4 * Copyright (c) 2003 Fabrice Bellard
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
19 #include "qemu/osdep.h"
24 #include "qemu-common.h"
28 #if !defined(CONFIG_USER_ONLY)
29 #include "hw/boards.h"
32 #include "sysemu/kvm.h"
33 #include "sysemu/sysemu.h"
34 #include "hw/xen/xen.h"
35 #include "qemu/timer.h"
36 #include "qemu/config-file.h"
37 #include "qemu/error-report.h"
38 #include "exec/memory.h"
39 #include "sysemu/dma.h"
40 #include "exec/address-spaces.h"
41 #if defined(CONFIG_USER_ONLY)
43 #else /* !CONFIG_USER_ONLY */
44 #include "sysemu/xen-mapcache.h"
47 #include "exec/cpu-all.h"
48 #include "qemu/rcu_queue.h"
49 #include "qemu/main-loop.h"
50 #include "translate-all.h"
51 #include "sysemu/replay.h"
53 #include "exec/memory-internal.h"
54 #include "exec/ram_addr.h"
57 #include "qemu/range.h"
59 #include "qemu/mmap-alloc.h"
62 //#define DEBUG_SUBPAGE
64 #if !defined(CONFIG_USER_ONLY)
65 /* ram_list is read under rcu_read_lock()/rcu_read_unlock(). Writes
66 * are protected by the ramlist lock.
68 RAMList ram_list
= { .blocks
= QLIST_HEAD_INITIALIZER(ram_list
.blocks
) };
70 static MemoryRegion
*system_memory
;
71 static MemoryRegion
*system_io
;
73 AddressSpace address_space_io
;
74 AddressSpace address_space_memory
;
76 MemoryRegion io_mem_rom
, io_mem_notdirty
;
77 static MemoryRegion io_mem_unassigned
;
79 /* RAM is pre-allocated and passed into qemu_ram_alloc_from_ptr */
80 #define RAM_PREALLOC (1 << 0)
82 /* RAM is mmap-ed with MAP_SHARED */
83 #define RAM_SHARED (1 << 1)
85 /* Only a portion of RAM (used_length) is actually used, and migrated.
86 * This used_length size can change across reboots.
88 #define RAM_RESIZEABLE (1 << 2)
92 struct CPUTailQ cpus
= QTAILQ_HEAD_INITIALIZER(cpus
);
93 /* current CPU in the current thread. It is only valid inside
95 __thread CPUState
*current_cpu
;
96 /* 0 = Do not count executed instructions.
97 1 = Precise instruction counting.
98 2 = Adaptive rate instruction counting. */
101 #if !defined(CONFIG_USER_ONLY)
103 typedef struct PhysPageEntry PhysPageEntry
;
105 struct PhysPageEntry
{
106 /* How many bits skip to next level (in units of L2_SIZE). 0 for a leaf. */
108 /* index into phys_sections (!skip) or phys_map_nodes (skip) */
112 #define PHYS_MAP_NODE_NIL (((uint32_t)~0) >> 6)
114 /* Size of the L2 (and L3, etc) page tables. */
115 #define ADDR_SPACE_BITS 64
118 #define P_L2_SIZE (1 << P_L2_BITS)
120 #define P_L2_LEVELS (((ADDR_SPACE_BITS - TARGET_PAGE_BITS - 1) / P_L2_BITS) + 1)
122 typedef PhysPageEntry Node
[P_L2_SIZE
];
124 typedef struct PhysPageMap
{
127 unsigned sections_nb
;
128 unsigned sections_nb_alloc
;
130 unsigned nodes_nb_alloc
;
132 MemoryRegionSection
*sections
;
135 struct AddressSpaceDispatch
{
138 MemoryRegionSection
*mru_section
;
139 /* This is a multi-level map on the physical address space.
140 * The bottom level has pointers to MemoryRegionSections.
142 PhysPageEntry phys_map
;
147 #define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK)
148 typedef struct subpage_t
{
152 uint16_t sub_section
[TARGET_PAGE_SIZE
];
155 #define PHYS_SECTION_UNASSIGNED 0
156 #define PHYS_SECTION_NOTDIRTY 1
157 #define PHYS_SECTION_ROM 2
158 #define PHYS_SECTION_WATCH 3
160 static void io_mem_init(void);
161 static void memory_map_init(void);
162 static void tcg_commit(MemoryListener
*listener
);
164 static MemoryRegion io_mem_watch
;
167 * CPUAddressSpace: all the information a CPU needs about an AddressSpace
168 * @cpu: the CPU whose AddressSpace this is
169 * @as: the AddressSpace itself
170 * @memory_dispatch: its dispatch pointer (cached, RCU protected)
171 * @tcg_as_listener: listener for tracking changes to the AddressSpace
173 struct CPUAddressSpace
{
176 struct AddressSpaceDispatch
*memory_dispatch
;
177 MemoryListener tcg_as_listener
;
182 #if !defined(CONFIG_USER_ONLY)
184 static void phys_map_node_reserve(PhysPageMap
*map
, unsigned nodes
)
186 if (map
->nodes_nb
+ nodes
> map
->nodes_nb_alloc
) {
187 map
->nodes_nb_alloc
= MAX(map
->nodes_nb_alloc
* 2, 16);
188 map
->nodes_nb_alloc
= MAX(map
->nodes_nb_alloc
, map
->nodes_nb
+ nodes
);
189 map
->nodes
= g_renew(Node
, map
->nodes
, map
->nodes_nb_alloc
);
193 static uint32_t phys_map_node_alloc(PhysPageMap
*map
, bool leaf
)
200 ret
= map
->nodes_nb
++;
202 assert(ret
!= PHYS_MAP_NODE_NIL
);
203 assert(ret
!= map
->nodes_nb_alloc
);
205 e
.skip
= leaf
? 0 : 1;
206 e
.ptr
= leaf
? PHYS_SECTION_UNASSIGNED
: PHYS_MAP_NODE_NIL
;
207 for (i
= 0; i
< P_L2_SIZE
; ++i
) {
208 memcpy(&p
[i
], &e
, sizeof(e
));
213 static void phys_page_set_level(PhysPageMap
*map
, PhysPageEntry
*lp
,
214 hwaddr
*index
, hwaddr
*nb
, uint16_t leaf
,
218 hwaddr step
= (hwaddr
)1 << (level
* P_L2_BITS
);
220 if (lp
->skip
&& lp
->ptr
== PHYS_MAP_NODE_NIL
) {
221 lp
->ptr
= phys_map_node_alloc(map
, level
== 0);
223 p
= map
->nodes
[lp
->ptr
];
224 lp
= &p
[(*index
>> (level
* P_L2_BITS
)) & (P_L2_SIZE
- 1)];
226 while (*nb
&& lp
< &p
[P_L2_SIZE
]) {
227 if ((*index
& (step
- 1)) == 0 && *nb
>= step
) {
233 phys_page_set_level(map
, lp
, index
, nb
, leaf
, level
- 1);
239 static void phys_page_set(AddressSpaceDispatch
*d
,
240 hwaddr index
, hwaddr nb
,
243 /* Wildly overreserve - it doesn't matter much. */
244 phys_map_node_reserve(&d
->map
, 3 * P_L2_LEVELS
);
246 phys_page_set_level(&d
->map
, &d
->phys_map
, &index
, &nb
, leaf
, P_L2_LEVELS
- 1);
249 /* Compact a non leaf page entry. Simply detect that the entry has a single child,
250 * and update our entry so we can skip it and go directly to the destination.
252 static void phys_page_compact(PhysPageEntry
*lp
, Node
*nodes
, unsigned long *compacted
)
254 unsigned valid_ptr
= P_L2_SIZE
;
259 if (lp
->ptr
== PHYS_MAP_NODE_NIL
) {
264 for (i
= 0; i
< P_L2_SIZE
; i
++) {
265 if (p
[i
].ptr
== PHYS_MAP_NODE_NIL
) {
272 phys_page_compact(&p
[i
], nodes
, compacted
);
276 /* We can only compress if there's only one child. */
281 assert(valid_ptr
< P_L2_SIZE
);
283 /* Don't compress if it won't fit in the # of bits we have. */
284 if (lp
->skip
+ p
[valid_ptr
].skip
>= (1 << 3)) {
288 lp
->ptr
= p
[valid_ptr
].ptr
;
289 if (!p
[valid_ptr
].skip
) {
290 /* If our only child is a leaf, make this a leaf. */
291 /* By design, we should have made this node a leaf to begin with so we
292 * should never reach here.
293 * But since it's so simple to handle this, let's do it just in case we
298 lp
->skip
+= p
[valid_ptr
].skip
;
302 static void phys_page_compact_all(AddressSpaceDispatch
*d
, int nodes_nb
)
304 DECLARE_BITMAP(compacted
, nodes_nb
);
306 if (d
->phys_map
.skip
) {
307 phys_page_compact(&d
->phys_map
, d
->map
.nodes
, compacted
);
311 static inline bool section_covers_addr(const MemoryRegionSection
*section
,
314 /* Memory topology clips a memory region to [0, 2^64); size.hi > 0 means
315 * the section must cover the entire address space.
317 return section
->size
.hi
||
318 range_covers_byte(section
->offset_within_address_space
,
319 section
->size
.lo
, addr
);
322 static MemoryRegionSection
*phys_page_find(PhysPageEntry lp
, hwaddr addr
,
323 Node
*nodes
, MemoryRegionSection
*sections
)
326 hwaddr index
= addr
>> TARGET_PAGE_BITS
;
329 for (i
= P_L2_LEVELS
; lp
.skip
&& (i
-= lp
.skip
) >= 0;) {
330 if (lp
.ptr
== PHYS_MAP_NODE_NIL
) {
331 return §ions
[PHYS_SECTION_UNASSIGNED
];
334 lp
= p
[(index
>> (i
* P_L2_BITS
)) & (P_L2_SIZE
- 1)];
337 if (section_covers_addr(§ions
[lp
.ptr
], addr
)) {
338 return §ions
[lp
.ptr
];
340 return §ions
[PHYS_SECTION_UNASSIGNED
];
344 bool memory_region_is_unassigned(MemoryRegion
*mr
)
346 return mr
!= &io_mem_rom
&& mr
!= &io_mem_notdirty
&& !mr
->rom_device
347 && mr
!= &io_mem_watch
;
350 /* Called from RCU critical section */
351 static MemoryRegionSection
*address_space_lookup_region(AddressSpaceDispatch
*d
,
353 bool resolve_subpage
)
355 MemoryRegionSection
*section
= atomic_read(&d
->mru_section
);
359 if (section
&& section
!= &d
->map
.sections
[PHYS_SECTION_UNASSIGNED
] &&
360 section_covers_addr(section
, addr
)) {
363 section
= phys_page_find(d
->phys_map
, addr
, d
->map
.nodes
,
367 if (resolve_subpage
&& section
->mr
->subpage
) {
368 subpage
= container_of(section
->mr
, subpage_t
, iomem
);
369 section
= &d
->map
.sections
[subpage
->sub_section
[SUBPAGE_IDX(addr
)]];
372 atomic_set(&d
->mru_section
, section
);
377 /* Called from RCU critical section */
378 static MemoryRegionSection
*
379 address_space_translate_internal(AddressSpaceDispatch
*d
, hwaddr addr
, hwaddr
*xlat
,
380 hwaddr
*plen
, bool resolve_subpage
)
382 MemoryRegionSection
*section
;
386 section
= address_space_lookup_region(d
, addr
, resolve_subpage
);
387 /* Compute offset within MemoryRegionSection */
388 addr
-= section
->offset_within_address_space
;
390 /* Compute offset within MemoryRegion */
391 *xlat
= addr
+ section
->offset_within_region
;
395 /* MMIO registers can be expected to perform full-width accesses based only
396 * on their address, without considering adjacent registers that could
397 * decode to completely different MemoryRegions. When such registers
398 * exist (e.g. I/O ports 0xcf8 and 0xcf9 on most PC chipsets), MMIO
399 * regions overlap wildly. For this reason we cannot clamp the accesses
402 * If the length is small (as is the case for address_space_ldl/stl),
403 * everything works fine. If the incoming length is large, however,
404 * the caller really has to do the clamping through memory_access_size.
