Less debug noise from the mipsnet driver.
[qemu/qemu_0_9_1_stable.git] / vl.c
blobf9500a967912c3d4eb11456c6bce096eafe73221
1 /*
2 * QEMU System Emulator
4 * Copyright (c) 2003-2007 Fabrice Bellard
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
24 #include "vl.h"
26 #include <unistd.h>
27 #include <fcntl.h>
28 #include <signal.h>
29 #include <time.h>
30 #include <errno.h>
31 #include <sys/time.h>
32 #include <zlib.h>
34 #ifndef _WIN32
35 #include <sys/times.h>
36 #include <sys/wait.h>
37 #include <termios.h>
38 #include <sys/poll.h>
39 #include <sys/mman.h>
40 #include <sys/ioctl.h>
41 #include <sys/socket.h>
42 #include <netinet/in.h>
43 #include <dirent.h>
44 #include <netdb.h>
45 #include <sys/select.h>
46 #include <arpa/inet.h>
47 #ifdef _BSD
48 #include <sys/stat.h>
49 #ifndef __APPLE__
50 #include <libutil.h>
51 #endif
52 #elif defined (__GLIBC__) && defined (__FreeBSD_kernel__)
53 #include <freebsd/stdlib.h>
54 #else
55 #ifndef __sun__
56 #include <linux/if.h>
57 #include <linux/if_tun.h>
58 #include <pty.h>
59 #include <malloc.h>
60 #include <linux/rtc.h>
62 /* For the benefit of older linux systems which don't supply it,
63 we use a local copy of hpet.h. */
64 /* #include <linux/hpet.h> */
65 #include "hpet.h"
67 #include <linux/ppdev.h>
68 #include <linux/parport.h>
69 #else
70 #include <sys/stat.h>
71 #include <sys/ethernet.h>
72 #include <sys/sockio.h>
73 #include <netinet/arp.h>
74 #include <netinet/in.h>
75 #include <netinet/in_systm.h>
76 #include <netinet/ip.h>
77 #include <netinet/ip_icmp.h> // must come after ip.h
78 #include <netinet/udp.h>
79 #include <netinet/tcp.h>
80 #include <net/if.h>
81 #include <syslog.h>
82 #include <stropts.h>
83 #endif
84 #endif
85 #else
86 #include <winsock2.h>
87 int inet_aton(const char *cp, struct in_addr *ia);
88 #endif
90 #if defined(CONFIG_SLIRP)
91 #include "libslirp.h"
92 #endif
94 #ifdef _WIN32
95 #include <malloc.h>
96 #include <sys/timeb.h>
97 #include <windows.h>
98 #define getopt_long_only getopt_long
99 #define memalign(align, size) malloc(size)
100 #endif
102 #include "qemu_socket.h"
104 #ifdef CONFIG_SDL
105 #ifdef __APPLE__
106 #include <SDL/SDL.h>
107 #endif
108 #endif /* CONFIG_SDL */
110 #ifdef CONFIG_COCOA
111 #undef main
112 #define main qemu_main
113 #endif /* CONFIG_COCOA */
115 #include "disas.h"
117 #include "exec-all.h"
119 #define DEFAULT_NETWORK_SCRIPT "/etc/qemu-ifup"
120 #define DEFAULT_NETWORK_DOWN_SCRIPT "/etc/qemu-ifdown"
121 #ifdef __sun__
122 #define SMBD_COMMAND "/usr/sfw/sbin/smbd"
123 #else
124 #define SMBD_COMMAND "/usr/sbin/smbd"
125 #endif
127 //#define DEBUG_UNUSED_IOPORT
128 //#define DEBUG_IOPORT
130 #define PHYS_RAM_MAX_SIZE (2047 * 1024 * 1024)
132 #ifdef TARGET_PPC
133 #define DEFAULT_RAM_SIZE 144
134 #else
135 #define DEFAULT_RAM_SIZE 128
136 #endif
137 /* in ms */
138 #define GUI_REFRESH_INTERVAL 30
140 /* Max number of USB devices that can be specified on the commandline. */
141 #define MAX_USB_CMDLINE 8
143 /* XXX: use a two level table to limit memory usage */
144 #define MAX_IOPORTS 65536
146 const char *bios_dir = CONFIG_QEMU_SHAREDIR;
147 const char *bios_name = NULL;
148 char phys_ram_file[1024];
149 void *ioport_opaque[MAX_IOPORTS];
150 IOPortReadFunc *ioport_read_table[3][MAX_IOPORTS];
151 IOPortWriteFunc *ioport_write_table[3][MAX_IOPORTS];
152 /* Note: bs_table[MAX_DISKS] is a dummy block driver if none available
153 to store the VM snapshots */
154 BlockDriverState *bs_table[MAX_DISKS + 1], *fd_table[MAX_FD];
155 BlockDriverState *pflash_table[MAX_PFLASH];
156 BlockDriverState *sd_bdrv;
157 BlockDriverState *mtd_bdrv;
158 /* point to the block driver where the snapshots are managed */
159 BlockDriverState *bs_snapshots;
160 int vga_ram_size;
161 static DisplayState display_state;
162 int nographic;
163 const char* keyboard_layout = NULL;
164 int64_t ticks_per_sec;
165 int boot_device = 'c';
166 int ram_size;
167 int pit_min_timer_count = 0;
168 int nb_nics;
169 NICInfo nd_table[MAX_NICS];
170 int vm_running;
171 int rtc_utc = 1;
172 int cirrus_vga_enabled = 1;
173 int vmsvga_enabled = 0;
174 #ifdef TARGET_SPARC
175 int graphic_width = 1024;
176 int graphic_height = 768;
177 int graphic_depth = 8;
178 #else
179 int graphic_width = 800;
180 int graphic_height = 600;
181 int graphic_depth = 15;
182 #endif
183 int full_screen = 0;
184 int no_frame = 0;
185 int no_quit = 0;
186 CharDriverState *serial_hds[MAX_SERIAL_PORTS];
187 CharDriverState *parallel_hds[MAX_PARALLEL_PORTS];
188 #ifdef TARGET_I386
189 int win2k_install_hack = 0;
190 #endif
191 int usb_enabled = 0;
192 static VLANState *first_vlan;
193 int smp_cpus = 1;
194 const char *vnc_display;
195 #if defined(TARGET_SPARC)
196 #define MAX_CPUS 16
197 #elif defined(TARGET_I386)
198 #define MAX_CPUS 255
199 #else
200 #define MAX_CPUS 1
201 #endif
202 int acpi_enabled = 1;
203 int fd_bootchk = 1;
204 int no_reboot = 0;
205 int cursor_hide = 1;
206 int graphic_rotate = 0;
207 int daemonize = 0;
208 const char *option_rom[MAX_OPTION_ROMS];
209 int nb_option_roms;
210 int semihosting_enabled = 0;
211 int autostart = 1;
212 #ifdef TARGET_ARM
213 int old_param = 0;
214 #endif
215 const char *qemu_name;
216 int alt_grab = 0;
217 #ifdef TARGET_SPARC
218 unsigned int nb_prom_envs = 0;
219 const char *prom_envs[MAX_PROM_ENVS];
220 #endif
222 #define TFR(expr) do { if ((expr) != -1) break; } while (errno == EINTR)
224 /***********************************************************/
225 /* x86 ISA bus support */
227 target_phys_addr_t isa_mem_base = 0;
228 PicState2 *isa_pic;
230 uint32_t default_ioport_readb(void *opaque, uint32_t address)
232 #ifdef DEBUG_UNUSED_IOPORT
233 fprintf(stderr, "unused inb: port=0x%04x\n", address);
234 #endif
235 return 0xff;
238 void default_ioport_writeb(void *opaque, uint32_t address, uint32_t data)
240 #ifdef DEBUG_UNUSED_IOPORT
241 fprintf(stderr, "unused outb: port=0x%04x data=0x%02x\n", address, data);
242 #endif
245 /* default is to make two byte accesses */
246 uint32_t default_ioport_readw(void *opaque, uint32_t address)
248 uint32_t data;
249 data = ioport_read_table[0][address](ioport_opaque[address], address);
250 address = (address + 1) & (MAX_IOPORTS - 1);
251 data |= ioport_read_table[0][address](ioport_opaque[address], address) << 8;
252 return data;
255 void default_ioport_writew(void *opaque, uint32_t address, uint32_t data)
257 ioport_write_table[0][address](ioport_opaque[address], address, data & 0xff);
258 address = (address + 1) & (MAX_IOPORTS - 1);
259 ioport_write_table[0][address](ioport_opaque[address], address, (data >> 8) & 0xff);
262 uint32_t default_ioport_readl(void *opaque, uint32_t address)
264 #ifdef DEBUG_UNUSED_IOPORT
265 fprintf(stderr, "unused inl: port=0x%04x\n", address);
266 #endif
267 return 0xffffffff;
270 void default_ioport_writel(void *opaque, uint32_t address, uint32_t data)
272 #ifdef DEBUG_UNUSED_IOPORT
273 fprintf(stderr, "unused outl: port=0x%04x data=0x%02x\n", address, data);
274 #endif
277 void init_ioports(void)
279 int i;
281 for(i = 0; i < MAX_IOPORTS; i++) {
282 ioport_read_table[0][i] = default_ioport_readb;
283 ioport_write_table[0][i] = default_ioport_writeb;
284 ioport_read_table[1][i] = default_ioport_readw;
285 ioport_write_table[1][i] = default_ioport_writew;
286 ioport_read_table[2][i] = default_ioport_readl;
287 ioport_write_table[2][i] = default_ioport_writel;
291 /* size is the word size in byte */
292 int register_ioport_read(int start, int length, int size,
293 IOPortReadFunc *func, void *opaque)
295 int i, bsize;
297 if (size == 1) {
298 bsize = 0;
299 } else if (size == 2) {
300 bsize = 1;
301 } else if (size == 4) {
302 bsize = 2;
303 } else {
304 hw_error("register_ioport_read: invalid size");
305 return -1;
307 for(i = start; i < start + length; i += size) {
308 ioport_read_table[bsize][i] = func;
309 if (ioport_opaque[i] != NULL && ioport_opaque[i] != opaque)
310 hw_error("register_ioport_read: invalid opaque");
311 ioport_opaque[i] = opaque;
313 return 0;
316 /* size is the word size in byte */
317 int register_ioport_write(int start, int length, int size,
318 IOPortWriteFunc *func, void *opaque)
320 int i, bsize;
322 if (size == 1) {
323 bsize = 0;
324 } else if (size == 2) {
325 bsize = 1;
326 } else if (size == 4) {
327 bsize = 2;
328 } else {
329 hw_error("register_ioport_write: invalid size");
330 return -1;
332 for(i = start; i < start + length; i += size) {
333 ioport_write_table[bsize][i] = func;
334 if (ioport_opaque[i] != NULL && ioport_opaque[i] != opaque)
335 hw_error("register_ioport_write: invalid opaque");
336 ioport_opaque[i] = opaque;
338 return 0;
341 void isa_unassign_ioport(int start, int length)
343 int i;
345 for(i = start; i < start + length; i++) {
346 ioport_read_table[0][i] = default_ioport_readb;
347 ioport_read_table[1][i] = default_ioport_readw;
348 ioport_read_table[2][i] = default_ioport_readl;
350 ioport_write_table[0][i] = default_ioport_writeb;
351 ioport_write_table[1][i] = default_ioport_writew;
352 ioport_write_table[2][i] = default_ioport_writel;
356 /***********************************************************/
358 void cpu_outb(CPUState *env, int addr, int val)
360 #ifdef DEBUG_IOPORT
361 if (loglevel & CPU_LOG_IOPORT)
362 fprintf(logfile, "outb: %04x %02x\n", addr, val);
363 #endif
364 ioport_write_table[0][addr](ioport_opaque[addr], addr, val);
365 #ifdef USE_KQEMU
366 if (env)
367 env->last_io_time = cpu_get_time_fast();
368 #endif
371 void cpu_outw(CPUState *env, int addr, int val)
373 #ifdef DEBUG_IOPORT
374 if (loglevel & CPU_LOG_IOPORT)
375 fprintf(logfile, "outw: %04x %04x\n", addr, val);
376 #endif
377 ioport_write_table[1][addr](ioport_opaque[addr], addr, val);
378 #ifdef USE_KQEMU
379 if (env)
380 env->last_io_time = cpu_get_time_fast();
381 #endif
384 void cpu_outl(CPUState *env, int addr, int val)
386 #ifdef DEBUG_IOPORT
387 if (loglevel & CPU_LOG_IOPORT)
388 fprintf(logfile, "outl: %04x %08x\n", addr, val);
389 #endif
390 ioport_write_table[2][addr](ioport_opaque[addr], addr, val);
391 #ifdef USE_KQEMU
392 if (env)
393 env->last_io_time = cpu_get_time_fast();
394 #endif
397 int cpu_inb(CPUState *env, int addr)
399 int val;
400 val = ioport_read_table[0][addr](ioport_opaque[addr], addr);
401 #ifdef DEBUG_IOPORT
402 if (loglevel & CPU_LOG_IOPORT)
403 fprintf(logfile, "inb : %04x %02x\n", addr, val);
404 #endif
405 #ifdef USE_KQEMU
406 if (env)
407 env->last_io_time = cpu_get_time_fast();
408 #endif
409 return val;
412 int cpu_inw(CPUState *env, int addr)
414 int val;
415 val = ioport_read_table[1][addr](ioport_opaque[addr], addr);
416 #ifdef DEBUG_IOPORT
417 if (loglevel & CPU_LOG_IOPORT)
418 fprintf(logfile, "inw : %04x %04x\n", addr, val);
419 #endif
420 #ifdef USE_KQEMU
421 if (env)
422 env->last_io_time = cpu_get_time_fast();
423 #endif
424 return val;
427 int cpu_inl(CPUState *env, int addr)
429 int val;
430 val = ioport_read_table[2][addr](ioport_opaque[addr], addr);
431 #ifdef DEBUG_IOPORT
432 if (loglevel & CPU_LOG_IOPORT)
433 fprintf(logfile, "inl : %04x %08x\n", addr, val);
434 #endif
435 #ifdef USE_KQEMU
436 if (env)
437 env->last_io_time = cpu_get_time_fast();
438 #endif
439 return val;
442 /***********************************************************/
443 void hw_error(const char *fmt, ...)
445 va_list ap;
446 CPUState *env;
448 va_start(ap, fmt);
449 fprintf(stderr, "qemu: hardware error: ");
450 vfprintf(stderr, fmt, ap);
451 fprintf(stderr, "\n");
452 for(env = first_cpu; env != NULL; env = env->next_cpu) {
453 fprintf(stderr, "CPU #%d:\n", env->cpu_index);
454 #ifdef TARGET_I386
455 cpu_dump_state(env, stderr, fprintf, X86_DUMP_FPU);
456 #else
457 cpu_dump_state(env, stderr, fprintf, 0);
458 #endif
460 va_end(ap);
461 abort();
464 /***********************************************************/
465 /* keyboard/mouse */
467 static QEMUPutKBDEvent *qemu_put_kbd_event;
468 static void *qemu_put_kbd_event_opaque;
469 static QEMUPutMouseEntry *qemu_put_mouse_event_head;
470 static QEMUPutMouseEntry *qemu_put_mouse_event_current;
472 void qemu_add_kbd_event_handler(QEMUPutKBDEvent *func, void *opaque)
474 qemu_put_kbd_event_opaque = opaque;
475 qemu_put_kbd_event = func;
478 QEMUPutMouseEntry *qemu_add_mouse_event_handler(QEMUPutMouseEvent *func,
479 void *opaque, int absolute,
480 const char *name)
482 QEMUPutMouseEntry *s, *cursor;
484 s = qemu_mallocz(sizeof(QEMUPutMouseEntry));
485 if (!s)
486 return NULL;
488 s->qemu_put_mouse_event = func;
489 s->qemu_put_mouse_event_opaque = opaque;
490 s->qemu_put_mouse_event_absolute = absolute;
491 s->qemu_put_mouse_event_name = qemu_strdup(name);
492 s->next = NULL;
494 if (!qemu_put_mouse_event_head) {
495 qemu_put_mouse_event_head = qemu_put_mouse_event_current = s;
496 return s;
499 cursor = qemu_put_mouse_event_head;
500 while (cursor->next != NULL)
501 cursor = cursor->next;
503 cursor->next = s;
504 qemu_put_mouse_event_current = s;
506 return s;
509 void qemu_remove_mouse_event_handler(QEMUPutMouseEntry *entry)
511 QEMUPutMouseEntry *prev = NULL, *cursor;
513 if (!qemu_put_mouse_event_head || entry == NULL)
514 return;
516 cursor = qemu_put_mouse_event_head;
517 while (cursor != NULL && cursor != entry) {
518 prev = cursor;
519 cursor = cursor->next;
522 if (cursor == NULL) // does not exist or list empty
523 return;
524 else if (prev == NULL) { // entry is head
525 qemu_put_mouse_event_head = cursor->next;
526 if (qemu_put_mouse_event_current == entry)
527 qemu_put_mouse_event_current = cursor->next;
528 qemu_free(entry->qemu_put_mouse_event_name);
529 qemu_free(entry);
530 return;
533 prev->next = entry->next;
535 if (qemu_put_mouse_event_current == entry)
536 qemu_put_mouse_event_current = prev;
538 qemu_free(entry->qemu_put_mouse_event_name);
539 qemu_free(entry);
542 void kbd_put_keycode(int keycode)
544 if (qemu_put_kbd_event) {
545 qemu_put_kbd_event(qemu_put_kbd_event_opaque, keycode);
549 void kbd_mouse_event(int dx, int dy, int dz, int buttons_state)
551 QEMUPutMouseEvent *mouse_event;
552 void *mouse_event_opaque;
553 int width;
555 if (!qemu_put_mouse_event_current) {
556 return;
559 mouse_event =
560 qemu_put_mouse_event_current->qemu_put_mouse_event;
561 mouse_event_opaque =
562 qemu_put_mouse_event_current->qemu_put_mouse_event_opaque;
564 if (mouse_event) {
565 if (graphic_rotate) {
566 if (qemu_put_mouse_event_current->qemu_put_mouse_event_absolute)
567 width = 0x7fff;
568 else
569 width = graphic_width;
570 mouse_event(mouse_event_opaque,
571 width - dy, dx, dz, buttons_state);
572 } else
573 mouse_event(mouse_event_opaque,
574 dx, dy, dz, buttons_state);
578 int kbd_mouse_is_absolute(void)
580 if (!qemu_put_mouse_event_current)
581 return 0;
583 return qemu_put_mouse_event_current->qemu_put_mouse_event_absolute;
586 void do_info_mice(void)
588 QEMUPutMouseEntry *cursor;
589 int index = 0;
591 if (!qemu_put_mouse_event_head) {
592 term_printf("No mouse devices connected\n");
593 return;
596 term_printf("Mouse devices available:\n");
597 cursor = qemu_put_mouse_event_head;
598 while (cursor != NULL) {
599 term_printf("%c Mouse #%d: %s\n",
600 (cursor == qemu_put_mouse_event_current ? '*' : ' '),
601 index, cursor->qemu_put_mouse_event_name);
602 index++;
603 cursor = cursor->next;
607 void do_mouse_set(int index)
609 QEMUPutMouseEntry *cursor;
610 int i = 0;
612 if (!qemu_put_mouse_event_head) {
613 term_printf("No mouse devices connected\n");
614 return;
617 cursor = qemu_put_mouse_event_head;
618 while (cursor != NULL && index != i) {
619 i++;
620 cursor = cursor->next;
623 if (cursor != NULL)
624 qemu_put_mouse_event_current = cursor;
625 else
626 term_printf("Mouse at given index not found\n");
629 /* compute with 96 bit intermediate result: (a*b)/c */
630 uint64_t muldiv64(uint64_t a, uint32_t b, uint32_t c)
632 union {
633 uint64_t ll;
634 struct {
635 #ifdef WORDS_BIGENDIAN
636 uint32_t high, low;
637 #else
638 uint32_t low, high;
639 #endif
640 } l;
641 } u, res;
642 uint64_t rl, rh;
644 u.ll = a;
645 rl = (uint64_t)u.l.low * (uint64_t)b;
646 rh = (uint64_t)u.l.high * (uint64_t)b;
647 rh += (rl >> 32);
648 res.l.high = rh / c;
649 res.l.low = (((rh % c) << 32) + (rl & 0xffffffff)) / c;
650 return res.ll;
653 /***********************************************************/
654 /* real time host monotonic timer */
656 #define QEMU_TIMER_BASE 1000000000LL
658 #ifdef WIN32
660 static int64_t clock_freq;
662 static void init_get_clock(void)
664 LARGE_INTEGER freq;
665 int ret;
666 ret = QueryPerformanceFrequency(&freq);
667 if (ret == 0) {
668 fprintf(stderr, "Could not calibrate ticks\n");
669 exit(1);
671 clock_freq = freq.QuadPart;
674 static int64_t get_clock(void)
676 LARGE_INTEGER ti;
677 QueryPerformanceCounter(&ti);
678 return muldiv64(ti.QuadPart, QEMU_TIMER_BASE, clock_freq);
681 #else
683 static int use_rt_clock;
685 static void init_get_clock(void)
687 use_rt_clock = 0;
688 #if defined(__linux__)
690 struct timespec ts;
691 if (clock_gettime(CLOCK_MONOTONIC, &ts) == 0) {
692 use_rt_clock = 1;
695 #endif
698 static int64_t get_clock(void)
700 #if defined(__linux__)
701 if (use_rt_clock) {
702 struct timespec ts;
703 clock_gettime(CLOCK_MONOTONIC, &ts);
704 return ts.tv_sec * 1000000000LL + ts.tv_nsec;
705 } else
706 #endif
708 /* XXX: using gettimeofday leads to problems if the date
709 changes, so it should be avoided. */
710 struct timeval tv;
711 gettimeofday(&tv, NULL);
712 return tv.tv_sec * 1000000000LL + (tv.tv_usec * 1000);
716 #endif
718 /***********************************************************/
719 /* guest cycle counter */
721 static int64_t cpu_ticks_prev;
722 static int64_t cpu_ticks_offset;
723 static int64_t cpu_clock_offset;
724 static int cpu_ticks_enabled;
726 /* return the host CPU cycle counter and handle stop/restart */
727 int64_t cpu_get_ticks(void)
729 if (!cpu_ticks_enabled) {
730 return cpu_ticks_offset;
731 } else {
732 int64_t ticks;
733 ticks = cpu_get_real_ticks();
734 if (cpu_ticks_prev > ticks) {
735 /* Note: non increasing ticks may happen if the host uses
736 software suspend */
737 cpu_ticks_offset += cpu_ticks_prev - ticks;
739 cpu_ticks_prev = ticks;
740 return ticks + cpu_ticks_offset;
744 /* return the host CPU monotonic timer and handle stop/restart */
745 static int64_t cpu_get_clock(void)
747 int64_t ti;
748 if (!cpu_ticks_enabled) {
749 return cpu_clock_offset;
750 } else {
751 ti = get_clock();
752 return ti + cpu_clock_offset;
756 /* enable cpu_get_ticks() */
757 void cpu_enable_ticks(void)
759 if (!cpu_ticks_enabled) {
760 cpu_ticks_offset -= cpu_get_real_ticks();
761 cpu_clock_offset -= get_clock();
762 cpu_ticks_enabled = 1;
766 /* disable cpu_get_ticks() : the clock is stopped. You must not call
767 cpu_get_ticks() after that. */
768 void cpu_disable_ticks(void)
770 if (cpu_ticks_enabled) {
771 cpu_ticks_offset = cpu_get_ticks();
772 cpu_clock_offset = cpu_get_clock();
773 cpu_ticks_enabled = 0;
777 /***********************************************************/
778 /* timers */
780 #define QEMU_TIMER_REALTIME 0
781 #define QEMU_TIMER_VIRTUAL 1
783 struct QEMUClock {
784 int type;
785 /* XXX: add frequency */
788 struct QEMUTimer {
789 QEMUClock *clock;
790 int64_t expire_time;
791 QEMUTimerCB *cb;
792 void *opaque;
793 struct QEMUTimer *next;
796 struct qemu_alarm_timer {
797 char const *name;
798 unsigned int flags;
800 int (*start)(struct qemu_alarm_timer *t);
801 void (*stop)(struct qemu_alarm_timer *t);
802 void (*rearm)(struct qemu_alarm_timer *t);
803 void *priv;
806 #define ALARM_FLAG_DYNTICKS 0x1
808 static inline int alarm_has_dynticks(struct qemu_alarm_timer *t)
810 return t->flags & ALARM_FLAG_DYNTICKS;
813 static void qemu_rearm_alarm_timer(struct qemu_alarm_timer *t)
815 if (!alarm_has_dynticks(t))
816 return;
818 t->rearm(t);
821 /* TODO: MIN_TIMER_REARM_US should be optimized */
822 #define MIN_TIMER_REARM_US 250
824 static struct qemu_alarm_timer *alarm_timer;
826 #ifdef _WIN32
828 struct qemu_alarm_win32 {
829 MMRESULT timerId;
830 HANDLE host_alarm;
831 unsigned int period;
832 } alarm_win32_data = {0, NULL, -1};
834 static int win32_start_timer(struct qemu_alarm_timer *t);
835 static void win32_stop_timer(struct qemu_alarm_timer *t);
836 static void win32_rearm_timer(struct qemu_alarm_timer *t);
838 #else
840 static int unix_start_timer(struct qemu_alarm_timer *t);
841 static void unix_stop_timer(struct qemu_alarm_timer *t);
843 #ifdef __linux__
845 static int dynticks_start_timer(struct qemu_alarm_timer *t);
846 static void dynticks_stop_timer(struct qemu_alarm_timer *t);
847 static void dynticks_rearm_timer(struct qemu_alarm_timer *t);
849 static int hpet_start_timer(struct qemu_alarm_timer *t);
850 static void hpet_stop_timer(struct qemu_alarm_timer *t);
852 static int rtc_start_timer(struct qemu_alarm_timer *t);
853 static void rtc_stop_timer(struct qemu_alarm_timer *t);
855 #endif /* __linux__ */
857 #endif /* _WIN32 */
859 static struct qemu_alarm_timer alarm_timers[] = {
860 #ifndef _WIN32
861 #ifdef __linux__
862 {"dynticks", ALARM_FLAG_DYNTICKS, dynticks_start_timer,
863 dynticks_stop_timer, dynticks_rearm_timer, NULL},
864 /* HPET - if available - is preferred */
865 {"hpet", 0, hpet_start_timer, hpet_stop_timer, NULL, NULL},
866 /* ...otherwise try RTC */
867 {"rtc", 0, rtc_start_timer, rtc_stop_timer, NULL, NULL},
868 #endif
869 {"unix", 0, unix_start_timer, unix_stop_timer, NULL, NULL},
870 #else
871 {"dynticks", ALARM_FLAG_DYNTICKS, win32_start_timer,
872 win32_stop_timer, win32_rearm_timer, &alarm_win32_data},
873 {"win32", 0, win32_start_timer,
874 win32_stop_timer, NULL, &alarm_win32_data},
875 #endif
876 {NULL, }
879 static void show_available_alarms()
881 int i;
883 printf("Available alarm timers, in order of precedence:\n");
884 for (i = 0; alarm_timers[i].name; i++)
885 printf("%s\n", alarm_timers[i].name);
888 static void configure_alarms(char const *opt)
890 int i;
891 int cur = 0;
892 int count = (sizeof(alarm_timers) / sizeof(*alarm_timers)) - 1;
893 char *arg;
894 char *name;
896 if (!strcmp(opt, "help")) {
897 show_available_alarms();
898 exit(0);
901 arg = strdup(opt);
903 /* Reorder the array */
904 name = strtok(arg, ",");
905 while (name) {
906 struct qemu_alarm_timer tmp;
908 for (i = 0; i < count && alarm_timers[i].name; i++) {
909 if (!strcmp(alarm_timers[i].name, name))
910 break;
913 if (i == count) {
914 fprintf(stderr, "Unknown clock %s\n", name);
915 goto next;
918 if (i < cur)
919 /* Ignore */
920 goto next;
922 /* Swap */
923 tmp = alarm_timers[i];
924 alarm_timers[i] = alarm_timers[cur];
925 alarm_timers[cur] = tmp;
927 cur++;
928 next:
929 name = strtok(NULL, ",");
932 free(arg);
934 if (cur) {
935 /* Disable remaining timers */
936 for (i = cur; i < count; i++)
937 alarm_timers[i].name = NULL;
940 /* debug */
941 show_available_alarms();
944 QEMUClock *rt_clock;
945 QEMUClock *vm_clock;
947 static QEMUTimer *active_timers[2];
949 QEMUClock *qemu_new_clock(int type)
951 QEMUClock *clock;
952 clock = qemu_mallocz(sizeof(QEMUClock));
953 if (!clock)
954 return NULL;
955 clock->type = type;
956 return clock;
959 QEMUTimer *qemu_new_timer(QEMUClock *clock, QEMUTimerCB *cb, void *opaque)
961 QEMUTimer *ts;
963 ts = qemu_mallocz(sizeof(QEMUTimer));
964 ts->clock = clock;
965 ts->cb = cb;
966 ts->opaque = opaque;
967 return ts;
970 void qemu_free_timer(QEMUTimer *ts)
972 qemu_free(ts);
975 /* stop a timer, but do not dealloc it */
976 void qemu_del_timer(QEMUTimer *ts)
978 QEMUTimer **pt, *t;
980 /* NOTE: this code must be signal safe because
981 qemu_timer_expired() can be called from a signal. */
982 pt = &active_timers[ts->clock->type];
983 for(;;) {
984 t = *pt;
985 if (!t)
986 break;
987 if (t == ts) {
988 *pt = t->next;
989 break;
991 pt = &t->next;
995 /* modify the current timer so that it will be fired when current_time
996 >= expire_time. The corresponding callback will be called. */
997 void qemu_mod_timer(QEMUTimer *ts, int64_t expire_time)
999 QEMUTimer **pt, *t;
1001 qemu_del_timer(ts);
1003 /* add the timer in the sorted list */
1004 /* NOTE: this code must be signal safe because
1005 qemu_timer_expired() can be called from a signal. */
1006 pt = &active_timers[ts->clock->type];
1007 for(;;) {
1008 t = *pt;
1009 if (!t)
1010 break;
1011 if (t->expire_time > expire_time)
1012 break;
1013 pt = &t->next;
1015 ts->expire_time = expire_time;
1016 ts->next = *pt;
1017 *pt = ts;
1020 int qemu_timer_pending(QEMUTimer *ts)
1022 QEMUTimer *t;
1023 for(t = active_timers[ts->clock->type]; t != NULL; t = t->next) {
1024 if (t == ts)
1025 return 1;
1027 return 0;
1030 static inline int qemu_timer_expired(QEMUTimer *timer_head, int64_t current_time)
1032 if (!timer_head)
1033 return 0;
1034 return (timer_head->expire_time <= current_time);
1037 static void qemu_run_timers(QEMUTimer **ptimer_head, int64_t current_time)
1039 QEMUTimer *ts;
1041 for(;;) {
1042 ts = *ptimer_head;
1043 if (!ts || ts->expire_time > current_time)
1044 break;
1045 /* remove timer from the list before calling the callback */
1046 *ptimer_head = ts->next;
1047 ts->next = NULL;
1049 /* run the callback (the timer list can be modified) */
1050 ts->cb(ts->opaque);
1052 qemu_rearm_alarm_timer(alarm_timer);
1055 int64_t qemu_get_clock(QEMUClock *clock)
1057 switch(clock->type) {
1058 case QEMU_TIMER_REALTIME:
1059 return get_clock() / 1000000;
1060 default:
1061 case QEMU_TIMER_VIRTUAL:
1062 return cpu_get_clock();
1066 static void init_timers(void)
1068 init_get_clock();
1069 ticks_per_sec = QEMU_TIMER_BASE;
1070 rt_clock = qemu_new_clock(QEMU_TIMER_REALTIME);
1071 vm_clock = qemu_new_clock(QEMU_TIMER_VIRTUAL);
1074 /* save a timer */
1075 void qemu_put_timer(QEMUFile *f, QEMUTimer *ts)
1077 uint64_t expire_time;
1079 if (qemu_timer_pending(ts)) {
1080 expire_time = ts->expire_time;
1081 } else {
1082 expire_time = -1;
1084 qemu_put_be64(f, expire_time);
1087 void qemu_get_timer(QEMUFile *f, QEMUTimer *ts)
1089 uint64_t expire_time;
1091 expire_time = qemu_get_be64(f);
1092 if (expire_time != -1) {
1093 qemu_mod_timer(ts, expire_time);
1094 } else {
1095 qemu_del_timer(ts);
1099 static void timer_save(QEMUFile *f, void *opaque)
1101 if (cpu_ticks_enabled) {
1102 hw_error("cannot save state if virtual timers are running");
1104 qemu_put_be64s(f, &cpu_ticks_offset);
1105 qemu_put_be64s(f, &ticks_per_sec);
1106 qemu_put_be64s(f, &cpu_clock_offset);
1109 static int timer_load(QEMUFile *f, void *opaque, int version_id)
1111 if (version_id != 1 && version_id != 2)
1112 return -EINVAL;
1113 if (cpu_ticks_enabled) {
1114 return -EINVAL;
1116 qemu_get_be64s(f, &cpu_ticks_offset);
1117 qemu_get_be64s(f, &ticks_per_sec);
1118 if (version_id == 2) {
1119 qemu_get_be64s(f, &cpu_clock_offset);
1121 return 0;
1124 #ifdef _WIN32
1125 void CALLBACK host_alarm_handler(UINT uTimerID, UINT uMsg,
