert( !ExprHasProperty(pExpr, EP_TokenOnly|EP_Reduced) );
3469 pExpr->y.sub.regReturn = ++pParse->nMem;
3470 pExpr->y.sub.iAddr =
3471 sqlite3VdbeAddOp2(v, OP_BeginSubrtn, 0, pExpr->y.sub.regReturn) + 1;
3473 addrOnce = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v);
3476 /* Check to see if this is a vector IN operator */
3477 pLeft = pExpr->pLeft;
3478 nVal = sqlite3ExprVectorSize(pLeft);
3480 /* Construct the ephemeral table that will contain the content of
3481 ** RHS of the IN operator.
3483 pExpr->iTable = iTab;
3484 addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pExpr->iTable, nVal);
3485 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS
3486 if( ExprUseXSelect(pExpr) ){
3487 VdbeComment((v, "Result of SELECT %u", pExpr->x.pSelect->selId));
3488 }else{
3489 VdbeComment((v, "RHS of IN operator"));
3491 #endif
3492 pKeyInfo = sqlite3KeyInfoAlloc(pParse->db, nVal, 1);
3494 if( ExprUseXSelect(pExpr) ){
3495 /* Case 1: expr IN (SELECT ...)
3497 ** Generate code to write the results of the select into the temporary
3498 ** table allocated and opened above.
3500 Select *pSelect = pExpr->x.pSelect;
3501 ExprList *pEList = pSelect->pEList;
3503 ExplainQueryPlan((pParse, 1, "%sLIST SUBQUERY %d",
3504 addrOnce?"":"CORRELATED ", pSelect->selId
3506 /* If the LHS and RHS of the IN operator do not match, that
3507 ** error will have been caught long before we reach this point. */
3508 if( ALWAYS(pEList->nExpr==nVal) ){
3509 Select *pCopy;
3510 SelectDest dest;
3511 int i;
3512 int rc;
3513 sqlite3SelectDestInit(&dest, SRT_Set, iTab);
3514 dest.zAffSdst = exprINAffinity(pParse, pExpr);
3515 pSelect->iLimit = 0;
3516 testcase( pSelect->selFlags & SF_Distinct );
3517 testcase( pKeyInfo==0 ); /* Caused by OOM in sqlite3KeyInfoAlloc() */
3518 pCopy = sqlite3SelectDup(pParse->db, pSelect, 0);
3519 rc = pParse->db->mallocFailed ? 1 :sqlite3Select(pParse, pCopy, &dest);
3520 sqlite3SelectDelete(pParse->db, pCopy);
3521 sqlite3DbFree(pParse->db, dest.zAffSdst);
3522 if( rc ){
3523 sqlite3KeyInfoUnref(pKeyInfo);
3524 return;
3526 assert( pKeyInfo!=0 ); /* OOM will cause exit after sqlite3Select() */
3527 assert( pEList!=0 );
3528 assert( pEList->nExpr>0 );
3529 assert( sqlite3KeyInfoIsWriteable(pKeyInfo) );
3530 for(i=0; i<nVal; i++){
3531 Expr *p = sqlite3VectorFieldSubexpr(pLeft, i);
3532 pKeyInfo->aColl[i] = sqlite3BinaryCompareCollSeq(
3533 pParse, p, pEList->a[i].pExpr
3537 }else if( ALWAYS(pExpr->x.pList!=0) ){
3538 /* Case 2: expr IN (exprlist)
3540 ** For each expression, build an index key from the evaluation and
3541 ** store it in the temporary table. If <expr> is a column, then use
3542 ** that columns affinity when building index keys. If <expr> is not
3543 ** a column, use numeric affinity.
3545 char affinity; /* Affinity of the LHS of the IN */
3546 int i;
3547 ExprList *pList = pExpr->x.pList;
3548 struct ExprList_item *pItem;
3549 int r1, r2;
3550 affinity = sqlite3ExprAffinity(pLeft);
3551 if( affinity<=SQLITE_AFF_NONE ){
3552 affinity = SQLITE_AFF_BLOB;
3553 }else if( affinity==SQLITE_AFF_REAL ){
3554 affinity = SQLITE_AFF_NUMERIC;
3556 if( pKeyInfo ){
3557 assert( sqlite3KeyInfoIsWriteable(pKeyInfo) );
3558 pKeyInfo->aColl[0] = sqlite3ExprCollSeq(pParse, pExpr->pLeft);
3561 /* Loop through each expression in <exprlist>. */
3562 r1 = sqlite3GetTempReg(pParse);
3563 r2 = sqlite3GetTempReg(pParse);
3564 for(i=pList->nExpr, pItem=pList->a; i>0; i--, pItem++){
3565 Expr *pE2 = pItem->pExpr;
3567 /* If the expression is not constant then we will need to
3568 ** disable the test that was generated above that makes sure
3569 ** this code only executes once. Because for a non-constant
3570 ** expression we need to rerun this code each time.
3572 if( addrOnce && !sqlite3ExprIsConstant(pParse, pE2) ){
3573 sqlite3VdbeChangeToNoop(v, addrOnce-1);
3574 sqlite3VdbeChangeToNoop(v, addrOnce);
3575 ExprClearProperty(pExpr, EP_Subrtn);
3576 addrOnce = 0;
3579 /* Evaluate the expression and insert it into the temp table */
3580 sqlite3ExprCode(pParse, pE2, r1);
3581 sqlite3VdbeAddOp4(v, OP_MakeRecord, r1, 1, r2, &affinity, 1);
3582 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iTab, r2, r1, 1);
3584 sqlite3ReleaseTempReg(pParse, r1);
3585 sqlite3ReleaseTempReg(pParse, r2);
3587 if( pKeyInfo ){
3588 sqlite3VdbeChangeP4(v, addr, (void *)pKeyInfo, P4_KEYINFO);
3590 if( addrOnce ){
3591 sqlite3VdbeAddOp1(v, OP_NullRow, iTab);
3592 sqlite3VdbeJumpHere(v, addrOnce);
3593 /* Subroutine return */
3594 assert( ExprUseYSub(pExpr) );
3595 assert( sqlite3VdbeGetOp(v,pExpr->y.sub.iAddr-1)->opcode==OP_BeginSubrtn
3596 || pParse->nErr );
3597 sqlite3VdbeAddOp3(v, OP_Return, pExpr->y.sub.regReturn,
3598 pExpr->y.sub.iAddr, 1);
3599 VdbeCoverage(v);
3600 sqlite3ClearTempRegCache(pParse);
3603 #endif /* SQLITE_OMIT_SUBQUERY */
3606 ** Generate code for scalar subqueries used as a subquery expression
3607 ** or EXISTS operator:
3609 ** (SELECT a FROM b) -- subquery
3610 ** EXISTS (SELECT a FROM b) -- EXISTS subquery
3612 ** The pExpr parameter is the SELECT or EXISTS operator to be coded.
3614 ** Return the register that holds the result. For a multi-column SELECT,
3615 ** the result is stored in a contiguous array of registers and the
3616 ** return value is the register of the left-most result column.
3617 ** Return 0 if an error occurs.
3619 #ifndef SQLITE_OMIT_SUBQUERY
3620 int sqlite3CodeSubselect(Parse *pParse, Expr *pExpr){
3621 int addrOnce = 0; /* Address of OP_Once at top of subroutine */
3622 int rReg = 0; /* Register storing resulting */
3623 Select *pSel; /* SELECT statement to encode */
3624 SelectDest dest; /* How to deal with SELECT result */
3625 int nReg; /* Registers to allocate */
3626 Expr *pLimit; /* New limit expression */
3627 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS
3628 int addrExplain; /* Address of OP_Explain instruction */
3629 #endif
3631 Vdbe *v = pParse->pVdbe;
3632 assert( v!=0 );
3633 if( pParse->nErr ) return 0;
3634 testcase( pExpr->op==TK_EXISTS );
3635 testcase( pExpr->op==TK_SELECT );
3636 assert( pExpr->op==TK_EXISTS || pExpr->op==TK_SELECT );
3637 assert( ExprUseXSelect(pExpr) );
3638 pSel = pExpr->x.pSelect;
3640 /* If this routine has already been coded, then invoke it as a
3641 ** subroutine. */
3642 if( ExprHasProperty(pExpr, EP_Subrtn) ){
3643 ExplainQueryPlan((pParse, 0, "REUSE SUBQUERY %d", pSel->selId));
3644 assert( ExprUseYSub(pExpr) );
3645 sqlite3VdbeAddOp2(v, OP_Gosub, pExpr->y.sub.regReturn,
3646 pExpr->y.sub.iAddr);
3647 return pExpr->iTable;
3650 /* Begin coding the subroutine */
3651 assert( !ExprUseYWin(pExpr) );
3652 assert( !ExprHasProperty(pExpr, EP_Reduced|EP_TokenOnly) );
3653 ExprSetProperty(pExpr, EP_Subrtn);
3654 pExpr->y.sub.regReturn = ++pParse->nMem;
3655 pExpr->y.sub.iAddr =
3656 sqlite3VdbeAddOp2(v, OP_BeginSubrtn, 0, pExpr->y.sub.regReturn) + 1;
3658 /* The evaluation of the EXISTS/SELECT must be repeated every time it
3659 ** is encountered if any of the following is true:
3661 ** * The right-hand side is a correlated subquery
3662 ** * The right-hand side is an expression list containing variables
3663 ** * We are inside a trigger
3665 ** If all of the above are false, then we can run this code just once
3666 ** save the results, and reuse the same result on subsequent invocations.
3668 if( !ExprHasProperty(pExpr, EP_VarSelect) ){
3669 addrOnce = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v);
3672 /* For a SELECT, generate code to put the values for all columns of
3673 ** the first row into an array of registers and return the index of
3674 ** the first register.
3676 ** If this is an EXISTS, write an integer 0 (not exists) or 1 (exists)
3677 ** into a register and return that register number.
3679 ** In both cases, the query is augmented with "LIMIT 1". Any
3680 ** preexisting limit is discarded in place of the new LIMIT 1.
3682 ExplainQueryPlan2(addrExplain, (pParse, 1, "%sSCALAR SUBQUERY %d",
3683 addrOnce?"":"CORRELATED ", pSel->selId));
3684 sqlite3VdbeScanStatusCounters(v, addrExplain, addrExplain, -1);
3685 nReg = pExpr->op==TK_SELECT ? pSel->pEList->nExpr : 1;
3686 sqlite3SelectDestInit(&dest, 0, pParse->nMem+1);
3687 pParse->nMem += nReg;
3688 if( pExpr->op==TK_SELECT ){
3689 dest.eDest = SRT_Mem;
3690 dest.iSdst = dest.iSDParm;
3691 dest.nSdst = nReg;
3692 sqlite3VdbeAddOp3(v, OP_Null, 0, dest.iSDParm, dest.iSDParm+nReg-1);
3693 VdbeComment((v, "Init subquery result"));
3694 }else{
3695 dest.eDest = SRT_Exists;
3696 sqlite3VdbeAddOp2(v, OP_Integer, 0, dest.iSDParm);
3697 VdbeComment((v, "Init EXISTS result"));
3699 if( pSel->pLimit ){
3700 /* The subquery already has a limit. If the pre-existing limit is X
3701 ** then make the new limit X<>0 so that the new limit is either 1 or 0 */
3702 sqlite3 *db = pParse->db;
3703 pLimit = sqlite3Expr(db, TK_INTEGER, "0");
3704 if( pLimit ){
3705 pLimit->affExpr = SQLITE_AFF_NUMERIC;
3706 pLimit = sqlite3PExpr(pParse, TK_NE,
3707 sqlite3ExprDup(db, pSel->pLimit->pLeft, 0), pLimit);
3709 sqlite3ExprDeferredDelete(pParse, pSel->pLimit->pLeft);
3710 pSel->pLimit->pLeft = pLimit;
3711 }else{
3712 /* If there is no pre-existing limit add a limit of 1 */
3713 pLimit = sqlite3Expr(pParse->db, TK_INTEGER, "1");
3714 pSel->pLimit = sqlite3PExpr(pParse, TK_LIMIT, pLimit, 0);
3716 pSel->iLimit = 0;
3717 if( sqlite3Select(pParse, pSel, &dest) ){
3718 pExpr->op2 = pExpr->op;
3719 pExpr->op = TK_ERROR;
3720 return 0;
3722 pExpr->iTable = rReg = dest.iSDParm;
3723 ExprSetVVAProperty(pExpr, EP_NoReduce);
3724 if( addrOnce ){
3725 sqlite3VdbeJumpHere(v, addrOnce);
3727 sqlite3VdbeScanStatusRange(v, addrExplain, addrExplain, -1);
3729 /* Subroutine return */
3730 assert( ExprUseYSub(pExpr) );
3731 assert( sqlite3VdbeGetOp(v,pExpr->y.sub.iAddr-1)->opcode==OP_BeginSubrtn
3732 || pParse->nErr );
3733 sqlite3VdbeAddOp3(v, OP_Return, pExpr->y.sub.regReturn,
3734 pExpr->y.sub.iAddr, 1);
3735 VdbeCoverage(v);
3736 sqlite3ClearTempRegCache(pParse);
3737 return rReg;
3739 #endif /* SQLITE_OMIT_SUBQUERY */
3741 #ifndef SQLITE_OMIT_SUBQUERY
3743 ** Expr pIn is an IN(...) expression. This function checks that the
3744 ** sub-select on the RHS of the IN() operator has the same number of
3745 ** columns as the vector on the LHS. Or, if the RHS of the IN() is not
3746 ** a sub-query, that the LHS is a vector of size 1.
3748 int sqlite3ExprCheckIN(Parse *pParse, Expr *pIn){
3749 int nVector = sqlite3ExprVectorSize(pIn->pLeft);
3750 if( ExprUseXSelect(pIn) && !pParse->db->mallocFailed ){
3751 if( nVector!=pIn->x.pSelect->pEList->nExpr ){
3752 sqlite3SubselectError(pParse, pIn->x.pSelect->pEList->nExpr, nVector);
3753 return 1;
3755 }else if( nVector!=1 ){
3756 sqlite3VectorErrorMsg(pParse, pIn->pLeft);
3757 return 1;
3759 return 0;
3761 #endif
3763 #ifndef SQLITE_OMIT_SUBQUERY
3765 ** Generate code for an IN expression.
3767 ** x IN (SELECT ...)
3768 ** x IN (value, value, ...)
3770 ** The left-hand side (LHS) is a scalar or vector expression. The
3771 ** right-hand side (RHS) is an array of zero or more scalar values, or a
3772 ** subquery. If the RHS is a subquery, the number of result columns must
3773 ** match the number of columns in the vector on the LHS. If the RHS is
3774 ** a list of values, the LHS must be a scalar.
3776 ** The IN operator is true if the LHS value is contained within the RHS.
3777 ** The result is false if the LHS is definitely not in the RHS. The
3778 ** result is NULL if the presence of the LHS in the RHS cannot be
3779 ** determined due to NULLs.
3781 ** This routine generates code that jumps to destIfFalse if the LHS is not
3782 ** contained within the RHS. If due to NULLs we cannot determine if the LHS
3783 ** is contained in the RHS then jump to destIfNull. If the LHS is contained
3784 ** within the RHS then fall through.
3786 ** See the separate in-operator.md documentation file in the canonical
3787 ** SQLite source tree for additional information.
3789 static void sqlite3ExprCodeIN(
3790 Parse *pParse, /* Parsing and code generating context */
3791 Expr *pExpr, /* The IN expression */
3792 int destIfFalse, /* Jump here if LHS is not contained in the RHS */
3793 int destIfNull /* Jump here if the results are unknown due to NULLs */
3795 int rRhsHasNull = 0; /* Register that is true if RHS contains NULL values */
3796 int eType; /* Type of the RHS */
3797 int rLhs; /* Register(s) holding the LHS values */
3798 int rLhsOrig; /* LHS values prior to reordering by aiMap[] */
3799 Vdbe *v; /* Statement under construction */
3800 int *aiMap = 0; /* Map from vector field to index column */
3801 char *zAff = 0; /* Affinity string for comparisons */
3802 int nVector; /* Size of vectors for this IN operator */
3803 int iDummy; /* Dummy parameter to exprCodeVector() */
3804 Expr *pLeft; /* The LHS of the IN operator */
3805 int i; /* loop counter */
3806 int destStep2; /* Where to jump when NULLs seen in step 2 */
3807 int destStep6 = 0; /* Start of code for Step 6 */
3808 int addrTruthOp; /* Address of opcode that determines the IN is true */
3809 int destNotNull; /* Jump here if a comparison is not true in step 6 */
3810 int addrTop; /* Top of the step-6 loop */
3811 int iTab = 0; /* Index to use */
3812 u8 okConstFactor = pParse->okConstFactor;
3814 assert( !ExprHasVVAProperty(pExpr,EP_Immutable) );
3815 pLeft = pExpr->pLeft;
3816 if( sqlite3ExprCheckIN(pParse, pExpr) ) return;
3817 zAff = exprINAffinity(pParse, pExpr);
3818 nVector = sqlite3ExprVectorSize(pExpr->pLeft);
3819 aiMap = (int*)sqlite3DbMallocZero(
3820 pParse->db, nVector*(sizeof(int) + sizeof(char)) + 1
3822 if( pParse->db->mallocFailed ) goto sqlite3ExprCodeIN_oom_error;
3824 /* Attempt to compute the RHS. After this step, if anything other than
3825 ** IN_INDEX_NOOP is returned, the table opened with cursor iTab
3826 ** contains the values that make up the RHS. If IN_INDEX_NOOP is returned,
3827 ** the RHS has not yet been coded. */
3828 v = pParse->pVdbe;
3829 assert( v!=0 ); /* OOM detected prior to this routine */
3830 VdbeNoopComment((v, "begin IN expr"));
3831 eType = sqlite3FindInIndex(pParse, pExpr,
3832 IN_INDEX_MEMBERSHIP | IN_INDEX_NOOP_OK,
3833 destIfFalse==destIfNull ? 0 : &rRhsHasNull,
3834 aiMap, &iTab);
3836 assert( pParse->nErr || nVector==1 || eType==IN_INDEX_EPH
3837 || eType==IN_INDEX_INDEX_ASC || eType==IN_INDEX_INDEX_DESC
3839 #ifdef SQLITE_DEBUG
3840 /* Confirm that aiMap[] contains nVector integer values between 0 and
3841 ** nVector-1. */
3842 for(i=0; i<nVector; i++){
3843 int j, cnt;
3844 for(cnt=j=0; j<nVector; j++) if( aiMap[j]==i ) cnt++;
3845 assert( cnt==1 );
3847 #endif
3849 /* Code the LHS, the <expr> from "<expr> IN (...)". If the LHS is a
3850 ** vector, then it is stored in an array of nVector registers starting
3851 ** at r1.
3853 ** sqlite3FindInIndex() might have reordered the fields of the LHS vector
3854 ** so that the fields are in the same order as an existing index. The
3855 ** aiMap[] array contains a mapping from the original LHS field order to
3856 ** the field order that matches the RHS index.
3858 ** Avoid factoring the LHS of the IN(...) expression out of the loop,
3859 ** even if it is constant, as OP_Affinity may be used on the register
3860 ** by code generated below. */
3861 assert( pParse->okConstFactor==okConstFactor );
3862 pParse->okConstFactor = 0;
3863 rLhsOrig = exprCodeVector(pParse, pLeft, &iDummy);
3864 pParse->okConstFactor = okConstFactor;
3865 for(i=0; i<nVector && aiMap[i]==i; i++){} /* Are LHS fields reordered? */
3866 if( i==nVector ){
3867 /* LHS fields are not reordered */
3868 rLhs = rLhsOrig;
3869 }else{
3870 /* Need to reorder the LHS fields according to aiMap */
3871 rLhs = sqlite3GetTempRange(pParse, nVector);
3872 for(i=0; i<nVector; i++){
3873 sqlite3VdbeAddOp3(v, OP_Copy, rLhsOrig+i, rLhs+aiMap[i], 0);
3877 /* If sqlite3FindInIndex() did not find or create an index that is
3878 ** suitable for evaluating the IN operator, then evaluate using a
3879 ** sequence of comparisons.
3881 ** This is step (1) in the in-operator.md optimized algorithm.
