Fix printing of value-cells
[sbcl.git] / src / code / print.lisp
blob9916ed2373511f134eec2d8b9e28ba1de0505b6a
1 ;;;; the printer
3 ;;;; This software is part of the SBCL system. See the README file for
4 ;;;; more information.
5 ;;;;
6 ;;;; This software is derived from the CMU CL system, which was
7 ;;;; written at Carnegie Mellon University and released into the
8 ;;;; public domain. The software is in the public domain and is
9 ;;;; provided with absolutely no warranty. See the COPYING and CREDITS
10 ;;;; files for more information.
12 (in-package "SB!IMPL")
14 ;;;; exported printer control variables
16 (!defvar *print-readably* nil
17 #!+sb-doc
18 "If true, all objects will be printed readably. If readable printing
19 is impossible, an error will be signalled. This overrides the value of
20 *PRINT-ESCAPE*.")
21 (!defvar *print-escape* t
22 #!+sb-doc
23 "Should we print in a reasonably machine-readable way? (possibly
24 overridden by *PRINT-READABLY*)")
25 (!defvar *print-pretty* nil ; (set later when pretty-printer is initialized)
26 #!+sb-doc
27 "Should pretty printing be used?")
28 (!defvar *print-base* 10.
29 #!+sb-doc
30 "The output base for RATIONALs (including integers).")
31 (!defvar *print-radix* nil
32 #!+sb-doc
33 "Should base be verified when printing RATIONALs?")
34 (!defvar *print-level* nil
35 #!+sb-doc
36 "How many levels should be printed before abbreviating with \"#\"?")
37 (!defvar *print-length* nil
38 #!+sb-doc
39 "How many elements at any level should be printed before abbreviating
40 with \"...\"?")
41 (!defvar *print-circle* nil
42 #!+sb-doc
43 "Should we use #n= and #n# notation to preserve uniqueness in general (and
44 circularity in particular) when printing?")
45 (!defvar *print-case* :upcase
46 #!+sb-doc
47 "What case should the printer should use default?")
48 (!defvar *print-array* t
49 #!+sb-doc
50 "Should the contents of arrays be printed?")
51 (!defvar *print-gensym* t
52 #!+sb-doc
53 "Should #: prefixes be used when printing symbols with null SYMBOL-PACKAGE?")
54 (!defvar *print-lines* nil
55 #!+sb-doc
56 "The maximum number of lines to print per object.")
57 (!defvar *print-right-margin* nil
58 #!+sb-doc
59 "The position of the right margin in ems (for pretty-printing).")
60 (!defvar *print-miser-width* nil
61 #!+sb-doc
62 "If the remaining space between the current column and the right margin
63 is less than this, then print using ``miser-style'' output. Miser
64 style conditional newlines are turned on, and all indentations are
65 turned off. If NIL, never use miser mode.")
66 (defvar *print-pprint-dispatch*
67 (sb!pretty::make-pprint-dispatch-table) ; for type-correctness
68 #!+sb-doc
69 "The pprint-dispatch-table that controls how to pretty-print objects.")
70 (!defvar *suppress-print-errors* nil
71 #!+sb-doc
72 "Suppress printer errors when the condition is of the type designated by this
73 variable: an unreadable object representing the error is printed instead.")
75 ;; duplicate defglobal because this file is compiled before "reader"
76 (defglobal *standard-readtable* nil)
78 (defun %with-standard-io-syntax (function)
79 (declare (type function function))
80 (let ((*package* (find-package "COMMON-LISP-USER"))
81 (*print-array* t)
82 (*print-base* 10)
83 (*print-case* :upcase)
84 (*print-circle* nil)
85 (*print-escape* t)
86 (*print-gensym* t)
87 (*print-length* nil)
88 (*print-level* nil)
89 (*print-lines* nil)
90 (*print-miser-width* nil)
91 (*print-pprint-dispatch* sb!pretty::*standard-pprint-dispatch-table*)
92 (*print-pretty* nil)
93 (*print-radix* nil)
94 (*print-readably* t)
95 (*print-right-margin* nil)
96 (*read-base* 10)
97 (*read-default-float-format* 'single-float)
98 (*read-eval* t)
99 (*read-suppress* nil)
100 (*readtable* *standard-readtable*)
101 (*suppress-print-errors* nil))
102 (funcall function)))
104 ;;;; routines to print objects
106 (macrolet ((def (fn doc &rest forms)
107 (declare (ignorable doc))
108 `(defun ,fn
109 (object
110 &key
111 ,@(if (eq fn 'write) '(stream))
112 ((:escape *print-escape*) *print-escape*)
113 ((:radix *print-radix*) *print-radix*)
114 ((:base *print-base*) *print-base*)
115 ((:circle *print-circle*) *print-circle*)
116 ((:pretty *print-pretty*) *print-pretty*)
117 ((:level *print-level*) *print-level*)
118 ((:length *print-length*) *print-length*)
119 ((:case *print-case*) *print-case*)
120 ((:array *print-array*) *print-array*)
121 ((:gensym *print-gensym*) *print-gensym*)
122 ((:readably *print-readably*) *print-readably*)
123 ((:right-margin *print-right-margin*)
124 *print-right-margin*)
125 ((:miser-width *print-miser-width*)
126 *print-miser-width*)
127 ((:lines *print-lines*) *print-lines*)
128 ((:pprint-dispatch *print-pprint-dispatch*)
129 *print-pprint-dispatch*)
130 ((:suppress-errors *suppress-print-errors*)
131 *suppress-print-errors*))
132 #!+sb-doc ,doc
133 (declare (explicit-check))
134 ,@forms)))
135 (def write
136 "Output OBJECT to the specified stream, defaulting to *STANDARD-OUTPUT*."
137 (output-object object (out-stream-from-designator stream))
138 object)
139 (def write-to-string
140 "Return the printed representation of OBJECT as a string."
141 (stringify-object object)))
143 ;;; Same as a call to (WRITE OBJECT :STREAM STREAM), but returning OBJECT.
144 (defun %write (object stream)
145 (declare (explicit-check))
146 (output-object object (out-stream-from-designator stream))
147 object)
149 (defun prin1 (object &optional stream)
150 #!+sb-doc
151 "Output a mostly READable printed representation of OBJECT on the specified
152 STREAM."
153 (declare (explicit-check))
154 (let ((*print-escape* t))
155 (output-object object (out-stream-from-designator stream)))
156 object)
158 (defun princ (object &optional stream)
159 #!+sb-doc
160 "Output an aesthetic but not necessarily READable printed representation
161 of OBJECT on the specified STREAM."
162 (declare (explicit-check))
163 (let ((*print-escape* nil)
164 (*print-readably* nil))
165 (output-object object (out-stream-from-designator stream)))
166 object)
168 (defun print (object &optional stream)
169 #!+sb-doc
170 "Output a newline, the mostly READable printed representation of OBJECT, and
171 space to the specified STREAM."
172 (declare (explicit-check))
173 (let ((stream (out-stream-from-designator stream)))
174 (terpri stream)
175 (prin1 object stream)
176 (write-char #\space stream)
177 object))
179 (defun pprint (object &optional stream)
180 #!+sb-doc
181 "Prettily output OBJECT preceded by a newline."
182 (declare (explicit-check))
183 (let ((*print-pretty* t)
184 (*print-escape* t)
185 (stream (out-stream-from-designator stream)))
186 (terpri stream)
187 (output-object object stream))
188 (values))
190 (defun prin1-to-string (object)
191 #!+sb-doc
192 "Return the printed representation of OBJECT as a string with
193 slashification on."
194 (let ((*print-escape* t))
195 (stringify-object object)))
197 (defun princ-to-string (object)
198 #!+sb-doc
199 "Return the printed representation of OBJECT as a string with
200 slashification off."
201 (let ((*print-escape* nil)
202 (*print-readably* nil))
203 (stringify-object object)))
205 ;;; This produces the printed representation of an object as a string.
206 ;;; The few ...-TO-STRING functions above call this.
207 (defun stringify-object (object)
208 (with-simple-output-to-string (stream)
209 (output-object object stream)))
211 ;;;; support for the PRINT-UNREADABLE-OBJECT macro
213 (defun print-not-readable-error (object stream)
214 (restart-case
215 (error 'print-not-readable :object object)
216 (print-unreadably ()
217 :report "Print unreadably."
218 (let ((*print-readably* nil))
219 (output-object object stream)
220 object))
221 (use-value (o)
222 :report "Supply an object to be printed instead."
223 :interactive
224 (lambda ()
225 (read-evaluated-form "~@<Enter an object (evaluated): ~@:>"))
226 (output-object o stream)
227 o)))
229 ;;; guts of PRINT-UNREADABLE-OBJECT
230 (defun %print-unreadable-object (object stream type identity &optional body)
231 (declare (type (or null function) body))
232 (if *print-readably*
233 (print-not-readable-error object stream)
234 (flet ((print-description ()
235 (when type
236 (write (type-of object) :stream stream :circle nil
237 :level nil :length nil)
238 ;; Do NOT insert a pprint-newline here.
