4 * Copyright (C) 2003 Transmeta Corp.
5 * 2003-2004 Linus Torvalds
7 * Licensed under the Open Software License version 1.1
9 * Evaluate constant expressions.
27 #include "expression.h"
29 struct symbol
*current_fn
;
31 static struct symbol
*degenerate(struct expression
*expr
);
32 static struct symbol
*evaluate_symbol(struct symbol
*sym
);
34 static struct symbol
*evaluate_symbol_expression(struct expression
*expr
)
36 struct expression
*addr
;
37 struct symbol
*sym
= expr
->symbol
;
38 struct symbol
*base_type
;
41 expression_error(expr
, "undefined identifier '%s'", show_ident(expr
->symbol_name
));
45 examine_symbol_type(sym
);
47 base_type
= get_base_type(sym
);
49 expression_error(expr
, "identifier '%s' has no type", show_ident(expr
->symbol_name
));
53 addr
= alloc_expression(expr
->pos
, EXPR_SYMBOL
);
55 addr
->symbol_name
= expr
->symbol_name
;
56 addr
->ctype
= &lazy_ptr_ctype
; /* Lazy evaluation: we need to do a proper job if somebody does &sym */
57 expr
->type
= EXPR_PREOP
;
61 /* The type of a symbol is the symbol itself! */
66 static struct symbol
*evaluate_string(struct expression
*expr
)
68 struct symbol
*sym
= alloc_symbol(expr
->pos
, SYM_NODE
);
69 struct symbol
*array
= alloc_symbol(expr
->pos
, SYM_ARRAY
);
70 struct expression
*addr
= alloc_expression(expr
->pos
, EXPR_SYMBOL
);
71 struct expression
*initstr
= alloc_expression(expr
->pos
, EXPR_STRING
);
72 unsigned int length
= expr
->string
->length
;
74 sym
->array_size
= alloc_const_expression(expr
->pos
, length
);
75 sym
->bit_size
= bits_in_char
* length
;
76 sym
->ctype
.alignment
= 1;
78 sym
->ctype
.modifiers
= MOD_STATIC
;
79 sym
->ctype
.base_type
= array
;
80 sym
->initializer
= initstr
;
83 initstr
->string
= expr
->string
;
85 array
->array_size
= sym
->array_size
;
86 array
->bit_size
= bits_in_char
* length
;
87 array
->ctype
.alignment
= 1;
88 array
->ctype
.modifiers
= MOD_STATIC
;
89 array
->ctype
.base_type
= &char_ctype
;
92 addr
->ctype
= &lazy_ptr_ctype
;
94 expr
->type
= EXPR_PREOP
;
101 static inline struct symbol
*integer_promotion(struct symbol
*type
)
103 struct symbol
*orig_type
= type
;
104 unsigned long mod
= type
->ctype
.modifiers
;
107 if (type
->type
== SYM_NODE
)
108 type
= type
->ctype
.base_type
;
109 if (type
->type
== SYM_ENUM
)
110 type
= type
->ctype
.base_type
;
111 width
= type
->bit_size
;
114 * Bitfields always promote to the base type,
115 * even if the bitfield might be bigger than
118 if (type
->type
== SYM_BITFIELD
) {
119 type
= type
->ctype
.base_type
;
122 mod
= type
->ctype
.modifiers
;
123 if (width
< bits_in_int
)
126 /* If char/short has as many bits as int, it still gets "promoted" */
127 if (mod
& (MOD_CHAR
| MOD_SHORT
)) {
128 if (mod
& MOD_UNSIGNED
)
136 * integer part of usual arithmetic conversions:
137 * integer promotions are applied
138 * if left and right are identical, we are done
139 * if signedness is the same, convert one with lower rank
140 * unless unsigned argument has rank lower than signed one, convert the
142 * if signed argument is bigger than unsigned one, convert the unsigned.
143 * otherwise, convert signed.
145 * Leaving aside the integer promotions, that is equivalent to
146 * if identical, don't convert
147 * if left is bigger than right, convert right
148 * if right is bigger than left, convert right
149 * otherwise, if signedness is the same, convert one with lower rank
150 * otherwise convert the signed one.
152 static struct symbol
*bigger_int_type(struct symbol
*left
, struct symbol
*right
)
154 unsigned long lmod
, rmod
;
156 left
= integer_promotion(left
);
157 right
= integer_promotion(right
);
162 if (left
->bit_size
> right
->bit_size
)
165 if (right
->bit_size
> left
->bit_size
)
168 lmod
= left
->ctype
.modifiers
;
169 rmod
= right
->ctype
.modifiers
;
170 if ((lmod
^ rmod
) & MOD_UNSIGNED
) {
171 if (lmod
& MOD_UNSIGNED
)
173 } else if ((lmod
& ~rmod
) & (MOD_LONG
| MOD_LONGLONG
))
181 static int same_cast_type(struct symbol
*orig
, struct symbol
*new)
183 return orig
->bit_size
== new->bit_size
&& orig
->bit_offset
== new->bit_offset
;
186 static struct symbol
*base_type(struct symbol
*node
, unsigned long *modp
, unsigned long *asp
)
188 unsigned long mod
, as
;
192 mod
|= node
->ctype
.modifiers
;
193 as
|= node
->ctype
.as
;
194 if (node
->type
== SYM_NODE
) {
195 node
= node
->ctype
.base_type
;
200 *modp
= mod
& ~MOD_IGNORE
;
205 static int is_same_type(struct expression
*expr
, struct symbol
*new)
207 struct symbol
*old
= expr
->ctype
;
208 unsigned long oldmod
, newmod
, oldas
, newas
;
210 old
= base_type(old
, &oldmod
, &oldas
);
211 new = base_type(new, &newmod
, &newas
);
213 /* Same base type, same address space? */
214 if (old
== new && oldas
== newas
) {
215 unsigned long difmod
;
217 /* Check the modifier bits. */
218 difmod
= (oldmod
^ newmod
) & ~MOD_NOCAST
;
220 /* Exact same type? */
225 * Not the same type, but differs only in "const".
226 * Don't warn about MOD_NOCAST.
228 if (difmod
== MOD_CONST
)
231 if ((oldmod
| newmod
) & MOD_NOCAST
) {
232 const char *tofrom
= "to/from";
233 if (!(newmod
& MOD_NOCAST
))
235 if (!(oldmod
& MOD_NOCAST
))
237 warning(expr
->pos
, "implicit cast %s nocast type", tofrom
);
243 warn_for_different_enum_types (struct position pos
,
244 struct symbol
*typea
,
245 struct symbol
*typeb
)
249 if (typea
->type
== SYM_NODE
)
250 typea
= typea
->ctype
.base_type
;
251 if (typeb
->type
== SYM_NODE
)
252 typeb
= typeb
->ctype
.base_type
;
257 if (typea
->type
== SYM_ENUM
&& typeb
->type
== SYM_ENUM
) {
258 warning(pos
, "mixing different enum types");
259 info(pos
, " %s versus", show_typename(typea
));
260 info(pos
, " %s", show_typename(typeb
));
265 * This gets called for implicit casts in assignments and
266 * integer promotion. We often want to try to move the
267 * cast down, because the ops involved may have been
268 * implicitly cast up, and we can get rid of the casts
271 static struct expression
* cast_to(struct expression
*old
, struct symbol
*type
)
273 struct expression
*expr
;
275 warn_for_different_enum_types (old
->pos
, old
->ctype
, type
);
277 if (is_same_type(old
, type
))
281 * See if we can simplify the op. Move the cast down.
