Remove "-HEADER-" from SYMBOL and VALUE-CELL widetag names
[sbcl.git] / src / code / print.lisp
blob2c10028d690a30b666e0c6d7e33b08271507209f
1 ;;;; the printer
3 ;;;; This software is part of the SBCL system. See the README file for
4 ;;;; more information.
5 ;;;;
6 ;;;; This software is derived from the CMU CL system, which was
7 ;;;; written at Carnegie Mellon University and released into the
8 ;;;; public domain. The software is in the public domain and is
9 ;;;; provided with absolutely no warranty. See the COPYING and CREDITS
10 ;;;; files for more information.
12 (in-package "SB!IMPL")
14 ;;;; exported printer control variables
16 (!defvar *print-readably* nil
17 "If true, all objects will be printed readably. If readable printing
18 is impossible, an error will be signalled. This overrides the value of
19 *PRINT-ESCAPE*.")
20 (!defvar *print-escape* t
21 "Should we print in a reasonably machine-readable way? (possibly
22 overridden by *PRINT-READABLY*)")
23 (!defvar *print-pretty* nil ; (set later when pretty-printer is initialized)
24 "Should pretty printing be used?")
25 (!defvar *print-base* 10.
26 "The output base for RATIONALs (including integers).")
27 (!defvar *print-radix* nil
28 "Should base be verified when printing RATIONALs?")
29 (!defvar *print-level* nil
30 "How many levels should be printed before abbreviating with \"#\"?")
31 (!defvar *print-length* nil
32 "How many elements at any level should be printed before abbreviating
33 with \"...\"?")
34 (!defvar *print-circle* nil
35 "Should we use #n= and #n# notation to preserve uniqueness in general (and
36 circularity in particular) when printing?")
37 (!defvar *print-case* :upcase
38 "What case should the printer should use default?")
39 (!defvar *print-array* t
40 "Should the contents of arrays be printed?")
41 (!defvar *print-gensym* t
42 "Should #: prefixes be used when printing symbols with null SYMBOL-PACKAGE?")
43 (!defvar *print-lines* nil
44 "The maximum number of lines to print per object.")
45 (!defvar *print-right-margin* nil
46 "The position of the right margin in ems (for pretty-printing).")
47 (!defvar *print-miser-width* nil
48 "If the remaining space between the current column and the right margin
49 is less than this, then print using ``miser-style'' output. Miser
50 style conditional newlines are turned on, and all indentations are
51 turned off. If NIL, never use miser mode.")
52 (defvar *print-pprint-dispatch*
53 (sb!pretty::make-pprint-dispatch-table) ; for type-correctness
54 "The pprint-dispatch-table that controls how to pretty-print objects.")
55 (!defvar *suppress-print-errors* nil
56 "Suppress printer errors when the condition is of the type designated by this
57 variable: an unreadable object representing the error is printed instead.")
59 ;; duplicate defglobal because this file is compiled before "reader"
60 (defglobal *standard-readtable* nil)
62 (defun %with-standard-io-syntax (function)
63 (declare (type function function))
64 (let ((*package* (find-package "COMMON-LISP-USER"))
65 (*print-array* t)
66 (*print-base* 10)
67 (*print-case* :upcase)
68 (*print-circle* nil)
69 (*print-escape* t)
70 (*print-gensym* t)
71 (*print-length* nil)
72 (*print-level* nil)
73 (*print-lines* nil)
74 (*print-miser-width* nil)
75 (*print-pprint-dispatch* sb!pretty::*standard-pprint-dispatch-table*)
76 (*print-pretty* nil)
77 (*print-radix* nil)
78 (*print-readably* t)
79 (*print-right-margin* nil)
80 (*read-base* 10)
81 (*read-default-float-format* 'single-float)
82 (*read-eval* t)
83 (*read-suppress* nil)
84 (*readtable* *standard-readtable*)
85 (*suppress-print-errors* nil))
86 (funcall function)))
88 ;;;; routines to print objects
90 (macrolet ((def (fn doc &rest forms)
91 `(defun ,fn
92 (object
93 &key
94 ,@(if (eq fn 'write) '(stream))
95 ((:escape *print-escape*) *print-escape*)
96 ((:radix *print-radix*) *print-radix*)
97 ((:base *print-base*) *print-base*)
98 ((:circle *print-circle*) *print-circle*)
99 ((:pretty *print-pretty*) *print-pretty*)
100 ((:level *print-level*) *print-level*)
101 ((:length *print-length*) *print-length*)
102 ((:case *print-case*) *print-case*)
103 ((:array *print-array*) *print-array*)
104 ((:gensym *print-gensym*) *print-gensym*)
105 ((:readably *print-readably*) *print-readably*)
106 ((:right-margin *print-right-margin*)
107 *print-right-margin*)
108 ((:miser-width *print-miser-width*)
109 *print-miser-width*)
110 ((:lines *print-lines*) *print-lines*)
111 ((:pprint-dispatch *print-pprint-dispatch*)
112 *print-pprint-dispatch*)
113 ((:suppress-errors *suppress-print-errors*)
114 *suppress-print-errors*))
115 ,doc
116 (declare (explicit-check))
117 ,@forms)))
118 (def write
119 "Output OBJECT to the specified stream, defaulting to *STANDARD-OUTPUT*."
120 (output-object object (out-stream-from-designator stream))
121 object)
122 (def write-to-string
123 "Return the printed representation of OBJECT as a string."
124 (stringify-object object)))
126 ;;; Same as a call to (WRITE OBJECT :STREAM STREAM), but returning OBJECT.
127 (defun %write (object stream)
128 (declare (explicit-check))
129 (output-object object (out-stream-from-designator stream))
130 object)
132 (defun prin1 (object &optional stream)
133 "Output a mostly READable printed representation of OBJECT on the specified
134 STREAM."
135 (declare (explicit-check))
136 (let ((*print-escape* t))
137 (output-object object (out-stream-from-designator stream)))
138 object)
140 (defun princ (object &optional stream)
141 "Output an aesthetic but not necessarily READable printed representation
142 of OBJECT on the specified STREAM."
143 (declare (explicit-check))
144 (let ((*print-escape* nil)
145 (*print-readably* nil))
146 (output-object object (out-stream-from-designator stream)))
147 object)
149 (defun print (object &optional stream)
150 "Output a newline, the mostly READable printed representation of OBJECT, and
151 space to the specified STREAM."
152 (declare (explicit-check))
153 (let ((stream (out-stream-from-designator stream)))
154 (terpri stream)
155 (prin1 object stream)
156 (write-char #\space stream)
157 object))
159 (defun pprint (object &optional stream)
160 "Prettily output OBJECT preceded by a newline."
161 (declare (explicit-check))
162 (let ((*print-pretty* t)
163 (*print-escape* t)
164 (stream (out-stream-from-designator stream)))
165 (terpri stream)
166 (output-object object stream))
167 (values))
169 (defun prin1-to-string (object)
170 "Return the printed representation of OBJECT as a string with
171 slashification on."
172 (let ((*print-escape* t))
173 (stringify-object object)))
175 (defun princ-to-string (object)
176 "Return the printed representation of OBJECT as a string with
177 slashification off."
178 (let ((*print-escape* nil)
179 (*print-readably* nil))
180 (stringify-object object)))
182 ;;; This produces the printed representation of an object as a string.
183 ;;; The few ...-TO-STRING functions above call this.
184 (defun stringify-object (object)
185 (typecase object
186 (integer
187 (let ((buffer-size (approx-chars-in-repr object)))
188 (let* ((string (make-string buffer-size :element-type 'base-char))
189 (stream (%make-finite-base-string-output-stream string)))
190 (declare (inline %make-finite-base-string-output-stream))
191 (declare (truly-dynamic-extent stream))
192 (output-integer object stream)
193 (%shrink-vector string
194 (finite-base-string-output-stream-pointer stream)))))
195 ;; Could do something for other numeric types, symbols, ...
197 (with-simple-output-to-string (stream)
198 (output-object object stream)))))
200 ;;; Estimate the number of chars in the printed representation of OBJECT.
201 ;;; The answer must be an overestimate or exact; never an underestimate.
202 (defun approx-chars-in-repr (object)
203 (declare (integer object))
204 ;; Round *PRINT-BASE* down to the nearest lower power-of-2, call that N,
205 ;; and "guess" that the one character can represent N bits.
206 ;; This is exact for bases which are exactly a power-of-2, or an overestimate
207 ;; otherwise, as mandated by the finite output stream.
