replace transform: don't fall on NIL.
[sbcl.git] / src / code / print.lisp
blobbcf5576a461cb4bc4294b7b880d88e206b460818
1 ;;;; the printer
3 ;;;; This software is part of the SBCL system. See the README file for
4 ;;;; more information.
5 ;;;;
6 ;;;; This software is derived from the CMU CL system, which was
7 ;;;; written at Carnegie Mellon University and released into the
8 ;;;; public domain. The software is in the public domain and is
9 ;;;; provided with absolutely no warranty. See the COPYING and CREDITS
10 ;;;; files for more information.
12 (in-package "SB-IMPL")
14 ;;;; exported printer control variables
16 (defvar *print-readably* nil
17 "If true, all objects will be printed readably. If readable printing
18 is impossible, an error will be signalled. This overrides the value of
19 *PRINT-ESCAPE*.")
20 (defvar *print-escape* t
21 "Should we print in a reasonably machine-readable way? (possibly
22 overridden by *PRINT-READABLY*)")
23 (defvar *print-pretty* nil ; (set later when pretty-printer is initialized)
24 "Should pretty printing be used?")
25 (defvar *print-base* 10.
26 "The output base for RATIONALs (including integers).")
27 (defvar *print-radix* nil
28 "Should base be verified when printing RATIONALs?")
29 (defvar *print-level* nil
30 "How many levels should be printed before abbreviating with \"#\"?")
31 (defvar *print-length* nil
32 "How many elements at any level should be printed before abbreviating
33 with \"...\"?")
34 (defvar *print-vector-length* nil
35 "Like *PRINT-LENGTH* but works on strings and bit-vectors.
36 Does not affect the cases that are already controlled by *PRINT-LENGTH*")
37 (defvar *print-circle* nil
38 "Should we use #n= and #n# notation to preserve uniqueness in general (and
39 circularity in particular) when printing?")
40 (defvar *print-case* :upcase
41 "What case should the printer should use default?")
42 (defvar *print-array* t
43 "Should the contents of arrays be printed?")
44 (defvar *print-gensym* t
45 "Should #: prefixes be used when printing symbols with null SYMBOL-PACKAGE?")
46 (defvar *print-lines* nil
47 "The maximum number of lines to print per object.")
48 (defvar *print-right-margin* nil
49 "The position of the right margin in ems (for pretty-printing).")
50 (defvar *print-miser-width* nil
51 "If the remaining space between the current column and the right margin
52 is less than this, then print using ``miser-style'' output. Miser
53 style conditional newlines are turned on, and all indentations are
54 turned off. If NIL, never use miser mode.")
55 (defvar *print-pprint-dispatch*
56 (sb-pretty::make-pprint-dispatch-table #() nil nil)
57 "The pprint-dispatch-table that controls how to pretty-print objects.")
58 (defvar *suppress-print-errors* nil
59 "Suppress printer errors when the condition is of the type designated by this
60 variable: an unreadable object representing the error is printed instead.")
62 (define-load-time-global sb-pretty::*standard-pprint-dispatch-table* nil)
63 (defun %with-standard-io-syntax (function)
64 (declare (type function function))
65 (declare (dynamic-extent function))
66 (let ((*package* #.(find-package "COMMON-LISP-USER"))
67 (*print-array* t)
68 (*print-base* 10)
69 (*print-case* :upcase)
70 (*print-circle* nil)
71 (*print-escape* t)
72 (*print-gensym* t)
73 (*print-length* nil)
74 (*print-level* nil)
75 (*print-lines* nil)
76 (*print-miser-width* nil)
77 (*print-pprint-dispatch* sb-pretty::*standard-pprint-dispatch-table*)
78 (*print-pretty* nil)
79 (*print-radix* nil)
80 (*print-readably* t)
81 (*print-right-margin* nil)
82 (*read-base* 10)
83 (*read-default-float-format* 'single-float)
84 (*read-eval* t)
85 (*read-suppress* nil)
86 (*readtable* *standard-readtable*)
87 (*suppress-print-errors* nil)
88 (*print-vector-length* nil))
89 (funcall function)))
91 ;;;; routines to print objects
93 (macrolet ((def (fn doc &rest forms)
94 `(defun ,fn
95 (object
96 &key
97 ,@(if (eq fn 'write) '(stream))
98 ((:escape *print-escape*) *print-escape*)
99 ((:radix *print-radix*) *print-radix*)
100 ((:base *print-base*) *print-base*)
101 ((:circle *print-circle*) *print-circle*)
102 ((:pretty *print-pretty*) *print-pretty*)
103 ((:level *print-level*) *print-level*)
104 ((:length *print-length*) *print-length*)
105 ((:case *print-case*) *print-case*)
106 ((:array *print-array*) *print-array*)
107 ((:gensym *print-gensym*) *print-gensym*)
108 ((:readably *print-readably*) *print-readably*)
109 ((:right-margin *print-right-margin*)
110 *print-right-margin*)
111 ((:miser-width *print-miser-width*)
112 *print-miser-width*)
113 ((:lines *print-lines*) *print-lines*)
114 ((:pprint-dispatch *print-pprint-dispatch*)
115 *print-pprint-dispatch*)
116 ((:suppress-errors *suppress-print-errors*)
117 *suppress-print-errors*))
118 ,doc
119 (declare (explicit-check))
120 ,@forms)))
121 (def write
122 "Output OBJECT to the specified stream, defaulting to *STANDARD-OUTPUT*."
123 (output-object object (out-stream-from-designator stream))
124 object)
125 (def write-to-string
126 "Return the printed representation of OBJECT as a string."
127 (stringify-object object)))
129 ;;; Same as a call to (WRITE OBJECT :STREAM STREAM), but returning OBJECT.
130 (defun %write (object stream)
131 (declare (explicit-check))
132 (output-object object (out-stream-from-designator stream))
133 object)
135 (defun prin1 (object &optional stream)
136 "Output a mostly READable printed representation of OBJECT on the specified
137 STREAM."
138 (declare (explicit-check))
139 (let ((*print-escape* t))
140 (output-object object (out-stream-from-designator stream)))
141 object)
143 (defun princ (object &optional stream)
144 "Output an aesthetic but not necessarily READable printed representation
145 of OBJECT on the specified STREAM."
146 (declare (explicit-check))
147 (let ((*print-escape* nil)
148 (*print-readably* nil))
149 (output-object object (out-stream-from-designator stream)))
150 object)
152 (defun print (object &optional stream)
153 "Output a newline, the mostly READable printed representation of OBJECT, and
154 space to the specified STREAM."
155 (declare (explicit-check))
156 (let ((stream (out-stream-from-designator stream)))
157 (terpri stream)
158 (prin1 object stream)
159 (write-char #\space stream)
160 object))
162 (defun pprint (object &optional stream)
163 "Prettily output OBJECT preceded by a newline."
164 (declare (explicit-check))
165 (let ((*print-pretty* t)
166 (*print-escape* t)
167 (stream (out-stream-from-designator stream)))
168 (terpri stream)
169 (output-object object stream))
170 (values))
172 (defun prin1-to-string (object)
173 "Return the printed representation of OBJECT as a string with
174 slashification on."
175 (let ((*print-escape* t))
176 (stringify-object object)))
178 (defun princ-to-string (object)
179 "Return the printed representation of OBJECT as a string with
180 slashification off."
181 (let ((*print-escape* nil)
182 (*print-readably* nil))
183 (stringify-object object)))
185 ;;; This produces the printed representation of an object as a string.
186 ;;; The few ...-TO-STRING functions above call this.
187 (defun stringify-object (object)
188 (typecase object
189 (integer
190 (multiple-value-bind (fun pretty)
191 (and *print-pretty* (pprint-dispatch object))
192 (if pretty
193 (%with-output-to-string (stream)
194 (sb-pretty:output-pretty-object stream fun object))
195 (let ((buffer-size (approx-chars-in-repr object)))
196 (let* ((string (make-string buffer-size :element-type 'base-char
197 :initial-element (code-char 0)))
198 (stream (%make-finite-base-string-output-stream string)))
199 (declare (inline %make-finite-base-string-output-stream))
200 (declare (dynamic-extent stream))
201 (output-integer object stream *print-base* *print-radix*)
202 ;; ASSUMPTION: we use pre-zeroed memory for unboxed objects.
203 ;; So we can avoid calling %SHRINK-VECTOR, and instead directly
204 ;; set the length.
205 (setf (%array-fill-pointer string)
206 (finite-base-string-output-stream-pointer stream))
207 string)))))
208 ;; Could do something for other numeric types, symbols, ...
210 (%with-output-to-string (stream)
211 (output-object object stream)))))
213 ;;; Estimate the number of chars in the printed representation of OBJECT.
214 ;;; The answer must be an overestimate or exact; never an underestimate.
215 (defun approx-chars-in-repr (object)
216 (declare (integer object))
217 ;; Round *PRINT-BASE* down to the nearest lower power-of-2, call that N,
218 ;; and "guess" that the one character can represent N bits.
219 ;; This is exact for bases which are exactly a power-of-2, or an overestimate
220 ;; otherwise, as mandated by the finite output stream.
221 (let ((bits-per-char
222 (aref #.(coerce
223 ;; base 2 or base 3 = 1 bit per character
224 ;; base 4 .. base 7 = 2 bits per character
225 ;; base 8 .. base 15 = 3 bits per character, etc
226 #(1 1 2 2 2 2 3 3 3 3 3 3 3 3
227 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 5 5 5 5 5)
228 '(vector (unsigned-byte 8)))
229 (- *print-base* 2))))
230 (+ (if (minusp object) 1 0) ; leading sign
231 (if *print-radix* 4 0) ; #rNN or trailing decimal
232 (ceiling (if (fixnump object)
233 sb-vm:n-positive-fixnum-bits
234 (* (%bignum-length object) sb-bignum::digit-size))
235 bits-per-char))))
237 ;;;; support for the PRINT-UNREADABLE-OBJECT macro
239 (defun print-not-readable-error (object stream)
240 (restart-case
241 (error 'print-not-readable :object object)
242 (print-unreadably ()
243 :report "Print unreadably."
244 (let ((*print-readably* nil))
245 (output-object object stream)
246 object))
247 (use-value (o)
248 :report "Supply an object to be printed instead."
249 :interactive
250 (lambda ()
251 (read-evaluated-form "~@<Enter an object (evaluated): ~@:>"))
252 (output-object o stream)
253 o)))
255 ;;; guts of PRINT-UNREADABLE-OBJECT
256 (defun %print-unreadable-object (object stream flags &optional body)
257 (declare (type (or null function) body))
258 (if *print-readably*
259 (print-not-readable-error object stream)
260 (flet ((print-description (&aux (type (logbitp 0 (truly-the (mod 4) flags)))
261 (identity (logbitp 1 flags)))
262 (when type
263 (write (type-of object) :stream stream :circle nil
264 :level nil :length nil)
265 ;; Do NOT insert a pprint-newline here.
266 ;; See ba34717602d80e5fd74d10e61f4729fb0d019a0c
267 (write-char #\space stream))
268 (when body
269 (funcall body))
270 (when identity
271 (when (or body (not type))
272 (write-char #\space stream))
273 ;; Nor here.
274 (write-char #\{ stream)
275 (%output-integer-in-base (get-lisp-obj-address object) 16 stream)
276 (write-char #\} stream))))
277 (cond ((print-pretty-on-stream-p stream)
278 ;; Since we're printing prettily on STREAM, format the
279 ;; object within a logical block. PPRINT-LOGICAL-BLOCK does
280 ;; not rebind the stream when it is already a pretty stream,
281 ;; so output from the body will go to the same stream.