285 if (old
->ctype
->bit_size
< type
->bit_size
)
287 if (old
->op
== '~') {
289 old
->unop
= cast_to(old
->unop
, type
);
294 case EXPR_IMPLIED_CAST
:
295 warn_for_different_enum_types(old
->pos
, old
->ctype
, type
);
297 if (old
->ctype
->bit_size
>= type
->bit_size
) {
298 struct expression
*orig
= old
->cast_expression
;
299 if (same_cast_type(orig
->ctype
, type
))
301 if (old
->ctype
->bit_offset
== type
->bit_offset
) {
303 old
->cast_type
= type
;
313 expr
= alloc_expression(old
->pos
, EXPR_IMPLIED_CAST
);
315 expr
->cast_type
= type
;
316 expr
->cast_expression
= old
;
320 static int is_type_type(struct symbol
*type
)
322 return (type
->ctype
.modifiers
& MOD_TYPE
) != 0;
325 int is_ptr_type(struct symbol
*type
)
327 if (type
->type
== SYM_NODE
)
328 type
= type
->ctype
.base_type
;
329 return type
->type
== SYM_PTR
|| type
->type
== SYM_ARRAY
|| type
->type
== SYM_FN
;
332 static inline int is_float_type(struct symbol
*type
)
334 if (type
->type
== SYM_NODE
)
335 type
= type
->ctype
.base_type
;
336 return type
->ctype
.base_type
== &fp_type
;
339 static inline int is_byte_type(struct symbol
*type
)
341 return type
->bit_size
== bits_in_char
&& type
->type
!= SYM_BITFIELD
;
354 static inline int classify_type(struct symbol
*type
, struct symbol
**base
)
356 static int type_class
[SYM_BAD
+ 1] = {
357 [SYM_PTR
] = TYPE_PTR
,
359 [SYM_ARRAY
] = TYPE_PTR
| TYPE_COMPOUND
,
360 [SYM_STRUCT
] = TYPE_COMPOUND
,
361 [SYM_UNION
] = TYPE_COMPOUND
,
362 [SYM_BITFIELD
] = TYPE_NUM
| TYPE_BITFIELD
,
363 [SYM_RESTRICT
] = TYPE_NUM
| TYPE_RESTRICT
,
364 [SYM_FOULED
] = TYPE_NUM
| TYPE_RESTRICT
| TYPE_FOULED
,
366 if (type
->type
== SYM_NODE
)
367 type
= type
->ctype
.base_type
;
368 if (type
->type
== SYM_ENUM
)
369 type
= type
->ctype
.base_type
;
371 if (type
->type
== SYM_BASETYPE
) {
372 if (type
->ctype
.base_type
== &int_type
)
374 if (type
->ctype
.base_type
== &fp_type
)
375 return TYPE_NUM
| TYPE_FLOAT
;
377 return type_class
[type
->type
];
380 static inline int is_string_type(struct symbol
*type
)
382 if (type
->type
== SYM_NODE
)
383 type
= type
->ctype
.base_type
;
384 return type
->type
== SYM_ARRAY
&& is_byte_type(type
->ctype
.base_type
);
387 static struct symbol
*bad_expr_type(struct expression
*expr
)
389 sparse_error(expr
->pos
, "incompatible types for operation (%s)", show_special(expr
->op
));
390 switch (expr
->type
) {
393 info(expr
->pos
, " left side has type %s", show_typename(expr
->left
->ctype
));
394 info(expr
->pos
, " right side has type %s", show_typename(expr
->right
->ctype
));
398 info(expr
->pos
, " argument has type %s", show_typename(expr
->unop
->ctype
));
404 return expr
->ctype
= &bad_ctype
;
407 static int restricted_value(struct expression
*v
, struct symbol
*type
)
409 if (v
->type
!= EXPR_VALUE
)
416 static int restricted_binop(int op
, struct symbol
*type
)
421 case SPECIAL_AND_ASSIGN
:
422 case SPECIAL_OR_ASSIGN
:
423 case SPECIAL_XOR_ASSIGN
:
424 return 1; /* unfoul */
428 return 2; /* keep fouled */
430 case SPECIAL_NOTEQUAL
:
431 return 3; /* warn if fouled */
437 static int restricted_unop(int op
, struct symbol
**type
)
440 if ((*type
)->bit_size
< bits_in_int
)
441 *type
= befoul(*type
);
448 static struct symbol
*restricted_binop_type(int op
,
449 struct expression
*left
,
450 struct expression
*right
,
451 int lclass
, int rclass
,
452 struct symbol
*ltype
,
453 struct symbol
*rtype
)
455 struct symbol
*ctype
= NULL
;
456 if (lclass
& TYPE_RESTRICT
) {
457 if (rclass
& TYPE_RESTRICT
) {
458 if (ltype
== rtype
) {
460 } else if (lclass
& TYPE_FOULED
) {
461 if (ltype
->ctype
.base_type
== rtype
)
463 } else if (rclass
& TYPE_FOULED
) {
464 if (rtype
->ctype
.base_type
== ltype
)
468 if (!restricted_value(right
, ltype
))
471 } else if (!restricted_value(left
, rtype
))
475 switch (restricted_binop(op
, ctype
)) {
477 if ((lclass
^ rclass
) & TYPE_FOULED
)
478 ctype
= ctype
->ctype
.base_type
;
481 if (!(lclass
& rclass
& TYPE_FOULED
))
493 static struct symbol
*usual_conversions(int op
,
494 struct expression
**left
,
495 struct expression
**right
,
496 int lclass
, int rclass
,
497 struct symbol
*ltype
,
498 struct symbol
*rtype
)
500 struct symbol
*ctype
;
502 warn_for_different_enum_types((*right
)->pos
, (*left
)->ctype
, (*right
)->ctype
);
504 if ((lclass
| rclass
) & TYPE_RESTRICT
)
508 if (!(lclass
& TYPE_FLOAT
)) {
509 if (!(rclass
& TYPE_FLOAT
))
510 ctype
= bigger_int_type(ltype
, rtype
);
513 } else if (rclass
& TYPE_FLOAT
) {
514 unsigned long lmod
= ltype
->ctype
.modifiers
;
515 unsigned long rmod
= rtype
->ctype
.modifiers
;
516 if (rmod
& ~lmod
& (MOD_LONG
| MOD_LONGLONG
))
524 *left
= cast_to(*left
, ctype
);
525 *right
= cast_to(*right
, ctype
);
529 ctype
= restricted_binop_type(op
, *left
, *right
,
530 lclass
, rclass
, ltype
, rtype
);
534 if (lclass
& TYPE_RESTRICT
) {
535 warning((*left
)->pos
, "restricted degrades to integer");
536 ltype
= ltype
->ctype
.base_type
;
537 if (is_restricted_type(ltype
)) /* was fouled */
538 ltype
= ltype
->ctype
.base_type
;
540 if (rclass
& TYPE_RESTRICT
) {
541 warning((*right
)->pos
, "restricted degrades to integer");
542 rtype
= rtype
->ctype
.base_type
;
543 if (is_restricted_type(rtype
)) /* was fouled */
544 rtype
= rtype
->ctype
.base_type
;
549 static struct symbol
*evaluate_arith(struct expression
*expr
, int float_ok
)
551 struct symbol
*ltype
, *rtype
;
552 int lclass
= classify_type(expr
->left
->ctype
, <ype
);
553 int rclass
= classify_type(expr
->right
->ctype
, &rtype
);
554 struct symbol
*ctype
;
556 if (!(lclass
& rclass
& TYPE_NUM
))
559 if (!float_ok
&& (lclass
| rclass
) & TYPE_FLOAT
)
562 ctype
= usual_conversions(expr
->op
, &expr
->left
, &expr
->right
,
563 lclass
, rclass
, ltype
, rtype
);
568 return bad_expr_type(expr
);
571 static inline int lvalue_expression(struct expression
*expr
)
573 return expr
->type
== EXPR_PREOP
&& expr
->op
== '*';
576 static int ptr_object_size(struct symbol
*ptr_type
)
578 if (ptr_type
->type
== SYM_NODE
)
579 ptr_type
= ptr_type
->ctype
.base_type
;
580 if (ptr_type
->type
== SYM_PTR
)
581 ptr_type
= get_base_type(ptr_type
);
582 return ptr_type
->bit_size
;
585 static struct symbol
*evaluate_ptr_add(struct expression
*expr
, struct symbol
*ctype
, struct expression
**ip
)
587 struct expression
*i
= *ip
;
588 struct symbol
*ptr_type
= ctype
;
591 if (ptr_type
->type
== SYM_NODE
)
592 ptr_type
= ptr_type
->ctype
.base_type
;
594 if (!is_int_type(i
->ctype
))
595 return bad_expr_type(expr
);
597 examine_symbol_type(ctype
);
599 if (!ctype
->ctype
.base_type
) {
600 expression_error(expr
, "missing type information");
604 /* Get the size of whatever the pointer points to */
605 bit_size
= ptr_object_size(ctype
);
607 if (bit_size
> bits_in_char
) {
608 int multiply
= bit_size
>> 3;
609 struct expression
*val
= alloc_expression(expr
->pos
, EXPR_VALUE
);
611 if (i
->type
== EXPR_VALUE
) {
612 val
->value
= i
->value
* multiply
;
613 val
->ctype
= size_t_ctype
;
616 struct expression
*mul
= alloc_expression(expr
->pos
, EXPR_BINOP
);
618 val
->ctype
= size_t_ctype
;
619 val
->value
= bit_size
>> 3;
622 mul
->ctype
= size_t_ctype
;
634 static struct symbol
*evaluate_add(struct expression
*expr
)
636 struct expression
*left
= expr
->left
, *right
= expr
->right
;
637 struct symbol
*ltype
= left
->ctype
, *rtype
= right
->ctype
;
639 if (is_ptr_type(ltype
))
640 return evaluate_ptr_add(expr
, degenerate(left
), &expr
->right
);
642 if (is_ptr_type(rtype
))
643 return evaluate_ptr_add(expr
, degenerate(right
), &expr
->left
);
645 return evaluate_arith(expr
, 1);
648 const char * type_difference(struct symbol
*target
, struct symbol
*source
,
649 unsigned long target_mod_ignore
, unsigned long source_mod_ignore
)
652 unsigned long mod1
, mod2
, diff
;
653 unsigned long as1
, as2
;
655 struct symbol
*base1
, *base2
;
657 if (target
== source
)
659 if (!target
|| !source
)
660 return "different types";
662 * Peel of per-node information.
663 * FIXME! Check alignment and context too here!
665 mod1
= target
->ctype
.modifiers
;
666 as1
= target
->ctype
.as
;
667 mod2
= source
->ctype
.modifiers
;
668 as2
= source
->ctype
.as
;
669 if (target
->type
== SYM_NODE
) {
670 target
= target
->ctype
.base_type
;
673 if (target
->type
== SYM_PTR
) {
677 mod1
|= target
->ctype
.modifiers
;
678 as1
|= target
->ctype
.as
;
680 if (source
->type
== SYM_NODE
) {
681 source
= source
->ctype
.base_type
;
684 if (source
->type
== SYM_PTR
) {
688 mod2
|= source
->ctype
.modifiers
;
689 as2
|= source
->ctype
.as
;
691 if (target
->type
== SYM_ENUM
) {
692 target
= target
->ctype
.base_type
;
696 if (source
->type
== SYM_ENUM
) {
697 source
= source
->ctype
.base_type
;
702 if (target
== source
)
704 if (!target
|| !source
)
705 return "different types";
707 type1
= target
->type
;
708 base1
= target
->ctype
.base_type
;
710 type2
= source
->type
;
711 base2
= source
->ctype
.base_type
;
714 * Pointers to functions compare as the function itself
716 if (type1
== SYM_PTR
&& base1
) {
717 base1
= examine_symbol_type(base1
);
718 switch (base1
->type
) {
722 base1
= base1
->ctype
.base_type
;
727 if (type2
== SYM_PTR
&& base2
) {
728 base2
= examine_symbol_type(base2
);
729 switch (base2
->type
) {
733 base2
= base2
->ctype
.base_type
;
739 /* Arrays degenerate to pointers for type comparisons */
740 type1
= (type1
== SYM_ARRAY
) ? SYM_PTR
: type1
;
741 type2
= (type2
== SYM_ARRAY
) ? SYM_PTR
: type2
;
743 if (type1
!= type2
|| type1
== SYM_RESTRICT
)
744 return "different base types";
746 /* Must be same address space to be comparable */
747 if (Waddress_space
&& as1
!= as2
)
748 return "different address spaces";
750 /* Ignore differences in storage types or addressability */
751 diff
= (mod1
^ mod2
) & ~MOD_IGNORE
;
752 diff
&= (mod1
& ~target_mod_ignore
) | (mod2
& ~source_mod_ignore
);
755 return "different type sizes";
756 if (diff
& ~MOD_SIGNEDNESS
)
757 return "different modifiers";
759 /* Differs in signedness only.. */
762 * Warn if both are explicitly signed ("unsigned" is obviously
763 * always explicit, and since we know one of them has to be
764 * unsigned, we check if the signed one was explicit).
