CPU specific boot mode (Robert Reif)
[qemu/qemu_0_9_1_stable.git] / vl.c
blobc13b1a1f479af8e1bf19d9622804670ae0842391
1 /*
2 * QEMU System Emulator
4 * Copyright (c) 2003-2007 Fabrice Bellard
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
24 #include "vl.h"
26 #include <unistd.h>
27 #include <fcntl.h>
28 #include <signal.h>
29 #include <time.h>
30 #include <errno.h>
31 #include <sys/time.h>
32 #include <zlib.h>
34 #ifndef _WIN32
35 #include <sys/times.h>
36 #include <sys/wait.h>
37 #include <termios.h>
38 #include <sys/poll.h>
39 #include <sys/mman.h>
40 #include <sys/ioctl.h>
41 #include <sys/socket.h>
42 #include <netinet/in.h>
43 #include <dirent.h>
44 #include <netdb.h>
45 #include <sys/select.h>
46 #include <arpa/inet.h>
47 #ifdef _BSD
48 #include <sys/stat.h>
49 #ifndef __APPLE__
50 #include <libutil.h>
51 #endif
52 #elif defined (__GLIBC__) && defined (__FreeBSD_kernel__)
53 #include <freebsd/stdlib.h>
54 #else
55 #ifndef __sun__
56 #include <linux/if.h>
57 #include <linux/if_tun.h>
58 #include <pty.h>
59 #include <malloc.h>
60 #include <linux/rtc.h>
62 /* For the benefit of older linux systems which don't supply it,
63 we use a local copy of hpet.h. */
64 /* #include <linux/hpet.h> */
65 #include "hpet.h"
67 #include <linux/ppdev.h>
68 #include <linux/parport.h>
69 #else
70 #include <sys/stat.h>
71 #include <sys/ethernet.h>
72 #include <sys/sockio.h>
73 #include <netinet/arp.h>
74 #include <netinet/in.h>
75 #include <netinet/in_systm.h>
76 #include <netinet/ip.h>
77 #include <netinet/ip_icmp.h> // must come after ip.h
78 #include <netinet/udp.h>
79 #include <netinet/tcp.h>
80 #include <net/if.h>
81 #include <syslog.h>
82 #include <stropts.h>
83 #endif
84 #endif
85 #else
86 #include <winsock2.h>
87 int inet_aton(const char *cp, struct in_addr *ia);
88 #endif
90 #if defined(CONFIG_SLIRP)
91 #include "libslirp.h"
92 #endif
94 #ifdef _WIN32
95 #include <malloc.h>
96 #include <sys/timeb.h>
97 #include <windows.h>
98 #define getopt_long_only getopt_long
99 #define memalign(align, size) malloc(size)
100 #endif
102 #include "qemu_socket.h"
104 #ifdef CONFIG_SDL
105 #ifdef __APPLE__
106 #include <SDL/SDL.h>
107 #endif
108 #endif /* CONFIG_SDL */
110 #ifdef CONFIG_COCOA
111 #undef main
112 #define main qemu_main
113 #endif /* CONFIG_COCOA */
115 #include "disas.h"
117 #include "exec-all.h"
119 #define DEFAULT_NETWORK_SCRIPT "/etc/qemu-ifup"
120 #define DEFAULT_NETWORK_DOWN_SCRIPT "/etc/qemu-ifdown"
121 #ifdef __sun__
122 #define SMBD_COMMAND "/usr/sfw/sbin/smbd"
123 #else
124 #define SMBD_COMMAND "/usr/sbin/smbd"
125 #endif
127 //#define DEBUG_UNUSED_IOPORT
128 //#define DEBUG_IOPORT
130 #define PHYS_RAM_MAX_SIZE (2047 * 1024 * 1024)
132 #ifdef TARGET_PPC
133 #define DEFAULT_RAM_SIZE 144
134 #else
135 #define DEFAULT_RAM_SIZE 128
136 #endif
137 /* in ms */
138 #define GUI_REFRESH_INTERVAL 30
140 /* Max number of USB devices that can be specified on the commandline. */
141 #define MAX_USB_CMDLINE 8
143 /* XXX: use a two level table to limit memory usage */
144 #define MAX_IOPORTS 65536
146 const char *bios_dir = CONFIG_QEMU_SHAREDIR;
147 const char *bios_name = NULL;
148 char phys_ram_file[1024];
149 void *ioport_opaque[MAX_IOPORTS];
150 IOPortReadFunc *ioport_read_table[3][MAX_IOPORTS];
151 IOPortWriteFunc *ioport_write_table[3][MAX_IOPORTS];
152 /* Note: bs_table[MAX_DISKS] is a dummy block driver if none available
153 to store the VM snapshots */
154 BlockDriverState *bs_table[MAX_DISKS + 1], *fd_table[MAX_FD];
155 BlockDriverState *pflash_table[MAX_PFLASH];
156 BlockDriverState *sd_bdrv;
157 BlockDriverState *mtd_bdrv;
158 /* point to the block driver where the snapshots are managed */
159 BlockDriverState *bs_snapshots;
160 int vga_ram_size;
161 static DisplayState display_state;
162 int nographic;
163 const char* keyboard_layout = NULL;
164 int64_t ticks_per_sec;
165 #if defined(TARGET_I386)
166 #define MAX_BOOT_DEVICES 3
167 #else
168 #define MAX_BOOT_DEVICES 1
169 #endif
170 static char boot_device[MAX_BOOT_DEVICES + 1];
171 int ram_size;
172 int pit_min_timer_count = 0;
173 int nb_nics;
174 NICInfo nd_table[MAX_NICS];
175 int vm_running;
176 int rtc_utc = 1;
177 int rtc_start_date = -1; /* -1 means now */
178 int cirrus_vga_enabled = 1;
179 int vmsvga_enabled = 0;
180 #ifdef TARGET_SPARC
181 int graphic_width = 1024;
182 int graphic_height = 768;
183 int graphic_depth = 8;
184 #else
185 int graphic_width = 800;
186 int graphic_height = 600;
187 int graphic_depth = 15;
188 #endif
189 int full_screen = 0;
190 int no_frame = 0;
191 int no_quit = 0;
192 CharDriverState *serial_hds[MAX_SERIAL_PORTS];
193 CharDriverState *parallel_hds[MAX_PARALLEL_PORTS];
194 #ifdef TARGET_I386
195 int win2k_install_hack = 0;
196 #endif
197 int usb_enabled = 0;
198 static VLANState *first_vlan;
199 int smp_cpus = 1;
200 const char *vnc_display;
201 #if defined(TARGET_SPARC)
202 #define MAX_CPUS 16
203 #elif defined(TARGET_I386)
204 #define MAX_CPUS 255
205 #else
206 #define MAX_CPUS 1
207 #endif
208 int acpi_enabled = 1;
209 int fd_bootchk = 1;
210 int no_reboot = 0;
211 int cursor_hide = 1;
212 int graphic_rotate = 0;
213 int daemonize = 0;
214 const char *option_rom[MAX_OPTION_ROMS];
215 int nb_option_roms;
216 int semihosting_enabled = 0;
217 int autostart = 1;
218 #ifdef TARGET_ARM
219 int old_param = 0;
220 #endif
221 const char *qemu_name;
222 int alt_grab = 0;
223 #ifdef TARGET_SPARC
224 unsigned int nb_prom_envs = 0;
225 const char *prom_envs[MAX_PROM_ENVS];
226 #endif
228 #define TFR(expr) do { if ((expr) != -1) break; } while (errno == EINTR)
230 /***********************************************************/
231 /* x86 ISA bus support */
233 target_phys_addr_t isa_mem_base = 0;
234 PicState2 *isa_pic;
236 uint32_t default_ioport_readb(void *opaque, uint32_t address)
238 #ifdef DEBUG_UNUSED_IOPORT
239 fprintf(stderr, "unused inb: port=0x%04x\n", address);
240 #endif
241 return 0xff;
244 void default_ioport_writeb(void *opaque, uint32_t address, uint32_t data)
246 #ifdef DEBUG_UNUSED_IOPORT
247 fprintf(stderr, "unused outb: port=0x%04x data=0x%02x\n", address, data);
248 #endif
251 /* default is to make two byte accesses */
252 uint32_t default_ioport_readw(void *opaque, uint32_t address)
254 uint32_t data;
255 data = ioport_read_table[0][address](ioport_opaque[address], address);
256 address = (address + 1) & (MAX_IOPORTS - 1);
257 data |= ioport_read_table[0][address](ioport_opaque[address], address) << 8;
258 return data;
261 void default_ioport_writew(void *opaque, uint32_t address, uint32_t data)
263 ioport_write_table[0][address](ioport_opaque[address], address, data & 0xff);
264 address = (address + 1) & (MAX_IOPORTS - 1);
265 ioport_write_table[0][address](ioport_opaque[address], address, (data >> 8) & 0xff);
268 uint32_t default_ioport_readl(void *opaque, uint32_t address)
270 #ifdef DEBUG_UNUSED_IOPORT
271 fprintf(stderr, "unused inl: port=0x%04x\n", address);
272 #endif
273 return 0xffffffff;
276 void default_ioport_writel(void *opaque, uint32_t address, uint32_t data)
278 #ifdef DEBUG_UNUSED_IOPORT
279 fprintf(stderr, "unused outl: port=0x%04x data=0x%02x\n", address, data);
280 #endif
283 void init_ioports(void)
285 int i;
287 for(i = 0; i < MAX_IOPORTS; i++) {
288 ioport_read_table[0][i] = default_ioport_readb;
289 ioport_write_table[0][i] = default_ioport_writeb;
290 ioport_read_table[1][i] = default_ioport_readw;
291 ioport_write_table[1][i] = default_ioport_writew;
292 ioport_read_table[2][i] = default_ioport_readl;
293 ioport_write_table[2][i] = default_ioport_writel;
297 /* size is the word size in byte */
298 int register_ioport_read(int start, int length, int size,
299 IOPortReadFunc *func, void *opaque)
301 int i, bsize;
303 if (size == 1) {
304 bsize = 0;
305 } else if (size == 2) {
306 bsize = 1;
307 } else if (size == 4) {
308 bsize = 2;
309 } else {
310 hw_error("register_ioport_read: invalid size");
311 return -1;
313 for(i = start; i < start + length; i += size) {
314 ioport_read_table[bsize][i] = func;
315 if (ioport_opaque[i] != NULL && ioport_opaque[i] != opaque)
316 hw_error("register_ioport_read: invalid opaque");
317 ioport_opaque[i] = opaque;
319 return 0;
322 /* size is the word size in byte */
323 int register_ioport_write(int start, int length, int size,
324 IOPortWriteFunc *func, void *opaque)
326 int i, bsize;
328 if (size == 1) {
329 bsize = 0;
330 } else if (size == 2) {
331 bsize = 1;
332 } else if (size == 4) {
333 bsize = 2;
334 } else {
335 hw_error("register_ioport_write: invalid size");
336 return -1;
338 for(i = start; i < start + length; i += size) {
339 ioport_write_table[bsize][i] = func;
340 if (ioport_opaque[i] != NULL && ioport_opaque[i] != opaque)
341 hw_error("register_ioport_write: invalid opaque");
342 ioport_opaque[i] = opaque;
344 return 0;
347 void isa_unassign_ioport(int start, int length)
349 int i;
351 for(i = start; i < start + length; i++) {
352 ioport_read_table[0][i] = default_ioport_readb;
353 ioport_read_table[1][i] = default_ioport_readw;
354 ioport_read_table[2][i] = default_ioport_readl;
356 ioport_write_table[0][i] = default_ioport_writeb;
357 ioport_write_table[1][i] = default_ioport_writew;
358 ioport_write_table[2][i] = default_ioport_writel;
362 /***********************************************************/
364 void cpu_outb(CPUState *env, int addr, int val)
366 #ifdef DEBUG_IOPORT
367 if (loglevel & CPU_LOG_IOPORT)
368 fprintf(logfile, "outb: %04x %02x\n", addr, val);
369 #endif
370 ioport_write_table[0][addr](ioport_opaque[addr], addr, val);
371 #ifdef USE_KQEMU
372 if (env)
373 env->last_io_time = cpu_get_time_fast();
374 #endif
377 void cpu_outw(CPUState *env, int addr, int val)
379 #ifdef DEBUG_IOPORT
380 if (loglevel & CPU_LOG_IOPORT)
381 fprintf(logfile, "outw: %04x %04x\n", addr, val);
382 #endif
383 ioport_write_table[1][addr](ioport_opaque[addr], addr, val);
384 #ifdef USE_KQEMU
385 if (env)
386 env->last_io_time = cpu_get_time_fast();
387 #endif
390 void cpu_outl(CPUState *env, int addr, int val)
392 #ifdef DEBUG_IOPORT
393 if (loglevel & CPU_LOG_IOPORT)
394 fprintf(logfile, "outl: %04x %08x\n", addr, val);
395 #endif
396 ioport_write_table[2][addr](ioport_opaque[addr], addr, val);
397 #ifdef USE_KQEMU
398 if (env)
399 env->last_io_time = cpu_get_time_fast();
400 #endif
403 int cpu_inb(CPUState *env, int addr)
405 int val;
406 val = ioport_read_table[0][addr](ioport_opaque[addr], addr);
407 #ifdef DEBUG_IOPORT
408 if (loglevel & CPU_LOG_IOPORT)
409 fprintf(logfile, "inb : %04x %02x\n", addr, val);
410 #endif
411 #ifdef USE_KQEMU
412 if (env)
413 env->last_io_time = cpu_get_time_fast();
414 #endif
415 return val;
418 int cpu_inw(CPUState *env, int addr)
420 int val;
421 val = ioport_read_table[1][addr](ioport_opaque[addr], addr);
422 #ifdef DEBUG_IOPORT
423 if (loglevel & CPU_LOG_IOPORT)
424 fprintf(logfile, "inw : %04x %04x\n", addr, val);
425 #endif
426 #ifdef USE_KQEMU
427 if (env)
428 env->last_io_time = cpu_get_time_fast();
429 #endif
430 return val;
433 int cpu_inl(CPUState *env, int addr)
435 int val;
436 val = ioport_read_table[2][addr](ioport_opaque[addr], addr);
437 #ifdef DEBUG_IOPORT
438 if (loglevel & CPU_LOG_IOPORT)
439 fprintf(logfile, "inl : %04x %08x\n", addr, val);
440 #endif
441 #ifdef USE_KQEMU
442 if (env)
443 env->last_io_time = cpu_get_time_fast();
444 #endif
445 return val;
448 /***********************************************************/
449 void hw_error(const char *fmt, ...)
451 va_list ap;
452 CPUState *env;
454 va_start(ap, fmt);
455 fprintf(stderr, "qemu: hardware error: ");
456 vfprintf(stderr, fmt, ap);
457 fprintf(stderr, "\n");
458 for(env = first_cpu; env != NULL; env = env->next_cpu) {
459 fprintf(stderr, "CPU #%d:\n", env->cpu_index);
460 #ifdef TARGET_I386
461 cpu_dump_state(env, stderr, fprintf, X86_DUMP_FPU);
462 #else
463 cpu_dump_state(env, stderr, fprintf, 0);
464 #endif
466 va_end(ap);
467 abort();
470 /***********************************************************/
471 /* keyboard/mouse */
473 static QEMUPutKBDEvent *qemu_put_kbd_event;
474 static void *qemu_put_kbd_event_opaque;
475 static QEMUPutMouseEntry *qemu_put_mouse_event_head;
476 static QEMUPutMouseEntry *qemu_put_mouse_event_current;
478 void qemu_add_kbd_event_handler(QEMUPutKBDEvent *func, void *opaque)
480 qemu_put_kbd_event_opaque = opaque;
481 qemu_put_kbd_event = func;
484 QEMUPutMouseEntry *qemu_add_mouse_event_handler(QEMUPutMouseEvent *func,
485 void *opaque, int absolute,
486 const char *name)
488 QEMUPutMouseEntry *s, *cursor;
490 s = qemu_mallocz(sizeof(QEMUPutMouseEntry));
491 if (!s)
492 return NULL;
494 s->qemu_put_mouse_event = func;
495 s->qemu_put_mouse_event_opaque = opaque;
496 s->qemu_put_mouse_event_absolute = absolute;
497 s->qemu_put_mouse_event_name = qemu_strdup(name);
498 s->next = NULL;
500 if (!qemu_put_mouse_event_head) {
501 qemu_put_mouse_event_head = qemu_put_mouse_event_current = s;
502 return s;
505 cursor = qemu_put_mouse_event_head;
506 while (cursor->next != NULL)
507 cursor = cursor->next;
509 cursor->next = s;
510 qemu_put_mouse_event_current = s;
512 return s;
515 void qemu_remove_mouse_event_handler(QEMUPutMouseEntry *entry)
517 QEMUPutMouseEntry *prev = NULL, *cursor;
519 if (!qemu_put_mouse_event_head || entry == NULL)
520 return;
522 cursor = qemu_put_mouse_event_head;
523 while (cursor != NULL && cursor != entry) {
524 prev = cursor;
525 cursor = cursor->next;
528 if (cursor == NULL) // does not exist or list empty
529 return;
530 else if (prev == NULL) { // entry is head
531 qemu_put_mouse_event_head = cursor->next;
532 if (qemu_put_mouse_event_current == entry)
533 qemu_put_mouse_event_current = cursor->next;
534 qemu_free(entry->qemu_put_mouse_event_name);
535 qemu_free(entry);
536 return;
539 prev->next = entry->next;
541 if (qemu_put_mouse_event_current == entry)
542 qemu_put_mouse_event_current = prev;
544 qemu_free(entry->qemu_put_mouse_event_name);
545 qemu_free(entry);
548 void kbd_put_keycode(int keycode)
550 if (qemu_put_kbd_event) {
551 qemu_put_kbd_event(qemu_put_kbd_event_opaque, keycode);
555 void kbd_mouse_event(int dx, int dy, int dz, int buttons_state)
557 QEMUPutMouseEvent *mouse_event;
558 void *mouse_event_opaque;
559 int width;
561 if (!qemu_put_mouse_event_current) {
562 return;
565 mouse_event =
566 qemu_put_mouse_event_current->qemu_put_mouse_event;
567 mouse_event_opaque =
568 qemu_put_mouse_event_current->qemu_put_mouse_event_opaque;
570 if (mouse_event) {
571 if (graphic_rotate) {
572 if (qemu_put_mouse_event_current->qemu_put_mouse_event_absolute)
573 width = 0x7fff;
574 else
575 width = graphic_width;
576 mouse_event(mouse_event_opaque,
577 width - dy, dx, dz, buttons_state);
578 } else
579 mouse_event(mouse_event_opaque,
580 dx, dy, dz, buttons_state);
584 int kbd_mouse_is_absolute(void)
586 if (!qemu_put_mouse_event_current)
587 return 0;
589 return qemu_put_mouse_event_current->qemu_put_mouse_event_absolute;
592 void do_info_mice(void)
594 QEMUPutMouseEntry *cursor;
595 int index = 0;
597 if (!qemu_put_mouse_event_head) {
598 term_printf("No mouse devices connected\n");
599 return;
602 term_printf("Mouse devices available:\n");
603 cursor = qemu_put_mouse_event_head;
604 while (cursor != NULL) {
605 term_printf("%c Mouse #%d: %s\n",
606 (cursor == qemu_put_mouse_event_current ? '*' : ' '),
607 index, cursor->qemu_put_mouse_event_name);
608 index++;
609 cursor = cursor->next;
613 void do_mouse_set(int index)
615 QEMUPutMouseEntry *cursor;
616 int i = 0;
618 if (!qemu_put_mouse_event_head) {
619 term_printf("No mouse devices connected\n");
620 return;
623 cursor = qemu_put_mouse_event_head;
624 while (cursor != NULL && index != i) {
625 i++;
626 cursor = cursor->next;
629 if (cursor != NULL)
630 qemu_put_mouse_event_current = cursor;
631 else
632 term_printf("Mouse at given index not found\n");
635 /* compute with 96 bit intermediate result: (a*b)/c */
636 uint64_t muldiv64(uint64_t a, uint32_t b, uint32_t c)
638 union {
639 uint64_t ll;
640 struct {
641 #ifdef WORDS_BIGENDIAN
642 uint32_t high, low;
643 #else
644 uint32_t low, high;
645 #endif
646 } l;
647 } u, res;
648 uint64_t rl, rh;
650 u.ll = a;
651 rl = (uint64_t)u.l.low * (uint64_t)b;
652 rh = (uint64_t)u.l.high * (uint64_t)b;
653 rh += (rl >> 32);
654 res.l.high = rh / c;
655 res.l.low = (((rh % c) << 32) + (rl & 0xffffffff)) / c;
656 return res.ll;
659 /***********************************************************/
660 /* real time host monotonic timer */
662 #define QEMU_TIMER_BASE 1000000000LL
664 #ifdef WIN32
666 static int64_t clock_freq;
668 static void init_get_clock(void)
670 LARGE_INTEGER freq;
671 int ret;
672 ret = QueryPerformanceFrequency(&freq);
673 if (ret == 0) {
674 fprintf(stderr, "Could not calibrate ticks\n");
675 exit(1);
677 clock_freq = freq.QuadPart;
680 static int64_t get_clock(void)
682 LARGE_INTEGER ti;
683 QueryPerformanceCounter(&ti);
684 return muldiv64(ti.QuadPart, QEMU_TIMER_BASE, clock_freq);
687 #else
689 static int use_rt_clock;
691 static void init_get_clock(void)
693 use_rt_clock = 0;
694 #if defined(__linux__)
696 struct timespec ts;
697 if (clock_gettime(CLOCK_MONOTONIC, &ts) == 0) {
698 use_rt_clock = 1;
701 #endif
704 static int64_t get_clock(void)
706 #if defined(__linux__)
707 if (use_rt_clock) {
708 struct timespec ts;
709 clock_gettime(CLOCK_MONOTONIC, &ts);
710 return ts.tv_sec * 1000000000LL + ts.tv_nsec;
711 } else
712 #endif
714 /* XXX: using gettimeofday leads to problems if the date
715 changes, so it should be avoided. */
716 struct timeval tv;
717 gettimeofday(&tv, NULL);
718 return tv.tv_sec * 1000000000LL + (tv.tv_usec * 1000);
722 #endif
724 /***********************************************************/
725 /* guest cycle counter */
727 static int64_t cpu_ticks_prev;
728 static int64_t cpu_ticks_offset;
729 static int64_t cpu_clock_offset;
730 static int cpu_ticks_enabled;
732 /* return the host CPU cycle counter and handle stop/restart */
733 int64_t cpu_get_ticks(void)
735 if (!cpu_ticks_enabled) {
736 return cpu_ticks_offset;
737 } else {
738 int64_t ticks;
739 ticks = cpu_get_real_ticks();
740 if (cpu_ticks_prev > ticks) {
741 /* Note: non increasing ticks may happen if the host uses
742 software suspend */
743 cpu_ticks_offset += cpu_ticks_prev - ticks;
745 cpu_ticks_prev = ticks;
746 return ticks + cpu_ticks_offset;
750 /* return the host CPU monotonic timer and handle stop/restart */
751 static int64_t cpu_get_clock(void)
753 int64_t ti;
754 if (!cpu_ticks_enabled) {
755 return cpu_clock_offset;
756 } else {
757 ti = get_clock();
758 return ti + cpu_clock_offset;
762 /* enable cpu_get_ticks() */
763 void cpu_enable_ticks(void)
765 if (!cpu_ticks_enabled) {
766 cpu_ticks_offset -= cpu_get_real_ticks();
767 cpu_clock_offset -= get_clock();
768 cpu_ticks_enabled = 1;
772 /* disable cpu_get_ticks() : the clock is stopped. You must not call
773 cpu_get_ticks() after that. */
774 void cpu_disable_ticks(void)
776 if (cpu_ticks_enabled) {
777 cpu_ticks_offset = cpu_get_ticks();
778 cpu_clock_offset = cpu_get_clock();
779 cpu_ticks_enabled = 0;
783 /***********************************************************/
784 /* timers */
786 #define QEMU_TIMER_REALTIME 0
787 #define QEMU_TIMER_VIRTUAL 1
789 struct QEMUClock {
790 int type;
791 /* XXX: add frequency */
794 struct QEMUTimer {
795 QEMUClock *clock;
796 int64_t expire_time;
797 QEMUTimerCB *cb;
798 void *opaque;
799 struct QEMUTimer *next;
802 struct qemu_alarm_timer {
803 char const *name;
804 unsigned int flags;
806 int (*start)(struct qemu_alarm_timer *t);
807 void (*stop)(struct qemu_alarm_timer *t);
808 void (*rearm)(struct qemu_alarm_timer *t);
809 void *priv;
812 #define ALARM_FLAG_DYNTICKS 0x1
814 static inline int alarm_has_dynticks(struct qemu_alarm_timer *t)
816 return t->flags & ALARM_FLAG_DYNTICKS;
819 static void qemu_rearm_alarm_timer(struct qemu_alarm_timer *t)
821 if (!alarm_has_dynticks(t))
822 return;
824 t->rearm(t);
827 /* TODO: MIN_TIMER_REARM_US should be optimized */
828 #define MIN_TIMER_REARM_US 250
830 static struct qemu_alarm_timer *alarm_timer;
832 #ifdef _WIN32
834 struct qemu_alarm_win32 {
835 MMRESULT timerId;
836 HANDLE host_alarm;
837 unsigned int period;
838 } alarm_win32_data = {0, NULL, -1};
840 static int win32_start_timer(struct qemu_alarm_timer *t);
841 static void win32_stop_timer(struct qemu_alarm_timer *t);
842 static void win32_rearm_timer(struct qemu_alarm_timer *t);
844 #else
846 static int unix_start_timer(struct qemu_alarm_timer *t);
847 static void unix_stop_timer(struct qemu_alarm_timer *t);
849 #ifdef __linux__
851 static int dynticks_start_timer(struct qemu_alarm_timer *t);
852 static void dynticks_stop_timer(struct qemu_alarm_timer *t);
853 static void dynticks_rearm_timer(struct qemu_alarm_timer *t);
855 static int hpet_start_timer(struct qemu_alarm_timer *t);
856 static void hpet_stop_timer(struct qemu_alarm_timer *t);
858 static int rtc_start_timer(struct qemu_alarm_timer *t);
859 static void rtc_stop_timer(struct qemu_alarm_timer *t);
861 #endif /* __linux__ */
863 #endif /* _WIN32 */
865 static struct qemu_alarm_timer alarm_timers[] = {
866 #ifndef _WIN32
867 #ifdef __linux__
868 {"dynticks", ALARM_FLAG_DYNTICKS, dynticks_start_timer,
869 dynticks_stop_timer, dynticks_rearm_timer, NULL},
870 /* HPET - if available - is preferred */
871 {"hpet", 0, hpet_start_timer, hpet_stop_timer, NULL, NULL},
872 /* ...otherwise try RTC */
873 {"rtc", 0, rtc_start_timer, rtc_stop_timer, NULL, NULL},
874 #endif
875 {"unix", 0, unix_start_timer, unix_stop_timer, NULL, NULL},
876 #else
877 {"dynticks", ALARM_FLAG_DYNTICKS, win32_start_timer,
878 win32_stop_timer, win32_rearm_timer, &alarm_win32_data},
879 {"win32", 0, win32_start_timer,
880 win32_stop_timer, NULL, &alarm_win32_data},
881 #endif
882 {NULL, }
885 static void show_available_alarms()
887 int i;
889 printf("Available alarm timers, in order of precedence:\n");
890 for (i = 0; alarm_timers[i].name; i++)
891 printf("%s\n", alarm_timers[i].name);
894 static void configure_alarms(char const *opt)
896 int i;
897 int cur = 0;
898 int count = (sizeof(alarm_timers) / sizeof(*alarm_timers)) - 1;
899 char *arg;
900 char *name;
902 if (!strcmp(opt, "help")) {
903 show_available_alarms();
904 exit(0);
907 arg = strdup(opt);
909 /* Reorder the array */
910 name = strtok(arg, ",");
911 while (name) {
912 struct qemu_alarm_timer tmp;
914 for (i = 0; i < count && alarm_timers[i].name; i++) {
915 if (!strcmp(alarm_timers[i].name, name))
916 break;
919 if (i == count) {
920 fprintf(stderr, "Unknown clock %s\n", name);
921 goto next;
924 if (i < cur)
925 /* Ignore */
926 goto next;
928 /* Swap */
929 tmp = alarm_timers[i];
930 alarm_timers[i] = alarm_timers[cur];
931 alarm_timers[cur] = tmp;
933 cur++;
934 next:
935 name = strtok(NULL, ",");
938 free(arg);
940 if (cur) {
941 /* Disable remaining timers */
942 for (i = cur; i < count; i++)
943 alarm_timers[i].name = NULL;
946 /* debug */
947 show_available_alarms();
950 QEMUClock *rt_clock;
951 QEMUClock *vm_clock;
953 static QEMUTimer *active_timers[2];
955 QEMUClock *qemu_new_clock(int type)
957 QEMUClock *clock;
958 clock = qemu_mallocz(sizeof(QEMUClock));
959 if (!clock)
960 return NULL;
961 clock->type = type;
962 return clock;
965 QEMUTimer *qemu_new_timer(QEMUClock *clock, QEMUTimerCB *cb, void *opaque)
967 QEMUTimer *ts;
969 ts = qemu_mallocz(sizeof(QEMUTimer));
970 ts->clock = clock;
971 ts->cb = cb;
972 ts->opaque = opaque;
973 return ts;
976 void qemu_free_timer(QEMUTimer *ts)
978 qemu_free(ts);
981 /* stop a timer, but do not dealloc it */
982 void qemu_del_timer(QEMUTimer *ts)
984 QEMUTimer **pt, *t;
986 /* NOTE: this code must be signal safe because
987 qemu_timer_expired() can be called from a signal. */
988 pt = &active_timers[ts->clock->type];
989 for(;;) {
990 t = *pt;
991 if (!t)
992 break;
993 if (t == ts) {
994 *pt = t->next;
995 break;
997 pt = &t->next;
1001 /* modify the current timer so that it will be fired when current_time
1002 >= expire_time. The corresponding callback will be called. */
1003 void qemu_mod_timer(QEMUTimer *ts, int64_t expire_time)
1005 QEMUTimer **pt, *t;
1007 qemu_del_timer(ts);
1009 /* add the timer in the sorted list */
1010 /* NOTE: this code must be signal safe because
1011 qemu_timer_expired() can be called from a signal. */
1012 pt = &active_timers[ts->clock->type];
1013 for(;;) {
1014 t = *pt;
1015 if (!t)
1016 break;
1017 if (t->expire_time > expire_time)
1018 break;
1019 pt = &t->next;
1021 ts->expire_time = expire_time;
1022 ts->next = *pt;
1023 *pt = ts;
1026 int qemu_timer_pending(QEMUTimer *ts)
1028 QEMUTimer *t;
1029 for(t = active_timers[ts->clock->type]; t != NULL; t = t->next) {
1030 if (t == ts)
1031 return 1;
1033 return 0;
1036 static inline int qemu_timer_expired(QEMUTimer *timer_head, int64_t current_time)
1038 if (!timer_head)
1039 return 0;
1040 return (timer_head->expire_time <= current_time);
1043 static void qemu_run_timers(QEMUTimer **ptimer_head, int64_t current_time)
1045 QEMUTimer *ts;
1047 for(;;) {
1048 ts = *ptimer_head;
1049 if (!ts || ts->expire_time > current_time)
1050 break;
1051 /* remove timer from the list before calling the callback */
1052 *ptimer_head = ts->next;
1053 ts->next = NULL;
1055 /* run the callback (the timer list can be modified) */
1056 ts->cb(ts->opaque);
1058 qemu_rearm_alarm_timer(alarm_timer);
1061 int64_t qemu_get_clock(QEMUClock *clock)
1063 switch(clock->type) {
1064 case QEMU_TIMER_REALTIME:
1065 return get_clock() / 1000000;
1066 default:
1067 case QEMU_TIMER_VIRTUAL:
1068 return cpu_get_clock();
1072 static void init_timers(void)
1074 init_get_clock();
1075 ticks_per_sec = QEMU_TIMER_BASE;
1076 rt_clock = qemu_new_clock(QEMU_TIMER_REALTIME);
1077 vm_clock = qemu_new_clock(QEMU_TIMER_VIRTUAL);
1080 /* save a timer */
1081 void qemu_put_timer(QEMUFile *f, QEMUTimer *ts)
1083 uint64_t expire_time;
1085 if (qemu_timer_pending(ts)) {
1086 expire_time = ts->expire_time;
1087 } else {
1088 expire_time = -1;
1090 qemu_put_be64(f, expire_time);
1093 void qemu_get_timer(QEMUFile *f, QEMUTimer *ts)
1095 uint64_t expire_time;
1097 expire_time = qemu_get_be64(f);
1098 if (expire_time != -1) {
1099 qemu_mod_timer(ts, expire_time);
1100 } else {
1101 qemu_del_timer(ts);
1105 static void timer_save(QEMUFile *f, void *opaque)
1107 if (cpu_ticks_enabled) {
1108 hw_error("cannot save state if virtual timers are running");
1110 qemu_put_be64s(f, &cpu_ticks_offset);
1111 qemu_put_be64s(f, &ticks_per_sec);
1112 qemu_put_be64s(f, &cpu_clock_offset);
1115 static int timer_load(QEMUFile *f, void *opaque, int version_id)
1117 if (version_id != 1 && version_id != 2)
1118 return -EINVAL;
1119 if (cpu_ticks_enabled) {
1120 return -EINVAL;
1122 qemu_get_be64s(f, &cpu_ticks_offset);
1123 qemu_get_be64s(f, &ticks_per_sec);
1124 if (version_id == 2) {
1125 qemu_get_be64s(f, &cpu_clock_offset);