282 (pprint-logical-block (stream nil :prefix "#<" :suffix ">")
283 (print-description)))
285 (write-string "#<" stream)
286 (print-description)
287 (write-char #\> stream)))))
288 nil)
291 ;;;; circularity detection stuff
293 ;;; When *PRINT-CIRCLE* is T, this gets bound to a hash table that
294 ;;; (eventually) ends up with entries for every object printed. When
295 ;;; we are initially looking for circularities, we enter a T when we
296 ;;; find an object for the first time, and a 0 when we encounter an
297 ;;; object a second time around. When we are actually printing, the 0
298 ;;; entries get changed to the actual marker value when they are first
299 ;;; printed.
300 (defvar *circularity-hash-table* nil)
302 ;;; When NIL, we are just looking for circularities. After we have
303 ;;; found them all, this gets bound to 0. Then whenever we need a new
304 ;;; marker, it is incremented.
305 (defvar *circularity-counter* nil)
307 ;;; Check to see whether OBJECT is a circular reference, and return
308 ;;; something non-NIL if it is. If ASSIGN is true, reference
309 ;;; bookkeeping will only be done for existing entries, no new
310 ;;; references will be recorded. If ASSIGN is true, then the number to
311 ;;; use in the #n= and #n# noise is assigned at this time.
313 ;;; Note: CHECK-FOR-CIRCULARITY must be called *exactly* once with
314 ;;; ASSIGN true, or the circularity detection noise will get confused
315 ;;; about when to use #n= and when to use #n#. If this returns non-NIL
316 ;;; when ASSIGN is true, then you must call HANDLE-CIRCULARITY on it.
317 ;;; If CHECK-FOR-CIRCULARITY returns :INITIATE as the second value,
318 ;;; you need to initiate the circularity detection noise, e.g. bind
319 ;;; *CIRCULARITY-HASH-TABLE* and *CIRCULARITY-COUNTER* to suitable values
320 ;;; (see #'OUTPUT-OBJECT for an example).
322 ;;; Circularity detection is done in two places, OUTPUT-OBJECT and
323 ;;; WITH-CIRCULARITY-DETECTION (which is used from PPRINT-LOGICAL-BLOCK).
324 ;;; These checks aren't really redundant (at least I can't really see
325 ;;; a clean way of getting by with the checks in only one of the places).
326 ;;; This causes problems when mixed with pprint-dispatching; an object is
327 ;;; marked as visited in OUTPUT-OBJECT, dispatched to a pretty printer
328 ;;; that uses PPRINT-LOGICAL-BLOCK (directly or indirectly), leading to
329 ;;; output like #1=#1#. The MODE parameter is used for detecting and
330 ;;; correcting this problem.
331 (defun check-for-circularity (object &optional assign (mode t))
332 (when (null *print-circle*)
333 ;; Don't bother, nobody cares.
334 (return-from check-for-circularity nil))
335 (let ((circularity-hash-table *circularity-hash-table*))
336 (cond
337 ((null circularity-hash-table)
338 (values nil :initiate))
339 ((null *circularity-counter*)
340 (ecase (gethash object circularity-hash-table)
341 ((nil)
342 ;; first encounter
343 (setf (gethash object circularity-hash-table) mode)
344 ;; We need to keep looking.
345 nil)
346 ((:logical-block)
347 (setf (gethash object circularity-hash-table)
348 :logical-block-circular)
350 ((t)
351 (cond ((eq mode :logical-block)
352 ;; We've seen the object before in output-object, and now
353 ;; a second time in a PPRINT-LOGICAL-BLOCK (for example
354 ;; via pprint-dispatch). Don't mark it as circular yet.
355 (setf (gethash object circularity-hash-table)
356 :logical-block)
357 nil)
359 ;; second encounter
360 (setf (gethash object circularity-hash-table) 0)
361 ;; It's a circular reference.
362 t)))
363 ((0 :logical-block-circular)
364 ;; It's a circular reference.
365 t)))
367 (let ((value (gethash object circularity-hash-table)))
368 (case value
369 ((nil t :logical-block)
370 ;; If NIL, we found an object that wasn't there the
371 ;; first time around. If T or :LOGICAL-BLOCK, this
372 ;; object appears exactly once. Either way, just print
373 ;; the thing without any special processing. Note: you
374 ;; might argue that finding a new object means that
375 ;; something is broken, but this can happen. If someone
376 ;; uses the ~@<...~:> format directive, it conses a new
377 ;; list each time though format (i.e. the &REST list),
378 ;; so we will have different cdrs.
379 nil)
380 ;; A circular reference to something that will be printed
381 ;; as a logical block. Wait until we're called from
382 ;; PPRINT-LOGICAL-BLOCK with ASSIGN true before assigning the
383 ;; number.
385 ;; If mode is :LOGICAL-BLOCK and assign is false, return true
386 ;; to indicate that this object is circular, but don't assign
387 ;; it a number yet. This is necessary for cases like
388 ;; #1=(#2=(#2# . #3=(#1# . #3#))))).
389 (:logical-block-circular
390 (cond ((and (not assign)
391 (eq mode :logical-block))
393 ((and assign
394 (eq mode :logical-block))
395 (let ((value (incf *circularity-counter*)))
396 ;; first occurrence of this object: Set the counter.
397 (setf (gethash object circularity-hash-table) value)
398 value))
400 nil)))
402 (if (eq assign t)
403 (let ((value (incf *circularity-counter*)))
404 ;; first occurrence of this object: Set the counter.
405 (setf (gethash object circularity-hash-table) value)
406 value)
409 ;; second or later occurrence
410 (- value))))))))
412 ;;; Handle the results of CHECK-FOR-CIRCULARITY. If this returns T then
413 ;;; you should go ahead and print the object. If it returns NIL, then
414 ;;; you should blow it off.
415 (defun handle-circularity (marker stream)
416 (case marker
417 (:initiate
418 ;; Someone forgot to initiate circularity detection.
419 (let ((*print-circle* nil))
420 (error "trying to use CHECK-FOR-CIRCULARITY when ~
421 circularity checking isn't initiated")))
422 ((t :logical-block)
423 ;; It's a second (or later) reference to the object while we are
424 ;; just looking. So don't bother groveling it again.
425 nil)
427 (write-char #\# stream)
428 (output-integer (abs marker) stream 10 nil)
429 (cond ((minusp marker)
430 (write-char #\# stream)
431 nil)
433 (write-char #\= stream)
434 t)))))
436 (defmacro with-circularity-detection ((object stream) &body body)
437 (with-unique-names (marker body-name)
438 `(labels ((,body-name ()
439 ,@body))
440 (cond ((or (not *print-circle*)
441 (uniquely-identified-by-print-p ,object))
442 (,body-name))
443 (*circularity-hash-table*
444 (let ((,marker (check-for-circularity ,object t :logical-block)))
445 (if ,marker
446 (when (handle-circularity ,marker ,stream)
447 (,body-name))
448 (,body-name))))
450 (let ((*circularity-hash-table* (make-hash-table :test 'eq)))
451 (output-object ,object *null-broadcast-stream*)
452 (let ((*circularity-counter* 0))
453 (let ((,marker (check-for-circularity ,object t
454 :logical-block)))
455 (when ,marker
456 (handle-circularity ,marker ,stream)))
457 (,body-name))))))))
459 ;;;; level and length abbreviations
461 ;;; The current level we are printing at, to be compared against
462 ;;; *PRINT-LEVEL*. See the macro DESCEND-INTO for a handy interface to
463 ;;; depth abbreviation.
464 (defvar *current-level-in-print* 0)
465 (declaim (index *current-level-in-print*))
467 ;;; Automatically handle *PRINT-LEVEL* abbreviation. If we are too
468 ;;; deep, then a #\# is printed to STREAM and BODY is ignored.
469 (defmacro descend-into ((stream) &body body)
470 (let ((flet-name (gensym "DESCEND")))
471 `(flet ((,flet-name ()
472 ,@body))
473 (cond ((and (null *print-readably*)
474 (let ((level *print-level*))
475 (and level (>= *current-level-in-print* level))))
476 (write-char #\# ,stream))
478 (let ((*current-level-in-print* (1+ *current-level-in-print*)))
479 (,flet-name)))))))
481 ;;; Punt if INDEX is equal or larger then *PRINT-LENGTH* (and
482 ;;; *PRINT-READABLY* is NIL) by outputting \"...\" and returning from
483 ;;; the block named NIL.
484 (defmacro punt-print-if-too-long (index stream)
485 `(when (and (not *print-readably*)
486 (let ((len *print-length*))
487 (and len (>= ,index len))))
488 (write-string "..." ,stream)
489 (return)))
492 ;;;; OUTPUT-OBJECT -- the main entry point
494 ;;; Objects whose print representation identifies them EQLly don't
495 ;;; need to be checked for circularity.
496 (defun uniquely-identified-by-print-p (x)
497 (or (numberp x)
498 (characterp x)
499 (and (symbolp x)
500 (sb-xc:symbol-package x))))
502 (defvar *in-print-error* nil)
504 ;;; Output OBJECT to STREAM observing all printer control variables.
505 (defun output-object (object stream)
506 ;; FIXME: this function is declared EXPLICIT-CHECK, so it allows STREAM
507 ;; to be T or NIL (a stream-designator), which is not really right
508 ;; if eventually the call will be to a PRINT-OBJECT method,
509 ;; since the generic function should always receive a stream.
510 (declare (explicit-check))
511 (labels ((print-it (stream)
512 (multiple-value-bind (fun pretty)
513 (and *print-pretty* (pprint-dispatch object))
514 (if pretty
515 (sb-pretty:output-pretty-object stream fun object)
516 (output-ugly-object stream object))))
517 (handle-it (stream)
518 (if *suppress-print-errors*
519 (handler-bind
520 ((condition
521 (lambda (condition)
522 (when (typep condition *suppress-print-errors*)
523 (cond (*in-print-error*
524 (write-string "(error printing " stream)
525 (write-string *in-print-error* stream)
526 (write-string ")" stream))
528 (let ((*print-readably* nil)
529 (*print-escape* t))
530 (write-string
531 "#<error printing a " stream)
532 (let ((*in-print-error* "type"))
533 (output-object (type-of object) stream))
534 (write-string ": " stream)
535 (let ((*in-print-error* "condition"))
536 (output-object condition stream))
537 (write-string ">" stream))))
538 (return-from handle-it object)))))
539 (print-it stream))
540 (print-it stream)))
541 (check-it (stream)
542 (multiple-value-bind (marker initiate)
543 (check-for-circularity object t)
544 (if (eq initiate :initiate)
545 (let ((*circularity-hash-table*
546 (make-hash-table :test 'eq)))
547 (check-it *null-broadcast-stream*)
548 (let ((*circularity-counter* 0))
549 (check-it stream)))
550 ;; otherwise
551 (if marker
552 (when (handle-circularity marker stream)
553 (handle-it stream))
554 (handle-it stream))))))
555 (cond (;; Maybe we don't need to bother with circularity detection.
556 (or (not *print-circle*)
557 (uniquely-identified-by-print-p object))
558 (handle-it stream))
559 (;; If we have already started circularity detection, this
560 ;; object might be a shared reference. If we have not, then
561 ;; if it is a compound object it might contain a circular
562 ;; reference to itself or multiple shared references.
