Fix APB
[qemu/mini2440.git] / target-i386 / exec.h
blob284f7b0f3b621679a5d32010a30849c6c9ec28b4
1 /*
2 * i386 execution defines
4 * Copyright (c) 2003 Fabrice Bellard
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, write to the Free Software
18 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston MA 02110-1301 USA
20 #include "config.h"
21 #include "dyngen-exec.h"
23 /* XXX: factorize this mess */
24 #ifdef TARGET_X86_64
25 #define TARGET_LONG_BITS 64
26 #else
27 #define TARGET_LONG_BITS 32
28 #endif
30 #include "cpu-defs.h"
32 register struct CPUX86State *env asm(AREG0);
34 #include "qemu-log.h"
36 #define EAX (env->regs[R_EAX])
37 #define ECX (env->regs[R_ECX])
38 #define EDX (env->regs[R_EDX])
39 #define EBX (env->regs[R_EBX])
40 #define ESP (env->regs[R_ESP])
41 #define EBP (env->regs[R_EBP])
42 #define ESI (env->regs[R_ESI])
43 #define EDI (env->regs[R_EDI])
44 #define EIP (env->eip)
45 #define DF (env->df)
47 #define CC_SRC (env->cc_src)
48 #define CC_DST (env->cc_dst)
49 #define CC_OP (env->cc_op)
51 /* float macros */
52 #define FT0 (env->ft0)
53 #define ST0 (env->fpregs[env->fpstt].d)
54 #define ST(n) (env->fpregs[(env->fpstt + (n)) & 7].d)
55 #define ST1 ST(1)
57 #include "cpu.h"
58 #include "exec-all.h"
60 /* op_helper.c */
61 void do_interrupt(int intno, int is_int, int error_code,
62 target_ulong next_eip, int is_hw);
63 void do_interrupt_user(int intno, int is_int, int error_code,
64 target_ulong next_eip);
65 void raise_exception_err(int exception_index, int error_code);
66 void raise_exception(int exception_index);
67 void do_smm_enter(void);
69 /* n must be a constant to be efficient */
70 static inline target_long lshift(target_long x, int n)
72 if (n >= 0)
73 return x << n;
74 else
75 return x >> (-n);
78 #include "helper.h"
80 static inline void svm_check_intercept(uint32_t type)
82 helper_svm_check_intercept_param(type, 0);
85 #if !defined(CONFIG_USER_ONLY)
87 #include "softmmu_exec.h"
89 #endif /* !defined(CONFIG_USER_ONLY) */
91 #ifdef USE_X86LDOUBLE
92 /* use long double functions */
93 #define floatx_to_int32 floatx80_to_int32
94 #define floatx_to_int64 floatx80_to_int64
95 #define floatx_to_int32_round_to_zero floatx80_to_int32_round_to_zero
96 #define floatx_to_int64_round_to_zero floatx80_to_int64_round_to_zero
97 #define int32_to_floatx int32_to_floatx80
98 #define int64_to_floatx int64_to_floatx80
99 #define float32_to_floatx float32_to_floatx80
100 #define float64_to_floatx float64_to_floatx80
101 #define floatx_to_float32 floatx80_to_float32
102 #define floatx_to_float64 floatx80_to_float64
103 #define floatx_abs floatx80_abs
104 #define floatx_chs floatx80_chs
105 #define floatx_round_to_int floatx80_round_to_int
106 #define floatx_compare floatx80_compare
107 #define floatx_compare_quiet floatx80_compare_quiet
108 #else
109 #define floatx_to_int32 float64_to_int32
110 #define floatx_to_int64 float64_to_int64
111 #define floatx_to_int32_round_to_zero float64_to_int32_round_to_zero
112 #define floatx_to_int64_round_to_zero float64_to_int64_round_to_zero