3883 if( eType==IN_INDEX_NOOP ){
3884 ExprList *pList;
3885 CollSeq *pColl;
3886 int labelOk = sqlite3VdbeMakeLabel(pParse);
3887 int r2, regToFree;
3888 int regCkNull = 0;
3889 int ii;
3890 assert( ExprUseXList(pExpr) );
3891 pList = pExpr->x.pList;
3892 pColl = sqlite3ExprCollSeq(pParse, pExpr->pLeft);
3893 if( destIfNull!=destIfFalse ){
3894 regCkNull = sqlite3GetTempReg(pParse);
3895 sqlite3VdbeAddOp3(v, OP_BitAnd, rLhs, rLhs, regCkNull);
3897 for(ii=0; ii<pList->nExpr; ii++){
3898 r2 = sqlite3ExprCodeTemp(pParse, pList->a[ii].pExpr, &regToFree);
3899 if( regCkNull && sqlite3ExprCanBeNull(pList->a[ii].pExpr) ){
3900 sqlite3VdbeAddOp3(v, OP_BitAnd, regCkNull, r2, regCkNull);
3902 sqlite3ReleaseTempReg(pParse, regToFree);
3903 if( ii<pList->nExpr-1 || destIfNull!=destIfFalse ){
3904 int op = rLhs!=r2 ? OP_Eq : OP_NotNull;
3905 sqlite3VdbeAddOp4(v, op, rLhs, labelOk, r2,
3906 (void*)pColl, P4_COLLSEQ);
3907 VdbeCoverageIf(v, ii<pList->nExpr-1 && op==OP_Eq);
3908 VdbeCoverageIf(v, ii==pList->nExpr-1 && op==OP_Eq);
3909 VdbeCoverageIf(v, ii<pList->nExpr-1 && op==OP_NotNull);
3910 VdbeCoverageIf(v, ii==pList->nExpr-1 && op==OP_NotNull);
3911 sqlite3VdbeChangeP5(v, zAff[0]);
3912 }else{
3913 int op = rLhs!=r2 ? OP_Ne : OP_IsNull;
3914 assert( destIfNull==destIfFalse );
3915 sqlite3VdbeAddOp4(v, op, rLhs, destIfFalse, r2,
3916 (void*)pColl, P4_COLLSEQ);
3917 VdbeCoverageIf(v, op==OP_Ne);
3918 VdbeCoverageIf(v, op==OP_IsNull);
3919 sqlite3VdbeChangeP5(v, zAff[0] | SQLITE_JUMPIFNULL);
3922 if( regCkNull ){
3923 sqlite3VdbeAddOp2(v, OP_IsNull, regCkNull, destIfNull); VdbeCoverage(v);
3924 sqlite3VdbeGoto(v, destIfFalse);
3926 sqlite3VdbeResolveLabel(v, labelOk);
3927 sqlite3ReleaseTempReg(pParse, regCkNull);
3928 goto sqlite3ExprCodeIN_finished;
3931 /* Step 2: Check to see if the LHS contains any NULL columns. If the
3932 ** LHS does contain NULLs then the result must be either FALSE or NULL.
3933 ** We will then skip the binary search of the RHS.
3935 if( destIfNull==destIfFalse ){
3936 destStep2 = destIfFalse;
3937 }else{
3938 destStep2 = destStep6 = sqlite3VdbeMakeLabel(pParse);
3940 for(i=0; i<nVector; i++){
3941 Expr *p = sqlite3VectorFieldSubexpr(pExpr->pLeft, i);
3942 if( pParse->nErr ) goto sqlite3ExprCodeIN_oom_error;
3943 if( sqlite3ExprCanBeNull(p) ){
3944 sqlite3VdbeAddOp2(v, OP_IsNull, rLhs+i, destStep2);
3945 VdbeCoverage(v);
3949 /* Step 3. The LHS is now known to be non-NULL. Do the binary search
3950 ** of the RHS using the LHS as a probe. If found, the result is
3951 ** true.
3953 if( eType==IN_INDEX_ROWID ){
3954 /* In this case, the RHS is the ROWID of table b-tree and so we also
3955 ** know that the RHS is non-NULL. Hence, we combine steps 3 and 4
3956 ** into a single opcode. */
3957 sqlite3VdbeAddOp3(v, OP_SeekRowid, iTab, destIfFalse, rLhs);
3958 VdbeCoverage(v);
3959 addrTruthOp = sqlite3VdbeAddOp0(v, OP_Goto); /* Return True */
3960 }else{
3961 sqlite3VdbeAddOp4(v, OP_Affinity, rLhs, nVector, 0, zAff, nVector);
3962 if( destIfFalse==destIfNull ){
3963 /* Combine Step 3 and Step 5 into a single opcode */
3964 sqlite3VdbeAddOp4Int(v, OP_NotFound, iTab, destIfFalse,
3965 rLhs, nVector); VdbeCoverage(v);
3966 goto sqlite3ExprCodeIN_finished;
3968 /* Ordinary Step 3, for the case where FALSE and NULL are distinct */
3969 addrTruthOp = sqlite3VdbeAddOp4Int(v, OP_Found, iTab, 0,
3970 rLhs, nVector); VdbeCoverage(v);
3973 /* Step 4. If the RHS is known to be non-NULL and we did not find
3974 ** an match on the search above, then the result must be FALSE.
3976 if( rRhsHasNull && nVector==1 ){
3977 sqlite3VdbeAddOp2(v, OP_NotNull, rRhsHasNull, destIfFalse);
3978 VdbeCoverage(v);
3981 /* Step 5. If we do not care about the difference between NULL and
3982 ** FALSE, then just return false.
3984 if( destIfFalse==destIfNull ) sqlite3VdbeGoto(v, destIfFalse);
3986 /* Step 6: Loop through rows of the RHS. Compare each row to the LHS.
3987 ** If any comparison is NULL, then the result is NULL. If all
3988 ** comparisons are FALSE then the final result is FALSE.
3990 ** For a scalar LHS, it is sufficient to check just the first row
3991 ** of the RHS.
3993 if( destStep6 ) sqlite3VdbeResolveLabel(v, destStep6);
3994 addrTop = sqlite3VdbeAddOp2(v, OP_Rewind, iTab, destIfFalse);
3995 VdbeCoverage(v);
3996 if( nVector>1 ){
3997 destNotNull = sqlite3VdbeMakeLabel(pParse);
3998 }else{
3999 /* For nVector==1, combine steps 6 and 7 by immediately returning
4000 ** FALSE if the first comparison is not NULL */
4001 destNotNull = destIfFalse;
4003 for(i=0; i<nVector; i++){
4004 Expr *p;
4005 CollSeq *pColl;
4006 int r3 = sqlite3GetTempReg(pParse);
4007 p = sqlite3VectorFieldSubexpr(pLeft, i);
4008 pColl = sqlite3ExprCollSeq(pParse, p);
4009 sqlite3VdbeAddOp3(v, OP_Column, iTab, i, r3);
4010 sqlite3VdbeAddOp4(v, OP_Ne, rLhs+i, destNotNull, r3,
4011 (void*)pColl, P4_COLLSEQ);
4012 VdbeCoverage(v);
4013 sqlite3ReleaseTempReg(pParse, r3);
4015 sqlite3VdbeAddOp2(v, OP_Goto, 0, destIfNull);
4016 if( nVector>1 ){
4017 sqlite3VdbeResolveLabel(v, destNotNull);
4018 sqlite3VdbeAddOp2(v, OP_Next, iTab, addrTop+1);
4019 VdbeCoverage(v);
4021 /* Step 7: If we reach this point, we know that the result must
4022 ** be false. */
4023 sqlite3VdbeAddOp2(v, OP_Goto, 0, destIfFalse);
4026 /* Jumps here in order to return true. */
4027 sqlite3VdbeJumpHere(v, addrTruthOp);
4029 sqlite3ExprCodeIN_finished:
4030 if( rLhs!=rLhsOrig ) sqlite3ReleaseTempReg(pParse, rLhs);
4031 VdbeComment((v, "end IN expr"));
4032 sqlite3ExprCodeIN_oom_error:
4033 sqlite3DbFree(pParse->db, aiMap);
4034 sqlite3DbFree(pParse->db, zAff);
4036 #endif /* SQLITE_OMIT_SUBQUERY */
4038 #ifndef SQLITE_OMIT_FLOATING_POINT
4040 ** Generate an instruction that will put the floating point
4041 ** value described by z[0..n-1] into register iMem.
4043 ** The z[] string will probably not be zero-terminated. But the
4044 ** z[n] character is guaranteed to be something that does not look
4045 ** like the continuation of the number.
4047 static void codeReal(Vdbe *v, const char *z, int negateFlag, int iMem){
4048 if( ALWAYS(z!=0) ){
4049 double value;
4050 sqlite3AtoF(z, &value, sqlite3Strlen30(z), SQLITE_UTF8);
4051 assert( !sqlite3IsNaN(value) ); /* The new AtoF never returns NaN */
4052 if( negateFlag ) value = -value;
4053 sqlite3VdbeAddOp4Dup8(v, OP_Real, 0, iMem, 0, (u8*)&value, P4_REAL);
4056 #endif
4060 ** Generate an instruction that will put the integer describe by
4061 ** text z[0..n-1] into register iMem.
4063 ** Expr.u.zToken is always UTF8 and zero-terminated.
4065 static void codeInteger(Parse *pParse, Expr *pExpr, int negFlag, int iMem){
4066 Vdbe *v = pParse->pVdbe;
4067 if( pExpr->flags & EP_IntValue ){
4068 int i = pExpr->u.iValue;
4069 assert( i>=0 );
4070 if( negFlag ) i = -i;
4071 sqlite3VdbeAddOp2(v, OP_Integer, i, iMem);
4072 }else{
4073 int c;
4074 i64 value;
4075 const char *z = pExpr->u.zToken;
4076 assert( z!=0 );
4077 c = sqlite3DecOrHexToI64(z, &value);
4078 if( (c==3 && !negFlag) || (c==2) || (negFlag && value==SMALLEST_INT64)){
4079 #ifdef SQLITE_OMIT_FLOATING_POINT
4080 sqlite3ErrorMsg(pParse, "oversized integer: %s%#T", negFlag?"-":"",pExpr);
4081 #else
4082 #ifndef SQLITE_OMIT_HEX_INTEGER
4083 if( sqlite3_strnicmp(z,"0x",2)==0 ){
4084 sqlite3ErrorMsg(pParse, "hex literal too big: %s%#T",
4085 negFlag?"-":"",pExpr);
4086 }else
4087 #endif
4089 codeReal(v, z, negFlag, iMem);
4091 #endif
4092 }else{
4093 if( negFlag ){ value = c==3 ? SMALLEST_INT64 : -value; }
4094 sqlite3VdbeAddOp4Dup8(v, OP_Int64, 0, iMem, 0, (u8*)&value, P4_INT64);
4100 /* Generate code that will load into register regOut a value that is
4101 ** appropriate for the iIdxCol-th column of index pIdx.
4103 void sqlite3ExprCodeLoadIndexColumn(
4104 Parse *pParse, /* The parsing context */
4105 Index *pIdx, /* The index whose column is to be loaded */
4106 int iTabCur, /* Cursor pointing to a table row */
4107 int iIdxCol, /* The column of the index to be loaded */
4108 int regOut /* Store the index column value in this register */
4110 i16 iTabCol = pIdx->aiColumn[iIdxCol];
4111 if( iTabCol==XN_EXPR ){
4112 assert( pIdx->aColExpr );
4113 assert( pIdx->aColExpr->nExpr>iIdxCol );
4114 pParse->iSelfTab = iTabCur + 1;
4115 sqlite3ExprCodeCopy(pParse, pIdx->aColExpr->a[iIdxCol].pExpr, regOut);
4116 pParse->iSelfTab = 0;
4117 }else{
4118 sqlite3ExprCodeGetColumnOfTable(pParse->pVdbe, pIdx->pTable, iTabCur,
4119 iTabCol, regOut);
4123 #ifndef SQLITE_OMIT_GENERATED_COLUMNS
4125 ** Generate code that will compute the value of generated column pCol
4126 ** and store the result in register regOut
4128 void sqlite3ExprCodeGeneratedColumn(
4129 Parse *pParse, /* Parsing context */
4130 Table *pTab, /* Table containing the generated column */
4131 Column *pCol, /* The generated column */
4132 int regOut /* Put the result in this register */
4134 int iAddr;
4135 Vdbe *v = pParse->pVdbe;
4136 int nErr = pParse->nErr;
4137 assert( v!=0 );
4138 assert( pParse->iSelfTab!=0 );
4139 if( pParse->iSelfTab>0 ){
4140 iAddr = sqlite3VdbeAddOp3(v, OP_IfNullRow, pParse->iSelfTab-1, 0, regOut);
4141 }else{
4142 iAddr = 0;
4144 sqlite3ExprCodeCopy(pParse, sqlite3ColumnExpr(pTab,pCol), regOut);
4145 if( pCol->affinity>=SQLITE_AFF_TEXT ){
4146 sqlite3VdbeAddOp4(v, OP_Affinity, regOut, 1, 0, &pCol->affinity, 1);
4148 if( iAddr ) sqlite3VdbeJumpHere(v, iAddr);
4149 if( pParse->nErr>nErr ) pParse->db->errByteOffset = -1;
4151 #endif /* SQLITE_OMIT_GENERATED_COLUMNS */
4154 ** Generate code to extract the value of the iCol-th column of a table.
4156 void sqlite3ExprCodeGetColumnOfTable(
4157 Vdbe *v, /* Parsing context */
4158 Table *pTab, /* The table containing the value */
4159 int iTabCur, /* The table cursor. Or the PK cursor for WITHOUT ROWID */
4160 int iCol, /* Index of the column to extract */
4161 int regOut /* Extract the value into this register */
4163 Column *pCol;
4164 assert( v!=0 );
4165 assert( pTab!=0 );
4166 assert( iCol!=XN_EXPR );
4167 if( iCol<0 || iCol==pTab->iPKey ){
4168 sqlite3VdbeAddOp2(v, OP_Rowid, iTabCur, regOut);
4169 VdbeComment((v, "%s.rowid", pTab->zName));
4170 }else{
4171 int op;
4172 int x;
4173 if( IsVirtual(pTab) ){
4174 op = OP_VColumn;
4175 x = iCol;
4176 #ifndef SQLITE_OMIT_GENERATED_COLUMNS
4177 }else if( (pCol = &pTab->aCol[iCol])->colFlags & COLFLAG_VIRTUAL ){
4178 Parse *pParse = sqlite3VdbeParser(v);
4179 if( pCol->colFlags & COLFLAG_BUSY ){
4180 sqlite3ErrorMsg(pParse, "generated column loop on \"%s\"",
4181 pCol->zCnName);
4182 }else{
4183 int savedSelfTab = pParse->iSelfTab;
4184 pCol->colFlags |= COLFLAG_BUSY;
4185 pParse->iSelfTab = iTabCur+1;
4186 sqlite3ExprCodeGeneratedColumn(pParse, pTab, pCol, regOut);
4187 pParse->iSelfTab = savedSelfTab;
4188 pCol->colFlags &= ~COLFLAG_BUSY;
4190 return;
4191 #endif
4192 }else if( !HasRowid(pTab) ){
4193 testcase( iCol!=sqlite3TableColumnToStorage(pTab, iCol) );
4194 x = sqlite3TableColumnToIndex(sqlite3PrimaryKeyIndex(pTab), iCol);
4195 op = OP_Column;
4196 }else{
4197 x = sqlite3TableColumnToStorage(pTab,iCol);
4198 testcase( x!=iCol );
4199 op = OP_Column;
4201 sqlite3VdbeAddOp3(v, op, iTabCur, x, regOut);
4202 sqlite3ColumnDefault(v, pTab, iCol, regOut);
4207 ** Generate code that will extract the iColumn-th column from
4208 ** table pTab and store the column value in register iReg.
4210 ** There must be an open cursor to pTab in iTable when this routine
4211 ** is called. If iColumn<0 then code is generated that extracts the rowid.
4213 int sqlite3ExprCodeGetColumn(
4214 Parse *pParse, /* Parsing and code generating context */
4215 Table *pTab, /* Description of the table we are reading from */
4216 int iColumn, /* Index of the table column */
4217 int iTable, /* The cursor pointing to the table */
4218 int iReg, /* Store results here */
4219 u8 p5 /* P5 value for OP_Column + FLAGS */
4221 assert( pParse->pVdbe!=0 );
4222 assert( (p5 & (OPFLAG_NOCHNG|OPFLAG_TYPEOFARG|OPFLAG_LENGTHARG))==p5 );
4223 assert( IsVirtual(pTab) || (p5 & OPFLAG_NOCHNG)==0 );
4224 sqlite3ExprCodeGetColumnOfTable(pParse->pVdbe, pTab, iTable, iColumn, iReg);
4225 if( p5 ){
4226 VdbeOp *pOp = sqlite3VdbeGetLastOp(pParse->pVdbe);
4227 if( pOp->opcode==OP_Column ) pOp->p5 = p5;
4228 if( pOp->opcode==OP_VColumn ) pOp->p5 = (p5 & OPFLAG_NOCHNG);
4230 return iReg;
4234 ** Generate code to move content from registers iFrom...iFrom+nReg-1
4235 ** over to iTo..iTo+nReg-1.
4237 void sqlite3ExprCodeMove(Parse *pParse, int iFrom, int iTo, int nReg){
4238 sqlite3VdbeAddOp3(pParse->pVdbe, OP_Move, iFrom, iTo, nReg);
4242 ** Convert a scalar expression node to a TK_REGISTER referencing
4243 ** register iReg. The caller must ensure that iReg already contains
4244 ** the correct value for the expression.
4246 static void exprToRegister(Expr *pExpr, int iReg){
4247 Expr *p = sqlite3ExprSkipCollateAndLikely(pExpr);
4248 if( NEVER(p==0) ) return;
4249 p->op2 = p->op;
4250 p->op = TK_REGISTER;
4251 p->iTable = iReg;
4252 ExprClearProperty(p, EP_Skip);
4256 ** Evaluate an expression (either a vector or a scalar expression) and store
4257 ** the result in contiguous temporary registers. Return the index of
4258 ** the first register used to store the result.
4260 ** If the returned result register is a temporary scalar, then also write
4261 ** that register number into *piFreeable. If the returned result register
4262 ** is not a temporary or if the expression is a vector set *piFreeable
4263 ** to 0.
4265 static int exprCodeVector(Parse *pParse, Expr *p, int *piFreeable){
4266 int iResult;
4267 int nResult = sqlite3ExprVectorSize(p);
4268 if( nResult==1 ){
4269 iResult = sqlite3ExprCodeTemp(pParse, p, piFreeable);
4270 }else{
4271 *piFreeable = 0;
4272 if( p->op==TK_SELECT ){
4273 #if SQLITE_OMIT_SUBQUERY
4274 iResult = 0;
4275 #else
4276 iResult = sqlite3CodeSubselect(pParse, p);
4277 #endif
4278 }else{
4279 int i;
4280 iResult = pParse->nMem+1;
4281 pParse->nMem += nResult;
4282 assert( ExprUseXList(p) );
4283 for(i=0; i<nResult; i++){
4284 sqlite3ExprCodeFactorable(pParse, p->x.pList->a[i].pExpr, i+iResult);
4288 return iResult;
4292 ** If the last opcode is a OP_Copy, then set the do-not-merge flag (p5)
4293 ** so that a subsequent copy will not be merged into this one.
4295 static void setDoNotMergeFlagOnCopy(Vdbe *v){
4296 if( sqlite3VdbeGetLastOp(v)->opcode==OP_Copy ){
4297 sqlite3VdbeChangeP5(v, 1); /* Tag trailing OP_Copy as not mergeable */
4302 ** Generate code to implement special SQL functions that are implemented
4303 ** in-line rather than by using the usual callbacks.
4305 static int exprCodeInlineFunction(
4306 Parse *pParse, /* Parsing context */
4307 ExprList *pFarg, /* List of function arguments */
4308 int iFuncId, /* Function ID. One of the INTFUNC_... values */
4309 int target /* Store function result in this register */
4311 int nFarg;
4312 Vdbe *v = pParse->pVdbe;
4313 assert( v!=0 );
4314 assert( pFarg!=0 );
4315 nFarg = pFarg->nExpr;
4316 assert( nFarg>0 ); /* All in-line functions have at least one argument */
4317 switch( iFuncId ){
4318 case INLINEFUNC_coalesce: {
4319 /* Attempt a direct implementation of the built-in COALESCE() and
4320 ** IFNULL() functions. This avoids unnecessary evaluation of
4321 ** arguments past the first non-NULL argument.