563 (or *circularity-hash-table*
564 (compound-object-p object))
565 (check-it stream))
567 (handle-it stream)))))
569 ;;; Output OBJECT to STREAM observing all printer control variables
570 ;;; except for *PRINT-PRETTY*. Note: if *PRINT-PRETTY* is non-NIL,
571 ;;; then the pretty printer will be used for any components of OBJECT,
572 ;;; just not for OBJECT itself.
573 (defun output-ugly-object (stream object)
574 (when (%instancep object)
575 (let ((layout (%instance-layout object)))
576 ;; If an instance has no layout, do something sensible. Can't compare layout
577 ;; to 0 using EQ or EQL because that would be tautologically NIL as per fndb.
578 ;; This is better than declaring EQ or %INSTANCE-LAYOUT notinline.
579 (unless (logtest (get-lisp-obj-address layout) sb-vm:widetag-mask)
580 (return-from output-ugly-object
581 (print-unreadable-object (object stream :identity t)
582 (prin1 'instance stream))))
583 (let ((classoid (layout-classoid layout)))
584 ;; Additionally, don't crash if the object is an obsolete thing with
585 ;; no update protocol.
586 (when (or (sb-kernel::undefined-classoid-p classoid)
587 (and (layout-invalid layout)
588 (logtest (layout-flags layout)
589 (logior +structure-layout-flag+
590 +condition-layout-flag+))))
591 (return-from output-ugly-object
592 (print-unreadable-object (object stream :identity t)
593 (format stream "UNPRINTABLE instance of ~W" classoid)))))))
594 (when (funcallable-instance-p object)
595 (let ((layout (%fun-layout object)))
596 (unless (logtest (get-lisp-obj-address layout) sb-vm:widetag-mask)
597 (return-from output-ugly-object
598 (print-unreadable-object (object stream :identity t)
599 (prin1 'funcallable-instance stream))))))
600 (print-object object stream))
602 ;;;; symbols
604 (defmethod print-object ((object symbol) stream)
605 (if (or *print-escape* *print-readably*)
606 ;; Write so that reading back works
607 (output-symbol object (sb-xc:symbol-package object) stream)
608 ;; Write only the characters of the name, never the package
609 (let ((rt *readtable*))
610 (output-symbol-case-dispatch *print-case* (readtable-case rt)
611 (symbol-name object) stream rt))))
613 (defun output-symbol (symbol package stream)
614 (let* ((readably *print-readably*)
615 (readtable (if readably *standard-readtable* *readtable*))
616 (print-case *print-case*)
617 (readtable-case (readtable-case readtable)))
618 (flet ((output-token (name)
619 (declare (type simple-string name))
620 (cond ((or (and (readtable-normalization readtable)
621 (not (sb-unicode:normalized-p name :nfkc)))
622 (symbol-quotep name readtable))
623 ;; Output NAME surrounded with |'s,
624 ;; and with any embedded |'s or \'s escaped.
625 (write-char #\| stream)
626 (dotimes (index (length name))
627 (let ((char (char name index)))
628 ;; Hmm. Should these depend on what characters
629 ;; are actually escapes in the readtable ?
630 ;; (See similar remark at DEFUN QUOTE-STRING)
631 (when (or (char= char #\\) (char= char #\|))
632 (write-char #\\ stream))
633 (write-char char stream)))
634 (write-char #\| stream))
636 (output-symbol-case-dispatch print-case readtable-case
637 name stream readtable)))))
638 (let ((name (symbol-name symbol))
639 (current (sane-package)))
640 (cond
641 ;; The ANSI spec "22.1.3.3.1 Package Prefixes for Symbols"
642 ;; requires that keywords be printed with preceding colons
643 ;; always, regardless of the value of *PACKAGE*.
644 ((eq package *keyword-package*)
645 (write-char #\: stream))
646 ;; Otherwise, if the symbol's home package is the current
647 ;; one, then a prefix is never necessary.
648 ((eq package current))
649 ;; Uninterned symbols print with a leading #:.
650 ((null package)
651 (when (or *print-gensym* readably)
652 (write-string "#:" stream)))
654 (multiple-value-bind (found accessible) (find-symbol name current)
655 ;; If we can find the symbol by looking it up, it need not
656 ;; be qualified. This can happen if the symbol has been
657 ;; inherited from a package other than its home package.
659 ;; To preserve print-read consistency, use the local nickname if
660 ;; one exists.
661 (unless (and accessible (eq found symbol))
662 (output-token (or (package-local-nickname package current)
663 (package-name package)))
664 (write-string (if (symbol-externalp symbol package) ":" "::")
665 stream)))))
666 (output-token name)))))
668 ;;;; escaping symbols
670 ;;; When we print symbols we have to figure out if they need to be
671 ;;; printed with escape characters. This isn't a whole lot easier than
672 ;;; reading symbols in the first place.
674 ;;; For each character, the value of the corresponding element is a
675 ;;; fixnum with bits set corresponding to attributes that the
676 ;;; character has. All characters have at least one bit set, so we can
677 ;;; search for any character with a positive test.
679 ;;; constants which are a bit-mask for each interesting character attribute
680 (defconstant other-attribute (ash 1 0)) ; Anything else legal.
681 (defconstant number-attribute (ash 1 1)) ; A numeric digit.
682 (defconstant uppercase-attribute (ash 1 2)) ; An uppercase letter.
683 (defconstant lowercase-attribute (ash 1 3)) ; A lowercase letter.
684 (defconstant sign-attribute (ash 1 4)) ; +-
685 (defconstant extension-attribute (ash 1 5)) ; ^_
686 (defconstant dot-attribute (ash 1 6)) ; .
687 (defconstant slash-attribute (ash 1 7)) ; /
688 (defconstant funny-attribute (ash 1 8)) ; Anything illegal.
690 ;;; LETTER-ATTRIBUTE is a local of SYMBOL-QUOTEP. It matches letters
691 ;;; that don't need to be escaped (according to READTABLE-CASE.)
692 (defconstant-eqx +attribute-names+
693 '((number . number-attribute) (lowercase . lowercase-attribute)
694 (uppercase . uppercase-attribute) (letter . letter-attribute)
695 (sign . sign-attribute) (extension . extension-attribute)
696 (dot . dot-attribute) (slash . slash-attribute)
697 (other . other-attribute) (funny . funny-attribute))
698 #'equal)
700 ;;; For each character, the value of the corresponding element is the
701 ;;; lowest base in which that character is a digit.
702 (defconstant-eqx +digit-bases+
703 #.(let ((a (sb-xc:make-array base-char-code-limit
704 :retain-specialization-for-after-xc-core t
705 :element-type '(unsigned-byte 8)
706 :initial-element 36)))
707 (dotimes (i 36 a)
708 (let ((char (digit-char i 36)))
709 (setf (aref a (char-code char)) i))))
710 #'equalp)
712 (defconstant-eqx +character-attributes+
713 #.(let ((a (sb-xc:make-array 160 ; FIXME
714 :retain-specialization-for-after-xc-core t
715 :element-type '(unsigned-byte 16)
716 :initial-element 0)))
717 (flet ((set-bit (char bit)
718 (let ((code (char-code char)))
719 (setf (aref a code) (logior bit (aref a code))))))
721 (dolist (char '(#\! #\@ #\$ #\% #\& #\* #\= #\~ #\[ #\] #\{ #\}
722 #\? #\< #\>))
723 (set-bit char other-attribute))
725 (dotimes (i 10)
726 (set-bit (digit-char i) number-attribute))
728 (do ((code (char-code #\A) (1+ code))
729 (end (char-code #\Z)))
730 ((> code end))
731 (declare (fixnum code end))
732 (set-bit (code-char code) uppercase-attribute)
733 (set-bit (char-downcase (code-char code)) lowercase-attribute))
735 (set-bit #\- sign-attribute)
736 (set-bit #\+ sign-attribute)
737 (set-bit #\^ extension-attribute)
738 (set-bit #\_ extension-attribute)
739 (set-bit #\. dot-attribute)
740 (set-bit #\/ slash-attribute)
742 ;; Mark anything not explicitly allowed as funny.
743 (dotimes (i 160) ; FIXME
744 (when (zerop (aref a i))
745 (setf (aref a i) funny-attribute))))
747 #'equalp)
749 ;;; A FSM-like thingie that determines whether a symbol is a potential
750 ;;; number or has evil characters in it.
751 (defun symbol-quotep (name readtable)
752 (declare (simple-string name))
753 (macrolet ((advance (tag &optional (at-end t))
754 `(progn
755 (when (= index len)
756 ,(if at-end '(go TEST-SIGN) '(return nil)))
757 (setq current (schar name index)
758 code (char-code current)
759 bits (cond ; FIXME
760 ((< code 160) (aref attributes code))
761 ((upper-case-p current) uppercase-attribute)
762 ((lower-case-p current) lowercase-attribute)
763 (t other-attribute)))
764 (incf index)
765 (go ,tag)))
766 (test (&rest attributes)
767 `(not (zerop
768 (the fixnum
769 (logand
770 (logior ,@(mapcar
771 (lambda (x)
772 (or (cdr (assoc x
773 +attribute-names+))
774 (error "Blast!")))
775 attributes))
776 bits)))))
777 (digitp ()
778 `(and (< code 128) ; FIXME
779 (< (the fixnum (aref bases code)) base))))
781 (prog ((len (length name))
782 (attributes #.+character-attributes+)
783 (bases #.+digit-bases+)
784 (base *print-base*)
785 (letter-attribute
786 (case (readtable-case readtable)
787 (:upcase uppercase-attribute)
788 (:downcase lowercase-attribute)
789 (t (logior lowercase-attribute uppercase-attribute))))
790 (index 0)
791 (bits 0)
792 (code 0)
793 current)
794 (declare (fixnum len base index bits code))
795 (advance START t)
797 TEST-SIGN ; At end, see whether it is a sign...
798 (return (not (test sign)))
800 OTHER ; not potential number, see whether funny chars...
801 (let ((mask (logxor (logior lowercase-attribute uppercase-attribute
802 funny-attribute)
803 letter-attribute)))
804 (do ((i (1- index) (1+ i)))
805 ((= i len) (return-from symbol-quotep nil))
806 (unless (zerop (logand (let* ((char (schar name i))
807 (code (char-code char)))
808 (cond
809 ((< code 160) (aref attributes code))
810 ((upper-case-p char) uppercase-attribute)
811 ((lower-case-p char) lowercase-attribute)
812 (t other-attribute)))
813 mask))
814 (return-from symbol-quotep t))))
816 START
817 (when (digitp)
818 (if (test letter)
819 (advance LAST-DIGIT-ALPHA)
820 (advance DIGIT)))
821 (when (test letter number other slash) (advance OTHER nil))
822 (when (char= current #\.) (advance DOT-FOUND))
823 (when (test sign extension) (advance START-STUFF nil))
824 (return t)
826 DOT-FOUND ; leading dots...
827 (when (test letter) (advance START-DOT-MARKER nil))
828 (when (digitp) (advance DOT-DIGIT))
829 (when (test number other) (advance OTHER nil))
830 (when (test extension slash sign) (advance START-DOT-STUFF nil))
831 (when (char= current #\.) (advance DOT-FOUND))
832 (return t)
834 START-STUFF ; leading stuff before any dot or digit
835 (when (digitp)
836 (if (test letter)
837 (advance LAST-DIGIT-ALPHA)
838 (advance DIGIT)))
839 (when (test number other) (advance OTHER nil))
840 (when (test letter) (advance START-MARKER nil))
841 (when (char= current #\.) (advance START-DOT-STUFF nil))
842 (when (test sign extension slash) (advance START-STUFF nil))
843 (return t)
845 START-MARKER ; number marker in leading stuff...
846 (when (test letter) (advance OTHER nil))
847 (go START-STUFF)
849 START-DOT-STUFF ; leading stuff containing dot without digit...
850 (when (test letter) (advance START-DOT-STUFF nil))
851 (when (digitp) (advance DOT-DIGIT))
852 (when (test sign extension dot slash) (advance START-DOT-STUFF nil))
853 (when (test number other) (advance OTHER nil))
854 (return t)
856 START-DOT-MARKER ; number marker in leading stuff with dot..
857 ;; leading stuff containing dot without digit followed by letter...