113 #define int32_to_floatx int32_to_float64
114 #define int64_to_floatx int64_to_float64
115 #define float32_to_floatx float32_to_float64
116 #define float64_to_floatx(x, e) (x)
117 #define floatx_to_float32 float64_to_float32
118 #define floatx_to_float64(x, e) (x)
119 #define floatx_abs float64_abs
120 #define floatx_chs float64_chs
121 #define floatx_round_to_int float64_round_to_int
122 #define floatx_compare float64_compare
123 #define floatx_compare_quiet float64_compare_quiet
124 #endif
126 #define RC_MASK 0xc00
127 #define RC_NEAR 0x000
128 #define RC_DOWN 0x400
129 #define RC_UP 0x800
130 #define RC_CHOP 0xc00
132 #define MAXTAN 9223372036854775808.0
134 #ifdef USE_X86LDOUBLE
136 /* only for x86 */
137 typedef union {
138 long double d;
139 struct {
140 unsigned long long lower;
141 unsigned short upper;
142 } l;
143 } CPU86_LDoubleU;
145 /* the following deal with x86 long double-precision numbers */
146 #define MAXEXPD 0x7fff
147 #define EXPBIAS 16383
148 #define EXPD(fp) (fp.l.upper & 0x7fff)
149 #define SIGND(fp) ((fp.l.upper) & 0x8000)
150 #define MANTD(fp) (fp.l.lower)
151 #define BIASEXPONENT(fp) fp.l.upper = (fp.l.upper & ~(0x7fff)) | EXPBIAS
153 #else
155 /* NOTE: arm is horrible as double 32 bit words are stored in big endian ! */
156 typedef union {
157 double d;
158 #if !defined(WORDS_BIGENDIAN) && !defined(__arm__)
159 struct {
160 uint32_t lower;
161 int32_t upper;
162 } l;
163 #else
164 struct {
165 int32_t upper;
166 uint32_t lower;
167 } l;
168 #endif
169 #ifndef __arm__
170 int64_t ll;
171 #endif
172 } CPU86_LDoubleU;
174 /* the following deal with IEEE double-precision numbers */
175 #define MAXEXPD 0x7ff
176 #define EXPBIAS 1023
177 #define EXPD(fp) (((fp.l.upper) >> 20) & 0x7FF)
178 #define SIGND(fp) ((fp.l.upper) & 0x80000000)
179 #ifdef __arm__
180 #define MANTD(fp) (fp.l.lower | ((uint64_t)(fp.l.upper & ((1 << 20) - 1)) << 32))
181 #else
182 #define MANTD(fp) (fp.ll & ((1LL << 52) - 1))
183 #endif
184 #define BIASEXPONENT(fp) fp.l.upper = (fp.l.upper & ~(0x7ff << 20)) | (EXPBIAS << 20)
185 #endif
187 static inline void fpush(void)
189 env->fpstt = (env->fpstt - 1) & 7;
190 env->fptags[env->fpstt] = 0; /* validate stack entry */
193 static inline void fpop(void)
195 env->fptags[env->fpstt] = 1; /* invvalidate stack entry */
196 env->fpstt = (env->fpstt + 1) & 7;
199 #ifndef USE_X86LDOUBLE
200 static inline CPU86_LDouble helper_fldt(target_ulong ptr)
202 CPU86_LDoubleU temp;
203 int upper, e;
204 uint64_t ll;
206 /* mantissa */
207 upper = lduw(ptr + 8);
208 /* XXX: handle overflow ? */
209 e = (upper & 0x7fff) - 16383 + EXPBIAS; /* exponent */
210 e |= (upper >> 4) & 0x800; /* sign */
211 ll = (ldq(ptr) >> 11) & ((1LL << 52) - 1);
212 #ifdef __arm__
213 temp.l.upper = (e << 20) | (ll >> 32);
214 temp.l.lower = ll;
215 #else
216 temp.ll = ll | ((uint64_t)e << 52);
217 #endif
218 return temp.d;
221 static inline void helper_fstt(CPU86_LDouble f, target_ulong ptr)
223 CPU86_LDoubleU temp;
224 int e;
226 temp.d = f;
227 /* mantissa */