766 if ((mod1
| mod2
) & MOD_EXPLICITLY_SIGNED
)
767 return "different explicit signedness";
770 * "char" matches both "unsigned char" and "signed char",
771 * so if the explicit test didn't trigger, then we should
772 * not warn about a char.
774 if (!(mod1
& MOD_CHAR
))
775 return "different signedness";
779 if (type1
== SYM_FN
) {
781 struct symbol
*arg1
, *arg2
;
782 if (base1
->variadic
!= base2
->variadic
)
783 return "incompatible variadic arguments";
784 PREPARE_PTR_LIST(target
->arguments
, arg1
);
785 PREPARE_PTR_LIST(source
->arguments
, arg2
);
789 diffstr
= type_difference(arg1
, arg2
, 0, 0);
791 static char argdiff
[80];
792 sprintf(argdiff
, "incompatible argument %d (%s)", i
, diffstr
);
801 FINISH_PTR_LIST(arg2
);
802 FINISH_PTR_LIST(arg1
);
811 static int is_null_ptr(struct expression
*expr
)
813 if (expr
->type
!= EXPR_VALUE
|| expr
->value
)
815 if (!is_ptr_type(expr
->ctype
))
816 warning(expr
->pos
, "Using plain integer as NULL pointer");
820 static struct symbol
*common_ptr_type(struct expression
*l
, struct expression
*r
)
822 /* NULL expression? Just return the type of the "other side" */
831 * Ignore differences in "volatile" and "const"ness when
832 * subtracting pointers
834 #define MOD_IGN (MOD_VOLATILE | MOD_CONST)
836 static struct symbol
*evaluate_ptr_sub(struct expression
*expr
, struct expression
*l
, struct expression
**rp
)
838 const char *typediff
;
839 struct symbol
*ctype
;
840 struct symbol
*ltype
, *rtype
;
841 struct expression
*r
= *rp
;
843 ltype
= degenerate(l
);
844 rtype
= degenerate(r
);
847 * If it is an integer subtract: the ptr add case will do the
850 if (!is_ptr_type(rtype
))
851 return evaluate_ptr_add(expr
, degenerate(l
), rp
);
854 typediff
= type_difference(ltype
, rtype
, ~MOD_SIZE
, ~MOD_SIZE
);
856 ctype
= common_ptr_type(l
, r
);
858 expression_error(expr
, "subtraction of different types can't work (%s)", typediff
);
862 examine_symbol_type(ctype
);
864 /* Figure out the base type we point to */
865 if (ctype
->type
== SYM_NODE
)
866 ctype
= ctype
->ctype
.base_type
;
867 if (ctype
->type
!= SYM_PTR
&& ctype
->type
!= SYM_ARRAY
) {
868 expression_error(expr
, "subtraction of functions? Share your drugs");
871 ctype
= get_base_type(ctype
);
873 expr
->ctype
= ssize_t_ctype
;
874 if (ctype
->bit_size
> bits_in_char
) {
875 struct expression
*sub
= alloc_expression(expr
->pos
, EXPR_BINOP
);
876 struct expression
*div
= expr
;
877 struct expression
*val
= alloc_expression(expr
->pos
, EXPR_VALUE
);
878 unsigned long value
= ctype
->bit_size
>> 3;
880 val
->ctype
= size_t_ctype
;
883 if (value
& (value
-1)) {
884 if (Wptr_subtraction_blows
)
885 warning(expr
->pos
, "potentially expensive pointer subtraction");
889 sub
->ctype
= ssize_t_ctype
;
898 return ssize_t_ctype
;
901 static struct symbol
*evaluate_sub(struct expression
*expr
)
903 struct expression
*left
= expr
->left
;
904 struct symbol
*ltype
= left
->ctype
;
906 if (is_ptr_type(ltype
))
907 return evaluate_ptr_sub(expr
, left
, &expr
->right
);
909 return evaluate_arith(expr
, 1);
912 #define is_safe_type(type) ((type)->ctype.modifiers & MOD_SAFE)
914 static struct symbol
*evaluate_conditional(struct expression
*expr
, int iterator
)
916 struct symbol
*ctype
;
921 if (!iterator
&& expr
->type
== EXPR_ASSIGNMENT
&& expr
->op
== '=')
922 warning(expr
->pos
, "assignment expression in conditional");
924 ctype
= evaluate_expression(expr
);
926 if (is_safe_type(ctype
))
927 warning(expr
->pos
, "testing a 'safe expression'");
933 static struct symbol
*evaluate_logical(struct expression
*expr
)
935 if (!evaluate_conditional(expr
->left
, 0))
937 if (!evaluate_conditional(expr
->right
, 0))
940 expr
->ctype
= &bool_ctype
;
944 static struct symbol
*evaluate_shift(struct expression
*expr
)
946 struct expression
*left
= expr
->left
, *right
= expr
->right
;
947 struct symbol
*ltype
= left
->ctype
, *rtype
= right
->ctype
;
949 if (ltype
->type
== SYM_NODE
)
950 ltype
= ltype
->ctype
.base_type
;
951 if (rtype
->type
== SYM_NODE
)
952 rtype
= rtype
->ctype
.base_type
;
953 if (is_int_type(ltype
) && is_int_type(rtype
)) {
954 struct symbol
*ctype
= integer_promotion(ltype
);
955 expr
->left
= cast_to(expr
->left
, ctype
);
957 ctype
= integer_promotion(rtype
);
958 expr
->right
= cast_to(expr
->right
, ctype
);
961 return bad_expr_type(expr
);
964 static struct symbol
*evaluate_binop(struct expression
*expr
)
967 // addition can take ptr+int, fp and int
969 return evaluate_add(expr
);
971 // subtraction can take ptr-ptr, fp and int
973 return evaluate_sub(expr
);
975 // Arithmetic operations can take fp and int
977 return evaluate_arith(expr
, 1);
979 // shifts do integer promotions, but that's it.
980 case SPECIAL_LEFTSHIFT
: case SPECIAL_RIGHTSHIFT
:
981 return evaluate_shift(expr
);
983 // The rest are integer operations
984 // '%', '&', '^', '|'
986 return evaluate_arith(expr
, 0);
990 static struct symbol
*evaluate_comma(struct expression
*expr
)
992 expr
->ctype
= expr
->right
->ctype
;
996 static int modify_for_unsigned(int op
)
999 op
= SPECIAL_UNSIGNED_LT
;
1001 op
= SPECIAL_UNSIGNED_GT
;
1002 else if (op
== SPECIAL_LTE
)
1003 op
= SPECIAL_UNSIGNED_LTE
;
1004 else if (op
== SPECIAL_GTE
)
1005 op
= SPECIAL_UNSIGNED_GTE
;
1009 static struct symbol
*evaluate_compare(struct expression
*expr
)
1011 struct expression
*left
= expr
->left
, *right
= expr
->right
;
1012 struct symbol
*ltype
= left
->ctype
, *rtype
= right
->ctype
;
1013 struct symbol
*ctype
;
1016 if (is_type_type(ltype
) && is_type_type(rtype
))
1019 if (is_safe_type(ltype
) || is_safe_type(rtype
))
1020 warning(expr
->pos
, "testing a 'safe expression'");
1022 /* Pointer types? */
1023 if (is_ptr_type(ltype
) || is_ptr_type(rtype
)) {
1024 // FIXME! Check the types for compatibility
1025 expr
->op
= modify_for_unsigned(expr
->op
);
1029 ctype
= evaluate_arith(expr
, 1);
1031 if (ctype
->ctype
.modifiers
& MOD_UNSIGNED
)
1032 expr
->op
= modify_for_unsigned(expr
->op
);
1035 expr
->ctype
= &bool_ctype
;
1040 * FIXME!! This should do casts, array degeneration etc..
1042 static struct symbol
*compatible_ptr_type(struct expression
*left
, struct expression
*right
)
1044 struct symbol
*ltype
= left
->ctype
, *rtype
= right
->ctype
;
1046 if (ltype
->type
== SYM_NODE
)
1047 ltype
= ltype
->ctype
.base_type
;
1049 if (rtype
->type
== SYM_NODE
)
1050 rtype
= rtype
->ctype
.base_type
;
1052 if (ltype
->type
== SYM_PTR
) {
1053 if (is_null_ptr(right
) || rtype
->ctype
.base_type
== &void_ctype
)
1057 if (rtype
->type
== SYM_PTR
) {
1058 if (is_null_ptr(left
) || ltype
->ctype
.base_type
== &void_ctype
)
1065 * NOTE! The degenerate case of "x ? : y", where we don't
1066 * have a true case, this will possibly promote "x" to the
1067 * same type as "y", and thus _change_ the conditional
1068 * test in the expression. But since promotion is "safe"
1069 * for testing, that's OK.