858 (when (test letter) (advance OTHER nil))
859 (go START-DOT-STUFF)
861 DOT-DIGIT ; in a thing with dots...
862 (when (test letter) (advance DOT-MARKER))
863 (when (digitp) (advance DOT-DIGIT))
864 (when (test number other) (advance OTHER nil))
865 (when (test sign extension dot slash) (advance DOT-DIGIT))
866 (return t)
868 DOT-MARKER ; number marker in number with dot...
869 (when (test letter) (advance OTHER nil))
870 (go DOT-DIGIT)
872 LAST-DIGIT-ALPHA ; previous char is a letter digit...
873 (when (or (digitp) (test sign slash))
874 (advance ALPHA-DIGIT))
875 (when (test letter number other dot) (advance OTHER nil))
876 (return t)
878 ALPHA-DIGIT ; seen a digit which is a letter...
879 (when (or (digitp) (test sign slash))
880 (if (test letter)
881 (advance LAST-DIGIT-ALPHA)
882 (advance ALPHA-DIGIT)))
883 (when (test letter) (advance ALPHA-MARKER))
884 (when (test number other dot) (advance OTHER nil))
885 (return t)
887 ALPHA-MARKER ; number marker in number with alpha digit...
888 (when (test letter) (advance OTHER nil))
889 (go ALPHA-DIGIT)
891 DIGIT ; seen only ordinary (non-alphabetic) numeric digits...
892 (when (digitp)
893 (if (test letter)
894 (advance ALPHA-DIGIT)
895 (advance DIGIT)))
896 (when (test number other) (advance OTHER nil))
897 (when (test letter) (advance MARKER))
898 (when (test extension slash sign) (advance DIGIT))
899 (when (char= current #\.) (advance DOT-DIGIT))
900 (return t)
902 MARKER ; number marker in a numeric number...
903 ;; ("What," you may ask, "is a 'number marker'?" It's something
904 ;; that a conforming implementation might use in number syntax.
905 ;; See ANSI 2.3.1.1 "Potential Numbers as Tokens".)
906 (when (test letter) (advance OTHER nil))
907 (go DIGIT))))
909 ;;;; case hackery: One of these functions is chosen to output symbol
910 ;;;; names according to the values of *PRINT-CASE* and READTABLE-CASE.
912 (declaim (start-block output-symbol-case-dispatch))
914 ;;; called when:
915 ;;; READTABLE-CASE *PRINT-CASE*
916 ;;; :UPCASE :UPCASE
917 ;;; :DOWNCASE :DOWNCASE
918 ;;; :PRESERVE any
919 (defun output-preserve-symbol (pname stream readtable)
920 (declare (ignore readtable))
921 (write-string pname stream))
923 ;;; called when:
924 ;;; READTABLE-CASE *PRINT-CASE*
925 ;;; :UPCASE :DOWNCASE
926 (defun output-lowercase-symbol (pname stream readtable)
927 (declare (simple-string pname) (ignore readtable))
928 (dotimes (index (length pname))
929 (let ((char (schar pname index)))
930 (write-char (char-downcase char) stream))))
932 ;;; called when:
933 ;;; READTABLE-CASE *PRINT-CASE*
934 ;;; :DOWNCASE :UPCASE
935 (defun output-uppercase-symbol (pname stream readtable)
936 (declare (simple-string pname) (ignore readtable))
937 (dotimes (index (length pname))
938 (let ((char (schar pname index)))
939 (write-char (char-upcase char) stream))))
941 ;;; called when:
942 ;;; READTABLE-CASE *PRINT-CASE*
943 ;;; :UPCASE :CAPITALIZE
944 ;;; :DOWNCASE :CAPITALIZE
945 (defun output-capitalize-symbol (pname stream readtable)
946 (declare (simple-string pname))
947 (let ((prev-not-alphanum t)
948 (up (eq (readtable-case readtable) :upcase)))
949 (dotimes (i (length pname))
950 (let ((char (char pname i)))
951 (write-char (if up
952 (if (or prev-not-alphanum (lower-case-p char))
953 char
954 (char-downcase char))
955 (if prev-not-alphanum
956 (char-upcase char)
957 char))
958 stream)
959 (setq prev-not-alphanum (not (alphanumericp char)))))))
961 ;;; called when:
962 ;;; READTABLE-CASE *PRINT-CASE*
963 ;;; :INVERT any
964 (defun output-invert-symbol (pname stream readtable)
965 (declare (simple-string pname) (ignore readtable))
966 (let ((all-upper t)
967 (all-lower t))
968 (dotimes (i (length pname))
969 (let ((ch (schar pname i)))
970 (when (both-case-p ch)
971 (if (upper-case-p ch)
972 (setq all-lower nil)
973 (setq all-upper nil)))))
974 (cond (all-upper (output-lowercase-symbol pname stream nil))
975 (all-lower (output-uppercase-symbol pname stream nil))
977 (write-string pname stream)))))
979 ;;; Call an output function based on PRINT-CASE and READTABLE-CASE.
980 (defun output-symbol-case-dispatch (print-case readtable-case name stream readtable)
981 (ecase readtable-case
982 (:upcase
983 (ecase print-case
984 (:upcase (output-preserve-symbol name stream readtable))
985 (:downcase (output-lowercase-symbol name stream readtable))
986 (:capitalize (output-capitalize-symbol name stream readtable))))
987 (:downcase
988 (ecase print-case
989 (:upcase (output-uppercase-symbol name stream readtable))
990 (:downcase (output-preserve-symbol name stream readtable))
991 (:capitalize (output-capitalize-symbol name stream readtable))))
992 (:preserve (output-preserve-symbol name stream readtable))
993 (:invert (output-invert-symbol name stream readtable))))
995 (declaim (end-block))
997 ;;;; recursive objects
999 (defmethod print-object ((list cons) stream)
1000 (descend-into (stream)
1001 (write-char #\( stream)
1002 (let ((length 0)
1003 (list list))
1004 (loop
1005 (punt-print-if-too-long length stream)
1006 (output-object (pop list) stream)
1007 (unless list
1008 (return))
1009 (when (or (atom list)
1010 (check-for-circularity list))
1011 (write-string " . " stream)
1012 (output-object list stream)
1013 (return))
1014 (write-char #\space stream)
1015 (incf length)))
1016 (write-char #\) stream)))
1018 (defmethod print-object ((vector vector) stream)
1019 (let ((readably *print-readably*))
1020 (flet ((cut-length ()
1021 (when (and (not readably)
1022 *print-vector-length*
1023 (> (length vector) *print-vector-length*))
1024 (print-unreadable-object (vector stream :type t :identity t)
1025 (format stream "~A..."
1026 (make-array *print-vector-length*
1027 :element-type (array-element-type vector)
1028 :displaced-to vector)))
1029 t)))
1030 (cond ((stringp vector)
1031 (cond ((and readably (not (typep vector '(vector character))))
1032 (output-unreadable-array-readably vector stream))
1033 ((and *print-escape*
1034 (cut-length)))
1035 ((or *print-escape* readably)
1036 (write-char #\" stream)
1037 (quote-string vector stream)
1038 (write-char #\" stream))
1040 (write-string vector stream))))
1041 ((or (null (array-element-type vector))
1042 (not (or *print-array* readably)))
1043 (output-terse-array vector stream))
1044 ((bit-vector-p vector)
1045 (cond ((cut-length))
1047 (write-string "#*" stream)
1048 (dovector (bit vector)
1049 ;; (Don't use OUTPUT-OBJECT here, since this code
1050 ;; has to work for all possible *PRINT-BASE* values.)
1051 (write-char (if (zerop bit) #\0 #\1) stream)))))
1052 ((or (not readably) (array-readably-printable-p vector))
1053 (descend-into (stream)
1054 (write-string "#(" stream)
1055 (dotimes (i (length vector))
1056 (unless (zerop i)
1057 (write-char #\space stream))
1058 (punt-print-if-too-long i stream)
1059 (output-object (aref vector i) stream))
1060 (write-string ")" stream)))
1063 (output-unreadable-array-readably vector stream))))))
1065 ;;; Output a string, quoting characters to be readable by putting a slash in front
1066 ;;; of any character satisfying NEEDS-SLASH-P.
1067 (defun quote-string (string stream)
1068 (macrolet ((needs-slash-p (char)
1069 ;; KLUDGE: We probably should look at the readtable, but just do
1070 ;; this for now. [noted by anonymous long ago] -- WHN 19991130
1071 `(let ((c ,char)) (or (char= c #\\) (char= c #\"))))
1072 (scan (type)
1073 ;; Pre-test for any escaping, and if needed, do char-at-a-time output.
1074 ;; For 1 or 0 characters, always take the WRITE-CHAR branch.
1075 `(let ((data (truly-the ,type data)))
1076 (declare (optimize (sb-c:insert-array-bounds-checks 0)))
1077 (when (or (<= (- end start) 1)
1078 (do ((index start (1+ index)))
1079 ((>= index end))
1080 (when (needs-slash-p (schar data index)) (return t))))
1081 (do ((index start (1+ index)))
1082 ((>= index end) (return-from quote-string))
1083 (let ((char (schar data index)))
1084 (when (needs-slash-p char) (write-char #\\ stream))
1085 (write-char char stream)))))))
1086 (with-array-data ((data string) (start) (end)
1087 :check-fill-pointer t)
1088 (if (simple-base-string-p data)
1089 (scan simple-base-string)
1090 #+sb-unicode (scan simple-character-string)))
1091 ;; If no escaping needed, WRITE-STRING is way faster, up to 2x in my testing,
1092 ;; than WRITE-CHAR because the stream layer will get so many fewer calls.
1093 (write-string string stream)))
1095 (defun array-readably-printable-p (array)
1096 (and (eq (array-element-type array) t)
1097 (let ((zero (position 0 (array-dimensions array)))
1098 (number (position 0 (array-dimensions array)
1099 :test (complement #'eql)
1100 :from-end t)))
1101 (or (null zero) (null number) (> zero number)))))
1103 ;;; Output the printed representation of any array in either the #< or #A
1104 ;;; form.
1105 (defmethod print-object ((array array) stream)
1106 (if (and (or *print-array* *print-readably*) (array-element-type array))
1107 (output-array-guts array stream)
1108 (output-terse-array array stream)))
1110 ;;; Output the abbreviated #< form of an array.
1111 (defun output-terse-array (array stream)
1112 (let ((*print-level* nil)
1113 (*print-length* nil))
1114 (if (and (not (array-element-type array)) *print-readably* *read-eval*)
1115 (format stream "#.(~S '~D :ELEMENT-TYPE ~S)"
1116 'make-array (array-dimensions array) nil)
1117 (print-unreadable-object (array stream :type t :identity t)))))
1119 ;;; Convert an array into a list that can be used with MAKE-ARRAY's
1120 ;;; :INITIAL-CONTENTS keyword argument.