406 if (memory_region_is_ram(mr
)) {
407 diff
= int128_sub(section
->size
, int128_make64(addr
));
408 *plen
= int128_get64(int128_min(diff
, int128_make64(*plen
)));
413 /* Called from RCU critical section */
414 MemoryRegion
*address_space_translate(AddressSpace
*as
, hwaddr addr
,
415 hwaddr
*xlat
, hwaddr
*plen
,
419 MemoryRegionSection
*section
;
423 AddressSpaceDispatch
*d
= atomic_rcu_read(&as
->dispatch
);
424 section
= address_space_translate_internal(d
, addr
, &addr
, plen
, true);
427 if (!mr
->iommu_ops
) {
431 iotlb
= mr
->iommu_ops
->translate(mr
, addr
, is_write
);
432 addr
= ((iotlb
.translated_addr
& ~iotlb
.addr_mask
)
433 | (addr
& iotlb
.addr_mask
));
434 *plen
= MIN(*plen
, (addr
| iotlb
.addr_mask
) - addr
+ 1);
435 if (!(iotlb
.perm
& (1 << is_write
))) {
436 mr
= &io_mem_unassigned
;
440 as
= iotlb
.target_as
;
443 if (xen_enabled() && memory_access_is_direct(mr
, is_write
)) {
444 hwaddr page
= ((addr
& TARGET_PAGE_MASK
) + TARGET_PAGE_SIZE
) - addr
;
445 *plen
= MIN(page
, *plen
);
452 /* Called from RCU critical section */
453 MemoryRegionSection
*
454 address_space_translate_for_iotlb(CPUState
*cpu
, int asidx
, hwaddr addr
,
455 hwaddr
*xlat
, hwaddr
*plen
)
457 MemoryRegionSection
*section
;
458 AddressSpaceDispatch
*d
= cpu
->cpu_ases
[asidx
].memory_dispatch
;
460 section
= address_space_translate_internal(d
, addr
, xlat
, plen
, false);
462 assert(!section
->mr
->iommu_ops
);
467 #if !defined(CONFIG_USER_ONLY)
469 static int cpu_common_post_load(void *opaque
, int version_id
)
471 CPUState
*cpu
= opaque
;
473 /* 0x01 was CPU_INTERRUPT_EXIT. This line can be removed when the
474 version_id is increased. */
475 cpu
->interrupt_request
&= ~0x01;
481 static int cpu_common_pre_load(void *opaque
)
483 CPUState
*cpu
= opaque
;
485 cpu
->exception_index
= -1;
490 static bool cpu_common_exception_index_needed(void *opaque
)
492 CPUState
*cpu
= opaque
;
494 return tcg_enabled() && cpu
->exception_index
!= -1;
497 static const VMStateDescription vmstate_cpu_common_exception_index
= {
498 .name
= "cpu_common/exception_index",
500 .minimum_version_id
= 1,
501 .needed
= cpu_common_exception_index_needed
,
502 .fields
= (VMStateField
[]) {
503 VMSTATE_INT32(exception_index
, CPUState
),
504 VMSTATE_END_OF_LIST()
508 static bool cpu_common_crash_occurred_needed(void *opaque
)
510 CPUState
*cpu
= opaque
;
512 return cpu
->crash_occurred
;
515 static const VMStateDescription vmstate_cpu_common_crash_occurred
= {
516 .name
= "cpu_common/crash_occurred",
518 .minimum_version_id
= 1,
519 .needed
= cpu_common_crash_occurred_needed
,
520 .fields
= (VMStateField
[]) {
521 VMSTATE_BOOL(crash_occurred
, CPUState
),
522 VMSTATE_END_OF_LIST()
526 const VMStateDescription vmstate_cpu_common
= {
527 .name
= "cpu_common",
529 .minimum_version_id
= 1,
530 .pre_load
= cpu_common_pre_load
,
531 .post_load
= cpu_common_post_load
,
532 .fields
= (VMStateField
[]) {
533 VMSTATE_UINT32(halted
, CPUState
),
534 VMSTATE_UINT32(interrupt_request
, CPUState
),
535 VMSTATE_END_OF_LIST()
537 .subsections
= (const VMStateDescription
*[]) {
538 &vmstate_cpu_common_exception_index
,
539 &vmstate_cpu_common_crash_occurred
,
546 CPUState
*qemu_get_cpu(int index
)
551 if (cpu
->cpu_index
== index
) {
559 #if !defined(CONFIG_USER_ONLY)
560 void cpu_address_space_init(CPUState
*cpu
, AddressSpace
*as
, int asidx
)
562 CPUAddressSpace
*newas
;
564 /* Target code should have set num_ases before calling us */
565 assert(asidx
< cpu
->num_ases
);
568 /* address space 0 gets the convenience alias */
572 /* KVM cannot currently support multiple address spaces. */
573 assert(asidx
== 0 || !kvm_enabled());
575 if (!cpu
->cpu_ases
) {
576 cpu
->cpu_ases
= g_new0(CPUAddressSpace
, cpu
->num_ases
);
579 newas
= &cpu
->cpu_ases
[asidx
];
583 newas
->tcg_as_listener
.commit
= tcg_commit
;
584 memory_listener_register(&newas
->tcg_as_listener
, as
);
588 AddressSpace
*cpu_get_address_space(CPUState
*cpu
, int asidx
)
590 /* Return the AddressSpace corresponding to the specified index */
591 return cpu
->cpu_ases
[asidx
].as
;
595 #ifndef CONFIG_USER_ONLY
596 static DECLARE_BITMAP(cpu_index_map
, MAX_CPUMASK_BITS
);
598 static int cpu_get_free_index(Error
**errp
)
600 int cpu
= find_first_zero_bit(cpu_index_map
, MAX_CPUMASK_BITS
);
602 if (cpu
>= MAX_CPUMASK_BITS
) {
603 error_setg(errp
, "Trying to use more CPUs than max of %d",
608 bitmap_set(cpu_index_map
, cpu
, 1);
612 void cpu_exec_exit(CPUState
*cpu
)
614 if (cpu
->cpu_index
== -1) {
615 /* cpu_index was never allocated by this @cpu or was already freed. */
619 bitmap_clear(cpu_index_map
, cpu
->cpu_index
, 1);
624 static int cpu_get_free_index(Error
**errp
)
629 CPU_FOREACH(some_cpu
) {
635 void cpu_exec_exit(CPUState
*cpu
)
640 void cpu_exec_init(CPUState
*cpu
, Error
**errp
)
642 CPUClass
*cc
= CPU_GET_CLASS(cpu
);
644 Error
*local_err
= NULL
;
649 #ifndef CONFIG_USER_ONLY
650 cpu
->thread_id
= qemu_get_thread_id();
652 /* This is a softmmu CPU object, so create a property for it
653 * so users can wire up its memory. (This can't go in qom/cpu.c
654 * because that file is compiled only once for both user-mode
655 * and system builds.) The default if no link is set up is to use
656 * the system address space.
658 object_property_add_link(OBJECT(cpu
), "memory", TYPE_MEMORY_REGION
,
659 (Object
**)&cpu
->memory
,
660 qdev_prop_allow_set_link_before_realize
,
661 OBJ_PROP_LINK_UNREF_ON_RELEASE
,
663 cpu
->memory
= system_memory
;
664 object_ref(OBJECT(cpu
->memory
));
667 #if defined(CONFIG_USER_ONLY)
670 cpu_index
= cpu
->cpu_index
= cpu_get_free_index(&local_err
);
672 error_propagate(errp
, local_err
);
673 #if defined(CONFIG_USER_ONLY)
678 QTAILQ_INSERT_TAIL(&cpus
, cpu
, node
);
679 #if defined(CONFIG_USER_ONLY)
682 if (qdev_get_vmsd(DEVICE(cpu
)) == NULL
) {
683 vmstate_register(NULL
, cpu_index
, &vmstate_cpu_common
, cpu
);
685 if (cc
->vmsd
!= NULL
) {
686 vmstate_register(NULL
, cpu_index
, cc
->vmsd
, cpu
);
690 #if defined(CONFIG_USER_ONLY)
691 static void breakpoint_invalidate(CPUState
*cpu
, target_ulong pc
)
693 tb_invalidate_phys_page_range(pc
, pc
+ 1, 0);
696 static void breakpoint_invalidate(CPUState
*cpu
, target_ulong pc
)
699 hwaddr phys
= cpu_get_phys_page_attrs_debug(cpu
, pc
, &attrs
);
700 int asidx
= cpu_asidx_from_attrs(cpu
, attrs
);
702 tb_invalidate_phys_addr(cpu
->cpu_ases
[asidx
].as
,
703 phys
| (pc
& ~TARGET_PAGE_MASK
));
708 #if defined(CONFIG_USER_ONLY)
709 void cpu_watchpoint_remove_all(CPUState
*cpu
, int mask
)
714 int cpu_watchpoint_remove(CPUState
*cpu
, vaddr addr
, vaddr len
,
720 void cpu_watchpoint_remove_by_ref(CPUState
*cpu
, CPUWatchpoint
*watchpoint
)
724 int cpu_watchpoint_insert(CPUState
*cpu
, vaddr addr
, vaddr len
,
725 int flags
, CPUWatchpoint
**watchpoint
)
730 /* Add a watchpoint. */
731 int cpu_watchpoint_insert(CPUState
*cpu
, vaddr addr
, vaddr len
,
732 int flags
, CPUWatchpoint
**watchpoint
)
736 /* forbid ranges which are empty or run off the end of the address space */
737 if (len
== 0 || (addr
+ len
- 1) < addr
) {
738 error_report("tried to set invalid watchpoint at %"
739 VADDR_PRIx
", len=%" VADDR_PRIu
, addr
, len
);
742 wp
= g_malloc(sizeof(*wp
));
748 /* keep all GDB-injected watchpoints in front */
749 if (flags
& BP_GDB
) {
750 QTAILQ_INSERT_HEAD(&cpu
->watchpoints
, wp
, entry
);
752 QTAILQ_INSERT_TAIL(&cpu
->watchpoints
, wp
, entry
);
755 tlb_flush_page(cpu
, addr
);
762 /* Remove a specific watchpoint. */
763 int cpu_watchpoint_remove(CPUState
*cpu
, vaddr addr
, vaddr len
,
768 QTAILQ_FOREACH(wp
, &cpu
->watchpoints
, entry
) {
769 if (addr
== wp
->vaddr
&& len
== wp
->len
770 && flags
== (wp
->flags
& ~BP_WATCHPOINT_HIT
)) {
771 cpu_watchpoint_remove_by_ref(cpu
, wp
);
778 /* Remove a specific watchpoint by reference. */
779 void cpu_watchpoint_remove_by_ref(CPUState
*cpu
, CPUWatchpoint
*watchpoint
)
781 QTAILQ_REMOVE(&cpu
->watchpoints
, watchpoint
, entry
);
783 tlb_flush_page(cpu
, watchpoint
->vaddr
);
788 /* Remove all matching watchpoints. */
789 void cpu_watchpoint_remove_all(CPUState
*cpu
, int mask
)
791 CPUWatchpoint
*wp
, *next
;
793 QTAILQ_FOREACH_SAFE(wp
, &cpu
->watchpoints
, entry
, next
) {
794 if (wp
->flags
& mask
) {
795 cpu_watchpoint_remove_by_ref(cpu
, wp
);
800 /* Return true if this watchpoint address matches the specified
801 * access (ie the address range covered by the watchpoint overlaps
802 * partially or completely with the address range covered by the
805 static inline bool cpu_watchpoint_address_matches(CPUWatchpoint
*wp
,
809 /* We know the lengths are non-zero, but a little caution is
810 * required to avoid errors in the case where the range ends
811 * exactly at the top of the address space and so addr + len
812 * wraps round to zero.
814 vaddr wpend
= wp
->vaddr
+ wp
->len
- 1;
815 vaddr addrend
= addr
+ len
- 1;
817 return !(addr
> wpend
|| wp
->vaddr
> addrend
);
822 /* Add a breakpoint. */
823 int cpu_breakpoint_insert(CPUState
*cpu
, vaddr pc
, int flags
,
824 CPUBreakpoint
**breakpoint
)
828 bp
= g_malloc(sizeof(*bp
));
833 /* keep all GDB-injected breakpoints in front */
834 if (flags
& BP_GDB
) {
835 QTAILQ_INSERT_HEAD(&cpu
->breakpoints
, bp
, entry
);
837 QTAILQ_INSERT_TAIL(&cpu
->breakpoints
, bp
, entry
);
840 breakpoint_invalidate(cpu
, pc
);
848 /* Remove a specific breakpoint. */
849 int cpu_breakpoint_remove(CPUState
*cpu
, vaddr pc
, int flags
)
853 QTAILQ_FOREACH(bp
, &cpu
->breakpoints
, entry
) {
854 if (bp
->pc
== pc
&& bp
->flags
== flags
) {
855 cpu_breakpoint_remove_by_ref(cpu
, bp
);
862 /* Remove a specific breakpoint by reference. */
863 void cpu_breakpoint_remove_by_ref(CPUState
*cpu
, CPUBreakpoint
*breakpoint
)
865 QTAILQ_REMOVE(&cpu
->breakpoints
, breakpoint
, entry
);
867 breakpoint_invalidate(cpu
, breakpoint
->pc
);
872 /* Remove all matching breakpoints. */
873 void cpu_breakpoint_remove_all(CPUState
*cpu
, int mask
)
875 CPUBreakpoint
*bp
, *next
;
877 QTAILQ_FOREACH_SAFE(bp
, &cpu
->breakpoints
, entry
, next
) {
878 if (bp
->flags
& mask
) {
879 cpu_breakpoint_remove_by_ref(cpu
, bp
);
884 /* enable or disable single step mode. EXCP_DEBUG is returned by the
885 CPU loop after each instruction */
886 void cpu_single_step(CPUState
*cpu
, int enabled
)
888 if (cpu
->singlestep_enabled
!= enabled
) {
889 cpu
->singlestep_enabled
= enabled
;
891 kvm_update_guest_debug(cpu
, 0);
893 /* must flush all the translated code to avoid inconsistencies */
894 /* XXX: only flush what is necessary */
900 void cpu_abort(CPUState
*cpu
, const char *fmt
, ...)