208 (let ((bits-per-char
209 (aref #.(!coerce-to-specialized
210 ;; base 2 or base 3 = 1 bit per character
211 ;; base 4 .. base 7 = 2 bits per character
212 ;; base 8 .. base 15 = 3 bits per character, etc
213 #(1 1 2 2 2 2 3 3 3 3 3 3 3 3
214 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 5 5 5 5 5)
215 '(unsigned-byte 8))
216 (- *print-base* 2))))
217 (+ (if (minusp object) 1 0) ; leading sign
218 (if *print-radix* 4 0) ; #rNN or trailing decimal
219 (ceiling (if (fixnump object)
220 sb!vm:n-positive-fixnum-bits
221 (* (%bignum-length object) sb!bignum::digit-size))
222 bits-per-char))))
224 ;;;; support for the PRINT-UNREADABLE-OBJECT macro
226 (defun print-not-readable-error (object stream)
227 (restart-case
228 (error 'print-not-readable :object object)
229 (print-unreadably ()
230 :report "Print unreadably."
231 (let ((*print-readably* nil))
232 (output-object object stream)
233 object))
234 (use-value (o)
235 :report "Supply an object to be printed instead."
236 :interactive
237 (lambda ()
238 (read-evaluated-form "~@<Enter an object (evaluated): ~@:>"))
239 (output-object o stream)
240 o)))
242 ;;; guts of PRINT-UNREADABLE-OBJECT
243 (defun %print-unreadable-object (object stream type identity &optional body)
244 (declare (type (or null function) body))
245 (if *print-readably*
246 (print-not-readable-error object stream)
247 (flet ((print-description ()
248 (when type
249 (write (type-of object) :stream stream :circle nil
250 :level nil :length nil)
251 ;; Do NOT insert a pprint-newline here.
252 ;; See ba34717602d80e5fd74d10e61f4729fb0d019a0c
253 (write-char #\space stream))
254 (when body
255 (funcall body))
256 (when identity
257 (when (or body (not type))
258 (write-char #\space stream))
259 ;; Nor here.
260 (write-char #\{ stream)
261 (write (get-lisp-obj-address object) :stream stream
262 :radix nil :base 16)
263 (write-char #\} stream))))
264 (cond ((print-pretty-on-stream-p stream)
265 ;; Since we're printing prettily on STREAM, format the
266 ;; object within a logical block. PPRINT-LOGICAL-BLOCK does
267 ;; not rebind the stream when it is already a pretty stream,
268 ;; so output from the body will go to the same stream.
269 (pprint-logical-block (stream nil :prefix "#<" :suffix ">")
270 (print-description)))
272 (write-string "#<" stream)
273 (print-description)
274 (write-char #\> stream)))))
275 nil)
277 ;;;; OUTPUT-OBJECT -- the main entry point
279 ;;; Objects whose print representation identifies them EQLly don't
280 ;;; need to be checked for circularity.
281 (defun uniquely-identified-by-print-p (x)
282 (or (numberp x)
283 (characterp x)
284 (and (symbolp x)
285 (symbol-package x))))
287 (defvar *in-print-error* nil)
289 ;;; Output OBJECT to STREAM observing all printer control variables.
290 (defun output-object (object stream)
291 ;; FIXME: this function is declared EXPLICIT-CHECK, so it allows STREAM
292 ;; to be T or NIL (a stream-designator), which is not really right
293 ;; if eventually the call will be to a PRINT-OBJECT method,
294 ;; since the generic function should always receive a stream.
295 (declare (explicit-check))
296 (labels ((print-it (stream)
297 (multiple-value-bind (fun pretty)
298 (and *print-pretty* (pprint-dispatch object))
299 (if pretty
300 (sb!pretty::with-pretty-stream (stream)
301 (funcall fun stream object))
302 (output-ugly-object stream object))))
303 (handle-it (stream)
304 (if *suppress-print-errors*
305 (handler-bind ((condition
306 (lambda (condition) nil
307 (when (typep condition *suppress-print-errors*)
308 (cond (*in-print-error*
309 (write-string "(error printing " stream)
310 (write-string *in-print-error* stream)
311 (write-string ")" stream))
313 ;; Give outer handlers a chance.
314 (with-simple-restart
315 (continue "Suppress the error.")
316 (signal condition))
317 (let ((*print-readably* nil)
318 (*print-escape* t))
319 (write-string
320 "#<error printing a " stream)
321 (let ((*in-print-error* "type"))
322 (output-object (type-of object) stream))
323 (write-string ": " stream)
324 (let ((*in-print-error* "condition"))
325 (output-object condition stream))
326 (write-string ">" stream))))
327 (return-from handle-it object)))))
328 (print-it stream))
329 (print-it stream)))
330 (check-it (stream)
331 (multiple-value-bind (marker initiate)
332 (check-for-circularity object t)
333 (if (eq initiate :initiate)
334 (let ((*circularity-hash-table*
335 (make-hash-table :test 'eq)))
336 (check-it (make-broadcast-stream))
337 (let ((*circularity-counter* 0))
338 (check-it stream)))
339 ;; otherwise
340 (if marker
341 (when (handle-circularity marker stream)
342 (handle-it stream))
343 (handle-it stream))))))
344 (cond (;; Maybe we don't need to bother with circularity detection.
345 (or (not *print-circle*)
346 (uniquely-identified-by-print-p object))
347 (handle-it stream))
348 (;; If we have already started circularity detection, this
349 ;; object might be a shared reference. If we have not, then
350 ;; if it is a compound object it might contain a circular
351 ;; reference to itself or multiple shared references.
352 (or *circularity-hash-table*
353 (compound-object-p object))
354 (check-it stream))
356 (handle-it stream)))))
358 ;;; Output OBJECT to STREAM observing all printer control variables
359 ;;; except for *PRINT-PRETTY*. Note: if *PRINT-PRETTY* is non-NIL,
360 ;;; then the pretty printer will be used for any components of OBJECT,
361 ;;; just not for OBJECT itself.
362 (defun output-ugly-object (stream object)
363 (when (%instancep object)
364 (let* ((layout (layout-of object))
365 (classoid (layout-classoid layout)))
366 ;; If an instance has no layout, it has no PRINT-OBJECT method.
367 ;; Additionally, if the object is an obsolete CONDITION, don't crash.
368 ;; (There is no update-instance protocol for conditions)
369 (when (or (sb!kernel::undefined-classoid-p classoid)
370 (and (layout-invalid layout) (condition-classoid-p classoid)))
371 ;; not only is this unreadable, it's unprintable too.
372 (return-from output-ugly-object
373 (print-unreadable-object (object stream :identity t)
374 (format stream "UNPRINTABLE instance of ~W" classoid))))))
375 (print-object object stream))
377 ;;;; symbols
379 (defmethod print-object ((object symbol) stream)
380 (if (or *print-escape* *print-readably*)
381 ;; Write so that reading back works
382 (output-symbol object (symbol-package object) stream)
383 ;; Write only the characters of the name, never the package
384 (let ((rt *readtable*))
385 (funcall (truly-the function
386 (choose-symbol-out-fun *print-case* (%readtable-case rt)))
387 (symbol-name object) stream rt))))
389 (defun output-symbol (symbol package stream)
390 (let* ((readably *print-readably*)
391 (readtable (if readably *standard-readtable* *readtable*))
392 (out-fun (choose-symbol-out-fun *print-case* (%readtable-case readtable))))
393 (flet ((output-token (name)
394 (declare (type simple-string name))
395 (cond ((or (and (readtable-normalization readtable)
396 (not (sb!unicode:normalized-p name :nfkc)))
397 (symbol-quotep name readtable))
398 ;; Output NAME surrounded with |'s,
399 ;; and with any embedded |'s or \'s escaped.
400 (write-char #\| stream)
401 (dotimes (index (length name))
402 (let ((char (char name index)))
403 ;; Hmm. Should these depend on what characters
404 ;; are actually escapes in the readtable ?
405 ;; (See similar remark at DEFUN QUOTE-STRING)
406 (when (or (char= char #\\) (char= char #\|))
407 (write-char #\\ stream))
408 (write-char char stream)))
409 (write-char #\| stream))
411 (funcall (truly-the function out-fun) name stream readtable)))))
412 (let ((name (symbol-name symbol))
413 (current (sane-package)))
414 (cond
415 ;; The ANSI spec "22.1.3.3.1 Package Prefixes for Symbols"
416 ;; requires that keywords be printed with preceding colons
417 ;; always, regardless of the value of *PACKAGE*.
418 ((eq package *keyword-package*)
419 (write-char #\: stream))
420 ;; Otherwise, if the symbol's home package is the current
421 ;; one, then a prefix is never necessary.
422 ((eq package current))
423 ;; Uninterned symbols print with a leading #:.
424 ((null package)
425 (when (or *print-gensym* readably)
426 (write-string "#:" stream)))
428 (multiple-value-bind (found accessible) (find-symbol name current)
429 ;; If we can find the symbol by looking it up, it need not
430 ;; be qualified. This can happen if the symbol has been
431 ;; inherited from a package other than its home package.
433 ;; To preserve print-read consistency, use the local nickname if
434 ;; one exists.