1121 (defun listify-array (array)
1122 (flet ((compact (seq)
1123 (typecase array
1124 (string
1125 (coerce seq '(simple-array character (*))))
1126 ((array bit)
1127 (coerce seq 'bit-vector))
1129 seq))))
1130 (if (typep array '(or string bit-vector))
1131 (compact array)
1132 (with-array-data ((data array) (start) (end))
1133 (declare (ignore end))
1134 (labels ((listify (dimensions index)
1135 (if (null dimensions)
1136 (aref data index)
1137 (let* ((dimension (car dimensions))
1138 (dimensions (cdr dimensions))
1139 (count (reduce #'* dimensions)))
1140 (loop for i below dimension
1141 for list = (listify dimensions index)
1142 collect (if (and dimensions
1143 (null (cdr dimensions)))
1144 (compact list)
1145 list)
1146 do (incf index count))))))
1147 (listify (array-dimensions array) start))))))
1149 ;;; Use nonstandard #A(dimensions element-type contents)
1150 ;;; to avoid using #.
1151 (defun output-unreadable-array-readably (array stream)
1152 (let ((array (list* (array-dimensions array)
1153 (array-element-type array)
1154 (listify-array array))))
1155 (write-string "#A" stream)
1156 (write array :stream stream)
1157 nil))
1159 ;;; Output the readable #A form of an array.
1160 (defun output-array-guts (array stream)
1161 (cond ((or (not *print-readably*)
1162 (array-readably-printable-p array))
1163 (write-char #\# stream)
1164 (output-integer (array-rank array) stream 10 nil)
1165 (write-char #\A stream)
1166 (with-array-data ((data array) (start) (end))
1167 (declare (ignore end))
1168 (sub-output-array-guts data (array-dimensions array) stream start)))
1170 (output-unreadable-array-readably array stream))))
1172 (defun sub-output-array-guts (array dimensions stream index)
1173 (declare (type (simple-array * (*)) array) (fixnum index))
1174 (cond ((null dimensions)
1175 (output-object (aref array index) stream))
1177 (descend-into (stream)
1178 (write-char #\( stream)
1179 (let* ((dimension (car dimensions))
1180 (dimensions (cdr dimensions))
1181 (count (reduce #'* dimensions)))
1182 (dotimes (i dimension)
1183 (unless (zerop i)
1184 (write-char #\space stream))
1185 (punt-print-if-too-long i stream)
1186 (sub-output-array-guts array dimensions stream index)
1187 (incf index count)))
1188 (write-char #\) stream)))))
1191 ;;;; integer, ratio, and complex printing (i.e. everything but floats)
1193 (defun %output-radix (base stream)
1194 (write-char #\# stream)
1195 (write-char (case base
1196 (2 #\b)
1197 (8 #\o)
1198 (16 #\x)
1199 (t (%output-integer-in-base base 10 stream) #\r))
1200 stream))
1202 ;;; *POWER-CACHE* is an alist mapping bases to power-vectors. It is
1203 ;;; filled and probed by POWERS-FOR-BASE. SCRUB-POWER-CACHE is called
1204 ;;; always prior a GC to drop overly large bignums from the cache.
1206 ;;; It doesn't need a lock, but if you work on SCRUB-POWER-CACHE or
1207 ;;; POWERS-FOR-BASE, see that you don't break the assumptions!
1208 (define-load-time-global *power-cache* (make-array 37 :initial-element nil))
1209 (declaim (type (simple-vector 37) *power-cache*))
1211 (defconstant +power-cache-integer-length-limit+ 2048)
1213 (defun scrub-power-cache (&aux (cache *power-cache*))
1214 (dotimes (i (length cache))
1215 (let ((powers (aref cache i)))
1216 (when powers
1217 (let ((too-big (position-if
1218 (lambda (x)
1219 (>= (integer-length x)
1220 +power-cache-integer-length-limit+))
1221 (the simple-vector powers))))
1222 (when too-big
1223 (setf (aref cache i) (subseq powers 0 too-big))))))))
1225 ;;; Compute (and cache) a power vector for a BASE and LIMIT:
1226 ;;; the vector holds integers for which
1227 ;;; (aref powers k) == (expt base (expt 2 k))
1228 ;;; holds.
1229 (defun powers-for-base (base limit)
1230 (flet ((compute-powers (from)
1231 (let (powers)
1232 (do ((p from (* p p)))
1233 ((> p limit)
1234 ;; We don't actually need this, but we also
1235 ;; prefer not to cons it up a second time...
1236 (push p powers))
1237 (push p powers))
1238 (nreverse powers))))
1239 (let* ((cache *power-cache*)
1240 (powers (aref cache base)))
1241 (setf (aref cache base)
1242 (concatenate 'vector powers
1243 (compute-powers
1244 (if powers
1245 (let* ((len (length powers))
1246 (max (svref powers (1- len))))
1247 (if (> max limit)
1248 (return-from powers-for-base powers)
1249 (* max max)))
1250 base)))))))
1252 ;; Algorithm by Harald Hanche-Olsen, sbcl-devel 2005-02-05
1253 (defun %output-huge-integer-in-base (n base stream)
1254 (declare (type bignum n) (type fixnum base))
1255 ;; POWER is a vector for which the following holds:
1256 ;; (aref power k) == (expt base (expt 2 k))
1257 (let* ((power (powers-for-base base n))
1258 (k-start (or (position-if (lambda (x) (> x n)) power)
1259 (bug "power-vector too short"))))
1260 (labels ((bisect (n k exactp)
1261 (declare (fixnum k))
1262 ;; N is the number to bisect
1263 ;; K on initial entry BASE^(2^K) > N
1264 ;; EXACTP is true if 2^K is the exact number of digits
1265 (cond ((zerop n)
1266 (when exactp
1267 (loop repeat (ash 1 k) do (write-char #\0 stream))))
1268 ((zerop k)
1269 (write-char
1270 (schar "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ" n)
1271 stream))
1273 (setf k (1- k))
1274 (multiple-value-bind (q r) (truncate n (aref power k))
1275 ;; EXACTP is NIL only at the head of the
1276 ;; initial number, as we don't know the number
1277 ;; of digits there, but we do know that it
1278 ;; doesn't get any leading zeros.
1279 (bisect q k exactp)
1280 (bisect r k (or exactp (plusp q))))))))
1281 (bisect n k-start nil))))
1283 ;;; Not all architectures can stack-allocate lisp strings,
1284 ;;; but we can fake it using aliens.
1285 ;;; %output-integer-in-base always needs 8 lispwords:
1286 ;;; if n-word-bytes = 4 then 8 * 4 = 32 characters
1287 ;;; if n-word-bytes = 8 then 8 * 8 = 64 characters
1288 ;;; This allows for output in base 2 worst case.
1289 ;;; We don't need a trailing null.
1290 (defmacro with-lisp-string-on-alien-stack ((string size-in-chars) &body body)
1291 (let ((size-in-lispwords ; +2 words for lisp string header
1292 (+ 2 (align-up (ceiling (symbol-value size-in-chars) sb-vm:n-word-bytes)
1293 2)))
1294 (alien '#:a)
1295 (sap '#:sap))
1296 ;; +1 is for alignment if needed
1297 `(with-alien ((,alien (array unsigned ,(1+ size-in-lispwords))))
1298 (let ((,sap (alien-sap ,alien)))
1299 (when (logtest (sap-int ,sap) sb-vm:lowtag-mask)
1300 (setq ,sap (sap+ ,sap sb-vm:n-word-bytes)))
1301 (setf (sap-ref-word ,sap 0) sb-vm:simple-base-string-widetag
1302 (sap-ref-word ,sap sb-vm:n-word-bytes) (ash sb-vm:n-word-bits
1303 sb-vm:n-fixnum-tag-bits))
1304 (let ((,string
1305 (truly-the simple-base-string
1306 (%make-lisp-obj (logior (sap-int ,sap)
1307 sb-vm:other-pointer-lowtag)))))
1308 ,@body)))))
1310 ;;; Using specialized routines for the various cases seems to work nicely.
1312 ;;; Testing with 100,000 random integers, output to a sink stream, x86-64:
1313 ;;; word-sized integers, base >= 10
1314 ;;; old=.062 sec, 4MiB consed; new=.031 sec, 0 bytes consed
1315 ;;; word-sized integers, base < 10
1316 ;;; old=.104 sec, 4MiB consed; new=.075 sec, 0 bytes consed
1317 ;;; bignums in base 16:
1318 ;;; old=.125 sec, 20 MiB consed; new=.08 sec, 0 bytes consed
1320 ;;; Not sure why this didn't reduce consing on ppc64 when I tried it.
1321 (defun %output-integer-in-base (integer base stream)
1322 (declare (type (integer 2 36) base))
1323 (when (minusp integer)
1324 (write-char #\- stream)
1325 (setf integer (- integer)))
1326 ;; Grrr - a LET binding here causes a constant-folding problem
1327 ;; "The function SB-KERNEL:SIMPLE-CHARACTER-STRING-P is undefined."
1328 ;; but a symbol-macrolet is ok. This is a FIXME except I don't care.
1329 (symbol-macrolet ((chars "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ"))
1330 (declare (optimize (sb-c:insert-array-bounds-checks 0) speed))
1331 (macrolet ((iterative-algorithm ()
1332 `(loop (multiple-value-bind (q r)
1333 (truncate (truly-the word integer) base)
1334 (decf ptr)
1335 (setf (aref buffer ptr) (schar chars r))
1336 (when (zerop (setq integer q)) (return)))))
1337 (recursive-algorithm (dividend-type)
1338 `(named-let recurse ((n integer))
1339 (multiple-value-bind (q r) (truncate (truly-the ,dividend-type n) base)
1340 ;; Recurse until you have all the digits pushed on
1341 ;; the stack.
1342 (unless (zerop q) (recurse q))
1343 ;; Then as each recursive call unwinds, turn the
1344 ;; digit (in remainder) into a character and output
1345 ;; the character.
1346 (write-char (schar chars r) stream)))))
1347 (cond ((typep integer 'word) ; Division vops can handle this all inline.
1348 #+c-stack-is-control-stack ; strings can be DX-allocated
1349 ;; For bases exceeding 10 we know how many characters (at most)
1350 ;; will be output. This allows for a single %WRITE-STRING call.
1351 ;; There's diminishing payback for other bases because the fixed array
1352 ;; size increases, and we don't have a way to elide initial 0-fill.
1353 ;; Calling APPROX-CHARS-IN-REPL doesn't help much - we still 0-fill.
1354 (if (< base 10)
1355 (recursive-algorithm word)
1356 (let* ((ptr #.(length (write-to-string sb-ext:most-positive-word
1357 :base 10)))
1358 (buffer (make-array ptr :element-type 'base-char)))
1359 (declare (dynamic-extent buffer))
1360 (iterative-algorithm)
1361 (%write-string buffer stream ptr (length buffer))))
1362 #-c-stack-is-control-stack ; strings can't be DX-allocated
1363 ;; Use the alien stack, which is not as fast as using the control stack
1364 ;; (when we can). Even the absence of 0-fill doesn't make up for it.
1365 ;; Since we've no choice in the matter, might as well allow
1366 ;; any value of BASE - it's just a few more words of storage.
1367 (let ((ptr sb-vm:n-word-bits))
1368 (with-lisp-string-on-alien-stack (buffer sb-vm:n-word-bits)
1369 (iterative-algorithm)
1370 (%write-string buffer stream ptr sb-vm:n-word-bits))))
1371 ((eql base 16)
1372 ;; No division is involved at all.