4323 int endCoalesce = sqlite3VdbeMakeLabel(pParse);
4324 int i;
4325 assert( nFarg>=2 );
4326 sqlite3ExprCode(pParse, pFarg->a[0].pExpr, target);
4327 for(i=1; i<nFarg; i++){
4328 sqlite3VdbeAddOp2(v, OP_NotNull, target, endCoalesce);
4329 VdbeCoverage(v);
4330 sqlite3ExprCode(pParse, pFarg->a[i].pExpr, target);
4332 setDoNotMergeFlagOnCopy(v);
4333 sqlite3VdbeResolveLabel(v, endCoalesce);
4334 break;
4336 case INLINEFUNC_iif: {
4337 Expr caseExpr;
4338 memset(&caseExpr, 0, sizeof(caseExpr));
4339 caseExpr.op = TK_CASE;
4340 caseExpr.x.pList = pFarg;
4341 return sqlite3ExprCodeTarget(pParse, &caseExpr, target);
4343 #ifdef SQLITE_ENABLE_OFFSET_SQL_FUNC
4344 case INLINEFUNC_sqlite_offset: {
4345 Expr *pArg = pFarg->a[0].pExpr;
4346 if( pArg->op==TK_COLUMN && pArg->iTable>=0 ){
4347 sqlite3VdbeAddOp3(v, OP_Offset, pArg->iTable, pArg->iColumn, target);
4348 }else{
4349 sqlite3VdbeAddOp2(v, OP_Null, 0, target);
4351 break;
4353 #endif
4354 default: {
4355 /* The UNLIKELY() function is a no-op. The result is the value
4356 ** of the first argument.
4358 assert( nFarg==1 || nFarg==2 );
4359 target = sqlite3ExprCodeTarget(pParse, pFarg->a[0].pExpr, target);
4360 break;
4363 /***********************************************************************
4364 ** Test-only SQL functions that are only usable if enabled
4365 ** via SQLITE_TESTCTRL_INTERNAL_FUNCTIONS
4367 #if !defined(SQLITE_UNTESTABLE)
4368 case INLINEFUNC_expr_compare: {
4369 /* Compare two expressions using sqlite3ExprCompare() */
4370 assert( nFarg==2 );
4371 sqlite3VdbeAddOp2(v, OP_Integer,
4372 sqlite3ExprCompare(0,pFarg->a[0].pExpr, pFarg->a[1].pExpr,-1),
4373 target);
4374 break;
4377 case INLINEFUNC_expr_implies_expr: {
4378 /* Compare two expressions using sqlite3ExprImpliesExpr() */
4379 assert( nFarg==2 );
4380 sqlite3VdbeAddOp2(v, OP_Integer,
4381 sqlite3ExprImpliesExpr(pParse,pFarg->a[0].pExpr, pFarg->a[1].pExpr,-1),
4382 target);
4383 break;
4386 case INLINEFUNC_implies_nonnull_row: {
4387 /* Result of sqlite3ExprImpliesNonNullRow() */
4388 Expr *pA1;
4389 assert( nFarg==2 );
4390 pA1 = pFarg->a[1].pExpr;
4391 if( pA1->op==TK_COLUMN ){
4392 sqlite3VdbeAddOp2(v, OP_Integer,
4393 sqlite3ExprImpliesNonNullRow(pFarg->a[0].pExpr,pA1->iTable,1),
4394 target);
4395 }else{
4396 sqlite3VdbeAddOp2(v, OP_Null, 0, target);
4398 break;
4401 case INLINEFUNC_affinity: {
4402 /* The AFFINITY() function evaluates to a string that describes
4403 ** the type affinity of the argument. This is used for testing of
4404 ** the SQLite type logic.
4406 const char *azAff[] = { "blob", "text", "numeric", "integer",
4407 "real", "flexnum" };
4408 char aff;
4409 assert( nFarg==1 );
4410 aff = sqlite3ExprAffinity(pFarg->a[0].pExpr);
4411 assert( aff<=SQLITE_AFF_NONE
4412 || (aff>=SQLITE_AFF_BLOB && aff<=SQLITE_AFF_FLEXNUM) );
4413 sqlite3VdbeLoadString(v, target,
4414 (aff<=SQLITE_AFF_NONE) ? "none" : azAff[aff-SQLITE_AFF_BLOB]);
4415 break;
4417 #endif /* !defined(SQLITE_UNTESTABLE) */
4419 return target;
4423 ** Check to see if pExpr is one of the indexed expressions on pParse->pIdxEpr.
4424 ** If it is, then resolve the expression by reading from the index and
4425 ** return the register into which the value has been read. If pExpr is
4426 ** not an indexed expression, then return negative.
4428 static SQLITE_NOINLINE int sqlite3IndexedExprLookup(
4429 Parse *pParse, /* The parsing context */
4430 Expr *pExpr, /* The expression to potentially bypass */
4431 int target /* Where to store the result of the expression */
4433 IndexedExpr *p;
4434 Vdbe *v;
4435 for(p=pParse->pIdxEpr; p; p=p->pIENext){
4436 u8 exprAff;
4437 int iDataCur = p->iDataCur;
4438 if( iDataCur<0 ) continue;
4439 if( pParse->iSelfTab ){
4440 if( p->iDataCur!=pParse->iSelfTab-1 ) continue;
4441 iDataCur = -1;
4443 if( sqlite3ExprCompare(0, pExpr, p->pExpr, iDataCur)!=0 ) continue;
4444 assert( p->aff>=SQLITE_AFF_BLOB && p->aff<=SQLITE_AFF_NUMERIC );
4445 exprAff = sqlite3ExprAffinity(pExpr);
4446 if( (exprAff<=SQLITE_AFF_BLOB && p->aff!=SQLITE_AFF_BLOB)
4447 || (exprAff==SQLITE_AFF_TEXT && p->aff!=SQLITE_AFF_TEXT)
4448 || (exprAff>=SQLITE_AFF_NUMERIC && p->aff!=SQLITE_AFF_NUMERIC)
4450 /* Affinity mismatch on a generated column */
4451 continue;
4454 v = pParse->pVdbe;
4455 assert( v!=0 );
4456 if( p->bMaybeNullRow ){
4457 /* If the index is on a NULL row due to an outer join, then we
4458 ** cannot extract the value from the index. The value must be
4459 ** computed using the original expression. */
4460 int addr = sqlite3VdbeCurrentAddr(v);
4461 sqlite3VdbeAddOp3(v, OP_IfNullRow, p->iIdxCur, addr+3, target);
4462 VdbeCoverage(v);
4463 sqlite3VdbeAddOp3(v, OP_Column, p->iIdxCur, p->iIdxCol, target);
4464 VdbeComment((v, "%s expr-column %d", p->zIdxName, p->iIdxCol));
4465 sqlite3VdbeGoto(v, 0);
4466 p = pParse->pIdxEpr;
4467 pParse->pIdxEpr = 0;
4468 sqlite3ExprCode(pParse, pExpr, target);
4469 pParse->pIdxEpr = p;
4470 sqlite3VdbeJumpHere(v, addr+2);
4471 }else{
4472 sqlite3VdbeAddOp3(v, OP_Column, p->iIdxCur, p->iIdxCol, target);
4473 VdbeComment((v, "%s expr-column %d", p->zIdxName, p->iIdxCol));
4475 return target;
4477 return -1; /* Not found */
4482 ** Expresion pExpr is guaranteed to be a TK_COLUMN or equivalent. This
4483 ** function checks the Parse.pIdxPartExpr list to see if this column
4484 ** can be replaced with a constant value. If so, it generates code to
4485 ** put the constant value in a register (ideally, but not necessarily,
4486 ** register iTarget) and returns the register number.
4488 ** Or, if the TK_COLUMN cannot be replaced by a constant, zero is
4489 ** returned.
4491 static int exprPartidxExprLookup(Parse *pParse, Expr *pExpr, int iTarget){
4492 IndexedExpr *p;
4493 for(p=pParse->pIdxPartExpr; p; p=p->pIENext){
4494 if( pExpr->iColumn==p->iIdxCol && pExpr->iTable==p->iDataCur ){
4495 Vdbe *v = pParse->pVdbe;
4496 int addr = 0;
4497 int ret;
4499 if( p->bMaybeNullRow ){
4500 addr = sqlite3VdbeAddOp1(v, OP_IfNullRow, p->iIdxCur);
4502 ret = sqlite3ExprCodeTarget(pParse, p->pExpr, iTarget);
4503 sqlite3VdbeAddOp4(pParse->pVdbe, OP_Affinity, ret, 1, 0,
4504 (const char*)&p->aff, 1);
4505 if( addr ){
4506 sqlite3VdbeJumpHere(v, addr);
4507 sqlite3VdbeChangeP3(v, addr, ret);
4509 return ret;
4512 return 0;
4517 ** Generate code into the current Vdbe to evaluate the given
4518 ** expression. Attempt to store the results in register "target".
4519 ** Return the register where results are stored.
4521 ** With this routine, there is no guarantee that results will
4522 ** be stored in target. The result might be stored in some other
4523 ** register if it is convenient to do so. The calling function
4524 ** must check the return code and move the results to the desired
4525 ** register.
4527 int sqlite3ExprCodeTarget(Parse *pParse, Expr *pExpr, int target){
4528 Vdbe *v = pParse->pVdbe; /* The VM under construction */
4529 int op; /* The opcode being coded */
4530 int inReg = target; /* Results stored in register inReg */
4531 int regFree1 = 0; /* If non-zero free this temporary register */
4532 int regFree2 = 0; /* If non-zero free this temporary register */
4533 int r1, r2; /* Various register numbers */
4534 Expr tempX; /* Temporary expression node */
4535 int p5 = 0;
4537 assert( target>0 && target<=pParse->nMem );
4538 assert( v!=0 );
4540 expr_code_doover:
4541 if( pExpr==0 ){
4542 op = TK_NULL;
4543 }else if( pParse->pIdxEpr!=0
4544 && !ExprHasProperty(pExpr, EP_Leaf)
4545 && (r1 = sqlite3IndexedExprLookup(pParse, pExpr, target))>=0
4547 return r1;
4548 }else{
4549 assert( !ExprHasVVAProperty(pExpr,EP_Immutable) );
4550 op = pExpr->op;
4552 assert( op!=TK_ORDER );
4553 switch( op ){
4554 case TK_AGG_COLUMN: {
4555 AggInfo *pAggInfo = pExpr->pAggInfo;
4556 struct AggInfo_col *pCol;
4557 assert( pAggInfo!=0 );
4558 assert( pExpr->iAgg>=0 );
4559 if( pExpr->iAgg>=pAggInfo->nColumn ){
4560 /* Happens when the left table of a RIGHT JOIN is null and
4561 ** is using an expression index */
4562 sqlite3VdbeAddOp2(v, OP_Null, 0, target);
4563 #ifdef SQLITE_VDBE_COVERAGE
4564 /* Verify that the OP_Null above is exercised by tests
4565 ** tag-20230325-2 */
4566 sqlite3VdbeAddOp3(v, OP_NotNull, target, 1, 20230325);
4567 VdbeCoverageNeverTaken(v);
4568 #endif
4569 break;
4571 pCol = &pAggInfo->aCol[pExpr->iAgg];
4572 if( !pAggInfo->directMode ){
4573 return AggInfoColumnReg(pAggInfo, pExpr->iAgg);
4574 }else if( pAggInfo->useSortingIdx ){
4575 Table *pTab = pCol->pTab;
4576 sqlite3VdbeAddOp3(v, OP_Column, pAggInfo->sortingIdxPTab,
4577 pCol->iSorterColumn, target);
4578 if( pTab==0 ){
4579 /* No comment added */
4580 }else if( pCol->iColumn<0 ){
4581 VdbeComment((v,"%s.rowid",pTab->zName));
4582 }else{
4583 VdbeComment((v,"%s.%s",
4584 pTab->zName, pTab->aCol[pCol->iColumn].zCnName));
4585 if( pTab->aCol[pCol->iColumn].affinity==SQLITE_AFF_REAL ){
4586 sqlite3VdbeAddOp1(v, OP_RealAffinity, target);
4589 return target;
4590 }else if( pExpr->y.pTab==0 ){
4591 /* This case happens when the argument to an aggregate function
4592 ** is rewritten by aggregateConvertIndexedExprRefToColumn() */
4593 sqlite3VdbeAddOp3(v, OP_Column, pExpr->iTable, pExpr->iColumn, target);
4594 return target;
4596 /* Otherwise, fall thru into the TK_COLUMN case */
4597 /* no break */ deliberate_fall_through
4599 case TK_COLUMN: {
4600 int iTab = pExpr->iTable;
4601 int iReg;
4602 if( ExprHasProperty(pExpr, EP_FixedCol) ){
4603 /* This COLUMN expression is really a constant due to WHERE clause
4604 ** constraints, and that constant is coded by the pExpr->pLeft
4605 ** expression. However, make sure the constant has the correct
4606 ** datatype by applying the Affinity of the table column to the
4607 ** constant.
4609 int aff;
4610 iReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft,target);
4611 assert( ExprUseYTab(pExpr) );
4612 assert( pExpr->y.pTab!=0 );
4613 aff = sqlite3TableColumnAffinity(pExpr->y.pTab, pExpr->iColumn);
4614 if( aff>SQLITE_AFF_BLOB ){
4615 static const char zAff[] = "B\000C\000D\000E\000F";
4616 assert( SQLITE_AFF_BLOB=='A' );
4617 assert( SQLITE_AFF_TEXT=='B' );
4618 sqlite3VdbeAddOp4(v, OP_Affinity, iReg, 1, 0,
4619 &zAff[(aff-'B')*2], P4_STATIC);
4621 return iReg;
4623 if( iTab<0 ){
4624 if( pParse->iSelfTab<0 ){
4625 /* Other columns in the same row for CHECK constraints or
4626 ** generated columns or for inserting into partial index.
4627 ** The row is unpacked into registers beginning at
4628 ** 0-(pParse->iSelfTab). The rowid (if any) is in a register
4629 ** immediately prior to the first column.
4631 Column *pCol;
4632 Table *pTab;
4633 int iSrc;
4634 int iCol = pExpr->iColumn;
4635 assert( ExprUseYTab(pExpr) );
4636 pTab = pExpr->y.pTab;
4637 assert( pTab!=0 );
4638 assert( iCol>=XN_ROWID );
4639 assert( iCol<pTab->nCol );
4640 if( iCol<0 ){
4641 return -1-pParse->iSelfTab;
4643 pCol = pTab->aCol + iCol;
4644 testcase( iCol!=sqlite3TableColumnToStorage(pTab,iCol) );
4645 iSrc = sqlite3TableColumnToStorage(pTab, iCol) - pParse->iSelfTab;
4646 #ifndef SQLITE_OMIT_GENERATED_COLUMNS
4647 if( pCol->colFlags & COLFLAG_GENERATED ){
4648 if( pCol->colFlags & COLFLAG_BUSY ){
4649 sqlite3ErrorMsg(pParse, "generated column loop on \"%s\"",
4650 pCol->zCnName);
4651 return 0;
4653 pCol->colFlags |= COLFLAG_BUSY;
4654 if( pCol->colFlags & COLFLAG_NOTAVAIL ){
4655 sqlite3ExprCodeGeneratedColumn(pParse, pTab, pCol, iSrc);
4657 pCol->colFlags &= ~(COLFLAG_BUSY|COLFLAG_NOTAVAIL);
4658 return iSrc;
4659 }else
4660 #endif /* SQLITE_OMIT_GENERATED_COLUMNS */
4661 if( pCol->affinity==SQLITE_AFF_REAL ){
4662 sqlite3VdbeAddOp2(v, OP_SCopy, iSrc, target);
4663 sqlite3VdbeAddOp1(v, OP_RealAffinity, target);
4664 return target;
4665 }else{
4666 return iSrc;
4668 }else{
4669 /* Coding an expression that is part of an index where column names
4670 ** in the index refer to the table to which the index belongs */
4671 iTab = pParse->iSelfTab - 1;
4674 else if( pParse->pIdxPartExpr
4675 && 0!=(r1 = exprPartidxExprLookup(pParse, pExpr, target))
4677 return r1;
4679 assert( ExprUseYTab(pExpr) );
4680 assert( pExpr->y.pTab!=0 );
4681 iReg = sqlite3ExprCodeGetColumn(pParse, pExpr->y.pTab,
4682 pExpr->iColumn, iTab, target,
4683 pExpr->op2);
4684 return iReg;
4686 case TK_INTEGER: {
4687 codeInteger(pParse, pExpr, 0, target);
4688 return target;
4690 case TK_TRUEFALSE: {
4691 sqlite3VdbeAddOp2(v, OP_Integer, sqlite3ExprTruthValue(pExpr), target);
4692 return target;
4694 #ifndef SQLITE_OMIT_FLOATING_POINT
4695 case TK_FLOAT: {
4696 assert( !ExprHasProperty(pExpr, EP_IntValue) );
4697 codeReal(v, pExpr->u.zToken, 0, target);
4698 return target;
4700 #endif
4701 case TK_STRING: {
4702 assert( !ExprHasProperty(pExpr, EP_IntValue) );
4703 sqlite3VdbeLoadString(v, target, pExpr->u.zToken);
4704 return target;
4706 default: {
4707 /* Make NULL the default case so that if a bug causes an illegal
4708 ** Expr node to be passed into this function, it will be handled
4709 ** sanely and not crash. But keep the assert() to bring the problem
4710 ** to the attention of the developers. */
4711 assert( op==TK_NULL || op==TK_ERROR || pParse->db->mallocFailed );
4712 sqlite3VdbeAddOp2(v, OP_Null, 0, target);
4713 return target;
4715 #ifndef SQLITE_OMIT_BLOB_LITERAL
4716 case TK_BLOB: {
4717 int n;
4718 const char *z;
4719 char *zBlob;
4720 assert( !ExprHasProperty(pExpr, EP_IntValue) );
4721 assert( pExpr->u.zToken[0]=='x' || pExpr->u.zToken[0]=='X' );
4722 assert( pExpr->u.zToken[1]=='\'' );
4723 z = &pExpr->u.zToken[2];
4724 n = sqlite3Strlen30(z) - 1;
4725 assert( z[n]=='\'' );
4726 zBlob = sqlite3HexToBlob(sqlite3VdbeDb(v), z, n);
4727 sqlite3VdbeAddOp4(v, OP_Blob, n/2, target, 0, zBlob, P4_DYNAMIC);
4728 return target;
4730 #endif
4731 case TK_VARIABLE: {
4732 assert( !ExprHasProperty(pExpr, EP_IntValue) );
4733 assert( pExpr->u.zToken!=0 );
4734 assert( pExpr->u.zToken[0]!=0 );
4735 sqlite3VdbeAddOp2(v, OP_Variable, pExpr->iColumn, target);
4736 return target;
4738 case TK_REGISTER: {
4739 return pExpr->iTable;
4741 #ifndef SQLITE_OMIT_CAST
4742 case TK_CAST: {
4743 /* Expressions of the form: CAST(pLeft AS token) */
4744 sqlite3ExprCode(pParse, pExpr->pLeft, target);
4745 assert( inReg==target );
4746 assert( !ExprHasProperty(pExpr, EP_IntValue) );
4747 sqlite3VdbeAddOp2(v, OP_Cast, target,
4748 sqlite3AffinityType(pExpr->u.zToken, 0));
4749 return inReg;
4751 #endif /* SQLITE_OMIT_CAST */
4752 case TK_IS:
4753 case TK_ISNOT:
4754 op = (op==TK_IS) ? TK_EQ : TK_NE;
4755 p5 = SQLITE_NULLEQ;
4756 /* fall-through */
4757 case TK_LT:
4758 case TK_LE:
4759 case TK_GT:
4760 case TK_GE:
4761 case TK_NE:
4762 case TK_EQ: {
4763 Expr *pLeft = pExpr->pLeft;
4764 if( sqlite3ExprIsVector(pLeft) ){
4765 codeVectorCompare(pParse, pExpr, target, op, p5);
4766 }else{
4767 r1 = sqlite3ExprCodeTemp(pParse, pLeft, &regFree1);
4768 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, &regFree2);
4769 sqlite3VdbeAddOp2(v, OP_Integer, 1, inReg);
4770 codeCompare(pParse, pLeft, pExpr->pRight, op, r1, r2,
4771 sqlite3VdbeCurrentAddr(v)+2, p5,
4772 ExprHasProperty(pExpr,EP_Commuted));
4773 assert(TK_LT==OP_Lt); testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt);
4774 assert(TK_LE==OP_Le); testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le);
4775 assert(TK_GT==OP_Gt); testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt);
4776 assert(TK_GE==OP_Ge); testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge);
4777 assert(TK_EQ==OP_Eq); testcase(op==OP_Eq); VdbeCoverageIf(v,op==OP_Eq);