907 fprintf(stderr
, "qemu: fatal: ");
908 vfprintf(stderr
, fmt
, ap
);
909 fprintf(stderr
, "\n");
910 cpu_dump_state(cpu
, stderr
, fprintf
, CPU_DUMP_FPU
| CPU_DUMP_CCOP
);
911 if (qemu_log_separate()) {
912 qemu_log("qemu: fatal: ");
913 qemu_log_vprintf(fmt
, ap2
);
915 log_cpu_state(cpu
, CPU_DUMP_FPU
| CPU_DUMP_CCOP
);
922 #if defined(CONFIG_USER_ONLY)
924 struct sigaction act
;
925 sigfillset(&act
.sa_mask
);
926 act
.sa_handler
= SIG_DFL
;
927 sigaction(SIGABRT
, &act
, NULL
);
933 #if !defined(CONFIG_USER_ONLY)
934 /* Called from RCU critical section */
935 static RAMBlock
*qemu_get_ram_block(ram_addr_t addr
)
939 block
= atomic_rcu_read(&ram_list
.mru_block
);
940 if (block
&& addr
- block
->offset
< block
->max_length
) {
943 QLIST_FOREACH_RCU(block
, &ram_list
.blocks
, next
) {
944 if (addr
- block
->offset
< block
->max_length
) {
949 fprintf(stderr
, "Bad ram offset %" PRIx64
"\n", (uint64_t)addr
);
953 /* It is safe to write mru_block outside the iothread lock. This
958 * xxx removed from list
962 * call_rcu(reclaim_ramblock, xxx);
965 * atomic_rcu_set is not needed here. The block was already published
966 * when it was placed into the list. Here we're just making an extra
967 * copy of the pointer.
969 ram_list
.mru_block
= block
;
973 static void tlb_reset_dirty_range_all(ram_addr_t start
, ram_addr_t length
)
980 end
= TARGET_PAGE_ALIGN(start
+ length
);
981 start
&= TARGET_PAGE_MASK
;
984 block
= qemu_get_ram_block(start
);
985 assert(block
== qemu_get_ram_block(end
- 1));
986 start1
= (uintptr_t)ramblock_ptr(block
, start
- block
->offset
);
988 tlb_reset_dirty(cpu
, start1
, length
);
993 /* Note: start and end must be within the same ram block. */
994 bool cpu_physical_memory_test_and_clear_dirty(ram_addr_t start
,
998 DirtyMemoryBlocks
*blocks
;
999 unsigned long end
, page
;
1006 end
= TARGET_PAGE_ALIGN(start
+ length
) >> TARGET_PAGE_BITS
;
1007 page
= start
>> TARGET_PAGE_BITS
;
1011 blocks
= atomic_rcu_read(&ram_list
.dirty_memory
[client
]);
1013 while (page
< end
) {
1014 unsigned long idx
= page
/ DIRTY_MEMORY_BLOCK_SIZE
;
1015 unsigned long offset
= page
% DIRTY_MEMORY_BLOCK_SIZE
;
1016 unsigned long num
= MIN(end
- page
, DIRTY_MEMORY_BLOCK_SIZE
- offset
);
1018 dirty
|= bitmap_test_and_clear_atomic(blocks
->blocks
[idx
],
1025 if (dirty
&& tcg_enabled()) {
1026 tlb_reset_dirty_range_all(start
, length
);
1032 /* Called from RCU critical section */
1033 hwaddr
memory_region_section_get_iotlb(CPUState
*cpu
,
1034 MemoryRegionSection
*section
,
1036 hwaddr paddr
, hwaddr xlat
,
1038 target_ulong
*address
)
1043 if (memory_region_is_ram(section
->mr
)) {
1045 iotlb
= (memory_region_get_ram_addr(section
->mr
) & TARGET_PAGE_MASK
)
1047 if (!section
->readonly
) {
1048 iotlb
|= PHYS_SECTION_NOTDIRTY
;
1050 iotlb
|= PHYS_SECTION_ROM
;
1053 AddressSpaceDispatch
*d
;
1055 d
= atomic_rcu_read(§ion
->address_space
->dispatch
);
1056 iotlb
= section
- d
->map
.sections
;
1060 /* Make accesses to pages with watchpoints go via the
1061 watchpoint trap routines. */
1062 QTAILQ_FOREACH(wp
, &cpu
->watchpoints
, entry
) {
1063 if (cpu_watchpoint_address_matches(wp
, vaddr
, TARGET_PAGE_SIZE
)) {
1064 /* Avoid trapping reads of pages with a write breakpoint. */
1065 if ((prot
& PAGE_WRITE
) || (wp
->flags
& BP_MEM_READ
)) {
1066 iotlb
= PHYS_SECTION_WATCH
+ paddr
;
1067 *address
|= TLB_MMIO
;
1075 #endif /* defined(CONFIG_USER_ONLY) */
1077 #if !defined(CONFIG_USER_ONLY)
1079 static int subpage_register (subpage_t
*mmio
, uint32_t start
, uint32_t end
,
1081 static subpage_t
*subpage_init(AddressSpace
*as
, hwaddr base
);
1083 static void *(*phys_mem_alloc
)(size_t size
, uint64_t *align
) =
1084 qemu_anon_ram_alloc
;
1087 * Set a custom physical guest memory alloator.
1088 * Accelerators with unusual needs may need this. Hopefully, we can
1089 * get rid of it eventually.
1091 void phys_mem_set_alloc(void *(*alloc
)(size_t, uint64_t *align
))
1093 phys_mem_alloc
= alloc
;
1096 static uint16_t phys_section_add(PhysPageMap
*map
,
1097 MemoryRegionSection
*section
)
1099 /* The physical section number is ORed with a page-aligned
1100 * pointer to produce the iotlb entries. Thus it should
1101 * never overflow into the page-aligned value.
1103 assert(map
->sections_nb
< TARGET_PAGE_SIZE
);
1105 if (map
->sections_nb
== map
->sections_nb_alloc
) {
1106 map
->sections_nb_alloc
= MAX(map
->sections_nb_alloc
* 2, 16);
1107 map
->sections
= g_renew(MemoryRegionSection
, map
->sections
,
1108 map
->sections_nb_alloc
);
1110 map
->sections
[map
->sections_nb
] = *section
;
1111 memory_region_ref(section
->mr
);
1112 return map
->sections_nb
++;
1115 static void phys_section_destroy(MemoryRegion
*mr
)
1117 bool have_sub_page
= mr
->subpage
;
1119 memory_region_unref(mr
);
1121 if (have_sub_page
) {
1122 subpage_t
*subpage
= container_of(mr
, subpage_t
, iomem
);
1123 object_unref(OBJECT(&subpage
->iomem
));
1128 static void phys_sections_free(PhysPageMap
*map
)
1130 while (map
->sections_nb
> 0) {
1131 MemoryRegionSection
*section
= &map
->sections
[--map
->sections_nb
];
1132 phys_section_destroy(section
->mr
);
1134 g_free(map
->sections
);
1138 static void register_subpage(AddressSpaceDispatch
*d
, MemoryRegionSection
*section
)
1141 hwaddr base
= section
->offset_within_address_space
1143 MemoryRegionSection
*existing
= phys_page_find(d
->phys_map
, base
,
1144 d
->map
.nodes
, d
->map
.sections
);
1145 MemoryRegionSection subsection
= {
1146 .offset_within_address_space
= base
,
1147 .size
= int128_make64(TARGET_PAGE_SIZE
),
1151 assert(existing
->mr
->subpage
|| existing
->mr
== &io_mem_unassigned
);
1153 if (!(existing
->mr
->subpage
)) {
1154 subpage
= subpage_init(d
->as
, base
);
1155 subsection
.address_space
= d
->as
;
1156 subsection
.mr
= &subpage
->iomem
;
1157 phys_page_set(d
, base
>> TARGET_PAGE_BITS
, 1,
1158 phys_section_add(&d
->map
, &subsection
));
1160 subpage
= container_of(existing
->mr
, subpage_t
, iomem
);
1162 start
= section
->offset_within_address_space
& ~TARGET_PAGE_MASK
;
1163 end
= start
+ int128_get64(section
->size
) - 1;
1164 subpage_register(subpage
, start
, end
,
1165 phys_section_add(&d
->map
, section
));
1169 static void register_multipage(AddressSpaceDispatch
*d
,
1170 MemoryRegionSection
*section
)
1172 hwaddr start_addr
= section
->offset_within_address_space
;
1173 uint16_t section_index
= phys_section_add(&d
->map
, section
);
1174 uint64_t num_pages
= int128_get64(int128_rshift(section
->size
,
1178 phys_page_set(d
, start_addr
>> TARGET_PAGE_BITS
, num_pages
, section_index
);
1181 static void mem_add(MemoryListener
*listener
, MemoryRegionSection
*section
)
1183 AddressSpace
*as
= container_of(listener
, AddressSpace
, dispatch_listener
);
1184 AddressSpaceDispatch
*d
= as
->next_dispatch
;
1185 MemoryRegionSection now
= *section
, remain
= *section
;
1186 Int128 page_size
= int128_make64(TARGET_PAGE_SIZE
);
1188 if (now
.offset_within_address_space
& ~TARGET_PAGE_MASK
) {
1189 uint64_t left
= TARGET_PAGE_ALIGN(now
.offset_within_address_space
)
1190 - now
.offset_within_address_space
;
1192 now
.size
= int128_min(int128_make64(left
), now
.size
);
1193 register_subpage(d
, &now
);
1195 now
.size
= int128_zero();
1197 while (int128_ne(remain
.size
, now
.size
)) {
1198 remain
.size
= int128_sub(remain
.size
, now
.size
);
1199 remain
.offset_within_address_space
+= int128_get64(now
.size
);
1200 remain
.offset_within_region
+= int128_get64(now
.size
);
1202 if (int128_lt(remain
.size
, page_size
)) {
1203 register_subpage(d
, &now
);
1204 } else if (remain
.offset_within_address_space
& ~TARGET_PAGE_MASK
) {
1205 now
.size
= page_size
;
1206 register_subpage(d
, &now
);
1208 now
.size
= int128_and(now
.size
, int128_neg(page_size
));
1209 register_multipage(d
, &now
);
1214 void qemu_flush_coalesced_mmio_buffer(void)
1217 kvm_flush_coalesced_mmio_buffer();
1220 void qemu_mutex_lock_ramlist(void)
1222 qemu_mutex_lock(&ram_list
.mutex
);
1225 void qemu_mutex_unlock_ramlist(void)
1227 qemu_mutex_unlock(&ram_list
.mutex
);
1232 #include <sys/vfs.h>
1234 #define HUGETLBFS_MAGIC 0x958458f6
1236 static long gethugepagesize(const char *path
, Error
**errp
)
1242 ret
= statfs(path
, &fs
);
1243 } while (ret
!= 0 && errno
== EINTR
);
1246 error_setg_errno(errp
, errno
, "failed to get page size of file %s",
1254 static void *file_ram_alloc(RAMBlock
*block
,
1261 char *sanitized_name
;
1266 Error
*local_err
= NULL
;
1268 hpagesize
= gethugepagesize(path
, &local_err
);
1270 error_propagate(errp
, local_err
);
1273 block
->mr
->align
= hpagesize
;
1275 if (memory
< hpagesize
) {
1276 error_setg(errp
, "memory size 0x" RAM_ADDR_FMT
" must be equal to "
1277 "or larger than huge page size 0x%" PRIx64
,
1282 if (kvm_enabled() && !kvm_has_sync_mmu()) {
1284 "host lacks kvm mmu notifiers, -mem-path unsupported");
1288 if (!stat(path
, &st
) && S_ISDIR(st
.st_mode
)) {
1289 /* Make name safe to use with mkstemp by replacing '/' with '_'. */
1290 sanitized_name
= g_strdup(memory_region_name(block
->mr
));
1291 for (c
= sanitized_name
; *c
!= '\0'; c
++) {
1297 filename
= g_strdup_printf("%s/qemu_back_mem.%s.XXXXXX", path
,
1299 g_free(sanitized_name
);
1301 fd
= mkstemp(filename
);
1307 fd
= open(path
, O_RDWR
| O_CREAT
, 0644);
1311 error_setg_errno(errp
, errno
,
1312 "unable to create backing store for hugepages");
1316 memory
= ROUND_UP(memory
, hpagesize
);
1319 * ftruncate is not supported by hugetlbfs in older
1320 * hosts, so don't bother bailing out on errors.