1126 DWORD_PTR dwUser, DWORD_PTR dw1, DWORD_PTR dw2)
1127 #else
1128 static void host_alarm_handler(int host_signum)
1129 #endif
1131 #if 0
1132 #define DISP_FREQ 1000
1134 static int64_t delta_min = INT64_MAX;
1135 static int64_t delta_max, delta_cum, last_clock, delta, ti;
1136 static int count;
1137 ti = qemu_get_clock(vm_clock);
1138 if (last_clock != 0) {
1139 delta = ti - last_clock;
1140 if (delta < delta_min)
1141 delta_min = delta;
1142 if (delta > delta_max)
1143 delta_max = delta;
1144 delta_cum += delta;
1145 if (++count == DISP_FREQ) {
1146 printf("timer: min=%" PRId64 " us max=%" PRId64 " us avg=%" PRId64 " us avg_freq=%0.3f Hz\n",
1147 muldiv64(delta_min, 1000000, ticks_per_sec),
1148 muldiv64(delta_max, 1000000, ticks_per_sec),
1149 muldiv64(delta_cum, 1000000 / DISP_FREQ, ticks_per_sec),
1150 (double)ticks_per_sec / ((double)delta_cum / DISP_FREQ));
1151 count = 0;
1152 delta_min = INT64_MAX;
1153 delta_max = 0;
1154 delta_cum = 0;
1157 last_clock = ti;
1159 #endif
1160 if (alarm_has_dynticks(alarm_timer) ||
1161 qemu_timer_expired(active_timers[QEMU_TIMER_VIRTUAL],
1162 qemu_get_clock(vm_clock)) ||
1163 qemu_timer_expired(active_timers[QEMU_TIMER_REALTIME],
1164 qemu_get_clock(rt_clock))) {
1165 #ifdef _WIN32
1166 struct qemu_alarm_win32 *data = ((struct qemu_alarm_timer*)dwUser)->priv;
1167 SetEvent(data->host_alarm);
1168 #endif
1169 CPUState *env = cpu_single_env;
1170 if (env) {
1171 /* stop the currently executing cpu because a timer occured */
1172 cpu_interrupt(env, CPU_INTERRUPT_EXIT);
1173 #ifdef USE_KQEMU
1174 if (env->kqemu_enabled) {
1175 kqemu_cpu_interrupt(env);
1177 #endif
1182 static uint64_t qemu_next_deadline(void)
1184 int64_t nearest_delta_us = INT64_MAX;
1185 int64_t vmdelta_us;
1187 if (active_timers[QEMU_TIMER_REALTIME])
1188 nearest_delta_us = (active_timers[QEMU_TIMER_REALTIME]->expire_time -
1189 qemu_get_clock(rt_clock))*1000;
1191 if (active_timers[QEMU_TIMER_VIRTUAL]) {
1192 /* round up */
1193 vmdelta_us = (active_timers[QEMU_TIMER_VIRTUAL]->expire_time -
1194 qemu_get_clock(vm_clock)+999)/1000;
1195 if (vmdelta_us < nearest_delta_us)
1196 nearest_delta_us = vmdelta_us;
1199 /* Avoid arming the timer to negative, zero, or too low values */
1200 if (nearest_delta_us <= MIN_TIMER_REARM_US)
1201 nearest_delta_us = MIN_TIMER_REARM_US;
1203 return nearest_delta_us;
1206 #ifndef _WIN32
1208 #if defined(__linux__)
1210 #define RTC_FREQ 1024
1212 static void enable_sigio_timer(int fd)
1214 struct sigaction act;
1216 /* timer signal */
1217 sigfillset(&act.sa_mask);
1218 act.sa_flags = 0;
1219 #if defined (TARGET_I386) && defined(USE_CODE_COPY)
1220 act.sa_flags |= SA_ONSTACK;
1221 #endif
1222 act.sa_handler = host_alarm_handler;
1224 sigaction(SIGIO, &act, NULL);
1225 fcntl(fd, F_SETFL, O_ASYNC);
1226 fcntl(fd, F_SETOWN, getpid());
1229 static int hpet_start_timer(struct qemu_alarm_timer *t)
1231 struct hpet_info info;
1232 int r, fd;
1234 fd = open("/dev/hpet", O_RDONLY);
1235 if (fd < 0)
1236 return -1;
1238 /* Set frequency */
1239 r = ioctl(fd, HPET_IRQFREQ, RTC_FREQ);
1240 if (r < 0) {
1241 fprintf(stderr, "Could not configure '/dev/hpet' to have a 1024Hz timer. This is not a fatal\n"
1242 "error, but for better emulation accuracy type:\n"
1243 "'echo 1024 > /proc/sys/dev/hpet/max-user-freq' as root.\n");
1244 goto fail;
1247 /* Check capabilities */
1248 r = ioctl(fd, HPET_INFO, &info);
1249 if (r < 0)
1250 goto fail;
1252 /* Enable periodic mode */
1253 r = ioctl(fd, HPET_EPI, 0);
1254 if (info.hi_flags && (r < 0))
1255 goto fail;
1257 /* Enable interrupt */
1258 r = ioctl(fd, HPET_IE_ON, 0);
1259 if (r < 0)
1260 goto fail;
1262 enable_sigio_timer(fd);
1263 t->priv = (void *)(long)fd;
1265 return 0;
1266 fail:
1267 close(fd);
1268 return -1;
1271 static void hpet_stop_timer(struct qemu_alarm_timer *t)
1273 int fd = (long)t->priv;
1275 close(fd);
1278 static int rtc_start_timer(struct qemu_alarm_timer *t)
1280 int rtc_fd;
1282 TFR(rtc_fd = open("/dev/rtc", O_RDONLY));
1283 if (rtc_fd < 0)
1284 return -1;
1285 if (ioctl(rtc_fd, RTC_IRQP_SET, RTC_FREQ) < 0) {
1286 fprintf(stderr, "Could not configure '/dev/rtc' to have a 1024 Hz timer. This is not a fatal\n"
1287 "error, but for better emulation accuracy either use a 2.6 host Linux kernel or\n"
1288 "type 'echo 1024 > /proc/sys/dev/rtc/max-user-freq' as root.\n");
1289 goto fail;
1291 if (ioctl(rtc_fd, RTC_PIE_ON, 0) < 0) {
1292 fail:
1293 close(rtc_fd);
1294 return -1;
1297 enable_sigio_timer(rtc_fd);
1299 t->priv = (void *)(long)rtc_fd;
1301 return 0;
1304 static void rtc_stop_timer(struct qemu_alarm_timer *t)
1306 int rtc_fd = (long)t->priv;
1308 close(rtc_fd);
1311 static int dynticks_start_timer(struct qemu_alarm_timer *t)
1313 struct sigevent ev;
1314 timer_t host_timer;
1315 struct sigaction act;
1317 sigfillset(&act.sa_mask);
1318 act.sa_flags = 0;
1319 #if defined(TARGET_I386) && defined(USE_CODE_COPY)
1320 act.sa_flags |= SA_ONSTACK;
1321 #endif
1322 act.sa_handler = host_alarm_handler;
1324 sigaction(SIGALRM, &act, NULL);
1326 ev.sigev_value.sival_int = 0;
1327 ev.sigev_notify = SIGEV_SIGNAL;
1328 ev.sigev_signo = SIGALRM;
1330 if (timer_create(CLOCK_REALTIME, &ev, &host_timer)) {
1331 perror("timer_create");
1333 /* disable dynticks */
1334 fprintf(stderr, "Dynamic Ticks disabled\n");
1336 return -1;
1339 t->priv = (void *)host_timer;
1341 return 0;
1344 static void dynticks_stop_timer(struct qemu_alarm_timer *t)
1346 timer_t host_timer = (timer_t)t->priv;
1348 timer_delete(host_timer);
1351 static void dynticks_rearm_timer(struct qemu_alarm_timer *t)
1353 timer_t host_timer = (timer_t)t->priv;
1354 struct itimerspec timeout;
1355 int64_t nearest_delta_us = INT64_MAX;
1356 int64_t current_us;
1358 if (!active_timers[QEMU_TIMER_REALTIME] &&
1359 !active_timers[QEMU_TIMER_VIRTUAL])
1360 return;
1362 nearest_delta_us = qemu_next_deadline();
1364 /* check whether a timer is already running */
1365 if (timer_gettime(host_timer, &timeout)) {
1366 perror("gettime");
1367 fprintf(stderr, "Internal timer error: aborting\n");
1368 exit(1);
1370 current_us = timeout.it_value.tv_sec * 1000000 + timeout.it_value.tv_nsec/1000;
1371 if (current_us && current_us <= nearest_delta_us)
1372 return;
1374 timeout.it_interval.tv_sec = 0;
1375 timeout.it_interval.tv_nsec = 0; /* 0 for one-shot timer */
1376 timeout.it_value.tv_sec = nearest_delta_us / 1000000;
1377 timeout.it_value.tv_nsec = (nearest_delta_us % 1000000) * 1000;
1378 if (timer_settime(host_timer, 0 /* RELATIVE */, &timeout, NULL)) {
1379 perror("settime");
1380 fprintf(stderr, "Internal timer error: aborting\n");
1381 exit(1);
1385 #endif /* defined(__linux__) */
1387 static int unix_start_timer(struct qemu_alarm_timer *t)
1389 struct sigaction act;
1390 struct itimerval itv;
1391 int err;
1393 /* timer signal */
1394 sigfillset(&act.sa_mask);
1395 act.sa_flags = 0;
1396 #if defined(TARGET_I386) && defined(USE_CODE_COPY)
1397 act.sa_flags |= SA_ONSTACK;
1398 #endif
1399 act.sa_handler = host_alarm_handler;
1401 sigaction(SIGALRM, &act, NULL);
1403 itv.it_interval.tv_sec = 0;
1404 /* for i386 kernel 2.6 to get 1 ms */
1405 itv.it_interval.tv_usec = 999;
1406 itv.it_value.tv_sec = 0;
1407 itv.it_value.tv_usec = 10 * 1000;
1409 err = setitimer(ITIMER_REAL, &itv, NULL);
1410 if (err)
1411 return -1;
1413 return 0;
1416 static void unix_stop_timer(struct qemu_alarm_timer *t)
1418 struct itimerval itv;
1420 memset(&itv, 0, sizeof(itv));
1421 setitimer(ITIMER_REAL, &itv, NULL);
1424 #endif /* !defined(_WIN32) */
1426 #ifdef _WIN32
1428 static int win32_start_timer(struct qemu_alarm_timer *t)
1430 TIMECAPS tc;
1431 struct qemu_alarm_win32 *data = t->priv;
1432 UINT flags;
1434 data->host_alarm = CreateEvent(NULL, FALSE, FALSE, NULL);
1435 if (!data->host_alarm) {
1436 perror("Failed CreateEvent");
1437 return -1;
1440 memset(&tc, 0, sizeof(tc));
1441 timeGetDevCaps(&tc, sizeof(tc));
1443 if (data->period < tc.wPeriodMin)
1444 data->period = tc.wPeriodMin;
1446 timeBeginPeriod(data->period);
1448 flags = TIME_CALLBACK_FUNCTION;
1449 if (alarm_has_dynticks(t))
1450 flags |= TIME_ONESHOT;
1451 else
1452 flags |= TIME_PERIODIC;
1454 data->timerId = timeSetEvent(1, // interval (ms)
1455 data->period, // resolution
1456 host_alarm_handler, // function
1457 (DWORD)t, // parameter
1458 flags);
1460 if (!data->timerId) {
1461 perror("Failed to initialize win32 alarm timer");
1463 timeEndPeriod(data->period);
1464 CloseHandle(data->host_alarm);
1465 return -1;
1468 qemu_add_wait_object(data->host_alarm, NULL, NULL);
1470 return 0;
1473 static void win32_stop_timer(struct qemu_alarm_timer *t)
1475 struct qemu_alarm_win32 *data = t->priv;
1477 timeKillEvent(data->timerId);
1478 timeEndPeriod(data->period);
1480 CloseHandle(data->host_alarm);
1483 static void win32_rearm_timer(struct qemu_alarm_timer *t)
1485 struct qemu_alarm_win32 *data = t->priv;
1486 uint64_t nearest_delta_us;
1488 if (!active_timers[QEMU_TIMER_REALTIME] &&
1489 !active_timers[QEMU_TIMER_VIRTUAL])
1490 return;
1492 nearest_delta_us = qemu_next_deadline();
1493 nearest_delta_us /= 1000;
1495 timeKillEvent(data->timerId);
1497 data->timerId = timeSetEvent(1,
1498 data->period,
1499 host_alarm_handler,
1500 (DWORD)t,
1501 TIME_ONESHOT | TIME_PERIODIC);
1503 if (!data->timerId) {
1504 perror("Failed to re-arm win32 alarm timer");
1506 timeEndPeriod(data->period);
1507 CloseHandle(data->host_alarm);
1508 exit(1);
1512 #endif /* _WIN32 */
1514 static void init_timer_alarm(void)
1516 struct qemu_alarm_timer *t;
1517 int i, err = -1;
1519 for (i = 0; alarm_timers[i].name; i++) {
1520 t = &alarm_timers[i];
1522 err = t->start(t);
1523 if (!err)
1524 break;
1527 if (err) {
1528 fprintf(stderr, "Unable to find any suitable alarm timer.\n");
1529 fprintf(stderr, "Terminating\n");
1530 exit(1);
1533 alarm_timer = t;
1536 void quit_timers(void)
1538 alarm_timer->stop(alarm_timer);
1539 alarm_timer = NULL;
1542 /***********************************************************/
1543 /* character device */
1545 static void qemu_chr_event(CharDriverState *s, int event)
1547 if (!s->chr_event)
1548 return;
1549 s->chr_event(s->handler_opaque, event);
1552 static void qemu_chr_reset_bh(void *opaque)
1554 CharDriverState *s = opaque;
1555 qemu_chr_event(s, CHR_EVENT_RESET);
1556 qemu_bh_delete(s->bh);
1557 s->bh = NULL;
1560 void qemu_chr_reset(CharDriverState *s)
1562 if (s->bh == NULL) {
1563 s->bh = qemu_bh_new(qemu_chr_reset_bh, s);
1564 qemu_bh_schedule(s->bh);
1568 int qemu_chr_write(CharDriverState *s, const uint8_t *buf, int len)
1570 return s->chr_write(s, buf, len);
1573 int qemu_chr_ioctl(CharDriverState *s, int cmd, void *arg)
1575 if (!s->chr_ioctl)
1576 return -ENOTSUP;
1577 return s->chr_ioctl(s, cmd, arg);
1580 int qemu_chr_can_read(CharDriverState *s)
1582 if (!s->chr_can_read)
1583 return 0;
1584 return s->chr_can_read(s->handler_opaque);
1587 void qemu_chr_read(CharDriverState *s, uint8_t *buf, int len)
1589 s->chr_read(s->handler_opaque, buf, len);
1593 void qemu_chr_printf(CharDriverState *s, const char *fmt, ...)
1595 char buf[4096];
1596 va_list ap;
1597 va_start(ap, fmt);
1598 vsnprintf(buf, sizeof(buf), fmt, ap);
1599 qemu_chr_write(s, buf, strlen(buf));
1600 va_end(ap);
1603 void qemu_chr_send_event(CharDriverState *s, int event)
1605 if (s->chr_send_event)
1606 s->chr_send_event(s, event);
1609 void qemu_chr_add_handlers(CharDriverState *s,
1610 IOCanRWHandler *fd_can_read,
1611 IOReadHandler *fd_read,
1612 IOEventHandler *fd_event,
1613 void *opaque)
1615 s->chr_can_read = fd_can_read;
1616 s->chr_read = fd_read;
1617 s->chr_event = fd_event;
1618 s->handler_opaque = opaque;
1619 if (s->chr_update_read_handler)
1620 s->chr_update_read_handler(s);
1623 static int null_chr_write(CharDriverState *chr, const uint8_t *buf, int len)
1625 return len;
1628 static CharDriverState *qemu_chr_open_null(void)
1630 CharDriverState *chr;
1632 chr = qemu_mallocz(sizeof(CharDriverState));
1633 if (!chr)
1634 return NULL;
1635 chr->chr_write = null_chr_write;
1636 return chr;
1639 /* MUX driver for serial I/O splitting */
1640 static int term_timestamps;
1641 static int64_t term_timestamps_start;
1642 #define MAX_MUX 4
1643 typedef struct {
1644 IOCanRWHandler *chr_can_read[MAX_MUX];
1645 IOReadHandler *chr_read[MAX_MUX];
1646 IOEventHandler *chr_event[MAX_MUX];
1647 void *ext_opaque[MAX_MUX];
1648 CharDriverState *drv;
1649 int mux_cnt;
1650 int term_got_escape;
1651 int max_size;
1652 } MuxDriver;
1655 static int mux_chr_write(CharDriverState *chr, const uint8_t *buf, int len)
1657 MuxDriver *d = chr->opaque;
1658 int ret;
1659 if (!term_timestamps) {
1660 ret = d->drv->chr_write(d->drv, buf, len);
1661 } else {
1662 int i;
1664 ret = 0;
1665 for(i = 0; i < len; i++) {
1666 ret += d->drv->chr_write(d->drv, buf+i, 1);
1667 if (buf[i] == '\n') {
1668 char buf1[64];
1669 int64_t ti;
1670 int secs;
1672 ti = get_clock();
1673 if (term_timestamps_start == -1)
1674 term_timestamps_start = ti;
1675 ti -= term_timestamps_start;
1676 secs = ti / 1000000000;
1677 snprintf(buf1, sizeof(buf1),
1678 "[%02d:%02d:%02d.%03d] ",
1679 secs / 3600,
1680 (secs / 60) % 60,
1681 secs % 60,
1682 (int)((ti / 1000000) % 1000));
1683 d->drv->chr_write(d->drv, buf1, strlen(buf1));
1687 return ret;
1690 static char *mux_help[] = {
1691 "% h print this help\n\r",
1692 "% x exit emulator\n\r",
1693 "% s save disk data back to file (if -snapshot)\n\r",
1694 "% t toggle console timestamps\n\r"
1695 "% b send break (magic sysrq)\n\r",
1696 "% c switch between console and monitor\n\r",
1697 "% % sends %\n\r",
1698 NULL
1701 static int term_escape_char = 0x01; /* ctrl-a is used for escape */
1702 static void mux_print_help(CharDriverState *chr)
1704 int i, j;
1705 char ebuf[15] = "Escape-Char";
1706 char cbuf[50] = "\n\r";
1708 if (term_escape_char > 0 && term_escape_char < 26) {
1709 sprintf(cbuf,"\n\r");
1710 sprintf(ebuf,"C-%c", term_escape_char - 1 + 'a');
1711 } else {
1712 sprintf(cbuf,"\n\rEscape-Char set to Ascii: 0x%02x\n\r\n\r", term_escape_char);
1714 chr->chr_write(chr, cbuf, strlen(cbuf));
1715 for (i = 0; mux_help[i] != NULL; i++) {
1716 for (j=0; mux_help[i][j] != '\0'; j++) {
1717 if (mux_help[i][j] == '%')
1718 chr->chr_write(chr, ebuf, strlen(ebuf));
1719 else
1720 chr->chr_write(chr, &mux_help[i][j], 1);
1725 static int mux_proc_byte(CharDriverState *chr, MuxDriver *d, int ch)
1727 if (d->term_got_escape) {
1728 d->term_got_escape = 0;
1729 if (ch == term_escape_char)
1730 goto send_char;
1731 switch(ch) {
1732 case '?':
1733 case 'h':
1734 mux_print_help(chr);
1735 break;
1736 case 'x':
1738 char *term = "QEMU: Terminated\n\r";
1739 chr->chr_write(chr,term,strlen(term));
1740 exit(0);
1741 break;
1743 case 's':
1745 int i;
1746 for (i = 0; i < MAX_DISKS; i++) {
1747 if (bs_table[i])
1748 bdrv_commit(bs_table[i]);
1750 if (mtd_bdrv)
1751 bdrv_commit(mtd_bdrv);
1753 break;
1754 case 'b':
1755 qemu_chr_event(chr, CHR_EVENT_BREAK);
1756 break;
1757 case 'c':
1758 /* Switch to the next registered device */
1759 chr->focus++;
1760 if (chr->focus >= d->mux_cnt)
1761 chr->focus = 0;
1762 break;
1763 case 't':
1764 term_timestamps = !term_timestamps;
1765 term_timestamps_start = -1;
1766 break;
1768 } else if (ch == term_escape_char) {
1769 d->term_got_escape = 1;
1770 } else {
1771 send_char:
1772 return 1;
1774 return 0;
1777 static int mux_chr_can_read(void *opaque)
1779 CharDriverState *chr = opaque;
1780 MuxDriver *d = chr->opaque;
1781 if (d->chr_can_read[chr->focus])
1782 return d->chr_can_read[chr->focus](d->ext_opaque[chr->focus]);
1783 return 0;
1786 static void mux_chr_read(void *opaque, const uint8_t *buf, int size)
1788 CharDriverState *chr = opaque;
1789 MuxDriver *d = chr->opaque;
1790 int i;
1791 for(i = 0; i < size; i++)
1792 if (mux_proc_byte(chr, d, buf[i]))
1793 d->chr_read[chr->focus](d->ext_opaque[chr->focus], &buf[i], 1);
1796 static void mux_chr_event(void *opaque, int event)
1798 CharDriverState *chr = opaque;
1799 MuxDriver *d = chr->opaque;
1800 int i;
1802 /* Send the event to all registered listeners */
1803 for (i = 0; i < d->mux_cnt; i++)
1804 if (d->chr_event[i])
1805 d->chr_event[i](d->ext_opaque[i], event);
1808 static void mux_chr_update_read_handler(CharDriverState *chr)
1810 MuxDriver *d = chr->opaque;
1812 if (d->mux_cnt >= MAX_MUX) {
1813 fprintf(stderr, "Cannot add I/O handlers, MUX array is full\n");
1814 return;
1816 d->ext_opaque[d->mux_cnt] = chr->handler_opaque;
1817 d->chr_can_read[d->mux_cnt] = chr->chr_can_read;
1818 d->chr_read[d->mux_cnt] = chr->chr_read;
1819 d->chr_event[d->mux_cnt] = chr->chr_event;
1820 /* Fix up the real driver with mux routines */
1821 if (d->mux_cnt == 0) {
1822 qemu_chr_add_handlers(d->drv, mux_chr_can_read, mux_chr_read,
1823 mux_chr_event, chr);
1825 chr->focus = d->mux_cnt;
1826 d->mux_cnt++;
1829 CharDriverState *qemu_chr_open_mux(CharDriverState *drv)
1831 CharDriverState *chr;
1832 MuxDriver *d;
1834 chr = qemu_mallocz(sizeof(CharDriverState));
1835 if (!chr)
1836 return NULL;
1837 d = qemu_mallocz(sizeof(MuxDriver));
1838 if (!d) {
1839 free(chr);
1840 return NULL;
1843 chr->opaque = d;
1844 d->drv = drv;
1845 chr->focus = -1;
1846 chr->chr_write = mux_chr_write;
1847 chr->chr_update_read_handler = mux_chr_update_read_handler;
1848 return chr;
1852 #ifdef _WIN32
1854 static void socket_cleanup(void)
1856 WSACleanup();
1859 static int socket_init(void)
1861 WSADATA Data;
1862 int ret, err;
1864 ret = WSAStartup(MAKEWORD(2,2), &Data);
1865 if (ret != 0) {
1866 err = WSAGetLastError();
1867 fprintf(stderr, "WSAStartup: %d\n", err);
1868 return -1;
1870 atexit(socket_cleanup);
1871 return 0;
1874 static int send_all(int fd, const uint8_t *buf, int len1)
1876 int ret, len;
1878 len = len1;
1879 while (len > 0) {
1880 ret = send(fd, buf, len, 0);
1881 if (ret < 0) {
1882 int errno;
1883 errno = WSAGetLastError();
1884 if (errno != WSAEWOULDBLOCK) {
1885 return -1;
1887 } else if (ret == 0) {
1888 break;
1889 } else {
1890 buf += ret;
1891 len -= ret;
1894 return len1 - len;
1897 void socket_set_nonblock(int fd)
1899 unsigned long opt = 1;
1900 ioctlsocket(fd, FIONBIO, &opt);
1903 #else
1905 static int unix_write(int fd, const uint8_t *buf, int len1)
1907 int ret, len;
1909 len = len1;
1910 while (len > 0) {
1911 ret = write(fd, buf, len);
1912 if (ret < 0) {
1913 if (errno != EINTR && errno != EAGAIN)
1914 return -1;
1915 } else if (ret == 0) {
1916 break;
1917 } else {
1918 buf += ret;
1919 len -= ret;
1922 return len1 - len;
1925 static inline int send_all(int fd, const uint8_t *buf, int len1)
1927 return unix_write(fd, buf, len1);
1930 void socket_set_nonblock(int fd)
1932 fcntl(fd, F_SETFL, O_NONBLOCK);
1934 #endif /* !_WIN32 */
1936 #ifndef _WIN32
1938 typedef struct {
1939 int fd_in, fd_out;
1940 int max_size;
1941 } FDCharDriver;
1943 #define STDIO_MAX_CLIENTS 1
1944 static int stdio_nb_clients = 0;
1946 static int fd_chr_write(CharDriverState *chr, const uint8_t *buf, int len)
1948 FDCharDriver *s = chr->opaque;
1949 return unix_write(s->fd_out, buf, len);
1952 static int fd_chr_read_poll(void *opaque)
1954 CharDriverState *chr = opaque;
1955 FDCharDriver *s = chr->opaque;
1957 s->max_size = qemu_chr_can_read(chr);
1958 return s->max_size;
1961 static void fd_chr_read(void *opaque)
1963 CharDriverState *chr = opaque;
1964 FDCharDriver *s = chr->opaque;
1965 int size, len;
1966 uint8_t buf[1024];
1968 len = sizeof(buf);
1969 if (len > s->max_size)
1970 len = s->max_size;
1971 if (len == 0)
1972 return;
1973 size = read(s->fd_in, buf, len);
1974 if (size == 0) {
1975 /* FD has been closed. Remove it from the active list. */
1976 qemu_set_fd_handler2(s->fd_in, NULL, NULL, NULL, NULL);
1977 return;
1979 if (size > 0) {
1980 qemu_chr_read(chr, buf, size);
1984 static void fd_chr_update_read_handler(CharDriverState *chr)
1986 FDCharDriver *s = chr->opaque;
1988 if (s->fd_in >= 0) {
1989 if (nographic && s->fd_in == 0) {
1990 } else {
1991 qemu_set_fd_handler2(s->fd_in, fd_chr_read_poll,
1992 fd_chr_read, NULL, chr);
1997 /* open a character device to a unix fd */
1998 static CharDriverState *qemu_chr_open_fd(int fd_in, int fd_out)
2000 CharDriverState *chr;
2001 FDCharDriver *s;
2003 chr = qemu_mallocz(sizeof(CharDriverState));
2004 if (!chr)
2005 return NULL;
2006 s = qemu_mallocz(sizeof(FDCharDriver));
2007 if (!s) {
2008 free(chr);
2009 return NULL;
2011 s->fd_in = fd_in;
2012 s->fd_out = fd_out;
2013 chr->opaque = s;
2014 chr->chr_write = fd_chr_write;
2015 chr->chr_update_read_handler = fd_chr_update_read_handler;
2017 qemu_chr_reset(chr);
2019 return chr;
2022 static CharDriverState *qemu_chr_open_file_out(const char *file_out)
2024 int fd_out;
2026 TFR(fd_out = open(file_out, O_WRONLY | O_TRUNC | O_CREAT | O_BINARY, 0666));
2027 if (fd_out < 0)
2028 return NULL;
2029 return qemu_chr_open_fd(-1, fd_out);
2032 static CharDriverState *qemu_chr_open_pipe(const char *filename)
2034 int fd_in, fd_out;
2035 char filename_in[256], filename_out[256];
2037 snprintf(filename_in, 256, "%s.in", filename);
2038 snprintf(filename_out, 256, "%s.out", filename);
2039 TFR(fd_in = open(filename_in, O_RDWR | O_BINARY));
2040 TFR(fd_out = open(filename_out, O_RDWR | O_BINARY));
2041 if (fd_in < 0 || fd_out < 0) {
2042 if (fd_in >= 0)
2043 close(fd_in);
2044 if (fd_out >= 0)
2045 close(fd_out);
2046 TFR(fd_in = fd_out = open(filename, O_RDWR | O_BINARY));
2047 if (fd_in < 0)
2048 return NULL;
2050 return qemu_chr_open_fd(fd_in, fd_out);
2054 /* for STDIO, we handle the case where several clients use it
2055 (nographic mode) */
2057 #define TERM_FIFO_MAX_SIZE 1
2059 static uint8_t term_fifo[TERM_FIFO_MAX_SIZE];
2060 static int term_fifo_size;
2062 static int stdio_read_poll(void *opaque)
2064 CharDriverState *chr = opaque;
2066 /* try to flush the queue if needed */
2067 if (term_fifo_size != 0 && qemu_chr_can_read(chr) > 0) {
2068 qemu_chr_read(chr, term_fifo, 1);
2069 term_fifo_size = 0;
2071 /* see if we can absorb more chars */
2072 if (term_fifo_size == 0)
2073 return 1;
2074 else
2075 return 0;
2078 static void stdio_read(void *opaque)
2080 int size;
2081 uint8_t buf[1];
2082 CharDriverState *chr = opaque;
2084 size = read(0, buf, 1);
2085 if (size == 0) {
2086 /* stdin has been closed. Remove it from the active list. */
2087 qemu_set_fd_handler2(0, NULL, NULL, NULL, NULL);
2088 return;
2090 if (size > 0) {
2091 if (qemu_chr_can_read(chr) > 0) {
2092 qemu_chr_read(chr, buf, 1);
2093 } else if (term_fifo_size == 0) {
2094 term_fifo[term_fifo_size++] = buf[0];
2099 /* init terminal so that we can grab keys */
2100 static struct termios oldtty;
2101 static int old_fd0_flags;
2103 static void term_exit(void)
2105 tcsetattr (0, TCSANOW, &oldtty);
2106 fcntl(0, F_SETFL, old_fd0_flags);
2109 static void term_init(void)
2111 struct termios tty;
2113 tcgetattr (0, &tty);
2114 oldtty = tty;
2115 old_fd0_flags = fcntl(0, F_GETFL);
2117 tty.c_iflag &= ~(IGNBRK|BRKINT|PARMRK|ISTRIP
2118 |INLCR|IGNCR|ICRNL|IXON);
2119 tty.c_oflag |= OPOST;
2120 tty.c_lflag &= ~(ECHO|ECHONL|ICANON|IEXTEN);
2121 /* if graphical mode, we allow Ctrl-C handling */
2122 if (nographic)
2123 tty.c_lflag &= ~ISIG;
2124 tty.c_cflag &= ~(CSIZE|PARENB);
2125 tty.c_cflag |= CS8;
2126 tty.c_cc[VMIN] = 1;
2127 tty.c_cc[VTIME] = 0;
2129 tcsetattr (0, TCSANOW, &tty);
2131 atexit(term_exit);
2133 fcntl(0, F_SETFL, O_NONBLOCK);
2136 static CharDriverState *qemu_chr_open_stdio(void)
2138 CharDriverState *chr;
2140 if (stdio_nb_clients >= STDIO_MAX_CLIENTS)
2141 return NULL;
2142 chr = qemu_chr_open_fd(0, 1);
2143 qemu_set_fd_handler2(0, stdio_read_poll, stdio_read, NULL, chr);
2144 stdio_nb_clients++;
2145 term_init();
2147 return chr;
2150 #if defined(__linux__) || defined(__sun__)
2151 static CharDriverState *qemu_chr_open_pty(void)
2153 struct termios tty;
2154 char slave_name[1024];
2155 int master_fd, slave_fd;
2157 #if defined(__linux__)
2158 /* Not satisfying */
2159 if (openpty(&master_fd, &slave_fd, slave_name, NULL, NULL) < 0) {
2160 return NULL;
2162 #endif
2164 /* Disabling local echo and line-buffered output */
2165 tcgetattr (master_fd, &tty);
2166 tty.c_lflag &= ~(ECHO|ICANON|ISIG);
2167 tty.c_cc[VMIN] = 1;
2168 tty.c_cc[VTIME] = 0;
2169 tcsetattr (master_fd, TCSAFLUSH, &tty);
2171 fprintf(stderr, "char device redirected to %s\n", slave_name);
2172 return qemu_chr_open_fd(master_fd, master_fd);
2175 static void tty_serial_init(int fd, int speed,
2176 int parity, int data_bits, int stop_bits)
2178 struct termios tty;
2179 speed_t spd;
2181 #if 0
2182 printf("tty_serial_init: speed=%d parity=%c data=%d stop=%d\n",
2183 speed, parity, data_bits, stop_bits);
2184 #endif
2185 tcgetattr (fd, &tty);
2187 switch(speed) {
2188 case 50:
2189 spd = B50;
2190 break;
2191 case 75:
2192 spd = B75;
2193 break;
2194 case 300:
2195 spd = B300;
2196 break;
2197 case 600:
2198 spd = B600;
2199 break;
2200 case 1200:
2201 spd = B1200;
2202 break;
2203 case 2400:
2204 spd = B2400;
2205 break;
2206 case 4800:
2207 spd = B4800;
2208 break;
2209 case 9600:
2210 spd = B9600;
2211 break;
2212 case 19200:
2213 spd = B19200;
2214 break;
2215 case 38400:
2216 spd = B38400;
2217 break;
2218 case 57600:
2219 spd = B57600;
2220 break;
2221 default:
2222 case 115200:
2223 spd = B115200;
2224 break;
2227 cfsetispeed(&tty, spd);
2228 cfsetospeed(&tty, spd);
2230 tty.c_iflag &= ~(IGNBRK|BRKINT|PARMRK|ISTRIP
2231 |INLCR|IGNCR|ICRNL|IXON);
2232 tty.c_oflag |= OPOST;
2233 tty.c_lflag &= ~(ECHO|ECHONL|ICANON|IEXTEN|ISIG);
2234 tty.c_cflag &= ~(CSIZE|PARENB|PARODD|CRTSCTS|CSTOPB);
2235 switch(data_bits) {
2236 default:
2237 case 8:
2238 tty.c_cflag |= CS8;
2239 break;
2240 case 7:
2241 tty.c_cflag |= CS7;
2242 break;
2243 case 6:
2244 tty.c_cflag |= CS6;
2245 break;
2246 case 5:
2247 tty.c_cflag |= CS5;
2248 break;
2250 switch(parity) {
2251 default:
2252 case 'N':
2253 break;
2254 case 'E':
2255 tty.c_cflag |= PARENB;
2256 break;
2257 case 'O':
2258 tty.c_cflag |= PARENB | PARODD;
2259 break;
2261 if (stop_bits == 2)
2262 tty.c_cflag |= CSTOPB;
2264 tcsetattr (fd, TCSANOW, &tty);
2267 static int tty_serial_ioctl(CharDriverState *chr, int cmd, void *arg)
2269 FDCharDriver *s = chr->opaque;
2271 switch(cmd) {
2272 case CHR_IOCTL_SERIAL_SET_PARAMS:
2274 QEMUSerialSetParams *ssp = arg;
2275 tty_serial_init(s->fd_in, ssp->speed, ssp->parity,
2276 ssp->data_bits, ssp->stop_bits);
2278 break;
2279 case CHR_IOCTL_SERIAL_SET_BREAK:
2281 int enable = *(int *)arg;
2282 if (enable)
2283 tcsendbreak(s->fd_in, 1);
2285 break;
2286 default:
2287 return -ENOTSUP;
2289 return 0;
2292 static CharDriverState *qemu_chr_open_tty(const char *filename)
2294 CharDriverState *chr;
2295 int fd;
2297 TFR(fd = open(filename, O_RDWR | O_NONBLOCK));
2298 fcntl(fd, F_SETFL, O_NONBLOCK);
2299 tty_serial_init(fd, 115200, 'N', 8, 1);
2300 chr = qemu_chr_open_fd(fd, fd);