239 ;; See ba34717602d80e5fd74d10e61f4729fb0d019a0c
240 (write-char #\space stream))
241 (when body
242 (funcall body))
243 (when identity
244 (when (or body (not type))
245 (write-char #\space stream))
246 ;; Nor here.
247 (write-char #\{ stream)
248 (write (get-lisp-obj-address object) :stream stream
249 :radix nil :base 16)
250 (write-char #\} stream))))
251 (cond ((print-pretty-on-stream-p stream)
252 ;; Since we're printing prettily on STREAM, format the
253 ;; object within a logical block. PPRINT-LOGICAL-BLOCK does
254 ;; not rebind the stream when it is already a pretty stream,
255 ;; so output from the body will go to the same stream.
256 (pprint-logical-block (stream nil :prefix "#<" :suffix ">")
257 (print-description)))
259 (write-string "#<" stream)
260 (print-description)
261 (write-char #\> stream)))))
262 nil)
264 ;;;; OUTPUT-OBJECT -- the main entry point
266 ;;; Objects whose print representation identifies them EQLly don't
267 ;;; need to be checked for circularity.
268 (defun uniquely-identified-by-print-p (x)
269 (or (numberp x)
270 (characterp x)
271 (and (symbolp x)
272 (symbol-package x))))
274 (defvar *in-print-error* nil)
276 ;;; Output OBJECT to STREAM observing all printer control variables.
277 (defun output-object (object stream)
278 ;; FIXME: this function is declared EXPLICIT-CHECK, so it allows STREAM
279 ;; to be T or NIL (a stream-designator), which is not really right
280 ;; if eventually the call will be to a PRINT-OBJECT method,
281 ;; since the generic function should always receive a stream.
282 (declare (explicit-check))
283 (labels ((print-it (stream)
284 (multiple-value-bind (fun pretty)
285 (and *print-pretty* (pprint-dispatch object))
286 (if pretty
287 (sb!pretty::with-pretty-stream (stream)
288 (funcall fun stream object))
289 (output-ugly-object stream object))))
290 (handle-it (stream)
291 (if *suppress-print-errors*
292 (handler-bind ((condition
293 (lambda (condition) nil
294 (when (typep condition *suppress-print-errors*)
295 (cond (*in-print-error*
296 (write-string "(error printing " stream)
297 (write-string *in-print-error* stream)
298 (write-string ")" stream))
300 ;; Give outer handlers a chance.
301 (with-simple-restart
302 (continue "Suppress the error.")
303 (signal condition))
304 (let ((*print-readably* nil)
305 (*print-escape* t))
306 (write-string
307 "#<error printing a " stream)
308 (let ((*in-print-error* "type"))
309 (output-object (type-of object) stream))
310 (write-string ": " stream)
311 (let ((*in-print-error* "condition"))
312 (output-object condition stream))
313 (write-string ">" stream))))
314 (return-from handle-it object)))))
315 (print-it stream))
316 (print-it stream)))
317 (check-it (stream)
318 (multiple-value-bind (marker initiate)
319 (check-for-circularity object t)
320 (if (eq initiate :initiate)
321 (let ((*circularity-hash-table*
322 (make-hash-table :test 'eq)))
323 (check-it (make-broadcast-stream))
324 (let ((*circularity-counter* 0))
325 (check-it stream)))
326 ;; otherwise
327 (if marker
328 (when (handle-circularity marker stream)
329 (handle-it stream))
330 (handle-it stream))))))
331 (cond (;; Maybe we don't need to bother with circularity detection.
332 (or (not *print-circle*)
333 (uniquely-identified-by-print-p object))
334 (handle-it stream))
335 (;; If we have already started circularity detection, this
336 ;; object might be a shared reference. If we have not, then
337 ;; if it is a compound object it might contain a circular
338 ;; reference to itself or multiple shared references.
339 (or *circularity-hash-table*
340 (compound-object-p object))
341 (check-it stream))
343 (handle-it stream)))))
345 ;;; Output OBJECT to STREAM observing all printer control variables
346 ;;; except for *PRINT-PRETTY*. Note: if *PRINT-PRETTY* is non-NIL,
347 ;;; then the pretty printer will be used for any components of OBJECT,
348 ;;; just not for OBJECT itself.
349 (defun output-ugly-object (stream object)
350 (when (%instancep object)
351 (let* ((layout (layout-of object))
352 (classoid (layout-classoid layout)))
353 ;; If an instance has no layout, it has no PRINT-OBJECT method.
354 ;; Additionally, if the object is an obsolete CONDITION, don't crash.
355 ;; (There is no update-instance protocol for conditions)
356 (when (or (sb!kernel::undefined-classoid-p classoid)
357 (and (layout-invalid layout) (condition-classoid-p classoid)))
358 ;; not only is this unreadable, it's unprintable too.
359 (return-from output-ugly-object
360 (print-unreadable-object (object stream :identity t)
361 (format stream "UNPRINTABLE instance of ~W" classoid))))))
362 (print-object object stream))
364 ;;; Note: Now that PRINT-OBJECT works right away, indirections could be removed.
365 ;;; i.e. do (DEFMETHOD PRINT-OBJECT ((X CONS) STREAM) (ACTUAL-PRINTER-GUTS))
366 ;;; But in a bootstrap situation you might wish to call a named printer directly.
367 (defmethod print-object ((object function) stream) (output-fun object stream))
368 (defmethod print-object ((object symbol) stream) (output-symbol object stream))
369 (defmethod print-object ((object cons) stream) (output-list object stream))
370 (defmethod print-object ((object integer) stream) (output-integer object stream))
371 (defmethod print-object ((object float) stream) (output-float object stream))
372 (defmethod print-object ((object ratio) stream) (output-ratio object stream))
373 (defmethod print-object ((object complex) stream) (output-complex object stream))
374 (defmethod print-object ((object character) stream) (output-character object stream))
375 (defmethod print-object ((object vector) stream) (output-vector object stream))
376 (defmethod print-object ((object array) stream) (output-array object stream))
377 (defmethod print-object ((object system-area-pointer) stream) (output-sap object stream))
378 (defmethod print-object ((object weak-pointer) stream) (output-weak-pointer object stream))
379 (defmethod print-object ((object code-component) stream) (output-code-component object stream))
380 (defmethod print-object ((object fdefn) stream) (output-fdefn object stream))
381 #!-(or x86 x86-64) (defmethod print-object ((object lra) stream) (output-lra object stream))
383 ;;;; symbols
385 (defun output-symbol (object stream)
386 (declare (symbol object))
387 (if (or *print-escape* *print-readably*)
388 ;; Write so that reading back works
389 (output-symbol* object (symbol-package object) stream)
390 ;; Write only the characters of the name, never the package
391 (let ((rt *readtable*))
392 (funcall (truly-the function
393 (choose-symbol-out-fun *print-case* (%readtable-case rt)))
394 (symbol-name object) stream rt))))
396 (defun output-symbol* (symbol package stream)
397 (let* ((readably *print-readably*)
398 (readtable (if readably *standard-readtable* *readtable*))
399 (out-fun (choose-symbol-out-fun *print-case* (%readtable-case readtable))))
400 (flet ((output-token (name)
401 (declare (type simple-string name))
402 (cond ((or (and (readtable-normalization readtable)
403 (not (sb!unicode:normalized-p name :nfkc)))
404 (symbol-quotep name readtable))
405 ;; Output NAME surrounded with |'s,
406 ;; and with any embedded |'s or \'s escaped.
407 (write-char #\| stream)
408 (dotimes (index (length name))
409 (let ((char (char name index)))
410 ;; Hmm. Should these depend on what characters
411 ;; are actually escapes in the readtable ?
412 ;; (See similar remark at DEFUN QUOTE-STRING)
413 (when (or (char= char #\\) (char= char #\|))
414 (write-char #\\ stream))
415 (write-char char stream)))
416 (write-char #\| stream))
418 (funcall (truly-the function out-fun) name stream readtable)))))
419 (let ((name (symbol-name symbol))
420 (current (sane-package)))
421 (cond
422 ;; The ANSI spec "22.1.3.3.1 Package Prefixes for Symbols"
423 ;; requires that keywords be printed with preceding colons
424 ;; always, regardless of the value of *PACKAGE*.
425 ((eq package *keyword-package*)
426 (write-char #\: stream))
427 ;; Otherwise, if the symbol's home package is the current
428 ;; one, then a prefix is never necessary.
429 ((eq package current))
430 ;; Uninterned symbols print with a leading #:.
431 ((null package)
432 (when (or *print-gensym* readably)
433 (write-string "#:" stream)))
435 (multiple-value-bind (found accessible) (find-symbol name current)
436 ;; If we can find the symbol by looking it up, it need not
437 ;; be qualified. This can happen if the symbol has been
438 ;; inherited from a package other than its home package.