4778 assert(TK_NE==OP_Ne); testcase(op==OP_Ne); VdbeCoverageIf(v,op==OP_Ne);
4779 if( p5==SQLITE_NULLEQ ){
4780 sqlite3VdbeAddOp2(v, OP_Integer, 0, inReg);
4781 }else{
4782 sqlite3VdbeAddOp3(v, OP_ZeroOrNull, r1, inReg, r2);
4784 testcase( regFree1==0 );
4785 testcase( regFree2==0 );
4787 break;
4789 case TK_AND:
4790 case TK_OR:
4791 case TK_PLUS:
4792 case TK_STAR:
4793 case TK_MINUS:
4794 case TK_REM:
4795 case TK_BITAND:
4796 case TK_BITOR:
4797 case TK_SLASH:
4798 case TK_LSHIFT:
4799 case TK_RSHIFT:
4800 case TK_CONCAT: {
4801 assert( TK_AND==OP_And ); testcase( op==TK_AND );
4802 assert( TK_OR==OP_Or ); testcase( op==TK_OR );
4803 assert( TK_PLUS==OP_Add ); testcase( op==TK_PLUS );
4804 assert( TK_MINUS==OP_Subtract ); testcase( op==TK_MINUS );
4805 assert( TK_REM==OP_Remainder ); testcase( op==TK_REM );
4806 assert( TK_BITAND==OP_BitAnd ); testcase( op==TK_BITAND );
4807 assert( TK_BITOR==OP_BitOr ); testcase( op==TK_BITOR );
4808 assert( TK_SLASH==OP_Divide ); testcase( op==TK_SLASH );
4809 assert( TK_LSHIFT==OP_ShiftLeft ); testcase( op==TK_LSHIFT );
4810 assert( TK_RSHIFT==OP_ShiftRight ); testcase( op==TK_RSHIFT );
4811 assert( TK_CONCAT==OP_Concat ); testcase( op==TK_CONCAT );
4812 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
4813 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, &regFree2);
4814 sqlite3VdbeAddOp3(v, op, r2, r1, target);
4815 testcase( regFree1==0 );
4816 testcase( regFree2==0 );
4817 break;
4819 case TK_UMINUS: {
4820 Expr *pLeft = pExpr->pLeft;
4821 assert( pLeft );
4822 if( pLeft->op==TK_INTEGER ){
4823 codeInteger(pParse, pLeft, 1, target);
4824 return target;
4825 #ifndef SQLITE_OMIT_FLOATING_POINT
4826 }else if( pLeft->op==TK_FLOAT ){
4827 assert( !ExprHasProperty(pExpr, EP_IntValue) );
4828 codeReal(v, pLeft->u.zToken, 1, target);
4829 return target;
4830 #endif
4831 }else{
4832 tempX.op = TK_INTEGER;
4833 tempX.flags = EP_IntValue|EP_TokenOnly;
4834 tempX.u.iValue = 0;
4835 ExprClearVVAProperties(&tempX);
4836 r1 = sqlite3ExprCodeTemp(pParse, &tempX, &regFree1);
4837 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree2);
4838 sqlite3VdbeAddOp3(v, OP_Subtract, r2, r1, target);
4839 testcase( regFree2==0 );
4841 break;
4843 case TK_BITNOT:
4844 case TK_NOT: {
4845 assert( TK_BITNOT==OP_BitNot ); testcase( op==TK_BITNOT );
4846 assert( TK_NOT==OP_Not ); testcase( op==TK_NOT );
4847 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
4848 testcase( regFree1==0 );
4849 sqlite3VdbeAddOp2(v, op, r1, inReg);
4850 break;
4852 case TK_TRUTH: {
4853 int isTrue; /* IS TRUE or IS NOT TRUE */
4854 int bNormal; /* IS TRUE or IS FALSE */
4855 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
4856 testcase( regFree1==0 );
4857 isTrue = sqlite3ExprTruthValue(pExpr->pRight);
4858 bNormal = pExpr->op2==TK_IS;
4859 testcase( isTrue && bNormal);
4860 testcase( !isTrue && bNormal);
4861 sqlite3VdbeAddOp4Int(v, OP_IsTrue, r1, inReg, !isTrue, isTrue ^ bNormal);
4862 break;
4864 case TK_ISNULL:
4865 case TK_NOTNULL: {
4866 int addr;
4867 assert( TK_ISNULL==OP_IsNull ); testcase( op==TK_ISNULL );
4868 assert( TK_NOTNULL==OP_NotNull ); testcase( op==TK_NOTNULL );
4869 sqlite3VdbeAddOp2(v, OP_Integer, 1, target);
4870 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
4871 testcase( regFree1==0 );
4872 addr = sqlite3VdbeAddOp1(v, op, r1);
4873 VdbeCoverageIf(v, op==TK_ISNULL);
4874 VdbeCoverageIf(v, op==TK_NOTNULL);
4875 sqlite3VdbeAddOp2(v, OP_Integer, 0, target);
4876 sqlite3VdbeJumpHere(v, addr);
4877 break;
4879 case TK_AGG_FUNCTION: {
4880 AggInfo *pInfo = pExpr->pAggInfo;
4881 if( pInfo==0
4882 || NEVER(pExpr->iAgg<0)
4883 || NEVER(pExpr->iAgg>=pInfo->nFunc)
4885 assert( !ExprHasProperty(pExpr, EP_IntValue) );
4886 sqlite3ErrorMsg(pParse, "misuse of aggregate: %#T()", pExpr);
4887 }else{
4888 return AggInfoFuncReg(pInfo, pExpr->iAgg);
4890 break;
4892 case TK_FUNCTION: {
4893 ExprList *pFarg; /* List of function arguments */
4894 int nFarg; /* Number of function arguments */
4895 FuncDef *pDef; /* The function definition object */
4896 const char *zId; /* The function name */
4897 u32 constMask = 0; /* Mask of function arguments that are constant */
4898 int i; /* Loop counter */
4899 sqlite3 *db = pParse->db; /* The database connection */
4900 u8 enc = ENC(db); /* The text encoding used by this database */
4901 CollSeq *pColl = 0; /* A collating sequence */
4903 #ifndef SQLITE_OMIT_WINDOWFUNC
4904 if( ExprHasProperty(pExpr, EP_WinFunc) ){
4905 return pExpr->y.pWin->regResult;
4907 #endif
4909 if( ConstFactorOk(pParse)
4910 && sqlite3ExprIsConstantNotJoin(pParse,pExpr)
4912 /* SQL functions can be expensive. So try to avoid running them
4913 ** multiple times if we know they always give the same result */
4914 return sqlite3ExprCodeRunJustOnce(pParse, pExpr, -1);
4916 assert( !ExprHasProperty(pExpr, EP_TokenOnly) );
4917 assert( ExprUseXList(pExpr) );
4918 pFarg = pExpr->x.pList;
4919 nFarg = pFarg ? pFarg->nExpr : 0;
4920 assert( !ExprHasProperty(pExpr, EP_IntValue) );
4921 zId = pExpr->u.zToken;
4922 pDef = sqlite3FindFunction(db, zId, nFarg, enc, 0);
4923 #ifdef SQLITE_ENABLE_UNKNOWN_SQL_FUNCTION
4924 if( pDef==0 && pParse->explain ){
4925 pDef = sqlite3FindFunction(db, "unknown", nFarg, enc, 0);
4927 #endif
4928 if( pDef==0 || pDef->xFinalize!=0 ){
4929 sqlite3ErrorMsg(pParse, "unknown function: %#T()", pExpr);
4930 break;
4932 if( (pDef->funcFlags & SQLITE_FUNC_INLINE)!=0 && ALWAYS(pFarg!=0) ){
4933 assert( (pDef->funcFlags & SQLITE_FUNC_UNSAFE)==0 );
4934 assert( (pDef->funcFlags & SQLITE_FUNC_DIRECT)==0 );
4935 return exprCodeInlineFunction(pParse, pFarg,
4936 SQLITE_PTR_TO_INT(pDef->pUserData), target);
4937 }else if( pDef->funcFlags & (SQLITE_FUNC_DIRECT|SQLITE_FUNC_UNSAFE) ){
4938 sqlite3ExprFunctionUsable(pParse, pExpr, pDef);
4941 for(i=0; i<nFarg; i++){
4942 if( i<32 && sqlite3ExprIsConstant(pParse, pFarg->a[i].pExpr) ){
4943 testcase( i==31 );
4944 constMask |= MASKBIT32(i);
4946 if( (pDef->funcFlags & SQLITE_FUNC_NEEDCOLL)!=0 && !pColl ){
4947 pColl = sqlite3ExprCollSeq(pParse, pFarg->a[i].pExpr);
4950 if( pFarg ){
4951 if( constMask ){
4952 r1 = pParse->nMem+1;
4953 pParse->nMem += nFarg;
4954 }else{
4955 r1 = sqlite3GetTempRange(pParse, nFarg);
4958 /* For length() and typeof() and octet_length() functions,
4959 ** set the P5 parameter to the OP_Column opcode to OPFLAG_LENGTHARG
4960 ** or OPFLAG_TYPEOFARG or OPFLAG_BYTELENARG respectively, to avoid
4961 ** unnecessary data loading.
4963 if( (pDef->funcFlags & (SQLITE_FUNC_LENGTH|SQLITE_FUNC_TYPEOF))!=0 ){
4964 u8 exprOp;
4965 assert( nFarg==1 );
4966 assert( pFarg->a[0].pExpr!=0 );
4967 exprOp = pFarg->a[0].pExpr->op;
4968 if( exprOp==TK_COLUMN || exprOp==TK_AGG_COLUMN ){
4969 assert( SQLITE_FUNC_LENGTH==OPFLAG_LENGTHARG );
4970 assert( SQLITE_FUNC_TYPEOF==OPFLAG_TYPEOFARG );
4971 assert( SQLITE_FUNC_BYTELEN==OPFLAG_BYTELENARG );
4972 assert( (OPFLAG_LENGTHARG|OPFLAG_TYPEOFARG)==OPFLAG_BYTELENARG );
4973 testcase( (pDef->funcFlags & OPFLAG_BYTELENARG)==OPFLAG_LENGTHARG );
4974 testcase( (pDef->funcFlags & OPFLAG_BYTELENARG)==OPFLAG_TYPEOFARG );
4975 testcase( (pDef->funcFlags & OPFLAG_BYTELENARG)==OPFLAG_BYTELENARG);
4976 pFarg->a[0].pExpr->op2 = pDef->funcFlags & OPFLAG_BYTELENARG;
4980 sqlite3ExprCodeExprList(pParse, pFarg, r1, 0, SQLITE_ECEL_FACTOR);
4981 }else{
4982 r1 = 0;
4984 #ifndef SQLITE_OMIT_VIRTUALTABLE
4985 /* Possibly overload the function if the first argument is
4986 ** a virtual table column.
4988 ** For infix functions (LIKE, GLOB, REGEXP, and MATCH) use the
4989 ** second argument, not the first, as the argument to test to
4990 ** see if it is a column in a virtual table. This is done because
4991 ** the left operand of infix functions (the operand we want to
4992 ** control overloading) ends up as the second argument to the
4993 ** function. The expression "A glob B" is equivalent to
4994 ** "glob(B,A). We want to use the A in "A glob B" to test
4995 ** for function overloading. But we use the B term in "glob(B,A)".
4997 if( nFarg>=2 && ExprHasProperty(pExpr, EP_InfixFunc) ){
4998 pDef = sqlite3VtabOverloadFunction(db, pDef, nFarg, pFarg->a[1].pExpr);
4999 }else if( nFarg>0 ){
5000 pDef = sqlite3VtabOverloadFunction(db, pDef, nFarg, pFarg->a[0].pExpr);
5002 #endif
5003 if( pDef->funcFlags & SQLITE_FUNC_NEEDCOLL ){
5004 if( !pColl ) pColl = db->pDfltColl;
5005 sqlite3VdbeAddOp4(v, OP_CollSeq, 0, 0, 0, (char *)pColl, P4_COLLSEQ);
5007 sqlite3VdbeAddFunctionCall(pParse, constMask, r1, target, nFarg,
5008 pDef, pExpr->op2);
5009 if( nFarg ){
5010 if( constMask==0 ){
5011 sqlite3ReleaseTempRange(pParse, r1, nFarg);
5012 }else{
5013 sqlite3VdbeReleaseRegisters(pParse, r1, nFarg, constMask, 1);
5016 return target;
5018 #ifndef SQLITE_OMIT_SUBQUERY
5019 case TK_EXISTS:
5020 case TK_SELECT: {
5021 int nCol;
5022 testcase( op==TK_EXISTS );
5023 testcase( op==TK_SELECT );
5024 if( pParse->db->mallocFailed ){
5025 return 0;
5026 }else if( op==TK_SELECT
5027 && ALWAYS( ExprUseXSelect(pExpr) )
5028 && (nCol = pExpr->x.pSelect->pEList->nExpr)!=1
5030 sqlite3SubselectError(pParse, nCol, 1);
5031 }else{
5032 return sqlite3CodeSubselect(pParse, pExpr);
5034 break;
5036 case TK_SELECT_COLUMN: {
5037 int n;
5038 Expr *pLeft = pExpr->pLeft;
5039 if( pLeft->iTable==0 || pParse->withinRJSubrtn > pLeft->op2 ){
5040 pLeft->iTable = sqlite3CodeSubselect(pParse, pLeft);
5041 pLeft->op2 = pParse->withinRJSubrtn;
5043 assert( pLeft->op==TK_SELECT || pLeft->op==TK_ERROR );
5044 n = sqlite3ExprVectorSize(pLeft);
5045 if( pExpr->iTable!=n ){
5046 sqlite3ErrorMsg(pParse, "%d columns assigned %d values",
5047 pExpr->iTable, n);
5049 return pLeft->iTable + pExpr->iColumn;
5051 case TK_IN: {
5052 int destIfFalse = sqlite3VdbeMakeLabel(pParse);
5053 int destIfNull = sqlite3VdbeMakeLabel(pParse);
5054 sqlite3VdbeAddOp2(v, OP_Null, 0, target);
5055 sqlite3ExprCodeIN(pParse, pExpr, destIfFalse, destIfNull);
5056 sqlite3VdbeAddOp2(v, OP_Integer, 1, target);
5057 sqlite3VdbeResolveLabel(v, destIfFalse);
5058 sqlite3VdbeAddOp2(v, OP_AddImm, target, 0);
5059 sqlite3VdbeResolveLabel(v, destIfNull);
5060 return target;
5062 #endif /* SQLITE_OMIT_SUBQUERY */
5066 ** x BETWEEN y AND z
5068 ** This is equivalent to
5070 ** x>=y AND x<=z
5072 ** X is stored in pExpr->pLeft.
5073 ** Y is stored in pExpr->pList->a[0].pExpr.
5074 ** Z is stored in pExpr->pList->a[1].pExpr.
5076 case TK_BETWEEN: {
5077 exprCodeBetween(pParse, pExpr, target, 0, 0);
5078 return target;
5080 case TK_COLLATE: {
5081 if( !ExprHasProperty(pExpr, EP_Collate) ){
5082 /* A TK_COLLATE Expr node without the EP_Collate tag is a so-called
5083 ** "SOFT-COLLATE" that is added to constraints that are pushed down
5084 ** from outer queries into sub-queries by the WHERE-clause push-down
5085 ** optimization. Clear subtypes as subtypes may not cross a subquery
5086 ** boundary.
5088 assert( pExpr->pLeft );
5089 sqlite3ExprCode(pParse, pExpr->pLeft, target);
5090 sqlite3VdbeAddOp1(v, OP_ClrSubtype, target);
5091 return target;
5092 }else{
5093 pExpr = pExpr->pLeft;
5094 goto expr_code_doover; /* 2018-04-28: Prevent deep recursion. */
5097 case TK_SPAN:
5098 case TK_UPLUS: {
5099 pExpr = pExpr->pLeft;
5100 goto expr_code_doover; /* 2018-04-28: Prevent deep recursion. OSSFuzz. */
5103 case TK_TRIGGER: {
5104 /* If the opcode is TK_TRIGGER, then the expression is a reference
5105 ** to a column in the new.* or old.* pseudo-tables available to
5106 ** trigger programs. In this case Expr.iTable is set to 1 for the
5107 ** new.* pseudo-table, or 0 for the old.* pseudo-table. Expr.iColumn
5108 ** is set to the column of the pseudo-table to read, or to -1 to
5109 ** read the rowid field.
5111 ** The expression is implemented using an OP_Param opcode. The p1
5112 ** parameter is set to 0 for an old.rowid reference, or to (i+1)
5113 ** to reference another column of the old.* pseudo-table, where
5114 ** i is the index of the column. For a new.rowid reference, p1 is
5115 ** set to (n+1), where n is the number of columns in each pseudo-table.
5116 ** For a reference to any other column in the new.* pseudo-table, p1
5117 ** is set to (n+2+i), where n and i are as defined previously. For
5118 ** example, if the table on which triggers are being fired is
5119 ** declared as:
5121 ** CREATE TABLE t1(a, b);
5123 ** Then p1 is interpreted as follows:
5125 ** p1==0 -> old.rowid p1==3 -> new.rowid
5126 ** p1==1 -> old.a p1==4 -> new.a
5127 ** p1==2 -> old.b p1==5 -> new.b
5129 Table *pTab;
5130 int iCol;
5131 int p1;
5133 assert( ExprUseYTab(pExpr) );
5134 pTab = pExpr->y.pTab;
5135 iCol = pExpr->iColumn;
5136 p1 = pExpr->iTable * (pTab->nCol+1) + 1
5137 + sqlite3TableColumnToStorage(pTab, iCol);
5139 assert( pExpr->iTable==0 || pExpr->iTable==1 );
5140 assert( iCol>=-1 && iCol<pTab->nCol );
5141 assert( pTab->iPKey<0 || iCol!=pTab->iPKey );
5142 assert( p1>=0 && p1<(pTab->nCol*2+2) );
5144 sqlite3VdbeAddOp2(v, OP_Param, p1, target);
5145 VdbeComment((v, "r[%d]=%s.%s", target,
5146 (pExpr->iTable ? "new" : "old"),
5147 (pExpr->iColumn<0 ? "rowid" : pExpr->y.pTab->aCol[iCol].zCnName)
5150 #ifndef SQLITE_OMIT_FLOATING_POINT
5151 /* If the column has REAL affinity, it may currently be stored as an
5152 ** integer. Use OP_RealAffinity to make sure it is really real.
5154 ** EVIDENCE-OF: R-60985-57662 SQLite will convert the value back to
5155 ** floating point when extracting it from the record. */
5156 if( iCol>=0 && pTab->aCol[iCol].affinity==SQLITE_AFF_REAL ){
5157 sqlite3VdbeAddOp1(v, OP_RealAffinity, target);
5159 #endif
5160 break;
5163 case TK_VECTOR: {
5164 sqlite3ErrorMsg(pParse, "row value misused");
5165 break;
5168 /* TK_IF_NULL_ROW Expr nodes are inserted ahead of expressions
5169 ** that derive from the right-hand table of a LEFT JOIN. The
5170 ** Expr.iTable value is the table number for the right-hand table.
5171 ** The expression is only evaluated if that table is not currently
5172 ** on a LEFT JOIN NULL row.
5174 case TK_IF_NULL_ROW: {
5175 int addrINR;
5176 u8 okConstFactor = pParse->okConstFactor;
5177 AggInfo *pAggInfo = pExpr->pAggInfo;
5178 if( pAggInfo ){
5179 assert( pExpr->iAgg>=0 && pExpr->iAgg<pAggInfo->nColumn );
5180 if( !pAggInfo->directMode ){
5181 inReg = AggInfoColumnReg(pAggInfo, pExpr->iAgg);
5182 break;
5184 if( pExpr->pAggInfo->useSortingIdx ){
5185 sqlite3VdbeAddOp3(v, OP_Column, pAggInfo->sortingIdxPTab,
5186 pAggInfo->aCol[pExpr->iAgg].iSorterColumn,
5187 target);
5188 inReg = target;
5189 break;
5192 addrINR = sqlite3VdbeAddOp3(v, OP_IfNullRow, pExpr->iTable, 0, target);
5193 /* The OP_IfNullRow opcode above can overwrite the result register with
5194 ** NULL. So we have to ensure that the result register is not a value
5195 ** that is suppose to be a constant. Two defenses are needed:
5196 ** (1) Temporarily disable factoring of constant expressions
5197 ** (2) Make sure the computed value really is stored in register
5198 ** "target" and not someplace else.
5200 pParse->okConstFactor = 0; /* note (1) above */
5201 sqlite3ExprCode(pParse, pExpr->pLeft, target);
5202 assert( target==inReg );
5203 pParse->okConstFactor = okConstFactor;
5204 sqlite3VdbeJumpHere(v, addrINR);
5205 break;
5209 ** Form A:
5210 ** CASE x WHEN e1 THEN r1 WHEN e2 THEN r2 ... WHEN eN THEN rN ELSE y END
5212 ** Form B:
5213 ** CASE WHEN e1 THEN r1 WHEN e2 THEN r2 ... WHEN eN THEN rN ELSE y END
5215 ** Form A is can be transformed into the equivalent form B as follows:
5216 ** CASE WHEN x=e1 THEN r1 WHEN x=e2 THEN r2 ...