1321 * If anything goes wrong with it under other filesystems,
1324 if (ftruncate(fd
, memory
)) {
1325 perror("ftruncate");
1328 area
= qemu_ram_mmap(fd
, memory
, hpagesize
, block
->flags
& RAM_SHARED
);
1329 if (area
== MAP_FAILED
) {
1330 error_setg_errno(errp
, errno
,
1331 "unable to map backing store for hugepages");
1337 os_mem_prealloc(fd
, area
, memory
);
1348 /* Called with the ramlist lock held. */
1349 static ram_addr_t
find_ram_offset(ram_addr_t size
)
1351 RAMBlock
*block
, *next_block
;
1352 ram_addr_t offset
= RAM_ADDR_MAX
, mingap
= RAM_ADDR_MAX
;
1354 assert(size
!= 0); /* it would hand out same offset multiple times */
1356 if (QLIST_EMPTY_RCU(&ram_list
.blocks
)) {
1360 QLIST_FOREACH_RCU(block
, &ram_list
.blocks
, next
) {
1361 ram_addr_t end
, next
= RAM_ADDR_MAX
;
1363 end
= block
->offset
+ block
->max_length
;
1365 QLIST_FOREACH_RCU(next_block
, &ram_list
.blocks
, next
) {
1366 if (next_block
->offset
>= end
) {
1367 next
= MIN(next
, next_block
->offset
);
1370 if (next
- end
>= size
&& next
- end
< mingap
) {
1372 mingap
= next
- end
;
1376 if (offset
== RAM_ADDR_MAX
) {
1377 fprintf(stderr
, "Failed to find gap of requested size: %" PRIu64
"\n",
1385 ram_addr_t
last_ram_offset(void)
1388 ram_addr_t last
= 0;
1391 QLIST_FOREACH_RCU(block
, &ram_list
.blocks
, next
) {
1392 last
= MAX(last
, block
->offset
+ block
->max_length
);
1398 static void qemu_ram_setup_dump(void *addr
, ram_addr_t size
)
1402 /* Use MADV_DONTDUMP, if user doesn't want the guest memory in the core */
1403 if (!machine_dump_guest_core(current_machine
)) {
1404 ret
= qemu_madvise(addr
, size
, QEMU_MADV_DONTDUMP
);
1406 perror("qemu_madvise");
1407 fprintf(stderr
, "madvise doesn't support MADV_DONTDUMP, "
1408 "but dump_guest_core=off specified\n");
1413 /* Called within an RCU critical section, or while the ramlist lock
1416 static RAMBlock
*find_ram_block(ram_addr_t addr
)
1420 QLIST_FOREACH_RCU(block
, &ram_list
.blocks
, next
) {
1421 if (block
->offset
== addr
) {
1429 const char *qemu_ram_get_idstr(RAMBlock
*rb
)
1434 /* Called with iothread lock held. */
1435 void qemu_ram_set_idstr(ram_addr_t addr
, const char *name
, DeviceState
*dev
)
1437 RAMBlock
*new_block
, *block
;
1440 new_block
= find_ram_block(addr
);
1442 assert(!new_block
->idstr
[0]);
1445 char *id
= qdev_get_dev_path(dev
);
1447 snprintf(new_block
->idstr
, sizeof(new_block
->idstr
), "%s/", id
);
1451 pstrcat(new_block
->idstr
, sizeof(new_block
->idstr
), name
);
1453 QLIST_FOREACH_RCU(block
, &ram_list
.blocks
, next
) {
1454 if (block
!= new_block
&& !strcmp(block
->idstr
, new_block
->idstr
)) {
1455 fprintf(stderr
, "RAMBlock \"%s\" already registered, abort!\n",
1463 /* Called with iothread lock held. */
1464 void qemu_ram_unset_idstr(ram_addr_t addr
)
1468 /* FIXME: arch_init.c assumes that this is not called throughout
1469 * migration. Ignore the problem since hot-unplug during migration
1470 * does not work anyway.
1474 block
= find_ram_block(addr
);
1476 memset(block
->idstr
, 0, sizeof(block
->idstr
));
1481 static int memory_try_enable_merging(void *addr
, size_t len
)
1483 if (!machine_mem_merge(current_machine
)) {
1484 /* disabled by the user */
1488 return qemu_madvise(addr
, len
, QEMU_MADV_MERGEABLE
);
1491 /* Only legal before guest might have detected the memory size: e.g. on
1492 * incoming migration, or right after reset.
1494 * As memory core doesn't know how is memory accessed, it is up to
1495 * resize callback to update device state and/or add assertions to detect
1496 * misuse, if necessary.
1498 int qemu_ram_resize(ram_addr_t base
, ram_addr_t newsize
, Error
**errp
)
1500 RAMBlock
*block
= find_ram_block(base
);
1504 newsize
= HOST_PAGE_ALIGN(newsize
);
1506 if (block
->used_length
== newsize
) {
1510 if (!(block
->flags
& RAM_RESIZEABLE
)) {
1511 error_setg_errno(errp
, EINVAL
,
1512 "Length mismatch: %s: 0x" RAM_ADDR_FMT
1513 " in != 0x" RAM_ADDR_FMT
, block
->idstr
,
1514 newsize
, block
->used_length
);
1518 if (block
->max_length
< newsize
) {
1519 error_setg_errno(errp
, EINVAL
,
1520 "Length too large: %s: 0x" RAM_ADDR_FMT
1521 " > 0x" RAM_ADDR_FMT
, block
->idstr
,
1522 newsize
, block
->max_length
);
1526 cpu_physical_memory_clear_dirty_range(block
->offset
, block
->used_length
);
1527 block
->used_length
= newsize
;
1528 cpu_physical_memory_set_dirty_range(block
->offset
, block
->used_length
,
1530 memory_region_set_size(block
->mr
, newsize
);
1531 if (block
->resized
) {
1532 block
->resized(block
->idstr
, newsize
, block
->host
);
1537 /* Called with ram_list.mutex held */
1538 static void dirty_memory_extend(ram_addr_t old_ram_size
,
1539 ram_addr_t new_ram_size
)
1541 ram_addr_t old_num_blocks
= DIV_ROUND_UP(old_ram_size
,
1542 DIRTY_MEMORY_BLOCK_SIZE
);
1543 ram_addr_t new_num_blocks
= DIV_ROUND_UP(new_ram_size
,
1544 DIRTY_MEMORY_BLOCK_SIZE
);
1547 /* Only need to extend if block count increased */
1548 if (new_num_blocks
<= old_num_blocks
) {
1552 for (i
= 0; i
< DIRTY_MEMORY_NUM
; i
++) {
1553 DirtyMemoryBlocks
*old_blocks
;
1554 DirtyMemoryBlocks
*new_blocks
;
1557 old_blocks
= atomic_rcu_read(&ram_list
.dirty_memory
[i
]);
1558 new_blocks
= g_malloc(sizeof(*new_blocks
) +
1559 sizeof(new_blocks
->blocks
[0]) * new_num_blocks
);
1561 if (old_num_blocks
) {
1562 memcpy(new_blocks
->blocks
, old_blocks
->blocks
,
1563 old_num_blocks
* sizeof(old_blocks
->blocks
[0]));
1566 for (j
= old_num_blocks
; j
< new_num_blocks
; j
++) {
1567 new_blocks
->blocks
[j
] = bitmap_new(DIRTY_MEMORY_BLOCK_SIZE
);
1570 atomic_rcu_set(&ram_list
.dirty_memory
[i
], new_blocks
);
1573 g_free_rcu(old_blocks
, rcu
);
1578 static void ram_block_add(RAMBlock
*new_block
, Error
**errp
)
1581 RAMBlock
*last_block
= NULL
;
1582 ram_addr_t old_ram_size
, new_ram_size
;
1585 old_ram_size
= last_ram_offset() >> TARGET_PAGE_BITS
;
1587 qemu_mutex_lock_ramlist();
1588 new_block
->offset
= find_ram_offset(new_block
->max_length
);
1590 if (!new_block
->host
) {
1591 if (xen_enabled()) {
1592 xen_ram_alloc(new_block
->offset
, new_block
->max_length
,
1593 new_block
->mr
, &err
);
1595 error_propagate(errp
, err
);
1596 qemu_mutex_unlock_ramlist();
1599 new_block
->host
= phys_mem_alloc(new_block
->max_length
,
1600 &new_block
->mr
->align
);
1601 if (!new_block
->host
) {
1602 error_setg_errno(errp
, errno
,
1603 "cannot set up guest memory '%s'",
1604 memory_region_name(new_block
->mr
));
1605 qemu_mutex_unlock_ramlist();
1607 memory_try_enable_merging(new_block
->host
, new_block
->max_length
);
1611 new_ram_size
= MAX(old_ram_size
,
1612 (new_block
->offset
+ new_block
->max_length
) >> TARGET_PAGE_BITS
);
1613 if (new_ram_size
> old_ram_size
) {
1614 migration_bitmap_extend(old_ram_size
, new_ram_size
);
1615 dirty_memory_extend(old_ram_size
, new_ram_size
);
1617 /* Keep the list sorted from biggest to smallest block. Unlike QTAILQ,
1618 * QLIST (which has an RCU-friendly variant) does not have insertion at
1619 * tail, so save the last element in last_block.
1621 QLIST_FOREACH_RCU(block
, &ram_list
.blocks
, next
) {
1623 if (block
->max_length
< new_block
->max_length
) {
1628 QLIST_INSERT_BEFORE_RCU(block
, new_block
, next
);
1629 } else if (last_block
) {
1630 QLIST_INSERT_AFTER_RCU(last_block
, new_block
, next
);
1631 } else { /* list is empty */
1632 QLIST_INSERT_HEAD_RCU(&ram_list
.blocks
, new_block
, next
);
1634 ram_list
.mru_block
= NULL
;
1636 /* Write list before version */
1639 qemu_mutex_unlock_ramlist();
1641 cpu_physical_memory_set_dirty_range(new_block
->offset
,
1642 new_block
->used_length
,
1645 if (new_block
->host
) {
1646 qemu_ram_setup_dump(new_block
->host
, new_block
->max_length
);
1647 qemu_madvise(new_block
->host
, new_block
->max_length
, QEMU_MADV_HUGEPAGE
);
1648 qemu_madvise(new_block
->host
, new_block
->max_length
, QEMU_MADV_DONTFORK
);
1649 if (kvm_enabled()) {
1650 kvm_setup_guest_memory(new_block
->host
, new_block
->max_length
);
1656 RAMBlock
*qemu_ram_alloc_from_file(ram_addr_t size
, MemoryRegion
*mr
,
1657 bool share
, const char *mem_path
,
1660 RAMBlock
*new_block
;
1661 Error
*local_err
= NULL
;
1663 if (xen_enabled()) {
1664 error_setg(errp
, "-mem-path not supported with Xen");
1668 if (phys_mem_alloc
!= qemu_anon_ram_alloc
) {
1670 * file_ram_alloc() needs to allocate just like
1671 * phys_mem_alloc, but we haven't bothered to provide
1675 "-mem-path not supported with this accelerator");
1679 size
= HOST_PAGE_ALIGN(size
);
1680 new_block
= g_malloc0(sizeof(*new_block
));
1682 new_block
->used_length
= size
;
1683 new_block
->max_length
= size
;
1684 new_block
->flags
= share
? RAM_SHARED
: 0;
1685 new_block
->host
= file_ram_alloc(new_block
, size
,
1687 if (!new_block
->host
) {
1692 ram_block_add(new_block
, &local_err
);
1695 error_propagate(errp
, local_err
);
1703 RAMBlock
*qemu_ram_alloc_internal(ram_addr_t size
, ram_addr_t max_size
,
1704 void (*resized
)(const char*,
1707 void *host
, bool resizeable
,
1708 MemoryRegion
*mr
, Error
**errp
)
1710 RAMBlock
*new_block
;
1711 Error
*local_err
= NULL
;
1713 size
= HOST_PAGE_ALIGN(size
);
1714 max_size
= HOST_PAGE_ALIGN(max_size
);
1715 new_block
= g_malloc0(sizeof(*new_block
));
1717 new_block
->resized
= resized
;
1718 new_block
->used_length
= size
;
1719 new_block
->max_length
= max_size
;
1720 assert(max_size
>= size
);
1722 new_block
->host
= host
;
1724 new_block
->flags
|= RAM_PREALLOC
;
1727 new_block
->flags
|= RAM_RESIZEABLE
;
1729 ram_block_add(new_block
, &local_err
);
1732 error_propagate(errp
, local_err
);
1738 RAMBlock
*qemu_ram_alloc_from_ptr(ram_addr_t size
, void *host
,
1739 MemoryRegion
*mr
, Error
**errp
)
1741 return qemu_ram_alloc_internal(size
, size
, NULL
, host
, false, mr
, errp
);
1744 RAMBlock
*qemu_ram_alloc(ram_addr_t size
, MemoryRegion
*mr
, Error
**errp
)
1746 return qemu_ram_alloc_internal(size
, size
, NULL
, NULL
, false, mr
, errp
);
1749 RAMBlock
*qemu_ram_alloc_resizeable(ram_addr_t size
, ram_addr_t maxsz
,
1750 void (*resized
)(const char*,
1753 MemoryRegion
*mr
, Error
**errp
)
1755 return qemu_ram_alloc_internal(size
, maxsz
, resized
, NULL
, true, mr
, errp
);
1758 static void reclaim_ramblock(RAMBlock
*block
)
1760 if (block
->flags
& RAM_PREALLOC
) {
1762 } else if (xen_enabled()) {
1763 xen_invalidate_map_cache_entry(block
->host
);
1765 } else if (block
->fd
>= 0) {
1766 qemu_ram_munmap(block
->host
, block
->max_length
);
1770 qemu_anon_ram_free(block
->host
, block
->max_length
);
1775 void qemu_ram_free(RAMBlock
*block
)
1777 qemu_mutex_lock_ramlist();
1778 QLIST_REMOVE_RCU(block
, next
);
1779 ram_list
.mru_block
= NULL
;
1780 /* Write list before version */
1783 call_rcu(block
, reclaim_ramblock
, rcu
);
1784 qemu_mutex_unlock_ramlist();
1788 void qemu_ram_remap(ram_addr_t addr
, ram_addr_t length
)
1795 QLIST_FOREACH_RCU(block
, &ram_list
.blocks
, next
) {
1796 offset
= addr
- block
->offset
;
1797 if (offset
< block
->max_length
) {
1798 vaddr
= ramblock_ptr(block
, offset
);
1799 if (block
->flags
& RAM_PREALLOC
) {
1801 } else if (xen_enabled()) {
1805 if (block
->fd
>= 0) {
1806 flags
|= (block
->flags
& RAM_SHARED
?
1807 MAP_SHARED
: MAP_PRIVATE
);
1808 area
= mmap(vaddr
, length
, PROT_READ
| PROT_WRITE
,
1809 flags
, block
->fd
, offset
);
1812 * Remap needs to match alloc. Accelerators that
1813 * set phys_mem_alloc never remap. If they did,
1814 * we'd need a remap hook here.