2301 if (!chr) {
2302 close(fd);
2303 return NULL;
2305 chr->chr_ioctl = tty_serial_ioctl;
2306 qemu_chr_reset(chr);
2307 return chr;
2309 #else /* ! __linux__ && ! __sun__ */
2310 static CharDriverState *qemu_chr_open_pty(void)
2312 return NULL;
2314 #endif /* __linux__ || __sun__ */
2316 #if defined(__linux__)
2317 typedef struct {
2318 int fd;
2319 int mode;
2320 } ParallelCharDriver;
2322 static int pp_hw_mode(ParallelCharDriver *s, uint16_t mode)
2324 if (s->mode != mode) {
2325 int m = mode;
2326 if (ioctl(s->fd, PPSETMODE, &m) < 0)
2327 return 0;
2328 s->mode = mode;
2330 return 1;
2333 static int pp_ioctl(CharDriverState *chr, int cmd, void *arg)
2335 ParallelCharDriver *drv = chr->opaque;
2336 int fd = drv->fd;
2337 uint8_t b;
2339 switch(cmd) {
2340 case CHR_IOCTL_PP_READ_DATA:
2341 if (ioctl(fd, PPRDATA, &b) < 0)
2342 return -ENOTSUP;
2343 *(uint8_t *)arg = b;
2344 break;
2345 case CHR_IOCTL_PP_WRITE_DATA:
2346 b = *(uint8_t *)arg;
2347 if (ioctl(fd, PPWDATA, &b) < 0)
2348 return -ENOTSUP;
2349 break;
2350 case CHR_IOCTL_PP_READ_CONTROL:
2351 if (ioctl(fd, PPRCONTROL, &b) < 0)
2352 return -ENOTSUP;
2353 /* Linux gives only the lowest bits, and no way to know data
2354 direction! For better compatibility set the fixed upper
2355 bits. */
2356 *(uint8_t *)arg = b | 0xc0;
2357 break;
2358 case CHR_IOCTL_PP_WRITE_CONTROL:
2359 b = *(uint8_t *)arg;
2360 if (ioctl(fd, PPWCONTROL, &b) < 0)
2361 return -ENOTSUP;
2362 break;
2363 case CHR_IOCTL_PP_READ_STATUS:
2364 if (ioctl(fd, PPRSTATUS, &b) < 0)
2365 return -ENOTSUP;
2366 *(uint8_t *)arg = b;
2367 break;
2368 case CHR_IOCTL_PP_EPP_READ_ADDR:
2369 if (pp_hw_mode(drv, IEEE1284_MODE_EPP|IEEE1284_ADDR)) {
2370 struct ParallelIOArg *parg = arg;
2371 int n = read(fd, parg->buffer, parg->count);
2372 if (n != parg->count) {
2373 return -EIO;
2376 break;
2377 case CHR_IOCTL_PP_EPP_READ:
2378 if (pp_hw_mode(drv, IEEE1284_MODE_EPP)) {
2379 struct ParallelIOArg *parg = arg;
2380 int n = read(fd, parg->buffer, parg->count);
2381 if (n != parg->count) {
2382 return -EIO;
2385 break;
2386 case CHR_IOCTL_PP_EPP_WRITE_ADDR:
2387 if (pp_hw_mode(drv, IEEE1284_MODE_EPP|IEEE1284_ADDR)) {
2388 struct ParallelIOArg *parg = arg;
2389 int n = write(fd, parg->buffer, parg->count);
2390 if (n != parg->count) {
2391 return -EIO;
2394 break;
2395 case CHR_IOCTL_PP_EPP_WRITE:
2396 if (pp_hw_mode(drv, IEEE1284_MODE_EPP)) {
2397 struct ParallelIOArg *parg = arg;
2398 int n = write(fd, parg->buffer, parg->count);
2399 if (n != parg->count) {
2400 return -EIO;
2403 break;
2404 default:
2405 return -ENOTSUP;
2407 return 0;
2410 static void pp_close(CharDriverState *chr)
2412 ParallelCharDriver *drv = chr->opaque;
2413 int fd = drv->fd;
2415 pp_hw_mode(drv, IEEE1284_MODE_COMPAT);
2416 ioctl(fd, PPRELEASE);
2417 close(fd);
2418 qemu_free(drv);
2421 static CharDriverState *qemu_chr_open_pp(const char *filename)
2423 CharDriverState *chr;
2424 ParallelCharDriver *drv;
2425 int fd;
2427 TFR(fd = open(filename, O_RDWR));
2428 if (fd < 0)
2429 return NULL;
2431 if (ioctl(fd, PPCLAIM) < 0) {
2432 close(fd);
2433 return NULL;
2436 drv = qemu_mallocz(sizeof(ParallelCharDriver));
2437 if (!drv) {
2438 close(fd);
2439 return NULL;
2441 drv->fd = fd;
2442 drv->mode = IEEE1284_MODE_COMPAT;
2444 chr = qemu_mallocz(sizeof(CharDriverState));
2445 if (!chr) {
2446 qemu_free(drv);
2447 close(fd);
2448 return NULL;
2450 chr->chr_write = null_chr_write;
2451 chr->chr_ioctl = pp_ioctl;
2452 chr->chr_close = pp_close;
2453 chr->opaque = drv;
2455 qemu_chr_reset(chr);
2457 return chr;
2459 #endif /* __linux__ */
2461 #else /* _WIN32 */
2463 typedef struct {
2464 int max_size;
2465 HANDLE hcom, hrecv, hsend;
2466 OVERLAPPED orecv, osend;
2467 BOOL fpipe;
2468 DWORD len;
2469 } WinCharState;
2471 #define NSENDBUF 2048
2472 #define NRECVBUF 2048
2473 #define MAXCONNECT 1
2474 #define NTIMEOUT 5000
2476 static int win_chr_poll(void *opaque);
2477 static int win_chr_pipe_poll(void *opaque);
2479 static void win_chr_close(CharDriverState *chr)
2481 WinCharState *s = chr->opaque;
2483 if (s->hsend) {
2484 CloseHandle(s->hsend);
2485 s->hsend = NULL;
2487 if (s->hrecv) {
2488 CloseHandle(s->hrecv);
2489 s->hrecv = NULL;
2491 if (s->hcom) {
2492 CloseHandle(s->hcom);
2493 s->hcom = NULL;
2495 if (s->fpipe)
2496 qemu_del_polling_cb(win_chr_pipe_poll, chr);
2497 else
2498 qemu_del_polling_cb(win_chr_poll, chr);
2501 static int win_chr_init(CharDriverState *chr, const char *filename)
2503 WinCharState *s = chr->opaque;
2504 COMMCONFIG comcfg;
2505 COMMTIMEOUTS cto = { 0, 0, 0, 0, 0};
2506 COMSTAT comstat;
2507 DWORD size;
2508 DWORD err;
2510 s->hsend = CreateEvent(NULL, TRUE, FALSE, NULL);
2511 if (!s->hsend) {
2512 fprintf(stderr, "Failed CreateEvent\n");
2513 goto fail;
2515 s->hrecv = CreateEvent(NULL, TRUE, FALSE, NULL);
2516 if (!s->hrecv) {
2517 fprintf(stderr, "Failed CreateEvent\n");
2518 goto fail;
2521 s->hcom = CreateFile(filename, GENERIC_READ|GENERIC_WRITE, 0, NULL,
2522 OPEN_EXISTING, FILE_FLAG_OVERLAPPED, 0);
2523 if (s->hcom == INVALID_HANDLE_VALUE) {
2524 fprintf(stderr, "Failed CreateFile (%lu)\n", GetLastError());
2525 s->hcom = NULL;
2526 goto fail;
2529 if (!SetupComm(s->hcom, NRECVBUF, NSENDBUF)) {
2530 fprintf(stderr, "Failed SetupComm\n");
2531 goto fail;
2534 ZeroMemory(&comcfg, sizeof(COMMCONFIG));
2535 size = sizeof(COMMCONFIG);
2536 GetDefaultCommConfig(filename, &comcfg, &size);
2537 comcfg.dcb.DCBlength = sizeof(DCB);
2538 CommConfigDialog(filename, NULL, &comcfg);
2540 if (!SetCommState(s->hcom, &comcfg.dcb)) {
2541 fprintf(stderr, "Failed SetCommState\n");
2542 goto fail;
2545 if (!SetCommMask(s->hcom, EV_ERR)) {
2546 fprintf(stderr, "Failed SetCommMask\n");
2547 goto fail;
2550 cto.ReadIntervalTimeout = MAXDWORD;
2551 if (!SetCommTimeouts(s->hcom, &cto)) {
2552 fprintf(stderr, "Failed SetCommTimeouts\n");
2553 goto fail;
2556 if (!ClearCommError(s->hcom, &err, &comstat)) {
2557 fprintf(stderr, "Failed ClearCommError\n");
2558 goto fail;
2560 qemu_add_polling_cb(win_chr_poll, chr);
2561 return 0;
2563 fail:
2564 win_chr_close(chr);
2565 return -1;
2568 static int win_chr_write(CharDriverState *chr, const uint8_t *buf, int len1)
2570 WinCharState *s = chr->opaque;
2571 DWORD len, ret, size, err;
2573 len = len1;
2574 ZeroMemory(&s->osend, sizeof(s->osend));
2575 s->osend.hEvent = s->hsend;
2576 while (len > 0) {
2577 if (s->hsend)
2578 ret = WriteFile(s->hcom, buf, len, &size, &s->osend);
2579 else
2580 ret = WriteFile(s->hcom, buf, len, &size, NULL);
2581 if (!ret) {
2582 err = GetLastError();
2583 if (err == ERROR_IO_PENDING) {
2584 ret = GetOverlappedResult(s->hcom, &s->osend, &size, TRUE);
2585 if (ret) {
2586 buf += size;
2587 len -= size;
2588 } else {
2589 break;
2591 } else {
2592 break;
2594 } else {
2595 buf += size;
2596 len -= size;
2599 return len1 - len;
2602 static int win_chr_read_poll(CharDriverState *chr)
2604 WinCharState *s = chr->opaque;
2606 s->max_size = qemu_chr_can_read(chr);
2607 return s->max_size;
2610 static void win_chr_readfile(CharDriverState *chr)
2612 WinCharState *s = chr->opaque;
2613 int ret, err;
2614 uint8_t buf[1024];
2615 DWORD size;
2617 ZeroMemory(&s->orecv, sizeof(s->orecv));
2618 s->orecv.hEvent = s->hrecv;
2619 ret = ReadFile(s->hcom, buf, s->len, &size, &s->orecv);
2620 if (!ret) {
2621 err = GetLastError();
2622 if (err == ERROR_IO_PENDING) {
2623 ret = GetOverlappedResult(s->hcom, &s->orecv, &size, TRUE);
2627 if (size > 0) {
2628 qemu_chr_read(chr, buf, size);
2632 static void win_chr_read(CharDriverState *chr)
2634 WinCharState *s = chr->opaque;
2636 if (s->len > s->max_size)
2637 s->len = s->max_size;
2638 if (s->len == 0)
2639 return;
2641 win_chr_readfile(chr);
2644 static int win_chr_poll(void *opaque)
2646 CharDriverState *chr = opaque;
2647 WinCharState *s = chr->opaque;
2648 COMSTAT status;
2649 DWORD comerr;
2651 ClearCommError(s->hcom, &comerr, &status);
2652 if (status.cbInQue > 0) {
2653 s->len = status.cbInQue;
2654 win_chr_read_poll(chr);
2655 win_chr_read(chr);
2656 return 1;
2658 return 0;
2661 static CharDriverState *qemu_chr_open_win(const char *filename)
2663 CharDriverState *chr;
2664 WinCharState *s;
2666 chr = qemu_mallocz(sizeof(CharDriverState));
2667 if (!chr)
2668 return NULL;
2669 s = qemu_mallocz(sizeof(WinCharState));
2670 if (!s) {
2671 free(chr);
2672 return NULL;
2674 chr->opaque = s;
2675 chr->chr_write = win_chr_write;
2676 chr->chr_close = win_chr_close;
2678 if (win_chr_init(chr, filename) < 0) {
2679 free(s);
2680 free(chr);
2681 return NULL;
2683 qemu_chr_reset(chr);
2684 return chr;
2687 static int win_chr_pipe_poll(void *opaque)
2689 CharDriverState *chr = opaque;
2690 WinCharState *s = chr->opaque;
2691 DWORD size;
2693 PeekNamedPipe(s->hcom, NULL, 0, NULL, &size, NULL);
2694 if (size > 0) {
2695 s->len = size;
2696 win_chr_read_poll(chr);
2697 win_chr_read(chr);
2698 return 1;
2700 return 0;
2703 static int win_chr_pipe_init(CharDriverState *chr, const char *filename)
2705 WinCharState *s = chr->opaque;
2706 OVERLAPPED ov;
2707 int ret;
2708 DWORD size;
2709 char openname[256];
2711 s->fpipe = TRUE;
2713 s->hsend = CreateEvent(NULL, TRUE, FALSE, NULL);
2714 if (!s->hsend) {
2715 fprintf(stderr, "Failed CreateEvent\n");
2716 goto fail;
2718 s->hrecv = CreateEvent(NULL, TRUE, FALSE, NULL);
2719 if (!s->hrecv) {
2720 fprintf(stderr, "Failed CreateEvent\n");
2721 goto fail;
2724 snprintf(openname, sizeof(openname), "\\\\.\\pipe\\%s", filename);
2725 s->hcom = CreateNamedPipe(openname, PIPE_ACCESS_DUPLEX | FILE_FLAG_OVERLAPPED,
2726 PIPE_TYPE_BYTE | PIPE_READMODE_BYTE |
2727 PIPE_WAIT,
2728 MAXCONNECT, NSENDBUF, NRECVBUF, NTIMEOUT, NULL);
2729 if (s->hcom == INVALID_HANDLE_VALUE) {
2730 fprintf(stderr, "Failed CreateNamedPipe (%lu)\n", GetLastError());
2731 s->hcom = NULL;
2732 goto fail;
2735 ZeroMemory(&ov, sizeof(ov));
2736 ov.hEvent = CreateEvent(NULL, TRUE, FALSE, NULL);
2737 ret = ConnectNamedPipe(s->hcom, &ov);
2738 if (ret) {
2739 fprintf(stderr, "Failed ConnectNamedPipe\n");
2740 goto fail;
2743 ret = GetOverlappedResult(s->hcom, &ov, &size, TRUE);
2744 if (!ret) {
2745 fprintf(stderr, "Failed GetOverlappedResult\n");
2746 if (ov.hEvent) {
2747 CloseHandle(ov.hEvent);
2748 ov.hEvent = NULL;
2750 goto fail;
2753 if (ov.hEvent) {
2754 CloseHandle(ov.hEvent);
2755 ov.hEvent = NULL;
2757 qemu_add_polling_cb(win_chr_pipe_poll, chr);
2758 return 0;
2760 fail:
2761 win_chr_close(chr);
2762 return -1;
2766 static CharDriverState *qemu_chr_open_win_pipe(const char *filename)
2768 CharDriverState *chr;
2769 WinCharState *s;
2771 chr = qemu_mallocz(sizeof(CharDriverState));
2772 if (!chr)
2773 return NULL;
2774 s = qemu_mallocz(sizeof(WinCharState));
2775 if (!s) {
2776 free(chr);
2777 return NULL;
2779 chr->opaque = s;
2780 chr->chr_write = win_chr_write;
2781 chr->chr_close = win_chr_close;
2783 if (win_chr_pipe_init(chr, filename) < 0) {
2784 free(s);
2785 free(chr);
2786 return NULL;
2788 qemu_chr_reset(chr);
2789 return chr;
2792 static CharDriverState *qemu_chr_open_win_file(HANDLE fd_out)
2794 CharDriverState *chr;
2795 WinCharState *s;
2797 chr = qemu_mallocz(sizeof(CharDriverState));
2798 if (!chr)
2799 return NULL;
2800 s = qemu_mallocz(sizeof(WinCharState));
2801 if (!s) {
2802 free(chr);
2803 return NULL;
2805 s->hcom = fd_out;
2806 chr->opaque = s;
2807 chr->chr_write = win_chr_write;
2808 qemu_chr_reset(chr);
2809 return chr;
2812 static CharDriverState *qemu_chr_open_win_con(const char *filename)
2814 return qemu_chr_open_win_file(GetStdHandle(STD_OUTPUT_HANDLE));
2817 static CharDriverState *qemu_chr_open_win_file_out(const char *file_out)
2819 HANDLE fd_out;
2821 fd_out = CreateFile(file_out, GENERIC_WRITE, FILE_SHARE_READ, NULL,
2822 OPEN_ALWAYS, FILE_ATTRIBUTE_NORMAL, NULL);
2823 if (fd_out == INVALID_HANDLE_VALUE)
2824 return NULL;
2826 return qemu_chr_open_win_file(fd_out);
2828 #endif /* !_WIN32 */
2830 /***********************************************************/
2831 /* UDP Net console */
2833 typedef struct {
2834 int fd;
2835 struct sockaddr_in daddr;
2836 char buf[1024];
2837 int bufcnt;
2838 int bufptr;
2839 int max_size;
2840 } NetCharDriver;
2842 static int udp_chr_write(CharDriverState *chr, const uint8_t *buf, int len)
2844 NetCharDriver *s = chr->opaque;
2846 return sendto(s->fd, buf, len, 0,
2847 (struct sockaddr *)&s->daddr, sizeof(struct sockaddr_in));
2850 static int udp_chr_read_poll(void *opaque)
2852 CharDriverState *chr = opaque;
2853 NetCharDriver *s = chr->opaque;
2855 s->max_size = qemu_chr_can_read(chr);
2857 /* If there were any stray characters in the queue process them
2858 * first
2860 while (s->max_size > 0 && s->bufptr < s->bufcnt) {
2861 qemu_chr_read(chr, &s->buf[s->bufptr], 1);
2862 s->bufptr++;
2863 s->max_size = qemu_chr_can_read(chr);
2865 return s->max_size;
2868 static void udp_chr_read(void *opaque)
2870 CharDriverState *chr = opaque;
2871 NetCharDriver *s = chr->opaque;
2873 if (s->max_size == 0)
2874 return;
2875 s->bufcnt = recv(s->fd, s->buf, sizeof(s->buf), 0);
2876 s->bufptr = s->bufcnt;
2877 if (s->bufcnt <= 0)
2878 return;
2880 s->bufptr = 0;
2881 while (s->max_size > 0 && s->bufptr < s->bufcnt) {
2882 qemu_chr_read(chr, &s->buf[s->bufptr], 1);
2883 s->bufptr++;
2884 s->max_size = qemu_chr_can_read(chr);
2888 static void udp_chr_update_read_handler(CharDriverState *chr)
2890 NetCharDriver *s = chr->opaque;
2892 if (s->fd >= 0) {
2893 qemu_set_fd_handler2(s->fd, udp_chr_read_poll,
2894 udp_chr_read, NULL, chr);
2898 int parse_host_port(struct sockaddr_in *saddr, const char *str);
2899 #ifndef _WIN32
2900 static int parse_unix_path(struct sockaddr_un *uaddr, const char *str);
2901 #endif
2902 int parse_host_src_port(struct sockaddr_in *haddr,
2903 struct sockaddr_in *saddr,
2904 const char *str);
2906 static CharDriverState *qemu_chr_open_udp(const char *def)
2908 CharDriverState *chr = NULL;
2909 NetCharDriver *s = NULL;
2910 int fd = -1;
2911 struct sockaddr_in saddr;
2913 chr = qemu_mallocz(sizeof(CharDriverState));
2914 if (!chr)
2915 goto return_err;
2916 s = qemu_mallocz(sizeof(NetCharDriver));
2917 if (!s)
2918 goto return_err;
2920 fd = socket(PF_INET, SOCK_DGRAM, 0);
2921 if (fd < 0) {
2922 perror("socket(PF_INET, SOCK_DGRAM)");
2923 goto return_err;
2926 if (parse_host_src_port(&s->daddr, &saddr, def) < 0) {
2927 printf("Could not parse: %s\n", def);
2928 goto return_err;
2931 if (bind(fd, (struct sockaddr *)&saddr, sizeof(saddr)) < 0)
2933 perror("bind");
2934 goto return_err;
2937 s->fd = fd;
2938 s->bufcnt = 0;
2939 s->bufptr = 0;
2940 chr->opaque = s;
2941 chr->chr_write = udp_chr_write;
2942 chr->chr_update_read_handler = udp_chr_update_read_handler;
2943 return chr;
2945 return_err:
2946 if (chr)
2947 free(chr);
2948 if (s)
2949 free(s);
2950 if (fd >= 0)
2951 closesocket(fd);
2952 return NULL;
2955 /***********************************************************/
2956 /* TCP Net console */
2958 typedef struct {
2959 int fd, listen_fd;
2960 int connected;
2961 int max_size;
2962 int do_telnetopt;
2963 int do_nodelay;
2964 int is_unix;
2965 } TCPCharDriver;
2967 static void tcp_chr_accept(void *opaque);
2969 static int tcp_chr_write(CharDriverState *chr, const uint8_t *buf, int len)
2971 TCPCharDriver *s = chr->opaque;
2972 if (s->connected) {
2973 return send_all(s->fd, buf, len);
2974 } else {
2975 /* XXX: indicate an error ? */
2976 return len;
2980 static int tcp_chr_read_poll(void *opaque)
2982 CharDriverState *chr = opaque;
2983 TCPCharDriver *s = chr->opaque;
2984 if (!s->connected)
2985 return 0;
2986 s->max_size = qemu_chr_can_read(chr);
2987 return s->max_size;
2990 #define IAC 255
2991 #define IAC_BREAK 243
2992 static void tcp_chr_process_IAC_bytes(CharDriverState *chr,
2993 TCPCharDriver *s,
2994 char *buf, int *size)
2996 /* Handle any telnet client's basic IAC options to satisfy char by
2997 * char mode with no echo. All IAC options will be removed from
2998 * the buf and the do_telnetopt variable will be used to track the
2999 * state of the width of the IAC information.
3001 * IAC commands come in sets of 3 bytes with the exception of the
3002 * "IAC BREAK" command and the double IAC.
3005 int i;
3006 int j = 0;
3008 for (i = 0; i < *size; i++) {
3009 if (s->do_telnetopt > 1) {
3010 if ((unsigned char)buf[i] == IAC && s->do_telnetopt == 2) {
3011 /* Double IAC means send an IAC */
3012 if (j != i)
3013 buf[j] = buf[i];
3014 j++;
3015 s->do_telnetopt = 1;
3016 } else {
3017 if ((unsigned char)buf[i] == IAC_BREAK && s->do_telnetopt == 2) {
3018 /* Handle IAC break commands by sending a serial break */
3019 qemu_chr_event(chr, CHR_EVENT_BREAK);
3020 s->do_telnetopt++;
3022 s->do_telnetopt++;
3024 if (s->do_telnetopt >= 4) {
3025 s->do_telnetopt = 1;
3027 } else {
3028 if ((unsigned char)buf[i] == IAC) {
3029 s->do_telnetopt = 2;
3030 } else {
3031 if (j != i)
3032 buf[j] = buf[i];
3033 j++;
3037 *size = j;
3040 static void tcp_chr_read(void *opaque)
3042 CharDriverState *chr = opaque;
3043 TCPCharDriver *s = chr->opaque;
3044 uint8_t buf[1024];
3045 int len, size;
3047 if (!s->connected || s->max_size <= 0)
3048 return;
3049 len = sizeof(buf);
3050 if (len > s->max_size)
3051 len = s->max_size;
3052 size = recv(s->fd, buf, len, 0);
3053 if (size == 0) {
3054 /* connection closed */
3055 s->connected = 0;
3056 if (s->listen_fd >= 0) {
3057 qemu_set_fd_handler(s->listen_fd, tcp_chr_accept, NULL, chr);
3059 qemu_set_fd_handler(s->fd, NULL, NULL, NULL);
3060 closesocket(s->fd);
3061 s->fd = -1;
3062 } else if (size > 0) {
3063 if (s->do_telnetopt)
3064 tcp_chr_process_IAC_bytes(chr, s, buf, &size);
3065 if (size > 0)
3066 qemu_chr_read(chr, buf, size);
3070 static void tcp_chr_connect(void *opaque)
3072 CharDriverState *chr = opaque;
3073 TCPCharDriver *s = chr->opaque;
3075 s->connected = 1;
3076 qemu_set_fd_handler2(s->fd, tcp_chr_read_poll,
3077 tcp_chr_read, NULL, chr);
3078 qemu_chr_reset(chr);
3081 #define IACSET(x,a,b,c) x[0] = a; x[1] = b; x[2] = c;
3082 static void tcp_chr_telnet_init(int fd)
3084 char buf[3];
3085 /* Send the telnet negotion to put telnet in binary, no echo, single char mode */
3086 IACSET(buf, 0xff, 0xfb, 0x01); /* IAC WILL ECHO */
3087 send(fd, (char *)buf, 3, 0);
3088 IACSET(buf, 0xff, 0xfb, 0x03); /* IAC WILL Suppress go ahead */
3089 send(fd, (char *)buf, 3, 0);
3090 IACSET(buf, 0xff, 0xfb, 0x00); /* IAC WILL Binary */
3091 send(fd, (char *)buf, 3, 0);
3092 IACSET(buf, 0xff, 0xfd, 0x00); /* IAC DO Binary */
3093 send(fd, (char *)buf, 3, 0);
3096 static void socket_set_nodelay(int fd)
3098 int val = 1;
3099 setsockopt(fd, IPPROTO_TCP, TCP_NODELAY, (char *)&val, sizeof(val));
3102 static void tcp_chr_accept(void *opaque)
3104 CharDriverState *chr = opaque;
3105 TCPCharDriver *s = chr->opaque;
3106 struct sockaddr_in saddr;
3107 #ifndef _WIN32
3108 struct sockaddr_un uaddr;
3109 #endif
3110 struct sockaddr *addr;
3111 socklen_t len;
3112 int fd;
3114 for(;;) {
3115 #ifndef _WIN32
3116 if (s->is_unix) {
3117 len = sizeof(uaddr);
3118 addr = (struct sockaddr *)&uaddr;
3119 } else
3120 #endif
3122 len = sizeof(saddr);
3123 addr = (struct sockaddr *)&saddr;
3125 fd = accept(s->listen_fd, addr, &len);
3126 if (fd < 0 && errno != EINTR) {
3127 return;
3128 } else if (fd >= 0) {
3129 if (s->do_telnetopt)
3130 tcp_chr_telnet_init(fd);
3131 break;
3134 socket_set_nonblock(fd);
3135 if (s->do_nodelay)
3136 socket_set_nodelay(fd);
3137 s->fd = fd;
3138 qemu_set_fd_handler(s->listen_fd, NULL, NULL, NULL);
3139 tcp_chr_connect(chr);
3142 static void tcp_chr_close(CharDriverState *chr)
3144 TCPCharDriver *s = chr->opaque;
3145 if (s->fd >= 0)
3146 closesocket(s->fd);
3147 if (s->listen_fd >= 0)
3148 closesocket(s->listen_fd);
3149 qemu_free(s);
3152 static CharDriverState *qemu_chr_open_tcp(const char *host_str,
3153 int is_telnet,
3154 int is_unix)
3156 CharDriverState *chr = NULL;
3157 TCPCharDriver *s = NULL;
3158 int fd = -1, ret, err, val;
3159 int is_listen = 0;
3160 int is_waitconnect = 1;
3161 int do_nodelay = 0;
3162 const char *ptr;
3163 struct sockaddr_in saddr;
3164 #ifndef _WIN32
3165 struct sockaddr_un uaddr;
3166 #endif
3167 struct sockaddr *addr;
3168 socklen_t addrlen;
3170 #ifndef _WIN32
3171 if (is_unix) {
3172 addr = (struct sockaddr *)&uaddr;
3173 addrlen = sizeof(uaddr);
3174 if (parse_unix_path(&uaddr, host_str) < 0)
3175 goto fail;
3176 } else
3177 #endif
3179 addr = (struct sockaddr *)&saddr;
3180 addrlen = sizeof(saddr);
3181 if (parse_host_port(&saddr, host_str) < 0)
3182 goto fail;
3185 ptr = host_str;
3186 while((ptr = strchr(ptr,','))) {
3187 ptr++;
3188 if (!strncmp(ptr,"server",6)) {
3189 is_listen = 1;
3190 } else if (!strncmp(ptr,"nowait",6)) {
3191 is_waitconnect = 0;
3192 } else if (!strncmp(ptr,"nodelay",6)) {
3193 do_nodelay = 1;
3194 } else {
3195 printf("Unknown option: %s\n", ptr);
3196 goto fail;
3199 if (!is_listen)
3200 is_waitconnect = 0;
3202 chr = qemu_mallocz(sizeof(CharDriverState));
3203 if (!chr)
3204 goto fail;
3205 s = qemu_mallocz(sizeof(TCPCharDriver));
3206 if (!s)
3207 goto fail;
3209 #ifndef _WIN32
3210 if (is_unix)
3211 fd = socket(PF_UNIX, SOCK_STREAM, 0);
3212 else
3213 #endif
3214 fd = socket(PF_INET, SOCK_STREAM, 0);
3216 if (fd < 0)
3217 goto fail;
3219 if (!is_waitconnect)
3220 socket_set_nonblock(fd);
3222 s->connected = 0;
3223 s->fd = -1;
3224 s->listen_fd = -1;
3225 s->is_unix = is_unix;
3226 s->do_nodelay = do_nodelay && !is_unix;
3228 chr->opaque = s;
3229 chr->chr_write = tcp_chr_write;
3230 chr->chr_close = tcp_chr_close;
3232 if (is_listen) {
3233 /* allow fast reuse */
3234 #ifndef _WIN32
3235 if (is_unix) {
3236 char path[109];
3237 strncpy(path, uaddr.sun_path, 108);
3238 path[108] = 0;
3239 unlink(path);
3240 } else
3241 #endif
3243 val = 1;
3244 setsockopt(fd, SOL_SOCKET, SO_REUSEADDR, (const char *)&val, sizeof(val));
3247 ret = bind(fd, addr, addrlen);
3248 if (ret < 0)
3249 goto fail;
3251 ret = listen(fd, 0);
3252 if (ret < 0)
3253 goto fail;
3255 s->listen_fd = fd;
3256 qemu_set_fd_handler(s->listen_fd, tcp_chr_accept, NULL, chr);
3257 if (is_telnet)
3258 s->do_telnetopt = 1;
3259 } else {
3260 for(;;) {
3261 ret = connect(fd, addr, addrlen);
3262 if (ret < 0) {
3263 err = socket_error();
3264 if (err == EINTR || err == EWOULDBLOCK) {
3265 } else if (err == EINPROGRESS) {
3266 break;
3267 #ifdef _WIN32
3268 } else if (err == WSAEALREADY) {
3269 break;
3270 #endif
3271 } else {
3272 goto fail;
3274 } else {
3275 s->connected = 1;
3276 break;
3279 s->fd = fd;
3280 socket_set_nodelay(fd);
3281 if (s->connected)
3282 tcp_chr_connect(chr);
3283 else
3284 qemu_set_fd_handler(s->fd, NULL, tcp_chr_connect, chr);
3287 if (is_listen && is_waitconnect) {
3288 printf("QEMU waiting for connection on: %s\n", host_str);
3289 tcp_chr_accept(chr);
3290 socket_set_nonblock(s->listen_fd);
3293 return chr;
3294 fail:
3295 if (fd >= 0)
3296 closesocket(fd);
3297 qemu_free(s);
3298 qemu_free(chr);
3299 return NULL;
3302 CharDriverState *qemu_chr_open(const char *filename)
3304 const char *p;
3306 if (!strcmp(filename, "vc")) {
3307 return text_console_init(&display_state, 0);
3308 } else if (strstart(filename, "vc:", &p)) {
3309 return text_console_init(&display_state, p);
3310 } else if (!strcmp(filename, "null")) {
3311 return qemu_chr_open_null();
3312 } else
3313 if (strstart(filename, "tcp:", &p)) {
3314 return qemu_chr_open_tcp(p, 0, 0);
3315 } else
3316 if (strstart(filename, "telnet:", &p)) {
3317 return qemu_chr_open_tcp(p, 1, 0);
3318 } else
3319 if (strstart(filename, "udp:", &p)) {
3320 return qemu_chr_open_udp(p);
3321 } else
3322 if (strstart(filename, "mon:", &p)) {
3323 CharDriverState *drv = qemu_chr_open(p);
3324 if (drv) {
3325 drv = qemu_chr_open_mux(drv);
3326 monitor_init(drv, !nographic);
3327 return drv;
3329 printf("Unable to open driver: %s\n", p);
3330 return 0;
3331 } else
3332 #ifndef _WIN32
3333 if (strstart(filename, "unix:", &p)) {
3334 return qemu_chr_open_tcp(p, 0, 1);
3335 } else if (strstart(filename, "file:", &p)) {
3336 return qemu_chr_open_file_out(p);
3337 } else if (strstart(filename, "pipe:", &p)) {
3338 return qemu_chr_open_pipe(p);
3339 } else if (!strcmp(filename, "pty")) {
3340 return qemu_chr_open_pty();
3341 } else if (!strcmp(filename, "stdio")) {
3342 return qemu_chr_open_stdio();
3343 } else
3344 #if defined(__linux__)
3345 if (strstart(filename, "/dev/parport", NULL)) {
3346 return qemu_chr_open_pp(filename);
3347 } else
3348 #endif
3349 #if defined(__linux__) || defined(__sun__)
3350 if (strstart(filename, "/dev/", NULL)) {
3351 return qemu_chr_open_tty(filename);
3352 } else
3353 #endif
3354 #else /* !_WIN32 */
3355 if (strstart(filename, "COM", NULL)) {
3356 return qemu_chr_open_win(filename);
3357 } else
3358 if (strstart(filename, "pipe:", &p)) {
3359 return qemu_chr_open_win_pipe(p);
3360 } else
3361 if (strstart(filename, "con:", NULL)) {
3362 return qemu_chr_open_win_con(filename);
3363 } else
3364 if (strstart(filename, "file:", &p)) {
3365 return qemu_chr_open_win_file_out(p);
3367 #endif
3369 return NULL;
3373 void qemu_chr_close(CharDriverState *chr)
3375 if (chr->chr_close)
3376 chr->chr_close(chr);
3379 /***********************************************************/
3380 /* network device redirectors */
3382 void hex_dump(FILE *f, const uint8_t *buf, int size)
3384 int len, i, j, c;
3386 for(i=0;i<size;i+=16) {
3387 len = size - i;
3388 if (len > 16)
3389 len = 16;
3390 fprintf(f, "%08x ", i);
3391 for(j=0;j<16;j++) {
3392 if (j < len)
3393 fprintf(f, " %02x", buf[i+j]);
3394 else
3395 fprintf(f, " ");
3397 fprintf(f, " ");
3398 for(j=0;j<len;j++) {
3399 c = buf[i+j];
3400 if (c < ' ' || c > '~')
3401 c = '.';
3402 fprintf(f, "%c", c);
3404 fprintf(f, "\n");
3408 static int parse_macaddr(uint8_t *macaddr, const char *p)
3410 int i;
3411 for(i = 0; i < 6; i++) {
3412 macaddr[i] = strtol(p, (char **)&p, 16);
3413 if (i == 5) {
3414 if (*p != '\0')
3415 return -1;
3416 } else {
3417 if (*p != ':')
3418 return -1;
3419 p++;
3422 return 0;
3425 static int get_str_sep(char *buf, int buf_size, const char **pp, int sep)
3427 const char *p, *p1;
3428 int len;
3429 p = *pp;
3430 p1 = strchr(p, sep);
3431 if (!p1)
3432 return -1;
3433 len = p1 - p;
3434 p1++;
3435 if (buf_size > 0) {
3436 if (len > buf_size - 1)
3437 len = buf_size - 1;
3438 memcpy(buf, p, len);
3439 buf[len] = '\0';
3441 *pp = p1;
3442 return 0;
3445 int parse_host_src_port(struct sockaddr_in *haddr,
3446 struct sockaddr_in *saddr,
3447 const char *input_str)
3449 char *str = strdup(input_str);
3450 char *host_str = str;
3451 char *src_str;
3452 char *ptr;
3455 * Chop off any extra arguments at the end of the string which
3456 * would start with a comma, then fill in the src port information
3457 * if it was provided else use the "any address" and "any port".