1127 return 0;
1130 #ifdef _WIN32
1131 void CALLBACK host_alarm_handler(UINT uTimerID, UINT uMsg,
1132 DWORD_PTR dwUser, DWORD_PTR dw1, DWORD_PTR dw2)
1133 #else
1134 static void host_alarm_handler(int host_signum)
1135 #endif
1137 #if 0
1138 #define DISP_FREQ 1000
1140 static int64_t delta_min = INT64_MAX;
1141 static int64_t delta_max, delta_cum, last_clock, delta, ti;
1142 static int count;
1143 ti = qemu_get_clock(vm_clock);
1144 if (last_clock != 0) {
1145 delta = ti - last_clock;
1146 if (delta < delta_min)
1147 delta_min = delta;
1148 if (delta > delta_max)
1149 delta_max = delta;
1150 delta_cum += delta;
1151 if (++count == DISP_FREQ) {
1152 printf("timer: min=%" PRId64 " us max=%" PRId64 " us avg=%" PRId64 " us avg_freq=%0.3f Hz\n",
1153 muldiv64(delta_min, 1000000, ticks_per_sec),
1154 muldiv64(delta_max, 1000000, ticks_per_sec),
1155 muldiv64(delta_cum, 1000000 / DISP_FREQ, ticks_per_sec),
1156 (double)ticks_per_sec / ((double)delta_cum / DISP_FREQ));
1157 count = 0;
1158 delta_min = INT64_MAX;
1159 delta_max = 0;
1160 delta_cum = 0;
1163 last_clock = ti;
1165 #endif
1166 if (alarm_has_dynticks(alarm_timer) ||
1167 qemu_timer_expired(active_timers[QEMU_TIMER_VIRTUAL],
1168 qemu_get_clock(vm_clock)) ||
1169 qemu_timer_expired(active_timers[QEMU_TIMER_REALTIME],
1170 qemu_get_clock(rt_clock))) {
1171 #ifdef _WIN32
1172 struct qemu_alarm_win32 *data = ((struct qemu_alarm_timer*)dwUser)->priv;
1173 SetEvent(data->host_alarm);
1174 #endif
1175 CPUState *env = cpu_single_env;
1176 if (env) {
1177 /* stop the currently executing cpu because a timer occured */
1178 cpu_interrupt(env, CPU_INTERRUPT_EXIT);
1179 #ifdef USE_KQEMU
1180 if (env->kqemu_enabled) {
1181 kqemu_cpu_interrupt(env);
1183 #endif
1188 static uint64_t qemu_next_deadline(void)
1190 int64_t nearest_delta_us = INT64_MAX;
1191 int64_t vmdelta_us;
1193 if (active_timers[QEMU_TIMER_REALTIME])
1194 nearest_delta_us = (active_timers[QEMU_TIMER_REALTIME]->expire_time -
1195 qemu_get_clock(rt_clock))*1000;
1197 if (active_timers[QEMU_TIMER_VIRTUAL]) {
1198 /* round up */
1199 vmdelta_us = (active_timers[QEMU_TIMER_VIRTUAL]->expire_time -
1200 qemu_get_clock(vm_clock)+999)/1000;
1201 if (vmdelta_us < nearest_delta_us)
1202 nearest_delta_us = vmdelta_us;
1205 /* Avoid arming the timer to negative, zero, or too low values */
1206 if (nearest_delta_us <= MIN_TIMER_REARM_US)
1207 nearest_delta_us = MIN_TIMER_REARM_US;
1209 return nearest_delta_us;
1212 #ifndef _WIN32
1214 #if defined(__linux__)
1216 #define RTC_FREQ 1024
1218 static void enable_sigio_timer(int fd)
1220 struct sigaction act;
1222 /* timer signal */
1223 sigfillset(&act.sa_mask);
1224 act.sa_flags = 0;
1225 #if defined (TARGET_I386) && defined(USE_CODE_COPY)
1226 act.sa_flags |= SA_ONSTACK;
1227 #endif
1228 act.sa_handler = host_alarm_handler;
1230 sigaction(SIGIO, &act, NULL);
1231 fcntl(fd, F_SETFL, O_ASYNC);
1232 fcntl(fd, F_SETOWN, getpid());
1235 static int hpet_start_timer(struct qemu_alarm_timer *t)
1237 struct hpet_info info;
1238 int r, fd;
1240 fd = open("/dev/hpet", O_RDONLY);
1241 if (fd < 0)
1242 return -1;
1244 /* Set frequency */
1245 r = ioctl(fd, HPET_IRQFREQ, RTC_FREQ);
1246 if (r < 0) {
1247 fprintf(stderr, "Could not configure '/dev/hpet' to have a 1024Hz timer. This is not a fatal\n"
1248 "error, but for better emulation accuracy type:\n"
1249 "'echo 1024 > /proc/sys/dev/hpet/max-user-freq' as root.\n");
1250 goto fail;
1253 /* Check capabilities */
1254 r = ioctl(fd, HPET_INFO, &info);
1255 if (r < 0)
1256 goto fail;
1258 /* Enable periodic mode */
1259 r = ioctl(fd, HPET_EPI, 0);
1260 if (info.hi_flags && (r < 0))
1261 goto fail;
1263 /* Enable interrupt */
1264 r = ioctl(fd, HPET_IE_ON, 0);
1265 if (r < 0)
1266 goto fail;
1268 enable_sigio_timer(fd);
1269 t->priv = (void *)(long)fd;
1271 return 0;
1272 fail:
1273 close(fd);
1274 return -1;
1277 static void hpet_stop_timer(struct qemu_alarm_timer *t)
1279 int fd = (long)t->priv;
1281 close(fd);
1284 static int rtc_start_timer(struct qemu_alarm_timer *t)
1286 int rtc_fd;
1288 TFR(rtc_fd = open("/dev/rtc", O_RDONLY));
1289 if (rtc_fd < 0)
1290 return -1;
1291 if (ioctl(rtc_fd, RTC_IRQP_SET, RTC_FREQ) < 0) {
1292 fprintf(stderr, "Could not configure '/dev/rtc' to have a 1024 Hz timer. This is not a fatal\n"
1293 "error, but for better emulation accuracy either use a 2.6 host Linux kernel or\n"
1294 "type 'echo 1024 > /proc/sys/dev/rtc/max-user-freq' as root.\n");
1295 goto fail;
1297 if (ioctl(rtc_fd, RTC_PIE_ON, 0) < 0) {
1298 fail:
1299 close(rtc_fd);
1300 return -1;
1303 enable_sigio_timer(rtc_fd);
1305 t->priv = (void *)(long)rtc_fd;
1307 return 0;
1310 static void rtc_stop_timer(struct qemu_alarm_timer *t)
1312 int rtc_fd = (long)t->priv;
1314 close(rtc_fd);
1317 static int dynticks_start_timer(struct qemu_alarm_timer *t)
1319 struct sigevent ev;
1320 timer_t host_timer;
1321 struct sigaction act;
1323 sigfillset(&act.sa_mask);
1324 act.sa_flags = 0;
1325 #if defined(TARGET_I386) && defined(USE_CODE_COPY)
1326 act.sa_flags |= SA_ONSTACK;
1327 #endif
1328 act.sa_handler = host_alarm_handler;
1330 sigaction(SIGALRM, &act, NULL);
1332 ev.sigev_value.sival_int = 0;
1333 ev.sigev_notify = SIGEV_SIGNAL;
1334 ev.sigev_signo = SIGALRM;
1336 if (timer_create(CLOCK_REALTIME, &ev, &host_timer)) {
1337 perror("timer_create");
1339 /* disable dynticks */
1340 fprintf(stderr, "Dynamic Ticks disabled\n");
1342 return -1;
1345 t->priv = (void *)host_timer;
1347 return 0;
1350 static void dynticks_stop_timer(struct qemu_alarm_timer *t)
1352 timer_t host_timer = (timer_t)t->priv;
1354 timer_delete(host_timer);
1357 static void dynticks_rearm_timer(struct qemu_alarm_timer *t)
1359 timer_t host_timer = (timer_t)t->priv;
1360 struct itimerspec timeout;
1361 int64_t nearest_delta_us = INT64_MAX;
1362 int64_t current_us;
1364 if (!active_timers[QEMU_TIMER_REALTIME] &&
1365 !active_timers[QEMU_TIMER_VIRTUAL])
1366 return;
1368 nearest_delta_us = qemu_next_deadline();
1370 /* check whether a timer is already running */
1371 if (timer_gettime(host_timer, &timeout)) {
1372 perror("gettime");
1373 fprintf(stderr, "Internal timer error: aborting\n");
1374 exit(1);
1376 current_us = timeout.it_value.tv_sec * 1000000 + timeout.it_value.tv_nsec/1000;
1377 if (current_us && current_us <= nearest_delta_us)
1378 return;
1380 timeout.it_interval.tv_sec = 0;
1381 timeout.it_interval.tv_nsec = 0; /* 0 for one-shot timer */
1382 timeout.it_value.tv_sec = nearest_delta_us / 1000000;
1383 timeout.it_value.tv_nsec = (nearest_delta_us % 1000000) * 1000;
1384 if (timer_settime(host_timer, 0 /* RELATIVE */, &timeout, NULL)) {
1385 perror("settime");
1386 fprintf(stderr, "Internal timer error: aborting\n");
1387 exit(1);
1391 #endif /* defined(__linux__) */
1393 static int unix_start_timer(struct qemu_alarm_timer *t)
1395 struct sigaction act;
1396 struct itimerval itv;
1397 int err;
1399 /* timer signal */
1400 sigfillset(&act.sa_mask);
1401 act.sa_flags = 0;
1402 #if defined(TARGET_I386) && defined(USE_CODE_COPY)
1403 act.sa_flags |= SA_ONSTACK;
1404 #endif
1405 act.sa_handler = host_alarm_handler;
1407 sigaction(SIGALRM, &act, NULL);
1409 itv.it_interval.tv_sec = 0;
1410 /* for i386 kernel 2.6 to get 1 ms */
1411 itv.it_interval.tv_usec = 999;
1412 itv.it_value.tv_sec = 0;
1413 itv.it_value.tv_usec = 10 * 1000;
1415 err = setitimer(ITIMER_REAL, &itv, NULL);
1416 if (err)
1417 return -1;
1419 return 0;
1422 static void unix_stop_timer(struct qemu_alarm_timer *t)
1424 struct itimerval itv;
1426 memset(&itv, 0, sizeof(itv));
1427 setitimer(ITIMER_REAL, &itv, NULL);
1430 #endif /* !defined(_WIN32) */
1432 #ifdef _WIN32
1434 static int win32_start_timer(struct qemu_alarm_timer *t)
1436 TIMECAPS tc;
1437 struct qemu_alarm_win32 *data = t->priv;
1438 UINT flags;
1440 data->host_alarm = CreateEvent(NULL, FALSE, FALSE, NULL);
1441 if (!data->host_alarm) {
1442 perror("Failed CreateEvent");
1443 return -1;
1446 memset(&tc, 0, sizeof(tc));
1447 timeGetDevCaps(&tc, sizeof(tc));
1449 if (data->period < tc.wPeriodMin)
1450 data->period = tc.wPeriodMin;
1452 timeBeginPeriod(data->period);
1454 flags = TIME_CALLBACK_FUNCTION;
1455 if (alarm_has_dynticks(t))
1456 flags |= TIME_ONESHOT;
1457 else
1458 flags |= TIME_PERIODIC;
1460 data->timerId = timeSetEvent(1, // interval (ms)
1461 data->period, // resolution
1462 host_alarm_handler, // function
1463 (DWORD)t, // parameter
1464 flags);
1466 if (!data->timerId) {
1467 perror("Failed to initialize win32 alarm timer");
1469 timeEndPeriod(data->period);
1470 CloseHandle(data->host_alarm);
1471 return -1;
1474 qemu_add_wait_object(data->host_alarm, NULL, NULL);
1476 return 0;
1479 static void win32_stop_timer(struct qemu_alarm_timer *t)
1481 struct qemu_alarm_win32 *data = t->priv;
1483 timeKillEvent(data->timerId);
1484 timeEndPeriod(data->period);
1486 CloseHandle(data->host_alarm);
1489 static void win32_rearm_timer(struct qemu_alarm_timer *t)
1491 struct qemu_alarm_win32 *data = t->priv;
1492 uint64_t nearest_delta_us;
1494 if (!active_timers[QEMU_TIMER_REALTIME] &&
1495 !active_timers[QEMU_TIMER_VIRTUAL])
1496 return;
1498 nearest_delta_us = qemu_next_deadline();
1499 nearest_delta_us /= 1000;
1501 timeKillEvent(data->timerId);
1503 data->timerId = timeSetEvent(1,
1504 data->period,
1505 host_alarm_handler,
1506 (DWORD)t,
1507 TIME_ONESHOT | TIME_PERIODIC);
1509 if (!data->timerId) {
1510 perror("Failed to re-arm win32 alarm timer");
1512 timeEndPeriod(data->period);
1513 CloseHandle(data->host_alarm);
1514 exit(1);
1518 #endif /* _WIN32 */
1520 static void init_timer_alarm(void)
1522 struct qemu_alarm_timer *t;
1523 int i, err = -1;
1525 for (i = 0; alarm_timers[i].name; i++) {
1526 t = &alarm_timers[i];
1528 err = t->start(t);
1529 if (!err)
1530 break;
1533 if (err) {
1534 fprintf(stderr, "Unable to find any suitable alarm timer.\n");
1535 fprintf(stderr, "Terminating\n");
1536 exit(1);
1539 alarm_timer = t;
1542 void quit_timers(void)
1544 alarm_timer->stop(alarm_timer);
1545 alarm_timer = NULL;
1548 /***********************************************************/
1549 /* character device */
1551 static void qemu_chr_event(CharDriverState *s, int event)
1553 if (!s->chr_event)
1554 return;
1555 s->chr_event(s->handler_opaque, event);
1558 static void qemu_chr_reset_bh(void *opaque)
1560 CharDriverState *s = opaque;
1561 qemu_chr_event(s, CHR_EVENT_RESET);
1562 qemu_bh_delete(s->bh);
1563 s->bh = NULL;
1566 void qemu_chr_reset(CharDriverState *s)
1568 if (s->bh == NULL) {
1569 s->bh = qemu_bh_new(qemu_chr_reset_bh, s);
1570 qemu_bh_schedule(s->bh);
1574 int qemu_chr_write(CharDriverState *s, const uint8_t *buf, int len)
1576 return s->chr_write(s, buf, len);
1579 int qemu_chr_ioctl(CharDriverState *s, int cmd, void *arg)
1581 if (!s->chr_ioctl)
1582 return -ENOTSUP;
1583 return s->chr_ioctl(s, cmd, arg);
1586 int qemu_chr_can_read(CharDriverState *s)
1588 if (!s->chr_can_read)
1589 return 0;
1590 return s->chr_can_read(s->handler_opaque);
1593 void qemu_chr_read(CharDriverState *s, uint8_t *buf, int len)
1595 s->chr_read(s->handler_opaque, buf, len);
1599 void qemu_chr_printf(CharDriverState *s, const char *fmt, ...)
1601 char buf[4096];
1602 va_list ap;
1603 va_start(ap, fmt);
1604 vsnprintf(buf, sizeof(buf), fmt, ap);
1605 qemu_chr_write(s, buf, strlen(buf));
1606 va_end(ap);
1609 void qemu_chr_send_event(CharDriverState *s, int event)
1611 if (s->chr_send_event)
1612 s->chr_send_event(s, event);
1615 void qemu_chr_add_handlers(CharDriverState *s,
1616 IOCanRWHandler *fd_can_read,
1617 IOReadHandler *fd_read,
1618 IOEventHandler *fd_event,
1619 void *opaque)
1621 s->chr_can_read = fd_can_read;
1622 s->chr_read = fd_read;
1623 s->chr_event = fd_event;
1624 s->handler_opaque = opaque;
1625 if (s->chr_update_read_handler)
1626 s->chr_update_read_handler(s);
1629 static int null_chr_write(CharDriverState *chr, const uint8_t *buf, int len)
1631 return len;
1634 static CharDriverState *qemu_chr_open_null(void)
1636 CharDriverState *chr;
1638 chr = qemu_mallocz(sizeof(CharDriverState));
1639 if (!chr)
1640 return NULL;
1641 chr->chr_write = null_chr_write;
1642 return chr;
1645 /* MUX driver for serial I/O splitting */
1646 static int term_timestamps;
1647 static int64_t term_timestamps_start;
1648 #define MAX_MUX 4
1649 typedef struct {
1650 IOCanRWHandler *chr_can_read[MAX_MUX];
1651 IOReadHandler *chr_read[MAX_MUX];
1652 IOEventHandler *chr_event[MAX_MUX];
1653 void *ext_opaque[MAX_MUX];
1654 CharDriverState *drv;
1655 int mux_cnt;
1656 int term_got_escape;
1657 int max_size;
1658 } MuxDriver;
1661 static int mux_chr_write(CharDriverState *chr, const uint8_t *buf, int len)
1663 MuxDriver *d = chr->opaque;
1664 int ret;
1665 if (!term_timestamps) {
1666 ret = d->drv->chr_write(d->drv, buf, len);
1667 } else {
1668 int i;
1670 ret = 0;
1671 for(i = 0; i < len; i++) {
1672 ret += d->drv->chr_write(d->drv, buf+i, 1);
1673 if (buf[i] == '\n') {
1674 char buf1[64];
1675 int64_t ti;
1676 int secs;
1678 ti = get_clock();
1679 if (term_timestamps_start == -1)
1680 term_timestamps_start = ti;
1681 ti -= term_timestamps_start;
1682 secs = ti / 1000000000;
1683 snprintf(buf1, sizeof(buf1),
1684 "[%02d:%02d:%02d.%03d] ",
1685 secs / 3600,
1686 (secs / 60) % 60,
1687 secs % 60,
1688 (int)((ti / 1000000) % 1000));
1689 d->drv->chr_write(d->drv, buf1, strlen(buf1));
1693 return ret;
1696 static char *mux_help[] = {
1697 "% h print this help\n\r",
1698 "% x exit emulator\n\r",
1699 "% s save disk data back to file (if -snapshot)\n\r",
1700 "% t toggle console timestamps\n\r"
1701 "% b send break (magic sysrq)\n\r",
1702 "% c switch between console and monitor\n\r",
1703 "% % sends %\n\r",
1704 NULL
1707 static int term_escape_char = 0x01; /* ctrl-a is used for escape */
1708 static void mux_print_help(CharDriverState *chr)
1710 int i, j;
1711 char ebuf[15] = "Escape-Char";
1712 char cbuf[50] = "\n\r";
1714 if (term_escape_char > 0 && term_escape_char < 26) {
1715 sprintf(cbuf,"\n\r");
1716 sprintf(ebuf,"C-%c", term_escape_char - 1 + 'a');
1717 } else {
1718 sprintf(cbuf,"\n\rEscape-Char set to Ascii: 0x%02x\n\r\n\r", term_escape_char);
1720 chr->chr_write(chr, cbuf, strlen(cbuf));
1721 for (i = 0; mux_help[i] != NULL; i++) {
1722 for (j=0; mux_help[i][j] != '\0'; j++) {
1723 if (mux_help[i][j] == '%')
1724 chr->chr_write(chr, ebuf, strlen(ebuf));
1725 else
1726 chr->chr_write(chr, &mux_help[i][j], 1);
1731 static int mux_proc_byte(CharDriverState *chr, MuxDriver *d, int ch)
1733 if (d->term_got_escape) {
1734 d->term_got_escape = 0;
1735 if (ch == term_escape_char)
1736 goto send_char;
1737 switch(ch) {
1738 case '?':
1739 case 'h':
1740 mux_print_help(chr);
1741 break;
1742 case 'x':
1744 char *term = "QEMU: Terminated\n\r";
1745 chr->chr_write(chr,term,strlen(term));
1746 exit(0);
1747 break;
1749 case 's':
1751 int i;
1752 for (i = 0; i < MAX_DISKS; i++) {
1753 if (bs_table[i])
1754 bdrv_commit(bs_table[i]);
1756 if (mtd_bdrv)
1757 bdrv_commit(mtd_bdrv);
1759 break;
1760 case 'b':
1761 qemu_chr_event(chr, CHR_EVENT_BREAK);
1762 break;
1763 case 'c':
1764 /* Switch to the next registered device */
1765 chr->focus++;
1766 if (chr->focus >= d->mux_cnt)
1767 chr->focus = 0;
1768 break;
1769 case 't':
1770 term_timestamps = !term_timestamps;
1771 term_timestamps_start = -1;
1772 break;
1774 } else if (ch == term_escape_char) {
1775 d->term_got_escape = 1;
1776 } else {
1777 send_char:
1778 return 1;
1780 return 0;
1783 static int mux_chr_can_read(void *opaque)
1785 CharDriverState *chr = opaque;
1786 MuxDriver *d = chr->opaque;
1787 if (d->chr_can_read[chr->focus])
1788 return d->chr_can_read[chr->focus](d->ext_opaque[chr->focus]);
1789 return 0;
1792 static void mux_chr_read(void *opaque, const uint8_t *buf, int size)
1794 CharDriverState *chr = opaque;
1795 MuxDriver *d = chr->opaque;
1796 int i;
1797 for(i = 0; i < size; i++)
1798 if (mux_proc_byte(chr, d, buf[i]))
1799 d->chr_read[chr->focus](d->ext_opaque[chr->focus], &buf[i], 1);
1802 static void mux_chr_event(void *opaque, int event)
1804 CharDriverState *chr = opaque;
1805 MuxDriver *d = chr->opaque;
1806 int i;
1808 /* Send the event to all registered listeners */
1809 for (i = 0; i < d->mux_cnt; i++)
1810 if (d->chr_event[i])
1811 d->chr_event[i](d->ext_opaque[i], event);
1814 static void mux_chr_update_read_handler(CharDriverState *chr)
1816 MuxDriver *d = chr->opaque;
1818 if (d->mux_cnt >= MAX_MUX) {
1819 fprintf(stderr, "Cannot add I/O handlers, MUX array is full\n");
1820 return;
1822 d->ext_opaque[d->mux_cnt] = chr->handler_opaque;
1823 d->chr_can_read[d->mux_cnt] = chr->chr_can_read;
1824 d->chr_read[d->mux_cnt] = chr->chr_read;
1825 d->chr_event[d->mux_cnt] = chr->chr_event;
1826 /* Fix up the real driver with mux routines */
1827 if (d->mux_cnt == 0) {
1828 qemu_chr_add_handlers(d->drv, mux_chr_can_read, mux_chr_read,
1829 mux_chr_event, chr);
1831 chr->focus = d->mux_cnt;
1832 d->mux_cnt++;
1835 CharDriverState *qemu_chr_open_mux(CharDriverState *drv)
1837 CharDriverState *chr;
1838 MuxDriver *d;
1840 chr = qemu_mallocz(sizeof(CharDriverState));
1841 if (!chr)
1842 return NULL;
1843 d = qemu_mallocz(sizeof(MuxDriver));
1844 if (!d) {
1845 free(chr);
1846 return NULL;
1849 chr->opaque = d;
1850 d->drv = drv;
1851 chr->focus = -1;
1852 chr->chr_write = mux_chr_write;
1853 chr->chr_update_read_handler = mux_chr_update_read_handler;
1854 return chr;
1858 #ifdef _WIN32
1860 static void socket_cleanup(void)
1862 WSACleanup();
1865 static int socket_init(void)
1867 WSADATA Data;
1868 int ret, err;
1870 ret = WSAStartup(MAKEWORD(2,2), &Data);
1871 if (ret != 0) {
1872 err = WSAGetLastError();
1873 fprintf(stderr, "WSAStartup: %d\n", err);
1874 return -1;
1876 atexit(socket_cleanup);
1877 return 0;
1880 static int send_all(int fd, const uint8_t *buf, int len1)
1882 int ret, len;
1884 len = len1;
1885 while (len > 0) {
1886 ret = send(fd, buf, len, 0);
1887 if (ret < 0) {
1888 int errno;
1889 errno = WSAGetLastError();
1890 if (errno != WSAEWOULDBLOCK) {
1891 return -1;
1893 } else if (ret == 0) {
1894 break;
1895 } else {
1896 buf += ret;
1897 len -= ret;
1900 return len1 - len;
1903 void socket_set_nonblock(int fd)
1905 unsigned long opt = 1;
1906 ioctlsocket(fd, FIONBIO, &opt);
1909 #else
1911 static int unix_write(int fd, const uint8_t *buf, int len1)
1913 int ret, len;
1915 len = len1;
1916 while (len > 0) {
1917 ret = write(fd, buf, len);
1918 if (ret < 0) {
1919 if (errno != EINTR && errno != EAGAIN)
1920 return -1;
1921 } else if (ret == 0) {
1922 break;
1923 } else {
1924 buf += ret;
1925 len -= ret;
1928 return len1 - len;
1931 static inline int send_all(int fd, const uint8_t *buf, int len1)
1933 return unix_write(fd, buf, len1);
1936 void socket_set_nonblock(int fd)
1938 fcntl(fd, F_SETFL, O_NONBLOCK);
1940 #endif /* !_WIN32 */
1942 #ifndef _WIN32
1944 typedef struct {
1945 int fd_in, fd_out;
1946 int max_size;
1947 } FDCharDriver;
1949 #define STDIO_MAX_CLIENTS 1
1950 static int stdio_nb_clients = 0;
1952 static int fd_chr_write(CharDriverState *chr, const uint8_t *buf, int len)
1954 FDCharDriver *s = chr->opaque;
1955 return unix_write(s->fd_out, buf, len);
1958 static int fd_chr_read_poll(void *opaque)
1960 CharDriverState *chr = opaque;
1961 FDCharDriver *s = chr->opaque;
1963 s->max_size = qemu_chr_can_read(chr);
1964 return s->max_size;
1967 static void fd_chr_read(void *opaque)
1969 CharDriverState *chr = opaque;
1970 FDCharDriver *s = chr->opaque;
1971 int size, len;
1972 uint8_t buf[1024];
1974 len = sizeof(buf);
1975 if (len > s->max_size)
1976 len = s->max_size;
1977 if (len == 0)
1978 return;
1979 size = read(s->fd_in, buf, len);
1980 if (size == 0) {
1981 /* FD has been closed. Remove it from the active list. */
1982 qemu_set_fd_handler2(s->fd_in, NULL, NULL, NULL, NULL);
1983 return;
1985 if (size > 0) {
1986 qemu_chr_read(chr, buf, size);
1990 static void fd_chr_update_read_handler(CharDriverState *chr)
1992 FDCharDriver *s = chr->opaque;
1994 if (s->fd_in >= 0) {
1995 if (nographic && s->fd_in == 0) {
1996 } else {
1997 qemu_set_fd_handler2(s->fd_in, fd_chr_read_poll,
1998 fd_chr_read, NULL, chr);
2003 /* open a character device to a unix fd */
2004 static CharDriverState *qemu_chr_open_fd(int fd_in, int fd_out)
2006 CharDriverState *chr;
2007 FDCharDriver *s;
2009 chr = qemu_mallocz(sizeof(CharDriverState));
2010 if (!chr)
2011 return NULL;
2012 s = qemu_mallocz(sizeof(FDCharDriver));
2013 if (!s) {
2014 free(chr);
2015 return NULL;
2017 s->fd_in = fd_in;
2018 s->fd_out = fd_out;
2019 chr->opaque = s;
2020 chr->chr_write = fd_chr_write;
2021 chr->chr_update_read_handler = fd_chr_update_read_handler;
2023 qemu_chr_reset(chr);
2025 return chr;
2028 static CharDriverState *qemu_chr_open_file_out(const char *file_out)
2030 int fd_out;
2032 TFR(fd_out = open(file_out, O_WRONLY | O_TRUNC | O_CREAT | O_BINARY, 0666));
2033 if (fd_out < 0)
2034 return NULL;
2035 return qemu_chr_open_fd(-1, fd_out);
2038 static CharDriverState *qemu_chr_open_pipe(const char *filename)
2040 int fd_in, fd_out;
2041 char filename_in[256], filename_out[256];
2043 snprintf(filename_in, 256, "%s.in", filename);
2044 snprintf(filename_out, 256, "%s.out", filename);
2045 TFR(fd_in = open(filename_in, O_RDWR | O_BINARY));
2046 TFR(fd_out = open(filename_out, O_RDWR | O_BINARY));
2047 if (fd_in < 0 || fd_out < 0) {
2048 if (fd_in >= 0)
2049 close(fd_in);
2050 if (fd_out >= 0)
2051 close(fd_out);
2052 TFR(fd_in = fd_out = open(filename, O_RDWR | O_BINARY));
2053 if (fd_in < 0)
2054 return NULL;
2056 return qemu_chr_open_fd(fd_in, fd_out);
2060 /* for STDIO, we handle the case where several clients use it
2061 (nographic mode) */
2063 #define TERM_FIFO_MAX_SIZE 1
2065 static uint8_t term_fifo[TERM_FIFO_MAX_SIZE];
2066 static int term_fifo_size;
2068 static int stdio_read_poll(void *opaque)
2070 CharDriverState *chr = opaque;
2072 /* try to flush the queue if needed */
2073 if (term_fifo_size != 0 && qemu_chr_can_read(chr) > 0) {
2074 qemu_chr_read(chr, term_fifo, 1);
2075 term_fifo_size = 0;
2077 /* see if we can absorb more chars */
2078 if (term_fifo_size == 0)
2079 return 1;
2080 else
2081 return 0;
2084 static void stdio_read(void *opaque)
2086 int size;
2087 uint8_t buf[1];
2088 CharDriverState *chr = opaque;
2090 size = read(0, buf, 1);
2091 if (size == 0) {
2092 /* stdin has been closed. Remove it from the active list. */
2093 qemu_set_fd_handler2(0, NULL, NULL, NULL, NULL);
2094 return;
2096 if (size > 0) {
2097 if (qemu_chr_can_read(chr) > 0) {
2098 qemu_chr_read(chr, buf, 1);
2099 } else if (term_fifo_size == 0) {
2100 term_fifo[term_fifo_size++] = buf[0];
2105 /* init terminal so that we can grab keys */
2106 static struct termios oldtty;
2107 static int old_fd0_flags;
2109 static void term_exit(void)
2111 tcsetattr (0, TCSANOW, &oldtty);
2112 fcntl(0, F_SETFL, old_fd0_flags);
2115 static void term_init(void)
2117 struct termios tty;
2119 tcgetattr (0, &tty);
2120 oldtty = tty;
2121 old_fd0_flags = fcntl(0, F_GETFL);
2123 tty.c_iflag &= ~(IGNBRK|BRKINT|PARMRK|ISTRIP
2124 |INLCR|IGNCR|ICRNL|IXON);
2125 tty.c_oflag |= OPOST;
2126 tty.c_lflag &= ~(ECHO|ECHONL|ICANON|IEXTEN);
2127 /* if graphical mode, we allow Ctrl-C handling */
2128 if (nographic)
2129 tty.c_lflag &= ~ISIG;
2130 tty.c_cflag &= ~(CSIZE|PARENB);
2131 tty.c_cflag |= CS8;
2132 tty.c_cc[VMIN] = 1;
2133 tty.c_cc[VTIME] = 0;
2135 tcsetattr (0, TCSANOW, &tty);
2137 atexit(term_exit);
2139 fcntl(0, F_SETFL, O_NONBLOCK);
2142 static CharDriverState *qemu_chr_open_stdio(void)
2144 CharDriverState *chr;
2146 if (stdio_nb_clients >= STDIO_MAX_CLIENTS)
2147 return NULL;
2148 chr = qemu_chr_open_fd(0, 1);
2149 qemu_set_fd_handler2(0, stdio_read_poll, stdio_read, NULL, chr);
2150 stdio_nb_clients++;
2151 term_init();
2153 return chr;
2156 #if defined(__linux__) || defined(__sun__)
2157 static CharDriverState *qemu_chr_open_pty(void)
2159 struct termios tty;
2160 char slave_name[1024];
2161 int master_fd, slave_fd;
2163 #if defined(__linux__)
2164 /* Not satisfying */
2165 if (openpty(&master_fd, &slave_fd, slave_name, NULL, NULL) < 0) {
2166 return NULL;
2168 #endif
2170 /* Disabling local echo and line-buffered output */
2171 tcgetattr (master_fd, &tty);
2172 tty.c_lflag &= ~(ECHO|ICANON|ISIG);
2173 tty.c_cc[VMIN] = 1;
2174 tty.c_cc[VTIME] = 0;
2175 tcsetattr (master_fd, TCSAFLUSH, &tty);
2177 fprintf(stderr, "char device redirected to %s\n", slave_name);
2178 return qemu_chr_open_fd(master_fd, master_fd);
2181 static void tty_serial_init(int fd, int speed,
2182 int parity, int data_bits, int stop_bits)
2184 struct termios tty;
2185 speed_t spd;
2187 #if 0
2188 printf("tty_serial_init: speed=%d parity=%c data=%d stop=%d\n",
2189 speed, parity, data_bits, stop_bits);
2190 #endif
2191 tcgetattr (fd, &tty);
2193 switch(speed) {
2194 case 50:
2195 spd = B50;
2196 break;
2197 case 75:
2198 spd = B75;
2199 break;
2200 case 300:
2201 spd = B300;
2202 break;
2203 case 600:
2204 spd = B600;
2205 break;
2206 case 1200:
2207 spd = B1200;
2208 break;
2209 case 2400:
2210 spd = B2400;
2211 break;
2212 case 4800:
2213 spd = B4800;
2214 break;
2215 case 9600:
2216 spd = B9600;
2217 break;
2218 case 19200:
2219 spd = B19200;
2220 break;
2221 case 38400:
2222 spd = B38400;
2223 break;
2224 case 57600:
2225 spd = B57600;
2226 break;
2227 default:
2228 case 115200:
2229 spd = B115200;
2230 break;
2233 cfsetispeed(&tty, spd);
2234 cfsetospeed(&tty, spd);
2236 tty.c_iflag &= ~(IGNBRK|BRKINT|PARMRK|ISTRIP
2237 |INLCR|IGNCR|ICRNL|IXON);
2238 tty.c_oflag |= OPOST;
2239 tty.c_lflag &= ~(ECHO|ECHONL|ICANON|IEXTEN|ISIG);
2240 tty.c_cflag &= ~(CSIZE|PARENB|PARODD|CRTSCTS|CSTOPB);
2241 switch(data_bits) {
2242 default:
2243 case 8:
2244 tty.c_cflag |= CS8;
2245 break;
2246 case 7:
2247 tty.c_cflag |= CS7;
2248 break;
2249 case 6:
2250 tty.c_cflag |= CS6;
2251 break;
2252 case 5:
2253 tty.c_cflag |= CS5;
2254 break;
2256 switch(parity) {
2257 default:
2258 case 'N':
2259 break;
2260 case 'E':
2261 tty.c_cflag |= PARENB;
2262 break;
2263 case 'O':
2264 tty.c_cflag |= PARENB | PARODD;
2265 break;
2267 if (stop_bits == 2)
2268 tty.c_cflag |= CSTOPB;
2270 tcsetattr (fd, TCSANOW, &tty);
2273 static int tty_serial_ioctl(CharDriverState *chr, int cmd, void *arg)
2275 FDCharDriver *s = chr->opaque;
2277 switch(cmd) {
2278 case CHR_IOCTL_SERIAL_SET_PARAMS:
2280 QEMUSerialSetParams *ssp = arg;
2281 tty_serial_init(s->fd_in, ssp->speed, ssp->parity,
2282 ssp->data_bits, ssp->stop_bits);
2284 break;
2285 case CHR_IOCTL_SERIAL_SET_BREAK:
2287 int enable = *(int *)arg;
2288 if (enable)
2289 tcsendbreak(s->fd_in, 1);
2291 break;
2292 default:
2293 return -ENOTSUP;
2295 return 0;
2298 static CharDriverState *qemu_chr_open_tty(const char *filename)
2300 CharDriverState *chr;
2301 int fd;
2303 TFR(fd = open(filename, O_RDWR | O_NONBLOCK));
2304 fcntl(fd, F_SETFL, O_NONBLOCK);