435 (unless (and accessible (eq found symbol))
436 (let ((prefix (or (car (rassoc package (package-%local-nicknames current)))
437 (package-name package))))
438 (output-token prefix))
439 (if (nth-value 1 (find-external-symbol name package))
440 (write-char #\: stream)
441 (write-string "::" stream))))))
442 (output-token name)))))
444 ;;;; escaping symbols
446 ;;; When we print symbols we have to figure out if they need to be
447 ;;; printed with escape characters. This isn't a whole lot easier than
448 ;;; reading symbols in the first place.
450 ;;; For each character, the value of the corresponding element is a
451 ;;; fixnum with bits set corresponding to attributes that the
452 ;;; character has. At characters have at least one bit set, so we can
453 ;;; search for any character with a positive test.
454 (defvar *character-attributes*
455 (make-array 160 ; FIXME
456 :element-type '(unsigned-byte 16)
457 :initial-element 0))
458 (declaim (type (simple-array (unsigned-byte 16) (#.160)) ; FIXME
459 *character-attributes*))
461 ;;; constants which are a bit-mask for each interesting character attribute
462 (defconstant other-attribute (ash 1 0)) ; Anything else legal.
463 (defconstant number-attribute (ash 1 1)) ; A numeric digit.
464 (defconstant uppercase-attribute (ash 1 2)) ; An uppercase letter.
465 (defconstant lowercase-attribute (ash 1 3)) ; A lowercase letter.
466 (defconstant sign-attribute (ash 1 4)) ; +-
467 (defconstant extension-attribute (ash 1 5)) ; ^_
468 (defconstant dot-attribute (ash 1 6)) ; .
469 (defconstant slash-attribute (ash 1 7)) ; /
470 (defconstant funny-attribute (ash 1 8)) ; Anything illegal.
472 (eval-when (:compile-toplevel :load-toplevel :execute)
474 ;;; LETTER-ATTRIBUTE is a local of SYMBOL-QUOTEP. It matches letters
475 ;;; that don't need to be escaped (according to READTABLE-CASE.)
476 (defparameter *attribute-names*
477 `((number . number-attribute) (lowercase . lowercase-attribute)
478 (uppercase . uppercase-attribute) (letter . letter-attribute)
479 (sign . sign-attribute) (extension . extension-attribute)
480 (dot . dot-attribute) (slash . slash-attribute)
481 (other . other-attribute) (funny . funny-attribute)))
483 ) ; EVAL-WHEN
485 ;;; For each character, the value of the corresponding element is the
486 ;;; lowest base in which that character is a digit.
487 (declaim (type (simple-array (unsigned-byte 8) (128)) ; FIXME: range?
488 *digit-bases*))
489 (defvar *digit-bases*
490 (make-array 128 ; FIXME
491 :element-type '(unsigned-byte 8)))
493 (defun !printer-cold-init ()
494 ;; The dispatch table will be changed later, so this doesn't really matter
495 ;; except if a full call to WRITE wants to read the current binding.
496 (setq *print-pprint-dispatch* (sb!pretty::make-pprint-dispatch-table))
497 (setq *digit-bases* (make-array 128 ; FIXME
498 :element-type '(unsigned-byte 8)
499 :initial-element 36)
500 *character-attributes* (make-array 160 ; FIXME
501 :element-type '(unsigned-byte 16)
502 :initial-element 0))
503 (dotimes (i 36)
504 (let ((char (digit-char i 36)))
505 (setf (aref *digit-bases* (char-code char)) i)))
507 (flet ((set-bit (char bit)
508 (let ((code (char-code char)))
509 (setf (aref *character-attributes* code)
510 (logior bit (aref *character-attributes* code))))))
512 (dolist (char '(#\! #\@ #\$ #\% #\& #\* #\= #\~ #\[ #\] #\{ #\}
513 #\? #\< #\>))
514 (set-bit char other-attribute))
516 (dotimes (i 10)
517 (set-bit (digit-char i) number-attribute))
519 (do ((code (char-code #\A) (1+ code))
520 (end (char-code #\Z)))
521 ((> code end))
522 (declare (fixnum code end))
523 (set-bit (code-char code) uppercase-attribute)
524 (set-bit (char-downcase (code-char code)) lowercase-attribute))
526 (set-bit #\- sign-attribute)
527 (set-bit #\+ sign-attribute)
528 (set-bit #\^ extension-attribute)
529 (set-bit #\_ extension-attribute)
530 (set-bit #\. dot-attribute)
531 (set-bit #\/ slash-attribute)
533 ;; Mark anything not explicitly allowed as funny.
534 (dotimes (i 160) ; FIXME
535 (when (zerop (aref *character-attributes* i))
536 (setf (aref *character-attributes* i) funny-attribute))))
537 ) ; end !COLD-PRINT-INIT
539 ;;; A FSM-like thingie that determines whether a symbol is a potential
540 ;;; number or has evil characters in it.
541 (defun symbol-quotep (name readtable)
542 (declare (simple-string name))
543 (macrolet ((advance (tag &optional (at-end t))
544 `(progn
545 (when (= index len)
546 ,(if at-end '(go TEST-SIGN) '(return nil)))
547 (setq current (schar name index)
548 code (char-code current)
549 bits (cond ; FIXME
550 ((< code 160) (aref attributes code))
551 ((upper-case-p current) uppercase-attribute)
552 ((lower-case-p current) lowercase-attribute)
553 (t other-attribute)))
554 (incf index)
555 (go ,tag)))
556 (test (&rest attributes)
557 `(not (zerop
558 (the fixnum
559 (logand
560 (logior ,@(mapcar
561 (lambda (x)
562 (or (cdr (assoc x
563 *attribute-names*))
564 (error "Blast!")))
565 attributes))
566 bits)))))
567 (digitp ()
568 `(and (< code 128) ; FIXME
569 (< (the fixnum (aref bases code)) base))))
571 (prog ((len (length name))
572 (attributes *character-attributes*)
573 (bases *digit-bases*)
574 (base *print-base*)
575 (letter-attribute
576 (case (%readtable-case readtable)
577 (#.+readtable-upcase+ uppercase-attribute)
578 (#.+readtable-downcase+ lowercase-attribute)
579 (t (logior lowercase-attribute uppercase-attribute))))
580 (index 0)
581 (bits 0)
582 (code 0)
583 current)
584 (declare (fixnum len base index bits code))
585 (advance START t)
587 TEST-SIGN ; At end, see whether it is a sign...
588 (return (not (test sign)))
590 OTHER ; not potential number, see whether funny chars...
591 (let ((mask (logxor (logior lowercase-attribute uppercase-attribute
592 funny-attribute)
593 letter-attribute)))
594 (do ((i (1- index) (1+ i)))
595 ((= i len) (return-from symbol-quotep nil))
596 (unless (zerop (logand (let* ((char (schar name i))
597 (code (char-code char)))
598 (cond
599 ((< code 160) (aref attributes code))
600 ((upper-case-p char) uppercase-attribute)
601 ((lower-case-p char) lowercase-attribute)
602 (t other-attribute)))
603 mask))
604 (return-from symbol-quotep t))))
606 START
607 (when (digitp)
608 (if (test letter)
609 (advance LAST-DIGIT-ALPHA)
610 (advance DIGIT)))
611 (when (test letter number other slash) (advance OTHER nil))
612 (when (char= current #\.) (advance DOT-FOUND))
613 (when (test sign extension) (advance START-STUFF nil))
614 (return t)
616 DOT-FOUND ; leading dots...
617 (when (test letter) (advance START-DOT-MARKER nil))
618 (when (digitp) (advance DOT-DIGIT))
619 (when (test number other) (advance OTHER nil))
620 (when (test extension slash sign) (advance START-DOT-STUFF nil))
621 (when (char= current #\.) (advance DOT-FOUND))
622 (return t)
624 START-STUFF ; leading stuff before any dot or digit
625 (when (digitp)
626 (if (test letter)
627 (advance LAST-DIGIT-ALPHA)
628 (advance DIGIT)))
629 (when (test number other) (advance OTHER nil))
630 (when (test letter) (advance START-MARKER nil))
631 (when (char= current #\.) (advance START-DOT-STUFF nil))
632 (when (test sign extension slash) (advance START-STUFF nil))
633 (return t)
635 START-MARKER ; number marker in leading stuff...
636 (when (test letter) (advance OTHER nil))
637 (go START-STUFF)
639 START-DOT-STUFF ; leading stuff containing dot without digit...
640 (when (test letter) (advance START-DOT-STUFF nil))
641 (when (digitp) (advance DOT-DIGIT))
642 (when (test sign extension dot slash) (advance START-DOT-STUFF nil))
643 (when (test number other) (advance OTHER nil))
644 (return t)
646 START-DOT-MARKER ; number marker in leading stuff with dot..
647 ;; leading stuff containing dot without digit followed by letter...