5217 ** WHEN x=eN THEN rN ELSE y END
5219 ** X (if it exists) is in pExpr->pLeft.
5220 ** Y is in the last element of pExpr->x.pList if pExpr->x.pList->nExpr is
5221 ** odd. The Y is also optional. If the number of elements in x.pList
5222 ** is even, then Y is omitted and the "otherwise" result is NULL.
5223 ** Ei is in pExpr->pList->a[i*2] and Ri is pExpr->pList->a[i*2+1].
5225 ** The result of the expression is the Ri for the first matching Ei,
5226 ** or if there is no matching Ei, the ELSE term Y, or if there is
5227 ** no ELSE term, NULL.
5229 case TK_CASE: {
5230 int endLabel; /* GOTO label for end of CASE stmt */
5231 int nextCase; /* GOTO label for next WHEN clause */
5232 int nExpr; /* 2x number of WHEN terms */
5233 int i; /* Loop counter */
5234 ExprList *pEList; /* List of WHEN terms */
5235 struct ExprList_item *aListelem; /* Array of WHEN terms */
5236 Expr opCompare; /* The X==Ei expression */
5237 Expr *pX; /* The X expression */
5238 Expr *pTest = 0; /* X==Ei (form A) or just Ei (form B) */
5239 Expr *pDel = 0;
5240 sqlite3 *db = pParse->db;
5242 assert( ExprUseXList(pExpr) && pExpr->x.pList!=0 );
5243 assert(pExpr->x.pList->nExpr > 0);
5244 pEList = pExpr->x.pList;
5245 aListelem = pEList->a;
5246 nExpr = pEList->nExpr;
5247 endLabel = sqlite3VdbeMakeLabel(pParse);
5248 if( (pX = pExpr->pLeft)!=0 ){
5249 pDel = sqlite3ExprDup(db, pX, 0);
5250 if( db->mallocFailed ){
5251 sqlite3ExprDelete(db, pDel);
5252 break;
5254 testcase( pX->op==TK_COLUMN );
5255 exprToRegister(pDel, exprCodeVector(pParse, pDel, &regFree1));
5256 testcase( regFree1==0 );
5257 memset(&opCompare, 0, sizeof(opCompare));
5258 opCompare.op = TK_EQ;
5259 opCompare.pLeft = pDel;
5260 pTest = &opCompare;
5261 /* Ticket b351d95f9cd5ef17e9d9dbae18f5ca8611190001:
5262 ** The value in regFree1 might get SCopy-ed into the file result.
5263 ** So make sure that the regFree1 register is not reused for other
5264 ** purposes and possibly overwritten. */
5265 regFree1 = 0;
5267 for(i=0; i<nExpr-1; i=i+2){
5268 if( pX ){
5269 assert( pTest!=0 );
5270 opCompare.pRight = aListelem[i].pExpr;
5271 }else{
5272 pTest = aListelem[i].pExpr;
5274 nextCase = sqlite3VdbeMakeLabel(pParse);
5275 testcase( pTest->op==TK_COLUMN );
5276 sqlite3ExprIfFalse(pParse, pTest, nextCase, SQLITE_JUMPIFNULL);
5277 testcase( aListelem[i+1].pExpr->op==TK_COLUMN );
5278 sqlite3ExprCode(pParse, aListelem[i+1].pExpr, target);
5279 sqlite3VdbeGoto(v, endLabel);
5280 sqlite3VdbeResolveLabel(v, nextCase);
5282 if( (nExpr&1)!=0 ){
5283 sqlite3ExprCode(pParse, pEList->a[nExpr-1].pExpr, target);
5284 }else{
5285 sqlite3VdbeAddOp2(v, OP_Null, 0, target);
5287 sqlite3ExprDelete(db, pDel);
5288 setDoNotMergeFlagOnCopy(v);
5289 sqlite3VdbeResolveLabel(v, endLabel);
5290 break;
5292 #ifndef SQLITE_OMIT_TRIGGER
5293 case TK_RAISE: {
5294 assert( pExpr->affExpr==OE_Rollback
5295 || pExpr->affExpr==OE_Abort
5296 || pExpr->affExpr==OE_Fail
5297 || pExpr->affExpr==OE_Ignore
5299 if( !pParse->pTriggerTab && !pParse->nested ){
5300 sqlite3ErrorMsg(pParse,
5301 "RAISE() may only be used within a trigger-program");
5302 return 0;
5304 if( pExpr->affExpr==OE_Abort ){
5305 sqlite3MayAbort(pParse);
5307 assert( !ExprHasProperty(pExpr, EP_IntValue) );
5308 if( pExpr->affExpr==OE_Ignore ){
5309 sqlite3VdbeAddOp4(
5310 v, OP_Halt, SQLITE_OK, OE_Ignore, 0, pExpr->u.zToken,0);
5311 VdbeCoverage(v);
5312 }else{
5313 sqlite3HaltConstraint(pParse,
5314 pParse->pTriggerTab ? SQLITE_CONSTRAINT_TRIGGER : SQLITE_ERROR,
5315 pExpr->affExpr, pExpr->u.zToken, 0, 0);
5318 break;
5320 #endif
5322 sqlite3ReleaseTempReg(pParse, regFree1);
5323 sqlite3ReleaseTempReg(pParse, regFree2);
5324 return inReg;
5328 ** Generate code that will evaluate expression pExpr just one time
5329 ** per prepared statement execution.
5331 ** If the expression uses functions (that might throw an exception) then
5332 ** guard them with an OP_Once opcode to ensure that the code is only executed
5333 ** once. If no functions are involved, then factor the code out and put it at
5334 ** the end of the prepared statement in the initialization section.
5336 ** If regDest>0 then the result is always stored in that register and the
5337 ** result is not reusable. If regDest<0 then this routine is free to
5338 ** store the value wherever it wants. The register where the expression
5339 ** is stored is returned. When regDest<0, two identical expressions might
5340 ** code to the same register, if they do not contain function calls and hence
5341 ** are factored out into the initialization section at the end of the
5342 ** prepared statement.
5344 int sqlite3ExprCodeRunJustOnce(
5345 Parse *pParse, /* Parsing context */
5346 Expr *pExpr, /* The expression to code when the VDBE initializes */
5347 int regDest /* Store the value in this register */
5349 ExprList *p;
5350 assert( ConstFactorOk(pParse) );
5351 assert( regDest!=0 );
5352 p = pParse->pConstExpr;
5353 if( regDest<0 && p ){
5354 struct ExprList_item *pItem;
5355 int i;
5356 for(pItem=p->a, i=p->nExpr; i>0; pItem++, i--){
5357 if( pItem->fg.reusable
5358 && sqlite3ExprCompare(0,pItem->pExpr,pExpr,-1)==0
5360 return pItem->u.iConstExprReg;
5364 pExpr = sqlite3ExprDup(pParse->db, pExpr, 0);
5365 if( pExpr!=0 && ExprHasProperty(pExpr, EP_HasFunc) ){
5366 Vdbe *v = pParse->pVdbe;
5367 int addr;
5368 assert( v );
5369 addr = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v);
5370 pParse->okConstFactor = 0;
5371 if( !pParse->db->mallocFailed ){
5372 if( regDest<0 ) regDest = ++pParse->nMem;
5373 sqlite3ExprCode(pParse, pExpr, regDest);
5375 pParse->okConstFactor = 1;
5376 sqlite3ExprDelete(pParse->db, pExpr);
5377 sqlite3VdbeJumpHere(v, addr);
5378 }else{
5379 p = sqlite3ExprListAppend(pParse, p, pExpr);
5380 if( p ){
5381 struct ExprList_item *pItem = &p->a[p->nExpr-1];
5382 pItem->fg.reusable = regDest<0;
5383 if( regDest<0 ) regDest = ++pParse->nMem;
5384 pItem->u.iConstExprReg = regDest;
5386 pParse->pConstExpr = p;
5388 return regDest;
5392 ** Generate code to evaluate an expression and store the results
5393 ** into a register. Return the register number where the results
5394 ** are stored.
5396 ** If the register is a temporary register that can be deallocated,
5397 ** then write its number into *pReg. If the result register is not
5398 ** a temporary, then set *pReg to zero.
5400 ** If pExpr is a constant, then this routine might generate this
5401 ** code to fill the register in the initialization section of the
5402 ** VDBE program, in order to factor it out of the evaluation loop.
5404 int sqlite3ExprCodeTemp(Parse *pParse, Expr *pExpr, int *pReg){
5405 int r2;
5406 pExpr = sqlite3ExprSkipCollateAndLikely(pExpr);
5407 if( ConstFactorOk(pParse)
5408 && ALWAYS(pExpr!=0)
5409 && pExpr->op!=TK_REGISTER
5410 && sqlite3ExprIsConstantNotJoin(pParse, pExpr)
5412 *pReg = 0;
5413 r2 = sqlite3ExprCodeRunJustOnce(pParse, pExpr, -1);
5414 }else{
5415 int r1 = sqlite3GetTempReg(pParse);
5416 r2 = sqlite3ExprCodeTarget(pParse, pExpr, r1);
5417 if( r2==r1 ){
5418 *pReg = r1;
5419 }else{
5420 sqlite3ReleaseTempReg(pParse, r1);
5421 *pReg = 0;
5424 return r2;
5428 ** Generate code that will evaluate expression pExpr and store the
5429 ** results in register target. The results are guaranteed to appear
5430 ** in register target.
5432 void sqlite3ExprCode(Parse *pParse, Expr *pExpr, int target){
5433 int inReg;
5435 assert( pExpr==0 || !ExprHasVVAProperty(pExpr,EP_Immutable) );
5436 assert( target>0 && target<=pParse->nMem );
5437 assert( pParse->pVdbe!=0 || pParse->db->mallocFailed );
5438 if( pParse->pVdbe==0 ) return;
5439 inReg = sqlite3ExprCodeTarget(pParse, pExpr, target);
5440 if( inReg!=target ){
5441 u8 op;
5442 Expr *pX = sqlite3ExprSkipCollateAndLikely(pExpr);
5443 testcase( pX!=pExpr );
5444 if( ALWAYS(pX)
5445 && (ExprHasProperty(pX,EP_Subquery) || pX->op==TK_REGISTER)
5447 op = OP_Copy;
5448 }else{
5449 op = OP_SCopy;
5451 sqlite3VdbeAddOp2(pParse->pVdbe, op, inReg, target);
5456 ** Make a transient copy of expression pExpr and then code it using
5457 ** sqlite3ExprCode(). This routine works just like sqlite3ExprCode()
5458 ** except that the input expression is guaranteed to be unchanged.
5460 void sqlite3ExprCodeCopy(Parse *pParse, Expr *pExpr, int target){
5461 sqlite3 *db = pParse->db;
5462 pExpr = sqlite3ExprDup(db, pExpr, 0);
5463 if( !db->mallocFailed ) sqlite3ExprCode(pParse, pExpr, target);
5464 sqlite3ExprDelete(db, pExpr);
5468 ** Generate code that will evaluate expression pExpr and store the
5469 ** results in register target. The results are guaranteed to appear
5470 ** in register target. If the expression is constant, then this routine
5471 ** might choose to code the expression at initialization time.
5473 void sqlite3ExprCodeFactorable(Parse *pParse, Expr *pExpr, int target){
5474 if( pParse->okConstFactor && sqlite3ExprIsConstantNotJoin(pParse,pExpr) ){
5475 sqlite3ExprCodeRunJustOnce(pParse, pExpr, target);
5476 }else{
5477 sqlite3ExprCodeCopy(pParse, pExpr, target);
5482 ** Generate code that pushes the value of every element of the given
5483 ** expression list into a sequence of registers beginning at target.
5485 ** Return the number of elements evaluated. The number returned will
5486 ** usually be pList->nExpr but might be reduced if SQLITE_ECEL_OMITREF
5487 ** is defined.
5489 ** The SQLITE_ECEL_DUP flag prevents the arguments from being
5490 ** filled using OP_SCopy. OP_Copy must be used instead.
5492 ** The SQLITE_ECEL_FACTOR argument allows constant arguments to be
5493 ** factored out into initialization code.
5495 ** The SQLITE_ECEL_REF flag means that expressions in the list with
5496 ** ExprList.a[].u.x.iOrderByCol>0 have already been evaluated and stored
5497 ** in registers at srcReg, and so the value can be copied from there.
5498 ** If SQLITE_ECEL_OMITREF is also set, then the values with u.x.iOrderByCol>0
5499 ** are simply omitted rather than being copied from srcReg.
5501 int sqlite3ExprCodeExprList(
5502 Parse *pParse, /* Parsing context */
5503 ExprList *pList, /* The expression list to be coded */
5504 int target, /* Where to write results */
5505 int srcReg, /* Source registers if SQLITE_ECEL_REF */
5506 u8 flags /* SQLITE_ECEL_* flags */
5508 struct ExprList_item *pItem;
5509 int i, j, n;
5510 u8 copyOp = (flags & SQLITE_ECEL_DUP) ? OP_Copy : OP_SCopy;
5511 Vdbe *v = pParse->pVdbe;
5512 assert( pList!=0 );
5513 assert( target>0 );
5514 assert( pParse->pVdbe!=0 ); /* Never gets this far otherwise */
5515 n = pList->nExpr;
5516 if( !ConstFactorOk(pParse) ) flags &= ~SQLITE_ECEL_FACTOR;
5517 for(pItem=pList->a, i=0; i<n; i++, pItem++){
5518 Expr *pExpr = pItem->pExpr;
5519 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
5520 if( pItem->fg.bSorterRef ){
5521 i--;
5522 n--;
5523 }else
5524 #endif
5525 if( (flags & SQLITE_ECEL_REF)!=0 && (j = pItem->u.x.iOrderByCol)>0 ){
5526 if( flags & SQLITE_ECEL_OMITREF ){
5527 i--;
5528 n--;
5529 }else{
5530 sqlite3VdbeAddOp2(v, copyOp, j+srcReg-1, target+i);
5532 }else if( (flags & SQLITE_ECEL_FACTOR)!=0
5533 && sqlite3ExprIsConstantNotJoin(pParse,pExpr)
5535 sqlite3ExprCodeRunJustOnce(pParse, pExpr, target+i);
5536 }else{
5537 int inReg = sqlite3ExprCodeTarget(pParse, pExpr, target+i);
5538 if( inReg!=target+i ){
5539 VdbeOp *pOp;
5540 if( copyOp==OP_Copy
5541 && (pOp=sqlite3VdbeGetLastOp(v))->opcode==OP_Copy
5542 && pOp->p1+pOp->p3+1==inReg
5543 && pOp->p2+pOp->p3+1==target+i
5544 && pOp->p5==0 /* The do-not-merge flag must be clear */
5546 pOp->p3++;
5547 }else{
5548 sqlite3VdbeAddOp2(v, copyOp, inReg, target+i);
5553 return n;
5557 ** Generate code for a BETWEEN operator.
5559 ** x BETWEEN y AND z
5561 ** The above is equivalent to
5563 ** x>=y AND x<=z
5565 ** Code it as such, taking care to do the common subexpression
5566 ** elimination of x.
5568 ** The xJumpIf parameter determines details:
5570 ** NULL: Store the boolean result in reg[dest]
5571 ** sqlite3ExprIfTrue: Jump to dest if true
5572 ** sqlite3ExprIfFalse: Jump to dest if false
5574 ** The jumpIfNull parameter is ignored if xJumpIf is NULL.
5576 static void exprCodeBetween(
5577 Parse *pParse, /* Parsing and code generating context */
5578 Expr *pExpr, /* The BETWEEN expression */
5579 int dest, /* Jump destination or storage location */
5580 void (*xJump)(Parse*,Expr*,int,int), /* Action to take */
5581 int jumpIfNull /* Take the jump if the BETWEEN is NULL */
5583 Expr exprAnd; /* The AND operator in x>=y AND x<=z */
5584 Expr compLeft; /* The x>=y term */
5585 Expr compRight; /* The x<=z term */
5586 int regFree1 = 0; /* Temporary use register */
5587 Expr *pDel = 0;
5588 sqlite3 *db = pParse->db;
5590 memset(&compLeft, 0, sizeof(Expr));
5591 memset(&compRight, 0, sizeof(Expr));
5592 memset(&exprAnd, 0, sizeof(Expr));
5594 assert( ExprUseXList(pExpr) );
5595 pDel = sqlite3ExprDup(db, pExpr->pLeft, 0);
5596 if( db->mallocFailed==0 ){
5597 exprAnd.op = TK_AND;
5598 exprAnd.pLeft = &compLeft;
5599 exprAnd.pRight = &compRight;
5600 compLeft.op = TK_GE;
5601 compLeft.pLeft = pDel;
5602 compLeft.pRight = pExpr->x.pList->a[0].pExpr;
5603 compRight.op = TK_LE;
5604 compRight.pLeft = pDel;
5605 compRight.pRight = pExpr->x.pList->a[1].pExpr;
5606 exprToRegister(pDel, exprCodeVector(pParse, pDel, &regFree1));
5607 if( xJump ){
5608 xJump(pParse, &exprAnd, dest, jumpIfNull);
5609 }else{
5610 /* Mark the expression is being from the ON or USING clause of a join
5611 ** so that the sqlite3ExprCodeTarget() routine will not attempt to move
5612 ** it into the Parse.pConstExpr list. We should use a new bit for this,
5613 ** for clarity, but we are out of bits in the Expr.flags field so we
5614 ** have to reuse the EP_OuterON bit. Bummer. */
5615 pDel->flags |= EP_OuterON;
5616 sqlite3ExprCodeTarget(pParse, &exprAnd, dest);
5618 sqlite3ReleaseTempReg(pParse, regFree1);
5620 sqlite3ExprDelete(db, pDel);
5622 /* Ensure adequate test coverage */
5623 testcase( xJump==sqlite3ExprIfTrue && jumpIfNull==0 && regFree1==0 );
5624 testcase( xJump==sqlite3ExprIfTrue && jumpIfNull==0 && regFree1!=0 );
5625 testcase( xJump==sqlite3ExprIfTrue && jumpIfNull!=0 && regFree1==0 );
5626 testcase( xJump==sqlite3ExprIfTrue && jumpIfNull!=0 && regFree1!=0 );
5627 testcase( xJump==sqlite3ExprIfFalse && jumpIfNull==0 && regFree1==0 );
5628 testcase( xJump==sqlite3ExprIfFalse && jumpIfNull==0 && regFree1!=0 );
5629 testcase( xJump==sqlite3ExprIfFalse && jumpIfNull!=0 && regFree1==0 );
5630 testcase( xJump==sqlite3ExprIfFalse && jumpIfNull!=0 && regFree1!=0 );
5631 testcase( xJump==0 );
5635 ** Generate code for a boolean expression such that a jump is made
5636 ** to the label "dest" if the expression is true but execution
5637 ** continues straight thru if the expression is false.
5639 ** If the expression evaluates to NULL (neither true nor false), then
5640 ** take the jump if the jumpIfNull flag is SQLITE_JUMPIFNULL.
5642 ** This code depends on the fact that certain token values (ex: TK_EQ)
5643 ** are the same as opcode values (ex: OP_Eq) that implement the corresponding
5644 ** operation. Special comments in vdbe.c and the mkopcodeh.awk script in
5645 ** the make process cause these values to align. Assert()s in the code
5646 ** below verify that the numbers are aligned correctly.