440 ;; To preserve print-read consistency, use the local nickname if
441 ;; one exists.
442 (unless (and accessible (eq found symbol))
443 (let ((prefix (or (car (rassoc package (package-%local-nicknames current)))
444 (package-name package))))
445 (output-token prefix))
446 (if (nth-value 1 (find-external-symbol name package))
447 (write-char #\: stream)
448 (write-string "::" stream))))))
449 (output-token name)))))
451 ;;;; escaping symbols
453 ;;; When we print symbols we have to figure out if they need to be
454 ;;; printed with escape characters. This isn't a whole lot easier than
455 ;;; reading symbols in the first place.
457 ;;; For each character, the value of the corresponding element is a
458 ;;; fixnum with bits set corresponding to attributes that the
459 ;;; character has. At characters have at least one bit set, so we can
460 ;;; search for any character with a positive test.
461 (defvar *character-attributes*
462 (make-array 160 ; FIXME
463 :element-type '(unsigned-byte 16)
464 :initial-element 0))
465 (declaim (type (simple-array (unsigned-byte 16) (#.160)) ; FIXME
466 *character-attributes*))
468 ;;; constants which are a bit-mask for each interesting character attribute
469 (defconstant other-attribute (ash 1 0)) ; Anything else legal.
470 (defconstant number-attribute (ash 1 1)) ; A numeric digit.
471 (defconstant uppercase-attribute (ash 1 2)) ; An uppercase letter.
472 (defconstant lowercase-attribute (ash 1 3)) ; A lowercase letter.
473 (defconstant sign-attribute (ash 1 4)) ; +-
474 (defconstant extension-attribute (ash 1 5)) ; ^_
475 (defconstant dot-attribute (ash 1 6)) ; .
476 (defconstant slash-attribute (ash 1 7)) ; /
477 (defconstant funny-attribute (ash 1 8)) ; Anything illegal.
479 (eval-when (:compile-toplevel :load-toplevel :execute)
481 ;;; LETTER-ATTRIBUTE is a local of SYMBOL-QUOTEP. It matches letters
482 ;;; that don't need to be escaped (according to READTABLE-CASE.)
483 (defparameter *attribute-names*
484 `((number . number-attribute) (lowercase . lowercase-attribute)
485 (uppercase . uppercase-attribute) (letter . letter-attribute)
486 (sign . sign-attribute) (extension . extension-attribute)
487 (dot . dot-attribute) (slash . slash-attribute)
488 (other . other-attribute) (funny . funny-attribute)))
490 ) ; EVAL-WHEN
492 ;;; For each character, the value of the corresponding element is the
493 ;;; lowest base in which that character is a digit.
494 (declaim (type (simple-array (unsigned-byte 8) (128)) ; FIXME: range?
495 *digit-bases*))
496 (defvar *digit-bases*
497 (make-array 128 ; FIXME
498 :element-type '(unsigned-byte 8)))
500 (defun !printer-cold-init ()
501 ;; The dispatch table will be changed later, so this doesn't really matter
502 ;; except if a full call to WRITE wants to read the current binding.
503 (setq *print-pprint-dispatch* (sb!pretty::make-pprint-dispatch-table))
504 (setq *digit-bases* (make-array 128 ; FIXME
505 :element-type '(unsigned-byte 8)
506 :initial-element 36)
507 *character-attributes* (make-array 160 ; FIXME
508 :element-type '(unsigned-byte 16)
509 :initial-element 0))
510 (dotimes (i 36)
511 (let ((char (digit-char i 36)))
512 (setf (aref *digit-bases* (char-code char)) i)))
514 (flet ((set-bit (char bit)
515 (let ((code (char-code char)))
516 (setf (aref *character-attributes* code)
517 (logior bit (aref *character-attributes* code))))))
519 (dolist (char '(#\! #\@ #\$ #\% #\& #\* #\= #\~ #\[ #\] #\{ #\}
520 #\? #\< #\>))
521 (set-bit char other-attribute))
523 (dotimes (i 10)
524 (set-bit (digit-char i) number-attribute))
526 (do ((code (char-code #\A) (1+ code))
527 (end (char-code #\Z)))
528 ((> code end))
529 (declare (fixnum code end))
530 (set-bit (code-char code) uppercase-attribute)
531 (set-bit (char-downcase (code-char code)) lowercase-attribute))
533 (set-bit #\- sign-attribute)
534 (set-bit #\+ sign-attribute)
535 (set-bit #\^ extension-attribute)
536 (set-bit #\_ extension-attribute)
537 (set-bit #\. dot-attribute)
538 (set-bit #\/ slash-attribute)
540 ;; Mark anything not explicitly allowed as funny.
541 (dotimes (i 160) ; FIXME
542 (when (zerop (aref *character-attributes* i))
543 (setf (aref *character-attributes* i) funny-attribute))))
544 ) ; end !COLD-PRINT-INIT
546 ;;; A FSM-like thingie that determines whether a symbol is a potential
547 ;;; number or has evil characters in it.
548 (defun symbol-quotep (name readtable)
549 (declare (simple-string name))
550 (macrolet ((advance (tag &optional (at-end t))
551 `(progn
552 (when (= index len)
553 ,(if at-end '(go TEST-SIGN) '(return nil)))
554 (setq current (schar name index)
555 code (char-code current)
556 bits (cond ; FIXME
557 ((< code 160) (aref attributes code))
558 ((upper-case-p current) uppercase-attribute)
559 ((lower-case-p current) lowercase-attribute)
560 (t other-attribute)))
561 (incf index)
562 (go ,tag)))
563 (test (&rest attributes)
564 `(not (zerop
565 (the fixnum
566 (logand
567 (logior ,@(mapcar
568 (lambda (x)
569 (or (cdr (assoc x
570 *attribute-names*))
571 (error "Blast!")))
572 attributes))
573 bits)))))
574 (digitp ()
575 `(and (< code 128) ; FIXME
576 (< (the fixnum (aref bases code)) base))))
578 (prog ((len (length name))
579 (attributes *character-attributes*)
580 (bases *digit-bases*)
581 (base *print-base*)
582 (letter-attribute
583 (case (%readtable-case readtable)
584 (#.+readtable-upcase+ uppercase-attribute)
585 (#.+readtable-downcase+ lowercase-attribute)
586 (t (logior lowercase-attribute uppercase-attribute))))
587 (index 0)
588 (bits 0)
589 (code 0)
590 current)
591 (declare (fixnum len base index bits code))
592 (advance START t)
594 TEST-SIGN ; At end, see whether it is a sign...
595 (return (not (test sign)))
597 OTHER ; not potential number, see whether funny chars...
598 (let ((mask (logxor (logior lowercase-attribute uppercase-attribute
599 funny-attribute)
600 letter-attribute)))
601 (do ((i (1- index) (1+ i)))
602 ((= i len) (return-from symbol-quotep nil))
603 (unless (zerop (logand (let* ((char (schar name i))
604 (code (char-code char)))
605 (cond
606 ((< code 160) (aref attributes code))
607 ((upper-case-p char) uppercase-attribute)
608 ((lower-case-p char) lowercase-attribute)
609 (t other-attribute)))
610 mask))
611 (return-from symbol-quotep t))))
613 START
614 (when (digitp)
615 (if (test letter)
616 (advance LAST-DIGIT-ALPHA)
617 (advance DIGIT)))
618 (when (test letter number other slash) (advance OTHER nil))
619 (when (char= current #\.) (advance DOT-FOUND))
620 (when (test sign extension) (advance START-STUFF nil))
621 (return t)
623 DOT-FOUND ; leading dots...
624 (when (test letter) (advance START-DOT-MARKER nil))
625 (when (digitp) (advance DOT-DIGIT))
626 (when (test number other) (advance OTHER nil))
627 (when (test extension slash sign) (advance START-DOT-STUFF nil))
628 (when (char= current #\.) (advance DOT-FOUND))
629 (return t)
631 START-STUFF ; leading stuff before any dot or digit
632 (when (digitp)
633 (if (test letter)
634 (advance LAST-DIGIT-ALPHA)
635 (advance DIGIT)))
636 (when (test number other) (advance OTHER nil))
637 (when (test letter) (advance START-MARKER nil))
638 (when (char= current #\.) (advance START-DOT-STUFF nil))
639 (when (test sign extension slash) (advance START-STUFF nil))
640 (return t)
642 START-MARKER ; number marker in leading stuff...
643 (when (test letter) (advance OTHER nil))
644 (go START-STUFF)
646 START-DOT-STUFF ; leading stuff containing dot without digit...
647 (when (test letter) (advance START-DOT-STUFF nil))
648 (when (digitp) (advance DOT-DIGIT))
649 (when (test sign extension dot slash) (advance START-DOT-STUFF nil))
650 (when (test number other) (advance OTHER nil))
651 (return t)
653 START-DOT-MARKER ; number marker in leading stuff with dot..
654 ;; leading stuff containing dot without digit followed by letter...