648 (when (test letter) (advance OTHER nil))
649 (go START-DOT-STUFF)
651 DOT-DIGIT ; in a thing with dots...
652 (when (test letter) (advance DOT-MARKER))
653 (when (digitp) (advance DOT-DIGIT))
654 (when (test number other) (advance OTHER nil))
655 (when (test sign extension dot slash) (advance DOT-DIGIT))
656 (return t)
658 DOT-MARKER ; number marker in number with dot...
659 (when (test letter) (advance OTHER nil))
660 (go DOT-DIGIT)
662 LAST-DIGIT-ALPHA ; previous char is a letter digit...
663 (when (or (digitp) (test sign slash))
664 (advance ALPHA-DIGIT))
665 (when (test letter number other dot) (advance OTHER nil))
666 (return t)
668 ALPHA-DIGIT ; seen a digit which is a letter...
669 (when (or (digitp) (test sign slash))
670 (if (test letter)
671 (advance LAST-DIGIT-ALPHA)
672 (advance ALPHA-DIGIT)))
673 (when (test letter) (advance ALPHA-MARKER))
674 (when (test number other dot) (advance OTHER nil))
675 (return t)
677 ALPHA-MARKER ; number marker in number with alpha digit...
678 (when (test letter) (advance OTHER nil))
679 (go ALPHA-DIGIT)
681 DIGIT ; seen only ordinary (non-alphabetic) numeric digits...
682 (when (digitp)
683 (if (test letter)
684 (advance ALPHA-DIGIT)
685 (advance DIGIT)))
686 (when (test number other) (advance OTHER nil))
687 (when (test letter) (advance MARKER))
688 (when (test extension slash sign) (advance DIGIT))
689 (when (char= current #\.) (advance DOT-DIGIT))
690 (return t)
692 MARKER ; number marker in a numeric number...
693 ;; ("What," you may ask, "is a 'number marker'?" It's something
694 ;; that a conforming implementation might use in number syntax.
695 ;; See ANSI 2.3.1.1 "Potential Numbers as Tokens".)
696 (when (test letter) (advance OTHER nil))
697 (go DIGIT))))
699 ;;;; case hackery: One of these functions is chosen to output symbol
700 ;;;; names according to the values of *PRINT-CASE* and READTABLE-CASE.
702 ;;; called when:
703 ;;; READTABLE-CASE *PRINT-CASE*
704 ;;; :UPCASE :UPCASE
705 ;;; :DOWNCASE :DOWNCASE
706 ;;; :PRESERVE any
707 (defun output-preserve-symbol (pname stream readtable)
708 (declare (ignore readtable))
709 (write-string pname stream))
711 ;;; called when:
712 ;;; READTABLE-CASE *PRINT-CASE*
713 ;;; :UPCASE :DOWNCASE
714 (defun output-lowercase-symbol (pname stream readtable)
715 (declare (simple-string pname) (ignore readtable))
716 (dotimes (index (length pname))
717 (let ((char (schar pname index)))
718 (write-char (char-downcase char) stream))))
720 ;;; called when:
721 ;;; READTABLE-CASE *PRINT-CASE*
722 ;;; :DOWNCASE :UPCASE
723 (defun output-uppercase-symbol (pname stream readtable)
724 (declare (simple-string pname) (ignore readtable))
725 (dotimes (index (length pname))
726 (let ((char (schar pname index)))
727 (write-char (char-upcase char) stream))))
729 ;;; called when:
730 ;;; READTABLE-CASE *PRINT-CASE*
731 ;;; :UPCASE :CAPITALIZE
732 ;;; :DOWNCASE :CAPITALIZE
733 (defun output-capitalize-symbol (pname stream readtable)
734 (declare (simple-string pname))
735 (let ((prev-not-alphanum t)
736 (up (eql (%readtable-case readtable) +readtable-upcase+)))
737 (dotimes (i (length pname))
738 (let ((char (char pname i)))
739 (write-char (if up
740 (if (or prev-not-alphanum (lower-case-p char))
741 char
742 (char-downcase char))
743 (if prev-not-alphanum
744 (char-upcase char)
745 char))
746 stream)
747 (setq prev-not-alphanum (not (alphanumericp char)))))))
749 ;;; called when:
750 ;;; READTABLE-CASE *PRINT-CASE*
751 ;;; :INVERT any
752 (defun output-invert-symbol (pname stream readtable)
753 (declare (simple-string pname) (ignore readtable))
754 (let ((all-upper t)
755 (all-lower t))
756 (dotimes (i (length pname))
757 (let ((ch (schar pname i)))
758 (when (both-case-p ch)
759 (if (upper-case-p ch)
760 (setq all-lower nil)
761 (setq all-upper nil)))))
762 (cond (all-upper (output-lowercase-symbol pname stream nil))
763 (all-lower (output-uppercase-symbol pname stream nil))
765 (write-string pname stream)))))
767 (defun choose-symbol-out-fun (print-case readtable-case)
768 (macrolet
769 ((compute-fun-vector (&aux (vector (make-array 12)))
770 ;; Pack a 2D array of functions into a simple-vector.
771 ;; Major axis is *PRINT-CASE*, minor axis is %READTABLE-CASE.
772 (dotimes (readtable-case-index 4)
773 (dotimes (print-case-index 3)
774 (let ((readtable-case
775 (elt '(:upcase :downcase :preserve :invert) readtable-case-index))
776 (print-case
777 (elt '(:upcase :downcase :capitalize) print-case-index)))
778 (setf (aref vector (logior (ash print-case-index 2)
779 readtable-case-index))
780 (case readtable-case
781 (:upcase
782 (case print-case
783 (:upcase 'output-preserve-symbol)
784 (:downcase 'output-lowercase-symbol)
785 (:capitalize 'output-capitalize-symbol)))
786 (:downcase
787 (case print-case
788 (:upcase 'output-uppercase-symbol)
789 (:downcase 'output-preserve-symbol)
790 (:capitalize 'output-capitalize-symbol)))
791 (:preserve 'output-preserve-symbol)
792 (:invert 'output-invert-symbol))))))
793 `(load-time-value (vector ,@(map 'list (lambda (x) `(function ,x)) vector))
794 t)))
795 (aref (compute-fun-vector)
796 (logior (case print-case (:upcase 0) (:downcase 4) (t 8))
797 (truly-the (mod 4) readtable-case)))))
799 ;;;; recursive objects
801 (defmethod print-object ((list cons) stream)
802 (descend-into (stream)
803 (write-char #\( stream)
804 (let ((length 0)
805 (list list))
806 (loop
807 (punt-print-if-too-long length stream)
808 (output-object (pop list) stream)
809 (unless list
810 (return))
811 (when (or (atom list)
812 (check-for-circularity list))
813 (write-string " . " stream)
814 (output-object list stream)
815 (return))
816 (write-char #\space stream)
817 (incf length)))
818 (write-char #\) stream)))
820 (defun output-unreadable-vector-readably (vector stream)
821 (declare (vector vector))
822 (write-string "#." stream)
823 (write `(coerce ,(coerce vector '(vector t))
824 '(simple-array ,(array-element-type vector) (*)))
825 :stream stream))
827 (defmethod print-object ((vector vector) stream)
828 (let ((readably *print-readably*))
829 (cond ((stringp vector)
830 (let ((coerce-p
831 (and readably (not (typep vector '(vector character))))))
832 (cond ((and coerce-p (not *read-eval*))
833 (print-not-readable-error vector stream))
834 ((or *print-escape* readably)
835 (when coerce-p
836 ;; OUTPUT-UNREADABLE-VECTOR-READABLY would output each char
837 ;; in #\c syntax. In addition to wasting time coercing to a
838 ;; general vector, it's not nice looking.
839 (write-string "#.(" stream)
840 (write 'coerce :stream stream) ; package-qualify / casify as needed
841 (write-char #\Space stream))
842 (write-char #\" stream)
843 (quote-string vector stream)
844 (write-char #\" stream)
845 (when coerce-p
846 (write-char #\Space stream)
847 (write (cond #!+sb-unicode
848 ((base-string-p vector)
849 ''base-string)
851 `'(vector ,(array-element-type vector)))) :stream stream)
852 (write-char #\) stream)))
854 (write-string vector stream)))))
855 ((not (or *print-array* readably))
856 (output-terse-array vector stream))
857 ((bit-vector-p vector)
858 (write-string "#*" stream)
859 (dovector (bit vector)
860 ;; (Don't use OUTPUT-OBJECT here, since this code
861 ;; has to work for all possible *PRINT-BASE* values.)
862 (write-char (if (zerop bit) #\0 #\1) stream)))
863 ((or (not readably) (array-readably-printable-p vector))
864 (descend-into (stream)
865 (write-string "#(" stream)
866 (dotimes (i (length vector))
867 (unless (zerop i)
868 (write-char #\space stream))
869 (punt-print-if-too-long i stream)
870 (output-object (aref vector i) stream))
871 (write-string ")" stream)))
872 (*read-eval*
873 (output-unreadable-vector-readably vector stream))
875 (print-not-readable-error vector stream)))))
877 ;;; This function outputs a string quoting characters sufficiently
878 ;;; so that someone can read it in again. Basically, put a slash in
879 ;;; front of an character satisfying NEEDS-SLASH-P.