1816 assert(phys_mem_alloc
== qemu_anon_ram_alloc
);
1818 flags
|= MAP_PRIVATE
| MAP_ANONYMOUS
;
1819 area
= mmap(vaddr
, length
, PROT_READ
| PROT_WRITE
,
1822 if (area
!= vaddr
) {
1823 fprintf(stderr
, "Could not remap addr: "
1824 RAM_ADDR_FMT
"@" RAM_ADDR_FMT
"\n",
1828 memory_try_enable_merging(vaddr
, length
);
1829 qemu_ram_setup_dump(vaddr
, length
);
1834 #endif /* !_WIN32 */
1836 int qemu_get_ram_fd(ram_addr_t addr
)
1842 block
= qemu_get_ram_block(addr
);
1848 void qemu_set_ram_fd(ram_addr_t addr
, int fd
)
1853 block
= qemu_get_ram_block(addr
);
1858 void *qemu_get_ram_block_host_ptr(ram_addr_t addr
)
1864 block
= qemu_get_ram_block(addr
);
1865 ptr
= ramblock_ptr(block
, 0);
1870 /* Return a host pointer to ram allocated with qemu_ram_alloc.
1871 * This should not be used for general purpose DMA. Use address_space_map
1872 * or address_space_rw instead. For local memory (e.g. video ram) that the
1873 * device owns, use memory_region_get_ram_ptr.
1875 * Called within RCU critical section.
1877 void *qemu_get_ram_ptr(RAMBlock
*ram_block
, ram_addr_t addr
)
1879 RAMBlock
*block
= ram_block
;
1881 if (block
== NULL
) {
1882 block
= qemu_get_ram_block(addr
);
1885 if (xen_enabled() && block
->host
== NULL
) {
1886 /* We need to check if the requested address is in the RAM
1887 * because we don't want to map the entire memory in QEMU.
1888 * In that case just map until the end of the page.
1890 if (block
->offset
== 0) {
1891 return xen_map_cache(addr
, 0, 0);
1894 block
->host
= xen_map_cache(block
->offset
, block
->max_length
, 1);
1896 return ramblock_ptr(block
, addr
- block
->offset
);
1899 /* Return a host pointer to guest's ram. Similar to qemu_get_ram_ptr
1900 * but takes a size argument.
1902 * Called within RCU critical section.
1904 static void *qemu_ram_ptr_length(RAMBlock
*ram_block
, ram_addr_t addr
,
1907 RAMBlock
*block
= ram_block
;
1908 ram_addr_t offset_inside_block
;
1913 if (block
== NULL
) {
1914 block
= qemu_get_ram_block(addr
);
1916 offset_inside_block
= addr
- block
->offset
;
1917 *size
= MIN(*size
, block
->max_length
- offset_inside_block
);
1919 if (xen_enabled() && block
->host
== NULL
) {
1920 /* We need to check if the requested address is in the RAM
1921 * because we don't want to map the entire memory in QEMU.
1922 * In that case just map the requested area.
1924 if (block
->offset
== 0) {
1925 return xen_map_cache(addr
, *size
, 1);
1928 block
->host
= xen_map_cache(block
->offset
, block
->max_length
, 1);
1931 return ramblock_ptr(block
, offset_inside_block
);
1935 * Translates a host ptr back to a RAMBlock, a ram_addr and an offset
1938 * ptr: Host pointer to look up
1939 * round_offset: If true round the result offset down to a page boundary
1940 * *ram_addr: set to result ram_addr
1941 * *offset: set to result offset within the RAMBlock
1943 * Returns: RAMBlock (or NULL if not found)
1945 * By the time this function returns, the returned pointer is not protected
1946 * by RCU anymore. If the caller is not within an RCU critical section and
1947 * does not hold the iothread lock, it must have other means of protecting the
1948 * pointer, such as a reference to the region that includes the incoming
1951 RAMBlock
*qemu_ram_block_from_host(void *ptr
, bool round_offset
,
1952 ram_addr_t
*ram_addr
,
1956 uint8_t *host
= ptr
;
1958 if (xen_enabled()) {
1960 *ram_addr
= xen_ram_addr_from_mapcache(ptr
);
1961 block
= qemu_get_ram_block(*ram_addr
);
1963 *offset
= (host
- block
->host
);
1970 block
= atomic_rcu_read(&ram_list
.mru_block
);
1971 if (block
&& block
->host
&& host
- block
->host
< block
->max_length
) {
1975 QLIST_FOREACH_RCU(block
, &ram_list
.blocks
, next
) {
1976 /* This case append when the block is not mapped. */
1977 if (block
->host
== NULL
) {
1980 if (host
- block
->host
< block
->max_length
) {
1989 *offset
= (host
- block
->host
);
1991 *offset
&= TARGET_PAGE_MASK
;
1993 *ram_addr
= block
->offset
+ *offset
;
1999 * Finds the named RAMBlock
2001 * name: The name of RAMBlock to find
2003 * Returns: RAMBlock (or NULL if not found)
2005 RAMBlock
*qemu_ram_block_by_name(const char *name
)
2009 QLIST_FOREACH_RCU(block
, &ram_list
.blocks
, next
) {
2010 if (!strcmp(name
, block
->idstr
)) {
2018 /* Some of the softmmu routines need to translate from a host pointer
2019 (typically a TLB entry) back to a ram offset. */
2020 MemoryRegion
*qemu_ram_addr_from_host(void *ptr
, ram_addr_t
*ram_addr
)
2023 ram_addr_t offset
; /* Not used */
2025 block
= qemu_ram_block_from_host(ptr
, false, ram_addr
, &offset
);
2034 /* Called within RCU critical section. */
2035 static void notdirty_mem_write(void *opaque
, hwaddr ram_addr
,
2036 uint64_t val
, unsigned size
)
2038 if (!cpu_physical_memory_get_dirty_flag(ram_addr
, DIRTY_MEMORY_CODE
)) {
2039 tb_invalidate_phys_page_fast(ram_addr
, size
);
2043 stb_p(qemu_get_ram_ptr(NULL
, ram_addr
), val
);
2046 stw_p(qemu_get_ram_ptr(NULL
, ram_addr
), val
);
2049 stl_p(qemu_get_ram_ptr(NULL
, ram_addr
), val
);
2054 /* Set both VGA and migration bits for simplicity and to remove
2055 * the notdirty callback faster.
2057 cpu_physical_memory_set_dirty_range(ram_addr
, size
,
2058 DIRTY_CLIENTS_NOCODE
);
2059 /* we remove the notdirty callback only if the code has been
2061 if (!cpu_physical_memory_is_clean(ram_addr
)) {
2062 tlb_set_dirty(current_cpu
, current_cpu
->mem_io_vaddr
);
2066 static bool notdirty_mem_accepts(void *opaque
, hwaddr addr
,
2067 unsigned size
, bool is_write
)
2072 static const MemoryRegionOps notdirty_mem_ops
= {
2073 .write
= notdirty_mem_write
,
2074 .valid
.accepts
= notdirty_mem_accepts
,
2075 .endianness
= DEVICE_NATIVE_ENDIAN
,
2078 /* Generate a debug exception if a watchpoint has been hit. */
2079 static void check_watchpoint(int offset
, int len
, MemTxAttrs attrs
, int flags
)
2081 CPUState
*cpu
= current_cpu
;
2082 CPUClass
*cc
= CPU_GET_CLASS(cpu
);
2083 CPUArchState
*env
= cpu
->env_ptr
;
2084 target_ulong pc
, cs_base
;
2089 if (cpu
->watchpoint_hit
) {
2090 /* We re-entered the check after replacing the TB. Now raise
2091 * the debug interrupt so that is will trigger after the
2092 * current instruction. */
2093 cpu_interrupt(cpu
, CPU_INTERRUPT_DEBUG
);
2096 vaddr
= (cpu
->mem_io_vaddr
& TARGET_PAGE_MASK
) + offset
;
2097 QTAILQ_FOREACH(wp
, &cpu
->watchpoints
, entry
) {
2098 if (cpu_watchpoint_address_matches(wp
, vaddr
, len
)
2099 && (wp
->flags
& flags
)) {
2100 if (flags
== BP_MEM_READ
) {
2101 wp
->flags
|= BP_WATCHPOINT_HIT_READ
;
2103 wp
->flags
|= BP_WATCHPOINT_HIT_WRITE
;
2105 wp
->hitaddr
= vaddr
;
2106 wp
->hitattrs
= attrs
;
2107 if (!cpu
->watchpoint_hit
) {
2108 if (wp
->flags
& BP_CPU
&&
2109 !cc
->debug_check_watchpoint(cpu
, wp
)) {
2110 wp
->flags
&= ~BP_WATCHPOINT_HIT
;
2113 cpu
->watchpoint_hit
= wp
;
2114 tb_check_watchpoint(cpu
);
2115 if (wp
->flags
& BP_STOP_BEFORE_ACCESS
) {
2116 cpu
->exception_index
= EXCP_DEBUG
;
2119 cpu_get_tb_cpu_state(env
, &pc
, &cs_base
, &cpu_flags
);
2120 tb_gen_code(cpu
, pc
, cs_base
, cpu_flags
, 1);
2121 cpu_resume_from_signal(cpu
, NULL
);
2125 wp
->flags
&= ~BP_WATCHPOINT_HIT
;
2130 /* Watchpoint access routines. Watchpoints are inserted using TLB tricks,
2131 so these check for a hit then pass through to the normal out-of-line
2133 static MemTxResult
watch_mem_read(void *opaque
, hwaddr addr
, uint64_t *pdata
,
2134 unsigned size
, MemTxAttrs attrs
)
2138 int asidx
= cpu_asidx_from_attrs(current_cpu
, attrs
);
2139 AddressSpace
*as
= current_cpu
->cpu_ases
[asidx
].as
;
2141 check_watchpoint(addr
& ~TARGET_PAGE_MASK
, size
, attrs
, BP_MEM_READ
);
2144 data
= address_space_ldub(as
, addr
, attrs
, &res
);
2147 data
= address_space_lduw(as
, addr
, attrs
, &res
);
2150 data
= address_space_ldl(as
, addr
, attrs
, &res
);
2158 static MemTxResult
watch_mem_write(void *opaque
, hwaddr addr
,
2159 uint64_t val
, unsigned size
,
2163 int asidx
= cpu_asidx_from_attrs(current_cpu
, attrs
);
2164 AddressSpace
*as
= current_cpu
->cpu_ases
[asidx
].as
;
2166 check_watchpoint(addr
& ~TARGET_PAGE_MASK
, size
, attrs
, BP_MEM_WRITE
);
2169 address_space_stb(as
, addr
, val
, attrs
, &res
);
2172 address_space_stw(as
, addr
, val
, attrs
, &res
);
2175 address_space_stl(as
, addr
, val
, attrs
, &res
);
2182 static const MemoryRegionOps watch_mem_ops
= {
2183 .read_with_attrs
= watch_mem_read
,
2184 .write_with_attrs
= watch_mem_write
,
2185 .endianness
= DEVICE_NATIVE_ENDIAN
,
2188 static MemTxResult
subpage_read(void *opaque
, hwaddr addr
, uint64_t *data
,
2189 unsigned len
, MemTxAttrs attrs
)
2191 subpage_t
*subpage
= opaque
;
2195 #if defined(DEBUG_SUBPAGE)
2196 printf("%s: subpage %p len %u addr " TARGET_FMT_plx
"\n", __func__
,
2197 subpage
, len
, addr
);
2199 res
= address_space_read(subpage
->as
, addr
+ subpage
->base
,
2206 *data
= ldub_p(buf
);
2209 *data
= lduw_p(buf
);
2222 static MemTxResult
subpage_write(void *opaque
, hwaddr addr
,
2223 uint64_t value
, unsigned len
, MemTxAttrs attrs
)
2225 subpage_t
*subpage
= opaque
;
2228 #if defined(DEBUG_SUBPAGE)
2229 printf("%s: subpage %p len %u addr " TARGET_FMT_plx
2230 " value %"PRIx64
"\n",
2231 __func__
, subpage
, len
, addr
, value
);
2249 return address_space_write(subpage
->as
, addr
+ subpage
->base
,
2253 static bool subpage_accepts(void *opaque
, hwaddr addr
,
2254 unsigned len
, bool is_write
)
2256 subpage_t
*subpage
= opaque
;
2257 #if defined(DEBUG_SUBPAGE)
2258 printf("%s: subpage %p %c len %u addr " TARGET_FMT_plx
"\n",
2259 __func__
, subpage
, is_write
? 'w' : 'r', len
, addr
);
2262 return address_space_access_valid(subpage
->as
, addr
+ subpage
->base
,
2266 static const MemoryRegionOps subpage_ops
= {
2267 .read_with_attrs
= subpage_read
,
2268 .write_with_attrs
= subpage_write
,
2269 .impl
.min_access_size
= 1,
2270 .impl
.max_access_size
= 8,
2271 .valid
.min_access_size
= 1,
2272 .valid
.max_access_size
= 8,
2273 .valid
.accepts
= subpage_accepts
,
2274 .endianness
= DEVICE_NATIVE_ENDIAN
,
2277 static int subpage_register (subpage_t
*mmio
, uint32_t start
, uint32_t end
,
2282 if (start
>= TARGET_PAGE_SIZE
|| end
>= TARGET_PAGE_SIZE
)
2284 idx
= SUBPAGE_IDX(start
);
2285 eidx
= SUBPAGE_IDX(end
);
2286 #if defined(DEBUG_SUBPAGE)
2287 printf("%s: %p start %08x end %08x idx %08x eidx %08x section %d\n",
2288 __func__
, mmio
, start
, end
, idx
, eidx
, section
);
2290 for (; idx
<= eidx
; idx
++) {
2291 mmio
->sub_section
[idx
] = section
;
2297 static subpage_t
*subpage_init(AddressSpace
*as
, hwaddr base
)
2301 mmio
= g_malloc0(sizeof(subpage_t
));
2305 memory_region_init_io(&mmio
->iomem
, NULL
, &subpage_ops
, mmio
,
2306 NULL
, TARGET_PAGE_SIZE
);
2307 mmio
->iomem
.subpage
= true;
2308 #if defined(DEBUG_SUBPAGE)
2309 printf("%s: %p base " TARGET_FMT_plx
" len %08x\n", __func__
,
2310 mmio
, base
, TARGET_PAGE_SIZE
);
2312 subpage_register(mmio
, 0, TARGET_PAGE_SIZE
-1, PHYS_SECTION_UNASSIGNED
);
2317 static uint16_t dummy_section(PhysPageMap
*map
, AddressSpace
*as
,