5648 void sqlite3ExprIfTrue(Parse *pParse, Expr *pExpr, int dest, int jumpIfNull){
5649 Vdbe *v = pParse->pVdbe;
5650 int op = 0;
5651 int regFree1 = 0;
5652 int regFree2 = 0;
5653 int r1, r2;
5655 assert( jumpIfNull==SQLITE_JUMPIFNULL || jumpIfNull==0 );
5656 if( NEVER(v==0) ) return; /* Existence of VDBE checked by caller */
5657 if( NEVER(pExpr==0) ) return; /* No way this can happen */
5658 assert( !ExprHasVVAProperty(pExpr, EP_Immutable) );
5659 op = pExpr->op;
5660 switch( op ){
5661 case TK_AND:
5662 case TK_OR: {
5663 Expr *pAlt = sqlite3ExprSimplifiedAndOr(pExpr);
5664 if( pAlt!=pExpr ){
5665 sqlite3ExprIfTrue(pParse, pAlt, dest, jumpIfNull);
5666 }else if( op==TK_AND ){
5667 int d2 = sqlite3VdbeMakeLabel(pParse);
5668 testcase( jumpIfNull==0 );
5669 sqlite3ExprIfFalse(pParse, pExpr->pLeft, d2,
5670 jumpIfNull^SQLITE_JUMPIFNULL);
5671 sqlite3ExprIfTrue(pParse, pExpr->pRight, dest, jumpIfNull);
5672 sqlite3VdbeResolveLabel(v, d2);
5673 }else{
5674 testcase( jumpIfNull==0 );
5675 sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, jumpIfNull);
5676 sqlite3ExprIfTrue(pParse, pExpr->pRight, dest, jumpIfNull);
5678 break;
5680 case TK_NOT: {
5681 testcase( jumpIfNull==0 );
5682 sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, jumpIfNull);
5683 break;
5685 case TK_TRUTH: {
5686 int isNot; /* IS NOT TRUE or IS NOT FALSE */
5687 int isTrue; /* IS TRUE or IS NOT TRUE */
5688 testcase( jumpIfNull==0 );
5689 isNot = pExpr->op2==TK_ISNOT;
5690 isTrue = sqlite3ExprTruthValue(pExpr->pRight);
5691 testcase( isTrue && isNot );
5692 testcase( !isTrue && isNot );
5693 if( isTrue ^ isNot ){
5694 sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest,
5695 isNot ? SQLITE_JUMPIFNULL : 0);
5696 }else{
5697 sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest,
5698 isNot ? SQLITE_JUMPIFNULL : 0);
5700 break;
5702 case TK_IS:
5703 case TK_ISNOT:
5704 testcase( op==TK_IS );
5705 testcase( op==TK_ISNOT );
5706 op = (op==TK_IS) ? TK_EQ : TK_NE;
5707 jumpIfNull = SQLITE_NULLEQ;
5708 /* no break */ deliberate_fall_through
5709 case TK_LT:
5710 case TK_LE:
5711 case TK_GT:
5712 case TK_GE:
5713 case TK_NE:
5714 case TK_EQ: {
5715 if( sqlite3ExprIsVector(pExpr->pLeft) ) goto default_expr;
5716 testcase( jumpIfNull==0 );
5717 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
5718 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, &regFree2);
5719 codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op,
5720 r1, r2, dest, jumpIfNull, ExprHasProperty(pExpr,EP_Commuted));
5721 assert(TK_LT==OP_Lt); testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt);
5722 assert(TK_LE==OP_Le); testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le);
5723 assert(TK_GT==OP_Gt); testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt);
5724 assert(TK_GE==OP_Ge); testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge);
5725 assert(TK_EQ==OP_Eq); testcase(op==OP_Eq);
5726 VdbeCoverageIf(v, op==OP_Eq && jumpIfNull==SQLITE_NULLEQ);
5727 VdbeCoverageIf(v, op==OP_Eq && jumpIfNull!=SQLITE_NULLEQ);
5728 assert(TK_NE==OP_Ne); testcase(op==OP_Ne);
5729 VdbeCoverageIf(v, op==OP_Ne && jumpIfNull==SQLITE_NULLEQ);
5730 VdbeCoverageIf(v, op==OP_Ne && jumpIfNull!=SQLITE_NULLEQ);
5731 testcase( regFree1==0 );
5732 testcase( regFree2==0 );
5733 break;
5735 case TK_ISNULL:
5736 case TK_NOTNULL: {
5737 assert( TK_ISNULL==OP_IsNull ); testcase( op==TK_ISNULL );
5738 assert( TK_NOTNULL==OP_NotNull ); testcase( op==TK_NOTNULL );
5739 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
5740 sqlite3VdbeTypeofColumn(v, r1);
5741 sqlite3VdbeAddOp2(v, op, r1, dest);
5742 VdbeCoverageIf(v, op==TK_ISNULL);
5743 VdbeCoverageIf(v, op==TK_NOTNULL);
5744 testcase( regFree1==0 );
5745 break;
5747 case TK_BETWEEN: {
5748 testcase( jumpIfNull==0 );
5749 exprCodeBetween(pParse, pExpr, dest, sqlite3ExprIfTrue, jumpIfNull);
5750 break;
5752 #ifndef SQLITE_OMIT_SUBQUERY
5753 case TK_IN: {
5754 int destIfFalse = sqlite3VdbeMakeLabel(pParse);
5755 int destIfNull = jumpIfNull ? dest : destIfFalse;
5756 sqlite3ExprCodeIN(pParse, pExpr, destIfFalse, destIfNull);
5757 sqlite3VdbeGoto(v, dest);
5758 sqlite3VdbeResolveLabel(v, destIfFalse);
5759 break;
5761 #endif
5762 default: {
5763 default_expr:
5764 if( ExprAlwaysTrue(pExpr) ){
5765 sqlite3VdbeGoto(v, dest);
5766 }else if( ExprAlwaysFalse(pExpr) ){
5767 /* No-op */
5768 }else{
5769 r1 = sqlite3ExprCodeTemp(pParse, pExpr, &regFree1);
5770 sqlite3VdbeAddOp3(v, OP_If, r1, dest, jumpIfNull!=0);
5771 VdbeCoverage(v);
5772 testcase( regFree1==0 );
5773 testcase( jumpIfNull==0 );
5775 break;
5778 sqlite3ReleaseTempReg(pParse, regFree1);
5779 sqlite3ReleaseTempReg(pParse, regFree2);
5783 ** Generate code for a boolean expression such that a jump is made
5784 ** to the label "dest" if the expression is false but execution
5785 ** continues straight thru if the expression is true.
5787 ** If the expression evaluates to NULL (neither true nor false) then
5788 ** jump if jumpIfNull is SQLITE_JUMPIFNULL or fall through if jumpIfNull
5789 ** is 0.
5791 void sqlite3ExprIfFalse(Parse *pParse, Expr *pExpr, int dest, int jumpIfNull){
5792 Vdbe *v = pParse->pVdbe;
5793 int op = 0;
5794 int regFree1 = 0;
5795 int regFree2 = 0;
5796 int r1, r2;
5798 assert( jumpIfNull==SQLITE_JUMPIFNULL || jumpIfNull==0 );
5799 if( NEVER(v==0) ) return; /* Existence of VDBE checked by caller */
5800 if( pExpr==0 ) return;
5801 assert( !ExprHasVVAProperty(pExpr,EP_Immutable) );
5803 /* The value of pExpr->op and op are related as follows:
5805 ** pExpr->op op
5806 ** --------- ----------
5807 ** TK_ISNULL OP_NotNull
5808 ** TK_NOTNULL OP_IsNull
5809 ** TK_NE OP_Eq
5810 ** TK_EQ OP_Ne
5811 ** TK_GT OP_Le
5812 ** TK_LE OP_Gt
5813 ** TK_GE OP_Lt
5814 ** TK_LT OP_Ge
5816 ** For other values of pExpr->op, op is undefined and unused.
5817 ** The value of TK_ and OP_ constants are arranged such that we
5818 ** can compute the mapping above using the following expression.
5819 ** Assert()s verify that the computation is correct.
5821 op = ((pExpr->op+(TK_ISNULL&1))^1)-(TK_ISNULL&1);
5823 /* Verify correct alignment of TK_ and OP_ constants
5825 assert( pExpr->op!=TK_ISNULL || op==OP_NotNull );
5826 assert( pExpr->op!=TK_NOTNULL || op==OP_IsNull );
5827 assert( pExpr->op!=TK_NE || op==OP_Eq );
5828 assert( pExpr->op!=TK_EQ || op==OP_Ne );
5829 assert( pExpr->op!=TK_LT || op==OP_Ge );
5830 assert( pExpr->op!=TK_LE || op==OP_Gt );
5831 assert( pExpr->op!=TK_GT || op==OP_Le );
5832 assert( pExpr->op!=TK_GE || op==OP_Lt );
5834 switch( pExpr->op ){
5835 case TK_AND:
5836 case TK_OR: {
5837 Expr *pAlt = sqlite3ExprSimplifiedAndOr(pExpr);
5838 if( pAlt!=pExpr ){
5839 sqlite3ExprIfFalse(pParse, pAlt, dest, jumpIfNull);
5840 }else if( pExpr->op==TK_AND ){
5841 testcase( jumpIfNull==0 );
5842 sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, jumpIfNull);
5843 sqlite3ExprIfFalse(pParse, pExpr->pRight, dest, jumpIfNull);
5844 }else{
5845 int d2 = sqlite3VdbeMakeLabel(pParse);
5846 testcase( jumpIfNull==0 );
5847 sqlite3ExprIfTrue(pParse, pExpr->pLeft, d2,
5848 jumpIfNull^SQLITE_JUMPIFNULL);
5849 sqlite3ExprIfFalse(pParse, pExpr->pRight, dest, jumpIfNull);
5850 sqlite3VdbeResolveLabel(v, d2);
5852 break;
5854 case TK_NOT: {
5855 testcase( jumpIfNull==0 );
5856 sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, jumpIfNull);
5857 break;
5859 case TK_TRUTH: {
5860 int isNot; /* IS NOT TRUE or IS NOT FALSE */
5861 int isTrue; /* IS TRUE or IS NOT TRUE */
5862 testcase( jumpIfNull==0 );
5863 isNot = pExpr->op2==TK_ISNOT;
5864 isTrue = sqlite3ExprTruthValue(pExpr->pRight);
5865 testcase( isTrue && isNot );
5866 testcase( !isTrue && isNot );
5867 if( isTrue ^ isNot ){
5868 /* IS TRUE and IS NOT FALSE */
5869 sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest,
5870 isNot ? 0 : SQLITE_JUMPIFNULL);
5872 }else{
5873 /* IS FALSE and IS NOT TRUE */
5874 sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest,
5875 isNot ? 0 : SQLITE_JUMPIFNULL);
5877 break;
5879 case TK_IS:
5880 case TK_ISNOT:
5881 testcase( pExpr->op==TK_IS );
5882 testcase( pExpr->op==TK_ISNOT );
5883 op = (pExpr->op==TK_IS) ? TK_NE : TK_EQ;
5884 jumpIfNull = SQLITE_NULLEQ;
5885 /* no break */ deliberate_fall_through
5886 case TK_LT:
5887 case TK_LE:
5888 case TK_GT:
5889 case TK_GE:
5890 case TK_NE:
5891 case TK_EQ: {
5892 if( sqlite3ExprIsVector(pExpr->pLeft) ) goto default_expr;
5893 testcase( jumpIfNull==0 );
5894 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
5895 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, &regFree2);
5896 codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op,
5897 r1, r2, dest, jumpIfNull,ExprHasProperty(pExpr,EP_Commuted));
5898 assert(TK_LT==OP_Lt); testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt);
5899 assert(TK_LE==OP_Le); testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le);
5900 assert(TK_GT==OP_Gt); testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt);
5901 assert(TK_GE==OP_Ge); testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge);
5902 assert(TK_EQ==OP_Eq); testcase(op==OP_Eq);
5903 VdbeCoverageIf(v, op==OP_Eq && jumpIfNull!=SQLITE_NULLEQ);
5904 VdbeCoverageIf(v, op==OP_Eq && jumpIfNull==SQLITE_NULLEQ);
5905 assert(TK_NE==OP_Ne); testcase(op==OP_Ne);
5906 VdbeCoverageIf(v, op==OP_Ne && jumpIfNull!=SQLITE_NULLEQ);
5907 VdbeCoverageIf(v, op==OP_Ne && jumpIfNull==SQLITE_NULLEQ);
5908 testcase( regFree1==0 );
5909 testcase( regFree2==0 );
5910 break;
5912 case TK_ISNULL:
5913 case TK_NOTNULL: {
5914 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
5915 sqlite3VdbeTypeofColumn(v, r1);
5916 sqlite3VdbeAddOp2(v, op, r1, dest);
5917 testcase( op==TK_ISNULL ); VdbeCoverageIf(v, op==TK_ISNULL);
5918 testcase( op==TK_NOTNULL ); VdbeCoverageIf(v, op==TK_NOTNULL);
5919 testcase( regFree1==0 );
5920 break;
5922 case TK_BETWEEN: {
5923 testcase( jumpIfNull==0 );
5924 exprCodeBetween(pParse, pExpr, dest, sqlite3ExprIfFalse, jumpIfNull);
5925 break;
5927 #ifndef SQLITE_OMIT_SUBQUERY
5928 case TK_IN: {
5929 if( jumpIfNull ){
5930 sqlite3ExprCodeIN(pParse, pExpr, dest, dest);
5931 }else{
5932 int destIfNull = sqlite3VdbeMakeLabel(pParse);
5933 sqlite3ExprCodeIN(pParse, pExpr, dest, destIfNull);
5934 sqlite3VdbeResolveLabel(v, destIfNull);
5936 break;
5938 #endif
5939 default: {
5940 default_expr:
5941 if( ExprAlwaysFalse(pExpr) ){
5942 sqlite3VdbeGoto(v, dest);
5943 }else if( ExprAlwaysTrue(pExpr) ){
5944 /* no-op */
5945 }else{
5946 r1 = sqlite3ExprCodeTemp(pParse, pExpr, &regFree1);
5947 sqlite3VdbeAddOp3(v, OP_IfNot, r1, dest, jumpIfNull!=0);
5948 VdbeCoverage(v);
5949 testcase( regFree1==0 );
5950 testcase( jumpIfNull==0 );
5952 break;
5955 sqlite3ReleaseTempReg(pParse, regFree1);
5956 sqlite3ReleaseTempReg(pParse, regFree2);
5960 ** Like sqlite3ExprIfFalse() except that a copy is made of pExpr before
5961 ** code generation, and that copy is deleted after code generation. This
5962 ** ensures that the original pExpr is unchanged.
5964 void sqlite3ExprIfFalseDup(Parse *pParse, Expr *pExpr, int dest,int jumpIfNull){
5965 sqlite3 *db = pParse->db;
5966 Expr *pCopy = sqlite3ExprDup(db, pExpr, 0);
5967 if( db->mallocFailed==0 ){
5968 sqlite3ExprIfFalse(pParse, pCopy, dest, jumpIfNull);
5970 sqlite3ExprDelete(db, pCopy);
5974 ** Expression pVar is guaranteed to be an SQL variable. pExpr may be any
5975 ** type of expression.
5977 ** If pExpr is a simple SQL value - an integer, real, string, blob
5978 ** or NULL value - then the VDBE currently being prepared is configured
5979 ** to re-prepare each time a new value is bound to variable pVar.
5981 ** Additionally, if pExpr is a simple SQL value and the value is the
5982 ** same as that currently bound to variable pVar, non-zero is returned.
5983 ** Otherwise, if the values are not the same or if pExpr is not a simple
5984 ** SQL value, zero is returned.
5986 static int exprCompareVariable(
5987 const Parse *pParse,
5988 const Expr *pVar,
5989 const Expr *pExpr
5991 int res = 0;
5992 int iVar;
5993 sqlite3_value *pL, *pR = 0;
5995 sqlite3ValueFromExpr(pParse->db, pExpr, SQLITE_UTF8, SQLITE_AFF_BLOB, &pR);
5996 if( pR ){
5997 iVar = pVar->iColumn;
5998 sqlite3VdbeSetVarmask(pParse->pVdbe, iVar);
5999 pL = sqlite3VdbeGetBoundValue(pParse->pReprepare, iVar, SQLITE_AFF_BLOB);
6000 if( pL ){
6001 if( sqlite3_value_type(pL)==SQLITE_TEXT ){
6002 sqlite3_value_text(pL); /* Make sure the encoding is UTF-8 */
6004 res = 0==sqlite3MemCompare(pL, pR, 0);
6006 sqlite3ValueFree(pR);
6007 sqlite3ValueFree(pL);
6010 return res;
6014 ** Do a deep comparison of two expression trees. Return 0 if the two
6015 ** expressions are completely identical. Return 1 if they differ only
6016 ** by a COLLATE operator at the top level. Return 2 if there are differences
6017 ** other than the top-level COLLATE operator.
6019 ** If any subelement of pB has Expr.iTable==(-1) then it is allowed
6020 ** to compare equal to an equivalent element in pA with Expr.iTable==iTab.
6022 ** The pA side might be using TK_REGISTER. If that is the case and pB is
6023 ** not using TK_REGISTER but is otherwise equivalent, then still return 0.
6025 ** Sometimes this routine will return 2 even if the two expressions
6026 ** really are equivalent. If we cannot prove that the expressions are
6027 ** identical, we return 2 just to be safe. So if this routine
6028 ** returns 2, then you do not really know for certain if the two
6029 ** expressions are the same. But if you get a 0 or 1 return, then you
6030 ** can be sure the expressions are the same. In the places where
6031 ** this routine is used, it does not hurt to get an extra 2 - that
6032 ** just might result in some slightly slower code. But returning
6033 ** an incorrect 0 or 1 could lead to a malfunction.
6035 ** If pParse is not NULL then TK_VARIABLE terms in pA with bindings in
6036 ** pParse->pReprepare can be matched against literals in pB. The
6037 ** pParse->pVdbe->expmask bitmask is updated for each variable referenced.
6038 ** If pParse is NULL (the normal case) then any TK_VARIABLE term in
6039 ** Argument pParse should normally be NULL. If it is not NULL and pA or
6040 ** pB causes a return value of 2.
6042 int sqlite3ExprCompare(
6043 const Parse *pParse,
6044 const Expr *pA,
6045 const Expr *pB,
6046 int iTab
6048 u32 combinedFlags;
6049 if( pA==0 || pB==0 ){
6050 return pB==pA ? 0 : 2;
6052 if( pParse && pA->op==TK_VARIABLE && exprCompareVariable(pParse, pA, pB) ){
6053 return 0;
6055 combinedFlags = pA->flags | pB->flags;
6056 if( combinedFlags & EP_IntValue ){
6057 if( (pA->flags&pB->flags&EP_IntValue)!=0 && pA->u.iValue==pB->u.iValue ){
6058 return 0;
6060 return 2;
6062 if( pA->op!=pB->op || pA->op==TK_RAISE ){
6063 if( pA->op==TK_COLLATE && sqlite3ExprCompare(pParse, pA->pLeft,pB,iTab)<2 ){
6064 return 1;
6066 if( pB->op==TK_COLLATE && sqlite3ExprCompare(pParse, pA,pB->pLeft,iTab)<2 ){
6067 return 1;
6069 if( pA->op==TK_AGG_COLUMN && pB->op==TK_COLUMN
6070 && pB->iTable<0 && pA->iTable==iTab
6072 /* fall through */
6073 }else{
6074 return 2;
6077 assert( !ExprHasProperty(pA, EP_IntValue) );
6078 assert( !ExprHasProperty(pB, EP_IntValue) );
6079 if( pA->u.zToken ){
6080 if( pA->op==TK_FUNCTION || pA->op==TK_AGG_FUNCTION ){
6081 if( sqlite3StrICmp(pA->u.zToken,pB->u.zToken)!=0 ) return 2;
6082 #ifndef SQLITE_OMIT_WINDOWFUNC
6083 assert( pA->op==pB->op );
6084 if( ExprHasProperty(pA,EP_WinFunc)!=ExprHasProperty(pB,EP_WinFunc) ){
6085 return 2;
6087 if( ExprHasProperty(pA,EP_WinFunc) ){
6088 if( sqlite3WindowCompare(pParse, pA->y.pWin, pB->y.pWin, 1)!=0 ){
6089 return 2;
6092 #endif
6093 }else if( pA->op==TK_NULL ){
6094 return 0;
6095 }else if( pA->op==TK_COLLATE ){
6096 if( sqlite3_stricmp(pA->u.zToken,pB->u.zToken)!=0 ) return 2;
6097 }else
6098 if( pB->u.zToken!=0
6099 && pA->op!=TK_COLUMN
6100 && pA->op!=TK_AGG_COLUMN
6101 && strcmp(pA->u.zToken,pB->u.zToken)!=0
6103 return 2;
6106 if( (pA->flags & (EP_Distinct|EP_Commuted))
6107 != (pB->flags & (EP_Distinct|EP_Commuted)) ) return 2;
6108 if( ALWAYS((combinedFlags & EP_TokenOnly)==0) ){
6109 if( combinedFlags & EP_xIsSelect ) return 2;
6110 if( (combinedFlags & EP_FixedCol)==0
6111 && sqlite3ExprCompare(pParse, pA->pLeft, pB->pLeft, iTab) ) return 2;
6112 if( sqlite3ExprCompare(pParse, pA->pRight, pB->pRight, iTab) ) return 2;
6113 if( sqlite3ExprListCompare(pA->x.pList, pB->x.pList, iTab) ) return 2;
6114 if( pA->op!=TK_STRING
6115 && pA->op!=TK_TRUEFALSE
6116 && ALWAYS((combinedFlags & EP_Reduced)==0)
6118 if( pA->iColumn!=pB->iColumn ) return 2;
6119 if( pA->op2!=pB->op2 && pA->op==TK_TRUTH ) return 2;
6120 if( pA->op!=TK_IN && pA->iTable!=pB->iTable && pA->iTable!=iTab ){
6121 return 2;
6125 return 0;
6129 ** Compare two ExprList objects. Return 0 if they are identical, 1
6130 ** if they are certainly different, or 2 if it is not possible to
6131 ** determine if they are identical or not.