880 (defun quote-string (string stream)
881 (macrolet ((needs-slash-p (char)
882 ;; KLUDGE: We probably should look at the readtable, but just do
883 ;; this for now. [noted by anonymous long ago] -- WHN 19991130
884 `(or (char= ,char #\\)
885 (char= ,char #\"))))
886 (with-array-data ((data string) (start) (end)
887 :check-fill-pointer t)
888 (do ((index start (1+ index)))
889 ((>= index end))
890 (let ((char (schar data index)))
891 (when (needs-slash-p char) (write-char #\\ stream))
892 (write-char char stream))))))
894 (defun array-readably-printable-p (array)
895 (and (eq (array-element-type array) t)
896 (let ((zero (position 0 (array-dimensions array)))
897 (number (position 0 (array-dimensions array)
898 :test (complement #'eql)
899 :from-end t)))
900 (or (null zero) (null number) (> zero number)))))
902 ;;; Output the printed representation of any array in either the #< or #A
903 ;;; form.
904 (defmethod print-object ((array array) stream)
905 (if (or *print-array* *print-readably*)
906 (output-array-guts array stream)
907 (output-terse-array array stream)))
909 ;;; Output the abbreviated #< form of an array.
910 (defun output-terse-array (array stream)
911 (let ((*print-level* nil)
912 (*print-length* nil))
913 (print-unreadable-object (array stream :type t :identity t))))
915 ;;; Convert an array into a list that can be used with MAKE-ARRAY's
916 ;;; :INITIAL-CONTENTS keyword argument.
917 (defun listify-array (array)
918 (with-array-data ((data array) (start) (end))
919 (declare (ignore end))
920 (labels ((listify (dimensions index)
921 (if (null dimensions)
922 (aref data index)
923 (let* ((dimension (car dimensions))
924 (dimensions (cdr dimensions))
925 (count (reduce #'* dimensions)))
926 (loop for i below dimension
927 collect (listify dimensions index)
928 do (incf index count))))))
929 (listify (array-dimensions array) start))))
931 (defun output-unreadable-array-readably (array stream)
932 (write-string "#." stream)
933 (write `(make-array ',(array-dimensions array)
934 :element-type ',(array-element-type array)
935 :initial-contents ',(listify-array array))
936 :stream stream))
938 ;;; Output the readable #A form of an array.
939 (defun output-array-guts (array stream)
940 (cond ((or (not *print-readably*)
941 (array-readably-printable-p array))
942 (write-char #\# stream)
943 (let ((*print-base* 10)
944 (*print-radix* nil))
945 (output-integer (array-rank array) stream))
946 (write-char #\A stream)
947 (with-array-data ((data array) (start) (end))
948 (declare (ignore end))
949 (sub-output-array-guts data (array-dimensions array) stream start)))
950 (*read-eval*
951 (output-unreadable-array-readably array stream))
953 (print-not-readable-error array stream))))
955 (defun sub-output-array-guts (array dimensions stream index)
956 (declare (type (simple-array * (*)) array) (fixnum index))
957 (cond ((null dimensions)
958 (output-object (aref array index) stream))
960 (descend-into (stream)
961 (write-char #\( stream)
962 (let* ((dimension (car dimensions))
963 (dimensions (cdr dimensions))
964 (count (reduce #'* dimensions)))
965 (dotimes (i dimension)
966 (unless (zerop i)
967 (write-char #\space stream))
968 (punt-print-if-too-long i stream)
969 (sub-output-array-guts array dimensions stream index)
970 (incf index count)))
971 (write-char #\) stream)))))
974 ;;;; integer, ratio, and complex printing (i.e. everything but floats)
976 (defun %output-radix (base stream)
977 (write-char #\# stream)
978 (write-char (case base
979 (2 #\b)
980 (8 #\o)
981 (16 #\x)
982 (t (%output-reasonable-integer-in-base base 10 stream)
983 #\r))
984 stream))
986 (defun %output-reasonable-integer-in-base (n base stream)
987 (multiple-value-bind (q r)
988 (truncate n base)
989 ;; Recurse until you have all the digits pushed on
990 ;; the stack.
991 (unless (zerop q)
992 (%output-reasonable-integer-in-base q base stream))
993 ;; Then as each recursive call unwinds, turn the
994 ;; digit (in remainder) into a character and output
995 ;; the character.
996 (write-char
997 (schar "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ" r)
998 stream)))
1000 ;;; *POWER-CACHE* is an alist mapping bases to power-vectors. It is
1001 ;;; filled and probed by POWERS-FOR-BASE. SCRUB-POWER-CACHE is called
1002 ;;; always prior a GC to drop overly large bignums from the cache.
1004 ;;; It doesn't need a lock, but if you work on SCRUB-POWER-CACHE or
1005 ;;; POWERS-FOR-BASE, see that you don't break the assumptions!
1006 (defglobal *power-cache* (make-array 37 :initial-element nil))
1007 (declaim (type (simple-vector 37) *power-cache*))
1009 (defconstant +power-cache-integer-length-limit+ 2048)
1011 (defun scrub-power-cache (&aux (cache *power-cache*))
1012 (dotimes (i (length cache))
1013 (let ((powers (aref cache i)))
1014 (when powers
1015 (let ((too-big (position-if
1016 (lambda (x)
1017 (>= (integer-length x)
1018 +power-cache-integer-length-limit+))
1019 (the simple-vector powers))))
1020 (when too-big
1021 (setf (aref cache i) (subseq powers 0 too-big))))))))
1023 ;;; Compute (and cache) a power vector for a BASE and LIMIT:
1024 ;;; the vector holds integers for which
1025 ;;; (aref powers k) == (expt base (expt 2 k))
1026 ;;; holds.
1027 (defun powers-for-base (base limit)
1028 (flet ((compute-powers (from)
1029 (let (powers)
1030 (do ((p from (* p p)))
1031 ((> p limit)
1032 ;; We don't actually need this, but we also
1033 ;; prefer not to cons it up a second time...
1034 (push p powers))
1035 (push p powers))
1036 (nreverse powers))))
1037 (let* ((cache *power-cache*)
1038 (powers (aref cache base)))
1039 (setf (aref cache base)
1040 (concatenate 'vector powers
1041 (compute-powers
1042 (if powers
1043 (let* ((len (length powers))
1044 (max (svref powers (1- len))))
1045 (if (> max limit)
1046 (return-from powers-for-base powers)
1047 (* max max)))
1048 base)))))))
1050 ;; Algorithm by Harald Hanche-Olsen, sbcl-devel 2005-02-05
1051 (defun %output-huge-integer-in-base (n base stream)
1052 (declare (type bignum n) (type fixnum base))
1053 ;; POWER is a vector for which the following holds:
1054 ;; (aref power k) == (expt base (expt 2 k))
1055 (let* ((power (powers-for-base base n))
1056 (k-start (or (position-if (lambda (x) (> x n)) power)
1057 (bug "power-vector too short"))))
1058 (labels ((bisect (n k exactp)
1059 (declare (fixnum k))
1060 ;; N is the number to bisect
1061 ;; K on initial entry BASE^(2^K) > N
1062 ;; EXACTP is true if 2^K is the exact number of digits
1063 (cond ((zerop n)
1064 (when exactp
1065 (loop repeat (ash 1 k) do (write-char #\0 stream))))
1066 ((zerop k)
1067 (write-char
1068 (schar "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ" n)
1069 stream))
1071 (setf k (1- k))
1072 (multiple-value-bind (q r) (truncate n (aref power k))
1073 ;; EXACTP is NIL only at the head of the
1074 ;; initial number, as we don't know the number
1075 ;; of digits there, but we do know that it
1076 ;; doesn't get any leading zeros.
1077 (bisect q k exactp)
1078 (bisect r k (or exactp (plusp q))))))))
1079 (bisect n k-start nil))))
1081 (defun %output-integer-in-base (integer base stream)
1082 (when (minusp integer)
1083 (write-char #\- stream)
1084 (setf integer (- integer)))
1085 ;; The ideal cutoff point between these two algorithms is almost
1086 ;; certainly quite platform dependent: this gives 87 for 32 bit
1087 ;; SBCL, which is about right at least for x86/Darwin.
1088 (if (or (fixnump integer)
1089 (< (integer-length integer) (* 3 sb!vm:n-positive-fixnum-bits)))
1090 (%output-reasonable-integer-in-base integer base stream)
1091 (%output-huge-integer-in-base integer base stream)))
1093 ;;; This gets both a method and a specifically named function
1094 ;;; since the latter is called from a few places.