1373 ;; could also specialize for bases 32, 8, 4, and 2 if desired
1374 (loop for pos from (* 4 (1- (ceiling (integer-length integer) 4)))
1375 downto 0 by 4
1376 do (write-char (schar chars (sb-bignum::ldb-bignum=>fixnum 4 pos
1377 integer))
1378 stream)))
1379 ;; The ideal cutoff point between this and the "huge" algorithm
1380 ;; might be platform-specific, and it also could depend on the output base.
1381 ;; Nobody has cared to tweak it in so many years that I think we can
1382 ;; arbitrarily say 3 bigdigits is fine.
1383 ((<= (sb-bignum:%bignum-length (truly-the bignum integer)) 3)
1384 (recursive-algorithm integer))
1386 (%output-huge-integer-in-base integer base stream)))))
1387 nil)
1389 ;;; This gets both a method and a specifically named function
1390 ;;; since the latter is called from a few places.
1391 (defmethod print-object ((object integer) stream)
1392 (output-integer object stream *print-base* *print-radix*))
1393 (defun output-integer (integer stream base radixp)
1394 (cond (radixp
1395 (unless (= base 10) (%output-radix base stream))
1396 (%output-integer-in-base integer base stream)
1397 (when (= base 10) (write-char #\. stream)))
1399 (%output-integer-in-base integer base stream))))
1401 (defmethod print-object ((ratio ratio) stream)
1402 (let ((base *print-base*))
1403 (when *print-radix*
1404 (%output-radix base stream))
1405 (%output-integer-in-base (numerator ratio) base stream)
1406 (write-char #\/ stream)
1407 (%output-integer-in-base (denominator ratio) base stream)))
1409 (defmethod print-object ((complex complex) stream)
1410 (write-string "#C(" stream)
1411 (output-object (realpart complex) stream)
1412 (write-char #\space stream)
1413 (output-object (imagpart complex) stream)
1414 (write-char #\) stream))
1416 ;;;; float printing
1418 ;;; FLONUM-TO-STRING (and its subsidiary function FLOAT-STRING) does
1419 ;;; most of the work for all printing of floating point numbers in
1420 ;;; FORMAT. It converts a floating point number to a string in a free
1421 ;;; or fixed format with no exponent. The interpretation of the
1422 ;;; arguments is as follows:
1424 ;;; X - The floating point number to convert, which must not be
1425 ;;; negative.
1426 ;;; WIDTH - The preferred field width, used to determine the number
1427 ;;; of fraction digits to produce if the FDIGITS parameter
1428 ;;; is unspecified or NIL. If the non-fraction digits and the
1429 ;;; decimal point alone exceed this width, no fraction digits
1430 ;;; will be produced unless a non-NIL value of FDIGITS has been
1431 ;;; specified. Field overflow is not considerd an error at this
1432 ;;; level.
1433 ;;; FDIGITS - The number of fractional digits to produce. Insignificant
1434 ;;; trailing zeroes may be introduced as needed. May be
1435 ;;; unspecified or NIL, in which case as many digits as possible
1436 ;;; are generated, subject to the constraint that there are no
1437 ;;; trailing zeroes.
1438 ;;; SCALE - If this parameter is specified or non-NIL, then the number
1439 ;;; printed is (* x (expt 10 scale)). This scaling is exact,
1440 ;;; and cannot lose precision.
1441 ;;; FMIN - This parameter, if specified or non-NIL, is the minimum
1442 ;;; number of fraction digits which will be produced, regardless
1443 ;;; of the value of WIDTH or FDIGITS. This feature is used by
1444 ;;; the ~E format directive to prevent complete loss of
1445 ;;; significance in the printed value due to a bogus choice of
1446 ;;; scale factor.
1448 ;;; Returns:
1449 ;;; (VALUES DIGIT-STRING DIGIT-LENGTH LEADING-POINT TRAILING-POINT DECPNT)
1450 ;;; where the results have the following interpretation:
1452 ;;; DIGIT-STRING - The decimal representation of X, with decimal point.
1453 ;;; DIGIT-LENGTH - The length of the string DIGIT-STRING.
1454 ;;; LEADING-POINT - True if the first character of DIGIT-STRING is the
1455 ;;; decimal point.
1456 ;;; TRAILING-POINT - True if the last character of DIGIT-STRING is the
1457 ;;; decimal point.
1458 ;;; POINT-POS - The position of the digit preceding the decimal
1459 ;;; point. Zero indicates point before first digit.
1461 ;;; NOTE: FLONUM-TO-STRING goes to a lot of trouble to guarantee
1462 ;;; accuracy. Specifically, the decimal number printed is the closest
1463 ;;; possible approximation to the true value of the binary number to
1464 ;;; be printed from among all decimal representations with the same
1465 ;;; number of digits. In free-format output, i.e. with the number of
1466 ;;; digits unconstrained, it is guaranteed that all the information is
1467 ;;; preserved, so that a properly- rounding reader can reconstruct the
1468 ;;; original binary number, bit-for-bit, from its printed decimal
1469 ;;; representation. Furthermore, only as many digits as necessary to
1470 ;;; satisfy this condition will be printed.
1472 ;;; FLOAT-DIGITS actually generates the digits for positive numbers;
1473 ;;; see below for comments.
1475 (defun flonum-to-string (x &optional width fdigits scale fmin)
1476 (declare (type float x))
1477 (multiple-value-bind (e string)
1478 (if fdigits
1479 (flonum-to-digits x (min (- (+ fdigits (or scale 0)))
1480 (- (or fmin 0))))
1481 (if (and width (> width 1))
1482 (let ((w (multiple-value-list
1483 (flonum-to-digits x
1484 (max 1
1485 (+ (1- width)
1486 (if (and scale (minusp scale))
1487 scale 0)))
1488 t)))
1489 (f (multiple-value-list
1490 (flonum-to-digits x (- (+ (or fmin 0)
1491 (if scale scale 0)))))))
1492 (cond
1493 ((>= (length (cadr w)) (length (cadr f)))
1494 (values-list w))
1495 (t (values-list f))))
1496 (flonum-to-digits x)))
1497 (let ((e (if (zerop x)
1499 (+ e (or scale 0))))
1500 (stream (make-string-output-stream)))
1501 (if (plusp e)
1502 (progn
1503 (write-string string stream :end (min (length string) e))
1504 (dotimes (i (- e (length string)))
1505 (write-char #\0 stream))
1506 (write-char #\. stream)
1507 (write-string string stream :start (min (length string) e))
1508 (when fdigits
1509 (dotimes (i (- fdigits
1510 (- (length string)
1511 (min (length string) e))))
1512 (write-char #\0 stream))))
1513 (progn
1514 (write-string "." stream)
1515 (dotimes (i (- e))
1516 (write-char #\0 stream))
1517 (write-string string stream :end (when fdigits
1518 (min (length string)
1519 (max (or fmin 0)
1520 (+ fdigits e)))))
1521 (when fdigits
1522 (dotimes (i (+ fdigits e (- (length string))))
1523 (write-char #\0 stream)))))
1524 (let ((string (get-output-stream-string stream)))
1525 (values string (length string)
1526 (char= (char string 0) #\.)
1527 (char= (char string (1- (length string))) #\.)
1528 (position #\. string))))))
1530 ;;; implementation of figure 1 from Burger and Dybvig, 1996. It is
1531 ;;; extended in order to handle rounding.
1533 ;;; As the implementation of the Dragon from Classic CMUCL (and
1534 ;;; previously in SBCL above FLONUM-TO-STRING) says: "DO NOT EVEN
1535 ;;; THINK OF ATTEMPTING TO UNDERSTAND THIS CODE WITHOUT READING THE
1536 ;;; PAPER!", and in this case we have to add that even reading the
1537 ;;; paper might not bring immediate illumination as CSR has attempted
1538 ;;; to turn idiomatic Scheme into idiomatic Lisp.
1540 ;;; possible extension for the enthusiastic: printing floats in bases
1541 ;;; other than base 10.
1542 (defconstant single-float-min-e
1543 (- 2 sb-vm:single-float-bias sb-vm:single-float-digits))
1544 (defconstant double-float-min-e
1545 (- 2 sb-vm:double-float-bias sb-vm:double-float-digits))
1546 #+long-float
1547 (defconstant long-float-min-e
1548 (nth-value 1 (decode-float least-positive-long-float)))
1550 ;;; Call CHAR-FUN with the digits of FLOAT
1551 ;;; PROLOGUE-FUN and EPILOGUE-FUN are called with the exponent before
1552 ;;; and after printing to set up the state.
1553 (declaim (inline %flonum-to-digits))
1554 (defun %flonum-to-digits (char-fun
1555 prologue-fun
1556 epilogue-fun
1557 float &optional position relativep)
1558 (let ((print-base 10) ; B
1559 (float-radix 2) ; b
1560 (float-digits (float-digits float)) ; p
1561 (min-e
1562 (etypecase float
1563 (single-float single-float-min-e)
1564 (double-float double-float-min-e)
1565 #+long-float
1566 (long-float long-float-min-e))))
1567 (multiple-value-bind (f e) (integer-decode-float float)
1568 ;; An extra step became necessary here for subnormals because the
1569 ;; algorithm assumes that the fraction is left-aligned in a field
1570 ;; that is FLOAT-DIGITS wide.
1571 (when (< (float-precision float) float-digits)
1572 (let ((shift (- float-digits (integer-length f))))
1573 (setq f (ash f shift)
1574 e (- e shift))))
1575 (let (;; FIXME: these even tests assume normal IEEE rounding
1576 ;; mode. I wonder if we should cater for non-normal?