655 (when (test letter) (advance OTHER nil))
656 (go START-DOT-STUFF)
658 DOT-DIGIT ; in a thing with dots...
659 (when (test letter) (advance DOT-MARKER))
660 (when (digitp) (advance DOT-DIGIT))
661 (when (test number other) (advance OTHER nil))
662 (when (test sign extension dot slash) (advance DOT-DIGIT))
663 (return t)
665 DOT-MARKER ; number marker in number with dot...
666 (when (test letter) (advance OTHER nil))
667 (go DOT-DIGIT)
669 LAST-DIGIT-ALPHA ; previous char is a letter digit...
670 (when (or (digitp) (test sign slash))
671 (advance ALPHA-DIGIT))
672 (when (test letter number other dot) (advance OTHER nil))
673 (return t)
675 ALPHA-DIGIT ; seen a digit which is a letter...
676 (when (or (digitp) (test sign slash))
677 (if (test letter)
678 (advance LAST-DIGIT-ALPHA)
679 (advance ALPHA-DIGIT)))
680 (when (test letter) (advance ALPHA-MARKER))
681 (when (test number other dot) (advance OTHER nil))
682 (return t)
684 ALPHA-MARKER ; number marker in number with alpha digit...
685 (when (test letter) (advance OTHER nil))
686 (go ALPHA-DIGIT)
688 DIGIT ; seen only ordinary (non-alphabetic) numeric digits...
689 (when (digitp)
690 (if (test letter)
691 (advance ALPHA-DIGIT)
692 (advance DIGIT)))
693 (when (test number other) (advance OTHER nil))
694 (when (test letter) (advance MARKER))
695 (when (test extension slash sign) (advance DIGIT))
696 (when (char= current #\.) (advance DOT-DIGIT))
697 (return t)
699 MARKER ; number marker in a numeric number...
700 ;; ("What," you may ask, "is a 'number marker'?" It's something
701 ;; that a conforming implementation might use in number syntax.
702 ;; See ANSI 2.3.1.1 "Potential Numbers as Tokens".)
703 (when (test letter) (advance OTHER nil))
704 (go DIGIT))))
706 ;;;; case hackery: One of these functions is chosen to output symbol
707 ;;;; names according to the values of *PRINT-CASE* and READTABLE-CASE.
709 ;;; called when:
710 ;;; READTABLE-CASE *PRINT-CASE*
711 ;;; :UPCASE :UPCASE
712 ;;; :DOWNCASE :DOWNCASE
713 ;;; :PRESERVE any
714 (defun output-preserve-symbol (pname stream readtable)
715 (declare (ignore readtable))
716 (write-string pname stream))
718 ;;; called when:
719 ;;; READTABLE-CASE *PRINT-CASE*
720 ;;; :UPCASE :DOWNCASE
721 (defun output-lowercase-symbol (pname stream readtable)
722 (declare (simple-string pname) (ignore readtable))
723 (dotimes (index (length pname))
724 (let ((char (schar pname index)))
725 (write-char (char-downcase char) stream))))
727 ;;; called when:
728 ;;; READTABLE-CASE *PRINT-CASE*
729 ;;; :DOWNCASE :UPCASE
730 (defun output-uppercase-symbol (pname stream readtable)
731 (declare (simple-string pname) (ignore readtable))
732 (dotimes (index (length pname))
733 (let ((char (schar pname index)))
734 (write-char (char-upcase char) stream))))
736 ;;; called when:
737 ;;; READTABLE-CASE *PRINT-CASE*
738 ;;; :UPCASE :CAPITALIZE
739 ;;; :DOWNCASE :CAPITALIZE
740 (defun output-capitalize-symbol (pname stream readtable)
741 (declare (simple-string pname))
742 (let ((prev-not-alphanum t)
743 (up (eql (%readtable-case readtable) +readtable-upcase+)))
744 (dotimes (i (length pname))
745 (let ((char (char pname i)))
746 (write-char (if up
747 (if (or prev-not-alphanum (lower-case-p char))
748 char
749 (char-downcase char))
750 (if prev-not-alphanum
751 (char-upcase char)
752 char))
753 stream)
754 (setq prev-not-alphanum (not (alphanumericp char)))))))
756 ;;; called when:
757 ;;; READTABLE-CASE *PRINT-CASE*
758 ;;; :INVERT any
759 (defun output-invert-symbol (pname stream readtable)
760 (declare (simple-string pname) (ignore readtable))
761 (let ((all-upper t)
762 (all-lower t))
763 (dotimes (i (length pname))
764 (let ((ch (schar pname i)))
765 (when (both-case-p ch)
766 (if (upper-case-p ch)
767 (setq all-lower nil)
768 (setq all-upper nil)))))
769 (cond (all-upper (output-lowercase-symbol pname stream nil))
770 (all-lower (output-uppercase-symbol pname stream nil))
772 (write-string pname stream)))))
774 (defun choose-symbol-out-fun (print-case readtable-case)
775 (macrolet
776 ((compute-fun-vector (&aux (vector (make-array 12)))
777 ;; Pack a 2D array of functions into a simple-vector.
778 ;; Major axis is *PRINT-CASE*, minor axis is %READTABLE-CASE.
779 (dotimes (readtable-case-index 4)
780 (dotimes (print-case-index 3)
781 (let ((readtable-case
782 (elt '(:upcase :downcase :preserve :invert) readtable-case-index))
783 (print-case
784 (elt '(:upcase :downcase :capitalize) print-case-index)))
785 (setf (aref vector (logior (ash print-case-index 2)
786 readtable-case-index))
787 (case readtable-case
788 (:upcase
789 (case print-case
790 (:upcase 'output-preserve-symbol)
791 (:downcase 'output-lowercase-symbol)
792 (:capitalize 'output-capitalize-symbol)))
793 (:downcase
794 (case print-case
795 (:upcase 'output-uppercase-symbol)
796 (:downcase 'output-preserve-symbol)
797 (:capitalize 'output-capitalize-symbol)))
798 (:preserve 'output-preserve-symbol)
799 (:invert 'output-invert-symbol))))))
800 `(load-time-value (vector ,@(map 'list (lambda (x) `(function ,x)) vector))
801 t)))
802 (aref (compute-fun-vector)
803 (logior (case print-case (:upcase 0) (:downcase 4) (t 8))
804 (truly-the (mod 4) readtable-case)))))
806 ;;;; recursive objects
808 (defun output-list (list stream)
809 (descend-into (stream)
810 (write-char #\( stream)
811 (let ((length 0)
812 (list list))
813 (loop
814 (punt-print-if-too-long length stream)
815 (output-object (pop list) stream)
816 (unless list
817 (return))
818 (when (or (atom list)
819 (check-for-circularity list))
820 (write-string " . " stream)
821 (output-object list stream)
822 (return))
823 (write-char #\space stream)
824 (incf length)))
825 (write-char #\) stream)))
827 (defun output-unreadable-vector-readably (vector stream)
828 (declare (vector vector))
829 (write-string "#." stream)
830 (write `(coerce ,(coerce vector '(vector t))
831 '(simple-array ,(array-element-type vector) (*)))
832 :stream stream))
834 (defun output-vector (vector stream &aux (readably *print-readably*))
835 (declare (vector vector))
836 (cond ((stringp vector)
837 (let ((coerce-p
838 (and readably (not (typep vector '(vector character))))))
839 (cond ((and coerce-p (not *read-eval*))
840 (print-not-readable-error vector stream))
841 ((or *print-escape* readably)
842 (when coerce-p
843 ;; OUTPUT-UNREADABLE-VECTOR-READABLY would output each char
844 ;; in #\c syntax. In addition to wasting time coercing to a
845 ;; general vector, it's not nice looking.
846 (write-string "#.(" stream)
847 (write 'coerce :stream stream) ; package-qualify / casify as needed
848 (write-char #\Space stream))
849 (write-char #\" stream)
850 (quote-string vector stream)
851 (write-char #\" stream)
852 (when coerce-p
853 (write-char #\Space stream)
854 (write (cond #!+sb-unicode
855 ((base-string-p vector)
856 ''base-string)
858 `'(vector ,(array-element-type vector)))) :stream stream)
859 (write-char #\) stream)))
861 (write-string vector stream)))))
862 ((not (or *print-array* readably))
863 (output-terse-array vector stream))
864 ((bit-vector-p vector)
865 (write-string "#*" stream)
866 (dovector (bit vector)
867 ;; (Don't use OUTPUT-OBJECT here, since this code
868 ;; has to work for all possible *PRINT-BASE* values.)