228 stq(ptr, (MANTD(temp) << 11) | (1LL << 63));
229 /* exponent + sign */
230 e = EXPD(temp) - EXPBIAS + 16383;
231 e |= SIGND(temp) >> 16;
232 stw(ptr + 8, e);
234 #else
236 /* we use memory access macros */
238 static inline CPU86_LDouble helper_fldt(target_ulong ptr)
240 CPU86_LDoubleU temp;
242 temp.l.lower = ldq(ptr);
243 temp.l.upper = lduw(ptr + 8);
244 return temp.d;
247 static inline void helper_fstt(CPU86_LDouble f, target_ulong ptr)
249 CPU86_LDoubleU temp;
251 temp.d = f;
252 stq(ptr, temp.l.lower);
253 stw(ptr + 8, temp.l.upper);
256 #endif /* USE_X86LDOUBLE */
258 #define FPUS_IE (1 << 0)
259 #define FPUS_DE (1 << 1)
260 #define FPUS_ZE (1 << 2)
261 #define FPUS_OE (1 << 3)
262 #define FPUS_UE (1 << 4)
263 #define FPUS_PE (1 << 5)
264 #define FPUS_SF (1 << 6)
265 #define FPUS_SE (1 << 7)
266 #define FPUS_B (1 << 15)
268 #define FPUC_EM 0x3f
270 static inline uint32_t compute_eflags(void)
272 return env->eflags | helper_cc_compute_all(CC_OP) | (DF & DF_MASK);
275 /* NOTE: CC_OP must be modified manually to CC_OP_EFLAGS */
276 static inline void load_eflags(int eflags, int update_mask)
278 CC_SRC = eflags & (CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
279 DF = 1 - (2 * ((eflags >> 10) & 1));
280 env->eflags = (env->eflags & ~update_mask) |
281 (eflags & update_mask) | 0x2;
284 static inline void env_to_regs(void)
286 #ifdef reg_EAX
287 EAX = env->regs[R_EAX];
288 #endif
289 #ifdef reg_ECX
290 ECX = env->regs[R_ECX];
291 #endif
292 #ifdef reg_EDX
293 EDX = env->regs[R_EDX];
294 #endif
295 #ifdef reg_EBX
296 EBX = env->regs[R_EBX];
297 #endif
298 #ifdef reg_ESP
299 ESP = env->regs[R_ESP];
300 #endif
301 #ifdef reg_EBP
302 EBP = env->regs[R_EBP];
303 #endif
304 #ifdef reg_ESI
305 ESI = env->regs[R_ESI];
306 #endif
307 #ifdef reg_EDI
308 EDI = env->regs[R_EDI];
309 #endif
312 static inline void regs_to_env(void)
314 #ifdef reg_EAX
315 env->regs[R_EAX] = EAX;
316 #endif
317 #ifdef reg_ECX
318 env->regs[R_ECX] = ECX;
319 #endif
320 #ifdef reg_EDX
321 env->regs[R_EDX] = EDX;
322 #endif
323 #ifdef reg_EBX
324 env->regs[R_EBX] = EBX;
325 #endif
326 #ifdef reg_ESP
327 env->regs[R_ESP] = ESP;
328 #endif
329 #ifdef reg_EBP
330 env->regs[R_EBP] = EBP;
331 #endif
332 #ifdef reg_ESI
333 env->regs[R_ESI] = ESI;
334 #endif
335 #ifdef reg_EDI
336 env->regs[R_EDI] = EDI;
337 #endif
340 static inline int cpu_halted(CPUState *env) {
341 /* handle exit of HALTED state */
342 if (!env->halted)
343 return 0;
344 /* disable halt condition */
345 if (((env->interrupt_request & CPU_INTERRUPT_HARD) &&
346 (env->eflags & IF_MASK)) ||
347 (env->interrupt_request & CPU_INTERRUPT_NMI)) {
348 env->halted = 0;
349 return 0;
351 return EXCP_HALTED;
354 /* load efer and update the corresponding hflags. XXX: do consistency
355 checks with cpuid bits ? */
356 static inline void cpu_load_efer(CPUState *env, uint64_t val)
358 env->efer = val;
359 env->hflags &= ~(HF_LMA_MASK | HF_SVME_MASK);
360 if (env->efer & MSR_EFER_LMA)
361 env->hflags |= HF_LMA_MASK;
362 if (env->efer & MSR_EFER_SVME)
363 env->hflags |= HF_SVME_MASK;