2305 tty_serial_init(fd, 115200, 'N', 8, 1);
2306 chr = qemu_chr_open_fd(fd, fd);
2307 if (!chr) {
2308 close(fd);
2309 return NULL;
2311 chr->chr_ioctl = tty_serial_ioctl;
2312 qemu_chr_reset(chr);
2313 return chr;
2315 #else /* ! __linux__ && ! __sun__ */
2316 static CharDriverState *qemu_chr_open_pty(void)
2318 return NULL;
2320 #endif /* __linux__ || __sun__ */
2322 #if defined(__linux__)
2323 typedef struct {
2324 int fd;
2325 int mode;
2326 } ParallelCharDriver;
2328 static int pp_hw_mode(ParallelCharDriver *s, uint16_t mode)
2330 if (s->mode != mode) {
2331 int m = mode;
2332 if (ioctl(s->fd, PPSETMODE, &m) < 0)
2333 return 0;
2334 s->mode = mode;
2336 return 1;
2339 static int pp_ioctl(CharDriverState *chr, int cmd, void *arg)
2341 ParallelCharDriver *drv = chr->opaque;
2342 int fd = drv->fd;
2343 uint8_t b;
2345 switch(cmd) {
2346 case CHR_IOCTL_PP_READ_DATA:
2347 if (ioctl(fd, PPRDATA, &b) < 0)
2348 return -ENOTSUP;
2349 *(uint8_t *)arg = b;
2350 break;
2351 case CHR_IOCTL_PP_WRITE_DATA:
2352 b = *(uint8_t *)arg;
2353 if (ioctl(fd, PPWDATA, &b) < 0)
2354 return -ENOTSUP;
2355 break;
2356 case CHR_IOCTL_PP_READ_CONTROL:
2357 if (ioctl(fd, PPRCONTROL, &b) < 0)
2358 return -ENOTSUP;
2359 /* Linux gives only the lowest bits, and no way to know data
2360 direction! For better compatibility set the fixed upper
2361 bits. */
2362 *(uint8_t *)arg = b | 0xc0;
2363 break;
2364 case CHR_IOCTL_PP_WRITE_CONTROL:
2365 b = *(uint8_t *)arg;
2366 if (ioctl(fd, PPWCONTROL, &b) < 0)
2367 return -ENOTSUP;
2368 break;
2369 case CHR_IOCTL_PP_READ_STATUS:
2370 if (ioctl(fd, PPRSTATUS, &b) < 0)
2371 return -ENOTSUP;
2372 *(uint8_t *)arg = b;
2373 break;
2374 case CHR_IOCTL_PP_EPP_READ_ADDR:
2375 if (pp_hw_mode(drv, IEEE1284_MODE_EPP|IEEE1284_ADDR)) {
2376 struct ParallelIOArg *parg = arg;
2377 int n = read(fd, parg->buffer, parg->count);
2378 if (n != parg->count) {
2379 return -EIO;
2382 break;
2383 case CHR_IOCTL_PP_EPP_READ:
2384 if (pp_hw_mode(drv, IEEE1284_MODE_EPP)) {
2385 struct ParallelIOArg *parg = arg;
2386 int n = read(fd, parg->buffer, parg->count);
2387 if (n != parg->count) {
2388 return -EIO;
2391 break;
2392 case CHR_IOCTL_PP_EPP_WRITE_ADDR:
2393 if (pp_hw_mode(drv, IEEE1284_MODE_EPP|IEEE1284_ADDR)) {
2394 struct ParallelIOArg *parg = arg;
2395 int n = write(fd, parg->buffer, parg->count);
2396 if (n != parg->count) {
2397 return -EIO;
2400 break;
2401 case CHR_IOCTL_PP_EPP_WRITE:
2402 if (pp_hw_mode(drv, IEEE1284_MODE_EPP)) {
2403 struct ParallelIOArg *parg = arg;
2404 int n = write(fd, parg->buffer, parg->count);
2405 if (n != parg->count) {
2406 return -EIO;
2409 break;
2410 default:
2411 return -ENOTSUP;
2413 return 0;
2416 static void pp_close(CharDriverState *chr)
2418 ParallelCharDriver *drv = chr->opaque;
2419 int fd = drv->fd;
2421 pp_hw_mode(drv, IEEE1284_MODE_COMPAT);
2422 ioctl(fd, PPRELEASE);
2423 close(fd);
2424 qemu_free(drv);
2427 static CharDriverState *qemu_chr_open_pp(const char *filename)
2429 CharDriverState *chr;
2430 ParallelCharDriver *drv;
2431 int fd;
2433 TFR(fd = open(filename, O_RDWR));
2434 if (fd < 0)
2435 return NULL;
2437 if (ioctl(fd, PPCLAIM) < 0) {
2438 close(fd);
2439 return NULL;
2442 drv = qemu_mallocz(sizeof(ParallelCharDriver));
2443 if (!drv) {
2444 close(fd);
2445 return NULL;
2447 drv->fd = fd;
2448 drv->mode = IEEE1284_MODE_COMPAT;
2450 chr = qemu_mallocz(sizeof(CharDriverState));
2451 if (!chr) {
2452 qemu_free(drv);
2453 close(fd);
2454 return NULL;
2456 chr->chr_write = null_chr_write;
2457 chr->chr_ioctl = pp_ioctl;
2458 chr->chr_close = pp_close;
2459 chr->opaque = drv;
2461 qemu_chr_reset(chr);
2463 return chr;
2465 #endif /* __linux__ */
2467 #else /* _WIN32 */
2469 typedef struct {
2470 int max_size;
2471 HANDLE hcom, hrecv, hsend;
2472 OVERLAPPED orecv, osend;
2473 BOOL fpipe;
2474 DWORD len;
2475 } WinCharState;
2477 #define NSENDBUF 2048
2478 #define NRECVBUF 2048
2479 #define MAXCONNECT 1
2480 #define NTIMEOUT 5000
2482 static int win_chr_poll(void *opaque);
2483 static int win_chr_pipe_poll(void *opaque);
2485 static void win_chr_close(CharDriverState *chr)
2487 WinCharState *s = chr->opaque;
2489 if (s->hsend) {
2490 CloseHandle(s->hsend);
2491 s->hsend = NULL;
2493 if (s->hrecv) {
2494 CloseHandle(s->hrecv);
2495 s->hrecv = NULL;
2497 if (s->hcom) {
2498 CloseHandle(s->hcom);
2499 s->hcom = NULL;
2501 if (s->fpipe)
2502 qemu_del_polling_cb(win_chr_pipe_poll, chr);
2503 else
2504 qemu_del_polling_cb(win_chr_poll, chr);
2507 static int win_chr_init(CharDriverState *chr, const char *filename)
2509 WinCharState *s = chr->opaque;
2510 COMMCONFIG comcfg;
2511 COMMTIMEOUTS cto = { 0, 0, 0, 0, 0};
2512 COMSTAT comstat;
2513 DWORD size;
2514 DWORD err;
2516 s->hsend = CreateEvent(NULL, TRUE, FALSE, NULL);
2517 if (!s->hsend) {
2518 fprintf(stderr, "Failed CreateEvent\n");
2519 goto fail;
2521 s->hrecv = CreateEvent(NULL, TRUE, FALSE, NULL);
2522 if (!s->hrecv) {
2523 fprintf(stderr, "Failed CreateEvent\n");
2524 goto fail;
2527 s->hcom = CreateFile(filename, GENERIC_READ|GENERIC_WRITE, 0, NULL,
2528 OPEN_EXISTING, FILE_FLAG_OVERLAPPED, 0);
2529 if (s->hcom == INVALID_HANDLE_VALUE) {
2530 fprintf(stderr, "Failed CreateFile (%lu)\n", GetLastError());
2531 s->hcom = NULL;
2532 goto fail;
2535 if (!SetupComm(s->hcom, NRECVBUF, NSENDBUF)) {
2536 fprintf(stderr, "Failed SetupComm\n");
2537 goto fail;
2540 ZeroMemory(&comcfg, sizeof(COMMCONFIG));
2541 size = sizeof(COMMCONFIG);
2542 GetDefaultCommConfig(filename, &comcfg, &size);
2543 comcfg.dcb.DCBlength = sizeof(DCB);
2544 CommConfigDialog(filename, NULL, &comcfg);
2546 if (!SetCommState(s->hcom, &comcfg.dcb)) {
2547 fprintf(stderr, "Failed SetCommState\n");
2548 goto fail;
2551 if (!SetCommMask(s->hcom, EV_ERR)) {
2552 fprintf(stderr, "Failed SetCommMask\n");
2553 goto fail;
2556 cto.ReadIntervalTimeout = MAXDWORD;
2557 if (!SetCommTimeouts(s->hcom, &cto)) {
2558 fprintf(stderr, "Failed SetCommTimeouts\n");
2559 goto fail;
2562 if (!ClearCommError(s->hcom, &err, &comstat)) {
2563 fprintf(stderr, "Failed ClearCommError\n");
2564 goto fail;
2566 qemu_add_polling_cb(win_chr_poll, chr);
2567 return 0;
2569 fail:
2570 win_chr_close(chr);
2571 return -1;
2574 static int win_chr_write(CharDriverState *chr, const uint8_t *buf, int len1)
2576 WinCharState *s = chr->opaque;
2577 DWORD len, ret, size, err;
2579 len = len1;
2580 ZeroMemory(&s->osend, sizeof(s->osend));
2581 s->osend.hEvent = s->hsend;
2582 while (len > 0) {
2583 if (s->hsend)
2584 ret = WriteFile(s->hcom, buf, len, &size, &s->osend);
2585 else
2586 ret = WriteFile(s->hcom, buf, len, &size, NULL);
2587 if (!ret) {
2588 err = GetLastError();
2589 if (err == ERROR_IO_PENDING) {
2590 ret = GetOverlappedResult(s->hcom, &s->osend, &size, TRUE);
2591 if (ret) {
2592 buf += size;
2593 len -= size;
2594 } else {
2595 break;
2597 } else {
2598 break;
2600 } else {
2601 buf += size;
2602 len -= size;
2605 return len1 - len;
2608 static int win_chr_read_poll(CharDriverState *chr)
2610 WinCharState *s = chr->opaque;
2612 s->max_size = qemu_chr_can_read(chr);
2613 return s->max_size;
2616 static void win_chr_readfile(CharDriverState *chr)
2618 WinCharState *s = chr->opaque;
2619 int ret, err;
2620 uint8_t buf[1024];
2621 DWORD size;
2623 ZeroMemory(&s->orecv, sizeof(s->orecv));
2624 s->orecv.hEvent = s->hrecv;
2625 ret = ReadFile(s->hcom, buf, s->len, &size, &s->orecv);
2626 if (!ret) {
2627 err = GetLastError();
2628 if (err == ERROR_IO_PENDING) {
2629 ret = GetOverlappedResult(s->hcom, &s->orecv, &size, TRUE);
2633 if (size > 0) {
2634 qemu_chr_read(chr, buf, size);
2638 static void win_chr_read(CharDriverState *chr)
2640 WinCharState *s = chr->opaque;
2642 if (s->len > s->max_size)
2643 s->len = s->max_size;
2644 if (s->len == 0)
2645 return;
2647 win_chr_readfile(chr);
2650 static int win_chr_poll(void *opaque)
2652 CharDriverState *chr = opaque;
2653 WinCharState *s = chr->opaque;
2654 COMSTAT status;
2655 DWORD comerr;
2657 ClearCommError(s->hcom, &comerr, &status);
2658 if (status.cbInQue > 0) {
2659 s->len = status.cbInQue;
2660 win_chr_read_poll(chr);
2661 win_chr_read(chr);
2662 return 1;
2664 return 0;
2667 static CharDriverState *qemu_chr_open_win(const char *filename)
2669 CharDriverState *chr;
2670 WinCharState *s;
2672 chr = qemu_mallocz(sizeof(CharDriverState));
2673 if (!chr)
2674 return NULL;
2675 s = qemu_mallocz(sizeof(WinCharState));
2676 if (!s) {
2677 free(chr);
2678 return NULL;
2680 chr->opaque = s;
2681 chr->chr_write = win_chr_write;
2682 chr->chr_close = win_chr_close;
2684 if (win_chr_init(chr, filename) < 0) {
2685 free(s);
2686 free(chr);
2687 return NULL;
2689 qemu_chr_reset(chr);
2690 return chr;
2693 static int win_chr_pipe_poll(void *opaque)
2695 CharDriverState *chr = opaque;
2696 WinCharState *s = chr->opaque;
2697 DWORD size;
2699 PeekNamedPipe(s->hcom, NULL, 0, NULL, &size, NULL);
2700 if (size > 0) {
2701 s->len = size;
2702 win_chr_read_poll(chr);
2703 win_chr_read(chr);
2704 return 1;
2706 return 0;
2709 static int win_chr_pipe_init(CharDriverState *chr, const char *filename)
2711 WinCharState *s = chr->opaque;
2712 OVERLAPPED ov;
2713 int ret;
2714 DWORD size;
2715 char openname[256];
2717 s->fpipe = TRUE;
2719 s->hsend = CreateEvent(NULL, TRUE, FALSE, NULL);
2720 if (!s->hsend) {
2721 fprintf(stderr, "Failed CreateEvent\n");
2722 goto fail;
2724 s->hrecv = CreateEvent(NULL, TRUE, FALSE, NULL);
2725 if (!s->hrecv) {
2726 fprintf(stderr, "Failed CreateEvent\n");
2727 goto fail;
2730 snprintf(openname, sizeof(openname), "\\\\.\\pipe\\%s", filename);
2731 s->hcom = CreateNamedPipe(openname, PIPE_ACCESS_DUPLEX | FILE_FLAG_OVERLAPPED,
2732 PIPE_TYPE_BYTE | PIPE_READMODE_BYTE |
2733 PIPE_WAIT,
2734 MAXCONNECT, NSENDBUF, NRECVBUF, NTIMEOUT, NULL);
2735 if (s->hcom == INVALID_HANDLE_VALUE) {
2736 fprintf(stderr, "Failed CreateNamedPipe (%lu)\n", GetLastError());
2737 s->hcom = NULL;
2738 goto fail;
2741 ZeroMemory(&ov, sizeof(ov));
2742 ov.hEvent = CreateEvent(NULL, TRUE, FALSE, NULL);
2743 ret = ConnectNamedPipe(s->hcom, &ov);
2744 if (ret) {
2745 fprintf(stderr, "Failed ConnectNamedPipe\n");
2746 goto fail;
2749 ret = GetOverlappedResult(s->hcom, &ov, &size, TRUE);
2750 if (!ret) {
2751 fprintf(stderr, "Failed GetOverlappedResult\n");
2752 if (ov.hEvent) {
2753 CloseHandle(ov.hEvent);
2754 ov.hEvent = NULL;
2756 goto fail;
2759 if (ov.hEvent) {
2760 CloseHandle(ov.hEvent);
2761 ov.hEvent = NULL;
2763 qemu_add_polling_cb(win_chr_pipe_poll, chr);
2764 return 0;
2766 fail:
2767 win_chr_close(chr);
2768 return -1;
2772 static CharDriverState *qemu_chr_open_win_pipe(const char *filename)
2774 CharDriverState *chr;
2775 WinCharState *s;
2777 chr = qemu_mallocz(sizeof(CharDriverState));
2778 if (!chr)
2779 return NULL;
2780 s = qemu_mallocz(sizeof(WinCharState));
2781 if (!s) {
2782 free(chr);
2783 return NULL;
2785 chr->opaque = s;
2786 chr->chr_write = win_chr_write;
2787 chr->chr_close = win_chr_close;
2789 if (win_chr_pipe_init(chr, filename) < 0) {
2790 free(s);
2791 free(chr);
2792 return NULL;
2794 qemu_chr_reset(chr);
2795 return chr;
2798 static CharDriverState *qemu_chr_open_win_file(HANDLE fd_out)
2800 CharDriverState *chr;
2801 WinCharState *s;
2803 chr = qemu_mallocz(sizeof(CharDriverState));
2804 if (!chr)
2805 return NULL;
2806 s = qemu_mallocz(sizeof(WinCharState));
2807 if (!s) {
2808 free(chr);
2809 return NULL;
2811 s->hcom = fd_out;
2812 chr->opaque = s;
2813 chr->chr_write = win_chr_write;
2814 qemu_chr_reset(chr);
2815 return chr;
2818 static CharDriverState *qemu_chr_open_win_con(const char *filename)
2820 return qemu_chr_open_win_file(GetStdHandle(STD_OUTPUT_HANDLE));
2823 static CharDriverState *qemu_chr_open_win_file_out(const char *file_out)
2825 HANDLE fd_out;
2827 fd_out = CreateFile(file_out, GENERIC_WRITE, FILE_SHARE_READ, NULL,
2828 OPEN_ALWAYS, FILE_ATTRIBUTE_NORMAL, NULL);
2829 if (fd_out == INVALID_HANDLE_VALUE)
2830 return NULL;
2832 return qemu_chr_open_win_file(fd_out);
2834 #endif /* !_WIN32 */
2836 /***********************************************************/
2837 /* UDP Net console */
2839 typedef struct {
2840 int fd;
2841 struct sockaddr_in daddr;
2842 char buf[1024];
2843 int bufcnt;
2844 int bufptr;
2845 int max_size;
2846 } NetCharDriver;
2848 static int udp_chr_write(CharDriverState *chr, const uint8_t *buf, int len)
2850 NetCharDriver *s = chr->opaque;
2852 return sendto(s->fd, buf, len, 0,
2853 (struct sockaddr *)&s->daddr, sizeof(struct sockaddr_in));
2856 static int udp_chr_read_poll(void *opaque)
2858 CharDriverState *chr = opaque;
2859 NetCharDriver *s = chr->opaque;
2861 s->max_size = qemu_chr_can_read(chr);
2863 /* If there were any stray characters in the queue process them
2864 * first
2866 while (s->max_size > 0 && s->bufptr < s->bufcnt) {
2867 qemu_chr_read(chr, &s->buf[s->bufptr], 1);
2868 s->bufptr++;
2869 s->max_size = qemu_chr_can_read(chr);
2871 return s->max_size;
2874 static void udp_chr_read(void *opaque)
2876 CharDriverState *chr = opaque;
2877 NetCharDriver *s = chr->opaque;
2879 if (s->max_size == 0)
2880 return;
2881 s->bufcnt = recv(s->fd, s->buf, sizeof(s->buf), 0);
2882 s->bufptr = s->bufcnt;
2883 if (s->bufcnt <= 0)
2884 return;
2886 s->bufptr = 0;
2887 while (s->max_size > 0 && s->bufptr < s->bufcnt) {
2888 qemu_chr_read(chr, &s->buf[s->bufptr], 1);
2889 s->bufptr++;
2890 s->max_size = qemu_chr_can_read(chr);
2894 static void udp_chr_update_read_handler(CharDriverState *chr)
2896 NetCharDriver *s = chr->opaque;
2898 if (s->fd >= 0) {
2899 qemu_set_fd_handler2(s->fd, udp_chr_read_poll,
2900 udp_chr_read, NULL, chr);
2904 int parse_host_port(struct sockaddr_in *saddr, const char *str);
2905 #ifndef _WIN32
2906 static int parse_unix_path(struct sockaddr_un *uaddr, const char *str);
2907 #endif
2908 int parse_host_src_port(struct sockaddr_in *haddr,
2909 struct sockaddr_in *saddr,
2910 const char *str);
2912 static CharDriverState *qemu_chr_open_udp(const char *def)
2914 CharDriverState *chr = NULL;
2915 NetCharDriver *s = NULL;
2916 int fd = -1;
2917 struct sockaddr_in saddr;
2919 chr = qemu_mallocz(sizeof(CharDriverState));
2920 if (!chr)
2921 goto return_err;
2922 s = qemu_mallocz(sizeof(NetCharDriver));
2923 if (!s)
2924 goto return_err;
2926 fd = socket(PF_INET, SOCK_DGRAM, 0);
2927 if (fd < 0) {
2928 perror("socket(PF_INET, SOCK_DGRAM)");
2929 goto return_err;
2932 if (parse_host_src_port(&s->daddr, &saddr, def) < 0) {
2933 printf("Could not parse: %s\n", def);
2934 goto return_err;
2937 if (bind(fd, (struct sockaddr *)&saddr, sizeof(saddr)) < 0)
2939 perror("bind");
2940 goto return_err;
2943 s->fd = fd;
2944 s->bufcnt = 0;
2945 s->bufptr = 0;
2946 chr->opaque = s;
2947 chr->chr_write = udp_chr_write;
2948 chr->chr_update_read_handler = udp_chr_update_read_handler;
2949 return chr;
2951 return_err:
2952 if (chr)
2953 free(chr);
2954 if (s)
2955 free(s);
2956 if (fd >= 0)
2957 closesocket(fd);
2958 return NULL;
2961 /***********************************************************/
2962 /* TCP Net console */
2964 typedef struct {
2965 int fd, listen_fd;
2966 int connected;
2967 int max_size;
2968 int do_telnetopt;
2969 int do_nodelay;
2970 int is_unix;
2971 } TCPCharDriver;
2973 static void tcp_chr_accept(void *opaque);
2975 static int tcp_chr_write(CharDriverState *chr, const uint8_t *buf, int len)
2977 TCPCharDriver *s = chr->opaque;
2978 if (s->connected) {
2979 return send_all(s->fd, buf, len);
2980 } else {
2981 /* XXX: indicate an error ? */
2982 return len;
2986 static int tcp_chr_read_poll(void *opaque)
2988 CharDriverState *chr = opaque;
2989 TCPCharDriver *s = chr->opaque;
2990 if (!s->connected)
2991 return 0;
2992 s->max_size = qemu_chr_can_read(chr);
2993 return s->max_size;
2996 #define IAC 255
2997 #define IAC_BREAK 243
2998 static void tcp_chr_process_IAC_bytes(CharDriverState *chr,
2999 TCPCharDriver *s,
3000 char *buf, int *size)
3002 /* Handle any telnet client's basic IAC options to satisfy char by
3003 * char mode with no echo. All IAC options will be removed from
3004 * the buf and the do_telnetopt variable will be used to track the
3005 * state of the width of the IAC information.
3007 * IAC commands come in sets of 3 bytes with the exception of the
3008 * "IAC BREAK" command and the double IAC.
3011 int i;
3012 int j = 0;
3014 for (i = 0; i < *size; i++) {
3015 if (s->do_telnetopt > 1) {
3016 if ((unsigned char)buf[i] == IAC && s->do_telnetopt == 2) {
3017 /* Double IAC means send an IAC */
3018 if (j != i)
3019 buf[j] = buf[i];
3020 j++;
3021 s->do_telnetopt = 1;
3022 } else {
3023 if ((unsigned char)buf[i] == IAC_BREAK && s->do_telnetopt == 2) {
3024 /* Handle IAC break commands by sending a serial break */
3025 qemu_chr_event(chr, CHR_EVENT_BREAK);
3026 s->do_telnetopt++;
3028 s->do_telnetopt++;
3030 if (s->do_telnetopt >= 4) {
3031 s->do_telnetopt = 1;
3033 } else {
3034 if ((unsigned char)buf[i] == IAC) {
3035 s->do_telnetopt = 2;
3036 } else {
3037 if (j != i)
3038 buf[j] = buf[i];
3039 j++;
3043 *size = j;
3046 static void tcp_chr_read(void *opaque)
3048 CharDriverState *chr = opaque;
3049 TCPCharDriver *s = chr->opaque;
3050 uint8_t buf[1024];
3051 int len, size;
3053 if (!s->connected || s->max_size <= 0)
3054 return;
3055 len = sizeof(buf);
3056 if (len > s->max_size)
3057 len = s->max_size;
3058 size = recv(s->fd, buf, len, 0);
3059 if (size == 0) {
3060 /* connection closed */
3061 s->connected = 0;
3062 if (s->listen_fd >= 0) {
3063 qemu_set_fd_handler(s->listen_fd, tcp_chr_accept, NULL, chr);
3065 qemu_set_fd_handler(s->fd, NULL, NULL, NULL);
3066 closesocket(s->fd);
3067 s->fd = -1;
3068 } else if (size > 0) {
3069 if (s->do_telnetopt)
3070 tcp_chr_process_IAC_bytes(chr, s, buf, &size);
3071 if (size > 0)
3072 qemu_chr_read(chr, buf, size);
3076 static void tcp_chr_connect(void *opaque)
3078 CharDriverState *chr = opaque;
3079 TCPCharDriver *s = chr->opaque;
3081 s->connected = 1;
3082 qemu_set_fd_handler2(s->fd, tcp_chr_read_poll,
3083 tcp_chr_read, NULL, chr);
3084 qemu_chr_reset(chr);
3087 #define IACSET(x,a,b,c) x[0] = a; x[1] = b; x[2] = c;
3088 static void tcp_chr_telnet_init(int fd)
3090 char buf[3];
3091 /* Send the telnet negotion to put telnet in binary, no echo, single char mode */
3092 IACSET(buf, 0xff, 0xfb, 0x01); /* IAC WILL ECHO */
3093 send(fd, (char *)buf, 3, 0);
3094 IACSET(buf, 0xff, 0xfb, 0x03); /* IAC WILL Suppress go ahead */
3095 send(fd, (char *)buf, 3, 0);
3096 IACSET(buf, 0xff, 0xfb, 0x00); /* IAC WILL Binary */
3097 send(fd, (char *)buf, 3, 0);
3098 IACSET(buf, 0xff, 0xfd, 0x00); /* IAC DO Binary */
3099 send(fd, (char *)buf, 3, 0);
3102 static void socket_set_nodelay(int fd)
3104 int val = 1;
3105 setsockopt(fd, IPPROTO_TCP, TCP_NODELAY, (char *)&val, sizeof(val));
3108 static void tcp_chr_accept(void *opaque)
3110 CharDriverState *chr = opaque;
3111 TCPCharDriver *s = chr->opaque;
3112 struct sockaddr_in saddr;
3113 #ifndef _WIN32
3114 struct sockaddr_un uaddr;
3115 #endif
3116 struct sockaddr *addr;
3117 socklen_t len;
3118 int fd;
3120 for(;;) {
3121 #ifndef _WIN32
3122 if (s->is_unix) {
3123 len = sizeof(uaddr);
3124 addr = (struct sockaddr *)&uaddr;
3125 } else
3126 #endif
3128 len = sizeof(saddr);
3129 addr = (struct sockaddr *)&saddr;
3131 fd = accept(s->listen_fd, addr, &len);
3132 if (fd < 0 && errno != EINTR) {
3133 return;
3134 } else if (fd >= 0) {
3135 if (s->do_telnetopt)
3136 tcp_chr_telnet_init(fd);
3137 break;
3140 socket_set_nonblock(fd);
3141 if (s->do_nodelay)
3142 socket_set_nodelay(fd);
3143 s->fd = fd;
3144 qemu_set_fd_handler(s->listen_fd, NULL, NULL, NULL);
3145 tcp_chr_connect(chr);
3148 static void tcp_chr_close(CharDriverState *chr)
3150 TCPCharDriver *s = chr->opaque;
3151 if (s->fd >= 0)
3152 closesocket(s->fd);
3153 if (s->listen_fd >= 0)
3154 closesocket(s->listen_fd);
3155 qemu_free(s);
3158 static CharDriverState *qemu_chr_open_tcp(const char *host_str,
3159 int is_telnet,
3160 int is_unix)
3162 CharDriverState *chr = NULL;
3163 TCPCharDriver *s = NULL;
3164 int fd = -1, ret, err, val;
3165 int is_listen = 0;
3166 int is_waitconnect = 1;
3167 int do_nodelay = 0;
3168 const char *ptr;
3169 struct sockaddr_in saddr;
3170 #ifndef _WIN32
3171 struct sockaddr_un uaddr;
3172 #endif
3173 struct sockaddr *addr;
3174 socklen_t addrlen;
3176 #ifndef _WIN32
3177 if (is_unix) {
3178 addr = (struct sockaddr *)&uaddr;
3179 addrlen = sizeof(uaddr);
3180 if (parse_unix_path(&uaddr, host_str) < 0)
3181 goto fail;
3182 } else
3183 #endif
3185 addr = (struct sockaddr *)&saddr;
3186 addrlen = sizeof(saddr);
3187 if (parse_host_port(&saddr, host_str) < 0)
3188 goto fail;
3191 ptr = host_str;
3192 while((ptr = strchr(ptr,','))) {
3193 ptr++;
3194 if (!strncmp(ptr,"server",6)) {
3195 is_listen = 1;
3196 } else if (!strncmp(ptr,"nowait",6)) {
3197 is_waitconnect = 0;
3198 } else if (!strncmp(ptr,"nodelay",6)) {
3199 do_nodelay = 1;
3200 } else {
3201 printf("Unknown option: %s\n", ptr);
3202 goto fail;
3205 if (!is_listen)
3206 is_waitconnect = 0;
3208 chr = qemu_mallocz(sizeof(CharDriverState));
3209 if (!chr)
3210 goto fail;
3211 s = qemu_mallocz(sizeof(TCPCharDriver));
3212 if (!s)
3213 goto fail;
3215 #ifndef _WIN32
3216 if (is_unix)
3217 fd = socket(PF_UNIX, SOCK_STREAM, 0);
3218 else
3219 #endif
3220 fd = socket(PF_INET, SOCK_STREAM, 0);
3222 if (fd < 0)
3223 goto fail;
3225 if (!is_waitconnect)
3226 socket_set_nonblock(fd);
3228 s->connected = 0;
3229 s->fd = -1;
3230 s->listen_fd = -1;
3231 s->is_unix = is_unix;
3232 s->do_nodelay = do_nodelay && !is_unix;
3234 chr->opaque = s;
3235 chr->chr_write = tcp_chr_write;
3236 chr->chr_close = tcp_chr_close;
3238 if (is_listen) {
3239 /* allow fast reuse */
3240 #ifndef _WIN32
3241 if (is_unix) {
3242 char path[109];
3243 strncpy(path, uaddr.sun_path, 108);
3244 path[108] = 0;
3245 unlink(path);
3246 } else
3247 #endif
3249 val = 1;
3250 setsockopt(fd, SOL_SOCKET, SO_REUSEADDR, (const char *)&val, sizeof(val));
3253 ret = bind(fd, addr, addrlen);
3254 if (ret < 0)
3255 goto fail;
3257 ret = listen(fd, 0);
3258 if (ret < 0)
3259 goto fail;
3261 s->listen_fd = fd;
3262 qemu_set_fd_handler(s->listen_fd, tcp_chr_accept, NULL, chr);
3263 if (is_telnet)
3264 s->do_telnetopt = 1;
3265 } else {
3266 for(;;) {
3267 ret = connect(fd, addr, addrlen);
3268 if (ret < 0) {
3269 err = socket_error();
3270 if (err == EINTR || err == EWOULDBLOCK) {
3271 } else if (err == EINPROGRESS) {
3272 break;
3273 #ifdef _WIN32
3274 } else if (err == WSAEALREADY) {
3275 break;
3276 #endif
3277 } else {
3278 goto fail;
3280 } else {
3281 s->connected = 1;
3282 break;
3285 s->fd = fd;
3286 socket_set_nodelay(fd);
3287 if (s->connected)
3288 tcp_chr_connect(chr);
3289 else
3290 qemu_set_fd_handler(s->fd, NULL, tcp_chr_connect, chr);
3293 if (is_listen && is_waitconnect) {
3294 printf("QEMU waiting for connection on: %s\n", host_str);
3295 tcp_chr_accept(chr);
3296 socket_set_nonblock(s->listen_fd);
3299 return chr;
3300 fail:
3301 if (fd >= 0)
3302 closesocket(fd);
3303 qemu_free(s);
3304 qemu_free(chr);
3305 return NULL;
3308 CharDriverState *qemu_chr_open(const char *filename)
3310 const char *p;
3312 if (!strcmp(filename, "vc")) {
3313 return text_console_init(&display_state, 0);
3314 } else if (strstart(filename, "vc:", &p)) {
3315 return text_console_init(&display_state, p);
3316 } else if (!strcmp(filename, "null")) {
3317 return qemu_chr_open_null();
3318 } else
3319 if (strstart(filename, "tcp:", &p)) {
3320 return qemu_chr_open_tcp(p, 0, 0);
3321 } else
3322 if (strstart(filename, "telnet:", &p)) {
3323 return qemu_chr_open_tcp(p, 1, 0);
3324 } else
3325 if (strstart(filename, "udp:", &p)) {
3326 return qemu_chr_open_udp(p);
3327 } else
3328 if (strstart(filename, "mon:", &p)) {
3329 CharDriverState *drv = qemu_chr_open(p);
3330 if (drv) {
3331 drv = qemu_chr_open_mux(drv);
3332 monitor_init(drv, !nographic);
3333 return drv;
3335 printf("Unable to open driver: %s\n", p);
3336 return 0;
3337 } else
3338 #ifndef _WIN32
3339 if (strstart(filename, "unix:", &p)) {
3340 return qemu_chr_open_tcp(p, 0, 1);
3341 } else if (strstart(filename, "file:", &p)) {
3342 return qemu_chr_open_file_out(p);
3343 } else if (strstart(filename, "pipe:", &p)) {
3344 return qemu_chr_open_pipe(p);
3345 } else if (!strcmp(filename, "pty")) {
3346 return qemu_chr_open_pty();
3347 } else if (!strcmp(filename, "stdio")) {
3348 return qemu_chr_open_stdio();
3349 } else
3350 #if defined(__linux__)
3351 if (strstart(filename, "/dev/parport", NULL)) {
3352 return qemu_chr_open_pp(filename);
3353 } else
3354 #endif
3355 #if defined(__linux__) || defined(__sun__)
3356 if (strstart(filename, "/dev/", NULL)) {
3357 return qemu_chr_open_tty(filename);
3358 } else
3359 #endif
3360 #else /* !_WIN32 */
3361 if (strstart(filename, "COM", NULL)) {
3362 return qemu_chr_open_win(filename);
3363 } else
3364 if (strstart(filename, "pipe:", &p)) {
3365 return qemu_chr_open_win_pipe(p);
3366 } else
3367 if (strstart(filename, "con:", NULL)) {
3368 return qemu_chr_open_win_con(filename);
3369 } else
3370 if (strstart(filename, "file:", &p)) {
3371 return qemu_chr_open_win_file_out(p);
3373 #endif
3375 return NULL;
3379 void qemu_chr_close(CharDriverState *chr)
3381 if (chr->chr_close)
3382 chr->chr_close(chr);
3385 /***********************************************************/
3386 /* network device redirectors */
3388 void hex_dump(FILE *f, const uint8_t *buf, int size)
3390 int len, i, j, c;
3392 for(i=0;i<size;i+=16) {
3393 len = size - i;
3394 if (len > 16)
3395 len = 16;
3396 fprintf(f, "%08x ", i);
3397 for(j=0;j<16;j++) {
3398 if (j < len)
3399 fprintf(f, " %02x", buf[i+j]);
3400 else
3401 fprintf(f, " ");
3403 fprintf(f, " ");
3404 for(j=0;j<len;j++) {
3405 c = buf[i+j];
3406 if (c < ' ' || c > '~')
3407 c = '.';
3408 fprintf(f, "%c", c);
3410 fprintf(f, "\n");
3414 static int parse_macaddr(uint8_t *macaddr, const char *p)
3416 int i;
3417 for(i = 0; i < 6; i++) {
3418 macaddr[i] = strtol(p, (char **)&p, 16);
3419 if (i == 5) {
3420 if (*p != '\0')
3421 return -1;
3422 } else {
3423 if (*p != ':')
3424 return -1;
3425 p++;
3428 return 0;
3431 static int get_str_sep(char *buf, int buf_size, const char **pp, int sep)
3433 const char *p, *p1;
3434 int len;
3435 p = *pp;
3436 p1 = strchr(p, sep);
3437 if (!p1)
3438 return -1;
3439 len = p1 - p;
3440 p1++;
3441 if (buf_size > 0) {
3442 if (len > buf_size - 1)
3443 len = buf_size - 1;
3444 memcpy(buf, p, len);
3445 buf[len] = '\0';
3447 *pp = p1;
3448 return 0;
3451 int parse_host_src_port(struct sockaddr_in *haddr,
3452 struct sockaddr_in *saddr,
3453 const char *input_str)
3455 char *str = strdup(input_str);
3456 char *host_str = str;
3457 char *src_str;
3458 char *ptr;
3461 * Chop off any extra arguments at the end of the string which
3462 * would start with a comma, then fill in the src port information
3463 * if it was provided else use the "any address" and "any port".