3459 if ((ptr = strchr(str,',')))
3460 *ptr = '\0';
3462 if ((src_str = strchr(input_str,'@'))) {
3463 *src_str = '\0';
3464 src_str++;
3467 if (parse_host_port(haddr, host_str) < 0)
3468 goto fail;
3470 if (!src_str || *src_str == '\0')
3471 src_str = ":0";
3473 if (parse_host_port(saddr, src_str) < 0)
3474 goto fail;
3476 free(str);
3477 return(0);
3479 fail:
3480 free(str);
3481 return -1;
3484 int parse_host_port(struct sockaddr_in *saddr, const char *str)
3486 char buf[512];
3487 struct hostent *he;
3488 const char *p, *r;
3489 int port;
3491 p = str;
3492 if (get_str_sep(buf, sizeof(buf), &p, ':') < 0)
3493 return -1;
3494 saddr->sin_family = AF_INET;
3495 if (buf[0] == '\0') {
3496 saddr->sin_addr.s_addr = 0;
3497 } else {
3498 if (isdigit(buf[0])) {
3499 if (!inet_aton(buf, &saddr->sin_addr))
3500 return -1;
3501 } else {
3502 if ((he = gethostbyname(buf)) == NULL)
3503 return - 1;
3504 saddr->sin_addr = *(struct in_addr *)he->h_addr;
3507 port = strtol(p, (char **)&r, 0);
3508 if (r == p)
3509 return -1;
3510 saddr->sin_port = htons(port);
3511 return 0;
3514 #ifndef _WIN32
3515 static int parse_unix_path(struct sockaddr_un *uaddr, const char *str)
3517 const char *p;
3518 int len;
3520 len = MIN(108, strlen(str));
3521 p = strchr(str, ',');
3522 if (p)
3523 len = MIN(len, p - str);
3525 memset(uaddr, 0, sizeof(*uaddr));
3527 uaddr->sun_family = AF_UNIX;
3528 memcpy(uaddr->sun_path, str, len);
3530 return 0;
3532 #endif
3534 /* find or alloc a new VLAN */
3535 VLANState *qemu_find_vlan(int id)
3537 VLANState **pvlan, *vlan;
3538 for(vlan = first_vlan; vlan != NULL; vlan = vlan->next) {
3539 if (vlan->id == id)
3540 return vlan;
3542 vlan = qemu_mallocz(sizeof(VLANState));
3543 if (!vlan)
3544 return NULL;
3545 vlan->id = id;
3546 vlan->next = NULL;
3547 pvlan = &first_vlan;
3548 while (*pvlan != NULL)
3549 pvlan = &(*pvlan)->next;
3550 *pvlan = vlan;
3551 return vlan;
3554 VLANClientState *qemu_new_vlan_client(VLANState *vlan,
3555 IOReadHandler *fd_read,
3556 IOCanRWHandler *fd_can_read,
3557 void *opaque)
3559 VLANClientState *vc, **pvc;
3560 vc = qemu_mallocz(sizeof(VLANClientState));
3561 if (!vc)
3562 return NULL;
3563 vc->fd_read = fd_read;
3564 vc->fd_can_read = fd_can_read;
3565 vc->opaque = opaque;
3566 vc->vlan = vlan;
3568 vc->next = NULL;
3569 pvc = &vlan->first_client;
3570 while (*pvc != NULL)
3571 pvc = &(*pvc)->next;
3572 *pvc = vc;
3573 return vc;
3576 int qemu_can_send_packet(VLANClientState *vc1)
3578 VLANState *vlan = vc1->vlan;
3579 VLANClientState *vc;
3581 for(vc = vlan->first_client; vc != NULL; vc = vc->next) {
3582 if (vc != vc1) {
3583 if (vc->fd_can_read && vc->fd_can_read(vc->opaque))
3584 return 1;
3587 return 0;
3590 void qemu_send_packet(VLANClientState *vc1, const uint8_t *buf, int size)
3592 VLANState *vlan = vc1->vlan;
3593 VLANClientState *vc;
3595 #if 0
3596 printf("vlan %d send:\n", vlan->id);
3597 hex_dump(stdout, buf, size);
3598 #endif
3599 for(vc = vlan->first_client; vc != NULL; vc = vc->next) {
3600 if (vc != vc1) {
3601 vc->fd_read(vc->opaque, buf, size);
3606 #if defined(CONFIG_SLIRP)
3608 /* slirp network adapter */
3610 static int slirp_inited;
3611 static VLANClientState *slirp_vc;
3613 int slirp_can_output(void)
3615 return !slirp_vc || qemu_can_send_packet(slirp_vc);
3618 void slirp_output(const uint8_t *pkt, int pkt_len)
3620 #if 0
3621 printf("slirp output:\n");
3622 hex_dump(stdout, pkt, pkt_len);
3623 #endif
3624 if (!slirp_vc)
3625 return;
3626 qemu_send_packet(slirp_vc, pkt, pkt_len);
3629 static void slirp_receive(void *opaque, const uint8_t *buf, int size)
3631 #if 0
3632 printf("slirp input:\n");
3633 hex_dump(stdout, buf, size);
3634 #endif
3635 slirp_input(buf, size);
3638 static int net_slirp_init(VLANState *vlan)
3640 if (!slirp_inited) {
3641 slirp_inited = 1;
3642 slirp_init();
3644 slirp_vc = qemu_new_vlan_client(vlan,
3645 slirp_receive, NULL, NULL);
3646 snprintf(slirp_vc->info_str, sizeof(slirp_vc->info_str), "user redirector");
3647 return 0;
3650 static void net_slirp_redir(const char *redir_str)
3652 int is_udp;
3653 char buf[256], *r;
3654 const char *p;
3655 struct in_addr guest_addr;
3656 int host_port, guest_port;
3658 if (!slirp_inited) {
3659 slirp_inited = 1;
3660 slirp_init();
3663 p = redir_str;
3664 if (get_str_sep(buf, sizeof(buf), &p, ':') < 0)
3665 goto fail;
3666 if (!strcmp(buf, "tcp")) {
3667 is_udp = 0;
3668 } else if (!strcmp(buf, "udp")) {
3669 is_udp = 1;
3670 } else {
3671 goto fail;
3674 if (get_str_sep(buf, sizeof(buf), &p, ':') < 0)
3675 goto fail;
3676 host_port = strtol(buf, &r, 0);
3677 if (r == buf)
3678 goto fail;
3680 if (get_str_sep(buf, sizeof(buf), &p, ':') < 0)
3681 goto fail;
3682 if (buf[0] == '\0') {
3683 pstrcpy(buf, sizeof(buf), "10.0.2.15");
3685 if (!inet_aton(buf, &guest_addr))
3686 goto fail;
3688 guest_port = strtol(p, &r, 0);
3689 if (r == p)
3690 goto fail;
3692 if (slirp_redir(is_udp, host_port, guest_addr, guest_port) < 0) {
3693 fprintf(stderr, "qemu: could not set up redirection\n");
3694 exit(1);
3696 return;
3697 fail:
3698 fprintf(stderr, "qemu: syntax: -redir [tcp|udp]:host-port:[guest-host]:guest-port\n");
3699 exit(1);
3702 #ifndef _WIN32
3704 char smb_dir[1024];
3706 static void smb_exit(void)
3708 DIR *d;
3709 struct dirent *de;
3710 char filename[1024];
3712 /* erase all the files in the directory */
3713 d = opendir(smb_dir);
3714 for(;;) {
3715 de = readdir(d);
3716 if (!de)
3717 break;
3718 if (strcmp(de->d_name, ".") != 0 &&
3719 strcmp(de->d_name, "..") != 0) {
3720 snprintf(filename, sizeof(filename), "%s/%s",
3721 smb_dir, de->d_name);
3722 unlink(filename);
3725 closedir(d);
3726 rmdir(smb_dir);
3729 /* automatic user mode samba server configuration */
3730 void net_slirp_smb(const char *exported_dir)
3732 char smb_conf[1024];
3733 char smb_cmdline[1024];
3734 FILE *f;
3736 if (!slirp_inited) {
3737 slirp_inited = 1;
3738 slirp_init();
3741 /* XXX: better tmp dir construction */
3742 snprintf(smb_dir, sizeof(smb_dir), "/tmp/qemu-smb.%d", getpid());
3743 if (mkdir(smb_dir, 0700) < 0) {
3744 fprintf(stderr, "qemu: could not create samba server dir '%s'\n", smb_dir);
3745 exit(1);
3747 snprintf(smb_conf, sizeof(smb_conf), "%s/%s", smb_dir, "smb.conf");
3749 f = fopen(smb_conf, "w");
3750 if (!f) {
3751 fprintf(stderr, "qemu: could not create samba server configuration file '%s'\n", smb_conf);
3752 exit(1);
3754 fprintf(f,
3755 "[global]\n"
3756 "private dir=%s\n"
3757 "smb ports=0\n"
3758 "socket address=127.0.0.1\n"
3759 "pid directory=%s\n"
3760 "lock directory=%s\n"
3761 "log file=%s/log.smbd\n"
3762 "smb passwd file=%s/smbpasswd\n"
3763 "security = share\n"
3764 "[qemu]\n"
3765 "path=%s\n"
3766 "read only=no\n"
3767 "guest ok=yes\n",
3768 smb_dir,
3769 smb_dir,
3770 smb_dir,
3771 smb_dir,
3772 smb_dir,
3773 exported_dir
3775 fclose(f);
3776 atexit(smb_exit);
3778 snprintf(smb_cmdline, sizeof(smb_cmdline), "%s -s %s",
3779 SMBD_COMMAND, smb_conf);
3781 slirp_add_exec(0, smb_cmdline, 4, 139);
3784 #endif /* !defined(_WIN32) */
3785 void do_info_slirp(void)
3787 slirp_stats();
3790 #endif /* CONFIG_SLIRP */
3792 #if !defined(_WIN32)
3794 typedef struct TAPState {
3795 VLANClientState *vc;
3796 int fd;
3797 char down_script[1024];
3798 } TAPState;
3800 static void tap_receive(void *opaque, const uint8_t *buf, int size)
3802 TAPState *s = opaque;
3803 int ret;
3804 for(;;) {
3805 ret = write(s->fd, buf, size);
3806 if (ret < 0 && (errno == EINTR || errno == EAGAIN)) {
3807 } else {
3808 break;
3813 static void tap_send(void *opaque)
3815 TAPState *s = opaque;
3816 uint8_t buf[4096];
3817 int size;
3819 #ifdef __sun__
3820 struct strbuf sbuf;
3821 int f = 0;
3822 sbuf.maxlen = sizeof(buf);
3823 sbuf.buf = buf;
3824 size = getmsg(s->fd, NULL, &sbuf, &f) >=0 ? sbuf.len : -1;
3825 #else
3826 size = read(s->fd, buf, sizeof(buf));
3827 #endif
3828 if (size > 0) {
3829 qemu_send_packet(s->vc, buf, size);
3833 /* fd support */
3835 static TAPState *net_tap_fd_init(VLANState *vlan, int fd)
3837 TAPState *s;
3839 s = qemu_mallocz(sizeof(TAPState));
3840 if (!s)
3841 return NULL;
3842 s->fd = fd;
3843 s->vc = qemu_new_vlan_client(vlan, tap_receive, NULL, s);
3844 qemu_set_fd_handler(s->fd, tap_send, NULL, s);
3845 snprintf(s->vc->info_str, sizeof(s->vc->info_str), "tap: fd=%d", fd);
3846 return s;
3849 #if defined (_BSD) || defined (__FreeBSD_kernel__)
3850 static int tap_open(char *ifname, int ifname_size)
3852 int fd;
3853 char *dev;
3854 struct stat s;
3856 TFR(fd = open("/dev/tap", O_RDWR));
3857 if (fd < 0) {
3858 fprintf(stderr, "warning: could not open /dev/tap: no virtual network emulation\n");
3859 return -1;
3862 fstat(fd, &s);
3863 dev = devname(s.st_rdev, S_IFCHR);
3864 pstrcpy(ifname, ifname_size, dev);
3866 fcntl(fd, F_SETFL, O_NONBLOCK);
3867 return fd;
3869 #elif defined(__sun__)
3870 #define TUNNEWPPA (('T'<<16) | 0x0001)
3872 * Allocate TAP device, returns opened fd.
3873 * Stores dev name in the first arg(must be large enough).
3875 int tap_alloc(char *dev)
3877 int tap_fd, if_fd, ppa = -1;
3878 static int ip_fd = 0;
3879 char *ptr;
3881 static int arp_fd = 0;
3882 int ip_muxid, arp_muxid;
3883 struct strioctl strioc_if, strioc_ppa;
3884 int link_type = I_PLINK;;
3885 struct lifreq ifr;
3886 char actual_name[32] = "";
3888 memset(&ifr, 0x0, sizeof(ifr));
3890 if( *dev ){
3891 ptr = dev;
3892 while( *ptr && !isdigit((int)*ptr) ) ptr++;
3893 ppa = atoi(ptr);
3896 /* Check if IP device was opened */
3897 if( ip_fd )
3898 close(ip_fd);
3900 TFR(ip_fd = open("/dev/udp", O_RDWR, 0));
3901 if (ip_fd < 0) {
3902 syslog(LOG_ERR, "Can't open /dev/ip (actually /dev/udp)");
3903 return -1;
3906 TFR(tap_fd = open("/dev/tap", O_RDWR, 0));
3907 if (tap_fd < 0) {
3908 syslog(LOG_ERR, "Can't open /dev/tap");
3909 return -1;
3912 /* Assign a new PPA and get its unit number. */
3913 strioc_ppa.ic_cmd = TUNNEWPPA;
3914 strioc_ppa.ic_timout = 0;
3915 strioc_ppa.ic_len = sizeof(ppa);
3916 strioc_ppa.ic_dp = (char *)&ppa;
3917 if ((ppa = ioctl (tap_fd, I_STR, &strioc_ppa)) < 0)
3918 syslog (LOG_ERR, "Can't assign new interface");
3920 TFR(if_fd = open("/dev/tap", O_RDWR, 0));
3921 if (if_fd < 0) {
3922 syslog(LOG_ERR, "Can't open /dev/tap (2)");
3923 return -1;
3925 if(ioctl(if_fd, I_PUSH, "ip") < 0){
3926 syslog(LOG_ERR, "Can't push IP module");
3927 return -1;
3930 if (ioctl(if_fd, SIOCGLIFFLAGS, &ifr) < 0)
3931 syslog(LOG_ERR, "Can't get flags\n");
3933 snprintf (actual_name, 32, "tap%d", ppa);
3934 strncpy (ifr.lifr_name, actual_name, sizeof (ifr.lifr_name));
3936 ifr.lifr_ppa = ppa;
3937 /* Assign ppa according to the unit number returned by tun device */
3939 if (ioctl (if_fd, SIOCSLIFNAME, &ifr) < 0)
3940 syslog (LOG_ERR, "Can't set PPA %d", ppa);
3941 if (ioctl(if_fd, SIOCGLIFFLAGS, &ifr) <0)
3942 syslog (LOG_ERR, "Can't get flags\n");
3943 /* Push arp module to if_fd */
3944 if (ioctl (if_fd, I_PUSH, "arp") < 0)
3945 syslog (LOG_ERR, "Can't push ARP module (2)");
3947 /* Push arp module to ip_fd */
3948 if (ioctl (ip_fd, I_POP, NULL) < 0)
3949 syslog (LOG_ERR, "I_POP failed\n");
3950 if (ioctl (ip_fd, I_PUSH, "arp") < 0)
3951 syslog (LOG_ERR, "Can't push ARP module (3)\n");
3952 /* Open arp_fd */
3953 TFR(arp_fd = open ("/dev/tap", O_RDWR, 0));
3954 if (arp_fd < 0)
3955 syslog (LOG_ERR, "Can't open %s\n", "/dev/tap");
3957 /* Set ifname to arp */
3958 strioc_if.ic_cmd = SIOCSLIFNAME;
3959 strioc_if.ic_timout = 0;
3960 strioc_if.ic_len = sizeof(ifr);
3961 strioc_if.ic_dp = (char *)&ifr;
3962 if (ioctl(arp_fd, I_STR, &strioc_if) < 0){
3963 syslog (LOG_ERR, "Can't set ifname to arp\n");
3966 if((ip_muxid = ioctl(ip_fd, I_LINK, if_fd)) < 0){
3967 syslog(LOG_ERR, "Can't link TAP device to IP");
3968 return -1;
3971 if ((arp_muxid = ioctl (ip_fd, link_type, arp_fd)) < 0)
3972 syslog (LOG_ERR, "Can't link TAP device to ARP");
3974 close (if_fd);
3976 memset(&ifr, 0x0, sizeof(ifr));
3977 strncpy (ifr.lifr_name, actual_name, sizeof (ifr.lifr_name));
3978 ifr.lifr_ip_muxid = ip_muxid;
3979 ifr.lifr_arp_muxid = arp_muxid;
3981 if (ioctl (ip_fd, SIOCSLIFMUXID, &ifr) < 0)
3983 ioctl (ip_fd, I_PUNLINK , arp_muxid);
3984 ioctl (ip_fd, I_PUNLINK, ip_muxid);
3985 syslog (LOG_ERR, "Can't set multiplexor id");
3988 sprintf(dev, "tap%d", ppa);
3989 return tap_fd;
3992 static int tap_open(char *ifname, int ifname_size)
3994 char dev[10]="";
3995 int fd;
3996 if( (fd = tap_alloc(dev)) < 0 ){
3997 fprintf(stderr, "Cannot allocate TAP device\n");
3998 return -1;
4000 pstrcpy(ifname, ifname_size, dev);
4001 fcntl(fd, F_SETFL, O_NONBLOCK);
4002 return fd;
4004 #else
4005 static int tap_open(char *ifname, int ifname_size)
4007 struct ifreq ifr;
4008 int fd, ret;
4010 TFR(fd = open("/dev/net/tun", O_RDWR));
4011 if (fd < 0) {
4012 fprintf(stderr, "warning: could not open /dev/net/tun: no virtual network emulation\n");
4013 return -1;
4015 memset(&ifr, 0, sizeof(ifr));
4016 ifr.ifr_flags = IFF_TAP | IFF_NO_PI;
4017 if (ifname[0] != '\0')
4018 pstrcpy(ifr.ifr_name, IFNAMSIZ, ifname);
4019 else
4020 pstrcpy(ifr.ifr_name, IFNAMSIZ, "tap%d");
4021 ret = ioctl(fd, TUNSETIFF, (void *) &ifr);
4022 if (ret != 0) {
4023 fprintf(stderr, "warning: could not configure /dev/net/tun: no virtual network emulation\n");
4024 close(fd);
4025 return -1;
4027 pstrcpy(ifname, ifname_size, ifr.ifr_name);
4028 fcntl(fd, F_SETFL, O_NONBLOCK);
4029 return fd;
4031 #endif
4033 static int launch_script(const char *setup_script, const char *ifname, int fd)
4035 int pid, status;
4036 char *args[3];
4037 char **parg;
4039 /* try to launch network script */
4040 pid = fork();
4041 if (pid >= 0) {
4042 if (pid == 0) {
4043 int open_max = sysconf (_SC_OPEN_MAX), i;
4044 for (i = 0; i < open_max; i++)
4045 if (i != STDIN_FILENO &&
4046 i != STDOUT_FILENO &&
4047 i != STDERR_FILENO &&
4048 i != fd)
4049 close(i);
4051 parg = args;
4052 *parg++ = (char *)setup_script;
4053 *parg++ = (char *)ifname;
4054 *parg++ = NULL;
4055 execv(setup_script, args);
4056 _exit(1);
4058 while (waitpid(pid, &status, 0) != pid);
4059 if (!WIFEXITED(status) ||
4060 WEXITSTATUS(status) != 0) {
4061 fprintf(stderr, "%s: could not launch network script\n",
4062 setup_script);
4063 return -1;
4066 return 0;
4069 static int net_tap_init(VLANState *vlan, const char *ifname1,
4070 const char *setup_script, const char *down_script)
4072 TAPState *s;
4073 int fd;
4074 char ifname[128];
4076 if (ifname1 != NULL)
4077 pstrcpy(ifname, sizeof(ifname), ifname1);
4078 else
4079 ifname[0] = '\0';
4080 TFR(fd = tap_open(ifname, sizeof(ifname)));
4081 if (fd < 0)
4082 return -1;
4084 if (!setup_script || !strcmp(setup_script, "no"))
4085 setup_script = "";
4086 if (setup_script[0] != '\0') {
4087 if (launch_script(setup_script, ifname, fd))
4088 return -1;
4090 s = net_tap_fd_init(vlan, fd);
4091 if (!s)
4092 return -1;
4093 snprintf(s->vc->info_str, sizeof(s->vc->info_str),
4094 "tap: ifname=%s setup_script=%s", ifname, setup_script);
4095 if (down_script && strcmp(down_script, "no"))
4096 snprintf(s->down_script, sizeof(s->down_script), "%s", down_script);
4097 return 0;
4100 #endif /* !_WIN32 */
4102 /* network connection */
4103 typedef struct NetSocketState {
4104 VLANClientState *vc;
4105 int fd;
4106 int state; /* 0 = getting length, 1 = getting data */
4107 int index;
4108 int packet_len;
4109 uint8_t buf[4096];
4110 struct sockaddr_in dgram_dst; /* contains inet host and port destination iff connectionless (SOCK_DGRAM) */
4111 } NetSocketState;
4113 typedef struct NetSocketListenState {
4114 VLANState *vlan;
4115 int fd;
4116 } NetSocketListenState;
4118 /* XXX: we consider we can send the whole packet without blocking */
4119 static void net_socket_receive(void *opaque, const uint8_t *buf, int size)
4121 NetSocketState *s = opaque;
4122 uint32_t len;
4123 len = htonl(size);
4125 send_all(s->fd, (const uint8_t *)&len, sizeof(len));
4126 send_all(s->fd, buf, size);
4129 static void net_socket_receive_dgram(void *opaque, const uint8_t *buf, int size)
4131 NetSocketState *s = opaque;
4132 sendto(s->fd, buf, size, 0,
4133 (struct sockaddr *)&s->dgram_dst, sizeof(s->dgram_dst));
4136 static void net_socket_send(void *opaque)
4138 NetSocketState *s = opaque;
4139 int l, size, err;
4140 uint8_t buf1[4096];
4141 const uint8_t *buf;
4143 size = recv(s->fd, buf1, sizeof(buf1), 0);
4144 if (size < 0) {
4145 err = socket_error();
4146 if (err != EWOULDBLOCK)
4147 goto eoc;
4148 } else if (size == 0) {
4149 /* end of connection */
4150 eoc:
4151 qemu_set_fd_handler(s->fd, NULL, NULL, NULL);
4152 closesocket(s->fd);
4153 return;
4155 buf = buf1;
4156 while (size > 0) {
4157 /* reassemble a packet from the network */
4158 switch(s->state) {
4159 case 0:
4160 l = 4 - s->index;
4161 if (l > size)
4162 l = size;
4163 memcpy(s->buf + s->index, buf, l);
4164 buf += l;
4165 size -= l;
4166 s->index += l;
4167 if (s->index == 4) {
4168 /* got length */
4169 s->packet_len = ntohl(*(uint32_t *)s->buf);
4170 s->index = 0;
4171 s->state = 1;
4173 break;
4174 case 1:
4175 l = s->packet_len - s->index;
4176 if (l > size)
4177 l = size;
4178 memcpy(s->buf + s->index, buf, l);
4179 s->index += l;
4180 buf += l;
4181 size -= l;
4182 if (s->index >= s->packet_len) {
4183 qemu_send_packet(s->vc, s->buf, s->packet_len);
4184 s->index = 0;
4185 s->state = 0;
4187 break;
4192 static void net_socket_send_dgram(void *opaque)
4194 NetSocketState *s = opaque;
4195 int size;
4197 size = recv(s->fd, s->buf, sizeof(s->buf), 0);
4198 if (size < 0)
4199 return;
4200 if (size == 0) {
4201 /* end of connection */
4202 qemu_set_fd_handler(s->fd, NULL, NULL, NULL);
4203 return;
4205 qemu_send_packet(s->vc, s->buf, size);
4208 static int net_socket_mcast_create(struct sockaddr_in *mcastaddr)
4210 struct ip_mreq imr;
4211 int fd;
4212 int val, ret;
4213 if (!IN_MULTICAST(ntohl(mcastaddr->sin_addr.s_addr))) {
4214 fprintf(stderr, "qemu: error: specified mcastaddr \"%s\" (0x%08x) does not contain a multicast address\n",
4215 inet_ntoa(mcastaddr->sin_addr),
4216 (int)ntohl(mcastaddr->sin_addr.s_addr));
4217 return -1;
4220 fd = socket(PF_INET, SOCK_DGRAM, 0);
4221 if (fd < 0) {
4222 perror("socket(PF_INET, SOCK_DGRAM)");
4223 return -1;
4226 val = 1;
4227 ret=setsockopt(fd, SOL_SOCKET, SO_REUSEADDR,
4228 (const char *)&val, sizeof(val));
4229 if (ret < 0) {
4230 perror("setsockopt(SOL_SOCKET, SO_REUSEADDR)");
4231 goto fail;
4234 ret = bind(fd, (struct sockaddr *)mcastaddr, sizeof(*mcastaddr));
4235 if (ret < 0) {
4236 perror("bind");
4237 goto fail;
4240 /* Add host to multicast group */
4241 imr.imr_multiaddr = mcastaddr->sin_addr;
4242 imr.imr_interface.s_addr = htonl(INADDR_ANY);
4244 ret = setsockopt(fd, IPPROTO_IP, IP_ADD_MEMBERSHIP,
4245 (const char *)&imr, sizeof(struct ip_mreq));
4246 if (ret < 0) {
4247 perror("setsockopt(IP_ADD_MEMBERSHIP)");
4248 goto fail;
4251 /* Force mcast msgs to loopback (eg. several QEMUs in same host */
4252 val = 1;
4253 ret=setsockopt(fd, IPPROTO_IP, IP_MULTICAST_LOOP,
4254 (const char *)&val, sizeof(val));
4255 if (ret < 0) {
4256 perror("setsockopt(SOL_IP, IP_MULTICAST_LOOP)");
4257 goto fail;
4260 socket_set_nonblock(fd);
4261 return fd;
4262 fail:
4263 if (fd >= 0)
4264 closesocket(fd);
4265 return -1;
4268 static NetSocketState *net_socket_fd_init_dgram(VLANState *vlan, int fd,
4269 int is_connected)
4271 struct sockaddr_in saddr;
4272 int newfd;
4273 socklen_t saddr_len;
4274 NetSocketState *s;
4276 /* fd passed: multicast: "learn" dgram_dst address from bound address and save it
4277 * Because this may be "shared" socket from a "master" process, datagrams would be recv()
4278 * by ONLY ONE process: we must "clone" this dgram socket --jjo
4281 if (is_connected) {
4282 if (getsockname(fd, (struct sockaddr *) &saddr, &saddr_len) == 0) {
4283 /* must be bound */
4284 if (saddr.sin_addr.s_addr==0) {
4285 fprintf(stderr, "qemu: error: init_dgram: fd=%d unbound, cannot setup multicast dst addr\n",
4286 fd);
4287 return NULL;
4289 /* clone dgram socket */
4290 newfd = net_socket_mcast_create(&saddr);
4291 if (newfd < 0) {
4292 /* error already reported by net_socket_mcast_create() */
4293 close(fd);
4294 return NULL;
4296 /* clone newfd to fd, close newfd */
4297 dup2(newfd, fd);
4298 close(newfd);
4300 } else {
4301 fprintf(stderr, "qemu: error: init_dgram: fd=%d failed getsockname(): %s\n",
4302 fd, strerror(errno));
4303 return NULL;
4307 s = qemu_mallocz(sizeof(NetSocketState));
4308 if (!s)
4309 return NULL;
4310 s->fd = fd;
4312 s->vc = qemu_new_vlan_client(vlan, net_socket_receive_dgram, NULL, s);
4313 qemu_set_fd_handler(s->fd, net_socket_send_dgram, NULL, s);
4315 /* mcast: save bound address as dst */
4316 if (is_connected) s->dgram_dst=saddr;
4318 snprintf(s->vc->info_str, sizeof(s->vc->info_str),
4319 "socket: fd=%d (%s mcast=%s:%d)",
4320 fd, is_connected? "cloned" : "",
4321 inet_ntoa(saddr.sin_addr), ntohs(saddr.sin_port));
4322 return s;
4325 static void net_socket_connect(void *opaque)
4327 NetSocketState *s = opaque;
4328 qemu_set_fd_handler(s->fd, net_socket_send, NULL, s);
4331 static NetSocketState *net_socket_fd_init_stream(VLANState *vlan, int fd,
4332 int is_connected)
4334 NetSocketState *s;
4335 s = qemu_mallocz(sizeof(NetSocketState));
4336 if (!s)
4337 return NULL;
4338 s->fd = fd;
4339 s->vc = qemu_new_vlan_client(vlan,
4340 net_socket_receive, NULL, s);
4341 snprintf(s->vc->info_str, sizeof(s->vc->info_str),
4342 "socket: fd=%d", fd);
4343 if (is_connected) {
4344 net_socket_connect(s);
4345 } else {
4346 qemu_set_fd_handler(s->fd, NULL, net_socket_connect, s);
4348 return s;
4351 static NetSocketState *net_socket_fd_init(VLANState *vlan, int fd,
4352 int is_connected)
4354 int so_type=-1, optlen=sizeof(so_type);
4356 if(getsockopt(fd, SOL_SOCKET, SO_TYPE, (char *)&so_type, &optlen)< 0) {
4357 fprintf(stderr, "qemu: error: getsockopt(SO_TYPE) for fd=%d failed\n", fd);
4358 return NULL;
4360 switch(so_type) {
4361 case SOCK_DGRAM:
4362 return net_socket_fd_init_dgram(vlan, fd, is_connected);
4363 case SOCK_STREAM:
4364 return net_socket_fd_init_stream(vlan, fd, is_connected);
4365 default:
4366 /* who knows ... this could be a eg. a pty, do warn and continue as stream */
4367 fprintf(stderr, "qemu: warning: socket type=%d for fd=%d is not SOCK_DGRAM or SOCK_STREAM\n", so_type, fd);
4368 return net_socket_fd_init_stream(vlan, fd, is_connected);
4370 return NULL;
4373 static void net_socket_accept(void *opaque)
4375 NetSocketListenState *s = opaque;
4376 NetSocketState *s1;
4377 struct sockaddr_in saddr;
4378 socklen_t len;
4379 int fd;
4381 for(;;) {
4382 len = sizeof(saddr);
4383 fd = accept(s->fd, (struct sockaddr *)&saddr, &len);
4384 if (fd < 0 && errno != EINTR) {
4385 return;
4386 } else if (fd >= 0) {
4387 break;
4390 s1 = net_socket_fd_init(s->vlan, fd, 1);
4391 if (!s1) {
4392 closesocket(fd);
4393 } else {
4394 snprintf(s1->vc->info_str, sizeof(s1->vc->info_str),
4395 "socket: connection from %s:%d",
4396 inet_ntoa(saddr.sin_addr), ntohs(saddr.sin_port));
4400 static int net_socket_listen_init(VLANState *vlan, const char *host_str)
4402 NetSocketListenState *s;
4403 int fd, val, ret;
4404 struct sockaddr_in saddr;
4406 if (parse_host_port(&saddr, host_str) < 0)
4407 return -1;
4409 s = qemu_mallocz(sizeof(NetSocketListenState));
4410 if (!s)
4411 return -1;
4413 fd = socket(PF_INET, SOCK_STREAM, 0);
4414 if (fd < 0) {
4415 perror("socket");
4416 return -1;
4418 socket_set_nonblock(fd);
4420 /* allow fast reuse */
4421 val = 1;
4422 setsockopt(fd, SOL_SOCKET, SO_REUSEADDR, (const char *)&val, sizeof(val));
4424 ret = bind(fd, (struct sockaddr *)&saddr, sizeof(saddr));
4425 if (ret < 0) {
4426 perror("bind");
4427 return -1;
4429 ret = listen(fd, 0);
4430 if (ret < 0) {
4431 perror("listen");
4432 return -1;
4434 s->vlan = vlan;
4435 s->fd = fd;
4436 qemu_set_fd_handler(fd, net_socket_accept, NULL, s);
4437 return 0;
4440 static int net_socket_connect_init(VLANState *vlan, const char *host_str)
4442 NetSocketState *s;
4443 int fd, connected, ret, err;
4444 struct sockaddr_in saddr;
4446 if (parse_host_port(&saddr, host_str) < 0)
4447 return -1;
4449 fd = socket(PF_INET, SOCK_STREAM, 0);
4450 if (fd < 0) {
4451 perror("socket");
4452 return -1;
4454 socket_set_nonblock(fd);
4456 connected = 0;
4457 for(;;) {
4458 ret = connect(fd, (struct sockaddr *)&saddr, sizeof(saddr));
4459 if (ret < 0) {
4460 err = socket_error();
4461 if (err == EINTR || err == EWOULDBLOCK) {
4462 } else if (err == EINPROGRESS) {
4463 break;
4464 #ifdef _WIN32
4465 } else if (err == WSAEALREADY) {
4466 break;
4467 #endif
4468 } else {
4469 perror("connect");
4470 closesocket(fd);
4471 return -1;
4473 } else {
4474 connected = 1;
4475 break;
4478 s = net_socket_fd_init(vlan, fd, connected);
4479 if (!s)
4480 return -1;
4481 snprintf(s->vc->info_str, sizeof(s->vc->info_str),
4482 "socket: connect to %s:%d",
4483 inet_ntoa(saddr.sin_addr), ntohs(saddr.sin_port));