1071 static struct symbol
*evaluate_conditional_expression(struct expression
*expr
)
1073 struct expression
**true;
1074 struct symbol
*ctype
, *ltype
, *rtype
;
1076 const char * typediff
;
1078 if (!evaluate_conditional(expr
->conditional
, 0))
1080 if (!evaluate_expression(expr
->cond_false
))
1083 ctype
= degenerate(expr
->conditional
);
1084 rtype
= degenerate(expr
->cond_false
);
1086 true = &expr
->conditional
;
1088 if (expr
->cond_true
) {
1089 if (!evaluate_expression(expr
->cond_true
))
1091 ltype
= degenerate(expr
->cond_true
);
1092 true = &expr
->cond_true
;
1095 lclass
= classify_type(ltype
, <ype
);
1096 rclass
= classify_type(rtype
, &rtype
);
1097 if (lclass
& rclass
& TYPE_NUM
) {
1098 ctype
= usual_conversions('?', true, &expr
->cond_false
,
1099 lclass
, rclass
, ltype
, rtype
);
1102 ctype
= compatible_ptr_type(*true, expr
->cond_false
);
1106 typediff
= type_difference(ltype
, rtype
, MOD_IGN
, MOD_IGN
);
1109 expression_error(expr
, "incompatible types in conditional expression (%s)", typediff
);
1113 expr
->ctype
= ctype
;
1117 /* FP assignments can not do modulo or bit operations */
1118 static int compatible_float_op(int op
)
1121 op
== SPECIAL_ADD_ASSIGN
||
1122 op
== SPECIAL_SUB_ASSIGN
||
1123 op
== SPECIAL_MUL_ASSIGN
||
1124 op
== SPECIAL_DIV_ASSIGN
;
1127 static int compatible_assignment_types(struct expression
*expr
, struct symbol
*target
,
1128 struct expression
**rp
, struct symbol
*source
, const char *where
, int op
)
1130 const char *typediff
;
1131 struct symbol
*t
, *s
;
1133 int tclass
= classify_type(target
, &t
);
1134 int sclass
= classify_type(source
, &s
);
1136 if (tclass
& sclass
& TYPE_NUM
) {
1137 if (tclass
& TYPE_FLOAT
&& !compatible_float_op(op
)) {
1138 expression_error(expr
, "invalid assignment");
1141 if (tclass
& TYPE_RESTRICT
) {
1142 if (!restricted_binop(op
, target
)) {
1143 expression_error(expr
, "bad restricted assignment");
1146 /* allowed assignments unfoul */
1147 if (sclass
& TYPE_FOULED
&& s
->ctype
.base_type
== t
)
1149 if (!restricted_value(*rp
, target
))
1151 } else if (!(sclass
& TYPE_RESTRICT
))
1153 } else if (tclass
& TYPE_PTR
) {
1154 if (op
== SPECIAL_ADD_ASSIGN
|| op
== SPECIAL_SUB_ASSIGN
) {
1155 evaluate_ptr_add(expr
, target
, rp
);
1159 expression_error(expr
, "invalid pointer assignment");
1162 } else if (op
!= '=') {
1163 expression_error(expr
, "invalid assignment");
1167 /* It's OK if the target is more volatile or const than the source */
1168 typediff
= type_difference(target
, source
, MOD_VOLATILE
| MOD_CONST
, 0);
1172 /* Pointer destination? */
1173 if (tclass
& TYPE_PTR
) {
1174 struct expression
*right
= *rp
;
1177 // NULL pointer is always OK
1178 if (is_null_ptr(right
))
1181 /* "void *" matches anything as long as the address space is OK */
1182 target_as
= t
->ctype
.as
| target
->ctype
.as
;
1183 source_as
= s
->ctype
.as
| source
->ctype
.as
;
1184 if (source_as
== target_as
&& (s
->type
== SYM_PTR
|| s
->type
== SYM_ARRAY
)) {
1185 s
= get_base_type(s
);
1186 t
= get_base_type(t
);
1187 if (s
== &void_ctype
|| t
== &void_ctype
)
1192 warning(expr
->pos
, "incorrect type in %s (%s)", where
, typediff
);
1193 info(expr
->pos
, " expected %s", show_typename(target
));
1194 info(expr
->pos
, " got %s", show_typename(source
));
1195 *rp
= cast_to(*rp
, target
);
1198 *rp
= cast_to(*rp
, target
);
1202 static void mark_assigned(struct expression
*expr
)
1208 switch (expr
->type
) {
1213 if (sym
->type
!= SYM_NODE
)
1215 sym
->ctype
.modifiers
|= MOD_ASSIGNED
;
1219 mark_assigned(expr
->left
);
1220 mark_assigned(expr
->right
);
1223 mark_assigned(expr
->cast_expression
);
1226 mark_assigned(expr
->base
);
1234 static void evaluate_assign_to(struct expression
*left
, struct symbol
*type
)
1236 if (type
->ctype
.modifiers
& MOD_CONST
)
1237 expression_error(left
, "assignment to const expression");
1239 /* We know left is an lvalue, so it's a "preop-*" */
1240 mark_assigned(left
->unop
);
1243 static struct symbol
*evaluate_assignment(struct expression
*expr
)
1245 struct expression
*left
= expr
->left
, *right
= expr
->right
;
1246 struct expression
*where
= expr
;
1247 struct symbol
*ltype
, *rtype
;
1249 if (!lvalue_expression(left
)) {
1250 expression_error(expr
, "not an lvalue");
1254 ltype
= left
->ctype
;
1256 rtype
= degenerate(right
);
1258 if (!compatible_assignment_types(where
, ltype
, &where
->right
, rtype
, "assignment", expr
->op
))
1261 evaluate_assign_to(left
, ltype
);
1263 expr
->ctype
= ltype
;
1267 static void examine_fn_arguments(struct symbol
*fn
)
1271 FOR_EACH_PTR(fn
->arguments
, s
) {
1272 struct symbol
*arg
= evaluate_symbol(s
);
1273 /* Array/function arguments silently degenerate into pointers */
1279 ptr
= alloc_symbol(s
->pos
, SYM_PTR
);
1280 if (arg
->type
== SYM_ARRAY
)
1281 ptr
->ctype
= arg
->ctype
;
1283 ptr
->ctype
.base_type
= arg
;
1284 ptr
->ctype
.as
|= s
->ctype
.as
;
1285 ptr
->ctype
.modifiers
|= s
->ctype
.modifiers
& MOD_PTRINHERIT
;
1287 s
->ctype
.base_type
= ptr
;
1289 s
->ctype
.modifiers
&= ~MOD_PTRINHERIT
;
1292 examine_symbol_type(s
);
1299 } END_FOR_EACH_PTR(s
);
1302 static struct symbol
*convert_to_as_mod(struct symbol
*sym
, int as
, int mod
)
1304 /* Take the modifiers of the pointer, and apply them to the member */
1305 mod
|= sym
->ctype
.modifiers
;
1306 if (sym
->ctype
.as
!= as
|| sym
->ctype
.modifiers
!= mod
) {
1307 struct symbol
*newsym
= alloc_symbol(sym
->pos
, SYM_NODE
);
1309 newsym
->ctype
.as
= as
;
1310 newsym
->ctype
.modifiers
= mod
;
1316 static struct symbol
*create_pointer(struct expression
*expr
, struct symbol
*sym
, int degenerate
)
1318 struct symbol
*node
= alloc_symbol(expr
->pos
, SYM_NODE
);
1319 struct symbol
*ptr
= alloc_symbol(expr
->pos
, SYM_PTR
);
1321 node
->ctype
.base_type
= ptr
;
1322 ptr
->bit_size
= bits_in_pointer
;
1323 ptr
->ctype
.alignment
= pointer_alignment
;
1325 node
->bit_size
= bits_in_pointer
;
1326 node
->ctype
.alignment
= pointer_alignment
;
1329 if (sym
->ctype
.modifiers
& MOD_REGISTER
) {
1330 warning(expr
->pos
, "taking address of 'register' variable '%s'", show_ident(sym
->ident
));
1331 sym
->ctype
.modifiers
&= ~MOD_REGISTER
;
1333 if (sym
->type
== SYM_NODE
) {
1334 ptr
->ctype
.as
|= sym
->ctype
.as
;
1335 ptr
->ctype
.modifiers
|= sym
->ctype
.modifiers
& MOD_PTRINHERIT
;
1336 sym
= sym
->ctype
.base_type
;
1338 if (degenerate
&& sym
->type
== SYM_ARRAY
) {
1339 ptr
->ctype
.as
|= sym
->ctype
.as
;
1340 ptr
->ctype
.modifiers
|= sym
->ctype
.modifiers
& MOD_PTRINHERIT
;
1341 sym
= sym
->ctype
.base_type
;
1343 ptr
->ctype
.base_type
= sym
;
1348 /* Arrays degenerate into pointers on pointer arithmetic */
1349 static struct symbol
*degenerate(struct expression
*expr
)
1351 struct symbol
*ctype
, *base
;
1355 ctype
= expr
->ctype
;
1358 base
= examine_symbol_type(ctype
);
1359 if (ctype
->type
== SYM_NODE
)
1360 base
= ctype
->ctype
.base_type
;
1362 * Arrays degenerate into pointers to the entries, while
1363 * functions degenerate into pointers to themselves.
1364 * If array was part of non-lvalue compound, we create a copy
1365 * of that compound first and then act as if we were dealing with
1366 * the corresponding field in there.