3465 if ((ptr = strchr(str,',')))
3466 *ptr = '\0';
3468 if ((src_str = strchr(input_str,'@'))) {
3469 *src_str = '\0';
3470 src_str++;
3473 if (parse_host_port(haddr, host_str) < 0)
3474 goto fail;
3476 if (!src_str || *src_str == '\0')
3477 src_str = ":0";
3479 if (parse_host_port(saddr, src_str) < 0)
3480 goto fail;
3482 free(str);
3483 return(0);
3485 fail:
3486 free(str);
3487 return -1;
3490 int parse_host_port(struct sockaddr_in *saddr, const char *str)
3492 char buf[512];
3493 struct hostent *he;
3494 const char *p, *r;
3495 int port;
3497 p = str;
3498 if (get_str_sep(buf, sizeof(buf), &p, ':') < 0)
3499 return -1;
3500 saddr->sin_family = AF_INET;
3501 if (buf[0] == '\0') {
3502 saddr->sin_addr.s_addr = 0;
3503 } else {
3504 if (isdigit(buf[0])) {
3505 if (!inet_aton(buf, &saddr->sin_addr))
3506 return -1;
3507 } else {
3508 if ((he = gethostbyname(buf)) == NULL)
3509 return - 1;
3510 saddr->sin_addr = *(struct in_addr *)he->h_addr;
3513 port = strtol(p, (char **)&r, 0);
3514 if (r == p)
3515 return -1;
3516 saddr->sin_port = htons(port);
3517 return 0;
3520 #ifndef _WIN32
3521 static int parse_unix_path(struct sockaddr_un *uaddr, const char *str)
3523 const char *p;
3524 int len;
3526 len = MIN(108, strlen(str));
3527 p = strchr(str, ',');
3528 if (p)
3529 len = MIN(len, p - str);
3531 memset(uaddr, 0, sizeof(*uaddr));
3533 uaddr->sun_family = AF_UNIX;
3534 memcpy(uaddr->sun_path, str, len);
3536 return 0;
3538 #endif
3540 /* find or alloc a new VLAN */
3541 VLANState *qemu_find_vlan(int id)
3543 VLANState **pvlan, *vlan;
3544 for(vlan = first_vlan; vlan != NULL; vlan = vlan->next) {
3545 if (vlan->id == id)
3546 return vlan;
3548 vlan = qemu_mallocz(sizeof(VLANState));
3549 if (!vlan)
3550 return NULL;
3551 vlan->id = id;
3552 vlan->next = NULL;
3553 pvlan = &first_vlan;
3554 while (*pvlan != NULL)
3555 pvlan = &(*pvlan)->next;
3556 *pvlan = vlan;
3557 return vlan;
3560 VLANClientState *qemu_new_vlan_client(VLANState *vlan,
3561 IOReadHandler *fd_read,
3562 IOCanRWHandler *fd_can_read,
3563 void *opaque)
3565 VLANClientState *vc, **pvc;
3566 vc = qemu_mallocz(sizeof(VLANClientState));
3567 if (!vc)
3568 return NULL;
3569 vc->fd_read = fd_read;
3570 vc->fd_can_read = fd_can_read;
3571 vc->opaque = opaque;
3572 vc->vlan = vlan;
3574 vc->next = NULL;
3575 pvc = &vlan->first_client;
3576 while (*pvc != NULL)
3577 pvc = &(*pvc)->next;
3578 *pvc = vc;
3579 return vc;
3582 int qemu_can_send_packet(VLANClientState *vc1)
3584 VLANState *vlan = vc1->vlan;
3585 VLANClientState *vc;
3587 for(vc = vlan->first_client; vc != NULL; vc = vc->next) {
3588 if (vc != vc1) {
3589 if (vc->fd_can_read && vc->fd_can_read(vc->opaque))
3590 return 1;
3593 return 0;
3596 void qemu_send_packet(VLANClientState *vc1, const uint8_t *buf, int size)
3598 VLANState *vlan = vc1->vlan;
3599 VLANClientState *vc;
3601 #if 0
3602 printf("vlan %d send:\n", vlan->id);
3603 hex_dump(stdout, buf, size);
3604 #endif
3605 for(vc = vlan->first_client; vc != NULL; vc = vc->next) {
3606 if (vc != vc1) {
3607 vc->fd_read(vc->opaque, buf, size);
3612 #if defined(CONFIG_SLIRP)
3614 /* slirp network adapter */
3616 static int slirp_inited;
3617 static VLANClientState *slirp_vc;
3619 int slirp_can_output(void)
3621 return !slirp_vc || qemu_can_send_packet(slirp_vc);
3624 void slirp_output(const uint8_t *pkt, int pkt_len)
3626 #if 0
3627 printf("slirp output:\n");
3628 hex_dump(stdout, pkt, pkt_len);
3629 #endif
3630 if (!slirp_vc)
3631 return;
3632 qemu_send_packet(slirp_vc, pkt, pkt_len);
3635 static void slirp_receive(void *opaque, const uint8_t *buf, int size)
3637 #if 0
3638 printf("slirp input:\n");
3639 hex_dump(stdout, buf, size);
3640 #endif
3641 slirp_input(buf, size);
3644 static int net_slirp_init(VLANState *vlan)
3646 if (!slirp_inited) {
3647 slirp_inited = 1;
3648 slirp_init();
3650 slirp_vc = qemu_new_vlan_client(vlan,
3651 slirp_receive, NULL, NULL);
3652 snprintf(slirp_vc->info_str, sizeof(slirp_vc->info_str), "user redirector");
3653 return 0;
3656 static void net_slirp_redir(const char *redir_str)
3658 int is_udp;
3659 char buf[256], *r;
3660 const char *p;
3661 struct in_addr guest_addr;
3662 int host_port, guest_port;
3664 if (!slirp_inited) {
3665 slirp_inited = 1;
3666 slirp_init();
3669 p = redir_str;
3670 if (get_str_sep(buf, sizeof(buf), &p, ':') < 0)
3671 goto fail;
3672 if (!strcmp(buf, "tcp")) {
3673 is_udp = 0;
3674 } else if (!strcmp(buf, "udp")) {
3675 is_udp = 1;
3676 } else {
3677 goto fail;
3680 if (get_str_sep(buf, sizeof(buf), &p, ':') < 0)
3681 goto fail;
3682 host_port = strtol(buf, &r, 0);
3683 if (r == buf)
3684 goto fail;
3686 if (get_str_sep(buf, sizeof(buf), &p, ':') < 0)
3687 goto fail;
3688 if (buf[0] == '\0') {
3689 pstrcpy(buf, sizeof(buf), "10.0.2.15");
3691 if (!inet_aton(buf, &guest_addr))
3692 goto fail;
3694 guest_port = strtol(p, &r, 0);
3695 if (r == p)
3696 goto fail;
3698 if (slirp_redir(is_udp, host_port, guest_addr, guest_port) < 0) {
3699 fprintf(stderr, "qemu: could not set up redirection\n");
3700 exit(1);
3702 return;
3703 fail:
3704 fprintf(stderr, "qemu: syntax: -redir [tcp|udp]:host-port:[guest-host]:guest-port\n");
3705 exit(1);
3708 #ifndef _WIN32
3710 char smb_dir[1024];
3712 static void smb_exit(void)
3714 DIR *d;
3715 struct dirent *de;
3716 char filename[1024];
3718 /* erase all the files in the directory */
3719 d = opendir(smb_dir);
3720 for(;;) {
3721 de = readdir(d);
3722 if (!de)
3723 break;
3724 if (strcmp(de->d_name, ".") != 0 &&
3725 strcmp(de->d_name, "..") != 0) {
3726 snprintf(filename, sizeof(filename), "%s/%s",
3727 smb_dir, de->d_name);
3728 unlink(filename);
3731 closedir(d);
3732 rmdir(smb_dir);
3735 /* automatic user mode samba server configuration */
3736 void net_slirp_smb(const char *exported_dir)
3738 char smb_conf[1024];
3739 char smb_cmdline[1024];
3740 FILE *f;
3742 if (!slirp_inited) {
3743 slirp_inited = 1;
3744 slirp_init();
3747 /* XXX: better tmp dir construction */
3748 snprintf(smb_dir, sizeof(smb_dir), "/tmp/qemu-smb.%d", getpid());
3749 if (mkdir(smb_dir, 0700) < 0) {
3750 fprintf(stderr, "qemu: could not create samba server dir '%s'\n", smb_dir);
3751 exit(1);
3753 snprintf(smb_conf, sizeof(smb_conf), "%s/%s", smb_dir, "smb.conf");
3755 f = fopen(smb_conf, "w");
3756 if (!f) {
3757 fprintf(stderr, "qemu: could not create samba server configuration file '%s'\n", smb_conf);
3758 exit(1);
3760 fprintf(f,
3761 "[global]\n"
3762 "private dir=%s\n"
3763 "smb ports=0\n"
3764 "socket address=127.0.0.1\n"
3765 "pid directory=%s\n"
3766 "lock directory=%s\n"
3767 "log file=%s/log.smbd\n"
3768 "smb passwd file=%s/smbpasswd\n"
3769 "security = share\n"
3770 "[qemu]\n"
3771 "path=%s\n"
3772 "read only=no\n"
3773 "guest ok=yes\n",
3774 smb_dir,
3775 smb_dir,
3776 smb_dir,
3777 smb_dir,
3778 smb_dir,
3779 exported_dir
3781 fclose(f);
3782 atexit(smb_exit);
3784 snprintf(smb_cmdline, sizeof(smb_cmdline), "%s -s %s",
3785 SMBD_COMMAND, smb_conf);
3787 slirp_add_exec(0, smb_cmdline, 4, 139);
3790 #endif /* !defined(_WIN32) */
3791 void do_info_slirp(void)
3793 slirp_stats();
3796 #endif /* CONFIG_SLIRP */
3798 #if !defined(_WIN32)
3800 typedef struct TAPState {
3801 VLANClientState *vc;
3802 int fd;
3803 char down_script[1024];
3804 } TAPState;
3806 static void tap_receive(void *opaque, const uint8_t *buf, int size)
3808 TAPState *s = opaque;
3809 int ret;
3810 for(;;) {
3811 ret = write(s->fd, buf, size);
3812 if (ret < 0 && (errno == EINTR || errno == EAGAIN)) {
3813 } else {
3814 break;
3819 static void tap_send(void *opaque)
3821 TAPState *s = opaque;
3822 uint8_t buf[4096];
3823 int size;
3825 #ifdef __sun__
3826 struct strbuf sbuf;
3827 int f = 0;
3828 sbuf.maxlen = sizeof(buf);
3829 sbuf.buf = buf;
3830 size = getmsg(s->fd, NULL, &sbuf, &f) >=0 ? sbuf.len : -1;
3831 #else
3832 size = read(s->fd, buf, sizeof(buf));
3833 #endif
3834 if (size > 0) {
3835 qemu_send_packet(s->vc, buf, size);
3839 /* fd support */
3841 static TAPState *net_tap_fd_init(VLANState *vlan, int fd)
3843 TAPState *s;
3845 s = qemu_mallocz(sizeof(TAPState));
3846 if (!s)
3847 return NULL;
3848 s->fd = fd;
3849 s->vc = qemu_new_vlan_client(vlan, tap_receive, NULL, s);
3850 qemu_set_fd_handler(s->fd, tap_send, NULL, s);
3851 snprintf(s->vc->info_str, sizeof(s->vc->info_str), "tap: fd=%d", fd);
3852 return s;
3855 #if defined (_BSD) || defined (__FreeBSD_kernel__)
3856 static int tap_open(char *ifname, int ifname_size)
3858 int fd;
3859 char *dev;
3860 struct stat s;
3862 TFR(fd = open("/dev/tap", O_RDWR));
3863 if (fd < 0) {
3864 fprintf(stderr, "warning: could not open /dev/tap: no virtual network emulation\n");
3865 return -1;
3868 fstat(fd, &s);
3869 dev = devname(s.st_rdev, S_IFCHR);
3870 pstrcpy(ifname, ifname_size, dev);
3872 fcntl(fd, F_SETFL, O_NONBLOCK);
3873 return fd;
3875 #elif defined(__sun__)
3876 #define TUNNEWPPA (('T'<<16) | 0x0001)
3878 * Allocate TAP device, returns opened fd.
3879 * Stores dev name in the first arg(must be large enough).
3881 int tap_alloc(char *dev)
3883 int tap_fd, if_fd, ppa = -1;
3884 static int ip_fd = 0;
3885 char *ptr;
3887 static int arp_fd = 0;
3888 int ip_muxid, arp_muxid;
3889 struct strioctl strioc_if, strioc_ppa;
3890 int link_type = I_PLINK;;
3891 struct lifreq ifr;
3892 char actual_name[32] = "";
3894 memset(&ifr, 0x0, sizeof(ifr));
3896 if( *dev ){
3897 ptr = dev;
3898 while( *ptr && !isdigit((int)*ptr) ) ptr++;
3899 ppa = atoi(ptr);
3902 /* Check if IP device was opened */
3903 if( ip_fd )
3904 close(ip_fd);
3906 TFR(ip_fd = open("/dev/udp", O_RDWR, 0));
3907 if (ip_fd < 0) {
3908 syslog(LOG_ERR, "Can't open /dev/ip (actually /dev/udp)");
3909 return -1;
3912 TFR(tap_fd = open("/dev/tap", O_RDWR, 0));
3913 if (tap_fd < 0) {
3914 syslog(LOG_ERR, "Can't open /dev/tap");
3915 return -1;
3918 /* Assign a new PPA and get its unit number. */
3919 strioc_ppa.ic_cmd = TUNNEWPPA;
3920 strioc_ppa.ic_timout = 0;
3921 strioc_ppa.ic_len = sizeof(ppa);
3922 strioc_ppa.ic_dp = (char *)&ppa;
3923 if ((ppa = ioctl (tap_fd, I_STR, &strioc_ppa)) < 0)
3924 syslog (LOG_ERR, "Can't assign new interface");
3926 TFR(if_fd = open("/dev/tap", O_RDWR, 0));
3927 if (if_fd < 0) {
3928 syslog(LOG_ERR, "Can't open /dev/tap (2)");
3929 return -1;
3931 if(ioctl(if_fd, I_PUSH, "ip") < 0){
3932 syslog(LOG_ERR, "Can't push IP module");
3933 return -1;
3936 if (ioctl(if_fd, SIOCGLIFFLAGS, &ifr) < 0)
3937 syslog(LOG_ERR, "Can't get flags\n");
3939 snprintf (actual_name, 32, "tap%d", ppa);
3940 strncpy (ifr.lifr_name, actual_name, sizeof (ifr.lifr_name));
3942 ifr.lifr_ppa = ppa;
3943 /* Assign ppa according to the unit number returned by tun device */
3945 if (ioctl (if_fd, SIOCSLIFNAME, &ifr) < 0)
3946 syslog (LOG_ERR, "Can't set PPA %d", ppa);
3947 if (ioctl(if_fd, SIOCGLIFFLAGS, &ifr) <0)
3948 syslog (LOG_ERR, "Can't get flags\n");
3949 /* Push arp module to if_fd */
3950 if (ioctl (if_fd, I_PUSH, "arp") < 0)
3951 syslog (LOG_ERR, "Can't push ARP module (2)");
3953 /* Push arp module to ip_fd */
3954 if (ioctl (ip_fd, I_POP, NULL) < 0)
3955 syslog (LOG_ERR, "I_POP failed\n");
3956 if (ioctl (ip_fd, I_PUSH, "arp") < 0)
3957 syslog (LOG_ERR, "Can't push ARP module (3)\n");
3958 /* Open arp_fd */
3959 TFR(arp_fd = open ("/dev/tap", O_RDWR, 0));
3960 if (arp_fd < 0)
3961 syslog (LOG_ERR, "Can't open %s\n", "/dev/tap");
3963 /* Set ifname to arp */
3964 strioc_if.ic_cmd = SIOCSLIFNAME;
3965 strioc_if.ic_timout = 0;
3966 strioc_if.ic_len = sizeof(ifr);
3967 strioc_if.ic_dp = (char *)&ifr;
3968 if (ioctl(arp_fd, I_STR, &strioc_if) < 0){
3969 syslog (LOG_ERR, "Can't set ifname to arp\n");
3972 if((ip_muxid = ioctl(ip_fd, I_LINK, if_fd)) < 0){
3973 syslog(LOG_ERR, "Can't link TAP device to IP");
3974 return -1;
3977 if ((arp_muxid = ioctl (ip_fd, link_type, arp_fd)) < 0)
3978 syslog (LOG_ERR, "Can't link TAP device to ARP");
3980 close (if_fd);
3982 memset(&ifr, 0x0, sizeof(ifr));
3983 strncpy (ifr.lifr_name, actual_name, sizeof (ifr.lifr_name));
3984 ifr.lifr_ip_muxid = ip_muxid;
3985 ifr.lifr_arp_muxid = arp_muxid;
3987 if (ioctl (ip_fd, SIOCSLIFMUXID, &ifr) < 0)
3989 ioctl (ip_fd, I_PUNLINK , arp_muxid);
3990 ioctl (ip_fd, I_PUNLINK, ip_muxid);
3991 syslog (LOG_ERR, "Can't set multiplexor id");
3994 sprintf(dev, "tap%d", ppa);
3995 return tap_fd;
3998 static int tap_open(char *ifname, int ifname_size)
4000 char dev[10]="";
4001 int fd;
4002 if( (fd = tap_alloc(dev)) < 0 ){
4003 fprintf(stderr, "Cannot allocate TAP device\n");
4004 return -1;
4006 pstrcpy(ifname, ifname_size, dev);
4007 fcntl(fd, F_SETFL, O_NONBLOCK);
4008 return fd;
4010 #else
4011 static int tap_open(char *ifname, int ifname_size)
4013 struct ifreq ifr;
4014 int fd, ret;
4016 TFR(fd = open("/dev/net/tun", O_RDWR));
4017 if (fd < 0) {
4018 fprintf(stderr, "warning: could not open /dev/net/tun: no virtual network emulation\n");
4019 return -1;
4021 memset(&ifr, 0, sizeof(ifr));
4022 ifr.ifr_flags = IFF_TAP | IFF_NO_PI;
4023 if (ifname[0] != '\0')
4024 pstrcpy(ifr.ifr_name, IFNAMSIZ, ifname);
4025 else
4026 pstrcpy(ifr.ifr_name, IFNAMSIZ, "tap%d");
4027 ret = ioctl(fd, TUNSETIFF, (void *) &ifr);
4028 if (ret != 0) {
4029 fprintf(stderr, "warning: could not configure /dev/net/tun: no virtual network emulation\n");
4030 close(fd);
4031 return -1;
4033 pstrcpy(ifname, ifname_size, ifr.ifr_name);
4034 fcntl(fd, F_SETFL, O_NONBLOCK);
4035 return fd;
4037 #endif
4039 static int launch_script(const char *setup_script, const char *ifname, int fd)
4041 int pid, status;
4042 char *args[3];
4043 char **parg;
4045 /* try to launch network script */
4046 pid = fork();
4047 if (pid >= 0) {
4048 if (pid == 0) {
4049 int open_max = sysconf (_SC_OPEN_MAX), i;
4050 for (i = 0; i < open_max; i++)
4051 if (i != STDIN_FILENO &&
4052 i != STDOUT_FILENO &&
4053 i != STDERR_FILENO &&
4054 i != fd)
4055 close(i);
4057 parg = args;
4058 *parg++ = (char *)setup_script;
4059 *parg++ = (char *)ifname;
4060 *parg++ = NULL;
4061 execv(setup_script, args);
4062 _exit(1);
4064 while (waitpid(pid, &status, 0) != pid);
4065 if (!WIFEXITED(status) ||
4066 WEXITSTATUS(status) != 0) {
4067 fprintf(stderr, "%s: could not launch network script\n",
4068 setup_script);
4069 return -1;
4072 return 0;
4075 static int net_tap_init(VLANState *vlan, const char *ifname1,
4076 const char *setup_script, const char *down_script)
4078 TAPState *s;
4079 int fd;
4080 char ifname[128];
4082 if (ifname1 != NULL)
4083 pstrcpy(ifname, sizeof(ifname), ifname1);
4084 else
4085 ifname[0] = '\0';
4086 TFR(fd = tap_open(ifname, sizeof(ifname)));
4087 if (fd < 0)
4088 return -1;
4090 if (!setup_script || !strcmp(setup_script, "no"))
4091 setup_script = "";
4092 if (setup_script[0] != '\0') {
4093 if (launch_script(setup_script, ifname, fd))
4094 return -1;
4096 s = net_tap_fd_init(vlan, fd);
4097 if (!s)
4098 return -1;
4099 snprintf(s->vc->info_str, sizeof(s->vc->info_str),
4100 "tap: ifname=%s setup_script=%s", ifname, setup_script);
4101 if (down_script && strcmp(down_script, "no"))
4102 snprintf(s->down_script, sizeof(s->down_script), "%s", down_script);
4103 return 0;
4106 #endif /* !_WIN32 */
4108 /* network connection */
4109 typedef struct NetSocketState {
4110 VLANClientState *vc;
4111 int fd;
4112 int state; /* 0 = getting length, 1 = getting data */
4113 int index;
4114 int packet_len;
4115 uint8_t buf[4096];
4116 struct sockaddr_in dgram_dst; /* contains inet host and port destination iff connectionless (SOCK_DGRAM) */
4117 } NetSocketState;
4119 typedef struct NetSocketListenState {
4120 VLANState *vlan;
4121 int fd;
4122 } NetSocketListenState;
4124 /* XXX: we consider we can send the whole packet without blocking */
4125 static void net_socket_receive(void *opaque, const uint8_t *buf, int size)
4127 NetSocketState *s = opaque;
4128 uint32_t len;
4129 len = htonl(size);
4131 send_all(s->fd, (const uint8_t *)&len, sizeof(len));
4132 send_all(s->fd, buf, size);
4135 static void net_socket_receive_dgram(void *opaque, const uint8_t *buf, int size)
4137 NetSocketState *s = opaque;
4138 sendto(s->fd, buf, size, 0,
4139 (struct sockaddr *)&s->dgram_dst, sizeof(s->dgram_dst));
4142 static void net_socket_send(void *opaque)
4144 NetSocketState *s = opaque;
4145 int l, size, err;
4146 uint8_t buf1[4096];
4147 const uint8_t *buf;
4149 size = recv(s->fd, buf1, sizeof(buf1), 0);
4150 if (size < 0) {
4151 err = socket_error();
4152 if (err != EWOULDBLOCK)
4153 goto eoc;
4154 } else if (size == 0) {
4155 /* end of connection */
4156 eoc:
4157 qemu_set_fd_handler(s->fd, NULL, NULL, NULL);
4158 closesocket(s->fd);
4159 return;
4161 buf = buf1;
4162 while (size > 0) {
4163 /* reassemble a packet from the network */
4164 switch(s->state) {
4165 case 0:
4166 l = 4 - s->index;
4167 if (l > size)
4168 l = size;
4169 memcpy(s->buf + s->index, buf, l);
4170 buf += l;
4171 size -= l;
4172 s->index += l;
4173 if (s->index == 4) {
4174 /* got length */
4175 s->packet_len = ntohl(*(uint32_t *)s->buf);
4176 s->index = 0;
4177 s->state = 1;
4179 break;
4180 case 1:
4181 l = s->packet_len - s->index;
4182 if (l > size)
4183 l = size;
4184 memcpy(s->buf + s->index, buf, l);
4185 s->index += l;
4186 buf += l;
4187 size -= l;
4188 if (s->index >= s->packet_len) {
4189 qemu_send_packet(s->vc, s->buf, s->packet_len);
4190 s->index = 0;
4191 s->state = 0;
4193 break;
4198 static void net_socket_send_dgram(void *opaque)
4200 NetSocketState *s = opaque;
4201 int size;
4203 size = recv(s->fd, s->buf, sizeof(s->buf), 0);
4204 if (size < 0)
4205 return;
4206 if (size == 0) {
4207 /* end of connection */
4208 qemu_set_fd_handler(s->fd, NULL, NULL, NULL);
4209 return;
4211 qemu_send_packet(s->vc, s->buf, size);
4214 static int net_socket_mcast_create(struct sockaddr_in *mcastaddr)
4216 struct ip_mreq imr;
4217 int fd;
4218 int val, ret;
4219 if (!IN_MULTICAST(ntohl(mcastaddr->sin_addr.s_addr))) {
4220 fprintf(stderr, "qemu: error: specified mcastaddr \"%s\" (0x%08x) does not contain a multicast address\n",
4221 inet_ntoa(mcastaddr->sin_addr),
4222 (int)ntohl(mcastaddr->sin_addr.s_addr));
4223 return -1;
4226 fd = socket(PF_INET, SOCK_DGRAM, 0);
4227 if (fd < 0) {
4228 perror("socket(PF_INET, SOCK_DGRAM)");
4229 return -1;
4232 val = 1;
4233 ret=setsockopt(fd, SOL_SOCKET, SO_REUSEADDR,
4234 (const char *)&val, sizeof(val));
4235 if (ret < 0) {
4236 perror("setsockopt(SOL_SOCKET, SO_REUSEADDR)");
4237 goto fail;
4240 ret = bind(fd, (struct sockaddr *)mcastaddr, sizeof(*mcastaddr));
4241 if (ret < 0) {
4242 perror("bind");
4243 goto fail;
4246 /* Add host to multicast group */
4247 imr.imr_multiaddr = mcastaddr->sin_addr;
4248 imr.imr_interface.s_addr = htonl(INADDR_ANY);
4250 ret = setsockopt(fd, IPPROTO_IP, IP_ADD_MEMBERSHIP,
4251 (const char *)&imr, sizeof(struct ip_mreq));
4252 if (ret < 0) {
4253 perror("setsockopt(IP_ADD_MEMBERSHIP)");
4254 goto fail;
4257 /* Force mcast msgs to loopback (eg. several QEMUs in same host */
4258 val = 1;
4259 ret=setsockopt(fd, IPPROTO_IP, IP_MULTICAST_LOOP,
4260 (const char *)&val, sizeof(val));
4261 if (ret < 0) {
4262 perror("setsockopt(SOL_IP, IP_MULTICAST_LOOP)");
4263 goto fail;
4266 socket_set_nonblock(fd);
4267 return fd;
4268 fail:
4269 if (fd >= 0)
4270 closesocket(fd);
4271 return -1;
4274 static NetSocketState *net_socket_fd_init_dgram(VLANState *vlan, int fd,
4275 int is_connected)
4277 struct sockaddr_in saddr;
4278 int newfd;
4279 socklen_t saddr_len;
4280 NetSocketState *s;
4282 /* fd passed: multicast: "learn" dgram_dst address from bound address and save it
4283 * Because this may be "shared" socket from a "master" process, datagrams would be recv()
4284 * by ONLY ONE process: we must "clone" this dgram socket --jjo
4287 if (is_connected) {
4288 if (getsockname(fd, (struct sockaddr *) &saddr, &saddr_len) == 0) {
4289 /* must be bound */
4290 if (saddr.sin_addr.s_addr==0) {
4291 fprintf(stderr, "qemu: error: init_dgram: fd=%d unbound, cannot setup multicast dst addr\n",
4292 fd);
4293 return NULL;
4295 /* clone dgram socket */
4296 newfd = net_socket_mcast_create(&saddr);
4297 if (newfd < 0) {
4298 /* error already reported by net_socket_mcast_create() */
4299 close(fd);
4300 return NULL;
4302 /* clone newfd to fd, close newfd */
4303 dup2(newfd, fd);
4304 close(newfd);
4306 } else {
4307 fprintf(stderr, "qemu: error: init_dgram: fd=%d failed getsockname(): %s\n",
4308 fd, strerror(errno));
4309 return NULL;
4313 s = qemu_mallocz(sizeof(NetSocketState));
4314 if (!s)
4315 return NULL;
4316 s->fd = fd;
4318 s->vc = qemu_new_vlan_client(vlan, net_socket_receive_dgram, NULL, s);
4319 qemu_set_fd_handler(s->fd, net_socket_send_dgram, NULL, s);
4321 /* mcast: save bound address as dst */
4322 if (is_connected) s->dgram_dst=saddr;
4324 snprintf(s->vc->info_str, sizeof(s->vc->info_str),
4325 "socket: fd=%d (%s mcast=%s:%d)",
4326 fd, is_connected? "cloned" : "",
4327 inet_ntoa(saddr.sin_addr), ntohs(saddr.sin_port));
4328 return s;
4331 static void net_socket_connect(void *opaque)
4333 NetSocketState *s = opaque;
4334 qemu_set_fd_handler(s->fd, net_socket_send, NULL, s);
4337 static NetSocketState *net_socket_fd_init_stream(VLANState *vlan, int fd,
4338 int is_connected)
4340 NetSocketState *s;
4341 s = qemu_mallocz(sizeof(NetSocketState));
4342 if (!s)
4343 return NULL;
4344 s->fd = fd;
4345 s->vc = qemu_new_vlan_client(vlan,
4346 net_socket_receive, NULL, s);
4347 snprintf(s->vc->info_str, sizeof(s->vc->info_str),
4348 "socket: fd=%d", fd);
4349 if (is_connected) {
4350 net_socket_connect(s);
4351 } else {
4352 qemu_set_fd_handler(s->fd, NULL, net_socket_connect, s);
4354 return s;
4357 static NetSocketState *net_socket_fd_init(VLANState *vlan, int fd,
4358 int is_connected)
4360 int so_type=-1, optlen=sizeof(so_type);
4362 if(getsockopt(fd, SOL_SOCKET, SO_TYPE, (char *)&so_type, &optlen)< 0) {
4363 fprintf(stderr, "qemu: error: getsockopt(SO_TYPE) for fd=%d failed\n", fd);
4364 return NULL;
4366 switch(so_type) {
4367 case SOCK_DGRAM:
4368 return net_socket_fd_init_dgram(vlan, fd, is_connected);
4369 case SOCK_STREAM:
4370 return net_socket_fd_init_stream(vlan, fd, is_connected);
4371 default:
4372 /* who knows ... this could be a eg. a pty, do warn and continue as stream */
4373 fprintf(stderr, "qemu: warning: socket type=%d for fd=%d is not SOCK_DGRAM or SOCK_STREAM\n", so_type, fd);
4374 return net_socket_fd_init_stream(vlan, fd, is_connected);
4376 return NULL;
4379 static void net_socket_accept(void *opaque)
4381 NetSocketListenState *s = opaque;
4382 NetSocketState *s1;
4383 struct sockaddr_in saddr;
4384 socklen_t len;
4385 int fd;
4387 for(;;) {
4388 len = sizeof(saddr);
4389 fd = accept(s->fd, (struct sockaddr *)&saddr, &len);
4390 if (fd < 0 && errno != EINTR) {
4391 return;
4392 } else if (fd >= 0) {
4393 break;
4396 s1 = net_socket_fd_init(s->vlan, fd, 1);
4397 if (!s1) {
4398 closesocket(fd);
4399 } else {
4400 snprintf(s1->vc->info_str, sizeof(s1->vc->info_str),
4401 "socket: connection from %s:%d",
4402 inet_ntoa(saddr.sin_addr), ntohs(saddr.sin_port));
4406 static int net_socket_listen_init(VLANState *vlan, const char *host_str)
4408 NetSocketListenState *s;
4409 int fd, val, ret;
4410 struct sockaddr_in saddr;
4412 if (parse_host_port(&saddr, host_str) < 0)
4413 return -1;
4415 s = qemu_mallocz(sizeof(NetSocketListenState));
4416 if (!s)
4417 return -1;
4419 fd = socket(PF_INET, SOCK_STREAM, 0);
4420 if (fd < 0) {
4421 perror("socket");
4422 return -1;
4424 socket_set_nonblock(fd);
4426 /* allow fast reuse */
4427 val = 1;
4428 setsockopt(fd, SOL_SOCKET, SO_REUSEADDR, (const char *)&val, sizeof(val));
4430 ret = bind(fd, (struct sockaddr *)&saddr, sizeof(saddr));
4431 if (ret < 0) {
4432 perror("bind");
4433 return -1;
4435 ret = listen(fd, 0);
4436 if (ret < 0) {
4437 perror("listen");
4438 return -1;
4440 s->vlan = vlan;
4441 s->fd = fd;
4442 qemu_set_fd_handler(fd, net_socket_accept, NULL, s);
4443 return 0;
4446 static int net_socket_connect_init(VLANState *vlan, const char *host_str)
4448 NetSocketState *s;
4449 int fd, connected, ret, err;
4450 struct sockaddr_in saddr;
4452 if (parse_host_port(&saddr, host_str) < 0)
4453 return -1;
4455 fd = socket(PF_INET, SOCK_STREAM, 0);
4456 if (fd < 0) {
4457 perror("socket");
4458 return -1;
4460 socket_set_nonblock(fd);
4462 connected = 0;
4463 for(;;) {
4464 ret = connect(fd, (struct sockaddr *)&saddr, sizeof(saddr));
4465 if (ret < 0) {
4466 err = socket_error();
4467 if (err == EINTR || err == EWOULDBLOCK) {
4468 } else if (err == EINPROGRESS) {
4469 break;
4470 #ifdef _WIN32
4471 } else if (err == WSAEALREADY) {
4472 break;
4473 #endif
4474 } else {
4475 perror("connect");
4476 closesocket(fd);
4477 return -1;
4479 } else {
4480 connected = 1;
4481 break;
4484 s = net_socket_fd_init(vlan, fd, connected);
4485 if (!s)
4486 return -1;
4487 snprintf(s->vc->info_str, sizeof(s->vc->info_str),
4488 "socket: connect to %s:%d",
4489 inet_ntoa(saddr.sin_addr), ntohs(saddr.sin_port));
4490 return 0;
4493 static int net_socket_mcast_init(VLANState *vlan, const char *host_str)
4495 NetSocketState *s;
4496 int fd;
4497 struct sockaddr_in saddr;
4499 if (parse_host_port(&saddr, host_str) < 0)
4500 return -1;