1577 (high-ok (evenp f))
1578 (low-ok (evenp f)))
1579 (labels ((expt2 (n)
1580 (svref #.(coerce (loop for i from 0 to 972 collect (expt 2 i))
1581 'vector) n))
1582 (expt10 (n)
1583 (svref #.(coerce (loop for i from 0 to 323 collect (expt 10 i))
1584 'vector) n))
1585 (scale (r s m+ m-)
1586 (let ((est (truly-the (integer -323 309)
1587 (ceiling (- (* (+ e (integer-length (truly-the sb-kernel:double-float-significand f)) -1)
1588 (log 2d0 10))
1589 1.0e-10)))))
1590 (if (>= est 0)
1591 (fixup r (* s (expt10 est)) m+ m- est)
1592 (let ((scale (expt10 (- est))))
1593 (fixup (* r scale)
1594 s (* m+ scale) (* m- scale) est)))))
1596 (fixup (r s m+ m- k)
1597 (let ((r+m+ (+ r m+)))
1598 (when (if high-ok
1599 (>= r+m+ s)
1600 (> r+m+ s))
1601 (incf k)
1602 (setf s (* s 10)))
1603 (funcall prologue-fun k)
1604 (generate r s m+ m-)
1605 (funcall epilogue-fun k)))
1606 (generate (r s m+ m-)
1607 (let (d tc1 tc2)
1608 (tagbody
1609 loop
1610 (setf (values d r) (truncate (* r print-base) s))
1611 (setf m+ (* m+ print-base))
1612 (setf m- (* m- print-base))
1613 (setf tc1 (or (< r m-) (and low-ok (= r m-))))
1614 (setf tc2 (let ((r+m+ (+ r m+)))
1615 (or (> r+m+ s)
1616 (and high-ok (= r+m+ s)))))
1617 (when (or tc1 tc2)
1618 (go end))
1619 (funcall char-fun d)
1620 (go loop)
1622 (let ((d (cond
1623 ((and (not tc1) tc2) (1+ d))
1624 ((and tc1 (not tc2)) d)
1625 ((< (* r 2) s)
1628 (1+ d)))))
1629 (funcall char-fun d)))))
1630 (scale-p (r s m+ m-)
1631 (when relativep
1632 (aver (> position 0))
1633 (do ((k 0 (1+ k))
1634 ;; running out of letters here
1635 (l 1 (* l print-base)))
1636 ((>= (* s l) (+ r m+))
1637 ;; k is now \hat{k}
1638 (if (< (+ r (* s (/ (expt print-base (- k position)) 2)))
1639 (* s l))
1640 (setf position (- k position))
1641 (setf position (- k position 1))))))
1642 (let* ((x (/ (* s (expt print-base position)) 2))
1643 (low (max m- x))
1644 (high (max m+ x)))
1645 (when (<= m- low)
1646 (setf m- low)
1647 (setf low-ok t))
1648 (when (<= m+ high)
1649 (setf m+ high)
1650 (setf high-ok t)))
1651 (do ((r+m+ (+ r m+))
1652 (k 0 (1+ k))
1653 (s s (* s print-base)))
1654 ((not (or (> r+m+ s)
1655 (and high-ok (= r+m+ s))))
1656 (do ((k k (1- k))
1657 (r r (* r print-base))
1658 (m+ m+ (* m+ print-base))
1659 (m- m- (* m- print-base)))
1660 ((not (and (> r m-) ; Extension to handle zero
1661 (let ((x (* (+ r m+) print-base)))
1662 (or (< x s)
1663 (and (not high-ok)
1664 (= x s))))))
1665 (funcall prologue-fun k)
1666 (generate r s m+ m-)
1667 (funcall epilogue-fun k)))))))
1668 (let (r s m+ m-)
1669 (cond ((>= e 0)
1670 (let ((be (expt2 e)))
1671 (setf m- be)
1672 (if (/= f (expt float-radix (1- float-digits)))
1673 (setf r (ash f (+ e 1))
1675 m+ be)
1676 (setf m+ (expt2 (1+ e))
1677 r (ash f (+ e 2))
1678 s (* float-radix 2)))))
1679 ((or (= e min-e)
1680 (/= f (expt float-radix (1- float-digits))))
1681 (setf r (* f 2)
1682 s (expt float-radix (- 1 e))
1683 m+ 1
1684 m- 1))
1686 (setf r (* f float-radix 2)
1687 s (expt float-radix (- 2 e))
1688 m+ float-radix
1689 m- 1)))
1690 (if position
1691 (scale-p r s m+ m-)
1692 (scale r s m+ m-))))))))
1694 (defun flonum-to-digits (float &optional position relativep)
1695 (if (zerop float)
1696 (values 0 "0")
1697 (let ((digit-characters "0123456789"))
1698 (with-push-char (:element-type base-char)
1699 (%flonum-to-digits
1700 (lambda (d)
1701 (push-char (char digit-characters d)))
1702 (lambda (k) k)
1703 (lambda (k) (values k (get-pushed-string)))
1704 float position relativep)))))
1706 (defun print-float (float stream)
1707 (let ((position 0)
1708 (dot-position 0)
1709 (digit-characters "0123456789")
1710 (e-min -3)
1711 (e-max 8))
1712 (%flonum-to-digits
1713 (lambda (d)
1714 (when (= position dot-position)
1715 (write-char #\. stream))
1716 (write-char (char digit-characters d) stream)
1717 (incf position))
1718 (lambda (k)
1719 (cond ((not (< e-min k e-max))
1720 (setf dot-position 1))
1721 ((plusp k)
1722 (setf dot-position k))
1724 (setf dot-position -1)
1725 (write-char #\0 stream)
1726 (write-char #\. stream)
1727 (loop for i below (- k)
1728 do (write-char #\0 stream)))))
1729 (lambda (k)
1730 (when (<= position dot-position)
1731 (loop for i below (- dot-position position)
1732 do (write-char #\0 stream))
1733 (write-char #\. stream)
1734 (write-char #\0 stream))
1735 (if (< e-min k e-max)
1736 (print-float-exponent float 0 stream)
1737 (print-float-exponent float (1- k) stream)))
1738 float)))
1740 ;;; Given a non-negative floating point number, SCALE-EXPONENT returns
1741 ;;; a new floating point number Z in the range (0.1, 1.0] and an
1742 ;;; exponent E such that Z * 10^E is (approximately) equal to the
1743 ;;; original number. There may be some loss of precision due the
1744 ;;; floating point representation. The scaling is always done with
1745 ;;; long float arithmetic, which helps printing of lesser precisions
1746 ;;; as well as avoiding generic arithmetic.
1748 ;;; When computing our initial scale factor using EXPT, we pull out
1749 ;;; part of the computation to avoid over/under flow. When
1750 ;;; denormalized, we must pull out a large factor, since there is more
1751 ;;; negative exponent range than positive range.
1753 (defun scale-exponent (original-x)
1754 (let* ((x (coerce original-x 'long-float)))
1755 (multiple-value-bind (sig exponent) (decode-float x)
1756 (declare (ignore sig))
1757 (if (= x 0.0l0)
1758 (values (float 0.0l0 original-x) 1)
1759 (let* ((ex (locally (declare (optimize (safety 0)))
1760 (the fixnum
1761 (round (* exponent (log 2l0 10))))))
1762 (x (if (minusp ex)
1763 (if (float-denormalized-p x)
1764 #-long-float
1765 (* x 1.0l16 (expt 10.0l0 (- (- ex) 16)))
1766 #+long-float
1767 (* x 1.0l18 (expt 10.0l0 (- (- ex) 18)))
1768 (* x 10.0l0 (expt 10.0l0 (- (- ex) 1))))
1769 (/ x 10.0l0 (expt 10.0l0 (1- ex))))))
1770 (do ((d 10.0l0 (* d 10.0l0))
1771 (y x (/ x d))
1772 (ex ex (1+ ex)))
1773 ((< y 1.0l0)
1774 (do ((m 10.0l0 (* m 10.0l0))
1775 (z y (* y m))
1776 (ex ex (1- ex)))
1777 ((>= z 0.1l0)
1778 (values (float z original-x) ex))
1779 (declare (long-float m) (integer ex))))
1780 (declare (long-float d))))))))
1782 ;;;; entry point for the float printer
1784 ;;; the float printer as called by PRINT, PRIN1, PRINC, etc. The
1785 ;;; argument is printed free-format, in either exponential or
1786 ;;; non-exponential notation, depending on its magnitude.
1788 ;;; NOTE: When a number is to be printed in exponential format, it is
1789 ;;; scaled in floating point. Since precision may be lost in this
1790 ;;; process, the guaranteed accuracy properties of FLONUM-TO-STRING
1791 ;;; are lost. The difficulty is that FLONUM-TO-STRING performs
1792 ;;; extensive computations with integers of similar magnitude to that
1793 ;;; of the number being printed. For large exponents, the bignums
1794 ;;; really get out of hand. If bignum arithmetic becomes reasonably
1795 ;;; fast and the exponent range is not too large, then it might become
1796 ;;; attractive to handle exponential notation with the same accuracy
1797 ;;; as non-exponential notation, using the method described in the
1798 ;;; Steele and White paper.
1800 ;;; NOTE II: this has been bypassed slightly by implementing Burger
1801 ;;; and Dybvig, 1996. When someone has time (KLUDGE) they can
1802 ;;; probably (a) implement the optimizations suggested by Burger and
1803 ;;; Dyvbig, and (b) remove all vestiges of Dragon4, including from
1804 ;;; fixed-format printing.
1806 ;;; Print the appropriate exponent marker for X and the specified exponent.
1807 (defun print-float-exponent (x exp stream)
1808 (declare (type float x) (type integer exp) (type stream stream))
1809 (cond ((case *read-default-float-format*
1810 ((short-float single-float)
1811 (typep x 'single-float))
1812 ((double-float #-long-float long-float)
1813 (typep x 'double-float))
1814 #+long-float
1815 (long-float
1816 (typep x 'long-float)))
1817 (unless (eql exp 0)
1818 (write-char #\e stream)
1819 (%output-integer-in-base exp 10 stream)))
1821 (write-char
1822 (etypecase x
1823 (single-float #\f)
1824 (double-float #\d)
1825 (short-float #\s)
1826 (long-float #\L))
1827 stream)
1828 (%output-integer-in-base exp 10 stream))))
1830 (defmethod print-object ((x float) stream)
1831 (cond
1832 ((float-infinity-or-nan-p x)
1833 (if (float-infinity-p x)
1834 (let ((symbol (etypecase x
1835 (single-float (if (minusp x)
1836 'single-float-negative-infinity
1837 'single-float-positive-infinity))
1838 (double-float (if (minusp x)
1839 'double-float-negative-infinity
1840 'double-float-positive-infinity)))))
1841 (cond (*read-eval*
1842 (write-string "#." stream)
1843 (output-symbol symbol (sb-xc:symbol-package symbol) stream))
1845 (print-unreadable-object (x stream)
1846 (output-symbol symbol (sb-xc:symbol-package symbol) stream)))))
1847 (print-unreadable-object (x stream)
1848 (princ (float-format-name x) stream)
1849 (write-string (if (float-trapping-nan-p x) " trapping" " quiet") stream)
1850 (write-string " NaN" stream))))
1852 (when (float-sign-bit-set-p x)
1853 (write-char #\- stream))
1854 (cond
1855 ((zerop x)
1856 (write-string "0.0" stream)
1857 (print-float-exponent x 0 stream))
1859 (print-float x stream))))))
1861 ;;;; other leaf objects
1863 ;;; If *PRINT-ESCAPE* is false, just do a WRITE-CHAR, otherwise output
1864 ;;; the character name or the character in the #\char format.
1865 (defmethod print-object ((char character) stream)
1866 (if (or *print-escape* *print-readably*)
1867 (let ((graphicp (and (graphic-char-p char)
1868 (standard-char-p char)))
1869 (name (char-name char)))
1870 (write-string "#\\" stream)
1871 (cond
1872 ((and name (or (not graphicp) *print-readably*)) (quote-string name stream))
1874 (write-char char stream)
1875 ;; KLUDGE: arguably this should be in an :AROUND method
1876 ;; specialized on ((EQL #\SPACE) T).