2321 MemoryRegionSection section
= {
2322 .address_space
= as
,
2324 .offset_within_address_space
= 0,
2325 .offset_within_region
= 0,
2326 .size
= int128_2_64(),
2329 return phys_section_add(map
, §ion
);
2332 MemoryRegion
*iotlb_to_region(CPUState
*cpu
, hwaddr index
, MemTxAttrs attrs
)
2334 int asidx
= cpu_asidx_from_attrs(cpu
, attrs
);
2335 CPUAddressSpace
*cpuas
= &cpu
->cpu_ases
[asidx
];
2336 AddressSpaceDispatch
*d
= atomic_rcu_read(&cpuas
->memory_dispatch
);
2337 MemoryRegionSection
*sections
= d
->map
.sections
;
2339 return sections
[index
& ~TARGET_PAGE_MASK
].mr
;
2342 static void io_mem_init(void)
2344 memory_region_init_io(&io_mem_rom
, NULL
, &unassigned_mem_ops
, NULL
, NULL
, UINT64_MAX
);
2345 memory_region_init_io(&io_mem_unassigned
, NULL
, &unassigned_mem_ops
, NULL
,
2347 memory_region_init_io(&io_mem_notdirty
, NULL
, ¬dirty_mem_ops
, NULL
,
2349 memory_region_init_io(&io_mem_watch
, NULL
, &watch_mem_ops
, NULL
,
2353 static void mem_begin(MemoryListener
*listener
)
2355 AddressSpace
*as
= container_of(listener
, AddressSpace
, dispatch_listener
);
2356 AddressSpaceDispatch
*d
= g_new0(AddressSpaceDispatch
, 1);
2359 n
= dummy_section(&d
->map
, as
, &io_mem_unassigned
);
2360 assert(n
== PHYS_SECTION_UNASSIGNED
);
2361 n
= dummy_section(&d
->map
, as
, &io_mem_notdirty
);
2362 assert(n
== PHYS_SECTION_NOTDIRTY
);
2363 n
= dummy_section(&d
->map
, as
, &io_mem_rom
);
2364 assert(n
== PHYS_SECTION_ROM
);
2365 n
= dummy_section(&d
->map
, as
, &io_mem_watch
);
2366 assert(n
== PHYS_SECTION_WATCH
);
2368 d
->phys_map
= (PhysPageEntry
) { .ptr
= PHYS_MAP_NODE_NIL
, .skip
= 1 };
2370 as
->next_dispatch
= d
;
2373 static void address_space_dispatch_free(AddressSpaceDispatch
*d
)
2375 phys_sections_free(&d
->map
);
2379 static void mem_commit(MemoryListener
*listener
)
2381 AddressSpace
*as
= container_of(listener
, AddressSpace
, dispatch_listener
);
2382 AddressSpaceDispatch
*cur
= as
->dispatch
;
2383 AddressSpaceDispatch
*next
= as
->next_dispatch
;
2385 phys_page_compact_all(next
, next
->map
.nodes_nb
);
2387 atomic_rcu_set(&as
->dispatch
, next
);
2389 call_rcu(cur
, address_space_dispatch_free
, rcu
);
2393 static void tcg_commit(MemoryListener
*listener
)
2395 CPUAddressSpace
*cpuas
;
2396 AddressSpaceDispatch
*d
;
2398 /* since each CPU stores ram addresses in its TLB cache, we must
2399 reset the modified entries */
2400 cpuas
= container_of(listener
, CPUAddressSpace
, tcg_as_listener
);
2401 cpu_reloading_memory_map();
2402 /* The CPU and TLB are protected by the iothread lock.
2403 * We reload the dispatch pointer now because cpu_reloading_memory_map()
2404 * may have split the RCU critical section.
2406 d
= atomic_rcu_read(&cpuas
->as
->dispatch
);
2407 cpuas
->memory_dispatch
= d
;
2408 tlb_flush(cpuas
->cpu
, 1);
2411 void address_space_init_dispatch(AddressSpace
*as
)
2413 as
->dispatch
= NULL
;
2414 as
->dispatch_listener
= (MemoryListener
) {
2416 .commit
= mem_commit
,
2417 .region_add
= mem_add
,
2418 .region_nop
= mem_add
,
2421 memory_listener_register(&as
->dispatch_listener
, as
);
2424 void address_space_unregister(AddressSpace
*as
)
2426 memory_listener_unregister(&as
->dispatch_listener
);
2429 void address_space_destroy_dispatch(AddressSpace
*as
)
2431 AddressSpaceDispatch
*d
= as
->dispatch
;
2433 atomic_rcu_set(&as
->dispatch
, NULL
);
2435 call_rcu(d
, address_space_dispatch_free
, rcu
);
2439 static void memory_map_init(void)
2441 system_memory
= g_malloc(sizeof(*system_memory
));
2443 memory_region_init(system_memory
, NULL
, "system", UINT64_MAX
);
2444 address_space_init(&address_space_memory
, system_memory
, "memory");
2446 system_io
= g_malloc(sizeof(*system_io
));
2447 memory_region_init_io(system_io
, NULL
, &unassigned_io_ops
, NULL
, "io",
2449 address_space_init(&address_space_io
, system_io
, "I/O");
2452 MemoryRegion
*get_system_memory(void)
2454 return system_memory
;
2457 MemoryRegion
*get_system_io(void)
2462 #endif /* !defined(CONFIG_USER_ONLY) */
2464 /* physical memory access (slow version, mainly for debug) */
2465 #if defined(CONFIG_USER_ONLY)
2466 int cpu_memory_rw_debug(CPUState
*cpu
, target_ulong addr
,
2467 uint8_t *buf
, int len
, int is_write
)
2474 page
= addr
& TARGET_PAGE_MASK
;
2475 l
= (page
+ TARGET_PAGE_SIZE
) - addr
;
2478 flags
= page_get_flags(page
);
2479 if (!(flags
& PAGE_VALID
))
2482 if (!(flags
& PAGE_WRITE
))
2484 /* XXX: this code should not depend on lock_user */
2485 if (!(p
= lock_user(VERIFY_WRITE
, addr
, l
, 0)))
2488 unlock_user(p
, addr
, l
);
2490 if (!(flags
& PAGE_READ
))
2492 /* XXX: this code should not depend on lock_user */
2493 if (!(p
= lock_user(VERIFY_READ
, addr
, l
, 1)))
2496 unlock_user(p
, addr
, 0);
2507 static void invalidate_and_set_dirty(MemoryRegion
*mr
, hwaddr addr
,
2510 uint8_t dirty_log_mask
= memory_region_get_dirty_log_mask(mr
);
2511 /* No early return if dirty_log_mask is or becomes 0, because
2512 * cpu_physical_memory_set_dirty_range will still call
2513 * xen_modified_memory.
2515 if (dirty_log_mask
) {
2517 cpu_physical_memory_range_includes_clean(addr
, length
, dirty_log_mask
);
2519 if (dirty_log_mask
& (1 << DIRTY_MEMORY_CODE
)) {
2520 tb_invalidate_phys_range(addr
, addr
+ length
);
2521 dirty_log_mask
&= ~(1 << DIRTY_MEMORY_CODE
);
2523 cpu_physical_memory_set_dirty_range(addr
, length
, dirty_log_mask
);
2526 static int memory_access_size(MemoryRegion
*mr
, unsigned l
, hwaddr addr
)
2528 unsigned access_size_max
= mr
->ops
->valid
.max_access_size
;
2530 /* Regions are assumed to support 1-4 byte accesses unless
2531 otherwise specified. */
2532 if (access_size_max
== 0) {
2533 access_size_max
= 4;
2536 /* Bound the maximum access by the alignment of the address. */
2537 if (!mr
->ops
->impl
.unaligned
) {
2538 unsigned align_size_max
= addr
& -addr
;
2539 if (align_size_max
!= 0 && align_size_max
< access_size_max
) {
2540 access_size_max
= align_size_max
;
2544 /* Don't attempt accesses larger than the maximum. */
2545 if (l
> access_size_max
) {
2546 l
= access_size_max
;
2553 static bool prepare_mmio_access(MemoryRegion
*mr
)
2555 bool unlocked
= !qemu_mutex_iothread_locked();
2556 bool release_lock
= false;
2558 if (unlocked
&& mr
->global_locking
) {
2559 qemu_mutex_lock_iothread();
2561 release_lock
= true;
2563 if (mr
->flush_coalesced_mmio
) {
2565 qemu_mutex_lock_iothread();
2567 qemu_flush_coalesced_mmio_buffer();
2569 qemu_mutex_unlock_iothread();
2573 return release_lock
;
2576 /* Called within RCU critical section. */
2577 static MemTxResult
address_space_write_continue(AddressSpace
*as
, hwaddr addr
,
2580 int len
, hwaddr addr1
,
2581 hwaddr l
, MemoryRegion
*mr
)
2585 MemTxResult result
= MEMTX_OK
;
2586 bool release_lock
= false;
2589 if (!memory_access_is_direct(mr
, true)) {
2590 release_lock
|= prepare_mmio_access(mr
);
2591 l
= memory_access_size(mr
, l
, addr1
);
2592 /* XXX: could force current_cpu to NULL to avoid
2596 /* 64 bit write access */
2598 result
|= memory_region_dispatch_write(mr
, addr1
, val
, 8,
2602 /* 32 bit write access */
2604 result
|= memory_region_dispatch_write(mr
, addr1
, val
, 4,
2608 /* 16 bit write access */
2610 result
|= memory_region_dispatch_write(mr
, addr1
, val
, 2,
2614 /* 8 bit write access */
2616 result
|= memory_region_dispatch_write(mr
, addr1
, val
, 1,
2623 addr1
+= memory_region_get_ram_addr(mr
);
2625 ptr
= qemu_get_ram_ptr(mr
->ram_block
, addr1
);
2626 memcpy(ptr
, buf
, l
);
2627 invalidate_and_set_dirty(mr
, addr1
, l
);
2631 qemu_mutex_unlock_iothread();
2632 release_lock
= false;
2644 mr
= address_space_translate(as
, addr
, &addr1
, &l
, true);
2650 MemTxResult
address_space_write(AddressSpace
*as
, hwaddr addr
, MemTxAttrs attrs
,
2651 const uint8_t *buf
, int len
)
2656 MemTxResult result
= MEMTX_OK
;
2661 mr
= address_space_translate(as
, addr
, &addr1
, &l
, true);
2662 result
= address_space_write_continue(as
, addr
, attrs
, buf
, len
,
2670 /* Called within RCU critical section. */
2671 MemTxResult
address_space_read_continue(AddressSpace
*as
, hwaddr addr
,
2672 MemTxAttrs attrs
, uint8_t *buf
,
2673 int len
, hwaddr addr1
, hwaddr l
,
2678 MemTxResult result
= MEMTX_OK
;
2679 bool release_lock
= false;
2682 if (!memory_access_is_direct(mr
, false)) {
2684 release_lock
|= prepare_mmio_access(mr
);
2685 l
= memory_access_size(mr
, l
, addr1
);
2688 /* 64 bit read access */
2689 result
|= memory_region_dispatch_read(mr
, addr1
, &val
, 8,
2694 /* 32 bit read access */
2695 result
|= memory_region_dispatch_read(mr
, addr1
, &val
, 4,
2700 /* 16 bit read access */
2701 result
|= memory_region_dispatch_read(mr
, addr1
, &val
, 2,
2706 /* 8 bit read access */
2707 result
|= memory_region_dispatch_read(mr
, addr1
, &val
, 1,
2716 ptr
= qemu_get_ram_ptr(mr
->ram_block
,
2717 memory_region_get_ram_addr(mr
) + addr1
);
2718 memcpy(buf
, ptr
, l
);
2722 qemu_mutex_unlock_iothread();
2723 release_lock
= false;
2735 mr
= address_space_translate(as
, addr
, &addr1
, &l
, false);
2741 MemTxResult
address_space_read_full(AddressSpace
*as
, hwaddr addr
,
2742 MemTxAttrs attrs
, uint8_t *buf
, int len
)
2747 MemTxResult result
= MEMTX_OK
;
2752 mr
= address_space_translate(as
, addr
, &addr1
, &l
, false);
2753 result
= address_space_read_continue(as
, addr
, attrs
, buf
, len
,
2761 MemTxResult
address_space_rw(AddressSpace
*as
, hwaddr addr
, MemTxAttrs attrs
,
2762 uint8_t *buf
, int len
, bool is_write
)
2765 return address_space_write(as
, addr
, attrs
, (uint8_t *)buf
, len
);
2767 return address_space_read(as
, addr
, attrs
, (uint8_t *)buf
, len
);
2771 void cpu_physical_memory_rw(hwaddr addr
, uint8_t *buf
,
2772 int len
, int is_write
)
2774 address_space_rw(&address_space_memory
, addr
, MEMTXATTRS_UNSPECIFIED
,
2775 buf
, len
, is_write
);
2778 enum write_rom_type
{
2783 static inline void cpu_physical_memory_write_rom_internal(AddressSpace
*as
,
2784 hwaddr addr
, const uint8_t *buf
, int len
, enum write_rom_type type
)
2794 mr
= address_space_translate(as
, addr
, &addr1
, &l
, true);
2796 if (!(memory_region_is_ram(mr
) ||
2797 memory_region_is_romd(mr
))) {
2798 l
= memory_access_size(mr
, l
, addr1
);
2800 addr1
+= memory_region_get_ram_addr(mr
);
2802 ptr
= qemu_get_ram_ptr(mr
->ram_block
, addr1
);
2805 memcpy(ptr
, buf
, l
);
2806 invalidate_and_set_dirty(mr
, addr1
, l
);
2809 flush_icache_range((uintptr_t)ptr
, (uintptr_t)ptr
+ l
);
2820 /* used for ROM loading : can write in RAM and ROM */
2821 void cpu_physical_memory_write_rom(AddressSpace
*as
, hwaddr addr
,
2822 const uint8_t *buf
, int len
)
2824 cpu_physical_memory_write_rom_internal(as
, addr
, buf
, len
, WRITE_DATA
);
2827 void cpu_flush_icache_range(hwaddr start
, int len
)
2830 * This function should do the same thing as an icache flush that was
2831 * triggered from within the guest. For TCG we are always cache coherent,
2832 * so there is no need to flush anything. For KVM / Xen we need to flush
2833 * the host's instruction cache at least.