4503 fd = net_socket_mcast_create(&saddr);
4504 if (fd < 0)
4505 return -1;
4507 s = net_socket_fd_init(vlan, fd, 0);
4508 if (!s)
4509 return -1;
4511 s->dgram_dst = saddr;
4513 snprintf(s->vc->info_str, sizeof(s->vc->info_str),
4514 "socket: mcast=%s:%d",
4515 inet_ntoa(saddr.sin_addr), ntohs(saddr.sin_port));
4516 return 0;
4520 static int get_param_value(char *buf, int buf_size,
4521 const char *tag, const char *str)
4523 const char *p;
4524 char *q;
4525 char option[128];
4527 p = str;
4528 for(;;) {
4529 q = option;
4530 while (*p != '\0' && *p != '=') {
4531 if ((q - option) < sizeof(option) - 1)
4532 *q++ = *p;
4533 p++;
4535 *q = '\0';
4536 if (*p != '=')
4537 break;
4538 p++;
4539 if (!strcmp(tag, option)) {
4540 q = buf;
4541 while (*p != '\0' && *p != ',') {
4542 if ((q - buf) < buf_size - 1)
4543 *q++ = *p;
4544 p++;
4546 *q = '\0';
4547 return q - buf;
4548 } else {
4549 while (*p != '\0' && *p != ',') {
4550 p++;
4553 if (*p != ',')
4554 break;
4555 p++;
4557 return 0;
4560 static int net_client_init(const char *str)
4562 const char *p;
4563 char *q;
4564 char device[64];
4565 char buf[1024];
4566 int vlan_id, ret;
4567 VLANState *vlan;
4569 p = str;
4570 q = device;
4571 while (*p != '\0' && *p != ',') {
4572 if ((q - device) < sizeof(device) - 1)
4573 *q++ = *p;
4574 p++;
4576 *q = '\0';
4577 if (*p == ',')
4578 p++;
4579 vlan_id = 0;
4580 if (get_param_value(buf, sizeof(buf), "vlan", p)) {
4581 vlan_id = strtol(buf, NULL, 0);
4583 vlan = qemu_find_vlan(vlan_id);
4584 if (!vlan) {
4585 fprintf(stderr, "Could not create vlan %d\n", vlan_id);
4586 return -1;
4588 if (!strcmp(device, "nic")) {
4589 NICInfo *nd;
4590 uint8_t *macaddr;
4592 if (nb_nics >= MAX_NICS) {
4593 fprintf(stderr, "Too Many NICs\n");
4594 return -1;
4596 nd = &nd_table[nb_nics];
4597 macaddr = nd->macaddr;
4598 macaddr[0] = 0x52;
4599 macaddr[1] = 0x54;
4600 macaddr[2] = 0x00;
4601 macaddr[3] = 0x12;
4602 macaddr[4] = 0x34;
4603 macaddr[5] = 0x56 + nb_nics;
4605 if (get_param_value(buf, sizeof(buf), "macaddr", p)) {
4606 if (parse_macaddr(macaddr, buf) < 0) {
4607 fprintf(stderr, "invalid syntax for ethernet address\n");
4608 return -1;
4611 if (get_param_value(buf, sizeof(buf), "model", p)) {
4612 nd->model = strdup(buf);
4614 nd->vlan = vlan;
4615 nb_nics++;
4616 vlan->nb_guest_devs++;
4617 ret = 0;
4618 } else
4619 if (!strcmp(device, "none")) {
4620 /* does nothing. It is needed to signal that no network cards
4621 are wanted */
4622 ret = 0;
4623 } else
4624 #ifdef CONFIG_SLIRP
4625 if (!strcmp(device, "user")) {
4626 if (get_param_value(buf, sizeof(buf), "hostname", p)) {
4627 pstrcpy(slirp_hostname, sizeof(slirp_hostname), buf);
4629 vlan->nb_host_devs++;
4630 ret = net_slirp_init(vlan);
4631 } else
4632 #endif
4633 #ifdef _WIN32
4634 if (!strcmp(device, "tap")) {
4635 char ifname[64];
4636 if (get_param_value(ifname, sizeof(ifname), "ifname", p) <= 0) {
4637 fprintf(stderr, "tap: no interface name\n");
4638 return -1;
4640 vlan->nb_host_devs++;
4641 ret = tap_win32_init(vlan, ifname);
4642 } else
4643 #else
4644 if (!strcmp(device, "tap")) {
4645 char ifname[64];
4646 char setup_script[1024], down_script[1024];
4647 int fd;
4648 vlan->nb_host_devs++;
4649 if (get_param_value(buf, sizeof(buf), "fd", p) > 0) {
4650 fd = strtol(buf, NULL, 0);
4651 ret = -1;
4652 if (net_tap_fd_init(vlan, fd))
4653 ret = 0;
4654 } else {
4655 if (get_param_value(ifname, sizeof(ifname), "ifname", p) <= 0) {
4656 ifname[0] = '\0';
4658 if (get_param_value(setup_script, sizeof(setup_script), "script", p) == 0) {
4659 pstrcpy(setup_script, sizeof(setup_script), DEFAULT_NETWORK_SCRIPT);
4661 if (get_param_value(down_script, sizeof(down_script), "downscript", p) == 0) {
4662 pstrcpy(down_script, sizeof(down_script), DEFAULT_NETWORK_DOWN_SCRIPT);
4664 ret = net_tap_init(vlan, ifname, setup_script, down_script);
4666 } else
4667 #endif
4668 if (!strcmp(device, "socket")) {
4669 if (get_param_value(buf, sizeof(buf), "fd", p) > 0) {
4670 int fd;
4671 fd = strtol(buf, NULL, 0);
4672 ret = -1;
4673 if (net_socket_fd_init(vlan, fd, 1))
4674 ret = 0;
4675 } else if (get_param_value(buf, sizeof(buf), "listen", p) > 0) {
4676 ret = net_socket_listen_init(vlan, buf);
4677 } else if (get_param_value(buf, sizeof(buf), "connect", p) > 0) {
4678 ret = net_socket_connect_init(vlan, buf);
4679 } else if (get_param_value(buf, sizeof(buf), "mcast", p) > 0) {
4680 ret = net_socket_mcast_init(vlan, buf);
4681 } else {
4682 fprintf(stderr, "Unknown socket options: %s\n", p);
4683 return -1;
4685 vlan->nb_host_devs++;
4686 } else
4688 fprintf(stderr, "Unknown network device: %s\n", device);
4689 return -1;
4691 if (ret < 0) {
4692 fprintf(stderr, "Could not initialize device '%s'\n", device);
4695 return ret;
4698 void do_info_network(void)
4700 VLANState *vlan;
4701 VLANClientState *vc;
4703 for(vlan = first_vlan; vlan != NULL; vlan = vlan->next) {
4704 term_printf("VLAN %d devices:\n", vlan->id);
4705 for(vc = vlan->first_client; vc != NULL; vc = vc->next)
4706 term_printf(" %s\n", vc->info_str);
4710 /***********************************************************/
4711 /* USB devices */
4713 static USBPort *used_usb_ports;
4714 static USBPort *free_usb_ports;
4716 /* ??? Maybe change this to register a hub to keep track of the topology. */
4717 void qemu_register_usb_port(USBPort *port, void *opaque, int index,
4718 usb_attachfn attach)
4720 port->opaque = opaque;
4721 port->index = index;
4722 port->attach = attach;
4723 port->next = free_usb_ports;
4724 free_usb_ports = port;
4727 static int usb_device_add(const char *devname)
4729 const char *p;
4730 USBDevice *dev;
4731 USBPort *port;
4733 if (!free_usb_ports)
4734 return -1;
4736 if (strstart(devname, "host:", &p)) {
4737 dev = usb_host_device_open(p);
4738 } else if (!strcmp(devname, "mouse")) {
4739 dev = usb_mouse_init();
4740 } else if (!strcmp(devname, "tablet")) {
4741 dev = usb_tablet_init();
4742 } else if (!strcmp(devname, "keyboard")) {
4743 dev = usb_keyboard_init();
4744 } else if (strstart(devname, "disk:", &p)) {
4745 dev = usb_msd_init(p);
4746 } else if (!strcmp(devname, "wacom-tablet")) {
4747 dev = usb_wacom_init();
4748 } else {
4749 return -1;
4751 if (!dev)
4752 return -1;
4754 /* Find a USB port to add the device to. */
4755 port = free_usb_ports;
4756 if (!port->next) {
4757 USBDevice *hub;
4759 /* Create a new hub and chain it on. */
4760 free_usb_ports = NULL;
4761 port->next = used_usb_ports;
4762 used_usb_ports = port;
4764 hub = usb_hub_init(VM_USB_HUB_SIZE);
4765 usb_attach(port, hub);
4766 port = free_usb_ports;
4769 free_usb_ports = port->next;
4770 port->next = used_usb_ports;
4771 used_usb_ports = port;
4772 usb_attach(port, dev);
4773 return 0;
4776 static int usb_device_del(const char *devname)
4778 USBPort *port;
4779 USBPort **lastp;
4780 USBDevice *dev;
4781 int bus_num, addr;
4782 const char *p;
4784 if (!used_usb_ports)
4785 return -1;
4787 p = strchr(devname, '.');
4788 if (!p)
4789 return -1;
4790 bus_num = strtoul(devname, NULL, 0);
4791 addr = strtoul(p + 1, NULL, 0);
4792 if (bus_num != 0)
4793 return -1;
4795 lastp = &used_usb_ports;
4796 port = used_usb_ports;
4797 while (port && port->dev->addr != addr) {
4798 lastp = &port->next;
4799 port = port->next;
4802 if (!port)
4803 return -1;
4805 dev = port->dev;
4806 *lastp = port->next;
4807 usb_attach(port, NULL);
4808 dev->handle_destroy(dev);
4809 port->next = free_usb_ports;
4810 free_usb_ports = port;
4811 return 0;
4814 void do_usb_add(const char *devname)
4816 int ret;
4817 ret = usb_device_add(devname);
4818 if (ret < 0)
4819 term_printf("Could not add USB device '%s'\n", devname);
4822 void do_usb_del(const char *devname)
4824 int ret;
4825 ret = usb_device_del(devname);
4826 if (ret < 0)
4827 term_printf("Could not remove USB device '%s'\n", devname);
4830 void usb_info(void)
4832 USBDevice *dev;
4833 USBPort *port;
4834 const char *speed_str;
4836 if (!usb_enabled) {
4837 term_printf("USB support not enabled\n");
4838 return;
4841 for (port = used_usb_ports; port; port = port->next) {
4842 dev = port->dev;
4843 if (!dev)
4844 continue;
4845 switch(dev->speed) {
4846 case USB_SPEED_LOW:
4847 speed_str = "1.5";
4848 break;
4849 case USB_SPEED_FULL:
4850 speed_str = "12";
4851 break;
4852 case USB_SPEED_HIGH:
4853 speed_str = "480";
4854 break;
4855 default:
4856 speed_str = "?";
4857 break;
4859 term_printf(" Device %d.%d, Speed %s Mb/s, Product %s\n",
4860 0, dev->addr, speed_str, dev->devname);
4864 /***********************************************************/
4865 /* PCMCIA/Cardbus */
4867 static struct pcmcia_socket_entry_s {
4868 struct pcmcia_socket_s *socket;
4869 struct pcmcia_socket_entry_s *next;
4870 } *pcmcia_sockets = 0;
4872 void pcmcia_socket_register(struct pcmcia_socket_s *socket)
4874 struct pcmcia_socket_entry_s *entry;
4876 entry = qemu_malloc(sizeof(struct pcmcia_socket_entry_s));
4877 entry->socket = socket;
4878 entry->next = pcmcia_sockets;
4879 pcmcia_sockets = entry;
4882 void pcmcia_socket_unregister(struct pcmcia_socket_s *socket)
4884 struct pcmcia_socket_entry_s *entry, **ptr;
4886 ptr = &pcmcia_sockets;
4887 for (entry = *ptr; entry; ptr = &entry->next, entry = *ptr)
4888 if (entry->socket == socket) {
4889 *ptr = entry->next;
4890 qemu_free(entry);
4894 void pcmcia_info(void)
4896 struct pcmcia_socket_entry_s *iter;
4897 if (!pcmcia_sockets)
4898 term_printf("No PCMCIA sockets\n");
4900 for (iter = pcmcia_sockets; iter; iter = iter->next)
4901 term_printf("%s: %s\n", iter->socket->slot_string,
4902 iter->socket->attached ? iter->socket->card_string :
4903 "Empty");
4906 /***********************************************************/
4907 /* dumb display */
4909 static void dumb_update(DisplayState *ds, int x, int y, int w, int h)
4913 static void dumb_resize(DisplayState *ds, int w, int h)
4917 static void dumb_refresh(DisplayState *ds)
4919 #if defined(CONFIG_SDL)
4920 vga_hw_update();
4921 #endif
4924 static void dumb_display_init(DisplayState *ds)
4926 ds->data = NULL;
4927 ds->linesize = 0;
4928 ds->depth = 0;
4929 ds->dpy_update = dumb_update;
4930 ds->dpy_resize = dumb_resize;
4931 ds->dpy_refresh = dumb_refresh;
4934 /***********************************************************/
4935 /* I/O handling */
4937 #define MAX_IO_HANDLERS 64
4939 typedef struct IOHandlerRecord {
4940 int fd;
4941 IOCanRWHandler *fd_read_poll;
4942 IOHandler *fd_read;
4943 IOHandler *fd_write;
4944 int deleted;
4945 void *opaque;
4946 /* temporary data */
4947 struct pollfd *ufd;
4948 struct IOHandlerRecord *next;
4949 } IOHandlerRecord;
4951 static IOHandlerRecord *first_io_handler;
4953 /* XXX: fd_read_poll should be suppressed, but an API change is
4954 necessary in the character devices to suppress fd_can_read(). */
4955 int qemu_set_fd_handler2(int fd,
4956 IOCanRWHandler *fd_read_poll,
4957 IOHandler *fd_read,
4958 IOHandler *fd_write,
4959 void *opaque)
4961 IOHandlerRecord **pioh, *ioh;
4963 if (!fd_read && !fd_write) {
4964 pioh = &first_io_handler;
4965 for(;;) {
4966 ioh = *pioh;
4967 if (ioh == NULL)
4968 break;
4969 if (ioh->fd == fd) {
4970 ioh->deleted = 1;
4971 break;
4973 pioh = &ioh->next;
4975 } else {
4976 for(ioh = first_io_handler; ioh != NULL; ioh = ioh->next) {
4977 if (ioh->fd == fd)
4978 goto found;
4980 ioh = qemu_mallocz(sizeof(IOHandlerRecord));
4981 if (!ioh)
4982 return -1;
4983 ioh->next = first_io_handler;
4984 first_io_handler = ioh;
4985 found:
4986 ioh->fd = fd;
4987 ioh->fd_read_poll = fd_read_poll;
4988 ioh->fd_read = fd_read;
4989 ioh->fd_write = fd_write;
4990 ioh->opaque = opaque;
4991 ioh->deleted = 0;
4993 return 0;
4996 int qemu_set_fd_handler(int fd,
4997 IOHandler *fd_read,
4998 IOHandler *fd_write,
4999 void *opaque)
5001 return qemu_set_fd_handler2(fd, NULL, fd_read, fd_write, opaque);
5004 /***********************************************************/
5005 /* Polling handling */
5007 typedef struct PollingEntry {
5008 PollingFunc *func;
5009 void *opaque;
5010 struct PollingEntry *next;
5011 } PollingEntry;
5013 static PollingEntry *first_polling_entry;
5015 int qemu_add_polling_cb(PollingFunc *func, void *opaque)
5017 PollingEntry **ppe, *pe;
5018 pe = qemu_mallocz(sizeof(PollingEntry));
5019 if (!pe)
5020 return -1;
5021 pe->func = func;
5022 pe->opaque = opaque;
5023 for(ppe = &first_polling_entry; *ppe != NULL; ppe = &(*ppe)->next);
5024 *ppe = pe;
5025 return 0;
5028 void qemu_del_polling_cb(PollingFunc *func, void *opaque)
5030 PollingEntry **ppe, *pe;
5031 for(ppe = &first_polling_entry; *ppe != NULL; ppe = &(*ppe)->next) {
5032 pe = *ppe;
5033 if (pe->func == func && pe->opaque == opaque) {
5034 *ppe = pe->next;
5035 qemu_free(pe);
5036 break;
5041 #ifdef _WIN32
5042 /***********************************************************/
5043 /* Wait objects support */
5044 typedef struct WaitObjects {
5045 int num;
5046 HANDLE events[MAXIMUM_WAIT_OBJECTS + 1];
5047 WaitObjectFunc *func[MAXIMUM_WAIT_OBJECTS + 1];
5048 void *opaque[MAXIMUM_WAIT_OBJECTS + 1];
5049 } WaitObjects;
5051 static WaitObjects wait_objects = {0};
5053 int qemu_add_wait_object(HANDLE handle, WaitObjectFunc *func, void *opaque)
5055 WaitObjects *w = &wait_objects;
5057 if (w->num >= MAXIMUM_WAIT_OBJECTS)
5058 return -1;
5059 w->events[w->num] = handle;
5060 w->func[w->num] = func;
5061 w->opaque[w->num] = opaque;
5062 w->num++;
5063 return 0;
5066 void qemu_del_wait_object(HANDLE handle, WaitObjectFunc *func, void *opaque)
5068 int i, found;
5069 WaitObjects *w = &wait_objects;
5071 found = 0;
5072 for (i = 0; i < w->num; i++) {
5073 if (w->events[i] == handle)
5074 found = 1;
5075 if (found) {
5076 w->events[i] = w->events[i + 1];
5077 w->func[i] = w->func[i + 1];
5078 w->opaque[i] = w->opaque[i + 1];
5081 if (found)
5082 w->num--;
5084 #endif
5086 /***********************************************************/
5087 /* savevm/loadvm support */
5089 #define IO_BUF_SIZE 32768
5091 struct QEMUFile {
5092 FILE *outfile;
5093 BlockDriverState *bs;
5094 int is_file;
5095 int is_writable;
5096 int64_t base_offset;
5097 int64_t buf_offset; /* start of buffer when writing, end of buffer
5098 when reading */
5099 int buf_index;
5100 int buf_size; /* 0 when writing */
5101 uint8_t buf[IO_BUF_SIZE];
5104 QEMUFile *qemu_fopen(const char *filename, const char *mode)
5106 QEMUFile *f;
5108 f = qemu_mallocz(sizeof(QEMUFile));
5109 if (!f)
5110 return NULL;
5111 if (!strcmp(mode, "wb")) {
5112 f->is_writable = 1;
5113 } else if (!strcmp(mode, "rb")) {
5114 f->is_writable = 0;
5115 } else {
5116 goto fail;
5118 f->outfile = fopen(filename, mode);
5119 if (!f->outfile)
5120 goto fail;
5121 f->is_file = 1;
5122 return f;
5123 fail:
5124 if (f->outfile)
5125 fclose(f->outfile);
5126 qemu_free(f);
5127 return NULL;
5130 QEMUFile *qemu_fopen_bdrv(BlockDriverState *bs, int64_t offset, int is_writable)
5132 QEMUFile *f;
5134 f = qemu_mallocz(sizeof(QEMUFile));
5135 if (!f)
5136 return NULL;
5137 f->is_file = 0;
5138 f->bs = bs;
5139 f->is_writable = is_writable;
5140 f->base_offset = offset;
5141 return f;
5144 void qemu_fflush(QEMUFile *f)
5146 if (!f->is_writable)
5147 return;
5148 if (f->buf_index > 0) {
5149 if (f->is_file) {
5150 fseek(f->outfile, f->buf_offset, SEEK_SET);
5151 fwrite(f->buf, 1, f->buf_index, f->outfile);
5152 } else {
5153 bdrv_pwrite(f->bs, f->base_offset + f->buf_offset,
5154 f->buf, f->buf_index);
5156 f->buf_offset += f->buf_index;
5157 f->buf_index = 0;
5161 static void qemu_fill_buffer(QEMUFile *f)
5163 int len;
5165 if (f->is_writable)
5166 return;
5167 if (f->is_file) {
5168 fseek(f->outfile, f->buf_offset, SEEK_SET);
5169 len = fread(f->buf, 1, IO_BUF_SIZE, f->outfile);
5170 if (len < 0)
5171 len = 0;
5172 } else {
5173 len = bdrv_pread(f->bs, f->base_offset + f->buf_offset,
5174 f->buf, IO_BUF_SIZE);
5175 if (len < 0)
5176 len = 0;
5178 f->buf_index = 0;
5179 f->buf_size = len;
5180 f->buf_offset += len;
5183 void qemu_fclose(QEMUFile *f)
5185 if (f->is_writable)
5186 qemu_fflush(f);
5187 if (f->is_file) {
5188 fclose(f->outfile);
5190 qemu_free(f);
5193 void qemu_put_buffer(QEMUFile *f, const uint8_t *buf, int size)
5195 int l;
5196 while (size > 0) {
5197 l = IO_BUF_SIZE - f->buf_index;
5198 if (l > size)
5199 l = size;
5200 memcpy(f->buf + f->buf_index, buf, l);
5201 f->buf_index += l;
5202 buf += l;
5203 size -= l;
5204 if (f->buf_index >= IO_BUF_SIZE)
5205 qemu_fflush(f);
5209 void qemu_put_byte(QEMUFile *f, int v)
5211 f->buf[f->buf_index++] = v;
5212 if (f->buf_index >= IO_BUF_SIZE)
5213 qemu_fflush(f);
5216 int qemu_get_buffer(QEMUFile *f, uint8_t *buf, int size1)
5218 int size, l;
5220 size = size1;
5221 while (size > 0) {
5222 l = f->buf_size - f->buf_index;
5223 if (l == 0) {
5224 qemu_fill_buffer(f);
5225 l = f->buf_size - f->buf_index;
5226 if (l == 0)
5227 break;
5229 if (l > size)
5230 l = size;
5231 memcpy(buf, f->buf + f->buf_index, l);
5232 f->buf_index += l;
5233 buf += l;
5234 size -= l;
5236 return size1 - size;
5239 int qemu_get_byte(QEMUFile *f)
5241 if (f->buf_index >= f->buf_size) {
5242 qemu_fill_buffer(f);
5243 if (f->buf_index >= f->buf_size)
5244 return 0;
5246 return f->buf[f->buf_index++];
5249 int64_t qemu_ftell(QEMUFile *f)
5251 return f->buf_offset - f->buf_size + f->buf_index;
5254 int64_t qemu_fseek(QEMUFile *f, int64_t pos, int whence)
5256 if (whence == SEEK_SET) {
5257 /* nothing to do */
5258 } else if (whence == SEEK_CUR) {
5259 pos += qemu_ftell(f);
5260 } else {
5261 /* SEEK_END not supported */
5262 return -1;
5264 if (f->is_writable) {
5265 qemu_fflush(f);
5266 f->buf_offset = pos;
5267 } else {
5268 f->buf_offset = pos;
5269 f->buf_index = 0;
5270 f->buf_size = 0;
5272 return pos;
5275 void qemu_put_be16(QEMUFile *f, unsigned int v)
5277 qemu_put_byte(f, v >> 8);
5278 qemu_put_byte(f, v);
5281 void qemu_put_be32(QEMUFile *f, unsigned int v)
5283 qemu_put_byte(f, v >> 24);
5284 qemu_put_byte(f, v >> 16);
5285 qemu_put_byte(f, v >> 8);
5286 qemu_put_byte(f, v);
5289 void qemu_put_be64(QEMUFile *f, uint64_t v)
5291 qemu_put_be32(f, v >> 32);
5292 qemu_put_be32(f, v);
5295 unsigned int qemu_get_be16(QEMUFile *f)
5297 unsigned int v;
5298 v = qemu_get_byte(f) << 8;
5299 v |= qemu_get_byte(f);
5300 return v;
5303 unsigned int qemu_get_be32(QEMUFile *f)
5305 unsigned int v;
5306 v = qemu_get_byte(f) << 24;
5307 v |= qemu_get_byte(f) << 16;
5308 v |= qemu_get_byte(f) << 8;
5309 v |= qemu_get_byte(f);
5310 return v;
5313 uint64_t qemu_get_be64(QEMUFile *f)
5315 uint64_t v;
5316 v = (uint64_t)qemu_get_be32(f) << 32;
5317 v |= qemu_get_be32(f);
5318 return v;
5321 typedef struct SaveStateEntry {
5322 char idstr[256];
5323 int instance_id;
5324 int version_id;
5325 SaveStateHandler *save_state;
5326 LoadStateHandler *load_state;
5327 void *opaque;
5328 struct SaveStateEntry *next;
5329 } SaveStateEntry;
5331 static SaveStateEntry *first_se;
5333 int register_savevm(const char *idstr,
5334 int instance_id,
5335 int version_id,
5336 SaveStateHandler *save_state,
5337 LoadStateHandler *load_state,
5338 void *opaque)
5340 SaveStateEntry *se, **pse;
5342 se = qemu_malloc(sizeof(SaveStateEntry));
5343 if (!se)
5344 return -1;
5345 pstrcpy(se->idstr, sizeof(se->idstr), idstr);
5346 se->instance_id = instance_id;
5347 se->version_id = version_id;
5348 se->save_state = save_state;
5349 se->load_state = load_state;
5350 se->opaque = opaque;
5351 se->next = NULL;
5353 /* add at the end of list */
5354 pse = &first_se;
5355 while (*pse != NULL)
5356 pse = &(*pse)->next;
5357 *pse = se;
5358 return 0;
5361 #define QEMU_VM_FILE_MAGIC 0x5145564d
5362 #define QEMU_VM_FILE_VERSION 0x00000002
5364 int qemu_savevm_state(QEMUFile *f)
5366 SaveStateEntry *se;
5367 int len, ret;
5368 int64_t cur_pos, len_pos, total_len_pos;
5370 qemu_put_be32(f, QEMU_VM_FILE_MAGIC);
5371 qemu_put_be32(f, QEMU_VM_FILE_VERSION);
5372 total_len_pos = qemu_ftell(f);
5373 qemu_put_be64(f, 0); /* total size */
5375 for(se = first_se; se != NULL; se = se->next) {
5376 /* ID string */
5377 len = strlen(se->idstr);
5378 qemu_put_byte(f, len);
5379 qemu_put_buffer(f, se->idstr, len);
5381 qemu_put_be32(f, se->instance_id);
5382 qemu_put_be32(f, se->version_id);
5384 /* record size: filled later */
5385 len_pos = qemu_ftell(f);
5386 qemu_put_be32(f, 0);
5388 se->save_state(f, se->opaque);
5390 /* fill record size */
5391 cur_pos = qemu_ftell(f);
5392 len = cur_pos - len_pos - 4;
5393 qemu_fseek(f, len_pos, SEEK_SET);
5394 qemu_put_be32(f, len);
5395 qemu_fseek(f, cur_pos, SEEK_SET);
5397 cur_pos = qemu_ftell(f);
5398 qemu_fseek(f, total_len_pos, SEEK_SET);
5399 qemu_put_be64(f, cur_pos - total_len_pos - 8);
5400 qemu_fseek(f, cur_pos, SEEK_SET);
5402 ret = 0;
5403 return ret;
5406 static SaveStateEntry *find_se(const char *idstr, int instance_id)
5408 SaveStateEntry *se;
5410 for(se = first_se; se != NULL; se = se->next) {
5411 if (!strcmp(se->idstr, idstr) &&
5412 instance_id == se->instance_id)
5413 return se;
5415 return NULL;
5418 int qemu_loadvm_state(QEMUFile *f)
5420 SaveStateEntry *se;
5421 int len, ret, instance_id, record_len, version_id;
5422 int64_t total_len, end_pos, cur_pos;
5423 unsigned int v;
5424 char idstr[256];
5426 v = qemu_get_be32(f);
5427 if (v != QEMU_VM_FILE_MAGIC)
5428 goto fail;
5429 v = qemu_get_be32(f);
5430 if (v != QEMU_VM_FILE_VERSION) {
5431 fail:
5432 ret = -1;
5433 goto the_end;
5435 total_len = qemu_get_be64(f);
5436 end_pos = total_len + qemu_ftell(f);
5437 for(;;) {
5438 if (qemu_ftell(f) >= end_pos)
5439 break;
5440 len = qemu_get_byte(f);
5441 qemu_get_buffer(f, idstr, len);
5442 idstr[len] = '\0';
5443 instance_id = qemu_get_be32(f);
5444 version_id = qemu_get_be32(f);
5445 record_len = qemu_get_be32(f);
5446 #if 0
5447 printf("idstr=%s instance=0x%x version=%d len=%d\n",
5448 idstr, instance_id, version_id, record_len);
5449 #endif
5450 cur_pos = qemu_ftell(f);
5451 se = find_se(idstr, instance_id);
5452 if (!se) {
5453 fprintf(stderr, "qemu: warning: instance 0x%x of device '%s' not present in current VM\n",
5454 instance_id, idstr);
5455 } else {
5456 ret = se->load_state(f, se->opaque, version_id);
5457 if (ret < 0) {
5458 fprintf(stderr, "qemu: warning: error while loading state for instance 0x%x of device '%s'\n",
5459 instance_id, idstr);
5462 /* always seek to exact end of record */
5463 qemu_fseek(f, cur_pos + record_len, SEEK_SET);
5465 ret = 0;
5466 the_end:
5467 return ret;
5470 /* device can contain snapshots */
5471 static int bdrv_can_snapshot(BlockDriverState *bs)
5473 return (bs &&
5474 !bdrv_is_removable(bs) &&
5475 !bdrv_is_read_only(bs));
5478 /* device must be snapshots in order to have a reliable snapshot */
5479 static int bdrv_has_snapshot(BlockDriverState *bs)
5481 return (bs &&
5482 !bdrv_is_removable(bs) &&
5483 !bdrv_is_read_only(bs));
5486 static BlockDriverState *get_bs_snapshots(void)
5488 BlockDriverState *bs;
5489 int i;
5491 if (bs_snapshots)
5492 return bs_snapshots;
5493 for(i = 0; i <= MAX_DISKS; i++) {
5494 bs = bs_table[i];
5495 if (bdrv_can_snapshot(bs))
5496 goto ok;
5498 return NULL;
5500 bs_snapshots = bs;
5501 return bs;
5504 static int bdrv_snapshot_find(BlockDriverState *bs, QEMUSnapshotInfo *sn_info,
5505 const char *name)
5507 QEMUSnapshotInfo *sn_tab, *sn;
5508 int nb_sns, i, ret;
5510 ret = -ENOENT;
5511 nb_sns = bdrv_snapshot_list(bs, &sn_tab);
5512 if (nb_sns < 0)
5513 return ret;
5514 for(i = 0; i < nb_sns; i++) {
5515 sn = &sn_tab[i];
5516 if (!strcmp(sn->id_str, name) || !strcmp(sn->name, name)) {
5517 *sn_info = *sn;
5518 ret = 0;
5519 break;
5522 qemu_free(sn_tab);
5523 return ret;
5526 void do_savevm(const char *name)
5528 BlockDriverState *bs, *bs1;
5529 QEMUSnapshotInfo sn1, *sn = &sn1, old_sn1, *old_sn = &old_sn1;
5530 int must_delete, ret, i;
5531 BlockDriverInfo bdi1, *bdi = &bdi1;
5532 QEMUFile *f;
5533 int saved_vm_running;
5534 #ifdef _WIN32
5535 struct _timeb tb;
5536 #else
5537 struct timeval tv;
5538 #endif
5540 bs = get_bs_snapshots();
5541 if (!bs) {
5542 term_printf("No block device can accept snapshots\n");
5543 return;
5546 /* ??? Should this occur after vm_stop? */
5547 qemu_aio_flush();
5549 saved_vm_running = vm_running;
5550 vm_stop(0);
5552 must_delete = 0;
5553 if (name) {
5554 ret = bdrv_snapshot_find(bs, old_sn, name);
5555 if (ret >= 0) {
5556 must_delete = 1;
5559 memset(sn, 0, sizeof(*sn));
5560 if (must_delete) {
5561 pstrcpy(sn->name, sizeof(sn->name), old_sn->name);
5562 pstrcpy(sn->id_str, sizeof(sn->id_str), old_sn->id_str);
5563 } else {
5564 if (name)
5565 pstrcpy(sn->name, sizeof(sn->name), name);
5568 /* fill auxiliary fields */
5569 #ifdef _WIN32
5570 _ftime(&tb);
5571 sn->date_sec = tb.time;
5572 sn->date_nsec = tb.millitm * 1000000;
5573 #else
5574 gettimeofday(&tv, NULL);
5575 sn->date_sec = tv.tv_sec;
5576 sn->date_nsec = tv.tv_usec * 1000;
5577 #endif
5578 sn->vm_clock_nsec = qemu_get_clock(vm_clock);
5580 if (bdrv_get_info(bs, bdi) < 0 || bdi->vm_state_offset <= 0) {
5581 term_printf("Device %s does not support VM state snapshots\n",
5582 bdrv_get_device_name(bs));
5583 goto the_end;
5586 /* save the VM state */
5587 f = qemu_fopen_bdrv(bs, bdi->vm_state_offset, 1);