1095 (defmethod print-object ((object integer) stream) (output-integer object stream))
1096 (defun output-integer (integer stream)
1097 (let ((base *print-base*))
1098 (cond (*print-radix*
1099 (unless (= base 10) (%output-radix base stream))
1100 (%output-integer-in-base integer base stream)
1101 (when (= base 10) (write-char #\. stream)))
1103 (%output-integer-in-base integer base stream)))))
1105 (defmethod print-object ((ratio ratio) stream)
1106 (let ((base *print-base*))
1107 (when *print-radix*
1108 (%output-radix base stream))
1109 (%output-integer-in-base (numerator ratio) base stream)
1110 (write-char #\/ stream)
1111 (%output-integer-in-base (denominator ratio) base stream)))
1113 (defmethod print-object ((complex complex) stream)
1114 (write-string "#C(" stream)
1115 (output-object (realpart complex) stream)
1116 (write-char #\space stream)
1117 (output-object (imagpart complex) stream)
1118 (write-char #\) stream))
1120 ;;;; float printing
1122 ;;; FLONUM-TO-STRING (and its subsidiary function FLOAT-STRING) does
1123 ;;; most of the work for all printing of floating point numbers in
1124 ;;; FORMAT. It converts a floating point number to a string in a free
1125 ;;; or fixed format with no exponent. The interpretation of the
1126 ;;; arguments is as follows:
1128 ;;; X - The floating point number to convert, which must not be
1129 ;;; negative.
1130 ;;; WIDTH - The preferred field width, used to determine the number
1131 ;;; of fraction digits to produce if the FDIGITS parameter
1132 ;;; is unspecified or NIL. If the non-fraction digits and the
1133 ;;; decimal point alone exceed this width, no fraction digits
1134 ;;; will be produced unless a non-NIL value of FDIGITS has been
1135 ;;; specified. Field overflow is not considerd an error at this
1136 ;;; level.
1137 ;;; FDIGITS - The number of fractional digits to produce. Insignificant
1138 ;;; trailing zeroes may be introduced as needed. May be
1139 ;;; unspecified or NIL, in which case as many digits as possible
1140 ;;; are generated, subject to the constraint that there are no
1141 ;;; trailing zeroes.
1142 ;;; SCALE - If this parameter is specified or non-NIL, then the number
1143 ;;; printed is (* x (expt 10 scale)). This scaling is exact,
1144 ;;; and cannot lose precision.
1145 ;;; FMIN - This parameter, if specified or non-NIL, is the minimum
1146 ;;; number of fraction digits which will be produced, regardless
1147 ;;; of the value of WIDTH or FDIGITS. This feature is used by
1148 ;;; the ~E format directive to prevent complete loss of
1149 ;;; significance in the printed value due to a bogus choice of
1150 ;;; scale factor.
1152 ;;; Returns:
1153 ;;; (VALUES DIGIT-STRING DIGIT-LENGTH LEADING-POINT TRAILING-POINT DECPNT)
1154 ;;; where the results have the following interpretation:
1156 ;;; DIGIT-STRING - The decimal representation of X, with decimal point.
1157 ;;; DIGIT-LENGTH - The length of the string DIGIT-STRING.
1158 ;;; LEADING-POINT - True if the first character of DIGIT-STRING is the
1159 ;;; decimal point.
1160 ;;; TRAILING-POINT - True if the last character of DIGIT-STRING is the
1161 ;;; decimal point.
1162 ;;; POINT-POS - The position of the digit preceding the decimal
1163 ;;; point. Zero indicates point before first digit.
1165 ;;; NOTE: FLONUM-TO-STRING goes to a lot of trouble to guarantee
1166 ;;; accuracy. Specifically, the decimal number printed is the closest
1167 ;;; possible approximation to the true value of the binary number to
1168 ;;; be printed from among all decimal representations with the same
1169 ;;; number of digits. In free-format output, i.e. with the number of
1170 ;;; digits unconstrained, it is guaranteed that all the information is
1171 ;;; preserved, so that a properly- rounding reader can reconstruct the
1172 ;;; original binary number, bit-for-bit, from its printed decimal
1173 ;;; representation. Furthermore, only as many digits as necessary to
1174 ;;; satisfy this condition will be printed.
1176 ;;; FLOAT-DIGITS actually generates the digits for positive numbers;
1177 ;;; see below for comments.
1179 (defun flonum-to-string (x &optional width fdigits scale fmin)
1180 (declare (type float x))
1181 ;; FIXME: I think only FORMAT-DOLLARS calls FLONUM-TO-STRING with
1182 ;; possibly-negative X.
1183 (setf x (abs x))
1184 (multiple-value-bind (e string)
1185 (if fdigits
1186 (flonum-to-digits x (min (- (+ fdigits (or scale 0)))
1187 (- (or fmin 0))))
1188 (if (and width (> width 1))
1189 (let ((w (multiple-value-list
1190 (flonum-to-digits x
1191 (max 1
1192 (+ (1- width)
1193 (if (and scale (minusp scale))
1194 scale 0)))
1195 t)))
1196 (f (multiple-value-list
1197 (flonum-to-digits x (- (+ (or fmin 0)
1198 (if scale scale 0)))))))
1199 (cond
1200 ((>= (length (cadr w)) (length (cadr f)))
1201 (values-list w))
1202 (t (values-list f))))
1203 (flonum-to-digits x)))
1204 (let ((e (if (zerop x)
1206 (+ e (or scale 0))))
1207 (stream (make-string-output-stream)))
1208 (if (plusp e)
1209 (progn
1210 (write-string string stream :end (min (length string) e))
1211 (dotimes (i (- e (length string)))
1212 (write-char #\0 stream))
1213 (write-char #\. stream)
1214 (write-string string stream :start (min (length string) e))
1215 (when fdigits
1216 (dotimes (i (- fdigits
1217 (- (length string)
1218 (min (length string) e))))
1219 (write-char #\0 stream))))
1220 (progn
1221 (write-string "." stream)
1222 (dotimes (i (- e))
1223 (write-char #\0 stream))
1224 (write-string string stream :end (when fdigits
1225 (min (length string)
1226 (max (or fmin 0)
1227 (+ fdigits e)))))
1228 (when fdigits
1229 (dotimes (i (+ fdigits e (- (length string))))
1230 (write-char #\0 stream)))))
1231 (let ((string (get-output-stream-string stream)))
1232 (values string (length string)
1233 (char= (char string 0) #\.)
1234 (char= (char string (1- (length string))) #\.)
1235 (position #\. string))))))
1237 ;;; implementation of figure 1 from Burger and Dybvig, 1996. It is
1238 ;;; extended in order to handle rounding.
1240 ;;; As the implementation of the Dragon from Classic CMUCL (and
1241 ;;; previously in SBCL above FLONUM-TO-STRING) says: "DO NOT EVEN
1242 ;;; THINK OF ATTEMPTING TO UNDERSTAND THIS CODE WITHOUT READING THE
1243 ;;; PAPER!", and in this case we have to add that even reading the
1244 ;;; paper might not bring immediate illumination as CSR has attempted
1245 ;;; to turn idiomatic Scheme into idiomatic Lisp.
1247 ;;; FIXME: figure 1 from Burger and Dybvig is the unoptimized
1248 ;;; algorithm, noticeably slow at finding the exponent. Figure 2 has
1249 ;;; an improved algorithm, but CSR ran out of energy.
1251 ;;; possible extension for the enthusiastic: printing floats in bases
1252 ;;; other than base 10.
1253 (defconstant single-float-min-e
1254 (- 2 sb!vm:single-float-bias sb!vm:single-float-digits))
1255 (defconstant double-float-min-e
1256 (- 2 sb!vm:double-float-bias sb!vm:double-float-digits))
1257 #!+long-float
1258 (defconstant long-float-min-e
1259 (nth-value 1 (decode-float least-positive-long-float)))
1261 (defun flonum-to-digits (v &optional position relativep)
1262 (let ((print-base 10) ; B
1263 (float-radix 2) ; b
1264 (float-digits (float-digits v)) ; p
1265 (digit-characters "0123456789")
1266 (min-e
1267 (etypecase v
1268 (single-float single-float-min-e)
1269 (double-float double-float-min-e)
1270 #!+long-float
1271 (long-float long-float-min-e))))
1272 (multiple-value-bind (f e)
1273 (integer-decode-float v)
1274 (let ( ;; FIXME: these even tests assume normal IEEE rounding
1275 ;; mode. I wonder if we should cater for non-normal?