2835 if (tcg_enabled()) {
2839 cpu_physical_memory_write_rom_internal(&address_space_memory
,
2840 start
, NULL
, len
, FLUSH_CACHE
);
2851 static BounceBuffer bounce
;
2853 typedef struct MapClient
{
2855 QLIST_ENTRY(MapClient
) link
;
2858 QemuMutex map_client_list_lock
;
2859 static QLIST_HEAD(map_client_list
, MapClient
) map_client_list
2860 = QLIST_HEAD_INITIALIZER(map_client_list
);
2862 static void cpu_unregister_map_client_do(MapClient
*client
)
2864 QLIST_REMOVE(client
, link
);
2868 static void cpu_notify_map_clients_locked(void)
2872 while (!QLIST_EMPTY(&map_client_list
)) {
2873 client
= QLIST_FIRST(&map_client_list
);
2874 qemu_bh_schedule(client
->bh
);
2875 cpu_unregister_map_client_do(client
);
2879 void cpu_register_map_client(QEMUBH
*bh
)
2881 MapClient
*client
= g_malloc(sizeof(*client
));
2883 qemu_mutex_lock(&map_client_list_lock
);
2885 QLIST_INSERT_HEAD(&map_client_list
, client
, link
);
2886 if (!atomic_read(&bounce
.in_use
)) {
2887 cpu_notify_map_clients_locked();
2889 qemu_mutex_unlock(&map_client_list_lock
);
2892 void cpu_exec_init_all(void)
2894 qemu_mutex_init(&ram_list
.mutex
);
2897 qemu_mutex_init(&map_client_list_lock
);
2900 void cpu_unregister_map_client(QEMUBH
*bh
)
2904 qemu_mutex_lock(&map_client_list_lock
);
2905 QLIST_FOREACH(client
, &map_client_list
, link
) {
2906 if (client
->bh
== bh
) {
2907 cpu_unregister_map_client_do(client
);
2911 qemu_mutex_unlock(&map_client_list_lock
);
2914 static void cpu_notify_map_clients(void)
2916 qemu_mutex_lock(&map_client_list_lock
);
2917 cpu_notify_map_clients_locked();
2918 qemu_mutex_unlock(&map_client_list_lock
);
2921 bool address_space_access_valid(AddressSpace
*as
, hwaddr addr
, int len
, bool is_write
)
2929 mr
= address_space_translate(as
, addr
, &xlat
, &l
, is_write
);
2930 if (!memory_access_is_direct(mr
, is_write
)) {
2931 l
= memory_access_size(mr
, l
, addr
);
2932 if (!memory_region_access_valid(mr
, xlat
, l
, is_write
)) {
2944 /* Map a physical memory region into a host virtual address.
2945 * May map a subset of the requested range, given by and returned in *plen.
2946 * May return NULL if resources needed to perform the mapping are exhausted.
2947 * Use only for reads OR writes - not for read-modify-write operations.
2948 * Use cpu_register_map_client() to know when retrying the map operation is
2949 * likely to succeed.
2951 void *address_space_map(AddressSpace
*as
,
2958 hwaddr l
, xlat
, base
;
2959 MemoryRegion
*mr
, *this_mr
;
2969 mr
= address_space_translate(as
, addr
, &xlat
, &l
, is_write
);
2971 if (!memory_access_is_direct(mr
, is_write
)) {
2972 if (atomic_xchg(&bounce
.in_use
, true)) {
2976 /* Avoid unbounded allocations */
2977 l
= MIN(l
, TARGET_PAGE_SIZE
);
2978 bounce
.buffer
= qemu_memalign(TARGET_PAGE_SIZE
, l
);
2982 memory_region_ref(mr
);
2985 address_space_read(as
, addr
, MEMTXATTRS_UNSPECIFIED
,
2991 return bounce
.buffer
;
2995 raddr
= memory_region_get_ram_addr(mr
);
3006 this_mr
= address_space_translate(as
, addr
, &xlat
, &l
, is_write
);
3007 if (this_mr
!= mr
|| xlat
!= base
+ done
) {
3012 memory_region_ref(mr
);
3014 ptr
= qemu_ram_ptr_length(mr
->ram_block
, raddr
+ base
, plen
);
3020 /* Unmaps a memory region previously mapped by address_space_map().
3021 * Will also mark the memory as dirty if is_write == 1. access_len gives
3022 * the amount of memory that was actually read or written by the caller.
3024 void address_space_unmap(AddressSpace
*as
, void *buffer
, hwaddr len
,
3025 int is_write
, hwaddr access_len
)
3027 if (buffer
!= bounce
.buffer
) {
3031 mr
= qemu_ram_addr_from_host(buffer
, &addr1
);
3034 invalidate_and_set_dirty(mr
, addr1
, access_len
);
3036 if (xen_enabled()) {
3037 xen_invalidate_map_cache_entry(buffer
);
3039 memory_region_unref(mr
);
3043 address_space_write(as
, bounce
.addr
, MEMTXATTRS_UNSPECIFIED
,
3044 bounce
.buffer
, access_len
);
3046 qemu_vfree(bounce
.buffer
);
3047 bounce
.buffer
= NULL
;
3048 memory_region_unref(bounce
.mr
);
3049 atomic_mb_set(&bounce
.in_use
, false);
3050 cpu_notify_map_clients();
3053 void *cpu_physical_memory_map(hwaddr addr
,
3057 return address_space_map(&address_space_memory
, addr
, plen
, is_write
);
3060 void cpu_physical_memory_unmap(void *buffer
, hwaddr len
,
3061 int is_write
, hwaddr access_len
)
3063 return address_space_unmap(&address_space_memory
, buffer
, len
, is_write
, access_len
);
3066 /* warning: addr must be aligned */
3067 static inline uint32_t address_space_ldl_internal(AddressSpace
*as
, hwaddr addr
,
3069 MemTxResult
*result
,
3070 enum device_endian endian
)
3078 bool release_lock
= false;
3081 mr
= address_space_translate(as
, addr
, &addr1
, &l
, false);
3082 if (l
< 4 || !memory_access_is_direct(mr
, false)) {
3083 release_lock
|= prepare_mmio_access(mr
);
3086 r
= memory_region_dispatch_read(mr
, addr1
, &val
, 4, attrs
);
3087 #if defined(TARGET_WORDS_BIGENDIAN)
3088 if (endian
== DEVICE_LITTLE_ENDIAN
) {
3092 if (endian
== DEVICE_BIG_ENDIAN
) {
3098 ptr
= qemu_get_ram_ptr(mr
->ram_block
,
3099 (memory_region_get_ram_addr(mr
)
3103 case DEVICE_LITTLE_ENDIAN
:
3104 val
= ldl_le_p(ptr
);
3106 case DEVICE_BIG_ENDIAN
:
3107 val
= ldl_be_p(ptr
);
3119 qemu_mutex_unlock_iothread();
3125 uint32_t address_space_ldl(AddressSpace
*as
, hwaddr addr
,
3126 MemTxAttrs attrs
, MemTxResult
*result
)
3128 return address_space_ldl_internal(as
, addr
, attrs
, result
,
3129 DEVICE_NATIVE_ENDIAN
);
3132 uint32_t address_space_ldl_le(AddressSpace
*as
, hwaddr addr
,
3133 MemTxAttrs attrs
, MemTxResult
*result
)
3135 return address_space_ldl_internal(as
, addr
, attrs
, result
,
3136 DEVICE_LITTLE_ENDIAN
);
3139 uint32_t address_space_ldl_be(AddressSpace
*as
, hwaddr addr
,
3140 MemTxAttrs attrs
, MemTxResult
*result
)
3142 return address_space_ldl_internal(as
, addr
, attrs
, result
,
3146 uint32_t ldl_phys(AddressSpace
*as
, hwaddr addr
)
3148 return address_space_ldl(as
, addr
, MEMTXATTRS_UNSPECIFIED
, NULL
);
3151 uint32_t ldl_le_phys(AddressSpace
*as
, hwaddr addr
)
3153 return address_space_ldl_le(as
, addr
, MEMTXATTRS_UNSPECIFIED
, NULL
);
3156 uint32_t ldl_be_phys(AddressSpace
*as
, hwaddr addr
)
3158 return address_space_ldl_be(as
, addr
, MEMTXATTRS_UNSPECIFIED
, NULL
);
3161 /* warning: addr must be aligned */
3162 static inline uint64_t address_space_ldq_internal(AddressSpace
*as
, hwaddr addr
,
3164 MemTxResult
*result
,
3165 enum device_endian endian
)
3173 bool release_lock
= false;
3176 mr
= address_space_translate(as
, addr
, &addr1
, &l
,
3178 if (l
< 8 || !memory_access_is_direct(mr
, false)) {
3179 release_lock
|= prepare_mmio_access(mr
);
3182 r
= memory_region_dispatch_read(mr
, addr1
, &val
, 8, attrs
);
3183 #if defined(TARGET_WORDS_BIGENDIAN)
3184 if (endian
== DEVICE_LITTLE_ENDIAN
) {
3188 if (endian
== DEVICE_BIG_ENDIAN
) {
3194 ptr
= qemu_get_ram_ptr(mr
->ram_block
,
3195 (memory_region_get_ram_addr(mr
)
3199 case DEVICE_LITTLE_ENDIAN
:
3200 val
= ldq_le_p(ptr
);
3202 case DEVICE_BIG_ENDIAN
:
3203 val
= ldq_be_p(ptr
);
3215 qemu_mutex_unlock_iothread();
3221 uint64_t address_space_ldq(AddressSpace
*as
, hwaddr addr
,
3222 MemTxAttrs attrs
, MemTxResult
*result
)
3224 return address_space_ldq_internal(as
, addr
, attrs
, result
,
3225 DEVICE_NATIVE_ENDIAN
);
3228 uint64_t address_space_ldq_le(AddressSpace
*as
, hwaddr addr
,
3229 MemTxAttrs attrs
, MemTxResult
*result
)
3231 return address_space_ldq_internal(as
, addr
, attrs
, result
,
3232 DEVICE_LITTLE_ENDIAN
);
3235 uint64_t address_space_ldq_be(AddressSpace
*as
, hwaddr addr
,
3236 MemTxAttrs attrs
, MemTxResult
*result
)
3238 return address_space_ldq_internal(as
, addr
, attrs
, result
,
3242 uint64_t ldq_phys(AddressSpace
*as
, hwaddr addr
)
3244 return address_space_ldq(as
, addr
, MEMTXATTRS_UNSPECIFIED
, NULL
);
3247 uint64_t ldq_le_phys(AddressSpace
*as
, hwaddr addr
)
3249 return address_space_ldq_le(as
, addr
, MEMTXATTRS_UNSPECIFIED
, NULL
);
3252 uint64_t ldq_be_phys(AddressSpace
*as
, hwaddr addr
)
3254 return address_space_ldq_be(as
, addr
, MEMTXATTRS_UNSPECIFIED
, NULL
);
3258 uint32_t address_space_ldub(AddressSpace
*as
, hwaddr addr
,
3259 MemTxAttrs attrs
, MemTxResult
*result
)
3264 r
= address_space_rw(as
, addr
, attrs
, &val
, 1, 0);
3271 uint32_t ldub_phys(AddressSpace
*as
, hwaddr addr
)
3273 return address_space_ldub(as
, addr
, MEMTXATTRS_UNSPECIFIED
, NULL
);
3276 /* warning: addr must be aligned */
3277 static inline uint32_t address_space_lduw_internal(AddressSpace
*as
,
3280 MemTxResult
*result
,
3281 enum device_endian endian
)
3289 bool release_lock
= false;
3292 mr
= address_space_translate(as
, addr
, &addr1
, &l
,
3294 if (l
< 2 || !memory_access_is_direct(mr
, false)) {
3295 release_lock
|= prepare_mmio_access(mr
);
3298 r
= memory_region_dispatch_read(mr
, addr1
, &val
, 2, attrs
);
3299 #if defined(TARGET_WORDS_BIGENDIAN)
3300 if (endian
== DEVICE_LITTLE_ENDIAN
) {
3304 if (endian
== DEVICE_BIG_ENDIAN
) {
3310 ptr
= qemu_get_ram_ptr(mr
->ram_block
,
3311 (memory_region_get_ram_addr(mr
)
3315 case DEVICE_LITTLE_ENDIAN
:
3316 val
= lduw_le_p(ptr
);
3318 case DEVICE_BIG_ENDIAN