5588 if (!f) {
5589 term_printf("Could not open VM state file\n");
5590 goto the_end;
5592 ret = qemu_savevm_state(f);
5593 sn->vm_state_size = qemu_ftell(f);
5594 qemu_fclose(f);
5595 if (ret < 0) {
5596 term_printf("Error %d while writing VM\n", ret);
5597 goto the_end;
5600 /* create the snapshots */
5602 for(i = 0; i < MAX_DISKS; i++) {
5603 bs1 = bs_table[i];
5604 if (bdrv_has_snapshot(bs1)) {
5605 if (must_delete) {
5606 ret = bdrv_snapshot_delete(bs1, old_sn->id_str);
5607 if (ret < 0) {
5608 term_printf("Error while deleting snapshot on '%s'\n",
5609 bdrv_get_device_name(bs1));
5612 ret = bdrv_snapshot_create(bs1, sn);
5613 if (ret < 0) {
5614 term_printf("Error while creating snapshot on '%s'\n",
5615 bdrv_get_device_name(bs1));
5620 the_end:
5621 if (saved_vm_running)
5622 vm_start();
5625 void do_loadvm(const char *name)
5627 BlockDriverState *bs, *bs1;
5628 BlockDriverInfo bdi1, *bdi = &bdi1;
5629 QEMUFile *f;
5630 int i, ret;
5631 int saved_vm_running;
5633 bs = get_bs_snapshots();
5634 if (!bs) {
5635 term_printf("No block device supports snapshots\n");
5636 return;
5639 /* Flush all IO requests so they don't interfere with the new state. */
5640 qemu_aio_flush();
5642 saved_vm_running = vm_running;
5643 vm_stop(0);
5645 for(i = 0; i <= MAX_DISKS; i++) {
5646 bs1 = bs_table[i];
5647 if (bdrv_has_snapshot(bs1)) {
5648 ret = bdrv_snapshot_goto(bs1, name);
5649 if (ret < 0) {
5650 if (bs != bs1)
5651 term_printf("Warning: ");
5652 switch(ret) {
5653 case -ENOTSUP:
5654 term_printf("Snapshots not supported on device '%s'\n",
5655 bdrv_get_device_name(bs1));
5656 break;
5657 case -ENOENT:
5658 term_printf("Could not find snapshot '%s' on device '%s'\n",
5659 name, bdrv_get_device_name(bs1));
5660 break;
5661 default:
5662 term_printf("Error %d while activating snapshot on '%s'\n",
5663 ret, bdrv_get_device_name(bs1));
5664 break;
5666 /* fatal on snapshot block device */
5667 if (bs == bs1)
5668 goto the_end;
5673 if (bdrv_get_info(bs, bdi) < 0 || bdi->vm_state_offset <= 0) {
5674 term_printf("Device %s does not support VM state snapshots\n",
5675 bdrv_get_device_name(bs));
5676 return;
5679 /* restore the VM state */
5680 f = qemu_fopen_bdrv(bs, bdi->vm_state_offset, 0);
5681 if (!f) {
5682 term_printf("Could not open VM state file\n");
5683 goto the_end;
5685 ret = qemu_loadvm_state(f);
5686 qemu_fclose(f);
5687 if (ret < 0) {
5688 term_printf("Error %d while loading VM state\n", ret);
5690 the_end:
5691 if (saved_vm_running)
5692 vm_start();
5695 void do_delvm(const char *name)
5697 BlockDriverState *bs, *bs1;
5698 int i, ret;
5700 bs = get_bs_snapshots();
5701 if (!bs) {
5702 term_printf("No block device supports snapshots\n");
5703 return;
5706 for(i = 0; i <= MAX_DISKS; i++) {
5707 bs1 = bs_table[i];
5708 if (bdrv_has_snapshot(bs1)) {
5709 ret = bdrv_snapshot_delete(bs1, name);
5710 if (ret < 0) {
5711 if (ret == -ENOTSUP)
5712 term_printf("Snapshots not supported on device '%s'\n",
5713 bdrv_get_device_name(bs1));
5714 else
5715 term_printf("Error %d while deleting snapshot on '%s'\n",
5716 ret, bdrv_get_device_name(bs1));
5722 void do_info_snapshots(void)
5724 BlockDriverState *bs, *bs1;
5725 QEMUSnapshotInfo *sn_tab, *sn;
5726 int nb_sns, i;
5727 char buf[256];
5729 bs = get_bs_snapshots();
5730 if (!bs) {
5731 term_printf("No available block device supports snapshots\n");
5732 return;
5734 term_printf("Snapshot devices:");
5735 for(i = 0; i <= MAX_DISKS; i++) {
5736 bs1 = bs_table[i];
5737 if (bdrv_has_snapshot(bs1)) {
5738 if (bs == bs1)
5739 term_printf(" %s", bdrv_get_device_name(bs1));
5742 term_printf("\n");
5744 nb_sns = bdrv_snapshot_list(bs, &sn_tab);
5745 if (nb_sns < 0) {
5746 term_printf("bdrv_snapshot_list: error %d\n", nb_sns);
5747 return;
5749 term_printf("Snapshot list (from %s):\n", bdrv_get_device_name(bs));
5750 term_printf("%s\n", bdrv_snapshot_dump(buf, sizeof(buf), NULL));
5751 for(i = 0; i < nb_sns; i++) {
5752 sn = &sn_tab[i];
5753 term_printf("%s\n", bdrv_snapshot_dump(buf, sizeof(buf), sn));
5755 qemu_free(sn_tab);
5758 /***********************************************************/
5759 /* cpu save/restore */
5761 #if defined(TARGET_I386)
5763 static void cpu_put_seg(QEMUFile *f, SegmentCache *dt)
5765 qemu_put_be32(f, dt->selector);
5766 qemu_put_betl(f, dt->base);
5767 qemu_put_be32(f, dt->limit);
5768 qemu_put_be32(f, dt->flags);
5771 static void cpu_get_seg(QEMUFile *f, SegmentCache *dt)
5773 dt->selector = qemu_get_be32(f);
5774 dt->base = qemu_get_betl(f);
5775 dt->limit = qemu_get_be32(f);
5776 dt->flags = qemu_get_be32(f);
5779 void cpu_save(QEMUFile *f, void *opaque)
5781 CPUState *env = opaque;
5782 uint16_t fptag, fpus, fpuc, fpregs_format;
5783 uint32_t hflags;
5784 int i;
5786 for(i = 0; i < CPU_NB_REGS; i++)
5787 qemu_put_betls(f, &env->regs[i]);
5788 qemu_put_betls(f, &env->eip);
5789 qemu_put_betls(f, &env->eflags);
5790 hflags = env->hflags; /* XXX: suppress most of the redundant hflags */
5791 qemu_put_be32s(f, &hflags);
5793 /* FPU */
5794 fpuc = env->fpuc;
5795 fpus = (env->fpus & ~0x3800) | (env->fpstt & 0x7) << 11;
5796 fptag = 0;
5797 for(i = 0; i < 8; i++) {
5798 fptag |= ((!env->fptags[i]) << i);
5801 qemu_put_be16s(f, &fpuc);
5802 qemu_put_be16s(f, &fpus);
5803 qemu_put_be16s(f, &fptag);
5805 #ifdef USE_X86LDOUBLE
5806 fpregs_format = 0;
5807 #else
5808 fpregs_format = 1;
5809 #endif
5810 qemu_put_be16s(f, &fpregs_format);
5812 for(i = 0; i < 8; i++) {
5813 #ifdef USE_X86LDOUBLE
5815 uint64_t mant;
5816 uint16_t exp;
5817 /* we save the real CPU data (in case of MMX usage only 'mant'
5818 contains the MMX register */
5819 cpu_get_fp80(&mant, &exp, env->fpregs[i].d);
5820 qemu_put_be64(f, mant);
5821 qemu_put_be16(f, exp);
5823 #else
5824 /* if we use doubles for float emulation, we save the doubles to
5825 avoid losing information in case of MMX usage. It can give
5826 problems if the image is restored on a CPU where long
5827 doubles are used instead. */
5828 qemu_put_be64(f, env->fpregs[i].mmx.MMX_Q(0));
5829 #endif
5832 for(i = 0; i < 6; i++)
5833 cpu_put_seg(f, &env->segs[i]);
5834 cpu_put_seg(f, &env->ldt);
5835 cpu_put_seg(f, &env->tr);
5836 cpu_put_seg(f, &env->gdt);
5837 cpu_put_seg(f, &env->idt);
5839 qemu_put_be32s(f, &env->sysenter_cs);
5840 qemu_put_be32s(f, &env->sysenter_esp);
5841 qemu_put_be32s(f, &env->sysenter_eip);
5843 qemu_put_betls(f, &env->cr[0]);
5844 qemu_put_betls(f, &env->cr[2]);
5845 qemu_put_betls(f, &env->cr[3]);
5846 qemu_put_betls(f, &env->cr[4]);
5848 for(i = 0; i < 8; i++)
5849 qemu_put_betls(f, &env->dr[i]);
5851 /* MMU */
5852 qemu_put_be32s(f, &env->a20_mask);
5854 /* XMM */
5855 qemu_put_be32s(f, &env->mxcsr);
5856 for(i = 0; i < CPU_NB_REGS; i++) {
5857 qemu_put_be64s(f, &env->xmm_regs[i].XMM_Q(0));
5858 qemu_put_be64s(f, &env->xmm_regs[i].XMM_Q(1));
5861 #ifdef TARGET_X86_64
5862 qemu_put_be64s(f, &env->efer);
5863 qemu_put_be64s(f, &env->star);
5864 qemu_put_be64s(f, &env->lstar);
5865 qemu_put_be64s(f, &env->cstar);
5866 qemu_put_be64s(f, &env->fmask);
5867 qemu_put_be64s(f, &env->kernelgsbase);
5868 #endif
5869 qemu_put_be32s(f, &env->smbase);
5872 #ifdef USE_X86LDOUBLE
5873 /* XXX: add that in a FPU generic layer */
5874 union x86_longdouble {
5875 uint64_t mant;
5876 uint16_t exp;
5879 #define MANTD1(fp) (fp & ((1LL << 52) - 1))
5880 #define EXPBIAS1 1023
5881 #define EXPD1(fp) ((fp >> 52) & 0x7FF)
5882 #define SIGND1(fp) ((fp >> 32) & 0x80000000)
5884 static void fp64_to_fp80(union x86_longdouble *p, uint64_t temp)
5886 int e;
5887 /* mantissa */
5888 p->mant = (MANTD1(temp) << 11) | (1LL << 63);
5889 /* exponent + sign */
5890 e = EXPD1(temp) - EXPBIAS1 + 16383;
5891 e |= SIGND1(temp) >> 16;
5892 p->exp = e;
5894 #endif
5896 int cpu_load(QEMUFile *f, void *opaque, int version_id)
5898 CPUState *env = opaque;
5899 int i, guess_mmx;
5900 uint32_t hflags;
5901 uint16_t fpus, fpuc, fptag, fpregs_format;
5903 if (version_id != 3 && version_id != 4)
5904 return -EINVAL;
5905 for(i = 0; i < CPU_NB_REGS; i++)
5906 qemu_get_betls(f, &env->regs[i]);
5907 qemu_get_betls(f, &env->eip);
5908 qemu_get_betls(f, &env->eflags);
5909 qemu_get_be32s(f, &hflags);
5911 qemu_get_be16s(f, &fpuc);
5912 qemu_get_be16s(f, &fpus);
5913 qemu_get_be16s(f, &fptag);
5914 qemu_get_be16s(f, &fpregs_format);
5916 /* NOTE: we cannot always restore the FPU state if the image come
5917 from a host with a different 'USE_X86LDOUBLE' define. We guess
5918 if we are in an MMX state to restore correctly in that case. */
5919 guess_mmx = ((fptag == 0xff) && (fpus & 0x3800) == 0);
5920 for(i = 0; i < 8; i++) {
5921 uint64_t mant;
5922 uint16_t exp;
5924 switch(fpregs_format) {
5925 case 0:
5926 mant = qemu_get_be64(f);
5927 exp = qemu_get_be16(f);
5928 #ifdef USE_X86LDOUBLE
5929 env->fpregs[i].d = cpu_set_fp80(mant, exp);
5930 #else
5931 /* difficult case */
5932 if (guess_mmx)
5933 env->fpregs[i].mmx.MMX_Q(0) = mant;
5934 else
5935 env->fpregs[i].d = cpu_set_fp80(mant, exp);
5936 #endif
5937 break;
5938 case 1:
5939 mant = qemu_get_be64(f);
5940 #ifdef USE_X86LDOUBLE
5942 union x86_longdouble *p;
5943 /* difficult case */
5944 p = (void *)&env->fpregs[i];
5945 if (guess_mmx) {
5946 p->mant = mant;
5947 p->exp = 0xffff;
5948 } else {
5949 fp64_to_fp80(p, mant);
5952 #else
5953 env->fpregs[i].mmx.MMX_Q(0) = mant;
5954 #endif
5955 break;
5956 default:
5957 return -EINVAL;
5961 env->fpuc = fpuc;
5962 /* XXX: restore FPU round state */
5963 env->fpstt = (fpus >> 11) & 7;
5964 env->fpus = fpus & ~0x3800;
5965 fptag ^= 0xff;
5966 for(i = 0; i < 8; i++) {
5967 env->fptags[i] = (fptag >> i) & 1;
5970 for(i = 0; i < 6; i++)
5971 cpu_get_seg(f, &env->segs[i]);
5972 cpu_get_seg(f, &env->ldt);
5973 cpu_get_seg(f, &env->tr);
5974 cpu_get_seg(f, &env->gdt);
5975 cpu_get_seg(f, &env->idt);
5977 qemu_get_be32s(f, &env->sysenter_cs);
5978 qemu_get_be32s(f, &env->sysenter_esp);
5979 qemu_get_be32s(f, &env->sysenter_eip);
5981 qemu_get_betls(f, &env->cr[0]);
5982 qemu_get_betls(f, &env->cr[2]);
5983 qemu_get_betls(f, &env->cr[3]);
5984 qemu_get_betls(f, &env->cr[4]);
5986 for(i = 0; i < 8; i++)
5987 qemu_get_betls(f, &env->dr[i]);
5989 /* MMU */
5990 qemu_get_be32s(f, &env->a20_mask);
5992 qemu_get_be32s(f, &env->mxcsr);
5993 for(i = 0; i < CPU_NB_REGS; i++) {
5994 qemu_get_be64s(f, &env->xmm_regs[i].XMM_Q(0));
5995 qemu_get_be64s(f, &env->xmm_regs[i].XMM_Q(1));
5998 #ifdef TARGET_X86_64
5999 qemu_get_be64s(f, &env->efer);
6000 qemu_get_be64s(f, &env->star);
6001 qemu_get_be64s(f, &env->lstar);
6002 qemu_get_be64s(f, &env->cstar);
6003 qemu_get_be64s(f, &env->fmask);
6004 qemu_get_be64s(f, &env->kernelgsbase);
6005 #endif
6006 if (version_id >= 4)
6007 qemu_get_be32s(f, &env->smbase);
6009 /* XXX: compute hflags from scratch, except for CPL and IIF */
6010 env->hflags = hflags;
6011 tlb_flush(env, 1);
6012 return 0;
6015 #elif defined(TARGET_PPC)
6016 void cpu_save(QEMUFile *f, void *opaque)
6020 int cpu_load(QEMUFile *f, void *opaque, int version_id)
6022 return 0;
6025 #elif defined(TARGET_MIPS)
6026 void cpu_save(QEMUFile *f, void *opaque)
6030 int cpu_load(QEMUFile *f, void *opaque, int version_id)
6032 return 0;
6035 #elif defined(TARGET_SPARC)
6036 void cpu_save(QEMUFile *f, void *opaque)
6038 CPUState *env = opaque;
6039 int i;
6040 uint32_t tmp;
6042 for(i = 0; i < 8; i++)
6043 qemu_put_betls(f, &env->gregs[i]);
6044 for(i = 0; i < NWINDOWS * 16; i++)
6045 qemu_put_betls(f, &env->regbase[i]);
6047 /* FPU */
6048 for(i = 0; i < TARGET_FPREGS; i++) {
6049 union {
6050 float32 f;
6051 uint32_t i;
6052 } u;
6053 u.f = env->fpr[i];
6054 qemu_put_be32(f, u.i);
6057 qemu_put_betls(f, &env->pc);
6058 qemu_put_betls(f, &env->npc);
6059 qemu_put_betls(f, &env->y);
6060 tmp = GET_PSR(env);
6061 qemu_put_be32(f, tmp);
6062 qemu_put_betls(f, &env->fsr);
6063 qemu_put_betls(f, &env->tbr);
6064 #ifndef TARGET_SPARC64
6065 qemu_put_be32s(f, &env->wim);
6066 /* MMU */
6067 for(i = 0; i < 16; i++)
6068 qemu_put_be32s(f, &env->mmuregs[i]);
6069 #endif
6072 int cpu_load(QEMUFile *f, void *opaque, int version_id)
6074 CPUState *env = opaque;
6075 int i;
6076 uint32_t tmp;
6078 for(i = 0; i < 8; i++)
6079 qemu_get_betls(f, &env->gregs[i]);
6080 for(i = 0; i < NWINDOWS * 16; i++)
6081 qemu_get_betls(f, &env->regbase[i]);
6083 /* FPU */
6084 for(i = 0; i < TARGET_FPREGS; i++) {
6085 union {
6086 float32 f;
6087 uint32_t i;
6088 } u;
6089 u.i = qemu_get_be32(f);
6090 env->fpr[i] = u.f;
6093 qemu_get_betls(f, &env->pc);
6094 qemu_get_betls(f, &env->npc);
6095 qemu_get_betls(f, &env->y);
6096 tmp = qemu_get_be32(f);
6097 env->cwp = 0; /* needed to ensure that the wrapping registers are
6098 correctly updated */
6099 PUT_PSR(env, tmp);
6100 qemu_get_betls(f, &env->fsr);
6101 qemu_get_betls(f, &env->tbr);
6102 #ifndef TARGET_SPARC64
6103 qemu_get_be32s(f, &env->wim);
6104 /* MMU */
6105 for(i = 0; i < 16; i++)
6106 qemu_get_be32s(f, &env->mmuregs[i]);
6107 #endif
6108 tlb_flush(env, 1);
6109 return 0;
6112 #elif defined(TARGET_ARM)
6114 void cpu_save(QEMUFile *f, void *opaque)
6116 int i;
6117 CPUARMState *env = (CPUARMState *)opaque;
6119 for (i = 0; i < 16; i++) {
6120 qemu_put_be32(f, env->regs[i]);
6122 qemu_put_be32(f, cpsr_read(env));
6123 qemu_put_be32(f, env->spsr);
6124 for (i = 0; i < 6; i++) {
6125 qemu_put_be32(f, env->banked_spsr[i]);
6126 qemu_put_be32(f, env->banked_r13[i]);
6127 qemu_put_be32(f, env->banked_r14[i]);
6129 for (i = 0; i < 5; i++) {
6130 qemu_put_be32(f, env->usr_regs[i]);
6131 qemu_put_be32(f, env->fiq_regs[i]);
6133 qemu_put_be32(f, env->cp15.c0_cpuid);
6134 qemu_put_be32(f, env->cp15.c0_cachetype);
6135 qemu_put_be32(f, env->cp15.c1_sys);
6136 qemu_put_be32(f, env->cp15.c1_coproc);
6137 qemu_put_be32(f, env->cp15.c1_xscaleauxcr);
6138 qemu_put_be32(f, env->cp15.c2_base);
6139 qemu_put_be32(f, env->cp15.c2_data);
6140 qemu_put_be32(f, env->cp15.c2_insn);
6141 qemu_put_be32(f, env->cp15.c3);
6142 qemu_put_be32(f, env->cp15.c5_insn);
6143 qemu_put_be32(f, env->cp15.c5_data);
6144 for (i = 0; i < 8; i++) {
6145 qemu_put_be32(f, env->cp15.c6_region[i]);
6147 qemu_put_be32(f, env->cp15.c6_insn);
6148 qemu_put_be32(f, env->cp15.c6_data);
6149 qemu_put_be32(f, env->cp15.c9_insn);
6150 qemu_put_be32(f, env->cp15.c9_data);
6151 qemu_put_be32(f, env->cp15.c13_fcse);
6152 qemu_put_be32(f, env->cp15.c13_context);
6153 qemu_put_be32(f, env->cp15.c15_cpar);
6155 qemu_put_be32(f, env->features);
6157 if (arm_feature(env, ARM_FEATURE_VFP)) {
6158 for (i = 0; i < 16; i++) {
6159 CPU_DoubleU u;
6160 u.d = env->vfp.regs[i];
6161 qemu_put_be32(f, u.l.upper);
6162 qemu_put_be32(f, u.l.lower);
6164 for (i = 0; i < 16; i++) {
6165 qemu_put_be32(f, env->vfp.xregs[i]);
6168 /* TODO: Should use proper FPSCR access functions. */
6169 qemu_put_be32(f, env->vfp.vec_len);
6170 qemu_put_be32(f, env->vfp.vec_stride);
6173 if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
6174 for (i = 0; i < 16; i++) {
6175 qemu_put_be64(f, env->iwmmxt.regs[i]);
6177 for (i = 0; i < 16; i++) {
6178 qemu_put_be32(f, env->iwmmxt.cregs[i]);
6183 int cpu_load(QEMUFile *f, void *opaque, int version_id)
6185 CPUARMState *env = (CPUARMState *)opaque;
6186 int i;
6188 if (version_id != 0)
6189 return -EINVAL;
6191 for (i = 0; i < 16; i++) {
6192 env->regs[i] = qemu_get_be32(f);
6194 cpsr_write(env, qemu_get_be32(f), 0xffffffff);
6195 env->spsr = qemu_get_be32(f);
6196 for (i = 0; i < 6; i++) {
6197 env->banked_spsr[i] = qemu_get_be32(f);
6198 env->banked_r13[i] = qemu_get_be32(f);
6199 env->banked_r14[i] = qemu_get_be32(f);
6201 for (i = 0; i < 5; i++) {
6202 env->usr_regs[i] = qemu_get_be32(f);
6203 env->fiq_regs[i] = qemu_get_be32(f);
6205 env->cp15.c0_cpuid = qemu_get_be32(f);
6206 env->cp15.c0_cachetype = qemu_get_be32(f);
6207 env->cp15.c1_sys = qemu_get_be32(f);
6208 env->cp15.c1_coproc = qemu_get_be32(f);
6209 env->cp15.c1_xscaleauxcr = qemu_get_be32(f);
6210 env->cp15.c2_base = qemu_get_be32(f);
6211 env->cp15.c2_data = qemu_get_be32(f);
6212 env->cp15.c2_insn = qemu_get_be32(f);
6213 env->cp15.c3 = qemu_get_be32(f);
6214 env->cp15.c5_insn = qemu_get_be32(f);
6215 env->cp15.c5_data = qemu_get_be32(f);
6216 for (i = 0; i < 8; i++) {
6217 env->cp15.c6_region[i] = qemu_get_be32(f);
6219 env->cp15.c6_insn = qemu_get_be32(f);
6220 env->cp15.c6_data = qemu_get_be32(f);
6221 env->cp15.c9_insn = qemu_get_be32(f);
6222 env->cp15.c9_data = qemu_get_be32(f);
6223 env->cp15.c13_fcse = qemu_get_be32(f);
6224 env->cp15.c13_context = qemu_get_be32(f);
6225 env->cp15.c15_cpar = qemu_get_be32(f);
6227 env->features = qemu_get_be32(f);
6229 if (arm_feature(env, ARM_FEATURE_VFP)) {
6230 for (i = 0; i < 16; i++) {
6231 CPU_DoubleU u;
6232 u.l.upper = qemu_get_be32(f);
6233 u.l.lower = qemu_get_be32(f);
6234 env->vfp.regs[i] = u.d;
6236 for (i = 0; i < 16; i++) {
6237 env->vfp.xregs[i] = qemu_get_be32(f);
6240 /* TODO: Should use proper FPSCR access functions. */
6241 env->vfp.vec_len = qemu_get_be32(f);
6242 env->vfp.vec_stride = qemu_get_be32(f);
6245 if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
6246 for (i = 0; i < 16; i++) {
6247 env->iwmmxt.regs[i] = qemu_get_be64(f);
6249 for (i = 0; i < 16; i++) {
6250 env->iwmmxt.cregs[i] = qemu_get_be32(f);
6254 return 0;
6257 #else
6259 #warning No CPU save/restore functions
6261 #endif
6263 /***********************************************************/
6264 /* ram save/restore */
6266 static int ram_get_page(QEMUFile *f, uint8_t *buf, int len)
6268 int v;
6270 v = qemu_get_byte(f);
6271 switch(v) {
6272 case 0:
6273 if (qemu_get_buffer(f, buf, len) != len)
6274 return -EIO;
6275 break;
6276 case 1:
6277 v = qemu_get_byte(f);
6278 memset(buf, v, len);
6279 break;
6280 default:
6281 return -EINVAL;
6283 return 0;
6286 static int ram_load_v1(QEMUFile *f, void *opaque)
6288 int i, ret;
6290 if (qemu_get_be32(f) != phys_ram_size)
6291 return -EINVAL;
6292 for(i = 0; i < phys_ram_size; i+= TARGET_PAGE_SIZE) {
6293 ret = ram_get_page(f, phys_ram_base + i, TARGET_PAGE_SIZE);
6294 if (ret)
6295 return ret;
6297 return 0;
6300 #define BDRV_HASH_BLOCK_SIZE 1024
6301 #define IOBUF_SIZE 4096
6302 #define RAM_CBLOCK_MAGIC 0xfabe
6304 typedef struct RamCompressState {
6305 z_stream zstream;
6306 QEMUFile *f;
6307 uint8_t buf[IOBUF_SIZE];
6308 } RamCompressState;
6310 static int ram_compress_open(RamCompressState *s, QEMUFile *f)
6312 int ret;
6313 memset(s, 0, sizeof(*s));
6314 s->f = f;
6315 ret = deflateInit2(&s->zstream, 1,
6316 Z_DEFLATED, 15,
6317 9, Z_DEFAULT_STRATEGY);
6318 if (ret != Z_OK)
6319 return -1;
6320 s->zstream.avail_out = IOBUF_SIZE;
6321 s->zstream.next_out = s->buf;
6322 return 0;
6325 static void ram_put_cblock(RamCompressState *s, const uint8_t *buf, int len)
6327 qemu_put_be16(s->f, RAM_CBLOCK_MAGIC);
6328 qemu_put_be16(s->f, len);
6329 qemu_put_buffer(s->f, buf, len);
6332 static int ram_compress_buf(RamCompressState *s, const uint8_t *buf, int len)
6334 int ret;
6336 s->zstream.avail_in = len;
6337 s->zstream.next_in = (uint8_t *)buf;
6338 while (s->zstream.avail_in > 0) {
6339 ret = deflate(&s->zstream, Z_NO_FLUSH);
6340 if (ret != Z_OK)
6341 return -1;
6342 if (s->zstream.avail_out == 0) {
6343 ram_put_cblock(s, s->buf, IOBUF_SIZE);
6344 s->zstream.avail_out = IOBUF_SIZE;
6345 s->zstream.next_out = s->buf;
6348 return 0;
6351 static void ram_compress_close(RamCompressState *s)
6353 int len, ret;
6355 /* compress last bytes */
6356 for(;;) {
6357 ret = deflate(&s->zstream, Z_FINISH);
6358 if (ret == Z_OK || ret == Z_STREAM_END) {
6359 len = IOBUF_SIZE - s->zstream.avail_out;
6360 if (len > 0) {
6361 ram_put_cblock(s, s->buf, len);
6363 s->zstream.avail_out = IOBUF_SIZE;
6364 s->zstream.next_out = s->buf;
6365 if (ret == Z_STREAM_END)
6366 break;
6367 } else {
6368 goto fail;
6371 fail:
6372 deflateEnd(&s->zstream);
6375 typedef struct RamDecompressState {
6376 z_stream zstream;
6377 QEMUFile *f;
6378 uint8_t buf[IOBUF_SIZE];
6379 } RamDecompressState;
6381 static int ram_decompress_open(RamDecompressState *s, QEMUFile *f)
6383 int ret;
6384 memset(s, 0, sizeof(*s));
6385 s->f = f;
6386 ret = inflateInit(&s->zstream);
6387 if (ret != Z_OK)
6388 return -1;
6389 return 0;
6392 static int ram_decompress_buf(RamDecompressState *s, uint8_t *buf, int len)
6394 int ret, clen;
6396 s->zstream.avail_out = len;
6397 s->zstream.next_out = buf;
6398 while (s->zstream.avail_out > 0) {
6399 if (s->zstream.avail_in == 0) {
6400 if (qemu_get_be16(s->f) != RAM_CBLOCK_MAGIC)
6401 return -1;
6402 clen = qemu_get_be16(s->f);
6403 if (clen > IOBUF_SIZE)
6404 return -1;
6405 qemu_get_buffer(s->f, s->buf, clen);
6406 s->zstream.avail_in = clen;
6407 s->zstream.next_in = s->buf;
6409 ret = inflate(&s->zstream, Z_PARTIAL_FLUSH);
6410 if (ret != Z_OK && ret != Z_STREAM_END) {
6411 return -1;
6414 return 0;
6417 static void ram_decompress_close(RamDecompressState *s)
6419 inflateEnd(&s->zstream);
6422 static void ram_save(QEMUFile *f, void *opaque)
6424 int i;
6425 RamCompressState s1, *s = &s1;
6426 uint8_t buf[10];
6428 qemu_put_be32(f, phys_ram_size);
6429 if (ram_compress_open(s, f) < 0)
6430 return;
6431 for(i = 0; i < phys_ram_size; i+= BDRV_HASH_BLOCK_SIZE) {
6432 #if 0
6433 if (tight_savevm_enabled) {
6434 int64_t sector_num;
6435 int j;
6437 /* find if the memory block is available on a virtual
6438 block device */
6439 sector_num = -1;
6440 for(j = 0; j < MAX_DISKS; j++) {
6441 if (bs_table[j]) {
6442 sector_num = bdrv_hash_find(bs_table[j],
6443 phys_ram_base + i, BDRV_HASH_BLOCK_SIZE);
6444 if (sector_num >= 0)
6445 break;
6448 if (j == MAX_DISKS)
6449 goto normal_compress;
6450 buf[0] = 1;
6451 buf[1] = j;
6452 cpu_to_be64wu((uint64_t *)(buf + 2), sector_num);
6453 ram_compress_buf(s, buf, 10);
6454 } else
6455 #endif
6457 // normal_compress:
6458 buf[0] = 0;
6459 ram_compress_buf(s, buf, 1);
6460 ram_compress_buf(s, phys_ram_base + i, BDRV_HASH_BLOCK_SIZE);
6463 ram_compress_close(s);
6466 static int ram_load(QEMUFile *f, void *opaque, int version_id)
6468 RamDecompressState s1, *s = &s1;
6469 uint8_t buf[10];
6470 int i;
6472 if (version_id == 1)
6473 return ram_load_v1(f, opaque);
6474 if (version_id != 2)
6475 return -EINVAL;
6476 if (qemu_get_be32(f) != phys_ram_size)
6477 return -EINVAL;
6478 if (ram_decompress_open(s, f) < 0)
6479 return -EINVAL;
6480 for(i = 0; i < phys_ram_size; i+= BDRV_HASH_BLOCK_SIZE) {
6481 if (ram_decompress_buf(s, buf, 1) < 0) {
6482 fprintf(stderr, "Error while reading ram block header\n");
6483 goto error;
6485 if (buf[0] == 0) {
6486 if (ram_decompress_buf(s, phys_ram_base + i, BDRV_HASH_BLOCK_SIZE) < 0) {
6487 fprintf(stderr, "Error while reading ram block address=0x%08x", i);
6488 goto error;
6490 } else
6491 #if 0
6492 if (buf[0] == 1) {
6493 int bs_index;
6494 int64_t sector_num;
6496 ram_decompress_buf(s, buf + 1, 9);
6497 bs_index = buf[1];
6498 sector_num = be64_to_cpupu((const uint64_t *)(buf + 2));
6499 if (bs_index >= MAX_DISKS || bs_table[bs_index] == NULL) {
6500 fprintf(stderr, "Invalid block device index %d\n", bs_index);
6501 goto error;
6503 if (bdrv_read(bs_table[bs_index], sector_num, phys_ram_base + i,
6504 BDRV_HASH_BLOCK_SIZE / 512) < 0) {
6505 fprintf(stderr, "Error while reading sector %d:%" PRId64 "\n",
6506 bs_index, sector_num);
6507 goto error;
6509 } else
6510 #endif
6512 error:
6513 printf("Error block header\n");
6514 return -EINVAL;
6517 ram_decompress_close(s);
6518 return 0;
6521 /***********************************************************/
6522 /* bottom halves (can be seen as timers which expire ASAP) */
6524 struct QEMUBH {
6525 QEMUBHFunc *cb;
6526 void *opaque;
6527 int scheduled;
6528 QEMUBH *next;
6531 static QEMUBH *first_bh = NULL;
6533 QEMUBH *qemu_bh_new(QEMUBHFunc *cb, void *opaque)
6535 QEMUBH *bh;
6536 bh = qemu_mallocz(sizeof(QEMUBH));
6537 if (!bh)
6538 return NULL;
6539 bh->cb = cb;
6540 bh->opaque = opaque;
6541 return bh;
6544 int qemu_bh_poll(void)
6546 QEMUBH *bh, **pbh;
6547 int ret;
6549 ret = 0;
6550 for(;;) {
6551 pbh = &first_bh;
6552 bh = *pbh;
6553 if (!bh)
6554 break;
6555 ret = 1;
6556 *pbh = bh->next;
6557 bh->scheduled = 0;
6558 bh->cb(bh->opaque);
6560 return ret;
6563 void qemu_bh_schedule(QEMUBH *bh)
6565 CPUState *env = cpu_single_env;
6566 if (bh->scheduled)
6567 return;
6568 bh->scheduled = 1;
6569 bh->next = first_bh;
6570 first_bh = bh;
6572 /* stop the currently executing CPU to execute the BH ASAP */
6573 if (env) {
6574 cpu_interrupt(env, CPU_INTERRUPT_EXIT);
6578 void qemu_bh_cancel(QEMUBH *bh)
6580 QEMUBH **pbh;
6581 if (bh->scheduled) {
6582 pbh = &first_bh;
6583 while (*pbh != bh)
6584 pbh = &(*pbh)->next;
6585 *pbh = bh->next;
6586 bh->scheduled = 0;
6590 void qemu_bh_delete(QEMUBH *bh)
6592 qemu_bh_cancel(bh);
6593 qemu_free(bh);
6596 /***********************************************************/
6597 /* machine registration */
6599 QEMUMachine *first_machine = NULL;
6601 int qemu_register_machine(QEMUMachine *m)
6603 QEMUMachine **pm;
6604 pm = &first_machine;
6605 while (*pm != NULL)
6606 pm = &(*pm)->next;
6607 m->next = NULL;
6608 *pm = m;
6609 return 0;
6612 QEMUMachine *find_machine(const char *name)
6614 QEMUMachine *m;