1368 switch (base
->type
) {
1370 if (expr
->type
== EXPR_SLICE
) {
1371 struct symbol
*a
= alloc_symbol(expr
->pos
, SYM_NODE
);
1372 struct expression
*e0
, *e1
, *e2
, *e3
, *e4
;
1374 a
->ctype
.base_type
= expr
->base
->ctype
;
1375 a
->bit_size
= expr
->base
->ctype
->bit_size
;
1376 a
->array_size
= expr
->base
->ctype
->array_size
;
1378 e0
= alloc_expression(expr
->pos
, EXPR_SYMBOL
);
1380 e0
->ctype
= &lazy_ptr_ctype
;
1382 e1
= alloc_expression(expr
->pos
, EXPR_PREOP
);
1385 e1
->ctype
= expr
->base
->ctype
; /* XXX */
1387 e2
= alloc_expression(expr
->pos
, EXPR_ASSIGNMENT
);
1389 e2
->right
= expr
->base
;
1391 e2
->ctype
= expr
->base
->ctype
;
1393 if (expr
->r_bitpos
) {
1394 e3
= alloc_expression(expr
->pos
, EXPR_BINOP
);
1397 e3
->right
= alloc_const_expression(expr
->pos
,
1398 expr
->r_bitpos
>> 3);
1399 e3
->ctype
= &lazy_ptr_ctype
;
1404 e4
= alloc_expression(expr
->pos
, EXPR_COMMA
);
1407 e4
->ctype
= &lazy_ptr_ctype
;
1410 expr
->type
= EXPR_PREOP
;
1414 if (expr
->op
!= '*' || expr
->type
!= EXPR_PREOP
) {
1415 expression_error(expr
, "strange non-value function or array");
1418 *expr
= *expr
->unop
;
1419 ctype
= create_pointer(expr
, ctype
, 1);
1420 expr
->ctype
= ctype
;
1427 static struct symbol
*evaluate_addressof(struct expression
*expr
)
1429 struct expression
*op
= expr
->unop
;
1430 struct symbol
*ctype
;
1432 if (op
->op
!= '*' || op
->type
!= EXPR_PREOP
) {
1433 expression_error(expr
, "not addressable");
1439 if (expr
->type
== EXPR_SYMBOL
) {
1440 struct symbol
*sym
= expr
->symbol
;
1441 sym
->ctype
.modifiers
|= MOD_ADDRESSABLE
;
1445 * symbol expression evaluation is lazy about the type
1446 * of the sub-expression, so we may have to generate
1447 * the type here if so..
1449 if (expr
->ctype
== &lazy_ptr_ctype
) {
1450 ctype
= create_pointer(expr
, ctype
, 0);
1451 expr
->ctype
= ctype
;
1457 static struct symbol
*evaluate_dereference(struct expression
*expr
)
1459 struct expression
*op
= expr
->unop
;
1460 struct symbol
*ctype
= op
->ctype
, *node
, *target
;
1462 /* Simplify: *&(expr) => (expr) */
1463 if (op
->type
== EXPR_PREOP
&& op
->op
== '&') {
1468 /* Dereferencing a node drops all the node information. */
1469 if (ctype
->type
== SYM_NODE
)
1470 ctype
= ctype
->ctype
.base_type
;
1472 node
= alloc_symbol(expr
->pos
, SYM_NODE
);
1473 target
= ctype
->ctype
.base_type
;
1475 switch (ctype
->type
) {
1477 expression_error(expr
, "cannot dereference this type");
1480 node
->ctype
.modifiers
= target
->ctype
.modifiers
& MOD_SPECIFIER
;
1481 merge_type(node
, ctype
);
1485 if (!lvalue_expression(op
)) {
1486 expression_error(op
, "non-lvalue array??");
1490 /* Do the implied "addressof" on the array */
1494 * When an array is dereferenced, we need to pick
1495 * up the attributes of the original node too..
1497 merge_type(node
, op
->ctype
);
1498 merge_type(node
, ctype
);
1502 node
->bit_size
= target
->bit_size
;
1503 node
->array_size
= target
->array_size
;
1510 * Unary post-ops: x++ and x--
1512 static struct symbol
*evaluate_postop(struct expression
*expr
)
1514 struct expression
*op
= expr
->unop
;
1515 struct symbol
*ctype
= op
->ctype
;
1517 if (!lvalue_expression(expr
->unop
)) {
1518 expression_error(expr
, "need lvalue expression for ++/--");
1521 if (is_restricted_type(ctype
) && restricted_unop(expr
->op
, &ctype
)) {
1522 expression_error(expr
, "bad operation on restricted");
1524 } else if (is_fouled_type(ctype
) && restricted_unop(expr
->op
, &ctype
)) {
1525 expression_error(expr
, "bad operation on restricted");
1529 evaluate_assign_to(op
, ctype
);
1531 expr
->ctype
= ctype
;
1533 if (is_ptr_type(ctype
))
1534 expr
->op_value
= ptr_object_size(ctype
) >> 3;
1539 static struct symbol
*evaluate_sign(struct expression
*expr
)
1541 struct symbol
*ctype
= expr
->unop
->ctype
;
1542 if (is_int_type(ctype
)) {
1543 struct symbol
*rtype
= rtype
= integer_promotion(ctype
);
1544 expr
->unop
= cast_to(expr
->unop
, rtype
);
1546 } else if (is_float_type(ctype
) && expr
->op
!= '~') {
1547 /* no conversions needed */
1548 } else if (is_restricted_type(ctype
) && !restricted_unop(expr
->op
, &ctype
)) {
1549 /* no conversions needed */
1550 } else if (is_fouled_type(ctype
) && !restricted_unop(expr
->op
, &ctype
)) {
1551 /* no conversions needed */
1553 return bad_expr_type(expr
);
1555 if (expr
->op
== '+')
1556 *expr
= *expr
->unop
;
1557 expr
->ctype
= ctype
;
1561 static struct symbol
*evaluate_preop(struct expression
*expr
)
1563 struct symbol
*ctype
= expr
->unop
->ctype
;
1567 *expr
= *expr
->unop
;
1573 return evaluate_sign(expr
);
1576 return evaluate_dereference(expr
);
1579 return evaluate_addressof(expr
);
1581 case SPECIAL_INCREMENT
:
1582 case SPECIAL_DECREMENT
:
1584 * From a type evaluation standpoint the preops are
1585 * the same as the postops
1587 return evaluate_postop(expr
);
1590 if (is_safe_type(ctype
))
1591 warning(expr
->pos
, "testing a 'safe expression'");
1592 if (is_float_type(ctype
)) {
1593 struct expression
*arg
= expr
->unop
;
1594 expr
->type
= EXPR_BINOP
;
1595 expr
->op
= SPECIAL_EQUAL
;
1597 expr
->right
= alloc_expression(expr
->pos
, EXPR_FVALUE
);
1598 expr
->right
->ctype
= ctype
;
1599 expr
->right
->fvalue
= 0;
1600 } else if (is_fouled_type(ctype
)) {
1601 warning(expr
->pos
, "restricted degrades to integer");
1603 ctype
= &bool_ctype
;
1609 expr
->ctype
= ctype
;
1613 static struct symbol
*find_identifier(struct ident
*ident
, struct symbol_list
*_list
, int *offset
)
1615 struct ptr_list
*head
= (struct ptr_list
*)_list
;
1616 struct ptr_list
*list
= head
;
1622 for (i
= 0; i
< list
->nr
; i
++) {
1623 struct symbol
*sym
= (struct symbol
*) list
->list
[i
];
1625 if (sym
->ident
!= ident
)
1627 *offset
= sym
->offset
;
1630 struct symbol
*ctype
= sym
->ctype
.base_type
;
1634 if (ctype
->type
!= SYM_UNION
&& ctype
->type
!= SYM_STRUCT
)
1636 sub
= find_identifier(ident
, ctype
->symbol_list
, offset
);
1639 *offset
+= sym
->offset
;
1643 } while ((list
= list
->next
) != head
);
1647 static struct expression
*evaluate_offset(struct expression
*expr
, unsigned long offset
)
1649 struct expression
*add
;
1652 * Create a new add-expression
1654 * NOTE! Even if we just add zero, we need a new node
1655 * for the member pointer, since it has a different
1656 * type than the original pointer. We could make that
1657 * be just a cast, but the fact is, a node is a node,
1658 * so we might as well just do the "add zero" here.
1660 add
= alloc_expression(expr
->pos
, EXPR_BINOP
);
1663 add
->right
= alloc_expression(expr
->pos
, EXPR_VALUE
);
1664 add
->right
->ctype
= &int_ctype
;
1665 add
->right
->value
= offset
;
1668 * The ctype of the pointer will be lazily evaluated if
1669 * we ever take the address of this member dereference..
1671 add
->ctype
= &lazy_ptr_ctype
;
1675 /* structure/union dereference */
1676 static struct symbol
*evaluate_member_dereference(struct expression
*expr
)
1679 struct symbol
*ctype
, *member
;
1680 struct expression
*deref
= expr
->deref
, *add
;
1681 struct ident
*ident
= expr
->member
;
1685 if (!evaluate_expression(deref
))
1688 expression_error(expr
, "bad member name");
1692 ctype
= deref
->ctype
;
1693 address_space
= ctype
->ctype
.as
;
1694 mod
= ctype
->ctype
.modifiers
;
1695 if (ctype
->type
== SYM_NODE
) {
1696 ctype
= ctype
->ctype
.base_type
;
1697 address_space
|= ctype
->ctype
.as
;
1698 mod
|= ctype
->ctype
.modifiers
;
1700 if (!ctype
|| (ctype
->type
!= SYM_STRUCT
&& ctype
->type
!= SYM_UNION
)) {
1701 expression_error(expr
, "expected structure or union");
1704 examine_symbol_type(ctype
);
1706 member
= find_identifier(ident
, ctype
->symbol_list
, &offset
);
1708 const char *type
= ctype
->type
== SYM_STRUCT
? "struct" : "union";
1709 const char *name
= "<unnamed>";
1712 name
= ctype
->ident
->name
;
1713 namelen
= ctype
->ident
->len
;
1715 expression_error(expr
, "no member '%s' in %s %.*s",
1716 show_ident(ident
), type
, namelen
, name
);
1721 * The member needs to take on the address space and modifiers of
1722 * the "parent" type.