4484 return 0;
4487 static int net_socket_mcast_init(VLANState *vlan, const char *host_str)
4489 NetSocketState *s;
4490 int fd;
4491 struct sockaddr_in saddr;
4493 if (parse_host_port(&saddr, host_str) < 0)
4494 return -1;
4497 fd = net_socket_mcast_create(&saddr);
4498 if (fd < 0)
4499 return -1;
4501 s = net_socket_fd_init(vlan, fd, 0);
4502 if (!s)
4503 return -1;
4505 s->dgram_dst = saddr;
4507 snprintf(s->vc->info_str, sizeof(s->vc->info_str),
4508 "socket: mcast=%s:%d",
4509 inet_ntoa(saddr.sin_addr), ntohs(saddr.sin_port));
4510 return 0;
4514 static int get_param_value(char *buf, int buf_size,
4515 const char *tag, const char *str)
4517 const char *p;
4518 char *q;
4519 char option[128];
4521 p = str;
4522 for(;;) {
4523 q = option;
4524 while (*p != '\0' && *p != '=') {
4525 if ((q - option) < sizeof(option) - 1)
4526 *q++ = *p;
4527 p++;
4529 *q = '\0';
4530 if (*p != '=')
4531 break;
4532 p++;
4533 if (!strcmp(tag, option)) {
4534 q = buf;
4535 while (*p != '\0' && *p != ',') {
4536 if ((q - buf) < buf_size - 1)
4537 *q++ = *p;
4538 p++;
4540 *q = '\0';
4541 return q - buf;
4542 } else {
4543 while (*p != '\0' && *p != ',') {
4544 p++;
4547 if (*p != ',')
4548 break;
4549 p++;
4551 return 0;
4554 static int net_client_init(const char *str)
4556 const char *p;
4557 char *q;
4558 char device[64];
4559 char buf[1024];
4560 int vlan_id, ret;
4561 VLANState *vlan;
4563 p = str;
4564 q = device;
4565 while (*p != '\0' && *p != ',') {
4566 if ((q - device) < sizeof(device) - 1)
4567 *q++ = *p;
4568 p++;
4570 *q = '\0';
4571 if (*p == ',')
4572 p++;
4573 vlan_id = 0;
4574 if (get_param_value(buf, sizeof(buf), "vlan", p)) {
4575 vlan_id = strtol(buf, NULL, 0);
4577 vlan = qemu_find_vlan(vlan_id);
4578 if (!vlan) {
4579 fprintf(stderr, "Could not create vlan %d\n", vlan_id);
4580 return -1;
4582 if (!strcmp(device, "nic")) {
4583 NICInfo *nd;
4584 uint8_t *macaddr;
4586 if (nb_nics >= MAX_NICS) {
4587 fprintf(stderr, "Too Many NICs\n");
4588 return -1;
4590 nd = &nd_table[nb_nics];
4591 macaddr = nd->macaddr;
4592 macaddr[0] = 0x52;
4593 macaddr[1] = 0x54;
4594 macaddr[2] = 0x00;
4595 macaddr[3] = 0x12;
4596 macaddr[4] = 0x34;
4597 macaddr[5] = 0x56 + nb_nics;
4599 if (get_param_value(buf, sizeof(buf), "macaddr", p)) {
4600 if (parse_macaddr(macaddr, buf) < 0) {
4601 fprintf(stderr, "invalid syntax for ethernet address\n");
4602 return -1;
4605 if (get_param_value(buf, sizeof(buf), "model", p)) {
4606 nd->model = strdup(buf);
4608 nd->vlan = vlan;
4609 nb_nics++;
4610 vlan->nb_guest_devs++;
4611 ret = 0;
4612 } else
4613 if (!strcmp(device, "none")) {
4614 /* does nothing. It is needed to signal that no network cards
4615 are wanted */
4616 ret = 0;
4617 } else
4618 #ifdef CONFIG_SLIRP
4619 if (!strcmp(device, "user")) {
4620 if (get_param_value(buf, sizeof(buf), "hostname", p)) {
4621 pstrcpy(slirp_hostname, sizeof(slirp_hostname), buf);
4623 vlan->nb_host_devs++;
4624 ret = net_slirp_init(vlan);
4625 } else
4626 #endif
4627 #ifdef _WIN32
4628 if (!strcmp(device, "tap")) {
4629 char ifname[64];
4630 if (get_param_value(ifname, sizeof(ifname), "ifname", p) <= 0) {
4631 fprintf(stderr, "tap: no interface name\n");
4632 return -1;
4634 vlan->nb_host_devs++;
4635 ret = tap_win32_init(vlan, ifname);
4636 } else
4637 #else
4638 if (!strcmp(device, "tap")) {
4639 char ifname[64];
4640 char setup_script[1024], down_script[1024];
4641 int fd;
4642 vlan->nb_host_devs++;
4643 if (get_param_value(buf, sizeof(buf), "fd", p) > 0) {
4644 fd = strtol(buf, NULL, 0);
4645 ret = -1;
4646 if (net_tap_fd_init(vlan, fd))
4647 ret = 0;
4648 } else {
4649 if (get_param_value(ifname, sizeof(ifname), "ifname", p) <= 0) {
4650 ifname[0] = '\0';
4652 if (get_param_value(setup_script, sizeof(setup_script), "script", p) == 0) {
4653 pstrcpy(setup_script, sizeof(setup_script), DEFAULT_NETWORK_SCRIPT);
4655 if (get_param_value(down_script, sizeof(down_script), "downscript", p) == 0) {
4656 pstrcpy(down_script, sizeof(down_script), DEFAULT_NETWORK_DOWN_SCRIPT);
4658 ret = net_tap_init(vlan, ifname, setup_script, down_script);
4660 } else
4661 #endif
4662 if (!strcmp(device, "socket")) {
4663 if (get_param_value(buf, sizeof(buf), "fd", p) > 0) {
4664 int fd;
4665 fd = strtol(buf, NULL, 0);
4666 ret = -1;
4667 if (net_socket_fd_init(vlan, fd, 1))
4668 ret = 0;
4669 } else if (get_param_value(buf, sizeof(buf), "listen", p) > 0) {
4670 ret = net_socket_listen_init(vlan, buf);
4671 } else if (get_param_value(buf, sizeof(buf), "connect", p) > 0) {
4672 ret = net_socket_connect_init(vlan, buf);
4673 } else if (get_param_value(buf, sizeof(buf), "mcast", p) > 0) {
4674 ret = net_socket_mcast_init(vlan, buf);
4675 } else {
4676 fprintf(stderr, "Unknown socket options: %s\n", p);
4677 return -1;
4679 vlan->nb_host_devs++;
4680 } else
4682 fprintf(stderr, "Unknown network device: %s\n", device);
4683 return -1;
4685 if (ret < 0) {
4686 fprintf(stderr, "Could not initialize device '%s'\n", device);
4689 return ret;
4692 void do_info_network(void)
4694 VLANState *vlan;
4695 VLANClientState *vc;
4697 for(vlan = first_vlan; vlan != NULL; vlan = vlan->next) {
4698 term_printf("VLAN %d devices:\n", vlan->id);
4699 for(vc = vlan->first_client; vc != NULL; vc = vc->next)
4700 term_printf(" %s\n", vc->info_str);
4704 /***********************************************************/
4705 /* USB devices */
4707 static USBPort *used_usb_ports;
4708 static USBPort *free_usb_ports;
4710 /* ??? Maybe change this to register a hub to keep track of the topology. */
4711 void qemu_register_usb_port(USBPort *port, void *opaque, int index,
4712 usb_attachfn attach)
4714 port->opaque = opaque;
4715 port->index = index;
4716 port->attach = attach;
4717 port->next = free_usb_ports;
4718 free_usb_ports = port;
4721 static int usb_device_add(const char *devname)
4723 const char *p;
4724 USBDevice *dev;
4725 USBPort *port;
4727 if (!free_usb_ports)
4728 return -1;
4730 if (strstart(devname, "host:", &p)) {
4731 dev = usb_host_device_open(p);
4732 } else if (!strcmp(devname, "mouse")) {
4733 dev = usb_mouse_init();
4734 } else if (!strcmp(devname, "tablet")) {
4735 dev = usb_tablet_init();
4736 } else if (!strcmp(devname, "keyboard")) {
4737 dev = usb_keyboard_init();
4738 } else if (strstart(devname, "disk:", &p)) {
4739 dev = usb_msd_init(p);
4740 } else if (!strcmp(devname, "wacom-tablet")) {
4741 dev = usb_wacom_init();
4742 } else {
4743 return -1;
4745 if (!dev)
4746 return -1;
4748 /* Find a USB port to add the device to. */
4749 port = free_usb_ports;
4750 if (!port->next) {
4751 USBDevice *hub;
4753 /* Create a new hub and chain it on. */
4754 free_usb_ports = NULL;
4755 port->next = used_usb_ports;
4756 used_usb_ports = port;
4758 hub = usb_hub_init(VM_USB_HUB_SIZE);
4759 usb_attach(port, hub);
4760 port = free_usb_ports;
4763 free_usb_ports = port->next;
4764 port->next = used_usb_ports;
4765 used_usb_ports = port;
4766 usb_attach(port, dev);
4767 return 0;
4770 static int usb_device_del(const char *devname)
4772 USBPort *port;
4773 USBPort **lastp;
4774 USBDevice *dev;
4775 int bus_num, addr;
4776 const char *p;
4778 if (!used_usb_ports)
4779 return -1;
4781 p = strchr(devname, '.');
4782 if (!p)
4783 return -1;
4784 bus_num = strtoul(devname, NULL, 0);
4785 addr = strtoul(p + 1, NULL, 0);
4786 if (bus_num != 0)
4787 return -1;
4789 lastp = &used_usb_ports;
4790 port = used_usb_ports;
4791 while (port && port->dev->addr != addr) {
4792 lastp = &port->next;
4793 port = port->next;
4796 if (!port)
4797 return -1;
4799 dev = port->dev;
4800 *lastp = port->next;
4801 usb_attach(port, NULL);
4802 dev->handle_destroy(dev);
4803 port->next = free_usb_ports;
4804 free_usb_ports = port;
4805 return 0;
4808 void do_usb_add(const char *devname)
4810 int ret;
4811 ret = usb_device_add(devname);
4812 if (ret < 0)
4813 term_printf("Could not add USB device '%s'\n", devname);
4816 void do_usb_del(const char *devname)
4818 int ret;
4819 ret = usb_device_del(devname);
4820 if (ret < 0)
4821 term_printf("Could not remove USB device '%s'\n", devname);
4824 void usb_info(void)
4826 USBDevice *dev;
4827 USBPort *port;
4828 const char *speed_str;
4830 if (!usb_enabled) {
4831 term_printf("USB support not enabled\n");
4832 return;
4835 for (port = used_usb_ports; port; port = port->next) {
4836 dev = port->dev;
4837 if (!dev)
4838 continue;
4839 switch(dev->speed) {
4840 case USB_SPEED_LOW:
4841 speed_str = "1.5";
4842 break;
4843 case USB_SPEED_FULL:
4844 speed_str = "12";
4845 break;
4846 case USB_SPEED_HIGH:
4847 speed_str = "480";
4848 break;
4849 default:
4850 speed_str = "?";
4851 break;
4853 term_printf(" Device %d.%d, Speed %s Mb/s, Product %s\n",
4854 0, dev->addr, speed_str, dev->devname);
4858 /***********************************************************/
4859 /* PCMCIA/Cardbus */
4861 static struct pcmcia_socket_entry_s {
4862 struct pcmcia_socket_s *socket;
4863 struct pcmcia_socket_entry_s *next;
4864 } *pcmcia_sockets = 0;
4866 void pcmcia_socket_register(struct pcmcia_socket_s *socket)
4868 struct pcmcia_socket_entry_s *entry;
4870 entry = qemu_malloc(sizeof(struct pcmcia_socket_entry_s));
4871 entry->socket = socket;
4872 entry->next = pcmcia_sockets;
4873 pcmcia_sockets = entry;
4876 void pcmcia_socket_unregister(struct pcmcia_socket_s *socket)
4878 struct pcmcia_socket_entry_s *entry, **ptr;
4880 ptr = &pcmcia_sockets;
4881 for (entry = *ptr; entry; ptr = &entry->next, entry = *ptr)
4882 if (entry->socket == socket) {
4883 *ptr = entry->next;
4884 qemu_free(entry);
4888 void pcmcia_info(void)
4890 struct pcmcia_socket_entry_s *iter;
4891 if (!pcmcia_sockets)
4892 term_printf("No PCMCIA sockets\n");
4894 for (iter = pcmcia_sockets; iter; iter = iter->next)
4895 term_printf("%s: %s\n", iter->socket->slot_string,
4896 iter->socket->attached ? iter->socket->card_string :
4897 "Empty");
4900 /***********************************************************/
4901 /* dumb display */
4903 static void dumb_update(DisplayState *ds, int x, int y, int w, int h)
4907 static void dumb_resize(DisplayState *ds, int w, int h)
4911 static void dumb_refresh(DisplayState *ds)
4913 #if defined(CONFIG_SDL)
4914 vga_hw_update();
4915 #endif
4918 static void dumb_display_init(DisplayState *ds)
4920 ds->data = NULL;
4921 ds->linesize = 0;
4922 ds->depth = 0;
4923 ds->dpy_update = dumb_update;
4924 ds->dpy_resize = dumb_resize;
4925 ds->dpy_refresh = dumb_refresh;
4928 /***********************************************************/
4929 /* I/O handling */
4931 #define MAX_IO_HANDLERS 64
4933 typedef struct IOHandlerRecord {
4934 int fd;
4935 IOCanRWHandler *fd_read_poll;
4936 IOHandler *fd_read;
4937 IOHandler *fd_write;
4938 int deleted;
4939 void *opaque;
4940 /* temporary data */
4941 struct pollfd *ufd;
4942 struct IOHandlerRecord *next;
4943 } IOHandlerRecord;
4945 static IOHandlerRecord *first_io_handler;
4947 /* XXX: fd_read_poll should be suppressed, but an API change is
4948 necessary in the character devices to suppress fd_can_read(). */
4949 int qemu_set_fd_handler2(int fd,
4950 IOCanRWHandler *fd_read_poll,
4951 IOHandler *fd_read,
4952 IOHandler *fd_write,
4953 void *opaque)
4955 IOHandlerRecord **pioh, *ioh;
4957 if (!fd_read && !fd_write) {
4958 pioh = &first_io_handler;
4959 for(;;) {
4960 ioh = *pioh;
4961 if (ioh == NULL)
4962 break;
4963 if (ioh->fd == fd) {
4964 ioh->deleted = 1;
4965 break;
4967 pioh = &ioh->next;
4969 } else {
4970 for(ioh = first_io_handler; ioh != NULL; ioh = ioh->next) {
4971 if (ioh->fd == fd)
4972 goto found;
4974 ioh = qemu_mallocz(sizeof(IOHandlerRecord));
4975 if (!ioh)
4976 return -1;
4977 ioh->next = first_io_handler;
4978 first_io_handler = ioh;
4979 found:
4980 ioh->fd = fd;
4981 ioh->fd_read_poll = fd_read_poll;
4982 ioh->fd_read = fd_read;
4983 ioh->fd_write = fd_write;
4984 ioh->opaque = opaque;
4985 ioh->deleted = 0;
4987 return 0;
4990 int qemu_set_fd_handler(int fd,
4991 IOHandler *fd_read,
4992 IOHandler *fd_write,
4993 void *opaque)
4995 return qemu_set_fd_handler2(fd, NULL, fd_read, fd_write, opaque);
4998 /***********************************************************/
4999 /* Polling handling */
5001 typedef struct PollingEntry {
5002 PollingFunc *func;
5003 void *opaque;
5004 struct PollingEntry *next;
5005 } PollingEntry;
5007 static PollingEntry *first_polling_entry;
5009 int qemu_add_polling_cb(PollingFunc *func, void *opaque)
5011 PollingEntry **ppe, *pe;
5012 pe = qemu_mallocz(sizeof(PollingEntry));
5013 if (!pe)
5014 return -1;
5015 pe->func = func;
5016 pe->opaque = opaque;
5017 for(ppe = &first_polling_entry; *ppe != NULL; ppe = &(*ppe)->next);
5018 *ppe = pe;
5019 return 0;
5022 void qemu_del_polling_cb(PollingFunc *func, void *opaque)
5024 PollingEntry **ppe, *pe;
5025 for(ppe = &first_polling_entry; *ppe != NULL; ppe = &(*ppe)->next) {
5026 pe = *ppe;
5027 if (pe->func == func && pe->opaque == opaque) {
5028 *ppe = pe->next;
5029 qemu_free(pe);
5030 break;
5035 #ifdef _WIN32
5036 /***********************************************************/
5037 /* Wait objects support */
5038 typedef struct WaitObjects {
5039 int num;
5040 HANDLE events[MAXIMUM_WAIT_OBJECTS + 1];
5041 WaitObjectFunc *func[MAXIMUM_WAIT_OBJECTS + 1];
5042 void *opaque[MAXIMUM_WAIT_OBJECTS + 1];
5043 } WaitObjects;
5045 static WaitObjects wait_objects = {0};
5047 int qemu_add_wait_object(HANDLE handle, WaitObjectFunc *func, void *opaque)
5049 WaitObjects *w = &wait_objects;
5051 if (w->num >= MAXIMUM_WAIT_OBJECTS)
5052 return -1;
5053 w->events[w->num] = handle;
5054 w->func[w->num] = func;
5055 w->opaque[w->num] = opaque;
5056 w->num++;
5057 return 0;
5060 void qemu_del_wait_object(HANDLE handle, WaitObjectFunc *func, void *opaque)
5062 int i, found;
5063 WaitObjects *w = &wait_objects;
5065 found = 0;
5066 for (i = 0; i < w->num; i++) {
5067 if (w->events[i] == handle)
5068 found = 1;
5069 if (found) {
5070 w->events[i] = w->events[i + 1];
5071 w->func[i] = w->func[i + 1];
5072 w->opaque[i] = w->opaque[i + 1];
5075 if (found)
5076 w->num--;
5078 #endif
5080 /***********************************************************/
5081 /* savevm/loadvm support */
5083 #define IO_BUF_SIZE 32768
5085 struct QEMUFile {
5086 FILE *outfile;
5087 BlockDriverState *bs;
5088 int is_file;
5089 int is_writable;
5090 int64_t base_offset;
5091 int64_t buf_offset; /* start of buffer when writing, end of buffer
5092 when reading */
5093 int buf_index;
5094 int buf_size; /* 0 when writing */
5095 uint8_t buf[IO_BUF_SIZE];
5098 QEMUFile *qemu_fopen(const char *filename, const char *mode)
5100 QEMUFile *f;
5102 f = qemu_mallocz(sizeof(QEMUFile));
5103 if (!f)
5104 return NULL;
5105 if (!strcmp(mode, "wb")) {
5106 f->is_writable = 1;
5107 } else if (!strcmp(mode, "rb")) {
5108 f->is_writable = 0;
5109 } else {
5110 goto fail;
5112 f->outfile = fopen(filename, mode);
5113 if (!f->outfile)
5114 goto fail;
5115 f->is_file = 1;
5116 return f;
5117 fail:
5118 if (f->outfile)
5119 fclose(f->outfile);
5120 qemu_free(f);
5121 return NULL;
5124 QEMUFile *qemu_fopen_bdrv(BlockDriverState *bs, int64_t offset, int is_writable)
5126 QEMUFile *f;
5128 f = qemu_mallocz(sizeof(QEMUFile));
5129 if (!f)
5130 return NULL;
5131 f->is_file = 0;
5132 f->bs = bs;
5133 f->is_writable = is_writable;
5134 f->base_offset = offset;
5135 return f;
5138 void qemu_fflush(QEMUFile *f)
5140 if (!f->is_writable)
5141 return;
5142 if (f->buf_index > 0) {
5143 if (f->is_file) {
5144 fseek(f->outfile, f->buf_offset, SEEK_SET);
5145 fwrite(f->buf, 1, f->buf_index, f->outfile);
5146 } else {
5147 bdrv_pwrite(f->bs, f->base_offset + f->buf_offset,
5148 f->buf, f->buf_index);
5150 f->buf_offset += f->buf_index;
5151 f->buf_index = 0;
5155 static void qemu_fill_buffer(QEMUFile *f)
5157 int len;
5159 if (f->is_writable)
5160 return;
5161 if (f->is_file) {
5162 fseek(f->outfile, f->buf_offset, SEEK_SET);
5163 len = fread(f->buf, 1, IO_BUF_SIZE, f->outfile);
5164 if (len < 0)
5165 len = 0;
5166 } else {
5167 len = bdrv_pread(f->bs, f->base_offset + f->buf_offset,
5168 f->buf, IO_BUF_SIZE);
5169 if (len < 0)
5170 len = 0;
5172 f->buf_index = 0;
5173 f->buf_size = len;
5174 f->buf_offset += len;
5177 void qemu_fclose(QEMUFile *f)
5179 if (f->is_writable)
5180 qemu_fflush(f);
5181 if (f->is_file) {
5182 fclose(f->outfile);
5184 qemu_free(f);
5187 void qemu_put_buffer(QEMUFile *f, const uint8_t *buf, int size)
5189 int l;
5190 while (size > 0) {
5191 l = IO_BUF_SIZE - f->buf_index;
5192 if (l > size)
5193 l = size;
5194 memcpy(f->buf + f->buf_index, buf, l);
5195 f->buf_index += l;
5196 buf += l;
5197 size -= l;
5198 if (f->buf_index >= IO_BUF_SIZE)
5199 qemu_fflush(f);
5203 void qemu_put_byte(QEMUFile *f, int v)
5205 f->buf[f->buf_index++] = v;
5206 if (f->buf_index >= IO_BUF_SIZE)
5207 qemu_fflush(f);
5210 int qemu_get_buffer(QEMUFile *f, uint8_t *buf, int size1)
5212 int size, l;
5214 size = size1;
5215 while (size > 0) {
5216 l = f->buf_size - f->buf_index;
5217 if (l == 0) {
5218 qemu_fill_buffer(f);
5219 l = f->buf_size - f->buf_index;
5220 if (l == 0)
5221 break;
5223 if (l > size)
5224 l = size;
5225 memcpy(buf, f->buf + f->buf_index, l);
5226 f->buf_index += l;
5227 buf += l;
5228 size -= l;
5230 return size1 - size;
5233 int qemu_get_byte(QEMUFile *f)
5235 if (f->buf_index >= f->buf_size) {
5236 qemu_fill_buffer(f);
5237 if (f->buf_index >= f->buf_size)
5238 return 0;
5240 return f->buf[f->buf_index++];
5243 int64_t qemu_ftell(QEMUFile *f)
5245 return f->buf_offset - f->buf_size + f->buf_index;
5248 int64_t qemu_fseek(QEMUFile *f, int64_t pos, int whence)
5250 if (whence == SEEK_SET) {
5251 /* nothing to do */
5252 } else if (whence == SEEK_CUR) {
5253 pos += qemu_ftell(f);
5254 } else {
5255 /* SEEK_END not supported */
5256 return -1;
5258 if (f->is_writable) {
5259 qemu_fflush(f);
5260 f->buf_offset = pos;
5261 } else {
5262 f->buf_offset = pos;
5263 f->buf_index = 0;
5264 f->buf_size = 0;
5266 return pos;
5269 void qemu_put_be16(QEMUFile *f, unsigned int v)
5271 qemu_put_byte(f, v >> 8);
5272 qemu_put_byte(f, v);
5275 void qemu_put_be32(QEMUFile *f, unsigned int v)
5277 qemu_put_byte(f, v >> 24);
5278 qemu_put_byte(f, v >> 16);
5279 qemu_put_byte(f, v >> 8);
5280 qemu_put_byte(f, v);
5283 void qemu_put_be64(QEMUFile *f, uint64_t v)
5285 qemu_put_be32(f, v >> 32);
5286 qemu_put_be32(f, v);
5289 unsigned int qemu_get_be16(QEMUFile *f)
5291 unsigned int v;
5292 v = qemu_get_byte(f) << 8;
5293 v |= qemu_get_byte(f);
5294 return v;
5297 unsigned int qemu_get_be32(QEMUFile *f)
5299 unsigned int v;
5300 v = qemu_get_byte(f) << 24;
5301 v |= qemu_get_byte(f) << 16;
5302 v |= qemu_get_byte(f) << 8;
5303 v |= qemu_get_byte(f);
5304 return v;
5307 uint64_t qemu_get_be64(QEMUFile *f)
5309 uint64_t v;
5310 v = (uint64_t)qemu_get_be32(f) << 32;
5311 v |= qemu_get_be32(f);
5312 return v;
5315 typedef struct SaveStateEntry {
5316 char idstr[256];
5317 int instance_id;
5318 int version_id;
5319 SaveStateHandler *save_state;
5320 LoadStateHandler *load_state;
5321 void *opaque;
5322 struct SaveStateEntry *next;
5323 } SaveStateEntry;
5325 static SaveStateEntry *first_se;
5327 int register_savevm(const char *idstr,
5328 int instance_id,
5329 int version_id,
5330 SaveStateHandler *save_state,
5331 LoadStateHandler *load_state,
5332 void *opaque)
5334 SaveStateEntry *se, **pse;
5336 se = qemu_malloc(sizeof(SaveStateEntry));
5337 if (!se)
5338 return -1;
5339 pstrcpy(se->idstr, sizeof(se->idstr), idstr);
5340 se->instance_id = instance_id;
5341 se->version_id = version_id;
5342 se->save_state = save_state;
5343 se->load_state = load_state;
5344 se->opaque = opaque;
5345 se->next = NULL;
5347 /* add at the end of list */
5348 pse = &first_se;
5349 while (*pse != NULL)
5350 pse = &(*pse)->next;
5351 *pse = se;
5352 return 0;
5355 #define QEMU_VM_FILE_MAGIC 0x5145564d
5356 #define QEMU_VM_FILE_VERSION 0x00000002
5358 int qemu_savevm_state(QEMUFile *f)
5360 SaveStateEntry *se;
5361 int len, ret;
5362 int64_t cur_pos, len_pos, total_len_pos;
5364 qemu_put_be32(f, QEMU_VM_FILE_MAGIC);
5365 qemu_put_be32(f, QEMU_VM_FILE_VERSION);
5366 total_len_pos = qemu_ftell(f);
5367 qemu_put_be64(f, 0); /* total size */
5369 for(se = first_se; se != NULL; se = se->next) {
5370 /* ID string */
5371 len = strlen(se->idstr);
5372 qemu_put_byte(f, len);
5373 qemu_put_buffer(f, se->idstr, len);
5375 qemu_put_be32(f, se->instance_id);
5376 qemu_put_be32(f, se->version_id);
5378 /* record size: filled later */
5379 len_pos = qemu_ftell(f);
5380 qemu_put_be32(f, 0);
5382 se->save_state(f, se->opaque);
5384 /* fill record size */
5385 cur_pos = qemu_ftell(f);
5386 len = cur_pos - len_pos - 4;
5387 qemu_fseek(f, len_pos, SEEK_SET);
5388 qemu_put_be32(f, len);
5389 qemu_fseek(f, cur_pos, SEEK_SET);
5391 cur_pos = qemu_ftell(f);
5392 qemu_fseek(f, total_len_pos, SEEK_SET);
5393 qemu_put_be64(f, cur_pos - total_len_pos - 8);
5394 qemu_fseek(f, cur_pos, SEEK_SET);
5396 ret = 0;
5397 return ret;
5400 static SaveStateEntry *find_se(const char *idstr, int instance_id)
5402 SaveStateEntry *se;
5404 for(se = first_se; se != NULL; se = se->next) {
5405 if (!strcmp(se->idstr, idstr) &&
5406 instance_id == se->instance_id)
5407 return se;
5409 return NULL;
5412 int qemu_loadvm_state(QEMUFile *f)
5414 SaveStateEntry *se;
5415 int len, ret, instance_id, record_len, version_id;
5416 int64_t total_len, end_pos, cur_pos;
5417 unsigned int v;
5418 char idstr[256];
5420 v = qemu_get_be32(f);
5421 if (v != QEMU_VM_FILE_MAGIC)
5422 goto fail;
5423 v = qemu_get_be32(f);
5424 if (v != QEMU_VM_FILE_VERSION) {
5425 fail:
5426 ret = -1;
5427 goto the_end;
5429 total_len = qemu_get_be64(f);
5430 end_pos = total_len + qemu_ftell(f);
5431 for(;;) {
5432 if (qemu_ftell(f) >= end_pos)
5433 break;
5434 len = qemu_get_byte(f);
5435 qemu_get_buffer(f, idstr, len);
5436 idstr[len] = '\0';
5437 instance_id = qemu_get_be32(f);
5438 version_id = qemu_get_be32(f);
5439 record_len = qemu_get_be32(f);
5440 #if 0
5441 printf("idstr=%s instance=0x%x version=%d len=%d\n",
5442 idstr, instance_id, version_id, record_len);
5443 #endif
5444 cur_pos = qemu_ftell(f);
5445 se = find_se(idstr, instance_id);
5446 if (!se) {
5447 fprintf(stderr, "qemu: warning: instance 0x%x of device '%s' not present in current VM\n",
5448 instance_id, idstr);
5449 } else {
5450 ret = se->load_state(f, se->opaque, version_id);
5451 if (ret < 0) {
5452 fprintf(stderr, "qemu: warning: error while loading state for instance 0x%x of device '%s'\n",
5453 instance_id, idstr);
5456 /* always seek to exact end of record */
5457 qemu_fseek(f, cur_pos + record_len, SEEK_SET);
5459 ret = 0;
5460 the_end:
5461 return ret;
5464 /* device can contain snapshots */
5465 static int bdrv_can_snapshot(BlockDriverState *bs)
5467 return (bs &&
5468 !bdrv_is_removable(bs) &&
5469 !bdrv_is_read_only(bs));
5472 /* device must be snapshots in order to have a reliable snapshot */
5473 static int bdrv_has_snapshot(BlockDriverState *bs)
5475 return (bs &&
5476 !bdrv_is_removable(bs) &&
5477 !bdrv_is_read_only(bs));
5480 static BlockDriverState *get_bs_snapshots(void)
5482 BlockDriverState *bs;
5483 int i;
5485 if (bs_snapshots)
5486 return bs_snapshots;
5487 for(i = 0; i <= MAX_DISKS; i++) {
5488 bs = bs_table[i];
5489 if (bdrv_can_snapshot(bs))
5490 goto ok;
5492 return NULL;
5494 bs_snapshots = bs;
5495 return bs;
5498 static int bdrv_snapshot_find(BlockDriverState *bs, QEMUSnapshotInfo *sn_info,
5499 const char *name)
5501 QEMUSnapshotInfo *sn_tab, *sn;
5502 int nb_sns, i, ret;
5504 ret = -ENOENT;
5505 nb_sns = bdrv_snapshot_list(bs, &sn_tab);
5506 if (nb_sns < 0)
5507 return ret;
5508 for(i = 0; i < nb_sns; i++) {
5509 sn = &sn_tab[i];
5510 if (!strcmp(sn->id_str, name) || !strcmp(sn->name, name)) {
5511 *sn_info = *sn;
5512 ret = 0;
5513 break;
5516 qemu_free(sn_tab);
5517 return ret;
5520 void do_savevm(const char *name)
5522 BlockDriverState *bs, *bs1;
5523 QEMUSnapshotInfo sn1, *sn = &sn1, old_sn1, *old_sn = &old_sn1;
5524 int must_delete, ret, i;
5525 BlockDriverInfo bdi1, *bdi = &bdi1;
5526 QEMUFile *f;
5527 int saved_vm_running;
5528 #ifdef _WIN32
5529 struct _timeb tb;
5530 #else
5531 struct timeval tv;
5532 #endif
5534 bs = get_bs_snapshots();
5535 if (!bs) {
5536 term_printf("No block device can accept snapshots\n");
5537 return;
5540 /* ??? Should this occur after vm_stop? */
5541 qemu_aio_flush();
5543 saved_vm_running = vm_running;
5544 vm_stop(0);
5546 must_delete = 0;
5547 if (name) {
5548 ret = bdrv_snapshot_find(bs, old_sn, name);
5549 if (ret >= 0) {
5550 must_delete = 1;
5553 memset(sn, 0, sizeof(*sn));
5554 if (must_delete) {
5555 pstrcpy(sn->name, sizeof(sn->name), old_sn->name);
5556 pstrcpy(sn->id_str, sizeof(sn->id_str), old_sn->id_str);
5557 } else {
5558 if (name)
5559 pstrcpy(sn->name, sizeof(sn->name), name);
5562 /* fill auxiliary fields */
5563 #ifdef _WIN32
5564 _ftime(&tb);
5565 sn->date_sec = tb.time;
5566 sn->date_nsec = tb.millitm * 1000000;