:
3319 val
= lduw_be_p(ptr
);
3331 qemu_mutex_unlock_iothread();
3337 uint32_t address_space_lduw(AddressSpace
*as
, hwaddr addr
,
3338 MemTxAttrs attrs
, MemTxResult
*result
)
3340 return address_space_lduw_internal(as
, addr
, attrs
, result
,
3341 DEVICE_NATIVE_ENDIAN
);
3344 uint32_t address_space_lduw_le(AddressSpace
*as
, hwaddr addr
,
3345 MemTxAttrs attrs
, MemTxResult
*result
)
3347 return address_space_lduw_internal(as
, addr
, attrs
, result
,
3348 DEVICE_LITTLE_ENDIAN
);
3351 uint32_t address_space_lduw_be(AddressSpace
*as
, hwaddr addr
,
3352 MemTxAttrs attrs
, MemTxResult
*result
)
3354 return address_space_lduw_internal(as
, addr
, attrs
, result
,
3358 uint32_t lduw_phys(AddressSpace
*as
, hwaddr addr
)
3360 return address_space_lduw(as
, addr
, MEMTXATTRS_UNSPECIFIED
, NULL
);
3363 uint32_t lduw_le_phys(AddressSpace
*as
, hwaddr addr
)
3365 return address_space_lduw_le(as
, addr
, MEMTXATTRS_UNSPECIFIED
, NULL
);
3368 uint32_t lduw_be_phys(AddressSpace
*as
, hwaddr addr
)
3370 return address_space_lduw_be(as
, addr
, MEMTXATTRS_UNSPECIFIED
, NULL
);
3373 /* warning: addr must be aligned. The ram page is not masked as dirty
3374 and the code inside is not invalidated. It is useful if the dirty
3375 bits are used to track modified PTEs */
3376 void address_space_stl_notdirty(AddressSpace
*as
, hwaddr addr
, uint32_t val
,
3377 MemTxAttrs attrs
, MemTxResult
*result
)
3384 uint8_t dirty_log_mask
;
3385 bool release_lock
= false;
3388 mr
= address_space_translate(as
, addr
, &addr1
, &l
,
3390 if (l
< 4 || !memory_access_is_direct(mr
, true)) {
3391 release_lock
|= prepare_mmio_access(mr
);
3393 r
= memory_region_dispatch_write(mr
, addr1
, val
, 4, attrs
);
3395 addr1
+= memory_region_get_ram_addr(mr
) & TARGET_PAGE_MASK
;
3396 ptr
= qemu_get_ram_ptr(mr
->ram_block
, addr1
);
3399 dirty_log_mask
= memory_region_get_dirty_log_mask(mr
);
3400 dirty_log_mask
&= ~(1 << DIRTY_MEMORY_CODE
);
3401 cpu_physical_memory_set_dirty_range(addr1
, 4, dirty_log_mask
);
3408 qemu_mutex_unlock_iothread();
3413 void stl_phys_notdirty(AddressSpace
*as
, hwaddr addr
, uint32_t val
)
3415 address_space_stl_notdirty(as
, addr
, val
, MEMTXATTRS_UNSPECIFIED
, NULL
);
3418 /* warning: addr must be aligned */
3419 static inline void address_space_stl_internal(AddressSpace
*as
,
3420 hwaddr addr
, uint32_t val
,
3422 MemTxResult
*result
,
3423 enum device_endian endian
)
3430 bool release_lock
= false;
3433 mr
= address_space_translate(as
, addr
, &addr1
, &l
,
3435 if (l
< 4 || !memory_access_is_direct(mr
, true)) {
3436 release_lock
|= prepare_mmio_access(mr
);
3438 #if defined(TARGET_WORDS_BIGENDIAN)
3439 if (endian
== DEVICE_LITTLE_ENDIAN
) {
3443 if (endian
== DEVICE_BIG_ENDIAN
) {
3447 r
= memory_region_dispatch_write(mr
, addr1
, val
, 4, attrs
);
3450 addr1
+= memory_region_get_ram_addr(mr
) & TARGET_PAGE_MASK
;
3451 ptr
= qemu_get_ram_ptr(mr
->ram_block
, addr1
);
3453 case DEVICE_LITTLE_ENDIAN
:
3456 case DEVICE_BIG_ENDIAN
:
3463 invalidate_and_set_dirty(mr
, addr1
, 4);
3470 qemu_mutex_unlock_iothread();
3475 void address_space_stl(AddressSpace
*as
, hwaddr addr
, uint32_t val
,
3476 MemTxAttrs attrs
, MemTxResult
*result
)
3478 address_space_stl_internal(as
, addr
, val
, attrs
, result
,
3479 DEVICE_NATIVE_ENDIAN
);
3482 void address_space_stl_le(AddressSpace
*as
, hwaddr addr
, uint32_t val
,
3483 MemTxAttrs attrs
, MemTxResult
*result
)
3485 address_space_stl_internal(as
, addr
, val
, attrs
, result
,
3486 DEVICE_LITTLE_ENDIAN
);
3489 void address_space_stl_be(AddressSpace
*as
, hwaddr addr
, uint32_t val
,
3490 MemTxAttrs attrs
, MemTxResult
*result
)
3492 address_space_stl_internal(as
, addr
, val
, attrs
, result
,
3496 void stl_phys(AddressSpace
*as
, hwaddr addr
, uint32_t val
)
3498 address_space_stl(as
, addr
, val
, MEMTXATTRS_UNSPECIFIED
, NULL
);
3501 void stl_le_phys(AddressSpace
*as
, hwaddr addr
, uint32_t val
)
3503 address_space_stl_le(as
, addr
, val
, MEMTXATTRS_UNSPECIFIED
, NULL
);
3506 void stl_be_phys(AddressSpace
*as
, hwaddr addr
, uint32_t val
)
3508 address_space_stl_be(as
, addr
, val
, MEMTXATTRS_UNSPECIFIED
, NULL
);
3512 void address_space_stb(AddressSpace
*as
, hwaddr addr
, uint32_t val
,
3513 MemTxAttrs attrs
, MemTxResult
*result
)
3518 r
= address_space_rw(as
, addr
, attrs
, &v
, 1, 1);
3524 void stb_phys(AddressSpace
*as
, hwaddr addr
, uint32_t val
)
3526 address_space_stb(as
, addr
, val
, MEMTXATTRS_UNSPECIFIED
, NULL
);
3529 /* warning: addr must be aligned */
3530 static inline void address_space_stw_internal(AddressSpace
*as
,
3531 hwaddr addr
, uint32_t val
,
3533 MemTxResult
*result
,
3534 enum device_endian endian
)
3541 bool release_lock
= false;
3544 mr
= address_space_translate(as
, addr
, &addr1
, &l
, true);
3545 if (l
< 2 || !memory_access_is_direct(mr
, true)) {
3546 release_lock
|= prepare_mmio_access(mr
);
3548 #if defined(TARGET_WORDS_BIGENDIAN)
3549 if (endian
== DEVICE_LITTLE_ENDIAN
) {
3553 if (endian
== DEVICE_BIG_ENDIAN
) {
3557 r
= memory_region_dispatch_write(mr
, addr1
, val
, 2, attrs
);
3560 addr1
+= memory_region_get_ram_addr(mr
) & TARGET_PAGE_MASK
;
3561 ptr
= qemu_get_ram_ptr(mr
->ram_block
, addr1
);
3563 case DEVICE_LITTLE_ENDIAN
:
3566 case DEVICE_BIG_ENDIAN
:
3573 invalidate_and_set_dirty(mr
, addr1
, 2);
3580 qemu_mutex_unlock_iothread();
3585 void address_space_stw(AddressSpace
*as
, hwaddr addr
, uint32_t val
,
3586 MemTxAttrs attrs
, MemTxResult
*result
)
3588 address_space_stw_internal(as
, addr
, val
, attrs
, result
,
3589 DEVICE_NATIVE_ENDIAN
);
3592 void address_space_stw_le(AddressSpace
*as
, hwaddr addr
, uint32_t val
,
3593 MemTxAttrs attrs
, MemTxResult
*result
)
3595 address_space_stw_internal(as
, addr
, val
, attrs
, result
,
3596 DEVICE_LITTLE_ENDIAN
);
3599 void address_space_stw_be(AddressSpace
*as
, hwaddr addr
, uint32_t val
,
3600 MemTxAttrs attrs
, MemTxResult
*result
)
3602 address_space_stw_internal(as
, addr
, val
, attrs
, result
,
3606 void stw_phys(AddressSpace
*as
, hwaddr addr
, uint32_t val
)
3608 address_space_stw(as
, addr
, val
, MEMTXATTRS_UNSPECIFIED
, NULL
);
3611 void stw_le_phys(AddressSpace
*as
, hwaddr addr
, uint32_t val
)
3613 address_space_stw_le(as
, addr
, val
, MEMTXATTRS_UNSPECIFIED
, NULL
);
3616 void stw_be_phys(AddressSpace
*as
, hwaddr addr
, uint32_t val
)
3618 address_space_stw_be(as
, addr
, val
, MEMTXATTRS_UNSPECIFIED
, NULL
);
3622 void address_space_stq(AddressSpace
*as
, hwaddr addr
, uint64_t val
,
3623 MemTxAttrs attrs
, MemTxResult
*result
)
3627 r
= address_space_rw(as
, addr
, attrs
, (void *) &val
, 8, 1);
3633 void address_space_stq_le(AddressSpace
*as
, hwaddr addr
, uint64_t val
,
3634 MemTxAttrs attrs
, MemTxResult
*result
)
3637 val
= cpu_to_le64(val
);
3638 r
= address_space_rw(as
, addr
, attrs
, (void *) &val
, 8, 1);
3643 void address_space_stq_be(AddressSpace
*as
, hwaddr addr
, uint64_t val
,
3644 MemTxAttrs attrs
, MemTxResult
*result
)
3647 val
= cpu_to_be64(val
);
3648 r
= address_space_rw(as
, addr
, attrs
, (void *) &val
, 8, 1);
3654 void stq_phys(AddressSpace
*as
, hwaddr addr
, uint64_t val
)
3656 address_space_stq(as
, addr
, val
, MEMTXATTRS_UNSPECIFIED
, NULL
);
3659 void stq_le_phys(AddressSpace
*as
, hwaddr addr
, uint64_t val
)
3661 address_space_stq_le(as
, addr
, val
, MEMTXATTRS_UNSPECIFIED
, NULL
);
3664 void stq_be_phys(AddressSpace
*as
, hwaddr addr
, uint64_t val
)
3666 address_space_stq_be(as
, addr
, val
, MEMTXATTRS_UNSPECIFIED
, NULL
);
3669 /* virtual memory access for debug (includes writing to ROM) */
3670 int cpu_memory_rw_debug(CPUState
*cpu
, target_ulong addr
,
3671 uint8_t *buf
, int len
, int is_write
)
3681 page
= addr
& TARGET_PAGE_MASK
;
3682 phys_addr
= cpu_get_phys_page_attrs_debug(cpu
, page
, &attrs
);
3683 asidx
= cpu_asidx_from_attrs(cpu
, attrs
);
3684 /* if no physical page mapped, return an error */
3685 if (phys_addr
== -1)
3687 l
= (page
+ TARGET_PAGE_SIZE
) - addr
;
3690 phys_addr
+= (addr
& ~TARGET_PAGE_MASK
);
3692 cpu_physical_memory_write_rom(cpu
->cpu_ases
[asidx
].as
,
3695 address_space_rw(cpu
->cpu_ases
[asidx
].as
, phys_addr
,
3696 MEMTXATTRS_UNSPECIFIED
,
3707 * Allows code that needs to deal with migration bitmaps etc to still be built
3708 * target independent.
3710 size_t qemu_target_page_bits(void)
3712 return TARGET_PAGE_BITS
;
3718 * A helper function for the _utterly broken_ virtio device model to find out if
3719 * it's running on a big endian machine. Don't do this at home kids!
3721 bool target_words_bigendian(void);
3722 bool target_words_bigendian(void)
3724 #if defined(TARGET_WORDS_BIGENDIAN)
3731 #ifndef CONFIG_USER_ONLY
3732 bool cpu_physical_memory_is_io(hwaddr phys_addr
)
3739 mr
= address_space_translate(&address_space_memory
,
3740 phys_addr
, &phys_addr
, &l
, false);
3742 res
= !(memory_region_is_ram(mr
) || memory_region_is_romd(mr
));
3747 int qemu_ram_foreach_block(RAMBlockIterFunc func
, void *opaque
)
3753 QLIST_FOREACH_RCU(block
, &ram_list
.blocks
, next
) {
3754 ret
= func(block
->idstr
, block
->host
, block
->offset
,
3755 block
->used_length
, opaque
);