1724 member
= convert_to_as_mod(member
, address_space
, mod
);
1725 ctype
= get_base_type(member
);
1727 if (!lvalue_expression(deref
)) {
1728 if (deref
->type
!= EXPR_SLICE
) {
1732 expr
->base
= deref
->base
;
1733 expr
->r_bitpos
= deref
->r_bitpos
;
1735 expr
->r_bitpos
+= offset
<< 3;
1736 expr
->type
= EXPR_SLICE
;
1737 expr
->r_nrbits
= member
->bit_size
;
1738 expr
->r_bitpos
+= member
->bit_offset
;
1739 expr
->ctype
= member
;
1743 deref
= deref
->unop
;
1744 expr
->deref
= deref
;
1746 add
= evaluate_offset(deref
, offset
);
1747 expr
->type
= EXPR_PREOP
;
1751 expr
->ctype
= member
;
1755 static int is_promoted(struct expression
*expr
)
1758 switch (expr
->type
) {
1761 case EXPR_CONDITIONAL
:
1785 static struct symbol
*evaluate_cast(struct expression
*);
1787 static struct symbol
*evaluate_type_information(struct expression
*expr
)
1789 struct symbol
*sym
= expr
->cast_type
;
1791 sym
= evaluate_expression(expr
->cast_expression
);
1795 * Expressions of restricted types will possibly get
1796 * promoted - check that here
1798 if (is_restricted_type(sym
)) {
1799 if (sym
->bit_size
< bits_in_int
&& is_promoted(expr
))
1801 } else if (is_fouled_type(sym
)) {
1805 examine_symbol_type(sym
);
1806 if (is_bitfield_type(sym
)) {
1807 expression_error(expr
, "trying to examine bitfield type");
1813 static struct symbol
*evaluate_sizeof(struct expression
*expr
)
1815 struct symbol
*type
;
1818 type
= evaluate_type_information(expr
);
1822 size
= type
->bit_size
;
1823 if ((size
< 0) || (size
& 7))
1824 expression_error(expr
, "cannot size expression");
1825 expr
->type
= EXPR_VALUE
;
1826 expr
->value
= size
>> 3;
1827 expr
->ctype
= size_t_ctype
;
1828 return size_t_ctype
;
1831 static struct symbol
*evaluate_ptrsizeof(struct expression
*expr
)
1833 struct symbol
*type
;
1836 type
= evaluate_type_information(expr
);
1840 if (type
->type
== SYM_NODE
)
1841 type
= type
->ctype
.base_type
;
1844 switch (type
->type
) {
1848 type
= get_base_type(type
);
1852 expression_error(expr
, "expected pointer expression");
1855 size
= type
->bit_size
;
1858 expr
->type
= EXPR_VALUE
;
1859 expr
->value
= size
>> 3;
1860 expr
->ctype
= size_t_ctype
;
1861 return size_t_ctype
;
1864 static struct symbol
*evaluate_alignof(struct expression
*expr
)
1866 struct symbol
*type
;
1868 type
= evaluate_type_information(expr
);
1872 expr
->type
= EXPR_VALUE
;
1873 expr
->value
= type
->ctype
.alignment
;
1874 expr
->ctype
= size_t_ctype
;
1875 return size_t_ctype
;
1878 static int evaluate_arguments(struct symbol
*f
, struct symbol
*fn
, struct expression_list
*head
)
1880 struct expression
*expr
;
1881 struct symbol_list
*argument_types
= fn
->arguments
;
1882 struct symbol
*argtype
;
1885 PREPARE_PTR_LIST(argument_types
, argtype
);
1886 FOR_EACH_PTR (head
, expr
) {
1887 struct expression
**p
= THIS_ADDRESS(expr
);
1888 struct symbol
*ctype
, *target
;
1889 ctype
= evaluate_expression(expr
);
1894 ctype
= degenerate(expr
);
1897 if (!target
&& ctype
->bit_size
< bits_in_int
)
1898 target
= &int_ctype
;
1900 static char where
[30];
1901 examine_symbol_type(target
);
1902 sprintf(where
, "argument %d", i
);
1903 compatible_assignment_types(expr
, target
, p
, ctype
, where
, '=');
1907 NEXT_PTR_LIST(argtype
);
1908 } END_FOR_EACH_PTR(expr
);
1909 FINISH_PTR_LIST(argtype
);
1913 static void evaluate_initializer(struct symbol
*ctype
, struct expression
**ep
);
1915 static int evaluate_one_array_initializer(struct symbol
*ctype
, struct expression
**ep
, int current
)
1917 struct expression
*entry
= *ep
;
1918 struct expression
**parent
, *reuse
= NULL
;
1919 unsigned long offset
;
1921 unsigned long from
, to
;
1922 int accept_string
= is_byte_type(ctype
);
1927 if (entry
->type
== EXPR_INDEX
) {
1928 from
= entry
->idx_from
;
1929 to
= entry
->idx_to
+1;
1930 parent
= &entry
->idx_expression
;
1932 entry
= entry
->idx_expression
;
1935 offset
= from
* (ctype
->bit_size
>>3);
1937 if (!reuse
) reuse
= alloc_expression(entry
->pos
, EXPR_POS
);
1938 reuse
->type
= EXPR_POS
;
1939 reuse
->ctype
= ctype
;
1940 reuse
->init_offset
= offset
;
1941 reuse
->init_nr
= to
- from
;
1942 reuse
->init_expr
= entry
;
1943 parent
= &reuse
->init_expr
;
1948 if (accept_string
&& entry
->type
== EXPR_STRING
) {
1949 sym
= evaluate_expression(entry
);
1950 to
= from
+ get_expression_value(sym
->array_size
);
1952 evaluate_initializer(ctype
, parent
);
1957 static void evaluate_array_initializer(struct symbol
*ctype
, struct expression
*expr
)
1959 struct expression
*entry
;
1962 FOR_EACH_PTR(expr
->expr_list
, entry
) {
1963 current
= evaluate_one_array_initializer(ctype
, THIS_ADDRESS(entry
), current
);
1964 } END_FOR_EACH_PTR(entry
);
1967 /* A scalar initializer is allowed, and acts pretty much like an array of one */
1968 static void evaluate_scalar_initializer(struct symbol
*ctype
, struct expression
*expr
)
1970 if (expression_list_size(expr
->expr_list
) != 1) {
1971 expression_error(expr
, "unexpected compound initializer");
1974 evaluate_array_initializer(ctype
, expr
);
1978 static struct symbol
*find_struct_ident(struct symbol
*ctype
, struct ident
*ident
)
1982 FOR_EACH_PTR(ctype
->symbol_list
, sym
) {
1983 if (sym
->ident
== ident
)
1985 } END_FOR_EACH_PTR(sym
);
1989 static int evaluate_one_struct_initializer(struct symbol
*ctype
, struct expression
**ep
, struct symbol
*sym
)
1991 struct expression
*entry
= *ep
;
1992 struct expression
**parent
;
1993 struct expression
*reuse
= NULL
;
1994 unsigned long offset
;
1997 expression_error(entry
, "unknown named initializer");
2001 if (entry
->type
== EXPR_IDENTIFIER
) {
2003 entry
= entry
->ident_expression
;
2007 offset
= sym
->offset
;
2010 reuse
= alloc_expression(entry
->pos
, EXPR_POS
);
2011 reuse
->type
= EXPR_POS
;
2013 reuse
->init_offset
= offset
;
2015 reuse
->init_expr
= entry
;
2016 parent
= &reuse
->init_expr
;
2020 evaluate_initializer(sym
, parent
);
2024 static void evaluate_struct_or_union_initializer(struct symbol
*ctype
, struct expression
*expr
, int multiple
)
2026 struct expression
*entry
;
2029 PREPARE_PTR_LIST(ctype
->symbol_list
, sym
);
2030 FOR_EACH_PTR(expr
->expr_list
, entry
) {
2031 if (entry
->type
== EXPR_IDENTIFIER
) {
2032 struct ident
*ident
= entry
->expr_ident
;
2033 /* We special-case the "already right place" case */
2034 if (!sym
|| sym
->ident
!= ident
) {
2035 RESET_PTR_LIST(sym
);
2039 if (sym
->ident
== ident
)
2045 if (evaluate_one_struct_initializer(ctype
, THIS_ADDRESS(entry
), sym
))
2048 } END_FOR_EACH_PTR(entry
);
2049 FINISH_PTR_LIST(sym
);
2053 * Initializers are kind of like assignments. Except
2054 * they can be a hell of a lot more complex.
2056 static void evaluate_initializer(struct symbol
*ctype
, struct expression
**ep
)
2058 struct expression
*expr
= *ep
;
2061 * Simple non-structure/array initializers are the simple
2062 * case, and look (and parse) largely like assignments.
2064 switch (expr
->type
) {
2066 int is_string
= expr
->type
== EXPR_STRING
;
2067 struct symbol
*rtype
= evaluate_expression(expr
);
2071 * char array[] = "string"
2072 * should _not_ degenerate.
2074 if (!is_string
|| !is_string_type(ctype
))
2075 rtype
= degenerate(expr
);
2076 compatible_assignment_types(expr
, ctype
, ep
, rtype
, "initializer", '=');
2081 case EXPR_INITIALIZER
:
2082 expr
->ctype
= ctype
;
2083 if (ctype
->type
== SYM_NODE
)
2084 ctype
= ctype
->ctype
.base_type
;
2086 switch (ctype
->type
) {
2089 evaluate_array_initializer(get_base_type(ctype
), expr
);
2092 evaluate_struct_or_union_initializer(ctype
, expr
, 0);
2095 evaluate_struct_or_union_initializer(ctype
, expr
, 1);
2098 evaluate_scalar_initializer(ctype
, expr
);
2102 case EXPR_IDENTIFIER
:
2103 if (ctype
->type
== SYM_NODE
)
2104 ctype
= ctype
->ctype
.base_type
;
2105 if (ctype
->type
!= SYM_STRUCT
&& ctype
->type
!= SYM_UNION
) {
2106 expression_error(expr
, "expected structure or union for '%s' dereference", show_ident(expr
->expr_ident
));
2110 evaluate_one_struct_initializer(ctype
, ep
,
2111 find_struct_ident(ctype
, expr
->expr_ident
));
2115 if (ctype
->type
== SYM_NODE
)
2116 ctype
= ctype
->ctype
.base_type
;
2117 if (ctype
->type
!= SYM_ARRAY
) {
2118 expression_error(expr
, "expected array");
2121 evaluate_one_array_initializer(ctype
->ctype
.base_type
, ep
, 0);
2126 * An EXPR_POS expression has already been evaluated, and we don't
2127 * need to do anything more
2133 static int get_as(struct symbol
*sym
)
2141 mod
= sym
->ctype
.modifiers
;
2142 if (sym
->type
== SYM_NODE
) {
2143 sym
= sym
->ctype
.base_type
;
2144 as
|= sym
->ctype
.as
;
2145 mod
|= sym
->ctype
.modifiers
;
2149 * At least for now, allow casting to a "unsigned long".