869 (write-char (if (zerop bit) #\0 #\1) stream)))
870 ((or (not readably) (array-readably-printable-p vector))
871 (descend-into (stream)
872 (write-string "#(" stream)
873 (dotimes (i (length vector))
874 (unless (zerop i)
875 (write-char #\space stream))
876 (punt-print-if-too-long i stream)
877 (output-object (aref vector i) stream))
878 (write-string ")" stream)))
879 (*read-eval*
880 (output-unreadable-vector-readably vector stream))
882 (print-not-readable-error vector stream))))
884 ;;; This function outputs a string quoting characters sufficiently
885 ;;; so that someone can read it in again. Basically, put a slash in
886 ;;; front of an character satisfying NEEDS-SLASH-P.
887 (defun quote-string (string stream)
888 (macrolet ((needs-slash-p (char)
889 ;; KLUDGE: We probably should look at the readtable, but just do
890 ;; this for now. [noted by anonymous long ago] -- WHN 19991130
891 `(or (char= ,char #\\)
892 (char= ,char #\"))))
893 (with-array-data ((data string) (start) (end)
894 :check-fill-pointer t)
895 (do ((index start (1+ index)))
896 ((>= index end))
897 (let ((char (schar data index)))
898 (when (needs-slash-p char) (write-char #\\ stream))
899 (write-char char stream))))))
901 (defun array-readably-printable-p (array)
902 (and (eq (array-element-type array) t)
903 (let ((zero (position 0 (array-dimensions array)))
904 (number (position 0 (array-dimensions array)
905 :test (complement #'eql)
906 :from-end t)))
907 (or (null zero) (null number) (> zero number)))))
909 ;;; Output the printed representation of any array in either the #< or #A
910 ;;; form.
911 (defun output-array (array stream)
912 (if (or *print-array* *print-readably*)
913 (output-array-guts array stream)
914 (output-terse-array array stream)))
916 ;;; Output the abbreviated #< form of an array.
917 (defun output-terse-array (array stream)
918 (let ((*print-level* nil)
919 (*print-length* nil))
920 (print-unreadable-object (array stream :type t :identity t))))
922 ;;; Convert an array into a list that can be used with MAKE-ARRAY's
923 ;;; :INITIAL-CONTENTS keyword argument.
924 (defun listify-array (array)
925 (with-array-data ((data array) (start) (end))
926 (declare (ignore end))
927 (labels ((listify (dimensions index)
928 (if (null dimensions)
929 (aref data index)
930 (let* ((dimension (car dimensions))
931 (dimensions (cdr dimensions))
932 (count (reduce #'* dimensions)))
933 (loop for i below dimension
934 collect (listify dimensions index)
935 do (incf index count))))))
936 (listify (array-dimensions array) start))))
938 (defun output-unreadable-array-readably (array stream)
939 (write-string "#." stream)
940 (write `(make-array ',(array-dimensions array)
941 :element-type ',(array-element-type array)
942 :initial-contents ',(listify-array array))
943 :stream stream))
945 ;;; Output the readable #A form of an array.
946 (defun output-array-guts (array stream)
947 (cond ((or (not *print-readably*)
948 (array-readably-printable-p array))
949 (write-char #\# stream)
950 (let ((*print-base* 10)
951 (*print-radix* nil))
952 (output-integer (array-rank array) stream))
953 (write-char #\A stream)
954 (with-array-data ((data array) (start) (end))
955 (declare (ignore end))
956 (sub-output-array-guts data (array-dimensions array) stream start)))
957 (*read-eval*
958 (output-unreadable-array-readably array stream))
960 (print-not-readable-error array stream))))
962 (defun sub-output-array-guts (array dimensions stream index)
963 (declare (type (simple-array * (*)) array) (fixnum index))
964 (cond ((null dimensions)
965 (output-object (aref array index) stream))
967 (descend-into (stream)
968 (write-char #\( stream)
969 (let* ((dimension (car dimensions))
970 (dimensions (cdr dimensions))
971 (count (reduce #'* dimensions)))
972 (dotimes (i dimension)
973 (unless (zerop i)
974 (write-char #\space stream))
975 (punt-print-if-too-long i stream)
976 (sub-output-array-guts array dimensions stream index)
977 (incf index count)))
978 (write-char #\) stream)))))
981 ;;;; integer, ratio, and complex printing (i.e. everything but floats)
983 (defun %output-radix (base stream)
984 (write-char #\# stream)
985 (write-char (case base
986 (2 #\b)
987 (8 #\o)
988 (16 #\x)
989 (t (%output-reasonable-integer-in-base base 10 stream)
990 #\r))
991 stream))
993 (defun %output-reasonable-integer-in-base (n base stream)
994 (multiple-value-bind (q r)
995 (truncate n base)
996 ;; Recurse until you have all the digits pushed on
997 ;; the stack.
998 (unless (zerop q)
999 (%output-reasonable-integer-in-base q base stream))
1000 ;; Then as each recursive call unwinds, turn the
1001 ;; digit (in remainder) into a character and output
1002 ;; the character.
1003 (write-char
1004 (schar "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ" r)
1005 stream)))
1007 ;;; *POWER-CACHE* is an alist mapping bases to power-vectors. It is
1008 ;;; filled and probed by POWERS-FOR-BASE. SCRUB-POWER-CACHE is called
1009 ;;; always prior a GC to drop overly large bignums from the cache.
1011 ;;; It doesn't need a lock, but if you work on SCRUB-POWER-CACHE or
1012 ;;; POWERS-FOR-BASE, see that you don't break the assumptions!
1013 (defglobal *power-cache* (make-array 37 :initial-element nil))
1014 (declaim (type (simple-vector 37) *power-cache*))
1016 (defconstant +power-cache-integer-length-limit+ 2048)
1018 (defun scrub-power-cache (&aux (cache *power-cache*))
1019 (dotimes (i (length cache))
1020 (let ((powers (aref cache i)))
1021 (when powers
1022 (let ((too-big (position-if
1023 (lambda (x)
1024 (>= (integer-length x)
1025 +power-cache-integer-length-limit+))
1026 (the simple-vector powers))))
1027 (when too-big
1028 (setf (aref cache i) (subseq powers 0 too-big))))))))
1030 ;;; Compute (and cache) a power vector for a BASE and LIMIT:
1031 ;;; the vector holds integers for which
1032 ;;; (aref powers k) == (expt base (expt 2 k))
1033 ;;; holds.
1034 (defun powers-for-base (base limit)
1035 (flet ((compute-powers (from)
1036 (let (powers)
1037 (do ((p from (* p p)))
1038 ((> p limit)
1039 ;; We don't actually need this, but we also
1040 ;; prefer not to cons it up a second time...
1041 (push p powers))
1042 (push p powers))
1043 (nreverse powers))))
1044 (let* ((cache *power-cache*)
1045 (powers (aref cache base)))
1046 (setf (aref cache base)
1047 (concatenate 'vector powers
1048 (compute-powers
1049 (if powers
1050 (let* ((len (length powers))
1051 (max (svref powers (1- len))))
1052 (if (> max limit)
1053 (return-from powers-for-base powers)
1054 (* max max)))
1055 base)))))))
1057 ;; Algorithm by Harald Hanche-Olsen, sbcl-devel 2005-02-05
1058 (defun %output-huge-integer-in-base (n base stream)
1059 (declare (type bignum n) (type fixnum base))
1060 ;; POWER is a vector for which the following holds:
1061 ;; (aref power k) == (expt base (expt 2 k))
1062 (let* ((power (powers-for-base base n))
1063 (k-start (or (position-if (lambda (x) (> x n)) power)
1064 (bug "power-vector too short"))))
1065 (labels ((bisect (n k exactp)
1066 (declare (fixnum k))
1067 ;; N is the number to bisect
1068 ;; K on initial entry BASE^(2^K) > N
1069 ;; EXACTP is true if 2^K is the exact number of digits
1070 (cond ((zerop n)
1071 (when exactp
1072 (loop repeat (ash 1 k) do (write-char #\0 stream))))
1073 ((zerop k)
1074 (write-char
1075 (schar "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ" n)
1076 stream))
1078 (setf k (1- k))
1079 (multiple-value-bind (q r) (truncate n (aref power k))
1080 ;; EXACTP is NIL only at the head of the
1081 ;; initial number, as we don't know the number
1082 ;; of digits there, but we do know that it
1083 ;; doesn't get any leading zeros.
1084 (bisect q k exactp)
1085 (bisect r k (or exactp (plusp q))))))))
1086 (bisect n k-start nil))))
1088 (defun %output-integer-in-base (integer base stream)
1089 (when (minusp integer)
1090 (write-char #\- stream)
1091 (setf integer (- integer)))
1092 ;; The ideal cutoff point between these two algorithms is almost
1093 ;; certainly quite platform dependent: this gives 87 for 32 bit
1094 ;; SBCL, which is about right at least for x86/Darwin.