1877 (when (and (eql char #\Space))
1878 (sb-pretty:note-significant-space stream)))))
1879 (write-char char stream)))
1881 (defmethod print-object ((sap system-area-pointer) stream)
1882 (cond (*read-eval*
1883 (format stream "#.(~S #X~8,'0X)" 'int-sap (sap-int sap)))
1885 (print-unreadable-object (sap stream)
1886 (format stream "system area pointer: #X~8,'0X" (sap-int sap))))))
1888 #+weak-vector-readbarrier
1889 (defmethod print-object ((self weak-pointer) stream)
1890 (let ((vectorp (weak-vector-p self)))
1891 (print-unreadable-object (self stream :identity vectorp)
1892 (if vectorp
1893 (format stream "weak array [~d]" (weak-vector-len self))
1894 (multiple-value-bind (value validp) (weak-pointer-value self)
1895 (cond (validp
1896 (write-string "weak pointer: " stream)
1897 (write value :stream stream))
1899 (write-string "broken weak pointer" stream))))))))
1901 #-weak-vector-readbarrier
1902 (defmethod print-object ((weak-pointer weak-pointer) stream)
1903 (print-unreadable-object (weak-pointer stream)
1904 (multiple-value-bind (value validp) (weak-pointer-value weak-pointer)
1905 (cond (validp
1906 (write-string "weak pointer: " stream)
1907 (write value :stream stream))
1909 (write-string "broken weak pointer" stream))))))
1911 (defmethod print-object ((component code-component) stream)
1912 (print-unreadable-object (component stream)
1913 (let (dinfo)
1914 (cond ((eq (setq dinfo (%code-debug-info component)) :bpt-lra)
1915 (write-string "bpt-trap-return" stream))
1917 (format stream "code~@[ id=~x~] [~D]"
1918 (%code-serialno component)
1919 (code-n-entries component))
1920 (let ((fun-name (awhen (%code-entry-point component 0)
1921 (%simple-fun-name it))))
1922 (when fun-name
1923 (write-char #\Space stream)
1924 (write fun-name :stream stream))
1925 (cond ((not (typep dinfo 'sb-c::debug-info)))
1926 ((neq (sb-c::debug-info-name dinfo) fun-name)
1927 (write-string ", " stream)
1928 (output-object (sb-c::debug-info-name dinfo) stream)))))))
1929 (let ((a (get-lisp-obj-address component)))
1930 (format stream " {~X..~X}"
1931 a (+ (logandc2 a sb-vm:lowtag-mask) (code-object-size component))))))
1933 #-(or x86 x86-64 arm64 riscv)
1934 (defmethod print-object ((lra lra) stream)
1935 (print-unreadable-object (lra stream :identity t)
1936 (write-string "return PC object" stream)))
1938 (defmethod print-object ((fdefn fdefn) stream)
1939 (print-unreadable-object (fdefn stream :type t)
1940 ;; As fdefn names are particularly relevant to those hacking on the compiler
1941 ;; and disassembler, be maximally helpful by neither abbreviating (SETF ...)
1942 ;; due to length cutoff, nor failing to print a package if needed.
1943 ;; Some folks seem to love same-named symbols way too much.
1944 (let ((*print-length* 20)) ; arbitrary
1945 (prin1 (fdefn-name fdefn) stream))))
1947 #+sb-simd-pack
1948 (defmethod print-object ((pack simd-pack) stream)
1949 (cond ((and *print-readably* *read-eval*)
1950 (format stream "#.(~S #b~3,'0b #x~16,'0X #x~16,'0X)"
1951 '%make-simd-pack
1952 (%simd-pack-tag pack)
1953 (%simd-pack-low pack)
1954 (%simd-pack-high pack)))
1955 (*print-readably*
1956 (print-not-readable-error pack stream))
1958 (print-unreadable-object (pack stream)
1959 (etypecase pack
1960 ((simd-pack double-float)
1961 (multiple-value-call #'format stream "~S~@{ ~,13E~}" 'simd-pack
1962 (%simd-pack-doubles pack)))
1963 ((simd-pack single-float)
1964 (multiple-value-call #'format stream "~S~@{ ~,7E~}" 'simd-pack
1965 (%simd-pack-singles pack)))
1966 ((simd-pack (unsigned-byte 8))
1967 (multiple-value-call #'format stream "~S~@{ ~3D~}" 'simd-pack
1968 (%simd-pack-ub8s pack)))
1969 ((simd-pack (unsigned-byte 16))
1970 (multiple-value-call #'format stream "~S~@{ ~5D~}" 'simd-pack
1971 (%simd-pack-ub16s pack)))
1972 ((simd-pack (unsigned-byte 32))
1973 (multiple-value-call #'format stream "~S~@{ ~10D~}" 'simd-pack
1974 (%simd-pack-ub32s pack)))
1975 ((simd-pack (unsigned-byte 64))
1976 (multiple-value-call #'format stream "~S~@{ ~20D~}" 'simd-pack
1977 (%simd-pack-ub64s pack)))
1978 ((simd-pack (signed-byte 8))
1979 (multiple-value-call #'format stream "~S~@{ ~4,@D~}" 'simd-pack
1980 (%simd-pack-sb8s pack)))
1981 ((simd-pack (signed-byte 16))
1982 (multiple-value-call #'format stream "~S~@{ ~6,@D~}" 'simd-pack
1983 (%simd-pack-sb16s pack)))
1984 ((simd-pack (signed-byte 32))
1985 (multiple-value-call #'format stream "~S~@{ ~11@D~}" 'simd-pack
1986 (%simd-pack-sb32s pack)))
1987 ((simd-pack (signed-byte 64))
1988 (multiple-value-call #'format stream "~S~@{ ~20@D~}" 'simd-pack
1989 (%simd-pack-sb64s pack))))))))
1991 #+sb-simd-pack-256
1992 (defmethod print-object ((pack simd-pack-256) stream)
1993 (cond ((and *print-readably* *read-eval*)
1994 (format stream "#.(~S #b~3,'0B #x~16,'0D #x~16,'0D #x~16,'0D #x~16,'0D)"
1995 '%make-simd-pack-256
1996 (%simd-pack-256-tag pack)
1997 (%simd-pack-256-0 pack)
1998 (%simd-pack-256-1 pack)
1999 (%simd-pack-256-2 pack)
2000 (%simd-pack-256-3 pack)))
2001 (*print-readably*
2002 (print-not-readable-error pack stream))
2004 (print-unreadable-object (pack stream)
2005 (etypecase pack
2006 ((simd-pack-256 double-float)
2007 (multiple-value-call #'format stream "~S~@{ ~,13E~}" 'simd-pack-256
2008 (%simd-pack-256-doubles pack)))
2009 ((simd-pack-256 single-float)
2010 (multiple-value-call #'format stream "~S~@{ ~,7E~}" 'simd-pack-256
2011 (%simd-pack-256-singles pack)))
2012 ((simd-pack-256 (unsigned-byte 8))
2013 (multiple-value-call #'format stream "~S~@{ ~3D~}" 'simd-pack-256
2014 (%simd-pack-256-ub8s pack)))
2015 ((simd-pack-256 (unsigned-byte 16))
2016 (multiple-value-call #'format stream "~S~@{ ~5D~}" 'simd-pack-256
2017 (%simd-pack-256-ub16s pack)))
2018 ((simd-pack-256 (unsigned-byte 32))
2019 (multiple-value-call #'format stream "~S~@{ ~10D~}" 'simd-pack-256
2020 (%simd-pack-256-ub32s pack)))
2021 ((simd-pack-256 (unsigned-byte 64))
2022 (multiple-value-call #'format stream "~S~@{ ~20D~}" 'simd-pack-256
2023 (%simd-pack-256-ub64s pack)))
2024 ((simd-pack-256 (signed-byte 8))
2025 (multiple-value-call #'format stream "~S~@{ ~4@D~}" 'simd-pack-256
2026 (%simd-pack-256-sb8s pack)))
2027 ((simd-pack-256 (signed-byte 16))
2028 (multiple-value-call #'format stream "~S~@{ ~6@D~}" 'simd-pack-256
2029 (%simd-pack-256-sb16s pack)))
2030 ((simd-pack-256 (signed-byte 32))
2031 (multiple-value-call #'format stream "~S~@{ ~11@D~}" 'simd-pack-256
2032 (%simd-pack-256-sb32s pack)))
2033 ((simd-pack-256 (signed-byte 64))
2034 (multiple-value-call #'format stream "~S~@{ ~20@D~}" 'simd-pack-256
2035 (%simd-pack-256-sb64s pack))))))))
2037 ;;;; functions
2039 (defmethod print-object ((object function) stream)
2040 (macrolet ((unprintable-instance-p (x)
2041 ;; Guard against calling %FUN-FUN if it would return 0.
2042 ;; %FUNCALLABLE-INSTANCE-FUN is known to return FUNCTION so determining
2043 ;; whether it is actually assigned requires a low-level trick.
2044 (let ((s (sb-vm::primitive-object-slot
2045 (sb-vm:primitive-object 'funcallable-instance)
2046 'function)))
2047 `(and (funcallable-instance-p ,x)
2048 (eql 0 (%primitive sb-alien:slot ,x 'function ,(sb-vm:slot-offset s)
2049 ,sb-vm:fun-pointer-lowtag))))))
2050 (when (unprintable-instance-p object)
2051 (return-from print-object
2052 (print-unreadable-object (object stream :type t :identity t)))))
2053 (let* ((name (%fun-name object))
2054 (proper-name-p (and (legal-fun-name-p name) (fboundp name)
2055 (eq (fdefinition name) object))))
2056 ;; ":TYPE T" is no good, since CLOSURE doesn't have full-fledged status.
2057 (print-unreadable-object (object stream :identity (not proper-name-p))
2058 (format stream "~A~@[ ~S~]"
2059 ;; CLOSURE and SIMPLE-FUN should print as #<FUNCTION>
2060 ;; but anything else prints as its exact type.
2061 (if (funcallable-instance-p object) (type-of object) 'function)
2062 name))))
2064 ;;;; catch-all for unknown things
2066 (defmethod print-object ((object t) stream)
2067 (when (eq object sb-pcl:+slot-unbound+)
2068 ;; If specifically the unbound marker with 0 data,
2069 ;; as opposed to any other unbound marker.
2070 (print-unreadable-object (object stream) (write-string "unbound" stream))
2071 (return-from print-object))
2072 ;; NO-TLS-VALUE was added here as a printable object type for #+ubsan which,
2073 ;; among other things, detects read-before-write on a per-array-element basis.
2074 ;; Git rev 22d8038118 caused uninitialized SIMPLE-VECTORs to get prefilled
2075 ;; with NO_TLS_VALUE_MARKER, but a better choice would be
2076 ;; (logior (mask-field (byte (- n-word-bits 8) 8) -1) unbound-marker-widetag).
2077 ;; #+ubsan has probably bitrotted for other reasons, so this is untested.
2078 #+ubsan
2079 (when (eql (get-lisp-obj-address object) unwritten-vector-element-marker)
2080 (print-unreadable-object (object stream) (write-string "novalue" stream))
2081 (return-from print-object))
2082 (print-unreadable-object (object stream :identity t)
2083 (let ((lowtag (lowtag-of object)))
2084 (case lowtag
2085 (#.sb-vm:other-pointer-lowtag
2086 (let ((widetag (widetag-of object)))
2087 (case widetag
2088 (#.sb-vm:value-cell-widetag
2089 (write-string "value-cell " stream)
2090 (output-object (value-cell-ref object) stream))
2091 #+nil
2092 (#.sb-vm:filler-widetag
2093 (write-string "pad " stream)
2094 (write (1+ (get-header-data object)) :stream stream)
2095 (write-string "w" stream)) ; words
2097 (write-string "unknown pointer object, widetag=" stream)
2098 (output-integer widetag stream 16 t)))))
2099 ((#.sb-vm:fun-pointer-lowtag
2100 #.sb-vm:instance-pointer-lowtag
2101 #.sb-vm:list-pointer-lowtag)
2102 (write-string "unknown pointer object, lowtag=" stream)
2103 (output-integer lowtag stream 16 t))
2105 (case (widetag-of object)
2106 (#.sb-vm:unbound-marker-widetag
2107 (write-string "unbound marker" stream))
2109 (write-string "unknown immediate object, lowtag=" stream)
2110 (output-integer lowtag stream 2 t)
2111 (write-string ", widetag=" stream)
2112 (output-integer (widetag-of object) stream 16 t))))))))