1276 (high-ok (evenp f))
1277 (low-ok (evenp f)))
1278 (with-push-char (:element-type base-char)
1279 (labels ((scale (r s m+ m-)
1280 (do ((r+m+ (+ r m+))
1281 (k 0 (1+ k))
1282 (s s (* s print-base)))
1283 ((not (or (> r+m+ s)
1284 (and high-ok (= r+m+ s))))
1285 (do ((k k (1- k))
1286 (r r (* r print-base))
1287 (m+ m+ (* m+ print-base))
1288 (m- m- (* m- print-base)))
1289 ((not (and (> r m-) ; Extension to handle zero
1290 (let ((x (* (+ r m+) print-base)))
1291 (or (< x s)
1292 (and (not high-ok)
1293 (= x s))))))
1294 (values k (generate r s m+ m-)))))))
1295 (generate (r s m+ m-)
1296 (let (d tc1 tc2)
1297 (tagbody
1298 loop
1299 (setf (values d r) (truncate (* r print-base) s))
1300 (setf m+ (* m+ print-base))
1301 (setf m- (* m- print-base))
1302 (setf tc1 (or (< r m-) (and low-ok (= r m-))))
1303 (setf tc2 (let ((r+m+ (+ r m+)))
1304 (or (> r+m+ s)
1305 (and high-ok (= r+m+ s)))))
1306 (when (or tc1 tc2)
1307 (go end))
1308 (push-char (char digit-characters d))
1309 (go loop)
1311 (let ((d (cond
1312 ((and (not tc1) tc2) (1+ d))
1313 ((and tc1 (not tc2)) d)
1314 ((< (* r 2) s)
1317 (1+ d)))))
1318 (push-char (char digit-characters d))
1319 (return-from generate (get-pushed-string))))))
1320 (initialize ()
1321 (let (r s m+ m-)
1322 (cond ((>= e 0)
1323 (let ((be (expt float-radix e)))
1324 (if (/= f (expt float-radix (1- float-digits)))
1325 (setf r (* f be 2)
1327 m+ be
1328 m- be)
1329 (setf m- be
1330 m+ (* be float-radix)
1331 r (* f m+ 2)
1332 s (* float-radix 2)))))
1333 ((or (= e min-e)
1334 (/= f (expt float-radix (1- float-digits))))
1335 (setf r (* f 2)
1336 s (expt float-radix (- 1 e))
1337 m+ 1
1338 m- 1))
1340 (setf r (* f float-radix 2)
1341 s (expt float-radix (- 2 e))
1342 m+ float-radix
1343 m- 1)))
1344 (when position
1345 (when relativep
1346 (aver (> position 0))
1347 (do ((k 0 (1+ k))
1348 ;; running out of letters here
1349 (l 1 (* l print-base)))
1350 ((>= (* s l) (+ r m+))
1351 ;; k is now \hat{k}
1352 (if (< (+ r (* s (/ (expt print-base (- k position)) 2)))
1353 (* s l))
1354 (setf position (- k position))
1355 (setf position (- k position 1))))))
1356 (let* ((x (/ (* s (expt print-base position)) 2))
1357 (low (max m- x))
1358 (high (max m+ x)))
1359 (when (<= m- low)
1360 (setf m- low)
1361 (setf low-ok t))
1362 (when (<= m+ high)
1363 (setf m+ high)
1364 (setf high-ok t))))
1365 (values r s m+ m-))))
1366 (multiple-value-bind (r s m+ m-) (initialize)
1367 (scale r s m+ m-))))))))
1369 ;;; Given a non-negative floating point number, SCALE-EXPONENT returns
1370 ;;; a new floating point number Z in the range (0.1, 1.0] and an
1371 ;;; exponent E such that Z * 10^E is (approximately) equal to the
1372 ;;; original number. There may be some loss of precision due the
1373 ;;; floating point representation. The scaling is always done with
1374 ;;; long float arithmetic, which helps printing of lesser precisions
1375 ;;; as well as avoiding generic arithmetic.
1377 ;;; When computing our initial scale factor using EXPT, we pull out
1378 ;;; part of the computation to avoid over/under flow. When
1379 ;;; denormalized, we must pull out a large factor, since there is more
1380 ;;; negative exponent range than positive range.
1382 (eval-when (:compile-toplevel :execute)
1383 (setf *read-default-float-format*
1384 #!+long-float 'long-float #!-long-float 'double-float))
1385 (defun scale-exponent (original-x)
1386 (let* ((x (coerce original-x 'long-float)))
1387 (multiple-value-bind (sig exponent) (decode-float x)
1388 (declare (ignore sig))
1389 (if (= x 0.0e0)
1390 (values (float 0.0e0 original-x) 1)
1391 (let* ((ex (locally (declare (optimize (safety 0)))
1392 (the fixnum
1393 (round (* exponent
1394 ;; this is the closest double float
1395 ;; to (log 2 10), but expressed so
1396 ;; that we're not vulnerable to the
1397 ;; host lisp's interpretation of
1398 ;; arithmetic. (FIXME: it turns
1399 ;; out that sbcl itself is off by 1
1400 ;; ulp in this value, which is a
1401 ;; little unfortunate.)
1402 (load-time-value
1403 #!-long-float
1404 (make-double-float 1070810131 1352628735)
1405 #!+long-float
1406 (error "(log 2 10) not computed")))))))
1407 (x (if (minusp ex)
1408 (if (float-denormalized-p x)
1409 #!-long-float
1410 (* x 1.0e16 (expt 10.0e0 (- (- ex) 16)))
1411 #!+long-float
1412 (* x 1.0e18 (expt 10.0e0 (- (- ex) 18)))
1413 (* x 10.0e0 (expt 10.0e0 (- (- ex) 1))))
1414 (/ x 10.0e0 (expt 10.0e0 (1- ex))))))
1415 (do ((d 10.0e0 (* d 10.0e0))
1416 (y x (/ x d))
1417 (ex ex (1+ ex)))
1418 ((< y 1.0e0)
1419 (do ((m 10.0e0 (* m 10.0e0))
1420 (z y (* y m))
1421 (ex ex (1- ex)))
1422 ((>= z 0.1e0)
1423 (values (float z original-x) ex))
1424 (declare (long-float m) (integer ex))))
1425 (declare (long-float d))))))))
1426 (eval-when (:compile-toplevel :execute)
1427 (setf *read-default-float-format* 'single-float))
1429 ;;;; entry point for the float printer
1431 ;;; the float printer as called by PRINT, PRIN1, PRINC, etc. The
1432 ;;; argument is printed free-format, in either exponential or
1433 ;;; non-exponential notation, depending on its magnitude.
1435 ;;; NOTE: When a number is to be printed in exponential format, it is
1436 ;;; scaled in floating point. Since precision may be lost in this
1437 ;;; process, the guaranteed accuracy properties of FLONUM-TO-STRING
1438 ;;; are lost. The difficulty is that FLONUM-TO-STRING performs
1439 ;;; extensive computations with integers of similar magnitude to that
1440 ;;; of the number being printed. For large exponents, the bignums
1441 ;;; really get out of hand. If bignum arithmetic becomes reasonably
1442 ;;; fast and the exponent range is not too large, then it might become
1443 ;;; attractive to handle exponential notation with the same accuracy
1444 ;;; as non-exponential notation, using the method described in the
1445 ;;; Steele and White paper.
1447 ;;; NOTE II: this has been bypassed slightly by implementing Burger
1448 ;;; and Dybvig, 1996. When someone has time (KLUDGE) they can
1449 ;;; probably (a) implement the optimizations suggested by Burger and
1450 ;;; Dyvbig, and (b) remove all vestiges of Dragon4, including from
1451 ;;; fixed-format printing.
1453 ;;; Print the appropriate exponent marker for X and the specified exponent.
1454 (defun print-float-exponent (x exp stream)
1455 (declare (type float x) (type integer exp) (type stream stream))
1456 (cond ((case *read-default-float-format*
1457 ((short-float single-float)
1458 (typep x 'single-float))
1459 ((double-float #!-long-float long-float)
1460 (typep x 'double-float))
1461 #!+long-float
1462 (long-float
1463 (typep x 'long-float)))
1464 (unless (eql exp 0)
1465 (write-char #\e stream)
1466 (%output-integer-in-base exp 10 stream)))
1468 (write-char
1469 (etypecase x
1470 (single-float #\f)
1471 (double-float #\d)
1472 (short-float #\s)
1473 (long-float #\L))
1474 stream)
1475 (%output-integer-in-base exp 10 stream))))
1477 (defun output-float-infinity (x stream)
1478 (declare (float x) (stream stream))
1479 (cond (*read-eval*
1480 (write-string "#." stream))
1481 (*print-readably*
1482 (return-from output-float-infinity
1483 (print-not-readable-error x stream)))
1485 (write-string "#<" stream)))
1486 (write-string "SB-EXT:" stream)
1487 (write-string (symbol-name (float-format-name x)) stream)
1488 (write-string (if (plusp x) "-POSITIVE-" "-NEGATIVE-")
1489 stream)
1490 (write-string "INFINITY" stream)
1491 (unless *read-eval*
1492 (write-string ">" stream)))
1494 (defun output-float-nan (x stream)
1495 (print-unreadable-object (x stream)
1496 (princ (float-format-name x) stream)
1497 (write-string (if (float-trapping-nan-p x) " trapping" " quiet") stream)
1498 (write-string " NaN" stream)))
1500 ;;; the function called by OUTPUT-OBJECT to handle floats
1501 (defmethod print-object ((x float) stream)
1502 (cond
1503 ((float-infinity-p x)
1504 (output-float-infinity x stream))
1505 ((float-nan-p x)
1506 (output-float-nan x stream))
1508 (let ((x (cond ((minusp (float-sign x))
1509 (write-char #\- stream)
1510 (- x))
1512 x))))
1513 (cond
1514 ((zerop x)
1515 (write-string "0.0" stream)
1516 (print-float-exponent x 0 stream))
1518 (output-float-aux x stream -3 8)))))))
1520 (defun output-float-aux (x stream e-min e-max)
1521 (multiple-value-bind (e string)
1522 (flonum-to-digits x)
1523 (cond
1524 ((< e-min e e-max)
1525 (if (plusp e)
1526 (progn
1527 (write-string string stream :end (min (length string) e))
1528 (dotimes (i (- e (length string)))
1529 (write-char #\0 stream))
1530 (write-char #\. stream)
1531 (write-string string stream :start (min (length string) e))
1532 (when (<= (length string) e)
1533 (write-char #\0 stream))
1534 (print-float-exponent x 0 stream))
1535 (progn
1536 (write-string "0." stream)
1537 (dotimes (i (- e))
1538 (write-char #\0 stream))
1539 (write-string string stream)
1540 (print-float-exponent x 0 stream))))
1541 (t (write-string string stream :end 1)
1542 (write-char #\. stream)
1543 (write-string string stream :start 1)
1544 (print-float-exponent x (1- e) stream)))))
1546 ;;;; other leaf objects
1548 ;;; If *PRINT-ESCAPE* is false, just do a WRITE-CHAR, otherwise output
1549 ;;; the character name or the character in the #\char format.