5567 #else
5568 gettimeofday(&tv, NULL);
5569 sn->date_sec = tv.tv_sec;
5570 sn->date_nsec = tv.tv_usec * 1000;
5571 #endif
5572 sn->vm_clock_nsec = qemu_get_clock(vm_clock);
5574 if (bdrv_get_info(bs, bdi) < 0 || bdi->vm_state_offset <= 0) {
5575 term_printf("Device %s does not support VM state snapshots\n",
5576 bdrv_get_device_name(bs));
5577 goto the_end;
5580 /* save the VM state */
5581 f = qemu_fopen_bdrv(bs, bdi->vm_state_offset, 1);
5582 if (!f) {
5583 term_printf("Could not open VM state file\n");
5584 goto the_end;
5586 ret = qemu_savevm_state(f);
5587 sn->vm_state_size = qemu_ftell(f);
5588 qemu_fclose(f);
5589 if (ret < 0) {
5590 term_printf("Error %d while writing VM\n", ret);
5591 goto the_end;
5594 /* create the snapshots */
5596 for(i = 0; i < MAX_DISKS; i++) {
5597 bs1 = bs_table[i];
5598 if (bdrv_has_snapshot(bs1)) {
5599 if (must_delete) {
5600 ret = bdrv_snapshot_delete(bs1, old_sn->id_str);
5601 if (ret < 0) {
5602 term_printf("Error while deleting snapshot on '%s'\n",
5603 bdrv_get_device_name(bs1));
5606 ret = bdrv_snapshot_create(bs1, sn);
5607 if (ret < 0) {
5608 term_printf("Error while creating snapshot on '%s'\n",
5609 bdrv_get_device_name(bs1));
5614 the_end:
5615 if (saved_vm_running)
5616 vm_start();
5619 void do_loadvm(const char *name)
5621 BlockDriverState *bs, *bs1;
5622 BlockDriverInfo bdi1, *bdi = &bdi1;
5623 QEMUFile *f;
5624 int i, ret;
5625 int saved_vm_running;
5627 bs = get_bs_snapshots();
5628 if (!bs) {
5629 term_printf("No block device supports snapshots\n");
5630 return;
5633 /* Flush all IO requests so they don't interfere with the new state. */
5634 qemu_aio_flush();
5636 saved_vm_running = vm_running;
5637 vm_stop(0);
5639 for(i = 0; i <= MAX_DISKS; i++) {
5640 bs1 = bs_table[i];
5641 if (bdrv_has_snapshot(bs1)) {
5642 ret = bdrv_snapshot_goto(bs1, name);
5643 if (ret < 0) {
5644 if (bs != bs1)
5645 term_printf("Warning: ");
5646 switch(ret) {
5647 case -ENOTSUP:
5648 term_printf("Snapshots not supported on device '%s'\n",
5649 bdrv_get_device_name(bs1));
5650 break;
5651 case -ENOENT:
5652 term_printf("Could not find snapshot '%s' on device '%s'\n",
5653 name, bdrv_get_device_name(bs1));
5654 break;
5655 default:
5656 term_printf("Error %d while activating snapshot on '%s'\n",
5657 ret, bdrv_get_device_name(bs1));
5658 break;
5660 /* fatal on snapshot block device */
5661 if (bs == bs1)
5662 goto the_end;
5667 if (bdrv_get_info(bs, bdi) < 0 || bdi->vm_state_offset <= 0) {
5668 term_printf("Device %s does not support VM state snapshots\n",
5669 bdrv_get_device_name(bs));
5670 return;
5673 /* restore the VM state */
5674 f = qemu_fopen_bdrv(bs, bdi->vm_state_offset, 0);
5675 if (!f) {
5676 term_printf("Could not open VM state file\n");
5677 goto the_end;
5679 ret = qemu_loadvm_state(f);
5680 qemu_fclose(f);
5681 if (ret < 0) {
5682 term_printf("Error %d while loading VM state\n", ret);
5684 the_end:
5685 if (saved_vm_running)
5686 vm_start();
5689 void do_delvm(const char *name)
5691 BlockDriverState *bs, *bs1;
5692 int i, ret;
5694 bs = get_bs_snapshots();
5695 if (!bs) {
5696 term_printf("No block device supports snapshots\n");
5697 return;
5700 for(i = 0; i <= MAX_DISKS; i++) {
5701 bs1 = bs_table[i];
5702 if (bdrv_has_snapshot(bs1)) {
5703 ret = bdrv_snapshot_delete(bs1, name);
5704 if (ret < 0) {
5705 if (ret == -ENOTSUP)
5706 term_printf("Snapshots not supported on device '%s'\n",
5707 bdrv_get_device_name(bs1));
5708 else
5709 term_printf("Error %d while deleting snapshot on '%s'\n",
5710 ret, bdrv_get_device_name(bs1));
5716 void do_info_snapshots(void)
5718 BlockDriverState *bs, *bs1;
5719 QEMUSnapshotInfo *sn_tab, *sn;
5720 int nb_sns, i;
5721 char buf[256];
5723 bs = get_bs_snapshots();
5724 if (!bs) {
5725 term_printf("No available block device supports snapshots\n");
5726 return;
5728 term_printf("Snapshot devices:");
5729 for(i = 0; i <= MAX_DISKS; i++) {
5730 bs1 = bs_table[i];
5731 if (bdrv_has_snapshot(bs1)) {
5732 if (bs == bs1)
5733 term_printf(" %s", bdrv_get_device_name(bs1));
5736 term_printf("\n");
5738 nb_sns = bdrv_snapshot_list(bs, &sn_tab);
5739 if (nb_sns < 0) {
5740 term_printf("bdrv_snapshot_list: error %d\n", nb_sns);
5741 return;
5743 term_printf("Snapshot list (from %s):\n", bdrv_get_device_name(bs));
5744 term_printf("%s\n", bdrv_snapshot_dump(buf, sizeof(buf), NULL));
5745 for(i = 0; i < nb_sns; i++) {
5746 sn = &sn_tab[i];
5747 term_printf("%s\n", bdrv_snapshot_dump(buf, sizeof(buf), sn));
5749 qemu_free(sn_tab);
5752 /***********************************************************/
5753 /* cpu save/restore */
5755 #if defined(TARGET_I386)
5757 static void cpu_put_seg(QEMUFile *f, SegmentCache *dt)
5759 qemu_put_be32(f, dt->selector);
5760 qemu_put_betl(f, dt->base);
5761 qemu_put_be32(f, dt->limit);
5762 qemu_put_be32(f, dt->flags);
5765 static void cpu_get_seg(QEMUFile *f, SegmentCache *dt)
5767 dt->selector = qemu_get_be32(f);
5768 dt->base = qemu_get_betl(f);
5769 dt->limit = qemu_get_be32(f);
5770 dt->flags = qemu_get_be32(f);
5773 void cpu_save(QEMUFile *f, void *opaque)
5775 CPUState *env = opaque;
5776 uint16_t fptag, fpus, fpuc, fpregs_format;
5777 uint32_t hflags;
5778 int i;
5780 for(i = 0; i < CPU_NB_REGS; i++)
5781 qemu_put_betls(f, &env->regs[i]);
5782 qemu_put_betls(f, &env->eip);
5783 qemu_put_betls(f, &env->eflags);
5784 hflags = env->hflags; /* XXX: suppress most of the redundant hflags */
5785 qemu_put_be32s(f, &hflags);
5787 /* FPU */
5788 fpuc = env->fpuc;
5789 fpus = (env->fpus & ~0x3800) | (env->fpstt & 0x7) << 11;
5790 fptag = 0;
5791 for(i = 0; i < 8; i++) {
5792 fptag |= ((!env->fptags[i]) << i);
5795 qemu_put_be16s(f, &fpuc);
5796 qemu_put_be16s(f, &fpus);
5797 qemu_put_be16s(f, &fptag);
5799 #ifdef USE_X86LDOUBLE
5800 fpregs_format = 0;
5801 #else
5802 fpregs_format = 1;
5803 #endif
5804 qemu_put_be16s(f, &fpregs_format);
5806 for(i = 0; i < 8; i++) {
5807 #ifdef USE_X86LDOUBLE
5809 uint64_t mant;
5810 uint16_t exp;
5811 /* we save the real CPU data (in case of MMX usage only 'mant'
5812 contains the MMX register */
5813 cpu_get_fp80(&mant, &exp, env->fpregs[i].d);
5814 qemu_put_be64(f, mant);
5815 qemu_put_be16(f, exp);
5817 #else
5818 /* if we use doubles for float emulation, we save the doubles to
5819 avoid losing information in case of MMX usage. It can give
5820 problems if the image is restored on a CPU where long
5821 doubles are used instead. */
5822 qemu_put_be64(f, env->fpregs[i].mmx.MMX_Q(0));
5823 #endif
5826 for(i = 0; i < 6; i++)
5827 cpu_put_seg(f, &env->segs[i]);
5828 cpu_put_seg(f, &env->ldt);
5829 cpu_put_seg(f, &env->tr);
5830 cpu_put_seg(f, &env->gdt);
5831 cpu_put_seg(f, &env->idt);
5833 qemu_put_be32s(f, &env->sysenter_cs);
5834 qemu_put_be32s(f, &env->sysenter_esp);
5835 qemu_put_be32s(f, &env->sysenter_eip);
5837 qemu_put_betls(f, &env->cr[0]);
5838 qemu_put_betls(f, &env->cr[2]);
5839 qemu_put_betls(f, &env->cr[3]);
5840 qemu_put_betls(f, &env->cr[4]);
5842 for(i = 0; i < 8; i++)
5843 qemu_put_betls(f, &env->dr[i]);
5845 /* MMU */
5846 qemu_put_be32s(f, &env->a20_mask);
5848 /* XMM */
5849 qemu_put_be32s(f, &env->mxcsr);
5850 for(i = 0; i < CPU_NB_REGS; i++) {
5851 qemu_put_be64s(f, &env->xmm_regs[i].XMM_Q(0));
5852 qemu_put_be64s(f, &env->xmm_regs[i].XMM_Q(1));
5855 #ifdef TARGET_X86_64
5856 qemu_put_be64s(f, &env->efer);
5857 qemu_put_be64s(f, &env->star);
5858 qemu_put_be64s(f, &env->lstar);
5859 qemu_put_be64s(f, &env->cstar);
5860 qemu_put_be64s(f, &env->fmask);
5861 qemu_put_be64s(f, &env->kernelgsbase);
5862 #endif
5863 qemu_put_be32s(f, &env->smbase);
5866 #ifdef USE_X86LDOUBLE
5867 /* XXX: add that in a FPU generic layer */
5868 union x86_longdouble {
5869 uint64_t mant;
5870 uint16_t exp;
5873 #define MANTD1(fp) (fp & ((1LL << 52) - 1))
5874 #define EXPBIAS1 1023
5875 #define EXPD1(fp) ((fp >> 52) & 0x7FF)
5876 #define SIGND1(fp) ((fp >> 32) & 0x80000000)
5878 static void fp64_to_fp80(union x86_longdouble *p, uint64_t temp)
5880 int e;
5881 /* mantissa */
5882 p->mant = (MANTD1(temp) << 11) | (1LL << 63);
5883 /* exponent + sign */
5884 e = EXPD1(temp) - EXPBIAS1 + 16383;
5885 e |= SIGND1(temp) >> 16;
5886 p->exp = e;
5888 #endif
5890 int cpu_load(QEMUFile *f, void *opaque, int version_id)
5892 CPUState *env = opaque;
5893 int i, guess_mmx;
5894 uint32_t hflags;
5895 uint16_t fpus, fpuc, fptag, fpregs_format;
5897 if (version_id != 3 && version_id != 4)
5898 return -EINVAL;
5899 for(i = 0; i < CPU_NB_REGS; i++)
5900 qemu_get_betls(f, &env->regs[i]);
5901 qemu_get_betls(f, &env->eip);
5902 qemu_get_betls(f, &env->eflags);
5903 qemu_get_be32s(f, &hflags);
5905 qemu_get_be16s(f, &fpuc);
5906 qemu_get_be16s(f, &fpus);
5907 qemu_get_be16s(f, &fptag);
5908 qemu_get_be16s(f, &fpregs_format);
5910 /* NOTE: we cannot always restore the FPU state if the image come
5911 from a host with a different 'USE_X86LDOUBLE' define. We guess
5912 if we are in an MMX state to restore correctly in that case. */
5913 guess_mmx = ((fptag == 0xff) && (fpus & 0x3800) == 0);
5914 for(i = 0; i < 8; i++) {
5915 uint64_t mant;
5916 uint16_t exp;
5918 switch(fpregs_format) {
5919 case 0:
5920 mant = qemu_get_be64(f);
5921 exp = qemu_get_be16(f);
5922 #ifdef USE_X86LDOUBLE
5923 env->fpregs[i].d = cpu_set_fp80(mant, exp);
5924 #else
5925 /* difficult case */
5926 if (guess_mmx)
5927 env->fpregs[i].mmx.MMX_Q(0) = mant;
5928 else
5929 env->fpregs[i].d = cpu_set_fp80(mant, exp);
5930 #endif
5931 break;
5932 case 1:
5933 mant = qemu_get_be64(f);
5934 #ifdef USE_X86LDOUBLE
5936 union x86_longdouble *p;
5937 /* difficult case */
5938 p = (void *)&env->fpregs[i];
5939 if (guess_mmx) {
5940 p->mant = mant;
5941 p->exp = 0xffff;
5942 } else {
5943 fp64_to_fp80(p, mant);
5946 #else
5947 env->fpregs[i].mmx.MMX_Q(0) = mant;
5948 #endif
5949 break;
5950 default:
5951 return -EINVAL;
5955 env->fpuc = fpuc;
5956 /* XXX: restore FPU round state */
5957 env->fpstt = (fpus >> 11) & 7;
5958 env->fpus = fpus & ~0x3800;
5959 fptag ^= 0xff;
5960 for(i = 0; i < 8; i++) {
5961 env->fptags[i] = (fptag >> i) & 1;
5964 for(i = 0; i < 6; i++)
5965 cpu_get_seg(f, &env->segs[i]);
5966 cpu_get_seg(f, &env->ldt);
5967 cpu_get_seg(f, &env->tr);
5968 cpu_get_seg(f, &env->gdt);
5969 cpu_get_seg(f, &env->idt);
5971 qemu_get_be32s(f, &env->sysenter_cs);
5972 qemu_get_be32s(f, &env->sysenter_esp);
5973 qemu_get_be32s(f, &env->sysenter_eip);
5975 qemu_get_betls(f, &env->cr[0]);
5976 qemu_get_betls(f, &env->cr[2]);
5977 qemu_get_betls(f, &env->cr[3]);
5978 qemu_get_betls(f, &env->cr[4]);
5980 for(i = 0; i < 8; i++)
5981 qemu_get_betls(f, &env->dr[i]);
5983 /* MMU */
5984 qemu_get_be32s(f, &env->a20_mask);
5986 qemu_get_be32s(f, &env->mxcsr);
5987 for(i = 0; i < CPU_NB_REGS; i++) {
5988 qemu_get_be64s(f, &env->xmm_regs[i].XMM_Q(0));
5989 qemu_get_be64s(f, &env->xmm_regs[i].XMM_Q(1));
5992 #ifdef TARGET_X86_64
5993 qemu_get_be64s(f, &env->efer);
5994 qemu_get_be64s(f, &env->star);
5995 qemu_get_be64s(f, &env->lstar);
5996 qemu_get_be64s(f, &env->cstar);
5997 qemu_get_be64s(f, &env->fmask);
5998 qemu_get_be64s(f, &env->kernelgsbase);
5999 #endif
6000 if (version_id >= 4)
6001 qemu_get_be32s(f, &env->smbase);
6003 /* XXX: compute hflags from scratch, except for CPL and IIF */
6004 env->hflags = hflags;
6005 tlb_flush(env, 1);
6006 return 0;
6009 #elif defined(TARGET_PPC)
6010 void cpu_save(QEMUFile *f, void *opaque)
6014 int cpu_load(QEMUFile *f, void *opaque, int version_id)
6016 return 0;
6019 #elif defined(TARGET_MIPS)
6020 void cpu_save(QEMUFile *f, void *opaque)
6024 int cpu_load(QEMUFile *f, void *opaque, int version_id)
6026 return 0;
6029 #elif defined(TARGET_SPARC)
6030 void cpu_save(QEMUFile *f, void *opaque)
6032 CPUState *env = opaque;
6033 int i;
6034 uint32_t tmp;
6036 for(i = 0; i < 8; i++)
6037 qemu_put_betls(f, &env->gregs[i]);
6038 for(i = 0; i < NWINDOWS * 16; i++)
6039 qemu_put_betls(f, &env->regbase[i]);
6041 /* FPU */
6042 for(i = 0; i < TARGET_FPREGS; i++) {
6043 union {
6044 float32 f;
6045 uint32_t i;
6046 } u;
6047 u.f = env->fpr[i];
6048 qemu_put_be32(f, u.i);
6051 qemu_put_betls(f, &env->pc);
6052 qemu_put_betls(f, &env->npc);
6053 qemu_put_betls(f, &env->y);
6054 tmp = GET_PSR(env);
6055 qemu_put_be32(f, tmp);
6056 qemu_put_betls(f, &env->fsr);
6057 qemu_put_betls(f, &env->tbr);
6058 #ifndef TARGET_SPARC64
6059 qemu_put_be32s(f, &env->wim);
6060 /* MMU */
6061 for(i = 0; i < 16; i++)
6062 qemu_put_be32s(f, &env->mmuregs[i]);
6063 #endif
6066 int cpu_load(QEMUFile *f, void *opaque, int version_id)
6068 CPUState *env = opaque;
6069 int i;
6070 uint32_t tmp;
6072 for(i = 0; i < 8; i++)
6073 qemu_get_betls(f, &env->gregs[i]);
6074 for(i = 0; i < NWINDOWS * 16; i++)
6075 qemu_get_betls(f, &env->regbase[i]);
6077 /* FPU */
6078 for(i = 0; i < TARGET_FPREGS; i++) {
6079 union {
6080 float32 f;
6081 uint32_t i;
6082 } u;
6083 u.i = qemu_get_be32(f);
6084 env->fpr[i] = u.f;
6087 qemu_get_betls(f, &env->pc);
6088 qemu_get_betls(f, &env->npc);
6089 qemu_get_betls(f, &env->y);
6090 tmp = qemu_get_be32(f);
6091 env->cwp = 0; /* needed to ensure that the wrapping registers are
6092 correctly updated */
6093 PUT_PSR(env, tmp);
6094 qemu_get_betls(f, &env->fsr);
6095 qemu_get_betls(f, &env->tbr);
6096 #ifndef TARGET_SPARC64
6097 qemu_get_be32s(f, &env->wim);
6098 /* MMU */
6099 for(i = 0; i < 16; i++)
6100 qemu_get_be32s(f, &env->mmuregs[i]);
6101 #endif
6102 tlb_flush(env, 1);
6103 return 0;
6106 #elif defined(TARGET_ARM)
6108 void cpu_save(QEMUFile *f, void *opaque)
6110 int i;
6111 CPUARMState *env = (CPUARMState *)opaque;
6113 for (i = 0; i < 16; i++) {
6114 qemu_put_be32(f, env->regs[i]);
6116 qemu_put_be32(f, cpsr_read(env));
6117 qemu_put_be32(f, env->spsr);
6118 for (i = 0; i < 6; i++) {
6119 qemu_put_be32(f, env->banked_spsr[i]);
6120 qemu_put_be32(f, env->banked_r13[i]);
6121 qemu_put_be32(f, env->banked_r14[i]);
6123 for (i = 0; i < 5; i++) {
6124 qemu_put_be32(f, env->usr_regs[i]);
6125 qemu_put_be32(f, env->fiq_regs[i]);
6127 qemu_put_be32(f, env->cp15.c0_cpuid);
6128 qemu_put_be32(f, env->cp15.c0_cachetype);
6129 qemu_put_be32(f, env->cp15.c1_sys);
6130 qemu_put_be32(f, env->cp15.c1_coproc);
6131 qemu_put_be32(f, env->cp15.c1_xscaleauxcr);
6132 qemu_put_be32(f, env->cp15.c2_base);
6133 qemu_put_be32(f, env->cp15.c2_data);
6134 qemu_put_be32(f, env->cp15.c2_insn);
6135 qemu_put_be32(f, env->cp15.c3);
6136 qemu_put_be32(f, env->cp15.c5_insn);
6137 qemu_put_be32(f, env->cp15.c5_data);
6138 for (i = 0; i < 8; i++) {
6139 qemu_put_be32(f, env->cp15.c6_region[i]);
6141 qemu_put_be32(f, env->cp15.c6_insn);
6142 qemu_put_be32(f, env->cp15.c6_data);
6143 qemu_put_be32(f, env->cp15.c9_insn);
6144 qemu_put_be32(f, env->cp15.c9_data);
6145 qemu_put_be32(f, env->cp15.c13_fcse);
6146 qemu_put_be32(f, env->cp15.c13_context);
6147 qemu_put_be32(f, env->cp15.c15_cpar);
6149 qemu_put_be32(f, env->features);
6151 if (arm_feature(env, ARM_FEATURE_VFP)) {
6152 for (i = 0; i < 16; i++) {
6153 CPU_DoubleU u;
6154 u.d = env->vfp.regs[i];
6155 qemu_put_be32(f, u.l.upper);
6156 qemu_put_be32(f, u.l.lower);
6158 for (i = 0; i < 16; i++) {
6159 qemu_put_be32(f, env->vfp.xregs[i]);
6162 /* TODO: Should use proper FPSCR access functions. */
6163 qemu_put_be32(f, env->vfp.vec_len);
6164 qemu_put_be32(f, env->vfp.vec_stride);
6167 if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
6168 for (i = 0; i < 16; i++) {
6169 qemu_put_be64(f, env->iwmmxt.regs[i]);
6171 for (i = 0; i < 16; i++) {
6172 qemu_put_be32(f, env->iwmmxt.cregs[i]);
6177 int cpu_load(QEMUFile *f, void *opaque, int version_id)
6179 CPUARMState *env = (CPUARMState *)opaque;
6180 int i;
6182 if (version_id != 0)
6183 return -EINVAL;
6185 for (i = 0; i < 16; i++) {
6186 env->regs[i] = qemu_get_be32(f);
6188 cpsr_write(env, qemu_get_be32(f), 0xffffffff);
6189 env->spsr = qemu_get_be32(f);
6190 for (i = 0; i < 6; i++) {
6191 env->banked_spsr[i] = qemu_get_be32(f);
6192 env->banked_r13[i] = qemu_get_be32(f);
6193 env->banked_r14[i] = qemu_get_be32(f);
6195 for (i = 0; i < 5; i++) {
6196 env->usr_regs[i] = qemu_get_be32(f);
6197 env->fiq_regs[i] = qemu_get_be32(f);
6199 env->cp15.c0_cpuid = qemu_get_be32(f);
6200 env->cp15.c0_cachetype = qemu_get_be32(f);
6201 env->cp15.c1_sys = qemu_get_be32(f);
6202 env->cp15.c1_coproc = qemu_get_be32(f);
6203 env->cp15.c1_xscaleauxcr = qemu_get_be32(f);
6204 env->cp15.c2_base = qemu_get_be32(f);
6205 env->cp15.c2_data = qemu_get_be32(f);
6206 env->cp15.c2_insn = qemu_get_be32(f);
6207 env->cp15.c3 = qemu_get_be32(f);
6208 env->cp15.c5_insn = qemu_get_be32(f);
6209 env->cp15.c5_data = qemu_get_be32(f);
6210 for (i = 0; i < 8; i++) {
6211 env->cp15.c6_region[i] = qemu_get_be32(f);
6213 env->cp15.c6_insn = qemu_get_be32(f);
6214 env->cp15.c6_data = qemu_get_be32(f);
6215 env->cp15.c9_insn = qemu_get_be32(f);
6216 env->cp15.c9_data = qemu_get_be32(f);
6217 env->cp15.c13_fcse = qemu_get_be32(f);
6218 env->cp15.c13_context = qemu_get_be32(f);
6219 env->cp15.c15_cpar = qemu_get_be32(f);
6221 env->features = qemu_get_be32(f);
6223 if (arm_feature(env, ARM_FEATURE_VFP)) {
6224 for (i = 0; i < 16; i++) {
6225 CPU_DoubleU u;
6226 u.l.upper = qemu_get_be32(f);
6227 u.l.lower = qemu_get_be32(f);
6228 env->vfp.regs[i] = u.d;
6230 for (i = 0; i < 16; i++) {
6231 env->vfp.xregs[i] = qemu_get_be32(f);
6234 /* TODO: Should use proper FPSCR access functions. */
6235 env->vfp.vec_len = qemu_get_be32(f);
6236 env->vfp.vec_stride = qemu_get_be32(f);
6239 if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
6240 for (i = 0; i < 16; i++) {
6241 env->iwmmxt.regs[i] = qemu_get_be64(f);
6243 for (i = 0; i < 16; i++) {
6244 env->iwmmxt.cregs[i] = qemu_get_be32(f);
6248 return 0;
6251 #else
6253 #warning No CPU save/restore functions
6255 #endif
6257 /***********************************************************/
6258 /* ram save/restore */
6260 static int ram_get_page(QEMUFile *f, uint8_t *buf, int len)
6262 int v;
6264 v = qemu_get_byte(f);
6265 switch(v) {
6266 case 0:
6267 if (qemu_get_buffer(f, buf, len) != len)
6268 return -EIO;
6269 break;
6270 case 1:
6271 v = qemu_get_byte(f);
6272 memset(buf, v, len);
6273 break;
6274 default:
6275 return -EINVAL;
6277 return 0;
6280 static int ram_load_v1(QEMUFile *f, void *opaque)
6282 int i, ret;
6284 if (qemu_get_be32(f) != phys_ram_size)
6285 return -EINVAL;
6286 for(i = 0; i < phys_ram_size; i+= TARGET_PAGE_SIZE) {
6287 ret = ram_get_page(f, phys_ram_base + i, TARGET_PAGE_SIZE);
6288 if (ret)
6289 return ret;
6291 return 0;
6294 #define BDRV_HASH_BLOCK_SIZE 1024
6295 #define IOBUF_SIZE 4096
6296 #define RAM_CBLOCK_MAGIC 0xfabe
6298 typedef struct RamCompressState {
6299 z_stream zstream;
6300 QEMUFile *f;
6301 uint8_t buf[IOBUF_SIZE];
6302 } RamCompressState;
6304 static int ram_compress_open(RamCompressState *s, QEMUFile *f)
6306 int ret;
6307 memset(s, 0, sizeof(*s));
6308 s->f = f;
6309 ret = deflateInit2(&s->zstream, 1,
6310 Z_DEFLATED, 15,
6311 9, Z_DEFAULT_STRATEGY);
6312 if (ret != Z_OK)
6313 return -1;
6314 s->zstream.avail_out = IOBUF_SIZE;
6315 s->zstream.next_out = s->buf;
6316 return 0;
6319 static void ram_put_cblock(RamCompressState *s, const uint8_t *buf, int len)
6321 qemu_put_be16(s->f, RAM_CBLOCK_MAGIC);
6322 qemu_put_be16(s->f, len);
6323 qemu_put_buffer(s->f, buf, len);
6326 static int ram_compress_buf(RamCompressState *s, const uint8_t *buf, int len)
6328 int ret;
6330 s->zstream.avail_in = len;
6331 s->zstream.next_in = (uint8_t *)buf;
6332 while (s->zstream.avail_in > 0) {
6333 ret = deflate(&s->zstream, Z_NO_FLUSH);
6334 if (ret != Z_OK)
6335 return -1;
6336 if (s->zstream.avail_out == 0) {
6337 ram_put_cblock(s, s->buf, IOBUF_SIZE);
6338 s->zstream.avail_out = IOBUF_SIZE;
6339 s->zstream.next_out = s->buf;
6342 return 0;
6345 static void ram_compress_close(RamCompressState *s)
6347 int len, ret;
6349 /* compress last bytes */
6350 for(;;) {
6351 ret = deflate(&s->zstream, Z_FINISH);
6352 if (ret == Z_OK || ret == Z_STREAM_END) {
6353 len = IOBUF_SIZE - s->zstream.avail_out;
6354 if (len > 0) {
6355 ram_put_cblock(s, s->buf, len);
6357 s->zstream.avail_out = IOBUF_SIZE;
6358 s->zstream.next_out = s->buf;
6359 if (ret == Z_STREAM_END)
6360 break;
6361 } else {
6362 goto fail;
6365 fail:
6366 deflateEnd(&s->zstream);
6369 typedef struct RamDecompressState {
6370 z_stream zstream;
6371 QEMUFile *f;
6372 uint8_t buf[IOBUF_SIZE];
6373 } RamDecompressState;
6375 static int ram_decompress_open(RamDecompressState *s, QEMUFile *f)
6377 int ret;
6378 memset(s, 0, sizeof(*s));
6379 s->f = f;
6380 ret = inflateInit(&s->zstream);
6381 if (ret != Z_OK)
6382 return -1;
6383 return 0;
6386 static int ram_decompress_buf(RamDecompressState *s, uint8_t *buf, int len)
6388 int ret, clen;
6390 s->zstream.avail_out = len;
6391 s->zstream.next_out = buf;
6392 while (s->zstream.avail_out > 0) {
6393 if (s->zstream.avail_in == 0) {
6394 if (qemu_get_be16(s->f) != RAM_CBLOCK_MAGIC)
6395 return -1;
6396 clen = qemu_get_be16(s->f);
6397 if (clen > IOBUF_SIZE)
6398 return -1;
6399 qemu_get_buffer(s->f, s->buf, clen);
6400 s->zstream.avail_in = clen;
6401 s->zstream.next_in = s->buf;
6403 ret = inflate(&s->zstream, Z_PARTIAL_FLUSH);
6404 if (ret != Z_OK && ret != Z_STREAM_END) {
6405 return -1;
6408 return 0;
6411 static void ram_decompress_close(RamDecompressState *s)
6413 inflateEnd(&s->zstream);
6416 static void ram_save(QEMUFile *f, void *opaque)
6418 int i;
6419 RamCompressState s1, *s = &s1;
6420 uint8_t buf[10];
6422 qemu_put_be32(f, phys_ram_size);
6423 if (ram_compress_open(s, f) < 0)
6424 return;
6425 for(i = 0; i < phys_ram_size; i+= BDRV_HASH_BLOCK_SIZE) {
6426 #if 0
6427 if (tight_savevm_enabled) {
6428 int64_t sector_num;
6429 int j;
6431 /* find if the memory block is available on a virtual
6432 block device */
6433 sector_num = -1;
6434 for(j = 0; j < MAX_DISKS; j++) {
6435 if (bs_table[j]) {
6436 sector_num = bdrv_hash_find(bs_table[j],
6437 phys_ram_base + i, BDRV_HASH_BLOCK_SIZE);
6438 if (sector_num >= 0)
6439 break;
6442 if (j == MAX_DISKS)
6443 goto normal_compress;
6444 buf[0] = 1;
6445 buf[1] = j;
6446 cpu_to_be64wu((uint64_t *)(buf + 2), sector_num);
6447 ram_compress_buf(s, buf, 10);
6448 } else
6449 #endif
6451 // normal_compress:
6452 buf[0] = 0;
6453 ram_compress_buf(s, buf, 1);
6454 ram_compress_buf(s, phys_ram_base + i, BDRV_HASH_BLOCK_SIZE);
6457 ram_compress_close(s);
6460 static int ram_load(QEMUFile *f, void *opaque, int version_id)
6462 RamDecompressState s1, *s = &s1;
6463 uint8_t buf[10];
6464 int i;
6466 if (version_id == 1)
6467 return ram_load_v1(f, opaque);
6468 if (version_id != 2)
6469 return -EINVAL;
6470 if (qemu_get_be32(f) != phys_ram_size)
6471 return -EINVAL;
6472 if (ram_decompress_open(s, f) < 0)
6473 return -EINVAL;
6474 for(i = 0; i < phys_ram_size; i+= BDRV_HASH_BLOCK_SIZE) {
6475 if (ram_decompress_buf(s, buf, 1) < 0) {
6476 fprintf(stderr, "Error while reading ram block header\n");
6477 goto error;
6479 if (buf[0] == 0) {
6480 if (ram_decompress_buf(s, phys_ram_base + i, BDRV_HASH_BLOCK_SIZE) < 0) {
6481 fprintf(stderr, "Error while reading ram block address=0x%08x", i);
6482 goto error;
6484 } else
6485 #if 0
6486 if (buf[0] == 1) {
6487 int bs_index;
6488 int64_t sector_num;
6490 ram_decompress_buf(s, buf + 1, 9);
6491 bs_index = buf[1];
6492 sector_num = be64_to_cpupu((const uint64_t *)(buf + 2));
6493 if (bs_index >= MAX_DISKS || bs_table[bs_index] == NULL) {
6494 fprintf(stderr, "Invalid block device index %d\n", bs_index);
6495 goto error;
6497 if (bdrv_read(bs_table[bs_index], sector_num, phys_ram_base + i,
6498 BDRV_HASH_BLOCK_SIZE / 512) < 0) {
6499 fprintf(stderr, "Error while reading sector %d:%" PRId64 "\n",
6500 bs_index, sector_num);
6501 goto error;
6503 } else
6504 #endif
6506 error:
6507 printf("Error block header\n");
6508 return -EINVAL;
6511 ram_decompress_close(s);
6512 return 0;
6515 /***********************************************************/
6516 /* bottom halves (can be seen as timers which expire ASAP) */
6518 struct QEMUBH {
6519 QEMUBHFunc *cb;
6520 void *opaque;
6521 int scheduled;
6522 QEMUBH *next;
6525 static QEMUBH *first_bh = NULL;
6527 QEMUBH *qemu_bh_new(QEMUBHFunc *cb, void *opaque)
6529 QEMUBH *bh;
6530 bh = qemu_mallocz(sizeof(QEMUBH));
6531 if (!bh)
6532 return NULL;
6533 bh->cb = cb;
6534 bh->opaque = opaque;
6535 return bh;
6538 int qemu_bh_poll(void)
6540 QEMUBH *bh, **pbh;
6541 int ret;
6543 ret = 0;
6544 for(;;) {
6545 pbh = &first_bh;
6546 bh = *pbh;
6547 if (!bh)
6548 break;
6549 ret = 1;
6550 *pbh = bh->next;
6551 bh->scheduled = 0;
6552 bh->cb(bh->opaque);
6554 return ret;
6557 void qemu_bh_schedule(QEMUBH *bh)
6559 CPUState *env = cpu_single_env;
6560 if (bh->scheduled)
6561 return;
6562 bh->scheduled = 1;
6563 bh->next = first_bh;
6564 first_bh = bh;
6566 /* stop the currently executing CPU to execute the BH ASAP */
6567 if (env) {
6568 cpu_interrupt(env, CPU_INTERRUPT_EXIT);
6572 void qemu_bh_cancel(QEMUBH *bh)