1095 (if (or (fixnump integer)
1096 (< (integer-length integer) (* 3 sb!vm:n-positive-fixnum-bits)))
1097 (%output-reasonable-integer-in-base integer base stream)
1098 (%output-huge-integer-in-base integer base stream)))
1100 (defun output-integer (integer stream)
1101 (let ((base *print-base*))
1102 (when (and (/= base 10) *print-radix*)
1103 (%output-radix base stream))
1104 (%output-integer-in-base integer base stream)
1105 (when (and *print-radix* (= base 10))
1106 (write-char #\. stream))))
1108 (defun output-ratio (ratio stream)
1109 (let ((base *print-base*))
1110 (when *print-radix*
1111 (%output-radix base stream))
1112 (%output-integer-in-base (numerator ratio) base stream)
1113 (write-char #\/ stream)
1114 (%output-integer-in-base (denominator ratio) base stream)))
1116 (defun output-complex (complex stream)
1117 (write-string "#C(" stream)
1118 (output-object (realpart complex) stream)
1119 (write-char #\space stream)
1120 (output-object (imagpart complex) stream)
1121 (write-char #\) stream))
1123 ;;;; float printing
1125 ;;; FLONUM-TO-STRING (and its subsidiary function FLOAT-STRING) does
1126 ;;; most of the work for all printing of floating point numbers in
1127 ;;; FORMAT. It converts a floating point number to a string in a free
1128 ;;; or fixed format with no exponent. The interpretation of the
1129 ;;; arguments is as follows:
1131 ;;; X - The floating point number to convert, which must not be
1132 ;;; negative.
1133 ;;; WIDTH - The preferred field width, used to determine the number
1134 ;;; of fraction digits to produce if the FDIGITS parameter
1135 ;;; is unspecified or NIL. If the non-fraction digits and the
1136 ;;; decimal point alone exceed this width, no fraction digits
1137 ;;; will be produced unless a non-NIL value of FDIGITS has been
1138 ;;; specified. Field overflow is not considerd an error at this
1139 ;;; level.
1140 ;;; FDIGITS - The number of fractional digits to produce. Insignificant
1141 ;;; trailing zeroes may be introduced as needed. May be
1142 ;;; unspecified or NIL, in which case as many digits as possible
1143 ;;; are generated, subject to the constraint that there are no
1144 ;;; trailing zeroes.
1145 ;;; SCALE - If this parameter is specified or non-NIL, then the number
1146 ;;; printed is (* x (expt 10 scale)). This scaling is exact,
1147 ;;; and cannot lose precision.
1148 ;;; FMIN - This parameter, if specified or non-NIL, is the minimum
1149 ;;; number of fraction digits which will be produced, regardless
1150 ;;; of the value of WIDTH or FDIGITS. This feature is used by
1151 ;;; the ~E format directive to prevent complete loss of
1152 ;;; significance in the printed value due to a bogus choice of
1153 ;;; scale factor.
1155 ;;; Returns:
1156 ;;; (VALUES DIGIT-STRING DIGIT-LENGTH LEADING-POINT TRAILING-POINT DECPNT)
1157 ;;; where the results have the following interpretation:
1159 ;;; DIGIT-STRING - The decimal representation of X, with decimal point.
1160 ;;; DIGIT-LENGTH - The length of the string DIGIT-STRING.
1161 ;;; LEADING-POINT - True if the first character of DIGIT-STRING is the
1162 ;;; decimal point.
1163 ;;; TRAILING-POINT - True if the last character of DIGIT-STRING is the
1164 ;;; decimal point.
1165 ;;; POINT-POS - The position of the digit preceding the decimal
1166 ;;; point. Zero indicates point before first digit.
1168 ;;; NOTE: FLONUM-TO-STRING goes to a lot of trouble to guarantee
1169 ;;; accuracy. Specifically, the decimal number printed is the closest
1170 ;;; possible approximation to the true value of the binary number to
1171 ;;; be printed from among all decimal representations with the same
1172 ;;; number of digits. In free-format output, i.e. with the number of
1173 ;;; digits unconstrained, it is guaranteed that all the information is
1174 ;;; preserved, so that a properly- rounding reader can reconstruct the
1175 ;;; original binary number, bit-for-bit, from its printed decimal
1176 ;;; representation. Furthermore, only as many digits as necessary to
1177 ;;; satisfy this condition will be printed.
1179 ;;; FLOAT-DIGITS actually generates the digits for positive numbers;
1180 ;;; see below for comments.
1182 (defun flonum-to-string (x &optional width fdigits scale fmin)
1183 (declare (type float x))
1184 ;; FIXME: I think only FORMAT-DOLLARS calls FLONUM-TO-STRING with
1185 ;; possibly-negative X.
1186 (setf x (abs x))
1187 (multiple-value-bind (e string)
1188 (if fdigits
1189 (flonum-to-digits x (min (- (+ fdigits (or scale 0)))
1190 (- (or fmin 0))))
1191 (if (and width (> width 1))
1192 (let ((w (multiple-value-list
1193 (flonum-to-digits x
1194 (max 1
1195 (+ (1- width)
1196 (if (and scale (minusp scale))
1197 scale 0)))
1198 t)))
1199 (f (multiple-value-list
1200 (flonum-to-digits x (- (+ (or fmin 0)
1201 (if scale scale 0)))))))
1202 (cond
1203 ((>= (length (cadr w)) (length (cadr f)))
1204 (values-list w))
1205 (t (values-list f))))
1206 (flonum-to-digits x)))
1207 (let ((e (if (zerop x)
1209 (+ e (or scale 0))))
1210 (stream (make-string-output-stream)))
1211 (if (plusp e)
1212 (progn
1213 (write-string string stream :end (min (length string) e))
1214 (dotimes (i (- e (length string)))
1215 (write-char #\0 stream))
1216 (write-char #\. stream)
1217 (write-string string stream :start (min (length string) e))
1218 (when fdigits
1219 (dotimes (i (- fdigits
1220 (- (length string)
1221 (min (length string) e))))
1222 (write-char #\0 stream))))
1223 (progn
1224 (write-string "." stream)
1225 (dotimes (i (- e))
1226 (write-char #\0 stream))
1227 (write-string string stream :end (when fdigits
1228 (min (length string)
1229 (max (or fmin 0)
1230 (+ fdigits e)))))
1231 (when fdigits
1232 (dotimes (i (+ fdigits e (- (length string))))
1233 (write-char #\0 stream)))))
1234 (let ((string (get-output-stream-string stream)))
1235 (values string (length string)
1236 (char= (char string 0) #\.)
1237 (char= (char string (1- (length string))) #\.)
1238 (position #\. string))))))
1240 ;;; implementation of figure 1 from Burger and Dybvig, 1996. It is
1241 ;;; extended in order to handle rounding.
1243 ;;; As the implementation of the Dragon from Classic CMUCL (and
1244 ;;; previously in SBCL above FLONUM-TO-STRING) says: "DO NOT EVEN
1245 ;;; THINK OF ATTEMPTING TO UNDERSTAND THIS CODE WITHOUT READING THE
1246 ;;; PAPER!", and in this case we have to add that even reading the
1247 ;;; paper might not bring immediate illumination as CSR has attempted
1248 ;;; to turn idiomatic Scheme into idiomatic Lisp.
1250 ;;; FIXME: figure 1 from Burger and Dybvig is the unoptimized
1251 ;;; algorithm, noticeably slow at finding the exponent. Figure 2 has
1252 ;;; an improved algorithm, but CSR ran out of energy.
1254 ;;; possible extension for the enthusiastic: printing floats in bases
1255 ;;; other than base 10.
1256 (defconstant single-float-min-e
1257 (- 2 sb!vm:single-float-bias sb!vm:single-float-digits))
1258 (defconstant double-float-min-e
1259 (- 2 sb!vm:double-float-bias sb!vm:double-float-digits))
1260 #!+long-float
1261 (defconstant long-float-min-e
1262 (nth-value 1 (decode-float least-positive-long-float)))
1264 (defun flonum-to-digits (v &optional position relativep)
1265 (let ((print-base 10) ; B
1266 (float-radix 2) ; b
1267 (float-digits (float-digits v)) ; p
1268 (digit-characters "0123456789")
1269 (min-e
1270 (etypecase v
1271 (single-float single-float-min-e)
1272 (double-float double-float-min-e)
1273 #!+long-float
1274 (long-float long-float-min-e))))
1275 (multiple-value-bind (f e)
1276 (integer-decode-float v)
1277 (let ( ;; FIXME: these even tests assume normal IEEE rounding
1278 ;; mode. I wonder if we should cater for non-normal?