1550 (defmethod print-object ((char character) stream)
1551 (if (or *print-escape* *print-readably*)
1552 (let ((graphicp (and (graphic-char-p char)
1553 (standard-char-p char)))
1554 (name (char-name char)))
1555 (write-string "#\\" stream)
1556 (if (and name (or (not graphicp) *print-readably*))
1557 (quote-string name stream)
1558 (write-char char stream)))
1559 (write-char char stream)))
1561 (defmethod print-object ((sap system-area-pointer) stream)
1562 (cond (*read-eval*
1563 (format stream "#.(~S #X~8,'0X)" 'int-sap (sap-int sap)))
1565 (print-unreadable-object (sap stream)
1566 (format stream "system area pointer: #X~8,'0X" (sap-int sap))))))
1568 (defmethod print-object ((weak-pointer weak-pointer) stream)
1569 (print-unreadable-object (weak-pointer stream)
1570 (multiple-value-bind (value validp) (weak-pointer-value weak-pointer)
1571 (cond (validp
1572 (write-string "weak pointer: " stream)
1573 (write value :stream stream))
1575 (write-string "broken weak pointer" stream))))))
1577 (defmethod print-object ((component code-component) stream)
1578 (print-unreadable-object (component stream :identity t)
1579 (let ((dinfo (%code-debug-info component)))
1580 (cond ((eq dinfo :bogus-lra)
1581 (write-string "bogus code object" stream))
1583 (format stream "code object [~D]" (code-n-entries component))
1584 (let ((fun-name (awhen (%code-entry-point component 0)
1585 (%simple-fun-name it))))
1586 (when fun-name
1587 (write-char #\Space stream)
1588 (write fun-name :stream stream))
1589 (cond ((not (typep dinfo 'sb!c::debug-info)))
1590 ((neq (sb!c::debug-info-name dinfo) fun-name)
1591 (write-string ", " stream)
1592 (output-object (sb!c::debug-info-name dinfo) stream)))))))))
1594 #!-(or x86 x86-64)
1595 (defmethod print-object ((lra lra) stream)
1596 (print-unreadable-object (lra stream :identity t)
1597 (write-string "return PC object" stream)))
1599 (defmethod print-object ((fdefn fdefn) stream)
1600 (print-unreadable-object (fdefn stream :type t)
1601 ;; As fdefn names are particularly relevant to those hacking on the compiler
1602 ;; and disassembler, be maximally helpful by neither abbreviating (SETF ...)
1603 ;; due to length cutoff, nor failing to print a package if needed.
1604 ;; Some folks seem to love same-named symbols way too much.
1605 (let ((*print-length* 20)) ; arbitrary
1606 (prin1 (fdefn-name fdefn) stream))))
1608 #!+sb-simd-pack
1609 (defmethod print-object ((pack simd-pack) stream)
1610 (cond ((and *print-readably* *read-eval*)
1611 (multiple-value-bind (format maker extractor)
1612 (etypecase pack
1613 ((simd-pack double-float)
1614 (values "#.(~S ~S ~S)"
1615 '%make-simd-pack-double #'%simd-pack-doubles))
1616 ((simd-pack single-float)
1617 (values "#.(~S ~S ~S ~S ~S)"
1618 '%make-simd-pack-single #'%simd-pack-singles))
1620 (values "#.(~S #X~16,'0X #X~16,'0X)"
1621 '%make-simd-pack-ub64 #'%simd-pack-ub64s)))
1622 (multiple-value-call
1623 #'format stream format maker (funcall extractor pack))))
1625 (print-unreadable-object (pack stream)
1626 (flet ((all-ones-p (value start end &aux (mask (- (ash 1 end) (ash 1 start))))
1627 (= (logand value mask) mask))
1628 (split-num (value start)
1629 (loop
1630 for i from 0 to 3
1631 and v = (ash value (- start)) then (ash v -8)
1632 collect (logand v #xFF))))
1633 (multiple-value-bind (low high)
1634 (%simd-pack-ub64s pack)
1635 (etypecase pack
1636 ((simd-pack double-float)
1637 (multiple-value-bind (v0 v1) (%simd-pack-doubles pack)
1638 (format stream "~S~@{ ~:[~,13E~;~*TRUE~]~}"
1639 'simd-pack
1640 (all-ones-p low 0 64) v0
1641 (all-ones-p high 0 64) v1)))
1642 ((simd-pack single-float)
1643 (multiple-value-bind (v0 v1 v2 v3) (%simd-pack-singles pack)
1644 (format stream "~S~@{ ~:[~,7E~;~*TRUE~]~}"
1645 'simd-pack
1646 (all-ones-p low 0 32) v0
1647 (all-ones-p low 32 64) v1
1648 (all-ones-p high 0 32) v2
1649 (all-ones-p high 32 64) v3)))
1651 (format stream "~S~@{ ~{ ~2,'0X~}~}"
1652 'simd-pack
1653 (split-num low 0) (split-num low 32)
1654 (split-num high 0) (split-num high 32))))))))))
1656 ;;;; functions
1658 (defmethod print-object ((object function) stream)
1659 (let* ((name (%fun-name object))
1660 (proper-name-p (and (legal-fun-name-p name) (fboundp name)
1661 (eq (fdefinition name) object))))
1662 ;; ":TYPE T" is no good, since CLOSURE doesn't have full-fledged status.
1663 (print-unreadable-object (object stream :identity (not proper-name-p))
1664 (format stream "~A~@[ ~S~]"
1665 ;; TYPE-OF is so that GFs print as #<STANDARD-GENERIC-FUNCTION>
1666 ;; and not #<FUNCTION> before SRC;PCL;PRINT-OBJECT is loaded.
1667 (if (closurep object) 'closure (type-of object))
1668 name))))
1670 ;;;; catch-all for unknown things
1672 (defmethod print-object ((object t) stream)
1673 (flet ((output-it (stream)
1674 (print-unreadable-object (object stream :identity t)
1675 (let ((lowtag (lowtag-of object)))
1676 (case lowtag
1677 (#.sb!vm:other-pointer-lowtag
1678 (let ((widetag (widetag-of object)))
1679 (case widetag
1680 (#.sb!vm:value-cell-widetag
1681 (write-string "value cell " stream)
1682 (output-object (value-cell-ref object) stream))
1684 (write-string "unknown pointer object, widetag=" stream)
1685 (let ((*print-base* 16) (*print-radix* t))
1686 (output-integer widetag stream))))))
1687 ((#.sb!vm:fun-pointer-lowtag
1688 #.sb!vm:instance-pointer-lowtag
1689 #.sb!vm:list-pointer-lowtag)
1690 (write-string "unknown pointer object, lowtag=" stream)
1691 (let ((*print-base* 16) (*print-radix* t))
1692 (output-integer lowtag stream)))
1694 (case (widetag-of object)
1695 (#.sb!vm:unbound-marker-widetag
1696 (write-string "unbound marker" stream))
1698 (write-string "unknown immediate object, lowtag=" stream)
1699 (let ((*print-base* 2) (*print-radix* t))
1700 (output-integer lowtag stream))
1701 (write-string ", widetag=" stream)
1702 (let ((*print-base* 16) (*print-radix* t))
1703 (output-integer (widetag-of object) stream))))))))))
1704 (if *print-pretty*
1705 ;; This block might not be necessary. Not sure, probably can't hurt.
1706 (pprint-logical-block (stream nil) (output-it stream))
1707 (output-it stream))))