6616 for(m = first_machine; m != NULL; m = m->next) {
6617 if (!strcmp(m->name, name))
6618 return m;
6620 return NULL;
6623 /***********************************************************/
6624 /* main execution loop */
6626 void gui_update(void *opaque)
6628 DisplayState *ds = opaque;
6629 ds->dpy_refresh(ds);
6630 qemu_mod_timer(ds->gui_timer, GUI_REFRESH_INTERVAL + qemu_get_clock(rt_clock));
6633 struct vm_change_state_entry {
6634 VMChangeStateHandler *cb;
6635 void *opaque;
6636 LIST_ENTRY (vm_change_state_entry) entries;
6639 static LIST_HEAD(vm_change_state_head, vm_change_state_entry) vm_change_state_head;
6641 VMChangeStateEntry *qemu_add_vm_change_state_handler(VMChangeStateHandler *cb,
6642 void *opaque)
6644 VMChangeStateEntry *e;
6646 e = qemu_mallocz(sizeof (*e));
6647 if (!e)
6648 return NULL;
6650 e->cb = cb;
6651 e->opaque = opaque;
6652 LIST_INSERT_HEAD(&vm_change_state_head, e, entries);
6653 return e;
6656 void qemu_del_vm_change_state_handler(VMChangeStateEntry *e)
6658 LIST_REMOVE (e, entries);
6659 qemu_free (e);
6662 static void vm_state_notify(int running)
6664 VMChangeStateEntry *e;
6666 for (e = vm_change_state_head.lh_first; e; e = e->entries.le_next) {
6667 e->cb(e->opaque, running);
6671 /* XXX: support several handlers */
6672 static VMStopHandler *vm_stop_cb;
6673 static void *vm_stop_opaque;
6675 int qemu_add_vm_stop_handler(VMStopHandler *cb, void *opaque)
6677 vm_stop_cb = cb;
6678 vm_stop_opaque = opaque;
6679 return 0;
6682 void qemu_del_vm_stop_handler(VMStopHandler *cb, void *opaque)
6684 vm_stop_cb = NULL;
6687 void vm_start(void)
6689 if (!vm_running) {
6690 cpu_enable_ticks();
6691 vm_running = 1;
6692 vm_state_notify(1);
6693 qemu_rearm_alarm_timer(alarm_timer);
6697 void vm_stop(int reason)
6699 if (vm_running) {
6700 cpu_disable_ticks();
6701 vm_running = 0;
6702 if (reason != 0) {
6703 if (vm_stop_cb) {
6704 vm_stop_cb(vm_stop_opaque, reason);
6707 vm_state_notify(0);
6711 /* reset/shutdown handler */
6713 typedef struct QEMUResetEntry {
6714 QEMUResetHandler *func;
6715 void *opaque;
6716 struct QEMUResetEntry *next;
6717 } QEMUResetEntry;
6719 static QEMUResetEntry *first_reset_entry;
6720 static int reset_requested;
6721 static int shutdown_requested;
6722 static int powerdown_requested;
6724 void qemu_register_reset(QEMUResetHandler *func, void *opaque)
6726 QEMUResetEntry **pre, *re;
6728 pre = &first_reset_entry;
6729 while (*pre != NULL)
6730 pre = &(*pre)->next;
6731 re = qemu_mallocz(sizeof(QEMUResetEntry));
6732 re->func = func;
6733 re->opaque = opaque;
6734 re->next = NULL;
6735 *pre = re;
6738 static void qemu_system_reset(void)
6740 QEMUResetEntry *re;
6742 /* reset all devices */
6743 for(re = first_reset_entry; re != NULL; re = re->next) {
6744 re->func(re->opaque);
6748 void qemu_system_reset_request(void)
6750 if (no_reboot) {
6751 shutdown_requested = 1;
6752 } else {
6753 reset_requested = 1;
6755 if (cpu_single_env)
6756 cpu_interrupt(cpu_single_env, CPU_INTERRUPT_EXIT);
6759 void qemu_system_shutdown_request(void)
6761 shutdown_requested = 1;
6762 if (cpu_single_env)
6763 cpu_interrupt(cpu_single_env, CPU_INTERRUPT_EXIT);
6766 void qemu_system_powerdown_request(void)
6768 powerdown_requested = 1;
6769 if (cpu_single_env)
6770 cpu_interrupt(cpu_single_env, CPU_INTERRUPT_EXIT);
6773 void main_loop_wait(int timeout)
6775 IOHandlerRecord *ioh;
6776 fd_set rfds, wfds, xfds;
6777 int ret, nfds;
6778 #ifdef _WIN32
6779 int ret2, i;
6780 #endif
6781 struct timeval tv;
6782 PollingEntry *pe;
6785 /* XXX: need to suppress polling by better using win32 events */
6786 ret = 0;
6787 for(pe = first_polling_entry; pe != NULL; pe = pe->next) {
6788 ret |= pe->func(pe->opaque);
6790 #ifdef _WIN32
6791 if (ret == 0) {
6792 int err;
6793 WaitObjects *w = &wait_objects;
6795 ret = WaitForMultipleObjects(w->num, w->events, FALSE, timeout);
6796 if (WAIT_OBJECT_0 + 0 <= ret && ret <= WAIT_OBJECT_0 + w->num - 1) {
6797 if (w->func[ret - WAIT_OBJECT_0])
6798 w->func[ret - WAIT_OBJECT_0](w->opaque[ret - WAIT_OBJECT_0]);
6800 /* Check for additional signaled events */
6801 for(i = (ret - WAIT_OBJECT_0 + 1); i < w->num; i++) {
6803 /* Check if event is signaled */
6804 ret2 = WaitForSingleObject(w->events[i], 0);
6805 if(ret2 == WAIT_OBJECT_0) {
6806 if (w->func[i])
6807 w->func[i](w->opaque[i]);
6808 } else if (ret2 == WAIT_TIMEOUT) {
6809 } else {
6810 err = GetLastError();
6811 fprintf(stderr, "WaitForSingleObject error %d %d\n", i, err);
6814 } else if (ret == WAIT_TIMEOUT) {
6815 } else {
6816 err = GetLastError();
6817 fprintf(stderr, "WaitForMultipleObjects error %d %d\n", ret, err);
6820 #endif
6821 /* poll any events */
6822 /* XXX: separate device handlers from system ones */
6823 nfds = -1;
6824 FD_ZERO(&rfds);
6825 FD_ZERO(&wfds);
6826 FD_ZERO(&xfds);
6827 for(ioh = first_io_handler; ioh != NULL; ioh = ioh->next) {
6828 if (ioh->deleted)
6829 continue;
6830 if (ioh->fd_read &&
6831 (!ioh->fd_read_poll ||
6832 ioh->fd_read_poll(ioh->opaque) != 0)) {
6833 FD_SET(ioh->fd, &rfds);
6834 if (ioh->fd > nfds)
6835 nfds = ioh->fd;
6837 if (ioh->fd_write) {
6838 FD_SET(ioh->fd, &wfds);
6839 if (ioh->fd > nfds)
6840 nfds = ioh->fd;
6844 tv.tv_sec = 0;
6845 #ifdef _WIN32
6846 tv.tv_usec = 0;
6847 #else
6848 tv.tv_usec = timeout * 1000;
6849 #endif
6850 #if defined(CONFIG_SLIRP)
6851 if (slirp_inited) {
6852 slirp_select_fill(&nfds, &rfds, &wfds, &xfds);
6854 #endif
6855 ret = select(nfds + 1, &rfds, &wfds, &xfds, &tv);
6856 if (ret > 0) {
6857 IOHandlerRecord **pioh;
6859 for(ioh = first_io_handler; ioh != NULL; ioh = ioh->next) {
6860 if (!ioh->deleted && ioh->fd_read && FD_ISSET(ioh->fd, &rfds)) {
6861 ioh->fd_read(ioh->opaque);
6863 if (!ioh->deleted && ioh->fd_write && FD_ISSET(ioh->fd, &wfds)) {
6864 ioh->fd_write(ioh->opaque);
6868 /* remove deleted IO handlers */
6869 pioh = &first_io_handler;
6870 while (*pioh) {
6871 ioh = *pioh;
6872 if (ioh->deleted) {
6873 *pioh = ioh->next;
6874 qemu_free(ioh);
6875 } else
6876 pioh = &ioh->next;
6879 #if defined(CONFIG_SLIRP)
6880 if (slirp_inited) {
6881 if (ret < 0) {
6882 FD_ZERO(&rfds);
6883 FD_ZERO(&wfds);
6884 FD_ZERO(&xfds);
6886 slirp_select_poll(&rfds, &wfds, &xfds);
6888 #endif
6889 qemu_aio_poll();
6891 if (vm_running) {
6892 qemu_run_timers(&active_timers[QEMU_TIMER_VIRTUAL],
6893 qemu_get_clock(vm_clock));
6894 /* run dma transfers, if any */
6895 DMA_run();
6898 /* real time timers */
6899 qemu_run_timers(&active_timers[QEMU_TIMER_REALTIME],
6900 qemu_get_clock(rt_clock));
6902 /* Check bottom-halves last in case any of the earlier events triggered
6903 them. */
6904 qemu_bh_poll();
6908 static CPUState *cur_cpu;
6910 int main_loop(void)
6912 int ret, timeout;
6913 #ifdef CONFIG_PROFILER
6914 int64_t ti;
6915 #endif
6916 CPUState *env;
6918 cur_cpu = first_cpu;
6919 for(;;) {
6920 if (vm_running) {
6922 env = cur_cpu;
6923 for(;;) {
6924 /* get next cpu */
6925 env = env->next_cpu;
6926 if (!env)
6927 env = first_cpu;
6928 #ifdef CONFIG_PROFILER
6929 ti = profile_getclock();
6930 #endif
6931 ret = cpu_exec(env);
6932 #ifdef CONFIG_PROFILER
6933 qemu_time += profile_getclock() - ti;
6934 #endif
6935 if (ret == EXCP_HLT) {
6936 /* Give the next CPU a chance to run. */
6937 cur_cpu = env;
6938 continue;
6940 if (ret != EXCP_HALTED)
6941 break;
6942 /* all CPUs are halted ? */
6943 if (env == cur_cpu)
6944 break;
6946 cur_cpu = env;
6948 if (shutdown_requested) {
6949 ret = EXCP_INTERRUPT;
6950 break;
6952 if (reset_requested) {
6953 reset_requested = 0;
6954 qemu_system_reset();
6955 ret = EXCP_INTERRUPT;
6957 if (powerdown_requested) {
6958 powerdown_requested = 0;
6959 qemu_system_powerdown();
6960 ret = EXCP_INTERRUPT;
6962 if (ret == EXCP_DEBUG) {
6963 vm_stop(EXCP_DEBUG);
6965 /* If all cpus are halted then wait until the next IRQ */
6966 /* XXX: use timeout computed from timers */
6967 if (ret == EXCP_HALTED)
6968 timeout = 10;
6969 else
6970 timeout = 0;
6971 } else {
6972 timeout = 10;
6974 #ifdef CONFIG_PROFILER
6975 ti = profile_getclock();
6976 #endif
6977 main_loop_wait(timeout);
6978 #ifdef CONFIG_PROFILER
6979 dev_time += profile_getclock() - ti;
6980 #endif
6982 cpu_disable_ticks();
6983 return ret;
6986 static void help(int exitcode)
6988 printf("QEMU PC emulator version " QEMU_VERSION ", Copyright (c) 2003-2007 Fabrice Bellard\n"
6989 "usage: %s [options] [disk_image]\n"
6990 "\n"
6991 "'disk_image' is a raw hard image image for IDE hard disk 0\n"
6992 "\n"
6993 "Standard options:\n"
6994 "-M machine select emulated machine (-M ? for list)\n"
6995 "-cpu cpu select CPU (-cpu ? for list)\n"
6996 "-fda/-fdb file use 'file' as floppy disk 0/1 image\n"
6997 "-hda/-hdb file use 'file' as IDE hard disk 0/1 image\n"
6998 "-hdc/-hdd file use 'file' as IDE hard disk 2/3 image\n"
6999 "-cdrom file use 'file' as IDE cdrom image (cdrom is ide1 master)\n"
7000 "-mtdblock file use 'file' as on-board Flash memory image\n"
7001 "-sd file use 'file' as SecureDigital card image\n"
7002 "-pflash file use 'file' as a parallel flash image\n"
7003 "-boot [a|c|d|n] boot on floppy (a), hard disk (c), CD-ROM (d), or network (n)\n"
7004 "-snapshot write to temporary files instead of disk image files\n"
7005 #ifdef CONFIG_SDL
7006 "-no-frame open SDL window without a frame and window decorations\n"
7007 "-alt-grab use Ctrl-Alt-Shift to grab mouse (instead of Ctrl-Alt)\n"
7008 "-no-quit disable SDL window close capability\n"
7009 #endif
7010 #ifdef TARGET_I386
7011 "-no-fd-bootchk disable boot signature checking for floppy disks\n"
7012 #endif
7013 "-m megs set virtual RAM size to megs MB [default=%d]\n"
7014 "-smp n set the number of CPUs to 'n' [default=1]\n"
7015 "-nographic disable graphical output and redirect serial I/Os to console\n"
7016 "-portrait rotate graphical output 90 deg left (only PXA LCD)\n"
7017 #ifndef _WIN32
7018 "-k language use keyboard layout (for example \"fr\" for French)\n"
7019 #endif
7020 #ifdef HAS_AUDIO
7021 "-audio-help print list of audio drivers and their options\n"
7022 "-soundhw c1,... enable audio support\n"
7023 " and only specified sound cards (comma separated list)\n"
7024 " use -soundhw ? to get the list of supported cards\n"
7025 " use -soundhw all to enable all of them\n"
7026 #endif
7027 "-localtime set the real time clock to local time [default=utc]\n"
7028 "-full-screen start in full screen\n"
7029 #ifdef TARGET_I386
7030 "-win2k-hack use it when installing Windows 2000 to avoid a disk full bug\n"
7031 #endif
7032 "-usb enable the USB driver (will be the default soon)\n"
7033 "-usbdevice name add the host or guest USB device 'name'\n"
7034 #if defined(TARGET_PPC) || defined(TARGET_SPARC)
7035 "-g WxH[xDEPTH] Set the initial graphical resolution and depth\n"
7036 #endif
7037 "-name string set the name of the guest\n"
7038 "\n"
7039 "Network options:\n"
7040 "-net nic[,vlan=n][,macaddr=addr][,model=type]\n"
7041 " create a new Network Interface Card and connect it to VLAN 'n'\n"
7042 #ifdef CONFIG_SLIRP
7043 "-net user[,vlan=n][,hostname=host]\n"
7044 " connect the user mode network stack to VLAN 'n' and send\n"
7045 " hostname 'host' to DHCP clients\n"
7046 #endif
7047 #ifdef _WIN32
7048 "-net tap[,vlan=n],ifname=name\n"
7049 " connect the host TAP network interface to VLAN 'n'\n"
7050 #else
7051 "-net tap[,vlan=n][,fd=h][,ifname=name][,script=file][,downscript=dfile]\n"
7052 " connect the host TAP network interface to VLAN 'n' and use the\n"
7053 " network scripts 'file' (default=%s)\n"
7054 " and 'dfile' (default=%s);\n"
7055 " use '[down]script=no' to disable script execution;\n"
7056 " use 'fd=h' to connect to an already opened TAP interface\n"
7057 #endif
7058 "-net socket[,vlan=n][,fd=h][,listen=[host]:port][,connect=host:port]\n"
7059 " connect the vlan 'n' to another VLAN using a socket connection\n"
7060 "-net socket[,vlan=n][,fd=h][,mcast=maddr:port]\n"
7061 " connect the vlan 'n' to multicast maddr and port\n"
7062 "-net none use it alone to have zero network devices; if no -net option\n"
7063 " is provided, the default is '-net nic -net user'\n"
7064 "\n"
7065 #ifdef CONFIG_SLIRP
7066 "-tftp dir allow tftp access to files in dir [-net user]\n"
7067 "-bootp file advertise file in BOOTP replies\n"
7068 #ifndef _WIN32
7069 "-smb dir allow SMB access to files in 'dir' [-net user]\n"
7070 #endif
7071 "-redir [tcp|udp]:host-port:[guest-host]:guest-port\n"
7072 " redirect TCP or UDP connections from host to guest [-net user]\n"
7073 #endif
7074 "\n"
7075 "Linux boot specific:\n"
7076 "-kernel bzImage use 'bzImage' as kernel image\n"
7077 "-append cmdline use 'cmdline' as kernel command line\n"
7078 "-initrd file use 'file' as initial ram disk\n"
7079 "\n"
7080 "Debug/Expert options:\n"
7081 "-monitor dev redirect the monitor to char device 'dev'\n"
7082 "-serial dev redirect the serial port to char device 'dev'\n"
7083 "-parallel dev redirect the parallel port to char device 'dev'\n"
7084 "-pidfile file Write PID to 'file'\n"
7085 "-S freeze CPU at startup (use 'c' to start execution)\n"
7086 "-s wait gdb connection to port\n"
7087 "-p port set gdb connection port [default=%s]\n"
7088 "-d item1,... output log to %s (use -d ? for a list of log items)\n"
7089 "-hdachs c,h,s[,t] force hard disk 0 physical geometry and the optional BIOS\n"
7090 " translation (t=none or lba) (usually qemu can guess them)\n"
7091 "-L path set the directory for the BIOS, VGA BIOS and keymaps\n"
7092 #ifdef USE_KQEMU
7093 "-kernel-kqemu enable KQEMU full virtualization (default is user mode only)\n"
7094 "-no-kqemu disable KQEMU kernel module usage\n"
7095 #endif
7096 #ifdef USE_CODE_COPY
7097 "-no-code-copy disable code copy acceleration\n"
7098 #endif
7099 #ifdef TARGET_I386
7100 "-std-vga simulate a standard VGA card with VESA Bochs Extensions\n"
7101 " (default is CL-GD5446 PCI VGA)\n"
7102 "-no-acpi disable ACPI\n"
7103 #endif
7104 "-no-reboot exit instead of rebooting\n"
7105 "-loadvm file start right away with a saved state (loadvm in monitor)\n"
7106 "-vnc display start a VNC server on display\n"
7107 #ifndef _WIN32
7108 "-daemonize daemonize QEMU after initializing\n"
7109 #endif
7110 "-option-rom rom load a file, rom, into the option ROM space\n"
7111 #ifdef TARGET_SPARC
7112 "-prom-env variable=value set OpenBIOS nvram variables\n"
7113 #endif
7114 "-clock force the use of the given methods for timer alarm.\n"
7115 " To see what timers are available use -clock help\n"
7116 "\n"
7117 "During emulation, the following keys are useful:\n"
7118 "ctrl-alt-f toggle full screen\n"
7119 "ctrl-alt-n switch to virtual console 'n'\n"
7120 "ctrl-alt toggle mouse and keyboard grab\n"
7121 "\n"
7122 "When using -nographic, press 'ctrl-a h' to get some help.\n"
7124 "qemu",
7125 DEFAULT_RAM_SIZE,
7126 #ifndef _WIN32
7127 DEFAULT_NETWORK_SCRIPT,
7128 DEFAULT_NETWORK_DOWN_SCRIPT,
7129 #endif
7130 DEFAULT_GDBSTUB_PORT,
7131 "/tmp/qemu.log");
7132 exit(exitcode);
7135 #define HAS_ARG 0x0001
7137 enum {
7138 QEMU_OPTION_h,
7140 QEMU_OPTION_M,
7141 QEMU_OPTION_cpu,
7142 QEMU_OPTION_fda,
7143 QEMU_OPTION_fdb,
7144 QEMU_OPTION_hda,
7145 QEMU_OPTION_hdb,
7146 QEMU_OPTION_hdc,
7147 QEMU_OPTION_hdd,
7148 QEMU_OPTION_cdrom,
7149 QEMU_OPTION_mtdblock,
7150 QEMU_OPTION_sd,
7151 QEMU_OPTION_pflash,
7152 QEMU_OPTION_boot,
7153 QEMU_OPTION_snapshot,
7154 #ifdef TARGET_I386
7155 QEMU_OPTION_no_fd_bootchk,
7156 #endif
7157 QEMU_OPTION_m,
7158 QEMU_OPTION_nographic,
7159 QEMU_OPTION_portrait,
7160 #ifdef HAS_AUDIO
7161 QEMU_OPTION_audio_help,
7162 QEMU_OPTION_soundhw,
7163 #endif
7165 QEMU_OPTION_net,
7166 QEMU_OPTION_tftp,
7167 QEMU_OPTION_bootp,
7168 QEMU_OPTION_smb,
7169 QEMU_OPTION_redir,
7171 QEMU_OPTION_kernel,
7172 QEMU_OPTION_append,
7173 QEMU_OPTION_initrd,
7175 QEMU_OPTION_S,
7176 QEMU_OPTION_s,
7177 QEMU_OPTION_p,
7178 QEMU_OPTION_d,
7179 QEMU_OPTION_hdachs,
7180 QEMU_OPTION_L,
7181 QEMU_OPTION_bios,
7182 QEMU_OPTION_no_code_copy,
7183 QEMU_OPTION_k,
7184 QEMU_OPTION_localtime,
7185 QEMU_OPTION_cirrusvga,
7186 QEMU_OPTION_vmsvga,
7187 QEMU_OPTION_g,
7188 QEMU_OPTION_std_vga,
7189 QEMU_OPTION_echr,
7190 QEMU_OPTION_monitor,
7191 QEMU_OPTION_serial,
7192 QEMU_OPTION_parallel,
7193 QEMU_OPTION_loadvm,
7194 QEMU_OPTION_full_screen,
7195 QEMU_OPTION_no_frame,
7196 QEMU_OPTION_alt_grab,
7197 QEMU_OPTION_no_quit,
7198 QEMU_OPTION_pidfile,
7199 QEMU_OPTION_no_kqemu,
7200 QEMU_OPTION_kernel_kqemu,
7201 QEMU_OPTION_win2k_hack,
7202 QEMU_OPTION_usb,
7203 QEMU_OPTION_usbdevice,
7204 QEMU_OPTION_smp,
7205 QEMU_OPTION_vnc,
7206 QEMU_OPTION_no_acpi,
7207 QEMU_OPTION_no_reboot,
7208 QEMU_OPTION_show_cursor,
7209 QEMU_OPTION_daemonize,
7210 QEMU_OPTION_option_rom,
7211 QEMU_OPTION_semihosting,
7212 QEMU_OPTION_name,
7213 QEMU_OPTION_prom_env,
7214 QEMU_OPTION_old_param,
7215 QEMU_OPTION_clock,
7216 QEMU_OPTION_startdate,
7219 typedef struct QEMUOption {
7220 const char *name;
7221 int flags;
7222 int index;
7223 } QEMUOption;
7225 const QEMUOption qemu_options[] = {
7226 { "h", 0, QEMU_OPTION_h },
7227 { "help", 0, QEMU_OPTION_h },
7229 { "M", HAS_ARG, QEMU_OPTION_M },
7230 { "cpu", HAS_ARG, QEMU_OPTION_cpu },
7231 { "fda", HAS_ARG, QEMU_OPTION_fda },
7232 { "fdb", HAS_ARG, QEMU_OPTION_fdb },
7233 { "hda", HAS_ARG, QEMU_OPTION_hda },
7234 { "hdb", HAS_ARG, QEMU_OPTION_hdb },
7235 { "hdc", HAS_ARG, QEMU_OPTION_hdc },
7236 { "hdd", HAS_ARG, QEMU_OPTION_hdd },
7237 { "cdrom", HAS_ARG, QEMU_OPTION_cdrom },
7238 { "mtdblock", HAS_ARG, QEMU_OPTION_mtdblock },
7239 { "sd", HAS_ARG, QEMU_OPTION_sd },
7240 { "pflash", HAS_ARG, QEMU_OPTION_pflash },
7241 { "boot", HAS_ARG, QEMU_OPTION_boot },
7242 { "snapshot", 0, QEMU_OPTION_snapshot },
7243 #ifdef TARGET_I386
7244 { "no-fd-bootchk", 0, QEMU_OPTION_no_fd_bootchk },
7245 #endif
7246 { "m", HAS_ARG, QEMU_OPTION_m },
7247 { "nographic", 0, QEMU_OPTION_nographic },
7248 { "portrait", 0, QEMU_OPTION_portrait },
7249 { "k", HAS_ARG, QEMU_OPTION_k },
7250 #ifdef HAS_AUDIO
7251 { "audio-help", 0, QEMU_OPTION_audio_help },
7252 { "soundhw", HAS_ARG, QEMU_OPTION_soundhw },
7253 #endif
7255 { "net", HAS_ARG, QEMU_OPTION_net},
7256 #ifdef CONFIG_SLIRP
7257 { "tftp", HAS_ARG, QEMU_OPTION_tftp },
7258 { "bootp", HAS_ARG, QEMU_OPTION_bootp },
7259 #ifndef _WIN32
7260 { "smb", HAS_ARG, QEMU_OPTION_smb },
7261 #endif
7262 { "redir", HAS_ARG, QEMU_OPTION_redir },
7263 #endif
7265 { "kernel", HAS_ARG, QEMU_OPTION_kernel },
7266 { "append", HAS_ARG, QEMU_OPTION_append },
7267 { "initrd", HAS_ARG, QEMU_OPTION_initrd },
7269 { "S", 0, QEMU_OPTION_S },
7270 { "s", 0, QEMU_OPTION_s },
7271 { "p", HAS_ARG, QEMU_OPTION_p },
7272 { "d", HAS_ARG, QEMU_OPTION_d },
7273 { "hdachs", HAS_ARG, QEMU_OPTION_hdachs },
7274 { "L", HAS_ARG, QEMU_OPTION_L },
7275 { "bios", HAS_ARG, QEMU_OPTION_bios },
7276 { "no-code-copy", 0, QEMU_OPTION_no_code_copy },
7277 #ifdef USE_KQEMU
7278 { "no-kqemu", 0, QEMU_OPTION_no_kqemu },
7279 { "kernel-kqemu", 0, QEMU_OPTION_kernel_kqemu },
7280 #endif
7281 #if defined(TARGET_PPC) || defined(TARGET_SPARC)
7282 { "g", 1, QEMU_OPTION_g },
7283 #endif
7284 { "localtime", 0, QEMU_OPTION_localtime },
7285 { "std-vga", 0, QEMU_OPTION_std_vga },
7286 { "echr", HAS_ARG, QEMU_OPTION_echr },
7287 { "monitor", HAS_ARG, QEMU_OPTION_monitor },
7288 { "serial", HAS_ARG, QEMU_OPTION_serial },
7289 { "parallel", HAS_ARG, QEMU_OPTION_parallel },
7290 { "loadvm", HAS_ARG, QEMU_OPTION_loadvm },
7291 { "full-screen", 0, QEMU_OPTION_full_screen },
7292 #ifdef CONFIG_SDL
7293 { "no-frame", 0, QEMU_OPTION_no_frame },
7294 { "alt-grab", 0, QEMU_OPTION_alt_grab },
7295 { "no-quit", 0, QEMU_OPTION_no_quit },
7296 #endif
7297 { "pidfile", HAS_ARG, QEMU_OPTION_pidfile },
7298 { "win2k-hack", 0, QEMU_OPTION_win2k_hack },
7299 { "usbdevice", HAS_ARG, QEMU_OPTION_usbdevice },
7300 { "smp", HAS_ARG, QEMU_OPTION_smp },
7301 { "vnc", HAS_ARG, QEMU_OPTION_vnc },
7303 /* temporary options */
7304 { "usb", 0, QEMU_OPTION_usb },
7305 { "cirrusvga", 0, QEMU_OPTION_cirrusvga },
7306 { "vmwarevga", 0, QEMU_OPTION_vmsvga },
7307 { "no-acpi", 0, QEMU_OPTION_no_acpi },
7308 { "no-reboot", 0, QEMU_OPTION_no_reboot },
7309 { "show-cursor", 0, QEMU_OPTION_show_cursor },
7310 { "daemonize", 0, QEMU_OPTION_daemonize },
7311 { "option-rom", HAS_ARG, QEMU_OPTION_option_rom },
7312 #if defined(TARGET_ARM) || defined(TARGET_M68K)
7313 { "semihosting", 0, QEMU_OPTION_semihosting },
7314 #endif
7315 { "name", HAS_ARG, QEMU_OPTION_name },
7316 #if defined(TARGET_SPARC)
7317 { "prom-env", HAS_ARG, QEMU_OPTION_prom_env },
7318 #endif
7319 #if defined(TARGET_ARM)
7320 { "old-param", 0, QEMU_OPTION_old_param },
7321 #endif
7322 { "clock", HAS_ARG, QEMU_OPTION_clock },
7323 { "startdate", HAS_ARG, QEMU_OPTION_startdate },
7324 { NULL },
7327 #if defined (TARGET_I386) && defined(USE_CODE_COPY)
7329 /* this stack is only used during signal handling */
7330 #define SIGNAL_STACK_SIZE 32768
7332 static uint8_t *signal_stack;
7334 #endif
7336 /* password input */
7338 int qemu_key_check(BlockDriverState *bs, const char *name)
7340 char password[256];
7341 int i;
7343 if (!bdrv_is_encrypted(bs))
7344 return 0;
7346 term_printf("%s is encrypted.\n", name);
7347 for(i = 0; i < 3; i++) {
7348 monitor_readline("Password: ", 1, password, sizeof(password));
7349 if (bdrv_set_key(bs, password) == 0)
7350 return 0;
7351 term_printf("invalid password\n");
7353 return -EPERM;
7356 static BlockDriverState *get_bdrv(int index)
7358 BlockDriverState *bs;
7360 if (index < 4) {
7361 bs = bs_table[index];
7362 } else if (index < 6) {
7363 bs = fd_table[index - 4];
7364 } else {
7365 bs = NULL;
7367 return bs;
7370 static void read_passwords(void)
7372 BlockDriverState *bs;
7373 int i;
7375 for(i = 0; i < 6; i++) {
7376 bs = get_bdrv(i);
7377 if (bs)
7378 qemu_key_check(bs, bdrv_get_device_name(bs));
7382 /* XXX: currently we cannot use simultaneously different CPUs */
7383 void register_machines(void)
7385 #if defined(TARGET_I386)
7386 qemu_register_machine(&pc_machine);
7387 qemu_register_machine(&isapc_machine);
7388 #elif defined(TARGET_PPC)
7389 qemu_register_machine(&heathrow_machine);
7390 qemu_register_machine(&core99_machine);
7391 qemu_register_machine(&prep_machine);
7392 qemu_register_machine(&ref405ep_machine);
7393 qemu_register_machine(&taihu_machine);
7394 #elif defined(TARGET_MIPS)
7395 qemu_register_machine(&mips_machine);
7396 qemu_register_machine(&mips_malta_machine);
7397 qemu_register_machine(&mips_pica61_machine);
7398 qemu_register_machine(&mips_mipssim_machine);
7399 #elif defined(TARGET_SPARC)
7400 #ifdef TARGET_SPARC64
7401 qemu_register_machine(&sun4u_machine);
7402 #else
7403 qemu_register_machine(&ss5_machine);
7404 qemu_register_machine(&ss10_machine);
7405 #endif
7406 #elif defined(TARGET_ARM)
7407 qemu_register_machine(&integratorcp_machine);
7408 qemu_register_machine(&versatilepb_machine);
7409 qemu_register_machine(&versatileab_machine);
7410 qemu_register_machine(&realview_machine);
7411 qemu_register_machine(&akitapda_machine);
7412 qemu_register_machine(&spitzpda_machine);
7413 qemu_register_machine(&borzoipda_machine);
7414 qemu_register_machine(&terrierpda_machine);
7415 qemu_register_machine(&palmte_machine);
7416 #elif defined(TARGET_SH4)
7417 qemu_register_machine(&shix_machine);
7418 qemu_register_machine(&r2d_machine);
7419 #elif defined(TARGET_ALPHA)
7420 /* XXX: TODO */
7421 #elif defined(TARGET_M68K)
7422 qemu_register_machine(&mcf5208evb_machine);
7423 qemu_register_machine(&an5206_machine);
7424 #elif defined(TARGET_CRIS)
7425 qemu_register_machine(&bareetraxfs_machine);
7426 #else
7427 #error unsupported CPU
7428 #endif
7431 #ifdef HAS_AUDIO
7432 struct soundhw soundhw[] = {
7433 #ifdef HAS_AUDIO_CHOICE
7434 #ifdef TARGET_I386
7436 "pcspk",
7437 "PC speaker",
7440 { .init_isa = pcspk_audio_init }
7442 #endif
7444 "sb16",
7445 "Creative Sound Blaster 16",
7448 { .init_isa = SB16_init }
7451 #ifdef CONFIG_ADLIB
7453 "adlib",
7454 #ifdef HAS_YMF262
7455 "Yamaha YMF262 (OPL3)",
7456 #else
7457 "Yamaha YM3812 (OPL2)",
7458 #endif
7461 { .init_isa = Adlib_init }
7463 #endif
7465 #ifdef CONFIG_GUS
7467 "gus",
7468 "Gravis Ultrasound GF1",
7471 { .init_isa = GUS_init }
7473 #endif
7476 "es1370",
7477 "ENSONIQ AudioPCI ES1370",
7480 { .init_pci = es1370_init }
7482 #endif
7484 { NULL, NULL, 0, 0, { NULL } }
7487 static void select_soundhw (const char *optarg)
7489 struct soundhw *c;
7491 if (*optarg == '?') {
7492 show_valid_cards:
7494 printf ("Valid sound card names (comma separated):\n");
7495 for (c = soundhw; c->name; ++c) {
7496 printf ("%-11s %s\n", c->name, c->descr);
7498 printf ("\n-soundhw all will enable all of the above\n");
7499 exit (*optarg != '?');
7501 else {
7502 size_t l;
7503 const char *p;
7504 char *e;
7505 int bad_card = 0;
7507 if (!strcmp (optarg, "all")) {
7508 for (c = soundhw; c->name; ++c) {
7509 c->enabled = 1;
7511 return;
7514 p = optarg;
7515 while (*p) {
7516 e = strchr (p, ',');
7517 l = !e ? strlen (p) : (size_t) (e - p);
7519 for (c = soundhw; c->name; ++c) {
7520 if (!strncmp (c->name, p, l)) {
7521 c->enabled = 1;
7522 break;
7526 if (!c->name) {
7527 if (l > 80) {
7528 fprintf (stderr,