6574 QEMUBH **pbh;
6575 if (bh->scheduled) {
6576 pbh = &first_bh;
6577 while (*pbh != bh)
6578 pbh = &(*pbh)->next;
6579 *pbh = bh->next;
6580 bh->scheduled = 0;
6584 void qemu_bh_delete(QEMUBH *bh)
6586 qemu_bh_cancel(bh);
6587 qemu_free(bh);
6590 /***********************************************************/
6591 /* machine registration */
6593 QEMUMachine *first_machine = NULL;
6595 int qemu_register_machine(QEMUMachine *m)
6597 QEMUMachine **pm;
6598 pm = &first_machine;
6599 while (*pm != NULL)
6600 pm = &(*pm)->next;
6601 m->next = NULL;
6602 *pm = m;
6603 return 0;
6606 QEMUMachine *find_machine(const char *name)
6608 QEMUMachine *m;
6610 for(m = first_machine; m != NULL; m = m->next) {
6611 if (!strcmp(m->name, name))
6612 return m;
6614 return NULL;
6617 /***********************************************************/
6618 /* main execution loop */
6620 void gui_update(void *opaque)
6622 DisplayState *ds = opaque;
6623 ds->dpy_refresh(ds);
6624 qemu_mod_timer(ds->gui_timer, GUI_REFRESH_INTERVAL + qemu_get_clock(rt_clock));
6627 struct vm_change_state_entry {
6628 VMChangeStateHandler *cb;
6629 void *opaque;
6630 LIST_ENTRY (vm_change_state_entry) entries;
6633 static LIST_HEAD(vm_change_state_head, vm_change_state_entry) vm_change_state_head;
6635 VMChangeStateEntry *qemu_add_vm_change_state_handler(VMChangeStateHandler *cb,
6636 void *opaque)
6638 VMChangeStateEntry *e;
6640 e = qemu_mallocz(sizeof (*e));
6641 if (!e)
6642 return NULL;
6644 e->cb = cb;
6645 e->opaque = opaque;
6646 LIST_INSERT_HEAD(&vm_change_state_head, e, entries);
6647 return e;
6650 void qemu_del_vm_change_state_handler(VMChangeStateEntry *e)
6652 LIST_REMOVE (e, entries);
6653 qemu_free (e);
6656 static void vm_state_notify(int running)
6658 VMChangeStateEntry *e;
6660 for (e = vm_change_state_head.lh_first; e; e = e->entries.le_next) {
6661 e->cb(e->opaque, running);
6665 /* XXX: support several handlers */
6666 static VMStopHandler *vm_stop_cb;
6667 static void *vm_stop_opaque;
6669 int qemu_add_vm_stop_handler(VMStopHandler *cb, void *opaque)
6671 vm_stop_cb = cb;
6672 vm_stop_opaque = opaque;
6673 return 0;
6676 void qemu_del_vm_stop_handler(VMStopHandler *cb, void *opaque)
6678 vm_stop_cb = NULL;
6681 void vm_start(void)
6683 if (!vm_running) {
6684 cpu_enable_ticks();
6685 vm_running = 1;
6686 vm_state_notify(1);
6687 qemu_rearm_alarm_timer(alarm_timer);
6691 void vm_stop(int reason)
6693 if (vm_running) {
6694 cpu_disable_ticks();
6695 vm_running = 0;
6696 if (reason != 0) {
6697 if (vm_stop_cb) {
6698 vm_stop_cb(vm_stop_opaque, reason);
6701 vm_state_notify(0);
6705 /* reset/shutdown handler */
6707 typedef struct QEMUResetEntry {
6708 QEMUResetHandler *func;
6709 void *opaque;
6710 struct QEMUResetEntry *next;
6711 } QEMUResetEntry;
6713 static QEMUResetEntry *first_reset_entry;
6714 static int reset_requested;
6715 static int shutdown_requested;
6716 static int powerdown_requested;
6718 void qemu_register_reset(QEMUResetHandler *func, void *opaque)
6720 QEMUResetEntry **pre, *re;
6722 pre = &first_reset_entry;
6723 while (*pre != NULL)
6724 pre = &(*pre)->next;
6725 re = qemu_mallocz(sizeof(QEMUResetEntry));
6726 re->func = func;
6727 re->opaque = opaque;
6728 re->next = NULL;
6729 *pre = re;
6732 static void qemu_system_reset(void)
6734 QEMUResetEntry *re;
6736 /* reset all devices */
6737 for(re = first_reset_entry; re != NULL; re = re->next) {
6738 re->func(re->opaque);
6742 void qemu_system_reset_request(void)
6744 if (no_reboot) {
6745 shutdown_requested = 1;
6746 } else {
6747 reset_requested = 1;
6749 if (cpu_single_env)
6750 cpu_interrupt(cpu_single_env, CPU_INTERRUPT_EXIT);
6753 void qemu_system_shutdown_request(void)
6755 shutdown_requested = 1;
6756 if (cpu_single_env)
6757 cpu_interrupt(cpu_single_env, CPU_INTERRUPT_EXIT);
6760 void qemu_system_powerdown_request(void)
6762 powerdown_requested = 1;
6763 if (cpu_single_env)
6764 cpu_interrupt(cpu_single_env, CPU_INTERRUPT_EXIT);
6767 void main_loop_wait(int timeout)
6769 IOHandlerRecord *ioh;
6770 fd_set rfds, wfds, xfds;
6771 int ret, nfds;
6772 #ifdef _WIN32
6773 int ret2, i;
6774 #endif
6775 struct timeval tv;
6776 PollingEntry *pe;
6779 /* XXX: need to suppress polling by better using win32 events */
6780 ret = 0;
6781 for(pe = first_polling_entry; pe != NULL; pe = pe->next) {
6782 ret |= pe->func(pe->opaque);
6784 #ifdef _WIN32
6785 if (ret == 0) {
6786 int err;
6787 WaitObjects *w = &wait_objects;
6789 ret = WaitForMultipleObjects(w->num, w->events, FALSE, timeout);
6790 if (WAIT_OBJECT_0 + 0 <= ret && ret <= WAIT_OBJECT_0 + w->num - 1) {
6791 if (w->func[ret - WAIT_OBJECT_0])
6792 w->func[ret - WAIT_OBJECT_0](w->opaque[ret - WAIT_OBJECT_0]);
6794 /* Check for additional signaled events */
6795 for(i = (ret - WAIT_OBJECT_0 + 1); i < w->num; i++) {
6797 /* Check if event is signaled */
6798 ret2 = WaitForSingleObject(w->events[i], 0);
6799 if(ret2 == WAIT_OBJECT_0) {
6800 if (w->func[i])
6801 w->func[i](w->opaque[i]);
6802 } else if (ret2 == WAIT_TIMEOUT) {
6803 } else {
6804 err = GetLastError();
6805 fprintf(stderr, "WaitForSingleObject error %d %d\n", i, err);
6808 } else if (ret == WAIT_TIMEOUT) {
6809 } else {
6810 err = GetLastError();
6811 fprintf(stderr, "WaitForMultipleObjects error %d %d\n", ret, err);
6814 #endif
6815 /* poll any events */
6816 /* XXX: separate device handlers from system ones */
6817 nfds = -1;
6818 FD_ZERO(&rfds);
6819 FD_ZERO(&wfds);
6820 FD_ZERO(&xfds);
6821 for(ioh = first_io_handler; ioh != NULL; ioh = ioh->next) {
6822 if (ioh->deleted)
6823 continue;
6824 if (ioh->fd_read &&
6825 (!ioh->fd_read_poll ||
6826 ioh->fd_read_poll(ioh->opaque) != 0)) {
6827 FD_SET(ioh->fd, &rfds);
6828 if (ioh->fd > nfds)
6829 nfds = ioh->fd;
6831 if (ioh->fd_write) {
6832 FD_SET(ioh->fd, &wfds);
6833 if (ioh->fd > nfds)
6834 nfds = ioh->fd;
6838 tv.tv_sec = 0;
6839 #ifdef _WIN32
6840 tv.tv_usec = 0;
6841 #else
6842 tv.tv_usec = timeout * 1000;
6843 #endif
6844 #if defined(CONFIG_SLIRP)
6845 if (slirp_inited) {
6846 slirp_select_fill(&nfds, &rfds, &wfds, &xfds);
6848 #endif
6849 ret = select(nfds + 1, &rfds, &wfds, &xfds, &tv);
6850 if (ret > 0) {
6851 IOHandlerRecord **pioh;
6853 for(ioh = first_io_handler; ioh != NULL; ioh = ioh->next) {
6854 if (!ioh->deleted && ioh->fd_read && FD_ISSET(ioh->fd, &rfds)) {
6855 ioh->fd_read(ioh->opaque);
6857 if (!ioh->deleted && ioh->fd_write && FD_ISSET(ioh->fd, &wfds)) {
6858 ioh->fd_write(ioh->opaque);
6862 /* remove deleted IO handlers */
6863 pioh = &first_io_handler;
6864 while (*pioh) {
6865 ioh = *pioh;
6866 if (ioh->deleted) {
6867 *pioh = ioh->next;
6868 qemu_free(ioh);
6869 } else
6870 pioh = &ioh->next;
6873 #if defined(CONFIG_SLIRP)
6874 if (slirp_inited) {
6875 if (ret < 0) {
6876 FD_ZERO(&rfds);
6877 FD_ZERO(&wfds);
6878 FD_ZERO(&xfds);
6880 slirp_select_poll(&rfds, &wfds, &xfds);
6882 #endif
6883 qemu_aio_poll();
6885 if (vm_running) {
6886 qemu_run_timers(&active_timers[QEMU_TIMER_VIRTUAL],
6887 qemu_get_clock(vm_clock));
6888 /* run dma transfers, if any */
6889 DMA_run();
6892 /* real time timers */
6893 qemu_run_timers(&active_timers[QEMU_TIMER_REALTIME],
6894 qemu_get_clock(rt_clock));
6896 /* Check bottom-halves last in case any of the earlier events triggered
6897 them. */
6898 qemu_bh_poll();
6902 static CPUState *cur_cpu;
6904 int main_loop(void)
6906 int ret, timeout;
6907 #ifdef CONFIG_PROFILER
6908 int64_t ti;
6909 #endif
6910 CPUState *env;
6912 cur_cpu = first_cpu;
6913 for(;;) {
6914 if (vm_running) {
6916 env = cur_cpu;
6917 for(;;) {
6918 /* get next cpu */
6919 env = env->next_cpu;
6920 if (!env)
6921 env = first_cpu;
6922 #ifdef CONFIG_PROFILER
6923 ti = profile_getclock();
6924 #endif
6925 ret = cpu_exec(env);
6926 #ifdef CONFIG_PROFILER
6927 qemu_time += profile_getclock() - ti;
6928 #endif
6929 if (ret == EXCP_HLT) {
6930 /* Give the next CPU a chance to run. */
6931 cur_cpu = env;
6932 continue;
6934 if (ret != EXCP_HALTED)
6935 break;
6936 /* all CPUs are halted ? */
6937 if (env == cur_cpu)
6938 break;
6940 cur_cpu = env;
6942 if (shutdown_requested) {
6943 ret = EXCP_INTERRUPT;
6944 break;
6946 if (reset_requested) {
6947 reset_requested = 0;
6948 qemu_system_reset();
6949 ret = EXCP_INTERRUPT;
6951 if (powerdown_requested) {
6952 powerdown_requested = 0;
6953 qemu_system_powerdown();
6954 ret = EXCP_INTERRUPT;
6956 if (ret == EXCP_DEBUG) {
6957 vm_stop(EXCP_DEBUG);
6959 /* If all cpus are halted then wait until the next IRQ */
6960 /* XXX: use timeout computed from timers */
6961 if (ret == EXCP_HALTED)
6962 timeout = 10;
6963 else
6964 timeout = 0;
6965 } else {
6966 timeout = 10;
6968 #ifdef CONFIG_PROFILER
6969 ti = profile_getclock();
6970 #endif
6971 main_loop_wait(timeout);
6972 #ifdef CONFIG_PROFILER
6973 dev_time += profile_getclock() - ti;
6974 #endif
6976 cpu_disable_ticks();
6977 return ret;
6980 static void help(int exitcode)
6982 printf("QEMU PC emulator version " QEMU_VERSION ", Copyright (c) 2003-2007 Fabrice Bellard\n"
6983 "usage: %s [options] [disk_image]\n"
6984 "\n"
6985 "'disk_image' is a raw hard image image for IDE hard disk 0\n"
6986 "\n"
6987 "Standard options:\n"
6988 "-M machine select emulated machine (-M ? for list)\n"
6989 "-cpu cpu select CPU (-cpu ? for list)\n"
6990 "-fda/-fdb file use 'file' as floppy disk 0/1 image\n"
6991 "-hda/-hdb file use 'file' as IDE hard disk 0/1 image\n"
6992 "-hdc/-hdd file use 'file' as IDE hard disk 2/3 image\n"
6993 "-cdrom file use 'file' as IDE cdrom image (cdrom is ide1 master)\n"
6994 "-mtdblock file use 'file' as on-board Flash memory image\n"
6995 "-sd file use 'file' as SecureDigital card image\n"
6996 "-pflash file use 'file' as a parallel flash image\n"
6997 "-boot [a|c|d|n] boot on floppy (a), hard disk (c), CD-ROM (d), or network (n)\n"
6998 "-snapshot write to temporary files instead of disk image files\n"
6999 #ifdef CONFIG_SDL
7000 "-no-frame open SDL window without a frame and window decorations\n"
7001 "-alt-grab use Ctrl-Alt-Shift to grab mouse (instead of Ctrl-Alt)\n"
7002 "-no-quit disable SDL window close capability\n"
7003 #endif
7004 #ifdef TARGET_I386
7005 "-no-fd-bootchk disable boot signature checking for floppy disks\n"
7006 #endif
7007 "-m megs set virtual RAM size to megs MB [default=%d]\n"
7008 "-smp n set the number of CPUs to 'n' [default=1]\n"
7009 "-nographic disable graphical output and redirect serial I/Os to console\n"
7010 "-portrait rotate graphical output 90 deg left (only PXA LCD)\n"
7011 #ifndef _WIN32
7012 "-k language use keyboard layout (for example \"fr\" for French)\n"
7013 #endif
7014 #ifdef HAS_AUDIO
7015 "-audio-help print list of audio drivers and their options\n"
7016 "-soundhw c1,... enable audio support\n"
7017 " and only specified sound cards (comma separated list)\n"
7018 " use -soundhw ? to get the list of supported cards\n"
7019 " use -soundhw all to enable all of them\n"
7020 #endif
7021 "-localtime set the real time clock to local time [default=utc]\n"
7022 "-full-screen start in full screen\n"
7023 #ifdef TARGET_I386
7024 "-win2k-hack use it when installing Windows 2000 to avoid a disk full bug\n"
7025 #endif
7026 "-usb enable the USB driver (will be the default soon)\n"
7027 "-usbdevice name add the host or guest USB device 'name'\n"
7028 #if defined(TARGET_PPC) || defined(TARGET_SPARC)
7029 "-g WxH[xDEPTH] Set the initial graphical resolution and depth\n"
7030 #endif
7031 "-name string set the name of the guest\n"
7032 "\n"
7033 "Network options:\n"
7034 "-net nic[,vlan=n][,macaddr=addr][,model=type]\n"
7035 " create a new Network Interface Card and connect it to VLAN 'n'\n"
7036 #ifdef CONFIG_SLIRP
7037 "-net user[,vlan=n][,hostname=host]\n"
7038 " connect the user mode network stack to VLAN 'n' and send\n"
7039 " hostname 'host' to DHCP clients\n"
7040 #endif
7041 #ifdef _WIN32
7042 "-net tap[,vlan=n],ifname=name\n"
7043 " connect the host TAP network interface to VLAN 'n'\n"
7044 #else
7045 "-net tap[,vlan=n][,fd=h][,ifname=name][,script=file][,downscript=dfile]\n"
7046 " connect the host TAP network interface to VLAN 'n' and use the\n"
7047 " network scripts 'file' (default=%s)\n"
7048 " and 'dfile' (default=%s);\n"
7049 " use '[down]script=no' to disable script execution;\n"
7050 " use 'fd=h' to connect to an already opened TAP interface\n"
7051 #endif
7052 "-net socket[,vlan=n][,fd=h][,listen=[host]:port][,connect=host:port]\n"
7053 " connect the vlan 'n' to another VLAN using a socket connection\n"
7054 "-net socket[,vlan=n][,fd=h][,mcast=maddr:port]\n"
7055 " connect the vlan 'n' to multicast maddr and port\n"
7056 "-net none use it alone to have zero network devices; if no -net option\n"
7057 " is provided, the default is '-net nic -net user'\n"
7058 "\n"
7059 #ifdef CONFIG_SLIRP
7060 "-tftp dir allow tftp access to files in dir [-net user]\n"
7061 "-bootp file advertise file in BOOTP replies\n"
7062 #ifndef _WIN32
7063 "-smb dir allow SMB access to files in 'dir' [-net user]\n"
7064 #endif
7065 "-redir [tcp|udp]:host-port:[guest-host]:guest-port\n"
7066 " redirect TCP or UDP connections from host to guest [-net user]\n"
7067 #endif
7068 "\n"
7069 "Linux boot specific:\n"
7070 "-kernel bzImage use 'bzImage' as kernel image\n"
7071 "-append cmdline use 'cmdline' as kernel command line\n"
7072 "-initrd file use 'file' as initial ram disk\n"
7073 "\n"
7074 "Debug/Expert options:\n"
7075 "-monitor dev redirect the monitor to char device 'dev'\n"
7076 "-serial dev redirect the serial port to char device 'dev'\n"
7077 "-parallel dev redirect the parallel port to char device 'dev'\n"
7078 "-pidfile file Write PID to 'file'\n"
7079 "-S freeze CPU at startup (use 'c' to start execution)\n"
7080 "-s wait gdb connection to port\n"
7081 "-p port set gdb connection port [default=%s]\n"
7082 "-d item1,... output log to %s (use -d ? for a list of log items)\n"
7083 "-hdachs c,h,s[,t] force hard disk 0 physical geometry and the optional BIOS\n"
7084 " translation (t=none or lba) (usually qemu can guess them)\n"
7085 "-L path set the directory for the BIOS, VGA BIOS and keymaps\n"
7086 #ifdef USE_KQEMU
7087 "-kernel-kqemu enable KQEMU full virtualization (default is user mode only)\n"
7088 "-no-kqemu disable KQEMU kernel module usage\n"
7089 #endif
7090 #ifdef USE_CODE_COPY
7091 "-no-code-copy disable code copy acceleration\n"
7092 #endif
7093 #ifdef TARGET_I386
7094 "-std-vga simulate a standard VGA card with VESA Bochs Extensions\n"
7095 " (default is CL-GD5446 PCI VGA)\n"
7096 "-no-acpi disable ACPI\n"
7097 #endif
7098 "-no-reboot exit instead of rebooting\n"
7099 "-loadvm file start right away with a saved state (loadvm in monitor)\n"
7100 "-vnc display start a VNC server on display\n"
7101 #ifndef _WIN32
7102 "-daemonize daemonize QEMU after initializing\n"
7103 #endif
7104 "-option-rom rom load a file, rom, into the option ROM space\n"
7105 #ifdef TARGET_SPARC
7106 "-prom-env variable=value set OpenBIOS nvram variables\n"
7107 #endif
7108 "-clock force the use of the given methods for timer alarm.\n"
7109 " To see what timers are available use -clock help\n"
7110 "\n"
7111 "During emulation, the following keys are useful:\n"
7112 "ctrl-alt-f toggle full screen\n"
7113 "ctrl-alt-n switch to virtual console 'n'\n"
7114 "ctrl-alt toggle mouse and keyboard grab\n"
7115 "\n"
7116 "When using -nographic, press 'ctrl-a h' to get some help.\n"
7118 "qemu",
7119 DEFAULT_RAM_SIZE,
7120 #ifndef _WIN32
7121 DEFAULT_NETWORK_SCRIPT,
7122 DEFAULT_NETWORK_DOWN_SCRIPT,
7123 #endif
7124 DEFAULT_GDBSTUB_PORT,
7125 "/tmp/qemu.log");
7126 exit(exitcode);
7129 #define HAS_ARG 0x0001
7131 enum {
7132 QEMU_OPTION_h,
7134 QEMU_OPTION_M,
7135 QEMU_OPTION_cpu,
7136 QEMU_OPTION_fda,
7137 QEMU_OPTION_fdb,
7138 QEMU_OPTION_hda,
7139 QEMU_OPTION_hdb,
7140 QEMU_OPTION_hdc,
7141 QEMU_OPTION_hdd,
7142 QEMU_OPTION_cdrom,
7143 QEMU_OPTION_mtdblock,
7144 QEMU_OPTION_sd,
7145 QEMU_OPTION_pflash,
7146 QEMU_OPTION_boot,
7147 QEMU_OPTION_snapshot,
7148 #ifdef TARGET_I386
7149 QEMU_OPTION_no_fd_bootchk,
7150 #endif
7151 QEMU_OPTION_m,
7152 QEMU_OPTION_nographic,
7153 QEMU_OPTION_portrait,
7154 #ifdef HAS_AUDIO
7155 QEMU_OPTION_audio_help,
7156 QEMU_OPTION_soundhw,
7157 #endif
7159 QEMU_OPTION_net,
7160 QEMU_OPTION_tftp,
7161 QEMU_OPTION_bootp,
7162 QEMU_OPTION_smb,
7163 QEMU_OPTION_redir,
7165 QEMU_OPTION_kernel,
7166 QEMU_OPTION_append,
7167 QEMU_OPTION_initrd,
7169 QEMU_OPTION_S,
7170 QEMU_OPTION_s,
7171 QEMU_OPTION_p,
7172 QEMU_OPTION_d,
7173 QEMU_OPTION_hdachs,
7174 QEMU_OPTION_L,
7175 QEMU_OPTION_bios,
7176 QEMU_OPTION_no_code_copy,
7177 QEMU_OPTION_k,
7178 QEMU_OPTION_localtime,
7179 QEMU_OPTION_cirrusvga,
7180 QEMU_OPTION_vmsvga,
7181 QEMU_OPTION_g,
7182 QEMU_OPTION_std_vga,
7183 QEMU_OPTION_echr,
7184 QEMU_OPTION_monitor,
7185 QEMU_OPTION_serial,
7186 QEMU_OPTION_parallel,
7187 QEMU_OPTION_loadvm,
7188 QEMU_OPTION_full_screen,
7189 QEMU_OPTION_no_frame,
7190 QEMU_OPTION_alt_grab,
7191 QEMU_OPTION_no_quit,
7192 QEMU_OPTION_pidfile,
7193 QEMU_OPTION_no_kqemu,
7194 QEMU_OPTION_kernel_kqemu,
7195 QEMU_OPTION_win2k_hack,
7196 QEMU_OPTION_usb,
7197 QEMU_OPTION_usbdevice,
7198 QEMU_OPTION_smp,
7199 QEMU_OPTION_vnc,
7200 QEMU_OPTION_no_acpi,
7201 QEMU_OPTION_no_reboot,
7202 QEMU_OPTION_show_cursor,
7203 QEMU_OPTION_daemonize,
7204 QEMU_OPTION_option_rom,
7205 QEMU_OPTION_semihosting,
7206 QEMU_OPTION_name,
7207 QEMU_OPTION_prom_env,
7208 QEMU_OPTION_old_param,
7209 QEMU_OPTION_clock,
7212 typedef struct QEMUOption {
7213 const char *name;
7214 int flags;
7215 int index;
7216 } QEMUOption;
7218 const QEMUOption qemu_options[] = {
7219 { "h", 0, QEMU_OPTION_h },
7220 { "help", 0, QEMU_OPTION_h },
7222 { "M", HAS_ARG, QEMU_OPTION_M },
7223 { "cpu", HAS_ARG, QEMU_OPTION_cpu },
7224 { "fda", HAS_ARG, QEMU_OPTION_fda },
7225 { "fdb", HAS_ARG, QEMU_OPTION_fdb },
7226 { "hda", HAS_ARG, QEMU_OPTION_hda },
7227 { "hdb", HAS_ARG, QEMU_OPTION_hdb },
7228 { "hdc", HAS_ARG, QEMU_OPTION_hdc },
7229 { "hdd", HAS_ARG, QEMU_OPTION_hdd },
7230 { "cdrom", HAS_ARG, QEMU_OPTION_cdrom },
7231 { "mtdblock", HAS_ARG, QEMU_OPTION_mtdblock },
7232 { "sd", HAS_ARG, QEMU_OPTION_sd },
7233 { "pflash", HAS_ARG, QEMU_OPTION_pflash },
7234 { "boot", HAS_ARG, QEMU_OPTION_boot },
7235 { "snapshot", 0, QEMU_OPTION_snapshot },
7236 #ifdef TARGET_I386
7237 { "no-fd-bootchk", 0, QEMU_OPTION_no_fd_bootchk },
7238 #endif
7239 { "m", HAS_ARG, QEMU_OPTION_m },
7240 { "nographic", 0, QEMU_OPTION_nographic },
7241 { "portrait", 0, QEMU_OPTION_portrait },
7242 { "k", HAS_ARG, QEMU_OPTION_k },
7243 #ifdef HAS_AUDIO
7244 { "audio-help", 0, QEMU_OPTION_audio_help },
7245 { "soundhw", HAS_ARG, QEMU_OPTION_soundhw },
7246 #endif
7248 { "net", HAS_ARG, QEMU_OPTION_net},
7249 #ifdef CONFIG_SLIRP
7250 { "tftp", HAS_ARG, QEMU_OPTION_tftp },
7251 { "bootp", HAS_ARG, QEMU_OPTION_bootp },
7252 #ifndef _WIN32
7253 { "smb", HAS_ARG, QEMU_OPTION_smb },
7254 #endif
7255 { "redir", HAS_ARG, QEMU_OPTION_redir },
7256 #endif
7258 { "kernel", HAS_ARG, QEMU_OPTION_kernel },
7259 { "append", HAS_ARG, QEMU_OPTION_append },
7260 { "initrd", HAS_ARG, QEMU_OPTION_initrd },
7262 { "S", 0, QEMU_OPTION_S },
7263 { "s", 0, QEMU_OPTION_s },
7264 { "p", HAS_ARG, QEMU_OPTION_p },
7265 { "d", HAS_ARG, QEMU_OPTION_d },
7266 { "hdachs", HAS_ARG, QEMU_OPTION_hdachs },
7267 { "L", HAS_ARG, QEMU_OPTION_L },
7268 { "bios", HAS_ARG, QEMU_OPTION_bios },
7269 { "no-code-copy", 0, QEMU_OPTION_no_code_copy },
7270 #ifdef USE_KQEMU
7271 { "no-kqemu", 0, QEMU_OPTION_no_kqemu },
7272 { "kernel-kqemu", 0, QEMU_OPTION_kernel_kqemu },
7273 #endif
7274 #if defined(TARGET_PPC) || defined(TARGET_SPARC)
7275 { "g", 1, QEMU_OPTION_g },
7276 #endif
7277 { "localtime", 0, QEMU_OPTION_localtime },
7278 { "std-vga", 0, QEMU_OPTION_std_vga },
7279 { "echr", HAS_ARG, QEMU_OPTION_echr },
7280 { "monitor", HAS_ARG, QEMU_OPTION_monitor },
7281 { "serial", HAS_ARG, QEMU_OPTION_serial },
7282 { "parallel", HAS_ARG, QEMU_OPTION_parallel },
7283 { "loadvm", HAS_ARG, QEMU_OPTION_loadvm },
7284 { "full-screen", 0, QEMU_OPTION_full_screen },
7285 #ifdef CONFIG_SDL
7286 { "no-frame", 0, QEMU_OPTION_no_frame },
7287 { "alt-grab", 0, QEMU_OPTION_alt_grab },
7288 { "no-quit", 0, QEMU_OPTION_no_quit },
7289 #endif
7290 { "pidfile", HAS_ARG, QEMU_OPTION_pidfile },
7291 { "win2k-hack", 0, QEMU_OPTION_win2k_hack },
7292 { "usbdevice", HAS_ARG, QEMU_OPTION_usbdevice },
7293 { "smp", HAS_ARG, QEMU_OPTION_smp },
7294 { "vnc", HAS_ARG, QEMU_OPTION_vnc },
7296 /* temporary options */
7297 { "usb", 0, QEMU_OPTION_usb },
7298 { "cirrusvga", 0, QEMU_OPTION_cirrusvga },
7299 { "vmwarevga", 0, QEMU_OPTION_vmsvga },
7300 { "no-acpi", 0, QEMU_OPTION_no_acpi },
7301 { "no-reboot", 0, QEMU_OPTION_no_reboot },
7302 { "show-cursor", 0, QEMU_OPTION_show_cursor },
7303 { "daemonize", 0, QEMU_OPTION_daemonize },
7304 { "option-rom", HAS_ARG, QEMU_OPTION_option_rom },
7305 #if defined(TARGET_ARM) || defined(TARGET_M68K)
7306 { "semihosting", 0, QEMU_OPTION_semihosting },
7307 #endif
7308 { "name", HAS_ARG, QEMU_OPTION_name },
7309 #if defined(TARGET_SPARC)
7310 { "prom-env", HAS_ARG, QEMU_OPTION_prom_env },
7311 #endif
7312 #if defined(TARGET_ARM)
7313 { "old-param", 0, QEMU_OPTION_old_param },
7314 #endif
7315 { "clock", HAS_ARG, QEMU_OPTION_clock },
7316 { NULL },
7319 #if defined (TARGET_I386) && defined(USE_CODE_COPY)
7321 /* this stack is only used during signal handling */
7322 #define SIGNAL_STACK_SIZE 32768
7324 static uint8_t *signal_stack;
7326 #endif
7328 /* password input */
7330 int qemu_key_check(BlockDriverState *bs, const char *name)
7332 char password[256];
7333 int i;
7335 if (!bdrv_is_encrypted(bs))
7336 return 0;
7338 term_printf("%s is encrypted.\n", name);
7339 for(i = 0; i < 3; i++) {
7340 monitor_readline("Password: ", 1, password, sizeof(password));
7341 if (bdrv_set_key(bs, password) == 0)
7342 return 0;
7343 term_printf("invalid password\n");
7345 return -EPERM;
7348 static BlockDriverState *get_bdrv(int index)
7350 BlockDriverState *bs;
7352 if (index < 4) {
7353 bs = bs_table[index];
7354 } else if (index < 6) {
7355 bs = fd_table[index - 4];
7356 } else {
7357 bs = NULL;
7359 return bs;
7362 static void read_passwords(void)
7364 BlockDriverState *bs;
7365 int i;
7367 for(i = 0; i < 6; i++) {
7368 bs = get_bdrv(i);
7369 if (bs)
7370 qemu_key_check(bs, bdrv_get_device_name(bs));
7374 /* XXX: currently we cannot use simultaneously different CPUs */
7375 void register_machines(void)
7377 #if defined(TARGET_I386)
7378 qemu_register_machine(&pc_machine);
7379 qemu_register_machine(&isapc_machine);
7380 #elif defined(TARGET_PPC)
7381 qemu_register_machine(&heathrow_machine);
7382 qemu_register_machine(&core99_machine);
7383 qemu_register_machine(&prep_machine);
7384 qemu_register_machine(&ref405ep_machine);
7385 qemu_register_machine(&taihu_machine);
7386 #elif defined(TARGET_MIPS)
7387 qemu_register_machine(&mips_machine);
7388 qemu_register_machine(&mips_malta_machine);
7389 qemu_register_machine(&mips_pica61_machine);
7390 qemu_register_machine(&mips_mipssim_machine);
7391 #elif defined(TARGET_SPARC)
7392 #ifdef TARGET_SPARC64
7393 qemu_register_machine(&sun4u_machine);
7394 #else
7395 qemu_register_machine(&ss5_machine);
7396 qemu_register_machine(&ss10_machine);
7397 #endif
7398 #elif defined(TARGET_ARM)
7399 qemu_register_machine(&integratorcp_machine);
7400 qemu_register_machine(&versatilepb_machine);
7401 qemu_register_machine(&versatileab_machine);
7402 qemu_register_machine(&realview_machine);
7403 qemu_register_machine(&akitapda_machine);
7404 qemu_register_machine(&spitzpda_machine);
7405 qemu_register_machine(&borzoipda_machine);
7406 qemu_register_machine(&terrierpda_machine);
7407 qemu_register_machine(&palmte_machine);
7408 #elif defined(TARGET_SH4)
7409 qemu_register_machine(&shix_machine);
7410 qemu_register_machine(&r2d_machine);
7411 #elif defined(TARGET_ALPHA)
7412 /* XXX: TODO */
7413 #elif defined(TARGET_M68K)
7414 qemu_register_machine(&mcf5208evb_machine);
7415 qemu_register_machine(&an5206_machine);
7416 #elif defined(TARGET_CRIS)
7417 qemu_register_machine(&bareetraxfs_machine);
7418 #else
7419 #error unsupported CPU
7420 #endif
7423 #ifdef HAS_AUDIO
7424 struct soundhw soundhw[] = {
7425 #ifdef HAS_AUDIO_CHOICE
7426 #ifdef TARGET_I386
7428 "pcspk",
7429 "PC speaker",
7432 { .init_isa = pcspk_audio_init }
7434 #endif
7436 "sb16",
7437 "Creative Sound Blaster 16",
7440 { .init_isa = SB16_init }
7443 #ifdef CONFIG_ADLIB
7445 "adlib",
7446 #ifdef HAS_YMF262
7447 "Yamaha YMF262 (OPL3)",
7448 #else
7449 "Yamaha YM3812 (OPL2)",
7450 #endif
7453 { .init_isa = Adlib_init }
7455 #endif
7457 #ifdef CONFIG_GUS
7459 "gus",
7460 "Gravis Ultrasound GF1",
7463 { .init_isa = GUS_init }
7465 #endif
7468 "es1370",
7469 "ENSONIQ AudioPCI ES1370",
7472 { .init_pci = es1370_init }
7474 #endif
7476 { NULL, NULL, 0, 0, { NULL } }
7479 static void select_soundhw (const char *optarg)