2150 * That's how we do things like pointer arithmetic and
2151 * store pointers to registers.
2153 if (sym
== &ulong_ctype
)
2156 if (sym
&& sym
->type
== SYM_PTR
) {
2157 sym
= get_base_type(sym
);
2158 as
|= sym
->ctype
.as
;
2159 mod
|= sym
->ctype
.modifiers
;
2161 if (mod
& MOD_FORCE
)
2166 static void cast_to_as(struct expression
*e
, int as
)
2168 struct expression
*v
= e
->cast_expression
;
2169 struct symbol
*type
= v
->ctype
;
2171 if (!Wcast_to_address_space
)
2174 if (v
->type
!= EXPR_VALUE
|| v
->value
)
2177 /* cast from constant 0 to pointer is OK */
2178 if (is_int_type(type
))
2181 if (type
->type
== SYM_NODE
)
2182 type
= type
->ctype
.base_type
;
2184 if (type
->type
== SYM_PTR
&& type
->ctype
.base_type
== &void_ctype
)
2188 warning(e
->pos
, "cast adds address space to expression (<asn:%d>)", as
);
2191 static struct symbol
*evaluate_cast(struct expression
*expr
)
2193 struct expression
*target
= expr
->cast_expression
;
2194 struct symbol
*ctype
= examine_symbol_type(expr
->cast_type
);
2195 struct symbol
*t1
, *t2
;
2202 expr
->ctype
= ctype
;
2203 expr
->cast_type
= ctype
;
2206 * Special case: a cast can be followed by an
2207 * initializer, in which case we need to pass
2208 * the type value down to that initializer rather
2209 * than trying to evaluate it as an expression
2211 * A more complex case is when the initializer is
2212 * dereferenced as part of a post-fix expression.
2213 * We need to produce an expression that can be dereferenced.
2215 if (target
->type
== EXPR_INITIALIZER
) {
2216 struct symbol
*sym
= expr
->cast_type
;
2217 struct expression
*addr
= alloc_expression(expr
->pos
, EXPR_SYMBOL
);
2219 sym
->initializer
= expr
->cast_expression
;
2220 evaluate_symbol(sym
);
2222 addr
->ctype
= &lazy_ptr_ctype
; /* Lazy eval */
2225 expr
->type
= EXPR_PREOP
;
2233 evaluate_expression(target
);
2236 class1
= classify_type(ctype
, &t1
);
2238 * You can always throw a value away by casting to
2239 * "void" - that's an implicit "force". Note that
2240 * the same is _not_ true of "void *".
2242 if (t1
== &void_ctype
)
2245 if (class1
& TYPE_COMPOUND
)
2246 warning(expr
->pos
, "cast to non-scalar");
2250 expression_error(expr
, "cast from unknown type");
2253 class2
= classify_type(t2
, &t2
);
2255 if (class2
& TYPE_COMPOUND
)
2256 warning(expr
->pos
, "cast from non-scalar");
2258 /* allowed cast unfouls */
2259 if (class2
& TYPE_FOULED
)
2260 t2
= t2
->ctype
.base_type
;
2262 if (!(ctype
->ctype
.modifiers
& MOD_FORCE
) && t1
!= t2
) {
2263 if (class1
& TYPE_RESTRICT
)
2264 warning(expr
->pos
, "cast to restricted type");
2265 if (class2
& TYPE_RESTRICT
)
2266 warning(expr
->pos
, "cast from restricted type");
2269 as1
= get_as(ctype
);
2270 as2
= get_as(target
->ctype
);
2271 if (!as1
&& as2
> 0)
2272 warning(expr
->pos
, "cast removes address space of expression");
2273 if (as1
> 0 && as2
> 0 && as1
!= as2
)
2274 warning(expr
->pos
, "cast between address spaces (<asn:%d>-><asn:%d>)", as2
, as1
);
2275 if (as1
> 0 && !as2
)
2276 cast_to_as(expr
, as1
);
2279 * Casts of constant values are special: they
2280 * can be NULL, and thus need to be simplified
2283 if (target
->type
== EXPR_VALUE
)
2284 cast_value(expr
, ctype
, target
, target
->ctype
);
2291 * Evaluate a call expression with a symbol. This
2292 * should expand inline functions, and evaluate
2295 static int evaluate_symbol_call(struct expression
*expr
)
2297 struct expression
*fn
= expr
->fn
;
2298 struct symbol
*ctype
= fn
->ctype
;
2300 if (fn
->type
!= EXPR_PREOP
)
2303 if (ctype
->op
&& ctype
->op
->evaluate
)
2304 return ctype
->op
->evaluate(expr
);
2306 if (ctype
->ctype
.modifiers
& MOD_INLINE
) {
2308 struct symbol
*curr
= current_fn
;
2309 current_fn
= ctype
->ctype
.base_type
;
2311 ret
= inline_function(expr
, ctype
);
2313 /* restore the old function */
2321 static struct symbol
*evaluate_call(struct expression
*expr
)
2324 struct symbol
*ctype
, *sym
;
2325 struct expression
*fn
= expr
->fn
;
2326 struct expression_list
*arglist
= expr
->args
;
2328 if (!evaluate_expression(fn
))
2330 sym
= ctype
= fn
->ctype
;
2331 if (ctype
->type
== SYM_NODE
)
2332 ctype
= ctype
->ctype
.base_type
;
2333 if (ctype
->type
== SYM_PTR
|| ctype
->type
== SYM_ARRAY
)
2334 ctype
= get_base_type(ctype
);
2336 examine_fn_arguments(ctype
);
2337 if (sym
->type
== SYM_NODE
&& fn
->type
== EXPR_PREOP
&&
2338 sym
->op
&& sym
->op
->args
) {
2339 if (!sym
->op
->args(expr
))
2342 if (!evaluate_arguments(sym
, ctype
, arglist
))
2344 if (ctype
->type
!= SYM_FN
) {
2345 expression_error(expr
, "not a function %s",
2346 show_ident(sym
->ident
));
2349 args
= expression_list_size(expr
->args
);
2350 fnargs
= symbol_list_size(ctype
->arguments
);
2352 expression_error(expr
,
2353 "not enough arguments for function %s",
2354 show_ident(sym
->ident
));
2355 if (args
> fnargs
&& !ctype
->variadic
)
2356 expression_error(expr
,
2357 "too many arguments for function %s",
2358 show_ident(sym
->ident
));
2360 if (sym
->type
== SYM_NODE
) {
2361 if (evaluate_symbol_call(expr
))
2364 expr
->ctype
= ctype
->ctype
.base_type
;
2368 struct symbol
*evaluate_expression(struct expression
*expr
)
2375 switch (expr
->type
) {
2378 expression_error(expr
, "value expression without a type");
2381 return evaluate_string(expr
);
2383 return evaluate_symbol_expression(expr
);
2385 if (!evaluate_expression(expr
->left
))
2387 if (!evaluate_expression(expr
->right
))
2389 return evaluate_binop(expr
);
2391 return evaluate_logical(expr
);
2393 evaluate_expression(expr
->left
);
2394 if (!evaluate_expression(expr
->right
))
2396 return evaluate_comma(expr
);
2398 if (!evaluate_expression(expr
->left
))
2400 if (!evaluate_expression(expr
->right
))
2402 return evaluate_compare(expr
);
2403 case EXPR_ASSIGNMENT
:
2404 if (!evaluate_expression(expr
->left
))
2406 if (!evaluate_expression(expr
->right
))
2408 return evaluate_assignment(expr
);
2410 if (!evaluate_expression(expr
->unop
))
2412 return evaluate_preop(expr
);
2414 if (!evaluate_expression(expr
->unop
))
2416 return evaluate_postop(expr
);
2418 case EXPR_IMPLIED_CAST
:
2419 return evaluate_cast(expr
);
2421 return evaluate_sizeof(expr
);
2422 case EXPR_PTRSIZEOF
:
2423 return evaluate_ptrsizeof(expr
);
2425 return evaluate_alignof(expr
);
2427 return evaluate_member_dereference(expr
);
2429 return evaluate_call(expr
);
2431 case EXPR_CONDITIONAL
:
2432 return evaluate_conditional_expression(expr
);
2433 case EXPR_STATEMENT
:
2434 expr
->ctype
= evaluate_statement(expr
->statement
);
2438 expr
->ctype
= &ptr_ctype
;
2442 /* Evaluate the type of the symbol .. */
2443 evaluate_symbol(expr
->symbol
);
2444 /* .. but the type of the _expression_ is a "type" */
2445 expr
->ctype
= &type_ctype
;
2448 /* These can not exist as stand-alone expressions */
2449 case EXPR_INITIALIZER
:
2450 case EXPR_IDENTIFIER
:
2453 expression_error(expr
, "internal front-end error: initializer in expression");
2456 expression_error(expr
, "internal front-end error: SLICE re-evaluated");
2462 static void check_duplicates(struct symbol
*sym
)
2465 struct symbol
*next
= sym
;
2467 while ((next
= next
->same_symbol
) != NULL
) {
2468 const char *typediff
;
2469 evaluate_symbol(next
);
2471 typediff
= type_difference(sym
, next
, 0, 0);
2473 sparse_error(sym
->pos
, "symbol '%s' redeclared with different type (originally declared at %s:%d) - %s",
2474 show_ident(sym
->ident
),
2475 stream_name(next
->pos
.stream
), next
->pos
.line
, typediff
);
2480 unsigned long mod
= sym
->ctype
.modifiers
;
2481 if (mod
& (MOD_STATIC
| MOD_REGISTER
))
2483 if (!(mod
& MOD_TOPLEVEL
))
2487 if (sym
->ident
== &main_ident
)