6133 ** If any subelement of pB has Expr.iTable==(-1) then it is allowed
6134 ** to compare equal to an equivalent element in pA with Expr.iTable==iTab.
6136 ** This routine might return non-zero for equivalent ExprLists. The
6137 ** only consequence will be disabled optimizations. But this routine
6138 ** must never return 0 if the two ExprList objects are different, or
6139 ** a malfunction will result.
6141 ** Two NULL pointers are considered to be the same. But a NULL pointer
6142 ** always differs from a non-NULL pointer.
6144 int sqlite3ExprListCompare(const ExprList *pA, const ExprList *pB, int iTab){
6145 int i;
6146 if( pA==0 && pB==0 ) return 0;
6147 if( pA==0 || pB==0 ) return 1;
6148 if( pA->nExpr!=pB->nExpr ) return 1;
6149 for(i=0; i<pA->nExpr; i++){
6150 int res;
6151 Expr *pExprA = pA->a[i].pExpr;
6152 Expr *pExprB = pB->a[i].pExpr;
6153 if( pA->a[i].fg.sortFlags!=pB->a[i].fg.sortFlags ) return 1;
6154 if( (res = sqlite3ExprCompare(0, pExprA, pExprB, iTab)) ) return res;
6156 return 0;
6160 ** Like sqlite3ExprCompare() except COLLATE operators at the top-level
6161 ** are ignored.
6163 int sqlite3ExprCompareSkip(Expr *pA,Expr *pB, int iTab){
6164 return sqlite3ExprCompare(0,
6165 sqlite3ExprSkipCollate(pA),
6166 sqlite3ExprSkipCollate(pB),
6167 iTab);
6171 ** Return non-zero if Expr p can only be true if pNN is not NULL.
6173 ** Or if seenNot is true, return non-zero if Expr p can only be
6174 ** non-NULL if pNN is not NULL
6176 static int exprImpliesNotNull(
6177 const Parse *pParse,/* Parsing context */
6178 const Expr *p, /* The expression to be checked */
6179 const Expr *pNN, /* The expression that is NOT NULL */
6180 int iTab, /* Table being evaluated */
6181 int seenNot /* Return true only if p can be any non-NULL value */
6183 assert( p );
6184 assert( pNN );
6185 if( sqlite3ExprCompare(pParse, p, pNN, iTab)==0 ){
6186 return pNN->op!=TK_NULL;
6188 switch( p->op ){
6189 case TK_IN: {
6190 if( seenNot && ExprHasProperty(p, EP_xIsSelect) ) return 0;
6191 assert( ExprUseXSelect(p) || (p->x.pList!=0 && p->x.pList->nExpr>0) );
6192 return exprImpliesNotNull(pParse, p->pLeft, pNN, iTab, 1);
6194 case TK_BETWEEN: {
6195 ExprList *pList;
6196 assert( ExprUseXList(p) );
6197 pList = p->x.pList;
6198 assert( pList!=0 );
6199 assert( pList->nExpr==2 );
6200 if( seenNot ) return 0;
6201 if( exprImpliesNotNull(pParse, pList->a[0].pExpr, pNN, iTab, 1)
6202 || exprImpliesNotNull(pParse, pList->a[1].pExpr, pNN, iTab, 1)
6204 return 1;
6206 return exprImpliesNotNull(pParse, p->pLeft, pNN, iTab, 1);
6208 case TK_EQ:
6209 case TK_NE:
6210 case TK_LT:
6211 case TK_LE:
6212 case TK_GT:
6213 case TK_GE:
6214 case TK_PLUS:
6215 case TK_MINUS:
6216 case TK_BITOR:
6217 case TK_LSHIFT:
6218 case TK_RSHIFT:
6219 case TK_CONCAT:
6220 seenNot = 1;
6221 /* no break */ deliberate_fall_through
6222 case TK_STAR:
6223 case TK_REM:
6224 case TK_BITAND:
6225 case TK_SLASH: {
6226 if( exprImpliesNotNull(pParse, p->pRight, pNN, iTab, seenNot) ) return 1;
6227 /* no break */ deliberate_fall_through
6229 case TK_SPAN:
6230 case TK_COLLATE:
6231 case TK_UPLUS:
6232 case TK_UMINUS: {
6233 return exprImpliesNotNull(pParse, p->pLeft, pNN, iTab, seenNot);
6235 case TK_TRUTH: {
6236 if( seenNot ) return 0;
6237 if( p->op2!=TK_IS ) return 0;
6238 return exprImpliesNotNull(pParse, p->pLeft, pNN, iTab, 1);
6240 case TK_BITNOT:
6241 case TK_NOT: {
6242 return exprImpliesNotNull(pParse, p->pLeft, pNN, iTab, 1);
6245 return 0;
6249 ** Return true if we can prove the pE2 will always be true if pE1 is
6250 ** true. Return false if we cannot complete the proof or if pE2 might
6251 ** be false. Examples:
6253 ** pE1: x==5 pE2: x==5 Result: true
6254 ** pE1: x>0 pE2: x==5 Result: false
6255 ** pE1: x=21 pE2: x=21 OR y=43 Result: true
6256 ** pE1: x!=123 pE2: x IS NOT NULL Result: true
6257 ** pE1: x!=?1 pE2: x IS NOT NULL Result: true
6258 ** pE1: x IS NULL pE2: x IS NOT NULL Result: false
6259 ** pE1: x IS ?2 pE2: x IS NOT NULL Result: false
6261 ** When comparing TK_COLUMN nodes between pE1 and pE2, if pE2 has
6262 ** Expr.iTable<0 then assume a table number given by iTab.
6264 ** If pParse is not NULL, then the values of bound variables in pE1 are
6265 ** compared against literal values in pE2 and pParse->pVdbe->expmask is
6266 ** modified to record which bound variables are referenced. If pParse
6267 ** is NULL, then false will be returned if pE1 contains any bound variables.
6269 ** When in doubt, return false. Returning true might give a performance
6270 ** improvement. Returning false might cause a performance reduction, but
6271 ** it will always give the correct answer and is hence always safe.
6273 int sqlite3ExprImpliesExpr(
6274 const Parse *pParse,
6275 const Expr *pE1,
6276 const Expr *pE2,
6277 int iTab
6279 if( sqlite3ExprCompare(pParse, pE1, pE2, iTab)==0 ){
6280 return 1;
6282 if( pE2->op==TK_OR
6283 && (sqlite3ExprImpliesExpr(pParse, pE1, pE2->pLeft, iTab)
6284 || sqlite3ExprImpliesExpr(pParse, pE1, pE2->pRight, iTab) )
6286 return 1;
6288 if( pE2->op==TK_NOTNULL
6289 && exprImpliesNotNull(pParse, pE1, pE2->pLeft, iTab, 0)
6291 return 1;
6293 return 0;
6296 /* This is a helper function to impliesNotNullRow(). In this routine,
6297 ** set pWalker->eCode to one only if *both* of the input expressions
6298 ** separately have the implies-not-null-row property.
6300 static void bothImplyNotNullRow(Walker *pWalker, Expr *pE1, Expr *pE2){
6301 if( pWalker->eCode==0 ){
6302 sqlite3WalkExpr(pWalker, pE1);
6303 if( pWalker->eCode ){
6304 pWalker->eCode = 0;
6305 sqlite3WalkExpr(pWalker, pE2);
6311 ** This is the Expr node callback for sqlite3ExprImpliesNonNullRow().
6312 ** If the expression node requires that the table at pWalker->iCur
6313 ** have one or more non-NULL column, then set pWalker->eCode to 1 and abort.
6315 ** pWalker->mWFlags is non-zero if this inquiry is being undertaking on
6316 ** behalf of a RIGHT JOIN (or FULL JOIN). That makes a difference when
6317 ** evaluating terms in the ON clause of an inner join.
6319 ** This routine controls an optimization. False positives (setting
6320 ** pWalker->eCode to 1 when it should not be) are deadly, but false-negatives
6321 ** (never setting pWalker->eCode) is a harmless missed optimization.
6323 static int impliesNotNullRow(Walker *pWalker, Expr *pExpr){
6324 testcase( pExpr->op==TK_AGG_COLUMN );
6325 testcase( pExpr->op==TK_AGG_FUNCTION );
6326 if( ExprHasProperty(pExpr, EP_OuterON) ) return WRC_Prune;
6327 if( ExprHasProperty(pExpr, EP_InnerON) && pWalker->mWFlags ){
6328 /* If iCur is used in an inner-join ON clause to the left of a
6329 ** RIGHT JOIN, that does *not* mean that the table must be non-null.
6330 ** But it is difficult to check for that condition precisely.
6331 ** To keep things simple, any use of iCur from any inner-join is
6332 ** ignored while attempting to simplify a RIGHT JOIN. */
6333 return WRC_Prune;
6335 switch( pExpr->op ){
6336 case TK_ISNOT:
6337 case TK_ISNULL:
6338 case TK_NOTNULL:
6339 case TK_IS:
6340 case TK_VECTOR:
6341 case TK_FUNCTION:
6342 case TK_TRUTH:
6343 case TK_CASE:
6344 testcase( pExpr->op==TK_ISNOT );
6345 testcase( pExpr->op==TK_ISNULL );
6346 testcase( pExpr->op==TK_NOTNULL );
6347 testcase( pExpr->op==TK_IS );
6348 testcase( pExpr->op==TK_VECTOR );
6349 testcase( pExpr->op==TK_FUNCTION );
6350 testcase( pExpr->op==TK_TRUTH );
6351 testcase( pExpr->op==TK_CASE );
6352 return WRC_Prune;
6354 case TK_COLUMN:
6355 if( pWalker->u.iCur==pExpr->iTable ){
6356 pWalker->eCode = 1;
6357 return WRC_Abort;
6359 return WRC_Prune;
6361 case TK_OR:
6362 case TK_AND:
6363 /* Both sides of an AND or OR must separately imply non-null-row.
6364 ** Consider these cases:
6365 ** 1. NOT (x AND y)
6366 ** 2. x OR y
6367 ** If only one of x or y is non-null-row, then the overall expression
6368 ** can be true if the other arm is false (case 1) or true (case 2).
6370 testcase( pExpr->op==TK_OR );
6371 testcase( pExpr->op==TK_AND );
6372 bothImplyNotNullRow(pWalker, pExpr->pLeft, pExpr->pRight);
6373 return WRC_Prune;
6375 case TK_IN:
6376 /* Beware of "x NOT IN ()" and "x NOT IN (SELECT 1 WHERE false)",
6377 ** both of which can be true. But apart from these cases, if
6378 ** the left-hand side of the IN is NULL then the IN itself will be
6379 ** NULL. */
6380 if( ExprUseXList(pExpr) && ALWAYS(pExpr->x.pList->nExpr>0) ){
6381 sqlite3WalkExpr(pWalker, pExpr->pLeft);
6383 return WRC_Prune;
6385 case TK_BETWEEN:
6386 /* In "x NOT BETWEEN y AND z" either x must be non-null-row or else
6387 ** both y and z must be non-null row */
6388 assert( ExprUseXList(pExpr) );
6389 assert( pExpr->x.pList->nExpr==2 );
6390 sqlite3WalkExpr(pWalker, pExpr->pLeft);
6391 bothImplyNotNullRow(pWalker, pExpr->x.pList->a[0].pExpr,
6392 pExpr->x.pList->a[1].pExpr);
6393 return WRC_Prune;
6395 /* Virtual tables are allowed to use constraints like x=NULL. So
6396 ** a term of the form x=y does not prove that y is not null if x
6397 ** is the column of a virtual table */
6398 case TK_EQ:
6399 case TK_NE:
6400 case TK_LT:
6401 case TK_LE:
6402 case TK_GT:
6403 case TK_GE: {
6404 Expr *pLeft = pExpr->pLeft;
6405 Expr *pRight = pExpr->pRight;
6406 testcase( pExpr->op==TK_EQ );
6407 testcase( pExpr->op==TK_NE );
6408 testcase( pExpr->op==TK_LT );
6409 testcase( pExpr->op==TK_LE );
6410 testcase( pExpr->op==TK_GT );
6411 testcase( pExpr->op==TK_GE );
6412 /* The y.pTab=0 assignment in wherecode.c always happens after the
6413 ** impliesNotNullRow() test */
6414 assert( pLeft->op!=TK_COLUMN || ExprUseYTab(pLeft) );
6415 assert( pRight->op!=TK_COLUMN || ExprUseYTab(pRight) );
6416 if( (pLeft->op==TK_COLUMN
6417 && ALWAYS(pLeft->y.pTab!=0)
6418 && IsVirtual(pLeft->y.pTab))
6419 || (pRight->op==TK_COLUMN
6420 && ALWAYS(pRight->y.pTab!=0)
6421 && IsVirtual(pRight->y.pTab))
6423 return WRC_Prune;
6425 /* no break */ deliberate_fall_through
6427 default:
6428 return WRC_Continue;
6433 ** Return true (non-zero) if expression p can only be true if at least
6434 ** one column of table iTab is non-null. In other words, return true
6435 ** if expression p will always be NULL or false if every column of iTab
6436 ** is NULL.
6438 ** False negatives are acceptable. In other words, it is ok to return
6439 ** zero even if expression p will never be true of every column of iTab
6440 ** is NULL. A false negative is merely a missed optimization opportunity.
6442 ** False positives are not allowed, however. A false positive may result
6443 ** in an incorrect answer.
6445 ** Terms of p that are marked with EP_OuterON (and hence that come from
6446 ** the ON or USING clauses of OUTER JOINS) are excluded from the analysis.
6448 ** This routine is used to check if a LEFT JOIN can be converted into
6449 ** an ordinary JOIN. The p argument is the WHERE clause. If the WHERE
6450 ** clause requires that some column of the right table of the LEFT JOIN
6451 ** be non-NULL, then the LEFT JOIN can be safely converted into an
6452 ** ordinary join.
6454 int sqlite3ExprImpliesNonNullRow(Expr *p, int iTab, int isRJ){
6455 Walker w;
6456 p = sqlite3ExprSkipCollateAndLikely(p);
6457 if( p==0 ) return 0;
6458 if( p->op==TK_NOTNULL ){
6459 p = p->pLeft;
6460 }else{
6461 while( p->op==TK_AND ){
6462 if( sqlite3ExprImpliesNonNullRow(p->pLeft, iTab, isRJ) ) return 1;
6463 p = p->pRight;
6466 w.xExprCallback = impliesNotNullRow;
6467 w.xSelectCallback = 0;
6468 w.xSelectCallback2 = 0;
6469 w.eCode = 0;
6470 w.mWFlags = isRJ!=0;
6471 w.u.iCur = iTab;
6472 sqlite3WalkExpr(&w, p);
6473 return w.eCode;
6477 ** An instance of the following structure is used by the tree walker
6478 ** to determine if an expression can be evaluated by reference to the
6479 ** index only, without having to do a search for the corresponding
6480 ** table entry. The IdxCover.pIdx field is the index. IdxCover.iCur
6481 ** is the cursor for the table.
6483 struct IdxCover {
6484 Index *pIdx; /* The index to be tested for coverage */
6485 int iCur; /* Cursor number for the table corresponding to the index */
6489 ** Check to see if there are references to columns in table
6490 ** pWalker->u.pIdxCover->iCur can be satisfied using the index
6491 ** pWalker->u.pIdxCover->pIdx.
6493 static int exprIdxCover(Walker *pWalker, Expr *pExpr){
6494 if( pExpr->op==TK_COLUMN
6495 && pExpr->iTable==pWalker->u.pIdxCover->iCur
6496 && sqlite3TableColumnToIndex(pWalker->u.pIdxCover->pIdx, pExpr->iColumn)<0
6498 pWalker->eCode = 1;
6499 return WRC_Abort;
6501 return WRC_Continue;
6505 ** Determine if an index pIdx on table with cursor iCur contains will
6506 ** the expression pExpr. Return true if the index does cover the
6507 ** expression and false if the pExpr expression references table columns
6508 ** that are not found in the index pIdx.
6510 ** An index covering an expression means that the expression can be
6511 ** evaluated using only the index and without having to lookup the
6512 ** corresponding table entry.
6514 int sqlite3ExprCoveredByIndex(
6515 Expr *pExpr, /* The index to be tested */
6516 int iCur, /* The cursor number for the corresponding table */
6517 Index *pIdx /* The index that might be used for coverage */
6519 Walker w;
6520 struct IdxCover xcov;
6521 memset(&w, 0, sizeof(w));
6522 xcov.iCur = iCur;
6523 xcov.pIdx = pIdx;
6524 w.xExprCallback = exprIdxCover;
6525 w.u.pIdxCover = &xcov;
6526 sqlite3WalkExpr(&w, pExpr);
6527 return !w.eCode;
6531 /* Structure used to pass information throughout the Walker in order to
6532 ** implement sqlite3ReferencesSrcList().
6534 struct RefSrcList {
6535 sqlite3 *db; /* Database connection used for sqlite3DbRealloc() */
6536 SrcList *pRef; /* Looking for references to these tables */
6537 i64 nExclude; /* Number of tables to exclude from the search */
6538 int *aiExclude; /* Cursor IDs for tables to exclude from the search */
6542 ** Walker SELECT callbacks for sqlite3ReferencesSrcList().
6544 ** When entering a new subquery on the pExpr argument, add all FROM clause
6545 ** entries for that subquery to the exclude list.
6547 ** When leaving the subquery, remove those entries from the exclude list.
6549 static int selectRefEnter(Walker *pWalker, Select *pSelect){
6550 struct RefSrcList *p = pWalker->u.pRefSrcList;
6551 SrcList *pSrc = pSelect->pSrc;
6552 i64 i, j;
6553 int *piNew;
6554 if( pSrc->nSrc==0 ) return WRC_Continue;
6555 j = p->nExclude;
6556 p->nExclude += pSrc->nSrc;
6557 piNew = sqlite3DbRealloc(p->db, p->aiExclude, p->nExclude*sizeof(int));
6558 if( piNew==0 ){
6559 p->nExclude = 0;
6560 return WRC_Abort;
6561 }else{
6562 p->aiExclude = piNew;
6564 for(i=0; i<pSrc->nSrc; i++, j++){
6565 p->aiExclude[j] = pSrc->a[i].iCursor;
6567 return WRC_Continue;
6569 static void selectRefLeave(Walker *pWalker, Select *pSelect){
6570 struct RefSrcList *p = pWalker->u.pRefSrcList;
6571 SrcList *pSrc = pSelect->pSrc;
6572 if( p->nExclude ){
6573 assert( p->nExclude>=pSrc->nSrc );
6574 p->nExclude -= pSrc->nSrc;
6578 /* This is the Walker EXPR callback for sqlite3ReferencesSrcList().
6580 ** Set the 0x01 bit of pWalker->eCode if there is a reference to any
6581 ** of the tables shown in RefSrcList.pRef.
6583 ** Set the 0x02 bit of pWalker->eCode if there is a reference to a
6584 ** table is in neither RefSrcList.pRef nor RefSrcList.aiExclude.
6586 static int exprRefToSrcList(Walker *pWalker, Expr *pExpr){
6587 if( pExpr->op==TK_COLUMN
6588 || pExpr->op==TK_AGG_COLUMN
6590 int i;
6591 struct RefSrcList *p = pWalker->u.pRefSrcList;
6592 SrcList *pSrc = p->pRef;
6593 int nSrc = pSrc ? pSrc->nSrc : 0;
6594 for(i=0; i<nSrc; i++){
6595 if( pExpr->iTable==pSrc->a[i].iCursor ){
6596 pWalker->eCode |= 1;
6597 return WRC_Continue;
6600 for(i=0; i<p->nExclude && p->aiExclude[i]!=pExpr->iTable; i++){}
6601 if( i>=p->nExclude ){
6602 pWalker->eCode |= 2;
6605 return WRC_Continue;
6609 ** Check to see if pExpr references any tables in pSrcList.
6610 ** Possible return values:
6612 ** 1 pExpr does references a table in pSrcList.
6614 ** 0 pExpr references some table that is not defined in either
6615 ** pSrcList or in subqueries of pExpr itself.
6617 ** -1 pExpr only references no tables at all, or it only
6618 ** references tables defined in subqueries of pExpr itself.