1279 (high-ok (evenp f))
1280 (low-ok (evenp f)))
1281 (with-push-char (:element-type base-char)
1282 (labels ((scale (r s m+ m-)
1283 (do ((r+m+ (+ r m+))
1284 (k 0 (1+ k))
1285 (s s (* s print-base)))
1286 ((not (or (> r+m+ s)
1287 (and high-ok (= r+m+ s))))
1288 (do ((k k (1- k))
1289 (r r (* r print-base))
1290 (m+ m+ (* m+ print-base))
1291 (m- m- (* m- print-base)))
1292 ((not (and (> r m-) ; Extension to handle zero
1293 (let ((x (* (+ r m+) print-base)))
1294 (or (< x s)
1295 (and (not high-ok)
1296 (= x s))))))
1297 (values k (generate r s m+ m-)))))))
1298 (generate (r s m+ m-)
1299 (let (d tc1 tc2)
1300 (tagbody
1301 loop
1302 (setf (values d r) (truncate (* r print-base) s))
1303 (setf m+ (* m+ print-base))
1304 (setf m- (* m- print-base))
1305 (setf tc1 (or (< r m-) (and low-ok (= r m-))))
1306 (setf tc2 (let ((r+m+ (+ r m+)))
1307 (or (> r+m+ s)
1308 (and high-ok (= r+m+ s)))))
1309 (when (or tc1 tc2)
1310 (go end))
1311 (push-char (char digit-characters d))
1312 (go loop)
1314 (let ((d (cond
1315 ((and (not tc1) tc2) (1+ d))
1316 ((and tc1 (not tc2)) d)
1317 ((< (* r 2) s)
1320 (1+ d)))))
1321 (push-char (char digit-characters d))
1322 (return-from generate (get-pushed-string))))))
1323 (initialize ()
1324 (let (r s m+ m-)
1325 (cond ((>= e 0)
1326 (let ((be (expt float-radix e)))
1327 (if (/= f (expt float-radix (1- float-digits)))
1328 (setf r (* f be 2)
1330 m+ be
1331 m- be)
1332 (setf m- be
1333 m+ (* be float-radix)
1334 r (* f m+ 2)
1335 s (* float-radix 2)))))
1336 ((or (= e min-e)
1337 (/= f (expt float-radix (1- float-digits))))
1338 (setf r (* f 2)
1339 s (expt float-radix (- 1 e))
1340 m+ 1
1341 m- 1))
1343 (setf r (* f float-radix 2)
1344 s (expt float-radix (- 2 e))
1345 m+ float-radix
1346 m- 1)))
1347 (when position
1348 (when relativep
1349 (aver (> position 0))
1350 (do ((k 0 (1+ k))
1351 ;; running out of letters here
1352 (l 1 (* l print-base)))
1353 ((>= (* s l) (+ r m+))
1354 ;; k is now \hat{k}
1355 (if (< (+ r (* s (/ (expt print-base (- k position)) 2)))
1356 (* s l))
1357 (setf position (- k position))
1358 (setf position (- k position 1))))))
1359 (let* ((x (/ (* s (expt print-base position)) 2))
1360 (low (max m- x))
1361 (high (max m+ x)))
1362 (when (<= m- low)
1363 (setf m- low)
1364 (setf low-ok t))
1365 (when (<= m+ high)
1366 (setf m+ high)
1367 (setf high-ok t))))
1368 (values r s m+ m-))))
1369 (multiple-value-bind (r s m+ m-) (initialize)
1370 (scale r s m+ m-))))))))
1372 ;;; Given a non-negative floating point number, SCALE-EXPONENT returns
1373 ;;; a new floating point number Z in the range (0.1, 1.0] and an
1374 ;;; exponent E such that Z * 10^E is (approximately) equal to the
1375 ;;; original number. There may be some loss of precision due the
1376 ;;; floating point representation. The scaling is always done with
1377 ;;; long float arithmetic, which helps printing of lesser precisions
1378 ;;; as well as avoiding generic arithmetic.
1380 ;;; When computing our initial scale factor using EXPT, we pull out
1381 ;;; part of the computation to avoid over/under flow. When
1382 ;;; denormalized, we must pull out a large factor, since there is more
1383 ;;; negative exponent range than positive range.
1385 (eval-when (:compile-toplevel :execute)
1386 (setf *read-default-float-format*
1387 #!+long-float 'long-float #!-long-float 'double-float))
1388 (defun scale-exponent (original-x)
1389 (let* ((x (coerce original-x 'long-float)))
1390 (multiple-value-bind (sig exponent) (decode-float x)
1391 (declare (ignore sig))
1392 (if (= x 0.0e0)
1393 (values (float 0.0e0 original-x) 1)
1394 (let* ((ex (locally (declare (optimize (safety 0)))
1395 (the fixnum
1396 (round (* exponent
1397 ;; this is the closest double float
1398 ;; to (log 2 10), but expressed so
1399 ;; that we're not vulnerable to the
1400 ;; host lisp's interpretation of
1401 ;; arithmetic. (FIXME: it turns
1402 ;; out that sbcl itself is off by 1
1403 ;; ulp in this value, which is a
1404 ;; little unfortunate.)
1405 (load-time-value
1406 #!-long-float
1407 (make-double-float 1070810131 1352628735)
1408 #!+long-float
1409 (error "(log 2 10) not computed")))))))
1410 (x (if (minusp ex)
1411 (if (float-denormalized-p x)
1412 #!-long-float
1413 (* x 1.0e16 (expt 10.0e0 (- (- ex) 16)))
1414 #!+long-float
1415 (* x 1.0e18 (expt 10.0e0 (- (- ex) 18)))
1416 (* x 10.0e0 (expt 10.0e0 (- (- ex) 1))))
1417 (/ x 10.0e0 (expt 10.0e0 (1- ex))))))
1418 (do ((d 10.0e0 (* d 10.0e0))
1419 (y x (/ x d))
1420 (ex ex (1+ ex)))
1421 ((< y 1.0e0)
1422 (do ((m 10.0e0 (* m 10.0e0))
1423 (z y (* y m))
1424 (ex ex (1- ex)))
1425 ((>= z 0.1e0)
1426 (values (float z original-x) ex))
1427 (declare (long-float m) (integer ex))))
1428 (declare (long-float d))))))))
1429 (eval-when (:compile-toplevel :execute)
1430 (setf *read-default-float-format* 'single-float))
1432 ;;;; entry point for the float printer
1434 ;;; the float printer as called by PRINT, PRIN1, PRINC, etc. The
1435 ;;; argument is printed free-format, in either exponential or
1436 ;;; non-exponential notation, depending on its magnitude.
1438 ;;; NOTE: When a number is to be printed in exponential format, it is
1439 ;;; scaled in floating point. Since precision may be lost in this
1440 ;;; process, the guaranteed accuracy properties of FLONUM-TO-STRING
1441 ;;; are lost. The difficulty is that FLONUM-TO-STRING performs
1442 ;;; extensive computations with integers of similar magnitude to that
1443 ;;; of the number being printed. For large exponents, the bignums
1444 ;;; really get out of hand. If bignum arithmetic becomes reasonably
1445 ;;; fast and the exponent range is not too large, then it might become
1446 ;;; attractive to handle exponential notation with the same accuracy
1447 ;;; as non-exponential notation, using the method described in the
1448 ;;; Steele and White paper.
1450 ;;; NOTE II: this has been bypassed slightly by implementing Burger
1451 ;;; and Dybvig, 1996. When someone has time (KLUDGE) they can
1452 ;;; probably (a) implement the optimizations suggested by Burger and
1453 ;;; Dyvbig, and (b) remove all vestiges of Dragon4, including from
1454 ;;; fixed-format printing.
1456 ;;; Print the appropriate exponent marker for X and the specified exponent.