2489 warning(sym
->pos
, "symbol '%s' was not declared. Should it be static?", show_ident(sym
->ident
));
2493 static struct symbol
*evaluate_symbol(struct symbol
*sym
)
2495 struct symbol
*base_type
;
2503 sym
= examine_symbol_type(sym
);
2504 base_type
= get_base_type(sym
);
2508 /* Evaluate the initializers */
2509 if (sym
->initializer
)
2510 evaluate_initializer(sym
, &sym
->initializer
);
2512 /* And finally, evaluate the body of the symbol too */
2513 if (base_type
->type
== SYM_FN
) {
2514 struct symbol
*curr
= current_fn
;
2516 current_fn
= base_type
;
2518 examine_fn_arguments(base_type
);
2519 if (!base_type
->stmt
&& base_type
->inline_stmt
)
2521 if (base_type
->stmt
)
2522 evaluate_statement(base_type
->stmt
);
2530 void evaluate_symbol_list(struct symbol_list
*list
)
2534 FOR_EACH_PTR(list
, sym
) {
2535 evaluate_symbol(sym
);
2536 check_duplicates(sym
);
2537 } END_FOR_EACH_PTR(sym
);
2540 static struct symbol
*evaluate_return_expression(struct statement
*stmt
)
2542 struct expression
*expr
= stmt
->expression
;
2543 struct symbol
*ctype
, *fntype
;
2545 evaluate_expression(expr
);
2546 ctype
= degenerate(expr
);
2547 fntype
= current_fn
->ctype
.base_type
;
2548 if (!fntype
|| fntype
== &void_ctype
) {
2549 if (expr
&& ctype
!= &void_ctype
)
2550 expression_error(expr
, "return expression in %s function", fntype
?"void":"typeless");
2555 sparse_error(stmt
->pos
, "return with no return value");
2560 compatible_assignment_types(expr
, fntype
, &stmt
->expression
, ctype
, "return expression", '=');
2564 static void evaluate_if_statement(struct statement
*stmt
)
2566 if (!stmt
->if_conditional
)
2569 evaluate_conditional(stmt
->if_conditional
, 0);
2570 evaluate_statement(stmt
->if_true
);
2571 evaluate_statement(stmt
->if_false
);
2574 static void evaluate_iterator(struct statement
*stmt
)
2576 evaluate_conditional(stmt
->iterator_pre_condition
, 1);
2577 evaluate_conditional(stmt
->iterator_post_condition
,1);
2578 evaluate_statement(stmt
->iterator_pre_statement
);
2579 evaluate_statement(stmt
->iterator_statement
);
2580 evaluate_statement(stmt
->iterator_post_statement
);
2583 static void verify_output_constraint(struct expression
*expr
, const char *constraint
)
2585 switch (*constraint
) {
2586 case '=': /* Assignment */
2587 case '+': /* Update */
2590 expression_error(expr
, "output constraint is not an assignment constraint (\"%s\")", constraint
);
2594 static void verify_input_constraint(struct expression
*expr
, const char *constraint
)
2596 switch (*constraint
) {
2597 case '=': /* Assignment */
2598 case '+': /* Update */
2599 expression_error(expr
, "input constraint with assignment (\"%s\")", constraint
);
2603 static void evaluate_asm_statement(struct statement
*stmt
)
2605 struct expression
*expr
;
2608 expr
= stmt
->asm_string
;
2609 if (!expr
|| expr
->type
!= EXPR_STRING
) {
2610 sparse_error(stmt
->pos
, "need constant string for inline asm");
2615 FOR_EACH_PTR(stmt
->asm_outputs
, expr
) {
2616 struct ident
*ident
;
2619 case 0: /* Identifier */
2621 ident
= (struct ident
*)expr
;
2624 case 1: /* Constraint */
2626 if (!expr
|| expr
->type
!= EXPR_STRING
) {
2627 sparse_error(expr
? expr
->pos
: stmt
->pos
, "asm output constraint is not a string");
2628 *THIS_ADDRESS(expr
) = NULL
;
2631 verify_output_constraint(expr
, expr
->string
->data
);
2634 case 2: /* Expression */
2636 if (!evaluate_expression(expr
))
2638 if (!lvalue_expression(expr
))
2639 warning(expr
->pos
, "asm output is not an lvalue");
2640 evaluate_assign_to(expr
, expr
->ctype
);
2643 } END_FOR_EACH_PTR(expr
);
2646 FOR_EACH_PTR(stmt
->asm_inputs
, expr
) {
2647 struct ident
*ident
;
2650 case 0: /* Identifier */
2652 ident
= (struct ident
*)expr
;
2655 case 1: /* Constraint */
2657 if (!expr
|| expr
->type
!= EXPR_STRING
) {
2658 sparse_error(expr
? expr
->pos
: stmt
->pos
, "asm input constraint is not a string");
2659 *THIS_ADDRESS(expr
) = NULL
;
2662 verify_input_constraint(expr
, expr
->string
->data
);
2665 case 2: /* Expression */
2667 if (!evaluate_expression(expr
))
2671 } END_FOR_EACH_PTR(expr
);
2673 FOR_EACH_PTR(stmt
->asm_clobbers
, expr
) {
2675 sparse_error(stmt
->pos
, "bad asm output");
2678 if (expr
->type
== EXPR_STRING
)
2680 expression_error(expr
, "asm clobber is not a string");
2681 } END_FOR_EACH_PTR(expr
);
2684 static void evaluate_case_statement(struct statement
*stmt
)
2686 evaluate_expression(stmt
->case_expression
);
2687 evaluate_expression(stmt
->case_to
);
2688 evaluate_statement(stmt
->case_statement
);
2691 static void check_case_type(struct expression
*switch_expr
,
2692 struct expression
*case_expr
,
2693 struct expression
**enumcase
)
2695 struct symbol
*switch_type
, *case_type
;
2701 switch_type
= switch_expr
->ctype
;
2702 case_type
= evaluate_expression(case_expr
);
2704 if (!switch_type
|| !case_type
)
2708 warn_for_different_enum_types(case_expr
->pos
, case_type
, (*enumcase
)->ctype
);
2709 else if (is_enum_type(case_type
))
2710 *enumcase
= case_expr
;
2713 sclass
= classify_type(switch_type
, &switch_type
);
2714 cclass
= classify_type(case_type
, &case_type
);
2716 /* both should be arithmetic */
2717 if (!(sclass
& cclass
& TYPE_NUM
))
2720 /* neither should be floating */
2721 if ((sclass
| cclass
) & TYPE_FLOAT
)
2724 /* if neither is restricted, we are OK */
2725 if (!((sclass
| cclass
) & TYPE_RESTRICT
))
2728 if (!restricted_binop_type(SPECIAL_EQUAL
, case_expr
, switch_expr
,
2729 cclass
, sclass
, case_type
, switch_type
))
2730 warning(case_expr
->pos
, "restricted degrades to integer");
2735 expression_error(case_expr
, "incompatible types for 'case' statement");
2738 static void evaluate_switch_statement(struct statement
*stmt
)
2741 struct expression
*enumcase
= NULL
;
2742 struct expression
**enumcase_holder
= &enumcase
;
2743 struct expression
*sel
= stmt
->switch_expression
;
2745 evaluate_expression(sel
);
2746 evaluate_statement(stmt
->switch_statement
);
2749 if (sel
->ctype
&& is_enum_type(sel
->ctype
))
2750 enumcase_holder
= NULL
; /* Only check cases against switch */
2752 FOR_EACH_PTR(stmt
->switch_case
->symbol_list
, sym
) {
2753 struct statement
*case_stmt
= sym
->stmt
;
2754 check_case_type(sel
, case_stmt
->case_expression
, enumcase_holder
);
2755 check_case_type(sel
, case_stmt
->case_to
, enumcase_holder
);
2756 } END_FOR_EACH_PTR(sym
);
2759 struct symbol
*evaluate_statement(struct statement
*stmt
)
2764 switch (stmt
->type
) {
2765 case STMT_DECLARATION
: {
2767 FOR_EACH_PTR(stmt
->declaration
, s
) {
2769 } END_FOR_EACH_PTR(s
);
2774 return evaluate_return_expression(stmt
);
2776 case STMT_EXPRESSION
:
2777 if (!evaluate_expression(stmt
->expression
))
2779 return degenerate(stmt
->expression
);
2781 case STMT_COMPOUND
: {
2782 struct statement
*s
;
2783 struct symbol
*type
= NULL
;
2785 /* Evaluate the return symbol in the compound statement */
2786 evaluate_symbol(stmt
->ret
);
2789 * Then, evaluate each statement, making the type of the
2790 * compound statement be the type of the last statement
2792 type
= evaluate_statement(stmt
->args
);
2793 FOR_EACH_PTR(stmt
->stmts
, s
) {
2794 type
= evaluate_statement(s
);
2795 } END_FOR_EACH_PTR(s
);
2801 evaluate_if_statement(stmt
);
2804 evaluate_iterator(stmt
);
2807 evaluate_switch_statement(stmt
);
2810 evaluate_case_statement(stmt
);
2813 return evaluate_statement(stmt
->label_statement
);
2815 evaluate_expression(stmt
->goto_expression
);
2820 evaluate_asm_statement(stmt
);
2823 evaluate_expression(stmt
->expression
);
2826 evaluate_expression(stmt
->range_expression
);
2827 evaluate_expression(stmt
->range_low
);
2828 evaluate_expression(stmt
->range_high
);