7529 "Unknown sound card name (too big to show)\n");
7531 else {
7532 fprintf (stderr, "Unknown sound card name `%.*s'\n",
7533 (int) l, p);
7535 bad_card = 1;
7537 p += l + (e != NULL);
7540 if (bad_card)
7541 goto show_valid_cards;
7544 #endif
7546 #ifdef _WIN32
7547 static BOOL WINAPI qemu_ctrl_handler(DWORD type)
7549 exit(STATUS_CONTROL_C_EXIT);
7550 return TRUE;
7552 #endif
7554 #define MAX_NET_CLIENTS 32
7556 int main(int argc, char **argv)
7558 #ifdef CONFIG_GDBSTUB
7559 int use_gdbstub;
7560 const char *gdbstub_port;
7561 #endif
7562 int i, cdrom_index, pflash_index;
7563 int snapshot, linux_boot;
7564 const char *initrd_filename;
7565 const char *hd_filename[MAX_DISKS], *fd_filename[MAX_FD];
7566 const char *pflash_filename[MAX_PFLASH];
7567 const char *sd_filename;
7568 const char *mtd_filename;
7569 const char *kernel_filename, *kernel_cmdline;
7570 DisplayState *ds = &display_state;
7571 int cyls, heads, secs, translation;
7572 char net_clients[MAX_NET_CLIENTS][256];
7573 int nb_net_clients;
7574 int optind;
7575 const char *r, *optarg;
7576 CharDriverState *monitor_hd;
7577 char monitor_device[128];
7578 char serial_devices[MAX_SERIAL_PORTS][128];
7579 int serial_device_index;
7580 char parallel_devices[MAX_PARALLEL_PORTS][128];
7581 int parallel_device_index;
7582 const char *loadvm = NULL;
7583 QEMUMachine *machine;
7584 const char *cpu_model;
7585 char usb_devices[MAX_USB_CMDLINE][128];
7586 int usb_devices_index;
7587 int fds[2];
7588 const char *pid_file = NULL;
7589 VLANState *vlan;
7591 LIST_INIT (&vm_change_state_head);
7592 #ifndef _WIN32
7594 struct sigaction act;
7595 sigfillset(&act.sa_mask);
7596 act.sa_flags = 0;
7597 act.sa_handler = SIG_IGN;
7598 sigaction(SIGPIPE, &act, NULL);
7600 #else
7601 SetConsoleCtrlHandler(qemu_ctrl_handler, TRUE);
7602 /* Note: cpu_interrupt() is currently not SMP safe, so we force
7603 QEMU to run on a single CPU */
7605 HANDLE h;
7606 DWORD mask, smask;
7607 int i;
7608 h = GetCurrentProcess();
7609 if (GetProcessAffinityMask(h, &mask, &smask)) {
7610 for(i = 0; i < 32; i++) {
7611 if (mask & (1 << i))
7612 break;
7614 if (i != 32) {
7615 mask = 1 << i;
7616 SetProcessAffinityMask(h, mask);
7620 #endif
7622 register_machines();
7623 machine = first_machine;
7624 cpu_model = NULL;
7625 initrd_filename = NULL;
7626 for(i = 0; i < MAX_FD; i++)
7627 fd_filename[i] = NULL;
7628 for(i = 0; i < MAX_DISKS; i++)
7629 hd_filename[i] = NULL;
7630 for(i = 0; i < MAX_PFLASH; i++)
7631 pflash_filename[i] = NULL;
7632 pflash_index = 0;
7633 sd_filename = NULL;
7634 mtd_filename = NULL;
7635 ram_size = DEFAULT_RAM_SIZE * 1024 * 1024;
7636 vga_ram_size = VGA_RAM_SIZE;
7637 #ifdef CONFIG_GDBSTUB
7638 use_gdbstub = 0;
7639 gdbstub_port = DEFAULT_GDBSTUB_PORT;
7640 #endif
7641 snapshot = 0;
7642 nographic = 0;
7643 kernel_filename = NULL;
7644 kernel_cmdline = "";
7645 #ifdef TARGET_PPC
7646 cdrom_index = 1;
7647 #else
7648 cdrom_index = 2;
7649 #endif
7650 cyls = heads = secs = 0;
7651 translation = BIOS_ATA_TRANSLATION_AUTO;
7652 pstrcpy(monitor_device, sizeof(monitor_device), "vc");
7654 pstrcpy(serial_devices[0], sizeof(serial_devices[0]), "vc");
7655 for(i = 1; i < MAX_SERIAL_PORTS; i++)
7656 serial_devices[i][0] = '\0';
7657 serial_device_index = 0;
7659 pstrcpy(parallel_devices[0], sizeof(parallel_devices[0]), "vc");
7660 for(i = 1; i < MAX_PARALLEL_PORTS; i++)
7661 parallel_devices[i][0] = '\0';
7662 parallel_device_index = 0;
7664 usb_devices_index = 0;
7666 nb_net_clients = 0;
7668 nb_nics = 0;
7669 /* default mac address of the first network interface */
7671 optind = 1;
7672 for(;;) {
7673 if (optind >= argc)
7674 break;
7675 r = argv[optind];
7676 if (r[0] != '-') {
7677 hd_filename[0] = argv[optind++];
7678 } else {
7679 const QEMUOption *popt;
7681 optind++;
7682 /* Treat --foo the same as -foo. */
7683 if (r[1] == '-')
7684 r++;
7685 popt = qemu_options;
7686 for(;;) {
7687 if (!popt->name) {
7688 fprintf(stderr, "%s: invalid option -- '%s'\n",
7689 argv[0], r);
7690 exit(1);
7692 if (!strcmp(popt->name, r + 1))
7693 break;
7694 popt++;
7696 if (popt->flags & HAS_ARG) {
7697 if (optind >= argc) {
7698 fprintf(stderr, "%s: option '%s' requires an argument\n",
7699 argv[0], r);
7700 exit(1);
7702 optarg = argv[optind++];
7703 } else {
7704 optarg = NULL;
7707 switch(popt->index) {
7708 case QEMU_OPTION_M:
7709 machine = find_machine(optarg);
7710 if (!machine) {
7711 QEMUMachine *m;
7712 printf("Supported machines are:\n");
7713 for(m = first_machine; m != NULL; m = m->next) {
7714 printf("%-10s %s%s\n",
7715 m->name, m->desc,
7716 m == first_machine ? " (default)" : "");
7718 exit(*optarg != '?');
7720 break;
7721 case QEMU_OPTION_cpu:
7722 /* hw initialization will check this */
7723 if (*optarg == '?') {
7724 /* XXX: implement xxx_cpu_list for targets that still miss it */
7725 #if defined(cpu_list)
7726 cpu_list(stdout, &fprintf);
7727 #endif
7728 exit(0);
7729 } else {
7730 cpu_model = optarg;
7732 break;
7733 case QEMU_OPTION_initrd:
7734 initrd_filename = optarg;
7735 break;
7736 case QEMU_OPTION_hda:
7737 case QEMU_OPTION_hdb:
7738 case QEMU_OPTION_hdc:
7739 case QEMU_OPTION_hdd:
7741 int hd_index;
7742 hd_index = popt->index - QEMU_OPTION_hda;
7743 hd_filename[hd_index] = optarg;
7744 if (hd_index == cdrom_index)
7745 cdrom_index = -1;
7747 break;
7748 case QEMU_OPTION_mtdblock:
7749 mtd_filename = optarg;
7750 break;
7751 case QEMU_OPTION_sd:
7752 sd_filename = optarg;
7753 break;
7754 case QEMU_OPTION_pflash:
7755 if (pflash_index >= MAX_PFLASH) {
7756 fprintf(stderr, "qemu: too many parallel flash images\n");
7757 exit(1);
7759 pflash_filename[pflash_index++] = optarg;
7760 break;
7761 case QEMU_OPTION_snapshot:
7762 snapshot = 1;
7763 break;
7764 case QEMU_OPTION_hdachs:
7766 const char *p;
7767 p = optarg;
7768 cyls = strtol(p, (char **)&p, 0);
7769 if (cyls < 1 || cyls > 16383)
7770 goto chs_fail;
7771 if (*p != ',')
7772 goto chs_fail;
7773 p++;
7774 heads = strtol(p, (char **)&p, 0);
7775 if (heads < 1 || heads > 16)
7776 goto chs_fail;
7777 if (*p != ',')
7778 goto chs_fail;
7779 p++;
7780 secs = strtol(p, (char **)&p, 0);
7781 if (secs < 1 || secs > 63)
7782 goto chs_fail;
7783 if (*p == ',') {
7784 p++;
7785 if (!strcmp(p, "none"))
7786 translation = BIOS_ATA_TRANSLATION_NONE;
7787 else if (!strcmp(p, "lba"))
7788 translation = BIOS_ATA_TRANSLATION_LBA;
7789 else if (!strcmp(p, "auto"))
7790 translation = BIOS_ATA_TRANSLATION_AUTO;
7791 else
7792 goto chs_fail;
7793 } else if (*p != '\0') {
7794 chs_fail:
7795 fprintf(stderr, "qemu: invalid physical CHS format\n");
7796 exit(1);
7799 break;
7800 case QEMU_OPTION_nographic:
7801 pstrcpy(serial_devices[0], sizeof(serial_devices[0]), "stdio");
7802 pstrcpy(parallel_devices[0], sizeof(parallel_devices[0]), "null");
7803 pstrcpy(monitor_device, sizeof(monitor_device), "stdio");
7804 nographic = 1;
7805 break;
7806 case QEMU_OPTION_portrait:
7807 graphic_rotate = 1;
7808 break;
7809 case QEMU_OPTION_kernel:
7810 kernel_filename = optarg;
7811 break;
7812 case QEMU_OPTION_append:
7813 kernel_cmdline = optarg;
7814 break;
7815 case QEMU_OPTION_cdrom:
7816 if (cdrom_index >= 0) {
7817 hd_filename[cdrom_index] = optarg;
7819 break;
7820 case QEMU_OPTION_boot:
7821 if (strlen(optarg) > MAX_BOOT_DEVICES) {
7822 fprintf(stderr, "qemu: too many boot devices\n");
7823 exit(1);
7825 strncpy(boot_device, optarg, MAX_BOOT_DEVICES);
7826 #if defined(TARGET_SPARC) || defined(TARGET_I386)
7827 #define BOOTCHARS "acdn"
7828 #else
7829 #define BOOTCHARS "acd"
7830 #endif
7831 if (strlen(boot_device) != strspn(boot_device, BOOTCHARS)) {
7832 fprintf(stderr, "qemu: invalid boot device "
7833 "sequence '%s'\n", boot_device);
7834 exit(1);
7836 break;
7837 case QEMU_OPTION_fda:
7838 fd_filename[0] = optarg;
7839 break;
7840 case QEMU_OPTION_fdb:
7841 fd_filename[1] = optarg;
7842 break;
7843 #ifdef TARGET_I386
7844 case QEMU_OPTION_no_fd_bootchk:
7845 fd_bootchk = 0;
7846 break;
7847 #endif
7848 case QEMU_OPTION_no_code_copy:
7849 code_copy_enabled = 0;
7850 break;
7851 case QEMU_OPTION_net:
7852 if (nb_net_clients >= MAX_NET_CLIENTS) {
7853 fprintf(stderr, "qemu: too many network clients\n");
7854 exit(1);
7856 pstrcpy(net_clients[nb_net_clients],
7857 sizeof(net_clients[0]),
7858 optarg);
7859 nb_net_clients++;
7860 break;
7861 #ifdef CONFIG_SLIRP
7862 case QEMU_OPTION_tftp:
7863 tftp_prefix = optarg;
7864 break;
7865 case QEMU_OPTION_bootp:
7866 bootp_filename = optarg;
7867 break;
7868 #ifndef _WIN32
7869 case QEMU_OPTION_smb:
7870 net_slirp_smb(optarg);
7871 break;
7872 #endif
7873 case QEMU_OPTION_redir:
7874 net_slirp_redir(optarg);
7875 break;
7876 #endif
7877 #ifdef HAS_AUDIO
7878 case QEMU_OPTION_audio_help:
7879 AUD_help ();
7880 exit (0);
7881 break;
7882 case QEMU_OPTION_soundhw:
7883 select_soundhw (optarg);
7884 break;
7885 #endif
7886 case QEMU_OPTION_h:
7887 help(0);
7888 break;
7889 case QEMU_OPTION_m:
7890 ram_size = atoi(optarg) * 1024 * 1024;
7891 if (ram_size <= 0)
7892 help(1);
7893 if (ram_size > PHYS_RAM_MAX_SIZE) {
7894 fprintf(stderr, "qemu: at most %d MB RAM can be simulated\n",
7895 PHYS_RAM_MAX_SIZE / (1024 * 1024));
7896 exit(1);
7898 break;
7899 case QEMU_OPTION_d:
7901 int mask;
7902 CPULogItem *item;
7904 mask = cpu_str_to_log_mask(optarg);
7905 if (!mask) {
7906 printf("Log items (comma separated):\n");
7907 for(item = cpu_log_items; item->mask != 0; item++) {
7908 printf("%-10s %s\n", item->name, item->help);
7910 exit(1);
7912 cpu_set_log(mask);
7914 break;
7915 #ifdef CONFIG_GDBSTUB
7916 case QEMU_OPTION_s:
7917 use_gdbstub = 1;
7918 break;
7919 case QEMU_OPTION_p:
7920 gdbstub_port = optarg;
7921 break;
7922 #endif
7923 case QEMU_OPTION_L:
7924 bios_dir = optarg;
7925 break;
7926 case QEMU_OPTION_bios:
7927 bios_name = optarg;
7928 break;
7929 case QEMU_OPTION_S:
7930 autostart = 0;
7931 break;
7932 case QEMU_OPTION_k:
7933 keyboard_layout = optarg;
7934 break;
7935 case QEMU_OPTION_localtime:
7936 rtc_utc = 0;
7937 break;
7938 case QEMU_OPTION_cirrusvga:
7939 cirrus_vga_enabled = 1;
7940 vmsvga_enabled = 0;
7941 break;
7942 case QEMU_OPTION_vmsvga:
7943 cirrus_vga_enabled = 0;
7944 vmsvga_enabled = 1;
7945 break;
7946 case QEMU_OPTION_std_vga:
7947 cirrus_vga_enabled = 0;
7948 vmsvga_enabled = 0;
7949 break;
7950 case QEMU_OPTION_g:
7952 const char *p;
7953 int w, h, depth;
7954 p = optarg;
7955 w = strtol(p, (char **)&p, 10);
7956 if (w <= 0) {
7957 graphic_error:
7958 fprintf(stderr, "qemu: invalid resolution or depth\n");
7959 exit(1);
7961 if (*p != 'x')
7962 goto graphic_error;
7963 p++;
7964 h = strtol(p, (char **)&p, 10);
7965 if (h <= 0)
7966 goto graphic_error;
7967 if (*p == 'x') {
7968 p++;
7969 depth = strtol(p, (char **)&p, 10);
7970 if (depth != 8 && depth != 15 && depth != 16 &&
7971 depth != 24 && depth != 32)
7972 goto graphic_error;
7973 } else if (*p == '\0') {
7974 depth = graphic_depth;
7975 } else {
7976 goto graphic_error;
7979 graphic_width = w;
7980 graphic_height = h;
7981 graphic_depth = depth;
7983 break;
7984 case QEMU_OPTION_echr:
7986 char *r;
7987 term_escape_char = strtol(optarg, &r, 0);
7988 if (r == optarg)
7989 printf("Bad argument to echr\n");
7990 break;
7992 case QEMU_OPTION_monitor:
7993 pstrcpy(monitor_device, sizeof(monitor_device), optarg);
7994 break;
7995 case QEMU_OPTION_serial:
7996 if (serial_device_index >= MAX_SERIAL_PORTS) {
7997 fprintf(stderr, "qemu: too many serial ports\n");
7998 exit(1);
8000 pstrcpy(serial_devices[serial_device_index],
8001 sizeof(serial_devices[0]), optarg);
8002 serial_device_index++;
8003 break;
8004 case QEMU_OPTION_parallel:
8005 if (parallel_device_index >= MAX_PARALLEL_PORTS) {
8006 fprintf(stderr, "qemu: too many parallel ports\n");
8007 exit(1);
8009 pstrcpy(parallel_devices[parallel_device_index],
8010 sizeof(parallel_devices[0]), optarg);
8011 parallel_device_index++;
8012 break;
8013 case QEMU_OPTION_loadvm:
8014 loadvm = optarg;
8015 break;
8016 case QEMU_OPTION_full_screen:
8017 full_screen = 1;
8018 break;
8019 #ifdef CONFIG_SDL
8020 case QEMU_OPTION_no_frame:
8021 no_frame = 1;
8022 break;
8023 case QEMU_OPTION_alt_grab:
8024 alt_grab = 1;
8025 break;
8026 case QEMU_OPTION_no_quit:
8027 no_quit = 1;
8028 break;
8029 #endif
8030 case QEMU_OPTION_pidfile:
8031 pid_file = optarg;
8032 break;
8033 #ifdef TARGET_I386
8034 case QEMU_OPTION_win2k_hack:
8035 win2k_install_hack = 1;
8036 break;
8037 #endif
8038 #ifdef USE_KQEMU
8039 case QEMU_OPTION_no_kqemu:
8040 kqemu_allowed = 0;
8041 break;
8042 case QEMU_OPTION_kernel_kqemu:
8043 kqemu_allowed = 2;
8044 break;
8045 #endif
8046 case QEMU_OPTION_usb:
8047 usb_enabled = 1;
8048 break;
8049 case QEMU_OPTION_usbdevice:
8050 usb_enabled = 1;
8051 if (usb_devices_index >= MAX_USB_CMDLINE) {
8052 fprintf(stderr, "Too many USB devices\n");
8053 exit(1);
8055 pstrcpy(usb_devices[usb_devices_index],
8056 sizeof(usb_devices[usb_devices_index]),
8057 optarg);
8058 usb_devices_index++;
8059 break;
8060 case QEMU_OPTION_smp:
8061 smp_cpus = atoi(optarg);
8062 if (smp_cpus < 1 || smp_cpus > MAX_CPUS) {
8063 fprintf(stderr, "Invalid number of CPUs\n");
8064 exit(1);
8066 break;
8067 case QEMU_OPTION_vnc:
8068 vnc_display = optarg;
8069 break;
8070 case QEMU_OPTION_no_acpi:
8071 acpi_enabled = 0;
8072 break;
8073 case QEMU_OPTION_no_reboot:
8074 no_reboot = 1;
8075 break;
8076 case QEMU_OPTION_show_cursor:
8077 cursor_hide = 0;
8078 break;
8079 case QEMU_OPTION_daemonize:
8080 daemonize = 1;
8081 break;
8082 case QEMU_OPTION_option_rom:
8083 if (nb_option_roms >= MAX_OPTION_ROMS) {
8084 fprintf(stderr, "Too many option ROMs\n");
8085 exit(1);
8087 option_rom[nb_option_roms] = optarg;
8088 nb_option_roms++;
8089 break;
8090 case QEMU_OPTION_semihosting:
8091 semihosting_enabled = 1;
8092 break;
8093 case QEMU_OPTION_name:
8094 qemu_name = optarg;
8095 break;
8096 #ifdef TARGET_SPARC
8097 case QEMU_OPTION_prom_env:
8098 if (nb_prom_envs >= MAX_PROM_ENVS) {
8099 fprintf(stderr, "Too many prom variables\n");
8100 exit(1);
8102 prom_envs[nb_prom_envs] = optarg;
8103 nb_prom_envs++;
8104 break;
8105 #endif
8106 #ifdef TARGET_ARM
8107 case QEMU_OPTION_old_param:
8108 old_param = 1;
8109 #endif
8110 case QEMU_OPTION_clock:
8111 configure_alarms(optarg);
8112 break;
8113 case QEMU_OPTION_startdate:
8115 struct tm tm;
8116 if (!strcmp(optarg, "now")) {
8117 rtc_start_date = -1;
8118 } else {
8119 if (sscanf(optarg, "%d-%d-%dT%d:%d:%d",
8120 &tm.tm_year,
8121 &tm.tm_mon,
8122 &tm.tm_mday,
8123 &tm.tm_hour,
8124 &tm.tm_min,
8125 &tm.tm_sec) == 6) {
8126 /* OK */
8127 } else if (sscanf(optarg, "%d-%d-%d",
8128 &tm.tm_year,
8129 &tm.tm_mon,
8130 &tm.tm_mday) == 3) {
8131 tm.tm_hour = 0;
8132 tm.tm_min = 0;
8133 tm.tm_sec = 0;
8134 } else {
8135 goto date_fail;
8137 tm.tm_year -= 1900;
8138 tm.tm_mon--;
8139 rtc_start_date = timegm(&tm);
8140 if (rtc_start_date == -1) {
8141 date_fail:
8142 fprintf(stderr, "Invalid date format. Valid format are:\n"
8143 "'now' or '2006-06-17T16:01:21' or '2006-06-17'\n");
8144 exit(1);
8148 break;
8153 #ifndef _WIN32
8154 if (daemonize && !nographic && vnc_display == NULL) {
8155 fprintf(stderr, "Can only daemonize if using -nographic or -vnc\n");
8156 daemonize = 0;
8159 if (daemonize) {
8160 pid_t pid;
8162 if (pipe(fds) == -1)
8163 exit(1);
8165 pid = fork();
8166 if (pid > 0) {
8167 uint8_t status;
8168 ssize_t len;
8170 close(fds[1]);
8172 again:
8173 len = read(fds[0], &status, 1);
8174 if (len == -1 && (errno == EINTR))
8175 goto again;
8177 if (len != 1)
8178 exit(1);
8179 else if (status == 1) {
8180 fprintf(stderr, "Could not acquire pidfile\n");
8181 exit(1);
8182 } else
8183 exit(0);
8184 } else if (pid < 0)
8185 exit(1);
8187 setsid();
8189 pid = fork();
8190 if (pid > 0)
8191 exit(0);
8192 else if (pid < 0)
8193 exit(1);
8195 umask(027);
8196 chdir("/");
8198 signal(SIGTSTP, SIG_IGN);
8199 signal(SIGTTOU, SIG_IGN);
8200 signal(SIGTTIN, SIG_IGN);
8202 #endif
8204 if (pid_file && qemu_create_pidfile(pid_file) != 0) {
8205 if (daemonize) {
8206 uint8_t status = 1;
8207 write(fds[1], &status, 1);
8208 } else
8209 fprintf(stderr, "Could not acquire pid file\n");
8210 exit(1);
8213 #ifdef USE_KQEMU
8214 if (smp_cpus > 1)
8215 kqemu_allowed = 0;
8216 #endif
8217 linux_boot = (kernel_filename != NULL);
8219 if (!linux_boot &&
8220 (!strchr(boot_device, 'n')) &&
8221 hd_filename[0] == '\0' &&
8222 (cdrom_index >= 0 && hd_filename[cdrom_index] == '\0') &&
8223 fd_filename[0] == '\0')
8224 help(1);
8226 /* boot to floppy or the default cd if no hard disk defined yet */
8227 if (!boot_device[0]) {
8228 if (hd_filename[0] != '\0')
8229 boot_device[0] = 'c';
8230 else if (fd_filename[0] != '\0')
8231 boot_device[0] = 'a';
8232 else
8233 boot_device[0] = 'd';
8234 boot_device[1] = 0;
8236 setvbuf(stdout, NULL, _IOLBF, 0);
8238 init_timers();
8239 init_timer_alarm();
8240 qemu_aio_init();
8242 #ifdef _WIN32
8243 socket_init();
8244 #endif
8246 /* init network clients */
8247 if (nb_net_clients == 0) {
8248 /* if no clients, we use a default config */
8249 pstrcpy(net_clients[0], sizeof(net_clients[0]),
8250 "nic");
8251 pstrcpy(net_clients[1], sizeof(net_clients[0]),
8252 "user");
8253 nb_net_clients = 2;
8256 for(i = 0;i < nb_net_clients; i++) {
8257 if (net_client_init(net_clients[i]) < 0)
8258 exit(1);
8260 for(vlan = first_vlan; vlan != NULL; vlan = vlan->next) {
8261 if (vlan->nb_guest_devs == 0 && vlan->nb_host_devs == 0)
8262 continue;
8263 if (vlan->nb_guest_devs == 0) {
8264 fprintf(stderr, "Invalid vlan (%d) with no nics\n", vlan->id);
8265 exit(1);
8267 if (vlan->nb_host_devs == 0)
8268 fprintf(stderr,
8269 "Warning: vlan %d is not connected to host network\n",
8270 vlan->id);
8273 #ifdef TARGET_I386
8274 if (strchr(boot_device, 'n')) {
8275 for (i = 0; i < nb_nics; i++) {
8276 const char *model = nd_table[i].model;
8277 char buf[1024];
8278 if (model == NULL)
8279 model = "ne2k_pci";
8280 snprintf(buf, sizeof(buf), "%s/pxe-%s.bin", bios_dir, model);
8281 if (get_image_size(buf) > 0) {
8282 option_rom[nb_option_roms] = strdup(buf);
8283 nb_option_roms++;
8284 break;
8287 if (i == nb_nics) {
8288 fprintf(stderr, "No valid PXE rom found for network device\n");
8289 exit(1);
8292 #endif
8294 /* init the memory */
8295 phys_ram_size = ram_size + vga_ram_size + MAX_BIOS_SIZE;
8297 phys_ram_base = qemu_vmalloc(phys_ram_size);
8298 if (!phys_ram_base) {
8299 fprintf(stderr, "Could not allocate physical memory\n");
8300 exit(1);
8303 /* we always create the cdrom drive, even if no disk is there */
8304 bdrv_init();
8305 if (cdrom_index >= 0) {
8306 bs_table[cdrom_index] = bdrv_new("cdrom");
8307 bdrv_set_type_hint(bs_table[cdrom_index], BDRV_TYPE_CDROM);
8310 /* open the virtual block devices */
8311 for(i = 0; i < MAX_DISKS; i++) {
8312 if (hd_filename[i]) {
8313 if (!bs_table[i]) {
8314 char buf[64];
8315 snprintf(buf, sizeof(buf), "hd%c", i + 'a');
8316 bs_table[i] = bdrv_new(buf);
8318 if (bdrv_open(bs_table[i], hd_filename[i], snapshot ? BDRV_O_SNAPSHOT : 0) < 0) {
8319 fprintf(stderr, "qemu: could not open hard disk image '%s'\n",
8320 hd_filename[i]);
8321 exit(1);
8323 if (i == 0 && cyls != 0) {
8324 bdrv_set_geometry_hint(bs_table[i], cyls, heads, secs);
8325 bdrv_set_translation_hint(bs_table[i], translation);
8330 /* we always create at least one floppy disk */
8331 fd_table[0] = bdrv_new("fda");
8332 bdrv_set_type_hint(fd_table[0], BDRV_TYPE_FLOPPY);
8334 for(i = 0; i < MAX_FD; i++) {
8335 if (fd_filename[i]) {
8336 if (!fd_table[i]) {
8337 char buf[64];
8338 snprintf(buf, sizeof(buf), "fd%c", i + 'a');
8339 fd_table[i] = bdrv_new(buf);
8340 bdrv_set_type_hint(fd_table[i], BDRV_TYPE_FLOPPY);
8342 if (fd_filename[i][0] != '\0') {
8343 if (bdrv_open(fd_table[i], fd_filename[i],
8344 snapshot ? BDRV_O_SNAPSHOT : 0) < 0) {
8345 fprintf(stderr, "qemu: could not open floppy disk image '%s'\n",
8346 fd_filename[i]);
8347 exit(1);
8353 /* Open the virtual parallel flash block devices */
8354 for(i = 0; i < MAX_PFLASH; i++) {
8355 if (pflash_filename[i]) {
8356 if (!pflash_table[i]) {
8357 char buf[64];
8358 snprintf(buf, sizeof(buf), "fl%c", i + 'a');
8359 pflash_table[i] = bdrv_new(buf);
8361 if (bdrv_open(pflash_table[i], pflash_filename[i],
8362 snapshot ? BDRV_O_SNAPSHOT : 0) < 0) {
8363 fprintf(stderr, "qemu: could not open flash image '%s'\n",
8364 pflash_filename[i]);
8365 exit(1);
8370 sd_bdrv = bdrv_new ("sd");
8371 /* FIXME: This isn't really a floppy, but it's a reasonable
8372 approximation. */
8373 bdrv_set_type_hint(sd_bdrv, BDRV_TYPE_FLOPPY);
8374 if (sd_filename) {
8375 if (bdrv_open(sd_bdrv, sd_filename,
8376 snapshot ? BDRV_O_SNAPSHOT : 0) < 0) {
8377 fprintf(stderr, "qemu: could not open SD card image %s\n",
8378 sd_filename);
8379 } else
8380 qemu_key_check(sd_bdrv, sd_filename);
8383 if (mtd_filename) {
8384 mtd_bdrv = bdrv_new ("mtd");
8385 if (bdrv_open(mtd_bdrv, mtd_filename,
8386 snapshot ? BDRV_O_SNAPSHOT : 0) < 0 ||
8387 qemu_key_check(mtd_bdrv, mtd_filename)) {
8388 fprintf(stderr, "qemu: could not open Flash image %s\n",
8389 mtd_filename);
8390 bdrv_delete(mtd_bdrv);
8391 mtd_bdrv = 0;
8395 register_savevm("timer", 0, 2, timer_save, timer_load, NULL);
8396 register_savevm("ram", 0, 2, ram_save, ram_load, NULL);
8398 init_ioports();
8400 /* terminal init */
8401 memset(&display_state, 0, sizeof(display_state));
8402 if (nographic) {
8403 /* nearly nothing to do */
8404 dumb_display_init(ds);
8405 } else if (vnc_display != NULL) {
8406 vnc_display_init(ds);
8407 if (vnc_display_open(ds, vnc_display) < 0)
8408 exit(1);
8409 } else {
8410 #if defined(CONFIG_SDL)
8411 sdl_display_init(ds, full_screen, no_frame);
8412 #elif defined(CONFIG_COCOA)
8413 cocoa_display_init(ds, full_screen);
8414 #endif
8417 /* Maintain compatibility with multiple stdio monitors */
8418 if (!strcmp(monitor_device,"stdio")) {
8419 for (i = 0; i < MAX_SERIAL_PORTS; i++) {
8420 if (!strcmp(serial_devices[i],"mon:stdio")) {
8421 monitor_device[0] = '\0';
8422 break;
8423 } else if (!strcmp(serial_devices[i],"stdio")) {
8424 monitor_device[0] = '\0';
8425 pstrcpy(serial_devices[0], sizeof(serial_devices[0]), "mon:stdio");
8426 break;
8430 if (monitor_device[0] != '\0') {
8431 monitor_hd = qemu_chr_open(monitor_device);
8432 if (!monitor_hd) {
8433 fprintf(stderr, "qemu: could not open monitor device '%s'\n", monitor_device);
8434 exit(1);
8436 monitor_init(monitor_hd, !nographic);
8439 for(i = 0; i < MAX_SERIAL_PORTS; i++) {
8440 const char *devname = serial_devices[i];
8441 if (devname[0] != '\0' && strcmp(devname, "none")) {
8442 serial_hds[i] = qemu_chr_open(devname);
8443 if (!serial_hds[i]) {
8444 fprintf(stderr, "qemu: could not open serial device '%s'\n",
8445 devname);
8446 exit(1);
8448 if (strstart(devname, "vc", 0))
8449 qemu_chr_printf(serial_hds[i], "serial%d console\r\n", i);
8453 for(i = 0; i < MAX_PARALLEL_PORTS; i++) {
8454 const char *devname = parallel_devices[i];
8455 if (devname[0] != '\0' && strcmp(devname, "none")) {
8456 parallel_hds[i] = qemu_chr_open(devname);
8457 if (!parallel_hds[i]) {
8458 fprintf(stderr, "qemu: could not open parallel device '%s'\n",
8459 devname);
8460 exit(1);
8462 if (strstart(devname, "vc", 0))
8463 qemu_chr_printf(parallel_hds[i], "parallel%d console\r\n", i);
8467 machine->init(ram_size, vga_ram_size, boot_device,
8468 ds, fd_filename, snapshot,
8469 kernel_filename, kernel_cmdline, initrd_filename, cpu_model);
8471 /* init USB devices */
8472 if (usb_enabled) {
8473 for(i = 0; i < usb_devices_index; i++) {
8474 if (usb_device_add(usb_devices[i]) < 0) {
8475 fprintf(stderr, "Warning: could not add USB device %s\n",
8476 usb_devices[i]);
8481 if (display_state.dpy_refresh) {
8482 display_state.gui_timer = qemu_new_timer(rt_clock, gui_update, &display_state);
8483 qemu_mod_timer(display_state.gui_timer, qemu_get_clock(rt_clock));
8486 #ifdef CONFIG_GDBSTUB
8487 if (use_gdbstub) {
8488 /* XXX: use standard host:port notation and modify options
8489 accordingly. */
8490 if (gdbserver_start(gdbstub_port) < 0) {
8491 fprintf(stderr, "qemu: could not open gdbstub device on port '%s'\n",
8492 gdbstub_port);
8493 exit(1);
8496 #endif
8498 if (loadvm)
8499 do_loadvm(loadvm);
8502 /* XXX: simplify init */
8503 read_passwords();
8504 if (autostart) {
8505 vm_start();
8509 if (daemonize) {
8510 uint8_t status = 0;
8511 ssize_t len;
8512 int fd;
8514 again1:
8515 len = write(fds[1], &status, 1);
8516 if (len == -1 && (errno == EINTR))
8517 goto again1;
8519 if (len != 1)
8520 exit(1);
8522 TFR(fd = open("/dev/null", O_RDWR));
8523 if (fd == -1)
8524 exit(1);
8526 dup2(fd, 0);
8527 dup2(fd, 1);
8528 dup2(fd, 2);
8530 close(fd);
8533 main_loop();
8534 quit_timers();
8536 #if !defined(_WIN32)
8537 /* close network clients */
8538 for(vlan = first_vlan; vlan != NULL; vlan = vlan->next) {
8539 VLANClientState *vc;
8541 for(vc = vlan->first_client; vc != NULL; vc = vc->next) {
8542 if (vc->fd_read == tap_receive) {
8543 char ifname[64];
8544 TAPState *s = vc->opaque;
8546 if (sscanf(vc->info_str, "tap: ifname=%63s ", ifname) == 1 &&
8547 s->down_script[0])
8548 launch_script(s->down_script, ifname, s->fd);
8552 #endif
8553 return 0;