7481 struct soundhw *c;
7483 if (*optarg == '?') {
7484 show_valid_cards:
7486 printf ("Valid sound card names (comma separated):\n");
7487 for (c = soundhw; c->name; ++c) {
7488 printf ("%-11s %s\n", c->name, c->descr);
7490 printf ("\n-soundhw all will enable all of the above\n");
7491 exit (*optarg != '?');
7493 else {
7494 size_t l;
7495 const char *p;
7496 char *e;
7497 int bad_card = 0;
7499 if (!strcmp (optarg, "all")) {
7500 for (c = soundhw; c->name; ++c) {
7501 c->enabled = 1;
7503 return;
7506 p = optarg;
7507 while (*p) {
7508 e = strchr (p, ',');
7509 l = !e ? strlen (p) : (size_t) (e - p);
7511 for (c = soundhw; c->name; ++c) {
7512 if (!strncmp (c->name, p, l)) {
7513 c->enabled = 1;
7514 break;
7518 if (!c->name) {
7519 if (l > 80) {
7520 fprintf (stderr,
7521 "Unknown sound card name (too big to show)\n");
7523 else {
7524 fprintf (stderr, "Unknown sound card name `%.*s'\n",
7525 (int) l, p);
7527 bad_card = 1;
7529 p += l + (e != NULL);
7532 if (bad_card)
7533 goto show_valid_cards;
7536 #endif
7538 #ifdef _WIN32
7539 static BOOL WINAPI qemu_ctrl_handler(DWORD type)
7541 exit(STATUS_CONTROL_C_EXIT);
7542 return TRUE;
7544 #endif
7546 #define MAX_NET_CLIENTS 32
7548 int main(int argc, char **argv)
7550 #ifdef CONFIG_GDBSTUB
7551 int use_gdbstub;
7552 const char *gdbstub_port;
7553 #endif
7554 int i, cdrom_index, pflash_index;
7555 int snapshot, linux_boot;
7556 const char *initrd_filename;
7557 const char *hd_filename[MAX_DISKS], *fd_filename[MAX_FD];
7558 const char *pflash_filename[MAX_PFLASH];
7559 const char *sd_filename;
7560 const char *mtd_filename;
7561 const char *kernel_filename, *kernel_cmdline;
7562 DisplayState *ds = &display_state;
7563 int cyls, heads, secs, translation;
7564 char net_clients[MAX_NET_CLIENTS][256];
7565 int nb_net_clients;
7566 int optind;
7567 const char *r, *optarg;
7568 CharDriverState *monitor_hd;
7569 char monitor_device[128];
7570 char serial_devices[MAX_SERIAL_PORTS][128];
7571 int serial_device_index;
7572 char parallel_devices[MAX_PARALLEL_PORTS][128];
7573 int parallel_device_index;
7574 const char *loadvm = NULL;
7575 QEMUMachine *machine;
7576 const char *cpu_model;
7577 char usb_devices[MAX_USB_CMDLINE][128];
7578 int usb_devices_index;
7579 int fds[2];
7580 const char *pid_file = NULL;
7581 VLANState *vlan;
7583 LIST_INIT (&vm_change_state_head);
7584 #ifndef _WIN32
7586 struct sigaction act;
7587 sigfillset(&act.sa_mask);
7588 act.sa_flags = 0;
7589 act.sa_handler = SIG_IGN;
7590 sigaction(SIGPIPE, &act, NULL);
7592 #else
7593 SetConsoleCtrlHandler(qemu_ctrl_handler, TRUE);
7594 /* Note: cpu_interrupt() is currently not SMP safe, so we force
7595 QEMU to run on a single CPU */
7597 HANDLE h;
7598 DWORD mask, smask;
7599 int i;
7600 h = GetCurrentProcess();
7601 if (GetProcessAffinityMask(h, &mask, &smask)) {
7602 for(i = 0; i < 32; i++) {
7603 if (mask & (1 << i))
7604 break;
7606 if (i != 32) {
7607 mask = 1 << i;
7608 SetProcessAffinityMask(h, mask);
7612 #endif
7614 register_machines();
7615 machine = first_machine;
7616 cpu_model = NULL;
7617 initrd_filename = NULL;
7618 for(i = 0; i < MAX_FD; i++)
7619 fd_filename[i] = NULL;
7620 for(i = 0; i < MAX_DISKS; i++)
7621 hd_filename[i] = NULL;
7622 for(i = 0; i < MAX_PFLASH; i++)
7623 pflash_filename[i] = NULL;
7624 pflash_index = 0;
7625 sd_filename = NULL;
7626 mtd_filename = NULL;
7627 ram_size = DEFAULT_RAM_SIZE * 1024 * 1024;
7628 vga_ram_size = VGA_RAM_SIZE;
7629 #ifdef CONFIG_GDBSTUB
7630 use_gdbstub = 0;
7631 gdbstub_port = DEFAULT_GDBSTUB_PORT;
7632 #endif
7633 snapshot = 0;
7634 nographic = 0;
7635 kernel_filename = NULL;
7636 kernel_cmdline = "";
7637 #ifdef TARGET_PPC
7638 cdrom_index = 1;
7639 #else
7640 cdrom_index = 2;
7641 #endif
7642 cyls = heads = secs = 0;
7643 translation = BIOS_ATA_TRANSLATION_AUTO;
7644 pstrcpy(monitor_device, sizeof(monitor_device), "vc");
7646 pstrcpy(serial_devices[0], sizeof(serial_devices[0]), "vc");
7647 for(i = 1; i < MAX_SERIAL_PORTS; i++)
7648 serial_devices[i][0] = '\0';
7649 serial_device_index = 0;
7651 pstrcpy(parallel_devices[0], sizeof(parallel_devices[0]), "vc");
7652 for(i = 1; i < MAX_PARALLEL_PORTS; i++)
7653 parallel_devices[i][0] = '\0';
7654 parallel_device_index = 0;
7656 usb_devices_index = 0;
7658 nb_net_clients = 0;
7660 nb_nics = 0;
7661 /* default mac address of the first network interface */
7663 optind = 1;
7664 for(;;) {
7665 if (optind >= argc)
7666 break;
7667 r = argv[optind];
7668 if (r[0] != '-') {
7669 hd_filename[0] = argv[optind++];
7670 } else {
7671 const QEMUOption *popt;
7673 optind++;
7674 /* Treat --foo the same as -foo. */
7675 if (r[1] == '-')
7676 r++;
7677 popt = qemu_options;
7678 for(;;) {
7679 if (!popt->name) {
7680 fprintf(stderr, "%s: invalid option -- '%s'\n",
7681 argv[0], r);
7682 exit(1);
7684 if (!strcmp(popt->name, r + 1))
7685 break;
7686 popt++;
7688 if (popt->flags & HAS_ARG) {
7689 if (optind >= argc) {
7690 fprintf(stderr, "%s: option '%s' requires an argument\n",
7691 argv[0], r);
7692 exit(1);
7694 optarg = argv[optind++];
7695 } else {
7696 optarg = NULL;
7699 switch(popt->index) {
7700 case QEMU_OPTION_M:
7701 machine = find_machine(optarg);
7702 if (!machine) {
7703 QEMUMachine *m;
7704 printf("Supported machines are:\n");
7705 for(m = first_machine; m != NULL; m = m->next) {
7706 printf("%-10s %s%s\n",
7707 m->name, m->desc,
7708 m == first_machine ? " (default)" : "");
7710 exit(*optarg != '?');
7712 break;
7713 case QEMU_OPTION_cpu:
7714 /* hw initialization will check this */
7715 if (*optarg == '?') {
7716 /* XXX: implement xxx_cpu_list for targets that still miss it */
7717 #if defined(cpu_list)
7718 cpu_list(stdout, &fprintf);
7719 #endif
7720 exit(0);
7721 } else {
7722 cpu_model = optarg;
7724 break;
7725 case QEMU_OPTION_initrd:
7726 initrd_filename = optarg;
7727 break;
7728 case QEMU_OPTION_hda:
7729 case QEMU_OPTION_hdb:
7730 case QEMU_OPTION_hdc:
7731 case QEMU_OPTION_hdd:
7733 int hd_index;
7734 hd_index = popt->index - QEMU_OPTION_hda;
7735 hd_filename[hd_index] = optarg;
7736 if (hd_index == cdrom_index)
7737 cdrom_index = -1;
7739 break;
7740 case QEMU_OPTION_mtdblock:
7741 mtd_filename = optarg;
7742 break;
7743 case QEMU_OPTION_sd:
7744 sd_filename = optarg;
7745 break;
7746 case QEMU_OPTION_pflash:
7747 if (pflash_index >= MAX_PFLASH) {
7748 fprintf(stderr, "qemu: too many parallel flash images\n");
7749 exit(1);
7751 pflash_filename[pflash_index++] = optarg;
7752 break;
7753 case QEMU_OPTION_snapshot:
7754 snapshot = 1;
7755 break;
7756 case QEMU_OPTION_hdachs:
7758 const char *p;
7759 p = optarg;
7760 cyls = strtol(p, (char **)&p, 0);
7761 if (cyls < 1 || cyls > 16383)
7762 goto chs_fail;
7763 if (*p != ',')
7764 goto chs_fail;
7765 p++;
7766 heads = strtol(p, (char **)&p, 0);
7767 if (heads < 1 || heads > 16)
7768 goto chs_fail;
7769 if (*p != ',')
7770 goto chs_fail;
7771 p++;
7772 secs = strtol(p, (char **)&p, 0);
7773 if (secs < 1 || secs > 63)
7774 goto chs_fail;
7775 if (*p == ',') {
7776 p++;
7777 if (!strcmp(p, "none"))
7778 translation = BIOS_ATA_TRANSLATION_NONE;
7779 else if (!strcmp(p, "lba"))
7780 translation = BIOS_ATA_TRANSLATION_LBA;
7781 else if (!strcmp(p, "auto"))
7782 translation = BIOS_ATA_TRANSLATION_AUTO;
7783 else
7784 goto chs_fail;
7785 } else if (*p != '\0') {
7786 chs_fail:
7787 fprintf(stderr, "qemu: invalid physical CHS format\n");
7788 exit(1);
7791 break;
7792 case QEMU_OPTION_nographic:
7793 pstrcpy(serial_devices[0], sizeof(serial_devices[0]), "stdio");
7794 pstrcpy(parallel_devices[0], sizeof(parallel_devices[0]), "null");
7795 pstrcpy(monitor_device, sizeof(monitor_device), "stdio");
7796 nographic = 1;
7797 break;
7798 case QEMU_OPTION_portrait:
7799 graphic_rotate = 1;
7800 break;
7801 case QEMU_OPTION_kernel:
7802 kernel_filename = optarg;
7803 break;
7804 case QEMU_OPTION_append:
7805 kernel_cmdline = optarg;
7806 break;
7807 case QEMU_OPTION_cdrom:
7808 if (cdrom_index >= 0) {
7809 hd_filename[cdrom_index] = optarg;
7811 break;
7812 case QEMU_OPTION_boot:
7813 boot_device = optarg[0];
7814 if (boot_device != 'a' &&
7815 #if defined(TARGET_SPARC) || defined(TARGET_I386)
7816 // Network boot
7817 boot_device != 'n' &&
7818 #endif
7819 boot_device != 'c' && boot_device != 'd') {
7820 fprintf(stderr, "qemu: invalid boot device '%c'\n", boot_device);
7821 exit(1);
7823 break;
7824 case QEMU_OPTION_fda:
7825 fd_filename[0] = optarg;
7826 break;
7827 case QEMU_OPTION_fdb:
7828 fd_filename[1] = optarg;
7829 break;
7830 #ifdef TARGET_I386
7831 case QEMU_OPTION_no_fd_bootchk:
7832 fd_bootchk = 0;
7833 break;
7834 #endif
7835 case QEMU_OPTION_no_code_copy:
7836 code_copy_enabled = 0;
7837 break;
7838 case QEMU_OPTION_net:
7839 if (nb_net_clients >= MAX_NET_CLIENTS) {
7840 fprintf(stderr, "qemu: too many network clients\n");
7841 exit(1);
7843 pstrcpy(net_clients[nb_net_clients],
7844 sizeof(net_clients[0]),
7845 optarg);
7846 nb_net_clients++;
7847 break;
7848 #ifdef CONFIG_SLIRP
7849 case QEMU_OPTION_tftp:
7850 tftp_prefix = optarg;
7851 break;
7852 case QEMU_OPTION_bootp:
7853 bootp_filename = optarg;
7854 break;
7855 #ifndef _WIN32
7856 case QEMU_OPTION_smb:
7857 net_slirp_smb(optarg);
7858 break;
7859 #endif
7860 case QEMU_OPTION_redir:
7861 net_slirp_redir(optarg);
7862 break;
7863 #endif
7864 #ifdef HAS_AUDIO
7865 case QEMU_OPTION_audio_help:
7866 AUD_help ();
7867 exit (0);
7868 break;
7869 case QEMU_OPTION_soundhw:
7870 select_soundhw (optarg);
7871 break;
7872 #endif
7873 case QEMU_OPTION_h:
7874 help(0);
7875 break;
7876 case QEMU_OPTION_m:
7877 ram_size = atoi(optarg) * 1024 * 1024;
7878 if (ram_size <= 0)
7879 help(1);
7880 if (ram_size > PHYS_RAM_MAX_SIZE) {
7881 fprintf(stderr, "qemu: at most %d MB RAM can be simulated\n",
7882 PHYS_RAM_MAX_SIZE / (1024 * 1024));
7883 exit(1);
7885 break;
7886 case QEMU_OPTION_d:
7888 int mask;
7889 CPULogItem *item;
7891 mask = cpu_str_to_log_mask(optarg);
7892 if (!mask) {
7893 printf("Log items (comma separated):\n");
7894 for(item = cpu_log_items; item->mask != 0; item++) {
7895 printf("%-10s %s\n", item->name, item->help);
7897 exit(1);
7899 cpu_set_log(mask);
7901 break;
7902 #ifdef CONFIG_GDBSTUB
7903 case QEMU_OPTION_s:
7904 use_gdbstub = 1;
7905 break;
7906 case QEMU_OPTION_p:
7907 gdbstub_port = optarg;
7908 break;
7909 #endif
7910 case QEMU_OPTION_L:
7911 bios_dir = optarg;
7912 break;
7913 case QEMU_OPTION_bios:
7914 bios_name = optarg;
7915 break;
7916 case QEMU_OPTION_S:
7917 autostart = 0;
7918 break;
7919 case QEMU_OPTION_k:
7920 keyboard_layout = optarg;
7921 break;
7922 case QEMU_OPTION_localtime:
7923 rtc_utc = 0;
7924 break;
7925 case QEMU_OPTION_cirrusvga:
7926 cirrus_vga_enabled = 1;
7927 vmsvga_enabled = 0;
7928 break;
7929 case QEMU_OPTION_vmsvga:
7930 cirrus_vga_enabled = 0;
7931 vmsvga_enabled = 1;
7932 break;
7933 case QEMU_OPTION_std_vga:
7934 cirrus_vga_enabled = 0;
7935 vmsvga_enabled = 0;
7936 break;
7937 case QEMU_OPTION_g:
7939 const char *p;
7940 int w, h, depth;
7941 p = optarg;
7942 w = strtol(p, (char **)&p, 10);
7943 if (w <= 0) {
7944 graphic_error:
7945 fprintf(stderr, "qemu: invalid resolution or depth\n");
7946 exit(1);
7948 if (*p != 'x')
7949 goto graphic_error;
7950 p++;
7951 h = strtol(p, (char **)&p, 10);
7952 if (h <= 0)
7953 goto graphic_error;
7954 if (*p == 'x') {
7955 p++;
7956 depth = strtol(p, (char **)&p, 10);
7957 if (depth != 8 && depth != 15 && depth != 16 &&
7958 depth != 24 && depth != 32)
7959 goto graphic_error;
7960 } else if (*p == '\0') {
7961 depth = graphic_depth;
7962 } else {
7963 goto graphic_error;
7966 graphic_width = w;
7967 graphic_height = h;
7968 graphic_depth = depth;
7970 break;
7971 case QEMU_OPTION_echr:
7973 char *r;
7974 term_escape_char = strtol(optarg, &r, 0);
7975 if (r == optarg)
7976 printf("Bad argument to echr\n");
7977 break;
7979 case QEMU_OPTION_monitor:
7980 pstrcpy(monitor_device, sizeof(monitor_device), optarg);
7981 break;
7982 case QEMU_OPTION_serial:
7983 if (serial_device_index >= MAX_SERIAL_PORTS) {
7984 fprintf(stderr, "qemu: too many serial ports\n");
7985 exit(1);
7987 pstrcpy(serial_devices[serial_device_index],
7988 sizeof(serial_devices[0]), optarg);
7989 serial_device_index++;
7990 break;
7991 case QEMU_OPTION_parallel:
7992 if (parallel_device_index >= MAX_PARALLEL_PORTS) {
7993 fprintf(stderr, "qemu: too many parallel ports\n");
7994 exit(1);
7996 pstrcpy(parallel_devices[parallel_device_index],
7997 sizeof(parallel_devices[0]), optarg);
7998 parallel_device_index++;
7999 break;
8000 case QEMU_OPTION_loadvm:
8001 loadvm = optarg;
8002 break;
8003 case QEMU_OPTION_full_screen:
8004 full_screen = 1;
8005 break;
8006 #ifdef CONFIG_SDL
8007 case QEMU_OPTION_no_frame:
8008 no_frame = 1;
8009 break;
8010 case QEMU_OPTION_alt_grab:
8011 alt_grab = 1;
8012 break;
8013 case QEMU_OPTION_no_quit:
8014 no_quit = 1;
8015 break;
8016 #endif
8017 case QEMU_OPTION_pidfile:
8018 pid_file = optarg;
8019 break;
8020 #ifdef TARGET_I386
8021 case QEMU_OPTION_win2k_hack:
8022 win2k_install_hack = 1;
8023 break;
8024 #endif
8025 #ifdef USE_KQEMU
8026 case QEMU_OPTION_no_kqemu:
8027 kqemu_allowed = 0;
8028 break;
8029 case QEMU_OPTION_kernel_kqemu:
8030 kqemu_allowed = 2;
8031 break;
8032 #endif
8033 case QEMU_OPTION_usb:
8034 usb_enabled = 1;
8035 break;
8036 case QEMU_OPTION_usbdevice:
8037 usb_enabled = 1;
8038 if (usb_devices_index >= MAX_USB_CMDLINE) {
8039 fprintf(stderr, "Too many USB devices\n");
8040 exit(1);
8042 pstrcpy(usb_devices[usb_devices_index],
8043 sizeof(usb_devices[usb_devices_index]),
8044 optarg);
8045 usb_devices_index++;
8046 break;
8047 case QEMU_OPTION_smp:
8048 smp_cpus = atoi(optarg);
8049 if (smp_cpus < 1 || smp_cpus > MAX_CPUS) {
8050 fprintf(stderr, "Invalid number of CPUs\n");
8051 exit(1);
8053 break;
8054 case QEMU_OPTION_vnc:
8055 vnc_display = optarg;
8056 break;
8057 case QEMU_OPTION_no_acpi:
8058 acpi_enabled = 0;
8059 break;
8060 case QEMU_OPTION_no_reboot:
8061 no_reboot = 1;
8062 break;
8063 case QEMU_OPTION_show_cursor:
8064 cursor_hide = 0;
8065 break;
8066 case QEMU_OPTION_daemonize:
8067 daemonize = 1;
8068 break;
8069 case QEMU_OPTION_option_rom:
8070 if (nb_option_roms >= MAX_OPTION_ROMS) {
8071 fprintf(stderr, "Too many option ROMs\n");
8072 exit(1);
8074 option_rom[nb_option_roms] = optarg;
8075 nb_option_roms++;
8076 break;
8077 case QEMU_OPTION_semihosting:
8078 semihosting_enabled = 1;
8079 break;
8080 case QEMU_OPTION_name:
8081 qemu_name = optarg;
8082 break;
8083 #ifdef TARGET_SPARC
8084 case QEMU_OPTION_prom_env:
8085 if (nb_prom_envs >= MAX_PROM_ENVS) {
8086 fprintf(stderr, "Too many prom variables\n");
8087 exit(1);
8089 prom_envs[nb_prom_envs] = optarg;
8090 nb_prom_envs++;
8091 break;
8092 #endif
8093 #ifdef TARGET_ARM
8094 case QEMU_OPTION_old_param:
8095 old_param = 1;
8096 #endif
8097 case QEMU_OPTION_clock:
8098 configure_alarms(optarg);
8099 break;
8104 #ifndef _WIN32
8105 if (daemonize && !nographic && vnc_display == NULL) {
8106 fprintf(stderr, "Can only daemonize if using -nographic or -vnc\n");
8107 daemonize = 0;
8110 if (daemonize) {
8111 pid_t pid;
8113 if (pipe(fds) == -1)
8114 exit(1);
8116 pid = fork();
8117 if (pid > 0) {
8118 uint8_t status;
8119 ssize_t len;
8121 close(fds[1]);
8123 again:
8124 len = read(fds[0], &status, 1);
8125 if (len == -1 && (errno == EINTR))
8126 goto again;
8128 if (len != 1)
8129 exit(1);
8130 else if (status == 1) {
8131 fprintf(stderr, "Could not acquire pidfile\n");
8132 exit(1);
8133 } else
8134 exit(0);
8135 } else if (pid < 0)
8136 exit(1);
8138 setsid();
8140 pid = fork();
8141 if (pid > 0)
8142 exit(0);
8143 else if (pid < 0)
8144 exit(1);
8146 umask(027);
8147 chdir("/");
8149 signal(SIGTSTP, SIG_IGN);
8150 signal(SIGTTOU, SIG_IGN);
8151 signal(SIGTTIN, SIG_IGN);
8153 #endif
8155 if (pid_file && qemu_create_pidfile(pid_file) != 0) {
8156 if (daemonize) {
8157 uint8_t status = 1;
8158 write(fds[1], &status, 1);
8159 } else
8160 fprintf(stderr, "Could not acquire pid file\n");
8161 exit(1);
8164 #ifdef USE_KQEMU
8165 if (smp_cpus > 1)
8166 kqemu_allowed = 0;
8167 #endif
8168 linux_boot = (kernel_filename != NULL);
8170 if (!linux_boot &&
8171 boot_device != 'n' &&
8172 hd_filename[0] == '\0' &&
8173 (cdrom_index >= 0 && hd_filename[cdrom_index] == '\0') &&
8174 fd_filename[0] == '\0')
8175 help(1);
8177 /* boot to floppy or the default cd if no hard disk defined yet */
8178 if (hd_filename[0] == '\0' && boot_device == 'c') {
8179 if (fd_filename[0] != '\0')
8180 boot_device = 'a';
8181 else
8182 boot_device = 'd';
8185 setvbuf(stdout, NULL, _IOLBF, 0);
8187 init_timers();
8188 init_timer_alarm();
8189 qemu_aio_init();
8191 #ifdef _WIN32
8192 socket_init();
8193 #endif
8195 /* init network clients */
8196 if (nb_net_clients == 0) {
8197 /* if no clients, we use a default config */
8198 pstrcpy(net_clients[0], sizeof(net_clients[0]),
8199 "nic");
8200 pstrcpy(net_clients[1], sizeof(net_clients[0]),
8201 "user");
8202 nb_net_clients = 2;
8205 for(i = 0;i < nb_net_clients; i++) {
8206 if (net_client_init(net_clients[i]) < 0)
8207 exit(1);
8209 for(vlan = first_vlan; vlan != NULL; vlan = vlan->next) {
8210 if (vlan->nb_guest_devs == 0 && vlan->nb_host_devs == 0)
8211 continue;
8212 if (vlan->nb_guest_devs == 0) {
8213 fprintf(stderr, "Invalid vlan (%d) with no nics\n", vlan->id);
8214 exit(1);
8216 if (vlan->nb_host_devs == 0)
8217 fprintf(stderr,
8218 "Warning: vlan %d is not connected to host network\n",
8219 vlan->id);
8222 #ifdef TARGET_I386
8223 if (boot_device == 'n') {
8224 for (i = 0; i < nb_nics; i++) {
8225 const char *model = nd_table[i].model;
8226 char buf[1024];
8227 if (model == NULL)
8228 model = "ne2k_pci";
8229 snprintf(buf, sizeof(buf), "%s/pxe-%s.bin", bios_dir, model);
8230 if (get_image_size(buf) > 0) {
8231 option_rom[nb_option_roms] = strdup(buf);
8232 nb_option_roms++;
8233 break;
8236 if (i == nb_nics) {
8237 fprintf(stderr, "No valid PXE rom found for network device\n");
8238 exit(1);
8241 #endif
8243 /* init the memory */
8244 phys_ram_size = ram_size + vga_ram_size + MAX_BIOS_SIZE;
8246 phys_ram_base = qemu_vmalloc(phys_ram_size);
8247 if (!phys_ram_base) {
8248 fprintf(stderr, "Could not allocate physical memory\n");
8249 exit(1);
8252 /* we always create the cdrom drive, even if no disk is there */
8253 bdrv_init();
8254 if (cdrom_index >= 0) {
8255 bs_table[cdrom_index] = bdrv_new("cdrom");
8256 bdrv_set_type_hint(bs_table[cdrom_index], BDRV_TYPE_CDROM);
8259 /* open the virtual block devices */
8260 for(i = 0; i < MAX_DISKS; i++) {
8261 if (hd_filename[i]) {
8262 if (!bs_table[i]) {
8263 char buf[64];
8264 snprintf(buf, sizeof(buf), "hd%c", i + 'a');
8265 bs_table[i] = bdrv_new(buf);
8267 if (bdrv_open(bs_table[i], hd_filename[i], snapshot ? BDRV_O_SNAPSHOT : 0) < 0) {
8268 fprintf(stderr, "qemu: could not open hard disk image '%s'\n",
8269 hd_filename[i]);
8270 exit(1);
8272 if (i == 0 && cyls != 0) {
8273 bdrv_set_geometry_hint(bs_table[i], cyls, heads, secs);
8274 bdrv_set_translation_hint(bs_table[i], translation);
8279 /* we always create at least one floppy disk */
8280 fd_table[0] = bdrv_new("fda");
8281 bdrv_set_type_hint(fd_table[0], BDRV_TYPE_FLOPPY);
8283 for(i = 0; i < MAX_FD; i++) {
8284 if (fd_filename[i]) {
8285 if (!fd_table[i]) {
8286 char buf[64];
8287 snprintf(buf, sizeof(buf), "fd%c", i + 'a');
8288 fd_table[i] = bdrv_new(buf);
8289 bdrv_set_type_hint(fd_table[i], BDRV_TYPE_FLOPPY);
8291 if (fd_filename[i][0] != '\0') {
8292 if (bdrv_open(fd_table[i], fd_filename[i],
8293 snapshot ? BDRV_O_SNAPSHOT : 0) < 0) {
8294 fprintf(stderr, "qemu: could not open floppy disk image '%s'\n",
8295 fd_filename[i]);
8296 exit(1);
8302 /* Open the virtual parallel flash block devices */
8303 for(i = 0; i < MAX_PFLASH; i++) {
8304 if (pflash_filename[i]) {
8305 if (!pflash_table[i]) {
8306 char buf[64];
8307 snprintf(buf, sizeof(buf), "fl%c", i + 'a');
8308 pflash_table[i] = bdrv_new(buf);
8310 if (bdrv_open(pflash_table[i], pflash_filename[i],
8311 snapshot ? BDRV_O_SNAPSHOT : 0) < 0) {
8312 fprintf(stderr, "qemu: could not open flash image '%s'\n",
8313 pflash_filename[i]);
8314 exit(1);
8319 sd_bdrv = bdrv_new ("sd");
8320 /* FIXME: This isn't really a floppy, but it's a reasonable
8321 approximation. */
8322 bdrv_set_type_hint(sd_bdrv, BDRV_TYPE_FLOPPY);
8323 if (sd_filename) {
8324 if (bdrv_open(sd_bdrv, sd_filename,
8325 snapshot ? BDRV_O_SNAPSHOT : 0) < 0) {
8326 fprintf(stderr, "qemu: could not open SD card image %s\n",
8327 sd_filename);
8328 } else
8329 qemu_key_check(sd_bdrv, sd_filename);
8332 if (mtd_filename) {
8333 mtd_bdrv = bdrv_new ("mtd");
8334 if (bdrv_open(mtd_bdrv, mtd_filename,
8335 snapshot ? BDRV_O_SNAPSHOT : 0) < 0 ||
8336 qemu_key_check(mtd_bdrv, mtd_filename)) {
8337 fprintf(stderr, "qemu: could not open Flash image %s\n",
8338 mtd_filename);
8339 bdrv_delete(mtd_bdrv);
8340 mtd_bdrv = 0;
8344 register_savevm("timer", 0, 2, timer_save, timer_load, NULL);
8345 register_savevm("ram", 0, 2, ram_save, ram_load, NULL);
8347 init_ioports();
8349 /* terminal init */
8350 memset(&display_state, 0, sizeof(display_state));
8351 if (nographic) {
8352 /* nearly nothing to do */
8353 dumb_display_init(ds);
8354 } else if (vnc_display != NULL) {
8355 vnc_display_init(ds);
8356 if (vnc_display_open(ds, vnc_display) < 0)
8357 exit(1);
8358 } else {
8359 #if defined(CONFIG_SDL)
8360 sdl_display_init(ds, full_screen, no_frame);
8361 #elif defined(CONFIG_COCOA)
8362 cocoa_display_init(ds, full_screen);
8363 #endif
8366 /* Maintain compatibility with multiple stdio monitors */
8367 if (!strcmp(monitor_device,"stdio")) {
8368 for (i = 0; i < MAX_SERIAL_PORTS; i++) {
8369 if (!strcmp(serial_devices[i],"mon:stdio")) {
8370 monitor_device[0] = '\0';
8371 break;
8372 } else if (!strcmp(serial_devices[i],"stdio")) {
8373 monitor_device[0] = '\0';
8374 pstrcpy(serial_devices[0], sizeof(serial_devices[0]), "mon:stdio");
8375 break;
8379 if (monitor_device[0] != '\0') {
8380 monitor_hd = qemu_chr_open(monitor_device);
8381 if (!monitor_hd) {
8382 fprintf(stderr, "qemu: could not open monitor device '%s'\n", monitor_device);
8383 exit(1);
8385 monitor_init(monitor_hd, !nographic);
8388 for(i = 0; i < MAX_SERIAL_PORTS; i++) {
8389 const char *devname = serial_devices[i];
8390 if (devname[0] != '\0' && strcmp(devname, "none")) {
8391 serial_hds[i] = qemu_chr_open(devname);
8392 if (!serial_hds[i]) {
8393 fprintf(stderr, "qemu: could not open serial device '%s'\n",
8394 devname);
8395 exit(1);
8397 if (strstart(devname, "vc", 0))
8398 qemu_chr_printf(serial_hds[i], "serial%d console\r\n", i);
8402 for(i = 0; i < MAX_PARALLEL_PORTS; i++) {
8403 const char *devname = parallel_devices[i];
8404 if (devname[0] != '\0' && strcmp(devname, "none")) {
8405 parallel_hds[i] = qemu_chr_open(devname);
8406 if (!parallel_hds[i]) {
8407 fprintf(stderr, "qemu: could not open parallel device '%s'\n",
8408 devname);
8409 exit(1);
8411 if (strstart(devname, "vc", 0))
8412 qemu_chr_printf(parallel_hds[i], "parallel%d console\r\n", i);
8416 machine->init(ram_size, vga_ram_size, boot_device,
8417 ds, fd_filename, snapshot,
8418 kernel_filename, kernel_cmdline, initrd_filename, cpu_model);
8420 /* init USB devices */
8421 if (usb_enabled) {
8422 for(i = 0; i < usb_devices_index; i++) {
8423 if (usb_device_add(usb_devices[i]) < 0) {
8424 fprintf(stderr, "Warning: could not add USB device %s\n",
8425 usb_devices[i]);
8430 if (display_state.dpy_refresh) {
8431 display_state.gui_timer = qemu_new_timer(rt_clock, gui_update, &display_state);
8432 qemu_mod_timer(display_state.gui_timer, qemu_get_clock(rt_clock));
8435 #ifdef CONFIG_GDBSTUB
8436 if (use_gdbstub) {
8437 /* XXX: use standard host:port notation and modify options
8438 accordingly. */
8439 if (gdbserver_start(gdbstub_port) < 0) {
8440 fprintf(stderr, "qemu: could not open gdbstub device on port '%s'\n",
8441 gdbstub_port);
8442 exit(1);
8445 #endif
8447 if (loadvm)
8448 do_loadvm(loadvm);
8451 /* XXX: simplify init */
8452 read_passwords();
8453 if (autostart) {
8454 vm_start();
8458 if (daemonize) {
8459 uint8_t status = 0;
8460 ssize_t len;
8461 int fd;
8463 again1:
8464 len = write(fds[1], &status, 1);
8465 if (len == -1 && (errno == EINTR))
8466 goto again1;
8468 if (len != 1)
8469 exit(1);
8471 TFR(fd = open("/dev/null", O_RDWR));
8472 if (fd == -1)
8473 exit(1);
8475 dup2(fd, 0);
8476 dup2(fd, 1);
8477 dup2(fd, 2);
8479 close(fd);
8482 main_loop();
8483 quit_timers();
8485 #if !defined(_WIN32)
8486 /* close network clients */
8487 for(vlan = first_vlan; vlan != NULL; vlan = vlan->next) {
8488 VLANClientState *vc;
8490 for(vc = vlan->first_client; vc != NULL; vc = vc->next) {
8491 if (vc->fd_read == tap_receive) {
8492 char ifname[64];
8493 TAPState *s = vc->opaque;
8495 if (sscanf(vc->info_str, "tap: ifname=%63s ", ifname) == 1 &&
8496 s->down_script[0])
8497 launch_script(s->down_script, ifname, s->fd);
8501 #endif
8502 return 0;