1457 (defun print-float-exponent (x exp stream)
1458 (declare (type float x) (type integer exp) (type stream stream))
1459 (cond ((case *read-default-float-format*
1460 ((short-float single-float)
1461 (typep x 'single-float))
1462 ((double-float #!-long-float long-float)
1463 (typep x 'double-float))
1464 #!+long-float
1465 (long-float
1466 (typep x 'long-float)))
1467 (unless (eql exp 0)
1468 (write-char #\e stream)
1469 (%output-integer-in-base exp 10 stream)))
1471 (write-char
1472 (etypecase x
1473 (single-float #\f)
1474 (double-float #\d)
1475 (short-float #\s)
1476 (long-float #\L))
1477 stream)
1478 (%output-integer-in-base exp 10 stream))))
1480 (defun output-float-infinity (x stream)
1481 (declare (float x) (stream stream))
1482 (cond (*read-eval*
1483 (write-string "#." stream))
1484 (*print-readably*
1485 (return-from output-float-infinity
1486 (print-not-readable-error x stream)))
1488 (write-string "#<" stream)))
1489 (write-string "SB-EXT:" stream)
1490 (write-string (symbol-name (float-format-name x)) stream)
1491 (write-string (if (plusp x) "-POSITIVE-" "-NEGATIVE-")
1492 stream)
1493 (write-string "INFINITY" stream)
1494 (unless *read-eval*
1495 (write-string ">" stream)))
1497 (defun output-float-nan (x stream)
1498 (print-unreadable-object (x stream)
1499 (princ (float-format-name x) stream)
1500 (write-string (if (float-trapping-nan-p x) " trapping" " quiet") stream)
1501 (write-string " NaN" stream)))
1503 ;;; the function called by OUTPUT-OBJECT to handle floats
1504 (defun output-float (x stream)
1505 (cond
1506 ((float-infinity-p x)
1507 (output-float-infinity x stream))
1508 ((float-nan-p x)
1509 (output-float-nan x stream))
1511 (let ((x (cond ((minusp (float-sign x))
1512 (write-char #\- stream)
1513 (- x))
1515 x))))
1516 (cond
1517 ((zerop x)
1518 (write-string "0.0" stream)
1519 (print-float-exponent x 0 stream))
1521 (output-float-aux x stream -3 8)))))))
1523 (defun output-float-aux (x stream e-min e-max)
1524 (multiple-value-bind (e string)
1525 (flonum-to-digits x)
1526 (cond
1527 ((< e-min e e-max)
1528 (if (plusp e)
1529 (progn
1530 (write-string string stream :end (min (length string) e))
1531 (dotimes (i (- e (length string)))
1532 (write-char #\0 stream))
1533 (write-char #\. stream)
1534 (write-string string stream :start (min (length string) e))
1535 (when (<= (length string) e)
1536 (write-char #\0 stream))
1537 (print-float-exponent x 0 stream))
1538 (progn
1539 (write-string "0." stream)
1540 (dotimes (i (- e))
1541 (write-char #\0 stream))
1542 (write-string string stream)
1543 (print-float-exponent x 0 stream))))
1544 (t (write-string string stream :end 1)
1545 (write-char #\. stream)
1546 (write-string string stream :start 1)
1547 (print-float-exponent x (1- e) stream)))))
1549 ;;;; other leaf objects
1551 ;;; If *PRINT-ESCAPE* is false, just do a WRITE-CHAR, otherwise output
1552 ;;; the character name or the character in the #\char format.
1553 (defun output-character (char stream)
1554 (if (or *print-escape* *print-readably*)
1555 (let ((graphicp (and (graphic-char-p char)
1556 (standard-char-p char)))
1557 (name (char-name char)))
1558 (write-string "#\\" stream)
1559 (if (and name (or (not graphicp) *print-readably*))
1560 (quote-string name stream)
1561 (write-char char stream)))
1562 (write-char char stream)))
1564 (defun output-sap (sap stream)
1565 (declare (type system-area-pointer sap))
1566 (cond (*read-eval*
1567 (format stream "#.(~S #X~8,'0X)" 'int-sap (sap-int sap)))
1569 (print-unreadable-object (sap stream)
1570 (format stream "system area pointer: #X~8,'0X" (sap-int sap))))))
1572 (defun output-weak-pointer (weak-pointer stream)
1573 (declare (type weak-pointer weak-pointer))
1574 (print-unreadable-object (weak-pointer stream)
1575 (multiple-value-bind (value validp) (weak-pointer-value weak-pointer)
1576 (cond (validp
1577 (write-string "weak pointer: " stream)
1578 (write value :stream stream))
1580 (write-string "broken weak pointer" stream))))))
1582 (defun output-code-component (component stream)
1583 (print-unreadable-object (component stream :identity t)
1584 (let ((dinfo (%code-debug-info component)))
1585 (cond ((eq dinfo :bogus-lra)
1586 (write-string "bogus code object" stream))
1588 (format stream "code object [~D]" (code-n-entries component))
1589 (let ((fun-name (awhen (%code-entry-point component 0)
1590 (%simple-fun-name it))))
1591 (when fun-name
1592 (write-char #\Space stream)
1593 (write fun-name :stream stream))
1594 (cond ((not (typep dinfo 'sb!c::debug-info)))
1595 ((neq (sb!c::debug-info-name dinfo) fun-name)
1596 (write-string ", " stream)
1597 (output-object (sb!c::debug-info-name dinfo) stream)))))))))
1599 (defun output-lra (lra stream)
1600 (print-unreadable-object (lra stream :identity t)
1601 (write-string "return PC object" stream)))
1603 (defun output-fdefn (fdefn stream)
1604 (print-unreadable-object (fdefn stream :type t)
1605 (let ((name (fdefn-name fdefn)))
1606 ;; It's somewhat unhelpful to print as <FDEFINITION for (SETF #)>
1607 ;; Generalized function names are indivisible.
1608 (if (proper-list-p name)
1609 (format stream "(~{~S~^ ~})" name)
1610 (output-object name stream)))))
1612 #!+sb-simd-pack
1613 (defmethod print-object ((pack simd-pack) stream)
1614 (cond ((and *print-readably* *read-eval*)
1615 (multiple-value-bind (format maker extractor)
1616 (etypecase pack
1617 ((simd-pack double-float)
1618 (values "#.(~S ~S ~S)"
1619 '%make-simd-pack-double #'%simd-pack-doubles))
1620 ((simd-pack single-float)
1621 (values "#.(~S ~S ~S ~S ~S)"
1622 '%make-simd-pack-single #'%simd-pack-singles))
1624 (values "#.(~S #X~16,'0X #X~16,'0X)"
1625 '%make-simd-pack-ub64 #'%simd-pack-ub64s)))
1626 (multiple-value-call
1627 #'format stream format maker (funcall extractor pack))))
1629 (print-unreadable-object (pack stream)
1630 (flet ((all-ones-p (value start end &aux (mask (- (ash 1 end) (ash 1 start))))
1631 (= (logand value mask) mask))
1632 (split-num (value start)
1633 (loop
1634 for i from 0 to 3
1635 and v = (ash value (- start)) then (ash v -8)
1636 collect (logand v #xFF))))
1637 (multiple-value-bind (low high)
1638 (%simd-pack-ub64s pack)
1639 (etypecase pack
1640 ((simd-pack double-float)
1641 (multiple-value-bind (v0 v1) (%simd-pack-doubles pack)
1642 (format stream "~S~@{ ~:[~,13E~;~*TRUE~]~}"
1643 'simd-pack
1644 (all-ones-p low 0 64) v0
1645 (all-ones-p high 0 64) v1)))
1646 ((simd-pack single-float)
1647 (multiple-value-bind (v0 v1 v2 v3) (%simd-pack-singles pack)
1648 (format stream "~S~@{ ~:[~,7E~;~*TRUE~]~}"
1649 'simd-pack
1650 (all-ones-p low 0 32) v0
1651 (all-ones-p low 32 64) v1
1652 (all-ones-p high 0 32) v2
1653 (all-ones-p high 32 64) v3)))
1655 (format stream "~S~@{ ~{ ~2,'0X~}~}"
1656 'simd-pack
1657 (split-num low 0) (split-num low 32)
1658 (split-num high 0) (split-num high 32))))))))))
1660 ;;;; functions
1662 (defun output-fun (object stream)
1663 (let* ((name (%fun-name object))
1664 (proper-name-p (and (legal-fun-name-p name) (fboundp name)
1665 (eq (fdefinition name) object))))
1666 (print-unreadable-object (object stream :identity (not proper-name-p))
1667 (format stream "~:[FUNCTION~;CLOSURE~]~@[ ~S~]"
1668 (closurep object)
1669 name))))
1671 ;;;; catch-all for unknown things
1673 (defmethod print-object ((object t) stream)
1674 (flet ((output-it (stream)
1675 (print-unreadable-object (object stream :identity t)
1676 (let ((lowtag (lowtag-of object)))
1677 (case lowtag
1678 (#.sb!vm:other-pointer-lowtag
1679 (let ((widetag (widetag-of object)))
1680 (case widetag
1681 (#.sb!vm:value-cell-header-widetag
1682 (write-string "value cell " stream)
1683 (output-object (value-cell-ref object) stream))
1685 (write-string "unknown pointer object, widetag=" stream)
1686 (let ((*print-base* 16) (*print-radix* t))
1687 (output-integer widetag stream))))))
1688 ((#.sb!vm:fun-pointer-lowtag
1689 #.sb!vm:instance-pointer-lowtag
1690 #.sb!vm:list-pointer-lowtag)
1691 (write-string "unknown pointer object, lowtag=" stream)
1692 (let ((*print-base* 16) (*print-radix* t))
1693 (output-integer lowtag stream)))
1695 (case (widetag-of object)
1696 (#.sb!vm:unbound-marker-widetag
1697 (write-string "unbound marker" stream))
1699 (write-string "unknown immediate object, lowtag=" stream)
1700 (let ((*print-base* 2) (*print-radix* t))
1701 (output-integer lowtag stream))
1702 (write-string ", widetag=" stream)
1703 (let ((*print-base* 16) (*print-radix* t))
1704 (output-integer (widetag-of object) stream))))))))))
1705 (if *print-pretty*
1706 ;; This block might not be necessary. Not sure, probably can't hurt.
1707 (pprint-logical-block (stream nil) (output-it stream))
1708 (output-it stream))))