6620 ** As currently used, pExpr is always an aggregate function call. That
6621 ** fact is exploited for efficiency.
6623 int sqlite3ReferencesSrcList(Parse *pParse, Expr *pExpr, SrcList *pSrcList){
6624 Walker w;
6625 struct RefSrcList x;
6626 assert( pParse->db!=0 );
6627 memset(&w, 0, sizeof(w));
6628 memset(&x, 0, sizeof(x));
6629 w.xExprCallback = exprRefToSrcList;
6630 w.xSelectCallback = selectRefEnter;
6631 w.xSelectCallback2 = selectRefLeave;
6632 w.u.pRefSrcList = &x;
6633 x.db = pParse->db;
6634 x.pRef = pSrcList;
6635 assert( pExpr->op==TK_AGG_FUNCTION );
6636 assert( ExprUseXList(pExpr) );
6637 sqlite3WalkExprList(&w, pExpr->x.pList);
6638 if( pExpr->pLeft ){
6639 assert( pExpr->pLeft->op==TK_ORDER );
6640 assert( ExprUseXList(pExpr->pLeft) );
6641 assert( pExpr->pLeft->x.pList!=0 );
6642 sqlite3WalkExprList(&w, pExpr->pLeft->x.pList);
6644 #ifndef SQLITE_OMIT_WINDOWFUNC
6645 if( ExprHasProperty(pExpr, EP_WinFunc) ){
6646 sqlite3WalkExpr(&w, pExpr->y.pWin->pFilter);
6648 #endif
6649 if( x.aiExclude ) sqlite3DbNNFreeNN(pParse->db, x.aiExclude);
6650 if( w.eCode & 0x01 ){
6651 return 1;
6652 }else if( w.eCode ){
6653 return 0;
6654 }else{
6655 return -1;
6660 ** This is a Walker expression node callback.
6662 ** For Expr nodes that contain pAggInfo pointers, make sure the AggInfo
6663 ** object that is referenced does not refer directly to the Expr. If
6664 ** it does, make a copy. This is done because the pExpr argument is
6665 ** subject to change.
6667 ** The copy is scheduled for deletion using the sqlite3ExprDeferredDelete()
6668 ** which builds on the sqlite3ParserAddCleanup() mechanism.
6670 static int agginfoPersistExprCb(Walker *pWalker, Expr *pExpr){
6671 if( ALWAYS(!ExprHasProperty(pExpr, EP_TokenOnly|EP_Reduced))
6672 && pExpr->pAggInfo!=0
6674 AggInfo *pAggInfo = pExpr->pAggInfo;
6675 int iAgg = pExpr->iAgg;
6676 Parse *pParse = pWalker->pParse;
6677 sqlite3 *db = pParse->db;
6678 assert( iAgg>=0 );
6679 if( pExpr->op!=TK_AGG_FUNCTION ){
6680 if( iAgg<pAggInfo->nColumn
6681 && pAggInfo->aCol[iAgg].pCExpr==pExpr
6683 pExpr = sqlite3ExprDup(db, pExpr, 0);
6684 if( pExpr && !sqlite3ExprDeferredDelete(pParse, pExpr) ){
6685 pAggInfo->aCol[iAgg].pCExpr = pExpr;
6688 }else{
6689 assert( pExpr->op==TK_AGG_FUNCTION );
6690 if( ALWAYS(iAgg<pAggInfo->nFunc)
6691 && pAggInfo->aFunc[iAgg].pFExpr==pExpr
6693 pExpr = sqlite3ExprDup(db, pExpr, 0);
6694 if( pExpr && !sqlite3ExprDeferredDelete(pParse, pExpr) ){
6695 pAggInfo->aFunc[iAgg].pFExpr = pExpr;
6700 return WRC_Continue;
6704 ** Initialize a Walker object so that will persist AggInfo entries referenced
6705 ** by the tree that is walked.
6707 void sqlite3AggInfoPersistWalkerInit(Walker *pWalker, Parse *pParse){
6708 memset(pWalker, 0, sizeof(*pWalker));
6709 pWalker->pParse = pParse;
6710 pWalker->xExprCallback = agginfoPersistExprCb;
6711 pWalker->xSelectCallback = sqlite3SelectWalkNoop;
6715 ** Add a new element to the pAggInfo->aCol[] array. Return the index of
6716 ** the new element. Return a negative number if malloc fails.
6718 static int addAggInfoColumn(sqlite3 *db, AggInfo *pInfo){
6719 int i;
6720 pInfo->aCol = sqlite3ArrayAllocate(
6722 pInfo->aCol,
6723 sizeof(pInfo->aCol[0]),
6724 &pInfo->nColumn,
6727 return i;
6731 ** Add a new element to the pAggInfo->aFunc[] array. Return the index of
6732 ** the new element. Return a negative number if malloc fails.
6734 static int addAggInfoFunc(sqlite3 *db, AggInfo *pInfo){
6735 int i;
6736 pInfo->aFunc = sqlite3ArrayAllocate(
6738 pInfo->aFunc,
6739 sizeof(pInfo->aFunc[0]),
6740 &pInfo->nFunc,
6743 return i;
6747 ** Search the AggInfo object for an aCol[] entry that has iTable and iColumn.
6748 ** Return the index in aCol[] of the entry that describes that column.
6750 ** If no prior entry is found, create a new one and return -1. The
6751 ** new column will have an index of pAggInfo->nColumn-1.
6753 static void findOrCreateAggInfoColumn(
6754 Parse *pParse, /* Parsing context */
6755 AggInfo *pAggInfo, /* The AggInfo object to search and/or modify */
6756 Expr *pExpr /* Expr describing the column to find or insert */
6758 struct AggInfo_col *pCol;
6759 int k;
6761 assert( pAggInfo->iFirstReg==0 );
6762 pCol = pAggInfo->aCol;
6763 for(k=0; k<pAggInfo->nColumn; k++, pCol++){
6764 if( pCol->pCExpr==pExpr ) return;
6765 if( pCol->iTable==pExpr->iTable
6766 && pCol->iColumn==pExpr->iColumn
6767 && pExpr->op!=TK_IF_NULL_ROW
6769 goto fix_up_expr;
6772 k = addAggInfoColumn(pParse->db, pAggInfo);
6773 if( k<0 ){
6774 /* OOM on resize */
6775 assert( pParse->db->mallocFailed );
6776 return;
6778 pCol = &pAggInfo->aCol[k];
6779 assert( ExprUseYTab(pExpr) );
6780 pCol->pTab = pExpr->y.pTab;
6781 pCol->iTable = pExpr->iTable;
6782 pCol->iColumn = pExpr->iColumn;
6783 pCol->iSorterColumn = -1;
6784 pCol->pCExpr = pExpr;
6785 if( pAggInfo->pGroupBy && pExpr->op!=TK_IF_NULL_ROW ){
6786 int j, n;
6787 ExprList *pGB = pAggInfo->pGroupBy;
6788 struct ExprList_item *pTerm = pGB->a;
6789 n = pGB->nExpr;
6790 for(j=0; j<n; j++, pTerm++){
6791 Expr *pE = pTerm->pExpr;
6792 if( pE->op==TK_COLUMN
6793 && pE->iTable==pExpr->iTable
6794 && pE->iColumn==pExpr->iColumn
6796 pCol->iSorterColumn = j;
6797 break;
6801 if( pCol->iSorterColumn<0 ){
6802 pCol->iSorterColumn = pAggInfo->nSortingColumn++;
6804 fix_up_expr:
6805 ExprSetVVAProperty(pExpr, EP_NoReduce);
6806 assert( pExpr->pAggInfo==0 || pExpr->pAggInfo==pAggInfo );
6807 pExpr->pAggInfo = pAggInfo;
6808 if( pExpr->op==TK_COLUMN ){
6809 pExpr->op = TK_AGG_COLUMN;
6811 pExpr->iAgg = (i16)k;
6815 ** This is the xExprCallback for a tree walker. It is used to
6816 ** implement sqlite3ExprAnalyzeAggregates(). See sqlite3ExprAnalyzeAggregates
6817 ** for additional information.
6819 static int analyzeAggregate(Walker *pWalker, Expr *pExpr){
6820 int i;
6821 NameContext *pNC = pWalker->u.pNC;
6822 Parse *pParse = pNC->pParse;
6823 SrcList *pSrcList = pNC->pSrcList;
6824 AggInfo *pAggInfo = pNC->uNC.pAggInfo;
6826 assert( pNC->ncFlags & NC_UAggInfo );
6827 assert( pAggInfo->iFirstReg==0 );
6828 switch( pExpr->op ){
6829 default: {
6830 IndexedExpr *pIEpr;
6831 Expr tmp;
6832 assert( pParse->iSelfTab==0 );
6833 if( (pNC->ncFlags & NC_InAggFunc)==0 ) break;
6834 if( pParse->pIdxEpr==0 ) break;
6835 for(pIEpr=pParse->pIdxEpr; pIEpr; pIEpr=pIEpr->pIENext){
6836 int iDataCur = pIEpr->iDataCur;
6837 if( iDataCur<0 ) continue;
6838 if( sqlite3ExprCompare(0, pExpr, pIEpr->pExpr, iDataCur)==0 ) break;
6840 if( pIEpr==0 ) break;
6841 if( NEVER(!ExprUseYTab(pExpr)) ) break;
6842 for(i=0; i<pSrcList->nSrc; i++){
6843 if( pSrcList->a[0].iCursor==pIEpr->iDataCur ) break;
6845 if( i>=pSrcList->nSrc ) break;
6846 if( NEVER(pExpr->pAggInfo!=0) ) break; /* Resolved by outer context */
6847 if( pParse->nErr ){ return WRC_Abort; }
6849 /* If we reach this point, it means that expression pExpr can be
6850 ** translated into a reference to an index column as described by
6851 ** pIEpr.
6853 memset(&tmp, 0, sizeof(tmp));
6854 tmp.op = TK_AGG_COLUMN;
6855 tmp.iTable = pIEpr->iIdxCur;
6856 tmp.iColumn = pIEpr->iIdxCol;
6857 findOrCreateAggInfoColumn(pParse, pAggInfo, &tmp);
6858 if( pParse->nErr ){ return WRC_Abort; }
6859 assert( pAggInfo->aCol!=0 );
6860 assert( tmp.iAgg<pAggInfo->nColumn );
6861 pAggInfo->aCol[tmp.iAgg].pCExpr = pExpr;
6862 pExpr->pAggInfo = pAggInfo;
6863 pExpr->iAgg = tmp.iAgg;
6864 return WRC_Prune;
6866 case TK_IF_NULL_ROW:
6867 case TK_AGG_COLUMN:
6868 case TK_COLUMN: {
6869 testcase( pExpr->op==TK_AGG_COLUMN );
6870 testcase( pExpr->op==TK_COLUMN );
6871 testcase( pExpr->op==TK_IF_NULL_ROW );
6872 /* Check to see if the column is in one of the tables in the FROM
6873 ** clause of the aggregate query */
6874 if( ALWAYS(pSrcList!=0) ){
6875 SrcItem *pItem = pSrcList->a;
6876 for(i=0; i<pSrcList->nSrc; i++, pItem++){
6877 assert( !ExprHasProperty(pExpr, EP_TokenOnly|EP_Reduced) );
6878 if( pExpr->iTable==pItem->iCursor ){
6879 findOrCreateAggInfoColumn(pParse, pAggInfo, pExpr);
6880 break;
6881 } /* endif pExpr->iTable==pItem->iCursor */
6882 } /* end loop over pSrcList */
6884 return WRC_Continue;
6886 case TK_AGG_FUNCTION: {
6887 if( (pNC->ncFlags & NC_InAggFunc)==0
6888 && pWalker->walkerDepth==pExpr->op2
6889 && pExpr->pAggInfo==0
6891 /* Check to see if pExpr is a duplicate of another aggregate
6892 ** function that is already in the pAggInfo structure
6894 struct AggInfo_func *pItem = pAggInfo->aFunc;
6895 for(i=0; i<pAggInfo->nFunc; i++, pItem++){
6896 if( NEVER(pItem->pFExpr==pExpr) ) break;
6897 if( sqlite3ExprCompare(0, pItem->pFExpr, pExpr, -1)==0 ){
6898 break;
6901 if( i>=pAggInfo->nFunc ){
6902 /* pExpr is original. Make a new entry in pAggInfo->aFunc[]
6904 u8 enc = ENC(pParse->db);
6905 i = addAggInfoFunc(pParse->db, pAggInfo);
6906 if( i>=0 ){
6907 int nArg;
6908 assert( !ExprHasProperty(pExpr, EP_xIsSelect) );
6909 pItem = &pAggInfo->aFunc[i];
6910 pItem->pFExpr = pExpr;
6911 assert( ExprUseUToken(pExpr) );
6912 nArg = pExpr->x.pList ? pExpr->x.pList->nExpr : 0;
6913 pItem->pFunc = sqlite3FindFunction(pParse->db,
6914 pExpr->u.zToken, nArg, enc, 0);
6915 assert( pItem->bOBUnique==0 );
6916 if( pExpr->pLeft
6917 && (pItem->pFunc->funcFlags & SQLITE_FUNC_NEEDCOLL)==0
6919 /* The NEEDCOLL test above causes any ORDER BY clause on
6920 ** aggregate min() or max() to be ignored. */
6921 ExprList *pOBList;
6922 assert( nArg>0 );
6923 assert( pExpr->pLeft->op==TK_ORDER );
6924 assert( ExprUseXList(pExpr->pLeft) );
6925 pItem->iOBTab = pParse->nTab++;
6926 pOBList = pExpr->pLeft->x.pList;
6927 assert( pOBList->nExpr>0 );
6928 assert( pItem->bOBUnique==0 );
6929 if( pOBList->nExpr==1
6930 && nArg==1
6931 && sqlite3ExprCompare(0,pOBList->a[0].pExpr,
6932 pExpr->x.pList->a[0].pExpr,0)==0
6934 pItem->bOBPayload = 0;
6935 pItem->bOBUnique = ExprHasProperty(pExpr, EP_Distinct);
6936 }else{
6937 pItem->bOBPayload = 1;
6939 pItem->bUseSubtype =
6940 (pItem->pFunc->funcFlags & SQLITE_SUBTYPE)!=0;
6941 }else{
6942 pItem->iOBTab = -1;
6944 if( ExprHasProperty(pExpr, EP_Distinct) && !pItem->bOBUnique ){
6945 pItem->iDistinct = pParse->nTab++;
6946 }else{
6947 pItem->iDistinct = -1;
6951 /* Make pExpr point to the appropriate pAggInfo->aFunc[] entry
6953 assert( !ExprHasProperty(pExpr, EP_TokenOnly|EP_Reduced) );
6954 ExprSetVVAProperty(pExpr, EP_NoReduce);
6955 pExpr->iAgg = (i16)i;
6956 pExpr->pAggInfo = pAggInfo;
6957 return WRC_Prune;
6958 }else{
6959 return WRC_Continue;
6963 return WRC_Continue;
6967 ** Analyze the pExpr expression looking for aggregate functions and
6968 ** for variables that need to be added to AggInfo object that pNC->pAggInfo
6969 ** points to. Additional entries are made on the AggInfo object as
6970 ** necessary.
6972 ** This routine should only be called after the expression has been
6973 ** analyzed by sqlite3ResolveExprNames().
6975 void sqlite3ExprAnalyzeAggregates(NameContext *pNC, Expr *pExpr){
6976 Walker w;
6977 w.xExprCallback = analyzeAggregate;
6978 w.xSelectCallback = sqlite3WalkerDepthIncrease;
6979 w.xSelectCallback2 = sqlite3WalkerDepthDecrease;
6980 w.walkerDepth = 0;
6981 w.u.pNC = pNC;
6982 w.pParse = 0;
6983 assert( pNC->pSrcList!=0 );
6984 sqlite3WalkExpr(&w, pExpr);
6988 ** Call sqlite3ExprAnalyzeAggregates() for every expression in an
6989 ** expression list. Return the number of errors.
6991 ** If an error is found, the analysis is cut short.
6993 void sqlite3ExprAnalyzeAggList(NameContext *pNC, ExprList *pList){
6994 struct ExprList_item *pItem;
6995 int i;
6996 if( pList ){
6997 for(pItem=pList->a, i=0; i<pList->nExpr; i++, pItem++){
6998 sqlite3ExprAnalyzeAggregates(pNC, pItem->pExpr);
7004 ** Allocate a single new register for use to hold some intermediate result.
7006 int sqlite3GetTempReg(Parse *pParse){
7007 if( pParse->nTempReg==0 ){
7008 return ++pParse->nMem;
7010 return pParse->aTempReg[--pParse->nTempReg];
7014 ** Deallocate a register, making available for reuse for some other
7015 ** purpose.
7017 void sqlite3ReleaseTempReg(Parse *pParse, int iReg){
7018 if( iReg ){
7019 sqlite3VdbeReleaseRegisters(pParse, iReg, 1, 0, 0);
7020 if( pParse->nTempReg<ArraySize(pParse->aTempReg) ){
7021 pParse->aTempReg[pParse->nTempReg++] = iReg;
7027 ** Allocate or deallocate a block of nReg consecutive registers.
7029 int sqlite3GetTempRange(Parse *pParse, int nReg){
7030 int i, n;
7031 if( nReg==1 ) return sqlite3GetTempReg(pParse);
7032 i = pParse->iRangeReg;
7033 n = pParse->nRangeReg;
7034 if( nReg<=n ){
7035 pParse->iRangeReg += nReg;
7036 pParse->nRangeReg -= nReg;
7037 }else{
7038 i = pParse->nMem+1;
7039 pParse->nMem += nReg;
7041 return i;
7043 void sqlite3ReleaseTempRange(Parse *pParse, int iReg, int nReg){
7044 if( nReg==1 ){
7045 sqlite3ReleaseTempReg(pParse, iReg);
7046 return;
7048 sqlite3VdbeReleaseRegisters(pParse, iReg, nReg, 0, 0);
7049 if( nReg>pParse->nRangeReg ){
7050 pParse->nRangeReg = nReg;
7051 pParse->iRangeReg = iReg;
7056 ** Mark all temporary registers as being unavailable for reuse.
7058 ** Always invoke this procedure after coding a subroutine or co-routine
7059 ** that might be invoked from other parts of the code, to ensure that
7060 ** the sub/co-routine does not use registers in common with the code that
7061 ** invokes the sub/co-routine.
7063 void sqlite3ClearTempRegCache(Parse *pParse){
7064 pParse->nTempReg = 0;
7065 pParse->nRangeReg = 0;
7069 ** Make sure sufficient registers have been allocated so that
7070 ** iReg is a valid register number.
7072 void sqlite3TouchRegister(Parse *pParse, int iReg){
7073 if( pParse->nMem<iReg ) pParse->nMem = iReg;
7076 #if defined(SQLITE_ENABLE_STAT4) || defined(SQLITE_DEBUG)
7078 ** Return the latest reusable register in the set of all registers.
7079 ** The value returned is no less than iMin. If any register iMin or
7080 ** greater is in permanent use, then return one more than that last
7081 ** permanent register.
7083 int sqlite3FirstAvailableRegister(Parse *pParse, int iMin){
7084 const ExprList *pList = pParse->pConstExpr;
7085 if( pList ){
7086 int i;
7087 for(i=0; i<pList->nExpr; i++){
7088 if( pList->a[i].u.iConstExprReg>=iMin ){
7089 iMin = pList->a[i].u.iConstExprReg + 1;
7093 pParse->nTempReg = 0;
7094 pParse->nRangeReg = 0;
7095 return iMin;
7097 #endif /* SQLITE_ENABLE_STAT4 || SQLITE_DEBUG */
7100 ** Validate that no temporary register falls within the range of
7101 ** iFirst..iLast, inclusive. This routine is only call from within assert()
7102 ** statements.
7104 #ifdef SQLITE_DEBUG
7105 int sqlite3NoTempsInRange(Parse *pParse, int iFirst, int iLast){
7106 int i;
7107 if( pParse->nRangeReg>0
7108 && pParse->iRangeReg+pParse->nRangeReg > iFirst
7109 && pParse->iRangeReg <= iLast
7111 return 0;
7113 for(i=0; i<pParse->nTempReg; i++){
7114 if( pParse->aTempReg[i]>=iFirst && pParse->aTempReg[i]<=iLast ){
7115 return 0;
7118 if( pParse->pConstExpr ){
7119 ExprList *pList = pParse->pConstExpr;
7120 for(i=0; i<pList->nExpr; i++){
7121 int iReg = pList->a[i].u.iConstExprReg;
7122 if( iReg==0 ) continue;
7123 if( iReg>=iFirst && iReg<=iLast ) return 0;
7126 return 1;
7128 #endif /* SQLITE_DEBUG */